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O EJMHCTBEHHOCTH P 0B 11O HIEHTPUPOBAHHBIM
H-CUCTEMAM

I'. T. TEBOPKJH (Epesan)

Iycts (X, &, 1) — BEPOSATHOCTHOE NPOCTPAHCTBO H {F,}i=; — MOCIEHOBa-
TEJILHOCTh G-aNrebp, BXOAAIIUX B F W 0ONAaroluX CBOWCTBAMM

D) F T ... € F Gy, XEF 33

2) #F,={X, @} u xaxnas g-anrebp F, MOPOXKIeHA POBHO n aToMamu A",

AP, .o AP, AP N AP =, ix] u U 4P =X.

SICHO, YTO TpH BBIIIEYKA3aHHBIX MPEANOJIOKEHHIX, COBOKYIIHOCTh ATOMOB,
obpasyrouux %, ,, MOJIy4aeTcsl PACIIEIUIEHHEM OIHOTO u3 aToMoB A{™ Ha nmBa
aToma.

Yepez . obo3HavaeTcss MHMHHMMAJbHAs c-ajrebpa, cojepxxamast Bce %,
n—=1:2

Ounpenenenue 1. Cucrema {@,(x)};=,; OPTOHOPMHPOBAHHLIX B MPOCTPAHCTBE
(X, #, p) byuxuuii, Ha3eBaeTca H-CUCTEMOH, €CITM IJIsT HEKOTOPOi ITOCIIe0BATE b=
HOCTH & ,, YOOBJIETBOpsIOIIEH yciaoBusM 1), 2), MHHAMaJIbHAs o-ajiredbpa OTHO-
CHTEJIBHO KOTOPOM M3MepuMbl Bce (yHkumu {@;}l-;, coBmamaer ¢ &,, 1A BCexX
=1, 200

Onpenenenne H-cucteMbl ObUI0 BBeeHO B paboTe GUNDY [4]. I3 onpenesieHUs
BHJHO, YTO ¢,(x)=1, x€X, xaxnas ¢yHKOuS ¢@,, n=>1 obpauiaeTcss B HyJIb BHE
HekoToporo aroma A"~ u3 g-anrepObl F,_, U NPUHUMAET NOCTOSIHHBIE 3HAYCHHSI
(pa3HBIX 3HAKOB) HA KaXIOM U3 JIBYX aTOMOB g-aJireOpel & ,, MOJIyYeHHBIX pac-
uieieHueM aroma A",

U3 ompeneneHdss HEMEMJIEHHO CJEAYeT TaKXe, UTO

[oudn= [ @udp=0, n>1
X

A‘(n—l)

B Tom uwactHOM citydyae; korma (X, &, p) coBmamaeT ¢ mpoctpancTBoM JlebGera Ha

& i—1 i .
otpeske [0, 1) u F,, mopoxaaercs u3 atomoB APM= ] 1=i=2, cuc-

PR L) [
tema {@,(x)};=, coBIamaeT, C TOYHOCTHIO NO 3HAYEHWI B JBOHYHO PAIMOHAJIBHBIX
TOYKax ¢ W3BeCTHOH crucreMoit Xaapa {x,(x)}. B ximacc H-cucteM BXOASAT TaKke CHC-
Tembl Tuma Xaapa (cm. [5]).

B pabote [2] @. I'. ApyTtroussaroM u A. A. TanansuoM Ais psAgoB IO CHC-
TeMaM Xaapa u YoJjia OblI yCTAaHOBJIEH aHAJIOr M3BECTHOM TeopeMbl Basuie-Ilyc-

* He3aBHCHMO aHAJOTMYHBIA pe3ynbTaT ObL1 monyyen Kputenmenom u Illanmmpo [3].
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2 I. . FEBOPKSAH,

CeHa 0 efJMHCTBEHHOCTM TPUrOHOMETPUUECKUX PAfdoB.* [Ana cucTeMbl Xaapa 3Ta
Teopema (hopMynupyeTcsl crefytowmum o06pasom.

Teopema A (d. . ApyToHAH, A. A. TanansaH). MNycTb psag

co

(*) 2 Xn(x),
roe {x,(xX)} — cucTema Xaapa, obnafaeT CBONCTBaMU:
a) HekoTopas nocnegosaTenbHOCTb {SN.(X)} yacTHbIX cymM psaga (* ) cxoguTces

K cymmupyemoi yHkuum f(x) Bctogy Ha oTpeske [0, 1], Kpome, ObITb MOXKET,
CUETHOr0 MHO>XeCTBa TOYeK;

B) ans no6o Toukm X0E[D, 1] lim—a'k-=0, rage nlkuX..<u4<... cyTb
K~°° XK\XQ

BCE Te Homepa M, Ansi KOTopbiXx XK(x0 90.
Torga pag (*) asnaeTca pagom Pypbe dyHkumm f{x) no cucrTeme Xaapa, T.e.

]
an= ff(x)Xn(x)dx.
0

B ganbHeliweM nNosBuAocbL MHOro pa6oT (cm., Hanpumep, [1], [8], [9]) B KOTOpbIX
4ns cucTeMbl Xaapa MoslydeHbl pasHble 0006LLEHUSA U yCUIEHUST Teopembl A.

B HacTosileld paboTe BbilleyKasaHHasi Teopema pacnpocTpaHseTcs Ha Mpoms-
BO/IbHbIE //-CUCTeMbl, pacCMOTPeHHble B npocTpaHcTBe (X, 2F, p).

Mpun 3TOM 4N fJoKa3aTeNlbcTBa COOTBETCTBYIOLLEN TeopeMbl MPUXOLUTCA BBECTU
HEKOTOPY MOAU(MKALUIO MOHATUA TOYKM npocTpaHcTBa (X, XF, p).

OnpepeneHne 2. Ckaxem, uto {= {§,}=1 sABNAeTCA TOYKON MpOCTpaHCTBa
X, (oTHOCUTENBHO ecnn HZ)L3 ... r><5,.3.. n |, atom u3
c-anrebpbl n=12, ...

3ameTuMm, 4YTO B nocnegosaTesibHOCTU {&4,} 1 HEKOTOpble aToMbl MOTYT MOB-
TOPATLCA, TaK Kak OHWM He BCerfja pacliennsioTca Ha fBe 4acTu.

Ckakem, 4Tto Touka £= {&K} MMeeT Mepy Hy/nb, ecnm qu A(<5,,)=0.

Ecnn {<?,(*}T=i aBnsetca HA-cuCTeMOl OTHOCUTE/IbHO MOC/ef0BaTeIbHOCTH
(Fanrebp {#7}n £= =l — Touka (oTHOCMTeNbHO {J*,}) npocTpaHcTBa (X, X+
p), TO 3HayeHWe NPUHMMaeMoe 3TOW (yHKUMeA Ha aTome f,, n=1,2,....

n n
= kglak(Pk(x) B Touke £= {§,}'=]l cumTaeTcsa BenMyuMHa S,,(£):k_2l ak<Pk(6-

Ecnn 3agaH psag akak(x), To 3HayeHmem Sn(i,) yacTU4yHol cyMmbl S,,(X)=
k=1

B panbHeiwem 4yepe3 § 0603HayalTCa MOAUPULMPOBAHHbIE TOYKM NPOCTPaH-
ctBa (X, 3F, p).
MmeeT mecTo cnepgytouian

Teopema 1 lycTb pag
@ rI2= . an<Pn(x),
roe {(pn(x)}7=1 H-cucTema, obnagaeT cneaylLMMM CBOMCTBAMU:

Acta Maihematica Academiae Scieniiai'um Hungaricae 40, 1982



O EAUHCTBEHHOCTH PSOOB IIO LIEHTPUPOBAHHBIM H-CUCTEMAM 3

A) Hexomopas  PUKCUPOBAHHAA  NOCACO0BAMEALHOCHMb — UACHMUUHBIX — CYMM
{Sn,(x)} paoa (1) cxodumcsa 6o écex, kpome, Gvinb ModHcem, CUEMHOZ0 MHONCECMEA
moukax E={0,}, m. e. cywecmeyem KOHeuHblli npedei ilim Sy, (§) 01 ecex (=

={0,};214¢ A, 20e A ne Gosee uem cuemHoe MHOICECMBO;
B) pao (1) no mepe cxooumcsa k ummezpupyemoii gyuxyuu f(x);

= ; a
C) 0aa a0boii mouku & umeem mecmo }1m k=0, 206 Ny<Ny<<...Mp=<...
e d (p

cymo 6ce me Homepa n, 044 Komopwix ¢,(E)70. '.j"ozda pao (1) aearsemea padom
Dypve Pyuxyuu f(x) no cucmeme {@,(x)}i=., m. e.

%=Jﬂn%m@.

Jlerko BuaeTh, 4TO TeopeMa 1 comepuT B cebe TeopeMy A.

Hoxa3aTenbcTBOo. [Ipy 10Ka3aTENbCTBE MBI B OCHOBHOM IIOJIB3yeMCsI CXEMOH
npeIoxXenHoi B pabote [2]. 3 yenosus B) crenyer, uto f(x) siBnsercs & .. -A3Me-
pEMO#, mo3ToMy pasznoxenne Gynkumn f(x) mo cucreMe {@,(x)}iz:

@ 3 c09a()

cxomutes K f(x) mouru Bcroay u B Metpuke L, (X, Z, p) (cm. [4], [6]), T. e.
3) ,.]_1.12 0,(x) =f(x) m.B.HA X

u

@ lim [|o,()—f ()| dp = 0.

Iycte {&,} Te Touku B xoTopsix pax (1) pacxomures. Ilpenmonaras, 4o psiabl
(1) u (2) He coBNAJAKOT, HalijieM TOYKY &, OTIMYHYIO OT BeeX Touek & (k=1,2, ...),
rge vactHele cyMMBI Sy, (€) psma (1) pacxonstcs. TeM caMbIM NpHIEM K IPOTH-
BOPEYHIO.

BBeneM HexoTophle o6o3Hauenus. Uepes AXN u AP 0603HauMM Te aTOMEI, Ha
KOTOPBIX QYHKIMH @ (X) DPUHEMAECT NOJIOXKUTEIBLHOE H, COOTBETCTBEHHO, OTpHIA-
TenbHOE 3Havenwe. Yepes oY) u ¢ (n=1,2,...) obo3HaunM Te QyHKIMH W3
{9 (x)}i21, KOTOpBIE PaBHBI HYJIO, COOTBETCTBCHHO, BHE aToMoB A u AP,

Hanee, wepes af?, u ¢, (i=1,2; n=1,2,...), o6o3HauuM K03(pHHIHEHTHI
byaxumit ¢, coorBercTBerHO B pagax (1) u (2).

Ilycts psgel (1) 1 (2) He coBHagarT U k; HAUMEHBLIMA HOMEpP IJIS KOTOPOIro
a,#c,. Torma na atoMe 4 (iy=1 wmu 2), uyacTHBIe CyMMEI Sy, (x) ¥ 0y, (x) psanOB
(1) » (2) OPHHEMAXOT OTJIMYHBIE APYT OT APYyra IIOCTOSHHBIE 3HA4YeHHs (cM., Onpeze-
Jeaue 1).

JIasi [OoKa3aTeabCTBa TEOPEMBL HAM JOCTATOYHO JOKAa3aTh CIENYIOIIYIO JEMMY.

Jlemma. ITyems &, npoussoavnas mouxa npocmpancmea X (omHocumenvHo
{F 1), umelowan mepy nyav u ky-npoussosbHoe HAMypaibHoe YUCAO0, 048 KOMOPO20
8bINOAHEHO CAedyIowjee YCaosue

1* Acta Mathematica Academiae Scientiarum Hungaricae 40, 1982



4 I. . FEBOPKSAH,

@) Ha HekoToOpom aTome Buga Af®) (i0= 1 wm 2) YaCTMWYHblE CyMMbl 3 [
n KI(x) psgos (1) n (2) npHMMaT OT/INMYHbIE APYT OT Apyra NoCTOSAHHbIE 3HAYEHWS.

Torga ans no6oro M >0 1 HaTypanbHoro N MOXKHO onpeaenuTb uncio Nj,
MpUHaAne>Kalee MocnejosaTeNbHoCT Y {Nj}, HaTypanbHoe uucno p ¥ aToM BUAA
i =1 wm 2, KoTopble 061afalT CledyloLWMU CBOCTBaMM:

1°) Nj>N;

2°) A~czA~Nd maTtom A H e cogep>kaT Touky £0, T.e. ecim £0= {5, )<=1,
TO cywlecTByeT aTom 5n, Takoe, yto FIbI£A=0 ;

3° yacTunyHaa cymma SN (x) paga (1) BHyTpu aToma A(‘P>nocTosiHHAa M No ab-
COMIOTHOWA BeMUMHe 6onblue M;

4° nna uucna p n atoma A(‘P BbIMOMHEHO ycnoBMe @), B KOTOPOM BMeCTO /cO
B3ATO P.

[oKka3aTenbCTBO NeMMbl. CHavyana [OKaXeM CyllecTBoBaHMe uucna KO
1 aToMa Buga , 1a=1 wnnm 2, KoTopble yA0BNETBOPSAIOT YCM0BMIO a), Mg BMECTO

K0 B35TO KO, npnyem A ~aA ™ n GUSA[?\ B cnyuvae, korga Z~A™, 6 3T0 yTBep-

XAeHne BepHo. Mpeanonoxnm, 4yto £0€~ @) (T-e., ecnu £0= {&H=1>T0 cywiecT-
ByeT aToM <§f, Takoihi uto, <§0c/I£'0). N3 ycnoBua a) cnegyer:

(5) S*,,(X)-<T*0(x) = d * 0 Haatome AftK
PaccmoTpum pag

(6) d+ /E L« 40 X)<PON(*)e
Monoxum

@) dn= a”X-cg»), (n= 12 ..).

N3 Toukm io—ViI=l BbiGepeM TaKyk nognocnegoBaTesibHOCTb {HK}, uNeHbl
KOTOpPOWM oT/AnyatoTea ApYr oT Apyra U B 3Ty NOAMOCNef0BaTe/lbHOCTb BXOAAT BCe
OTNINYHbIE APYT OT Apyra atombl nocnegoBatensHoctn {5, )=1. MNMognocnegosa-
TenbHOCTb {GK} GeckoHeyHa n M1 A</ =0, Tak Kak mepa To4ku £0 paBHa Hy/Ito.

CyulecTByeT Takoii Homep T,, 4To 5,K= AK°\

[anee, 0603HaumMm 4epe3d AK]],, n Aj*]n, n=1,2, ..., Te aTOMbl, Ha KOTOpPbIX

yHKums (P?\(X) NnpuHUMaeT, COOTBETCTBEHHO, MOMIOXUTE/bHbIE U OTpULATeNIbHbIE
3HaYeHVs.

N3 aTtomoB AKS, n A”,, BblbepemM MocnefoBaTelbHOCTb aTtomMoB AKMTK, 4=1
wim 2, A™K 3 AKN23 ... 3 AMTK3 ... Takux 4Tto

® ANKo= Y -4

PaccmoTpuM Taioke Moc/iefoBaTesbHOCTb aToMoB A(K.. TAe itW4, i»=1 wwm 2.
B03MOXHbI TOMbKO ABa Ciy4as:

Acta Mathematica Academiae Scientiarum Hungaricae 40, 1982



O EANHCTBEHHOCTW PAAOB MO LEHTPUPOBAHHBLIM A-CUCTEMAM 5

I YacTHble cymMmbl psga (6) ¢ Homepamu TK, K= 1,2,..., obpawarwTcsa B

Hy/b Ha atomax JI"gT, ansa Bcex K, T. e. (cm. (7))

TK
9) d+ 2 dn(p”n= 0 Ha atome AK M gna Bcex K.

Il. PaBeHCTBO (9) MMmeeT MecTO He Ansd Bcex K=1,2, ...
Jlerko y6eantbea (N0 MHAYKLMMW), YTO KOrAa UMeeT MeCcTO MepBoe YTBepPXAeHN e,
TO

(10)

rge ay 1 Bi, COOTBETCTBEHHO, T€ 3HAYEHMA KOTOpble MNpUHUMaeT GyHKumsa <0,1(
HA MHOXECTBAX [y, 1 U 8ro vy B+ T €
(M) coM(x) = Tai Ha 8n

Ha Yuy.-JTYy, -
M3 onpegeneHnsa 1 cnepyeT, 4To yuucna a- U Rt yaoBAeTBOPSAOT ClefyloWwnUM YCro-
BUAM

(12)

(13) afR (K -J+ R “KSnkUiM\6,k j = 1,

(14) aiRi < 0.

OTctoga n n3 (10) cnepyeTt

(15) dmk _ d €1-<\ =
a* Y Biyy B K B Kkix
: t .

x[i+ 1o,
[ Sy g vy MUu,) J
d B(K) M(l-l-+,,-r) dn(én')

WK\ M(Av+) MK H-i0) KAIM&YV +k-i)
Mcnonb3ya (12) n (13), nerko yb6eauTbCs, 4TO

(16) afi(0..k) dR(S,.k).
at

N3 f16), a Takxke 13 (7) n ycnosus C) Teopembl cregyeT:
cf*o)

7) lim = —dR(S,, )
K~ ak

Jokaxem, 4To (17) NpoTMBOPEUNT TOMY, 4TO psAA (2) cxogmuTcs B MeTpuke 14,
Be3 orpaHuyeHms 06LWHOCTN MOXHO cuuTaTb, 4YTo —eg<H,)=1 Torga n3 (17)

Acia Mathematica Academiae Scientianim Hungaricae 40, 1982



6 I. . FTEBOPKAH,

P 1
cnefyeT CyLLeCTBOBaHME TakOro p 4TO AN MNPOU3BO/NILHOIO S>p,
Jlerko BuAeTb, 4YTO
18 /1 dp> f 2 &'mMi°imk(X)d™ > Y | Z “*xp*
(18) = P> f 2 Imk(X) L&
N3 (12) n (13) Haxogum a* . Bo3bmem npownsBob-
AK)')*--!K) M4 'H,J
Hoe W g Takoe, 4TO ! —;—l. Torga vmeem:
noy'+.-x) 2
|
(19) H \‘ i*tdp =
Tirn H n,, fem
K +g

=N (Kw<a(X X XK X ))=2N -1 X ;N XK X >1=

1 1 »(K-J r 1
2 2 p(6,k+m 4 .

Ho 3T0 NPOTMBOPEUUT TOMY, UTO PAL (2) cxoguTcs B MeTpuKe LX. Takum o6pasom,
MPeAMNoNoXeHMe, YTO UMeeT MecTO cfyyali 1, MPUMBOAWUT K MPOTUBOPEYMIO.

NTak, Mbl gokasanu, 4to cyuiectByeT yucsio KO m atom Buga , I'=1 nnn
2, KOTopble Y[0B/IETBOPSAIOT YCNOBUIO @), rAae BMecTo KO B3aTO KO, npuyem
(20) e M wn ® AR,
(21) SK (- 6v(*) =c* 0 Ha aY .
PaccmoTpum pag
(22) e~ n2|V:1{a K, ki) ekdr(x)-

Nycte @, B //-cucreme YILXumeeT Homep <1 Te.

(23) 9I»gi(*) = del(x)
n Nj — HammeHblUee 4ymcno mM3 nocnegoatenbHocTn {A\} Takoe, 4TO
(24) Njl = 2>

Ona paHHoro 7s y\ 0603HauyuMm 4yepe3 ntj Hanbonbllee HaTypasibHOE 4uUCio, ANs
KOTOPOro yHKums (K?'mj(x) B cucteme {<?,(*)}B=1 umeeT HOMep, He MPEBOCXOAA-
wmin ymcna Nj.
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3 BbI6OPOB (hYyHKLMIA n ymucen ntj cnegyeT, 4To Ha atoMe A(KY BbIMOMHSA-
I0TCS paBeHCTBa:
2 S 2 4%y > '
(25) O(pc)+ _r__14 .0» 0 x) = v an<Pn(x), j —k,
b % X
(26) VO(*)+ AalGE‘IZF%'I()Q :/121C"<P"(X)’ ink-

OTctoga, B cnny (3), (21) n ycnoesus B) Teopembl, BbITEKAET:

lc 2 (6 -6 T W) =0 moMeewa 47
w=1 J
N3 (4) BbiTekaeT
(28> 1+ [ 4o “/(*)|~ = 0.
*0

O60o3HauUMM, AN KPaTKOCTH,

(29) I>M = <)+ 2 cfmepfjx) Ha dg»,

(30) VI(X) = Sh(x)+% atom9"*m(x) Ha dg».

Myctb M >0 n HaTypanbHoe V— uucna, purypupytoLLme B hOpMyIMpPOBKeE NeMMBbI.
Bo3bMeM /o Takoe, 4TO

(31) h>k w»n ~.0>N.

lMokKaxeM, 4YTO HepaBeHCTBa

(32) \U2,()\EM+\D,(x)\, j~ h

He MOTYT BbIMO/HATBLCA BCOLY Ha aToMme Ai®. B camom nene, u3 (28) cnegyer,
LI'If'F.)n(byHKLI,I/II/I d/[1X) MMEOT paBHOCTEMEHHO abCoIOTHO HeMNpepbIBHbIE MHTErPasibl Ha
AK? 1”n ecnn 6bl KaXxpaoe W3 HepaBeHCTB (32) BbIMOMHAMOCH BCOAY Ha AK?, TO

byHKUMM 4,j(X), ja?K TOXXe MMenu 6bl paBHOCTEMEHHO abCOMOTHO HemnpepbIBHbIE
If\

nHTerpanbl Ha AK? . Torga B cuny TeopeMbl BuTanu o nepexofe K npegeny nog
3HaKoOM uHTerpana (cMm. [7])., Mbl umeem (cMm. (27) n (21))

(33) lim f (Pj(x)- &(x)du = 0.
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8 I. I'. TEBOPKSAH,

Ho u3 (21) n 3 onpegeneHns QyHKUWIA OI7T(x) BbITEKaeT

(34) J dp = cy(A”) 710, jsn,

KOTOpOe MPOTMBOPEYUT paBeHCTBY (33).
MycTb j=jo HauMMeHblUee YMCNO, AN KOTOPOro He BbIMOMHEHO HEPaBEHCTBO
(32), T. e. HepaBeHCTBO

(35) \¥j(x)\"M +pj(x)\, j o

NMeeT MeCTO Ha HeKoTopbix aToMax Buga A™PT, i,—1 nam 2, (cm., OnpegeneHme

1), npeacTaBnAWMX aTOMbl MOCTOSAHCTBA (yHKUuin 4 4 T, /[a<llly.
MycTb T' — HanbosblLee YAC/O CPeAM yKasaHHbIX Yicen NKT } nartom AK

im=1 nnn 2, ognH U3 aToMOB MOCTOSIHCTBA (yHKUMW (p.T, F4e BbINOHEHO Hepa-
BeHCTBO (35). AAcHO, uTo Ha atome JI['r2,, dyHKumMM DOX) 1 4,3(X) NOCTOAHHbI. Ecnn

p TOT HOMep, AN KoToporo gp(x)=<p”~T-(x), To aToM AT’ coBMagaeT c aTOMOM

~pp), rae ip=inl. Jlerko BMAeTb, YTO HaligeHHble uncna Nj, p n atom APp) yaoBneT-
BOPSAOT BCEM TPebGOBaHUSIM JIEMMBbI.

[lokas3aTenbCcTBO TEOPEMbl HEMOCPEACTBEHHO CrefyeT W3 [OKa3aHHOW NeMMbl.
Mpexge Bcero, 0TMeTMM, YTO M3 ycroBusi B) cregyeT, UTO TOYKM pPacxoaumocTu
£k paga (1) umeloT Mepy Hynb. [ocnefoBaTe/lbHbIM NPUMEHEHUEM 1IeMMbI, B hOp-
MY/IMPOBKE KOTOPON BMECTO  GEpyTCH TOUKUN £X, £5> ese»  ese MOXHO OMpefeuThb

nognocnepoBatenbHocTb Njk nocnegosatensHocT Nj 1 atombl ApRk , k=1,2,...,
ick=1 nnun 2, KoTopble o6nafgalT cAefylWMMN CBOCTBaAMMU

(36) ik =1,2,.),
(37) 47?2 =4 4, 4 B4 c 4 4 k=12..),
(38) \SNJk(x)\>K Ha 4 B

MocnepgoBatenbHocTb {APRK }*=i ABNseTca nognocsiefoBaTe/IbHOCTbLIO HEKOTOPOWA
TOuku £ (0AHO3HAYHO OMpefensoLencs), B KOTOPOl/ nocnefoBaTe/lbHOCTb YacTuu-
HbIX cyMM SN (X) pacxofuTcsi, Yero He MOXeT ObITb TaK Kak n=12, ..
(cm. (37)).

Tem camblM TeopeMa [JOKasaHa.

3amevyaHune 1. W3 gokasaTenbcTBa Teopembl 1 (CM. 4OKa3aTeNbCTBO /IEMMbl)
BMAHO, YTO BepHa criefytollas
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Teopema 2. ycTb pag
(39 2 an<Pr(x),
/1=

roe (rp,,(x)}*“=L H-cucTema, obnafaeT CnefylLWMMN CBOACTBAMU:

1) HeKoToOpas MoCNeAoBaTeNbHOCTb 4YacTuuHbiX cymMm {SNj(X)} paga (39)
CXOANTCA BO BCEX TOYKaX;

2) pag (39) no mepe cxoauTCa K MHTeErpupyemoin cyHkumm /(x).

Torpa psag (39) asnseTca pagom dypbe yHkumn/(x) no cucteme {ip,(x))” i.

3amMeTUM Takxe, 4To B Teopeme 2 Ha Koe(hULMEHTLI PSIAOB HUKAKUX OrpaHUYeHuni
He HanarawTcs. 15 MapTuHranoB TeopeMa 2 UMeeT cedytowyto hopMynpoBKY.

Teopema 3. MycTb {",,}*=1 NnocnegoBaTeNnLHOCTb 0-aNre6p y40BAe TBOPSAOLLAA
ycnosuam 1), 2) n {/,,, #',,} mapTuHran oTHocuTensHo {#7,}, KoTopaa obnagaeT
cnefyoLL My CBOMCTBaMU:

1) HekoTopas nognocnegosaTenbHocTb f,k BO BCcex Touykax cxoguTces (T. e.
Ans no6oli TOouKK £&.}=1 nocnegoBaTensHocTh frk(£)=f, k(B cxoguTes K
KOHEYHOMY npejaeny);

2) nocnegoBaTenbHOCTb fn(x) No Mepe CXOAMTCA K WHTErpupyemoin (yHK-
umm f(x).

Torpa f,,=Erf rge E, onepaTop YCNOBHOr0O MaTeMaTW4YeCKOro O>KuaaHus
O0THOCUTENBHO (cm. [6]).

3aMmeyaHune 2. B dopmynuposke Teopembl 1 ycnoBue C) Ha KO3I(ULMEHTbI
Heobxogmmo. B camom gene nyctb £= {5 }‘=1, Takas Touka, 4To A(<5, )0, 9->-°°....
Bo3bMeMm {5 K} noanocneaoBaTe/IbHOCTb Pas/IMUHbLIX MeXAy coboli aToMOB mMoche-
posatenbHocTn {,}n {//MCH=1>Te hyHKUMM 13 cucTeMbl {<p,}=i, HOCUTENN KOTOPbIX
paBHbl Sk, T. e.
fa* Ha gkl

K U «a GR<GKH'
Jlerko BUAeTb, YTO pAA f%:i A/N(x) BO BCex TOUKaX, 3a UCK/OYEHNEM Q cxogmTcs
K HY/110, HO He siBnsieTcs psagom dPypbe yHkumm /(x)=0. Ycnoeue C) HapyLLeHO,
TaK Kak "2*£—=1. MprBedeHHbI NpuMep psafga sIBASETCS aHalorom npuMepa
dabepa, npuBefeHHOro um ana psgos Xaapa [10].

3aMeyaHue 3. CyuwectByeT //-cuctema {<p*(X)}, psg Pypbe No KOTOPOW He-
KOTOPOA MHTEerpupyemori SP™-n3MepuMoli (PyHKLMU CXOAUTCS BO BCEX TOYKAXx, HO
KO3(P(hMLMEHTLI KOTOPOr0 He yAoBneTBOpsT ycnosuto C). B camom gene, nyctb
Y=[0, 1] ¢ JleberoBoin mMepoi K

2K

[fiee+ -1y =™ Q2+ 2a)
<Pk(x) = * 4 1) 2% ecrmn fi 1 1 1
*.41 *42 + 2k+l ' 2+ 2K)
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10 TI. . FEBOPKAH,: O EJMHCTBEHHOCTWU psgos no uyeHTpUpoOBaHHbLIM si-cucTemMam

Korga K:-1, a (px(x)=\. Torga M (pAx) Bo BCex Toukax u B mMeTpuke LJO, 1]

cxoanTes. CnegoBaTenbHO, gK(X) SBNsieTcs psigoM @Pypbe HEKOTOpOi

*:l
N3MEPUMOIA MHTerpupyemoi yHKumum, Ho B «Touke» { [ 4 4 ) L  ycnosue C)

He BbIMo/IHEHO. MpuBefeHHbIM NpUMep MoKasbiBaeT, YTO Teopema 2 He COAepXUTCSA
B Teopeme 1

3ameuvaHune 4. YTBepxgeHune Teopembl 1 He 6yAeT BepHbIM, €C/IM 3aMEHUTb
ycnosue C), NOCTaB/IEHHOE B KaX ol MoanduumnpoBaHHOW TOUKe, TaKMM e YCo-
BUEM MOCTaB/IEHHOl B KaXol 06bIYHOM Touke. Ecnn paccmoTpeTb cuctemy Xaapa,
X0), XoK n=1,2,..., 1°k”~2n Ha nonyoTkpbiTom wuHTepBane (0,1],
cymTasa 3HayeHUs 3TUX (PYHKUMI B TOUKax paspbiBa paBHbIMU UX S1€EBOCTOPOHHUM
npegenam, To oHa 6yget //-cuctemoii Ha (0, 1] n pag

n—

6yfLeT yaoBneTBopAThb ycnosusam A), B) u ycnosuio C) B 06bIYHOM CMbIC/E, HO He
6yaeT psagom ®dypbe CBOE CyMMbl.

B 3aknoueHnM Bblpaxak 6narogapHocTb npodgeccopy A. A. TanansHy, nog
PYKOBOACTBOM KOTOPOro BbINO/IHEHA HacToAwas paboTa.
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ARTINIAN RINGS IN WHICH ONE SIDED IDEALS
ARE QUASI-PROJECT1VE

By
D. A. HILL (Dublin—Salvador)

Introduction

For a ring /1, an J1-module M is said to be quasi-injective in case the natural
homomorphism HomR (M, M)-*HomR(K, M) is epic for all submodules K of M.
Dually M is said to be quasi-projective in case the natural homomorphism
HomR(M, M)—HomR(M, N) is epic for all factor modules N of M. Rings whose
left ideals are quasi-injective have been studied by a number of authors ([3], [5], [7]),
and for suitable conditions on the ring a number of structure theorems have been
obtained ([5], [7]). The main object of this paper is to investigate artinian rings whose
left ideals are quasi-projective. These rings include artinian hereditary rings, but many
examples exist which are not hereditary. (See Section 4.)

The first three sections are devoted to characterizing artinian rings whose left
ideals are quasi-projective. The main theorem (Theorem 3.5) appears in Section 3.
There, these rings are characterized in terms of their primitive idempotents and two
sided ideals i.e., given a basic set of primitive idempotents and the set of ideals of
an artinian ring R, it is possible to determine if R has all left ideals quasi-projective
by considering each left J1-module Ja where a is a positive integer, J is the Jacobson
radical and e is a primitive idempotent. It will be shown that Jxe must have a certain
decomposition for rings with left ideals quasi-projective, and that with the addition
of a suitable hypothesis, this decomposition completely determines such rings.

The final section is devoted to a number of examples to show that the conditions
of the structure theorems in 3 are necessary and the best possible.

We shall use the following notation. The ring J1 is associative with unity. The
letter J denotes the Jacobson radical and RM (M R) signifies that M is a left (right)
J1-module. The socle of amodule M, which is the largest semi-simple submodule of M,
will be denoted by S(M). When /1 is semi-local (i.e., R/J is artinian semi-simple),
the semi-simple module M/JM, called the top of M, will be denoted by T(M). Also
the notation M (A) means © IM Xwhere M,,~M.

Preliminaries

A number of concepts will be needed in the development of the results which
follow. We begin with the following

Definition. Let P be a projective JI-module. Then P is said to be hereditary in
case every submodule of P is projective.

Clearly any submodule of a hereditary module is again hereditary. Also ob-
serve that for a given set [P™aan of hereditary modules, the direct sum © IPais
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12 D. A HILL

always hereditary ([6], Proposition 7, page 85). Although many rings with left (right)
ideals quasi-projective are not hereditary, a common feature of many of these rings
is that they possess a ‘large’ hereditary left ideal.

We also will need the following lemmas which allow us to simplify some of the
proofs in much of the subsequent work. Recall that a module Q is said to be projec-
tive relative to M if for all factor modules N of M the natural homomorphism
Homs (Q, M) —Horn« (Q, N) is epic. The class of modules to which Q is projective
is closed under taking submodules, factors, and finite direct sums [8]. From this it
is easily seen that Mx® M 2 is quasi-projective if and only if Mtis projective relative
to Mj for i,y=1,2.

1.1. Lemma. Let R be a ring. Suppose the module Re® Relie is quasi-projec-
tive where e is a primitive idempotent and le is a left ideal. Then le=0.

Proof. By ([8], Proposition 1.2), Re/le is projective relative to Re. Thus the map
Ren-Re/le splits. Since e is primitive, this forces le=0.

1.2. Lemma. Let R be a ring with every left ideal quasi-projective. Letf be a pri-
mitive idempotent and | a left ideal such that IC\Rf=0. Suppose flt-Q Then there
exists a monomorphism (p: Rf-+1, given by right multiplication of an element x£I.

Proof. Since /770, there exists an x£1 such that fx~O. Let 9 be the map
given by right multiplication of x. Then Rf/Kf*Im(cp)QIl. As If]Rf=0,
Rf/IKf®RTf is isomorphic to a left ideal of R. Hence by 1.1, Kf=0. This shows that
(p is monic.

2. The Loewy series decomposition

For a left R-module M, the Loewy series is the sequence of left /~-modules
MaX s ...9J1T 5....

The k-th Loewy factor is the module Jk~xMjJkM. One defines the Loewy series,
for right modules in a similar way. The Loewy series will be used to obtain a decom-
position for artinian rings whose left ideals are quasi-projective. In light of this, we
make the following

Definition. Let R be left artinian and e a primitive idempotent. Let
ReziJdezo...zoJnezoD,
be the Loewy series for Re. For each a such 1 J*e may be decomposed into

K
a direct sum of indecomposables say Jae= © 2 /isi. Then we may express the Loewy
im=1

series as,
K

K
Re3 © 2 we >® 2 0.

The above expression will be called a Loewy series decomposition for the module Re.

It will be shown that rings with every left ideal quasi-projective have a parti-
cularly nice Loewy series decomposition for each of their principal indecomposable
projective modules. This Loewy series decomposition will be used to characterize
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ARTINIAN RINGS 13

left artinian rings with every left ideal quasi-projective in terms of the primitive idem-
potents and two sided ideals of the ring.

Remark. Note that for each a>0, Jxe has a unique decomposition using the
Krull—Schmidt theorem for artinian rings.

Thus the Loewy series decomposition for each principal indecomposable pro-
jective is unique up to isomorphism.

The remainder of this section will be devoted to obtaining the Loewy series
decomposition for each Re, where e is a primitive idempotent and R is an artinian
ring with every left ideal quasi-projective.

2.1 Lemma. Let R be a left artinian ring with every left ideal quasi-projective.
Letfbe any primitive idempotentand L f Rf a left ideal. Then L admits a decomposi-
tion L=P(BK such that:

(1) P is projective and fP=0.

(2) K=(RflIf)(n) for some two sided ideal I.

Here either P or K may be 0.

Proof. The left ideal L is quasi-projective, so by ([4], Theorem 1.10),
L s=s(ReJlej)*®..®(ReJlen

where {e3}3=1 are a set of primitive orthogonal idempotents and RetJ: Re3 when
iytj, and / is a 2-sided ideal in R. As Re”~ R f for allj with at most one possible
exception, let P = ®I{Rejjlejfrn) where I~ j~ k and Rej™Rj. Then there
exists for each /, a left ideal isomorphic to Re3© Refiej, where Re~Rf. By 11
lej=0. Hence Ps=® S(Rejfj\ Now suppose fP?+0. Using 1.2 there is an iso-
morphic copy of R f contained in PQ L contradicting R left artinian. Thus / <P =0,
and L~"P or L=P® (Rf/If){> depending on whether there exists Re3= RJ for
some j™k.

2.2 Lemma. Let R be left artinian with every left ideal quasiprojective, and let P
andf be as in Lemma 2.1. Then P is hereditary.

Proof. Consider KQP. Then
K- (RfJIfd ("d®... (HR fJIfJ"

where each f3 is a primitive idempotent and / is a two sided ideal. By 2.1 fK =0
which implies that each Rfj~Rf (1~jSm). Hence, there exists a left ideal iso-
morphic to Rf® Rfj/Ifj. So by 1.1. Ifj=0 for eachj. This shows that K is projec-
tive, so P is hereditary.

2.3 Lemma. Let R be left artinian with every left ideal quasi-projective. Let K
be as in Lemma 2.1. Suppose K=(Rf/1ffn) where n> 1 andf a primitive idempotent,
I a two sided ideal. Then

(1) f-JK—0 i.e.,, JK has no composition factor isomorphic to T(Rf).

(2) JK is hereditary.

Proof. Suppose that f-JK~O. Then f-Jf/1f~ 0. Thisinduces ahomomorphism
of J¥into JfllIf. Hence there is a factor module of Rf N fJ fjIf Since K is a direct
sum ofat least two copies of Rf/If there is a submodule of K isomorphicto N® RfJIf
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Thus N is projective relative to Rf/If Using this and that T(N)~T(Rf), we have
the following diagram,
N

Rf/if-* T(Rf) * 0

in which the map n can be extended to a map <p: N-*-Rf/If But ip is epic since
[1111is superfluous in Rf/If Thus Rf/Ifis isomorphic to an epimorphic image of N.
This contradicts R being left artinian.

To prove (2), we need only note that as JK is quasi-projective JK= © LReJlex
where each ReajiRf. Thus lea= 0 for each exfollows from 1.2. This shows that/A"
is projective. The proof that JK is hereditary is similar to the proof of 2.2.

Lemma’s 2.1, 2.2, 2.3 provide the motivation for the following

Definition. We will say thata left artinian ring R has a Loewy series decomposition
of type gp if the following conditions hold: For each primitive idempotent/, /*/=
=K X@PX where Px is hereditary, and Kx~(Rf/Ixf f n> where /,, is some two sided
ideal.

The Kx, Pa satisfy,

1 ...nKn=0 and JKa=Kx+1®Qx+1,Q x+1lczPx+1.
2. If KI=(Rf/1Hf"J, 1, then Kx=0,a>1l.

3. If KAR f/ff then for a>1 where Kan0, Kx*Rf/IXf.

2.4 Proposition. Let R be a left artinian ring with every left ideal quasi-projec-
tive. Then R has a decomposition of type gp.

Proof. Let/b e any primitive idempotent. Then by 2.1 and 2.2, J¥=K x®PXx
where KxM{Rf/Ixf)(J, Pxis hereditary, and Ix is a two sided ideal. To show (1)
we use induction to construct Kx+1 and Px+1 from Kx and Pxas follows: Let Jx+1f =
—J(KXOPX)=JKa®JPX By 2.1 and 2.2, JKX=K X+1®QX+L where Qx+1 is heredi-
tary and Kx+1=i(Rf/Ix+if)""**1e Clearly Kx+l<zKx. Now/i{+¥=A g+1© 6 [I+10 /P ct
Let Px+1=Q x+i®JPx. Then Pa+l is hereditary and Qx+1 is a direct summand
of P*+i-

For statement (2), we note that it follows easily from 2.3. For (3) let Kr=
=Rf/lif=Jf Suppose Kx=Rf/lxj and Kx+1M(Rf/Ix+t)?”) where nx+13=l.
Then Rf—Kx~0 whence Jf-+JKX-»0. Now using that Z///2Zhas one isomorphic
copy of T(Rf) we have T(Kx+1)s€T(Rf). So nx+1=1

Remark. In the future the terminalogy /*subscript, P su&ript will be used to stand
for the modules Kx, Pxwhen JX=K x®Px whenever R has a decomposition of type
gp and/ is a primitive idempotent.
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3. Left artinian rings whose left ideals are quasi-projective

The Loewy series decomposition of type gp will now be used to characterize
the rings of this section. An additional property must be satisfied by the above de-
composition in order to completely determine the structure of these rings. This is
indicated by the following

3.1 LEeMMA. Let R be as in Lemma 2.1. Suppose J*f=K,®dP, where K,==
=(Rf]If)™. Then for any indecomposable projective left ideal P, P=Re, e a primitive
idempotent, such that P(K,=0, we have e - K,#0 if and only if there exists an iso-
morphic copy of P contained in K,.

Proor. If e- K, 0, then by 1.2 K, contains a copy of Re whenever Re Rf.
Otherwise 1.1 applies and K, contains a copy of Rf, a contradiction to R artinian.
We now examine the left ideals of rings possessing a decomposition of type gp.

3.2 LEMMA. Let R be a left artinian ring with a decomposition of type qp. Then
for any left ideal LS Rf, f a primitive idempotent, L=M,® N, where N is heredi-
tary, and M,==(Rf|I,f)") where M, is a direct summand of K, and J*f=K,® P,.

ProoF. Since LE Rf, there exists o such that LCJ%f, LEJ%+f. Since
J4 f=K, ® P,, the restriction to L of the canonical projection of /% f onto P,, maps
L onto a submodule L, of P, . As P, is hereditary, L, is projective, hence L=z
=L, ®M, where L,EP,, M, CK,,.

Now we consider two cases:

Case 1: ay=1, K;=(Rf]I,f)®, ny>1. Consider the restriction to M, of the
canonical projection 7 of K; onto each of the indecomposable summands /= Rf]I, f
of K;. If the restriction is epic for one of the indecomposable direct summands
I, M, S K; and I quasi-projective imply that M,=I® M, where M,SK;. Now
apply the same argument to M, as was done to M, in case one of the projections
onto an indecomposable direct summand of K is epic when restricted to M,. Since
K, is a finite direct sum of indecomposable quasi-projective modules, continue the
process until

M, = RALS)OSM,,,, s=mn

and M., S K, has the property that for each n:K;—1, when restricted to M,
is not epic. This means that n(M,,,)SJI for all indecomposable 7 in the direct sum
decomposition of K;. Therefore,

M, S JK, & J(K,®P) = J%.

But by property 2 of the Loewy series decomposition of type gp, J*f=P,; P, here-
ditary. Hence M,,, is hereditary. Setting N=M,,,®L,, we have L=N@ M,
where M,=(Rf]I,f)*). Thus the conditions of the lemma are satisfied.

Case 2: K, =Rf]l, f. If M,=K, there is nothing to prove. Otherwise
M, S JK, € P,®K,,=Juf

o =

where a,=a,+1. The projection =n:J%f— P, maps M, onto a hereditary submo-
dule L,, of P,,. Hence M, =L, ®M,,, M,,SK,,. If K,=0, we are through.

=
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16 D. A HILL

Otherwise, property 3 of a Loewy series of type gp implies that KX~Rf/IXf. |If
Kxr=M x there is nothing more to prove. Otherwise, using that R is artinian, we can
continue the process vnumber of times until we obtain M>such that M x is hereditary

>+

or hereditary, MXi+I"RfJIXttlf Let N=® 2 K

Then LN or L=N® M Xs+L In either case the lemma is satisfied. This completes
the proof.

3.3. Lemma. Suppose R has a decomposition of type gp and satisfies the conclusion
of 3.1. Then Kx is projective relative to P where P is a projective left ideal such that
Kxf)P=0. Thus KX®P is quasi-projective.

Proof. Clearly the last statement follows from the first and the remark before
1.1. Recall that Kx™i(RfjlIffre where Kxis a direct summand of J*f and/ is a pri-

mitive idempotent. Now P= © ™ jP,, where each et£R is a primitive
idempotent. We show that Kx is projective relative to P by first showing that it is
projective relative to each Pt. So let g be a map g: Kx*PijKi, PJKi a factor module
of Pt, and n a map n: Px#PJKi which is epic. Now consider the module

H — {x"Px 7i(x)elm (9)}.
By 3.2,
O n=nhx®..eqa, '0O(#,)0

where Hj=Rfj, 1=/=/—1, ffiR a primitive idempotent, and # (=[ej/er, Ht
quasi-projective. In the following discussion set e,=/(.

Let H=M X® M 2 where M 2is the direct sum of all the indecomposable modules
in (1) contained in the ker (n). Hence for each indecomposable module HjQ M x, Kx
has a composition factor isomorphic to T(Rfj). This implies that /)KxT9 for each
Hj Mx. Clearly each HjC\Kx=0 for |~ jst—1 Thus for each Hjg Mx,
(14 /S i—1) there is an isomorphic copy of Hj contained in Kx since R satisfies the
conclusion of 3.1. By the same argument, if H,~M X P,N\Kx=0 implies that Kx
contains an isomorphic copy of Pt. These two statements imply that Kxis projective
relative to Mx. Thus it is possible to extend g to M x(and hence to H). So Kxis pro-
jective relative to Rexfor each /, and is therefore projective relative to P.

3.4 Lemma. Let Rbe a left artinian rin% Suppose R has a decomposition of type

gp and satisfies the conclusion o f3 .\.1f\=" Ji, where {}is a set ofprimitive ortho-
gonal kidempotents, then for any left ideal LQR, L is quasi-projective and

= ®2(M Xi© Nt) where Mx.® NtQRexand N{is hereditary, Mx. a direct summand
of KX, KM as in 3.2.

Proof. We first show that any left ideal of the form L—L%kl®...® Lkek is

quasi-projective where Lx /=1, ..., k, are left ideals.
By 3.2, £,e(=Mal®dA; where MX=(Rejlef"*} and N, is hereditary. Thus
L—@IMX®Ni. Using 3.3, M X is projective relative to Nj for all Since

M XtQRet, and RelC\Rej=0 for yVi, 3.3 implies that MXis projective relative to
Rej. Since Mx. is a direct sum of factor modules of Rcj, MX is projective relative to

Acta Mathematica Academiae Scientiarum Hungaricae 40, 1982



ARTINIAN RINGS 17

MXI(&j). Now using the remark before 11 and the quasi-projectivity of each
Mx., it is easily seen that ® If«?-= ® LMX® Nt is quasi-projective.

We need only show that L=® ZLiei for suitably chosen left ideals
Lt,i=I, As Lg ®LLet, and ® ZLe; is quasi-projective by the previous
remarks, Lexis projective relative to L by the remark before 1.1. Thus, the canonical
epimorphism nx:L-*Lex given by right multiplication by ex splits. Hence
L~MLex®L2 where L2QL, and L2ex=0. Now there exists a canonical epimorphism
n2of L2onto L2e2. Using that £2= ® I L 2et quasi-projective, we can apply the same
argument on L2as on L. Thus L2=L2Q2® £3 where L3fL 2 and L3e2—0. By the
application of this argument for at most kK times, L can be expressed as

L ~ Lex®L2e20 mm® L kek® L k+x

where Li™Liei®Li+x, £i+1gf,-, and Li+le~0. Since L~L2™...~ML k"ML k#x
and Li+le ~ 0, we have Lk+let=Q(ISI™A:). So Lk+X=0. Therefore L=zLex®
(BL2e2(B,..(BLkek. By the remarks at the beginning of the proof, L is quasi-projective,

Now the following theorem can be proved which completely characterizes the
left artinian rings whose left ideals are quasi-projective.

35 Theorem. Let R be a left artinian ring. Then R has every left ideal quasi-
projective if and only if R satisfies the following conditions:

(1) For each primitive idempotentf, Rfhas a decomposition of type qp.

(2) For each Kxsuch that JX¥=K x® NxQ R f and indecomposable projective left
ideal P, P=Re, e a primitive idempotent, such that PF\KX= 0, either e sKx=0 or
Kx contains an isomoprhic copy of P.

Proof. = follows from 2.4 and 3.1. <= is a consequence of 3.4.

4. Examples

This section presents a number of examples of rings which serve to illustrate
the main features of the decomposition used to characterize rings with every left
ideal quasi-projective. The first two examples show that such rings cannot be comple-
tely characterized by their Loewy decomposition for each principal indecomposable
module — we really need to know the two sided ideals of the ring. The following
notation will be used. The 2-sided ideal IRM )= {Xx£ R :xM =0} is the left annihilator
of the module M. It is known that for left artinian rings M is quasi-projective if and
only if M is projective over R/Ir(M) [2].

1. Let F be a field and R the ring of matrices of the form,

c A A3 A
0y 0 kx

00y A
00 0 W

(AJEF, i= 1, ..., 4, a, yEF)
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18 D. A. HILL

with primitive idempotents

1 1 o of

0 0 1
&= 0 o= 1!
1 o] 0 1

Then Je2*T(Re)®T(Re)®K where K is a uniserial left ideal with T(K)=
siT(Red, 5(™)N7°(i7e)). So the Loewy series decomposition for Re2 is

= T(Red

T(Re2

T(ReJ T{ReJ T(Rex

However, the decomposition for Re2is not of type gP. For R does not have every
left ideal quasi-projective as the uniserial left ideal

000 A
0 0 Ai
0

| 0|

K =

is not quasi-projective, since K is not projective over R/Ir(K)= R/K.

The next example gives a ring with every left ideal quasi-projective and with a
Loewy series decomposition the same as the ring in 1

2. Let F be a field and R the ring of matrices of the form,

a A3 A 1

y A 0

Yy

a A3 24

0 y
y\.

with primitive idempotents
ex e* = 0
1

11
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It is easily checked that

[0 0 X 1
0 Ax 0
0 I
00 X
0 0 Xr
1 0l|J

where K is generated by the element

fo'0 0 ~\
0 1 0
0
000
0 01
[ 0|

Thus Je2*"T(ReD)®T(Re)® K where K=Rx is a uniserial module such T(K)ss
~T(Re2, S(K)= T(Re).
So the Loewy series decomposition is of form,

T(Re2

T(Re2

T(Red TiRed T(Rei)

It is easily checked that K is projective over R/I(K) and in fact that every left ideal is
quasi-projective.

3. This example gives a ring with every left ideal quasi-projective, with a Loewy
series decomposition for a principle indecomposable Re2such that Je2J22has more
than one copy of T(Re2). Let K be a field, and R the set of matrices of the form.

la X3
yA O
Y a B g (a, YEK, NEK, i= 1 5).
0 y a4

W)
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20 D. A HILL: ARTINIAN RINGS

with primitive idempotents

0

It is easily checked that R has every left ideal quasi-projective and that Je2~ T(ReJ ®
®Kr®K2 where KNAK2 and T{Kf)*T{Re3, S(KHAT(ReN).
So the Loewy series decomposition for Re2is

T(Re2

T(Re?d T(Re2
T(Rei) T(Red

4, This example shows that condition (2) of 3.5 is necessary by exhibiting a ring
with a Loewy series of type gp without having all left ideals quasi-projective.

Let S be any local uniserial ring with a composition series of length 2, so that
JSsiT(S). Define R to be the matrix ring M,,(S), n an integer such that n>1.
Then for any primitive idempotent e£R, T(Re) = S(Re). So it is easily seen that R
has a Loewy series decomposition of type gp. But for/ any primitive idempotent
suchthat Rfil Re~0, wemusthave fJey*O. Thus condition 2 does not hold. Clearly
R does not have every left ideal quasi-projective since Re@T(Re) is not quasi-
projective.

T(Red
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To Professor P. Erd@s on his 70th birthday

1. Introduction

Let Z={xk,},n=1,2,k=1, 2, ..., n, be any triangular matrix with
(1.2) -1 = A <eee< XIn =1 (n=1,2,...).

Putting, sometimes omitting the superfluous notations,
1.2) co(x) = oon(Z, x) = k]_] (x -xK),
(1.3) UM =L (Z, x)=" & -1 Ne=1.2,... »)

are the corresponding fundamental polynomials of degree n—1 of the Lagrange in-
terpolation. It is well known that the so called Lebesgue function and Lebesgue
constant

(1.4) A,.X) = A,Z x) = i**). K = K(Z) = max

-13 A9

21

k=1 1

play a fundamental role in the study of the convergence and divergence properties

of the Lagrange interpolatory polynomials. Here we quote two results which, in

certain sense, generalize the previous statements of G. Faber [1] and S. Bernstein [2].
In 1958, P. Erdés [4] proved as follows.

Theorem 1.1. Let e and A be any given positive numbers. Then, considering arbi-
trary matrix Z, the measure of the set in x (— oo) for which

(1.5) In(x) ~ A if nS nO(A, e),
is less than e.

The following result, proved recently by P. Erd6s and P. Vértesi [11], gives
the best possible order.

Theorem 1.2. Let ¢>0 be any given number. Thenfor arbitrary matrix Z there
exist sets H,,=H,(e, Z), and u=1(e), t]>0 such that

(1.6) M(x) > YInn if x€[—L I\Af,, and n” n0(e).

Here, as it comes from the proof, t]=ce3. A natural question is whether this
estimation can not be improved. Or more exactly: Prove the relation t]=ce which,
considering the Chebyshev nodes, would be the best possible order, (see Erdés
[4], especially Theorem 2).
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22 P. VERTESI

2. Results

2.1. In this part we answer the above problem in the following general form.

Theorem 2.1. There exists a positive constant ¢ such that if £={£,} is any se-
qguence of positive numbers, then for an arbitrary matrix Z, there exist sets Hn—
= Hn(s,Z), for which
(2.1 1,,(x) ==ce, Inn
if *€[-1, IY\Hn and n- 1,2, ....

2.2. Choosing en=A/(clnri), or e,=e, we get improvements of Theorems
11 and 1.2, respectively.

2.3. Further, it is easy to gain the following

Corollary 2.2, If 1, 1] are arbitrary measurable sets then, using the
above notations, for any Z,

(2.2) [ A,(x)dx > (|5,,]-encE,Inn if n=1.2...
S

The case Sn—S=[a, b] was treated by P. Erdés and J. Szabados [6].

2.4. Further remarkable results on 2,,(x) including extremal problems can be
found in the papers [3], [5], [8], [9] and [10].

3. Proof

If e,,~(cln n)-1, then (2.1) obviously holds if x~xk, (k= 1,2, ..., ri) because
A,,(xX)>l whenever e.g., n”™6, if we exclude the nodes (see [12], Lemma IV for
if, e.g. xk<x”~1 then clearly Ifx)>\). Sofrom now on we shall sup-

pose

3.1) e,»>—"— and nb5 6.
clnn

3.1. In what follows let Jk,= [x*+1,,xk] (k=10,1, ....,n; n=12,...).
If \Jkn\sd,,—n~16 we say that the interval is short; the others are the long ones.

3.2. First we settle the long intervals: As in our paper [7], Lemma 4.4 we can
prove

Lemma 3.1. t6 |4,|>5, {Kisfixed, O~k~ri). Thenfor any (Inn)-2Sj,,Sl/4
we can define the index t=t{k,n) and the set hkndJk, so that \hkl\“4sn\Jkn\, more-
over

(3.2) \L,,0O\ ~ dfi  if xE£Jkih kn and nis nx

(w, is an absolute positive constant.)
Now if j,,=1/In2n, we obtain (2.1) for the long intervals apartfrom the set Hin
of measure & 8/In2n.
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3.3. To settle the short intervals we introduce the following notations.
yBKUK) = JkAQjd = [**+1+ &UIL xk- q k\JKY],
tél =™M4Ak) —JIknigqjd — IV1(<7*)> OS KSs W1,

where 0-=<f™ /2. Let zk=zk(gk) be defined by

(3.3)

(3.4) \(0,,(zZK\ = *Egi?«k) w,,(x)|, k=0,1 u,
finally, let

(3.5) [/,, N1 = max(|x(+1-x*|, |x*+1-x,]), 0Si.ké&an,
(3.6) e(/f, M) = min (|xI+1-x*|, [x*+1-x,|), O sii, Tt

LEMVa 3.2. // 1*k,r*n, then
3.7 i i
(3.7 [EW T+ITHIW 1> Fo&vlﬂ \Mbk\, « S 6,

if xEJr(qn), Q(Jr,JK"S,, and \1Ibl5,,.
The proof is similar to [7], 4.1.1. First we verify

co(x) |cngx)| zr X ..

(3.8) I1,(x)| = (0'(x9) (X -X9) co(zr)] I"fe)|s 71 I«rr r§1||

if s=k, A:+l and x£Jr(qr). Indeed,

\zr-x s\ \z,-x,\+S,,-Sn
\x-x,\ \zr—xs\+ S, ot e 12

which gives (3.8). So we can write if, e.g. r<k
MO\ + kA XONNM[NTREND\F\KH (XN =

= 1 [fi)z0l 2k Xkt
2 |cl(zt)| Zr-Xk +1

3 21 ||§§((Zz,g|| fKLﬂ PN (XEIf),
which is (3.7), considering that 27°K7t|= |Jkl and [...]> 1 ([12], Lemma IV).
3.4. Using mutatis mutandis the notations of 3.3 we state
Lemma 3.3. Let lk=[ok,bK, Iskst, t=2, beany t intervals in [—1, 1] with
itnjH =0 (k™j), |17 =6 (1™ k™), kzl 141 = It- Let befixed. Supposing
that for certain integer 4 we have /iS 2RE£, there exists the index s, ISsSf,
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such that

- ' 141
3.9 F=
39 I 41

/, wlll fee called accumulation interval of {4 }*=i-

Note that we do not require bk™ak+1.

Let us remark that considering an arbitrary fixed interval [a, b] instead of
[—1, 1], we obtain by analogous argument

(3.10)

The lemma and its proof correspond to [7], 4.1.3. and [11], 3.4.
Indeed, dropping theinterval Ij containing the middle pointof [—1, 1], and bisect-

ing thesame interval [—1, I],we have (say) in [0, 1] a set of measure \1j\)/2s
~(p—d)/2 consisting of certain Ik. Doing the same, after the /-th bisection we ob-
tain that interval of length 21-' which contains certain Ik of aggregate measure
def
(562, 1~"—£ for I~IAp= R—.
Consider these intervals L*,L*, (Fig. 1).

*
L3
L
L
0 L3 L3 L\
Fig. 1.

Obviously |T,*|=2,“p(é2<!;) contains at least 21 1 sets Ik because

(3.11) 2K \k\w 2°-"-*p (1 s/Sp).
4CYy
Let further LI=L*\L*_1 (2~ p) (see Figure 1). If s is an index for
which f.cLj, we can write
def
. =D,
2 % 14, 4
,-CL,
where the dash means that we exclude / whenever qg(ls, LY)<£. To estimate B, let
(3.12) N Wl= xp, 1s /s P
K
4ci.
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By (3.11) and construction we can write

(3.13) @Sisp),
1=1
(3.14) I/, 1] 823" if /(cE, (slsj).
We shall use the relation
(3.15) a,S 2,-2a1 2~ 1™ p).
I-1 2
(Indeed, by construction 2 _«i:2|2_ia|'>3é/ép, from where we

get (3.15)). Now by (3.14), (3.12), (3.13), the Abel transformation, finally by (3.15)
we obtain

N v - N - - -
5 lepL\112 , 4, p2p{(:y|2 ,a, 3irsn|%>,§2 LA,

2-"-1([ «i)+2-pJ *,-3+2-2J S

g [i2p\B 2,-p-2- 11+ 2-p-2—3(2p+h)-1j =

as it was stated.

3.5. Now we decide gjkn for the short intervals. For this aim we define the
index set K' and the set D,, by |/JrS(5,, if KEK', \Jki\>8n if k$K',D'n= (JI'I»-
KiKk

If yk denotes the middle point of Jk, let KEKmE{K '}\{0, n}, further

Bk, — max (y: xk+1*y~yk and (2.1) does not hold for y},
ykn = min {y: yk®*y~xk and (2.1 does not hold for _y},
dkn = max [(xk-y K), (Bk- x k+1)],

(3.16) gk= gdn= dK\Ik\, kdKn.

Using that ¢h(gr,)=1 (14/Sn), we obtain that 1/2.
It is important to remark that (2.1) holds whenever x is from the interior of

N bl
For the remaining “bad” sets Jk we shall prove

(3.17) kiZK UL= /. = %) if N .
(n2 is an absolute constant.)

To prove (3.17) it is enough to consider those indices {«},“ i=N f°r which
pni=BU3. We can use Lemma 3.3 for Dn=U Jk, KEKn, with p=pn, £—S=8n
and 77?=[~log ul/7] if nEN and n”~n2 (shortly nZNJ. Denote by Mk=Min
the accumulation interval. Dropping Mk, we apply Lemma 3.3 again for the remain-
ing intervals of D,, with p=p.n—\M1\>pJ2 and the above £, 8 and R, supposing
pn™ 2R+l if nEN1. We get the accumulation interval M2. At the r-th step (2S *S \pn)
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we drop Mk, M 2, M;_! and apply Lemma 3.3 for the remaining intervals of D,,
il
with y=u,, —_2_1 ILL, using the same £, Oand R\ iJndenotes the first index for which

3.18 n (neNj.
(3.18) i2:|W . but >2;1||v|*1 5

Denoting by M dn+1, M dn+2, ..., M @ithe further (i.e. not accumulation) intervals
of Dn, by (3.9) we get for nENk

H\nn 3 /1,,Inn
ar mr,mud 112 2 2-112

if £,29¢112/In n. We shall see that 1/c>9 112, i.e. this condition can be satisfied
(see (3.1)). (Here and later the dash indicates that we omit those indices k for which
B(Mr, MR~Qn).

3.6. By the definition (3.16) of gk we can choose points uinEMIn(qin2) such

(3.19) I~Nr™Mw

that (2.1) does not hold (1 VE/TTT).
If for a fixed n”~Nk there exists an index t (1 St~(p,,) such that
(3.20) A,,(un) —2cfi,, Inn,

(where ¢>0 will be determined later), by cenln n?).,,(uin) we obtain (3.17) for this
n. We shall verify (3.20) for arbitrary nENk with suitable t—t(n). Indeed, let us
suppose that for a certain m£NI

(3.21) /m«m) < 2cymlnm  where umEMm(qJ2), 17~ r”~ gm
Then by (3.21) we have

(3.22) 21\|\/Irm4 (0 < 2cfminm where m~ANL.
r=

On the other hand, for an arbitrary n”*Nk we can write by (3.7), with zk corres-
ponding to (3.4),

\m kgl\i k(un\» i;\M n £2K'[M u N\ + \ik+x(unw

Il mi | =fS o)
8 ™ ki \co@d MMk ¢ )

so by (3.18) and (3.19)
ft \co(zn\ \Mr\\Mk\

84l 4&i \cozk\ \M,, MK\
1o 2nrjtu(z)l  [tQzy)1j IMrIMf
JsZ i, + J

6 T=IK=r L I<u(zt)| [Mr, Mk
1 *n _ i Kl Inn

8 r=l fc=i |Mr, Mfq 8-2-2-112

2 |mrjas(ur)

2cyl Inn
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if c= 1/(64-112)= 1/7168. This contradicts (3.22), i.e. (3.20) is true for any n£Nt
with suitable t=t(ri). This proves (3.17).

3.7. Now we estimate \Hn\. 1f JO,,is short it should belong to Hn. The same should
be done with Jmn. So by (3.1), 3.2 and (3.17), with nO=max (6, nx, nd

\Hn\ = \HIn\+iin+ 26n if nis no,

which completes the proof if néno.
3.8. Obviously, we can suppose e,”2, n=1,2, .... Using this and /.,(x)a 1

we obtain the theorem with another c> 0.
I am very indebted to G. Halasz for his valuable suggestions.
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GENERALISED SMOOTH FUNCTIONS

By
T. K. DUTTA (Burdwan)

Introduction. Let/ be a real function defined in some neighbourhood of the point
x0 on the real line R, and let f(x0) = aa. If there exist real numbers a2, a4, ...,a2
depending on x0 but not on h such that

1 *  h2
y {/(*o+h)+f(x0-h)}= 2 -y aa+o(hX,

then i X is called the summetric de la Vallée Poussin (d.l.V.P.) derivative of/ at x0
of order 2k and is denoted by D2 (x 0). (It follows from the definition that if D 26 (x0)
exists, then D2f(x0) also exist for all r, O~rSk, where D°f(x0) isf(x0).) Similarly
if there are numbers Bx, 3, ..., 8”+i depending on x0 but not on h such that

1 K 1L2+]
y <f(Xo+h)-f(x0-h)} = 2 (2r+1), Bb+i+ oCh**J),

then R2k+i is called the symmetric d.l.V.P. derivative of/ at xOof order 2k + 1 and is
denoted by D2k+1f(x a).
Suppose that D2m~2f(x0 exists, m~I, and write

xo, by = BMIEEL tixoen)fxo- - T2 pwgxald.

Then / is said to be smooth at xO0 of order 2m, [3] (or 2m-smooth) if
;ti_r.réhe"if; x0,h) = 0.

Smoothness of order 2m+1 is defined similarly. It is clear from the definition
that if/is smooth of order r then it is smooth of order r—2 and that smoothness of
order 2 is the usual smoothness. It can be verified that Zygmund’s definition of ge-
neralised smoothness of order r[9; I1;p. 62] is equivalent to the present definition of
smoothness of order r+1 (see [5]).

With the same assumption on/if there are numbers v,, vI5v2, ..., vmdepending
on x0 but not on h such that

/(*,+h) = 2 77w+ o(h

(*.+h) = 2 77w+ o(hn),
then vmis called the unsymmetric d.l.V.P. derivative (also called the Peano-derivative)
of/ at xOof order m and is denoted by/ (m)(x0). It is clear from the above definition
that if f m)(x0 exists then Dnf(x0) also exists with equal value.
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30 T. K. DUTTA

A function/ is said to satisfy the property Stin an interval I if for every perfect
set P d thereis aportion of P inwhich/ restricted to P is continuous. The property
3>will mean Darboux property and |E |will denote the (Lebesgue) measure of the mea-
surable set E. It is known that the Peano derivative/ () possesses the property 3,
the mean value property, and the property that it becomes the ordinary derivative
/ <am) whenever/ (m is bounded at least on one side [4, 7]. This fact will be used fre-
guently.

It is known that a continuous (usual) smooth function on an interval / is dif-
ferentiable on a set which is of the power of the continuum in any subinterval of |
and the derivative possesses Darboux property on the set of its existence [8]. In the
present paper we have proved these results in our more general setting. Also some
other interesting properties of generalized smooth functions are investigated.

Lemma 1 (Auerbach). If 1®dn{x) is a series of continuousfunctions in [a, b] and
Zanis a convergent series ofpositive constant terms such thatfor each x€[a, b] there is
a positive number N (x) with the property that |®,,(x)| =a,, whenever n>N(x) then
there is a subinterval of[a,b] where Z®n(x) converges uniformly.

For the proof see [1].
Lemma 2. Letf be continuous in (a, b) and let D2k~ k=1,2, ...,m, exist and

be continuous in (a, b). Then the ordinary derivative ft-2'%- 1) exists and is continuous
in (a, b).

Proof. If m= 1 the result follows from Corollary 2 of Theorem 4 of [2]. So we
suppose that the result is true for m=n and prove it for m=n+1 The proof will
then follow by induction. Since by hypothesis D 2k~1f, k= 1,2, ...,n+1, exist and
are continuous in (a, b) and since the result is true for m =n,f(2n~v> exists and is
continuous in {a, b). Let [a R]a(a, b). For each x£(a, b) and each h with xth£
€(a, b), there is, by mean value theorem, a 9, O<0<1, such that

W eNoH»/(* <o | (-

[ i2-« (jc+r 9h)+ £~ - J(x- 9h)- 2/<n- (X)
(9h)2
Hence, writing 1)2®{x)=liminfB2®P; x, h) etc., we have N2 2“1 (x)™/)2+1(x)"
D2 2'-i)(x) for all xffa, b). Since D2nlf is continuous in [a, ], the function

X t

[ (2+ ) (x)—J dt J D2n+lf(u) du
is linear in [a, B] [9, I; p. 327] and hence f<-2n+1)= D 2n+1fin (a, B). Since [a, R]cz{a, b)

is arbitrary f <n+l)(x)=Din+X (x) for all x in (a, b).

Lemma 3. Letf be continuous in {a, b) and let D~f, k= 1,2, ..., m, exist and be
continuous in (a, b). Then/<2m exists and is continuous in {a, b).
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If m =1 the resultis true. For, if [a, §]cz(a, b) then by [9,1; p. 327], the function

X t

fix) f dtf D2f(u)du
a

a

is linear in [a, B] and hence as above / (2)=Z>2 in (a, b). Supposing the result to be
true for m—n it can be proved as in Lemma 2, that it is also true for m=n+1
and the proof follows by induction.

Theorem 1. Letf be continuous and Dm~Z exist in (a, b). I ffis m-smooth in (a, b),
then / (u~2) exists and is continuous on a dense open set in (a, b).

Proof. We prove the theorem when m is even. Let m=2k. The theorem is
obviously true for k= 1. Now suppose that the theorem is true for k=r. We show
that it is also true for k=r+ 1 Let [a\ b']<z{a, b). Choose a sequence {h,;} such
that Lh,, is convergent and hB>/i,,+1>0, o'—h,>a, b'+hn<b for all n. Since,/is
2r+2 smooth it is 2r smooth. So, by our supposition there is an interval [c,d]c
c(a', b") such that/ (2r_2) exists and continuous in [c, d]. Set 4lr(x)=02r(f-, x, h,,),
n=1,2,.... Then 4lris continuous in [c, d] for all n. Since/is 2r+2 smooth, we have
for x£[c,d] limh02r+2if; x, h) = 0. Therefore,

lim i[M /;*, h)-D»f(x)\ = 0

r!if(% LL[_|4>Xix)-D’\f{x)\ = 0.

So, there is a positive integer N(x) such that |3/Z(x)—D2/(x)| < h,, whenever
n>~N(x). Therefore, for x£[c,d] and n>N(x)

\n +x(x)-Kix)\a \K+A x)"AM x)\+\M (x)-~1N x)\ < hn+tl+hn< 2hn.

So, the series I'%—l n+i~ f'nO satisfies all the conditions of Lemma lin [c, d\. So there

®
is a subinterval say (a", b') of [c, d] where r%_!l(’\n+i~ converges uniformly and
hence 'P2r+ r%lC"fH- i-e- converges uniformly. So the limit function

D2f is continuous in (a", b")(z{a", b"). Hence by Lemma 3,/ (&) exists and is con-
tinuous in (a", b"). Thus the theorem is true for k=r+ 1. Hence by induction the
theorem is true for all k.

Now ifm be odd, say m=2k+1, the proofissimilar. For k=1, itcan be proved

by considering = [/(x+/i,,)—fix —4,)] and using Lemmas 3 and 2. Then

supposing the theorem to be true for k=r, itcan be shown, as above, by considering
NX+1(x)=02+i(/; x, hn and using Lemmas 1 and 2 that the theorem is true for
k=r+1. The proof then follows by induction.
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Lemma 4. Let/ (T_2) existin (a, b) and letf be smooth of order m in (a. b) where
mS2. If 2) attains a local maximum or minimum at xaf(a, b) then f(mi)(x0)
exists and equals zero.

Proof. If m is odd then

m'oor (m—3)r2 U2k I
AQ-(I; *0, /1) = [I(*b+A)-I(*0-A)-2 K  j2kTWD2kHNXO) -
mif m-2 Uk m-2( _ J 1
= 2/jm-i [/(x°+ ) —A 1(*) (*0) —f(x0—h) +~2 — 1(*)(x0)] =

- N[I(*+ 4 -0 £/,(*>]+

and if mis even then,

m | r (m—2)/2 1, 2% 1

*«.(/; *0, A) = fffhi [nx0+h)+f(x0-h)-2 2 =

m' I m-2 ljk m-2 (_fxk 1
= 2/AT [I<a+ A)- [ JTI(*)(*)+/(*0- A)- [ 0Oo)J =
+] - *HI»n«>)]e
Thus in any case
m! m-—2 1
(1) hem(f;x0,h)= 22rn [/(xo+ A)-A jy-I(*)(*0)l+
+[- (I(x°~iW)~M *#/.«)]m

Choose h(~0) such that x0+/z6(a, b). Then by the mean value property of the
Peano derivative there are &8s S2, 0<al<|, 0<<52< 1 such that

2) 2~1 [I(XO+/0-2 =

m' [ hm2 hm~2 ,, 1
2A”-1 [(m-2)! Am_2)(Xo+<5lL,1)~ (m-2)I"(Mm2™0)J =

= W =L [I/(m-2)(*0+ *1A)- / (m-2)00)]
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and

@

Since/ (m_2 attains a maximum or minimum at x0, from (2) and (3) both terms in the
right of (1) are of the same sign for small \h\. Since/ is smooth of order m at x0,
from (1), it follows that/(,,_N(*() exists and equals zero.

Theorem 2. Letf be continuous and/ (ni_2) exist in (a, b) and letf be smooth of
order m in {a, b). Then the set E of points x in (a, b) where f(m_"(x) exists and is
finite, is of the power of the continuum in every subinterval of (a, b).

Proof. Let (a', b') be any subinterval of (a, b). We shall show that (ab")D E
is of the power of the continuum. By Theorem 1, there is a subinterval say [a, 8] of
(@', b") where/4"1-2) exists and is continuous. If/ (m 2) is linear in some closed interval
[a, B'], then f (m~1>exists everywhere in (a, B') and the result follows. So
we suppose that/ (m 2) is not linear in [a, B'] for all B', «</?'</?. Let [T,
be fixed. Set

gO) =fix)- (M~ 2\ A 2(*)er 2

Then g(m 2 is continuous in [a, B']. Also g(n~2)(x)=0=g~m~2>(R"). Since / (M 2)
is not linear in [a, /?'], g(M2 is not constant in [a, B']. Hence there is ££(a, B')
where g(m~2>attains a maximum or minimum. So by Lemma 4, g(m_~(f) exists and
equals zero, i.e.,

(1) Nn.-«co0 =

Thus for each R', oc<R'<R thereis 4, such that (1) holds. But since
/ (m~2) js continuous and not linear in [a, R'] for all B',x<R'<R the set of values
-p {/(m Q(R")—fim- 2)(°0) is of the power of the continuum as R' varies over

(a, B). Thus the set of points £ in (a, B) for which /<m_ i>© exists is of cardinality
continuum. This proves the theorem.
From Theorems 1 and 2 we have

Theorem 3. Letf be continuous and Dm~If exist in (a, b). I ffis smooth oforder m
in (a, b), then the set E ofpoints x in (a, b) where/(m_1)(x) exists and isfinite, is of the
power of the continuum in any subinterval of (a, b).

Lemma 5. Let f be continuous in (a, b) and Dm~& exist and possess property
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M andS in (a, b). Also let Dm~Z do not attain a local maximum or minimum in (a, b).
Then the ordinary derivative / (m-2) exists and is continuous and monotone in (a, b).

Proof. Let [a, yJc.(a, b). Let O be the set of all point /i in [a, B] such that there
is a neighbourhood of x (relative to [a, ]) in which Dm~2Zf is continuous. Clearly O
is open (relative to [a, B]) and hence the set P=[a, §)] —O is closed.

Now for any interval JaO since Dm~2 is continuous and has no local maxi-
mum or minimum in J, it is monotone in J and since Dm~2X possesses Darboux pro-
perty, it is continuous and monotone in J (the closure ofJ). Thus/ (w_2 is continuous
and monotone in J for every interval JczO. This fact will be used in the following
argument.

If <JC(a y9 is an isolated point of P, then there are ~>0, €>0 such that
{—&; HU{, {+ Bc O and hence Dm~2 is continuousin [{— {]and in [it, { +<57
which shows that Dm~Z is continuous in (t~S1,c+ <) and this is a contradiction
since {(£0. So, P has no isolated pointin (a, B). By similar argument it can be shown
that if a (or B) belongs to P then a (or R) is not an isolated point of P. Thus P is
perfect.

If possible let P be non-void. Since Dm~X has the property PAin (a, b) there is a
portion of P, say (p,q)C\P where Dm~Z restricted to P is continuous. Let
{6(/> q)C\P and let {{,,} be any sequence such that tn~*£ as n—°°. We shall show
that Dm-XItnN"Dm-Z{t) as n--. If {,,eP forall nthen Dm #{t,,)-D m~Z&{t)
as n-+°°. So we suppose that {60 for all n. If { is an isolated point of P from one
side, say from the left, then there is $=-0 such that ({—§ ()cO and so Dm~&
is continuous at { from the left. Hence, if { is an isolated point of P from one side
and if {,,-»-{ from that side then Dm~Z (tn-*Om2/({). So we suppose that for
each n there is a component interval (sn,t,,)c:0 suchthat and

Since Dm~X is monotone in [s,, i,,], Dm~X(t,,) lies in the closed interval with
end points Dm~X(sn) and Dm~Z(t,,) which tend to Dm 2/({) and so Dm2/({,,)—
-+Dm~Z(t). Therefore Dm~Z is continuous in (/;, q)C)P and hence continuous in
(p, 9). But this is a contradiction since (p, q) contains points of P. So, P is void. Hence
[a, /?]cO. Therefore Dm~2 is continuous in [a, 8] and since it has no local maximum
or minimum in [a, B] it is monotone in [a, B]. Since [a, J?]c(a, b) is arbitrary, Dm~&
is continuous and monotone in (a, b). So by Lemma 2 or 3 ,f(m~2 exists and is con-
tinuous and monotone in (a, b).

Theorem 4. Letf be continuous and/(m_2) exist in (a, b). Also let/ (m_2) possess
the property O1 in (a, b) and letf be smooth oforder min (a, b). Let E= (x:x6(a, b),
/<me1)(*) exists}. 1ff m 1) (x)=0 for all xEE then f m~2) is continuous and nondec-
reasing in (a, b).

Proof. Let us first suppose that / (m_!)>() in E. Clearly/(m 2 does not attain
a local maximum or minimum in (a, b). For, if/(ra_2 attains a local maximum or
minimum in (a, b) at x06(s, b) then by Lemma 4, x0EE and /(mi)(xg9=0 a con-
tradiction. Since /(m 2) possesses Darboux property, by Lemma 5,/(m_2) is conti-
nuous and monotone in (a, b). If/(w 2 is nonincreasing in {a, b) then for any point

XxCEE and x0+/i6(e, b) there is, by mean value theorem, vy, 1 such that
fm—IV r m2 fk ] m_1
fom-P- [/(*O+/0-2Z #;/(*)(*0)] = —fo— If(m-2)(xO+ yh)-fm2)(xO\ & 0,
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and hence /(m_ d(xQs O which is a contradiction. Hence / (m_2) is non-decreasing
and continuous in (a, b).

To complete the proof consider the function g (x)=f(x)+r. .(rr)1(m~1)'

e>0 is arbitrary. Then g(m 1)(x)=f(m_1)(x)+e>0 for all xEE. Since g satisfies
other hypotheses of the theorem, from the first part g(m~2) is non-decreasing and
continuous in (a, b) and since £>0 is arbitrary, /(m_2) is continuous and non-dec-
reasing in (a, b).

where

Theorem 5. Let f be continuous and/ (m 2 existin (a, b). Also letf m_2) possess
the property 01 andf be smooth of order m in (a, b). Let E={x\ x£(a, b), f mx)(x)
exists}. Then f m~D has the property €>on E.

Proof. Leta, B, a-=/i be any two points in E and let f mtf<x)-<fm-D(R).
Let i)(a)<c</(,,,_D(/?). We show that there is a point y€(a, B) such that

fm-»(y)=c. Set E£(*)=/(*)-. jx2-1 Then g(,-,)W=/(Mi)(«)-c<0

and gim-vil)=/(,,-'>03)-c¢ > 0.

If g(m- 2) attains a local maximum or minimum at some point y£(a, B), then by
Lemma 4, g(m_,)(y)=0 i.e. /(mp(y)=c and so the theorem is proved. Thus if we
prove that g(m-2) attains a local maximum or minimum in (a, ) the proof will be
complete.

If possible suppose that g,m 2) does not attain a local maximum or minimum in
(a, B). So by Lemma 5, g(m_2 is continuous and monotone in (a, #) and by Darboux
property of g(m 2 it is continuous and monotone in [a, 8]. 1fg,m 2) is nondecreasing
in [a, B], by mean value theorem, there is § 0<<5<1 such that

(m=—prf . .. m2hk 1 m—1 . 3 o
[g(«+2)~20jj-g™) (@) = — [gC-i)(* + TA)-i(.-i)(«] 0

and hence #(T_u(a)é0 which is a contradiction. If g(m_2) is nonincreasing in [a, ]
by similar argument g(m 1)(|S)a0 which is also a contradiction. Thus g(m- 2) must
attain a local maximum or minimum in (a, B). This completes the proof.

Theorem 6. Letfbe continuous and/ (w_2) exist m (a, b). Also let/ (m_2) possess
the property 01 andf be smooth of order m in {a, b). Let E={x: x(fa, b), f m i)W
exists). Thenfor any k, 0"k =m—2 andfor each x and x+h in (a, b) there is X'£E
between x and x+h such that

] m-2 hr~k 1
! * [bl x+K)-£ =/(mIDIM -

Proof. First we prove the theorem for k—m—2. We assume /i>0, the case
/r<0 is similar. It is sufficient to suppose that f m 2(x+h)=fm 2(x) and prove
that there is xf(x, x+h)HE suchthat /(T_J(x,)=0.

if Mol for all tE(x, x+h)f]E then by Theorem 4,/ (m_2) is nondecreas-
ing in (x, x + h) and by Darboux property o f/(m 2, it is nondecreasing in [x, x+h].
Since f mi)(x+h)=fm 2(x), f m~2) is constant in [x, x+h] and hence / (mi)(0=0
for all t£(x, x+h)C\E. Also if /(m.)(1)~0 in (x,x+h)OE, by similar argument
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there is x'€(x,x+E)M\E such that f m 1)(x')=0. Finally, if there are £,

£(x, x+h)C)E suchthat /(mn (0<0 and Am-i)(i/)>0 then by Theorem 5, there is

X"E(x, x+h)C\E suchthat /(m_1)(x/)= 0. This completes the proof for k=m -2.
Let now OsArSm-3. Set

(m—«—D! ¢ n2 hr-k 1(i-x)mn
g(0=1/(0- {/(*)(x+in)~ 2 g IWW) (m —1):
Then
m— hr-~k
(1) gm(x+h)- 2 (r Kj g((x)=0.

Since g(,,,_2 exists in (a, b) by mean value theorem there is x0, x<x0<x+h such
that
m-3 hr~k hm~k~2

(2 g+ #)- A (r-kjl g™ = (m -k-2)! gim*2

So by (1) and (2) g(m 3(x0-g (m 2 (x)=0. Therefore from the first part of the
proof there is x', x<x'<x0 such that g(mi)(x")=0 i.e,

V-.-. ) {In(>+4-4* =/c-«W -

This completes the proof.

Theorem 7. Leifbe continuous and Dm~X exist in {a, b), andf be smooth oforder
min (a,b). Also let E={x: x£(a, b),f m1)(x) exLiy} and |[EM/|<|/| for every
interval lIcz(a,b). Thenf mi) has i/ie property 3 on E.

Proof. By Theorem 3, EI1 has the power of the continuum for every interval /.
Let a, B, be any two points in E and let / (m_i)(a)</(m_i)(/i). Let /(mi)(«)<
-=c</(m.i)(/f). Suppose, if possible, that /(mi>(x)~c for all x£(a, /OHL. We
may clearly assume that c=0. Let

E+ = {x; x€(a,R)C\E, f(m B(x) > 0}, L_ = {x: x€(a,R)(IE, f(m L}x) < O}

Then (a, ))OE—E+UL_. Now by Theorem 1, let / <m a) exist and be continuous in
an open interval /c(sa, B). Then, by Theorem 5,/(m_1) has the property ™ on /PIL
and hence either /fIL'c£'+ or iOEczE-. Let 1C\EaE+. Then by Theorem 4,
ftm—2 js nondecreasing in |1 and hence exists almost everywhere in /. So
|.EM/|=[/], a contradiction. If IC\Ec.E_ we would get a similar contradiction.

Theorem 8. L ei/he continuous and/ (m_2) ex/.vi in (a, b). Also letf be smooth of
order m in (a,b) and let E—{x: x£(a, b),f m\)(x) exists} and |[LTI/|<j/j for
every interval lIcz(a,b). Then for any andfor each x and x+h in
(a, b) there is x fE between x and x+h such that

( 1)

m-k-D'i, 4 m2 hr~k , .1 .
fom-k-1" \f(k)(x+ h) "2 /(oW j f(m—(X)m
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Proof. We assume 0, thecase /i<0 issimilar. For k=m —2 as in Theorem
6, it is sufficient to suppose that / (m 2(A+h)=/(m_2(x) and prove that there is
x'd(x, x+h)C\E such that f(m 1)(x")=0. If /(mi)(0~0 for all tE(x, x+h)C\E
then proceeding as in Theorem 7, we arrive at a contradiction. This proves the theorem
for k=m—2. For O 2~ w -3 the proofis similar to that of the second part of
Theorem 6.

Remarks. If 2 then the existence o f/(m_2) implies the continuity of/ Hence
if m>2 the continuity condition in Theorems 2, 4, 5, 6 and 8 are superfluous. On the
other hand, if m—2 then from Theorems 5 and 6 it follows that the condition
[/M12?|-<|/| in Theorems 7 and 8 are redundant; this condition will be needed in
this case if the continuity o f/is replaced by the measurabilty [6]. Also if m—2, then
the supposition that / (m_2 or Dm~2/ exists is superfluous.

The author wishes to express his sincere gratitude to Dr. S. N. Mukhopadhyay
for his kind help and suggestions in the preparation of the paper.
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SELECTIVE DIFFERENTIATION:
REDEFINING SELECTIONS

By
R. J. O'MALLEY (Milwaukee)

The concept of selective differentiation was introduced and developed in [4].
Here we present selective differentiation from a different viewpoint or, rather, in a
new framework. This framework takes some effort to erect but is profitable in terms
of the results obtained. It originates from several very simple observations. First,
any closed nondegenerate interval [a, b] can be considered as a point (a, b) in the
upper half-plane H = {(x, y)\ x<y}. Second, most notions of a sequence of intervals
In—ato bn] converging to a point xOcan be translated into an equivalent notion of the
sequence (&, b,,) in H converging to the point (x0, x0) of the boundary D. For example,
[an, b,] w-converges to x0, using the definition in [5], if and only if (a,,, bn) converges
to (x0, x0 inside some Stolz angle. Third, for any function f: R-~R let G(x,y)=

_10J—1n)"qg. Then the study of various differentiability properties of/

can be accomplished through study of the boundary behavior of G at D. See for
example [2] or [1, pp. 68— 70]. These three facts form the foundation of the framework.

A selection S consists of choosing a point from the interior of each nondegene-
rate closed interval [a, b] and labeling the point P[a, b\. Within the above framework,
it is clear that a selection S is identifiable with a function s: H-»R satisfying
x-Zj(x,y)<y. Throughout this paper, we will use this equivalence. For example,
the original definition of selective derivative at x0becomes:

Definition 1. Let f.R-*R befixed and let s(x, j>) be a selection on H. Thenf is
said to have a selective derivative at x0if there is a number a such that

M sy =@

where  hv;Jim _ is the notation to represent that (x,y) approaches (x0,x 0) along

0. X
the horizontal and vertical line segments in H, ending at (x0,x0.

We will have numerous instances of evaluating limits with different methods of
approach to the point in question. In each case a prefix such as hv, hopefully self-
explanatory, will be adjoined to the notation. Further, where no confusion will arise
we will delete the (x, T)-*(x0,y0.

Definition 2. For each fixed real number a a subset r of H is called a right ap-
proach set for aifevery (x, y) inrsatisfies a”x and (a, a) is the only limit point of r
in D. A left approach set / is defined similarly. When necessary we use the notation
r(a) and 1(a) to show that / and r depend on a.
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Note that if we consider the horizontal and vertical line segments at (x0,x 0
as left and right approach sets at x0, then we may think of selective differentiation as
depending jointly on the selection and the approach set. We explore this possibility.

Definition 3. Suppose that for each ain A a right and a left approach set, de-
pendent on a, have been chosen. The collection C of these sets is said to have the in-
tersection property if for each fixed a there isa (5>0 such thatif a—b<ax<a<ab<
<a+$ then /s(aDdfl/(a) ~ 0 an(i r(@C\@") ™ 0.

Note that if for each a the right and left approach set consists of a line in H then
the collection thus obtained would have the intersection property.

Our first theorem deals with our ability to change selections and is somewhat
deceptively simple.

Theorem 1. Let s.H-*R be any selection and let C be any collection ofright and
left approach sets with the intersection property. Then there is a new selection t such
that for any function G:7?\{x0}-*R and any x0

« A A G{s(xy) - “ G(I(x’y))’

where Ir is the notation for approach to (x0, x0) along the r(xQU/(x0 in C. Further,
for the same t the relation

Ir-lim sup G(s{x, y)) ™ hv-lim sup G(t(x, y))
exists.

Proof. Let (a,b) belong to H. If r(d)DI(b)—0, let t(a, b)=s(a, b). If
r@MNi(b)T+0, let (c, d) be any point in this intersection. Then a<c<.v(c, d)<d<b.
Let t(a,b)=s(c,d). This defines t.

It will now suffice to show that for any sequence h,—0, and G and x0
fixed we have

Ir-liminf G (s(x, y)) S HrrunfG (t(x0, x0+hn).

To see this, we note that there is an N such that for n>N, x0< x0+/?,,«=x0+(5(x0)
so that r(xgM\i(xo+bp "~ 0. Then t(x0,x0+hn)=s(cn,d,) where (c,, dn belongs
to 2xOn/(x0+hn). So x0<cn-=i/n<x(+ /i,, This implies that (c,,,d,,) approaches
(x0,x0 through /(xQUr(x0 and

Im&ng(t(XO’ x0+hn) = H_rrl[nfG(s(c,,, dj) ™ Ir-liminf G(s(x, y)).

Corollary 1. Lets and C be as in Theorem 1. Let f: R—R be such that

Ir. L n £ bl
T s(?x, ?/J) x% 0
for each x0. Then f is increasing.

Proof. The one t selection defined in Theorem 1 applied repeatedly for each x0
and

Sis(x. y)) = 506 ¥))-1(x0
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gives

t(x,y)-xo

In the terminology of paper [4] this says that ,f'(x0)>0 for all x0, and Theorem 1 of
[4] yields the result.

Corollary 2. Lets and C be as in Theorem 1. Let f: R R and g: R-*R be
such that

iratim OG- F(x0

s(X,y)-xo0
for all x0. Then there is another selection t such that g is the selective derivative off
relative to t.

Proof. This is clear from Theorem 1 and Definition 1. Here we must apply
Theorem 1 and t for both Ir-lim sup and Ir-lim inf. It follows that g will have all the
properties of selective derivatives. These include being Baire class 2 [3] but not ne-
cessarily Baire class 1 [4] and having the Denjoy-Clarkson property [6].

Corollary 3. Lets, C,f and g be as in Corollary 2. Suppose in addition thatf
has a selective derivative relative to s, sf', in the sense of Definition 1. Then
{x:g(x)"sf'(x)} is countable.

Proof. This follows from Corollary 2 above and Theorem 9 of [4].

These three corollaries should suffice to illustrate that virtually all of the results
of [4] have analogues in terms of collections of right and left approach sets with the
intersection property. These ideas should dovetail nicely with the very interesting
results in [3].

We now examine what improvements can be made if we require that/ has a
selective derivative along more than just a right and left approach set. This will
require that we place a more restrictive condition on our approach sets.

Definition 4. Let 0<a< 1</? be two fixed numbers. Let C(a, B) be the collec-
tion of left and right approach sets with the property that for each a, 1(a) is the line
segment with slope a ending at (a, a) and r(a) is the line segment with slope 8 ending
at (a, a).

Theorem 2. Let s:H-*R be a selection and 0<a< 1 be fixed. Suppose
f: R-»R and g: R-+R are such that

f(s(x, y))-/(x0

ahv/l-lim S(.y)-x0 ° 9(*o

for all x0. Then g is Baire Class 1.

Proof. It will suffice to show that for every a {x:g(x)"a} is a Gs set. Let a
be fixed and let A= {x:g(x)"™a}. Further, let m be any fixed integer. For every x0
in A there is a 1=<5(x0>0 such that for all (x,y) on /(x0)U/X(xQ UT(xQUT(x0)
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within distance d of (x,,,x0) we have
f{s(x,yj)-f{xa ~ Q L
s(x,y)—x0 — m'

The set of points within d distance of (x0, x0) on /(xQ)Uh(x0Q Uv (x0 Ur(x0) consists
of four line segments, labeled /1512, 4 and /4 as we proceed from left to right. The
endpoints of these segments in H have coordinates

S . ad \

PI = N+a2  %yi+a2d

Pi = (x0-S, x0),
. i d Bo
P3 = (X, X,+6), J.

We project these points onto D to determine an interval | dependant on x,, and $in
the following way:

ad ad
Project px parallel to 12 to fx0— -
I /1 +a* Kl + a2)1
. : , ( ad ad j
Project p2 parallel to 4 to Vx,,+ 1—a’X"+ iy

Project p3 parallel to i4 to [x0- j™-j ,Xx0--~ -7

Project p, parallel to L to (x,H—-"~ xH— ~ 1
| h+R2 yi+R2)

Next we let
¢ = max (X ao X L.\
| 11+ a2 B-1)
and
d = min (x0+ d Xo_\__ia_(_j__‘_]__
| i\+RB2 1—ald

Finally, let 1(x0, S)=(c, d) and let G,,:XIIJAI[\X, G,, is open for every n,

n)
and AczGn. Let Bm:%:]Gn. We claim that for every xO0£Bm, g(x)fea—1jm.
=1

This is clear if x0 belongs to A. Suppose x0 belongs to BMmA and g(x0<a —i/m.
Then there is a d(x0>0 such that if (x,y) belongs to /(x0)Uh(xQUv(x0)Ur(x0)
and is within d(x0) distance of (x0,x0) then

f(s(x,y))-f(xQ ~a__1
ms(x, y)-x0 m'
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Since x,, belongs to BmM A there exists x,, belonging to A such that x0 belongs to

1|X,,, —lInand x,,—x0. We may assume without loss of generality that x,,>x0
for every n. By the \év/ay\/,, was defined, /(x,,) intersects line y=x0 at a pointp,, which

is within distance —II of (X,,, X,,). Further, the line r(x0) intersects the line x=x,,
Y|
e/ \

at g,, which is within distance — of (X,,,X,,). As nu—+ °°, pn and gqn—(x0,x 0).

Therefore, there is an N such that for n>N, p,, and g, are within distance <5(x0) of
(x0, x0), and these points lie on A(xQUr(x0. Select one such n. Then:

i) s(pn < x0< x,, < s(q,,),
. f{s(Pn))-f(xn a a__ 1
i) s(pp~xn ~ m’
. f(s(g,,))-f(xns a__1
hi) s(qnN~X,, ~ m
: f{s(Pn))-f(xa _aA__1
v) s(pn-xo0 m’
and

v f(s(qn)-f(xg s a__1

s(qn~xo m

Then ii) and iii) imply that
f(S(q"))_f(S{pn)) N a_l_

$(d.,)~s(pn m
while iv) and v) imply that

f(s(9.,))-f{s(pn) a__1
$(d..)~s(pn) m '
This contradiction implies that /(x)éa-1/w for all xdBmz>A. This implies that
n Bm=A, so that A is a Gs set.
el

We end the paper by giving a demonstration of a situation where the hypothesis
of Theorem 2 is satisfied.

Theorem 3. Let f: R—R have an approximate derivative gfor all x. Then there is
a selection t such that

2 tx,y) Xq - °0°
for all xO.
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Proof. For each x in R there is a measurable set P(x) having density 1 at x
such that

P(x)—im y-x = g00-
Let (a, b) be fixed and xt=a+i(b—a), i= —1,0,1,2. Set
Q.= pxt)r(a>b) if m(P(Xi)r\(a, b)) > y(h-a)
(a, b) otherwise.
2
Then i-Pl 1 0, and we pick a point from this intersection to be t(a, b). It is a

simple matter to check that for any jdand any sequence (X,,,Y,,) approaching (x0, x0)
along one of the four lines there is an N such that for all n>iV, /(x,,yn was chosen
from P(x0)D(X,,,Y,). This completes the proof and the paper.

Acknowledgments. The author benefited from several discussions with Clifford
Weil on this topic. Among other things, his suggestions caused a simplification in
the proof of Theorem 2, which is also patterned after a result of Preiss [7].

References

[1] A. Bruckner, Differentiation of Real Functions, Springer-Verlag Lecture Notes in Mathematics,
659.

[2] A. Bruckner and C. Goffman, The boundary behavior of real functions in the upper half-plane,
Rev. Roum. Math. Pures et Appl., 11 (1966), 507—518.

[3] M. Laczkovich, On the Baire class of selective derivatives, Acta. Math. Acad. Sei. Hungar.,
29 (1977), 99—105.

[4] R. O’Malley, Selective Derivates, Acta. Math. Acad. Sei. Hungar., 29 (1977), 77—97.

[5] R. O’Malley, M3functions. Ind. Univ. Math. J., 24 (1974), 585—591.

[6] R. O’Malley, Selective derivatives, M, and the Denjoy—Clarkson property, Acta. Math. Acad.
Sei. Hungar., to appear.

[71 D. Preiss, Approximate derivatives and Baire classes, Czech. Math. J., 21 (1971), 373—382.

(Received January 23, 1981)

THE UNIVERSITY OF WISCONSIN-MILWAUKEE
DEPARTMENT OF MATHEMATICS
MILWAUKEE, WISCONSIN 53201

USA

Acta Mathematica Academiae Scientiarum Hungaricae 40, 1982



Acta Math. Acad. Sei. Hungar.
40 (1—2), (1982), 45—49.

ON THE PRODUCT OF TWO bRrR-SPACES AND
THE CLASS © OF FROLIK

By

J. L. BLASCO (Burjasot)

Introduction. All spaces considered here are Tychonoff. A subset B of a space X
is called bounded (in X) if each continuous real-valued function on X is bounded on
B. We call a space X a bR-space (resp. pR-space, kR-space) if a real-valued function
on X is continuous whenever its restriction to each bounded (resp. pseudocompact,
compact) subset of X is continuous. Clearly kR-spaces and locally pseudocompact
spaces are pR-spaces and therefore bR-spaces.

N oble [8] introduced the notion of bR-space as an aid in studying conditions
under which a projection on a product is z-closed. In [2] and [10] this notion has been
used in order to give conditions under which 9(XXY)=0XX6Y, where OX is the
topological completion of X. In [1] the author gives several conditions sufficient to
insure that a product of two hAspaces be a bkspace. The present paper is concerned
with the following questions raised in [1]:

(1) Suppose that X is locally pseudocompact and that Y is a bR-space. Is
XXY a bR-space?

(2) Is the product of two pseudocompact spaces a bR-space?

Following Froik [4] let © betheclass of spaces A suchthatfor every pseudocom-
pact space Y the topological product XX Y is pseudocompact. We answer negatively
the above questions by showing that if X is a pseudocompact space which is not in ©,
then there exists a pseudocompact space Z such that X X Z is not a bR-space. We apply
our results to give the following characterization of the class ©: A pseudocompact
space X belongs to © if and only if the product XX Y is a p R-space whenever Y is.
From this result, it is natural to raise the question: Under what conditions on a space
X is the product X X Y ap R-space for every pR-space ¥? The class of all such spaces
is characterized in the last section.

Notations and preliminaries. Throughout this paper we adopt the notation and
terminology of [4] and [5]. X denotes the Stone-Cech compactification of X. A zero-
set is the set of zeros of a real-valued continuous function. Z{X) denotes the family of
all zero-sets in X. N is the discrete space of positive integers. Recall that a subset A
of X is regular closed in case A is the closure of an open set. For later use, the follow-
ing fundamental facts are needed.

(F.1) ([9], Proposition 2.3) A subset B of a space X is bounded if and only if for each
locally finite family W of mutually disjoint, non-empty open sets in X, only
finitely many members of °U meet B.

(F.2) [6] A space is pseudocompact if and only if every locally finite family of its
open subsets is finite.
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(F.3) ([4], Theorem 3.6) A space X is in © if and only if each infinite family of mutu-
ally disjoint, non-empty open subsets of X contains an infinite subfamily
{U,,;n=1,2,...} which satisfies the following condition: For each filter
3F of infinite subsets of N we have

foet L e U 0.

The topological product of two bR-spaces. The following theorem is the main
result.

Theorem 1. Let V be a non-empty regular closed set ofa space X. IfV ispseudo-
compact and does not belong to then there is a pseudocompact subspace Z of BN
such that XXZ is not a bR-space.

Proof. Since V $93, according to F.3 there exists a sequence {U':n=1,2,...}
of mutually disjoint, non-empty open subsets of V which satisfies (*), where (*)
is the condition: If M is any infinite subset of N, then

n o cikK(u u)=0
FE&(M) neEF

for some filter #" (M) of infinite subsets of M. Let Un=U"'0intF, /7=12,...-
Since F=cl (int V), {U,:/7=1, 2, ...} is a sequence of non-empty open subsets of
X which satisfies (*) (with U,, instead of U").

For each infinite subset M of N, we choose a filter tF(M) on M such that

FCrI]:(M) CIF(nugF un = 0

and let °UMbe an ultrafilter on N containing 3F(M). Consider the following subspace
of BN: Y=N(IJ {p(M)ERBRN—N: °lIM converges to p(M), McN, M infinite}.
The space Y is pseudocompact. In fact, given any sequence {Ak:k—1,2,...} of
mutually disjoint, non-empty open subsets of Y, let M be the set {nkEN: nkENC)AKk,
k= 1,2, ..}. By our assumption there is an ultrafilter on N which converges to
p(M)EY and contains M. Consequently, p(M)”c\iiNM and therefore p(M) is a
cluster point of {Ak:k=1,2,..}. From F.2, Y is pseudocompact.

Since X is completely regular and U,, is open in X, we can choose zero-sets Z,,
and Z' in Z(X) such that intXZ,,~0 and Znc X —Z'nc:Un. The set V is pseudo-
compact, so there is a point V such that each neighborhood of a meets infinitely
many of the sets Z,,. Let <?(@@) be the family of all neighborhoods of a. For each
i7€c?(@) put T(E)= {n"N\EHZnX <Z- As the family {c\NT{E): E££(a)} has the
finite intersection property, it follows that K= I {c\BNT(E): E~S(a)} is a non-empty
compact subset of BN. Let // be a point of K. Let us see that q$Y. Suppose thereis a
point p{M)£Y such that t)=p(M). Since

e ek (U, um = 0
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there exists a neighborhood Eo of a and Ffis'(m) such thet £Oﬂ(ré:JFo£/): 0.

On the other hand, p(M)£cIBNT(EQ), which is to say that T(EQda/M. Furthermore
S' (M)<~aUM, therefore FOE~M and consequently T(EQCIFAX 0. From the de-
finition of T(EQ), for some nCé.FO we have EOMNZ,0X 0 , which is a contradiction.
Therefore t]$Y—N.

Let us see that r]$N. Since a is a cluster point of the sequence {Z,,:n—1,2, ...}
and each set U,, is open, we have that a$Un for every n=1,2,  Thus, for each
n there exists E,£<S(a) suchthat n<{T(E,). Therefore n$K for every nEN. So
HY.

Evidently, the space Z—YU({r]} is pseudocompact. In order to see that X XZ
is not a bR-space, we need the following fact: If B is a bounded subset of X XZ, then
the set {nEN: BIM\(n,,X{n})X 0} s finite. Suppose that B is a subset of XXZ
meeting U,,X{n} for every nZM'czN, M" infinite. Choose an infinite subset M of
M"* such that r]$c\BNM. We can write M —{nk:k= 1,2, ...}, nk<nk+1. It will be
seen that B is not bounded by showing that the family {U, kX {s*}: k= 1,2,...},
is discrete in XXZ. Let xdV and p(NOE£Y—N. Since

FiELN <Mr%p 0,
there exists a neighborhood W of x and F ~ No such that

U w=o.

Therefore W X{ZC\c\BNFO is a neighborhood of (x,p(N,,)) meeting no set C/,.X{n}.
Now consider a point (x,t]),xEX. Since A c\BNM and cI™NAf is dopen in BN,
it follows that X x (zn c\BN(N—M)) is a neighborhood of (x, rj) meeting no set
UkX{nk}. For the points (X,p(NO)E(X—V)X(Y—N) and (x,n)EXXN the
conclusion holds clearly. From F.I the set B is not bounded in XXZ.

Finally, let us see that XXZ is not a bR-space. For each n=1, 2, ... let/, be a
real-valued continuous function on X such that f,,(,Zn={1} and f,(Z',,)= {0}. Now
consider the function/ defined in X XZ f(x, n)~f,,(x), (X, n)EXXN and vanishes
otherwise. The function/is not continuous on X X Z because (a, ij) is a cluster point
of the sequence {Z,,X{n}: n=1,2, ...} and/is 0in (a, ) and 1on each set Z,,x{nj.
If B is any bounded subset of XX Z, then B meets at most finitely many sets U,,x{n}.
Consequently, the restriction o ffto B is continuous. This concludes the proof.

Corollary 2. If X is a pseudocompact space which is not in 23, there exists a
pseudocompact space Z such that X X Z is not a bR-space.

Corollary 3. Let X be a locally pseudocompact space. | ffor every bR-space
(resp. pR-space) Y the product X XY is a bR-space (resp. pR-space), then each point
of X has a neighborhood in 23

Proof. Suppose that the point x£X has no neighborhood in 23, and let IF be a
pseudocompact neighborhood of x. According to ([3], Proposition 4.2) the set
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F=cl(int W) is a pseudocompact neighborhood of 51, which is a regular closed set.
Since V (@93, from Theorem 1 the conclusion follows.

I?Aspaces and the class S8 We use S to denote the class of all spaces ¥ such
that X X Y is apR-space whenever Y is. <6*is the subset of S, consisting of all pseudo-
compactspacesin S. C *(X)will denote the Banach space of all bounded, real-valued,
continuous functions over the space X, with the supremum-norm.

The following result is a consequence of 3.10(h) in [5].

Lemma 4. Let g be a function from a pR-space X into a (completely regular)
space Y. I fthe restriction ofg to each pseudocompact subset of X is continuous, then g
is continuous on X.

Theorem 5. 93= S*,

Proof. From Corollary 2 we have S*c93. Now let ¥Y£93 and let ¥ be apR-
space. Suppose that/ is a real-valued function whose restriction to each pseudocom-
pact subset of ¥ X¥ is continuous. If S is a pseudocompact subset of ¥, then XX S
is pseudocompact. Therefore fEC*(XXS). Let ¢ be the function from Y into
C*(X) defined <A(p)=/(e,p) p€Y. According to ([4], Theorem 2.2) the restriction
of ¢ to S is continuous and from Lemma 4, ¢ is continuous on Y. Now it is easy
to see that/is continuous on ¥YXY. Thus ¥ XY is apR-space and X£3*. Therefore
9B= 3*.

Hu&k [7] proved the following: IfY is not locally bounded, there are a paracom-
pact sequential (hence a pR-space) ¥ and a real-valued function/ which is not con-
tinuous on ¥X ¥ but it is continuous on each compact subset of Y XY . Actually,
the function/is continuous on each bounded subset of X X Y, as an easy check shows.
Therefore every space belonging to S is locally bounded.

Theorem 6. A space X belongs to © ifand only if each point of X has a neighbor-
hood in 9.

Proof. Necessity. From ([3], Proposition 4.2) a bounded regular closed subset
(of a completely regular space) is pseudocompact. Then, from the former observation,
every space of the class S is locally pseudocompact. The necessity now follows from
Corollary 3.

Sufficiency. Suppose that each point x£X has a neighborhood K(x)693 and let
Y be apR-space. By Theorem 5, V(x)XY is a /?Rspace. Let/be areal-valued func-
tion whose restriction to each pseudocompact subset of ¥ X ¥ is continuous. Since/
is continuous on each member of the family {int V(x)XY: x€Y}, it follows that/
is continuous on XXY. Therefore XX Y is a pR-space and the proof is concluded.
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ON THE STABILITY OF SYSTEMS
OF NEUTRAL TYPE

By
M. L. PEftA (Caracas)

1. Introduction

Liapunov’s second method for ordinary differential equations can be generalized
to deal with systems of differential equations of neutral type without trouble using
scalar functions. But, one of the problems of practical nature is that to ensure the
definite sign of the derivative V(1) along all the solutions of (1) for every initial func-
tion, one must impose fairly strong conditions on the functional “g”. R azumikhin
noticed in [4] that it is unnecessary to study the sign of V'm for every initial function.
Indeed, if a solution of (1) starts inside a ball and leaves it at a certain instant t,
then |x(/+n)|™ |x(F)| for every sE[—r, 0]. Therefore, it is enough to consider ini-
tial functions satisfying this last condition.

The purpose of this work is to show that for a system of differential equations
of neutral type, Razumikhin’s condition ensures only the stability of the solutions in
the sense of Liapunov. In this respect we give an example showing that Razumikhin’s
condition is not sufficient to guarantee the asymptotic stability of the solutions. Mo-
reover, we show that substituting Razumikhin’s condition for Krasovskiy’s, asympto-
tic stability holds under certain additional conditions.

2. Preliminaries

Here we consider a system of differential equations of neutral type
H xf{t) = g(t, x,, x0= (p; t0O"z

where g£C1[JXCX.C, R, cpZCAC1~ —, 0], A"], g(t, 0, 0)=0 for every t£J=
[t, + °0; x,, x,": [/, 0] —R" are functions defined by x,(.y)=x(/+.y), Xt(s)~
=x"(t+5s).

The solution of (1) through (t0, cp) is denoted by x(t0, (p). Furthermore, the fol-
lowing notations will be used: C,=C,[[—, 0], R is the space of functions with
norm HeW,i=0,1 respectively and

Mlo = .max fo>(s)|, Mix = max {||<p||0, |IG|C}.

Definition 1. The zero solution of (1) is uniformly stable in Ct(i=0, 1), if
for any e>0 there exists 4(s)>0 such that for any 0™t if IM|j<<5, we have
II*<Oo, <Z>)lli<e for all t=tn. Ifin addition there exists a A>0 such that M f<0
implies lim [xt(/0><P)Ili=0, then we shall say that the trivial solution of (1) is uni-

formly asymptotically stable in Cf(/=0, 1).
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Definition 2. The zero solution of the functional equation
) Z(t)-g(t, x,,z9 =0

is said to be functionally stable, if for any s>0, 10=T there are &0 and €®>0
such that if ||ZJ|0<”~ and |[x(|0<<52 for every t~t0, we get [|Zt[o<s for all
t~10. If in addition Urn ||Z(]j0= 0, then the trivial solution of (2) is said to be func-

tionally asymptotically stable.
If V:RxRn»R isacontinuous function, then V(t, <p(0)), the derivative of V
along the solutions of (1) is defined to be

VAt a>(0)) = hm j [V (t+h, x(t, (p)(t+h))-V(t, 0))],

where x(I, ¢ is the solution of (1) through (i, o).

3. Results
Consider the equation

3) x\t) = f(t,x (1), x(t—), X"(t- 1)),
in which / is given by the following relation:
-X, if x2*sy2

-a (t)x -x -if xaexpli2 fa(s)ds]"yZ
t-n

A+ 2
{l-a(t))(y2-x2 alll +22-"y2-x2
f{t, x,y,z) =«{-*+ '
x (exp (2 J a(s)ds}—I) [exp[2 J a(s)ds}—j x
tn tn
t
if 0< x2«y2mex2exp (2 J a(s) tisj,
tn

where O<a(i)<I| for all t= —r, a is a continuous function such that
J ait)dt = a< + °°,
0

We shall prove that there exists a positive definite continuously differentiable
function V:R-*R+, suchthat

~(*(0) = *(0. x(t-r), x*(t-1))
is negative definite along the solutions of (3) that verify the Razumikhin’s condition
4) F(x(s))af(x(()) for every t~ t0 and sS/,

however the zero solution of (3) is not asymptotically stable in CO.
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In fact, if we set V(x)=x2 then

©) KD =-2F[x ()]
if  K[*(0IsK [*(/-r)];
(6) FO = - 2a()V[x(N]- 2a(OV[x(O][1+ F [x'(*- n)]I- 1,

if F[x(i)]lexp(2 I a(s)ds) Ny [x(t—n]I;

0 C=-rylT+lW=£LUNM" k£l

exp (2 Ja (s)ds)—1
- at)( +V[X'ii—r)])t-H Flic(—n)1- F[*()D )
exp (2 J a(s)ds)—1

t
if F[x(D)]SF[x(i-r)]sF[x(i)]exp(2 fa(s)ds).
t-n
Therefore, from the properties of the function a, we obtain dv(x(1)
N 2a(t)V(x(t)) for t~ 0. Setting w(t)=V[x(t)] and integrating the last ine-
S

quality, we get w(s) ™ w(t)exp (-2 f a(u)du) for s<E[0,/]. Hence, if we put

s=t—r, then w(t-r) S w(i)exp(2 f a(s)ds) for all t~ r. But this together

t—n
with (6) imply that w'(t)=-2a (/)w(t) — for all (&r, Since V

is positive definite, it follows that, w'(t) ~ - 4a(/)w(?) for all idr. Finally, integ-
rating the last inequality, we have

t
w(t) &€ w(r)exp (-4 Ja(s) ds) S w(r)e4ct, t~r.
n

Consequently, the trivial solution of (3) cannot be asymptotically stable in C,,,
since |x(i)|™|x(r)| exp (—4a)>0 for all t~r.

On the other hand, from (5) it is clear that the condition (4) holds, since if
V (x(t-r))™V (x(t)), then Vm(x(tj)=-2V (x(t)).

A similar example was published by Z. Mikorajska in [2], related to differen-
tial equations with time lag.

Now, we give sufficient conditions for the asymptotic stability of the solution
x=0 of equation (2).

Theorem 1. Suppose a,b,w:R+-*R+ are continuous, nondecreasing functions
a(s),b(s), u>(s) positivefor 0 a(0)=b(0)=w(0)=0. If thereis a continuousfunc-
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tion V:RXRn-*R+ such that
a(x]) » V(t,x) ™ b(x]), tER, x£Rn,
and there is a continuous nondecreasing function p(s)>s for 0 such that
V(t, PO) S-w(l<j>(O)), if V(t+s, <p(s) < p(V(t, (p(0), [, 0],

then the trivial solution of (1) is uniform-asymptotically stable in CO. If, in addition,
the trivial solution of the functional equation (2) is functional-asymptotically stable,
then the trivial solution of (1) is asymptotically stable in Ci.

The proof of the uniform asymptotic stability in CO runs exactly as the proof
of Theorem 7 in [1]. Now, from the uniform asymptotic stability in C,, of x=0,
we get that for any r~O there exist <5(e!)>0 and A>0 such that ||¢pNo<<5
implies ||x,(i,,, <pllo<£i for all t~t0, and further lim |[x(f0><P)llo=0, if M lo" -

Therefore, by functional-asymptotic stability of the trivial solution of (2), for any
e>0 we obtain that there is (e~ O suchthat |x||0*=£, for all if Hpllo"
<<5x(8), and Ilim ||xt||0—O0.

The last result follows immediately setting ~a=£i in Definition 2. Finally, if
we choose s2=max (e, Si), the uniform asymptotic stability of the x—0 holds.

Misnik and Nosov in [3] tried to prove a similar result, but they did not notice
that Razumikhin’s condition is not sufficient for asymptotic stability.

Acknowledgment. The author would like to thank Dr. M. Farkas for his
comments and discussions.
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DOUBLY ORDERED LINEAR RANK
STATISTICS

By
B. GYIRES (Debrecen)

1. Introduction

Let N=m+n, where m and n are positive integers. Let the real numbers
XX, ..., XN be pairwise different from each other. Let Rank xk and rank xk denote the
rank of xkwithin the sequences xlt..., xN, and xKk, ...,xn, respectively. In other words,
if the rearrangement according to size Zx<...<zw of those numbers xk=zrk, and

if the rearrangement according to size of the numbers xlIb ...,x,,,
xk=y ik, then we say that xk has rank rkand ik with respect to these orders, and we
write Rank xk=rk, and rank xk—ik{k=\, ..., m), respectively.

Denote by 11~ the set of all (rIf..., rm) chosen without repetition from the
elements 1, ...,1V, and by Pmthe set of all permutations of the elements 1, ...,m
without repetition.

Let the distribution functions of the real random variables XIf ..., XN be con-
tinuous. Then P (Xj=XK=0,j7xk.

Denote by {rl5 ..., rn} and [q, ..., /)] the vectors with the components rIf ..., rm
and b, where ... Oi, e, ijEP > respectively.

D efinition 1.2. The vector {rx, ..., rn} is said to be the outer-rank of the random
variables Xk, ...,X m with respect to the random variables Xu ...,XN, if
{RankXr, ..., RankXm} = {rl5...,rm{
D efinition 1.1. The vector [il; ..., in] is said to be the inner-rank of the random
variables Yx, ..., Ym, if
[rankTI5 ..., rankTJ = [il5..., ij.

Obviously, the random events {ri5..., rm} and [q,..., in] are independent if
the random variables Xk, ..., XN and Ylt..., Ym are independent, i.e. in this case

PUri, ....rm, [iI5...,ij) = PArx, ....» 4}/, ([1,

By the help of this formula we get the following theorem on the basis of [3]
(p. 369, Satz 10).

Theorem 1.1. Let the random variables Z1=(X1, YR ,...,Zm=(Xm, Yn) and the
random variables Xm+1, X Nbe given. If the random vector variables {Xk, ..., XN)
and (Tx, ..., Yn) are independent and if thejoint distribution functions of the random
variables XIt ..., XN and the random variables Yk, ..., Ymare symmetric functions of
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their variables, and they are continuous in each of the variables, then

AK oty [id,.., i) =

m!(n+1)...(n+ m)’
(ri,-, rJOJW, O, s, ij€EPmM

The conditions of Theorem 1.1 will be satisfied if XIt..., XNand if YIt .... Ym
are samples with continuous distribution functions, and these random variables are
independent.

Let the matrices

(1) Aj = U= 1» m)
with real elements be given, and let A=ALl..Am be the mXmN matrix with

blocks (1.1).
On the basis of Theorem 1.1 we give the following definition.

D efinition 1.3. The random variable is said to be a doubly ordered linear

rank statistics generated by the matrix A if
1

(12) f(la :«ft+-+«£Sj: m!(n+|)...(n+m)’
where (rx, ..., rm) and (il t..., im) run over the sets and Pm, respectively.

Let the random vector variables Z1=(X1, FX,...,Zm=(Xm, Yn) and the ran-
dom variables Xm+i, ..., XNbe given. Suppose that the random variables XIt ..., XN,
Tj, ..., Ym are independent with continuous distribution functions. Suppose that

Xt, ...,Xmand Xm+l, ...,X Nare samples with distribution functions F(x) and G(x),
respectively. Then the doubly ordered linear rank statistics Xj£I defined by (1.2)
give us the possibility to decide on the acceptance or the rejection of the joint hypo-
thesis

a) the second components of the random vector variables Zx, ..., Zm have a
common distribution function;
b) F(x) = G(x), x€i?x.

If all rows of the matrix A are equal, then Xfff give us the possibility to take a
decision on the acceptance or rejection of the hypothesis b).

Denote by V ~ (t) the characteristic function of the random variable X*f,l
defined by (1.2).

The aim of this paper is to investigate the characteristic function 4'/),(1).
Beside the Introduction the paper contains two sections. In Section 2 the characteristic
function 'FjfiKt) will be approximated by the permanents of simpler characteristic
functions. On the basis of this approximation theorem we give an asymptotic formula
for SP®(i). The theorems of Section 3 are dealing with the construction of doubly
ordered linear rank statistics with given limit distribution. To do this it is necessary
to extend te well-known Koksma’s inequality for arbitrary distributions.
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2. The characteristic function of the doubly
ordered linear rank statistics
First of all we prove the following theorem.

Theorem 2.1. Let be the characteristic function of the doubly ordered
linear rank statistics defined by (1.2). Let

“IV o k—I, ... m

and
o1 **p (0.0 AP (0"

. <eyo =
Th PiVv (O——<Pinm(C").

en

Nm 1 Nm
(n+D...(n+m) m! Per @ «(0 (n+D...(n+ m)

for re/?!.

Proof. If M=(aJ) is a square matrix of order n with complex numbers as its
elements, then the permanent of M, denoted by Per M, is defined as follows:

PerM = \71»2'

where (il,...,im runs over the full symmetric group.
On the basis of (1.2) we get that

_ 2
Ta0% = min+l)...(n+m)fi..ke >

1
=N +i).,,(, +M) m

Ie Iri. . eit Ollrnz
L[] L]

2 Per
[,...,rreEk> il £ T

Let B=B1..Bm the mXmN matrix with blocks Br, . ,Bm, where the B} matrix
is defined as follows. The elements of the /-th row are equal to one, while the remain-
ing elements are equal to zero. Therefore the permanent of the m x m submatrix
M of B is different from zero if and only if M has one column from each of the matri-
ces BX, ..., Bm. The number of such submatrices of B is Nm and the permanent of
these is equal to one.
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Let
elaNe ...e Lhd*
(2.2 MO = _ O = 1, m),
enll  clgFR
and let A(t) = AL(t)... Am(t) be the mXm* matrix with blocks (2.2).
We have
(2.3) Per (A (t)B *) = NmPer <{iN(1),

where ®,,(/) is defined by (2.1). On the other hand, using the Cauchy-Binet expan-
sion theorem,

(2.4) Per(A())B*) = m\(n+ I)...(n+m)VW (t)+H (1),

where H(t) is equal to the sum of the permanents of those mXm submatrices of
A(t), which have one and only one column from each of the matrices (2.2), but at
least two columns have the same column index. The number of such matrices is equal
to Nm—(n+1)...(n+m). Since the moduli of the elements of these matrices are equal
to one, the moduli of the permanents of these matrices are less than or equal to m!
Thus on the basis of (2.3) and (2.4) we get the statement of Theorem 2.1.

By the help of Theorem 2.1 we obtain easily the following theorem.

Theorem 2.2. Let the sequence ofdoubly ordered linear rank statistics
be given, where is generated by the mXmN matrix A(N) = A f)...A& >with blocks

a<{>(N)...a$(N)
Aj"> = 0= 1 ... m
atf(N)...att(N).

Then uniformly in tE Rt we have

. Nm 1 _
%, (n+1...(n+m) m! Per =0

where T{\(t) is the characteristic function of X fff.

3. Doubly ordered linear rank statistics with given limit distribution

This section consists of two parts. In the first one we extend the well-known
Koksma’s inequality for arbitrary distribution. In the second part we use this ine-
quality to construct doubly ordered linear rank statistics with given limit distri-
bution.

a) Let LW a, b) be the set of the strictly monoton increasing continuous distri-
bution functions F(x), for which a=sup {x€ |F (x)= 0}, b=inf{x€f?i|T(x)= I},
where are real numbers.

Let the sequence

(3.1) co={xnp=i> xre[a,b)
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be given. For a positive integer N and a subset E of [a, b) let the counting function
A(E\ N) be defined as the number of terms x,,, I*"n~N, for which xnfE.

Definition 3.1. Let F(x)EH(a, b). The sequence (3.1) is said to be F(x)-
distributed, if for every pair o B of real numbers with a~a<f”~b we have

lim-1A([a B); N) = F(8)- F(a).

As we said we shall use the F(x)-distributed sequences in the second part of
this chapter to construct doubly ordered linear rank statistics with given asymptotic.
Therefore in this first part of this chapter we compile the necessary definitions and
theorems, which will be used in the above mentioned constructions. Definition 3.1
can be found in [2] (p. 54), but the following definitions and theorems only in the
case of uniformly distributed sequences. The proofs of the following theorems are
almost the same as in the case of uniformly distributed sequences. Therefore we shall
refer only to the corresponding pages of the book [2].

Definition 3.2. For a finite sequence nls...,xN of real numbers, x,,£[a, b)

DAF) = DAXi,-,x N\F) = sup — T([a, a); A)-F(a)

is said to be the discrepancy of the given sequence with respect to F(x)€ H{a, b).
Theorem 3.1. Let x1*x2=...=xN be N numbers in [a, b). Then their discrepancy
with respect to F(x)EFf(a, b) is given by

DAE) = , max, max N )-

2j- 1
21N 2N

Proof. The proofis the same as in the case of uniformly distributed sequences
(I2], p. 91, Theorem 1.4), but it is necessary to use that F(x)EFI(a, b).
For a finite sequence jcl9..., xN of real numbers, x,,£[a,b), let

Z>i(F) = DA¥*I, xn\F) = SR — M[«,/J); N)-[F(P)-F(a)]
Lemma 3.1. The sequence (3.1) is F(x)-distributed if and only if fim D%/(co\F)=0.

Proof. The proof is the same as in the case of uniformly distributed sequences
(2], p. 89, Theorem 1.1) if we take into consideration that F(x)EH(a, b).

Lemma 3.2. The quantities DN(F) and D™(F) are related by the inequality
DAF)"D*AF)"2DAF).

Proof. The proofis the same as in the case of uniformly distributed sequences
([2], p- 91, Theorem 1.3).
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As an immediate consequence of Lemmata 1 and 2, we get the following the-
orem.

Theorem 3.2. The sequence (3.1) is F(x)-distributed if and only if
jKm Av(co|F) = 0.

Lemma 3.3. Let ...S% be given N points in [a, b), and let g be afunction
of bounded variation on [a, b]. Then with x0=a, xN+1=b, we have the identity

where F(x)EH(a, b).

Proof. (See [2], p. 143, Lemma 5.1.) Using integration by parts and Abel’s sum-
mation formula, we get

because F{b)g{b) = g{b), F(a)g(a) = 0.

In the following we prove an extension of the Koksma'’s inequality ([2], p. 143,
Theorem 5.1).

Theorem 3.3. Let F(x)EH(a, b). Letg be afunction of bounded variation V(g)
on [a, b], and suppose we are given N points xr, ...,x N on [a, b) with discrepancy
Dn(F). Then

Proof. Without loss of generality, we may assume that mlS...*xJ. Thus,

we can apply Lemma 3.3. For fixed mwith 0~ rSiV, because F(x)EH(a, b), we have

F(O--~ Smax|fW — | F(X,+D)-~]) 5=DN(F)

for xnStSxat+l by Theorem 3.1, and the desired inequality follows immediately.
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Corollary 3.1. Let F(X)f£_H(a, b). Let g be a function of bounded variation
V (g)>0 on [a, b\, and suppose we are given the sequence (3.1). Then

F,2,9W = g(OdF (1)

holds if and only if the sequence (3.1) is F(x)-distributed.

Proof. Using Theorems 3.2 and 3.3, the statement follows immediately,

b) In this second part of the section we give a procedure to construct doubly
ordered linear rank statistics with given limit distribution. To this construction we
need some lemmata.

Lemma 3.4. | ff is continuous function of bounded variation V (f) on [a, b], then
KEe“)s|/|F m /[€*1.

Proof. See . Lemma 3.1.
Using Theorem 3.3 and Lemma 3.4, we get the following lemma.

Lemma 3.5. Letf be a continuous function of bounded variation V (f) on [a, b],
and suppose we are given N points xIf mmmxN in [a,b) with discrepancy DN(F) with
respect to the distribution function F(x)EH(a, b). If

HP(0 = ]y]_ZLzle“len\

then
b
[<pW (0-/ ei{*dF {x)\ ~ \t\V(f)Dn(F)
for t"R-L.

Lemma 3.6. Letfj be a continuous function of bounded variation V (fj) on [a, b],
and suppose we are given N points x[J ..., x$fi in [a, b) with discrepancy {Ff
with respect to the distributionfunction Fj(x)EH(a, b), where Moreover
we define the matrices

<PlI(0...<Pim(O
(3.2) (0 =
and
984 )-<pNe ®
<eyo =

LV (0---<pLm(0.
with the elements PLV pLm

(3.3) PjiA0 = fei,fj(x)dFk(x) G, k=1 .., m
and
34 <o (0= 4y, | O.k=1,..,m)
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respectively. Then

~ j |Per #«> (0- Per ®(0| ~ L-[J KCHI[J /)]
lor

Proof. Let us introduce the notation

q>n(t)...<pij-i(t) (pif ()—=<Pij(t) (pflhit) ..<pNe (0

4 = —|rPer
m
.(pmlIO) --<Pmj-I(t) <Pm?(t)-g>mi(t) (pjff+i(0-<Pmm (0 ,
o=1,.. m)),
then we can easily verify that
(3.5) [Per >0 -Per *,,()] = 4 + - +4,-

Since the moduli of the characteristic functions (3.3) and (3.4) are less than or
equal to one, on the basis of Lemma 3.5 we get

1 CEry v - _
141 s (mt”,ll). kgl \<pif{t)-(pkj(t\ '—l| chj)kl_1 DW(FK 0 1, ..., m).
Lftilizing this inequality in (3.5), we obtain the statement of our lemma.

Using Lemma 3.6 we get the following theorem as a consequence of Theorem 2.1.

Theorem 3.4. Letf- be a continuousfunction ofbounded variation V(fj) on [a, b\,
and suppose we are given N points , ..., X\fi in [a,b) with discrepancy D {i (Ff
with respect to the distribution function Fj(x)dH(a, b), where j=1, Let

fi(xn...fj(xP)
(3.6) A?» = 0 = 1,..., m).

Let us denote by 'Fmf(t) the characteristic function of the doubly ordered linear rank
statistics Xjfl generated by the matrix A=AiN..A jff Then we get

Nm 1
@.7) (n+1...(n+m) ml Per &1 (0]
for where the matrix <m(t) is defined by (3.2).

Theorem 3.5. Let/e be a continuousfunction of bounded variation V (fj) on [a, b],
and suppose we are given the sequence coj= =1, £[a, b) with discrepancy
D 6\F j) of the points x{J),..., x”~ with respect to the distribution function Fj(x)d
£H(a, b)forj—1, ..., m. Let V@D + ... + V(fm>0. Denote by FjfKt) the charac-
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teristic function of the doubly ordered linear rank statistics generated by the
matrix A= A[NK .. A\ where AjN) is defined by (3.6). Then

Um ¥gl(t) = — Per o1(1)

holds uniformly in any finite interval i£[—T, T] if and only if the sequence cgj is
Fj(x)-distributed for j= 1, ...,m, where <£,,(/) is defined by (3.2).

Proof. Since

the right hand side of (3.7) has the limit zero uniformly in any finite interval
/€[—T, T] if and only if Um =0 0 =1,..., m).Thus we get the state-

ment of our theorem using Theorem 3.2.

Denote by Y]k the random variable with characteristic function (3.3). Then
Theorem 3.5 can be expressed in the following alternative.

Under the conditions of Theorem 3.5 the sequence of the random variables
M )» ” I converges weakly to the mixture of the random variables Ylh+ -+ Y mm

0'i, ..., inK Pm with weights if and only if, the sequence coj is Fj(x)-distributed
for j —\, ..., m. (The random variables YU, , Ymm are independent.)
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REMARKS ON POSITIONAL GAMES. |

By
J. BECK (Budapest)

1. Introduction and results

We start with some terminology. A hypergraph is a collection of sets. The sets
in the hypergraph are called edges, and the elements of these edges are called vertices.
We deal with finite hypergraphs only. |A\denotes the number of elements of the set A.

Let p and q be positive integers and XX be a hypergraph. A (p, q, >)X)-game is
a game in which two players select previously unselected vertices of XX . The first
player selects p vertices per move and the second player selects g vertices per move.
The first player wins whenever he selects all the vertices of some eddge of )X, other

wise the second player wins. In the case p=qg=1, Erdés and Selfridge [3] have
found a sufficient condition for the second player’s win: If

2. 2-W < 1/2,

Aejf

then the second player has a winning strategy for the (1, 1, )XX)-game.
This theorem is sharp in a strong sense, see [3]. Our first aim is to prove a gene-
ralization of this result.

Theorem 1 If

1
2 (I + <7)-ulli’,, I+q *
then the second player has a winning strategy for the (p, q, XX)™aTe.

A weaker result was proved by Csirmaz [2].

Theorem 1is also sharp in the following sense. For each p, q there are infinitely
many hypergraphs X such that in the formula above equality holds, and the first
player wins the game (p, g, XX). The form of the extremal graph is a tree of height h
in which every node has exactly q+\ immediate successors. Put g points in place of
each node, and an edge of the extremal hypergraph is the union of points along a full
branch. Obviously this hypergraph has (1+q)h~1 edges, every edge contains hp
points, and is a win for the first player.

Secondly, we give a sufficient condition for the first player’s win.

Theorem 2. Let b(>K) denote the number of vertices of XX and denote by d2” )
the maximum number of edges of XX containing two given vertices. If

o P292(p+q) 3d2" ) c(K),
then the first player has a winning strategy for the (p, g, >K)"™aTe.
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Let W(R, r) be the family of all possible arithmetic progressions of r terms in
the interval {1,2, /?}. By away of illustration of the two theorems abo\e consider
the (p, q, f'V(R,r))~game, i.e., the first player wants an arithmetic progression of r
terms. It is easy to see that i?24(/-—1) «\W(R, 1)l = Since at most

arithmetic progressions of r terms can contain two given integers, we have

d2(W(R, r))s |~j. By the application of Theorems 1 and 2 we obtain thatif

[+<”~10g R then the first, if r>cdog R then the second player has a winning stra-
tegy for the (p, g, W(R, r))-game. Throughout this paper log stands for base e lo-
garithms, and the constants G=£cO, q) and e2=c2(p, q) depend only on p and q.

Let us consider two further applications of Theorem 1 Chvatal and Erdés
[1] introduced the following graph-game. Two players, Maker and Breaker, with
Breaker going first, play a game on a complete graph of n vertices. By T(n, b), we
shall denote the game where on each move, Breaker claims b previously unclaimed
edges and Maker claims one previously unclaimed edge. Maker wins if he claims all
me edges of some spanning tree of the complete graph of n vertices; otherwise Breaker
wins. Chvatal and Erdés [1] raised the question: What is the largestf(n) such that
Maker has a winning strategy for I'(n,/(n))? They proved that

(1+e)n
(D (4+e)logn logn

As a direct application of Theorem 1 we shall prove a slight improvement on
the left-hand side of ().

Theorem 3. logn / (n) for n> n0(e).

Following Chvatal and Erdés [1] we shall denote by H(n, b) the game which
differs from T{n, b) in only one respect: Maker’s aim is to claim all the edges of some
Hamiltonian cycle. What is the largest g(n) such that Maker has a winning strategy
for H{n,g(ri))? Chvatal and Erdé6s [1] proved that g(n)&I for all sufficiently
large n. They suggested that g(n)—°° as In Part Il of this paper we shall
prove this conjecture in the following stronger form.

Theorem 4. g(n) > nl2~e for n> n”?s).

2, Proof of Theorem 1

Given a hypergraph §, disjoint subsets X and Y of the vertex-set VAS) of i?
denote (p(X,Y, Q?b—%_l' @+/0-|n~*" where the summation 1" is extended over
those AfJS for which AC\Y= 0. The parameter p>0 will be fixed later.

Given z7VI{S), let <p(X Y, Z) = where the summation 1"

is taken over those A~™S for which zEA and ADY=0.
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We start with two observations:
2 <p(X,YUbl , <S5y2S (p(X,Y,9,v]j,
?3) cp(XU {*i}, Y, <5 x2 S (I+/i)ep(A', Y, g, X2).

Now consider a play according to the rules. Let xf1}, ..., xfp) and yf1* ...,y[9
denote the vertices chosen by the first and the second player at the i-th move, respec-
tively. Let

Xt= {xix), ..., x{p), ..., xi?* ..., xfp)},

b=MD...,yP,. ...,y ...yl
Moreover, let ) )

X,'j = XtU{xfl\, Ytik=r,UW&, .... y&r}-

Now we define the hypergraph Xt as follows: Throw away the edges of )X blocked
by some element of Yi~land from the remaining edges subtract Xt, i.e.

X1= {/IVIF: AK and AHYA = 0}.
Let OK/) = 2 (1+0"bl, that is K} = (p(Xn Y, AIF XK).

The first player wins if and only if some of the X /s contains the empty set.
Since the cardinality of the empty set is zero, in this case (K ,)™N(1 +y)°—1. It
follows that if th(K,)~1 for every is| then the second player wins.

Here is the second player’s winning strategy: at his i-th move he computes the
values g>(Xi, YlI- Itk- 1, G, Y) for each vertex y£ V(OK )\(X, U TI_2ft 1) and then picks
yfK) for which the maximum is attained, I~kéagq.

Let n=(l+q)1,p—1. We claim that making this choice,
(4) DK, +1) =5 h(Kga

independently of the first player’s move. It we prove (4), we are ready. Indeed, by
the hypothesis of the theorem

O (*p= 2 (i 2 (i+/r)-ul+p= 2 V+q)l-° AU/ i

so p(OKI-Np(OKY< 1 for all 1llh.
In order to show (4) observe that on his i-th move the second player subtracts

«
<P(Xt, X, YT
from (OK{). After the (i+1)-st move of the first player

(5) OK,+r) = D(OKD - 21 <P(Xi, Y , XK,y +u 21 <P(Xuj-1, Y,, X, xLL\).
K= jwm
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By (2), we have
(6) <p(Xb XK, A +15)S <2(*-, Y , .~ K, y[k+1>), 1~ k~qg-1.

On the other hand, using the maximum property of yfK)

(7 Isk sj-1.

Combining (6) and (7) we obtain

(8) <p{X, Y , y f k+l)) & (Al T ,-1,.-,, IT, yf*>), 1 *k*q-1.

We get similarly

9) ?2>Ne, I, JT, Jcfttly) = it T()),

for each Oé/ép —1, and by (3)

(10) (p(Xi'j,Yi,jr,z2)N(1+p)(p(X1J_1,Yi,jr,z),

By repeated application of (8) we obtain

(11) cp{Xp ¥Y , Jf, yP) = y,-w _,, Jf,yP), 1s;s?.

By (10) and (9)

12) <p{XU], YIt JT, xfit») = (1 +p)JIcp(Xi, Y/, JT, xLLL») ~
3S(L+ii)I<p(Xi,Yi-1"_1,jr,yf'>)

for each O”jSp —L
Returning now to (5), by (11) and (12) we conclude

F(*54) s @ (M) -Va -4 p(itp)Tdep(Xi, yN - i * L yP) = b (4,
p-i
since q= 2 MO+mY where g= (I +~)Up—L This completes the proof of (4), and

=0
thereby t}!le proof of Theorem 1.

3. Proof of Theorem 2

Let o x[j),y[R Xj, Yt be as in the proof of Theorem 1, and let X0=Y 0—O0.
Here is the strategy for the first player: at his (i+1)-st move (i~O) he computes
the values (p(Xt, Yt, XX ,x) for each vertex x€V(Ji?)\(XtUYd and for some
p>0 determined later, and then picks x$x, x f ¢\ which are of the largest value.

Now let \jji={Xi, Yt, ). We want to give a lower bound for the difference
®y-1~Pa which is equal to

, A in [ e ) o
(13) A:Aﬂ>gl+1:0{(l+pr xN-(i+p)-TA }2A4|+p) X
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where the summation 1* is taken over those Ad>X for which AM Yi+1A 0 but
AMY(=0. The first sum in (13) is

7=1 A

where the summation 1** is taken over those A<£XX for which AMYi+1=0 and
\AM (Xi+j\Xi)\=j. Now using the fact that (I+p.)J"I1+pj, we get

(14) fa 721W %**d +/T A X . Yt+1, >k */&).
Let

jrl = ANT(= 0, but AMNC+NT { pi 0}.
Obviously, and

<44, YI+1,*, x{{\) = cp(X,, Y,, XK, xfft)- 2 (1+4)" 4 "1~

N <44, vt 0K, xtiV)-gq d,(IfF)(1+/i)-2
Therefore, by (14)

(15) FA /172_1«>N9-4’ 4)) -m AN (MM (i +N)-2

q
On the other hand, the second sum in (13) does not exceed igi <44, Yt, X, yf%),
thus, by (15)

*4l*1 g 12 4w xfi\)~ i 4,
7=1 1=0

By the choice of xf{\ we have <44, Yh X, xfi\) ~ <44, Yt, X, yf+\) for each
lak~q. It follows that

ip i=2I <44, 4.~ xH) Si=2| (4, 4, * y&i),

so choosing p=q/p we obtain

*rw-*« N (4
By repeated application of this lower bound we get the desired lower estimate for <<
<As sA0-»'(—"r) 72(If).
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Since i/rO:Azlse(1+eO N|? the hypothesis of the theorem implies ~r>0 for each

i“v(IN)/(pt+q), that is, the first player cannot lose the play until this move. But
there is no more move, so we are done.

4. Proof of Theorem 3

Let Kndenote a complete graph of n vertices. Let X, denote the set of all com-
plete tX(n—t), —1 bipartite subgraphs of Kn.

A graph GQKn contains a spanning tree of Knif and only if it is not represen-
table as GiUGjj, where Gxand G2 are vertex-disjoint subgraphs of K,,. From this
follows that Maker has a winning strategy for the game T(n, b) if and only if the
second player has a winning strategy for the (b, 1, J*j-gamc.

We claim

(16) 2 2 ullb = :IZ !/3) < 12

A(Jfn

with b=L(log 2—e)n/log nj (L*J denotes the greatest integer not exceeding x) and
n>n0(e)-

Using the well-known fact [ ”j —{~f\ we have

(17) 2 (")2-*<— -2 S (")2-("-)bS2 § {-y 2-(n-nh}.
At first, if and n> w(e) then

-- (n- nX2/L(log2- ¢)n(log)-1J s (1+e)log nl/log 2,
and

o ("ol A el32-(14E)log 02 = en-i S 1/9

for w=»nd(e). Therefore, if n>max (n2(r), n3(e)} then

(18) 2 f— 2-<*)4 < 2 =

fsrsnVi LI J
Secondly, if n12*t~n/2 then

(n—t)/b ™ n/2b s (1+e) log n/(2 log 2),
and

2-("-)Ib ™ -—-2 -a+OiogWaioga = en-*/2 g 1/(9

-1 W12
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for n>nd(e). Hence

(19) nl/s™f n/2

By (17), (18) and (19) we obtain (16).

Applying Theorem 1 we get that the second player can force a win in the
(b, 1, J7,,)-gamc, and Theorem 3 follows.

Acknowledgement. | am especially grateful to L. Csirmaz for his valuable remarks.
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CHARACTERIZING AND CONSTRUCTING
SPECIAL RADICALS

By
B. J. GARDNER (Hobart) and R. WIEGANDT (Budapest)

1. Introduction and preliminaries

The theory of special radicals was developed in the fundamental papers [3] and
[4] of Andrunakievic. Though major contributions to the theory have subsequently
been made by Andrunakievic and Rjabuhin [5], Heyman and Roos [10], Jaeger-
mann and Sands [11], Leavitt and W atters [12], Nicholson and W atters [13] and
Rjabuhin [16], no internal characterization of special radicals has up till now been
given. For the semisimple classes of special radicals, on the other hand, intrinsic
characterization can be found in a recent paper [17] of Rjabuhin and Wiegandt.

The main purpose of the present paper is to characterize special radical classes
by closure properties and to investigate the smallest special radical class containing
a given class. In Section 2 we give characterizations of supemilpotent, special and
special dual radicals, and also of their semisimple classes. Section 3 is devoted to the
“lower special radical” construction, in the obvious sense. It is shown in this section,
as an example, that the lower radical defined by a variety containing all zerorings is
special. The results of this section lead us to introduce the concept of a saturated
class, which is discussed in Section 4. This notion is utilized in the final two sections
of the paper in which we obtain new descriptions of the standard examples of special
radicals.

Throughout the paper, all rings under consideration are associative. We note,
however, that the results in Section 2 are valid for alternative rings. All classes of
rings considered are assumed to be closed under isomorphisms and to contain all one-
element rings. The minor ambiguities occasionally resulting from the latter conven-
tion should not cause any confusion. Classes will always be denoted by bold face
capitals; Z will denote the class of zerorings, O the class of one-element rings, P
the class of prime rings, H the class of semiprime rings, Q the class of subdirectly
irreducible prime rings, | the class of simple rings with identity, B the Baer lower
radical class. Ideals will be indicated by the symbol o . H(A) will denote the heart
of a subdirectly irreducible ring A. If a ring A has a homomorphic image B in a class
X, B will be called an X-factor of A. X-ideals are defined analogously. A class X is
hereditary if it closed under ideals and regular if it has the weaker property that every
non-zero ideal of a ring in X has a non-zero X-factor. Finally, a class is essentially
closed if BEX implies AeX whenever B is an essential ideal of A. The essential
closure of a class is the smallest essentially closed class containing it.

We shall make use of the following propositions. The first is an easy conse-
qguence of Andrunakievic’s Lemma.

Proposition 1. If Co B-aA and B/C is semiprime, then C o A.
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Proposition 2. (cf. [2], Proposition 1). If B<i A, then either B is an essential
ideal of A or (5+ C)/C is an essential ideal of A/C, where C is an ideal of A such that
OMC=0 and C is maximal with respect to this property.

Radical and semisimple classes are meant in the sense of Kuros and Amitsur.
For details see [6], [8], [19], [20]. For a class M of rings, we define = {A\A
has no non-zero homomorphic images in M} and SAM = {A\A has no non-zero
ideals in M}. If M is regular, then °UM is the upper radical class defined by M. If
R is a radical class, the R-radical of a ring A will be denoted by R(™).

Proposition 3 (cf. [7]). A radical class R is hereditary if and only if the corres-
ponding semisimple class SAR is essentially closed.

A hereditary radical class R is supernilpotent if Z£R . In view of [10] a weakly
special class can be defined as an essentially closed hereditary class of semiprime rings.
The upper radical of a weakly special class is supernilpotent, and the semisimple
class of a supernilpotent radical is weakly special (cf. [16]). We say that a radical
R has the intersection property relative to the class M if

RO4) =M {/cT|N//EM}

for every ring A. R is then, of course, the upper radical defined by M. A weakly spe-
cial class W of prime rings is called a special class, and its upper radical is
called a special radical. Every special radical R is supernilpotent and has the inter-
section property relative to PC\SfR (see [3]).

2. Radical and semisimple classes

In what follows, C will always denote a weakly special class, i.e. an essentially
closed, hereditary class of semiprime rings. Examples of such classes include H,
P, Q, I and the semisimple class 6AR of any supernilpotent radical R.

Theorem 1. A class R is a supernilpotent radical class with the intersection pro-
perty relative to CCdAR if and only if R is homomorphically closed and hereditary
and satisfies

(R) If every non-zero C-factor of a ring A has a non-zero R-ideal, then A <R
Furthermore R is then the upper radical class defined by CD6AR.

Proof. Let R be a supernilpotent radical class with the intersection property
relative to CCVAR. Then M=CPI5”"R is a weakly special class in view of Propo-
sition 3. Let A be a ring of which every non-zero C-factor has a non-zero R-ideal.
By the intersection property, A/R(A) is a subdirect product of M-rings Cs, Ae/l.
Since each Cxis a C-factor of A without R-ideals, we have Cn=0 for each A whence
A=R(T)eR. Thus condition (A1) is satisfied. As well, R is obviously homomorphi-
cally closed and hereditary.

Conversely, if R is homomorphically closed and hereditary and satisfies (R),
then if every non-zero homomorphic image of a ring A has a non-zero R-ideal, con-
dition (R) implies that AeR. This (since R is homomorphically closed) means that
R is a radical class. Since zerorings have no C-factors, R is supernilpotent. By Propo-
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sition 3, M =CfI™"R is weakly special; moreover, Rg | f Kisaringin <UM
then L (K)elld M A . Hence every non-zero C-factor of K/R(K) is not in M
and consequently not in ITR. Thus every non-zero C-factor of K/R(K) has a non-
zero R-ideal, whence by (R) it follows that R/R(R)€R, i.e. R=R(R)eR. This
proves that R=4kM.

The last assertion is straightforward.

Corollary 1. Let C=H, P. Then Theorem 1 gives characterizations of super-
nilpotent and special radicals, respectively.

Corollary 2. R is the upper radical class defined by a class of simple rings with
identity if and only if R is homomorphically closed and hereditary and satisfies
(R,) Ifevery 1-factor of A is in R, then "€R.

Proof. Put C=1 in Theorem L1
Before applying Theorem 1to the class Q, we reformulate Theorem 7 of Andru-
nakievic [3].

Let E denote the class of simple prime rings.

Proposition 4. Let F be a subclass of E. Then
J2F= {"6Q|/f(")6F}

is the essential closure of F, and UF is a special class. Conversely, every special class
M of subdirectly irreducible rings has the form JF where F=E(TM.

A special dual radical is the upper radical of a special class of subdirectly irre-
ducible (prime) rings (for the terminology we refer to [3]).

Corollary 3. D is a special dual radical if and only if D is homomorphically
closed and hereditary and satisfies

(Rqg) If H(K)ED for every subdirectly irreducible prime factor K of A, then
AeD.

Proof. Put C=Q in Theorem 1 and observe that a subdirectly irreducible
ring has a non-zero D-ideal if and only if its heart is in D (since D is hereditary).

The next theorem characterizes the special dual radicals and generalizes
Sulinski’s theorem [18] asserting that the upper radical of a class F of simple rings
is hereditary and has the intersection property relative to F if and only if each ring
in F has an identity.

Theorem 2. Let M be a regular class of subdirectly irreducible prime rings. Then
°UM is hereditary and has the intersection property relative to M ifand only if M is a
special class. If D is any special dual radical, then M ~Q il~D is the only special
class of subdirectly irreducible prime rings such that D=®M and D has the inter-
section property relative to M.

Proof. Assume that °UM is hereditary and has the intersection propety relative
to M. Then since °lIM is hereditary, Qil-S~*M s essentially closed and hence a
special class. If AeQillTWM, but A (M, then (T {1-=3A\A/1€M}=0 while
M {1<sA\A/1€M}™H (A)N0. We conclude that QMY®OM ™ M £ Q whence
M is special.
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The converse is straightforward.

If D is a special dual radical, then D=t(Q n”~ D) and the reasoning used above
shows that M =Q DD is the only special class of subdirectly irreducible rings such
that D=4™M and D has the intersection property relative to M.

The next theorem is a companion piece to Theorem 1inasmuch as it characteri-
zes the semisimple classes of supernilpotent radicals with a specified intersection
property.

Theorem 3. The following conditions are equivalent for a class S.
(i) S is the semisimple class of a supernilpotent radical which has the intersec-
tion property relative to CHS.
(ii) S is an essentially closed and subdirectly closed class of rings satisfying
(S) If AiS, then every non-zero ideal of A has a non-zero C-factor in S
and the upper radical of S has the intersection property relative to CHS.
(iii) S is an essentially closed, subdirectly closed, regular class of rings satisfying
(T) Every S-ring is a subdirect product of CT)S-rings.

Proof. (i)=»(ii): Since S is the semisimple class of a hereditary radical, S is
essentially closed as well as subdirectly closed. If O”i-aAtS, then ItS, so by the
intersection property, / is a subdirect product of CTI1S-rings; in particular, / has a
non-zero CfTS-factor. Thus (S) is satisfied.

(i) =>(iii): It follows readily from (S) that S is regular. Let A be an S-ring. Let
T= Cfis. Then &JT(A) has no non-zero T-factors, so (S) implies that %T(A)= 0.

Thus A is a subdirect product of T-rings and (T) has been established.

(iii) =>(i): By Corollary 2 of [1], an essentially closed, subdirectly closed regular
class S of rings is the semisimple class of the hereditary radical class a&JS. Since C
consists of semiprime rings, by condition (T), WS is supernilpotent. Moreover, (T)
also says that °US has the intersection property relative to CHS.

Corollary 4. Let C=H, P, Q or I. Then Theorem 3 gives, respectively, cha-
racterizations of the semisimple classes of supernilpontent, special and special dual
radicals and the upper radicals defined by classes of simple rings with identity.

Let us note that for C=P, the equivalence of (i) and (iii) in Theorem 3is Theo-
rem 4 of [17].

Remark. All the results of this section are valid also for alternative rings.

3. Radical constructions

Again, let C be a weakly special class. Further, let K be a class of rings such that
(i) if 1-aAeK and ItC, then ItK and
(ii) if I1<iAtK and A/ItC, then A/ItK.
We define the class L=i?(C, K) as follows:
L= {Ajevery non-zero C-factor of A has a non-zero K-ideal}.

Theorem 4. L=JS?(C, K) is a supernilpotent radical class which contains K and
has the intersection property relative to CflI*L and is the smallest such radical class.
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Proof. Clearly L is homomorphically closed. It follows readily from (ii) that
Kib.

A We next show that L is hereditary. Let B e AEL and let B/C be a non-zero
C-factor of B. Since C consists of semiprime rings, by Proposition 1 we have CeA
and thus B/CeA/C. IfB/C is an essential ideal of A/C, then A/CeC, as Cisessen-
tially closed. Since A/C isin L, it has a non-zero K-ideal I/C. Since B/C is an essen-
tial ideal of A/C, we then have (B/C)C\(1/C)=D/C+¢QO. Moreover, D/CeA/CeC,
so D/CeC. But D/Cel/CCK, so by (i), D/CiK. IfB/C is not an essential ideal
of A/C, then by Proposition 2 there is an ideal K of A such that BMNMK=C and
(B+ K)/KsiB/C is an essential ideal of A/K. Arguing as above, we see that (B +K)/K
has a non-zero K-ideal. Hence B/C does. Thus in either case, B/C has a non-zero
K-ideal. It follows that B is in L so the latter is hereditary.

We now establish condition (R) of Theorem 1 for L. Let A be a ring such that
every non-zero C-factor of A has a non-zero L-ideal. Let B be such a factor, C a
non-zero L-ideal. By definition of L (since C is hereditary and thus C is in C) C has
a non-zero K-ideal D. Let D denote the ideal of B generated by D. By Andrunakie-
vic’s Lemma, D3QD, andsince D e BeC, and C is a hereditary class of semiprime
rings, D3 0. Since D3BeC and DseDeK, (i) implies that D3fK. Thus B
has a non-zero K-ideal (viz. D3. It follows that A is in L, i.e. (R) is satisfied.

Applying Theorem 1, we see that L is a supernilpotent radical with the inter-
section property relative to CCISCL.

Finally, let J be any supernilpotent radical class such that K~ J and J has the
intersection property relative to C C\Efl. Let A be a ring in L. Then every non-zero
C-factor of A has a non-zero K-ideal, and so a non-zero J-ideal. Hence by Theorem 1,
A is in J. Thus LgJ.

Remark. In the case of alternative rings, the smallest supernilpotent radical L
containing K and with the intersection property relative to CM&b can be obtained
by a transfinite iteration of the construction defined above. It is unclear how many
steps are necessary.

In the following proposition we note some examples of the situation just des-
cribed.

Proposition 5.

(@) If CQK, then if(C, K) is the class of all rings.

(b) If CNK=0, then jSf(C, K)=«C.

(c) If ZzgK, then if(H, K) is the lower radical class ifK defined by K
(d) if(P, K) is the smallest special radical class containing K.

Proof, (a), (b) and (d) are straightforward. To prove (c), we note that i?K=
gif(H, K), while if Afif (H, K) and B is a non-zero homomorphic image of A,
then either B has a non-zero ideal in ZQK, orB is in H, in which case again B has
a non-zero K-ideal, whence it follows that A is in ifK.

The following result is stated by Osborn ([14], p. 309).

Proposition 6. | fa non-zero ideal B ofaprime ring A satisfies a polynomial iden-
tity f then A also satisfies f.

Theorem 4 and Proposition 6 enable us to construct special classes from varie-
ties. Before going into details, we recall some notation. If X and Y are classes of rings,

Acta Mathematica Academiae Scientiarum Hungaricae 40, 1982



78 B. J. GARDNER AND R. WIEGANDT

then
XoY = {A|there exists an %«=3A with I£X, AjlIfY).

Proposition 7. Let ¥ be a variety of rings. Then ZoV is a variety and
Bov = {n|n/B(n)eY}- Bo (ZoV).

Proof. The first assertion is well known, and the first equality is clear since Vv
is homomorphically closed. Clearly also BoV~Bo(ZoV). If A is inBo(ZoV),
then A has an ideal B in B and an ideal C such that BA=C, CIB€Z and A/C=
3i(A/B)/(C/B)e\. But then Cis in B, so A is in BoV.

Theorem 5. Let 3 be a special radical, V a variety. Then JoV is a special radi-
cal; in fact
~N(JUV) = jSPP, (PDJ)UV) = JoV.

Proof. Let A bein if(JUV). Then since JUV is hereditary and Z~JUV,
every non-zero homomorphic image of A has a non-zero ideal in JUV. Let B be
a prime homomorphic image of A. Then B has a non-zero ideal C in JUV. If
C<|V, then CeJ and C-=34€P, CePDJ. Thus J5f(JUy)gJ5f(P, (P)J)UV).

If now D is a ring i if(P,_(PMJ)UV), then D=D/3(D) is also in
Jaf(P, (PM J)UV). Since J(D)=0, D is a subdirect product of a set {£>a/Ae/1}
of J-semisimple prime rings. But each Dx is also in if (P, (PDJ)UV) so it has a
non-zero ideal in (PMJ)UV, and hence in V. Then Proposition 6 says that Dx is
in V. Thus D = D/3(D), as a subdirect product of V-rings, isin V, and if (P, (Pfl J)U
UV)gjoV.

Since if(JUV) is closed under extensions, we have JoV ™ if (JUV). This
completes the proof.

Corollary 5 For any variety V, BoV is a special radical; infact
if(zuvVv) = if(P, V) = BoV.
Proof. Clearly if(ZUV) = if(BUV).

Corollary 6. Let ¥ be a variety such that ZgjV. Then ifV is special, and
ifV=BoV.

It has previously been shown by the first author ([9], Theorem 3.6) that ifG,, =
—Bo0G,, where G, is the variety defined by the standard identity of degree n. Also
P. N. Stewart has shown that UoG2 is a special radical where U is any special
radical containing the generalized nil radical and G2 is the variety of commutative
rings (private communication).

4, Saturated subclasses

We say that a subclass N of a weakly special class C is a saturated subclass of C
if N satisfies conditions (i) and (ii) of Section 3 and also

(iii) Ifevery non-zero C-factor ofa ring AeC has a non-zero N-ideal, then J1eN.
Condition (iii) is clearly equivalent to jSf(C, N)DC=N.
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Since N~C, N is hereditary by (i). We shall consider the class
Jf(C, N)={z(Jevery C-factor of A is in N}="%"(C\N).
Theorem 6. XK (C, N)=JS?(C, N) for every saturated subclass N of C.

Proof. Obviously jf (C, N)g JS?C, N). Let A beinse(C, N), B a C-factor of A.
Then B is also in J¥(C, N), so every non-zero C-factor of B has a non-zero N-ideal.
By (iii), B is in N and thus A is in XX (C, N).

A subclass M of C will be called a cosaturated subclass if M is weakly special
and satisfies the condition

(M) If NEC and every non-zero ideal of A has a non-zero M -factor, then A€M,

Though (M) is dual to (iii), the notion of a cosaturated subclass is not categori-
cally dual to that of a saturated subclass. Such classes, however, determine each
other uniquely as we shall see in the next Theorem, which justifies the terminology.

Theorem 7. Let R be a supernilpotent radical with the intersection property rela-
tive to CH~R. Then R contains a unique saturated subclass N of C such that
R=X(C, N) (namely, N=CDR). Also Jdetermines a unique cosaturated subclass
M of C such that R="M (namely, M=c nSLR). There is a bijective correspon-
dence between the saturated subclasses N and the cosaturated subclasses M of C,
given by

N h-CM£TX(C,N); MACMNO"™M.

If N and M are corresponding classes, then >X(C, N)="M.

Proof. By Theorem 1 (R) it is clear that N is a saturated subclass of C. More-
over, N is the largest saturated subclass of C contained in R. Let Nxbe another satu-
rated subclass of C such that R=Jf(C, Nj). If A is in N, then, since NQR=
=Jf (C, Nj), every C-factor of A, and hence in particular A itself, is in Nx. Thus
N~AN1 so N=Nx. On the other hand, R=Jf(C, N), by a standard argument.

Clearly M = CISLR is weakly special. If AzC and every non-zero ideal of A
has a non-zero M-factor, then A is in the semisimple class SLR and thus in M.
Hence M is a cosaturated subclass of C, clearly the largest such contained in STR.
Also, R=tM . Let Mt be any cosaturated subclass of C for which R—aM.1. If
A iM then since M.KSSRfSS@M-1, every non-zero ideal of A has a non-zero Re-
factor, and so by (M), A is in Mx. Thus M>XM.

The other assertions are straightforward.

Theorem 8. Let N be a saturated subclass of C. Then R=JT(C, N) ifandonly if
R is homomorphically closed and hereditary and satisfies the following conditions.

(N1) N=C(TR.

(N2) If every C-factor of a ring A is in N, then A?R.

Proof. By Theorems 1, 4, 6 and 7, Jf(C, N) satisfies (N1) and (N2).

Conversely, if (N1) and (N2) are satisfied, then by Theorem 1, R is a supernil-
potent radical with the intersection property relative to M1= CfI*'R. Hence by
Theorem 7, is the cosaturated subclass of C such that R=d/LLI1. The correspond-
ing saturated subclass of Cis N1= Cn<€Ml1= CfIR=N by condition (N1). On the
other hand, the cosaturated subclass of C corresponding to N is M =C (JIETXX(C, N)
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and since NXeN, Theorem 7 implies that MX=M . Therefore, again by Theorem 7,
we have R= = °nw =X (C, N).

We end this section with the consideration of saturated and cosaturated classes
associated with varieties and simple rings with identity.

Proposition 8. If U £ I, then U is a saturated subclass of P, Q and I; the corres-
ponding cosaturated subclasses are P\U, Q\U and I\U respectively.

Proof. That U is a saturated subclass in each case follows readily from the ob-
servation that if Aisin U and A 2?sP, then A is a direct summand of B and thus
A=B. Let A=JS?(P, U)=jf (P, U). Clearly PIM"A~P\n. Let A beanon-zero
ringin P\U. Then A(A)gP and every prime factor of A(A) is in U. But A(A)<a
<3KeP, so A(A) is prime, and thus A(A) isin U or A(A)=0. Butif A(A)eU,
then as above, A=A(A)gU. Consequently A(A)=0, so that P\u=PMNYA.

For Q and I, the proof is the same.

We next look at varieties.

Proposition 9. Let X be a variety. Then PN X is a saturated subclass of P/ the
corresponding cosaturated subclass is P\X.

Proof. By Theorem 5, BoX=J8§f(ZUX) is a special radical. Hence by Theorem 7,
the class PIM(BoX) is a saturated subclass of P. We shall show that PN X=
=PM(BoX). If A is in PM(BoX), then B@U1)=0, so AiX. Hence
PM(BoX)aPMX. The reverse inclusion is obvious.

Again by Theorem 7, to complete the proof we have to show that P\X =
=PMN~(BoX). Clearly PMNY’(BoX)ap\X. Let A be in P\X and let B=
= (BoX)(/4). If B~O, then since BoX=if(ZUX), B has a non-zero ideal in
ZUX (since the lower radical construction over a hereditary homomorphically closed
class containing all zerorings terminates at the second step). Since BoA eP, B has
an ideal C€X. From Proposition 6, it then follows that B, and then A, is in X,
contradicting our specification of A. Thus B—0 and A is in PlN<$(BoX), so
P\X=PM~(BoX).

Proposition 10. Let X be a variety. Then PN X is a cosaturated subclass of P.

Proof. Take AgP and 7to be the unique smallest ideal of A such that AJIiX.
If 720 then 0~7//6PM X implies Jo A and A/JtX by Proposition 6. Thus
7=0 and AeX. That PMX isweakly special is straightforward using Proposition 6.

Thus for any variety X, PMX is a “saturated-cosaturated” subclass of P. Any
subclass of | has the analogous property with respect to I.

5. Concrete radicals

Making use of Theorems 7 and 8, we easily obtain the following result, which we
can use to describe a number of well known special radicals.

Theorem 9. For a class U of rings, the following conditions are equivalent.
(1) U is asupernilpotent radical with the intersection property relative to CfI~U .
(2) U=JF(C, N) where N=CDU is a saturated subclass of C.
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3) U is homomorphically closed and hereditary, and N=CDU is a saturated

subclass of C such that if every non-zero C-factor ofa ring A is in N, then A is in U.

Corollary 7. In the notation of Theorem 9,

(1) u=B if C=P and N=0.

(2) U is the Levitzki (locally nilpotent) radical if C=P and N= {1£P|/1 is
locally nilpotent},

(3) U is the nil radical if C=P and N={AdP\A is nil},

(4) U is the Jacobson radical if C=P and N= {AdP\A is quasi-regular},

(5) U isthe Brown-McCoy radicalif C=P or Q and N= {/IECJT is G-regular),

(6) U is Thierrins corpoidal radical if either
(@ C=P or Q and N= {JIEC|/T has no homomorphic image which is a field} or
(b) C=1 and N={zi€l|zl is not a field},

(7) U is the Behrens radical if C=P or Q and N.={AdC\A has no homo-
morphic image with non-zero idempotents},

(8) U is the generalized nil radical if C=P and N= {AdP\every non-zero ho-
momorphic image of A has a zero divisor},

(9) U is the antisimple radical if C=P and N= {AdP\A has no (non-zero)
subdirectly irreducible prime factors}.

Proof. (1), (2), (3) and (4) follow readily from Theorem 9.
(5) Since the Brown-McCoy radical G satisfies

g = wsrg = w(pntrG) g ~(Qn~"G) g w =g,

it has the intersection property relative to POSA"G and Q W\SPG. Thus Theorem 9
is applicable. The same applies to (6).

(7) Propes [15] has shown that the Behrens radical T is the class of rings A,
every homomorphic image of which contains no non-zero idempotents. Since T is
a special radical, we have

T= WYT=®PrOT) g ~(QfIrT) = T.

Theorem 9 now yields the required assertion.

(8) The generalized nil radical is the upper radical defined by the class of rings
without zero-divisors.

(9) The antisimple radical Ais &JQ. PITA is the saturated subclass of P corres-
ponding to the cosaturated subclass PM~A. Clearly Pf]A= [AeP\A has no non-
zero Q-factors}. Now Theorem 9 characterizes the special radical J=Jf(P, PMA)
with the intersection property relative to PIMTJ. By Theorems 4 and 6 we have
Jg A. Let A beinA be and let B be a non-zero P-factor of A. We have -SePfl A. Thus
AeJf(P, PDA)=J. We conclude that A=J=X (P, PflA).
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6. The structure of special radical rings

Let W be any special class, R =W . By Theorem 6, N=PfIR is a saturated
subclass of P and J1=>X (P, N). In this last section we shall discuss the structure of
R-rings in terms of N and B. Using the fact that a semiprime ring has a minimal
prime ideal one can easily prove the following.

Theorem 10. Let A be a ring, 5=/71/B(J1). Then AeX(P, N) if and only if
B/JgN for every minimal prime ideal J of B. In addition, if A€Jf (P, N), there is a
chain

BZDJ1r>J2ZD...A>JRZ)...Z)0

of ideals of B such that JB+1 is a minimal prime ideal of J8 and J¥JR+i€N, for each
ordinal B.

When N g I, we can obtain a slightly better description of the rings in (L, N)
jf(Q, N) and XX (I, N). For brevity, we do this only for XX (P, I).

Corollary 8. AeX (P, 1) if and only if B=AjP{A) is Brown-McCoy semi-
simple and every prime factor of B is in I.

Corollary 9. AEY )X (P, 1) if and only if A is a subdirect product of rings in
P\I.
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TENSOR PRODUCT OF MODULES
OVER DEDEKIND DOMAINS

By

S. M. YAHYA (Liverpool—Dhahran)

1. Introduction

In this paper we study the structural properties of the tensor product of two
modules over Dedeking domains. We not only generalize some results known for
tensor products of abelian groups (see [1]), but also obtain some new ones. The
main step in this direction is to generalize Fuchs’s p-basic subgroup (see [1]). An
attempt in this direction was first made by Y ousufzai who introduced P-basic sub-
modules in [7], but he did not prove the existence of a P-basic submodule in every
module over a Dedekind domain. This we achieve in Section 2. In Section 3 we use
P-basic submodules in the discussion of tensor products. In particular, we prove that
if Br, B2are P-basic submodules of modules MIt M 2 over a Dedekind domain, then
Bl<gB is isomoprhic to a P-basic submodule of

Let TVbe a submodule of a module M over a Dedekind domain R, and P a
prime ideal of R. Then we define TVto be P-pure in M if NP\PniM =P mN for all
positive integers m, and call TVpure in M if TVis P-pure in M for all prime ideals P
of R. For modules over Dedekind domains this definition of purity is equivalent to
all other well-known definitions of purity (see [1], [3], [4], [5], [6]). We also call a
module M P-divisible if PM=M.

Throughout this paper R denotes a Dedekind domain and K its field of frac-
tions, P a prime ideal of R, M an P-module, and M, the torsion submodule of M.
M is called a P-module, if the order (i.e. the annihilator of each element of M) is a
power of P. Also we call an P-module simply a module.

2. P-basic submodules

In this section we show that every module M contains a P-basic submodule and
that any two P-basic submodule of M are isomorphic. We recall that a submodule B
of M is a P-basic submodule if the following conditions hold:
(i) B is a direct sum of cyclic P-modules and/or cyclic modules of order 0.
(ii) B is P-pure in M.
(iii) M/B is P-divisible.
First, a definition and a couple of lemmas.

D efinition 2.1. An element x£M is of height m at P if xdPmM \P m+tlM,
and x is of infinite height at P if xEPmM for all positive integers m.

Lemma 2.2. Let P and x~M, where M is a torsion-free module, then the
height of kx at P is the sum of heights at P of k and x.
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Proof. The result is trivial if Xor stis ofinfinite height. Suppose now that Xand *
are of heights m and n respectively and XxdPkM, where k>m+n. Let 1={g:
gdR, pxEPkM). Clearly/ is an ideal of R and /j2P*_n. Hence I=Pr,r*m, for
AS$PmtL Thus PrxQPkM, rSm. Since M can be embedded in a vector space
over K, we can multiply both the sides by P _1, whence it follows that X£P k~rM.
But k—r>n, which contradicts the fact that x is of height n.

Lemma 2.3. Let M be a torsion-free module. Then M/PM=PnmM/Pm+M,
where m is any positive integer.

Proof. Let A(EP\P2 then )mEPMP m+l Define 0: M/PM~APMM/Pm+IM
by setting B(x+PM)—Xtx+P T+IM. It is clear that 0 is a homomorphism. If
B(x+PM)=0, then Xx£Pm+lM, and so xdPM by Lemma 2.2. Hence 0O is
injective. Suppose now that y + Pm+1M is an element of PmM/Pm+1M. Since
Pm= RXm+ Pmt+l, it follows that PmM=XnM+Pm+lM, and so y=Xnmx+z
for some x£M and z(iPm+lM. Hence y+P mIM=Xmx+P mIM=6(x+PM).
Hence 0 is surjective, and so it is an isomorphism.

Theorem 2.4. Let M be a torsion-free module. Then M contains a P-basic sub-
module, and any two P-basic submodules of M are isomorphic.

Proof. Let {a;:i£l} be a basis of the vector space MIPM over the field R/P.
Liftitto a set [bp i£1} in M, and let B be the submodule of M generated by the set
{bj:i£1}. We claim that B is a P-basic submodule of M. Since P(M/B)=
—(PM+B)/B=M/B, it follows that M/B is P-divisible. Now let J% X-.b— O, where

i

XfR and/ is a finite subset of I. Hence ZXja—0, and so each XfP. We prove
by induction that each XjEP* for all positive integers n, and so each X—0. Suppose
that each XfPm m~Il. Since Pm=RXm+Pmt, XdP/P2 we can write Xj=

—p.jXm+Vj for some gjER and VjEPm+l. Hence the relation ZXjbj=0 implies
that Z(pjXmbj+Vjbj)=0, whence it follows that ZpJ&nmbj+ Pm+lM)=0. But
{Xmbi+Pm+1M} is a basis of the vector space PmM/Pm+1M over R/P by Lemma
2.3. Hence gfP, so XjEPm+l Thus each X fPn for all positive integers u. Hence
{bp. /£/} is P-independent. We finally prove that B is P-pure in M. Let xEB(~)PniM,

then x= 2! hjbj for some finite subset J1of/, where ZXjbfP"IM. We shall show

J 1
that each XjEPm and so x(:PmB. We first note thatif ZXjbfPM, then ZXjuj—o0,
and so each XjEP. The proofcan then be completed by induction as above. Hence

B is a P-basic submodule of M. Moreover, it can be shown that if B= ® Rbt is a
«er
P-basic submodule of M, then {bt+P M :i£l} is a basis of the vector space P/PM

over R/P. Hence any two P-basic submodules of M are isomorphic.

Remark 2.5. IfM is a P-module, then M can be regarded as a module over the
local ring RP, which is a discrete valuation ring. Hence M contains a basic submodule
and any two basic submodules of M are isomorphic by [Lemma 21; 4].

Theorem 2.6. Any module M contains a P-basic submodule and any two P-basic
submodules of M are isomorphic.

Proof. Let Px be a P-basic submodule of the torsion-free module M/M, (see
Theorem 2.4). The exact sequence 0 induces the exact se-
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guence 0-~Mt—M1-+B1-*0, where M1=u~1(B1). The latter sequence splits, for
B1lis free. Hence M1=M ,@ B2, where Br=By. Lett be the P-component of Mt,
and let B3 be a basic submodule of A. We claim that B=B3@B2 is a P-basic sub-
module of M. First, we show that B is P-pure in M. Since B3is pure in A and A is
pure in Mt, it follows that B, is pure in Mt. Hence B=B3@B2 is certainly P-pure in
M1= M ,®B2 Also_MJIMt= Byis P-purein M/M,, so Mr is”P-pure in M, for Mt is
purein M. Hence B is P-pure in M.J4ext, we prove that M/B_is P-divisible. Consider
the exact sequence 0—M YB-»MIB-»MIM1-+0. Since MYB=£Mt/Ba=iA/B3® M t/A,
it is P-divisible, for A/Ba and M,/A are both P-divisible. Also M/Mr, being
isomorphic to MIM,/B1 is P-divisible, for Bx is a P-basic submodule of M!Mt.
Hence M/B is also P-divisible. Thus B is a P-basic submodule of M. Also it
follows from Theorem 2.4 and Remark 2.5 that any two P-basic submodules of M
are isomorphic.

Definition 2.7. We call the number of summands of a P-basic submodule of a
module M the P-rank of M.

3. Tensor product

First, we state some results, which can be easily verified.

(i) If M is aP-module and N a Q-module, where P, Q are distinct prime ideals
of R, then M ®N —0.

(i) If M, N are two cyclic P-modules of orders Pmand P" respectively, then
M®N is a cyclic P-module of order Pr, where r=min (m, ri).

(iii) If M is a P-module and N is P-divisible, then M ® N =0.

(iv) If M, N are two P-modules, then M(g>NsiBI®B2, where By, B2are basic
submodules of M, N respectively. Hence M ~ N is a direct sum of cyclic P-modules.

(v) The tensor product of two torsion modules is a direct sum of cyclic modu-
les, being the direct sum of the tensor products of the corresponding P-components.

(vi) The tensor product of two torsion-free modules is again torsion-free.

(vii) A module is flat if and only if it is torsion-free.

Theorem 3.1. Let B be a P-basic module of a module M and let N be a P-module
then M®N""B®N.

Proof. The P-pure exact sequence 0-~B~M —M/B”~0 gives rise to the exact
sequence
0- BN - M®N - (M/B)®N - 0.
Since M/B is P-divisible (M/B)®N=0, whence the result follows.

Corollary 3.2. IfM is a torsion-free module and N is a P-module, then M® N
is isomorphic to a direct sum of copies of N.

Remark 3.3. The above corollary gives the structure of the tensor product of a
torsion-free module and a torsion module, for a torsion module is a direct sum of
its P-components.
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Theorem 3.4. Let be a pure exact sequence, and let N be
a torsion module. Then the exact sequence
(3.5) 0 M'®N -~ M®ON -«aM"®N —0
splits.

Proof. It is enough to prove the theorem, taking N to be a P-module. Let B
be a P-basic submodule of M*. Consider the pure exact sequence 0-+M '-+M 1-<-B-*0,
where M1=p.~1(B). The sequence splits, for B is pure-projective (see [Theorem 3;
3]). This gives rise to the splitting sequence

(3.6) 0 M'®N+MAN B®N *0.

Since M"®N”"B®N by Theorem 3.1, the sequences (3.5) and (3.6) are isomorphic
by 5-lemma. Hence the sequences (3.5) splits.

Corollary 3.7. Let be a P-pure exact sequence and N
a P-module. Then the exact sequence 0—M'®N~"M®N-+M"®N-+0 splits.

Corollary 3.8. Let 0-+M'-+M-»M"->-0 be a P-pure exact sequence, and let
B',B,B"™ be P-basic submodules of M', M, M", respectively. Then B~B'¢ B".

Proof. This follows from Theorem 3.1 and Corollary 3.7.

Corollary 39. Let 0-+M'-+M-+M"-+0 be a pure exact sequence and let N
be any module, and let B, B, B" be P-basic submodules of M'® N, M®N, M"®N,
respectively. Then B=B'®B".

Proof. Note that the sequence 0 —M'® N —M®N -* M"®N -*0 is also
pure exact (see [2] or [6]).

Corollary 3.10. Let M, N be any modules, then
[M®N)t = (N/Nt)y®(M/M,) ® Nt.

Proof. Since (M®N)/(Mt®N+M®NHYN(M/M,)®(N/Nt) is torsion-free,
it follows that (M ,®@ N+M®N,)=(M®N),. The result then follows from Theo-
rem 3.4.

Remark 3.11. From (iv), (v), Corollary 3.2 and Corollary 3.10 the structure of
(M®N)t is completely determined.

Lemma 3.12. Let be a P-pure exact sequence and let N be
a torsion-free module, then the exact sequence 0-+N®M'-+N®M-»N®M " -»0
is also P-pure exact.

Proof. Let A be any arbitrary P-module. Tensoring the given sequence by A we
get the exact sequence

0- ABRM' - A®M - A®M" - 0,
which gives rise to the exact sequence

0- NO(A®M') - N®(A®M) N®A®M™) -»0.
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Hence the isomorphic sequence
0~-A®(N®M') -~A®(N®M) -+A®(N®M™) -0
is also exact. This implies that the sequence

0- N®BM'- N®M - N®EM" - 0
is P-pure exact.

Theorem 3.13. Let 0-»M'-<-M->-M"-*0 be a P-pure exact sequence, and let
N be any module such that its torsion submodule is a P-module. Then the sequence

0- N®M'- N®M - N®EM"™ - 0
is P-pure exact.

Proof. Let us express N as the direct limit of the family {Nx:I1£A} of its finitely
generated submodules. The sequences 0™>-NX®M "-»NX®M-»Nx®M"-~0 are
P-pure exact by Corollary 3.7 and Lemma 3.12, for Nxis a direct sum of a P-module
and a torsion-free module. Taking the direct limit of this direct system of P-pure
exact sequences we get the result.

Theorem 3.14. Let M x, M 2be two modules such that the torsion submodule ofone
of them is a P-module, and let Bx, B2 be P-basic submodules of My, M2, respectively.
Then Bx®B2 is a P-basic submodule of My®M?2.

Proof. Let the torsion submodule of My be a P-module. The sequences
0 “mBy®B2-‘mMy®B2-&(M1B)®B2-—»0,
0 —Mr®B2—MX®M2-* My®(M2B2) -+0

are P-pure exact by Theorem 3.13. Hence By®B2 is P-pure in My®M?2. Also we
have the exact sequence

MX®B2 My®M2 My®M2 ¢
By®B2 * Bx®B2 MX®B 2
Since

My® B2 ] )
By®B: (MyjBy)®B2, m b: - Mi

are both P-divisible, it follows that s is also P-divisible. Clearly By®B2

is a direct sum of cyclic P-modules and/or cyclic modules of order 0, so it is a P-basic
submodule of My® M2.

Finally, we strengthen our theorem and prove that if By, B2 are P-basic sub-
modules of any two modules My, M2 respectively, then BX®B?2 is isomorphic to a
P-basic submodule of MX®M2.

First, a definition and a couple of lemmas.
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D efinition 3.15. The P'-component of a module M is the direct sum of all the
3-components of M, where R is a prime ideal of R different from P. We can also
define a P'-module and a P’'-torsion-free module in an obvious way.

Notation 3.16. In the rest of this section we shall denote the / -component of
M by M' and MIM" by M™.

Lemma 3.17. Let Mx, M2 be two modules. Then
MXx®Mfx=MIOBMIi®EM[®M"®M"®Mf
and (M1®M2"= M'i®M'i.

Proof. Since M'x, M'2 are pure submodules of M x, M 2 respectively, we have the
following exact commutative diagram:

0 0 0
1 1 1
0- MigMi - Mi®M2- Mi ®Mf - 0

1 1 1
0- mx®M2- MXPM2- MX®Mi- 0

i | |

0- M"®Mi - M"OMt ~M"®Mi- 0
1 1 1
0 0 0

From the above diagram we can easily show that Mx®M2(M'x® M 2+ M1®M'2w
= M'I(g)M'l. Since (MX®M 2+ M x®M'2) is a P'-module and M'i®M'i is P'-tor-
sion-free, it follows that (MX®M 2+ M1®M'2)= (M1I®M2' and (Mx®M Q"3*
= M'i® M'i. Since M'x, M2 are torsion modules the first row and the first column of
the above diagram split by Theorem 3.4. Hence

Mi®M2+ Mx®Mi s Mi®MIiOMIi®Mi®Mi®Mi.

Lemma 3.18. A P-basic submodule of M is isomorphic to a P-basic submodule
°fM "

Proof. Let B be a P-basic submodule of M. Then (M'+B)/M'= BjM' C\B=B,
for M'MP=0. We claim that (M'+B)/M" is a P-basic submodule of M". Since

M*"/(M'+B)/IM' = M/(M'+ B) == MIBI(M"'+ B)/B,
it follows that M"/(M'+B)/M’ is P-divisible for M/B is P-divisible. Now
(M"+B)/BsiM" is P-pure in M/B, for M' is P-divisible, and B is P-pure in M,
so (M'+B) is P-pure in M. Hence (M'+B)/M" is P-pure in M/M'= M".

Theorem 3.19. Let Bx, B2 be P-basic submodules of any two modules Mx, M 2
respectively. Then BX®B?2 is isomorphic to a P-basic submodule of M X® M 2.

Proof. Let B, Bx, B2 be P-basic submodules of Mx®M2, M'i, M'i respecti-
vely. By the above lemma B is isomorphic to a P-basic submodule of (Mx®M 2’ si
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(by Lemma 3.17). But a P-basic submodule of M'{®M'2 is isomor-
phic to B1®B2 by Theorem 3.14. Since Bx= B+ and B2~B2 by Lemma 3.18,
the result follows.

Corollary 3.20. The P-rank of Mx® M2 is the product of the P-ranks of M x
and M 2.
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SOME ADDITIONAL RESULTS ON THE STRONG
APPROXIMATION OF ORTHOGONAL SERIES

By
L. LEINDLER (Szeged), member of the academy

Introduction

Let {<?,,(*)} be an orthonormal system on the finite interval (a, b). We consider
the orthogonal series

(9 C.<p.(X) with 2

n2:O =)
By the Riesz-Fischer theorem the series (1) converges in L? to a square-integrable
function f(x). Let us denote the partial sums of the series (1) by j,,(x).

One of the first results in connection with the strong approximation of orthogonal
series is due to G. Sunouchi [8] who generalized an ordinary approximation theorem
of the author [1] as follows:

Theorem A. If 0-=y<I| and

@
then
i1 " 117
(3) =0x(n-*)

holds almost everywhere (a.e.) in (a,b) for any a>0 and O<p<y x

This result was generalized into several directions. For example the partial
sums sv(x) in (3) were replaced by jtv(x) or sRv(x), where {&} and {//,,} denote an
increasing and a “mixed” sequence of natural numbers, respectively. There are such
generalizations where the partial sums are replaced by (C, )S)-means of negative B,
or the (C, a)-summation method is exchanged by another one (see [2], [3], [5]).

Very recently in [5] we proved

Theorem B. Suppose that y>0, and pS2,that am ax ™ ,yj
or if p—2 then asl; moreover that (2) holds.
Then
/ K rji n -p
4 )= 1- =o ~
@ ol ap, K); 0= 1o , x(n-y

holds a.e. in (a, b)for any (not necessarily monotone) sequence {pv} ofdistinct positive
integers.

From the results of [6] and [7] we can unify the following
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Theorem C. Suppose that y>0, O0<py<B and that (2) holds. Moreover if
(i) 8”2 or B>2 butat Iezasteither y<1l or pS2,

2y+ 1

(i) p=2 and ng_l cnn p<°°,
then
(1 " [ Yp
B) I, B; p, {kv}; x):= O (v+Di_1k v(*)-/(*)!"} = ox(n~y)

holds a.e. in (a, b) for any increasing sequence {&,}.
Later on we shall use the following consequence of Theorem B.
P roposition A. Suppose that y>0, 0<p<y-1 and p=2, that R>p max |y ,Vj

orif p=2 then B~1, moreover that (2) holds.
Then
(6) K(fB,p, W * = ox(n-y
holds a.e. in (a, b) for any sequence {/tv} of distinct positive integers.

Comparing the restrictions on the parameters in the previous results the assump-
tions

(7 a> and B>y (tfy<y]

seem to be artificial. Analysing the proof of (4) it turns out that the conditions (7)
spring from the fact that (4) was first proved for a= 1, and from this result it can be

extended just to a=-y. But a more careful investigation shows that without the

restriction a>y we cannot prove (4), indeed, but the assumption /” y is super-
fluous and we can omit it. This will be proved in Theorem 1

If we assume that a=y then the approximation-order in (4) will increase with
11
the factor (logn)p 2 (p”~2); and if a<y then we require a sharper condition

instead of (2) in order to have (4), see Theorem 2.

Comparing the assumptions of Theorem B and C we see that the restriction
py< 1 appears only in connection with the means C,,(fa,...). This has raised the
next question: Can we omit the restriction py< 1 among the assumptions of Theorem
B if a>1? As the example to be given soon shows the answerfor this question is
negative, generally. Moreover the assumption yp< 1 is required not just for the so-
called extra strong approximation, i.e. if the sequence {gv} in the means given under
(4) is mixed, but for the simplest case gv=v, too. Namely if e.g. a>ypal and
f(x)~s0(x) a.e. then

(8) npyCp(f, a, p, {v}; x) & Kn’i-'n*-1}s0(*)-/(ig |V
* K, Ki, K2, ... denote positive constants not necessarily the same at each occurrence.
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whence it can be seen that (4) does not hold, and not only for a mixed sequence
{/iy}, but neither for the sequence of the natural numbers.

We would like to call the attention, once more, to the fact that in the case of the
means hn(f, B, ...) with /?>1 the condition yp<-1 is not required to the estimation
(5) for the strong and very strong approximation, i.e. if the sequence {kv} in (5) is
either the sequence of the natural numbers (kv=v) or an arbitrary increasing subse-
guence of the natural numbers. But we mention that it can also be proved — not so
easily as in (8) for the means C,,(/, a, ...) — that the proof of (6) also requires the
assumption py< 1l for /?>1 and an arbitrary mixed sequence {/*.}.

These remarks and the results show that the means hn(f, B8, ...) and Cn(f, a, ...)

in connection with the extra strong approximation behave similarly only if a, R =y
but if a, 3=y then the means h,(f,R, ...) are more effective than the means

C,(fa, ...) are. Moreover this phenomenon appears also for a, 8>\ ifwe consider
the strong and very strong approximation (compare Theorem 3 and Theorem C).

Continuing the investigation of similarity of the means C,(/, a, ...) and
I, (1,12, ..) for a, B 1 we shall show that if the investigations are confined just
for the very strong approximation then the assumption p=2 can be omitted among
the conditions of Theorem B and the remaining assumptions imply that

9) C..(/, a,p, {k}; x) = ox(n~y)

holds a.e. in (a, b) for any increasing sequence {&,}, which is the perfect analogue of
(5) for a~l (see Theorem 3).

Our next problem is also connected by the restriction p=2, but for a, /?=-I.
We do believe that the assumption p=2 can be omitted without more change, but
we are not able to prove this. In order to have the order ox(n~y) we have to claim a
more powerful condition instead of (2). Such extensions are given by Theorem 4, 5

and 6.

Finally we investigate the approximation order of the strong means in the limit
cases yp=a~RB~1 and show that the approximation order does not exceed Ox(n~y)
a.e., but for /?<2 and a<1 we can ensure this order only under conditions claiming

a little more than (2) with Y= — does. Namely if we claimed only (2) then the order

of approximation in the case py=a=R872 would be only ox(n-),(logri)p 2).
More precisely we prove the following theorems:

Theorem 1. Suppose that B, y>0, O”~p~Il and py<f”-~-, moreover that (2)
holds. Then (6) holds a.e. in (a, b) for any sequence {pv} of distinct positive integers.

We mention that this theorem is a significant strengthening of Theorem 2 of [4].

Theorem 2. Suppose that a y>0,0</?72 and py < T hen (2) and

a=y imply
(I
(20) C.,(/,a p, O; x) = ox(n-°(logn)" 2);
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furthermore and
2

[0 0]
(11) Zgrnyt o< oo
ensure that (4) holds a.e. in (a, b) for any sequence {pv} of distinct positive integers.

Theorem 3. If y=>0 and then the condition (2) implies that (9)
holds a.e. in (a, b) for any increasing sequence {&,} of natural numbers.

Theorem 3 is a remarkable generalization of Theorem A given in [5].
Theorem 4. If y>0,/?s2 and /r/<min (a, 1) then

2

1-
(12) f:fnzy+ P < oo

implies (9) a.e. in (a, b)for any increasing sequence {&,} of the natural numbers.

Theorem 5. If y>0,/>s2 and py<min (/?, 1) then (12) implies (6) a.e. in (a, b)
for any sequence {/n} of distinct positive integers.

Theorem 6. Suppose that y>0,/?s2 anJ that />y<min (a, 1). Then either
asi and(12) or a-=1 and{\Y) imply that {4) holds a.e. in {a, b)for any sequence {pv}
of distinct positive integers.

Theorem 7. Te/ 0<aS 1 and p> 0. Then each o/rhefollowing pairs ofcondition:

©

d

o P_.(
(13) a< fs | and zZ "2 \ \
n=1 Xk=n 7/

2
(14)

@ / @ \P2

(15)
z n=1 Me=n |/
imply that
(16) c,(/ ap.bl;x)=o0*n p)
ho/tfo a.e. in (a, b) /or any sequence {/iv} of distinct positive integers.
Ifp=2 and
17) 2nd
n=1

then we also have that (16) holds for any O<aS|.
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Theorem 8. Suppose that and p>0. Then
\p/2
-
(18) PS 2 am/ n:2 {ké'nc)/
~ 2——+1
(19) p=2 and 2. cinp .+ <0°
imply that
(20) fe,,(, B, p, W ; *) = o,(n p)

AoMy a.e. in (a, A)/oT awy sequence {/iv} o/ distinct positive integers.

We mention that (20) generalizes the statement (15) of [7] in the case /?sl;
and the case p=2, but only for increasing {&,}, is also treated in [7].

§ 1. Lemmas

In order to prove these theorems we require some lemmas.

Lemma 1 ([7], Lemma 3). Let x>0 and {!,,} be an arbitrary sequence o fpositive
numbers. Assuming that the condition

(i) 27l <o

implies a “certain property 7’=T({y,,(X)})” of the partial sums sn(x) of (1) for any
orthonormal system, then (1.1) implies that the partial sums skn(x) o/(l) also have the
same proparty T for any increasing sequence {k,} i.e. if

(LD=*T {*.(9) then (LI)=r({s*.(x)})
for any increasing sequence {/c,}.

Lemma 2 ([2], Lemma 5). Let {!,,} be a monotone sequence of positive numbers
such that

Aon = KX2n

Then the condition

implies that
S»(x)-f(x) = Xk(2.")
holds a.e. in (a, b).
Lemma 3 ([7], Lemma 1). If 0<p,g=2 then

1 Y4

M50 ) -1(*) BY dxAKn"*EE,
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where

R
B0 =S

Lemma 4. Suppose that 0<y<I1/2 and (2) holds. Then for any sequence {pv}
o fdistinct positive integers and the sequence {mv} defined by mv=2m if 2nS/ivw 2mtl
we have that
f {2 (v+ D) UsVv(x)-5,v(x)[4dx S K2 C"2y-
The statement of Lemma 4 can be found in the proofof Lemma 3 in [5], implicitly

(see (1.7)).

Lemma 5. Suppose that B,y”~0,0<p”2,py-=:B"-~- and that (2) holds. Then

.rl Iy n \1/p12 ]

holdsfor any sequence {/iv} of distinct positive integers and {mv} defined in Lemma 4.

Proof. First we show that
(1.3) 0%0 \ITII~T~| 1I)yv:0(V+I) J :HSMX)' SN
0 nP/2
2 P(v+1)2-1n v(A:)-smv(x)|2] .
=0 )
If p=2 then (1.3) is an obvious consequence of the following elementary inequality
ny

(n+rf (v+1/-1=S(v+1)2-1 (v n).

If p<-2 then we use the Holder inequality with PE and 2—2——p—— and obtain in view of

B>py that
Vgév + 1/-ils (Xx)-smv(x)|™

fon 1 ¢ . x | p,,0a 21
lv=0 J Ivglz)(v-'-l)ﬁ-p éj J ’QS
I n A2
S K IV2:6V+1)2>-1M *)-S mv(x)|4}] (n+iy-",

whence (1.3) obviously follows.
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Finally, by (1.3) and Lemma 4, we get (1.2).
Lemma 6. Suppose that a, y>0,0<pS2 and py-~alll-—. Then (2) and a

imply that
(1.4) A/ {O’\Snllego \( — V:ZO”\n:ikv(*)-snv(*)IP) j} dx s a/:1=51 cn«2y;
furthermore a<p/2 and
(1.5)
n= 2
imply that
(nPY n PV 1
sup 2 '7SisSMW-SmwWIp \dx~K2can P
0Sl1<~Va n v=0 /1 =1

Aolifo/or any sequence {p.v} and {mv} determined in Lemma 4.

Proof. The assumptions imply that y d /2. First we show that if a—%
P _
(L.7) OWE())O ”mApnM ----- V%M*:J|s,l%x)-$mv(x)|P
f oo -p2
K\ypRo(v +in-xw -~w rf e

If p=2 then this follows on account of a”~l and />y<a.
If /?7<2 then we use the Holder inequality and obtain that

(1.8 Z N MIK W) -9w(F) P =5
\PI2 .
- {u(v+ Diy'iki*vW-rvWIg {1 ((y+1)<l'ag™:1)2 pHl
Since 2y<I, a=-" and /;y<a we have that

2C<]) n2 -
V%O(V +i)2-p(1 ag(1*'=}2-p 8p »%O(y_'_ i)2-p™ "4

+*n (1" 2 K:J)ir7si:n'b 1+1" r(1' 2y,+1+
n " (1“2) Jir7si:n r(l' 2y
-(1- 0- ? (e-
+ATn2J)( 35IognSA"n2 p 2/)Iogn N K2n2 p( ad logn,

whence, by (1.8), (1.7) obviously follows.
(1.7) and Lemma 4 prove (1.4).
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Next we prove (1.6). In order to prove (1.6) we first verify the following inequality

(1-9) sup

O”n-coo Sin

Vgl';"i:v|sl\MN -smW Ip~
f - X-JLI Ip2
nn IIVZZO’(V+ n" PNsWW-SmvW |2J .
If /7= 2 then (1.9) follows by the following facts:
py = 2y<ac<i, <, @g v+ Dy (ywm).
In the case p< 2 we use again the Hdélder inequality which gives that

(1.10) 2 4e-TKV(X)-V,(X)|p S

LT (v 1 pIsy)-smG)[a2f (v +ir-pM)2 g1 -

By /?y<a<-~-<1 we have that

n 2
2 (y+ifr*=~~p | ) =8
v=0

2@ 2

(1.11)

v=0

2(@— L 2
Y(a:p-lszzp(a-py) +1 -_Sﬁ_"’)\(a-PY)

KI{n ~ +=pyn U n ~ = g -
This and (1.10) painly verify (1.9).

To prove (1.6) we show that
b

2a
2y--=+1
é 1;2 0(v+ n2n PAAY(X)-SmU(x)|Zdx =K 2I cln
V= n=

An elementary calculation shows that

K2n ™ ° - PA

(1.12)

2(v+D47 p) f\sllv(x)-smv(x)\de = M+ P2

2w

® a\ 12>+
= 2 2 +D 2 2 cl— k 2 l*m(y-> 2 cd
m=02m"/iv<2m+l(v ¢ n=mv+ 1 m—0\g/=l ( n=2n+1 7/

, 2y-3+1
Kr2 2mWy-r)+l) J" c24&4 K22 cIn
n=2n+1

which proves (1.12). Furthermore (1.10), (1.11) and (1.12) imply (1.6) plainly, and so
the proof is completed.
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§ 2. Proof of the theorems

Proof of Theorem 1 By (2) Lemma 2 gives tha

2.1) | (4)(*)1= X2

holds a.e. Hence, using the notation mv—2m if 2m*/iv<2nm+l, we obtain that

(2.2 hp(f, B, p, {/i}; x) LUK-"- q(v + 1 /-1(s,,v(Xx)- smu(X) |p+ [sny(x)~/(X)]jP.

Now let N,,(m) denote the number of pv lying in the interval [2m 2m+l) and
vS/i. It is obvious that

2.3) Vum A min(n+L,2m and 2 Nn(m) = (b1

If 2,_1<u”2" then, by (2.1), (2.3) and 0<y/?</?é1, we have that

(2-4) ,ﬁpvzo(v+I/-1|sM/(x)-/(x)|pS4ﬁ- 2 NnmY°x(2"mp) S

)

S
This shows that if we can prove that

(2.5) A 2. v+ 1/-1sMX)-Sm(*)r = ox(n-yp)

also holds a.e. then by (2.2) the statement (6) is also proved.

So the rest of the proof is to verify (2.5). This can be proved by Lemma 5. First
we divide the series (1) into two series as follows. For any fixed positive e we choose x
such that

|
I - » u‘]‘ 0, («-"")e

(2.6) rg:xcﬂn2y< e3.
Now let
® h fc, for n~ x
(2.7) n2:0a»<Pn(x) with a, = i0 for n> x
and
® - rO for nS x
28 Zobnan() wWith b= o us
Denote sr{a\ x) and s,,(b; x) the u-th partial sums of the series (2.7) and (2.8), respec-
tively.

By the definitions it is clear that s,,(x)=sn(a; x)+j,,(b; x).
Since the number of the coefficients an™0 is finite and py”~R we can apply
Lemma 5 for the series (2.7) and a parameter / instead of y which satisfies the con-
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ditions y'>y and py'<R. Then we obtain that

AfT.(6rri? lo(v+1)"'",|s"-("- *XK )
is finite a.e., whence

npy n
(2.9) " 12K A+ A ST A A g ps oxw
holds a.e.

On the other hand Lemma 5 applying to (2.8), by (2.6), gives that

[ 1 a (6 iw .4 <v+1),” |I-(";X)- s~ Ne"*>'r) ) ix-™ -

This gives that
meas |jc|limsup™-~-~j Z (v + 1)i-1Ysilv(b; x)-smu(b; x)|p] > ej B Ke.

whence, by (2.9), the statement (2.5) follows a.e.
As we have stated this completes the proof.

Proofof Theorem 2. The proofis similar to that of Theorem 1 and we shall use
the notations given there. Here we have that

(2.10) C.,.(/, a, p, {p.}; X) :n,, VZ:oA;:i(ISRV(*)“ S»*(*)'+ |sm(x)-/(x)|P.

The second sum in (2.10) can be estimated by (2.1), (2.3) and a™l as fol-
lows

(2.1)) N LEEIM *)-/(*)1"~ 4 2 [NnWox{2-"pa

sS 4|_|- {Ir‘ri]:OZH 0A(2— ») +m:2+1 ITkonz -rryp); = O((nJ’),

and so we only have to prove that

(2.12) ff NS, v(x)-sm(x)|p = ox(8-,p(b8unyr * 2).

The proof of (2.12) follows the same line as that of (2.5), the only difference is
that we use Lemma 6 (more precisely (1.4)) instead of Lemma 5, therefore we omit
the details.

The statement (10) ensues from (2.10), (2.11) and (2.12) obviously.

Next we prove (4) under the assumptionsa <a n d (11). Then Lemma2, by (11),

gives the following estimation
[i2-n(x)-/(x)] = 0x(2 T(¥*p+2)
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STRONG APPROXIMATION OF ORTHOGONAL SERIES 103

instead of (2.1), but this is sharper on account ofa<y than (2.1) is, so we can use

the estimation (2.1) during the proof. Consequently (2.11) holds. In order to prove
(4) it is sufficient to verify that

(2.13) 2 NJ|s/v(*)-smu(x)|p = ox(n-yp)

also holds a.e. in (5, b). But (2.13) follows from (1.6) repeating the same considera-
tions as we have made in the proof of (2.5).

Summing up our estimations we obtain (4).

Thus the proof is complete.

Proof of Theorem 3. First of all it is clear that if p~2 then the condition
py<a(Sl) implies that 1/2; thus we can apply Theorem A and obtain the
estimation (3), whence, by Lemma 1, (9) follows. If 2 then in view of Theorem
B we have only to prove (9) for such parameters a to be varying in the interval

a=y - But then the parameter y is also less than 1/2, so we can conclude to (9)
as before, and this ends the proof.

Proof of Theorem 4. We prove (9) by means of Theorem 3 and Theorem B.
Namely we show that if aSI, moreover

(2.14) a'= —(@a—1)+1 and y':y+42-—p

P
then the assumptions of Theorem 3 with p'=2 and a', y' instead ofp, a and y are
satisfied. Indeed, it is clear by aS| and p=2 that O<a'sl, and by py<ct

2 2 2
N =2y + | - < —a+ 1-—--- = a,
i P P P

moreover on account of (12)

cWy= 2clny+l~p
1 n=1

n=
If a>1 then the assumptions of Theorem B are satisfied with p’—2 and

2
, 1 given under (2.14). Namely by 1 2/=2y+1——<1, and a'>1 plainly.

Next we use the following well-known inequality

(2.15) 2 an=[2 a¥» for r- 1 and an” 0;

and the following properties of the binomial-coefficients
(2.16) 0 < KnxS A* WKrnx for a>-1.
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These estimations ensure that

5 (n —
RoAEIM *)-I(*)IPA M *)-1(*)13

N2 ANK (x) -5 x)\FE

Hence we obtain thdt

17)  Co(fap k9~ K © fo we o e
(1 > \12
K" « J1.. V) IRT

Now either Theorem 3 or Theorem B gives that C,,(/, a', 2, {kw}; x)—ox(n~y)r
and thus by (2.17)

a" a
C,,(/, a>Px{fev}; *) = o*(M2 p 7) = ox(n-y)
holds a.e. in (a, b) in accordance with our statement.
Proofof Theorem 5. The proof runs similarly to that of Theorem 4, but now we

2
shall use the results of Theorem 1 and Proposition A with p'=2, B'=—(R—I)+1
and y'=y+"é ----- p_ An easy calculation shows that /?*,/>0, and if /1= 1 then

2y‘:2y+I—P<B"\I, and for 6=-1, by py<l1 2/d</?.

So we have verified thatwith these parameters ', y* and p'—2 the assumptions re-
quired to the estimation (6) are satisfied, thus we have the following estimation

(2.18) *.(/, B, 2, bl ; x) = ox(n~y)

a.e. in (a, b). Consequently, using inequalities (2.15) and (2.18), we obtain that

n 2 vp/2
2 (vHY"-IsM*)-/(F)Ip7 (2(v+ DAC_DlshwV-/WI12 A
e =0 /
yJL
—Khp(f B\ 2, {pME; x)n" > ox(nk- yp)

holds a.e., whence (6) obviously follows.
We have completed our proof.

Proof of Theorem 6. Now Theorem 2 and Theorem B give the kernel of the
proof. Ifa' and y' have the same meaning as in (2.14) and p'—2, then an elementary
calculation shows that for a d the assumptions of Theorem 2 are fulfilled; and if
a s | then the conditions of Theorem B hold with the parameters a',/ and p'. Thus
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we always have the estimation C,,(/, a', 2, {g@}; x) = ox(n~r). On the other hand
by (2.17) ‘
a a

¢, (f, a p; {k}: xX) s=sKn2 pC,(/, a\, 2 {g%; x).

These estimations together prove the statement of Theorem 6.

Proof of Theorem 7. First we prove that if p S 2 then (13), (14) and (15) imply
(16). It is clear that if we can show that

(2.19) 2V -=V2:0 = 0,(1)
then (16) follows.

Denote
[Atli for v~ n,

Il « +={ 0 for v>n.

Using this notation and the Holder inequality we obtain that

(2.20) 2 a4x)= 2 2 M=A+M*)-/(*)I

m=0 2mS/i <2m+1

b 25tz W -TW P06 00y (Hi=il95r)" ¢

For o=1 an elementary calculation gives that for any n

591 e n an («-ibAZ
(2.21) 2T"‘L17'<2T\+1a :=a+),-F av:21 v

If (13) holds then P%P~AK and so by (2.20) and (2.21)

=p

co / 2m+l \P/2

(222) 200 = 2,1,2, 1% () = 2p(%)-

Next we show that under the condition (13) the series I'p(x) converges a.e. in
(a, b). Namely, by Lemma 3 and (13), the integral of Tp(x) is finite, since

00 °/2m+1—1 \P/* 00 00 f__i

2 |/ 2 [s*(x)-/(x)]2 =K 2 2 *EEmtsK Zn*~ ES,
m=0 ~ V*=2" > m=0 n=1

and thus the Beppo Levi theorem ensures the convergence of the series | p(x) a.e.
This and (2.22) imply (2.19).
Under assumption (14) P~p~Km, and then (2.20) and (2.21) give that

00 /2w+1—1 \P/2 n-—
. N * _ £1] - _
2 :’P(x) m2=(§Vk:22m [s*(x) /(x)|2/ m ”2=2 p(x)
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If we integrate term by term the last series we obtain by (14) and Lemma 3, that

J 21(x)dx —K 22 pESmtn 2= K 2, n2 1(lognf 2E*<

and hence we can get (2.19) as before.

If (15) holds then P%"~K 2m(*"'T) and thus we have to show that

p/2
i =

//{Im2=0\fc=2m / J

But Lemma 3 and (15) imply that

A
i kn%ZOZmXEgm 121:“ e;

and this gives the way to conclude to (2.19).

Finally we prove the implication (17)=>(16), or what is the same we prove that
(2.19) follows from (17).

By (2.15) and (2.16) we obtain that

(2.23) 21'P() N 2 (At [sW -/(x)[) 2 =

Ak [z N-nUAWW -/(x)[A2 = K{2%:-4%))\

where a =P£(a—1)+ 1

Itisclear that 0<a'sl and thus by (17) with a=a' and p=2 the conditions
under (13) are satisfied, therefore 2n'2(x)= Ox(l) a.e. in (a h). This and (2.23)
prove the implication (17)=>(16) obviously.

Thus Theorem 7 is proved.

Proof of Theorem 8. In order to prove (20) we show that

(2.24) 2M *) = 2 (v+1)M v (*)-/(i9]' = 0,(1) ae.

In view of BS 1 and (18), in the case p =2 (2.24) can be proved easily, namely if we
integrate the series ZR’p(x) term by term then

(0]
A 2 lpi 0 §2 (y+ 1/-Y 7~ 2 (vil-"£2<-,

and thus Beppo Levi theorem proves (2.24).
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If p<2 then first we use the Holder’s inequality as follows

b « b
J ZBp(x)dx= Ziy+iy-1/ K(x)-f(*Wdxs
i v=° a

© b
N K 20(v+1y-'\i/f M *)-/(*)I* dxf* ~
v=

A K ZVHI) MY = K 2(v+D - 1

and this also implices (2.24) and (20).

If 2 then first we define B' by R'= (8—1)£+1. Then by (2.15) we have ob-
viously that

(2.25) 2 Rp(*)s (2 (V+i)w-D7 1%.(*)-/(*)# ~

s (2 (V+ir-1KwW -/(x)]2> - (Z R-2(x)f.

The assumptions and p=2 imply that 0</J'S| and thus the con-
ditions given in (18) with ' and p'=2 are satisfied, whence 2 R’Z(x)—0Ox(1)
holds a.e. in (a, b) and this, by (2.25), proves (2.24) for ps2, too. The proofis com-
plete.
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SOME EXAMPLES OF SUPERNILPOTENT
NON-SPECIAL RADICALS

By
K. 1. BEIDAR* (Ordzhonikidze) and K. SALAVOVA (Bratislava)

For a given associative ring A, we will denote by A any nonzero homomorphic
image of A, and write %=A when 7 is a nonzero ideal of A. For a given class M
we have as usual the dual definitions 1/M={/1/all A M} and {nhif I<n
then i M}. Denote K(J1)= M{7/7<3 /1, N//€ AR} for a given radical class R and
aring A. For the basic notions and results of the radical theory we refer to [2] and [10].

The first example of supernilpotent non-special radical was given by J. M.
Rjabuhin [7]. Later several authors were interested in problems of construction
“sufficiently many” supernilpotent non-special radicals which satisfy some additional
requirement. For example L. C. A. Van Leeuwen and T. L. Jenkins [4] have given
countably many supernilpotent non-special radicals such that their semisimple
classes contain all fields and J. M. Rjabuhin (see [8] or [2] p. 252, Theorem 5) has
shown that every supernilpotent radical different from lower nil radical is the union
of supernilpotent non-special radicals.

F. Szasz posed the following problem ([10], Problem 17): is it possible to cons-
truct a countable infinite set of supernilpotent non-special radical classes R1( R2, ...,
R,, ... suchthat SRmMSR,,= {0} for m~nl Note that F. Szasz [9] has constructed
a countable infinite set of special radical classes Rls R2, ..., R,,, ... such that SRmH
nSR,,={0} for n™m.

In the present note we give an affirmate answer for this question of F. Szasz.

Let K be a subset of a ring J1. We denote AnnAK = {aeA/aK=0=Ka}. A class
M of rings is called a weakly special class of rings if it satisfies the following three
conditions:

() Every ring in the class M is a semiprime ring.

(b) Every nonzero ideal of a ring in M is itself a ring in M.

(c) If 7is aring in the class M, 7 is an ideal of a ring J1 and AnnA7=0 then
AtEM (see [10] p. 67, or [2] p. 171).

A radical class R is called supernilpotent if it is hereditary and contains all nil-
potent rings.

Theorem 1 (see [10] p. 67, or [2] p. 172). The radical class R is supernilpotent iff
SR is a weakly special class. ITM. is a weakly special classand R=C/M then R04)=
= f){7/7 is an ideal of the ring A and J1/7eM} for all rings A.

* This paper was done while the first author was a visitor at Slovak Technical University,
Bratislava, Czechoslovakia.
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T heorem 2 (see [10] p. 72 or [2] p. 232). A supernilpotent radical class R is spe-
cial iff every R-semisimple nonzero ring has an R-semisimple nonzero prime homo-
morphic image.

Corollary 3. A supernilpotent radical class R is not special iff there exists an
R-semisimple nonzero ring every homomorphic prime image of which is not R-semi-
simple.

Let A be a ring and St,,(T) be the standard identity of degree n (see [3], p. 328).
Denote U2T)=min (n/St~AT) is an identity of the ring A}. Let N,, be the class of
all rings such that:

(i) Every ring in the class N,, is a semiprime ring.
(ii) If A6N,, and lo A then d(l)=n.
(iii) If J1€N,, and /o A then the ring / is not a prime ring.

Lemma 4 (see [6] Theorem A or [5] Corollary 1). Let A be a prime ring, and let
C(A) be the centre of the ring A. If St,,(T) is a polynomial identity of the ring A, then
C(A)"O.

Lemma 5. Let A be a semiprime ring, /<a A, Ann~ 1=0 and d(l)=n. Then
d(A)=n.

Proof. 1) Suppose that A is a prime ring and St2,(X) is a polynomial identity
of the ring I. We shall show that St2,(T) is a polynomial identity of the ring A.
Indeed, by Lemma 4, C(IN)?+0. Let >S=C(/)\{0}. If s, tiS and aiA, then tail
and

t(sa—as) —tsa—(ta)s —tsa—s(ta) = tsa—tsa —0.

But a prime ring has no nonzero central zero-divisors. Hence sa=as for all siS,
aiA and SQ C(A). Let S_1A be a ringof fractions. It is clear that AQS~IA.
Further, let SflatiS~ 1A, where stiS, a,iA for all i=1, 2,..., 2n. Then

St"CN 1pl>mm>smn azn) = (sf-sl) 1St2,(slal, ..., s"a™n) —0

because "a,€/ for all /=1, 2, ..., 2n. Hence Sta”T) is an identity for rings S -1A
and A.
2) Let R be the lower radical class generated by the class of all nilpotent rings.
It is well-known that R is a hereditary radical class. Further, let £P={P<\A/P is
a prime ideal}, &4= {PiO#PI£I1} and L= M{P/Pi~fj. It is well-known, that

R(4)= NN R(/) = R(zf)n/= (N P)N /= LCU.
Pi» pc»r

Since A is a semiprime ring, R(/I)=R (/)—0. Hence Lfl/=0. But Ann”/=0.
Therefore L=0. We have d(l1)=n. Hence St2,(T) is a polynomial identity of the
ring I. Let Pi&x, A=A/P, 1= I/IDP. Itis clear that I<\A and Stnh(Z) is_a poly-
nomial identity of the ring 1. By (1) St2,(T) is an identity of the ring A. Since
M{P/Pi04=L=0, thering A is a subdirect product of rings which satisfy the poly-
nomial identity St2,(T). Hence St2,(T) is a polynomial identity of the ring A and
d(A)™n. On the other hand d(A)~d(l)=n. Thus d(A)=n.
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Theorem 6. The class N,, satisfies the following conditions:

1) The class N,, is nonzero for all n=1,2,3,....

2) The class N,, is a weakly special class.

3) The radical class R,,= UNn determined by the weakly special class N,, is a
supernilpotent non-special radical class.

4) If and A”O then d(A)=n.

5) SRmMM5R,, for all m”™n.

Proof. 1) Let B be a Boolean ring without ideals with two elements (such rings
were used by Rjabuhin in the construction of a supernilpotent non-special radical
(see [7]) and A= Mn(B) is the ring of n Xn matrices over B. Since B is a commutative
ring, d(A)=n (see [1]). Clearly, A is a semiprime ring. Let I be an ideal of the ring A.
Then 1=Mn(L), where L is an ideal of B. Thus d(1)=d(M,,(L))—n. 1f/is a prime
ring, then L is also a prime ring. Since B is a Boolean ring without ideals with
two elements L=0 and 7=0. Remark that N, ~{0} because AceN,,.

2) Clearly, the class N,, has the property (a) from the definition of the weakly
special class. Let / be a nozero ideal of the ring A and ”~eN,,. We shall show that
7eN,,. LetL be a nonzero ideal of the ring/ and let L be an ideal of the ring A gene-
rated by L. It fojlows that UQL (see [10] p. 35). Since 4 eN,,, A is a semiprime
ring and so L3740, d(lI)=n=d(L3. Consider the inclusion L3QLQI. It
follows that n=d(L3~d(L)”~d(l)=n and the condition (ii) is satisfied.

IfL is a prime ring then so is L3. But L3 is anideal ofthe ring A and this cont-
radicts AeN,,. Hence condition (iii) is satisfied and /€N,,. Therefore condition
(b)is also satisfied for the class N,,.

Let / be a nonzero ideal of the ring A, AnnA1=0 and /€N,,. We shall prove
that J1€N,, and condition (c) holds. Clearly, A is a semiprime ring. So condition (i)
holds. Let L<\A. Since /€N,,, d(I)=n and d(LC\lI)=n. By Lemma 5, d(A)=n.
We have LPIQL~A. Hence n=d{LC\l)=d(L)~d(A)=n and d(L)=n. Thus
(ii) holds.

If L is a prime ring then so is L(~)l. But LP1 is an ideal of the ring / and
7eN,,. Therefore LPil1l=0, LI=0 and LQAnNnAI=Q. This contradicts L"O.
Hence the ring A satisfies condition (iii) and TeN,,. Then N,, is a weakly special
class becasue conditions (a), (b), (c) hold.

3) Let A be the ring which was constructed in step 1 of our proof. We have
proved that TsN,,. Hence /4e5R,,. If P is a prime ideal of the ring A, then P=
=M n(L), where L is a prime ideal of the ring B. Clearly, A/P=Mn(B/L) and B/L
is a two element field. Therefore A/P is a simple ring. If A/PiSRn, then A/P is a
subdirect product of rings from the class N,,. Then A/PzN,,, because A/P is a simple
ring. But the class N,, has no prime rings. This is a contradiction. Hence A/P<{ SR,,.
By Corollary 3, R is not a special radical class.

4) Let A be a ring and A£5R,,. By Theorem 1, A is a subdirect product of
rings from the class N,,. Hence d{A)=n.

5) It is clear now that 5Rmn 5'R,,= {0}, m?+n.
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A REMARK ON A PROBLEM OF A. RENYI

By
A. P. BOSZNAY (Budapest)

Introduction

In 1952, A. Rényi raised the following question: Let fdC[a, b] (a, bd~R, a<b)
be strictly positive, further let

a =*0« < *i« <mmm< Xwn),n=>b
be a system of partitions of the interval [a, b] into K (ri) subintervals, with the property
I{jlgo max (x;, Xj_i,)=0.

Introducing the quantities

*1,n

J xf(x)dx
0 = —— (i=12..K(n)n=12".)
j f(x)dx
XI-1,n

the question is whether these numbers sin(/=1,2, K(n)\ n=1,2, ...) uniquely
determine the function / up to a constant factor.

This question was partially solved by I. Vincze [1], who proved that the answer
is affirmative in the case / is differentiable in [a, b\.

In the present paper we give a positive answer for a special class of partitions
and arbitrary/. On the other hand, a counterexample will be given which shows that
the answer is in general negative.

Results

Theorem. Let

a= x0,n " xl,n<eee< ~X(N),n- b
be a system of partitions of thefinite interval [a, b], with the following properties:

A) Mrrgo max x,InNx,-_n=0,

B) Xit,, is an element of the set {xO>n+l, x1>n+l, xKm)>n+1} for all N,
OI~K(m), andin all open intervals (xiy,, xi+l>,) we have at most one element of
{x 0,b+ 1> "l .n+1* X K+ D,n+ I}

C) *(1)=1".
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Then the values
ifn

J xf(x)dx
s: TR = L K(n), n= 1,2,
f f(x) dx

uniquely determine the strictly positive function f(iC[a, b\ with the additional assum-
ption

1=/ I(*) dx-

Proof. For the proof, itisenough to show that the values siy,, uniquely determine
the integrals
*i,i

Hlh= f f{x)dx (lsis K{n), n= 12,..).

*1-1n
This can be proved by induction for n. For n=1,
*i,i b
Hi,i= f f{x)dx= ff(x)dx= 1
*01 a

In the inductional step we distinguish two cases.

Core I. Xi-il+i=~*i-i,B and fer some ~—=K(ri). Then
AT,B+L H j,n.

Caga Il. Xi-ly,+1=Xj-i>n and xi+lj,+1=xJjn for some I~j~AK(n). In this
case we have the following equations:

tfi>n+i + tfi+i,,+1 — Hjy,,

Due to the elementary fact J;, +i”ii+i,,,+i this linear system uniquely determines
the values # I>ntl and # i+lj,+1, hence the theorem is proved.

Counterexample. There exists a continuous non-constantfunction /> 0 defined
on the interval [0, 1] and a partition of the interval satisfying Rényi's requirements such
that for all intervals (x;_1(n,x i),

*,n
J  xf{x)dx
gn= = 4 (xi-u.+xi> (I - - B4. «= 1»2 ..)
f f{x)dx
*1-1»
i.e. f has the same mass centers on the intervals of the system as the constantfunction
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Proof. Let the numbers xly,, be defined in the following way:

-n -1 1 _ 9 99 _
*01 * XI>1_100" X21-T@é@5 *81_1(I,X4-1- O>K ’'*61
For n>1, 07NiS5
Xin = X(q if i=0(mod 5),
N —
Xin = Xrn +17(nl( 1 — ) if i= 1(mod 5),
[td"-1 1001 |T+1rn-1 ltd-"'11
Xi, rn +T1r(*P 1 —Xrn ) if i=2(mod5),

Xi,n= X[:I)II "-1+-7ibi<th+]]],l'l_l_nr§tlJ"-£' if i= 3(mod5),
Xi,,, = Xri-| +-F%9A'ixr- 1 -Xpi 1 if 1= 4(mod 5).

We shall construct positive step functions hlth2, ... such that

1
J xhn(x)dx

o =
f h,,(x)dx

xi- 1k
for all 1*"K~n, O<i”~5K

(i) All hnare constants on the intervals (xr_1>n a8 for O«=isht".

(i) lim Ismax_i |fi,,(,—0) —A, (A + 0)| = 0.
(iv) nfim~ max \hn(x) - hm(x)| = 0.

v) h,(0) = 10, h,(l) = 11 for all nEN.
(vi) h.(x)s 1 for all nEN, x€[0, 1].

(i)—(vi) imply (using well-known results of the classical analysis) that h,, converges
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uniformly to a function /, which has the desired properties.

10 I fos ]
495 ;
i i 1
05+ o010 T %00
hi(x) = 105 it XEfg 4]
495 f9 99
105 010 ™ *E 110 10
1u if E._IOO ’“\]

10 if *g[0, *i,,+i]
110 xE(XS' 1>

i(X) W2 if *grexo1 41
G if xg(*i-i,n+i>
a if *eg(*.-i,nH,

@ it *e(Xj-i,,, i,
where

2 1
Ci=y hn(Xi-i,n+i+ty+] Kixt-i.n+i-ty,

2
c5=y K(xUn+l-0)+ } fin(xi>n+1+0),
.. 495
c2= h,Oi>nH) -, y (ci- cs).

c«= hxi,n+l)+uy (Ci-c6),
3= Mngu+)+"A(~Mn(r>-2n+1+ 0)—cX + mN-(hn(xf+2 )+1—0) —c5.

It is easy to show that all hnsatisfy (ii).
(i) follows from (ii) and

Xi, K Xi, K Xi, K Xi,K
f xh,(x)dx= f xhl+1(x)dx, f  h,{x)dx= f hi+1(x)dx
1- LK

for all LUk, which can be checked easily.
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Also, an elementary computation shows that

(1) NS Hi-gNen+i(x i,n+i  0) +1(*>n+i+o0)l —

\K(.Xi,n-0)-hn(xUn+0)\.

This clearly implies (iii). (v) is straightforward.
The following relations can be derived by means of the definitions of clt c2, c3,
Ci, cs, h,,, hn+1.

(the last formula follows from (2) and (3)).
According to the definition of hn+l,

By (1), this implies (iv), and also (vi). Being /(0) =10, and /(1)=11, / cannot be
constant. Q.E.D.
In consequence of the result by Vincze we have the following.

Corollary. Thefunction given in the counterexample is non-differentiable on an
everywhere dense set in [0, 1].

It is still an open question whether/ is non-diiferentiable almost everywhere in
[01 l]

Acknowledgement. The author wishes to thank Professor I. Vincze the constant
encouragement and valuable remarks during the preparation of this paper.
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ON COMMON TERMS OF LINEAR RECURRENCES

By
P. KISS (Eger)

Let G={G,,}”=0 be a linear recurrence defined by rational integer constants
/c(>1), GO, G1, ..., C*-1, Ax, A2, ..., Ak and by the recursion

G,= Al1G,,-1+A2G,, 2+...+AkGn k (n " fo).

We suppose that not all the G/s are zero and AkAO0. Denote the distinct roots of
the characteristic polynomial

g(x) = xk—AIxk- 1—...—Ak- Ix —Ak

by a=ocl, a2, a,, Where a; has multiplicity mt. We suppose that 1 and
la|]>|af for /=2,3, n. It is known that

G, = aa"+Pa(n)a2+...+Pg(n)a2

for nSO, where Pr(n) is a polynomial of degree at most 1; furthermore a and
the coefficients of P-(n) are algebraic numbers from the field Q(al5 a2, a,). In
the following we assume a”0.

Let H= {//,,}*30 be another linear recurrence with the characteristic polynomial

A(x) = xr—BIxr- 1—... —Br- Ix —Br
and with explicit form
Hn= bRn+F2(n)RZ+... + Fv(n)R1,

where B=Rk, 82, ..., Bv are the distinct roots of h(x). We suppose that v>1, bAO
and \R\>\Bi\ for /=2,3,

Let Px,pr, ...,psbe rational primes and denote the set of rational integers which
have only these primes as prime factors by S.

In [6], with K. Gyéry and A. Schinzel we showed that if G is Lucas or Lehmer
sequence (k =2), then

(1) GxtS

holds only for finitely many sequences G and for finitely many integers x. K. Gyéry [5]
improved this result giving explicit upper bound for x and for the constants of the
sequences which satisfy (1). J. H. Loxton and A. J. van der Poorten [8] proved that
if &2 and G is a non-degenerate sequence (i.e. neither at nor ajaj are roots of
unity for /,/=1,2,..., mand iAj) then the set of integers x satifying (1) has density
zero.
The diophantine equation
(2) Gx = wyq
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was also studied by several authors. O. Wylter [15] and J. H. E. Cohn [4] proved that
if G isthe Fibonacci sequence, vv=1or 2and q=2, then (2) has only a finite number
of integer solutions x,y. T. N. Shorey and C. L. Stewart [14] showed that if G
is a non-degenerate recurrence, y>1 and q> 1, then (2) implies the inequality
g<C, where C is an effectively computable constant in terms of w and the parameters
of the sequence G. They proved that x andy are also bounded for second order re-
currences. A. Peths [11, 12] proved similar results for second order recurrences
supposing (Al1,A2=1 and furthermore he gave an upper bound for w, too.
If G is the Fibonacci sequence, A. Peths [13] gave all the solutions of the equations
Gx=pya and Gx=p%3 where p is a prime with some restrictions.

M. Mignotte [9,10] studied the common terms of two sequences. He proved
that if a and B are multiplicatively independent, then the equation

3) Gx = Hy

has only finitely many integer solutions x, y. He showed that if (3) has infinitely many
solutions then a and R are multiplicatively dependent and the set of solutions is the
union of a finite set and a finite number of arithmetical progressions.

If the sequence H is equivalent to G then (3) has the form

(4) GX= G,.

Denote the number of solutions of (4) with fixed x and Gx—t by m(t). The maxi-
mum value of m(t) is called the multiplicity of sequence G. For non-degenerate
second order sequences K. K. Kubota [7] prowed that m(t)*4. F. Beukers [3]
improved this result by showing m (i)+m (-i)s3, with finitely many exceptions.

The purpose of this paper is to study the generalizations of relations (1), (2) and
(4) . We prove the following theorems and consequences.

Theorem 1. Let <7={G’,}*=0 be a linear recurrence with |a|= |al|>]ai| for
7=2,3,..., u. Suppose that G ~aé for i>n0, where n0is a constant integer. Let S
be the set of integers which can be written in the form +pll..ps% whereplf ...,p,,
are fixed primes and efSO (1=1,2,...,j). If GXS then x<«I5 where w is an
explicitly computable number depending only on the set S, the parameters of the se-
quence G and on nO.

Theorem 2. Let G and H be linear recurrences with conditions |a|= laj > |a;]
and A= |21>|/?J (7=2,3,..., n and /=2, 3, ...,v) and let S be the set defined in
Theorem 1. Suppose that G”aoc', Hj7ibRj and slact,?7*sRJ for i,j>n0 andfor
any integer sl1,s2€S. If

(5) SiGx = s2Hy
with  ,s2zS, then max (x,y)<n2, where n2is an explicitly computable number
depending only on the set S, the parameters of sequences G and H and on n0.

Corollary 1. Let G and S be defined as in Theorem 1. Suppose that a‘$S for
any integer i. If s\Gx=s2Gy with slrs26S and x”y, then max(x,y)-=n3, where
n3is an explicitly computable number depending only on the set S, the parameters of
sequence G and on nO.
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Corollary 2. Let G be a linear recurrence defined as in Theorem 1. Then the mul-
tiplicity of the sequence G is finite.

We note that the theorems do not hold generally without conditions. For exam-
ple, let G be a second order recurrence defined by parameters G0—1, Gt=3, Ax=5
and A2= —6. In this case a=al=3, a2=2 and Gn= 3" for néO. Thus if 3£S
and s1lGx=s2Hy has a solution then it has infinitely many solutions.

For the proofs of theorems we need a result due to A. Baker.

Lemma. Let
N = Vo+Vilogo)l+ loga>,,

where the y’s and cal's denote algebraic numbers (co™O or 1). We assume that not
all the y's are 0, and that the logarithms mean theirprincipal values. Suppose that cotand
ylhave heights at most Mt (=4) and B (=4), respectively, and that the field K ge-
nerated by the cal's and y's over the rational numbers has degree at mostd. 1 f /1O then

\A\ > (BQ)-Cdo*n'
where
Q —log Mxelog M2s... -logAfn, Q' -- fi/logM,,

and C = (16 nd)20"
If yo=0 and vyi, ...,y,, are rational integers then |/1|> B_CLLbalT.

(See A. Baker [1] or A. Baker and C. L. Stewart [2])

Theorem 1 follows from Theorem 2 since we can choose a sequence H such that
the assumptions of Theorem 2 are satisfied but 1is contained in A as a term. Thus we
have to prove only Theorem 2.

Proof of Theorem 2. Without loss of generality we may assume that
and ($!, s2= 1 if equation (5) holds for some integers x,y, and s2. In what follows
Cj,c2, ...,w,n5, ... denote positive numbers which are explicitly computable and
depend only on the set S' and the parameters of sequences G and A.

Since

(6) Gx = aax [l + P2(x) (™) +...+Pux)(~-) 1,

lafal|<1 (/=2, 3, ..., u) and |a]|>I,

@) \GX <
In a similar manner we get
(8) \H,\ < eci2y

for p>0. If (5) holds for integers Xx,y, Sx,s2 then by s\, s.fiS we have |[sx|=
.I'Ilp\‘ i SO) and |[s2| = .f[p’.k (e, SO), therefore pb\G and p*‘\Hy, by (7)
1= 1=

and (8), imply the inequalities 04dc,< ,C|*-< c3x and Ose[ < —Cry < c.
® Py q |O§JPI [ log Pi y
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for /=1,2, s. Using (6), equation (5) can be written in the form

Siaor
Safi,

where, by the inequalities |a(al|<l (/=2,3, ...,u),

(9) = (I+eD-1

2,Pi09

for x>n4. We may assume that Hy”~0 since Gx?t0 for x large enough, further
Ej~O by the conditions of the theorem. Thus by (9) we get

(10) [log bl -log [s2+log |a|+*log |a|] <og \HY\ = U\ = log I1+&™ < e~CcX
and 0<|/1| for X>u5. We shall use Baker’s result detailed in the Lemma. Now
log \sl\=e[\ogp1l+ ...+e',,\ogps and log |r2]=<?ilog/?1+ ...+<’slogps, where e”c X
and e-<cdy, thus in our case n~s+3 (since (rl,id=1), T/)<c7(t'72=4 and
/<«), Mn—Hy\= \bBy(l+£2\<ecy (for y>0), i/gc9, Q~cly and Q'~cn. By
the Lemma we have

(12) VI\ > B'ci*y > (CL3x)~ci*y > e~cr,y'oBx

since B<c1X by the condition x=y. Comparing inequalities (10) and (11), we get

X

(12 y logx

for x>n&

Ify=0 then M,,=\HO\and so Q= cle. This implies the inequality |/I|>e _ci7log*.
But this contradicts (10) if x>ne.

Equation (5) can be written in the form

s™ha* 1+ €2
(13) s2bRy I+£i
too, where
= < e ci8y
for y>w. We may suppose that y if x>ns, by (12). Using the assumption

x”y and the conditions of the theorem, (13) implies the inequality
(14) log|sj|-log|s2|+ log +xlog|a|—y log \R\

= U\ = [log[lTe2 logATHI" 2(lel|+ [e2) < e c™

for x>n9, furthermore \/1'\>0. We again use the Lemma. In this case nSj+3,
B~<c2X, Mt<c2 (&4 and /=1, 2, ..., n), dSc2 and £2logR'<c23, so

(15) T\ > (c20x) an> e cHogx.
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But (14) and (15) imply y<c2log* which contradicts (12) if x>ttw, thus Theo-
rem 2 is true with n2=max (u,, n4,n5, ..., nu).

In the proof of Theorem 2 we did not use the restriction G~H therefore Co-
rollary 1 is true since the sequences G and H=G satisfy the conditions. Corollary 2
is also true as an obvious consequence of Corollary 1
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TEMPERED GENERALIZED FUNCTIONS AND
THEIR FOURIER TRANSFORMS

By
A. SZAZ (Debrecen)

0. Introduction. This paper forms a continuation of our study of quotient multi-
pliersand generalized functions [12]—[22]. However, the reader is assumed to be well
acquainted only with the first section of [13], where the multiplier extension of ad-
missible vector modules was described to have a general algebraic framework for an
abstract theory of generalized functions.

The paper [13] needs some corrigendum. In Definition 1.1, we forgot to stress
that 6S~{0}. Definition 1.6 contains two misprints, however the reader can easily
correct them. The addition in LL(n/, &8), according to our original notation [12],
should be denoted by a boldface plus. Moreover, we meantime observed that our
construction of the multiplier extensions of admissible vector modules greatly re-
sembles that of quotient modules defined by Gabriel topologies [7].

In the present paper, we are mainly concerned with the multiplier extension
WI(if)=iOl(if, if) of the convolution algebra if of rapidly decreasing functions
and its Fourier transform. However, as some helpful tools, the multiplier extensions
ue) W&, if), e, P), @) and LU(A, 8), where & stands for either dr
or dm [3], are also used.

In Section 1, we study the non-zero divisor subsets [13] of the above admissible
convolution vector modules of test functions. For example, we show that a subset
D of if is not a divisor of zero in if if and only if the set

Z(D) = 4>HiD p€1P:p (0 = 0}

has empty interior in Rk
In Section 2, using a reasonable concept of identification of generalized functions,
we show that
5LLI(0) = 9t(0, if) ¢ W(2> if) c: G(N) ¢
and
MI(B, d) c RU{if, D) and m(£f, d¢) = SA{if, dm),

where Q (if) denotes the classical quotient algebra of if.
In Section 3, identifying Schwartz distributions as convolutors (convolution
operators), we prove that

2'cm {@,8), if'tz 9A(if, dm), 6£c9UN(™), T[chO 1(8)

such that the corresponding distributions are the only total (resp. continuous) ele-
ments of the corresponding multiplier extensions.
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In Section 4, we define the Fourier transform of LU (9) as a natural extension
of the classical Fourier transform of 9 such that it turns out to be an algebraic and

topological isomorphism of Q1(9) onto (%), where 9 denotes 9 as a function
algebra, and the multiplier extensions 401(9) and 401(9) are considered to be equip-
ped with the locally convex topologies described in [19]. After embedding some
distributions into 401(9), we can show that the Fourier transform of 401(9) also
extends a larger restriction of the distributional one, and we have (9" N 401(9))" =
9' n 401(9), and (401(9) m 401(9, omr<=S and (401(9) n 4)1(9, @W))~c=.<
where si denotes the subspace of S consisting of all analytic functions.

Finally, we indicate that using the Fourier transform of 401(9), it is also possible
to define the Fourier transforms of the multiplier extensions 400(9, @V) and 401(2, S)
(and also the Mikusinski operator field 40i(SR), where SR denotes the convolution

algebra of functions in S with supports in various right-sided orthants [10]) in a na-
tural way within the framework of our theory.

1. Test functions. The spaces 9)cz9 a & c.QM(zS of infinitely differentiable
functions from R* into C are the most important test function spaces for Schwartz
distributions [3], [23].

Under convolution

(/* g)x) = [f(x-y)g 0) dmk(y),
Rk

where dmk(y)=(2n)~K2dy, they become, as called in [13], admissible vector modules.
For instance, 9 and 9 are admissible algebras, €C and O0M are admissible 9 -
vector modules, and S is an admissible ~-vector module.
Before considering their multiplier extensions, it is suitable to study their non-
zero divisor subsets. For this, we need the Fourier transform

/(0 = [ f(y)e~itydmk(y)

which is a topological vector space isomorphism of 9 onto 9 such that (f*gY —
=fg for all f,gi9 [6]

Definition 1.1. For D c.9, define

Z(D)= N {i€R*<IK0 = 0}.

<PZD

Theorem 1.2. Let D a9. Then D is not a divisorof zero in 9 if and only if
Z(D)°=0 .

Proof. Suppose first that D is not a divisor of zero in 9. To prove that
Z(D)°= 0, assume to the contrary that there exists an open set 0 9 UczRk such
that Uaz(D). Then, since Sc¢” and 9 —9, there exists 09f£9 such that

suppfall. Thus, we have (f*(pY =fg=0, and hence f*(p —0 for all (p£D,
a contradiction.

Now suppose that Z(D)°—0 . To prove that D is not a divisor of zero in 9,
assume that f£9 such that f*(p=0 for all cpED. Then, we have fg—(f*(pY =0
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for all (pdD. Hence, since Z(D)°—0 and/ is continuous, we can infer that /= 0,
which implies /= 0.

Corollary 1.3. The admissible 2 -vector module if has no proper divisors ofzero.

Proof. If 0?+(p£2, then ¢ is a non-zero analytic function on RE[6, 7.22 Theo-
rem] which may have only isolated zeros, and thus by Theorem 1.2, (pis not a divi-
sor of zero in if.

Theorem 1.4. Let D aif. Then D is not a divisor ofzero in 0OCifand only if D
is not a divisor of zero in V.

Proof. To prove the nontrivial part, suppose that D is not a divisor of zero in
&. Let /E6>m such that f*(p —0 for all cpiD. Then, we also have (f*a)*cp~
=(f*(p)*o=0 for all cpED and od2. Hence, since f*a~(Sc for all 0£2 [3,
Proposition 4.11.7], by the assumption, we can infer that f*a=0 for all an2,
and this implies /= 0.

Theorem 1.5. Let D cy, and suppose that D is not a divisor of zero in (M.
Then Zz(D)= 0 .

Proof. Let tCR* and define the function e, on Rkby e, (x)=exp itx. Then
e,d(9M, and thus by the assumption, there exists <pEZ> suchthat et*(p?+0. Hence,
since er*(p—p(1)e,, it follows that 0(t)~O. This shows that t$Z(D).

Problems 1.6. (i) Is the converse of Theorem 1.5 also true? (Our conjecture is
that this is the case, and we think that an analogue of [6, 9.3. Theorem] can be used
to prove it) (ii) Do Da2 and Z(D)= 0 imply that D is not a divisor of
zero in Sl

2. ldentification of generalized functions. After some natural identifications, for
the duals of test function spaces we have S'a @ a &@a if''a 2'. For the
multiplier extensions of the admissible convolution vector modules of test functions
there are no such straightforward inclusions. However, we still have the following
obvious theorems.

Theorem 2.1. The mapping defined on LU (2) by F—F, where F denotes the ma-
ximal extension of F in the 2-vector module if [13, Definition 1.4], is an algebra iso-
morphism of 401(2) onto 44(2, if) which also preserves 2 functions.

Proof. This is quite obvious by Corollary 1.3. (Note that by [13, Definition 1.14],
we have 2a401(2) and 2 all(2,if).)

Definition 2.2. Let S be the family of all elements of i f which are not divisors
of zero in if, and define

Q(~) = {FCaKOSOIuflITS* 01-

Note that LI(if) consists of all elements F of LLI (1) which can be written in the form
F=F((p)/<p [13. Definition 1.19], and thus Q (if) may be viewed as the classical quo-
tient algebra of if.
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Theorem 23. The mapping defined on LLU{3), If) by F-*F, where F denotes the
maximal extension of F in If, is a vector space isomorphism of S3(0, If) into Q(If)
such that F* ®@=P*d for all F£9Ji(0, If) and ®£91(0, If). Moreover, this
mapping also preserves if functions.

Proof. This is also quite obvious by Corollary 1.3.

Theorem 2.4. Let G stand for either G or GV. Then the mapping defined on
9)1(0, 9) by F-+F, where F denotes the maximal extension of F in the if-vector module
G, is a vector space isomorphism of 9)1(0, G) into LLI(A, (9 which takes 91(0, G) into
91(if,G) such that F* d=P*®d for all HE9)1(0, G) and P£91(0, G). Moreover,
this mapping also preserves G functions.

Proof. Obvious.

Theorem 2.5. The mapping defined on Q1(if, &) by F—F, where F denotes the
maximal extension of F in the if-vector module GV, is a vector space isomorphism of
dJI(ff, &) onto 9R{if, GW) which takes 9I{if, C) onto 91(0’, GM) such that P*® =
=P*® for all Fi9R{.f, &) and $691(0°, &). Moreover, this mapping also pre-
serves Cc functions.

Proof. This is quite obvious by Theorem 1.4. (To prove that the above mapping
is onto 9R{Sf, GV, note that if F£IR{if, GW), then F{(p* )= F(<p)*ij/EGc for all
(piDF and fiif, and thus the domain DRuof FO=FC]{ifXGc) is not a divisor of
zero in GMsince DF*ifczD Po. Consequently, /-069)1(0, &) and FO—F.)

Remark 2.6. By the above theorems, we may write

9)1(0) = 91(0, If) ¢ 9k (0, If) ¢ Q(0) ¢ 9)1(0),
and
9R(0, B) ¢ WI{if, G) and 91(0, G) = %{if, G),

where G=GC or GW\ and 9)1(0, @) = 9>t(0, W) and 91{if, &) —9L{if, GW).

Example 2.7. We have 91(0, Ef)fBJI{g, |f) )
To see this, pick CM/60 such that /60. Then /£9(1(0, If), but since
{f*cp)~=fg£3>\{0}, and hence /*<p €0\0 forall 0~"<p£0, we have /(f 91(0, If).

Problems 2.8. Are the other inclusions in Remark 2.6 also proper?

Remark 2.9. The importance of the embeddings made complete in Remark 2.6
lies in that they show that it is sufficient to consider only the multiplier extensions
9>t(0), 9>1(0, GV and 9)1(0, S).

The investigation of the relationship of the above multiplier extensions needs
a general concept of identification of generalized functions, and also the solution of
Problems 1.6.

The following definition seems to be quite natural. For /=1,2, let
c0,c:<f be appropriate subspaces of S' such that under convolution 0; forms an
A-vector module. The generalized functions Ff9)I{sf;, 01 (/=1,2) are to be
identified if the domain of FxIM T2 is not a divisor of zero in both 0SLand 0 2- (Note
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that in this case we have F=FI1lTF29JI(.s/ifW2, 4"Da”), F1=F1 and F2=F2
where the bars denote the corresponding maximal extensions.)

However, we do not know whether or not this definition may lead to confusions
or contradictions. In spite of this, it seems reasonable to use the notations L ()M
M y,om, Wy)ryw,2,£), Wy,om Tl etc. in the above sense.
As an illustration, the obvious inclusion 91(2, S) c. ffI(if) M9R(if, M can
be mentioned.

3. Embedding of distributions. For embedding of 2" into 9/1(2, S), in [12] and
[21], we have proved the following theorem which has its origin in [8].

Theorem 3.1. For Ad2', let FAbe thefunction defined on 2 by FA(@)= A*(p.
Then the mapping defined on 2' by A-*Fa is a vector space isomorphism of 2" into
L (2, S) which takes 2' onto Hom3 (2, S) and S' onto Homs (2, 2) such that
FAPM=F At*FA forall Af2' and A2£S'. Moreover, this mapping also preserves
S functions.

For embedding of if" into 9SI(if, OM), we can prove here a similar theorem.

Theorem 3.2. For Adif', let FAbe thefunction defined on ST by FA((p)=A *<q
Then the mapping defined on if' by A~*Fa is a vector space isomrphism of if' into
9R(if, OM) which takes if’ onto Homy (if, QW) and Gz onto Homy (if, if) such that
FAA2=F Al* FAafor all Afiif' and A2d&”. Moreover, this mapping also preserves
&MIfunctions.

Proof. The only part which needs proof is that the above mapping takes if’
onto Homy (if, GV and Cc onto Hom~ (if, if). We shall prove only the latter asser-
tion, since the proof of the former one is similar, but simpler.

If AEOc, then by [3, Theorem 4.11.3 and Proposition 4.11.5], FA({)~=
= (A*(p)~ = 0AGIif, and hence FA((p)dif for all (pdif, which shows that
FAd Hom~ (if, if). (For another proof, one may turn to [22, Theorem 30.1].)

Now suppose that FdHomy (if, if), and define the functional A on if by
A(cp)=F((p)(0). Then Adif', since by the closed graph theorem Fis a continuons
mapping of if into if [22]. Furthermore, a similar computation as in the proof of
[12, Theorem 3.5] shows that F(cp)=A*cp= FA((p) for all (pdif- Thus, it remains
only to show that AdGte We have ®/J1 —(A*<p)~= F((pfdif for all (pdif.
Hence, choosing (pdif suchthat 0, (i)=1 if we can infer that AdS.
Thus, by [3, Proposition 4.11.5], we also have AGOM. Hence, by [3, Theorem
4.11.3], it is clear that Ad@c-

Remark 3.3. Since by [3, Proposition 4.11.7], A*(pd@c for all Adif' and
(pdif, one may replace GM by 0Cin the above theorem. However, the space 6M
seems to be more convenient for all purposes.

Remark 3.4. By Theorems 3.1 and 3.2, we may write 2'alll (2, S) and
if'cz9)\(if, ). After these embeddings, we also have S'alll (2) and Gcdiil(if).
Moreover, it is noteworthy that the corresponding distributions are the only total
(resp. continuous) elements of the corresponding multiplier extensions.

Remark 3.5. The above embeddings of distributions are also consistent with the
identification of generalized functions considered in Remark 2.9.
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Namely, if 1-~Q)' and A~fif' such that the domain b ra nen of FAIC\FA
is not a divisor of zero in S, then we have

(N1*(p—N2*(p)*h = (N1*p —N2*D)(p = (FAI(h) - E/T(ch))kcp = 0
for all (p£3> and §/d.S>F. nr,,_, and hence Al*cp—A2*q) for all (pd@, which
s . _ 1 2
implies that Jir= A2

Problems 3.6. In the sense of Remark 2.9, we may ask: Are the inclusions
9'<=@'MX (9,0mM)c& ' and c STNW 9)c ST
where if’ is now considered as a subspace of 91(if, OM), proper?

4, Fourier transforms. Though 9”=if, we still need the notation if to indicate
that if is considered as an algebra under pointwise multiplication. Since the Fourier
transform of if is an isomorphism of the convolution algebra if onto the function

algebra if, it seems quite natural to have

Definition 4.1. For Fd9)\(if), the function F defined on DFby F(0)=F((py
is called the Fourier transform of F.

Theorem 4.2. The mapping defined on 9)1(9) by F-*F is the unique algebra iso-
morphism of 9)1(if) onto 901(9) which extends the classical Fourier transform of if.

Proof. Everything stated here is clear. However, for a better understanding of
Definition 4.1, we show the uniqueness of the Fourier transform of 9)1(9). For this,
suppose that F-*F is a mapping of QL(if) into 901(9) such that /= / and (F*/)' =
—Pf for all Fd90I(9) and fd.9. If Fd90I(9), then using [13, Proposition 1.16],

we have
P(h) = F(<p)~= F(@>)'= (F*$)'=Ph=Po

and hence F(tp)—F(0) for all <pf DF. Since DFis not a divisor of zero in if, this
implies that

To show that the Fourier transform of 9R(if) also extends some larger restric-
tion of distributional one, we have to consider some tempered distributions to be

embedded in 9)1(9).

Theorem 4.3. Let Jf be thefamily of all distributions Afif' for which the set
EA, where En= {cp£9: <pAd9), is not a divisor of zero in GW\ and for AfoV, let
M Abe thefunction defined on EAby M A()= g>A Then Jfis a subspace of if' such
that @ViczJr, and the mapping defined on Jf by J1—M A is a vector space isomor-
phism of Jf into 9)1(9) which takes QM onto Hom~ (if, if) such that MfA=MfMA

for all fEGM and AdX

Proof. It is clear that M A(cp)p= <pMn(ch) for all o ipdEA. Moreover, if
(g>,f)difXif such that fo=(pM A(a) for all adEA, then we have fcr=(r((pA),
and hence f *o=(J1 *¢)*o0, ie., (/—A*p)*a=0 for all odEA. Hence, since
N*p£0m, and EAis not a divisor of zero in OV, we can infer that / —A* =0,

i.e., f=(pA=M A(p). This shows that MAd90I(9) for all AdJf.
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_If Ay, AN such that M, =M,,, then we have ¢@A,=¢A,, and hence
Ay x =A% ¢ for all o€ E=E, =E,,. Hence, since Eis not a divisor of zero in
O, using a similar argument as in Remark 3.5, we can infer that A; xp=A4,%¢ for
all €. This implies that A,=A,, ie., A,=A,. Thus, we have shown that the
mapping A-~M, is injective.

The above arguments clarify the definition of .4, and the remaining part may
now be omitted. (To prove that the mapping A—~M, takes 0, onto Homy (&, &)

use Theorem 3.2.)

REMARK 4.4. By Theorem 4.3, A" can be embedded in iUl(.S;), and after this
embedding, we may write &’ NIMMN(S) instead of A

THEOREM 4.5. The Fourier transform of IN(F) extends the distributional Fourier
transform of &' NIM(Y), where &’ is considered as a subspace of M(Y, Oy), and
moreover, we have A -

(&’ N M(2)) =" N M(S).

ProoOF. Suppose that A€’ UM(S). Then, by Remarks 3.4 and 2.9, A€’
such that D, ={p€S: Ax @S} is not a divisor of zero in @, and 4 is identified
with the element F, of M(&) defined on D, by F A((p)=Aa|e(/1. By Definition 4.1,
we have F,(0)=(A%¢)" =¢A for all p€D,. Hence, since D, is also not a divi-
sor of zero in Oy, it is clear that A€.#. Moreover, since D, is not a divisor of zero
in &, we also have F,=M;.

To prove the converse inclusion, suppose now that AL’ NM(F). Then
A€’ such that E , is not a divisor of zero in 0, and A is identified with the element
M, of M(Z). Since (F) =97, there exists A, such that A,=A. Moreover,
since (Ayg*@)  =¢pAy=0A=M,(p) for all @c(E,)” and (£,)” is also not a
divisor of zero in @, it is clear that A,€ % NIN(L).

To show that the Fourier transforms of some elements of M (&) are analytic
functions, we have to consider & to be embedded in M(F).

THEOREM 4.6. For fc&, let M, be the function defined on E,= {0 : fp€ S}
by M (¢)=fp. Then the mapping defined on & by f—~M; is a vector space isomor-

phism of & into M(F) such that M,=M;M, for all f,gcé.
PRrOOF. Simple computation. (Note that ZCE, for all f€é&.)

REMARK 4.7. By this theorem, we may consider & to be embedded in M ().
Note that this embedding is also consistent with the former ones. (Recall that .gf
was embedded in SIR(&A’) in [13, Definition 1.12], and @), was embedded in MM (&)
together with 4" in Remark 4.4.)

THEOREM 4.8. We have (M(S)NM(ZL, O))” C6.

PROOF. Let FEM(L)NM (S, Oy). Then, by Remark 2.9, FEIM(Z) such that
Dy is not a divisor of zero in 0,;. Thus, by Theorem 1.5, Z(Dg)= &, i.e., for each
teRX, there exists ¢,6Dp such that ¢,(z)#0. Define the function f on R* by
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f(t)=F((p,y Then, since P()d,="bP(th,)= <pF((p,)~, we have P(¢)=
=/ for all (pEDF. Hence, it is clear that F=/6S.

Theorem 4.9. Let stf=s/(RK be the space of all analytic functions from R4
into C. Then
(LLKY) N L3, &MY <

Proof. Let &W)- In the sense of Remark 2.9, this means that
F€aH (™) such that there exists G£9t(~, @n) such that Dfhg is not a divisor of
zero in OM. Moreover, since G£9I1(~, OM), G_1(£?) is not a divisor of zero in OM
[13. Definition 1.6]. Thus, is also not a divisor of zero in @V.
On the other hand, it is clear that F((p)=G(g>)£@ for all g>£D.

By [13, Proposition 1.16], we have F{(py —P{p)~P¢ for all (p"DF. Moreover,
since we also have FMSR{6F, €@V), Theorem 4.8 shows that F~S.

Let j6R4 Then, by Theorem 1.5, there exists <pdD such that ¢O)="0. Since
@ is continuous, there exists an open neighbourhood V of.? such that 0 for all
tEV. Thus, we have F(t)= F(gq>y (0/® (0 for all tEV. Hence, since ¢ and F(cpy
are analytic functions on R4, it is clear that F is analytic in V.

Finally, to study the continuity properties of the Fourier transform of
we have to consider some topologies on and The most natural topo-
logies for the multiplier extensions of admissible locally convex vector modules seem
to be the locally convex inductive limit topologies described in [19]. (See also [15,
Remark 3.9].) Therefore, in the following, we shall consider 931(5") and LL(£T) to
be equipped with those locally convex topologies.

Theorem 4.10. The Fourier transform of 9JI(SF) is also a topological isomor-
phism of LLU(Y) onto LL(1T).

Proof. By a well-known property of locally convex inductive limit topologies
[3, Proposition 2.12.1], it is enough to show that for any net (FV) in LLI(ET) and any
FESR(”), the conditions /'€ lim” Fvand Felim&Fv, where HTtm and lim~

are the Mikusinski-type convergences [15] in and 9/1=9/1("), respecti-
vely, are equivalent. However, this is quite obvious, since for any G£Y, we have

F(cp)=\imFv((p) in ¥ ifand only if F(d)= F(cp)~ =lim Fv(g>)~ =N T/, () in Y, and
moreover, since for any DczSf, D is not a divisor of zero in Y if and only if D is
not a divisor of zero in Y.

Remark 4.11. A similar argument as above shows that this theorem also remains
valid if we consider LLI(Y) and LU (Y) to be equipped with either the Tx-topologies
described in [15], or the Hausdorff topologies described in [20]. However, these to-
pologies seem now to be very unnatural.

For the distributional Fourier transform, we have ~ =V [6, p. 177]. To have
this identity also in the present theory, we have to define the Fourier transform of
L (Y) too. The transform V for LW (Y) or LU (Y) is considered to be defined accord-
ing to Section 2 of [16].
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Definition 4.12. For FO0.JI(¢é’), the function /defined on DFby F(0)= F(g>y
is called the Fourier transform of F.

Theorem 4.13. The mapping defined on LLI(Y) by F-*F is an algebraic and topo-
logical isomorphism of LL(.Y) onto LU(.T’) which extends the distributional Fourier
transform of 5p,M9/1(5p. Moreover, we have (/)“=/ for all Ft93i(E8)uLU(,Y).

Proof. If then a simple computation shows that Palll(88). More-
over, we have

(FF @ = PY((®Y) = (H@Y)Y = (N®)Y = MOY = H<p)

for all cptE)F, which shows that (/)*=/, ie. F=(F)~~I| where A-1 denotes
the inverse of the Fourier transform of SR(”). Hence, the properties of the Fourier

transform of M(S”) can easily be derived.

Remark 4.14. Since 8clU (¥), by considering the Fourier transform of
QBL(IT) restricted to 8, we get a Fourier transform for 8. In particular, by Theorem

4.13, we have f*<p = (fip) and hence also f(tp)tE8 for all (pttf.

Using the above Fourier transform of 8, it is also possible to define the Fourier
transforms of the multiplier extensions 931(5", &) and 9Ji(~, 8) (and also the Miku-
sinski operator field 93t(<?R), where SR is the convolution algebra of functions in 8
with supports in various right-sided orthants R\= {afR*: within the
framework of our theory. However, this may only be the subject of same forth-
coming papers.

Moreover, we also plan to show that our Fourier transforms are also compatible
with a slight modification of the one given by Ehrenpreis [2]. Note that, using [2],

we can also consider A'MNLW(LT). (For some ideas in this respect, see Theorems 4.3
and 4.6.)
For all these purposes, it seems convenient to use that, after some natural iden-

tifications, we also have 931(y)=93I(~f) and dR(.!f)=3JI(St), where St denotes
3>as a convolution algebra and St denotes § as a function algebra.
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DISTRIBUTION OF THE VALUES OF w
IN SHORT INTERVALS

By
G. J. BABU* (Tucson—Calcutta)

Introduction. Let co(m) denote the number of prime factors of m, 1~b(n)"n
be a sequence of integers and let

In [1], it is shown that

as provided b(ri)*Ttf forsome T>1 and O0<aS|. Similar results for
general additive arithmetic functions are also proved in [1]. In this connection P.
Erd6s raised the following question. How small can one let b(n) to be, so that (1) still
holds? We have the following result in this direction.

Theorem. Let 1Sa(«)”(log log n)112 be a sequence of real numbers tending to
infinity. Then (1) holds if b(n)”~na(n)(loglog'I~I/*

Notations. Let Q denote the set of all primes and for any set E of integers let

V'(E) = T77Acard iE M (" n+b (">}
We require the following lemma (for a proof see [1]).

Lemma (Lemma 1 of [1]). Let Sp(m)=1—— or ~ ~ according as p\m or not.

Let {ap} be a sequence of real numbers and let r, ks be integers. Then

F(1"apOp(M)yY s (2s+8f r | <

where ' denotes the sum over all integers m£(r, r+y] and I" denotes the sum over
all primes p<Kk.

Proof of the theorem. To avoid repetitions of arguments of [1] and [2], we give
only the main steps of the proof. Let k=k, =1 +[(h(n))Y4 and for any t=\,

* Part of this work was done while the author was visiting the Mathematical Institute of the
Hungarian Academy of Sciences, Budapest, in November 1980.
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let cot(m)= p|n%p:|'1_ For (n, n+b(n)\,

2) |a>(T)-<BK(M)| S 2 1~ 1+ ((log2n)/log/c)«
pIT,K<p~2n ayli)

and

3) 0 S loglog 2n—og log m ~ log log 2n—og logn —O

as u-*~c Since

k—<2p’\nF_|09 log n—og log k+ 0(1) <c log log log n,
by (2) and (3) it is enough to prove
(4) vn\m:cok(m )pz"i(/I\D A x (p2<k 'IID\r)? ) - #)

Now let r=/-,,= exp ((log n)(log log ri) 1/2). Clearly

© I o) )y

as n—°°. So by the lemma, it follows that for every e>0,
1/2

i"0

. _~n*
(6) V,,im.ILr(m) co*(m)+ r<%"k P \prk p) J

as n-+oo. In view of (5) and (6) it is enough to show that, as w—,

) Fn) = vqma>r(m) - 2 4 ~ *(2,4) }- OM-

To prove (7), we introduce a sequence {ip:p€Q} of independent random variables
with

n 1 ( 1) 1
P (L = 1l——=— and P = -t
\'p p) P \Lp 1 p
Put D12, 0 1t follows that
(pz‘r ) @r ip- ollows tha
(8 G, converges weakly to .

We shall now show that the distribution of does not differ much from F,,.
By a proof similar to the proof of lemma 3.1 of [2], we have for any integer /é1

2V
©) E1O - 51m) nemArt+om) - b(n)
and by lemma 3.2 of [2] we have
(10) Ne )I ~Mtlel
Since r*Jb(ri)-+0 as for any fS1, (7) follows from (8), (9), (10) above and

Theorem 11.2 of [2]. This completes the proof.
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Remarks. If c¢(m)—°°, then, except possibly for o(b(n)) integers
(n, n+b(n)\, we have \co(m)—log log m|<c(/n)(log log m)Y2. In particular,
by taking b(n)=exp {log n)(log log log «/log log n)1/2} we have

\co(m) —oglog m\ < (loglog log m)(log log m)1/2

for all but o(b(n)) many mf_(n, n+b{n)].
As in [1] and [2], by going over to the Brownian motion we obtain, as n-+°°,
that

b(n) card|/i < m ”~ n+ b(n): max (co,(m)—og log /) < x(log log m)1/2)

dy.
As a consequence, in particular, it follows that
I max (a),(m)—og log 0 1< (log log log m) (log log m)112

for all but o(b(n)) many integers (1, n+ b(nf\.

One can show that many results of [1] still hold for general arithmetic functions,
when the restriction b{n)~Tif is weakened to b(n)*Tna("\ where a(un)—0 at
an appropriate rate.

Some open problems. In this connection P. Erd6s and I. Z. RuUzsa raised the
following questions.

(@) What is the largest value of a(n) such that, if b(n)~<a(n) for all n, then (1)
fails to hold?

(b) Does (1) hold if b(n)=nV°*logn)-12

The author wishes to thank P. Erdés and I. Z. Ruzsa for many valuable dis-
cussions.
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A HIERARCHY OF REGULAR OPEN SETS OF THE
CANTOR SPACE

By
E. W. MADISON* (Milwaukee)

The present paper is a revised version of my unpublished paper entitled “The
Boolean algebra of recursively regular open sets of the Cantor space.” In this paper
we endeavor to present a few new results together with neater constructions and cor-
rections to old proofs.

The main concepts of this paper were defined in [1] where our preoccupation
was with the concept of “constructive Boolean algebraic extensions” of the atomless
Boolean algebra, say 38a. For convenience we viewed 38a as the clopen sets of the
Cantor space, say c. For the clopen sets the Boolean operations n, v and _L are
taken as the ordinary intersection, union and complement. For an extension 38 of 38a
consisting of regular open sets of (g, the operations n, v and _L are taken as inter-
section, interior of the closure of union and complement of closure.

In the present paper we study various subclasses of open sets of (Ewhose elements
can be “constructed” in a sense that is made precise using recursion theory. Just as
the concept of constructive extension of 38a depends on the computability of 38a
“constructive open sets” depend on a fixed indexing gof 38aarising from the compu-
tability of 38a. Although 38a has infinitely many indices (uncountably many, even),
any two presentations of 38, corresponding to different indices are recursively iso-
morphic.

Basic concepts

Let U be an open set of (E To express that U is regular openwe write UTT= U
(i.e., if a clopen set GQU~ then already OQU). Ofcourse, it is well-known that
any open set of (£ is some countable union of elements of 38a. With an admissible
indexing o of 3Bapresumed fixed we have a fixed enumeration (R0,
of the clopen sets of (E (where Q0= 0 and $!=(£). An open set U is r.e. open
(relative to (p) in case there is a recursive function/ such that U= I'@GDOf(n)' U is

recursive open (relative to ¢p) in case U and Ux are both r.e. open. U is recursively

regular open (relative to cp) in case there exist recursive functions/ and g such that

(/= ( (3 0S(e))xd- and CX=(U (i.e., U and Ux are suprema of recur-
neco néco

sive sequences of clopen sets).

* The author thanks G. Nelson for many stimulating conversations about the constructions
in this paper.
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Throughout this paper, when we use the terms r.e. open, recursive open, and
recursively regular open we shall omit the phrase “relative to <" with the clear un-
derstanding that a set U which is r.e. open (rel. to (p) may in fact not be r.e. open
relative to some admissible indexing ¢. However, when we give a procedure for
constructing an r.e. open set U (relative to (p) this same procedure will produce an
r.e. open set V relative to . Our approach will be to construct open sets U which
are, say, r.e. open relative to (p rather than choosing an open set U having some a
priori existence and worrying about whether or not U is r.e. open relative to some .

The following figure indicates those subclasses of regular open sets which in-
terest us. Their relative “sizes” are indicated in a tree diagram. The inclusions indi-
cated in Figure 1 are more or less obvious:

Mg @g g @Hg ®Bg (Mg O
(4 g 6)g (8 g (9 and (5)g(8).

Fig. 1
The main results of this paper determine that all inclusions except (2) g (3) are pro-
per. Some of the proper inclusions are immediate consequences of results established
in [1]. For example, Theorem 7 in [1] proved the existence of recursive regular open
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sets Ua and Ub such that (UaUUb)++ is not r.e. open (but Ua MUb is r.e. open).
By letting U=UaC\Ub, we establish that (3)c(4). By letting U=(UaU Chb)t+,
we establish that (4)c(5) and (6)c(8). For (l)c(2), choose U=Ua.

Before proving other proper inclusions, it is instructive to give a nicer proof of
Theorem 7 in [1]. In the proof of Lemma 1 below, we introduce a simpler version of
the construction given in the proof of Theorem 7 in [1]. The key to the simplicity is
that there is no need to worry about “regularity” of sets being constructed. Regularity
is obtained by using Lemma 2 (splitting lemma) below.

Lemma 1. There are disjoint r.e. open sets V and W such that V is recursive open
and not regular while W is regular and not recursive open such that

(i) Vx=W, and

(if) Vxx is recursively regular open and not r.e. open.

Lemma 2 (Splitting Lemma). Every recursive open set can be split (nontrivially)
into two disjoint sets which are both recursive open and regular.

Proof of LEMMa 2. This lemma is just Theorem 16 (iii) of [1].

Proposition 3 (Theorem 7 in [1]). There exist two sets Uaand Ubsuch that both
are recursive open and regular and (UjJ Uhxx is not r.e. open.

Proof. Use Lemma 1 to build V and W. Then use Lemma 2 to split V into Ua
and Ub.

Before beginning the crucial part of the argument (i.e., the proof of Lemma 1),
we recall the function a(<?) from [1]. Let {£J(e)}ef(2) be as in [1]. In particular,

(i) a<?) is a. recursive function,

(ii) the dm(e)*s are pairwise disjoint,

(iii) (elgooo (e)cG and (eUBmO.(.))-:G,

(iv) for any e, either Oec er (K or (k(‘Je adx(e))'c.de,

(v) Bd(e%\l00 dx(e)) (i-e., boundary of ngm dx(e)) is just a single point, say xa.

(Otherwise, we can determine an &e which denies (iv).)
N0 4mn

Fig. 2

Proof of LEMMa 1 Let j : coXco-*co be the pairing function which enumerates
the pairs in the order (0,0), (1,0), (0,1), (2,0), (1,1), (0,2), .... Atstage t=j(e, s),
we use V(,) and W (t) to denote clopen sets which will “approximate” V and W,
respectively. We shall define recursive functions a(t) and b(t) such that

Vo= tpcoy(’) ) tel<Jo flw
and
w= U"M()= U<w

ts @ te<0
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Assume that F(,-1) and IF(,_1) have already been constructed. Let t=j(e,s).
In the enumeration of <O(ri), ..., (pe(ri),... corresponding to a universal Turing
machine, compute each of (p,{0), (pe(d), ..., (pe(s) for j-f 1-steps.

Case 1. Gaie)Q U{0,, (n):n~j+1 and (pe(n)\ within i+1 steps}. Set a(t)=0
and b(t)=Bj(C)j=C)x(e)-V V -»).

Case 2. Otherwise. Define A (t), the index of the clopen set “attacked” at stage
t by A(t)=iik(6k"G«(, and (&k-V (,~1))* 0 and (Vt' "t)(A(t")?£/e)), set
a(0=~(0"d)jC:<PA()-V (,-1» and b(l)=0.

This completes the construction.

Easy arguments give rise to the following consequences:

H VC\WW=®.

Ezﬂ If CenV =0 OF ®C\w=0 then ceqa er

(3) A(t) is one-to-one on its domain.
(4) For any given e, either Ga(e)=V~ and Qa(e)%V, or Oa(e)QW or Oa(e)LLl
<~MVUtV. Moreover, if &x()QfV~ then already 0x(e)QW.

Claim (i). V=W,

Clearly, W ~V 1. Suppose that the inclusion is proper. Then there is a clopen
set @ such that 0eQFx and Qe%W. Thus, (PeMKxx= 0 ;whence GeD V =0.
Therefore <®Q k(’qe Qak) by (2). So, for some k, 0eCJGx(K/*W . Now, suppose that

Case 1 holds at stage t=j(k,s), for some sEw. Then — But
= F (<-1). Hence Gx(k)flGeQ W ; a contradiction follows.

Claim (ii). Fxx is not r.e. open.
Suppose, on the contrary, that Fxx= |J QVe(,), for some e. So, Fxx-=

:(nlg(D <.>)“l Thus, F—:(nlEJ(O< W - Thus, Gkg v - iff <p*g&é00*'(»>)" iff

ROQ U

uQnga)

Case 1. Oa()i U (9 Lets be the least such natural number such that
)

KO by regularity. It suffices to refute this equivalence.

ff,(e)£U {®Ve(n)- n~s+ 1 and (pe(n)\ in at most (j+1) steps}. By compactness, s

exists. Let t=j(e,s). The minimality of s and an easy induction imply that
Ga(e)—V(,)e"0. Hence, 0 ?Hx(e)%V~. Above equivalence is refuted by using
VXe) for Qk.

Case 2. At stage t=j(e,s), Case 1 does not hold. Suppose that 0XE)% V~.

Then, the nonempty open set (Ga(e)—V) contains a clopen set Gm. Hence there is a
number t such that A(t)=m. Hence GmDVp~ 0. This contradicts the fact that
Omi(0,(e)-r-). Thus,

Note that Fxxz>F, since F is r.e. open and Fxx is not. Hence, unlike W, V
is not regular. But F is recursive open, since F and VEW are both r.e. open.
Clearly W is regular, since “ _L” applied to any open set yields a regular open
set. But W is not recursive open, since W1-= Vxx is not r.e. open.

Moreover, Fxx is recursively regular open, since V= W11 and both V
and W are r.e. open.
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Corollary 4. There exists a recursively regular open set U such that U is not r.e.
open and U1l is r.e. open.

Proof. Choose V of Lemma 1. Let U=V#J-
We can give a slight modification of the above construction to produce a result

which is related to Corollary 4.

Theorem 5. There exists a recursively regular open set V such that neither V nor
V1 is r.e. open.

The construction. Let the sequence {Oa(e)lec<o be as in the proof of Lemmal
Now construct Wx and W2in a stepwise fashion. At stage t=j(e, s), U}0 and
will be clopen sets which “approximate” Wx and fV2, respectively. As before, we
want to define recursive functions a(t) and b(t) in such away that Wx= |J fv(f)=
re£

i£co i£co

Consider stage t=j{e,s).

Case 1. OX(/)= U {®Vjinyn=i+1 and <gs(ri)l within s+ 1 steps}, where
e=2f+l or e—2f
For e=2f+ 1 set a(J)=pJC] Qaiif)A(Gj -W i,-'DN 0»; set b(t)=Hj[0j=

= . = ?2>= -
tédJO'(O and W2= U W?>= U <V>

For e=2f, set b(t)=pj(BjQRa(f)A(C>j-Wi,-1*0)); set a(t)=/ij[Rj=
= (0«(N~ (-

Case 2. (N:nSi+l and (Es{ri)\ within j+ 1 steps}, where
e=2+1 or e=2f.

Define A (t), the index of the clopen set “attacked” at stage t, by

Aft) = * 0.

For e=2/+1, set a(i)="[0 and b{t)=0.

For e=2f, set h(f)=/~[0 MO;C<Pn(()] and a(t)=0.
This ends the construction. Intuitively, as ®a(j) arises each time we alternate back
and forth putting pieces of it into Wxand W2 until such time as it is decided that
&a(f) is to be contained in Wx(JW2. If this decision is not reached then undoubtedly

intersects both (IVi—Wj) and (fv2 —IV2).

Easy consequences of the construction are:

0) The functions a(t) and b(t) are recursive and A(t) is partial recursive.

% wilnw2=0.

(2) <P,\fVl= 0 or O0enW 2= 0 implies kl’J\e

Claim: Wi=W:2X. (Hence JVn=Wi\) Clearlyy, W "QtVi.

Suppose that the inclusion is proper. Then W icW i. Otherwise, we are done.
So fVixczWa and Also, WinrczW » and fVz2 X~(ZfVi, lest we

are done. Thus, WIDWIi~0. Let 6m*WiDW». Then dmDW1= 0,
®m~W2=:0. Hence, by (2), 0mg l|<)]\m€<(k). For some /é T, 6a(JINPTAO. Let

0d=Ra(/)nom. Now RBtQRe(/) and 0*-(U rBM»?"u)?2n0, for t. Thus at
some stage t=j(2f+\,s) or t=j(2f,s), 0dis “attacked”. A contradiction follows.
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Another consequence is:
(3) <W)In?iXJg~ni iff Also, 0Oaf)f)W1r*0 and
0«(/)0'~8~0. for all/. Moreover, since easily JCodff'fillfj.

Claim: Wi is not r.e. open. (Hence W%x is not r.e. open.) As before, suppose

W ix= nlgl(o ie, ffT = (UCD e Then, by regularity,

(*) 0*S iff 0*g Mo W
By choosing (Pk appropriately, we refute this equivalence.

Case 1. $*(/)£(ﬁ%00ﬂ>/(”>)*
Since IFf, we refute (*) under this case by choosing 6k= 0a(K).
Case 2. ﬁ(/)S(I%moAc»))-

Consider the open set S = Q*(j)—W i; $=0,,()CMV2 =Oa”r\Wi"L Whence,
SQW i\

Subcase 2a. SCAT. Then S.~AO0OWi QfVt. In fact, Oam”~W if}W 2. This
implies Oa(/)E I'EIJJO?/(")’ a contradiction.

Subcase 2b. Choose € such that OkQS and IfV In particular,
0t=0a(/)- Also O*i(Lé 0#Q)> lest h he attacked at some stages t=j(2f, s)
ntco

and t'=j(2f+\,s). A contradiction follows.

The proof is completely symmetric in W1and W2\ hence, we can show similarly
that W2 + is not r.e. open.

Referring again to Figure 1, we have as a consequence of Theorem 5 that
(7)3 (5) and (9)3 (8). Of course, by cardinality considerations, we already knew
that (9)3 (8), but the present proof avoids a cardinality argument.

The following theorem vyields the remaining proper conclusions: (4)<3 (6),
(5)c(8) and (7)c(9). Ofcourse, (7)c(9) is known by cardinality considerations.

Theorem 6. There exists an r.e. open and regular set U such that U is not recursi-
vely regular open.

We first give remarks. Let {da(}eCo> be as before. If Aczco then U:el?lAOa(e)

is regular open. Easily, if A is finite then U is clopen. Otherwise, U~—U\J {x0},
which follows from the relationship between Oe and 07e)- It suffices to show that,
if ®&gt/- then <‘<gU.

If @QU~ then either x0d(%e or xo$0e. If x0$(9e then already OeQU.
Suppose that x0E@e. Then by definition of a(e), (&@My"(b e. 1° particular,

0.u>80.. for j™~e. Hence, &C\Ux7"0. Therefore, &<=n , a contradiction.
Also, if A is a recursive subset of co then U is recursive open. This, of course,
gives us a simple way to construct recursive open and regular sets which are not
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clopen. For example, if S denotes odd integers then U= (J Oaf(el is recursive open
e€S
and regular, but not clopen.
Proof of Theorem 6. Let K be the complete set. Let U= e\BJKOa(e). Then, from

the above remarks, U is r.e. open and regular. It suffices to show that U is not recur-
sively regular open. Since £/:(,&.1a®hu))xi, we must show that there is no recursive

function g such that U41—Q Oeoo)xx. Suppose the contrary. For any edco,
n
either 0aU)»U or &a(e)= UL. Thus for some j, either |J Oh(J) or Oa(e)r
;s>

n&g(s)™ 0. Whichever happens first determines whether e£K or e£K', a contra-
diction.

Corollary 7. I f AQ w is a sei such that neither A nor A" is r.e. then U= Ll 0«
eB

is regular open and neither U nor Ux is r.e. open. Also, U is not recursively regular
open.

Proof. Assume otherwise. Then there exists recursive functions/ and g such that

MM=(UY U and aw) =LY <wxe

Thus,
(ngA<W)X= W X and (YA ())X= (Y, <W)X
i.e.,
(EEJA B.«)- = (EE(JJO»/(.))" and <ee(;JA PW)- = (egmo,w)-
Choose edco. By regularity, either 0Oa(e)g |Jco or 0,(eE K50009(*)- Then,

alternately checking
@@ = 00 Uofw U...Uofisy and oxe £ gm Ugw U...U 0go>
We determine whether or not ecA OF edA’, a contradiction.
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POSITIVE DEFINITE GENERALIZED MEASURES
ON THE DYADIC FIELD

By
K. YONEDA (Osaka)

1. Introduction. In 1974, L. A rgabright and J. G. de Lamadrid [1] defined
a generalized Fourier transform of a measure on a locally compact abelian group
and extended Bochner’s theorem on Fourier transforms of positive definite func-
tions.

In this paper, we consider a generalized Fourier transform on a special locally
compact abelian group called the dyadic field. The dyadic field was introduced by
N. J. Fine [2]. He defined the Fourier transform of an integrable function and dis-
cussed some of its properties. On the dyadic field we can define a generalized measure
called dyadic measure or quasi-measure (see [3]) and its generalized Fourier transform.
Bochner’s theorem is extended on the dyadic field.

2. Dyadic field, dyadic measure and its Walsh—Fourier transform. The dyadic
field is the set of all 0, 1 sequences, x=(...,X;, ...) such that .lim xt=0, in which

the group operation 4- is addition such that

(o X0y W) F( D, ) (e )

where z~Xj+y,- (mod 2) and the group operation e« is a product such that

ooy X, ) (eny Yy ) (o )
where zk= 2 X, y.-(mod 2).

i+j=k

Let Abe a function which maps the dyadic field onto [0, °°) such that

A(x) = xJ2".

o
Adoes not have a single valued inverse on the dyadic rationals. When x=(..., X,,,...).
it is convenient to write x=A(x) if limx,,~1 and x=A(x)~ if Hra)x,,:l; for
0 £

example (...,0,1,0, ..)=1 and (..., 0,1,1,...)=1_. When x is a dyadic ratio-
nal, x _ is called the conjugate dyadyc rational of x. It is easy to see that (I/2n- =
=1/2"-1-. Therefore it is natural to write (I/2")—= 1-". Moreover we have
{(P+ 1)/2")—= (p 4-1 )2

We introduce an order < in the dyadic field. When A(x)<A(y), we write x<y
and when x is a dyadic rational, we write x~-=x. [y, X] is the set of all z such that
xazay and (x,y) is the set of all z such that x<z-=y. Then [0, °°) is the dyadic
field and [0, 1“] is the dyadic group. Especially, for each n=0, £1, +2, ... and
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p=0 1, 1=[p/2", ((p+1)/2B-] is called a dyadic interval of rank n and 1,,(x)
is the dyadic interval of rank n which contains x.

Let m be a set function which is defined on the family of dyadic intervals, m is
called a dyadic measure or a quasi-measure on the dyadic field, if it satisfies

m{[pl2", ((p+ 1)/2")P = m([2p/2"+\ ((2p + 1)/2"+]-])+
+m([(2p+ 1)/2"+1, (2p+ 2)R™+/ ")

for each n=0, +1, £2, ... and /7=0, 1, .... If a dyadic measure m satisfies

sup J "\™([p/2n, ((/>+1)/12")“])] < »,

then m is a measure on the dyadic field. When/is an integrable function, a set func-
tion mf defined by

f f(x)dx = mf (1),
[

where dx is the Haar measure and | is a dyadic interval, is a dyadic measure. When
m (/)S 0 for each dyadic interval I, m is called a positive dyadic measure, and if

2 2 aart(/n(x,+xy) °
»=1
for arbitrary real numbers ax, a2, aN and arbitrary elements x1?x2, XN, m
is called a positive definite dyadic measure.
Two dyadic measures mland m2 are said to be identical if and only if m1(l)=
=m2(l) for each dyadic interval I.
Let n™X) be the Walsh function defined by

w,(*) = (-1)-£"

where x=(..., xt,...) and j=(...,yJt..).
N. J. Fine [2] defined the Walsh—Fourier transform of an integrable function
/ as

fix) = (;ff(y)wy(x)dy.

f(x) is a continuous function on the dyadic field. Therefore we can define a dyadic
measure mf such that

mf(l) = If f(y)dy.
We can easily prove that @ (2)-
ntf([pl2", (0 + 1)/2")-]) = 12" f  f(y)wy(p/2)dy = 12" f  wy(p/2")mf (dy).
o 0

m/ is a dyadic measure and we shall write nif=mf. When m is a dyadic measure
and/is constant on each closed interval [zh Z~+1] where is a dyadic rational, it is
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convenient to write . |
2,/00m([z;, ZH4]) = T 1(y) m(dy).

Therefore when m is a dyadic measure, we can give the Walsh—Fourier transform
of m by the following dyadic measure m:
@)

w(Ip/2”, (O + 1)2")-1) = 12"/ w,0/2") m(dy)

and generally
(27~

= 12" | wy(x)m(dy).
Any dyadic measure m has its Walsh Fourier transform m and the relation m=m
holds.

3. Positive definite dyadic mesures. Bochner’s theorem is extended for dyadic
measures as follows:

Theorem 1. M is a positive dyadic measure if and only if m is a positive definite
dyadic measure.

Proof. For any ar, aN, xIf..., xN and sufficiently large n,

2 2 aigj™(In(xt4-Xj) = 2 2 odiayl2" |/ wy(Xi+ Xj)m(dy) =
i= 1j =1 iziy=1 o

= 12" 2 2 aiajwyxhwyxfim(dy) = X2°F |2 ~iwax)) m(dy).
o 1=1y=1 o Vi=i /
If m is a positive dyadic measure, then m is a positive definite dyadic measure.

Conversely, for a sub-dyadic interval /, of [0,2""~], let h(y) be the characteristic

function of kL:JO(/CZ"+ 1)- There exist xr, ..., xNand al, ...,aN satisfying

N
i2= lfIIW,,(y) = h(y).

Therefore if m is a positive definite dyadic measure, then we get

2"- 12)'/ N ' \2
112"m(/) = 1/20/ [h(y)fm(dy) = |/2r(1)] |\/|Z:1alwx’o)' m(dy) =

= 1/2"|2:|jgI aiajof wy(xdwy(xj)m (dy) = izljgl aiaj m{In(xi+ Xj)) = 0.

Hence we have m(1)"0.
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Theorem 2. | fa positive dyadic measure m satisfies m([0, °°))< then there is
a continuous function fix) such that m=mf and
00

*) fix) = £ wy(x)m(dy).

Proof. For each *€[2N (2M)-], we have
(-
2"m(In(x)) = f  W(x)m(dy) =

N+ N+

= 2  Am{[k/2", (k+DI2N-Dwk2N(x) = 2  Am([k/2N((k+1)/2N-])wk(x/2N
fc=0 k=0

where

N1([*c/2", ((k+1)/2N~]) =
= m([2k/2N+1, ((2k+DI2N+D)-1)-m ([(2k+1)/2 N+1, ((2k+2)/2N+1)~]).

The last series is absolutely convergent by the hypothesis. Let/b e the limit function
of this series. It is continuous on each dyadic interval [2*, 2WH] for N= 0, +1, +2, ...
and evidently

m(l) = f fix) dx = mfil)

for each dyadic interval | and (*).

Corollary. | fa positive dyadic measure m satisfies m([0, and
2\Am ([k/2N Lk+1)/2")-]D|2<~>
fc=0

foreach N
0

0, £1, +2, ..., then there exists afunctionf such that f~L (fIN (2'v+1)-1])
for N= 1

, 2, ... and m=nif. Moreover we have

@)
lim f wJx)midy)—fix) ae.
"0

For a dyadic measure m, set
Axm{In{x)) = m (/n+1(x))-m (/,, (x)\/n+1(x)).

Theorem 3. m is a dyadic measure which satisfies T (/)& 0 for each dyadic inter-
val which does not contain 0, if and only if m satisfies

.2 4 aigjA*XizXjm(Inixt+Xj)) S 0

for any al t aN, xIt xN and sufficiently large n.

Acta Mathematica Academiae Scientiarum Hungaricae 40, 1982



POSITIVE DEFINITE GENERALIZED MEASURES 151
Proof. At first we have

(g+0- )
A*m(In(x)) = 1/2"*1 fO Wy(x)m (dy)~ 1/2"~ Z‘fb wy(x + (,i/2n+))m(dy) =

@2n+i>- @"+1)-

= 1/2"+16‘ wy (X)) (I—wy(1/2n+))m (dy) = 1/2"2./ wy (x)m(dy).

Therefore the following formula gives Theorem 3:

i A i +xiny = 1o A "
2 .12:1a iaj AX i Jm(ln(xl Xj)) = 12 23‘ [.2:! y(x,)) m(dy) é 0,

At last we give two examples of positive dyadic measures and their Walsh-
Fourier transforms:

(i) If f(x)=1 for x€[0,1-] and =0 for xC[l, ==, then we have mf=mf.

@ii) If m(/)=1 for a sufficiently small dyadic interval 7 satisfying /D Z " 0
and m (/)=0 for 7 satisfying 7THZ=0 where Z={ 0, 1 , then we have th—m.
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GENERALIZED SLLN UNDER WEAK
MULTIPLICATIVE DEPENDENCE RESTRICTIONS

By
M. T. LONGNECKER (College Station)

l.l_llntroduction. For random variables XIt X2, ... and constants ar, a2, put
Sn= 21 ak~k- The main result of this paper is a strong law of large numbers for {S',}

with respect to a sequence of constants {b,,}, where the dependence restrictions on
the sequence {Xj} will be of the weak multiplicative type. A rate of convergence will
be provided for the strong law. These results will broaden the theorems found in
Méricz [3].

2. Dependence restrictions and previous results. The term “weak multiplicative”
refers to any form of restriction on the product moments E{XjlXj2...Xjv} of order v.
Three different but related conditions were formulated in Longnecker and Serfling
[2]. They will be stated in this section for completeness. The first two conditions are
orthogonality related dependence restrictions.

Definition. A sequence of random variables {X;} satisfies Condition A with
respect to an even integer v, a sequence of constants {a}}, and a symmetric function g
of v—1 arguments if

(2.1a) E {Xh Xjt...XjvA =sg (h -ji,j3-b, -,L-h--dahah...ajv
forall I 4 f tc . and if
(2.1b) gO’i. -Jv-a.fc) <°°-

2 2 e 2
4=1A-1 A-1-1
Definition. A sequence of random variables {Xj} satisfies Condition B with

respect to an even integer v, a sequence of constants {a,}, and a symmetric function
g of v/2 arguments if

(2.2a) \E{X".. X"\ S g(%2i, i Fa>-m/r~]jy-i)ajieeayw

for all 1Syl<...<yv, and if

(2.2b) 2 2 — 2 801, ees.A/2-i, k) <=».
k=1j\=1 Y»/,-1¢ 1

A third dependence restriction which is related to Gaussian time series is

Definition. A sequence of random variables {Xj} satisfies Condition C with
respect to an even integer v, constants {a7}, a function f(j), and a function g of
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v/2—1 arguments if
(2.3a)

\E{Xh...Xjy| —min{/Ui-ji),fUv~jy-D}g(h~k,h~U, ... jy-jv-Dall...au,
for all 1nn<..<ly, if

(z.jb-)f af i) <o°.
and VI-L o~ it [ i j1
(2.3c) Oi,

€=i j,2=i I,2=i' J|-21~1Jg&~1"'rv/22-|-1g
A discussion of the interrelationship of the above three dependence restrictions
with other well-known dependence restrictions is contained in Longnecker and
Serfling [2].
A general maximal inequality is derived in Longnecker and Serfling [1].
It is directly applicable to the partial sum of random variables satisfying either
Condition A, Condition B, or Condition C.

Theorem 2.1. Let the sequence {Xj} satisfy, for an even integer v=»2, either
Condition A, Condition B, or Condition C, and bj=E ({X]})< °° (allj). Thenfor all
positive X W

(2.4) X~\
where Cv is a constant depending on only v.
The above inequality will be used to extend the following result of Méricz [3],

Theorem 2.2. Let v be an even integer, vs4. Let {Xj} be a system of random
variables for which

(2.5) E{X]}sK"~ 0=1,2,...)
and
(2.6) = 1 2 (E{Xh...Xjjy

Let {ak} be a sequence of numbers such that

y12

<-:(|’“I’) as n

2.7)
Then the relation
(2.8) P o =0 =1
A (log A,,)Iv(log log Arf 1+e>h
holds true for any positive e
In particular, with probability 1 we have

(2.9) *2:iA = o{nl2(logn)Iv(loglogn)(1+e)v}, as n —
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By letting the moment restriction v tend to infinity, the following strengthening
of (2.8) is obtained.

Corollary 2.1. Suppose that a system {Xfi of random variables satisfies
(2.5) and (2.6) for infinitely many even integers v. Then, under condition (2.7) the
relation

1SJ -
(2.10 P An(jog AnY =1
holds true for any positive e.

Moricz also establishes rates of convergence for the strong laws given in (2.8)
and (2.10).

Results similar to Theorem 2.2 and Corollary 2.1 will be derived in the next
section for sequences of random variables satisfying any of the conditions A, B, or C.
Moricz’ results will be extended by relaxing two of his conditions. IIZ_iIrst, the uniform

boundedness of the vth moments will be removed by requiring Z[Ziblak-~°°, where
R
bk=E{Xk}. Also, with

g (h , eeonv-i) —sup\E{XjXiHl...Xi+4+...+jv-i}|>
it is seen that

[ 1,-Jv-2,KN )
2,2, ™2 g Ui-Jv-2 ™ \Bwr
Thus, the generalized strong law for sequences satisfying Condition A will be appli-
cable to a larger class of sequences (A',} then covered by Mdricz’ result.

3. Generalized strong law. The main result of this paper is the following general-
ized strong law for sequences of random variables satisfying one of the three types
of weak multiplicative dependence restrictions given in Section 2. A rate of con-
vergence for the strong law will be provided which is of the same order as obtained
in Méricz [3]. The method of proofin the following results are similar in nature to
the proofs in Moéricz [3].

Theorem 3.1. Let the sequence {TJ satisfy, for an even integer v>2, either
Condition A, Condition B, or Condition C, and bk=E{XKk}<°° (all k). Let {ak} be a
sequence of constants such that
(3.1)

Then the relation

(3.2 P =1
~n(l°g “n)IMI°g log A,,) A+l

holds true for any e>0.
Proof. Let M(ri)= max ISH and

B(n) = ~(log™)IMloglogh" @)V (n= 1,2 ..).
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Then by Theorem 2.1,

(3:3) PIM(N) =EAMT = (5ga1y(loglogay+ ("

Since as u there exists a non-decreasing sequence of positive
integers {nK} such that

(3.4) <-i =ek< < (fc=1,2...... = 0).

Expressions (3.3) and (3.4) yield
Cv

(3.5) twPIM{nk ~ BWKT =S A (log log Tht) 1+ ~
“ CvA k(\ogk?+* <0°’

(where 1 (K is the summation over distinct nks).
Therefore, the Borel—Cantelli Lemma implies that the inequality

(3.6) M(nk < B(nk)

holds with probability one for sufficiently large k.
By similar arguments it is seen that

(3.7) M(nk-1)2B (nk-1)

holds with probability one for sufficiently large k.
Suppose n,,SK<nH1 then B(n)"B(nk and |Sh|sM, k+L 1. Thus with pro-
bability one, for sufficiently large

o™ g3 | 4/nfctl_1 _ B(nk+1—1)
Nt B{n) - B(kK - B(nk =
But, B(nk+l—I)/B(nk is bounded by Dei for sufficiently large k. Thus,
(3.9) m | = 0(AnlogAir\loglogAir~] = 1,

for all e>0. Since e is an arbitrary positive number, (3.9) implies (3.2).

The following stronger result is obtained by restricting the sequence of random
variables to those satisfying the dependence restrictions for an infinite number of
even integers.

Corollary 3.1. Let the sequence of random variables {T*} satisfy the conditions
of Theorem 3.1 for an infinite number of even integers v. Then, for all >0,

(3.10) P[\SK = o(An(logA%'J] = L

The next theorem will provide the rate of convergence in the strong law of
Theorem 3.1.

Theorem 3.2. Let {Xk} be a sequence ofrandom variables which satisfies the con-
ditions of Theorem 3.1 for an even integer v>2. Let {af be a sequence of constants
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satisfying
" 12
(3.11) in = EIQaIbI} °°as n-m°
and
(3.12) a\bl < (1-e~")Al (for ail nS n0.
Then, for any choice of a and B satisfying
(3.13) 0< < av—l,
(3.14) Ne. 1

P sup.
»fi AR(logA*y-i I**'p Ak(logAlY

Proof. Conditions (3.11) and (3.12) imply the existence of a strictly increasing
sequence of positive integers {n7} such that

(3.15) Al pi+1 (for all j suffciently large).
For each n define the integer y0=yO(n) by
(3.16) n tk njo+1.

By Theorem 2.1 and (3.15),

ISk
P USW ak(logana ,J_J-=2j0P I max dk(log At)* .]_

N 2 CvAn(log AB)-"AIJHL~ CMX\ogAiy-*\
J—0
where Cvais suitably defined constant involving just v and a. Hence

Ne
A AKlog AK?-* P Ak(logARx 'J _© yNQUg_fAST-'

Thus, since av—% —1>0, we have the above series converges.
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MINIMAX THEOREMS FOR UPPER
SEMICONTINUOUS FUNCTIONS

By
V. KOMORNIK (Budapest)

1. The various generalizations of von Neumann’s classical minimax theorem
[1] constitute an important chapter of the modern analysis. In the economic applica-
tions it might have some interest to prove minimax theorems for vector-valued
functions, e.g. for functions mapping into R", endowed with the lexicographic order.
As the first theorem of this paper shows, without any further conditions Neumann'’s
result does not remain true for such functions.

In a recent publication [5], C.-W. Ha generalized Neumann’s minimax theorem
(see also in [3]) for upper semicontinuous functions. Our second theorem establishes
a slightly more general form of this result, which contains also Theorem 1 in [4].
Our proofis based on the considerations, developed by I. Jod in [2] and [3]; thus we
can eliminate the application of Brouwer’s fixed point theorem, essentially used in
[5]. Theorem 2 is formulated for functions mapping into a linearly ordered space.
Thus we obtain a positive answer for the minimax problem ofvector-valued functions.

The third theorem of this paper asserts that in case if one of the underlying spaces
is a convex subset of some topological vector space, the continuity conditions of
Theorem 2 can be weakened.

The author is grateful to I. Jo6 for proposing the minimax problem of vector-
valued functions.

2. Theorem 1 There exists a continuous function f: [0, 1]X[—1, 1]—
—1, 11X[—1,1] such that
(1*) the subfunctionsf(-,y) are concave for any fixed y£[—1, 1],
(ly) the subfunctionsf(x, ¢) are convex for any fixed x€[0,1];
nevertheless

) max rr))in/ (x,y) = (0,—1) » (0,0) = m)jn m)z(:le(x, y)
([—1,11X[—1, 1] is equipped with the lexicographic order).
Proof. Consider the continuous function
/2 [0, I X[—1, 1] - [-1, 1IX[—1,1], f(x,y) = (xy, -y).
It is easy to see that

From these relations we obtain (2) at once.
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To prove (1*) and (P), we have to show that
[(**i+ (1~0x2,y) ™ tf(xuy)+ (I-t)f(x2,y)
for any xI5x2g[0, 1], y€[—1,1], *€[0,1], and

f(x, tyi+ (- t)yd ™ tf{x, yj+ (1- t)f{x, ya

for any xr£[0, 1], yi,y 2€[—1, 1], /€[0, 1]. But these conditions are obviously satis-
fied; moreover, we have not only inequality but also equality in both cases:

(iXiy-KI-OAT, ~y) = t(*i¥, -y)+(X-i)(xty, -y)
and
(xtyl+ x (i-t)y2, ~tyl-(.1-t)yd = t(xy!, -y i) + (I-*)(xy2, -T 9
The theorem is proved.

3. We recall that by an interval space (see [4]) we mean a topological space X
endowed with a mapping [e, ¢]: X X X -*{connected subsets of X} such that x1, x2€
£[xi, xq=[x2, X]] for all X!,x%X. A subset K of an interval space is convex if
for every xr,x 26K we have [x1?xJca'. Any convex subset of a real topological
vector space is an interval space with its natural interval structure.

A linearly ordered space (see [6]) is called complete if every subset has a least
upper bound. Such spaces are the extended real line R, the extended euclidean n-space
R or any compact (in the euclidean topology) subset of R" with respect to the lexi-
cographic order.

Let X be an interval space and Z a complete linearly ordered space. A function
/: X—Z is called quasiconvex (resp. quasiconcave) if the sets

{x€X: f(x) S z} (resp. {xEX: f{x) & z})
are convex for all zEZ. Furthermore,/is called upper semicontinuous if all the sets

{x€X: f{x) S 2), z£Z,
are closed in X.
If X iscompactand / : X—Z is upper semicontinuous, then there exists an x0€X
suchthat /(x O)ZSXlé;g)(f(X)' Given a family (/)ie/ of upper semicontinuous functions

from X into Z, the map inf/ is also upper semicontinuous. These statements are
proved in the same way as in case Z=R.

Theorem 2. Let X be a compact interval space, Y an arbitrary interval space, Z
a complete linearly ordered space and f : X XY -*-Z an upper semicontinuous function
such that

(3R the subfunctions/(-,y) are quasiconcave on X for any fixed y€Y,

(3y) the subfunctions f(x, ¢) are quasiconvex on Y for anyfixed Xx£X.
Then

(4) max inff (x, y) —infmax/ (x, y).

Proof. The expressions in (4) make sense by the two statements mentioned just
before this theorem. Being the relation mxaxinf/(x,y)sinfmxax/(x,y) obvious,
y y
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it is enough to show that the family of sets
{Uy) = {xeX:f(x, y) & infmax/(x, y)}:>»€l}

has a non-empty intersection.
For any y£Y, the set K(y) is convex by (3X and non-empty by the definition of
igfm*ax/(x,y):z*. Moreover, K(y) is compact because X is compact and /is

upper semicontinuous. )
It follows from (3y) that for any y£y2£Y and yd[yi,yq, K(y)czK(y)OK (y2.
Finally, if lim xf=x, limyt—y and x£K{y{ for all /£/, then x£K(y). Indeed,

we have f{xt,y~z* for all ifj and M1 (xby;=(X,y). Hence, by the upper

semicontinuity of/, f(x,y)~z*, ie XxEK(y).

On the basis of these properties, our theorem follows from the fixed point theo-
rem of I. Jo6 [2], which can be proved by simple tools (the present formulation is due
to L. L. Stacho [4]):

Let X, Y be interval spaces and K( *) a mapping of Y into the family of compact
convex subsets of X, such that

(i) K{y)~0 for all y£Y,
(ii) K"¢cK~ry~*nYysb) whenever j€[ji,yd and y*"y&Y,
(iii) xEK(y) whenever ~=limy;, x=lim X; and xifK(yi) for all /€/.

Then we have

M K(y)*o0.
yer (y)

4, Theorem 3. Let X be a compact interval space, Y a convex subset ofsome real
topological vector space, Z a complete linearly ordered space and f: XXY-*Z a
function, having the properties

(5*) the subfunctions f(-,y) are quasiconcave on X and upper semicontinuous on
X for all fixed y£Y,

(5/ the subfunctions/(x, ) are quasiconvex on Y and upper semicontinuous on
any interval of Y for all fixed Xx£X.

Then
max inff(x,y) = infmax/ (x,y).

Remark. As Theorem 2 in [4] shows, this assertion is true if we require in (5y)
lower semicontinuity instead of upper semicontinuity.

Proof. It suffices again to prove that the family of sets

JS"={K(y) = {x€X:f(x, y) a infmaxf(x, y)}:yEY}

has a non-empty intersection. Being the elements of SF compact (because of (5%)
and the compactness of X), it suffices to show that S' has the finite intersection pro-
perty. The definition of infmaxf(x,y)=z* ensures that K(y)~ 0 for all yfY.

n
Assume now that TI1 K(¥g”™ 0 for every choice of yl 9 yrEY9 but
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ntl
M Ky* =0 for some y*, ..., yt+leY. To complete the proof, we show that
i=

A+ 1

this is impossible. Set K*(y) = M K(y*)C\K(y) for all y£Y, then
(=3

(6) K*(yMrk*(yd= 0.

It follows from the inductive hypothesis and (5*) that

7) K*(y) is non-empty, convex and compact for all y€T.

(5y) implies that

(8) K*(y) ¢ A*(yDUA'*(~2) whenever yx,y2Y and vye[yxya
Furthermore,

9) either K*(y)cK*(yt) or K*(y) ¢ K*(y*) for any y€[yi,yft

Indeed, if there were points x15 x2 such that xtdK *(y)C\K*(yf) (*=1,2) for some
y€[y*, yt], then — using (6), (7) and (8) — the connected set [xx, xZ could be repre-
sented as the union of two closed, non-empty and disjoint subsets:

il;Jl[xi,XZ]n’\O)nx*(yf),

which is impossible.
For brevity, we write henceforth [yx,y2=(y2,yi] instead of [M, ¥rI'xb'r}-
It follows from (6)—(9) that the sets

{?€b|, )AK*(Y)CZ(*(W} i: 1,2

are disjoint convex sets and their union is [yt,yt]- Therefore there exists a point
yoe[yt,yt] such that

(20) K*(y)cK*(yt) for all yplr.¥Yo), >= 1,2.

Suppose

(11) K*(yQ ¢ K*(y*)

(the case K*(y0QcK*(y%) is similar). Then M K*(y)7£0. Indeed, being
yibi.yt])

the sets K*(y) compact, it is enough to show that for any yxe (y0,y4,y2e (ya,yt] m
K*(yXc:K*(y2. But this is true: the application of (8), (11), (10) and (6) gives

KAyi) ¢ (K*(yQuK*(¥2))NK=*(y$) ¢ (K*(yt)UK*(¥2)MK*(yt) =
= (K*bl) n k* (yt)) n (K*(¥)MNK= (y2)) = 0 UK*(yd = K*{y2.

Choosing an arbitrary x06 [1 K=*(y), we have by definition f(x0,y)~z* for
yy2.yc)
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all yd[yt,yo)\ and taking the limit y-*y0, we obtain by (5y)
(12) f(x0,y0 Lz

On the other handi x0dK*(y%), (6) and (11) imply x0"K*(y0) i.e. f(x0,yQ<z*,
contradicting (12). This contradiction proves the theorem.
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[T-NILPOTENCE and factor groups of
Nsubgroups

By
K. CORRADI and P. HERMANN (Budapest)

Let G be a finite group and P a Sylow p-subgroup of G. Our aim is to get state-
ments of the following type: “If P belongs to a certain class of finite p-groups and
Na(P) is p-nilpotent then so is G itself.”

If P is chosen to be abelian we have the classical result of Burnside. The asser-
tion is true also for regular P as a corollary to Wielandt’s theorem (see [1]). At last
we mention the case when P is of maximal class and it is not isomorphic to Zp2Zp
(the wreath product of two cyclic groups of order p). The fact, that for odd p it pre-
sents a true statement easily follows from any of the results in [6].

One can see that in all cases listed above no factor group of P is isomorphic to
Zp2 Zp (as for the last case consult [4], p. 372).

Example. For any prime p let g be a prime dividing (pp—)/(p—1) and V=
= {vx\ctdF} an elementary abelian group of order pp indexed by the elements of
F=GF(pp such that vx-vB=vxH3 (a, BEF). For a fixed element y of multiplicative
order q in F we denote by g that automorphism of V for which ve=vxy holds. We
may define an other automorphism Aof V by vx= vxp. Let G be the semidirect pro-
duct of V and (g, h) then h~Jh=gp, (V, h)=NO0((V, A)) is a Sylowp-subgroup of G.
G is not p-nilpotent, as (g) is its nonnormal Sylow ~-subgroup. Denoting by
{a, ap, a2 ..., ap" = {als a2, ..., ap} a normal basis in F, {V,A)= X ((vX))(h)
is isomorphic to Zp2Zp. 1- isp

Lemma. Let P be the semidirect product of an elementary abelian p-group V by
a cyclic p-group (A). Then either the class of P is at most p—1 or P/N=Zp2Zp
for a suitable normal subgroup N.
Proof. According to the Jordan-form of b, v= X Vi with Fj= X (aj,f
and imimk Isjsn,
T if J < nt
braj'ib = |aj..l. aj+i,i> b
laj.i, if j ~ Hi-
The class of P is max {n(|lwllk}, as all the Ws are (A)-invariant and abelian.
Assume that n=n”~p. Let N=(ap+1l, ..., an)XV2X...XVKkbp) then P/N~
—Zp 2 Zp.
Definition. Let K*H”~G. K is called strongly closed in H with respect to G,
if for any element g£G, KeBMH"K.

Theorem. Let G be afinite group, p a prime, PdSylp(G). Suppose P contains a
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subgroup T, strongly closed in P with respect to G and T does not possess any factor
group isomorphic to Zp2Zp. If NG(T) is p-nilpotent and
(1) p>2, or
(2) p—2 and either G is 2-solvable (i.e. solvable) or G does not involve S4 (the
symmetric group on 4 letters);
then G is p-nilpotent.

Remark. Taking the special case T=P, for p>2 the theorem is of the desired
type outlined in the introduction, and it generalizes (for odd primes) all the statements
listed there. We will deal with some applications of this theorem in a forthcoming
paper.

Proof. Suppose the theorem were false, and let G be a minimal counterexample.
All the conditions remain valid in G1=G/0P,(G). In fact, for any element g£G
there exists an element h in OP, (G) such that TeIMP «0P, (G)—THAITPH: (Teh' 1MP f=

hence T- 0P, (G)/0P, (G) is strongly closed in P-0p, (G)/OP, (G) with respect to
G1 Clearly NGI(T-0p, (G)/0Op, (G))=Ng{T-0p, (G))/0p, (G)=Ng(T) 0P, (G)/OP, (G)
is p-nilpotent, thus OP,(G)=1 by the minimality of G. Using the theorems of
Thompson [3] and that of Grauberman [5] we can deduce that Op(G)> 1. Let R be
a minimal normal p-subgroup of G. All the conditions of the theorem remain valid
in G/R, thus G/R is p-nilpotent, hence R"<P(G) and R is the unique minimal nor-
mal p-subgroup. Let M be a maximal subgroup in G with R*8M then G=R-M
and Rf]M=I, as R is (elementary) abelian. P=PC\G—PC\RM=R(PC\M) —
=R-Px where Px=PC\M is a Sylowp-subgroup of M and M=G/R is p-nil-
potent.

Let K=Op,(M) and 1XQ(LSy\q(K). Suppose that QXK. We may assume by
M=K-NM(Q) that P1bNm(Q), so Px-Q™M and PQ=R-PX-Q"G yields
P~ N g(Q). Repeating this for all primes dividing the order fo K we should get
PN g(K) and so K*0G, acontradiction to 0OP,(G)= 1; thus Q—K. Let R0<BR>
QO be a characteristic subgroup of B then Q0-R<iG by QO0-R/R char QR/R<i
oG /tf, so P QO0=Pi-R Qo”™G, PSNGQO, 0e=0p, (G)=I, so 6 is elementary
abelian.

Let L=Cg(R) and B~LCIB then QM. As R”~Ca(Qx), 6in0,(G)=I,
so L is a p-group. Suppose that and RsC G(LC\M) gives
LCIM-aG, hence LC\M=1 by {LC\M)C\R=\ and the uniqueness of R. Thus
Ca(R)=L=Lr)P=Lr)R-P1=R(LnP})=R(LnM)=R. As Z(P)~Ca(R)=R,
for any gfM OP(G)=0p(G)9sC e(Z (P)e), so 0p(G)"C(Z(P)<>\gf_G))=CGR)=R
It simply implies that CGR)=1R.

M<?, thus TNA>1. If f(EG, then (TAA)JETAIA=(TATANOA T NA,
hence m/?-=aG, and so T”~R by the minimality of R. T=TC]P=Tf]R- Px=
R(TC)Pi)>R by the conditions, so TmQ=R((TC\P1Q) is not p-nilpotent, conse-
quently TQ—G by the minimality of G, thus T=P.

R is an irreducible M-module, so by Clifford’s theorem there is a decomposition
R=R1XR2X...XR, with Q~NG(R,), R$=R1p for all i and yEPx, and for any
I Rtisthe direct product of minimal (9-invariant subgroups which are R-isomorphic;
therefore O/CQ(R,) is cyclic (i=1, 2,...,t). Suppose t>I|. Let S be maximal
among those normal subgroups of P with a corresponding_factor group of the type

P —U-Px such that U— X ’\|> Gf= Ui for any bEPIr where the action of
1=Si
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Pi is nontrivial and transitive on the index-set and C/IMT = 1. Assume thatJi/,1 >p
for some n Let 1 .. *js€EBI(Z(P)Di7) then X(y;)<iP and P /™ j)
remains of the same type, thus |C/i|= ...=\Us\—p. Clearly N={ydP I\Uy—Ui

(i—1,2, ...,s)}=Cpl(U)<iP and produces a factor group of the same type, so
N=1 Let 1Xzd QL(Z(P1) thenz induces a fixpoint-free permutation on the index-
set, so it may be assumed that U=V 1X...XVe with Vl=|s)_(_f NO-Dp+J and
jifp
zdN(Vi) for all i. Obviously F;(z)sizpPZzZp\ if e=1, then P1=C H((z» = <2)
and P~ZpZZp, a contradiction, thus e>1. Denoting by W{the derived group of
F.(z), \WVt: W\=p and l’)‘(LLbA<3P' Its factor group is of the same type, too. We
get by this contradiction 1=1, hence Q= QICq(R)—QICq(Ri) is cyclic. Thus
P1=M/Q=Ng(Q)/Cg(Q) is also cyclic, and P satisfies the conditions of the lemma.
It follows immediately that pX1Xqg, so we can conclude by the Hart1—Higman
Theorem B [2] that the class of P is at least p, which yields the final contradiction by

our lemma.
References

[1] H. Wielandt, p-Sylowgruppen und p-Faktorgruppen, J. Math., 182 (1940), 180— 193.

[2] P. Hall and G. Higman, On the p-length of p-soluble groups and reduction theorems for Burn-
side’s problem, Proc. London, Math. Soc., 6 (1956), 1—40.

[3] J. G. Thompson, Normal ~-complements for finite groups, J. Algebra, 1 (1964), 43—46.

[4] B. Huppert, Endliche Gruppen I. Springer (1967).

[5] G. Glauberman, Weakly closed elements of Sylow subgroups, Math. Z., 107 (1968), 1—20.

[6] K. Corradi and P. Csérgd, A normal ~-complement theorem (to appear).

(Received May 20, 1981)

DEPARTMENT OF NUMERICAL METHODS AND
COMPUTER SCIENCE OF THE L. EOTVOS UNIVERSITY
BUDAPEST, MUZEUM KRT. 6—8.

H-1088

AND
DEPARTMENT OF ALGEBRA AND _
NUMBER THEQRY OF THE L. EOTVOS UNIVERSITY

BUDAPEST, MUZEUM KRT. 6—S8.
H-1088

Acta Matheviatica Academiae Scientiarum Hungaricae 40, 1982






Acta Math. Acad. Sei. Hungar.
40 (1—2), (1982), 169— 178.

SECTIONWISE PROPERTIES AND MEASURABILITY
OF FUNCTIONS OF TWO VARIABLES

By
M. LACZKOVICH AND GY. PETRUSKA (Budapest)

1. Let S'" and 'S be function classes on [0,1]. We denote by S'YJS the class of
functions / defined on Q=[0,1]X[0, 1] with the property and P~S" for
every Xx,y£[0, 1], thatis, all the horizontal sections p(x)=f(x,y) belong to S* and
all the vertical sections fx(y)=f(x,y) belong to <}

In this paper first we summarize the measurability properties of S'Y.'S where S'
and  run through the following classes defined on [0,1]:

C —CJ0, 1 = {/;/ is continuous),

si = {/;/ is approximately continuous),

bxA — {/; |/| =1 and/ is a derivative),

A = {/;/is a derivative),

3>SSX= {/;/is Darboux Baire 1),

38 the a’th class of Baire, a=1,2, ....

We also use the notation 38, for the Baire classes of functions defined on Q. JI
denotes the class of Lebesgue measurable functions on Q.
The following chart makes it easy to look through the measurability results.*

C sé bxA A 928 3B 22
C 3B 3B/X 3 N2 N N

si np g
bxA rp ry o g
A Jt J1 Jl *
938x * * *
% .
382 *

* indicates that the corresponding classes S'YJS contain non-measurable
functions.

The reader should realize that our classes are listed in increasing order apart
from the independent classes si and bxA. It is obvious that a measurability property
of PYV also holds for whenever S~™'aS', D'aH.

The known results:
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(i) CXCcéa?! and, ingeneral, C X", cJI+1 is a piece of classic due to Lebes-
gue ([7], 827, V. Theoreme 2, p. 285).

(i) CXb1Acd#1 must be known. We could not find a reference and hence a
simple proof is provided as follows. Let fACXb~A and put

F(x,y) = g f(x, dt  ((*,j)€ER).

It is immediate by Lebesque’s convergence theorem that the sections Fy are conti-
nuous. On the other hand, the sections Fx are uniformly Lipschitz 1 functions and
these imply the continuity of F on Q. Hence

[(*,Y) = limn y+7~-F{x,y)l
is Baire 1 on Q. )
(iii) If fACXsi, then Farctg/ECXi>id and hence /67?,. (We used

here the fact that bounded approximately continuous functions are derivatives, [1]
p. 21)

(iv) CXMc CXMiCCX”™iCJ2 and Cx”™ac f3

follows by (i) and hence the assertions in the first row are verified.

(v) j/ X [/c f2 was proved by R. O. Davies [2]. siXiS™4S”™ is proved in [9]
and this implies everything in the second row apart from*,

(vi) If 2*»=Ki then there exists a non-measurable function in six 3. A con-
struction can be found in [3], Theorem 11 and [4], Théoréme 3. The authors of these
papers claim only the Lebesgue measurability of the sections f x, but their construc-
tions actually give Baire 2 functions. We do not know whether the continuum hypo-
thesis is necessary for siXo$ <tsH.

(vii) bIAXxblA(z&2is due to Z. Grande ([6], Théoréme 3). The stronger asser-
tion hjdXa?iC J2 is contained in [9].

(viii) All the stars in the last column follow from (vi). In fact, if /€ (i/ X J 2 ~sii

2
then Farctg/6(hidXé?3~Ji<z....c.{f32X2[l")—Jt. All these relations rely upon

2*0=8,.

(ix) Axid~™aJi was proved by M. Laczkovich in [8]. We do not know whether
or not stronger measurability properties (e.g. AxAcz&4 hold in the fourth row.

X) 2&IXE&HAL(EN is a theorem of J. S. Lipinski [10]. This implies all the
remaining stars in the chart. We remark that the first result in this topic is a theorem
of Sierpinski stating J1X cEJi ([11], p. 147). It is remarkable that Lipinski’s
counterexample is sectionwise approximately continuous with at most one excep-
tional point for each section. The sharp contrast between this fact and rfX j/cJ2
shows that the two dimensional measurability very delicately depends on those of the
sections.

(xi) As we mentioned above, it is not known whether in the fourth row we have
sharp results. On the other hand all the positive results in the first three rows are
sharp. séXsa<t&\ was proved by D avies ([2], Theorem 2). He constructed a bound-
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ed function, thus he also proved n/xbkA and bXAXbzxA ct~t. Hence the
second and the third row cannot be improved.
(xii) CXANiCt~Ni was shown by Z. G rande ([5], Théoréme 3). The only gap

remained to fill up is to show CXA c£3%1. In the next section of our paper we are
going to prove this relation.

2. Our result is stated in the following

Theorem. There exists afunction f(x, y) defined on the unit square Q such that
the section f y is continuous for every j€[0, 1], the section fx is a derivativefor every
x€[0, 1] andf does not belong to thefirst class of Baire.

Proof. We represent out function/ as a sum f —g+h where g and h satisfy the
following properties.

(1) e gy is continuous for every y€[0, 1];

(2) g the function

if y pix
if y=x
is a derivative for every x£[0, 1];
®). {1 if x=sk (c=12 .),
0 otherwise;
where is a suitable sequence everywhere dense in [0, 1];

(1)n hy is continuous for every y£[0, 1];
(2)h If x€[0, ]—{-5*}=1L then the section hxis a derivative. Furthermore, the

function
MM3(y) if y~sk
I 1 if y=sk
is a derivative for every k=1,2, ...;
(3)n h(x, x) = 0 for every x€[0,1].
: . . aef . :
Having these properties above, the function / = g+h obviously has the required
continuous and derivative sections, respectively. Since
if x=sk (fc=1,2,..),
otherwise

and {i*}r=i is everywhere dense in [0, 1],/ cannot be a Baire 1 function.
Let the rational numbers of (0,1) be enumerated in a sequence {riii=ie Let
sl=rl1,51=min(j1, 1—Yj) and let P1 be a nowhere dense perfect set in (Tj—&?

ij +4j) such that the points and Jix— are all density points of Pr for every

Suppose the points .g, ..., ¥ ! and the nowhere dense perfect sets
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Pi, ..., Pk- 1 have been defined such that si*Pi (i=1,2,..., k—\). Now we choose
a point

skm 1) - i‘!l
such that and put

Sk = dist (s, *U {0,1}).

Let Pk be a nowhere dense perfect subset of (sk—Sk, y+<5*) such that the points sk
and are density points of Pk. Thus we have defined the sequences
K}r=i and {A}I=1 by induction.
Lemma 1. Let Pc(0,1) be measurable, a£P be a density point of P and let
O o0jSeSI| be given. Then there exists afunction g defined on Q such that
(i) 0==8gsi 1;
{1 if x =4,
0 otherwise;
(iii) g(x,y)=0 if x=a, y™a or |ic—a|™e or \y—a\*e or y$P;

(iv) gx is approximately continuous for every x€[0, 1], xy~a:
(v) gy is continuous for every y€[0, 1];

r
(vi) f gxdy S rj\x—a\ for every xe[0, 1]
0

Proof. Consider the set

D ={0,Y), \x-a\ ~ ¢ \y-a\ ra [x-e]|}.

Fig. 1
Let
if  (x,y)iD,
f (xy)=(aa),

X(x,y) =
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Then 0~x=1, Xis continuous except in (a, a) and y(x, a) is continuous in [0,1].
Applying alemma of Zahorski ([12], Lemme 12, p. 29, or [1], p. 28) it is easy to find
an approximately continuous function p(y) defined on [0, 1] such that O~p~lI,

p{a)=1 and p(y)=0 for y<iP. We put g(x,y)défx(x,y)p(y). The easy verifica-
tion of (i)—(vi) is left to the reader.

Apply Lemma 1with P=Pk, a=sk, K P:T(r an<* let At and gk denote

co

the corresponding domain and function (k= 1,2, ...). We put g = *2—i gk. Obser-

ve that, for every y£[0,1], gk=0 apart from at most one exceptional k and
hence the definition of g makes sense. We have to verify (1)9, (I)gand (3)g. (I)gand
(3)g are obvious from the definition. In order to prove (2)g first we observe

(4) OSgS 1 and that

(5) gx is approximately continuous everywhere except at the point y=x, for
every x€[0, 1].

Indeed, if y”~x thatis the point (x,y) is off the diagonal then, there is a
neighbourhood of (X, y) which meets only a finite number of the rectangles

and hence, by Lemma 1 (iii) and (iv), gx is approximately continuous at y. Let
x£[0, 1] be fixed and put

G(y)= T g(x, dt (y€[0, 1))
By (4) and (5), we have G'{y) —gx(y) for every y ~ x. It is enough to prove

G(y) _
6) I|my . =0

Suppose first x€[0, I]—{ =L and let Abe fixed. Choose $6s0 small that \y—x|<<5
implies ({x}x [x,y])n~U DK = o . Observe that ({x} x [x,y]) MDk” o implies
[x—Kks2|x—y| {k=1,2,..). Hence, by Beppo Levi’s theorem, we have

G(y) = / g(x,t)dt= J T gkx, t)ydt = 2 'f gk(x>t)dtrs

AXF 8K 1)dtta 2 2 Z2\x-sK - KIpHl  \x-y\ = °(1*-J0)

where in 21" the summation is extended to the indices k with ({x}x [x,y])n Dk”~ 0.
This proves (6). The same estimation holds for x —Sj as well since, by Lemma 1

(iii), gj(Sj,y)=0 if y~Sj.
Now we turn to the construction of h
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Lemma 2. Let M be a measurable set in [0,1] such that
@) AMMN(1—5 1) > 0 for every 6 =m0.

Then there exists a function u: 0 —R such that
(i) ux is bounded and approximately continuous for every x€[0, 1];
(ii) uy is continuous for every y€[0, 1];
tin) u(x,y)=0 if x=0 or y=0 or y=1 or y$M;

i fe. d =J1 it X="
(V) iYL T L

(v) 1J uxdy J™ 1 for every x, i£[0, 1].
0

Proof. By our assumption (7) we can find a sequence of density points of M
O<yi<y2 , J'n-1-0.
Let H denote the set of density points of M and let V be an F,, set,

A(F) = 2(tf) = A(M).
Then we can apply Zahorski’s lemma and obtain an approximately continuous

function OSp”~l which separates the sets ([0, ]—K)U {0, 1} and {yw=1
both closed in the density topology. That is

pyW=1 (k=12..), p(y)=0 (v&([0, J—+F)U{0, 1)

We define
q(y) = ¢g— p(y)
p{t) dt
0
and observe that
]
(8) fq(y)dy> 0 05>0)
and
fl
dy = I.
0 q(y)dy
We put

X

<*(*)= | -j— qiOdt, Rix) = f(t—x) qt)dt (O &xsl).

By (8) we have /?(x)>0 (x<I). Define

u,y) = 0, u(l,y)=q(y)
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and
EE;; G-x)q(y) if 0<x<)iSl,
uix,y)=m

AN if 0sj»Sx<1,

Now we have to verify properties (i) —(v). (i) follows immediately from the approxi-
mate continuity of g. (ii) and (iii) are easy by the definitions, (iv) follows by direct
calculations. The estimation under (v) is trivial for x=0 and x=1. If 0<x<I
then the integrand ux has one and only one change of sign at y=x where it turns
from positive to negative. Hence

I /uxdy\ S !/ uxdy\ = ]
0

0 0

qly)dy ~ T q(y)dyis fq(y)dy= 1
0 (]

* Yy

Lemma 3. Let T denote the rectangle [a—d,a-\-d]Y.[b,b-\-S\, let P<z[b,b+S\
be a measurable subset such that b+S is a left hand side density point of P and let a po-
sitive number c be given. Then there exists afunction cp:T—R such that

(i) cp(x,y)=0 if (x,y) is a boundary point of T or
(i) (pxis a bounded approximately continuousfunctionfor every x£[a—S, a+S\;
(iii) (py is continuous for every y€[b, b+5]",

if x= a,
if 0< |ic—al5 @

for every (x, t)ET.

Proof. Let n denote the function constructed in Lemma 2 with M=
—Mdy+b”P). We define the function w, by

_ 1,y if  j)E[-1, OIX[0.1],
y ~ l«@-x,y) if (x,j)€[0,11X[0,]

(P(x, y) —cux if (x,yXT.

Properties (i)—(v) follow immediately from Lemma 2.
Now consider the rectangles

Tk, = [s* uum+ 1) ,SK+ n(n-t-1)]X [St+n+1"Sk+n]
and

0= sk n(n+1) s+ n(n+i)Ix Is* " 7s*~TT+e]

fe= 1,2, ...; n-2,3, ..).
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Since

U (rumathm),
j=1m=2

. 1
there exists a natural number nk>~r- such that

(9) Tk,,,nTj,m= TknDT'j,m= n,,,nrym= 0

if n"nk,j<k and
For a fixed pair {k, n) we apply Lemma 3 for each of the rectangles Tkt,, Tkt,

with GCOBTY P=PTE7AMT *+A1 or p=nnix 4 'r-7ny
and obtain the functions (pk,, and i/ki,, respectively. We put

Pk,n(x,y) if (X y)eTki, (k=12 nsS nk,
h(x,y) = okAx>Y) if K YETL, (= 1,2, n=nk,
0 otherwise.

By Lemma 3 (i), the definition of h is unambiguous. We have to prove (1)n, (2)h
and (3)h. (3)his obvious. If y$ [J A then hy=0 by Lemma 3 (i). If yEPk
k=1

then h(x,y) can take non-zero values only in one of the rectangles Tk<n, Tk m and
hence hy is continuous by Lemma 3 (i) and (iii) and hence (1)Afollows.

In order to prove (2)hwe observe that for every x€[0, 1] the section hx is locally
bounded and approximately continuous everywhere except at the point y=x.
Indeed, if x”y then the point (x,y) has a neighbourhood meeting only a finite
number (at most two) of the rectangles Tknand Tkn. Thus we can refer to Lemma
3 (i) and (ii).

Let now x,£[0, ]—{~}'=1 he fixed and let

if y = x0,
if x0<y " 1,
if 0~y < x0.

We prove that H is a primitive of hXa H'(y)=hX(y) is obvious for y~x0 by the
remark above. We have to prove

(10) yIirpOy T 0 (= M*0))-

If (x0,yH kl_J n-Lan NQ,.Uri,r) then tf(y)=0 by Lemma 3 (iv). Suppose
Zin=

() Y>X0, (x0,y)EA.n
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(n~nKk. Then

LLI,y):_\] K (0 dt: f (kOo,t)dt

n+l

and thus, by Lemma 3 (v),

Wy)ts n(n+1)
On the other hand, (11) implies
1 o 1 1
; X0 A sk+ D
ST nn+ 1) s nin+1) ° n
. 1 . . Ly) 2
- N
from which y-x0 nt | n(n+l)=-2{n+ 1) if né2. Therefore y —x0 0

y—x0 implies n—°°, proving (10). (The proof is similar for y<x0.)
Now let x0=sk and put

H(y)=- fl h(sk,t)dt, 1.
Yy
Since h% is locally bounded and approximately continuous if y>sk, we have
H'(y)=hSqy) (st<y~” 1). Furthermore, if 1 1 and n>nk, then
7
H(y) = ~ fh(Si,t)dt:—.Z if]: (Pk,j(sk,t)d t+ fi <pkt, (sk, t)dt
y ifc+7+T M+TUT
n 1 .I: 1 1 / 1 4
= —.Z'Ar.---TT"' <Pkn(sk>0dt - h |
jSNJ0 + 1) J1 ' n+ | "k Kn(n+1)J
n+|
using Lemma 3 (iv) and (v).
This implies
lim H(y) ---—--
im, (y) ol
and
A00 +-
y My — = L
That is, if we define H(sK) = ------ , then we have H+(sK)=1. Similarly, if we define

nk
Wwy) = f h(sk, t)dt— (0==y<sMW,
0 nk
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then we have again

Thus we have verified (2)hand hence the proof of our theorem is complete.
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SOME THEOREMS ON UNICITY
OF MULTIVARIATE /*"-APPROXIMATION

By
A. KROO (Budapest)

Introduction

Let X be a normed linear space and consider a finite dimensional subspace
UaX. We say that p(zU is a best approximation of x£X if \\x—p\\ =inf {||x—q\\:
g£U}. Since U is finite dimensional each X£X possesses a best approximation;
moreover, if the norm in X is strictly convex, this best approximation is unique.
But a number of important norms (Chebyshev norm, Lj-norm) are not strictly con-
vex, therefore the study of uniqueness of best approximation in these cases needs
deeper considerations.

In the present note we shall study the unicity of Lx-approximation. Let AkzRm
be a compact convex set in the real Euclidian space Rm(mS 1) having nonempty
interior. Consider the space X=Cr(K) of real valued continuous functions on K
with norm |[|/||= J\f\dfim. (/mdenotes the Lebesgue measure on K.) Let Unbe an

K
n-dimensional subspace of Ct(K). U, is called a unicity subspace of C1(K) if each
fAC/K) possesses a unique best approximation out of Un. Furthermore, we say that
Unis a Haar subspace if zero is the only function in U,, vanishing more than n—1
times on K.

The classical theorem of Jackson and Krein (see [11], p. 236) states that if m—1
and K=1—0, 1] then any Haar subspace of Cr{K) is a unicity subspace. Some ge-
neralizations of this result for complex and vector valued functions can be found in
[5] and [6].

We shall study the unicity of -approximation of functions of more than one
variable. By a wellknown result of Mairnhuber [8] there are no Haar subspaces of
dimension greater than 1in Cr(K), when m>I|. This fact is an essential difficulty
in the extension of the theory of Chebyshev approximation to functions of several
variables, because the Haar property is a necessary and sufficient condition for the
uniqueness of Chebyshev approximation. On the other hand it is known that diffe-
rent families of spline functions are unicity subspaces of CxX/) where 1= [0,1],
m =\ (see [1], [3], [12]). Thus it turnes out that in contrast to Chebyshev approxi-
mation, the Haar property does not characterize the unicity subspaces of C™NK).
This fact gives a hope that in spite of the absence of Haar subspaces in C"K), when
m>1, there may exist unicity subspaces in Cr(K).

In the present note we shall give several results on uniqueness of best Lx-appro-
ximation of continuous functions of more than one variable.

In the first section we consider continuous functions of m variables and prove
the unicity of Li-approximation by linear functions. We also give a general uniqueness
theorem for separating functions.
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In the second section we study functions of two variables. The main result of
this section is the uniqueness theorem for Lx-approximation by algebraic polynomials
which are linear in one variable and of arbitrary degree with respect to the other
variable.

81

Let GaCfiK) be a linear subspace of CXK) and let UczG be a finite dimensional
subspace of G. Then U is called a unicity subspace of G if each fdG possesses a uni-
que best approximation out of U. In what follows we shall denote by pm(A) the
Lebesgue measure of AcRm(m~Il). The subspace U<"C1(K) is called a Zm
subspace if for any p£U\{0}, pm(Z(p))=0, where Z(p)={x£K:p(x)=0}

The following lemma gives a sufficient condition for a Zmsubspace to be a uni-
city subspace.

Lemma 1. Let m€N and let G be a linear subspace of CfiK). Moreover, assume
that U is afinite dimensional Z msubspace of G, which is not a unicity subspace of G.
Then there exist ffG and p€£/\{0} such that Z{f)czZ(p) and

Q) f gsgnfdpm= 0
K
for any q(LU.

Proof. Since U is not a unicity subspace of G, somef*L G possesses two distinct
best approximations Pi,p%(:U. Then {pl+p2R£U is also a best approximation.
Therefore

2/ 1/*- (Pi+Pa)/2|dpm= f \r - P\dpm+ f \f*-Pildpm
K K K

This yields
2) 2\f*-(pi+p2/2\ = \f*-PN\+ \f*-Pz\

/ima.e. on AT By continuity of the functions involved, (2) holds for any interior point of
K. GutA™isconvex and compact, hence K is equal to the closure of its interior. Thus,
finally, we obtain that (2) holds for any x£K. Set /=/* —(pi+p2/2, P=P\~Pi-
Then /€G ,p£i/\{0} and (2) implies that Z(f)aZ(p). Moreover by definition of
/, 0 is a best approximation of/. Then by a wellknown characterization theorem for
best Aj-approximation (see [11], p. 46)

3) |/ qsgnfdpJdf \qdpm
K\Z (1) zZ()

for any g£U. But using that Z(f)<zZ(p) and U is a Zm subspace we have
rm(Z (/))=0. Thus (1) follows immediately from (3). The lemma is proved.

Let Lm+l be the subn?pace of linear functions on K, ie. Lm+l={fdCi(K):
[(*)=1(*!, *2, 2Iaixi+am+1, GER, I™i~“m+1). Evidently, Lm+l is

an m+1 dimensional Zm subspace of C\(K).

Theorem 1. Let K be a compact convex subset of Rm with nonempty interior
(m~l). Then Lm+l is a unicity subspace of CfK).
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Proof. Assume the contrary. Then by Lemma 1 there exist fECfK) and
p€Em+i\{0} such that Z(f)<zz{p) and (1) holds for any gqE£Lm+l. Set S[=
—{XERmM: (—1)/(x)>0}, K—KHSi (/=1,2). It can be easily shown that St
is convex, thus Kt is also convex (/=1,2). Since Z(f)(zZ(p), f does not vanish
on the convex set Kt. Therefore/has constantsign on Kui.e.sgn/=yt on Kt(y-|= 1,
/=1,2). If yl=y2, then sgnf~yx fi,-a.e. on K, a contradiction to (1). On the
other hand, if yi=—y2, then setting p=y2% we obtain that sgn p=sgn/ pma.e.
on K. This again contradicts (1). The theorem is proved.

Set now m>I; /=[0,1], KHAm{x=(x1x2,....,xmMERM: xtE€l,I™i*m}.
For a given /EC 1(/m) we put

%) f*(Xi)= flsgn/(xIS dx1l...dxi- 1dxi+l...dxm (1 SiSra).
Jm =

Lemma 2. If /ECL(/m (T & 1) andfor given Xx'El
B) pmi{(*i, eoXmME/mL/(x1, .. XL xi+l, ..o, xj =03=0
then f* is continuous at x’ (1S/Sm).

Proof. For arbitrary e>0 we set BE {(xI5...,, xr_15xi+1, ..., xf)EIm~1:
[/(xI5 ..., x;_!, x", xi+l, ..., xm|~e}. It follows from (5) that

(6) Pm-1Ne )-0 (e —0).

Since/is continuous on Im \f(x)—f(x*)\Se for any x, x*£/msuchthat qg(x,x*)"
LLIO(e). (e(.,.) denotes the Euclidean distance.) Therefore we have for |i|é<5(e)

\f*(x")-f*(x"+h)\ =8 f |sgn/(Xi, ..., xi-L,x",xI+1, ..., Xj-

Im-1
-Sgn/(X!, ..., xi_1,x" +h, xi+1, ..., xJI{/Xj... i/Xi-ji/Xi+i... dxm=
= f +f = "™ 2pmfBé.

This and (6) imply the statement of the lemma.
Now we shall consider the special case ofnll‘unctions separating the variables.

Set C?(/m)={ACL/1):/(x)=/(x1, ...,xrr):igiM xf). This is the subspace of

separating functions in C1(/n). Let M,,iczCI(l) be un;-dimensional Haar subspaces

of Cx(/), /ijm—l 1 W"T). We assume thateach M ricontainn']s the constant functions.

Set M n= {_2|4i(xi)- IS/ISm}. Then MNis an /V= 2| nt—m +\ dimensio-
i= i=

nal subspace of Ci(/m).

Lemma 3. MN is a Zmsubspace of CI{Im).

m
Proof. Assume the contrary. Then for some q(xt, ..., xm= 2 <i(X)€Mn\ { 0},
=1

pm(Z(q))>0. Since qEMN { 0} there exists IS/*Sm such that is not a constant
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function. Let x be the characteristic function of Z{q). Then

©) Vm{Z(qgj) = fxdgm= Xdxfj cjqj... dxj-x dxj+1... dxn
am Jm-1 /

For a given (xx, X}-r, xJ+L, X JEImM Y x(xlI 5 xy_15x,xJ+L, ..., xm) =1
m

if and only if gj(x)= — 7i(*i)- Using that qjEMnj is not a constant function

e
I

we obtain that the latter relation holds for at most rij—1 values of x. Hence

jxdxj—0 for any (xI5 Xj-k, xJ+1, xmdIm~1 This evidently contradicts

I

(7) . The lemma is proved.

Corollary 1. If gEMN is not a constantfunction, then for any a€R, ym{x£Im:
q(x)=a}=o. _ , .

The following property of Haar subspaces will play an important role in the
present paper. Its proof can be obtained from a more general result proved in [7],
p. 41.

Lemma 4. Let U,, be an n-dimensional Haar subspace ofC fl). Thenfor any choice
of points 0=fO<il<t2c...<<t<ik+l=l (&=«—!) and signs yt(M =1, O"i™k)
there exists a g£ U,,\{0} suchthat sgn q(x)=yt for (OwLLK).

The subspace MNdefined above is a natural “Haar type” subspace of separating
functions. It turnes out that M N satisfies the unicity property.

Theorem 2. MNis a unicity subspace of C i(/m.

Proof. Assume the contrary. By Lemma 3 MNis a Z msubspace, hence we may
apply Lemma 1 for G=C*(In) and U=MN. Thus for some f€C*(In) and
PEMN { 0} we have Z(f)<zZ(p) and fqgsgn/ dpm=0 for any gEMN. By this

m

and definition (4) we have

(8) j qtf* dxt= o

m
for any g£EM (ISiSm). Since pEMN {0}, p(xIt xm= 2 pfx,), where
i=1
PtfMn (IS/Sm). We shall consider two cases.
Case 1: for some 17k, j~ni, k”j, pj and pk are not constant functions.

m
Then i2_!1Pi is not a constant function and applying Corollary 1 (for smaller dimen-

sion) we easily obtain that
v XMEIM L:p(x1, ..., xj-1,x",xj+1, ..., xm) = 0} = 0
for any x'El. Since Z(f)aZ(p) this implies that
dm-life. m: Xj-1, xj+1, ..., xm€/m 1:/(x1, ..., xj-1,x",xj+1, ...,.xm) = 0} = 0

for any x'£1. Thus by Lemma 2,/j1is continuous on /. Moreover it follows from (8)
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thatf* has at least tij zeros 0<x1<x2<-..<xWk1 inside/. (Otherwiseby Lemma4
for some F*EMn\ { 0}, sgn 4*=sgnf* /g-a.e. on |, a contradiction to (8).) There-
m

fore using that f(xk, xm= g:if(xd we have

9)
0=//(**) = fsgn/C*l, Xs, xJ+1, ..., xm) dx! ... dxj.1ldxj+1... dxm=
" m
= Fm-i{(*i. Xj-1,X3+1, ..., xjtl "'1:i51i (x 1
%]
~Pm-l{(*I> «mm xj-1,xj+1, ..., XDELT L £/(Xx,) <-1}(*)},
i*j
m
where j=1,2,....rij. Set fJ(x1,...,Xj-1,xJ+L,..., Xm)= i2_'i(x,)t Jjtcur "

17)
It is easy to see that the equation

Pm-i{x£Im~1:fj(x) > a} = nmi{xeim 1:Jj(x) < a}
has at most one solution a=a0, where
(20) min f:(x) = ug~ max f,(x).
Therefore by (9) we obtain
(12) fj(xsg) =—a0, s=1i,2,...,rij.
Furthermore (10) implies that there exists x*£lm~1 such that fj(x*)—a0, i.e.
i2:m/1(xT):a0, where x*£I iVy). Hence and by (11)
" f{xt, ... x*_! xs,xj+1, ..., x*)=0 (la&ss ri).
Since Z(/)cZ(p) we get

o = P{Xt, ,X*_i, X, X*+1, ..., X*) = 2m PI(x*)+Pj(xt) « rij).
i*]

This relations and the Haar property yield that pj is a constant function, but this
contradicts our assumption.

Case!: at most one of theprsisnot a constant function. Then p(xIt ..., xm=
= P(xk)£4/,,K {0} (Isfcsm). Let O~xi <...<xrt=1 be the all zeros of p,
rSnk—1. Since Z(f)czzZ(p), f does not vanish on the rectangles

Bj = {(*1,..., xm€Im:0 < xt< 1; x) < xk< x}+1, 15 iS m, i~ fc},

where y=0,1,..., r; X0=0, Xr+1=1. (If xj=0 or x'=1, then the first or, respecti-
vely, the last rectangle is empty.) Therefore sgnf=y} for x£Bj (lyj|= 1, O™j~r).
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By Lemma 4 there exists a q€Mnf\{0} such that sgn q(x)=yj while x'<x<x'+l
(ON'Sr). Setting g*(xIf  xm=q(XxKEMN{0} we obtain sgn/=sgn gq* gma.e.
on Imie. fg*sgnfdym>0. We again arrived at a contradiction.

The proof of Theorem 2 is complete.

Let P, denote the set of algebraic polynomials on / of degree at most n. For a
given n=(n!, n2,...,nM£EZ1 we set P*:{’\mp,,f(xt): prf P ni, Then
by Theorem 2 we immediately obtain the following

Corollary 2. P? is a unicity subspace of

Remark. The Chebyshev approximation of separating functions was studied
by D. Newman and H. Shapiro [9]. They proved that a best Chebyshev approxima-
tion of a continuous separating function of two variables can be given by the sum of
Chebyshev approximants of its component functions. Later in [4] it was shown
that this is the unique best Chebyshev approximation of a separating function. In
connection with Theorem 2 a natural question arises: is the best L r-approximation
of a continuous separating function equal to the sum of the best L x-approximants
of its component functions? The following example shows that in general the answer
is no.

Example. Set m=2 and consider the function / (xx, x2=fx(xX) +f2(x2"~C*(/3),
where

/ M 1202 = x2~ 2’ *z£]0, 1].

It can be easily verified that 0 is the best br-approximation of bothf and/2on 1 by
constant functions. Assume that the best Lx-approximation off(x1, x2) by constants
is also zero. Since p2(Z(f))—0,

f sgn/Oj, x2 dxxdx2 = 0,
ie.
(12) dXi —0,
where /J'(x)= J sgn/ (xx,x2dx2. It can be derived by simple calculations that
|

f*(xi)=2fi(x1). But this contradicts (12).

§e2

In this section we shall study the Li-approximation of functions of two vari-
ables. Thus we set m—2 and consider the space Cr(1r), where /=[0, 1]. Theorem 1
in the previous section states that the subspace of linear polynomials L3=
= {ax+by+c: a, b, cER} is a unicity subspace of CfP). This is another illustration
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of the fact that the Haar property is not necessary for the uniqueness of best Lx
approximation. A theorem of this type can not hold for Chebyshev approximation.
L. Collatz [2] investigated the unicity of restricted Chebyshev approximation pro-
blem on the plane. He verified the uniqueness of Chebyshev approximation of dif-
ferentiable functions by linear algebraic polynomials of two variables. But later
T.J.Riviinand H. S. Shapiro [10] proved that linearity of the approximating poly-
nomials is essential in this case. They showed that if the approximating algebraic
polynomials are quadratic with respect to at least one of the variables, then there
exists an infinitely differentiable function possessing more than one best Chebyshev
approximation.

In this section it will be shown that linear polynomials are not the only unicity
subspaces of C1(P). In particular, we shall verify the uniqueness of Lx-approxima-
tion when the approximating polynomials are linear with respect to only one of the
variables.

Let k, n€N, kSn and let Uk and U* be Haar subspaces of C1(l) of dimension
K and n, respectively. Moreover, we assume that UkiczU*. Consider an arbitrary
continuous strictly increasing function g on | and set

Un+k = {q(x, = <p(y)gk(x) + pn(x):gkE Ujt, p,,€ U*}.
This is an n+ ~-dimensional subspace of Cr(P).

Remark. If Uk—U*, then Un+k=TJ2can be considered as the tensor product of
U* and the linear span of 1 and <p”The linear span of 1 and 9 is a 2-dimensional
Haar subspace, hence in this case Uxis a product of two Haar subspaces.

Theorem 3. Un+k is a unicity subspace of CfP).

Proof. First of all we shall verify that Un+k is a Z2subspace. Take an arbitrary
q(x,y) = (p(y)gk(@) + pn(x)€1/,,+*\{0}. Let us prove that p2(Z(q))=0. Set E(x)=
= {(x,y)EP: x=x,yEI} (xdl) and let x;€/(1=i=j) be the all common zeros of
gk and p,,, sSn—1 Then evidently E(xi)c:Z(q). Further, if x~Xj for each

and E(x)C\Z(q)j* 0 then gkcan not vanish at x. Therefore in this case
E(x)C\Z(q) consists of a single point {x=x; y=(p~1(—pn(x)jgk(c))}, where (p-1
denotes the inverse function of g» Thus ~1(£'(3c)flZ("))=0 for almost all x£I,
hence p2(Z(q))—0. This implies that Un+k is a Z2 subspace.

Assume now that the statement of the theorem is false. Then by Lemma 1 there
exist feCfP) and g*(x,y) = (p(y)og*k(x) +p*(X)E i/,,H8{0} such that Z(f)czZ(q*)
and
(13) f gsgnfdp2= f dx(f gsgn/dy) = 0

n 1 [

for any qfUn+k.
We shall consider several cases.

Case 1: gk is the zero function. Then g*(x,y)=p*(x), where p*£ C/*\{0}.
r
Therefore Z(q*)=i\_JiE(xt), where OMXiC.-.c~Sl are the all zeros of p*,

rSn-1. Since Z(f)czZ(q*), f does not vanish on the rectangles
O<y<l}. Thus sgn/=yj on Bt, where |yq=1(ISiSr+I,x, =0,xr+1=1).
Since r*n—1 by Lemma 4 there exists a p,,€.U*\{0} such that sgn pn=yt while
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Xi-~x-~Xi (Is/ar+1). Thus considering pn as an element of Untk we have
sgn/=sgnp,, on Bt(lé&/ér+1), i.e./;Jpnsgnfdp2>O. This contradicts (13).

Case 2: qtEUEN\{0}, <p[™qt(x)+pt(x) is the zero function. Then gq*(x,y)=

=?2*(*){<?>00-<p(y)}- Thus Z(~*)=(.U-E(xHjU jx€/;y=y }, where Osix”"

<x2<...<xsS| are the all zeros of gk, sk —I. Set

A = |x(i< X< X,;
| | , (I=Si=»s+l; x0—0; xs+tl=1I).

Bi = {"Ni-i -zx-<xt; y < Y< j

Since Z(f)c:Z(g*), f preserves sign on each At and Bh Hence

on A,
(14) on Bt
where |yfl=|e|=1I, ISi~j+1. Furthermore (13) implies that
(15) f Pn(x)f*(x)dx = 0 (p,,euo
1

where ft (x) = J sgnf(x, y)dy. From (14) we easily derive that ft(x)=y(y(+¢e)=/?
|

for X (_!<x<x4 (ISi'Si+1). Evidently Btequals 1, —1or 0 (I™i~j+1). Since
s~k —I, Lemma 4 implies that there exists a gkg t/~\{0) suchthat ftqk=0 pl-ae.
on I. But gkfEUkczUt, hence it follows from (15) that ft4k~ 0 ”i-a.e. on I, i.e.
/*=0 /~-a.e.on /. Thus Bt=0 and therefore yr= —{ foreach Is /Sj+ 1. Using
again Lemma 4, consider a polynomial "€un£\{0} such that sgn %=e; for

Ai. I<x<rj (I~/gs+1). Furthermore, set q(x,y) = <p(y)gk(x)—r/"yj4k(x) —

= <IK){<PY)- P(j)}e U, #K{0}. Then
] (1)1 f-8< on Ai nyr on Ai
8Bn5(”y) = 88n%(x)88n(<p(y)-®y | = | ¢gon g = (£ on Bi
This and (14) imply that j'q sgnfdp2>0. Thus we again obtained a contradiction
I*

to (13).

Case 3: C/?2Y{0}, <pl[y)gt(x) +p*(x)€t/*\{0}. Let 0Sxi<x;<...<xISI
be the all common zeros of gt and pt, r*k—1. As it was shown above if x*x< for
each IS/Sr, then E(x)f]Z(g*) contains at most one point. Since Z(f)czZ(q*),
E(x)C\Z(J) also contains at most one point in this case. Thus applying Lemma 2

we obtain thatft(x) is continuous while x'r_!'<x<x( (Is/~r+1; Xo=0; x'+1= 1).
Furthermore (15) and Lemma 4 imply that /* has at least n—r distinct zeros on
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r+1
Q= _\JI (X'i_1,x m. (Otherwise f* changes sign at at most n—1 points and this, in
i=

view of Lemma 4, contradicts (15).) Let xit 1~i=n—r, be any distinct zero of
/* on Q. Since x£Q, xt is not a common zero of gk and p*, hence E (xf) contains
at most one zero of/. On the other hand E(xi) should contain a zero of/, because
otherwise /i(3c;) equals 1 or —1. Thus E(xi)C\Z(f) = {x=xp y=y({, where, as it
was shown above,

(16) pi = (p~i-Pnixd/g”~xd), 1sii=n-r.
Moreover / must change sign on 2?(x,), hence sgnf(xi,y)=Ri while 0<y<y;
and sgnf(Xi,y)= —i while 1 ({/”4=1;1S/Sn-r). Thus

0 =/i*(3Ci) = / sgn/(3c,-, y) dy = RiPi-RA1~A) = 1).

Therefore we obtain y;=y (Isisn-r). From this and (16) we easily derive

17) Q) QOHZOA=o, 15 n-r.

Furthermore gk(x®=p*(x-)=0 (1~LWr), where x~Xj for all / and/ This to-
gether with (17) imply that the polynomial @ gk(x)+Pn(.x)€ £EC\{0} bas n

distinct zeros on I. Thus we arrived at a contradiction to the Haar property.

The proof of the theorem is complete.

Consider the set of algebraic polynomials on P of degree m with respect to x
and K with respect to y

= N ofn-
p mk \JZ=0r%Oa(" Y.a,,r€K3 (fc, m€Z+).

It can be easily seen that POtk and Pn®0 are unicity subspaces of CXP). This can be
proved by the arguments used in Case 1 of the Theorem 3. (Note that POk=PKk,
Pmn=P m.) Moreover from Theorem 3 we can derive the following

Corollary 3. Pml and Plk are unicity subspaces of CXP).

The question whether Pmkis a unicity subspace of CXP) if k, m&2, remains
open. We have a feeling that the answer to this question is affirmative. Even the
attempts to settle the case when k (or m) equals 2 were unsuccessful. We are able to
prove only a weaker result. Set

{Pm(x)+qa(y), where pmPm, gq2tp2.
Then we have the following
Theorem 4. For any N, P*>2 is a unicity subspace of CXP).

Proof. Evidently P*i2 is a Z2subspace. If the statement of the theorem is false,
then by Lemma 1 there exist an fECx(P) and p*(x,y)=/",W+il(j)? 2 {0}
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such that Z(/)cZ(p*) and
(18) fp(x, y)sgnf(x, 7)dydx =0 (pepié-

in particular
(19) f Pm(x)fl (x)dx =0 (pmePJ,
|

where f*(x)="fsgn f(x, y)dy.

1
If deg g2<2, then p* can be written in the form p*(x,y)=aly + p m(x) (prEPN).
In this case we can arrive at a contradiction analogously as in the proof of Theorem 3.
Therefore we may assume, that deg qt=2. Then the solution of the equation
p*(x,y)=0 is given by two curves

(20

where pmEPmM yOER, I' = {X£l: pm(x)”;0}. Since Z(f)czZ(p*), f can vanish only
on yx and y2.

Case 1: pmis a constant function. Then/ can change sign only on the line seg-
ments and {x€/;y=y2, where yt=yO+\pmy2=¥Yi#-~PT and
Ti.T&4iR- Hence one of the polynomials B,e(y-yX), 0(y-y2, 6(y—yD)(y-ye
EP* P2 (/?, e, 0, 5= +£1) has the same sign as/ j2-a.e. on P. But this contradicts (18).

Case 2: pmis not a constant function. It follows from (20), that for any x£/»
E(x) contains at most two zeros of/. Thus by Lemma 2 f* iscontinuous on 1 More-
over, it is easy to see that for any x€/,/i*(x) can take only one of the following
values: #1-, £ (1-2y0-2]/pmXx))- + (1-2y 0+2 ¥pT(X)); % (I-4 \'pm(x)). Since
PEMPM i3 not a constant fumetion we oftein that f* bas at most 3ni Z8res on /.
Furthermore, by continuity off* and (19) we have thatf* has atleast m+ 1zeros on I.

Let 0<X!<x2< ...<xt<| be the all zeros of pminside /, kSm —1. Then pm
is strictly monotone on each interval [xj-~xJ (ISi'Sk+1, x,,=0, xfctl=1). Let
us prove that// is also monotone on [m{ X, xj, ISi'Sk+1. Assume, e.g., that
pmis increasing on [j<£ X, j&J. (The case when pmis decreasing on this interval can be
considered analogously.) If pm(xf)= 0, then the curves yx and y2 do not intersect
the rectangle Ai={xi-i<x”xi;0-=y<1}. Hence in this case /* is a constant
(—1or ) on [Xi_I5xj i.e. itis monotone on this interval. Thus we may assume that
Pm(xi)>0. Then pm>0 for x* 1<x<xi, where xi_1Sxf 1<xi and xf_x=
=xi_1 if pmXj_X—0 and pm(x*_1)=0 if pT(xr_x<0. Since pmis positive and
increasing for x*_i<x<x(, yr is strictly increasing, y2is strictly decreasing and
yx>y2 on this interval. Set y;(x)=max {0, min {1, yr(x)}}, r'=0, 1. Clearly, yx(y2
is continuous and increasing (decreasing) and 0~ y2=yI™ 1 for x*_I<X<XT.
Furthermore,/can vanish only on yxand y2. The curves yl and y2divide the rectangle
Ix* _l<x<Xxr; 1} to three connected parts:

Bi = {xf-i< x<Xx,; yxX)<y< 1}
B2= {xf_i< x < x,; vya(x) < ¥< ¥Yr(x)}
B3= {x*.i< x < xf; 0<y< y2(x)}
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(Some of these regions may be empty.) Since/ does not vanish on Bt, f preserves
sign there, i.e. sgnf —Bi on B{(/J;|= 1; 1~/S3). Therefore we have for x*_x<
-<X<XT

Bir if Bl —R% — B>
BI{i —2y2(x)), if Bi —R2—~ Rl
BI(1- w2A(x)+ 2y2(x)), if Bt=-R2= R3;
A(1-2yx(x)), if Bl=-R2=-R3.
Since yx (y2 is increasing (decreasing) for x* r<x<x; this implies thatf* is mono-

tone on this interval. If xf_1=xi_1, then we are ready. On the other hand if X; x<
then pm<0 for xi-1<x<xf_1. Therefore the curves yx and y2 do not

intersect the rectangle 1} and hence fi(x)=2Z for any x(_x<
mox-=x* 1, (€| = 1). This and the continuity off* imply thatf* is monotone for
xj_1< x < x J(I1S/sA :-1-1). Furthermore, it was shown above that f* has at least m+ 1

zeros on . Since k+I1~m, there exists an interval [Xj_x, x7] (\“j=k +\) conta-
ining at least two distinct zeros off*. But f* is monotone on [xv_x, xj\, hence f*
vanishes on this nondegenerate interval. This is a contradiction, since we have
proved above thatf* has at most 3m zeros on I. The theorem is proved.
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ON A PROBLEM OF TURAN ABOUT
THE OPTIMAL (0,2)-INTERPOLATION

J.S. HWANG (Taipei)

1. Introduction. The “optimal (0,2)-interpolation” has been systematically inves-
tigated by P. Turan with J. Surényi [6] and J. Balazs [1, 2, 3]. Let {x,-},j —1,2, ..., n
be a sequence of n points satisfying

Q) 1AXX> X2 £ —L

Suppose the points (1) are such that for arbitrarily prescribed numbers y,-, z,-,
j= 1,2, ..., n, there is a unique polynomial A2, 1(x) of degree é2n —1 so that

2 nnx)=yj and n-1(xj))=2j, j=1,2, ..,n

We then can associate to each function /(x) which is continuous on [—1, 1], a unique
polynomial R,,(x;f) of degree Sin—1 so that

?3) Rn(xj-,f) =f(Xj) and R"(Xj\f) = Zj, j =12, ..,n
In order to write (3) into one equality, we may use the following fundamental
functions rj(x) and Sj(x) of first and second kind, respectively, with degree é2n —1,

@ @ =1 57 and riek = o,

) ={O 1={ and Sjxk =0,
K *1,

*

With the help of (4) and (5), we can write (3) as

(6) R.(x /) = 2 f(x))rj(x)+ 2 ziS(x).
j=1 j=1

Suranyi and Turan called a sequence {xj} with the property (1) a (0,2)-interpo-
lation sequence if for any prescribed numbers yj, Zj, there is a unique polynomial
Men-i(x) satisfying (2). In [6, Problem 9], Taran asks: is it true for a”~f that the
zeros of all Jacobi polynomial P<*“w(x) is a (0,2)-interpolation sequence? Recently
we have answered this question in the negative sense [4].

In the same paper [6, Problem 8], Taran asks: whether there exists n points
with the property (1) for which all fundamental functions Sj(x) of second kind exist,
but not all fundamental functions rix) of first kind? In this paper, we shall answer
this question in the affirmative sense as follows.

Theorem 1. For n=4, there are four points {x7}, /=1,2, 3,4, satisfying (1)
such that all Sj(x) exist, but not all rj{x).
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192 J. S. HWANG

The proof of the above Theorem 1 depends mainly on the suitable representa-
tions of those fundamental functions which are interesting in themselves.

2. Representation of Sj(x). We set

@) Pi(x) = (x-xD...(x-Xj-D(x-xj+l)...(x-x,) =

= ((X-X))*+(xI-x D). ((X- xi)+ (xi- Xj _P)((x- xj)+

+ (Xj - XjH)) o ((x = Xj)+ (Xj- &) =

= (x-Xjy-1+ C1(x-Xxjy,-2+ ...+ Cn_2(x-Xj)+ Cn_1.
Then by virtue of equation (5), s'- (/1) can be written as
(8) sj(x) = Pi(x){a0(x-Xj)n-2+al(x-Xj)n-3+...+an_3(x-xJ)+ cin-2} =

= a0Pj(x)(x-Xj)n- 2+ a1Pj(x)(x-Xj)n3+... + an- 3Pj(x-Xj)+an 2Pj(x).

Integrating both sides of (8) twice from Xj to n, and adding two more parameters
and a,, we obtain

9) Sj(x)=a0Qj'0(x) + alQj'1(x)+...+an 2Qj'n- 2(x) + an_1(x-Xj) + a,,,
where

QjAx) = >;I|:>£I Pj(t)(t-Xj)n-(k+2)dtdy, k=0, 1, ...,n-2.

Hence
**) = 1 | {(t—=G)2~(k+3) + CL(t—xJ2rk+i)+.... + Cn-i (t—Xj)n~(k+2}dtdy =
Ny -Xj)r-rw Cl(y-XjYn- (k+3> CNrjy-XjT-7]
J X 2n—k+2) + 2n —(fc+ 3) + " n-(fc+ 1) /'y
(x - xj)2- 4] Ci(X-xj)2 “&t+)
~ (2n- (k+1))(@n- (k+2)) + (2n- (k+2))(2n- (k+3)) + ™
Cn_1(x-xJ"-k

(n—k)(n—fc+1))

Since Sj(Xj)=0 and Qj«xj)=0 for k—0,1, ..., n—2, j=1,2, ..., n, it follows
that an=0. Combining with (5), (7), (8), and (9), we have

(10)
s'i{Xj)) =u0*0 +ax-0 + +an-2’ Cn-i +04-1-0 =1
S,(*I) =aoQjAxi) +aiQj.i(Xxi) +-+a,-2j,n-2x1) +an-1(x1-xJ3 =0

i Sj(Xj-i) = a0Qj,0(.Xj-i)+alQjtl(Xj-{)+ ...+an 2Qj",,-2(Xj-i)+an- L(Xj-1—Xj)= 0
Sj(xJ+D) = aoQj,0(Xj+1) + alQj'L(Xj+D) + ... + an_2Qj'n- 2(Xj+1) + amL(xJ+1—Xj) = 0
Sj(x,) — aoQj,o(xn + aiQj,i(xn) +--+ an-2Qj,n- 2(xn) +an_1(x, -xj) = 0
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Let Aj be the determinant of the coefficients of (10) with respect to
ao, alt ..., a,,_i, we then have

Qi,o(x i) Qj,i(xi) Q,n-s(GXD X1-X§)

0. 0xi-1 0jdxj-1 ® g™ E xir-xi)

(11) Aj=(-1)-1Cn 1 i i
Qj,o(xj+i) Qj,i(xj+i. Qj,n-Axj+1) Xi+1-Xj)

Qi. N qji(xn Qi.n—zxmy  (Xn-Xj)

where Cn_1=P y(xJ)"0.
It is clear that the system (a0, alt..., an_1) has a unique solution if and only
if Aj~0. In such a case, the function Sj(x) can be formulated as

Q. W Qii(x)  -Qj.n-Ax) (x-XJ)
Qj.,o(x 1) Qj,i(xi) mm-Qj,n-iix\) (X1-Xj)
(129 Qj,o(xj-i) Qj,i(xj-i)---Qj,n-t(xj-]) (Xj-i—Xj)

Qio(xi H)  Qj, Lxj+D)eeaj n—z(xj+]) (XJ+1-xi)
0j, OW Qj.iixn) -0j,.-SW (X, =X )

This yields the following

Theorem 2. The fundamental functions sj(x) of second kind can be represented
by (12) provided Aj~O, where Aj and Qj,k(x) are defined by (11) and (9), respectively.

3. Representation of rfix). According to (4) and (7), r'-{x) can be written as

(13) r'jx) = Pj(xX)(x-X)){b0(x-Xj)n-3+bl(x-Xj)n-i+ ... + b,, 4(x-xj)+bn 3} -

bOPj(X)(X-xJr- 2+ b IPj (M) (x-Xj)"-3+...
mm+ bn-iPj(x)(x-Xj)2+bn 3Pj(x)(x-Xj).

Integrating both sides of (13) twice from Xj to x, and adding two more parameters
b,,_2and bn_1, we obtain

(14) rAx) = b0QjtO(x)+b1Qj'L(x)+...+bn-3Qj",,-a(x)+bn-2(x-Xj)+bn 1,

where Qjtk(x) are the same as that of (9).
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By virtue of (4) and (14), we have the following simultaneous equations:

(15)

rj(xj) =

bo*0 ] +...+b,,_3'0 +bn-2°0 +b,_i=1
rji(xj) =

b0Qj,0(xi) +b1Qj:1(x) +... +bn 3ByB 3(x) +bnm2(x1~Xj) +b, ! =0
0(xy_j) =

boQj,0(Xj-i)+biQj,i(Xj-i)+ mm+ bn- 3Qj,,,-3(Xj-i)+bn-2(Xj-1-Xj)+bn-1= 0
rj(xJ+1 =

bORy,0 (M+i)+ biO;,i(M+i)+-- + bn-3R;,»-3("+i)+ b«-2("+1-*)+bn-i = 0
fiw =

b0Qj,00Xn) +b1QJ/I(xn +...+b,-83;,,-, W +b,,-2(xn-~.) +b,-i = 0.

Let Vj be the determinant of the coefficients of (15), we then have

Qj, o(*i) Qi,i(xi)  meR.;,n-sC*i) (Xi -Xj)

Qj.fixj-i)  Qj,i(Xj-i)- mQj,n-Axj-D (xj-x-Xj)
Qj.o(Xj+i) Qpi(.Xj+1)*mQj,n-AXj +) R
Qj.owW Qj.iW  « mQj.n-Axn) (X5»-X])

Clearly the system (b0,b1, ...,b,,_2 has a unique solution if and only if V,-~0
by which rj(x) can be represented as

Qj, ow Qj,iw —ry...~AX) (X-Xj) 1
B;,0(*i) g.ic<iy =Q,n =1-Xj) 1

Qj,o(.xj—i-) Qj!i('xj_i)1.Qil!1-—s(*/—l) ™ . * 1
Qi.o(xj+i) Qi,i(Xj+1)-Qj,N.gcw/wry (XI+1-X])

[N

[EEN

Qj,O(XrD Qj, iw -Qj.n—SW (X"_Xj)
This gives the following

Theorem 3. The fundamental functions rj(x) offirst kind can be represented by
(17) provided V-~0, where V- and QjJc(x) are defined by (16) and (9), respectively.

As a consequence of Theorems 2 and 3, i.e. (11) and (16), we find that Aj”~O
if and only if Vj 0. This yields the following existence relation between Sj(x)
and rj(x).
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COROLLARY. For each j, the function s;(x) exists uniquely if and only if r;(x) does.

4. Proof of Theorem 1. For simplicity let x,=0. We are going to find the solu-
tions of x,, X3, and x, such that all s;(x) exist and in particular, s, (x) exists infinitely
many while 7, (x) does not exist.

According to (5), (7), (8), (9), (10), and (15), we can easily obtain

51(x2) = aOQl,O(x2)+a1Ql.l(x2)—Ql,Z(xZ)/x2x3x4+a3x2 =0
(18) 51(xg) = ale,o(x3)+a1Q1,1(x3)—Q1,2(x3)/x2x3x4+a3x3 =0
§1(X0) = agQ1,0(X2)+a101,1(Xa) — Q1,2(Xa)/X2 X3 X4+ A3 x4 = 0

ri(xg) = onl,o(x2)+b1Q1,1(x2)+b2x2+1 =0
(19) ri(xs) = onl,O(x3)+lel,l(x3)+b2x3+1 =0
r1(x)) = bQ1,0(X)+b101,1(X)+box,+1 =0
where
01.0(X) = X7/42 — (Xo+ X3+ X4) X8/30 ++ (55 X3+ XgXg + X4 X2) X°/20 — Xp X3 X, x*/12
0;,1(x) = x8/30 — (x5 + x5+ %4) X3/20+ (x5 X5+ X5 X4 + X4 X2) X4/ 12 — x5 X3 X, X3/6
01,2(%) = x5/20 — (xg+ x5+ x4) X412+ (x5 x5 + X3 X3 + X4 X2) X3/6  — X33 %4 x2/2.
We set
(20) Q1,0(x2) i 01,1(xp) - 01,2(x) _ X2

=—=1

01,0(x3) " Ql,l(x3) 4 01,2(x3) X3

If we can find a solution x,, x5, and x, which satisfies (20) then the determinant of the
coefficients of (18) and (19) will be zero. This means that the solutions of a,, 4,
and a; exist infinitely many while that of b,, b,, and b, do not exist. It follows that
s;(x) exists infinitely many and r,(x) does not exist.

Substitute (20) into (18) and observe that x,x;(x,—x3)7#0, we obtain

@21) X ((L+ D Q@+ D A +20)—x,(5(1 =3t +12) = 10t(1 + 1)
(22) x3((L+ 2 +22)—x (L + ) 2— ) (1 —21)) = 5t(1 + 1+ 12)
(23) X(4(A+ )+ 181(1+ 1+ 24+ 8) — x4 (T(1 — 1 — P — B +41Y) =
= 21t(1 + ) (1 + ).
Solving (21) and (22) for x3 and x, in terms of 7, we get
(24) x3(1) = N3()/D() and x,(¢) = N,(0)/D(0),

where Ny(t)=5t(1 —4t—13t2— 413+ 1%, Ny(t)=5t2(14+1)(1 =Tt—12) and
D(t)=1—-3t—2t2—461*—1*— 35+ 5.

Substitute (24) into (23) and observe that #(141):#0, we have
(25) F(H) = 1—18t+219r2+ 14613+ 96214+ 391> — 42515 — 22317 + 212 = 0.

It is easy to see that the function F(#) has two real roots # and #, such that 1<#, <2
and 10<t,<11. Substituting #, or 7, into (24), we can see the solutions of the sys-
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sem (x4(f), x2(t), x3(t), x4(i))=(0, tx3(t), x3(t), x4(/)) exist. These solutions do not
tatisty the condition (1) and therefore we have to shrink them. To do this, we let

(26) Xj(t) —exj(t), j = 1,234, and c< 1

From (19), we can see that Qi,k(xj) are homogeneous, where k=0,1,2, and
y=2, 3. Let Q*k(x) be the polynomials induced from QIltk(x) by replacing x2, x3,
and x4by x2, x3, and x*. Then by virtue of (20), we have

(20)* gi,o(4) Qh(xt)  QtAxj)
QIA4) Qtxixt)  QU(x*3)

This shows that the system {x,} can be replaced by the system {cxj}. Therefore by
choosing c<I/max (Ixjl),y=2, 3, 4, we obtain a system {cxj} of four points such
that j4(x) exists infinitely many, but rk{x) does not exist.

Now, for this system {cxj}, if needed c can be chosen so that the determinants of
the coefficients of s2(x), s3(x), and x4(x) are all different from zero. By virtue of
Corollary, we find that all Sj(x) and rAx) exist uniquely, where y=2,3,4. This
completes the proof of Theorem 1.
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ON NON-AVERAGING SETS OF INTEGERS

H. L. ABBOTT (Edmonton)

§ 1. Introduction. A set S of integers is said to be non-averaging if the arith-
metic mean of two or more members of S is not in S. If 4 is a set of integers, we
denote by || 4| the size of a largest non-averaging subset of 4. The study of non-
averaging sets was initiated by Straus [5S] who proved that if f(n)=|{1,2, ..., n}|
then, for some positive constant ¢ and all sufficiently large n, f(n)=>exp (chog n).
Later, ErpO6s and StrAUs [3] proved that f(n)<cn®® and conjectured
that f(n)<exp (cVlog n). This conjecture was shown to be false by the author [1]
who showed that

(€)) f(m) = cnt.

Put g(n)=min || 4| where the minimum is taken over all sets of integers 4 of
size n. Erdds asked whether there exists a constant =0 such that g(n)=nf. Some
partial results in this direction were obtained in [2]. For example, it was shown that

if P denotes the set of the first n primes then | P|| >n? for any B <11—O. It was also

shown that for any f<— : almost all sets A4 of size n satisfy || 4| >n”.

20
In the present work we answer Erd6s’ question in the affirmative by proving
the following result:
1
THEOREM 1. For any f <13 gm)y=nP for all sufficiently large n.

We shall, in our proof of the theorem, make heavy use of methods developed
in the paper of KoML6s, SUuLYOKk and SzZEMEREDI [4] whose principal result we now
formulate. Let

1
(o) 2 ayx;=0, i=12..,m
Jj=1

be a system of equations with integer coefficients. Suppose that for each 7, >a;=0
so that the solutions of () are translation invariant. Let

o = max 2’ lag].

IStSm

Denote by f,(n) the size of a largest subset of {1, 2, ..., n} which does not contain
any solution of (¢) in integers xi,...,x;. (It is understood, of course, that
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Xi=x2= ...—X, is not considered as a solution.) Denote by ge(n) the largest integer
such that every set of n integers contains a subset of size ge(n) which does not con-
tain a solution of (qg). It is proved in [4] that

2 ge(n) ™ -g~r/e(«).

It is clear that our problem on non-averaging sets can be essentially formulated
in this context since g(n) is the largest integer such that every set A of n integers
contains a subset of size g(n) which does not contain a solution to any of the equations

?3) X1+ x2+ ... +xl= Ixl+1, =2, 3, g(n —1)

in distinct integers xr, x2, ..., xi+1. However, (3) differs from (q) in that the number
of variables, and hence the size of a, grows with n, and thus (2) loses its significance.
Professor Erd6s suggested to the author that, nevertheless, the arguments used in
(4) , suitably adapted, may yield some information about g(n). We have carried
out this suggestion and have found that the methods of [4] together with the tech-
niques used in [2] lead to a proof of Theorem 1

We modify the problem as follows. Let H be an integer, depending on n, to be
specified later. Let A be a set of integers and denote by \A\H the size of a largest
subset of A not containing a solution of any of the equations

4) Xr+ x2+ ...+x, = Ixl+1, /=2,3,..., H

in distinct integers xr,x2, ..., xI+1. Let gH(«)= min WA\H where the minimum is
taken over all sets A of size n. Then, clearly,

(5) g(n) & max min {H +1, gH(n)}.

Thus it will suffice to work with gH(n) and subsequently show that a suitable choice
for H will yield the theorem.

We formulate in § 2 a number of lemmas. The first five of these are adaptations
of similar results established in [4]. We do not present proofs of these lemmas here
since the arguments, although differing in detail from those in [4], do not involve any
new ideas. The sixth lemma is a special case of a result proved in [2]. In § 3 we give
the proof of the theorem.

§2. Some lemmas. Lemma 1 Let A={al,a2 ..., a,} be a set of positive
integers and suppose there exists a positive integer g such that at can be written as
ai=hig+ri where \r-\<dpH. Then, if R={ly, ..., m}, [W|HE|| A|H.

Lemma 2. Given integers 0< < a2<.ee<an, anis 3<%)", there exists a number
g<a,, such that ai=kiq+ ri where \rt\<ql2H and rtArj unless i=j. Further-
more llax,a2, ...,aJ hS||/-i, ...,rn\H.

Lemma 3. Given a set of n integers ..<anand a prime g”~2H which
does not divide anyof the numbers qt or at—aj then there exists an integer t, Ist”~ q—1,
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such that for TLW,n/2H] of the numbers at we have tat=hiq+ri, 0~-r*qjH and
r~rj if 1Aj. Furthermore, if the distinct remainders are denoted by bl,b2,
we have \\ak,a2, ..., h, ....,bJH.

Lemma 4. Let 0<al<a2< ---<an=u'154>1. Then there exist RS
~bm2n(logri)2H suchthat wné[u/44d] and \\at, a2, ..., a\s LLiby, b2, ..., bm\H.

Lemma 5. Let O<al<a2< Then there exist integers 0
2na n1 . .
<bmS — \og2an where m=[2jj\ and Iki, a2, ..., aJHS||£i,b 2, bm\H.
Lemma 6. Let B, sand N be positive integers satisfying (H, B)= 1,s=AHi(B—1)2,
A=.S4—1. T7ren ilrerc exists a partition of {1,2,..., N} into s sets Ax, A2, mm As

such thatfor each I, 2S /s=//, andeach i, 1si”™s, nolmembers of A have arithmetic
mean in At.

8 3. Proof of Theorem 1. Let A= {ax, a2, ..., a,}, O~a”~a”"...<a,,, be asetof
n integers. By Lemma 2, we may suppose that an"2>(2H". By Lemma 5, there exist
integers 0<bl<b2<...<bm, m=[n/2H], suchthat bm*2n2log2a,,<22%2 and such
that \\a2, a2, ..., a,\H™M\bx, b2, ..., bmdH. By Lemma 5, there exist integers

3/r2
. . — N\
0 <V ik, K= &ZHl’ such that ck~”2m2log2bm H log2n. If we choose
H< |/||1/3 we find that ck”~k3. By Lemma 4, there exist integers 0<r/l<c/2<...-=4r,
| K
tfij dr—6jj 0og k)2 and such that ||cx, c2, ..., aJ h~H , d2, ..., dr\H. One

finds that the numbers d2,d 2, ...,dr are in the interval Choose

B in Lemma 6 to be the least prime exceeding (3n(log n/2A)V4+ land let N=Bi—1
Then the numbers d2,d2, ..., drlie in the interval [1, JV], Our eventual choice for #
will be such that H<B and hence that (A, B)= 1 One of the sets Alt A2, ..., As

obtained via Lemma 6 contains asubset B ofat least j ofthe numbersd2,d2, ...,dr,
so that MM/~ ||jBljh —™ ]+ Choose H= |y n ¥13(log n)213]. One then finds, after

some routine calculations, that |[*-|"A+1. The desired conclusion now follows
from (5). Actually, we have proved the slightly stronger result that g(n) >
> ~ nl13(log n)213 if n is sufficiently large.
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3K2DECOMPOSITION of a graph

A. BIALOSTOCKI and Y. RODITTY (Tel-Aviv)

1. Introduction
Graphs in this paper are finite, have no multiple edges and loops.

Definition 1. A graph G—G{V,E) is said to have an fA-decomposition if it
is the union of edge-disjoint isomorphic copies of the graph H.

Necessary and sufficient conditions for A -decomposition have been determined
mostly for the complete graph Kn, see [1, 2], but also for complete bipartite [2] and
complete multipartite graphs [2, 5]. However only for particular graphs #. Recently
Y. Caro and J. Schénheim considered {-decomposition of a general graph where
A is 2K2or P2 (two-bars or a path of length 2). This problem was completely solved
[3, 4]. This paper determines the graph G which have 3/~-decomposition. It is proved
that the necessary conditions are also sufficient excluding a list of 26 graphs.

2. Preliminary results

The following two conditions for G=G(V, E) to have a 3/~-decomposition
are obviously necessary:

(1) E(G)= 3k,
(2) deg (v)™k, for all vEV(G).

By a simple computation one could easily see that (1) and (2) imply |F|&6.
In the course of this paper we shall deal with the sufficiency problem.

Definition 2. If A is a subset of vertices of the graph G(V,E) then deg”D)
will denote the degree of v in the graph induced by HU {?;}.

Definition 3. Let G~G(V, E) satisfy (1) and (2) for a certain k. Denote
Vi={wev(c), deg (v)=k}, and its cardinality by a.

Definition 4. Let G=G(V, E) be a graph and A4 a subgraph of G. Denote
by G\H the graph whose set of vertices is the same as that of G and its set of edges
is the set E(G)\E(H).

Definition 5. Let G=G{V, E) satisfy (1) and (2) for a certain k. Define
X—2 degK, (v), Y— 2 degKl\y, (v), where Vxis as in Definition 3.
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Theorem 1. Let G~G(V, E) satisfy (1) and (2) for k. Then,

@) X N 2(ot—3)fc
(b) asS 6, /orall K
(c) aS3, Jorall k™ 7.

Proof. Summing degrees in G implies

(3) X+Y=<xk.

Counting edges implies

(4) N+Y N3K,
or
4" 2r+2F"6/c.

Subtracting (4) from (3) implies (a). Subtracting (3) from (4") implies
(5) Y S(6—a)k.

Stie Y is a non-negative integer, a6 for all k, and (b) is proved. By definition
orx,

(6) X a(a—l).
Substituting (5) and (6) in (3) we obtain:

@) (6—a)k + a(a—1) Lrak,

or

(70 a2—a—2otk+ 6k is 0.

(8) Substituting a= 6 in (70 implies K si 5.
9) Substituting a =5 in (70 implies k= 5,
(20) Substituting a =4 in (70 implies fcs 6.

Hence k==7 implies a”~3. Thus (c) is proved.

3. Main theorem

Definition 6. Ex (k) will denote the set of graphs satisfying (1) and (2) for k,
but having no 3//-decomposition.

Definition 7. Ex (k) will denote the set of graphs which satisfy (1) and (2) for
k + 1and whose edges are the disjoint union of 3K2and some element of Ex (k).
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Definition 8. Exx (4) will denote the set of graphs which satisfy (1) and (2)
for £=4 and contain K5as a subgraph.

Theorem 2. (@) For k—2 and £>3, Ex (E+I1)cEXx (£),
(b) Ex (4)c WUrR)UEXx(4).

Proof. Let G=G(F,£)EEx (£+1). By Theorem 1 (b), O”aé6. We shall
deal with the various cases of a.

Case 1. a=6. Theorem 1 (a) and (4') imply X=6k and F=F X Moreover
G QK 6. We shall introduce here the only graphs which satisfy (1) and (2) for various
values of £E+1. For k+ 1=3 we obtain the following two graphs:

For £+1=4 we obtain the following graph:

and for £+1=5 we obtain K6.
One can easily see that none of the listed graphs belongs to Ex (3), Ex (4), Ex (5),
respectively. Hence, the case a=6 s settled.

Case 2. a= 5. Let V1={v1,v2,v3,vi,v5. We shall deal with the various cases
of kK+1.

3X5
Let £+41=3. Since m is not an integer, we may assume without loss of

generality that there is an edge (vx,x) where Fx and x(EFx. By Theorem 1 (a)
there are at least six edges in the graph induced by Fx. Since degvt (i'’)=2 there are
at least four edges in the graph induced by FjXI~i} and one can find there 2K 2.
Adding the edge (vt, x) to 2K2we have found 3K2as a subgraph of G. Consider now
the graph G \3 K 2 which has six edges and the degree of its vertices does not exceed 2.
Since GEEXx(£+1), G\3K2£Ex(k). Hence GE£EX(£).

Let £+1=4. If T=0 then K&zG and we are through. Otherwise, we apply
the same arguments as for £+1=3. Without loss of generality, there is an edge
(W, x),x$V 1. By Theorem 1(a) there are at least 8 edges in the graph induced by Vx.
Since degpi (r-~é3, there are at least 5 edges in the graph induced by FiXI"}.
One can see that G contains 3K2 obtained by taking (r™, x) and 2K 2 from the graph
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induced by G\3K2 has 9 edges and the degree of its vertices does not
exceed 3. Since GE£Ex (fc+ 1), G\3K«EEXx (k). Hence GEEXx (k).

Let k+ 1—5. By Theorem 1 (a), X"~20. Hence the graph induced by Vx is
K5. Take € Vy then there exists x~V1 such that {r\,x) is an edge of G. Now
taking (»n x) and (y2, v3 and (vt, v6) we certainly obtain 3K2. G\3K 2 has 12 edges
and the degree of each vertex does not exceed 4. Since GEEX (k + 1), G\3K2EX (k).
Hence, GE€EX(&).

By (9), k+ 1<6. Thus Case 2 is settled.

Case 3. oc=4. Let Vx= {vl,v2,v3,vi}. Following (10), obviously we have
3sk +1s6. Then, the graph induced by Vxhas 3, 4, 5 or 6 edges [Theorem 1 (a)],
and it is one of the following:

If k+1=6 the only possible graph is H1.

If k+ 1=5 the possible graphs are and H2.

If k+1=4 the possible graphs are Hr, Hz, H3, and 4.

In any of the above cases we choose {(®Is x), (v2,y), (y3, v4}, where X, yi+V1,
to be the set of edges of 3K2. An easy computation shows that such a choice is
always possible.

If k+\—3 the possible graphs are H3, H2, H3, 44, //5, He or ff7.

If the graph induced by Vr is # 4, H2 or H3 we choose {4, v2, (v3, vt), (X, y)},
where X,y $Vx, to be the set of edges of 3K2.

Ifthe graph induced by V+is Hi, H& //60or // 7we choose {(W4, x), (v2,y), (y3, F)}
where X,y $Vx, to be the set of edges of 3K 2. Again, such a choice is always pos-
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sible. Since G'GEx (c+1) then G\3KZ2£Ex (k). Hence G<fEx (/<. Thus the case
a=4 s settled.

Case 4. a”3. In order to prove this case, we shall prove the following state-
ment :

Let G—G{V,E) be a graph satisfying (1) and (2) for k+ 173. Then we can
find 3K2in G. Moreover, if there exist a,b£V(G) suchthat deg (a)é3 or deg (b)=3
then a, beV(3K2.

Proof. The only graph that does not contain 2K-, are K3 and a star. But K3
and a star do not satisfy (1) and (2) for any k. Hence our graph contains 2K2. If
there are a,b£V(G) such that deg (a)S3 or deg (b)s3 then there exist vertices
x,y~a,b such that (x, a), (y, b)EE(G). In any case we shall take 2K2 as (x,a)
and (y, b). Letzlt..., z,, (nw?2) be the vertices left in G. If there is any edge (z;, zj),
we are through. Otherwise all the vertices zt, iV I, ...,n are adjacent only to
{a,b,x,y}. Let G2=G2(V2,Ej) be a graph such that V2={a,b,x,y} and
Ea={(s, ) .G\s, t"V2, (s, t)™ (X, a),(y, b)}. Denote R=\E(G2\. Then obviously
0~R~4. Denote by y(a) and y(b) the degrees of a and b in G2, respectively. Then
OSy(a), y(b)S2. If there exist edges (z,,a), (zm x) for z,~am [or (zt, b), (zmyy)
where zj”znj then we shall choose the set of edges of 3K2to be {(z,, a), (zm, x), (b, y)}
[or {(z,, b), zmyy), (a, x)}]. Otherwise, without loss of generality the possible G\G 2
graphs are:

Then, in cases A and B either the vertex a or the vertex b has degree at

least ~ N ~+V where y is either y(a) or y(b). Hence if G satisfies (2) then

3(k+1)— which implies k + 1~ R —2y. Using the definitions of

and y one can easily see that the last inequality implies k + 1<3 which is impossible.
Thus, n oneof these graphs satisfy (2) which contradicts our demands in the statement.

In the cases C and D we have fc+1 ~ deg(a) é 3(k+1)—3—-+y where y=y(a) and
R—v4-3
G satisfying (2). The last inequality implies 2(/c+1) S 8+3 —y, or k+ 1 - .

Again using definitions of B and y we obtain that k +\<3. Thus, these graphs do
not satisfy (2).
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We note that in case \V(G)|= 6 we can also have that G \G 2 is of the form

Calculations for a or b as above show that k+ 1<3. Hence our statement is proved
in all cases.

Now, returning to the case a2=3, the statement guarantees the existence of
3K2in our graph. In order to complete the proof of the theorem, we have to point
out, in each case of a, which edges to choose for 3K 2.

For a=0 the statement ensures us that there exist 3K2in G. For a=I| again
we have 3K2in G, but since there is a vertex tlsuch that deg (b)=3 we choose the
3K2such that V(3K2.

For a=2, there exist and t2 vertices in G such that deg(b)s3, and
deg(t2s3. We take 3K2 such that y, REV(3K2. If GTEx(7c+1) then
G\3KZEx (k), implying G€Ex (k) and we are through if a=0, 1, or 2.

Let a=3. As before we define V1= {ry, v2,ry}. We shall deal with the two
cases X=0 and Jsl. In the former case there exist x,y, zE V(G)\Fj, xXyXz.
We choose the set of edges of 3K2to be {(by, x), (v2,y), (v3, z2)}. Hence we can find
3K2such that FjCF(3A'2. If X~ | we shall take an edge, say (ty, v2, and an edge
(v3, t) [t exists since deg (f3=i3]. From deg (ry)é3, /=1,2,3 and |E(G)|S9 it is
easy to see that there must be vertices u, wEV (G)\VtU{/} such that (u, w)EE(G).
Then we shall choose the set of edges of 3K2to be {(ry, ry), (vs, /), (M, w)}. Thus case 4
is proved and the proof of the theorem is complete.

Using Definition 6 above, it is easy to see that Ex(1)=0. In addition, if
GE£EX(2) then either C3or C5 are subgraphs of G. Hence by checking we obtain:

Proposition 1. Ex (2)= {2A"3, Cb(JK2, KA\JK2U P2, K3U3K2, KSUP3}.
Using Theorem 2 and Proposition 1 we obtain:

Proposition 2. Ex (3) consists of thefollowing graphs:
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Using Theorem 2 and Proposition 2 we obtain:

Proposition 3. Ex (4) consists of the following graphs:

Using Theorem 2 and Proporsition 3 we obtain:
Proposition 4. Ex (5)= 0.

Theorem 3 (Main Theorem). Let G=G(V, E) be a graph such that G is none
of the listed graphs in Propositions 1, 2, 3. Then (1) and (2) are necessary and sufficient
for G to have 3K,2-decomposition.

Proof. The necessity is obvious. By Theorem 2 and Proposition 4 it follows
that Ex (/c)= 0 for all k~5. Hence (1) and (2) are sufficient.
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ON ORBIT SPACES OF COMPACT GROUP ACTIONS

SATYA DEO and P. PALANICHAMY (Jammu)

1. Introduction. If a compact group G acts continuously on a given topological
space X then many local as well as global properties of X are known to pass on to
the orbit space [4]. The quotient map v: X—X/G is a special case of a continuous
closed as well as open surjection f: X—Y in which inverse image of each y€Y
is a compact space i.e., f is an open proper map. Therefore, any topological or al-
gebraic topological property which is preserved by such a map f will obviously be
passed on to the orbit space X/G from the space X. For example, topological prop-
erties like paracompactness, normality, local compactness, local connectedness
etc. are passed on to the orbit space X/G from X. Observe that the orbit
map v: X—X/G is closed simply because the group G is compact and therefore if
the group is non-compact, none of the above mentioned properties may be passed
on from X to the orbit space X/G. Contrary to this, even if the group G is assumed
to be compact the algebraic topological properties may not be passed on from the
space X to the orbit space X/G. As a matter of fact, some reasonable restrictions have
to be imposed not only on the group G but also on the transformation group (G, X)
for the validity of such results. For example suppose, X is of finite cohomological
dimension over K=Z, Z, or Q and G is a compact Lie group acting continuously
on X with finitely many orbit types. Then X is acyclic over K implies the orbit space
X/G are also acyclic over K [10]. Under similar conditions if X is locally compact
separable metric and AR (resp. ANR) then so is the orbit space X/G. These are some
of the deep results which are especially true for the actions of compact Lie groups.
The objective of this paper is to study the cohomology eigenvalues of a given equi-
variant map. Suppose X is a G-space and f: X—X is an equivariant map. Let
f: X|G—~X|G be the induced self map of the orbit space. If H*(X, K) denotes the
Alexander—Spanier cohomology with compact supports then for any field K,
f*: H*X,K)~H*(X,K) and f*: H}X/G,K)~H}(X|/G,K) are two opera-
tors. With this notation our main result is.

THEOREM 1. Let X be a locally compact space and G be a compact finite dimensional
group acting continuously on X. If f: X—~X is an equivariant map, then any eigen
value of f*: HY(X|G, K,)~H}(X|G, K,) is also an eigen value of f*: HX(X, K,)—~
A (X, K,) where K, is a field of characteristic zero and H} denotes the reduced groups.

The first result of above kind was proved by Skjelbred [12] when the group G
is a compact Lie group and the space X is a paracompact Hausdorff space. Skjel-
bred’s result is a far reaching generalization of Oliver’s proof of the Conner conjec-
ture [10]. The above result of ours is interesting for two reasons. First of all, in the
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theory of topological transformation groups the class of locally compact spaces is
not only as good as that of paracompact spaces but is also an independent class
[9]. Secondly, for such a class of spaces the result is proved not only for compact
Lie groups but also for any finite dimensional compact group — a more general
situation. The final section is devoted to the comparison of the orbit map for a
compact group and a general open proper map.

The authors are thankful to the referee for his kind suggestions which improved
the exposition of this paper.

2. Preliminaries. The functor H* (., K0) stands for the sheafcohomology functor
of the constant sheaf KOwith compact supports. Here KOis a field of characteristic
zero. Since the compact subsets of a locally compact space X form a paracompac-
tifying family of supports, the groups H* (X, K0 are isomorphic to the Alexander—
Spanier cohomology groups. Since the cohomological dimension is a local property
dimKO(X) with respect to H* is the same as with respect to H*. Unless otherwise
staled, our space X is assumed to be offinite cohomological dimension over the ground
ring under consideration. We also recall that if a compact group G acts on a space
X and N is a closed normal subgroup of G then G/N acts on X/N in an obvious
manner and it is easily checked that if G acts on X with finitely many orbit types
then so does G/N on X/N.

Suppose X is a G-space. Then the set M(G, X) of all equivariant maps from X
to itself is a monoid and this monoid acts on H*(X, KO or H* (X, KO on the right
as follows: For aEH*(X,K0) and fEM(G, X), let a/=/*(a). Similarly if/ is the
selfmap on X/G induced by/then M(G, X) also acts on H*(X/G, K0 or H*(X/G, K0)
as follows: For atH*(X/G, K0 and fEM{G,X) let o/=/*(a). As a matter of
fact if / is any monoid and there is a homomorphism from / to M(G,X) then
both H*{X, K0) as well as H*(X/G, K0 can be regarded as/ -modules in an ocbvious
way. Suppose M is a/-module. Then by a simple subquotient of M we mean a
simple /-module isomorphic to M 2M1where Mxand M2 are /-submodules of M.

3. A more general form of the main theorem. First of all we show that Theorem 1
is a special case of the following.

Theorem 3.1. Let X be a locally compact G-space offinite cohomological dimen-
sion over KO where G is afinite dimensional compact group acting continuously on X
and B be a monoid of equivariant self maps of X. Then every simple subquotient of
the RB-module H*(X/G, KO is a simple subquotient of the R-module H*(X, Kn).

To see how Theorem 1 follows from Theorem 3.1 let us consider the monoid
I ={,1,12 ees} of equivariant self-maps of X generated by/. Now if aEA
is an eigenvalue of /*: H*{X/G, KO)-~H*(X/G, K0 then there is a one/imensional
subspace, say K(x) of H*(X/G, K0 generated by an eigenvector x of/*. This sub-
space is clearly invariant underf and so itis a /-module. Clearly it is a simple sub-
quotient of H*(X/G, K0. Hence by Theorem 3.1, there exists /-submodules, M x
and M of H*(X,K0 such that M/M1—KO0(x). This means there is a vector
xfiH*(X, K,,) such that KO(x") is invariant under /, i.e., invariant under f*. Now
let g: KO(x)-*KO(x") be a/-isomorphism then f*(x)=ccx means g (/Hx))=g(a(x)) =
= ccg(x). Butsince g is a /-isomorphism g/*=f*g and we have f*(g(x))=a(g(x))
i.e.,/*|A0(x,) is multiplication by a. Hence a is an eigenvalue of/* also.
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4. Proof of theorem 3.1. For convenience the proof of Theorem 3.1 will be
completed in four steps depending upon the nature of the group G. The four cases
are as follows:

(i) when G is compact totally disconnected;
(i) when G—S 1 the circle group acting semifreely;
(iii) when G is connected simple and Lie
(iv) when G is any compact finite dimensional group — the general case.

General case. First of all we show that the general case follows from (i), (ii)
and (iii). As a matter of fact (i) implies that the theorem is true for any finite group G.
Now we remark that if IVis a closed normal subgroup of a compact group G such
that Theorem 3.1 is true for N as well as G/N then the theorem is true for G itself.
Next, suppose G is a compact Lie group and GO is the component of identity. Then
G/GO0is finite and therefore the theorem will be true for G ifit is proved for any com-
pact connected Lie group. Further, if G is abelian then it is a torus, say T"' and by
our remark it suffices to prove the theorem for S 1 Now because there are only finite
number of isotropy subgroups, we can assume that there is a finite group N of S1
which contains all of the isotropy subgroups. Since S¥N ~S1 acts semifreely
on X the theorem is true for AYA by (ii) and therefore by our remark the theorem
is true for S1 On the other hand, if G is non-abelian then the theorem follows by
induction on dim G, our remark and (iii). Thus the theorem is proved for any com-
pact Lie group G. Finally, suppose G is any compact finite dimensional group acting
continuously on a locally compact space X. Then there exists a compact totally dis-
connected normal subgroup H of G such that G/H is a Lie group [9]. Therefore, the
proof of the theorem at once follows from (i) and our remark.

Proofwhen G is compact totally disconnected. It is a standard fact that when G
is compact totally disconnected then given any neighbourhood of the identity e of G,
there exists a closed normal subgroup G; of G contained in the neighbourhood such
that G/Gi is a finite group. Since the intersection of all open neighbourhoods of e
is {e} we find that intersection of all such closed normal subgroups G, of G is also
{e}. If GidGj we let ntj: G/G;—G/G, be the homomorphism induced by identity
map of G. Then we have an inverse system of finite groups G/G; and homomorphisms
Tdj whose inverse limit is the group G with nt as the canonical map. Similarly, we
have an inverse system of locally compact spaces XjGi with bonding maps fp. X/Gt>
-+K/Gj if GjCGj- whose inverse limit is the space X with obvious orbit maps
XAX/GT as the canonical maps. In fact, it is easily seen that these two inverse sys-
tems give rise to an inverse system of transformation groups (G/G;, X/Gt) with
obvious bonding equivariant maps whose inverse limit is the transformation group
(G, X). Now, if we consider the orbit spaces we find an inverse system in which the
induced bonding maps are homeomorphisms so are the canonical maps A/G~"
—(A/G))/(G/G;) making various triangles commutative, which shows that XjG m
Fs(im (X/GDKGIGD. If we apply any cohomology functor Hp to this inverse system
with inverse limit X/G then we find that

(i) HP(X/G) ~ lim HfiX/GdKGIGd).
If Hp stands for Alexander—Spanier cohomology and Knis a field of characte-
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ristic zero then we know that there is a canonical isomorphism induced by orbit
map
LLL ((X/OXC/B,X KO « [L (X/0,, kal®°,,

where [Hp(X/Gi, KO)]JGG means the fixed point set of the group G/Gt; the action
of the group G/Gf on the group L, (X/Gi, KO) is the one induced by the action of
the group GIG, on the space X/Gi. But one can verify that

(i) hm [LY, (X/Gi, KO]GG~ [LY, (X, KQ]G
Then, by combining (i) and (ii) we get

(hi) L (X/G, KO ~ [LL (X, Ka]G
Also, observe that

(iv) [HUX, KOf ¢ Hp(X, KO.

Then, by (iii) and (iv) we have the following

Proposition 4.1. Let X be a locally compact space and G be a compact totally
disconnected group acting continuously on X. Let B be a monoid of equivariant self-
maps of X. Then every simple subquotient of the § -module H*(X/G, K0 is a simple
subquotient of the R-module H* (X, KO0).

Proof of Theorem 3.1 when G =S 1 Let XGbe the Borel space of the G-action.
Then in the fiber bundle X-*XG~B G, XGis the total space and BGis the classifying
space of the principal G-bundle. For further details we refer to [1, 5, 11]. Because
G is acting with finite number of orbit types, by our remark, we can assume that G
is acting semifreely. First let us see the following.

Proposition 4.2. Let G be a compact Lie group acting semifreely on a locally
compact space X with fixed point set F. Then there is a long exact Mayer— Vietoris
sequence of theform

— H?(X/G) - Hp(F)®Hp(XG - Hp(FG~ ....
Also, when F is nonempty, there is a reduced Mayer—Vietoris sequence
... — H*(X/G) - H*(F)(BH*(Xg) - H*(Fg)
Proof. Consider the following commutative diagram

. hi(xg, fg) - h:(xc) - h*(Fg)-"...
!** j** Iﬂ*
... — H*(X/G, F) - H*(X/G) - H*(F)
and note that n: Xa-+X/G induces isomorphism n*: H*(X/G, F) —H*(Xa, F0)
because the action is semifree and the supports are in the family of all compact
subsets of X. Now the Mayer—Vietoris sequence as well as the reduced Mayer—

Vietoris sequence can be deduced from above diagram by the standard arguments
of generalized homology-cohomology theories.
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Now we prove

LemMMA 4.3. Let G=S' be acting semifreely on X with nonempty fixed point
set F. Let ¢ be a monoid of equzvarzant self- maps of X. Then every szmple subquotient
of any of the three $-modules HY (X, K,), H*(Fg, K,) and HX(F, K,) is a subquo-
tient of the g-module HY(X,K,).

PRrooF. Every simple subquotient of the #-modules H¥(F,K,) and H *(FG, K,)
is a subquotient of A} (Xg, K,) follows from H(Fg, Ko)=H(F, Ko)®H (Bg, Ko)
and the restriction homomorphism H X (XG,KO)—»H (Fg,K,) is onto in high
degrees.

The fibre bundle X—~X;—B; gives a spectral sequence converging to
HY(Xg, K,) with E= ceU(BG,H (X, K,)). Hence every simple subquotient of
the F-module A¥(Xg, K,) is a simple subquotient of the #-module HX(X, K,).

COROLLARY 4.4. If F# @& then Theorem 3.1 holds for G=S".

PrOOF. The reduced Mayer—Vietoris sequence shows that every simple subquo-
tient of AX*(X/G, K,) is a subquotient of BX(Fg, KO)EBH*(XG, K)®H}(F, K,).
By Lemma 4.3, it is a subquotient of the #-module #*(X, K,).

COROLLARY 4.5, If F= then Theorem 3.1 holds when G=S".

ProOF. When F= @, G=S8"' is acting freely and there is an isomorphism
H}(X/G, Ky ~ H*(XG,KO) The spectral sequence of the fibering Xg—Bg; with
E\=%xn(Bg, HY (X, K,)), Ef=HiCP~)QH'X,K,) for G=S' converges to
H}(X/G, K,). Now to complete the proof it is enough to show that every simple
subquotient of the #-module E./K, (where K,CE%® is the field of coefficients)
is a subquotlent of HX(X, Ko) Clearly for r=1, b=0, every simple subquotient of
E® is a subquotient of H(X, K,). Hence, for r=2, every simple subquotient of
d,(E,) is a subquotient of H} (X, K(,)—’,Z0 HY%(X, K,). For a>c¢, c¢= the cohomo-

logy dimension of X over K,, EX=0. It follows that for a=>c¢, each simple sub-
quotient of E® is a subquotient of H} (X, K,). E® and E3*%° as g-modules are
isomorphic for a=>0 and so the last statement is valid for 4=0. It remains only
the module E%/K, wich is contained in H?(X, K,) and the proof is complete.

Proof of theorem 3.1 when G is connected, simple and Lie. In this case we shall
use the fact [12] that for such a group G there is a compact G-space Z which has the
property that if H is any closed subgroup of G then the orbit map Z—Z/H induces an
isomorphism H*(Z/H,Z)~ H*(Z,Z). Furthermore, Z isacompact G —CW complex,
by a result of Matumoto [8] and G has no fixed points in Z. The G—CW structure
on Z defines a finite cell complex structure on Z/G [7]. For each cell ¢ of Z/G, choose
x€Z such that G(x) is in the interior of ¢, and also set G,=G,. The cellular system
(G.) will be used in the Borel construction. Let X and Z be two G-spaces and let
XXZ be a G-space with diagonal action. Then pry: (ZXX)/G—~Z/G,
pra: (ZXX)|G—X|G are projections of orbit spaces. The fiber for pr; is X/G,
and the fiber for pr, is Z/G, for x€éX and z€Z. Now apply the Leray spectral
sequence to the proper mappings pr, and p, of the following commutative diagram
(the vertical arrows are induced by © where n: Z—S* is a projection map on the
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second factor and “S1=[0, 1]/{0, 1}):
ZIGx - (ZXX)IG X1G

1" i1
S1 - SI1IX(XIG)-~* X/G.

Since ninduces cohomology ismorphisms of the fibers, we have H*(S 1) ¢pH* (X/G) «

%H*((ZXX)IG) for any coefficient ring. Now it is clear that this is an isomorphism
of /-modules. For the mapping prx: (ZXX)IG-*Z/G we obtain a spectral sequence
defined by the skeleton filtration of the cell complex Z/G with
£1="1(Z/G, H*(X/GQ) and converging to H*((ZXX)/G)b 11*(S)® HCX/G).
For reduced cohomology, the spectral sequence E with El1= €*<cll(Z/G, H*(X/GC K0
converges to H*(SD<S>H*(X/G, KO). This is a spectral sequence of ./-modules.
A simple subquotient of the ./-module H*(X/G, Kn) must be a simple subquotient
of Er and hence of some H*(X/GC, K0). For each ¢, G&G and Z is without fixed
points and hence by induction on dimG it follows that Theorem 3.1 is valid for
actions of Gc. Flence each simple subquotient of N *(X/Gc, KO is a subquotient
of M*(X,K0 and this completes the proof of Theorem 3.1 for the case when G is
connected simple.

5. Open proper map and orbit map. As pointed out in the introduction the orbit
map Vv: X-+X/G by a compact group is a continuous closed as well as open sur-
jection such that the inverse image of each point is compact. In other words the orbit
map Vv is an open proper map. The converse can not be obviously true. A general
guestion which can be asked is the following: What are those topological properties
of X which are passed on to the orbit space X/G but are not in general, preserved by
an open proper map f: X-+Y.

We do not know the answer to this question. However, the very fact that the
inverse image of each point in the case of the orbit map v: X-+X/G is not only a
homogeneous space but also a coset space makes us believe that there should be a
number of topological properties which should be preserved by the orbit map and
not by an open proper map. Here we wish to point out that if X is completely regular
and f: X-+Y is an open proper map then so is Y [6]. Therefore, if X is completely
regular and G is compact then the orbit space X/G is also completely regular. But the
proof of the latter fact given by Palais [1] using Haar integral is comparatively
extremely elegant.

Recall that a space X is said to be functionally Hausdorff if given any two points
X, YEX there exists a continuous real valued function /: A—R such that f(x)=0
and /00=1. Using Haar integral of the compact group we prove the following.

Theorem 5.1. Let X be afunctionally Hausdorff (completely Hausdorff) space
and G be a compact group acting continuously on X. Then the orbit space X/G is also
functionally Hausdorff.

Proof. Suppose G(x) and G(y) are two distinct orbits of X representing two
distinct points of the orbit space X\G. Fix a point xnfG{x) and for all yEG(y)
find a continuous function fy: X~-1 suchthat fy(x0)—0 and f(Vy)>3/4 for each
point of a neighbourhood W of y. Select a finite number of neighbourhoods.
Wi, ..., Wnwhich cover the compact orbit G(y). Then the function /: T-*R de-
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fined by f=sup {f,,, -.-»f;,} is such that f(x)=0 and f(G(»))>3/4. Now vary-

ing x€G(x) we can find a function f:X->R such that f(G(x))<1/4 and

i (G(»))=3/4. Now define a function F: X—R such that F(x)= f f(gx)dg. Then
G

F is continuous and constant on orbits of X. Therefore /* induces a continuous
function F: X/G—~R such that

FG) = [flendg < [fendy = F(G)
(e G

Now it is easy to verify that X/G is functionally Hausdorff.

We do not know whether or not functionally Hausdorff is preserved by an open
proper map.

There is another crucial difference between the orbit map by a compact group
and an open proper map. We observe that, in general, the restriction of a closed map
to any subset 4 of X, unless of course A itself is closed, is not closed and therefore
under a proper map hereditary properties like complete normality may not be pre-
served. But, if 4 is an invariant subset of X then v: A—A/G is a closed-open sur-
jection and therefore we have the following

THEOREM 5.2. Suppose P is a topological property which is invariant under a closed
or open continuous surjection. If G is a compact group acting continuously on a space
X such that each subspace of X has P then each subspace of the orbit space X|G also
has P.
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ON SUMS OF LEBESGUE FUNCTION TYPE

P. VERTESI (Budapest—Edmonton)*

1. Introduction
1.1. Let X={xk}, n=1, 2, 17k~ n, be a triangular matrix where
(1.1) -1 SXm< <...<XInS' 1 (2= 1,2,..)).

If, sometimes omitting the superfluous notation

1.2) a>(x) = co,,(X ’X):kli](X_Xk) (n=1,2,...)
then -
(1.3) Ik(x) = Ikn(X, x) = GD(xk)(x—xk). (k=1.2,..,n)

are the corresponding fundamental functions of the Lagrange interpolation. The
definitions of the Lebesgue constant and Lebesgue function are

(1.4) A(x) = A,X X) = *]£J| \IkeOl, 1, = /1,,(X) = _{Qgél A,,(x),

respectively. As it is well known, they play a fundamental role in the study of the
convergence and divergence behaviour of the Lagrange interpolation.
Here we quote three results which, in certain sense, generalize previous statements

of G. Faber [1] and S. Bernstein [2].
In 1958, P. Erd6s [3] proved as follows:

Theorem 1.1. Let s and A be any positive numbers Then, considering an arbitrary
matrix X, the measure of the set in x (—°°<x< °°) for which

(1.5) A0 ™ A if /iS nO(A, e)
is less than e.
The following result, proved recently by P. Erdos and P. Vértesi [4], states more.

Theorem 1.2. Let r>0 be any given number. Then for an arbitrary matrix X
there existsets H,,= H,,(8, X) ofmeasure and n=r]{a),r\>0 such that

(1.6) m(x) > //Inn if x€[—L 1]\#,, and nS /D).

* The author was supported by funds from the National Sciences and Engineering Research
Council of Canada.
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In a very recent paper [5] | proved that rj=cE. More precisely

Theorem 1.3. There exists a positive constant ¢ such that if £={e,} is any
sequence of positive numbers then for an arbitrary matrix X, there exist sets
/1,,=11,,(E, X) ofmeasure =snfor which
(1.7) A,(x) > ce,Inn if x6[—1,1]\a, and n—1,2

As it is easy to see the order of (1.7) is the best possible (take the Chebyshev
nodes cos [{2k—1)n:(2n)-1], k=1, 2, ..., n).

1.2. Let us consider now the fundamental functions of Hermite—Fejér inter-
polation having the form

(1.8) Br(X, x) = (x-x B I{X, x) (k= 1,2, .. n).

In their paper [6], P. Erdés and P. Turan proved the following deep result.

Theorem 1.4. By whatever choice of the matrix X we have the inequality

(1.9) _max 1 ] Wkn{X, x)| (Inn- ckiniInn).

Here and later on c, ck, c2, ... denote positive numerical constants. In the same
paper they conjectured:

“Probably also the inequality

(1.10) / {Jzzi TbKr(X, *)|3dx > c2M -

n
holds or even the inequality

(-1 Z\bkn{X,x)\>c3"

in [—1, 1] with the exception of a set with measure tending to zero with I/n...”
(see [6], p. 224).

1.3. In this paper | am going to give a result which generalizes Theorem 1.3,

moreover proves (1.11), actually with the best possible order. | will investigate the
complex and trigonometric cases, too.

2. Results

2.1. Let us denote by H,s(x)=Hns(X, x) the uniquely determined Hermite
interpolatory polynomial of degree ~ns—1 with

(2.1) Hj,>(xk) = dkni (1 —k~ n, O siSs-1).
Here {i4,,-} are fixed real numbers, s is a given positive integer. This polynomial
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can be written as follows

@2 Ha@ = 2 3 duih(X, )

where the fundamental polynomials /,,; of degree exactly ns—1 fulfill the conditions

s 4 0 if j=id, Os)=s—1, lL=t=n,
@ W =la, ¥ jui Lmrtzan
It is easy to see that by (1.3)
x—20)" =B (ox
(2.4) Lins—1(%) = ( 0" lk(x) 1=k =mn).

(s—1)!
2.2. Using this motivation we investigate the behaviour of
(2.5) A (9)(x) = 4,(5) (X, X)d=°fk§1 x—x[ R (=12,..)
for a fixed positive integer s. If s=1, 4,(1)(x)=4,(x) is the Lebesgue function
(see 1.6); for s=2 we obtain that 4,(2)(x)= Z"' [Brn (x)| (see (1.8)).
k=1
The first statement is

THEOREM 2.1. If s=1 is a fixed integer, there exists a constant c=c(s)=>0
such that if e={e,} is any sequence of positive numbers then for arbitrary matrix X,
there exist sets H,=H,(¢e, X,s) of measure =g, such that

(2.6) LD vt

n § -
n.\ 1

if x€[—1,1\H, and n=1,2, ....

2.3.a) Considering the Chebyshev nodes it is easy to see that the order of
(2.6) is the best possible.

2.3.b) If s=2 and ¢,=n(n=1,2,...) weobtain the answer for (1.11). Generally
it is easy to gain the following result.

COROLLARY 2.2. If P,S[—1,1] are arbitrary measurable sets then, using the
above notations, for any X

2.7 [ 2,(8) () dx > (|P,,|—s")cs;%’§ if n=1,2,...
PII

The case P,=P=[a, b] and s=1 was treated by P. Erdds and J. Szabados [7].
If s=2 and ¢,=n, we obtain (1.10).

2.4. Let us see now the corresponding theorem for the complex case. Let
Z={z. =exp (10)}, k=1,2, ..., n=1,2, ... with

(2.8) 0=10 < Ogr = o=10 =< 2ngmnm—=aly2. .
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be a triangular matrix on the unit circle line r={z; z=exp (iff), O"0-=27r}. Let

(2.9) Ik(z) = L(Z,2)= N o, K=12,..n
jzhk Zjn

be the fundamental polynomials of the corresponding Lagrange interpolation.
Using the previous motivation we investigate
(2.10) A,(5)(2) = A,(8)(Z, 2) = i\tJ_I;L|z-ziI|*-1|/i(z)|, n=12, ..

for a fixed positive integer j.
For s= 1 S. Y. Alper [9] proved that for any matrix Z

2.11 ns no
( ) 8 fn

where A= maxA,(1)(Z, z). A far-reaching generalization is the following
Theorem 2.3. If sS1 i1 a fixed integer, there exists a certain constant

cl= cl(j)>0 such that if £={en} is any sequence of positive number then for an
arbitrary matrix Z, there exist sets Hn= Hn(e, Z, s)czT of measure Se,, suchthat

(2.12) A,,(s)(2) > if rEMC\Hn and n=1,2,....

Considering the nodes zkn=exp (ilkn/ri) we can say that the order of (2.12)
is the best possible.

2.4. Finally let us see the trigonometric case. By (2.8) for the matrix
& = {6k}, k=\, 2, n; n=1,2, ..., we define the functions
. 0-0;
sin
(2.13) W = kn(& B8 [ 277 K=12 .1
J*k sin

(which are the fundamental trigonometric interpolatory polynomials of degree
(n—21)/2 whenever n is odd). Let

1) AOO = AG0)= 2 sint T am, =iz,

We state

Theorem 2.4. If s~ 1 is a fixed integer, there exists a certain constant
such that if e={en} is any sequence of positive numbers then for arbi-

trary matrix 0 there exist sets Hn= H,,(e, 0,s)Q[0,2n) of measure suchthat
214)  A(s)0) N5 og[o, 2n)\H,, and n—1,2, —
' 7 Cle™ ~ ' ” !
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If Ge=2kn/n, k—0, 1, ..., n—1, we obtain that the order is the best possible.

Remark. If n and s are odd, then

1(0) = (2 sin nne) (@13 ftS n)

are trigonometric polynomials of degree (ns—1)/2 having analogous properties to
those of (2.4).

3. Proofs

3.1. Proof of teorem 2.1. We shall use many ideas from [4], [5], and [8]. In
what follows let Jkn—[xI+1 ,, xki,] (k = 0,1, ..., n; n= 1,2, ...) with x0=I1 and

xn+l= —1. If \Jk\~8nZl n~/R we say that the interval is short; the others are

the long ones.

3.2. First we settle the long intervals. As in our paper [8], Lemma 4.4., we can
prove

Lemma 3.1. Let \Jk,\>6nfor a certain k (0<&<#). Thenfor any (In n)~2~sn®
= 1/4 we can define the index t=t(k,n) and the set hkncJkn so that \hkn\=4.v,, \Jkn\,
moreover

3.1) V,,,()IE£ 3f" if x£Jk,\hkn and n=znx

Here wy is an absolute constant, if x£Jk,\hkn then min(|x—xA4, \x—xk+1\)»
—sn\Jkn\-

Now let sn—1/In2n. IfJknis long then for x£Jk,\hkn,
E)*) N x-x,p-L)1F € (sM t-tyrn > infy,

i.e. (2.6) is true. So we obtain that the estimation (2.6) is true for the long intervals
not considering a set HIn of measure & 8/In2n.

3.3. To settle the short intervals we introduce the following notations:

\Jk@K = Nn?0In)) = [xk+i+ gk\JK\ xk- g k\JK\],
lili = Jk(qk —dkn(gq(Jkn)) = dRJ k(gk, O0itS/i,

where 0 N 12, Let zk=zk(gK) be defined by

(?.3) \oon(zK\ = X’r{]]ER/\i)K(X)I' k=01, .., n,
finally let

(3.4) Vi, 3ky = max(x(+1-x*|, [jd+l- x,|), 0 =i,k n,
(3.5) e(Ji, JK = min (|ig+l—x»|, |x*+1-~]), 0Si.tSn.

We state (see [5], Lemma 3.2)
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Lemma 3.2. If \"k,rS.n and gk>0

(3.6) [Z*(X)| + |Z*+i(x)]|

2-4s

if xEJr(gr), QUr,JHS6n and \JIr\*8n,
=it O)=(x- x j- lE(x).

First we remark that

1 .
(3.7) LX) &y L@zl if
Indeed, by definition

0>(x)
m(zr)

Considering that |oi(X)|&]|oi(zr)| and

IL; ()l

r-x t
x—xI

we obtain (3.7). So

x<EJr(qn,

P. VERTESI

then

on(zn s I
€0,,(zZK  \irt

where we used the notation Lkn(s)(x) =

ns 6

i= K K+1.

r-X;

XX \Lt{zn\.

r—Xi\+0,,—Q, A . O

I Zd,, [}

[E4()| + [1*+1(X)|STr [|11(2;)|+|Li+1(zD]]

1 co(zr) ° ) xk-zk xk+1 1
2 o) 0N grocct M@
1 m(zn " Wk -zKs wk+l zk

“ 2 o) zr-xk Wk(ZR T+ o~ x ket

4 w@ " n
- 2 Zfd) I

from where we obtain (3.6) rising that
>1 (xeJk(qk).

3.4,
the index set K

in— U Jin- If >t denotes the middle point of Jk, let k£K,, =

kZKh
Bkn= max {y:

: gk Dk (zk)\+\k-AzK)]

[...1>2 s because of Ik(x)+ Ik+1(x)>-

Now we define q(Jk,) for the short intervals. For this aim let us determine
and the set D'n by \JnSén if k £ K \J k,\>5n if kftK',

def

K f\{0, n), further

and (2.6) does not hold for y},

ykn= min {y: yk~ y S xk and (2.6) does not hold for y},

dkn= max (xk-y k, Bk-x k+1),
(3.8)

gk= q(Ik,) = dK\JK\

Let us remark that (2.6) holds whenever x belongs to the interior of Jk(gK.
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dk Jk Qe
+ F-( " R
Xk+ h7 xk
Supposing that
(3.9) g, = —}—2%? and nS 6,

we get that gk>0 (because /., (i)(xj=0 if js2 and /,()(x*)=1 IMk"~n).
By (3.9) we intend to estimate the measure of the “bad” set (J |/&] (i.e. where

(2.6) does not hold). Let us denote this measure by v,,. Omitting those short intervals

v
for which — we shall prove for the remaining ones
= N _ H N
(3N10) k%Kn [JJ y if n~n2
K 4n

Obviously 3v,,/4S/i,,Svn so if (3.10) holds, then

A .
(3.11) kﬁ<nlnl ?«n if nsn2

3.5. Denoting by (p,, the number of the terms in (3.10), we can reorder the corre-
sponding intervals Jk such that for the reordered intervals M k

\MK n,Inn
(3.12) 2 M1 MKI- 204

if £,,>1008/1nn which we supposed. Here {/,, is defined by

Its r*¢,,, nNnENKk

(3.13) Y=1I | but i%iM «I>é\ (n6iVi),

Nxis a suitable sequence; the dash indicates that we omit those indices k for which
g(Mr,MK<dn (see [5] 3.4 and 3.5, especially (3.19)).

3.6. By the definition of gk we can choose points uinEM in(qin2) for which
(2.6) does not hold (1~t~(pn n~NJ.
If for a fixed n™Nk there exists an index t (I s t= qr) such that

(3.14) As) (W] = 2scfis, Inn

(where ¢>0 will be determined later), by csgln n/ns~172,,(s)(utn) we obtain (3.10)
for this n. Weprove (3.14) for arbitrary n£Nk with suitable t=t(n).
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Indeed, let us suppose that for a certain Nk

3.15) ) um < =" where  am(iMm(gmi2),
Then

. 2sciistl Inm y
(3.16) rZ_i iM j/UsH O ™ - Ir;l1 n-— where miiV].

On the other hand, for arbitrary n™Nx we can write by (3.6) with zk corre-
sponding to (3.3)

[Mr| £ \Lk(up\ S U m r\ 2" [\Lk(un\+\L k+1(un\] =
k=1 A KEKN

\WMT # co@@) s L us-|
S EL @Ky IMrMi|
using that v,"r,,.

By co@z) |Mr|M,

16sn5- 1k~ <Mz M, M *|’
So by (3.12) and (3.13)

. ooz b Mri[M,| _
(3.17) 2o\ KON > el T 21,29 co(zt) | Mr, Mt

IC1 b W \Ar) |, @i 1L MM
16s/ms5-1 =l k=r |.| cO(zt)

co(zn IV |M,, Mil -
ArlooF-iar? iy, VG A +1lnn
16s,s~r=i rl*é  |Mr,Mi|

if c=(448 +329)-1.
suitable t=t(n).

2sc/4+1Inn
neNk
2-224-16sns-1

This contradicts (3.16) i.e. (3.14) is true for any n”~Nk with
So we proved (3.10) and (3.11).

3.7. To estimate |#,,| we write by (3.7), (3.2) and (3.11)

2
tf,,| =s |tfIn|+y e,+ 25, A B if 5 s=n0= max (6, nr, n)

where 2Snstands for the measure of/,, and/,, whenever they are short.
3.8. Now let

(3.18)

1008
0< £, <

Inn

of measure £,. If x€[-1, 1\A,,

Let #*,=#,=£,,[2(n+1)]-1, O«lan, and let us omit the set #,, = kU n
=0
we can write

and Xx£[xJ+1,xj\ (J=\, 2, ..., n—1), by (3.18)
A,L(S)(X) > |x-xHs-1|/)(X)|+|x-x;+1]s- 1])/5+1(x)| ™

ri22)r [""»|+B«Mj|lrd & “ £~ - 4
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If eg. |/0>0 and x£J0(qn), we use that |/Ox)|>1. So the proof is complete
whenever néno0.

Now let nan0. Using the same gn and H,, as above we can write by Xn(x)—1
(n=1,2, ...) and 0<£,"2

eilnn |
Y= x-S ) ns s 1 2n02(n0+H)]s_1in«O

if UnSno0, x€[—1, 1]\4,,; from where we obtain the theorem with perhaps
another constant c.

3.9. Proof of teorem 2.3. Not only the theorem but also the proofis analogous
to the real case. Let now

(3.19) Jkn= [Okn, Ok+1,], (k=10,1,..,n; n=1,2,...) with 0,= 0,+i = 0.
Again, if \JK\-"6,, = n-1/8 we say that Jk is short; the others are the long ones.

3.10. First we state

Lemma 3.3. Let \Jk\>5,, for a certain Kk (0<k<n). Thenfor any (1nu)_2é&
=7?,= 1/4 we can define the index t=t(k,n) and the set hk,cJkn so that \hkn\"
\Jkn\, moreover

(3.20) \lin(eie\ ™~ 3y if dEJkdh kn and n & nk.

Here wi is an absolute constant; if 9(zJkY h kn, then min (J0—0J*, [0 O|t+I*)— \Jknim
Here and later |a|*=min (|a], 2n—]a|), 0&|a|™2n.

This lemma can be proved by the method of [10], 4.3.
If j,,=l/In2n, the argument is similar to 3.2. We obtain that (2.12) holds for
the long intervals not considering the sets HIn of measure é8a/1u2n.

3.11. Let

(3.21) coM = M sin” , C,* 0.
k=1 2
Then
(3.22) Itn(e®) = exp [i(n-1) - ~ ] -———- N g_g > 0~0S 24
2 co'(BYsin—

(see e.g. [10], (4.5)). Now using mutatis mutandis the notations (3.2), we state by

(3.23) [wn(4)] = min |w,(0)], k=0, 1,...,n,

and

(3.24) |/;, 1] = Tax(]0,+1-0*]*, |0,+1-0(*), O~ i, KS n,
(3.25) gif, 1) = min (J0i+1-0*|*, |0*+1—0.M 0Si, ka n,
as follows.
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226 P. VERTESI

Lemma 3.4. If \Sk,r*n and gk>0 then

, , L Qi) A
(3.25) \LK(€e)\ + \Lk+i(ew) 2(4m); (0,((W 1001 ne

0€/r™), e(N,NM1)=<5, and I\~ G,
where we used the notation Lkn(s)(z) = Lk(z) = (z—zK)s~1lk(z).

whenever

Indeed, using the argument of [5], Lemma 3.2, we can write

(3.26) |L,(eil9| & -i-\b,(edll if t=k, fc+l; 9£Jr(q) and né noO.

co(9)

Indeed, |L,(eig
( IL,(eig)] colo

\b,(e"")\, where

. B—B
sin-—-—*

cieer e (9 4 8)

2 2 sinl—
. \e-e,\ . D-0,1% .
sin 5 sin 5 2 sin -+

if n~*n0, from where we get (3.26).)

The remaining parts are analogous to 3.3, considering that \lk(eie)\+ |4+i(eifl)| ~ 1
if 9dJk (see [10], Lemma 4.2.1).

3.12. The remaining parts are analogous to 3.4—3.8. We mention that instead
of (3.12) we obtain unln un(224q)-1 on the right hand-side. We omit further details.

3.13. Proof of theorem 2.4. The proofis based on the relation

hn(&.9) ()
2f' (y sin

where co(9) is defined by (3.2). The remaining parts are analogous to the complex
case. We omit the details.
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ON AN IMPROVED RATE OF CONVERGENCE
TO NORMALITY FOR SUMS OF DEPENDENT RANDOM
VARIABLES WITH APPLICATIONS
TO STOCHASTIC APPROXIMATION

H. G. MUKERJEE (Chapel Hill)

1. Introduction

The error term in the central limit theorem for sums of martingale differences has
been considered by Basu [1], Erickson, Quine and Weber [3], and Heyde and Brown
[4] In each case the only moment assumptions were that the sum of the conditional
variances converges to 1 (or some other constant >0) in probability, almost surely
or in Lk, and that the sum of the absolute (2+<5)-order moments converges for
some <$>0. In each case the error rate, when specialized to i.i.d. random variables
with third moments, becomes 0(n_1/8) [Although this rate is only 0(n~1/12) according
to Theorem 2 of Basu [1] a minor change in the choice of the upper limit of the inte-
gral near the end of the proof makes it 0(n~1/s)]. Of course, because of the methods
used, this specialization to the i.i.d. case only amounts to the assumption of identical
and almost surely constant conditional second and third absolute moments of the
martingale differences. The aim of this paper is to investigate by how much (if any)
the rate of convergence can be improved by assuming what Dvoretzky [2] calls
“near constancy” assumption about the conditionnal variances. Theorem (2.1) shows
that even under the weakest assumptions (see [3]) an improved rate can be found
implicitly as an easy consequence of Lemma 3.2 of Dvoretzky [2]. However, it is
not obvious how to use the theorem to get a better convergence rate than that ob-
tainable by using Theorem 2.3 of [3]. We illustrate this with some applications to
stochastic approximation. It is shown that a convergence rate of 0(n_1/4) can be
obtained in some cases including the case of i.i.d. random variables with third mo-
ments. We have contented ourselves with order of magnitude calculations only since
it is almost impossible to give one single expression which is the best (or nearly so)
explicit bound in all cases.

2. Notation and results

Our procedure and assumptions are similar to those of Erickson et al [3] who
have considered the problem under the weakest assumptions.
Lgt X—{Xnk k=1, ...,n; n—1,2, ...} be an array of random variables. Put
K

Snk= 2 ~j, Sn=Sm Let F={Fnk k=0, 1,....,n; n=1,2, ...} be an array of

) . . . .
tr-fields, where FrDis the trivial cr-field. Assume Xrkis Frk measurable and F,ka k+1.
Define the conditional expectation operators E,K-)=E (- \FrK and write

urk= E,tk*Xnk atk= E~.xXSt-ijb, sk= [ a\ = sbn yPr =

= Enf-x\X,,k—nrki+s
for <5>0.
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Let N be a N(0, 1) random variable. Let A(X, Y) denote the Kolmogorov
(supnorm) distance between the distribution functions of the random variables
X and Y.

Throughout we use C, with or without subscripts, as generic positive constants,
independent of “time variables” k, n, etc. Thus we may have 2C~C. Equalities
(inequalities) among random variables are almost sure equalities (inequalities).

(2.1) Theorem. Given (X, F) above, if pnk—0 for all n, k, then for <5£(0, 1]

and T>0
T

d(s,,, i0OsCj f Z t2E[e-"2H- ™ Abya+Hdt+C2T ~ 1+
0 *=j

+CYE K -iri™*+Zi Efivlstrk> NP

Remarks. One minimizes the right hand side with respect to T to obtain the
best convergence rate. The possible improvement to Theorem 2.3 of [3] comes from
the usage of the exponential expressions in the first term and of the indicator func-
tions in the last. Majorizing all these expressions by 1 yields Theorem 2.3 of [3].

Proof of theorem (2.1). We first state and prove a lemma which gives an im-
proved bound for the difference of the characteristic functions of S,, and N.

Lemma. If the assumption o\= 1 is added to the conditions of Theorem (2.1)
then

|[Ee;«n_e-<»2] s Ci2 2E[e-(*,/2)(i - Sifc)&+i]
k=1
for all real t.

Proofof temma. Let Ynl, ..., Ymbe completely independent standard normal
random variables and independent of Fm Let Z, k=S¥ 1+Rnk+l for I*"k”n,
n

where Rrk:jz_k°annj and Sn0=R,,>n+1=0. Then
Snk — Z 4(Znk +v N~ 21 (Zak+ kYK

Using Lemma 3.2 of Dvoretzky [2]

Eneitnk 1 = e~(3/2) z <W = e-("/2)(1-">,
J=k+1

which is E,,5 _x measurable. Thus

\Eeitsn -e- 2/ =
=1

Z E{eits**-1e- (22 E,.tk_a(e™»«- eu»M } 35Ci2kz ) Ele-«
k=1 o
the proof of the last step being the same as in [3].
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The rest of the proof Theorem (2.1) is identical to that of Theorem (2.3) of [3]
with the following two modified estimates:

1) Defining T,= max {O~k~n: 44al},~ =5t and N,, as a standard normal
random variable independent of all other random variables, we use the lemma above
and Esseen’s theorem (see e.g. Loéve [6], p. 285) to get

d(5,,,tn+ (1— N)S Q / dt+C. TN =
) «=1 J
T
S Cjf t2i ~Ne-C'VAd-~AoN+i]ldt+c2T~1
0 »=1
n

for all T>0. (Our S,, 1, is the same as /{E_i Wrkin [3].) It should be clear from the

proof of our lemma that the additional term tZ(1—a21+a/2 in the integrand used
in [3] is not necessary.

2) We use £[(1 —a%l+s2l(?n< n)]s i'E\-j|E[yH al{sx =* 1)] instead of the corr-

esponding bound in [3] without the indicator functions.

It should be pointed out that there are several minor mistakes and misprints
in the proof of Theorem 2.3 in [3]. The assumption <=1 should be added to the
first part of the proof; different symbols should be used for the (almost surely)
bounded random variable |0] and its bound; in the string of inequalities (3.6) al-
though the third term is less than or equal to the first, it is not necessarily less than
or equal to the second; the exponent 1+ 1/20 should be read as 1+0/2.

3. Applications

A large and interesting area of application of Theorem (2.1) is where {Zk}
is a martingale difference sequence adapted to the ~-fields {FnkeFkt where Fk
is the c-field generated by {ZIf..., ZK}, {br} is a fixed or an adaptive sequence, and
Xnk=brkZ k. Thus S,, represents a weighted average of the Zks with possibly random
adaptive weights. The area of stochastic approximation offers a large variety of
such cases. It is an active with a vast literature. To illustrate how Theorem (2.1)
can be used we consider a Robbins—Monro process for which asymptotic normality
has been proven, among others, by Sacks [7]. One should consult this reference for
the proofs of results cited.

Robbins—Monro process. Suppose Fx is a distribution function for each real x with
mean m(x) which is finite, variance c2(x) and absolute (2+0)-order central moment
y2+s(x) for 0>0O. The Robbins—Monro procedure finds the root of the regression
function m (-) sequentially by unbiased sampling from {F*} at appropriate (known)
X’s. Assume

(3.1) m(x)=x—0, —

(3.2) a2(x)™cr2 and y2+ (x)Sy2+i for all x with finite a2 and y2+i for some
<56(0, 1],
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(3.3) <2(-) and y2+a(e+) are Boréi measurable functions with $as in (3.2), and
(3.4) <(XxX)=a20)[1+0(|;t—06)9] as x—0 for some d£(0,2], and <2(0)>O0.

Let Xk=9 and define recursively Xn+l=Xn—a,Y,,, 1u>1 where a,=a/n
for some a>1/2, and the conditional distribution function of Y, given
{Xi, ..., Xn; Yk, ..., Fn-J is FXn. For this procedure it is known [7] that under
assumptions (3.1)—(3.4)

(3.5) Xn-»0 a.s.,
(3.6) E(Xn—Qji=0(n~Vv), and
(3.7) in(X,,+k—0)—N (0, a2<42(6)I(2a—1)) in distribution.

For notational simplicity we assume 0=0 and 02(0)=(2a—Il)/a2 Thus the
variance of the limiting distribution in (3.7) is 1.
Define e—a—1/2.

(3.8) Theorem. Under the assumptions (3.1)—(3A)with<$=1 and d=2

0(n~c?2 if e< 1/2,
O) A{fiixu+XN) = 0((n/log n)_1/4) if e= 1/2, and
0(n-14 if e>1/2.

(ii)  Under the additional assumption a2(x)= <2(0) for all x and e= 1/2
A (fiXn+l, N) = 0(n

Remarks. 1) Sacks [7] proved asymptotic normality of \nXn+lunder the assump-
tion (among others) <2(x)-*<x2(0)>0 as x—0. We have needed (3.4) to get a rate
of convergence.

2) By starting the process at 0 and assuming strict linearity of m(e) we have
removed the bias term in f nXn+l due to the initial bias and non-linearity, respectively
[71 . This way we have isolated that part of the convergence rate problem which is
in the realm of Theorem (2.1). We have also assumed &=1 in (3.2) and d=2 in
(3.4) in order to reduce the number of parameters (one has to consider the conver-
gence rates in more than 33 subsets of the e—§—d parameter space in general) and
for ease of comparisons.

Using our methods it is possible to compute the convergence rates for a more
general process where one may consider () to be quasi-linear with some finite
positive derivative a at 0, arbitrary <56(0, 1] and d£(0,2], X1to be a random variable
with finite second moment, an=AJnsa for some |/2<lid 1 and An an adaptive
random variable converging almost surely to I/a where a=m'(0) (see e.g. Venter
[8] ), etc. However, the computations are exceedingly long and tedious.

Proof of Theorem (3.8). For /cs 1l define Zk=Yk—m(XK=Y k—Xk. Then

the {Z I} form a martingale difference sequence adapted to {Frk?] Fk=a(z,. ..., ZK}.

Iterating Xntl= X,,-an(X,,+ Zn) we have 1/w= a5 ~ where

Bnk— I'Ik+1(1-aj) for 0Sk<n and Bm=I. If we identify nl/2akB,kZk with Xrk
J:

and o(Z1, ZK) with Frk then Theorem (2.1) applies to this (X, F) with &= 1
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We note that

2£[e-( /1A = 2 E(y& +
k=1 K-Cr=A
+ 2 _£[y,.V(U>(W)]+ 2 EY&.
K<n—/n K n~Yn

(For other problems instead of in some other o(n) — term may be appropriate.)
Using this in Theorem (2.1) we have

(3.9) A(inXn+1,N)S
T

(El) CiK_z 0{ i2e-(/2)tl- ()£ (A )dt+
E2 N N
(E2) CrT3K—C|3%.4'I['D'/( >(BA4n]+
(E3) C3t* 2 _EYmW+

ksn—yi
(E4)
(E5) C5{E\ol-\\wyi*+
(E6) c \RE[y1N*1k> 1)]!&314,

where we have used \a+b\r*\a\r+\b\r for ra 1 to separate the last two terms.
We will estimate the expressions (EI)—(E6) for various ranges of the parameter e.
From the description of the process and assumption (3.2)
<k = natBW (XK = nalBlko\<S)[\ + 0{X?j\

and ylk”~ n32al\Rnk3y3. (Here O (XK) is a random variable such that O (Xk)/Xk is almost
surely bounded uniformly in k on {XkT+0}. Sequences of the form 0(k~p) in “time
variables” are always meant to be 0(k~p) as k-+°° uniformly in all other “time
variables”.) Using the well-known estimate RBnk—(k/ri)“[l1 + O (k-1)] (as can be seen
by logarithmic expansion of Bri and (3.6) we have

o - QOG- ITO()] -
= (K/NT[1+0(K-~)]+n-A 72: lj*l"lNg (i~ + 0 {Xfj\;

(3.10) E\$8k-(k/nF\ = (k/n*"Oiky "W +n-* ‘é_ﬁ_-'O U-1-=
=

0(n-2 if e< 1/2
0(n 4ogk) if e=1/2,

0_((k/n)2d< *) if ; A
(3.11) na4 (&NY) =—P{Ym(k/nr\ W

S £]s2 (k/n)28/(/c/n)cl-(/c/n) 4,

Acta Mathematica Academiae Scientiarum Hungaricae 40, 1982



234 H. G. MUKERJEE

and
(3.12) yB& =S Cn32k3(k/n)3Aa=Cn~ 3kE- 32

In (E2)—E(4) we will choose Tésal4 for all values of e. Thus, using (3.12)
and T unl/4,

Y4
(ED) tkCn~3t 2  fe3£32 f =
k™ n-\n 0
LIATI-(fein)yell/2
= Cn-B 2 3£ 32[l-(/c/n)']-32 f z2e~72/2dz
k<n—n 0
1-1 %
rsCn~32 2  (k/n)3c- 3/2[i-(k/nY]-3,i= 0{n-112 f x3c 3/2(1-x ¢~3l2dx) =
K<n~yn 1In
12 1-lj/n
O[n-12 f x3c-32dx)+o{n-12 f (1—0~32im.
lin 112
The first term in the expression above is
0(n-3¥ if E< 1/6,
0(n_12logn) if e=1/6,
0(n~12 if 6> 1/6.

By substituting y=1—xe in the second term it is easily seen to be 0(n~lji). Thus
(3.13) (£1)=0(n- QM4

From (3.10) and (3.12)

2  E[yBKI(s&> (k/nY)] =Cn~3t 2 _k3e~32E \sk-(k/n)2\/(kInY[l ~(/c/n)g.

K<n~yn K<n~Yn

Using (3.11) and making integral comparisons as before we have

0(n-1/2-2Elog n) if e< 1/4,
(3.14) 2 _E[yXI(sXx™(k/nY)] 0(n~1logn) if e=1/4,
K<=Y owm“) if e>1/4.

We have not used more refined estimates for e>1/4 because (E2) will be dominated

by other expressions in this range of e as we shall see.
From (3.12)

(3.15)
2 E(YyX =Cn-x 2 _k3IF-IRECN-3cVn[(n-")-3FEI2V«E-3I] =0(n-4.

K<n-—yn Klin—-Yyn

Since {Xk: 1 does not have a simple probability structure it is difficult
to bound U1KR—I1B2 by anything o(E\o2—\\). However, <2 is uniformly bounded
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by assumption (3.2). Hence
(3.16) Elal-WANCE\al-\\
whose bounds are given by (3.10) with k=n.
’J_l4 A KAI_Z|_yﬂ£[y"/(s">i)]+ ksr%—fn EL-
Thus (E6) is majorized by min {(E2)+(E3)+(E4)} and hence (E6) can be dropped
for order of magnitude calculations.

Now choose
n'l* if 8< 1/2,
T = (ulogn)ld if 8= 1/2,
nr/a if 8> 1/2.

Part (i) of the theorem now follows from (3.9) and (3.13)—(3.16). If e=1/2 (a—1)
then ak=1/k, Rrk=k/n, and Xnk=Zk'Yn, I"k”~n. If, in addition, e2(1)= a2(0)
for all x then slk=k/n, I"k”~n. Thus

A{}ftXa+l, N)ACk 2 J t*e-ww-WE (ylRdt+catr 2 _E£(A)+CT-1

—yn o0 kAn —yn

for all T>0 from Theorem (2.1). Part (ii) of Theorem (3.8) now follows from (3.13)
and (3.15) by choosing T=nl,i.

Remarks. (1) From part (ii) of Theorem (3.8) we get a convergence rate of
0(n-1/4) for the i.i.d. case with third moments.

2 If instead of just moment assumptions we assume that the Zks become
“almost i.i.d.” much better convergence rates can be obtained. If we add the as-
sumptions (a) e=1/2, (b) Fx-*Fy weakly as x-*y for all real y, and

() J IFj1) —Fo L(u)\2du—0(\x\2) as x—0, where E“1l(«)=sup {/: Fx(t)=u),

to the conditions of part (i) of Theorem (3.8), then from a slight modification of
Kersting’s [5] proof of his Theorem 1 it follows that

VAXNn+l+ n -~ k2_1\/k= 0(n~1r) as.,

where {Vk} is an i.i.d. sequence, independent of F,,, with distribution function FO
on some common probability space. From Berry—Essen theorem

n(n-122 K, w)= o(n~12.

From a well-known relation between Lévy and Kolmogorov distances between
random variables when one of them is a normal (see e.g. equation (3.5) in [3]) it

then follows that A(¥YnXn+l, N)= 0(n~12).
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LAGUERRE TYPE POLYNOMIALS UNDER AN
INDEFINITE INNER PRODUCT

A. MINGARELLI (Ottawa) and A. M. KRALL (University Park)

Introduction. Recently [2] it was shown that the Laguerre-type polynomials

satisfy a fourth order differential equation

e~xly = e~xXry, n=0,1,...,
where
e~xly = {x2e~xy")"—(]2R+2\x+2)e~xy")"
and
X,= (2R+2)n+ n(n—i),

and are orthogonal with respect to the Stieltjes measure ¢ given by

0, —00<Xx < 0
®(x) = R+1—e~ 0S x < °°
R
when 0. Further it was shown that f rn(x)idp=(R+ n+\)(R +n); that
O_

the set {r,.}=0 spans the Hilbert space H generated by ¢, and that in H | gives
rise to a self-adjoint differential operator.

The purpose of this article is to note thatwhen 0, butis not a negative integer,
then & generates an indefinite inner product space K which is a Pontrjagin space [1],
the polynomials {r,.}=0 sPan K, and, again, / gives rise to a self-adjoint operator
AmK.

While the extension may seem superficially easy, the subtleties of indefinite
inner product spaces assure that it is not. For instance, when R is a negative number
—n, then the polynomial r,,is of degree n—1, and the space K becomes a degenerate
indefinite inner product space. Exactly the right path must be followed in order for
everything to work.

The polynomials. We assume that for some integer N~0, —(7V+I)<R-= —N.
With R so constrained we then note that r,, is a polynomial exactly of degree n and
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that the formulas e~xlrn=e~xX,,r,,,
[00]

(r,, = f rn(x)2dip= (R+n+ \)(R +n)
0

still hold [2]. Since (R+n+1)=-0 when n~N, and (/?+«)=-0 when nSN +1,
we find that
>0 if j~0, N -1,
(ri,fj)) < ° if j=N,
>0 if j—N+I, ...

Let K be the indefinite inner product space generated by (e,¢). Then K
admits a Hilbert majorant given by

Ifgl=-j7j-1(°)g(*)+ 1 f(x)g(x)e~xdx.

According to [1; p. 89] K=K+0.K0©K~, where K + is a positive definite subspace,
K* is neutral and K~ is negative definite. By using the Fourier— Stieltjes transform
[2] it is possible to show that K<°= {0}. Further, if R+=span {r,\ r,,>>0},
and A~=span {r,: (rn,/,)<()}, the same argument shows that the orthocom-
plement of R+© R~ is {0} and so K=R +®R~.

Theorem 1. The indefinite inner product space K, generated by (-,¢), is
a Pontrjagin space spanned by {r,,}*=0, K=R+®R~. The subspace R~ is one dimen-
sional.

f= c,,rn, where ¢, = (f rn/(rn, rn).

2

=0

Corottary. Iffis inK, then f= 2 c-r,, wherec,- (f rnl(r,,, m.
=0

n

The differential operator. While the differential expression e~xl is formally self-
adjoint, the boundary value problem
e~xly = Xe~xy, —2Ry\G) = ly{0),

which is required to show symmetry in Green’s formula, involves a $#dependent
boundary condition. As a result a slightly different formulation is convient in order
to fully exhibit the role played by 0.

We denote by X the indefinite inner product space 1?(0, oo; e~X)XC, where for
F=(f(x)Jo)T and G=(g(x),g-OT in X,

(F, G)# = J f(x)g(x)e~xdx + (I/R)f0g0.

Itis evident that K and XX are isomorphic. The operator A is defined as follows:
Let Da denote those elements Y=(y(x),yOT in X satisfying:

Lyisin Z2(0, e~x).

2.y, y", y"" exist and are absolutely continuous.
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L40, -).
4. y0=y (0).

We then define A by setting

ly 1-170_ 1y
W y(0)7 \-2R>y(Q))1

Green’s formula establishes that A is symmetric. An argument similar to that
in [2] shows

Theorem 2. A is self-adjoint in XK.

Theorem 3. The spectrum of A is real and discrete. It consists only of eigen-
values ap(A)={A,,}*=0.
Here the argument is similar to that found in [3] and is omitted.

Theorem 4. Let R,=(r,,, R)T,n—0, 1, .... For all F in XX, F= C,,R,,.
0

where Cn= (F, M)™/(A+ n+ 1)(A4-n)- For all Y in DA AY= 2 ~nCnRn, where
n=0
[e0)

C,= (Y, RBjr/(R+ n+ \)(R + n). Further Y isinDAifandonly if 2 u2~C,|2<
n=0
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A NOTE ON A PAPER OF AYOUB

S. FEIGELSTOCK (Ramat-Gan)

Let R be a ring, R+ the additive group of R, and R, the torsion part of R. If
Rtis a ring direct summand of R, then R is said to be a fissible ring. A result of
Ayoub [1, Corollary to Theorem 7], may be restated as follows:

Proposition. Let G—T®D, T a torsion group which is not reduced, and D
a divisible torsion free group. Then there exists an associative ring R, with R+= G,
such that R is notfissible.

The purpose of this is to generalize the above Proposition by replacing D with
an arbitrary torsion free group, and to prove the converse of the Proposition.

Theorem 1. Let G=T@H, Ta torsion group which is not reduced, and H x 0,
a torsionfree group. Then there exists a ring R with R+= G such that R is notfissible.

Proof. There exists a prime p such that T=Z(pfi@ A. Clearly there exists
a non-zero homomorphism /: H®H->-Z(p°°). Let gi=ci+ai+hi, cfZ(p°°),
afiA, hfihl, i—1,2. Define gwg2=f(h1®h2. This multiplication induces a ring
structure R on G. Since R3=0, R is clearly associative. Suppose that R= R,® S
is a ring direct sum. Then 0a R2=S2Q R,, and so .S2f] R,XQ, a contradiction.

Theorem 2. Let G—T@D, Ta torsion group, D a torsion free divisible group.
The following are equivalent:

1) Every ring R with R+=G isfissible.
2) Every associative ring R with R+=G isfissible.
3) T is reduced.

Proof. Clearly 1)=>2), and the implication 2)=>3) is the contrapositive of the
above Proposition.

3)=>T). Let G=T®D, T a reduced torsion group, D a divisible torsion free
group. Let R be a ring with R+=G. Clearly T is an ideal in R. Let a£T, aAQO,
and let xED. There exists yED suchthat x=\aly. Hence ax=a(\a\y)=(\a\a)y=0,
and similarly xa=0. Therefore TD=DT=0. To show that R is fissible, it suffices
to prove that DILD. The map g: D XD —G defined by u[(a, b)]=a-b is bilinear.
Hence there exists a homomorphism /: D®D”-G satisfying f(a®b)=a-b for
all a, bED. Therefore D2=f(D<ZD) is a homomorphic image of a divisible group,
and hence divisible. Since T is reduced, DXfD .

The converse of Theorem 2 is not true.
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CHARACTERIZATION OF QUASIDEVIATION MEANS

ZS. PALES (Debrecen)

In the theory of means the concept of quasiarithmetic means plays important
role (see Hardy—L.ittlewood—Polya [9]). In 1930, Kolmogorov [10] raised the follow-
ing question: How can quasiarithmetic means be characterized? The answer was
given independently by Kolmogorov [10], Nagumo [12] and de Finetti [8]. (See
Theorem 4.0.)

During the development of the theory of means, a number of papers dealt with
different generalizations of the quasiarithmetic means. One of the most important
generalizations was given by Daro6czy [4], who defined the deviation functions and
deviation means. There are numerous papers (e.g. Daréczy [4,5], Losonczi [11], Péles
[13], Dar6czy—Pales [6, 7]) investigating inequalities and equations concerning these
mean values.

In this paper we generalize the concepts of deviation functions and deviation
means by defining quasideviation functions and quasideviation means. It turns out
that the results obtained for deviation means by Dardczy [4, 5], Pales [13] and Daré-
czy—Pales [6, 7] remain valid for quasideviation means too.

The aim of the present paper is the investigation of the question similar to Kol-
mogorov’s one: How can quasideviation means be characterized?

To answer this question we need some new concepts which have not been defined.
These are the strongly intern mean, the infinitesimal mean and the inequality of bi-
symmetry (see Definitions 1.2, 1.4 and 1.6, respectively). In addition to these defini-
tions, in § 1 we also list some known concepts which will be used later. 82 deals
with the definition of quasideviation functions, discrete and weighted quasideviation
means.

The 883 and 4 contain the main results of the paper. In 8 3 a characterization
theorem is given for the weighted quasideviation means. Using this result in §4
we characterize the discrete quasideviation means.

The author is very grateful to Z. Dardczy, L. Losonczi and A. Széaz for their
useful advices and suggestions.

8 1. Discrete and weighted symmetric means
Let R, R+, Q, Z and N denote the set of real numbers, positive real numbers,

rational numbers, integer numbers and natural numbers, respectively.
For x=(xt, ..., xnN€R" let
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It is easy to see that

. <>= {*4
if x1=...=xn and
&x) — I min x,, max xT
! J1SiSn “1SiSn ‘L
otherwise.

If x—(xI 5 x,)ER" and y=(yr, ..., 7Tm€Rm then let (x, y) mean the
(n+ m)-tuple (xj, X, YI5 ..., ym€RN+m Let 3>(l)= rgll" where 7~R s
an arbitrary interval.

D efinition 1.1. The function M: 3>(l)-~I is said to be a discrete symmetric
mean on the interval I, if it has the following two properties:

a) M is intern, i.e.
(1.1) M (X)£(x)
for all x£3>(I).

b) M is symmetric, i.e. for all nEN

(1.2) Mn= M

is a symmetric function.
The class of discrete symmetric means on | is denoted by JI(l).

D efinition 1.2. A discrete symmetric mean M £Jt(l) is said to be strongly
intern if for every xX ..., x,,d3>(I) nEN we have

(1.3) M(xI5 ..., X,,)€(M (XD, ..., M (X,,)>.
D efinition 1.3. We say that the discrete mean is associative if the
identity
(1.4) M {xx, X») = M (M (xt), ..., M(xD, ..., M (X,,), ..., M (X,,)
h K

holds for all xxE1lk, ,xnElK', kx, ..., kn, nEN.

Remark. Using the intern property, it is obvious that every associative mean
is strongly intern.

Definition 1.4. Let and

(1.5) Qky(M) = max [M(X, ..., X, ¥, ..., ¥)
1 k=1 -1 k-1+1

for x,y£l, n€EN. The mean M is said to be infinitesimal if for all x,y fj
(1.6) lim Qk,y(M) = 0.
Let A= (R+U{0pA(0, 0) and i>(7) = PxA.

Definition 1.5. The function M: 3>(/)—/ is called weighted symmetric mean
on 1ifit has the following properties:
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CHARACTERIZATION OF QUASIDEVIATION MEANS 245

a) M is symmetric, i.e.

(1.7) M(x, y; X fl) = Ay, x; p, X

for all a,y£l, (X p)(LA.
b) M is reflexive, i.e.

(1.8) M{x, x', X fl) = x

for xEIfIX, p)EA.
c) M is intern, i.e.

(1.9 X = M(x,y; 1,0) < M(x,y; X fl)< M(x,y; 0,1) —y
if X pER+.

d) M is nullhomogeneous in the weights, i.e.
(1.10) N(x,y; tX tfl) = N{x, y; X fl)

for all x,yEl, (X p)EA, iER+.
The class of weighted symmetric means on / is denoted by JHJ).

D efinition 1.6. Let WMAN{1). We say that M satisfies the inequality of bi-
symmetry if

(i.H)
min {(x, y; X, X), N, v, X, X} ~ max {A(x, u; Xx, X, N(y, v; Xy, X}

for all x,y,u,vEIl, Xx, Xy, Xu, X(IR +.

D efinition 1.7. The mean M£.M(I) is said to be bisymmetric if it satisfies
the equation of bisymmetry i.e.

(1.12) N(A(x, y; X, %), N{n, v; Xu, XD); Xx+Xy, Xut+Xv) =
- MIM(X, u; X X0, V(Y VI X, X\ Xx+Xu, X+XV)
for all x,y,u,vEl, Xx, Xy, Xu, A, €R+.

Remark. It is easy to see that if 1 fulfils the equation of bisymmetry then i1
also satisfies the inequality of bisymmetry.

D efinition 1.8. We say that () is regular if for x,ydj, x<y the
function
(1.13) XA (x,y;X,1-X), 2€[0, 1]

is continuous and strictly monoton decreasing.

D efinition 1.9. Let M£Jt(l) and M~ M(l). The means M, M are said to
be associated if

(1.14) MjX, ..., X, Y, ...,)):Vl(x, y; K 1)
K |

for all x, y£l, K, fIN.
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8§ 2. Quasideviations and quasideviation means

D efinition 2.1. Let Z™R be an interval. The function ZLZ2—R is said to be a
quasideviation on 1 if
(El) for all x, t£l

(2.1) sgn E(x, t) = sgn (x-t),
(E2) the function
(2.2) t E{x,t), t€&Z

is continuous for all x£Z,
(E3) the function

(2.3) P~ (0=-f~, tZIxy[

is strictly monotone decreasing for x,y£1, x<y.
The class of quasideviations on | is denoted by S'(I).
Remark. The concept of deviation has been introduced by Daroczy [4]. The
function Z222—R is called a deviation if it has the properties (El), (E2) and
(E3)* The function (2.2) is strictly decreasing for x£L
It can be easily shown that every deviation is a quasideviation, but not conversely.
The following result is needed to explain the concept of discrete quasideviation
mean.

Theorem 2.1. Let EES(l), nEN, xI5..x,,£Z. Define for t£l the function
e by

(2.4) e{f)= 2E {XL1).

Then there exists a value tOEl such that

(2.5) sgn e(t) = sgn (t,,—1)
for t£1l and
(2.6) toe(xi, ...,0 -

Proof. Without loss of generality we can assume that x1™...~xn. If xx=x,,,
then t0=x1—x, and (2.5) follows from (El). Thus we may assume that Xj<x,,.
Using (EI) it is easy to see that

2.7) e(xr) = eQmin™X;) > 0, e(x,,) = e(max x;) < 0.

By (E2) e is a continuous function, hence there exists a value i0€]x1,x,[=
= (xi, ..., X,> such that e(iQ=0. Thus (2.6) is satisfied. To prove (2.5) let

be an arbitrary element of Z If then the inequality c(/)>0 (which is equiva-
lent to (2.5)) follows from (EIl). Otherwise we may assume that

(2.8) X, S.."N xk< farUl =4.=i x,s i0< xI+1 3=...3=X,,.
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Let 14iSk and I+1~j~n. By (E3) the function
EixjjJ) cod
E(xt, t)’

is strictly monotone increasing, hence

E{xj, t) ~ E(xj, 10
E(x,, t) ™ E(xi, tQ

because xr<I </O<xy. Rearranging the above inequality we get
(2.9) E(xi, tOE(xj, t) < E(X]j, tOE(Xi, t).

Using (EI) it can also be verified that (2.9) is valid if and I+I1~j~n.
Adding the inequalities obtained and applying the equation e(r)=0 we have

|
Z E(xh tO)r:gH!E(XJ, t) < j='2I1+1I E(xj, tO ig E(x,, t) =

= 2 E(xt,t0) 2 E(xj,t) = (- 2 E(xt, f0)) 2 E (xj, t).
i j—1 V=1 7y=i

izi+i

Thus

(2.10) 2I Exi,t) 2 E(xj,0<o0.
i= 1=1

By (El) and (2.8) ‘2| E (x{, i0<0 thus by (2.10) we get e(t)>0.
1=
When i0<i itcan analogously be seen that e(i)<0. This completes the proof.
Remark. The analogue of Theorem 2.1 for deviations was proved by Dard6czy [4].

Definition 2.2. Let Ed$(l) and x=(xI5...,xnN£1n<z3>(l). The unique solu-
tion t=t0 of the equation

(2.11) 2, E(xi, )= 0

is called the quasideviation mean of x generated by E and is denoted by S1E(x).
By Theorem 2.1 this definitioniscorrect and ®ifis a discrete symmetric mean on 1.

Theorem 2.2. Let EES(1), x,yfj, and (/, u)£A. Further let
(2.12) e(t) = XE(x, t)+ nE(y, t), tEI.
Then there exists a t@&l such that
(2.13) sgne(/) = sgn(f0—0
for tEl. If X7xy, X u4>0 then
(2.14) min {X,y) < t0< max {x y}.
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Proof. If x=y or 2=0 or p —0 then (2.13) follows from (EIl). Thus (by sym-
metry reasons) we may assume that x<y, 2> 0 and p> 0. By (E3) the function
defined in (2.3) is strictly monotone decreasing and maps the interval ]x,y[

onto R+. Thus there exists a unique value tOf\x,y[ such that ptl(tO):ﬁ ie.

e(tg=0. If t~x and y =1 then the inequalities c¢(/) >0 and c(i)<0 follow from
(ED), respectively. If t£]x,y[ then by (E3)

(2.15) sgn (pifj(0--~-) = sgn —

From (2.15) we obtain (2.13).

Remark. Theorem 2.2 and Definition 2.3 below for deviations have been
formed by Daréczy—Pales [6].

Definition 2.3. Let x,yEI and (2, p)(zA. The unique solution t=t0
of the equation
(2.16) XE(x, t)+pE(y, D=0

is called the weighted symmetric quasideviation mean of x,y with weights 2, p gen-
erated by E and is denoted by LUE(x,y\ X p).

Remark. If E£$(1) then the means Jic and 9JfE are associated.

Denote by £2(7) the set of real valued functions which are continuous and strictly
monotone increasing on |. Let further .~(7) be the class of positive real valued func-
tions on 7. If (pE£2(7),/€~(7) then the function

(2.17) E{x, ) = Evf{x, ) =f{x)((p{x)-(p{t)) (x, t(z7)

is a deviation and also a quasideviation on 7.
For this deviation (2.17) the unique solutions of (2.11) and (2.16) have the form

(2.18) t0= pga,m/(x) = MIpf(xX) = 9 1(.2 /(*m)<?>(*.2)/.27'(*/))

and

(2.19) t0= mEvf(x,y; Xp) = Siv'fix,y; Xp)= @ AXICY<PO)YPT(Y) <p(y)\

Xf(x)+pf(y) )

respectively. (cp_1 denotes the inverse function of (p.)

The means and defined by (2.18) and (2.19) will be called discrete
and weighted quasiarithmetic mean with weightfunction, respectively (see Bajrak-
tarevic [3] and Aczél—Dardéczy [2]).

If f(x)=p is a positive constantin (2.18) and (2.19), we obtain the well-known
quasiarithmetic means. The theory of these mean values can be found in the book
of Hardy—L ittlewood—Pélya [9].
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8 3. Properties and characterization of weighted quasideviation means

The weighted quasiarithmetic means are characterized by the following theorem.

Theorem 3.0. Let 7EIR be an interval. A weighted symmetric mean on 1 is
quasiarithmetic if and only if it is regular andfulfils the equation of bisymmetry.

The proof of Theorem 3.0 can be found in the book of Aczél [1].
The most important results of this section are summarized in the following

Characterization Theorem 1. Let /C R be an open interval. A weighted
symmetric mean on | is generated by a quasideviation if and only if it is regular and
satisfies the inequality of bisymmetry.

First we show the necessity of the conditions.

Theorem 3.1. Let /kR be an interval and let Then the mean Q£
is regular.

Proof. Let x,yGJ, x<y be fixed values, and let

E(y, t
(3.1) xy® gy, t)(y{ix,_o

for t£[x,y]. By (El) and (E2), fxy:[x y]-*[0, §j is a continuous function,
fx,y(x)=1, fXty(y)=0 and by the notation (2.3) we may write

X 1 1
/(0 E(x, 1)
E{y. 1)

for tf\x,y[. Using (E3) we obtain thatfxy is strictly monotone decreasing. This
implies that fx<y is invertible and its inverse is continuous and strictly monotone

decreasing, too. To prove the regularity of 9KE it is enough to show that for 2€[0, 1]
the equation

3.2) /- 1A) = YE(X,y; 2,1-2)
holds.

Let bt=9JIE(x,y; 2, 1-2), for 2C[0, 1] then /[.E(x, tA+ (I —=X)E{y, tfi= 0
hence fxy(tf)=L Thus ff\{l) = tx= LWWE(X, y; 2, 1-2).

Remark. Theorem 3.1 was proved by Dardczy—Pales [6] for weighted deviation
means.

Theorem 3.2. Let 1QR be an interval and let E(LS(I). Then the mean 9JtE
satisfies the inequality of bisymmetry.

Proof. Suppose on the contrary that,
(3.3) min @£ (x, y; 2% Ly, "ME(, v; 2,,2,)} >
> max {OE(x, u; ?x,2,), 3JE(y, v, X, 2P}
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for some values Xx,y, u, VEI, AX, Ay, Xu, FFEH+. Then we can find a t£l such that

(3.4) IUE(x,y; XX, Xy) > t, LEMW, v; Au X)) > t,
and
(3.5) ®tE(X, U; XX, XU < t, WE(y, v; ¥, X) < t

Using Theorem 2.2 we obtain from (3.4) that

AXE(x, t)+XyE(y, t) > 0, XuE(u, t)+XvE(y, t) > 0.
Hence
(3.6) AXE (X, t)+AyE{y, t)+AuE(u, t)+XeE(y, t) > 0.

Starting with (3.5) we obtain, in a similar way, the inequality reversed to (3.6).
This contradiction proves our theorem.

Theorems 3.1 and 3.2 show that the conditions in our Characterization Theo-
rem 1 are necessary. To prove the sufficiency part we construct a suitable quasidevia-
tion. Our construction consist of two steps.

Theorem 3.3. Let I f R be an interval and let be a regular weighted
mean satisfying the inequality of bisymmetry. Then the function pxy.]x,y[—R+
where x,ydl, x<y, defined by

(3.7) t= N(x,y\ pXy{t),\), t£]xy[
is strictly decreasing, continuous and satisfies the relations
(3.8) limpxy(t) = o0) limpxy(t) = 0.

If x,y,u,vEl, x,v<t<u,y, then

(3.9) Px,y(t)Pv,u(l) = Px,u(t)Pv,y(t)-
_  Proof. If x,yEl and x<y then by the regularity and nullhomogeneity of
N the function Xy*WU(x,y; 9 1), 7fR + is continuous and strictly monotone
decreasing. Thus its inverse px<y defined by (3.7), also has these properties.

From the relations

ﬂIlrpO n{x,y; a1 =Arl+i0r!1 I/I\\x, y;H-J'Il-rn, 1 t}_gl = HmM(x, Y, P, 1-/
and .
HTM(x,y; 1) = U(x, y; 0,1) =y,

(3.8) follows.

Now we prove (3.9). Let e>0 and let

Px,y(t) _
Px Xv= (1+e)Pvy(t).
y(0» Yy  1Ta, Xu Y (L +e)Pvy()

Then we have
(3.10) N(x, y; X, %) = N(x, y; pxy(t), 1+e) =

Pva(t) H Y, . —
X, Y, 1re L > N{x, y; Pxy{t), 1) = t
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Further

(3.11) M(x, u; XX, X) = m (x, u; pxy(), PxXMh) = u>PxJi>1) = U

and

(3.12) M(y, v; Xy, XW) = M(y, »; 1+e, (I+£)pBI0) = &(v,y; pwyt), 1) =t
Using the inequality of bisymmetry (1.11), we get from (3.10), (3.11) and (3.12) that
(3.13) M (u,v;AuAy) N t

(3.14) m [v, n; (1+s)pv,Y ), LW ~ t= M(v, n; pMut), 1).

Since the function A—\f(y, u; X 1), AER+ is strictly monotone decreasing, it follows
from (3.14) that
I+e)pv,y(t)pxu(t) » v
(I+e)p y(<)1p (t) " i
. Px,y\0
Letting e—0 we get
(3.15) Px.yiOPv.uO) = Pu,y(/)Px,u(t)-
Exchanging the roles of n and y in the above proof, we obtain (3.15) with re-
versed inequality sign. Thus (3.9) is fulfilled.

Theorem 3.4. Let /UR be an open interval and let be a regular
mean satisfying the inequality of bisymmetry. Then there exists a quasideviation
E~S(1) such that

(3.16) M = JE.

Proof. Let pxy be the function defined by (3.7) where x,ydl, x<y.
The basic idea of our proofis to construct a quasideviation /?£<?(/) such that

(3.17) pXy{t)E(x, t)+E(y, 0 = 0

holds for x, y£l, x<t«=y.
Let Gu a”l, aA-"~ai be fixed values, 7X= {i£/|]i = A), [2= [{{£I\t S A),

and choose Ci€]- °° 0[, and c2€]0, °°[ such that

(3.18) A,bo'q|7|K+CZZ 0.
Let
-pay.x(OCI, t< X
Fix,0= % t—=X
Abn(0 - 5 x(z
U.zio 5
for (x, )E/X/1- If zi™li then by (3.9)

Parxr(0 _ Pai,z'i(0
p*.*(0 d~ p ™ (6 CI
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Therefore the definition of Exis correct. (At the definition of Ex it is essential that /
is open: for every t£Ix there exists a zxeix with zx>t.)

The choice of cximplies that, for (x, t)€1X1x, sgn Ex(x, t) =sgn (x—i). Hence
Exhas the property (EI). Now we show that the function

(3.19) t —Ex(x, t), tEIx

is continuous for each xfj, i.e. Exhas property (E2), too.
Let (x, tQdIXIx and apply Theorem 3.3. If tO<x then
IimEx(x, t) = lim Ex{x, t) = lim ~pailX(t)cx= ~Pai,x(h)cx= Ex(x, ty.
AA AS&X

Thus (3.19) is continuous at the point t0El, /,,<x.
If t0=x and xXA then

lim Ex(x,t) = lim Ex(x,t) = lim ~paix(t)cx= 0= Ex(x, t0.
At A h x As,iXx
If t0—x and zx>x, zxei then
lim Ex(x, )  lim Ex(x t) — lim P& o o= Exx, 10.
x<t<zl '1

Hence (3.19) is continuous at the point t0E7, t0=x.
Finally if tO>x, zx>t0 and zxelx then
lim Ex(x, t) = li.r;% Ex(x, t) = lim Pa"rld cn= Pai,zi(L)
~tn L ANA i(0

Thus (3.19) is also continuous at tuEl, if tO>x.

It can be seen that (3.17) remains valid for x-=r<y, x,y£J, t@d 1 if we write
Ex instead of E. For (x,t)elXI2 let

PZtAO ( t< x (ZZI1, 22< 1)
PRa<((1
E2(x, t) = <> t=x
1
‘ t> X
Px.aJl

It can analogously be seen that the definition of E2is correct and E2has the properties
(El) and (E2), and (3.17) remains valid for x</<y, x,y£l, tEl if we write E2
instead of E.
Let finally
pi(x,t), t=A

ECD - e, 0, t<A

X, tel.

We prove that £ is a quasideviation on 1. (El) is obviously satisfied. To prove
(E2) we have to verify the equation

(3.20) Ex(x, A) = E2(x, A), XEl.
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But (3.20) directly follows from (3.18) and (3.9). To prove (E3) we have to notice
that (3.17) is satisfied for x<i<y, x,y£l. Rearranging (3.17) we obtain

Pxy(0 = - , X<t<y, X, yEI.
Using the properties of pxy we can see that (E3) is satisfied.
Finally we prove (3.16). It is sufficient to show that
(3.21) XE(x, 7U(x,y; X p))+pE(y, M(x,y; X p)) = 0

for all x,y£J, (X,p)£A.
If A=0 or /i=0 or x=y then (3.21) is obvious. Suppose that A>0, /i=»0
and x<y (the case x>y is similar). Then using (3.7) and (3.17) we have

E(y, M{x,y; X p)) = -pXi(M(x, y; X p))E(x, M(x,y; X p)) =

= - Pxy|n/(x\y; L J.EX M(Xx,y; Xp) =-~E(x, M(X,y; X p)).

Thus the proofis complete.

8 4. Properties and characterization of discrete quasideviation means

The discrete quasiarithmetic means were characterized by Kolmogorov [10]:

Theorem 4.0. Let 1Q R be an interval. The mean M~Jt(l) is quasiarithmetic
ifand only if M is associative and, for nEN, Mnis a continuous and strictly monoton
increasingfunction of its variables.

The following theorem contains our most important result on characterization
of discrete quasideviation means.

Characterization Theorem 2. Let R be an open interval. A discrete sym-
metric mean on | is generated by a quasideviation if and only if it is strongly intern
and infinitesimal.

First we show that the conditions are necessary.

Theorem 4.1. Let 1Q R be an interval, and let EE<a(l). Then the mean is
infinitesimal.

Proof. Let x,yEl. If x=y then QKiy(ME=0 and (1.6) is obviously satis-
fied. Thus without loss of generality we may assume that x <j\ LetfXy be the func-
tion defined in (3.1). In the proof of Theorem 3.1 we have shown thatfxy is inver-
tible, continuous and strictly decreasing. Let

(4.1) gxJh) = U I1:3(AD-1-J (A, [i>0.
IN- Ao
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f~\ is uniformly continuous on [0, 1] hence
(4.2) limcoxzl(h) = 0.

Let OMLWK, k>0 be integer numbers. Using (3.2) and the fact that and KQE
are associated we get

LE(X, ..., X, y, ...,y) = WIE(x,y; Lk-1)=LE(X,y; 1, 1- 1) =f~) (»).
Then | -

&x,y(BXB = maxjmE(x, ..., X, y, ..., y)- FVEX, .., X, Y, vl =
/ At Z1 fc-Z+1

B a5 =
Hence by (4.2) we obtain (1.6).

Theorem 4.2. Let /AR be an interval and let EE£d(l). Then the mean 5UE
is strongly intern.

Proof. Let x;= (xa, .., xik)£1ki, i=1, .., n;fd5.., fc,6N, and let
t= min 9JE(X}), s —irsqg?]( 9.]f(x\.).

Isisn

We have to show that
(4.3) LLE(X!, ..., X,,)E<QUIE(Xi), o, ®ijs(*n>= (t, S).

Using Theorem 2.1 we have

K,
(4.4) 2 E(xy,)=0, i=1,...n
J=1
Thus
(4.5) 2 2 E(XiJ, t) 0.
Applying Theorem 2.1 again we get
(4.6) t™ 9e(x!, ..., xn.
In a similar way we can also obtain the inquality
4.7 3RE(xi, ... *N N s.

If t=s then (4.6) and (4.7) prove (4.3). If t~s then we show that (4.6) and (4.7)
hold with strict inequality sign. Suppose, on the contrary, that (4.6) holds with
equality sign. Then (4.5) and (4.4) also hold with this sign. Thus YE(X()=? for
i=l, ..., n. Hence t=s. This means that (4.3) is valid.

Theorems 4.1 and 4.2 show that the conditions of Characterization Theorem 2
are necessary. Now we prove the sufficiency. Our proof consists of two steps.
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Theorem 4.3. Let IQr be an interval and let be an infinitesimal
and strongly intern discrete mean. Then there exists a weighted mean asso-
ciated to M which is regular and satisfies the inequality of bisymmetry.

Proof. Let
(4.8) Ag = {(A/)€4|AI(A+/0€Q}.

Let further x,y (LI, x-<y be fixed values.
For (A fi)Ezlg, A/=/iL, (k, /ENU (0}, k+ 1>0) let

(4.9 TXYA fi) = M(X, ..., X, ¥, ..., ¥).
K |
The value Tx<y(A fi) does not depend on the choice of the integers K, | because M

is strongly intern. It is obvious from (4.9) that mxy is a nullhomogeneous and intern
function, i.e.

(4.10) TXYA fi) = mXiy(tA tfi)
for (A h)£Aq, i€ER+, and
(4.11) X < mXyA fi) <y,

if (A fi)eAQ, A u>0.
Let us consider the function

(4.12) A~T1 XYA 1-A), NE€[0, 1]DQ.

We need the following propositions:
Proposition A. Thefunction (4.12) is strictly monotone decreasing on [0, 1] n Q.
Proposition B. The function (4.12) is uniformly continuous on [0, 1]JHQ.

Proof of Proposition A. Let A1?A2,€Q and ONMNANAN]. If Ax=0 or
A2= 1 then

mxy (AL, 1-Ai) > mXty(A2, 1-A2

obviously follows from (4.11). Hence we may assume that Let

A=", I,,kEN
for /=1,2. Now Aj< A2 means that
(4.13) 1fog < Z 2fcl..
Applying (4.9), (4.13) and the strongly intern property of M we have
TXMA2,1-A2 = M(X, ....%X, ¥, ...,y) = min {M(X, ....X, ¥, ..., ¥), ¥, ..., Y} <
Ti »1 Shia- "1k

< M(X, ..., X, ¥, ., Y) = MXY(AX 1-—AX.
2
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Proof of Proposition B. Let

Cu, (*) = sup  mxytti, 1- 4 0 (A2,1 —A2)|
n Ao
for h>0. We have to show that
(4.14) m a, .(ft) = 0.

Let ft£][0, 1] be fixed and Ai=[-"-j. Further let A5 AgE[O, 1]1fIQ,
Ax< f2< Ai+ 1 /x= [fcij] and

_J[feAJ+Il, if A< 1,
h ~\k, if A= 1
It is clear that

By Proposition A we have

"L.ji-p 1- t) - n>AL 1-AJ
(4-i5) . :
1 R 1A,

Further kX2"kkl+kh~kX1+\, tha’g is [/&A]S[AIA+ 1. Thus

@ 05Z7ea R+ HeAS2

Applying (4.15) and (4.16) we obtain

N, (Ai, I-AO-winryiAj, 1—A2| ~
1 fii fil i ii))l
X'yl ’ K) XNk’ "kl —
IM(X, ....x, ¥, ..., Y)—M(X, ..., X, ¥, .. Y)| ™ 20RKHM).
K-1r
Consequently
4.17) cox,y(h) A 285 .(1))

for ft£]0, 1]. Since M is infinitesimal, (4.17) gives (4.14).

Let us continue the proof of Theorem 4.3.

Using Propositions A and B, it can be seen that there exists a continuous and
strictly monotone decreasing extension of the function (4.12). Thus we can define
a function mxy- d—R having the following properties:
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a) T*'Yis an extension of mxy, i.e.

(4.18) m* (A, u) = wa XY Y)

if (?.,hEAq, U=nk.
b) T*'Yis nullhomogeneous, i.e.

(4.19) e (A, 1) = T, i)
for (A /i)€zl, T6R+.

c) T*Yis intern, i.e.

(4.20) X< mt,Yu<y
for A /i=»0.
d) T*Wis regular, i.e. the function
(4.21) A-m* (A, 1-A), A6[0, 1]

is strictly monotone decreasing and continuous on [0, 1].
Now we define the function M : ~(/)—R by
K.fik /0, X<Y,
(4.22) M, y; A= X X =y, (x,y€/, (5 /i)€d).
Wy, X(/b X>y
Using (4.19), (4.20), (4.21) and (4.22) we can verify that M is a weighted regular
symmetric mean. By (4.18) it is obvious that M and M are associated. We have to
show that M satisfies the inequality of bisymmetry.
Let x,y,u,vEl, Ix, 2y, 5, A,€R+. By the regularity of M, it is sufficient to
show that (1.11) holds for rational values of Xx, Xy, h, A,
Suppose that

K Ix, ly, | KEN).
goKL o« (Ix, Iy, lu, N)
M s strongly intern therefore
min {M(X, ..., X, ¥, ..., ¥), M(n, ..., n v, ..., n}

NMX, G XY, e Y ML n V, LLY)

—Lax {M()& o X, 0, - |§) MY, ..o W Vs ..., DL
n L

M and M are associated, thus

(4.23) min {iGl(x,y; Ix, ly), A{un, v; 1)} tS

& max {M(x, u; X, 1/,), M(y, n; I, 1,,)}.
Using the nullhomogeneity of M for the value we get (1.11) from (4.23).
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Theorem 4.4. Let 1Q R be an open interval and let M£J/(1) be an infinitesi-
mal and strongly intern mean. Then there exists a quasideviation EfS(J) such that
M is generated by E, i.e. M=LUE.

Proof. Using Theorems 4.3 and 3.4 we can see that there exists a quasidevia-

tion ££<?(/) such that M and are associated. 9J/IE and dJif are also associated,
thus
(4.24) M(X, 0y X, ¥, oy Y) = YEX, ..., X, Y, ..., Y)

K | K |

for all x,y£1 andk, /ENU {0}, /c+ />0. We are going to show that

(4.25) M{x) = 3»£(x)
for x€®(7), too.

Let x£In nEN, x=(xI5...,x,,). Without loss of generality we may assume
that XjS.-.Sx,,, XXx,,.
Let t0O=S)fE(x). Instead of (4.25) we show that

(4.26) sgn = sgn (t-M (x))
for iG/\{i0}. We prove (4.26) in the case t<t0. In the case the proof is
similar.

Let /Or-=?0. If (SX]j then (4.26) is obvious. Suppose that xx< t. Then there
exist integers 17k~ 1Sn suchthat

(4.27) xk=... xk<t=x*+1—m—X t0< x(+1 —X,,.
We need the following

Proposition C. There exist integers ux, ..., unsuch that
(4.28) sgn w = sgn E(xt, t0, i=1,..,n,
(4.29) i2:I L= 0,
and
(4.30) UjE(Xi, t)—UIE(Xj, t) > 0

forall (/,NE€{l, NX{/+1 ..., n).

Proof. For i—1, let AmM m= 1,2, ... be a sequence of rational numbers
such that
(4.31) 2/mp=0 if x, =10, (m= 1,2,.),
(4.32) ml_im) Alm = E(Xi, t0, (i= 1, .... n),
and
(4.33) igll\/l m=0, (m=1,2,..).
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As we have seen in the proof of Theorem 2.1, it follows from (4.27) that
E(xh t)E(Xj, tO > E(xt, tgE(X], 1)

for (ip)€{l, ..., IX{/+1, n).
By (4.31) and (4.32) we can choose an index mOsuch that,

(4.34) E(xt,/)-AT°E(Xj,t) >0
for (i,/)€{1, ..., /} X {/+ 1 ,n), and

(4.35) sgn Anf) = sgn E{xh t0
for 1=1, ..., n.

Since 2fn), ..., Ao are rational numbers, there exist a natural number u*
and integers ui, such that Ajng) = ~

Using (4.34), (4.35) and (4.33) we see that wi, ...,unsatisfy (4.28), (4.29) and
(4.30). Thus Proposition C is proved.
Let us continue the proof of Theorem 4.4. Applying Theorem 2.1 and (4.30)
we obtain
t<awf(xt, ..., Xj, Xj, ....Xj).

| 4y -
Using (4.24) we have

(4.36) t < M(x;, ..., xt, Xj, ..., X))

for (/,Y)€{1, ..., }X{/+1,
Since M is strongly intern we have

t< mm M(Xj, ..., Xj, Xj, ..., xj)

I+1SJSn n n
— Xi, XDy e X sy = M(XIFLL X)) = M{X).
U,+,+ -Uj-1/,-. . . —«,

(Here we used the equality (4.24) in the form m+l+ ...+M, = —u—U2—... —U.)
Thus (4.26) is proved.
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ON RADICALS OF SEMIGROUP RINGS

E. R. PUCZYLOWSKI (Warsaw)

In [4] Krempa studied radicals of semigroup rings. Among others, for any
semigroup P with unity and a radical S he defined the class PS of rings by RiPS
iff the semigroup ring P[P] is in S. This notion was introduced earlier by Ortiz [6]
for associative rings and by Gardner [2] for associative rings and the infinite cyclic
semigroup P. In the above quoted papers it was proved that the class PS is radical
and many properties of it were investigated. Some generalizations were made in [3].

In [4] Krempa proved (Corollary 1) that for any radical S and any ring R,
GS'(1I?[/,Dn/?)[PI£S'(i?[P]) and he called S’ to be P-normal if for any ring R,
(5(P[P]MP)[P]=5"(P[P]). In particular, for any radical S and any ring R,
(PSXR)QS(R[P))f]IR. If (A(P[P])MP)[P] is an S ideal of P[P] then (PS)(R)=
=S (P[P])nP. Krempa asked ([4], p. 61) if there exists a semigroup P such that
for some radical S in the class of all rings and some ring R, (PS)(R)?+S (R[P])C\R.
In this paper we answer this question affirmatively by showing that the infinite cyclic
semigroup (Section 1) and non-trivial finite groups (Section 2) have this property.
Actually, it seems to be probable that all non-trivial semigroups have this property.
We obtain a partial result in this direction (Corollary 1) by showing that for any
non-trivial semigroup P there exists a radical S which is not P-normal. The situation
is quite different with radicals in the class of all associative algebras over a field F.
It is known [5] that for some F there exist non-trivial semigroups P such that any
radical S' of this class is P-normal, so for any P-algebra A, S(A[P])C\AIiPS. In
Section 3 we show that for some F there exist semigroups P such that S(A\P])f\
DAiPS for all A and S although not all radicals are P-normal.

At first, let us remark that using Tangeman—Kreiling construction [7] of the
lower radical we obtain immediately

Proposipion 1. Let S be a radical in the class sd of all associative rings and let
S be the lower radical in the class of all rings determined by S. Then SC\s/=S.

Proposition 1 shows that to answer Krempa's cited question it suffices to con-
sider associative rings and radicals in the class of al associative rings only. So, unless
stated otherwise, in the sequel all rings will be associative and all radicals will be in
the class of all associative rings.

For undefined terms and used facts of radicals we refer to [8].

1. If P is the infinite cyclic semigroup with unity then for any ring R, P[P]
is isomorphic to the polynomial ring P[x] of indeterminate x. In that case for any
radical S we will write PnS instead of PS. Before constructing a radical S and a
ring R such that Px£m(/?) S'(P[x])[MP we prove two lemmas.
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Lemma 1. Let K be afield and S the locallyfinite radical in the class ofK-algebras
(i.e. A€S iff any finitely generated subalgebra of A isfinite dimensional). Then for
any K-algebra R, £(A[x])=A(A)[x], where L(R) is the locally nilpotent radical of R.

Proof. The inclusion L(/?)[a]”5'(i?[x]) issues from the fact that any finitely
generated nilpotent A-algebra is finite dimensional. Now since any subalgebra of
an 5-algebra is in S, by [1], N(A[x])=/[X) for some ideal / of R. By the foregoing
/2 A(A). We will prove that/is locally nilpotent. If not then 1 contains a subalgebra
B generated by elements r1, , rkwhich is not nilpotent. Thus for any natural num-
ber n there exists 0OAarEBn. But then anxnare lineary independent elements of the
subalgebra C of /[n] generated by B and rlx, ..., rkx. Of course the subalgebra C is
finitely generated and infinite dimensional. This contradiction proves that I1QL(R).

Lemma 2. If A is a simple ring without non-zero central elements then no ideal
of A[a] contains non-zero central elements.

Proof. Let / be a non-zero ideal of A[x]. For m—0, 1, ... define
Jm= {af£A\axmt+ amtlxm+l+ ... +akxk£J for some amtl, ..., akeA}.

Ofcourse Jmare ideals in A, so foranym, Jm=0 or J,,,~A. Let a=amxn+ ...+akxk
be a central element of / with anA0. If b=bnxn+ ... +brx'£J then ab=ba and,
inconsequence, anb,,=bnan. This and the fact that J,,—A implies thata,, is a central
element of A. This contradiction proves the lemma.

Now let K be the field of p elements for some prime p and let A be a simple
locally finite /'-algebra without non-zero central elements (for example the algebra
of infinite matrices with finite number of non-zero entries from K). Let A* be the
natural extension of A to a K-algebra with unity such that A*/A>kK and let / be
the ideal of A*[x] generated by A and xp—x. Then we have

Theorem 1. If S is the lower radical determined by | then (P1S)(A*)AA =
= S(A*[x])DA*.

Proof. To prove that (P1S)(A*)AA it suffices to show that 5,(~[n])=0.
If S(A[X])AO then A[x] contains a non-zero accessible subring R which is a homo-
morphic image of / by a homomorphism f. Since A[x] is a semiprime ring, for any
natural number n, RnA0. But for some n, R" is an ideal of A[x], Since (xp—x)n
is a central element of T and f(T)—Rn f((xp—x)n)=0. This shows that R is a
homomorphic image of 1/((xp—x)"A*[x]). But I/((xp—x)nA*[x]) is a locally
finite /-algebra, so the locally finite radical of A[x] is not zero. Thus Lemma 1
implies that A is locally nilpotent. Since A is simple, A2=0. This contradicts the
assumption that A does not contain non-zero central elements.

Now we will prove that S(A*[x])(~)A*= A. Clearly S(A*[X])P.A*f)ir\A*= A
s0, since A*/A~K, itisenough to prove that Ki S. If ATS then A is a homomor-
phic image of / by a homomorphism /: 1-*K. Since A is a ring with unity and
/ is an ideal of A*[x], we can extend / to a homomorphism /: A*\x]-~K. Now
f(xp—x)=(f(x))p—F(x)=0. Also f(A)=0 as A does not contain non-trivial sub-
rings and A is a simple ring which is not isomorphic with A. Hence /(/)=/(/) =0
as / is generated by A and xp—x. This contradiction ends the proof.
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2. Lemma 3. Let GA 1 be agroup such thatfor any gf G, g2=i, Z the ring
of integers and 2Z the ring of even integers. If S is the lower radical determlned by
theideal | ofZ[G] generated by 2Z and {1—-g|g€G} then

a) S(Z[G])(1Z=2Z:
b) S((22)[G])=0.

Proof. Certainly S(Z[G])C)zf>2Z. If S(Z[G])DZa 2Z then S(Z[G])nz=Z
so zfGJis'. Thus z2=z/2z€s. This means that z 2 is a homomorphic image of
| by a homomorphism f : 1--Z2. Since Z2is a ring with unity and | is an ideal of
Z[G], we can extend/ to a homomorphism /: z[G]—z2. But then / (1—g)=()
for any g£G, so K er/g/~ »~ &gi<2;£2Z, gfiG, ~ a;=0}. In particular z2
is a homomorphic image of (2Z)[G]/J;~2Z. This contradiction shows a).

If S((2Z)[G])A-0 then (2Z)[G] contains a non-zero accessible subring A which
is a homomorphic image of / by a homomorphism /: 1-»A. Let us observe that
1(2) +1(2)=1(4)=1(2)/(2) and (/(1-9))2=/((1-9)9=1/(2(1-g))=2/(l-g) for
gdG. Thus/(2) and/(1 —g) are elements of (2Z)[G] which satisfy the equality x 2= 2x.
If a=2al+ 1 2 G(Za,,)g€(22)[G] and a- = 2a then, since g2—1 for g£G, we obtain

af+ 2 al—aimThus ag=0 for gA 1 and aG2Z. Hence A Q2Z. Thisis impossible

as A is a non-zero accessible subring of (22)[G],

Corollary 1. For any semigroup P A1 there exists a radical which is not
P-normal.

Proof. Let K be the field of three elements and S the upper radical determined
by K. If S is P-normal then 5(PI'[P])=0. In particular K[P] is a subdirect sum of
copies of K, so any element of K[P] satisfies the equality xs—x=0. Thus P is a
group such that p2= 1 for pfP. Now the rest follows from Lemma 3.

LEMVE 4. Let A=xK\[x]\, where K [[x]] is the power series ring over a prime
finite field K of indeterminate x. Let S be the lower radical determined by
{A, A*®KFX, ., A*®KFn) where Ft are finite simple K-algebras with unity non-
isomorphic with K. Then

a) K$S;
b) AKFt8S fori=1, ..., n

Proof. If KdS then Piis a homomorphic image of A or A*®KFt for some
I~i~n. The first case is impossible as any proper homomorphic image of A is a
nilpotent ring. If /: A*<g)KFi-»K is a homomorphism then, since FiIAK,f(Fi)=0.
Thus f —0 and the second case is impossible too. This proves a).

Now if S(A(S>KFi)AO then A®KFt contains a non-zero accessible subring
R which is a homomorphic image of A or A*®KFj for some 1SjSn. But A®KFt
is isomorphic to a subring of xPf[[.v]], so A ®KFt does not contain non-zero idem-
potents. This eliminates the second possibility. Since Ft is a ring of matrices over a
finite field F, the ring A® KFt is semiprime. Thus if R is a homomorphic image of
A then R'~A as any proper homomorphic image of A is nilpotent. But R is an
accessible subring of A*®KP;. Thus for some m, Rmis an ideal of A*®KFt. Clearly
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RmxzAm and RmAOQ. This is impossible if Ft is non-commutative as then Rmis
non-commutative. If Ft is commutative then Rmis an Ft-algebra and Am as it is
easy to check, is not one. This contradiction ends the proof.

Theorem 2. For any finite group GA 1 there exist a radical S and a ring R
suchthat (GS)(R)"S(R[G})r\R.

Proof. If for any g£G, g2= 1 then the result follows from Lemma 3. So we
can assume that G contains an element of order n>2. Since any arithmetical pro-
gression kn+r of integers with n,r relatively prime contains infinitely many primes,
there exists a prime p greater than the order of G such that n does not divide p - 1.
Let K be the field of p elements. Then K[G] is a semiprime finite dimensional K-
algebra, so K[G]= RX® ...®Rk, where Rt are simple A'-algebras with unity. By the
choice ofp it follows that some R{are not isomorphic to K. But some of them are,
as K is, a homomorphic image of K[G], Now if S and A are those of Lemma 4 then
S(A*[G])DA=A and S(A[G])MA[G], so (GS)(A*)NS(A*[G])f]A.

3. Let Z2be the field of two elements and C2 the cyclic group of order 2. Then
not all radicals in the class of all Z 2-algebras are C2-normal. For example Z2[CZ
is neither Jacobson radical nor semiprimitive. But we have

Proposition 2. For any radical S in the class of all Z2algebras and any Z..
algebra A, (C2S)(A)= S(A[C)NA.

Proof. If C2={l,g} then for any Z2algebra A, (A[CZ) will denote the
ideal {a\ +bg\a, bdA}. Of course (ai(Z[C2))2=0 and co(A[C]) is the kernel of the
natural homomorphism n: A[CZ-+A sending a\ +bg on a+ b. Now if for some Z2
algebra A, S(A[CZ)"0 and S(A[CZ)MNJ1=0 then any zero Z2algebra is in N.
Indeed, let #(N(Z[CZ))=/. Then / is an ideal of A and (p(S(A[CZ))ta>((A/1)[C2),
where @is the natural homomorphism of A[C.,] onto (Aj1)[CZ. So if @ (S(A [Ca]))” O
then S(A [CZ) can be homomorphically mapped onto the zero Z2algebra Z2 on the
additive group of Z2. This implies that any zero Z2algebraisin N. If cp(S(A[CT))=0
then N(Z[CQ)~/[CQ. But for every a+bgf£S(A[CY), (a+b)+ (at+b)g=
(a+bg)(1+g)ES(A[CY), so cu(/[CA)gN(T[CT). Thus N(T[CI)=/[CT, a con-
tradiction.

Now let B be a Z2algebra and let C=S(B[CZ)IB. Then C[CJEN(B[CZ).
If C[CZ=N(N[CT) then the result follows. So, let C[CAT N(N[CZ). Then
N((N/C)[CZ)~0 and N((N/C)[C)n(N/C)=0. Hence, by the preceding paragraph,
any zero Z2algebra is in N. If I~-n(S(B[C.f)), where n is the natural homomor-
phism of B[CZ onto B, then CflbS and by foregoing oj(/[C,])(IN. But
I[CA/a/[CY)ril, so T[CIEN. This shows that C[CZ=/[CQiN and ends the
proof.
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ON NASH EQUILIBRIUM. I

D. T. LUC (Budapest)

The notion of “Nash equilibrium” (see [1]) was developed and generalized in
different directions (see [4], [5]). The purpose of this paper is to present one general-
ization of this concept which is connected with optimality over cones. The existence
of equilibrium will be established and Arrow—Debreu’s model will be discussed
with its help.

1. Notations and definitions

Let us consider a multiobjective model consisting of n subsystems denoted
by 4, ...,%,. Each % is given by the set of its possible actions Z; and the multi-
valued mapping ¢; restricting the domain of actions, from the product
Z=7Z,X ... XZ, into Z;. Denote S the set of states of this model, i.e. S consists
of all points z=(zy, ..., z,)€Z with z€¢;(z) (i=1, ...,n). Let u; be an objective
function of & defined on Z with values in a Euclidean space R™:.

DEerFINITION 1. Suppose that M is a closed convex cone in R™, K is a subset of
S and f'is a function from S into R™. A state z€K is called to be M-optimal of K
if there is no z’€K so that f(z")s4f(z) and f(z")—f(2)e M. We write zE MO (f|K).
Suppose M,, ..., M, are closed convex cones containing no lines in R™, ..., R™n,
respectively.

DEFINITION 2. A state z€.S is called to be a Nash-M equilibrium of the model
if z belongs to M;0(u;|Si(2)) for all i=1, ..., n, where

Si2) = {2’ = (z1, ..., z))€Z: zj = z;, j#i and z[€;(2)}.

Remark. If M;=R": is the non-negative orthant in R™ then M;-optimality
is Pareto optimality and Nash-M equilibrium is Nash-Pareto equilibrium defined
in [2]. In particular, if m;=1 for all i=1,...,n and M;={x€R, x=0}, then
we have the well-known Nash-equilibrium (see [1]). The results in this paper generalize
those in [2] and of course they generalize the theorems of § 17 and § 18 in [1].

2. Existence of equilibria

Before proving the existence of equilibrium of the model, we recall that a func-
tion f'is called to be M-concave if

fOx+1=2)y) - (x)—-A =DM
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268 D. T. LUC

for all AE[0, 1]. Here we suppose that S is a subset in a locally convex space. The
lower semi-continuity and upper semi-continuity of multi-valued mappings can be
found in [3].

Lemma 1. For a closed convex cone M containing no lines, there is pEM so
that (> x) >0 for every x ™ 0, XEM.

Proof. We prove the lemma by induction on dim M (by definition, dim M is
the dimension of the smallest space containing M). The assertion is trivial for
dim Af=0. Suppose the lemma is proved for M with dim M We have to
show it for M with dimM=m. The convex cone M contains no lines, hence there
is a hyperplane H—{x:{x, b)=0 for some fixed bEM\ which separates M and
(-M). If (x, b)>0 for every x=x(), xEM then the proof is finished. Otherwise
MMH is a closed convex cone with 0<dim MM A<T. By induction there is
gEMP\H so that (q,y)>0 for every yZO, yEMC\H. We claim that there
exists a positive A such that (Ib+q, x)>0 for every xZ-0, xEM. It is sufficient
to prove that the latter inequality holds for x£EM and |x|| = 1. Suppose the opposite:
for A—1,2, ... there are xx, x2, ... in M with ||x;|= 1, and

(1) (ib+q,x,)™ 0.

In view of the compactness of the set K={x£M, |xii=1} we may assume that
{Xi} converges to x0EM. If x06H one can find some positive e so that (g, xOQ>e.
Hence, for sufficiently large N

@ {g. >y > 1= N-

This contradicts (1) because of (b, x,-)sO. In the other case x0£H, i.e. {b, x0 x5
for some positive & Consequently (b, x;) > -- if i is larger thansome integer N'.

The function (q, *) is bounded below on K, therefore

?3) (ib+q, xt) = i(b, xt)+(qg, xt) > iy + min(q, x) > 0

for i sufficiently large. (3) contradicts (1), which completes the proof.

Lemma 2. If z*£K satisfies (p,/(z*))s(p,/(z)) for each zdK, wherep is
defined as in Lemma 1, then z* is M-optimal on K.

Proof. If z* were not M-optimal on K, we would find some y(zK such that
f(y)~f(z*) and f(y)—f(z*)EM. Hence (p.,/(y)—#(z*))>0 that contradicts
the condition of Lemma 2.

Theorem 1. Suppose that the model satisfies the following conditions:

i) Zx, mm Znare non-empty convex compacta in a locally convex space;

ii) ux, ... ,u,, are continuous functions, w is Mi-concave on zj; i=1,...,n,
respectively;

iii) o ...,(/>,, are Hausdorff continuous and the image of any point is a non-
empty convex compactum.
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Then the model possesses Nash-M equilibrium.

Proof. First we note that by Lemma 1, there are plEM1, ...,p,,EMn with the
property in Lemma 1. Let i; be a composition of pt and n;, i.e. ni(z)= [/;icM'|(2) =
=(p;,w(z)) from Z into R. Define a multivalued mapping F from Z into itself
by F(z)=F,(z)x...Xf,(4 where

*Fi(r) = {z'<ESi(z), Vi(z') = max[u,(y)|y€5'i(2)]}.

Suppose that there exists z*£Z such that z* is a fixed point of F, i.e. z*EF(z*).
Observe that z* is Nash-M equilibrium. Indeed, z* satisfies

u;(z*) = max [ir(y)ly65,(r*)] (i = 1, ..., n),

i.e. by Lemma 2, z* belongs to MiO(ni|S'i(z*)) for every i. By definition z* is Nash-M
equilibrium.

To finish the proof we have to show that F has a fixed point on Z. In view of
KyFan’s Fixed Point Theorem (see (3]) it suffices to show

a) F(z) is nonempty convex for every z£Z;
b) F is upper semi-continuous from the convex compact Z into itself.

This is equivalent to showing that 1) satisfies a) and b) for eachi. For a), by
assumption on ¢t we see that St(z) is nonempty convex, so is F;(z). Let z1 and z2
be two points in Fjyz) and A be a number in [0, 1]. By the M,-concavity
of u(, ui(Xz1+ (1-)z2 —ui(z) —1—X)ui(z2£Mi, hence (j>t, ui(Xzl+ (1 —2)z2) —
—(pi, /fivi(z)+ (I —A)Uj(z2~0. It follows

i(Azl+ (1-A)z9 ™ Ali(zD+(1-A)di(z2 = max [A((y)ly€~(r)],

hence ™+ (1 —A)z2GF,(z). The convexity of F;(z) is proved. For b), suppose
the contrary that there are a sequence {zk}, zkEZ converging to z°€Z and a
sequence {y*}, yk6F;(zK so that

()] g(y*, F;(z0) s £0 for some positive e0.

Without loss of generality we may assume that {yk} converges to y°. The mapping
i is continuous (lower and upper semi-continuous) therefore y°f S)(z°). From (4)
we have g(y°, F;(z0)” £0 or

5) max u-(y) [y€St(z0] - w(y°) er

for some positive £x. By the continuity of 9£ the compactness of S and the continuity
of i7; we have

(6) max [ut(y) [y€ (z0]- max [m(y)|ly€S, 9] < j «
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270 D. T. LUC

for k larger than some integer N. The convergence of {yk} to y° and (6) yield
(7) max[i;O ) St(z0]- ut0°) = max [, (y)\yt S, (z0] - max [0, (y) |y€ St(zK] +

+max[i(y)yeSi(zh 1 =JEI+ (/) - w(y)|< ]

for k sufficiently large. (7) contradicts (5) which shows the upper semicontinuity
of Ft. The theorem is proved.

3.  Arrow—Debreu’s model

We first describe the generalized Arrow—Debreu’s model. Suppose that our
economy has / kinds of commodities and there are m agents, n consumers and a
price system. These agents have their sets of production possibilities Xx, ..., Xm
in RI, where every x£X{ characterizes a production process, for which positive
coordinates correspond to product-output and negative ones to product-expediture.
For the i-th consumer there is a utility function f defined on Rk with values in R™.
Assume that a closed convex cone M;, containing no lines is given in R™. A price
system is a set of vectors pER'+ . We shall deal with the normed price

pip =\p = (p\ ....pYe#+ R pk= i}_

A balance relation of production with consumption is characterized by the multi-
valued mapping

B: g = WIX.. XAMX(RH)NX P-An
satisfying

i) If thP(*i)=O then OMIIA'+~0, where q=(x,y,p)£Q.
=
i) If x=(xIt...,xm), xt€EXt, y=(ylt...,yn, YjERKF and p£P, gq=(x,y,p)EQ
n n

then for any z£0(q), klek = 2I P(xd where z= (z1, zn£Rn and
= i=

p(Xi) = k2_Ikah xi= (xj, xNCR".

Definitions. A state q=(xi, ..., xm, ylI5 pP)EQ is called to be equi-
librium iff
m n
O 121 = 72¥J>
i) Tax[p(x4|xmBAN = p{>c) (i =1, .., m),

iii) yjEMjO(fj\{yjERK:p(yj) =£23 for some (z1, ..., 2")CO(Q)}).
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ON NASH EQUILIBRIUM. | 271

Remark. In particular, if 0 is single-valued, 0=(0j;..., 0,) with
m m

0 = 21aijP(xj) where ai;&0 1.J£ay= I, /,» has its values in R1 and Mj=R\
i=i =

then above-described model gives Arrow—Debreu’s model in the classical sense
(see [1]).

Theorem 2. Suppose that the model satisfies the following conditions:

i) Xt is convex compact containing 0.
ii) fj is continuous, Mj-concave.
iii) 0 is continuous with a convex image of every point.

Then the model possesses its equilibrium.

Proof. We shall reduce this model to the one described in Section 2. First note
that a state equilibrium must verify hypothesis i) in Definition 3. Therefore we can
regard that the domain of change ofy is not R\, but it is Y, consisting of yd Rk
with y sy where y = (y1 ...,y),

YK = i% wax [x-|x(€2u] (fc = 1, «=>0-

|
Let us consider the following multiobjective model with n+m+1 subsystems:
The sets of actions are

Zt=Xt (i=1,..,.m), Zmj=Y (y= 1l...n), Zmn+l= P.
The mappings restricting the domain of actions are:
(pi(z) =Xi (i=1, z=(*!, ..., xm ylt ..., ¥,,p);

Pm+j{f)={ydY\p{y)-~ti for some (i1 ...,t")E&(z)} in the case PrjQ{z)C\{ydY-.
p(y)=0}"~0 where PrjO(z) stands for the projection of 0(z) on /-coordinate,
(pm+j(.z)={ydY:p(y)=0} otherwise 0 =1, ..., n), ~m#,+i(z)=F. The objective func-
tions are:

Mj@@ = Pix,) from Z into R, i= 1, .»m,
um+J(z) = fj(yj) from Z into R"j, j =1, ..., n,
«T+rHi Q0 = P{j2 Y]~|2 xg from z into RI-

In order to apply Theorem 1 we have to show that conditions i), ii) and iii) in this
theorem are satisfied. For, w,,...,n T and umtn+l are concave (or Jl+-concave),
um+j is M,-concave on zm+j=yj,j=1,..., n (by assumption on j)). It is clear that
€; ...,(pm and (pm+,+1 satisfy hypothesis of Theorem L1

For (pm+j (J—1, —,m) we have to show that 9mtJ{z) is non-empty convex
compact for every zdZ and <t is continuous. The continuity of gm+J follows
from 0 and p. Now we verify the convexity of (pm+A2)- It is sufficient to verify it
inthecaseP/'jO(z)n{j€T:p(>"') = O}7i0, otherwise it is trivial. Lety and y' be two
elements of gm+J{z). For all A£[0, 1], ly+(\ —X)y'd Y as Y is convex. By definition,
there are / and t" in 0(z) such that p{y) is smaller than tj (the y-component of t) and
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272 D. T. LUC: ON NASH EQUILIBRIUM. |

p(y*) is smaller that t'J. Hence p(Ay+ {\ —X)y") = Xp{y) + {\ =X)p(y") = Its+{\ —=X)t"J
Take f=At+ (I —A)i'E<9(z), then p{/y+ (\ —k)y') is smaller than V. This shows
that Ay+ (1 —X)y'd(pm+J(z). Obviously qm+](z) is non-empty. Its compactness fol-
lows from the compactness of Y and continuity of (pm+j. Using Theorem 1 we
obtain Nash-Af equilibrium z=(x1, ..., xm ylt ..., y,, p) satisfying conditions ii)
and iii) in Definition 3. Moreover, O6A) follows p(x;)S0. Thus 0(z)C\R"+" 0.

Forconditioni), suppose the contrary that there are r kinds of commodities kr, ..., kr
such that
8 2yk-2z 2 y)~2A (=1, k€L, .. I\{k1,... k).

Since umm+1 maximizes p (2 Yj~~2 *> we have

9) 52,1P ks= 1 and Pk= 0 for fe€{l, .. I}\{klt kr}.

From the assumption on 0 we have 2 ~ —2 P(*i) hence

(20 2 P(yj)S 2 Puw -
(8) and (9) imply

W) 2 P(yj) > 2P(Xi)-

The contradiction between (10) and (11) shows that 2 M—2Y j- Theorem 2 is
proved.
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ABSOLUTE CONVERGENCE OF FOURIER SERIES
OF FUNCTIONS OF nBY<« AND <paABV

M. SCHRAMM (Clinton) and D. WATERMAN (Syracuse)

1. Let/ be a real valued function defined on an interval / of R1 For
l,,=[a,,,b™d, set /(/,)=f(bn—f(a,). The intervals n=1,2,... shall be as-
sumed to be nonoverlapping. If 1= {2,} is a nondecreasing sequence of positive real
numbers such that ~>U/A,,= we say that/ is of J1-bounded variation (/1BV) if,
for every {/,.},

This is equivalent to requiring that the sums be uniformly bounded (see [4]). We
shall suppose that /=[0, 2ri\.

If (p is a nonnegative convex function defined for 0 Sx < °° such that <p(x)/x-*0
as x-*0, @is said to have property A2(or to “be A ”) if there is a constant d(dS2)
so that cp(2x)Sd(p(x) for all xaO. If gis A2, we say that/is of tpA-bounded varia-
tion Op/tBV) if, for every {/,.},

© 2>(I/001)A <~

When (p{x)=xp,p > 1, this class is called/iBV (i,). For p~ 1, the integral modulus
of continuity of order p of/ is

Opifl = «ip (/\f{x+t)-f(x)\pdx]Vp,
where/ has been extended periodically to R1
M. Shiba [2] has shown the following
Theorem. If /JETBV(P), 1 1 <», and

I ~ K +@2_PY/; Trin)l-p27nl- UXx <°o,

where I/r+1/s=1, then the Fourier series o ff converges absolutely.

We note that there is a misprint in the theorem as it is stated in [2].

In this paper we first improve this theorem by refining the method of Shiba
and then prove a similar result for functions in the class tp;1BV. The result for ¢/IBV,
Theorem 2, is more general in that it is more widely applicable, but unfortunately
it does not contain Theorem 1 as a special case. We have encountered this phenome-
non previously (see [1], Theorem 1).
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274 M. SCHRAMM AND D. WATERMAN

We will make use of the following

n
Lemma. |If cré caf .»£¢,>0, » ck—1, and a”a.”... =an, then

() (Un) k2_ 1ak = *21 kak.
We now state our results.

Theorem 1 If Jil /1BV(P), InN?<2r, 1 °°  and

» r U
27 2 1/41 " (ojpt(2_p)s(/; n/n)f-p2in112 < oo,
n=1U=1 /
where I/r+ 2j= 1, ilien i/re Fourier series off converges absolutely.
When r=1, i=°°, we take core(/; n/a)=co(/; n/a), the ordinary modulus of
continuity of/.

A
Since n/X,,» ~ 1/4, Theorem 1 is an improvement on the theorem of Shiba.

k=1
In fact it is possible that z/A,= o L/Akj, for example, we have the functions of

harmonic bounded variation (HBV), for which A,=zz, so that n/Xn=1 and

)2 . 1/4~logl/7.

t=
The case p= 1, r=1,.s=°° has been given by S. Wang [3].
Theorem 2. If <p|S n2, Jil rp/IBV, 1S/?<2r, 1 and

P i V4) «pV(Ep)Y/; zrn)j jn1Z< oo,

where \jr+1/r= 1, zZzen the Fourier series off converges absolutely.
In what follows we shall use C to denote constants, which are not necessarily
the same at each occurrence.

2. Proof of the Lemma. Apply summation by parts to the difference of the
two sides of (2) to obtain

k2=|(c*-I/n)a* = 2 K-«t+ izii=21(|"rl/»))50

since 2 (ci~ l/«)=0 and at—a4+1&0 for fc=1,..., n—L

=1
3. Proof of Theorem 1. Suppose that r> 1, and note that 2=((2—44+/?)/.y+
+?/r. Weset Ik(x)=[x+(k—I)n/N,x +kn/N], and obtain by Holder’s inequality
P 2 A
[ (4 (x))|2d x ~ (1 [1(AW)|<2-rts+™N x ) LI/ /(A (x))|M x)Ir S
0 0 0

ar
ARV (T [1(4(%)) M x) 1,
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where QN=(co(2- p)s+p(f-, n/Nj)2r~p. Thus
Y in r N
2 (1 [HACE)12d*)r= gjv I 2 \f(h(x))\" dx.
f—1 o 0 A=1

If kj=kj(x), j=1, ..., N, denotes a rearrangement of k=I,...,N, such that
{I/(/t,(*)1j} is nondecreasing, then, by the lemma, the above is not greater than

(/R IM%JI [ '/(41a)1% ~xs CO* (iV/I 10% (K> (/)"

where (VAp>(f))p is the supremum of sums of the form (1) with <p(x)=xp. By

hypothesis, V(™ (/)<<», so the above is not greater than CQn~N/ 1A cj.If an

and b,, are the Fourier cosine and sine coefficients of / respectively and 02—a2+h2,
by Parseval’s relation,

—f \f(x+h)—f(x —h)\2d x4 2 6nsm2nh.
ns n=1

Thus
Ngj - N I * L]
4 \nZ:I 5|n2(mr/2,v)/) CQnN/k2:1IBt, nZ:I eBsm2(rm/2N) C uA\kgllﬂ, } ,
and since n/N”sin (nn/2N) for n=I, 2, ..., N,
?3) I'|2:lA gl “cn2gM \lIJZZ.I.VA/
N
Let \IN= 2 nen, then
—x
A NIR2(i n2e2) " ~ CNAQT (i 1/4)
Now
N-I N
2en=2 L/ («+ )+ Yins 2 AR+ =
N-1 ron \ e A \ o
S CnZ:I n~1,2Q]j|r\fe§i 1A} + CNII2Q]|ZU2:11/47 = 0(1) as Af

and the theorem is proved.
For the case r=1, s= =» simply note that

[1(4(*»[2= \f(x+(k-1)n/N)-f(x+kn/N)\2- p\f(Tk(x))\p

(A n/N)2~p\f(1k())\p
and proceed as above.
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4. ProofofTheorem 2. Since multiplying / by a positive constant alters cop(f; S)
by the same constant, and <$is A2, we may assume that |/ (x)]|for all x. As

above, we obtain, for 1,
2k 2k 2k

5 \(rk(x)fdx =Q]jr((1; \f(Ik(x)fdx]l/r’\Q]I'(Of VE{TK{x))\dX] VT,

and r i

n
{/ﬁ_l n2QAN 2) CQn(SJ \F(IK(X))\dx.

Since <p(2x)Sd(p(x), we have (p(ax)”j log0 <p(x), so
/I N 4o 2K
(IRNA~AZ~Net/N2) j sadex*™«ep[(l/2n) £ |/(4(x))] dx) =
2 n
= CQ'"rcpUIBN) f \f{Ik(x))\dx) = CQN+'cRdQNcpr(I/2n) £ \f{lk(x))\dx),
0 0

and by Jensen’s inequality this is not greater than CQN(]; <K|/(4(*))|) dx. Since

the left side of the above inequality is independent of k, on averaging both sides
we obtain

o[ ( m20ila?dj=can(f 2re(]/(40))])/4dx)1r21/4 =

S CQNvOAf) 12 1/4 " cqd 2 1/4,

where VOA(F) is the supremum of sums of the formg(1). Ve have obtained
2n*QI~CN2\p

and the proof, along with the case r=I, s=°°, is cofipleted as in the proof of
Theorem 1, beginning at (3).
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TEOPEMbI O PABHOCXOAMMOCTU

. A. UICMATYJITAEB (TawkeHT), . MO (ByganewT)

Llenb HacTosilein paboTbl COCTOMT B [0Ka3aTe/lbCTBE HECKO/IbKMX Teopem
TWMa paBHOCXOAMMOCTHW, KOTOPbIE AOMOMHSAT pe3ynbTarthbl rnaebl X kHurm M. Cere
[4]. WNccnepoBaHue nposoguTca metogom B. A. WnbuHa (cm. Hanpumep [1], [2]),
nyTeM Haf/ieXxallero pasButus ugei pabotbl [3]. MepeiigemMm K TO4HON hopmynu-
pOBKe pe3ynbTaToB.

Mycte G=(a,b) — KOHeuUHbI UMM GeCKOHe4YHbln MHTepBan, K—a',b'] —
NPOU3BO/IbHbINA, HO (UKCUPOBaHHbIA (KOHeYHbIA) OTpPe3oK B WHTepBane G,
0<<50<0(dK,dG) dwmkcmpoBaHHoe umucno (3gecb o(aK, ()C)-paccTosiHMe Mexay
rpaHnuamn otpeska K mn uHTepBana G), qf£Ljoc(G), T.e. g{x) wuHTerpupyema c
KBafpaTom B cMbicne Jlebera Ha N060M KomnakTe uHTepBana G.

PaccMOTpyM NpuU3BO/IbHOE HEOTpMLATE/TbHOE CaMOCOMPSIXKEHHOe paclUMpeHune
onepatopa Lu= —u"+qu Tuna LlpeanHrepa ¢ TOYEYHbIM CMIEKTPOM (XOTS 3TO yc-
NoBME B AEWCTBUTENBHOCTU W3/IULLHE, Halla MepBas Teopema CrpaBeA/vMBa TakKxke
B C/y4dae 06LEro camoCOMpPSHXEHHOro pacwimpeHus). O6o3Haumm 4epes [U,,(x)}
MOJTHYI0 OPTOHOPMUPOBAHHYIO CUCTEMY COBCTBEHHbIX (DYHKLUIA 3TOr0 pacLUMpeHus,
a uepes {/,,{-cOOTBETCTBYIOLLYIO CUCTEMY HEOTPMLATE/IbHBIX COGCTBEHHbIX 3HAYEHWA,
Yy KOTOPOI Ha/nume TOYeK CryLLUEHWUSI He WCKI/IIoYaeTcs.

Ona nwo6on pyHkumn f(X)EL 2(G) cocTaBUM 4YaCTUUHYKD CyMMY

(1) *(>)= 2 QGununx, >0

(MoXxHO nokasaTb, 4YTO 3Ta CymMMma abCO/IIOTHO CXOAUTCA MPU (PUKCUPOBAHHbIX
xEG un fi>0; Takum o6pas3om, pesynbTaT He 3aBUCUT OT MoOpsfKa cnaraeMbliX.)

YacTuuHbie cyMmbl (1) 6yayT cpaBHMBATbLCA C MOAUDULMPOBAHHbLIMW MpPeo6-
pasoBaHneM dDypbe TOW ke camoi yHkumm f(x):

2

1. OCHOBHbIM pe3ynbTaToOM 3TOr0 MyHKTa SIBASETCA Ccrefytollass Teopema,
obobwaowasa Teopembl 9.1.2, 9.1.5 n 9.1.6 kHuru . Ceré [4].

Teopema 1 Tpu caenaHHbIX Bbille MPEAMNONOMKEHUAX, UMeeT MeCTO OLeHKa
(3) SB(/, x)~oB(f x) = o(l), (fl- )
paBHOMEPHO OTHOCUTENbHO XEK.
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LokasaTenbcTBO. Byaem ncxoguTtb u3 paBeHcTBa (34) paboTbl [3]: npu N06bIX
(rkcmpoBaHHbIX XEK 1 >0 B mMeTpuke L2(G) no nepemeHHOW y MMeeT MecTo
paBeHCTBO

() sdvd(\x-y\,fi)- 2 unX)U,(y) =\ 2 unx)un(y)~

n2:I Un(x)Un(y)S}[1$.T -m - ngl ssolf hn(x, t)di) U..(y),

rae

1 sin/ii Moo=t 6
(5) r*(*,d= n t

0, npu t=@G

sin /ii

6) UACER.
@) W.(*. 0 = ET:A,,*/-i 9(Ne (Os in (I*-EIl-0
8 SjgCi ; /r°
(8) JgCi» = 18“,/2 (D) S

B pa6oTte [1] B. A. VnbuH gokasan, 4To MNpuv MNpPearnosioXeHUsX Teopembl 1
NMeeT MeCTO OLEeHKa

(9) _ 2 \m,0c)\**C (XeK, 1>0);
\yxn-n\si

Janee, VHTErpupyst Mo 4acTsM, NIerko [0Kas3aTb OLEHKY

(HO) Isy'fcWH - 1+2 y|,. <m>o0. A .« °)-

Vcrnonb3ys 3TV OUEHKM, MOXHO A0Kas3aTb, UTO Psidbl, HaxofsliMecs B MNpPaBoii
yactTn (4), cxofgatca abconTHO npu N6bIX (uKeupoBaHHbiXx XEK, >0, yEG.
Hanpumep, 415 BTOPOR («rnaBHOM») CyMMbl 3TO A0KasblBaeTcs Cregylolmm obpa-
30M (NPUMEHSS HepaBeHCTBO KoLM-BYHSAKOBCKOro «Mno nadkam» u oueHku (9) u

(10)):
r%:l \Un(x)Un(y)SSQ[II_I> m —

A * h fI212—Cre-> = C
*2:i( K"y12'S*+I wn(e l-IksYTr218k+I 1 ”V\)g) |+?A'fc|2
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YMHoXasa o06e yvacty (4) Haf(y) v nouneHHo mHTerpupys no y Ha G (370 3a-
KOHHO B cuily Teopembl Benno-fleen [5]), nonyumm

b
(1) fLSHV,i\x-y\,li)- 2 Un(x)un(y)]f(y)dy =

= 421-2 vm(x)/ UBy)f(y)dy- 21U a(x)SH[rI 'm f un(y)f(y) dy—
< n= "

< «
-4 i s/ K (x, t)dt] / c/B00/00 dj.

Tak Kak Mnpu BbINOMIHEHUN yCI'IOBI/II7I TeopemMbl

Ne =0 = {( 2 /L . OO /(THTT-0""

TO, UCMNONb3yA HepaBeHCTBO KowW—BYHAKOBCKOro «Mno naykam», oueHku (9) u
(10), ans «rnaBHbIA CyMMbl» NPaBO YacTu paBeHcTBa (11) NoAyYMM OLEHKY

* ¢ (So) o
2 (kS’\\Z(’\k+k [t/,, (%)Y VX g.nSk+1|é un(y)f(y)dy\Y | fiokp o)
Ll -+ o°.

MepBasi cymma npaBoi 4actu (11) oueHMBaeTCs TpPUBMANbHO, a TPETSAs CyMMa
OLIEHMBAETCH TaK XXe KaK aHa/lormMyHasa cymma m3 pabotbl [3] (cTp. 1183—1184).
Takum o6pa3oM, AoKaszaHa cnefyrolias OLeHKa:

;S M Ix-yl d)f(y)dy-ffli(f, x) = o(1), u- o, x"K.
[na 3aBeplleHVs [oKa3aTeNbCTBa Teopembl 1 [OCTAaTOYHO A0Ka3aTb OLEHKY
j b
3 S,9Vvt (\x-y\, d)f(y)dy- f Vio(\x—y\, n)f(y)dy = o(l), u- = x£K.
a

[Ona 3TOoro BbINMLWEM $BHbIA BUA (YHKLUN y\, fi):

| |
v»S\x ~y\”" d), npm \x -y\» $_»

(12) ~"K , (|*-H/i)="{2(i0-|x-y]|) VIO(\x -y \, 1) npn -j- = \x-y\ é @,

P, npu \x-y\ > 60.
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Bocnonb3oBaBwucek (12), 6ygem nmeTb

/a [STOw(\x-y\, ii)-Vio(\x-y\, n)]f(y)dy =

_ X0&r21x- j|sinfi(x-y) 1, ud +
n J @ X—y

*+ir
1
= A

WHTerpanbl B npaBoli 4acTu MOCNeAHEro paBeHCTBA B CW/IYy TepeMbl PumaHa—
Nle6era cTpemsaTcs K Hynto npu g—<° (xEK). Teopema 1 foKasaHa.

, S0-2\x-y\sm B(x-y)

2. B 3TOM NyHKTe paccmMoTpuM BOMPOC 06 OueHKe 6/IM30CTU HaCTUUHbIX CYMM
pasnoXeHWin no cucteMe QYHKUUA HAKO6M W TPUTOHOMETPUYECKON CUCTEMe.
Mpun aTom, Kak 1 Bblle, byaeM cnefoBaTb MeTogy paboTbl [3].

Mycte <= (0, N); nNpwu BewecTBeHHbIX a,B~— 1 0603Ha4YUM

-8
9(x) = ?<«e«(*) = LML= dAlky = (v + M4 21)°
4si'n*(11 4 0052?1(

C<m« = (2n+ d+|3+ I) r(n+ Il)r(l'l+(12+f.’>+ I') ]

/ 2/ \R'B2
Un(x) = U~”-B)(X) = CA'B>(siny j (cosyj PjR-w (cos x);

3pecb i><*-«(x) 0603Ha4YaeT NONMHOM FAKO6WU CTEMEHN M C HOPMUPOBKON p(a/>(1)=

-CIN)-

OTMETUM, UYTO

I |Cl,()l2dx = 1,
o)

n npu n— Cra,,)=0(1)~n.

B pa6oTte [3] gns uvacTHoro cnyyad a=/?=0 gokaszaHo, 4TO A4Nns abconTHO
HenpepbliBHOW Ha (0, n) dyHKumm / (x) (Knacc TakKuMM GyHKUMIA 0603HA4YMM uYepes
WR (0, 1)) nMmeeT MeCcTO OueHKa

£,(>x)- of(fx)=0(yj, (a—1J
paBHOMEPHO OTHOCUTENBHO X M3 KommnakTta K.
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3fecb OKaXeM 3Ty OLEHKY Mpu MPou3BO/bHbIX a> —1 u /?> —1. VIMeHHo,
cnpaBedMBa crefytoLlas

Teopema 2. MycTb a, B> —1, /6O, K). Toraa,paBHOMEPHO OTHOCUTENBHO
X M3 komnakTa K, MMeeT MEeCTO OLeHKa

(13) SR(/, x)- 0?°«(/, x) = O(1), (o &1);

rae
X)= 2 (/-n™)ym™M\x).

3ameyaHue. M3 pesynbTaToB paboThl [3] cneayeT, UTo OLeHKa B 9TOM Teopeme
Heynyuluaema.

JoKasaTeNbCTBO COOTHOWeHNUs (13) npoBoAMTCA MO CXeme [A0KasaTe/bCTBa
TeopeMbl 1, KoTopasi, KaK y)Ke 0TMeuasiocb, SIBMSETCS pasBUTHEM MeToga paGoThbl
[3]. Mpu 3TOM cyWecTBEHHYIO PoSib MIpaeT credytoLas

JNlemma 1 Ecnm /6 WWH®, 1), To npn a, B> =1 MMeeT MecTO OueHKa
(14) [ f{x) ij*«(x)dx = Ofi), H 1).
0 \I

Joka3zaTenbcTBo Jlemmbl 1 MpeactaBum mnHTerpan m3 (14) B cneaytowem
BUIe

a a/2 a

[ =1 + [ f(x)U<r-i>\x)dx = 11+12.
o 0 2

Tak Kak OugHKa MHTerpasioB [ u [, npoBoAUTCS aHa/IONM4HO, TO OrpaHMyumcs
oueHKol [ .
VHTerpypysi no 4actsiM, Monyuvmm

ar2 n a/2 a’2

/ muftit)dt - [/(O/ irrwdél, n n
! ) [/(© 1 uir 61, 2+ L N0 (/ "> (8)™N)n.

OTctofia BUAHO, UTO ANA MonyyeHuss TpeGyemoli oueHKM Anst [, AocTaTO4YHO
[0KasaTb HepaBeHCTBO

(15)

rge C He 3aBMCUT OT t. [Ns 3TOW UENM HaM HYXXHO crefytollee NpeAcTaBeHne
ansa Ux,R){e), koTopoe cnegyeT n3 qhopmynbl (8.21.17) kHurm I". Cere [4] (cTp. 205):

(16) OH>(0) = C<al>N~x/ (-m‘ +1) yOn4 (NO) +
~gO(n A4, npu cn a/2

+ 1
Bx+20(n“ 2), npu 0<0<cn-1,
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rae Jx(x) — yHKums Beccensa nepBoro poga nopsgka a, C — mKcMpoBaHHoe noso-
T at+/?+1
XUTeNbHOe uncno, N=n-\-----"— e
MHTerpupoBaHue o6enmx 4vacteir paBeHcTBa (16), C y4eTOM OLEHOK A/is
n rn+a+l), pgact

2 2 i\
17) | U<wmB)do = 0(\)fn f fOJa(N6) cto+ O[—J.

Tenepb uccnefyem WHTerpas B MpaBoi yacTy MOC/MefHEro paBeHCTBa. [1s 3ToOro
HaM HyXHbl cnegytouwme oueHKN QyHKumm Beccensa (cm. [4], cTp. 30, copmysbi
(1.71.10) wn (1.71.8)):

noo z»>+0, a 1,

(170 [cos(z"t - t)(1+F )+

rge dai, B0, br — HEKOTOpble MOCTOSAHHbIE, 3aBucALMe Nub OT a. Utak

7/2 nn2/2 O KN/Z
(18) { ysJXN6)de= N-32 f ]Tzix(z)dz=N-23{f+ f izja(z)dz} =
5 nN/2 / \/ \

= O(N~32 J z12#xdz+ O(N~32{f cos[z— —N-J[I+-Nj</z+

S

3,Cl|€Cb ANA TpeTbero MHTerpasna I'IpaBOVI 4acTh ncnosnb3oBaHa OLEHKa

H A - N
sintg-o) C(Gi), (0«bré S2, - °0< < °0);

OCTa/lbHble MHTerpasbl OLEeHMBATCA TPUBUASBHO.

MopctaBmB oueHKy (18) B paBeHcTBO (17), nosy4ymm HepaBeHCTBO (15), 4To,
KaKk 0TMeyasiocb Bbllle, MPUBOAUT K YTBEPXAEHUIO NIEMMbI.

O603Haunm uyepes 77¢(0, n) (1 OcaSi) knacc PyHKUWUIA BBeLEHHbIM
Ha cTpaHuue 47 kHuru . X. Xapgu n B. B. PorosnHckoro [7].

Tenepb ycTaHOBUM Ans yHKuwuii 13 knacca #A“(0, n) Teopemy aHa/IorMyHyto
Teopeme 2.

Teopema 3. MNycTb a, B> =\ un dyHkuna f(x)CHg(0, n); ayposneT -

BOpAET YCNoBUKO ,CIHFH']./Z, 0+12

siny J [cos — |/(0) 1de < °°,
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Torga MMeeT MecTO COOTHOLUEHUe

(20) «(f,x-a,(/x)=0(") (ae D,

(rae  (/ x) ob03Ha4YaeT p-4aCTMWYHYH CyMMYy psga dypbe (Mo KocuHycam) (yHK-
UuM /) paBHOMEPHO MO X Ha Ka>KAoM KomnakTe nHTepeana (0, n). OueHka sBnseTcs

TOYHONM Mo nopAaakKy B ToM CMbIC/E, YTO ¢} HeNnb3A 3aMEHUTb Ha O

LokasatenbctBo. Byaem mcxoguTb u3 paseHcTBa (11). MNpu 3TOM Takxke,
KaKk B Teopeme 2, OrpaHUYMMCcs OLEHKON KoaghduumeHTa dDypbe

(21) fﬂf(x)U" O (x)dx;
0

NMOTOMY 4TO OCTa/lbHaAaA 4YacCTb [AOKa3aTe/ibCTBa NpPoBOANTCA 1O TOW >Ke CXeMe,
KOTOpasa mMcnonb3oBanacb MNpu gokasaTesibCTBe TeopemMbl 1.
TakXe Kak B siemMMme 1 orpaHuvymmcs 0Ll,€HKOI7I MHTErpana

a2 1/n al2

[ f(OUF>RKi)dt= f + FF(t)UA\i)dt = AL+AI.
U 0 1/n

Ob6pawasicb Ko BTOpoi 4acTu gopmynbl (16), Haxogum (ucnonbsysa (17))

1/n Jll'l
Ax= 0(1)/n f Y¥YBJa(NO)f(e) d0O+ O(na+l/2) f /(0)0*+2<0 =

1/n Jll'l
= 0(1)/n / OV2JI0)A/(0)| dd+0(n~32 = 0(L1) / |/(0)1dO+0(n~32.
o] 0]

OTcloga, Mcnonb3ys A8 OLEHKM MNOCMefHEro MHTerpana HepaBeHCTBO Kowun—
ByHAKOBCKOro, nonyuum ~l1=01i-~=|.

[nsa oueHMBaHUs A2 ncrnonb3yem nepByr 4acTb (16) v cnegylolyro acMMnTo-
TUYecKyto hopMyny Ans 6ecceneBbiX PYHKUWIA, KoTopas sBnsdeTcs rpy6on opmoi
cooTHoweHunsa (17):

ww =/ ! cos('-T -T)+oll -
Nmeem

(22) a, = °(yT,)J

a/2 y

y ,
ro~mido”oiDf /0)coS[NQ~-"\de+

/2
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3gecb Obla MCMob30BaHa TeopeMa 0 nopsigke Ko3ahduuMeHToB dypbe Mo TpuUro-
HOMETpPUYECKOI cucteme Ansa yHkumid n3 knacca H*“(0, n) (cm. [7], cTp. 47, Teopema
36), a Takke Teopema BoHHe [5].

[anee, npumeHsAs K MocnefHemMy MWHTerpany B paBeHCTBE (22) HepaBeHCTBO
Kowun—byHsakoBckoro, nonyuum A2= 0

Jlemma fokasaHa.

4. Myctb Ha wuHTepBane G=(0, n) 3agaHbl onepatopbl L u=—u"+qg(x)
n Lu= —u"+q(x)u, ¢ noteHunanamun q(x) n q(x), yaoBAeTBOPSIOLLMMM YC/IOBUIO:
q(x), q(x)CIJ(G) npwu HekoTopoMm p> 1

O603Haunm yepes {(J,,(x)} n {0,,(x)} nonHble OPTOHOPMUPOBAHHbIE CUCTEMbI

COBCTBEHHbIX (OYHKUUIA onepaTopoB L 1 L cooTBETCTBEHHO (Mbl MpeAnonaraeM, yto
noTeHuManbl g M g AONYCKAlT CyllecTBOBaHMe TakKux cuctem), a yepes {A} n {!,.}
— COOTBETCBYHOLLME CUCTEMbI HeOTpULATEeNIbHbLIX COBCTBEHHbLIX 3HAYEHWA.

Ons dyHkymm fEHyY(G), 0 < »x 1 o0603Haumm uepes 3(f x) n au(f x) p-ble

YaCcTUYHble CyMMbl PasfioXeHUi, oTBevarowmx cuctemam [Un(x)} n {0,,(x)} cooT-
BETCTBEHHO.

Teopema 4. MNpu caenaHHbIX BbiLLE cOrnawleHnsax, ans noboi dyHkuumn f£H “(G),
O<a<l wMeeT MecTO TOYHas MO MNOPSAKY OLEHKa

a,,(J, X) = ® s 1),

paBHOMeEpHada Mno X Ha nobom KomnakTe NHTEpBaia G.

OTa TeopeMa ycunmBaeT pesynbTaT H. JlaxeTuuya [9). E€ gokasaTenbCTBO OC-
HOBaHO Ha criegyrouwmx aktax (a UMEHHO: Ha HepaBeHCTBE (24)).

Myctb f(X)EH?(G), 1, TOrpa, BOCMO/Ib30BaBLUUCL Teopemoin BOoHHe
[5] w Teopemoin 36 kHurwm [7] (cTp. 47), bygem umeTb

(23) J n/(x)eiXxdx = Jnf{x) cos ([51] -f (F})x dx+
0 0
+»/ fix) sin [+ {TPX dx —O (1+7 |5 (- °° < A< °°),

N3 (23), B cuny 0AHOCTOPOHHER topmynbl 3. Y. Tutumapwa [8] (cMm. cTp. 26) ana

n i{x):

Unix) = Uni0) cos Unx+~"Y =-sin fi«x+

+ - L0/ qiQU.iQsinYXnix-QdZ,
N oueHok (cm. [10])

LX) =c, |CI'(X)| si c\Xn, (0=x=n), 2 l==c¢ ip=1),
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BbITEKAET HEPABEHCTBO

24 2 \ff ] dxf2~ - =- =
@9 {l/ﬂ,,-M|I7IlO GO (x)dx (1+(§Fl/|)’ " L2,

3ameuvaHue. Teopema 4 Mo3BOMSIET BbICKa3aTb MPEA/IOXKEHWE O ChpaBefv-
BOCTU OUeHKM (20) ana Kaxpon dyHkumm/ m3 knacca H?(G), 0 <1
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THE ASYMPTOTIC BEHAVIOUR OF THE
EIGENFUNCTIONS OF HIGHER ORDER
OF THE SCHRODINGER OPERATOR

V. KOMORNIK (Budapest)

In the spectral theory of non-selfadjoint differential operators several properties
of the eigenfunctions have been investigated (see [2], [3], [4], [5]). In [2] and [3] V. A.
I'in gave a necessary and sufficient condition to settle whether a given system of
eigenfunctions of arbitrary order form a basis or not. The authors of [4] and [5]
proved that — in case of the Schrodinger operator — the proportion of the different
Lp norms of such a function is essentially the same as for the exponential functions.
The aim of this paper is to examine the asymptotic behavior of the eigenfunctions
of arbitrary order of the Schrédinger operator. Our result — which extends an old
theorem of G. D. Birkhoff — shows the connection between the eigenfunctions of
higher order and the exponential functions from another point of view.

Let G=[0, 1], gf _V(G) an arbitrary complex function and consider the formal

differential operator
Lu = —u"+qu.

As usual, a function ut: G-*-C, ut~0 (z=0,1,...) is said to be an eigenfunc-
tion of order i (of the operator L) with the eigenvalue AgC, if ut is absolute con-
tinuous on G together with its derivative and if for almost all x€G,

(D) -n4x)+ ?2(x)uAx) = /Hi(x)-Hi_1(x);

here ui_1=0 for z=0 and Hr_! is an eigenfunction of order z—1, with the eigen-
value Afor /si.
Introducing the notation

Tt= jz€C: RezgO, |z| > maxjl, (4/+ 4) J [™X)| z/x}},
G
the main result of this paper is the following:
Theorem. There exist functions u;jj: GXT;-»C (/=0, 1,...,/=1,2) such that

(i) for anyfixed i,j and g, w.4 +, ): G-+C is an eigenfunction of order i with
the eigenvalue —q2;

(ii) for anyfixed i,j and x, n,4x, ¢): 7)—C is holomorphic in intT) and con-
tinuous in Ty,

(iii) for any i=0, uniformly in x£G

Unix, g) = exp(ex)[xr+0(1/e)], Dxuu(x, g = gexp(gx)[x+0(1/A4],
U2(x, ) = exp (- gx)[xr+ O(l/0)], £lui2(x, B) = ~B exp (- gx) [xf+ O (1/e)],
if
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It follows easily from these properties the existence of constants C(k), 0
such that for any fixed k, the functions n”~(e, q), i—0, 1, ...,k,j= 1,2, form a
basis in the linear space of the eigenfunctions of order Sk with the eigenvalue —q2
if |e|>C(A:).

Corollary. For any fixed k~O and e>0 there exists a constant C'(k, €)
such that for \g\>C'(k, e) all the eigenfunctions uk of order k with the eigenvalue
—Q@ have the form

K

w{x) = igo Anfa(x) exp (gx)+ Aaf 2(x) exp ( - BX),

where the numbers Atj are constants, the functions fj are continuous and for all
i=0,1,....k,j= 1,2
sup {Ixr—fj(x)\: 0~ x 1}< e

Remark. The case i=0 of the theorem is well-known [1], even for the case
of an arbitrary linear differenctial operator. In a forthcoming publication we shall
extend, the results of this paper to the case of an arbitrary linear differential opera-
tor, too.

The theorem will follow from several lemmas.
Lemma 1. Let ukbe an eigenfunction oforder /céO with the eigenvalue X= —
and put uk~i= Xuk—Luk. Then for all X£G,

2 UM = (~ +2>)exp(c,) +(iif>-1f))exp(-1,)+

+0 " [L()«.(N)+ A.

Proof. We have by (!)

/' Shei* ~t)[q(t)uk(t)+uk. 1(t)]dt =
Yy Q

= f xetE=t>iUt(,)d,+ f sh*(x- » dl.
o B d B

Integrating by parts the second integral on the right side twice, we obtain (2).

Corollary. Ifuk-1is an arbitrary eigenfunction of order k—1's —1 (n_!=0)
with the eigenvalue X——g2” 0 and ak, bk are arbitrary complex numbers, then there
exists a unique eigenfunction uk of order k with this same eigenvalue such that uk- k=
Xuk—Luk andfor all xdG,

(3)  uk(x) = akexp (Bx)+ bkexp (- gx)+ f s QSX_ -[q(t)uk(t) + uk_ft)] dt.
0

Indeed, this follows from the existence theorem of linear differential equations.
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One can easily show by induction that there exist polynomials Pj, Qj of degree
j (UJ—0,1,...) such that for any /=0 and i(ER,

' b h
[ sh(t-tj) f ..f sh(TL—M0) exp (t0 dt0 ... dtk = PJH+L(t) exp (/) + 0, (i) exp ( - /).
a 00

We shall also use the notations [, = 1, Q-i=0.

Lemma 2. Given any complex numbers ak,bk, k—0, 1, i and Q9*0, there
exists a unique eigenfunction ut of order i with the eigenvalue A—R2 such that
— introducing the functions uk_1= Juk—Luk, k=i,i—I,..., I, for any O=ik=i
andfor all x£G,

K
(4) uk(x) = 72_Oe~23ak-j[Pj(QX) exp (ox) +Qj. 1(ax) exp (-Bx)] +

+ JZ_'; 0~2bk-j[Pj(-ex)exp (- gx)+Qj_j(- ax) exp (Bx)]+

K X Xj Xi
+ 2 /| Shq(x-Xj)J ..T shQ(x1-x0q(xQuk-j(x0dx0... dxj.
J-° 0 00
Proof. Let us define u0,w, ..., ut recursively so as to satisfy (3) (n_1=0).

Then, by the repeated application of (3) we obtain for any OsfcSi and x£G,

L (x) = akexp (gx)+ bkexp (- gx)+

K X X2

+321 Q-Jak-j J shB(x —Xj) / wmf sh B(x2—Xj)exp (BxX dxk... dxs+
= 0 0O 0

K X ¥ x*
+ _21Q~JW-j0f sh B(x-Xj)Of = f sh q(x2—xJ exp (—axl) dxk... dxj +
J:

fe X X Xr
+ ‘]2_o Q-j ~x(1; sh Q(x Xj)(])c 5 f sh q(xj—x0qxQuk_j (x0 dx0... dxj.
In view of the definition of the polynomials Pj, Qj, hence (4) follows after the sub-
stitution tj —QXj.

Lemma 3. For anyfixed /& 0, the numbers ak,bk, k=0, ..., i, can be chosen
uniquely so that thefirst two sums on the rightside of(4)/0T k =i reduce to x*exp (gx).
Moreover, in this case

(5) ak= AkQ~% bk=Bka'-x k=0,1, .., i,
where the numbers Ak, Bk do not depend on Q
Proof. We must choose the numbers ak, bk so as to satisfy the identity
i
xTexp (<) = 2 Q~2)i-j[pj(ex)exp (Bx)+ Rj-i(Bx) exp (-Bx)] +
) J=0

i
+ 2 e~2jbi-j[Pj(- @)exp (- ax) + QJ- I(—ax) exp (0x)].
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Let us write the polynomials Pj, Qj in explicit form:

Pift) = 2 Piktk  Pija  Qi(t) = 2_4ikik

then the required identity takes the following form:

Xexp (ex) = k2:(;'X"exp (qx)l\lgk ai-ijkek—«2J+j:k2+1 h-J4j-iA-Q)k~ii +

+ kZ:OA exp (-ex)k[j:%+I al-]qj-l,kek~2.]+jgﬁbl-]ij(-Q)k~2]

This is equivalent to the following system of linear equations:

j2_ka;-ijkQ<- 2‘]+j:I%+1 bi-jgj-1A-e)k~20= &

jR+181 o) Lkek-23 3 bi-jPjA-Q)k-2L= o,
k=0,1 , i. Considering these equations for k=i;

aoPuQ~' = 1. boPa(—B)~*= 0,
we obtain (pu”0\)

a0= Pulg‘= Ao, bQ—0 = 0-ef

Suppose now that a0,b0, am, bm are determined uniquely from the equations
with k=i,i—\,...,i—m (m<i) and
=Aei bK= BKB‘~2% K = 0, m,

where the numbers Ak, Bk are independent of g. Then the equations for k=i—m —1
can be written in the following form:
i
@m+IPi—m—,i—m—Q1I+1 iZi—n +

+ 28y Bi-jaj-ii-m -i(—Q)-m1—o,
j=Rn AdoH HRie i 2 BiR N

+bm+IPi-m-1,i-m-A-Q)m+l~*= o

Hence am+1, bm+l are determined uniquely and

Um+1= fﬁT+1Ri_2m_i> °Mm+l~_—%m+|@i—2m_2>

where the numbers Am+1, Bm+l do not depend on g. Continuing this procedure,
we obtain the statement of the lemma.
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Let us now define for any is 0 the function H=wna: GXT;-*C so that for
any QdTi let the subfunction un(-,g) be equal to the eigenfunction described
in Lemmas 2 and 3. Introducing the functions

uk_1: GXTt-*C, uk,,1=-g2uk+Dnuk-quk, 1" k" i
we have by (4) and (5) for any 0SkSi, xEG and g(zTt,

(6) uk(x, §) = 2 ei~2k+xJ[AKexp (gx)+Bklexp (- gx)\ +
7=0

K X Xj x1
+ 2 g~J1f shg(x-Xj) /eee/ shqg(x1l-x 0qg(xQuk-j(x0,Q)dx()...dX],
J-° 0 0O O

where the numbers Akj, Bkj (0S/SkS/) do not depend on g and Aij=06iJ, BiJ=0,
0s/'Si. Taking the derivative of both sides, we obtain

@) Dxuk{x, g) — 2 gi~2k+J+IxJ[AKIexp (gx)~Bklexp (- £9)]+
]=0
+ 2 ei~2k+jxJ- L[AIexp (gx) + Bkj exp (- gx)] +

K X xi X
+ 2 g~J[ chg(x-Xj) f .. f shQ(x1-x 0qg(xQuk-J(x0,9)dx0...dXj.
J=° 0 0 0

Let us now introduce the following notations:

YK(X, g) = aK- ‘exp(-ox)ukK(x, g),
ZKk(x, g) = gk-i~lexp(-gx)D luk(x, g),

fk(x, Q = 2:0 Q~kx J[AKj + Bkj exp ( - 2gx)\,
]

gk(x, g) = jgogj ~k~1[gxi +jx J- J[Akj+ Bkjexp(-2gx)I

0 if t= x
rorcl-exp (-2g{x-Xj)) l-exp(-2g(x1-t)) o®
FKAX, 1, 9) = J...J -mmeemeeee 2 2 — dx1... dxj
if t< x,
0 if ts x,
. r i2l1+exp(-2g(x-xj)) l-exp(-2e(x1-0) qif) , ,
GkJix, t, g) | -/ 2 2 — dx,...dXj
if t< X
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then the above system of integral equations (6)—(7) can be written in the following
form:

(e, @) =fk(x, e)+ Z 1 Fii(c, t g)ykef(t, e)dt
(8) K

zk(x, B) = gk(X, e)+j501fthkj(X' t, Qyk-j(t, q)dt,

Now we prove that the function ut has the properties (i)—(iii) in the theorem,
required from ua. (i) follows at once by the construction of ut. (ii) and (iii) follow by
the following proposition, which can be applied to the system (8) with

r=2i+2, C,= OS%Sk"i(I + {\Akj\ + \Bk\), C2= 1[[ \q(x)\dx.

(We do not prove this proposition because a slightly weaker form of it can be found
in [2], p. 44, and the same proofworks in our case, t00.)

Lemma 4. Consider the system of integral equations
rr
YK(X, g) —fk(x, B)+ Z J Fkj{x, t, g)yj(t, O)dt, fc= 1. r,
J=16
where G is a bounded interval, T is a subset of the complex plane and the measurable

functions fk: GXT-*c, FkJ: GXC’XT-+C have the following properties:

a) There exists a constant Cxsuch thatfor all k, xEG and qZT, \fk(x, Q)\"CKk;
b) For all k,j and Q<T, Fk](m, m q)£L1(GXG);
¢) There exists a constant C2 such thatfor all k,j, xEG and QdT,

f IFkj(x, t, 0)\dt ~ C2lei""1;
G

d) For all k,j and x,ydG, the functions fk(x, ¢) and FkJ(x,y, ¢) are con-
tinuous in T and holomorphic in intT.

Thenfor anyfixed gfET'={qgfT: [=2rC2} the above system has a unique bounded,
measurable solution. Moreover,

e) For any k and x(LG, yk(x, ¢) is continuous in T' and holomorphic in int T',
f) For any Kk, xdG and QfT",

Yk(x, e)~fk(x, g\ S 2rClCale|_1.
The construction of the functions ui2 is analogous to the above construction
of the functions un and the theorem is proved.

The Corollary is an obvious consequence of the theorem.
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ON SZEP’S DECOMPOSITIONS OF
IDEMPOTENT-GENERATED SEMIGROUPS

B. PIOCHI (Siena)*

Introduction

In [5], Szép proved that every semigroup S, without nonzero annihilators,

has the following disjoint decompositions:

D

O]

s= U sl

t=0

50 = {a£S|aSc S, 3x£S: x ™ 0 andax =0},
51 = {a£SlaS =S, 3x£S:x 0 andax =0},
52= (aiSXISoUSjjlaSc S, 3x4,x2fS: x4” x2and axx= ax3,
53= {a€S\(S0USHjaS = S, 3x4, x2£S: xx™ x2and axx= axZ},

54= {a£S\U S,/aSc s},

55= {a£S\U SfaS = s},
S= U Ti,
i=0

TO— {a£S|Sac S, 3y£S:y ~ 0 andya —0},

Tj= {atS|Sa =S, 3y£S:y ~ 0 andya =0},
T2= {aiSXiroUrjjlSa c S, 3yxy2£S:yx”™ y2and yxa= yZ2a},
T3= {aE£S\(roU7')|Sa = S, 3yxy2£S:yx” y2and yxa = yZ2a},

M= {atsS\U TJSac s},

T5= {a6S\Uo0TJSa = s}.

It is easy to see that the components S; and Tt (/=0,,5) are semigroups, and

* This work was performed in the sphere of G.N.S.A.G.A. of C.N.R.
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many relations hold among them. The following ones will be useful for us (see
bibliography for the proof):

SiCISj = 0, TinNT]=0 (i *j), S55tg S,; S.5,¢ S, (0Osis b5
TtTbg I,; 5 g Tt (0&4iS 5), 34 g 50; 7\F0g TO.

From now on, decomposition (1) will be named left decomposition of S, or DL(S),
and decomposition (2) will be named right decomposition of S, or D K(S).

In the present paper, idempotent-generated semigroups are studied, using such
decompositions. Hereafter we suppose that S' is a semigroup, without nonzero anni-
hilators. This is not a restriction, since every semigroup can be reduced to that case.

Besides, all our theorems can be transformed into their dual theorems, changing
right operations into left operations, every subsemigroup S;into corresponding Tt,
and so on (and, of course, vice versa).

In 8 1, a characterization will be given for idempotent-generated semigroups,
using decomposition D L(S).

In §2, idempotent semigroups will be studied, in the same way.

In 83, some properties will be given for subsemigroups, appearing in decom-
positions D1(S) and Dr(S), particularly when S is idempotent-generated.

Finally, in 8§ 4, a characterization will be given for idempotent-generated semi-
groups U, which can be extended to an idempotent-generated semigroup S, such
that U is a particular subsemigroup of S.

§1-

Let S be an idempotent-generated semigroup, and let E be a set of idempotent
generators for S. In this section we will suppose that E is minimal, i.e. for every sub-
set E'czE, E" is not a set of generator of S. At last, let | be the set of all idempotent
elements of S.

Lemma 1.1. If bES and bS =S, then bEl and b is a left unit of S. So b may
appear only as the last term in every decomposition of elements of S in idempotent
elements.

Proof. Let b=ele2..e,: bS=S\ etefE, i=1, n. Then, eYis a left unit
of S, since elb=b. So, if b'—e2..en, we get b=elb'=b". In the same way, one
can prove that b=en, so that b is idempotent, and (since bS=S), b is a left unit
for S. Then, if b appears in an irreducible decomposition by idempotents of an ele-
ments of S, it must be the last term. Q. e. d.

Theorem 1.2. Shis rectangularl, and every element of S5is idempotent and a left
unitfor S. Conversely, every left unit belongs to S5.

Proof. IfbisaleftunitofS, weget bS=S, andcertainly b(ISxIJs'3. so b£Ss.
Conversely, Lemma 1.1 implies that for every b~Ss, b is a left unit for S. At
last, if a, b£Ss, we get aba=ba=a, and S&is rectangular. Q. e. d.

1 A semigroup is called rectangular when it is a rectangular band; a semigroup is idempotent
when it is a band.
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Theorem 1.3. SI=S83=<St, so that S has no magnifying element.

Proof. If bS=S, then b is a left unit of S, and therefore it belongs to S5.
Q.ed.

Theorem 1.4. |f SOA Q then at least one generator of S is in SO.

Proof. Let b£S0. Then there is x~O such that bx=0. Let b=ele2... en
(elt ..., enfE). If (e2..e,,)XA0, we get S0. Otherwise let b'=¢e2... en; b'ESO.
In such a way, one proves that one of the following cases holds: there exists
i: (ei+l...enNxA0, or ex=0. In the first case, e£50; in the second case entSO0.

Q. e d.

Lemma 1.5. Let b~ex... e, (er, ..., e,EE). If one of the following conditions
holds, then b(iSfJS2:

i) en£S01)S 2,
ii) c,,_1€S0U5"a and [endS5.

Proof. If e,,£S0, then there exists x*0: e,,x=0; then bx=(ex... e,,_e,,x=0.
The same holds if e,,-1£S0 and e,,£Ss.

If e,dS2 or en-1€S2 and enf S& then, in a similar way, b£S—SO0 yields
b£S2. Q. e. d.

Lemma 1.6. If b€S4, then thefollowing properties hold:

i) c,,654U S6,
ii) if endSb, then e, 1£Si.

Proof. It is a simple corollary of the former lemma.
Theorem 1.7. St=10.

Proof. Suppose SiA:0, and let b=ele2... c,£S4. Lemma 1.6 implies that
fB* 4USs.

If en$ S5 then there exists at least one lement x of S such that e, xAx; so
that bx=(ex... e, )x=el.. enx=ex... enenx=b(enx). Then b$S0 implies bES2.
Since bdSi we get that erESs.

In the same way as above, it can be shown thate4 ... £n 1(;B0US2; but S0S3Q Sa
and S2S5QS2; this yields that fcESOUS2 and 54—0. Q. e. d.

Theorem 1.8. S=50US2 is an idempotent-generated subsemigroup of S.

Proof. It is well-known (see [3]) that S is a subsemigroup; let us prove that it
is idempotent-generated.

Let 7 be the set of idempotent elements of S. For every X£S, we have
x=ele2... ene, €4, and e~OS”™ (by Lemma 1.1). If e£S5, (ene)(ene)=
=en(eene=ene, e=ene, i.e. e,e is idempotent. Besides, ere£SS5Q S and so e,e£l.

Q. e d

Now, we can prove the following theorem:

Theorem 1.9. A semigroup S is idempotent-generated if and only if it has the
following left decomposition, DL(S):
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1) Si—S3—S4—0 ;
2) ss5 Mrectangular and its elements are the left units of S;
3) S=S0US2 is idempotent-generated.

Proof. From the former theorems we get that the condition is necessary.
Conversely, as every element in S5 is idempotent, it follows immediately that
the condition is sufficient. Q. e. d.

Theorem 1.10. SO0=S,,.

Proof. If XESO then xSaS; _so that x(fS5 and there exists y—0,
y€S: xy=0. This yields xESo and SO0ESO0._

Conversely, let x£S,, (QS), x~0O. If xS=S, x would be idempotent, a left
unit for S, and for every y*O: xy=0, itwould be y€S5; so that 0=0x=(xy)x=
—X(yx)—x2—x, and x=0.

We get xScS for every Xx£S0. Now, suppose that for every y£S, y~O:
xy=0, y belongs to_S5. Then x2=(xy)x=0 so there exists y (=x), YES,
y~0O, xy—0. So x£S0. Q. e. d.

The following corollary follows immediately:

Corollary 1.11. If S is an idempotent-generated semigroup, then S2=S2US5.

Corollary 1.12. Let S be an idempotent-generated semigroup. Using the nota-
tions S=S1, S5=SI, (S9=Si+l, (S£)=Sb+l, we get the following succession:

S —S4J3SlI
S1= S2Usf

S‘= Si+lU S|+

where thefollowing properties hold:

a) subsemigroups Sk are idempotent-generated; subsemigroups Sk are rectangu-
lar and their elements are the left units of S**“1;

b) if k~j then s'£S{, s"£Sj or s"£Sk implies s's"=s";

c) if k>j then SkS(QSI SkSIQSk

Proof. Assertion a) is a corollary of Theorem 1.9.

Assertion b) follows immediately from Theorem 1.2, since SkQSJ, if j=k.

Assertion c) can be proved by induction on k. Without any loss of generality,
we may suppose j —1, writing S, instead of S1, and S5instead of S\.

It follows immediately that S55& S5 and SS5QS. Now, suppose that we
have proved that SkStQSk and SkS5QSk, if k™I,

Let t(LSk+l and séS5. As Sk+1QSk we get tsdSk But, if yESk (ts)y=
—t(sy)=ty=y and Is is a left unit for Sk; so that_S'5+1-S9i<S5+1.

Again, let teSk+l and s£S5; since Sk+1QSk tseSk and tsSk=tSkQ Sk-
Sk+1S5Q Sk+l. Q. e. d.
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Corollary 1.12 implies

Corollary 1.13. An idempotent-generated semigroup has one of the following
four types of decomposition:

i) S=((((..)US\)USHUSE US|, with infinitely many rectangular subsemi-
groups; then S is idempotent and S0= 0 ;

i) S=S"(JI((((...) U2 US|U2>g), with infinitely many rectangular subsemi-
groups, and an idempotent-generated one, S'= S0(JS2, without any left identity;

i) S={(((fiiv...) USf)U*NUSI,), with n rectangular subsemigroups; then
S is idempotent and S0= 0 ;

iv) S=((((SmU5™)..)UE|)U5?)US\, with m rectangular subsemigroups and
an idempotent-generated one, Sm= SOU S2, without any left identity.

Decompositions i) and iii) correspond to idempotent semigroups. In the following
we will see that idempotent (and even rectangular) semigroups may have different
decompositions from the above ones.

§2.

Now, let us consider Green’s relation if on the semigroup S, defined in the
well-known manner: for every a,b”.S, aSTb iff Sla=S1 (51=.SU{1}), ie.
iff there exist x and y in S1such that b=xa and a=yb. If aE£S, we call Laits
if-class of equivalence in S.

Theorem 2.1. If S is an idempotent-generated semigroup, then a”S, implies
that LaQSi (/=0,2, 5).

Proof. Let a£S0 and b£S, with a£?b. Then there exists x£S: b=xa and
if yA-0, ay=0, then by=xay—0 and bdSQ0.

In the same way, by the symmetric property of if, we get the proof for S2
and S5. Q. e. d.

Corollary 2.2. If the semigroup S is idempotent-generated, then for every a
in Sr we have La={d).

Proof. Suppose that el,e¥S5, en~Ae2. Then there exists x£S: et—xe2 if
exdfe2. But by Lemma 1.1, 4f  can appear only as the last element in any decom-
position of elements of S.

If el=xe2= (ea, ..., einNe2, ex would not appear, even as the last element, and
so it could not belong to any set of generators of S, in contradiction to Theorem 1.2

Q. e d

Now, we want to study Szép’s decompositions of an idempotent semigroup.
Let us prove the following lemma:

Lemma 2.3. The Green's ~-classes of an idempotent semigroup S are rectangular
subsemigroups of S. A similar property holds for 01l-classes, etc.

Proof. If a,b£S, aS?h, then S1(ab)—Slab=(Sla)b=(S1b)b=S1lb and
abITbITa. Then Lais a subsemigroup of S. Besides, since aSTh, there exists xdS\ a=
—xb. Then, aba=xbbxb=xbxb=xb=a, and Lais rectangular. Q. e. d.
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Theorem 2.4. A semigroup S is idempotent if and only if it has the following
decomposition DL(S):

1) St=St=St=0;

2) S&is rectangular, and its elements are the left units of S;
3) St= aliJStLa (i=0,2) and every class Lais a rectangular subsemigroup of S.

Proof. Such a semigroup is idempotent, since it is the union of rectangular
semigroups.
Conversely, if S is idempotent, Lemma 2.3 and Theorem 1.9 imply the theorem.

Q. e. d

Corollary 2.5. If S is a rectangular semigroup and SA0, then S=S2 or
S = S5.

Proof. If S' is rectangular, not trivial, then 0$S (in fact, otherwise, for
every X£S, x=x0n:=x0=0). So S=S2US5. Suppose that S& 0 and e£fSs.
For every x,yE£S we can say xy= (ex)(ey)=(exe)y=-ey=y. Itimplies that S=S5,
if SBAO0.

Anyhow, since S is isomorphic to the cartesian product /X /, with the opera-
tion 0',.A)@2»/2= (h,./2, it is easy to show that the case S =S5 corresponds
to |/|=1, and the case S=S2 corresponds to |/|[>1. Q. e. d.

§3.

Hereafter, we will suppose that S does not contain any unit element. We state
the dual of Theorem 1.9.

Theorem 3.1. A semigroup S is idempotent-generated ifand only ifit hasa decom-
position Dr(S) with the following properties:

1) TlI=Ts=Ti=0",

2) T5is rectangular, and every element of T 5is a right unitfor S;

3) S=TOUT2 is an idempotent-generated subsemigroup of S.

Now, we want to study some properties of subsemigroups St, Tt (/—0,..., 5)
in the general case, or particularly for idempotent-generated semigroups.

Theorem 3.2. IfS isidempotent-generated, T5X 0 implies S6~ 0, and SsA 0
implies Th—o0 .

Proof. Suppose that there exist efT b and e2£S5. Then, e2el=el (since e2
is a leftunit for S), e2ex=e2 (since exis aright for S), and so ex=e2, and T5—S&=
= > where exis a unit element for S\ and we have excluded this case. Q. e. d.

Anyway, both T5 and S5 can be empty.

Example 3.3. Consider the semigroup S={(a,b,) a2=a, b2=b, (ab)2=ba}=
= {a, b, ab, ba} where ba=0.
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We get S0={b, ab, ba), S2-{a), T0—{a, ab,ba), T2={b) and S5=Ts=0.
Q. e d

Corollary 3.4. If S is an idempotent-generated semigroup, then Sb T2
implies S=TO0; dually, T5LS2 implies S=S0.

Proof. It is enough to prove that if Sb% T2, then SQTO.

If S5%T2, then there exists edS5,e$T2] so that e£TO (by the former lemma)
and so there exists xdS: x~O, and xe=0. Then for every ydS, xy=x(ey)=
=(xc)y=0y=0 and ydTO. Q. e. d.

Theorem 3.5. For every semigroup S, TO0?x{0} iff {0}.

Proof. By the dual property, we have only to prove that TO0~{0} implies
that SO0™ {0}. But this is trivial, since for every xd.TO there exists ydS,y~*Q: yx=0
and if x~O then y€S0. Q. e. d.

Recall the following definitions:

C(a, x) = {y£S: ax = ay}, D(a, x) = {y£S: xa = ya},
C(x) = al;lsc (a,x) = {y£S: yafsS, ax - ay),

D(x) = afgsD(a’ X) = (yiSl VadS, xa —ya}.

Theorem 3.6. For every semigroup S, if adS2 and xdSO, then C(a, x)QSO0
(dually, if adT2, xdTO, then D(a, x)QTO.

Proof. If adS2, then there exist xI5x2dS2, x1"x2: axl=ax2. If Xi€<So,
then there exists ydS, y~0: xxy=0. Then x2y=0; in fact, if x2y~0 we get
a(xy)=(axgdy=(axDy=a(xly)=0 and adSO0. Since adS2, this yields x2dSO0.
Q. e d

Corollary 3.7. Let S be an idempotent-generated semigroup and let e belong
to Sh. Then:

i) iIS5T T,, implies D(e, x)QTO; SrQ T2 implies that if D{e, x)%TO0, then
D(e,x)QT25"
ii) if x is idempotent, then D(e, x) is a semigroup.

Proof, i) The first part of assertion i) follows from Corollary 3.4.

For the second part, if S5%TO0, edS5 then S5%0, T& 0 and, by Theorem
3.6. D(e,x)QT2, since there exists ydD(e, x): y $TO.

ii) Let x be idempotent and tt, t2dD (e,x); since xe=tle=1t2e, one can say
xe=x2e=x(ex)e=(xe)(xe)=(tle)(t2e)=tl(et)e=t1t2e and I)t2dD(e, x). Q. e. d.

Corollary 3.8. If S is idempotent-generated, then xdS5 implies that C(a,x)
is a subsemigroupfor every adS; dually xdT5 implies that D (a, x) is a subsemigroup
for every adS.

Proof. Let tl1,t2dC(a,x), i.e. ax=alj, ax=at2. Then a(tltf)—(atf)t2=
=(ax)t2=a(xt)—at2—ax and tlt2dC(a, x). Q. e. d.
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Theorem 3.9. IfS is a semigroup and x is idempotent then

i) D(x) is a subsemigroup andfor every yED(x), D(y)=D (x);
ii) every element of D(x) has index =2, and period= 1;
iii) if eED(x), e idempotent, then e&tx.

Proof, i) Let tx, t26D(x), and adS, (tlt2a=tl(t2a)=x(t2a)=x{xa)=x2a=xa
and tlt2£D(x). If yED(x), then ya—xa for every adS, and so D(x)=D(y).

ii) If td.D{x), then ta=xa for every adS. Since tdS, t2= tt=xt. But suppose
t"-1=xt; we get tn=ttn~1=t(xt)=x(xt)=x2t=xt. Therefore: xt=t2=t3=... —n
ne2

iii) from assertion ii), we get xe=e2—e. But ex=xx—x and this Yyields

e@Ix. Q. e. d.

Theorem 3.10. If S is an idempotent-generated semigroup then
i) if e is idempotent, then D(e) is an idempotent subsemigroup;
ii) if xdsSI (i=0,2,5), then D(x) St, for every x;

iii) ife is idempotent, edTt (i—0,2,5), then D{e)Q 7);

iv) forevery xdT&D (x)= {x};

v) for every xdS5, D(x)= SR.

Proof, i) Let e be idempotent; if S'(e)={e}, the assertion is trivial. Suppose
that there exists x”~e: xED(e), x=el...e,, (ei, ..., endE). Then for every adS,
ea=xa=el...e,,a=xe,,a=eena and eendD(e). But een=e(een)= (een(ee,,) = (ee,)
and een is idempotent. But ee,,=xe,=el...e,,en=x and so X is idempotent.

ii) Suppose xgSo. There exists ydS,y~0: xy=0; if tdD(x) then ty=xy=0
and so tdSO0. If xdS5 then xa=a for every adS. This yields that every tdD(x)
must be a left unit for S, and conversely, every left unit for S must belong to D(x).
Therefore if xd Sz D(x)= S5. This proves assertions ii) and v).

iii) By assertion i) and by the former theorem, every element e'dD{e) has
the property e'3iie when e is idempotent. But for every xdT{ (/=0,2,5), we get
RxQTi, by the dual property of Lemma 2.1.

iv) Suppose edTb and ydD(e). Then ye=ee=e. But ed.T& implies ye=y
and so y—e. Q. e. d.

Remark that the dual theorems of 3.9 and 3.10 hold, for C(x).

§4.

By using some properties which have been shown in Section 3, in this part
we want to characterize some particular idempotent-generated semigroups. Namely,
we want to give an answer to the following question:if S is an idempotent-generated
semigroup, which conditions are necessary and sufficient to get an extension H of S
such that H is an idempotent-generated semigroup, and S is isomorphic
to a(=a0mad?

As an answer, we shall prove the following theorem:

Theorem 4.1. Let S be an idempotent-generated semigroup, and let I be the set
of idempotents of S. Let T be a semigroup such that every element in it is a left unit
for T.
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The following conditions are equivalent:

a) i) There exists o 7— (cp+ id.): cp(e)e'—ee’, \/e,e'El.

ii) Let ®{1) be the set ofsuch applicationsfrom 1| to itself; there exists an homo-
morphism a: T—®d(7) which is not trivial.

b) i) There exists c¢p: S-+S (cp'+ id.): op'(X)y—xy, V/X,y£S.

ii) Let ®(£) be the set ofsuch applicationsfrom S to itself; there exists an homo-
morphism a': T-*®(B), which is not trivial.

¢) There exists an idempotent-generated semigroup H, such that HOUH2—S
and H&T.

Proof. a)=>b). Consider ®(7) with the composition operator (<Pio<p?)(e)=
It is easy to show that d(7) is a semigroup (e.g. ogxocpEPD (1), in fact
4>7{<PAe))e’'= (Pi(e)e'= ee").

Since a is a nontrivial homomorphism, there exists in ®(7) a subsemigroup
such that every element in it is a left unit and such that it has at least one element
cpid.

Let (p': S-+S be an application such that for every x=ere2...erfS, cp'(x)=
=el...en_lcp(en. Then for every X£S and for every e£J,

g>'{x)e = = eN.eN&e = Xe
and for every x,y£S,
(P'(X)y = cp'(x)e[...e'm= xei...e'm= xy.

Therefore there exists cp': S—S(cp'+id.): cp'(x)y=xy, \/x,yES.

Let @ (5) be the semigroup of all these applications cp': S-»S which can be
obtained as above from the elements of a(T), and let a": T-*®d(Bb) be the following
application: VtdT, a'(t)=cp,: S-S such that for every x=el...e,, cp,(X)=
=el...e,,_1(a(t)(en).

Since a is an homomorphism, a' is an homomorphism, too. In fact:

9V»,(*) = «L —en-i{a-{tih)(en) = el... e, _{(ct.(t"a.(t™){e") =
= eiewe,-i(»W («WW)).
((Pue(P,n(x) = afcptl(xj) = cp,fel... -!(a(1)(<2) =
= dewe«-i(a()(@(o )y

Therefore, <tlat=g>tI0<Pit* and (T~r)=a- ' f-i)- Since there exists a
nontrivial a, we can guarantee that there exists a nontrivial a' such that every element
in x'(T) is a left unit for cc'(T).

b)=>c). Consider now H=S{JT and define the following operation + on 77:
1) a,bES a+ b = abds,

2) a,bET a+b = ab = bET,

3) aET, b£S a+b —

4) atS, bET a+b = gb(a)ts.
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(A, +) is a semigroup. In fact, the associative property holds in it. The proof
is trivial in almost all cases except the following ones:

i) adS, bdS, cdT, a+ {b+c)= a(pc(h), (a+ b)+ c—pcf{ab), and if b=el...en,
we get (pc{ab) = <x(ael...en) = ael ...e,,_1qc(en) = acpc(b).

ii) adS, bdT, cdS, a+(b+c)—a+c= ac, (@a+b)+c= (mw(a)c = ac.
iii) adS, bdT, c£T, a+ (b+c)=\bc(a) = (c(a), (@+b)+c=

= <Pc(<Pb(aj) = <POP/1a) = <PbvAa) = <Pc(«)-

If T° is the isomorphic image of T in A, the elements in T° are left units for H
(by 2) and 3)). So T°<gH5.

If, for an hdH, h+x=x, "ixdH then hdS°—H —T° is impossible. In fact,
h+ t=(p,(h),VtdT and h+t=t cannot hold. So T°~ H5 and T~T°—H5, and
SAS°=H-T°=H00H2=H.

c)=>a). From now on, we will identify 4 and S, and A5and T. Call In the set
of idempotent elements of A.

If /EA6, let gt be the application ¢: In—H, VedIn, (p,(e)=e+t. Then
or(1)€/a. In fact 2(e+t)=(e+t)+ (e+t)=e+ (t+e)+t=e+e +t=e+t. Besides
(e+t)dH, by Theorem 18.

If it were cpt(e)=e for every edln, then t would be a right unit for 4 and
this would be in contrast to Lemma 1.1. Therefore <p,(e)”e for at least one edJn
and (p,~id. gt(e)e'= (e+t)+e'=e + (t+e')=e +e' for every e, e'dJjj. The appli-
cation a: A5—d(/g), suchthat x(t)=<qt, Mtd.H& is a not trivial homomorphism.

In fact,
a(ii+ t2(e) = glHe) = e+ fo +rj,

(@a(/Ja(m)(e) = a(/lie+td = (e+ /) + /2= e+ (h+ /.
Q. e d

Remark. Condition a) ii) implies some restrictions about the type of applica-
tion ofa) i). In fact it will be necessary that is idempotent, and that it is a left unit
of d(1). This makes much minor the number ofchances, as it is shown by the following
example:

Example 4.2. Let 5= {(a, b), a2=a, b2—b, aba=a, bab=b}={a,b, ab, ba}
and let T={(u,v), u2=u, v2=v, uv=v, vu=u}={u,v).

Condition a) i) of Theorem 4.1 is satisfied by every application which can be
obtained by using one or more of the following correspondences, and by taking
the other elements as fixed points: a ab, b ba, ab —a, ba —bh.

But by condition a) ii) we must only refer to the subsemigroup of ®(/) which
contains only the following two applications from | to itself:

a —mab a—a

b -+Db b ba

<H ab “mab 42 ab -*a
ba “mb ba —ba.
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So, we get the following possible extensions oi S by T:

H'= {ab, ab,ba, u, v;/(pu= tpk- tpv}
H" = {a,b, ab,ba, u, v; lcpu= tp2= tpv}
H'™ = {ab, ab,ba, u, v; Iu= qr, (w= g2
H™" = {a,b, ab,ba, u, v; /tpu= tp2, tpv= tp~.

Remark that in the former example S=S2 and therefore Sh= 0.
So to get that a semigroup S can be extended, S&-0 is not necessary. But
such a condition is sufficient, as it is shown by the following theorem:

Theorem 4.3. |fthe idempotent-generated semigroup S has a non empty subsemi-
group S5, then condition a) i) of Theorem 4.1 is always satisfied.

Proof. Let kdS5, and suppose that K is not a unit for S. So there must exist
ed.1l: ekTe. Then ek=ekk, and we have ekdD(k, e)\ so for every tdS we get
{ek)t=e{kt)=et, and we may say <k{e)=ek. Q. e. d.

Now consider the following equivalence relation on the elements of I : Wel5 e2d1,
er~e2 iff D(e)=D(ed. By Theorem 3.10, we get

Corollary 4.4. For every idempotent-generated semigroup S

a) S5is an equivalence classfor ~ ;

b) all classes of elements in T5are singletons;

¢) every classisincludedin one and only one of the subsemigroups St (i—0,2,5)
and Tl (i=0, 2, 5).

Finally, it can be easily proved that

Corollary 4.5. An idempotent-generated semigroup S satisfies condition a)i)
of Theorem 4.1 if and only if there exists at least one class in //~ which is different
from a singleton.
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SOME RESULTS ON RECORD VALUES
FROM THE EXPONENTIAL AND WEIBULL LAW

A. C. DALLAS (Athens)

1. Introduction

Let X, X,, ... be independent and identically distributed random variables
with a common continuous distribution function F(x). Define the record times
L(n) (n=1) by L(0)=1 and L(n)=min {j: X;>Xy,-1} (n=1). Set Y,=Xpg
(n=0) andcall ¥, (n=0) the sequence of upper records. Because F(x) is continuous
we note that both L(n) and Y, (n=0) are well defined.

The joint probability element of Y,, ..., Y, is given by

dF(yo) ... dF(yy)

(1.1) A6 o - 0 = s i)

Yoi=viiJer

where p(x)=1—F(x). Integrating out y,, ..., ys—1 we get the probability element
of Y, (s=0), which is given by

(1.2) dGy(ys) = (sD)71(—log p(yy)* dF (¥y).

In an analogous way we can define the sequence of lower records. If u=t(x)
is a strictly increasing function then it can be easily shown that #(¥,) (n=0) is a
sequence of upper records resulting from a series of i.i.d. random variables each
with distribution function F (t‘l(u)). If ¢(x) is strictly decreasing then #(Y,) (n=0)
is a sequence of lower records from p(t‘l(u)). Therefore we limit ourselves to the
case of upper records calling them simply records.

Basic in the study of records is the function R(x)=—log(1—F(x)). This
function has the property of transforming records from any continuous strictly
increasing distribution F(x) to records from the exponential distribution E(0, 1),
where

e ik L

In this note we indicate that using this property some results on records can be
obtained in a similar way to that introduced for the study of order statistics by A.
Rényi [1]. The results are of similar nature to those given by G. Hajés and A. Rényi.
[2]. Next, we give a characterization of the Weibull law, related to the results obtained
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2. The exponential law

Let FO, Fx, ... be record values generated by a strictly increasing distribution
function F(x). We may confine ourselves to the case F(x)—E(0,1). Then the joint
density of FO, ..., Ys is given by

(2.1) f(y0,...,y9 = expC-yi 0<yo<...<ys.

Considering now the case where Yk=ck, ..., Ys=cs are fixed, we
can easily see that the conditional density of the remaining variables is given by

(2.2) AY0,—,YKANCK> »» O = fcl!/4, 0

That is they have the same distribution as the order statistics of a random sample
of size k from the uniform distribution on the interval (0, cK).
In a similar way, when YO0=cO, ..., Yk—ck (O sk”~s—1) are fixed, we get

(2.3) OYK+i, o> .., €W = exp {-(ys-c K}

where ck<yk+l< ...<y5. Comparing (2.3) with (2.1) we deduce that the conditional
distribution of the remaining s—k records is the same as the unconditional one of
the first s—k records from E(ck, 1).

Since (2.2) and (2.3) depend only on ck, the previous statements hold also true
when only Yk=ck (1™ k~s—1) is fixed. Using analogous arguments one can prove
that the sets of variables (F,,, ..., Yk-f) and (Yk+1, ..., Fs) are conditionally inde-
pendent when Yk=ck (1~ k~s—1) is fixed. That is the sequence F; (/s0) forms
a Markov chain. In the case of an arbitrary continuous distribution F{x), using
arguments similar to the ones given in § 1 of [1], one can prove that F; (rwO) forms
a Markov chain.

Now we state the following theorem.

Theorem 2.1. Let FO, YI, ... be record valuesfrom E(0,1). Then YJYKk, where
0~ <k, has the same distribution as that of the (z+1)si order statistic of a random
sample ofsize k from the uniform distribution on the interval (0, 1). Also Y jYkand Yk
are independent. In addition, the random variables (Y~dYf (li/sr) are i.id.
each having as distribution, the uniform one on the interval (0, 1).

The proof of the above theorem follows exactly the same steps as the proof of
corresponding statements for order statistics that is given in Section 6 of [2]. Therefore
we omit it here. A direct but rather complicated proof of the above theorem was
given by M. L. Aggarwal and A. Nagabushanam in [3]. Corresponding statements
for E(a, b) can be made, provided that some obvious modifications are made.

3. The Weibull law

A random variable X with probability density function given by

fyx5-1&xp(—kxy if x>0, A>0 y>0

@.1) m 10 otherwise

is said to have the Weibull law with parameters dand y.
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Consider now the records YO, Yk, ..., Yk generated by the distribution (3.1).
Making the appropriate substitutions and transformations in (1.1) we conclude that
YJY1, YJY2 ..., Yk~i/Yk and Yk are mutually independent. From this we deduce
that YJYk and Yk, where 0S/<fc, are independent. We will prove below that,
under some distributional assumptions, this is a characteristic property of the Wei-
bull law.

Assume that the records Yt and Yk, Yt<Yk are generated by a continuous
distribution function F{x). Before giving the characterization we establish some prop-
erties of F(x) which follow as immediate consequences of the independence of
YjYkand Yk.

Proposition 3.1. The independence of Yi/Yk and Yk implies either F(0)=0
(JfisO) or F(0)=1 (ZsO).

Proof. Suppose P(A<0)>0 and P{X>0)>0, that is X takes both negative
and positive values with positive probability. Then Yk*O implies YJYk>0. Now
if Yk>0 then YJYkcan take both negative and positive values. But this is a contra-
diction to the assumption of independence. Hence the proof of the proposition.

This proposition suggests the examination of two separate cases. So we consider
first the case XwO.

Proposition 3.2. Assume F(x) is continuous, F(0)=0 and YtYk s independent
of Yk. Then 0”x1<x2 implies F(x)-cF(x2-

Proof. Let xk<x2 and F(x))=F(x2<1. Denote by b the smallest point
of increase of F(x) such that x2=P Then F(b)=F(x2. Suppose now Yk—ck
with ck>b. Using the Markov property of record values, the conditional probability
element of Ytwhen Yk= ck, is given by the expression

R\ [ logpCri)] f IoCF(C?k:U.dFQU
iN(k-i-D\[-logp (cKIkI  &p(y,) p(yt) ’

v.'here 0=y<ck. Therefore the conditional distribution F,(x) of Yi/Yk given
is given by

k\ [logpC/ll 1dlogp(y?)
ilfc—i—1)! Llogp(ckyd 1 logp(ct)d log p(ck
with 0~x-=I. Next we transform the integral on the right hand side introducing

the variable t= log/?(y,-)/logp (ck) to find

logp(cfx)/logp(ck)

(3.2) Ft(x) = f (fe—n) 1 . 12°(1 —2)k=i~1dz.
0 11

From the above expression we conclude that F;(xjcK= F\(x3ck= Ffb/ck) and
that b/ck is a point of increase of F;(x). Now as F(x) is continuous we can find
another point of increase of F(x), say h, such that ck-*h and xfc”~b/h. Assume
now Yk=h. Then, as the conditional distribution Ffx) remains the same because
of the assumed independence, we have that b/h is a point of increase of F;(x). This
is a contradiction. Hence F(x1)<F(x2. This proves the proposition.

Now we state and prove the characterization theorem.
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Theorem 3.1. Let T;< YK with 0”i<k be the corresponding i-th and k-th
recordsfrom a continuous distribution F(x) with F(0)=0. Then the independence of
Yi/Ykand Ykimplies that X is distributed according to the Weibull law (3.1).

Proof. Proposition 3.2 suggests that the support of F(x) must be of the form
[0, a) where O<a”oo0. From (3.2) and the assumption of independence we have
that p(x) must satisfy the functional equation

(3.3) log p(ckx) = A(x) logp(ck, O0<ctSa, 0< x< 1L

Ifweset A(1)=1 then (3.3)holds for 0<xS|. Setting x=exp (—y), ck=exp (—yK
and a(x)=logp(e~x) we are led to the equation

a(Y+¥YkK) = b(y)a(yk, 0~ vy, loga”™-cy*.

This is a Cauchy type functional equation and its solution is a(y)=B exp (Oy),
y~loga-1, B<0. Hence p(x)=exp (Bx~°), O™x”" g, F<0. As p(x) must be
decreasing and continuous we must have 0<O and a= + This implies that X
has the Weibull law (3.1) with X =—B and y = —8. This concludes the proof of
theorem.
Suppose now X”70O. The analysis can be carried out in a similar fashion.
As in Proposition 3.2 we can prove that X is not bounded from below and that
implies F(xj)<F(x2. Therefore the support of X is of the form (- oo, a].
The conditional distribution of YJYkwhen Yk—ck is given by

The independence leads to the equation logp(ckx)=B(x) logp(ct), x>\, ck<a
and the general solution is given by p(y)=exp (Byx) with y<0, A<O0, /?>0 where
a=0 because of continuity. This is a Weibull type distribution on the negative axis.

Instead of the assumption of independence, we may impose the stronger assump-
tion that YJYk given Yk has the same distribution as the /+ 1 order statistics of a
random sample of size k from the uniform distribution on (0, 1). Then after some
calculation we can show that this distribution is E (0, b). Note also that using strictly
monotonous transforms and the remarks given in the introduction, several distribu-
tions can be characterized. For this purpose we may use the independence of suit-
able functions of records, upper or lower ones, which result when the transforms
are applied on YtYkand Yk.

The monotonefailure rate distributions, increasingfailure rate (IFR) anddecreasing
failure rate (DFR), play an important role in reliability studies. A result connected
with these distributions is quoted and proven as a corollary of Theorem 3.1.

Corottary 3.1. Let F(0)=0 and F(y) be IFR (DFR) and continuous. Then the
independence of YJYk and Yk implies that Yi!YK is stochastically greater (smaller)
than the (/+ I)si order statistic of a random sample ofsize kfrom the uniform distribu-
tion on [0, 1].

Proof. As F(y) is IFR (DFR), then —og p (y) is convex (concave), for any
y in {y:F(y)<1 y~0} (see e.g. Theorem 4.1 on page 25 of [4]). Then for any
0<x<l and any ck>0, we get, logp(ckx)/\ogp(ck”~x(~x) as logp(0)=0
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and —og/i(x) is convex (concave). Then from (3.2) we have

F'M a

This proves the corollary, as the integral is the distribution function of the (i+1)“
order statistic.

4. Remarks
It is easy to see that YKYmand Y,,/Yr, where 0 are independent
when F(x) is the Weibull distribution. Now consider the Pareto distribution whose
b via V-1
density is given by /(x)=—I1—J , 0 0<p. Let HO,H X ... be a sequence

of records from this distribution. Then a direct computation shows that HO,
HJH1, ..., HS JHS are independent. This implies that the independence of any
pair YJYmand YJYr where 0 does not lead to a characterization
of the Weibull or Pareto distribution.

Analogous remarks can be made for the dilferences between records. One can
easily show that YX—FO, ..., 75— are independent and that Yi—Yi_1 has an
exponential distribution when YO0, Y, ... come from E(a, b). Consider now a random
variable with distribution function 1—exp (—exp x), — Then using the
definitions, after some calculations, we can see that the differences Yi—Yi_1(17i”s)
are independent. The conclusion is that the independence of Ym—Yk and Yr—Y,,
where does not lead to a characterization of E(a, b).

Both these results can be contrasted with the case of the order statistics, where
the independence of the previously mentioned quotients, correspondingly differences,
characterizes the Pareto distribution, correspondingly E(a, b). These results have
been proved by H. J. Rossberg [5].

Aknowledgement. The author wishes to express his thanks to Dr. Pal Bartfai,
whose remarks and suggestions led to the improvement of an earlier draft of this
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UBER EIN INTERPOLATIONSVERFAHREN
VON S. N. BERNSTEIN

R. GUNTTNER (Osnabriick)

Einleitung und Ergebnisse

Gegeben seien die Knoten t,=t+vn/n, v=1,2,3,...,2n, und

2n
M Sulgl) = > d,(t—1)g()
sei das trigonometrische Interpolationspolynom der Ordnung # der 2z-periodischen
Funktion g. Hierbei ist
n—1

St : 2 coslt+L cos nt.

1 t
) d,(t) = = sin nfctg — 3 >

2
Fiir v wird hdufig =0 oder = —7x/(2n) gewdbhlt, doch ist fiir Fehlerabschdtzungen
die Wahl von 7 unerheblich, da sie als eine Translation von g und S,[g] interpre-

tiert werden kann.
Eine Verallgemeinerung von (1) sind die Ausdriicke

®  saldo= Sa (-2t x) 3 (4] (22 ),

vgl. Kis [5, (7)]. Sie lassen sich auch durch S, darstellen, so gilt zum Beispiel S,,=
mit 7= —n/(2n),

Sulgl® = = [s -]+ [g](,+_]]

mit =0, und

S,ale) () = [s (61(1—2) + 25,1210+ S, s [z+—)]

mit 7= —n/(2n). Ausdriicke dieser Art wurden zuerst von S. N. Bernstein [I]
untersucht. Sie lassen sich auch schreiben in der Form

Sulgl(D) = Z g( ]s ®, k ungerade,

©)
Sulel®) = 2' g[ )s (H, k gerade,
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mit
2i+ 2j —K
P \ K, ungerade
c -t 111w '- 2n
© 21+ 2j—k—i K, gerade
2n » 9

vgl. Kis [5, Lemma 1].

Wie Ublich sei mit Hw die Klasse der Funktionen bezeichnet, deren Stetig-
keitsmodul nicht groRer als ein vorgegebener Stetigkeitsmodul co ist. In [8] beweist
Kis u. a. die Abschatzung

(6) I5..fg](i)-g (01 ~ + co konkav.

Hierbei wurde von Kis [6] gezeigt, daR C,2=5/4, Cnl= M+ + O(1/md,Cnlé (1 +—j

fir n=\, 3,5, —

In dieser Arbeit sollen Fehlerabschatzungen fir die Funktionenklasse LipM!
bewiesen werden, also fur alle g mit \g(x)—g(y)\*.M\x—y\. Fir k=0 ist bereits
bekannt [3]

Mu.
S,.[9](0-g(O1 ™ I SdI-2,

wobei fISJ die Norm des Interpolationsoperators S,, bezeichnet. Asymptotische
Ausdrucke hierfar sind in [4] angegeben. Die bestmdégliche Approximation durch
trigonometrische Polynome u-ten Grades ist gegeben durch

oy - Mn T.
EAg)-W T\y g€LipMI-

Wir betrachten nun fir k~1 Fehlerabschatzungen der Form

©) ISt[g] (0 g(01 —c"k2™~ g€LipMI.

Die Abschatzung (6) liefert mit w(8)=Mé

(8) cni — + > un=1 35 .., c2—=2’' n=1223 ...

Als Hauptziel dieser Arbeit soll gezeigt werden, daB c.kam kleinsten ist fir k= 1
Herbei sei stets k<2n, falls nicht anders vermerkt. Die Abschatzung in (8) fir
cnl 1aBt sich wesentlich verbessern. Zunéachst zeigen wir fir n—1,2,3,...

Satz 1.

2V
CH> . cn2u-| V= 1,2 3o,
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Die auf der rechten Seite der Abschétzung stehenden GréBen sind als Funktion
von » streng monoton wachsend, wie man etwa durch vollstindige Induktion be-
weisen kann. Wir erhalten somit

KOROLLAR 1.

c,,kQ%, k=3,4,5,...

Fir k=1 und k=2 liefert Satz 1 mit v=1 nur ¢,,=1 und c¢,=1. Wir
zeigen daher als nichstes

SATZ 2.
1
Cho = 1,36—W

Am schwierigsten is der Fall k=1, denn hier ist eine moglichst genaue Ab-
schitzung von ¢,; nach oben und nach unten sinnvoll. Wir beweisen

SATZ 3,

1

. 3
¢ =c+r, mit ¢=11696... und —— < n <53

4n?
Als Folgerung erhédlt man zunichst fiir n>2
KOROLLAR2, Ci=Cris K=2:3.4, .....
Dieses Korollar ist auch richtig fiir »=2, denn hierfiir errechnet man leicht

durch Diskussion der Beweise fiir diesen konkreten Fall c¢y3>1,29, aber
¢, =1,1914.... Fiir n=1 ergibt sich dagegen c¢;3=c;;=1.

Beweis der Siitze 1 und 2

Es gilt S,,k[g][zn] > 2[ ] [Mn] vgl. [5, (1)], und damit

Sulsl ()2 ()] = % 2 () e () (Z) =

Mz 1 ()Ik l
= —
w3 2"

Es ist leicht, fiir k<2n eine Funktion g€Lip,1 zu finden, fiir die in dieser Unglei-
chungskette das Gleichheitszeichen gilt. Die rechts erhaltene Summe wertet man
durch Fallunterscheidung k gerade bzw. k ungerade aus, wie dies bereits in [5]
beim Beweis von (22) bzw. (24) durchgefiihrt wurde. Damit ist Satz 1 bewiesen.
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Zum Beweis von Satz 2 gehen wir aus von der Darstellung (4). Durch partielle
Summation ergibt sich zunachst

+(8(-£ ) maw) Ve LBkb vem

AMr (") “8(TM Y b <)

Hierbei wurde wie bei Kis [6] fur bebliebiges k zur Abkiirzung eingefiihrt

(10) <X [(0= Sj(t), 1-nSiso0O ; aft) = .Y.Sj(t), 1Sisn.

j:EX-n j=i
Von groBer Bedeutung sind die beiden folgenden Lemmata, vgl. [5, Lemmata 3—6],
[6, Lemma 2]

Lemma 1. Sei 2n Wenn 2n=k, dann ist sSAfS0, -n<(én. Wenn

2 n>k, danngiltfir k gerade

(-1) 2Sj)=0, —n< i~ , stt)Lo, -T <isS

21

i k1 ,

(-1)+2+S((0s 0, y<ian,

fur k ungerade gilt
(-1)”_25;(0’\0, -n <is k+1 fe+1 Si”n,
2 2
. . fe-1

Si(t) s 0, =in

Der Beweis in [5] kann wesentlich vereinfacht werden. Sei z.B. 2n>k und K
gerade. Wie bei Kis geht man aus von (5) und (2)

2>>W)=f 1 (mBnn(re2+\ k n)Cg(i- 2, +\ f ) =
= —Sini
Es bleibt nur das Vorzeichen der letzten Summe zu bestimmen. Fir — —k/2

ist z. B. das Argument von /(x)=ctgx aus dem Intervall (0, n). Die betreffende
Summe kann nun aber als k-te Differenz von/ mit der Schrittweite h=nj{2n) inter-
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pretiert werden,

k . &
a7 = 3 (E) s, = £ 2Ly

J=

Hat nun f® festes Vorzeichen, so gilt bekanntlich sgn 4 f(x)=sgn f®(x). In
vorliegendem Falle gilt sgn f®=(—1)*. Letzteres 14Bt sich z. B. beweisen, indem
man die Beziehung /"= —1—f? nach der Produktregel differenziert, womit man

k k _ ’
s == (j ]f D()fE-D(x) (k> 0),

erhilt, und hiermit vollstindige Induktion anwendet.
Lemma 1 benutzt Kis [6] zum Beweis von
LEMMA 2. In Lemma 1 kann s; ersetzt werden durch o;.

Zum weiteren Beweis von Satz 2 wihlen wir nun in (9) als g(?), 0=t=n, eine
Funktion g mit g(0)=Mnr/(2n) und

(2i—1 )_{Mrc/n, i=1,3,5,...
8\"2n )T laMryn, i=2,4,6, ...,
f

dazwischen sei g linear. Mit g(—17)=g(?) ist g auf [—m, n] definiert. Aus (9) und
Lemma 2 ergibt sich

(1 Sulgl -2 = 57 [1 ¥ > !ai(O)l].
i#0,1

Wie in [6, (42)] gezeigt und wegen ¢y+0,=1 gilt

: IS | 1
A = e — — = . n+1
i=12' lal (t)l 2 4 ll (COS t) 4 ( 1) ln (COS t)

=B
i#0,1

2i—1
2n

2i—1
ncos nt [ | cos t—cos A 18

I;(cost) = %(— 1)!+1 sin %

Damit errechnet sich

o dhTG [ n]_l T 4
Il(cosO)—;smzn/l cos > —FCth<7{’

DTt T 1 7 1
—1)r+1 = _ et L Pt SRR
(—1)"+,(cos 0) —sino /[1 +cos 2n] = tan = g

Somit folgt schlieBlich
n | [ | 1
2,00l 325
i#0,1

Dies eingesetzt in (11) ergibt die Aussage von Satz 2.
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Beweis von Satz 3

Zundchst ist es nitzlich zu zeigen, daf3

(12) r(t)= BeSIHSleBI[g](/)-g(OI
nur fur 0t~ n/(2ri) diskutiert werdRen muf3, denn es gilt
Lemma 3.
m(o = t€ [**]m
r,(O=m[t+~ )"’ v=+1,+2, ...

Beweis. Dall das Supremum in (12) existiert fur 0st~n/(2n) folgt aus den
Rechnungen zu Lemma 4. Es ist

r,(-0 = /€sLlinle|SnI[/](— )-/(—01-

Sei g(t)=f(—t), tdR. Es gilt g€ELipM genau dann, wenn /6LipMI; durchlauft
/ alle Funktionen von LipM, dann auch g und umgekehrt. Da snl[fK -t)=snl[gW
ist die erste Beziehung bewiesen. Analog folgt die zweite Aussage mit g(t)—f{t+vnlIn)
und Snl[f](t+vn/ri)=Snl[gKt).

Fur die folgenden Beweise werde zur Abklrzung gesetzt

s(0 =
wobei die at wie in (10) definiert sind. Wir beweisen nun
Lemma 4. |5BI[g](r)-g(ON (I +m£E
Beweis. Wir gehen aus von

(13) L 50= 1,

vgl. [6, (24)]. Dies kann auch aus (5) mit Hilfe von

2 dn(t~td = 1
1=1-n

gefolgert werden. Damit ist wegen (4)

SaM(0-g(0 = ,_iB(g(-"*-)-9(9"I0.
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Durch partielle Summation ergibt sich mit (10)

(14) snl[g](t)-g(0 = 70))o-f(0 + (g(0) -g(0)<ro(0 +

+ (s (i)-s«)<T W+1 (*(-™)-r ")« (<).
Fur g€LipM folgt hieraus
as) Ml_ilt I,:zl:qwt(t)\+ Mt\aM + w\flgll_'f\ -t;l"(Ol.

Zur weiteren Auswertung beachte man zunéchst, daB aus (10) und (13) folgt
(0(i) + 81(t)=1. Daher gilt

00(0 = y + (0, Ci(0 =y ~ £(0-

Wie in Lemma 2 angegeben, ist in dem zu Grunde liegenden Intervall a0(0 —o,
al(/)~0. In [6, (62)] wurde gezeigt

ki(0] = j-
Hiermit folgt nun unmittelbar
(16) 2 kol =_ 2 ki(0OI-MOI = e(0-
i=1-n i=zl-n
bl0,1 17
Auf dhnliche Weise zeigt man
M*o(OI+(£-f)ki(O1l =~ + £(p " ).

Hiermit und mit (16) 4Rt sich nun (15) umformen zu der in Lemma 4 angegebenen
Form.
Aus Lemma 3 und Lemma 4 kann nun gefolgert werden

an cnl”™ 1+ SUP  (nis(O).

In anderer Richtung gilt
Lemma 5.

n ungerade,

n gerade.
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Beweis. FUr k=1 ergibt sich in Lemma2 speziel <o(i)~0, <1(/)~0 und
(18) sgno-j(n = (—1),+1, —n</s —1 2=i=mn

Fir jedes feste t'd[0, n/(2n)\, n ungerade, betrachten wir folgende Funktion y:

‘ I_\/I_n_1_1 fur (=0, —2, —4, ...
14
‘ —a< =10,
{ ) 2MI e i= —1, -3, —5, . n
—2r'j fur i=1 3,5, ..
0 < |—72 = 4.
()= fir i= 2 4,6, .. N

Im dbrigen soll y linear verlaufen. Man prift leicht nach, dakl y€LipM und

i+l _h<is- g

)Ll_l- an ) *E<«*
YO- XO= MR, y(!)-y(O=m[*-1"Y

Dies eingesetzt in (14) ergibt auf Grund von (18)

srl[yNe-y(0 =~ i Ki(OHVA<TOO]+MiA-F)[<71(0.
inOll

Die weiteren Umformungen wie bei (15) ergeben
Afulr 4 1
Sni[y](0-V (0 = 2" [1+ - nfe(f)\ m

Fur t', 0Si'~rc/(2n), wahle man denjenigen Wert, fir den der Ausdruck nt me(t)
maximal wird. Damit ist Lemma 5 fiir n ungerade bewiesen.
Fur n gerade sei y wie oben mit Ausnahme von y(n). Hierfir wahlen wiry(s) =

Hiermit ist y 2a-penoiilscb und y£LipMI. Es gilt aber

[y(a)-y(®psa)lo-8(0 = \~~~—/1/2/']|<(O k
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Nach weiterer Rechnung ergibt sich hiermit

SalvKO-ViO = ~A[I+~nt'e(t)~nt"\<rn(0O\\.

Beachtet man so erhalt man
1 r (t sa) (t nen nt cos nt
~m(»i=  cos™1“Clt +4»J+ 1T _eTl e at

Hieraus errechnet sich mit der Substitution nt=z9 0”i~n/(2n),

womit Lemma 5 vollstdndig bewiesen ist.
Lemma 6.
N sup (nte(O) = 0,1696 ... +r*, |r¥| < A~ (n > 2).
n os,al;

Beweis. Wir gehen aus von <0(1)=1/2+e(r) und der Darstellung von <0
in [6, S. 187], woraus folgt

e(.) =

Aus der Potenzreihendarstellung des Sinus sin x= £ a,xv ergibt sich somit nach

einigen Umformungen

(.9 HO =i« .(f
Die Summe in eckigen Klammern kann als Mittelpunktformel bezuglich
fv(x)=xvctgx mit der Schrittweite h=n/n interpretiert werden. Zunachst sei der

Fall n gerade betrachtet. Es ist

2" W n(2j-1 )v §2j-| 1 z’
(20) n 7 «J«g (-]Jj-J=~n [ l<*>ax +

Fir die Mittelpunktformel ist bekannt [2, S. 43]
dx SR \F* OO\
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Hier gilt

Im Falle n gerade ist a=0, b=n/2 und h=n/n zu setzen. Im Falle n ungerade er-
halten wir a=0, b=n/2-—/(2n). Wir korrigieren in (20) daher mit dem Term

und erhalten somit fur beliebiges n

Im Falle v=1 wurde beriicksichtigt, dal /konkav ist und die Mittelpunktformel
daher einen groRBeren Wert liefert als das Integral. Die Integrale in (20) sind fur
kleine v leicht auszuwerten, flir grofle v beachte man die einfache Abschatzung
ctgjc<l/x. Die erhaltenen Werte sind in (19) einzusetzen. Nach Substitution von
nt=z und sorgfaltiger Auswertung der entstandenen Ausdricke erh&lt man das
in Lemma 6 zitierte Resultat.

Aus (17), Lemma 5 und Lemma 6 folgt nun die Aussage von Satz 3.
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BORSUK’S THEOREM AND THE NUMBER OF
FACETS OF CENTRALLY SYMMETRIC POLYTOPES

I. BARANY (Budapest) and L. LOVASZ (Szeged), corresponding member of the Academy

1. Introduction

Let C"={x€R": |n)|=1 /=1, ..., n} be the n-dimensional cube and A be a
(/-dimensional subspace of R" having no point in common with the (n-d—I)-
dimensional faces of C". We want to find a lower bound on the number of vertices
of the polytope ADC". More generally, given an n-dimensional centrally symmetric
polytope K (whose center is at the origin) and a (/-dimensional subspace /IcR",
find lower bound on the number of vertices of AMK. We are going to prove two
theorems concerning this question. These theorems have several interesting corol-
laries, for instance the following “lower bound”-type one. Every (/-dimensional,
centrally symmetric simplicial polytope has at least 2d facets. (In fact this theorem
is equivalent to our main result when K=Cn)

This question was motivated by the following problem of Erdds [2]. Given
al? ..., arERd vectors of at most unit length, at least how many of the 2" vectors

yi Eidi (ef = +1 or —1) lie in the ball }'dBd, where Bdis the %Jclidean unit ball of
it

Rd Erdos conjectured that this number is at least c(d)2"n 2 for some positive
constant c(d) depending only on d. This conjecture has been proved very recently
by J. Beck [1]. In this paper we do not contribute to this problem because our results

would imply only that the number in question is at least 2'"~d

In the proofs we shall need Borsuk’s theorem on antipodal maps. A continuous
map (p: Sn—+Rm is said to be antipodal if (p(—x)——p(x) for every x£S".

Borsuk’s theorem. If m<n, then there is no antipodal map < S"“®Sm
This theorem is equivalent to the following.

If (- A"—R" is an antipodal map, then there exists an X£Sn with <p(x) = 0.
We shall prove the following extension of Borsuk’s theorem.

If tp: Sn-+Sm is antipodal, then the n-dimensional measure of (p(Sn) is not
less than the (n-dimensional) measure of Sn

2, Notation and results

Let K be a convex polytope in R". The support of xEK is defined as the mini-
mal face of K containing x. A face is understood to be closed. If x lies in dK, the
boundary of K, then t(x)=t(x, K) denotes the set of outer normals of unit length
to K at x. Itis clear that ((xjcV "1 is nonempty. The set t(x) consists of one point
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if the boundary of K is smooth at x. The «/-dimensional outer angle of K
at x («/=1,2, ,n)is defined as
ALY
VrCSsS“ 1~

where /i _1lis the («—l)-dimensional Lebesgue measure in R" and S*1 is supposed
to be isometrically imbedded into R". Obviously,

10, if the support of x is more than (n—«/(-dimensional,
d -’ 1°¢, if the support of x is less than (n—«/(-dimensional.

Let sd (@ denote the set of «/-dimensional subspaces of R". We shall consider
sections of type AMK where KcR™ is a centrally symmetric n-dimensional poly-
tope (with center at the origin) and A”s4(d). A section ATMK is called regular
if A has no point in common with the (n—d —I)-dimensional faces of K.

Theorem 1. Let K be a centrally symmetric, n-dimensionalpolytope and ACsdld)'
Then

(1) sd(x, K) fe 1

2
x €vert (NNK)

where vert (AMK) is the set of vertices of ATlK.

Corollary 1 If AMK is a regular section, then
hert (11T is —Jpr,
( )| u-d{R)

where a@A')= max {y.d(x, K): the support of x is (n-d)-dimensional}.
Corollary 2. Any regular, d-dimensional section of C'* has at least 2d vertices.

Corollary 3. Any d-dimensional, centrally symmetric, simplicial polylope has
at least 2d facets.

Corollary 4. [cf. Erd8s, Beck], If al, ..., anEBd, then at least 2"~ ™| vec-

n J—
tors out of the 2" vectors ad¢; (r;= + 1 or —1) lie in the ball \dBd

Let Ste("-d—yE(n-d)(K) be the set of all (n—«/)-dimensional faces of K. To
present our next theorem we define a map (p: Sn~d-+s kel,,_,(K to be special if

(i) opis antipodal
(ii) for each L€if(".d) either L(Z(p(Sn~0 or intLn<p(Sn~d=0.

Here int L denotes the relative interior of the face L.

We mention that some projections n: Rn—A (where A£jd("~d+1>) induce
a special map on: Sn~d-*s kel,,_dK in a natural way. Suppose that n is a projec-
tion such that the image of every LEL?('~d+]1) is (n—d+ 1(-dimensional. Then n,
restricted to K is one-to-one on every face LEJT(n~d+r> On the other hand, n(K)
is a convex polytope whose boundary is the “same” as Sn~d, and kK has an inverse
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on this boundary. Denoting this inverse by (pn we have the induced special map
< Sn-d”s kel,,_dK.

Our next theorem gives a lower bound on the number of vertices of a regular
section of K through the following discrete linear program.

minimize 2 x(L)
subject to x(L) = 0 or 1 if L),
@ x(L) = x(-L) (ML),
Ligthq) X{L) ~ 2 (V<p special).
L(Z(p(Sn-d)

Denote the minimum of this problem by M. In other words, M is the minimum size
of a centrally symmetric set of (n-d)-faces of K meeting all special images of Sn~d.

Theorem 2. Every regular section of a centrally symmetric n-dimensional poly-
tope K has at least M vertices.

Corollaries 2, 3 and 4 follow from this theorem as well. Moreover we can
sharpen Corollary 2 (and, similarly Corollary 3):

Corollary 2'. Any regular d-dimensional section of Cnhas at least 2d vertices.
Equality holds if and only if the section is a d-dimensional parallelepiped.

Further we have
Corollary 5. Every d-dimensional regular section of the d-dimensional octa-

hedron has exactly 2 j j vertices.

Corollary 6. Every 2-dimensional regular section of the dodecahedron (icosa-
hedron) has at least 6 (resp. 10) vertices.

The proof of Theorem 1 will be based on the following extension of Borsuk’s
theorem.

Theorem 3. If cp: Sk-*S™ is an antipodal map, then Xk(<p(SK))~2k(SK. Here
kk is the k-dimensional Lebesgue measure (both in R,I+l and R"+1) normalized so
that 2k(SK) equals the k-dimensional mesaure ofany copy of Skisometrically imbedded
into Sk

Let us mention two open problems: The first one arises from an attempt to
find an alternative proof of Theorem 3. Let Ka R" be a symmetric convex polytope
and (p: vert -K-*-Rm—{0} such that for every vertexv, if v\, ...,vr are the neighbours
of v then there exist coefficients /15 ..., zr>0 such that

@V) = Inp(vj+ ...+ Xr(p(yn).

Then we conjecture that g(vertK) lies in an n-dimensional subspace of Rm This
conjecture would imply Theorem 3.

To present the second problem write fk{P) for the number of L-dimensional
faces of the polytope P. Suppose P is symmetric, simple and d-dimensional with

Acta Mathematica Academiae Scientiarum Hungaricae 40, 1982



326 1. BARANY AND L. LOVASZ

2n facets. The lower bound theorem would say thatf{P) is not less than a function
of d, nand k. An obvious guess for that function is

JO(P)s242(n-d)(d-1),
fk(P)~24k[fy+2(n-d)(k¢l) for U U d -1 .

This is supported by a kind communication of P. McMullen [4]. If the guess is
correct, the minimal polytopeswould be obtained from the cube by successive centrally
symmetric truncations of vertices.

3. Proofs

Proof of Theorem 1. Let us choose an e>0 such thatif L is a face of K and
AC\L=0, then AC](L+fB")=0 . Such an e exists because each face of K is
compact.

Put now Kc=K +&B" and let Sd_ 1 be the unit sphere of the subspace A. The

map n: AC\dK-*Sd~1 defined by n(y)= Ty is one-to-one and antipodal. We

define a map ¢>:Sd~1-+Sn~1 by (p(z) —t(n~1(z), K?). Since Kz is smooth at every
point of its boundary, @ is well defined, continuous and antipodal. Theorem 3 then
implies

AN Aa-rMSt-1) - b-r*AMaK*, Kr))e

Claim, t(A NdKe, KGQ U/(intL, K), where the union is taken over all faces
L of K with bI"\A~OQ.

Suppose z£t(y,K¢ for some yEAIM\gKe. Then y=x+ez where xE()K and
z£/(x, K), as one can check easily. Write L for the support of x (in K), then x£int L
and /(intL, K). All we have to show isthat LH AAO0. Suppose that LC\A=0,
then by the choice of ¢, AC\(L+eBn= 0, too. But y(LA and y —x+ ezL + €B",
a contradiction.

From this we have

A(AAN(C[(A N 2AI0 )N A-i(/(int L,Kj).

L0
Clearly A 1 (/(intL, Kj)=0 if dimL>n—d. Suppose ATK a regular section,
then bl1A—0 for every face L with dim L”~n—d. Thus
- n ~N(/(intL, K)) n . rd

bR £ la-AS*- “

AR Y
because /(intL ,K) coincides with t(x,K) for every x£intL and LC\A=0 for
some L€£fin~d) if and only if AHL is a vertex of Af]K.

Finally, if A TK is not a regular section, then some member of the left hand
side of (1) equals +°°.

Corollary 1 is an immediate consequence.

Proof of Corollary 2. It is easy to see that ad(x,Cn—2~d if the support
of x is (n—J)-dimensional. Using Corollary 1 this fact implies the result.
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ProoF oF COROLLARY 3. It is easy to check and actually well known [3] that
every d-dimensional, centrally symmetric and simple polytope is a regular section
of C" for some n. So Corollary 2 says that every d-dimensional, centrally symmetric
and simple polytope has at least 2¢ vertices. Dualizing this statement we get
Corollary 3.

Here we mention that Corollary 2 does not hold for non-regular sections.
This follows from the fact that every d-dimensional, symmetric polytope with 2n
facets is a section of C". For instance, the d-dimensional octahedron is a (non-
regular) section of C** and it has only 2d vertices.

PRrROOF OF COROLLARY 4. We may clearly suppose that the vectors ay, ..., a,€B¢
are in general position, say their entries are algebraically independent over the
rationals. Put

A= {xER: Zn'x,ai = O}EM‘”""’.
i=1

P=ANC" is a regular section because the points a,, ..., a, are in general position.
By Corollary 2, |vert P|=2"-% To each vertex x° of P there corresponds a sign

Z"'c,-ai‘éﬁ. This is a simple
1

geometric fact the proof of which is left to the reader. On the other hand any sign
n
d
this bound, but it would not influence the order of magnitude. It is easy to construct

sequence &, ..., g, such that g=x? if |xJ|=1 and

sequence can correspond to at most [ ] vertices of P. (One can slightly improve

;1] vertices of P.) This shows

that at least 2"—4 / (Z] vectors out of the 2" vectors 2”’ &;a; (5;= 1) lie in the ball
i=1
yd B

PRrOOF OF THEOREM 2. Suppose that Ac€&/? and that the section ANK is
regular. For LeZ"-9 put

xa0) = {

. n
an example where a sign sequence corresponds to (

1 f ANL =G,
0 otherwise.

Clearly, Lez%-a) x4 4(L)=|vert ANK|. We show x,(L) satisfies the conditions

of the discrete linear program (2). All we have to check is the condition

® e T =2

Lec Pn-a)
for each special map ¢: S"-¢—skel,_; K. Now let ¢ be a special map, then, for
LS (8" % x,(L)=1 iff LNA# &. So (3) holds iff AN@(S"~%) consists of at
least two pints. Consider the orthogonal complement, A+, of 4 and let n: R"> 4L
be the orthogonal projection. Since ¢ is antipodal, AMN¢(S"~“) contains two
points iff 0o (S"-9). But mog@: S"-¢->A4L (=R"-9%), so by Borsuk’s theorem
there exists a z€S"~¢ with nog(z)=0.
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Corollary 2 follows from Theorem 2 as well. In order to see this take the spe-
cial map op: S"~d—skel,,_dC" which is induced by some projection and consider
the set of special maps {gog>: gdG} where G is the group generated by the reflec-
tions of C". Clearly L”=go(p(Sn~d) for exactly 2”~d+l elements g£G (for each
fixed TE£.5?(U1 %) and |G|=2". So summing up the inequalities

"=0°%(S’H])X61{L)
for every g£EG we get 2L xr(T)=2d This implies M~2d. The same method

gives Corollary 2' as well. Indeed, if the set {L£EiAn~d)\ LC\AA 0} contains two
faces, Ltand L 2that are not parallel, then one can find a special map @ (induced by
same projection) so that both L2Q(p(Sn~d). Consequently

LQ%SH»X&‘(L) 4>2,
This implies M > 2d

To see that Corollary 5 holds we use the method of proof of Theorem 2. The
(n—fi?+1)-dimensional subspace xh=...=xidl=0 (1s/1<id_1Sn) intersects the
octahedron

On= {xER"™: 2 I*l S I}

in an (n—£/+l)-dimensional octahedron 0"~d+d-i whose boundary is clearly
the image of a special map c¢p: Sn~d-*s kel,,_dOn Since the section Af]On is
regular and Ol~d+)d | lies in a subspace,

xa (L) =2

2 1]
Le(S*d)
Summing up these equalities for each such (p we get

[vert ADONn\= .2 xAL)=2[dI I),
Li Y

because every LE£Z (n~d>lies on the boundary of exactly one octahedron 0?~d+d I.
We mention that Corollary 1 does not imply Corollary 5 (for n~4 and d—2

for instance). And in general, Theorem 2 seems to be stronger than Theorem 1.
Corollary 6 can be proven using a suitable set of special maps.

Proof of Theorem 3. We can suppose that nsk. We are going to use the
following formula which is a consequence of the Fubini theorem. If X~S" s
Xk measurable, then

@) 2k(X)= fIXHA\dg

where g is the invariant measure on the set sd of all (n+ | —k)-dimensional sub-
spaces of Rn+l, normalized suitably. Applying this formula to X=<p(SK,
h(<p(SK) = J \(p(SKWC\A\dg f2dg,
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because [<p(S*)n”~(|s2 for every Adsé aswe have seen in the proof of Theorem 2.
Let (p0: A*—A" be an isometric imbedding of Sk into S Then |[q0(5*)M"41—2
for /i-almost every Adjé. Applying (4) again with X=tp0(Sk)

PoOS*) = / 2dll,
and this proves the theorem.

Acknowledgement. We are indebted to A. Schrijver and Z. Szabd for the sti-
mulating discussions on the topics of this paper.
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APPROXIMATION BY BERNSTEIN TYPE
RATIONAL FUNCTIONS. 11

CATHERINE BALAZS and J. SZABADOS (Budapest)

In [1], the first of us introduced and considered some approximation properties
of the Bernstein type discrete linear operator

Rn(f,x) (a,,x)k

1+ anx)n
Among others, it was proved that iff (x) is continuous in [0, °°), |/ (X)|= O(exq (X °°)
with some a then in any interval [0, A] (A>0) the estimate

@) An(f x)= KF{x)- R,(/, X)] ¢c0gj2A(n-13 (0 x HA)

holds for sufficiently large ris provided a,=n~13 b, =n23 Here c0 depends only
on A and a, and &2A(.) is the modulus of continuity off(x) on the interval [0, 2A].
As it was noted in [1], the convergence of R,,(fx) holds under the more general
conditions a,,=bjn-+0, bn-*°° (n-«-°°) as well.

The aim of the present paper is to improve the estimate (1) by an appropriate
choice of anand bnin the case when/ (x) satisfies some more restrictive conditions.
Furthermore we shall show that these results can be applied to approximate certain
improper integrals by quadrature sums of positive coefficients based on finite number
of equidistant nodes.

First we assume that f(x) is uniformly continuous in [0, °°); then the modulus
of continuity (Df(.) of f(x) exists on the entire positive half-axis.

Theorem 1. Iff(x) is uniformly continuous in [0, °°) and

) a.= n>-\ bn=nk (0< 0=5 2/3)
then
(3) d,(/,x)a2(l+x~«)m /[|/*] (0Sx<4

This estimate has several advantages compared to (1). First of all, An(f, 0)=0,
i.e. (3) reflects the interpolation property R,,{f, 0)=/(0) of the operator Rn(f, x):
even the rate of convergence of R,,{fx) to f(x) when x—0 (n fixed) can be seen
from (3). Also, (3) is a weighted estimate. From the proof of (1), one can easily see
that a weighted estimate of the form

4) An(fx)~cl(\+xQwf(n 13 (0s x < =9
also holds whenever/(x) is uniformly continuous in [0, +°°). However, from (3)
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we can see that by choosing B close to 0 we can get a weight arbitrarily close to
0(x) even in case Lip 1 The price we pay for this is that the order of convergence
becomes worse. But if we put >5=2/3 in (3) (this is the original case), the estimate
will be

An(/x) si 2(1+x32col (\rx/n13

which, in general, is better than (4).
If we put f(x)=x then

anx?2

An(x,x) = 1+ amx '

Setting a,,=nf~I, x=n1-B we get An(x,~-K)=~"-I> while (3) yields

-L-g.,, u-r
An(x, n1-i)s2 (I+ ni(l-«)-~7rs 4rm-=.

l.e., in a sense, (3) is the best possible estimate. (This, of course, does not exclude
the possibility of improving e.g. the weight in (3) while obtaining a weaker order
of convergence. What we mean by “best possible estimate” is that there does not
exist an estimate in which both the weight and the order of convergence would be
better than (3).)

Proof of Theorem 1 Using the property +A)w0/ (& of the modulus
of continuity and Schwarz’ inequality we get

A f x) si (1+8B.*)-4 \f(x)-f(k/bn\ (a,,x)ksi (1+ a,,x)~n-

-k2:8)(\x-k/b n\)\i/'\’) (am)k S (i+anx)-"(of (Yx/nB)kZ:O((I + \x-k/bn\ fnPfx)-
"(K) (@"x}k = (1 + anx)-ncof (fx/n™) |(1 +a,,x)"+(V/x 4 \x-kjbn\e
o (fc) («n*)*}3= o)f {Yp») jl + (1 +a,,x)~nYnl¥x |/ 4

i/ O (*- k/bn27j (a,x)kj .

On using (2) and (2.4) from [1] we obtain

S (PALH(T T A +1)b

r —1 IB-1 r2¢0-12) N1

xf e | -
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Here the function

L . 2—3h
attains its maximum at .y = — a1 and
2—-31
B 2-3%
i-|f i-|»
(X9 = 2-3/?7 2(M T »—-eeemm "oros2m L]
9

Thus
d,.(/, x) s Cof(yx/nR){2+ 2xi(1 R)}

which completes the proof of Theorem 1.

Now let us see what more can we say if we assume something more about the
function to be approximated. Let C[0, °°] denote the set of functions continuous
on [0, o») and having a finite limit at + °°. The quantity

Qf (A) =, qup  1/(xY-/(x D)

which will be called “modulus at infinity”, will play an important role in approxi-
mation properties of these functions. Evidently, lim/(x) exists and is finite if and

only if fim Qf (A)=0.
Theorem 2. If/(X)EC[0, °°] then

(5) jsup™ An(f x) =  midyaf{A)+Al~b

provided an and b,, are defined by (2).

Proof. We may assume that /(x) is not identically constant; otherwise the
statement is trivial. Choosing 01
A = 03r(n~BIY)2(i n —*°° (n -»°°)
we have
— (M 2L
i2/ (A)+ Al-Bof ~ 23 si Qf (A)+ 2Al- Beof (n-R2) = Qf (A) + 2]/cof (n~"2) - 0

n — °0).

i.e. the right hand side of (5) tends to zero as n—"°°. Therefore in what follows we
suppose that
1 iZZP

(6) 10S A = n
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namely otherwise
Qf (A)+AX~R(CF\ "~ 2 - c3ll-p (n- °°).

By the definition of the modulus at infinity,

(7 1(*)-1(=)I"B/C4) (xin).
By Theorem 1

A/, xX) S AA*~*OF (~) (0 x ™ N2
Let now x”~A2 Since is linear and it reproduces constants,

M f x)S [4x)-/(00)]+ [An(/(~)-/, X\ S

a Qf (AQ+ R,(/(-)-/, x)\ (x A2
Here, using (7),

o (1(-)-1, %) S (Lt x)-" 0 [/(~)-I(W [(j")(alx)teé

S (I+ anx)-n[2- sup \f(t)\ Vl' n/)(a,,x)k+ Qf(A) jp (

”
o=sf~oo k=0 k=[nbn]+1 V/c

)@.x)4 ~

- 2r" [iTUR%) o MM+ Qf(4) (xMAD.

\p(x) —xm'"'(1+a,,x)~"

The function

attains its maximum in [0, ») at Xx—l_flﬁ’ and by (6), x1SIASA2 Thus

|[A(X) is monotone decreasing in [A2 °°) and hence

( 1 = A3Anj 1+e. . (N2-1)a,y
U+a,.xJd ~ N \. 1+ N12s, J n | 1+ N2a, |
g exp{ - | g exp{-(I™—1 —2~logb,,j :Se~V* (x"™ A2,

since by (6) A2an™1. Collecting these estimates we obtain (5). Q.e.d.
When cof and Qf are specialized, we can get more explicit estimates from (5).
E.g. if
Sf(A)"A~a (a>0), ao(h) h O<a<

then by an appropriate choice of A we obtain

n 2(ffl+.+i+i). if o< atoc”™ 3 R = ja+a+l
R, An(J. X)33 Va+a+1+1
cbn 3a+“+3> if a+aé3, R = 2/3.

If a—°° then the latter estimate is getting close to 0(n~x3).
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One may think that the role of Qf in Theorem 2 is superfluous, (of alone would
determine the order of convergence. This is not the case as it can be seen from the
following

Theorem 3. If /(X)€C[0, °°] and /(x) is monotone in [0, °°) then
sup An(f x) & nf(nx-f)
again with the choice (2).
Proof. We have by the monotonicity
(ﬁjug,,«An(f x) M Af{°°)-Rn(f °°)| = |/(*“)-/(n1-01 = fl/ic1l-"),
Q.ed.

In other words, even if/(x) has very good structural properties in [0, »), the
uniform convergence of Rn(f,x) to f(x) when n-+°° can be arbitrarily slow if so
is the convergence of f(x) to /(°°) when x—

The next result gives the necessary and sufficient condition for the uniform
convergence of Rn(f, x) in [0, «.

Theorem 4. We have
(8) r!}m, éy&nAn(f,x) =0
if and only if /(X)EC]O, °°],

Proof. The sufficiency of /(x)€C[0, oo] has been proved at the beginning of
the proof of Theorem 2. Let us prove the necessity. If (8) holds then f(x) is contin-
uous at every point x£[0, °0) being the uniform limit of continuous functions in a
compact neighborhood of this point./ (x) is also bounded on [0, ) since if we had
a sequence ONx~Xré... such that r!}i,[pm/(x m=°°, say, then by assumption for

any fixed n
Rn(fxj —f(xm—sup An(f x) (m=1,2, ..,

i.e. r”’%R"(f’ xm=°0 which would contradict

9) Rn(f -) =f(n1~R) (n= 1,2, ..).

Since/(x) is uniformly bounded, there exists a sequence of integers 1 n2< ...
such that

(10) d= limf(n}~R)

exists and finite. We shall prove that lim f(x)—d. Let 6>0 be arbitrary. By (10),
there exists an i0=i0(e) such that

\f(n}-R)-d\ < e if i—i0.
Also, by assumption, there exists an 1=i1(e)S/0 such that

sup Al (/, x) < e
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By the continuity of R,t(/, x), there exists a B= B(e) such that
Rniif x)-R ni(f, 0°)| < e if xsfi.
Collecting these estimates and using (9) we get
\f(x)-d\ ~ F(x)-Rni(f x)\ + \Rni(f, x)-R ni(f ~)\+\f(n\-R)-d\ - 3e

provided x ™ B. Q.e.d.

Remarks. One may try to prove the sufficiency part of Theorem 4 by using
a general theorem of B. D. Boyanov and V. M. Veselinov [2] which states that if a
sequence of positive linear operators converges uniformly on [0, °°] for 1, e~x and
e~2x then it converges uniformly for all continuous functions on [0, <] which have
a finite limit at +°°. However, our direct approach is very simple and it would
require a tedious computation to check the convergence for the test functions (pos-
sibly by the same method we used for general functions). By applying a trans-

. X . .
formation x " Trx of [0, °°] to [0,1] and using the Korovkin theorem one can

1

easily see that the test functions mentioned above can be replaced by 1, 14x ’

and (1+1x)2 This gives another possibility to prove the sufficiency part.

Finally, as an application to Theorem 2, we give a quadrature formula with
positive coefficients based on finitely many equidistant nodes which approximate
certain improper integrals.

Theorem 5. Let >0 be arbitrary and assume that

(H) g(x) =/(x)(1+x)1+£eCJ[0, -]m
Then with (2) we have

12) I/ f(x)dx-K A kf(k/bnl+ c(e) mf{flo(i)+/-" fflo( A |
where

Aln= (1+ k/briv +H k)akf (1+X)1+«(i +iiJCO» (= 12" -» ")
Proof. Applying Theorem 2 to (11) we get

g(xX)- R,(g, x)1+ c(e) jnf |fi9(A) + Al”moag(~1)J (0 + X + 00).

Dividing by (1+x) 1+, integrating from 0 to +°° and using (1) we get (12). Q.e.d.
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As for the order of convergence in (12), the same remarks apply as to Theorem 2.
For practical purposes the case e=1 is the most suitable; the corresponding coeffi-
cients

(fc = 1, n)
can be easily computed.

Remark. There are several possibilities in computing improper integrals by
quadrature sums based on equidistant nodes. One of them is to cut down a proper

infinite part of [0, °°) and form a simple Riemann-sum of the type Kkzzg(k/N)

on the remaining interval [0, M/N). However, to determine this crucial cutting point
M/N we need some apriori knowledge on the structural properties of the function
/ (), which is not the case with our method described above.

We mention that with obvious modifications, all the above results remain true
under the slightly more general conditions a,,=bjn-+0, ("-*-«>). However,
even in this case one can get a reasonable error estimate only when 1/n<(,,S1/n1/3,
and (2) essentially covers all these cases.
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