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MTA Számítástechnikai és Automatizálási Kutató Intézete, Közlemények 23/1979.

ON THE CARDINALITY OF SELF-DUAL CLOSED CLASSES IN
k-VALUED LOGICS

J. Demetrovics — L. Hannák

Introduction

Let = {0,1,...,k-l}. By a к-valued function we shall mean a function
f: E^ —  E^, and by P^ we denote the set of all those functions. If A is a 
subset of Р^, САЗ will denote the set of all superpositions over A. The de
finition of a superposition over A is the following:

1. f e A is a superposition over A

2. If go(Xj...xn), gj(xJj,..., x ),...
superpositions over A, or

then go(g, <*,,....*lnl|) ... Sn(*n,
over A.

g (x x ) are either°n n1’ ’ nmn
g. (x. ,...,x. ) = x..l il * im. ljl J
...,x ))is a superposition

n

The set A is closed if A = CA3 . Let s be a permutation of 0,1,...,k-1. 
We say, that f e P^ preserves s, if

f(x ,...,x ) = s 1 Cf(s(x.) ... s(x ))3 . i n  I n

Vie shall denote by f the cardinality of the continuum.

Ju. I. Janov and A.A. Mucnik C53 have proved, that if k>3, then the 
cardinality of the set of all closed sets in P^ is continuum. E.Postas gener
al result implies that there are countably many closed sets in P for к = 2.

tv

It is well known, [see C43, C83 3, that there exist 6 types of maximal
closed sets in P. . The characterisation of these sets can be found in C83.к
J.Demetrovics and J.Bagyinszki have proved in C23 that the linear classes 
in P^ (k prime) contain a finite number of closed classes. J.Bagyinszki 
and A.Szendrei C13, C93 have proved that if к is square-free, then there 
are also finitely many closed linear classes in P^. D.Lau in C63 have shown,
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that the cardinality of the so-called quasi-linear closed classes is coun
table. In C31 the authors have proved, that the so-called central, k-regular, 
monotonous and equivalence-preserving maximal classes in P , for k>3 contain 
as many as t closed classes. In this paper it is also shown that the maxi
mal classes, which preserve a permutation s, conatain t closed classes pro
vided к is not prime. Marcenkov in C71 has proved that for all ke { 
13,14,16,17,} and for all permutation s ; there exist a set of
closed classes preserving s with cardinalityf . In the case k=2. E.Post's 
result (C103) implies that there are finitely many closed classes pereser- 
ving a permutation of E2.

The purpose of this paper is to show that for all k>3 and for all per
mutation s: Ê_ —  E^ /except for two cases, namely k=3 and s = (012) or 
k=4, s = (0123)/ there exist f closed sets in P^ preserving s. We shall 
also prove that for all k>3 there is at least a countable number of closed 
sets preserving s, for all permutation s: E —  E,.rC K.

5.1.

A permutation s of E^ can be written as a product of disjoint cycles,
Such a cycle will be denoted by CL. If

s = C, . C „ __C1 2 m and Cj (aj],...,a^ ^)

С (з. ,...,a V 1 m lm n m), thenm
Ic.lwill denote the number of the elements of the setl

(a ......a > I1 11 n . l ■*l

Lemma 1. Let k>3, s a permutation in the form s = Cj.C2.... 
and there are i,j < m such that i ф j, I CL I = kj, ! )  = k^ 
then it can be constructed C closed classes preserving s.

C . If m > 1 m
and kj/k2

.C , where mProof. We can assume that s = Cj.C2
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С, = (О, ■ а ) 
т 1

С2 = (1.2....ат ) and (Cjj/fC^
We shall prove, that there is a set { f^} = F of functions such that for all 
f. € F, f. é :F\f.: and all f. preserve s. This is sufficient since inl i l l
this case all subsets of F generate a closed class, and H^CF, H2CFIIj Ф H2
implies C Hj3 Ф CH^.

Let f (x.,x0,...,x ), m>3 be defined as follows: m 1 2* m * —

b e c2, if (a],...,aJCC2 \{Ца^ = b}| = 1
and all a^ ф b are equal to s(b)}

d e  Cj, if { a^,...,am)CCj U C2 and the previous 
condition does not hold;

f (a, ,...,a ) = m l m

j , in all other cases.

One can easily see that since /C^/f/C^/, fm (x j,•••,xn) preserves s. 

Let us suppose, that f^(Xj,..,x^)e C F \f^l. This means that 

fĵ (Xj , . . . »Xĵ ) — (Xj ,... ,xk)

where iX is a superposition over FXf^.
Let fg(x. ,...,x. ) be a function in .

1 s
If s<k, then we can find an x^ such that x^ è {x^ ,...,x. }

1 s
If x^ = 1, and all x^ =2 (i ф £), then - by the definition - f^Cxj....x^)“!.
If we choose (Xj....x^) as above, then f (x^ ,...,x. ) e Cj that is 4Я can-

1 snot be equal to 1. (f^ preserves the set Cj и C2 and if { a ̂ ,...,am } П C, / 0m J 1
then f (a,,...,a )e C,.) If s >k, then we have at least one pair x. , x.m 1 ’ ’ m 1 1^’ l £
such that i^ = î .
Let x. = x. =1, and all x. = 2 (j ф i, ). In this case f (x..... . )e C,

Lk i£ J k 8 X1 xs 1
and f^(Xj,...,xk) = 1. This is a contradiction, thus Lemma 1 is proved.

Corollary:

1. if к is not prime, then in the maximal closed class S, of P there ex-К К.
ists £ closed classes. (S, denotes the class of all functions pre-
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serving a permutation it; it is the product of cycles of length p, 
where p is prime.)

2. if I is a permutation of the form л = (1) C,....C then there is a1 m
continuum cardinality set of closed classes pereserving л.

Lemma 2. Let k>5, let s be a permutation consisting of one cycle of length 
k. Then we can construct a set of closed classes in of cardinality D 
which preserves s.

Proof, We can assume, that

s = (01234 ...).

Analogously to the proof of Lemma 1 we shall give a set { ĝ ,} = G of func
tions so that g ^  [ G\gJ and g^ preserves s.

We define g^, i>3 on the set {0,1,2}X. It can be easily verified that the 
definition does not contradict the assumption that g^ preserves s.

Let:

g ^ ( a , . . . ,a) a

g k ( ({ 0,1 }k  \  ( 1 , . . . ,  1 )} ) =  o
gk ( {{ 0 ,2 } k \  ( 2 , . . . , 2 ) } )  = 0 

gk ( И 1 , 2}k \  ( 2 , . . .  , 2 ) } )  = 1

and f o r  { 0 , l , 2 } k \ { 0 , l } k \  { 0 , 2 } k \  { l , 2 } k :

Sk (a j »•••» )

r

V.

1.

0,

if

in

/ { aja.^ = 0 } /  = 1 

/{a./a. = 2}/ = 1l l
/{a^/a^ = 1}/ = k-2; 
all other cases.

A vector (aj ..,a^) = ae{0,l,2}k is called characteristic if
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/{ai/ai = О}/ = 1,
/{a^/a^ =2}/ = 1, and
/{а./а. = 1}/ = k-2.1 1

Let us suppose ĝ e CG\g^3, that is g^Cxj....x̂ ) = & (Xj,...,x^).

If g^Cxj....x^) = tit then there exists at least one superposition over
G\ g^ such that g^(Xj,...,x^) is equal to this superposition on the charac
teristic vectors. Hence we can choose a minimal formula<Я* which equals 
g^(Xj,... ,x^) on the characteristic vectors. The minimality of Ä “ means 
that if (Я." = gm ( ^ m) then У ^,... ,-^m cannot be equal to g^(Xj ,... ,x )̂
on the characteristic vectors.

We shall prove that such an Л “ cannot exist. W" can be written in the
form g ( У ...... У  ) where У  . = x. . or У. is a superposition over G\g, .m 1 m l lj l &k

a./ if all У  ̂  are superpositions over G\g^ then all У ^  equal 1 or 0 
on the characteristic vectors.
g£ ( {{ 0,1,2}^" (2,...,2) } ) C {0,1}
Since <Âî! is minimal /in the above sence/, there is exists a 
characteristic vector c_ such that У .(с) = 0 that is Л*(с) = 0. On 
the other hand ĝ ,(c) = 1 holds. This is a contradiction;

b./ We have seen, that there is a ^  = x in the superposition 
= gm ( * \ ....

Let x = Xj,...,x^ be a characteristic vector so that x^ = 0, and
x = 2. If x Ф У  , x ф У  ,... x ф У  then all У. are equal to n n 1 n 2 n m  1 n
1 or 0 on this characteristic vector, and hence4Ä*(x) = 0.
C(ĵ j (x) ,..., ̂ (x) )H ф (1,1,...,1) and by the definition
g^( {{ 0,1}m \ ( 1,...,1)}) =0.) This is also a contradiction.

c./ By a/ and can be written in the form
^  (J’\....U’q* X1 » • • •xk') ‘

The assumption that 4SÇ is minimal implies that У  cannot be equal 
to 1 on all characteristic vectors. Let x be a characteristic vec
tor so that У j = 0.
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In this case,У n,... У  = 0 or 1, and there is onex . = 0. Since 2 q и* i Л1 • • •fi/'j,... i/' , Xj,...,x^) ^  { 1 ,2} ‘ and it cannot be characteristic,
= 0. This implies that <Sc: = g (x. ,...,x. ). If m<k, then

1 m
there is a x ( fx. ,...,x. 1. On the characteristic vector x =2,q i, 1 q^ 1 m M
x. =0, x. = 1 (j ^ q, j ф i.), the statements g, = 1 and = 0 Íj J 1 к
hold. If m>k then there exists at least one pair î , i. such that
in = i.. In this case let x. = 0, x. = 2 (j ф i») and -t J J -t
x^ = 1 (t ф j, t ф i^). On this characteristic vector g^(x^...x^)=l
and i9i" = 0 hold. This is also a contradiction, thus lemma 2 is
completely proved.

Lemma 3. Let k = 5 and к a permutation of the form C j .C2 where /C^/ = 2, 
/С2/ = 3 or let k = 7 and 1 be a permutation of the form C^.C^ where 
/Cj/ = 3, /С2/ = 4. Then there is a set of closed sets in P^ or in P^ pre
serving it which has cardinality £ .

It is easy to see that it is sufficient to consider the cases when

it = (03) (124) and 
it = (034) (1256)

The definition of g^ in Lemma 2 does not contradict the property g^ 
preserves it.

If we define h so that h (a,,...,a ) = g_(a,,...,a ) on the set m m l n °m 1 n
{o,l,2} and h^ preserves it, then H = {h /m>3} is a set with the property 
h ChV î ]. Thus analogously to Lemma 1 H" = { C S3/ ScH} is a set con
sisting of closed classes preserving it, and the cardinality of H“ is £.

Theorem 1 : Let k>2 and it be a permutation of E^. If

it ф for k=3 and
it ф (a^a^a^) for k=4

then there are as many as D closed classes in P preserving it.K.
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Proof.: If и contains a cycle C such that |cl^ 5, the statement is implied
by Lemma 2.

If ti contains a cycle C such that |C| = 1 or two cycles with equal 
lengths, then the statement follows from Lemma 1 . If it contains at least 4 
cycles with lengths 2,3,4 then two of them have equal lengths.

Thus we have the following cases:

ti = Cj.C2, /С j / = 2, /С2/ = 3 or 
/С J/ = 3, /с2/ = 4

It = Cj.C2.C3 /Cj/ = 2, / c2/ = 3, /С3/ = 4

The first case is treated in Lemma 3.
In the second case /Cj/ |/С3/, therefore the assumptions of Lemma 1 hold. 
Thus the proof of Theorem 1 is complete.

§. 2.

In §.l. we have seen, that for all but three permutations it P closed 
sets in (k>2) preserving к can be constructed.

In the case k=2 there is only a finite number of closed sets in P2 
which preserve (01) (С103). In the cases k=3, it = (012) and k=4, Tt = (0123) 
we cannot give an "independent" set of functions with cardinality •* . How
ever we can prove.

Theorem 2: For all k>2 and all permutations it there is at least a countably 
many closed sets in P^ that preserve it.

Proof : It is sufficient to consider the following two cases: k=3 and
it = (012); k=4 and it = (0123). We will construct a set {t^} = T of functions
such that t. £[ и (t.}3 = T., and t. preserves it.1 j l l rJ>i

If we have such a family of functions, then the set {T^( i e ш] 
contains countably many closed classes, and it can be ordered as
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T1 D T2 D т з Э

We define t. as follows:l
(

tm(a,

b, if (а^,...,а ) = b or
a j....a j _ ] » a j + J • • • a^ — b and

= я '(b) ;

it '(b), if
a,,...,a e {it '(b),b}m and 1 m
{a./a. = b} <m-l;l i

aj otherwise.

A vector a_ = (a^. . •vam) is called characteristic, if f {i/a^ = 0}| = 1 
and I (i/aj= 1} j =tn-l. The definition implies that t^ preserves it. Let us 
suppose, that

*т(х1.... Xm)
where is a superposition over T^.

We can choose - analogously to Lemma 2 - a minimal formula which 
equals 1 on all characteristic vectors. This -Ut" cannot be equal to x^, 
that is <9L‘: can be written in the form

tg ( j,..., i^s) where s > m

Denote by y. the characteristic vector with x. =0. Let us consider the J Jmatrix

yw
r , ( y 2 )

W
^s(y2)

’d\ ( y _ )1 m ^  ( y )s m

By the minimality of <9t‘: every column of the matrix contains at least 
one 0. s > m implies, that at least one row in the matrix contains two or
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more 0's. If the e'th row in the matrix contains at least two 0 - elements
then 15Ч;‘г(Уо) = 0. This is a contradiction, since t (у.) = 1 for all -c m i
i e {1,2,...,m}.
Thus Theorem 2 is proved.
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Ö s s z e f o g l a l ó  

A k-értékü logika önduális osztályairól 

J.Demetrovics - L. Hannák

A jelen dolgozatban a szerzők bebizonyítják, hogy Vs(x) e p k>3 -iv
kivéve, ha s(x) = ( 0 1 2 )  ill. s(x) = ( 0 1 2 3 ) , -  (s(x)-permutáció) az 
önduális zárt osztályok száma kontinuum.

Ha s(x) = ( 0 1 2 )  ill. s(x) = ( 0 1 2 3 ) ,  akkor is legalább megszámlál
ható sok önduális osztály van.

Резюме

0 мощностях самодейственных заминутных классов в 

Я. Деметрович, Л. Ханнак

В настоящей работе авторы изучают самодвойственные замк- 
нутные классы в (к > 3). Они доказывают, что
а/ для любого S(x)ePk /где S(x) -перестановка; S(x) ф (о 1); 

s(x ) ф (о 1 2 ) и s(x) ф (о 1 2 3)/, существует континуум 
самодвойственных замкнутых классов относительно s(x);

б/ если S(x) = ( 0 1 2 )  из Р3 или S(x) = (О 1 2 3) из Р^,
то существует по крайней мере счетное число самодвойствен
ных замкнутых классов относительно S(x).
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CDC 3300 COMPUTER OPERATING SYSTEM: 
FILE ENVIRONMENT HANDLING METHOD

Ákos Radó

MTA Számítástechnikai és Automatizálási Kutató Intézete, Közlemények 23/1979.

Our task is to enlighten the file environment handling method of the 
CDC 3300 computer operating system, the search and retrieval of user files 
in the user files' maintenance system and after the analysis optimize the 
work of the computer.

The efficiency of MASTER 4.1 operating system's time sharing and multi
programming depends on optimum random access of mass storage.

The MASTER system operates in an environment in which all files have 
an identical basic structure. MASTER provides the user with a broad range 
of functions for manipulating the file definitions.

Functions that manage file definitions include allocation and release 
of space, modification of labels, expansion of defined file size, and 
opening and closing of files.

The system files required for MASTER to handle user files are File 
Label Directory (FLD) and Identifier File (IDF).

The FLD contains a complete description of each file known to the sys
tem. Each file has one file label entry written in the FLD of minimum 53 
words in size (depending on the number of the segments of the user file). 
Each file has one two-word entry in the IDF. The first word is a 24 bit 
hash value calculated with "EXCLUSIVE OR" from the first ten words of the 
FLD. It is the remainder resulting from dividing the 40 characters of file 
identification (owner, filename, edition) by the largest prime number which 
will fit into 24 bits (8.388.593). Word two is the block number of the 
label's FLD entry. The block size of this file is set by a parameter of 
install time. The number of blocks is determined in the following manner:

a./ The IDF file consists of two parts, a number of blocks which com
prise the main body of the file, and an additional number of blocks
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which comprise an overflow section.

b. / The number of blocks in the main body is always a prime number. To
arrive at this number, the maximum file count is increased by 10 % 
and divided by the number of entries per block (e.g. a 64-word block 
size has 32 entries). The next highest number in the list of prime 
numbers is selected as the number of blocks for the main body.

c. / The overflow section is calculated as 10 % of the number of blocks
in the main body of the file. For example, with a maximum file count 
of 1000, and a block size of 64 words, the main bod}' contains 59 
blocks, and the overflow contains 6 blocks, making a total of 65 
blocks.

An entry in the IDF is made by dividing the remainder mentioned above 
by the number of blocks in the main body of the file. The remainder from 
this division plus one yields an IDF block number. If there is room in this 
block, the entry is placed here. Otherwise, the entry is placed in the first 
empty shot in the overflow area.

To reference a label, the owner, file name, and edition are divided by 
8.388.593. This remainder is in turn divided by the prime number of blocks 
in the main body of the IDF. If no match can be made with any entry in this 
block, the overflow area is searched until the desired entry is found.

At allocation time the information about the file to be written into 
the FLD gets into the highest available block of the file. If the FLD is 
full, we try to find an empty block - due to a previous deletion of a file - 
that is the FLD is not compressed after deletions.

In the IDF the searching algorithm depends on the fact whether we al
locate a new file or we look for an existing file (opening, deletion, 
nodification). In the latter case the algorithm is as follows: the over
flow area is searched serially, if not found, the primary area is searched.
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In the first case we begin to search an empty slot in the primary area, 
then it not found in the overflow area. The search in the primary area is 
as follows: in the block, the number of which counted from the hash code, 
serially (bucket!) look for an empty slot or a slot where previously an al
ready deleted file resided. Deleting a file the first word of its entry in 
the IDF is zeroed, the second word (reference to the block in the FLD) re
mains unchanged (reason to be seen later).

In case of allocation it may happen, that we find however an empty slot 
in the primary or overflow area but the FLD is full (because it is not 
compressed). In this case we examine one by one the blocks of the IDF, 
whether there is an entry having its first word zeroed. If found, the in
formation about the newly allocated file written into the FLD block, whose 
number was just found in the second word of the IDF entry. The IDF entry's 
second word is zeroed as well, and the two word entry is placed into the 
primary or the overflow area.

The primary hash funciton of the addressing algorithm is the division 
method. The secondary function has three phases: open addressing linear 
search in a bucket of the primary area; if it is not successful, then open 
addressing linear search serially in the blocks of the overflow area; if it 
is not successful, open addressing linear search serially in the other 
blocks of the overflow area.

By this relatively simple, but sometimes too long algorithm ensured, 
that the algorithm always finds an empty slot.

The MASTER 4.1 operating system has been installed to handle maximum 
4291 files (block number of FLD). To enlarge the FLD needs new installation 
of the whole operating system (about 50 hours computer time) .

To define the IDF size, the installation guide book suggests the fol
lowing: at first we fix the block size (bucket size) which should be divi
sible by two and less than 160 words (one sector on magnetic disc - if 
greater, then data transfer between the disc and the memory (30 msec) at 
least would increase by two).
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In the existing installation block size is 160 words, that is one block 
can accomodate 80 entries.
Block number is defined as follows: increase the maximum file count (4291) 
by 10 % (4720) then divide by the number of entries (80) and from the fol
lowing prime numbers (3,7,11,31,59,127,503,1019,2039,4091,8191,16319,32719, 
65519) which is closest one but less than the result of the previous divi
sion (in our case: 59). The form of these prime numbers is

4j + 3 (j integer)

which ensures a uniform distribution of the files over the available add
resses .

These 59 blocks consist of the primary area. The overflow area is 10 % 
of the primary area (in our case 6).

According to the installation instructions the bucket size is between 
2-160 words. Because the IDF and FLD reside on magnetic disc, our task is 
to minimize the data transfer between the memory and the magnetic disc 
(memory cycle time by four magnitudes less than data transfer time!).

To execute the search algorithm - excluding data transfer - we need 
about 1 msec (it varies with loading factor of the files).

The CDC 3300 computer operates in three shifts, 5 day a week (300-400 
jobs per day) and about 50 allocation and deletion occurs daily. File data 
modifications are about 10-15 daily. File openings are about 1000 daily.

To analyze the quality of the system, the following data are of parti
cular interest:

- (a) loading factor at the overflow area
- dislocation (displacement distance from the "originally" appointed 
block)

- the effect of insertion/deletion cycles on the previous data

Our system to be analyzed had 4182 files (loading factor 97,5 %). In
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the course of the first measurement no deletions occured.

If a < 90 % no entries were occupied in the overflow area. If a = 90 %, 
one primary block became full, that is the probability that an overflow 
entry becomes occupied equals = 0.0169.

This result well coincides with the theoretical approximation.
The effect of insertion/deletion cycles was investigated in the C0.1;0.93 
interval of a. The 40 characters of new files were generated by random num
ber generator. One note before we evaluate the results: in optimal case one 
access to a file needs two data transfers (60 msec). This time is about
0.1 % of the daily work of the computer. Table 1 shows the effect of inser
tion/deletion cycles at different loading factors on the percentage in
crease of data transfers.

Insertion/deletion cycles

a 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0.7 0.8 0.9 1.9 2.8 3.3 3.9 4.1 4.3 4.4 4.6
0.8 2.1 2.3 4.7 6.7 8.0 9.4 9.9 10.2 10.2 1 1 .0
0.9 1 .5 2.9 5.9 8.2 9.9 1 1.7 12.3 12.6 13.2 14.6
0.975 23.8 35.7 43.0 71.4 78.5 85.7 87.0 88.1 94.0 100.0

In the a C0.7;0.9H interval no essential increase. If a >0.9, and cycle 
number is in the magnitude or larger than the table size the data transfers 
are doubled. No full overflow area and for this reason dislocation and over
flow loading factor could be easily deducted from data in Table 1.

The effective operation of the almost full IDF and FLD could be assured 
by the occasional run of "SF4 operating system program which insures the 
compression of the FLD and IDF.

According the above results, if the increase of data transfers exceeds 
70 %, we have to run our program (at present about once in 5 weeks).
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However the compression of the two files apparently increases slightly 
the system's throughput, but taking into account, that job execution is 
suspended while data transfers executed, and the two file is single acces
sible, the effect of the compression is larger.

ö s s z e f o g l a l ó

A CDC 3300 számítógép operációs rendszere file kezelő módszere

Radó Ákos

Analizáljuk a MASTER 4.1. operációs rendszer file kezelő módszerét. Vizsgáljuk a file be- 
helyezés/kivétel ciklusok hatását a túlcsordulási terület kitöltöttségére és a file bejegyzések disz- 
lokációjára. A rendszer hatékony Működéséhez szükséges file bejegyzések átrendezésének gya
koriságát a mérési eredmények alapján adjuk meg.

Резюме

Метод обработки файловой системы операционной 
системы ЭВМ CDC 3300

Акош Радо

Анализируется метод обработки файловой системы операцион
ной системы m a s t e r  4.1 ЭВМ CDC 3300. Качество системы кодиро
вания hash измеряется оценкой влияния циклонов ввода/вывода 
на сдвиг и на коэффициент нагрузки области переполнения. Для 
оптимальной работы ЭВМ диапазон времени между двумя разборка
ми файлов системы определяется.
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ON THE GENERATION OF BINARY VECTORS BY BOOLEAN FUNCTIONS
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Dedicated to Prof. Dr. W. Engel on the 
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I. Introduction and notation

This is the last paper in a series of four. In (2) the author began studies in the following 
direction.

Let к be an integer, к 2.
a.

Let V.
I

, a..... . c { 0,1) and M = ' X . ........... X I Ç V. .I I ’ 1 n —  к

Then we define ./(A/), where ./ is a Boolean function and 

la.i I

a Iik .
for / -  1 by

JIM) = . / U , ...........x n ) =
{(an .... %

Л..*.... ank)

Lor a set К of Boolean functions we define the closure \M\K of M with respect to К

Definition. Let и sequence M‘K ç  Vк defined by

1 " Л#“ M and

2" Л/'А+1 1

> 
- C 4 >1 f t  К, ДГ,,. . . , XneM‘K : X = J \ Xy y .

for / 0,1,2, . . .

Then let \M\K I iin M‘K .

We notice that the successor of M'K is a superset of M‘K and all members of this 
sequence are subsets of Vк . Hence, starting by some MaK this sequence has to be constant

This MaK is denoted by lim M‘K or by \M\K , accordingly.

We will investigate the following problems:

1. Find Л'-conditions for M suchthat M is К-complete, i.e. \M]K = Vk .

2. Find the cardinality of a K-hase, i.e. M is /f-complete, but any proper subset of
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M is not ЛГ-complete. If there are ЛГ-bases of different cardinalities, find the minimal and 
the maximal cardinality o f  ЛГ-bases.

In (2),(3) and (4) we solved these problems for some closed sets of Boolean functions, 
namely for all closed sets o f nonmonotonic functions. In (2), (3) and (4) we used M XK 
for the closure of M with respect to ЛГ. Without loss of generality these restrictions are 
possible, because MlK = [M]K was proved for closed sets ЛГ in (4). Moreover, in this paper 
(section2) we will prove [M]K = [M\yK ] for arbitrary sets ЛГ of Boolean functions, where 
[K] is the usual closure o f functions. Hence, in order to solve our problems, we only have to 
solve the problems for closed sets ЛГ. All closed sets of Boolean functions are known. For a 
survey and notations o f these closed sets see (1).

In section 3 we give a survey of the results for all closed sets. In section 4 we prove 
these results.

2. A theorem

In this section we will prove the following

Theorem 1. Let M be an arbitrary subset o f  Vk and let К  be an arbitrary set o f  Boolean 
functions.

Then [Щц =

We give the following version of the definition of the closure [AT] which we will use 
in the proof of Theorem 1.

If ideK,[K]  is defined by (1), p.4, l.,2 .,3., and 4!:

Definition. Let ideK. L et K \ i  = 0,1, . . .  ) be a sequence o f  sets o f  Boolean functions 
as follows.

1° I f  a function f  belongs to K' (i = 0,1, . . .  ), all functions which can be
generated by f  by adding fictive variables to f, identification o f  variables 
belong to Kl too.

2° — ЛГ° = ЛГ

-  ЛГ'41 = ЛГ' U { fi. Rg,g l , . . . , gm еЛГ1: / =  g{gx, . . . , )J 
if  i = 0,1, . . . and

— [К] = и Ю./=0
We notice that we only need a finite set of Boolean functions for the generation of 

[ЩуК]’ *-e- there is an integer a with



- 27 -

(1) [М)[ к ] = [ М ] к а .

Moreover, we only need functions o f K° with a finite number of variables. Finally it is 
worthy of remark that only has to contain all functions obtained by 1°. This property 
we will use.

Proof of Theorem 1.

a) Let ideK. First we prove [Щк - Let b be an integer, b >  1. Then
there is an integer q satisfying

(2) №  h = [M]
K u

by our remarks at the definition o f the closure of M with respect to K.

We prove

о) т к Ь _ ,

by induction on i(i >  1), for all integers b >  1.

1. / = 1. Then Af> b = M° b и [X : 3  feKb , H X x , . . . , XneM: X  = f(Xx, . . . , X n)} .
К к

Let us assume there is a vector X eM \b \  [M] b l .
к fC

Then there is a function feK b and there are vectors X { , . . . , XneM = M °b with

X  = f{X  I, . . . , Xn). If feKb ~ l then Xe[M\ b_ x, which is a contradiction to our assump
tion. Hence, feKb \  ~ 1. Then there are functions g,gx, . . . , gm eKb~ 1 with

*M), i e - X = g ( g ^ X l , . . . , X n) , . . . , g m i Xx, . . . , X n)). By gjeKb - x 
and X reM (j = 1, . . . , m; l  = 1, . . . , n) it follows X. = gj( Xl , , Xn)e[M]^b X

Hence using geKb ~ 1, we obtain X  = g(X  j, . . . , Xm )e[M\ b_ 1, which is also a contradic
tion to our assumption. K

2. We have M »\ = Ml b и { x  : 3  feK b , 3 ^  , . . . , XneM‘ b : X  = ДДГ,, . . . , Xn) } .
к к. K.

Let us consider an arbitrary vector xeMl+b. If XeM'K then Xe[M ] b _ j follows by indue-
K b  к

tion assumption.

Let XeMi+l.\M ' . . Then there is a function feKb and there are vectors X . , . . . , X neMl b 
к °  к  K

with X  = ДЛ'1, . . . , Xn). By the induction assumption we have

X x Xne[M] b l . feKb implies by the definition o f Kb that there are functions
К

g £ \ - • • • . gm eKb~ 1 with / =  i f e p  • • . , gm )• Hence XJ = g/(X1, . . . , Xn)e[M]^b_ t 

(j = 1, ... ,n) and finally X  = g{gx (X x, ... , Xn ) , . . . ,  gm (X x .....Xn )) =

= gCAT'j, . . . yX  ̂)e[M] b_ j. Therefore (3) is proved for arbitrary / >  1 and arbitrary fixed 
b >  1. Inparticular (3) is proved for i = q, where q is defined as in (2). Using (2) we ha

ve
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for arbitrary integer b ^ I .

We observe \M\K | M\ (| (The vectors, which can be generated by functions ofA
A° \  A, we also obtain by functions o f A, what follows by the definition of the closure
I M\K .).

By induction we get for arbitrary integer h ^ I:

(4) = |A#J*.

In particular, (4) holds for h a. where a is defined in ( I ), i.e.

i " v r  |M |‘

Clearly, A = |A) implies the converse direction

\ m \k  |M||A
If и/t A, the theorem is proved.

b) Let idfK. By the definition of \M\K we have \M|Av |4 f |Avu i -( / 1 for all sets of 
functions А/
If e() and Cj are the constant functions,
K -  jCjpCjl implies |A| A and |A U J id j | | A| и j id \ and A jc c.j
implies ide\ A| and | A и j id J | |A | U j id j too.
Hence, using part a), we obtain

|Л/|^ ИЛА- и  ] /,/j I  Д/l| A- U | w |  I I  ^  11 A' |U J id j I  Л  7 11 A I
(|.e.il.

3. A survey on results

In this section we will give the answers to our problems for each closed set of Boolean 
fund ions.

L.et the closed sets of Boolean functions denote by the notation by Post, see ( I ). 

Further we use the following notations:

е.(/ -  I ........... k) denotes the vector o f  l'k containing a I exactly in the /-111

component.

It , X  denotes the vector o f  J A which does not coincide with V in any
component.
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— If M = Vk , we consisder M also as a matrix. We say M has the property 
A , B,C,D, if and only if for each pair (/,/), 1 <  / <  /  <  k, the 2-rows-matrix M.., whose first 
row is the i-th row o f M and the second row is the /-th row of M, has a column

(^), (q), (q), ( j), respectively. Further M has the property C(p), D(p),  p > 2, if and only 
if every matrix consisting of p rows of M has a column

respectively. Let P  be a Boolean function of M. A ,B ,C ,D . Then M has the property p ',

ie j 0,1 ! , if and only if M has the property P  and does not contain, in addition, rows 
consisting only of i's. Accordingly, let P° 1 defined as P° Д P x.

Now we are able to formulate the main results.

2. A theorem Let Ke j j . M = Vk is

1° К-complete, if  and only if  M satisfies the condition o f  table 1,

2° a К-base, if  and only if M is К-complete and has the cardinality given in
table 1.

set criterion of completeness m

M = V. к 2k

°2>°5 
°3 ’°6

M =  v k \ < 1 > 11 1
(n 1 |0  1

2k -  1 
2k -  1

°4 V XeVk we have XeM or XeM 2 * - i

°7 !°8 M - v k \ 0,1 2k - 2

°9 V  XeVk \ 0,1 we have XeM or XeM 2k ~ 1 -
M =  jo.f,  
М 3  'e

’ • • • » ek ! к + 1
S5 ,Sb • • ’ ek\ к

Ы

M = \ \ ,e x 
M ^  { ? , ,

s. 1 _
1

к + 1 
к

L \ , Xk l eM: rg(Xl , . . II1 к к -  1

4 3Jfj ,  . . . , Xk eM : rg(Xl , , Xk) = k к

4 3  x x , . . . , Xk eM : rg(X{ , . . .  , x k ) = k к
Я X x, . . . , XkeM: rg(Xl , . . . , Xk) = к and к +  1

XeM \  [ К - ■ ■ ■ . * * !  U 4
a * ! , . . . , Xk _ j eM : rg(Xx, . .

•áíII1 - 1  к
4 XeM \  [ {A'j, . . . , Xk _ x ) )L and 

 ̂ even number of vectors o f X x, . . . , Xk _ j Д  
with sum 1

Table 1.
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These results are proved in (2), (3) and (4).

Theorem 3. Let Ke {C., ZT, A F ? , FJ } . M = Vk is К-complete, if and only if  M satis
fies the condition P  o f  table 2. The К-bases have the minimal cardinality m and the 
maximal cardinality p, given in table 2.

In table 2 let

1. 1. ae { 0 , 1 /  ,
2. ]x[ = min (y: ye  N, y  >  x),

3. (к) = xe TV «+

4. (p2(k) = xe N **

> к >(ill)
i H h )

X —
rX

> к >
X - 1
X — 2 ll-

5- * ) For p = 3 we do not give an explicit formula; see the remark at the end of 
this section.
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К P

C 1
A v B

C 2
ÍA y  В )J

^3 { A V B ) q

C4 (A  V « ) 0 1

D 1 ((A V B ) ( C v D ) )

D2 A BCD

D 3 (A v f i ) (C v D )

À 2’̂ 3 ’̂ 4 AB

P i  (M < k) (M v ä )C(m) ) 0

FS (м < к) ((A VB)D(p))1
%d

Fï+a (M < fc) ABCiix)

F6+a (M < fc) ЛДО(д)

F: (M< 2) ( A v B ) C ( p )

8
(jli < &) ( A v  B)D(p)

p “ /ГМ
1 > M (m > k) (M  V B)C(k))0'

/г” /7“r5 ’ r5 (At > /:) ( ( A v B ) D ( k ) ) 1

F° FM
2 +a’ r 2 +a (M >  &) ABC(k)"

F r F M
6  +a ’ 6  +a (M > k) ABC(k)

f ” f m4 ’ r4 (M > &) (A V B)C(k)

F° FM
8 ,,г 8 (ju > k) ( A v B ) D ( k )

►

-/

m P
]log2fc[ к - 1]l°g2 (k + 1)[ к]log2 (.k + 1)[ к]log2 (k + 2)[ k+ 1]log2 (k + 1)[ + 1 
2̂(k) + 1

k+ 1p/t 2 < к < 4 
(|) * > 54]log2Ä:[+ 1 к
2k- 2 2< k< 6

к) k2[p k>l* (* ) 2<p<k-2
]log-(A: + 1)[ + 1 к + 1 At - к — 1Lr Г 2 < At = к -

2k~'\2=p=k-
V2(k) p = 2 < k2f“4~] +1 6 < ju <
(A:) + 1, p > 4 ф 2 < /i <
Uog2fc[ + 1 (-)PJ
]log2(fc + 1)[ + 1 

v>i(fc) + 1 '

к + 1
2k - 1 2 < к < t 

[|2] + 1 * > 7V
]log2fc[ + 1 к

1 < 5
2

: -  1 

— 2>3
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4. Proof of Theorem 3

1. Completeness

By Theorem 2 o f (3) we have only to consider the following closed sets o f Boolean func
tions: C j, C j, C4 , £ )j , D 2 , Z?3, A y , A j , А л , F?, FJ(i = 1,2,3,4). The problems were solved 
for the sets Cj, C3 , C4  , FT, FT (Z = 1,4) in (3) and for the sets D x and D 3 in (2).
So we have to prove the statement of Theorem 3 for the closed sets

K e { D 2, A x , A 3 , A A, F $ , F - F $ f ; )  .

1. First we show that the conditions o f table 2 are necessary. Let M be -complete.

1.1 The monotony o f the functions of К  implies that M satisfies A B  (i.e. A A  B). To 
show this, let (/,/) be a pair with i,je { 1 , . . . , fc) and i Ф j  such that ЛГ . does not contain 
a column (q). Then it is impossible to generate vectors, having the Z-th component 1 and

the /-th componenet o, by monotonie functions, i.e. [M]K 
Hence M has to satisfy В and, in analogy, A  too.

* V;к ■

1.2. If K = FL, M has to satisfy CD  too. To show this, let (/,/) be a pair with 
i,je (1, . . . .  A:' and / Ф 7  such that M(. does not contain a column (J ). Let M*. 
be a matrix of the same type as Mf., whose elements of the first row coincide with the corres
pondent elements o f the first row of A/.., while this does not hold for any element of the

' 1second row of М{.. Then М\. does not contain a column (^), it is impossible to generate 
the vector (q) by M'. and by a monotonie function. Thus, it is impossible to generate 
vectors, having 1 as the Z-th and /-th component, by M.. and by functions of К = D 2 . 
Hence, M has to satisfy D  and, in analogy, C  too.

1.3. Let Ke {Ff ,F“ J (Z = 2,3). Then M has the property C(p) for p <  к and C(k) 
for Ц > к and p = °°. Either 0eM or OfM.
In the first case M satisfies C(p) and in the second case there is a function feK  witli f(M) = 0 .̂ 
Now the statement follows by the definition of the functions of F? or F~.

1.4. If Ke ( A3, A 4 , F%, Fî  J , /(o ,o , . . . , о) = о holds for each function feK. Thus,
M does not contain rows consisting o f o ’s only.

1.5. If Ke {A4 , F%, F~ ' we obtain, in analogy to 1.4..that M has no rows consisting 
of 1 ’s only.
We notice that M satisfying AB  implies M has no rows consisting o f o ’s or l ’s only.

2. In order to show that the conditions o f table 2 are sufficient, let M be a matrix having 
the property P(K) o f table 2. Denote the rows of M by a; and let

a -



- 33 -

be an arbitrary chosen vector of Vk. Then we give a function feK  satisfying f(M) = ja.
If ß = ф х, . . . , b{) and 7  = (Cj, . . . , c(), ß <  7  means that ô. <  c( for i = 1, . . . , t, 
and at least for one z we have the inequality.

2.1 Let Ke .

Then

Да) =

a; if a = otj,

0  if there is a a. with a <  a.,

1 otherwise.

2.2 Let K =  D 2. 
Then

Да)

ai if a = ajy

“i if a = cr,

0 if there is а “i with a < a.i or a <  a.,

1 if there is а “i with a > a.i or a > a~,

0 for all other a with a = ( 0 ,

1 for all other a with a = ( 1 ,

Thus this part is proved.

2. Cardinality of bases

If we consider the matrices M as an incidence matrix of a family F  of к subsets o f an 
r-element set R,  the determination o f m is equivalent to the determination of the maximal 
cardinality n(r) of families of a finite set satisfying a certain AT-condition, according to
m = min { x: xe N, n(x) > к } .

The following conditions for M and F are equivalent:

-  A B  »  I  /  У for all different X,YeF,
-  CD ** X n  Y Ф О, X и Y Ф R for all X, YeF,
-  C(M) «  U X. Ф R for all X. yX7, . . . , X  eF.

The maximal cardinality of families satisfying the conditions related to AB, ABCD,
ABC(2), АВС(ц) 1Л > 4 was determined by Sperner [12], Katona [9] and Schönheim [11] 
and Brace and Daykin [7], Milner [ 10], the author [5], respectively.

Fraknl [ 8 ] and the author [5] solved this problem in the A B C (3) case for sufficiently 
large r. These maximal cardinalities have different structures for even and odd r. So we 
did not give an explicit formula in table 2  in this case.

The values of p were determined by the author in [6 ]. 1
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Ö s s z e f o g l a l ó

Bináris vektoroknak Boole függvényekkel való generálásáról 

Hans-Dietrich Gronau

Legyen M c  ! 0,1) *, ahol к természetes szám. Jelölje К  a Boole függvények egy 
zárt halmazát. Az összes zárt Boole függvényhalmazra megadja a szerző annak szükséges és 
elégséges feltételét, hogy M АГ-teljes legyen, azaz hogy M AMezárása megegyezzen a | 0,1 i k 
halmazzal. Továbbá meghatározza ' 0, 11 k AAbázisainak lehetséges minimális és maximális 
számosságát, ahol M К -bázis ha minimális a Æf-tejességre nézve.

Резюме

0 порождении бинарных векторов булевым функциям

Ханц-Дитрих Гронау

Пусть м < {0,1} , где к натуральное число, и к замкнутое 
множество Булевых функций. Автор дает необходимые и достаточ
ные условия к-полности множества М. Под К-полностыо понимает- 
ся, что замыкание по К множества м равно множеству {0,1} .
В дальнейшем будут определены возможные минимальные и макси- 
мальные мощности К-базисов множества {0,1} , где м является 
К-базисом, если оно минимально относительно К-полноты.
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MATHEMATICAL MODELLING OF THE R 12 ’’UNTER”

István Kun — Gábor Farkas 

MTA SzTAKI -  SzKI

’’UNTER” is the abbreviation o f Universal Terminal System. It has been developed in 
the SZKI (Coordination Institute for Computing Techniques).

The main task of the system is to organize the simultaneous work o f a few terminals. 
These terminals are controlled by a R 12 minicomputer. (OS12, partition FI). Their job is 
to establish a direct interactive communication between an IBM 370/125 computer and the 
users. Of course the R 12 is not completely exploited by the satellite functions (e.g. 
preprocessing, postprocessing). In the remaining time it can act as an independent computer.

A special technique, called SPOOL, is applied to perform the input—output operations 
of the R 12. The functioning of SPOOL is roughly as follows:

A record, entering the system, first goes through a space compression, after which it is 
stored on a disk file. On the other hand a record, leaving the system, goes through a space 
decompression (it is restored in the original form), after which it is passed through a 
channel. Both READ and WRITE operations consist of two parts: a fast processor action 
initiates a slow peripherial action. Space compression decompression is again a processor job. 
When a file is transferred, only one of its records can move at the same time. That is this 
record, until it arrives, blocks the route for the next record of its file. The advantage of 
this organization is quite evident. The processor can quickly change from one channel to 
the other, to look for a channel the records of which have a free route to go on, while on 
the other busy channels the slow peripherial actions are being performed simultaneously. 
When the processor does not find any channel waiting for it, some other computational 
work can be done.
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For the time being there are 22 channels handled by the R 12. These channels are;

Nr. Direction Equipment

0 I/O asynchron line to/from the IBM 370/125

1 I/O console
2 I/O

' user terminals (VT 340 displays)

9 I/O -

1 0 I card reader
1 1 0 line printer
1 2 I BG card reader
13 0 BG line printer
14 idle
15 I/o '

22

»

I/O J

user libraries (on the disk)

As we have seen before, while a record gets through the core memory, the processor 
is needed three times. Therefore it is necessary to register for each channel whether and at 
which phase the processor is expected. This registration is made by SPOOL in three double 
words:

Bit Nr.

Task

0 1 2 3 4 2 1 2 2

READ

COMPR/DECOMPR

WRITE

The usual value o f each bit is 0. A change to 1 means a request for the processor. Such 
a request arises when either a new record enters the system or a peripherial action is 
finished. Of course there may be no more than one 1 in a column.

The service principle is as follows: The first row is inspected in natural order. If there 
is a request, it will be served and the inspection recommences from the first bit. The second 
line comes only when there is no more unsatisfied request in the first row. The satisfaction 
of a second row request is followed by a return to the first bit of the first row. The third
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row is inspected only when there is no more unsatisfied request in the first two rows. Which 
means that priority decreases from left to right, the last bit of a word being foliowd by the 
first bit of the next word.

Of course no request can avoid detection and satisfaction: as we can see from the 
description of SPOOL, no more than one, often no 1 appears in a column, the latter for 
much longer periods. Therefore columns with higher priority cannot permanently ’’capture” 
the processor.

Mathematical modelling of the system needs some simplifying assumptions:

1. Channels operate in one direction only.

2. Buffers can accept only one record at the same time, as we have supposed.
(Actually: five records).

3. In every channel files arrive according to Poisson processes. File lengths are 
geometrically, processor and peripherial times are exponentially distributed. All these 
variables are independent among themselves. (According to experience, some of the 
service times may be constant, a good approximation of which is the convolution of 
several exponential distributions. This might be interpreted simply as an increase in 
the number of exponential service phases.)

Possible states in the case of two channels, with the parameters o f the exponential 
distributions:

Channel 1 Channel 2

1 . “ l Interarrival time h Interarrival time
2 . Wait Wait
3. û3 Read/CPU 03 Read/CPU
4. «4 Read/Periph. 04 Read/Periph.
5. Wait Wait
6 .

« 6
Compr./Decompr.

0 6
Compr/Decompr.

7. Wait Wait
8 .

a 8
Write/CPU

0 8
Write/CPU

9. a9 Write/Periph. 09 Write/Periph.

States 2,5 and 7 represent the cases when work is interrupted because the processor is 
engaged with the other channel.

For a given channel the possible states remain the same even if the number of 
channels is increased.

For N  channels the number of possible different states of the system is of course 
not 9N but

(1) N * 3 *  6N~ l + 3N
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where the first member gives the number of states when the processor is busy, while the 
second member gives the number of states when the processor is idle.

Following the method well-known in queuing theory (see e.g. [3]) we can easily set 
up the birth-and—death type differential equations. The resulting system of equations has 
the form

(2 ) P(t )  = A * P ( t )

where P(t) is the vector of the probabilities of possible states and A is a matrix with 

constant elements. We know also that

(3) 11/4011,- = 1  0 <  t <  +°° .“  'l

Since (2) is a finite system of linear differential equations with constant coefficients, (2) 
and (3) give the existence of

lim P(t )  = P
t -*■ +o°

(4) IIP |1. = 1
_  'l

lim P ( 0  =  0t-M-oo

so ( 2 ) becomes with t

(5) 0 = A * P

so a system of linear algebraic equations remains to be solved.

Instead of the detailed description of (5), we try to get some more compact 
information. For N = 2  denote by Р ((^ ) the probability that the first (second) channel 
is in the state i, and by E{F) the parameter of the file length distribution in the first 
(second) channel. Then

0= - - ttjPj + a9(l - E ) P 9
0 = “lpl — a3 P3 + a 9 PP,
0 = a3P 3 -  a4P4
0 = a4P4 -  a6P6
0 = a6P 6

1 P
OC /■a OC

0 = P oc oc a9P9
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and
0= - /?!<?! + ß 9 ( l - F ) Q 9

(7) 0 = ß lQ l - ß 3£ 3 + ß9 F Q
0 = 03^3 — 04^4
0 = ß4 Q 4 ~ ß 6 Q 6
0 =
0 = ^8^8 _ ̂ 9^9

Every equation of (6 ) and (7) is the sum of a few equations in (5). The role o f the 
channels is not symmetrical, due to the priority rule, therefore the identity in the 
structures of (6 ) and (7) must have a more general reason. Let us take e.g. the first channel. 
Let us fix for the stationary distribution

(8 ) _ waiting time
w ~ total time

and consider the remaining P — s under the condition ( 8 ). If we observe the system only 
outside the waiting periods, a (2) — type relation for P = (P j , P3 , P4  , P6 , Pg , P9)T can be 
found. (6 ) will correspond to (5) and of course ( 8 ) to the second relation in (4). This 
reasoning is independent from N, which proves the general validity of ( 6 ) for any channel 
among the N  ones.

Of course (5) cannot be eliminated; since ( 6 ) gives only the ratio o f the Pt — s. With 
N = 2 2  (1) gives a number, which is hopeless for a computer as the dimension of (5).
Again some further simplification is necessary.

Suppose that the loadings o f the uniform channels 2 — 9 are identical and the same 
holds for the uniform channels 15 — 22. We try to compress 8  uniform channels into one. 
This is possible because the peripherial time is 20 — 40 times longer than the processor 
time. The number o f the simultaneously busy channels follows a binomial distribution with 
expectation K.  In the compressed common channel the length of a peripherial period has 
an exponential distribution with parameter Ka where a is the individual parameter. In 
the compressed common channel the processor period will have a rough but reasonable 
approximation. We suppose it to be a variable being the product of a negative binomial 
distribution with expectation К  and a constant T, which is the expextation of the 
individual processor time. Again this distribution has a good approximation by an 
exponential distribution. This kind o f compression works well if for an individual channel 
the different processor and peripherial periods have nearly the same parameter in the 
exponential distribution. Of course other ideas o f compression may also be used.

The compressed system has 5 channels, which — by means of (1) — involves 
5*3* 6 5  - 1 + 35 î» 20 000 equations, each of which have about 10 non—zero elements. 
This can already be handled with available computers.
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ö s s z e f o g l a l ó

Az R 12 ’’UNTER” matematikai modellezése 

Kun István — Farkas Gábor

A cikk sorbanállási modellt ad az SZKI-ban kifejlesztett R12 számitógép perifériáinak 
működését szabályozó rendszerre. Az egzakt modell a rendszer lehetséges állapotainak száma 
miatt megoldhatatlan. A cikkben tárgyalt kielégítő pontosságú közelítésekkel azonban a mo
dellt megoldható méretűvé lehet redukálni

Резюме

Математическое моделирование P12 "УНТЭР" 

Иштван Кун - Габор Фаркаш

Настоящая статья дает модель массового обслуживания к сис
теме, развитой в Институте координации вычислительной техники, 
управляющей ходом периферий вычислительной машины Р12. Эгзакт- 
ная модель неразрешима из-за большого числа возможных состоя
ний системы. Но при помощи приближений удовлетворяющей точнос
ти, дискретных в статье, модель может уменьшатся до решаемого 
размера.
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CONDITIONAL MONOTONOUS FUNCTIONS OVER A FINITE SET. PART I.

Gustav Burosch, Klaus-Dieter Drews, Walter Harnau, Dietlinde Lau

1. Introduction

Let {0,1,...,k-l} where к is an integer with к > 2, Р^П  ̂ the set
of all functions f(x ) of n variables defined whenever all the*  ̂ n у n \
x^ e and with values in E^ and = U . The operation of superpo-

n>l
sition (composition) and the closure CM] of a subset M of P^ are introduced 
in the usual manner (see e.g. C3] and C4]).

f(x
1

Let r an arbitrary partial order on E^. Let M^n^the set of all 
,X2 )>*.»x ) e satisfying the following condition:
(aj $3>2) • • • у J • • • >b̂ )  ̂ у з.£ it (i.” 19 2. у » » » ,п) implies

f(s.j  у 3.2 у • • • 9  ̂ » • • • » bn̂  *

Let M = и M . M is the set of all r-monotonous functions of P, r . г г кn>l
because M = CM ] holds, r r

These closed classes M are very interesting not only with respect to 
the manifold applications but also with respect to the difficulty of the 
mathematical problems concerning these classes (e.g. the number of func
tions in M^n  ̂ or the problem of the existence of a finite base for Mr).

Because every partial order r is a binary relation, for h = 2 the con
nection between M and r is a special case of the concept Polp of an arbi
trary h-ary relation

/
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Let Polp = U Pol(n)p, where Po]/n p̂ consists of all that functions
,(n) n>l

f e , for which the row-wise application of f to n arbitrary column of
p produces a column of p again.

The particularity of this paper is, that (for the first time) a weaker 
conception of the monotonity (the conditional monotonity) is investigated. 
We intend to explain the character of these weakening on the following ex
ample.

Let for a e the relation {a} defined by 
E3 X { a] и {(0,0), (1,1), (2,2)}.

We consider the set M of all functions f e P^11̂ , n = 1,2,..., satisfy
ing the condition

For all a e holds: If (bjjb^....b^), (cj,0̂ ,.•.>cn) e E^ ,
f (b, ,b„,... ,b )=a and b. {a} c. for i = 1 , 2..... then ?■ (1)1 2 n i l
f (b J ,Ъ̂ ,... ,bn) { 3.} f (c j » С2 , • • ■, *-д).

Let r^ the partial order | q J  2 a a) ’ w^ere (a>b,c} = E^, so holds 
obviously П M ç M. If we consider the function g(x,y) (given table 1),

ae E,

\ y
X ^ 4

0 1 2

0 0 2 2
1 1 1 2
2 2 2 2

so we see, that n M C M  holds. Therae a
difference between n M and M is thera e E3 a
particularity of the conception of the con
ditional monotonity.

Table 1

In addition to the definition (1) we investigate in this paper other 
conditions too.

Ju. I. Shurawljow was attentive to the functions with the property (1) 
working on the theory of noncorrect algorithms (see C 5 D and a paper pre
pared by him for Problems of Cybernetics (russian) Vol. 33). He regards the 
so-called correcting functions, which are such functions of Р^П^, which the
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results of the working of n algorithms on a set of m objects with respect 
to a measure of divergence, given from practical aspects, approximate as 
well as possible to an a priori given m-tuple of values of a certain predi
cate on this m obejcts. The fascination of this investigations is the fol
lowing: If you make only few conditions on the correcting functions, so it 
is relatively easy in the arising voluminous set of functions of to find
an optimal correcting function in the sense of Shurawljow. Compared to it 
the in the practice relevant correcting functions are satisfying additional 
conditions. In the through it restricted set of functions it is more diffi
cult to find optimal correcting functions. In particular to it you do need 
knowledges on the set of functions satisfying such conditions. Ju. I. 
Shurawljow said us certain of such conditions. Other conditions we added 
in result of discussions with him.

Here now our work begins. We investiagete the sets of functions which 
are given by certain of these conditions. In this paper we restrict us to 
к = 3 and to certain collections of the by Shurawljow named conditions, 
where essential differences to the usual monotonity here always appear. In 
general the set of the conditional monotonous functions do not be closed 
(with respect to the operation of superposition).

In this paper we investigate the with respect to the inclusion partial 
ordered set of the sets, which are defined by the various combinations of 
our conditions and show that some of these sets are equal C{x}3 (the set 
of the selector-funcitons). In two other papers, which will be published 
in Rostocker Mathematisches Kolloquium, we investigate the closure of sets 
of conditional monotonous functions and the clique-number of the graph 
defined by the threee partial orders ro,rj,v ̂ and Ê .

We remark still, that we see an other application of the conditional 
monotonous functions in the mathematical description of votes too, if we 
allow the abstention from voting. We intend to facilitate by this example 
an interpretation of the essential contents of the by us investigated con
ditions. To it we consider the following situation, n persons vote in open 
election. On the base of their results a chairman has to give a result of 
the vote.
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Let 0,1 resp. 2 the denotation of the results "No", "Yes" resp. "ab
stention from voting". A consequent chairman takes into consideration cer
tainly the following rules. If all n persons vote with the same "a", a e E ,̂ 
then he votes with "a" too. If nobody of the n persons votes with "a", 
a e Ej, then he has to vote with "b", b e E^\{a}. If the chairman votes 
on the base of a concrete situation of vote with "a", a e E^, then he has 
to vote with "a" too, if in a second vote only one of the n persons changed 
his mind to "a". By these and similar considerations we receive the by us 
in the second paragraph defined conditions.

We are obliged to Ju. I. Shurawljow, who us refered by his request, to 
investigate the by us as conditional monotonous functions denoted types of 
functions of P̂ , to a new type of questions in the к-valued logic P^ and to 
an interesting application of the к-valued logic.

2. Basic types of sets of functions

We define here some essential types of sets of functions over E . Let✓ -3
E0 = {0,1,2}, P, the set of all functions f(x,,x0,...x ) of n variables3 3 1 2 n . .
defined whenever all the x^ e E^ and with values in E^ and P^ = U P^n .

n>l
The operation of superposition and the closure HMD of a subset M of P^ are 
introduced in the usual manner (see e.g. C31).

(n)Let R = {{0,1},{0,2}, {1,2}}. We consider now for functions f(x) e p— 3
with X = (Xj,X2 ,. ..,xn> for arbitrary integer n>l the following conditions:

Condition 1. A  f(a,a,...,a) = a. 
a e E„

Condition 2. A A  f(a)e M.
M e R \ { 0,1} a e Mn —

Condition 2 '. A  
M 6 R

A  f (a) e M. .n —a e M

For every nonempty proper subset M of E^ let ^ the relationDefinition 1.
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((Е3хМ) и {(О,О),(1,1),(2,2)}) and ̂  the relation ((МхМ) и {(0,0),(1,1),(2,2)}) 
where М = Е^ЧМ is. If а_ = (а ̂ ,... ,0̂ ) , J3 = ( ß ̂, ß2, • • • » ßR) е Ез» then
a xí ß or а § ß holds, iff for i = l,2 ,...,n a. {7 3 . or a. ^ ß. holds.— M — — M — 1 M 1 1 M 1

Example. (1,0,0,2) {~2](1,1,0,2) and (1,0,0,2) {1̂ 2} (1,1,0,2),
(2 ,0 ,0 ,1,2 ) {1~2} (1,1,0 ,2 ,2 ) but (2 ,0 ,0 ,1 ,2 ) {]*2} (1,1,0 ,2 ,2 )!
Obviously are the relations {a} and , for all a e E„ e {a} 3 iqual.

Condition 3. A
a eE^

A
a ,_3 e E3

(f(a) = a => (a ~ 3 =» f (ot) - {a} - - {a} ffc>”

Condition 3' . A
a e E3

A  n
e Ез

< i {;, 1  - £<«> (îj £<i» •

Condition 4. A  
M e R

Aа , М Ез
(f (a) e M => (a g_ß => f (a) ^ f(ß))).

Condition 4' . A
M 6 R A  na,ß_ e E3

(ot_ _ß =» f (a_) ~ f (3)) .

Condition 5. A
M e R A  n a, e E"

(f (a_) e M => (£ ̂  _3 =» f (a_) ^ f (£))).

Condition 5'. As 
M e R a.jfe E3

(“ I  ! f M f •

• sLet К the set of all functions of satisfying the condition 1. К de
notes for s e {2,2', 3,3', 4,4', 5,5'} the set of all functions of К satis
fying the condition s. If M Ç (2,2', 3,3', 4,4', 5,5'} , then KM:=K, iff M

M sis the empty set. In all other cases К := П К .
s e M

Let finally K:= {КМ | M С (2 ,2 ', 3,3', 4,4', 5,5'}} and I Kl the cardi
nality of К. Obviously I К I < 2^ = 256 holds.

In the next paragraph we'll show, that I К| is rather less than 2̂  and 
investigate the partial ordered set (K,<).

3. The invesitagtion of К

It is obvious that the lemma 1 holds.
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Theorem 3. X e К is a subalgebra (with respect to the operation of superpo
sition) of P , iff Xe {K,K2, К2 , K3 5 .

2 2 'Proof. It follows directly by their definitions, that the sets К, К , К 
3'and К are subalgebras of P̂ . We have to show still, that XCCXD holds for

Xe{K3 ,K2 ,3 ,K2 ,3}. K3 d K2,3d К2 ’3 holds by tehorem 1. Therefore it is
2' 3 3enough to find a function f(x,y)e К * with f(f(x,y),z) e к . f,(x,y),

6

given by table 2 , is such a function.*

3 2 3 2 ' 3Remark. We'll investigate the subalgebras, generated by К , К * or К ’ , 
in the part II of this paper.

3'Theorem 4. К = C { x } 3 .

Proof. The following statement holds ([1]): If A = [ A]C PK.
and [AnP,(max(k,3))] = [ А П Р (1) ], then A ̂  CP ( 1 ) :

3' 3'By the tehorem 3 we know К = [К ] We have to prove still,
,3'f(xj,x2 ,x3) = X. (ie {1,2,3} ) holds for all f(xj,x2 ,x3) e K“ 

f(xj,x2 ,x3) e К and without loss of generality f(0,1,2) = 0.

that
Let

By our conditions and the theorem 1 we know, that we receive for all
3 4' 3'(a,b,c)e E f(a,b,c)e {a,b,c}. By lemma 5 К = К holds.

Therefore we receive (0,a,b) ^ 2} t0»1»2) and f(0,a,b) = 0 for all a.b^E^
Let now {c,d} = {1,2}. Then (0,c,c) ^  ̂ (d,c,c), (d,c,0) ^ (d,c,c)
and f(d,c,c) = f(d,c,0) = d hold. Now we receive (d,a,b) cj (d,c,0) and
f(d,a,b) = d for all a,b Ç E„. ■

/ oLet P =
0 0 0 0 
1 1 1 1

2 2 2 2 
0 0 2 2 
1 2  1 2

0  0 0 0 0 0 0 0  

1 1 1 1 1 1 1 1

2 2 2 2 2 2 
J2' I 0 0 0 0 1 1 

0 0 2 2 0 0 
1 2  1 2  1 2

and 3'
0 0 1 2  
12 0 1

Theorem 5. К = Polp, К = 2' 3'Polp2,K = Polp2, and К = Polp 3'
Proof. The first three statements are direct conclusions of our conditions. 
In C 2 3 Polp3, = С{X } 3 is proved. ■
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. îT iLemma 1. If i e {2,3,4,5}, then К с К .

Therefore we receive |k | < 3^ = 81.

Lemma 2. 4» 4К = К ,

Proof. Let M f R. If f(a) é M, then f'(ot) ^  f(ß) holds for every ß e E^.

Therefore we receive I К I ̂ 2.33 = 54.
In the same way we are able to prove the

5' 5Lemma 3. К = К,

Therefore I  К I  < 22.32 = 36 holds.

3' 5'Lemma 4. К = К . ■

Proof. Let {a,b,cj = E_. Then < is the relation (c a b c _ ,
3 , u (аГъЬ (a b a b cj a,b• • I a b  a D с Iand ^  is the relation , = p . It is obvious that Polp , =Polp{с} (c c a b cj c a,b c

3' 5'holds. Because К = Polp ПРо1р.ПРо1р„ and К = Polp, „nPolp „nPolpо l Z 1,2 o,z o,l
3* 5'hold, we receive К = К . ■

Therefore |к|< 2.32 = 18 holds.

3* 4»Lemma 5. К = К

Proof. Let {a,b,c} = E„. Then a —  ß holds, iff a . — ß and a ~  ß.3 -  {а} - -  {a,b} -  -  а,c -
Let f(x) e K* and for a,ßeE^ let a —  ß. Then f(a) — f(ß) and —  ---3 —  {aj —  —  {a,b] —
f(a) г —  . f(ß) hold. Therefore we receive: If f(a) = a, then f(ß)e {a,bji a, c j — —
and f(_ß)e {a,cj, that means f(ßi) = a, if f(a) = b, then f(ß)e {a,b} and if 
f(a) = c, then f(_ß) e (a,cj. That means, that f(cx) ■=> f(ß) holds. Therefore

l a }4» 3* 3»
K ç K  holds. Let now f(x)e К and a ß_. Let _y = (yj ,Y2> • • • >Yn)
the following element of E^. For i=l,2,...,n we set y  ̂= ou, iff = ß ^
and y • = a else. Then a y гтЧ ß holds. If now f(a)e {a,bj, then we re- 1 t a } {. t> j —
ceive f(jy)e {a,b} and f(_ß)e (a,bj. That means, that f(x)eK^ = (lemma 2)

3' 4*holds. Therefore К с К holds too. ■
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Therefore 1к| < З2 = 9 holds. 
3' 2 'Lemma 6. K Ç К

3 ' 4' 4 nProof. Let f(x)eK =K =K (lemma 2 and 5), a,be E3> a / b, {a,b} and
a = (а,a,... ,a) .Then f(a) = a, a — В and f(a) — . f(_ß) hold. There-ia,D) 2» ( a, dj
fore we receive f(j3)e {a,bî and f (x) e К . ■
Therefore К < 7 and К = { K,K2,K2',K3,K3',K2’3,K2'>3} hold.
By the lemma 1-6 the following inclusions are valued:

3' 2KJ С к

2 * о^  9

Ç K2 ’ 3 c  к3 Ç к (1)

к 2 , 3  Ç K2 C к (2)

С к 2 ' Ç K2 (3)

The functions ^(х,у) for i = 1 ,2,3,4,5,6 are given by the table 2.

X У f,(x,y) f2(x>y) f3(x,y) f4(x,y) f5(x,y) f6(x,y)

0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1
2 2 2 2 2 2 2 2
0 1 0 2 0 1 2 1
1 0 0 0 0 1 2 2
0 2 1 0 0 1 2 2
2 0 0 0 0 1 2 2
1 2 2 1 1 1 1 1
2 1 0 1 1 1 1 2

Table 2.
By the table 3 the function g(x,y,z) is given.

T X 0 1 2 0 1 0 2 1 2Z\ У 0 1 2 1 0 2 0 2 1

0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1
2 2 2 2 2 2 2 2 2 2

Table 3.
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Now the following relations, given by table 4, hold.

because because
К э К3 f l 6 к\к3 к2' D к2'«3 v2V v2'»3.g еК \К *
к3 э к2’3 V к\к2-3 к2 с к3 V kV
к2’3 2' 3

f 5 е к2,3\к2',3 к3 с к2 f 4 e к3\к2
к2'’3Э К 3’ V к2’’3\к3' к2’ с к3 ё е к2\к3
к э к2 f l 6 к\к2 к3 с 21к V к3\к2’
к2 2 3Э К f 2  e к2\к2 »3 к2’с 2 3к g е к2\к2’3
к2 2'Э К V к\к2’ к2.3 с 2'К V к2Л к 2’

Table 4.

We receive therefore, together with the relations (1) - (3), the

Theorem 1. (i) I К | = 7
(ii) (K,C) is given by mapping 1. ■

Mapping 1.

X — Y denotes for X,Ye К in this mapping , that X DY holds and for all
Z € К with X Э Z □ Y holds X = Z or Z = Y, and X DY holds, iff an integer n
with n > 2 exists with X.,X„,...,X , X, = X, X = Y and X. — X. . for1 2’ n ’ 1 ’ n l l+l
l 1,2,...,n-1.

By the mapping 1 you are able easy to prove the 

Theorem 2. (К,C ) is a distributive lattice. ■
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Ö s s z e f o g l a l ó

Feltételesen monoton függvények véges halmazon. I.

Gustav Burosch,Klaus-Dieter Drews,Walter Harnau, 
und Dietlinde Lau

Legyen E _ : = ( {0 , 1,2}; < )  részben rendezett halmaz. Az összes feltételesen 
monoton f:E^ —  E^ n=l,2,... függvényeknek a nyolc Zsuravljov feltétel le
hetséges kombinációinak eleget tevő részhalmazai a tartalmazásra, mint 
részben rendezésre nézve 7 elemű disztributiv hálót alkotnak.

A feltételesen monotonitás gyengébb feltétel mint a szokásos monotonitási. 
A fenti részhalmazok közül egy éppen a szelektor függvények kompozícióra 
nézve zárt részhalmaza.

A Zsuravljov feltételek mint szavazási szabályok értelmezhetők.

Резюме

Условно монотонные функции на конечных 
множествах. Часть I

Густав Бурош, Клаус-Дитер Древе, 
Балтер Харнау

Пусть е 3  = ( { 0 , 1 , 2 } ; < )  частичное упорядоченное множество. 
Подмножество условно монотонных функций f:E3 — Е 3 п=1,2, . .. 
удовлетворяющее возможным сочетаниям восьми условий Журавлева 
составляют дистрибутивную сеть с мощностью семь.

Условное множество является более слабым условием, чем 
монотонность в обычном смысле. Одно из вышеуказанных подмно
жеств является замкнутым, - относительно композиции - подмно
жество селекторных функций.

Условия Журавлева могут быть представлены как правила
голосования.
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