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MTA Szémitdstechnikai és Automatizildsi Kutat6 Intézete, Kozlemények 23/1979.

ON THE CARDINALITY OF SELF-DUAL CLOSED CLASSES IN
k-VALUED LOGICS

J. Demetrovics — L. Hanndk

Introduction
Let Ek = {0,1,...,k=1}. By a k-valued function we shall mean a function
£ EE —-Ek, and by Pk we denote the set of all those functions. If A is a

subset of P, , CAJ] will denote the set of all superpositions over A. The de-

k’
finition of a superposition over A is the following:

1. £f € A is a superposition over A

2. If go(xl...xn), gl(xll,...,x]ml),..., 8n(xnl""’xnmn) are either
superpositions over A, or gi(xil""’ximi) = xij

then go(;_r,l(x”,...,x]m

¥ e gn(xnl"”’xnm ))is a superposition
1 n

over A.

The set A is closed if A = [AJ . Let s be a permutation of 0,1,...,k=1.

We say, that f ePk preserves s, if

f(xl,...,xn) = s_1 [f(s(xl) e s(xn))] .

We shall denote by | the cardinality of the continuum.

Ju. I. Janov and A.A. Mulnik (53] have proved, that if k>3, then the
cardinality of the set of all closed sets in Pk is continuum. E.Post”’s gener-
al result implies that there are countably many closed sets in Pk for k = 2,

It is well known, [see [4J, [8] ], that there exist 6 types of maximal
closed sets in Pk' The characterisation of these sets can be found in [83.
J.Demetrovics and J.Bagyinszki have proved in [ 2] that the linear classes
in Pk (k prime) contain a finite number of closed classes. J.Bagyinszki
and A.Szendrei [1], [ 9] have proved that if k is square-free, then there

are also finitely many closed linear classes in Pk' D.Lau in [61] have shown,
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that the cardinality of the so—-called quasi-linear closed classes is coun-
table. In [3] the authors have proved, that the so-called central, k-regular,

monotonous and equivalence-preserving maximal classes in P, , for k>3 contain

k’
as many as [ closed classes. In this paper it is also shown that the maxi-

mal classes, which preserve a permutation s, conatain I closed classes pro-
vided k is not prime. Marcenkov in [ 7] has proved that for all ke {

13,14,16,17,} and for all permutation S : Ek- Ek there exist a set of

closed classes preserving s with cardinality . In the case k=2. E.Post’s
result ([10]) implies that there are finitely many closed classes pereser-

ving a permutation of EZ'

The purpose of this paper is to show that for all k>3 and for all per-

mutation s: Ek- Ek /except for two cases, namely k=3 and s = (012) or

k=4, s = (0123)/ there exist | closed sets in P ﬁ}eserving s. We shall

k
also prove that for all k>3 there is at least a countable number of closed

sets preserving s, for all permutation s: Ek- Ek'

B=1s

A permutation s of E, can be written as a product of disjoint cycles.

k
Such a cycle will be denoted by Ci' If

G and C, = (all""’anll)

(LR B

a S ey
™ Im’ 2

nmm), then

ICilwill denote the number of the elements of the set

{a)5000053 1}
i
Lemma 1. Let k>3, s a permutation in the form s = C].C2 ..... Cpe If m>1
and there are i,j < m such that i # j, ]Cil - kl’ le] - k2 and k]/k2

then it can be constructed | closed classes preserving s.

Proof. We can assume that s = C,.C C_, where
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S (o.....aml) Gy = (1.2.....am2) and lcll/lczl
We shall prove, that there is a set { fi} = F of functions such that for all

f. €F, fié [F\fi] and all f, preserve s. This is sufficient since in

this case all subsets of F generate a closed class, and H]C F, H CFH] # HZ

2

implies [ Hlj # EHZJ.

Let fm(x],xz,...,xm), m>3 be defined as follows:

4 ;
bec,, if (a;,...;a)Cc, |{i/ai =b}| =1
and all a; # b are equal to s(b)}
= 4 . .
fm (al ,...,am) d e C], if {al,...,am}CCl U C2 and the previous
condition does not hold;
a , in all other cases.
L

One can easily see that since /Cl///CZ/’ fm(xl,...,xn) preserves s.
Let us suppose, that fk(xl,...xk)etF\fk]. This means that
£ (X 5eee,x) =ﬂ(x],...,xk)

where{] is a superposition over F\fk'

Let fs(xi seeesXy ) be a function indX .
1 s
If s<k, then we can find an Xp such that xzf {xil,...,xi }
s
TE Xp = 1, and all X, =2 (i # £), then - by the definition - fk(xl,...,x.k)=1.

If we choose (xl,...,xk) as above, then fs(xi R ) € Cl that is @ can-
1 s
v eC, and 1f {al,...,am}ncl#¢

sipBli) € Cl') If s >k, then we have at least one pair X, X

k 2

not be equal to 1. (fm preserves the set C
then fm(a],.. s
such that ik - i[_.
Let xik = xiz = 1, and all xj =2 (3 # ik). In this case fs(xil,...,xis)e C1
and fk(xl""’xk) = 1. This is a contradiction, thus Lemma 1 is proved.

Corollarz:

1. if k is not prime, then in the maximal closed class Sk of Pk there ex-

ists [ closed classes. (S, denotes the class of all functions pre-

k
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serving a permutation m; m is the product of cycles Ci of length p,

where p is prime.)

2. if n is a permutation of the form n = (1) Cl""'cm then there is a

continuum cardinality set of closed classes pereserving T.

Lemma 2. Let k>5, let s be a permutation consisting of one cycle of length
k. Then we can construct a set of closed classes in Pk of cardinality [

which preserves s.
Proof. We can assume, that
s = (01234 ...).

Analogously to the proof of Lemma 1 we shall give a set {gi} = G of func-

tions so that g; ¢ EG\gi] and g; preserves s.

We define g;» i>3 on the set {QLZ}l. It can be easily verified that the

definition does not contradict the assumption that g; preserves s.

Let:
g (a,...,a) = a
g, ({00,117 \ (1,...,10})
RGP 51 )

B CIELBE S @50 203

I
O

]
o

I
—

and for {0,1,2Y°\{0,13¥\{0,23%\ 11,23%:

1, if /{a /a, = 0}/ =1
gk(a]’--.,ak) = /{ai/ai = 2}/ = ]
/{ai/ai = 1}/ - k_z,

0, in all other cases.

A vector (al,...,ak) E 3g{0,1,2}k is called characteristic if
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/{ai/ai =0} =1,
/{ai/ai =2}/ =1, and
/{ai/ai =1}/ = k-2,

Let us suppose ng [G\gk], that is gk(xl,...,xk) = &(xl,...,xk).

If gk(xl,...,xk) = {4 then there exists at least one superposition over
G\ By such that gk(x],...,xk) is equal to this superposition on the charac-
teristic vectors. Hence we can choose a minimal formula @¥ which equals
gk(xl,. ..,xk) on the characteristic vectors. The minimality of &* means
that if &A* = g (£ 1se-., ¢ ) then Lsens ,»’/’m cannot be equal to g (X,,...,%)

on the characteristic vectors.

We shall prove that such an 4* cannot exist. #* can be written in the

3 N =y o
form gm(.l ],...,_‘/’m) where .‘!i xij or .‘gi 1s a superposition over G\gk.

a./ if all .?’i are superpositions over G\gk then all <z, equal 1 or O
on the characteristic vectors.
gz( {{0,1,2}£ (25:3452) ¥Y£10,T)
Since ¥ is minimal /in the above sence/, there is exists a
characteristic vector ¢ such that «Y’](_c_:_) = 0 that is (ﬂ""(_c_:_) = 0. On

the other hand g,(c) = 1 holds. This is a contradiction;
K —

b./ We have seen, that there is a ,.‘{’K = xq in the superposition
Qa* = gm( L/'],...,-‘/:n).
Let x = X seeesXy be a characteristic vector so that xq = 0, and
= 4 4 < (7
x = 2. If x_ #./], X W vess X # o then all.‘{’i are equal to
1 or O on this characteristic vector, and hence 4’1""(5) = 0.

E(,S!’] (x),...,-‘ll;l(x))]ié (1,1,...,1) and by the definition

gm( {{O,I}m\(l,...,l)}) = 0.) This is also a contradiction.

c./ By a/ and b/#1* can be written in the form

gm( .*J],...,:z’q, xl,...xk) 3

The assumption that 4% is minimal implies that .‘l’l cannot be equal
to 1 on all characteristic vectors. Let x be a characteristic vec-

tor so that .‘l’] = 0.
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In this case,.Tz,... 4 =0 or 1, and there is one><j= 0. Since

(%},... ﬂa, xl,...,xk) i{l,Z}'n and it cannot be characteristic,

@' (x) = #. This implies that & = gm(xi],...,xim). If m<k, then
there is a xqf {xil,...,xim}. On the characteristic vector xq=2,
xi] =0, X, = Wy £ds 3% il), the statements g = 1 and " = 0
hold. If m>k then there exists at least one pair i[’ 1.5 such"that

ip = ij. In this case let xi£ =0, xg = 2 (5 # 1£) and
j2 (e e 1£). On this characteristic vector gk(x]...xk)=]

"
1

and (4% = 0 hold. This is also a contradiction, thus lemma 2 is

completely proved. ‘

Lemma 3. Let k = 5 and 1 a permutation of the formcl.c2 where /C]/ = 2,
/C2/ = 3 or let k = 7 and © be a permutation of the form CI'CZ where

/C]/ = 3, /C2/ = 4. Then there is a set of closed sets in P5 or in P7 pre-

serving 1 which has cardinality .

It is easy to see that it is sufficient to consider the cases when

(03)(124) and
(034) (1256)

A
]

=
I

The definition of 4 in Lemma 2 does not contradict the property &

preserves Tm.

If ;e define hm so that hm(a],...,an) = gm(al,...,an) on the set
{0,1,2} and hm preserves 1, then H = {hm/mZB} is a set with the property
hmf, EH\hm]. Thus analogously to Lemma 1 H¥® ={[S]/ SCH} is a set con-

sisting of closed classes preserving n, and the cardinality of H* is [,

Theorem 1: Let k>2 and 1 be a permutation of Ek' 112
T # (alaza3 for k=3 and
n# (a]a2a3a4) for k=4

then there are as many as [ closed classes in P preserving .

k
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Proof.: If n contains a cycle C such that ICLz 5, the statement is implied

by Lemma 2.
If 1 contains a cycle C such that |C|] = 1 or two cycles with equal
lengths, then the statement follows from Lemma 1. If n contains at least 4

cycles with lengths 2,3,4 then two of them have equal lengths.

Thus we have the following cases:

T = C1°C2’ /CI/ = 2, /CZ/ =3 ‘of
/C]/ = 3’ /Cz/ =4
T =C.Cy.Cq /C1/ =2, /02/ = 3, /c3/ =4

The first case is treated in Lemma 3.
In the second case /Cl/ I/C3/, therefore the assumptions of Lemma 1 hold.

Thus the proof of Theorem 1 is complete.
§. 2.

In §.1. we have seen, that for all but three permutations n [ closed

sets in Pk (k>2) preserving n can be constructed.

In the case k=2 there is only a finite number of closed sets in P2
which preserve (01) (C10]). In the cases k=3, n = (012) and k=4, 1 = (0123)
we cannot give an "independent" set of functions with cardinality *+ How=

ever we can prove.

Theorem 2: For all k>2 and all permutations m there is at least a countably

many closed sets in P, that preserve .

k
Proof: It is sufficient to consider the following two cases: k=3 and
m = (012); k=4 and n = (0123). We will construct a set {ti} = T of functions
such that k. & Eu {t.}1 = T,, and t; preserves T.
i>i
If we have such a family of functions, then the set {Ti[ i€ w}

contains countably many closed classes, and it can be ordered as



We define t:i as follows:

b,. 4f (al,...,am) = b or

@ seeesds_g5a; oy = b and

1 ] j+l
a; = Y OF
(a0 =
g ey, it
a a € {n-l(b) b}™ and
R S : ’
{ai/ai = b} < m-1;
t a otherwise.
A vector a = (ap...@m) is called characteristic, if] {i/ai =0} =1
and I{i/ai|= 1} | =m-1. The definition implies that t  preserves m. Let us

suppose, that

tm(xl,...,xm) =49,

where {4 is a superposition over Ti'

We can choose - analogously to Lemma 2 - a minimal formula &* which
equals | on all characteristic vectors. This 44* cannot be equal to X5

v S (74 "
t ( a{ ] 3eeey ) Whe]:e S > m

Denote by yj the characteristic vector with xj = 0. Let us consider the

matrix

i/'](yl) ‘fs(y])
¢ (yz) " L/"s(yz)

4 (ym) T (ym)

By the minimality of ¢F every column of the matrix contains at least

one 0. s >m implies, that at least one row in the matrix contains two or



5.

more 0"s. If the e“th row in the matrix contains at least two O - elements

then U%*(Yz) = 0. This is a contradiction, since tm(yi) = 1 for all
L® T2 . catly

Thus Theorem 2 is proved.
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Beszefoglalhb

A k-értékii logika 6ndualis osztalyairdl

J.Demetrovics = L. Hannak

A jelen dolgozatban a szerzdk bebizonyitjak, hogy ¥s(x) € Pk’ k>3 =
kivéve, ha s(x) = (0 1 2) ill. s(x) = (0 1 2 3), - (s(x)-permutacid) az

6ndualis zart osztalyok szama kontinuum.

Ha s(x) = (0 1 2) ill. s(x) = (0 1 2 3), akkor is legalabb megszamlal-

hatdo sok dndualis osztaly van.

Pezome
O MOmHOCTAX CaMOIENWCTBEHHBIX 3aMUHYTHHIX KJIACCOB B Pk

. IemerpoBuu, JI. XaHHaK

B HacToaAmer paboTe aBTOPH H3yUYalT CaMOIBOHMCTBEHHBHE 3aMK-—
HYTHBE KJIACCH B Pk (k =2 3). OHM IOOKa3BIBAWT, UYTO

a/ LA J6Oro S(x)ep, /roe S(x) -TmepecTaHOBKa; S(x) # (0 1);
S(x) # (01 2) u S(x) # (01 2 3)/, cymecTBYyeT KOHTHUHYYM
CaAMOIOBOMCTBEHHEX 38MKHYTHIX KJACCOB OTHOCHTEJIBHO S(x);

6/ ecnu S(x) = (0 1 2) us P; WM S(x) = (01 2 3) BB Pys

TO CYmECTBYET IO KpaWHEH Mepe CUETHOE UYWUCJIO CaMOIBOMCTBEH-—
HBEIX 3aMKHYTBIX KJIACCOB OTHOCHUTEJIBHO S(X).
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MTA Szémitastechnikai és Automatizaldsi Kutaté Intézete, Kozlemények 23/1979.

CDC 3300 COMPUTER OPERATING SYSTEM:
FILE ENVIRONMENT HANDLING METHOD

Akos Radé

Our task is to enlighten the file environment handling method of the
CDC 3300 computer operating system, the search and retrieval of user files
in the user files” maintenance system and after the analysis optimize the

work of the computer.

The efficiency of MASTER 4.1 operating system s time sharing and multi-

programming depends on optimum random access of mass storage.

The MASTER system operates in an environment in which all files have
an identical basic structure. MASTER provides the user with a broad range

of functions for manipulating the file definitions.

Functions that manage file definitions include allocation and release
of space, modification of labels, expansion of defined file size, and

opening and closing of files.

The system files required for MASTER to handle user files are File
Label Directory (FLD) and Identifier File (IDF).

The FLD contains a complete description of each file known to the sys-
tem. Each file has one file label entry written in the FLD of minimum 53
words in size (depending on the number of the segments of the user file).
Each file has one two-word entry in the IDF. The first word is a 24 bit
hash value calculated with "EXCLUSIVE OR" from the first ten words of the
FLD. It is the remainder resulting from dividing the 40 characters of file
identification (owner, filename, edition) by the largest prime number which
will fit into 24 bits (8.388.593). Word two is the block number of the
label”s FLD entry. The block size of this file is set by a parameter of

install time. The number of blocks is determined in the following manner:

a./ The IDF file consists of two parts, a number of blocks which com-

prise the main body of the file, and an additional number of blocks
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which comprise an overflow section.

b./ The number of blocks in the main body is always a prime number. To
arrive at this number, the maximum file count is increased by 10 %
and divided by the number of entries per block (e.g. a 64-word block
size has 32 entries). The next highest number in the list of prime

numbers is selected as the number of blocks for the main body.

c./ The overflow section is calculated as 10 %Z of the number of blocks
in the main body of the file. For example, with a maximum file count
of 1000, and a block size of 64 words, the main body contains 59
blocks, and the overflow contains 6 blocks, making a total of 65
blocks.

An entry in the IDF is made by dividing the remainder mentioned above
by the number of blocks in the main body of the file. The remainder from
this division plus one yields an IDF block number. If there is room in this
block, the entry is placed here. Otherwise, the entry is placed in the first

empty shot in the overflow area.

To reference a label, the owner, file name, and edition are divided by
8.388.593. This remainder is in turn divided by the prime number of blocks
in the main body of the IDF. If no match can be made with any entry in this

block, the overflow area is searched until the desired entry is found.

At allocation time the information about the file to be written into
the FLD gets into the highest available block of the file. If the FLD is
full, we try to find an empty block - due to a previous deletion of a file -

that is the TLD is not compressed after deletions.

In the IDF the searching algorithm depends on the fact whether we al-
locate a new file or we look for an existing file (opening, deletion,
nodification). In the latter case the algorithm 1is as follows: the over-

flow area is searched serially, if not found, the primary area is searched.
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In the first case we begin to search an empty slot in the primary area,
then it not found in the overflow area. The search in the primary area is
as follows: in the block, the number of which counted from the hash code,
serially (bucket!) look for an empty slot or a slot where previously an al-
ready deleted file resided. Deleting a file the first word of its entry in
the IDF is zeroed, the second word (reference to the block in the FLD) re-

mains unchanged (reason to be seen later).

In case of allocation it may happen, that we find however an empty slot
in the primary or overflow area but the FLD is full (because it is not
compressed). In this case we examine one by one the blocks of the IDF,
whether there is an entry having its first word zeroed. If found, the in-
formation about the newly allocated file written into the FLD block, whose
number was just found in the second word of the IDF entry. The IDF entry s
second word is zeroed as well, and the two word entry is placed into the

primary or the overflow area.

The primary hash funciton of the addressing algorithm is the division
method. The secondary function has three phases: open addressing linear
search in a bucket of the primary area; if it is not successful, then open
addressing linear search serially in the blocks of the overflow area; if it
is not successful, open addressing linear search serially in the other

blocks of the overflow area.

By this relatively simple, but sometimes too long algorithm ensured,

that the algorithm always finds an empty slot.

The MASTER 4.1 operating system has been installed to handle maximum
4291 files (block number of FLD). To enlarge the FLD needs new installation

of the whole operating system (about 50 hours computer time).

To define the IDF size, the installation guide book suggests the fol-
lowing: at first we fix the block size (bucket size) which should be divi-
sible by two and less than 160 words (one sector on magnetic disc - if
greater, then data transfer between the disc and the memory (30 msec) at

least would increase by two).



=0

In the existing installation block size is 160 words, that is one block
can accomndate 80 entries.
Block number is defined as follows: increase the maximum file count (4291)
by 10 Z (4720) then divide by the number of entries (80) and from the fol-
lowing prime numbers (3,7,11,31,59,127,503,1019,2039,4091,8191,16319,32719,
65519) which is closest one but less than the result of the previous divi-

sion (in our case: 59). The form of these prime numbers is
43 +.3 (j integer)

which ensures a uniform distribution of the files over the available add-

resses.

These 59 blocks consist of the primary area. The overflow area is 10 7

of the primary area (in our case 6).

According to the installation instructions the bucket size is between
2-160 words. Because the IDF and FLD reside on magnetic disc, our task is
to minimize the data transfer between the memory and the magnetic disc

(memory cycle time by four magnitudes less than data transfer time!).

To execute the search algorithm - excluding data transfer - we need

about 1 msec (it varies with loading factor of the files).

The CDC 3300 computer operates in three shifts, 5 day a week (300-400
jobs per day) and about 50 allocation and deletion occurs daily. File data

modifications are about 10-15 daily. File openings are about 1000 daily.

To analyze the quality of the system, the following data are of parti-
cular interest:
- (o) loading factor at the overflow area
- dislocation (displacement distance from the "originally" appointed
block)

- the effect of insertion/deletion cycles on the previous data

Our system to be analyzed had 4182 files (loading factor 97,5 Z). In
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the course of the first measurement no deletions occured.

If a < 90 7 no entries were occupied in the overflow area. If o = 90 7,
one primary block became full, that is the probability that an overflow
entry becomes occupied equals %5 = 0.0169.

This result well coincides with the theoretical approximation.

The effect of insertion/deletion cycles was investigated in the [0.1;0.93]
interval of o. The 40 characters of new files were generated by random num-
ber generator. One note before we evaluate the results: in optimal case one
access to a file needs two data transfers (60 msec). This time is about

0.1 Z of the daily work of the computer. Table 1 shows the effect of inser-
tion/deletion cycles at different loading factors on the percentage in-

crease of data transfers.

Insertion/deletion cycles

o 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

0.7 0.8 0.9 129 2.8 3.3 3s9 4.1 4.3 4.4 4.6
0.8 2.1 2:3 4.7 6.7 8.0 9.4 99 10.2 10.2 Il 0
0.9 155 2.9 539 8.2 99 1157 12.3 12.6 13:2 14.6

0:.975 23.8 35.7 43,40 71,4 18,5 85,7 B7.0 88.1 94.0 100.0

In the a [0.7;0.9] interval no essential increase. If a >0.9, and cycle
number is in the magnitude or larger than the table size the data transfers
are doubled. No full overflow area and for this reason dislocation and over-

flow loading factor could be easily deducted from data in Table 1.

The effective operation of the almost full IDF and FLD could be assured
by the occasional run of “SF4 operating system program which insures the

compression of the FLD and IDF.

According the above results, if the increase of data transfers exceeds

70 Z, we have to run our program (at present about once in 5 weeks).
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However the compression of the two files apparently increases slightly
the system”s throughput, but taking into account, that job execution is
suspended while data transfers executed, and the two file is single acces-

sible, the effect of the compression is larger.

Osszefoglalo

A CDC 3300 szamitégép operacids rendszere file kezel6 modszere

Radoé Akos

Analizdljuk a MASTER 4.1. operécios rendszer file kezel6 modszerét. Vizsgaljuk a file be-
helyezés/kivétel ciklusok hatasit a tulcsordulasi teriilet kitoltottségére és a file bejegyzések disz-

korisagat a mérési eredmények alapjan adjuk meg.

Pezome

Meton o6paboTKU (anJIOBOM CHUCTEMBl ONEDPALIMOHHOH
cucteMsl OBM CDC 3300

Axom Pangn

AHanmu3upyeTca MeTol o06paboTKH GanJiIOBOHM CHUCTEMEBI OllepalruOH-
HOM cucTembl MASTER 4.1 OBM CDC 3300. KauyecTBO CHCTEMB KOOUDO-
BaHWA hash M3MepAeTCA OLEHKOH BJMAHUA LIMKJOHOB BBOI&/BHBOLE
Ha CIOBUI U Ha KODOOULHUEHT HArpy3KW 06JaCTU NepenosiHeHuA. s
OonTuMasibHOM paboTh OBM nuanal30OH BPEMEHHW Mexny IOByMA pa3bopKa-

MU $amnJIOB CUCTEMB ONpPEenesideTCH.
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Dedicated to Prof. Dr. W. Engel on the
occasion of his 5 Oth birthday.

|. Introduction and notation

This is the last paper in aseries of four. In (2) the author began studies in the following

direction.

Let & be an integer, kK = 2.
ket dyvs s ntly € AO0YY ©ands M= LKoo X b G #
n k
' a,

Then we define fiM), where [ is a Boolean function and

i
5 : :

X =|% fov = ;25505 by
a

{'(a”‘,..,anl)

AM) = KX..... . L= 1§
]'(ulk....,a"k)

Fora set K of Boolean functions we define the closure  |[M],  of M with respect to K.

Definition. Le¢f a sequence Mi. C Vk defined by

1Y M =M and
A MR U RK. XS A X P X

for = VN2 ..
T i : i
I'hen let | M|, ,'l“»".. M, .

We notice that the successor of M is a superset of M, and all members of this
sequence are subsets oV, . Hence, starting by some M‘I’< this sequence has to be constant.

This M{ is denoted by lim M;\, or by [M],, accordingly.

F7F -
We will investigate the following problems:

I. Find A-conditions for M such that M is K-complete, ie. [M], = V,.

2. Find the cardinality of a K-base, i.e. M is K-complete, but any proper subset of
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M is not K-complete. If there are K-bases of different cardinalities, find the minimal and
the maximal cardinality of K-bases.

In (2),(3) and (4) we solved these problems for some closed sets of Boolean functions,
namely for all closed sets of nonmonotonic functions. In (2), (3) and (4) we used M}(
for the closure of M with respect to K. Without loss of generality these restrictions are
possible, because M}< = [M]K was proved for closed sets K in (4). Moreover, in this paper
(section2) we will prove [M], = [M][ K] for arbitrary sets K of Boolean functions, where
[K] is the usual closure of functions. Hence, in order to solve our problems, we only have to
solve the problems for closed sets K. All closed sets of Boolean functions are known. For a
survey and notations of these closed sets see (1). '

In section 3 we give a survey of the results for all closed sets. In section 4 we prove
these results.

2. A theorem

In this section we will prove the following

Theorem 1. Let M be an arbitrary subset of Vi and let K be an arbitrary set of Boolean
functions.
Then [M]K - [M][K].

We give the following version of the definition of the closure [K] which we will use
_in the proof of Theorem 1.

If ideK, [K] is defined by (1), p.4, 1.,2.,3., and 4!:

Definition. Let ideK. Let K'(i=0,1,...) bea sequence of  sets of Boolean functions
as follows.

1 If a function f belongs to K' (i = 0,1, ...), all functions which can be
generated by [ by adding  fictive variables to f, identification of variables
belong to K' too.

2 K=K
_K{+1=KIU {fag’gl,...,gmGK':fz g(gl,.,gm)}
if i=0,1,:.. and
k= U K
(K] i=0

We notice that we only need a finite set of Boolean functions for the generation of
[M][K], i.e. there is an integer a with
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(1) (Mg = [M]Ka'

Moreover, we only need functions of K® with a finite number of variables. Finally it is
worthy of remark that only K° has to contain all functions obtained by 1°. This property

we will use.

Proof of Theorem 1.

a) Let ideK. First we prove [M][K] c [M]K. Let » be an integer, b= 1. Then
there is an integer ¢ satisfying

) Mzb o [M]Kb

by our remarks at the definition of the closure of M with respect to K.

We prove

@ M, 2M,

— l —
by induction on i(i > 1), for all integers b > 1.

1. i=1. Then Ml‘(b=M2bU (X: BAp 9X,... XM XX, ... X))

Let us assume there is a vector XeM.‘.b \[M] ,_,-
K K

Then there is a function fek? and there are vectors X yuisin ; X efm Ml(()b with

XXy X)) IE fek?~1 then Xe[M]Kb_ |» which is a contradiction to our assump-
tion. Hence, fek? \ K~ !. Then there are functions g8, ---,8,€k?~1 with

=80y, i By )i 16 X = 0@ g s v s X Vo v g Myans o i XD By ek
and X,eM G =1,....m; (=1,...,n) it follows X, =g(X,, ..., X,)elM , ,

Hence using geK? !, we obtain X = g(X,, ..., X, )e[M] , ,, which is also a contradic-
tion to our assumption. X

2. Wehave M =M, U [ X : AfeK?, AX, ..., XMy i X = fiX,, ..., X,)}

Let us consider an arbitrary vector xeM: - If XeM;b then Xe[M]K »_1 follows by induc-
tion assumption.

Let XeM';L\M;b. Then there is a function fek? and there are vectors X,,..., X, eM;b
with X = AAX,,...,X,). Bythe induction assumption we have

Xypsoooos XyelM - feK® implies by the definition of K” that there are functions

% ,gmeK”“l with f= g(g,,...,g,). Hence X]’ =g(X,, ... ,Xn)t-:[M]Kb_l
G=1,...,n) and finally X=g(gl(X1, ALy ,Xn),... ,gm(X1 T ,Xn))=

w0, o )e[M]Kb_ .- Therefore (3) is proved for arbitrary i> 1 and arbitrary fixed

b > 1. Inparticular (3) is proved for i = q, where ¢ is defined as in (2). Using (2) we ha-
ve
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IMIK,, L = ML,

K )

for arbitrary integer b = |.

, (The vectors, which can be generated by functions of

We observe (M|, = |[M]
K

K° X K, we also obtain by functions of A, what follows by the definition of the closure
[M]g ).

By induction we get for arbitrary integer b = |:
el
(4) M| , = IM],.
K
In particular, (4) holds for b - a, where « is defined in (1), i.c.
€
IM]“" = IMIA %
Clearly, K = |K]| implies the converse direction
(
IMl; = IM)) |-
It ideK, the theorem is proved.

b) Let id¢K. By the definition of |M],  we have M)y - |[M]e ia ) for all sets of
functions A

it
= Lol . . , , . . "

K= (¢, ¢} implies [K] K and [KU iy =Ry L) and K5 leos

|
\
implies ide| K| and |[K U id| | |KJUlid} too.

and ¢, are the constant functions,

0 1

Hence, using part a), we oblain

IMIK M’”A‘U{MI |M||A’u;,‘dl | - |M||A'|U=n/: IMI|I\'|'
q.c.d.

3. A survey on results

In this section we will give the answers to our problems for cach closed set of Boolean

functions.
Let the closed sets ol Boolean functions denote by the notation by Post, see ().

FFurther we use the following notations:

o i l' |
s el H
= [0) o ‘I s

e i = IS k) denotes the vector of I’A containing a | exactly in the j-th

component.

I .\’d'k. X denotes the vector of 17, which does not coincide with X' in any

component.
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- If M & V., we consisder M also as a matrix. We say M has the property

A, B,C D, if and only if for each pair(i,j), | < i< j< k, the 2-rows-matrix Mli’ whose first

row is the i-th row of M and the second row is the j-th row of M, has a column

((1)), ((1)), (g), (:), respectively. Further M has the property C(u), D(u), > 2, if and only
if every matrix consisting of u rows of M has a column

3 (),

respectively. Let P be a Boolean function of // A,B,C,D. Then M has the property P’ 5

ie ] 0,1 | , ifand only if M has the property P and does not contain, in addition, rows
consisting only of i's. Accordingly, let P°! defined as PO A P!.

Now we are able to formulate the main results.

nn

2. A theorem Let Ke {O0.S.P.L;|. M=V, s
19 K-complete, if and only if M satisfies the condition of table 1,

20 4 K-base, if and only if M is K-complete and has the cardinality given in

table 1.
set criterion of completeness m
0, M=V, 2¥
0,.0, M; AE 1 2k _ 1
05,0 M=V,\ (0} 2 1
0, VXer we have XeM or XeM k=1
0,.0, M=V, \ 0,1 2 —2
0, V XeV, \ 0,1 wehave XeM or XeM 2 =l
P % (e, ..,e) k+ 1
S5 S, ‘i 183 s €| k
P, P, i{_l_,—l, » € | k+ 1
EF =4, . 8 k
L, .:IX],...,Xk_leM:rg(Xl,...,Xk_l,_l)=k k= 1
i By s o g MR s, X )= k
Ly : %, PR o "o AR o - k
L, FIXI,...,XkeM:rg(Xl,...,Xk)=k and k+ 1
XM\ LX), X ) g,
Ly ?]X],...,Xk_leM:rg(Xl,...,Xk~l)=k—lk
PR T X . Xy 4} J,, and
i even number of vectors of Hya-iva s e 1K

with sum 1

Table 1.
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These results are proved in (2), (3) and (4).

|
Theorem 3. Let Ke {Ci, D, A,, F}, F:‘} . M=V, is K-complete, if and only if M satis-
fies the condition P of table 2. The K-bases have the minimal cardinality m and the
maximal cardinality p, given in table 2.

In table 2 let

I, e datd,
2. X[ = min (y: ye N, y = x),

i x ==
3. 9,(k) = xe N » [["25]]> k > [[[5%—1”
S|
> e> (2521

*)For u= 3 we do not give an explicit formula; see the remark at the end of
“this section.

X
4.¢2(k)=xeN9 {[x;]

3,
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K 4 m p
C, AvVB Jlog, k{ k-1
(e (AyB) Jlog, (k + 1) k
. (AY B)° Jlog, (k + 1)[ k
£ (AvB)" Jlog, (k + 2)[ k+ 1
D, (A v B)(CvD)" Jlog, (k + 1) + 1 k+ 1
2%k 2<k<4
D, ABCD 0, (k) + 1
k
3 k>S5
D, (Av B)(CV D) Jlog, K[+ 1 k
(22 danes
A Ay ALLA, AB 1 (k) K2
[{] k=17
P <k (AvBC(w)° [ () 2<u<k-2
F¥ (< k) (AVB)D() Jlog, (k + 1)[ + 1 k+1 p=k—1
2« u=k—1<5
S PRI
2
FE, (u< k) ABC() 0, (k) w=2 B+ 6<u<k-1
B (u< k) ABD(u) o () + 1, u> 4 (E) 2 W< k—2e3
Ff (k< 2) (Av B)C(p) k
llog, k[ + 1 =)
K} W< k) (AvBD(Q) 2
Fr. B (k= k) (AvBYC(K)
- Jlog, (k + 1) + 1 k+ 1
F., Ff (1> k) (AVB)D(K))
.
o Pl | (B ABC(k)} 2k—1 2<k<6
p (k) + 1
Fr  FE . (w>hk ABC(k)J [4522] +1 k>7
& k
Fy . P (> k) (AVB)C(K)
Jlog, k[ + 1 k
gl (u=>k) (AN B)D(k)
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4. Proof of Theorem 3
1. Completeness

By Theorem 2 of (3) we have only to consider the following closed sets of Boolean func-
tions: C,, C3, C4, Dl »D,, D3, A, Ay, A4, F¥, F7(i= 1,2,3,4). The problems were solved
for the sets Cl, C3, Cy> F,‘.‘, F7 (i=1,4) in (3) and for the sets D, and D, in (2).

So we have to prove the statement of Theorem 3 for the closed sets

ReLD i d, , Ay, W52 FREEY

1. First we show that the conditions of table 2 are necessary. Let M be K-complete.

1.1 The monotony of the functions of K implies that M satisfies AB (i.ec. A A B). To
show this, let (i,j) be a pair with ije { 1,..., k} and i+ j such that Mi./' does not contain
a. column (0). Then it is impossible to generate vectors, having the i-th component 1 and
the j-th componenet o, by monotonic functions, i.e. [M], * Ky

Hence M has to satisfy B and, in analogy, A too.

1.2. If K=D,, M has to satisfy CD too. To show this, let (ij) be a pair with

ije {1,...,k} and i+ j such that M,; does not contain a column (). Let M

be a matrix of the same type as Mi]., whose elements of the first row coincide with the corres-
pondent elements of the first row of Mil., while this does not {mld for any element of the
second row of Mil.. Then le,. does not contain a column (O), it is impossible to generate
the vector (0) by M,fl. and by a monotonic function. Thus, it is impossible to generate
vectors, having 1 as the i-th and j-th component, by Ml./. and by functions of K = D,.
Hence, M has to satisfy D and, in analogy, C too.

1.3. Let Ke{F!,F7 | (i= 23). Then M has the property C(u) for u < k and C(k)

for u= k and p = . Either QeM or QO¢M.

In the first case M satisfies C(u) and in the second case there is a function feK with fiM)= 0.
Now the statement follows by the definition of the functions of F} or E

1.4 1If Ke{ A3. A4, F‘z‘, F3 | NO.0;55 « 4 0) = o holds for each function feK. Thus,
M does not contain rows consisting of o’s only.

1.5. If Ke {A4, F‘z‘. F;} we obtain, in analogy to 1.4., that M has no rows consisting
of 1’s only.
We notice that M satisfying AB implies M has no rows consisting of o's or 1’s only.

2. In order to show that the conditions of table 2 are sufficient, let M be a matrix having
the property P(K) of table 2. Denote the rows of M by «, and let

4y
L ]
L
4

-a.:
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be an arbitrary chosen vector of Vk. Then we give a function feK satisfying fiM) = a.
If =(@®y,...,b) and y=1(¢;,...,¢,), B<y meansthat b, <¢, for i=1,...,14,
and at least for one i we have the inequality.

2.1 Let Ke {A,,A,,A, FiF FiFr)
Then

a; if e=e,
fla) =1 0 if there is a a; with a< a;,
1 otherwise.
22 Let X=D,.
Then
(ai if a=a,
a, if a= ;,
0 if thereisa «; with a<a, or a<a,
I ifthereisa a, with a> a, or a >a;
0 for all other @ with a = (0, ~),

1 for all other a« with a = (1, ~).

Thus this part is proved.

2. Cardinality of bases

If we consider the matrices M as an incidence matrix of a family F of k subsets of an
r-clement set R, the determination of m is equivalent to the determination of the maximal
cardinality n(r) of families of a finite set satisfying a certain K-condition, according to
m= min{x:xeN, n(x)>k} .

The following conditions for M and F are equivalent:

— AB < X ¢ Y for all different X,YeF,
—CD o XNY#0,XUY#R forall X,YeF,

—Ccw<e U X,4R forall X, X,,...,X,eF.
i=1 L

The maximal cardinality of families satisfying the conditions related to AB, ABCD,
ABC(2), ABC(p) p = 4 was determined by Sperner [12], Katona [9] and Schénheim [11]
and Brace and Daykin [7], Milner [10], the author [5], respectively.

Fraknl [8] and the author [5] solved this problem in the ABC(3) case for sufficiently
large r. These maximal cardinalities have different structures for even and odd r. So we
did not give an explicit formula in table 2 in this case.

The values of p were determined by the author in [6]. '
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Osszefoglald

Binaris vektoroknak Boole fiiggvényekkel vald generdlasarol

Hans-Dietrich Gronau

Legyen M C |0,1 ) k. ahol k természetes szam. Jeldlje K a Boole fiiggvények egy
zart halmazat. Az Osszes zart Boole fliggvényhalmazra megadja a szerzé annak sziikséges és
elégséges feltételét, hogy M K-teljes legyen, azaz hogy M K-lezardsa megegyezzen a | 0,1 Jk
halmazzal. Toviabba meghatirozza |0, 11 ¥ K-bazisainak lehetséges minimélis és maximalis
szamossagat, ahol M K-bazis ha minimalis a K-tejességre nézve.

Pesnome

O nopoxneHuy OHWHADPHBIX BEKTOPOB OYJIEBEM (OYHKIIUAM

XaHu-JuTpux ['poHAY

[lycte M < {O,l}k, rne k HaTypaJibHOE 4YUciio, U K 3aMKHyToe
MHOXECTBO DbyJsieBrIX QYHKLUMW. ABTOD IHaeT HEeOO6XOOUMBIE U INOCTATOU-
Hble YCJIOBHA K-TIOJTHOCTH MHOXecTBa M. [long K-TIOJIHOCTBI NOHHUMAaEeT-
CA, 4YTO 3aMelKaHUue MO K MHOXECTBa M DABHO MHOXECTBY {O,l}k.

B nanpHenmem OyOyT onpeliejieHbl BO3MOXHBIE MUHUMAJIbHBIE U MaKCH-
MaJibHbBIE MOHHOCTH K-6a3UCOB MHOXECTBA4 {O,l}k, roe M ABJAETCHA
K-6a3ucoM, ecJii OHO MHUHHUMAJIBHO OTHOCHUTEJIbHO K-IIOJIHOTHI.
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MTA Szamitastechnikai és Automatizdldsi Kutato Intézete, Kozlemények 23/1979.
MATHEMATICAL MODELLING OF THE R 12 "UNTER”

Istvin Kun — Gabor Farkas

MTA SzTAKI — SzKI

"UNTER? is the abbreviation of Universal Terminal System. It has been developed in
the SZKI (Coordination Institute for Computing Techniques).

The main task of the system is to organize the simultaneous work of a few terminals.
These terminals are controlled by a R 12 minicomputer. (OS12, partition F1). Their job is
to establish a direct interactive communication between an IBM 370/125 computer and the
users. Of course the R 12 is not completely exploited by the satellite functions (e.g.
preprocessing, postprocessing). In the remaining time it can act as an independent computer.

A special technique, called SPOOL, is applied to perform the input—output operations
of the R 12. The functioning of SPOOL is roughly as follows:

A record, entering the system, first goes through a space compression, after which it is
stored on a disk file. On the other hand a record, leaving the system, goes through a space
decompression (it is restored in the original form), after which it is passed through a
channel. Both READ and WRITE operations consist of two parts: a fast processor action
initiates a slow peripherial action. Space compression decompression is again a processor job.
When a file is transferred, only one of its records can move at the same time. That is this
record, until it arrives, blocks the route for the next record of its file. The advantage of
this organization is quite evident. The processor can quickly change from one channel to
the other, to look for a channel the records of which have a free route to go on, while on
the other busy channels the slow peripherial actions are being performed simultaneously.
When the processor does not find any channel waiting for it, some other computational
work can be done.



ae e

For the time being there are 22 channels handled by the R 12. These channels are:

Nr. Direction Equipment
0 1/0 asynchron line to/from the IBM 370/125
1 1/0 console
2 1/0 ]
7 user terminals (VT 340 displays)
9 1/0 J
10 I card reader
11 0 line printer
12 I BG card reader
13 0 BG line printer
14 idle
15 1/0
user libraries (on the disk)
22 1/0

As we have seen before, while a record gets through the core memory, the processor
is needed three times. Therefore it is necessary to register for each channel whether and at
which phase the processor is expected. This registration is made by SPOOL in three double

words:
Bit Nr.| 0 | 1 2 | 3| 4 cuu 21 22
Task
READ
COMPR/DECOMPR
WRITE

The usual value of each bit is 0. A change to 1 means a request for the processor. Such
a request arises when either a new record enters the system or a peripherial action is
finished. Of course there may be no more than one | in a column.

The service principle is as follows: The first row is inspected in natural order. If there
is a request, it will be served and the inspection recommences from the first bit. The second
line comes only when there is no more unsatisfied request in the first row. The satisfaction
of a second row request is followed by a return to the first bit of the first row. The third



-39 —

row is inspected only when there is no more unsatisfied request in the first two rows. Which
means that priority decreases from left to right, the last bit of a word being followd by the
first bit of the next word.

Of course no request can avoid detection and satisfaction: as we can see from the
description of SPOOL, no more than one, often no 1 appears in a column, the latter for
much longer periods. Therefore columns with higher priority cannot permanently “capture”
the processor.

Mathematical modelling of the system needs some simplifying assumptions:
1. Channels operate in one direction only.

2. Buffers can accept only one record at the same time, as we have supposed.
(Actually: five records).

3. In every channel files arrive according to Poisson processes. File lengths are
geometrically, processor and peripherial times are exponentially distributed. All these
variables are independent among themselves. (According to experience, some of the
service times may be constant, a good approximation of which is the convolution of
several exponential distributions. This might be interpreted simply as an increase in
the number of exponential service phases.)

Possible states in the case of two channels, with the parameters of the exponential
distributions:

Channel 1 Channel 2
1. a Interarrival time B, Interarrival time
2. Wait Wait
3. a; Read/CPU 8, Read/CPU
4, a, Read/Periph. 8, Read/Periph.
) Wait Wait
6. ag  Compr./Decompr. Be Compr/Decompr.
7 Wait Wait
8. ag  Write/CPU By Write/CPU
9. ay  Write/Periph. By Write/Periph.

States 2,5 and 7 represent the cases when work is interrupted because the processor is
engaged with the other channel.

For a given channel the possible states remain the same even if the number of
channels is increased.

For N channels the number of possible different states of the system is of course
not 9N but

(1) N#*»3«6V-14 3N
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where the first member gives the number of states when the processor is busy, while the
second member gives the number of states when the processor is idle.

Following the method well-known in queuing theory (see e.g. [3]) we can easily set
up the birth—and—death type differential equations. The resulting system of equations has
the form

@  P@W=4+P@®

where P(t) is the vector of the probabilities of possible states and A4 is a matrix with
constant elements. We know also that

(3) I £(1) i, = 1 0<t <+oo,

Since (2) is a finite system of linear differential equations with constant coefficients, (2)
and (3) give the existence of

lim P(t)=P
t = 400

(4) IRl =1
im P (=20
t—=+00 T

so (2) becomes with ¢

G g=ds«p

I

so a system of linear algebraic equations remains to be solved.

Instead of the detailed description of (5), we try to get some more compact
information. For N = 2 denote by P,(Q,) the probability that the first (second) channel
is in the state i, and by E(F) the parameter of the file length distribution in the first
(second) channel. Then

0=— °‘1P1 +o¢9(l—E)P9

(6) = o, Pl — a3P3 + ongP9
0= o, P3 = 014P4
= 014P4 — °‘6P6
= oz6P6 - °‘8P8
= °‘8P8 — a9P9
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and

0=— B0, +By(1 —F)Q,
(7) 0= B0, —B8;Q; + By FQ,

0= B3Q; 8,9,

0= B,Q, —BcQ

0= BgQ¢ — By Q4

0= 3808 —3909

Every equation of (6) and (7) is the sum of a few equations in (5). The role of the
channels is not symmetrical, due to the priority rule, therefore the identity in the
structures of (6) and (7) must have a more general reason. Let us take e.g. the first channel.
Let us fix for the stationary distribution

(8) _ waiting time
"~ total time

and consider the remaining Pl, — s under the condition (8). If we observe the system only
outside the waiting periods, a (2) — type relation for P = (P1 ,P3,P4 ,P6 s Pg ,P9)T can be
found. (6) will correspond to (5) and of course (8) to the second relation in (4). This
reasoning is independent from N, which proves the general validity of (6) for any channel
among the N ones.

Of course (5) cannot be eliminated; since (6) gives only the ratio of the P;—s. With
N =22 (1) gives a number, which is hopeless for a computer as the dimension of (5).

Again some further simplification is necessary.

Suppose that the loadings of the uniform channels 2 — 9 are identical and the same
holds for the uniform channels 15 — 22. We try to compress 8 uniform channels into one.
This is possible because the peripherial time is 20 — 40 times longer than the processor
time. The number of the simultaneously busy channels follows a binomial distribution with
expectation K. In the compressed common channel the length of a peripherial period has
an exponential distribution with parameter Ka where a is the individual parameter. In
the compressed common channel the processor period will have a rough but reasonable
approximation. We suppose it to be a variable being the product of a negative binomial
distribution with expectation K and a constant 7, which is the expextation of the
individual processor time. Again this distribution has a good approximation by an
exponential distribution. This kind of compression works well if for an individual channel
the different processor and peripherial periods have nearly the same parameter in the
exponential distribution. Of course other ideas of compression may also be used.

The compressed system has S channels, which — by means of (1) — involves
5%3%6° 14 35~ 20000 equations, each of which have about 10 non—zero elements.
This can already be handled with available computers.
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Az R12 "UNTER” matematikai modellezése

Kun Istvan — Farkas Gabor

A cikk sorbanalldsi modellt ad az SZKI-ban kifejlesztett R12 szdmitogép periféridinak
mukodését szabilyozo rendszerre. Az egzakt modell a rendszer lehetséges dllapotainak szima

miatt megoldhatatlan. A cikkben tirgyalt kielégité pontossigu kozelitésekkel azonban a mo-
dellt megoldhat6 méretiivé lehet redukalni.

Peswome

MaTeMaTuueckoe MomeaupoBaHue P12 "YHTOP"

HmrBan KyH - T"abop dPapkam

HacTosamasa cTaThA maeT MOIOENIb MACCOBOI'O OOCIYXMBAHHUA K CHC-—
TEME, DPa3BUTOM B HWHCTUTYTE KOOPIMHALMM BHUYUCIIMTEJIBHOW TEXHUKH,
yIIpaBJAnmHerd XOIoM IepudepHUM BBIUUCIUTEJIBHOM MamuHbel P12. 5raakT-
HadA MOIeJib HepaspemuMma Hu3-3a 060JbmOr'0 4YHCJla BO3MOXHBEIX COCTOA-
HUM cucTtembl. HO mpu moMomy NPUOIUXEHUM YIOOBJETBODPAKMEN TOUYHOC-
TH, OUCKDETHHIX B CTaTbe, MOIEJIb MOXET YMEHbHATCA OO pemaeMoro
pa3Mmepa.
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CONDITIONAL MONOTONOUS FUNCTIONS OVER A FINITE SET. PART 1.

Gustav Burosch, Klaus-Dieter Drews, Walter Harnau, Dietlinde Lau

1. Introduction

Let Ek = {0,1,...,k=1} where k is an integer with k > 2, Pén) the set
of all functions f(x],xz,...,xn) of n variables defined whenever all the

X, € Ek and with values in Ek and Pk = U P(n). The operation of superpo-
n>1

sition (composition) and the closure [MJ] of a subset M of Pk are introduced

in the usual manner (see e.g. [3] and [41]).

(n)
K* Let Mr

satisfying the following condition:

Let r an arbitrary partial order on E the set of all

(n)
f(xl,xz,...,xn) € Pk

(a],az,...,an),(bl,bz,...,bn) € EE, a; r bi (i=1,2,...,n) implies

f(al,az,...,an) r f(bl’bZ""’bn)'

Let Mr = U Mr(n). Mr is the set of all r-monotonous functions of Pk’
n>l
because Mr = EMr] holds.

These closed classes Mr are very interesting not only with respect to
the manifold applications but also with respect to the difficulty of the

mathematical problems concerning these classes (e.g. the number of func-
(n)

6

tions in M or the problem of the existence of a finite base for Mr)'
Because every partial order r is a binary relation, for h = 2 the con-

nection between Mr and r is a special case of the concept Polp of an arbi-

trary h-ary relation

al] a12 oain a];\\

%71 %pg. Ve Mg
p = . . .

B g

ahl ahz OO AL | ahm/// .
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(n)

Let Polp = U Pol p, where Pol(n)p consists of all that functions

n>1
f € Pén), for which the row-wise application of f to n arbitrary column of

p produces a column of p again.

The particularity of this paper is, that (for the first time) a weaker
conception of the monotonity (the conditional monotonity) is investigated.
We intend to explain the character of these weakening on the following ex-—

ample.

Let for a € E3 the relation {a} defined by

Ey x {a} U {(0,0), (1,1), (2,2)}.

We consider the set M of all functions f € Pgn), o= 12256005 satigfy—
ing the condition "
For all s €E; holdes T£ (bruBusunsyb )y Les585000nie ) & Eg L
f(bl,bz,;..,bn)=a and bi {a} ¢y for'i = 1,2,.+:,0, then L (1)
f(bl’bz""’bn) {a} f(cl,cz,...,cn). J
; 0.1 2b e
Let r the partial order {0 19 & a} , where {a,b,c} = E3, so holds
obviously N Mr € M. If we consider the function g(x,y) (given table 1),
5 E3 - so we see, that N Mr C M holds. The
ae E a
v} 012 . 4
difference between N M_ and M is the
aeE a
022 . . =
particularity of the conception of the con-
: P LR ditional monotonity.
2 2.2 2
Table 1.

In addition to the definition (1) we investigate in this paper other

conditions too.

Ju. I. Shurawljow was attentive to the functions with the property (1)
working on the theory of noncorrect algorithms (see [5] and a paper pre-

pared by him for Problems of Cybernetics (russian) Vol. 33). He regards the

(n)
k

so-called correcting functions, which are such functions of P;°, which the
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results of the working of n algorithms on a set of m objects with respect
to a measure of divergence, given from practical aspects, approximate as
well as possible to an a priori given m-tuple of values of a certain predi-
cate on this m obejcts. The fascination of this investigations is the fol-
lowing: If you make only few conditions on the correcting functions, so it
is relatively easy in the arising voluminous set of functions of Pk to find
an optimal correcting function in the sense of Shurawljow. Compared to it
the in the practice relevant correcting functions are satisfying additional
conditions. In the through it restricted set of functions it is more diffi-
cult to find optimal correcting functions. In particular to it you do need
knowledges on the set of functions satisfying such conditions. Ju. I.
Shurawljow said us certain of such conditions. Other conditions we added

in result of discussions with him.

Here now our work begins. We investiagete the sets of functions which
are given by certain of these conditions. In this paper we restrict us to
k = 3 and to certain collections of the by Shurawljow named conditions,
where essential differences to the usual monotonity here always appear. In
general the set of the conditional monotonous functions do not be closed

(with respect to the operation of superposition).

In this paper we investigate the with respect to the inclusion partial
ordered set of the sets, which are defined by the various combinations of
our conditions and show that some of these sets are equal [{x}] (the set
of the selector-funcitons). In two other papers, which will be published
in Rostocker Mathematisches Kolloquium, we investigate the closure of sets
of conditional monotonous functions and the clique-number of the graph

and En.

defined by the threee partial ordersro,rl,r2 3

We remark still, that we see an other application of the conditional
monotonous functions in the mathematical description of votes too, if we
allow the abstention from voting. We intend to facilitate by this example
an interpretation of the essential contents of the by us investigated con-
ditions. To it we consider the following situation. n persons vote in open
election. On the base of their results a chairman has to give a result of

the vote.
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Let 0,1 resp. 2 the denotation of the results "No", "Yes" resp. "ab-

stention from voting". A consequent chairman takes into consideration cer-

tainly the following rules. If all n persons vote with the same "a'", a € E

3’
then he votes with "a" too. If nobody of the n persons votes with "a",

a & EZ’ then he has to vote with "b", b € E3\\{a}. If the chairman votes
on the base of a concrete situation of vote with "a", a € E2, then he has
to vote with "a" too, if in a second vote only one of the n persons changed

his mind to "a". By these and similar considerations we receive the by us

in the second paragraph defined conditions.

We are obliged to Ju. I. Shurawljow, who us refered by his request, to
investigate the by us as conditional monotonous functions denoted types of
functions of Pk’ to a new type of questions in the k-valued logic P, and to

k
an interesting application of the k-valued logic.

2. Basic types of sets of functions
We define here some essential types of sets of functions over E_,. Let

E, = {0,1,2}, Pgn) 5s++-X_) of n variables

defined whenever all the xi € E3 and with values in E3 and P3 = U Pgn).
n>1

The operation of superposition and the closure [MJ] of a subset M of P

3
the set of all functions f(x],x

are
3

introduced in the usual manner (see e.g. [3]).

Let R = {{0,1},{0,2}, {1,2}}. We consider now for functions f(x) € Pgn)

with x = (XI’XZ""’Xn) for arbitrary integer n>l the following conditions:

Condition 1. % £(d,a;4:58) = d;
a € E
3
Condition 2. ON N > f(a) € M.

M e R\ {0,1} a €M

Condition 2', A A . f(a) € M.
M€ER a €M
Definition 1. For every nonempty proper subset M of E, let == the relation

3 M



(50 U {(0,0),(1,1),

where M = E \M T8 1L

o B or % R holds

=t

Example. (1,0,0,2) (

(2,0,0,1,2) =, (1,1,0,2,2) but (2,0,0,1,2)

Obviously are the rel

Condition 3. A\

a eE3

Condition 3'. 2\
a€E3

Condition 4. P
MeR

Condition 4'. A
ME€ER

Condition 5. A
MeR

Condition 5'. N
MeR

Let K the set of
notes for s e {2,2',

fying the condition s

is the empty set. In all other cases KM:=

Let finally K:= {KM IM

Ay pE

2,2)1) and-§ the relation ((qu)lJ{(o 0), (1 1), €225

(8 82,...,8 )eE then

B holds.

(1’1’0’2),

a = (aloazyl- :an)’ _B_
3, 1EE for 1 & 15255 ,N o ¥ M 8 or o
1593 (1,1,0,2) and (1,0,0,2) {1%3}
S 1
iiay

1,052, )1

ations {i} and {é} for all a € E3 equal.

; B/e\En (F@) = a=( 5 B =@ & £@)).
st B
fbéféEg Lam L7 IWG @)
a,B/:En (f@eM =8 =g £B)).
==t 5

A (0 =B =£f(a) = £(B)).
E’EEEg M~ M —

! (f(@)eM = (o ﬁ B = f(a) ﬁ £(8))).
o,8 €Eq

A (@Sp =£@) 3 £8).
E’EeEn M- - M -—

all functions of P, satisfying the condition 1. K® de-

3

3,3", 4,4', 5,5'} the set of all functions of K satis-

o TEMC 12:2%, 3,3, U,

s €

1N

8

nality of K. Obviously lKI < 2 = 256 holds.

4',
o R,

M

5:5%)

then KM:=K, iff M

(2,57, 8.3%, 4,4%, 5.5% acalxl the vecit-

In the next paragraph we'll show, that ,K' is rather less than 28 and

investigate the parti

3. The invesitagtion

It is obvious,

al ordered set (K,<).

of K

that the lemma 1 holds.
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Theorem 3. X € K is a subalgebra (with respect to the operation of superpo-

A 1
sition) of Pa, iff Xe {K,Kz, K2 s Bk

]
Proof. It follows directly by their definitions, that the sets K, K2, K2
3 We have to show still, that XC[X] holds for

1 '
XG{K3,K2’3,K2 ’3}. K3:)K2’33 K2 >3 holds by tehorem 1. Therefore it is

] 3
enough to find a function f(x,y)e€ K2 »3 with £f(f(x,y),z) € K3. f6(x,y),

\J
and K3 are subalgebras of P

given by table 2, is such a function.m
i : ; 31 2.3
Remark. We'll investigate the subalgebras, generated by K7, K

in the part II of this paper.

|
Theorem 4. K3 = Ldx}l J.

Proof. The following statement holds ([11): If A =[AIC Pk

and cane, ™=E3)5 LrpnpD 5, thenacreVa,

¥ 1
By the tehorem 3 we know K3 - EKBi]. We have to prove still, that

]
f(xl,xz,x3) = x, (i€{l,2,3} ) holds for all f(xl,x x3) € K3 . Let
1

2,
f(xl’XZ’XB) € K° and without loss of generality £(0,1,2) = 0.

By our conditions and the theorem 1 we know, that we receive for all
& A '
Ca,byc)ie Eg f(a,b,c)e {a,b,c}. By lemma 5 K = K3 holds.

Therefore we receive (0,a,b) (0,1,2) and £(0,a,b) = O for all a,b €E

{1,2}

Let now {c,d} = {1,2}. Then (0O,c,c) {3} (d,c,c), (d,c,0) -é (d,c,c)

and f(d,c,c) = £(d,c,0) = d hold. Now we receive (d,a,b) {Ozb} (d,c,0) and
b

3¢

f(d,a,b) =d for all a,b C E3.l
0000 0O00OO0OO0OO0OO0OO
0 1111 D R [ VA (L |
. e s =l BB oo, w| 22222220
2 2 0022 2 00011 T:1
1212 00 2 2002 2
12121272

S |00 1 2
Pgr =l 2o 1"
2— 2' 3'
Theorem 5. K = Polp, K™ = Polpz,K = Polpz, and K = Polp 31

Proof. The first three statements are direct conclusions of our conditions.

In £23 Polp3, =[{x}]1is proved. =
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Lemma 1. If i € {2,3,4,5}, then K* C K'.m

Therefore we receive lKI < 34 = 81.

]
Lemma 2. K4 = Ka,

Proof. Let M € R. If f(a) ¢ M, then f(a) ﬁ’ f(B) holds for every B € Eg. =

3

Therefore we receive l K I < 2.37 = 54,

In the same way we are able to prove the

|
Lemma 3. K5 = KS.

Thereforel KI < 22.32 = 36 holds.

] 1
Lemma 4. K3 = K5 . =

c cabec

Proof. Let {a,b,c} = E3. Then < 1s the relation [a B b cJ = pa,b

{agb}

and = is the relation [a ba'b CJ = p . It is obvious that Polp ,=Polp
{c} cecabe c a,b c
= LA oL
holds. Because K~ = Polpoﬂ Polp]ﬁ Polp2 and K= = Polp]’ (\Polpo’zn PO]'Do,l
; 3! <
hold, we receive K™ =K .m=m
Therefore IK'S 2.32 = 18 holds.
] 1
Lemma 5. K3 = K4 .
Proof. Let {a,b,c} = E3. Then a {Z}ﬁ- holds, iff o {a_,‘b} B and a e B.
4" n = -
Let f(x) € K* and for a,Be€ E3 let a {Z} B. Then f(a) Fa b} f£(8) and
f(a) {a:c} f(8) hold. Therefore we receive: If f(a) = a, then f£(B) € {a,b}
b

and f(g)€ {a,c}, that means f(B) = a, if f(a) = b, then f(g)e {a,b} and if

f(a) = c, then £(B) € {a,c}. That means, that f(a) {—2} f(8) holds. Therefore
47 3 3! -
K° ¢ K° holds. Let now £(x) € K° and o fa by B. Let y = (Yl,yz,...,yn)

the following element of Eg For i=1,2,...,n we set Y; = 04, 1TE a, = Bi’

and ¥ e else. Then o {—;~} i {l;;.} B holds. If now f(a)e {a,b}, then we re-
]

ceive f(y)€ {a,b} and f(B)€ {a,b}. That means, that f(x) e Kz’ = K4 (lemma 2)

] ]
holds. Therefore K3 5 KA holds too. ®
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Therefore |k| < 3% = 9 holds.

1 1
Lemma 6. K3 & K2 i

\J 1
Proof. Let f(§)€K3 'S =x* (lemma 2 and 5), a,be Ejs a # b, Be€ {a,b}" and
a = (a,a,...,a).Then £(2) = a, E-{afb} %wand f(a) {afb} f(8) hold. There-
fore we receive f(B)€ {a,b} and f(x)e K" .=

] 1 ]
Therefore K < 7 and K = {K,KZ,K2 ,K3,K3 ,K2’3,K2 ’3} hold.

By the lemma 1-6 the following inclusions are valued:

e BB e g )
gidgnle g (2)

1 \J
205 A LR .

The functions fi(x,y) for i = 1,2,3,4,5,6 are given by the table 2.

x y £,(x,y) £,(x,5) £4(x,y) £,(x,y) £5(x,y) £ (x,y)
0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1
2 2 2 2 2 2 2 2
0 1 0 2 0 1 2 1
1 0 0 0 0 1 2 2
0 2 1 0 0 1{ 9 2
2 0 0 0 0 1 2 2
1 2 > 1 1 1 1 1
2 1 0 1 1 3 1 2
Table 2.

By the table 3 the function g(x,y,z) is given.

NN
- O
O =
N O
o N
N
- N

DO y‘
1
< M
ol e}
—

N=O
N~ O
N = O
N = O
N = O
N=O
N = O
N = O
N = O

Table 3.
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Now the following relations, given by table 4, hold.

because because
K 5 K £ e K3 g2 5 g2 3 g ek2\ k213
g2 o g3 £, ¢ k\g?»3 ¥EE e £, kA\k3
k235 g2's3 £ e 1<2’3\1<2"3 ol - G £,€ 1<3\1<2
k2235 g3 £, € g2 »3\g3' k2 o &3 g ek '\K3
. £, & K\K? gt £,€ K3\K2'
£ oy p2ed e k2\g2+3 S L ! x2"\ g253
l(2 =) Kz' f,¢€ KZ\KZ' K2’3 c K2' £y € K2’3\K2'

Table 4.

We receive therefore, together with the relations (1) = (3), the

Theorem 1. (1) lKl =
(ii) (K,C) is given by mapping 1. ®

3

~

Mapping 1.

X — Y denotes for X,Y€ K in this mapping , that XDY holds and for all
ZeK with X2 Z oY holds X

Z or Z =Y, and XDY holds, iff an integer n

damg R g i X miXe X =meYiand X =X, for
n n i

with n > 2 exists with Xl,X i+1

2r" 1

1 Bl 2 s o=

By the mapping 1 you are able easy to prove the

Theorem 2. (K,C) is a distributive lattice. ®m
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Osscefoglald

Feltételesen monoton fiiggvények véges halmazon. I.

Gustav Burosch,Klaus-Dieter Drews,Walter Harnau,

und Dietlinde Lau

Legyen E3:=({O,1,2}; <) részben rendezett halmaz. Az Ssszes feltételesen
monoton f:Eg —‘E3 n=1,2,... fiiggvényeknek a nyolc Zsuravljov feltétel le-
hetséges kombinacidinak eleget tevd részhalmazai a tartalmazasra, mint

részben rendezésre nézve 7 elemii disztributiv haldt alkotnak.

A feltételesen monotonitas gyengébb feltétel mint a szokasos monotonitasi.
A fenti részhalmazok koziil egy éppen a szelektor fiiggvények kompozicidra

nézve zart részhalmaza.

A Zsuravljov feltételek mint szavazasi szabalyok értelmezhetdk.

Peswome

YCJIOBHO MOHOTOHHBIE QYHKIMHU Ha KOHEUYHELX
MHOXecTBax. YacTp I

I'vctaB Bypom, Knayc-IuTep Ipesc,
BanTtep XapHay

[lycThb E3 = ({0,1,2};<) YacTUUHOE YIOPALOYEHHOE MHOXECTBO.
[TOOMHOXECTBO YCJOBHO MOHOTOHHBIX QYHKIIUH f:Eg - E3 =l o2, ose

YIOBJIETBOPAKNIES BO3MOXHEIM COUETaHHWAM BOCBEMH ycCJIOBUHW XypaBiieBa
COCTAaBJAKNT OUCTPUOYTHBHYKW CETH C MOMHOCTBHN CEMB.

YCIIOBHOE MHOXECTBO ABJAeTCA 6oJiee ciabbM yCcnoBHeEM, UeM
MOHOTOHHOCTE B OOBIYHOM CMeICjIe. OOHO M3 BHUIIEYKA3aHHBIX NOIMHO-
XeCTB ABJIAETCA 3aMKHYTBIM, — OTHOCHTEJIbBHO KOMIIO3HMIHH - NOIOMHO-
XECTBO CEJIEKTODHBIX QYHKLHWH.

YcnoBusa XypaBiseBa MOI'YT OBTBH NpPEenCTaBJIEHBI KaK NpaBHUJia
'OJIOCOBAHUA.
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