
MTA SZTAKI Közlemények 39/1988 p. 229-257.

ON THE STAR NUMBER OF A SET-LATTICE

B. UHUIN

Computer and Automation Institute, 
Hungarian Academy of Sciences

1502 Budapest, Pf. 63., Hungary

1. Introduction

Let. AcRn be the integer combination of n linearly 
independent vectors b^,b2,...,bne Rn (the point lattice 
of full dimension). Let us call the collection -A of 
the sets {S + u}, uM, the set-lattice, where S c Rn
is a bounded set

Denote by T ( A )

("Figurengitter" by Hadwiger Í1J).

the number of points ueA (the zero 
point © included) such that SO (S+u)/0. This number is
called the star number of J* ("Treffenzahl" by Hadwiger 
L/]). The number T (y) has been introduced and studied when 
y is either a packing or covering of Rn (see, e.g. [31, 
for more details), but it is obviously meaningful in the 
above most general situation as well.

The set S is called symmetric with centre xeRn if 
(S-x)=-(S-x).

If the centre of symmetric is the point ö then S is called 
symmetric.

Erdős and Rogers Cs? proved that if SCRn is a svmmetric 
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convex body (i.e. S = -S) such that is a covering of 
Rn (i.e. U (S+u)=Rn), then

(1.1) T(y) 2n+1-l.

Groemer főj extended (1.1) to any bounded ScRn, i.e.
he proved that (1.1) holds for any bounded symmetric S 
such that covers the Rn. Groemer derived his result 
from a more general inequality. He first introduced the 
so called reduced star number t (S) ("reduzierte Treffenzahl") 
as follows.

Given a u&A such that SO (S+u)?^, we take all v 
for which there is we A such that v+w=u and (S + v) A (S+w)^0. 
Denote by d(u) the number of such v-s (this has been called 
by Groemer the degree of u).

If we collect all u € A- such that d(u)=k, k?l, then we 
get a decomposition of the set {u eA: S A(S+u)^0 1.
Hence, denoting by N. (?) the number of u-s with d(u)-k,

K

we get

(1.2) t(/) = X A(y) .
k^1 k

Then, by definition,the number

(1.3) t(^) : = X 
k?l

k-1 Nk(y>)

is called the reduced star number, C 6].
It is clear that d(u)?- 2 if u/9, N^(A)=0 if d(6)?2 
and (?)=1 if d(6)=l, consenquently
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(1-4) N1(/)<1.

Now, clearly ([6.7, p.23)

(i,5)

hence (1.4) implies

(1-6) T(y)^2t(^J -1

The relations (1.5) and (1.4) show that equality is in , 
(1..6) if and only if

(1.7) N.(/)=l and N. (^) =0 for all k>2. A K,

The fulfilling the conditions (1.7) has been called 
normal set-lattice, CsJ.

Groemer proved, using an identity for tty5) (£67, Theorem 1) 
that if

(1.8) S = -S and covers the Rn,

then t(/)=2n, yielding and extension of (1.1) to non-convex 5. 

The aim of this paper is to give refinements of the
inequality (1.6) in the sense that,say,

(1.9) T(y) > Mjn > M2(y)> 2t(y)-i (

where M^/), M^) are other well defined characteris­
tics of./ .
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Using (1.9) we get easily extensions and refinements 
of (1.1). Our inequalities can be used successfully also 
for giving new characterizations of normal set-lattices 
(as equality cases of (1.6)).

The clues to our results are two new type identities 
for T(/). The first of them can be found also in £71, 
where it served as a tool for sharpening some upper 
estimations for T(^) (see Section 6 for more details). 
We shall give also an identity for N. (?) that gives a .K
new interesting insight into the Groemer's decomposition 
(1.2) and the quantity tt^5). Finally, our representation 
for T(A) shows an interesting connection between lower 
estimations for T (?) and a new sharper form of the 
classical Minkowski-Blichfeldt theorem proved in £81(see 
Section 6).

2. The basic identities

Let A = { (S+u) :u CA^ be a set lattice in Ra where

ScR is a bounded set and 4cRn a point-lattice generated 
_ n

by the basis b, , .. . ,b eR . Denote P:=fxeR :x = 5Z^b,- in t ' 1 ' ' '
(a unit cell of A) . Denote by A the lattice i^A i.e. A* 
is generated by the basis bpb£ • • • • R"' wnere b^ = Vz , 
i=l,2,...,n. It is clear that A cA.

One can see easily that the set P':=P OA is in a
I 

one-to-one correspondence with the quotient space A/A 
(the set of different cosets (A+x), xeyt),, i.e.

(2.1) A* = P' + A = Ü (A+x) ,
XiP'



- 233 -

where the cosets (A+x) are mutually disjoint for xfP'. 
The canonical map : A —> P' -~A/A is defined as

(2.2) y(u) =x; where u^A+x.

For any set A rX by definition

(2.3) (A) : = {J ^(a) .

The y/ (A) is the canonical projection of A into
P'^A/A . One can see easily that

(2.4) y(A) = { xeP' : A Q (A +x) / 0 j = U (A+u) fl P * . 
^€A

For any two sets A,BcRn, A+B means the algebraic 
(Minkowski) sum of the sets, i.e. the collection of 
points a+b, aeA, b€B. In particular A-B:=A+(-B). 
Our first identity is a straight consequence of the 

simple fact

(2.5) {UéA: S D (S+u) #0} =(S-S) DA .

Hence

(2.6) Tbf) = |(s-s)nA|,

where /A| denotes the cardinality of the finite set A. 
Surprisingly enough, to our best knowledge, this 

almost trivial identity nas not been used yet for the 
calculations concerning T(^) (this identity has been 
successfully used also in f7J) .



- 234 -

The second identity is formulated in the following

Theorem 2.1. For any bounded ScRn and any point lattice 
AcRn,

(2.7) I 2c(S-S)CI^^\.

where

(2.8) Y-C^)^ Y (2'Vs-S)^ ) - fey , ■ /

(2.9) q (r) := min {i: i?0, 2 “(S-S)OA = I •

If q(y,=O or = then the respective 
considered by definition as zeros. O

sums are

Proof; use (2.6). The condition q(^)=O means (S-S) <7/. - 
hence (2.7) is true. Let q(^) > 0. It is clear that

(2.10) |(S-S)0A| = |2 (S-S) 0/1 | .

Using (2.1) we get

(2.11) 2 (s-s)nA v ^D, ^'7s-s;nrA + x))y 
xeP 7

x^e

where the non-empty sets in the union are mutually
disjoint. By the relation (2.4)

(2.12) OÁ.)- }.
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BUt A-W cA* far xeP' , hence

(2.13) y^-hs-S) n/ )= fxtP'^-hs-Sin (A+x) / 0j.

The above identities yield

r l(^ }

(2.i4) = ;

where is the set-lattice {(2 1S+u) :ueA} .

Denote by the set-lattice {(2 1S+u) :u eA
Put ing into (2.14) ./‘^instead of A and A 
instead of S(1) we get for all i^O

T(^}) " lf ’

The later identity shows that

(2.16) Z^IS-SIOA =te> 2’i(S-SM={e) for all j>i

and I

(2.17) 2-i(S-S)M ={ej=>^W for all j>i.

These implications and the definition of q(/) show that
T(A^WJ-1 and for all
Applying (2.15) successively we get (2.7). R

(2.15)
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In spite of its simplicity, the identity (2.7) proved 
to be quite a powerfull tool in investigating the magnitude 
of T (^) .

3. Refinements of lower estimations

The lower estimations below are almost trivial consequences 
of the identity (2.7) .

Theorem 3.1. For any bounded set ScRn and any point-lattice 
AcR we have

(3.1) T(f) 1 + 2 21 / .
Í-1

where q(/) and are defined by (2.9) and (2.8). □

Proof: For brxeA^jA ? the set A+x is symmetric, i.e.
A-+x = -(A+x) and does not contain the 0. Hence the set 

2 1(S-S) 0 (A+x) if non-empty is symmetric and does not 
contain 0, so it contains at least 2 elements. ®

Remark 3.2. Any finite symmetric set not containing its 
centre of symmetry contains even number of elements, 
hence I 2 1(S-S) <3 (A+x) I = 2r for some r^O. This simple 

observation shall have an interesting consequence regarding 
the number (A), see Lemma 3.4. below. □

Corollary 3.3. For any bounded set S c Rn and any point­
lattice have
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(3.2) T (y>)?l + 2 I (SJl ^1+2 max ' yV-Ai ? 21 (A)-1. □
A/ 1

Proof: The second inequality in (3.2) is trivial. To 
prove the third one it is enough to prove

(3.3) t(/) = I y-(2-1(S-S) /) A* )| .

We note that the case means (S-S)OA =2 1 (S-S)n A = Je}

hence after proving (3.3) we see that t(y) =1, so taking 
by convention zeros instead of the " y~ " and the "max" 
in (3.2) we get that all terms in (3.2) are equal to 1.
The identity (3.3) will be a consequence of a following 
lemma. ®

Lemma 3.4. Let ScRn be bounded and AcRn a point-lattice.

Let Nk(/) be the numbers occuring in (1.2), k^l. Then

(3.4) Nk(y) =k4{xeP': | 2-1(S-S) D (A+x) | =k} , k?l. □

Proof: Let ue A be such that SO(S + u)/0 and denote

(3.5) S(u) := 21( S-S tu)Cl A •

We claim that

(3.6) d(u) =|S(u)/

where d(u) is the degree of u defined in Section 1. 
Indeed, d(u) is the cardinality of the set

(3.7) { ire A 1 wi A , = u , (5 (S t v) * & } .
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But this set is equal to the set [veA : (S+v)n (S+u-v)^}- 
that is in turn equal to { vt'4: Srl (S+u-2v)/0 } which 
finally coincides with the S(u).

The condition Sq(S+u)?p is equivalent to StS(u), hence 
the Nk (y) is the number of points ue.A such that

(3.8) 0eS(u) and |S(u)j =k .

Let u,ueA be two points such that OtS(u), öc-S(ű). 
Denote u ~ü if

(3.9) U~U € A •

This is clearly an equivalence relation among the 
set of points u€A such that £&S(u).

Let u1,u2,...,u^ eA ] ©eStup, i=l,...,j, be mutually 
equivalent points. Then there are s^s^ S such that 
s^-s\+u^ = 0, i=l,2,...,j, hence using the equivalence
of u.-s, there are for whichi ' it'

(3.10) s^s^+u, = uv-ui= 2zly 141,^ < j.

This implies

(3.11) |S (uy) j j, ^=1,2,...,j.

On the other hand,if &cS(u) and /S(u)l ; k, i.e.
S (u) = ^v^ ,v2 , . . . , v^}, then for the points 

(3.12) i = l,2,...,k,



- 239 -

we have í * S(u-2vi) t they are mutually equivalent 
(one of them is equal to u) and there are sp, syeSt 
p=l,2,...,k such that

(3.13) s-s, +u-2v± = 2(v„-vi), l<i,y<k.

If we had sk+i*5k+l€ S such that skH-®k+l+U "2Vi=2z 
for some z#vp-v^, 1 = 1,. ..,k, (i.e. if iS(u-2v^)l 7 k) 
then z+v^v^ , v=1,2,...,k,and sk+^-sk+u=2 (z+ vi) , imply­
ing IS(u)l>k. Hence

(3.14) |S(u-2vi)| = |S(u)| =k, i=l,2,...,k .

If there were a point uk + 1 such that 6téS(u^+^) 
and u. . ~ u-2v., then using (3.11) we would have A. ' J-
|S(u-2v^)|?k+l, that contradicts to (3.14).

The above show that the set of elements u a A satis­
fying (3.8) is equal to the union of k-tuples

{ % «£
(3.15) uPL forlfls-r, Isj.vSk,

and 

Ct) (H
(3 i 16) U '7° for I < j ± k , I ü tz ír .

To finish the proof it is enough to show that there
is a one-to-one correspondence between the sets

(3.17) A:- { u^1] u<2),...,u^ } 

and
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(3.18) B:={x€P': I 2'1 (S-S) 0 (A k }€

The canonical projection (2.4) ; Of a' onto P' will 
provide this correspodence.
We first show that

(3.19) y T* ) = $

By the definition of y'

(3.20) Atx = for all X(=A.

It is clear that

-1(3.21) |2 jS-S) n (A - )| =k, i=l,2,...,r.

Hence, taking into account (3.20) we get

(3.22) - B •

Let x - £ e B . Then there are exactly k points
i=l,2,...,k, such that

(3.23) si“®i = ^Vi + v, i=l,...,kz

for some s^síe S.

One can see easily that this implies

(3.24) &eS(v+2V1) and |S(v+2v1) I =k
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hence v+2v^ should be equal to some ui^-^ , say u^ 

The definition of y implies that for x,y-éA\

(3.25) = if and only if x-y^/

consequently

(3-26) if and only if u^ü.

These imply that

(3.27) A . y (~ . y(- Í-) 

so (3.19) is true.

As the elements of A are not mutually equivalent, by 
(3.26) we have = M | hence |B|=r and by
this the lemma is proved. *

Remark 3.5. The identity (3.4) and the Remark 3.2 imply 
that (.y5) =0 for such odd numbers k?3 that are not 
equal to | 2 1(S-S) DA I . This fact is not explicitly 

mentioned in f 61, al though it is not difficult to derive 
it from the definition of N. (/) . D

K

Corollary 3.6. The identity (3.3) is true. □

Proof: By (2.4) we have

(3.28) r =í>éP’r2”Y9-sjnA0(A+x)^/}•
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. 1
But .A c /\. hence

(3.29) IV' f2’?S-S)f7A’)| = I «•*)/ =

k> 1

and the definition (1.3) of t(/) and the identity (3.4)
imply (3.3). ■

4. Lower estimations in special cases

Let be a set-lattice in Rn and denote

(4.1) p(/) := | (i: i?l, =p' x (6Y M

It is clear that 1 P'I - 2n hence we can write for the 
right hand side of (3.1)

(4.2) i+2 X- ’
< 1

= 1*2 (2n-1) + 2 I ,

where V1 runs over all i-s such that < ÍP l~1
One can easily see using (2.4) that

(4.3) <=> *A ? A f i? 1,2,

Hence

(4.4) ) ^ \ [ 1 • 1

The definition of q(./) shows that pt^) *
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Theorem 4.1., Let y1 = f r u): k é A i be a set-lattice 

such that the set S is bounded and symmetric with the 
centre of symmetry x<=Rn. Denote

(4.5) b(^) .= I { i ■. f 2 XS -a) U ? £4 } I ,

Then

(4.6) b^)^^)

and equality hold in (4.6) if S is convex. O

Proof: Let i^O be such that

(4.7) 2 i(S-x) + A 2 a A

i.e. to any UéA there are seS and v e A such that

(4.8) u=2"1+1(s-x)+2v=2-1(s-x)+2-i(s-x)+ 2v.

Using the condition S-x=-(S-x), there is séS such that

(4.9) u=2 i(s-x)-2 i(s-x)+2v=2 ^(s-s)+2v .

This show that

(4.10) 2“(i+1) (S-S)+A jA

and by this (4.6) is proved.

Let S be convex and assume that (4.10) holds for some 
i^O, i.e. for any ueA there are s^,S2eS and v eA such 
that
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(4.11) u = 2 i((s1~x)-(s2~x))+2v.

By the symmetry of S-x, there is s such that Ó

(4.12) u=2 i(s1+s3~2x) + 2v.

The convexity of S implies that 5 so
we get

(4.13) = Z'^s^-x) M)'

that proves (4.7). *

Remark 4.2. The convexity and symmetry of S-x shows 
that

(4.14) 2~i+^}(S-S)=2-i(S-x), 1=0,1,...,

that immediately implies, by the definitions of 
p(^) and b(S) that p(^) - bCp) ■

The proof of the theorem shows that the condition

(4.15) (^2^- £ 5-.

is enough (together with ‘the symmetry of S-x) to ensure

pC^) = MS) .
The condition (4.15) is a little weaker than the condition 
of convexity of S-x. It is a special case of a condition 
introduced by R.Rado (so called C-set, see [8] for 
details). O
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Corollary 4.3. Let V be a set-lattice in Rn such that 
S is bounded and symmetric with centre xtRn.
Then

(4.16) T(O ? ) <- 2 2—^' (^)í z I 2 . Q

This inequality both extends and sharpens the result 
of Groemer (consenquently the result of Erdős and Rogers) 
mentioned in Section 1. Namely, if

(4.17) S=-S and S+ A = Rn

(these are the assumptions of Groemer), then clearly 
d (./ )^1, hence

(4.18) H/) - I ■

We have to note that, as Groemer observed (£6.1/ p. 26, 
6-th row from the top), for the proof of the condition 
t(/)=2n (that yield (1.1) via (1.6)), instead of (4.17) it 
is enough to assume

(4.19) S = -S and S + A 2 -

By the definition of M/)/ this assumption also implies 
b (/) ^ 1.

Let us rewrite (3.1 .) using (4.2).

(4.20) Ttf)* l+2p(/)•(2n-l) +2X. '

(This inequality holds without any assumptions on S!)
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We see that for (4.18) to hold a weaker condition p(y)^l 
is also enough. To see more clearly what the conditions

, / mean, let us write them more explicitly:

a.21)

(4.22)

There is i?- 0 such that 2 1(S-x)+A?H

There is i?l such that 2 ^S-SHA ■

These conditions are equivalent if S-x is symmetric and 
convex. As we have seen in the proof of Theorem 4.1, 
for i?0

(4.23) 2l( $-*) r A 2 Jr A
-fl ri) . <=> 2 (S-S) +A 2 M

(of course the symmetry of S-x has to be also assumed). 
We quess that for non-convex S, p(/) can be greater than 
b(^), more exactly the following problem seems to be not 
hopeless.

Problem 4,4 Find a bounded non-convex set ScRn and a 
point-lattice AcRn of full-dimension such that: S = -S 
and 2 1 (S-S) t A 2 yA and 2 U t-A £ ^A for some »X . □

The conditions (4.21) and (4.22) are especially illustrative i 
S-x is a star-shaped set (or a ray-set, as these
sets are called in f3]), i.e.

(4.24) and 3 (S-x) c S-x for all 1.
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These conditions imply that

(4.25) 2L(^) -2 (i f 2 (i ^S-S) y

These imply that and p^) are equal to the maximal 
i?0 and i? 1 such that 2 1 (S-x) and 2-i(S-S)+A - 2 A , 

respectively.

Summarizing the meaning of (4.20) we can say that the 
principal term in the right hand side of (1.1) is not 
2n+1 but c«2n+\ where the constant c can be quite big 

depending on how much the set lattice [((S-S) +u):u e A i 
covers in the sense how many times we can half the 
set S-S to maintain the covering.
Moreover, an addive term also occurs on the

, r 4
right hand side of (4.20) and no symmetry assumptions on 
S are needed.
Expressing this phenomenon, we could call the constants 

b(r) and p (/) the (2 based) degrees of coverings ^A 
by ■ 4C-/L} and {((S-S)+u):ueA} respectively.
So, rather the degrees of covering than the coverings 
itselves decide upon the lower estimations for T(/).

5. Equality criteriae

We have seen that the conditions (1.7) are sufficient 
and necessary conditions for the equality in (1.6). 
The set-lattices fulfilling these conditions are called 
normal set-lattices. Of course, these conditions can be 
derived in a more complicated way using our refinements
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of (1.6).
Below we shall show this more complicated route.
This is not for the proof of the conditions in themselves, 
because the proof of (1.7) is almost trivial,see Section 1. 
But we gain some more necessary conditions for the 
normality of a set-lattice and a little deeper insight into 
the matter.
First, let us write once more the inequalities (3.2).

(1) (3)
(5.1) T(y) 1 + 2 X- ? I +■ 2 i/Jl >2 - 1

‘ = I / < i < qi*) ‘

If q (?>) =0 then t(y’)=l and equalities are in al^inequalities 
of (5.1). The same is true if Vfö) - / for all l^iiqti5). 
So assume that q(/) :> 0 and X O .
Taking into account identities (2.7) and (3.3) we can state: 

- is equality if and only if

(5.2) | 2 i(S-S) D (A+x)( =2 for all xé , for all i

s.t. ■

- is equality if and only if

(5.3) there is exactly one j, l^j<q( s.t. y. (/)?S0;

- (3J is equality if and only if 

(5.4)

These give:

11 i t

Tii5) =2t(/)-l if and only if



- 249 -

(5.5) y. (v) for all U2

and

(5.6) | 2-1 (S-S) H ( -A- +x) | = 2 for all x e .

The condition (5.5) is by (2.15) equivalent to

(5.7) 2-1(S-S)DA = {©>

By (3.4) the conditions (5.7)and (5.6) are equivalent 
to N, ('/)=! and Nv (./) =0 for all k>2.

If S is symmetric with the centre of symmetry Xc-R, then 
one more inequality holds

(5.8) 1 2 * I > ~i)f2 .
i" ~ 1 I ~i

- (4y is equality if and only if

(5.9) p W = b(f) .

A sufficient condition for (5.9) is the convexity of S.
If either

(5.10) b(/) 2 1

or

(5.11) b/Vj and I I < , 

then the right hand side of (5.8) is not less then
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The only exceptional case when 2t(y)-l might be greater 
than the right hand side of (5.8) is

(5.12) for all i^O.

(Of course, this cannot occur if S is convex.)
We could formulate a problem similar to the Problem 4.4.

Problem 5.1. Find a bounded non-convex set ScRn and a 
point-lattice A Rn of full dimension such that:
S = -S, 2-1(S-S)+A 2£/l and S >A £ jA for all i?O. O 

If we had a solution of this problem, then t(/)=tn 

and it has to be still checked whether

(5.13) 2n-i >

to guarantee that 21^)-1 is greater than the right hand 
side of (5.8).

6. Remarks

l .Let A cRn be a point-lattice of full dimension, 

P be its unit cell i.e.

(6.1) Rn = P +A = (A+x) ,

where the cosets (A+x) are mutually disjoint for xeP.
Denote by the canonical map of Rn onto P~Rn/A i.e.

(6.2) ^(y):=x where yeA+x.
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For any set AcRn

(6.3) y;(A): = (J / { *eP: A 0 (A +x) } - (J (a
O.CA 4re/l

The volume (Lebesgue-measure) in Rn is denoted by V. 

We have proved in [8[ (see also [7 J,[9 J |10] ) , that for 
any bounded Lebesgue-measurable set ScRn we have

V(SJ .
(6.4) T(/) = | (S-S)/)A| ? 2 - 1

It would be quite interesting to compare the right hand 
side of (6.4) with the lower estimations for Ti^) proved 
in previous sections.
A refinement of (6.4) where affine dimensions of the 
sets (S-x)nA; xe^(S) , play a role, has been proved in 
L97,[107. The inequality (6.4) holds in much more 
general structures as well, when instead of Rn, A and 
V we take a locally compact Abelian group G, its 
"sufficiently large" discrete subgroup A and Haar- 
measure , respectively, [ 9]. It would be interesting 
to see how the methods of this paper work in more general 
structures (the main obstacle seems to be the interpretation 
of J ) .

2. A result of Hadwiger [11] implies that if S cRn 
is a compact body and </ is a covering of Rn then

(6.5) c//l -V^)) H
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where V is the L-measure and iS the
determinant of the lattice.
Using the identity (2.6) we have proved a sharpening 
of (6.5):

(6.6) T(^) ^'(Vi^-VCS)) H

where V(S) < V(S-S+S) is a sort of "measure" of S 
(see [7j for details).
Both papers £5 J and f6 ] contain some upper estimations 
for T(^) for some special & . Our identity (2.7) seems 
to be a useful tool for investigating these Questions 
as well.

3. The basic recursion identity (2.15) fits into a 
following more general framework. Let McLcRn be two 
point lattices of full dimension. Let Q be a unit cell 
of M (with respect to L), i.e.

(6.7) L = Q+M = U (M+v)
u’fcQ

where the cosets (M+v)are mutually disjoint for veQ.
Let iö :L —> Q L/M be the canonical map

(6.8) 6U(u)=v if utM+v.

For a set AcL we can write

(6.9) (jM) = U
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One can prove,(analogously to the "continuous" cases 
studied in [ 91z [12 3that for any bounded set AcL

(6.io) I Al - 21 k* ,
k 1

(6.11) | fcfA} | - 21 > A(WÍ /
k^1

where

(6.12) A(k)(vtQ: I A n(M+v) I «k } , k«l,2,... .

Now, as to (2.15); taking into account |2 i(S-S)HA|ss

= 12 (S-S) OtC I and dentoing

(6.13) Si + 1(k) := {xgP' : -I 2_(i+1) (S-S) Q (A+x)l =k}, k?l

we get by (6.10)

(6.14) T(^li>) = 21 •

The definition (2.8) of shows that

(6.15) 2LM
a € V- W) • Itl

It is clear that

(6.16) i

Writing (6.14) and (6.16) for i=0 and taking into 
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account the identities (3.4) and (3.3) we get the 
Groemer's formulas (1.2) and (1.3).

The proof of (6.10) and (6.11) together with a detailed 
study of this more general approach including "discrete" 
versions of the results in £123, will be a matter of 
another paper. Let us note that for the results of this 
paper a special connection of the two lattices, namely 

- i- Jy- , was also important.
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ON THE STAR NUMBER OF A SET-LATTICE

B. Uhrin

Summary

Let A c Rn be a point lattice (discrete subgroup of full 

dimension) and S C Rn be a bounded set. The family 
y*:= {(S+u):uGA} is called the set lattice and the cardi­
nality of the set iuCA: SDS+u # 0}, denoted by T(/), is 
the star number of . Groemer introduced the so called 
reduced star number t(/) and proved: (i) T(y') > 2t(/)-1
and (ii) if S = -S and covers the Rn then tiy7) = 2n, 

rx "1i.e. TG^) >2 -1. The last inequality has been proved
earlier by Erdős and Rogers for convex symmetric sets S such 
that cP covers the Rn.
In the paper, after proving two new type identities for T(^), 
both sharpenings and extensions of above results are given. 
The results also show an interesting connection of estimations 
for T(^) to recent sharpenings of some classical results in 
geometry of numbers.
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A HALMAZ-RÁCS CSILLAG SZÁMÁRÓL

Uhrin Béla

összefoglaló

Legyen A c Rn egy pont-rács /teljes dimenzióju rész-csoport/ 
és S c Rn egy korlátos halmaz. Az { (S+ú) :u£A} családot 
halmaz-rácsnak nevezzük és az {uGA: S Cl (S+u) # 0} halmaz 
számosságát /jelöljük az csillag-számának nevez­
zük. Groemer definiálta a u.n. redukált csillag-számot
és bebizonyította: (i) T(^) > 2t)-1 és (ii) ha S = -S
és J lefedi Rn-et, akkor t(^) = 2n, azaz ebben az esetben 

n4" 1 T(^) >2 -1. Az utóbbi egyenlőtlenséget olyan origóra szim­
metrikus S konvex halmazokra, hogy lefedi Rn-et, Erdős és 
Rogers is bebizonyították. A cikkben tetszőleges korlátos S-re 
a T(y) számra két uj azonosságot látunk be, amelyekből a fenti 
eredményeknél mind általánosabb, mind élesebb eredmények nyer­
hetők. A cikk eredményei egy érdekes összefüggésre is rámutat­
nak, amely a T(/) illetve a geometriai számelmélet bizonyos 
klasszikus eredményei között fennáll.


