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THE ALGEBRA OF FUNCTIONS ON A GRAPH

P. RIBENBOIM
Dedicated to the memory of Professor L. Rédei, illustrious algebraist

Mobius inversion formula for arithmetic functions is a classical tool for
deriving explicit formulas. Weisner [10], Ward [9], Delsarte [1], Rédei [5], and
Wiegandt [11] generalized this theory to new settings, indicating at the same time
various applications to the theories of abelian groups and groups.

In recent years, the work of Rota [7] on the foundations of combinatorial
theory brought to light the importance of incidence algebras and of M&bius inversion
formula, which were studied in the context of locally finite partially ordered sets.

In this paper, we consider the situation of a directed multigraph, called a graph
for simplicity. We establish the Mébius inversion formula in the algebra of functions
on the paths of a locally finite graph. We give the natural matrix representation
and generalize Stanley’s theorem, assuming that the functions on the graph have
values in a noetherian ring R (see Proposition 7). In Proposition 8, we characterize
the algebras of matrices which represent algebras of functions with values on R,
defined on the paths of a locally finite graph. In the last section, we consider locally
finite semi-affine graphs /’ (see definition in §4) and the subalgebra of invariant
functions. We show that if f is division-closed, the algebra is commutative, and
we observe that this is a reasonable generalization of Dirichlet’s convolution of
arithmetic functions.

Leroux and his collaborators, wrote at the same time, and independently, a series
of papers ([2], [3], [4]) on the Mdbius categories, which are, without any doubt,
a very appropriate and all-embracing setting for these studies. Our basic construc-
tions and some of our more elementary results may be obtained with Leroux’s
approach and are more or less apparent in the previous papers of Rota [7] and
Stanley [8]. We have included their proofs here to make this paper more self-
contained and not to give to the reader the impression that a more general point
of view would be required to derive our limited results — without, on the other
hand, disputing the interest of Leroux’s work.

In order to avoid any misunderstanding concerning the terminology, we give
explicitly the definitions of all the concepts used in this paper. To facilitate the task
of the reader, we include all the details of the proofs, even though in some cases
(as we indicate) similar proofs are sketched in other papers.

1980 Mathematics Subject Classification. Primary 05C20; Secondary 05C50.
Key words and phrases. Digraphs, incidence algebras, Md&bius inversion.



2 P. RIBENBOIM

1. Definition of the algebra of functions of any graph

Let r =(r, V(r), o, t) be a (directed) graph, thatis, T isaset, F(T) a subset
of r,o,t are mappings from T to F(T) such that o(x)=t(x)=x for every
xEV(r). V(r) is the set of vertices, E(T)=r\F (r) is the set of edges, o(z) is
the origin of z,t(z) isthe terminal of z, 0(z), t(z) are the extremities of z.

Paths. Every vertex is a path of length 0. A path of length ngl is an «-tuple
ri=(,,, ..., Y") where each yt is an edge and o(y*=t(yt-") for i—2,...,n. We
put o(tj)=o(yd, t(rj)=t(y,,), and I(rj)=n; o(rj) is the origin of i], t{r\) is the
terminal of § and o(p), t(rj) are the extremities of 1.

A circuitis a path ] of length n&I such that o(r\)=t(r\). A circuit of length 1
is a loop.

An irreducible path is a path of length 0 or 1, or any path rf=(yn,
with «S2, such that the vertices o”), o(y2, mmo(y,,) are all distinct.

Thus, every path is irreducible if and only if T has no circuits.

Subpaths. The only subpath of vd V(r) is w.

If f]=(yn, mmyi) is a path of length 1, asubpath of f] is either t]'—o(y)
0=1... «), or ti'=t(y,,), or r\'=(yj, ..., yi+lyt) for 1 Any sub-
path of an irreducible path is an irreducible path.

If i isapath, and ri, ...,r\m are subpaths of t/, suchthat o(t]) =o(t]), t(*],)—
=t(t]), o{rj*=t(y)i-X) for i=2,....m, we write r—{Jno...ot]l. In particular,
v=vov and if zEE(r), o{z)—v, t(z) =\ then z—zov—woz.

r]' is an initial subpath of 1j when there exists a subpath tj"* of t such that
n—ij"or]’. Similarly, tf is a terminal subpath of 1j when there exists a subpath
t]' of f] suchthat fl=t]"or]. Thus o(r\) is an initial subpath and t()/) is a terminal
subpath of the path 1.

We denote by P (r) the set of irreducible paths of E. If v,w£V(r) let n(y,w)
be the cardinal number of the set {riEP(r)\o(t])=v, t(t])=w}.

r is locallyfinite when f has no circuits and n(v, w)<°°, for any v, WCF(T).
Equivalently, between any two vertices there are only finitely many paths.

Let R be a commutative ring with unit element 1 Let ZE=3'(r, R) be the
set of all functions from P(T) to R.

If f,g£.3P define (/+g)(™)=1f(fl)+g(jl)- Thus =E is an abelian additive group.

We define the convolution * as follows:

(f*g)(n) = 2 fW')gin)-
In particular, for every vdV(E):
(F<g)(v) =f(v)g(v),
and for any edge z with o(2)=v, t(z) = w:
(f*9)(2) =f(2)g(v)+f(w)g(z).
It is easily seen that SF is an associative ring with these operations, having

unit element e:
te(v) = 1 when vdV(r)

\e(ri) —0 when 1 has length at least 1
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IF is actually an algebra over R, defining (rf)(ri)=rf(rj) for every t]dP(r).

Proposition 1 Let f is invertible in the ring W if and only if fly) is
invertible in R, for every wd V(r).

Proof. If f# f'—e thien 1—e(y)=f(y)f'(v) so f(v) is invertible. Conversely,
let f'(v)= }., for every vd V(F). Suppose that /'(<?) has been defined for every
irreducible path g of length less than n, in such a way that

B ST =

Let ] be any irreducible path of length n, o(t])=v, t(ti)—w. Put

['(»1)=- /(w) 2 An™fit")
. %)S1
(note that /(ij")Sn—1). Then

<l:?L*»rf(n")fW) =0 = e(r).

The Riemann function £ is defined by £In)=1 for every rjdP(r).

The Mobiusfunction p is the inverse of the Riemann function: y*£—£*y=e.
Proposition 2 (the inversion formulas).

a) If f(tj) = initial path of ij} for every rjdP(r), then

gln) = l=%‘dI‘A n'w)
for every t]dP(r).
b) If fly) = L{gIn")\n" terminal path of i/} for every rjdPir), then

gin) = 1=Z*0]7ﬁn")Ah')
for every t}dPif)-

Proof, a) By hypothesis, f=£*g, hence g=y*f b) The proofissimilar. |
We compute explicitly the Mdbius function. Let s=e—£ so

is(t>) = 0 for every vdVir)
tse)= —1 for every Ii/EP(T), /(»NE L

Lfmma L If /(i))=m8&l and r” 1 then s*rri)=I—1) Y - In particular
s* <+1>-(»fl=0.
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Proof. If r—1 it is true. We assume true for r—1L Then

= ()= 2 S IKIIS(ri) =

= s*(r~3)(ri)s(o () + . 2 i s* - D(V)s(™') =
i=i

1o

Proposition 3. If [(]])=m~0 then

B(A]) = (e+ s+ s*2+ eee +5*m)(/;).
Proof.

[(e+ s+ s*2-I-... +s*m)* C](i?) = [(e+ s+ s*2+ ...+ s*m¥ (e —9)|(i?) =
= [e-s*<"+»](,,) = efa). |
Note that n(r\) depends only on the length of A More explicitly, we have:
Proposition 4. |f fEP(r) then

I when 107)= 0
07 = -1 when =
0 when 7I)"2.

Proof. It is trivial when KA)=0 or 1 Let I(r])=m”"2, ij—(ym, ..., yt). By
Lemma 1, and Proposition 3,

(i) = (e+s+s*2-f...-Fsm0?) =
LAt - (i -+ (-ir ()= (*->r--a

2. Comparison with the incidence algebra of partially ordered sets

Let (5, S) be apartially pre-ordered set, thatis, S is a reflexive and transitive
binary relation on S. Let r(S)={("y)6S'X5,x"}"}, K(r(S))= {(a j9icC'Sl},
and o(x, y)=(x, x), t(x, y)=(y, y). This defines a graph, denoted by T(5). We
identify 5 with V(r(S)).

Note that PCS) is a combinatorial graph, that is, between two vertices there
is at most one edge. In particular, r(S) has no loops.

Actually, S—r(S) defines a covariant functor y from the category of partially
pre-ordered sets to the category of combinatorial graphs. Moreover, S is partially
ordered if and only if P(S) has no circuits.

Conversely, if f is any graph, if x, yEV(r), let xSy when there exists
a path /; of r such that o(t))=x, t()=v. Then (V(F), s) is a partially pre-
ordered set. This defines a covariant functor y' from the category of graphs to the
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category of partially pre-ordered sets. Moreover, r has no circuits if and only if
(V(r), s) is a partially ordered set.

It is immediate that y'oy is the identity functor. Hence, y defines an embedding
from partially pre-ordered (partially ordered) sets to combinatorial graphs (with
no circuits).

Given the partially ordered set (S, S), let F(S) be the associated graph
(hence T(S) has no circuits). We denote by Segm (S) the set of all segments
[x, y]={zeS\x"z"y} of 5.

Let < P(r(S))-+Segm (5) be defined by a(f])=[o(ri), Ic)] Note that a is
surjective.

Now, we assume that the partially ordered set, (S, ~) is locallyfinite, that is,
for any x,y£S the segment [x,y] is finite. The incidence algebra ./=,/(S, R)
is defined as follows. It is the set of all mappings from the set Segm (S) into R,

with operations:
(/+ 9[>yl =flx, 2]+ £[x, y]
(fo)lx, yI = 2 fluy\z[x,u\

XMunry
(this is a finite sum, since [x y] is finite).
J is an (associative) ring, with unit element e:
X, X]=1
[x,y]=0 when x”"vy
and in fact, J is an jR-algebra, with (r/)[x, y]—rf[X, y].
Let & S-+&r=&(T(S), R) be defined by a(f)—foa. Then a is injective,
&(f+g)=9(f) +S(g), 6(rf)=ro(f) for f,g£f, rER.
Since S is locally finite then r(S) isalso locally finite, so it defines a function
n: Segm (S)-*-N, namely n[x,y\ is the number of paths jj in T(S) with o(rj)=x,
t(n)=y-
(" e define by (If)[x, y]= (2 f(l) for every /E#" and segment
o(n)=x

«d
[x,y] of S. In particular, (If)[x, x]=/(x) for every x€S.
We have I(f+g)=I(f) +1(g), I(rf)=rI(f) for f, gEF, rER.
105 is the multiplication with the function n. Indeed
{lo6(fNIx, y1 = 2 ($H(t)= 2 f[x,y] =nlxyIf[x,y].
o(>))=X o(}])=x
0 RU
1 is surjective. Indeed, given /£./ let /'€#" be defined as follows. For every
vertex x and every edge (x,y) of r(S) let f'(x)=/[x, x], I'((x, y))=f[x, yI;
for every path A of length at least 2, let /'(»?)=0. Then If'=f
We have the exact sequence of /A-modules

0 “mKer(/)
Note that if /€ Kér (/) then f(x)—0 for every x€S.

Moreover
1(f<g) = *(/)* 19)-
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Indeed, for every segment [x, y] we have

Cfrg> V= 2 M= 2 2 /(visin'
i Ue(g) iy - o (visin')
while ()" 2@ V1= gy HDTHYV(S)IXU] =

= XAzuﬂy( 02”_" fin' O)S 2 sinY)
t%n’5=y G =y
hence the two expressions are equal.
It follows that Ker (/) is a two-sided ideal of the R- algebra 3F
If R is a Q-algebra, we define also the mapping /':.? —+2F as follows:

o |
R = iy, o, -

Clearly, 1" isan A-module homomorphism and lol' isthe identity map. Moreover
1
o(e)=o(ri)
t(e)=t<n)
We have also
2 (i'*i's)(q) = 2 2., (MEIHIS)Q) =
o(e)=x,t(e)=y o(a)=x,t(B)=y ~

a uvertex of g 7T[w,1y\ /[ » n[x, ul g[*> ul
o(e)=x,t(o)=y

Let n[x,y; u\ be the number of paths q such that o(q)=x, t(g)=y and u is
a vertex of some edge of g. The above sum is equal to

2 (12te2 AU R A g o> ] =

1

= 2 f[u, y\s[x, ] ?[ n[j,y]'x'][x,u]

uvertex of q

- % [T«»y]s[x, u] 2q :H_’[X, Y, V\\{z

uvertex of q
= 2 flu=yls[x, U= (Fg)[x, y] = 7ix, yI[I"(F*g)\(ri)
where is any path such that o(t])=x, t{t])=y.
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3. Matrix representation

Let E be a locally finite graph, R a ring with unit element, &=&1r, R).

With every /€#" we associate the matrix Mf, with entries in R, and rows
and columns indexed by the set of vertices K(E). Explicitly, if x, yE V(r), the
entry at row y, column x, of Mf is

Mf(y, x) = 1{/(i;)|fleP(r), o(rf) = x, t(ri) =Y)

(note that this is a finite sum; it is equal to O if there exists no path f] such that
o(r)=x, t(r])=y).
Clearly, Mf+g=Mf+Mg. Moreover, Mftg=Mf Mg. Indeed,

Mgy )= 2 (M90% = 3 (2 /(O 96y
1(. =
On the other hand ~ -

(MEMQ(y. ) = 2 MF(y, uMg(u, X) =

2.2 f(e)( & gW)
Aol

(note that there can only be finitely many vertices u for which the corresponding
summand is not 0), hence the two expressions are equal.

Thus f<-HMf defines an i?-algebra homomorphism Mr :tF{T, R)-+*#(V(T), R),
the /~-algebra of matrices with entries in R and rows and columns indexed by
V(r). Note that Mf(x, x)=f(x) for every xE K(E). Hence, if /6 Ker (A/r) then
f(x) =0 for every xEV(r).

For example, taking the functions e, £ n we have

when x =y
when x "y

M{(y, X) = n(x, y)

M, x 1I1 when x—y
n),x |_ # (edges from x to y) when x"vy.

Me

If (5, &) isa locally finite partially ordered set and J is the incidence algebra of
5, we have the matrix representation Ms: J(S, R)-<-J?(S, R), defined by
Mf(y, x)—f[x, y] (it is understood that f[x,y\=0 if Ms is an injective
homomorphism of /~-algebras, whose image is the subalgebra of all matrices
A—A(y, X))xyiS such that if x*y then A(y,x)=0.

If E(S) is the graph associated with 5 then Mr(S)—Msol, in particular
Ker (Mr(s>)=Ker (/), Im (Mr(s>)=Im (A/s).

On the other hand, if E is a locally finite graph, let 5(E) be the partially
ordered set associated with E, as indicated in § 2: if x, yEV(r) then xSy when
there exists a path i| of E such that o(ri)=x, t(rf)=y. Then 5(E) is locally
finite, so we may compare the /?-algebra defined by E, and the incidence
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algebra J' defined by S(T). Let /" be defined by

(I'DIx, yl = Z{ri)\riP(r), o(t)) = x, I(>) = y).

Then /' is an F-algebra homomorphism. Moreover, V is surjective. Indeed, if
X,y are such that x*y, let tixy be a path such that o{tpy)=x t(yxy)~y.

Given gnJ', let be defined as follows:
fh(rix) = g[x, y]
\h{ri) =0 for any path §~ rfky, o(tj)=x, t{rf)=y.
Then I'n =g.
Let Mr: r), A/S(r): S'—J/(V(T), R) be the corresponding

matrix representations. Then MsoT—Mr. Msa) is injective, Kér (/)=
= Ker (Mr) and since /' is surjective then Im (/V/)=Im (Ms(ry).

We note also that there is a natural surjective mapping o P(T)—T(5(T))
namely (p(rD)=(x, y) where o(f])=x, t(r\)=y. < is injective if and only if given
any two vertices x, y of T there is at most one path r suchthat o(tj) =x, t(t])=y.

If r is any graph, its Hasse diagram is the graph H(T)—V(E) UE' where
E' isthe setofall pairs (x,y) with x, y*"V(T), x*y and max {I(yD\GE _P(r), o(rf)=
=x,t(t])=y}= 1 Moreover o'(x, y)=x, t'(x,y)=y for every (x, y)dE".

If S is a partially ordered set, the Hasse diagram of S is H(S) =H(r(S)).

First, we note:

Lemma 2. If T, A are graphs with no circuits and if the associated partially
orderedsets are isomorphic, S(T)=i S(A), then so are the Hasse diagrams H(T) =H{A).

Proof. Let (X,y)EH(r), so x<y and there is an edge z of T, with o(z)=
=X, t(z)—y, but there is no path 4 of T, with /(?/)>1, o(p)=x, t(r)—y. For
the corresponding elements in S(A), we have x'<y’, thus there is a path ¢ in
A suchthat o(q")=x", t(g")=y". If g'=(z', ..., Zj), nsl, then x'<r(zj)"j' S
x<u”y, where u corresponds to t(z[). Thus there exist paths r\',rj" in T such
that o(ri")=x, t(r\Y=o(r\")=u, t(t]")=y. By hypothesis, u~y, f is an edge so
n—1 showing that there is an edge z' of A such that o(z')=x', t(z')=y'. The
above proof shows also that (x', y)EH(A).

It is easily seen that this correspondence is an isomorphism: H(T)=H(A). g
For later use, we note also the following

Lemma 3. Let r be a graph. There is an isomorphism preserving the vertices
between F and H(T) ifandonly if T isa combinatorial graph, satisfying thefollow-
ing condition: (*) if z is an edge of T, if \EP(T) and o()=o0(z), t(\)=t(2)
then /= (2).

Proof. If there is an isomorphism as indicated, then T is combinatorial,
because H(T) is combinatorial. Also, if z is an edge of T, by the isomorphism
z must correspond to the edge (0(2), t(z)) of H(T). Ifthereisapath //=(z,,...Z))
in r, with o(t])=o(z), t(t])—t(z), then each zf corresponds by the isomorphism
to the edge (o(zf), t(zf) of H(r), so A corresponds to a path in H(T), with
o(r])=0(z), t(rj)=t(z). Thus 1 musthave length 1,s0 ¥=(z), proving condition (*).
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Conversely, let (x, y) be an edge of the Hasse diagram H(T)\ thus x,yEV(r),
xpiy, there isoneedge zEF with o(z)=x, t(z)=y and if oth=x, t(rj)=Yy,
then 1j has length 1. So i/—z), where z is the only edge of F suchthat o(z)—x,
t(z)=y. With (x,y) we associate the edge z. This mapping is injective. It is
also surjective, because if z is an edge of r, o(z)=x, t(z)=y, x"y, then A—Z2)
is the only path such that ofi/)=jg t(tj)=y; hence (x,y)EH(i) and z is the
corresponding edge. |

Stanley [8] announced the following result and sketched its proof.

Proposition 5. Let R be afield, let S, T be locally finite partially ordered
sets, let S(S, R), J(T, R) be the incidence algebras over R, let Ms:S(S, /?-»
R), MT:J(T, R)->J/(T, R) be the corresponding matrix representations.

If Im (A/s)=1Im (A/7) then S=T.

As a corollary, we have

Proposition 6. Let R be afield, let r, A be locallyfinite graphs, let S 1T, R),
S'(A, R) be the corresponding R-algebras offunctions, let Mr:.S(r, R) ,L/(r, R),
MA S'{A, R)-*.//(A,R) be the respective matrix representations. If

Im(Mr) si Im(M4) then //(F) as H(A).

Proof. Let S, T be the partially ordered sets associated with F, A, respectively,
so S, T are locally finite. We have seen that Im (Mr)=Im (Ms), Im(MQ)=
=Im(A/r). By Proposition 5, SAT, and by Lemma 2, H(r)"H(A). |

Corollary. Under the hypothesis of the proposition if moreover r, A are
combinatorial graphs satisfying the condition (*) of Lemma 3, then r=iA.

Note. In Proposition 6, it is not possible to conclude, in general, that Fs?d.
For example, let

r A

For every fS 'f, R), let ffS(A, R) be defined by fix") —f(x), f'(u") =
=/(«), f(y)="F(y), f'(zd=f(zD, f'(zd=1z2, f(z',zi)=1(22,zD)+f(z). Let
(: Im (Afr)—m (MA be defined by <p(Mf)= Mf,. Then <p is an isomorphism,
however F, A are not isomorphic.

We now indicate a generalization of Stanley’s Proposition 5, for the case of an
arbitrary (commutative) noetherian ring R.
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First, we recall some well-known facts about rings. Let S be a ring (which
is not necessarily commutative). Each representation of 5 as a finite direct product
of rings corresponds to a decomposition of 1 as a sum of pairwise orthogonal
(non-zero) central idempotents. Moreover, the factors in the decomposition are
indecomposable rings if and only if the corresponding idempotents are primitive,
that is, not equal to the sum of two central idempotents; note that if an idempotent
is the sum of two central idempotents then it is the sum of two orthogonal central
idempotents.

If R is a noetherian ring then every central idempotent is a sum of finitely
many primitive orthogonal central idempotents.

For later use, we need also the following considerations. A graph T is connected
if given any vertices x, y of | thereare paths j/I5 ..., tJr, suchthat x isan extremity
of tfa, y is an extremity of fJr and fJi, iji+, have a common extremity.

A subgraph 1" of T isa connected component of r ifit isa maximal connected
subgraph of F. Every graph is the disjoint union of its connected components.
If r has wijfel connected components isomorphic to T; (for i=1, ..., r) and
no other connected component, then we write r=m Ir 1+ ...+mrFr (it is assumed
that r, Erj for iXj).

If r isany graph, if {1, 2, ...,«} is the discrete graph with in vertices then
the cartesian product graph fx{l, 2,...,.«} is the disjoint union of n copies
of r. Thus, if r=milrl+...+mrrr where the graphs /j are the connected
components of T, then fX {1, 2, ..., n}=nmlr 1+ ... +nmrFr.

Lemma 4. If r, A are graphs with finitely many connected components and
rx{l, 2,....n}"*"X{l, 2,...,n) then r"A.

Proof. Let tp: fx{l, 2, ..., n}+AX{L, 2, ..., «<} be the given isomorphism,
and let r=milTl+...+mrrr, d=mjdl+...+/w'ds be the decompositions as
sums of connected components. Since T; is a connected component of
rx {1, 2, ..., n} then <(T) is a connected component of AX{L 2, ..., n}, hence
there exist n(i), 1°7t(z)=s such that (p(F,)=AK(). The mapping n is injective,
hence r”s. Also, all copies of T, have image An(i), hence nm~Anm*" so
mi"S.m'n(i). In similar way, sSr, proving the result. |

Proposition 7. Let R be a noetherian commutative ring, let T, A be locally
finite graphs, let R), P¥{A R) be the corresponding R-algebraS of functions
and Mr,M A the respective matrix representations. If Im (Mr)silm (Md) then
the Hasse diagrams of F, A are isomorphic: H(F)"H(A).

Proof. Let 1= 2 ei  a representation of 1as the sum of (non-zero) primitive

orthogonal |dempotents of R. Let Jr=#1(T,R), M=Mr and .//=Im (Mr)
for simplicity of notation.

For every i/gP(T) and i=1,...,n, let be defined by

{ = ei
Ifc,.i(e) = o for every QEP(r), gt i
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Thus
if o) =x )=y
otherwise.
Lemma 5. {MkuJ/=1, n\ v F(F)} is a maximal set of (non-zero) primitive

orthogonal central idempotents of Ji.

Proof. Clearly, Mkv . are orthogonal central idempotents.

If MfAJi (with is such that Mf Mk i =0 forevery PEV(r), i=1, ..., n,
then for every x, yEV(r):

0 = (MfMk )(y,x) = 2 Mf(y,u)Mkxl{u,x) = Mf(y,x)e,.

K(T
Hence oM
Mf (y, x) = 2 Mf(y, x)e, = 0
1=
so M{—0.
If Mkt=Mfi+...+ where MflI, ..., are orthogonal central idem-
potents, then Mkv { =MSr MtjMkt =Mf. s). So, if y*v then

Mr (y,x)= 2 MKk,tl>u)Mf (u,x) =0

and similarly, if x*v then Mfj(y, x)=0. Let Mfj(v,v)=rj, so rj*O because
M 0. From MfjMfj=Mf it follows that r} is an idempotent.

We note that if rje”"O then rjet=er Indeed, =rjet+(e;—j<), and
since ei is primitive then rjei=et. Since rj=r7"2 &~ 0 there is at least one

index i, IS/Sn such that rje*O. Moreover, if i' is any other index such that
rjej,?i0 from MfjMkvt=Mfj=MfjMkvt. it follows that ei=rjei=rj=rjei,=ei.,
thus i'=i. We conclude that rJ=rJei=ei for all j =1,...,s. Since =0
for j~i then s=I. g

Let R={A£Ji\A(v,v)=0 for every vEV(r)} so B is an /?-submodule
of Ji. We note:

Lemma 6. B is a two-sided ideal of Ji and Qlﬂ m={0}.
m:
Proof. Let M BB, MQEJI Then

(MgMf)(v, v)= b€%(T) Mg(v>u) Mf(u>v) =

_u%/tn( n’grm *01))( <:<izenn 1)

o(n")=u,t(ri’)=v =«

Since f]=f]'ror]' is a path of T with origin and terminal equal to v, and
since there are no circuits in T, then (MgMf)(v, v)=g(v)f(v)—Mfv, v)Mf (v, w)=0.
Similarly, {MfMg(v,v)—0 for every v£ F(T). Therefore, B is a two-sided ideal
of Ji.
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Now, let Msd /m and let x,yd V[T) be such that the maximum of Kn),
for all paths ridP(r) with o(t])—x, t(tj)=y, is at most m—L We show that
Mj(y, *)=0.

J(ylt szjffices to prove it for matrices of the form ... Mfm, with Mff/.

The verification is immediate.

Hence, if Mfd /m for every msl, if x, yd V(T) since f is locally finite,
there exist s suchthat I(rj)*si for every path rj suchthat ofrp—x,t{t])=y.

We conclude that Mf(y, x)=0. Thus Mf=0. |

Let T be a maximal set of primitive orthogonal central idempotents of Ji.

Lemma 7. There is a bijection A:ir-*V(r)x{l,2,...,.«} such that A=
=Mk.iAfd / for every Ad"K Hence, if A(A)=(v,i) then A(v,v)=et and A(w,w)=0
for every wE K(r), wXv.

Proof. Let A=MfdlK From A"=A we deduce that
f(v) = Mf(y,v) = 2 Mf(v,u)Mf (u,v) = Mf (v,v)2=1(v)2
uev(n

because there are no circuits in T. Thus f(v)= k%x ek (for some subset X of {1,...,«})

by the argument of Lemma 5. If A(v,v)=0 for every vEV(r) then Ad/, so
A=Amd/'n for every m£Il, hence A—0, by the preceding lemma, contrary
to the hypothesis. Thus, there exists vdV(r) such that f(v) =A(y, v)X0, hence
XA70. Let idX. We have (AMkv .A)(y, x)=A(y, V)A(v, X)et so (AMkv .A)(v,v) =
=f(v)ei=ei. Thus AMkv .AxO. We have also

(AMK A)(AMK iA)(y, X) uig(D (AMkv,)(y, u)(AMkv .A)(u, X) =

= »grio Ay, V)A (v, WA(uU, V)A(v, X)ef= A(y, VA (v, x)f(v)ei =
= A(y, V)A(v, X)e;.
Thus AMkv .A is a (non-zero) central idempotent. It follows that
(A-AM kviA)(A-AMkviA) = A—AMkv.A—AMkvViA+AMkvtA = A—AMk<.A

so A—AMkv .A is also a central idempotent.
From
A = AMkvtA+ (A-AM RVIA)
and
AMkv .A(A—AMkv .A) = 0,

since A is primitive idempotent, then A=AMkv .A. So

f(v) = A(v,v) = (AMk A)(v, v) = et
thus X= {/}.
If wdV(r),wXv, then
Aw, W) = (AMkv A)(w, w) —A(w, V)A(v, w)g; = 0

because there are no circuits.
We define A(A)=(v,i), hence A—MKji(A)d/.
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A is injective: if A BdT~ and X(A)=MB)—v, i) then A—Mkvff,
B—Mkvid/, hence A—Bd/. But AB—BA—0, so (A—B)2=A+B, lienee

(A-B)3=(A+B)(A-B) = A2-B 2= A-B.
Therefore

A-B =(A-B)3=(A-B)9=..d nQAI/ m= {0}
Finally, A is surjective. Indeed, let (y,i)*I(A) for every Ad'i'd Then from
A =MbdA)A-(A—MKLAY) it follows that
MkvtiA = Mk t{A-M kiiA)d f.

But {Mkv.A)2—Mkv .A because Mki! is in the centre. So Mkv{Ad#m for every
m~l thus Mkv ,A—=0. Hence "TU {Mkv } is a set of primitive orthogonal central
idempotents, properly containing T against the hypothesis. |

The following lemma, which was fully proved by Stanley, is included only for
the sake of completeness.

Lemma 8. Lei S be any ring (not necessarily commutative), let J be a two-
sided ideal of S such that fj Jm={0} Let e,f e',f be idempotents such that

e'—e ,f'—4dJ- Then eaf=0 for every adS ifandonly if e'af'=0 for every adS.

Proof. We assume that eaf=0 for every adS. Let x—e'—e, y—f -
Then e'=e'2=x2A-xeA-exA-e hence ex+xe+x2=x and similarly fyA-yfA-y2=y.
If adS then

e'af —(e+x)a (f+y) —eaf+exaf+xeaf+x2af+eafy +eayf+eay2+
+exafy + exayf+ exay2+ xeafy + xeayf+
A-xeay2-Vx2afy Ax2ayfA-x2ay2 =
= x2afA-eay2Aexay?2-f xeay2A x 2afy A-x2ayfA-x2ay?2

so e'af’dJ2 Replacing again x, y by the above expressions, it follows that e'af'dJ*.
By induction, for every nS 1, e'af'dJ2* Hence e'af'=0 for every adS. |

Proof Of the proposition. Let T~ be any maximal set of (non-zero) primitive
orthogonal central idempotents of Jt=Im (Mr). Let

—{(A, B)dT'xT~\ there exists Cd-Ji such that BCA X 0},

V(&)={(A, A)\Ad-r}, let o, be defined by o(A, B)=(A, A), t(A, B)=
=(B, B). Thus, (&, V(y), o, t) is a graph. We may identify V(dS) with T.

It suffices to show that the Hasse diagrams of the graphs fx {1,2 ...«
are isomorphic H(dS)"H{T)X {1, 2, ...,«}. Indeed, by means of the given iso-
morphism (p\Im (A/O-Tni (M4), it follows also that H{dS)*"H(A)X {1, 2, ..., «},
hence from Lemma 4, H(T)"H(A). We show that H(dO)"H(T)X {1, 2, ..., n).
By Lemma 7, there is a bijection A T~—K(r)X{1, ...,n}.
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If (A, B) isan edge of with A, BE_ y AXB, there exists C”Ji such
that BCAAO, but there exist no path #/£P(") of length 1 suchthat o(rj)=A,
t(rj) = B.

Let A(A)=(y,i), A(B)=(w,f). By Lemma 8, there exists D=Mf*J( such
that Mk,,,DMk,yO. Since

.0 if XAv or yy w
ejD(w, vie{= ejMf (w, v)et= ep 2 f(0))ei
e n

o(e)=v, <(e)=w

jDMiv t)(y, x) =

then ejD(w, v)ei7i0. In particular, j =i and there is a path QdP(T) such that
°(g)=v, t(g)=w. Moreover, since A(A)A(B) then v-Aw.

Now let g=(zn, zK), with O(Zj) v, 0(z))=Uj (J=1, t(zn=w, iik=v,
wi+1= w. Then (f rj=1, ri).

Let Aj*y besuchthat A{Af)={U, i) (for j= 1, ...,w+I) so Ak=A, A,+1=B.
Then by Lemma 8, there exist C ~Jt suchthat AJ+1CJAj9i0. Thus 3={(An, B), ...

. (A2, A3, (A A2) is a path in & such that o)=A, t(fi)—B. By hypothesis

«=1, showing that (v,w)dH(T), hence (A(A), A(B))=((v, i), (w, /)) is identified
with the edge ((» w),i) of H(T)X{ 1 ,n

Let A(A B)=[fv, w),i). Then | is injective. Finally, we show that A is
surjective. Let ((v, w), i) be an edge of //(/))X{), ..., «}, with v, WEV(T), v w;
so there exists an edge z of T, but no path g of length greater than 1, such that
o(z)=v, t(z)=w, o(@=v, t(g)=w. Let A BdV be such that A(A)=(v, /), 2.(B)=
= (w, |) From Mky MK . Mk tX0, it follows that there exist CdJi such that
BCAw0. In the same manner as before, we show that there exist no path rjdP(@),
of length greater than 1, such that o(rj)=A, t(fiy=B. This proves that (A, B) is
an edge of H($) and also that 1(A, B)=((y, w), i), concluding the proof. |

Corolttary. Under the hypothesis of the proposition, if T, A are combinatorial
graphs satisfying the condition (*) ofthe Lemma 3, then T=A.

Proof. We have F sH(T) H(A)"A. |

We shall now determine which are the subalgebras, of matrices which may be
obtained from graphs, by the above procedure.

n
Let R be, as before, a (commutative) noetherian ring, l=_2|eu where
1=

{ex, ..., €} is a maximal set of orthogonal primitive idempotents.

Let X be aset, Ji(X, R) the A-algebra of square matrices, with rows and
columns labelled by X, with entries in R.

P roposition 8. Let si be a subalgebra of JifX, R). There is a locally finite
graph T such that V(T)=X and .s/=Im(Mr) if and only if si Satisfies the
following conditions:

1) si has a maximal Set V of central orthogonal primitive idempotents.

2) There is a bijection A: Tx{l,...,n}-+y such that if A(x,i)=A then
A(x, x)=e(.
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3 If A, there exist at most finitely many “paths” from A to B, that
is, sequences (A, Alt ..., Am 1, B) such that Afi*y and there exist Jfisé with
AINATN, A2J2A190 ,B J mAm 1730.

4) sé is equal to the set of all matrices C of ,4i(X, R) Such that: if x, yEX
and C(y,x)"0 then thereexists i, I["i*n, anda “path” in sé, from A=A i)
to B=A(y,i).

Proof. Let r be a locally finite graph with V(r)=X. Let sé=Im (Mr),
and for simplicity of notation, let M =Mr. The set "V={Mkyl\Ww"X, /=1,
and the map A defined by A(v, i)=Mkv . satisfy the above conditions (1) and (2)
as seen in the proof of Proposition 7.

If A=Mkvl,B=Mkw if (A, Ax, ..., Am_ 1, B) with Aj=Mkjh is a “path”
of sé from A to B, if Jx, ..., Jfisé are such that ALJIAp™0, A2J2A190, ...

BJmAm 19i0 then, by the proof of the proposition, i=Ix=...=Imx=1 and
since Jj=Mfj (for some ffi-F) there is a path g=(zm ...,z2,z}) in r with

oz)=v, o(z)) =vjx 0=2,..,m), tzm=w

The correspondence (A, AX, ..., Am It B)-~(q, i) is injective, and since r is
a locally finite graph, then condition (3) is satisfied.

Let CMNJ((X, R) satisfy the condition indicated in (4). We shall define a func-
tion fc: P(r)-»R. If x,yEX and C(y, x)—0, let fc(q)=0 for every path 1 such
that ofi])=x, t(rj)=y. If C(y, x)*0, by hypothesis there exists i, I1™i =n and
a “path” in sé=Im(Mr) from A=A(x,i) to B~A(y,i). So there exist
gfi&(r,R) (fory=1,..., m)and vfiX (for7=2, ..., m) suchthat Mk .Mgt Mkx_fi
0, ..., MytMSTMkv fiO. Hence, there exists a path from x to y in r. We

choose one such path rxy. Let fc(hxy)=C(y, x) and fc{fd)—0 for every path
¥ from x to vy, g~rjxy It follows that

Mfc{y, x)= 2 fc(e) = C(y, x)
o(e)=*<(e)=>

hence Cflm (Mr). i

On the other hand, let CEIm(A/rp>so C=Mf with fEJI(T, R). If C{y,x)sio
there exists i,1”i*n, suchthat C(y, x)et=Mfiy, x)efi 0. Hence ( (2) 10M)"®.

o(n)=Xx

Thus, there exists a path f]—(zm,...,z 1), with o(t])=x, t(q) =Y.

Let o(zj)=i>y(for/=2, ..., m), so Mk Mk Mk ~0,...Mk Mk Mk ~0.
Thus there exists a “path” in Im (Mr) from A~M kx( to B{EMky (.

Now we prove the converse. Let sé be a subalgebra of Jt(X, R) satisfying
the conditions (1) to (4).

Let r~ {(x,y)]x, X and there exist i, \*i*n and C”sé such that
Ay, )CA(x, i)j*0}. Let K(T)= {(x, x)|x6X }asX.

Let o(x, y)—x, t(x, y)=y. Thus (T, X,0, t) is a graph. We shall show that
Se=Im (Afr).

Given C£sé, let fc:P(r)-*R be defined as follows. If x,yEX, choose
a path xy such that o(i)=x, t(gq)=y (if one such path exists). Define fc({]xy)=
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—C(y, x),fc(r])=0 for every N fJxy suchthat o(t])=x, t{t)=y. Then

Mfy, x) = . gR:I fein) = c(y, x)
Ny

if there is a path from x to y. If, however, no such path exists then Mfc(y,x)=0,
but also C(y,x)=0 as follows from (4). Indeed, if C(y, x)"0, since Cesi
there exists i, 1SiSn and a “path” in si, from A=A(x, i) to B—A(y,i), say
(A, As, ...,Am 1,B), with AA)=(vj1j for j=2,....m—\, it follows that
lj=i (for everyj) and that rj=((vm_ 1,y), fa, vd, (x,vj) isapathin T from
X to vy, against the hypothesis. Thus, we have shown that C=Mfcelm (Mr).

Conversely, given f : P(r) >R, we show that Mffisi', it suffices to show that
Mf satisfies the condition indicated in (4). Let

ME(y )= 2_fin) * 0,
1(N)=y

so there exists a path y), (vitvd, (x, W) in T. Hence, as before
there exists i, \Si*n, and a “path” (A, A2 ..., A,, 1 B) in si, with A—
=A(X i), B=A(y, /). By (4) MfEsi. |

4. The algebra of invariant functions on a semi-affine graph

We recall the definition of a semi-affine graph (see [1]). A semi-affine graph
is a graph (F, V(F), o, t) such that

1) V(F) is a semigroup with unit element u;

2) V(r) operates at the right and at the left of T, with the following properties:
the operation extends the given operation in  F(T); (w")z=v(v'z), z(w")~(zv)V',
(vz)v'=v(zv"), o(vz)=vo(z), o(zv)=o0(z)v, t(vz)—vt{z), I(zv)=t(z)v (where v, v'd
ever), zer).

These operations may be extended to paths, namely, if {]={z, zXeP(F)
then vA—(vz,,, ..., vz,), tjiv=(z,,v, ...,z).

If moreover K(T) is a group then the graph is an affine graph. In case V(F)
is abelian and vz~zv for every vEV(F), zer, we call it an abelian semi-affine
(or affine) graph.

Every semigroup graph is a semi-affine graph, every group-graph is an affine
graph (see [1] for these definitions).

Let S be a partially ordered semigroup with unit element u, satisfying the
following conditions.

1) u~x for every xeS;

2) if x*y then vxSvy and xvSyv for every VES.

Then the associated graph T(5) is a semi-affine graph, with V(r(S))=S.
It is combinatorial, it has no circuits and for every xe S there is a path i] such that
of*)=m t(ri)—x. If S is abelian then r(S) is an abelian semi-affine graph. If
S is a partially ordered group with above conditions then r(S) is an affine graph.

On the other hand, if T is a semi-affine graph with no circuits and such that
for every x6F(T) there is a path with o(f))=u, I(tj)) =x, then the associated
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partially ordered set (S(r), s) (see §2) is a partially ordered semigroup (with
properties (1), (2) above).

If F is a locally finite semi-affine graph, and R is a commutative ring, let
si=si{r, R) be the subset of S'=S;(T, R) consisting of all functions /: P(T)-»R
such that f{r\v)=f(vr\)=f{r\) for every vfV(F), rjEP(r). In particular, f(v)=
—f(u) for every VvEV(r).

It is easy to verify that si is closed under the algebra operations of scalar
multiplication, +, *; thus si is an jR-subalgebra of S'. Moreover the unit
function e, the Riemann function and the Mdobius function of r belong to si
(see §1).

Proposition 9. If ftsi and f is invertible in S' then the inverse f~x belongs
to si.

Proof. Let g=/_1. We show by induction on () that g(fjv)= g{w\)= g@)
for every VEV(r). It is obvious when I(rf)=0. If t]=(z,,, ..., z9, with n”*I, then

0=e(n) = V'].zzenoq,g(e ) (e)-
But g"~vt]", Q=vrj' with t)=rj"orj’. Hence
0= n=2|"°1’ i) and also 0= e(n) :Jﬁ«»,glhlfu')—
Since g(vt]")=g(ri") when I(rj")*n—1, then from

gvmf(o G+ 2., g(vti")fol) =
It

= g(Mf(o(>i)+ 2 g(nlAn’)

it follows that g(vri)f(o(ri)) = g(ri)f(o(@))-, since f(o(rj)) is invertible, then g(wr])=
=g(ri). Similarly, g(rJv)=g(r]).

Now we shall indicate sufficient conditions for the algebra si to be commutative.

Let r be an abelian semi-affine graph. It is called division-closed when the
following conditions are satisfied:

1) if x,yEV(r) and there exists a path 1 such that o(ri)=x, t(r\)=y, then
there exists VEF(r) suchthat vx=y\

2) if x,y,vEV(r), ifthere exists a path j suchthat o(t])—vx, t(rj)—vy then
there exists a unique path r\, such that o{r\")=x, t(r\')—y, v]' =t].

Proposition 10. If r is a division-closed abelian semi-affine graph then si is
a commutative algebra.

Proof. Let fg£si, let f] be a path of r, x=0(t]), y —t(ri). Then

(f*g)(»/):nzg f(11 gC)m

For any decomposition i7=jj"o»/", let v=o(t]") —t(r]). By hypothesis there
exists y'€V(r) such that y=vy' and there exists a path @ such that o{q%)=u,
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t(e'o)—y' afid tj"—MQ It follows that g"—xq'qis a path such that 0(g")=X,
t(Q")=xy'. Since fast then Kq") KqQ=/(»/)» Similarly, Q'-y'r]' is a path
such that o(g")=xy’, t(g')=vy'=y, and g(g')=g(rj'). This establishes a bijection
between the set of pairs (3, ij') such that o(rj")=1(ij"), ii= ij"oij’, and the set of
pairs (q',qg") suchthat o(g")=t(g"), r/=g'og". Hence

(F9)(n) = 2, f(0")W) =2, 9(<?0/(e) = (g*D)(ri). |

We note that if N is the set of positive integers, partially ordered by divisibility,
then the associated graph F(N) is a division-closed abelian semi-affine graph.

If R is a Q-algebra, we may identify the i?-algebra of arithmetic functions
with the set of all functions /£ sé such that if q,ij are paths of F(N) and
0(9) = o(ij), t(g)=t(i), then /(i)=/(<?)

Indeed, given the arithmetic function /: N-*i? let <p(f)=f- /’(r(N))—R

be defined by /(ij)= K(m)) where o(t])=k, t()=km and n(m) denotes the number

of paths in T(N) with origin 1and terminal m.
Then /(i)=/(i)) for every path ij and rEN; so //.a/. Moreover, if q,ij

are paths with the same extremities, then /(&)=/(i). Clearly f+g=f+g, <P is

injective. Also, (p is surjective: given lot / be the arithmetic func-
tion /(iit)=g((l, m))t(m) (where (1,m) denotes the edge with origin 1, ter-
minal m). If o(t])=k, t(rj)=km, then /(i?)=~ ~ =g((I,m))= g((k, km))= g(ij).

Finally, we evaluate f*g and f*g. If dim let n(m; d) denote the number
of paths from 1to m having a vertex equal to d. Thus n(m;d)=n”""n(d), because

N n) is division-closed. We have:

i A e =VvSO2v.8(™M=r | {/(f) 8=

o(e)=fc
t{e)=km

while

R OO =2 0 2.,,109Q) =
t(e)=km

- f® ;. f® g0
% (m) n(A) d\m @ isavekexof q (?‘Jn(c

= Am rc(m; d) n

kd is a vertex of q
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So
2 f*g(o)= 2 (MM -
0(0)=k o(e)=k
t(e) =krn t(R)=km

Hence if o(rj)=k, t(r)=km, since f*gfsf0 then

= (M M
n(m o(i()g=k

t(e)=km

(note that, a priori, f*g need not to belong to sf0, but it belongs to ,sf).
becomes an /~-algebra, isomorphic to the algebra of arithmetic functions,
if we define the averaged convolution f*g by

(M)in) = 2 (MM -
R

We note also that if N2F-+J, as defined in 82, then I(f*g)=I(f*g).
Indeed

{Hf<g))[k, km] = 2 (g)(Q) = 2 (f*9)(Q) = (Kf*g))[k, km].

0(0()3=k o(c?)zk
t(6)—km t(R)=km

Hence f*g=f*g+Ker (7)fW.
In general, Ker(/)n™ might be different from 0. But Ker (I)C\jtf0=0
because if If=0, then

0=W)[k, km] = 2 /(e) = rc(m)/((/c, km))

6
0(Q)=k
t(e) =km

so ((k,km))—0 hence /(jj)=0, showing that /=0.
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DENSITY RESULTS FOR THE 2-CLASSGROUPS AND
FUNDAMENTAL UNITS OF REAL QUADRATIC FIELDS
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Dedicated to the memory of Laszl6 Rédei

1. Introduction

In a previous paper [7] we have considered the 2-classgroup <6 of the imaginary

quadratic field g (/—bq), where D is a fixed positive integer and q is a variable
prime, and have shown that the structure of Vfé* depends only on the splitting
of g in a fixed normal extension | D of Q.

In this paper we carry out a similar analysis for the real quadratic fields Q{"Dq),
where D is a product of r primes pt,

satisfying the conditions
(1.2) Pi =1 (mod 8), j=+1 for i"j,

and q is a prime distinct from the p, with
(1.3) g = 1(mod 4).

This is a natural collection of fields to consider, since if D is fixed, all the fields

Q(iDq) share (roughly speaking) the same group of quadratic characters (see §2).
Our analysis will show, as in the imaginary case, that the restricted (narrow)

2-classgroup of Q(\rDg) has a quotient #/A<% which depends only on the
behavior of g in a suitable normal extension of Q. As a corollary we deduce the
following theorem of Rédei [10].

Theorem A. Let be afinite abelian 2-group of exponent at most 8. Then
there are infinitely many real quadraticfields whose restricted 2-classgroups f€ satisfy
the isomorphism

HHLF.

The principal motivation for considering this class of real fields in detail is the
interest which attaches to the Pell equation

(1.4) x2—Dqy2= —L

1Portions of this paper are taken from the author’s Ph. D. thesis, written at the University
of Michigan, 1979. The author gratefully acknowledges the support of an NSF fellowship during
the period this article was written.

1980 Mathematics Subject Classification. Primary 12A25; Secondary 12A75.
Key words andphrases. Restricted 2-classgroup, genus characters, Frobenius density theorem,
Pell equation.
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As is well-known, this equation has an integer solution if and only if the fundamental

unit rjg of Q(i~Dg) has norm —L There is an intimate connection between the
value of Norm ¢q and the structure of Wg, which Rédei exploited to give an algorithm
for computing Norm X, without continued fractions (see [11], [6]). Using a simplified
version of Rédei’s approach and our analysis of ~g”~\ we prove the following

density result concerning qq. (The symbol ~-J occurring below is the biquadratic

residue symbol, defined for quadratic residues a of p by #1=1— s
= u(p~D/A(mod /).

Theorem B. Assume D is given by (1.1), (1.2). Let 2T be a finite abelian
2-group of rank r and exponent 4, and let e= + 1. Then the primes g, for which

€qs S' and Norm tlg—e,
have positive density.

The densities occurring in this theorem can be given explicitly (see 85 and the
tables in 86) and turn out to be rational numbers with denominator a power of 2.
This result is an interesting counterpart to a theorem of Rédei [11] (see also [6]),
which asserts that Normi)4= - 1 whenever €gq has exponent 2. Theorem B
shows that in general the structure of alone does not determine the signature
of qq.

From Theorem B we also deduce the following corollary concerning the set
SD of primes g for which the equation (1.4) is solvable, in case the prime factors
of D satisfy the condition

(1.5) for i”j.

Theorem C. Assume that D satisfies (1.1), (1.2), and (1.5), and let 5(D) and
3(D) denote the lower and upper densities of the set SD. Then

Lo {(f) e e

where
0=nt{l~5kr) = .4194....

Hence (1.4) is not usually solvable if D has a large number of prime factors.
This contrasts sharply with Rédei’s result [9] that

x2—Ayt = —1
has a solution for the majority of discriminants A, none of whose prime factors
is =3 (mod 4).

It is interesting in this context that the correct order of magnitude of 0(D)
and 5(D) in (1.6) has been gained through an investigation of m It would be
possible to sharpen (1.6) if the structure of could be determined theoretically
for n=s4. This also raises the question: does the set SD have a well-defined density?
The answer to this question seems to lie well beyond our present methods.
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2. Character evaluation

Let €' denote the 2"-rank of the restricted 2-classgroup €q of Q=Q(\rDq),
i.e.,, the number of invariants of ®q divisible by 2. As in [7] we shall compute
e2,ed4 and es using the quadratic character group X2 of if,. As is well-known [3],
the following r Hilbert symbols form a basis for X2:

Norm o,Dq\ .
2.1 Z,(C):i— T,—qJ' =r-

where a is an ideal of Q, and where for technical reasons we assume

=+1 for 1S iSs,
(2.2
A)y=_1 for s<iSr.

Since there are r basis characters, the 2-rank e2 is given by
(2.3) e2=r.

To compute e4, we let p; (for 14/~r) and g denote the prime ideals of
Q lying above the primes p: and g, respectively. Also, define the map {: {zI}-*-F2
by
(2.4) i(1)=0 {(-1)=1

Then ¢4 is r minus the rank over F2 of the (/"+1)Xr matrix M = (ey), where

iJ UXyfa), i=r+1
From (1.2) and (2.2) the rank of M is r—s, so that
(2.5) ed=s.
Finally, is obtained as follows. The form of M shows that

Xj(Pi)=+1 for 1SiSs and all j,
and
Xj(P,+i-Pr<0 =+ 1 for all j.

Hence there are ideals » of Q (1SiSs+ 1) satisfying
P~Pi, for 1SiS s,
X+ ~ Ps+| e Prfi-

(The symbol ~ denotes restricted equivalence, so a~b iff ob 1—qg) with
Norm §>0.) In terms of the jj, itis not hard to see that

(2.6)

(27) e» = s—Q,
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where g is the rank over F2 of the matrix
M'= (& j(3i) (1S i=Ss+1 1— —9)
(see [7], §2).

In order to compute M' we need a simple preliminary lemma, whose proof
can be found in [7].

Lemma 1. Assume that the ideal

a=qa°{=71P/% =0 or 1,

is equivalent to a square in Q. If a=Norma, and (X, y, z) is a positive primitive
solution of

(2.8 x2—Dqy2—4az2= 0,

then there is an ideal b for which b2~a and Norm b=z.
The computation of M"' is contained in the following three lemmas.
Lemma 2. For 1" i”"s we have

(2.9)

Proof. The conditions (1.2) and (2.2) show that the field Q(fpi) contains an
ideal a of norm —q. Since the fundamental unit of R(fpi) has norm —1, it

follows that the ideal alf=(q) has a generator ¥ with norm where
hi is the class number of R(Vpi). We deduce that

(2.10) 7'2- Pix'2

for some z',x'£Z, by a simple congruence argument modulo 8, and then that
z' is even, by considering (2.10) modulo 4. Thus we have a solution to equation

12 V™2 and 7—22 (Recall that h, is odd.)

i
Hence by Lemma 1, and the fact that Xiiid is independent of the choice of 3;,
we see that

(2.8) with a=pi, x=Pix', y—

XA3) =

using Pi=1(mod 8). Q.E.D.

Lemma 3. For 1=i,j=s and i"j, let by and g~ be integral ideals of
Q{\PrPj) satisfying

2.11 Norm b,, = —— Norm Qj = q.
(2.11) PiP; Qj=q
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Let tjj be an integral idea! of Q(IPiPj) for which (ru, 2Dgr'j)= 1 and

(2.12) byayry~ (113iVj) in  Q(/pipj)-
(As usual, a' denotes the conjugate of the ideal a.) Then if Norm tiJ=riJ, we have

(2.13)

Proof. It is clear from the conditions (1.2) and (2.2) that each prime divisor
of Dg/piPj splits in Q{\'PiPj), so there exist ideals bi; and g7 satisfying (2.11).
Moreover, by the genus theory in Q{\PiPj) and the fact that

=i (for1=1i=y),
we see that by and qj- are equivalent to squares in Q(\PiPj). This is also true
of the ideal (\IPiPj) since
Norm(f'p”), pipj
Pi

Hence (2.12) is solvable, and the ideal buduxfj has a generator t]=z'+x'IPiPj
with negative norm. (Note that i] has the given form since its norm is odd and
PiPj=1(mod 8).) Thus

=+ 1

D . -
rfj= z2'2-p iPjX’
PiPj qrij p iPjX'2

where as before, z'—2z is even. Consequently, (x,y,z)=(pipX',riJ,z) is a
primitive solution to the equation

xi—Dqy2—4pipjZ'i = 0,
and Lemma 1 shows that p,p7~b2 where Norm b=z. We deduce that

Xjizi) = Xj@i3))Xj(3j) = X=)X(3) =

:(7:):

The computation of M' is completed in

Lemma 4. Let d=py...ps, and let b and g denote integral ideals of Q{J/ —d)
with norms

(2.14) Norm 5 = D/d, Normqg= q
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If x is an integral ideal of Q{\'—d) satisfying
(2.15) bagr2~ 1 in Q(V—d),
where (r, 2Dqi')=\, and if r—Norm r, then

(2.16) Xj(h+d = | ~) gy > for 1n 0 =s,

Proof. The existence of b, g and r is proved as in Lemma 3, using the fact
that the Hilbert symbols

Norma. —4d 1
(217) Z » = ("

Pj >’
form a basis for the quadratic characters on the classgroup of Qd —d). We
conclude that

1=j =5,

bgf2—(z+y fAd)
for some z,y in Z, and rearranging the resulting norm equation gives

-Dg?~qg* =0.

Now Dj g is the norm of the ideal pstl... prg of Q, so by Lemma 1and (2.6)
we may assume that 3S+l satisfies

N-%rm 35 = ifz/2, |f z '..S eve,n
S+ | z, if z is odd.

Since all pj are = 1(mod 8), we see as in our previous computations that

*rRra>-£)-(
and this proves the lemma.

3. The field Id

In this section we show that the dependence of the matrix M' on g can be
described by the splitting of g in a normal extension of Q. We first introduce the
following fields. (See the corresponding discussion in [7].)

For each i between 1and s, we let Kt be the quartic subfield of the field
of Prth roots of unity. Then Kt is the unique cyclic quartic extension of Q with
conductor ph and corresponds to a quartic character i (mod pt) satisfying

(3.1) Ma)= U i CE)= L

Moreover, K{ contains the subfield Q(fpi); we denote the non-trivial automorphism
of KJQiyJ) by <.



DENSITY RESULTS 27

Also, for each pair (i,j) with 1Si,]j and i*j, welet Ly be the classfield
over Q(\IPiPj) corresponding to the subgroup of 4-th powers in the restricted ideal

classgroup of Q(fPiPj)- Since this classgroup has a cyclic 2-Sylow subgroup with
order divisible by 4 (by the Rédei—Reichardt theorem [8]), Ly is the unique cyclic

quartic extension of Q(YpiPj) unramified at finite primes. Moreover, Ly contains
the field Q(tfpi, ipj), which is the genus field of Q(VpiPj)- We let Xy denote the
non-trivial automorphism of Ly/Q”pi, Vp]).

For later use we also note the following explicit representation of Ly (for
a proof see [7], Lemma 11). Let ht be the classnumber of R(Vpi), and let py be
a prime ideal of ((fpj) lying over p}. If

(3.2 Pij3 = (Bu), Btj = x+yMpi,
where Norm and x is chosen so that

_ 1+1 (mod 4), if 4y
| —1 (mod 4), if 2|y but 4fy,
then

(3.3) Ly = frj).

In terms of the splitting of g in Kt and Ly, Lemmas 2 and 3 translate as
follows. (The unexplained symbols are Artin symbols.)

Lfmma 5. For 1S/,y‘Ss and i™j, we have

(3.4) 43 = (-N-)4(-1)"- where =of,
and
(3.5) Xjiid = (-£-) (-1) 6,
where e
(3.6) (L.MYpiR)
\Y 4ii

and ¢jj is the automorphism
37) 'LylQifpJju

m hAfpiFj) >

In addition, by—hji for i”j.

Proof. Formula (3.4) follows from (3.1) and (2.9) and the fact that the character
value i) is determined by the splitting of q in Kt. Formula (3.5) follows from

(2.13) and the fact that the term \)ﬁl in that equation equals +1 if and only if

ty ~ s2 for some ideal s in Q(\PiPj)-
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But this condition is equivalent to
LijlQQfpiP))

by (2.12) and the definition of Li}. (Note that the Artin symbols in (3.6) and (3.7)

fix the field Q(/pi, Ypj), and so are equal to 1or 2y.)

Lemma 5 shows that the values Xj(3X for 1=1i,j=s, depend on the splitting
of q in the field Ld which is the compositum of the Kt for I7iSj and the
Lfj for 17i-cj”s. In order to prove a similar result for the values Xj(h+)> we

make the following remarks concerning the classgroup Tfd) in Q(j —d), where
as before d=pl...ps.

We note first that T!(d) has full 4-rank, i.e., has s invariants divisible by 4,
by (1.2) and the Rédei—Reichardt theorem. If X is the group of characters on

T'(d), it follows that every quadratic character in X has a square-root. If X is
the character defined by (2.17), let (G be an element of X for which

(3.8) (for 1 j~ s).

Then (G corresponds (in the sense of classfield theory) to a cyclic quartic extension
Lj of Q(Y—d) inside the Hilbert classfield of Q(Y—d). This field contains the
field corresponding to Xj, which is Q{!—d, Yp]) (by the transference theorem).

Let the non-trivial automorphism of the quadratic extension Lj/Q(Y—d, Ypj)
be denoted by Ij.
We may now state

Lemma 6. Let dj be the automorphism
(3.9)

where b satisfies (2.14). Then Sj=1 or Ij, andfor 1*j~s we have

where

(3.11) or 1

and Uj is defined by (3.4).
Proof. We only need to consider the term {59 in (2.16). From (2.17), (3.8)
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Hence |-*-j=1 if and only if

by classfield theory. Also, both automorphisms in this last equation fix B(V —d, \Ipj),

since _ _
_ Xj(%) = ffi(@) = +1.
This proves the lemma.
Remark. It is easy to see that the ideal group in g(]/—¢) corresponding to

Lj is invariant under the automorphism (/—d-*—\ —d). Hence a theorem of
Hasse ([4], Il, p. 24) implies that Lj is normal over Q.

We note that the field Lj of Lemma 6 may be chosen in several ways. Any

cyclic quartic unramified extension of Q(i—d), which contains Q( —d, M),
corresponds to a character coj satisfying (3.8) and may therefore serve as Lj.
However, the compositum Ad of the Lj (for 1Sj*s) is unique and depends

only on d. In fact, Ad is the classfield over Q (f—d) corresponding to the sub-
group ¢>Xd) of fourth powers in ~(d), by (3.8) and the fact that the jj generate
the quadratic characters of ~(d). Thus Ad is the counterpart to the field Ltj.

We also note that Ad is the independent compositum over Q{y—d) of the fields
Lj, since the characters %j, and therefore also the coj, are independent in X.
Hence

(3.12) [Ad: Q(frd)] = 4L
We fix a particular choice for Lj in

Lemma 7. For 1 i“j, let hi and pu be as in (3.2), and let I, be
a prime ideal of B(Fpj) lying over 2. Set
(3.13) M) = 1J Pij-
15J<ss

where y; is subject to the conditions

(3.14) yt=1 (mod If), Normy,= —(FJ _
i

Then, for the field

(3.15) Li=Q (frd,fii)

is a cyclic quartic unramified extension of Q()'—d) containing Q{i —d, /).

This lemma is an immediate consequence of Rédei’s Satz 6 in [11]. It may
also be proved in the same way as the corresponding Lemma 11 in [7]. Note that
Norm lj—2, so either yf or —yt is =1 (mod If).

We now state our main result, which is immediate from Lemmas 5 and 6.

Theorem 1 Let D and g have theform (1.1)—(1.3), and let €q be the restricted
2-clasSgroup of QI*Dq). Then the structure of '(ij'li| is completely determined by
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the Frobenius Symbol > where XD is a suitable normal extension of Q.

In fact, we may take XD=XDAD, where XD is the compositum of all the fields K,
and Ljj (for \*i,j~r) and AD is the compositum ofall Adfor d\D.

If we restrict ourselves to primes g for which d = px,,.ps is fixed, then clearly
we may replace XD in this theorem by the subfield Xd=XdAd. This greatly simplifies
the computation of densities. Our computations will then require us to know some-
thing about the Galois group of XJQ.

Before computing the degree [Xd:Q], we recall the following fact from [7]

concerning Xd. Xd is the independent compositum over Qd=Q(\'pl, fpA
of the fields K fI*irs) and LtJ(17i<j*Si) and so has degree
(3.16) [Xd: Q] = 2®+2s.

For notational convenience we let Kd be the compositum of the Kh Ad be the

compositum of the Li}, and Qd=Qdy—\).
We now prove

Lemma 8. For the field Xd= XdAd we have
(3.17) [Xd: Qd = [Xd: Qd[Ad: UJ - 20+A

Remark. Since Ad contains \'—d and (77, for each p\d, it is clear that
ndQAd.

Proof. It will suffice to prove the first equality in (3.17), since the second is
a consequence of (3.12) and (3.16). First observe that AdAd is unramified over

Qd, since Lu is unramified over Q(\'piPj) and Lj is unramified over Q(\ —ci).
Hence by Leopoldt’s genus theory [5], and the fact that Qd is its own genus field,
we have

Kd(irl)f]A dAd= Qd

(this intersection is abelian over Q and unramified over Qd). Therefore
[Xd: Qd = [*(171): Qd[AdAd: Qd =

—[Jd- Qd[AdAd: 1A,

and to prove (3.17) it suffices to show that
[AdAd: Qd = [Ad: QdI[Ad: Qd),

We prove the equivalent statement
(3.18) [AdAd: QJd = [Ad: Qd|[Ad: Qd].

Now AdAd is a Kummer extension of Qd which is obtained by adjoining
the radicals YWj (for I1Si'<)Si), Jy( (for Is/~i), and |[/—L (See (3.3) and
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(3.15).) To prove (3.18) we only need to show that a relation of the form
Ceo A .
(3.19) (15i7c§sS IS7igS y)(-i)e A a.,
implies that ay=6;=c=0 (mod 2) forall i and j. We fixa k between 1 and
s and apply to (3.19) the automorphism of Qd which takes to —Ypk and

fixes the other VPt- Multiplying the resulting equation by (3.19) and using (3.2)
and (3.14) gives that

(riRs P7KH) (- 1) bk ff Mok = >

where >k£Qd. But each pj is a square in Qd, while Y—1$Qd. Hence the last
equation shows 2|bk for I*k”s, and so (3.19) gives

(77 =@ Cinfd.

But 2|c since Adn Qd=Qd, and we conclude from Lemma 13 of [7] that
2|Gy for all i and j. This completes the proof.

Using this lemma and what we already know about |d, we conclude_that
I d is the independent compositum over Qd of the fields K*Qj, LQd and L Q,.
Thus the Galois group

(3.20) n &d = Gal (1dQd
has the decomposition
(3.21) 0d= 77 (fiyx 77 Q])x 77 (N>

where the automorphisms <f, Ay, A are extended to Td so as to fix all but one of
the component fields_A',i5d, Z,yEld, LiQd. Since the fields Ki,LiJ,L | are all normal
over Q, andsince 0d has exponent 2, it is easy to see that 0d is contained in the
center of Gal (SdQ). (See the argument in [7], Lemma 15.) This is important for
our computations in the next section.

4. Density results

Before discussing the fundamental unit in Dq), it is convenient to make
the dependence of M' on 1d explicit. Observe that the conjugacy class

fixes Qd, and therefore lies in 0d, by virtue of (2.2). Our remarks in §3 imply
that this conjugacy class contains a single element. Hence we may set

(4.1) 77 titdj n ow,.

where hi} and <& are defined by (3.7) and (3.9), and the integers ,C, are
unique mod 2. The character values //(3i) are then given by
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Lemma 9. |f(4.1) holds, then

4.2) 1™ §,jSs, i j,

where bt is defined to equal bji if i>j.

This lemma is immediate from Lemmas 5 and 6, by well-known properties of
the Frobenius symbol. It gives a 1—1correspondence between the automorphisms
< in < and the (5+1)Xs matrices R=(eu) over F2 satisfying

(4.3) (-1T :(5]‘%9.‘%’ i,j Ss, i Xj.

Our density results will be a consequence of this correspondence and the following
technical lemma, which is easily proved using (3.17) and the Frobenius density
theorem. (For exact details see the analogous Lemma 17 in [7].)

Lemma 10. Lei d=pl...ps be afixed divisor of D, and set D/d=pl...pi
(I=r—s). If ai&d, then the set of primes g which satisfy the conditions

for Isisl-

is non-empty, and has Dirichlet density equalto 2 - © -
The statement of our results requires the following definition.

D efinition. Let d be an integer with s prime factors satisfying (1.2). We
define N(d, g) to be the number of T+ I)X.v matrices R=(fii;) over F2 which
have rank g and satisfy (4.3). Also, 77(1,0)=!.

It is not hard to see that N(d, g) does not depend on the ordering of the prime
factors of d. Since there_is no condition on the last row of R in this definition,
it is possible to express N(d, g) in terms of the number N(d,g) of sXs matrices
over F» which have rank g and satisfy (4.3) (see [7], §6). Clearly,

(4.4) N(d, g) = 2»N(d, e)+ (2s-2«-DW(d, g - ).
This holds for any g between 0 and s, as long as we define N(d, —1)=0.

Now fix a divisor d of D and consider the primes g, for which [-?-) = —1
for p\D/d and P

(4.5) VIV* A C f-sxCis)xC f~e);
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here 0Sg”sSr and Cjtmr denotes a product of m cyclic groups of order n.
Then by the above correspondence, Lemma 10, and (2.7), we see that this set of
. . _(s)_2s_r_! . .
primes has density 2 R N(d, g). Summing over d shows that the following

theorem holds.

Theorem 2. Let D be given by (1.1), (1.2), and let s, g satisfy 0SgSiSr.
Then the primes g, for which the restricted 2-classgroup €q of Q(fDq) satisfies
(4.5) , have a density d(D,s, g) given by theformula

(4.6) d(D,s,e) =2-®-%f*° 2 N(d,Q,
Vid)s
here v(d) is the number ofprimefactors of d.

As in [7], this expression simplifies in case the prime factors of D satisfy

4.7) .y _ for i X]j.
fpija= fpif
In this case N(d, q)=Ng(q) is independent of d, and we have
Theorem 3. |If the prime factors of D satisfy the additional condition (4.7), then

d(D,s, 0)= (5)2"®“X"“r“1iVI(e),
where Ng(q) is given as follows:
(2s—1)(2S 1) ... (2s-e+1—1)

(48) Ns(e) = He(Q-" (e 4)(2tf 1—1) ...(2 —1)
with

9) NO@ = u(e) n (22t+1—1),
and

(4.10) «S+ 4 «-6)/4> Q odd,

«(0) = {(3.2«~-1)2(d+2«~4)/4, q even.

This calculation follows from (4.4) and the fact that for integers D satisfying
(4.7), N(d, ) =Ng(g) is just the number of symmetric sXs matrices over F2 with
rank g. The computation of Ns(g) is given in [7] (see Lemma 18); we quote the
result here since it will occur again in connection with the Pell equation. We have

_ (2s—1)(2S 1—1) ... (2s-e+1—1)
(411) Ns(a) = Ne@Q o y2e 11)... (2—1)

with

(4.12) Ne(g) = 26 g (22t+1—1),



34 P. MORTON

and

(4.13) Ge-1)/4, g odd,

(t2+2e)/4, q even.

We also note that the quantity d(D, s, g) in Theorem 3 is positive. This implies
the following result, first proved by Rédei [10].

Theorem 4. Let ST be any finite abelian group whose exponent divides 8. Then
there are infinitely many real quadraticfields with a restricted claSSgroup ~ satisfying

If the exponent of ST divides 4, infinitely many real quadratic fields have restricted
2-classgroups isomorphic to ST.

The only point to be checked here is that for any r& 1, there are integers D
satisfying (1.1), (1.2) and (4.7). But this is easy to prove using induction and familiar
principles from algebraic number theory.

5. The Pell equation

We are now ready to apply the preceding analysis to the investigation of the
fundamental unit g9 of Q{"Dq). We start with the following simple observation:

the norm of g is —1 ifand only if the ideal u=()/5")=pl... prqhas a generator
with positive norm. Hence we have the criterion

(5.1) Norm tjg= —1 iff u= px...p,q~ 1
We now consider a somewhat weaker condition on the ideal u.
Lemma 11. Assume that (2.2) holds and that the Frobenius symbol
is given by (4.1). Then the ideal u satisfies
(5.2) u~c4 for some ¢
if and only if we have
(5.3) g= 2 bkj(mod?2), for I"jrs.
KAj
Proof. From (2.6) we see first of all that (5.2) holds iff
(5.4) 3i e 33X+ ~ c2a, where a2~1.

Let A be the group of ambiguous classes in T,g. From the form of the matrix
M in 82 itis clear that the characters X>e=>Xs generate the quadratic characters
of X2 which are trivial on A, and are therefore a basis for the quadratic characters
of the quotient group WJA. Hence (5.4) holds iff

(5.5) X;(3i e 3,+i) = +1 for
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But from Lemma 9 and (4.1),

*<>H e o (i t )/ 1l)aJ+cJd =

t*)

ci+ Xb,j

- ( - l ) 1
and this proves the assertion.
Now suppose that the invariant es of Q(\Dq) is zero, so that €q has exponent
2 or 4. Then (5.2) is equivalent to u~1I, and (5.3) (or (5.5)) becomes necessary
and sufficient for Norm i;, = —L Thus in the presence of the condition €8=0,
Norm rlg depends only on the behavior of q in Xd. This observation allows us
to prove

Theorem 5. Let D satisfy (1.1) and (1.2), and let s be any integer with O *s”r.
Then the primes g, for which

(5.6) Q= Clr*9)XC4 and Normqg=-1,
have a positive density, given by the formula
(5.7 d-(D,s)=2-" -2s-r-1 'y N(d,s);
d\D
v(d)=s

as in 84, N(d,s) is the number of nonsingular sXs matrices over F2 satisfying
(4.3) for all the prime divisors Pi,Pj of d.
If ,2>0, then the primes g, for which

(5.8) €q” CE~9)XCis) and Normtlg=+1,
also have positive density, the value of which is
(5.9) dAD,s) = 2. 11~ (N(d, s)—N(d, s))
d\D
v(d)*=s

Proof. Fix a divisor d of D, and let Bd denote the set of automorphisms
of ©d which satisfy the condition (5.3) and

(5.10) rank M' = rank (*_,(3)) = s,

where the Xj(di) are obtained as before from Lemma 9. If = —1 for p\D/d,
then we see from (2.7) that (5™10) is equivalent to eH= 0. Hence the above discussion
shows that (5.6) holds iff

But from (5.5) (which is equivalent to (5.3)), it is clear that rank M'=s iff
the first s rows of M’ form a nonsingular sXs matrix M over F2. Note that
M satisfies (4.3), and that such matrices M are in 1—1 correspondence with the
elements ofthe set Bd. Hence \Bd\=N(d, s) and (5.7) is a consequence of Lemma 10.
Also, (5.9) follows by subtracting (5.7) from (4.6).
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Finally, we note d_(D,s)>0, because for any divisor d of D there is certainly
a nonsingular upper-triangular sXs matrix M=(cij) satisfying (4.3). Furthermore,
if x>0, then setting g=s in (4.4) gives that

N(d, s) Sr2sN(d, s) > N(d, s),

and so d+D,s)>0. This proves the theorem.
As a corollary we obtain

Theorem 6. Let ST be any finite abelian group of exponent 4, and let s£ {+ 1}.
Then infinitely many real quadratic fields have a restricted 2-classgroup isomorphic
to ST and afundamental unit with norm s. In particular, infinitely many real quadratic
fields have an absolute 2-classgroup isomorphic to FT.

The last assertion of Theorem 6 is clear from the fact that the absolute and
restricted classgroups coincide whenever Norm gq= —I.
We now consider the subclass of integers D satisfying (4.7), and we prove

Theorem 7. For afixed D satisfying (1.1), (1.2) and (4.7), let SD denote the
set ofprimes q for which Norm rjg= —1, and let 6(D) and 5(D) denote the lower
and upper densities of SD. Then

(5.11) O<a(r)si(i))ss5(/))si(I
where

, 0JV.W
(5.12) a(r)= 2

e .&+25+r+l

and Ns(s) is the number of sXs matrices over F2 which are symmetric and non-
singular. The function a(r) satisfies the asymptotic formula

(5.13) a(r) ~4(4) * aS rnee’
where
(5.14) e=5 (1-"Lr)=.4194...

Proof. The lower bound in (5.11) is a consequence of (5.7). For summing
on s and noting N(d, s)=Ns(s) (see (4.11)—(4.13)) gives that Norm —
for a set of primes having the density (5.12). For the upper bound we use Lemma 11
and the fact that (5.2) is a necessary condition for Norm gq= —1 (regardless of

the value of e§. Exactly 2(°~)+S of the automorphisms in 0d satisfy (5.3), for
a fixed d, and so the set of q for which (5.2) holds has the density
r/x B)+s

2~s =
sSOW "Q +as+r+l 21
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It only remains to prove (5.13). We do this as follows. It is not difficult to
see from equations (4.12) and (4.13) that

Ns(s) ~ 02<2+sR, as s —
where 0 is defined by (5.14). Setting

_ Ns(9)
W, = 2s™49)2
we have
(5.15) S[Lm ws = 0,
and
5.16 = .
( ) a(r) SEO :y§+r+1 V\X/
If we put
r Ve Vd
25 254+l J lﬂ :
and
517 _ 2°S+ 1h_1(r), if rSs,
6179 0, if r<s,

then (5.16) and (5.17) imply
(5.18) %gr) - A}, CrsWs

Now the infinite matrix (c,) (r,s~0, 1, ...) satisfies the Toeplitz condition for
regularity (see [2], p. 43), since

Z IGl=2Z crs=
and

as r-*oo, for fixed s. Hence by (5.18) and (5.15) we have
. a}r)
ru-r&) b rf\ —0,

which proves (5.13).

Remark. The upper bound in (5.11) holds whether or not D satisfies (4.7).
Thus the equation
x2—Dqy2= —1

is more likely to be unsolvable than solvable, for large r—v(D). This is in sharp
contrast to the results proved by Rédei [9]. (See his Satz IX and Satz X.)
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We note that the proof of the upper bound in (5.11) may be adapted to show
that for a fixed factorization D—D'D", and a fixed choice of e= + I, the equation

D'x2—D"qy2=ez4 (xy)= 1 2)(z,

is solvable for a set of primes g having the density 3\D>22r+L. (Also see [7],
Theorem 6.) In addition, our analysis of rjg may be extended to the Diophantine
equations

(5.19) D'x2-D"qy2=+ 1,

by replacing the ideal u in (5.1) and in Lemma 11 by an ideal U for which
Norm (i=D" or D"g, according as the upper or lower sign is taken in (5.19). For
the sake of brevity we leave further discussion of these results to the interested reader.

6. Numerical results

The explicit values of the densities d(D, s, g), dHD,s) and €) (Z> V) in the
cases r= 1 2, 3 have been worked out and listed in Tables 1—3 opposite the iso-
morphism types to which they correspond. When r=2 and D=pl2, the densities

depend on the value of \_ZI‘II —1 . When r=3 and D-—plp23, there are 4
. \pen ypli
possible cases, corresponding to the number of the values

hy = 1-1 s 3,

which are +1. The columns in Table 3 correspond to these 4 cases, and are indexed
by the vector

y — (PIB/As5H2

For completeness we have also included the values of N(d, g) and N(d, g) in
Tables 4—7.

Note that d+ and are only given for groups having exponent 2 or 4.

In connection with the analogous results in [7], 86, the following remark is
of interest. Let D be given by (1.1) and (1.2) and let d{D, s, g) denote the density
of primes q, for which the classgroup & of the imaginary quadratic field Q(tf ~ Dq)
satisfies

sr Cir~s) X CiQ) X Cis- e).

(All such q are =3(mod4).) Then and d are related to d by the formulas

d-(D,s) = 2-*d(D, s, s),
and
d(D, s, g) = 2°~°d(D, s, ) +(I-2 “-i-°)d(D, s, £-1), gS i.
The first relation follows from (5.7) and formula (6.7) of [7], while the second is

a consequence of (4.6) and (4.4). Setting g=s and subtracting gives the further
relation

0+(As) = (1-2-93(As,s)+j0(As,s-1), S—L1
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Thus the densities in Tables 1—3 may be computed directly from the results in
Tables 1—3 of [7].
Table 1 (r=1)

<<t a a.

c2 14 0 14

Ct 316 1/8 1/16

c8 1/16

Table 2 (r=2)
( (
d a a a+ a
C2X Cj 1/8 0 1/8 1/8 0 1/8
C,XC4 316 18 116 3/16 1/8 1/16
cjxc, 1/16 1/16
cHx c4 11/128 9/128 /64 5/64 9128 1/128
C4xc 8 9/256 364
CgX Cyg 1/25%6 0
Table 3 (r=3)
VIV* d a+ a. a a+ a.

(1,1,1) (-1,1,1)
C2X CoX Co 1/16 0 116 116 0 1/16
C,XC2XC, 9/64 332 364 9/64 332 3/64
C2X C2X ¢ 8 364 3/64
c,xc,xcd 33/256 27/256 3128 1/8 27/2%6 5/256
CsXCtXC8 27/512 156512

C2X CgX C8 3/512 1/256

C,XC4xc, 21/512 7112048 712048 792048 37/1024 5/2048
C4XCaXc8 771409% 93/409%6

C4X C8X Cy 21/8192 5/4096

CgX C8X Cg 1/8192 0

(_li _11 :D (_11 _11 _1)
C.,XC,XC, 1/16 0 1/16 1/16 0 1/16
CgX CgX C\ 9/64 332 364 9/64 332 3/64
CgX C2X Cg 3/64 364
C,XC,XC4 31/256 271256 1/64 15/128 211256 3/256
cgXxcixc8 33512 9/128
CgX CgXc8 1/512

0
C4X C4Xc4 39/1024 73/2048 52048 39/1024 732048 5/2048
CMX C4X C8 4712048 4712048
C4xXC8xc8 3/2048

C8X C8X C8 0 0
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We shall illustrate the preceding discussion with the following example.

r=3 and take

P. MORTON

Table 4
N(PiP2, e)
(P9 - (th)t () (Fihe
1 0
3 6
4 2
Table 5
NiPiPzP*, €)
(1,11 (-L1.1) (-L-I, 1) (-1,-1,-1)
1 0 0 0
7 5 6 6
28 39 38 38
28 20 20 20
Table 6
N(PiP2, €)
(-) (509 VTR 5 ).
1 0
9 12
22 20
Table 7
N(pip23, a)
a1 (-1,1, 1) (-1.-1, 1) (-1,-1, —1)
| 0 0 0
21 10 12 12
154 186 188 188
336 316 312 312
7. An example

D =PiPiP3—41 «241 «617=6096 577.

Let
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Note that

so D satisfies (4.7). In Table 8 we have given generators for the field |1 D. These
numbers satisfy the norm conditions
. D
Norm «»= p:, Normy, - —4;,
1
and are easily seen to generate the same fields as do the numbers jand given

by (3.2) and Lemma 7. (For this note ht—1 in each field O(V/>(). See [1].)

Table 8

Generators for 2'60Mb677
0.j) fiij i V,

1617 + 349/ 4T
2

417 + 49/244
2

477 + 251617
2

(1,2) 129 + 20K 41 1
(1,3) 181+28/41 2

(2,3) 34029+2192/241 3

We next note that 5—1 for each i, in the case d=D, by (2.14) and (3.9).
We claim that StJ=1 as well. For D/piPj splits in Lu, for each pair (/,j), and

the fundamental units in fields 0(/41-241) and Q(/41 -617) have norm —1
(see (7.1) and [6], Theorem 5). Thus we see from (2.11) and (3.7) that H2=£13=1.

However, the fundamental unit in Q(/241 -617) has norm +1. (This is because
617 «52—241 «82=1, which implies that the unique ambiguous principal ideal in

Q{\'241 -617) is the prime divisor of 617, and not (/241 +617).) To compute

* = [LIQ(t2A\ -617))
“ 1 (/241-617) >
we may set
i = (LIQ{\24\ -617)1
. P .
where the prime ideal p3l7=(771+2"241 «617) is generated by an element with

negative norm. Since /123 157 (mod p3%) and f-xT?) = + *>pss splits in  L23
giving A=1. “ 13477
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Now if ~J=+1 for 1S ; 3 and

then the matrix M' is given by

fll A12+1  hi13+ 1

hi2+1  u2+1 bB
AM3+1  bB O3+
LGi+ G  u2+c2 a3+c3,

In particular, M' is the zero matrix if and only if
(7.2)

Equation (7.2) gives the necessary and sufficient condition for the isomorphism
= C8XCB8XC3

and is satisfied by a set of primes having density 1/8192. Also, if

then

U 1lu
and by Lemma 11 (and the discussion following) the equation

x2—6 096 577 qy2=—1
has a solution.
We now work out M"' in the case <7=1321. The residues modulo 1321 of the

Bij and fi are listed below, where we have taken the square-roots 141, }24l, ] 617
to be respectively congruent to 103, 617, 324 (mod 1321).

2 3 &, 71 A B

Residue 868 423 764 288 794 986
Quadratic character

(mod 1321) -1 -1 -1 +1 -1 -1
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Since for each i, we see that
—JIPOARNIN 233>
and
100
,_ 001
M*= 010
100

The rank of M" is 3, and so )
Ny = CAXUAXCA4.

From Lemma 11 it follows that x2—D m1321>2= —1 is not solvable. However,
the sum of the first and last rows of M' is zero, and using this fact it is not difficult
to see that the equation

41 «1321jc2—241 «6\ly2= 1

does have a solution. Thus the unique ambiguous principal ideal in 8 (/8 053 578 217)
is the ideal of norm 41 «1321 =54 161.
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FIXED POINT THEOREMS FOR ORDERED SETS

M. KOLIBIAR

Dedicated to the memory of Laszl6 Rédei

The aim of this paper is to investigate conditions under which each isotone
mapping of an ordered set P into itself has a fixed point. In the case P has a least
element and every chain in P has a l.u.b. the structure of the set of all fixed points of
an isotone mapping from P to P is considered. Most of the results given here were
published earlier without proofs [8; 9].

1. Preliminaries. Throughout this paper P denotes an ordered set (i. e. a set
with a reflexive, transitive and antisymmetric relation or, more simply, S),
0 and / its least and greatest elements (if exist), respectively. The terms least upper
bound and greatest lower bound will be abbreviated to 1 u. b. and g. 1 b., respectively.
Given a subset A of P, denote A*={x£P: a€A implies a”x}, A+={xEP: afA
implies x Sa}. In particular 0*=P. A subset A of P is said to be upper-bordered
in P whenever A*c:A. In particular a chain is upper-bordered in P iff it is cofinai
with a maximal chain in P. A subset S of P is said to satisfy the finite minimal con-
dition if to each Xx£S a minimal element m of S exists such that mSx, and the set
of all minimal elements of S is finite. The interval topology in P is that one whose
subbasis of closed sets consists of the sets (a\={xEP: x"aj and [a)={xEP:
x£a} (for all aEP). A mapping /: P-*P s called isotone (antitone) if xSy
implies f(x)~f(y) (f(x)s/O"), respectively). An element x(P is called a fixed
point of/if /(x)=x. P (f) will denote the set of all fixed points offin P .P is said
to have the fixed point property (f. p. p.) if every isotone mapping from P to P has
a fixed point. A mapping/: P—P iscalled directable [17] ifitis isotone and H (f) =
={xdP: x=/(.v)} is an up-directed subset of P. The set of all positive integers will
be denoted by TV

The following lemma will be useful (see e.g. [17, Lemma 2]).

(C) IfCisany chainin P there exists a well-ordered chain WaC with W*=C*,

2. Statement of the results. A classical theorem by A. Tarski [15] and
A. C. Davis [5] states that a lattice has the f. p. p. iff it is complete. An analogous
theorem for general ordered sets is not known. The present paper deals with some
weaker forms of completeness in ordered sets which are necessary or sufficient for
the f. p. p. The most familiar result is the following [1; 2],

(AB) Let P satisfy the condition

1980 Mathematics Subject Classification. Primary 06A10; Secondary 90D12.
Key words and phrases. Fixed points, isotone mappings.
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(@) I u. b. of every non-empty well-ordered chain in P exists.
Let f: P-+P be an isotone mapping such that afP exists with a”f(a). Then afixed
point o ff exists. Inparticular, i f P has the element 0 andfulfils (a) then P has thef. p.p.

In a specific class of ordered sets the condition (a) is also necessary; there holds
the following theorem (stated in [8, Th. 3] without proof, the proof was given in [14,
Theorem 1.2)).

Let P satisfy the condition
(*) For each (well-ordered) chain Cin P, C* is down-directed.
Then P has thef. p. p. iffevery (well-ordered) chain (including 0) inP hasal. u. b.

In the general case we can prove the following theorems 1and 2.

Theorem 1[8, Theorem 2]. Let each directable mappingfrom P to P have afixed
point. Thenfor every (well-ordered) chain Cin P (including Q, the set C* is not empty
and to each element xfC* a minimal element m of C* exists with m”x. In partic-
ular, the conclusion holds if P has thef. p.p.

Corollary. Let P have thef. p. p. Then to every element xfP there is a mini-
mal element u and a maximal element v of P with «SrS v.

Theorem 2 [8, Theorem 5]. Letfor each subset A of P (including U) the set A*
be not empty and satisfy the finite minima! condition. Then P has thef. p. p.

The condition of Theorem 2 is not necessary as the following example shows.
Let P consist of the chain C of all negative integer in its natural order, and of the
elements o0,a,b where o<a, o<b, and for each nfC, a<n and b<n.
Simple examples show that in Theorem 2 the phrase “each subset A” cannot be
replaced by “each chain A"\ Such a modification is possible in a special case:

Theorem 3 [8, Corollary of Theorem 4]. Letfor every well-ordered chain C in P
(including 0) the set C* be not empty and satisfy the finite minimal condition. Then
every entire isotone mappingfrom P to P has afixed point.

(/is said to be entire if asi/(a) whenever x*f"(x) for some nfN (depend-
ing on av. In particular/is entire if f 2=f)

Remark. M. Benado [2] proved, without using the Axiom of choice, a theorem
which arises from Theorem 3 by substituting “every set” for “every well-ordered
chain”.

Theorem 4 [8, Theorem 1], Let P be an ordered set with O, satisfying the condition
(@) If Lu.b. of a well-ordered chain C in P does not exist then C* is not empty and
every inversely well-ordered chain (including 0) in C* has a g.l.b.
Then P has the f.p.p.

Theorem (AB) is a corollary of Theorem 4.
Theorem 51 Suppose to any XEP there is an element m in max (P), the set of

1 For the case P is finite this was proved using retracts in [6],
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all maximal elements of P, with x*m , and let max (P) befinite. | ffor each non-empty
subset S of max (P), S+ has thef p.p. then P has, too.

Theorem 6. Let P be down-directed and compact in its interval topology. Then
P has thef. p. p.

Theorem 7. Let a V-semilattice P satisfy the condition (*). Then P has the
f. p. p. iff it is compact in its interval topology.

Remark. This theorem gives a correction of a theorem by L. E. Ward, Jr.
[16, Theorem 3]. Counterexamples to the last theorem were given in [9] and [11]. In
[11, 12] another theorems correcting Ward’s result are given.

Theorem 82 Let P contain 0 and satisfy (a), and let f.P —P be an isotone
mapping. Then the set P (f) (is not empty and) has the following properties:

(i) P(f) has a least element.

(i) Iflit. b. ofasubset AczP(f) in P exists then I. u. b. of A exists in P(f).
In particular, . u. b. of every chain CczP(f) exists in P(f).

(iii) If Ac P(f) is upper-bordered in P(f) then I. u.b. of A in P(f) coincides
with that in P. In particular, if a chain Cc P(f) is cofinal with a maximal chain in
P (f) thenl. u. b. of Cin P (f) coincides with that in P.

Corollary 1 Suppose the hypothesis of Theorem 8 is satisfied. Then

(i) Given x£P(f), a maximal element m of P (f) exists with x"m. (A greatest
element in P (f) need not exist even in the case P has a greatest element.)

(ii") Let QMAczP(f). Theset A* ={x£P(f): x"a for all aCA) is not empty
andfor every xEA* there is a maximal element m of A* with x"m.

(Using the terminology of M. Benado [3], P (f) is a complete lower semimulti-
lattice with a least element. But P (f) need not be a multilattice.)

Corollary 2. Let P contain 0 and satisfy (a), and let /: P—P be an antitone
mapping. Then there is sEP such that f 1(s)=s and sSf(s).

Remark. As a special case we get the theorem in [13] which has applications
in game theory (see [13]). In [13] there is supposed that P is a complete lattice and /
satisfies /(V A)= f\f(A) for each AczP.

3. Proofs of the theorems. The following lemmas will be useful.

Lemma 1 Let Y be a well-ordered chain in P and let an element X£ Y* exist
such that there is no minimal element m of Y* with m”x. Then there exists an in-
versely well-ordered chain Z in P such that

(1) yEY and z£Z imply y&z.

(2) y*nz+=o.

Proof. If T*=0 we can set Z=0. Otherwise a maximal chain C in Y* (con-
taining a) exists with no g. 1 b. Let Z be an inversely well-ordered chain with ZcC

2 Part (i) and the particular assertions of (ii) and (iii) concerning chains were published (with-
out proofs) in [8, Theorem 6]. Part (i) and the particular assertion of (ii) concerning chains are con-
tained in [10, Theorem 9]. But the proof of (i) is simple and is therefore included.
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and Z+=C+ (see Lemma (C)). Then (l)and (2) hold («6y*nz+ would imply
that u is a least element of C).

Lemma 2. IfP contains a well-ordered chain Y and an inversely well-ordered chain
Z (one ofthem can be empty) such that (1) and (2) ofLemma 1 hold then a directable
mapping from P to P exists with no fixed point.

The proof can easily be obtained from the proof of Theorem 1.2 in [14].

Lemma 3. Let C be a chain in P and M afinite subset of P such that to each
xf_C, anelementy in M exists with ySx. Then there is an element in M such that
y0=x for all x£C.

Proof. Given YEM, let C(j)={xEC: y=x}. Then C= U {C(>): yEA}=
=C(jo for some ynEM.

Lemma 4. Let f: P--P be an isotone mapping, and let S be a non-empty subset
of P satisfying thefinite minimal condition. Suppose to each x£S a positive integer n
exists with f"(x)S. Then there is a minimal element x of S and KEN such that
fk(X)£S and xSf k(x).

Proof. Let M= {at, ..., a,;} be the set of all minimal elements of S and let tt be
positive integers with fifa~S (/=1 We shall define a sequence bT,b2, ...
as follows. Put bl=al and let b, be such afiM that a~ffbi). Suppose bt, .... bj
were found. Then bj=amfor some a,,f M. We let bj+1 be such an element apof M that

Then br+1=ft"(br) holds for r=1 2, ... (t(r)EN). In the sequence
bi, mmbn+l some two members are equal. Hence i,jEN exist such that i+jSn+]1
and bi=bi+. This follows hQi+ISTA(bi), bi+2tafi(i+1\bi+l) +({+1}A), ...

-1
..., Di=Dbi+I" fs(bi), where 5=J£ t(i+k), which proves the lemma.
k=0

Proof of Theorem 1. Suppose a well-ordered chain Y in P exists such that Y*
fails to have the property stated in the theorem. According to Lemma 1there exists
an inversely well-ordered chain Z in P satisfying (1) and (2). By Lemma 2 a directable
mapping /: P-*P exists with no fixed point.

Proof of Theorem 2. By the hypothesis, PV 0, hence P has a greatest ele-
ment. To prove the theorem it suffices to show that every chain in P has a g. 1 b.
and use the dual of the theorem (AB). Let C be a chain in P and let M be the (finite)
set of all minimal elements of C+*. Since C aC +* according to Lemma 3 an ele-
ment i'f M exists which belongs to C+ Hence y is the greatest element of C+,
and the g. 1 b. of C.

Proof of Theorem 3. According to Lemma 4 there exist xeP and keN
suchthat x A fk(x), hence x"f(x). Let M={x£P: r&/(i)} and let C be a maxi-
mal chain in M. If yf*\C* then x"ty hence xS/(x)S/(j) for all XxEC so that
f(y)fC*. According to Lemma 4 there is an element tEC* such that t” fk(t)
for some k £N, hence t A f(t). If /</(/) then CU{/(i)} is a chain in M greater
than C which yields a contradiction. Hence t=f(t).

Proof of Theorem 4. Let /: P—P be isotone and Q={xfP: x"f(x)}.
Since 0eQ, Qis not empty. Let C be a maximal chain in Q. If 1 u. b. of C exists
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(say c), then for each xdC, rdc, hence rS/(r)a/(c). This follows cS/(c),
/(c)=S/(/(c)), hence f(c)dQ and /(c)6C in virtue of the maximality of C. This
yields /(c)Sc hence /(c)=c.

Let Lu. b. of C do not exist. By the hypothesis, C* has a greatest element
(=inf0). Moreover uf£C* implies xSu for each xdC, hence x"f(x)"f(u),
and f(u)dC*. Applying the dual of the theorem (AB) to the partial mapping f\C*
we get the assertion.

Proof of Theorem 5. Let /: P—P be isotone. Obviously, there is a sequence
(at: idN), Gf€max (P), such that f(ad”~ai+l for each idN. According to the
finiteness of max (P) there are i,jdN such that i-cj and at—a,-. Denote S=
={at, ai+l, ctj-i}. Then f(S+)aS + hence there is xdS+ with /(x)=X.

Proof of Theorem 6. From the hypothesis of the theorem it follows immedi-
ately that P has a least element. By [7, Theorem 2] the condition (a) is satisfied, hence
theorem (AB) is applicable.

Proof of Theorem 7. Let P have the f. p. p. In [12, Theorem 7] there is shown
that the f. p. p. implies compactness if P satisfies the condition

(i) For each adP, the subset [a) is a lattice. But (i) is a consequence of (*).
Indeed, let u, tig[a). Let C be a maximal chain in {u, ti}+, containing a. The ele-
ments u, v are in C* and there is zgC*, zS«, zSr. CU{z} is a chain contained
in {« t}+, hence CU{z}=C and zgC. Hence z is a greatest element in C, thus
maximal in the set {w c}+. Since P is a V-semilattice, z is the greatest element of
{« ti}+. This proves P to be compact. The converse implication follows by the
dual of Theorem 6.

Proof of Theorem 8. The set P (/)+ is not empty and satisfies (a). Moreover
if xdP (f)+ then /(x)"/(c)=c for each cdP(f) so that f(x)dP (f)+m Using
the theorem (AB) to the partial mapping/|P (/)+ we get that/ has a fixed point in
P (f)+ which is obviously a least element of P (/). This proves (i). Suppose a subset
Aof P(/) hasa 1 u. b. in P. If ydA* then for each xdA, x"y thus x=f(x)"f(y)
hence f(y)dA*. According to (i), the set A*(f\A*) has a least element which is a
1u. b. of Ain P(/). This proves (ii). The proof of (iii) is straightforward.

Proof of Corollary 2. According (i), P(P) has a least element s. Since

F1(s))=1(*),
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1 Introduction

We deal here with functional equations of the form

(") 2 ACI3HIy) = | 2, FOION

special cases of which were considered in [1—12] (see also the references in these
works). We will assume (1) to be valid for xE]A, B[, y€]C, DI (say; real rectangles).
We may suppose that

) o Bt5*HA-R) if i,
for else the respective terms on the left-hand side of (1) could be combined into single
terms. Similarly, we may suppose

3 oiiki 20 forall i=12 .., m,

for else, if some t¢ or B(is 0, the corresponding Fi(y)=Fi(Biy) or FI(x)=Fi(ape)
can be transferred to the right-hand side of (1).

It is also natural to assume that plt p2, p,, are linearly independent and so
are ,02 ..., 0,, for else the right-hand side of (1) may be replaced by a similar sum
of less than n terms. We will suppose a bit more, that the pk and also the gk are
L-independent on ]A, B[ or ]C, D[, respectively, which means, for instance for the

gks, that k2_n!1aqu(y)=0 almost everywhere on ]C, D[ implies ak=0 (k=1, 2, ..., n).
Clearly, L-independence implies linear independence.
In view of (2) and (3), we can write (1) as

@ 2 fi(c+ ) = 2 PK(x) ckiy),

where A0 and AjMA; for yVi=1,2, We will first prove, in Section 2,
that f, pk, gk (i=1,2, ..., m; A=12, ..., i) have derivatives of all orders if, in
addition to the above assumptions, /i,/2, mm/, are supposed to be Lebesgue
integrable on all closed intervals (really ft is supposed to be just locally integrable

1980 Mathematics Subject Classification. Primary 39B30; Secondary 28A20.

Key words and phrases. Lebesgue integrable, functional equations, /.-independent, functional
determinant, differentiable, C", linear homogeneous differential equations and systems, eigenvalues,
polynomials.
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on ]A, B[+ /,]C, D). — Then we will show, in Section 3, on the example of the equa-
tion

) /(*my)+ g(*my) = 2 A(*)\iO),

how all solutions can explicitly be determined under the above conditions (including
the Lebesgue integrability of/ and g). As a particular case, we will enumerate for
n=2 the solutions of (5) in Section 4.

General results on continuous or measurable solutions of (5) on topological
groups are contained a.o. in [12]. The present results, on the other hand, are local
and explicit, the proofs elementary. Further, it could be possible to weaken the in-
tegrability condition in this paper to, say, measurability by applying results and
methods of A. Jarai (cf. [4]).

2. A differentiability theorem

Generalizing a method worked out in [5] and more completely in [2], we prove
the following

Theorem L |f, in

@) 2 fix +hy) = 2 Pk()aky)  (xE]A, B[, ye]C, DD,
the functions p p2, and gk, g2, ..., gn are L-independent on ]A, B[ or ]C, DI,
respectively (cf Section 1),

A 0 and f A X for j i—12 .., m

and the f are locally Lebesgue-integrable on ]A, B[ + AJC, D[ (cf. Section 1), then
thefunctions f, pk and gk have derivatives ofall orders (are C°°) on their respective in-
tervals. Moreover, Pi, p2, and also gk, g2, ..., g, satisfy systems of explicit ho-
mogeneous linear differential equations of m-th order with constant coefficients and,
if 0 is both in JA B[ and in ]C, D[, then the f (m~1Xt) are linear combinations of the

pis)(t) and also of the gjf] (i= 42 ...,m; k=12 ..,n5s=01 .., m=—1.

Proot. We first prove that the pksand, similarly, the gksare Lebesgue integrable
on ]A, B[ or ]C, D[, respectively. Since the gks are (L-independent and thus) line-
arly independent, there exist W\ ,vy2 ..., ¥, (€]C, D) such that detgk(yy)*0 (see
e-g. [1], pp. 201—203). Substituting these  fory in (4), we get n equations which can
be imiquely solved with respect to p,(x), p2(x), ..., p,,(X). By the Cramer rule we get

and, sim?larly, the gk.
We now integrate (4) with respect to y (from C*f\C, />]):

) =ig| '-2x aijkfi(x+Xtyf. Since the f are Lebesgue integrable, so are the pk

. _
It (x+xty)dy = 2 Pk £ ok(y)dy,

i=l ¢



IJNTEGRABLE SOLUTIONS 53

then introduce into each integrand on the left-hand side individually new variables
Ajy and obtain

m1il »V n
(6) Z~r f f(s)ds= ZPKWQM
*=1  x+X,C* 4=1

where
t

Qk(®)= I dk(y)dy.

The functions Qk are linearly independent for else there would exist n constants
ak (k=\, 2, n), not all zero, such that

2 akQk(0 =0, ie f \2 akgk{y)dy\ =0 for all t£C, D.
k=1aQ( le. .f 12 q{y)yJ

But then *Z-i akdk (y)=Q almost everywhere on ]C, D[ which, by the ~-independence

of the gk, would imply &*=0 (k=1 2, ..., ri), contrary to the supposition.
Similarly to our previous argument, the linear inde)@igéjence of the Qk and (6)

imply that the pk are linear combinations ofthe x > J fj(s)ds and, since the

X+A,C*

latter are continuous, so are the pk (on ]A, /?)) and, similarly, the gk (on ]C, £).
We now prove that thef (for instance/j) are continuous, too. For this purpose,

we substitute u—x +?"y into (4) and integrate the equation

li(m = 2 Pk<M-hy)gk(y)~ 2 yi[w+(A,-Ai)y],

thus obtained, with respect to y:

n m -
U-C*)Mu) = 21_05 Pk(u-"y)qk(y)dy-iEZC; filu+(" -k Dy]dy.

introducing, into each integrand in the second sum on the right-hand side individ-
ually, the new variables v=u+ — we get

n J m 1 u+(AN—Af)i

() (t—C*)/,(«)= k2:I le Pk(u~kly)qk(y)dy—*2;2 ™ IA)C» M v) dv-

The right-hand side of this equation is a continuous function of u, thus so isf xand,
similarly, allf.
x+Af
However, if all /; are continuous then u-<- J fi(s)ds is differentiable.
X +k, C*
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Thus, applying the above argument again to (6), all pk (on ]JA, B\) and similarly, all
gk (on ]C, £) are differentiable.
Moreover, the pk and gk are C1 Indeed, differentiate (6) with respect to x and

obtain
® i%m| M (xexti)-FHeexte)yxt = =2; Pi(x)Qk().

Since the left-hand side is continuous and the functions Qk are linearly independent,
we get, as before, that the pk and, similarly, the gk are continuous.

Since all integrands are continuous on the right-hand side of (7) and the pk
are CLf is differentiable, and so are allf. Now, from (8) and again from the possi-
bility to choose yj so that det Qk(yj)*0 (the Qk being linearly independent), the
pk are twice differentiable and, similarly, so are the gk. From (7) againfxand, simi-
larly, all f are twice differentiable, etc.

We differentiate now (4) (m —) times with respect to x and j times with respect

toy (y'=0, 1 ..., m) and get

2 f M0cHXiY) 2 pim {*)ak(y\

2 (x+7y) = 2 Pkm 1(x)q'k(y),

2, XT-VPKx+ity) =, 2 P(X)ai"~1GO,

2, ATfirm)(x+ily) = 2, Pkix)gkm){y)-

It follows from this system of m+ 1homogeneous linear equations in/” (x +X%), ...
mmflm)(x + Xy), lthat

n

11 .1 2 Pm(x)akey)
n

A K w2 PrD)(x)gk(y)
n

XT-1 23 . Al & PKOOGim~1)(y)

am n k=1
XT xm - 2, Pk(xajeny)
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that is,
kZ1 PI<m)(x)qk{y)~A,k_£1 PPm~1)C*)qi 00+ —
)
oot (-hm-1am 2 PK(X)gim)(y) = 0,
k=1

where each A(is the determinant of the (m+1)Xm matrix obtained from

1 i ..1"

A A e A

Ar A?. =K,

by deleting the i-th row, and hence

X A2 .. oA, I | 1
Al= AL A = 3AmA( Az *Am
k A"..AS R B L Ao
— AjA2ee AN = AXaz .. |’\i'175m A A O.
Since qu g2, ..., g, are (L-independent and thus) linearly independent, there again
exist  y2, (€]C, Z¢), such that detgk(yj)*0 (k,j=1, ri). Substituting
these yj into (9) we indeed obtain
(10) PImM(x) = 2 2 akj,Pjs)(x) (k= 1, ..., n).
j=15=0
Similarly, the gk(y) satisfy
(11) gimO") = jélsz_lolbkj 0is)0) (k = 1, n).

Remark. Substituting (10) and (11) into (9) we obtain

n n m—1

NZ 22 WIS TY)-A, 2 v ) (RIGKO)+

o+ (-Dm ?Am_lk%I Pk(x)gq[m u (y)+ (- Dm IAmfg=Ij%Is§o bkjsPk(x)qi) (y) = 0,

which can modify the systems (10) or (11).

In order to express // m 1) with the aid ofplg) or gqls) (s=0,1, m—L;i=1 ..
k—1, ..., ri), we differentiate (4) (W—1—) times with respect to x and / times
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with respect toy (1=0, 1, ..., m—1) and get

= 2 im HX)ak(),

2°H fam 1(crAiy) =2 Pim- 2(00'k(y),

2 W-*fm Hx+Xiy) 2 PKOOGIM 20),

m

2K ¥ L(x+ =2 Pk(x)qkm1)(y).
a1
By setting here y=0 or x=0 it follows that

n m—1
[,<—»(*)= kzzlszo *ikspls)(x)

and
n m—1

/> -1)AJ))= 2 2O RiksVkHy),
k=1s=
respectively. O

3. The equation (5)

In this section we consider the functional equation

() fx+y)+g(x-y) =2 p.(x)ai(y)  (xf]A, BL yE]C, &

We can improve in this case Theorem 1 in the following way.

Theorem 2. Let px,p2, ...,pn and ql,q2 mmq,, be L-independent on ]A, B[
and ]C, D[ (where ]JC, D[ contains 0), respectively, f and g Lebesgue integrable on
JA, B[ +]C, D[ and JA, B[—]C, £+, respectively, and (5) satisfied. Then f, g, p1, p2 ...
oty Pasy OX%, 02,..., gnhave derivatives of all orders and px, p2, ..., pn and also gx, g2, ...
..., 0,, satisfy systems of explicit second order homogeneous linear differential equa-
tions with constant coefficients withoutfirst order terms, whilef-\-g andf ' —g' satisfy
linear homogeneous differential equations of order 2n with all terms of even order.

Proof. It is a consequence of Theorem 1 that all functions in (5) are C™.
Now differentiate (5) twice with respect to jcresp. y and get

I n
(12) 2 p"(x)afy) =f"(x+y)-\-g"(x-y) = 2 Pi(x)q'((y).
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Again, since gx,...,qk are linearly independent, there exist ylt...,y,, suchthat
detgk(yj)*0. Putting these yj into (12) we get

*gl Pi (*)Q(T)) =i:2I Pi @991 O';) o=1..n.
Thus we have, again, n linear equations for p"(x) (i—1, ..., ri), whose determinant is
different from 0. Therefore each p"”(x) is a linear combination, with constant coeffi-
cients, of pk(x) (k=1, n)

(13) P00 = 2 aikPdn)  (i=1,.... 1)

Similarly, also the gk satisfy an explicit system of linear differential equations of
second order with constant coefficients and without first order terms, as asserted.
As to/ and g, put y=0 into (5) in order to get, with

P=f+g
and with cQj=qt(0), the equation

(140 4>(9) = 2. CO.iPi(x).
Differentiating this equation twice, we have
*"(x) = Zc0iP"(x)
i=1

or, using (13) with cM:= 2 cojak {k=\, ..., i,
j=i

(14, P09 = 2 1Ci,iPi(x).
Similarly,
(14)) RAK) = 2 Pk 0 =0,..,),
1=

in particular,
(14.-) PV (x)= I2_1Cn-l.iPi(x),
(14) <P™(X)= 1zzgn.iPi(x).

There are two cases. If detC;(I=0 (y'=0, ..., n—1; f=I, ...,w) then, from
(140, (14), (14,, ), there exist a0, a,, ..., ,, hot all 0, such that

2 Gi$)x) = 0.
j=o0
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If, on the other hand, detc”""O thenplt can be determined from (140,
(14)), ..., (14,,_9 as linear combinations of <® 4, ..., 2" a>so that (14,,) goes over
into

(15) R ="2a (.
J=0

In both cases <Psatisfies a homogeneous linear differential equation of order 2n
with all terms of even order and with constant coefficients (not all 0).

If we differentiate (5) with respect toy, put y=0 and follow the above proce-
dure, we get a similar equation for f'—g'. O

As the reader may have noticed, the result in Theorem 2 about the pk (and also
the gK), that they satisfy explicit systems of homogeneous linear differential equations
with constant coefficients, corresponds to the statement in Theorem 1 that they
satisfy such m-th order equations. But there is no equivalent in Theorem 1 to the
absence of first order terms in those equations as stated in Theorem 2. This returns
if we step over into the complex field and have /,=r) where s=e2im is an m-th
root of unity: then the derivatives oforders 2, ..., m—1 are missing in (10) and (11).
In this case we have also an analogue of the last statement of Theorem 2: thefunc-

tions 45= IZ_i fjif @& satisfy homogeneous linear differential equations of mn-th

order with constant coefficients, having only terms of pm-th order (p=0, 1, ...,»).
Now we are going to give a general form of the integrable solutions of (5).
(For other results on (5), see [2,10—12].)

Theorem 3. Suppose that the functions f g are Lebesgue integrable on
JA, B[+]C, D[, and JA, B[—]C, D[, respectively, and suppose that the functions
pk, and also gl,...,qn are L-independent on ]A, B[ or ]C, D[, respectively.
Then all solutions of the functional equation (5) for x£\A, B[, yf\C,D[ (with
0£]C, D[) can be written in the form

2 m nk—l 2N

fix) = Z 2 2 AH/xi*-»'-1"* ’
ix) Xi%-» +12=OB)X'

1=1 k=1j=0

2 m nk—1 2N
22,2, Aot 2B)%,
= j=

1=1 k j=

9(x)

5N

(16)
2 m k- 2)v-1

Pi(x) = Z. k=21-=20 AIIg'Xje(—]>|—IW*X+_=ZO Boxj>

n.—I 2/V-I1 /

2 m -1 \
) = 2,22 Ayden iz By <1 L 2 =

0
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where the nk, A and in are integers satisfying

(17) Znk+tN=n

i1 = o).
k=1 Vi /

The wk are, in general, complex nonzero constants, and the constants Akj, Afkj, B)
and B'ij satisfy

1'ﬂ(l) - I%AI!OJ%E)U » %— I;a ’ji}k<0 A”:os_/ 0= 1,2, k = l, ooe m),

[™ )ai‘me (-1y ("] A =
(/=1,2;;=01, ..., A; AT= 12 ... 1, fc= |, m),

Yo Al el Y AL al3-1 )
.27 *x i K%k *x N
ERLEEE

(/=12 pg=1..nk- 1, p+g>nk- 1, k=1  m)

18 2 AlpA\E-1=0
(18) 2 AP

2

i=I
/=12, p=01 «—1 q9q=0,1 ns—1; k, s= 1, m; k * s);)
§|/M , =1|:1A*k/ B\s=0
(/=212j=01...n*I; t= 1 m; s=0, 1 2/V-1);

"” f : —_ )
0i+R02= 2"M o, K> [RI,+(-iyBx,] = 121

0 =01,.., A, N=12,..., 20V—1),

2()R(2». k odd (k=X ' 2N-\),

B2A)+ B@2N) “ 0, 2 B}2N-kBik ~
0, k even

2 B/pRiv,A0 (p,g=2 ..., 2/V-l; p+q>2N),
1=1
Aot are otherwise arbitrary, and conversely, all systems offunctions of the form (16),
w7 (17) and (18) satisfy (5).
The proof of Theorem 3 may be obtained from the following two lemmas.
Lemma 1 Under the conditions of Theorem 3, all solutions of thefunctional equa-
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tion (5) can be written in the form

f 2 \
ix) =272 ZP\lix)e(-v
) ==1k=1 Je(

2 m
g(x)= ﬁlkz:lPl‘(x)e" 18 X+ HIN(x),
(19)

=1k=1
2 m
1= k=I

where the Pk (x) and Pfk(x) are polynomials ofdegre (nk~ 1), the H{N(x) and /// 2V j(X)
are polynomials of degree 2N, 2N —I, respectively,

m

(17)

and the w* are, in general, complex nonzero constants.

Proof. By supposition, the functions pKk, and also gl, .... g, are linearly
independent and, by Theorem 1, the functions f ¢, pt,q, (/=1 n) have deriva-
tives of all orders.

If we differentiate (5) with respect to x and y, we obtain

n
(20) [ (x+y)+g'(x-y) = 1le pi (x)<7icom)
and

n .-
(21) f'(x+y)~g'(x-y) = Z Piix)ql(y),

respectively.

On the other hand, by Theorem 2, the pt satisfy the explicit system (13) of second
order homogeneous linear differential equations with constant coefficients, without
first order terms.

Suppose that wk are nonzero eigenvalues of multiplicity nk of the matrix (au)
(k= 1, ...,/«) and the zero is an jV-fold eigenvalue of the matrix (aff), then, from the
theory of systems of homogeneous linear differential equations with constant coef-
ficients, the general solution of (13) can be written in the form

(22)  Pt)= Z pUMewx+p%(de 1+ 7/tn-i(x) 0=1, ..n).

where the P.i are polynomlals of degree (nk—l) and the HKs-1 are polynomials
of degree (2N—1) (/=!, 2; i=I, .., n; k=\, ..., m), and
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When zero is not an eigenvalue of the matrix (ay), namely N=0, we define
H I-x(x)=0.

In order to determine/ and g, we set y=0 in (20) and (21), and apply (22), so
that we obtain

/'(*) = 42.— 121 kPiW +APiWI :f |Z fatl(x) *y W\Z(x)e— X]+A ,(X)
= c=

and
1
g'fa) = T lglufan (*)-&Pi(*)] = fcz:rln [Pkl (x)ewkk + n12(x)e~WeJ+ hIN_1(x).

By integrating these equations with respect to x we obtain

(23) f(x) = I(Z:ml[Pll(x) "+ Pi2W r", 1 +/11,(X)
and
(24) g(x) = I(1_1[Pf(x)evv**+ Pf(xA*A] +7/,.(x),

where the Pgl are polynomlals of degree {nk—1), the HENare polynomials of degree
2N {s,1=12; k—1,.

Substltutmg (23) and (24) into (5) and setting x=x; (=1, ...,«), such that
det Pifxj)*0 (it,y=1, ..., n) (such xy exist because of the Imearlndependence ofthe
/7%), we obtain

(25) qfy) = *Z_mI[Pfiiy)e’\y+P}IQiy)e—W\]+H?2Niy) (i=1..n),

where the Pfk and Pj2are polynomials of degree («*—1), the Hf IN are polynomials
of degree 2N.
We now show that the H 2N are polynomials of degree 2N—L In fact, let

H2Nix) = HIN-xix) + a\2Nx~N Uu=12
Hf,2Niy) = Hux-i(y)+al2\y 0 = Uee>"),

where the H2\~i and Hft2N- x are polynomials of degree (2iV—l). If we substitute
(23)—(25) with (26) into (5), we get for the coefficients G(2N and a2 of x2Nand y2N

(26)

i@vy+ 0@V — 0
and
n

O@v +aeN) = __2I al,2NPi(X)-

Since the pt are linearly independent, a22N=0 (f=1, ..., ri). Thus, it is also possible
to write (25) in the form

@7) afy) = 2. [P<(y)*y+n 2yle=~T+HIm xiy) (i=1...n). O



62 J. ACZEL AND J. K. CHUNG

Lemma 2. If we introduce, in Lemma 1,

o8 Pk(x) = 2=O Aljxj, Pffix) = j2=o AijXJ,

2N-1
H'n(x) = 2 PjXJ HU-iCx) —_20 KxJ ¢,.1=1,2)

then thefunctions (19) with (28) satisfy (5) if, and only if, the constants Alf Afkj, B]
and B\jfulfil (18).

Proof. We substitute (19) with (28) into (5):

2 mrk—4 N
1_1k2_|J2=OAIj(x+yye" "\/\+y)+j=20 Bfix+y)j+
2 mrk4

N
+2 2 2 Al{x-yyer '-1"-y)+ 2 Bfix-y)j =
£ 225 J{x-yye y) j 2 BIiX y)i

nr 2 m nk—1 2N—1 t

= 21 B jRo A NI Y g BEXX

r 2 m RrRs—1 2N—1 +
X\2:|s |J§ MAr y jle<-» 1s>w]2 ijyb\
that is,
2 m nk— m
2k2I NOoH)\V- :D—I‘ﬂ:—l‘)-l-IZ k2I 2 Afflx-yye’\' Noy)+
1=1 k=1j=0 =i =0
2N 2N )
+j%o BXXW)JT:% Pfix-yy =
n 2 m m nk—1 ns—1
= 2 2 2 A S T T B
i=1li=1 fe=1 s:|j\:0 j2=0
«2mm «&32rrs43
(29) +.2 2 2 2 2 2 AjjIAN2 XN N DN )+
i=l 1=1 k=1 s=1j\=0 y2=0

m nk—1 2N—1

: 2 2 2 AijBbJdy’et-w-""%<+
i=1 1=1k=I1j=0 s=0

, ufiL ~e(-1)Mv +
=0 s=0
« 2(V-1 2N—1

+2 2 2 BfiBfix iK
i=1]0, 1 ji=o



INTEGRABUE SOLUTIONS 63

All terms of (29) may be divided into the following five types:
1° The terms containing Akgjij2xJiyJ ei~1),~1(Wx+w"y).
2° Theterms containing Blgj iJtx JiyJ* Wy
3° Thetermscontaining AkjsxJy3
4°  Thetermscontaining BkjXsy Jei~1)~'wfy.
5° Theterms containing B}ijtxJiyJ.

Due to the fact that the functions contained in i° are independent of those in
° (i5=sjr=l, 2, 3, 4, 5), the necessary and sufficient condition for (29) to hold is that

the sum of each of the five types of terms just mentioned should be equal on both
sides of (29).

For type 1, we have
2 mn
Al (x +yye<1)-Iw* x+y) =
21R=1f=0 B (x+yye<1)-Iw' x+y)

n 2 m mrk4
= i4 1214 &0 32, AN AR lyhe(" I x+VY)

which is possible only if
m nk—1
k2112_ Al'jix+yyé-»'-""*y» =
n m m nk—1 na—1

= & k=0 %o Mot VLY M) (2= 1.2).

It is easy to see that this implies
. 1 \M\ — . ARTL
AO— ¥ Aot Y\ A= Ak AR

(/=1212,j=0,1,....M; M= 1, nk—1; k = 1, m),

(30) i - 0
(/=12; p,g=1, n—; p+q>nk- 1; k=1, m),
n
o b -
I%"?ﬂp’*?sql g

(/=1,2;, p=0,1, n*-1; qg=0, 1, n,-l1; k,s=1, m\ k ~ s).
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For type 2, we have
2 mrk—4

lgl k2=1 jgo ==

n 2 m m nk—1l ns—1
=2 2 2 2 2 .
i=1i=1| fc=1S=1Jt=0 ij=0
which is possible only if
Afb—iZI AlAalo \ ( 1 1 ARME _2I AiluHAIK 1
= i=

M; M= 1 ..,nk- 1, k=1, m),

(/=1%2j=01,
2 AHPAh*-1= 0
(31) =
(/=1.2; p,g= 1, nk-1; p+a>«*-1; k=1, m),
2.4~ "' =0
=1

1, ..., nr, kK™ os).

1=12,p=01, nk—1; g =0,1, ..., ns—1; k, s

For type 3, we have
2 mnk—12V—lr n 1

2 22 2 24 1Jif,UW-1)-Iv =o
1=1 f=1j=0 s=0 *=i J

which is possible only if
(32)
@Z=12;7j=01, ..., «*1; k=1 .., m s=0 1  22ZV-1).

For type 4, we have
m nk—1 2V—1r w 4

2
1:21éu:20 5:20 L;=1 j =0

which is possible only if
# Ao

(33)
(/=22j=01 nk—1; k=1 .., m; s=0, 1 ..., 2iVv—I).
For type 5, we have
v n 2/V-l 2v—
(34) 2 [Ol(*+Ph+B)(x-yyj= 2 2 2 Bt Bhx“y=,
J=0 1=1j,=0 j2=0
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which holds if and only if the coefficients of xJiyJ*(j\,j2=0, 1, 2N) of both sides
of (34) are equal.
For the constants we obtain

(35) B\+Bl= ZB]0BX.

For the coefficients of xM~JJ, we have

PJf) [Sir+(-iy "] = 2 Bj.M.jBfj

(36)

0=0,1, M= 1 = 2iv-l).
For the coefficients BLiN) and B\w) of x2Nand y2N we have
37 A2V)+M(2\) = 0.

For the coefficients of x 2\N~kyk we have, in view of (37),

@) 2 BliNkek — (2 B2 kodd g oy o gy,
=l 0, k even
For the coefficients of xp/q with p+g>2N, we have

(39) ZP}.B?29=0 (p.g=2,3,..2N-I; p+q>2N).

This completes the proof of Lemma 2, by (30)—(33) and (35)—(39). Thus Theo-
rem 3 is also proved.

4. The case n=2

For example, we consider the functional equation
(40) f(x+y) +g(x-y) = Pi(x)al(y) +p2Ax)q2(y),
where the functions pt, p2and gx, g2are /.-independent on the open intervals ]A, B[
m
and ]C, DI, respectively. Because of l2_l nk+N=2, cf. (17), we have only four cases:

I. nx—n2=1, N=0; Il. nt=2 N —O0;
IHl. ni=N= 1; iv. N =2,

By Theorem 3, the general solutions of (40), wheref, g are Lebesgue integrable
on ]A, B[+]C,D[ (and (j)I, P»), (92 qt) /.-independent), are

I. fix) = AlkeVix+ A\ -wix+ A}fewx+ Al?e-wix+ B,
g(x) = Allewix+ Al2e~wix+ Adewx + Al2e~wx—B,
Pt(x) = A}}ew*+ Af}e~wi* + Aliewx+Afie~w,
q,(y) = Aftleniy+A}?e~wiy+Afk'wy+ A ~wy, (i = 1, 2),
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where

where

where

and
V.
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AL A3-11, M) 43-11 Al s=k,
12K 3128 O, S k’

. s —Kk,

A AYS - Al diad 2 0 S k

(=12 sk=12);
I (a) —(Al1+A\IX)ewk+ (Al2+ A\2X)e~wx+B,
g(x) = (Al1+AlIX)evk+ (Ao2+ Al 2x)e~wx-B
Pi(x) = B+ "(-ix)evx+ (Ap + ,4p X) e~WF,
= (Afi+Afly)ewy+ (AlS+A}}y)e-w, (i = 1,2),

4« 43-1,1 | 4» 43-1,1 _ 41!
e RaN o) I SI20720 = -~0 >
! Ny Z —1 —
AOWD * 17O ' —Sio?
iz .a3-1,1 i AH  aS$—11 — JJ/
I12,1-jS12j — Sil
41' 43-1,1 1 411 43-1,1 _ 41! 41,3-1 1 411 41,3-1 _ A
11~ 11 e 21 — N 11711 r~"21 /%21 — u?

0=12j=01);
/(a) = /lllew+"]2e-H:+
g(x) = N 2eVI+ * 26 -wWk+ 55+ 5 fx -5 2
Pi(a) = " lewk+ /(2e“ 4 X,
iiGO = Afer+Afe-*+BI+B"y, (i=12),

411 43-1,1 411 411 4]r,3-l — ALl
12 -72 1 T

1 421
2 = 5 41~ B

Waitdt — i
A"Bfj+A"Bj = =0,
BwB\n+B\nB>= Bl+B2,
B\,\-j Bfi+ B\X jB\j = Bl+ (-1) 3BlI,
B\Ba+B\L8I, - AB\,

€=12;j=0 1)

f(x) = BI+B\x+BIx2+B\x3+B\x\
g(x) = BI+Bfx+B"x2+B%x3-BIx*,
Pi(x) = Bio+Bhx + Bhx2+ B}3x3
gi(y) = BO+Bly+Bly2+B%y\ (i = 1, 2),
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where
B\+BI = BlvBIv+BloBl«,

(")[~+ (—yBSl = Blm_jB\j+BIm_jBIi}
0=0,1 M= 1,2,3),
864 - B\3Bjl1+BI3BI| = B Blz+BIBI,,
BABlz+BIA =B\tB\s+B\2Blz =
= BlzBli+BlaBtz - B\2BIt +B\zBI3= 0.
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NON-HEREDITARY SEMISIMPLE CLASSES OF NEAR-RINGS

G. BETSCH and R. WIEGANDT

Dedicated to the memory of Professor L. Rédei

1

Much effort has been done to prove the hereditariness of certain concrete near-
ring radicals. In this paper, however, we shall show that in many cases the semisimple
classes of Kurosh—Amitsur radicals of near-rings are not hereditary. In particu-
lar, the semisimple class of a subidempotent radical R is never hereditary, provided
that R contains a O-symmetric near-ring AVO.

The recent results of [7], [8] and [9] gave several characterizations of radical and
semisimple classes and of radicals with hereditary semisimple classes for B-groups,
in particular for O-symmetric near-rings. The purpose of the present paper is to study
the special features of the radicals of near-rings.

One of the classical results of the radical theory is a consequence of the Ander-
son—Divinsky—Sulinski Theorem [1] stating that every semisimple class of associa-
tive or alternative rings is hereditary. In [2] Gardner has proved that in the variety of
not necessarily associative rings a semisimple class is hereditary if and only if the
radical property depends only on the additive group structure. Gardner’s result
means, in fact, that the usual radicals have never hereditary semisimple classes in
that variety. For near-rings Kaarli [5] has proved that the radical is a Kurosh—
Amitsur radical with a hereditary semisimple class. Moreover, by Holcombe and
Walker [4] and Holcombe [3] is a hereditary Kurosh—Amitsur radical for O-
symmetric near-rings with hereditary semisimple class. A recent attempt for studying
Kurosh—Amitsur radicals for O-symmetric near-rings is to be found in [11], claiming
that the semisimple class of a radical class need not be hereditary.

Our aim in this note is to prove the non-hereditariness of semisimple classes in
many cases. At first we shall construct a near-ring F(A) for each near-ring A and
using this construction we shall prove that certain semisimple classes containing
zero-near-rings and satisfying some additional requirements, are not hereditary.
Thus, for instance, if R is a hereditary radical of abelian near-rings containing a non-
constant near-ring A such that every homomorphic image of the zero-near-ring AQ
is R-semisimple, then the semisimple class is not hereditary. Further, the semisimple
class of a ,subidempotent radical class containing a O-symmetric near-ring (VO),
is never hereditary. Also it turns out that radicals of near-rings with non-hereditary
semisimple class are abound.

In what follows we shall work in the variety of all near-rings and we shall adopt
the notions and notations of Pilz’s book [9]; a near-ring, therefore will always mean a

1980 Mathematics Subject Classification. Primary 16A76; Secondary 17A65.
Key words andphrases. Kurosh—Amitsur radical and semisimple class, subidempotent radical,
lower radical.
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right near-ring. For a near-ring N its additive group will be denoted by N + Further,
N° will stand for the zero-near-ring built on N + by the multiplication ab—0 for all
a, bEN. The set

Nc= {aEN: a0 = a}

is the constant part of N. If N=NG then N is called a constant near-ring. The set of
all additive commutators of xdXQN and y*"YQN will be denoted by [X, T],
Further, JcN means that 7 is an ideal of N.

A class R is called a radical class (or briefly a radical) in the sense of Kurosh
and Amitsur, if

i) R is homomorphically closed,

ii) R(A) = Z(f<iN: 7ER)6R for every near-ring N,

iii) R is closed under extensions, thatis, 7cN, 76R and N/76R imply T\6R.

As usual,

SfR = {N: R(N) = 0}

will stay for the semisimple class of R. A class C of near-rings is said to be hereditary,
if 7<iAEC implies 76C. As is well-known, a radical R is hereditary if and only if
R(7)3R(iV)n/ for every ideal 7 of every near-ring N. Moreover, the semisimple
class £FR ofaradical R is hereditary if and only if R(7) £ R(A) Ri7 (cf. [7] Theorem 1).
Pilz [10] calls a radical R hereditary whenever R(7)=R(Anfl7 holds for every
ideal 7 of every near-ring N. Thus Pilz’s notion of hereditariness means the heredi-
tariness of both classes R and ,9R. In the sequel we shall use our notion of heredi-
tariness which is in accordance with the usual radical theoretical terminology. For
more details concerning the fundamentals of radical theory we refer to [13].

In order to prove the main results of this paper (the Theorems and their Corol-
laries), we need only the 0-symmetric versions of the construction F(N), and of the
Propositions.

2

For any near-ring N let us consider the cartesian product r(N)=NXNxN
and let us define an addition on F (N) componentwise and a multiplication by the rule

(@bl Ci)(a2, b2, @ —(®iCi2, CiC2a2 0, 0).

Obviously, r(N)+ is a group and a straightforward calculation shows that the mul-
tiplication is associative. Looking at the right-distributivity we have

((«l, bx, cD) +(a2, b2, cl)(a3, b3, c3 =
= (ai+a2, bi+bi, G+ CKss, b3, c3 =
= ((«1+a3a3, (c1+chc3a3-(c1+c90,0) =
= (dia3bR2a3>Cic3a3+c2c3a3 c20 ¢'O 0),
(fli, blt cJias, b3, c3+ (a2, b2, cA(a3, b3, c3 =
= (uxda, GGs-CjQ 0)+ (a2, aac2c3a3-c 20, 0) =
= (uja3-fa2a3, GC3a3 c+0Fc2c3a3 c20, 0).

and
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If [NG =0, then —D+c2c3a3=c2c3a3—c0 and if [MG1VJ=0, then
cD+ CjO=c0+ gO. Consequently, if WG NJ=[NG N3J=0, r(N) has become a
right near-ring. Let us remark that fA\Vc, N3=[NG T™]=0 is satisfied whenever N
is O-symmetric or abelian. Furthermore, if N is O-symmetric or abelian, then so is
r(N), but r(N) need not be a ring even if TVis a ring. Thus our results are valid in the
variety of all near-rings and also in those of O-symmetric near-rings and abelian near-
rings.

Proposition 1 If N is a near-ring such that [Ac, 3=[TVC M3=0, then T(N)
is a near-ring with the following properties:

(i) NANT= {@& 0, 0): aEN),

(i) N@N°~rK= {(a,b,0): a,bEN}, and N"K,

(iii) KAr(N),

(iv) r(N)/KANQ

Proof. We already proved that T(TV) is a near-ring, meanwhile statements
(i) —(iv) are straightforward.

Proposition 2. Let R be a radical with hereditary semisimple class and let N
be a near-ring satisfying [Nc, AJ—M, ]=0. If NER and NOEyR, then
R(r(N)) =NI, xyz—xyO for all x,y, zeN, and N3=N2=Nc. In particular, if
N is a O-symmetric near-ring, then AER and N°dEfR imply N3=0.

Proof. Since yR is hereditary, we have R(/T)"R(T(iV)). Applying (iv)
of Proposition 1we get r(N)/K~NOEEfR. Hence the intersection representation
of the radical yields R(T(N))QK, whence R(r(N))QR(K), implying R(r(TV))=
=R(/Q. Taking into account (i) and (ii), it follows

R(F(A0) = R(/Q = N,.
Thus N1lis an ideal of r(N) and hence
u(v+i)—uvE ™

holds for every u, vET(N) and /~TV,. Choosing «=(0,0,x), v=(0,0,y) and
i—(z, 0, 0) we have

(0, 0, x)((0, 0, y)*+(z, 0, 0))—0, 0, x)(0, 0, y) =
= (0,0,x)(z, 0,y)—0,0,x)(0, 0, y) =
= (0, xyz—x0, 0)—0, xyO—xQ, 0) =

- (0, xyz—x0—(x*O0—x0), 0) = (0, xyz—xyO, 0).

Since N1=R(r(N))<ir(N), it follows xyz=xyO for all x,y,zEN. Thus N3—
=N2DQNc holds.

The inclusion NCQNW s trivial.

A straightforward application of Proposition 2 yields

Proposition 3. Let R be a radical with hereditary semisimple class SfR and let
N be a near-ring such that [IMG AV3=[7VC TVJ=0. If R(A)°€yR, then R(N)3=
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=R(A)D—R(A)C In particular, if A is a O-symmetric near-ring and R(A)°6,S"R,
then R(A)3=0.

Let
(0:A) = {aEN: aN = (O}

denote the annihilator of Ain A whichis an ideal of A in view of [10] 1.43 Corollary.

Proposition 4. Let R be a radical with hereditary semisimple class SLR and
A a near-ring such that \Nr, AVd=Wr, A]=0 and N f is a normal subgroup o fN +
If NdR, (0:A)€R, N°/N°d”R, then N=NC

Proof. By Proposition 2 we have xy—xy0d(0:N) for all x,y£.N. Moreover,
(0:A)2=0 implies that (0:iV) is an ideal of A0 satisfying (0:N)f)Nc=0, whence
(0:A)-=aA°/A°£,9R. The hereditariness of SLR now implies (0:N)EiLR. Hence it
follows (0:N)=0 vyielding xy =xyO for every x,yEN, thatis N-=NC According
to [10] Proposition 1.32(b), A 2—Ac is an invariant subnear-ring of A. Since A&
is normal in A+ and a(b+i)—abdN2=Nc for all a, b, idN, we conclude that Nc
is an ideal of A. Thus by A2=AGC NdR and by the assumption on N° it follows

N/Nc= N/N2= (N/N20= N°/(N2°€RfIILR = 0

which implies N=NC
An immediate application of Proposition 4 yields the following

Coroltary 1 Let R be a hereditary radical class. 1f R contains a non-constant
abelian near-ring N such that every homomorphic image of N° is in f/R, then I/R is
not hereditary.

According to the previous notation, (0: R(A)) will stand for the annihilator
of R(A) in R(N).

Proposition 5. Let R be a radical with hereditary semisimple class and N a
0-symmetric near-ring with the property (0: R(A))ER. If RfiV/'fM'R, then
R(A)=0. Inparticular, N°dELR implies NdIfR.

Proof. The assertion is, in fact, a special case of that of Proposition 4: the
near-ring R(N) satisfies all the assumptions of Proposition 4, so necessarily R(N) =
=R(N)G-0, as N is 0-symmetric. Hence Nd£LR.

A reformulation of Proposition 5 is

Theorem 1 Let R be a radical. If there exists a 0-symmetric near-ring N such
that R(N)~0, (0: R(A))€R and R, then the semisimple class is not heredi-
tary.

Corollary 2. Let R be a hereditary radical. 1f there exists a 0-symmetric
near-ring N such that R(N)”0 and N°f..9'R, then the semisimple class SfR is not
hereditary.

Proposition 6. Let R be a radical with hereditary semisimple class SLR. If N
is a O-symmetric near-ring with N°€SLR, then the annihilator (0: R(A)) of R(A)
in R(A) is an ideal of N°. If in addition, A°/(0: R(A))g”R, then NrS/'R.
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Proof. (0: R(A)) is an ideal of R(A), further, (0: R(A)) is a zero-near-
ring whose additive group is a normal subgroup of A+ because for any
G€(0:R(N)), nEN and rtR(N) we have (n+a-—n)r=nr+ar—nr=0 and hence
n+a—m€(0: R(N)). Therefore (0: R(A))«=3A0£S'R holds. Hence the heredi-
tariness of f/R yields (0: R(7V))€"R. Since A is 0-symmetric, by Proposition 3
R(A) satisfies R(A)3=0 and hence R(A)2£(0: R(A)) is valid. Consequently,
in view of R we have

R(A)/(0: R(A)) =R(iV)°/(0: R(A))<iA°/(0: R(iV))eyR.

Thus we obtained
R(A)/(0: R(iV))€RH"R = 0,

that is, R(A)=(0: R(N))~aN°eSPR holds, implying R(A)=0.

Theorem 2. Let R be a radical which does not contain zero-near-rings (VO).
7/R contains a 0-symmetric near-ring A5"0, then the semisimple class ifR is not
hereditary.

Proof. Obviously, every zero-near-ring is in ifR. Since 0~ AfR and N°c£fR.
by Proposition 6 £fR is not hereditary.

Let Z denote the class of all zero-near-rings, and let us consider the upper radical
class

QI —{A:A has no nonzero homomorphic image in Z}.

Since Z is hereditary, °UT is a Kurosh—Amitsur radical class, moreover WT is the
largest radical such that Z0 &JL=0. In what follows (A2 will denote the ideal of A
generated by A2

Proposition 1. AeNZ if and Only if A=(Aa

Proof. If AfE<”Z, then there is an ideal / of A such that 0+ N/I*T, that is,
(N*)QI. Hence (A2i/~A holds.
If AerZ, then A/(A2eZrWZ=0. Hence A=(A2 holds.

In view of Proposition 7 a radical class R will be called subidempotent, if R Q GUT.
Theorem 2 and Proposition 7 immediately yield

Corollary 3. If a subidempotent radical R contains a 0-symmetric near-ring
N+0, then the semisimple class ifR is not hereditary.

As we have seen in proving the non-hereditariness of certain semisimple classes,
the construction T(A) played a decisive role. In fact, using T(A) we could prove
statements of the following type if ifR is a hereditary semisimple class, then the
assumption A°e.91iR attracts also other near-rings into the class ifR. Thus in all of
our non-hereditary results the semisimple class SfR contained a zero-near-ring A*V0.
As far as radical classes R containing the class Z are concerned, they may have here-
ditary semisimple classes. Kaarli [5] has proved that Va is a hereditary Kurosh—
Amitsur radical with hereditary semisimple class, and also T Q /2holds. Moreover,
for 0-symmetric near-rings Holcombe [3] has introduced the radical containing

and Holcombe and Walker [4] have shown that  is a Kurosh—Amitsur radical.
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According to Holcombe [3] is hereditary and has a hereditary semisimple class.
(For the definitions of ./2and  we refer to [10].) It is worth mentioning that both
</2and "3 satisfy the following condition: If 7 is an invariant subnear-ring of N and
/€,1;, then 1Q/i{N) holds for i—2, 3. (In Kaarli’s terminology an invariant sub-
near-ring is called a quasi-ideal.) In a O-symmetric near-ring every ideal is an invariant
subnear-ring, see [10] Proposition 134 (b).

A radical containing all zero-near-rings, may have a non hereditary semisimple
class. For instance, the class Jf of all nil near-rings is a hereditary radical class
containing all zero-near-rings. But as Kaarli has kindly informed us, it follows
from his Example 5.4 of [6] that the semisimple class of Jf is not hereditary.

3

Concerning radicals with non-hereditary semisimple classes one may ask wheth-
er there are sufficiently many such classes. Making use of the lower radical construc-
tion given by Tangeman and Kreiling [12] we give an affirmative answer to this
question. Though in [12] not necessarily associative rings were considered, the results
are valid also for near-rings. Let C be any class of near-rings, and define Ct as its
homomorphic closure. Furthermore,

C, = {N:l, NIIdCR_1 for some I<iN}
if 8 —1 exists, and

CR={N: A contains a chain {/y}of ideals such that £ (J C, and N—Uy)

a</l

if 8 —1does not exist. Now Ji?C= UCRis the lower radical determined by the class C
([12] Theorem 2). Moreover, if C is also hereditary, then so is £CC ([12] Theorem 3).
Obviously, one can easily construct plenty of radicals having non-hereditary sem-
isimple classes. For instance, let D be any homomorphically closed (and heredi-
tary) class of near-rings such that D does not contain zero-near-rings (t60), but does
contain a 0-symmetric near-ring iW 0. Then jS?D is a (hereditary) radical class
such that the semisimple class S/2£'Q is not hereditary, as stated in Theorem 2.

We summarize the hereditary properties of some radicals in the variety of O-
symmetric near-rings.

radical radical class semisimple class

hereditary hereditary

hereditary hereditary
JT hereditary non-hereditary
subidempotent radicals (~ 0) hereditary or not non-hereditary

Acknowledgement. The authors are indebted to Professor R. Mlitz for his
valuable advices.
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SIMPLE EIGENVALUES OF TRANSITIVE GRAPHS

HORST SACHS and MICHAEL STIEBITZ

Dedicated to the memory of LaszIé Redet

Abstract

For the classes of directed graphs, undirected graphs, multigraphs, and schlicht graphs, all
finite and vertex transitive, using representation theoretical and combinatorial means upper bounds
for the number of simple eigenvalues are found.

Introduction

A transitive graph Gisa graph whose automorphism group f acts transitively on
its vertex set V. The eigenvalues of G are the eigenvalues of its adjacency matrix A
Clearly, a permutation y acting on V is an automorphism of G if and only if the
corresponding permutation matrix Py satisfies P'"IAP\E=A or, equivalently,
APy=PyA. Thus, if ygr and x is an eigenvector of A (i.e., Ax= AX), then so is
Py belonging to the same eigenvalue X and if X is a simple eigenvalue then X
and Py are linearly dependent for every y£T. Therefore, it is reasonable to ask
under what conditions a transitive graph can have (non-trivia!) simple eigenvalues
at all, and how many it can have.

This problem was already investigated by the authors in a previous paper [5],
however, since that paper was written, many extensions and improvements have
been found. Therefore, in this paper the authors present a condensed theory system-
atically using representation theoretical means. In order to make the paper self-
contained, they have included in it some of the proofs (improved versions) already
given in [5],

The authors wish to thank Professor Gerhard Pazderski at the Wilhelm-
Pieck-Universitat Rostock for many helpful discussions.

1. Preliminaries

In what follows G=(V, E) will always denote a finite, directed or undirected,
graph with vertex set V and edge set E, loops and multiple edges being allowed.
G is called schlicht if it has neither loops nor multiple edges.

Let |Vj=n: then the vertices of G can be labelled by 1 2, ..., n and identified
with their labels.

Let ctij denote the number of edges going from vertex i to vertex j, where, for an
undirected graph G, au is defined to be twice the number of loops attached to the
vertex /. The square matrix A=(aij) of order n is called the adjacency matrix of G.
The graph G is called regular of degree r iff all row sums and all column sums of A
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are equal to r. The eigenvectors (eigenvalues) of G are the eigenvectors (eigen-
values) of its adjacency matrix A

For v,vtgv, let IVE (vx,v)=IFg (v2, v, denote the number of edges
issuing from vx and terminating in vz, i.e.,

H'g (Vt,vd= e (v2, vj) = 2 fy.
iev,
Jtv,
If (a£v), we shall briefly write (@ v2 instead of ({a}, vo,
etc.
Let S, denote the symmetric group of degree n. The group of all adjacency pre-
serving (I,1)-mappings of v = {1, n) onto itselfis called the automorphism group
Aut (G) of G:

yEAUt(G) iff y€S, and ay(Oyw = atJ, i,j=1,...,n.

Let P. be the permutation matrix assigned to the permutation Yy€S,: then
y<EAUt(G) iff APy=PYyA

G is called transitive iff Aut (G) acts transitively on V.

Let V denote the complex number field and H be an abstract group; recall that
a homomorphism of H into the multiplicative group of V (or the set of images under
this homomorphism) is called a representation o f Vi of degree 1

Let x=xI5..., x,)Tand y=(y,, ynJ be vectors over i. The Hermitian
scalar product xlyl+ ... +xny,, of xand yis denoted by (X, y); x, y are called ortho-
gonal iff (x, y)=0. The vector u=(l, DT is called the identity vector.

For positive integers / and n, put

um)= =5 x,yxi=1fori=1 n}L
Under the composition & defined by
X<y = (xlyl, ..., x,,ynT,

U,(«) becomes an abelian group, namely, the direct product of n cyclic groups
of order /.

Let x be an eigenvector of the graph G with corresponding eigenvalue A i.e.,
Ax=Ax. Then, for all ygAut(G),

APjX = P7Ax = PyAX = APyx.

This means that, together with x, also Pyx is an eigenvector of G belonging to
the same eigenvalue A If Ais a simple eigenvalue of A, then x and Pyx must be line-
arly dependent. This implies that, for each yEAut (G), there is a complex number
a=ay(x) satisfying Pw = ay(x) *x; thus x is a common eigenvector of all P7, too.

The number of simple eigenvalues of G will be denoted by cr(G).

Let r QS, be a transitive permutation group of degree n and order g and let
x=(xL ...,x,)td0 satisfy

P;x —ay(x)-x for all y€T
where the ay(x) are complex numbers. Then {ay(x)|y€T} is a representation of f of

degree 1, the numbers ay(x) are g-throots of unity, and the transitivity of F immedi-
ately implies [x§——= |xnj" 0.
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Put
Z(r)={x|jcl=1 andfor each yE£T there is a complex number ay(x) such that
Pyx=ay(x) x}. ) _
Z(F) has the following properties (see Section 2.2, (D) and (F)):
(i) For /=expf, Z(F) is a subgroup of U,(/;),
(i) = y)=0 for x, yE€Z(T), x?*y.

2. Eigenvectors of transitive graphs
2.1. Feasible vector sets

Definition 1 A subgroup E of U;(rt) is called afeasible vector set of degree |
and dimension n iff any two distinct elements of E are orthogonal.

Denote the set of all feasible vector sets of degree / and dimension n by $i(ri)
and put

Lemma 1 (See, e.g., [3]). Let H= {Al=id, h2, ...,h,,} be an abelian group of
order m and let Xi, m,  be the characters of the m irreducible representations of H
(in whatfollows these will be briefly called ““the simple characters” of H; H being abe-
lian, Xi,  Xncorrespond to the m distinct representations of degree 1 of H). Put
M= (Xi\h.)), i,j—1, ..., m. Then

(@) the row vectors (column vectors) of M are pairwise orthogonal,

(b) det(M)?f0 and M-1=— MT. |

With respect to the usual composition, the characters of an abelian group H
form a group isomorphic to H. Thus the row vectors as well as the column vectors
of M form feasible vector sets of degree /=expH and dimension m. In particular,
putting

X(H) = {x;, = (xAK), ..., Im{/i))T|i = 1, .... m},
we obtain

X(H)6(E,(tti) where /=expH.

Further, put

XHH) = (x” = (Xi(h), Q.?,GSXi(K)', Xmehi),  Xm(hi))r\i = 1,..., m}.

Then, clearly, xk(H)€~(™-w) and xk(H)sxI(H)=x(H)"H.

Lemma 2. Let Eg<?«) be afeasible vector set of order m. Then
(@ min,
(b) the components o f the vectors of E can be so labelled that E= x*(E), where
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Proof. The mappings <q defined by V\/i(x)=xi for x=(x,, ..., X,)TEE are
simple characters of the abelian group E; further, x=(t/q(x), i//,,(X))T.

Let Xi, be the m simple characters of E. Then, for xgE,
. . for x”"u
<X, U) = iZ=i I'ifr) = 7%1 kjXjoOi) = tn for Xx=u
Lemma 1now immediately implies kx=... =km=k = % yielding the assertions.

The following proposition is a simple consequence of Lemma 2.

Proposition 1 Let E, E'E<?,(«), E=E', and let gbe an isomorphism mapping
E onto E'; then there is a permutation y€S,, satisfying <p(x)=Pyx for all x£E.

Lemma 3. Let x be an element of order d of Ed&fri). Then d\l and d\n.
Proof. x'=. implies d\l and, because of d\m, by Lemma 2 also d\n. |

Theorem 1 Let I=p°p...pf and n=p\l..p\tk where p{ ..., pr are distinct
primes, r, oq, ..., ar, and k are positive integers, k1, ..., kr are non-negative integers,
and (k,/)=1 Then

si(n) = p\"... pk.

Proof. As an immediate consequence of Lemma 3, 5i(n)|pil..pJ>

Let H=H!X..XH, where Hj=HiD)X..XH/*) (/=1 ..../*) is the direct
product of k, cyclic groups each of order pt. Then H is abelian of order |H|=p\l...
...pf. Put /"=expH: clearly, T is the product of all those pt which have kt>0,
thus T\l. Now, E=x*(H)6<"(7T)"<?(«) is a feasible vector set of order [E=
= |H| =p\L..pV from which the assertion immediately follows.

With respect to EdRfn), define a relation i~y|E (/,y'EV={l, ....«}) as fol-
lows:
i~jjJE iff X=xj forall xE£E.

Clearly, this relation is an equivalence relation (which we shall call an E-equiv-
alence) partitioning V={1, ...,«} into equivalence classes X"E), ..., Xa(E), say.

From the proofof Lemma 2, a=m = |E| and [)(;(E)|=l (z=1, ..., m) immediately
follows. m

Next, put E=Xi(E); clearly, EdSfm) and E is isomorphic to E. To each
E6<?,(«) assign a permutation group T(E) where yET(E) iff y6S, and to each
xfE there is a complex number ay(x) such that Py=ay(x) x.

Lemma 4. Let E£<?(«), E=X,(E). Then T (E) is a transitive abelian permutation
group isomorphic to E.

Proof. Let Xi, e, Xm (m= |E|) be the simple characters of E. Then, for all
XEE, x=(Xi(X),..., x,,(}))t GE and for yET(E) we obtain P7x=uy(x)*X, i.e.,
Xyto(x) = ay(x)xi(x), for all xEE and if£{, ..., m): this means that the permuta-
tions of T(E) are in (l,I)-correspondence with the simple characters of E, thus
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z

r(E) is a transitive abelian permutation group of order m being isomorphic
to E. “ I

Theorem 2. Let E€<?(n), |[E/=m. By Lemma 2, m\n; put n=km. Then
F(E) is a transitive permutation group of order m(kl)misomorphic to the wreath prod-

uct of F(E) and Sk.

Proof. By T(E) the equivalence classes X,(E), X,»(E) are permuted accord-
ing to T(E); in particular, with respect to F(E) they are domains of imprimitivity.
For each i'€{l,  m), the restriction of F(E) to T;(E) is isomorphic to Sk, estab-
lishing the assertion. |

2.2. Partition vectors of transitive permutation groups

In this section, let TQ S,, be a transitive permutation group, let Z(F) denote the
vector set introduced in Section 1, and let /=exp T. By reasons soon to become
visible, the elements x6Z(F) are called the partition vectors of T.

First, let us list some simple facts.

(A) Let x, yEZ(F). Then also x(g=>yCZ(T) and, for all yET, ar(x®y)=ay(x) m
my(y), i.e. {ay(x)|XxEZ(T)} is a representation of degree 1 of Z(T).

(B) Let x, yeZ(F). Then x=y iff ay(x)=ay(y) for all y£T.

(C) Let y,y'ET. Then, for all xEZ(F),
apwfx)=ay(x) mr (x), i.e, {ayx)\yET} is a representation of degree 1 of T
which is contained in the matrix representation {Pyly€F} of T as an irreducible
component.

(D) For all yiT andall x£Z(F), (ay(x))'=l, i.e., Z(F) is a subgroup of U, (/).

(E) If,for y,y'ET and some i£{\, ...,n\, y(i)=y'(i) then ay(x)=ayfx) for all
x€Z (F).

(F) Let x,y€Z(r), x™y. According to (B), there is a yET with ay(x)?iay(y):
therefore, (x, y>=(P;x, Pyy)=ay(x) sayy) *(x, y) with ay(x)-ay(y)"I, im-
plying (x, y)=0. _

(G) Let ytET with y;(1)=/ (i=1, ..., ri). Then, for all x£Z(F), x= (ay(x), ...
34 09) L P .

As an immediate consequence of these propositions, we obtain

Theorem 3. Z(TE<H,(n).
Put Zd(T) = zoonu”/z), zd{T) = 1ziipo1, z(T) =\Z(T\ |
As a corollary of Theorems 1and 3, we have
Lemma 5. Zd(T)e<?d(n), zd(T)”"sd(n). |

Theorem 4. Let T be the commutator subgroup of T, let T* be the subgroup
generated by all permutations of T keeping an element fixed, and put Td—({y\y£T,
y~id}). Then

zZF)sir/(r*m, zd(T)s=r/s(r*r ro.

For a proof see [5], |
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Lemma 6. Let E€<?(«). Then

(@ Z(r(E))=E, . _ _

O») if r gs, is a transitive permutation group with Z(T)=E then T £ T(E).

Proof. Put E'=Z(r(E)). Then E£E' and, therefore, F(EOgF(E)£
gr(Z(f(e)))=r(E", thus r(E)=T(E"). Now, /~j|E" implies /~y|E. Converse-
ly, if i~j|E then the permutation y£S, with y(i)=j, y(j)=i, and y(k)=k for
k~i,j is an element of / (E) and, consequently, also of F(E'). This means that y
fixes the equivalence classes of E', i. e., i~y(i)\E' and thus /~y|E'. This implies
|[E|= |E'| and, therefore, E—E". |

Let E€<?(«) and put
S?2(E)={r|rgS,,, I' is transitive, Z(T)= E}

Lemma 6 says that F(E)6”(E) and that E) implies T'QT(E). If,
in particular, |E|=n then, according to Theorem 2, /'(E) has order n; therefore,
if |El=w and F'EO(E) then, necessarily, T'—T(E) and from Lemma 4 (with
E = E) we conclude that T' is isomorphic to E=Z(F/) implying, in particular, that
T' is abelian.

Conversely, if f£ S, is any transitive abelian permutation group then, by
Theorem 4, z(F)=n.

Summing up (using Theorem 3 and Lemma 2) we obtain

Proposition 2. For a transitive permutation group T CS,,, the following four
statements are equivalent.

(i) z(T)=n,
(Hi) I' is abelian,
(iv) I is isomorphic to Z(T).

The term “partition vectors” for the elements of Z(T) can now be given a simple
interpretation: if xEZ(T) has order d, then E= {xklA—L, ..., d}QZ(T) is a cyclic
group of order d and the partitioning Xj(E), ..., Xd(E) of {1, induced by the
E-equivalence has the following properties: by T the classes X,(E) are cyclically
permuted (according to L(E)) thus forming domains of imprimitivity of T. For
d= 1 and d=n, the trivial partitionings are obtained.

Conversely, for any system of cyclically permuted imprimitivity domains of F
there exists a partition vector generating this particular partitioning.

As a simple consequence, we obtain

Lemma 7. Let FgS,, be transitive and primitive.
(@ If nis not a prime, then z(V)=1,
(b) if nis aprime, then z(T)=1 or z(/")=n where the latter case occurs iff
r is cyclic of order n.
The following theorem was proved in [5].

Theorem 4. Let p be a prime and vp(T) the number of intransitive normal sub-
groups of I' having index p. Then

zp{T)-\={p-\)vp{T). |
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3. Simple eigenvalues of transitive graphs
3.1. The maximum number o f simple eigenvalues of a transitive graph

Let G be a transitive graph with n vertices and x an eigenvector of G belonging
to a simple eigenvalue. Then X is a common eigenvector of all permutation matrices
Pywith yfAut(G) and from the transitivity of Aut (G) it follows that

U= [*2 = w = Pnl A O,
Therefore, — xfZ(Aut(G)), implying
*i

Theorem 5. Jf the graph G is transitive then <r(G)*z(Aut (G)). (Recall that
<X(G) is the number of simple eigenvalues of G.) |

Let G be an undirected, transitive graph with n vertices. The adjacency matrix
of G being symmetric, the eigenvalues of G are real and its eigenvectors can also be
chosen real. In particular, to each simple eigenvalue of G there belongs exactly one
eigenvector contained in Z2(Aut (G))E£$2(ri).

This immediately implies

Theorem 6. Let G be an undirected transitive graph with n vertices. Then
<(G) £z2ZAUt (G))  s2(.). |

Thus, for undirected transitive graphs, we have obtained an upper bound for
the number of simple eigenvalues depending on the number of vertices only. The
next theorem says that, in fact, this bound is sharp.

Theorem 7. Let n be an arbitrary positive integer and put n=2&k where k is
odd. Then there exist connected graphs with n vertices which are transitive, undirected,
loopless, and have s, (n)=2q simple eigenvalues.

First we prove

Lemma 8. Let A be the adjacency matrix of a transitive undirected graph G
with n vertices which has exactly s simple eigenvalues. Then there is an infinite set
T=T(G) ofpositive integers such that, for every if T, the graph G' G,(G) with
adjacency matrix

has exactly 2s simple eigenvalues; G' is undirected, transitive, and has 2n vertices.

Proof. Let A5/,  Ambe the distinct eigenvalues of G and let t be so chosen
that t(Xi—kJ)”2 for /,/=12 .., m. Then G' has the 2m distinct eigenvalues
iAjil, ..., 2mt 1; thus, in particular, 0o(G")=2s. Clearly, G' is undirected and has
2n vertices; further, G being transitive and G' admitting the automorphism
(4, n+ 1)(2, n+ 2)...(n, 2n), G' is transitive, too.

Proof Of Theorem 7. Let GJdenote the graph consisting of exactly one iso-
lated vertex and, for odd k * 3, let GU denote the circuit of length k. The graphs GJ

6*



84 H. SACHS AND M. STIEBITZ

(k=1, 3, 5 ...) are connected, transitive, undirected, loopless, and have exactly 2°k
vertices and one simple eigenvalue. By virtue of Lemma 8, starting from G” we can
now easily construct sequences of graphs GE (q=0,1,2, ...) (where GE+1=
= G,(G"), tgT(Gf)) which are connected, transitive, undirected, loopless, and have
exactly 2gk vertices and 2qsimple eigenvalues.

Remark. If k=1 then we may choose t=2 in each step of our construction.
The graphs so obtained (see Fig. 1) have the following properties:

(i) CI has 2qvertices,

(if) CI is a bipartite graph which is regular of degree rg=2qg—l,

(iii) replacing multiple edges by single ones transforms Gf into the graph of the
g-dimensional cube,

(iv) faII non-trivial automorphisms of G? are involutions, i.e., expAut(G)=2
or q=>0,

(v) all eigenvalues of Gf are simple and form the equidistant spectrum [—q,
~rg+2, ..., rq—2, rql.

Fig. 1

The problem of determining all integers n for which there exists a schlicht,
undirected, connected, transitive graph with exactly n vertices and .v,(n) simple
eigenvalues, however, seems to be difficult. We can only present

Conjecture 1 Let g and k be positive integers, k being odd. Then there is a
schlicht, undirected, transitive, connected graph with n=2c vertices and s2(n)=2q
simple eigenvalues iff k"2 q~1

Using well-known constructions (forming products of graphs), in [6] the follow-
ing theorems could be proved.

Theorem 8. Let g be apositive integer and let kt£3 (i=I, 2, ..., q) be odd in-
tegers (not necessarily distinct). Put n= 2k 1k.,...kq. Then there are schlicht, undirected,
transitive, connected graphs having exactly n vertices and s2(n) =2q simple eigen-
values.

Theorem 9. For any odd integer k Si3 there is a schlicht, undirected, transitive,
connected graph having exactly 4k vertices and 4 simple eigenvalues. For k= 1, there
is no such graph.
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3.2. Simple eigenvalues and divisors of transitive graphs

Definition 2. Let G be a graph (not necessarily connected) and let G' be a
graph with vertex set V(G')= {4, 2, ..., m} and adjacency matrix A'=(aj).

G'is called a divisor of G (in symbols: G'|G) iff the vertex set V(G) can be par-
titioned into m non-void classes Vj, V2, ..., Vmin such a way that, for all a€V;
0=1»2,....,m) andj—1,2, ..., m, WH@a, and Wg(a, Vj)=a'i.

If, in addition, all subgraphs G[VJ of G spanned by the sets Vj, V2, ..., Vm
are isomorphic then G' is called an i-divisor of G (in symbols: G'|[tG).

If G is undirected then so is every divisor of G (neglecting directed loops that
may possibly occur). (For a detailed treatment of the divisor concept, the reader is
referred to [1, Chapter 4].)

Now consider a transitive graph G having n vertices and let F denote a transitive
subgroup of Aut (G) and EQ Z (/) a feasible vector set of order m. Then FEF(E)
and the partitioning (Xj (E), X, (E), ..., X,,(E)) of V(G)= {1, 2, ...,«} has the follow-
ing properties:

D IXjE)= T /=1,2, ...m (see 2.1), and the equivalence classes XTE) are

transitively permuted by F according to F(E) (see Theorem 2), F(E) being
an abelian permutation group of order m which is isomorphic to E.

(2) Let /C{L, 2, «, m), a£Xj(E), Y£/" and let y denote the permutation of F(E)
determined by y (i. e., satisfying y(i)=]j iff y(Xi(E))= XJ(E)). Then
WE (a, Xj (E)) = IFg (y(a), X,(E)) (= 1L2...m; k=y()),

where y(a)6X,(E) with I=y(i).
(3) Because of the transitivity of F,for any pair of vertices a, &EX;(E), both the
following equalities hold:

IVa(a, Xj (E)) = tVe(b, X; (E)),
(@ Xj(E)) = iVa (b, Xj(E)), j =12 ... m.

(4) All the X,(E) having the same cardinality (see (1)), for any pair of vertices
atX;(E), cCXj(E) we obtain

fvc (a, Xj(E)) = Wi(c, X.(B) (i,j=1,2,..., m).
Now let a6Xj(E) and put WE(a, XI(E))=ai+ (i,j=1, 2, ..., m)\ by (3) and
(4), &, is well defined. Let G—G(T, E) denote the graph with vertex set V(G)=
={L, 2, ..., m} and adjacency matrix A=(£y): then, clearly, G is a divisor of G.
Further, it is easy to see that all the spanned subgraphs G[X;(E)] (/=1 2, ..., in)
are isomorphic, thus GjjG.

From (2) it immediately follows that F(E) is a subgroup of Aut(G), where, by
Lemma 6, Z(F(E))=E.

We shall now consider the case that E is a cyclic group generated by some
element xgZ(F) of order d.
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Let e be aprimitive d-U\root of unity. Then the sets Xt= (k=12 ..
..., d) are the E-equivalence classes. T(E) is a cyclic permutation group of order d
and, therefore, the adjacency matrix A= (4u) of G—G(T, E) is a circulant matrix.
Recall that A=(aij) is the adjacency matrix of G. Putting rk=alk we obtain for all
it

2. aijxj = .2. akie, 1 = 2. ri-k+i**~k = *i.2 fjEs~I
J=I1 =i =] ]=1

(subscripts of the letter r to be reduced modulo d).
Thus we have proved

Theorem 10. Let G be a transitive graph being regular of degree r, let x£Z(T)
be a partition vector of order d with respect to a transitive subgroup r of Aut (G), and
let ebe a primitive d-th root of unity. Then x is an eigenvector of G, the corresponding
eigenvalue A having the form

a= rx+r2B+...+rded \

where rls r2, ..., rd are non-negative integers satisfying rl+r2+ ... +rd=r. |

In what follows the eigenvalue of G corresponding to the partition vector
XEZ(T) will be briefly denoted by AG(X).
Combining the last results with the statements (1)—(4), we obtain

Theorem 11. Let G be a transitive graph and T a transitive subgroup o f Aut (G).
Let E= {x1;x2, ..., xn}*Z(T) be afeasible vector set oforder mandput G= G(T, E).
Then the following assertions hold.
() G is an i-divisor of G having m vertices.
(I IfG is undirected then so is G (neglecting directed loops).
(I111) G is transitive and T (E) is a transitive abelian subgroup of Aut (G) which is
isomorphic to E.
(1V) Every vectorfrom E is an eigenvector of G and,for all xEE, Ag(X)=AG(x),
implying that G has the m (not necessarily distinct) eigenvalues AqixJ,

2g(x2), ..., .G(XN).
(V) If E=Z(T) then o(G)"o(G(T, Z(r)))sz(T). |

Theorem 12. Let G be a transitive graph with n vertices. |f Aut (G) contains a
transitive abelian subgroup then,for every primefactor p ofn, there is an i-divisor of G
having exactly p vertices.

Proof. If TCAuUt(G) is transitive and abelian then Z(T) is a feasible vector
set of order nand to each prime factor p of n there exists x£Z(T) of orderp. Let E
be the subgroup of Z(T) generated by x: then G(T, E) is an /-divisor of G with exactly
p vertices.

For (undirected) transitive graphs, we can diaw some more conclusions from
Theorem 10.



SIMPLE EIGENVALUES 87

Proposition 3. If G is a transitive graph being regular of degree r and T is a
transitive subgroup of Aut(G) then, for all XEZ2(T),

Ag(x) = e-(r-Q) = 2e—r where gf£{0, 1, r}

Proposition 4. If G is an undirected transitive graph being regular of degree r
then cr(G)Sr+ .

If, in addition, G is schlicht and has more than 2 vertices then <r(G)<n.

Thus every simple eigenvalue of an undirected transitive graph G which is regu-
lar of degree r has the form 2=2Q—r where ge{0, 1, ..., r}. If G has an eigenvalue
X~r then its vertex set is covered by a pair of isomorphic spanned subgraphs which
are transitive and regular of degree g=(X+r)/2. If G has n vertices then each ofthese
subgraphs has n/2 vertices and, therefore, (gn)/4 edges implying gn=0, mod 4.

Combining these results with Theorem 6, we obtain

Theorem 13. Let G be an undirected, transitive, connected graph with n=2gk

(k being odd) vertices being regular of degree r. Then the following assertions hold.
(i) If g—0 then X=r is the only simple eigenvalue of G.

(i) 1f g=1 then G has at most one simple eigenvalue X differentfrom r and,

if it exists, it is of theform 2=4g— where {01 ...,y (r—D}

(iii) If <y=2 then G has at most 2q simple eigenvalues including 2=r; all
of them have the form 2=2g— where gg{0, 1, ..., r}.

3.3. Simple eigenvalues and automorphism group of transitive graphs

In this section, we shall investigate the relations between the automorphism
group of a transitive graph and the number of its simple eigenvalues.
From Proposition 2 and Theorem 5 we deduce

Theorem 14. If a transitive graph G with n vertices has more than ~ simple
eigenvalues then its automorphism group is abelian.

If, conversely, G is a transitive graph with n vertices whose automorphism group
has a transitive abelian subgroup /’, then, in the general case, we have no statements on
<4(G). But from Theorem 10 and Proposition 2 we know that G has n linearly inde-
pendent eigenvectors which, with respect to the operation <, constitute a group iso-
morphic to T. In particular it follows from this observation that the adjacency matrix
of G is non-derogatory iff all eigenvalues of G are simple. In 1971, A. Mowshowitz
(see, e.g., [1, p. 144]) showed that the automorphism group of an arbitrary graph
which has a non-derogatory adjacency matrix is abelian, thus we have proved

Theorem 15. The adjacency matrix of a transitive graph G is non-derogatory iff
all eigenvalues of G are simple.

Lemma 10. Let G and G' be transitive graphs each having n vertices and assume
that each of Aut (G) and Aut (G") contains a transitive abelian subgroup, Tg Aut (G)
and T'gAut (G'), say; further suppose that there is an isomorphism <p mapping
Z(D onto Z(T") and satisfying 2g(x)=2g @ (x)) for all xEZ(T). Then G and G'
are isomorphic.
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Proof. Let A and A' be the adjacency matrices of G and G', respectively, let
X=(xj, X2,  X,) be the matrix whose column vectors x1;  x,, are the elements of
Z(F), and let A denote the diagonal matrix having the eigenvalues 2G(x3), *g(x2), **

2G(x,,) in its main diagonal. Then, by Theorem 10, AX=XA, implying A'X'=
=X'A with X" Xj), <p02, <p(x,)). By Proposition 1there is a y£€S,, satis-
fying <p(X)=P7x for all x6Z(T), i.e., X'"PAX, immediately implying A'=
= P. XA (P7X)_1=PjXzIX_:1P “1=P 7AP~1

Theorem 16. Let G be a connected transitive graph with n vertices whose auto-
morphism group is primitive. Then thefollowing assertions hold.
11) If n is not a prime then tr(G)= 1.
(2) If n~p isaprime then cr(G)=1 or c(G)=p, where o(C)=p iff Aut(G)
is a cyclic group of order p.

Proof. Assertion (1) follows immediately from Lemma 7 and Theorem 5.

If n=p isa prime then there is a transitive cyclic permutation group T Aut(G)
having order p. Then ~E=Z(r)=Zp(T)ES'p(p) and, denoting the first row of the
adjacency matrix of G by aT, we obtain 2G(x) = (x, a) for all X£E.

If cr(G)=p then, by Theorem 14, F=Aut(G). Assume o(G)<p. Then there
is at least one pair of distinct vectors xx x2£E satisfying Ag(x)="g(x?2 where
x1Mu”x 2 since 2G(u) is a simple eigenvalue of G (because G is connected). Then
x2= x£ for some k£{2, 3, ...,p —1} and the mapping cp(\)=\k (xgE) is an auto-
morphism of E; using Proposition 1 we conclude that there is a with P.x =
= x* for all xgE.

As is well known (see [2]), 2G(xD)=(x1, a)= (P%,, Pya)=(x2, Pya)=(x2 a)=
=2g(x? implies P,a=a. Thus 2G(x)= (X, a) = (P>, Pya)=(x*, a) =/ G("p(x)) for
all XxEE implying <r(G)= 1.

Further, according to Lemma 10, y is a non-trivial automorphism of G with
y()—L ie., y$r, thus FxAut(G). §

For undirected transitive graphs we obtain from Theorems 6 and 4

Theorem 17. Let G be a connected, undirected, transitive graph. Then c(G)S
st)2 (Aut(G))+l. |

Coroliary. Let G be an undirected transitive graph, let T be a transitive sub-
group of Aut (G), and let t denote the number of elements of order two contained in T.
Then <r(G)s/+l.

As is well known (see [4]), every connected, undirected, transitive graph whose
automorphism group contains a transitive abelian subgroup has a Hamiltonian cir-
cuit. For such graphs, we shall now establish a somewhat stronger theorem.

We need some more notation.

The product Gj XG2of the undirected schlicht graphs Gj, G2is defined to be the
graph G with vertex set V(G)—V(G)XV (G2 in which two vertices (rj,jj) and
(i2,f) are adjacent iff either 7=z andj\ and j2are adjacent in G2, or z and 2are
adjacent in Gj and yj=y2. Let C2denote the complete graph on two vertices and let,
for />2, C, be the circuit of length /; put CJXCi2X...XCd=Ciuat...dr.
If dx=d2—...—dr=d then we shall briefly write Cd instead of Cduds....dr. Every
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graph Cd * has a Hamiltonian circuit (see [8]); CE is the /--dimensional cube
graph.

For a group H and a subset A of H, let G= G(H, A) denote the Cayley graph
of H with respect to A (i.e., V(G)=H and two vertices hu A€H are adjacent in
G iff ftJ*"eAUA-D.

Lemma 11. Let H be an abelian group and A={/ix, h2, ..., hr)£ H a basis of H
where h{ has order d((j=1,2 , r) (H is said to be of type (dl, d2, mmdr), see
[3]). Then

G(H, A) - G(HL {*»X.-XGCH,, {H) = Cdudi....

where H, is the subgroup of H generated by h,.

Proof. H is the direct product of subgroups H; (*=1,2, ..., r). Let h,h'EH

where h=h\'nf...Ifrr and h'=h\Uff...Iff. If h-h'~1=hJ or hjl for some
_IE{1,2, then af=a for i®j and <Xj=a.jtl, implying immediately the
first part of the assertion.

It is easy to see that G(H;, {//,}) is isomorphic to Cd(i=\,2, ..., r), thus
G (H,J)sCJQ.....- I

Theorem 18 Let G be a connected, undirected, transitive graph with «>1
vertices whose automorphism group contains a transitive abelian group L of type
(du d2, ..., dr) as a subgroup. Then G contains a subgraph isomorphic to Cd>d....dr.

Proof. According to a theorem of G. Sabidussi [7, Theorem 2], T contains a
generating set A* such that G (T, A*) is isomorphic to a subgraph of G. Then there is
a basis AQA*: clearly, G(T, A) is a subgraph of G(T,A*) and, by Lemma 11,
G(T, J)“ C<li4....ir. “ I

Summing up, from Theorem 1, Theorem 6, Lemma 5, Proposition 2, Proposition
4, and Theorem 18 we obtain

Theorem 19. Let G be an undirected transitive graph with n vertices all of
whose eigenvalues are simple. Then thefollowing assertions hold.
(1) G is connected.
dl) n=2q for some non-negative integer q.
(HI) The automorphism group of G is transitive and abelian and, if «>1, has
exponent 2.
(IV) G isregular ofdegree rg 29—I.
(V) G contains a g-dimensional cube graph C1 as a spanning subgraph.
(VD) If —r is an eigenvalue of G, then, by replacing multiple edges by single
ones, G is transformed into the cube graph C:l.
(VIN) If n>2, then G has multiple edges, i.e., G is not a schlicht graph.

Let &(qg) denote the set of all undirected transitive graphs having 2qvertices and
2qsimple eigenvalues. On the one hand, &(q) is not empty (see Section 3.1) but, on
the other hand, for q”2 does not contain any schlicht graphs. Thus the question
arises how far a graph from <& can “deviate” from the property of being schlicht.
As a measure of this deviation the maximum number of pairwise parallel edges oc-
curring in G (called the edge multiplicity em (G)) may be used. For the special graphs
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Gld@(qg) constructed in Section 3.1, em (Gf)=2q 1(g~\), and we conjecture that,
in fact, these graphs have the minimum edge multiplicity among all graphs of &(q):

Conjecture 2. For q=\ and all G£f§{g), em (G)"em (Gf)=2¢-1
Conjecture 2 is closely related to Conjecture 1, as the following theorem shows.

Theorem 20. Iffor a positive integer g and a positive odd integer k there exists
an undirected, schlicht, transitive graph G with exactly 2ck vertices and 2q simple
eigenvalues, then there is also an undirected graph G'ffS(q) with em (G'j ctk.

Proof. Put E=Z2(Aut (G)). Then, by Theorem 11, G'= G(Aut (G), E)
is an undirected transitive graph having 2qvertices and 2gqsimple eigenvalues. Loops —
if they occur — may be deleted since they have no influence on the number of simple
eigenvalues.

Further, [X;(E)=k (7=1, 2, 209 and, since G is schlicht, we obtain as an
immediate consequence that em(G")"fc. |
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ON S-SYMMETRIC MATRICES OVER A FIELD F OF
CHARACTERISTIC DIFFERENT FROM TWO

A. LEE

To the memory of Professor L. Rédei

Abstract

Let F be a field, char FV2, and let M,,(F) denote the set of all n X« matrices over F. Amatrix
A £M,,(F) is called s-symmetric (secondary symmetric) if it is symmetric concerning the secondary
diagonal, consisting of the j, klh entries with j+ k=n + 1. The object of this paper is to prove the
following

Theorem. There exists an s-symmetric matrix over F with arbitrary prescribed elementary divisors
(over F).

The significance of this theorem is enlightened by the facts that on the one hand

(i) the ordinary symmetry may condition very strongly the elementary divisors of a matrix over
certain fields, for example over the reals, and on the other hand

(ii) whenever —e as well as 2e (where e denotes the unit of F) is a square in F, then there is an
inner automorphism of AL, (F), (p-A-*U~IAU, which is a one-to-one mapping of the s-symmetric
matrices onto the symmetric matrices.

Statement (ii) is also proved in this paper.

1. Introduction

Let F be a field and let M,,(F) denote the set of all nXn matrices over F. A matrix
AEM,,(F) is s-symmetric* — i.e. symmetric concerning the secondary diagonal — iff
it satisfies the equality

(1.1) VATV =A,

where F=[a}>B+l t] and &py denotes the Kronecker delta function with values in
F, i.e. Vis the permutation matrix containing the e's (the unit of F) in the secondary
diagonal.

The main theme of this paper is to clarify the question of what elementary divi-
sors the s-symmetric matrices over F can have. This question has been answered in
our previous paper [3] if F=C (the complexes). The extended answer is (Theorem 4)
the main result of this paper:

Let F be a field and char F*2. There exists an s-symmetric matrix over F
with arbitrary prescribed elementary divisors (over F).

Hence the s-symmetry does not influence the elementary divisors of a matrix

over an arbitrary field F, char F~2, which is not true in the case of the ordinary

1980 Mathematics Subject Classification. Primary 15A57; Secondary 15A18, 15A21.

Key words and phrases. S-symmetric matrices, symmetric matrices, elementary divisors, classical
canonical matrix.

* In the literature the s-symmetric matrices are called also as persymmetric matrices.
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symmetry, as it is shown by the spectral property of real symmetric matrices. But as a
consequence of Theorem 4 and 5 of this paper the following statement is valid.

There is a symmetric matrix in M2(F) (resp. in M2t+1(F)) with arbitrary pre-
scribed elementary divisors over F, if —s is a square (resp. —e and 2e are squares) in
F, where F is a field char Fyi2

The considerations of the main theme need some preparations, namely decom-
positions of some Hankel matrices. These are proposed in Section 2. The main results
are contained in Section 3.

2. Preliminaries and decompositions of some Hankel matrices

Let F be an arbitrary field, char F?*2. The unit and zero element of F will be
denoted by eand 0. The set of nXn matrices over F will be denoted by Af,,(F), while
F" denotes the set of n+ 1 matrices. | or /, is the unit matrix in M,,(F) and Nf M,,(F)
or N,, denote the nilpotent matrix with e’s in the positions j,j-f1 (j=1, ..., n—0)
and 0’s anywhere else.

Let al,a2 be a sequence of elements afiF. The symmetric matrix
S= [ with entries sk=aJ+k " (j,k=1, ...,«) is called a Hankel matrix (cf.
[1, pp. 538]). If a,+1=...=02,+1=0, then S=[aJ+t_1] is an upper triangular Hankel
matrix, shortly an UH-matrix, which will be denoted by S(at,. a,). Similarly,
S(a,,, ..., a,) will denote an LH-matrix (lower triangular Hankel matrix):

a f2. 0. m0 a,

. a2 m0 _
S(i, « &)= S(a,,, .., ak = 0 a2
a, 0 . & a,e *"2 M.

Obviously, VSV=S and vice versa. The UH-matrix S can be written with help of V
and N in the form

(2.0 S=S(fll,...,al= |2

and it is nonsingular iff an™ 0.
n—1
The triangular matrices UEMnR(F) of the form U=Jg bjNj, bjEF are called

=0
UT-matrices (upper triangular Toeplitz). Obviously, VUV=Ur=T is an LT-
matrix (lower triangular Toeplitz). Let us consider the following LT-matrices T,(X)€
€M,,(F)

(2.2) Tj(x) = I-x(N ry
for y=1,...,« —1 with arbitrary X£F.

Lemma 1 Let S=S(al, ..,anj, 0, ..., 0,an) be a nonsingular UH-matrix
over afield F, char FA0 and let Tj=Tj((2aJ~lan_j) be the LH-matrix (2.2) with
X =(2an~lan"j. If S' denotes the matrix

(2.31 S'= TtST,
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then S'=S(alai 0, ..,04a,) ie
(2.9) anj=0, a,v=a,v=0, V=i, 1), 4d,,= an.

Proof. Taking into account (2.1) and (2.2) the direct computation of (2.3) results
for the parameters d,, v

“nev if v=o. 1,
0 if V:j’

= o if v=j+I, 2j-1,
a,,-2—2(2a,,)-1" _;+ (2an-2a"2_,- if v- 2,
an-v 2(2afi anqan‘\j—v if v=2/+1, .., 3—L
«n-v-2(2an -1a, da,_ J_v¥(zam-2a:an_2._v If V= 3, o, N—1,
gives for v=0, the stated relations (2.4). O

Let us observe that Lemma 1 makes use of assumption char F?i2. The next
lemma is an immediate consequence of Lemma 1

Lemma 2. Let S=S(a!, ..., a,) beanonsingular UH-matrix (resp. S=S(a,,. ...
..., Gj) a nonsingular LH-matrix) over afield F, char F~2. Then there is an LT-
matrix T (resp. a UT-matrix U) with €'s in the main diagonal such that

(2.5) TTST=anV, resp. UTSU =anV.

Proof. It suffices to prove the statement for the UH-matrix S. Let us define
inductively the matrices

Tj = Tj((2a,))-1ay ~1))
Sa) = 5(a[Jd), ..., i9)) = TjSA-"Tj
i=1 .., n—l 5»>=S(ai, .., a,)
Then by Lemma 1it holds
(2.6) 5<h = S(a<;>.....agj-yy 0,...,0,an j=212 ..n-1.

The matrix T=T1T2..T,,_ 1 is again an LH-matrix with e’s in the main diagonal,
and according to (2.6) we have

&) = TtST = a,,V,
which was to be proved. O

Remark. Observe that the triangular matrices T and U involved in Lemma 2
have the inverses
2.7 T-1=a~IVTTS, U-1=a~1IvVUTS.

Lemma 3. Let Hd M2r(F) be the Hankel matrix having the partitioned form

H = diag(F*+1,-K b+l) = [ @ .
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where k+I1+I=r (k, /SO).
such that

If char¥/2,
QtHQ = 2vV.

A. LEE

then there is a nonsingular matrix Q

Proof. Letus consider the permutation matrix P and the blockdiagonal matrix
D, that have the partitioned form

where on the empty spaces stand everywhere 0’s.
A direct verification shows the validity of

Ifu)y = prHP

and

which prove the lemma. O

-V,
s 0
0—£
-V,
VK
k | 2 /
DTH(@D = 2V,
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3. S-symmetric matrices

From relation (1.1) it is obvious that an s-symmetric matrix of size 2kx2k and
(2k+\)X(2k-\-1) can be written in the form

B b Cv
B CV |
(3.1) 2k — . rwk+l— (P c DTV
[VD vbewi VD Vd VBTV

where CT=C; DT=D; B, C,DdMk(F); b,ddF*; cgF are arbitrary.
Taking into account form (3.1) of an arbitrary s-symmetric matrix, the following
proposition can be directly verified.

Proposition 1. Let Aik and A, be s-symmetric matrices and let us consider the
(2k +n)X(2k +n) permutation matrix P having the partitioned form
00
04

0

-
I
o O =

then the matrix M, where
M = PTdvdg(A.lk, AP
iS s-symmetric.

Further on it is always assumed that the field F has char "2.
The next three theorems take the preliminary steps in proving the main result.

Theorem L1 Let /[i(2)€F[/] be given, where p(L)=/n—alA"~1—..—an is
irreducible over F and nS 1L There is an s-symmetric matrix A(M n(F) with elemen-
tary divisor p(A).

Proof. If n=\, then A=at is s-symmetric. If 1 then the irreducibility
of p(A) implies a,X0. The companion matrix of p(A) is

0 £0 . 0
0 0fF 0
(3.2
0 £
an O~ .. U
rix S=S(e, a~\
Lemma 2 there is a UT-matrix U such that
(3.3) U-1= VVTS.

A direct verification shows the validity of

(3.4) SF=FTS.
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We state that A=U~1FU is s-symmetric. Taking into account (3.3) and (3.4), it
really holds

VAtV = V(VUtSFU)t V= VUTFTSU = VUTSFU = A,
which prove the theorem. O

Theorem 2. Let ji(A) (EF[A] be given, where fi().)g=(?."—all.n~1—... —a,)q
and ju(A) is irreducible over F, q>\, nsl. There is an s-symmetric matrix Ad Mn(F)
with elementary divisor 3().)q.

Proof. If n=I1, then to B(X)g=().—alq belongs the Jordan matrix
ai
| = £
£a

as the classical canonical matrix with elementary divisor (A—a})q and / is s-symme-
tric. Suppose n>1, then a,,0. The classical canonical matrix with the elementary
divisor //(/.)" is the matrix (cf. [2, p. 72])

F

EnlF
(3.5

EmE_

where Lis the companion matrix of R(A) and EnldMn(F) denotes the n, 1th matrix
unit, with £in the position n, 1 and 0’s everywhere else. Let us consider now the

UH-matrix S:c{/jﬁ_o NA, V, cAO, which has the form
Mo Moo Wi

S=c
V.
and let T be the LT-matrix with inverse
7-i = c-ivttS
A direct verification shows that
SB = BTS.
In the same way as before we can see that the matrix

A -T~IBT
is s-symmetric.

Theorem 3. Let et(X)=fii()X)qeF[A] (/=1,2) be given, where Ji;(A)=
= Ai—au A< 1—.. —a,, is irreducible over F, and nlgt—2kt+ I (k. isO). There is an
s-symmetric matrix AdMir(F), (where r=k1+k2-\-\), with elementary divisors
ei (A), 2(A).
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Proof. Let Ct be the classical canonical matrix with elementary divisor et(X).
C, may be any of the form (3.2) or (3.5) including their special cases of F=0£F
or B=J, too. Then CEMZ(F), where

C = diag (Ct, C?

is the classical canonical matrix with elementary divisors C(&) (i=1, 2). On the basis
of Lemma 2 there are triangular Hankel matrices S\ and triangular Toeplitz matri-
ces Ti, such that

StC, = C?Sr, T?S{Tt = V2iH i=12
Then the matrices
S =diag(Si,- S T =diag (7\,J2
will satisfy the relations
(3.6) SC = CTS; TtST= diag (F21+1—F22+1).

According to Lemma 3 there is a nonsingular matrix Q such that
(3.7 QTdiag(V2d+L, -V 22+H)Q = (2e)Vx (r = k1+k2+1).
Combining (3.6) and (3.7) the matrix U—TQ has the inverse

U-1= (2e)~IVUTS
and the matrix
A=U-'CU
is s-symmetric. O

Now we are in the position to prove the main theorem of this paper.

Theorem 4. There exists an s-symmetric matrix over the field F, char F"2,
with arbitrary prescribed elementary divisors (over F).

Proof. Let the system of the given elementary divisors
Bi(X) = A% a nXt-1-...-a bli;
nigi = 2ki; kts 1; i=lI, S,
fiw = v/IAli: VA - —
miPj=2"+1, 1j=0; j=1 ..t

According to the preceding theorems we can construct the following s-symmetric
matrices

@) for i=1, ..,s:
A()Msk (t) with elementary divisor ef(A),

(2 forj—2,4,..,2[y]*
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B())"M 2 (F) with elementary divisors fJ 1(2), /,(/.), where rJ=1J_1+I1J+\,
and

C,M2a+i(F) with elementary divisor f(X).

Then the repeated application of Proposition 1 results a matrix AEMd(F), where
S t

d:2I nioi+% mjPj’ wi-h the required properties. O

The next theorem refers to a connection existing between the set of s-symmetric
matrices and the set of (ordinary) symmetric matrices in Mn(F).

Theorem 5. Let F be afield char FA2 If —e is a square (resp. —e and 2s
are squares) in F, then there is a nonsingular matrix UdMik(F) {resp. Uf M2)i+1(F))
such that the inner automorphism qv: A—U~IAU is a one-to-one mapping of the
s-symmetric matrices onto the ordinary symmetric matrices in MIk{F) (resp. in

Proof. Let us consider the matrix QZMn(F), where

h 0 -vk
0 e O n=2k+1,
VK 0 .

and the diagonal matrix D6Mn(F), where

| diag (4, -4) if n—2k
Idiag (4,2s, -4) if n=2k+lI.

The following decomposition of the permutation matrix V is valid
(2.8) V = (25)~'QDQT.

The assumption that —s is a square (resp. —s and 2s are squares) in F implies that
the diagonal matrix D has a diagonal square root A*M,Ik(F), (resp. AdMik+1(F)).
Using the notation U=QA, we have from (2.8) V=(2e)~1UUT, hence the non-
singular matrix U has the inverse

U-1= (2e)-1UTV.

We show that the inner automorphism (v with this U possesses the property
sj[ated in the theorem. Really, let A be s-symmetric, then B=U~1AU is symmetric,
since

BT- (2¢~1(Ut VA U)t = (2s)~IUTVAVVU = (2 Ut VAU = B.

The converse, that each symmetric matrix B is an ¢pv-image of an s-symmetric matrix,
can be proved similarly.
From the preceding two theorems we have the

Corollary. Let F be afield char F~ 2. There is a symmetric matrix in
(resp. in M2k+i{F)J with arbitrary prescribed elementary divisors (over F), if —s
is a square (resp. —e and 2s are squares) in F.
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CONSTRUCTIONS OF VARIETIES THAT SATISFY THE
AMALGAMATION PROPERTY OR THE CONGRUENCE
EXTENSION PROPERTY

F. J. PASTIJN

To the memory of Professor L. Rédei

Given a suitable variety K, we shall investigate two techniques for constructing a variety that
satisfies the amalgamation property or the congruence extension property. The first technique consists
in constructing the inflations of the universal algebras that belong to K, the second one consists in
performing the Pionka sums of the semilattice ordered systems of universal algebras that belong to K.

Besides the concepts which will be defined below, we shall essentially use the
notations and the terminology of [4].

We shall only deal with algebras without nullary fundamental operations. Let
A be a variety (—equational class) of algebras. Then E(K) will denote the set of all
identities which are satisfied in all the algebras that belong to A. An identity p=q
oftype twill be called regular if the same variables occur in both p and g. We denote
by R(K) the set of all regular identities which are satisfied in all the algebras that
belong to K. Let us consider the identity

@ X, = p(xr...... X,.), 1——a

of type t. If in the right-hand side of (1) x, and at least one more variable occurs,
then we call (1) a strongly non-regular identity. Groups, lattices, rings, ..., each satisfy
some strongly non-regular identity. If £ is a set of identities of some fixed type t,
then Ke denotes the variety that consists of the algebras that satisfy all the identities
in the set E.

Let A be a variety. Let 2t=(A; F), ©=(£; F) and tf=(C; F) be algebras
in A, and let B: A-»B and y: A—C be monomorphisms. Consider the amalgam
(21, B, ©, y, (E) in A. This amalgam is weakly embeddable in A if there exists an al-
gebra D~(D; F) in A, and monomorphisms RB': B—D, y': C->D, such that
RR'=yy'. The amalgam will be called strongly embeddable in A, if there exist T), '
and y' satisfying the above, and in addition ARR'=Ayy'=BR'OCy’. The variety A
satisfies WAP (the weak amalgamation property) if every amalgam in A is weakly
embeddable in A, and the variety A satisfies SAP (the strong amalgamation property)
if every amalgam in A is strongly embeddable in A. We refer to [2], [4], [6], [7] for
examples of varieties that satisfy WAP or SAP.

A variety A satisfies CEP (the congruence extension property) if every congruence
relation on a subalgebra of an algebra 21in A can be extended to a congruence rela-
tion on 2L We refer to [1], [4], [7] for more information and for examples.

1980 Mathematics Subject Classification. Primary 08B05, 08B25; Secondary 20MO07.
Key words and phrases. Amalgamation property, congruence extension property, Pionka sums.
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Let 91=(/4; F) be an algebra oftype r, and let {XJa£A} be a set of mutually
disjoint sets, such that for aEA, we have XaDA ={a}. Let B= § Xa. For any
a€ A

fydF, with y<o(r) and ny=x(y), and any bfXa,i=1,...,ny, we define

fubt, by =fy@l, ay).

Then 93=(_5; F) becomes an algebra of type t which will be called an inflation of
the algebra 3L

Let Zz={0,°°}, and let i be a type. Let F=(fy,y<o(v), and consider
3 =(Z; F), where fy{ax, mm «,,.)=0 for all y-~o(x) and all ax, arflZ. Remark
that 3 satisfies all the identities of type t, except the identities which are of the form
(1) where p(xI5 ..., x,,) is a polynomial symbol which is different from x(. We call 3
the two-element zero algebra of type x

We refer to [2] for special cases of Theorems 1 and 2 below. For Theorem 1we
refer to [5] and [14]. We include a proof for the sake of completeness.

Theorem 1 Let Kbe a variety consisting o falgebras oftype x. Then thefollowing
are equivalent.

(i) K is thejoin of K and the variety HSP(3), where 3 « the two-element zero
algebra of type x.

(ii) R is the variety that consists of the algebras of type x which satisfy all the
identities in E(K), except perhaps the identities (1) where p(Xx,, ..., X,,) is a polynomial
symbol which is different from x,.

(iii) K consists of the algebras which are inflations of the algebras in K.

(iv) An algebrabelongs to K ifandonly if it is a subdirect product of an algebra
in K and an algebra in HSP(3)-

Proof. The equivalence of (i) and (ii) follows from the observation made before
the statement of the theorem. If E(K) does not contain any non-trivial identity of
the form (1), then K=K in the four statements (i), (ii), (iii), (iv), and the equivalence
prevails. Therefore we shall henceforth suppose that E(K) contains an identity (1),
where p(xx, xf is a polynomial symbol which is different from xk in P (t), for
k= L e, n.

Let B=(B; F) be an inflation of 9f=(A; F)EK. Then B= |J Xa, where

2 Xaf]Xa= n if a”a'
and
(3) XaHA= {a}
for all a a'£A, and where
4 fl(aan=fy(flb n)
for every ffF and b.EXa, i=\, ...,ny. Let

0i = aklAXaXXa,

a2= (AXA)U{(x, X)\xEB).

Then 41 and 42 are congruence relations on 93. Since qic\oz= .o > We see that B is
a subdirect product of 93/pi and /2. Further, 93/pl=9ItAl and 93/p26HSP(3).



CONSTRUCTIONS OF VARIETIES 103

Let us consider an algebra S=(B; F) which is a subdirect product of an al-
gebra 2]=(A'yF)dK and an algebra 212=(,42; F)fHSP(3). Then there exists an
element o in A2such that o=fy(bl, ..., bny) for every y<o(x) and every blt ...,b,, £.
£A2. Let a be any element in Al. Then there exists an element bdA2 such that
(a, b)EB. Let p be the polynomial which is induced by the polynomial symbol p
which appears in (1). Then p((a, b), (a b))=(a, 0)£B, and we may conclude that
21=(A; F), with A= {(a o)\aEAZL}, is a subalgebra of © which is isomorphic to
21]. Thus we also have 2I£F. Putting JL<iQ= {(a, b)\bZA2, (a, b)EB), we see that
© is an inflation of 21. We proved the equivalence of (iii) and (iv).

In view of the equivalence of (iii) and (iv), we can now say that in order to show
the equivalence of (i) and (iii), it suffices to show that the class K which is defined by
(iii) constitutes a variety. Let / be a set, and for each /£/, let S; be an inflation of
2lidK. Then the direct product IT(©, /€/) is an inflation of n(2l,/i'C/)6Ar. Thus
the class K which is defined by (iii) is closed for taking direct products. Let ©=
=(B; F) be an inflation of 21=(4; F)£EK, where (2), (3) and (4) hold. Let ©=
=(C; F) be a subalgebra of S. Clearly 2in© = (/ffjC; F) is a subalgebra of 21,
and so 2IfIOLF. Letus put Ya=XanC for aEAC\C. Let gqEC. Then g£Xa
for some afA. Since (1) holds in K, we have a=p(q, ..., QJEAC\C. Thus g£Ya,
with aEAi)C. We conclude that C is the disjoint union of the sets Ya, afEADC,
where for every a€ADC, we have Y,,0(AnC)={a). It is now easy to see that (€
is an inflation of 21Pi(E6K. Thus the class K defined by (iii) is closed for taking
subalgebras. Let us again consider the above algebra ©, and let ¢o: B-+E be a ho-
momorphism of © onto (E-=(£; F). The image £)=(0; F) of 2L under (pis a
subalgebra of © and T)EK. Let Zap=Xap for every afA. Every element of Zat
is of the form qp, with qf.Xa. But then ap= (p(q, ..., 9))(p=p(qcp, ..., q). This
shows that E is the disjoint union of the sets Zd, dED, where Zdf]|D= {d} for every
dED. By this partitioning © becomes an inflation of T)PF. Consequently, the class
K which is defined by (iii) is closed for taking homomorphic images. We may now
conclude that this class K constitutes a variety.

Theorem 2. Let K and K be as in Theorem 1. Then K satisfies WAP [SAP,
CEP] if and only if K satisfies WAP [SAP, CEP].

Proof. By the foregoing we know that K—K in case E(K) does not contain
any non-trivial identity of the form (1). In this case our theorem holds trivially. We
suppose henceforth that K satisfies (1), where p(X], ..., xn)7ixk, Ik~ n, in P(x).

For any X'=(X; F) in K, we note that X' is the inflation of 3E=(Ar, F)£K,
which is the image of X' under the idempotent endomorphism

0: X' ~X, x'- p(x', ....x",

of X' onto X. X' is the disjoint union of the 00jLclasses Xx=x99~1 x£ X.

Let <L, B\ ©', y', ©") be an amalgam in K. Without loss of generality we may
suppose that 2L=(A"; r>, F), ©=(C"; ), A'=B'DC"', where B' and
y' are inclusion mappings. Then (21, R"\A, ©, y'\A, ©) is an amalgam in K where
B\A and y"\A are inclusion mappings, and A=Bf)C= {a£A'=B'C\C"\a—p("a, ...
., @} If Kk satisfies WAP, then there exists an algebra 1)=(0; =) in K, and mo-
nomorphisms R: B—D, y: C-+D of © and © into T>which agree on A. We can
easily construct an inflation X)' of ® such that R [y] extends to a monomorphism
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B" [yA of 23 [(E] into X', where R" and y" agree on A'. If the amalgam <91, R\A, 23
Y|A, (E) is strongly embedded in X, then we can manage to construct X' in such a
way that the amalgam <9T, R', 27, y', £') is strongly embedded in X' by " and y".
A precise construction is left as an easy exercise to the reader. Thus, if K satisfies
WAP [SAP], then K satisfies WAP [SAP],

Let us suppose that <91, 3, 23, y, (E) be an amalgam in K, and let X'—(p'\ F)
be an algebra in K, and R': B—D', y': C-*D' monomorphisms such that RR'=
=yy'. Let 6: D'—D, x-*p(X, ..., X) be the idempotent endomorphism consid-
ered above: 0 maps X' homomorphically onto the subalgebra X =(D; F) of X'
We note that X£K, and that 'O and y'6 are monomorphisms such that B(R'O)=
=y(y o). Hence the above amalgam is weakly embedded in ®6A’ by the mono-
morphisms 'O and y'6. If the amalgam is strongly embedded in X'fK byJF and y',
then the amalgam is strongly embedded in X£K by 'O and y'O. Thus, if K satisfies
WAP [SAP], then K satisfies WAP [SAP],

The proof for the corresponding statements involving CEP is straightforward

Let £—{0,1} and let x be a type. Let f=</,, y<o(t)), and consider
£—{L; F) where
fy@i ..., a,) = a whenever at=a2=...=ay=a
and
fyifli, »>aq) = 0 if 06K, ..., a,r}
£ satisfies the identity p=q of type tifand only if p= q is a regular identity. We call
£ the two-element semilattice of type t.

Let us consider the variety K consisting of algebras of type x. Recall that a semi-
lattice ordered system of algebras from K

6) sl = «7; A); QI¥U67), (@M, if7,i " >

isjust a direct family of algebras in the sense of Definition 3 of 821 of [4], where the
underlying partially ordered set is a semilattice <7; A), and where the carriers At

of the algebras 91* Z67, are mutually disjoint. The Plonka sum of the system
sa is the algebra of type x with carrier (J Ah and where for every y<o(x), and
ajEAi., 7=1, ..., ny, we have iei

(6) 11 (fli, ==, a,3) =f(ai(@En™, ..., &, " %)

with /0= QX ij-

=i

If thtje algebras of the variety K all satisfy some strongly non-regular identity (1),
then the class consisting of the algebras that are Plonka sums of semilattice ordered
systems of algebras from K constitutes a variety. If this is the case, then the variety
under consideration is exactly KR(K), and this variety Kr(K) is the join of K and
HSP(fi) [3], [10], [13].

Special cases for part of the following theorem may be found in [2], [6], [7]

Theorem 3. Let K be a variety, where E(K) contains a strongly non-regular iden-
tity (1). Then the variety Kr(K) satisfies WAP [SAP} if and only if K satisfies WAP
[S.4P] and CEP.



CONSTRUCTIONS OF VARIETIES 105

Proof. Let us first suppose that kr(k) satisfies WAP. Let <91, 8, ©, y, £) be
an amalgam in K. This amalgam can be weakly embedded in an algebra X=<Z); F)
of KRW be the monomorphisms 8 B-*D,y’\ C-*D. We know that X is the
Plonka sum of a semilattice ordered system of algebras Ti=(Di;F), idl, of K
Since the subalgebras ©/?' and (£ of X satisfy the strongly non-regular identity (1)
we have BR'QD( and Cy'QDh for some il,itdl. Further, O"BR'HCy'"

implies ix—122¢ It follows that the above amalgam is weakly embedded
in Xj=</);; F)EK by B' and y'. We conclude that K satisfies WAP. Obviously, if
Kr(k) satisfies SAP, then K also satisfies SAP.

Let 91=<T; F) be a subalgebra of the algebra ©=<1?; F)dK, and let g be a
congruence on 91 The canonical homomorphism of 91 onto 9/g=(A-, F) will be
denoted by g% We now consider the semilattice ordered system sé given by (5),
where 7={1,0}, 9I1=9I, 910=9i/8, and ql0=gt> We can and shall suppose that
Bf)A'= 0. Then <9 B, ©,Y, S(sd)) is an amalgam in Kr(k) where B and y are
inclusion mappings, and where Bf)(AUA")=A. This amalgam is weakly embed-
dable in an algebra X=<€ F)EKr(K) by the monomorphisms ' and y'. We can
always suppose that X is generated by the elements of BR'UA'y'. Consequently >
is the sum of a semilattice ordered system

L <l AS; (®iEN): (+ui, <€/, i'si)>

of algebras Xi=<2Z)i; F)EK, /6/={1,0}, where ' maps © onto Xx and y' maps
91/e into XO. Further, the embedding of the above amalgam is necessarily a strong
embedding. This all follows from the fact that the semilattice ordered system (7) which
is associated with X is uniquely determined by X [10], [13]. Note that i10: D1—D0
is given by the following. If dED1, then dil/10=p(dl, ...,dn with dt=d, and
dkEDa for all I*k”n, Kkjtl. Thus

tu

is commutative, and g is the congruence relation on 91 which is induced by (y"\A)ip10.
Let ' be the congruence relation on © which is induced by £'i%i,,. Since B"\A=y"\A,
the above implies that g'C\Ax A =g. Thus the congruence relation g on 91 can be
extended to a congruence g' on ©. We conclude that K satisfies CEP.

We now proceed to show the converse part of the theorem. Accordingly, let us
suppose that K satisfies WAP and CEP. Let <91, R}, S, Yy, £) be an amalgam in
Kr(k). There is no loss of generality if we suppose that 9= </1;.F), ©=<E; F),
<£=<C; F), BHC=A, where B and y are inclusion mappings. Let 91 be the Plonka
sum of the system (5), where 91,6A for all /£/. Let B and (£ be the Plonka sums of
the semilattice ordered systems of algebras from K

®
and
(9) «A7; A); (Gmm€EA/); m'EM, in" * m)),
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respectively. The above considered decompositons of dl, © and (f as sums of systems

of algebras from K is unique: the i£l, are the maximal subalgebras of 31 that
belong to K, and a similar statement holds for the jEj, and the mEM.
The mapping B: 1—J which is given by for all z€/, is well-defined

and gives rise to a monomorphism ofthe semilattice 3=(7; A) into the semilattice
3=(J; A). Analogously, the mapping y: I-~M which is given by A~C" for
all z£7, is a well-defined monomorphism of 3 into the semilattice = ; A).
As a result we have the amalgam (3, &3, 3, y, ) of semilattices. Without loss of
generality, we may suppose that and that R and y are inclusion mappings.
This semilattice amalgam can be embedded strongly into a semilattice § = (77, A)
by the monomorphisms °: J-+H and f: M—77. For the sake of simplicity we
shall again suppose that B' and y' are inclusion mappings, and that § is generated
by the elements of J\JM (thus, H=JUM{J(JAM)). The embedding of the above
amalgam can be done in such a way that for JEJ and mEM we have j=m [m"j]
in § if and only if there exists i£l such that jsii in 3 and i*m in 91 [mS; in
Qi and i=j in 3]-

If i,i'El and i'Si in 3, then i, i'dJCIM, i'*i in 3 and in DX and A{=
=5;nCi, Ai,=Bi,C\Ci,. Further, if aCAh then afu,=a(piV=aijfii,=p(al, a,,),
where at=a and ak™Ar for k*l, kE{\, ...,«}. Hence

(10) Ain\ATL = CUMAL 2=(pw, i,i'Ek i"—i in 3.
For any /zE77, let
Oh: (th/gsy)u%cm-z "

be a bijection, and let RBA= (Ff; F) be the algebra of K which is fieely generated by
the elements of Zhsubject to the identities of E (K), and subject to

bjoh= (bj\j/jj,)Oh for all hraj'raj in § j,/€J.

(1) and all bjrBj,
(12 cmbh= (cmGm)Oh for all hrdm'* m in § m m'EM,
and all cnECm

[(*A, xpoh) = ., yqoh for all x1, ..., X, Y\, ..., YgEBx

(13) with jdJ, and j~ h in §, Iif
f(Xi, xp =g(yt, yg holds in

f(x[Oty..., x,,0h = g(y\Oh, ..., yq0,) for all xt,x,,,yi, ..., V,€Cm

(14 with  méM, and m” h in §, if

f(x1 ..., X0) =g(yx, yg holds in
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We shall suppose that the carriers Vh, ItdH, are pairwise disjoint, and we consider
the semilattice ordered system

(15) «Il; A); (33*efl); OwI*, h'EH, V s h))

where for each h, ti'ZH, A'S/r in 9),A\kh is the homomorphism of 9, into R,
which extends the mapping Zh"Z w, xOh-~xOh,. Let 9B be the Plonka sum of the
system (15).

Let lizJ. Then 9n\Bh: Bh—Vh is a homomorphism of 9, into RBA If by, b2d.Bh,
and b10h=b20hin 93A then there exists a finite proof which establishes the equality
of byOhand b20hmThis proof is based on the rules (11), (12), (13), (14) and the iden-
tities of E(K). In other words, there exists a sequence

(16) by ON= py(xy, XDy o ps(Xy, ..., x,) = b20h

where pt, ps are polynomials of 91, x1? ..., xtEZh, and where the transition
of one of the elements in (16) to the subsequent one is accomplished by a single
application of one of the rules (11), (12), (13), (14) or an identity in E(K). Let N
be the subset of M which consists of the elements n for which cnOhd (xy, ..., X}
for some c,EC,. If JV=m, then by=b2 in Bh. We shall henceforth suppose

Let mO—AN in the semilattice 9R Since mOEM, hdJ and h”"mO0, there
exists an idl suchthat h”i=imO in §. For k=1,...,t, let

= (bj'I'*yoh if DbjdBj, bjoh=xk and ' j in 3,
xk = (bjPjdo, if bjdBj, bjoh=xk and j~j in 3
=(cnu e h if CrECn, c,.0h= xh.

The above elements are well-defined because of (10). Then the sequence

(17) byOh = pk(xi,..., Xt), ..., Psix'y, ..., X',) = b20h

also constitutes a proof for the equallty of byOhand b20hin 93,. This proof involves
elements of (B, UC,U BROh only. Again every transition in (17) is an application
of one of the rules (11), (12), (13), (14) or an identity of E(K).

The congruence relation g on 91, which is induced by the homomorphism
/g,|Aj can be extended to a congruence relation g on (f; since K satisfies CEP. Let
us consider the amalgam (91,/g, i, (ijig, = 93,), where i is the inclusion mapping,
and N the monomorphism of 91Jg into 9, which is defined by (ag”)ri =aipih for all
adAj. Since K satisfies WAP, the above amalgam can be embedded in an algebra
B= (£>; F)dK by the monomorphisms iand . For k=1, ..., t, let

xkOk'g*i if xkdCiOh,

xkOh1Pihn if xkdB,0h,
xkQn 14 if xkdBhoh.

Then
(18) ] = ricxl, .., X") =...= p,(Xy, ..., x7) = b2

holds in T> Thus by=b2in Bh. We conclude that 0,,|3,, is a monomorphism of %,
into 93,.
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In a similar way we can show that for every hdM, 9h\Ch is a monomorphism of
&, into 93,. Further, if j,j'dJ, with /'=/, then

eig

5 ..

is commutative. Therefore %?] (0\BR=[V is a monomorphism of © into 9B In
the same way one shows thjat [J OmMCm=/ is a monomorphism of £ into B
M

m6
Since B"A=y"A, we may conclude that the amalgam (91, 8, 9B, y, £) is embeddable
in Wby R and y'. Thus Kr(K) satisfies WAP.

Let us again consider the above amalgam (91, B, 93, y, £) which can be embedded
in © by the monomorphisms B' and y'. Let idl. The algebra ©fK may considered
to be freely generated by the elements of (BiUC;) 9h subject to the identities in E(K),
and subject to the equalities (13) and (14) that hold in S; and £,. If the amalgam
(9If, B\At, ©;, Y\At, £,) is strongly embeddable in K, then "58-DCE f Otin ©,.
Consequently, if K satisfies SAP, then the amalgam (91, B, ©,y, £) is strongly
embedded in © by the monomorphisms ' and y'. Thus if K satisfies CEP and
SAP, then Kr(k) satisfies SAP.

For a special case of the following theorem, see [7] 83.

Theorem 4. Let K be a variety, where E(K) contains a strongly non-regular iden-
tity (1). Then K satisfies CEP if and only if KRIK) satisfies CEP.

Proof. Let us suppose that K satisfies CEP. Let 91 be a subalgebra of the algebra
©€ARK). We know that S is the sum of a semilattice ordered system (8), and that 91
is the sum of a semilattice ordered system (5), where we suppose that the components
9I;, idl, and ©,, jfj, belongto K. Since K is a strongly non-regular variety, the map-
ping ], i-*j, if 91,1=93(, is a well-defined semilattice monomorphism. We shall
henceforth suppose that 3 = (7; A) isa subsemilattice of 3 = {J\ A). We remark once
more that for i,i'E£l, with i'Si in 3 we have <i="ifA-,. Indeed, for every adAt
and some a'dAr we must have aii,=p(al, ..., a,) = ai/q;, where a=at and ak=a' for
all kE {1, ..., n}, k™I. Let gbe a congruence relation on 91and let 9 be the intersection
of all the congruence relations on S that contain 4. We must show that 9 induces q
on 9L

Let us suppose that a and a' are O-related elements of 91 Then there exists a
sequence

a = Pi(an>s>aim)y Pi("n> s> —p2(ad, ..., a2n), ...
o> Py- .oy BU-IMu_R = pu(aul, ..., alin), p,,(btl, bnf =a

where the above equalities hold in S, and where for each Is”aw, and each
1"r~m q either ag=bag or ag 4 bgin 9L We may suppose that for each 1=+q"u,
XX, ..., XMj occur in p4(xI5...,\nf. For each 1*qSu, \Sr“ mg, we suppose
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agdBj and bg£ B,. Let us put jg= A?jcr and lg- /IA? Observe that /,=
r= r

—T«+i for ?2=1, m—L Further, and a'6-4,u.

We now proceed to show that i=~ A ,/,j A/u;/ and that aga(pjyi in it. Let us

S
suppose that aQa(pJlis, where 4= A i,C/ (this statement holds trivially for s—1).
4=1

Observe that jsl, ... jsm is. If asl=6sl, then jsl=Isl and 4A4i=4£4
a doVhi.hti- If asi*b5l, then jsl, ISIEl, asl,bsIEA and asl gqbsl in it. We can put

aQa<Pjli, = P(ai,--,anep(a'l,...,a'n = afphi, Utl in Sl

where at=a'i=a(pjlis and ak=asl, dk=bsl for k£ {1, /;}, kM. If isAIA..
e..alsvel fOrt><ms and a Qga<pjiisaisla then one can show in exactly the same
way that /SA/SIA... Als,Als,+le/and aé"a<Pjli,Ai,lA.. .AiAi,+1- By induction we
conclude that /SA/S€/ and a Qacpj*hi.- If s u —1, then /s—ys+i, and so isAls=

= 5Kl./9:4+i- Using induction on v we have iwdl and a ga(pjliu. Applying the

4=1
above procedure, we again obtain i=iuAl,,£l and a qct(pj¥a’u=acpj*. Observe
that 1=7!ANA 4 By symmetry we also obtain a'Qa'(p,ui.
For any 1 and 1"r"mgqg, we put agr)dgri=a'q and bg\l/,gri—bar.

If ag=baqr, then dgr=b'gr in B~ If agqbginif then

do = p(aii anfp(bi, b,) = ba

in it where at=agr, bt=bgr and ak=ag—bk for k{1, ...,«}, k™l. Let us consider
the sequence

(20) aPhi = Pl(all> we» almd> Pl(bu,  blm) = p(C2, ..., (end>
o) Pu—Hbu~11»ee) h,, IMu D)  A<CU* w> Pu(bu, ..., but) U (Pui<

There exists a congruence relation on ® ;whose restriction to it; yields the restriction
of gto it;since K satisfies CEP. Therefore (20) shows that aphi ga'cpiui in it. Conse-
quently, aga' in it. We conclude O\A=q. We have proved that Kr(k) satisfies
CEP.

The converse part of the theorem is obvious.

Corollary 5. Let K be a variety where E(K) contains the strongly non-regular
identity (1). Then

(i) if Kr(k) satisfies WAP, then Kr{k) satisfies CEP,

(ii) Kr(K)satisfies WAP [SAP] if and only if K satisfies WAP [SAP] and CEP.

Corollary 6. HSP (ii) satisfies SAP and CEP.

The following theorem combines the two constructions we have discussed so far
(see also [5] and [14]).

Theorem 7. Let K be a variety where E(K) contains the strongly non-regular
identity (1). Then Kr(k) is the variety which consists of the algebras which satisfy all
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the regular identities in E(K), except perhaps the identities which are of the form
X =q(x). The variety KR(K) consists of the algebras which are inflations o f Plonka sums
of semilattice ordered systems of algebrasfrom K. Equivalently, Kr(K) consists of the
algebras which are Plonka sums ofsemilattice ordered systems o f inflations o f algebras
from K.

Remark that in Theorem 7,_Kr(k) contains Kr(k) properly since x=p(x, X)
belongs to R(K) but not to E(Kk(k)). Using Theorem 2 and Corollary 5we have the
following

Theorem 8. Let K and KK(K) be as in Theorem 7. Then
(i) if Kr(K) satisfies WAP, then Kr(K) satisfies CEP,
(i) Kr(k) satisfies WAP [SAP] if and only if K satisfies WAP [SAP] and CEP.

Example 1 Semigroup varieties that consist of semigroups satisfying some
fixed strongly non-regular identity have been characterized in [9], 1V.2.17. (vi). The
amalgamation properties and the congruence extension property for these varieties
have been discussed in [2] and [1], respectively. It turns out ([2], 4.2.17) that varieties
of semigroups that satisfy WAP must be either (i) varieties that consist of semigroups
satisfying some fixed strongly non-regular identity, or (ii) varieties that can be con-
structed from (i) by applying Plonka sums and/or inflations.

Example 2. Completely regular semigroups are semigroups that are the (dis-
joint) union of their maximal subgroups. They constitute a variety of algebras of
type (2, 1), the unary operation -1 being the taking of the inverse within the same
maximal subgroup. A completely regular semigroup that satisfies a strongly non-
regular identity must be completely simple i.e. it must satisfy the strongly non-regular
identity x = (xy)(xy)_1x. We again see that the varieties of completely regular semi-
groups that satisfy WAP must be either (i) completely simple semigroup varieties or
(ii) varieties that can be obtained from (i) by considering Plonka sums. Here the
consideration of inflations leads to algebras which are not completely regular semi-
groups. Due to the fact that abelian group varieties are the only group varieties that
satisfy CEP [1], the varieties constructed in (ii) must be rather special (see [2],
Chapter II).

Example 3. More examples of varieties satisfying WAP and CEP are obtained
by considering Plonka sums of semilattice ordered systems of Boolean algebras [12]
or of distributive lattices [11]. Quasilattices (Plonka sums of semilattice ordered
systems of lattices [7]) however do not satisfy WAP, since lattices do not satisfy CEP.
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ON DISTRIBUTION OF LINEAR RECURRENCES MODULO |

PETER KISS and SANDOR MOLNAR

To the memory of Professor LaszI6 Rédei

Introduction

Let (G,), n—0, 1, 2, be a linear recurrence of order k (k> 1) defined by
rational integers Alf A2, ...,Ak(Ak" 0) and by recursion

(1) G,—AIlG,,-1+ A2G,,-2+ ... +A|(G,,-k

(n”k), where the initial values GO, Gly ..., Gk_k are fixed not all zero rational inte-
gers. We suppose that the roots alt a2, ..., ak of the characteristic polynomial

g(xr) = xk—AIXk~1—A %k~i —...—Ak
are distinct and s is an integer such that
I*il ~ W S 1 > Jas+1|S...g=]at]|.

Let us introduce the notations
1 1 .1
2 a2 o g*
D= a a2 o4

47 dT1

and
1 I 1.1
Di(x1,x2, ..., xR = « at-1 X2 ai+l me &k
g afl xk 1] . ae

where the determinant D is not zero since a”otj if iV/
It is well-known that the explicit form of the terms of sequence (G,) is

(2 G, = aldl+a2#f6+ ...+ akal,

where
Di(Gqg Gk, G k-K
@ a = DilGack )

1980 Mathematics Subject Classification. Primary 10A35; Secondary 10K.05.
Key words and phrases. Linear recurrence, distribution, density, limit points.
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We say the sequence (G,) of order k can be reduced if it satisfies a linear recursion
of order less than k, too. In the following we assume the sequence (G,,) cannot be
reduced. Furthermore, we assume that the ratio a/a,- of two roots of polynomial
g(x) is not a root of unity for any iandj (i*j, Isi,j*k). We say (G,) is a non-
degenerate sequence if these assumptions hold.

Some limit and distribution properties of special sequences (G were studied
by several authors. For example W. Gerdes [5,6] gave conditions for the existence of
limit \M,]o G, in cases k—2 and k—3 if ALA2...,Ak and GO, GI5..., Gk 1

are real numbers. M. B. Gregory and J. M. Metzger [7] studied the condition of the
existence of limit lim (sin (G, X)) for Fibonacci type second order recurrences,

they showed that the limit exists if and only if x is an element of certain subset of

a ([/5). This result was extended for more general second order recurrences by S.
Molnér [14]. An interesting result was obtained by A. Perelli and U. Zannier [15]:
If in (2) the a;’s are rational numbers and nI|+n010 [|GJ=0, where [|X||= min \x—m\

for Z, then ai,a2, «>as are integers; furthermore, it remains true if the a?
are polynomials of variable n.

Another type results concerning the distribution of the sequence (/;G,,) modulo 1,
where /zis a fixed real number, were obtained in special cases.

If ax>l and |a,|<I for i=2 3, ...,k then, by (2), the study of the sequence

(RG,,) modulo 1 is equivalent to the study of the sequence (2a"), where 2 is a real
number and a is an algebraic integer such that the absolute values of its conjugates
are all less then one. The algebraic integers having this property are called Pisot-—
Vijayaraghavan numbers (abbreviated PV numbers). Another characterization of
PY numbers was given by M. Mendés France [13].

The properties of the sequences (2a") modulo 1, where 2 and a are real numbers,
were studied by several authors; recently, for example, G. Choquet [3] ar.d F. Beukers
[1] obtained some results. We cite only a former result due to C. Pisot [16] which is
closer to our results: (i) The set of all numbers a and 2, suchthat the set E of the
limit points of (2a") modulo 1consists of a finite number of points, is denumerable; (ii)
If a is algebraic, necessary and sufficient condition for E to be finite arethat a isa PV
number and 2€Q (a); (iii) If E is finite and t denotes the number of irrational numbers
in E and if the convergence of sequence (2a") modulo 1 towards its limit points is
o(n~t~1), then a is algebraic and therefore, by (ii), a isa PV number and 2£Q(a).

For general linear recurrences we know only a few results. A general result
is the following one: If the terms of (G,,) are all distinct or G*Gj for max (z,y)>n0,
then the sequence (/zG,,) isuniformly distributed modulo 1for almostall real numbers /z
(see L. Kuipers and H. Niederreiter [10], Theorem 4.1 on p. 32). The condition
GiT”Gj for large indices holds if |ai|>[a,| for i=2,3,...,k, asitwas shown in [8],
M. B. Levin and I. E. Sparlinski [12] gave a construction to find real numbers ak,a2, ...
..., ak'in (2) such that the sequence (G,) of real numbers was uniformly distributed
modulo 1 L. Kuipers and J. S. Shiue [11] proved that the sequence (log G,,) is uni-
formly distributed modulo 1if |gj|==-[a2=-... >|af§>0 and |a45\1 fori=1, 2, ..., k.
This is an extension of a result of J. L. Brown and R. L. Duncan [2] on Fibonacci-
type sequences. Finally we quote a theorem of T. Vijayaraghavan [17] which has
connection with linear recurrences, by (2): Let yk, y2, ...,yr be algebraic numbers
with |yi|>l and let dx, d2, ..., dr be nonzero constants. If the limit points of the
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fractional parts of sequence u,,=dly'+d2yl+...+dry"(n—1,2,...) are finite in num-
ber, then the y/s are algebraic integers, and any conjugates of any of the yt not
among them have absolute values less than one.

In the following we shall give necessary and sufficient conditions for number p
that the sequence (pGn) has finitely many points of accumulation modulo 1 Further-
more in a special case (g(x) is the minimal polynomial of a PV number) we show
a construction to find uncountable many numbers p such that the sequence (pG,,)
has infinitely many limit points modulo 1 but it is not uniformly distributed.

Results

Throughout this paper {X} denotes the fractional part of real number x, and
|IX]] denotes the distance from x to the nearest integer. Furthermore we say zero is an
only point of accumulation of sequence {x}, or lim {x,}=0 if for any e>0 and

n>n(e) we have 0"{x,}<f£ or l—e={xi}<l, ie. |[X,|<e.

In (2) ax, a2, «-, a* are algebraic integers and so, by the cited results of C.
Pisot and T. Vijayaraghavan, the sequence {pG,,} may have only finitely many points
of accumulation for certain real numbers p. The following theorem shows that in
this case the limit points must be rational numbers and the p's are determined.

Theorem 1. Let (6,) be a non-degenerate linear recurrence and let p be a real
number. Suppose that the roots aj,a2, ...,at of the characteristic polynomial g(x)
are not roots of unity. Then the number of the limit points of sequence {pG,,} isfinite
if and only if there are integers N, PN, PN+, ..., PN+k 1 and rational numbers
<o i, «e»,<?*-1 such that p satisfies the equations

_ AN+ I PML 210 seey PNAL-| + fifc)
A af-AfCo-C!...... Cm )

simultaneously for indices /= 1, 2, Furthermore, if the number of the limit
points isfinite then they are rational numbers.

If (pG,,) is a convergent sequence modulo 1, i.e. the sequence {pGn} has only one
limit point, say g, then, as we shall see in the proof of Theorem 1, in the expression
of p we have q0=qi=...=qk-i=V- But it does not imply the existence ofa single
point of accumulation. Therefore the following consequence is not trivial.

k
Corollary 1 Let 1‘_1 1 and let p be a real number. The sequence {pGn}
is convergent if and only if p satisfies simultaneously the equations

_ Dj(PIVHg» PN+1+ ey +
<xf'A(GO,Gi,...,G*_ )
for all indices i with 1Si”~s, where N, PN, PN+i, PN+k-i arc rational integers

and q is a rational number of the form q=t/(Al+A2+ ...+ Ak—\) with integer t.
If these conditions hold then lim {(?.}= {2

g*
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Note that the conditions in Corollary 1are weaker than conditions in Theorem 1
Namely condition At+A2+ ...+Ak"| gives the restriction a” | instead of
oc?7il for any nand 17i"Kk.

Theorem 1 shows that the sequence {nG,,} has infinitely many points of accu-
mulation if (G,) satisfies the conditions of the theorem and p is not any element of
algebraic number field Q(ax, aa, ..., ak). However, in these cases it is not sure to be
the sequence (pG,,) uniformly distributed modulo 1

Theorem 2. Let (Gn) be a non-degenerate linear recurrence. Let us suppose
that the characteristic polynomial g(x) of (G,,) is the minimal polynomial of a PV
number. Then there are uncountable many real number p such that the numbers {pG,.}
are everywhere dense in the interval [0,1) but they are not uniformly distributed mod-
ulo 1L

The proof of Theorem 2 implies the following result.

Corotlary 2. Let (G,,) be asequence satisfying the conditions o f Theorem 2. Then
there are uncountable many real numbers p such that the sequence {pG,.} has infinitely
many points of accumulation, but the terms o f the sequence are not everywhere dense
in interval [0, 1).

For the proof of the theorems we need some lemmas.

Lemma L1 If the sequence (G,) cannot be reduced thenfor the coefficients in the
explicit form (2) we have a*O (7=1, 2, ..., k).

Lemma 2. Let z0, zly ..., zt, wx, W2, ..., w, be complex numbers with condition
pti|= w2=...=w(|=1. If WIS are distinct, none of them is a root of unity, and

@ lim (20+ 2 zw) = 0

then z0=z1=...=z,=0.

The proofs of the results
Proof of Lemma 1 It was shown in [9] that

A (GO, Gj,..., Gk_i) = cfi(ct,j)

where
k- 1( Cki-1 N
d(x)= iéo VA-.-|-j=2I Aij-I-j-;/A\X

and G is a non-zero number if the roots of g(x) are distinct (see the proof
of Theorem 2 in [9]) so ~ =0 if and only if i/(a,)=0. It follows from a result
of M. D’Ocagne [4] that the sequence (G,) can be reduced if and only if the
polynomials g(x) and d(x) are not coprime (see [4] pp. 156—159). Thus we have, if
the terms of (G,) do not satisfy any recursion of order less than k then g(x) and
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d{x) are relatively prime polynomials and so dia”~O for i—1,2, k. From these,
by

= D = Z) ’

the statement follows since Dyz0.

Proof of Lemma 2. Clearly, the numbers wit w2, w t, by the conditions, are
not-real complex numbers. Let (pj—arg(wj) 0 =1,2, By the conditions
(Pj/In is an irrational number for 1=j=t therefore there are infinitely many in-
teger n such that for any e>0 the inequality
5) \\n(pj/2n\\ < e/2n
holds simultaneously for j= 1,2, ..., t If nis an integer satisfying (5) then

wj_ eind- er2yg) = eig,

where pj is some integer and |By|<£, and so there are infinitely many integer n such
that

simultaneously for j= 1, 2, ..., /. Thus if limit (4) exists then it must be OoF~-I-...
...+zf), furthermore

t
(6) lim J;lzj\/\/'f: 2 zjm

By similar argument, substituting Zjw'jfor Zj, the existence of limit (4) implies

(7 lim jZ=i (Zjwj) W’ ~ ]éi Z7*0-
where r is some integer, furthermore the left sides of (6) and (7) are equal. Using this
resultin cases r=1, 2, ..., t, by (6) and (7) we get the system of equations
W+ 222+ .+ zwt = 21+ 722+, + 2,
ZiWf+zZ2w I+ ...+ Zwf= zZ1+ z2+ ... + Z,
M+ zowz+ .+ 2wy = 21+2722+... + 2t
which implies the homogeneous system
W1l-1)z 1+ (w2-1)z2+...+(>vt-1)z, = 0

(wi-1)z1+ (wn-1)z2+...+(w?-1)z, = 0

H2L- 1)z 1+ (wh-1)z2+ ...+ (w;-1)zt=0
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in variables z,,z2,  zt. The determinant of this system is

Wed v it 11 1 .1
Wl Wit Wt 1 W W w,
J= 1w wl.. w?
M—1 w2—1.. w\—1 1wl whe w

It can be written in the form

9= i (WD, vy
which is not zero by the conditions, therefore the system of equations has only the
trivial solution zx=z2—..=z,=0 from which, by (4), z0=0 follows.

Proof of Theorem 1. Let/ibea real numberand let S be the finite set of the
accumulation points of sequence {fiG,}. Then the terms of the sequence (nGn is of
the form

(8) pGn = Pn+ gn-\-£n,
where Pnis an integer, q,,€S, and £,-»0 as n—  Define numbers Tnby
©) T.  PnHetii+k + +

for n~O. By (8), (9), and (1) we have

k k
(10) PAnTk gtk o Mi(pG. kel BA+E) AT o) +
and so
limT,= 0.
But, by (9),
{7:} jin+1 Qn+k —ij»

has only finitely many values different from zero, therefore there is an integer N such
that
T,=0

for n~N; furthermore, by (9) and (10), the sequences (P,,*+q,,) and (e,), N=N,
IV+1, N+2, ..., are linear recurrences of order k with characteristic polynomial
g(x). So we have

Pn+gn= Pi<Z~N+P2<4~N+---+Pk<*i~N
for n=sN, where

o PNOIVAEQNT PMLF WA >
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0=12...Kk), PN, PN+, .... PN+k-i are some integers and gj£S forj=N, N+\, ...
..., N+k—1 Using this explicit form from (8)

= pG,,-(Pn+qn) =p igia rf- i_21 Pitf~N =

= arrN[palo$-pl+ .20*1*1-Pi)

follows for n”N.
Since nIi_noq)e,,—() and laj/ajs 1 for i=2, 3 k, Lemma 2 implies the equal-

ities
(12) narf-pi =0

for i=1 and for i> 1lsatisfying condition Ja{= 1«l|. Using this result and repeating
the argument, we get the validity of (11) for all indices i satisfying condition |a] Si.

Thus if the number of the limit points of sequence {pGn} is finite then (11) holds
for 17/Sj, which implies the statement of the theorem on the form of p since

0 (1=1, 2, k) by Lemma 1

We prove that the elements of the set S are rational. We have shown that if
the set S is finite then we have a linear recurrence (Pn+qgr), n=N, IV+ 1, N+2,
where P,, is an integer and q,,£S. From this follows that the limit points g,, are terms
of a sequence (g,), n=0, 1,2, ..., for which g,,£S and

(12) gn= Alg,, 1+A2gm 2+ ...+ Akgmk (modi)

thus (g,,) is a linear recurrence modulo 1 with characteristic polynomial g(x). This
sequence is uniquely determined by k consecutive terms gh gi+1, ...,gi+k 1and S
is a finite set, therefore (g,) is a periodic sequence. We can assume that (g,,) is purely
periodic and, by (12), it is sufficient to prove that g0, gt, ..., gk_I are rationals. By
the periodicity

A
(13) gh= g
gftn  go

for some integer n.
We need a result due to D’Ocagne (see [4], p. 161): Let (Gn) be a linear recurrence

with characteristic polynomial g(x). If (R,,),n=0, 1,2, ..., is also a linear recurrence
defined by the same characteristic polynomial g(x) and by initial values /?,= /1=
=...=Rk_2=0, 1 then

~ 6=0 Gi(R, +k-i-i —4iAn+l_(_j- ...—

or in other form, by recursion (1),

G,= lgO G)(/1*-;An+ A*-i 41N -2+ " -+ AMn_i-D) + flfc-1™n
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for n”k. Using this result and that (g,,) is a linear recurrence modulo 1, (13) can
be written in form

— g +2, [25 k-i+i"n-l-ji gi+-Kgkl =h

(’1<‘21-I—|)—90+£l£0 k-i+j~zn-1-  gi+"2,,gk-1 —h

D20+, {2,
where tIf t2, ..., tkare some integers. This is a system of equations in variables g0, g1,
mmrgc1 and the coefficients of variables are integers. So we have to prove that the
k x k determinant M of this system is not zero and so the solutions are rational. Let
us denote the z-th column vector of the determinant M by v, (z'=l, 2, ..., k). Then
the y'-th coordinates of these vectors v; are

k-i +j-~ifi-1-jj gi +Rkngk-1 = ks

— AKRj,,"1—1

vw
= Ak_1Rjn_1+AkRJn 2
yij = AK-iHRjn-1+ rk-i+27jri-2+ « +AKRjN
yk-1,J — ARjn--i LARjn, 2+ ... + AKRjn-k +1
ykj = Rjn
which, with (1), imply the equalities

VKk-1+ ~1VKk — 0”n +1> "2n+[> eee» Rkn+1) ~ Vk-1

V[ 2+ AV + yfAk= (Rn2, 12,42, ..., R+H) = \k-2

yl+ AL\V'2+ A 2y3+ ...+ Ak-2yk-i+ "k-iyk —
= (R/t+k -1~ 1) Rin +k-1 mmw’ Rkn +k -1~ 1)e

By these equalities we get

Rn+k-1 | Rotk-2 « o H+l
M = RIndk-1~1 Rix+k—2¢ «RinH Rm
Rkn+k-1*1 Rkn+k- 2« mRkn+1 Rn
The terms of the sequence (R,) are of the form

Rn= rlst+ r2d2+ ... + rksk



DISTRIBUTION OF LINEAR RECURRENCES 121

(n=0, 1,2, ...), where rk, r2, ..., rk are some algebraic numbers and 0 for i=
=1,2, ..., k which can be seen by the proof of Lemma 1 We have

2 =0
for 0"jSk—2 and
2 1=
since RO=Ri=...=Rk-2=0 and /?k_i=1 From this it follows that
= B A = R
for 0N jrk—2 and ) )
K+k-1-1 = 2 Fi&i?(ﬁ-—}_iz ria? 1=

2l
= 2 raf-l« -1) = 2 r«l-IEUK
1= 1=

where /70 is any integer and Ejj* denotes the number

=*"_1le
So we can write
Xr~"EP Xrrf-'"EP ... Xr,EP
M = Zrrf-"ES* Irrf-"EQ ...ZrtEff
Irrf-'EP Xrrf~ZEP ... Xr.Eg}

Each of the elements in M is a sum with k summands and so we can express the de-
terminant M as a sum of kk determinants which are of the form

r,tfr‘BEw> ... r kEi™

. > :
(14) rirfpE&J WIPE#? .. rikE t]

rApEIp rigaz A2 rikele

But a determinant of the form (14) can be different from
is a permutation of elements 1, 2, . .,k; therefore

EU p(d ..EP
rd) (@ _ A

M =(rxer2-...¢ -B,
M &R - Eg*

where
5=1(-1)"af-I<_i- <,
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the summation is extended to all permutations ix, i2, ..., ik of elements 1,2, ..., k,
and p is the number of inversions in the permutation h, i% ees, i*. On the other hand
it can be easily seen that

& a2 ..ak
ai-2 az-2 wmak-2
B = = (a -a)
Al A 1 1
i @ INi<jak
1 1 |
E™ El» .. El» a?-1 af-1 . «z-1
rp-ﬁi,l) r/rz(r%)- El? af- 1 af-1 ...af-|I
Eilr el? .. A ai"-1 af—1..af-1I
11 1 ..1
1 a? 42 «.a? v
1 af af -maf - n (a?'~dj'/ﬁ («o-1)
1=

1 af af . eaf

hence 1VMO; namely a-M 1 and a”a" for any i,j (My) since neither ajdj
nor ail is a root of unity by the conditions. This implies, as we have seen, that the limit
points are really rational numbers.

The proof of the theorem will be complete if we show that the sequence (pG,,)
hr?s only finitely many limit points modulo 1if p satisfies the conditions given in the
theorem.

Let N, PN, PN+, ..., PN+k_k be integers and let q0, gk ..., gk_k be rational
numbers. Let us suppose that p is a number satisfying the conditions given in the
theorem. (We note £),=£5(G,, GX, ..., Gt rMO since D,=6,2), where 0

by Lemma land £MO0 by the condition for My.) These assumptions imply
the equality
(15) pGn=p 2 aid = ZPia"~N+P_Z ai® = ZPi<x"~N+0n
for n"N, where
» t{P* + 1o, Pn+i+ Qi, PN+k-i+ <fk-i
A= D
and
(16) §=p Z Z Pi<Xi-N-~0
i=s+1 i=s4-1
as since |a,|<l for Ms. By an elementary property of determinants we get

Pn+Hi Pn+<-i) . A(?0> m-0k-i)
D D
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which, together form (2), implies the equation

)] iI'_I Pik? = /I, + *,,
where (H,) and (Kn), n=0, 1,2,..., are linear recurrences with common charac-
teristic polynomial g(x) and with initial values HO=PN, HI=PN+l,  Hk-X—
—PN+He-x and K0=qg0, Kx—qx, ..., Kk_1=qgk_1, respectively. The terms of the
sequence (H,,) are integers and the numbers Kn (n=0, 1,2,...) are rationals. The
denominators of the numbers K,,, by the definition of the sequence (K,,), are bounded
from above, since the initial values are fixed rational numbers and the numbers
Ax, A2, ..., Ak are integers. From this follows, using (15), (16) and (17), that the
sequence {/iG,} can have only finitely many limit points, which completes the proof
of Theorem 1

Proof of Corollary 1 The necessity of the conditions follows from the proof
of Theorem 1 Namely if lim {(iG,.}=q then g0=gx=-+++=9t-i=9 and the form

of g follows from (12). Thus we have only to prove that g is a single limit point if the
conditions hold for /i and q.

Let us suppose that n and g have the forms given in Corollary 1 By (15), (16)
and (17) it is sufficient to prove that nli_lp) {K"—{q}, where (K,,), n=0, 12, ..,

is a linear recurrence defined by characteristic polynomial g(x) and initial values

KO=KX=...=Kk-x=¢. If (R,), n=0, 1,2, ..., is a linear recurrence defined by
characteristic polynomial g(x) and initial values Rg=Rx=...=Rk_x=1 then

Kn=
for «SO since Di(q.q,...,q)=qDi(\,\,...,\). Let —1L We can

suppose 0<<7=-"-<1 and we shall prove that |y77?,j=t/r for every n”o. This

statement is obvious if R,, is of the form mr+ 1, where m is an integer, thus it is suf-
ficient to prove

(18) Rn= 1(modr)
for 0. However, (18) clearly holds for «=0, 1,2, ..., k—1, and if
Rni= 1(modr)

R,,-2= 1(mod r)

R,,~k= 1(modr)

for some integer n~k then, multiplying the i-th congruence by A, (i=1, 2, ..., k)
and summing them, we obtain

K = 2, AiR,-i= 2

1Ai = 1 (modr),

21
which completes the proof of Corollary 1
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N ote. Incase I2_I 1 similar conditions hold for the existence of lim {pGri.
Now one ofthe roots ofg(x) isx =1, say as=I|. The following result can be proved
similarly as Corollary 1: The sequence {pG,,} is convergent if and only if p satisfies
simultaneously the equations

_ -Pjvti; e*> P n +ic i)

R c#-DIG9G1Y,...,Gk-)

for all indices i with 17i*s, where N, PN, PN+1, ...,PN+k 1 are integers. If p
satisfies the condition and q=pas+ps, where

D
and
_ _2)S(PN, Pfi+i, se>P"+k-i)
Ps~ D
then lim {/G,}={#.

Proof of Theorem 2. Let (g.), n=1,2, 3, ..., be an increasing sequence of
positive integers satisfying the conditions gi—g ~ ~ i and g,7g,_i<2 for i=2, 3, ....
Let (c,), n=\, 2, ..., be also a sequence of non-negative integers such that ct i
for every is| and every natural number occurs infinite frequently in the sequence.
Such sequences can be easily constructed. For example gn where Ftis the

i-th Fibonacci number, and (c,)=(1,2 12,3, 1, 2, 3,4, ...), where we wrote the
first two, the first three, the first four, ... natural numbers, satisfy the conditions.

Let (G,) be a sequence satisfying the conditions of the theorem and let a=1.
The number

(19) b= i2: 1c,a_9‘

exists since a is a PV number and so, by |a|>1, the sum is convergent. The terms
of the sequence (G,) can be written in the form

(20) G, = aa"+hn,
where | @Zaia" -0 as since |a,-|<l for 27i7k, and a=alsto
by Lemma 1

We shall show that {taae} is an accumulation point of the sequence (pGr)
modulo 1 for every integer ts | and egO. It is sufficient to prove that for any
£>0 there are infinitely many integer n such that

1{/'G,.}-{faad}| < £

Let r be an index for which cr—t. We can suppose that r>e and gr>e. For
n=gr+e we can write

r—1 00
(21) pG,, = pact"+pb,, = 2 ciaot™~li+tacte+ 2 q«»’ (ir")+pbn.
i=1 i

i—r+1
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By (20) we have

,Zlciaa“ *» = 7 ciGn-g- 2 Cib,,-g,: AL+ coB,

where P,, is an integer and, using the notations &= max(|a2, |ag, \ak|) and
f=max(|a2, [a3,  [at]),

<= (G Y Zavarmys 15 ko2

S kbRn-»r-i *2 ipr-i-1, S kbRr 'z r3 = kbrRr1 R *- o
i=1 i=0 1~P
as r—0 since /?<1. Furthermore p(>,—0 as r—» and
Z c,aa_¢(,i~") " n S aa-(,,-e) |r+ 1 + Z ,a_i
i=r+l| *=r+l| ' i=r+2
aaelra r+a-r+aq-r z ia~j 0
i=r+2
as since the sum is convergent, therefore
{pG,,}-{ivae} —0
as r—° and soas n-~  But, by the conditions for sequence (c,,), there are infinitely

many integer r such that cr=t, thus {tacP) is an accumulation point of the sequence

{pG, .}, indeed.

The number aae is irrational for some e since a is an irrational PV number,
therefore the sequence (taoe), t=2,3,4,..., is uniformly distributed modulo 1
This implies that the numbers {pG,}, n=1 2, 3, ..., are everywhere dense in the
interval [0, 1).

We show that the sequence (pG,,) is not uniformly distributed modulo 1

Let e and & be numbers with conditions 0 < < 54— and 0<f£<— and let

o]
n—gr+e, where By (21), similarly as above, we get

= Pn+£,,+ crac(e+ cr+laci~(9-+~n

where P, is an integer and £,-*0 as n—°. If e—n—gr>06r and gr+1—"-6r
then

ljcraa™|| crGt- or Z aiaf Ik,*601 =£\\rkbBir\ = \\kbr(fy\\
J=2
and

|cr+laa <>+, ") s ||2ar(a 3| <-r-

ifn and so if ris sufficiently large. Thus we obtain that {pG,} lies in one of the intervals
[0,e) and 1—£, 1) if grSn<g,+1, min (n-gr, gr+1-n)>8r, and n>/i(e).
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Let A(N, €) be the number of the terms of sequence (pG,,) for which n*N and
{iG,} lies in one of the intervals [0, €) and (1 —e, 1). By the above results, if 7V>w(e),
g,==7V<gr+l, and gv*l<n(e)”gv then

ANNS) 2 (gi+1-g,)(1-2.5) - (1—2<5)(gr—g.)

and

A(N’e)a(i_26?li— | > %_25 j-N ———1.38: = _L ||
N AG-20E N) Mo W51 202 Ny~ 4 2N

where (gW/(2N)-+0 as since gvis a fixed number. From this follows that the

seqtitlence (pG,,) cannot be uniformly distributed modulo 1, namely e can be arbitrary
small.

By the conditions, the sequence (c,) has infinitely many terms equal to one, say
cil=ch—...=L Let (y,), n=1,2,3,..., be a sequence of integers such that y,,=cn
for ~~i; (j= 1,2,...) and y,=0 or 1for . =i« i2 .... There are uncountable
many such sequences (y,,) and each ofthem implies a real number p using the sequence
(y,) in (19) instead of (c,,). It can be easily seen that the p’s are distinct if y,,~0 for
n<n0, where nOis a constant depending only on a. Furthermore, by the argument
applied above, we can show that each of the /i’s has the property detailed in the theo-
rem. Thus the theorem is proved.

Proof of Corollary 2. Let (g,,) be the sequence defined in the proofof Theo-
rem 2 and let ¢,=1 for n=1, 2, 3, .... Construct a real number /xby these sequences
as in the proof of Theorem 2. Similarly, as above, we can see that for any integer
e the numbers {aye} and {ay.~“} are accumulation points of the sequence {/G,},
since infinitely many integer n is of the form n—gr+e or n=gr+l—e. Furthermore
it is easy to prove that the numbers {aa€} and {aa~e} are all the limit points. But
lim (aa~¢)=0 and

aae = Ge+ ec,

where ee—0 as e—°, therefore the limit points cannot be everywhere dense in the
interval [0, 1).

Similarly as in the proof of Theorem 2, uncountable many distinct /i can be
constructed having such properties.
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THE VOLUME OF SYMMETRIC DOMAINS,
THE KOECHER GAMMA FUNCTION AND AN INTEGRAL
OF SELBERG

ADAM KORANYI1

To the memory of my teacher LaszI6 Rédei

The volumes of the bounded symmetric domains corresponding to Lie groups
of classical type were found by Hua [4] via case-by-case computations. A formula
for the volume of arbitrary bounded symmetric domains was proved, independently
of classification, in [7]. The proof in [7], however, is rather complicated: It makes
use of results from [6] tying the volume to Koecher’s generalized Gamma function
r*, and then it uses Gindikin’s evaluation of T* which is based on an extensive theory
of homogeneous (not necessarily symmetric) cones [2].

The first result of the present paper isa simple direct proof ofthe volume formula
which does not even use T*. The second result is a direct computation of T* for sym-
metric cones, independent of Gindikin’s difficult general theory. The key to both
results is the evaluation of certain integrals which for many years I did not know how
to do. It was when | showed them to R. Askey, to whom | express here my warmest
thanks, that he immediately recognized them as special cases or immediate conse-
quences of an integral computed by Selberg [10] in 1944.

8 1. The Selberg integral

For easy reference we write down Selberg’s integral [10] and two of its conse-
quences (see e.g. [1] where a number of further comments about these integrals can
be found):

(1.l
rx+ (M) ) r(y+ (-V)z)r(jz+\)
ji o r(x+y+Q+j=2)7)r (z+\)
Substituting ti~*tily and letting y —°° it follows from Stirling’s formula that

(12
Cr(x+(j-\)z)r(jz+\)
Jul r(z+uy

1 Partially supported by the National Science Foundation.
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Setting in (1.1) y=x and 2/i=1+,si(2x) 12 Stirling’s formula gives
(=3 f W[ tfitt-

8 2. The volume formula

We denote by D an irreducible bounded symmetric domain in the canonical
Harish-Chandra realization. As well known (e.g. [9, Ch. Il, §83—4]), D can be re-
garded as imbedded in the subspace p of the Lie algebra g of its holomorphic auto-
morphisms ; p has the structure of a complex Euclidean space and the subgroup A of
elements in G fixing the point 0 acts on it by unitary transformations via the adjoint
representation, p contains a Cartan subalgebra a of the pair (G, A); this is a totally
real /-dimensional subspace of p such that p= Aa. There is a natural orthonormal
basis in o such that, denoting the coordinates by tx, ..., tt, D is equal to the image
under A of the cube (in fact, the simplex 1 ...>17-0 is a funda-
mental domain for the action of A on D). The restricted positive roots of g are then
the following: tixtj (/«=/) all with multiplicity a, 2/;(I1&‘S/) with multiplicity 1,
and ti with multiplicity 2b. The integers a, b are invariants of D, and together with
the rank / they determine D completely. The (complex) dimension of D is (cf. [7])

(2.1) n=/(/—)-"+Zfi+ ).
Let 17(/) be the product of all positive roots, i.e.
170=2" 717 0?-O)a_gi tib+1-

It is well-known [3, p. 380] that the ratio of the volume elements of p and a at a point
of a with coordinates t=(t}, ..., ti) is c|77(0|] with some constant c. (Another way
to say this, since it is known that the A-orbit of a regular element meets the positive
octant /! times, is that the (n—/)-dimensional measure of the A-orbit of t is
(/Mc)37(N|.) It follows that (writing dt=dtl...dt])

(2.2) Vol(73) = cof (]J‘ \n{i)\dt.
To determine the value of ¢ we can proceed as follows. Writing, for 0,
J(r)= f \n{t)\dt
*.-*10

we have, since A operates by unitary transformations, that t'J(r) is the volume of the
ball of radius r in p. Hence

(2.3) cJ(r) = c/(Drh= r2.
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On the other hand, defining
(2.4) 1=1 e~£I' |/7(01 dt

(2.5) 1= 5 e~rtdJ(r) = J(n 5 e~'2r"-1dr = J(\)T(n +1i).

From (2.3) and (2.5) it follows that c—7r"/ 1. By the change of variable ff—ti}
(2.4) reduces to the integral (1.2). It follows that

= ®mn r fe+1)

With the same change of variable the integral in (2.2) becomes a special case of
(1.1). So we obtain

, r(i+0-i)4
voi(l) = R' N —r A —emeeeeee- 1
ELryb+2+(1+j—2

in agreement with the result in [7].

8 3. The Koecher Gamma function

By methods similar to those of 8 it is easy to evaluate the Koecher Gamma
function for symmetric cones.

The symmetric cones Q are in one-to-one correspondence with the symmetric
domains D “of tube type”, i.e. those for which b—0. As one see from the discussion
in [6, 85] and [8, §2], Q can be realized as an open cone in a real form Re p of p. One
has acRe p and there is a subgroup L° of K such that Re p= Z°; Qs the image
under L° of the positive octant in a. The action of L° on Re p is isometrically isomor-
phic with its adjoint action on the transvection space (denoted iq in [8]) ofa symmetric
space K*/L°siQ. Therefore the ratio of the volume elements of Re p and a is given
by con o(t) where cOis a constant to be determined, and

not) = IHu-tjy
]

is the product of positive roots of (K*, L°) transferred to Re p.
The Koecher norm function of Q is the L°-invariant extension of (tl...ti)ril
to Re p [5]. The generalized Gamma function F* of Q is therefore given by

3.1) r5(s) = 0f .. [ e Il7(" DIn0(0[d/

o*
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To determine cO we set, analogously to 82,

M)= f 1no0ld
Sif-A

and note that now c0JO(r) is the volume of the ball of radius rin Re p:

2

(3.2) C,.J,,(r) = co/ o(l)r" =
m (H
Defining
(3.3) 0= Rfe-’\\na{f)\ct
we have
(3.4) r0=f e-2d700) = /0(i)r[y +i).

From (3.2) and (3.4) we get cO=nn2l01 The substitution /j—t-J*l carries (3.3)
into (1.3); using (2.1) and remembering =0 this gives

n— |
c0=(2n) 2 1
j=i

Substituting this into (3.1) and using (1.2) we obtain

r=@)= 29V jjr[j(s-\)+ (j-\) £)

which agrees with the result in [7].
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SOME REMARKS ON GROUPS WITH GENERALIZED
QUATERNION SYLOW SUBGROUPS

L. HETHELYI

To the memory of L&szI6 Rédei

In this short note we prove some simple results concerning 2-nilpotence and
solubility of finite groups with generalized quaternion Sylow 2-subgroups.

Theorem 1 Let G be afinite group, SESylfiG), S a generalized quaternion
group, 5 1S16. Then G has a normal 2-complement i f and only i f G does not involve S4.

Proof, (a) If G has a normal 2-complement then it is trivial that Si is not in-
volved in G.

(b) Suppose that G does not have a normal 2-complement, then by virtue of
Ito’s theorem [4], there is a subgroup T=LQ, where L isa normal Sylow 2-subgroup
of T, Q is a cyclic Sylow ~-subgroup of T (*2), Q induces an automorphism group
of order g on L. Our assumptions allow the only possibility that L is a quaternion
group of order 8 and gq=3.

Let S be a Sylow 2-subgroup of G containing L. Then \NS(L)/CS(L)\=8, so
24||tfe(L)/Ce(L)|. Hence NGL)/CEL)*AutL =S4

Remark 1. If |S|=8 then it is trivial that G has a normal 2-complement if
and only if G does not involve A4.

Remark 2. In fact, we can prove more: If G does not have a normal 2-comple-
ment, then it involves a certain group of order 48, namely iMc(L)/02, (Ca(L)).
This group appears as a stabilizer in a sharply double transitive group of degree 49
(see [3], p. 391, case IlI).

Remark 3. The fact if S4is involved plays a crucial role in numerous investiga-
tions (see e.g. [2]).

Theorem 2. Let G be afinite group. Let SO_Syh{G), S dihedral, |S|*8. Then
G has a normal 2-complement if and only if G does not involve S4.
Proof. Similar to the proof of Theorem 1.

Theorem 3. Let G be afinite soluble group. Let S”SylfG), S a generalized
quaternion group, |S|> 16. Then there is a normal 2-complement in G.

1980 Mathematics Subject Classification. Primary 20D20; Secondary 20F16.
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Proof. Let G be a counterexample of minimal order. 02, (G)=E can be sup-
posed. Then [02(G)|=8 and 02(G) is quaternion. As 02(G)oS thus [i>|=16.

Theorem 4. Let G be afinite soluble group. Let SdSylfG), S dihedral, jAX>8.
Then there is a normal 2-complement in G.

Proof. Similar to the proof of Theorem 3.

Theorem 5. Let G be a finite group, S£Syl2(G), S a generalized quaternion
group. If |02(C)|>2 then G is soluble.

Proof. By Feit and Thompson [1], it is enough to prove that G is 2-soluble.

Let G be a counterexample of minimal order. 02 (G)=E can be supposed.
[r (G)|S 3 can also be supposed. Let PESylp(G), /?=#3, 2, then fsC c(02(G)).
Moreover, Syl2(Cc(02(G))) is cyclic thus 02, (Ca(02(G)))fE. However, 02
(Cg(GdZ_(G;))) char Cg(02G)) and Cg(02(G))o G. Thus 02(G)"E which is a
contradiction.

Corollary 1. Let G be afinite group, Sf Syl.fiG). Let S be a generalized qua-
ternion group. Let us suppose that G has a homomorphic image Gsuch that jG2(G)| >2.
Then G is soluble.

Proof. Let N denote the kernel of this homomorphism. If N is of odd order or
A is a 2-group then G is soluble by Theorem 5.

If N is of even order (but N is not a 2-group) then as |G2(G)|>2, Syl.fiN) is
cyclic thus N has a normal 2-complement K. Now G/K fulfils the conditions of

Theorem 5 thus G/K is soluble. Therefore G is soluble by the solvability of groups of
odd order.

Corollary 2. Let G be afinite group. Let SSyI12(G), S ageneralized quater-
nion group. If there is a soluble normal subgroup N of G such that 4||A| then G is
soluble.

Proof. If (f, (N)*E then let G denote G/02(N), N denote N/02,(N).
Then A<jG, 4||A|. Thus G is soluble by induction and so G is soluble, too. If
02, (N)=E then |G2(A)|>2. Hence |02(G)|>2, thus Gis soluble by Theorem 5.
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NMEPNOOANYECKUME TPYTMbl C MNOYTW PEIMYNAPHBbIM
MHBOMHOTVBHBIM ABTOMOP®N3MOM

B. B. BE/IAEB un H. ®. CECEKWH

[o6poit namaTwn flacno Pegeil noceslaeTcs

ABTOMOpPM3M (P NPOM3BO/LHONA TPynMbl G Ha3blBaeTCsH MOYTU PErynsipHbIM
Ha G, ecnu ueHTpanu3atop CG(QH koHeueH. B 1972 rogy LLIyHKOB yCTaHOBMAN 3aMeya-
TenbHbIl pesynbTat [1]: ecnn nepuognyeckas rpynna G AonycKaeT MHBOMOTUBHbIN
MOYTK PerynspHbiii aBTOMOP(M3M, TO OHa NOYTK paspelunma u 06/1a8aeT NosHoM
yacTblo. XapTim u MeiikcHep B 1980 rogy nokasanu, YTO B YC/IOBMSIX TEOPEMbI
LyHkoBa rpynna G o06nagaeT HWALMOTEHTHOM MOATPYMMOA KOHEYHOro WMHAeKca
ctynenm ~2 B G [2]

Mpogomkas 1ccrefoBaHUs B 3TOM HampaB/ieHU HaMW YCTaHOBJIEHbI Cregy-
foLLMe pesynbTaThl.

Teopema A. MMycTb G MHBOMOTMBHBLIA MOYTU PETYNSPHbIA aBTOMOPGU3M
nepuoguyeckoit rpynnbl G. Torga nogrpynna [G, < MMeeT KOHeUHbIA MHAEKC B G, a ee
KOMMYTaHT KOHEYeH.

Teopema Bb. LeHTpann3aTop Npou3BefeHUs ABYX WHBOMOTWUBHLIX MOYTU pe-
rynsipHbIX aBTOMOP(U3MOB NEPUOANYECKONA TPyNMbl UMEET KOHEUHbIA MHAEKC BO BCei
rpynne.

13 Teopembl A HETPYAHO NOAYUNUTL Pe3ynbTat XapTim n MelikcHepa. Teopema b
MOKasbIBaeT, YTO WMHBOMIOTUBHBIA MOYTU PErynspHbIA aBTOMOP(U3M nepuoguyec-
KOM Tpynnbl OMNpeaensieTcs Ha Hei «novTv Of4HO3HAYHO».

81

3[eCb Mbl NPUBEAEM HEKOTOPbIE OMPeAeNeHUst U U3BECTHbIE Pe3y/bTaTbl, KOTO-
pble NCMONb3YHTCS B aHHOI paboTe.

Onpegenenne 1L Ecnn <pEAuUt G, To nog [G, ] noHumaem noarpynny m3 G,
NMopoXKAeHHyto 3anemeHTamn Buga [g, cpl=o~Ap(g) ans gEG. W3BecTHO, uTO
[G, h HopmanbHa B G. LieHTpanunzaTop CO(<p) aBToMopdusma <ponpeaensietcs hop-

mynoin CEtp) = {x, xC.G\cp(x) =x}.

1980 Mathematics Subject Classification. Primary 20F50; Secondary 20E36.

Key words and phrases. Group, automorphism, centralizer, index, commutant, element, almost
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order, locally finite group, almost equal automorphisms.
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OnpegeneHue 2. ABToMOpdM3M @ rpynnbl G HasblBaeTCa NOYTU TOXAECT-
BEHHbIM Ha G, ecnm nHAeke (G: CG{)) KoHeyeH. ABTOMOP(U3MBbI U () HA30BEM
MOYTU PaBHbIMU, €CN CP~TCH NOUTU TOXKAECTBEHEH.

OnpepgeneHune 3. Mogrpynna X HasbiBaeTcsi FC-BnoxeHHo B rpynny Y,
ecnu Ansa noboro anemeHta y u3 F nHgekc (X: Cx(y)) KOHeueH.

OnpepeneHne 4. Moarpynna X HasbiBaeTcss FC-nogrpynnoit B rpynne Y,
ecnun ana n6oro anemeHTa X U3 X nHAekc (Y : Cy(X)) KOHeYeH.

OnpegeneHne 5. pynna HasblBaeTCs KBa3WaGeNeBOi, eCiM ee KOMMYTaHT
KOHEYEH.

O6beanHssa npegnoxenuns 3.2 n 3.17 kHurn Kerens n Bepdpuua [3] nonyunm
cnegyrolnii pesynbTaT: ecin Nepuoauyeckas paspelummas rpynna G comepxuT
TaKOW 3feMeHT X MpocToro nopsgka p, 4to CG(X) yaoBneTBOpseT YCAOBUIO MUHK-
ManbHOCTU Ans A-noarpynn, To wHgekc (G: Op,p(G)) koHeyeH u cama rpynna G
YLOBNETBOPAET YCNOBUIO MUHUMANLHOCTU Ans A-nofarpynn. OTcioja v YynoMsHyTOM
Bbille TeopeMmbl LLIyHKOBa BbITEKaeT:

Teopema 1 MycTb <p MHBOMOTUBHBLIA NOYTU PEryNspHbIA  aBTOMOP(U3M
nepuogunyeckoid rpynnbl G. Torga G cofep>XUT Takyto paspeLumyio Cp-4onyCcTUMYLO
noarpynny H koHeuHoro mHgekca B G, uto H=A XB rge B=O(H), A geammas
abenesa 2-rpynna KOHEYHOTO paHra.

N3 nemmbl 0.3 nekumin MareHa [4] nerko cnepyert:

Teopema 2. MycTb @ p-aBTOMOPKM3M NOKAbHO KOHEYHOW p’-rpynnbl G n H
(pponycTumas HopmanbHas B G nogrpynna. Torga CGHap)=CEcp)H/H.

Teopema 3 [5]. MouTun abenesa FC-rpynna keasnabenesa.

82

Nemma 1 MycTb @ NOYTU PErynsipHblii aBTOMOP(IM3M KOHEUHOrO MNopsaka
NOKaNIbHO KOHeuHoW rpynnbl G. Torga

IG: [C, gl \CB (cp)\

JokasaTtenbcTBo. lNycTb cHavana G KoHeyHas rpynna.  [OHATHO, 4TO
[0, l= [/, @] Torga u Tonbko Torga, korga gh~1fC G(ap). MMoatomy

I[G ool S K[g. <pllgCCH = \G: CGfo)\ =
OrTctopa
|CoWI|ETTila“ |CIC'*

Jonyctum Tenepb, 4TOo G OKaNbHO KOHeYHas rpynna, Ho |G: [G, o) =
>|C70(C>)- MMycTb N Takoe HaTypasibHOe 4mcno, 4to |G: [G A*n>\C G\ u
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gu g,, CMCTEMA 3/1EMEHTOB pynnbl G HecpaBHMMbIX N0 mMogynio [G, LA\ TMog-
rpynna H=(gf, ...,gE" |<p) koHewHa u ~-ponycTuma. CnefoBaTefibHO

I9: [H, (P)\LCH{yp\. OTcroga
H: [C, <p]MH\ ~ 149: [A, 9\ € |CH(d)] S \CG<p\

Tak Kak n>|Cc (<), To HarigyTcs Takue K W I, uto gT1i€[C, 94 3T0 NpoTMBO-
PeYMT MOCTPOeHMO 3anemeHToB glt ...,g,,. Jlemma 1 gokasaHa.

CnepctBue 1 TNycTb @ M O NOYTW perynsipHble WHBOMOTVBHbIE aBTOMOp-
chm3mbl Neproanyeckoit abenesoii rpynnbl G. Torga (pud NoyTwy paBHbl.

[JokaszatenbcTBo. Tak kak <X[g )= c¢cKg)-1g=[g, 91 1O Ans nwb6oro
anemeHTa X U3 [G, 4] umeem (p(x)=x~1 AHanornyHo ¢(x)=x~1 ecnn xE£[G, ).
B cuny nemmsbl 1, nogrpynna D=[G, (A\fI[G, ] vMeeT KoHeuHbli UHAEKC B G.
Ho ana nwob6oro x n3 D cp(x)=x; cnegosatensHo OHA:CO((pd).

NemMma 2. MycTb < Takoii aBTOMOPMU3IM NPOW3BOLHOA rpynnbl G, 4TO
[G, (0] koHeueH; Torga
G: Cs(I W [Gep)\

[Ooka3satenbcTBo. [Mpegnonoxum, 4to |G: CE<p)>|[G, ] wn xIt ...,xn
CUCTEMA 3MEMEHTOB U3 Pa3/INUHbIX CMEXHbIX KMAaCCOB PasfoXeHust rpynnbl G o
Cadp), npuuem n>\[G,(p]\. Toraa HaiigyTcsi TakMe MHAEKCHI K 1 /, uTo  [XK,(p\=
=[ac,, 9} Ho Torga xKIXXECc((p). Slemma 2 gokasaHa.

Nemma 3. MycTb (p aBTOMOpM3M rpynnbl G, H HekoTopas KOHeYHas <
JonycTumMas HopManbHas nogrpynna n3 G. pnoyuTwu perynsipeH (MoYTu TOXKAECT-
BEHHeil) Ha G Torga v TONbKO Toraa, koraa (p noyuTw perynspeH (MoYTy TOXKAECT-
BeHeH) Ha G/H.

[okasaTtenbcTBO. lycTb (D MOYTU perynsipHblii aBTOMOpM3M rpynnbl G
n Cc/l/«@)= L/A. Torga [L, (p]AH. Mo nemme 2 |L: CL((p)\S|[L, |B|* |A].
KOHeuHocT CL((p) cneayeT koHeyHocTb L, a noatomy n CGH(p). MycTb Tenepb <
nouTu perynspeH Ha G/A. YuuTbiBas KOHeUHOCTb A ¥ BkoYeHue Cs((p)H/HA
Q C(;/H(®> nonyumm KoHeuyHocTb Co(<).

Tak kaKk 1G/A: Ca/H((p)VWG/H: Ca((p)H/H|, TOo 13 koHeuHocTn |G: CG<)\
creflyeT MoyTW TOXAECTBEHHOCTb @ Ha G/4.

MycTb, HaKOHeL, <p MOYTU ToXAecTBeHHel Ha G/A n CeU((p)=L/H. Torpa
[L, (p]QH n |G: L, koHeueH. Otctoga no nemme 2 |L: CL((p)\ KOHeYeH, HO Torga v
|G: CG<)| KoHeueH. Jlemma 3 AoKasaHa.

Nemma 4. TlycTb @ NOYTW PEryNspHbIA MHBOMOTUBHBIA aBTOMOPMM3M nepro-
Andeckoid 2'-rpynnbl G, A ee HopManbHas (p-gonycTumas abenesa moarpynna. Ecnm
[G, @=G, T0 A sBnsgeTca FC-Bno>keHHon nogrpynnoii B G.

[Joka3aTenbcTBO. lycTb X TakoW aneMeHT u3 G, yto <p(x)=x~1 Torga
nogrpynna H—(x, A) (pmonycTtMma, A UMeeT KOHeuHblin nHaeke B A 1 J1 no ycno-
B0 abenesa; noatomy CA((p)=CH (<) COAEPXMTCA B HEKOTOPOIA KOHEYHOI nof-
rpynne K HopmanbHoW B . Tak Kak no Teopeme 2 CH/K((p)=1, TO, Kak W3BECTHO,
H/K abenesa; cnegosatenisHo H'QK un H' koHeueH. Otctoga cnepyet, uto CA(X)
MMEET KOHEUHbI UHAEKC B A.
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MycTb Tenepb g NPOVM3BO/bHLIA 3NeMeHT M3 G, TOrAa HalLyTCa Takue 31eMeHThI
gi,....g,, u3 G, uto g=[gi, (pYl-... m&, g% roe eE{l, -1}. Ecm x,=[gt, p\\
T0 (X;)="I"1 n, no gokasaHHoMy, CAX;) nMeeT B A KOHeuHblin nHgekc. Cnefo-
BaTenbHo, U CA(Q) MMeeT KOHeUHbIA MHOEKC B A.

Nemma 5. lMycTb G paspelunmMasn nepuoguyeckas 2'-rpynna, <pee noyTu peryn-
SPHbIA  VHBOMOTWBHLIA asTomMopdm3M. Ecm  [G, gd=G, To KommyTaHT G’
rpynnbl G KOHEYeH.

JokasaTenbcTBO. [lycTb cHadana G ABYCTYNEHHO paspelunma. Mokaxem,
yto G' sBnsetca / C-nmoaTpynnoii B G. [ns Npov3BOMbHOIO 3nemeHta g u3 G
HaligyTca Takve aneMeHTbl g1, ..., gnus G, uto g”~(glt ..., g,./. Mo nemme 4 G'
FC-BnoxeH B G, Torga CG(gj umeeT KOHeYHbI nHAEKC B G' gnsd nto6oro r'efd, ..., n).
OTctoga BbiTeKaeT, yto nogrpynna {G’, glf ..., g,,) siBNseTca noutn abenesoin FC-
rpynnoii. Mo Teopeme 3 ee KOMMyTaHT K KoHeyeH. OueBuaHo, K HopmanbHa B G
N COOepXUT aneMeHT g. Moatomy CG[g) UMeeT KOHeuHbln mHaekec B G. OTcioga
cnegyet, uto KoHeuHasa noarpynna CG{({p)=CG((p) MOXeT ObITb B/IOXeEHa B <P
JONYyCTUMYIO KOHEUHY0 HopMasbHYto B G nogrpynny N. Mo Teopeme 2 CGN©) —1
n, cneposatenbHo, G/N abenesa. Ho torga G'CAN.

MycTb Tenepb G paspellmma n A NOCNeAHWUIA HETPUBMASBHDIN U/EH pAja KOMMY-
TaHTOB rpynnbl G. 10 MHAYKTMBHOMY npeanonoxeHnto C/H MMeeT KOHEeUHbIN
KommyTaHT (G/H)'—G'/H. Tak kak H abenesa n HopmanbHa B G, T0 no nemme 4 H
FC-BnoxeHa B G.

Takum o6pasom G' siBnsetcs noytn abenesoit FC-rpynnoii. Mo Teopeme 3 G
KOHeueH. Mo fOKa3aHHOMY Bbllle [BYCTYMeHHO paspewumas rpynna GIG" nmveer
KOHeuHbll KommyTaHT (G/G")'=G'/G". OTcioga G' 6yfeT KOHEUHbIM.

Nemma 6. MNycTb G neproguyeckas rpynna, (P ee nNouTy perynsipHbIii UHBONIO-
TVBHbIA aBTOMOpM3M. Torga G obnafaeT NOArpynnoii KOHEYHOro MHAEKCa KOMMY-
TaHT KOTOPOW KOHEYEeH.

Joka3aTtenoctBo. B cuny Teopembl 1 rpynna G COAEPXWT Takyto paspeLum-
Myt (M-pgonycTumyto NOArpynny H KoHeyHoro uHpekca B G, uto H=A X B, rge
B=0(H) n A genumas abenesa 2-rpynna KOHeUHOro paHra. o nemmMe 1noarpynna
[B, @] nMmeeT KoHeuHbIn MHAEKC B B. Tak kak B saBnsetca 2'-rpynnoit u [[6, <, F1=
=[b, 2 10 [\B, 0 Pl=[B, ®. CneposaTensHo no nemme 5 [B, ] nMeeT Ko-
HEYHbIN KOMMYTaHT. Tenepb [B, cp]XA sBnseTCs UCKOMOI moarpynnoii B G,

§3

[Jokaxem cHavana Teopemy b. IMycTb (prd NoUTH perynsapHble MHBOMOTUBHbIE
aBTOMOp(M3MbI Nepuoamyeckoin rpynnesl G. Mo nemme 6 rpynna G nouTy Keasva-
6eneBa. [MoaTomy COBOKYNHOCTb A Bcex ee FC-31eMeHTOB SIBNSIETCS NOArpynmoi
KOHeuHoro uHgekca B G. V13 Teopembl 3cnefyeT, UTo H MMeET KOHeUHbIi KOMMYTaHT
H'. Mo nemme 3 aBTOMOP(M3MbI (pU NOYTW PErynsapHbl U Ha abeneBoit rpynne
A/A'. Ho Torga, B cuny cneacteus K nemme 1 vx MpovsBefeHne NouTh ToXAe-
CTBEHHO Ha A/A'. A Tenepb cHoBa No nemmMe 3 (P NOYTU TOXAECTBEHHO Ha 9,
a notomy u Ha G
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Mepexogum K foKa3aTenbCTBY Teopembl A. 14 UHBOMKOTUBHOIO NOYTU peryn-
ApHOro aBToMopu3mMa (P paccMOTpMM nonynpamoe npomssegeHne  (<p) XG,
onpegeneHHoe feiicteuem (pHa rpynne G. 115 1060ro anemeHTa g n3 G KommyTaTop
[0, cp]=0~1p~b(p ecTb Npow3BefeHWE MOYTU PErynsapHbIX Ha G WHBOMOTMBHbIX
aBTomMopusmoB g~I1<p~g n <p CornacHo Teopeme b ux npoussegeHne [g, <
eCTb MOYTM TOXAECTBEHHbIN Ha G aBTOMOpdu3M. CnegosaTensHo CG([g, <) nmeeT
KOHeuHbIli nHAekc B G. OTcloga cnegyet, yto [G, < ssnsetca FC-rpynnoii. Ho no
nemme 6 [G, @] nouTn KBasnabenesa M Mo TeopeMe 3 OHa MMEET KOHEYHbIi KOMMY-
TaHT. KoHeuHocTb uHaekca \G: [G, (P cneayeT us nemmsbl 1.
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ISOPERIMETRY IN VARIABLE METRIC

ISTVAN FARY and ENDRE MAKAI, JR.

Dedicated to the memory of Professor L. Rédei

1. If we put the sides of a polygonal domain in a new order, without changing
their directions or lengths, they will surround a new domain of different area, in
general, while the perimeter remains the same in every metric of the plane. Searching
for a domain of largest area is the simplest instance of our isoperimetric problem in
variable metric.

More precisely, we consider Euclidean metrics in R~ which are compatible with
its linear structure. Such a metric is defined by its unit circle which is an ellipse in the
affine structure of R2 Let J/Ebe the set of all such metrics. For given JTaJ(E, and
for rectifiable curves J, K in R2 we write

(1) K=J (mod

if J and K have the same length in every metric in f£. If f£ consists of a single metric,
the classical isoperimetric theorem states that the circle of the metric in the equivalence
class of/encloses the largest area. In this paper, we consider the other extreme case
fE=JIE, and prove

Theorem 1. LetJ be a rectifiable Jordan curve in R2 Then there is an up to trans-
lation unique centrally symmetric convex curve Cj, called symmetric convexification
of J, such that: 1° the length of Cj is the same as the length of J in every Euclidean
metric of R2, 2° the area enclosed by Cj is £ the area enclosed by J, and equality
holds only if J itselfis convex and symmetric.

Following Busemann (see [4]—[7] and sources quoted in those papers) and Petty
[18] a Banach norm || | in R2defines a Minkowski metric m. The length of a recti-
fiable curve J is then measured by

2

J
U—{Xx"R2: |X||= 1} is the unit circle of the metric;every centrally symmetric, non-
degenerate convex curve is the unit circle of a Minkowski metric. Let Ul denote the
isoperimetrix, i.e. the curve obtained from U by taking its polar with respect to a
Euclidean unit circle, and rotating it by n/2. Busemann showed [4] that the solution of
the isoperimetric problem in the Minkowski plane is unique, and is homothetic to

1980 Mathematics Subject Classification. Primary 52A40; Secondary 51M25.
Key words and phrases. Isoperimetric problem, Minkowski metric, isoperimetrix, mixed vol-
umes, convexification.
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U= In this paper, we also consider “variable Minkowski metric”, and, denoting
Jf the set of all Minkowski metrics, we show

Theorem 2. Let C, be the symmetric convexification of the rectifiable curve
J. Then AMCj)=A,,.(/) for all m~.Ji. Consequently, C} encloses the largest area in
the class of rectifiable Jordan curves

©) {*<=**: AM(A) = An(/), VIVEW/[},
hence is the solution of an isoperimetric problem.

Interestingly, to prove Theorem 1 concerning Euclidean metrics, we first prove
Theorem 2 concerning Minkowski metrics. The reason is that Minkowski geometry,
as developed by Busemann, is the natural setting for the theory of convex bodies,
which is our main tool here.

All questions discussed above have natural generalizations to «-dimensions,
however, the latter are much more difficult. Even the construction of convexification
requires Minkowski’s theory in «-dimensions. However, we prove the following result
about uniqueness:

Theorem 3. Ifin each Euclidean metric with unit sphere (which is an ellipsoid
in Rn) near to afixed ellipsoid the surface area ofa centrally symmetric convex surface
S is given, then S is determined up to translation.

In general terms, one deals with two functions A sMy,R-~R and
A:.MXRB-~R:in R2(in Ry Jt is the set of Minkowski metrics of R? (of Rn) and
is the set of rectifiable curves (objects for which («—)-area is defined), while k(m, J)
is the length (is the(«—)-area) and A(m, J) is the enclosed area (enclosed volume).
Usually, mis fixed, and A A are functions of J. Here / is fixed, and A A are functions
of m. For example, JtEis an analytic manifold (in fact, positive definite symmetric
matrices form an open subset of /d'("+1)2) and /.(/«, S) is analytic in /«, e.g. for
convex, or smooth 5 (see the proof of Theorem 3).

2. A located vector ab, a, b£f?2 determines a vector u, which is considered to
be an equivalence class of located vectors. ab+bc=ac, and a+u -b, iff u is the
equivalence class of ab.

Construction 1 Convexification ofa closedpolygon. Let a0, ..., a, be a sequence
of points in R2 determining the closed polygon P with edges a ,a, i=1,...,«
(also i=n+1, with a,+1=a0. Let U be the class of a,..,a;. Given a permutation n
of {1, ...,«+I}, =1, we denote nP the polygon with vertices bO=a0, bl=bi_1+
fiji (b,+1=a0. If Srt, ..., u,(,+1) is the positive, i.e. counterclockwise order
of these vectors, then Q=nP, or a translate of Q, is called a convexification

of P. If Ois the boundary of the convex domain D, the boundary Qsof —[D + (-O)],

Minkowski sum, is called symmetric convexification of P.

In elementary geometric terms: each side of the convexification Q of P is parallel
to some side of P and has length equal to the total length of the sides of P directly
parallel to it. For the symmetric convexification Os of P, each side of the centrally
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symmetric Qs is parallel to some side of P, and has length half the total length of the
sides of P parallel to it. Clearly
4) Xn(nP) = km{Q) = km{Qs) = Xm(P)

for all Minkowski metrics m.
If we consider the sides of a polygon as singular 1-simplices, we have an integral
chain (cycle). Specifically, for the closed polygon P

(5) t= _go S[*.e>*1+].

where s[a, b] denotes the map i[a, b] (t0, i)=/0a+ilb. S(t) is the support of t.
For xdR-—S(t) the winding number ir(/; x) is well-defined, and

0o [ee}

(6) I fow(t;~r]))d7dg

will be called signed area enclosed by t. If P is a Jordan polygon, i.e. a polygon
which is a Jordan curve, then +o(t)=A{P) elementary geometric area enclosed
by P. Now we prove a lemma also following from the method of the recent [23]
which we received after essentially completing our paper. Our proof is different.

Lemma 1. Let P be a closed polygon, t the cycle (5), and c the cycle constructed
for the convexification Q of P with the positive orientation of the boundary. Then

) oft) = <r(c),

where equality holds only if P is convex and positively oriented, or is contained in a
straight line. Hence

@) A(P) B A(Q).
if P is a Jordan polygon.

Proof. For n=3 we have a quadrilateral and its convexification, hence the
statement is easy to prove directly. (Take the closed convex hull of the vertices, and
consider the cases when this is a segment, a triangle, or a quadrilateral.) We now
suppose that n”~4, and that there is a non-convex quadrilateral

9 a;, ai+i, ay, aJ+l, Osi<jSn.

We will replace this by a convex quadrilateral and show that the c-value is increased
thereby. (We note that this operation may produce self-intersections, and that is
the reason why we work with 0.) Specifically, we set

(-1 n
h - IO2_0 s[aP>ap+i]-s[aj+ nai]+ 72‘+i s[ap,ap+J;
h = g[a,, ai+J+s[ai+l, a7]+s[a7, ay+l]+s[aJ+l, aj;
i-1
h~ 2 stap>ap+i]—stai+i> w/]e
p=i+10

10
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Then tl1+t2+t3—t, consequently o(tD)+ (r(td +(T(t3=o(t). Let us convexify (9)
and denote t2 the corresponding cycle: <At2)>\o(tf, by construction. Now
MalJ+i, a;] was shifted in a new position when we constructed t2, hence /, can be
shifted in a new position t12, so that this simplex is cancelled in tI2+t2. Similarly,
t3can shifted to i32, so that 72+ t2+ t2does not contain s[aj+1, a;]. Finally, we may
shift this cycle in new position t13+t23+ t33 where s[a,,, aj belongs to it again.

Suppose now P is that polygon, for which o{t) attains its maximum, among all
polygons nP, and P is not contained in a line. What we have shown above, implies
about the side vectors u; that no u(, ui+1((,,+2=ul have opposite directions, and
also that the angle (of absolute value -=7t) between the directions of u;+l and u;
is SO for all i, or is ~0 for all i. Also if a a, +1,aj (resp. aJ+1) lie on a line, but
aJ+l (resp. aj) does not, then their order on the line is ah ai+1, a} (resp. aJ+l, a-,
ai+i). These imply the following: there are no collinear, oppositely oriented sides,
and a self-intersection can occur only if there are collinear, intersecting sides.

Hence P is either Jordan, and then (positively oriented) convex, or has two collin-
ear, intersecting, similarly oriented sides u;, u,. By the above facts, if we pass from
u; in the given orientation to further sides, lying on the same line, the end-point of
the last one, a;, will coincide with the similarly defined ay, further also u;,+L and
ur+1 are collinear. Hence P is a k times (k> 1) traversed convex polygon, contra-
dicting our maximality assumption.

3. It is easy to see that Construction 1 gives a convexification in the sense of the
following definition.

D efinition 1. Given a rectifiable Jordan curve J in R2 the boundary K of a con-
vex domain D is called a convexification o fJ i f there is a sequence Jno f Jordan polygons
inscribed in J, such that the length of the longest side of J,, tends to 0 with n, and that

the convexification K,, o fJntends to K. The boundary Cj o f—[2+ (—D)], Minkowski
sum, is called symmetric convexification of J. 1

Given an arbitrary Jordan curve J, and e=-0, there is an inscribed Jordan
polygon Jc, such that the longest side of Jeis of length <s and the distance between
corresponding points on J and Jeis (in the standard metric of R2 see [20], [22]).
Consequently, if J is rectifiable, there is a sequence of Jordan polygons J,, inscribed
in J, such that: 1°the standard length of the longest side of Jnis <1/«; 2°lim /.(/,,) =
—A(J), where A(J) is the standard length (and similarly for /,,,); 3° lim A(Jn—A(J).
Clearly, /,m(J,,)=AmK,,), m£.11, where Knis a convexification of J,,, By (8) and 3°

(10) A(I)MA(K).
Later we will see the uniqueness of the convexification. For the moment we state:

Proposition 1 Every rectifiable Jordan curve has a convexification. If K is the
convexification ofJ, 1 m(K)=).m(J) for every Minkowski metric m, and A (K)"A (J),
with equality only for convex J.

Proof. We need to show only A(J)*A(K) for non-convex J. There is a sup-
porting line through x”"y €/, the open segment xy not intersecting J. Replace one

. . X-f-v -
of the arcs xy of J by its centrosymmetric image w.r.t. ——, obtaining a Jordan



ISOPERIMETRY IN VARIABLE METRIC 147

curve J' enclosing a larger area, and having a same convexification. Thus A(J)<
AAVAATK).

4. In the sequel, we use the conventions and notations of the theory of convex
bodies [3]. In particular, if C is a convex domain in R2 A(C) is its area, An(C) its
perimeter in the metric mdJL If Q, Caare convex, and A(C9=A(CJ), then by
the Brunn—Minkowski inequality [3; 48, p. 88],

(11) A (y(Cx+ Cj " A(C)),

where equality holds only, if Cx, C2are homothetic.
On the other hand, for arbitrary convex domains Cx, C2,
(12) Am(C1+ C2 = 2/f(Cx+ C2, £A),

where we have mixed area A on the right, and U1 is the isoperimetrix of m as above
[4; p. 864], The right-hand side of (12) is equal to

(13) 2A(CX CH)+ 27 (C2 tA) - AnCX+ ;. mC2.
In particular,
(14) AM(C) = Amjy [C-f(—C)]lj.

From these observations we will easily obtain the following result:

Proposition 2. Given a rectifiable Jordan curve J, its convexification K and
symmetric convexification Cj belong to (3). There is an up to translation unique curve
in (3) enclosing the maximal area; this curve is convex, and centrally symmetric, hence
it is Cj.

Proof. If J' is in (3), then any convexification K' of J' is also in (3). Now
A(J", J' in (3), is a bounded set of numbers, consequently there is a sequence K,
of convex curves in (3) such that lim~(jfifJ”*sup A(J"). As A(Kn is bounded, some
translates of the K,,'s lie in a fixed compact subset of the plane. As Am(K) is contin-
uous on the set of all convex domains, by the usual compactness argument, we see
that the maximum area is obtained for the boundary K of some convex domain C.
However, by Proposition 1 no non-convex curve has a maximum area. If Cx, C2

would be two convex sets of maximum area, y (Cx+ C2 would be in (3) by (12), (13),

while in virtue of the Brunn—Minkowski inequality (11), Cx, C2would be homothetic,
hence equivalent under translation. This applies to C1=C, C2= —C, and proves
that C is centrally symmetric.

Corollary 1. Let P be a Jordan polygon. Then among the rectifiable Jordan
curves C satisfying AM(C)=Am(P) for all Minkowski metric m, the one with maximal
enclosed area is thefollowing centrally symmetric, convex polygon Qs: each side of Qs
isparallel to some side o fP, and has length halfthe total length o f the sides o f P parallel
to it.

10



148 I. FARY AND E. MAKAI JR.

Proof. Notice that Qs equals Cp of Proposition 2.
Proposition 3. If AM(CD)=Am(C2 for all m£Jt, where Cx, C2are non-degen-
erate convex domains, then —[C2+(—C2)] is a translate of —[Q + (—Q)].

Proof. By considering ~-[C;+ (—C)] instead of C, (which satisfy the same

conditions), we may suppose C;symmetric. We have Am(Ci)=2/I(Ci, {/-), as above.
Hence, as Ul may be any symmetric convex domain D,

(15) A(Ct, D) = A(C2, D).
Next, given any convex domain E, A(Cl E)=A(—Cl —E)=A(Ci, —E)=
=A(Clby [E+(—E)])=A(C2, -i-[E+(—E)])=A(C2 E). In other words, we just

proved (15) for every convex domain D. Thus by [7; (9.2), (9.4), pp. 69—70] we
conclude that C2is a translate of Cl.

Remark 1 Instead of symmetric metrics (| —x||=||x||, or, equivalently, U
centrally symmetric) occurring above, we may consider asymmetric metrics (U ar-
bitrary convex, containing the origin in its interior). Then the results above remain
valid without essential changes (measuring the perimeter in (2) in positive orientation;
by Am (negatively oriented J) =Xm (positively oriented —J) this is no restriction).
The curve enclosing maximal area in Proposition 2 need not be symmetric, hence is
the convexification. In Corollary 1in place of Qswe have the convexification Q of P,
i.e. a polygon whose sides are sums of parallel similarly traversed sides of P. In Prop-
osition 3 C2isatranslate of C1. A similar remark applies to the following Lemma 2
and Proposition 4, dropping the symmetry conditions, resp. considering the con-
vexification of J. [For Lemma 2 proceed as follows. Let 8 be the maximal number,
such that piCczD, up to translation. Then either (1) RC and D have a supporting
strip in common, or (2) RC possesses an inscribed triangle c*"Cg, D possesses a
circumscribed triangle d~d ~ c; lying on the side djdt, j, k™i. In case (2) define
a metric m with unit circle a triangle uxu2u3, with Ou; parallel and similarly oriented
to dJdfe(d1d2d3 taken in positive orientation). Then Am(clc2c3=Am(dldad3, hence
AM(RC) —.m{D), which implies the statement. In case (1) use e.g. m(e) of Lemma 3,
for which kmM(BC)/XmM(D) —1, if £-0.]

Remark 2. Letus use the notations of Definition 1. Let us denote Ksnthe sym-
metric convexification of J,,; we select them so that they all have a common center.
Then the sequence Ksconverges to the symmetric convex curve enclosing the largest
area, hence to the symmetric convexification of /. In fact, if the sequence would not
converge, then it would contain two subsequences converging to two different sym-
metric convex curves, both enclosing maximal area in the class (3) of curves. Thus one
would be a translate of the other, which is a contradiction. A similar remark applies
to the case of asymmetric metric.

Remark 3. Ifthe Jordan curve J has continuous curvature with a finite number
of zeros, or, more generally, consists of a finite number of arcs, each either convex or
concave, then the convexification K of J can be described as follows. Suppose that the
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directions of the positively traversed half-tangents vary on these arcs from <gto i//;.
Let (aj) be all these angles in cyclic order 07aJ<=2ft. For each [alt aJ+l], consider
the parts of the arcs in which the positively traversed half-tangents have angles in
[aj, aJ+1], and consider the Minkowski sum K" of these arcs. These, for all j, fit
together to K, since, evidently, XmK")=Xm{K), for all mdJL

Remark 4. Let us consider asymmetric metrics. Hitherto, we only dealt with
XmK), We have XmK)=Xm(J) for all asymmetric metrics m, and even
(using elements of Lebesgue integration) we see for any continuous /: [0, 2n]*-R,
m=1f(2n)

(16)
j K
(«p is the angle of the tangent at ds).

Corollary 2. The convexification K of a rectifiable Jordan curve J is unique up
to translation.

5. The classical isoperimetric theorem can be formulated concerning rectifiable
Jordan curves K, such that X(K)Sconst. Similarly, for a given rectifiable Jordan
curve J, we can consider the class of all rectifiable Jordan curves K, such that

(17) Xn(K) » Xm(d), VmEI2\

where JE£aJ( isgiven. In the classical case, the new formulation is trivially equivalent
to the old. This is also true in our case, although less trivially:

Lemma 2. |ffor centrally symmetric convex domains C,D we have Xn(C)~»
sXm(D) for all m£Jt, then atranslate of C is contained in D.

Proof. We have A(C, UL)*"A(D, U+) for mixed areas by Xm(C)=2A(C, if-1)
[4; p. 864]. Here UL can be an arbitrary centrally symmetric convex curve, thus by a
limit procedure we get A(C, E)*A(D, E) for E—any unit segment. By [3; p. 45]
2A(C, E) is the length of (any) projection of C, whence a translate of C is contained
in D.

From the above, we get easily:

Proposition 4. Among the rectifiable Jordan curves K such that Xm(K)*Xm(J),
for all m£Jt, where J is afixed curve, the largest area is enclosed by the symmetric
convexification Cj of J.

Clearly, with above results, we have the proof of Theorem 2 of the introduction.
Theorem 3 will be proven later, when we discuss the «-dimensional case. We anti-
cipate this proof, and use the special case of the theorem for n=2 in the

Proof of Theorem 1 By 1° of Theorem 1, and by the special case n=2 of
Theorem 3, C, is the symmetric convexification of J, and Xm(Cj) =Xm(J) for all
Minkowski metrics m. Hence 2° follows.

Sharperform of Theorem 1 Let us denote  the set of Euclidean metrics, whose
unit circles are near a fixed ellipse in R2 Replacing 1° of Theorem 1 by

(18 XJCj) = Xm(J),
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we have a weaker condition, with the same conclusion, hence a sharper form of
Theorem 1
We can improve Theorem 1 in another direction:

Proposition 5. In the class of all rectifiable Jordan curves K, such that X,,,(K)S
A (J) for all Euclidean metrics m, the symmetric convexification Cj ofJ encloses the
largest area.

(This cannot be improved by requiring the inequality to hold near a fixed metric
only, as seen by taking /=any symmetric non-circular domain, A—<ircle, of a larger
area and a smaller perimeter than those of /(in Euclidean sense).)

For the proof of this we need the simple

Lemma 3. Let m(e) be the Euclidean metric with unit circle sx2+ j2=1, and let
C be a convex domain. Then,for £-6, ~ 1,,(Q(C) converges to the width of the sup-
porting strip parallel to the x-axis.

Proof. We have /m()(C)=rmn)Cg, where Ccis the image of C under the
affinity (X, y)—ex, v). Hence, yYAnE(C) is £ than the width above. On the

other hand, Cis contained in some rectangle with sides parallel to the axes, thus the
statement follows.

Corollary 3. Iffor the centrally symmetric, convex J, K we have f,,(K)"
(./) for all Euclidean metrics m, then K is contained in a translate of J.

Proof of Proposition 5. We can replace both J and K by their respective
symmetric convexifications, apply Theorem 1 and Corollary 3.

Remark 1 Lemma 3, Corollary 3 and Proposition 5 have evident analogues,
when, instead of considering all Euclidean metrics, we consider all Minkowski
metrics with unit circle an affine image of a fixed centrally symmetric convex curve.
(For asymmetric Minkowski metrics the analogue of Proposition 5 does not hold.)

Remark 2. From the narrow point of view of this paper, the most efficient
development would be to fix a /, and first consider all K's satisfying (16) for all con-
tinuous /, f(0)=f(2n). This leads to the convexification of /. The above development
is preferable, inasmuch as it shows connections with Euclidean and Minkowski
metrics. However, in higher dimensions we will pay more attention to the generaliza-
tion of (16).

6. In Rn («=2) we can pose the same problems as in the plane. We first consider
geometric simplicial complexes, as natural generalizations of polygons (see [21; p.
357] under simplicial complex).

As in the plane, we need some remarks about orientations. A non-degenerate,
oriented affine (n—)-simplex in Rnspans an (n—I)-flat L, and defines an orientation
of L. There is then a unique unit vector u, that is the exterior normal vector, if we
think of the orientation of L as being induced by a convex polytope with one face in L.
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Construction 2. Convexification of an oriented geometric simplicial complex
ofdimension n—1 in R". Let K be such a complex; each (n—)-simplex is oriented
(arbitrarily). Let

(19) Si, ... uk (if i 9%, u, 5*Uj

be the set of all the exterior normal unit vectors of the oriented («—)-simplices of K;
we suppose that (19) spans R". Let us denote atthe sum of the (n-1)-Lebesgue meas-
ures of all the (n—I)-simphces of K that have u, as exterior normal. By a classical
theorem of Minkowski [17; Il, p. 113], [3; 60), p. 118], the vectors

k
(20) Gjy, ..., akiuk, ak+lok+l= - £ afr

(the last being omitted, if 0) determine an up to translation unique convex polyhedron
P for which u, is the exterior normal for the /-th face At, and fin_1(A))=a{ (Lebesgue
measure). The complement of the interior of Ak+L on the boundary of P (or P itself)
is called a convexification of K (oriented, as given).

Construction 3. Symmetric convexification of a geometric simplicial complex
of dimension n—1 in R". Let K be such a complex. Let (19) be the set of all unit
vectors orthogonal to the (n—I)-simplices of K (if u, is in (19), —, is also there);
we suppose that (19) spans R". Let us denote bt half the sum of the (n~ 1)-Lebesgue
measures of all the (n—I)-simplices of K that are orthogonal to ,; if uy=—u;, bj=bi.
Then there is an up to translation unique centrally symmetric convex polytope Q
whose /-th face Bj has uyas exterior normal, while p,, 1(BJ=bj. We call the bound-
ary of Q (or Q itself) symmetric convexification of K.

Lemma 4. Let K be a geometric simplicial complex of dimension n—1 in R",
whose (n-1)-simplices sh i=1, ..., | are coherently oriented, i.e. such that

(21) t=2s,

is a cycle (here X standsfor formal sum, which is an element of the simplicial chain
group). Then afctlu*+1=0 in (20).

Proof. The cone operator D centered to the origin defines an «-chain Dt, such
that t=dDt. We set

Dt= ZcjS]j
J=
where §j is an «-simplex of R, and the formal sum is reduced. Let us denote ii>0, ...,

the exterior normal unit vectors of sy, and al0, ..., ajn the («—1)-Lebesgue measures
of the respective faces. By Minkowski’s theorem, the vector sum

ajo T *Tojn

is 0. Multiplying by cy and summing gives the result.
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Corollary 4. Let M be a geometric simplicial complex of dimension n—I,
and a connected C°-manifold without boundary. Then the convexification of M (the
simplices being taken with appropriate orientations) is thefull boundary of the convex
polyhedron P.

Proof. Rn—M has two components by the generalized Jordan—Brouwer
theorem; if Uis the bounded component, M =U —U. Let Rpbe the subspace of R"
generated by the exterior normal unit vectors (19). Supposing p~n —I, there is a
direction +u orthogonal to Rp, and if we project all the («—)-simplices of M in
this direction into an open ball DaU, the complement of the projection will not
be empty. A ray of direction u starting in the complement will avoid all the («—1)-
simplices of M, hence M itself, which is a contradiction. Thus RP=R", and P is
defined. The intersections of any of the both half-spaces bounded by all the («—1)-
flats of R" containing (n—I)-simplices of M are convex open sets, some of whose
closures form a cell decomposition of U; we thus construct a simplicial decomposition
of U. Taking all the «-simplices of the decomposition with positive orientations and
with coefficients +1 gives an integral chain ¢ of U, and t=dc is a fundamental cycle
of M. The statement then follows by Lemma 4.

The above seem to be natural generalizations of our results concerning the plane.
However, as yet, we were unable to generalize Lemma 1:

Conjecture 1(cf. also the Remark added in proof). Convexification increases
the volume enclosed, under appropriate conditions. Specifically, with the nota-
tions of the proof of Corollary 4,

(22) pn(D) s /1,,(P),
where equality implies that U is convex.

Presumably, in order to prove this conjecture, one would need generalizations
of the tools used in the plane. This is available: Given an affine («—)-cycle It in
R” (with non-negative coefficients) we can define the winding number w(h; x),
XxERn—S(h), and set

(23) a(h) = Jw(h;x)dv

where dv is the volume element of R" (or <r(/i)= sum of the signed volumes of the
simplices in the chain Dh, with the respective coefficients). By the proof of Lemma 4

we have (with notations analogous to those in Construction 2, and
y?s are the coefficients of the cycle). Supposing the u;’s span R", one expects
(24) o(h) = n,,(P),

where P is the convexification, defined in analogy to Construction 2. (24) would
imply Conjecture 1, as o(h)=pn(U), if h is the positive fundamental cycle of M
(using the notations of the proof of Corollary 4).

If Conjecture 1would be true, it also would be more clear, why do the convex
bodies have such a great importance. Also the (classical or Minkowskian [5]) isoperi-
metric theorem would become clearer.



ISOPERIMETRY IN VARIABLE METRIC 153

7. In the plane we had: existence of the convexification for all rectifiable Jordan
curves, and area increasing property of this operation in the general case. In R" we
now have convexification for polytopes, hence for a very restricted class, and we do
not know whether convexification increases the enclosed volume or not.

In this section we will discuss some conjectures, and partial results. We will say
“surface S” meaning a triangulable (n—1)-manifold (with or without boundary) in
Rnwith various “smoothness” restrictions, as appropriate. For full generality, one
would need a geometric integration theory [12], [21]. General C*-class is certainly
not always appropriate here, as the solutions of our isoperimetric problems may be
general convex surfaces.

At some smoothness conditions the surface area can be defined as f dS. ItR"

is supplied with a Minkowski metric m with unit ball U, according to Busemann [6],
S has a Minkowski area

(25) S X~1A(V(dS)Y

where v(dS) is the normal unit vector to dS, A(v) is the area of the intersection of U
with a hyperplane through 0 normal to v, and is the Euclidean volume of the
Euclidean unit (n—I)-ball. As in (16), we can also consider any integral of the form

(26) Ji(y(dS))ds,

where/is continuous (real-valued) on S"-1, 5 is orientable, and v(dS) is a fixed
(say, exterior) normal. Our main question will be:

Among the surfaces with equal Minkowski areas in all Minkowski metrics, or in
the smaller class of orientable surfaces with equal integrals (26) for all continuousf,
which are the ones bounding the maximal volume?

Let P be a convex polyhedron with inner points in Rn A, its i-th (n—I)-face,
B the exterior normal unit vector of Ah and ai=p,, 1(Ai), (n—1)-Lebesgue measure,
i=1, ..., k. We now consider that these data determine a measure on the unit sphere
S" 1 of R" with weight at at UjgS"-1. Then

@7) ff(HdS))dS= Zf$i)at.

Thus (26) for all continuous/ determines the measure, and vice versa. Hence, from
(27) and from Construction 1, 2, we get:

Proposition 6. IfM, P are as in Corollary 4, and (26) is considered as an integral
ofmeasures, then this integral is the samefor both surfaces M and dP (boundary ofP).
In particular, Euclidean surface areas in all Euclidean metrics, and areas in all Minkow-
ski metrics agree. The last sentence applies also to an (n —1)-complex K andits symmetric
convexification Q (see Construction 3).

The uniqueness part of Minkowski’s theorem quoted in Construction 2 means
that the measure on S™-1 determines the convex polyhedron, up to translation. How-
ever, in this case it is not evident that if Si, S2are convex, having equal Minkowski
areas (foraset of Minkowski metrics) or equal integrals (26) (for a set #~ofcontin-
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uous functions / in (26)), are identical up to translation. We will come back to this
question below.

Proposition 7. Among the (non-degenerate) convex surfaces with equal Min-
kowski areas —for a set of Minkowski metrics — or equal integrals (26) —
for a set IF of continuousfunctions, containing at least one positivefunction — there is
a unique one, bounding a maximal volume.

Proof. The existence of a convex S with maximal volume is immediate from the
facts that (26) is continuous in S ([1], 86, Lemmaand 85, (2)) and that, ifthe Euclidean
surface area of S is bounded above, and its diameter tends to infinity, then the volume
bounded by it tends to zero. This allows the usual compactness arguments.

Let us recall that for convex surfaces S1, S2there exists a surface S (called their
Blaschke sum in [14]) with

(28) ds(y) = dSI(v)+ds2(y),

where the differentials are interpreted as Borel measures on .S™1 (surface area func-
tions, [1], [7; (8.3), p. 62], [13]). (in R2this is the Minkowski sum, in R™ it is not.)

In R", the inequality
n—1 n—1 n—1

(29) ((S)* s F(SX)” +V(S2~

is proved in [15] for the volumina with equality only for homothetic S1, S2, for
smooth bodies. But in fact the same proof, read in modern terminology ([1], [7], [13]),
shows the general validity of (29) which implies uniqueness of an Senclosmg maximal

volume. In fact, if both S and S2bound a maximal volume, then 2 ,,“18 has equal
integrals (26), but bounds a greater volume, unless S, —S52.

Theorem 4. Iffor a convex surface S the integral ff(v)dS(v) (v is exterior

normal unit vector, dS(v) is surface area function) is known for every continuous f,
then S is determined, up to translation.

Proof. The values of these integrals determine the regular Borel measure dS(v).
Thus the surface S is determined by [7; Theorem 8.6, p. 64] or [2; (9.4), p. 70].

Conjecture 2. There is a class £f of compact subspaces of R", and a geometric
integration theory with following properties: All convex surfaces are in £f; for every
ME_£f a surface area is defined, which is the standard surface area, if M is a convex
surface. All geometric simplicial complexes of dimension n—L are in 9% every
M i w8 is homeomorphic to a geometric simplicial complex. Every (n—)-dimensional
C-submanifold of Rnis in If, rs 1; there is a differential dM if M iif; dM is the
classical area element if M is smooth. There is a generalized Gauss map v of Borel
sets of S'I'1 into Borel sets of Mi.9, such that

(30) fdM(v)= f dM (AczS"-])

A V(A)

defines a Borel measure dM(v) on A™1, where differentials and integrals are taken
in the sense of the selected geometric integration theory. If Mi If is a (connected)
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C°-manifold without boundary,
(31) f vdM{\) = 0.
gn-I

For fixed M in S? and for given set 3F of continuous functions/, we consider the class
of such that

(32) f/(v)dS = f f(y) dM

holds for every We conjecture, that if 3 =all continuous functions on S"“1
there is a unique convex surface S with dS(v) =dM(v), which belongs to the class,
and which also is the unique one enclosing the maximal volume (supposing (31) is
satisfied). We also expect new phenomena in R, similar to the fact that not every
centrally symmetric convex body is isoperimetrix of a Minkowski metric [18; Theorem
4.2, p. 63], etc.

Conjecture 3. If we consider those S's which have the same Minkowski sur-
i

face area for all Minkowski metrics, the extremal SMis 2 "~| times the Blaschke
sum of the above S, and —S. This would follow from Conjecture 2 and Theorem 3.

8. We can ask what milder conditions determine a convex S uniquely instead of
its surface area with respect to all Minkowski metrics (compare Theorem 4). A spe-
cific result on this question is Theorem 3 formulated in the introduction.

Proof of Theorem 3. Choose the fixed ellipsoid to be the unit ball in R"
Consider an ellipsoid ZaijxiXj=1, aij=ali. Its intersection with the plane ZbjXi=0
has the area

(33) 1/det(C()j/

where (cy) is the inverse of (fly). (To prove this formula, select new coordinate sys-
tem Xi in which the intersection is given by Xn=0, and a point with parallel tangent
plane by (0, ..., 0, 1).) Hence by (25) the surface area of S in this metric is

(34) (det(cy))_2L/ (Icy cos (5-cos (pj7|2_dS,

where the cos qu’s are the direction cosines of the unit normal vector at dS. Here
cij =6ij+dij, dj “small”, dji=d,j. Consequently,

i
(35) J (I+2Zdij cos (picos (pj)2 dS
is known for all small values of dtJ. However, the integral is analytic in <y, and the
power series expansion can be integrated term by term. Thus (35) is equal to

(2 2 kv+1)J/H A,

(36) 21 iZJ7 Kij- I dijdd i'q (cos 'Picos <Hk,ids-
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Here the outer summation extends over all ~2j_tuPiets °f kij—0 integers, and i,j

ranges over 1,  nwith the condition isj in all sums and products. By hypothesis,
we know all coefficients of this power series, in particular, all

(37) ﬂ I]57J (cos (pi cos (pjktdS = fl{llsl cos (ptcos <HkJdS(v)

for all ky-SO.

Now consider the algebra si of continuous functions /: S"~1-*R satisfying
[ ( —v)=/(v); this isisomorphic to the algebra of all continuous functions on the real
projective space, quotient of S"~1 In this algebra, the linear combinations of all

(38) 77 (cos (picos
iSj

form a subalgebra containing the constant functions (fcy=0), which separates
points of the projective space. In fact, if x, x'£ Sn~1 have coordinates cos (ph cos ir-
respectively, and cos2<3= cos2(p[, cos qtcos gq=>j=cos ([ cos ], then |cos (pt\=
= |cos <{, and either sg qt=sg (pi for all i, or sg<p~—sgcp- for all i. That is:
x'—=x. By the Stone-Weierstrass theorem [8; IV. 6, 16] applied to the real projec-
tive space, this subalgebra is dense in the supremum norm in si. Thus we know all

ff(v)dS(v), fEsi. Using dS(v)=dS(—v), hence for any continuous /: —R
we know Jf(v)dS(v)=J"(f(v)+f(—v))dS(v). Thus by [8; IV. 6. 3] and [19]
the regular Borel measure dS(v) is known, and the surface is determined by [7] and [2],

Remark. Suppose we know the surface area of a surface S, symmetric to all
coordinate planes, with respect to all Euclidean metrics with unit sphere

(39) lctx?= 1,
ct near 1 Then, with the help of the expansion,

(40) (1+1dtcos2()2 = 3, 2 ('\5"\_1[@0 1) a1 cosde

one sees similarly that S is uniquely determined. If we omit the symmetry condition
in Theorem 3 or above, we can determine only the Blaschke sum of S and —S, or
that of the 2" symmetric images, respectively.

9. One of the authors had the distinct privilege and great pleasure to do
joint work with the late Professor Rédei, and learn from him about the beautiful
geometric work of Minkowski [16], [17]. Centrally symmetric convex bodies were as
important in [10] as here, but possibly for different reasons: “They remind you of
Number Theory, don’t they?” said Rédei one day.

Remark added in proof. In a joint paper by I. Barany, K. Boroczky, J. Pach
and the second named author it is proved that convexification increases volume

some
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in R", for polyhedra and for sufficiently smooth surfaces. Also an analogue of
Theorem 4 is proved there, stating that greater integrals Jf(v)dS(v) (for each

/SQO) imply a greater volume (although inclusion of a translate is false for n s 3,
even for boxes). So the main questions remaining are that concerning <x(/i) in
(24), and the extension of the first mentioned result (or an eventual one about
cr(h)) to possibly general surfaces. Also in Period. Math. Hungar. 14 (1983),
111—114 the present authors posed Problem 31 about questions, and a partial
result related to possible generalizations of Proposition 4 to Rn
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ON FACE-VECTORS OF MAPS WITH CONSTANT WEIGHT
OF EDGES

S. JENDROL’ and E. JUCOVIO

By the weight of an edge AB of a graph we mean the sum of valencies of the
vertices A, B. All regular graphs have of course constant weights of edges. If the
connected graph with constant weight of edges is not regular then its vertex set
decomposes into two disjoint sets; the vertices of one have valency a, the vertices
of the second set have valency b; no two vertices of the same set are adjacent. There-
fore such graphs or maps which are formed on surfaces by embedding of such graphs
are called (a, 6)-graphs or (a, 6)-maps, respectively.

Basic combinatorial properties of 3-dimensional convex polytopes (in short
polytopes in the sequel) with constant weight of edges are studied in Rosenfeld [4].
(a, 6)-graphs (under a different name) are investigated in Acharya-Vartak [l],

By the face-vector or vertex-vector of a map M we mean the sequence (p,(M))
or (Vi(M)) where pt(M) or vt(M) denotes the number of /-gonal faces or /-valent
vertices of the map M, respectively.

The aim of the present paper is to contribute to the problem of characterizing
face-vectors of (a, 6)-maps on closed surfaces. The graphs of all maps investigated in
the paper are 3-connected. (In case of planar maps these maps are combinatorially
isomorphic with convex 3-polytopes by the well-known Steinitz’s theorem — see
Griinbaum [2]). In Section 1we prove some lemmas allowing to construct (a, 6)-maps
on a closed orientable surface Tgof genus g disposing of (a, 6)-maps on surfaces of
lower genus and we state a general theorem concerning the existence of (a, 6)-maps
on Tgwith mutually different face-vectors for given (a, b) and g. In Sections 2, 3 and
4 we deal with (3,6), (3,5) and (3,4)-maps, respectively.

1

From Euler’s relation for maps on the closed orientable surface Tgof genus g,
f+v—h=2(1—g) (here/, v or h denotes the number of faces, vertices or edges of

the map, respectively) there follows easily for an (a, 6)-map M on Tgthe following
relation;

(1.1) 2] (2ab—abi +ai +bi)Pi(M) = 4ab(l ).

In case g=0 or g=1, (a, 6)-maps do exist only for pairs (a, 6)6 {(3, 4), (3, 5}
or {(3,4), (3,5), (3,6)}, respectively. — From the bichromaticity of the graph of an

1980 Mathematics Subject Classification. Primary 05C10; Secondary 52A25.
Key words and phrases. Face-vector of a map, (a, b)-map, orientable surface.
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(a, 6)-map follows the evenness of the lengths of all its circuits (cf. Harary [3]);
hence we have

Lemma 11. If the sequence (ph is 3) is the face-vector of an (a, b)-map then
for all oddj we have Pj=0.

From the obvious relations h=ava=bvb, v=va+vb and by means of Euler’s
relation mentioned before we get

(1-2) /= (a~Ibb~a p.+2(l-g).

By an a-configuration we mean a triple of quadrangles one of which separates
the remaining two (Fig. 1.1 where the vertices marked Ator Btare a-valent or h-valent,
respectively).

=z ~ B2

Fig. 1.1

Lemma 12. If an (g, b)-map M with the face-vector (ph is 3) containing two
a-configurations exists on the orientable closed surface Tgofgenus g then on the closed
orientable surface TgH there does exist an (a, b)-map M' with the face-vector (pi,
is 3) where

Pk =Pk for all k 4,6

Pi = Pi-6,
Ps= Ps+4

Lemma 13. Let (a,b)-maps Mx or M2 on orientable surfaces Tgi or Tg with
face-vectors (rnis 3) or (st, is 3), respectively, do exist and let each of these admit
an a-configuration. Then there exists on the orientable surface Tgi+02 of genus gi+g2
an (a, b)-map M withface-vector (/?,, is 3) so that

Pi = r4+ s4—s,
Ps —r6+ s6+ 4,
Pk = rk+ sk for all k# 4,6 hold.

Proof of Lemma 1.2.

Let us denote the a-valent or i?-valent vertices of one a-configuration
Al; A2, A3, Ador Bx, B2 B3, B4, respectively, and analogously the vertices of the
second a-configuration are marked A' and B\, i=1,2, 3,4. (The marking of the
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vertices be such as in Fig. 1.1) We choose inner points Cx, Dx and C2, D2 on the
edge A2B3or AiB1, respectively, as new vertices, so that the vertex Cxor C2is adjacent
with the vertex A2or At, respectively. Analogously in the second a-configuration new
vertices C\, D[, C2, D2on the edges A2B3, B[A[ are chosen.

Delete from the surface Tgcarrying the so arranged map the regions bounded by
the graph-circuits A2C1DIB3AIC2D2B1A2and A2CxD[B3A4C2D2B[A2. After glueing
these holes we get the desired map on Tg+1. The glueing is performed so that we iden-
tify the pairs of vertices A2and D2, Cxand B[, Dyand A2, B3and C[, A4 and D{, C2
and B3 D2and A{ as well as the appropriate edges. The quadrangles BXA2B3A4,
BxA'2B3A4 disappear from the original map, and the quadrangles A1BIAiBiI,
A2B2A B 3, A1B[A4B4, A2B2A3B3 are changed into hexagons.

The proof of Lemma 1.3 proceeds analogously as the proof of Lemma 1.2.

Theorem 11. Let a, b be integers, {a, b) ${(3, 4), (3, 5), (3, 6)}, 3*a<b. On
every orientablc closed surface Tgofgenus g there exists at most afinite number of
(a, b)-maps with mutually different face-vectors.

To prove Theorem 1.1 we need some lemmas.

Lemma 1.4. Let 2”a<b be integers such that (a, b) ${(3, 4), (3, 5), (3, 6)}.
Then for every integer z's4

2ab—abi+ai+bi < 0
holds.

Suppose the contrary of Lemma 1.4, i.e. lab —abi+ai+bi*O holds. From this
follows

at
(*) ai—2a— "b.
Two cases have to be distinguished. If a=3 then 6s7, and from (*) we get 42
in contradiction with /S 4. If i/S4 then 6 s5 and from (*) we get 4;0_6‘5 , again

a contradiction to z"4.
As a corollary of Lemma 1.4 and the relation (1.1) we have

Lemma 15. For every (a b)-map M on the surface Tg, 3sa<fc, (a, 6)$ {(3, 4),
(3,5), (3,6)}, and every z'*4 we have

P{M) 4ab(l —g)

2ab—abi+ai+bi’

Employing Lemma 1.4 and Lemma 15 we have

Lemma 1.6. For every (a, b)-map M on the surface Tg, 3*a<b, (a, b) {3, 4),
(3, 5), (3, 6)}, and every —Jf’ Pj(M)=0 holds.

Theorem 11 follows now directly from Lemma 15 and Lemma 1.6.

In Sections 2—4 it will be shown that the couples of integers (3, 4), (3, 5) and
(3, 6) are indeed exceptional; the assertion of Theorem 11 does not hold for them.

u
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2

As follows from (1.1), the following is a necessary condition in order that a
sequence of nonnegative integers (p,, iS 3) should be the face-vector of a (3, 6)-map
on Tg:

2.1) Z(4-fc)p* = 8(l-9).

Let us characterize first face-vectors of (3, 6)-maps on the torus (7\).

Theorem 2.1. A sequence (phis 3) of non-negative integers is the face-vector
ofa (3, 6)-map on the torus if and only if

pk=0 for k 4, and
p4=0(mod 3), Pi A0 hold.

Proof. The necessity of the conditions mentioned follows from the relations
(2.1) and (1.2). The sufficiency is proved by construction of the maps: In Fig. 2.1 is
drawn a toroidal (3, 6)-map containing 31 quadrangles, /—1,2, ... (first identify
the pairs of vertices AOand A,, BOand B,, and after this identify the equally labelled
vertices).

A complete characterization of the face-vectors of (3, 6)-maps on orientable
surfaces of genus gs2 is still lacking. The next two theorems yield partial results.
From (2.1) follows directly

Theorem 2.2. In the face-vector (phi~3) of every (3, 6)-map on every orien-
table surface Tgwe have pk=0 for every k"Sg —3.

Theorem 2.3. A sequence (ph i=3) of non-negative integers, for which pk=0
for all 4,6 holds, is the face-vector of a (3, 6)-map on the orientable surface Tg
of genus g”2 if and only if

P<=4(g—1) and px= 0 (mod 3) hold.

Proof. The necessity of the conditions mentioned follows from (1.2) and (2.1).
Sufficiency will again be proved by construction of the required map; an inductive
procedure is used.

Denote Mkthe toroidal (3, 6)-map in Fig. 2.2, it consists of 6 quadrangles in two
a-configurations (the quadrangles of one are marked af.
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Fig. 2.2

Let Mk, k=2, 3, ...,g—2, denote the (3, 6)-map on the orientable surface Tk
obtained by employing Lemma 1.3 to the (3, 6)-maps Mk_xand Mx.

We employ now Lemma 1.3 to the maps Mg _2and the toroidal (3, 6)-map con-
taining 3«+ 6 quadrangles, n=0, 1, ..., (see Fig. 2.1) to get the map Mg_x on the
surface Tg x; it contains 4 (g—2) hexagons and 3«+ 6 quadrangles. The required map
is obtained after using Lemma 1.2 with the map Mg_x.

Remark 1 The maps constructed in the proofs of Theorems 2.1 and 2.3 are in
general not cell-complexes. If we require the maps to be cell-complexes some assump-
tion concerning the number p4 must be added. Our constructions (after small
changes) work for all ~M"3(4g+1) where g is the genus of the surface carrying the
map. For the torus (g—1) this bound is sharp; there do not exist (3, 6)-maps on the
torus with <15 quadrangles which would be cell-complexes.

3

From (1.1) there follows for the face-vector (ph z's3) of a (3, 5)-map on the
surface Tg the following relation:

(3.1) 2(30 07, = 60(1—9)

The following lemma is very useful in getting results about the existence of
(3, 5)-maps on closed surfaces.

Lemma 3.1. If there exists on Tga map Mq with a 2-connected regular 3-valent
graph and a face-vector (gh z'S3) with qi—0 for odd i, then there exists on Tg a
(3, 5)-map M with a 2-connected graph and aface-vector (pt, z*3) such that

Pi= < for all i™ 4
and

pt = 30(1-g) +1_ 2" (7—0)<7;
254

hold.
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Proof. The map Mqis first changed into the map M"' using the transformation
replacing vertices by hexagons (see Griinbaum [2, p. 265]). The graph of the map M
is again regular 3-valent. To an adjacent pair of faces k-gon —/-gon in Mq there
is associated in M "' a pair of faces /c-gon -/-gon separated by a couple of adjacent
hexagons. (See Fig. 3.1 where a part of the original map is drawn by dashed lines.)
The graph ofthe map M' is 3-connected because to two edge-disjoint paths of Mq
there are associated in M' four paths from which at least three are edge-disjoint.

Fig. 3.1

All faces of Mqare even-gonal and the same holds for all faces of the map M ".
The graph of M ' is therefore bichromatic with the vertex set decomposed into two
disjoint sets ZTX ~ so that no two vertices of the same set are adjacent. To the vertices
and edges of the map M * (which all remain vertices and edges of the constructed map
M) add following new vertices and edges: Inside of every hexagon mof M', which is
by the transformation replacing vertices by hexagons associated to a vertex of Mg,
choose a point, and join it with all vertices from the set dfixwhich are vertices of the
face co. In this way we decomposed all hexagons not occurring in the map Mq
into quadrangles. Every vertex from the set STXbecomes 5-valent, and no vertex front
the set S<has changed its valency; the new vertices have valency 3 and are all joined
by edges with vertices of valency 5. The graph of the map Mis therefore a (3, 5)-graph.
The types of all faces of the map Mqgappear in M as well. In M we have more quad-
rangles; their number follows from (3.1).

Theorem 3.1. The sequence (ph /ia3) o fnon-negative integers is the face-vector

of a toroidal (3, 5)-map if and only if it satisfies the conclusion of Lemma 1.1 and
(3.2).
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The necessity of the conditions mentioned in Theorem 31 was already proved.
Crucial in the proof of their sufficiency is the following

Lemma 3.2. To every sequence (ghi” 3) of non-negative integers satisfying
the conditions
1dj=0 for all odd j,

4 =-y2 (k-6)qk

there exists a map M on the torus with a 3-connected 3-valent graph such thatfor all i
we have gi(M)=qi.

Proof. It proceeds by construction of M. Let d~ i gt. The starting toroidal
i

map containing d hexagons is in Fig. 3.2a or 3.2b for even or odd number i/s2,
respectively. (Equally labelled vertices on the marked “holes” are identified.) The case
d—21 will be investigated at the end.

From each of the d hexagons AjAj+1Aj+.Bj+2Bj+1Bj, j=d—2, in Fig. 3.2
a required 2t-gon, 3, will be formed as follows. Distinct inner points Clt C2, ...
..., Cf_3ofthe edge AjAj+1 are taken as new vertices and analogously we choose points
Dj, D2, ..., D,_3of the edge BjBj+1. Pairs of vertices Ck, Dk, k=12, ..., t—3 are
joined by edges so that no two edges intersect. So a 2t-gon is formed and “new”
t 3 quadrangles appear in the map. — We proceed quite analogously with the other
hexagons in Fig. 3.2. So we get the required toroidal map M in case d”2.

Fig. 3.2b
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Fig. 3.3a

In case d=1, the required toroidal map containing one hexagon or one 2r-gon,
r~4, is drawn in Fig. 3.3a or 3.3b, respectively.

Proof of Theorem 3.1. The sequence {gh 3) for which gk—pk for all
ks 3, 4 and g4= "2 é%/ c~"IPk holds satisfies the conditions of Lemma 3.2.

Then we use Lemma 3.1.

Theorem 3.2. Every sequence (pi, i=3) of non-negative integers satisfying
— besides the conclusions of Lemma 1.1 and (3.1) with g—0 — at least one of the
conditions
(A) Pj=0 (mod 2) for all j=6,
(B) [/6=2 with the exception of the sequences
(p4=55, p6=2, p8=1 Pj=0 for j"4, 6 8),
(pk=68, pe=3,p10=1, pj=0 for yV4,6,10), or

(c) 2 Pij+2 —6

Jsli
IV the face-vector of a (3, 5)-polytope.

The proofleans heavily on Lemma 3.1. So we first prove the existence of a planar
map with a regular 3-valent 2-connected graph and face-vector (gh i=.3) for which
qj=Pj for ys3, yV4 and qt=6+~ 2 (j~6)Pj holds.

js 3
j*4

Clje (A). The starting map is the map of the cube. We have in it a triple of

quadrangles from which one separates the remaining two. Such a triple of quadrangles

appear in the map at any step of the construction. This step consists of creating a
pair of required t-gons, ts 6, in such a way that the “middle” quadrangle of the
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triple of quadrangles is decomposed by /—4 new edges into t—3 quadrangles (see.

Fig. 3.4). We proceed in this way until a trivalent planar map with face-vector (qf)
is obtained.

Cl 2 t-fi°n Pt-*
4-gons

C % tgon D4 '
Fig. 3.4

Case (B). Let d—2 g2). If 2 du=2, the starting maps are in Fig. 3.2a or

jm3 *£4
3.2b depending on whether d is even or odd, respectively. However, the marked
regions are not “holes” but are decomposed as shown in Fig. 3.5. The planar map

obtained is 2-connected and admits two octagons and d —2 hexagons. The hexagon
XYZUVW as well as the second hexagon obtained analogously at decomposing the
second hole are retained in the map. From the octagons and the remaining hexagons
we form the other faces required using the procedure described in the proof of
Lemma 3.2

Let 2 <21 Ifa 2r-gon, r"6, is required and geis even or odd the starting
fcEd

maps are in Fig. 3.6a or 3.6b, respectively. Ifa 10-gon is needed and g6is even or odd

2r-gon
Ar-3  Ar-2 Ar-1

rn > #'

4-gons
Br
- -r~ — *
Br-3 Or2 Brl
Fig. 3.6a
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2r- gon
A2 A3 Ad Ar-3  Ar2 Ari

Br

Fig. 3.6b

the starting map is that in Fig. 3.6a (r=5) or 3.7a, respectively. If an octagon is
needed and g6is even or odd the starting map is in Fig. 3.7c or 3.7b, respectively. In
all these cases g6—=2 or q6—3 (or $6—5ii>=5 or ge—4 if r=4) required hexagons
are formed in pairs from the triples of quadrangles which occur in the maps; the
construction was described in case (A) (Fig. 3,4).

It remains to settle the cases when gx—"i i*e. when only hexagons and

quadrangles are required. If g6is even we start with the map of the cube and use one
triple of its adjacent quadrangles for creating the gBhexagons (Fig. 3.4). If q6is odd,
the starting planar map containing three hexagons is in Fig. 3.7d (full lines). Notice

that its submap bounded by the heavy lines is reproducable in course of increasing
the number of hexagons by two. This proceeds by inserting the two dashed edges.
Again a face-aggregate consisting of one hexagon and three quadrangles appears in
the map and is used for further increasing the number of hexagons.

Case (C) splits into two subcases:
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(Cj) If among the required faces there are at least four with numbers of vertices
k,/, m,n=2 (mod 4) such that k~I, m~n, then every pair of these required faces
is used for filling of one hole in the map in Fig. 3.2a or 3.2b. (Fig. 3.2a or 3.2b is
used incase i/=0 (mod 2) or d=\ (mod 2), respectively, where d—£ ¢j) Let

us describe this procedure for &= 4«+2</=4r+2 w”l. First the ‘]‘hg(’)le” is ar-
ranged as shown in Fig. 3.5. Then 4(w—il) inner points EIf Fx, Gx, Hx, E2, F2, ...

Fu 1, G,,_j, Hu i of the edge YZ are chosen as new vertices. They are
changed into trivalent vertices as it is drawn in Fig. 3.8. In the next step analogously
on the edge HU XZ (or YZ if u—1) z new vertices Cx, C2,  Cz are chosen, where
z=2(v—«)—L On the edge VU new vertices Dx, D2, ..., Dz are chosen, and the
vertices Ch D, are joined by mutually non intersecting edges. So a A-gon and an /-gon
are created. — In the same way from the second hole in the maps in Fig. 3.2 an in-
gon and an ;j-gon are obtained.

At the end of this step we get a 3-valent planar map containing four of the faces
required, d—4 hexagons and quadrangles. From the hexagons the remaining required
faces with S6 edges are constructed as described in Lemma 3.2.

(C2 If the situation of case (Q) does not occur then either there is an integer
k~2 such that gik+2=6 or there are two integers /c”2, 1 k”l, such that
¢/, 2=5, qit+2=1 holds. In the first case we start with the maps in Fig. 3.2 contain-
ing d—2 hexagons. The “holes” are arranged as in Fig. 3.9. On the edge WX, 4(k —1)
new vertices Ex, Fx, Gx,H1, ..., EK_If Fk_It Gk x, Hk- X are chosen and changed
into trivalent vertices as before (Fig. 3.8). We get two of the (4A:+2)-gons required.
Then 2(k—2) edges “parallel” to the edge UZ with end-points on YZ and VU are
inserted to get the third (4/c+2)-gon. The second hole is arranged analogously.

Fig. 3.9
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If 9«+2=5, [41+2=1>k"I, the starting map containing d—I1 hexagons is in
Fig. 3.2. One ofthe “holes” is replaced by three of the (4A:+2)-gons required, as de-
scribed above. The second hole is replaced by two such faces as in case (Q). In both
cases Lemma 3.2 can be applied further.

The maps constructed in all the cases (A), (B) and (C) are planar with a 3-valent
2-connected graph and face-vector (gh is 3). Therefore by Lemma 3.1 there exists
a planar (3,5)-map with face-vector (ph i=J) and a 3-connected graph. By Steinitz’s
theorem mentioned at the beginning there exists a 3-polytope combinatorially
isomorphic to that map. Theorem 3.2 is proved.

For (3,5)-maps on surfaces of higher genus we have

Theorem 3.3. Every sequence (phz=3) of non-negative integers satisfying
besides the conclusion o f Lemma 1.1 and (3.1), with g=2 — the conditions

Pe —4(g—YD)
k% , (fe-6)pks 4(g—1)

is the face-vector of a (3,5)-map on Tg.

Proof. Firstby Theorem 3.1a toroidal (3,5) map is constructed with face-vector
(gt, (*3) for which qi=pi+6(g—1), ge=pe—4(g —1), gk=pk for all k?+4, 6 holds.
The procedure of construction of this map ensures the existence of at least 2(g—1)
oc-configurations in it. So Lemma 1.2 can be employed further to get the desired map
on the surface of desired genus g.

Remark 2. Rosenfeld [4] has shown that there does not exist a (3, 5)-polytope P
with p6P)=1, pfP) =36, pi(P)=0 for M 4, 6; therefore it is impossible to improve
Theorem 3.2 (B). — The question of the existence of (3, 5)-polytopes with the
face-vectors in the brackets is undecided because their constructibility by our proce-
dure supposes the existence of trivalent planar maps with face-vectors (p8=lI,
Pe—2,Pi~I,Pi=0 for zV4, 6, 8),(/>10=1,p6=3,/>4=8, pt=0 for zV4,6, 10).
However, itis not hard but boring to prove that these maps do not exist.

Remark 3. We conjecture that Theorem 3.2 (C) can be improved by assuming

fSIPij+2—4—
4

In this section no final results will be stated. It seems to be difficult to charac-
terize face-vectors of (3, 4)-maps on Tgfor any g. We present three procedures of
construction of (3, 4)-maps allowing to obtain some partial results.

First of all let us remind that from (1.1) for the face-vector (/) ofa (3, 4)-map on
the orientable surface Tg there follows

(4.1) A (24—Si)p- = 48(1—q).
i»3

1»

Lemma 4.1. Let there exist amap M' on the surface Tgwith a 2-connected multi-
graph whose face-vector or vertex-vector is (qt, if 2) or (vh iS2), respectively.
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Then there exists a (3, 4)-map M on Tgwith a 3-connected graph and a face-vector
(Pi, i'S4) for which
Pa= + forall iS 3

Pn-i

0 for *- 2,

PL=12(1-g)+4 2, (*—12)(*+ y)
hold.

Proof. To every valent vertex and to every &-gonal face of the map M’
associate a 2A--gon in M, to every edge of M' associating a quadruple of quadrangles
(a quadrangle decomposed by its two mid-lines). To an adjacent pair of faces k-gon —
w-gon or a pair A:-valent— m-valent vertex in M ' there is associated a pair of faces
2&-gon — 2m-gon separated by the quadruple of quadrangles mentioned. If in M'
an m-valent vertex is incident with a &-gon then their images in M are a 2A>gon and a
2m-gon which have precisely one 4-valent vertex in common. Clearly, M is a (3, 4)-
map; the 3-connectedness of its graph is ensured by the fact that to every path in M*
there are associated two distinct paths in M. The situation is well illustrated in Fig.
4.1 where in (a) there is a part ofthe map M' and in (b) its image in M. The numerical
properties are clear from the procedure of construction and from (4.1).

Our second procedure of construction is in fact a transformation of a regular
3-valent map M" into a (3, 4)-map M with a “large” number of hexagons. It is con-
tained in

Lemma 4.2. Let there exist on the surface Tga map N with a regular 3-valent
2-connected graph and such a face-vector (qi, /S 3) that qt=0 for all odd i holds.
Then there exists on Tga (3, 4)-map M with a 3-connected graph and face-vector



172 S. JENDROL’ AND E. JUCOVIC

(Pi, is 3) where
Pk= for all kS 3, k~ 4,6,

=p" +2?«+Bj27*<7,>

Pi = 12(I-g) + M+ 326+ 2 (- 4)9i-

Proof. The graph of the map N is bichromatic, i.e. its vertex set is decomposed
into two disjoint sets 7j, T2 such that no two vertices of the same set are adjacent.
After performing on N the transformation replacing vertices by hexagons (see
proofofLemma 3.1) we get a map M ' whose graph is regular 3-valent and 3-connected.
Its each vertex is incident with two adjacent hexagons which are associated to two
vertices, adjacent in N and therefore belonging to different sets Th i= 1, 2. Denote
the set of hexagons in M " associated with Ttby Sh i=1,2. So every vertex of M*
is incident with one member of Sj and one member of S.,. The graph of the map M
is bichromatic, too; its vertex set should be decomposed into independent sets RIf R,
(analogously as the vertex set of the map N). We choose an inner point of every hexa-
gon from the set Sj as a new vertex of the map M and join it by new edges with all
those vertices from the set Rxwhich are incident with that hexagon. So every hexagon
from the set Sj is decomposed into three quadrangles. It remains to verify that the
map M obtained in such a way fulfils the assertion of Lemma 4.2.

3-connectedness of the graph of the map M follows from the 3-connectedness of
the graph of the map M'. It is a (3, 4)-graph because of the following facts: Every
vertex from the set A, became 4-valent, every vertex from the set i?2 remained 3-
valent while both of these sets remained independent; the added new vertices are 3-
valent all and they are joined with vertices from the set /j only. — For the map M
there holds Pk{M)=pk(N)=qgk for all £s3, kA, 6. In the map M there remained

all hexagons from the set S2(whose number is ) =J6L jg” antj ap hexagons
iS3
from the map N; therefore

1

pe=t 7

. 2 7 l LI
fg M+ 0A6=1 "+ 276+T 2 I00-

The third procedure which has been employed already by Rosenfeld [4] is con-
tained in

Lemma 4.3. Let there exist on the surface Tg a (3, 4)-map N with face-vector
(<, is 3), containingfour quadrangles in aface-aggregate as in Fig. 4.2a (put m=4).
Then there exists on Tga (3, 4)-map M withface-vector (pt, is3) where
P2j = dij+ ztj, j S3, tj=012 ..

Pi+l= d2j+i =0 for j —D

Pt = 12(1 —g)—b¥ 23(5/—12)(q2j+2tj)
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Proof. The quadruple of quadrangles is changed so that the two “middle”
quadrangles are subdivided as drawn in Fig. 4.2 to increase the number of vertices
of the lateral quadrangles by two. This procedure is repeated (k —2)-times to get two
2A:-gons (the quadrangles og, a5are used the second time etc.). To get another pair of
required 2/w-gons, 3, the quadrangles oqg, a2, a3, oq are used.

In the next three theorems the preceding lemmas are employed to get sufficient
conditions for a sequence of numbers to be the face-vector of a (3, 4)-map.

Theorem 4.1. Every sequence (ph i=3) of non-negative integers satisfying
—besides the conclusion of Lemma 1.1 and (4.1) — the conditions

Pi=0(mod 2) for all i~ 6,
Pe s ag
2 (k=3)pX~r 4(g—1)
(s3

is the face-vector ofa (3, A)-map on Tg.

Proof. The construction starts with a planar map consisting of two digons and
two 2-valent vertices (and two edges). After using Lemma 4.1 we get the map of the
rhombic dodecahedron. It contains two distinct chains each containing four quad-
rangles (Fig. 4.2a). Now use Lemma 4.3; we get a planar (3,4)-map with a 3-connected
graph and a face-vector (s, i=3) for which

g=pj forall j~ 4,6,
<%= P6-4g, and
A= PA+6g holds.

Let us notice that in course of the construction of a pair of 2L-gons (k* 3) by
Lemma 4.3, k —3 distinct a-configurations (Fig. 1.1) and a chain of four quadrangles
appear in the map. Within all transitions from a pair of m-gons to a pair of (m + 2)-
gons the quadrangles marked 6qand a8(see Fig. 4.2b) are used, while the quadrangles
marked a2, a3, a4 forming an a-configuration are retained in the map.

So the construction (taking place in pairs) of all the required faces with S6

vertices brings into the map itZea@r—?,)/ﬁi:a—configurations. The starting map

2
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contained two chains each containing four quadrangles, and these are not changed
by the next construction. Each such chain contains one a-configuration. So we have

together in the map 2| S!3 (k—3)>2+2S 2g a-configurations. Now Lemma 1.2
is used to get the assertion of Theorem 4.1.

Theorem 4.2. Every sequence (ph i=3) of non-negative integers satisfying —
besides the conclusion o f Lemma 11 and (4.1) with g= 1— the conditions

Pi=0(mod 2) for all i

%6 Pir0
is the face-vector of a toroidal (3, 4)-map.

Proof. Lemma 3.2 ensures the existence of a 3-valent toroidal map M having
one hexagon and two vertices (see Fig. 3.3a). From Lemma 4.2 then there follows
the existence of a toroidal (3, 4)-map N having three quadrangles and two hexagons
(one of them is associated to one of the vertices of the map M) and containing the
face-aggregate in Fig. 4.2a with two hexagons (m=6). If for some y'S4, p2j7*0
the two hexagons mentioned are used to get a pair of 2/'-gons. After this the construc-
tion proceeds as described in Lemma 4.3.

If jg3j20> first by Lemma 3.2 a toroidal 3-valent map with ’ hexagons is
obtained; after this use Lemma 4.2,

Theorem 4.3. Every sequence (ph/is3) of non-negative integers satisfying —
besides the conclusion o f Lemma 1.1 and (4.1) with g=1 — the condition

Pr=720-2)(py-2[-*-1)+2/, /=01, ..

is theface-vector of a toroidal (3, A)-map.

Proof. The case when p2j=0(mod 2) for all yS4 is settled in Theorem 4.2.
Let for at least one j p2j be odd. According to Lemma 3.2 there exists a toroidal
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3-valent map M with face-vector (gh j'*3) such that
gg=0 for all odd " 3

bj = Pa- 2[~\ for all j =4,

¢,=0 and

%= 2 (j-3)qv =2 d- 3)(p2- 2[-~]) holds.

By Lemma 4.2 there exists a toroidal (3, 4)-map N with face-vector (r;, i's3), for
which
r2iti= 9Qi+i=0 for all i”" 1,

ry=qv="~2[-y] for J~ 4 and

r.=y &+29.+j =2G;-2)(pv-2[f ]

holds.

As the map M contains a quadrangle, the map A contains a quadruple of quad-
rangles as in Fig. 4.2a. Now Lemma 4.3 with map N can be applied to get the asser-
tion of Theorem 4.3.
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UBER DIE UNBEDINGTE KONVERGENZ
DER MEHRFACHEN ORTHOGONALREIHEN

KAROLY TANDORI

1. In der Arbeit [6] haben wir die unbedingte Konvergenz der Orthogonalreihen
betrachtet. In dieser Note werden wir die entsprechenden Resultate (iber mehrfache
Orthogonalreihen verallgemeinern. Die Sétze werden wir nur fur doppelte Reihen
verfassen und beweisen. Die Sétze kdnnen aber unmittelbar fir beliebige d("2)-
fache Reihen ausgedehnt werden.

Es sei (X, si, n) ein endlicher MalRraum, {gki(x)}r,i=i ein reelles orthonormiertes
System in (X, si, n), und eine Folge von reellen Zahlen.

Mit N\ bezeichnen wir die Menge der geordneten Paare von positiven ganzen
Zahlen:

N% = {(kJ): k,I =1,2 ..}

Es sei (k /)-*(*(&, /), j(k, /)) eine umkehrbar eindeutige Abbildung von A+ auf
sich selbst. Eine Anordnung der Orthogonalreihe

@) e g “KIVKIW
ist die Reihe
2 &1 i%y Ak in(PK.iR,

wobei kx, IBdiejenigen positiven ganzen Zahlen sind, fiir die ct=i(kx, I8), B=j(kx, IR)
erflllt sind. Die Anordnung nennen wir einfach, wenn
i(fc, 0 = i(fc) (/= 1,2,...;fc= 1,2,...), j(k, )=;(/) (*=1,2,...; /=1,2,..)

gelten.
Fir die Indizes m, n setzen wir
m n

sm,{x)= k2=11%1 aki<Pki(x)-
Wir sagen, daR die Reihe (1) in dem Punkt x(£X) konvergiert, wenn
lim

m-*°0
n-*00

1980 Mathematics Subject Classification. Primary 42C20.
Key words and phrases. Unconditional convergence, multiple orthogonal series.
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178 K. TANDORI

existiert. Fir die Existenz dieses Grenzwertes ist notwendig und hinreichend, dal
fur jede Zahl e(>0) einen Index N derart existiert, daf im Falle m,n,m,n>N

erfullt ist.

Wir definieren noch eine Indexfolge {v(m)}*“=0. Es sei v(0)=1, und v(w)=

=22n (m=1, 2, ...). Essei

T(m, ri) = {(k, DEN%: v(m) " k< v(m+1), v(n)* < v(n+1)}
(m,n=20,1..) und

T(m) = {(k, DEiV+: v(m) » k< v(m+1), 1~ Z<v(m+1), oder

(3) 1S k<vim+l), vimyszcvim?+1)} m=01 ..).
2. Wir beweisen erstens die folgenden zwei Satze.
satz 1 Gilt

(4) 2 2 I/ 2 &< o

m=0n=0 © (k, DET(nt,n)

c/onn konvergiert die Reihe (1) bei jeder einfachen Anordnung in X fast berall.

Satz 2. Gilt
(5)

dann konvergiert die Reihe (1) he/ jeder Anordnung in X fast Uberall.
Bemerkung 1 Aus (5) folgt (4). Da, auf Grund von (3)

2 2w 2
m=o " (M)eT(m)

T(m) = (U Tem mU( Y, Tk, m)

ist, folgt
m m—1
2 2m2" 1/ 2 2 2"2-11/ 2 «*/ =
1n=0 ro(*,*)€ T(m,ii) Ix=0 r (fc,2€
= 22m 2 in-. 1/ " «I(+ 22m 2 yn-n ]/ 2 t<Kl —
u=0 " " (k,DET(m,n) ft=0 A "k, DET(n,m)

W e gty Y (oey e )
=2 Zzn-rptk,ozn(m) -

woraus die Implikation (5)=>(4) sich ergibt.
Zum Beweis dieser Satze benodtigen wir die folgenden Hilfssatze.

Hirfssatz 1 ESselen M, Npositive ganze Zahlen {bkl}(k 1,...M, /=1,

, N}

eine reelle Zahlenfolge, und {IMH(xj} (k=\, /—1 . N) ein reelles ortho-
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normiertes System im endlichen MalRraum (X, si, p). Dann gilt

/Imax i2 Z i'iinW] dpS Q log22M mog2IN 2 2 bl
1 ‘ 1- 17=1

.1
& isnsn L

mit einer positiven Konstante Cx.

(Im folgenden bezeichnen C2, C3, ... positive Konstanten.)
Dieser Hilfssatz ist bekannt (s. z. B. [3]).

Hilfssatz 2. Es seien Mx, Nx positive ganze Zahlen, {cy}(i=I, ..., Mx,
=\, Nx} eine reelle Zahlenfolge, und {O(X)} (i=1 , Muj=\,.., IVJ ein
reelles orthonormiertes System im endlichen MaRraum (X, sd, p). Ist die Anzahl der
von Null verschiedenen Koeffizienten Gj gleich mit L (sl), dann gilt

/ m n \2 M M
/max 2 Z CijXijix)] dp Ctlog42L 2 Z chm
X M=1J-1 ’ -1J-1

Beweis des Hilfssatzes 2. Es seien (17)il<...</A("Af) diejenigen Indizes i,
fur die
W\

2 bU* 0

ist, weiterhin seien (1s)ji<...<yMsJVJ diejenigen Indizes j, flr die

M,

i%I bl *0
ist. Offensichtlich gelten
(6) M "L, N*KL.
Wir setzen
7 bd = cW), kI(x) = Xkj,(x) k=1 .,M1=1.,N).
Auf Grund des Hilfssatzes 1 gilt

S Cxlog22M log22

8 max 0g22M log22N K,-
v AN éﬂzzl 7 PN
Einerseits, auf Grund von (7) gilt
@ i A apiip) =b &z, 0D

Andererseits, aus (6) und (7) folgt
(10 log22M log2IN kz-llzl bh S Iog42Li_21

Aus (8), (9) und (10) erhalten wir die Behauptung des Hilfssatzes 2.

12*
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Beweis des Satzes 1. Es sei (2) eine beliebige einfache Anordnung der Reihe (1).
Weiterhin seien m, n(40) ganze Zahlen. Essei i(m, n; I)-e...<i(m, "\ v(m+1) —
—v(m)) die monoton wachsende Anordnung der Indizes i(k) (k=v(m), .

+ —1), und j(m, n\ D<...</'(m, n; v(n+ 1)—v(n)) die monoton wach-
sende Anordnung der Indizes j(I) (I=v(n), ..., v(n+1)—1). Wir setzen

SL(*) = max( aki<Pki (%))2 =
(fc,De r(m n)
( jmt,j( (s«
max ak s b (m, N, s)APK{ (m>n>r)1j (m(n,s)
1, —v , )
Pyvn =

Dann gilt
[ &mn(x)dii » C2log2(v(m4-1)-v(m))log2(v(n+ I)-v(n))x

X
(1D

v(m-fl)—v(m) v(n-f-1)—v(/i)
(mentr),lj(m,n, s) N C222nPh 2

r=1 s=1 (k,1)eT(m,n)

auf Grund des Hilfssatzes 1 Aus (11) erhalten wir

f6 mx) dfi # firX) Y foIn(x)dn  fCAI(X) 2mz"if- ¢
/ X

f (*.06 T(m,n)

Daraus und aus (4) ergibt sich

2 2 £ Smn()dfl < °
aorZogy SO !

und so folgt, daB die Reihe
(12) T o I

in X fast Uberall konvergiert.

Es sei £50 beliebig, und x(£X) ein Punkt, in welchem die Reihe (12) konver-
giert. Dann gibt es einen Index N mit

(13) 2 2 O6mn(x) < ef2.

m=Nn=N

Es sei
X X
= = .2 kflopkJd
S*1(x) agmzzl ak. iRk, 1f(X) (A0 akflok I (x)
] ) . . i(k)Sx,j(t)S>.
die Partialsumme der Reihe (2). Dann gilt

sx(X)= 2 2( 2 ak_,(pkil(x)).
m—0n=0 (k,1)ET(m,n)
i(k)*x,j(1)rX
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Es seien x, Ax, A(>Z=max {/(fc), j(I): (k, DET(m, ri), m, n<JV}) beliebige In-
dizes. Dann gilt nach den obigen

0 0

S*X(X)~ng(x) = m2:N n2:N ((k I)t2T(m n) Hk’ <Fk| (k,l)€2l'(m,n) ak’|<Fkl(X))_
i(k)Ex,j(1)SX i(k)ysa,j(l)sx

Daraus, nach der Definition von Sm,x), auf Grund von (13) ergibt sich
N22 2 om,(x) <e
m=Nn=N

fur x, A,x,1>A. Daraus folgt, daB Jim SYXX) existiert.
A+00

Damit haben wir Satz 1 bewiesen.

Beweis des Satzes 2. Es sei (2) eine beliebige Anordnung der Reihe (1), und
m (s0) eine ganze Zahl. Es seien weiterhin M(m)=max {i(k, /): (k, DET(m)},
JV(m)= max {j(k, /): (k, )dT(m)}, und Z(m) die Anzahl der Elemente von T{m).
Wir setzen

akd, far i= kD, j=jk, 1), (& DET(m),
0, fur (i-i(k, Df+(j-j(k, Df * 0, (k,DET(m),
1SiS M(m), 1S.j S N(m),
Xij(x) = gkd(x), fur i=ik /), j=j(k,1), (k,DENI,
U js M(m), lajs N(m).

Dann koénnen wir den Hilfssatz 2 mit L=2Z(/n)S(22")2 M1=M(m), Nk=N(m)
anwenden. So flr die Funktion

und

Am(x)= max % fluft.iw )2

|(kq) Sp,i( kn?)Sq

folgt die Abschatzung

M(m) N(m)
SC#ta2 2 cfj=C3r" 2 ah-
i=l j=1 (I1t,0£T(m)
Aus (5) und (14) bekommen wir
n%O’\f = vWW n21=OYf (X)du s

102" ¢ form =
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und so folgt

(15) mi:<0 U*)<-~

in X fast tberall.
Es sei e>0 beliebig, und x(£X) ein Punkt, in welchem die Reihe (15) konver-
giert. Dann gibt es einen Index N mit

(16) Z:N sm(X) < ers2.

Wir setzen
X

Sx(x) = 2 2 ak., IRk IR(X)= 2 ak,1<Pk,1(x)-
x=18=1 .(k’(k,r>£NI
1

Fir diese Partialsumme gilt

akJ(@u (¥)).

mba(x) =

2 ( 2
"0 G E
Es seien x, X x, X("B =max {i(k, /), j(k, I): (k, DfT(m), m<N}). Dann ist

i XA(X)-1A(X) = 2 ( 2 ak, 1Pk, 1(x)— akl<Phiw ).

N (k, DET(m) * |
i(k,l)"x),j(k(,l)"x i(k,‘)’,‘x,j(kr,T?)"x

und so folgt auf Grund der Definition von 6m(x) und der Abschétzung (16):
=2 gN sn,(X) < g,

flr x, X x, X>B. Daraus folgt, daR I|m SXX(X) existiert.
A*0
Damit haben wir Satz 2 bewiesen.

Bemerkung 2. Es ist klar, daB man diese Satze fur n-endliche MaRrdume auch
beweisen kann.

Bemerkung 3. Den Satz 2 kann man offensichtlich im folgenden Sinne ver-
scharfen.

Satz 2a. Es sei

Zii4

und es bezeichne {uk‘iRYXR=i eine Anordnung der Folge {«wHEF=L,fur die

((d%gt}(n) al@,lﬁ (a‘B)rglPer(THn Pkr Ity (m = 0’ 1’ )
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erfullt ist. Gilt
22" Yer)tZT(m) d_,iS

dann konvergiert die Reihe (1) bei jeder Anordnung in X fast Uberall.

3. Aus den Sétzen 1—2 kann man die folgenden Sétze erhalten.

Satz 3. Es sei {A¥*=1 eine monoton nichtabnehmende Folge von positiven Zahlen
mit

(17) 2 N =

Gilt

(18) kZ 2 ah log22k log221 XkX, < «,
=1(=1

dann konvergiert die Reihe (1) bei jeder einfacher Anordnung in X fast Gberall.
Dieser Satz ist bekannt (s. [5]).

Satz 4. Essei {X}"=1eine monotone nichtabnehmende Folge von positiven Zahlen
mit (17). Gilt

(19) /t2_i igl ah max (log42k, log421) max (X, X) <

dann konvergiert die Reihe (1) beijeder Anordnung in X fast Uberall.
Diese Sétze sind die Analoge des Satzes von W. Orlicz [4].
Beweis des Satzes 3. Aus (17) und (18) folgt

2 22"2" 2 oh

m=0rt=0 © Ok, HET (nt)

Nocd2 2 ]f 2 ah log22k log221 xkxt

m=0n=0 /-v(m)Av(n) (k,I)£ T(m,n)

Mo\t 2) — [ 2  dlog22k log22IXKkX,

i Bizon=0"/"%(m)"(n) m=o0n=o (k, )€ T (m, n)

Q !'r%:ox\m) Y k2:I 12:1 ah log22k IogZZXkX

und so ergibt sich die Behauptung auf Grund des Satzes 1
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Beweis des Satzes 4. Aus (19) folgt

2 22l 2 fl&iS
m= 0 to,Der(m)

= Q 20 Ml e remy  Max (logd 2fc” logd 2/) max -

S CSL/ ir " 12 2 )°h max 0°g42k>*°g42/) max ("t. ki) =

m=0 ~v@m) r m=0 (k,)ET(m
=QJ/J7y-—1]1/13? Z fiwmax (log42/c, log421) max (A, 2,) < °°,
r m=04v(m) 1 fc=I1=1
und so bekommen wir die Behauptung auf Grund des Satzes 2.
4. Man kann zeigen, daR die Bedingung (18) im allgemeinen unverbesserbar ist.
Satz 5. Ist {2§‘=1 eine nichtabnehmende Folge von positiven Zahlen mit

w=0 2 V(m)

(20)

dann gibt es ein endlicher MaRraum (X, sd, p), ein reelles orthonormiertes System
{(,*i(x)¥*?i=i in diesem Raum und eine reelle Zahlenfolge {owj‘/=1 derart, daR

t2_ iigi< log22k log22/2,2, /

gilt, und die Reihe (1) in gewisser einfacher Anordnung in X fast (berall divergiert.
Beweis des Satzes 5. In der Arbeit [6] haben wir den folgenden Satz bewiesen.
Satz A. Es sei {«k}r=i eine monoton abnehmende Folge von positiven Zahlen.

Gilt _
00 Iv(m+1)—1
2 2"Y 2 al=
m—O0 1 k= v(m)

dann gibt es ein orthonormiertes System {gk(x)}r=i nn Intervall (0, 1) derart, dal
die Reihe

(21) k2_ | ak<Pkw
in gewisser Anordnung

(22) tx2_ | ak <Pk.(x)
in (0, 1) fast Oberall divergiert.

Hier ist k—i(k) eine umkehrbar eindeutige Abbildung der Menge {1,2, ..}
auf sich selbst, und kxbezeichnet diejenigen Index, fir die a=i(k,,) (a=1, 2, ...) qgilt.
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Durch einfacher Rechnung erhalten wir

1

W) (A ) )
und

S(m) (L V!.)2
auf Grund von (20).

Es sei
a =
Hv(m + 1)—v(m) 2mAym+1) {Mx) AU,

(v(m)s<;<v(m+ 1), m=0, 1, ...).
Dann gilt ak*ak+l (k=1,2,...) und

00 I v(m + |)71 00
2 2"/ 2 «l-2-
w=0 r k=v(m) in=0 int) (/?:él\;(l)).'

Auf Grund des Satzes A gibt es ein orthonormiertes System {*(X)}’=L im Intervall
(0, 1) derart, daB die Reihe (21) in einer Anordnung (22) in (0, 1) fast Uberall di-
vergiert.

Es sei (X,",n) das Einheitsquadrat £=(0, 1)X(0, 1) mit dem gewo6hnlichen
Lebesgueschen Mal. Wir setzen

= <Fi(x, y) = <Pk<Pity) (fc, / = 1,2, ...;(x, y)EE).
Dann gilt
kzzlj%‘qah log22A log221 A A S

42 2 1 2 / n#l \2 %%
m {2 ~Avi)l A(n+1)l 2 KSi)I
M (:0 > \&=0 /
weiterhin, nach obigen, divergiert die einfache Anordnung

a2: 1 @ & j,<FK.i,0y)
der Reihe
24 15 HFR&Y)
in E fast Uberall.
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5. Endlich zeigen wir, dall Satz 4 auch unverbesserbar ist. Wir beweisen nahm-
lich den folgenden Satz.

Satz 6. Es sei eine monoton nichtabnehmende Folge von positiven Zahlen
mit (20). Dann gibt es ein endlicher MalRraum (X, sd, p), ein reelles orthonormiertes
System {Fh(*)}m =i diesem Raum und eine reelle Zahlenfolge {ak}jjj=l derart,
daBR (19) gilt, und die Reihe (1) in gewisser Anordnung in X fast Uberall divergiert.

Um diesen Satz zu beweisen, sollen wir weitere Hilfssatze vorausschicken.

Hirtfssatz 3. FUr beliebige positive ganze Zahl p und fur beliebige disjunkte
Intervalle 11=(al, Z>j)("(0, 1)), /2,/3(g (1, 2)) gibt es orthonormiertes System der
Treppenfunktionen 0i(1i,12,/3;p; x) (1=1,..., 8p) im Intervall (0,2) derart, dal

(23) 01(1,12,13;p\x) =0 (x<] AU/jU/),
(24) r: 0,(14,12,/3p;x)dx =0 (i=12173
(/="1,..., 8p) sind, weiterhin, in jedem Intervalle
T 1 n A ol .)
[*=r +" 1T (fc" ) ai+~iR~ )

sind die Funktionen 0, (7t, I.,, /:; p\x) konstant, und fur jedes Intervall Jk gibt es
Indizes Ik, Ik (1 4f7</(s58>) mit

(25) 2._0,(fi,I2,d3;p;x)"Ce* M " - (x€Jk;k =4p+l,...,8p),
i=ik fmes/!

(26) 2 *iili./», p;x)s c6 (*eyd; k=1, ...,4p).
Vmes

Z=4p+1

Beweis 0eS Hilfssatzes 3. Wir betrachten das Menchoff—Kaczmarzsche Funktio-
nensystem (s. [1], [2]). Fir eine positive ganze Zahl p sei

J«(PA) = fc_p 1fIT12' fOr k=1,.8PI=\,... 4

Dann st
8p

@ e d=2 o bR E "

(1=1,...,4p).
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Fir i=»y ergibt sich

« = fr<<» Yd* = 0 ) (t-p- - B2)(t - pA - 1/2) -
S1aL oy i— ! 1 ) =

Pi-jk=ivic—p—i—12 k P j 12/
1 1(V 1 N 1 )
Pi-j\k=£P-i k-12 fc-1/2J
1 1f 1 1)
P k-12 *=rf£ i+l t—12J°

und so gilt

(28) la t's I _J_ -_f — L.

9 PiljAp+j+12T p—at 13 p2
Wir teilen das Intervall (8,10) in N—4p(4p—21) Teilintervalle gleicher Lange:
ljj i+j). Es sei
(xElu;j =1 4p,j ),
flip; *) =

0 sonst

N\ctjlsign<qj (x€fj,, 7=1, 4p,j + /),

(/=1, ..., 4p). Esist klar, daB die Treppenfunktionen f(p; x) (/=1, ...,4p) bilden
im Intervall (0, 10) ein orthogonales System, aus (27) und (28) folgt

1 4p
)  f fizprgdx= f 12(p;)dx+ 2 lkyley Z ki O
i 0 2

2 7="+i P
(1=1, ..., 4p), weiterhin, auf Grund der Definition der Funktionen f,(p; x) bestehen

/,(p;x)>0 (/=1 .., p+tk),

p+k p+k 1

Z ;%)= 2 2p+T+i—p—/—12 CDlog2p,
(30) [,(pix)< 0 (/= p+fe+l, ....4p),

4p 4p 1

S —C10log 2
p-SHIFI(P'X) = =2 ei DNHKe1 - po/-1/2 gp

[xg(2p~fc>2p+fc+l). ft= 0.....p-ij.
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Es sei
Ji(p-,x) =Ji(p; x){f ff(p;x)dx) 12 (/=1 4p).
Diese Treppenfunktionen bilden in (0, 10) ein orthonormiertes System, weiterhin aus

(29) und (30) folgt, dal® fiir jeden Index k=Q, —1 einen von k abhéngigen
Index Lk(p~Lk"2p) derart existiert, daf3

12:{1(P’x): cn \p log2p, i:Et+I‘]i(p;X) = - Cnip log2p
(31)
2p+ k 2p+k+1 . .
M P P j; k=0, p-lj
erfullt sind.
Wir setzen
_=/1(p1X+2) (X€(0! l))i
9" pix+l) (L),
0 sonst
und

-=/,(/>%) (*€(0,2)),
- (p;x-2)  (xe(2, 4)),

h,(p; x) - i2f,(p x-1) (x€(4, 11)),
-+J,(p-x-8) (x€(11,18)),

sonst

(/—1, ..., 4p). Offensichtlich gelten

[ gi(p;x)dx= f h,(p;x)dx = 0 Z=1 ... 4p),

[ 8k(P, x)g,(p\ x)dx+ f hk(p\x)hl(p;x)dx= f Jk(p; x)J,(p; x)dx = SK
0 0 0]

k1=1,..., 4p),
wobei <5*1=1 (k=I) und SKI=0 (k~/) ist. Dann seien

gi(p; X) = 1/29,(p; 2x), h,(p;x)= /18fi,(p; 18x) (1= 1, ..., 4p).
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Nach obigen gelten
i i

(32) 5 g,(p;x)dx = 5 h,(p; x)dx = 0 (/= 1,... 4p),
1 1
(33) 59 k(p:X)g,(p;X)def hk(p; x)h, (p; x) dx =

2 18
= f gk(P,x)gl(p-,x)dx+f Kk(p;x)K,(p;x)dx = 6K (k,1=1, ... 4p).
0 0
Weiterhin, auf Grund von (31) folgt, daf? es Indizes Ik, Ik (1S1k, Ik=4p) mit

kZgi(p;x) =c12fp log2p K= 1...4pj,
(34)
2 0/(p;x)s c12/p log2p k=4/+1....8/)|

existieren.

Wir teilen das Intervall /3in & disjunkte Teilintervalle gleicher Lénge: It (i=
=1 8p); die Indikatorfunktion des Intervalls 7; bezeichnen wir mit Xi(x)-
Weiterhin, flr eine im Intervall (0, 1) definierte Funktion f(x) und fiir ein Intervall
I=(cr, b) (U(0, 1)) setzen wir

;%= 4B)
sonst.
Es seien
7i, 72, 13;p; X) = .0,(/Lp;x) +
(7i p; X) 12 mesl 9,(/Lp;x)
1 12p 12p
—————— hUzp:x)- — —_—=- *
+/2mes/§ 12959 /mes 13 ) } es /3 40
NiHP(Ti, 12,13;p;x) = p; *)+
1 , 12p . 12p
+-z===Htlla;p;x) +———_ Xi(X) - —----- - ft+Ap(*
/5mes/2 (12 p:x) /mes /3 109 /mes /3 e
(/1=1, ..., 4p). Auf Grund von (33) folgt, dall die Treppenfunktionen 12,13,

p; X) (/=1 ..., 8p) ein orthonormiertes System im Intervall (0, 2) bilden. Nach der
Definition ist (23) offensichtlich, und sind die Funktionen 4>i(Kk, 12, la;p; x) (1=1, ...
..., 8p) in jedem Intervalle Jk(k=1, ..., 8p) konstant. Aus (32) folgt (24), weiterhin
aus (34) bekommen wir (25) und (26).
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Es sei {Ad"=1 eine monoton nichtabnehmende Folge von positiven Zahlen mit
(20). Dann gibt es eine Indexfolge (4=-)»j(1)<...< 75 <=.. mit

m@s+1)—
(39) m=(s) (m+l \ £ »=1,2,..).
v(m+1)
Es seien
m(s+1)—1
Rs)= U T(m—1, m—1),
m=m(s)
und
. v(m)—v(m—1)
1
(36) el \

. /
(v(m)-v(m -1))2 8rA/(m+)™ K fa)

((k, DET(m—\, m—1), m = m(1), m(H)+ 1, ..),
0 sonst.

«i

Mit diesen Bezeichnungen kénnen wir den folgenden Hilfssatz beweisen.

Hilfssatz 4. Flr jeden Index s gibt es ein orthonormiertes System der Treppen-
funktionen d/fx, y), ilki(s; x,y) ((k,D)TR(s)) in dem Quadrat F=(0, 2)X(0, 2
nach dem gewohnlichen Lebesgueschen MaR mit folgenden Eigenschaften. Es gelten

(@ fffs(x,>»dxdy =0, (b) ff\K(s;x,y)dxdy =0 ((k, DfR(9)),
es gibt eine Anordnung (k, I)-+(i(s, k, 1),j(s, k, D)(EN+) der Paare (k, DER(S)
derart, daR

max (i(s, k, 1),j(s, k, D);(k, DER(s]) <
< min (i(s, k, 1),j(s, k, D:(k, DdR(s + 1))

(s=1,2,...) ist, und fur jeden Punkt (x,y)€F=(0, 1)X(0, 1) gibt es Indizes
mfs, x,y)*mfs, x,y), nfs, x,y)*n2(s, x,y) derart, dal

©

(d) VA “k.i'l'kjis; x,y)"C 13
(k,1)iR(,s)
ma(s, x,y)7Ni(s,k,1)~Am2(s, x,y)
«i(5,%x,¥)"ji(s, k,1)Sn2(s, x,y)

besteht.

Beweis des Hilfssatzes 4. Es sei Qeine positive ganze Zahl. Wir nehmen an, daf}
flr 5=1, ..., 50—1 die Funktionen ins(x, j), iki(s; X, y) ((k, DER(s)) mit der er-
forderten Eigenschaften definiert sind. Es sei

N(sO-1) = max (i(s0—L k, 1),j(s@\, k, 1):(k, DER(sO- 1).
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Wir setzen
m(s0)+a
R(sO0ff) = 0 T(m—\, m—\) (ff=0, m(sO+1)-m (sQ-1).
m=m(s0)

Fir jeden Index & (0”er<m(s0+1)—#n(sQ) definieren wir das orthonormierte
System der Treppenfunktionen ilki(s0; x, y) \(k, DER(s0, er)) in F und eine Anord-
nung (K, )-+(i(s0, er, k, 1),j(s0, e, k, /)) (EA|) der Paare (k, NER(SO, &)
derart, daR

37) i(s0, xk, /), j(sO,a k 1)>N(sO- 1) ((k, DER(sO, er)
und
(38) ff*MK(so; y)dxdy =0 ((e, DA R(s0, ff))

gelten, in jedem Rechteck
F:>X(s0, ff) = 7j(s0, f)X/j(s0, f) (i,j = 1, v(m(s0)+ ff)-v(m (sQ + ff-1))

(aGo,f) (v(m@® L v(m(sH o_ 7 v(m(,)+f)- v(m(sg+ff- 1))

die Funktionen i/ki(y0; x, y) ((/c, NdR(s0, ff)) konstant sind, und fiirjedes Rechteck
e (/,;'=1, ..., v(w(jO+ff)-v(m (iQ+ff-1)) Indizes  m”So, ff, z',/)S
Sm2(jo, ff, y), H(io, ff, i,j)"n2(s0, &, 1,y) mit

NP A —
(*,/)€2«(;“,,, @ ufe,inti(s«; >

m,(sO,ff.E.j')Si(s(fo, Iysm 2(s0, ff, i, j)

»i(*0> »+ )sy (50, ff, k, DmN2@&Q,CT i, jI)

(39) m (s0)+CT
= CB (XEFQ.(so, ff))

~ 0
m=m(s0) % (m+ 1)

existieren. Wir wenden den Hilfssatz 3 mit p=p(m(sQ) an, und wir setzen

Ak + (1 1)sp(ffl(so)) + v (ffl (s0)—), Z+o *-1)sp(m(s0)) +v(m(io)~I) ("o, y)

= 0), (1, 3/2), (3/2, 2); x)4>,(/,(s0, 0), (1, 3/2), (3/2, 2); p)

(fc, /= 1, ..., sp(m(sQ), i,j = 1,..., v(m(so)-1)-v(m (so) - 2)).

Weiterhin sei i(s0, 0, k, I) —k +N(s0—l),j(s0, 0, k, I)=1+N(s0—1). Auf Grund
des Hilfssatzes 3 und (36) bilden die Treppenfunktionen !'Pw(j0; x, y) ((k, I)d
£R(s0, 0)) ein orthonormiertes System in F, und werden (37), (38) und (39) fir
ff=0 erflllt. Weiterhin sind die Funktionen Bkti(sO; x, y) ((k, DdR(s0, 0)) in den
Rechtecken Fjj( s0,0) (i,j—I,...,v(m(sQ)—v(m(sQ—I)) konstant.

Es sei ffOeine nichtnegative ganze Zahl (ffo< w(i0+ 1)—«(.?,)—1). Wir nehmen
an, daR die Treppenfunktionen 'Fkiis,,; X, y) (&, /)£i?(sn, ff)) und die Anordnung
(k, D™ (i(s0 a0, k, 1),j(s0, ff,,, k, /)) (dNI) der Paare (k, 1)dR(s0, ff0) schon derart
definiert sind, daB (37), (38) und (39) fur ff=ff0 erfullt sind. Weiterhin sind die
Funktionen FKkii(sO; x, y) ((k, NER(sO, aQ) in den Rechtecken FiJ(sO, a0 (i,j=
=1 ..., v(w(sQ+ffo)—v(m(jO+ff0—L1)) konstant.
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Es seien /2, 73(Q(1, 2)) disjunkte Intervalle mit der Eigenschaften, dal alle
Funktionen ~(s,,, X,¥) ((k, DER(sO, 9Q) im Falle (x, y)£/2X/3 konstant sind.
Wir wenden den Hilfssatz 3 im Falle p=p(m(sQ+ a0+ 1) an, und wir setzen

71*%+ (i-1)8p(m(so) + <o+ 1) +',(">'(s0) + ®o). i +0'- 1) ep(m(so) + <o+ 1) + v(m(so) + ffo) T)
= #*(/((«0-ffo), h, h\ p(m(sQ + <0+1); Y)<PI(1j (0, ), /2, /3; p(m(sQ + a0+1); y)
(k, =1 ..., 8p(rn(sQ + (0+ 1); i,j =1, ..., v(m(so)+ ) - v(m(so)+ do-1))-
Auf Grund des Hilfssatzes 3 bilden die Treppenfunktionen Vu(s0;x,Yy) ((k, €
€i1?(s0, e0+1)) ein orthonormiertes System in F, weiterhin ist (38) fir e=<0+1
erfillt, und sind die Funktionen IPJ(s0; x, j) ((k, DER(sO, a0+ 1)) in jedem Recht-
eck Fij(s0,e0+1) (/,y=1, v(m(sQ+cra+l) —v(m(sQ+er,)) konstant.
Die Anordnung (k, /)->-(i(sO, <04-1, k, 1),j(sO, (t0+1, k, /)) (EA2) der Paare
{k, I)£R(sO, <0+1) definieren wir durch Induktion. Die Rechtecke Fij(s0, aQ
(i,j— v(ffj(sQ + ffl) —v(m(sQ + a0—1)) ordnen wir in eine Reihenfolge
F|,As<$o «=1, oo (v(m(io) + <TO)-v(W(iQ + (To-1))2) an. Es seien fir a=
A i g g o
T) = {k: (ta-)8p(m (sQ+u0+ I)-I-v(m(sQ+ 00 < ItS
—(ia 1)8p(m (sQ + (0+1)+4p(m(sQ+ DV+1) + v(m(sQ + e,

Fa2) = {K: (ja—1)8p(m (s0) + erd0+ 1) + 4p(m (sO) + 6'0+1) + v(m (so)+ cro) < K s
S ia8p(m (sO) + (T0+1)+ v(m (sO) + <r0)},
TO = {/: (A)sp(m(sQ+ (O+1) +v(m(sQ+e) < | =
N 0«-1)sp(m(sQ+ < +1)+4p(m(s,,)+ flo+1) + v(m (sO + <O},
T42) = {/: 0*)8p(m(sQ+<70+1)+4p (M (sO+<70+1)+v(m (sOH<7e < / 4

" jx8p(m(sQ+al+]) +v(m(sQ + aQ},

und FO=R(s0,aQ,Px=Px_1U ((TA"UT™)x(TAUT(2) Fur jeden Index a
(1SaS(v(ni(jO+ff0 - vCmidoj + &)—))2) definieren wir eine Anordnung (k,I)-~
0+ I, &>k, 1),j(s0, e0+ 1, a, k, /)) (GA2) der Paare (k,l)ePx derart,

dal
(40) i(s0, 0+ 1, a, k, /), j(sO, flO+1, a k 1) > A(s0-1)  ((k, OGP¥)
gilt, weiterhin Indizes a0+ 1, a,i,j)"m 2(s0, a0+ 1, a, /,_/), «i(jO. 90+ 1, a,
1,j)"n 2(s0, (0+ 1, a /,y) mit
2 aki Kki(so’x>y) —
T (¢ eru -
m1<0,x0+1,x,1,j)Si(s0,ir0+1,X,k,1)Smt (s0,x0+1,x, i, j)
nt(sO,oO+I,x,|,J)Sj(.so,<T0+I,x,k,lgsltz(so,aoﬂ,x,l,Jg
(41)
m(so)+<To+ | 1
=cB 2°f Tt/ ti r ((x, tK fo(s0, 0+ 1))
m=m(s0) |

I 'S7 2«1 1
Av(m+1)~rZ ™~ Av(fi)d
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(0a-1)8/?(moo)+ A+1)<itig8{m(s) + a0+1), (js-1) 8?(m(sQ +a0+ 1)</S
—a8/2(m(sQ + K0+1 > «=1, a),

und Indizes 90+, &, 18,j)Sm As0, WV+1, a, /4,/9), «Xv ff,+ 1 a, /4,ydS
—WA20, %,+1, a, igA) mit

2 b aki”k,i(s0; *, j)
M<sOffo+1<MBJil(p0>@RH .« *, )SR(s0 fo+ «.id, /)

»1 (50, Po+ 1'% *&./3)S|'(50, 90+ I,tt, It, 1)Sn2 (30, O+ 1, a, ia, j &)

m (/s\O)+ffo 1

(42) —CB ((*, Y)EFig..(s0, 49)

m= m(s0)
4,(m+1)( f ,\>)

o @=a+1 .., (v(m(sQ+od-v(m(sQ+(0-1))2
existieren.
Fir (k, DdR(s0, a0 setzen wir

i(s0,(TO,k,1), fur i(s0,00,k,1)<m I(s9<0,i1J I,
i(S,, < Kk, D+4p(m(s,)+ flo+ 1), fiur
<(so, ffo+1, 1, k, I) ma(s0, f, i'i,Ji) =S1(s0, Qo, A /) S m2(s0, €0, i'iJi),
i(s0,a0,k, )+ 8p(/n(sQ +«0+1), fur
m2(s0, cr,,, U, Ji) < i(s0,(T0,k,1),
und
1,/(so» <), k, /), flr /(So, 4» Kk, /) < n”So, (0, ih A),
[j(s0, €0, fc, /)4-4p(m(sO) + ffo+ 1), fur
) (so, 1,1k D)=\ ni(s0, <0, ii,A) —j(so, ffo, k, 1) —n2(s0, i), ij, ji),
I/(s,., 00, k, I)+8p(m(sQ+a0+1), fur
| i12(s0, <0, »i, 7i) < ,/(s0, "o, k, /),

weiterhin fur (k, DEPI—R(s0, a0

L., n VM0, CRiidiH fo-l, fir fe87\(Q)
U I m2(s0, 90, i1,/ D+ 4p(m(sO)+ a)+1) + fg  flr TA>

und

. _ I ni(s0, «0, ii,ji) +1—1, fir /€7\<)
0,a0+1 Lk I) = .} )
(0.2 )= TR0, 43 L)+ 4p(m (0 + 0+1) 4/, fur JETE),

Fir die Anordnung [k, /)—(i(s0, d0+1, L k, /),y(j?, O+1, 1, k, /) (E/V]) der
Paare {k,N)".P1 gilt (40) fir a=1 offensichtlich, weiterhin, auf Grund des Hilfs-
satzes 3 und (36) erhalten wir, daB (41) und (42) im Falle a=1 bestehen.

Es sei a0 eine positive ganze Zahl (a0<(v(/w(jO+ (O —v(m(jO-|]-cr0—))2).
Wir nehmen an, daf die Anordnung (k, /) —/(:y0, 90+1, a0, k, /), j(s0O, 00+ 1,
a0, k, /) der Paare (k,/)€P«, schon derart definiert sind, dal (40), (14) und (42)
fur a@=a0 erfullt sind.

13
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Far (k, DEFa setzen wir

'(s0>00+b *0. k, /), flr i(s0, Oo+b a0 k, /) <
< m~So, ffo+ 10,

i(s0, 0o+ b a0, k, )+4p(m (sQ + <0+ 1),

fur  /Mi(s0, 0& 1,20, i,,0,JaQ = *00>(0+ b «0. = 0 s
= ))ii(so, a0+ 1, aO, D' 5 g »

i(sO, 0o+ b «0, k, )+ Bp(in(sQ + <0+1), fir

; m2(s0, 0t+ 1, «» @'l j < '(,70+ 1 a0>k 0,
un

j(:50, 00+b «o, k /), fir j(sO, (0+1, uok,1) <
< Hi(s0, 00+ 1, a0, apla
j(s0, 0o+ b «o, K, I) +4p(m(sQ +00+1),
j(s0,00r1, «o+, fo, 0 == fir  ~1(9>007'1j "0>"%5) j Sj(s0,ffo+l,a0, k O's
= n2(s0, 0o+ b a0, a0’ Jay-
/(s0, 001, «o, k, 2+ 8p(m(sQ+ a0+1), fir
"2(%500f-1, a0, iQj*Q~j(so, +b «0, « O,

weiterhin fir (k, /)6FQt+1-P 3

»h(SO, 00+1, «0, 180+1»
'(So, 00+1 ©+ = '""2(So, 00+1, «0,
fc€r»tl,
und

«i(s0, 00+1, «0,
«2(So, 00+1, «0,
1G72&.

Far die Anordnung (k,/) —('m(s0, 00+ 1, «0+1

der Paare (k, DEPXotl gilt (40) fur a=a0+1 offensichtlich, weiterhin, auf Grund
des Hilfssatzes 3 und (36), nach der Voraussetzung erhalten wir, dal (41) und (42)
im Falle a=a0+1 bestehen. Durch Induktion fir @bekommen wir die Anordnung

" (fc, ) - (i(s0, 001, (v(m (5O + 99 —v(m (s,)+ a(- 1)- k, 1),
(43) j (s0,a0+1, (v(m(sQ+ <) v(m(sQ+an-1))2k, /)) (EN$)

fur die Paare (k, NEP(MM™)+,X,wni§,)+,,,,-i)p=-R(s0, ao+0, und fir diese
Anordnung sind (40), (41) und (42) im Falle a= (v(m(M) + a,,)—v(m(s0) + 90—1))2
erfullt. Die Anordnung (k, /)—(/(jO, OCr1, k, 1),j(s0, aO+1, k, /)) sei mit der
Anordnung (43) gleich; dann werden (37) und (39) sich fir <=<0-f1 auf Grund
von (40), (41) und (42) erfillt.

Durch Induktion fiir a erhalten wir ein im F orthonormiertes System der Trep-
penfunktionen  WkiiSo, x, y) ((k, DER(sO, m(s0+ 1)—m(sQ—I) =R(sQ und eine
Anordnung

@4) (k1) - (i(s0, (m(s0+1)-m (sQ -1, k, /), j(sO, m(sO+1)-m (sQ -1, k /)

J(s0, 00+1, «0+1, f, o
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der Paare (k, DER(sQ derart, daB (37), (38) und (39) im Fall o—m(s0+ 1)—m(sQ
erfullt sind. Die Anordnung (k, /)-*-(j(sO, k, 1),j(slt, k, /)) sei mit der Anordnung
(44) gleich. Dann werden die Forderungen (b), (c) und (d) des Hilfssatzes 4 fir
$=s0 bestehen.

Die Funktionen Fki(so>x, >) ((k, )€R(-s'Q) sind Treppenfunktionen in F.
So gibt es eine Einteilung von F in paarweise disjunkte Rechtecke Aj, ..., KXM
derart, dafl jede Funktion 'f/kI(sO, x,y) ((k,)ER(sQ) in jedem Rechteck K,
(/=1 ..., />(%0) konstant ist. Die zwei Hélfte von K, bezeichnen wir mit K{, K"
(/=1 ..., 2(s0). Dann sei

fur (x, y)EKI,
VA* y) =
fur (x,y)EK"

(/=1,..,2(i0). Es ist offensichtlich, dal die Treppenfunktionen IF(x,Yy),
MulSq x,y) (&, N"jR(*Q) ein orthonormiertes System in F bilden, weiterhin die
Bedingung (a) des Hilfssatzes 4 im Falle s=s0 erflllt ist.

Damit haben wir den Hilfssatz 4 bewiesen.

Beweis des Satzes 6. Wir wenden die Bezeichnungen des Hilfssatzes 4 an. Auf
Grund von (36) gilt (19) fur die Folge {u*i}m =i- Es sei

*(*?)=Vs(, y),

~l(s; YY) = y Y] ((k, 1 eR(s))

(i=1, 2, ...). Nach dem Hilfssatz 4 ist es offensichtlich, dal’ fiir jeden Index s die
Treppenfunktionen IB5(x, y), *Ki(s; X, y), ((k, DER(s)) in dem Einheitsquadrat
E=(0,1)X(0,1) ein orthonormiertes System bilden,

tf Fax, y)dxdy - 0,

E

(45)
(1 vkas. x. y)dxdy =0 ((k /)ER(S))

E

bestehen, und eine Anordnung (k, )-*(i(s, k, /), j(s, k, /)) (€Aij.) der Paare
(k, DER(s) derart gibt, dal

max (i(s, k, /), j(s, k, N: (k, NER(s)) <

40 < min (/(s, k, 1), j(s, k, /): (k, DER(s+1))

gilt, und fir jeden Punkt (X,y)EH=70,yj X", yj Indizes mi(s, x,y) i

B
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AW 20, X,y), nx(s, X, y)*n2(s,x,y) mit

47 at/ aj)yscCls x,y)dH
(47) koems) y(aj) ((x,y)dH)
mi(s, x. y)?i(s, k, 1) m2(s, x,y)
. n™s, X, y)Nj(s, k, 1)”™n2(s, x,y)
existieren.

Wir definieren ein orthonormiertes System der Treppenfunktionen ys(x,y)
(s=1, 2, (Ki(x, y) i(/r, NE (J 72(s)j, eine Folge der einfachen Mengen Hs
G=1 2, und eine Anordnung (k, ) —(i(k, 1), j(k, /)) (dN%) der Paare
{k, Nd (3 R(s) derart, daB die Mengen Hs(s= 1, 2, ...) stochastisch unabhéngig
sind, \/Sv:eliterhin flr jeden Index s

(48) mes Hs =
und
(49) max akiPkix>y) =cC,,  ((*\ ™€)

“(S—l)<*y x 0= N(S) S\klll |F§)(A*2
y 0 —"2
bestehen.
Es sei H\E H’ und I (x ’}):'Pi(x, Y): (d(l(xv y) =Fa(s X y) ((k1 I)ER( I))1
i{k, N"1(1, AD,jk, D=j(L k, D) ((k, hd/?(1)). Auf Grund von (47) gilt (48) und
(49) fur s=1. Es sei x0eine positive ganze Zahl. Wir nehmen an, dal} die Treppen-

0
funktionen /s(v,y) (s= 1 ..., sa, (Ki(x, y) ((/<,))6 l_J R (s)> die einfachen Mengen

HIt . , und die Anordnung (k, )-*(/(/c, 1, j(k, /)) der Paare (k,/)E (J R(s)

schon derart definiert sind, daB diese Funktionen ein orthonormiertes System in E
bilden, die Mengen //,, ..., Hstochastisch unabhéangig sind, die Anordnung (k, /) —

—e, 1), ik, D) |A, I)d U 72()j umkehrbar eindeutig ist, und (48), (49) fur

=1, ...,jO erfullt sind.

Fir eine im E definierte Funktion f(x, y) und fiir ein Rechteck 7’=fal, by)X
X(62, b2 (QE) setzen wir

X —ax ~
y~a2)
AT x.y) 'l bi-at’ bo—az) )T,
0 sonst,

weiterhin fiir eine Menge G (QE) bezeichnet G(I) diejenige Menge, die mit der line-
aren Transformation it=(by—a”x +dy, v=(b2—62>+ 62 aus der Menge G ent-
steht.

Da die Funktionen ys(x,y) (s=1, ..., .1 20 (kt(x, y) |(fc,N€ (J R(s)J Treppen-
funktionen sind, und die Mengen HIt ..., Ho einfach sind, gibt es eine Einteilung

Die Menge H wird einfach genannt, wenn sie die Vereinigung endlichvieler Rechtecke ist.
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von E in endlich viele disjunkte Rechtecke Ck, ..., Gederart, daB diese Funktionen in
jedem Rechteck Gr konstant sind, und jede Menge Hs(s= 1, ..., 50 die Vereinigung
gewisser Gr ist. Dann setzen wir

XsHO,y) = r:21 VsO+H(.Gr; X, j),
Rk y) = 2 Grs.+lxy) o (k DER(SO+ D),
HOH = rl:Jl H{Gn),
und sei i(k, 1)=i(s0+ Lk, 1),j(K, I)=j(s£)+ Lk, /), fur (k 1)eR(s0+ 1),
Aus (45) folgt, daRR die Treppenfunktionen 9%(x,y) (i=1, ..., jO+1), qki(x,y)

‘(/c, /)ESL)JLl R(s))l im E ein orthonormiertes System bilden. Die Menge HSo+ igt

offensichtlich einfach, (48) ist fir s=50-bl erfiillt, und die Menge Hk, ..., HSH
sind stochastisch unabhdngig. Aus (46) folgt, daR die Anordnung (k, )-+(i(k, /),

ik, n) ‘(k, NE %ﬂ R(s))l umkehrbar eindeutig ist. Weiterhin, auf Grund von (47)
gilt (49) fur 5=50+1. Das orthonormierte System der Treppenfunktionen ”s(x, J)
(5=1, 2, ...), $ki(x, y) (& NE 1 [?(.9)j, die Mengenfolge Hx, H2, ... und die Anord-

nung (k, 1) -*(i(k, /), j(k, Nk, NE 1D mit erforderten Eigenschaften
bekommen wir durch Induktion.

Die Funktionen gki(x,y) |(®6/)E M+—IJ R(.sjJ seien mit der Funktionen
X(x,j>) (5=1,2, ...) gleich. Die Anordnung (k, D,jk,D) ((k,NEN%-
—gl/?(s)j definieren wir derart, dal die Abbildung (k, /)—i(k, ,j(k, )

((k, DEN%) eine umkehrbar eindeutige Abbildung von auf sich selbst sei.
Aus (49) bekommen wir, daB8 im Falle (x,y)£Hs von (x,y) abhéngige Indizes

A(5-1)-=/W(5, X, y)Sm 2(s, X, Y)SN(s), nk(s, x, y*n.,(s, X, y)sN (s)
mit
(50) | 2 aki<Pki(x, y\ S C13 ((x, y)eH9

(kJ

y)“_l((klgmmZ(s,x,y)

L n, (s, x,y)Sj(k, DSn2(s, x,y)
existieren.

Es sei H—%Hs. Da die Mengen Hsstochastisch unabhéngig sind, auf Grund
von (48), durch Anwendung des zweiten Borei—Cantellischen Lemmas ergibt sich
mesH = 1
Fir (x, j)€f/ gilt aber (50) fur unendlich viele s, woraus folgt, daft in diesem Punkt

Hn | 2 akidki(x, y)\ CB

AV A 00 (k)
XIAj (K, 1) AXt
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gilt, d. h. divergiert die Anordnung

2,2, B89
der Reihe

212, 2K, V)

in E fast Oberall, wobei kx, IR diejenige Indizes sind, fir die a=i(kx, IR, B—j(kx, IR
erfullt sind. Damit haben wir den Satz 6 im Falle bewiesen, wenn der Raum das
Einheitsquadrat mit dem gewdhnlichen Lebesgueschen Maf ist.
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COMPACTI!FICATIONS FOR SYNTOPOGENOUS SPACES

KALMAN MATOLCSY

Introduction

The most important compactifications of a “classical” topological space are
Alexandroff’s one-point compactifications, Wallman-type compactifications and Smir-
nov’s compactifications, if the space in question is completely regular.

Smirnov’s theory of compactifications of proximity spaces was generalized by
A. Csészar [3] by introducing the notion of double compactification of syntopogenous
spaces and of symmetrizable compactifications of symmetrizable syntopological
spaces.

In this paper one-point compactifications of a non-compact syntopogenous space
(84) and simple compactifications of an arbitrary syntopogenous space (8 5) will be
considered. The classical methods created by Alexandroff and Wallman, respectively,
are recognizable in the construction of these compact extensions for the special cases.

In the study of these compactifications certain new separation axioms of syn-
topogenous spaces will play an important role; 8§ 1—2 deals with these. As an intro-
duction to §4—5, some basic notions and results on syntopogenous extension
theory will be recalled in §3.

Speaking of syntopogenous structures, the terminology of [1] will be used
throughout the paper.

I'am very grateful to Professor A. Csaszar for his valuable remarks and advices.

1. Separation axioms for syntopogenous spaces

It is a very special property for a syntopogenous space to be symmetrical, there-
fore in general one has to be satisfied with weaker conditions. In particular, for classi-
cal topological spaces, such ones are the separation axioms (SJ and (S2 of [2], (com-
plete) regularity, and normality

The properties mentioned here will be generalized in this paragraph to syntopo-
genous spaces. In this respect J. L. Sieber and W. J. Pervin obtained some results [9],
but we shall go in another direction, therefore our theorems will be different from
theirs. A comparative study of both theories would make up a supplementary paper;
here we cannot deal with this problem.

A syntopogenous space [E, ff\ will be called an Sr space if it satisfies the follow-
ing axiom:

1980 Mathematics Subject Classification. Primary 54A15; Secondary 54D35.
Key words and phrases. Syntopogenous spaces, separation axioms, compactifications.
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(Sj) For every <$.if there exists ~ffif such that
X, YEE, X< E~y imply y"E —x

In such a case it will be also said that if is an Sx-structure; we shall use a similar
terminology in connection with the further axioms, too.

Lemma 11. A syntopogenous space [E, if] is an Sx-space iff £fh~ifbc §

For the sake of simpler formulation of our results, let us introduce two operators
defined on order families. First of all, by the composition of two semi-topogenous
orders <15 <2on E we shall mean the order * < 2see ([5]) for which

A *<)jB<p»A <! C<2B for some Cc E
If  is an order family on E, then obviously
sfv = {<c-<:
and
stfA= {«=e<c:
are symmetrical order families on E both of them coarser than s/ (cf. [5], (2.19)).

We shall call a syntopogenous space [E, if] an St-space if it has the following
property:

(52 For an arbitrary < ”if one canfind an order -~fif such that x,yEE,
XM"E —y imply x*"C-~E—y with a suitable set CczE.
Lemma 12. [E, if] is an S2-space iff ifb~ifM f

Every S2-space is an Sx-space. It is obvious that if if is a topology, [E, if] is an
S;-space iffthe associated classical topological space is St (/= 1, 2) in the sense of [2],

Proposition 1.3. Any separated Si-structure is a Trstructure (z= 1,2). For
topogenous structures the inverse statement is also true.

(Cf. [2], (25.10), (25.17).) |

Exampte 14. A T;-space does not necessarily satisfy condition (S,) (z=1,2)
even if it is perfect. This can be shown by the example of i f y J'9p, where J
is the natural syntopogenous structure on the real line. In fact if is a perfect T2
structure, but it does not have property (S¥, because Sth=(J‘y JiOhiflc=(Jy J toh
therefore ifb~ifbc does not hold. |

Lemma 1.5. if isan Sx- or S,-structure iff i fp has the same property. |

A syntopogenous space [E, if] will be called regular (or an S3-space) if it satisfies
the following condition stronger than (S2:

(53 Foreach < iif thereexists <ffif suchthat x£E, x< V imply x-<\C-<\V
for a suitable set CczE.

It is clear that a topology is regular iff its classical equivalent is regular in the
traditional sense. |
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Lemma 1.6. A syntopogenous space [E, if] isregular if and only ififp~ifAp g

Lemma L7. Ifif is a regular syntopogenous structure, then ifpis also a regular
syntopology. |

Proposition 1.8. A subspace of an Si-space is also an S,-space (/=1,2).

Proof. If <2 are semi-topogenous orders on a set E, and £0c£, then
(<i-<*)|[E0C(<,[EQ.(<2E,) (see [B] (33)). §

In order to characterize regular syntopologies, let us generalize the concept of
Efremovich’s local proximity relation (see e.g. [10]) as follows:

An order family if is a local syntopogenous structure on the set E, if
(Lj) for every <1; <2*if there exists < £if such that <iU<2C<,
and

(La) for any <”if anorder  "if canbefound such that xEE, x<B imply
x-"iC~B with a suitable set CaE.

Proposition 1.9. Ifif is a local syntopogenous structure, then ifp is a syntopo-
logy.

Proof. Suppose «=£if, and let be a member of if chosen in accordance
with (L9. If A<PB, then, forany x£A, there exists a set CxczE with x*"C x"B,
so that we have fu C~"=B. This gives ifp<ifpl. |

Theorem 1.10. A syntopological space [E, If] is regular iff there exists a symmetri-
cal local syntopogenous structure ,fOon E such that if ifp.

Proof. Assume if% ~if for some symmetrical local syntopogenous structure
ifOon E. Suppose *=dif, < C <o, let  £ifnbe chosen for <,, in accord-
ance with (L2, finally put <vt.if- If then x<gB, i.e. x<0B, there-
fore x"xC"xB for some CcE. Since is symmetrical, we have E—E <X —C,
consequently E—E<fE —C. Thus A'<fC<fd&E, so that x(<2*<22Z?. This means
if <ifAp and owing to (1.6) if is regular.

Conversely, ifif isregular, then if,,=ifA is a symmetrical local syntopogenous
structure for which if ~iff. In fact, it can be easily seen that ifliis a symmetrical
order family satisfying (LY. We need to show that ifnhas property (L2. Suppose
that are such that < C <2EN ischosen for by (S3. In this
case < C<iC<2 If x<C-=fB, then there exists XczE suchthat x<1A<1C,
and one can find a set AaE for which x<2T-=2Ar So that choosing the order
<2-<2 for < m<c ifOfulfils (L~. Finally, in view of (1.6), if ~if%. g

In this paper we shall say that a syntopology if on E is symmetrizable if there
exists a symmetrical syntopogenous structure if(on E such that if ~iff. (This defi-
nition is essentially equivalent to the definition of a symmetrizable syntopology in [3].)

As a syntopogenous structure always satisfies (Lj)—{La), from (1.10) we can
deduce the following result.
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Coroltary 1.11. Any syminetrizable syntopology is regular, f

According to the definition (2.3) in [5], a syntopogenous space [E, if\ will be
called normal if for every < dif there exists -=fii for which A—~@C"~B implies
A<+tC 'with asuitable set C ¢ E. (We must call attention to the terminologi-
cal difference between [5] and the present paper, there this notion was called “weakly
normal space”.)

Lemma 112. A syntopogenous structure if is normal ijf ifv<ifA holds. §

Example 1.13. Let S be a lattice of the set E in the following sense: 0, Ei S,
and A, B£S implies ACIB, A{JBE<&. Then the complements of the sets of S
form also a lattice denoted by £c If < is the topogenous order generated by £,
{<} is a normal topogenous structure iff A, BcSe A05 =0 imply the exist-
ence of sets C,Di_S such that AczC, BaD and CDO0 =0. (Cf. [2], (6.1.53)

(c)) 1
The following theorem is taken in full from [5]:

Theorem 114 ([5], (2.20)). A syntopogenous structure if is normal ijfifv is a
syntopogenous structure. In this case i fv is thefinest o f all symmetrical syntopogenous
structures coarser than if. ¢

As it is shown by the example of the natural syntopogenous structure ./ of the
real line R, a normal syntopology is not necessarily symmetrizable (in fact, for any
£>0, V)fA<\C<tB implies 0=R, but J does not possess property (Si)). The
solution of the problem concerning the symmetrizability of a normal syntopology
will issue from (1.17). First of all let us consider the following simple statement:

Lemma 115. Any regular syntopogenous structure if satisfies the condition if”<
< ifop, which is stronger than (Si). This property is equivalent to (S,) providedif is
perfect.

Proof. If if is regular, then ifA<ifc implies ifv<ifAr<ifop (see (1.6)).
Further suppose ifp<ifep, from this ifb=Hph<ifgh=ifd—ffbc follows, thus

if is an Sxstructure. Conversely, ifif isan S, syntopology, then ifp<ifb~ifbc=
= ifc* = cyccpcp= cppcp= cpcp (cf []1( (5.33)).

Example 1.16. With the notations of (1.13) Jrp<~'gp holds iff xEAE£Q
implies x"BczA for some BE<ZC (cf. [2], (6.1.52) (a)). |

.. Theorem 117. For a normal syntopogenous structure if the equivalence
if ifip is 1rle iff Cpp< Qup

Proof. ifv<ifc, hence ,9p~if'ip implies ifp<ifcv. Conversely, if ifp<
<ifcp, then assume -=ifif, <C<?, <2 <fC-=2 finally <3Eif.
<iU <2C <3 In this case A<M implies x< B for each xZA, consequently,
there is CxcE suchthat x~C ~*B . From this we infer the inequality x<&C x<3B,
which means x<3Xx<3?. We got x(<3-<3j3 for every x&A, so that zf(<g-
» < 3J)pR. Because of the arbitrary choice of <, we can write ifp<.ifvp. By.5pv<9p,
the converse inequality is clear. £
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Corollary 1.18. Let ST be a normal syntopology. Then thefollowing statements
are equivalent:

(1.18.1) ST is svmmetrizable\
(1.18.2) ST~ST*p;
(1.18.3) ST is an Sy-syntopology.

Proof. (1.18.1)<=>(1.18.2): If ST~STI for a symmetrical syntopogenous struc-
ture y ‘o, then by (1.14) STO<STV<ST, hence STXP-ST. The converse statement is
obvious. (1.18.2)0(1.18.3): In view of (1.15) this is a direct consequence of (1.17).

2. Separation axioms in compact spaces

A syntopogenous space [£, ST] (or shortly ST) will be said to be locally compact if
there exists an order ~=£ST such that for any x fE an *-compact subset £ of £ can
be found with x< A

A topological space is locally compact iff it is associated with a locally compact
classical topology (in the sense of [2]). Every compact syntopogenous space is locally
compact.

Proposition 2.1. A syntopogenous structure ST is locally compact iff so is STP.

Proof. FOor X€£ and < fST, x<A is equivalent to x<pA, further K is
compact in ST iff it is compact in STP (see [1], (15.78), (15.79)). |

In order to set the notion of local compactness in its proper light, let us consider
the following examples.

Example 2.2. As is usual, put Then, for any xER and £>0, the
interval A=[x—e, x +¢] is a compact set in such that x<fA, therefore M' is
locally compact. On the other hand ST—JT\(0, 1) fails to have this property in spite of
the fact that its topology, STipis obviously locally compact. Indeed, let us suppose
indirectly that < = <f|(0, 1) is an order chosen in accordance with the definition,
and let x be an element of (0, 1) such that 1—x<e. Then x<F implies x~=ffV
and I£n(0, I)c£ for some set WczR. In this case (x—£ x+s)c W, therefore
[X, DcF, consequently {[y, 1): x<y< 1} is a compressed filter base in V which
has no limit point in this set, that is, V cannot be compact in ST. |

As it is shown by (2.2), the subspaces of a syntopogenous space do not in general
preserve its local compactness.
Yet there exists an important exception:

Proposition 2.3. A closed subspace of a locally compact syntopogenous space is
also locally compact.

Proof. Denote by [£, ST] the space in question and assume that xfE
imply x< Kx with a suitable compact set Kxin ST. If £0is a closed subset of £, then
for any " -compact set K, KC\EO is also compact in ST\EO, and for each xfE 0 the
inequality x(<|Ef)KxC\EQO holds. |

One of the main results of this §is the verification of the fact that a locally com-
pact S2-syntopology is symmetrizable. This is based upon the following statement.
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Lemma 2.4. Let Sf be a locally compact S>syntopology on the set E. If < $ Sf,
then there exists -<fiSf such thatfor an arbitrary compact KO<E,

KO< G implies KO K<'cL <'G,

where K is also compact.

Proof. Let < be a member ofif and let us choose the orders <2, <3 <0,

and <' of Sf as follows:

@ -cC«<1;(b) <IC(<2- (c) <8§; (d) for xEE there exists a com-
pact set Kx with x"-0Kx; (e) <0C<i2 (f) <iU U<3C

Then let /d0be a compact set for which KO0<G. There exist F, J, LczE such
that

@ Ko<rf <i/ <if G

We shall prove the existence of a compact set KczJ for which K,,-SK. Indeed,
assume x<[Hx<1Kx for each xEKO. Then a finite number of these sets Hx covers
K(), thus denoting by Jl and K' the union of the corresponding sets Hxand Kx, we get
that

) K' is compact, and KOzH"[K".

If K'a J then the statement is proved because in view of (f) KO<'K'. Therefore
suppose K'<tJ, and put J'—K'—J, F'=K'—F. If xEKO is fixed, then owing to
(b) and (1), x<2Axy<8Bxy<E—y for yEF'. In the compact topology Sfip\K'=
= {<0t [1J> (15.93) gives that a finite number of the sets E—Bxy covers J' since
j""ocp' anc] Bxy)f)K" for yEF'. Denoting by E—Bxand E—Axthe union
of the covering sets E—Bxy and E —AXxy, respectively, we have

L=2Ax <UBx =E -r = (E—K") U/.

Putting x<3Cx<3Ax for xfK 0, in view of the compactness of KOwe have sets C, A
and B such that

©) KOczC<A< B c: (E—K"){JJ.

Let us denote by A the jdosure of A in Sf. One can easily show that K=AfIK" is
compact, and from (3) AczB follows, thus KczJ. Because of AczA and (2) we get
KoMK

Further if k*"K and yfE-L, then by (1) and (b) we have k<2Vky<£E—y.
There exists a set W such that Kcz W<Z —y, so that E—L<Z—K, since <2is
perfect. Finally, in view of (f) and (c)

KO K<L -G 1

Lemma 25. Let Sf be a locally compact S2-syntopology on E. Define, for each
<£Sf, an order <+ on E asfollows:

A<+BoB=E, or there exists an Sf-compact KczE such that
(25.1)  AczK<cX<B for some XczE.
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Then

(2.5.2) < + is a semi-topogenous order for every <£9.
(2.5.3) <I,7M9 | <iC<i imply <IC<2-
(2.5.4) Forevery <£9 thereisanorder < f9 suchthat <+C < +2

Proof. (2.5.2) and (2.5.3) are clear.

(2.5.4): Suppose =9, and choose <x€9 for < in accordance with (2.4),
put <2d9 for *5 in the same manner, finally let <' be an element of 9* with
<iU<2C</- Then A<+E implies A<£E<2E automatically. If A *+BaE,
we have A c K<XX<B for some XcE and for an *-compact K. Now it is clear
that K<B, therefore by (2.4) there exists a compact Kl such that K<1KI<xY<IB,
thus by (2.4) we get A ck=7IL<.KI1" ¢Y *xB. From the choice of <' the inequality
A~7'+8B issues. |

The following theorem is a generalization of [2], (5.3.57).

Theorem 2.6. Any locally compact S2-syntopology 9 is symmetrizable, namely
9 +={<+s: < £9} s the coarsest of all symmetrical syntopogenous structures 9 X
such that 9{~9.

Proof. (25.2) implies that 9 + consists of symmetrical topogenous orders. If
=1, <?f9” and -<€9, <iU<.C~, then from (2.5.3) and [1], (3.40) the relation
<I"U 'C <+ follows. Finally, by (2.5.4) and [1], (3.53) for any <£9 there
exists -9£.9 suchthat <+'C < ,+s2. These give that 9* is a symmetrical synto-
pogenous structure.

Every point xEE is compact in 9, consequently if -=£9, then an order
-97.9 can be found such that x<B implies x<'+B (see (2.4)). From this one can
deduce < C =+,C-=+sp, hence 9< 9 +. On the other hand, <tC <,
<+tc< are clear for each <£9, thus <+,C<, and <+spC,<. This means
that 9 +p< 9 is also valid. Summing up, we have 9 +p~9.

Assume that 9 Xis a symmetrical syntopogenous structure such that 9 {~9,
<£9 is arbitrary, m<if9i, < C<f, and for <2£9X <le If A<HE,
then obviously A<ZE. Suppose A<+BttE, then AcK*9X<B for some com-
pact set K. Assume x<2Cx<ZB for x£K, in this case from the compactness of K
we get Kec C<B, thus A<2. Consequently, <+C<2>and in viewofthesym-
metricity of < 2j the inequality =c+sC < 2 holds. Thus we have 9 +<9x. 3

Next we study the properties (SJ and (S2 in compact spaces.

Proposition 2.7. 19 is a compact syntopogenous structure with property (si),
then 9 p< 9@ (cf. (1.15)).

_ Proof. Put < £9, and choose the orders <1( <2><3 of9 as follows: < C <f,
<IC<2X>-=2C<ij. If x<5, then x<xC<iB. y<2E—x holds for any yZE—C
and thus y<3W<3E—x. Owing to theorem (15.93) of [1], a finite number of the sets
¥ covers E—B, from this E—B <3E—x, i.e. x<3B. U

As a generalization of theorem (5.3.22) of [2] we can state:
Theorem 2.8. A compact syntopogenous space with property (S2 is normal.
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Proof. In acompact S2-space [E, if], for an arbitrary < iff, letus choose the
orders <1, and <3 of if as follows: <JC(<2meg)f =2C<|-
Assume A<@<B. Then y4<cC<IA<L5. if xEC, ydE—X, then X<2Cxy-=2\
<%E—y and from this

* BAxy BCxy <§Bxy E-y.
Put if,p—{<0}: A<0C and x<°Axy imply the existence ofsets Ay, Cy, By suchthat
A cz Ay <3Cy <IBy =%~y

(see [1], (15.93)). In view of E —B<.0E—X, y<.°E—By (YEE—X) a finite number of
the sets E=Bycovers E—B. Denoting by E—B', E—A', E—C' the union of the cov-
ering sets E—By, E—Ay, E—Cy, we have

C <gB'a B. |

Corotlary 2.9. For a compact syntopogenous space \E, if], ifp is symmetri-
zable iffif is an S2-structure. In this case (up to equivalence) ifv is unique among the
symmetrical syntopogenous structures if$ on E such that Sf% ~ifp.

Proot. Ififpis symmetrizable, then it is regular, consequently ifp, and at the
same time if has property (S2 (see (1.11) and (1.5)). Conversely, if if is an S2-
structure, then by (2.8) it is normal, and in view of (2.7) ifp<ifcgn. Applying (1.17)
i f p~ ifwpcan be deduced, which implies that i f pis symmetrizable. Ifthis is true, then
if'7 is the uniqgue symmetrical syntopogenous structure inducing ifp by Lemma 8
of [3], |

3. Some basic concepts of syntopogenous extension theory

The definitions and results presented here were discussed in [6] in detail (cf. also
[4] and [8)]).

In a syntopogenous space [E, if] afilter base r is said to be round if Ri_x implies
Rx<7? for some <”if and i*Gr. For any filter base r in E

£f(r) = {fcf: /[?<Vfor some < Gf and 7°Gr}

is a round filter in [E, if], in particular, denoting by if (x) the filter if ({{x}}), we
get the neighbourhood filter of the point x GE.

For two systems 91 and © of subsets of E, another system can be constructed as
follows:

91(0)93 = {AOB-. AGL, AGG}.

A syntopogenous space [£', if'] will be called an extension of the syntopogenous
space [E, if] if £ is a dense subset of [E\ if'] and if ~if'\E. At the same time if'
will be said to be an extension of if on E'. In this case the filters

s(x) - If)(CD{E}  (xfE")

(which are called the trace filters of this extension) are round filters in [E, if], in
particular, s(x)=if(x) for each XiE.
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Conversely, if [£, if] is an arbitrary syntopogenous space, E<zE', and for any
XxEE"' an Ground filter s(x) is given so that s(a)=if(a) for xiE, then there exists
an extension of if on E' the trace filters of which agree with the filters s(x) for every
xfE'. In fact, suppose

= [xpE': Mis(x)} (Ac E).
If «= is a semi-topogenous order on E and A', B'czE', define
A'<'B' iff A'<z s(A), s(B) czB' for some A «B.

Then putting
5(<) =

s(M)= {s(<):

is a syntopogenous structure on E' satisfying the required conditions.
Iffif=if is a topology on E, then the system

{s(K): V isopenin if)

forms a base for a topology i f on E', which is called the strict extension of i f on E'
corresponding to the filters s(x) (xp£0n. In general, for an arbitrary if, s(Ef),p
is a strict extension of if,p.

Let [£', if'] and [E", if"] betwo extensions of the syntopogenous space [E, if].
Similarly to the terminology of the symmetrizable compactifications (cf. [3], def. 4)
we shall say that [E", if"] is a coarser extension of [E, if] than [£', if'] (or [E', if']
is afiner one than [£", if"]) iff there exists an (if', y ”)-continuous surjection h of
£'onto E" such that x—h(x) forevery v(E. Iffrisan (if, y")-isomorphism, then
[£', if'] will be said to be equivalent to [E", if"].

the order family

4. One-point compactifications

It is well-known that P. Alexandroff was the first to compactify a locally compact
Hausdorff space by adding one ideal point. A generalization of Alexandroff’s one-
point compactification can be found in [2], ch. 6.1. For an arbitrary non-compact
topological space [£, if], this is defined as a strict extension of if on £U{p} having
the trace filter of the “imaginary” point p in the form

4.0 s(p) — {3fcE: V<zX, E—V is compact closed in if}.

Proposition 4.2. Let [£, if] be a non-compact topological space, £'=£U {P},
if' be a topology on E' which is an extension of f with the trace filters s(x) for
XxPE’. In this case if' is compact iff E—V is compact in if for any if-open VPs(p).

Proof. Suppose that if' is compact and let [V,: ipi) bea “open covering
of the set E—V, where Vis a “open member of s(p). For any ipi there exists a
AN'-open set V[ in £' such that VIDE= Vif and there is also a ~"'-open set V
for which ppV and V'DE=V. The system {V, V[: ipi) isa "'"'-open covering
of £, therefore a finite number of indices of / can be found such that {V, Vil, ..

..., ViJ covers £'. Then E—VczE'—V cz (J Vik, consequently E—V<z U F(c
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Conversely, suppose that E—V is compact for each “open VE£s(p), and let
{V{: /£/} be a 5~'-open covering of E'. If pd VP, then [VIDE: /£/} I1s a "-open
covering of the set E—(V{OH E), which is compact in ST since V'ofl E is a ,-open
member of s(p). If a finite subsystem {M{xHE, ..., {nC\E} covers E~(V'ifiC\E),
then {V{0, W\, ..., Vin}is a finite covering of E'. |

In view of (4.2) we can prove Lemma (6.1.22) of [2] independently of whether
3T’ is strict or not.

Lemma 4.3. If under the conditions of (4.2) is compact, then s(x)cs(/?)
does not holdfor any xdE.

Proof. Let us assume that xdE is a point such that s(x)c s(p), and {Vit:
i£1} be an arbitrary .3"Open covering of E. Then x£Vi¢ for some i06/, hence
Vicés(x)cs(p). By (4.2) E Vio is compact in ST, therefore a finite number of the
sets Vtcovers it, Adding Vioto this finite covering of E—Vio, we get a finite -Stopén
covering of E chosen from the original system. This gives that is compact, which is
impossible.  §

Proposition 4.4. Under the conditions of (4.2), if ST' is compact, then it is a
strict extension of STon E', and {p} is closed in ST'.

Proof. We shall show that if Vis a ~*“-neighbourhood of xd_E’, then there
exists a .“open set FOEs(x) such that s(VQc V. First of all, consider a point x
in E. Then VT)Efs(x), and if h)£s(x) isa &"open set with the property VL4 s(/i)
(see (4.3)), we have s(vQaV for V,=VIQVT\Eds(x). In fact, FOEs(y), ydE'
imply yVp (i.e. yfE), else VI1£s(p) would be true, therefore VO0isa ~neighbour-
hood of y, consequently y£V.

On the other hand, suppose x=p, then VO=VIi)E is a member of s(p) for
which s(VQ(zV is obvious.

{p} is indeed closed in ST', because for any X£E there is a set Vxds(x) such
that Vx”s(p), sothat MVX) is a neighbourhood of x which does not contain p. |

Lemma 4.5. Let [E, :T\ be a non-compact topological space and E'=E Uto-
Suppose that the topologies and f 2 are extensions of ?T on E' with the tracefilters
sx(x) and s§Xx), respectively,for xdE', further let be compact. Then < dr,

Iff St(p)cs,(p).

Proof. The condition is obviously necessary. In order to verify its sufficiency,
suppose sl(p)d52(p), and let V be a .Tj'-open set in E'. Assume

s,(A) = {xdE"\ Afs;(X)} (AczE, i=12.

VC\EEL£S!(x)cs2(x) foreach xd.V, therefore if pd V, then s.fVTE)cz{VTE){J{p) =
= V. On the other hand, if VczE, then for every xd.V there exists Wxds2(x) such
that Wx$s2(p) (see (4.3)), consequently Ux=VD Wxds2(x) and s2(Ux)c V.
These show that Vis open in | ff too. |

In a non-compact syntopogenous space [E, If] the complements of the compact
subsets form a filter base, which generates a filter in E denoted by c. In view of (4.2)—
(4.5) we can give a complete summary of the compact extensions of a topological
space with one ideal point as follows:
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Theorem 4.6. Let [E, ST] be a non-compact topological space and E'=E U {»}
The compact extensions ST’=STnp of ST on E' are exactly those strict extensions
which have a trace filter for p contained in ¢. For two such extensions ST( and STf,
ST(< STS iff slip)d52p) holdsfor the corresponding tracefilters. |

Let us consider an arbitrary non-compact syntopogenous space [E, ST]. We shall
say that [£', ST is a one-point compactification of [E, ST] if [E', ST] is a compact
extension of [£, ST] such that E' results from E by adding one ideal point p.

Theorem 4.7. Let [E, ST] be a non-compact syntopogenous space, E’=E U {Pi
and ST' be an extension o f ST on E* with the tracefilter s(x)for x£E'. Then [E', ST ]
is a one-point compactification of [E, ST] iff ST'tp is a strict extension of STpand s(p) d
dsT(c).

Proof. ST' is compact iff so is ST'p ([1], (15.78), (15.79)) and it is proved that
this holds if and only if ST'tp is a strict extension of ST,p\E=STtp and s(p)cc.
But this latter condition is equivalent to s(p) ¢ STft), provided ST is an extension of
ST. In fact, STit)a ¢, and on the other hand, because of the .5"-roundness of s(p),
the inclusion s(p)cc implies sip)d STit). |

Theorem 4.8. Any non-compact syntopogenous space has afinest one-point com-
pactification. This can be topogenous or perfect, provided that so is the original space.

Proof. Let [E,ST] be the space in question, £'=£U{p}, s(p)=ST(c) and
s(x)=ST(x) for xSE. Suppose that ST is the strict extension of STipon E' corre-
sponding to the filters s(x) (XEE"). Denoting by ST' the syntopogenous structure on E'
constructed in Theorem 2.1 of [6] for STand ST', we have ST\E~ST and ST'tp=
=ST'. Thus [E', ST is a one-point compactification of B‘by (4.7). If [E", ST"] is an-
other one-point compactification of [E, ST] with the trace filter s'(p") for {//} = £ " —£,
then define the mapping h: £'-*-£" so that h(x)=x for x££ and h(p)—p"
It can be easily seen that [£', h~IfST")\ is a one-point compactification of [£, ST]
with the trace filter Tip') for p. Then by (4.7) T{p')aST(t)=s(p), therefore
h~1iST"),p< ST' (see (4.6)). In view of Theorem 2.2 of [6] we get A-1{ST")< ST,
consequently [£', ST is finer than [E", ST"]. Finally, from [6], 21 it follows that
ST’ is topogenous or perfect, provided so is ST. |

For the study of the existence of symmetrical one-point compactifications let
us mention the following simple lemma, which can be deduced immediately from [1],
(15.47) and [2], (6.3.10) (or [2], (6.3.14)):

Lemma 4.9. |f ST is a symmetrical (and biperfect) syntopogenous structure, then
STif) isa compressed (Cauchy)filterfor any compressed ( Cauchy)filter baser inST. g

Theorem 4.10. A non-compact symmetrical syntopogenous space [£, ST] has a
symmetrical one-point compactification iff <£ST, A<B imply either AaK or
E—BdK for some ST-compact set K

Proof. If there exists a symmetrical one-point compactification for ST on a set
£:=£U{p}, then by [6], 4.1 we get that s(p) is compressed, so that because of
s(/i)cy(c)cc the filter cis also compressed (see (4.7) and [1], (15.48)). Conversely,
if ¢ is compressed, then STft) is also of this kind by (4.9). Putting 5Ip)—£T(c), we

14
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get s(Sf)sas a symmetrical one-point compactification of if on E', because s(if)sp
is a strict extension of Sf,pwith the trace filter s(p) contained in ifit) (cf. [6], 4.2 and
(4.7)). Thus we saw that the existence of a symmetrical one-point compactification
is equivalent to the fact that cis compressed in Sf. This latter condition is satisfied
iff A<B, -"£if imply Af](E—K)=0 or (E—B) C\(E—K) =0 for some compact
set K, that is, either A or E —B is contained in an  -compact subset of E. ¢

Analogously, we can state:

Theorem 4.11. A non-compact symmetrical syntopological space [E, if] has a
symmetrical biperfect one-point compactification iff for any <f .f there exists an
i f -compact set K such that A-=B implies either A <K or E—BczK.

Proof. We have to write the term “Cauchy filter” instead of “compressed filter”
and to use Lemma 52 of [6]. (

If [£”, Sf') is a one-point compactification of the syntopogenous space [E, if],
then if' is relatively separated with respect to E by (4.4), consequently, two symmetri-
cal one-point compactifications of [E, if] are always equivalent extensions, because
these are double compactifications of the space in question (cf. [3]). However, as the
following example shows, a symmetrical (and biperfect) space in general has several
one-point compactifications even if it possesses the property described in (4.10) (or
4.11)).

Exampte 4.12. Suppose £=[0, 1), if =f sb\E. With the notations ,E'=[0, 1
and if'= Jg\E', it is obvious that if' isa symmetrical biperfect one-point compacti-
fication of if, namely p= 1 Let us denote by if" the finest syntopogenous structure
on E' compatible with the pair {if, if’tp (see [6], Theorem 2.1, 2.2), which is also a
one-point compactification of if on E' by (4.7). It is easy to verify that if' and if"
are not equivalent. In fact, forany < fif, E<E cannot hold, at the same time E
is an if'tpo~CN set and E~=E for every < iif, hence E-=fE is fulfilled by each

(cf. [6], (21.1). g

Further we shall study the one-point compactifications of locally compact S2-
syntopologies.

In a syntopological space [E, if] a set EOwill be called strongly open if EO< Ed
for some <£.if. It is clear that every strongly open set is open.

Proposition 4.13. In a locally compact syntopological space with property (v2
any strongly open subspace is also locally compact.

Proof. Let if be a locally compact S2-syntopology on E, and suppose
EO<EOcE forsome < (fff. Ifthe order < ffif is chosen in accordance with (2.4),
then for any xf EO, we have x<.KxczEQ, where Kx is *-compact. Kx is also
(BNEQ-compact, and xi-cxIE,,).”, thus if\EOQis locally compact, too. g

This implies that if a syntopological space [E, if] has a symmetrizable compacti-
fication in which E is strongly open, then if is necessarily a locally compact S2-
syntopology. In order to verify that a locally compact S2-syntopology always has
such a compactification, and what is more, this can be a one-point compactification,
let us introduce the following notion.
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A syntopological [E\ if'] will be called an Alexandroff-type compactification of
the non-compact syntopological space [E, if] iff E'=EU (p) and Sf'~sW |,
where s(p)=£f(c) and s(x)=Sf(x) for xfE. Since in this case £f’,p=s(if)pp-=
=s(if),p is a strict extension of i ftpcorresponding to the filters s(x) (xf_E"), such an
extension is in fact a one-point compactification of [E, if] (cf. 83 and (4.7)). It is
also easy to see that two Alexandroff-type compactifications of a syntopological space
are always its equivalent extensions.

Lemma 4.14. Let [E, if] be a non-compact locally compact syntopological space
with property (S9, and let [E\ £9"] denote an Alexandroff-type compactification of this
space. Then there exists an order <Of£f' such thatfor every X£E the inequality
p(<06°<06c) E'—x is valid.

Proof. Assume x<Kx (<£if is fixed) for any xfE with a compact set Kx,
and let be an order of if satisfying the condition of (2.4). Suppose <2fif,
<IC<1 and 5(<2PC Because of the compactness of any point xfE
there exist compact sets Kx such that x< IKx<[Kx, and from this

E—Kx<2Cx <2E—Kx W<EE—x.

Then pes(CXM0(E-K'X)C:E'-s(K'X)MNOE '-s(E- V) aE '-x. This proves the
lemma. |

In possession of (4.14) we can complete (4.13) as follows.

Proposition 4.15. Any Alexandroff-type compactification of a non-compact
locally compact syntopological S2-space [E, if] is also an S2-space in which the set E is
strongly open.

Proof. Under the notations of (4.14), the inequality x<'OE'—p=E holds for
each xfE, therefore E is strongly open. Trivially, for any -=ifif' there exists
<\<fif* such that x, yEE, x<’E'—y imply *(<{e <f)E’—y, as seen from prop-
erty (S9 of if. If <€€&0*" for which <OU<IC-=£, then by (4.14) -='C(<£-
«*20k> hence if' is an S2-syntopology. |

Theorem 4.16. An Alexandroff-type compactification of a non-compact locally
compact syntopological S2-space is one of the coarsest symmetrizable compactifica-
tions of this space.

Proof. Let [E', if'] denote an Alexandroff-type compactification of the non-
compact locally compact syntopological S2-space [E, if]. This compactification is
obviously symmetrizable (cf. (2.9) and (1.5)). By Theorem 14 of [3] it will be suffi-
cient to verify that denoting by if'xthe unique symmetrical structure on E' such that
if\p~ if\ the restriction if'\\E=£f1 is equivalentto if + (see (2.6)). Owing to (2.6)
and if{~if, the inequality if+ <ifx is clear. Conversely, suppose <fi£f\,

<iC<2 finally assume, for a suitable <££f, Then we have
<2C --, and from the symmetry of <2the relation <2C <c also follows. It can
be easily seen that if{ is a symmetrical one-point compactification of i fx, therefore it
fulfils the condition given in (4.10). Suppose A<>8, then

A<2C D<2F<2G<=2B

14*
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for suitable C, D, F, GezE. On the basis of (4.10) DaK or E—FcK for some
9 X-compact set K (which is at the same time mS'jcompact). Denoting by X the 9-
closure of the set jc f, in the first case AcAczC<®<FczB, and because of
AczK, the set A is ~-compact. In the second one E—B(zE—BczE—G<E—F<

-"E—D cE—-A, and from E-—BczK the compactness of E—B can be deduced.
We got that A<)8 implies A<+B or A<+HB, so that <1C <+, consequently
9 X* 9 + which was to be proved. |

On the other hand, we have the following remarkable result.

Theorem 4.17. An Alexandrojf-type compactification of a non-compact locally
compact syntopological S, -space is one of thefinest one-point compactifications of the
space in question.

Proof. Suppose that [E', 9'] is an Alexandroff-type compactification and
[E[, 9]\ isan arbitrary one-point compactification of the non-compact locally compact
syntopological S2-space [E, 9]. If E'=E(J{p} and Ex=E\J{pR, then let the
mapping h: E'-*EX be defined so that h(x)=x for xEE and h(p)—px. It is
obvious that 9"=h~1(9[) is another one-point compactification of 9 on E'
We have to show the (9", ~i)-continuity of h, i.e. 9" <9” Suppose -9% 9",
<'C <i3, <[£9" <E£9, Let us choose the order 9 for < in
accordance with (2.4), finally assume <269, <jC<1, <3£9, =U<2C
The inequality <'Cs(<3" will be verified. In fact, if p9B for some BczE',
then there exist C,DczE"' suchthat p<xC<xXD<xB, and from this CHE*"DOE
follows. Denoting by s'(p) the trace of the neighbourhood filter of p in 9", we get
CC\EN.s'(p)(z9(c)=s(p) (see (4.7) and the definition of Alexandroff-type compacti-
fication), thus p£s(CC\E). Trivially, s(_DC\E)C\EczBC\E, therefore siDriiOc:
c(BC\E)[J {p}=B, hence ps(<s)B. Now suppose that xEE and x-9B. Then
x<j/? isalso true, therefore x</?f]E. One can find an 9 - compact set K such that
x"KaBOE, because {X} is compact in 9, too (see (2.4)). If x<2K<2v, then

x € s(K) s(<3)S(K) < BHE ¢ B.

Indeed, p£s(K) cannot be valid because in that case E—KxczK, i.e. E=K UKXx
for some compact set Kx, which would contradict the fact that [E, 9] is not
compact.

In possession of the above result we can state 9" < s(9)p hence hisan (9", 9X)-
continuous surjection, that is, [E 9'] is a finer extension of [E, 9] than [Ex,9 }. |

As is well-known (Theorem 14 of [3]), two symmetrizable compactifications of a
symmetrizable syntopological space are equivalent iff each of them is finer than the
other one. In view of this, from (4.16) and (4.17) the following result issues:

Corollary 4.18. Up to equivalence o f extensions, a non-compact locally compact
syntopological S2-space has a unique symmetrizable one-point compactification, which
is an Alexandroff-type compactification. |
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5. Simple compactifications

0. Frink [7] introduced the notion of a Wallman-type compactification of a
“classical” topological space, which is a generalization of Wallman’s original method
for the construction of a compact Tx-extension of Tx-spaces. The separation proper-
ties of Wallman-type compactifications were studied by several authors, their results
are summarized and generalized in Chapter 6.1.e of [2]. In [4] A. Csaszar pointed
out the close connection existing between the Wallman compactification and the
double compactification of topological spaces.

A double compactification of a syntopogenous space [£, ff\ is a doubly compact
syntopogenous space [E*,£E*] such that E is **s-dense in E*, SE* is relatively sepa-
rated with respect to £ and SE*\E~EE (see [3]). It is known ([3] and [8], §4) that an
arbitrary subspace [£', £E] of [£*, ZE* containing E can be constructed as follows:

Assume \(x)=IEs(x) for x£E, and let x<*f(x) be a one-to-one corre-
spondence between the points xEE"' —E and a family of non-convergent round com-
pressed filters in if* (in the case of E'=E* this family consists of all such filters).
Supposing s(x) =tE(<f(x)) for x££', we have £E'~s(SE).

First of all we prove two lemmas.

Lemma 5.1 (cf. [8], (4.6.4)). Under the conditions mentioned above

(5.1.1) (1&i&n)

imply SII\}FJ14'?‘ c illes(E,) for any natural number n
(512) If <1, <Xy and A -<[C<2f, then E'—s(E—A) c s(B).

Proof. (5.1.1): Suppose XE£s ((Jla\. From U At£s(X), s(x)cf(x) we can
conclude OE{"G(n)f(x) for some index In fact 0€ {MH(H)F(x) (1~/"™n)

means E—A&f(x) (I™i~n) and E—|.] A= H (E—AYE f(x), which contra-
i=1 i=1

diets _UI ANCF(x). f(x) is compressed, therefore if ~££E, <C<i and
1=
-=IC<1io, then CEf(x), and from this £,CEi(x).

(5.1.2): Put <3ffE, <2C<§ and C<3D<3B. Suppose x£E£'—s(B). Then
Z)(ff(x). This implies 0% {£—£}(n)f(x), therefore in view of £ —C£f(x), we have
£ —4£s(x), that is xES(E—A). |

Lemma 5.2. In a syntopogenous space [£, £E]
(5.2.1) the maximal roundfilters coincide with the round compressedfilters;
(5.2.2) for two iEs-round compressedfilters and 2

em) = a'if) f&x=f;
(5.2.3) ifunder the conditions of(5.2.2) fxis round in SEC then 0 ft(n y*oN(far<>fi —fae
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Proof. (5.2.1): Suppose that fisaround compressed filterin y , and flis a round
filter such that fcfi- Then Fcfi implies F,<F for some and <fy.
0€ {"i}(n)f, consequently FE£f. This shows f=fi, thatis, fis a maximal round
filter. Conversely, let us assume that f is a maximal round filter and 0$ {T}fDf,
where A<B, <£y. We show that BEf. Indeed, fcan be included into the round
filter £7(A)(n)f, hence the condition of the maximality of f implies

BdO {A)ci& (A)(r\)\ = f

(5.2.2) : Suppose «@\fi)="(f2 and There exist <£y and A£\x for
which A<3. Then by [1], (3.44) A= i(_JI (AIDA-) and B=>(=;)| (if-fIB"), where m

is a suitable natural number, further A7Bi and T-<G\: (1 Put =x€y,
<c and At*"C"Bi, Ai*C-"B- (1 By O0${T}(n)ji we get
00)  PiM/}(flfx for an index i. f, is compressed, therefore C;f)C'Efxm We have
'S, €97 (f)=""(f)c f2. On the other hand, B 'ff2 isalso true. In fact, O {C,}(n)f2,
else E—C'idf2 would imply E—Aid&’(fd= 9°'(fh)cfl Thus Bif)B[€(2, conse-
quently, BEf2. This gives ficzf2, and from (5.2.1) fx=f2 issues. The inverse impli-
cation is clear.

(5.2.3) . By the compressedness of fi, 0" fi(n)y(f2 implies y(f9ch
that y (fAcy”). Conversely, letus suppose FE57(fi). Then there exist <gy
and BE£ suchthat V. For F*y, < C<f, wecanfind a set C with B~C *

V. Choose <26y and TE£fi forwhich A<®B. In view of our condition E—B$

f2, else E—ALEf(f) would be true. Thus 07 {5}(fl)f2 so that because of the
compressedness of f2we get CEf2 and These show ~ (fj =" (fs), hence
by (5.2.2) fi=f2 The converse implication is obvious,

Further on we shall study the subset
£* = {XEE*-E: f(x) is .A-roundJUF

of E* containing E, denoting by y* the syntopogenous structure y * |EX.
Lemma 53. For fc£'c£*, y'=y*|fs' is compact if and only if ExczE'".

proor. Firstofall we prove thatif E*aE', then if iscompact. Suppose that
f' is an arbitrary filter in E'. Then y ,c(f) isround iny 'c, and since Eisy 'cdense,
the filter f= {£}(n)y,c(f) is round in y c. f can be included into a maximal
(i.e. compressed by (5.2.1)) y cround filter, say f(x), for some xEE*aE'. (If
this maximal filter fO is non-convergent in y s, then xEE*—E. If J0-*x£E in //',
then f(x)=ys(x)czf0, the y sroundness of fO and the maximality of f(jg imply
f(x) = fc.) x is a cluster point of f, otherwise there exists f f f' such that x<'
fE '—F for some F£f. If <(gy', -='C-<i2 then x fxVfx’—F can be
written, so that E fl FEs(x) cf(x). On the other hand, E'—V£9"c(f), hence
E—£fi V)=EE\ (£'—K)6fcf(x), which is a contradiction.

Conversely, if i f is compact, then, for any xfjif- E, f(x) has a cluster point
yEE'. One can easily show that in this case 0$/(x)(n)s(>)=f(x)(n)y(f(>)),
hence (5.2.3) x=y. Thus ExaE'. |

SO
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Lemma 5.4. Suppose £ c £ 'czE* and xdE'—E. Then {x} is closed in 9 ’
iff x<LEt

Proof. Put xdE*. ydE' lies in the ~'-closure of {X} if s(y)cs(x). Then
0% f(jc)(n)s(™) = f(jc)(D)~’ (fOO) implies x=y, so that {}} is *'-closed.

Conversely, if {x} is closed in 9', then for any ydE"' (xAy), s(y)cj:s(x). Con-
sider the system

f= {E-X: XY, r$s(x), <d9),

which is an ~ cround filter. In fact, E—X'ziE—Xdf implies rcl<y {5 (i)
for some <d9, therefore E—X'df If E—XIt E—X2d\, then

X2<iY2*s(x) for suitable <1,<zd9 and YLYicE. Assume <tC<i2
<2C <2 where <j', <?,d9. Then, for -='U<JC <'d.9, there are sets
Zx,Z2czE such that Xi9Zi9Yi (7=1,2), and from this AlLUA2'Z1UZ2$
<Js(x) (see (5.1.1)), thus (E-XIN)C\(E-Xi)=E-(X1JIXi)d\. If E-Xd\, then
X< y$s(x) (<d9, YczE) implies the existence of an order and a set Z
such that X~Z"Y . Since E—~Z<{E—X and £ —Z£f, fis an .S"-round filter
indeed, fcan be included into an  ‘-round compressed filter, say f(y), where ydE*
(ydE or ydE*—E depends on the convergence of this compressed filter in 9 9).
We show that x=y. In fact, if x*y, then there exists T£s(y) suchthat Y $s(x).
One can find a set Xd((y) sothat X<Y for a suitable < d.9, hence E—Xdfc
czf(.v), which is a contradiction, fl

A compact extension [£', 9'] will be called a simple compactification of the syn-
topogenous space [E, 9] iff£ isdensein [£', 9 's]and {x}isclosed in 9" for xdE' —E.

Theorem 5.5. Any synlopogenous space [£, 9] has simple compactifications. |f
[E', 9 7] is a simple compactification and [£*, 9*] is a double compactification of
[£, 9], then there exists a unique isomorphism of[E', 9'] onto [£*, 9*], which coin-
cides with the identity mapping on E, consequently, two simple compactifications of
[E, 9] are always equivalent.

Proof. In view of (5.3) and (5.4) [E£*, 9*\ is a simple compactification of [£, 9]
for every double compactification [E*, 9*] of [£, 9]. If[£', 9'] is a simple compacti-
fication of [£, 9], then by the ~'-closedness of the points of £'—£, 9 ' is relatively
separated with respect to £, thus the existence of the isomorphism described in the
theorem is a direct consequence of [1], (16.45) and Lemmas 5.3, 5.4 of the present

paper. |

Let us consider an arbitrary syntopological space [£, 9 (], and let 9 denote a
syntopogenous structure on £ such that 9 0~ 9 P It is obvious that if we choose
a simple compactification [£', 9'] of [E, 9], then [£', 9 "p] is a compact extension of
[£, 9,,]. As it will be shown by (5.6), in this way we get a generalization of the notion
of a Wallman-type compactification of a topological space.

Example 5.6. Let S be a lattice-base for the topology 900n £, and let us denote
by 9 the topogenous structure generated by <8 Then 90=9PF and if [E', 9 "\
is a simple compactification of [£, 9], [£', 9 'p] is a Wallman-type compactification
of [£, 9 ( belonging to S (in the sense of 6.1.e of [2]). In fact, with the notation of
(1.13) the ®c-ultrafilters are identical with the .~ “-round compressed filters in £. |
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Now we shall discuss the separation axioms (Sri and (S2 in the simple compacti-
fications. First of all an easy lemma will be verified.

Lemma 5.7. Let us consider the following two pairs of conditionsfor a syntopo-
genous space [E, if]:

(i) ifp<ifcp\

(i) if < dif, there exists <xdif such thatfor each if‘-round compressed non-
convergent filter f in if, (5.7.1) A--B and Adf imply CA*[B with some CEf.
Further

00 For every xEE, ifs(x) is round inifc\

(Uofor <dif there exists -~ffif such that any if‘-round compressed filter
f has property (5.7.1). Then the statement (i) &(ii) is equivalent to (i') &(iiO-

Proof. (i)&(ii)=>(i0&(ii0: Let us observe that if xdE, then
Hs(x) = {VxnV2: x"V 1} x*'V2 <dif\

therefore (i) implies 00- In fact, suppose Vc.T'fx). Then V=VI1C\W2, where
jecFj, x<cV2 for some If <~dif, -=pC-=op, ~=-"Mf, -0U<C

finally <'C<?, then there exist sets Wx, W2czE such that x<xWI*]VL
and x<{W2<{V2, consequently, If) HW2difc(x)czifs(x) and Wx0 W2-ffV.

For the sake of the verification of (ii") let < be a member of if and choose

dif in accordance with (ii). Suppose that <pC<op ~dif (see (i)), <ddif,
-~oC-762 and <'U<6C<idif- Letfbean «S"round compressed filter. If it does
not converge in if, then by (ii) A< B, Adf imply C<\B for some CEf. On the
other hand, assume that xdE is a limit point of fin if. Then xdA for every Adf,
else, for a suitable <2dif and Xdf, xdE —A<Z—X would be true, consequently x
could not be a cluster point of f. Therefore A<B, Ad.f imply x-"B, thus Xx<£B,
and x-NfCAfB for some Ca E. Then C<[B and by the compressedness of f
we have CEf.

(i0 &(ii")=>(i) &(ii): Condition (ii") is obviously stronger than (ii). In order to
prove the validity of (i), put ~=-dif, <0Odif, and choose <xdif for <0
in accordance with (ii"). Then x<B implies x*rA-<rB, hence by the compressed-
ness of £fs(x) and Adifs{x), from (ii") we obtain C-=ffB for some Cdifs(x).
xdC yields therefore <pC<ip |

As in a topogenous space (5.7) (ii) and (ii") are always true, we get the following
generalization of Theorem (6.1.52) of [2] (cf. also (1.16) of the present paper).

Theorem 5.8. A simple compactification of the syntopogenous space [E, if\
is an Sx-space iff [F, if] satisfies conditions (i)—(ii) (or equivalently (i')—(ii")) of
(5.7).

Proof. By (5.5) it is sufficient to verify the assertion for the case of the space
[E*, iff], where [E* if*] is the double compactification of [E, if]. Suppose that
[E*, iff] has the property (Sri- Then in view of (2.7) Hxp<H*ap, thus the validity
of (i) is clear. Further assume ~=-dif, <odif, s(<0> <'PC
C <icp <idifX, <iC<22>finally <2EC <\dif- If fis an ri*-round compressed
non-convergent filter in if, there exists XdEx—E such that f=f(x). Putting
A<B and Ad], we have A<(X-<B for some XdE. Then x®6i(A), therefore
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xM's(B). Consequently, x<2ZC'<zs(B) for a set C'czE*, and this implies
C=C'DE€f and C/[B.
In fact, if <2€-*, =i='S(<2» then E*—C's(<")E*—x, that is,

by ni

m m
E*~C ¢ U n s(V,j)f u n s(yVijc E*-x,
i— =1 i=l7=1

where m and nt are suitable natural numbers and Fy<2IFy (1=i=m, [*j*ni).

For H Vjj=Vi and Pi N = we have
7=1 7=i
s(F,) = fi s(Vij)) and s”,) = f] HWj),
therefore h .

m m
Ef-C'a U s(Vi) and _|J s(JFfc ~-x.
1= i=1

Suppose <3E”, <2C <8 In view of the topogenity of -=2, there exists Z,c:£
m m

for any 1*i*m such that Putting V=\J VKand Z= 1) Zf,
i—+ 1=

we obtain K<3z, £*—C'czs(V) and ,s(Z)c: 8 A(IFACFi—x  (cf. (5.1.1)).

i=1

Further assume <4€”, -=3C”"1 and K<4£/<4Z. Then x<£s(Z)=>US$f(x),=>
=>£—KEf(.Y)=>-CEf(x), because E—F c£n(£4—s(K))cC. Finally, from the
choice of weget C=C'C\E~{s(B)r\E(rB, thatis C<{B.

Conversely, under (i) and (ii") put «SzZ\, -="\£Z, <'C.s(-=), <i£lZ, < C <*,
Let <2MiZ be an order determined by (ii") for <1; finally, suppose <2C <3 for
<3e5" and 5(<3C By (i") f(.v) is an 5"c-round compressed filter for any
X E*. Then x,y£Ef, x"'Ef—y imply the existence of sets A, BczE such that
A<B, xts(A) and s(B)czE*—y. Assume A~X "B, then because of A£f(X)
we have C<|T, where CCf(.v). Consequently, C ~Y X for some YczE. On
the basis of (5.1.2) we obtain from YAXAAB the relations

yrE*-s(B) ¢ s(E-T) » s(E-C)c Ef-x,
so that x<[cE*—y. |

In general there is no connection between the normality of a syntopogenous
space and that of its subspaces. In this respect we have a remarkable exception.

Proposition 5.9. Let [E', SZ'] be an arbitrary subspace of the double compactifi-
cation of the syntopogenous space [£, if] and suppose £c £'. Then ,9” is normal iff
S0 is SZ In this case we have SZ'VAE~SZV.

Proof. Assume that SZ' is normal, and let < £SZ, ZSZ, =C =2, ="(-=i),
m\MZ', <je-<jc <2m&X M-iffZ suchthat -=2EC-=2- Put AN/ B, further
/4<jCA<JC<I£1=1E. Then by (5.1.2)

0 A= E'-s(E-A) =icE'-s(£-Cd =s(£4 s(£) = B\
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hence A’<XC'<fB' for a set C'cE’, thus
2 A ez A'DE <2C'[1E <£B'DEa B
Conversely, suppose that if is normal, and let <Inif, <'Cs(<x),

finally
<, &Z<'F. With the help of (5.1.1) one can verify that there exist subsets A, B, C,
D of E such that A<0B, C - 0D and

E'-Zas(A), s(B)a E'—X, Zcs(C), s(D)c Y.
From this E—AczC follows, hence E—S<gf—AaC<D. If E—B<.BI<{

<[s(E—F)czE'—s(F), consequently, X<(.?(/m) Y.
It can be easily seen that if’v\E<ifv, and the relation ifv <if'"\E can be
read from formulas (1), (2) of the first part of the proof, {

Thus Theorem (6.1.53) of [2] can be generalized as follows (cf. also (1.13) of this
paper).

Theorem 510. A simple compactification of the syntopogenous space [E,iA
is an S2-space iff [E, if] satisfies conditions (i)—(ii) (or equivalently (i")—(ii')) of
(5.7) and it is normal.

Proof. These conditions are sufficient, because in this case the simple compacti-
fication is a normal Si-space, hence it is also an S2-space (see (5.8), (5.9), (2.7), (1.17),
(1.11), (1.5)). In view of (2.8), (5.8) and (5.9), the conditions are necessary, too. (

Let us observe that, under the conditions of (5.10), denoting by [E', if'] the
simple S2-compactification in question, we get [E', if'p]as a symmetrizable compacti-
fication of [E, ifp] belonging to the symmetrical syntopogenous structure if* on E
by (2.9) and (5.9). The connection existing between Wallman compactification and
iech—Stone compactification of a completely regular topological space, can be
extended as follows (cf. [2], (6.4.25) and [3]):

Theorem 511 Let [E\ if'} be a simple compactification of the symmetrizable
syntopological space [E, if]. Then [IT, if'p] is symmetrizable iff[E, if] is normal and
has property (ii) of (5.7). In this case [ET, if'p] is thefinest symmetrizable compactifi-
cation of [E, if].

Proof. The conditions are necessary and sufficient, indeed, because the symme-
trizable syntopology if satisfies (5.7) (i) automatically (see (1.15)). Since this compac-
tification belongs to ifv (in the sense of [3]), by (1.14) we get that it is the finest
one.
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MPNMEHEHVE YNCJIEHHO-AHAIMTUNYECKOIO METOJA
A. M. CAMOWVNEHKO K UCCNEAOBAHWMIO MEPUOANYECKUNX
NMHENHbBIX ANODEPEHLMANBHBIX
YPABHEHWIA C MAKCIMYMAMW

. X. CAPA®OBA u J. [l. BAIHOB

PaccmoTprM cKansipHoe anddepeHUMaibHOe ypaBHEHNE
Q) FIO+FIO+?Té'R%1y(T):/o(O,

rae q — NoMOKMTeNbHaA nocTosiHHas, / 0(/) — -neprognyeckasi, HenpepbiBHasA B
uHTepBane (—°, + °°) yHKUMA, n — Masias MoSIOXKMTeNbHasi MOCTOsAHHasA. [loc-
TaBUM cebe 3aaa4y HaTW TEX 3HAYEHWI h, 4181 KOTOPbIX ypaBHeHMe (1) 6yaeT UMeTb
nepvoanyeckoe peLlieHune. Mpun peLLeHnn 3Tor 3agadm ByaeM NPUMEHATb YUCIEHHO-
aHanmMTUYeckuin Mmetog A. M. CamoiineHko [1]—[3] n HekoTopble ero 0606LeHns [4].

Monoxkum B (1) n=0. [MonyuMm NnHerHoe AvdihepeHUManbHOE YpaBHEHNE

@) A>(0+(1+ ?)n(0=/0(0-

Kak M3BECTHO, 3TO ypaBHEHVe UMEET eAMHCTBEHHOE MEPVOANYECKOE PELLEHME,
KOTOpOE 3anucbIBaeTcs hopMysIoi

() Yo(0 = /e-< L+«H*-*)/0(T)N.
Monoxkum
4 y(i) = Yo(0+*(0-
Torpga dyHKumst x(t) 6yaeT yAOBNETBOPSTb YPaBHEHWIO
©) O+ A+ 2)*() = -2 [ fpax (yo(m)+*(1))- (YO(r)4-*(?))]
Beegem 0603HaueHuUst. Ecnvm gaHo nuvHeliHoe AuddepeHUManbHOE YpaBHEHNE
x(t)+Ax(t) =f(t),
TO yepe3 /(i) 6ygem 0603HaYaTb BbIPaKEHVE

(6) O = ,,-XT/ e-AT-t/(7) di.
1 e 0

Meproanyeckoe peLleHre ypaBHeHUs (5) 6yAeM UCKATb YMCIEHHO-aHA/TUTUHECKM
meTogom A. M. CaMoiineHKo.

1980 Mathematics Subject Classification. Primary 34C25.
Key words andphrases. Numerical-analytic method, linear differential equations with maximums.



222 r. X. CAPAGOBA W . . BAHOB

PaccmMoTpuM MoC/ef0BaTeNbHOCTb Mepurognyeckux Mo t nepuoga T cyHKUmiA
r
X+ *0) = x0-q y[ e- (l+<<)('-’\{1[*€r[‘rT1§xAT) gyoCD+ X,,C0)-
()

- (0Q0+ X, ()] - [s max M (y0(s) 4-xn(s)) - (yO(T)+ xn(T))]} ch.
Ecnn npegnonoxmTb, UTo nocnegosatenbHocTb {X,,(/, X} paBHOMEPHO CXo-

anTea K X,,(t, X0, To gyHKUMA x,,(t,x0Q 6yaeT nepvogmyeckmm pelueHuem (5),
npoxofswee npu t=0 uyepe3 TOUKY X[, ecim X0 ABNSETCA peLleHMeM YpaBHEHUs!

) (L+q)x0+ gKmax | (v.(1) + (T, x0)- (yO?)+ x., (t, x0)] = 0.
MTak, BOMpOC CyLUEeCTBOBaHWS U OTbICKaHWS -MEpUOAMYECKOr0  peLLeHMs
ypaBHeHus (5) CBOAUTCA K HAXOXAEHWUIO YC0BUIA paBHOMEPHOM CXOAMMOCTU Noc/e-

poBaTenbHocTU (7) 1 paspewimmocTu (8).
O603Haunm uepes |7[t—h, 1\ Touky, B KOTOpOI [OCTMraeTcs

(B, YAO+¥0), Te., max (yOCO+*g)=yo(ii)+*o-
e (yO(s) +x9 - (y () +x0Q = y0(tj -y O(t).
OueHum  |y0(6)—Y0(01- Vimeem
bo(0)-To(0] = /To01>  ?€(t-h, t).

81 C pgpyroii CTOPOHbI, CyLIeCTBYeT MOCTOsSIHHass R=const, Takasl, 4TO
sup |[yo(O1=0- CnegosaTtenibHO, B UHTepBasie (—°, + °°) byaeM UMETb

Torpa

) bo (ii)-To (01 = hR.

Beegem o6o3HadeHe X =—+q). OueHMmM MOAynb pasHocTh xX(t, XQ —xO.
Nimeem

Xi(1x-x 0 = A+ [ es(“ [ max, 09+ x0 -

- (To(O+*,)] - is max ~(y0(s)+ xQ- (yO(T)+ x0] }ck

(tO0) SAT t JAL 1 T Y
CexT 1 | e~X(IT+eXT_ 1/ ex<='UT) =
= W+A\hBce(X, t) S \1+X\hcc  yj = ghBa™X, y),
roe
2(ei(r-0_1)(eA»_1)
(") a(A, ) =

AEXT- 1)
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Beegem o0603HaveHve dx=hB\+Xa yj. W3 (10) BugHO, uTO npwu

*(—"°, +°°), xCE[a+d;, b—d,] dyHkuma xx(i, x,,)€[a, &4 MeTogom maTemaTu-
YECKOI MHAYKLMN MOXHO MOKasaTb, YTO A1 BCEX n = 0, 1,2, ...UNPU /€(—co, -fco),
X0E[a+ W, in- if;], dyHkumm X,,(f, xO NpuHagnexar wuHTepBany [s, i).

OueHum [xX(T; /) |.  imeem

*i(', *0) = - i{[S max , (yo(0+x0Q- (ya(0+x0]-

/ \
- Ismax q(YO(s)+ xo0)- (Yoo + x 0713 -
r
-gx  [eA(-D{[ mMax (o(s)+ x0)-(>0(r)+ x0)]-
J K SE[t—AT]

- [smax (y°(s)+x°)- (yO(T)+ x°)]} dz + Xx0-Xx0=

= X xQ -x @-?{[ max (y0(s)+ x0- (jO(0+*0)]~

- [ may,, (>0(8)+ X0~ (yo(0 + 0]}
Torpga, ucnonb3ys oueHkM (9) n (10), Haxoamm
[xj(i, xQ| & \X\hBW+X\<x(X, t) +2hB\I+x\ =
(12
= ghB[(I +a)a(X, 0+ 2]~ ahB {\ +q)a. |a, yj+ 7+
OueHyM Tenepb BblpaxkeHWe |X2(i, XQ —xx(t, XQ|. Wmeem
eA (T-i)_I »

M'> *0)-*iO>*0)l q—>r_i / X
e 1 u

X ”S(!F%'UO o(s) T*i(s))-0"0(t) +x 1(t))]-

- GflazqU (0+%0)- (To(t)+ X0} dz+
—I
+( :;(’r-\ f eHT °1 ¢c™aEf]O«(0+*1(0)- (>bCO+ X ()] -
- [s maxt, (yO(s) + xQ- (>0(r) + x0Q]\dz.

[na ganbHeMLINX OLIEHOK HaM MOHago0MTCA MOMOLLIHAsA OUeHKa. PaccmoTpum
BbIpaXKeHe

Hy(0, *(0. Uh) = max yM+x@]- max y()- x(0,

t6[i- A 1

rae x(t) m y{t) — npownsBosbHblE HEMPepPbIBHbIE PYHKLMW. TyCTb tX 1 t2— TOUKM
nHTepBana [t—h, /], B KOTOPbIX JOCTUraTCA MaKCUMyMbl yHKUMIAY (/) uy (t) +x(t)
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COOTBETCTBEHHO. TOrda cnpases/IMBoO HEPaBeHCTBO [5]
(13) aO,nl = 1nm- a(t)!+ &a(/2a- a0 |.

Bosbmem B IM3) B KavectBe X(t) — yHKuMo xk{t) —xk- x{t), k—I, 2, 3, a
B KayecTse y(t) — dyHkumto yO(i) +xk i (t). Torga HepaBeHcTBO (13) nepenmuleTcs B
BUAE
| max feCO+jHOCH] max [ j (1) +y0(m]- a(i)+ a*_t()]
(14) S [@(0- A_1(0)- (xk(t[K)- X_!(/iK)) +
+ |(Ac(4K) - x k™ (th))- (XK(t\K)) - X k. r$*>)).

3ameTum ewge, yto npu t'C\t—h, t] cywectByeT Touka t"d{t—h, t), Takas
uTo

|6k () - X_1(0)- (x*(O-xk-r(0)] = h -»~(xtCO-Xt-iii'O)
(15)
= hsup dt (xk(t)-xk (1) K=123 ...
Mmes seugy (15), nonyyaem
| max, [a4() + 7o(8)] - mex b _x(1) +yO(m] - xk(®)+a* x(0|
(16)
2hsu-p \~d7 (x~ (0 ~xk-i(0)

Torga un3 (16) n (12) cnegyeT oOugHKa
x2(t, x0) - x 1(t, x| = 2hg- ghB[(I +q)a[k, y) +2] X

t pM_t T

(17) Ill_llql+jwzrfe)<rllq S

3 A0V [(I+«)e(Uyyt2]r(a,y).

Haigem oueHky ansa pasHocth X2f, XQ —1¢t, a0). ViMeem

X2(i, x0) - x 1(i, x,)] » |A|la2(/, Ag)-"~ 17, x0)]+
+ * +Al(9))- +a0) - -
Af Jay, o +A () max (yo(s)+a0- (a()- a0]

. l[JﬁHE)ft] (yOcs) + xj(s)) - SEm%)fq (yOs) + a0)- (a, () - x0) 1

S (1+q)28h202i1+ ) a2 y) + Jala  +4Tisup <7y

A2 R q2h2[(l +q)oc[x, |) + 2] .
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NTaKk,

(18) I, *0)-*i(", *0)1 (1 + <?)«

JonycTnm, yTto ANnga HekoToporo n” 1 BbLINOMHAKTCA HepaBeHCTBa

(19 \X,,(6,X0 - x M A(t,xO\*j(2hg)n (\+qg)cch,*+2"~ a(a, vy},

(20) IJT,(i,]TQ—fI',,_l(E XQl y (2119 [ +?)a[ﬂ,y} +r .

MNoKaxkem, UTO TOrja BbINOMHAKTCA N HepaBeHCTBa

(21) \XnH(t, XO - x n(t, XQ| Ny (29[ (1+ 9)x[a, y] + 1] a[a, ¥},

@ | o0 (>*0)| "y(2/19)"H1[(1+9)«(s, y)+2]

Nmeem

W+t x0) - x n(t,x0\*2hg-j(2hg)n[(1+q)x[1,Q +2\ a[s, yj =

= | (2w "*10(1 + q)a (Fl,y )y + 2] a (Fl,y) .

T.e., HepaBeHCTBO (21) BbLIMOHEHO.
Ona BbipakeHns |x,,+1(i, X0 —x,,(/, xQ| Haxogum

1%, +i(f, XO-x,,(/, XO| ~ (L+9)y (2hq)n+IX

X[Q+9)a(R y)+2] a(a,n)+4M9]-(2119)",[(L+9)a(a,y) +2] =
= | ( 2m)-+1[(1+ 9)a[a,~)+2] [(1+9)«(s,y) +T] =

= (2N 9)n+1[(1+ 9)a (5 ,]) + 2] +\

Taknm 06pa3oM, MeTOLOM MaTeEMaTUYECKOM UHAYKLMM A0Ka3aHOo, YTo A1 BCEX
n~0 cnpased/MBbl OLeHKM (21) 1 (22).
[na  pokasaTenbCTBa pPaBHOMEPHOM  CXOAMMOCTM  MOC/ef0BaTe/lbHOCTEN

Po("* <)} o (x,(/, xO} oueHum |xr+d/, X0 - x A/, x,,)| n [xnHe(i, X0 - x Bf, x0)|,

15
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rge K — rnponsBO/IbHOE HaTypasibHOE 4KMC/10, 6onbLLe €OVHNLbI. HaXOp,I/IM

X, 4K, XO-X (i, *0)l = j(2hq) ML [+ ?)odh, 3) +2] X

(23) 1-(2hgAl +q)<xL£)+2]

i ryrtni
[-2AT (1 +Ma[ATj+2

X+(>*0)-*.(">*a)l —'y (2hq)mL [(1+ ?)odp, -yj+1] X

(24) I-(2hqgf [(1+ M)a(a,”)+2]

i-2hq[(i +q)oi[x,”) +2]

W3 (23) n (24) BaHO, YTO A4/ paBHOMEPHOI CXOAMMOCTM NOCNeaoBaTe/lbHOCTel
{x,,(i, xQ} n (x,,(/, xQ} gocTaTo4HO BbINOIHEHNE HEPaBEHCTBA

(25) 2hg|(1+9)a y)+2] L

Mepexoga Knpegeny B (23) n (24) npy K -*°° 1 Npu BbINONHEHVE YCroBums (25),
HaX0AMM OLEHKM
[(2~ T 1[1+9)ak|[)+2] Na,n-)

(26) [x»(/, x0- x,(!, xQ1" p v y
\~2hq 1+ <NaJda, 2J+2J

[(2/w)"+1[(1+ Da(;..]) +2]
(27) X, (/, X0 - x,(/, xQ = p y S S
1-2/jtf [(L+ ?)ala, Vi + 2

MepeiigeM K BOMPOCY CYLLECTBOBAHMSI MEPUOANYECKOro peLleHnsl. Kak 6bl1o
OTMEYEHO BbILLIE, HY>XHO HailTu ycnoeus paspemmocTtn (8). Ob6o3Haumm neByto
yacTb (8) uepe3 A(x0, a yepes A,,(X) — BbIpakeHVie

/ \
N,(xQ = (L+a)x0+q[,max  (jo(s)+ X..(s, x0)-(yo (0+ *,,(", *0))}-

PaspewnTb ypaBHeHVe J1(XQ—O B 06LLEM Crlydae HEBO3MOXHO, MOCKO/bKY He
BCErja MOXXHO HaiTy npesenbHyto yHKUMo XTT(/, X0. MoaToMy Mbl nocTaBum cebe
3a/]a4y Kak 3Hasl 0 CyLLECTBOBaHMN Hyneid diyHKUMM A,,(XxQ CyauTb O CyLLIECTBOBaHWN
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Hynel dyHKuMn A(x,,). Haligem oueHky ans pasHoctn A(xQ-An(x0. Mmeem

N(*o)-"n(*o0)l = y
+*~(s,x0)- (Jo(T) + X0(T, X0)] ch-

2 T
— Tt 1/ ecir-or max y0s + xnes. x0)-(j0(6)+ x,,(t, x®] dr.

c — 1 = atit—n, 1j
n+1

P (2hqy+*[(I+0q)<x(l,j) +2\
1-2A* [(1+ %)« (a,-]) + 2]

M3 nocnegHen ougHkn cnepyeT, uto O,(xQ ( x O npn n—

Teopema 1 TycTb BbINOMHEHbI CNefyloLLye YCNOBUS:
(1) Ha oTpeske [a b] 3agaHo ypasHeHue (5).

(2) OTpesok [ab] Takoi, yTo —* —>dXx.
(3) Ana HekoToporo uenoro uicna né 1 dyHkums A,,(xQ yaoBneTBopsieT He-

paBeHCTBaM
@t [(L+ *) « ()4

a+dAKQ6nb—dAAn(X »)S Z
1-2/1~[(1 + Mala, y) + 2]

(2haY+2[(\+q)«[l, [)+2] +

halnax o J.(x0a |
a+ dAXRo—an 2 1-2iA9[(1+ ?)a(s,y) +2]

(4) Yucno h HacTONBKO Mano, YTO BbINONHAETCSA HepaBeHCTBO (25).

Torga ypaBHeHue (5) uMeeT nepuognyeckoe peleHne x=x(t), AnA KOTOPOro
x0=x(0)C[a+ i/Ab—ilJ, saBnstOLleeCca NpeaenoM MocnefoBaTeNbHOCTY Mepuoanyec-
KX QoyHKUMiA (7).

JokasaTenbcTBO. MycTb XX M X2 Touky otpeska [a+dk, b—dA Takue, uto
N,,x*=rrn n(x), N,,(x9 = Tax/,,(x), xE[a+dx, b-dx]

Torpa
N(x.) = An(xa+{/1 (xA4-NAx0) £Q

AT = A, +(A(X2- An(xj) S 0.

M3 (28) B cuny HenpepbIBHOCTU (PyHKUMM A (X) CrieayeT CyLlecTBOBaHME TOUKU
X°€[x1, Xj, Takoi, uto J(x°)=0, 4UTO M AOKasbiBaeT Teopemy L

(28)

15
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CnegctBue. Mpy  BbIMOAHEHUA YCIOBUIA  TeopeMbl, eci  yHKuns /,,(f)
HenpepbIBHa U MepuoauYeckas, To ypaBHeHVe (1) MMeeT MeprioAvyecKoe peLLeHuve
y— *0> npoxogsLee npu t—O uyepe3 Touky Xx°£[a-\-dx, b—
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ON THE ~-SPACES AND THE GENERALIZATION OF HERZ’S
AND FEFFERMAN’S INEQUALITIES |

S. ISHAK and J. MOGYORODI

1. Introduction

The purpose of the present note is to generalize the notion of the 2Pp-spaces.
These new spaces are interesting in themselves but at the same time they will help us
to extend the validity of the Herz and Fefferman—Garsia inequalities. This will be
the subject of the forthcoming papers Il and Ill.

2. Basic notions and definitions

Let X(Lx be a random variable defined on the probability space (Q, si, P)
and consider the regular martingale

Xn=E(X\3FX n =0,

where {#,}, n~0, is an increasing sequence of u-fields of events, such that

— Q%

ff (JP:OA , =%

For the sake of the commodity we suppose that
X0=0 ae.

Let <PX) be an arbitrary Young function, i.e. let

[ cp®)dt, = o,
0

where <p(t) is a right-continuous, nondecreasing function such that tp(0)=0 and
rE_kr'r])()(p(t): +c0. We suppose that the power

xtp(x)

pzili%nx)

1980 Mathematics Subject Classification. Primary 60G42; Secondary 60G46, 42B30, 42B99.

Key words and phrases. Martingale transforms, Lr-predictable martingales and the generali-
zation of this notion, decomposition of martingales, Herz’s inequality, Fefferman’s inequality,
Hardy spaces, the ./~spaces of Garsia and their generalizations.
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of 4>is finite. This implies that the inverse function  1of <Pexists and has the form

X

<Px(X) :6] m(t)dt.

Here m(t) is a decreasing function and we can easily see that

m(@i) = I/<p(*_1(0). 0.

To show these we remark that ifp is finite then neither <P(X) nor cp(x) do vanish
for x=-0. Consequently, <P(X) strictly increases. This and the continuity of $ imply
that inverse function <€ 1 exists, it is concave and is of the above integral form.

Let be a Young function. We say that the random variable X belongs to
the space L9=L*(Q, si, P) if there exists an a>0 such that the inequality
E(#(a_1|Y|)"i is satisfied. In this case we put

lirl* = inf(a>0: E(<P(-1:r[))S1).

I«ll0 is anorm on L* The normed vector space L° is complete.

For these definitions we refer to [2].

Now we shall introduce the notion ofthe  -spaces defined for arbitrary Young
function  These are the direct generalizations of the &p-spaces, were p >-1is a power
(for the definition of &p, p~\, cf. e.g. Garsia [1]).

D efinition 2.1. A random variable xdL+ is L®-predictable if there is a se-
quence {A} of random variables such that

(a a.e., n=sl,

(b) Aj=22—.. ae.,

(c) A,is  -measurable, «&O0,

(d) nﬁrpoXn=X’\L'2

We define as the class of LO-predictable functions X with Y0=0 a.e. We
take in this case

= jnf BA-«*,

where “inf” is taken over all the sequences {Xn} satisfying the preceding conditions.
The sequence {/,.} will be called an /."*predicting sequence of XddP".

It is easily seen that || «||#Cis a norm on the space
Remark 2.1. Suppose that xddr& with

11*11%, = {nf||A |l

where the sequences {A} satisfy the properties (a), (b), (c) and (d). Now it is clear
that the “inf” is achieved in this definition. This is because if each {A®} satisfies the
conditions of Definition 2.1 and ||A ||*HLr|" as k24— then setting

X,= infA<®\ «SO,



ON THE «»-SPACES 231

{A} will not only satisfy the condition in that definition but also

mi#.=p-~1.
Such a {A} will be called an optimal L"-predicting sequence of X.

3. Relations amongst the S”® and the ~-spaces

The martingale transform techniques can be used to show that given any Young
function <Pwith finite power p the corresponding  -space is the martingale transform
of  and conversely. More precisely, we can transform the martingale (Xn, corre-
sponding to XMP-1in such a way that the limit X'= ﬂl*imOX' belongs to 3RR®

Here (X,, is the martingale transform of (Xn,?,,). The converse result is
trivially true.

Theorem s.1. Let Pbe a Youngfunction having finite power p. Suppose that
XASPx. Then the martingale transform

X6 —0 ae, X'=. n —»
i=1

converges a.e. to a limit X'. Here denotes the martingale difference sequence cor-
responding to X. Moreover, X'£30 and

\NALOs
where {A} is an optimal LI-predicting sequence of X.
Proo+. The above martingale transform can also be written in the form

ft= i[fY i-Y i_Dm(Ai_D=Y,m(A,,_D+ i'_'%
Consequently, with A x=0

Il —A,im(A, )+ Z A_Im(AI_)—m(A) = Z
1= i=
It follows that
K-\
W,\S J m@AdA ae.,
0

or in other words
W,\S (A N ae
Now the limit X '—ﬁ_l*i+m(DX' exists. To show this it is enough to prove that (X', &)
is uniformly integrable. This follows from the inequality
X\ A tf-KVi) S N 1(A9

and from the fact that #_1(A«) has finite expectation since <P is concave and
E(A<,)< It also follows that X' belongs to In fact, {*“'(AM}, n~0O, isan
increasing sequence adapted to {&,}, and for 0-1(A,,) we have E($(<P-1(A,)))=
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= E(Ac,). Moreover, it also follows that

This proves the assertion.
Remark 3.1. Especially, when <P(x)=xp with p>\ then <P-(x)=x1p and
= (EW )P)IP= (E(AD)Yp= (IIXH*)I".
Consequently,
il AN | | N17 8

So we obtained as a special case of our assertion the inequality of Garsia [1] (Theorem
IvV.4.1).

Remark 3.2. We have

|<f-1(")[|14>smax(1,]|Z]]").
In fact,

0-HA,) 1 . 11*11#4
EI(4-nax(I,WijJ) max(l, W) FOG-TA) @ wawy S 1

Remark 3.3. In Section 2 and 3 we have supposed that the Young function 0
has finite power p. This is only made for the sake of commodity, namely, to ensure
that O i exist.

In the following assertion a lower estimate for ||X'||#> will be given.
Theorem 3.2. Let X and X' be as in Theorem 3.1. Then

4M *—(A-)|,Jfl[Aa ly |>-
where

veo = | i at

is the conjugate Youngfunction of @, i.e. ij/(t)=(p i(t).

Proof. Denote by {.,.}and {A}the corresponding optimal predicting sequences
for X and X\ respectively. From the representation of Xnfiguring in the proof of the
preceding theorem we have

Kn—An-1

m(A,,-i)
(If m(X,,_j)=0 then we can add an e>0 to each A, and at the end let e—0.)
Therefore,

n™ 1

Yn~i_’f7Y ik o i x i)0 (0-1(A)

- Y>(0-i(A._D)-.  X{((p(0"1(A) —9 (0_LA_D)).
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On the basis of this relation using the fact that Wi\*I'i_1 we get

X\ S 2A" I<p(<p-1(A, D).

Consequently, applying the generalized Holder inequalitylto the right-hand side
we obtain

171 —Af|Ar||aal|<p(i _1(Aoo))ly,
which proves the assertion.

Remark 3.4. Let <P(x)=;Pp with I<p< +°° Then cp(x)=xp~1land 9r(x)=

=—, q= V/\, while <P-I(x) =(px)llp. Consequently,

o <p4>-11,,)) - (pU La
The ZT-norm of this is

( \I/9 i n\1q
fq)) (E*Mn1/8 = W?] H 12
and from the inequality of the preceding theorem we get
vi/9
1 P
This is the inequality of Garsia (cf. [1], Theorem 1V; 4.1).
Remark 35. If p is the power of Pthen
ll(p(<p-1(Ac0))lli- = max(l, (p -1)11*17).
In fact,

£ P- 1
vmax(l, (p—1)11~1#)3  max(l,(p-1)]|X ||#i)

(P - D11*11»,
max(1, (p-D||AT|#)

Theorem 31 and Theorem 3.2 have the following

E(* (-*(*)) =

Corollary 3.1. Le/ and let €>be any Young function having finite
power p. Then there is a random variable XfiSP® such that Xn is the martingale trans-
form of X'n. Namely, we have

Xn= IZ_I\N—XI—th-x, «S 1, X0=0 ae.,

where Ti=g<d>(/.i)) and {2,} is an optimal  -predicting sequence of X. We have

[r.0,sm ax(l,(p-1)[ljr|#l)

Mf XZL* and Kei-*' then XY~Lt and E(|jsry|)s2||Ir|U||IK]|ly .
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and

This assertion needs not to be proved.
We notice that the converse statement to this corollary is quite obvious.

Remark 3.6. Corollary 3.1 points out that “the elements of the space 2®are
none other than the martingale transform ot those of &xand viceversa”.
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APPROXIMATION AND SHORT TIME PREDICTION
OF ECONOMIC TIME SERIES BY SPLINE FUNCTIONS

MARGIT LENARD

Abstract

A spline algorithm for time series approximation is given. It is proved that the procedure yields
the best polynomial approximation. The results are applied to interpolate and extrapolate economic
processes observed in relatively short time units. The method gives a possibility for the computation
of approximative intermediate values of the time series which increases the number of data.

Introduction

In this paper we construct a new method for interpolation and extrapolation of
time series ([4]).

The essence ofthe method is that we fit a twice or once continuously differentiable
spline function to the empirical data. This function takes the empirical values at the
mesh of points and approximates the unknown function (further its derivatives ap-
proximate those of the unknown function). This approximation is best in the sense
of polynomial approximation. Our basic idea is the same as that of Fawzy ([2]), but
his procedure needs the values of the derivatives of the unknown function at the mesh
of points.

The coefficients of the spline function can easily be computed by means of the
differences of the given function values.

A very important area of applications is the short time extrapolation of short
economic time series and the increase of the number of data by interpolation in order
to apply other theoretical methods of time series and to construct econometrical
models which demand a large number of data.

An advantage of our method is its simplicity and consistency in the economical
sense, that is the linear relations between the time series are preserved.

The results are illustrated on numerical examples.

The interpolational method

Let [G,i]cR be an interval, 0 an integer and let x: [a, b]—Rm be a twice
continuously differentiable function (R denotes the set of real numbers). Let further
a—t0<...<tNH=b be an equidistant subdivision of [a b\, tktl—tk=h and let
xk=x(tk {k=0, 1, ..., N+ 1). Denote by A the difference operator: Axk=xk+1—xk.
We are to find a function S with the properties:

1980 Mathematics Subject Classification. Primary 41A15; Secondary 90A20.
Key words and phrases. Spline functions, time series.
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(i) itis a polynomial of minimal degree on each subinterval [tk, tk+1] (A:=0, ...
v fV);
(i) itis twice continuously differentiable at the points tk (k=1, ..., TV);
(iii) its first and second derivatives approximate the first and second derivatives
of x at the points tk(k=1, ..., TV), that is,

S (h) = -27(xk+l—xk- ),

5 (h)=  A-xk-1,
further
S(tk) = xk (k=01 ..., TVH).

It is obvious that 5 is of degree at least five on each subinterval, hence for
i€[fife-i,fi,] let

5(0 = skft) = Xk+— (xk+1- x k_ (t-tR+

(5]
+ AA* xk-1(t-thy+ i aWt- tR)\

The function 5 is twice continuously differentiable if and only if the functions Sk
satisfy the conditions
SiIJ)th =S & M

0=0, 1,2; k=2, ..,TV—1). This system ofequations in a[K) (7=3, 4, 5) can be solved
and the solution is unique:
3

«3N = - 2W A3Xk~2’

@) ar) = ~2 JFA3xk- 2

aik) = - jfA3xk-2

Theorem. If x: [a, 7Rm is a twice continuously differentiable function, then
for the splinefunction S of theform (1) with the coefficients (2) thefollowing relations
hold:

[Ix(t) —5(011 S 6.5 h-co{h\ x),

\\x'(1)-S"'(t)\\S 23hca2(h;x),
[|x"(0-5" (0l = 68a2(h;x),

(t1* t~ tN. Here a2(h; x) denotes the modulus of continuity of x".
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Proof. Let (fe=1, N), then

(3) x(t) = Xk+x'k(t- )+ jx" (rk(t- tk)2
where t<xk<tk, further

1
Xk (0 = Xk+ Xk(t-tk)y+— Xk (t-tky
where Xxk=x'(tk), xk—x"(tky. Then we have
i (0-s(oii ™ ik(o-**(oii+itdw-"(0i s

Xk~JhAXkH-Xk-i) h+

+- Xk 27 Xk—k h2+5\A3xxk- 3

Substituting tk_k and tk+i into (3) one can easily see that
Xk-"hAXk+H-Xk-1) s a),

x'k--"A2x* 1 N g2(h; a).

Further by the Lagrange theorem we have
|[d3Ak 2 = h202(h; a).
Using these estimations we obtain
la(0-S (7)) = 6.5h2(02(h\ a).
If tk k*\tStk(k=1 N), we apply the Taylor formula for a":
X'(t) = xk+x"(xK (t-tK)

where t<xk<tk. Similarly to the above we have
|A'(0-S'(O11 M\\Xx"(xK)-x"k\h+ X'K-jj-(xk+l-Xk-1) +

. A2XK- k h+-2 WAk 2\ = 23hco2qh: a).

Finally, for tk k*t"tk,

2" (0-5" (0l ~ HAN(0-~1 + 1k ;-~(/)|| £ 68ta2(h; a).

This interpolational method is stable, as shown by the next theorem.

237
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Theorem. Lei xI( xtER™ be given and |xt—3fdae (A:=0, 1, N+1). Let
S and S denote the splinefunctions oftheform (2) with the coefficients (1) and elements
xK, xk, respectively. Then for any i€[fi, ijM we have

[|S(0-S(0l] S 44e.
This theorem can be verified by easy computation.

Let now x: [a h]-*-R"1 be a continuously differentiable function and define the
function S as follows: for tk k®*m tk (k=2, ..., N+1)

(4)  5(0 = Sk(t) = xk+]j Axk:(t-tR—L A*xk_2(t-tK2- -~ AXxk-2(t-tK3

It is obvious that S is continuously differentiable.

Theorem. Let X: [a, h]—Rm be a continuously differentiable function. For the
spline function 5 of the form (4) we have

ax (0-5(011  4h coffh; x),
[ (0-5"(01iN"7m 1(h;x)
(t2~t~ ttNH), where coffh; x) denotes the modulus o f continuity of x'.

Proof. As the function x is continuously differentiable, for tk 1" tstk
(k= N) we have
-*(0 = xk+x'(rk (t-tk

where further put
4 (0 = xk+xk(t-tk)
where xk=x'(tk. Then we have
Ik (0-5(011 ~ 1140-4(011+114(0-5,(011 ~

= IR(e)-4[)/i+ xrk-jaxk-i h+2\ASKM |
By the Lagrange theorem we have

xk - 114-74)11 s <oAh;X),

IM - 20 = />IMX'(0*i)ll = hcoffh; X),

where tk mr,</,, /, & x< tk
Using these estimations we obtain

1INO—H(01L S 4/uul(fi; X).
Finally, for tk x*t”tk,

1170—5 '(Oil S ||x'(0-411 + 114-5%(011 ~ luAh\Xx).
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This interpolational method is also stable for the following theorem can be veri-
fied by easy computation.

Theorem. Lei XK, 3c*¢Rm be given and II™*— * || (k—0, 1, ..., N+1). Let
S and S denote the splinefunctions o ftheform (4) with the elements xk, x*, respectively.
Then for any tE[tl, ijv+i] we have

I5(0-S(OH S lie.

The consistency of the method in the economical sense follows from the linear-
ity of the construction and of the A operator. This means the preservation of the
linear relations between the original time series.

Now we apply our method to the interpolation of the time series describing the
national income of the Hungarian national economy. We used the data of the Hun-
garian Central Statistical Office for 1970—1975 (all data are given in 10®Ft units,
20Ft=1 US $). We approximate by interpolating data of 3, 6and 9 months, re-
spectively. The interpolation of degree five was performed from 1971 until 1974 by
(1), (2), and the interpolation of degree three was done from 1971 until 1975 by (4).

Interpolation of Interpolation of

Year Annual data

degree 5 degree 3
1970 303 258
1971 321 010
325 766 325 689
330 600 330 712
335 628 335 873
1972 340 965
346 671 346 391
352 834 352 442
359 052 358 743
1973 364 919
370 489 370 659
375 773 376 043
381 050 381 284
1974 386 597
392 239
398 200
404 287

1975 410 311
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The extrapolational method

The polynomial Sk of the form (4) with the values xk_2, xk*1, xkcan be used for
the extrapolation of the value at the next quarter year tk+

This value and the previous two — interpolated — values enable us to extrapolate
the value in the next half year in the following way: instead ofthe points tk_2, tk_k, tk

we use the points tk_ 2+ —, tk_k+—and tk+— and the approximated (interpolated
or extrapolated) function values at these points. The spline function S of the form
(4) with these values approximates x at tk+—. Continuing this process we can extra-

polate the function x for about two years. The estimation of the error will show that
it is not worth to extrapolate for more than two years.

If x:[a, 6]2rRm is continuously differentiable, xi= x(ti) (i= k=2 ,k —1,k),
then the error of extrapolation in the case h=1 is

I <l S

If we use the values x; (i= k —2, k — 1, k) instead of x;, where |xj—xjuse;, then

This estimation and the error of interpolation enable us to compute the error of extra-
polation. The error is of the form c(ok{1; x), where ¢ is a constant (error coefficient).
In the next table h=1, and the formula (4) was used for interpolation:

Year Interpolation Extrapolation Error coeff.

1973 364 919
370 659 370 595 0.578
376 043 376 372 1.544
381 284 382 183 2.592

1974 386 597 387 999 3.710
392 239 393 837 4.926
398 200 399 723 6.540
404 287 405 605 8.476

1975 410311 411 462 10.797
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THE KEROS—ORE THEOREM, FINITE AND INFINITE
DECOMPOSITIONS

GERD RICHTER

1 Introduction

As we can see in the papers Richter [9], Richter—Stern [10], [11] and Stern [12],
[13], [14], the Kuros—Ore theorem (Kuros [7], Ore [8]) holds not only in modular
lattices. However, the proofs are similar in all these cases. In the present paper we
define a class of lattices having a property (V) in which the Kuros—Ore theorem holds
and in which the proof of this theorem is similar to the modular case. In fact, this
property (V) was made use of in all the above mentioned proofs. Moreover, we show
that in this class of lattices the same replacement property holds as in modular lattices
(Dilworth [5]). Further we exhibit that some results by Crawley [2], Crawley—Dil-
worth [3], Dilworth [4], [5] and Dilworth—Crawley [6] can be proved under weaker
conditions. If we mention results of Crawley or Dilworth, we shall refer to the well-
known book [3].

2. Basic notions

Let L be a lattice. If L contains a largest or a least element, these elements will be
denoted by 1 or O, respectively. For two elements a,bdL we define b/a:={x:
aSx"b}. An element g”b/a is called inaccessible in b/a iff g=\/T with TQb/a
implies g=VT' with T’QT and (cf. Birkhoff—Frink [1]).

Q(b/a) is defined to be the set ofall inaccessible elements ofb/a. Anelement vEb/a
is called join-irreducible in b/a iff, for all x,yEb/a, v=xVy implies x=v or y—v.

An element vEb/a is called completely join-irreducible in b/a iff, for all T”b/a,
D=\/T implies VET.

If V(b/a) denotes the set of all join-irreducible elements of b/a then VI(b/a)
denotes the set of all completely join-irreducible elements of b/a. Notice that V, (b/a) =
—V(b/a) fl Q(b/a).

Further, we define Q:=Q(L), V:—V(L), Vx:=VXL).

A lattice in which every element is a join of elements of Q or of VK, respectively,
is called a Q-lattice or a Vx-lattice, respectively. We say that L satisfies the property
(V) iff vV, bEL and 6=wlV..Vm, with u”rV for j=I, imply that
b\WEV(bMv/b). L satisfies the property (Vj) iff v€Vx and bEL imply
b\/VEVx(b\Wv/b). Note a modular lattice satisfies (V) as well as (Vj). If a is an
element of the lattice L, then a representation a=\/T with TQ V in Section 3 and
TQ Vx in Section 4 is called a (join) decomposition ofa.

1980 Mathematics Subject Classifications. Primary 06B05.
Key words and phrases. Irredundant decompositions, replacement properties, Kuro§—Ore
property, join-irreducible and completely join-irreducible elements, lower continuous lattices.
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A decomposition a=\R ofainthe dual of L is called a meet decomposition ofa.

A decomposition a=MT is called irredundant iff, for each td T, a> V(T \{t))
holds.

A lattice L is said to have the property (R) iff, whenever an adL has two decom-
positions a=wV... W,,=WXV... Vum then for each there is a Uj such that

a= ulV..Vui_IVMWIi+lV...Vv
If a=MT is a decomposition of a, we define

Uj.oop, i= V(T tj,..., £D

for each subset {th tj, ..., .} of T.

We say that a complete lattice L has replaceable irredundant decompositions iff
each element ofL has at least one irredundant decomposition and whenever a=MT=
— MR are two irredundant decompositions of an element adL, for each tOET
there exists an rOdR suchthat a=tOMr0, and this resulting decomposition is irre-
dundant.

A finite lattice L has the Kuros—Ore property iff, whenever adL has an
irredundant decomposition a=v1M... Mvn, then for every irredundant decomposition
a=M T always \T\-—n holds.

3. Finite decompositions

Crawley—Dilworth ([3], p. 39) mentioned that if a lattice L satisfies the ascending
chain condition then every element of L has an irredundant finite meet decomposition.
Therefore, every element of L has an irredundant finite Coin) decomposition if L
satisfies the descending chain condition. But a simple example shows that the converse
does not hold.

Fig. 1

Our first theorem is a generalization of [3] (Theorem 5.2) and [15] (Hilfssatz p.
112).

Theorem 1 Every lattice satisfying (V) has the property (R).

The proof is the same as in [3] or [15], since in presence of (V) we do not need
modularity.

Repeated application of (R) yields the Kuros—Ore theorem in lattices having (R)
and therefore by Theorem 1 also in lattices having (V):
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If L has property (R), then the number ofjoin-irreducible elements is the same in
every irredundant finite decomposition of an element afL.

Coroliary 2. JfLhas(R), d=«1V...Vm, isa decomposition and a = uxv ... >,
is an irredundant decomposition of a, then a=ul\l... V«,, is an irredundant decompo-
sition.

The proof is obvious.

As in the modular case, we can ask if it is true that each t: can replace some |
in the decomposition a=r1V... Vrn=«1V... W, Moreover, we can ask whether to
each vt there exists an element U with a=«JViij=«JVri. We are not able to prove
this in a similar way as in [3] (Theorem 5.3).

Theorem 4 shows that modularity can be dropped if the lattice L has property
(R). Before proving this, let us answer the first question as follows.

Coroltary 3. IfL hasproperty (R) and aEL has two irredundant decompositions
a=Vifl... Vu,,=«1V... Vian, then to each M there exists an element U with a=«"Vi>;.

Proof. We choose an arbitrary vt. Applying (R) we replace the elements v,, ...
LoVt Lvitl, L, v, in n-1 steps by elements uh, ..., Uit X, + ..., udn and get
a=Uj\IVi.

Theorem 4 (cf. [3], Theorem 5.3). If the lattice L has property (R) and if
a—VI\l..\lvh=ulM..\lun are two irredundant finite decompositions of a£L, then
(1) for each vt there is a U such that a=i0"Vt>i=wJVtig
(2) there is a permutation n of the integers 1, ..., n such that, for each /=1, ... «,

a=Viwu,,(i).

Proof. We choose an arbitrary vt. Suppose the w/s are rearranged in such a way
that a=ujVvi for j=1,....m and

€)] arUjMVi for j=m+1...n

Corollary 3 vyields that 1 By applying (R) we can replace um+l,...,un by
vimi.p..., Vjn and we get

a= UVv..VunJFmV-s\jn= i/ivV..V U,
If M—yjr for some r with m +\*r”n, we apply (R) and replace the vjt's (t*r)

by the elements wimtl, ..., nir+l, ..., Mhand get a—f\lvi with m</'r, con-
trary to (a). Therefore vieévdr for r=m+\,...,n, i.e,
(b) a>Fi = Vivwlr.

Now we apply (R) to the two decompositions
a = »V—Vu, = MV...V m,VtymHlVees\/rn

and to the element vt. By (b) we get the existence of an element U with 1*j*m and
a=UjMFi.

As in the modular case, (2) is an easy consequence of (1).

As we can see in Theorem 1and in the Kuro§—Ore theorem, condition (V) is
sufficient for a finite lattice to have the Kuros—Ore property. In the following
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theorem we shall show that this condition is necessary and sufficient for a lattice of
finite length to have replaceable irredundant decompositions. We can get this
theorem also as a corollary of [3] (Theorem 7.5).

Theorem 5. A lattice L o ffinite length has replaceable irredundant decompositions
iff it satisfies (V).

Proof. Since a lattice of finite length satisfies the descending chain condition,
every element of L has a finite irredundant decomposition. If L satisfies (V), Theorem
1land Corollary 2yield that L has replaceable irredundant decompositions. Suppose
now that L is a lattice of finite length which has replaceable irredundant decomposi-
tions. If L does not satisfy (V), then there exists an element afL and an element
vEV with b=a\lv$ Vfb/a). Therefore, there exist two elements h,,bfbja with
bi,bi<b=bffb2. Since a,bl,b2 have finite decompositions a=M1V..Vwm
bl=wlV..Vu> and b2=wr+ff...Vw,, we get

b = rVMiV..Vwm= wtV...Vw,,.

By deleting all superfluous ufs and all superfluous w/s and by rearranging, we get the
two irredundant decompositions

b = uWufj..Vuk—w'V--Vw,,.
Since L has replaceable irredundant decompositions, there is an element W such that

b—uVt"V..VMt=w7VulV..Vw*. But tJVV... f uk®W j\/a*bt<b with I*/"2.
Therefore L has property (V).

The following theorem describes a class of finite lattices which have the Kuros—
Ore property. (V) will not be used.

Theorem 6. |fafinite lattice L has aplanar diagram then it has the Kuros—Ore
property, and every irredundant decomposition ofan element of L contains at most two
elements.

Proof. LetL have a planar diagram and let a be an arbitrary element of L with
4=HV...V such that v{and \j are incomparable for i"j. Now we can assume
that in the planar diagram v} is on the left-hand side of all v{and vnis on the right-
hand side of all vt. If iyVvn«=a, then there is an element vt in the middle with
FivVvn< VW, But then the diagram is not planar. Therefore, if a is not join-
irreducible, every irredundant decomposition of a contains exactly two elements.

Notice that a finite lattice in which every irredundant decomposition of any
element contains at most two elements, need not have a planar diagram, as shown by

Fig. 2
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4. Infinite decompositions

For investigations of infinite irredundant decompositions, property (V) does not
yield anything. Therefore we shall use property (VX. Note that in a \/x-lattice property
(Vj) is equivalent to the following property, defined in [3] (p. 53):

(*) for all x,yEL, if the sublattice x/xAy has exactly one dual atom, then the
sublattice xVy/y has exactly one dual atom.

Remark further that in [3] (Theorem 6.1) it is shown that the dual ofan algebraic
lattice is always a Vx-lattice. An algebraic lattice is always upper continuous, i.e., L
is complete and for every a£L and for every chain CQL, aA\/C=\/(a/\c: c€C).

The dual of an upper continuous lattice is called lower continuous. Most of the
investigations in this section will concern lower continuous Vx-lattices.

Our first theorem in this section is closely connected with Theorem 1

Theorem 7 (cf. [3], Theorem 7.2). If an element a in a complete lattice L satis-
fying (VJ has two decompositions a=VT=VR, thenfor each tOET there exists an
rO£R suchthat a=rfJTn. Moreover, the resulting decomposition is irredundant if the
decomposition a=VT is such.

Proof. Let tO be an arbitrary element of T. We set S:={s: s=TaVr, rER}.
By (VX a=t0Vt0 is completely join-irreducible in g[Tu. Consequently, from a=V R =
=t"VAJR=V S and SQaff, weget atS, i.e., a=s0=t"Vr0 with rOER. It remains
to prove that the irredundance of a=VT implies the irredundance of a—tOVro0.
If a=\/(T\{tQ)Vr0 is not an irredundant decomposition, then there is an element

with a—TflVr,,. Since a=VT=Tf~fJr0 are two decompositions of a,
we get by the first part of the proof the existence of an element ttf T such that
a= \/T=tf[VrO=t[Vti with (T\{t0, td) U{t,}c T, contrary to the irredundance
of a=VT. Therefore the proof is complete.

For our following investigations we need the concept of a strongly dually atomic
lattice. We say that a lattice L is strongly dually atomic iff a, b(L and a<b imply
the existence of an element p”b/a covered by b. A lattice is strongly dually atomic ill
its dual is strongly atomic. The next theorem is a generalization of [3] (Theorem 6.3).

Theorem 8. |fevery element of a lower continuous V"-lattice L satisfying (VX
has an irredundant decomposition, then L is strongly dually atomic.

Proof. Let a be an arbitrary element of L. Then, by the assumption, a has an
irredundant decomposition a=VT. If O<a then T<a for any tO(T. By (VX
a is a completely join-irreducible element in a/f. Since L is complete, there exists
exactly one element p£afb, covered by a, i.e., for each atL with 0 there exists
a p£a/0 covered by a. Suppose now b<a and let U be the set of all uEL with
bVu=a. L/is nonempty, since afU. Let C be a chain in U. Then lower continuity
yields bV/AC=/\(bVc: c£C)=a, i.e, every chain of U has a minimal element. An
application of Zorn’s lemma yields the existence of an element u0(U which is mini-
mal in U. Since there exists an element r covered by u0, we get bVr<a=bVua, in
particular, u0™3b\r. By (VX a=bVrVu0=bVrVv with rVuO=rVv and
vZVfuJO) is completely join irreducible in a/bVr. Consequently, there exists an
element pZa/b with bVrSp<a. Thus L is strongly dually atomic and the proof is
complete.
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In the proof of [3] (Theorem 6.4) it was not used that L is an algebraic lattice,
only that L is upper continuous. Therefore, Lemma 9 and Theorem 10 below can
be proved analogously, and their proofs will be omitted.

Lemma 9 (cf. [3], p. 45). Every element of a lower continuous K -lattice L has an
irredundant decomposition iff, for each element aJL distinctfrom O, there exists a
VEV1 and an element x<a such that a=xfv.

Theorem 10 (cf. [3], Theorem 6.4). |fa lower continuous V\-lattice L is strongly
dually atomic, then every element of L has an irredundant decomposition.

The following result is a slight generalization of [3] (Theorem 7.5). We can get
Theorem 5 as a corollary of this result.

Theorem 11.A strongly dually atomic lower continuous f-lattice L has replace-
able irredundant decompositions iff it satisfies (VX.

Proof. Since L is a strongly dually atomic lower continuous Vt-lattice, every
element of L has irredundant decompositions by Theorem 10. These decompositions
are replaceable irredundant decompositions by Theorem 7, since L satisfies (Vi).

Let us assume that L has replaceable irredundant decompositions but does not
satisfy (Vj). Then there is an element adL and an element vE V1 suchthat b—afv
is not completely join-irreducible in b/a, i.e., there are elements p1, p2db/a which
are covered by band it holds aVv—(pxAp9 Vv=px\/p2=h, since L is strongly dually
atomic. Lower continuity yields that there is a minimal element w”"pxAp2 with
respect to b=wVv. w has an irredundant decomposition w=fR.

Then v\/A/R=b is an irredundant decomposition of b, since w=\JR is minimal
with respectto b=wfv. From pl,p$-<b=plVp2 we get the existence of an element
VxdVfpJO) with p2fvi=h. Again by lower continuity, there exists an element
wx" p 2 which is minimal with respect to v}Vwl=b. Let wl= V-"i be an irredundant
decomposition of wx. Then b—vfJ\JR1is an irredundant decomposition of b. Since
b=v'd\/R=vIVV/R1 are two replaceable irredundant decompositions of b, we can
replace v by some {nj. Thus b—vJI\IR =rf\/R —r\lw"r\/{p W\pJI}"'pi-<b,
with i—1 if r=tjsipx or i=2 if rER1QpjO. This contradiction shows that there
are no elements px, p2 with px,p2<pxfp ~aJv. Therefore, b=afv is completely
join-irreducible in b/a.

The last result raises the question whether the dual of a lower continuous strongly
dually atomic V, -lattice is algebraic. By [1] (Theorem 2) we have only to ask if the
dual of such a lattice is a g-lattice. For instance, the dual of the lattice L in the
example of [3], (p. 16) is a lower continuous Vx-lattice and L is not a ~-lattice. But L
is not strongly atomic either. On the other hand, it is possible to construct a strongly
dually atomic Vj-lattice the dual of which is not a g-lattice.

Let L be an algebraic distributive atomistic lattice and let B={px, p2, ...} be
a countable maximal independent set of atoms of L, i. e, 1is the direct join of B,
denoted by 1=VB. Further we define ap—\I(pj:pj€B, j=\, ..., i). Now we add
a new element 0*-<0 and complete the lattice aJO* by adding a countable chain
«i>61>-b2>..>07 Having completed the lattice ajo*\ we complete the lattice
ai+1l/O* in such a way that we add a countable chain of elements ai+1>chl>
-<ch2<..>& to each bdaj0* with and b”a”JO*. In this way we get a
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new lattice L* which is a strongly dually atomic V1-lattice by construction, since every
element of L*\L is completely join-irreducible, the elements O, p2,p3, ... are also
completely join-irreducible in L*, and every element of L* is a join of such elements.
But the dual of L* is not a ~-lattice, since for each bfL*\L we have a chain of
elements cbtl>chii>-... >b such that b=/\(ck/. i=1,2,...) and b</\(chi:
i=1, ..., ) foralln,ie. eachelement of L*\L is not inaccessible in the dual of L*.
Therefore, the set Q of the inaccessible elements of the dual of L* is contained in L.
Thus, if x=/AR and R"Q then x£L, and if bEL*\L, then there is no subset
R of Q with b=/\R. However, L* is not lower continuous either.

As a corollary to Lemma 9, we get the following

Corollary 12. Every element ofa lower continuous Vx-lattice L has irredundant
decompositions iff to each infinite chain C of L with ¢~ fC for all cgC, there exist
an element x<\JC and an element vEVi with xfv =\/C.

Proof. Ifevery element of L has irredundant decompositions, then by Lemma 9
there exist such elements x and v. Suppose now that to each infinite chain C with
Cr~MC for all cf C there exist x<\/C and vEVxwith xVti= VC- Let a be an arbi-
trary element of L. If a/0 contains a dual atom X, then there exists an element vdVx
with x~v—a, since L is a Vx-lattice. If a/0 does not contain dual atoms, then there
exists a maximal infinite chain C of elements between 0 and a, and c6C\{a) implies
Cyi\/(C\{a})=a. So our assumption yields the existence of an element x<a and
ofan element >6Vx suchthat xdv=a. Consequently, by Lemma 9, every element of
L has irredundant decompositions.
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O MAKCUMAJIbHOM UWKNE TPA®A

X. . HUKOTOCAH

Summary

Let V denote the order, $the minimum degree and k the point connectivity of a graph G.
v+k
Theorem 1. Every 2-connected graph G satisfying <5s—-— is hamiltonian.

v+ Kk
Theorem 2. Every 3-connected graph G satisfying <S<---------- has a simple circuit of length

*3S-k. 3

PaccMaTpuBaloTC KOHEYHbIE HEOPUEHTUPOBaHHbIE rpadibl 663 neTesnb 1 KpaTHbIX
pebep. Bce NOHATWS 1 0603HAYEHMS, He ONpeaensieMble 34eCb, MOXHO HANTW B KHUe
[1]. Ansa nto6oro noarpada L rpada G yepes V(L) n X(L) 6ygem 0603Ha4aTh COOT-
BETCTBEHHO MHOXECTBO BEPLUMH M MHOXeCTBO pebep nogrpaga L. Myctb 0(G)
0603Ha4YaeT MUHUMANbHYHO cTeneHb, K(G)—BepLUnMHHYO CBA3HOCTb, h(G)—makcu-
MaIbHYI0 JJIMHY MPOCTbIX LUWMKNOB U a (G)—4MCNO BEPLUMHHON He3aBUCUMOCTM
rpaga G

B 1952 r. Aupak [2] gokasan, 4Tto ecnm B rpage G umeet mecto 6(G)*v(G)/2,
rage v(G)=\V(G)\, To G—ramunbToHOB, T.e. h(G)=v(G). B paboTte [2] goKa3aHO
TaKke, yuto ecm <5(G)-=t>(G)2 n k(G) jE2, 10 /1(G)s24(G).

Haw-Bunbamc [3] B 1971 r. fgokasan, yuto ecnm 2-cBA3HbIv rpad G yaoBneTBopsieT
ycnosuam  <5(G)Nr>(G) +2)/3 n <5(G)Sa(G), 1o h(G)=v{G).

M. 3paéw n B. XBatan [4] B 1972 1. foKa3ain rammibTOHOBOCTb rpada G npu
ycnosun a(G)ME(G).

B HacTosiLein paboTe [OKa3blBalOTCA CrefytoLime 4Be TeOpeMbl:

Teopema 1 Ecmm 2-cBsisHblii rpadd G ypoeneTBopsieT ycnosmto 6(G) S
8(v(G)+k(G))I3, To h(G)=v(G).

Teopema 2. Ecnu 3-cBA3HbIl rpady G ymoBneTBopsieT Yycnosuwo <5(G)<
~=(v(G)+k(G))/3, To h(G)-=36(G) —k(G).

MepBbIi U NOCNeAHWUIA 3NEMEHT NIO60I KOHEYHON MocnefoBaTelbHOCTU / Byaem
0603HayaTb 4epe3 F(I) u L(l) cooTBeTCcTBEHHO. 3anuch i=nx, N2 6yAeT 03HayaTh,
YTO MHAeKc / npoberaeT Bce 3HaveHWs MHoXxecTBa ul(n2={nl, JIX 1, ..., n,}. MNyctl

N(v) = {uiV(G)IluviX(G)), N(R) = ltJR N (V)\R,
roe VEV(G), RG; Y(G).

1980 Mathematics Subject Classification. Primary 05C38; Secondary 05C45.
Key words and phrases. S-admissible pairs of chains, deviation of the chain from the subgraph.
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PaccMoOTpyM NPOM3BO/bHbBIA 2-CBS3HbIA rpady G, ana kotoporo 5'={wl, v2, ...
...,VK) fIBNAeTCA HEKOTOPbIM MUHMMAa/bHLIM pa3genstou M MHOXECTBOM BEPLLVH.
Myctb Gx, G2, ..., G—KOMMNOHEHTbI CBA3HOCTU rpaha G—S u nycTb

m= U< ¢g2= u G,
i=1 »=/+1

roe /61, t—1
[ na npoussonbHoli npocToi uenn P~P1P2...Pn (né3) rpada G v ans nobdbix
/, | Takmx, uyto (/'61, 5, i<i, BBEAEM 0603HAYEHWS

[n, - NIN+1 = Pj, [PbPj)[P = [Pi, Pj\\P-P],
(Pi, Pj\\P = [Pi, PjWP-Pi, (Pi, Pj)\P = [Pi, Pj)\P-Pi.
OnpepeneHne 1 Mapy ueneit Rx, R2rpaa G HazoBéM "-10NYCTUMOWA, eCn
{F(RI\ L(RY}g V(Hn), {BA), F(RY}g 5, - 0,
V*g V(HHUS5, N(F(RDIUN(L(R2)g ru s,
rge V* = V(RYUV(RD, r6TT2.

OnpegeneHune 2. OTKAoYeHnem uenn P=P1P2...Pn (aé3) u3 noarpadga L
rpaa G Ha3oBEM MmocnefoBaTenbHOe yaneHue n3 L Bcex BepwunH P2, P3, ..., P, T.
[padh, MoMyyeHHbIA MyTEM OTKMOYeHWA uenu P u3 rpada L, 6yaem 0603HayvaTb
yepes L —P.

MycTb —ntbas npoctast uenb rpaga G, gna kotopoi V(Q)g
gV(HNUS, r6{12}.

byfeMm npegnonaratb, 4TO AN HekoTopoh uUenu @O0=aaao+l...aa+b, rlk
allll, » ~2, a+bSc, mHoxectBo V(QO mmeeT HenycToe nogmHoxectso VO, ans
kotoporo o{a,,, a+}"0.

OnpepgeneHune 3. MpocTtyto uenb T rpada G Ha3oBEM 3cTaheTHbIM MYyTEM
ana uyenn Q n 6ygem obosHayatb udepes (T), ecm

F(T)6V(Q), L((M6V(Q), V(MVYF{T),LM}g I An\r (0.

OnpegeneHune 4. Myctb (7') n (F)—BepWNHHO HeMepeceKatoLwmecs acTa-
(heTHble nyTy and uenm O B rpade G. Torga (TX u (/>) Ha30BEM CMEXHbIMW, €Cn

nmbéo
F(TMNF{TX L{TA\Q, L(72i[F(77D,i(7 D]tR,
b(TALP(TX, Z.(7\))tB, [(7-26 [4rO, B A)]IE.

OnpepgeneHune 5 TycTb actaetHble nytm (7\) un (@) onpegeneHsl ans
uenn Q. Ckaxem, uto (/) HakpbiBaeT (9, ecnu

{Fir,), T(r2} g (F(TX L(TY\Q, F(7i)nT(rd =0

OnpegeneHune 6. Myctb (Tj), (T, (Td—BepWMHHO HenepeceKatoLLMecs
acTageTHble MyTM ans Q, HU OAMH M3 KOTOPbIX He HaKpblBaeT Apyroi. lMocnego-
BaTenbHOCTb (7\, To, ..., Td) Ha3oB&M acTadeTHbIM MyTEM Anst Q, ecnn 3cTatheTHbIIA

nmoéo
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nyTb (I7;) npu nto6om =2, d—1 cmexeH Tonbko ¢ (TAL n (Ti+l), npu i= 1 cmexxeH
ToNbKO € (T2 n npu i=d cmexeH Tonbko ¢ (TE_ ).

OnpepeneHue 7. TycTb
'o= max{i/i & a+b+1 L(T)=a, T(MN€{aa,aatl, a o}\K0G},
h=min{i/iSa-1 T =a, T(T)€{aa,ae+l, a aH,}\FO}

rae maxu min 6epércs no BceM Lensam T, ABAAOLWMMUCA 3CTaeTHbIMM Ny Tamu 4ns Q.
Torpa acTadeTHbI NyTb (Tr), onpeAenéHHbI Ans Q, HAa30BEM 3CTa(ETHLIM 3BEHOM
Ana Tpokn (<20, FO, 0, ecnu ansa HekoToporo iC{/0, /x} umeeT mecTo

K(TQ = af, T(r0£{aa, aatl, ..., aa+b}\KO.
OnpepgeneHune 8. ScTaeTHbln nyTb (T1, T2, ..., Td Ha30BEM 3cTaheTHOMN
uenbto ans Tpolikm (QO, VO, Q), ecnn NMB0 BbIMOAHAOTCS CeaytoLLIMe TPU YCI0BUS

* T,(T,-)E; {Ra+bt+1, &a+b+2> T I>d,

2. Lenb Tr sBnsetcs actageTHbIM 3BeHOM ana (Q,, VO, O);

3. MNpu nwo6om i=2,d uenb TraBnseTcs acTaieTHLIM 3BEHOM AN TPOWKM
(foca, L(Ti*y\\Q, VO, Q), nnbo BbINOAHAKTCA Creayowmne Tpu yCnoBus:

1L F(Tj)E{oci, C2 eee, <a-i}> i=1,d;

2. Llenb TdsBnsetcs scTadeTHbIM 3B8eHOM A5 (R0, KO, Q);

3. Mpu nobom i—2,d uenb T{ABnseTca scTaeTHbIM 3BEHOM AN TPOWKM
([aet, £ (r LD]tR,FO,R).

Uucno d bygem HasblBaTb AMHON acTadeTHon uenu (Tx, T2, ..., Td).

Mycte (7\, 2, ..., T—acTaeTHbIN NyTb ANa Q M NycTb
K(M) ee«kt, L(Tj) =<tl, a~<a,(, i=1d,

a*l=a* ~...S atd.

OnpegenerHune 9. Lk, NonyyeHHbIA ©3 TH U[atl, a,JtB nyTém yga-

NeHuns Bcex nofuenein [afd, a9 I]td, i=2, i/, O6yneM Ha3blBaTb LMK/IOM, MOPOX-
[EHHbIM acTageTHbIM nyTém (7\, 2, ..., TO.

Onpepgenexnune 10. AnuHoii acTageTHoro nyTn (T T2, ..., Td Ha30BEM JJIMHY
uerm [a*, ajtR.

Onpegenenune 11. 3ctaeTHuli nyTb (TX, Ta, ..., Td), oOnNpesenéHHbIN Kak
ana Q, Tak n gng Q'QQ, Ha3oBEM MakcumasibHbIM Ha Q', ecfiv OH MMeeT MaKcu-
MasbHY0 ANVHY Cpeaun BCeX MyTel Takoro poja.

B panbHenwem Mbl 4acTo 6yaem Nonb3oBaTbes TeopemMoii MeHrepa [1], koTopyto
Mbl 3[€Cb CHOPMYNUPYEM C HEKOTOPLIMU €€ CeACTBUSMMU;

Teopema MeHrepa. MycTb VX n V2—06ble Henepecekaropmecs nogmHo-
>KecTBa BepLUmMH k-cBa3Horo rpadga G. Torda cnpasefvsbl CleaytoLye Y TBEPXKAEHNS.

1 Mogrpacbl (FXY) 1 (K2 coeauHeHbl No KpaiHeid Mepe K MPOCThIMU LENsmu,
KOTOpbIE MOMapPHO MOTYT rMepecekaTbCsd TOMbKO B KOHLEBbIX BEPLLMHAX.
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2. Moarpadbl (FXY 1 (Y2 coeanHeHbl No KpaiiHeid mepe min (|FX, \V2, K) npoc-
ThIMU LensaMy NonapHo 6e3 0OLLMX BEPLLIH.

3. Ecm |FX"k, To nogrpadibl (FXY v (FQ coeamnHeHbl MO KpaitHeli Mepe K npoc-
ThIMK Lensmu, KoTopble B nogrpade (FX) nonapHO He MMET O6LMX BEPLUMH.

[na S-ponycTMoit napsl Ueneld J1x, R2 BBeaéM 0603HaueHMs
di = [M(F(Aj))nF*|, d2= [[V(L(A)riF*|.

Nemma 1 Ecnm gna S-gonycTuMOoi napsl Leneid Rx, R2rpaa G umeeT MecTo
d1+d2M\V*\ +\, To cywecTsyeT uUenb P~1, yaosneTBOpAOWaAs YCNOBUHO

(1) F(P)=L(RY), L(P)=F(R2, V(P)=V~
[JokasaTenbcTBO. BBeaém 0603HaveHNs
AL = ginz e QP> 2 = emetemez o M GITz en = FO,
Si = {iliitiEX(G)}, S2= {iUHCi-i€X(G)},

roe  QrOn+l—pukTBHOe pebpo. OueBmaHo, yto ~U S.i Ecimn
|Sxn'S 2?il, TO
IK*|s|S1+|S,| = d1+ d2b|K*|+ 1,

4YTO HEBO3MOXHO. lycTb |SxnS23”2, T.e. cywectsytoT unucna |I,, (2, ynoenet-
BOPSAHOLLME YCIIOBUIO

ti*t,, {Kt+16AT(O, ¢,C.EX(G), i= ~2.

[anee, nyctb {/Ix,/12} n tn"-m. Torpga uenb, Nony4yeHHas U3 nogrpada
POU cxE,0+' U ¢,0 nyTém yaaneHuns pebep ¢,0&0+1, cmemil, ya0BNeTBOPSET YCI0BUIO
(1). Nemma pokasaHa.

Nemma 2. Ecnm ana S-gonycTUMOIA napb! Leneit i?x, R2rpaga G umeeT MecTo
|[F* OS75=3, To nmbo cyuwlecTByeT uUenb P=P, yposneTBopatowas ycnosuo (1),
nMbo cywecTByeT Uenb P=12 yaosneTBOpsIOWAs yCIoBMO

F(P) = L(R), L(P)=F(R2, FCP)g F(tf,)US,
V(p)ns g F*PIS, |F(P)| é di+d2- 1,
mbo cyllecTBYeT Uenb P =13 ynoBneTBopaiowas ycnosuto
F(P)dS, L(P)dS, V(P)g F(HnuUsS,
F(P)nsg F*ns, \V(P)\ Edt+d2

Ecnm >ke gnd Rr, R2 umeeT MecTo \WV*TS|=2, TO /MbO cywlecTByeT Lemb
JP =14, yaosneTBOpstowas xoTs 6bl ogHomy 13 ycnosuin (1), (2), imbéo ana noboii sep-
wyHbl zCS, oTamuHoli oT L(R\) n F(R.,), cywecTsyeT uenb P=P, yaosneTBops-
toLLLas YCNOBMIO
F(P)dS, L(P)eS, V(P)g v(Hnns,

F(P)MS g {LiRJ, F(R), z), |F(F)| "~ di+d2+1
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JokasaTenbcTBO. BBeaém 0603HaueHs
*1 = A. = «wafr+.o0e{. (1{«see€» 1,
J = |K*M5|, a= max {*/&{€*(<>)}, b = min {</£*£*((?)},
rge ¢,,G,,*'—prkTnBHoe pebpo. PaccMoTpuM crefytolue cydam:
Cnyuain al [ns HeKOTOpbIX uucen s, t UMeeT MecTo

LUX(G), s< |,
Eiiii*(G). C.ES$*G), i=s+i,i-1.
LIMkn, onpeaenéHHblii 3cTaeTHbIM MYTEM ¢,,G9) Ha uenn PO, 0603HauMM

yepe3 CO. TNycTb
Co-iU ~i. OFEii€r(C?} =5k {i/Ui-itXiG)} = S2.
OueBngHo, 4To
Sxg 6 +,
g {b, o is+itu {{,+1, &+, U-
Ecnm [51M5271, to  yAOBETBOPSET YCN0BMIO (2), TaK Kak
KU —(Sy+ |SI|-D)+|{«f+ f-5-2 £ dx+d2- L

Ecnn xe |51M5'2-.. TO CyWeCcTBYIOT pa3fiMyHble uncna tx, t2, yaoBneTeops-
tOLLMe YCIOBUIO

€if,1+iEX(G), ULEX(G), i= r2

Mycte tOC{/j, t2) wn t0?4m Torga uenb, nonyyeHHaa w3 nogrpaga POU
U M0HU 20 nytém ypaneHus pebep £08&0+1, i,, imH, yaoBneTBopseT ycno-
Buto ().

Cnyvait a2. a"T"b —1L
PaccmoTpum (J —L1)-CBA3HbIN rpad

gd=g-((s\ kHU{U).
min (a, b) & min (d1+1i, d2+1) S HG)—(k —JT) * A,

TO no Teopeme MeHrepa (NyHKT 2) B rpaje (A1) uenun ¢lQ.<a- 1, £0+LE, +2...
COeaVHeHbI MO KpaliHeil Mepe A—1 nNpocTbiMK Uenamu /X, /2, ..., /4 T nonapHo 6e3
06X BepumH. MycTb

N = {IEJINKEIM (S\EL) - O}
MOCKO/bKY Lienu /; NoMapHoO He MepecekatoTcs, To

Tak Kak

HUK(,)NKE) ~ 0 3 [~ [T,
n cnegosatensHo, |/1] & (J —0)—/4/2]NN/2].
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Jonyctum, uto A—2. Torga umeeT MeCTO

AM{rMLA2, N _ B =0 wim SN{&,+1,6,+2,..., «*"Hn-

oTkyga cnegyet V(Ij) MV(H2 =W, T.e. \A\SI. Ecnu xe /1S3, TO HepaBeHCTBO
ly4|SI1 oueBngHo cnegyet m3 \A\s]ZI/2].
Takum o6pasom \A\Si npu A”2, T.e. Tpoiika

a0=1W 2-0, (U-N)

06nafaeT HekoTopbiM 3cTaeTHbIM 3BeHOM Qx. Myctb (Qx, 02. ..., Qd sABnseTcA
3cTaeTHOM LEeNbl0 MaKCUManbHOM AnvHbI Ans Tpoiku AOQ, rae gSi. Mokaxkem,
yto L(Qg= Jonyctum obpaTtHoe, T.e. L(Q@ " in. Ecim L(QQE[Cb+1, M\P 0,
T0 (QI, QI, *=- Qg, ChE,) ABNseTcH acTaeTHOW Lenbio ana AO aniMHOW g+1, 4To
NPOTUBOPEUUT MakcumanbHoCcTK yucna g. Mycts L(Qgf[ca, ib\P,,, PaccmoTpum

(A —1)-cBsi3HbIin rpad
G@ = G-((S\F*))U {L(Qgj.

Mo Teopeme MeHrepa B rpage G uenun [¢x, L(QQ)\PO n (blOp), £8] | PO coe-
OUHEHbI MO MeHbLUen mepe A —1 nonapHO HenepecekakoLWUMICA NPOCTLIMK LiensamMu,
Cpean KOTOpbIX CYLUECTBYET LeMb, He MMEHLas 06X BEpLUMH C MHOXECTBOM
V(H2J. Torga ans Tpoiku

{Ki,L(Q9\W\PO{L(Q9}.PO

CYLLLECTBYET HEKOTOPOE 3CTAPETHOE 3BEHO ¢ ¢+ i, UTO MPOTUBOPEUNT MAKCUMA/IbHOCTU
ynucna g. Takum obpasom L(Qg =",

Beeaém 0603HaYeHUs

FQQi)=L, L(Qd=at i= 0T,
roe Qo="alb0, =3 u
bO= min {i/i > aL, Cx"eX(G)}.
be3 noTepu 06WHOCTM MOXeM npegnonaraTtb, 4To
ap= max {i/i < bg_x, i¢cEX(G)}.

Llmkn, nopoXaéHHbIA 3cTadeTHbIM  nyTém  (QO, Qi, mm Qg), 0603HAUMM
yepes CO

Cnyvai a2.1. BT "a 1+2—I, i£0, g—2
Llens CO-£ mEm#1 ypoBnetBopseT ycnosuio (2).

Cnyuvain a2.2. Cnyvali a2.1 He MMeeT MecTo, T.e.
aHlzamS b,-1, W€l g—2

LInKnbl, nopoxaéHHble acTadeTHbiMu nyTamu (QO, Qx, ..., Qh), (RA+L, Qh+2, ...
w> ()g), 0603HauMM uepe3 Cx m C2 COOTBETCTBEHHO. Ecnm g=2, TO npuxoaum
K cnydvarwo a2.l. lMyctb g S3.

3ameHnM Qh uepe3 Takyl Uenb Q, 48 KOTOPOW MOCMefOBaTENIbHOCTb
(Qi, Qi, *=>Qh-i, Q, Qh+i, *ss- QU), KaK U Npexae, onpegensieT 3cTaeTHbIA NyTb



O MAKCUMANBHOM UWKNE FTPADA 257

ana PO, a BepwnHa L(Q) Ha uenu POMMeEeT HavMeHbLUWIA BO3MOXHbIA HOMep. Be3
BBEZEHNS HOBbIX 0603HaYeHW MOXeM npegnonaratb, 4To Q—Q,. AHaNoOrnyHo,
3aMeHUM Uenb QhH uepes 3akyto Uenb (ee Takke 6yaem 0603HavaTh Yepe3 Q,+1),
ana kKotopoit nocnegosatensHocTb (QIf Q2 ..., Of), kak W npexze, onpegenser
acTadeTHbI NyTb Ana PO, a BepwmHa F(Qh+l) Ha uenun PO MeeT HaMbOoNbLLIWIA BO3-
MOXHbIIi HOMEP.

Cnyuvain a2.2.1. A"3.
PaccMoTpyuM HekoTopyto BepwuHy — £V*f)S, oTanuHyto ot £1 n £ratl.
B cuny cumMMeTpum gOCTaTOYHO paccmatpuBaTh Ciaydain AéaArl

Cnyuait a2.2.1.1. G>A.
Llenb

(Q-K*. .. caCbti,-i - b*.
K = max {i/i < 5 M€X(G)},

rge

YAOBNETBOPSET ycnosuto (3).

Cnyyain a2.2.1.2. X*b, bc"XSac+2, cEh,g—=2
Ecnn (c—/)—uéTHOoe umcno, TO Uenb

(Co- Ka, {J t(CO- O)m Ku+1, 1J tpo

yposneTsopsieT ycnosuio (3). Ecnm xe (c—)—HeuéTHoe umcno, To ycnosuo (3)
YL,0BNETBOPSET Lienb

(Co- Kg, J t(Co- O)U[M(, n tpo.

Cnyvain a2.2.1.3. Xsb, ac+I*X"bc, cEh+1,g—2
Ecnn (c—A+ )—uéTHoe uncno, To LeMb

(CO—{Erc+1>¢ Jt(C 0-7))U (K actl, ¢ JtP QU (Km#1, [JtPo)

yposnetsopseT ycnosuto (3). Ecnm xe (c—h+1)—HeuéTHoe umcno, To ycnosuio (3)
Y0BNETBOPSET LieMb

(CO-K .BH, A 4t(Co-{,,))U(("c+L, ~)tPo)U ([~ tl, ¢JtPo).

Cnyuaii a2.2.1.4. ah+IsXshh.

Mycts V* fl-Sg V([Caht, ThitPo)- Oonyctum, uTo ana uerm PO cyllecTsyeT
acTaeTHbI nyTb (M), YAOBNETBOPSAIOLIWIA YCMOBUIO

(5) K*ns g V([F{M), L(IM)\\ Po)c V([Ean+l, £JtP O-
Mo onpegeneHnto uenein Qh n QhX nmeem

Y(M)M(vm\{nQi), LQ)}) = 0, i= 6Ty

17
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Ecnu cyulecTtsyert Lenb, yaosnetsopatoLas (5), To 04eBMAHO CYLLECTBYIOT Lieni
Mx, M 2, ynosneTsopsitoLuume ycnosuto (5), 1 uncna qlt gA ans KoTopbix UMeeT MecTo

F(MX = £8], & = min = &},
L(M2 = g2= max{//P(M) = Q.
Ecnn e He CyLLECTBYET Lienu, yA0BNeTBopstoLLei ycnosuto (5), To byaem nped-
nonaratb, 4YTO
gx= min {ilr S (fc+l, CCE*M5},
g2= max {/ir » £;€E*M5}.
PaccmoTpuM (/1—2)-CBA3HbIA rpag

GWsG-I0SXK-0U {{«{«})*

Tak Kak g2—gx—1s A—2 Si, 70 no Teopeme MeHTepa B rpade CB) noarpadibl
([fi, £A)tPOU((£,2 CjiPo) wn (£gL £2tPo coeauHeHbl MO KpaWHein Mepe OAHONA
Lenbto, Kotopas Beugy V*PISg V(Ugi, £2tP0, He umeeT 06LWMX BepLUH C
MHoXecTBoM V (//9. CnepoBaTensHO, Tpoika

obnafaet HekoTopbIM 3cTapeTHbIM 3BeHOM N1. Myctb (VL N2 ..., TV) siBnseTcs
acTaheTHON Lenblo MUHUMaNbLHOM A/IMHLI Cpean Beex acTadeTHbIX Leneit (TVX N2, ...

/Si, KOTOpble OMpefeneHbl AN TPOWKKM AX U YLOBNETBOPSIOT YC0BUIO
L(/Vj){ P(Kent, CiJtPo)- B cuny cuMmeTpun Moxem npegnonarats, 4to L(NQf
€F("bh, ¢,JtPO- Mo onpegeneHunto Lenein  MMeeM

y(@Q)nvmw g E*, i=07, j=0Tg, L(NKV ((Ebh +tPO.
LLukn, nopoxagHHbIA acTadeTHbIM nyTéM (TVX T\2, ..., TV), 0603HauMm uepes C3.
Ecnn QnQm+HC.X(C3), TO uenb

((COUCI - [cbh P(TV))]fPO) - ¢,,.cmH

yposnetsopset ycnosuio (3). Myctb  ¢mixi X(C3. Ecnn mHoxecTBo fV(C5)MS)\
{F(TVX} copepXuT HEKOTOPY BepwmHy ”, ™ Ijinl-

((COUC3U[EM+L, PTVAtPo)- (K*, L (TV)]! P(U[P(Vi), u]\ T

Takke ygpoenetsopseT ycnosuto (3). Ecim xe (V(C3Ir\S)\{F(ND}—Q T0 u3
onpegeneHus uenm TuXcnegyeT cyulectBoBaHue ans PO actagetHoro nytu (M),
yaosneTsopstowero ycnosuto (5). Torga ycnosuto (3) yAoBNeTBOPAET LemMb

((COUCH- L L (TV)I\PQ - * T,
roe Cs—eCTb UMK/, MOPOXAEHHBIA acTadeTHbIM nyTém (M2, A',, N2, ..., TV).

Cnyvai a2.2.2. A=2

PaccmoTpum rpad G(@4)= G—<S\Wz}), roe z*S—npoun3BonbHasa BepLUUHA, OT-
nmyHaa ot L(R¥un F(R2. Tak kak G(4) cBsizeH, TO CyLLeCTBYeT Lienb TV, y40BNeTBOPU-
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toLLast YCMoBMIO

FIN) =2z, M alk*n(por(B,)))\{£», Er+i},
(6)
K(MWz,LGV)I g K (")\{k*u (Uo”(B,))}.

Cryuaii a2.2.2.1. L(N)tV(QU\{F(Qn), L(QY), VO, g.

B cuny cMmeTpumn A0CTaTOYHO paccmaTtpuBath ciydad vSh+\. Ecnm (v—A—
HEeYeTHOEe 4uncno, TO Lenb

(COLlu +,u tPO- [L(NX U {t(C,- &)

y0BNeTBOPsieT ycnosuio (4). Ecnn xe (v—A—uéTHoe umncno, To ycnosuio (4) yaos-
NeTBOPSET Lienb
(COU7VU[EM+L, £JtP 0-|X (Aa «Jt(CO-ii).

Cnyvain a2.2.2.2. L(N)=~V {P 0.

B cuny cuMMeTpuM [OCTAaTOMHO paccmatpueath cnydad T7>/u+ 1L Torga ons
HekoTopoi uenn N 1, ygoBneTBopsitoLLeid ycnoButo (6),j U Ans HEKOTOPOro uucna T,
NMEEeT MECTO

L(ND=al, Tj= max{i/L(P)=

rae max 6epétca no BceMm Lenbsim P, yaoBneTBopstowmm ycnosuto (6).

Ecnn gns HekoTopoid uenu P, ygosneTBopsioweit ycnosuto (6), MMeeT MecTo
LIP)E[£n ¢mtPO, To cywecTtByeT uenb N2 yposneTBopsitowas ycnosuto (6), u
4YnACo T2, AN1S KOTOPbIX

L(ND = 2= min{lls T, L(F) = Q,

rae min 6epétcs No BceM Lenbsm P, yA0BNETBOPAOLWMM ycnosuto (6).

Ecnun xe ans no6oit uenu P, yaoBneTBOPAIOLLEA YCoBuUto (6), UMeeT MecTo
JL(P)(F[ii, Em)tPo, To 6yaeM npegnonaratb, 4T0 T2=/U. TlOCKOMbKY NpW Heob6-
XOAMMOCTU MOXHO K BeplUMHe £, npucoegmHutb Uenb Ni ¢ KOHLUEBOA BepLUMHOM
zCS, TO 3TOT cnyvaii nogobeH cnyvaro As 3. Torga, ecim >bh nam 12>aAt,
TO Mbl MPUXOAUM K OLHOMY M3 cny4aeB a2.2.1.1—a2.2.1.3. INycTb &atlS t2< t1” &a.
PaccmoTpum rpad

G5= G -((S-««,f.+1,iH)U{r1,T2).

Tak kak k(Gsya 1, 710 B rpage C(®H nogrpagbl
(KI,  t/n({,, U tPo), Kn,U tPo

coefHeHbl HEKOTOPOW Lenbto B. Ycnosme zCQ npoTMBOPEYMT NGO MaKcHMMaslb-
HocTM umucna TIf nnbo MuMHMManbHocTu umcna T2. Mycte z$B. Torpa K(B)(T
MK(A2=0 wn, cnegoBaTenbHO, TPOKa

(Kn."HPo, {11573, P,)
06nagaeT HEKOTOPO 3cTaeTHON LEnbi, YTO NPMBOAMT HAac K ciyyaro a2.2.1.4.

17*
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Cnyuvain a3. b~ nrSa—I.
Beeném crnegytoupe 0603HauYeHNs

hi= wax {// < a ¢,E6*(£)}, h2= min {i/i > b, CICEX(G)},
h3=max {i/i & b, EI&CX(G)}, ft4= min {i/i » a £aEEX(0)}.

_Ecim h2sm  wam A”m +1, 10 npuxogum K cnyyato al. Myctb h2=m + 1,
hl ~Em
Yepes Ol n 02 0603HaummM Lenu, 418 KOTOPbIX MOC/eA0BaTeIbHOCTL (CACAR
Bi, O2>CAC,) onpeaenseT acTaeTHbIli NyTb ANA Pnwn CyllecTBYOT umucna ax,a2,
™, b2 Takne, uTo
F(Qi) = E,, L(Qi)= @l i=172
bl= min {i/L(P) = &, a2= max {i/F(Q) = £},

rge min uan max 6epétca no BeeM Lenbam P, Q, 4719 KOTOPbIX NOC/eA0BaTeNbHOCTb
N O, ¢ /4c,) onpegenser actadeTHbIn NyTb Ana P,,. TOCKOMbKY nocnefosa-
TenbHOCTb (Ei4,, BEE.2» g,4G) Tawke onpegenseT actaeTHblii nyTs ansa PO,
TO U3 onpegenexHuns uucen /4, a2cnegyet h1ra2<b1Sh2.
Beegém 0603HaveHNs

ao= min {i/i > Gi, GECA(G)}, 0= max {ili < b2 C,:EX(G)}.

Linkn, nopoxaéHHbI sctadeTHbM nyTém (EiEa, 0i. Or> QOf,), 0603HaunM
yepes CO. Ecnm w$a2, /b —1, To uenb CO—E,,,l+1 04eBMaHO Y0BNETBOPSET YC/O-
B0 (2). NMyctb a2=T"bx—1

Cnyvaii a3.1. <S3. )
PaccmoTpuM HekoTopyto BepwuHy C,,C.V*C\S, oTauuHyto oT n Bmti-
B cuny cummeTpum MOXKEM mpegnonarats, YTo n”a2.

Cnyuain a3.1.1 n>/uy.

Lienb
f«E«ti. .. eoefm,
roe =max E,E:£MG)}, yaosnetsopseT ycnosuio (3).
Cnyvaii a3.1.2. /i2< kS/4.
Lienb
ATuiit+ | EIEjr2£jr2- 1 oo Em+1°

roe n2=Ttax {///<q, EiiEACG)}, ygosnetsopsieT ycnosuio (3).

Cnyuain a3.1.3. bx<Tt"h2.
Lenb

CAaCn + X oo Cljacft4d—1 “ m Hokk (>bi Ci>i_ | eee (srn+ 1|

yLoBneTBopseT ycnosuo (3).
Cnyuvaii a3.1.4. a2*"nsbx.
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Ecrm  ((/*M5)MNK(("BL éiJtA) 20, TO nNpuxogum K OAHOMY W3 Cryyaes
a3.1.1—a3.1.3. Myctb V*MNAA K([£e,

Jonyctum, uto ans uenu POcyLlecTBYeT acTateTHbIld nyTs (M), yAoBNeTBOpS-
oW YCNOBUIO

(7) K*ns g V([F(M), L(M)]\Po)c V([Cai,

Ecnu cyuwecTByeT Uenb, YAOBNeTBOPAOWAA ycnoBuio (7), TO 0O4eBUAHO, Cy-
LLEeCTBYIOT uucna gx, g2 u uenu My, M2 (yaosnetsopsiowme ycnosuo (7)), ans
KOTOPbIX

w = W = min {i/F(M) = Q,

b(M2 = g2=max {i/L(M) = £},
rge min n max 6epyTca nNo BceM Lenbsm M, yaoBneTBOpAOLWMM ycnosuto (7). Ecrm
e He CYLLEeCTBYET Lenu, yAoBneTsopstoLweid ycnosuto (7), To 6yaem npegnonaraTb,

yTo
gx = min {i/i ~ a2, £EK*M5},

g2= max {i/i * bx, £fEK*nS}.
Kak 1 paHblle, AN TPOWKM
A, = (K,, )

CYLLECTBYET HeKOTOpbI 3cTadeTHblid MyTb (NXN 2, . Ng, MMeloWwmii MUHUMASTb-
Hyto anuHy cpeam Beex (Nx, N2, Nt), koTopble onpeaeneHbl Ana A2 w1 yaoBneT-
BopstoT ycnosuio  L(Nt)$V([Cai, ]\PQ. B cuny cummeTpum 0CTaTOMHO paccmar-
puBaTb cnydar L(IVEEK([Ej1+], EJfP0)- LiMkn, NOPOXAEHHbLIA 3cTaeTHbIM MyTEM
(Nx, N2,  Ng, ob6osHauum uepes Cx. INyctb L(NgJ=Q. HepaBeHcTBO r>/i4
NPOTUBOPEUNT onpeaeneHuto uenu Q2 cnegosatenbHo, rii/r,. Mpu r>h2 uepes
Py 6ygem 0603Ha4aTb LeMb

T,«r+l -

roe r,=max {ifi<r, CX(G)}, a npn r~h2 uepes Px 6yaem 0603HayaThb LeMb

Ecom  QnilmHC.X(CJ, rge C2=(Cj—fbl, Q]POQUP1, 1o uenb C2-CmQnH
yaosneTtopseT ycnosuto (3). Myctb EMEMH<FX(C2. Ecnm mHoxectBo (K(C2M
nS)V{/r(Ai)} codep>XXMT HEeKOTOpY BepLUMHY L, TO Lerb

(C.UK.+,, F(NAPOQ-[FW, w]\PO

yaosneTtsopseT ycnosuto (3). Ecimoxe (V(CM) H S)\{i (iV)}=0, To no onpegeneHmn
uem NX cyllecTByeT Lenb, yaoBneTsopstowas ycnosuo (7) u, CnefoBaTenbHo,
ycnosuio (3) yAoBETBOPSET Lenb

(C2UM2U([F(M2), iJtP QUK,,+1, FWd]\PQ-[FiNU L (M 2]1PO.

Jlemma pokasaHa.
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Nemma 3. Ecnm (RI, R2 aBndeTca S-gonycTumoin mapoi ans rpada G, To
MBo cylwecTByeT Uenb P=P, yaoBneTBOPAOWEAA XOTS Obl OLHOMY W3 YCNOBWIA
(1), (2), mbo cywecTByeT Lens P=12 yaoBneTBOPSIOLAA YCNOBUIO

F(P) =L(RD, L(P)=FR23, V(P)Q V(HNJIS,

8
® K(p)ns g K*CIS, |K(P)| femin(dx, d2+A~I,

roe A=|K*M5|.
[JokaszaTenbcTBO. BBeaém crnegyroume 0603HayveHns
- 182 . A2 - @nI-IQ'm-Z- ~ Po.

a = wax [i/"Ci*XiG)}, b= min {//£,&€ (G}
rae <mgm+l—gumKTBHOE pebpo. PaccmMoTpuM creaytoLime cryydau:
Cnyuaid 61. Ans HeKOTOPbIX uucen s, t UMeeT MecTo

bz.aXiG), s”t, mis, i-1.

CylLecTByeT Uenb, yAOBNeTBOPAIOLWAA XOTs 6bl 0gHOMY K3 ycnosuid (1), (2)
(cm. nemma 2, cnydaii al).
Cnyuvain 62. a"m”"b —1
Lna Tpoiku
nr= «.}. J1)

CyLLecTBYeT HekoTopas acTateTHas uenb (Qx, Q2, mm Qg), rae L(Q9=C (cm.
nemMma 2, cnyvaih a2). Beegém 0603HaueHNs

= ae.) =4, i=06n,

roe 00=£,9B, Go=1
b0 = min {i/i > alt Ci*X(G)}.

be3 notepu 06LHOCTM MOXEM MpeAanonararb, 4T
all= max {ili < QQCX(G)}.

Ecnrm bi*m”*ai2—I, HO,g—2, TO CywecTBYeT LeMb, YA0BIETBOPAOLLAS
ycnosuto (2) (cm. nemma 2, cnyvaid a2.1). Myctb ah+1*m~bh—1, HC 1 g—2
Torga ana PO cyllecTByeT HeKOTOpbIiA acTadeTHbld nyTb (Q\, Q\, ..., QjJ (rge
Q\=Qh-1 npu /ra2 n QT=ClG MPU A= 1), KOTOpbI ABAAETCA MaKCUMa/lbHbIM
Ha uenun [Eak x, £] tPO- AHanornyHo, ana PO CyLLecTBYeT HEKOTOPbIV 3CTadeTHbIi
nyts (Ql, Ql, ..., 6/9 (rge QI=0h2 npn g-hs=3 n 0OI=£,£,, npn g~h=2),
KOTOpbIA sBnseTca MakcumanbHbiM Ha uenn  [£(,,+2, i mH]tP,,. LMKnbl, mopox-
[EHHble 3cTadeTHbIMU NYTAMU

Coft+i5Qii+2i ++5 Qg)’ (QO, Ri> s> Ofc-i5 QI, QI’ oli)>
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0603HauMM yepes COwu C1cooTBeTcTBEHHO. O6beAMHEHME BCEX Lienel

B Rj* ~ A*dfi+1), Q),j=1/i, OL n=1,72

B rpace G onpegensieT HekoTopbld nogrpad W Yepes Wxun W20603Ha4UM KOM-
MOHEHTbI cBA3HOCTY rpaca W —{L"Qj"}, a uepe3 W3u fV4KOMMNOHEHTLI CBA3HOCTY
rpapa W —{L(Qf2j. be3 noTepu OO6WHOCTM MOXEM Mpeanonaratb, YTO
begvCfvjnvctyvj.

PaccmoTpum (A —1)-CBA3HbIA rpad

G = G-({L(0,)}U (5\K*>).

Tak Kak aéc/x+ 1"8(G)—K—A)+\*"1+1 10 \YHD\*A. AHanornyHo,
\W(IVI)\*A, i=2,4. Torga no Teopeme MeHrepa (NyHKT 2) B rpage Gw nog-
rpaa W1lu IV2 coefimHeHbl Mo KpaiHeld mepe A—1 uensamu /x, /2, ..., IA- Xnonap-
HO 6e3 06WMX BepLunH. OueBUAHO, YTO

KYK(/)NK(A + O} = min (ux, 12,
raoe
«1=\VQVjns\, n2=\V(W2ns\.

Mostomy B rpape G—L(Q}Y nogrpadbl Wv in W2 coeguHeHbl Mo KpaliHei
mepe A—I1—min (Mx, 82 BepMHHO Henepecekalowmmucs uensmu Ex, E2, ..., Eig,
KOTOpble He MMEHT 06LLMX BepLMH ¢ MHOXecTBOM V(H2 U (S\F*). AHanornyHo,
B rpate G—L (6|9 nogrpadbl W3 1 W4 coenMHeHbl NO KpaitHeid mepe A—1—
—min (H3, N4 BepLIMHHO Henepecekalowmmncs uensmu Fx, Er, ..., F,,, rae

n3= iFi*nS1, nd= |[K(1P3)M5|,

KOTOpble He MMET 06LMX BeplimMH ¢ MHOXecTBoM V(A2 U (S\K*). HetpygHo
npoBepuTb, 4T0 min (nX, «2+ min (N3, N4 A —2, 0oTKyaa

@+ ¢ S 2A—2—min (ux, n)—min (N3, n4d ~ A

Ecrm A=2, 10 uenb C,—QnQntl yaosnetsopsieT ycnosuto (8). Myctb A &3.
Torpa 6e3 noTepy O6WHOCTM MOXEM Mpeanonaratb, YTo S2.

Cnyvain 62.1. Aa2, g—AE&3.

Cnyuvain 62.1.1. £(E)EK(B)H\{F(6;), £(E,)}, el A jC.h+2, g.
JTOT cnyyaik NPOTMBOPEUUT onpefeneHnto uenm Q}.

Cnyuaii 62.1.2. L(EioCV(QR)\{E(QR L (00}, Yo€lT7a
Cnyuaii 62.1.2.1. FiEJeViQ*iFi'Qd, L(Q,)}, i€l,A-I.

JTOT c/lyyail NPOTMBOPEUUT onpedeneHno Lenu Q;.

Cnyuait 62.1.2.2. +(£),)€ ViIQDXIFCQ},), L(O?)}, XCTTIT-

O6beauHeHNe Lenei

[FIRY.), FiEJIiQ~ Eig[L(EJ, F(Q\)]\QI
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onpefensieT HEKOTOPYHO NPOCTYIO Uenb Q°. Llenb C2—imEurl, rae umkn C2nopox-
[AEH acTadeTHbIM MNyTEM

(005 Q>  OA-150L 025 ee=» OLI-15 R°! BJ0-I, OYO- 2’ s> 015 O/1+5 01+3H wee> R 3>
YLOBNETBOPAET YCN0BUIO (2).

Cnyuain 62.1.2.3. HEME€[EL "h.9tPO npn JIEr3 u £9tP 0 npu
A= 2.

ATOT Cyyail MPOTUBOPEUNT onpeaeneHMio tenu Qh-i.

Cnyvain 62.1.2.4. L{Q}J\\PO.

Be3 noTepu 0OLLIHOCTM MOXeEM npegnonaratb, YTO
FIEALIQ}M), L(Q)]\Pa

O6beanHeHue ueneit E,om [L(EiQ, F(Qj0]iQj0 onpeaensieT HEKOTOPYHO NPOCTYHO
uenb QL LIMKn, NOPOXAEHHLIA 3cTaeTHbIM MYyTEM

(005 015 «>0/I-17 015 025 =865 0>15 0 1505,,-1, 0y0-25 **5QI 1Qh+25Qf 13 **5Q)>
0603Ha4ynm 4yepe3 C3. Torga uenb C3— mi my] yaoBneTBOpsieT ycnosuto (2).

Cnyvain 62.1.3. £(£,,)€[£,, i(0f)]tPo-
Paccy>xgeHnsi B 3TOM Ciy4yae NpoBoAaTcA nofobHo cnydvasam 62.1.2.3, 62.1.2.4.
Cnyvaii 62.1.4. L(Eion m+L, L(QfU\iPO.
Be3 moTepy 06LYHOCTU MOXEM MPEANONOXWTb, UTO

L{E "mH,L{Q}I\PO, i= 1t

L(FjM¢m, LiQ }~PO, | = ITff,

£ (0*)€K»+i,i (0/2]tN, F(R4+1)EKx»,L (0},)]tP0e

Cnyuaii 62.1.4.1. F(EUZV{Qd\{F{Qd,L(Qd),m,h-I.
3TOT cnyyail npoTuBopeuuT onpefeneHuto uenu Qt.

2Cnyqal7| 62.1.4.2. F(FOE<;i, ~N2|P0 npn As3 u F(Flg€<ils GYJPO npu
A=2.

10T CﬂyLIaVI NPOTUBOPEYNT onpeaeneHno Lenmn
Cnyuaii 62.1.4.3. F(EMEV{CA), i (E*)EPI(C)).

Lienb

((COUCAH- [L(A), ¢ (E9)]\PO - c TETHL,
rae

C4= (C4U £iU £1)-Ne i), P(CI)t(Ce-"),
YLOBNEeTBOPSAET ycnosuio (2).
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Cnyvait 62.1.4.4.

F(EAC(F(QI4), L(Q\))\PO, vO J~\.
LIMKN, NOpOXAEHHbI 3cTadeTHbIM NYTEM
(Oai Qii == ol,Ql, =0l),
0603HaumMm uepes C5. Ecnm 4=V, TO UeMb
(C5-Ne ), F(E2]IPQUEXUEL2U(CO-({,, Gn+iU[Z.(£)), L(£2]t PO)

yA0BNeTBOPSeT ycnoBuio (2). Ecnnxe /K v, TO ycnoButo (2) yA0BNETBOPAET 00be-
OVHEHVe Ccnefylowmx ABYX Lenel

(C4- [ELY, L(01)]tPOU([£(01), E(£2]tPO,
(CO-(?m +iU[L(£0, b (E*)]tPOQUEXUE2
Cnyuaii 62.1.4.5. F(£i)€(F(0J+i), £(01))LL\,, F(E2tV(CJ.
PaccyaeHns B 3TOM Clyyae NpoBoAadTcsa Nofo6Ho cnyyasm 62.1.4.3—62.1.4.4.
Cnyuvain 62.2. Es 2, g—h—2
TakK Kak "2, TO 3TOT C/ydail CBOAWTCA K cryyato 62.1.
Cnyvait 62.3. h—1, g—h"3.

Ecnn oa 2, To npuxoaum K ciyyato 62.2. Tyctb a=1, T.e. coéJ—1L Torga
umkn COnmMeeT He MeHbLUe, YeM d2+A BeplnH W, cnegoBaTensHo, Lenb CO—Qmi ml
YAOBNETBOPSET ycnosuto (8).

Cnyvain 624. fi=1, g—h=2.
bes notepu 06WHOCTM MOXEM Mpeanonaratb, 4T
/= m Ne ) € HEdJE{Cm+LZm+i,...,Ch}, i=1Ti®,

F{Fpht{tn.i, £+2, ., U. L{Fj)"a,i.+1, ., U. J=
MycTb
L(F) =~t, F(F)==Fyj, i=T77,

a0= max {i/i < cri, £B,€MC}

Llenb Ce—&Y 1, rle Ce ecTb UMK, MOPOXAEHHbIA 3CTadeTHbIM MYTEM
(Ei, YA0BNETBOPAET yCnoBuio (8), Tak Kak

|[E(CO| s=d2+ o+ cr= 2+ d
Cnyuaii 63. b=T=a —\.
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Beeném 0603HaueHUs
= max {fe< a, ""eX(G)}, h2=min {i/i > b, "eX(G)},
h3=max {i/i =b, ~X(G)}, h4= min{ili S a, £EE£X(C)}.
Ecnm h2Sm wnn hl*m +1, 1O npuxogum K cnydyato 61. Myctb h2=m +\,

hAm. [Ona PO cywecTByloT HekoTopble 3cTadeTHble nytn (Q\, Ql, Q/,

(QI, 01, ees O/£)> rae Qi=tiih3, (%12=£n£n4, KOTOpble ABMASKOTCA MaKCMMasbHbIMU
Ha uensx [&, £njtPO n [¢,, "mHl]fP0O cooTBeTCTBEHHO. B cnyyae

E#)E(&,Tjtp0 nm ~O}€(L,cnmHl]tPo
paccyxfeHus npoeoaaTca nofobHo cnydyato a2.1 (cMm. nemma 2). MycTtb
bllPo, w % w n,ijtPo-
O6beanHeHVe Bcex Lienel

n,.eb 05 i=1x ;=TX

B rpae G onpegenseT HekoTopblin noarpad W. Yepes Wxu W2 0603Ha4MM KOM-
NOHeHTbI cBsAsHocTM rpaha W —{L(Q})}, a uvepes W3 u fVA—KOMNOHEHTbI CBAA3-
HocTh rpapa W—{L(Qf9}. be3 noTepu 06LLHOCTM MOXEM npearnonaraTb, 4TO
Ci€ F(1F,) MV(W3. Beeném 0603HaYeHMs

N =715, A2= \W(WAC\S\,
G2>= G-({£(0J}U (S\F*)U (F(IF)nS)).

OueBngHo, 4to A4+A2=A —2. Tak kaK \V(IVA\eéd2=S(G)—k +AEA wu
K(G@P""A AL A2+ I*l, TO no Teopeme MeHrepa (nyHKT 3) B rpage
G(@ nogrpagbl 1F*= (F(B/D\S') n W2 coeanHeHbl No KpaiiHen mepe A—Al—1
uenamm If, i=1, A—Ar—1 (rge L(/})CV(fVD), kotopble BBugy V(fVf)(IS=0
He MMeT 06WMX BepwunH ¢ MHoxecTBoM V(H2 1 nonapHO He nepeceKkaroTcs
B noarpage W2. M3 onpegeneHns actadeTHoro nytu (6i> Q> mm-G/i) cnepyet
M!D E m+i, UtPoJCI, A-Al-1. B cnyyae T(/)€(A0/2. EHT>, i€1, A-Ar- 1
paccykgeHus nposogsTca nogobHo cnyuato a2.1 (cm. nemma 2). Nyctb

A(/DE[im+H A (6/9]t/ 0. 1=
Torga
N kT+x,b(03]1A)| S J-Ji-1.

B cuny cummeTpun umeem

PaccMoTpum /A-CBA3HBIN rpad
G@=G-i*tol1*"UISVIUIK~ANS)).
Cnyuain 63.1. nm |F(PF\S |<J2
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be3 noTepn 06LHOCTM MOXeM npegnonaratb, yYto |[MW/2\S'| <AX Tak Kak
\W(WDND\*A1 1o no Teopeme MeHrepa (NyHKT 3) B rpage G noarpagbl Wx u
W2 ={V(IVI\S) coeavHeHbl N0 KpaiiHei Mepe
min(iK(™)i, m *)i, n) = \vm
uensmu If nonapHo 6e3 06LWMX BepLUMH, KOTopble BBMAY W2T15"=0 He uMmeloT
o6uwmx BepwmnH c MHoxectBom V(HA2). Torga ¢,—L(/?0 ana HeKoTOpOro

[0EL, |[F(PF2)I- N3 onpegeneHns uenn P,, cnegyeT, uto [EX(G), 4TO NpoTmBO-
peunT onpefeneHuo ymucna b

Cnyuait 63.2. IFCAXSIfer, [K(A"Y\5]|~AT.

Mo Teopeme MeHrepa (nyHKT 2) B rpade G nogrpadbl Wx n (V(fVI\S)
coefuHeHbl NO KpaiiHel Mepe Ax uensamu Ex, E2, ..., EJk nonapHo 6e3 o6wiux sep-
WKWH. B cuny cuMMeTpumn MOXeM npegnonaratb, 4To B rpage G nogrpadsl Wt
n (V(fV3\S) coeanHeHbl Mo KpaiiHein mepe A, uensmu Fx, F2, ..., FJT nonapHo
6e3 o6LMX BepwnH. Beegém 0603HaYeHUs

*mNo) = &% L(Ef) = Qat, i= TTIi,
F(F) = @i, L(Fj)=iaj, j=TTA2

Be3 noTepn 06LHOCTY MOXeM MNpeAnosaratb, YTo
<K S <S..A an

CrEK .+, 1-(Rii)]tPO, i=iT7A,

{€K«,i(O>)]tPo, ‘=T T2

Cnyuain 63.2.1. coi<a, o[>h.
Econ Ax=0, TO
|K(K|\/|+1,L(B},)]tp,,)|SJ—|,

OTKyZJa CnefyeT, 4To Lemb

) f-+i<.+.-[.E*(b+i-€-

COLEPXNT NO MeHbLUel Mepe d3+A—1 BepLUUH W, CNef0BaTeNbHO, YA0BETBOPSET
ycnosuto (8).
Jonyctum, uto Ax—L1 OrTcroga

~NK L, +,1.(0),)]tPo)| = ~-2,

TaK KaK WHave npumxogum K cnydato Ax=0. Torga Ans HekoTopblx uucen /,y£
£1,J — —1 nmeeT MecTo:

L(If) = (a+1, LW ) = Qn+2.
Pebpo "T+x"ur2 B Llerm (9) 3ameHMM LeMblO
BTUIRUIF(1}), F(1))]\PO.
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MonyyeHHas npy 3TOM LeNb yAOBNETBOPAET ycnosuio (8).
Myctb Arw2. be3 noTepu 06WHOCTM MOXEM npegnonaratb, 4To J2—2.
BBeném 0603HayeHUs
w0 = min {i/i > w\ ££X(G)},

°0 = max {i/i < o[, G.AC.X(G)}.
{«{»-i - tbint,-1- «».Eii. -
OYEBUAHO COAEPXMUT MO MeHbLUen Mepe
d2+A+(a'1-CT0-{(00-(0'D

Liens

BEPLUUH, a Lenb
imHIim2... 0.07i€,... - fanb;+1l -
COAEPXUT MO MeHbLUER Mepe
i/1+ J+(co0-toO-(<yi-0'0)

BEPLUMH. [NuHHelWwas M3 3TWX Lieneldi COAEPXWUT NO MeHblUeld Mepe min (clx, d2 +
+A—1 BeplWwWH W, cnefoBaTesibHO, YAOBNETBOPSET ycnosuo (8).

Cnyuvaii 63.2.2. co[lll, a["b.
Be3 notepy 06WHOCT MOXEM npeanonaratb, YTo
A 1€(L(02,L (0i_D]tFo.
LIMKN, NOPOXAEHHbLIA 3CTaPeTHbIM MYTEM
«1thhQIQ1-,Qal
K = max{i/bteX(G), £,€(£(&), ")\PO,
0603Haumm uvepes C7. Lenb CB—EXET+L) rae
c8= (c7-[L(B;2, x (6p 1tp O,

rge

c9= (c8Ke{ei]tPOUKZ,{ei]t/'0,

COAEPXNUT MO MeHblLeR mepe d2+ A+ (b—<)—(co™—a) BeplunH. B cuny cummMeTpun
CyLlecTByeT nogobHas Lenb, MMetoLas no meHboLein mepe dx+A+(w{ —a) —{b—
BEPLUMH. [ANNHHeliLWas 13 3TUX ABYX Lieneil MMeeT No MeHbluei mepe min (d1,d2 +A
BEPLUNH W, CnefoBaTeNbHO, YAO0BETBOPSET yCnoButo (8).

Cnyvaih 63.2.3. T[<a, a{"b wwm (a{lll, ak>b.
JTOT cyyail cBoAMNTCA K cnydyasam 63.2.1 n 63.2.2.
Cnyuaii 63.3. A=2.

JTOT cnyyai cBOAUTCA K cnyyasm 62.2.2 n 63.1.

Cnyuain 64. a<b, T$a, 6—L1
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JTOT cyyail cBoguTca U cnydasm 62 n 63.
JleMma fokasaHa.

[doka3atenbcTBo TeopeMbl 2. TNyctb v(G)=v, 6(G)=06, k(G)=k, h(G)=h
nnyctb S={wx,v2, vk} fiBNseTCA pasfenstoLmM MHOXECTBOM BepLUnH rpata G,
yOa/leHe KOTOPOro MOPOXKAAeT KOMMOHeHTbl CBA3HOCTM GX, G2, Gt. Bsegém
0603Ha4eHuns

HI = 4G G, H2= G,
i=1

bes noTepy 06LWHOCTM MOXEM npegnonaraTb, yto |F(IT2Il
Cnyuain 1L \V{HXY\"206-k-\.

JlonycTm, 4To HekoTopasi MpocTas Lenb X =PX y/[0BNETBOPSET CreayroLmm
YCNOBUSIM:

al. F(v)€S, L(X)ES, V(x)QV(HDUS.
a2. Ona noboi uenn x =P, ynoenetsopstollein ycnosuo al, nmeeT MecTo
[K(/>)N5] KNS5

a3. Ana mo6oin uenm x =P, ypaosneTesopstoweli ycnosuam al, a2, umeer
MeCTO
{/IF(F)nF(GH * Off = {I/K(UTMK(C,) * O}.

ad. Ona noboii uenn x =P, ygosneTBopstoLLei ycnosusm al, a2, a3, nmeet
MecTo
\WV{P)\ S [K(N)|.

Be3 noTepu 06LWHOCTM MOXeM npegnonarat, 4to V(PR TS = {vx, v2, ..., VAL

Ecim N(VI)C\W(Gj)=Q pna Hekotopbix ifl, K, /€1 t, To MHOXecTBO 5\{"i}
ans rpaa G MOXET CYXWTb K —1 BEPLUMHHLIM Pa3fensitoLiMm MHOXECTBOM, YTO
NPOTUBOPEUNT /c-CcBASHOCTM rpaga G. MycTb

N(v,)V(Gj) Fo, i=0T, j=T7i.
Torpa gns noboid napbl BeplwnH (r- vi+l) cywlectsyeT napa (u}, U?), yaoBneT-
BOpAIOLLAsA YCMOBUIO
EY(C\ «?eK(GH, ViL}CX(G), Vvi+LUfCX(G),

rae iCLl min(t, K)—1 Tak kak GXG2,...,G,—CBA3Hble KOMMOHEHTbI, TO nNapa

BepwnH (1%, u?) ans nroboro iC 1, min (I, K) —1 coegnHeHa uenbio N{, Ana KoTopo
V(Ni)QV(G,). O6beanHeHne BCeX Lieneli

M}, vi+uf, Ni, i =1 min (/, /)—1,

B rpace G onpeaenseT HEKOTOPYHO MPOCTYI0 LenMb (KOTopas YAOBMETBOPSET YcC-
nosuto al), cogepxxaluyto min (/, K) BEPLUMH U3 MHOXECTBA S 1 NMPOXOASALLYI0 Yepes
min (t, K) —| KOMNOHeHT cBA3HOCTM rpada G—S. OTcroga cnegyer, uto P, cyllect-
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BYET, a W3 yCNoBWiA a2, a3 cnegyet, yto A”min (/, K) u
Y= [{//K(C7,)NIM) * O} ~ min (/, K)-1.
Jonyctum, 4to Ana Hekotoporo uucna i£l, /—1 vMeeT MecTo
(O) KM NV(G)* 0, K(C)\K(N) * 0.

be3 noTepu 06WHOCTM MOXeM npegnonaratb, 4To i=t—L Yepe3 Tx 0603-
HauMM HEKOTOPYHD KOMMOHeHTYy cBasHocTn rpada (V(G,_D\V(P D). Bsegém
0603HaveHus

Mr = N(V(Ti)), B ={vZMJSuf. SiuveXiP,))},
D=MXS, E=M"S, F= {n€K(PDBMC)MFCA()}.

3 onpegeneHns mHoxkectBa Mx u u3 HepaseHcTBa k(G)s K cneayeT
AV(PYUS n \MAMK. Tak Kak G, _i—CBA3Hasa KoMMoHeHTa, 170 />F0. Ecnn
B=<g, T0 FQS, /7MN/1=0, otkyga |F|*|D|+ 1, Ff)E=0 u, cnegosaTefbHo,

|A#| = IB|+ |E| N F|+|£]-1 S |S]-1 = k-1,

4TO HEBO3MOXHO. Takum o6paszom 570. [Mo onpegeneHno MHOXecTBa B cyuiecT-
BYIOT BEPLUMHbI L, U2, U3 Takue, 4To

UXMZEX (PR, UV2UEX(G), S, UETX

Mpumep noarpada (PrU urvd —xv2, KOTOPbIA COCTOMT U3 ABYX Herepecekaro-
WMXCS Lienein, [0KasbIBaeT CYyLIECTBOBaHME S'-A0OMYCTMMOI Mmapbl uenei (X,y) =
~(RX R2, ymoBneTBOpsIOLLEl YCMOBUAM:

61. L(x) = F(P]), F(y) =L(P), F(x)ZV(Hd, F(y)"V(HX),
[Ten), «liter g =, [F(Pi), I/jtn g v,
W > \Y(Pi), V*g V(Hi)US,
roe V*=V(x)OV(y), uxu2C X(Pj).

62. Ona nob6oin S-gonycTMmoid mapbl ueneid (x, y)—(11,1r), ymoBneTBopsio-
el ycnosuo 61, NMeeT MecTo

I(K(/)UK(/2)ns| = [K*nS].

63. [Ons no6oii S-gonycTtMmoid mapbl ueneid (x,y)=(1x, /2, ymoBneTBOpsio-
wein ycnosuam 61, 62, uMeeT MeCTO

Hi/F(GN (K (/YUK )Y ~ [KIF i) MV* * o).

64. Ona nwoboii S-gonycTMmoli mapbl ueneid (X, y) =X/, ymnoBneTBopsto-
Wwein ycnosuam 61, 62, 63, UMeeT MeCTO

[F(/)UF(/9] ~ \VI\.
be3 nmoTepu 06WHOCTM MOXEM npeanonaratb, 4TO
K*ns o}, Aé nAk
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Myctb
dx= |ANF(iDnHZY, d2= |AFENNK*|.

Mo nemme 2 ana S-gonycTMmoil napel Ueneid RIt R, cyulectsyeT uenb P—P2,
Y0BNETBOPAIOLLAA X0TA Obl 0gHOMY K3 ycnosuin (1), (2), (3) npyu 973 1 XoTd 6bl
ogHomy w3 ycnosuid (1), (2) (4) npn A=2.

Ecnm e ycnosume (10) He vMeeT MecTo, TO 6yaem npegnonarats, 4To P2=P1,
n=/n, V*=V(P".

MycTb npocTtas uenb X =P3 yaoBNeTBOPSeT YCMOBUAM:

Bl. V(x)QV(HAUS, F(x)=F(P2, L(x)=L(P2,
Y(x)N V*Q{F(P2, L(P2}.
B2. [na nob6oit uenn x =P, yn0oBNeTBOPAIOLE YyCnoBuo Bl, MMeeT MecTo
IK(/>)nS|*"K(F3nS|.
B3. [ns no6oi uenn x =P, yaoBneTBOpsIOLLEl YCNOBUAM B, B2, UMEET MECTO
\W(P)\ s |K(P3)|.

bes noTepn 06LIHOCTM MOXeM npegnonarats, 4to Y(PYMS= {F(F3, L(P3),
vn, VK+, vr), ecm a3 wwm a=2, V(PAC\S=V*r\S. Ecm xe a=2,
V(pdr\srv?ns, T0 6ygem npegnonarats, u4to V(P3C\S={F(P3), L(P3,
vt,vs, vr}. Mpu |F(F3DS|=2 6ygem npegnonaratb, YTOo r=n.

Ecnn

) V(G,)\WV(P3 * 0,

TO KaK ¥ nmpy ycnosum (10), MOXKeM MOKa3aTb, YTO CyLLECTBYeT S-AonycTMmas napa
ueneii  (x, y)—(R3, /?4), ynoBneTBOPSIOLLAS YC/OBUSIM:

m. Lx) = F(P3, F(y)=L(P3, F(x)i V(H2, L(y)iV(H2,
[F(P3, ul\p3g X [L(P3 pl>*g y, V*g v(h3)os,
vZnv* g {F(P2, L(P2}, WX > W(pJ,
rae V2=V(x)\J ¥(y), uvCX(P3.

T2 [Ons noboi S-gonyctumoi mapbl uenein (X, y) =(14, /2, ynoBneTBopsto-
Wein ycnoeuio rl, MMeeT MecTo

A(MUKA~Ansl M |Kxns|.

r3. Ansa no6oii S-gonycTMoin napbl Lenein (y,y) = (/x, /2, yaoBneTBOpsOLLEN
YCNoBuAM rl, r2, nMeeT MecTo

\v(h)UK(/2] ™ \v;\.
Be3 notepu 06LHOCTM MOXEM Mpegnonaratb, 4TO
V2HS = {F(P2, L(P2, ra+2> s>y,
ecm A€3 wwm 9=2, /2HS=K¥nS. Ecmxe a=2, /"HS"K~™nS, 10 6yaem
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npeanonaratb, 4To
NS = {A(A2, L(P2, »4, »,, rick

Mpn |[KZnS|=2 6yaem npegnonaratb, 4To CO=n.
Mo nemme 3 ans S-gOMyCTMMON Mapbl Ueneli R3, RxcyllecTByeT Lenb A=54,
yooBneTeopstoLLas xota 6ol ogHomy u3 ycnosuid (1), (2), (8).
Ecnn ycnosve (11) He vmeeT mecTo, TO Oyfem npegnonaratb, 4To H,= 3,
co=r, VZ=V(P3.
Mycts ) )
d3=|iV(F(A8)nKd|, d, = [7TV(L(AD)nK™|.

Cnyuaii 11 V(HD\V (A4=0, V(H2\V (P3=0.

Mo npegnonoxeHuto ycnosua (10) n (11) He BO3MOXHbI, T.e. P2=P1, F4—P3,
0TKyfa
IK(A2] ~ [F ()| +|F(P9nS| ~20-k-1+4,

A4S S [K(//J+ [E(AYMS| "0 -k +1+r-A+2.
Ecnn r=k, 10
hs [K(A21AY| ~ |K(AD|+ |K(AD|-2 s IB—re

Myctb r<k. Yepes T,—0603Ha4MM KOMMOHEHTY CBSI3HOCTM rpada (rr+l,
vr+2, VK. Ons mHoxectBa N(V(TQ)=M2, 04eBMAHO, UMEET MECTO

M2= M2M(K(A9UK(34), \M2A& k

MNycte N/2={"4, 1, ....,y]7}, rae nocnefosate/lbHOCTb OMpejeneHa Mo HEKo-
TOpbIM HanpaeneHnem Unkna A2U A4, Mo onpegeneHnio MHOXecTBa T2415 Nto60ro

/61, T cywecTByeT uenb Qt, ya0BNeTBOPAOLWAS YCIOBUSAM
Xe,.) = b, L(e,) = 4i+i, v(Q>\{>b, %i+i}i v(t2

rae riz+l=rl. Ecnm gna HekoToporo umcna i0CL T no HeKOTOPbIM HanpaBneHVEM
umkna A,UP, umeeT mecTo

sn\V(fjig o) 1(szs4 =Q
(,na)- QYO t(a.nag)me 0

NpoTMBOPEYMT NMGO onpefeneHnto Uenu A2 nnbo uenn FA4. Torga

TO LMKA

Sr\V(rit, f7iH)t(A2u849 ~ 0, /= TIT,
OTKyAa cnefyeT FAX”"K, 4TO MPOTMBOPEUMT MPEANOSIOKEHUIO.
Cnyuvain 12 E(//D\E(A D0, Y(HI\Y (P 3=0.
Mo npegnonoxexunto, ycnosue (I1) He nveeT mecto, T.e. 4=l n

[A(AY| s (0-k +1)+(w-n+2)sd-k +3
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Cnyuain 1.2.1. Ycnosue (10) He umeeT MecTo, T.e. Ana no6oro i'Cl, t—1 nmeet
MecTo
K(Pi)nK(G,)=0 wwm V(G)\V(PX = 0.

Mockonbky V(HX\V(P) "0, T0 Vyl" 12 C [pyroil CTOPOHbI
yATw L —,k—1). Torga /—1"K, OTKyaa

ylrk —I, A” min(t, K) £ min (K+1, K) £ K
be3 noTepy 06LHOCTU MOXeM npeanonaratb, 4TO
{12, ..., Ic-1} g {i/V(Py)TV(G)) * 0O}
Mo npegnonoxennto V(Gi)\V ()=0, r= 1, k—L Ortctoga seugy |V(G)]|;
i0-k-\-1, /=1, t, umeem
rUmL A uY(G.) 8IS (k-D)(8-k +1)+k,
W, cnegoBaTesbHo,
ha |K(PD|+ |K(PY!-2~(fc-1)(<5-/c+I) + fc+(a-fe+3)-2 =
=(0-k)(k-3) +306-k ™ 306-Kk.
Cnyuvain 1.2.2. Ycnosue (10) umeeT Mmecto, T.e. P2XPx.

Llenb P2He ynosnetsopsieT ycnosuio (1), Tak Kak vHave P26ygeT npoTusope-
4nTb onpegeneHnto Lenu Px. CriefoBartesibHO, Uenb P20 fiemme 2 yA0B/ETBOPSET
X0TA Obl 0AHOMY M3 yc/ioBuWiA (2), (3) Nnpu =3 1 X0TA 6bl OAHOMY U3 YCIOBUIA (2),
4 npn n=2

Ons no6oin BepwunHbl CC{vx+1, vn+2, ..., vk) nmeeT mecto F(RXC$X(G)
nam L(RIE$X(G), Tak Kak mHaye uenb RXJR2U F(RY1;U L(RII; 6ygeTt npotu-
BOpeunTL onpefeneHnio uenu Px. OTcloga

dx+d2S 20—k—n).
Echm @=K n n=3, TO nNo nemme 2

IK(>| s d x+d2-1 €26-k +n-1, [F(P4| rr«5-n+3,
OTKyza

hs |[E(PN|+ [K(1)|—2 é(2<5-/c+ n-1)+(<5-n+3)-2 é 3b6-k.
Ecnm oj=k, n=2 n \V(Pt)M£|=k, TO
|F(/>2] is 26-k +n -1 = 2<5fc+ 1, \Y(PM\*(0-k+1)+K
n, cnepgosatenbHo, h”36—k.
Ecm a)=k, n=2 un |K(/4AN5|=/c —, T0 no nemme 2 uenb P2 ypnoenert-
BOpSET ycnosuio (4), oTKyaa
\WW(PM Ad x+d2+1 626 -k +3,

h2(20-k +3)+(0-k+1+k-1)-2¢30-k.
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MycTb 0X K ¥ NycTb T3—HeKoTopask KOMMOHEHTa CBA3HOCTW rpada (mio+l,
ro+2, vk). Kak un paHbLue,

\M3M(V*un K*| » o< kK, \M3 LUk,
roe M3=N(V(T3). Otcioga

MA2Afymw*) xo,
W, CneaoBaTenbHo,
(APPHMN(L(P))MV(TI =0,
4YTO NPUBOAWT HAC K Cayyarw LW=K.
Cnyvain 13, V(HD\V (P DXO0, V(H2\V(P3XO0.

Myctb Tc"3. Mo npegnonoxeHuto, ycnosue (11) BbinonHsetcs, T1.e. P4N P3.
Llenb P4 He ygosneTBopsieT ycnoBuio (1), Tak Kak mHave P4 6yaeT npoTUBOPEUNTb
onpegenennto uenn P3. Torga no nemme 3 uenb P4 yaoBneTBopsieT XoTs 6bl 04-
HOMY 13 ycnosuid (2), (8). Ecnu ycnosue (10) He MMeeT MeCTo, TO YUWTbIBasi cnaboe
HepaBeHCTBO |F(P4)| é(5—«+3, npuxogum K cnyvato 1.2.1. Myctb ycnosue (10)
BbINONHSAETCS, T.e. P2XP\- Tak Kak P 2He ygosneTBopseT ycnosuto (1), To no nemme
2 ypoeneTBopsieT XoTa 6bl OgHOMY M3 ycnoBuin (2), (3). Ana no6oi BepLUnHBI
CE€{vn+l, vK+2 ..., vk) umeeT mecto nmbo F(Ry)ciX(G) nmbo L(RIAC<IX(G).
MoaTomy

dx+ d2 & 26 — (k — N 2)
Ecnn (o=k, 10 gns P2 no nemme 2

W (PO1 =£d1+ d2-1 *» 26— k+n0n — I,

a agna P4no nemme 3 nnéo
[F(P4| ~d 3+di-l 2e2(6- ii+2)-1 ~"06-n +3

nme6o

|[F(P4| gr min (d3,di)+I » 6-n +3,
0TKyfAa

h — |K(P2|+ |F(P4| —2 & 30—k

MycTb ax p W NycTb T4—HeKoTOpas KOMMOHEHTa CBA3HOCTWM rpada T=
= (va+i, rm2 ..., vk. Kak un paHbLue,

IMAn (F*n Vi) 1" o< K |[M4 =K
roe Mi=N(V(Tij). Ortctoga
IAFAU (A(INOXADI * 0 unn - MAM(E(#2\E*)"0.

Mockonbky M4—npon3BosibHas KOMMOHEHTa CBA3HOCTY rpada T, TO CyLlecTBy-
IOT MHOXECTBA s x,s 2, AN KOTOPbIX

v(T) = slus2, slins2=o,
N(S,)fI(V(HD\VT) X 0, N(S2n(V(H2\V.f) X 0.



O MAKCUMANBHOM LUWKNE TPADA 275

Mo onpegeneHunto uenein Ru R2, R3, jR4 nmeem
(N(F(R) UN(LE™)NSi =0, (N(F(R3)UN(L (R4)N52= 0.
lNostomy

ili+ilr = 2<5-S2—(co-n), min (d3, dt) S $—Si|- (it—2),
0TKyaa
hA [K(PI+HIK(U>4|-2 » 3r-(|5A+ 15,1+40) S Bo—c

Mpn n=2 paccy>xgeHns 34ecb MOXKHO MPOBECTM aHaIoOrMyHO criydvaro 1.2.2.
Cnyvain 14. K(AD\C (/’D=0, V(HIA\V (P 3"0.

3TOT cnyvait ceoauTtea K cnyvasm 1.1—1.3.

Cnyvaih 2. IV(#))\"20 —2k+\.

Ecnm 7—1=2, 10 |K(A,) la2(<5—/c+1), 4TO NPOTUBOPEUNT MPELNONOXKEHNIO.
MycTb 7=2 wnycTb npocTtas uens X=P1 yA10BNeTBOPSAET CleaytoLWmM YCIOBUAM:

al. F(x)CS, L(X)ES, V(x)g VCH”US.
02. Ana no6oin uenn Xx=P, yaoBNeTBOPAKOLLEA YycnoBuio Al, MMeeT MecTo
|[K(P)M5| ~ |[E(T)M5].

n3. Ana nwoboid uenu Xx=P, yanoBneTBopaloLllei ycnoBusm al, A2, umeeT
MecTo
rai s |k(n>|.

Be3 notepu o6LHOCTM MOXeM npeanonaratb, yuto F(/#)fI5'={i;1, v2, ..., VA).
Ecm V(HY \ ¥ TO Kak M paHblue (cnyyail 1) cyulectByeT A-gonycTumas
napa uenein (x,y)=(Ri, R, ygnosneTsopsioLlas CNeayloWwmnM YCOBUAM:

el. L(x) = F(PD, F(y)=L(P), F(x)EV(H2, L(y)dV(H2,
[F(PJ, ultn i [L(PI), @t/ E Y,
W\ > [k(n)|, y*g v(h3dGs,
rae V*=V(x)UV(y), uvdX(PJ.

e2. Ona noboit S-gonyctumoii napbl Lened (X, y)=(/4,/,), yBoBNeTBOPAIOLLEi
ycnosuio el, MMeeT MecTo

Kr(h)UV (13)ns\ A |K*T15|.

e3. Ons nwo6oin ~-gonyctmmoin napbl uenein (x,y)=(/It /3, ynoBneTBOpAtO-
Wweli ycnosmsam el, €2, nMeeT MecTo

W(h)UV(I2\ s W™\,

bes notepn o6WHOCTM MOXeMm npegnonaratb, yto F¥fI5'={»1,v2, ..., >}
roe AMnnk. Tlycts

di = [AEDNEY, d2+ [TV(LAI)NF*|.

18*
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Mo nemme 2 ana S-gonycTMMoi napbl uenein R2, 11, cyulectByeT uenb P2,
YA0BMeTBOPAOLWAA X0Ta Obl ogHoMy M3 ycnoeuid (1), (2), (3) npn 5S3 n xoTd
66l ogHoMy um3 ycnosuid (1), (2), (4) npu n=2.

Ecnm xe E(A2\K (T D=0, T0 bygem npegnonaratb, yuto P2=PIf n=A,
V* =V(Pr).

MycTb npoctas uenb X=P3 yAO0BMETBOPSET CNEAYHOWMUM YCIOBUAM:

1. V(x)gV(HDUS, F(x)=F(P2, L(x)=L(P2,
V(x)nV*g{F (P2, L(P2j

X2. Ans no6oin uenn x=P, ynoBNeTBOPSsOLLEN YCNOBMIO X1, MMEeT MecTo
|[F(E)nS| 3= |[E(E3NE[.
%3. Ona no6on uenu x=P, ya0BNeTBOPAIOLWEN ycnoBuam X1, X2, umeert
MecTo
WP\~ F(PI.
Be3 notepu 06LHOCTU MOXEM npegnonaratb, 4TO
F(/>3n,S = {F(P3, Lip,), v,,+1, vn+2, ... V1),

ecnn nmoo ks3 nubo n=0, /2N =E¥*MN5. Ecnm »e n=2, P2C \ S OS,
TO 6yaem npeanonaratb, YTo

F(E30S = {F(P3, L(P3, v4, vs, ..., ixk
Mpun |F(E3OS|=2 6ygem npegnonaratb, 4T0 —H.
Ecnm V(HD\V (P 3770, To cyuwlecTtByeT S-gonyctumas napa uenei (x,y)~
=(R3, Aa, ypoBneTBopsitOLLas CeayHOLMM YCTOBUAM:
ml.  L(x)=F(P3, F(y)=L(P3, F(x)cy(H{\ L(Y)CF("),
[F(P3,ul\P3c x, [L(P3, VI\P3g j, V*Q V(Hi)\JIS,
Vinv* g [F(P), L(P2}, VX > |F(E3|
rae V2=V(x)UV(y), wC X(P3).

n2. Ana nwo6oid S-gonyctumoin mapbl uenei (X, y)=(11, /2, ymoBneTBopsio-
L ycnoBuo 11, UMeeT MeCTo

[(F/DUF(/2)nS'T S |F*OS|.

n3. Ons no6oli S-gonyctumoit napbl ueneid (X, y)=0i, /2, yaoBneTBopsio-
e ycnosuaMm ul, u2, UMeeT MeCTO

[KUMUF] N WA\
Bes noTepu 06LLHOCTM MOXEM Mpeanonaratb, YTO
V205 = {F(P"), L(P2, vn+1, vn+2,  wu},
ecnn nuoo 7ts3, nnbo a=2, P2MNS=FfIS. Ecnm e a=2,



O MAKCUMANBHOM UWKNE TPA®A 277

TO 6ygem npeanonararb, 4YTO

m PIS = NQ >), L{Pa, »4, 0«’ »n}.

Mpn |[K¥nS|=2 6yagem npegnonaratb, 4YTO CO=M.

Mo nemme 3 gns S-gOMyCTMMON Mapbl Ueneir R3 An cywlecTtByeT uenb P4,
y0BNETBOPSOLLAs XOTS 6bl ogHOMY U3 ycnosuii (1), (2), (8).

Ecnm K(AD\K (/’3=0, TO0 6ygem npegnonaraTb, uto P4=P3, KZ= K(P3,
U>=T.

Donyctum, yto K(AD\K(A3 "0, T.e. P4A*P3. Ecm a£3, TO

d3+d4f 252 (9—2)—(lc—00) £

£ (2<5-2fc+)+ [(P—+2)-H+ (£-a) £ K+ 1
e d3=|A(A(43)NKZ, dd= |A(E£(AH)NK*|.

Ecm xe a=2, 1O
A+ ME 20-(k-c0)-2 £ 5—2c+ D+ (co—1)+ 1+ (c—3) £ |[K#+ 1L

Mo nemme 1 ans S-gonycTumoi mapbl Ueneid R3, Rt cyllectByeT uenb P4,
yAoBneTBOpAOLWan ycnosuto (1), YTo NpoTMBOPEUUT onpedeneHnto Lenn P3. Takum
o6pasom, K(AD\K (/=0, co—.

Ecn K(A2\K (/3)=0, 1o aHanornyHo cnydaro 121 MOXHO MOKa3aTb, 4TO
P2=P4, r—, T.e. h=V(G).

Mycte K(A\K(T"0, Te. Pr J1. Tak Kak Uenb P2 He ynoBnetsopsieT
ycnosuto (1), To o nemme 2 Uenb P2yaoBneTBopsieT XoTA 6bl 04HOMY U3 YCOBWUIA

2, 3), (4, Te.

OTKyza

iIKCPa» £ i/j+<92-1 £ 2<5-(/c-n)-1,

IK(M)] £ |K(S3)| £ [K(>|-|IK(/>9nS| £24-fe-1,
4YTO MPUBOAWUT Hac K cnydaw 1
Cnyvain 3. |K(AD|=2<5—~«—2—, roe R£0,k—4
MycTb npocTas Uenb X =Pr ygoBneTBOPseT CeLYIOLUM YC/IOBUAM:
K1l F(jt)€S, Z(i9€S, K(.x)gK"2US.
K2. |K(jt)nS|S0+3.

k3. Ons nwo6oin uenn x=P, ynosneTBopstoLleli ycnouam K1, K2, nMeeT
MecTo
IK(P)nS| é |K()N5].

k4. Ona no6oit uenu x =P, yaoBneTBopsaoLlei ycnosuamM K1, K2, K3, umeeT
MecTo
IK(>)'s [KUT)I.
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Ecnm V(H2\V(P2)?*0, Tto cywectByeT S-gonyctumas napa uenei (x,y) =
=(Ri, R2, yposneTBopAolLas CNefyOLLUM YCI0BUAM:

nl. L(x)=F(P), F(y) =L(P), F(X)<EH(tf2, L(y)EV{H?),

[F(PU, M]tn g * [L(PU, »1/1 g Y,
W\ > \WV(PU\, W g V(HIJS,

roe V*=V(x)UV(y), uv€X(PJ.

n2. |[FinS|S/i+3.

n3. Ans noboli N-gonyctumoit napbl Leneit (x, y)—14,12, ynosnetsopsaioLLeid
yCnoBuAM N1, N2, UMEeT MECTO

INe YU F(/9)ns]| 3=|F*nsj.

n4. Ona nwoboi M-pgonyctumoli napbl uenein (x, y)=( 11,12, yaosneTBopsito-
Wwer ycnosuam nl, n2, n3, UMeeT MecTo

N unurm —|r*|.
Mo nemme 3 gnd ~-gonycTumon napbl uenein (X, y)=(Ri, RY cyuwlecTByeT

uenb P2, ygosneTBopsatoLwas xota 6bl ogHoMy u3 ycnosuin (1), (2), (8).
Ecnun xe F(#2\K (Pr)—0, To 6ygem npegnonaratb, 4to PX= P2, V$= V(Pi).

MycTb npocTas uenb X =P3 yfoBNeTBOPSET CMeAYHOWMM YCIOBUSAM:
MI. F(x)=F(P2, L(x)=L(P2, V(x)"V(HI)US,
V(x)(5)V*=(F(P2, L(P2}.
M2. [ns no6oi uenn X=P, ya0BneTBOPSAOLe YCNoBUlO M1, UMEeT MecTo
|[K(P)M5] = |[K(P3M5].

m3. Ona no6oii uenm X =P, yaoBNeTBOPAOLLEN YCNoBUSM M1, M2, UMeeT
MecTo

KilV(P)nV(Gd F O} » {i/V(P3nV(G,) * O}.
m4. [na no6oi uenn x =P, yaoBneTBOpstoLei ycnosuam m1, M2, m3, uveet
e IF(P)I S [K(P3.
Jonyctum, 4to gna HekoToporo umucna /E!, i—L1 nmeeT mecTo

02) Y(PHMV(G) A 0, K(C)\K(1) n 0.
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Torpa cywlecTByeT S-gonycTtumMas napa uenei (X, y)=(R3, A9, yanosnetsops-
oLWas cneayroLWwuM yCIoBUAM:

Hl.  L(x) = F(P3, F(y)=L(P3a, F(X)eV(H,), L(y)iv{HJ,
[F(P3 u]tP3g X [L(P3,»tP3Qy, VIg V{HdUS5,
2 v* = {~Pr), L(P2}, WA > |K(P3),
roe V*=V{x)U V(y), uveX(P3.

H2. O ns 060 S-gonycTMON napbl Uenei (x, j) = (/1, /2, ynosnetsopsitoLLel
YCNOBUKO H1, UMeeT MeCTo

|[(F(i)UK(y)ns|s|[F*nS].

H3. Ons nwoboi ~-gonycTMmoit napbl ueneid (x, y)=(Ji, /2, ypoBnetsopsito-
el ycnoBusiM H1, H2, MMeeT MecTo

V(&AM (V(I)UV(/2) * 0} & {>/T(C)MKZ U O},

H4. Ons no6oi S-gonycTMMO napbl Ueneld (x,j)=(/4, 1), yaoBNeTBOPsIO-
Wwel ycnoBuam H1, H2, H3, MMeeT MecTo

inwunul s \W*\
Be3 noTepu 06LIHOCTM MOXEM MpeanonaraTb, 4To

VZns = {rbW, Vi, K*(TS = {¥, v2, va+l, vi+2, ..., ¥}
MycTb
d, = \N(F(R3)nv;\, d2= |[AF(EWNH)NKZ.

Ecom Ark—R—1, 71O
d1+d2” 20—2(k—A) A [(20-k-2-B)+A +I]+A-k+B+1 |F?|+ L

Ecim xe ASk——2, 10 gna nwo6oii BepwuHbl  CE{v,,+1, VK+2, vk)
NMeeT MEeCTO

F(R3Z$X(G) wwm LiRJtWG),
oTkyga, Bemgy \V*C\S\=n—A~2"R +3, umeeM
dx+d2S 20—2(n—A)—(k—) S
N(26-k-2-B) +A+1)+A-n+ 1+R S |Ki|+ 1

CnepoBatenbHo, no nemme 1 ana S-gonyctumoid mapbl Ueneid R3, Rt cyulect-
BYeT Uenb T4, yaosneTsopsiowas ycnosuo (1), 4To NpoTUBOPEUMT OMNpeaesieHunto
uenu P3. Takum o6pasom ycnosve (12) He BbIMOMHSAETCA.

Ecm t—~rk —B—I, 10

(8-k+1)(k-B-1) * |K(AD)| - 2S-k-2-R,
0TKyaa
5 - A~ 4<l
1S 6-k+ WP = 4
YTO HEBO3MOXKHO.
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Myctb t—ASik—3—2. Torga u3 |K*H.SI"/? +3 cnegyet
Art, \{IV(G)nV? ~ 0} = t-h

0TKyAa, BBUAY TOro, 4to ycnosue (12) He BbinosHseTcs, umeem Y (HA\Y (P =0,
T.e.

\Y(P3| - 20—k—2—"R+A
MycTb Tpoiika (X, Y, z)=(P4. R6, R§ ynoBneTBOPSET CMeAyOWUM YCI0BUAM:
ni. F(x)=vl L(x)=v2, V(x)QV(HJUS.

n2. Mapa ueneit y, z siBNseTca ~'-HOMYCTUMOA W CyLLECTBYET TOMbKO TOrAa,
korga Y(H2\Y (x)"0.

n3. L(y) =i\, F(z) =2, F(y)iV{H2, L(z2)£V(H2,
[vrul\x?y, [V2,v]1xQz, [F3[>|K(x)],
roe V3=V(y)UV(z), uveX(x).
nd. Ecm Y(H2\Y (x) =0, T0 V*=V(X).
nS. v*qv(hdJs, y¥Fny (p3d={»1 v, KinsgK,*ns.
n6. Ana nwboli Tpoiikn (x,y, 2)=(P. /,, /3, ynoBNeTBOPAIOLIE/ YC/TOBMAM

ni—~n5, UMeeT MecTo .
\YUDUF(2)ns| si [K,*ns].
n7. Ana nwob6oii Tpoiikn (XY, 2)=(P, ¥, /2, ynoBNeTBOPAIOLLEA YC/TOBUAM
ni—~no6, NMeeT MecTo
IF(/)UF(/2] si |F*|.
Bes moTepy 06LHOCTM MOXeM npegnonaratb, 4TO
F¥nS= {e, v2 c,+1, vA+2, tv), ré n

Mo nemme 3 gnsa /?5, R6 cywecTByeT Uens P& yposneTBopstowas xoTs Obl
ofHoMmy w13 ycnosuid (1), (2), (8). Myctb

db = [AFEN)N,Y, de= [iV(E(Ad)DF?|.

Ecrm Y(H2\Y (P4 =0, ro 6yaem npeanonarats, uto PB=P4.

Mpn V(HA\Y (P4 =0 nerko ybeautcs, 4yTo 1=k, otkyga h=V(G).

Mycte Y(HA\Y (P49 =0, T1e. Y39'Y(P4). LUenb Pb He ypoBnetBopseT
ycnosuio (1), Tak Kak wHave Pb 6yaeT nNpoTMBOpPeUUTL ornpefeneHuto uenu P4,
Torga no nemme 3 uenb P5yaoBneTBopsieT xoTa Obl 0AHOMY M3 ycnoBuid (2), (8),
T.C.

\V(PH\ A d5+d6—1  wm  WY(P\ ™ min (¢/5 dg+r-A +\.
o onpegeneHvto uenu Pb umeem
min (c/5, de) € 6—(A—2)—k—) & 6—k+r—A+2

OTKyja .. ..
d5+d6—] € 2 min (d3,d9~ 1 € min (d8, d§+r-A + 1
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Takum 06pa3om
U(PH| €min (d3,d3+r-A +1.

Cnyvain 3.2.1. A r——L.

Ecrm r=k, TO u3 min (d3, i/é<5—A+2 cnegyet

Neé \VPI+\V(PH\-22(20-k-2-B +A)+(6-A+2 +r-A +i)-2 €
g B30—Kk)+r—A—-—1¢é 30-k.

Myctb r<K u nyctb T&HekoTopas KOMMOHEHTa CBA3HOCTWM rpaga
{vr+1, vr+2, ..., VK. To onpegeneHnto ueneii P3, P4, R3, R3 nmeem

IMSM(K(P3UK&)|N/-<K,
rae M5=NI(K(FB). Tak kak |[N1/,]é* n \WVHD\V(P3\=Q, T0
MSIM(K(A2\K 3) N 0.
Torga gna nto6oi BeplnHbl £€{»,+1, rf+2, s=>>%} nmMeeT MecTO
F{RJZtX(G), L(Rt)UX(G),

Tak Kak MHaye uenb R3U ReU F(RHC U L(Re” 6yaeT NpOTMBOPEUNTL ONPEAENEHNIO
uenn Pt. Otctoga min (d5, de) &<5—A+2 1, cnegoBaTenbHo,

h~r(20-k-2~B +A)+(S-A+2+r-A +1)-2 & 30-K.
Cnyuaii 322. A"r —R8.

Tak Kak \V3r\S\——A+2"R3+2, TO W3 YyCNoBMA K2, ni—n7 cneayeT
VF=V* n
(AW n)Hwyanm)n{r,+L,pr+ ...... M =0,

(N(F(R3)nN(L(R¢))n{v3,vt, .... vA) = 0.
Torpa i/5+i/eé2<5—A+2. YunTbiBasi HepaBeHCTBO

WHIINN \WWHMN=206-k-2-RB,
nony4mm
\WWi\ —|K(A2|+ |[E3M5] (20-k-2-B)+(r-A +2) S

=(2<5-zH-2)-(fc-r)-j8-2 ~ d6+dt-2.

CnepoBatensHo, no nemme 1 ana T5, R6 cywecTByeT Lenb P, yL0BneTsopsto-
was ycnosuto (1), 4TO NPOTMBOPEUUT onpeaeneHunto Uenu P4, Teopema AoKasaHa.

[Jloka3aTenbcTBO Teopembl 1 HEMOCPEACTBEHHO ChedyeT W3 [OKas3aTenbCTBa
Teopembl 2. 3ameTMM OfHakKo, 4To Teopema 1 fonyckaeT npocToe [fOKasa-
TeNbCTBO, MPUCMAaHHOE MHe pedakumein >xypHana J. Combinatorial Theoryx.

1 Héaggkvist, R. and Nicoghossian, G. G., A remark on hamiltonian cycles, J. Combinatorial
Theory 30 (1981), 118—120.
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CnepctBue 1 Ecnm 2-cBsisHblil rpady G ygosneTsopsieT ycnosuwo 6(G)é
é(i;(G) +a(G)-1/3, T0 h(G)=v(G).

Joka3zaTenbctBo. Ecnu a(G)Sk(G), T0 13 Teopembl XBaTana—apgéwwa [4]
cnegyet h(G)=v(G). Myctb a(G)isk(G) +I1. Torpga

6(G) M (r(G)+a(G)-1)/3 & (v(G)+k(G))/3
n no Teopeme 1 nonyuum h(G)=v(G).

CnepctBue 2. Ecnn 3-cBsisHblil rpady G yposneTBopsieT ycnosuio  6(G)
Mv(G) +ot(G)-1)/3, To [i(G)e3<5(G)-0e(G)-f 1

JokasatenbctBo. Ecam <5(G)é(r(G)+A:(G))/3 umm a(G)*k(G), 10 no
Teopeme 1u no Teopeme XBaTana—apaéwa /i(G)=i;(G)é3<5(G) —a(G)+ 1. MycTb
0(G)MV(G)+K(G))/3 n a(G)éfc(G)+ 1L Torga no Teopeme 2 MOAYHYUM

/i(G) & 30(G)—«(G) & 3<5(G)-a(G) + .

Paccmotpum rpadbl Gk=kO0-k, G,=kiiQ, G3=kk, G4=ko-.k+1, nonapHo 6e3
06LLMX BepWwKH, rae 0€0. [pad), nonyyeHHbIn U3 (G1+ GAU (G 3+ G4 nocpeicTBOM
[06aBneHNs BCEBOIMOXHbIX pebep xy, rae xC V(G2, yEV(GJ, 0603HaunM yepes
GO0. Tak Kak yaaneHune <5BepLlUMHHOro nogrpaga G\ U G3 13 GOnopoxgaet 4 g+1
KOMNOHeHT cBsAsHocTH, TO h(GO)=36(G0O —k(G0). Mpumep rpaga GO NOKa3sbIBaeT,
4YTO YTBEPXAEHWUS Teopem 1 1 2 He y/yullaemsl.
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MINIMAL GRAPHS OF DIAMETER TWO AND GIVEN
MAXIMAL DEGREE

I. VRfO and S. ZNAM

Denote F2(n, k) the minimal number ofedges of a graph with n vertices, diameter
2 and maximal degree k. This notion was introduced in [1], where the values of F2{n, k)
were determined for k=n—1, ...,« —4. In [2] is proved that F2(n,k) =2n—4 for

~n ~"kan —5. In [2] the values for k<"n are also studied, however, the

results given there (without proofs) are not precise. In this paper we prove the follow-
ing
Theorem. If «>241 then

an—k—9 jf - 3 k » 3 (1)

267
P K =1 on o8 if | @
kg X 2 3)

Proof. The extremal graph for the case (1) consists of:
1 vertices a, b, ¢, d, e,f and edges ae, ac, bd, ce, d f ef, bf;
2. a set of n—k —4 vertices of degree 3 adjacent to a, b and d;

l:il vertices of degree 2 adjacent to b and c;

4. aset of [~y“] vertices of degree 2 adjacent to ¢ and d. We can easily show

that this is a graph with « vertices, diameter 2, maximal degree k, and it has 3n—k —9
edges.

The extremal graph for the case (2) consists of:
1 vertices a, b, c,d, e,f,g, h and edges ae, ad, ah, be, bf, bg, cf, cg, de, dh, ef,

fg, gh;
J g2. a set of «—k —5 vertices of degree 3 adjacent to a, b and d;

3. a set of k '23 vertices of degree 2 adjacent to a and c;

1980 Mathematics Subject Classification. Primary 05C35.
Key words and phrases. Diameter, degree, maximal degree, minimal number of edges.
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4. a set of k-3 vertices of degree 2 adjacent to c and d.

The extremal graph for the case (3) consists of

1 vertices a, b, ¢, d and edges ab, be, bd, cd;

2. a set of 2k—n vertices of degree 2 adjacent to a and b;

3. a set of n—k —3 vertices of degree 3 adjacent to b, c and d;

n N
4. a set of |——A—'J vertices of degree 2 adjacent to a and c;

5. a set of n_k_l'J vertices of degree 2 adjacent to a and d.

In the following let G denote a graph of diameter 2 with «>241 vertices and
maximal degree k, where
3n—3 2n —
4 —7— =k ——.

Let V be the set of vertices of G, e(G) the number of edges, and §G) the minimal
degree of G. If x is a vertex of G, O(x) denotes the set of all vertices adjacent to x
and d(x) the degree of x in G.

To prove the theorem, we shall need eight lemmas.

Lemma 1. For every vertex x in G we have

2 dwv)Sn-I.

viO (x)

Proof. Every vertex can be reached from x by a path of length ~2.
Corollary 1 Every vertex of degree 3 in G is adjacent to at least two vertices of

degrees at least Nkl

Corollary 2. Every vertex of degree 4 is adjacent to at least two vertices of de-
grees at least — -- i

Lemma 2. If <5(G)*3 then e(G)"3n—k —T7.
Proof. Put P={vEV,d(v) =3}, Q= {vEV, d(v) =4},

R={<EP,5 dv)< Y, S- {UEV,d{V) S — w- 'Jm

Let \P\=p, [0]=9, \R\=r, |S|=i.

j J
If then we have (see (4)): 2e(G)"3(n—i)+|’—y—J—— ———s0«—2k—14
and the assertion follows. A
If j~O, then by Lemma 1 every vertex of degree 4 is adjacent to at least one
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vertex of 5. Thus (according to Corollary 1) we get:
2e(G)"3p +4q+5r+2p+q=5(n—s)"5n —50s6n —2k—14

and the proof of Lemma 2 is finished.

Because of (4) no vertex of degree 1 exists in G, hence in the following we shall
suppose
) &0 - 2

Denote M= {PEV, d(v) —2}.

Lemma 3.

(6) l%a(o{v) *.
Proof. We shall proceed indirectly, by supposing that \ﬁMO(v) is empty. Then

there exist 3 vertices a, ft, cCEF so that every couple of them represents the neigh-
bourhood of some vertex of degree 2 in G. Thus every vertex distinct from a, b, ¢ has
to be adjacent to at least two of them. Further, there exist at least two edges with
both endpoints in {a, b, c}. Hence the sum ofthe degrees ofa, b, cis at least 2(«—3)+
+4=2n—2, which contradicts (4).

Denote O(M)zl)%]MO(V)’ [0O(M)]|=r.

Lemma 4. If t5|8, then e(G)"3n—k—I

Proof. According to (6) there exists a vertex a£0(M) adjacent to all vertices
of degree 2. A vertex non-adjacent to a has to be adjacent to at least t—2 vertices of
O(M). Hence the sum of all degrees in G is at least

t—2{n—k—1) s 16(n—k —1) = 6«—2k—14,
and the assertion follows.
Lemma 5 If 5°f<18, then e(G)A3n—k—7

Proof. Let a be adjacent to all vertices of M. There exist at least n—d(a)—t
vertices non-adjacent to a and not belonging to O(M). Each of these vertices has to
be adjacent to all remaining vertices of O(M). Thus the sum of all degrees in Gis at
least 2(f—)(n—d(a)—f)+4 (d(a)—t), which is for /—5,6, ..., 17 more than
6n—2k —14. The proof of the lemma is finished.

Lemma 6. If t=4, then e(G)s3«—k—7.

Proof. Suppose a is adjacent to all vertices of M. Let bl,b2, b3 denote the
remaining vertices of O(M). Let GO be the subgraph of G induced by O(M). Let X
be the set of all vertices of F-(MUO (M)) adjacent to a, and Y be the set of all
such vertices non-adjacent to a (note that a vertex of Y is adjacent to all three vertices
bf). Using the notations |Vj=jc |Tj=y, \M\=m, we get

X+m+y = n—4,
x+m s k—d0(a),
where d0(a) is the degree of a in G,,.

()



286 I. VRfO AND S. ZNAM

Now we distinguish two cases:

a) If do(a)—0, then every vertex udY is of degree at least 4 (exists a path of
length 22 from vto athere). Hence the sum ofall degrees in Gis at least 4m+ 4x+7]j,
which is, by (7), at least In —3k—28"6«—2k —14.

b) Suppose i/0(a)™l. Let ctbe a vertex of degree 2 adjacent to a and bt, i=
=1,2,3. There exists a path of length =2 from ct to each of the remaining bfs
thus if bi isnot adjacent to a, it must be adjacent to the remaining bfs. Hence

(8) do(a)+e(GO s s.

Therefore we have (see (7), (8)): e(G)"2m +3y+2x+¢(GO" 3 n-12—k+d0(a)+
+e(G0”*3n—k—7. The proof of Lemma 6 is finished.

Lemma 7. Let \O(M)\: 3, then

2n-6 , 2n—3
3n-k-9 jf 3 ~f= 3
3n—k—S jf l,(=2n3—I

3n—3 2n—8
3an—k— jf 5~ kS 3

Proof. Suppose &is a vertex adjacent to all vertices of degree 2. Let a, c be the
remaining vertices of O(M). Let GO be the subgraph of G induced by the vertices
a, b, c. Denote by Z the set of vertices in Gwhich are of degree 3 and are not adjacent
to b. Obviously, every vertex of Z is adjacent to a and c.

We shall distinguish the cases Z~0 and Z=0, respectively.

Case 1. If two vertices vt, v2 of Z are adjacent, then deleting the edge vxv2
from G, we get a graph G' of diameter 2 and maximal degree k in which (6) does not
hold — a contradiction with Lemma 3. Denote by L the set of all vertices from
V-(M U{ab,c}) adjacent to some vertex of Z. Obviously, Z.70, If)Z=0.
Further, let P be the set of all vertices of L adjacent to b but non-adjacent to a and
c; let Q be the set of vertices of L adjacent to b and to at least one of a and c; let
R=L —PUQ). Denote by X 1the set ofall vertices of W=V—Z ULUM U{a, b, c})
adjacent to b but not adjacent to a and c, by X2the vertices of W adjacent to b and
to at least one of a and c, and put Y=W—ZXUXf). Let \P\=p, \Q\=q, \R\=r,
|Z|=z, |*1=jdl, X2A=x2, IY\=y. We have

9 m+ X"+ Xz+y +z = n—3—p —q—,
(10) m+Xx +Xz" k—d0(b) —p —q,
(12) m+2y+2z+x2+2r+q » 2k —d0(a) —d0(c).

Note that every vertex of Y is of degree at least 4 and has to be adjacent to a and
c. Further, every vertex of Xxis adjacent to all vertices of L. Thus we have

(12) e(G) S 2m+(\ +p+qg+r)xl+2x2+3y+3z+¢(G1),
where Gx denotes the subgraph of G induced by the set L U {a, b, c}.
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Similarly, if \L\—\, then every element of  has to be adjacent to the single
element of L and we get

(13) e(G) M 2m+y*i+27+3" + 3z+e(G).
Using (9) and (10), from (12) we obtain:
(14) e{G) S 3In—k—9—2p—-3r—2q+(p+q+r—i)xl+e(GI.

Every vertex of P is adjacent to all vertices of L, hence we have at least
edges with both endpoints in L. Therefore

(15) QAG)Sp + 227+ 2r+(f)+e(GO.
Now, owing to (14) and (15), we have
(16) e(G) S In—k—9+(p+q+r-\)x1+ 2 r—p-r+e(GO.

Further we shall need the following inequality arising from (9), (10) and (11):
(17) 2n —6—p —x1+ 2¢(G,,) * 3k.

We shall consider (16) and (17) with respect to various values of parameters.
First by, notice that e(GQ~ 1 in all cases.

(@) Suppose xx=0;
(i) p—0, r=0, then from (16) and (17) we get

k —j4, eG)£ 3«—K—8;

(ii) p=0, rsl, then e(GO"2 (a vertex of Z adja<2:,<\azpt2to R can be reached from
b only if one of the edges ab, be exists) and hence ks ——;

(iii) p= 1 or 2, then k*» n™ ", e(G)s3n—k —9;

(iv) p=3, then k» n* e(G)*3n—k—S;

(V) p"4, then e(G)*3n—k —6.
(b) Suppose xxS1 and p+q+rs2;

(vi) Xj=1,pS1 then kr"-r— e(G)s3n—k —9;

(vii) xx= 1, p=2, then -, e(G)s3n—k —38;

(viii) xx=1, pS3, then e(G)*3n—k—\
(iX) ws2, rS 1, then e(G,)"2 (see (ii)), e(G)*3n—k—7]
(X) xx*2, 971, then e(G)*"3n—k —7;

(xi) axs 2, p~2, then e(G)s3n—k—7.
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(c) Suppose -x"sl and p+q +r=1 In the same way as above, from (13) we get

We shall consider (17) and (18):
(xii) g=I, then e(G)"3n—k—;
(xiii) r=1, then e(GOQs2 (see (ii)) and e(G)"3n—k—\

(xv) p=I, x&*3, then e(G)*3n—k—.
Case 2. We have to distinguish two cases again:

Case 2a. Suppose that there exists a vertex e adjacent to b but not to a and c,
and d(e)=3. Let e be adjacent to the further verticesf h. Let J (/) be the set of
vertices from V—MU {a, b, c, e,f, h}) adjacent (non-adjacent) to b. Let \J\=j,
|/| —z Obviously, every vertex of / is of degree at least 4 and is adjacent to a, ¢ and
to at least one of vertices/, h. Further, we have m+j+i=n—6 and m+jk, thus

Case 2b. Suppose that Case 2a does not hold. Denote by X (Y) the set of all
vertices of V(M U {a, b, c}) adjacent (non-adjacent) to b. Every vertex of Y is of
degree at least 4 and is adjacent to a and c. Because Case 2a does not hold, every
vertex of degree 3 is adjacent to b and to at least one of a, c. Obviously, m + x+y—n—3

If xSI, then e(G)*3n—k—. If x=0, then every vertex of V—{a,b,c}
is adjacent to at least two vertices from {a, b, c}. Further, in this case we have
e(G0O”"2 and we get a contradiction with (4). The proof of Lemma 7 is finished.

Lemma 8. Let jo(m )j=2. Then e(G)"3n—k - I.

Proof. Let O(M)=1{a, b). The sum of the degrees of a and b is at least
n+m—2, thus

(19) m a 2k—+2.
Split the set U=V—M U {a, Z) into the following subsets:

P1={vEU, d(v)=3 and v is adjacent to a vertex of degree 3}

Po={v£U, d(v)—3, v$PIt Vis adjacent to exactly two vertices of ITU {a. /;}};
p-i= {r€(/, d(v)=3, v is adjacent to 3 vertices of W U {a, b}}\

Q={VvEU, d(v)=4}
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Put \W\=w, P=P1UP2UP3, \P\=Pi, \P\=P, \Q\=q, |K|=r. If *v/7, then
1

= 6n—2k—10—3w+ (W—6)—"——S6n —2k—14

and the assertion follows.
In the following we shall suppose wS6. Obviously,

20 p+gq+r+w+m= n—2
S p+q+r+w+2m " 2k

Denote by D(R) the sum of the degrees of all vertices of R.
By the Corollaries to Lemma 1, every vertex of P and Q has to be adjacent to at
least two vertices from the set WU{a, b}. Thus by (20) and (21) we have:

DR) 1y e wa

e(G) =2m +5-p +30-\--
(22
s3,-t_6+£ixit£<S==xzilL.
If wi?\, then e(G)*3n—k — follows from (22). Hence suppose w=2, 6.
If p3+q+D(R)—4r”I5, we get e(G)*3n—k— again. Thus consider

(23) p3+q+D(R)-4r S 14
Obviously, D(/?)=5r, and so from (23) we get
(24) p3+q+rS\4.
Every vertex of P3is adjacent to at least one vertex from R or Q, hence we have
(25) p2” 2q+D(R)—r.

Finally, from (23), (24) and (25) we get

P2TP3T ®Tr & 70,
therefore

(26) Pi+m=n—2-—pl—p3—q—F—ws n—78 =Kk.

Hence in Pt there exists some vertex non-adjacent to a and also some vertex
non-adjacent to b. Further: (19) and (26) imply that pt>2 and so we can choose
two non-adjacent vertices u, uE/4 as follows: u is adjacent to a but not to b, v is
adjacent to b but not to a, and both u, v are adjacent to the same vertex ¢ from W.
Let u be adjacent to a further vertex / of degree 3, and v to the vertex g, d(g) = 3.

Every vertex of the set V—({a, b, c,f, g} U (IF—{c})) is adjacent to at least two
vertices from {a, b, c}; the vertex c is adjacent to at least one of a, b\ every vertex of
the set (IV—{cp) U {/, g} is adjacent to at least one of a, b. Hence the sum of the
degrees of vertices a, b and c is at least

2(h—5—w+ ) + 2-(-(w—i) + 2 = 2n—5—w.

19
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Therefore we have
—k—1

26(G)  2m+ 3(N —M—w—2)+(2n —5—w)+(w —1) "

3s6n-2k-37 +— k~ X (see (19))

and the assertion of Lemma 8 follows.

The assertion of our Theorem follows from Lemmas 2, 4, 5, 6, 7and 8. The proof
of the Theorem is finished.

Remark. We have found the following further results:

T .. 3/i-8 , 3i—3
F2(z, k) si' 5/i—4k—15 if 5 ke~ g -
F2(n, k) =s 51—4k—12 if 579_74k< 3/i5-8 1

5 4/i-2k- e n+l _ . 5/i-8
F2(n, k) a 4/i-2k-14 if > Ths g
F2(n, k) » 37—15 if n35 ak - ngrl‘
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FINDING TWO CONSECUTIVE ELEMENTS

A. VARECZA

It is a well-known result that n—2 + flog.. «1 pairwise comparisons are needed to determine the
first and second elements among n different numbers. In this paper we are considering the problem
of finding some ordered consecutive pair. It is proved that the number of necessary pairwise com-
parisons is the same as in the above weaker case.

It is a frequent occurance that certain element or elements (for example the
median or the first two ones) must be sorted out from ordered data stored in the
memory unit of a computer.

We can generally apply only one operation: choosing two elements and compar-
ing them. The mathematical problem is obvious: to work out a method, which leads
to the target as quickly as possible, in a certain sense. This “sense” for example may
be the number of necessary steps. In this matter there only a few exact results have
been attained so far. Mostly only lower and upper bounds have been proved. We
know for example that if H is a totally ordered finite set with n elements, then n—1
pairwise comparisons must be performed for selecting the maximum element (and,
of course, for selecting the minimum one).

The problem of selecting the first two elements, was raised by Steinhaus in
a mathematical seminar in 1930, non-complete solutions were published by Schreier
[7], and Slupecki [6]. The first complete proof is due to Kislicyn [3], who proved
that«—2+ [log2«1 comparisons must be performed for selecting the first two elements
in the worst case. Knuth [4] gave a considerably shorter proof for this lower bound.
Lately, there has been discovered an accurate, but rather complicated formula for
the required number of comparisons for finding the first three elements by Kirk-
patrick [2], If we want to sort out the first and last element of set H simultaneously,

then we must make at least n+ —2 comparisons (J. Pohl [5] and A. Varecza [8]).

G.O.H. Katona suggested the following sharpening of the Steinhaus problem.
How many pairwise comparisons do we need if we want to find some ordered pair of
consecutive elements? He conjectured that there is no faster way than to select the
first two elements. In this paper we prove this conjecture. We will now introduce the
necessary concepts and notations.

First define the concept of strategy suitable for determining some two ordered
neighbouring elements of the set H. We start by comparing two elements, for example,

1980 Mathematics Subject Classification. Primary 05A05; Secondary 05A15.
Key words and phrases. Finite ordered set, searching, lower bound of the length of strategy.
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292 A. VARECZA

c and d, where ¢, dEH and denote the pair (c, d) by SO. Let el (the answer) be 1,
if cx/, and let exbe 0 if c<d. Depending on e, we select a pair SVfo), say e(eX)
and /(ej). Define e2to be 1if e(e)”"f(e and to be 0 otherwise. Continuing the same
way, after a 0,1 sequence %, €2, ..., £ of answers, the pair

D Si(e. £2, ..., f])

is given as the next pair for comparison, with the restriction that if Sfa, €2, ..., £)
is defined, then Si-ifo, £2, ..., £_i) is defined, also. £+l is 1 or 0 according to
whether the first or the second term of the pair (1) is larger. A set of questions given
in this way will be called a strategy suitable for determining two neighbouring ele-
ments of the set H (simply strategy further on), if for all sequences,

>F2>%ee £,
when
57 _1(fil, €2, ..., £,_ 1) is determined, but
(2 .
St(ex, €2, ..., £) IS not,

then the answers

(3) &, £2, .*£/ (together with the questions S,,, 50(fij), ..., ., £,_])) deter-
mine two neighbouring elements of the set H (maybe the first two elements).

If 7(fil, 2, ..., ei+1) denotes the inequality made from the pair s i« . ... ..., £)
on the basis of the answer £i+1, then condition (3) can also be formulated in the way
that two neighbouring elements of H are derived from the inequalities

4 70(ei), T1(el, s2), Tl_1(eu, c2, ...,£,).

If the sequence £1; €2, ..., £; satisfies conditions (2), (3) we say: the strategy is finished.
Such a sequence is also called a path of 9> The maximal length of sequences
£I5 £2, ... £( finishing the strategy is called the length of the strategy.
Let if denote a strategy and L(if) its length. The situation after answering the
question Si_1(el, will be called the state (%,...,£;) of the strategy if.
We need the following lemma formulated first in Knuth D. E. (1975) (pp.
211—212). We repeat here the details.

Lemma 1 Let ifx be a strategy suitable for selecting the first element of the n
element set H. Suppose that the path ... .. . . satisfies the following condition.
For any i (1S/</), the answer £i+l for the comparison Si(cY, ..., £)=(c, d) is 1
if d appears as smaller but ¢ does not, or neither of them appears as smaller, but c
appears more times as larger than d does in the inequalities:

6) TO(ej, 7UELED,...,ri_1@L £,,....£,)

and £+1=0 if the above cases occur when ¢ and d are interchanged.
Then the first element occurs in the inequalities

(6) ToOh), TxOh, €2),..., TI_iOh, €2, ..., £)
at least [log2n] times.
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Proof Of Lemma 1 Consider those inequalities from (5) in which some element
(in this order) occurs as smaller the firsttime. Denote by the set of these inequalities.
We shall prove the following statement about

If an element a does not act as smaller in (5) but it does p times as larger, then
bra or b=a can be claimedfor elements b, at most 2Pon the basis o f <-

Proof. We shall prove the statement by induction onp. For p=0 the statement
is trivial. Assume that 1 and the statement is true for p—\. We shall prove it
for p. Let Tj_1(er, €2, ..., €)) be the last inequality in (5) that contains a. Let, for
example, a>c. We shall see that it is impossible to deduce more b>a or b=a
on the basis of than on the basis of Sj. Namely, let b>a be deducible in S{
that is, there exist b's such that

b =bo< bx<...<ft=a
and let h be that smallest integer for which the inequalities
bh< bhtl<...<&* = a

still occur in éj. Problems arise only in case 0. In this case the relation bh_1<bh
must be in Si—Sj.

If h=k then this contradicts the assumption that Tj-Xex, ..., ) is the last
occurrence of a. Conversely, if 0 then bh_xoccurs as smaller before bh x*bh
(which is the first inequality where bh x occurs as smaller) and this contradicts the
conditions on the considered paths. Therefore h=0.

If Tj_1(el, ..., gj) is not in Sk that is, it is not the first occurence of ¢ as smaller,
then we can immediately take Sj_xinstead of é(and a appears only p —1 times in
this Si. Thus — because of the inductive hypotheses — at most 2P-1 pieces of b<a
or b=a can be deduced.

Consequently, let us suppose Tj*(fij, ..., €j) to be in S), that is, ¢ has not been
smaller so far. In this case — because of the construction of the e’s — a has been
greater at most p —1 times before.

How many i<a can be deduced in éj by using c<a. As many as the number
of the inequalities b<c or b~c deducible in Sj~x- The number of these relations
is at most 2P~1because of the inductive hypotheses.

On the other hand without using c<a there are at most 2P~1deducible b-ca
or b=a in That is, the number of deducible relations 6<a, or b=a is at
most 2P. Thus the number of relations b-"a or b=a deducible in < is at most 2P,
The statement is proved.

Let us return to the proof of the lemma.

To all elements b — except one, say a — a sequence of inequalities from (6)
can be found from which we can get by successive application. It is true in
S,, too, because b appears also in  as smaller: b<bx, but bxdoes, too: bx<b2
and so on.

In this way we reach such an element bk, which does not act as smaller in <.
But as a consequence, it does not act in (6) either, consequently bk=a. So ifa occurs
in (6) p times, then 2p”n, that is psriog2«l.

This completes the proof of the lemma.
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Let if be a strategy suitable for determining some pair of ordered neighbouring
elements in H. Let (el5 ..£;) be an arbitrary state ofi f. We will form a partition ofH
into the subsets Ax(ex, ..., £f), AZeX, ..., £), Bx(ex, e Ba(e, ..., 8), Cfo, e).
The last one will be the set of elements not occurring in any comparisons until this
state. The definition of the sets Ax, A2, Bx, B2is more complicated and will follow
later. If it does not give rise to a misunderstanding we shall omit the e's, e.g.
AX(sX, H)=A[. We say that a comparison (b, c) in the state (£I5..., ) is of type
(e.g.) (A2, AY if

(7 Si(ex,...,el) = (b,c)
and bE£AZ2(sx, ..., £), cEAx(ex, £). The system of inequalities
(8) Tx(ex, €2, ..., Ti_1(el, ..., £)

is denoted by gr a*K(EX, ...,ef)=K* (N(sX, ..., e*=NI) if aEH and a occurs in
first as smaller (larger). We also say that a is of type K(N).

We will determine an “adversary” path (more exactly, our definition will be
ambiguous, it may lead to different paths). The adversary path and the partition
AtUNMUS>UANUCi will be determined simultaneously and recursively. Suppose
that <« ...,z; and the partition AXJA20B[\JfiiplJC1 are determined. Depending
on the classes ofb and c, resp. (see (7)), we give the result £i+1 and the new classes of
b and c. The other elements of A[ and A[+1(A2and A2+1; B{ and B[+1; B2and 5|+1;
C“and C*+l) are equal. We do not list the cases following by interchanging the roles
of b and ¢, A\ and B[, A2and B2, K‘and N1 resp.

L b, ciO: fiti=l, beAsH, ciB i
2. *€4(51), c£C*: £i+1= 1(0), ciB\-+H(A\+X
3. b£A\, c’ANUKL
or
bE£AI, ciK*
or
bEB2, cEB[: £i+l=1.
4. b, ciA[{B\): £i+1=1(0), h"ARYB2¥4) if b occurs as larger (smaller) in
more times than c. £14=0 (1), gEA2H(B2H) if b occurs as larger (smaller) as many
times as c¢ does and either b occurs in < with at least one element of B[(A\) and c

does not or c occurs in < only with elements of A2(BO. In other cases the value of
£i+l is arbitrary; the smaller (larger) element £AR+1(BRH).

5. b, ciA2B"M\ ei+l arbitrary (but not contradicting the previous e’s).

6. bEA2(B2, CEC*:

(i) Cf+i=0(2), c:_Arl(B[H) ifno element of A2(B2 occurred with an element
of C until this state.

(i) We distinguish 3 cases if there is exactly one comparison (say (e>/),
eiiA\ (egB2) in gtcomparing an element of AR(B|) with an element of C.

I If b?+e,f then £+1=0(l), cCr+1(7i+).
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I. If b=e then £i+1=1(0), CcEAI+1( I+1)-

I1l. In the case b—f we distinguish 2 subcases:

ei+l=1(0), ci Sj+1(/4i+1) if/ does not occur with an element of C“in <?. More-
over, in what follows we do not consider this case to be a comparison of an element of

with an element of C. We proceed in the next steps as if there was no compar-
ison of this type.

ei+1=0(1), cEA{+UBi+) if/ did occur with an element of C* Moreover, we
proceed in the next steps as if there was exactly one comparison of an element of
A2(BE) with an element of C*‘, namely b<c.

(iii) If there were exactly two pairs comparing an element of AMBL) with an
element of C* then

£j+1=1(0), c£i?i+1(/li+)) for case | and
£i+1=0(1), c£/li+1(2?%i+)) for case Il.

(iv) If there were at least 3 pairs comparing an element of A2B'2 with an ele-
ment of C*‘ (case | or Il took place) then we distinguished several cases:
ei+l= 1(0), 6£.01+1(/1i+1) if b first occurred with an element of /f+1(Z£+1) but did
not occur with an element of C'. In what follows, this case is not considered a “com-
parison of b with an element of C“’. Consider now the case when b occurred with an
element of C after getting into A2Bi2. Let k and m denote the number of these
occurrences where b is smaller (larger) and larger (smaller), resp. If kon then
£,+i= O(I) cMA[+HL(B[H).

If k”m then ei+l= 1(0), c£2?,+1(/I31). In the case when b did not occur
with an element of Clafter getting into A2BL) let r and s denote the number of the
elements of A2(B2 occurring exactly once with an element of C* after getting into
A2B2 and being larger (smaller) and smaller (larger) in this comparison, resp.
If s<r then £i+1=0(l), c€/fI+1(i?5+) and if s*r then £+i=1(0), cEB[+L(A[+]).

In this way we defined a path (or branch) ex...... et of the strategy £P. It will be
denoted by P. The length 14 of Pis /. We shall prove

/= |P| S n—=2+ flog2«1l-

For the sake of easier formulation we introduce the concept of the graph-realiza-
tion. Correspond the elements of the set H to the vertices of graph G. Let a compari-
son be an edge of G between the corresponding vertices and let the answer determine
the orientation of this edge in the following way: if we compare two elements, say ¢
and d, in some state of G and the result of the comparison is ¢>d then we direct
the edge from c to d, and conversely when c<d we direct the edge from d to c. In
the state (gj, ..., £) let G(EI5 ..., £) denote the graph derived in this way. H is totally
ordered, so oriented circle cannot be produced in G(el, ..., ). By the above corre-
spondence we uniquely associate an oriented graph to all states of Of. It follows from
the correspondence that in an arbitrary state fo, ...,.£,) of SP the relation e>/
is realized if and only if an oriented path leads in Gfo, ..., £) frometof If SPis
ended and (say) x and y (x>>) are the two consecutive elements, then this means
in the corresponding graph that:

(1) there is a directed path from x to y and for all elements (*x, y) of H one
of the following two conditions is fulfilled:

(2a) an oriented path leads to both x and y.

(2b) an oriented path leads to it from both x and vy.
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In the following we shall refer to this graph, when necessary.
Now let us suppose that the strategy  is ended for the sequence

©) £17€2,
along the path determined above. Let
(10) Tofi)), Tifij, £, ..., 7CLel, £, ..., £)

be the system of inequalities according to the answer (9).

Theorem 1 |fSP is a strategy suitablefor selecting two arbitrary ordered consec-
utive elements of the set H, then

L(EP) » n—2+ [log2«l
and this is the best possible bound.

Proof. Fix an adversary path (9) defined earlier. Suppose that we get x and y
(x>]j) as the two consecutive elements along this path. Four cases are possible:
1 x is of type N,y is of type K;
2. x is of type K, y is of type N;
3. both x and y are of type N;
4. both x and y are of type K.
Let us study the cases separately.

Case 1 In the state (fij, ..., £) all elements are either of type K or of type N.
Thus using the notation

Mife, »>£)UT2(el, ..., £)| = i
I-Bife, ....£,)U.B2(EL, ...E/)! =],

i+j=n holds.
We prove that the number of inequalities of type (A, B) in S\is at least

Let the elements of NI=AWJAI not compared with elements of K'—Br’nUBi in
Si be ax, ..., ak. These elements occurred first with an element of A\. Let b"AP
and let atl, ..., a,, be the ones from the set {ax, ..., aR occurring the first time with b.
By the definition of P, b occurs in at leastj comparisons with the elements of B[U "2
Hence it follows that the number of inequalities between the elements of A[{JAR

and BiUb52is at least Uan By symmetry, we may use the lower estimate
£EI UB—”|, too. That is, the number of inequalities of type (A, B) in S, is lower
ounded with

o (kuary fW U],

As
\A[UAW +\B[\JB[\ = n,

one of the terms is s £l We obtained the desired lower bound: 21 ’2’1
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Choose an element u”x of type N.

We know that there are directed paths in Gfo, £( either to or from u from
both x and y. In the first case there is an edge along the path formy to uwhich leads
from an element of type K to an element of type N. This is contradiction. Conse-
quently, we may suppose that the second case holds: there is a directed path from u
to x. Moreover, there is no element of type K along this path, because it would give
a pair (an element of type an element of type K).

We may conclude that from any element u of type N, there is a directed path to
x using elements of type N only. In other words, the graph induced by the elements
of type N is connected. That is, it has at least i—1 edges.

We can see in the same way, that the graph induced by the elements of type K
is also connected. That is, it contains at least j —1 edges.

In this way we divide the set of vertices of G(elt ..., e, into two classes (elements
of type N and K, resp.). The number of edges between the two classes is at least

, and in each of the classes there are at least I—1 and j —1 edges

resp. That is, the graph has at least +1—147—1—n+ —2 edges.
In other words, the number of inequalities in (10) is at least

’ n+ [log2«d—2 (n> 12).

One can easily check that /fe«+ flog2«1—2 when 12, too.

Case 2. In G(st, £) there is a directed path from x to y. If x is oftype K and
y is of type N, then there is an edge along this path connecting a vertex of type K
with a vertex of type N. But this is impossible by the choice of fi’s.

Case 3. Ifthere is a directed path between x and y in G(eu then by sym-
metry we may suppose that it leads from x to y. Let us divide the set A(elt €2, ...
....e)—{X, y) into subclasses:

A(ei ,£2, *., £)) (x,y} = AlUAIUAa

where A\=AXelt ....£,) —{x,;} and A20A4 is a partition of A e ..., E)A2(AE)
consist of elements having a directed path to (from) both x and >).
Using the notation

Mil = <i;, Mil= <, Mil= « \B\=j,
we have
(11) ii+is+ia+d = n-2.

We now prove a lemma about A[.
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Lemma 2. If j/lJltro, then it contains an element in occurring in at least

—flogs Mill

inequalities in (10), and always as greater.

Proof. The strategy it will be completed to be a strategy determining the largest
element. For any finishing state ofit let us consider the elements which still can be
maximum and organize an “elimination tournament” for them. (That is, the winners
are always compared.) If the number of possible maximum elements is k in a certain
finishing state ofif, then the winner will occur exactly flog2x] times in these com-
parisons. If we complete all of the finishing states of if, we obtain a strategy ifr
which determines the maximum element. In the state (£1; ..., £) all the elements of
B U A2 have been occurred as smaller. If A'*-0, x, y occurred, too. Thus the number
of possible maximum elements is /j.

Suppose that b(zA2{JBI occurs with at least one element of C. Let these ine-
qualities in < be b~-~al, ..., b<ar, b>cr, ..., b>cs, in this order. We omit the ine-
qualities ak>b, b>ck (LAyAmin (r, 5)) from < and replace the earlier one by
ak>ck. We carry out these changes for all biA*iJB!,. Denote by 8* the new se-
quence of inequalities and by S* (cH) the set of elements not occurring in 8*.

Let us now apply Lemma 1 for thisifx and any path going through the earlier
specified state (e1; ..., £). It is easy to see that this path satisfies the conditions of
Lemma 1on the set H—S*. It follows that the maximum element occurs in at least
flog2(n—B*])1 comparisons. On the other hand we know that it occurs exactly
flog2til times after the state (el; ..., £), that is, it occurs at least flog2 (« —.>*]]—
—{log2\Ai\] times in (10).

We prove that

Let <x S*-+H—A} be a mapping determined in the following way: g>{a)=b
(a£S*, b$S*, b(tA]) ifthe element a occurred first time with b. It is easy to see that
P is injective. Hence we obtain

and the above inequality. The lemma is proved.

Let us return to the proof of Case 3 of the theorem. Suppose first that A{"&.
Choose an element m according to Lemma 2. There is a directed path in G(EI5 ..., £)
from each element u of A[UA2 to both x and vy.

We prove that the number of inequalities in 8t containing an element of
A{U A2U {x} —{in} as larger is at least 2\A[\+\A2—\- Let a£A2U{x} and sup-
pose that a occurs as smaller with k such elements of A[UAO which occur exactly
once as larger in 8t. Then, by Section 6 of the definition of the path, a occurs in at
least k + 1 inequalities as larger (it must occur with an element of A2U{X, y}, t00).
Hence the statement follows. On the other hand, there is a path to each element of
A2UB fromy. y cannot lie along these paths, because it would for a directed cycle
with the path from x to y. An element of A{UAO cannot lie along these paths by the
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same reasoning. That is, the graph induced by A2Ua U {>} is connected, consequently
it contains at least i3+] edges.
Summing up the numbers of these 3 classes of edges (inequalities) we obtain

I~ Tlog, (n- - Hog, Mill + 2A0\+ M il-1 + MUAal =

= n-3 + Mil + [*°g2 (»-[” m2A1")]-[log2Mill Sn-2 + [log2l

if Mil>3.

Suppose now that Mil—3 and let Ak={m, ax, aZ. Assume first that one of ax
and a2, say ax, occurs only once in <2: ax>bx, bxEA20 {x}. It is easy to see that bl
occurs as larger with at least one element of each of B and A2{J{x, y}. We distin-
guish several cases.

If bxdid not occur with an element of C (except aX then there isno cfS* with
<p(c)=bx. The element m occurs at least

( In_1I —=31) [ (\n1 M
K((" 11 2 HDI-H M I tM |
times in S* —{ax (The set H—{«J is used.) Consequently, the same is true for

S, as m, a2and bxare not in the domain of <o Now we prove that the graph induced by
H —{w} contains at least two different non-directed circles and as a consequence at
least n edges. bxoccurs in Sxwith an element c of B. There is a directed path from x to
c and from bxto x. Denote this circle by Kx. If a2also occurs exactly once in <?(as
larger), say a2>b2 then bx"b 2 by our assumptions. b2occurs with an element of B,
this ensures another circle K2"K X [If a2 occurs twice as larger, say a2>cx, a2>c2
then one of cxand c2is an element of A2Ufx}. Saye.g. clEA2L){x). If c2EA2U{x}
also holds then there is a path from both cx, c2to x. This gives a new circle. On the
other hand, if c2EA2U{x} we can find another circle similarly. Therefore we have
two circles in all cases, so the number of inequalities within H—{m} is at least n.
The desired inequality

(13) /™ n+[log2ij]-2
follows by (12).

If bxoccurs with an element of C different from axthen bxoccurs (as larger) with
at least two different elements of B, by Section 6 of the definition of the path. We dis-
tinguish subcases:

Suppose that a2 occurs either twice or only once (say a2>b2 but bx*b2
Then x occurs at least once, b2 does at least twice as larger. The elements of
A[DA20{x} —{m} take part in at least 2 Mil + Mil inequalities as larger. We can
verify (13) in the same way as above.

Suppose now that a2 occurs exactly once (say a2>bh2 and bx=b2=hb. Then
ikdj and fe-=a2 are both in St, consequently, by Section 6 of the definition of the
path, b must occur at least two elements of B\ UB2=BI.

If b occurs with at least 3 elements of Bl then (13) follows easily.

If b occurs with exactly two elements of Bl and both axand a2 only once then
axand a2 are not in the domain of (p. It is easy to see that m occurs in at least
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floga«]—2 times in the inequalities S? —{ax>b}. Hence (13) easily follows. So we
may suppose that both aland a2occur at least twice. If one of them occurs at least
3 times (13) is obvious. We have to consider only the case when both axand a2occur
exactly twice. Suppose first that A2*l. Let bfA 2. If b occurs at least twice in S,
then (13) follows like above. If b occurs only once as larger (say b>cdA2U {x}) then
¢ occurs at least twice as larger and (13) can be verified again. Consider now the case
when A2=0. In this case x<ax,x<a2 ax>cx, a2>c2 are all in S with some
ct, c2. If x occurs at least twice as larger then (13) follows like before. Suppose that x
occurs as larger exactly once. Then x cannot be compared with an element of S*.
We may suppose that a, occurs in  before a2. The inequality al>clcomes before
ax>x and a2>c2 precedes 2> x; otherwise ax<x and a2<x would follow, by
Section 6. Omit a2 and all inequalities containing it from <¥& Replace a2>c2 by
ax>c2 if a2is not matched by <p If, on the contrary, it is matched with some 4 then
a2>c2 is replaced by ax>d. The new system of inequalities given on H—{aZ}
contains at least

log2(n-1-[" 2 3])]~'1: [log2 |~y A]1]-1 - riog2«l—2

inequalities continaing m because there is no c£S* satisfying ip(c)=m, x or ax.
Hence (13) easily follows as the number of inequalities within the set H—{m) is at
least n.

We can start to examine the case \A[\=2. Here Ak—{m, a}. It is easy to see
that if A2Q then the elements of AKUA2U {x}—{m} occur in at least 2\A[\-\-\A'z\
inequalities of i x. Hence (13) follows. The same can be said if either both a and x
occur at least twice as larger in S\ or one of them occurs once, the other one occurs at
least 3 times as larger.

Suppose that a occurs once and x occurs twice as larger in 6x. The element m
occurs at least

n-1-

2
DM-ml

times in  —{a>x} (p(c) m, x for cE£S*).

| =n-1+kgr— |

implies (13).
If a occurs twice (a> x, a>b) X only once (x>y) as larger in St then let
be j ’s first occurrence as smaller, y<e is before j'<x in S\ because x occurs
only once as larger. It is easy to see that e—m. Omit the inequalities a>x, a>b
from $x If ais matched with c by (pthen replace a>c by x>c in S* Ifthere isno
such ¢ then a>b is replaced by x>Z>. In this system of inequalities m occurs at
least

[log.(»-1-[*7*]1)] = [log,[2%]]

times (as <p(c)*x, m for egS*). The number of inequalities within //—{»} is at
least n—1. (13) follows.
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Suppose now that PM}{= 1, thatis A[—{x}, A[—Q (13) obviously follows when
5*=0. We may suppose S*y™0. Let adS* be the first such element which go into
S* by a comparison with an element of A2-Then, by Section 6, there were at least two
comparisons of type (A2, C) where the elements of A2were smaller. Let the first two
of them be b, <al5b2<a2(bly b2dA2. b, must have been smaller before the compar-
ison fej-clij, say bt«e. The elements al5a2 e are different, at most one of them is
equal to x. Therefore, the graph induced by H—{x} contains a circle, consequently,
the number of its edges is —1 x occurs in [log2/2) —1 inequalities. (13) is proved
in this case.

We may suppose that if edS* then e occurred first time with an element EA.,.
If B[ contains an element occurring 3 times (always as smaller) then the number of
inequalities within H —{x) is —1. (13) follows. Suppose that the elements of B[
occur at most twice in (f,. Let adS*. If adB[ then a occurs as larger: a>b and b
occurs first with an element of B[ (b<c, cdB$. Otherwise a<2> would follow by
Section 4 of the definition of the path. As cAa, there is a directed path fromy to c
and to a in the graph induced by H—{x}. It contains a circle and at least n—1 edges.
(13) follows in the above way.

We may conclude that S*QB[. Let S*={at, ..., ak} and suppose that a,
go into S* by the comparison We can state btdBR, b”bj (i*], i, jd {1, ...
..., &). bi must have been larger in 6\ before: 6f>C; and c; must have been smaller
before: c,<ef(i=1, ..., k). If e”x for some i then the graph induced by H —{x)
contains a circle. The proof of (13) is like before. We may suppose that ef=x (i=
=1 Suppose that the order of these inequalities in < is x>c1; ...,x>~ck.
If z>1 then x occurred before x>c';. Take the inequality Ri<cf immediately in
front of x>cf in A*. If x occurred before x>c\ then take al<t\ before x=-c,.
In this modified system of inequalities x occurs at least [log2«l times. (13) follows.

We have to consider only the case when x does not occur before x>ct and
5*={al}. If bl<dl and bx"~a, are in S, in this order (where dxdAx) and
SPEX, ..., £i)=(Z>i, G) then we have to apply Section 4, therefore bl: CxdB[. Let
Sjikx, ....£))=(bl,dI). If dx occurs as larger in S) then put the inequality a,<®6,
immediately in front of bx<dx and omit Cj-cizj. In this modified system of inequal-
ities x occurs at least [log2«l times. (13) follows. Consequently, we may suppose
that dx did not occur in S). Let Sk(Bx, ..., e*)=(cl, x). If 5r(ej, ..., eN=(x,/)
where r>k and fdC"' or Sp(ex ..., ep=(dx,f) where p>j and fdCp then put
this inequality a</ immediately in front of x>ct or dx>f, respectively. Moreover,
if x or dx occurs with an element of A2JJB2UB{ then replace this inequality with
x=»a or dt>a, respectively. In this new system of inequalities X occurs at least
[log2n] times. (13) follows.

We suppose now that x occurs with elements of Axand whenever d,d A, it also
occurs with elements of Ax, only. x>d, can be deduced from <?, consequently there
is a sequence

dx = g,< gi, gi< gz mEg*-i< gk=x

in it, where the above inequalities are the first occurrences of g; as smaller
(Os/sfc—L). It is easy to see that there is a pair (g,, g1H) (O”i*k —1) such that
gf+l occurs more times ar larger than g; does. Put a<g,- in front of gj<gl+l. In
this modified system of inequalities x occurs at least (log2/i] times. (13) follows
exactly in the same way as before.
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Case 4. The proof of this case is a slight modification of the previous one. In
this case we divide B(et, ..., £)—{x,y} into subsets: .. £)—{XVy}=
=B'iyjB'3\jB2, where B1=Bl(el, ..., £)—{x,y) and BOUBO is a partition of
B2(el, ..., £) (B2ABE) consists of elements having a directed path from (to) both x
and vy).

The proof of Case 3 is repeated with the roles of letters A and B interchanged.
Lemma 1 is applied in the opposite way (determining the minimum element), but
our “adversary” path (el, ..., £) satisfies the conditions of this “opposite” lemma
also.

This completes the proof of the case and the theorem.

The problem, when two unordered consecutive elements are determined, is
slightly different. We obtain the same lower estimations as in the above proof except
in Case 3 (and 4) when A\~0. In this case we obtain only [log2(«—1)] edges from
X, using Lemma 1 That is, the lower estimation is n—2+ flog2(n—1)]. This coin-
cides with n—2+ [log2«l except when n=2m+1. Indeed, there is a strategy with
this many comparisons.

Choose any 2melements and find the maximum element with 2" —1 steps with
the “elimination tournament”. There are exactly m element which proved to be
smaller than the maximum. Complete this set with the (2mtI)-st element and
determine the maximum by m steps. The two maximum elements for the pair of the
two largest elements. We needed 2m— +m=n—2+[log2(h—1)) comparisons,
indeed. That is, if is a strategy determining two unordered consecutive elements in
an n element set H, then

L(&) = n—2+ flog2(n—I)1
and this is the best possible bound.

Finally the author wishes to express his thanks to G.O.H. Katona for his help
in writing this paper and to the referees for finding a mistake in the first version.
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THE GROMOV—ELIASHBERG PROOF OF HAEFLIGER’S
THEOREM

ANDRAS szUCs

1. Introduction

In 1962 A. Haefliger proved a theorem on embeddings of smooth manifolds:

Theorem (A. Haefliger [1]). Let M be a closed manifold o f dimension m and N an
arbitrary manifold of dimension n, where «153m+2. Assume that there exists a
continuous map F which satisfies the following two conditions:

1 the diagram below commutes:

N xN

i {

M xM NXN

where the vertical arrows indicate the mapping (X, r)-*(r, a);
2. F~i(A(N))=A(M)

where A(a) stands for the diagonal A(X) =:{(x, x)\xdX}.
Then there exists a differentiable embedding M c*. N.

Haefliger’s proof is an extension of the method of elimination of double points,
due to Whitney [2]. The aim of the present paper is to give a different proof of this
theorem for the case N=Rn The basic idea (to be explained in the next section) is
due to M. L. Gromov and J. M. Eliashberg (oral communication). This proof has the
advantage that it can also be applied to immersions without triple points, when

3
n<—m+2 (this will be done in a subsequent paper) and to some other questions as
well (see [7]).

2. Outline of the proof

2.1. Definitions. We shall call a mapping F: XxX-»YxY Z2-equivariant if
F(x1, x2=(>1, y2 implies F(x2, x)=(y2,yt) for any A, j@EX. (This is the same
as Condition 1, in the Theorem.) Note that this implies A{X)" F~I(A(F)).

If Fis equivariant and A(X)= F~12(A(Y)) then F will be called isovariant.

1980 Mathematics Subject Classification. Primary 57R40.
Key words and phrases. Imbeddings into Euclidean space, differentiable manifolds.
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For F: MxM-~RnXR" let us define the coordinate functions f: MXM —
-R'XR1(G=1, ...ri) by
f(u) = (ti,ti+n),
where
F(u) =0i, — ta,), udMXM.

We set F=(ft, ...,/,,) in this case.

Observe that F is equivariant if and only if all coordinatefunctions of F are equiv-
ariant.

We call a mapping /: MXM-*R1XRI a holonomic mapping if f(x,y) =
= (h(x), h(y)) for some h: M-+R1. In this case we write f=hxh.

2.2. Fundamental idea. Let now N=R" and M, F as in Theorem 1 Letf
denote the coordinate functions of F. Our plan is to substitute holonomic mappings
fi =hiXhi: MxM~*R1XRI for the coordinate functions of F suchthat (ff ..
W P L MXM-A"XA™ be an isovariant map for every /=1, n.
It is then clear that the obtained h=(/l, ..., h,,): M-»Rn is an embedding.

2.3. The induction step for the simplest case,f  will be constructed by induction
on i. Assume that the holonomic mappings // =hjXhs: MXM-*RIXR1 have
already been constructed for j=\, —1 such that the map Fi_1—
= (fi, w>fi-1,fi, fn) isisovariant. Set F=(J{, ..., f 7.x, f +i, MXM -~
-+Rn 1X R" '. For simplicity, we denote/- by/. By the condition (F,f) is isovar-
iant. We want to replace/ by a holonomic map f'—hXh, h: M1V, such that
(F,f") be isovariant. This is particularly simple to do under the following

Assumption (*). The restriction of the projection nx: M xMm ~M (nfx, y) =x)
to the set y4p=(F~1(d(i?"-1))\d(AO) is injective. (The bar indicates closure.)

Lemma. Under (*) there exists an f'=hXh such that (F, f): MXM—RnXR"
is isovariant.

ProoF. Let f(x, y)=((p(x,y), (X >j) (x,yEM). (So, <pjjr. MXM-~RI)
For a€m("4?), define h(x) to be h(x)=qg>(x, y) where y is the unique point of M
such that . Extend this to a smooth function h: M-+R1 arbitrarily. We
assert that (F, f) is isovariant if setting f'=hXh. In fact, the following four state-
ments are equivalent:

(@ (F, f ) is isovariant;
(b) /" (Ap\A (M))H)A (RD=0;
©/(~"A\d(~))nd (/?9=0;
(d) (F, f) is isovariant.

The equivalence of (b) and (c) is clear since/ andf agree on Ap. For (a)-0-(b),
observe that,

1° 4AAd(M) = F-1(d(«"-D)VI(/V))
and
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2° for any udMxM, (F, f)(WEA(Rn if and only if F(U£A(R" X and
f'(WEA(RY).

The proof of equivalence (C)<=>(d) is completely analogous. |

Our main task will be to reduce the general case to the one just treated. We shall
modify F such as to obtain a new F satisfying (*). Of course, the first 2(/—1) coordi-
nate functions of the new F have to remain holonomic ones after this modification.

2.4. Reduction to (*). 1 First we attempt to modify F such that Ap becomes a
(closed) manifold. A next step of modification yields that n1\Ap: Ap-*M becomes an
immersion and, after a third step, an embedding (Sections 6 and 7). These steps will
follow from certain modifications of Thom-Haefliger type transversality theorems
(Section 5).

2. However, these transversality theorems work only outside a neighbourhood
ofthe diagonal A(M). Therefore, the mentioned properties of Ap and have to be
assured by a different method in a neighbourhood N of A(M) (Sections 3 and 4).
First of all, we replace F by a map also denoted by F which agrees on N with gXg,
for some immersion g: M R". (This will be done by means of a lemma of Haefli-
ger—Hirsch on skew maps [3] and the Hirsch theorem on immersion [4].) The advan-
tage of this new map F is that it is also isovariant and keeps this property after a
slight movement, too. After this, it will be easy to assure by slight movements of F
that Ap be a manifold, furthermore be an immersion, and finally it will be an

embedding.
Remark. Denote ¢g: M-~R"+k~1 the map for which Fljv=gXg|jv-

Notice that the derivative of h on 7, (T*(g)) in the direction Ker dg is not zero.
Hence the new map F=(F, hXh) also has the form gXg in a neighbourhood of
A(M) for a (may be new) immersion g of M into Rn+k

3. Preliminaries

3.1. Notation. Let TM—M denote the tangent bundle of the m-dimensional
manifold M. Let DM—M and SM-*M denote the associated fibre bundle with
fibre Dm the m-dimensional ball and Sm~1 the (m—1I)-sphere, resp.

3.2. We shall often make use of the following well-known fact: The tubular
neighbourhood N of the diagonal A(M) of M XM can be identified with DM. The
boundary dN of N corresponds to SM.

The space of mappings X-~Y will be denoted by {Ir-*-T}. Having identified
N with DM, we then identify the spaces of maps

{W- X)={DM- X} {ON- X} = {SM - X)
for any space X.

Let £(£)—R(<!;) be a vector bundle. The above identification allows us to
speak about the linear mappings N-»E(E). The symbol L(N, £(£)) stands for the
space of N—EJz) linear mappings.

20
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3.3. We recall the explicit formula for the identification DM with N. With
VETmMM (m£M) let us associate the point (exp,, (v), expm(—fD))EMXM. (An
arbitrary riemannian metric is chosen on M.)

As it iswell-known, there exists an s>0 suchthat, setting DBA={vETM |||r]| Se},
the restriction to DtM of the above mapping JM —M xM is a diflfeomorphism
onto some tubular neighbourhood N of A(M) (in MxM).

We have recalled this formula in order to emphasize that the identification map
v—(exp,,, v, expm(—v)) is equivariant with respect to the involutions v——v (vb TM)
and (X, y)—y, X)((X, y)EM xM). (Observe, that DdMczTM and NczM XM are
invariant under the corresponding involution.) Henceforth we preserve the term
tubular neighbourhood for the image of DtM under the above identification. (e>0
is sufficiently small.)

4. Making F nice within N

The following definition is due to A. Haefliger [5]:

4.1. Definition. Let M, L be manifolds, of respective dimensions m and /.
A C2map /: M-*L is of S-typc satisfying

1° rankd/x*w —1 (XE£M);

2° there are no triple points;

3° there are no singular double points;

4° the self-intersections are transversal;

5° there exist local coordinates (xIt ..., xn) in the ne'@hbourhood of any sin-

gular point such that df =0 and the (2m—2) vectors 5? 0=2 ..

dxRxi
..., m) generate RI.

Let prt: 0"-+0"_1 denote the projection which deletes the ;’th coordinate.
4.2. Definition. An immersion g: M-*R" is generic, if

1° its self-intersections are transversal;
2° priog: M—T” 1 is an S-type map 0=1, ...,«).

3
4.3. Lemma. Let M be a manifold of dimension m, and n*—m+2. Given an

isovariant map F: MXM~*RnXRn there exist an isovariant map F': MXxXM —
-*R"XRn and a general immersion g: M —Rn such that F'\N—gX.gf for some
tubular neighbourhood N of A (M).

Proof. We break the proof of Lemma in 4.3 into two sublemmas. We note
that the tubular neighbourhoods D,M do not depend on e up to diffeomorphism
(for small enough €). Let DM denote their diffeomorphism class.

4.4. Sublemma. Let X and Y be subspaces of the space E of isovariant maps
DM-*RnXR" such that any x£ X is homotopic in E with some y£ Y. Let F be an
equivariant map M xM —RnXRn such that FADSMEX. Then there exists an equiv-
ariant map F': M XM -RnXRn such that F\DAMCY (where <56<e and we identify
DM with DM this time).
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Proof. DOM\D iM is diffeomorphic to SAfx[0, 13, Let *=F\DWM and
let H: DMXJO, 1J->-R"XR" be a homotopy joining x with an Y (y=H(., ).
We define F' as follows:

I©° F ImXMXDcM” F\MXM\DrM>
2° We identify DAV \D dM with SAfX[0, 1] and set fr|DIMXD M= -MsMx[o,i];
3° F\DiIM—y (where, again, DM is identified with DSM). |

We introduce certain subspaces of the space E of isovariant maps DM-+R"XR".

Let Mono = Mono (DM, TR") be the space of linear monomorphisms DM * TR".
The isovariant identification of TR" with R"XR" (R"=TxRnbv>-*(x+v, x —V)d
dR"XRn cf. 3.3) permits us to view Mono as a subspace of E

Let DczMono consists of those maps G: DM-+TR" which satisfy
—F.

In other words G\WMMy. A(M)-+A(R") is an immersion (M=A{M), R"=A(R"))
whose differential agrees on DMczTM with G. Let
Q—{G"EI G is the restriction of gXg to the tubular neighbourhood DM of
A(M) for some immersion g: M-»R"}.
Finally, let Q°aQ consist of those maps gXg\DM where g is a general
immersion.

Remark. For the spaces introduced above — by definition — the following
inclusions hold:
E 2DMono DD DQ D Q°.

4.5. subtemma. Let X and Y be any two consecutive members of the sequence o f
the Remark. Then the conditions of Sublemma in 4.4 are satisfied.

Proof, (@) X=E, F=Mono. This is a reformulation of Theorem 2.3 of Hae-
fliger—Hirsch [3].
(b) A=Mono, Y=D. This is a well-known theorem of Hirsch on immersions [4],

(c) X=D, Y=Q. We observe that for any immersion g: M—R", the differ-
ence between dg\OiMand gXg!/XM is 0(g2 and therefore, they are homotopic in E
if e is sufficiently small.

(d) X=Q, Y=Q°. Any immersion g can be approximated by a generic immer-
sion g. Ifgis sufficiently close to g then gXg|DAand g X g\CMare homotopicin E. |

Now 4.3 is immediate by 4.4 and 4.5. |
4.6. Lemma. Let g: M->~R"~1 be an S-type map. Set

A = (gXg)-"(AR"~F\A(M).

Then A (M) has a neighbourhood N in M X M such that the restriction of the projection
nt. MXM-AM (7ti(x,y)—x) to APIN is an embedding.

20~
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Proof. Let k=n—m—1 (m=dim M). Introduce the submanifolds Z"g)
and A(g) of M and an involution T: A(g)—A(g) as follows:

ZHg) = {xEM|rank dg(x) = m—1},
Z1(g)U {xEMjg(x) = g(x") for some x' X x, x'dM).

d(9)
T(x,

\x if XxCEHg)
\x' if x, x'edCgyxZHg), x X x" and g(x) = g(x").
We note that

1° dim | i(g)=m—k —1,
2° dim A(g)=m—k.

Now we observe that, for any sufficiently small tubular neighbourhood N of
A(M) in MxM there exists a tubular neighbourhood L of ZHg) in A(g) such that

AON = {{y)dLXL\x = T(y)}.

Hence AON is the graph of T\L. The projection % restricted to this graph being a
diffeomorphism AON-*L, the assertion of Lemma in 4.6 follows. |

4.7. Coroltary. Let FAQO (Q° has been defined before 4.5.) Define F and Ap
as in 2.3. Then A(M) has a neighbourhoodNin MXMsuch that 7tiUpnx is an embed-

ding ApON-»M.

Proof. By the definition of Q°, A(M) has a neighbourhood in M x M such that
TIM=gXgU for some general immersion g. Hence F\N=gXg\N where g=go/)/-;:
is of S-type (cf. 2.4). The conditions of Lemma in 4.6 are fulfilled, whence

the corollary follows. 1

4.8. Given a natural number 1Si*n —I and a neighbourhood N of A(M) in
M x M we define space CN(i) as the space of pairs (//, h) such that

(1) H: MxMA2ARNiXRn~i is a Z2-equivariant map;

(2) h: M-"R'71 is an arbitrary smooth map;

(3) the map ip=(H, hX.h): MXM /C-1XR""1 restricted to N coincides with
the restriction of a map gXg: M XM --Rn~1X/C—1, where g is an arbitrary S-type
map. (Sometimes we shall identify the pair (H,h) with the map @=(H, hXh).)

4.9. In 4.3 it was shown that the space Cjv(l) isnot empty. The argumentation in
2.3 shows that if there exists a map 9dCN(i) which satisfies assumption (*) then
CN(i+ 1) is not empty as well (i+ 1S h). In Sections 6, 7, 8 we will show that there
exists a neighbourhood N., (which may be smaller than N) such that in CNfi) there
exists a map which satisfies (*). In what follows number i will be fixed and CN(i)
will be denoted by CN.

5. Transversality theorems

A reader, who is ready to accept all kinds of “general position” argumentations,
can omit this section.

In this section first we recall the Thom’s and Haefliger’s transversality theorems,
and then we formulate another one, which is their “mixture”.,Since the formula-
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tion of this mixed transversality theorem is very cumbersome, we start with a special
case.

Notation. The sign N will denote “transversal”.
5.1. Theorem (Thom’s transversality theorem). Let At and x, be smooth mani-

foldsfor i=1, 2, K k. Let V be a submanifold oftrﬂ(e space o f r-jets o/fmkapsfrom tK]e
k
product space J]I A, into the product space [I[X{, i.e. VaJ'kA]J Ah JIJXA.
i= i= =X i= '

k
Define the subset Q of the space C= iJ_]I C°°(Ah Xt) by

B =: {(/i,....A)EC|/(/iX...XA) K}.
Then Q is open and dense in C.
Proof in [6].

5.2. Notations. FOran arbitrary space Y denote by Y {>the product Y X ... x Y
(k factors) and by A(K)Y the following subset of Y (K).

J*)y={(yx ..., YKE y K (there exist indices i,j such that iXj and yi—yfi
(zZI(Q)y will be denoted by A(Y), too, as in 2.3). For an arbitrary map /: X—Y
let f (k): X<*-»y<¥) be defined by

fmxl, xR = (F(X)), F(XD, .../ (5*)).

Theorem (Haefliger’s transversality theorem). Take At=A and Xt=X, i=
=1 ..,k in Thom§ transversality theorem. Fix an open subset Uc: A< disjoint
from A{K(A). Let

Q= {ftc~(A,x) [/(/<*>],,U Kk}
Then Q is open and dense in C°°(A, X).
Proof in [5].

5.3. We shall need a modification of Thom’s and Haefliger’s transversality
theorems in which some of the manifolds At (and Xj will be the same, while others
will be different. We shall present two versions of this theorem.

Theorem (Mixed transversality theorem, special case, SMTT).
SMTT (a). Let Aj, A2, XIt X2, Y be manifolds and put B—AkXA2, Z =X1xX2.
Let V be a submanifold of BXY X X and
a = {(A.f,, 9)EC\]°(fIX f2, gUK }
where
C=C“", T,)xC“ ("2, X2XC” (B, Y).

Then Q is open and dense in C. (Note that the map (fiXf, g): B-+ZXY is defined by
(1iX12, g)(fll, a9 = (f(al), / A&7, g(ak, a.J).)
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SMTT (b). Keeping the conditions of (a) with Ax=A2=A and Xx=X2=X,
fix an opensubset Uin A x A disjointfrom A(A). Let i2v={(/, g)d.C\j°(fXf, g)|i/4s F}
where

C = C°°(A, X)XC°° (B, Y).
Then Qv is open and dense in C.

Proof, (a). It is easy to see that
Jo(liX/2,gUF in BxYxZoj°(fLXf2Xg)hV in BXBXYXZ
where F is embedded in BXB XY XZ by the composition
Va BXYxZzt A(B)XYXZc BXBXYXZ.

(Notice the difference between the map (fxXf2 g) and (fxXf2Xg) where fx:
¢>I<I—X_x,/2: A2~»X2, g: B=AxXA2-*Y. The definition of the map (/iX /2, g) is the
ollowing:

(/iX12,g): AXXA2 XXXX2XY
(ax, a2) ~~ (/i(fli),/2(a2), g(al7a3)
while the map fAX f2Xg is defined as follows:
fiXftXg: AIXA2XAIXA2 XxXX2XY
(ax,a2,a', a2) ~~ {fi{ax,f2(ad g(a[, afi).
From Thom’s theorem we obtain that Q is open and dense in C.

(b) Following Haefliger, from Thom’s transversality theorem we reduce SMTT
(b) to SMTT (a) who derived this transversality theorem. We give this proof in
details.

Consider a finite covering of Uc AX (A) with open sets of the form
WiX V2 a=lI, ..., r, where W*and W2are disjoint open subsets in A. Let

12, = {(/; S)dC\j°(fXf gV fx~"F}.

Applying MTT (a) we obtain that Qx is open and dense in C. Hence the same holds
for Qu=H

a=1

5.4. Theorem (Mixed transversality theorem, general case GMTT). (a) Consider
the families of manifolds

Al Al A2 .., A2, As As m

9 +*e9 o9 wuag P9 wiig

X\Illl 9 --VQXalXQ AY% e *9 XgZQ +e'9 YSQ .« m*9 AYaSS; }/19 *e *Q YS
and put

= =nX, t=1,.. s
F=nge) X
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Let V be a submanifold in tJJ_ B'XY, XZ, and
=i

Q={@#f 0, 9l, .., g9€C|;«("X...X#, giX...Xg,UF}
where

If\r]C (A}, X')XC~(B" YO\

and 0, is a map oftheform f[ X eeeXflt: A[X... XA&t=*X[X... XXX while g, is a map
B*AY t.
Then Q is open and dense in C.

(b) Keeping the conditions of {a) with A[=... = AXt, X[=...=XX t=1,2, S,
and denote these manifolds by A, and X,, respectively. Let U be an open subset

mtﬂ At~ which is disjoint from the set

U AMA'X TIA,,.
1=1 rvf
Define

a =:{(/i. gl, ....gJ€C |{0i*>g)x ...x (/j(“9,gIJuH K}

where C= JJ C* (N, X XC~(A<*'>, Y,).
Then Qv is open and dense in C.

Remark. The corresponding jet-transversality variants of these theorems, which
can be formulated in a similar way, will be applied, too.

6. Applications of the transversality theorems

6.1. Here we show that for almost every map (p£CN, Av is a manifold.
Proposition. Denote by fl1the subspace of CN defined as follows
R 1= {(pECN|<plAiXM\a(M\ A (R"_1)}.
Then Q1 is open and dense in CN.

Proof. Consider a finite open covering {IVJX |a=1, ..., r} of MXM\N,
where WJ and Wi are open disjoint setsin M. Fixan a, 1SaSr, and apply SMTT (a)
with

At =W* A2=WE, Xx= X2=R -\
Y = Rn-‘X V =WjXW?1XA(Rn )XA{Ri- 1.

We obtain that the corresponding set Qx of transversal maps forms an open and
dense subset in the space

G = XIVS, Rn-IXR"-)XC°(fVJ, Rn~)xC ~ (W J R™ D}
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The restriction induces a map

Cijv “mC*
by the formula

tAH, h) —(HI yw*, hw*,

Since this map t,,is open, the preimage t~1(Qx) is open and dense in CN. Hence the set

R1= n VH«.)
is also open and dense.

6.2. Here we show that for almost every @=(H, hXh) the restriction is one to
one on small subsets

Proposition. Given neighbourhoods N1, N2 of A(M) in MxM such that
NjCzN~N and apositive number x define the space Q2(N2, Nx; x) asfollows:

Q*(N2, Nil x) = {(piCNI if a*A9 N It a*A~N, and
<«!,ad = x then nx(aj * Xi(ad}.

Then Q2(N2 NI1; x) is dense in CN. (For definition of CNsee 4.8 and 4.9.)

Proof. Letus consider the subspace X ¢ M (@ consisting of the points (m4, m2,
m3, m4) such that:

() mj=m3,
(2) the distances of mt, m2, mA are greater than x.

This subspace X can be covered by finitely many open sets W?X W$X WgX WI,
a=1,..., r, where

(1) Wf is open in M n

(2) WEIC)Wj=0 unless i=1 and j=3 (or i=3 and j—2).

(3) Wa—Ws.

(4) W*X Wi+lczN or (fFfX W?+H)f)iv2=0 for i=1 and 3

(a) First suppose that a is such that (IFf X Hf+))flAf2=0 for /=1 and 3. Then
we apply GMTT (a) with s=2, aj=2, a2=2

A\ =WFf, A\ =W2, A\=W$, A\= Wf
Xl = XI =X\ = X! =R*~\
Yi=Y2=R"~1 and V=V1XV2XV3 where
Ki= {(/«!, m2, m3, and mi1= m3}
V2= {(*i, *2, *3, x4 XfiR*-1 Xj = x2and x3= x4},
Va= {(Ti, >2, >3, TAITi* " -* Ti = >2= Ti} (No y3))
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We obtain, that the corresponding set Qa of the maps with transversal to
V= V1X V2X V3 graphs is an open and dense subset of the space

Ca= C~{WIXWZ, Rn=iXR"-)XCE(WZXWi, Rn-iXRn )X
XC°°(WH, A-DXC~(1], «*=’[X C-W , R*-1).

The transversality to V is nothing but disjointness from V, because codim
V=m+2(i—l)+2(n—)>4w=dim WX WEX IFfX W4. Let H: A/XM—Rn~*X
XRn~* be as before a Z2-equivariant map, and ft: M-"R'-1, ft: arbitrary
smooth maps such that (H,fi)ECN. Then for any a, Isa=5r the restriction

(Hh, ) -~ (H yrxk H RiXRT W)
induces a map
T« Q X C” (M; Ri-1).

Since Tais an open surjective map Tf (3@ is open and dense in CNXC°°(M
Hence the intersection 6,," is open and dense in CNX C°°(M Al-1).

(b) If (TXHACcN and (tV3X W)fIn2=0 then we change the definition of
the space C?: replace its first factor C°°(W*XWE, Rn~ixRn~i) by the product
Ce°(tVf, R"~9XC°°(W2, Rn~) and in this new Cx consider the subspace I2X of
those maps whose graphs are transversal to V.

(c) If (fVEXWE)C\N3=Q and IVgxfVfcN then we change in the (original)
definition of Cx the second factor, replace it by C°°(W3, Rn~)XC°°(IV4, R"~9)-

(d) If 1IT*XW2czN and W3X If~ciV then we change both the first and the
second factors of Cain the previous way.

In all the three cases (b), (c), (d) — like in case (a) — we consider the spaces Qx
and the maps tand obtain that the intersection Qe= is open and dense
in CNXC°°(M, R) for e=a,b,c,tl.

Then £=(?,D(?,(TECflE>d is open and dense in CNXC°°(M, 77 _1).

Lemma. (H, ft, ft)eQ=>(H, ft)EQZNZ, Nu X).

Proof. Suppose indirectly that (H, h)$ Q2(N2, NIt x). This means that there
exist points al=(ntl,nt? and a2—(m3, mt) in M xM such that
(i) nl{af)=nl{a?d, i.e. mi=m3,
(i) B(m1, ntd, Q(m3, m4, g(m2, wg are greater than XY;
(iii) a4€Av (where <= (//, hxft)), ie. H{m1 m2£A(Rn~) and AMW)=

m)
(iv) a2(:Av, ie. H(mM3, md£A(R"-) and /[z(«?3=A(w4. For some a
(nti, nt2, nt3, mY£ IFFX Wo6X IVgX W4. The map

A LR A | A 1 | S IF*)

maps the point (m4, m2, m3, m4) into V and hence (H, ft, ft) does not belong to Q.
Hence Q2(N2N 1; x) is dense in CN. |
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6.3. Here we show that the restriction 7ilA of the projection nl: MXM-+M
(n1(x, y)=x) is an immersion for almost every map (p£CN.

Proposition. Define the subspace Q3 of CN as follows:
Q3= {(pdCNI nA is an immersion}
Then Q3 is open and dense in CN.

Proof. First of all recall that inside N (i.e. on A®DN) the projection % is an
immersion for any element of CN. To prove that 7tMAAN2is an immersion we make
use again the transversality theorems. Define the submanifold Vcfi(M x M, Rn~1X
XR ™D as follows:

V= {(mu m2,yx,y2 r) | where ml, m2eM, y\, y2£R" \

yi=y2 risthe matrix »(mjl.'f?ﬁ} , and rank \om1. ’a%fldlm M —m).

(Actually Vis not a submanifold, but it is a stratified subset, with finitely many strata
and so the transversality theorems can be applied to V. Notice that codim V—n—1+
+n—m=2n—m"dim MXM=2m.) Consider a finite open covering {W*X W2[a
=1, .../} of U—M xM \N, where Wf and W2 are disjoint open sets in M. Let

fi. = {(#12, K, h2£Cx\fi(H12 h1Xh2~V =0}
Cx= C* (W'iX»it, Rn~iXR"~)XC°°(W1, R*- )XC°a(Wt, R!-1).
Apply the jet variant of SMTT (a) with the substitutions:
=Wf X,=R*“\ A2=Wg, X2=R!-\
B=W*XWf Y=RniXRn~i.

We obtain that Qais open and dense in Cx.
The restriction

where

H, hiyr  (H fi]*», hjifq
defines a map
Ta: CNXC®°® - Cx.

Since the map t*is open, the preimage tx 1(QX) is open and dense in C\NXC” (M, R*~)
and the same holds for the set Q— f] r* R A

It has remained to prove the foIIowmg

Lemma. Q3~Q.

Proof. By definition (H,h)dQ means that {yi(r)ju}_1(F)=0 (F=(H, hXh))
and (H,h)dQ3 means that n1\AFu is immersion (U=M XM\N). So we have
to show that

is not an immersion.
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(<=j) The right side means that there exist

(@ a point afAp and
() a non-zero vector v of the tangent space Ta(Ap) such that dnl(v)=0.

For the coordinates (mI5 m2, y%4 y2, r) of the pointj 1{F)(a) hold:

(@) yi=yi by (a) and
{&) dF(V)"TpM(A(RN-1) by (B).

(R") means that the image of the vector v under the differential: dF: T(MX M) -*
-*T(Rn~1XR"~J) is actually contained in T(A(Rn~))czT(R',~IXRn~). Using the
canonical decomposition of the tangent space Ta{MxM)=TniM®TmiM (a=
=(fh1, fnA*"M XM) the vector v can be represented by v=(v,,vd, where vta
dTmM. By () we have v1=0, and so

dyi , x dyi , x
dm”~ dm2n J
=M (- d y * | x
dm2

This vector by (>) belongs to T(A(R" 1), i.e.

{tA AtA -

(dyi
"k iam2 dmz) ™

We obtained that n€{y1(")} 1(F).
(t=>) is obtained by reversing the previous argument. |

Hence

7. A global estimation for small sets of immersion

It is well-known that any immersion is one to one on the small sets. In fact, this
statement is true for small families of immersions, too. This section is devoted to a
modified variant of this statement.

7.1 Proposition. Given amap <pEfl1 (Q3has been defined in 6.3) there exist
a number x>0 and a neighbourhood G of tp in CN such that
(**) if al£Av, a2eAv and B(al, ad <x then nl(@ah)”ni(ad.

Proof. Consider a finite covering {IFfX fV$\a=lI, ..., r} ofthe set MX M \N t

where W*and W2 are disjoint open sets in Af, diffeomorphic to the ball D™, It will
be sufficient to show that for any a |~ s r the restriction F\w.xw* has a neigh-
bourhood {/,, (in the space Ca (see 6.1)) consisting of maps, which satisfy (* *).
This will be shown in the following lemma.
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7.2. Lemma. Let f: DsXDm- Rg be smooth map. Denote Rp—: {(xI5
ER“\j=..xq p=0}. Let m+p<q. Suppose thatfor any dEDs the following as-
sumptions hold:

(@) The restriction off to dXDmis transversal to Rpin Rq:

(b) card |(i/XDmn /- L(tfP 1" 1-

Then there exists a neighbourhood U of the mapf in C°°(DSX Dm~R3 such that if
qcU then g satisfies (b) (with g instead o ff).

(To prove the lemma in 7.1 it will be sufficient to apply this Lemma in 7.2 with
Ds=W f Dm—W4 Rg=Rn- 1XR"~\ Rp=A(Rn~), f=F, g=tp.)

Proof. Denote the coordinates in Ds, Dm Rg~p, Rp by d=(dl d9, x=
=(x\ ..., xm, y=(yl .., yo-p), z=(z1, ..., zp), respectively. The assumption (a)

means that for the map
f(d, x) = (yf (d, x), zf (d, X))
(where for yf(d,x)dRp and zf(d, x)dRg~p) the following holds: If yj-(d, x) =0
then rank [*~(d,x)\=m.
It follows that there exists e>0 such that if wvid, X)| then
rank xX)J=m.

The compactness of DsXDm implies that there exists <$0 such that if
\\yf (d, x)||<£ then

2(5-14 for any hERm

Let [/'(/) be a neighbourhood of/ such that if gf U'(f) and yg(d, x)=0 then
}Yi(d, *)<£e
Let U"(f) be a neighbourhood of/ such that if g~"U"(f) and

2014
then
<5-1A|.
put UL(f)=u' (Hnu"().
Remark. If gdUxfif) and yg(d, X)=0 then
[ A
Indeed,
yg(d, x) = 0 =myf (d, x) < e 25

xgd
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There exists a constant C such that
(* * *) < C

forany d£Ds and X£ Dm Let UXf) be aneighbourhood of the map/ such that for
any gEU2(f) (* **) holds (with g instead of/). Put e=— and let Wt be the

—-neighbourhood of the setf~ 1(Rp) in DsXDm There exists a neighbourhood U3(f)

of/ such that for any g£U2(f) we have g~1(Rpc: We. We show that the neigh-
bourhood U (f)=UL(f)r\U 2(f)r\U (f) satisfies the statement of Lemma in 7.2.

Indeed, let g€ U (f) and denote (y,,(d, X), zg(d, X)) its coordinate functions. We
shall make use of the Taylor formula

=>(*)+(!;(*))«+/2 0-0 W d<

where y stands for ygand we dropped din (d, X). Assume in the contrary, that (d, x),
(d, x+R)Zg~1LRp. Then yg(d, x)=yg(d, x +1i) and we have

a1 (|—m:1/(1_ c\m

ie. —=£<||A|, which contradicts to the fact that gdU 3{f).

8. Proof of Haefliger’s theorem

As it was explained in Section 2, it is sufficient to prove that there exists an iso-
variant map F: MxM-~RnXRn such that F=(P,f), f: MxM”"-RxXRx P=
=(H, hXh): MxM-*Rn~1XR"~], H: A/IXM—R"-iXR"~i is equivariant,
h: M-*R‘~X and n1\Ap is an embedding of Ap into M (see 2.3). Now we show the
existence of such a map F.

(1) Denote DN the subset of CN consisting of maps (=(H, hXh): MXM—
—Rn~1XRn~1 such that

»1(f»-1("(J«"-D\Jv))nr1r» = 0.

(Recall that <N coincides with where g™ M—R"“1lis an S-map. V(gV)
denotes the (i xtype) singular point set of the map gv.)
Then DNis open and dense in CN.

(2) There exist
(i) neighbourhoods N1czN2*N of A(M) in MXM and
(if) an open subset  of DN such that

i p AX) = 0.
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(3) In CNthere exists a dense subset” consisting of maps <psuch that ni\A\ N
is one-to-one.

(4) The intersection is non-empty and any element of this intersection
satisfies assumption (*) in 2.3.

Proof.

(1) To prove (1) we have to recall only that T1(g,() is a submanifold (in M) of
codimension n—m, A(/C_1) is a submanifold of of codimension n—1
and (n—+(n—wj)>2m=dim MXM.

(2) and (4) are obvious.

(3) By 6.1 and 7.1 for any xj/dQ1 there exists a neighbourhood G of \j in CN
and a number x such that if cpdG, a*A”, a2EA9 and g(a,,ad”"x then nl(ajX
X7(02)- By 6.2 the set

Q?Nt,N 1I\x)= {(pdCN if aldAQN 1, aXAGN 2 and

Auj?ad e then w§(Gj) ?- #N(«}

is dense in CN.

Hence Gfli32(A2, Nx; x) is not empty and any element of this intersection
satisfies 3 (i.e. belongs to V) if x is sufficiently small. Therefore in any neighbourhood
of any element of the dense subset Qlof CNthere exists an element of ir. Hence
Y is dense in CN. |
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AN OPTIMAL GROUP-TESTING PROCEDURE

RATKO TOSIC

1. The problem and some preliminaries

Consider the following problem:

There are exactly two odd elements, one defective and one mediocre, in the set
X={ele2  en} (ns 2), all possibilities occurring with equal probabilities. We want
to identify both odd elements (defective and mediocre) by testing some subsets A of
X, and for each such set A determining whether A contains some of them. A subset A
of X is said to be defective if it contains the defective element, mediocre if it contains
the mediocre element but not the defective one, otherwise we say that A is good. The
test on an individual subset A informs us whether A is defective, mediocre or a good
set. Note that without additional information we do not know whether a defective
subset of X contains the mediocre element or not. Our aim is to find an optimal pro-
cedure to identify both odd elements, i.e. to minimize the maximum number of tests.

This question was posed by Katona ([2] p. 306, Problem 13). In this paper we
investigate a somewhat modified problem. Namely, we suppose that after using a sub-
set A the subsequent tests may check only the subsets of A and A.

We denote by n(n) the maximal test length of an optimal procedure for the modi-
fied problem. In this paper we obtain the value of this function for an infinite sequence
of values of n. For all other integers greater than 2, we determine a lower bound and
an upper bound for fx(n) which differ by just one unit. The corresponding procedures
are constructed inductively. Of course, the constructive part of our proof gives an
upper estimate on the original problem of Katona, but it is very likely too rough.

The problem considered in this paper fall under the general heading of dynamic
programming. For some discussion of these matters in greater detail, see Bellman [1],
Katona [2] and Sobel [3, 4],

Let Pn(l) denote any procedure which enables us to identify both odd elements
in the set X (|2'|=n) using maximally / tests. P,(/) is optimal (ie. n(n)=I) if
there does not exist a procedure Pn(lJ with Ix<I.

Similarly, P%(r) denotes any procedure which enables us to identify the odd
element in the set of n elements, given information that there is exactly one of them
present, the maximum test length being r. It is well-known that PI(r) is optimal if
and only if 2r*1-=;/i"2r.

1980 Mathematics Subject Classification. Primary 90B40, 62C20; Secondary 68HO05.
Key words and phrases. Optimal strategy, defective element, mediocre defective element, test
length.
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2. The results

Lemma. Let nL<n («=3) andsuppose that there is a procedure P,,(I). Then there
exists a procedure /zi(/) such that Ix".

Proof. Let X1={el,e?2 ..., eni} contain exactly one defective and exactly one
mediocre element. Consider X={el,e2 ...e , &} for which a procedure
P\x\(1)~Pn(0 exists. Now, a procedure P\x1\0i)=Pnl(h) can be constructed by
imitating P|X(/), testing A C]X1 instead of A at the corresponding place. Some tests
may occur to be fictitious. Note that the empty set is a good set. |

We denote by Pn(S1) any procedure which enables us to identify both odd
elements in the set of n elements, the maximal test length being at most /.

Theorem. Let

|_
0) A=A 2 A T (T (—D))2
for k=2,3, ..., where Fj is the jth member of the Fibonacci sequence
2 Fi=1I1, F2=1;, Fj=F" +Fj.,, j= 3.,4,...,

then p(tk=Kk.
Proof. The sequence (1) can be written in the form

(3) hm= Fm+2m t2mx= Fm+2m+2m1, m= 12, ..
and the following relations can be easily verified:

(4) In S AM-2, m=23,

(5) 2" < tn=2mt], m= 1,2,

(6) 2m< t2mHS 2mH, m = 1.2,

(7N sam o rom-1 rom-a5 M= 3,4

In order to prove the theorem, we shall prove that for k—2, 3, ...

(i) a procedure P,k(k) can be constructed, and

(if) Pk(k) is optimal, i.e. PKk(I) does not exist if I<k. The proof uses mathe-
matical induction.

(i) Existence and construction

For the first three members of the sequence (1) t2=3, t3—4, i4=5, the statement
is true. In these cases P,k(k) is the “element by element” procedure.

Suppose that Ptk can be constructed for each k 2m (k=2 m=2). Then
Ptm+ (2m + 1) and Phm2(2m+2) can be constructed according to the following
schemes:

(A) Construction of P@mH(2m-|-1).
Step Al Test A={ex,e2, ....,e2n-i} and go to Step A2
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Step A2. If A is good (it means that both odd elements are in X\A, where
MM =12m +i-2 0 1= 1), apply PH2ni) to the set X\A. This procedure can
be constructed by the induction hypothesis.

If A is mediocre (it means that the mediocre element is in A while the defective
one is in X\A, where \A\—2m~1 and |T\*(|=i2), continue by applying two
independent procedures —1) and P)im(m+\) to the sets A and
respectively. The estimate of the maximal test length of the latter procedure follows
from (5).

If A is defective, test Az= {eam-i+1, «=» eam-i+2n} (\A2=2n) and go to Step A3.
(Note that A2must be either good or mediocre because the defective element is in A.)

Step A3. If A2is mediocre (it means that the mediocre element is in A2 while
the defective is in A), continue by applying two independent procedures P\n<-i(m—1)
and PIm(ni).

If A2is good, test A20- {eam-i+2m+1, (Maoism) and go to Step
A4. (AD must be either good or mediocre.)

Step Ad. If ADis mediocre (we conclude that the mediocre element is in AD
while the defective is in A), continue by applying two independent procedures
P\m-i(m—1) and PyJSm -2) to the sets A and A20, respectively. The estimate of
the maximal test length of the latter procedure follows from (4).

If ADis good (it means that both odd elements are in A), apply P2m-i(2m—2)
to A. This procedure can be constructed by the induction hypothesis (see (5)).

So, the procedure PhmH(2m+ 1) is constructed.

(B) Construction of P,Imta(2m+2).
Step BIl. Test B={el,ea, ....,enZ} and go to Step B2

Step B2. If B is good (we conclude that both odd elements are in X\B, and
it follows from (7) that |3 f\ |=ram+l), applyto X \B the procedure P, mtl(2m+ 1)
just constructed in Section (A).

If B is mediocre (it means that the mediocre element is in B and the defective is
in X\B), continue by applying the independent procedures /Sm2m) to B and
Pt2nHEn + 1) to X\B. The estimates of the maximal test lengths follow from (5)
ancT (6).

If B is defective, test B2={ehm 2+1,  ehm t+2m} (\BA=2n) and go to Step
B3. (B2must be either good or mediocre.)

Step B3. If B2is mediocre, continue by applying the independent procedures
to B and Pj».("0 to B.,.
If B2is good, test

A20 = {efam_a+am+ 1> eee) Ei2m-2 + 2"+ 2" - 1} (|5a0] = 2m *)

and go to Step B4. (BD must be either good or mediocre.)

Step B4. If BDis mediocre, apply Pja*2qw) to B and P\«>-i(m—1) to Bw.
If BD is good, test

2?2200 — {ei2n - 2+ 2™ +2m- 1+ 1; e(2m+a} (1$200! = ~m)

and go to Step BS.

21
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Step B5. If P20 is mediocre, apply P].m Am) to B and 2) to P20

If A is good (it means that both odd elements are in B), continue by applying
P( ,(2w—2) which can be constructed by the induction hypothesis.

So, the procedure P,,m+,(2m+2) is constructed.

(if) Optimality

To prove the optimality of P,k(k), it suffices to prove that there does not exist a
procedure Pk(l), where /<& (k=2,3, ..).

It follows by information-theoretical reasonings that the existence of P,,(/)
implies its optimality provided n(n—I)>-3,-:. So, P,22)=P3(2) and Pf}3)=
=P4(3) are optimal because 3-2=6>-31=3 and 43=12>32=9. However,
tk(tk—1)<3* 1 for all £>3. So, in order to prove the optimality of Prj(4)=Ps(4),
we must analyse it in detail.

Let CcX= {e4, e2, €3, e4, e5 be the set tested in the first step. Consider the
following cases:

(1) |IC|=1 If Cisidentified as a good set, it means that both odd elements are
in X\C, where |[JT\C|=4, and now we cannot find the odd elements in X\C
by less than three tests.

(2) |C|=2. If Cis identified as a mediocre set, we need at least three additional
tests, because we must apply P|(l) to Cand P3(2) to X\C.

(3) |C|=3. If Cis identified as a mediocre set, we must apply P'(2) to C and
PI(1) to X\C.

(4) |CI=4. If Cis identified as a defective set, it is possible that the mediocre
element isin C, too, and we must accomplish at least three more tests to identify
both odd elements.

So, in any case; we need to accomplish at least four tests. It means that P5(4)
is optimal. The basis of mathematical induction is established.

Suppose that the optimality of P,k(k) is proved for all kS 2m (k=2, mS2).
We are going to prove that, under these conditions, P,2mH(2m+1) and
P,2m2(2/w+2) are optimal, too.

(A" Optimality of P,2mHl(2w+1).
Let D el (pSfi=i2mtl) be tested in the first step of a procedure P|X(/). Con-
sider the following cases:

D) |IP|*"2m1 Then |A'\D|*i2Zw and if D is identified as a good set, then by
the induction hypothesis, we must accomplish at least 2m additional tests to identify
both odd elements in X\D.

(2) 2m I<|L>|<r2m Then 2m 1= |A"P>*=r2m and if D is identified as a medi-
ocre set, we must apply P'D\ (=m) to identify the mediocre element in D and
PfX\n\( —m) to identify the defective element in X\D . Thus, we need at least 2m
additional tests, i.e. at least 2m+ 1 tests altogether.

(3) |[P|S/2m If D is identified as a defective set then it is possible that the me-
diocre element is in D, too. By the induction hypothesis, we must accomplish at least
2m additional tests to identify both odd elements in D.
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Thus, we have proved that P,imHl(/) does not exist if /<2»i+l, ie.
pn+A2m+1) is optimal.

(B") Optimality of P,im*(2m +2).
Let E<zX (1Y |=/2mt0) be tested in the first step of a procedure P\X\0)- Con-
sider the following possibilities:

(D) \EI"t2n 2- Then |-T\£|sr2mtl, and if E is identified as a good set, then
according to (A"), we must accomplish at least 2m+1 additional tests to identify
both odd elements in X\E.

(2) t2n 2< |£'|"2m Then Fratl+2"s|A\£ |< /2mt+l, and if E is identified as
a mediocre set, we must apply P\AB\(m) to identify the mediocre element (see (5))
and PfX\E\(m+ 1) to identify the defective element in X\E.

(3) 2nx|E,|<r2mtl Then /2m 2<|A'\E£'|<Fm#l+2m and if E is identified
as a mediocre set, we must apply PfEFm+ 0 and P\x\E\(m) (see (5)).

(4) \E\*tim+L. If E is identified as a defective set, then it is possible that the
mediocre element is in E, too. In that case, according to (A"), we must accomplish
at least 2m+1 additional tests to identify both odd elements in E.

Thus, we have proved that/’2mX/) does not exist if /<2m+2. It means that
ptimA2m+2) is optimal. |

Corollary. If tk<n”tk+l, then k~p(ri)~k+ L

Proof. The proof follows immediately from the Lemma and the Theorem.
I

It means that, if nis not a member of (1), then the procedure P,,(l) constructed
according to the Theorem and the Lemma is either an optimal or an almost optimal
procedure, i.e. such that (/—g(n))sl.
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UN THEOREME SUR LES SYSTEMES LINEAIRES
DE QUADRIQUES A JACOBIENNE INDETERMINEE

LANDO DEGOLI

On démontre une condition nécessaire et suffisante pour qu’un systéme linéaire de quadriques
de Srsoit a matrice Jacobienne identiquement nulle en supposant d’abord que la caractéristique de la
Jacobienne soit r et aprés qu’elle soit r—k.

Dans I’espace complexe linéaire Sr, rapporté aux coordonnées projectives homo-
génes IG(i=0, 1, 2, r) un systéme linéaire Ld (rf=r) de quadriques linéairement
indépendantes est exprimé par I’équation :

avec

ou le symbole de sommation est sous-entendu pour |’écriture abrégée désormais
usuelle.
Prenons en considération la matrice Jacobienne & d+ 1lignes et r+ 1 colonnes :

(1)

En général la matrice Jacobienne égalisée a zéro est le lieu géométrique des
points de Sr conjugués entre eux-mémes par rapport a toutes les quadriques du
systeme. Si la matrice Jacobienne est identiquement nulle, cela signifie que tout
I’'espace est le lieu de points conjugués.

Si la caractéristique de la Jacobienne est r, un point générique de Srest conjugué
avec un seul point. Si au contraire la caractéristique est r—h avec 0 un point
quelconque de Srest conjugué avec un espace Sh.

Theéeoreme. Considérons un systéeme linéaire de quadriques Ld(d”r) qui ne pos-
sede aucun systéeme subordonné Lg (2=ig”"d—1) possédant une Jacobienne identi-
quement nulle de caractéristique c: c=g; 2~cSr—k—1 (k>0). La condition
nécessaire et suffisante pour que le systeme linéaire de quadriques Ld (d”r), satis-
faisant aux prémisses précédentes, ait la Jacobienne identiquement nulle de caracté-
ristique r—k (£=0), cest que les quadriques du systeme qui passent par un point
quelconque de Srpossedent en commun un Sk+1.
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Avant tout, nous démontrons le cas particulier:

Si le systeme Ld est a Jacobienne identiquement nulle de caractéristique r, les
quadriques du systéme qui passent par un point ont en commun une droite.

Si la Jacobienne est identiquement nulle de caractéristique r cela signifie que tous
les déterminants de la matrice (1) d’ordre m+ 1 sont identiqguement nuis.

Considérons le déterminant donné par r+1 quadriques quelconques. En effet,
on peut choisir les premiéres r quadriques du systéme:

foififi mmemtfr-Xifr-

On aura:
df df dfr
dx0 dxo ' < dx0
df df dfr
2) dXi dxx  dx!
df dfi df

xr  (xr dxr

Les mineurs d’ordre r extraits du déterminant D ne peuvent pas étre tous nuis,
autrement le systeme linéaire Lrdéterminé par les r+1 quadriques précédentes au-
rait la Jacobienne identiquement nulle de caractéristique <r, et pour cela il exis-
terait dans Ld un systeme subordonné avec la Jacobienne identiquement nulle de
caractéristique inférieure & r contre I’hypothese.

Il est donc nécessaire qu’au moins I'un des déterminants d’ordre r soit différent
de zéro. Nous pouvons supposer qu’il soit le mineur obtenu en éliminant la derniére
ligne et la derniere colonne. Nous I'indiquerons par A:

df df df-
dXxo dx0 dx0

dfo df df-
dxr-1 dxr_i * dxr.

Prenons en consiqéra_tion la matrice extraite du déterminant D formée avec les
premiéres r ligne et indiquons avec:

-dit eee> A1 —1

les mineurs d’ordre r que I’on obtient en substituant a la premiére, deuxiéme, etc.
colonne de A laderniéere colonne de la matrice. Un seul de ces déterminants peut étre
identiquement nul, parce que, en supposant que deux déterminants, par exemple AO
et Ax, soient identiquement nuis un point de Sr, qui n’annulle pas tous les mineurs
d’ordre r—Lcommuns a AOet Axet pour le reste générique, rendrait nul A. (Voire: L.
Kronecker, Werke 1°, Leipzig, 1885, p. 238.) Mais A est une forme d’ordre r dans les
Xi et pour cela serait identiquement nul, ce qui est impossible.
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Puisque le déterminant D est identiquement nul, les quadriques, tondis qu’elles
sont linéairement indépendantes, elles deviennent aussi fonctionnellement dépen-
dantes et, une quelconque, par exemplef , serafonction des autres. Il sera:

(3) fr=F (A ,A ,ft,1J

Cette relation est exacte pour tous les groupes de r+1 quadriques choisis entre
Ld, mais il n’est pas possible que des quadriques en nombre < r+1 soient fonction-
nellement dépendantes entre elles, autrement il existerait dans Ld des systemes sub-
ordonnés contre les prémisses au théoréme.

Mais parce que lesf sont toutes des formes de deuxieme ordre en remplacant
au lieu de x0, x,, ..., Xr: tx0, txx, ...,txr, cela donne:

tIr=W o, Ni, -, Ffr-J)

qui montre que F est une fonction homogéne de premier degré.
En dérivant I’expression (3) on obtient:

dF a/r x dfr
df dx0+ df dx0 dfr- x dx0 dx0
4 . . . . . . .
dF__df + , dF dfr-x dfr
df dxr-i df 9x,--, v dfT-x dxr-x  dxT-x’

systeme de premier degré, qui donne aisément les dérivées partielles de la fonction F;
c’est-a-dire :

dF A, dF AX dF Ar-x
{) dfo A’ dix A dfr—x A’

Considérons un point x de Srde coordonnées : x0, xx, ..., Xr, et soit X' de coor-
données : X0, xi, ..., X, son conjugué par rapport a toutes les quadriques du systéme.
La droite qui joint les deux points sera donnée par:

(6) Y1 = hxi+hx'i (i=012 ..70).

En remplacant (6) dans toutes les quadriques, on obtient pour la quadrique
générique fm:
) fm(y)=fm()ti+fmxntl  (m =0,1,2, ..., 1)

parce que les termes 2a“xfx* sont nuis les points x et x' étant conjugués.
En remplacant (7) dans (3) et aussitot en dérivant par rapport a tx et t2on ob-
tient :

df_~dF_df
dtx df dh
® df = d~df 6=0 1.2, .., r—1).

dt2  df dh
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En dérivant (7) on a:

(m=0, 1,2, r).

Remplagons ces derniéres dans (8). On obtient:

(=012, r—).

Et enfin pour (5):

Nio(*)+ A li (*)+eem+/1,-1/,-1(*)+ Afr(x) =0
AO(X) +ALfI(x") +...+Arrfr_1(x") +Af.(x/) = 0.

Les déterminants A, A0, Ax, ...,Ar"r sont calculés dans un point générique de
Sr par exemple en x et un seul d’entre eux est au maximum nul.

Les expressions précédentes sont identiquement nulles par rapport a ti et t2
Ces variables se trouvent seulement dans les déterminants A, AQ, A,, ..., Ar_1, qui
résultent des fonctions homogenes de tlet t2et un seul d ’entre eux est au maximum nul.

Parce que les deux identités coexistent il faut qu’il soit:

fm(x) = cfm(x") (m=0,12 ..,71

avec ¢ constante pas nulle.

En effet nous pouvons donner au rapport tjt2infinis valeurs quelconques et, en
particulier, rvaleurs diverses et par conséquent obtenir deux systémes algébriques de
premier degré aux r équations et r inconnues. Ces derniéres sont respectivement les
quotients desfk(x), fk(x") par rapport a une quelconque d’entre elles, par exemple
fr(x) etfr(x') cest-a-dire:

(10) fkX)/Fr(x), FR)frx) (k=0 1,2,..., r—i)

Puisque les deux systemes algebriques ont les mémes coefficients constants
A, AQ, AX, ..., Ar-x la solution des deux systémes est la méme.
Il en résulte :

(H)

©)

Mais cette égalité est vérifiée seulement si:
(12 fm(x) = Cfm(x"), m=012 ..7

comme nous l’avons signalé.

On en déduit que toutes les quadriques du systéme Ldqui passent par un point x
passent aussi par son conjugué x' et réciproquement. Si x est situé sur la quadrique
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fm on aura;
[,(*)=o0
[«(*0 = o,

en remarquant que x' est le conjugué de x par rapport a toutes les quadriques de Ld.
Il en résulte :

et pour (12):

w x)+W xH)=0
/»00-0

ou y est le point générique de la droite xx'.

La droite en question appartient donc tout entiére a la quadrique fm. On en
déduit que toutes les quadriques qui passent par x contiennent la droite xx'.

Supposons maintenant que la Jacobienne du systéme L dsoit identiquement nulle
de caractéristique r—k.

Cela signifie qu’un point x de 5, a pour conjugué un Sk.

Considérons un générique Sr_k qui passe par x. Le systeme Ldsera entrecoupé
par Sr_k suivant un systéme linéaire L'dde quadriques de Sr_k, qui a son tour cou-
pera Sk dans un point x', qui résulte le conjugué de x par rapport a toutes les qua-
driques du systéme L'd.

Nous pourrons choisir pour coordonnées de Sr_kles x0, xk,  xr_k, en annulant
toutes les autres coordonnées, c’est-a-dire en écrivant:

et pour (7):

X\fc+l — xr-k+2 — — Xr — 0.
Les équations des quadriques seront du type :
_[i(x0, Xj,..., xr-k, 0, 0,0, ..., 0) = 0.
Les dérivées partielles :

pour Xxr-k+l=xr-k+2=...=xr=0, seront toutes nulles. La matrice Jacobienne du
systéeme Ld:

of i=012..d

dxs $s=012 ... r—k

sera identiqguement nulle.

Elle ne pourra pas avoir de caractéristique supérieure k r —k, parce que ses lignes
ne sont qu’en nombre r—k + 1; elle ne pourra pas avoir de caractéristique inférieure
kr —k, sinon le point x aurait pour conjugué un Sgavec g>0 et non le seul point x'.

Il en résulte que le systtme L'dde Sr_k a la caractéristique r—k. Cela porte a
conclure pour la premiére partie du théoréeme, que les quadriques de L'd qui passent
par X auront en commun la droite xx'.

Puisque nous pouvons dire la méme chose pour tous les Sr_k qui passent par X,
on en déduit que les quadriques de Ldqui passent par x auront en commun Sk+l
joignant le point x avec Sk.

La condition du théoréme est donc nécessaire.
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Elle est siiffisante aussi. En effet, si toutes les quadriques de Ld, qui ont en com-
mun un point X, ont en commun un Sk+L il est evident que le point x a pour conjugué
le mérne Sk4l par rapport au systéme , de quadriques qui passent par x. Une
autre quadrique du systéme Ldqui ne passe pas par X a pour conjugué de X un hyper-
plan qui coupera le Sk+l dans un Sket il en résulte que x aura pour conjugué par
rapport au systéme Ld un Sk.

Cela signifie que la matrice Jacobienne est identiquement nulle de caractéris-
tique r—, comme on voulait démontrer.

Remarque. Les systémes linéaires de quadriques a Jacobienne identiquement
nulle de caractéristique r—k, qui possédent des systémes subordonnés a Jacobienne
identiquement nulle de caractéristique inférieure, ne satisfont pas au théoréme.

Par exemple, considérons un systéme Ldavec r/~r+1 & Jacobienne identique-
ment nulle de caractéristique r, qui posséde un systéme subordonné Ld x a Jaco-
bienne identiquement nulle de caractéristique r—L1 Les quadriques de Ld x qui
passent par un point X ont pour le théoréme démontré un plan en commun.

Alors une quadrique ultérieure qui n’appartienne pas a Ld_x et qui passe par le
point x sera coupée par le plan dans une conique et, par conséquent, les quadriques de
Ld qui passent par x ont en commun une conique.
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SOME RAMSEY NUMBERS FOR FAMILIES OF CYCLES

BRIAN ALSPACH* and KATHERINE HEINRICH

In this note we show that the edges of Kp_t,p=2 |—|, can be coloured from a set of k colours

so that no monochromatic subgraph contains an even cycle, whereas such a colouring is not possible
for Kp.

Throughout this note we use the graph-theoretic terminology of Bondy and
Murty [1] and the Ramsey theory notation of Parsons [4]. We denote by  and
the families of graphs consisting of all odd and all even cycles, respectively. Then the
family €='gOU <€k consists of all cycles. The Ramsey numbers r*(#), rk(%) and
rk(<&) denote the least integers p such that if the edges of Kpare coloured from a set
of k colours at least one of the monochromatic subgraphs must contain a cycle, an
odd cycle or an even cycle, respectively.

One sees immediately that rk(*)=2k+\, and it is not difficult to show that
rk(%)—2k+ 1 as has been remarked both in [2] and [3]. It is the purpose of this note

to show that rk("e)—2 where f-1 denotes the least integer function.
Theorem. FOr AS i, rk

Proof. We show first that rk(se) 2 Suppose the edgesof kp, p = 2

are coloured with k colours so that the resulting monochromatic subgraphs have no
even cycles. Let G be such a monochromatic subgraph. Since G has no even cycles,
each of its blocks must be either a single edge or an odd cycle. If the blocks of G
contain exactly h odd cycles, then G has at most p —I+h edges. When k=2m —\,
ms 1 then p=6mn -2 and G has at most 3m—2 odd cycles (the maximum being
attained when all are triangles) and hence at most p —1+(3m—2)=9m—5 edges.

Thus we require k(9m —5)S —=~ ~ which is impossible. Similarly, when k =2m,
msl, then p=6m, G has at most 3m—L odd cycles and hence at most 9m—2 edges,
We then require k(9m—2)S"~" which is also impossible.

* Partial support was provided by the Natural Sciences and Engineering Research Council of
Canada under Grant A—4792.
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To complete the proof we need only to construct appropriate /:-colourings of

KP-i, P=2

When k=2m—1, p —1= 6m—3 and we partition the vertices of Kén_3into three
sets A= {al,ai, B={bx, b2, ..., b2} and C={cl; c2, ..., c2n x}. Then
al, the edges of colour i, ISi'"*2m —1, are given by the triangles {«;, bhc}
fail ~i+1) bi—8> fail &+2i "i—94i «“! fail bi+m—h +  fail %i+1) "|—+}| fail Ni+2

i — 2 02 fai, A-+Hm-H Ni+m)i fail ANiHi @+2 - —},
where subscript addition is performed modulo 2m—1 on the residues 1 2 , 2m—L

To clarify the construction the edges of é1 are exhibited in Figure 1

Fig. 1

When k=2m, p—I=6m —\ and we partition the vertices of into three
sets A fa\i % --)’\ »B  {hj, b2, ..., b2+, hoGtand C  {ej, @ me, Q-+,
Then Sl, the edges of colour /, 17 "A2m —1 are given by the edges {bt b"} {Cj, cm}
and the triangles fat, h@9c;}, fah bi+1, b~ J, fat, bi+2, h;_Z}, «>fan 6,2+«-! b|+m}

fail ci+li ci-13>_  fail Q+zi ci-2}i ~m fail ci+m-li ci+mli  {ci>ai+ 1> ai~ny> fall a|+z

Uji_2, ..., {c;,aitm 1, ai+m). The edges St are shown'in Figure 2. Finally, <@m the
edges of colour 2m, consists of the edges {hl5 cy} fa2, c2, ..., {hdni, c2n i}, {*>c~}
and the triangles {al; blt c@t}; fa2 b2 c"}, .. {uZm th_j £S |



RAMSEY NUMBERS 333

REFERENCES

[1] Bondy,J. A. and Murty, U. S. R., Graph theory with applications, American Elsevier Publishing
Co., Inc., New York, 1976. MR 54*117.

[2] Erdés, P. and Graham, R. L., On partition theorems for finite graphs, Infinite and finite sets
(Collog., Keszthely, 1973), edited by A. Hajnal, R. Rado and V. T. S6s, Collog. Math.
Soc. J. Bolyai, 10, North-Holland Publishing Co., Amsterdam, 1975, 515—527. MR
51#10159.

[3] Harary, F., Hsu, D. and Miller, Z., The biparticity of a graph, J. Graph Theory 1 (1977), 131—
133. MR 56 * 2874.

[4] Parsons, T. D., Ramsey graph theory, Selected topics in graph theory, edited by L. W. Beineke
and R. J. Wilson, Academic Press, London, 1978, 361—384. MR 81e: 05059.

(Received July 8, 1981)

DEPARTMENT OF MATHEMATICS
SIMON FRASER UNIVERSITY
BURNABY, B.C.

V5A 1IS6

CANADA






Stadia Scientiarum Mathematicarum Hungarica 17 (1982), 335—340

MATC HINGS AND ~-FACTORS IN A RANDOM GRAPH

ANDRZEJ RUCISISKI

We consider a random graph obtained from a complete labelled graph by an independent dele-
tion of each edge with the same probability. Conditions for almost sure occurence of a number of
disjoint, large matchings are given. We also discuss the problem of existence of a A-factor in a ran-
dom graph.

1 Introduction

One of the most important and interesting topics in the random graph theory is
the problem of the almost sure existence of subgraphs of given type in a random graph
Knp. The results in this field give usually a threshold function g(n) such that K.,iPn)
forp(n) greater than q(n) contains considered subgraphs with probability tending to 1
as n—°°. Sometimes, additionally, this limit probability for KngM is calculated. This
problem becomes more difficult if we consider “large” subgraphs, i.e. subgraphs which
grow as n <> There are only few such results in the random graph literature (paths
m. trees [5], [9], connected components [5], cliques [4], [12], 1-factors [7], Hamilton
cycles [10], [11], [13]).

In this paper we show results about maximal matchings and ~-factors, two kinds
of the “large” subgraphs of a random graph. Theorem 1 deals with the almost sure
existence of a number of disjoint matchings. Main result (Theorem 2) is an attempt to
confirm a conjecture of Erd6s and Rényi [8]. It is also an approximation of the solu-
tion of A-factor problem for a random graph K, tP. The analogous problem for a bi-
partite random graph was solved in [8].

2. Notations and definitions

For elementary definitions from graph theory see [2]. A set of disjoint edges we
call matching and a A-regular spanning subgraph we call k-factor, We use the typical
graph theory notation. In particular, we denote by e(G), co(G), O(FG) and A{G) the
number of edges, number of connected components, minimal and maximal degree in
a graph G, respectively. We will write e(S, T) for the number of edges between dis-
joint vertex-subsets S and T and i/c(d) for the degree of vertex v in a graph G. By
G[S] we mean a subgraph of G with vertex-set (ev. edge-set) S and all edges of G
with both end-points in S (resp. all vertices of G which are endpoints of edges from 5).

1980 Mathematics Subject Classification. Primary 05C70; Secondary 60CO05.
Key words and phrases. Matching, A-factor, random graph, almost sure property.
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Now we establish the probabilistic notation. A binomial random variable with para-
meters n and p we denote by X(n, p). By a random graph Kn,, we mean the probabilis-
tic space (@B P), where Qlis the family of all graphs with vertex-set V, |VA—n and for
every

P(G) = pe(O)(1-p)® _e(G).

We may interpret K, p as a result of a random, independent deletion of each edge ofa
complete graph K, with the same probability 1—p. A property si of a random graph
is the set of all graphs among (Swhich possess this property. We say Knphas a prop-
erty s i almost surely (in short a.s.) iff »cs- s1) =0(V) as n-m

Finally, let pk(n)=—/(log nj-A log log n+ H(n)), where w(n)}->° as n—°>°,
k=0, 1,2, ...

3. Useful results

The fundamental tools needed in our proofs are the following formulas and
results from probability, graph and random graph theories.

\m /
W . - |,r';l)W Jh) ' v.m'j']*l;/ral’b for m <,
@ P(X(n, p)~=]j-1) 2P(X(n, p) <j) =P(2f(n-1, p)

(3) Bernstein’s improvement of Chebyshev inequality (see [14]):
P(\X(n,p)-np\*n)"2exp{-2pgeM2pc, +e)->} for O<e<pq, q=\—p,
(4) Tutte’s A-factor theorem (see [2]):

A graph G contains a A-factor iff for every disjoint vertex-subsets S and D the
following inequality holds:

gk(D, S) +k\S\- 2 dG-D{v) » k\D\,
VES
where gk(D, S) is the number of these connected components C of the graph
G—D —S for which the number A|S|+¢(C, S) is odd;

(5) if a graph G has a Hamilton cycle, then for every non-empty vertex-subset S we
have co(G-S)s|S|;

(6) if p=p0O(n), then Knpcontains a 1-factor a.s. (see [7]);
(7) if p=pl(ri), then K, pcontains a Hamilton cycle a.s. (see [10]);
(8) if p—pk-i(n), then S(K,, p~k as. (a simple corollary of results from [6]).
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4. Matchings

Now we formulate our “matching theorem” in its general form:

Theorem 1. For every O<a</><l, if m=m(n), I=I(n), p=p(n) fulfil the
following conditions:

1° limra= °°,

2° lIs°{\-b)mp,

3° Im~~n,

4° r!irn Bn exp {—log m—Apm}< 1,
where B=e2a A=2(a—b)q\~a)(2 —a—b)~2 then a random graph Knp almost
surely contains | disjoint matchings Mx, ..., M, such that:

0] where Vi=V(G[MW), i=lI,

(i) \Vi\>n—im, i=I,

We can interpret the above result in the following way: there is a.s. in Knp
under conditions 1°—4° a subgraph F which is almost an /-factor, i.e. F possesses only
few points (0(h)) with degree in F not equal to / (in fact, they have degrees less than /
— see proof). Theorem 1can be simplified if we assume that np—°>°and /-=log (np).
Then there are a.s. in Knp | disjoint matchings Mx, ..., M, such that Vx">..z> VI
and \VA=n-—o(n). From Theorem 1 it easily follows that if m, | and p fulfil the
conditions 1°—4° then Knp a.s. contains (a) n—Im vertices of degree at least / and (b)

vertex-disjoint stars on /+1 vertices. For p=constant a stronger result than (a)

can be found in [3].
Let us illustrate the above theorem for typical values of the probability p=p{ri).

Example L1 If p—%, then from conditions 1°—4° follows that
m=~, /S(I-fi)-~-, d(alog2+1 +logd) " Ac,
where ¢ and d are constants.
Example 2. If p:ﬂ, w=w(h)-"d as n—"°, then
m=j, f—f(n)— a n-m° h8§(l-b)j, /log/= o(w).
In particular, if w=logn, then

m:_nloglog_n’

/="(1-h)loglogH.
Example 3. If p=const, then
H!=J, [/s(I-fi)-y-, [/log/-= Apn, /=/(n) —0 as n- D.

22
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In particular, if m=\ogn, then /—1—b)p logn, whereas if m=fn, then
I=(I-b)pYn.

Proof of Theorem 1

Lemma 1 Ifagraph G hlas | disjoint matchings Mx, .... Mtand M is a maximal

matching in the graph G—ilgth then A[G\V—V{G[M\}\)"I.

Proof. By contradiction. |

We shall use also an algorithm which, step by step, constructs disjoint matchings
and at the same time deletes from a graph all its unmatched vertices.

The algorithm.

1 Set i=I, V0=V, Mo=0;
2. Find a maximal matching M; in the graph Mt x and set
Vi=V{G{MM\

3. If VI*0 then go to 2, else stop.

By Lemma 1 for every i we have A(G[Vi_1—V " i—1). Notice that the set
Fi_x—Vi is the same as the set of vertices deleted from the graph at the “ith” step of
our algorithm.

Let P(«, p, m, I) denote the probability that Knp contains a subgraph H with m
vertices and A(!/)</. We search for such values of m,l and p that Im<n and
P(n, m, I, p)=0(1). Then our algorithm can be repeated / times and everytime it a.s.
deletes less than m vertices. But

P(n,p, m, Z)~ (I p(d(/fmp </)
and therefore the following lemma completes the proof of Theorem 1
Lemma 2. For every O<a<h<l, if /S(I —b)mp, then

PA{Kmp) < I) - 2amexP {-Apm 2.

Proof. Let V(Kmp)={1, ...,m} and At denote the events “*/(/)</”, i=1, ...
...,m. We have

A {Kmp < )= p(iln...nfAP (idP(i2id...p (M In...n"m. )
and

p(MH+Y AN L..n N = 0 9jp(dKm. ItP(i+i) <;) <

j=I

/=1, ..., m and gj is the probability that the (/'+ 1)-th vertex is joined with exactly
I— vertices among the set {1, Thus

2A <A PO) ... P(am) * {P@m)}*.
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Moreover,
P(am) = P(X((1—a) sm—1, p) < 1) § 2exp {—Apm}.
So Lemma 2 is proved. |

5. ~-factors

Erdds and Rényi in [7] solved the problem of a.s. existence of a 1-factor in a ran-
dom graph Knpand formulated in [8] the

Conjecture. If p=pk-k(ri), then K, contains k disjoint 1-factors a.s.,
*=1,2, ...

From the result of Komlds and Szemerédi [10] see (3—(7)) it follows that the
above conjecture is also true for k=2. We give a partial solution of this problem

Theorem 2. If p=pk+2(n), then Knp contains a k-factor as. k=1,2,

Proof. Basing on results (4), (5), (6), (7) and the fact that gr(D, S)- gs(D, S)
iff r=s(mod 2) one can deduce the following a.s. implication: if Knp has no k-fac-
tor, then there exist disjoint vertex-subsets D and S such that |£>|<|S| and

(9) (fc-)|z>| + \%Sd KiP-D(v) < (*+1)Is].

Furthermore, if there is a vertex v in the set D for which e(v, S)<k, then we can
transfer v from D to V—D—S and note that the inequality (9) for the set D —v also
holds. Moreover, it follows from (8) that
2 dg.p() —(k+ 3)
and thus
e(S,D) fe2|S|+ 1.

So it must be: |D|s3, e(v, S)"k for every VED and |S|fe&. Summarizing, if
K,, p has no "-factor, then the event A below occurs a.s.

Event A—*there exist disjoint vertex-subsets D and S such that

1° 3=4|Z>MS|,|S|EA:,

2° e(S, D)s2|S|+ 1,

3° inequality (9) holds”.

n
We have to show that P(y4)=o(l). Let us write A=§gkAs, where As denote

the event A with additional condition that |S|=i. Since the inequality (9) implies
two others:

(90 e{S,V-D-§) < (*+)[.S]-(*-1)IS]

and

(90 2e(Ai#[5D A Ik +1)|S],

we can define two other events Bsand Cswhich are similar to As but instead of (9)
they are described by (90 and (9"), respectively.

22+
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Let Using (1) it is possible to obtain that

L.XJ'PC?” 1gsin- s- 8)-J = o(l
XjJ—OvC JS d))p J+2s+l1gsin- s- &)-J = o(l),

where Me(A+1)N—3(k—1)—1, g=\—p.

From the other side we can calculate with the help of (1) and (3) that

VA s,i. Res , LOpPf (O.»)-<*+»m}-»

Thus with probability tending to 1as n  °° the random graph K, p contains a /v-fac-

tor

and Theorem 2 is proved. |
Added in proof. The conjecture from [8] has been completely confirmed by

E. Shamir and E. Upfal in ,,On factors in random graphs”, Israel J. Math. 39
(1981), 296—302 (MR 83i: 05061). Their proof is of algorithmic nature.
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THE CONSTRUCTION OF LEAST FAVOURABLE DISTRIBUTIONS
IS TRACEABLE TO A MINIMAL PERIMETER PROBLEM

F. OSTERREICHER

Huber and Strassen have shown in [2] that a composite testing problem can be replaced by an
equivalent single one (in terms of least favourable pairs of distributions), when both hypotheses
are given by 2-alternating capacities. In this paper a technique is presented in order to construct the
least favourable distribution, if one of the hypotheses is a simple one. The mentioned technique is
based on the perimeter of the risk sets in question and applies not only to the total-variation and the
«-contamination model on a general measurable space (cf. [1], [8] and [5]) but also to local-variation
and Prochorov-neighbourhoods of distributions on the real line. It is shown that in these cases one
can by-pass the application of deeper existence theorems (as Theorem 4.1 in [2]) by elementary
geometry. As indicated by an example, the technique can be adapted for future applications.

1 Preliminaries

Let Mi be the set of all probability measures (pm’s) on a measurable space (2, 91),
let Jbea subset of J(xwith elements Q, Q' and let P £1c be a further pm. Then let
us consider the testing problem (tp) (P, 1) of the simple hypothesis P against the com-
posite 1.

The main ideas of the present paper can be developed most instructively and
powerfully in terms of the risk sets and risk functions of the testing problems in ques-
tion. Therefore let us recall the following definitions.

Definition 1 R(P, Q)=co{(P(A), 0(>40)\M£9l: P(,4)-1-0(/lo= 1} is called
risk set of the tp (P, Q). The lower boundary r(P>Q(a):=min {y: (a, y)ZR(P, Q)}
a6[0, 1 of this set is called risk function (rf) of (P, Q).

Remark 1 r(PQ)a) represents the probability of type Il error for an optimal
test. In the case of strict convexity of r(PQ(c) in a

rP.O)@) = Q(AI) with A, := 2w) > (<)}

and t=D+r(P a). (D+ (D+r) resp. D~r (D_r) denotes (the absolute value of)
the right-hand-side resp. left-hand-side derivative of the convex function r and p, g
the Radon—Nikodym derivatives of P resp. Q with respect to a dominating cr-finite
measure p.) An obvious property of the rf is

OSr(,i8)(oi)SI-a Va€[0, 1],

1980 Mathematics Subject Classification. Primary 62F35; Secondary 62F03.
Key words and phrases. Robust hypotheses testing, least favourable distributions, Prochorov
neighbourhoods.
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where the first equality holds true for all cef[0, 1] iff PX.Q. The second inequality
holds true for one a£(0, 1) and hence V<*6[0, 1] iff P=Q

Definition 2. R{P,2):= (S'L:éR(P’QI)

respectively r(P>J)() := sup {r(P,Q)(a): Q'EJ}
is called the risk set resp. risk function of the composite testing problem (P, U).

Definition 3. A pmg*6J is said to be a least favourable distribution (ifd)
for the tp (P, J) iff r(Pe®=r(PjJ).

Remark 2. Let Per (R(P, Q)) resp. Per (R(P, U)) denote the perimeter of the
risk set R(P, Q) resp. R(P, J), eg.
Per(R(P,Q))= I-r PQ(0)+ / Y1+ D Ir (RiQ(dx+ Y2,
then obviously °
Per (R(P, 09)=Per (R(P, J)) =min {Per (R(P, Q"), Q££}.

As a matter of fact, Per (R(P, Q)) can be expressed in terms of an information
divergence measure of probability distributions

HO{P, Q) =J (p+g)dp

as used in Theorem 6.1 of [2] in order to characterize least favourable pairs of distri-
butions. Take <PU)=yu2+ (I—u)2 then

H®P, Q) —f Yp2+g2di= f qd[li+ f ~1+(g/p)2dP.
{p=0 =0}
For the easy prioof that the latter can be written in terms of the risk function by

1~r(P,Q(0)4- 6 yi+ DI r(pQXd<x and for further insights from the integralgeo-

metric point of view we refer to [7].

For the existence of least favourable distributions and, more generally, least
favourable pairs of distributions cf., eg. Theorem 4.1 in [2] and Satz 6.4 in [3]. Ffow-
ever, in our special cases, both the existence and the construction is traced back to
a problem of elementary geometry (see page 13).

The main interest of this paper isactually concentrated onthe construction of the
Ifd Q* for the case when (£2, 2I)=(R, 23) is the real line R equipped with its Borel
(Tfield 23 and 1 is a Prochorov—neighbourhood J((?;e, § of i(R, 23);
0=£-e00;0=(5<I

J2(g; & 6) = {Q'ed'MR, 23 Q\B) 5Q(B)+0 V-623}
where 5E£={x£R: inf {la—j|, )’EB}" ek

The case 6=0 dyQ\ «)=(0; e, 0) is called a local-variation neighbourhood
of O. (An application of a related distance in discrete geometry may be found in [4].)
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In the case e=0 we can even forget about the restriction to (R, 99 when con-
structing Q*. In this case

AV (B 9= {Q'dJI"Q, 91): Q'(A) * Q(A)+S  V7Edl}
is called a total-variation neighbourhood.

2. Construction of the least favourable distribution

The construction of the Ifd for general (e, S>0) Prochorov-neighbourhoods will
be managed by a super-position of the solutions for local-variation and total-variation
neighbourhoods. Let us start with the easiest case, namely total-variation neigh-
bourhoods, and recall the following theorem from [5]. Notice, however, that for both
the total-variation model and the s-contamination model the construction of a least
favourable pair was given already by Huber [1] and later by Rieder [8] and Oster-
reicher [5].

Theorem 1 Let (P, 1) be a composite testing problem, where £ —£ltv(Q; S)
is a total-variation neighbourhood o fthepm Q. Then the leastfavourable distribution Q*
is given by
tp@>) CcofAr
q*(pS) afoS) (0€A,/At
tp{(0) CcoEAf
if rP@0)1~«5 1L Thereby t and t are chosen such that 1—a and i(l —) are sup-

porting lines relative to r(P Q)+6. If r(P Q(0)+ <5< 1 we have to replace t by frex=
=D+r(PQ)0) and to redefine

b q*(c0) = Ip{co) for COEA-
Y g*(co) = (1-6/Q (AImJ)q(w) for

Remark 3. The idea of the proof, for which we refer to [5], is very vivid. It
arise from the conjecture that, owing to

Q'(Af) £T(Af) := Q(A;)+6 \Vits 0, QfSL
Per (co {(0, 2), (I, 0)}U {(P(AY), T(Af): P(A)+T(Af)*I, t*0})=
=min{Per (R(P, Qf): Qf2).

In order to tackle the construction of the Ifd in the case of local-variation neigh-
bourhoods, let us provide some further auxiliary means.

Let F()=P((-°°,x)) and G()=Q((-°, *)), resp. F+(x)=P((-°°, *])
and G+0) = R((—oabx]) be the distribution functions of the pm’s P and Q on
(R, 8). Let furthermore

sd := {a€[0, 1J: 3*€R: P(x) = a},
a_=max {afsd: a'S a} and a+ = inf{afsd:a' S a}
and F_1(a) = max {.v€R:F(x:)"a}, then
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D efinition 4. The function \j> [0, ]]—[0, 1], given by

I-G+IF-H*)) for aF (F ~ 1(3)) = FHF~1@a))
VFOR 1-G(F-'(«-))~ i (G.r*a”i-GCF-Ha-Wx
(= P.Q)() el

. X 1(oii(a+~a-) otherwise

is called pre-risk function (prf) coordinated with (F, G) (the testing problem (P, Q)).

Remark 4. Obviously, ¥'(f,g):=: A is monotone decreasing (and right-hand-
side continuous). Hence it has a finite derivative A01]-a.e. Setting

AMeA) = {a£(0, 1]: Z2 iA@ N % (U {0}y if 4(0)=1) "0
"oo(iA) = n {sét, ?€[0, °°)} and abbreviating st, =
it can be readily seen
r<FS)@) - ">(*) = min{": (a,
R = co({(0, 1), (1, 0)}U {(A@a/,), tS 0}),
which justifies the notation ‘pre'risk function’ for iAp,q)- Notice furthermore that
Mpjo) = iNp Q iff the likelihood ratio — is monotone decreasing.

Let us explain the above statements for the case, when both distribution functions
Fand G are strictly monotone on the whole real line in order to avoid any unnecessary
effort in writing. Then with F{x)~a we get ij/(Fo0@=\p(cc)=]-G(F Ha))
which is strictly monotone decreasing in [0, 1] and differentiable in (0, 1). Furthermore

where

dG(x)
d/tx) dG(F~1@) dF_1(a) _ dx q(x)
da d(F_1(a) da dF(x) p(x)'
dx

Thus a besttest \At with A,= {x: —(x)>i} is transformed into \"t with

and
P(At) = >{x€ER: F(x)es/,}) = A«)
and also
Q(AD = Q({x6R: F(x)f.xtn) = Q({xfK: 1-G (x)€"«)}) = A("("))-

Hence we get in view of the definition of r(P Q for
a8, = P(A) = A@)  rEQ)W = Q(4f) = A(i//(slf)).

d\p(a)

da and

Suppose now that F(X) is monotone decreasing, then so is
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A=(— x(, sd,= (0, =x=F J(;c()) and A(stf,)=a,. Furthermore ip(sdf)=1[0, (a,)]
and hence i(IAW,0)—<A«) and finally r{P Q(t)=ip((x).

Now let e>0, G,x)=G(x—e), G'(x)=G(x+e) and A—iAF g resp.
V =T({FEG)- Then

Definition 5. The set 'P(ip(PQ); €) of all monotone decreasing right-hand-side
continuous functions ip" [0, 1]—0, 1], which are linear in each interval (a,b)a
c[0, I1\,s/ and satisfy

i@ ~ p'(a) ~ lim_iA, (a) ~ lim_iAc(a) for all ot6[0, 1]

and ip'()=0, is called the e-corridor of iA(p,0 (whereby lim_i/i'(a) denotes the
left-hand-side limit of ip' in a£(0, 1], lim_ ip'(0):=1).

Let in addition to F~1a)= max {t£R: F(x)" a) denote
min(a) = inf {x€R: F(x) = a} a€[o, 1.
Now we are able to state

Lemma 1. For each element ip' of the E-corridor P(ip,PtQ): £) there exists a prob-
ability measure Q'EJ,V(0; s) such that

*ARQ) = V-

This pm is unique modulo P and is characterized by its distribution function
1im_tp'(F(x)) it FMF(x)+2e> F-fF(x))
1im_tp'(F(x)) for xE{Fmin(F(x)), F~"(F(x))+e]

Gr (x)=G\x)=< G(x) for xd{Fmh(F(x))+E, F-fFixfi-e]
1-<P'(F(x)) for xi(F-"(F(x))-¢ F-fF(x))-]
if FAN(F(x))+2eS F~\F(x)).

Proof. IAP,e,)=I1A holds true owing to the definition of Q'£J/1(R, Ut). Thus
it remains to check e), i.e.

@) QIR)*Q (B9 VAC3L
We are going to do this by providing (1) successively for
(@) sets B=[>r<1’, X) VX" X'
(b) sets B=\J [X-, X)
Hence, by the well-known monotone class argument we get (1) for all
€« ({(-~*),*€R})=0®.

At present we can observe from lim_ iA(a)"im_ i/i'(a) = lim_ pe(oi)
\/a€[0, 1] and from the definition of G'

L-CHX) ~ (I-GOW S (1-C QW  V*R.
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Applying these inequalities we have

ad (a): Q(B)-Q'(B)"Q([x'-e, x+e))-Q'([x', x)) =
=[1-G H(x")-(1 -GH(*)] +[(1-G")(x) - ( 1—GE(x)]=0.

ad (b): If [xfi X;)En[xj+1, XjHy~0 let us abbreviate
C=[Xj, XPD{I[x'I+L, xj+1) and Q = [*,, Xj+1).

Then obviously

R(CB-O'(C) = QICD-Q'iCj+Q'ilxj, Xj+1) s R (Q )-R'(CJ.
Hence we can assume that the intervals [x-, Xxjf i=\(\)n are disjoint.
Then, however, Q{BI)-Q'{B)= Ij:’>| Q([x-,x"*-Q ""x-, xt)) and (1)

for sets of type (b) follows immediately from the validity of (1) for
sets of type (a). |

Definition 6. Let \p' be the pre-risk function of a testing problem (P, Q') on
(R, ™) and the associated risk function, then the arc length /(ip") resp. /(iy) of
the curve

{(@ji): 0s a$S 1, —y = lim_t/i'(a)} resp.
{0, y): >m(0)Sys LJU{(ay): 0<aS1ly=Ily@}
is called the arc length of the pre-risk function if resp. of the associated risk function.
Lemma 2.

Proof. In view of Remark 4

Z lim_ifi'@)-ifi'(oc) = 1—> (0).
GE< OK)

Hence we can assume it' to be a continuous mapping onto [0, iy(0)] and get

W) = J VI+D2il(a)d/fa) = J  1+5L"(@) > tdt =
Q1] 0

= dt = 3 k(s/*—i(r.y))dt= i
0 0

Theorem 2. Let (P, it) be a composite testing problem, where G =UIvB; b
is a local-variation neighbourhood of the pm Q on (R, 25). Let furthermore be \j* that
element of T{\jj(o @ e) with minimal arc length, i.e. which fulfils

(UA) = min {/(U/O: I(P,Q); &}

Then the probability measure Q *which is characterized by G, (inthesenseofLemma 1)
is the leastfavourable distributionfor the testing problem (P, 3).

Proof. According to the definition of Q);e) we have i
6 T(il/(pQ);s) if R'EUIVR; e). On the other hand we have Lemma 1 Hence there
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is a one-to-one correspondence Ulv(R; e)~+F(il/(p,q), €) modulo P and therefore
inf{im, £)} = inf{H”p.c), Q

Moreover, we can replace ‘infimum’ by ‘minimum’, since an element t  f/(<A(iec); e)
with minimal arc length exists due to our construction (see page 349 if.). Because the
arc length is not altered by switching over to the associated risk functions r(PQ)
(see Lemma 2) we have

I(ip*) = min {/(«A"), Ye ¥(iapr.e); e)} = min {/(t".g-,), Q' <f\ = /(.q.,).
In view of Remark 2 Q*£H is the desired least favourable distribution. The latter
is unique (modulo P) since i/(* is unique. o

Let us illustrate the above theorem by a simple

Example. Let P=N(", @), £>0,0<errl; B =.v(0, 1) and -2lv(B; € an
e-local-variation neighbourhood of Q with 0<£<£. Then we get with a= Fix) =
= <P((x —£)/g), Ge(x) =<P(x—e) and Gc(x) = v+ e), ille(a)=1 —0(a<P~1(x) + " —s)
and tle(x) =1 —R(T<P-L(a) + ?;+£). Hence

(Ijjf* =- ~mwa(0_1(@)a - ad- £0)exp (o “1(anz- -j @P.1(a) + £)2.

Case <= 1. Then both i/(Eand i/q are convex and decreasing from 1 to 0. Thus
iE= r(f(C ) and iftt=r(FGc). Hence the element i/~ VM (iA(fc)l e) with minimalaré
length equals = and so Q@*—N(e, 1) is the least favourable distribution.

Case (< 1. i/Eand i/qare piecewise convex and concave. Hence in order to find
the element (/gp e); €) with minimal arc length we have to find a straight line
d —ta which is both tangent to iand i/qg, i.e. which satisfies

=d-tv-i, i/q(a2 = d-ta.
and
dide(x) dille(x)
da x=xl da X =XS

(Further details are omitted.) Then

oHa) asS ax
n*) d—la af(ag,aZ o < og-=az< 1

IAE(a) a>a?2
and finally

q(x—s) xS(7$_1(ai)+ "
<7*(X) Ip (x) XE((7<i>_1(ai) + 1. ~ “1(ad+ ~]
#(*+£) a>(7"-1(a2)+ i
is the density of the least favourable distribution, whereby p, q and g* are the densities

of P, Q and Q* with respect to L Note that for none of the cases g*/p fits the family
of censored versions in the total-variation- resp. e-contamination sense.
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Remark s. V/SO0. To see this,

observe that
m*W *) = I%/< «i,“i+i], [/c N,

where
V (<) = ME(ai); lint- <AX@i+i) = lim_ iAE(ai+l).
Then in view of the already discussed one-to-one correspondence =/
we have j— = 2 [ xtH)> where the sets [x;, xi+1)£ are disjoint,
1 J i€/
SH) = BH(¥, ) = B([%5-E, ) = )
and

lint- ""™*(<4iH)= Q*(xi+i, °°))= B([*,+i+£> °°)) = lim_ «%(ai+l).

Hence owing to Lemma 1
6'(fy s rjj = 2 fid*l, ~))-B'([*i+i, -)) s

i%IQ (Ixi-s, “))-B([*i+i+E>°°))= il Q*([xi, ~))-e*([*i+i *)) =

The following generalization of [4; Theorem 2.4] is an immediate consequence
of Theorem 2

Theorem 3. Let (P, St) be a composite testing problem, where St=St{Q\ e, §
is a Prochorov-neighbourhood of the pm Q on (R, 93). Let furthermore JIV(Q; e)
be the corresponding local-variation neighbourhood and let Q¥ be the Ifd for the tp
(P, 2Iv(R; e)).

Then the least favourable distribution Q* with respect to (P, ) equals the least
favourable distribution Q*v for {P, Jtv{@i*v; d)), where Stt,(0*p, S) is the total-varia-
tion neighbourhood of Q f.

Proof. Let AlM(t)= {gn>tp} resp. Alv(t) = {g*y>tp} t"O be the net of sets
corresponding to the nonrandomized optimal tests for the tp (P, @W resp. the
tp (P, Qf). Let further \j*y be the element of the e-corridor \-(//(Pe); e) with minimal
arc length.

Then, owing to Remark 5,

Bw K «) =e("fv(0p W so
and hence

R'(zifv(0) S Bfv(Z*v(/))+<5 Vin 0 and VR'€t
Applying Theorem 1to the tp (P, U ,,, (B 8)) and choosing t, t resp. /maaccordingly,
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we have
Ax»(t) = Ay(t)

R'KW) S QIAU(t)) VI, t] resp. [£ /nad.

and therefore

This yields

r(P.a) — r(P,Q*)-
On the other hand we have

Q*(B)taQ*(B)+O~Q(£6+06 V ®,
i.e. and thus r(Pa)=r(PQy |

Obviously, the existence of a least favourable distribution reduces in our case to
a vivid geometric problem. Namely the existence of an element jj* of the s-corridor
of Q with shortest arc length.

We are going to solve the mentioned extremal problem constructively.

Construction o f the element ij* of e) with minimal arc length.
For the sake of simplicity let us apply the coordinate transform governed by

1 1

y f i2,

To[0, 112—{(x>>): —1/"2 ss x si I/|/12, max(—x,x) ~y A min()/2 + X, /2 —X)}.

This allows the following representation of an element iP € by acontin-
uous function

<*= 2:[—W 2, 1/~2] - [0,~2]

which satisfies p\—1//2) = <p™N(I/i”™2) = 1/~2 and

—1 "~ D+<p), D (p(x) si 1,
namely

PX) = x+V(ax—x")*-}-A
where

={@T:0Saal, y=a-xY2, (a™™"Ilim_iron}

Let <Fbe the set of all functions =" #i(VONv .g)’€e) and <®= e resp.
(Pe=<Rdc- Then a function <p{<d> of minimal arc length — if any exists — has to
satisfy a number of conditions which we now are going to point out:

Of course, for XxEX=={XE[ HN'T, 1/72"]: ge(X)=(pc(X)} (E*(X)=<pRx)=
—(pc(x) must be fulfilled.

Beside this trivial set X =there are two further subsets Xcresp. X cof “contact”,
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i.e. sets of points x£E[ —\/V2, I/.|*]\A = for which (po(x)=(p*(X) resp. qx(x)=
= 9*(x) holds true — otherwise (p*could not be of minimal arc length. So necessary
conditions for the minimum arc length of ¢ imply further constraints for <*

Let X, be the set of all ng—jL -= B\J f= such that there exists a line d+tt;
L j2
for which the following conditions hold true:

(1 gqe(x)=d+tx and
wxo=d+1ti1 forall £g(x—s, x + &), <6>0 sufficient small;

(29 the component (in the sense of connectedness with respect to the usual

topology on 700, 112 CM<A) of (x, HX)) in {(£,y)£EAo [0, I]2:
satisfies

CIx.V'ix» ¢ {(£,y)ETo[0, 112: (?,(£) si Y}
Then due to obvious geometric reasons (p*(X)=cpe(x) and
(*9 cp*(0=d+ti for all <I;:(£, y)€C (jt.i(jc)).

Let furthermore X Ebe the set of all xE[- L/IT, 1/f2~]\T= such that there
exists a line d+tl; for which

(15 PEx)=d+tx and
pe(0=d+te for all E£(x—0, a+ <G, <5>0 sufficient small;

(2@ the component C(XVHX) of (x, gEX)) in {(i,y)€~°[o, I]2: 2"£0=J"'=
Nd+tE} satisfies

£(*,,*<*) < {(s, y)€/40[0, 112; y S §HO}.
Then also <p*(X)=(pc(x) and
(*0 <p*(Q*d+t{ for all (:((,y)€EC ™ M).

Obviously, XcnXe=0. Note that owing to the continuity of s and gEboth
X=, XAUX= and are closed. The latter in view of (*£f and (* f. Hence
X—X=UXQJXEis compact. Now let XE[ —1/~2, I/)/?]\T. Then both x=(x)
and x=(x) with x=(x)=max {%EX, £<x}<x<x=(x)=min {t;EX, £>x} exist.

Suppose that the straight line

. P (x))-(p* (x=(x))
qd-b = V*(X:(*)) + X =(X)—X = (X)

does not fulfil (Pi{0=g(.0 —Pc(0>"E[x=(x), x~(x)], then there are two possibilities:
1) There is a point £<,€(*=(*), x=(x)) satisfying <XE>=<HEQ (""("0))- This
is in contradiction to the definition of X=. 2) There is a point ££(x=(X), x=(x))
and a straight line d+t~giZ) parallel to g and satisfying (18 and (28 or (18 and
(28 for £0. This is in contradiction to the definition of XEresp. XE Hence g fulfils

(Pe(")"g (0 =<HO0 and, obviously, (p*has to satisfy (p*{")=g"), £€[x=(x), x=(x)].
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Thus the element with minimal arc length is completely determined, exist-
ent by construction and unique.
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AUSFULLUNG EINES KREISES DURCH KONGRUENTE KREISE
IN DER HYPERBOLISCHEN EBENE

K. BEZDEft

Wir betrachten in der euklidischen Ebene ein konvexes Gebiet G. Sind in G
mindestens zwei kongruente Kreise eingepackt, so ist die Kreisdichte in G bekanntlich
[1] Kleiner als 7t/AV2. Molnar [2] hat gezeigt, daR ein entsprechender Satz auch in der
spharischen Geometrie gilt in der hyperbolischen Geometrie dagegen nicht. In diesem
Aufsatz beweisen wir den folgenden Satz, den vorher L. Fejes To6th als Vermutung
ausgesprochen hat:

Satz. Sindin der hyperbolischen Ebene in einem Kreis mindestens zwei kongruente
Kreise eingelagert, so ist die Kreisdichte in dem Kreis kleiner als n/Yvi.

Dieser Satz ist deshalb bemerkenswert, weil in der Kreispackung, die aus den
Flacheninkreisen eines reguldren Mosaiks {p, 3} mit p> s besteht, die Dichte eines

Kreises in der betreffenden Flache gréRer ist als n/il2.

Beweis. Es sei K ein Kreis mit dem Mittelpunkt O und dem Radius R in der
hyperbolischen Ebene, in dem die nicht Ubereinandergreifenden Kreise kt mit dem
Mittelpunkt 0,(7=1, 2, ...,«; ns2) und dem Radius r liegen. Wir bezeichnen die

Z K
Dichte der Kreise ky, k2, ..., k,, bezlglich des Kreises K mit 6 d.h. 6=- I%

Hier und im folgenden bezeichnen wir einen Bereich und seinen Flacheninhalt
mit demselben Symbol.

Bemerkung 1 Wir kénnen voraussetzen, dal 7?>2r gilt. Wir haben nam-
lich R”2r, und im Falle von R=2r ist n=2, wann

6= L i
2 2 '
2ch,y

Bemerkung 2. Wir kdnnen voraussetzen, daR nS3 gilt. Wenn namlich n=2,

so ist — =-?=, woraus die Giltigkeit des Satzes folgt.
2 f\2

1980 Mathematics Subject Classification. Primary 52A45; Secondary 51MIO.
Key words and phrases. Packing, hyperbolic plane.
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Es sei H—con\ (oy. 02, ..., Ob}.

Bemerkung 3. Wir kénnen voraussetzen, daR
dimH = 2

Wegen «s3 ist diese Bemerkung trivial.

Wir nennen einen Mittelpunkt O, eine Ecke des konvexen Polygons H, wenn O,
am Rande von H liegt.

Bemerkung 4. Wir kénnen ohne Beschrankung der Allgemeinheit voraussetzen,
daB die Ecken von H am Rande des Kreises K' mit dem Mittelpunkt O und dem Ra-
dius R —r liegen. Offensichtlichist Ha K'. Liegt eine Ecke O, im Inneren des Kreises
K', so bringt eine Translation in der Richtung der &uReren Winkelhalbierenden
der Ecke 0, von H den Kreis ktin eine solche Lage, daB der Mittelpunkt von kt schon
zum Rand des Kreises K' gehort.

Bemerkung 5. Wir kénnen voraussetzen, daB Ogint H. Haben wir namlich
O”7ext H, so sind H und 0 durch eine Seite 0,0j von H getrennt. Die Punkte O,,
Oj sind Ecken von H, deshalb liegen sie am Rande des Kreises K'. Eine Halbdrehung
um den Punkt O Uberfiihrt die Kreise kh kj in die Kreise kf, k* mit den Mittel-
punkten Of, Of. Dann bilden die Kreise {ky, ..., kf, ..., kJ, ..., k,,) eine Packung in
K, und O”%int (conv {Oy, ..., Of, ..., O*, ..., 0,,}). Istaber O£mar H, so finden wir
eine Seite 0,0, des konvexen Polygons H, die den Punkt O enthélt. Jetzt kann eine
geeignete kleine Drehung um O den Kreis ktin eine solche Lage Ubertragen, die un-
serem Zweck entspricht.

Bemerkung 6. Wir kdnnen voraussetzen, dal kf\H zusammenhangend ist,
wenn /£{1,2, ..., n). Zuerst nehmen wir an, dal O, eine Ecke des Polygons H ist
(d.h. Oi am Rande des Kreises K" liegt) und k, eine Strecke der Seite 0,0,

von H bedeckt. So enthélt die Halbgerade OQOj oder die Halbgerade OOt einen inne-
ren Punkt von kt. (O”int HI) Also, wir kénnen ohne Beschrankung der Allgemein-

heit voraussetzen, dal3 die Halbgerade OOj auch solche Punkte enthalt, von denen
einige zum Inneren von ktandere zum Inneren von kj gehdren. Dies ist aber unmég-
lich, weil die Mittelpunkte Ot, Oj am Rande des Kreises K' liegen und die Kreise
ki, kj keinen gemeinsamen inneren Punkt haben also int (conv {&UO})n
int (conv {kj\J()])={) gelten muf. Schliel3lich nehmen wir an, da 0,6int H und der
Kreis ki die Seiten OtOt,, OjOj*von H schneidet (Abb. 1). Es sei nt (bzw. rtj) eine
Halbgerade mit dem Anfangspunkt Ot, die die Seite 0,0,» (bzw. Oj Oj*) senkrecht
schneidet. Es ist leicht einzusehen, dal ntD(OOIU OOIt)* o oder rijH (OOj U OQj>) "

0 gilt. Ohne Beschréankung der Allgemeinheit kénnen wir voraussetzen, dal die
Strecke OO, und die Halbgerade n, einen gemeinsamen Punkt P haben. Dann
Uberfuhrt die Spiegelung an der Geraden 0,0,* den Kreis k, in k\. Ferner sei
0\ das Spiegelbild von O,. So ist 0iO\<2r*0i0i also PO\<PO, woraus OOQi<
<00,=i?—r folgt. Folglich bilden die Kreise {ky, k\, ki+i, ..., k,,} eine
Packung in K, wo wir durch eine Translation erreichen kénnen, dal? der Mittelpunkt
0\ schon am Rande des Kreises K' liegt. Fur den Kreis k\ ist dann k-\conv oy,
..., Of_y, Of, Oi+1, ..., 0,,} zusammenhangend.
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Wir bezeichnen mit — die Winkel eines gleichseitigen Dreiecks mit der Seiten-

lange 2r. So gilt cosec==2chr.

Im weiteren unterscheiden wir zwei Falle im Beweis des Satzes.

I. Fall rsrO=arch|ycosec”yj=0,457388....

Es sei G=K\K" ein geschlossener Kreisring. (Hier bedeutet K\K' die ab-
geschlossene Hille von K\K'.) Wir werden jetzt die Dichte der Kreise {kx, k2, ...
...&,,} bezuglich G abschatzen. Zu diesem Zwecke ordnen wir zu jedem Kreis Kt
(/€{1, 2, ..., h}), der mit G gemeinsamen Innenpunkt hat, eine Zelle T, zu (Abb. 2).
Es seien 71={/|0 i hegt am Rande des Kreises K'} und 12={j\Oj liegt im Inneren
des Kreises K' und Kj hat eine gemeinsame Sehne mit K'}.

(i) Im Falle i*lx ist die Zelle Tt der Durchschnitt von G und vom kleinsten
Winkelbereich mit dem Eckpunkt O, der den Kreis kt enthalt.

(i) Im Falle jfj2 ist AjBj die gemeinsame Sehne der Kreise K', kj so gilt
AjBj<2r und liegen die Punkte Oj, O in einer durch AjBj begrenzten offenen Halb-
ebene, nachdem die Zelle als Durchschnitt des Ringes G und des Winkelbereichs
<3.AjOBj(<ri) definiert wird.

Es ist leicht einzusehen, daf} die so konstruierten Zellen paarweise keinen gemein-
samen inneren Punkt haben. Ferner enthélt jede Zelle den zu G gehdrigen Teil des

23*
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Abb. 2

bezuglich T, von oben abzuschatzen.
Fur einen Kreis kj (JEI2 sei k) ein Kreis mit dem Mittelpunkt £Zmund dem Ra-

dius r, wo der Punkt O auf der Halbgeraden OOj liegt und die gemeinsame Sehne
AjB'j der Kreise K', k] die Lange 2r hat (Abb. 3). Fernersei Tj= <AjOBjCiG und
Aj=KkjC\G (hier ist < y'OR'<r).

Hilfssatz 1

Beweis. Es sei AjBj (bzw. A-Bj) der Kreisbogen des Kreises K\ der durch
(bzw. Aj) bedeckt ist. Wir nehmen jetzt einen, mit dem Kreis K', konzentrischen

Kreis, dessen Kreisbogen XjYj (bzw. X-Y') durch Aj (bzw. Aj) bedeckt ist (Abb. 3).
Es gilt
A'jB'j = < A'jOB'j
A~B: < AjOBj’
wo < AjOBj> <X]OYj und <AjOBj> < XjOYj. Sogar ist es leicht einzusehen:
< AjOBj- <XjOYj> < AjOBj- <X]0Yj. So ist
<1 AJOBj < X'jOYj
<AjOBj " <« XjOYj
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Abb. 3

das heil3t
iBi 1w
AiBi  x 9j°
SchlieBlich erhalten wir ganz einfach
Aj N AjBj _ Tj
J by _ 1) ged.
Aj  AjBj T
Nun betrachten wir einen Kreis kt mit i£1j (Abb. 4). Wir bemerken daB Tt=T)
und Ai>A'j fur beliebigen Index j£/2. Folglich gilt auf Grund des Hilfssatzes 1:

(1) jei2 und i€/i

1i
Wir fuhren jetzt noch einige Bezeichnungen bezlglich der Abb. 4 ein. Es sei K"
ein Kreis mit dem Mittelpunkt O und dem Radius R —2r und ferner G'—K'\K "
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Abb. 4

ein geschlossener Kreisring. Berlhren die von O ausgehenden Geraden den Kreis kt
in den Punkten EA, EB, so bezeichnen wir den Durchschnitt <€EAOEBC)G' (hier
ist <EaOEB<n) mit T{ bzw. AjPIG' mit A\.

Hilfssatz 2.
E/i

Beweis. Es sei AtBi die gemeinsame Sehne der Kreise K', kt (Abb. 4). Ferner
sei Ti—<iAiOBtr\G; T(="AiOB”*G' und 3i—kiQTl, wo Winkelbereich
< AiOBi kleiner als n ist. Offenbar haben wir nur die folgende Ungleichung zu zeigen :

2 A K

Ti A TI

Zu diesem Zwecke sei <yfiOOi=a < <iEAOOi<Y |. Im weiteren bedeutet x
einen beliebigen Winkelwert, firden O sxaa gilt. Dementsprechend nehmen wir die
Halbgerade / mit dem Anfangspunkt O im Winkelbereich < d,00j, die mit der

Halbgeraden OO, den Winkel x einschlief3t. Die Halbgerade/ schneidet den Rand der
Kreise K,K',K" in den Punkten N,N',N'. Ferner seien die Punkte M,M",
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der Halbgeraden / zugleich die Punkte des Randes von kh wo aber bzw.
Wir fuhren die Bezeichnung o (x) fur den Flacheninhalt eines Kreises mit
dem Radius x ein und definieren die folgenden Funktionen:

S:[0,d—R
0(OM)-0(ON")

x S= L (0N)-q(ON)

S* [0, a] —R
0iON~-0i0OM")
~ 0(ON')-0(ON")"

Es ist leicht einzusehen, daR die Funktionen S, S* stetig und beschrankt sind, sogar
= - = - *
4li <X(/? S(x) dx 14i Kq/ S*(x) dx.

Gleichzeitig gilt fir x£(0, a] ,S(x)<,S*(x), denn N'MAN'M" und eine Halbdre-
hung um den Punkt N' Gberfihrt M' in einen Punkt M*, wobei

0 (OM)—o (ON") 0(OM™*)-0(ON") a(ON")-o (OM")
O(ON)—0 {ON) ™~ 0(ON)-0(ON') ™ 0o(ON")-0(ON")
gilt. So erhalten wir

1 ® i x
— fS(x) dx < — f S*(x) dx,

womit (2) bewiesen ist. Q.e.d.
Mit Rucksicht auf den Hilfssatz 2 haben wir

Ai  Aj-hAi
)N T AT

Ist im rechtwinkligen Dreieck EaOOi <tEAOQi—RB, so ergibt sich durch ein-
fache Rechnungen

dt + Al n sinf n
THTH 4ch=LL " 4ehn-
Mit Ricksicht auf (1) folgt also
Ai n
Tj
woraus sich die Ungleichung
K'+G

4ch2T
K'+G
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ergibt. Wegen
| 7= (ch|+cth~sh]) -1~5S -1
erhalten wir dann

I+ er-1)—-—
4ch2y
S < 7 = W

Offenbar nimmt die Funktion J~(r) in (0, +») monoton ab, daher gilt a</(r)S

—a”(ro)= 0,906 659...-=-—~=-= 0,906 899... was wir beweisen wollten.

1. Fall r<rO0—arch cosec 6—7)= 0,457 388....

Wir ordnen jedem Kreis kidie Menge Dtaller Punkte von H zu, die nicht weiter
bei Ot liegen als beijedem anderen Mittelpunkt Oj Es ist leicht einzusehen,
daB die konvexen Polygone Di ein Mosaik bilden, daR sie also das konvexe Polygon
H, ohne Ubereinanderzugreifen, vollstandig Gberdecken (Abb. 5).

Liegt ktin H, so gilt ~ cP j. Nach einem Satz von J. Molnar (siehe dazu [3]
S. 234) haben wir jetzt

3 cosec-—-- 6
a

A d@)
' [a]—3— arctg{|/3 tg~ctg (I-M ) n]

Nach einigen Rechnungen sehen wir, daB die Funktion d(a) in (6,7) zuerst streng
monoton abnimmt dann zunimmt. Wegen r<ro gilt 6<a<6,7.

Also wegen d(6,1)=0,903 199...-.=—= und d(s)= lim d(U)=—A ergibt
112 “s 46 In
sich rf(a)<—U_ und folglich < mA .
12 A Ji2

Essei 1={i\kicfH) und /*£/. Wir betrachten den Streckenzug L,*=int
Plmar H. (Wegen der Bemerkung s besteht Lit aus zwei Strecken, wenn Ot*eine Ecke
von H ist, Ubrigens aus einer Strecke.) Es existieren solche eindeutig bestimmte
Streckenziige Lj*; Lt, (/"*, /*£/) am Rande des konvexen Polygons H, die im belie-
bigen Umlaufssinn die Nachbarn des Streckenzugs Lt*sind (Abb. 5). Jetzt definieren
wir den Winkelbereich < Ot*A*Qj* so, dal <"OI*Oi*Oj*ZD(ki*\H). Ferner
nehmen wir die Tangente et* (bzw. ejt) des Kreises kt*, deren Berihrungspunkt zur
Halbgeraden Oi*Ot* (bzw. A* Oj*) gehdrt. Bezeichnen wir die durch et* (bzw. ej*)
begrenzte und den Kreis kt* enthaltene geschlossene Halbebene mit St* (bzw. §*)>
so kann man das folgende Vieleck konstruieren

B* = < a *0i,0*ns*nsynh.
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Es laRt sich leicht beweisen, daR Und nun betrachten wir die Zelle
Bi,=Dp\J(kt*PiH), woraus k*CiHQA *c D,,, folgt. Dann nehmen wir die Menge
/lr=/4Nint H, wo Arden &uReren Parallelbereich von H vom Abstand r bedeutet.
(Hr besteht einerseits aus einigen Sektoren von einem Hyperzyklus vom Abstand r
andererseits aus einigen Kreissektoren eines Kreises mit dem Radius r; offenbar ist
Hrin K enthalten.) Unser Beweis ist beendet, wenn die folgende Ungleichung gezeigt
wird:
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Wir betrachten gewisse Teilmengen der Menge HrU ((J A) (Abb. s). Sind die Strek-
»6/

kenziige Lh Lj am Rande des konvexen Polygons H benachbart, so bezeichnen wir
die Seite von H mit 0, die mindestens eine Teilstrecke sowohl von Lt als auch von Lj
enthélt. Ferner sei (bzw. tj) die den Punkt Oj (bzw. Oj) enthaltene Gerade, die die
Seite 0 senkrecht schneidet. Dann kdnnen wir den durch tj, tj begrenzten Streifen
SiJ nehmen. Sind jetzt Vi=tir\0O und Vj=1tji\<9, so wird der zur Strecke VtVj
gehorige Hyperzyklussektor vom Abstand r mit HXXVi bezeichnet. SchlieRhch enthélt
die durch Gerade Oj Oj begrenzte geschlossene Halbebene Sjj den Hyperzyklussek-
tor Also kann die folgende Menge definiert werden:

Oy =n?Nju @n sih §j)u On sth sWu (fe,n Sipu (gn Si).

Der Einfachheit halber sei kjj=(kjn Si))U (D kjSij).
Da offenbar (£ kt)—( 2 kj)=(2 Djj)—(Hr+~ A)=0, folgtdie Ungleichung
16/ 16/

(3) unmittelbar aus der Ungleichung

A Y2

Deshalb benétigen wir nur den Beweis von (4).

Wir kdnnen voraussetzen, da OjOj=2r gilt. Ist ndmlich O, Oj>2r, so kdnnen
die Kreise kj, kj in der Richtung der Geraden OjOj verschoben werden, um einander
zu beriihren. Also wéahrend einer geeigneten Translation der Kreise kj, kj nimmt

ab, d.h. nimmt ~ozu.

A)
Wir konnen voraussetzen, daB Oj—V, oder Oj=Vj. Im entgegengesetzten
Falle sind namlich Oj*Vt; Oj”*V j. Ohne Beschrankung der Allgemeinheit kénnen
wir voraussetzen, da OjVjSOjVj ist (Abb. 7).

Zuerst beweisen wir, daB OtVj>2r gilt. Istndmlich n=< 0,0j FyS l, so ist unsere

Behauptung evident. Daher nehmen wir an, dal <O iOyK.J<l gilt. Im Saccheri-

schen Viereck VtVfl'jOj gilt dann 0;0-=2r. Mit den Bezeichnungen 0,0-—2x-
VjVj—2y; OjVj=VjO-=z; 0jVj=0[Vj=m erhalten wir sh.v=shychm und
ch z—ch 2y ch m, woraus chz—ch/w +2 SC}:;

ist sh r<£2_, woraus sich die Ungleichung ch 2r<ch m+2i%r—£—"chz, d.h.
2

folgt. Nun ist aber r<r0, deshalb

2r<z—O0jVj ergibt. Also kénnen wir den Kreis kj um den Punkt Oj um einen sol-
chen Winkel drehen, der den Mittelpunkt Oj von kj in einen inneren Punkt der

Strecke VjV} tberfihrt. Dadurch nimmt Djj ab, d.h. —kt nimmt zu.

Wegen der obigen Oberlegungen genligt es derY’JFaII OtOj=2r und Oj—V,
zu untersuchen. Jetzt werden die Endpunkte des Hyperzyklusbogens von
mit Wj, Wj bezeichnet (fVj€tj, Wj"tj). Ferner sei VjOj=x (Abb. s).
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Abb. 6

Abb. 7

363
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Abb. 8

Durch einfache Rechnung ergibt sich fiir den Flacheninhalt der Menge Toow w
=HywviUOXjVjA: J1
ch2r—chx

To0, wyw.  Shrearch (AT)+2arC,g('th eh2r-fch x ) = TX).

Wir werden zeigen, daB T(x) eine konkave Funktion im Intervall [0, r] ist. Die Ab-
leitung von T(x) kann folgenderweise dargestellt werden.

ch 2r—ch x h H
—shrchzarthx char+chx 2shz char
f'chz 2 r—ch2x ’j +th, ™) ch2r—chx 1 chaar—ch2x
\2) char+chx ,2chl(i |
Nach einiger Rechnung folgt fir O<x<r:
A ch2r—chx
hz in-j char
1 28 2! Jenz - o 2\ char+chx
cj ch22 r—ch2x x) ch2r—chx
. I+th2
2ch!(i (2) char+chx
»sha char / ch 2r—ch x
1 ‘< 2V char+chx
I cha2r—chz2x ' + th (x) char—chx
. 1 2
,2ch! (i / 12) char+chx /

—sh rchzrthxj, n
~chz2 r—ch2x

Deshalb gilt r'* (x)<0 fur 0<x<r. Folglich ist eisE)f] 7’(x)= min {T(0); T(r}.
X )T

Hilfssatz 3. T(O)<T(r)
Beweis. Der Einfachheit halber seien TOowowo=T(0) und TOrOrwrWr= T(r).

Weiter werden wir annehmen, da 01=0', W?= W[ und der Hyperzyklusbogen
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W-WJ ein Teil des Hyperzyklusbogens WASWJ ist (Abb. 9). Dann ist Vj= 6" iVJfl
nO-0j und eine Halbdrehung um den Punkt VJ fihrt den Punkt OJin einen Punkt

TZ

N, Uber. Hier ist <OtO’IVf:£1, so gilt <iO'rO'[N1:4—71 , denn wegen
r<ro ist a<6,7. Ferner sei/ die innere Winkelhalbierende von <0°0®0y (<)
und ii-1 die Gerade, die den Punkt OJ enthélt und die Gerade 0\0) senkrecht schnei-
det. Offenbar ist fC\n'~ V0, daher sei MI=fC\nt. Selbstverstandlich liegt der
Punkt M, im Inneren des Dreiecks N1VJOj und gehort zur Geraden 0°fV°. SchlieR-
. . . .. r Oorvr O0Or0oe
liech sei MAOMW CiI*WJ. Also gilt —= — Al
0)M2>M2WJ folgt. So kénnen wir aber den durch den Hyperzyklusbogen WJWJ

und die Strecken WIM2, WJMZ2begrenzten Bereich durch das rechtwinklige Dreieck
M 20PN 1 Gberdecken. Somit ist der Beweis der Ungleichung T(0)#=T(r) beendet.

Q.e.d.

Aus den obigen Uberlegungen folgt also, daR TOOjWW =T (x)AT(0)=2r shr
gilt. Anderseits ist aber

6 3'A/2, woraus

[ij = - bL U ogiwiw,
folglich

ku 4nshé lt) 2, 2n

Di  ,jshr+ 27tshe A

was wir beweisen wollten.
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STABILITY OF SOME PROBLEMS OF CHARACTERIZATION
OF THE NORMAL AND RELATED DISTRIBUTIONS

L. B. KLEBANOV and J. A. MELAMED

1. Let ~ be a class of distribution functions (d.f.) F(x), x=(xXx, ..., Xp£ERp,
satisfying the following conditions:

(at) F(x) has a density function/ (x) which is absolutely continuous in each vari-
able;

(bi) J xpf{x)dx-0, / x,Xjf(x)dx=x,], I,j=1,...,p (here and
further 0$1P dx=dx1...dxp)F,{P and /i=|lay]| is a non-singular matrix;

(ci) Ji=dt(x)= 1f(x)EL}, 1=1, ...,p (as usually, Lf denotes the Hilbert
space of functions which are square integrable with respect to the measure of density

function f(x)).
Put I,j=1J Jt(x)Jj(x)f(x)dx, I,j=\,...,p. Let Mxc If be a subspace of

RP
linear functions of x. Define the values J\I\ 1=1, ...,p, by
Jw = Jw(x) = EU,\MD,
where E is a projection operator in Lj, and put

P =1 (x) IP) (x)f(x) dx, 1J =1, p.
RP
It is well-known that the matrix J=||/(j| represents the matrix of Fisher information
on the vector parameter 9=(0j, . 0p)(-RZ, contained in an observation over the
population. {/(* —0) O£RP. Similarly, J@)=||//|)| is the matrix of Fisher infor-
mation contained in linear functions of an observation over the population {f(x —9),
O6R"}.
It is easy to see that J—J(1) is a positive semidefinite matrix. We are going to
investigate for which distributions this matrix is the zero matrix:

@ J-J'1= 0.

Theorem 1. Let then (1) holds if and only if F(x) isa d.f. of the normal
law with zero vector of mean values and covariance matrix p.

1980 Mathematics Subject Classification. Primary 62E10; Secondary 62B10, 62F12.
Key words and phrases. Characterization, stability of characterization, normal and related
distributions, location and scale parameters, equivariant estimator, asymptotic optimality.
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Proof. Equality (1) is equivalent to the relations
h =N, =i

which, in turn, are equivalent to the equalities (in Lf)

Ji(x) = Jw {x), 1=1,...,p

The solution of the system of equations (2) is the density function of the normal
distribution with zero vector of mean values and covariance matrix p. Direct calcu-
lation shows that (1) holds for the mentioned normal distribution. The proof is
complete.

Let us see now when the matrices of information J and J() are enclose, i.e.

@)
Introduce the class W of all d.f. F(x), XERp, satisfying the conditions
(djp) and F satisfies (3);
(e,) let A(X)=[x1,x1+y1l, ..., xp,Xxp+yp] be a rectangle in Rp, then for suf-

(where M may depend on p).

For every d.f. Fand G let g](F, G) be the distance in variation between Fand G.
Denote by Hfl(x) the d.f. of the normal law with zero mean vector and covariance
matrix p.

Theorem 2. There is a constant C=C(p, p, M) depending only on p, p and M
such that for sufficiently small ¢-=-0 the inequality

) sup
Fen
holds.
Proof. Relations (3) imply
(5) J,(x)-J,a)(x) = R,(X), =1 .. 0p
where
(6) I F,(x)f(x)dxSe2 1=1 p.

Rewrite relations (5) in the form

(7
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where s/= \aij\ —p |- Denote by <p(t) the characteristic function (c.f.) of F(x),
ie.

<F0= [ exp|l'2 tjXjjfix) dx (t = (tx ...; tPER™),
and put

Q) =-i fexpli 2 **}Rj)F(X)dx, j=1, Pp

Then relations (s) and (7) imply

p d(o(t),
+ *I<’)* = = (11}
3Z:iau é({j 1<) = 9.(0), [ = 1, e P,
or
@ L Zaiit)= < Q=i —p
where '

16*(01 —-"NiE> (—i> ooo» p>
and At= Zp aJ . If we fix all variables/j with yW inthe/-th (/= 1, ...,/>) equation
3=1

of system (s) we obtain an ordinary linear differential equation with respect to
(p(tu t,, ..., tp), considered as a function of tt. Integrating each of these equations
and making use of the probability meaning of the function (0, 0, 0)=1),
we find that the solution of system (s) is the c.f.

<Fi0 = expj-yani?- Z «sti%}/ exp{y «ue+Z «iz®T} 6i(e>h, ..., tpdr+

+expj-J - 2asaFeXp{~y “29~ Z B2PX

) § exp{raz2e 2 @FFLR(>T o thdr + .
=s

ot expj —y ant2—Zx«u ¥~y exp{- y az*- Z 3=} XeeeXexp{- a,, i} X
!/ expl|y appT3 6j(0, ..., 0,T)dr+exp |-y Z(’B’g‘j =N 1t}
It is well-known that the c.f. of the normal d.f. <f>,(X) has the form

= exp{--"-Z2«333- Z «131*3}-

24



370 L. B. KLEBANOV AND J. A. MELAMED

Hence, from (9) we obtain

\P(0- AO0LN e[axexpl-y a,t\- 2 «ijh(/}/ exP{jan*2+ 2 0T dz+
(10)

+ ...+tApexp {-y 21 «yf|fl} I expjy apprd dr] = £g(iis .

On the other hand, the c.f. ij/(t) represents the solution of the homogeneous sys-
tem of differential equations corresponding to system (s). Therefore

ofi o-<Ko)=7:21 ayoM o -iKo)+e*(o> 1=i. e, p-

In view of (10) we find

1) MPOHFOI - [2 19> H+AN
Consider the value

co(F;<5)=sup sup If dF(x)- f dFX)\,
A €« bj's-j,j:| f'X {A-y) !

where 91 is the a-algebra of Borel subsets of Rp,
8= (&5 .<5p, 8 >0, j=I,...,p, and {~-y}={*x=12z-y, z£T}
We have

- _ ) - S J df(2)
f dF(x) M]fy)dF(x)\ |Af LHX=Y) =) s 2 1T 1 . dx.

From here and from condition (ej) it follows that

1
P
o

(12) a>(F;«5)== M Z8j.
7=i
Similarly, we conclude that

(13) co(i>p; 9~ C(p) 2 ¢j.
7=1
To estimate the closeness of the d.f. Fand <®, we use Theorem 1from [1]. Ac-
cording to this theorem, for any Fj>1 & (&X ..., §), <5j>0, /=1, p, r>p
(rs2) the inequality
ih(F, $,) si co(F; 9+ o>(<;6)+ Cpr[l+ J (A +J)]X
X[/ |l -~(or ~ +cprj;[ /|™N-[<p(o-<AQ]f*F+
j=i ij 1 J

i) j=i Lt (p) IVvi]

+ c2(i+ 3p/(/] )2 T2
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holds, where C is an absolute constant, T(@>= {/: \tj\sTj,j=\, ..., p), and

dX 1/2
= — . .
Cp¥= (2 (7 vl ig+ - 1.
i+i{2x))
Put Tj=T, 6j=060,j= 1, Then the inequalities (10)—(14) imply for any

fixed r>p (r=2)
BI(F, =) C[SO+elT'eTt+eiTteT*+Vr+6;dT-*\,
where C=C(p,M,r,p) and 2>0 is some constant depending on p.

If we choose here T= with y>o and such that Ay2< : and
|

o= log-t-)J , Wwe obtain

ei(F ,’\)’\c[l(og7l?] P+l

The proof of Theorem 2 is complete.

Remark 1. If we consider Levi’s distance L(F, <l\) instead of the distance in
variation, then the abovementioned argument together with Theorem 2 of [1] shows
that for sufficiently small e> o .

1

sup L(F, 9 S C(log—) °,

where SRtfl is a class of d.f. F(x) satisfying conditions (ax) —(dJ.

Remark 2. Under the additional assumptions of the existence of all moments
and the completeness of polynomials in Lj, property (1) is equivalent to the asympto-
tic optimality (with respect to the matrix quadratic loss functionl) in the class of equiv-

(1 n )
~ 2 mm— 2 XjP)] (based on the ran-
fi i n i /

dom sample Xj=(X"\ X7),j=1, ..., n, from a population with the d.f. F(x—29))

of the vector parameter 0 of location. Property (3) underjhe same additional assump-
tions is equivalent to the asymptotic e2optimality of X in the class of equivariant
estimators.

2. Consider now a set of univariate d.f. F(x) (XxER]I) satisfying the following
conditions:

1 1. e. the risk of an estimator 0 of 0 is defined as E,,(0—9)T(0-0), where EO is the sign of
mathematical expectation under the value 0 of the parameter, and T is the transposition sign.

24*
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(a2 F(x) has a symmetric absolutely continuous density functionf(x);

(b2 f xZ(x)dx = a2; f xif(x)dx = as <=v»;

—ao —

(c2 = = Jo=/2(*) = -(1+x~-)eL }.

Put J2=J2—E(J2Ji)-The value 12= J J2(x)f(x)dx is the Fisher information

on the scale parameter in presence of the nuisance location parameter, contained in
an observation over the population ff€-R+}-

Let M2c.Lj be a space of polynomials of degree S 2 and MIY ¢ A#2 be a sub-
space of M2 orthogonal to J1. Put 72=E(J2M2)). The value 782)=

= J JEI>Ax)f(x)dx measures Fisher’s information on the parameter «in presence of

the nuisance parameter 6, contained in polynomials of degree *2 of an observation
over the population j—/”~-——, O”R] crgf?+J. For further details of the values
72 and /22 see [2].

Let Xi, xn be a random sample from a population with a d.f.

1" 1"
Denote x=— 1Y X- and s2= —1Y (x:—x)2 It was shown in [3] that, under certain
n

n X
assumptions on the d.f. F(x), asymptotic optimality in the class of equivariant esti-
mators of the estimator s2of a parameter function az< is equivalent to the equality

(15) /2= U2

It was shown in [3] that for a d.f. satisfying the conditions (a2z)—(cd relation (15)
holds iff

2
(16) fix) = g(x; a2, a4 = XER\

_ ()
with
_ a* _ 2«
° s ad—al P_a4—a!‘

In [3] the question was raised when the quantities of Fisher information 72 and 729
are E-close. However, there is an error in the proof of Theorem 3 in [3]. We bring here
a correct proof which, at the same time, improves the order of closeness of F(x) and
the d.f. Gaiai(x) given by the density function (16).

Consider a class *=J”" (a2 a4 of d.f. F(x) satisfying conditions (a2 —c2
and also

17) 77D E
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Theorem 3. Thereisa constant C=C(a2, a4 depending only on the moments ..
and @ such thatfor e€(o, 1) the inequality

(18) sup fti/'.G .JSCt
holds.
Proor. It was shown in [3] that for FNJFC the relation (17) implies
(19) xf'(x)+[2ax*-(p-DI/(*) = r(x)f(x)
with
az2 2asS

a4d—ao ad—

and

[ rz(x)/(x)dx e2

Let <p(/) and i/V(/) be the c.f. of the distributions F(x) and G,2X(x), respectively.
Then (19) implies

(20) 2a(p"(t) + t(p' () + p(p{t) = /2(/; e),

where |/?(/; e\"e. By the definition of g(;c; a2, a9 we have

(21) 2ail/" (b)+til>"(t)+pil/(t) = 0.

Put £(t) = (p(t) Al/(t). Relations (20) and (21) define a differential equation for”(r):
(22) 2ai" (t)+tC(t)+pUt) = R(f, ¢

with initial conditions ~(0)= 0, <5'(0)=0. Let £{0,(/) and ™ oXt) be linearly independ-
ent solutions of the homogeneous differential equation corresponding to (22). Then
the solution £(/) (E(o)=0, ~'(0)=0) of (22) can be written in the form of

(23) s(t) = A(t)ticHt)+Bmi<»(t),

where
A(t) = © R(y e)|Z))( )dJ H) JJ R(t,\(}@f))(o .

ciO)(0 ii*»(0

(24)

W(t) = = Ce
(see e.g. [4, pp. 144, 95]). In order to analyse the behaviour of the solutions £{o) (i)
and 0)(/) as t—o0, substitute
2]
Ei#)(0 = * *m*(»), «= 1,2.

It is clear that the functions yi(t), »= 1,2, represent linearly independent solu-
tions of the differential equation

to o2p—
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For such solutions the following asymptotics holds as t-+<=

(see, e.g., item 1) of Proposition 1 of [5]), so that
(26)

and also these asymptotic formulas can be differentiated any number of times (see
[5]). The relations (23), (24), (26) and the inequality |R(t; e)|™e imply

27) \<PV)-Mt)\ S Ce.
By differentiating the relations (23) and (26), it is easy to see that
(28) ~ Ce.
It follows from [I] that
Q(F, N o(F; S)+co(G Xi: S)+£6-*T~*+

+er(i+2r-i+*)( / \<p@t)—¥/(or d)lUr+ cr( / \<p'(t)-nt)\rdt)Vr,
—T -T

where
(0]

Cr=(2m)~[f ;L dfpyy. w+T=1>r-2 r>1>anr-

In view of estimates (27), (28), the inequality for g4(F, GXtXJ can be written in the
form

Q (F, Ca) £co(F; 6)+co (G i-6)+00-i T-* + CeCr(2T)i"(2 + 2T -i + 0).
It is easy to see that 1. Therefore
QI(F, J oo(F; 9+c B +ASAT~i+Ce(2+ 2T+ 6).
Passing to the limit in this inequality as T—°° and afterwards as $—0, we find that
Q(F, G"J =£Ce.

In this connection we make use of the relations co(F; <) -m and co(Gs2 94 <5)-r"p0,
which follow from global continuity in L of the density functionsf(x) and g(x; a2, @)
(see, e.g. [s, p. 14)].

Remark 3. The obtained result allows to make Theorem 4 of [3] more precise.
This theorem establishes the stability of characterizations of the d.f. GX at(x) by the
property of asymptotic optimality of sz in the class of equivariant estimators of a
parametric function a:<2

Under the assumptions of this theorem the asymptotic e2optimality of s
implies

Bi(F, Gtt'J = Ce.
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Remark 4. Using the method of [7] it is easy to show that the inequality (18)
cannot be improved in the order, i.e. there are constants Cxand C: (depending only
on a2 and a4 for which

Cxes sup eAF, Gxt'X) = Cze.

3. Now let a family of univariate d.f. F(x) be given, satisfying the following con-
ditions:

(@3 F(x) has an absolutely continuous density function f(x);
(W Ait?, =

€ JIxfx)dx=o, JxF(x)dx=a2, Jx(x)dx = as

Put £(/j|/2. The value /4= J J2(x)f(x)dx is the Fisher information

on the location parameter o in presence of the nuisance scale parameter a, contained
in an observation over the population {-~/ > 0"Rl< r £ - Let MyCzL}

be a space of linear functions of x and let The value [ff=
= J Jff2(x)f(x)dx measures Fisher information on the location parameter 9 in

presence of the nuisance scale parameter a, contained in linear functions of an obser-
vation over the mentioned population. For further details on these information char-
acteristics see [2].

Characterization of the normal and gamma distributions by the property /4=1ff
was obtained in [s]. Here we investigate the question of coincidence of the information
quantities

(29) h = Iff, h = Iff-
Theorem 4. Let the d.f. F{x) satisfy the conditions (as)—(c3). Equalities (29)
hold iff F(x) is a d.f. of the normal law with parameters o and a2.

Proof. Assume that the relations (29) are true. Then we easily deduce that the
density function f(x) satisfies the equations (see [s], [3])

f(x)~ 4%=17,-1(X) = o,

Bxx* + Bt +1
1'(*)- b—x f(X)ZO,

(30)
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where
A=—, a=1?2-, b="-(llj= f J(@)Jjx)f(x)dx, 1,j= 1,2),
a2 722 Ji _00
5 2a2c9 Q> _ 23|
ad—a, ad—«2

Comparing the equations of system (30) we conclude that

a=0 b=0 A=~, B2=—1
Hence,

AOEEENICOF

i.e. /(&) is a density function of the normal distribution with parameters o and a2.
A direct calculation shows that for the normal density function with parameters 0
and a:

f

so that the relations (29) are fulfilled. The proof is complete.

Next we study the stability of the obtained characterization of the normal law.
Denote by &fx) a d.f. of the normal law with zero mean and variance a2. Let
N = (a2, ad be aset of d.f. F(x) satisfying conditions (as)—(c3 and, in addition,
the conditions
(31) f-1f <s2 72-/2><e2

Theorem 5. There is a constant C=C( &) depending only on a2 such thatfor any
e€(0, 1
sup sup |[F(a)—«~(a)l s Ce.
C

FClCe x
Proof. Inequalities (31) imply the validity of the system of differential equations
fix) . fix) A
fiX') +a[1+X Fix) J-/la = (a),

(32)
+b " (") B2~B 2= r2(a),

with the same a, b, A, and B2as in (30) and
(33) [ rj(x)fix) dx < ez, j = 1,2

We easily deduce from the relations (32) and (33) that

(34) Y A= x(a)
/w
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Equation (34) was investigated in the proof of Theorem 2 of [s]. It was shown
that (34) implies the relation

sup |F(x)-4>a(x)| s C(a2e.

The proof is complete.

The theorem just proved can be applied for investigation of the asymptotic
properties of the estimators of location and scale parameters.

Let x1, be a random sample from a population with the d.f.

Assume that F(x) satisfies the conditions (as)—(c3. Denote by ((),, cr,) some equiv-
ariant estimator of (0, a) and define the risk of this estimator as

R(@3,,,6n = ia Ee,,.[(<?,- ey + (9,,- an
where Bga is the mathematical expectation corresponding to the d.f. F|V j.

We say that the estimator lie, =~ | is asymptotically e2optimal in the class of

equivariant estimators, if for any equivariant estimator (S,,, a,,) the limit relation

H "[*(*’-H-R (0na,)] &

holds. Denote by the closure of the space of all polynomials of an observation in
the Lf metric.

Theorem 6. Let the d.f. F(x) have moments of all orders, satisfy the conditions
(as)—(c3 and, in addition, Jj£ , S T,j= 1 2. Then the asymptotic ~-optimality

of the estimator ~ 2 J >n the class of equivariant estimators implies the relation
sup [F(x)-4> (x)| s C(a2, a4, T)e,

where the constant C(a2, a4, T) depends only on a2, as and T.
Proof. Under the assumptions of Theorem s it follows from the result of [2]

that asymptotic £2optimality of {;( —’z‘ll is equivalent to the inequality
X

1 1 1 1

£2,
AL A+ /lw

which implies the inequalities

(35) s h-JP S /In/,®*
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Since /11) and 722) depend only on a2,ad4and Ij~ T,j= 1, 2, the assertion of Theorem 6
is a corollary of Theorem 5. The proofis complete.

Acknowledgement. We are grateful to the referees for their constructive sug-
gestions to improve the presentation of this paper.
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ON QUASI-UNIFORM DISTRIBUTION OF SEQUENCES
OF INTEGERS

A. SARKOZY

1. Throughout this paper, we use the following notation:

We write e(ot)=e2nix We put {x3—x—x] and |X||=min {x}, 1—{x}).
s/={alt a2 ..} (where al<a2< -—-) denotes a sequence of non-negative integers.
We associate a sequence 3={di,di, ...} of non-negative real numbers with the
sequence s i. For ii™O, let

(1) SE) = 2 die(aid).
If u—0, and gq=1 and h are arbitrary integers, we write
@) D(u,q b= 2 di
a™u
aj=h (mod q)
and

D) =D(u, 1,0)= 2 di

The Hardy—L.ittlewood method is often used in order to show that a sequence si
is an additive basis of finite order. In all these applications, we have to give upper
bounds for the absolute values of sums of the form Su(b/g). (Note that we usually
have <1=i/2=...—1; however, e.g. if i denotes the sequence of the prime numbers,
i.e., at=Pi then it is more convenient to put d,=\og/v This is the reason of that
that we associate a sequence s> with the sequence : i, In order to estimate \Su(b/g)\,
we have to study the numbers D{u, g, h) (for /j=0, 1, ..., g—1), roughly speaking,
the Q@>-distribution of the sequence s i in the residue classes (modulo q). (See [3]—{6].)
The simplest case is when the sequence si is 3t-uniformly distributed in the residue
classes modulo q, i.e.,

D(U, Q, h)__ n

is small (in terms of uand q) for all h. However, in the most applications, the sequence
si is not uniformly distributed in this sense. However, the numbers \Su(b/q )j are
small also in all these cases. The aim of this paper is to study the arithmetic back-
ground of this fact.

1980 Mathematics Subject Classification. Primary 10L99.
Key words and phrases. Sequences, uniform distribution, Hardy—Littlewood method,
exponential sums, residue classes.
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In fact, for «SO, g=1, 2, ..., 0<<5<1, let

max 2 | 2 D(u, q, Ih)—6D(U)\
3) q
and
() r(u’ 0)-

If the numbers r(u, g) are small (for large but fixed g and w—+ °g) then we may say
that the sequence si is S>-quasi-uniformly distributed (or ~-uniformly distributed on
average) in the residue classes; if 3>={1, 1, ...} then we may say briefly that si is
quasi-uniformly distributed in the residue classes.

In Section 3, we show that the estimate of max \Su(b/g)\ is near equivalent to

»,«)=1 L.
the estimate of T(«</). In particular, it can b(e s)hown by combining Theorem 4

with well-known results that, e.g., the sequences (1* 2k ..., nk ..} and {2k 3k ...
..., Pk, ...} (cis a fixed positive integer) are quasi-uniformly distributed.

Finally, in Section 4 we prove a theorem which can be used for the estimation of
r(u, g). (This theorem can be applied, e.g. in order to study Goldbach’s problem, in
particular, to derive Vinogradov’s fundamental lemma; see [4].)

2. In this section, we prove some preliminary lemmas.
Lemma 1. For any real number a we have
[I-e(a)| ™ 2n|al.

Proof.
1 —e(oc)l = ](1—eo0s2rca)—i sin27ra| =

= ((1 —eo0s 2nd)2+ sin22nd)112 = (1—2 cos 2noc+ cos22na+ sin22nd) 12 =
= (2—2c0s 27ra)l2 —(2(1 —€0s 27a)) 12 = (2 *2 sin2nd)12 =
—2|sinnal  2n [a.
Lemma 2. For any real number a we have
[1~e(N = 4 |all

This lemma is identical with Lemma 4 in [5].
Lemma 3. It is apositive integer and a is any real number then we have

where
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Proof.

is trivial while
f-1 1
i£0 %) 2l
holds by Lemma 5 in [5],

Lemma 4. Let q be a positive integer, z0, zt, ..., zq_lany complex numbers and
put

(5) Ah= 2=O zje(Jblq) (for b=0, %1, £2, ..).
J
Then we have
2 \a,\2- 92 N 2
5= =o
Proof.
9-1 9-1 9-1 F9-1 } 3(9-1 3
2 KI2= 2 AbAb=2 \2 ZjCUb/g)l 2 zke(-kb/qg)l =
5=0 5=0 5=01j=0 " \e=0 1

= N i- = ' * = i7°19-
2 24" (z,eli-k)yblg) =5 "22* =9 Z izl

Lemma 5. Let g be a positive integer satisfying

(6) q> 1,

z_2,Z-i, 20, z1; z2, ... any complex numbers such that zn+g=zn for all n,b a
real number such that

(7 0<4&as 1/2.
Put
9-1

(8) |2=0 zj = z
and
) Z Z1 Z z(fc<5z| = a:

0nr5<gi=0 t—oq<I”t

(M)=i
Ifb is any integer satisfying (A q)=1 and Abis defined by (5) /Aen we Aare

K1 S 3tfi<5<7.

Proof. This lemma is a slightly modified form of Theorem 7 in [4], and it can
be proved similarly but some modifications are needed also in the proof.

Let m, n be integers such that g\m and (n,q)= 1 For A=0, 1, ..., g—1, define
the integer A by
(10) A'= An(mod #), 0~ h'rgq—\
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By (< <)= I- there exists a uniquely determined integer n* for which
nri* = 1 (mod 9), 0 9—1.
Then, obviously, (n*,q)=1 (10) implies that
h = /i'n*(mod 9).

Furthermore, if h runs over the numbers 0, 1, —1, then again by («,9)=1,
also h' runs over these numbers. Thus we have

9-1 «-1
Am= 2 zhe(hmnlq) = 2 zh,*e{h'miq),
h=0 h"=0

hence (with respect to (6) and g\m)
I 2 e(mj/g)\Am =
07j-<6q

1
2 e(mjlg) T zhe(hmn/q)
-<Og h=0

05= j

2 e(mjlq) 2 zh,*e(h'miq)
07 j<6q h*=0

(1)
2 (2 zin*)e(.tm/q)

t=0 t-6g<l=it

2 6Ze(tm/gq)+ 2 ( 2 zI*-SZ)e(tmlq)
=0

t=0 t-6g<I™t
%1( 2  zl—6Z)e(tm/q) (where g\m and (n, q) = 1)
f=0 t—6g<i=t
By using this identity with m=1 and n=b, we obtain with respect to (9) that

ondegq ¢ UIDVAD

(12)
q .
t_2 ( 2 tzIb*-OZ)e(t/q) s ta\ 2 Zw-0Z\&K.

0 t og<In™ —0 t 6g<I™t
Define the positive integer jO by
(13) 70-1 < Sqg*jo.
Then by Lemmas 1and 2, and with respect to (6), we have
Jo-1 :
o . \l-e(jo/g)\

b,\12<5qe(|/<l)\ = J2:O e(Jla) \l-e (\/g)\

(14)

A 4||,/olg ] ..
2n0|o? —\jjjg\\g-
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If jO=*/2 then by (13) we have
(13) ljo/ll =jjg S Salgq=0  (for j0=0/2).

Assume now that jO><jr/2 Then (7) and (13) yield that @ must be odd and jO—
=(g+1)/2, hence in view of (6) and (7)

704l = W o/* = 1~(*+ [)/2* = =
(16)

1 2 i 2 ...
=1 =1'T"T (for yo+1 > */2).

From (14), (15) and (16) we obtain that

(17) | 2 €0'/*)]= ="-Sq = -£-S4>SqI3.

07j<dq

(12) and (17) yield that
K1 |0A12_que<3/q)| “ Ax[3 = 3KISq
which completes the proof of the lemma.

Lemma 6. Let us define q, ..., z_2,z_x, 20, zx, z2, 6, Z and K in the same way
as in Lemma 5, and define Abby (5), jOby (13). For d\g, put

max \A\ = Md
OSr-=«
(rg)=d
Then we have
(18) KMZ\+(30j0 2, +f 3, 4P fom
dSql2jo ql2j0~=dSql2

Corollary 1 Defineq, ..., z_2,z_1; 20, z1( z2, ..., Z, A" (with 12 in place of 8)
and Abin the same way as in Lemma 6. Then we have

( Ar2\1/2

I if) -
iSq/2

Proor or Lemma 6. By USINg Lemma s and the identity (1) with h* in place



384 A. SARKOZY

of n (so that n*={h*)* =h), we obtain for g\m and (/;, g)= 1 that

g-I
2 ( 2 Zih~0Z)e(tm/q)
t=0 t—6qd~t

. . 1
20 2 e(mjig\~ min i> .
=0 0rj<dgq (mife) I 0"j2<(‘jlq> 2 7
9
\Anid min - joi %n (for g\m and (h, g) = 1)
2

9

where jOis defined by (13). By (h,q)=1 we have (h*,g)=1 so that (mh*,q)
=(m, q). Thus we obtain from (20) that

9-1
2 ( 2 zik—dZ)e(tm/q)

t=0 t—6qdAt

(21) —( max |A[min Jo, 0
(r,g)=(m,q) 2
9 L]
. 1
=M (mg) MIN JOI vl (for ¥fm and (h, q) = 1).
2
9

Furthermore, by (h, q)=1 we have

2 (2 *m-SZ)\ = 2 2  Zgq-m-dqZ
|

t=0 t—dqd~t t=0 O7j-cbq
(22 i2 2 2 zr~6qZ
O"jg‘('jq L/IZO ' 0~j~<6qr=0 9

=12 Z2—0g2\=141 2 1-5?]|s|Z]|.
1,2, 2002\ = A2 1-52]s|Z

/\j 6
By using Lemma 4 with

2 Zik-62Z
j-dg-clSj

in place of zJt we obtain with respect to (21) and (22) that

9- 1. 9-1

92 1| 2 zik-sze=2 2 ( 2 zh-0Z)e(tm/q)

f=0 t—d qd Sht m=0 t=0 t—dqd~t

Po4-1
nN.<57) +92_} 2 (2 zI-SZ)e{tm/q)

2
t—6qd”t m=1l f=0 t—éq<I=t

2
f=0(



QUASI-UNIFORM DISTRIBUTION

. 1
=|z|2+ 2 min 70>
12| m— 0 m
2
q
Z|]2+2 2 —
I"m"q/2| m

= |zI'+2, i, K -> mi"(j*ir)r =

= |z]i+2 if "'mm (JUilf)) s
2] imiuk, gld)=i ( ( )
|1Z ]2+ 2 2 2 imin (/,,
<7 I"k~g/2d \ \% 1
d"~g/2
(23) NMZ[2+ 2 =

N Ao O o2 3,74). =
'Ink~G12djo /2dj0<knglad A
o, ql2dj 4/2dj0<kq

= |z2+2 N 2 1+
|Z12+ jo WP
dSql2

2 W K) +
1Sksql2djo ql2djorksql2ad e« K/

jo

+ 2 n 2 d |
_ §|9 1"k™g/2d ”GkK
q'2j0<d”q\2

dJo + d 1— )4
~ 1212+ 2 ic? MA\\d ' 2ci2 k=[A  +1 (fc=|))f|6))
dsql2jo
2<</2J0$=<f*g/2
Azize o b4 i A+ fy

ds‘g"féj,, ( 7 vz _[szd]Q) ql2j0<dSql2

N izr [do+ d<; M'O: v M
45110 q 200 Ssiy
A2 Al2

= |z]2+ 370 2 N +F 2
d\q * d\q &
d+ql2jo gl2jond*ql2

25
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Finally, by the Cauchy—Schwarz inequality we have

(24) (S'1 2 zIhSZ\) SqZ\ 2 *»—S2K
(¢ )

=0 t—dqg”™ISt (=0 t-6qg-zISt
With respect to the inequality

lal2+ b2~ (Ja) + [h])2,
(23) and (24) yield that

2 1 2 zu-SZ\*z\\2\*+3qj0 2 ~f+qg2 2 n
r=0 t—6gq<Int ' dig ** dig a
dSqt2jo ghig-

MA

—-+ a2
|Z] + (39)0 % 4 a .%q ~ar)
dsdr2jo «/2i0-=da«/2

This holds for all (fr, 4)= 1 which proves (18) and the proof of Lemma 6 is completed.
6 with & 1/2 so
B
2 1°
hence

F ow

and

. 2/0
Then we obtain that

d\g_. d\q d2)
*5ql2j0 4/2j0-=<iS«/2

M2 112,

d\g_. _d\ d2) ~
dsql2j0 qIZJO’\a"qIZ

d~ql2 g2
which completes the proof of Corollary 1
3. In this section, we use Lemmas 5 and 6 and Corollary 1in order to estimate
y(u,q,S) and T(u, q).
Theorem 1. If wso,0<a~1/2 and q,b are integers such that q=2 and
(b, )= 1, then we have
(25) \Su(b/g)\ =5 3y(w, g, 5).
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Theorem 2. If w”O, 0<<55 1/2 andq is an integer such that q~2, then we have

A\ — _iN i H * o,
y(», q, Q) =-j™{D(u) + (3j0 <21I0 d max |Su(b/il)|2+ g[i Quax, |.SU(fc*/c2)|2) 12}
215<1  C*d)=l

where jO is defined by (13).

Theorem 3. If wSO am/q, b are integers such that g~2 and (b, q)= 1, then
we have

(26) \Sub/g)\ = 3T (m 9).

| ' ) .
Theorem 4. If UNO andgq is an integer such that q=2, then we have

@7) r(u, q) B—D{u)+—{2 d2max \Subld)\JI\
q q "k

Corottlary 2. If wsO andp is aprime number, then we have
F(u,p) £2-D(u)+4 max \Su(b/p)\.

(Note that Corollary 2 shows that Theorem 3 is nearly best possible.)
Proof of Theorem 1. We have

\Su(b 1q)\=\2d ie{aiblg)\ =
(28)

2 (2  d)e(hbig) 2 D(u» h)e(hb/q)
=0 at™u h=0
at=h (mod q)

h

Thus Lemma 5 yields (with D(u, q,j) in place of zf) that

\Su(b/g)\ = .]%:0 D(u, g, h)e{hb/q)

3 9-1
oq M2 2 (<G, Ih)-d 2 D<)

(M)=1 q-<I=st

=4-max 2 1 2 o -G = YW q 9

q f=0 dg<l<t
(h.g)=1

which completes the proof of Theorem 1

5%
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Proof of Theorem 2. IN Vview of (28), Lemma 6 yields (with D(u, q,j) in place
of Zj) that

y(u, g, 6) = -j- max 2 \ 2 D(u, g, In)-OD()\ =

q (A]«):lt=u t—dq-zlst
Hq osfkj ) dq2<|A=t DU, g, Ih) _OJ 220 D (u>9,j)

(A9)=

pu 2
J tyif/%O D(u q>j)+9qj0 0%9 -4- nax, hzo D(u, g h)e(hr/q) +
d'ighio rq=d

., @ max 3 D, ¢ et | | =
(d02 §=0 ’

qI210<d ngl2 (r,q)-d

=i N(M) + (3wo 701?15 O )|+
L DMy+( d'Sg%j0  (6d<¥)=1 )

+ ?2 2 max  SSw 2 a .
<A (d )2 0Sb~qld- )18}
9/2j0*=<TS9/2 (M/<0=1

Writing d=q/d', we obtain that
y(«, < <5 S

YO()+(EW 2 [max [SEdP+0% 2 max \Subld)\) } =
286d O co)=t aoj, @ RiP=i

= — {£>(«)+ (3/,, 2 d Jnax \Su(b/d\i+ 2 da max \Su&de)lQ]/Z}
2]05tf (>a)_1 27d- 2]#(f>d)|

which completes the proof of Theorem 2

Proof of Theorem 3. By Theorem 1, (25) holds for all 0<a~I/2 which
implies (26).

Proof of Theorem 4. We have

(29) T(w, A) = O(g;ﬂzy(u, q, O =s yw, q, 1/2).
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With respect to (28), Corollary 1 yields that
E“ =2 S5 b gun)-—D
’ CF%% " g @D | yfos DM I PO

1
D{u, q, Ih)—r 2 D{u, <1
0 t-qFZdSt {u, g, 1h) er-o lu )

) - 1 9-1 [2)1/2)
12 D(u,q.j) +is gl 2 max 2 D(U, g, h)e(hrig)) | =
g lj=0 Vd'39/2{d )2 %Séczgd h=0 1> >

2 ( 1 AR
d's9/2 (f,9/a)=1

Writing d=q1d'. we obtain that

y(«, 4, 1/2) s|z>(«)+4 (2 (~) I5,(h/d)[2) =
\% Kq* (A=l
30) q°

=1 G(u)++ (2 d2max |5u(b/d)2QV2
(0, d)=1

(29) and (30) yield (27).

Proof of Corollary 2. Corollary 2 is a consequence of Theorem 4. In fact, if
¢ —p is a prime number in (27) then we obtain that

r(u, p)~ 1 DU)+U “lax |5',,(6/DI212 =
P P .

2 (0,a)= Il

=4 D(“)+1)(p2§/r_g\17;‘<xpl BU(YP)ID12=" G (M+4 max |S,(F/p)|.
p =

4. In this section, we estimate r(w, 9).

Lemma 7. Let q, h,t be integers satisfying ¢>2 and (q, h)=\, ..., z_2,2_x,
Zq, zj, z2, ... any complex numbers such that zn+q= z, for all n and

(31) zm=0 for all m satisfying (¢, w)> 1.
Define Z by (8). Thenfor all 0>0 we have

I 2 Ih-O6Z\ S Ctf ¥2loglog? .
52) t—dg<I~t ? glog \(/Iog qx*zxo Lo XUz ¥ \2\).
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(Here and in what follows, in 2 > X runs over all the characters x modulo q,

X*X
different from the principal character /,m)

Note that Lemma 7 can he used also in the more general case when (31) does not
hold; in fact, in this case we have

(33) 2 n ooz _ 2( 2 Zih- 6 2 zjd)
t—oq< It d\q t/d—dq/dr1rt/d 18jrkgjd
Q.qld)=1 U,qld) =1

and here each term can be estimated by using Lemma 7.

Proof of Lemma /. Lemma 7 is identical with Theorem 8 in [4]; in fact, (32)
can be derived by using the Pdlya—Vinogradov inequality (see [2] and [7]).

Theorem 5. // WSO and q is an integer such that q>2 then we have

r(u, q)™ cAgq 1Rloglogqg logg 2 2 X(j)D(u, q.j) +£>(»))+ 2 df}-
1 \Y; X*X,, j—o J (q(a‘)gyl 3

Note that Theorem 5 covers the case when (ah gq)=1 holds apart from a few
exceptional at (like in the case of Goldbach’s problem; see [4] and [1], Chapter 16).
However, also the general case can be treated by combining Lemma 7 with (33).

Proof. By using Lemma 7 with

=\D{u,q,n) for (n,g) =1
10 for (ng>1

we obtain for /=0, +1, £2, ...,(/;, q)—I and 0<<5" 12 that
2 D(u, g, In)—6D(u)\ =

t—G6g<I*Bt
=1_2_,.D@71h)-8 2 di+
—dg<Irt a-~u
0.4)=1 (oi,4)=1
+ 2 2 d(—s 2 S
t—oqArInt a™u a™u
(*»<?)<1 ai=1Ih(modq) (Gj,g)>1

sj 2 D{u,qg,h)-5 2 <+ 2 di+6 2 di=
t—oq<I”rkt a’™u a’u at™u
0.4)=1 (fl,,4)=1 <ar q)>1 (a,,9<I

ctq loglogqilogq 2 j?_o X(j)D(u, a.j) + 2 M)+ (1+<5) 2 dt

(«l.«)=1 4. 4)~'l

= c3|™-1loglog q log 9X/%X )20 X(1)D(U, 0,J) + £(«))y + 2 d\
- )=
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(where c3=max(cx, 3/2)). Thus we have

Tw, ) Sy(u,q 2= —max 2 | 2 D(u, g Ih)-OD()\ S
(«)=1

- T,mP 2°c3'7_1/2loglog”ilog9 2" Z xU)D(u, i,j)|+£(Mm)+ 2 <4
q -u 1 v *kks 720 | > )

tro=1’ =1

rjig Y2oglog<log9 2 2 X()D{u, a.j) + () + 2 d)
1 \Y X*Xo 7=0 '

a™u
(where c4=2c3 which completes the proof of Theorem 5.
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TESTING FOR NORMALITY OF ERRORS IN LINEAR MODELS

WIESLAW WAGNER

1. Introduction

1.1. Literature review. Many authors dealt with the problem of estimation of
random errors in linear models. Among them it is worthwhile to mention: Theil
[14— 16], Koerts and Abrahamse [8], Golub and others [6], Benhelli [1] and Caussinus
[3]. Theil introduced residuals of BLUS type for error estimation in regression analy-
sis. Farebrother [5] published the program in ALGOL, in which he took advantage of
Theil’s ideas. Golub and others analized pseudo-residuals of outliers for detecting
spurosity in linear model. Benhelli gave descriptions of many procedures useful for
calculation of following residuals: BLUE, BLUS, BLUF, BAUS and NBAUS.
Finally, Caussinus introduced the applications of the above named residuals for nor-
mality testing purposes.

1.2. Some assumptions, definitions and notation. By linear model, cf., e.g. Gray-
bill ([7] p. 97), we mean an equation, in which the observable dependent variable is
on the left side as for as the right side contains the observable known variables, the
unknown parameters and the not observable random variables; the relation between
the left and right sides being linear. In addition as an integral part of the model some
information on the parameters (e.g. restriction) and on the random variables (e.g.
assumption on the distribution) may be given. In the linear model, to be applied for
analysis of experimental data, the observable variable y\ is assumed to be a linear
function:

2
F(= 2 Xijgj+et, i=1,....n,

where Bj, j=\,...,q are unknown parameters, xtj, i=\, ...,n, j=\, g are
known constants, e,, i—1, ..., n are not observable random variables with some
distribution. The random variables et are called random errors and we assume usually
that they are uncorrelated with expectation null and with identical, but unknown,
variance a2

The described model has the following matrix representation

(1.1) y = XB+e.

This linear model is determined by the triplet (y, X3, <@), where X is a known nXq
matrix of any rank and 1is the «X« unit matrix, E(y)=XRB and D(y)=o02. We use
the symbol . ,,for the linear space of mXn matrices of real elements.

1980 Mathematics Subject Classification. Primary 62G10.
Key words andphrases. Testing for departure from normality, residual vector with linear model.



394 W. WAGNER

In the statistical analysis of model (1.1) we are interested in the point estimation
of the parameters Bj and a2 In some cases we test various parametric hypotheses un-
der the assumption that the random error vector e has a multidimensional normal
distribution. Such assumption is useful for the analysis of model (1.1), however, it is
not always supported by the actual experimental data. It is necessary to decide wheth-
er the assumption on the normality of the vector e is consistent with the empirical
data. Below procedures are described which assess the agreement between the empirical
distribution and the normal theory.

Let .f7denote the set of normal cumulative distribution functions (c.d.f.) and (2
denote the set of c.d.f. with finite four-order central moment and with their third-
order central moment different from null. Alternatively, the set Q might be defined as
the set of all non-normal c.d.f. (or for sake of convenience, those with finite second
moments). The sets SF and (2 are disjoint. Let ~ be a random variable with unknown
c.d.f. F. We formulate the null hypothesis Hnin such a way, that the c.d.f. F belongs
to the set 3F, i.e. HO: Ff_#\ This hypothesis is tested against the alternative hypothe-
sis, which states that the c.d.f. F belongs to the set Q, in other words against
Hx: FEQ.

The procedure of testing the hypothesis HOis carried out by a test of normality
(e.g. W test, Shapiro—Wilk, [13]). In the statistical literature the application of these
tests is treated mostly for simple samples. Before applying one of the well-known
tests of normality for the earlier described linear model, it is necessary to transform
the vector y in such a way that the new random vector should have elements satisfying
the conditions for simple sample. To find such transformations is our basic task,
theé (Ianable the assessment of the validity of the assumption on normality in linear
models.

As it is known, in the analysis of the linear model the least square method (LS
method) is applied. It allows to find an estimator B0of the vector parameter 3 of
model (1.1), which minimizes the quadratic form (y —X/?°)'(y—X/J°). Then the com-
ponents of the vector XR° are best linear unbiased estimators (BLU estimators) of
the components of the vector XB. We introduce a vector s as follows:

Definition 1.1. The vector s=y—XB"\ where R° is an arbitrary solution of
X'XR°=X'"y, is called the residual vector of the least square method (r.v.).

The r.v. is to be found. The general solution of the equation X'XB0=X'y is of
the form /f°=GX'y-f(Il —GX'X)z, where z is an arbitrary vector of suitable dimen-
sion, G=(X'X)~ is a g-inverse of the matrix X'X. Hence we have X/J°=XGX'y+
+ X(I —GX'X)z= XGX'y according to the equation XGX'X= X which is satisfied
by any matrix X. Therefore the vector s in the model (y, X8, n2) gets a form

(1-2) £= y-XGX'y = (I-XGX")y = *Py,

where V'-1 X(X'X) X' is an nXn matrix with constant elements.

The properties of the vector e will be discussed in Section 2.1. Because the com-
ponents of the vector s form no simple sample, we propose one of following linear
transformations:

(A) co=£+at/, where » is an «-dimensional normal random variable with
E(i/)=0 and D(t/)=1~ R, the variables y and > are independent.

(B) (o=<¥% where 0 (r=r(X)) is a matrix satisfying the equation

- while r(X) denote the rank of the matrix X.
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(C) ej=Cy, where Cf, _r,, isa matrix satisfying the conditions CX=0 and
cC=1.

The transformations (B) and (C) are equivalent since we may put C=<>P
Conversely, if C is defined by the assumption of (C) then Ce=Cy.

It will be shown in Section 2.2 that the components of the vector to satisfy the
conditions for simple sample under the null hypothesis. We introduce the following
definition.

Definition 1.2, The vector to which is such a transform of the random vector
y, that its components are uncorrelated random variables with expectations null and
identical variance will be called an adjusted residual vector from a least square method
(ar.wv.).

In this paper some methods for assessing the validity of the assumptions of nor-
mality of random error vectors in linear models are presented. The vector y is trans-
formed into r.v. and then the r.v. are transformed into a.r.v. by linear transforma-
tion. Also Theil’s method of calculation of the a.r.v. directly from the vector vy is
described in a generalized formulation. The suitable consideration for the model with
restrictions are also included. Because the components of the a.r.v. satisfy the condi-
tions for simple sample, therefore the appropriately chosen ar.v. can be used for
testing normality. For the practical application of the methods described suitable
numerical algorithms have been constructed.

2. The methods of calculation of a.r.v.

2.1 The properties o fr.v. The basic properties of the vector e are connected with
that of ¥.
Lemma 2.1. The matrix is symmetrical, idempotent, is of rank n—r(X)

and is invariant in respect o f the choice of 8° (or in respect o f choice of G).

The next properties of the matrix  are as follows:

(@ The matrix ¥ can be presented in form V =1 —XX+, where X+ is a Moore—
Penrose inverse of the matrix X;

(b) The matrix <P satisfies the equations: 'PX=0 and X"¥,=0.

The properties of the vector s are the following:

(@) The covariance matrix of the vector e can be presented in the form £4@8)=
=D(y) —D(8)-, , _ _

(b) The vector a is uncorrelated with the BLU estimator B (lif_.//ng), of the
set of parametric functions B/J;

(c) The vector s is orthogonal to every column of the matrix X;

(d) The vector e may be expressed in the form 8=(1—XX+)y;

(e) The scalar product of a vector \Buand s is zero;

(f) The sum of squares y'y may be expressed in the form y'y=e'e+y'X/"

The assumptions, taken for the model (1.1) imply £(e)=0. The theorem below
determines the covariance matrix of the vector e

Theorem 2.1. The covariance matrix of the vector e is D(e)—a”T and is a null
matrix ifand onlyif n=q and r(X)=q.
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The components of the r.v. are linear functions of the components of vector y. It
is interesting to see, that the vector s has minimal norm in a class of all vectors £of
the form £=y—X/, where [ is a linear function of vector y such that E (i) =0. It
is a result of the LS method (Schelfe, [12]).

2.2. The calculation o f the a.r.v. There exist a number of methods for calculating

of the a.r.v. (see Definition 1.2) for the model (y, XB, 02) with desirable properties.
We present five methods for calculation of the vector o> four of them are connected
with the transformation of vector e, two of type (A) and two of type (B), and one with
the transformation of vector y of type (C).

Let tbe anormal random vector of suitable dimension with parameters E(r) =0
and D(z)=1.

Method 1L Let PAJ/® be a matrix satisfying the equation PP'=(X'X)_
and let z be a ~-dimensional normally distributed random variable. We construct the
variable ¥=XPt and define the a.r.v. (Golub, et al., [6], p. 64) in the form

Q) = £faXPt,

with distribution parameters E(0j)=E(s)+ mXP£(r)=0 and D@f)=D(e)+
+ C2XPP'X'=c2F+o02(1- «P= €2A. The components of the vector z can be selected
from a table of random numbers or can be generated by Monte Carlo method.

Hence, if y~N(XB, a2) and t~iV(0,1), then c«j~/V(0, a2), i.e. the compo-
nents of o)j are independent random variables each with the distribution N (0, a2.
The above method has a disadvantage caused by the fact that many matrices P satisfy
the equation PP'= G, and also on manyways one may select a g-inverse of the matrix G.
Moreover this method depends on the selection of the components of the vector z.
This disadvantage in the choice of the matrix P and of the ~-inverse does not influ-
ence the probability of the acceptance of the null hypothesis.

M ethod Il. Let z be an «-dimensional random variable. We define j|= (I —)r
and introduce the a.r.v. in the form (Golub, et al., [6] , p. 65)

foll= £+a(l—V)z

with distribution parameters E((0X)=E(z2)+o(\ —1P)£'®=0 and Z2)(«)= D(£) +
+02(1- *PD(Q(1- ¥)'= +a-1- Y)I- P=<2P+a-(I- V)= where the
matrix |— is idempotent.

With the definition of the vector aw we can see, that values of its components
depend only on the component values of vector z, but are independent from the
selection of g-inverse of the matrix G. Certainly, if t~A(0, I), then k=XGX t~
~jV(0, XGX") and moreover if y~A(X/?, 42), then ft>n~A(0, <2). The selection
tis done analogically as in the Method 1 For numerical calculation the form

dl = y- XX+ (y- <)

is more convenient, because the calculation of the matrix XX+ is equivalent with
calculating orthogonal projection operators for the space of columns of the matrix X.

Method Ill. We select the matrix (Rao, [19], p. 19) in such a way that
where ,» IS @ diagonal matrix with «—r positive diagonal elements
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and with the last diagonal elements equal to zero. Moreover, we select the matrix

the columns of which are unit vectors with 1 on the position indicating a
row of the matrix D with positive element. We see, that M'M = . We construct,
in addition, the matrix D~12 according to the following: if in the matrix D the
element dn"O, then the diagonal element of the matrix D~12 is 1h/du, in the
opposite case it is equal to zero. Assuming that 0 = M'D~12B the ar.v. is built
up of n—r elements and has the form

um = M'D"“1/2Be,
for which 0*P0'=M'D-YBB'D-12\i=M,D-1/2DD-12M= M/M=1, £(c«IJ:=0
and D(ojii)=aa.
Methoda IV. Thelatent roots aj, j= 1, ..., «, ofthe matrix  are 1 and o, with
multiplicities n—r and r, respectively. We denote by cly j= 1, ..., n— the «-dimen-

sional latent vectors for the latent root A,=1, then 'PcJ=cj. We assume, that the
vectors cj are orthonormal. This means we may accomplish a decomposition

r= 2 ccg=0QQ,
j-1
where Q'=(ch ..., c,,_n satisfies QQ'=1. We construct the («—r)-dimensional
ar.v. in the form
ol = Qe,

where —QQ'QQ'=1 and also £W\J=0 and DUV =cr.

The selection of vectors c, ..., ¢,,_rmay be accomplished by the Gram—Schmidt
orthogonalization method (see, e.g. Birkhoff and MacLane, [2]). This selection can be
carried out on many ways. Therefore the selection of the matrix Q is not unique.

The null distribution of <uvand 0)|Vis normal, but their distributions under the
alternative hypothesis is not investigated. It is clear that this distribution differs from
that of e under the alternative hypothesis. Unsuitable choice of the matrix 4>may
cause that the distribution of a) will be nearly normal even if that of e differs from the
normal law markedly. It is known, e.g. that the distribution of the sample mean usu-
ally tends to the normal law very rapidly. Accordingly, it should be avoided that the
absolute values of the elements of the row-vectors of should be equal or nearly
equal. On the other hand it seems advantageous that one element in each row should
have high and all the others low absolute values (cf. Method V).

From numerical point of view Method Il is the best of the presented methods,
beyond the generation of random vector ¢, there is no need to execute any additional
numerical operation connected with the decomposition of the matrix G (Method 1)
or of the matrix <P (Methods Il and IV).

Methoda V (Theil’s method). Here a generalized formulation of the method of
Theil [16] is given. He assumed that r(X)=q, we, however, admit that r(X)"q.
The matrix C satisfies the conditions CX=0 and CC'=1 ifand only ifits row vec-
tors are orthonormal and belong to an orthogonal complement of space spanned by
the columns of the matrix X. To achieve this aim we propose a partition of y on two
subvectors with r and n— components. Because of the equality X/f+e= X?+£



398 W. WAGNER

the vector y can be written as
2.1

where the matrices with subscript 0 have r rows and those with subscript 1 have n—
rows. The matrix X0€™#rs is of full row rank. Our objective is to find a linear un-
biased a.r.v. with a covariance matrix a2l, that corresponds to the (n—)-dimensional
disturbance subvector By the partition (2.1) we calculate the (h—*-dimensional
a.r.v. as following. As we assume, that r(X)=r, then also r(XX@8)=r and the matrix
(XXy ' XXy G#rris symmetrical and positive definite. Its inverse matrix X,,(X"X)+XO
is positive definite and invariant in respect of the selection of the Moore—Penrose
inverse of the matrix X'X. All latent roots df h=1, ..., r of the matrix X0(X"X)+ X
XX" are positive and si. Denote by k (Sr) the number of latent roots 1
and the corresponding r-dimensional orthonormal characteristic vectors by v,,
\k. Let dh, h=1, ..., k be the positive square roots of the numbers d\f. The a.r.v.
are defined as follows )

dh
O}y = X, X\ WhV,.En
by o‘h:21 1+dh

and we have ovay=e's.
The disadvantage of this method is a great number of possible partitions of the

matrix X in (2.1). There exist partitions and for every partition the a.r.v. can be

calculated. We propose to select such a vector eov, for which (cf. Theil, [16] p. 206)
the expected sum of squares of the error vector

TKcuv-e/N'icuv-el)] = 2a2/_J_(l -d h),
1=1

is minimalized.

Let be remarked, too, that the distributions of the components of om, are all
different under the alternative hypothesis even in such cases when method V vyields
identically distributed variables (see, e.g., Sarkadi [11]). The latter situation seems
more advantageous from the point of view of testing for normality.

Methods I—II are based on the assumption that the parameter e2is known. If
<2in unknown, it may be replaced by the unbiased estimator s2 of the parameter a2
in the form s2=e's/(n—). The results are the more accurate the greater the number
of degrees of freedom n—r is. Alternatively, we may apply the idea of Durbin ([4],
p. 52) if €2is unknown. Accordingly mnis to be defined as

0)n = 508/j + (1—V)X

where si is a random number which is ~-distributed with n—r degrees of freedom. In
this case on is normal, otherwise this is not true.

2.3. Calculation of the a.r.v. in model with restriction. The calculation of the
a.r.v. is the model (y, Xi, <al) can be carried out also under the assumption, that the
parameter vector B fulfils the consistent restrictions RB=c, where Rt-ydkll and
cEy/?kA are known. The model with restrictions has the notation (y, XB\RR =c,
a2l). This model can be reduced to a model without restrictions (Rao and Mitra,
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[10], p. 144)

(2.2) (y-XRec, X(I—R R)0, <«2I),

where the matrix X(I—R_R) is a design matrix, y-XR “c is the observable vector
and the parameter vector. The imposed restrictions for the model do not

change the distribution parameters of the a.r.v. Therefore the calculation of the a.r.v.
for model (2.2) is carried out analogically as described above.

3. The numerical aspect of the calculation of a.r.v. and testing the hypothesis
on the normality of errors

3.1. The algorithms of calculation of the a.r.v.

Method 1 1 Calculate the matrices XX+ and f/=1—XX+.

2. Compute the r.v. If €2is unknown, compute s2=e'E/(n—).

3. Select the matrix to satisfy the equation (X'X)~=PP', by the
generalized Cholesky method.

4. Generate by computer, by Monte Carlo method, the random vector x and \0.

5. Compute the vector 2= 2XPti, (or <rXPx), where i="i2 and ool=e+i/.

Method Il. The points 1, 2, 4 are the same as in Method I. Compute the vector
<%=y- XX+(y~sz/s0).

Method IlIl. 1 Same as point 1 in the Method I.

2. Compute the nonsingular matrix B by where D is a diagonal
matrix with n—r positive elements, in the following way. Decompose the matrix
V for T=SS\ where S is triangular matrix of the form S= LDI12 while D12is a
diagonal matrix with diagonal elements equal to the corresponding elements of the
matrix S. L is a triangular matrix with all diagonal elements equal to one and the
other elements are calculated by the equation

when Sjj 0,
when §j —0,
for y=1,..,n—1 i=j+\, ..., n. We have the decomposition of the matrix V=
=SS'=LDV2LD12'=LDL" and therefore B=L-1.
3. Compute the matrix and D-1'2 and compute the a.r.v. in form

°hn.

Method IV. 1 Same as point 1in the Method I.

2. Split the matrix X in two submatrices X=[XO;X]]', where X0is a matrix of
full row rank and E=[ed|e[]". ]

3. Compute the matrices Xo"XAXgXO-1 and XxX6-.

4. Compute the matrix (X'X)+ (see Wilkinson and Reinsch, [17], p. 144).

5. Compute the matrix X0(X'X)+XOand its latent roots df h=1 ...,k for
which i/jj<I. i

6. Compute the orthonormal latent vectors v, ..., \k of the matrix X0(X'X)+XO
corresponding to the latent roots df, ..., dl and compute cov.
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3.2. Assessing the validity of the assumption on normality o f the random error vec-
tor by the Shapiro— IVilk test.

A. Moder (Y, XB, a2l). 1 Calculate the a.r.v. by one of the methods presented
in Section 3.1. From now on, the components of the ar.v. will be treated as
simple sample with elements x2, ..., xm.

2. Compute the sum of squares of deviations from the sample

S2= x'(I-117m)x.

3. Order the sample {x,} into an ordered sample y1"y2~...=ym.

4. Read the coefficients aim i—1, ..., [m/2] (where [m/2] is entier of m/2)
from the table of Shapiro and Wilk ([13], 596)

5 (a) if mis even (in=21), compute

b = a2<a(y2-y D+a2. lim(y2_1-y 2+...+al+hm(yl+1-y,),
(b) if mis odd (m=2/+I), then compute

b = ad+ltm(y2l+1~)1) + a2l my2l~y2) + wm+ al+2,m(yi+2~yd-

6. Compute W=b2S'2

7. The hypothesis on the normality of the random error vectors in model (1.1)
will be rejected when Ws m where W s the 100a% point of the distribution
of W.

B. Moder (Y, XBRIS=c, &21). 1 Compute the matrices R-, R~R and
X(I- R~R) and the vector y= XR~c.

2. Compute for the model (y—XR_c, X(I —R_R)0, 021) the a.r.v. with one of
the methods presented in Section 3.1.

3. Next as in points 2—7 in the model (y, XR, a2).
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UPPER ESTIMATE FOR THE EIGENVALUES OF AN ORTHONORMAL
SYSTEM CONSISTING OF EIGENFUNCTIONS OF A LINEAR
DIFFERENTIAL OPERATOR

V. K.OMORNIK

Let G=[a, 6]cR be acompact interval, ...,pn: G-*C Lebesgue integrable
functions and consider the formal differential operator

Lu —wp+ p2n("' 2>+... + p,,u.

As it is usual, a function not a.e. vanishing u: G—C is called the eigenfunction of
the operator L with the eigenvalue AEC provided that it, together with its first n—1
derivatives is absolute continuous on G and for almost all x£G,

(Lu)(x) = Anig.

Let now (nmcL 2(G) be an arbitrary orthonormal system, consisting of eigen-
functions of the operator L and denote ).mthe eigenvalue of um Then a natural ques-
tion is whether the sequence (/,,,) may have a (finite) cluster point. It is well-known that
for the case n=2 the answer is negative if p2dLg(G) for some g> 1: it was shown
by V. A. Ifin and 1. Joé in [2] for the case when all the eigenvalues are real and nonneg-
ative and after it by 1. Joo in [4] for the general case.

Developing the ideas of the papers [2], [3], [4] and applying some results of [6]
we shall prove that the answer is always negative (even if the functions p2, wm P,
are only integrable):

Theorem. Let G=[d, iijc R be a compact interval, p2, wm/?,; G-*C Lebes-
gue integrablefunctions and (umczL2(G) an arbitrary orthonormal system, consisting
of eigenfunctions of the operator

Lu = u+ p2u(m2)+ ...+ p,,u.
Then, denoting the eigenvalue of umby 2m we have
Iml- + 00 (m — °°).

Moreover, there exists a constant Jf, depending only on the numbers \b—a\, ||/?2li> e
«>|IAH such that — denoting by pman arbitrary nth root of ) m— for any p£C,

2 icjr(i+M).
1980 Mathematics Subject Classification. Primary 47E05; Secondary 45CO05.
Key words and phrases. Eigenfunction.

26+



404 V. KOMORNIK

Let us introduce for brevity the following notations: for any AEC and t(R
define
esi* .
if AXO,
e'ed .
BAO=< ¢ i
if A=0,
1nt. (»On'l
where ql} ..., g,,are the different nth roots of Afor A™O, in the increasing order of
their arguments, taking in the interval fQ 2n). Obviously, A@® 0 if t*"O and
[ij/AlI<7r. Let Dkg(X, t) denote the minor of A(A t), corresponding to the g-th
element of the k-th row, and define for any 1°kSn, AgC, OXtGR,

" A i (ALQ) .
i if AXDO,
/*(A, 0= A A)(? /)

if A=0.

AAO

Let us also introduce the function g: CXR —C,

P if AXO0,

g=1 WA

g0*> 0 /i
if A—O.

Recall the following proposition, proved in [6]:
Proposition. Let u be an arbitrary eigenfunction o f the operator L with the eigen-
value A Thenfor any x£G, x+ntfG, 1X0, \tiT\*n, thefollowingformula is valid:

u(x) = 2, TKB, Hu(x+ ko) +

0)

n n x+1
+ 2 2 fktt, 0 f g(A x+kt-v)pj{v)u(ri)(f)dx.
*=] A=*

We shall also use the following properties:

Lemma, (i) Foranyfixed A£C, thefunctionsf k(X, ) can be continuously extended
to the whole real line.
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(i) There exists a constant C>0, depending only on n such thatfor any Isk”n,
te R, A=ji"£C and A0=/iJ!£C,

@) fAK 01 < ¢ if M S 1;
€)) Tk (f 0~fk(foi 00 —C\p—pOM\ if Wt IS1 and \pOf =S
@) lg(A, 01 S CM™-1 if \pt\ S 2n.

Proof, (i) follows at once from [6], Lemma 5. To prove (2) and (3), we remark
that by Lemmas 4, 5 in [6] we have

fk(f 0 = hk{pt) for all A= prEC and tER,

where hk: C—C is a holomorphic function (1S&:£«). Finally, (4) follows from
[6], Lemma 6.

We shall also use the following estimates, proved in [6]:

Proposition. There exists a positive number D, depending only on the numbers
\b—a\, |[/?9]],,..., |A)li., such that all the eigenfunctions u of the operator L having the
eigenvalue A=/i"£C, satisfy the inequality

(%) IMV[Us 2)(1+ H)j+7|l«[[p, osj<n, 1=8£=§-.

Let us now turn to the proof of the theorem. Let (uma L2(G) be an orthonormal
system where umis an eigenfunction of L with the eigenvalue Im=pmEC and let p
be an arbitrary complex number, A=pH Define

m(b—a 1 e -l e "jf e I
= 2+H'M ?2 | 1pJ? KlpJI” AnCDn +Ip\ib6
(6) where e = (4n"+1C2D2Vi+ [y ib —a)-1.

. . + .
Fix an arbitrary number aSx; a+b and choose an arbitrary um such that

For any O""R we have by (1)

n
«am(*) = 2 fk(4,, t)ujx +kt) +
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Integrating both sides by t from 0 to R, we obtain

RUx) = 2 1 fk(X fumix+ko) dt +

) + 2"1 Itk >0 0] «n(x+/ci)d/ +
*= 1<
X + kt
+2 2/ fk(Amt) f g(Xmx +kt-z)pj(T)uU J)(r)dzdt.
k=1j=20

Introduce now the function w: G-—+C

w (0

it follows from (2) and (6) that
8) welL\G), [HI,S nC\R.
Moreover, one can easily see the equality

2, f k(G Humx+kt)dt = {um w),
whence
) 2 f Ir(A Humx+ktdt  Kvin W,
It follows from (3), (5) and (6) that
2 f UKO.m, t)~fk(X, um(x+kt)dt

(10)
A 2 f Ctdtum\, » nCRAMU ~ jR\\umU b-4) 2.

Finally, by (2), (4), (5) and (6) we have

n n R
2 2 1 (G, )/ g(-mx+kt-T)pj(r)u™-j)(o dzdt
*=1J=20
"(nRyc2,22\\PjU<-J)U A
J:
(11) S («Af'C2 2\\Pj\iD (I + \Rm\)n- j\\u J aoS

j=2
s N"CDR 2 IR J- INPjULK(2+\p\)"-j \i<J~S
j=2

—nn+ICDReWuJog —R\\uj2(b-a) 2.
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From (7), (9), (10) and (11) we conclude

7lem®) N l<em W) |+jj?]|«j2 (fe-fl) 2
and hence
(12) > m(*)I2~ 2|[<Mm w>2+ y /? 2|lwm||I(b-ij)-1

Let now M be an arbitrary finite index set such that

\pm— =1 for every m”M.
We have by (12)

R2 2 K((®)lar2 2 |<«cmw>|2+i/? 2

mEM mdM

applying the Bessel inequality, we obtain in view of (8)

2 \um\i(b-a)-"
£

mEM

Rz 2 \um(x)\*s2n*C*R+{R* 2 \W\uMb-a)-K
L

mzZM miM

This is true for all a”xi a+b , but one can prove this inequality quite similarly for

alf Eﬂ too.

Integrating by x from a to b, and taking into account that

. I« lit = 1» m —1,2, ...,
we obtain
2 1=4n2C2b-a)R~1

mEM

The left-hand side expression is the number of elements of M, while the right-hand
side does not depend on M. Therefore

2 17M4n2C2(b-a)R~\

and the theorem follows in view of (6).
Remark 1 Incase n=2, one can easily see that /22, t)=—,

., A 2ch(8lt) if X+0,

MA’0 \ 2 if 2=0,
hQt ¢ %m0,
g(2, 0 = t
t if 21=0.

Therefore in the estimates (2)—(4) the conditions

M ~ 1, IUMIA L \nl\—2»
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can be replaced by the weaker conditions
|[Re/it] ~ 1, |Re/t0(|s 1, |Re/h|5 2n
(see [5]). Therefore our theorem can be sharpened to
2 1< Jf(l + |Reji)).

The only change in the proof is that we have to write in the definition of R
(2+ |Re p\) instead of (2 + |/r]). This estimate was proved by I. Jod in (4) for the case
when PzELgG) for some q>\.

Remark 2. The proof of our theorem equally works for the more general case
when the system (W) is not necessarily orthonormal but the following two conditions
are satisfied:

(a) supi 2 - lw un) 2 weL2(G), w2 1]

-ro=
(b) inf{d 2m=122..}>0.
Consequently, our theorem is also true if (um is a Riesz basis.
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BIVARIATE POISSON PROCESSES DEFINED ON AN
ABSTRACT SPACE

MIECZYSLAW POLAK

Summary

In this note we consider bivariate Poisson processes defined on an abstract space. The main
result is given in Theorem 2. The method is based on some ideas of A. Rényi [3] and L. Gy6rfi [1],
Some applications of Theorem 2 are also given.

Let X be an abstract set, .¥ a ring of subsets of X, and X2,1 3 additive set
functions on SF. Let (Q, s4, P) denote a probability space, and X(E, c0), Y(E, )
nonnegative integer-valued functions, which are for each Ec.IF, random variables
defined on (Q, sé, P) and, for each cof£(2, additive functions on !F, i.e., for arbitrary

(2 X(EIJE2 o = X(Et,co)+ X(E2, g,

Y(Ei\JE2 0i) = Y(Ei, @+ Y(E2, ©
provided E\OE2=0.
Further on, we assume that
1° for each e>0 and EAMIF, there exists a disjoint decomposition Lj, E2, ...

..., Enof E with £;€#' and max I.,(E:)<e, i=1,2,
1SjS3 3
2° for each E, FE_IF,
) PIX(E) =0, Y(F) = 0] =
(©) PIX(E) = 0] =
4 PIY(£) = 0] = e-Cla<f)+a3<)i
and

PIX(E) S 2, Y(E) =0] + PIAT() - 0, Y(E) ~ 2]+
6) PIATE) ~ 2, Y(E) = I]+ P[ARE) ~ 1, V(E) ~ 2] s

(K(E)+X2(E) + X3(E)\.d(li(E), Aa(£), X3(E))
where

(6) lim 0(x!,x2,x3 = 0.

Let now X(E, co), Y(E, co), Ef.'"F,0ifQ be nonnegative integer-valued functions
satisfying condition (1).
Define
X*(E) = I[X(E) &1], Y*(E) = I[Y(E)S ]

where 1[A] denotes the indicator of an event A.
1980 Mathematics Subject Classification. Primary 60F05; Secondary 60G50.

Key words and phrases. Bivariate Poisson processes, additive set function, characteristic func-
tion, random vector.
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We begin our considerations by the

Lemma. | f conditions (2)— (4) are met then,for any disjoint sets Ex, E2, ..., E,,f sF,
the random vectors [X*(Ej), Y*(ED\, [X*(ED, Y*(E2], ....[X*(En, Y*fEnN] are
independent.

Proof. Letk, | beintegers suchthat 2+« + 1~n andlet 1r=it~-ri2n .. ~=ik=n;
INyl<y'2<...cy',Sn be sequences of positive integers satisfying the condition

{h5H, ..., ijkin{jl,j2, ji}=0
Put

Ak= 2Eir, 2*= 2E .
r=1 s=1

It is easy to check that the sets Ak, B, are disjoint.
Under the above assumptions we have

p{rnl\x *(pci = 0], n iy*(£jJ = oil =
= s= >

Pl 2_|X*(Et) =0 i Y*(Ej) =0} =

PIX(AK = 0, Y(B,) = (] = -
It POCH(Ei) = 0] 77 PLY*(EX) = O]

Thus the Lemma is proved.

Theorem 1. |fconditions 1° and 2° are met then, for any disjoint sets Ex, E2, ...
...,En, the random vectors [X(Ef,Y(Ef\, [X(E.), Y(Ef], [X(E,,), Y(£,)] are
independent.

Proof. We prove Theorem 1in the case n=2. For an arbitrary n the proof can
be done by induction.

Let E, F be disjoint sets from JF Now we show that the random vectors
[X{,E), Y{E)], [*(£), Y(F)] are independent.
It follows from 1° that for every e>0 there exist a natural number n and two

sequences of disjoint sets {Et, i =1,2, ..., n); i=I, 2 ...,«} such that E=
=._n Ej, F=1j15j Ft. Moreover, for /=], 2, ..., n we have
7) !@J%)% /.1(£.) < £ 1085 XII(F') <e

The Lemma implies that the random vectors [T*(Ei), F*(£))], [X*(E2,
Y*(E2],- , [**(,,), Y *E.,)], [X*(FJ, Y*(FD],[X*(FJ, Y*(F2I ....[X*(F,,), F*(£,)]
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are independent. Then the random vectors
2 DAEd, o)l i [F(E), y*(E)]

are also independent.
Using (5), we obtain now

P{[*(£), Y(E)} * i [XfiEfi T*(E)]} S

N 20 (BOHK(E%)+a3(E )] +8& (£), a2(£.), ; 3ED.

It follows from relations (6) and (7) that for every g>0,
nax S(AXE:), A(£), A(E;)) < e

Hence

®) P{Il*E), yEN ™0 [**(E), y *(EJ]}  [A(E)+AA(E) + A(E)]e.

In the same way we obtain

9) P{[*(£), y(£)] * 1 [T*(£), y*EQL} =[A(E) + AA(E) + A(E)]«

From the independence of the random vectors

2 [**(€), y*(Ed], 2[x*(Fd, y*(E)]
and from (8) and (9), we have
|P[AT(£) = kIt Y(E) = k2, X(F) = h, Y(F) =rj-
- ?[X(E) = kIt y(£) = AAP[AT(E) = ilfy(E) = 1J| ~
SIIANEUE)+ A2(EUE) + B(EUE)]e.
The last relation completes the proof.

Theorem 2. |f conditions 1° and 2° are satisfied then, for every £6#" and any
nonnegative integers n, m, we have

min (n, m) 77 T .
PIX(E) = ny(e) =m 2 A(r:'(_ff(/)*\(m Elzfliiﬂ EF O+ (£)]

Proof. Let (PE(t1, t2 denote, for each EfR7, the characteristic function of the
random vector [X(E\ Y(E)]. It is easy to see that

IeE(ij, B S 2e_cliE+AAE)+ &E)—L,



412 M. POLAK

so we have
WAh, h)\ + 0 for &l(E)+ X2(E) +X3(E) < log 2
n
Because of condition 1°, E has a disjoint decomposition E= 2 Ek with EV+

+h (Em;)+23(£))<log 2; i.e., [*E|(h, i=1, n.
But, because of Theorem 1, the random vectors [X(EJ) TEN] [T(t2, Y(E2\ ..
.» [X{En), Y(E,,\ are independent, hence

(10) «PjsOij %) = i|_|I VsSfli 12) 50 0

and we have
(11) log (pE(k, t2 = /2:llog VeM 1 t2-
From condition 2° we have
|("E (/j 979 (Ei)+"2(E,)— -—-£,1—-2")—
AL E— <B)—  AER BEPN—EL2 —
—el(i1+V (1 —e“ [AUEHABED)]- e [RED+AE,)] + e- [AE>XE+BER I A
S 2(£)) +32E)+ L.(E)EN (£). [.(E.), *.(E»}.

Hence there exists a complex valued function o(,y, , XA x3 of real variables for which
[o(X], x2, B|=1, g(0,0,0)=0 and

QEi(ti, /2 = c-[il(i,)+il(B])+41(BN]+
| MIEAAEN) AB(el) N — feftz~k (Ef)—AgE)
(E)+RE)]_e~[RE)+M(E)]_I_e-[ALE)+A(E) + BED] +
+ 2[R2UE+A2(N )+ 23(M) D (2L(EN), ;.2(E), N (MM~ ), W ), [3(E))e
Expanding log (~.(/y, rd in Taylor series we have
log €£j(h, 12 =  (£,)(cif-1)+ 12(Ed(et- 1)+ (Fm)(e-«,+<P_ 1)+

(12

+ kJ:I hiEd~-AEd, h(EA A3(if,)
where for = 1,2, 3
(13) x1>|<"}1 L ek(x!, x2,x3 = 0.

Substituting (12) into (11), we have
log 9&(h, Q = 21(E)(cib-1) +12(T)(cib -1) + A3(E)(ei0.+'))-1) +
(14)

+ 2 2 [AIEMAIEI), +AEA +E))]
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It follows from (14) that

n 3
T= Z Zy*&d*k(M(EdWd X*iEd)]

is a constant, and from (13) we have

T|s ﬁ_glAt(E) max eNE ), A(E-), A(E)) - 0

as Aji-BE)), A(E|), AB(E()->0. Hence E=0.
Theorem 2 follows from the last identity and from (14).

Theorem 3. Let, for each E, FE!F,
P[*,(tm) = 0, YfF) = (0] =
PAr(£) = 0] = rtid £)+,»"Ex
(15) P[T;(£) = 0] = «W,,<*)+*,,(*)],
i=1, 2, j;nm=0,1

P[*v(E) - n yr(E) = m] =

and let the set functions

A(E) = ZNi(E). W )= ZA(M). M(E)= Z W )

be measures on !F as in 1° Iffor each E, FAUF we have

(16) P{n [*I(E) =nl,YI(E) = mjl = // P[Xt(E) - n,, YY(E) = mj

for all nonnegative integers nk,n2,  ns; ml, m2, ms with

ZniNl Zmi- Db
then

p[lzil *(£) = » EYi(E)= mJI =

= m n) a;-*(E)A?-*(e)™(e) e_[VE)+VE)+VE)]
=i>  {n—k)I (m—k)\ kIl

for any EE£IF.
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Proof. Let E, FE2F be arbitrary sets, then from (16) and (15) we get

PLi X(E)=0, 2 Yi(P)=°1= A pW(£) =0 Y(F) =0 =

I—1

_ g-[AL(E)+A(F)+ A (EUF)]>
(17) p[z*i(£) - o] = e-»,m+i,wi,

P[2 Yi(E) = o] =

Now it is easy to see that
p-Ll_:Z Xi(B) = 1. E Yi(E) = 1] = | _ZI nP[Xi(E) = 6il,Yi(E) = 6ij]
i— i=1 ] J=1i=1

(18) = J1 17 miny 'a<j) HAQAg, <(£,)*3(£") (£)+ x.L(E) + L,i (E)I _

v o a ,"! *fo (a«-fc)l(iy-fc)tfc!

[AX(E) + A2(E*)+ A3(E)] th(«+a(E)+a (e)i
and also
(19) pLZ:’i‘t(E) =1, i/;?/i(“ = 05: jz=i ,/=7i,"p(’\)e-|*»w+i»(*)+i~(®1:
= Al(£)e~[A(E)*+V BE)+V BEL

In the same way it can be proved that

(20) P[2,XI(E) = 0, 21W ) = I] = A(E)E-[V «+M eVl

Now let us put

J(E)=1-ppj (£)=1, A (E) = 1]-

-p[ir(~) =i, ir,0E) = 0]-

—p Jjglme)

0, Z, Yi(E)

I:h—
- p([.iE:l Xi(E) = o, iy i(n) = oJI.

Taking into account (17), (18), (19) and (20), we have

(21) /(E) = I-[I-A LE)-A2(E)-A3(£)-AL(E)Aa(E)]e-"<B+i.(B+NEL
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Because of (17) and (21), condition 2° is met and Aa>k3 meet condition 1°.
Thus we apply Theorem 2 and the proof of Theorem 3 is complete.

Theorem 4. Let, for any E, F$_3F,

(22) P[i€1X,(E) =0, _21ri(F) = ol = e-M«+V*>+V*uF)
= 1=

PRA:]?( i(E) = n, igl Yt(E) = mJI =
(23)
: A (E)A T (£)A(E)
k=0 («—fe)l({M—fc)! fc!

where IfE ), /2(E) and A3(E) are measures on S' satisfying condition 1°.

If for all E,
(24) Pffl IXt(E) =0, YfF) = 0]} = LI {P[W ) = 0, YF) = 0]},
(25) P[/7[*,(£) = 0]} = Il P[X,(E) = 0],
(26;) p{\/\r/]-l [YtiE) = O]I}= 1471 P[r,(£) = 0],
an
(27) P[X,(E) = 0, Yi(F) = 0] = afw<w<>a*Woar<*UR»
(28) P[XfE) = 0] = af»<A
(29) P[Ti(E:) = 0] = af.U,ren<w, i = 1, 2, S,

/Ae a,> 1 being arbitrary numbers, and Fly F2, F3arbitrary real-valuedfunctions, then
PIXE) = n VHE) =M= e (n—i\(m —k)\k

i—1, 2, s;n,m~"0
for
_ 10a6i
hki(E) = ku(E) 0 k=123
i2:1 lo§ ai
Proof. Because of (22) and (24)

e-[VE>+VFI+VEUF)] = pf2 x,(E) = 0, 2. W ) = ol =
1=l 1=1

= P{LWAE) = 0.Y,(F) = 0L = fLPIX,(E) =0, T.(F) = 0],
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From (27) we get

tl
e-U ,(£)+A2(F)+A3(EUF)] _ JJ aFJu|(£),A2(F),A3(EUF))

Hence

and

—[A, (EJ+Aj(E)+ AaEUf)]Iog n,/ £ logo,-

P[*iJE) = 0, Yt(F) =0l = e
In the same way it can be proved that
- [A,(EH-AS(E)] logo,./ f logo.
Pl2r;(F) - 0] = e
and
—[ 2( ) - \?(E)]Io a,- logo,
Plyie) = 0 = ¢ e,
Observe that (2)—(4) in condition 2°, and also (5) are satisfied.
Indeed, let us define

A —{(n, m): n, NXN, ni:2, m=0Un=0, mS 2Un S 2,
m=1Un=1 mS2U«i2, mg£ 2}

Then we have, for i=\,2, ..., s,

Condition 1°is also met for all i==l, 2, ..., s because if 22, 2S satisfy con-
dition 1°, then for any arbitrary c¢>0, c¢/."E), i=1,2,3 also satisfy condition 1°
Since both conditions of Theorem 2 hold, the proof of Theorem 4 is complete.
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ON AN IMBALANCE PROBLEM OF G. WAGNER
CONCERNING POLYNOMIALS

JOZSEF BECK

Answering a question of P. Erdés [2], G. Wagner [3] proved the following beauti-
ful theorem: Given an arbitrary infinite sequence c=("1, g2>...) of points on the

n
unit circle {z: |z|=1}, the sequence of polynomials pn(z)=p,,(z; <w)= J[ (z—F-)

does not remain uniformly bounded on the unit circle. This result is in‘]_t}l“le same
spirit as the classical Van Aardenne—Ehrenfest theorem (see [1]) on irregularities
of distribution of sequences.

In connection with the extension of the problem above for arbitrary compact
subsets of the complex plane, Wagner raised an elementary problem as follows
(see [4]).

On the unit circle {z: |z|]= 1} consider polynomials of degree («—1) having as
their (simple or multiple) zeros n-th roots of unity only. That is, consider the polyno-
mials p(z) of the form

(1) _/70 where (j = eintjin

J:
and the sum of multiplicities aj equals (n—1). Does there exist a function f(n) with
M — as n—°° such that, for any p(z) of type (1), max |p(z)|>/(«)?

Observe that for polynomials p(z) of type (1) having simple zeros only,
*@Ig \p(z)\=n. Wagner suspected that there is a universal <5>0 such that for any

polynomial p(z) of type (1), rIT’l?—)f lp(2)|>;ii.

Erd6s disagreed, he believed that there exists a polynomial p(z) of type (1) such
that rl]l?)i |[p(z)|<C, where C is independent of n. Our objective is to prove the valid-

ity of Erdds’ belief.
Theorem. There exists a polynomial p(z) of type (1) such that niax |p(z)|<scl.

The well-known Vinogradov notation /(n)<scg(n) means that f(n) =0(g(n)),
i.e.,, \f(n)/g(n)\ remains bounded as n tends to infinity.

Proof. We start with the definition of the desired polynomial p(z), that is, we
shall associate multiplicities aly with the n-th roots of unity g= é2 Jn2

1980 Mathematics Subject Classifications. Primary 10K30; Secondary 10F40.
Key words and phrases. Irregularities of point distributions, polynomials with multiple zeros,
maximum norm.
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O "jAn —1 such that

2 c¢j=n—1 and max s3 \Z—:tjraj e« 1.
J:o M=1j=o0
We shall denote by lj, 0=j*s and Ay, O~/Sj—1 the indices for which
(i. and Q¢ have multiplicities 0 and 2, respectively. The sequences {/,} and {kj} will
have the following basic properties:

0—/,< kg ~1% -i. ~k=n-1
and
P<iy- 2 (Ki-id-(x-iiQ « 1
@ iy 2y (x-ii0
uniformly for all 0S xS «-1. Here i0 denotes the index for which lio*x < kia

h
Let /0=0. Let /x>0 be the firstinteger such that / (y/n)dy”1. Assume now
0

that /!< are already defined, then let /;>/;_! be the first integer such
that

J 07«)dy ™ i

Let Iqdenote the first index Sn/4. Then let
g+i = lg+4i, i=1,2,... if only Ig+i*n/2.

Let/r_! denote the last index ~n/2, then let Ir=Ir_x+4. Let us extend Ir+i (almost)
symmetrically:
Ir+i = Ir+ (/r-/r_) ifonly /r+i< n—L
Let Is_! denote the last index <« —L1 Finally, let Is=n—1
Now we define the sequence kj,j=0, 1, ..., s—1. Let kj=Ilj+ 1 if only j=q.
For q<jSr—1 let kj—j be the integral part of the expression

J'V ' Vg y- & l(E:-*,-)'

For r"jSs —1 we extend kj as follows: let
lj+i kj =k2+-j-i 12— —*
We mention some further consequences of the definitions above:
(3a) Ixrs<scnl2 and /jHl—,»«: nl,- for 1S iSr;
(the notation f(n)» <ag{n) means that both f(ri)»g(ri) and f{ri)«g(n))
(3b) n2 and Is.i-Is.i-1=li+1-1, for lei”™
(4 1s k[—li=2 if 0s igr and 1~ [fi+l— ~ 2 if rs/gj-1I.
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Now we are ready to define the desired p(z): let p(z)=_.[J (z—Cj)*J where
j=o

0 if ;€{/o, ooy U
a? = 2 if jE{kO, kIt fs_J
1 otherwise.

In what follows we shall show that the polynomial p(z) of degree &—1 is bounded
in |z|=1. We shall verify this only in the arc {el-"I" —1/2StS/r} (we recall
that /r~n/2). The case of the complementing arc goes similarly using the fact the
rootsystem of p(z) is almost symmetrical.

Let z0=e2ni,n, where

jo=t< luti—j °

We have
P(z0) —PiPiP3>
where
1
Pi = (*o-CO 77 (z0-Q, ~2
h7uw #
and
A .- il:z) Vzo
First we show
H *
(5 Nl « - w1

If t"ku+l then \zn~£ku\<zcVn. Therefore, using the facts |z0—£luH]:» (/u+1—F)/«

and 20 1 n, we obtain

N—
zS-1 22—, n
2«-C,u 20~C/,,H L+i~*

If t>ku+ 1 then \(z0—Cjt, (20— |«scl, therefore using again the inequality
\zo-Ctu+\»OQu+i-t)/n we get

\Pi\

oL AQ CRoM
IM -14-117 1 «
lzo-C,u+ll zo-C (u L+i t
which completes (5).

Let
« - (ME&s)e
where the products JJ* and [J** are extended over all i'Sw+1 for which

z0~Ckt 1

! or si, respectively.
zo“ Ci,H

2r*
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Clearly, P2=P'P". We claim
(6) N «l-

Simple calculation shows that for the factors of the product Pl we have (see (4)):

D cii 1 crcas)-2 c
7 1+
() z, - . 1-ci+i n-h+
with a suitable absolute constant ¢>0. Let ml=n~Iuwi, i=0,1,2,.... By (3a)
and (3b), wp=1 m ~n 12 mi+l—miy>n/mi, i=1,2,  Now we need a general
lemma.
Lemma 1. Let a sequence 1=wO0<Wj<... mv of integers be given such that
. . . » ]
m A n 112 mi+l—mi*>nlmi, i=1, —1. Then N -—<scl.
i=0 rm

Proof. The hypothesis of the lemma yields that the interval [x, 2x) contains
<scx2n  elements of the sequence mOm1, ..., m,. Let [log2n\ denote the integral
part of the binary logarithm of n. Then

f 1 [tog2nj 1 iiogjq 4 \
i2=o-?A/F: /2=0 ;2 aw;, j=20 O_ZAJ7
1d?71 2j 1 1 1
jg T * 1+2+4+ 8+"'=2" D

By (7) and Lemma 1

AN exp ECJI:OEJE = e0(1) « 1,

which proves (6).
In order to finish the proof it suffices to verify the following estimates:

(8) ”«(Vr"

© Mg ox )

Indeed, if 2£ 5 then P3=1 (empty product). Thus, by (3), (5),
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(6) and (8)
bOgl = I'M\K\ \pAp>\« (7~ 37){~v1}"™ ™
k1
|—) - - o(n1 « l
Wt '
If Ir*t~ 11—, then again by (3), (5), (6), (8) and (9) we have
NO)LI=1M117M11NM1IN D
t M TV
y(L+i 1) N [t—
e )V onJ I/ i
*UH ku-1 .
PSR T YRR (RN

«

t ) "I(/uH-0tJ
n(n/o) o (\) (i< 4

which completes the proof of the theorem.
Both (8) and (9) are corollaries of the following general lemma.

Lemma 2. Let be given the positive real numbers n, O<oc<lI, b *b .,

and coefficients Sj= 1 or O, ISy”m such that m *~a n,

(10) Bi« —1
uniformly for all 1SjSm; and

(1

uniformly for all 0 Then

2 Zjbj-ct 2 hi « L
y=l y=i

Proof. Clearly,

2 EJbJaZ bj\ ~ I a_JUHH*'

+ Si+ S2-

A

421

. m>bhn
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By (10), (11) and Abel’s summation method, S~~I. On the other hand, by (10)
s,= i JiySI. O
J=1 in - =1 N J

Now we deduce (8) from Lemma 2. For notational convenience let

Zoq—Cj+H J [+l 3 +fcHl]’

, _ Vfri. , x * 11 if «6”

ACOH [fA fitl) & 10 if i€[0,n- 1]v*.

From the definition of P, it follows that

(12) A ) z0 Cki
o i:kk"J zo—Cii+1
The right-hand side of (12) can be written in the form _jl Dd, therefore
Jt

13 VP2A /o), =exp{- 2 O6j!°gttle
(13) iz ) p{i JE) J ng>
We recall that z0O=e2n'In. An easy calculation shows that for all jfJ

1_ 20-Ci*l ¢ g,

Dj z0-Cj J~t

with a suitable universal constant C>0. Thus

, 1 1
(14) IOgD]d-« j-t
uniformly for all jfJ. Moreover, observe that for jfj
(15) 1_ -1
Dj Dj+1

Let us denote K=ku+l. We claim

(16) o -n_K_ycIy « 1
j=* « n

uniformly for Osx”n/3.
In order to prove (16) let 3j=1—j. By definition

W

5j= 2 (kj-1j) +W -1j0,
=0 J--kjrw

J
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where jO denotes the index for which 1J0"W <kJo Thus, by (2)

an z,si- £ (yimdy « 1

K+x K+x

uniformly for O"W "n—1L1 Using the identity 2 Sj={x+I)—2 $H and (17)
i=K i=K

we have

K+Xx
*+ 1 i "
(*+1)-'2 < 9 " K vy
K+x

=0(1)+ (X+|)'(1]|c {yin) dy - P] "'ﬁ ydy =o(i)+o« 1,

completing the verification of (16).
By (14), (15), (16) and Lemma 2 we obtain

(18) 26jlogh. — A2 \o «
J%J 9%

n leg

A
dJj
By (13) and (18)

Ins exp{—2 Io844: exp i-+ — Z log-~-+°0)}
1 HJ D j> . n o JiJ uj >

N —_— ~ ~ = i " e
| — >~ 2,094 4 = (770)

Clearly,
X
o F zo  Ck K o~ =+i 1
n n 0 Cj+1 n n

k [k kty) ! Iy~ {*+11,

hence
n—K
. IPil « { n )

which proves (8).

The proof of (9) goes similarly. If rcjlo-y = —y , /x—"-) then P3=1 (empty
product). Now assume that t"|1— Let K*=ku-X and 7*=1[0, K*-1], We
have

= —-\' = 77 d)’”’1= a Djij=
o\ = 7x A q, jt* ita*

(19)

= exp I1 2. log DnJ-

»
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For all j£J*, 1"Dj<DJ+ and log D,«;-/—\———/r. Furthermore, by (2)
2 <j~ f (y/n)dy «1 uniformly for all x£J*.
J- 0

Applying Lemma 2 we obtain

K*
. . Kx | .
j£2j* SjlogDj - Jgj* log Dj

Returning to (19)

\P3\ = exp{- j£2j* Iogd\) « exp {[ - j%J*Iog Oy|j =
K* K*

_ Ny zok*

_(jAJI*DJ) © T z0 {0 lzo 11 = m T-

This completes the proof of (9) and completes the proof of the theorem. O
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It is natural to conjecture, that in order to ensure the validity of (1), 9,, should be

chosen as 1/log n. Surprisingly enough however, the condition 0,,—0 suffices.
Theorem 2. Let g1, £a, ... be asin Theorem 1, and £1jB, ..., an independent

n
0—1 sequence with P(£;,,=1)=0,. Let k= and it the index of the t-th

i=1
lin f>B ..., G,, t=1, ..., k, 2=0. Let vt(n) be the length of the longest run of Vs
within £;t_1+, ..., tiit and v(«) = max vt(n). Suppose that 0,,70, then

pilim-iWw - =
V  logn )

Proof Of Theorem 1. We start with quoting the result of Erd6s—Rény:i

Let v(n) be the length of the longest run of |’s in ..., En. Then

V  logn )

Because of this result, it suffices to show

v(n) i |

P flim ,
log n )

=1

For arbitrary e>0 we introduce the following notations:
m:=[(\ —e)logri\, [a] denotes the largest integer not greater than X

v«(n) ;= max {3,-: €+l =..= £+ = 1; (t-1)kn==; < tk,},

ALjo— {i(-Dkn+(-Dm +1 — E(r-1)kn+jm 1} t=1, .., i.

With this notations we get immediately an upper bound for P(v(«)<m), especially

m id ft] |
P(v(n) < m) * p n (v«o0 < =P n n k,
t=i t=i j=i
s (1-2-)[d ft] (fel f[!)

Therefore we get:

Pvuy<m)s @-— @ &n 2 for Kk, <n°®

Pviny < m)s (1-— @£ m for kn>n 2

-1 i—L
P(v(n) < m) » 1— v’ ' for na~fc,Sn 2 and
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n large enough, So we get

G

y P(v(n)<m)S C2 e~n <°°

nEW N
with some positive constant C. An application of the Borel—Cantelli-lemma
completes the proof. |

Proof of Theorem 2. We will independently modify the values of the orginal
variables  such that we could look for the longest run in the whole new sequence.
This modification consists of defining the last variable of all blocks to be zero:

if i=1i, for some t
otherwise.

0.

Then the sequence 1jl, ...,rjnis i.i.d. with probability RFGii= 1)= 1- and v(n)

is the longest run of I’siin f]t, ...,r]n. Since P(~j=1)<—, we can a fortiori use Erdés

—Rényi’s theorem in the same way as before. Therefore we need to prove

e A _
pRI)mlanOJgnS I} 1.
Let w=[(l —e) log ri\ and denote the event, that at least one of the random variables

th, ..., >i+mi is zero by R,. Then
P(v(n) < m) S P(B1B1#m... B*

Since Bf, Bj are independent for \i—§\"m, we get
P(vin) < m)s P(Bi)[ m21S (I-m ~ i) expl- m2m )’
Therefore 1im 0,,=0 yields
P(v(n) < m) ~ Cexp(—n2)

for some positive constant C and n large enough. As before this inequality and the
Borel—Cantelli lemma yields

Pﬁlim ian-Jg"n- Ia =1 1

Remark 3. It follows from the results of Koml6s—Tusnady [2], that lim 0,,=O
is a necessary condition. Indeed, for the case lim sup 0,,~A>0 one can easily deduce
from their results, that

... vQOo A log 2
P clm inf log« — log2—log (1 —h)
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DICHTEABSCHATZUNGEN FUR MEHRFACHE GITTERFORMIGE
KUGELANORDNUNGEN IM Rmll

U. BOLLE

1

In dieser Arbeit sollen die in [1] angegebenen Dichteabschatzungen fur die noch
fehlenden Dimensionen bewiesen werden. Ich benutze dabei die Bezeichnungsweise
der genannten Arbeit. Insbesondere bezeichne dfm) bzw. Z\(m) die optimale Dichte
einer gitterformigen ~-Packung bzw. /c-Uberdeckung mit Einheitskugeln im Rm
Insgesamt wird sich damit ergeben:

Satz. Sei m(|N, 2. Dann gelten
fir m~ 1(4)
- m+1 m+1
1) C g l-cnk~"~, D||(m>—1+Cer am g
fur m= 1(4)
di m+3 Di m-3
2) En) ~ 1~emk , I'(nb N1 +Cmk  2M

(cm, Cm> 0 nur von m abhangig).

[1] enthalt den Beweis von (1) fir m=3(4), von (2) fur Packungen und wsl(8)
bzw. Uberdeckungen und m= 5(8).

2

Um die Ergebnisse aus [1] benutzen zu kdnnen, bleiben einige Aussagen nach-
zutragen. Zunéchst ist zu zeigen, daR die Voraussetzung von Lemma 3 [1] fiir gerade
m erfullt ist.

. 2 2 .
Lemma 1. Seien m, M, «<EN; m—2M: 'nT_15hSn_' Dann ist S=S(y,h)

(s. die Formel unten) als Funktion von y fiir kein h konstant.

Beweis. Ich beweise die Behauptung nur fir gerade n=2N, der andere Fall
verlauft ganz entsprechend. Da

2 h %2 st h= 2 L
n+ 1 ne T n+2x  N+x

1980 Mathematics Subject Classification. Primary 10E30; Secondary 05B40.
Key words and phrases. Multiple packing, multiple covering, lattice packing of spheres, lattice
covering with spheres.
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mit einem geeigneten Xxf |o; y1 .
M +
2 =

S(y,h) = Vm_llm_2y|_1(1~ (ih-yf)

= vml ( _2N+1(1-07I-yf)M~ +r(y,h)),

wobei

{ L M
(I-(7V/i+j)2 2 fur y~xh

0 fur >>>xh.

Seizunachst x>0. Dann gilt \ih—y\< 1 far —N +1-"i*N, so dalR die Terme unter

dem Summenzeichen im angegebenen Bereich beliebig oft nach y differenzierbar sind,
r(M jjat dagegen hei y—xh eine Singularitét.

Behauptung. Sei /(j>)= (1—(Nh+y)2) 2 fur O”y”xh. Dann gilt

fw(y) =P.(J)(i-(Nh +y)IM 2
wobei P, ein Polynom iny ist und P,(xh)"0.

Beweis (durch vollstdndige Induktion),

t= 1
f'(y)=-2 (m —y) (Nh+y X I-iN h + yffr1l
also
piy) = -2 (Nh+y) und Pi(xh) =-2~M -y| ~ 0.
/ & 1
. [ (+1>00 - Pi+1(j)(i-(iVh+j)&F _2_, 1
mit

PeH@Y) =(\-(Nh+y)3p;(>)- 2(m -y - 1 (A'/i+JOPriv);

A+iCxh) = - 2(m - | - 0) P,(xh) * 0.

Insgesamt ist S(M~r>bei y—xh nicht nach y differenzierbar, also S nicht konstant.
Far a=0 gilt:

Hier ist die Af-te Ableitung nach y fur den Summanden mit 1=TV bei j = 0 singulér,
wéahrend die Ubrigen Summanden im betrachteten Bereich beliebig oft differenzierbar
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sind. Der Beweis verlauft voéllig analog zum Fall jo Q Aus [1] ergibt sich mit

alm)— mhin maxhS(y, h),
y

Ahr) = max min hS(y, h) (2 Slig?;O"y"—lhj]:

Lemma 2. Seien n, wEN, m 2, so gilt
nmzty A Fo

mi An
Weiter bendétigen wir das Analogon der Aussage 4.2 aus [1] fur gerade m=2M.

Lemma 3.

wobei

M

-0, M- 2M+ Ln die M-te Bessel-Funktion bezeichnet.

Beweis. [3], S. 366, 368.
Mit diesem Lemma ergibt die zu 5 [1] analoge Rechnung:

Lemma 4. Seien m,ndN, m=2M"2, 2—
n+1

2_. .
0—-r\{— rh. D;ann gilt:
hS(y, h) - KatLrad,M-*\fM(i£Z)+/M(V ~)) +0(/,M+ *>’
wobei
Lm=VmIr[M+j}n~M~
und

/ImW = 2 r 2sin ~"27crx-2M4 1 Ttj.
Wir werden im folgenden fir den ofter vorkommenden Term

f (—")+f (“X -) kurz FiwW h) schreiben.
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In diesem Kapitel sollen die f M ndher untersucht werden. Zunéachst ist f M fiir
M s 1 und jedes x konvergent. Die beiden folgenden Aussagen bekommt man durch
einfaches Nachrechnen.

3.1. Fir M s2 gilt:
[ mW =~2nfu - 1(x).
3.2. Fir Ms1

/ m(0) = /m(2) = -sin ) C(m+1)
(C bezeichne die Riemannsche Zeta-Funktion)

Im(j) -(1-2 M+2)/m(0).

Aus 3.2 folgt, daR / Mfiir M sl in (ojyj und ~y; Ij wenigstens je eine Null-
stelle besitzt.

3.3. f M besitztfir M sl genau je eine Nullstelle in |o;y j und j™y; Ij . Diese
Nullstellen sind einfach.

Beweis. Nach [3], S. 268 gilt:

CroM Ziyct—M -fy xj fir MS 0
2r

K t)

/' m

und 0<x=Aal.
Dabei bezeichnet C(s, a) die fir Re(v)>l und O0<a”l durch £(s, a)=

= N (r+a)~s definierte verallgemeinerte ~-Funktion. Diese Funktion laBt sich wie
r=0

die Riemannsche ~-Funktion zu einer in der ganzen komplexen Ebene meromorphen

Funktion fortsetzen und besitzt eine einfache Polstelle bei 5=1 (s. [3], S. 265 ff).

Wie man leicht nachrechnet, gilt fiir diese Funktion

da C(s,a) = —s£(s+ 1, a).

KKKITKKIK f-,

fir 0<xSI1 Daher ist /O(x):=f—2 K x} streng monoton fallend fur 0<x /1.

Nun ist
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Weiter bekommt man wie bei der analytischen Fortsetzung der Riemannschen

~-Funktion
c{h N =-2F;+ 4 =-4 f dt.
(2 B yx ZF—O)/ (r+x+1i)2

Jig Je(*) =+, 10(D)

Daraus folgt:

Daher besitzt /,, genau eine einfache Nullstelle in (0; 1). Wegen f'1(x)= —2nf0(x)
besitztfx dann genau ein relatives Extremum in (0, 1), es gibt genau zwei Nullstellen,

von denen nach 3.2 eine in |o, yj, die andere in |y, 1j liegt, und diese Nullstellen

sind einfach.
Der Rest folgt durch Induktion mit Hilfe von 3.1. Sei also schon bewiesen, dafl3
fM (A/S 1) genau zwei Nullstellen in den richtigen Intervallen hat.

Annahme 1./ M#l besitzt zwei verschiedene Nullstellen z.B. in |o, yj W'egen

/I m+i(0)/ai+i ~yj<0 gibt es dann entweder sogar drei Nullstellen oder zwei, von
denen eine mehrfach ist. In beiden Fallen hatfl+i, also auch f Mzwei Nullstellen in

(0, Y J . Widerspruch!
Annahme 2./ Mtl besitzt genau eine Nullstelle in 70, yj, aber diese ist nicht

einfach. Dann ist sie von ungerader Vielfachheit S3, weil /m+i(0)/m+, ~yj<O0.

Dann hat aber f M dort eine Nullstelle gerader Vielfachheit S2. Widerspruch!
Wir bezeichnen im folgenden mit xM, XM die beiden eindeutig bestimmten Null-

stellen von f Min (0, 1), und zwar so, dall xMe{o, yj, XNy, |j-

3.4. Fir die Nullsteilen xM,x'M gilt
1 falls M= 0(2):

* i A J J_ +R
Xm:.lstAzl'J' ﬁ: 2mFi 3T ‘W

7 92
Xm 8+2n’ oMy T 33U «

i c= Al+y, IRjl|/?74< ~

XM< xMH2  g'> XM~ xM+2 'y

28
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2. falls M= 1(2):

* =1 L 9 1 11 mn

M 8 2n’ 7 2M +1+3e+/<3
5

§~21~7 A 2m+r + 6fF + **

1*31, 1*41 < Q
1 5
XM XM+2 'g> XM gt

Der Beweis dieser Aussagen verlauft jeweils analog, ich gebe ihn daher nur fir
M =0(2) und xm an. Sei also M=2fi,/ien. Dann gilt

Im(x) = 2 r~csin\2nrx~nn+" =

= (-ir r~csin*nrx +jyY

Offenbar ist ff(0)=-jLi(c)>0. Weiter gilt:

Im folgenden sei a(x):=(—iy/M(X).
n
°(4) =1 SIn(T4 + FSin(44 +-4Sin(x *)+*5 ~ 5c
1 1 1

2Me1 A st — Mt + RS =

1
MK () + 2m+e |+ *5<0 fur MS 2

f1l] 321 .5 v, (7 J_1.(9
<71-11 Ug ) 2 U J -r_SInU )———i’&&n&@l+

+F sin(x M+HR” |A6]” t4 5"

1 1 11 1 11,,

= /2 2MHL j/J 3C+ 4AMHL + >0 fur M - 2-

setzt, so st

. . 1 3
insgesamt ergibt sich x , und wenn man XM=—
(0] 0 2n
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Daraus folgt

9<iLj/2 sin (9) -c 1,12 sin (9).

1,03
Als grobe Abschatzung fir 9 erhalt man 9-

fir Ms2.
Beweis.
0= <r(xM) = sin(7t—9)+ -~sin [j7r-26j + ... --"-sin (59) +R7; |A,|=s-"y5'

n. 1 1 5 1

sin(9)< r +- +y+ — i~y fur Ms 2

Q3 | 03

1
9 sasin(e)+"<sin(9) +j(1,12)ssin3(9)< -prr fur M = 2-
Schlieflich gilt

sin (9) = sin +29j+... +-rsin (59)+ /?27= 2MHL  AANG?
, 103 1 9,62 1 1 1 5 9
< Yl 22c~I| + 22c-23c+ 4C+ 5C+ 5Cc-1 ~ 4C'
Aus
is‘m/(%-sﬂ' g 33,9 T%] hoa 2 fur Mms 2
folgt dann
S= pedir-dg AL
wie behauptet. Diese Abschatzung ergibt xM<xM+2, wenn
1 1 93 1 1 9,3
2 Mk1 3C 4C 2 Mia 4«+2

ist. Das ist fir M s5 erfullt. Die restlichen Falle lassen sich durch direktes Nach-
rechnen erledigen. Die Ergebnisse sind in der folgenden Tabelle zusammengestelit:

M x'm
0,06 < < 0,07 0,65 < X[ «=0,66
0,355 < x2-=0,360 0,901 < x3< 0,902

28+

1
2
3
4
5
6

0,110 < x3< 0,113
0,370 < x4< 0,371
0,122 < x5< 0,123
0,373 < *, < 0,374

0,633 < x4 < 0,634
0,880 < xi < 0,881
0,627 < Xi < 0,628
0,876 < < 0,877
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3.5. Es gilt
fur M = 0(2)
Uil < (i)l fir ws 19, m > 1
Ich gebe wieder nur den Beweis fir M= 0(2) an, um Wiederholungen zu ver-
meiden.

Beweis.

Fir M=0(2) qilt:

<g a0 Nl ]

Nun ist
Im(y) ~ 2m+1 4c 14M
und
1 1 1 2
I/mOm-1IH< 1- 2m+1+ 4N+ 7117 saM+
f 1 1 10,69 (Al 1 Y& j'
+(Z2n 3G + 4nj \2mtc1 2ma
Man rechnet nach, daR sicher fir Mfe6.

Die restlichen Falle lassen sich wieder numerisch erledigen. Die Ergebnisse sind
in den folgenden Graphen enthalten.
Um

afm = mhinmyax/iS(j, h), hzw. A™m) = max myin hS(y, h)

abzuschéatzen, bleiben noch die dem Lemma 4 aus [1] entsprechenden Aussagen zu
beweisen.

Lemma 5. a) Sei m=2M+1, A/fN, nEN. Dann gilt
1. fir M=0(4) und alle hinreichend kleinen h

minmax (T M+1(y, — h TM+2(y, h)) =£ cxh'
2. fir M=2(4) und alle hinreichend kleinen h
max min {TM+fy, h ) -j~ A~ -h TM+2(y, h)) =-c 2h.

b) Sei m=2M, MdN und 1 Dann gilt
min max FM(y, h) S ¢3> 0

max m)in FM(y, h) S —c4< 0.
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Dabei sind die ¢, nur von m abhéngig und positiv, Tt(y, h)=Bi(@l)+Bi(ad die in [1]
eingefiihrten Funktionen, d.h. Gi/2€]0, 1] mit al/2= 2A Y mod 1 und Bi das i-te Ber-
noulli-Polynom. Ferner gelte

2 2 1
—n_'_—lS/ISn—, O—Sy 7

Beweis, @) 1. Im Beweis zu a) benutze ich die Bezeichnungsweise aus [1i];

h.

hier bedeute also x (ausnahmsweise die Nullstelle von Bfx) in 0, yj. Ferner sei zur
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Abkirzung
n +1) .
X = Tmtl—-—-- '\%ﬂ é) J hTM+i (und m=2M+l mit M = 0(4)).
[ 2 o i
e l1akt sich in der Form
L«+ 1’ n
A= T+ 2x 2
schreiben. Sei zunéchst n=2N gerade, also h- Nix . Dann geben wir fir jedes
r r r_ ai
1°7 21 ein M€I°°yd
Li. 0=x=—Xm+2- , 5
Dann gilt
TM+1(j!, h)
>t(yx, h) > cfi,c> 0.
+2(y15h) (yx. )
i | M+<5)(M+1
12, y *M+2<*=y - ( 8r)1(2 )4 und @=wl M.

Mit yi=-jh qgilt:
TM+1(yu h) 25M+1(l-e) = -25m+1(f)= -2 s(M+1)5m(0) + O(A2

Fvi+2(fiih) < 25m+2(0),

also
8k3 M +2
[(M+c>)(M+)(M+2)  AMK,(0))) +0(h2 A
M +2 [ 492M Bm(0) 1]
M (M +1) ((M+5B)(M+ 1)(M+2) (M+1)(M+2)1 _
| 4+2M Jro(fed =

= -Ap-(M +iySh\BM{(X)\+0(h*) s ch, ¢ > 0.
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13 |-£<xs|: K0
Tm+i(Ji> —25m+l (-j—e) ——2e(M+ 1)5M j
AM+Cyi» 0 —  +2(-y—e) = 2am+2 j+0(/j2,

also

X A-AM+GKM +D21A (1) +7 T+ 11 /jbm2(4)L+° (M) =

M (M +1) 1 (M+<5)(AT+)(M+2) _
15 Vi) DRI gy
(t)
M (M + 1)2
D hom (4)k+0(A 2
it
m _ i—2-m-i C(M+2) &
I _2_M+i M*
Sei fur

*£2, i€N: el- (-2 -s+)C(i) = Zj~s- 22 VI)'l= 321(-IV +1r J-
= i=i =
Dann gilt: !

J—2-M-2 2M+a—1
L f«x1 >-+ £ 1'1 - |
eM< -2 - M+ 3-M\ eM  12~M+3~M - gu42 4
Z 3
1 2 ) R
(1_2-m-231+1.2-ai-2s [+ "2-m.
1 2--2

Damit haben wir:

K= 1—M~7§ -4%-2-M> 0=>¢(", a>c'h>0.
Insgesamt:
mjn m)e/\x r(y, h) s cvh 0.

Fir n—2N+\ laBt sich h in der Form =— z€(y> ’] schreiben. Ich gebe
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jeweils die zu wahlenden y\ an; die Rechnung ist véllig analog.

1 5
2 -7Z=8:4a4=0

-e: B=0
l—e< z ™ 1 yx= -jh.

2. Sei jetzt m=2M+\ und M=2(4). Wir betrachten zunachst den Fall

= 0(2), also n=2N und h—-—l----wiéooen. e sei ‘jetzt = M r- ‘) h.
N +Xx »
_ 1 1,
2.1 0s,sT:" - 1°
AM+101iA) —0
TQA7i, h) re h
M+21 & —2BMrl
1,
22 a=T7~£v
Tm+xO'1 A's 2am+1(1-e) =-2e(M +1)]i? Ai(O)[|+0(/121
hvf-AO'i* — 2|5 m+2(0)| J
t0i, AN An- h\om(Q)1+ M+2 h\Bm+2(0\+ O (h2 =
M (M +1) '
M +2 -c'h.
2.3. d.s<x®l:y1=0
Tu+iiyi, h) = 2Bm+1(y -8 = 2(M+ 1)Bm (1) +0(h°~)
AM+ziyii h) —2Bm+,|y _£) = 2B8M+2  +0(h2
M(M+1) . M+1)(M+2 .
~CVi, h) -M(+2 )h hr ( 37(t2 ! +ouiz
MM +1y 1+0(fc? i,

4782
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Insgesamt ergibt sich:
max myin t(j’’5h) S —c2h < 0.

Der Fall n=2N+1 laBt sich wieder véllig analog behandeln mit

2 z-T:M=0
-<zsl-£:j1 =0

l-e <zS1: =—h
Damit ist der Beweis zu a) beendet.

b) Sei von nun an m=2M gerade, XM wieder die eindeutig bestimmte Null-

stelle von fMin (o,y] und

FAy, hy=fM(~ ) +/,(» ) =
1. Wir betrachten zunachst den Fall M= 0(4).

_ . AL . .
1.1. n=2N gerade, also N X mit 0Sx 42. Dann gilt nach 3.5:

Um(*m- i)l ~ I/m@ee)|-

1
= |x —XxM_x waéhlt, so gilt

Wenn man )y

AN¥)Y=FfA N+xxT)=Ff*{*4i \
da f M periodisch ist mit der Periode 1, also

FAynh) =Im(x,\V-i)+/m(xM-i) = Im(xm-i)l—I/,, Um-i) 0.
Daher ist auch min max FM(y, /i)>0. Wahlt man
)}L Ar Baxa _3
& Fur y3 <XS yl,
so erhalt man

AV(y2,h)*2 min {/M(y), fM(y)} <0 fir O ~x"j,
bzw.

FM(yz, h) =82/M(y) < 0 fur |<r S j



442 U. BOLLE

nach 3.4, also
max min f M(y, h) < 0.

1.2. Fiur n=2N+\, also A=-27 mit 1 verlauft alles ganz ahnlich.
Jy +

2
Ich gebe daher nur die zu wahlenden  an:
z-xM_i fur . 1+
hh. u
1-(z-x M) fir y+% _1<ZS 1
A mWmO'ij h)y —|[/*f(*m-i)l- I/m(*m-DI >0
0 fir —s jrF M(y2,h)r 2max {/M(1), /M(1)} <0
Zhl u

2. M=I1(4), M s2. Hier gilt nach 3.5

!/ ai DA Um(*M-i)|.
2.1. u=2Af

— fir 04 x A —=>FM{yl,h)" 2fM

i
h 0 fur fjwO'i, h)"2 min |/ M(y ], /M|y 0.
I-(% -i-x) fur
Zi
h i 1 1
(*2) — —1WC*M-I)I+ Lim CAAl-i)I 0.
2.2. w=27V+.
0 fir h)S 2/ m
Z1
h 1 . 5 .
- lur §<z=1=>Fm(}’,,ft)—2m|n|/M[y],/M[y]}>0

y - — - -1 == FM(y2, ft) ~0-
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3. Ai=2(4).
3.1. n=2N.

y fur 0Sxa!l=>FMjah)a 2min|/m(y). °
4

h 0 fiur y <x i-=FM({y!, h)S 2fM(y) > °,

oy — [*-**[11 AAFO™ h) —  Um(*M-i)l + I/m(*M-i)l < 0.

3.2. «=2V+1
ZIl
h 1 f. 7 A i
T $r T 1=>FM(ylt h) ~ 2f M|y j > 0,
_ Z-XM-X %ﬂr yls ZS yl+*M'1
VA |
" 1-(: —»w-n fOr + -
(-Q_> h) = _|/m(/\m— i)|+ |/M(*M'I)I A 0-
4. N=3(4).
41. n=2N.
. 1— _'3 fir 0= x = xXM! Yy
i
’ fur Laxsy
M(j1;  —lai(*M-i)l  LjwC*ARl > 0,
] far 0=x = —=Fm(}2 fj) = 2M|
Zhl
0 fir L<xsy AN 2/m[{) <o.
42, n=2N+1
Bz — Vh G- LA CoH-DI>
y 0 fir iszs j=>FM(j2)S2/M" o
2
Nl

4- fir 4-'Sz~ 1= fm(\2>h) A 2/m(4) < O.
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Der Fall m=2 istin [2] ausfiihrlich behandelt. Er 1aBt sich ebenso wie die tbrigen m
erledigen, wenn man noch zeigt, daB max/j(.x)<|/1(0)| (x€[0, 1]). Man hat dann
folgende y( zu wéhlen:

n=2N:
U far 0Sides 01 ciyvi hy's 2minl, (0.1), /i(0.6)} > O,
0 fuir 01<xa 05
Y =x =FI(y2 h) =/i(0)+max/j(x) < O.
n=2N+\.
0 fir 05s zs 06
yl FAyi, h) S 2min{/.(0,), (0,6)} > 0,

h m fir 06<z=1

= l-z=> Fx(y2,h)~/i(1)+ max/i(z) < 0.
Der Beweis des Satzes folgt nun fast wortlich wie in [1].
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AN INVARIANCE THEOREM FOR BIRTH AND
DEATH PROCESSES WITH AN ABSORBING BARRIER

W. EBERL JR.

Summary

In this paper it is shown for time homogeneous birth and death processes with an absorbing
barrier that the distribution of absorption into this state is invariant against reversion of the order of
the birth and death rates.

For some nEN let be given positive (real) numbers ..,y _land filt..., Bn-t.
Then, according to known theorems on time homogeneous Markov processes (cf.
e.g. [1]) there always exist a unique transition function and correspondingly a birth
and death process 2P=(Xt)teio,°°) with the (finite) state space {0, 1, ..., n}, with
reflecting barrier 0 and absorbing state n such that the birth and death rates lake on
the preassigned values A0, resp. ply ..., p,,~1. For simplicity we additionally
assume the process to start from the state 0 at time O with probability 1

In various papers the distribution of absorption into state n, i.e. the distribution

of the random variable 7),=inf {t\Xt=n}, resp. its limiting distribution for n—°°
was investigated, mainly for special classes of transition rates (cf. e.q. [2], [3], [4], [5],
61, [8], [9)]).
[ [Ig tiEe])sequel we shall prove by elementary means that for fixed nEN 1he distri-
bution of absorption does not change if the order of the birth and of the death rates
is reversed. First, we provide some prerequisites. For j=1, ..., n let
7\:=inf {t>0|V,=_/} be the first entrance time into state j, which for j=n is just
the above introduced time of absorption. Denoting the reciprocal I/<Pj of the Laplace
transform >H of the distribution of Tj with Qjy in [2], p. 82 (5), the following recursion
formula was given:

jQj+i(s) = (Xj+iij+s)Qj(s)-ttjQj-1(s)  (Isjsn —I)
G =1 O0i(s) = 1+ sMo-
With the aid of this relationship we can prove the following

Theorem. Let NEN and let be given positive (real) numbers 20, resp.
ply ..., pn-i. Further, let P denote the distribution o f absorption into state nfor a ho-
mogeneous birth and death process 3C with the above enumerated properties and with
the birth and death rates A0, ..., 2,, 1 resp. plt ..., p,,_t. Finally, let P* designate the
distribution o f absorptionfor a corresponding birth and death process  with the birth

1980 Mathematics Subject Classification. Primary 60J80.
Key words and phrases. Birth-and-death processes.
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and death rates X,, 1, X0 resp. A, 1, pl. Then
P = P*

Proof. We consider the characteristic polynomial Dn of the infinitesimal gener-
ator of 3E and its principal minors Dj (Isj*n —lI), ie we put for j—\, n

2 s+20 —~0
~Pi Sf21+ /h 0
0 —Pi s+X2+p2  —A2
Djis) = .
—Pj-2 S+ Aj-2+ Pj-2 —0.-2
0 ~Pj-1 s+Mj-i+Pj-i

with the additional convention p0:=0 for Z(j) = 5+ X0. Expanding (2) with respect
to the last row we obtain immediately the relationship

(3) Dj(s) = (Xj-.1+Pj-1+s)DJ_1(s)-pjUj_2Dj,,2(s),
valid for j=2, n if we define Da=1 (cf. [7]). Hence, putting
DO= 1, Dj = DjI(X0... 2y j) =1 ..,n
and dividing both sides of (3) by A0...Ay Is we get
XJ- 1Dj(s) = (Xj_j+fij_«+ + S)Dj_1(s)- ftj 1 Dj_2s) (j =2, ... n)

with the initial conditions DO0=1, 5i(i)= 1+s/X0. Therefore the polynomials
Dj 0=0, ...,«) satisfy the same recurrence relation with the same initial conditions
as the polynomials Qj (y'=0, ...,«), which yields

) Q=D0—1 QI=DjIX0..Xj. D) (=1, ...

In virtue of (4) and because of the one-to-one correspondence between the Laplace
transforms and distributions it suffices to show the validity of

(5) D, = D*,

where correspondingly D* denotes the characteristic polynomial of the infinitesimal
generator of the process <& On verifying (5), we introduce the following matrices:

X " ‘
A = AN M= Pio |
o x°
- ° "« 0
G 1 0
>(.- K 2 O , M* Pn'l 0 0
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With these notations the following identities can readily be seen to hold :
A* = UAU, M*=UM1tU,
U~1=UT=U, UV=VTU,

where e.g. M T stands for the transpose of M. Besides we get for the characteristic
polynomials the representations

0 Dnfs) = WA-M)V+sI\\, D*(s) = \{A*-M*)V+sl\\,

where / is the nXn unit matrix.
Using the identities (6) we conclude

(A* —M*)V+sl = U (A-M UV +sl =
U(V-)TVT(A-M DUV +sl =
= U(V-DT[(A-M)V]TVTU+sl =
= {[/F[(d-IW)P]K-1C + s/ =
= {UV[(A-M)V+sI](UV)-TT.

Therefore the matrices (/I* —M*)V+sl and (A—M)V+sl are similar, thus having
the same determinants. Because of (7) this proves the validity of (5) and therefore the
theorem.

Remark 1. We have proved in the above theorem that the distribution of ab-
sorption remains unaltered if we reverse the order of all birth and of all death rates.
Actually, this result does not remain true any more if only some of the rates are per-
muted. This can be seen by simple counterexamples.

Remark 2. In the papers [2], [3], [4] the asymptotic distribution of absorption
was determined for sequences (.f<l),,(N of birth and death processes with the aboye
enumerated properties for special classes of birth and death rates. Especially, con-
stant resp. linearly increasing birth and/or death rates were considered. Our theorem
can be applied in an obvious way to get these limiting distributions for rates decreas-
ing linearly with the reached state. But there is an evident difference; whereas consid-
ering sequences (SE() with increasing rates the later were supposed to start with
fixed (i.e. for all nEN the same) values for the “first” states 0,1 a.s.0., correspondingly
in the decreasing case one has to start for any «6N with these values from behind
(i.e. from state n). Thus, for sufficiently large n, in the former case the rates of a (fixed)
state remain unaltered if we change n, whereas in the later case they vary with n.
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PACKING OF r-CONVEX DISCS

L. FEJES TOTH

We define an /"-convex domain as the intersection of circular discs of radius r.
We shall denote a domain and its area with the same symbol, and prove the following

Theorem. |f the r-convex discs c,,  cnofperimeter plt are packed into
a convex polygon h with at most six sides then the density d=(c\+ ... +c,,)/h of the
discs in h satisfies the inequality

d ~ 864rc

where p=(pl+ ... +P,,)/n is the average perimeter and c¢=(cx+ ... +c,,)/n the average
area of the discs.

As an example we consider the case when the discs are equal lenses, i.e. congruent
copies ofthe intersection of two circles, say, of radius 1 The area ofa lens of perimeter

p is equal to  —sin-"-. Thus

19

7 S1+ 18
“ifw» 1) 14864 (t)

i.e. d<18/19=0.9473.... On the other hand, it is known [1] that dean get arbitrarily
close to "8/3=0.9428

Proof of the Theorem. We may assume that r=1. We also may assume that
g (i=I, ..., n) is the intersection of a finite number of circles of unit radius. Let ak
be a k-gon of minimal area circumscribed about c=c;. Let Si, ..., Sk be the side-

midpoints of ak in their cyclic order, i.e. the points at which ak touches c. Let Sj be
the region bounded by the parts SjSj+1 of the boundaries of c and ak. Let Ij be the
length of the arc SjSj+1 of the boundary of c. If the closed arc Sj Sj+ does not con-
tain a vertex of c then

1980 Mathematics Subject Classification. Primary 52A45.
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otherwise

h
x4

This is obvious if Sj or SJHL is a vertex of ¢ but no vertex of c lies on the open
arc SjSj+1. If the open arc Sj Sj+1 contains a vertex of ¢ then the above inequality
follows from the following

Remark. Ifin the quadrangle ABCD with <2?=~180° we fix the length of the
sides AB and BC and the angles < A and < C then the area of the quadrangle is an
increasing function of < B.

First we consider the case when <AD£790° and < BDC”90°. Now replacing
<5 by a greater angle, the new quadrangle can be decomposed into triangles con-
gruent to the triangles ABD and BCD and a quadrangle (Fig. 1).

By

Fig. 2
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Supposing now that, say, <RDC>90°, we fix the side BC and increase <5
by an angle 8 obtaining the new quadrangle A'BCD' (Fig. 2). Let the rotation which
carries the side BA of ABCD into the side BA' of A'BCD' carry D into D*. If 3 is
sufficiently small the segments BD* and DD' intersect one another in a point, say, O,
and we have

A'BCD'- ABCD = ABD*+BCD+0OBD-0OD D*ABD-BCD =
= OBD-ODD*

But the order of magnitude of OBD is B while that of OD'D* is 82 Thus for suffi-
ciently small values of B we have A BCD'=-ABCD.

Now we assume that the open arc SjSJ+L contains one vertex V. We imagine
the corresponding lines of the sides of akto be fixed at Sj and SJ+l to the arcs SjV
and VSJ+1, and rotate these arcs about V so as to form one circular arc. Owing to the
above Remark Sj decreases by this operation. If the open arc SjSj+1 contains several
vertices of ¢, the above inequality can be seen by repeated application of this opera-
tion.

Now we have

= ' i(mt'Z)*k (,m£'£). po= pr-

Using the inequality tan x> xH— (0<x-=7t/2), we have

As the next step of the proof we use the known construction [2, 3, 4] of blowing
up the discs ck, ..., G, to non-overlapping convex polygons qlt ..., ¢, of number of
sides kx, such that ctc gtah and kk+...+k,,"6n. Then we have

h~ gt.-.+q,, N akl+...+akn> cl+...+cn+” (p Bkri+...+p”k~2.

Since the function z=x3~2 (x>0, j>0) is, because of zx¢ 0 and zxxzyy—z\y=0,
convex, we can use Jensen’s inequality obtaining

7 cl+ s +cn 864c
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A HEREDITARY RADICAL FOR NEAR-RINGS

MICHAEL HOLCOMBE

The four radicals ./,(TV), D(TV), JI(N), J2(N) of a near-ring N share many of the
properties possessed by the Jacobson radical of a ring. For many purposes the radical
J2(N) is the most important and has received study from several authors, in particular
Betsch [1] and Laxton [7].

Kaarli [6] has shown that / 2(TV) is a hereditary radical in the sense that, for an
ideal / of a near-ring TV

U1l) = IDJ2N).

In this paper we study a radical, which we call J3(N), for a near-ring that possesses
some interesting properties and is closely related to the radical J2(N). It was intro-
duced in [5] where it was shown to be a special radical. Here we show that it is also a
hereditary radical. This result has been announced in Pilz’ book [8] without proof.
If the near-ring TVhas an identity then J3(N)=J2(N). There are good reasons to
regard J3(N) as a more natural generalization of the Jacobson radical to near-rings
than any of the others mentioned above. These reasons will be discussed later. All
the near-rings in this note will be zero-symmetric [4].

Definition. Let TVbe a near-ring, an TV-module F is of type 3 if and only if
(i) FTV™O)
(i) F has no non-trivial TV-subgroups
(iii) yn=y'n for all wWe€TV=>y—y', where y,y'£T.
For a given near-ring TVthe class of TV-modules of type 3 is denoted by M3(N).
The radical J3(N) of a near-ring TVis defined by

J3(N)= r€|\f/IEG\1>(0r" where (F)* = {nEN\rn = O}

If M3(N) is empty we define J3(N)=N.

From the definition it is clear that /2(T\V)” /3(TV) and elementary examples
exist to show that the inequality can be strict.

Lemma 1 Let TVbe a near-ring and A a non-zero idea! of TV I f F is an A-module
of type 3 then F is also an N-module.

Proof. LetyCF with y*O, then either yA=F or yA=(0). If yA=(0) then
ya=0a for all a€A and so y=0. Therefore yA—T. If y'dT and n€7V we define

1980 Mathematics Subject Classification. Primary 16A76; Secondary 16A21.
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y'n as follows. There exists an a'dA suchthat y'=ya and then we put y'n=y(a'n).
We now check that this operation is well-defined. Suppose that y'=ya" for some
a"€A, then y(a'—a")=0. If we can show that y(a'n)=y(@"n) for any ndN we
will have succeeded. First we choose any adA, and then nadA and (ya')(na)=
=(ya")(na). Therefore (y(a’n))a=(y(a'n))a for all adA and thus y{ar)=
=y(a"n) as required. It is now immediate that F is an A-module under this opera-
tion.

Lemma 2. If A is anon-zero ideal of N and F is an A-module of type 3 then F is
an N-module of type 3.

Proor, (i) IN=(yA)N=y(AN)*y(AA) = TAN0).

(if) Suppose that AQF, Aa (0) and A is an A-subgroup of T. Then AAG
"ANQA and so A=T.

(iii) Let y',y"dr and suppose that y'n=y"n for all ndN. Let a',a"dA such
that y'=ya', y"=ya" where y is the same as the element y chosen in Lemma 1

Now y(a'n)=y(a"n) for all ndN, and, in particular, for any adA y(a'a)=
=y(a"a) and thus (ya')a=(ya")a for all adA. Therefore ya =ya". This means
that F is an A-module of type 3.

Lemma 3. Suppose that F is an N-module of type 3 and | is an ideal o fN such that
1% <T)* where (T)? is the (right) annihilatorofF in N. Then T isan I-module o ftype 3.

Proof. Clearly, T is an/-module and FIF-(0)- Suppose that A isan /-subgroup
of F, so that A is a subgroup of T and AIQA. Assume that there exists 6dA with
cMO. Now ()/is an /-subgroup o ff.and 6INQ®&I implying that Si is an A-subgroup
of I'. Therefore either d/=(0) or U=T. If df=F then A= , SO We assume that
Al=(0), thus 6NI=(0). Since "0, 5N=T and so FI=(0), a contradiction.
Therefore A=T and F has no non-trivial /-subgroups. Now suppose that y', y"dF
and y'i=y"i forall idl- There exists edl suchthat y'=y'e for otherwise y'l=(0)
and y'NI=n=(0). We first show that y"=y"e. Let ndN with y'n=0 and suppose
that y"nj*0. Then y"nl=F and y'nl=0. Suppose that idl and y"niFO then
y"ni?xy'ni which is a contradiction since nidi- Therefore y"n=0 and so the right
annihilators in N of y' and y" are equal. Since y'(n —en)=0 for all ndN, y"(tt—en)=0,
i.e. y"'n=y"en for all ndN and thus y"=y"e.

Now for any n'dN, y'n'—y"n'=y'en'—y"en'=0 since endj. Therefore y'=y"
since I' is of type 3 as an 7V-module and the result follows.

These results lead to the main theorem:

Theorem 1 1Let N be a near-ring and / an ideal of iV then
J3(I) = J3(N)C\I.
Proof. /3(")= Pi (OP

reMjw
J3(1)= relOIB(i) (Or-

1 Professor R. Wiegandt has pointed out that this result, and the previous three Lemmas also hold
under the weaker assumption that / is an invariant subnear-ring of N.
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Let reM 3(I), by Lemma 2. rEM 3(N) since (r)/=(r)*n/we obtain J3(N)0
C\1QJ3U). Denote by M3(N) the class of A-modules F from M3(N) with the prop-
erty that n?£(0). Foreach r'EM*(N) we have, by Lemma 3, r'£Af3(l). There-
fore

Mn g /n n in?-
r'CMAN)
Since

RO (n2n o (N?

n
rauf(N)

/n Sf't€r|\7.}§'(\|3)m? =/

we have /;,(/)!'=/n/s(iV) and the result follows.
Coroltary 1 For any near-ring N, J3(J3(N))=J3(N).

This is an important property of all ring-theoretic radicals but has not been
established before for any near-ring radical.

Corollary 2. ITN has a multiplicative identity JI(N)=J2(N) =J3(N).

Proof. We need just remark that if 1 is the identity and r is an iV-module of
type 2 then yl—y for all yET. Consequently, when yn=y'n for all nEN then in
particular y1=y'l and so y—y'. Therefore F will be oftype 3. The rest is a standard
result. All the other basic properties of the radical /m that are mentioned in [1] are
easily verified for the case J3.

Remark. In [3] the Jacobson-type radicals J3 (A), Jo (A), Da(A) of a G-near-
algebra2were introduced and compared with the radicals of the underlying near-rings.
If A had an identity then it was shown that J3(A)=J3 (A), however, in general we
were only able to show that Jg(A)QJ2(A). By a simple adaptation of the proofit is
possible to prove that J3 (A)=J3(A) for any G-near-algebra A, (where J3 (A) is
defined in the obvious way). This completely generalizes a well-known theorem in
ring theory.

The Jacobson radical of a ring is an example of a special radical property (see
[2], p. 138). We show in [5] that the radical J3(N) is also special in a similar way.
These results lead us to the conclusion that the radical J3(N) is a very natural gener-
alization of the Jacobson radical for rings.

and
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INTEGRAL CLOSURE AND VALUATION RINGS
WITH ZERO-DIVISORS

J. GRATER

In this note a ring means a commutative ring with identity. All subrings of a ring
5 have the same identity as R. If T is a totally ordered abelian group written multi-
plicatively, then a mapping v from a ring R into t =T U {0} is a 5-valuation with
value group T, if for all x,jE5

(1) v(xy)=v(x)v(y)

(2) t>(x+y)samax {u(x), u(»}

(3) r()=1 and u(0)=0.
If v is surjective, then v is called an M-valuation (compare with Bourbaki [1] and
Manis [7]). A subring A of the ring R is a B- resp. M -valuation ring if there is a 5-
resp. Af-valuation v of 5 with A= {XjxE R/\v(x) * 1}. Huckaba gives in [5] a proof
for the following theorem due to Samuel and Griffin when R is the total quotient
ring of A. The proof given in this paper is shorter than Huckaba’s and R is not as-
sumed to be the total quotient ring of A.

Theorem. Let A be asubring ofthe ring R. The integral closure Ao fA in R is the
intersection of all B-valuation rings containing A.

_ Proof. Denote the intersection of all 5-valuation rings containing A by S.
AQS is well-known and it remains to show that SQA or R\AQ R\S. Let
at£5 but anotintegral over A. It is easily seen that /={x|XE5A3«€N: a"x=0} is
an ideal of R and a$1 as ais not integral over A. For each Xx£E5, x means the can-
onical image of x in 5=5//. Itis clear that & is not a zero-divisor in 5. Since a is
not integral over A, & is not integral over A=(A +/)//. A[d_1]is a subring of 5[<5 1]
and a~'A[&~"\ is a proper ideal of A[d_1], since & is not integral over A. Thus there is
a proper prime ideal P of A[a~xX] with a~I1EP and by Manis [7], Proposition 1there
exists an M-valuation v of 5 [a-1] with t>@=>1 and v(A)s |. The restriction of v
to 5 induces a 5-valuation wof5 with w(a)=-1 and w(A)”*l. This completes the
proof.

Now we may ask, under which circumstances the theorem holds with M-xalua-
tion rings instead of 5-valuation rings. By definition (see Griffin [3]) a ring 5 has a
large Jacobson radical J if any prime ideal containing J is maximal (/ is the inter-
section of the maximal ideals of 5). This is equivalent to the condition that for each
a£5 there exists Z>£5 such that a+b isa unitand abdJ. Examples of such rings are
rings in which every prime ideal is maximal and rings with only a finite number of

1980 Mathematics Subject Classification. Primary 13A18; Secondary 13B20.
Key words and phrases. Valuation rings, integral closure.
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maximal ideals. These rings are of interest concerning our question, since the follow-
ing is valid:

T heorem. Each B-valuation ring of a ring with large Jacobson radical is an M-
valuation ring.

Proor. Let vbe a 5-valuation of R and A the 5-valuation ring belonging to v.
Suppose that xXER\A and yf R are such that x+vy is invertible and xyOJ. By
Manis [7], Proposition 1there exists zER with v(xz)=1 if u(x+>)—v(x), take
z=(x+v)=1 If v(x)<v(x+y)=v(y), then x++e(x+j)_1 is invertible and
vV (X(X+j;(x+])_ 1) _1)= 1 is valid. In the case v(x+Yy)<v(x), x+yZ2is invertible and
V(X)<-v(x+y*)=v(ys). Take z=(Xx+y2(x+yd~1)~1

Altogether we have proved the

Proposition. Let R be a ring with large Jacobson radical. For each subring S of
R the integral closure of S in R is the intersection o fall M-valuation rings containing S.

Proposition 9 of [2] and Proposition 2 of [5] are corollaries of the above propo-
sition.
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