


STUDIA SCIENTIARUM 
MATHEMATICARUM HUNGARICA

A QUARTERLY OF THE HUNGARIAN 
ACADEMY OF SCIENCES

Studia Scientiarum Mathematicarwn Hungarian publishes original papers on mathematics 
mainly in English, but also in German and French. It is published in yearly volumes of 
four issues (mostly double numbers published semiannually) by

AKADÉMIAI KIADÓ 
H-I117 Budapest, Prielle Kornélia u. 4

Manuscripts and editorial correspondence should be addressed to

J. Merza 
Managing Editor

P.0. Box 127 
H-1364 Budapest.

Tel.: +36 1 318 2875 Fax: +36 1 317 7166 
e-inail: merza@math-inst.hu

Subscription  inform ation

Orders should be addressed to

AKADÉMIAI KIADÓ 
P.O.Box 245 

H-1519 Budapest

For 1999 volume 35 is scheduled for publication. The subscription price is $ 164.00, 
air delivery plus $ 20.00.

Coden: SSMHAX May, 1999
Vol: 35 Pages: 1 260
N um bers: 1-2 W hole: 68

©  Akadémiai Kiadó, Budapest 1999

mailto:merza@math-inst.hu


3 1 5 7 0 4

Studio Scientiarum Mathematicarum Hungarica 35 (1999), 1 15

3-POLYTOPES WITH CONSTANT FACE WEIGHT

J. IVANCO and M. TRENKLER

Dedicated to Professor E. Jucovic on the occasion of his 70th birthday

Abstract

The weight of a face a  in a 3-polytope is the sum of degrees of vertices which are 
incident with a. In the present paper we determine the number of different regular 3- 
polytopes for which the weight of each face is w ^  9. In the nonregular case we have 
similar results if 9 <  in 5; 21 and if 28 < w.

1. Introduction

Rosenfeld [5] and also JendroP and Jucovic [3] investigated 3-poly topes or 
maps with constant weight of edges. As an analogy, E. Jucovic suggested to 
study convex 3-polyt,opes with constant weight of faces and some basic prop
erties of such 3-polyt,opes are studied in [1] by his student Bauer. The aim 
of the present paper is to contribute to the description of such 3-polyt.opes.

For a convex 3-polytope M, let V(M),  E(M ),  F(M)  and A (M ) (or only 
V , E , F  and A) denote the vertex set of M , the edge set of M, the face set 
of M  and the maximum degree of M, respectively. Let. a  be a k-gonal face of 
M, which is incident with vertices A i , . . . ,  Ay, where deg(Ai) ^ . . .  ^ deg(A^). 
The type of a  is defined as the A-tuple of positive integers [d\ . . . . .  r//,.), wliere

k 2d — 6
di =  deg(A,), for all i =  l , . . .  ,k. The charge of a  is c(a) := k — 6 +  ^  —7 ■

i.= i di
k

and the weight of a  is w(a ) ^  di.
Z— 1

Since Euler’s formula for M  can be rewritten as

(1) X > )  =  -1 2
n£F

we get the following assertion (see also [4]).

L e m m a  1. Every -polytope contains a face whose charge is negative. □

If a  € F ( M ) and X  C V(M),  then the set of vertices of X  which are 
incident with a  is denoted by A  fia . The set, X  C V(M)  is called the strong
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2 J. IVANCO and M. TRENKLER

set, of M  if all negative charge faces of M  belong to Fx,  where Fx  := {a  € 
F{M)\ X  The relative charge of a vertex A in a strong set X  is

« ( A ) : =  E
aeF{A}

c ( q )

\ x n  a

Since for every strong set X  the formula (1) can be rewritten as

(2) ] T ca- (A )+  c(a) = - 1 2
AeX aeF-Fx

we get the following assertion.

LEMMA 2. Every strong set of a 3-polytope contains a vertex whose rel
ative charge is negative. □

Since the constancy of weight of faces is a combinatorial property, it is 
useful to identify convex 3-polytopes with their graphs and next to consider 
polyhedral graphs, i.e. plane 3-connected graphs (see Griinbaum [2]). For a 
positive integer w, let DJt(w) be the family of all polyhedral graphs whose all 
faces have the weight w. Similarly, by 9Jl(w,k) we denote the family of all 
fc-gonal graphs belonging to dll(w).

Let V)t(M) denote the set of vertices of degree k in a polyhedral graph 
M  and v^(M) =  \ Vk(M)\.  We can prove the following auxiliary result.

Lemma 3. //M effll(w ), then

(3) Y  (*2 ~ +  w) VAM ) =
i i  3

P r o o f . Since a vertex A contributes to the weight of deg(/l) faces we 
have

w|-F|= E  w ( a ) =  (deg(yf))2 =  E  i2Vi{M).
aeF Aev  3

Hence |W| =  — E '  i 2V {(M ). Similarly, |F | =  E vi (M)  and |F| =  -  ivj(M).
w &3 2 i£3

Manipulations with these equalities and with Euler’s formula yield the as
sertion. □

2. Regular cases

Evidently, M(w, k) =  0 for k ^ {3,4, 5}, because every 3-polytope contains 
a face incident with at most five vertices. Let us deal with the remaining 
cases.
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T heorem 1 ([1]).

l'Dt(u); 3)|

' 0 for w ^ 8 and w =  10,
1 for w =  9, 11 ^ w ^ 14 21 L w 22 and w  ^ 24,
2 for 16 ^ w ^ 20 and w = 23,

, 3 for w =  15.

P roof. It can easily be seen that all faces of M  £ 9Jl(w; 3) are of the 
same type. Moreover, all neighbours of a vertex with odd degree must have 
the same degree as the other neighbours. Since M  must contain a negative 
charge face, only the following types of faces can occur: (3 ,3 ,3), (3, 2k, 2k) 
for 2 ^ k g  5, (4,4, k) for k ^ 4, (4 ,6 ,2k) for 3 ^ lb g  5, (5,5,5) and (5.6,6).

Case 1. Faces of M  are of type (3, 3, 3) (of type (5,5, 5)). Evidently, M 
is a graph of the tetrahedron (the regular icosahedron, respectively).

Case 2. Faces of M  arc of type {3,2k. 2k) where k £ {3 .4 ,5 } (of type 
(5, 6,6)). Then the graph M \ = M  — Vi{M) { M i = M -  VS(M))  has faces of

4 k
type (k,k,k)  (of type (3,3.3,3,3)), i.e. M\ is a graph of the regular ----- --

6 — k
hedron (the regular dodecahedron). Therefore M  is a graph of the Kleetope

over the regular —------hedron (the regular dodecahedron, respectively).
6 — k

Case 3. Faces of M  are of type (4, 4, k) for k ^ 3 (of type (3. 4, 4) for 
k =  3). Then the graph M — Vk{M) is a circuit with k vertices. Thus M  is 
a graph of the bipyramid with 2k faces.

Case 4- Faces of M  are of type (4, 6, 2k) for some k £ {3,4, 5}. Then the
4k

graph M  — Vo(M)  is homeomorphic to a graph of the regular - — --hedron
b — k 

4k
(each edge of -— --hedron is replaced with a path of length 3). Therefore 

b — k
M  is a dual graph of the Archimedean solid (4, 6, 2A:). □

T heorem 2.

|9J?(to;4)| =  <

' 0 for w ^ 11,
1 for 12 ^ w ^ 13 and w ^ 17,
3 for V) =  14,
4 for w =  15,

. 00 for w  =  16.

PROOF. Let M  be a polyhedral graph belonging to Wl(w; 4). Negative 
charge faces are only of the following types: (3,3,3, w — 9) for toíí 12, 
(3,3,4, w — 10) for 14 ^ w ^ 21, (3 ,3 ,5 , in — 11) for 16 ^ w  ^ 18 and 
(3,4,4, w — 11) for 15 ^ w 5Í16. Whence, to — 11 ^ A{M)  ^ w — 9.
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Case 1. Suppose A (M) =  in —9. Then all faces incident with a maximum 
degree vertex A are of type (3, 3, 3, w — 9). Their neighbouring faces must be 
of the same type. Therefore there exists a maximum degree vertex B A) 
which is incident with them. Thus M  is a graph of the dual of antiprism.

Case 2. Suppose A(M ) =  w — 10. Then all faces incident with a max
imum degree vertex A are of type (3, 3,4, to — 10). The configurations of 
faces incident with A are illustrated in Figure 1. The first configuration

A
A-. -c

/' j V D4_P.Dj 1 '  /
1 \ V V v A X > \ D1 2̂ 83 j
a 
• B

C > P ' D 0>-Aa. “ B2
A A

Fig. 1 Fig. 2

is not possible in M  because the face a  is of type (3, 3,3, in — 9) and so 
deg(P) =  w  — 9 > A. The second configuration is possible only if w =  14 
because deg(C) =  w — 10, deg(T>) ^ w — 11 and so w =  w(ß)  ^ 4 +  (w — 10) +  
3 +  (w — 11). The third configuration is possible for 14 ^ iu ^ 15 because 
deg(P) =  deg(Q) =  in — 11 and so in =  in(7) ^ 4 +  2(in — 11) +  3. Now, the 
faces of P{a } start a direct reconstruction of M.  For example, consider the 
third configuration and in =  14 (see the first graph in Figure 2). Denote 
the neighbours of A successively by B 1, B2, B 3, B\.  The fourth vertex 
of the face incident with B,. A, Bt+i (subscripts being taken modulo 4) is 
denoted by Ci, i =  1 , . . . ,  4. The vertices Ci and Ci+\ are distinct, otherwise 
there would be a 2-gonal face incident with B, and CL. Similarly, C-, and 
Ci+2 are distinct because M  is 3-connected. Let D{, i =  l , . . . , 4 ,  be the 
fourth vertex of the face incident with Ci, Bl+ \ , CJl+\. Since deg(_B.t) =  3, 
deg(Ci) =  4 and w =  14, the vertex Di is of degree 3. M  is a polyhedral

4
4-gonal graph and so D, {A} U (J {B, , Ct}. Di  and Dl+\ are distinct,

2=1
otherwise there would be a 2-gonal face incident with Di and Cj+i. As 
neighbours of D l (Di+2) are Ct , Cl+1 (C'i+2, Ci+3) and deg(Dj) =  3, D t and 
Di+2 are distinct, too. Finally, denote by P  the fourth vertex of the face a  
incident with D\,  C2 , D 2 . Obviously, deg(P) =  4. M  is a polyhedral 4-gonal

4
graph and so P  £ {A} U (J {B{, Ci,Di) .  Moreover, the neighbouring faces

i= 1
of a  which belong to F{p) are incident with D 2 , C3 , D3 and D\,  C\, D 4 . 
Therefore, the neighbours of P  must be D\,  D 2 , D 3 and D4, which complete 
the reconstruction. The same trivial ideas can be used in other cases. The 
details are therefore left to the reader. So, in this case, M  is one of the 
graphs which are illustrated in Figure 2.
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Case 3. Suppose A(M) =  w  -  11 and w  G {17,18}. Then M  contains 
a face of type (3 ,3 ,5 ,w  — 11) and Vs(M) is a strong set of M.  Vertices of 
degree 5 and A are not adjacent because the contrary enforces either the first 
or the second of configurations in Figure 3 (encircled numbers are degrees 
of corresponding vertices). However, iv(a) >  w and w(ß) > w , which is a 
contradiction. Moreover, a vertex of degree 5 is incident with at most one 
face of type (3,3, 5, to — 11) because two faces of this type enforce the third 
configuration in Figure 3 and w(7)>iu (if two faces of type (3, 3, 5, w —11) 
does not have a common edge then they have a common neighbouring face

f s ..7

i r - - ®  i>

(tS>
ß

(D

Í5V

® r  I ®
á>

"W

y
(D ^

^ 3 )

Fig. 3

which must be of the same type). If A  is a vertex of Vg(M) and a face 
a G Fjyij is not of type (3,3,5, u; — 11), then only the following types of a  
can occur: (3 ,4 ,5 ,5), (3,4,5,6), (4 ,4 ,5 ,5), (3,5,5,5). The smallest possi

ble contribution of a  to the relative charge of A is either — (cv is of type

(3,4,5, 5) and \V5 ( M ) n a
z

= 2), for w =  17, or — (a  is of type (3 ,5 ,5 ,5) 
1 o

and |Vs(M) fl cv| =  3), for w =  18. Hence, either cVfî ( A )  ^ 4 ■ ——  y — 0 
 ̂ _ 20 5

2 2
or 0vs(M) {A) ^ 4 • — — — > 0, in contradiction to Lemma 2. Therefore, no 1 o oo
desired graph exists in this case.

Case 4■ Suppose w =  15 and A(M ) =  4. Then all faces of M  are of 
type (3,4,4,4). By Euler’s formula and Lemma 3, — t>4(M) =  18.
First assume, that every vertex with degree 4 has a neighbour with degree 3. 
Therefore, 3v.f(M) — v,\(M) = 6  vertices with degree 4 have two neighbours 
with degree 3. Hence, M  is 6-gonal plane graph with 12 vertices
of degree 3 and 6 vertices of degree 2. Moreover, each face of M  — V^(M) 
is incident with at most one vertex of degree 2. Thus, M  — Vs(M) is home- 
omorphic to a 3-regular plane graph with twelve vertices and eight at least
5-gonal faces, in contradiction to Euler’s formula. Therefore M  contains a 
vertex A g V\{M) with all neighbours also in V.\{M). Similarly as in Case 1 
(details arc left to the reader) the faces of start a direct (besides one 
step) reconstruction of M.  So, in this case M  is one of two graphs which are



6 J. IVANCO and M. TRENKLER

illustrated in Figure 4.

Fig. 4

Case 5. Suppose w — 16 and A (M) =  5. In this case there are two 
infinite families of graphs, which are obtained from the two graphs in Figure 5 
by inserting an arbitrary number of circuits into the belt of quadrangles 
(depicted by heavy lines) as it is illustrated in Figure 5. □

Fig. 5

R em a r k . If the edge e of the 3-polytope M  is incident with vertices 
A, B  and faces a, ß, the complete weight of e is defined as the number 
a +  b +  rn +  n, where a, b are degrees of A. B  and m, n are numbers of edges 
of « , ß.  Let us denote by &(w ) the family of all 3-polytopes (polyhedral 
graphs) with every edge having complete weight w. For a polyhedral graph 
M ,  let the radial of M  be the graph M r such that there exists a bijective 
mapping -0: V(M)  U F(M)  —» V ( M r) satisfying: a face a  is incident with a 
vertex A  in M  if and only if the vertices 0 (a ) and 0(A) are adjacent in M r. 
It can easily be seen that M  belongs to &(w) if and only if the radial of M  
belongs to 9Ji(w;4). Therefore, one can describe all 3-polytopes belonging 
to &(w)  by the 3-polytopes of OT(u>;4). Note that in the proof above there 
are described all 3-polytopes of D)l(w; 4) besides w =  16 and A =  5. Starting 
from a vertex of degree 5 and verifying all possible neighbouring faces on 
every step, each graph of 9Jt(16;4) with A =  5 can be reconstructed (the 
reconstruction is very tedious). Using this method we get twenty graphs, 
illustrated in Figure 6, and two infinite families described in the proof. So, 
the description of ÜDt(y;;4) and &{w) is complete.
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Fig. G

T heorem 3.

\M(w; 5)| =
0 for w ^ 14 and w ^ 18,
1 for w =  15 and w =  16, 
oc for io =  17.

PROOF. Let. M  be a polyhedral graph belonging to 9Jl(w, 5). Negative 
charge faces are only of the following types: (3, 3,3, 3,3), (3,3, 3, 3, 4) and
(3,3 ,3 ,3 ,5). Whence, 1 5 ^ w ^ l 7 .

Case 1. Suppose w  =  15. Then all faces of M  are of type (3, 3, 3, 3, 3). 
Thus, M  is a graph of the regular dodecahedron.

Case 2. Suppose w  =  16. Then all faces of M  are of type (3,3, 3 ,3 ,4). By 
Euler’s formula and Lemma 3 , v$(M) =  32, v \ { M ) =  6. Moreover, each ver
tex A G V4 (A4) enforce the configuration in Figure 7. M — V4(M) is 12-gonal 
plane graph with v3(M ) — Av\(M) =  8 vertices of degree 3 and 4u4(M) =  24 
vertices of degree 2. Therefore, M -  V4 (M)  is homeomorphic to a graph of
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a cube (each edge of the cube is replaced with a path of length three - see 
heavy lines in Figure 7). Hence, M  is a dual graph of the Archimedean solid
(3, 3, 3, 3,4).

Case 3. Suppose w =  17. Evidently, it is sufficient to find an infinite 
family of graphs belonging to 9Ji(17; 5). Such family can be obtained from 
arbitrary number of copies of the belt D and two copies of the cap C  in 
Figure 8 by identifying their boundaries (depicted by heavy lines) as it is 
illustrated in the third configuration of Figure 8. □

Fig. 8

R em ark . The description of all graphs belonging to 9H(17; 5) appears to 
be difficult. The problem of Eberdhard type (i.e. to determine all sequences 
(i>3, t q , . . . ) ,  such that there exists a graph M  G OT(17: 5) having vk(M) =  v 
for all k L 3) seems to be more passable. Lemma 3 and Euler’s formula 
imply t>3 =  80 +  2i>4, v5 =  12 and vk =  0 for k ^ 6. Therefore, it is sufficient 
to determine tq. Graphs described in the proof of Theorem 3 contain 120 +  
75k (k ^ 1) vertices of degree 4. The authors have also found graphs with 
365 +  75k (k, ^0), 0, 60, 120, 300 and 450 vertices of degree 4 and proved 
that there exists no graph belonging to 9JI(17;5) with 0 < v\ <60 , but the 
problem is still open.
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3. General cases

In what, follows, we deal with 0Jl(w). First, let us introduce some simple 
properties of M  £ DJl(w) which will be useful in the next:

(i) If A £ V(M)  is incident with a face of type (di,d,2 ,d:i), where 3  ̂
d\ <i d,2 k 5, d:i =  deg(A), then all faces of Fy4} are of the same type. 
(Both faces having a common edge with end vertices of degree d$ and 
dj (i =  1 or 2) are triangles of same type.)

(ii) If A £ V (M ) is incident with a face of type (d\,d2 , d.3), where 3 ^ d.\ < 
d.2 5: 5, d.j =  deg (.A), then deg (A) =  0 (mod 2). (Degrees of neigh
bours of A are alternately d\ and d-)-)

(iii) If M contains a face of type (3,3, d), then d. =  3. (Only one face of 
M  is not incident with the vertex of degree d and its weight is 3d.)

(iv) If M contains a face of type (3,4, d), then either d =  4 or d Z  8. (By
(ii), d is even. If d > 4 , then the vertex of degree 3 is incident with 
fc-gonal face a,  where k ^ 4. Hence, 3 +  4 + d =  w(a)  ^ 4 +  3 +  4 + 3.)

(v) If M  contains a face of type (3,5,d), then d^ 8. (By (ii), d is even. 
The vertex of degree 3 is incident with fc-gonal face cv, where 4. 
Hence, 3 +  5 +  d = w(n) ^ 5 +  3 +  5 +  3.)

(vi) If M  contains two faces of type (4,4, d) having two common vertices of 
degree 4, then M  is a graph of the bipyramid with 2d faces. (F ( M ) = 
^ ) U F { i j } ,  where deg(.4) =  deg(ß) =d.)

(vii) If M  contains two faces of type (3, 3, 3, d), d ^ 7, having two common 
vertices of degree 3, then AI is a graph of the dual of antiprism with 
2d faces. (Since A , B , where deg(/l) =  dcg(ZI) =  d, cannot lie on a 
common face, F(M) =  U F ^ y )

(viii) If AI contains two neighbouring faces of type (3,di,d2), where 3  ̂
d] <  d'2, then they have a common vertex of degree d2- (Otherwise 
the third face incident with the vertex of degree 3 has weight at least 
3 + di + d2.)

(ix) If M  contains two neighbouring face of types (3,4, d) and (3,4, 4, d—4), 
then d =  8. (If deg(.4) =  d and deg(-B) =  d — 4, then all faces of 4} 
(F{ß}) are of type (3,4, d) ((3 ,4 ,4 ,d — 4), respectively). Moreover, 
F(M)  =  F[,4} U F{ß}.)

For M £ 9Jl(to), let V*(M) denote the set V8(M)UV9(M)UV^ (M) (Vk (M )=0, 
if w is odd). Now we prove the following

LEMMA 4 ([1]). If'Al(w) contains a graph M  satisfying \ Vt (AI)\ ^ 2, then 
|OT(u;)| =  00.

P roof. Suppose Mi, M2 belong to 9Ji(m) and A\ £ V*(Mi), A2 £ V*(Al2), 
where deg(yli) =  deg(A2) =  d. Let, . . . ,  Bk î (k £ {1, 2}) be neighbouring
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vertices of Ak, where B k ,̂ A k, B k,i+y (where i) lie on a common
face. The polyhedral graph M i * M2 is defined as follows

w
(a) If d = —, then the graph M[ * M2 contains d independent edges

ey , . . . ,  erf such that the graph M\ *M 2 — { e i , . . . ,  e,/} has two compo
nents, one is isomorphic to My — Ay, the other to M2 — /U- Each edge 
e,; joins the two vertices corresponding to B kl  in the two components.

(b) If d =  8, then My * M 2 contains a circuit with vertices C j, . . . ,  Cg 
such that the graph M\ * M-i — {C1 , . . . ,  Cg } has two components, 
one is isomorphic to M 1 — Ay, the other to M2 — M . Each vertex 
C-i is adjacent to the two vertices corresponding to Bk,i in the two 
components.

(c) If d =  9, then My * M 2 contains a circuit with vertices C j,. . . ,  Cjg 
such that the graph My * M2 — { C y , , Cjg} has two components, 
one is isomorphic to Mi -  Ay,  the other to M2 — A2 . Each vertex C2Í 
(C2i-y) is adjacent to the vertex corresponding to B \tl (f?2,i) hi the 
first (the second, respectively) component.

Evidently, My * M2 €  911(to). Moreover, if M 2 contains a vertex belonging 
to V*(M i ) — {A2}, then My * M2 contains a corresponding vertex of same 
degree. Therefore, ffl(w) contains an infinite family of graphs which are 
constructed recursively as follows:

My = M  and Mk+y = M k * M. □

Using this result, we are able to prove the following

be a poshlive integer. Then

0 for w 8 and w — 10,
1 for w =  9 and to =  11,
2 for w =  12 and w — 13,
4 for to =  14,
10 for w =  15,
00 for 16 g  ro^21

0 =-- m{w, 3), because every A:-gonal face,
k 4, has a weight at least 12.

Faces of M £ SDÍ(12) (M  E OT(13)) are of type either (4,4,4) or (3, 3, 3, 3) 
(either (4,4,5) or (3, 3 ,3 ,4 )) , because (ii), (iii) and (iv) eliminate (3,4,5),
(3 .5 .5 )  , (3,3,6), (3,3,7) and (3,4,6). Since faces of distinct types cannot 
be neighbouring, 9J?(12) =  ÍW(12; 3) U9)t(12; 4) (sm(13) =  9K(13; 3) U0K(13; 4), 
respectively).

Suppose M G 911(14) -  (9)1(14; 3) U9J1(14; 4)). Then faces of M are of type
(4 .4 .6 )  , (3,3,3,5) or (3, 3 ,4 ,4 ), because (ii), (iii) and (v) eliminate (3,4,7),
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(4,5,5), (3,3,8) and (3,5,0). By (i), all faces of F ^ }, where dcg(A )=6 , 
are of type (4,4,6) and by (vi), their other neighbouring faces are of type
(3,3,4,4). Thus, all vertices of degree 3 lie on a common 6-gonal face a. 
w ( a ) =  18 ^  14, a contradiction. Therefore, 9Ji( 14) =  94(14; 3) U 94(14; 4). 

Now. let us assume that A is a maximum degree vertex of M  6 '24(15) —
5
(J 94(15; A;)- (hi) implies that A (M )5i8.

k=i
If A(M ) =  8, then all faces of F{a } are of type (3,4,8) and their neigh

bouring faces are of type (3 ,4 ,4 ,4). Thus, M  is the first of graphs in Figure 9.
If A(M ) =  7, then by (i) and (ii), all faces of are of type (4, 4, 7) and 

by (vi), their neighbouring faces are of type (3,4,4,4). This implies that M  
contains a circuit of order 7 whose vertices have degrees alternately 3 and 4, 
a contradiction.

Fig. 0

If A(M ) =  6. then only the following types of faces can occur: (3,6,0),
(4 ,5 ,6), (5,5,5), (3,3,3,6), (3 ,3 ,4 ,5), (3 ,4 ,4 ,4), (3 ,3,3,3,3). First, sup
pose that A is incident with a face of type (4,5,6). Then by (i), all faces 
of Fj }̂ are of the same type. Denote by B t, i =  1. 2, 3, the neighbours of A 
with degree 5. As F{B.j contains two neighbouring faces of type (4, 5, 6), the 
rest faces of F{ B.i are of type (3, 3,4,5). Moreover, the vertex C, of degree 4 
lying on the 4-gonal face with both neighbouring 4-gonal faces is not adja
cent to Bi . Thus, the neighbouring faces of these quadrangles are of type 
either (3,3, 3,4) ( i iBj  =  B i+\) or (3 ,3 ,3 ,4 ,4) {ii B ^  Bi+l), in contradic
tion to M £ 94(15). Now, suppose that all faces of F{.\} are of type (3,6, 6). 
Then all faces of M  arc incident with two vertices of degree 6. Therefore, 
they are of type (3,6.6). So, M e  94(15; 3), a contradiction. Similarly, A is 
not incident with two neighbouring faces of type (3,3,3,6), because either 
M  e  94(15; 4) (if the neighbouring face of both considered faces is of type 
(3,3,3, 6)), or M  94(15) (ifit, is of type (3, 3, 3, 3,3)), otherwise. Thus, A 
is incident with faces of types (3,6,6), (3,6,6), (3,3,3,6), (3,6,6), (3,6,6), 
(3, 3, 3, 6). This implies that M  is the second in Figure 9.

If A(M ) ^ 5, then M contains no triangle, because any fc-gonal face of M, 
where k ^ 4, is not incident with two vertices of degree 5. So, M  contains 
neighbouring faces of types (3 ,3 ,4 ,5) and (3 ,3 ,3 ,3 ,3). This enforces a circuit 
of order 5 whose vertices have degree alternately 4 and 5, a contradiction.
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The graph of the bipyramid with 16 (18) faces belongs to 9Jí(16) (97í( 17)) 
and contains two vertices of degree 8 (9, respectively). The dual graph 
of Archimedean solid (4 ,6 ,8) ((3,8,8), (4,6,10)) belongs to 911(18) (911(19),

20
911(20)) and contains 6 (6, 12) vertices of degree 8 (8, 10= — , respectively).
Similarly, the graph illustrated in Figure 10 belongs to 911(21) and contains 
14 vertices of degree 9. Therefore, for 16 w ^ 21, the assertion follows from 
Lemma 4. □

Fig. 10

R emark. Moreover, the authors have proved that 911(16) contains only 
three graphs, which are illustrated in Figure 11, besides graphs described 
in the proofs of above theorems. The description of all graphs belonging to 
the rest infinite families 9H(u;) appears to be very difficult. The problem of 
Eberdhard type seems to be difficult, too. From (3), (ii) and (iii) we get 
some necessary conditions, but they are not sufficient.

Fig. 11

For the edge e of a 3-polytope (polyhedral graph) with end vertices A, 
B.  the type of e is defined as the couple (cfj, (I2 ), where d.\ =  deg(A) and (I2 =  
deg(B). Let edges incident with a A;-gonal face a  be successively e i , . . .  ,ejt 
and let the type of ej be (dt . dl+y) for all* =  1 , . . . ,  k (where dk+\ =  d\). Then

(4) c{a) — k — 6 + £ ^ = £ s
i= 1 d,

2 1 J _
~k +  d.j +  di+1

=  ^ c ( a ;  e,:),
i=l
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where c(o:; ) := 3 T1 — f — + — +  —— is the contribution of e* to c(o). 
V V k dj di-f-i / /

Note, if A; =  4 and a  contains no edge of type (3, d), where 3 ^ d ^ 5, or 
A; =  5 and a  contains no edge of type (3, 3) or A: ^ 6, then c(a; ez) ^ 0 for all 
i =  1 , . . . ,  A;.

We conjecture =  Wl(w, 3) U 9Jl(u;; 4), for all w ^ 22. However, we
are able to prove the following

THEOREM 5. If w^.28, then 'J)l(w) =9Jl(w;3)UiX)l(w;4).

P roof. Assume indirectly that there exists a polyhedral graph M  6 
ÜJt(w) — (Wt(w;3) U M(w; 4)). Its negative charge faces can be only of the 
following types: (3, 4, w — 7), (3,5, w — 8), (3, 6, w — 9), (3,7, w — 10) for 
m ^ 51, (3,8, w — 11) for w ^ 34, (3, 9, <o — 12) for w ^ 29, (4,4, re —8) and 
(3,3,3, to — 9).

In the proof, an edge of M  is called weak if it is incident with a negative 
charge face and the degrees of its end vertices are at most 9. Thus, every 
negative charge n-gonal face of M  is incident with precisely n — 2 weak edges 
which can be only of the following types: (4,4) and (3, d), for 3 S d = 9. 
Moreover, by (vi), (vii) and (viii), every weak edge of M  is incident with 
precisely one negative charge face.

Now, we construct a function b: F(M)  E such that b(a) =  ]T) c(a),
o£F «£F

according to the following rule. First, we put b(7) =  c(7) for every 7 € F(M).  
Then for every weak edge e, which is incident with faces « and ß. the amount

a(e) :=  ̂ is subtracted from b(ß) and added to b(a) if a  is a negative
charge n-gonal face.

Let us verify that b(7) ^ 0 for every 7  € F{M).  Evidently, if 7 is a 
negative charge face, then b(7) =  0 and if 7 is incident with no weak edge, 
then b{7) =  c(7) ^ 0. Therefore, let 7 be a A;-gonal face incident with a 
weak edge and c(7) ^ 0. Since every triangle incident with a weak edge is a 
negative charge face, k ^ 4.

Let e be a weak edge incident with 7. If e is of type (4,4), then c(7; e) =  
3 6 J , , 6 3 5 3 6 6 ^ 6
-  -  -  and a(e) =  — . !  hus, C(7 ; e) =  -  -  -  S -  -  -  = —  S —  =
a(e) for k ^ 5. Similarly, if e is of type (3, d) for 6 ^ d ^ 9, then c(7; e) =

2 — 7 — t  and a(e) = --------— - + -  — 1. So, c(7; e) ^ a(e) for A; Si 6 and d — 6

or k ' t b  and d =  7 or A; ^ 4 and d ^ 8. If e is of type (3, d) for 3 d ^ 5, 
then it. can easily be seen that both of its neighbouring edges ei, e2 incident 
with 7 cannot be weak. If ei is not weak, then we can counterbalance a(e)

by c(7;e) + c (7 ;ei) or only by c(7;e) +  - c (7 ;ei) in case e\ is adjacent to
£

two weak edges of 7 being of type (3,cZ), 3 ^ d ^ 5. As e\ is of type (d, d\),
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degrees  of vertices of 7 types o f  weak edges ern c(7) J 2 a (e 'n '>
( d ,3 , d ,  r ) d e  {5,6,7} 2(3, d) 4 12 64 <2 7 12 +  12 2d ^  w—3—d
(7, 3 , n , r ) n e  {3,4} (3 ,7) 22 6 6 

7 n 7-
6 1 

t o - 10 7

(8 , 3, n,7-) n 6  {3,4,5} (3,8) 13 6 6 
4 ;i ;•

6 1 
in —11 4

(9, 3, n , r )  n  €  {3,4,5} (3,9) H) _  6. _  6
3 n v

6 1 
i n - 12 3

(4 ,4 ,  i, r ) (4,4) 3 _  6 _  6 6
in —8

( 6 ,3 ,3 , r ) (3 ,0 ) ,  (3, 3) 1 -  s 9
in-9

(d, 3, d, i, r )  d £ {4,5, 6 } 2(3, d) 7  12 6  (i
' d t r

12 , 12 2
d ^  i o - 3 - d

(6 , 3,3, i , r ) (3, 6 ), (3,3) 3  _ 6 _ 6 9
in-9

( 3 , 3 , 3 , 2, r) 2(3 ,3 ) 3  _  6 _  6 6
10 — 9

(4 ,4 ,  3 ,3 , r) (4,4) 2 -  ^ /•
6

ui —8
(d, 3, 3, t , r ) d  £{ 7 ,8 ,9 } (3, d) 5  8 6 fid  7 7*

6 , 6  t 
d ^  io —3 —d 1

( 4 ,3 ,4  , i , j , r ) 2(3,4) 7 6 6 6
' J r - 1 2 = +  1 10 — 7

(4, 3,4, 4 ,4 ,r ) 2 ( 3 ,4 ) , (4 ,4 ) 4 - 5V —6__ 1__ 12__ U 1
10 — 8 io — 7

(4, 3 ,4 ,9 ,3 ,6 ) 2 (3 ,4 ) , (3 ,  9) 10
3

2 , 1 2 ,  6 
3 ^  in-7 ^  i n - 1 2

(6, 3 ,3 ,  i,j, r) (3 ,6 ) ,  (3,3) 7 _  0 _  6 _  6 
7 j r

9
to — 9

(6, 3 ,3 ,4 ,4 ,  r) ( 3 ,6 ) ,  (3 ,3) ,  (4,4) 4 — 5r 10 — 9 10 — 8
(6, 3, 3, d, 3, d) d £  {7,8,9} (3, 6), (3 ,3) ,  2(3, d) 5 - i r

9 +  12 4 . 12 2
to — 9  ' d  in —3 —d

(6, 3 ,3 ,8 ,3 ,5 ) (3, 6),  (3 ,3) ,  (3,8) 61
20

9 , 6  1 
i n - 9  l o - l l  4

(6, 3, 3 , 9 , 3 , n) n £  {4,5,6} (3 ,0 ) , ( 3 ,3 ) , ( 3 ,9 ) 13 _  £  
3  71

9 , 6  1 
io — 9 10 — 12 3

( 3 ,3 , 3 , i , j ,  r) 2 (3 ,3) 6 8 6 6 7 J r
6

10 — 9
(3, 3 ,3 ,4 ,4 ,  r) 2(3, 3), (4,4) 3 - 5r

6 , 6  
i o - 9  ~t~ 1 0 - 8

(3, 3, 3, d , 3 , d) d e  {8, 9} 2(3, 3), 2(3, d) 4 - 7 T
6 , 12 , 12 2  

1 0 - 9  ^  d  ^  io —3 —d

(4, 3, 4 ,3 ,3 ,3 ,  r) 2 (3 ,4 ) ,2 (3 ,3 ) 4 - f _IL_ . - I 2-  +  1 
i n - 9  ^  in-7 ^

(4, 3, 4 ,3 ,3 ,  6, r) 2(3, 4), (3, 3), (3,0) 5 - 5V
—9__ I__ 12__ , 1
i n - 9  ^  in — 7 ^

( 4 ,3 ,4 ,4 ,3 ,4 ,  r) 4 (3 ,4) 5 - 5r -2 4 - + 210 — 7
( 4 , 3 , 4 , 4 , 3 , 4,i,7’) 4(3,4) 8 — 5 — 81 r ^ 7  +  2  in — 7

Table

c (7 ;e i)  =  3 — -
6 3 6

w d - 3
1 for3 . G 3 , . 6

d >  3 and a(e) = ----- - for d — 3. Therefore, c( 7; e) +  0(7; ej) ^ a(e) for k k 7
w -  9

1
and d — 3,4 or k  ^ G and d =  5, and 0(7; e) +  -0(7; e 0  = a(e) for k  ^ 6 and
d =  5 or A; 7 9 and d =  4 or A: ^ 7 and d =  3.

By (4), if the contribution of each edge of 7 to 0(7) is nonnegative and

«(e) <; c(7;e) (a(e) ^ 0(7; e) +  0(7; e,) or a(e) ^ c(j;  e) +  -0(7; ei), respective
ly) for each weak edge e of 7, then 6(7) ^ 0. For the rest of the possible cases
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(i.e. 7 contains an edge with negative contribution to c(7) or a weak edge e

with a(e) > c (7 ;e ) and a{e) > 0(7; e) +  c(j; e i ) (or a(e)>c(r ,e )  +  -0(7; ei)),
where C | is not weak edge adjacent to e) see Table, c(7) and the sum of 
a(em) is determined for 7 for all weak edges em incident with 7. Considering 
w(7) =  u; ^ 28, it can easily be verified that c.(7) ^ ]T]a(em), which implies 
6(7) ^0.

This contradicts (1): 0 ^ ]T) Mt ) =  ^  0(7) =  —12. □
76 F 76/-’
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REGULAR COLOURED RANK 3 POLYHEDRA 
WITH TETRAGONAL VERTEX FIGURE

C. LEYTEM

1. Introduction

In 1977 B. Grünbaum [3] introduced a more general concept of regular 
polyhedron which allowed skew polygons as faces. Later A.Dress [1] gave a 
complete classification of the Grünbaum polyhedra using the concept of a 
Grünbaum system.

We are going to generalize the concept of a Grünbaum polyhedron, in
troducing polyhedra with two types of faces. In the classical case of the 
Whythoff construction, regular polyhedra are obtained by taking the fun
damental vertex at the intersection of two non-orthogonal mirrors in the 
orthoscheme, whereas semi-regular polyhedra such as the cuboctahedron, 
icosidodecahedron can be obtained by taking the fundamental vertex on the 
intersection of the two orthogonal mirrors. We are going to proceed by anal
ogy and take the fundamental vertex at the intersection of the fixed spaces 
of the two commuting involutions.

In Section 2 we recall the definitions of regular polyhedra and Grünbaum 
systems. In Section 3 we introduce the generalized Grünbaum systems and 
explain how they define coloured Grünbaum polyhedra. In Section 4 we 
present the classification of the rank 3 examples.

2. Regular Grünbaum polyhedra

2.1. Regular polygons. As the regular polygons are the building blocks 
of the Grünbaum polyhedra, we shortly recall the definition and notation.

A polygon P  = { . . . ,  v\, V2 , «3, . . .  } in the Euclidean space E := E 1 is the 
figure formed by the distinct points (vert,ices) . . . ,  Vi, i>2> w.3, . . .  together with 
the segments (edges) e, =  [t>j, Uj+ i].

In case P  is f in i te  there is an additional edge [Vfirsu viust\■
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In case P  is infini te  there is an additional condition: Each compact 
subset of E meets only finitely many edges.

A flag of P  is a pair consisting of a vertex v of P  incident with an edge 
e of P.

A polygon is said to be regular if its group of symmetries acts transitively 
on the family of all flags of P.  This group of symmetries can be generated 
by two fundamental isometries oo and a \ , on fixing eo and o\ fixing vq .

In terms of the fundamental vertex vo and the fundamental isometries 
«o and Oi\ the polygon is then given by

{ . . . ,  (aoai)lwo) • • • > (<*oOi)2wo>Q:o«'iwO) An QiooA)? (o iQo)2A)>
. . . , ( a i ao ) lv0, . . . } .

A complete list is given in [1, 3]. It includes the plane, prismatic, an- 
tiprismatic and helical polygons.

2.2. Regular polyhedra. A polyhedron P in E is a family of polygons 
(faces) with the following properties [3]:

(i) each edge of a face is an edge of exactly one other face (thinness);
(ii) the family of polygons is connected through edges;

(iii) each compact set meets only finitely many faces.
A flag of P  is a triplet consisting of a vertex v, an edge e and a face f  

of P,  all mutually incident.
A polyhedron is said to be regular if its group of symmetries acts tran

sitively on the family of all flags of P. This group of symmetries can be 
generated by three fundamental isometries ao , o i and a 2, ao fixes eo and 
fo, a  1 fixes vo and fo and o 2 fixes vq and eo-

Illustrations, respectively a complete list can be found in [1, 3]. It in
cludes the Platonic polyhedra, the plane tessellations and the Petrie-Coxeter 
polyhedra.

2.3. Discrete Grünbaum systems. To classify these regular polyhedra, 
Dress [1] introduced discrete Grünbaum systems:

A discrete Grünbaum system is a system (v; ao, a i, 02) G E x Iso(E)3 
(ao, a i ,  a.2 isometries of E) satisfying the conditions:

• Oq =  o f  — o 2 =  (a0a2)2 =  IdE;
• a. i v =  a  2V =  v]
• I (qo,oi ,oi2)'V 7̂  ^{ao,a:i ,Q2)-d: * ^ {0,1,2},
• (oo, oci, a 2) is discrete as a group of isometries of E.

As a discrete Grünbaum system univoquely defines a regular polyhedron 
with vertex set («0,01,02) ■ r, edge set (00,01,02) • [w,aou] and face set 
(oo, 0 1 ,02) oou, o i o ou , . . .  }, a classification of discrete Grünbaum
polyhedra is equivalent to a classification of regular polyhedra (cf. [1]).
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3. Regular coloured Grünbaum polyhedra

Motivated by the Wythoff construction for uniform polyhedra, we con
sider discrete Grünbaum systems which satisfy the relation (a io^)2 =  Idg 
instead of (ao^i )2 =  Idg- This modification will imply that the vertex figure 
is tetragonal.

3.1. Definition. A discrete coloured Grünbaum system is a system (v;ao, 
0:1,02) € E  x Iso(E)3 satisfying the conditions:

• a g=a?=a% =  (a 1a 2)2 =  IdE;
• a\V =  0L2V =  «;
• v, aov, oioou, 02O0U, oi020o'u are all distinct;
• none of the segments [u, oo«], ['0,0100«], [«,0200«], [«,010200«] is con

tained in one of the three other segments;
• (oo, o i, 02) is discrete as a group of isometries of E.

3.2. Construction. To a discrete coloured Grünbaum system one can as
sociate a polyhedron with tetragonal vertex figure. First we have to describe 
the vertex set V, the coloured faces (black and white) and the flags associ
ated to the Grünbaum system. This defines a coloured polyhedron. Note 
right away that the definition of a coloured Grünbaum system is symmetric 
in « i and «2- If will be obvious that exchanging these two isometries will 
result in a switch in the colour of the faces.

Fig. 1. The vertex figure of a coloured polyhedron

V ertex set. It is defined as V =  (oo, 0:1,02) u.

VERTEX FIGURE. The fundamental vertex figure (at «) is formed by the 
quadrangle {020:0«, ao«, oqoo«, 010200«} (cf. Figure 1).

The vertex figure (at an arbitrary vertex av)  is obtained by conjugation.
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First transform av  back to v by applying a - 1 . Then apply successively 
ao, eritt(), a 2ao, aqa^ao to v  and transform back to av.  The vertex figure 
at a v  is the quadrangle { a a 2aov,aaov,aaiaov ,  aa . ia 2a.ov}.

FACES. As first fundamental face (black) we take the face defined as 

b = { . . . , a 0v , v ,a i a 0v , . . .  }.

By 2.1 this is the face (represented as a bold black polygon in Figure 1)

{ . . . ,  (a 0a ]Y v , . . ., (aüa i ) 2v, a 0aiv,  v, a ia 0v, {a l a 0)2v , . . . ,  (a ia 0 )‘v , . . .  }. 

It is invariant under the transformation oq:

a\b =  b,

and the transformation (x.2 transforms it into

b' =  {. . . , a.2aov ,v ,a ia2aov , . . .  } 

which is also invariant under oq:

a 2b = b', 

a.\b' - b'.
As second fundamental face (white) we take the face defined as 

w =  { . a 0w, v , a 2a 0v . . . } .

By 2.1 this is the face

{ . . . ,  {a0a2)lv , . . .
, (a0a 2)2v , a 0a 2v, a 0v, v, a 2a 0v, (a 2a 0)2v , . . . ,  {a2a 0Yv , . . .  }.

It is invariant under the transformation a2:

a2w = w ,

and the transformation aq transforms it into

« / =  { . . . ,  a \a o v ,v ,a ia 2a o v , . . .  } 

which is also invariant under a 2:

a{W = w \  

a 2w' — w'.

At an arbitrary vertex av ,  { . . . ,  aaov, av, a a i a o v , . . . }  and { . . . ,  a a 2aov, 
av,  a a . ia 2aoV, . . .  } are black faces invariant under craqa .
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At an arbitrary vertex av,  { . . . ,  aatov, av,  aa^aou, . . .  } and { . . . ,  aa\aov,  
av,  a a i n 20;ov,. . .  } are white faces invariant under .

F l a g s . Having thus defined a coloured polyhedron resulting from a dis
crete coloured Grünbaum system, we can try and describe the polyhedron 
as a regular coloured polyhedron by introducing coloured flags as follows:

b' = a2 b

Fig. 2. A symbolic picture of the fundamental flag 

As a fundamental flag we take

fo =  [v,b, w].

Then, as in the case of a classical flag, ao fixes b and w, a\  fixes b and v, a.2 
fixes w and v.

The 4 flags surrounding v are / 0, / i  =  e*i/o =  [v,&,aiiü], / 2 =  « 2/o =  
[n, a^b, w\, fs =  a ia 2/o =  [v, a2b, a\w\.  The situation is symbolically repre
sented in Figure 2.

3.3. Definition. A regular coloured polyhedron P consists of a discrete 
set V Q E 1 of vertices denoted by vu and two sets of faces, the set B  of black 
faces and the set W  of white faces, a face being an ordered set of vertices
{.. . ,Wj,Vi+i , . . . } .

A flag is defined as a triplet [u, b, w] with 6 PI w =  {w, v'} (v v' and v' is 
consecutive to v) and vertices, faces and flags satisfy the following conditions:

• each vertex is contained in at least one face of each colour;
• each pair formed by a face and one of its vertices can be completed to 

exactly two different flags (thin polyhedron)-,
• any two flags can be connected by a sequence of neighbouring flags, i.e., 

flags which differ by exactly one element (flag-connected polyhedron)-,
• the group of colour-preserving automorphisms of the polyhedron acts 

transitively on the flags of P (flag-transitive polyhedron);
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Fig. 3. Three, planar coloured polyhedra related, through Petrie operators

• each compact set meets only finitely many faces.
Three examples illustrating these concepts are given in Figure 3: the 

first one is a planar tiling with hexagons and triangles, the three fundamen
tal symmetries cc, (i =  1, 2, 3) are reflections in a line , the second one is 
related to this tiling and has as faces hexagons and apeirogons, the third one 
has triangles and apeirogons as faces (in these two examples the first two 
fundamental symmetries a,; (i =  1, 2) are reflections in a line whereas the 
third symmetry «2 is central).

3.4. Coloured Petrie operators. In analogy with the classical Petrie 
operator we give the following definition:

D e f in it io n  3.4.1. The coloured Petrie operators associated to 
(v ;a 0 , 011, 012) are given by

P\ (v; a 0, «1, a 2) =  (v ; a 0, «102, a 2)

and
P2 {v; a o , « i , a 2) =  (u; a 0, or, a i« 2).

P roperty 3.4.2. The coloured Petrie duals Pi and P2 transform a 
coloured Grünbaum system into a coloured Grünbaum system.

PROOF. This follows from the definition of a coloured Grünbaum system 
as «1  and a 2 commute and a, (0 ^ i^ 2 )  and a i a 2 are involutions. □

We also have the following 
P roperty 3.4.3.

Pi o Pi =  Id (i =  1 ,2 ),

Pi oPj =  Pi (* =  1,2; i ^ j )

followed by a switch in the colour of the faces in the second case.

Recall that the vertex figure of the fundamental vertex v is {o^crov, a^u, 
«lacdh o t i c ^ t t o ' ail(l that the fundamental black and white faces are { . . . ,



RANK 3 POLYHEDRA 23

«o«, v , o i «o« , . . .  } and { . . . ,  oo«, v, O2«o«, .. • Applying a coloured Petrie 
operator changes the order of the vertices in the vertex figure of v.

• Applying Pi, the vertex figure becomes {«2 0 0 «, cxqv, « i 0 2 «o«, «ioo«} 
and the fundamental black and white faces will be { . . . , 0 0 «,«, 
010200« , . . .  } and { . . .  ,ao«,w,o2oow,. . .  }.

• Applying P2, the vertex figure becomes {«10200«, 00«, a i«o« , 0200«} 
and the fundamental black and white faces will be , 00«, v , o i o o « , . . .  } 
and { . . . ,  Oo«, v, O i020o«,. . .  }.

4. Coloured rank 3 polyhedra

4.1. Introduction. As in Dress [1] we say that two coloured Griin- 
baum systems («; 00,01,02) and (w; ß o ,ß \ ,ß 2) are isometric (resp. simi
lar), if there exists an isometry (resp. similarity) 7 : E -A- E with 7« =  w and

\(ßo,ßußl)w =  ßi\{0O,0 U02)w
We want to classify the coloured rank 3 polyhedra up to isometry (resp. 

similarity).
As in Dress [1], we list polyhedra according to the dimensions and angles 

formed by the fixed point spaces of the involutions and we use his notations 
and terminology:

• We define the rank of a coloured polyhedron as the rank rk(G (IT) of the 
intersection of G =  («0 ,0 1 ,02) with the translation group T  of E.

• We denote by dim a  the dimension of the fixspace E°.
• We define (o, ß) to be 0° unless 1 ^ dim a, dim/3 ^ 2 in which case we

define (a , ß ) as the angle between E,v and E  ̂ or, in case Ea flE ,:l =  0, as 
the angle between properly intersecting parallel transforms of these two 
spaces. To avoid ambiguities, we will always assume 0° ^ (a, ß)  ^ 90°.

• Define two coloured Grünbaum systems («; 00,01,02) and (w; ß o , ß \ ,ß 2) 
to have the same dimensionality if dim o* =  dim ßi for * =  0, 1, 2 (imply
ing dim «1O2 =  dim/3i/?2).

• Define two coloured Grünbaum systems («; 00,01,02) and (m; ßo,ß \ ,  ßi) 
to have the same angularity if they have the same dimensionality and
moreover (o0, «1) =  {ß0, ß\) and (o0, o 2) =  (/30, ß2).
A complete classification as proposed in [4] would now follow the lines of 

Dress [1], treating first the rank 0 case (among which the cuboctahedron and 
some other finite polyhedra discussed by Farris [2]), the rank 1 case (which 
exists in this context), the planar case, and finally the rank 2 and 3 cases for 
which we have

P roperty 4.1.1 (ef. Dress [1], Section 1). If (v; oo, « 1 ,02) is a discrete 
Grünbaum system with group G =  (00,01,02) and if rk(G D T ) ^ 2 then
(«coco) £ {0°,30°,45°, 60°, 90°} and (0^ 02) e  {0°,30°,45°, 60°, 90°}.
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Note that, as a\  and «2 commute, one has necessarily E"J DE"2 7^0 and
(a77S2)e{0°,90°}.

4.2. The rank 3 classification. Convention 4.2.1. To facilitate the 
classification we consider the triplet

(dim(o!i), dim(o;2), dim(o!iQ!2))

in increasing order.
In fact, as (01,02) is the Klein 4-group, we have three choices of un

ordered pairs of fundamental generators in it. Geometrically this change of 
generators corresponds to choosing different pairs of black and white funda
mental faces in the vertex figure. A similar change of the fundamental flag- 
can be obtained by applying the coloured Petrie operators to the coloured 
Grünbaum system (v; 0 0 ,01 ,02 ) and will simplify the classification in view 
of the following property which results from 3.4.2:

P roperty 4.2.2. Two coloured Grünbaum systems (v; 0 0 , 0 1 , 0 2 ) and 
(w; ßo ,ß i ,ßa)  are isometric (resp. similar) if and only if Pi(v\00, 07, «2) 
(« =  1, 2) and Pi(w,ßo,ßi ,/32) {i =  1, 2) are isometric (resp. similar).

Now by the following property (o, /?, 7 isometries of E):
P roperty 4.2.3 (Dress [1], Section 3, Corollary 1).

{(dim a, dim/?, d im 7)|a , /?, 7 7̂  Me and a 2 =  ß 2 — 'y2 =  a ß 7 =  Me }

= {(a, b, c) € N'510 ^ a, 6, c ^ 2 and a +  b +  c G {3, 5}} 

we necessarily have dim («i) +  dim(o2) +  dim (oi02) €E {3, 5}.

Therefore (dim(ai), dim(a'2)) dim(oi02)) can only be one of the follow
ing:

• (0 , 1, 2)
• (1, 1, 1)
• (1, 2, 2).

In the following lemmas we are going to exclude the dimensions of Ea° 
which correspond to systems of rank strictly smaller than 3 respectively have 
their vertices in a plane.

Lemma 4.2.4. If (dim (ai),dim (o2),dim^a^a^)) is (0,1,2),  then 
dim(ao) =  1 and E°° is neither parallel nor perpendicular to E"2.

PROOF. If dim(oo) =  0, then (00,04,0:2) ’ v is contained in the plane 
(E“°, E“2) and therefore rk(G C T )^2.

If dim(oo) =  1 and E°° is parallel (resp. perpendicular) to E'*'2 then the 
plane through E“2 and through (resp. perpendicular to) Eao is invariant and 
therefore rk((7 fl T) Ú 2.
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If dim(«o) =  2, denote Ea° the line perpendicular to E°° and passing 
through v. Now (ao , « i , « 2) • w is contained in the plane (E“°,E Q2) and 
therefore rk(G fl T)  ^ 2. □

LEMMA 4.2.5. If (dim(ai), dim(«2), dim(«i«2)) is (1,1,1) and 
dim(ao) =  1 then Ea° cannot be parallel to E“1“2, to EQl or to E°2; if 
dim(ao) =  2 then E“° cannot be parallel or perpendicular to E“1“2, to Eai or 
to E"2.

P roof. If dim(«o) =  1, then in the first case e.g. («o, «1,0-2) •« is con
tained in the plane (Ea i,E Q2) and therefore rk(G flT )^2.

If dim(«o) =  2, then in the first case e.g. («0,01,02) • v is contained in 
the plane (Eai , E“2) and therefore rk (G flT )^ 2 . □

Lemma 4.2.6. If (dim(ai),dim(«2) ,dim(«ia2)) is (1 ,2 ,2 ), then 
dim(«o) =  1. Also EQ° D E“1 =  0 and Ea° is not. parallel to E°2 or Ea,Q2 
and is not perpendicular to E“1.

P roof. If dim(«o) =  0, then rk(G flT ) ^ 2 as the plane perpendicular 
to Eai and containing Ea° is invariant.

If dim(«o) =  1 then E"° fl E“1 =  0 as otherwise the system would be 
bounded. Also Ea° cannot be parallel to E°2 or E“102 as otherwise the 
system admits an invariant line. Finally EiV° cannot be perpendicular to EC11 
as otherwise the system admits an invariant plane.

If dim(«o) =  2 and if EQ° is not parallel to Eai , then the system is finite 
as it admits an invariant point. If Ea° is parallel to E°‘ then the system 
admits an invariant plane. □

Now, if (w,ßo, ß \ , ß 2) is another Grünbaum system with the same angu
larity as (u; «o, « i, «2), then in all three cases we can find an isometry 7 with 
j v  =  w, 7 « i7 _1 =  ßi and 7«27_1 =  /?2- Moreover we can compose 7 with 
an isometry (resp. similarity) <5 with Sw =  w, 6ß\S~l =  ßi,  Sß2Ö~l = /?2 so 
that ^7«o7_1 ~̂* =  ßo if and only if the distances (resp. quotients of the dis
tances) d(Ea°,u), f/(Ean,E a‘), f/(Ea°,E a2) and d(Eao,E °|Q2) coincide with 
the corresponding distances (resp. quotients of the distances) in the system 
(w\ ßo, ßi,  /?2)- lo  more detail, we get the following

Lemma 4.2.7. Suppose (u;ao ,« i , «2) and (w; ßo, ß ] , ß-f) are two Grün
baum. systems with the same angularity. Then we have the following three 
cases:

• dim(«o) =  0 and (dim («i),dim («2) ,d im (« i« 2)) is (1,1,1):
(v: «o, « i , «2) is isometric to (w, ß o ,ß i , ßi)  if and only if the distances d =
d(Ea°,v), d,\ =  d(E“°, Eai ) and d  ̂=  c/Ie "0, E°2) coincide with the corre
sponding distances in the system, (w; ß o , ß i , fh)- Moreover, max(d[, d2) <
d < 1yd'l +  cfy.

(v; «0, « i , «2) is similar to (w, ß0, A > Ä )  if and only if the quotients — >1
d\
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and — > 1 coincide with the corresponding quotients in the system 

(w ;ßo ,ß i ,ß 2)-
• dim(ao) =  1 and (d im (o íi),d iliig );dim ^ict^)) is (0,1,2), (1 ,1 ,1) or

(1 ,2 .2):
(w; ao, a i ,  a 2) is isometric to (in;/?o,/?i,/?2) if and only if the distances 
d =  dfE™0, v) and d ' — d,( En°,E°2) (resp. d! =  d(Ea°, EQl"2) in the case 
(2 ,2 ,1 )) coincide with the corresponding distances in the system. 
(in;/?0, /3i, /S2) - Moreover, d! <d.

(v; ao, « i , ot2) is similar to (in; ßo,ßi,  ßi)  if and only if the quotient — >  1
coincides with the corresponding quotient in the system (in;ßo, ß \ , /?2) .

• dim(ao) =  2 and (dim(«|),diin(o!2),dim(a:iO!2)) is (1,1,1):
(v: ao, cn, a 2) is isometric to (in;/?o,/?i,/?2) if and only if the distance 
d(Ea°,n) coincides with the corresponding distance in the system 
(w;/?0,/?i,/?2).
(v ;a0, a i , a 2) is similar to (in;/?0,/?i,/?2).

Now consider a line L with a unitary directional vector ü (resp. a plane 
P with a unitary normal vector ü), and an orthonormal basis (eo, ef,  ef).  
Call ifi the angle formed by u and the basis vector ef (i =  0, 1, 2). 

Decomposing ü in the orthonormal basis:

u =  (■u|et)ei’ +  (n|e2)e2 +  ( n l e ^ e t

we get:
cos2 '00 +  COS2 Ipi +  cos2 '02 =  1-

Combining this remark with the preceeding lemmas and with Property
4.1.1. we obtain:

T heorem 4.2.8. If (w, « 0 , 0:1, 0 2 ) is a non-planar and non-finite Grün
baum system, without an invariant plane, then up to coloured Petrie duality 
and up to a switch in the colour of the faces, the 7-tupel

(dim(a0)| dim (ai), dim(a2), dim (aia2) |(a 0, c*i), (a0,a 2), (a0, a i « 2 )) 

can assume the following values only:
(1) (0 |1, 1, 110°, 0°, 0°) (2 -parameter family of similarity classes),
(2) (1 |0 ,1 ,2 |0°,60°,30°), (1|0,1,2|0°,45°,45°), (1 |0 ,1 ,2|0°,30°,60°)

(l-parameter families of similarity classes),
(3) (111 ,1 ,1|45°, 60°, 60°), (111,1, 1|60°, 30°, 90°), (1 |1 ,1 ,1|45°,45°, 90°)

(1 -parameter families of similarity classes),
(4) (111, 2, 2|45°, 30°, 30°), (1|1,2 ,2|60°, 45°, 30°)

(1-parameter families of similarity classes),
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Fig. If. The vertex figure of a coloured polyhedron (0| 111100, 00, 00)

(5) (2 |1 ,1 ,1|30°,30°,45°) (\ similarity class).

E x p l a n a t io n  4.2.9.
1. This family (cf. Figure 4) contains the 1-parameter family of Grünbaum 

polyhedra denoted {ooz(b\ 4 “*(^/l} [1, 3].
2. These polyhedra are related to the tilings of the plane by squares, re

spectively, by triangles and hexagons. Figure 5 represents three such 
polyhedra related to each other by the coloured Petrie operators.

3. The relation

cos2( (« o ,a i) )  +  cos2 ((00,0:2)) +  cos2 ((00,0102)) =  1

restricts the number of possible polyhedra.
• We shall describe the class (111,1, 1|45°, 60°, 60°) in more detail below 

in Example 4.2.10.
• The other angularity classes correspond to polyhedra with vertical 

helical polygons based on the planar tilings with finite polygons, e.g. 
squares, respectively, triangles and hexagons. Figure 6 represents 
three such polyhedra related to each other by the coloured Petrie 
operators. In the class (111,1,1|45°, 45°, 90°) we find the 1-parameter 
family of polyhedra { o o ^ ' ^ 2 , 4Q*^)/ l }  [1, 3],

4. The relation
eos2(V>o) +  cos2 (Vh) +  cos2 (^2) =  1,

where ifii denotes the angle formed by Ei>0 and a basis vector e / (i =  0, 
1, 2), restricts the number of possible polyhedra.

• I11 the first angularity class we find the regular polyhedron {G71-/ 2/ 1,4} 
having skew hexagons as faces (cf. Figure 7, e = 0). This polyhedron 
is related through a 1-parameter family of similarity classes (cf. Fig
ure 7) to the polyhedron obtained by a truncation of {6,6a} and 
having plane and skew hexagons as faces (cf. Figure 7, e =  0.5 and 
Figure 8 where one skew hexagon bordered by six planar hexagons 
is shown).
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(I I 1,2, 0 160, 30, 00)

(1 10, 1, 2 100, 60, 30) (1 1 0, 2, 1 100, 30, 60)

Fit). 5. Three coloured polyhedra based on a planar tiling with triangles 
and hexagons related through Petrie operators

• In the second angularity class we mention two polyhedra, the first 
one related to a truncated {4 ,6a} and having plane squares and skew 
hexagons as faces (cf. Figure 9, where one skew hexagon bordered by 
six squares is shown), the second one related to a truncated {6,4a}  
and having plane hexagons and skew quadrangles as faces (cf. Figure 
10, where four skew quadrangles, each one bordered by four hexagons, 
are shown).

5. This follows from the relation

sin2((«o, « 0 )  +  sin2((a0 1 « 2 )) +  sin2((a0, aqa2)) =  1-
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(I 11, 1, 11 30, 90, 60)

(I 11. 1. 1 160, 30, 90) (I I 1, I, 1 160, 90, 30)

Fig. 6. Three coloured polyhedra based on a planar tiling with triangles 
and hexagons related through Petrie operators

In this class we find the Petrie-Coxeter polyhedron {6 .448°12/1} (cf. 
Figure 11). □

E x a m p l e  4.2.10. Consider the following analytical description of the 
three fundamental involutions of (111,1, 1|45°, 60°, 60°):

• Ea°: y =  q \ z  — —x +  p  with p, q G R,
• Eai : x =  0; y =  0,
• Eni: z  =  0; x =  y,

and consider the point P(p , q, 0) € Ea°.
Then we get the following special cases:

• p =  0 (111,1,1|45°, 60°, 60°) can obtained by applying a coloured Petrie 
operator to (1|1,1 ,1|60°, 60°, 45°), which is the so-called 48-t,h Grünbaum 
polyhedron {oo71'/2,271’/ 3, 4} [1] (cf. Figure 12).



30 C. LEYTEM

Fig. 7. The similarity class of (1|221|30, 30, 45): four examples

• q =  0 This polyhedron is related to the Coxeter- Petrie polyhedron 
{oo27̂ 3’2*/3^ / 3/ ! }  [1, 3]. At each vertex it consists of two square poly
gons visible in {6, 4a}, and two Petrie polygons of {6, 4a} (cf. Figure 13).

• p  =  q The polyhedron can be thought of as obtained from helices with 
square base (cf. Figure 14).
Note that the 1-parameter similarity class of (1,1,1.1,45°,60°,60°) can 

only be discrete polyhedra for well-chosen values of the ratio p/q.  In fact, a 
polyhedron of this family can be thought of as obtained by fitting together 
square helical polygons with axis in direction of the orthonormal basis vectors 
et (i =  0,1,2). Figure 15 represents the projection onto the y)-plane of 
such a polyhedron.
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{6, 6a)

(112, 2, I 130, 30,45)

Fig. 8. (1|221|30, 30,45) as a truncation of {6,6a}



c . LEYTEM

Fl°' í 11221130, 45,60) as a truncation of {4, 6a}
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{6, 6a) (1 12, 2, 1 I 60, 45,30)

Fig. in. (11221160, 45, 30) as a truncation o/{6,4o}

{6. 4a) (2 1 111 130, 45. 30)

Fig. 11. The vertex figure of (2| 111130, 45, 30) related to {6,4a}



Fig. 12. (1 1111145, GO, 60) in relation to the 48th 
Grünbaum polyhedron (11111160, 60, 45)
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{6, 4a}

(1 1 111 145, 60, 6 0 ) p = l q  = 0

Fig. 13. (11111145, Ö0, 60) related, to {6,4o}
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(1 I 111 145, 60, 60)p = q =  1

Fig. 14. (1|111|45, 60, 60) related to four defining prisms
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Fig. 15. Projection of (11111145, 60, 60) onto the (x,y)-plane

Now consider helices of diameter 1 and denote u'(d, 0,0) a vertex which is 
a full turn along a helical polygon away from the preceeding vertex u(0, 0,0). 
Here d depends on p and q. Following the two helical paths indicated 
by dashed (resp. bold) segments on Figure 15, we first reach the ver

tices i>(^-,y, oj and w(4, —y, 0). Repeating this movement with v and w
as starting points, we reach after four iterations the two vertices u'(d, 0,0) 
and u"(16,0, 0) of the polyhedron.

Comparing coordinates, we now see that the polyhedron can only be 
discrete if d  is rational.

4.3. Acknowledgements. We would like to express our gratitude to the 
organizers of the Budapest conference on Intuitive Geometry for their hos
pitality, and the participants together with the referee for their inspiring 
comments.

All figures have been realized in Mathematica (and redrawn in Corel- 
Draw).
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POSITIVE SOLUTIONS OF SECOND ORDER 
QUASILINEAR ORDINARY DIFFERENTIAL EQUATIONS 

WITH GENERAL NONLINEARITIES

J. KIYOMURA, T. KUSANO and M. NAITO

1. Introduction

In this paper we are concerned with positive solutions of the quasi linear 
ordinary differential equation

( i . i)  (\x, r ix ' y + p ( t ) f ( x ) = o ,  t z t 0,

where the following conditions are always assumed:

o  > 0 is a constant;

p(t.) is continuous on [fo,oo), to>0, and 
p(t)Z  0 (tg io);

f(x)  is continuous on (0, oo) and f(x)  > 0 (x >  0).

In the oscillation theory for differential equations one of the important 
problems is to find necessary and/or sufficient conditions for the equations 
under consideration to have positive solutions. For the equation (1.1), nec
essary and sufficient conditions can be established by restricting the nonlin
earity of f ( x ) to various classes of functions. As an example, consider the 
case f(x)  =  xV, ß > 0 .  In this case, equation (1.1) becomes

(1.5) ( I x ' r ' x 1)' + p ( t )x f} =  0, t z t o .

The existence and asymptotic behaviour of positive solutions of (1.5) have 
recently been studied by several authors. It is known (Elbert and Kusano
[2]) that equation (1.5) has an unbounded positive solution x(t)  such that 
l̂im [x(t)/t] =  l\ for some l\ £ (0, oo) if and only if

OO

(1.6) j  s^p(s)ds <  oo;
to
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and equation (1.5) has a bounded positive solution x(t)  such that liin.x-(t)=/2t—> oo
for some I2 € (0,00) if and only if

(1.7) p(r)dr
l/rv

ds <  00.

It is also known ([2]) that the superlinear equation (1.5) with ß > a  has a 
positive solution if and only if (1.7) holds, and the sublinear equation (1.5) 
with 0 < ß  < a  has a positive solution if and only if (1.6) holds. In the paper 
of Elbert and Kusano [2], a more general equation is considered. However, 
little is known about the case where /  has a general nonlinearity.

The purpose of this paper is to investigate the existence and asymptotic 
behaviour of positive solutions of (1.1) for the case where /  has a general 
nonlinearity. It is emphasized that, while condition (1.4) is assumed, no 
additional condition on f ( x )  is hypothesized. We do not require any condi
tion on f(x)  such as monotone conditions or growth conditions as x —» 00. 
Instead, we need a kind of monotone condition on the coefficient p(t).

In Section 2 we give necessary and sufficient conditions for (1.1) to have 
positive solutions x(t.) with special asymptotic properties as t —> 00, and in 
Section 3 we provide a necessary and sufficient condition for (1.1) to have a 
positive solution x(t). Here the terminology of “positive solution” of (1.1) 
is used in the eventual sense. That is, x(t) is said to be a positive solution 
of (1.1) if and only if it is defined and is positive and satisfies (1.1) on some 
interval [tx, 00), tx ^ tó

in the case a  =  1, the related oscillation theorems for equation (1.1) with 
general nonlinearity were obtained in the papers of Wong [4] and Burton 
and Grimmer [1]. Later, a systematic investigation was made in the paper 
of Naito [3], and the theorems in [4] and [1] were extended to a more general 
case. The results in this paper give a further extension of the corresponding 
results in [3].

2. Existence of maximal and minimal positive solutions

In this section we study the existence of positive solutions of (1.1) with 
special asymptotic properties as t, —» 00.

Let x(t) be a positive solution of (1.1) on [tx, 00), tx We easily find 
that x'(t) is nonnegative and nonincreasing for f Si tx. Hence, lim x'(f) =  l\

t—►oo
exists and is nonnegative. We have lim [&•(£)/<] =  l\ as an application of

t—>00
L’Hospital’s rule. On the other hand, since x{t) is positive and nondecreasing 
for t ^ t-x, lim x(t) =  I2 exists in the extended real line R and either I2 =  00

t—>00
or I2 is a positive finite value. It is clear that if I2 =  lim x{i) is positivet—>00
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and finite, then l\ — lim [x(t.)/t] = 0 . It is also clear that if l\ =  lim [x(t)/t]
t—>oo t—>oo

is positive and finite, then I2 — lim x(t) — 00. Then it is easy to see that,
t—>00

for a positive solution x(t.) of (1.1), one of the following three asymptotic 
conditions is satisfied:

( 2 . 1)

( 2 . 2)

(2.3)

limi—>00
x{t)

t
exists as a finite positive value;

x (/,)
lim —— =  0 and lim x(t) =  00;t—>00 t t—>00
lim x(t) exists as a finite positive value.<—>00

From these observations we see that, for a positive solution x{t)  of (1.1) 
on [tx,oo), there are positive constants a\ and a2 such that

(2.4) 0 < «1 ^ x(t) ^ 02t,

Thus, among all positive solutions of (1.1), those which are asymptotic to 
at (a > 0 ) as t —> 00 can be regarded as the maximal solutions, and those 
which are asymptotic to a (a. > 0) as t —» 00 can be regarded as the minimal 
solutions. The purpose of this section is to present necessary and sufficient 
conditions for (1.1) to have positive solutions of these two special types.

T h e o r e m  2.1. Suppose that p{t) is decomposable in such a way that
p(t.) =c(t,)q(t,), c(t) is continuous and positive on Íío,oo), 0 <  lim infc(i) ^

t—»00
limsupc(t) <00, and t,aq(t) is continuous and nondecreasing on [to, 00) for 

t—>00
some real number a.

Then, equation (1.1) has a positive solution x(t) which satisfies (2.1) if 
and only if

00
(2.5) I  p(s)f(cs)ds < 0 0  for some c >  0. 

to

P r o o f . There is no loss of generality in assuming that a  ^ 0. From the 
assumption on c(t), we have

(2.6) ci <ic(i) gc-2, t ^ t 0,

for some positive constants ci and C2-
We first prove the “only if” part. Let x(t.) be a positive solution of (1.1) 

satisfying (2.1). We suppose that x(t) is defined, is positive and satisfies
(1.1) on [<x,oo), t,x ^ t 0, and that

x(t)
lim -----=  l E (0, 00).t-> 00 t.



42 J. KIYOMURA, T. KUSANO and M. NAITO

Then there exists T ^ 4tx such that

í z t .(2.7)

It follows from (2.7) that

<2-8> 21 —  I
Then, using (2.6) and (2.8) and the assumption on p(t)  =  c(t)q(t), we get

t > T _

(2.9) P ( t ) ^ k p  ( ^ f ) ,  t Z T ,

where k =  c \ l \ \ac^. In fact, we compute as follows:

= C] 2x { t ) \ ~ a (x{t)
l

Cl ( x{t)
21 

t > T .

21

= 4ctc2 V 21 J ’

Now, integrating equation (1.1) from T to t, we obtain

t

\x ' ( t , ) r 1x ' ( t ) - \ x ' ( T ) r 1x'(T)+ I  p ( s ) f { x ( s ) ) d s  =  0,
T

t > T .

As mentioned above, we have x'(t) ^ 0 for f ^ fx. Hence we find that
OO/ P ( s ) f { x ( s ) ) d s < oo,

which together with (2.9) implies
OO

'*(*)( 2 . 10)
M -
T

21
f ( x ( s ) ) d s <  oo.

Observe that lim x ' ( t ) =  lim [a;(i)/i] = /.  In particular, there is a positive1—loo i—loo
constant d, such that

d. fx ( t , ) \
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Hence (2.10) gives

OO

V
r

Then, letting v =  x(s)/2l,  we arrive at
00
1  p(u) f  (2lv)dv < oo.

x(T)/2l

Thus the integral condition (2.5) is satisfied.
We next prove the “if” part. We suppose that (2.5) holds. Put K  = 

2° C-2/ c I. where ci and C2 are positive constants appearing in (2.6). Choose 
T > 2io such that

f i l l
21 /(* (*))

d f  x(s)
ds \  21

ds < oo.

OO

(2.11) f  p ( s ) f ( c s ) d s < ± ( 2a - l ) c a .
T

Let C l [T, oo) denote the Frédiét space of all C l-functions on [T, oo) with 
the usual metric topology, and let X  be the set of all functions € C 1 [T, oo) 
such that x(T ) = cT and

(2.12) ct Ú x{t.) ^ 2ct. and c ^ x'{t) Ú 2c. for t ^ T.

Here c > 0 is a constant in (2.5). We define the mapping M : X  —> C l [T, oo) 
by

t oo , ,

T s
We will show that the Schauder- Tychonoff theorem ensures the existence of 
a fixed point x =  Mx  G X,  and that this x(t.) is a positive solution of (1.1) 
satisfying (2.1).

(i) M  maps X  into X.  Let x E X .  It is clear that (M x)(T ) —cT. Since 
ct L x(t) L 2ct for t ^ T, we have

(.Mx){t) =  c T +  I I -
i/a

p(r) f(x(r))dr  ds, t ^ T .

fW  < ,<  f i l l
2c = '= c ’

t > T .

As in the proof of the “only if” part, it can be verified that

t ^ T .(2.13) p ( t ) Ú K p c
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From (2.11)—(2.13) it, follows that

0 £ / p(r)f (x(r) )dr  ^ K  f { x (r ))^-  ( JAlA  ] (jr
el v V c

= K  j  p(v)f(cv)dv
T

^{2a - l ) c ° .

Then we easily sec that ct ^ (Mx)(t) £  2 at and c ^ (Mx)'(t) ^ 2c for t ^ T .
(ii) M  is continuous on X .  Let rr, (* =  1 ,2 , . . . )  and x be functions in X  

such that xi(t) —> a:(t), x[{t) —¥x'(t) as i —» oo uniformly on every compact 
subinterval of [T, oo). Note that all the inverse functions x~l (t) (* =  1 ,2 , . . . )  
and a;- 1 (i) are defined on the common interval [cT, oo). If t L T.  then we 
have

P( r ) f ( x i ( r ) ) d r -  / p{r)f (x(r) )dr

CXJ

/  p{xp {csm c s ) — ^ —

J  p{x~i(cs)Wcs)i ^ m

X i ( t ) / c

oo

<

x( t ) /c

x(t)/c.

Xi(t)/c

p(x i M ) /(c s )  ds
x'i{Xi (cs))

4* c

< K

p(Xi \ cs ) )  p(x l (cs))
.1  x f o i  *(<»)) x'(x Hcs)) 

( 0 / c
■\t)/c

j  p(s)f(cs)di

,f(cs)ds

X i ( t ) / c

+ c■/
7"

1M )  p(s l M )
M )  x ' ( x - l {cs))

f(cs)ds.



POSITIVE SOLUTIONS 45

Here we have used (2.13) with x — x, and (2.12) in the last step. Then, for 
any compact interval of the form [T, S] C [T, oo), we obtain

sup
T t̂- ŝ

0 0  OO1  p{r)f{xi{r))dr  -  j  p{r)f(x{r))dr
't t

{ sup p (s ) /(c s )} {  sup |*t- ( í ) - s ( í ) |}

+  C/
p K ' j c s ) )
x'i{x~l (cs))

—> 0 as i —y oo.

p (g ~ 1(cs))
.x-'^-^cs))

f(cs)ds

This fact shows that
0 0  OOf  p{r)f{xi(r))dr  —> |  p(r)f{x{r) )dr  (*->oo)
1 t

uniformly on every compact subinterval of [T, oo). Then it is easy to see that 
(Mxi)'(t) —► (Mx)'(t) and (Mx,)(f) —> (M x ) ( t ) as i —» oo uniformly on every 
compact subinterval of [T, oo). Thus M  is continuous on X.

(iii) M (X )  is relatively compact. Let x £ X.  From (i) it follows that 
ct ^ (M x ){ t ) ^ 2ct and c^  (Mx)'(t.) ^ 2r: for t ^ T .  Put C =  c for a. ^ 1 and 
C  =  2c for 0 <  a  <  1. If f i , i 2 € [T, 5], then

aC'a- 1|(M.x)/(f1) - (M .x ) '( /2)|
^ |{ ( m *)'(í1)}“ - { ( m *), (í2)}“ |

«2

h
p(r)f{x(r))dr

< { sup p (r)}{  sup /( l í ) } | í l  - í 2|.

Thus { ( M . t ) ( í ) }  and { (Mx) ' ( t ) }  are uniformly bounded and equicontinuous 
on every compact subinterval of [T, oo). Therefore, by the Ascoli- Arzelä 
theorem, M ( X )  is relatively compact in the topology of C 1 [T, oo).

From the above considerations we see that the Schauder-Tychonoff fixed 
point theorem can be applied to M, and so there exists an x  E X  such that 
x(t )  =  (Mx)( t , ), t ^ T .  It is easily verified that x(t.) is a positive solution of
(1.1) on [T, oo) and satisfies lim [x(t)/t] — c >  0. The proof of Theorem 2.1

t—> oo
is complete.
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R e m a r k  2.1. Let the hypothesis on p(t) in Theorem 2.1 be satisfied, 
and suppose that (2.5) holds. Then it is easy to see that

00
1  p(s)f(cs)d.s < oo for all c' ^ c, 

to

where c is a positive number in (2.5). Thus the set of all c > 0 satisfying (2.5) 
is an interval I  which is contained in R+ =  (0, oo). For example, if p(t) =  e! 
and f ( x )  =  e~x, then I  =  (1, oo). By the proof of Theorem 2.1 we see that, 
if (2.5) is satisfied, then, for any c! with c! c, equation (1.1) has a positive 
solution x(t) which satisfies lini [x(t)/t\ =  c'.

t—>oo

THEOREM 2.2. Equation (1.1) has a positive solution x{t) satisfying 
(2.3) if and only if

(2.14) <  oo.

P r o o f . Let x(t) be a positive solution of (1.1) satisfying lim x(t) =  1
t—¥ OO

with I, >  0. Since x(t) is nondecreasing, there is a T  ^ to such that

^ x ( t ) i l ,  t 2 T .

Integrating (1.1) from t to r (T ^ t^ r ) ,  we get

T

(2.15) \x'{T)\n~lx' (T)- \x '{ t ) \a~1x ' ( t )+  I  p{s)f(x(s))ds =  0.
t

Since x'(t) is nonnegative and nonincreasing', the existence of lim x(t) — l
£—► oo

implies lim x'(t,) =  0. Then, let r->  oo in (2.15) to obtain
Í—> oo

OO  ̂/ Ct
z'(t) =  ^ I  p(s )f (x{s ))ds \  , VZT.

t

Integrating the above equality from t to r, and letting r —> oo, we conclude 
that
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From this it follows that

OO OO

I  I  p {r ) f (x (r ) )dr \  
T K

l/a
ds < oo,

which implies
GO 0°  j  /

A,-0 /a f  ̂  f  p(r)d.r-Sj  da < oo 

T s

with ko =  m in {/(u ): 1/2 ^ u ^ /}. Thus (2.14) is satisfied.
Conversely, suppose that (2.14) is satisfied. Let c be an arbitrary positive 

number. Take T  > to such that

(2.16) I  ( j  p (r )dr \  d s < ‘-I<~l/a,
T s

where Ko =  m ax{/(u ): c/2 £ u ^ c}, and define the subset X  of C[T, oo) by

X = { x e C [ T , o o ) : ^ x ( t ) i c ,  <^t }.

The space C[T, oo) is regarded as a Frédiét space with the topology of uni
form convergence on every compact subinterval of [T, oo). We define the 
mapping M  : X  -» C[T, oo) by

(Mx)(t) ■■ c —
1 /a

p{r )f {x{r))dr  I ds, t ^ T

In view of (2.16), we see that M  maps X  into itself. It can be proved that M  
is continuous on X  and that M (X )  is relatively compact in the topology of 
C[T, oo). Therefore, applying the Schauder Tychonoff fixed point theorem, 
we find that there exists an x G X  such that x =  Mx.  It is immediately 
verified that this fixed point x[i.) is a positive solution of (1.1) satisfying 
lim x( t) =  c > 0. This sketches the proof of the “if” part. The details aret—HX>

left to the reader.

R emark 2.2. By the proof of Theorem 2.2 we see that if (2.14) is satis
fied, then, for any c >  0, equation (1.1) has a positive solution x(t.) such that 
lim x[t) =  c.

t-> oo



48 J. KIYOMURA, T. KUSANO and M. NAITO

3. Existence of positive solutions

The main purpose of this section is to establish a necessary and sufficient 
condition for the existence of a positive solution x(t)  of (1.1).

T heorem 3.1. Let q e  C[to, oo), t0 >  0, be a function such t.ha.t, p(t) ^ 
q(t.) ^ 0 (t ^ to) and tßq(t) is nondecreasing on [to, oo) for some ß  < 1 +  a. If 
equation (1.1) has a positive solution x(t), then

(3.1)

OO

j  q{s)f(ca)d.s < oo for some c >  0.
to

P roof . It is enough to consider the case where q(t) ^ 0  on [<o,oo). We 
suppose that x(t) is a positive solution of (1.1) on [tx,oo), tx ^ to- Then 
x'(t) is nonnegative and nonincreasing for t ^ tx, and x(t) satisfies one of the 
asymptotic conditions (2.1)-(2.3). Assume that x(t) satisfies (2.3). Then, 
by Theorem 2.2, we have (2.14). The assumption of the theorem implies 
p( t ) ^ q(t) ^ t//('y(ii)t-  ̂> 0  (t ^ t]) for some 11 ^ to, and so we get

oo oo 1/q
ds < oo.

But this is impossible under the assumption ß  < 1 +  a. Consequently, x(t) 
does not satisfy (2.3), and hence we conclude that lim x(t) =  oo as f —> oo. 

Put 7 =  ß  — 1 (< a). Then we have

d.t ( A í) )“~7 =
_d_

dt
a  — 7

a

{(*'(*))“ } (°~ 7)/a

( x ' ( f ) ) - > ( f ) / ( x ( f ) )

for t^.t,x. An integration of the above equality gives

L
- ( ^ w r  +  t i ' f f , ) ) “- ^ ^  [ (x'(s))-Ms)f(x(s))d.s .

a  ./

Letting t —̂ oo, we see that

OO

/  (x'{s))~1p{s)f{x{s))ds  < oo,
tx
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and hence
oo

(3.2) j  {x'{s))~'yq{s ) f (x{s) )ds<  oo.
t'T

Note that there are constants ü\ > 0 and a2 > 0 such that (2.4) holds. Since 
x'(t.) is nonnegative and nonincreasing on [tx, oo). we have

t

x(t) =  x{tx) +  I  x'(s)d,s
tx

t.
^ J  x ' ( s ) d s * l- tx'{ t)

t/2

for t í> 2tx. Since x(t) —> oo as t —> oo, we can take T  sufficiently large such 
that x(t) ^ 02̂ 0 and x(t) ^ t̂.x'(t) for t ^ T. Moreover, we may suppose 
without loss of generality that ß  ^ 0. Then it follows from (2.4) and the 
nondecreasing property of t^q(t) that

«2
ß

a 2

2a2 J
Y uM O l ' i  ( —«2

for t ^ T .  Therefore, by virtue of (3.2), we find that

O O

/ * ' (^)7
x{s)
«2

f {x (s) )ds  <  oo.
T

Then, letting r =  x(s ) /a 2 and noting that s —> oo as r -» oo, we easily see 
that (3.1) with c — a2 holds. The proof of Theorem 3.1 is complete.

Remark 3.1. Suppose that q(t) satisfies the hypothesis in Theorem 3.1. 
Then we easily see that if (3.1) holds, then

00
1  q(s)f(c's)d 
to

s < oo for all c' with c ^ c,

where c is a positive number in (3.1).
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C orollary 3.1. Suppose that there exists a number ß <  1 +  a  such that 
lim inf t0p(t)  >  0. If (1.1) has a positive solution x{t), then

/,—>oo
00

(3.3) I  x ~0 f  {x)dx < oo.
1

PROOF. There are constants k >  0 and T  ^ to satisfying p(t) ^ kt~fi for 
t.7iT. Apply Theorem 3.1 to the case t,o =  T  and q{t) =  kt~0 (t ^T ). We see 
that if (1.1) has a positive solution x( t), then

00

1  s~0 f (cs)ds  < oo for some c > 0,
T

which is equivalent to (3.3).

It is to be noted that if limsupi^p(f) < oo for some ß  > 1 +  a,  then
t-^OO

equation (1.1) always has a positive solution x(t.) satisfying (2.3). This is 
easily derived from Theorem 2.2.

In Theorem 3.1 it is impossible to choose ß =  1 + a .  To see this, consider 
the equation

(3.4) ( |x T _1^ ) / +  « ( 1 - A)AQ<_a-la;a =  0>
where a  >  0 and 0 < A < 1. In this case we have p(t) =  a ( l — \ ) \ nt ~a ~ 1 and 
f {x )  =  x a . Take q(t) =  p(t). Then, since t l+°q(t) is a constant function, 
it is clearly nondecreasing. Equation (3.4) has a positive solution x(t) =  t.x 
(t ^ 1). But Condition (3.1) is not satisfied. It is also impossible to choose 
ß  =  1 +  a  in Corollary 3.1.

The next corollary gives a necessary and sufficient condition for (1.1) to 
have a positive solution.

C orollary 3.2. Suppose that p(t) is decomposable in such a, way that 
p{t) =  c(t)q(t), c{t) is continuous and positive on fio,oo), 0 < lim in fc (i)  ^

t—>oo
lim sup c(t) <  oo, and tPq{t) is continuous and nondecreasing on [io,oc) for

t—>oo
some ß  <  1 +  a.

Then equation (1.1) has a positive solution x{t) if and only if (2.5) holds.
PROOF. The “if” part is contained in Theorem 2.1, and the “only if” 

part is easily derived from Theorem 3.1.
C orollary 3.3. Suppose that p & C l [to,oo), p{t) > 0 (t^ito) ar>d that 

there exists a number ß  < 1  +  a  such that

f  (ffp(s)Y-  ^  ^ _

to



POSITIVE SOLUTIONS 51

where (tßp(t))'_ =  max{—(t^p(t))', 0}.
Then equation (1.1) has a positive solution x{t) if and only if  (2.5) holds.

P r o o f . We have only to apply Corollary 3.2 by taking

where (tPp(t))'+ =  max{(tßp(t))': 0}.

As can be seen by equation (3.4), it is also impossible to choose ß —1 +  a  
in Corollaries 3.2 and 3.3.

For the case a =  1, the results of this paper were obtained by Naito [3].
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MATRIX TRANSFORMATIONS OF A-BOUNDEDNESS 
FIELDS OF NORMAL MATRIX METHODS

A. A ASM A1

Dedicated to Professor Károly Tandori on his 7Oth birthday

A bstract

In this paper we shall consider the boundedness and summability with speed. Let A 
be a normal matrix, B a triangular matrix, A and //. monotonically increasing sequences 
(i.e. speeds). We shall prove a theorem that gives necessary and sufficient conditions for 
a matrix M to be transformation of the A-boundedness field of A into the /j-boundedness 
field of B. For applications we shall consider the special case when .4 is a Riesz method 
and the A-boundedness of Fourier expansions in Banach spaces by the method of Zygmund 
(Z,r).

Introduction

Let A =  (A/t) be a sequence with the property 0 < A t̂- A sequence x =  
(xk) is said to be bounded with speed A or X-bounded when the conditions

are fulfilled, where

Let

hmxk =  £, lk =  0 ( 1)
k

h  =  ^k[xk — £)■

m x =  {x  =  (xk) I x is A-bounded},

m sx x =  (xk) (An) G m x, where X n =  xk > .
k=o )

We note that the sequences e =  (1 ,1 , . . . ,  1 , . . . ) ,  A 1 =  (Afc1) and ek — 
(0 ,...  , 0 ,1 ,0 , . . . )  with 1 in Arth position belong to m x. Also m x C c, where 
c is the space of convergent sequences. * 1
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Key words and phrases. Matrix transformations, summability with speed, Fourier ex

pansions, orders of approximation.
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Let A =  (oink) be a matrix with a nk G C (n, k =  0 ,1 , . . . )  and let x denote 
a sequence (Xk) or a series Y l x k- Then x is said to be A-bounded by A or

k
Ax-bounded if Ax £ mA, where Ax =  (Anx) and

A nx — ^
k

We denote the set of AA-bounded sequences (or series) by m,\. Let M  — 
(mnk) with mnk G C (n,k =  0 ,1 , . . . )  be a matrix, B =  (ßnk) with ß nk G C 
(n, k =  0 ,1 , . . . )  a triangular matrix and p =  (pk) a sequence with 0 <  pk\- 
We say that MG ( m \ , m B) if the matrix transformation y =  M x  exists for 
each x G and y G m B . I f  M x  exists and

lim B n(M x) =  lirrx Anx
11 11

for each x 6 rri\, then we say that A and B  are M-consistent on m \ .
In this paper we shall find necessary and sufficient conditions for M  G 

( m \ , rn/ß) and for M-consistency of A and B on in the case when A is 
a normal matrix (i.e. a nn ^  0 and a nk =  0 if k >  n) and I? is a triangular 
one (Section 1). As an application we shall consider these conditions in 
the case A =  (R,pn) (Section 2). Another application we get for Zygmund 
method A =  (Z,r). Namely, we shall consider the (Z, r)A-boundedness of 
Fourier expansions in Banach spaces with respect to a sequence of orthogonal 
projections (Section 3).

If A and /i are bounded sequences, then m \  =  c,\ and m)) =  eg. The 
necessary and sufficient conditions for M  G (ca, cb) were found in [1], and 
for special cases if A or A and B  both are Cesäro methods, also in [2] and 
[9]. We note that in the case of diagonal matrix M  this problem has been 
solved in [6, 7]. In particular, if A =  B =  I  (where I  is identity method), the 
necessary and sufficient conditions for M  6 (m \ ,  rn,LB) =  (mx,m ß) can also be 
found in [6, 7]. 1

1. Matrix transformations for the class (m^,?Ug)

A. During this paper we assume further that A =  (Xk) and // =  (/q.) 
are sequences with A&,/ifct°°) ^  is a normal matrix with its inverse matrix 
A-1 =  (Vkl) and B is a triangular matrix. First we notice that the matrix 
transformation y =  M x  exists for each x G rn\  if and only if the numbers 
m nk are the convergence factors for m \  for each n =  0 ,1 , . . . .  Therefore, by 
the theorem 20.2 of [7], we have
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LEMMA 1. Let, M  — (mnk) be an arbitrary matrix. Then the matrix 
transformation y =  M x exists for each x G rn\ if and only if

(i) there exist finite limits lim M 7ni — M ni ,
(ii) there exist finite limits

(iii) E ^ = O n ( l ) ,

x !. ^ \ M f a - M nl\ n
(iv) hm E  x = 0 ,

r 1=0 N
where

K i  =  \
1 E  m nkVkl
1 k=l

if i = r-

1{ 0 if l> r .
Let G =  {gsk) — N M  and

Í E  üskVkl
1 k=l

if Zgr,

1[ 0 if l > r.
Now we can prove the main result, of this paper.

THEOREM 1. Let, M  be an arbitrary matrix. Then M  G (m a r iig ) if and 
only if the conditions (i) (iv) and the following conditions hold:

(v) (gs) Em*1,
(vi) there exist the finite limits lim y si =  7

S

t **\ It  I ^(vn) E -v ~ < ° ° >
I A/

í ’**\ 17s/ 7/1 n / i  \H  M iL ----- r----- =  0(1),
/ A/

where r
0s =  lim V  ysl, 7st =  lim 7').

r  z—j r
1=0

P roof. Necessity. Let M  G ( p i \ , rnfi). Then the transformation y =  
M x  exists for each x G m \  and therefore the conditions (i) (iv) are fulfilled. 
As B  is triangular, we have

S

(1) ßsnMnx = GsX
11=0

for each x £ m \ .  Now it follows from (1) that G G (m\,rriT). Moreover
r r

(2) =  2^71^7
Jt=0 /=0
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where ti =  A/x. for each x £ m \ .  As the method A is normal there exists 
x £ m \  so that (f/) =  (Aix) =  e. Therefore condition (v) is fulfilled by (2). 

Let, further
lim ti — u, ßi =  A / (t,[ — v ) .

Then, by (2), the equalities
r r r r

(3) XI 9sk'Xk = ,y X 7rsi +  X
k=0 /=0 1=0 1

hold for each x £ rn\. Now, the series Gsx converge for each x £ m \  and the 
finite lim its gs exist by condition (v). Hence we see from (3) that the matrix 
(y^/A/r) transforms each bounded sequence (ßi) into convergent sequence for 
every .s. Therefore (3) implies with the help of Theorem 2.1 of [3]

(4) Gsx =  ugs + ^ 2 ^ - ß i .

Also the finite limit limp*. =  g exists by condition (v). Consequently, from
5

(4) it follows that the matrix (7s//A/) transforms each bounded sequence into 
convergent sequence. Thus conditions (vi) and (vii) are fulfilled,

(5) T E
\lsi -  7<1 

A/
= 0,

and the equality

holds for each xGrn\  by Theorem 2.1 of [3]. Hence we have

(7) ß s(Gsx -  limG's.r) =  vg,s(gs -  g) +  /xs V ]  - - -—-ßi
S i Xi

for each x  £  rn\. From (7) we see that the matrix {g.s {lsi ~l i) l^i)  transforms 
each bounded sequence (/?/) into bounded sequence. Consequently, condition 
(viii) holds by Theorem 2.2 of [3].

Sufficiency. Let conditions (i)—(viii) be fulfilled. Then for each x £ m,\ 
the transformation y =  M x  exists by Lemma 1 and equalities (1) (3), where 
t[ =  Aix,  hold. As

r
hin X  9skXk =  Gsx 

k=o
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for each x G m \ ,  then it follows from (3) that the equalities (4) hold for 
each x € m \  by condition (v) and Theorem 2.1 of [3]. Moreover, condition 
(5) follows from (viii), because g s ^  0(1).  Hence equality (6) holds for each 
x E m ^ by Theorem 2.1 of [3] and conditions (vi) (viii). Thus equalities (7) 
are also valid for each x E r n \ .  Consequently, M g (m ariig ) by (v) and 
Theorem 2.2 of [3].

Remark 1. For a triangular matrix M conditions (i)-(iv) are redundant 
in Theorem 1.

We notice that in the special case if =  0(1) and =  0(1). Theorem 1 
of [1] for M g (c/i, eg) immediately follows from Theorem 1. For a diagonal 
matrix M Theorem 1 reduces to Theorem 20.2 of [7] and for A =  B = /  to 
Theorem 1 of [6].

If the method A preserves A-boundedness, i.e. mA C m \ , then from The
orem 1 we have

Corollary 1. If m x C m xA and
(8) 7 si =  0 {gsi),
then in conditions (vii) and (viii) of Theorem 1 V =  ( j x/) can be replaced by
G =  (gsi)•

PROOF. Let, M G (m },,m g). Now the relation GG follows
from (2). As rnA C then G G (mJ,m ,‘). Therefore the conditions

(9) E t < » .
I 1

( 10)

where
gi =  \im gsl,

S

are fulfilled by Theorem 1 of [6]. This completes the proof because it follows 
from (8)—(10) that conditions (vii) and (viii) are fulfilled.

It is easy to see that in the case of normal method B  condition (iii) 
follows from condition (vii). Therefore from Theorem 1 we get

COROLLARY 2. If B is a normal method, then condition (iii) is redundant 
in Theorem 1.

Let now a normal method A =  (a nk) have the property o n0 =  1. Then 
for its inverse matrix A-1 =  (gnk) the equalities

if =  0, 
if k ^ l
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are valid by Theorem 9.2 of [3]. Therefore

J2 Mni =  m «o, =  9sC
1=0 1=0

Consequently, from Theorem 1, we have
COROLLARY 3. If A — (ank) has the property a no =  1, then in Theorem 1 

condition (ii) is redundant and condition (v) can be replaced by condition
(ix) e°€mQ.
COROLLARY 4. Let M  be a number matrix. Then A and B are M-  

consistent on mxj if and only if conditions (i)-(iv) are fulfilled and
(x) limp., =  1,

(xi) iim E M  =  o.
■ s i A/

P ro o f . Necessity. Let A  and B  be M-consistent on m \ .  Then M  E 
( m \ ,  cb). Therefore the conditions (i)-(iv) are fulfilled, equalities (4) hold for 
each x E m \  and there exist the finite limits gs and the finite limit lim gs =  g
(see the necessity part of the proof of Theorem 1). Let us show that g =  1. 
Indeed, there exists x E m \  so that (t/) =  (A/x) =  e by the normality of A.
As lim G sx =  limAgx =  1, then p = l  by (2), i.e. condition (x) is fulfilled. It

s i
follows from (4) that the matrix (7.,//A/) transforms the space of bounded 
sequences m into the space of O-convergent sequences cq . Therefore condition 
(xi) is fulfilled by Proposition 21 of [8].

Sufficiency. Let conditions (i)-(iv) and (x)- (xi) be fulfilled. Then the 
series gs are convergent and equalities (4) hold for each x G 'm\ (see the proof 
of Theorem 1). As the matrix (7,S//A/) transforms rn into co by (xi), then A 
and B  are M-consistent on m \  by (4) and (x).

B. Let now X  be a Banach space with norm || * ||,

rnx{X) =  {x =  {xk) \ x k E X ,  3 lima:* =  ̂ , A*||:cA: -  |̂| =  0 (1)} ,

m s x(X) = \ x =  (xk) xk E X,  (Xn) E rnx(X).  where X n =  fT xk},
1 k = 0 J

m \ ( X )  =  {.x- =  (xk) I xk E X, 3 lim Anx =  £, An||Ana; -  |̂| =  0 (1 )}  .

It is easy to see that £e E m x{X)  for each ( g X  and the relations (3), (4),
(6) hold for X-valued sequences (or series). Moreover, Theorems 2.1 and 
2.2 of [3], Proposition 21 of [8] and Lemma 1 are also valid for X-valued 
convergent and bounded sequences (cf. [5], p. 115 and Remark 1 of [6]). 
Therefore we have
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Remark 2. All results of this paper are valid if m \  and m g are replaced 
by m \ ( X )  and nip(X)  in them.

2. Matrix transformations for the class (m p,m g)

Now we shall consider the case when A is a Riesz method. Let (pn) be
a sequence of nonzero complex numbers, Pn =  po H------ b pn 0, P-  \ =  0 and
let P  =  (R,pn) =  («„/,.) be the series-to-sequence Riesz method generated by 
(Pn), i-e.,

1 -  Pk-i/Pn if k^n,
0 if k > n.®nk —

It is well known that P  is a normal method. Therefore P  has the inverse 
matrix P ~ 1 =  (r}nk), where

( 11) Vnk —
Pk/Pk if n =  k,
-Pk{l/'Pk +  ^IPk+\) if n =  k +  l,
Pk/Pk+\ if n =  k +  2 .
0 if n < k or n > k +  2

(cf. [3], p. 116).

T heorem 2. Let M  — (mnk) be a matrix, P  a Riesz method with prop
erties rns* C nip,

( 12)

(13)

P„ =  0 (P n- 1),

—  =  0
Pn

1 n+1
Pn+1

Then M  G (nip, nip) if and only if the condition (ix) and the following con
ditions hold:

A'"”' = 0 „ (  1),(xii)

(xiii)

E 1 P/A-
Pi

PimniInn--- :— =  0,
' Pi A;

(xiv) there exist the finite limits lim gsi = 9 i,
S

Agi(xv)

(xvi) 

where

l A/
P A 

PI
< 0 0 ,

1
P s E yl A i

Pi A
A (gsi - g i )

pi
=  0 ( 1) ,

Arnsi =  Aynisi =  ms/ -
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P r o o f . Necessity. Let M e (nip,nig).  We shall show that conditions 
(ix) and (xii)-(xvi) are fulfilled. First we see by (11) that

(14) M „, =  P , A ^ = t
Pi

Mnl if l < r -  1
Mn,r—l Pr—lWhi,r+l/Pr if l =  r -  1
Pr7Tlnr / Pr if l = r ,
0 if l > r.

Therefore condition (xii) is fulfilled by Theorem 1. 
It is easy to see that

( 16) E \ K , - M nl 1 P r - l ^ n , r + l + Pr TTlnr

<
<

k prXr—\ Pr K K  Pr

Moreover, it follows from condition (xii) that

limr
Pr Am»r 
A,. pr

=  0.

Hence condition (xiii) is fulfilled by Theorem 1.
As the sequence ek £ rnsx and rnsx C irip the condition (xiv) is fulfilled. 

Condition (ix) is satisfied by Corollary 3, since a no =  1 for the method P. 
Further, we have by (11) that

lsk =  Pk&
Pk

Consequently, conditions (xv) and (xvi) are fulfilled by Theorem 1.

Sufficiency. Let conditions (ix) and (xii)-(xvi) be fulfilled. We shall 
show that M  £ (nip, nig). At first we see that conditions (i) and (iii) are 
fulfilled by (14), (15) and (xii). Also condition (iv) is fulfilled. Indeed, the 
condition

XnPy 
Xi/Pn

- 0 ( 1) ( v  n )

is satisfied by Lemma 1 of [6]. Hence

Pr- 1 
Ar_i

=  0
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Therefore we have

P;-i7n»,r+i
V r K - l

— Pr+l'rnn,r+1 _
^r+lPr Pr^r+l

=  0 (1 )-------- r------ = o n( 1)
Pr + I^ r+ l

by (12), (13) and (xiii). Consequently, condition (iv) is fulfilled by (16), (xii) 
and (xiii).

From conditions (xiv)-(xvi) it follows that conditions (vi)-(viii) are ful
filled. Therefore M  £ (n i p , m by Theorem 1 and Corollary 3.

From Corollaries 3-4 and Theorem 2 immediately follows

COROLLARY 5. Let M  be a matrix, P  be a Riesz method with properties
(12), (13) and ms* C nip. Then P  and B are M-consistent, on trip if and 
only if conditions (xii) and (xiii) are fulfilled and
(xvii) lim <7.,o =  1,

A'

(xviii) l im £
•5 I

Pl A Ag.s<
XI pi

— 0.

In the next section we shall find that there exist special matrices P. M 
and B  satisfying conditions of Theorem 2 and Corollary 5.

3. (Z , r) -boundedness of Fourier expansions in Banach spaces

Here we shall apply the results of Section 2 to the summability of Fourier 
expansions in Banach spaces by Zygmund methods (Z,r).  Namely, we shall 
characterize the relation between the speeds of approximation of Fourier 
expansions by different two methods of Zygmund.

Let X  be a Banach space with norm || * || and {T*,} be a total sequence of 
mutually orthogonal continuous projections on X,  i.e., is a bounded linear 
operator of X  into itself, T^f = 0 for all k implies /  =  0 and TjTk =  dj^Tk, 
where Sjk is Kronecker’s symbol. Then one may associate with each f  € X  
its formal Fourier series expansion

k

As we know, in the special case of pn =  (n -I- l ) r -  nr (r > 0) Riesz method 
P  is called Zygmund method and denoted by (Z, r). Thus (Z, r) =  («„*.), 
where
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Let, further, for every /  G X
n

Z rnf  =  ( Z , r ) n (Tk f )  =  Y /
k=0

We know that for the trigonometric system {7}.} and for 0 < a < 1 the rela
tion

(n +  l ) “ ||Z1)Tj /  — / | |  =  0 (1 )

holds if and only if

/  G Lip a  =  { f  e X \  || f (x  + h) -  f (x)  || =  Of (ha)}

(cf. [4], p. 106). Now we shall show that the next result is valid.

COROLLARY 6. Let X  be a Banach space and f  G X.  I f O < ß ^ a , r >  a, 
t >  a  and

(n +  l ) “ ||Zrfl/ - / | |  =  0 ( l ) ,
then

(17) (n +  l)*||Z tB/ - / | |  =  0 ( l ) .

P r o o f . Let Xk =  ( k  +  1)“ , p k — [k +  ^  and A =  (Xk ), /i =  (p,k )- Then 
Xk A 0 (1 ) and p k 0(1). Consequently, it is sufficient to show, by Remark 2, 
that the conditions of Theorem 2 and Corollary 5 are fulfilled for P  =  (Z. r), 
M  =  (Z , t ) and B  =  (Sn k ). First we notice that conditions (12), (13), (xii) 
and (xiii) are satisfied. As

51 Aanfc=Y
{ k + i y ~ k r

{n +  l ) 7'
= 1,

then the inclusion ms x C m xz  , is equivalent to the condition

Sn  — (n  +  I)'' Y .
k- 0

I X a nk I 
(k  +  l ) n

=  0 ( 1)

(cf. [6], p. 139). The last condition is fulfilled since

S n ( n + i r - ' Y
k=0

(k  +  l ) 7’ — k r
{ k + l ) a

=  0 (l)(n +  l)“"r +  1 )r- 1- “ =  0(1)
k=0

by the mean-value theorem of Lagrange.
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As now gnk =  m nk, the conditions (xiv) and (xvii) are fulfilled, gi =  1 and

L =  P’° Y
Pi a Mfjsi ~ gi) 1 Pi a A <hl
A / Pi

N
il

ar;1

A / pi
— L \  +  L i  +  A3 ,

where
s—2

L \  =  p s Y
1=0

Pi A &9sl
A/ Pi

s—2

P s~ i  A g st 
A2 =MsT-----AAs_i

A3 ~  /  ̂s

Hence we have

= ( S + i ) » - ‘ ^ ( i + i r « A 5 ± i A A ,
z=o ' '

ß  — t  „ T  — Ct A ~  ~ ' 1 )=  (s +  l ) 4,-4sr-Q A
i=s-l S
P.sg.ss
\sP s = (« +  !)

(■» — l) r

ß + r - a - t  (’s +  1)' ~  •s'
(s +  l ) 5 - s r

Ar =  - ( « +  l ) ^ 4 Y ( l +  1 )r“° A(/ +  9 l ) t~ r 
1 1=0

= ^  ~  r )  (a  +  1 ) ^ - '  £ ( Z  +  l ) r “ ° ( /  +  0/ +  0/2) i- r ~ 1 
1=0

s—2
= 0(l)(a + l)^ 4 £ ( /  + l)-°+4- 1 = 0(l)(a + l)*"“ = 0(1),

1=0

A2 =  - ( s  +  l ) ^ - V - aA(s - 1  +  0! ) ' - rr

=  +  l)^ -4Sr- a(S -  1 +  0! +  02)£- r- 1V
= 0(1) (s + if-t+r-a+t-r-1 =

A3 = -(*+ l)/»+r-a-i(s + 03)i-r = 0(1) (6- + 1)*"“ = 0(1)
r

(0  < 0 / , 0 f, 0 i,02, Oi <  1) by the mean-value theorem of Cauchy. Therefore 
A =  0(1), i.e., condition (xvi) is fulfilled. Now it follows from (xvi) that also 
the condition (xviii) is satisfied. Thus the relation (17) holds by Theorem 2, 
Corollary 5 and Remark 2.
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ON THE USE OF DIVIDED DIFFERENCES IN THE 
INVESTIGATION OF INTERPOLATORY POSITIVE 

LINEAR OPERATORS

D. D. STANCU

Dedicated to Professor E. W. Cheney on the occasion of his 7Oth birthday

1. Introduction

The divided differences (dd) have a great importance in the approxima
tion theory of functions, since they constitute a basic mathematical tool for 
the representation of interpolatory type positive linear operators (iplo), for 
the investigation of monotonicity and convexity properties of sequences of 
such operators and for the evaluation of remainders in the corresponding 
approximation formulae. In particular, we mention that from the formulae 
discussed in this paper we can sec that there is a closed connection between 
the shape of the approximants obtained by means of (iplo) and the second- 
order (dd).

We consider an (iplo) Lm : C[a, b] —> C[a, b] defined hy means of a formula 
of the following form

where the nodes xm^ are distinct points of the interval /  =  [a, 6], while qm  ̂
are non-negative polynomials of degree m, for any k € { 0 ,1 , . . . ,  m }.  We call 
Lrn interpolatory because the values of Lmf  are expressed by means of a 
functional information consisting in knowing the values of the function /  at 
the nodes xm^.

It is known that such operators can be constructed by using different 
methods: interpolatory, combinatorial, probabilistic or by using expansions 
of entire functions in series of polynomials.

In our paper [18] we have shown how the Bernstein-type polynomial

1991 Mathematics Subject Classification. Primary 41A05, 41A10, 41A36, 41A80; Sec
ondary 65D05.

Key words and phrases. Interpolation, divided differences, positive linear operators, 
representation of remainders.

m
( 1 . 1)

k- 0

m
( 1. 2)
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where 0 ß  5í 7 and

(1.3) Pm,k(X) =

can be constructed by an iterative two-points linear interpolation procedure.
By using the Gregory-Newton interpolation formula we have obtained 

[17], in particular, a Bernstein-type operator (depending on some parame
ters), defined by the following formula

(1.4)
m+p

E
A:= 0

r n + p  
k

x [fc,-o](l _  x \[m+p-k,-a] 

]\m+p,—a]
k +  ß  
m +  7

where pGNo, mGN, a^ O , 0 íí /3 ^ 7 and /' is a real-valued function defined
Von the interval 0,1 +
m

We denote by yin,/d the factorial power of order n (n ^ 0) and increment 
h of y, that is

y[nM =  y(y - h ) . . .  (y -  (n - 1 )h), y ^  =  1.

This approximating operator was further investigated by H. H. Gonska 
and J. Meier [5], who called it “the Bernstein-Stancu operator”.

If all the parameters are zero then one obtains the classical Bernstein 
operator, while if only p and a  are zero, then one arrives at the operator 
given in (1.2)-(1.3), introduced first in our paper [16], which was included, 
under the name “Bernstein-Stancu operator”, in the very important new 
book by F. Altomare and C. Campiti [1],

2. Representations by (dd)

In 1969 we published a memoir [15] dedicated to the use of probabilistic 
methods in the theory of uniform approximation of continuous functions. I11 
that paper we gave a probabilistic method for obtaining representations for 
(iplo) in terms of finite differences of the function involved. Now we want to 
give an extension of this method.

We start from the Newton interpolation polynomial corresponding to the 
function /  and the nodes considered at (1.2):

? %rn,rn) —
7 1

=  ^   ̂Wmj(f)[lm,Ohn,l! • • • 7 x m ,j 5 /]>
3 =  0
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where

— 1) u m , j { t )  — x m , o ) (^  x m , \ )  • • ■ (Í X m j —i ) .

Here the brackets represent the symbol for (dd).
It is known that this polynomial satisfies the following interpolation prop

erties

( 2 . 1 )  (A Tmf)(xm,k) =  f ( x m,k) (& =  0 ( l ) m ) .

Let Ym be a real random variable having on the interval I  the jump points 
xm and the corresponding jumps p m , k ( x ) (& = O(l)m), where x E I. Con
sidering the compound random variable Zm =  (Nmf)(Ym) and calculating 
its expected value, we obtain

E(Zm) =  E(Nmf)(Ym) =  '}T(Nrnf)(Xm,k)PmAx ) =
(2.2) k=0

rn
— y  ] lm ,j {x) [xrn,0 > x m,l ■ ■ ■ ■ i x m,j i / ]

j =o

where

(2.3)
m

7m,j{'x ) =  y  ]Pm,k[x )u m,j{x rn,k)-
k=0

If we take the relations (2.1) into account, then we can write
rn

{Ernf){x) — 'y yP m ,k { x ) . f  (x m , k )  =

(2.4) k=0 
m

— y   ̂7m,j ( x ) [̂ 'm.O j x m , l  j • ■ ■ j x m , j  i / ]  • 
j = 0

Here we have a representation by (dd), on the nodes xm^, of the (iplo) Lm, 
applied to the function /  : I  —» R.

Now let us consider the special case of the equally spaced nodes: xm^ - 
a  +  k h m (k  =  O(l)m) (hm  >  0), where a  ^ a, xm =  a 4- m h m  ^ b. In this case 
we can write

[x‘m,0> x m , l  i • • • ! x m j > / ]  =  "7T7J" ( ^ / i „ , / ) ( a )
J -hm

and

U m j { t )  =  { t ~  o t)(t  - a -  h m ) . . . (t — a  — (j — l)hm) = { t -  a ) tj,/lml.
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Consequently, we have

7 ^  yPm,k{x ){x m,k O;)^ 
k=0

On the account of the equality

(Xm,k -  =  (khm

where
kW =  k ( k - l ) . . . { k - j  +  l),

we find
7mj{x)  =  h3mprnty]{x),

with

(2.5)
m

Hm,\j)(x) =  Y j k[J]Pm,k{x )-
k=0

Thus, in the case of equally spaced nodes we have

m
(2-6) {Lmf ) { x )  =  ^ - j im ,k j ] (x ) {A Jhmf)(a) .

3 = 0

For instance, assume that a =  0 and b =  1, while a  =  0 and hr 
k

this case we have xm^ =  — and formula (2.6) becomes

In
m

m

(2.7)
m 1

(■Lmf ) { x ) =  vy/V[j](x )(A J-/)(°)-
j = 0 J-

At (2.5) we have the factorial moment of order j  of the random variable 
k

Ym for which P[ Ym =  — ) =  pm,k{x).
m  1

In order to calculate these moments it is helpful to use the corresponding 
factorial moment-generatic function, which is defined by gm(t) =  E ( t^m).

It is easy to see that we have

( 2 . 8 ) k"m,\j]i'x) 9rii (1) ■

Formula (2.7) has been established first in our paper [15].
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For illustration, we consider that Ym is a discrete random variable having 
the jump points

and jumps 

(2.9)

Xm,k —
k +  ß  
m +  7

(0^/3 ^ 7; A; =  0(l)m)

/ m \ xlk - « } ( ! -  x )lm- k'-a)
\ k )  l K “a]

where 0 ^ x ^ 1 and a  is a parameter which may depend on m, fulfilling the 
stipulation that

i [ m =  (1 +  a )( l +  2 a ) . . .  (1 +  (m -  l)a) £  0, 

then we arrive at the operator 5m defined by

( 2 . 10) (5 < ? '^ /) (* )  = Y^Pm,k(X) f
k=0

k + ß  
m +  7

which can be obtained from (1.4) for p =  0.
In this case the factorial moment-generatic function is

TO
<&>(«) =

k=0

which corresponds to the Markov-Pólya probability distribution.
In the case a  =  0 it reduces to the moment-generatic function for the 

Bernoulli distribution
gm {t) =  { l - x  +  t x ) m

and we have
= Qm (1) =  m^xW.

It follows that the Bernstein-type polynomial defined at (1.2)—(1.3) have 
the following representation in terms of finite differences:

Assuming that a  > 0 and 0 < x < 1, the polynomials (2.9) can be repre
sented by means of the Euler beta function

1
B(a,b) =  J y a- \ l - y ) b- l dy (a,b>  0), 

0



70 D. D. STANCU

namely

Pm,k(X)
rn x

B [  — h k,
1 — x

+  m, — h) / b ()  \ a  aa  a

Therefore for the factorial moment-generatic function of the Markov- 
Pólya probability distribution we find

l

& H t )  =
i

B
x 1 — x

y a  * (1 — y) a - - 1

0 LA:=0
E («‘o-rf i—k dy.

Ka  a

Thus we have the following formula

<4a>(í) =
l

„  . X  1 — X
B\  -1a  a  

In this case we obtain

?/' !(1 — y ) *(1 - y  +  t y)mdy.

( . 9m ) W ) ( j ) =  /  \  j  J(1 - y  +  t y)m 3dy.
B

It follows that

a  a

_ . _ . 1 — 3;
5  - + J ,  ——  a  a / B \ a  a  J

If we apply j  times the known formula

B( a  +  l ,b)  =  —-—B(a,b) ,  
a. + b

we find
„  . x . 1 — x
B [  — h J , ----------a a

/a; l - x
lb.-«] B

a  a
Therefore we obtain the following representation of the Bernstein-type 

polynomial (2.10):
TIL

( s i? A7)/ ) w = E
3= 0

m \ xrb>—“1
AJ f

j  J i b . - “ ] V
ß

m +  7

or, in terms of divided differences:
rn

(•?i“Al,/ ) w = E
m bl

3=0

ß  ß  T f ß  + j
(m +  7)7 [m +  7 ’ m +  7 ’ ' m +  7 ; /

xb .-“] 
lb .-“] ’
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3. Monotonicity properties

For the investigation of the monotonicity properties of the sequence
(S m \ f ), obtained from (2.10) for ß  =  7 =  0, one can use a formula which 
shows that there is a close connection between the shape of the polynomial
1S m \ f  and the second-order (dd):

{ S % f ) { x ) - { S W f ) ( x )  =

(3.1) :c(l — x ) rn— 1

m (m + l)(l+ « ) Pm-I,*(*+«> 1 -a :+ a)
k=0

' k_ k +  1 k+ 1 
m ’ m + l ’ m ; /

where we used the notation

(3.2) pg ( U)V) =  |" J « [‘ - ay n-* --Q]/(u  +  (;)[n- a).

By means of the relation (3.1) we are able to state the following result:
if /  is convex (concave) of first order on [0,1], then the sequence (S m \ f ) 
is decreasing (increasing) on [0,1]. In the case a  =  0 formula (3.1) was 
established in the paper [13].

The (dd) have a great importance also in the investigation of the mono
tonicity properties of the derivatives or prederivatives of the sequences of 
Bernstein-type polynomials.

In order to study the monotonicity of the derivative of order s (0 ^ s ^ m) 
of the sequence of Bernstein polynomials, it is useful to consider a class of 
positive linear functionals.

Consider an integer r  (0 5Í r ^ m) and the following points of the interval 
[a, b]:

a,i =  a +  ih (i =  0(l)m), bj =  a +  j l  (j =  l(l)m ),

where 0 < h ^ (b — a)/rn, 0 < 1  <(b  — a)/m.
We associate to each function /  defined on [a, 6], the linear functionals 

T (0 ^ k ^ m, 1 < 1/ ^ r +  1), defined recursively as follows

(0 ^  k  ^  rn — 1)

( l< i / ^ r ,  0 ^ k ^ m - r ) .

In [19] we have proved that T l̂'+L> {u =  2 .3 , . . . ,  r) can be represented as 
a linear combination, with positive coefficients, of u (dd) of order u +  1 o f / .

O11 the other hand, wc have obtained the following formula for the dif
ference between the derivatives of order s (0 ^ s ^ rn) of two consecutive

(3.3)
Tk ( f )  =  [ak , a k + i , b k+ i ;  f ]

T ( ^ 1)(/ )  =  T Mi (/ ) - Tuo(/ )(")/



72 D. D. STANCU

Bernstein polynomials 

1 i n — s —1

(m  -  1) Ws ( l  -  X ) P m —s —l,k{x )T m^k ( / )  +
k= 0

(3-4)

m(m +1) L

+ s(m -  1 ) ^ ( 1  -  2x) Y  P m - s A * ) T Ü l)U)-
k=0

m —5 —1

- s ( s - l )  X ]
fc= 0

For illustrative purposes, let us consider some particular cases of this 
formula.

If s =  0 we obtain

/ ,  _  \  r n - 1

(3.5) (Bm+l.f)(x) -  (Bmf)(x )  =  - / ' }  ;r . X ]  P m - i .f e i* )^ ) / ) ,
m lra +  i J j_n

where

J f i  ( / )  =  r i 2)( /)  =

This formula, which was obtained first, under this form, in the paper 
[13], permits to state the classical result; if on [0,1] the function /  is convex 
(concave) of first order, then the sequence (Bmf ) is decreasing (increasing) 
on [0, 1], This result was established first by W. B. Temple [22] and later 
by O. Árama [2] and B. Averbach (inserted in a paper by I. J. Schoenberg 
[11]). It should be mentioned that Temple and Averbach did not give a 
representation by means of (dd) for the difference of two consecutive terms 
of the sequence (Bmf).

We mention that our short method for proving formula (3.5) was later 
used in the case of different generalized Bernstein operators by A. Jakimovski 
[7], V. M. Sahverdiev [21] and O. Sabozov [20].

In the case s =  1 formula (3.4) becomes

k k + l  k + 1
m rn), ’ m +  1 ; /

^ r r n —2

(rn — 1 WÍ1 — t.)
m(rn +  1)

+  ( l - 2 I ) X f a - 1, t W Í i ( / )

(m  ~  l ) x ( l - x )  Y  P m -2 A x )Tm \ ( f )  +
k=0

i(2)

k=0
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where

r i 3l ( / )L rn,k' 
2 
m

k_
m'

k +  1 k +  2 k +  2
m rn ’ rn + 1; / +

l
rn +  1

k k + 1 jfe+1
m m

k +  2
i ! T i Jrn +  1 rn +  1

It is easy to see that if the function /  is convex (concave) of first and sec

ond order on the interval 0, -  , then the sequence (Bmf)'(x)  is decreasing 

(increasing) on this interval, while if /  is concave (convex) of first order and

convex (concave) of second order on
1
2 ' 1

, then this sequence is decreasing

(increasing) on this interval.
These results corresponding to the case s =  1 were obtained first in our 

paper [13].
By using formula (3.4) one can deduce similar results in the case s ^ 2, 

[19]. '
We mention that G. Mastroianni and M. R. Occorsio [9] have studied

the shape preserving properties of our operator S m \  defined at (2.9) (2.10), 
where we have to replace ß  =  j  =  0, while B. Della Vecchia [3] has extended 
our results [19] concerning the monotonicity of the derivatives of the sequence
of Bernstein polynomials to the operator S„i, ;, by replacing the differentiation 
operator by the prederivative operator D a of Nörlund, with the increment a.

4. Representations of remainders by (dd)

We have discovered in 1962, while I was working at the University of 
Wisconsin - Madison, a representation by second-order (dd) of the remainder 
in Bernstein’s approximation formula f (x )  =  (Brnf)(x)  +  (R,,nf ) (x) .  namely

(4.1) (Rmf){x) =  —
x{l  — x) m—1

m ^  1 Pm—l,k{x )
k k +  1 

x , —, ------ ; /
k=0 m rn

This result was included in a paper [12] presented in 1963 at a Conference 
on Approximation Theory, organized by SIAM in Gatlinburg, Tennessee, 
which was published in the first issue of SIAM J. Numer. Anal. Ser. B 1 
(1964), 137 162.

We mention that A. Jakimovski [7] has used our method for obtaining a 
similar formula with (4.1) for a generalized Bernstein operator.
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( a )In the case of the operator S„i', connected with the Markov-Pólya prob
ability distribution, the remainder can be expressed by the following formula 
(4.2) '

(«& >/)(-> -  ~-  ‘ , + T  £1 +  a
-or, 1 — x + a )

k=o

k k +  1 ,1
’̂ 1 ? 7 Irn m

where we used the notation (3.2).
It should be mentioned that D. Leviatan [8] has used the generalized (dd), 

in the sense of T. Popoviciu [10], for the representation of the remainder in 
the case of an operator representing a generalization of the Bernstein power- 
series.

Now we want to deduce a representation in terms of (dd) for the remain
der of the approximation formula

(4.3) f (x )  =  (Sm,rf)(x)  +  (Rm,r .f)(x),

where f  : [0,1] —> IR, r e  No, 4r < m, Srn>r being an (iplo), defined by an 
expression of the following form

(4-4) (Sm,rf)(x)  =  •
k=0 ' m '

We assume that for

h  =  { k \ 0 <:k<  r}, h  =  {k I r  g Jfc < 2r},
I3 =  {k I 2r ^ k <  m  — 2r}, I\ =  {A; | m  — 2r  Ű k < m — r}, 
/ 5 =  {k I m  — r ^ A; ^ rn}

the fundamental polynomial wm^,r{x) coincides, respectively, with

A:
m —2r 

k
rn — 2r 
k — 2r

xk { l —x)m+2~2r~k +  2

A;-/
m —2r
k—r

j.k+1-r ( l _ x y n+ i - r - k  _

^Aj+ 2—2r (1 — x )rn~k,

wm L ( iC) =  2rn,k,r

WSk,r (X) =

^ ( ™ - 2r \ ^ +l - r { l _ x)
k - r  

rri — 2 r 
A; -  2r

m-f-1 —r —A: +
rn—2r 
k - 2  r

x k+2-2r ̂ _ x yn-k^

,k+2—2r
(1 - * ) r

l“A,’
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It is easy to see that we can write
m—2r

<w) w = £  (m k2r)*‘a - I +

( " : 2r> — ’ d - * r +I~ ‘ / ( ! )  +
k — T

m

+ E
fc=2r

m — 2r 
k -  2 r

r.fc+2—2r(1 - * ) ”*-*/

By changing the index of summation k — r  =  j  in the second sum and 
/;; — 2r =  i in the third one, and then denoting overall k as index of summation, 
we are able to obtain the following representation

rn—‘2r
{Sm,rf)(x) =  ( l - x f  Y  Pm-2r,k(x ) f { —)  +

k=0

k

rn—2r
(4.5) +  2.X(1 — x) 2 2  Pm-2r,k(x)f

'k +  2r
k=0

k +  r
rn +

m —2r

+  X 2 Y  Pm-2r,k(x ) f
k=0 m

Now we can state and prove the following
T heorem. The remainder of the approximation formula (4.3)-(4.4)~

(4.5) can be expressed by means of the second-order (dd) in the following 
form:

(Rm,rf)(x) =  
x ( l  — x) I

m2

m—2r—1
(m -  2r) Y  Pm-2 r-l ,k (x ) ( (1 -  XY

k=0

k k + l  ,
x , —, ------ ; /rri rn +

(4.6)

+  2.7; (1 — x)

m—2r

k +  r k +  r +  1
x , ------ , ------------ ; /

m  rn
+  X,

k ~b 2r k T 2r 4- 1 
x, — — , ----- ------ ;./rn

2r2 Y  Pm-2r,k(x ) ( Í1 ~ x)
k=o

k k +  r 
x ■ ; / + ---

-1

rn rn

■rn

k + 7'• k +  2 r
rn rn

+

; /

P roof. Denoting by eg the monomials ej(x) =  x,J (j ^ 0), we can find 
at once the value of the operator Srritr for eo, since

(& m ,r('0 ) ( x ) = ( x  +  ( l -  X ) ) m +2  r =  1
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Therefore we can write successively

(Rm,rf)(x)  = f{x )  -  ( Sm,r f){x) = 
rn—2r

— (f “ ' 3-) ^  '  Pm—2r,k(x )
k=0

f ( x ) - f  I
rn—2r

+ 2x(l — x) E Pm—2r,k( -̂')
k=0

/ ( * ) - /
/ fc +  r 
V m +

m,—2r
T  y  'y Pm—2r,k(- )̂

A:=0
/ ( * ) " /

By using the first order (dd) we have

(Rm,rf )(x)  = - - - Pm-2r,k(x) i m x  — k)rn

( * £ ) ]

x, —; /
k=0 rn

2x-(l -  x) in—2r

m
P m - 2r , k { x ) ( m X  -  r -  k)

k=0

k +  r
rn

x
m

2 m—2r
T ,  P m - 2r , k { x ) ( r n x  - 2 r  -  k)
k=0

k + 2 '/■ 
m

If we use the identities

m i — k =  (rn — 2 r — fc)x — & (1 — x) +  2rx,
m i — r — k =  (m — 2 r — k)x — k( 1 — x) +  2rx — r,

mx -  2r — A: =  (m — 2r -  /c)x — &(1 — x) — 2r(l — x),

then, on account of the equalities

—  2r
(m — 2 r — Ä;)

k

k
m  — 2 r 

k

= (m — 2r)

=  (m -  2r)

m — 2r — 1 
k

m  — 2r — 1 
jfc-1

we can write further

(Rrn,rf)(x)  =

(1 - x ) 2 ' m—2r —1
m ■

m
2r)x

A:=0

m — 2r — 1
x * ( l - x ) m—2r—k a;, — ; /rn
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m—2r

k=\
— (m — 2r)(l — x)

I
m—2r
'y '  Pm—2r,k{x)

in — 2r — 1 
k -  1 ® ( 1 - * )

m—2r—k
x ,  — ; /m +

k=0

2x( \  — x )
m

x ,  —in
m—2r —1

( m —2 r ) x  Y
k—0

m —2r —l
k

kt I ,,.\m—2r—kxk{ 1- x )
k +  r '

x i -------; /rri

m—2r m — 2r — 1
- ( m - 2 r ) ( l - x )  ^  . fc_ 1

k—\ '
m—2r |- 7

+  2ra; ^  p m-2r,k(x ) 
k=0 

m—2r
7 "  ^  ]  P m —2r,k(x)

\ x k{ \ - x ) m^2r~k
k +  r  ‘

; /) rn +

A: +  r 
-------; /

fc=o

A: +  r  
------ ; /rn - +

+ ̂ i (m_2r);r £
rn—2r— I

A.-0
m—2r

m -  2r -  1
* * (1 -* )

rn—‘2r — k k + 2 T
X , --------rn

( m - 2 D a - * )  £  | ’" ; 27 V ( i - » r M
fc=i jfc-1

A: +  2i’
3-’, -------- ; /rn

2rx2{\ — x ) rn—2r

m y  ]  P m —2r,k[x)
k=0

k  + 2r
*> --------■;/in

If in the second, fifth and eighth sums we change the index of summation 
A; =  j  + 1  and then denoting overall A; as index of summation, by rearranging 
the terms we obtain

( R m , r f ) ( x )  =

x (l —x ) f
m

m—2r— 1

k= 0

1 / '  A ; '
P m —2T—\,k \X )  1

I ' P /

(4.7)
k + 1
------ ; /m > +

+
2x(l  —x) m —2i—1

in ( m - 2 r ) x ( l - x )  Y  P m - 2 r - l , k ( x )
k = 0

A; +  7'
* . -------; /m
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k +  r +  1
x , ----------- ; /

m
■ +

x ( l  — x) m—1r—\

m

k -f* 2 r H" 1

(m -  2r )x 2 pm- 2r - 1,k (x )
k—0

k + 2r
rn ; /

X.
m

2 r x l  (1 — x )

; / +

H /  , Pm—2r,k\x )m f—’'k=0

k +  r , 
•I-, -—  m

k +  2r ,
— ym

According to the recurrence relation of (dd) we can write

r k i k +  1 1 k k +  1 J
x, —; j — x , -------;./ = ----- x, , ;./rn m m rn rn

L  k + r  f] k + r + 1  ' i k +  7* k +  7’ +  1 j.
rn rn m in 1 1 Jrn

k +  2 r / k +  2 r  +  1 i

cn+

í
i__ k +  2r +  1 /

•̂ 5 ? Jm m rn ,A/ ? m J ’ Jrn

_ r fc+r- l 
;./

r ' A:
x, —

k +  r ‘
7 Jrn m rn rn rn

i-----

+i----- i ---
--

1

m
& +  2r

z , -------- ; /
•in

r
rn

k +  r  k + 2r
rn rn f

By using these relations in (4.7) we arrive just at the representation (4.6) 
and so our theorem is proved

In the particular case r  =  0 or r = 1 we have 5 m,o =  5m,i =  Bm and (4.6) 
reduces to (4.1).

Formula (4.6) permits to see that
(i) (i?m,r/)(0) =  (i?m,r/ ) ( l )  =  0, which shows that the approximating 

polynomial 5m,r/  is interpolatory at both ends of the interval [0,1];
(ii) The degree of exactness of formula (4.3) is one;
(iii) If /  is a convex function of first-order on [0,1], without being linear, 

then we have Sm>rf  > /  on (0,1), while if /  is concave of first-order on [0,1], 
then S m,rf  < f  on (0,1);

(iv) If all the (dd) of second order of /  are bounded on [0,1] then we 
have

1 + 2
r ( r -  1)

m
x ( l — x)

rn M2(/) ,

where M2(/)  is the least upper bound of the absolute values of the second- 
order (dd) of /  on [0,1];
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(v) If we apply a criterion of T. Popoviciu [10] we can conclude that there 
exist three distinct points £m,ii tm,2 , f-m,3 on [0,1] such that

(Rm,rf){%) ~  m̂,2j ^m,3i/]•

If we replace /  =  e.2 in (4.6) then we find that

(/?.mC2)(:/;) = 1 + 2r ( r -  1)
in

3:(1 -  .7;)

m

(vi) The corresponding Voronovskaja theorem states that if the function 
/  possesses a second derivative at a point x of [0,1] then we have

(R7n<Tf) (x)  =  - 1 + 2 r ( r -  1)
rn

®(1 x )

2 m m

where em(x) tends to zero when rn tends to infinity.
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EXTENDED INTERPOLATION WITH ADDITIONAL NODES 
IN SOME SOBOLEV-TYPE SPACES

M. R. CAPOBIANCO and M. G. RUSSO

A bstract

Convergence and boundedness of the extended Lagrange interpolating operator with 
additional nodes are studied in the space LPU t of Sobolev type.

By considering two weight functions a  and r in [—1,1] and by denoting 
with {pm(ff)}“ _o and {/>,, (x) }^La the sequences of the corresponding sys
tems of orthogonal polynomials, if the polynomial Qm+n = Pm{(J)Pn(T) lias 
m + n simple zeros in (—1,1), it can be defined the extended interpolating 
polynomial, i.e., the Lagrange interpolating polynomial of degree m +  n — 1 
which interpolates a given function /  at the zeros of Qm+n-

Extended interpolation and related matrices have many applications in 
numerical analysis and in approximation theory (cf. for instance [7], [8], [12] 
and [19]).

In this paper, letting

we will consider the extended interpolating polynomial L/2m+\,r,s{'U),w\ f) ,  
which interpolates the function /  at the 2m, + 1  simple zeros {.'rm+p,)'«;)}'"^1 
U {xrn,i{w)}iLi of Pm+i(w)Pm(w) (we recall that xm+1)i{w) < xmji(w) < 
xm+iti+i(w) cf. [7]) and at the additional points yrnj ,  (j — 1 , 2 , . . . ,  s) and

1991 Mathematics Subject Classification. Primary 41A05; Secondary 65D05.
Key words and phrases. Extended Lagrange interpolation, orthogonal polynomials, 

Hilbert transform.

1. Introduction

K
(1.1)

i.e., with w E GSJ,  and

( 1. 2) t (.t ) = w(x) := ( 1  — x2 )w(x)

0081-6906/99/$  5.00 © 1999 Akadémiai Kiadó, Budapest
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j, ( j  =  1 ,2 , . . .  ,r), chosen such that (cf. [1])

(1.3)
> j  1 > • ■ ■) '9)

With this choice, obviously, we have

(1.4)

Operator L2m+itr,s{w,w)  was introduced in [7]; subsequently, in [6] and [12], 
it was considered as an operator mapping the space of continuous functions 
into the usual L^-weighted space Lvu (cf. definition in Section 2); in those pa
pers necessary and sufficient conditions are stated for the boundedness of the 
operator and then estimates for the convergence to zero of the interpolation 
error in L j, using the best uniform approximation, are found.

On the other hand it is well known that, even if the Lagrange operator 
is unbounded in L\\, it is very suitable, for many applications, to prove 
the boundedness of the operator in some subspaces of Lp. For this reason 
recently ordinary Lagrange interpolating operators (i.e., using the zeros of 
only one sequence of orthogonal polynomials) have been studied in [3] and 
in [5] in the Sobolev-type space Lpu t , defined by formula (2.11).

The introduction of additional points in these interpolatory processes 
becomes a necessity. In fact, for example in [4], the authors obtained a re
sult on the uniform boundedness of operator L-2m+i(w , w) =  L2m+l,o,o(w, w) 
in the space Lpu t , under conditions essentially mean the positivity of the 
exponents of u.

In this paper we find the boundedness of the operator L‘2m+i,r,s(w,w) 
in the space Lpu t, under wider conditions for u and w (not only regarding 
the positivity of the exponents of u) and show the crucial role of additional 
points implicitly. A crucial point for our purposes is the proof of an extend
ed Marcinkiewicz inequality which, besides, it is a suitable result that can 
be used in many other applications (for example in estimating the error of 
extended quadrature formulas).

By using this inequality and then via one-sided approximation, we are 
able to give an estimate for the interpolation error in Lp-weighted spaces 
using the same norm of the weak derivatives of the function / .  From this 
we can deduce a result of simultaneous convergence of the derivatives of the 
extended Lagrange interpolating polynomial to the corresponding derivatives 
of the function; this result is the tool that finally allows us to prove the 
boundedness of the operator L2m+i,r,s{w,w) in the space Lvu t .
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2. Main results

At first we fix some notations.
A function u is called a “generalized Ditzian Totik weight.” (u E G D T ),

( 2. 1)

M
u { x )  =  n  ICj -  x \ V] log7-' r  -r_ ~. - l g s g l ,

where — 1 =  co < c\ < ■ ■ ■ < cm- \  < cm =  1, Ik, > —1 and 7j Si 0, j  =  0 ,1 , . . . ,  M. 
When 7j =  0, j = 0 , 1 , . . . ,  M, u is a generalized smooth .Jacobi weight (in 
short u G GSJ)  and when Tj =  j j  =  0, j  =  1 ,2 , . . . ,  M  — 1, u is a weight of 
Ditzian Totik type (see for instance [5], [9]).

Let u G G D T ; we say that /  G Lu([a, 6]), — 1 ^ a ^ 6 ^ 1, 1 ^ p < oc, if
b

and only if | | / | | i{;{[a)6]) := \\.fu\\LP{[aM) <  00, where ||ö||^,(M ) := f  \<]{x)\vd.x.
a

If a — —1 and 6=1 ,  we write /  G Lu and ||/||„ )P =  ||/u ||p < 00.
In the sequel Pm denotes the set of the algebraic polynomials of degree 

at most rn. Then, if u G Lp
(2-2) Em(f )UtP:= inf | | / - P | |„ ,p

I GPm
is called the error of the best approximation by algebraic polynomials of the 
function /  in the space Lu- Now let g be a bounded and measurable function, 
and let u be a weight function such that u G Lp. We set

(2.3) Ém(g)UtP =  inf{||(<7+ -  q~)u \ \p , q ±  £ Pm, q~(x)^g(x)  g  q+ (x), \x\ ^1}.

Em(g)u.p is called the error of the best one-sided approximation of the func
tion g in Lp-space with weight u.

In the sequel we denote by “C” some positive constant that can be 
different in different formulas.

Now we fix some notations useful in the statements below. For sake of 
simplicity we denote L =  t‘2m+r+s+i,i =  cos t*, i =  1, . . . ,  2m +  r  +  s +  1, the

s r
zeros of AKBrprn+]{w)pm(w), where A s{x) =  []  [x-xjj),  B, (x) -  [ ]  ( x - z j ) ,

j= l  j = 1

with xjj, Zj as in (1.4). Further we set, t /7,í) (a;) =  (1 — a:)7(l +  x)s with 7, ő > 
— 1, and \x\ ^ 1.

Now let {pm (up) }“ =0 the sequence of orthonormal polynomials with pos
itive leading coefficients related to the weight vP\ we denote

'  m—l
E  p'i(up-x)
k=0

the rn-th Christoffel function with respect to the weight, up. 
We state the following Marcinkiewicz-type inequality:
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T heorem  2.1. Let w be a generalized smooth Jacobi weight and u E 
GDT with u&Lp, l < p < o o .  If for some non-negative integers r and s,

(2.4)
u
w

(r-l.s-l) G Lp,
w
u

q X+ p  1 1,

then, for every algebraic polynomial P  G P2m+r+s the relations

2m+r+s+\
(2.5) CxWPuWl Í  Y ,  ^ m ^ M P i t i W  S C2 \\Pu\\l

i= 1

holds, where C\ a,nd C2 are some positive constants independent of P  and m. 
Moreover if the inequality at the left-hand side in (2.5) holds true, then
—t>(r~ 1,s-1) g r follows, 
w

We observe that the second inequality in (2.5) can be obtained for more 
general u. In fact by using the same machinery as in [11], it is sufficient that 
only u G Lp and a\ ^ m|ri — Tj_i | f^a2, i =  1 , . . . ,  2m +  r +  s +  1 with a \ , a2 
positive constants independent of m.

Inequality (2.5) can be used in different applications; in our context we 
use it to prove the theorem below.

T heorem  2.2. Under the assumptions of Theorem, 2.1 for every bounded 
and measurable function /  : [— 1,1] —>- M

(2-6) II [ / -  L2m+i,r,s (w, w\ /)] u||p ^ C É 2m+r+s(f )UtP,

where C  is independent of f  and rn.

Under less restrictive conditions, [6] and [12] proved V /G C °[-1 ,1]:

(2-7) 11/ -  L2m+i ^ s{w,w-, f)\\u .p ^ CEmiffoo,

where E m( f )00 is the error of best uniform approximation by algebraic poly
nomials. However, Theorem 2.2 gives a more refined rate of convergence, 
using

Em(.f)u,p ^ #m(/)oolM|p =  2Em{ f ) 00\\u\\p.

Moreover, from Theorem 2.2 we can deduce convergence estimate also when 
/  is unbounded at the endpoints of [—1,1], when (2.7) cannot be used; more 
precisely, denoting by ACloc the class of all absolutely continuous functions 
in any closed subset [a, b\ C (—1,1) and letting <p{x) =  V 1— xl and Im =

[-1 ,1 ] -  [ y i , * r ] ,  where yi = 1 l+^m+1,1 ,-1 H----------------and zr =  1
s +  1

1 x m+\,m+\
r + 1

we
have the following
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Corollary 2.1. I f f  G A C io c  and f i p e u  E L\, then Tinder the assump
tions of Theorem 2.1

( 2 . 8)

II [/ -  L2m+l,r,s(w,W,f)]u\\p
^~\\f'^u\\LP([yuZr})+ /  l/'(*)l¥>F(f)«(<)dí

with C independent of f  and m. Moreover, if condition f ' t p p u E L i is re- 
placed by

f'ipu G Lp,

then we have

(2.9)
C

[./ IJ2m+l,r,s{w , w , ./ )] u||p ^  ® 2 m + r+ s-l( / )u(p,pirn

■where C is some positive constant independent of f  and rn.

Remark 1. First of all if we set r =  s =  0 in (2.4) and (2.8) we get result 
obtained in [4] (cf. Theorem 2.1, Corollary 2.2, p. 4).

However, it is possible to apply the results given above in some cases the 
theorems in [4] cannot be used. For example, if we fix u(x) =  (1 — x2)~3, 
p =  2, then it does not exist any weight function of the type w(x) — 
(1 — x2)a , that verifies the assumption of Theorem 2.1 in [4]. On the oth
er hand, Theorem 2.2 and Corollary 2.1 can be applied, in this case, with

I r — - ,  s — 7 1: for example if we fix r
{ 6 6 J

max < r
6 C

< a  < mm

s -■
( 5 1 \

1 we find convergence results for all a  G ( ---- , -  ). Another example: let
V 0 6/

w(x) =  (1 — x2)a and u(x) =  (1 — x2)7. In this case (2.4) means

1
7 >

P

1 „ 1
- , 7  +  s —2 +  -  
P P

Then, if f(x)  =  log(l +  x), from (2.9) we obtain
}< a  <  min < '

l
max ^7 +  r — 2 +  -  ,7  +  s — 2 +  -  ^ < a <  min 7 + r —1 + - , 7 + s —1 +  -

||[/ ~ L2m+I,r,s{w,w;f)]u\\p = 0 (m 27 p).

Now we give a result on simultaneous convergence.
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T h e o r e m  2.3. Let k be a positive integer. If f^k G ACj_oc ar,d
f ik)mk g  Lu, then under the assumptions of Theorem 2.1 with F̂  <  1 ---- ,

P
we have

( 2 . 10) f {t)- L2m+\,r,a(W' iil' f )
C

IL,P ~  m k -ll/{V ' l u,p

for / =  1. . . . .  A; and with some constant C independent, of f  and m.

Let A be a non-negative integer; we define the space Lpu , as the space of 
all functions /  G Lvu with

( 2 . 11) 11/11.:= E  l l / ' V l l « ,
\k=0

< oo.

This space was introduced, for p  =  2 and with and equivalent norm, by Sloan 
and Stephan [18]; subsequently, again for p =  2, in [2] the authors proved 
some suitable properties of this space, among others that t is a Hilbert 
space. For p ^  2 it is possible to prove, with the same technique used in [2] 
and by taking into account that Lu is a complete space, that Lpu t is a Banach 
space. For this functional space of Sobolev type we have

T heorem 2.4. Let t íí 1 be a positive integer and u and w as in Theo
rem 2.3. Then

(2.12) sup \\L2m+l,r,s\\Lv ,^LP . < °°-

Moreover if f  G Lp t, then for l G N, with 0 ^ Z ^ t.

(2-13) \\f -  L2m +l,rAw,W -f)\\l ^ ^ ZI\\f\\t

with some positive constant C independent of f  and rn. 

R emark 2. If we set

a = Wi(x)  =  (1 — x)w(:r ) ,  t  =  W2 (x ) =  (1 +x ) w( x )

it is well known [7] that the polynomial pm {w\ )pm (m2) has 2m  simple ze
ros in ( — 1,1). So we can define the extended interpolating polynomial 
L>2m,r,s(w \i w2\ f )  which interpolates /  at the zeros oi prn(wi)pm(w2) and at 
the additional points of the matrix {?7j}y=1 U { z j } j = l . Then for an operator 
of this kind all the above theorems remain true under the same assumptions 
for / ,  it, and w.
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3. Proofs of the main results

In the sequel, if A and B  are two expressions depending on some vari
ables, then we write A ~  B  if \A/B\±l £  C  uniformly for the variables under 
consideration.

Let u € G D T  as in (2.1). We introduce the notation
A/ — 1

«m(*)= II  (lCJ“ 'X'l +
j = l

(3.1)

log7j /1 I . _i \ \ \ / l  +  x d-----
\\C j — x \  +  m  x) V m

2r0

x log,70
1 +  x  + r n ~ 2

\ / 1 — x  ----m

21'A

logylM
1  — x  + n r

Now let w 6 GS.J, as in (1.1). If {Pmiw, x )}m=0 is the sequence of or
thonormal polynomials with positive leading coefficients corresponding to 
the weight w, we have

r.
M < i,(3.2) |pm(u>;x-)|< ,---- ,y/unp

(3.3) |Pm(w; ®)l ~Pm{w\ 1) ~  rna+
and

(3.4) 1 Pm(w, ®)| ~  ( -1  )mpm(w, - 1 )  ~
uniformly for rn 6 N (cf. [16], Theorem 6.3.28, p. 120 and Theorem 9.33, 
p. 171).

Now we write explicitly the expression of the extended interpolating poly
nomial L2m+i,r,s{^, to; / )  at. the zeros of pm+i(w)pm(w) and at the additional 
points of the matrix Y  L) Z =  { y j } sJ=l U { z j } rj = v  By

Hm{w; / ;  x) =  ^  X™AW) . f ( Xm i(w)),
“ x - X m A w )

s r
A s (x)  =  fJ(.T -  y j ), B r (x )  =  JJ (x  -  z j ) ,  

j = 1 3=1
where Am>j =  \ m(w;x) is the m-th Christoffel constant, we can write

B2m+\,r,s (Wj f )  =
(3.5)

=  Pm+l(w)pm(w) <j Crn AsBr

f

Hm+1 w;v, (M). /
A'Br

+ AsLr ( Z\
Aspm+i(w)pm{w)

+  B rLs ( Y ;

Hm ( w] 

f

f
A s B r

Brpm+\{w)pm{w)
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where {CTn}< o o  (cf. [7], formula (2.16), p. 203) and Lr(Z;g) and Ls(Y;g) 
are the Lagrange interpolating polynomials related to the matrices Z and Y,  
respectively. Moreover we can write

(3.6)

and

(3.7)

Lr f
A spm+i{w)pm{w)

r r

k=1 i=li^k

X -  Z j__________ f { z k)__________
zk -  Zi A s {zk)p m + 1 {w ,  Zk)pm{w; zk)

Ls Y f
BrPm+l(w)pm{w)

s s 

 
k=l i=ii^k

x ~  yj __________f(yk)__________
Vk -  Vi B r (yk)p m + 1 {w; Vk)Pm{w\ y k. ) '

To prove the theorems we need some auxiliary results. The first is a 
Remez-type inequality. Let u € GDT, Q 6 P,„; there exists a b0 < m  such

that if B  c  [—1,1] with meas(cos_1 B ) < —, b<  b0, then, for 0 < p < oo, we
rn ~

have

(3-8) ||Qu||p gC||Qu||if,([_lim ß),

where UC ” is independent of m and Q. This result, under more general 
assumption on u, can be found in [13] (Theorem 1, p. 2). The second result 
is the following. For /  € L\ in [—1,1], the Hilbert transform H ( /)  is defined 
by

(3.9) H ( /;  t) =  lim /  ^ - d x .
e->0 J X — t 

\ x ~ i \ = s

The operator H is bounded in Lp for 1 < p  <  oo (M. Riesz). Further, if p, is 
a weight function, then H  is a bounded operator in Lpß if and only if

(3.10) ll/% p(D)ll^- 1 ||i? (p)i;C(meas D ) ,  ^ +  J =  1,

for any interval D  £  ( —1,1) and with a positive constant independent of

D  (see, e.g., [15], [10]). Now, if u 6 G DT  as in (2.1) and —-  < Tk <  - ,
P Q

k — 0 , . . . ,  M,  then (3.10) is satisfied (cf. [5]) and so we can write

(3.11) \\H(f)u\\p iC \ \ f u \ \p.
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Property (3.11), together with condition (3.10), plays a crucial role in the 
proof of Theorem 2.1 (in particular, relations (2.4) come directly from con
dition (3.10)).

P r o o f  o f  T h e o r e m  2.1. Firstly we set 

A = [—1 +  am- 2 , 1 — am-2 ]
(3.12)

,Xk+a‘in
M — 1
U [<*-

k= 1
am ,Cfc+arn

where a is a fixed proper constant. Let P  G P2/n+r+s; obviously P(x) =  
L2m+i,T,s{w i ib'iP'ix )- If wc set ■f’í®) =  |Í2m+i,r,i (w,íh;P;a;)| and G{x) =  
agn(L2m+i,r,s{w,w-,P;x)) we can write, (cf. (3.8))

ll-Pwllp =  ||^2m+l,r,s(^, '«d ^)'a||p ^ C\\L2m+ l , r , s ( w , P ) u \ \ PLp{A)

= C  f  \ L 2 m + l , T , s { w , W - , P - , x ) \ P U P ( x ) d x  

A

— C  f  L2m+i,r,s(w, w; p-  x)Fp- 1 (x)v?(x)G(x)dx.

By recalling expressions (3.5) (3.7). we have

I\Pu\\p <C<

(3.13)

m+1 (̂*m+l,i(w))(l -  Sm+uO"))

/

? j ^  s ( ̂  rn +1, i ^ )) B r  ( ̂  *7 7 1+ 1 , i W )

" As(x)Br(x)pm+i{w, x)pm(w; x)

+ £ W « 0
1=1

+s {xniti(w)) Br (xrnj(w))

/
4 s(x )£ r(x)pm+l(w;x)pm(u;;x) „_j. . p, .

------- F' (x)vA(x)G (x)d.x

+ E
Z-Zm,t(u>)

P{zk)
“  + ( ^ ) P m + l ( ^ ;  Z k ) p , n { w \  Z k )

—-—  /  (.T-2r,)^.s (x)pm+i (ru; x)pm (ü>; x).Fp~ 1 {x)v,p(x)G(x)dx
,Z.LZk~Zi.J

P(Vk)

i=li^k

+ E
A:=l B r {Vk)Pm+1 (MC Uk)Prn (u>; (Jk)
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X TT ——  [ { x - y i ) B r (x)pm+1(w;x)pm{w;x)Fp 1 (x)up(x)G(x)dx 
Vk-yi .1

^ C [J\ + J‘2 +  J3 +  Ja] •

We begin to evaluate J\. By recalling that

(3.14) \As{x)Br{ x ) \ ~ v p ’s){x), \ x \ ^ l  - C m ~2

we deduce

Ji g C ^m+l,i(w )P (x m+l,i(w))lP2 (xm+l,i(w ))

X /

m+1

^  « ( r ’s ) ( l „ l + l , i ( w ) )

Pm+ l{w; x)pm(w■ x )As(x)Br(x) y
X  l (w>)

Fp~L(x)up{x)G{x)dx

By Lemma 1, p. 6 in [13], we know that a polynomial qm{x) of degree 3m  
exists such that

(3.15) ,  ̂ Wm(x) , l ^ 1(lrn{x) ~  (r. s)" , |S |S 1,

(for w ni and Vm’S\  cf. notation (3.1)); then letting

Q {x )= p m+i{w, x)pm(w; i ) ^ Ä(a:)ß7.(a;)gm(x)

we can write

L̂ (u;)P(x-m+i)i(-w))(/92(:rm+i ;i(w)) 
u(r>s)(3;m+lij(u;))

J i ^ C

m+l .

e a
2=1

»/
• Q ( * )

X

Now if
A

(3.16) ir{t)= I

Qm(-X')

Q ( x ) - Q ( t )  Fp~l(x)G(x)v.p(x)

-dx

x — t Qm (x)
dx

we observe that 7r is a polynomial, with respect to the variable t, of degree
lm , w ith l G N. Then we have
(3.17)

J i ^ c y ^  h "+ ^ "V* {xm+i,i(w))\P(xm+i,i(w))n{xm+iti (w))I.
f r f  v(r’s>(xm+l,i(w))
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With similar arguments we can proceed to evaluate J2, and so we have

(3.18) J2 i C  f ;  \P(*rnAü)>(xmAü)) \ .
1 ’ '\xm,i\w )>

Now we evaluate J3; by recalling expression (3.16) and that we set Br(.x) =
V

"I (x — zk) we have 
k=1

J3 = e  n
fc=l j=\j^k

1__________ P(Zk)n{Zk)_______
Zk -  Zj As{zk)pm+l{w, Zk)pm (w- Zk )

Then by (3.3) we have

(3.19) 7. < c  V
5 — j“  v(r's\ z k) m2“+2

On the other hand we recall that if <7 G GDT  and \ m(a,x)  is the mth 
Christoffel function then (cf. [13], [16] Theorem 6.3.28, p. 120)

(3.20) Am(er, x) ~  <7m{x) x\ < 1

(for <7m see notation (3.1)) and so, in particular, we have Am+1 (w: zk) ~  
m~2oi~2; therefore by (3.19) we obtain

(3.21) j 3 ^ C ^ 2  ~ V 2(zk)I■P{zk)tt(zk)I.

In a similar way we can evaluate J4 and we find

(3.22) J4 g  c
k= 1

-^m+l ('Rfi 2/A:) 2 / 
i><r**}(lfc) ^

By {ti}?=i+r+s+1 7ÍS’II 0{.Tm-)-) ,k(w ) }/
can write

2m+r+s+l ,
(3.23) Ji +  J2

VII
■*?+4- * E ^

.•=1 Um

m+1

Vm{t.i)v(r's)(ti)
Wm(ti)\P{U)^{U)\.
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Now, by applying the Hölder inequality to (3.23) we have 

J i  +  h  + J1 + J4 Ú C

(3.24)

E Xm{up]ti)\P{ti
7=1

X
2m+r+s+l \ / j) 4. \ — (I <± \v~̂  Am{u] ti)wm{ti) . . .

/  y (W / 1 \. .1,. .)„/i \ l7rHÍ'l
1= 1 Um(U)vP’s)(l(ti)

So from the Marcinkiewicz-type inequality in L\ for G DT  weight functions 
(see [13],Theorem 6, p. 5) we can deduce that

J \  +  J 2 +  J:s +  .74 ^ (7
'2 m 4 -r+ s + l

(3.25) x

< C

E Am(«P;ii)|i,(<t)lp
■i= 1

Í  (  w{x)
J  \n (i,_1)(a;)u(r’Ä)(a;

7 r( .x ) |9d x

-1
2m +)-+s+ l

E  A.mK ; t (:)|P (b)P
j=i

p w
7T---- 7----r

uiM’*)

At this point we have to evaluate the quantity in L^-norm at the right-hand 
side of (3.25).

Firstly, we observe that by (3.15) and the definition (3.9), we have

k( i ) l  ^ H
QFp~1up

qm
IQWi H (F q m f - 1

uv ()— l , s—1) \  P

w

Therefore, in reason of Remez inequality (3.8) and by the previous inequality, 
we obtain

w
-Tr

im (r,S) < C

< C

w
tt-

uv(»•,•s)

H
Í Q F p

Lq(A)
~xup \ w

C

V 9m

QH  (Fq

uv(r’3}

\p- 1 uv

L q{A)

(r—l , s —1) \  P

W

W

u.iM's)
F,(A)

Now by (3.2), (3.14) and (3.15), we have

Q(x) ~  1 on A;
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and so, under the assumptions made for u and w, we can use inequality
(3.11) and, again for (3.2), (3.14) and (3.15), we finally have

w

(3.26)
IT

uiAr’s)
^ C \ \ F ^ u ^ \ \ Lit(A)

^C\\Fp- lup- l \\q =  C\\Pu3,1 IIP“ 1.

Hence the first inequality in (2.5) follows from (3.26), (3.25), and (3.13).
For the second inequality in (2.5) we can use the well-known Marcinkie- 

wicz-type inequality due to Lubinsky Máté Nevai [11], after recalling again 
that a polynomial q G P3m such that q ~ upn exists [13]; so we have, also from
(3.20)

2 m + r + s + l  2 m + r + s + l

X ] \ m{uv,ti)\P{ti)\v %C Y ,  \F(U)\p< ( t i )
i=1 i= 1

1 - / ?

rn rn4---- 2

2 m + r + s + l

£  | P ( í i ) I V ( í i )
t—i

j  i c j \ r u ) , , i i ) \ < ‘dt

1
z c j  \ P ^ u nA tY d t^ C \ \P u m\\pLAA) iC \ \ P u r p, 

-1

where we used again the Remez inequality (3.8).
Finally let /  be a continuous function; we suppose that the first inequality 

in (2.5) is true. Then we apply it to the polynomial Í2m+i,r,s(w ,® ;/). So 
we have

2 m + r+ .v + l

\\L2m+l,rA'»MfMPpZC E  *mMUMU)\P
i— 1

2 m + r + i + l

iC\\fWoo E Am (UP ; f i ) =  C | | / | | o o  / vP{x)dx^C\\f\ \O0.
i= 1 1

This chain of inequalities means that operator T2m+i,7-,.s (m, w;) considered as 
a map of C° into Lj[ is bounded and so the first condition in (2.4) holds true 
(cf. [12], Corollary 1, p. 4). So the Theorem is completely proved. □

P r o o f  o f  T h e o r e m  2.2. Let /  be a bounded and measurable function 
and q+,q~EW,2rn+r+s, such that

Q ~ ( x ) ^ f { x ) £ q + ( x ) ,  x  E [—1,1].
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Then we can write

\\[f ~ L2m+l,rAwi'ü]'i f)]u \\v
(3.27) ^ | | [ / - g _ ]u||p +  ||L2m+i,r ,s (^ ,ö > ;/-g _ )«||p

i  Il[<7+ -<r]l lp +  l|Í2m +l,r,sK 'Ö >;/-9_ )«llp-

Now from Theorem 2.1 we have

| |^ 2 m + l ,r ,s (w , w; /  -  g_ )w||p ^ C ^ 2  ^m{uP, U)\f ~ Q~\P{U)
2 m + r + s + l

(3.28)

i=l
2 m + r + s + l

£  Ar„K,ii)|9+-9T(<i)
2=1

^ U I ^ - O C -

Hence from (3.27) and (3.28) we can write

(3.29) || [ /  -  L2m+ i,r,s{w , w \ / ) ] 'u | | p  ^  C|| [<7+  -  (l~]u\\p

for some positive constant C  and for every q+ ,q~E P2m+r+s, such that q~ (x) 
/ ( * )  ^  q+ (x), x G [—1,1]. Then the Theorem follows making the infimum 
with respect to q+ ,q~ in (3.29). □

P r o o f  o f  C o r o l l a r y  2.1. We set

( f (m)  i fa:e( -oo,yi ] ,
/m(®)=< / (* )  if x€]yuZr[,

I  f { z r) if :i;G |zr,Oo).

Then L 2jn+i,r,s(w^w '- / ) = i 2m + i , r , s (« " ) ® ; f m ) and

(3.30) | |[ /  -  ^ 2 m + l , r , s ( w ,  / ) ] « | | p

i  III/ - /m]u||p + ||[/TO - T2m+l,r,s(̂ , /m)Hp-
The second term at the right-hand side of (3.30) can be evaluated by using 
Theorem 2.2 and so we have

(3.31) H I / -  L‘2m+\,T,s {w, w; f)]u\\p ^  IK/  -  f m]u\\p + CÉ2m+r+a(fm)u,p 

From Theorem 2.2 and Theorem 2.4 in [14]

(3.32) E2m+r+s{.frn)u,p = ~\\.f wAl L,,([?/!,2,.])’

\\[f ~ fm]u\\p ^ C  I  \f'(t)\<pr(t)u(t)dt( 3 .33)
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with some positive constant C  independent, of /  and rn and where we set 
Im — [— 1, l]\[j/i, zT\. So the first part of the Corollary follows from (3.31)
(3.33) .

Under the assumptions made for / ,  from [14] (cf. Corollary 2.6, p. 17) 
we have that

(3.34) ||[/ -  fm]u\\P ^ ^ ||/'<H lp  

and then

(3.35) II[/ -  L-2m+i,r,s{™,vr, f ) ]u ||p g ^ ||/ ' '̂ pu\\p.

So, if we apply (3.35) to the function F{x)  =  f(x)  — J P2m+,-\-s- i ( t )d t .  where
- l

F'im+r+s — l £ H°2m+r+s—1) results
(J

(3.36) ||[ / — -i'2m+l,r,s(^» W',/ ) ] r||p ^ ~ | | [ /  P2m+r+s—l]^^llp-

Then the last part of the Corollary follows by making the infimum with 
respect to P2m+r+s-i in (3.36). □

Now we need some auxiliary results. First of all it is known that if 
u € G D T  and l^ p ^ o o  then (cf. [13])

(3.37) £ „ + i ( /W  ^ 71+1

Then we recall the following lemma (see [5]).

Lemma 3.1. Let, P  € Pm, k a positive integer and u 6 G D T  such that 
u G Lp and Tj < 1 ---- , for j  =  1 , . . . ,  M . Then for every function f  with

€ AClqc andfW<pk e L pu,

(3.38) ||(/ - P)(V 'uIIp ̂  c  Í£m_fc(/(*V„,P + mkW[/ - Wl,
P r o o f  o f  T h e o r e m  2.3. First of all we observe that from Corollary 

2.1 and by iterating (3.37) we have

C
l l [ /  ■f'2 m+l,r,s(wb w 'i/ ) ] M |lp  = ^ m +r+s-i{f^ ^)ip'u,p

ip'u.,p-

So by Lemma 3.1 to I»2m+i,r,s(«b w \ / )  we can write

(3.39) | |[ /«  -  L%n+i'rJ w , w ;  f)]<p*u||p ^ CE2m+r+a- i ( f (i))
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On the other hand, by iterating (3.37) once again, we obtain

C

(3.40)
Ehlm+r+s—iif^ îp'Ujp = mk-i^m+T+s—k{f^ )̂ipku,:

< c
rn

■Wu>ku\\k-i IO ^  U"P

for all i =  l , . . . , k .  So Theorem 2.3 follows immediately from (3.39) and 
(3.40). □

PROOF OF Theorem 2.4. The proof of (2.13) follows directly by Theo
rem 2.3; moreover we obtain (2.12) again by Theorem 2.3 (in the case i =  k) 
observing that for every k ^ t  it results

4 2+ r+ i+ l {w,w;f)<pkU < ■D(k)
 ̂  ̂2'///. —f-7- —f—Ä—(-1

+ ii/ ( V «
(m, w ; ./') (pku

\p- □
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SATURATION THEOREM FOR QUASI-PROJECTIONS

K. DZIEDZIUL

A b s t r a c t

We shall study properties of the box spline operators: quasi-interpolations and quasi
projections. We find relation between them. We prove the saturation theorem.

Introduction

In this paper we compare the properties of spline operators: quasi
interpolations and quasi-projections. Quasi-interpolations are examined in 
details in [B], see also [CD], [BHR], The saturation theorem is proved in 
[DM1], The Ciesielski-Dürmeyer operators are the simplest examples of 
quasi-projections, see [Cl-2]. Z. Ciesielski applied them to density estima
tion. The definition of the quasi-projections appears in [BD2].

1. Spline operators

Let us review some standard facts on the box splines. Let V  =  {iq, V2, 
. . . ,  vn} denote a set of not necessarily distinct vectors in Zd \  {0}, such that

spanjU} =  B d.
We call such a set admissible. The box spline corresponding to V  (denoted 
by B(-\V) or By)  is defined by requiring that

I  f{x )B{x \V)dx =  I  f{Vu)du

Rd [0,1]”
holds for any continuous function /  on R d.

We use standard convolution notation, see [B], [BR], [CD]. If {o (a)} and 
{6(a)}, where a  E Z d, are two given sequences then the discrete convolution 
product is defined by

a * b ( a )  =  ^ 2  a ( ß ) b { a  — ß) .
ß e z d

1991 Mathematics Subject Classification. Primary 41A15, 41A63, 41A25.
Key words and phrases. Box splines, polynomials, saturation theorem.

0 0 8 1-6906 /99 /$  5.00 © 1999 Akadémiai Kiadó, Budapest
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Without danger of confusion, the semi-discrete convolution and the convo
lution are both denoted by *, i.e.,

< p * a =  ^  a{a)(j ){- — a), 
a€ z d

<t> * ip{x) =  I  4>{y)^{x -  y) dy.
Rd

Moreover, we use the semi-discrete convolution operator

(i> *'f = &  * f \ z “ =  /(«)</>(•- ° o -
a e z d

We use the abbreviation
f\ =  f\Zdi

too. For 1 ^ p < o o  and k £  N .  Wjj denotes the Sobolev space on Rd [S] and 
by we mean the closure of smooth functions with compact support in 
the norm

ll/lloo,*.—  sup sup \Daf(x) \ ,  
x£Rd

where

d\a\f
D af  =  d â<1, a  =  ( a i , . . .  , a d), \a\ =  a x + • • ■ + a d.

By || • ||p we denote the standard Lp norm on R d:

n/iip=(/ \nx)\pdxy p.
Rd

The inner product in L2 (Rd) is denoted by

U\fl)Rd =  I  f{x)g{x) dx.
Rd

By the Fourier transform we mean

f ( x )  =  J  f{t)e~2nixtdt.

Rd

MAGYAR
riSiBOMÁNYQS AKAOÉMiA 

KÖNYVTÁRA



SATURATION THEOREM 101

Now, let us introduce the notion of quasi-interpolation of Cli. Chui and 
H. Diamond [CD]. For given admissible V, let us introduce the function

(1.1) Ny(x) =  B(x +  cv \V), 

which is symmetric with respect to the origin, and where

( 1. 2)  =

vev

Consider the sequence n y  =  {n\/(a)}, where

(1.3)
f 1 — Ny  (0) for a  =  0 
\  —Ny(a)  fo ra  t̂ O,

a  E Z(l, and let

(1.4) riy =  ny * • ■ • * n y  .
V--------- V---------- '

k

Moreover, denote S — (á(a)}, with

for a  =  0 
for a^O .

D e fin itio n  1.5. Let

(1.6) rnyte =  ő +  n y +  riy -1------1- nev ,

and /  be a continuous function. The operator of quasi-interpolation 
is defined as follows:

Q[V'e)f  =  Ny  *' ( /  * m y e) =  Y ,  ( /  * rnye)(a)Ny{- -  a),
(1.7) aezd

Q h ’0) = °h ° Q V'V'n ° <*\I In

where

( 1-8) =

For an admissible set V let

(1.9) Qy =  max{ r : \ J  # X  =  r, span{F \  X }  =  R(l }.
A’ C V
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In [DM1] Dahmen and Micchelli considered a similar operator

Q / =  5 2  f ( a  + cv )B V{- - a )  
a £ Z d

and for h >  0
Qh',e) =<rh°Q',V'Po<T\/h-

They proved the saturation theorem stating that if /  G C2(Rd) and Q y  ^  2 
then

(1.10) hm h - 2 ( Q ^ 0 ) f  -  /) = E
vEV

where D v is the directional derivative and with the uniform convergence on 
compact sets.

For the admissible sets V\ and V2, we define an admissible set

Y  =  V\U (-V2),

where — V2 is an admissible set consisting of vectors w such that

w  G —V2 <=> —w G V2 .

D e f in it io n  1.11. The Ciesielski Diirmeyer operator is defined as fol
lows:

(1.12) Q('TD)/ =  £  ( f , B ( - - a - c Y \V2))RdB ( - - a \ V 1),
ot.€Zd

where c y  =  k v an<l
v&Y

Q f: " v
) _ <Th° Q{VuV2) o a 1//1

The saturation theorem for the tensor product B-spline operators is due 
to Ciesielski, see [Cl-2]. We can formulate the theorem for general box- 
splines.

THEOREM 1.13. Assume that V\ and V2 are admissible and 
qv2 ^ 1. Then for all functions f  from, Sobolev spaces f  G W 2(Rd) 
P = °° l

evi ^
and 1

2.

/ - /
iá v£Y

(1.14)
v

=  o ( l ) .

V
II
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Note that the expressions (1.14) and (1.10) are similar. According to us 
the main reason is that for suitable chosen sets of directions V, X  the corre
sponding quasi-projection and quasi-interpolation coincide on some polyno
mials.

D efinition 1.15. Let V C Z d \  {0} be admissible, and

Y  =  Vi U ( - V 2).

Moreover, put nx  =  6 — B\-\ and 

(1.1G) m x ,g =  6 +  7ix H------ f  n9x .

The quasi-projections are defined as follows: for / £ Lv (R d), l^p^oc

(1.17) Q{V'V’e)( .f)=  E  ( f , B ( - - a \ V ) * m x , e)Ra B ( . - a \ V ) ,
a£ZJ

(1.18) Q^'V'e) =  ah o Q^'Xe) 0

2. Saturation theorem

For a compactly supported function ip we define S{(p) to be infinite span 
of the integer translates of <p:

(2.1) S(ip) =  span{ (p(- — a)  : aG Zd }.

As usual, let IT be the space of all d-variate polynomials, 11*. the subspace of 
II of total degree at most k, and

n(̂ ) = nn%).
It is known that [H]

(2.2) neK cn(fly).
C. de Boor showed [B] that for all /  € S(ip)

(2.3) ip*1 f = f  *'<p ,

and

(2.4) B v *' U{BV) =  U(BV

Further, C. de Boor and A. Ron proved (see [BR], [RS]) the following



104 K. DZIEDZIUL

L e m m a  2.5. For a polynomial P

(2.6) B y  *' P  €  II B y  P P  =  B y  * P.

Hence for all P  € II(£v'):

(2.7) B y  P P  = B y  * P.

It is clear that (2.4) (2.7) hold also for N y .

THEOREM 2.8. For all polynomials P  € 11 .̂ and for all O^g,

(2.9) Q { y y 'e){P) =  Q̂ X'Q\ P ) .

Moreover, if k gy and k ^ 2g T  1, then

(2.10) Q(FV,Q)p =  p  j or (dl P e U k

P r o o f . Let
/(* )  =  / ( - * )

and for a sequence a =  {a {a ) }

d(ev) = a(—a).

Then

(2-11) { f , g { - - o i ) ) Ru = f * g { a ) .

The function Bx  is symmetric with respect to the origin. This implies that

(2.12) B  x  =  N x  i

and the sequence nx  is symmetric with respect to the origin. Consequently, 
also mx,Q is symmetric with respect to the origin. So

(2.13) { B y  * m x ,eT =  B v  * =  B y  * m x ,e.

From (2.11) and (2.13) it follows that

(P, B {■ -  a ) * rnX}g)Rd = P  * {By  * rnXtl?){a).

Hence

Q { v y 'e]{P) =  B y  P {P  * {By  * mA>)) =  B y  P {By  * (P  * m x ,e)).

By the definition of the box splines, we get B - y  =  B y .  Therefore

Q(V’V<e){p) =  b v  P { B - y  * (P  * m x , e))-
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Moreover, since g ~ v  =  QVi we have 

(2.14) n ev =  u e_v .

FVom (2.4), (2.7), and (2.14) we conclude that for P E U ev

B - v  * (P  * mx,e)  € n ev.
Now from (2.7)

g (v ,v ,í ) (P ) =  B v  * B - y  * ( P  * m x , e ).

We observe that
Dy * B - y  = B x ,

thus from (2.7) (2.12)

Q (vy 'e](P) =  B x  * (P  * m x ,e) =  N X *' (P * mx,ß) =  Q{X’e)P,
i.e., (2.9) is proved. By definition

1 _  g — 27tí£i;
B x(0 = U

vex 2ttí£v

Note that for ß  such that \ß\ á qv we have

DßB'v (a) =  0

for all a £  Z d \  {0}. Now, by Theorem 1, from [CD] we have
Q{x,e)p  =  p

for all P  € Ilfc with k ^ gv,  k ^ 2 g  +  1, which gives (2.10). □

The operator Q y  x is local, i.e., for each x € Rd, the value of ,e^f(x) 
depends only on the values of /  on the bounded set Axc {y E f íd: ||y—x||< s}. 
Let us estimate s. Denote by D  the diameter of support of B y-  Then 
s ^ ( g  +  2)D.

This implies that there are constants s and C  such that for any open 
set Í1

IIQ Í^ ^ /Í^ llp ííí) ^ C'||/(a:)||p(nfc.),
where

Í4.s. =  { i €  Rd : B,;en|a; -  y| < /j .s }

and

l l / w n ) = ( / \ f ( x w  d x Y .
h

The general results on the order of approximation by local, polynomial- 
reproducing box-spline operators (see [Kl-2], [BD], Proposition 3.4 [BHR.]), 
and Theorem 2.8 imply the following result concerning the order of approx
imation by quasi-projections.
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T h e o r e m  2.15. Let V C Z d\{0 }  be admissible and g .̂ 0. Let r — 2g +  2 
in case 2 g + l <L gy, and r := gy  +  1 otherwise. Then for each p, 1 ^ p  ^ oo 
there is a constant, Cp such that for all f  G Wp

(2.16) \\Q{y V’e)f ( x ) - f ( x ) \ \ Pú C Phr Y  \\Dßf\\v
\ß\ =r

In t.he sequel, the following result is needed.
L e m m a  2.17. Let 2 g +  1 <  g x ■ Then for all polynomials P  such that 

deg P  ^ 2g +  2

(2.18) Q {x'e)P  =  P  +  A P, 

where A p  is a constant depending on P .
P r o o f . De Boor’s form ula

N x  *'P  =  Nx  * P

implies that if P e l l ( N x )  then Q(A’Dp a polynomial as well. Moreover, 
by the definition of quasi-interpolation

Qi.x,e)p[ =  {Nx *'{P*mx,e))\  =

=  (Nx )\ * P\ * mx,e =  ( S -  nx ) *{S +  nx  +  n \  +  ■ ■ ■ + nex ) * P\ =

(6 -  nx ) * {S +  n x  + n 'x -1------ f  n ex ) * P | =  Pj -  nex  1 *P\.
It is known that the operator

n \  : n  -> n

is degree reducing, see [B], [CD], more precisely

deg(P * 7i x ) +  2 ^ deg(P).

Thus if deg P  5Í 2g +  2 then

deg(P*n^+1) =  0.

Hence

(2.19) Ap  =  - P  * nBY  =  - P ,  * ngY

is a constant. This finishes the proof. □
Our next goal is to determine the constant in (2.19) for the monomials. 

Recall that for sufficiently regular functions the Poisson formula implies

Y  / ( “ )=
a e z d aezd

( 2 .20 )



SATURATION THEOREM 107

see [SW].
Let us denote by Aß the constant (2.19) for the monomial

p  =  x ß  =  x ßl

with \ß\ = 2g +  2, where ß = ( ß i , . . . , ß d ) -  By Leibniz’s formula 

< +1 =  (Ó -  (Nx ){r +l =  S + Ü ( - 1)A: ( g + (NX)f .
fc=i '  '

From this and (2.19) we obtain

e+i / I i \
(2.21) Aß =  -P , * n f 1 (0) =  - ( P ( 0) +  E ( “ l ) fc ( 6 k ) (^A')f * ^ (0)).

k= l '  ' '

Let kX  be an admissible set consisting of the vectors of X  with multi
plicity of k. Formula (2.7) implies now

(Nx)\*P\ = (Nx*'P)\  =  (Nx *P) l,

hence

(JVA-)|2 * Pj = (Nx )I * ((ALy), *P\) =  (Nx )i * (WA- * P), =  (iVA *' W y * P))|- 

Since Nx * P  € Hi)x, we have

(Ata-)|2 * Pj =  (Nx  * (Nx  * P))| =  ((Nx  * Nx ) * P )I 

=  (N2X * P)  1 =  (iV2A *' P)| -  (N‘2x )| * P|-

Thus
(WA-)|fc*P, =  (iV,.A-)|*P |.

Since P(0) =  0 we conclude that

0+1 /  j_ i \
A ^ - Z ^ n  I  ) (N k x )l *P\(o).

k= 1 ^ 2

The functions jVfcA- are symmetric. Therefore

(2.22) (NkX) 1 * P|(0) =  P(a)NkX(0 - «) =  Z  P (« )^ A '(« )-

Applying the Poisson formula for the functions /  =  P N kX we can rewrite
(2.21) as

a£Zd
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where

Thus, we get

N X ( t ) = n
v£X

sin(7r£u)
TXfv

^ = - 7 (27ri)2 +̂2 \  k )

e+i

:(0 )

(2tt)2^+2 fc=i

Denote /3! =  /3i! • • • /3d!. Now, we are ready to state the saturation theorem 
for quasi-projections.

THEOREM 2.23. Let V C Z tl \  {()} be admissible, 2g +  1 <  gy  and 
1 'Lp "Loo. Then for any f  G W p° f 2

(2.24) Q{u y 'Q)f  -  /
f,2(>+2 E

|/?|—2̂ ?+2

1

Í9! p
= o(l).

PROOF. We first, prove (2.24) for p =  oo. Let /  be any compactly sup
ported function such that /  G C 2°+2. Fix x. By Taylor’s formula

(2.25) f { y )  =  Px(v) +  R(x,v) ,

where P  is the polynomial of the degree 2g +  1. and R(x,y)  
remainder. Since

Px{x) =  f(x)

is Taylor’s

and from (2.10)

we see that

which gives

Q%'v,B)Px = Px

Q ^ 'V'e)Px(x) =  f(x) ,

Qy y 'e)f { x ) - f { x )  = Q ^ v^R(x,h-) (x /h )
/j2p+2 /j2p-f2

Now, it suffices to show' that

sup
xeRd

Q^'v^ R ß(x,h-)(x/h)
Ij2q+2 i - V ^ / O r ) ->0 cis h —̂ 0,
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where
R 0 (x, y )  =  i D ßf(0)(y  -  x ) ß , \ß\ =  2 g  +  2

and 6 — 0(x. y )  is an intermediate point between x and y  in Taylor’s formula 
(2.25). For fixed x  and h consider the polynomial

Ph,x(v) =  (h y  ~  x )ß =  h?e+2y ß +  qh,x (y)-

Note that deg i//irT < 2g +  2 and it follows from the formulae (2.10) and (2.18) 
that A,lh c =  0. This gives

- V , = ' ‘2e+%
and

Q(V'V’e){h • - x ) ß(x/h) =  ( h j  -  x f  + Aa =  h?e+2Ap.

Let us consider the function

T ß { x ,  y ) =  ~ D lif {x ){y  -  x ) ß , \ß\ =  2g+2.

Then

Q (hV-V'e]Tß ( x , . ) ( x ) I ^ v v * ) { h . - x ) f \ x / h ) 1 „ x
-------- We+2-------- --- J \ D f { x ) ----------- K W -----------=  J \ A ßD  f { x ) -

Note that, since the operator Q ( v ’v >e) f  is local, there are s and C  independent 
of x  and /  such that

\Q(VXe)f ( x ) \ á C  sup \f(y)\.
\ y - x \ < s

Using these calculations we get

Q ( V’V’e ) R ß ( x , h - ) ( x / h )  1

ßfl2ß+2 A ß D ß f ( x )
Q ( v y ^ [ R ß - T ß ] ( x , h - ) ( x / h )

h 2<?+2

< C

sup |R ß ( x,  h y )  -  T ß (x,  hy) \
\ y ~ x / h \ < s

h2g+2

sup \ { z  — x ) ß \

= C  sup \ D ß f ( z ) - D ß f ( x ) \ l- ~ xl<hs
\ z —x |< /is /j2e+2

=  Cs2*+2 sup \ D ß f ( z ) - D ß f ( x ) \ .
\ z —x \ < h s
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Since the functions f  are uniformly continuous, this gives (2.24) for p  =  oo 
and functions /  of compact support. The result (2.24) for 1 ^ p < oo and 
compactly supported /  G WpS+2 fl C 20+2 follows from the just proved result 
for p =  oo and the locality of quasi-projections. Moreover, Theorem 2.15 
implies that the operators

Kn(f)  = h2e+2 E j ^ h t )
\ ß \ = 2 Q + 2

are bounded on Wp0+2, more precisely

\\Kh(f)\\p Í C  Y ,  \\D ßf \ \ v
\ß\=2g+2

The functions /  G Wp0+2 f lC 2e+2 with compact support are dense in Wp0+2. 
By the triangle inequality

\\KhU)\\P ^ \\KhU ~ /e)||p +  \\Kh(fe)\\p.

Choosing appropriate functions f e we conclude that (2.24) holds for the 
functions from the Sobolev space Wp 2. □
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A PROBLEM OF ERDŐS-RÉVÉSZ 
ON ONE-DIMENSIONAL RANDOM WALKS

Z. SHI

Sum m ary

The following problem is raised by Erdős and Révész [5]: let i'(n) be the time nec
essary for a simple symmetric random walk on the line at the ji-tli step to visit a new 
point, what can be said of the limsup behaviour of w(n)'t It is established in [5] that
A limsupi/(n)/n(loglogn ) 2 € [1 / 47r2, I6 / 7r2]. The exact value of A is obtained by

«—>oo
Csáki [2]. In this paper, we present an integral test characterizing the upper functions 
of i/(n), and furthermore study the corresponding problem for a large class of real-valued 
random walks as well as for linear Wiener processes.

1. Introduction

Let {Sn }n >o be a simple symmetric random walk in Zd (but, very soon, l )  
with So =  0, i.e. at each step, the random walk has probability 1 / (2d) to visit 
each of its (2d) neighbouring points. Erdős and Révész [5] raise the problem 
of investigating the “limsup” behaviour of

(1.1) Kn) d̂ f min{ k Z 1: Sn+k<£ [S0, S i, . . . ,  5„} } .

In words, the question can be formulated as: how long does it take a 
simple symmetric random walk to visit a new site? This problem is very 
challenging, as is pointed out in [5]. Although not completely solved in [5], 
some interesting estimates are obtained by Erdős and Révész. Let us recall 
their result for dimension 1.

THEOREM l.A  (Erdős and Révész [5]). Let v(n) be as in (1.1) and let 
d =  1. Then

( 1. 2)
1 " (n) 16T ~2 h bm sup — ------rw S - z

7t—>oo n(log log n )1 it1
a.s..

The exact value of the limsup expression in (1.2) (in case d =  1) is deter
mined by Csáki [2]:

lim sup
n—>oo

K n )
n(log logn)2 7T

a.s..

1991 Mathematics Subject Classification. Primary 60J65; Secondary 60.115.
Key words and phrases. Random walk, Wiener process, Lévy’s class, integral test.
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I am unable to solve the problem for higher dimensions, and shall limit 
myself to the study of random walks on the line. The aim of this paper is:

(a) to provide as much information as possible about the upper asymp
totics of v{n)\

(b) to investigate the corresponding problem for a large class of one
dimensional random walks.

V ia an integral criterion, we completely characterize the upper functions 
of v(n)  in case d =  1.

T h e o r e m  1.1. For d — 1 mid for any positive non-decreasing sequence 
{ a n } n > i ;  we have

P[ v(n)  >  nan; i.o.] =  0 or 1,

according as whether
y^ exp(-7rv/q^)

11

converges or diverges. Here and in the sequel, we adopt the usual symbol 
“i.o.” meaning uinfi,nitely often” as the appropriate index tends to infinity.

In Section 5, we shall study the corresponding problem for a general 
random walk in Z (of course, v  has to be interpreted as the time necessary 
for the random walk to exit from its range). Let us first look at the Brownian 
case.

Let {W(t)] t L 0} be a real-valued Wiener process starting from 0, and 
define, for each t >  0,

(1.3) £(i) =f in fjs > 0 : W ( t  +  s) ^ [ inf W{u),  sup IT(u)]},
1 Ogu î J

which is a continuous-time analogue to ifin) introduced in (1.1). Not sur
prisingly, we have a similar version for the upper class of £(/.).

T h e o r e m  1.2. Let f  >  0 be a non-decreasing function. Then

00

p [ £ W > i / W ;  i-°.] =  j  J  < = >  j  ~  exp(—7Ty/Jifi) ) I  ^  j  ° ° -

In particular, we have

(1.4) bin sup
t—>oo

m
í (log logt)2

1
—x a.s..
7Tl

R em ark . As is often the case for this kind of problem, Theorem 1.2 has 
a companion for small times (i.e. as t tends to 0), the statement and the 
proof of which are omitted.
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The proof of Theorem 1.2, which is provided in Section 4, relies on some 
very accurate estimates (Lemmata 2.2, 3.2 and 3.3 below) on the first- and 
second-order distributional properties of £, developed in Sections 2 and 3, 
respectively. Section 5 is devoted to the study of the corresponding Erdos 
Révész problem for general one-dimensional random walks, for which we 
obtain an integral test (the forthcoming Theorem 5.1). The latter yields 
Theorem 1.1 as a special case. We point out that, in order to be able to deal 
with the general random walk case, we shall actually prove in Section 4 a 
result slightly stronger than Theorem 1.2.

2. First-order distribution

Let {W(t.)]t ^ 0} be as before a standard linear Wiener process, and 
write, for t ^ 0,

(2.1) Mt d=  sup W(u), I , d=  -  inf W(u).
Ogugt 0fZu£t

(Note that It is the absolute value of the infimum process.) The joint distri
bution of Mi and L is known for fixed t >  0 (cf. for example Ito and McKean 
[8, p. 31]):
( 2. 2)

P (Mt < x ,  It < y )  =  - ' £
' TT i J7T *■— ' 2k +  1k=0

exp
(2k +  l)27T2i \  . ( 2 k + l ) n x
——------ r̂ — sm ---------------

2(x +  y )2 )  x +  y

for x >  0 and y > 0. The theta function, however, sometimes causes troubles 
for exact computations. Things look nicer if an independent random time is 
introduced.

F a c t  2.1 (Yor [12], Imkof[7]). L e tT  be an exponential random, variable 
of mean 2, independent of W . For t >  0, we have

(2.3)

(2.4)

P {Mr  < x, IT < y) =  1 -
sinh x +  sinh y 

sinh (x +  y)

__ 1!__ )
2 (M, +  / , )V

1
cosh2(A /2 \/t)'

x > 0, y >  0, 

A e r .

R e m a r k . Although (2.2) and (2.3) are mathematically equivalent, it 
is often a lot easier to use (2.3), thanks to its elegant form. Yor [12; Lec
ture 6] obtains (2.3) among many other related distributions (all of which are 
nice-looking, free of “troublesome” theta functions!) by virtue of the Gauss 
transform. From (2.3), it is possible to deduce (2.4), though the latter is 
first discovered by Imliof ([7]; see also Vallois [11] for an interpretation via
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sample path decompositions) using direct, computations, stated in [7] in a 
somewhat different form:

(2.5)
1

cosh2(A r/2)’
r > 0,

where 6r =  inf{f > 0 : Mt +  It — r}. It is easily seen that (2.5) and (2.4) are 
equivalent. Indeed, by scaling, for any t >  0,

P(0,. < t )  =  P (Mt +  It >  r) =  P ( M 1/r2 +  I l/r 2 > - j ,  

1
=  P

(M i /r 2 +h/r*Y‘
< t l

which means that 0r has the same law as l / ( M l / r 2 T  I ^ , . 2 ) - .

The main result of this section is the following accurate estimate of the 
first-order tail probability of £(1).

Lemma 2.2. Let f(t )  be as in (1.3). There exists a finite absolute con
stant C \ >  1 such that for A ^ 1,

( 2 . 6 ) c ^ e x p ( - - W Ä ) ^ ( l )  >  a )  ^  e x p ( - 7 r \ / Ä ) .

N otation. Throughout the paper, Ck >  1 (1 k ^ 45) denote unimpor
tant finite constants. Their values either are universal or may depend only 
on the forthcoming parameter «.

PROOF OF Lemma 2.2. Obviously we only have to deal with the situa
tion when A is very large. We have

p (f;(l)  >  a) =  p ( sup W  (l + t) < M\\ — inf W{l +t . )<Iy )
' ' ^OgigA os;ííía '

=  P (  sup (W ( l  +  t . ) - W ( l ) ) < M 1 - W (  1);
H>átáA

-  oinfA(W (l + 1) -  W{  1)) < I X +  W (l))  .

Since W  has independent increments, and since {My — W (1), Iy +  IT(1)) 
has the same distribution as (My,Iy) (this is a straightforward consequence 
of the Brownian time inversion property), by writing {My,I\)  for an inde
pendent copy of {My, 1 1), we obtain

p ( í ( l ) > A )  = p ( v/ Ä M i < M i; VXI y Kl y ) ,



ONE-DIMENSIONAL RANDOM WALKS 117

(which means that £(1) is distributed as m in((M i/M [)2, ( I i / l i ) 2)). Condi
tioning on the values of Mi and I \ , it follows from (2.2) that,

(2k +  1 ) 2 7t2 A . (2k +  l)nMi
1 "r ■» 1

First, let us observe that by means of (2.4),

(2k +  1 ) 2 7t2 A
~ T——Eexp(— ^  2k + 1 1 v 2(M1 + 7 1)2-)

( 2 . 8)
1

A;=l 
oo

=  V
(2k +  1) cosh2((2fc +  1)tt/ Ä / 2) 

^ C2 exp(—3-ks/X).

Now we try to establish the first inequality in (2.6). We shall make use 
of the independent exponential random variable T  with E(T) =  2. Since

(Mt , It )  ̂  ̂(V t M l, >/TI\) ,  we have

(2.9)

A 2 =fE 

=  E 

=  E

. 7T2 A . 7tM i

“ p(-2 (M 1 + / 1)=) s ,n j ^ T / 1J
7tM\

{(Mi+h)y/T>^y/\} S111 Ml + / l

tt Mt  '
{A/r +/r>7rvA} 8111 _j_ >

where 1 denotes the indicator function. By means of the elementary estimate 
sin(7nr) ^ 2 min(x, 1 — x) (for 0 ^ x 5Í1), this yields

A 2 ^2E min ( M r ,  I t )

Mt  +  It  {a/t+/t>^v/X}
1

^ — 7=E
1T\/\

Mt  Í { 0 < M 7.<7rv/X / 2 ; - \ /A <  A /y  i /7'<2',t \  A}

According to (2.3),

( 2 . 10) — P ^ M y  < x ; I t  <  y j  =
sinli y

2cosh ((x- +  y)/2)



118 Z. SHI

Therefore,

TTv/X/ 2
I f f  sinh (27rv A — x) sinh (7rv A — a?) \

2 _  2 7 r \ / A  . /  '  C O S h 2 ( 7 T \ / Ä )  C O Sh2 ( 7 T \ / X / 2 )  '
0

7T\/A /2

(2.11) > — = /  a; exp(—a; — 7r\/X) dx
~ c 3 \/X ./o

= c ^ ex,)(“ ’rv/X)'

By (2.7), P(£(l) > A) ^ (4/7t)(A ‘2 -  A i). Combining (2.8) with (2.11) 
immediately implies the first part of Lemma 2.2.

To verify its second inequality, let us go back to (2.9). Since sin(7ra;) Ú 
7T min(x, 1 — x) (for 0 ^ x ^ 1), it follows that

A2 ^ 7T E 

1
< ^ E
“ y x

min(MT, It )
M t  +  It  JilM7’+lr>7rv/A}

min(Mr , JT) 1{MT+/T>7rv^ }

By symmetry and (2.10), we obtain 

2
A z - 7 a e

y/X M t  A /2 ;  / t >7 iV X - M t }

Âj->7t\/A /2; Irp> A/71}+ a e
vT

rvT/2

" T S  / X I

2 sinh (7T\/X — x)
ex cosh2(7r\/X/2)

h w  > Í
2 ) '  v/X ./ cosh2 a;/

dx

7 T \ /X /2

7 T \/Ä  /2
f  CJr f

^ —A  j  x exp(—x — 7 T \ /X ) dx +  j  x exp(—3x) dx

ttvT /2

“  ; % exp (~7rv^ ) ’

which, in view of (2.7) and (2.8), yields the second part of Lemma 2.2. □
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3. Second-order distribution

Let £(f) be as in (1.3). Define

(3.1)
clef

Vi*) =Z(t)  +  t, * > 0,

which is the first exit time of the Wiener process W  from [—It, Mt] after t 
(Mt and It, being respectively the supremum and the modulus of the infimum 
of W  over [0, <]; cf. (2.1)). From (2.G), it is easily seen that

(3.2) i-7=cxp(-7rv/A) ^ p (t/(1) > a)  = ^  exp(-7r\/X),
C7 V \

for A ^ 1. An advantage of working with i] is that

(3.3) the process t) is non-decreasing.

In this section, we aim at estimating the probability P(.t <  r)(s) < y ,  
r](t) > z) for 1 < s < t <  z /2  and 2s < < y  <  z. First, let us treat a simple 
Laplace transform for a Gaussian distribution.

L E M M A  3.1. Let M  be an J\f(0,1) variable. Then for positive numbers 
a, b and A,

(3 4) EeX1,(~ (a +  t |V |)» > S ' X|>(“ ^ ) + eXp(‘ ^ > '

P r o o f . W e  h a v e  

A2
Eexp(—

(a +  b |A/’|) 2̂ ) = E exp(
A2

+ E

, x2 \  r
= eXP( “ i ^ ) +E eX P(

H{|Af| ga/ft}

A2
(a +  b\M\Y

LCXp( ~  (a +  b\M\)2)  i{,AAl>a/b}
A2 \ _ /  A2 \

=exp( - ^ ) +exp( - ^ ; ) ’

4b'2 N 2 
A

y/ 2  b>

□as desired.

Now let us estimate P(a; <  r/(s) < y, r)(t) > z). We begin with the easy 
case: t ^ y.

L e m m a  3.2. Let 1 < s  < t < z /2  and 2s <  x < y < z. If £ ^ y, then 

(3.5) P(x < T ) ( s )< y ,  r f ( t )> z j  = ClJ l exp(~7r̂ ) ’
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where C-  is the constant introduced in (3.2).
P r o o f . Since t ^ y, by the definition of y  (cf. (3.1)), on the event 

{x <  y(s)  <  y, 7 7(f) > z }, the Wiener process W  stays in the tube [—Is, M s\ 
during [s,t], which means that y(s)  =  y(t). Therefore

P (x  < y{s) < y, y { t ) > z )  ( y { s ) > z Sj  = exp( _7r^ )  ’

the last inequality following from the scaling property and (3.2). □
The situation for t > y  becomes more delicate. For the applications we 

bear in mind, we need two estimates for the same probability term, the 
first being efficient when t is “relatively close” to s, the second when t is 
“extremely large”.

L e m m a  3.3. Let 1 < s <  t  <  z /2 ,  2s < x < y  <  z and, t >  y. Writing

we have

. def \ fs t
^3 j----

\ J X Z

iu fz \
sTt)

(3 .6) P (x  <  y(s) < y, 7 7 (f) > z) A Cs A 3  + C9 e x p ( - ^  P(x <  y(s) <  y),

(3.7) P ( s  <  y(s) < y, y(t) >  z)  g  C u A,  + ' P(* < v (s) < y).
V t ~ y

P r o o f . On {x < y (s) <  y, 7 7 (f) > z}, we have y(s)  <  t. When W  exits 
from [—IS, M S] at time y(s),  it exits from either or — Is. Write

E =  [ x < r ) ( s )  < y ,  y ( t)>z;  W{y{s))  =  j.
By symmetry,

(3.8)

P (x < y(s) < y, 7 7 (f) >z^j=  2P(E)

= 2P ( e \ sup W { u ) > M , )

+ 2P ( e \ sup W{u) ^ Ms)
' s<u<t '

=f A4 +  A s ,

with obvious notation. Let us estimate A4 first. Since y(s) is a stopping- 
time,

W{u) =f W {u  +  y{s)) -  W(y{s)),(3.9) u >  0
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is Brownian motion, independent of E,^s) {E  being the natural completed 
filtration of W).  And we can define the corresponding £(u ) and 77(77) exactly 
as in (1.3) and (3.1) respectively, taking W  in lieu of W . On the event 
E D {sup,<M<( W («) > M.s}, £(f) is nothing else but £(t. — r/(.s)). In formulae, 
this yields

A.! <; 2E 

=  2E 

<2E

B/,-{x<T)(s)<y; W ( r /( s ) ) = - I a } J

{x<ri(s)<y, W(j](s))=-Is}

>  Z — t

P ( jj(t  -  T)(s)) > Z ~  TJ ( S ) ) T, , ( . , ) ) ]

»)(*))]

B{i <ji(s)<y,W(T)(s))=-Is}^ >  z t

= 2P (x  < Tj{s) < y, W  (r/(s)) =  P (r/(<) > z - t j  

^ 2P ( r̂j(s) > x'j P 7̂7(f) >  z  — f j .

By scaling and (3.2), we obtain

(3.10) A4 ^
C\:\ y/st. 

y/xz
( s/xe x p ^ - ^ - ^ j .

To estimate A5, again using the Wiener process W  (as well as the cor
responding £ and 77) introduced in (3.9) and we arrive at:

(3.11)

with

A.5 <; 2E Hi,{x<i](s)<y; W(y(s))——Is} ?(*)) ’

F = f < sup
 ̂ i - t j ( s ) S l l S 2 - T j ( s )

£{ sup
■ t.—T i ( s ) ^ u ^ z —r ] ( s ) i-r/(s)<

illf W »

jn f í y ( u ) Í M , + / , + í K , )} ,
S u S z —i] ( s ) J

(—/  being the infimum process associated with W, of course). Since the 
Wiener process has independent increments, it is easily seen using the strong 
Markov and scaling properties that

p  (V En(s)') = ^ { y Z ~ t (-^1 +  1̂) = Ms +  Is + 11 — 7/(s)

where (Mi, jj) denotes as before a random vector, distributed as (M\,I\ ) ,  
independent of all the other variables figuring in the above inequality. Since 
P(Mi +  I\ < x ) Sí C14 exp( —I/C15 x?) for all x > 0 (this for example is a
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straightforward consequence of the exact distribution of M i +  I\ evaluated 
by Feller [6]), we have

^ ,(,) )  = ^14 •P F E

^ Ci4 E

exp

exp

f-------- ^ ----- )V C45 (Ms +  / ,  +  h-T]{s) )2'

( -------------- ------- — ) F„(s)
V C16 (Ms + 74. +  It)2 ' ,U

= Cl4 CXp( - 4C1fi(M .+~F ^ ) +C7l4eXP(

7i(s)

l ) ’4C16 (Ms + Is )2 '

where in the last inequality we have applied (3.4) to A =  \ f z ] C ^ , a =  Ms +  Is 
and b = \ f t , . Going back to (3.11), we obtain

A 5 S C '„ E « » ( - Cl7(Mii +  />p ) .

+ C,4' XP( " 7 f e ) P(’;<"(S)<!/)
(3.12) g C i4 E H{3,<);(.,)<j/} exp ( ~ 14^ “ )  fl{Ma+ /s<12S‘/2(z/t)l/4}

+  Ci4 p  ( m ,  +  / ,  >  12s1/2(^r/i)1/4)

+  0,4 cx|> ( - - ^ = ) p ( i < r|(*)< !/)

S C , ‘9 CXP( _ < ^ 7 i )  P ( * < ’)(»><!') + C2 l ex' > ( - ^ ) '

using the well-known Gaussian tail estimate P(|A/"(0,1)| > A) ^ exp(—A2/2) 
(for A > 0). Assembling (3.8), (3.10) and (3.12)jdelds (3.6). To verify (3.7), 
we have to estimate A5 in a different way. If W is as defined in (3.9), we 
have

A 5 ^ P (x < T](s) < y; sup W ^ Ms +  /.,]
x O i u ^ t —j;(s )

£ p fx  < r/(s) < y; sup W  ^ Ms + 1g)
' 0^u^t—y

(3.13) ^ p (M., +  / a. > 12s1/2(^ /i)1/4)

+  p f ® < t / ( s ) < I / ) p f  sup ÍT ^ 1 2 s1/2(z /í) l/4)

( 1 8 v /z \ C 22 s 1/ 2 ( z / t ) 1/ 4 /  \
S 2 exp ( -  - ^  )  + -------------------- P (x  < ,( . ,)  < , , ) ,
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using the fact that the density of |A/"(0, 1)| is bounded (above) by 1. Com
bining (3.8), (3.10) and (3.13) now gives (3.7). Lemma 3.3 is proved. □

4. Proof of Theorem 1.2

As was pointed out in Section 1, in order to deal with the general random 
walk case, we shall prove something slightly stronger than Theorem 1.2. 

Define for t >  0 and x > 0,

(4.1) r/+(i,x) =f inf j s  ^ t : W {s)£ Mt 4” x }■
( inf {s ^ t : W { s ) £ [ - { I ,  -  x), Mt -  x]}

(4.2) r/_(t,x) d=  I
if x Z ( M t +  It)/2

otherwise,

where, M  and —I, introduced in (2.1), denote respectively the supremum 
and infimum processes associated with W.  Since ri+ {t,x) > r]{t) = £ (t)  +< 
and r]-{t,x) <£{t)  +  t, Theorem 1.2 is a straightforward consequence of the 
following result.

P roposition 4.1. Fix 0 < a <  1/2, and let r)+(-,-) and iĵ {-,-) be as in
(4.1) and (4.2), respectively. For any non-decreasing function f  >  0, define

OO

(4.3) J(f) tlef l  yexp(-7T y//(< )) .

We have

(4.4) J ( . f ) <  oo = > P r/+( í , í1/ 2 - a ) > í / ( í ); i o

(4.5) J(f) = oo =► P r,-{t,tl/2-a)>tf{t); i.o.

R e m a r k  4.2. As is well known (cf. Erdos [4] or Csáki [1]), we can limit 
ourselves to those functions /  such that

(4.6) (toglogt)2 ^  ^  (loglog^)2,

P r o o f  of (4.4). Observe that r/(l) is a stopping time with respect to the 
natural completed filtration of W . Thus, it follows from the strong Markov 
and scaling properties that, for any fixed x >  0,

r/+ (l,x ) =  7/(l) +  x2(j,
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where a  is the first hitting time of 1 by a standard Wiener process, indepen
dent o f 77(i). By means of (3.2), we have, for A ^ 3,

P ( 77+ (1 ,x) > A) ^  P ( 77( 1 ) >  A -  y X ) +  P (r/;2ix > \/A)

(4.7) g c x p ^ T r ^ W X  ) +  P (|W (0,1)1 < ^ r )

^ C2 3 ( rr \s _ oxp^ j  +  _ _ ,

using the fact that the density function of |W(0,1)| is smaller than 1. Now 
let /  >  0 be non-decreasing such that J { f )  <  00. Obviously f( t)  goes to 
infinity. Taking A = f{t)  and x  =  t~a in (4.7), and by virtue of (3.2) and the 
scaling property, we obtain, for sufficiently large t,

(4.8) P ( 77+ (í, í 1/2-“ ) > t f ( t )) ^ exp ( - 7 t^ W )  ) + 1~°.

defFollowing Erdos [4], let us define sn =  exp(ri/ log 71) for sufficiently large n. 
From (4.8), it follows that

' ( 77+ («n+ l,« i+ i a ) > S n f ( S n ) )  Ú

<

C-24 (  Sn f ( s n)................ exp —7TI / - — ■— —
V̂n./(*’n)An+l V y ®n+l

<?25

+  Sn+1

\ / 7 M
exp(-7T \Z/(«n) )+*„+!'

which is summable for n , thanks to the convergence of J ( /) . According 
to the Borel-Cantelli lemma, (almost surely for large n), we have
7/+ (sn+1, . s ^ 1“°:) ^ S n f ( s n ) .  Since t (->• 77+ (i, t.1/2_a) is non-decreasing, we 
have, for i  6 [s„,.s„+i],

r/+ (i, i 1/2 n) 77+(sn+i, “) ^ snf ( s n) ^ tf( t),1/2-

as desired. □

The proof of (4.5) is more delicate. Assume (4.6) again, without loss of 
generality. Write

g(t) =  f( t)  +  l.
Let us fix a large initial index no, and define tn =  exp(C2c tv,/ logn) (for 
n ^ no)- Here C26 > 1 is an absolute constant so large that

C7 e-^26/5 <
9CV

(4.9)
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Cy being the constant figuring in (3.2). By the mean-value theorem, for 
no ^ i < j , we have

(4.10) I z L  < j - ______< Í Z Í .
2 log j  log j  log* log?.

We need a preliminary result.

LEMMA 4.3. Let g >  0 be a non-decreasing function satisfying (4.6) with 
g =  f  +  1, and let i ^ r?o- We have

(4.11) £
j’̂ »+(logi)3 V J

Cor
U+\ g{ti) V ü

P r o o f . Let j  ^ k  =  [t +  (log?)1] (i.e. the integer part of ? +  (log?)1). 
From (4.10) and (4.6) it follows that tj  >2*j+i gftf). Therefore

__ < C2s i/lo g lo g t3
^ t j - t . i+ lg{ti) \ftj ~ J h - t j

O-i

dt C-2s v/log log t.
Vi.

= C29

\l

/
0-1

(log logt)3/'2 
* 3 /2 dt,

which implies

y ;  , -  /
j^k \ f h  ~ *i+1 9ÍU) IJ = lk- 1

u
(log log *):i/2 

*3/2 f/*

< r , (log log <jt-i):1/2
A O30-

< C 31
v/íT

the last inequality following from the fact that t.j > ? t, for j ^ i  +  (log ?)3 (this 
is a straightforward consequence of (4.10)). □

The main difficulty in the proof of the divergent part of Theorem 1.2 is 
in applying the Borel-Cantelli lemma to a sequence of events which are not 
independent. One is tempted to choose some nice-looking stopping times, 
such as {r(r); r ^ 0}, the inverse local times at 0 of W . After all, since 
W (r(r)) = 0 , it looks as if it might take “a long time” for W  to exit from 
[ - / T(r ) ,M T(r j] after r ( r ) .  However, this turns out to be only utopic it
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is possible, with the aid of Theorem 3 of Pitman and Yor [10], to prove 
that liinsup^(r(r))/T(r)(log logr(r))2 = 1/47T2 almost surely (which is of a

r —>oo
relatively poor performance if compared with (1.4)). So we stick to our 
deterministic-time choice.

P roof of (4.5). Take a function /> 0  satisfying (4.6) such that J ( / ) = oo. 
Thus, for g(t) = f(t.) +  1, we have

(4.12) E exp[-iry/g{tn) ) =  oo,

(recall that tn = exp(C26 n /  logn)). Consider the events

E n  =  ^  tn  <7(*n)} 0  { g { tn ) <  <n+ l  ö ( * n ) }

O { fn 2 ~ n  <  min(Mtn, Itn) j  ,
for n  ^ no =  no(«). The extra condition r/_(tn, t ] / 2 ° ) <  tn+\ g{tn) does not 
considerably infiuence the probability of E„ , but makes life a lot easier (this 
is a trick I have learnt from Csáki [1]) as we shall see soon. Observe that on 
the event {x < min(Mf, It)},

(4.13) V( t ) ^ r ]_ ( t , x ) + x 2a,

where cr denotes again a variable distributed as the first, hitting time of 1 
by a linear Wiener process, independent of g-.(t.,x) (we shall not use the 
independence, however; (4.13) is not an identity, due to the fact that W(t)  
may lay out of [—It +  x , Mt  — x]). Hence by scaling and (3.2), for y  ^ t , we 
have

1 (r/_(i, x) > y, x <  m in(M t , It )j

(»/(í) > V +  V'i/i )  -

_ V t ____

\Jy + \fy i

P :/;2ct>

> exp

> ^  ( 
= T c ^ e x p ( - n

t  V v + V y i \i) —7r-------- 71------ - P I
l V y / i  J

- 2 P ( | A f ( 0 , l ) | <
V t )

y / y  \  x 2 .7;

V~t '  (y t ) ] /4 S t

yt'j -  p ( m m ( M t,It)

7 )(:yt)l/

(In the last inequality, we have used the relation e_7r/2/\ /2  > 1 / 7  and the 
boundedness of Gaussian densities.) Consequently, using (3.2) and (4.6), we 
obtain

p (En) ^ p (»?-(«„, <n/2 _ a ) ^ tng(tn)-, t\J2~a <  min(Mt„, 7tj )
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(4.14)
~  ^ n + l </(*»))

cxp(—7T\Zgitji))
7C7x/ Ä )  í ^ 1/4(ín) *2

cv
\Zv(fn) ('exp I —7T\/Li+1

' v C " vyv"n
1

>

8C7x/y (^ )
1

OXp(-TrVWn) ) -
C7 e_7rC'26/5

V y M
exp(—7T\ / g { tn) )

°xp(—vr\ /g { tn) ),
C*32 \ /

the last inequality following from (4.9). Thus by (4.12), we have

(4.15) ] T p (£„) =  o o .
n

Another consequence of (4.14) and (3.2) is that

(4.16) P (»/(*„) ^ ínP(ín)) ^ C33 P(^n).

Now consider no ^ * <  j  ^ n. Observe that

(4.17) P ^ iflE ,-)  g  P ( t i g { t i )  ^ 7/(t { ) < t i+1 5(fj); r/(/y) > t.j g ( t j ) ) .

There are two possible situations.
(i) First case: j < j ( i ) ,  where

j(*) ‘=  in f j j  ^  n 0 : ^  <i+i fl(ij)}.

Using (4.17) and applying Lemma 3.2 to s =  ti, t =  tj, x =  U g(ti), y  =  
t i+ ig ( t i) and z ~ t j g ( t j ) ,  we obtain

P (£ t n  £,■) ^  e x p ( - T r ^ S S ) .
v w j ) v/*I

According to (4.1Ü) and (4.6), ^ / i ^ l T ( y - t ) / 4  log j ^ 1+(j - i ) / C M y/g(tj), 
thus by virtue of (4.14),

7 ^ r M - c f i - « )

^  C35 e-(J- ?:)/c 3o P (£ .) f
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which implies 

(4.18) E E
l = UQ

(ii) Second case: j  ^ j ( i ). We are entitled to apply Lemma 3.3. Indeed, 
in view of (4.10), (4.6) and (4.16), the inequalities in Lemma 3.3 readily yield

P (EiHEj) ^ C,8 P(L’t) P (Ej) + C , , r 4 +  C.u) P (E,) j ~ 1 /c*1, 

P{Ei r\Ej) g C38 p (Ei) P (Ej) + C W 4 +  C.,2 '* Ll L
\A? -  L+i <?(L)

Since ij+(iogj)3 > L+i g(U), we have j(i) ^ i +  (log i f .  Accordingly,

n 2 n o o
X  J )  P ( « i n e , l  £  c 38( X  P (« o )  +  c 39

P(Ei).

r 4
7=720 7 = 7 1 0  . 7 =  7

- I / C 4 1+a,oEp(̂ ) E y
i=n 0 j(i)^já*+(logí)3

« Í V 4«*)+c,2 E p(í ‘i X
7=710

71 2  71 71
g C38( E  P (^:)) +  <?43 E  *“3 + ^44 E  P (^)>

i=no 2 = 7 1 0 2 = 7 2 0

by virtue of Lemma 4.3. This inequality, jointly considered with (4.18) and 
(4.15), yields

“ É  Xmnii) /  (X p(e.))jsc)5.
7 =  720 jf  = 7 1 0 2 =  720

According to Kochen and Stone’s Borel-Cantelli lemma ([9]), we have 
P (£n i i.O.) ^ I/C45 , which, by means of Kolmogorov’s 0-1 law, yields (4.5).

□

5. Random walks

Let {Xi}j>i be a sequence of real-valued independent and identically 
distributed random variables with

E(A!) =  0, E (X j2) = 1 and E(| A, |2+<5) < 00,(5.1)
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for some <5 > 0. Consider the random walk Sn = X] (with So = 0). We
t=i

are interested in

(5.2) v(n) m ini A; > 1: Sn+k Í  min Si, max  Si 1,
L L 0 < z < n  0<i<n  -I )

i.e. u(n) stands for the step necessary for the random walk to exit from its 
range. In case of the simple random walk, u(n) clearly corresponds to (1.1). 
We now present an integral test for v(n) for general random walks on the 
line.

THEOREM 5.1. Let {Sn}n> 0  be a real-valued random walk such that
(5.1) holds. If u(n) is defined as in (5.2), and if {an}n>l ts a non-decreasing 
sequence, then

v (n )>  nan; i.o. =  j J - t= > ^ e x p (—TTv/Ö̂ ) { ^  }  oo.
' ri

The proof of Theorem 5.1 relies on some known results recalled as follows.

FACT 5.2. Assume that (5.1) holds. Possibly after redefinition on an en
larged probability space, there exists a standard Wiener process {W(t): i^O} 
such that as n tends to infinity,

(5.3) |5„ — W (n )\= o {n l/ (‘1+V) a.s

where d is as in (5.1).

Fact 5.3. We have

(5.4) limsup ----- max sup \W(m +  .s) — W(m)\ — 1 a.s..
n—>00 \/2 logn 0SmSn-l

Fact 5.2 is a somewhat weaker version of the classical Komlós-Major- 
Tusnády strong approximation theorem, stated in the present form in Csörgő 
and Révész [3, p. 107]. Fact 5.3 is a particular case of the celebrated Csörgő- 
Révész large increments theorem, cf. [3, p. 30].

P roof of T heorem 5.1. As usual, we assume without loss of general
ity that

(log logn)2 2
...... 16-------= = (loglogn) .

Let be as in (4.1). First, suppose £]exp(—fty/äff) <  oo. Definen
f ( t ) = n a n/(n  +  1) (for n < t. ^ n +  1), which satisfies J ( f )  < oo ( J { f )  being- 
defined in (4.3)). According to (4.4), (almost surely for sufficiently large t), 
r]+(t, <1/(2+<0) g  tf ( t) .  Thus W{s) ^ [ —It — t}^'2+s\  Mt +  i 1/(2+<5)] for some
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t < s tS t f ( t ) .  By (5.4), the fluctuations of the Wiener process between neigh
bouring integers are relatively negligible, it follows that

(5.5) W {[t) +  l ) i
f l/(2+ö) f 1/(2+*).,

-------2 ’ ^  " 2 J
for some positive integer l ^ t  ( /( f )  -  1), with [f ] denoting the integer part 
of f. Let f G [n, n + 1 ) . It is confirmed by (5.3) and (5.4) that, when n is 
sufficiently large,

■ l/(2+<5) +l/(2+<5)
D min Si —

0 <i<n

j l / ( 2 + < 5 )

3
max Si +

0

n l/(2+<5)

In view of (5.5), we get

Sn+l ^ mill S',; max S,- ,0</<n J
which means £(n) ^ (n +  1) ( / ( n  +  1) — 1) ^ na.n . This yields the desired con
vergent part of Theorem 5.1. The divergent part can be proved by a similar 
argument (using (4.5) instead of (4.4)), of which the details are omitted. □

A c k n o w l e d g e m e n t s . I am grateful to Marc Yor for insightful com
ments on a first, draft of the paper. Many thanks go to an anonymous 
referee for helpful suggestions.
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HYPOCONTINUITY AND UNIFORM BOUNDEDNESS 
FOR BILINEAR MAPS

J. WU and R. LI

1. Introduction

For bilinear maps between topological vector spaces, Bourbaki has intro
duced the notion of hypocontinuity which lies between separate continuity 
and joint continuity for bilinear maps. By using the Basic Matrix Theo
rem, Antosik and Swartz studied the hypocontinuity for bilinear maps ([1] 
§6, [2]) and obtained sufficient conditions in the absence of completeness 
or barrelledness assumptions on the spaces involved. These results general
ized the classical results of Bourbaki ([3]) and Mazur-Orlicz ([4]). However, 
we are more interested in the characterization of hypocontinuity for bilinear 
maps. In addition, Antosik and Swartz also studied the uniform boundedness 
and the equicontinuity for the family of bilinear maps and some sufficient 
conditions were obtained in ([1] §6, [2], [5]). In this paper, we present char
acterizations for these problems.

2. Hypocontinuity

Let E , F  and G be topological vector spaces and b : E x F —> G be a 
bilinear map (i.e., the map b(:r, •) : F  —>■ G, b(x,-)(y) =  b(x,y), and b(-,y) : 
E  -* G, b(•, y){x) — b(x, y), are linear maps for each x and y).

Let J\f be a family of bounded subsets of F, b is said to be AAhypo- 
continuous if for each neighbourhood V  of 0 in G and each A £ A/", there 
is a neighbourhood U of 0 in E  such that b(U,A) Q V. If for each A £ Af 
when Xi —> 0 in E, lirn b(xi,y) =  0 uniformly for y £ A, then b is said to bei
sequentially AMiypocontinuous ([5] §4). If E  is a paranormed space, then 
sequentially A/’-hypocontinuous is equivalent to AAhypocontinuous.

Recall that a sequence {re*,} in E  is /C-convergent if every subsequence 
of {.T/t} has a further subsequence {xUk } such that the series ^  xUk is con
vergent to an element x £ E  ([1] §3). A ^-convergent sequence obviously
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converges to 0, but the converse is false in general although it does hold 
in complete metric linear spaces ([1] §3). A subset B  C E  is said to be /C- 
bounded if whenever {xk} B  and {i/,.} is a scalar sequence converging to 0, 
the sequence {t^xy,} is/C-convergent, ([1] §3). The families of all/C-convergent 
sequences (/C-bounded subsets) in E  are denoted by K.S(E){K.B{E)).

Let (xij)ij be an infinite matrix in G. If {n*J is an increasing sequence of 
positive integers, then the matrix (xninj)ij is said to be a principle submatrix 
of (Xij)ij.

L e m m a  1 (Basic Matrix Theorem). Let G be an abelian topological group 
and X{j £  G for i , j  £ N . Suppose

(i) lim X ij= X j exists for each j  and
i

(ii) for each increasing sequence {rrij} there is a subsequence {n j } of
{ rrij} such that x in  j j  Cauchy.

Then lim.xp =  Xj uniformly with respect to j  £ N. In particular,
lim xa =  0 [6].i

For hypocontinuity of bilinear maps, we now state our first result.

THEOREM 2. Let, E, F and G be paranormed spaces and b: E x F  —> G be 
a separately continuous bilinear map, j\f be a family of bounded subsets of F, 
then b is Af-hypocontinuous if and only if for each Xi —> 0 in E and A e AT, 
if { y j }  C A, then for the infinite matrix (\\b(xi,yj)\\)ij there is a principle
submatrix (||6(a;n., yn )\\)ij such that lim \\b(xi r , yn )\\ exists for each. i E N  

1 j  3
and converges uniformly with respect to i £ N. Here || • || is the paranorm of
G.

P r o o f  o f  n e c e s s i t y . Let Xi - >  0 in E  and A e A i .  If { y j }  Q A, we 
shall prove that for the infinite matrix (||6(x'j, yj)\\)ij there exists a prin
ciple submatrix satisfying the conditions of the theorem. Since b is AÍ-
hypocontinuous, limb{x,i,yj) =  0 uniformly with respect to j  £ N. That

i
is, for each e > 0, there is z'o £ N,  whenever i 'A io, \\b(xi,yj)\\ ^ e for all 
j  £ N  holds. With no loss of generality, we may suppose for each i £ N, 
\\b{xi,yj)\\ <  l / 2 l for all j  £ N  holds. Take i =  1. Since ||6(xi,yj)\\ <   ̂ for 
all j  £ N  holds, {||6(xi,j/j)||} is a bounded real number sequence. Hence,
there is a subsequence {y.(i)} of {y j}  such that {||6(.xq,y .(i)) ||} is a conver-

h  ' h
gent sequence. Again, since {||6(x2, y  .(p ||} is also a bounded real number

h
sequence, there is a subsequence {j/.p)} of {y.(i)} such that {||fe(x2,y,.(2)||}

' A h- h
is also a convergent sequence. Continuing this construction and by the di
agonal method, we can obtain a subsequence {yUj} of {yj}  such that, for 
each i & N ,  {||6(a:t,yn.)||} is a convergent sequence. Therefore, we obtain
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a principle submatrix (||6(sn.,yn.)||)y of (||&(ar,,yj)\\)ij such that, for each 
i  E N ,  Iim||6(xni,j/„J)|| exists and ||6(a:ni,y nj)|| < 1/2"' for all j  G N  holds.

Since Y11/2J < oo, the transpose matrix (||6(a:ni,ynj)||)L of (||6(a:ni, 2/»>)!I)*j 
j

satisfies the conditions of Lemma 1. So for each i E N, lim ||b(xni, yn -) || exists
j '

and converges uniformly with respect to i  G N .  The necessity holds.
P r o o f  o f  s u f f ic ie n c y . If b is not Af-hypocontinuous, then there are 

£q > 0, x.i —> 0 in E, A E Af and { y j } Q A  such that

(1) \ \b(xh y i ) \ \ ^ e 0 , i e N .

For the infinite matrix {\\b(xi, yj)\\)ij, by the conditions of the theorem, 
there exists a principle submatrix ( | |6 (x „ . ,  yUj )||)y such that for each i G N, 
lim \\b(xni,ynj )|| exists and converges uniformly with respect to i G N. De

note a, =  lim ||6(.x‘n ,yn ) || • We shall prove that lim a, = 0. In fact, since
j  i

lim ||6(:rn ,yn ) || =  a, converges uniformly with respect to i G N ,  for any e > 0, 
j

there exists jo G N  such that for each i G N,

) ynj0) II -  a, <e/2.

Notice that b is separately continuous and xni —> 0 in E : therefore there exists 
«o G N  such that, whenever i ^ *o, || (̂a,-'»íI, ynja) II < f  • Hence, whenever i ^ *o, 
we have

h \^ mx-ni) Vrijg J -  a, ll^(^n,, V n J  || < f -

That is limaj =  0. Thus we have lim \\b(xni,y n,)|| =0. In particular,i i,j 3

lim ||6(.Tri],
l 2/ n , ) | |= 0 .

This contradicts (1) and the theorem is proved.

If G is a topological vector space, then from ([7], P55) we know that the 
vector topology of G can be generated by a family of paranorms. So we have

T heorem 3. Let E, F and G be topological vector spaces and b: E x F —>G 
be a separately continuous bilinear map, J\f a family of bounded subsets of F. 
Then b is sequentially Af -hypocontinuous if und only if for each x, —> 0 in E 
and A e M  and each continuous paranorm || • || of G, if {yA Q A, then for the 
infinite matrix (||h(:/;i, yj)\\)ij there is a principle submatrix (||6(xtli, yUj)||)
such that lim \\b(xn.,yn.)\\ exists for each i G N  and converges uniformly with 

j
respect to iE  N .

By the proof of Theorem 2, we have the following result.
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THEOREM 4. Let E, F and G be topological vector spaces and b\ E x F —>G 
be a separately continuous bilinear map, J\f be a family of bounded subsets 
of F. If for each xt —> 0 in, E, A E l f  and {y:)} Q A , there is a subsequence
{yn•} of {yA  such that lim6(.Xi,yn.) =  0 converges uniformly with respect toJ i 1
j  E N , then b must be sequentially M-hypocontinuous.

Using Theorem 4 and the Basic Matrix Theorem, we can present several 
liypocontinuity type Corollaries.

C orollary  5. Let E, F and G be topological vector spaces and b: E x F  
-A G be a separately continuous bilinear map, then b is sequentially E S(F )-  
hypocontinuous.

Corollary 5 now yields the following very interesting generalization of a 
classical result of Mazur Orlicz on joint continuity ([4]).

C orollary  6 . Let E, F be paranormed spaces and F be a E-space 
([1] §3), b: E x F  —> G be a separately continuous bilinear map. Then b is 
continuous (i.e., jointly continuous).

C orollary  7. Let E, F  and G be topological vector spaces and E  be 
an M-space ([5], §4), b: E  X F  —>G be a separately continuous bilinear map. 
Then b is sequentially E B (F)-hypocontinuous.

Corollaries 5 and 7 generalized the classical result of Bourbaki on hypo- 
continuity ([3] §40.2).

3. Uniform boundedness

We next consider the uniform boundedness for a family of bilinear maps 
which is pointwise bounded on E x F .  By the proof methods of Theorems 2 
and 3, we have the following uniform boundedness principle.

THEOREM 8 . Let, E , F  and, G be topological vector spaces, r  be a family 
of bilinear rnaps of E  x F  -A G which is pointwise bounded on E x F . Then 
t is uniformly bounded on A x B Q E x F if and only if for each sequence 
{bi} Q t and each sequence {(x j ,y j) }  Q A x B  and each, continuous paranorm 
|| - |j ofG, then for the infinite matrix (\\bi(xj, y j)/i\\) ij there is aprinciple sub
matrix ( ||t>n;[xn.,ynj)/ni\\)ij such that, for each i e N , lhn\\bni(xnj, y nj) / r i i \ \

exists and converges uniformly with respect, to i E N .

By Theorem 8, we have

T h eo r em  9. Let, E,  F and G be topological vector spaces, r  be a family 
of bilinear maps of E  x F  —> G which is pointwise bounded on E x F, A Q E, 
y E F. Then t is uniformly bounded on A x {y} if and only if for each 
sequence {6j} Q t and each sequence {(Xj , y )} Q A x {y}  and each, continuous
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paranorm || • || of G, for the infinite matrix (||bfixj, y)/i\\)ij there is a principle
submatrix (||&n, (®n1>2/)Ah||)ú' such that for each i E N ,  lim||bn.(zn , v ) /n»ll

' j
exists and converges uniformly with respect to i € N.

Using Theorem 9 and the Basic Matrix Theorem, we have

THEOREM 10. Let E, F and G be topological vector spaces, r be a fam
ily of separately continuous bilinear maps of E  x F —> G which is point- 
wise bounded on E  x F. Then r is uniformly bounded on each product 
A x {y} C E x F  when

(i) A is a IC-convergent sequence in E,
(ii) A is a IC-bounded subset of E.

By Theorem 10, we can formulate several Corollaries contained in ([1],
[2], [5])-

COROLLARY 11. Let r be as in Theorem 10. Then r is uniformly bound
ed on each product A x B Q E  x F when

(i) A x B e ICS(E)x ICS(F).
(ii) A x  B  € ICD(E) x ICS(F).

(iii) A x B e K B { E ) x K B { F ) .

COROLLARY 12. Let t be as in Theorem 10. If E and F are A-spaces 
([6]), then r is uniformly bounded on products of bounded subsets of E  and F.

4. Equihypocontinuity

Let E, F  and G be topological vector spaces, r be a family of separately 
continuous bilinear maps of E x F -> G, fii be a family of bounded subsets 
of F. We consider the following types of continuity ([5] §4):

(51) r is sequentially left equicontinuous, i.e., if Xi —> 0 in E, then 
lim b(xl, y) =  0 uniformly for Ij E t for each y  G F.

(52) r is sequentially W-equihypocontinuous, i.e., if for each A d  fii when 
Xi —> 0 in E, then lim b{xi, y) =  0 uniformly for b & r, y G A.

In [5], Antosik and Swartz showed that if UAi  =  F, then (S2) implies 
(SI). However, (SI) does not imply (S2) when Af =  B(F).

In this section we also have

THEOREM 13. Let, E, F and G be topological vector spaces, r be a family 
of sequentially left equicontinuous bilinear maps of E x F —»G, A/" be a family 
of bounded subsets of F. Then r is sequentially A/"-equihypocontinuous if and 
only if for each sequence Xi —> 0 in E and each sequence {6,;} Q t and each 
continuous paranorm || • || of G, if A E fii and {yj }  Q A, then for the infinite 
matrix (||öj(a;*,yj)\\)ij there is a principle submatrix (|j&n{(*«i»l/n̂ -) ||)»j such
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that lim \\bn (xn.,yn )\\ exists for each i & N  and converges uniformly with
j  ' ' 1

respect to i& N.

From Theorem 13 and the Basic Matrix Theorem, we also have

COROLLARY 14. Let t  be as in Theorem, 13. Then t  is sequentially 
ICS (F)-equihypocontinuous.

C o r o l l a r y  15. Let E be an M-space and r  be as in Theorem, 13. Then 
t is /CB(F)-equihypocontinuous.

Corollaries 14 and 15 generalize the Corollaries 5 and 7.

The authors would like to thank the referee for his useful remarks and 
suggestions.
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ON THE PRIMITIVE ROOTS AND THE 
QUADRATIC RESIDUES MODULO p

W. ZHANG

Abstract

The main purpose of this paper is to prove the following conclusion: Let p ^  3 be a 
prime. Then for any quadratic residue n mod p, there exists a pair of primitive roots gi 
and ij2 mod p such that a =  <?i.9 2 (niodp). Let N(a,p)  denote the number of the solutions 
of this congruence. Then we have

N(a,p) 0  (P — 1) \  ^  i r ( d ) d  T - r  /  1 \

V-  1 ^  0'2(d) H  V (q-  l)2/ ’

(d,®)=l

where u =  (ind a , p — 1 ), ind a denotes the index of n relative to some fixed primitive root 
mod p.

1. Introduction

Let n be a positive integer, p ^ 3 be a prime, m = p n. It is well known 
that there exists at least one primitive root mod m, and the number of all 
primitive roots mod m  is equal to 4> The main purpose of this paper
is to study the following two questions:

(a) For each integer a with (a, m) =  1, is there a pair of primitive roots 
gi and <]2 mod m, such that the congruence

a2 =  i/ii/2(niod m)?

(b) If (a) is true, let N (a2, m.) denote the number of the solutions of the 
congruence in (a). What can be said about the asymptotic properties of 
V (a2,m)?

About these two problems, it seems that no one has studied them yet, 
at least I have not seen it before. The problems are interesting because they 
can help us to find some new relationship between the primitive roots and 
the quadratic residues mod p. In this paper, we use estimates for Gauss sums 
and the method of trigonometric sums to study the above two problems, and 
prove the following main conclusions:
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T heorem . Let n be a positive integer, p be an odd prime, m =  pn. Then 
for any integer c with, (c, m) =  1 we have

iV(c2,m)
<p2{<p{m)) y -  p 2{d,)d -j-j- /

fifin) ^  (p2(d.) -*--*■ \
' d\u Y  V ’ ( / |£ O n )  X

(d,qj= 1

1
( l  -  l )2

where the product is over all distinct prime divisor q of
(p(rn)

d
with (q, d) =  l,

(jfini) is the Eider function, and u =  (ind c2,<f>(m.)), ind c2 denotes the index 
of c2 relative to some fixed, primitive root of mod m.

From this theorem, we may immediately deduce the following three corol
laries:

COROLLARY 1. Let n be a, positive integer, p be an odd prime, m =  pn. 
Then for the finite field Fm with, any element 0 fi a, G Frn, there exists a pair 
of generators g\ and ĝ  E Fm such, that

a2 = .9i52-

C orollary 2. Let p be an odd. prime. Then for any quadratic residue 
a, mod p, there exist two primitive roots gi and <72 mod p such, that

a =  gig2 (mod p).

C orollary 3. Let, p be an odd prime. Then for any quadratic non
residue a, mod p, there exist three primitive roots g \ , gi and g,\ mod p such 
that

a =  51525.3 (modp).

2. Proof of the theorem

To complete the proof of the theorem, we need the following two elemen
tary lemmas.

Lemma 1. Suppose for the mod,idus rn f: 3 there exists a, primitive root,. 
Then for each integer n with (m, n) =  l, we have the identity

E
k\(p(rn)

iMk) E (  aind n
m  £  v

(a,/ű)=1
k

0(0(',n)) if n a primitive root of rn\ 
0 otherwise,

where lifim) is the Möbius function, e(y) =  e2niy and ind n denotes the index 
of n relative to some fixed primitive root of m.

P roof (see Proposition 2.2 of reference [2]).
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Lemma 2. Let n be a positive integer, p be an odd prime and m =  pn. 
Then for any integer u with (u, m) =  1 we have

£  x(u)= £
Xmod m d|(ind u,k)

order of x = k

where k is a divisor of fifrn), ind u denotes the index of u relative to some 
fixed primitive root of m.

PROOF. For each Diriddel, character x  mod m  with order =  k, we know 
that there exists one and only one integer 1 ^ r  ^ k with (r, k) — 1 such that

( 1 ) X{u) = e
rind u

We also have the trigonometric identity

( 2)
if m\u; 
if m \u.

From (1) and (2) we get

E II M
'

xmod m r = 1
order of x = k (r,k)= 1

rind u
k

k /d

£ / z ( d ) £ e
d\k r = l

rind u \
k /d  )

E . k . v—> (  rind u
M ^ ) £ c

d\k r= 1
d

= E
f/|(ind u,k)

d.

djind u

This proves Lemma 2.

P roof of the T heorem. First we claim the following two facts:
(c) Let m =  pn. Then for each integer x with (x, rri) =  1, there exists 

exactly one x with 1 ^ x rn — 1 such that xx =  l(mod m).
(d) If x is a primitive root mod rn and xx =  l(m odm ), then x is also a 

primitive root mod m.
From the trigonometric identity (2) we have

m ni m
N {c2,m)  =  — £  £  £ e

a = l  6=1 u = 1

u(c2 — ab)
m(3)
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where denotes the summation over all primitive roots mod rn.
Note that there are 4> {(p(rn)) primitive roots mod rn in the interval [1, m].

711
Separating the summation ^  in (3) into two parts and applying (c), (d) we

u= 1
get

m m in

N(c2,rn) = ~^2Yl Ern z—' z—' z—'

(4)

u—1 a=l 6=1

* (  u(c2 — ab)
e ( -------------

rn

(j)1 (0(?n)) ^  y ^  y ^ *  y^*   ̂ /  u(c~  -  rt6)

m m U=1 a=l 6=1 ' m

(j)2 (</j(m)) 1 77i — 1 m rn

rn + — V  V  Vj y I ' ^

02 (</>(” '-)) , i

7i=l a=l 6=1 
rn—1 /

uc2a — 17.6
m

X X [
(j)2 ((p(rn)) 1

rn

iL—l \
777— 1 /

7 7 = 1  \

—ub' 
m  ,

—ub' 
m  .

The map which takes a with (a, m) =  1 to e ( ' ") is a Dirichlet, character
when A:|0(m). We shall denote this by x(a;r, A:). Applying Lemma 1 we can 
get

4>2 , 1
m—1 /  m

+ £ E  E
7 7 = 1  \  7 7 = 1

uc2a.
m E‘e

6=1

-ub'
m

(

= 1 Em z—'77=1 V

(<?!>(m)) \  - plfc) V ’ V "

^ > k\0(m) > r=l a=l
(r ,k)=l  (a,77?,) =  l

rind a \  /  uc2a,
k rn

(f)(c/)(m)) /s in d  6 \  f —ub

~ ^ T  s í  E Í(s,6)=l (6,77l) = l
m

)
_4>2 (<P(m))

m</>2 (m) E E
A;10 (777) 6-10(777)

6 777 / rnH(k)n{h)
4>(k)4>(h) ^'VX J'f'K 1 r=1 S=1 U=1 Vi=l

(r,/c)=l (s,h)=1
E E E E * r̂ )e

2 \ uc a
rn
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( m
X(6; s, h)t

6=1

—ubs
Ttl

( 5)

<P2 (</•>(m))
m,(j)2 (m)

x E '
\ u = l

(f)2(m)

E E
/c|0(ra) /?-|0(m)

u[c2a — 6)

/?. m
^2^2x{a-,r,k:)x{b\s,h)x

(b(k)ó(h) 1' '
VV y v v  '  7 - 1  s= l a=  1 6=1

(r,/c )= l ( s ,//,) =  1

rn

E E //.(A;)//(/i) /t m  ni

Y1 Y1 £  J 2 x{a-,r,k)x{b-,s,h)
d>(kU (h) ^  ^  ^

fc |^ (m )/ t|< /> (m ) r  r = l  * = 1  a = l  6 = 1
(/•jA;)—1 ( s , / i )—1 ac2=b{rn)

(f)2 (</>(m)) ^  ^  / i \ / 2 n
^ 2 (̂ ) - X . X . X , L  ;*»/*)

A;|0(m) /?.|0(77?.) ^  , = !  a = l
(r,/c)= 1 («s , / i ) = 1

//. m
(j)2 ((/>(m)) ^  n(k)n(h) ^  c / \ t 1 \ , 2 1 ^' '#(,„) E E^tj^yE  E x̂(«;r,*)x(o;*.'*)x(c ;.,*)■ 

‘ I « * 1 (A li .  (,5)Li

Note the character sum identity

m

(6) X ]  *(a; r> *)x(a; /l) =
a = l

(f)(m) if A: =  h and r +  s =  A;; 
0 otherwise.

Let w =  (ind c , </>(m)). Then from (4), (5), (6) and Lemma 2 we have

k
N (c2,m) —

(7)

4> ( 0 M ) v l‘2{k)
c/)(m) k\<t>{m) 4>2{k)

<f>2 ( 0 M ) v /I2 (k)
0(m) 2^

*#(m) 4>2{k)

<t>2 (</>(m)) V , /
(f>(rn) d|u )

2^  '
c | ^

(r , /c )= l

E
rf|(u,fc)

H2{dk)n(k) 
4>2{dk) '

If (d, A:) > 1, then =  0. If (d, *) =  1, then =  Thus
(f)2{kd) 4>2{d)(t>2 {k ) '
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from (7) we have

_ (jb2 {(j){rn)) y  /i2(d)d y  p.(k) 
óim) ^  ct>2(d) <f>2(k)

(fc,rf)=l

M m )) x ■ !?{d)d t j  /  1 \
~ Urn) ^  U(d) ^ [ - ( , - 1 ? ) '

(<i4)=i

where the product is over all distinct prime divisors q of with (q, d) =  1. 
This proves the Theorem.

P r o o f  o f  C o r o l l a r y  1 . Let n be a positive integer, p be an odd prime 
and m = p n. Note that 2|<f)(m) and

( 8 ) E
k\^f]- 
{k,d)=1

y{k)
cf)2(k) =  <

n
(i/,d )= l

0

1
icl - 1)2

> 0 if 2 \d;

if 2 \d.

From 2\v =  (inda2, </>(m)) =  (2inda,c/>(m)), (7) and (8) we obtain

N { a 2 ,m)  = 4>2 (<£(?»))
( p { m )

(q,d) = l

02 (<ß(m.)) y  p 2(2d)2d py
02(2d) J--*-

(q,2d)=l

2<l>2 i(K m )) ST' p 2{d)d -J-T /  1 A
^  ü l  '  te“ 1)2/

12 'll 2d"
(2 ,d )= l (9,2d )= l

> 0 .

This completes the proof of Corollary 1. Similarly, we can also deduce Corol
lary 2 and Corollary 3.

A c k n o w l e d g e m e n t s . The author expresses his gratitude to Professor 
Carl Pomerance for his helpful and detailed comments.
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FUNDAMENTAL REDUCTIBILITY 
OF NORMAL OPERATORS ON KREIN SPACE

Ts. BAYASGALAN

A bstract

In the present paper we study fundamental reducibility of normal operators on Krein 
space. Fundamental reducibility of selfadjoint operators on Krein space, also fundamental 
reducibility of normal operators on Pontrjagin space has been studied in [1], [2], For basic 
definitions and facts on Krein spaces and operators in these spaces we refer to [3].

Lemma 1. Let {Tj}"=1 be a finite family of commuting fundamentally 
reducible bounded selfadjoint operators in Krein space H . Then there exists 
some fundamental decomposition of H , which reduces every operator from 
the family.

P roof. Assume that, a £ C , a ^ a  and

\\Ti\\j < |a| (i =  1 ,2 ,. . .  ,n).

Then the operators (T) — a l ) ~ l (i =  1, 2 , . . . ,  n) are bounded. Setting

Ui =  I  +  (a — a)(Ti -  a / ) -1 (i =  1,2, — , n),

we find that the family {t/;}”=1 satisfies the conditions of Theorem 2.17 
from [1]. Consequently, there exists some fundamental decomposition of H 
which reduces every operator from the family {{7;}”=1, i.e.,

H  =  H +[+]H ~ , U i ^ c H *  (i =  1 ,2 , . . . ,  n).

Thus from
T i =  a I  +  { a - ä ) { U i - I ) - 1

it follows that TiH± C H ± (* =  1 ,2 , . . . ,  n).

N o t e . For an infinite family of operators a similar statement is not true 
in general.

The proof of the following Lemma is clear.
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Lem ma  2. LetT  be a bounded normal operator in Krein space. Then T  
is fundamentally reducible if and only if the operators

rp _i_ rr+  'j' _  'j'-v
R e T ---------- , Im T := — ——

2 ’ 21

are fundamentally reducible, where T+ is the adjoint operator of T .
[1] and Lemma 2 imply the following
T heorem  1. Let T  be a bounded normal operator in Krein space. The 

operator T  is fundamentally reducible if and only if the conditions

(1) er(ReT)CR, cr(Im T)cR,

I K R e T - n ^ l I j i ^ L ,

(2) | | ( I m r - i 7 ) ' * | L s Ä ,

(k =  1 ,2 , . . . ,  77^0, 7 G I )

are fulfilled, where || • ||j is the J-norm and C j , C2 are constants.
It is well known that a selfadjoint operator in Krein space is funda

mentally reducible if and only if it is J-selfadjoint for some fundamental 
symmetry J. Also, it is fundamentally reducible if and only if it is similar 
to a J-selfadjoint operator. Analogous facts are true for unitary operators 
in Krein space.

But for normal operators we only have
Lemma 3. Let T be a bounded normal operator in Krein space. If T  is 

fundamentally reducible, then T  is J-normal.
E xample. We set H  =  C2,

[(mi,m2), (z/i,2/2 )] = x i V i  - T 2J 2 , 
( ( x i , x2) , {yi , y2)) =  x i y l + x 2y2,

((x i , x2) £ C 2, (iju y2) e C 2),

Then we have T =  T + , T T + =  T +T. but T is not fundamentally reducible.
COROLLARY. If T  fi 0 is a bounded normal operator in Krein space such 

that r (T)  =  0, where r(T)  is the spectral radius of T, then T is not fun
damentally reducible. In particular, if dim II =  2 and T  0 is a bounded 
non-negative operator in H , then T is fundamentally reducible if and only if 
T 2 fi 0.'

It is well known that if T  is a bounded selfadjoint operator in H, A is an 
eigenvalue of T  and ker(T — XI) is ortho-complemented, then A is real and 
semi-simple.
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Analogous fact, is true for isometric operators. In case dim H  <  oo these 
conditions are known to be sufficient, too, in order that ker(T — XI) would 
be ortho-complemented.

Lemma 4. Let T  be a bounded normal operator in Krein space and let 
ker(T — XI) be ortho-complemented. Then X is a semi-simple eigenvalue ofT.

Proof. Let

H =  ker(T -  A/)[+](ker(T -  XI))1 .

Suppose that (T — XI)rx =  0. Then we have

(T -  XI)r~1x -2 G ker(T — A/),

where
x =  x i + X 2 , x\ G ker(T — A/), x2 G (ker(T — XI))1 .

On the other hand, because T is normal, we find

(T -  A/)(ker(T -  XI) ) 1  C (ker(T -  XI))1 .

Thus we have
(T -  XI)T~lx2 G (ker(T -  XI))1 .

Consequently, (T — AI)r~lx =  0.

Lemma 5. Suppose dimII < oo, T  is a bounded normal operator and. X 
is an eigenvalue of T . Then ker(T — XI) is ortho-complemented if and only 
if the conditions

(1) A is a semi-simple eigenvalue of T ,
(2) ker(T -  XI) =  ker(T+ -  XI) 

are fulfilled.

PROOF. If ker(T — XI) is ortho-complemented, then A is semi-simple by 
Lemma 4. Because kcr(T - XI) is ortho-complemented, hence R (T + — XI) is 
non-degenerate. Let x G ker(T — XI). Then we have for every y  G H

[(T+ - XI ) x ,  (T + -  XI)y\ =  [ (T+ -  XI)(T -  XI)x, y]
=  [ ( T - XI ) x ,  (T — XI)y] =  0.

Thus we obtain ker(T — XI) C ker(T+ — XI).
Consequently, from

dim ker(T+ — XI) =  dim ker(T — XI)

it follows that ker(T+ — XI) =  ker(T — XI). '
Let, conversely, conditions (l)-(2) of Lemma 5 be fulfilled. If

[(T+ — AI)x,  (T + — AI)y] =  0 for every y € H ,
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then (T — XI)2x =  0, hence (T — AI)x — 0. Thus R (T + — XI) is non-degenerate.

E x a m p l e . Let dim 77 =  2. Assume that (/,;)|=1 is a basis in H  such that 
=  0 [i =  1,2). Define

T h  =  ih ,  T72 = (—i)/2.

Then T  — T + and A = ±'i, are semi-simple eigenvalues of T.  But, we have 
ker(T — i l )  ker(T + il),  and ker(T — XI) is not ortho-complemented.

N o t e . If T is a fundamentally reducible operator in Krein space, then 
ker(T — XI) is ortho-complemented for every A E C. If H is a Pontrjagin 
space, then the bounded normal operator T  is fundamentally reducible if 
and only if ker(T — XI) is ortho-complemented for every A 6 C (see [1]).

T h e o r e m  2. Let H be a Pontrjagin space and let T  be a compact, normal 
operator. Then T is fundamentally reducible if and only if the conditions

(1) kerT is ortho-complemented,
(2) every eigenvalue of T  is semi-simple,
(3) ker(T -A J) =  ker(T+ - X I )  (AeC, A /0 )  

are fulfilled.

P r o o f . If T is fundamentally reducible, then by Lemma 3 T  is a .7- 
normal operator. Consequently, we have

ker(T -  XI) =  ker(T* -  XI) =  kcr(T+ -  XI).

Let, conversely, the conditions of the theorem be fulfilled. The subspace 
ker (T — XI) is ortho-complemented because 7?.(T+ — XI) is closed and R {T + — 
XI) is nondegenerate.
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ON A PROBLEM OF DICKMEIS AND NESSEL 
CONCERNING THE APPROXIMATION 

BY BERNSTEIN POLYNOMIALS

L. IMHOF

A b stra c t

For /  € C[0,1] let Bn(f;x) denote the nth  Bernstein polynomial and the
second modulus of smoothness. Continuing the investigations by W. Dickmeis and R. J. 
Nessel it is shown that for each abstract modulus of continuity ui there exists a counter
example fu G C[0 , 1] such that on the one hand — <D(u>(t)) and on the other hand
limsupj^oo IBn(fu,-,x) -  f^(x)\/ui(x(l -  x)/n)  ^  c > 0  simultaneously for all x € (0 , 1). 
Furthermore, a pointwise lethargy assertion is established.

For /  G C , the space of continuous functions on [0,1], the Bernstein poly
nomials are defined by

j/=0  x  7

Let w *(/;i) denote the second modulus of smoothness, thus
o>*(/;t):= sup sup \ f ( x - h ) - 2 f (x)  + f {x  +  h)\, 0,

0 %h-St h'Sx'SX-h

and let u  be an abstract modulus of continuity, thus a continuous, non
decreasing, subadditive function on [0, oo) with w(0) =  0 and (additionally)
lim u)(t.)/t =  oo. Then

t-^o+ '

<*>*(/; t) =  0 (u(t2)) = »  IBn(f- x) -  f ( x )I ^ Mf u(x(  1 -  x) / n)
(cf. [1], [2, p. 308]). Against this background W. Dickmeis and R. J. Nessel 
posed the following problem (cf. [6]): Given w, does there exist a counter
example / u e C  such that u*{ f^t )  =  ö(uj(t2)), but

(1) lim sup
71—>00

Bn{fwm,x) ~ fuj*)  1 
w(.t(1 — x) /n)

2 c > 0

simultaneously for all x G (0,1)? In [5] a counter-example is constructed such 
that (1) is valid for all points x of a dense set of second category in (0,1), 
while it is shown in [3] and [4] that there exists fu satisfying (1) almost 
everywhere, provided u>(t) =  ta , 0 < a  <  1.

1991 Mathematics Subject Classification. Primary 41A25, 41A36.
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THEOREM. For each abstract modulus u> there exists a function f u E C  
such that t) — ö(uj(t)) and (1) holds simultaneously for all x E (0,1).

The proof of this theorem is based on a convergence property of certain 
interpolation polynomials due to P. Erdős ([7, Theorem 3], see also [10, p. 
53]) and on a quantitative extension of the classical resonance principle (cf.
[3], [8]). To formulate the extended principle let ||/ | | denote the maximum 
(over [0,1]) norm of /  G C, and let C* designate the set of all non-negative
valued, sublinear, bounded functionals F on (7, thus

0 Í F ( f  +  g ) í F f  +  Fg,  F(af )  =  \a\Ff ( / , S g C, o GR),

\\F\\c- : = s u p { F / : | | / | |g l } < o o .

In these terms one has the

R e s o n a n c e  P r in c ip l e . For arbitrary index sets T and R,, (n E N) con
sider Ut, Vn,x € C* (t G T, x G Rn, n E N), a positive function a on T, and a 
null sequence t\ > T2 > • • • > 0. Suppose there exist test elements gn G C such 
that (n G N)

( 2)

(3)
(4)
(5)
( 6)

Hím  II ^ c i ,

Ut.gn = c2 m in{l,or(i)/rn} 
II Pn,x ||c* =  C.3 

Vn,x3k = c4,kTn 
Vn,xfjn = Q> >  0

for t G T, 
for x G R„, 
for x G Rn, k < n ,  
for x G R„

Then for each abstract modulus to there exist naturals n\ < rt2 < • ■ • and a 
counter-example f u & C  such that Utfui ^ 6c2U>(er(f)) for t G T and

.. Vn.xfoj ^lim sup —-— — d. C5 
n—>oo OJ{Tn )

for x G lim sup R,u .
k—>oo

PROOF OF THE t h e o r e m . Consider the following quantities:

Ut f :=w*( f ; t ) ,  a { t ) : = t ,  t G (0 ,1 /2 ] =: T, r „ : = l / n ,

Vn,xf-= max \ Bj ( f - , x) -  f (x) \ ,
]=n,2n

x  G R,, : —
1
2

1 1 1
22v/2 ’ 2 + 2 “\/2  _ '

In view of the Erdős result mentioned there exist polynomials g \ , g 2 , . . .  
having three properties: for every n G N, (i) the degree of gn does not exceed 
10?r; (ii) gn(k /2n) — 0 or 1 according as k is even or odd (k =  0 ,1 , . . . ,  2n);
(iii) sup{|<7„(:r)| : — 1 Si x  ^  2} ^  ci for some constant C\. Obviously, the gn
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satisfy (2). Using elementary properties of the modulus (cf. [2, p. 44ff]) as 
well as Bernstein’s inequality (cf. [9, p. 118f]) one obtains that

f 4||fl»|| ^ 4 d

U tg n = < S { g n \ t ) ±
21 sup \g'll{ x ) \^ 20 tn  sup |<7„(.t )| ^ 20c1cr(i)/rn, 

*£[0,1] *£[—1,2]

establishing (3) with C2 :=20ci. Since the Bernstein operators are positive 
and linear, one infers from Bn 1 =  1 that (4) holds for c* := 2. By Popoviciu’s 
inequality (cf. [2, pp. 308, 330]), \\ĝ  — Bn(jk\\ ^ H^H/n; thus (5) holds with 
c4,fc := llöfcll- Finally, on account of the identities

1 = (  £  +  £  ) ( 2" ) z " ( l - x ) 2" -" = ;E ,(x ) +  S 2(s),
y v = 0 , 2 , . . . , 2 n  i / = l , 3 , . . . , 2 n - l /  '  V  '

( l - 2 i ) 2n =  E1(x-)-S2(x),  

it follows that for x G Rn

1 -  H — 2r )2n 1
B2n(gn;x) =  S 2(x) =  — ^

and since Bngn =  0 one has \Bj(gn;x) — gn(x)| ^ 1/8 =: C5 for j  =  n or 2n 
according as |<7n(a;)l = 1/8 or ^ 1/8, respectively. This entails (6). Now 
an application of the resonance principle completes the proof. Note that 
lim sup^oo R,u =  (0,1) whatever the sequence n 1 < r»2 <  • • •. □

In a similar way, employing [8, Corollary 2.2] instead of the resonance 
principle, one may obtain the following lethargy assertion.

COROLLARY. For each null sequence e =  (e,,,)]^ C (0,oo) there exists a 
counter-example f e €.C such that

lim supe~x\Bn(fe \ x ) -  f e(x)I ^  1 for all x G (0,1).
Tl—>OQ

A c k n o w l e d g e m e n t . I would like to thank Professor R. J .  Nessel a n d  
the referee for several helpful comments.
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REMARKS ON THE MINIMAL RINGS OF CONVEX BODIES

MARIA MOSZYNSKA

A bstrac t

Relationships between the minimal ring of direct sum and the minimal rings of sum
mands are discussed. The minimal ring and its centre are proved to be continuous with 
respect to the Hausdorff metric.

The notion of minimal ring containing the boundary of a convex body A 
in R" appeared in the literature already in 1924 for n =  2 (see [2]). Its short 
history can be found in [1].

Bárány in [1] proved the existence and uniqueness of the minimal ring 
and its centre for arbitrary n.

Recently, it was proved that the centre of the minimal ring is selfdual 
with respect to polarity (see [6, Theorem 3.6]).

The purpose of the present paper is to study some properties of minimal 
rings. Section 1 concerns relationships between the minimal ring of the 
Euclidean direct sum A\ © A-i in R" for A, C Ei and the minimal rings of 
A\ and A2 in the linear subspaces E\ and E-i, respectively. In Section 2 we 
prove that the minimal ring of a parallel body of A has the same centre and 
thickness as the minimal ring of A itself. In Section 3 we prove the continuity 
of minimal ring and its centre with respect to the Hausdorff metric.

The author is grateful to the referee of the first version of the paper for 
his/her valuable remarks and to Krzysztof Rudnik for his helpful assistance.

0. Preliminaries

We use the following terminology and notation.
Let q be the Euclidean metric in R".
Let Cn, K n, and /C’0‘ be, respectively, the class of all non-empty compact 

subsets of Rn, the class of all non-empty compact convex subsets of R", and 
the class of convex bodies:

1991 Mathematics Subject Classification. Primary 52A20; Secondary 52A99.
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/Cq =  {A e /C"; int A ^ 0 } . 1

For any x E R" and a  >  0. let B(x,  a) and Bo(x, a)  be, respectively, the 
closed ball and the open ball with centre x and radius a  . For convenience, 
singletons can be treated as degenerate balls (with radius 0).

For any A E Kq and x G A , let

R a {%) ■= inf {a; B(x,  a)  D A)  and va[x ) := sup{a; B(x,  a) C A).

By Theorem 1 of Bárány [1], there exists a unique point of A at which 
R a — r'A attains its minimal value. As in [6], wc denote this point by c(A).  
It is the centre of minimal (spherical) ring containing bdA,

ring A := B(c(A).  R{A)) \  Bo(c(A), r(A)) ,

where
R{A) := R a {c(A)) and r{A)  := r A(c{A)). 2

We shall need the following theorem of Bárány.
T heorem 0.1 ([1,Theorem 2]). Let A E /Cq and x oER".  Then, xq =  

c(A ) if and only if there exist

Pi, - • • ,pk € bd A flb d B ( xq, t {A, xq))

and
qi, ■ ■ ■, qi E bd A n  bd B{ x0, R(A, x0))

such that

conv ( p « - £ o_ 
\r(A,.T0) s =  1,. n conv (It -  Xq

R( A, X0) ^0-

Let us note the following two simple facts.

PROPOSITION 0.2  (B. Zdrodowski). For any triangle A in R“, c(A) is 
the intersection of bisectrix of the longest side and bisectrix of the smallest 
angle of A.

P roposition 0.3. If a convex body A in R" is symmetric with respect 
to an affine subspace E  of dimension k E {0, . . .  , n — 1}, then c(A) E E.

The first statement follows from Theorem 0.1. The second one is a 
direct consequence of the uniqueness of the centre of the minimal ring and 
its equivariance under isometries:

1R. Schneider in [8 ] refers to any compact convex set in R ' 1 as a convex body.
2 Bárány in [1] evidently assumes all the compact convex sets under consideration to 

have non-empty interiors, though he does not write it explicitly.
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if /  : Rri —> R“ is an isometry, then

f{c(A)) =  c(f(A))  for every Ae/Ctf.

It is clear that for n ^ 2 w e  can replace R“ by its arbitrary affine subspace 
E  of dimension k < n . Let IC(E) and K.q(E) be the counterparts of !Cn and 
/Cq. Then, for the elements of ICo(E) we have the corresponding notions of 
minimal ring and its centre, ringe and ce-

We shall often use the notation r (A, x)  instead of r..i(.c), and R(A. x)  
instead of R^(x).  Consequently, for a convex body A in a subspace E.  we 
write re(A , x) and R e {A, x) for the radii of the suitable balls in E.  We write 

a) for the ball with centre x and radius a, and bd e for the boundary
in E.

For any e >  0 and A C Rn, let Ae be the (outer) parallel body of A at 
distance £ (compare, e.g.,[8]):

Ae : = { x & K n; g( x , A) ^£} .

In particular, for a G Rn,

M e  =  B(a.,e).

It is well known and easy to check that for A closed

Ae =  A + { 0 } e -

Following [8], we use the symbol T_e to denote the inner parallel set of 
A at distance e:

A - e : = { x e A ;  {i }£ c 4

The symbols B n and S n~ 1 are used for the unit ball and the unit sphere 
in Rn :

£"  =  {()}i and 5 n_1 =  bdJ5”.

Let us recall that the Hausdorff metric qh in the class C" (and, generally, 
in the class of compact subsets of any metric space) is defined by the formula

qh (A, B)  := max {sup p(x, B),  supp(yM )},
a.e.4 y€B

or, equivalently,

(0.1) qh(A, B)  =  inf {e > 0; A c B E & B c A E}.

We use the symbol © for the direct sum of orthogonal linear subspaces of 
R", and, generally, for subsets of such subspaces. More precisely, for A \ , A2 C 
Rn, let A — A \ ®  A2 if and only if A =  A\  +  A2 and there exist orthogonal
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linear subspaces E \ . E2 of Rri such that A, c  Ei for i = 1.2 (compare [4] and
[5]). We shall refer to ® as the Euclidean direct sum,A

For any A E /C” and x E R" there exists a unique point £a {x) S A with

q{x :£,a {x )) =  q{x ,A).

The function £4 : R" —> A is referred to as metric projection.
Following [8], we use the notation

posw := {A?;; A ^ 0}

for every non-zero vector v E R”.
We denote by H(A,  v) the supporting hyperplane of A with outer normal 

vector v.
By Nor(H,p) we denote the normal cone of A at p E bdH (i.e., the set of 

outer normal vectors to A at p).
The symbol A( a i , . . . ,  arn) denotes the simplex with vertices a. 1, . . . ,  am: 

in particular, A(ai , a2) is the segment with endpoints 01,02- 
The usual scalar product of x ,y  E R” is denoted by xoy .
We shall need the following simple fact.

P r o p o s it io n  0.4. Let. ( fk : R" —> R)*,.6yv be a sequence of continuous 
functions uniformly convergent to /o- If for every k E N  U {0} there exists a 
unique point xk E Rn such that

(0-2) V* f k(xk) A M x ) :

and the sequence (xk)k î  ̂ is bounded, then it is convergent and lima:*; = .To- 

P r o o f . If (xk)kekj is convergent, then evidently,

Ibn /*; (xk) =  /o (lim xk);

thus, passing to the limit in (0.2), we obtain

/o(lim xk) A /o (x) for every x, 
k

whence liinx*, =  xo by the uniqueness of x,q. By the same argument we infer 
k

that any convergent subsequence of (xk) has xq as the limit. Hence the 
sequence (xk) is convergent, because it is bounded. □

3 Using the notation of [5], we have ® := ©y, where f( t  1 , t->) =  y t j + t f
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1. Minimal ring for Euclidean direct sum of convex bodies

We are interested in relationships between ring^. A{ for i =  1,2 and 
ring(j4i © A 2).

Let us start with the following

P roposition 1.1. Let  A e / C ’f ,  A - A i ® A2 , ruhere A i C  E t f o r i  =  1,2, 
and let a =  a 1 + a2, a.i € A t . If, for  * =  1,2.

o t i = r E i { A i , a i ) ,  ß i  =  R Ei( A i , a i ) ,

Pi = {p  G bd Ei (A ); L>(p, «*) = oti},

Q i  =  { q e b d Ei{Ai);g{q,ai) =  ß i } ,

P  =  {p€ bd A; g(p, a) =  r { A , a)} and. Q  =  {*/ G bd g(q, a)  =  R (  A ,  a)}, 

then

(i) r(A,a)  =  m in {a i,a 2},
(ii) R ( A , a )  =  y / f f + ß I

(iiil P = [ P x + a 2 i f  a i < a 2
\  (Pi  +  a 2) U ( a ! +  P 2) i f  a \  = « 2  ’

and
(iv) Q = Qi +  (52-

P roof. (i) By the assumptions,

(1.1) B ( d i ,  a ß  C d, for * = 1,2 

and
P i ^ % ^ P 2.

We may assume that «j ^ « 2 - It suffices to prove

(1.2) B ( a , a x) c A

and

(1.3) g(p,a) =  a i  for some point p £  bd A

Let. g(x ,  a.) £ a.\ for some x  G R" and let x  =  x \  + x 2, where x.t G E ,  for 
* =  1,2. Then

0(®t,at) ^ \/<?(-Ti, a,i )2 +  p(x2, a2)2 = e(x, a) ,

whence, by (1 .1 ), Xj G A: for i  =  1 , 2 . This proves (1.2).
Let p =  pi +  Ö2 , where pi € F j.
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Since

(1.4) bdA =  ((b d ß lA i)© A 2)U (A i © b d &2A2),

it follows that

pGbdA and g(p, a) =  « i =  m in{ai, oc2}.

This proves (1.3).
(ii) By the assumptions,

(1.5) B{ai,  ßt) D Ai for « =  1,2

and
Q x ^ i Q - i -

It suffices to prove that,

(1.6) B  \ M +  0 i j  D A

and

(1.7) q G bd A and g(q, a) = J ß ‘{ +  ß% for some q

Let x  E A: then x =  x\ +  .x'2, where x, G Aj. Thus, by (1.5),

ß(x, a,) =  \Z ß (x i ,a^ 2 + ß(x2 ,a2)2 ^ \Jßi +  ß2,

which proves (1.6).
Let qt E Qt and let q =  q\ +  q2. Then q satisfies (1.7).
We have already proved the inclusion D  in (iii) and (iv). The easy proof 

of C  is left to the reader. □

Let us prove the following

T h e o r e m  1.2. Let Rn =  E\ © E2, dim E, A 1, and let A,; be a convex 
body in Ei for i =  1,2, with /'/^(Ai) = ve2(A2). If at least one of the sets 
A i, A 2 is centrally symmetric, then

c(Ai © A2) =  c/t;1(Ai )+ c/í.2(A2).

P r o o f . Let A2 be centrally symmetric. Since c is equivariant under 
translations, we can assume that O is its centre of symmetry:

A2 =  — A2.( 1.8 )
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Let, A := A\ © /12. Since c is equivariant, under homotheties, we can 
assume that rE,{At) — 1. Let ß i  := R e^ A í) and ß  =  R(A,  0). Then, by 
Proposition 1.1,

r{A) =  1 and ß  =  s jß j  +  ßj- 

By Theorem 0.1, for * =  1,2 there exist finite sets

X l C bd e, ( A ) n bd B e, (0,1) and Y{ C bd E, {At) fl bd B Ei (0, ß i )

Yi
such that conv X, fl conv—̂ ^  0.

Pi
Let

(1.9) a.j £ conv X t f l  conv --- for * =  1,2.
ßi

By (1.8), we can assume that X 2 =  —X 2 and X2 =  —Y-j, whence

(1.10) 0 G conv X2 fl conv Y2■

By (1.9) and (1.10),

( 1. 11)
ß x  c— ay € conv
r'

P1+P2
ß

Since 0 € conv X 2 C conv(Xi U X 2), it follows that

^-conv(Xi U X 2) C conv(Xi U A^);

thus, by (1.9),

(1.12) ^ -a 1eco n v (X iU X 2).

Since

X iU X 2 c 5 n_1nbdyl and YjUYt
ß

c S n_1n b d A

in view of Theorem 0.1, conditions (1.11) and (1.12) imply the required 
assertion c{A) =  0. □

The following statement concerning cylinders is a direct consequence of 
Theorem 1.2.
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C o r o l l a r y  1.3. Let A =  Ay © A2, Ay C Ey for i — 1,2, where at least 
one of E{,  E2 is one-dimensional. If r Ex{Ay) =  r e 2{A 2) , then

c(A) =  Cfi1(.Ai) + ce2(A2).
We shall now show that in Corollary 1.3 the assumption concerning small 

radii of the minimal rings is essential.
E x a m p l e  1.4. Let n =  3, and let ei,e2,e.3 be the unit vectors:

el =  (Sj j f . S f ) ,  where
1 for i =  j  
0 for i ^ j .

Let, further,
E i= L in (e i ) and E2 =  Lin (e2, 63).

We define Ay and A2 as follows: A\ is the segment in E\,  with centre O and 
length equal to 2; A2 is a non-isosceles acute angled triangle in E2, whose 
circumscribed circle has centre O , and rE2(A2, O) >  1 (Fig. 1). Then
(1.13) c(A\ © A2) =  O.
Indeed, let be the vertices of A\ ® A2\ evidently,

Qi G bd B {0 ,  R{A\  © A2, O)) FI bd {Ay © A2) for all i ,
whence

, • • • ,6  j  =  {R{Ay®A2, 0 ) ) - 1^ !  0  A2).

On the other hand, by Proposition 1.1, r{A\  © A2, O) =  1 and thus

B { 0 , r ( A y  © A2, 0 ) )  fl bd {Ay ® A2) =  {py,p2}, where py =  ( ( - l ) 1, 0,0);
thus conv{pi,p2} =  Ay and the two convex hulls have non-empty intersection. 
This proves (1.13).

conv
h i\

0  =  1

Fig. 1
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Evidently, c#2(T2) ^ 0 , since, by Proposition 0.2, the point c#2(yI2) 
differs from the centre of the circle circumscribed about A2. □

Hence, also in Theorem 1.2 the assumption concerning small radii is 
essential. We are now going to prove that the assumption on A\  or A2 to be 
centrally symmetric also cannot be omitted. The counterexample (Example 
1.7) is based on the following observation concerning the Euclidean direct 
sum of two isometric convex bodies.

PROPOSITION 1.5. Let, To be a convex body in Rm, m  ^ 2, such that, 
c(To) =  0, and let, R" — E\ ® E2 where d im E\ =  m =  d\mE2.

If Aj — f i ( A o )  for some linear isometry f i : Rm —> E1; i — 1,2, then the 
following two conditions are equivalent:

(i) c.(Ai ® A2) — cEl (Ai)+ ce.2(A2);

(ii) conv -  n s/2 conv 7̂  0,
r { A 0) R ( A 0 )

■where
P() =  {p £ b d T 0; ||p|| =  r(T0)}

and
Qo =  {</ e  bd T0; ||</|| =  R(A0)}.

P r o o f . Since c is equivariant under isometries, without any loss of gen
erality we can assume that

(1.14) E i = L in (e i,... ,em), E 2 =  Lin(em+i , ... ,en).

Then, we can treat R” as Rm x RTO, and thus we use the notation

(a ,6 ) : = ( o i , . . . ,o m,6 i,. . . ,& m)

for a =  ( « i , . . . , a m), b =  (bu  . . . ,  bm ) € Rm.
Further, we can assume that for every x £ Rm

f i{x)  =  (x,0), f 2 ( x )  =  ( 0 , x ) ,

whence /  := f 2 is the reflection with respect to the linear subspace E
{ ( v ) ; ^ R " ‘), i-e.,

(1.15) f  {x  1, . . . ,  x n ) — (Xm+i, . . . ,  x n, x \ , . . . ,  x m )

for every (aq,. . .  , x n) £ Rn.

Evidently,

ce,(T í) =  0 for * =  1,2.( 1. 16)

Let
Pi = fi(Po), Qi = fi{Qo) for * = 1,2,
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and let
Z : =  conv P\ U P'2fl conv Qi +  Q2

V2R(A0)'
Then, by Theorem 0.1 combined with Proposition 1.1, Condition (1.16), 

and with the invariance of all the involved notions under isometries, (i) is 
equivalent to

(1.17) Z ^ 0 .

In turn, since Z is convex and, by (1.15), it is symmetric with respect 
to E , it follows that (1.17) is equivalent to the condition

ZnEyéQ).

Hence, condition (i) holds if and only if there exist p i , . . .  ,Pk £ Po and 
. . .  , ^ 0 for i =  1,2 such that Ej, * =  1 and

0) +  E j \ f \ 0 , Pj)) 6 conv^ - n E.

It is easy to see that this holds if and only if there exist pj € -Po and Aj  ^ 0 
for j  =  1, . . . ,  k such that

(1.18) E,A, =  -  and a := £ conv —.
J 3 2 r(A0) V2R{Aq)

But a £  — conv——p—, whence (1.18) means that 
2 r(A0) '

1 Po „  Qo-conv n  conv -------—
2 r{A0) V2R{A0) ^0-

which is equivalent to (ii). □
We shall apply Proposition 1.5 for n =  4, i.e., for direct sum of two 

congruent plane convex bodies. We need the following elementary lemma.

L em m a  1.6. Let a i , a 2 ,£>i,&2 £ S l , a j ^ a 2, &i 7 ^ 2  and

A ( a 1, a 2) n  A ( /q ,5 2) / 0 .

(i) If 61 o 62 > 0, then

A ( a i ,  a2) H \ /2A(&i, 62) =  0-

(ii) If b\ o 52 < 0 and a,\ o h \ =  a,\ o 62 >  0, t/ien

A (a i,a 2) fl \/2A (6i, 62) ^0.
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P roof. Evidently,

\ / 2 A ( b ] , 6 2 ) H S l 7  ̂0 +  6 2 ) £ B 2 ^  £>1 0 6 2 ^ 0 .

This proves (i).
(ii) Let x e  A («i, 0.2) n A(6i, 62) and b = ^ ( 6 i + 62). Since 

"2~(&i +^2) £ A(oi, 6) fl \ / 2 A (6 i , 62),

by the Pasch Theorem, \/2A (/;i,62) fl A (ai,.x) 7^0 , which proves (ii). □

Example 1.7. Let qi, </2 G S' 1 with 0 <  q\ o <72 < 1, and let pi =  — = 
(r/i +  q-2 ). Consider the ball

and the strip 

and let

B = - ( l  +  \\P l \ \ ) B 2

C =  { x €  R2: \ x o Pl |^ ||P l||2},

A0 := conv(B n  C  U {<71, (/2})

(Fig. 2). Then c(Aq) =  0. Thus, the points a* := and bt := q * =  1,2,

satisfy the assumptions of Lemma 1.6 (i). Hence
INI

A(p i ,P2 ) n v ^ A (g 1 ,g2)
■'No) R ( A 0 )

=  0 .

Fig. 2
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Let now A\ and A2 be isometric copies of Ao contained in two orthogonal 
linear subspaces E\ and E-> of R 1. Then, by Proposition 1.5,

c(A\ © A 2) j=- c#, (Ai) +  c/í2(A'2).

Let us note that the idea of construction of the set Ao in Example 1.7 is 
based on the idea of proof of Theorem 3 in [1],

Finally, we complete this section with a very simple positive result.

P roposition 1.8. If A\ and A2 are congruent, triangles in orthogonal 
two-dimensional linear subspaces E\ and E2 of R4, then

c(Ai © A 2) =  cEi (Ai)+ ce2(A2).

P r o o f . Let A; =  /,(Ao), where Aq =  A («i, 0.2 ,0,3) C R~\ f i : R2 —> E., is 
a linear isometry for i =  1, 2, and c(Ao) = 0 .

Let, again,
Po =  {p  € bd A0; ||p|| =  r(A0)}

and
Q0 =  { q e b d A 0-,\\q\\=R(A0)}.

By Proposition 1.5, it suffices to prove that

(1.19) conv H V 2 conv ^  0.
r(A 0) R(Aq)

Case 1. p(oi, 02) ^ p(ß2, a.3) < p(o3, «l). Then by Proposition 0.2,

Qo = {a i,a3} and P 0 = { p i , P i } ,  where pi =  ^(a 1 +  a3).

Thus, by Theorem 0.1,

( 1. 20 )
M PUP 2) n A (o i;a3)

Ibi II IN II
Since, evidently, a, 1 o a3 <  0 and p\ o a\ =  pi ° a3 >  0, by Lemma 1.6 (ii) it 
follows that

( 1 .21 )
A(p i ,P2) /ö A(a.i, a3)

r(A 0) V R{A0)

i.e., (1.19) is satisfied.
Case 2. p N ,a 2) ^ £>(a2,a 3) =  p(a3,a i). 
Then, by Proposition 0.2,

Qo =  {01,02,03} and PqD { p i ,P2}
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where
Pi =  2 (“ i +  °3) and p2 =  ~(a2 + o3). 

Since pi — p2 || oi — 02 and, by Theorem 0.1,

A (pi,p2) A (ai,q2,a 3) 
r(A0) Ä(4>) ^  ’

it follows that (1.20) is satisfied. Since oi oo3 < 0 and pi 004 =  p\  003 > 0, as 
in Case 1, we obtain (1.21), which implies (1.19). □

2. Minimal ring of a parallel body

There is a simple and natural connection between ring A and ring Ae: 
these two rings have common centre and the same thickness (Theorem 2.4). 
To prove this result, let us start with the following simple lemma, which is a 
direct consequence of additivity of the support function with respect to the 
Minkowski addition (see [8, Theorem 1.7.5(a)]).

LEMMA 2.1. For every A, B  G /Cn

Ae <zBe <:=> A C B.

P roposition 2.2. Let A € /Cq . For every x 6  A and e > 0 

RaA x) ~  R a (x ) +  e and rAe(x) =  rA(x) +  e.

P roof. By Lemma 2.1,

{« > 0; A C B(x,  a)} =  {«  > 0; Ae C B(x , «  +  5 )},

whence

Similarly,

whence

R A(x ) =  R Ae( x ) - e .

{ ß Z 0 ; B ( x , ß ) c A }  =  {ßZ 0- ,B (x ,ß  +  £ ) c A £}, 

rA(x )=  rAe(x) — £.
□

P roposition 2.3. Let A e /Ctf and e > 0. For every x 6  Ae there exists 
an a, E A such that

(i) R At(a) Í  RAc{x )
and
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(ii) r Ae{a) ;> rAc{x).

P r o o f . Let a := £ A(x). T h e  assertions (i) and (ii) are trivial for x E A. 
Assume that x E AE \  A. Let, x' be a point of Ae most distant from x. Then

(2.2) A e cB{x ,g{x ' ,x ) ) .

Let us notice that

(2.3) g(x' ,x)>e.

Indeed, x E Ae and the halfline L =  x +  pos(a — x) intersects bd Ae in a point 
z satisfying

e <  q{x , z) úg{x, x' ) .

Thus (2.3) holds.
By Lemma 2.1, conditions (2.2) and (2.3) imply

(2.4) A C B(x, g(x',x) -  e).

Since <(xap) ^ it follows that for every p E A

p(p,a)gg(p ,x) ,

Thus, by (2.4),
A CB(a,  g(x', x) -  s),

whence
Ae C B(a,  q ( x ' ,  x ) )  = B(a. B.Ae(x)).

This proves (i).
To verify (ii), notice first that

rAe{a)^e

because a E A. On the other hand,

rA'(x) <e;

indeed, let y be the point of intersection of bd (Ae) with the halfline L' 
a +  pos(ai — a); then

rAe (-'f) ^ ß{x , y) =  g{y, a) -  g(x, a) <  g{y, a),

where g{y,a) =  g(y,A)  ^ e , since a =  £A(y) (cf. Theorem 4.8. (12) of [3]). □

As a direct consequence of Propositions 2.2 and 2.3, we obtain the fol
lowing.
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T h e o r e m  2.4. For every A e  /Cq a n d  e >  0,
(i) c(A£) =  c(A),

(ii) R{Ae) =  R.{A) + e and r(Ae) =  r(A) +  e.

For arbitrary A E /CJ}, the functions R,.\ : A —> R and r ,\ : A —> R can be 
extended over the whole Rn as follows (compare [1, p. 96]).

D e f in it io n  2.5. For every z e R " ,  let

Fa (x ) := {u o (p — x)\ p E bd A and v E Sn~l fl Nor (A,p)} ,

R a (x ) := sup Fa (x ), and f.,\ (.'/;):~  inf F,\ (x).

As was noticed by Bárány (see the remark following Claim 3 of [1]), R,\ 
is convex and f  a is concave.

We are now going to generalize Proposition 2.2 on the extended functions 
R.\ and f  a - Let, us start with the following simple lemmas.

L E M M A  2.6. F o r  every A E /Cq and. x  E R“,

P roof. For x E  A the assertion is obvious. Lot ,7;€R"\A. Then <$(&•)=—1 
and c>(x, bd A) — g(x. A), whence it suffices to prove that

—q(x , A) — inf {u o [ p  — x ) - , p E  bd A and v  E S n~l nNor {A.p)},

which is equivalent to the condition

(2.5) g ( x ,  A) =  sup{?; o (x — p)m,pE  bd A and v E S n~] fl Nor (A,p)}.

Evidently, for every v  E S n~l ,

v o ( x - p )  g  g ( x , p )  

and the equality holds whenever

x - p  =  g { x , p ) v .

Thus, the right side of (2.5) is equal to p { x ,  p )  if and only if x —p  E  Nor(A,p), 
i.e., p  =  /̂4(.t).T1iís proves (2.5). □

Lemma 2.7. F o r  e v e r y  A E /Cq and. x  E R’\

rA(x) =  6(x)g(x. bd A),

where
f o r  x E A 
f o r  x £ A.

R a {x.) =  inf {a > 0; A C B( x, a)}.

P roof. For x E A the formula is the definition of /?.4 .
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Let x £  Rn \  A. Evidently,

s u p i ^ z H ^ p ) ,

where g(x,p)  =  sup{g{xpy)\ y £ bdyl} and hence

Then

and, moreover,

— -----r G 5 n_1 nNor(yl,p).
ß(P, X)

A C  B  (x , «o ) for «o := g{p, x) 

cvo =  inf {a  > 0; A C B(x , a)} .

The following Proposition is a generalization of Proposition 2.2. 

P r o p o s it io n  2.8. Let, A £ /Cq . For every x £ R" and e > 0 ,

Fa!: (x ) = R a (x ) +  e arid f Ac {x) =  rA (x)  +

□

PROOF. By Lemma 2.7, the proof of the first formula is the same as for 
Proposition 2.2. It remains to prove the second one for x £ Rn \  A.

It is easy to show that

É>(.7;,bd(zL))
e -  g(x, bd A) if x £ AE \  A, 
p(x’,b d z l)—£ if j; € R ' ' \ t1e

(cf. [3, Cor. 4.9]). Thus, by Lemma 2.6,

rAc {x) =  rA (x) +  £ for every x £ Rn \  A.
□

3. Continuity of the minimal ring

Let us apply Proposition 2.8 to prove continuity of R and f  with respect 
to the Hausdorff limit (Theorem 3.2). To this aim let us note a simple 
consequence of Lemmas 2.6 and 2.7.

L em m a  3.1. Let, Ai,  A> £ /Cfi and A\ C A2 . Then, for every x £ R",

Rai (x ) í  R a2 (.-r) and rAl (x) g  f A% (x).
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rAk are uniformly convergent to R \ and r.4, respectively.
P r o o f . Take an e > 0. By the assumption, there exists A;q € N such that 

A C {Ak)e and Ak c  (A)e for every k ^ kf).

Thus, by Lemma 3.1 and Proposition 2.8, for every k ^ ko and x G RT,

R a (x ) g R Ak (x) +  £ and R Ak (x) g R.A (,x) +  e

and, similarly,

We shall now prove that the centre of the minimal ring is continuous.
THEOREM 3 .3 .  The function c : /Cq —> RTl is continuous.
P r o o f . Let A k € /Cq for k G N U {0} and let A =  lim A k . We consider

the sequence (fk '■ Rn —> R)teN and the function /o : R" —> R defined by the 
formulae:

Since, for every fcsN U  {0}, the function f \  is convex, it is continuous (com
pare [7, Cor.10.1.1]). By Theorem 3.2, f \  is uniformly convergent to /o .

Let now xk =  c(>ht)for fcGN and let xq =  c{A). Then Xk is the unique 
point at which fk attains its minimal value, for every k G N U {0}. and, since 
c{Ah) G Ak, the set {x*,; k G N} is bounded. Hence, by Proposition 0.4, 
xo =  lira Xk ■ □

C o r o l l a r y  3.4. The function ring : /Cq —>Cn is continuous.
P r o o f . Let A, Ak G Kq and H =  limH^.. Then,

(3.1) R(A) =  lim/?.(^4 .̂), r(A) =  limr(.Afc), and c(A) =  Ihn c(Ak).
k k k

Indeed, let x c{A) and xk '■= c{Ak) for every k. Then, by Lemma 3.3, 
x =  limfcXfc. Since R.(A) =  R(A,x)  and R(Ak) =  R(Ak,Xk), it. follows that

|R (^ )- /? .(H ) | ^ |Ä ( ^ ,* * ) - Ä ( ^ ,* ) |  +  |Ä(i4fc, * ) - Ä ( ^ * ) | .

rA (x) ^ r Ak (a--) +  £ and rAk (x) <; rA (x) + e.

This completes the proof. □

fk ■ =  RAk ~ rAk and f 0 =  RA -  rA.

Thus, by Lemma 3.2 and the continuity of R A,

R ( A ) = \ \ m R ( A k).

The proof for r is analogous.
Now, condition (3.1) easily implies the statement. □
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4. Final remarks

(A) To the author’s best knowledge, it is an open question if there is an 
effective method of finding the centre of the minimal ring for arbitrary convex 
body. Some very special cases were mentioned in Preliminaries (Propositions
0.2 and 0.3).

It seems reasonable to believe that for convex polytopes the answer to the 
above question is positive. This optimistic point of view was a motivation 
for Section 3 of the present paper.

(B) The minimal ring of A is usually defined for A E  /Cq , i.e., for compact 
convex sets in Rn with non-empty interior (compare footnote 2). There 
are two natural ways to extend the definitions of ring A and c(A) over the 
whole /Cn.

One possibility is to consider balls in the affine subspace spanned by A 
(compare Section 1). Then, of course,

dim (ring e A) =  dim A

and the minimal ring of A depends only on A but not on the dimension of a 
Euclidean space containing A. As was noticed by K. Rudnik, c:/C" -* R" is 
not continuous:

Example 4.1. There exists a sequence (A ^ .gN  in /C'5, with Ak E /Cq 
for all k and A =  lim A k  E  /C3 \  /Cq such that

l imc(Ak) ^ c aßA(A).k

Indeed, let A be a non-equilateral triangle in aff(0, 62,63) with O as the 
centre of circumscribed circle (like A2 in Example 1.4) and let

=  (-& _1,0 ,0), bk =  (k~1, 0,0), and A k := A  (a*, bk) © A.

Then A =  limAfc, while

Caff a (A) ^  0 =  lim c(Ak).

□
The other possibility is to consider balls in R” (instead of balls in aff A) 

regardless of whether int A is empty or not. To avoid an ambiguity, let us 
denote this ring and its centre by “ring(”)(A)” and “c ^ (A )”, since they 
depend on the dimension of the ambient space R" . Of course, if int A =  0, 
then r(A) = 0  and ring^ A  is a ball with radius R(A).

Let us notice that in Sections 2 and 3 we did not make use of the assump
tion int A /  0. Thus, the results of these sections remain valid for riiig-’̂  and

. In particular, we obtain
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C o r o l l a r y  4.2. The functions c^  : IC" —» R" and ring(n) : K." —> Cn 
are continuous.

(C) Theorem 2.4 (i) states that c: JCq —» R" is, in some sense, “partially 
Minkowski additive”: 

if B is a ball, then

c(A +  B) =  c(A) +  c(B).

However, as an application of Corollary 3.4, we obtain the following

COROLLARY 4.3. The function c :JCq —>R" is not. Minkowski additive.

P r o o f . Suppose that c is Minkowski additive. Since c is equivariant, 
under isometries and, by Corollary 3.4, is continuous, from Theorem 3.4.2
[8] characterizing the Steiner point s, together with Remark 3.4.4 [8], it 
follows that

(4.1) c ( A )  =  s (j4) for every A g / C q .

But condition (4.1) is evidently false. Indeed, let A =  A (a i,02,03) with 
<(0,10,30,2) =  § and g(a.], 0,3) =  0 (0.2, a3), and let, c(A) =  O. On the one hand, 
by Proposition 0.2, the point c(A) is the centre of the circle inscribed in A, 
whence

ll“ 3 || =  - y l K  + a 2 Í*

On the other hand, if s(A) =  0 ,  then, by the formulae (5.4.11) and (5.4.12) 
in [8], j(a.\ +  02)+^03 =  0, whence

IM = |||ai + «2 II-
Thus oi =  —02, which is impossible because O =  c(A) G int A. 7 □
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COMPUTING MINIMUM AND BASIC SOLUTIONS 
OF LINEAR SYSTEMS 

USING THE HYPER-POWER METHOD

P. S. STANIMIROVIC

Abstract

An iterative method for computing the best approximate solution of a given system 
of linear equations is developed. The presented method is based on the hyper-power 
iterative process for computation of matrix products involving the Moore-Penrose inverse, 
introduced in [4], and have any high order q ^  2. Convergence properties of the method 
are studied. Also, we determine an optimal order q.

1. Introduction

The following notation will be used:
X , Y, Z  are normed spaces with norms || • ||;
C m x n , C" are the set of m  x n complex matrices and the set of n- 

dimensional complex vectors, respectively.
B ( X , Y )  is the space of all bounded linear operators from X  into Y;
R(A),  TV (A) are the range and the nullspace of A, respectively;
A t is the Moore-Penrose inverse of A;
rank(A), tr(A) denote the rank and the trace of A, respectively.
Cmxn jg (-jie sef 0f m x n complex matrices whose rank is r;
p(A) is the spectral radius of A;
Pr (A) is the orthogonal projector on the range of A;
l x ,  h i  © denote the identity operator on X , the identity matrix of the 

order k ,  and the appropriate zero block, respectively.
Consider the following operator equation:

(1) Ax =  y, A 6 B(X,  Y), x € X, y € Y .

If the solution exists, i.e., if for a given operator A € B(X, Y)  and y  € Y there 
exists an element (vector) x E X  satisfying identically the equation (1), then 
the equation is said to be consistent (solvable), otherwise it is nonconsistent 
(unsolvable). It is obvious that y € f?.(A) is the necessary and sufficient 
condition of consistency.

1991 Mathematics Subject Classification. Primary 65F20; Secondary 15A09, 15A24.
Key words and phrases. Best approximate solution, hyper-power method, basic solu

tions, overdetermined system, Moore-Penrose inverse.
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When the equation (1) is consistent and the operator A is invertible, then 
the unique solution is x — A~ l y. The determination of the general solution 
of (1) when A is non-invertible, i.e.,, when N(A) ^  {0} and b E R(A ), is 
possible through a generalization of the concept of inverse operators.

When the operator equation is nonconsistent, i.e., if b^R(A) ,  the fun
ctional of the error (residual vector) ex =  Ax — y can be used as the measure 
of the nonconsistency. Most often the functional

/'■(A , y ) =  inf \\Ax — y\\
xe\

is used.
D e f in it io n  1.1. A vector xq e  X  is said to be the least-squares solution 

(LSS solution) of (1) if
l l^ o  — 2/|| =  inf \ \Ax-y\ \ .x£\

D e f in it io n  1.2. Vector xo G X  is said to be a minimum,-norm least- 
squares solution (NLSS solution) of (1) if

\\Ax0 - y \ \ =  inf \\Ax — y||
x e \

and
||íco|| < IMI for any x ^ xq for which \\Axq — y\\ =  ||Ax — y||.

NLSS solution is unique. This solution is also called the normal solution, 
or the best approximate solution.

P roposition 1.1 ([6], [2]). Let A e C " lXn and b e c n. Then among 
the LSS solutions of Ax =  b, x =  A^b is the one of the minimum, norm,. 
Conversely, if X  6 C'ixm has the property that, for all b, Xb is the NLSS 
solution of Ax = b, then X  =  AC

The paper is organized as follows. In the second section we briefly de
scribe the hyper-power method and its modification for computing A^B, 
where A  and B  are matrices with identical number of rows [4]. In the third 
section we construct and investigate a method for computing NLSS solution 
A'b. The defined method is based on the modification of the hyper-power 
method, used for computing A^B. In this way, the constructed method is 
the first attempt to apply the hyper-power iterative method in computation 
of the best approximate solution of a linear system. The convergence rate 
is investigated, as well as the construction of the initial approximation and 
determination of the optimal order q of convergence. In the fourth section we 
develop corresponding iterative method which arises from the Neumann-type 
expansion. In the last section we describe the application of the presented 
method for computing the best approximate solution in computation of the 
basic approximate solution and give two illustrative examples.
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2. Modification of the hyper-power method

The hyper-power iterative method was originally devised by Altman
[1] for inverting a nonsingular bounded operator in a Banach space. This 
method is of any order ^ 2. In [7] the convergence of the same method has 
been proved under a condition which is weaker than the one assumed in [1], 
and there have been derived better error estimates.

Zlobec in [13] defined two hyper-power iterative methods of an arbitrary 
high order q^. 2:

( 2 )
T k =  I X  -  Y kA ,

Y k+1 =  ( /*  +  T k +  • • • +  7 * ~ l )Y k , * =  0 , 1 , . . . ,

(3)
Tk' =  IY - A Y k',

W  =  Yk'(Iy  + T k H------ f- fc =  0 , l ........

It is well known [13] that if we take

Y0 =  Tq =aA*,  0 < a g
tr (A* A)'

then Yk — > A^, Yk — > A^. In this way, the hyper-power iterative method
k—>oo k—>oo

is valid for generating the Moore Pcnrose inverse.
The hyper-power iterative method of the order 2 is studied in [3], and 

also in [9], but in view of the singular value decomposition of a matrix.
In [4] the hyper-power iterative method is adapted for computing A^B, 

where A 6 cmxN and B  6 Cmxn are arbitrary complex matrices with iden
tical number of rows. The starting matrix Yq is chosen from the following 
conditions:

Fo =  A*WA*, for some W  €  Cmx/V provided that 

P (Pr{A) ~ AY0) < 1.

Moreover, in [4] the following method is defined, ensuring the convergence 
of the sequence {Zkj  to A^B, where {Zk} is defined by

Y0 is given by (4),
=  Y0B,

To =  In — F)A,
Mk = I N + T k +  T l  +  --- +  T q~ \

Zk+i =  MkZk,
Tk+\ =T% =  I  +  Mk[Tk - I ] ,  k =  0 ,1 , . . . .

( 5 )
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Process (2) is superior to (3) (more efficient with respect to matrix mul
tiplications) when rn > N  [4]. Also, in [4] it is showed that (5) is an improve
ment (over using (2) to find At and then form A^B) only when N  > n. In 
summary, the process (5) is recommended in the case rn> N  > n.

3. Computing A^b by means of hyper-power method

Consider the overdetermined system Ax =  b, where A € Cm x iV, and 
b GE Cm. The process (5) is practical for computing the NLSS solution of 
an overdetermined system Ax =  b, because of rn >  N  > 1. Note that, in the 
case rn <  N , you had better to use process (3) in order to compute an ap
proximation of At and follow this by a single multiplication to produce the 
NLSS solution Â b.

THEOREM  3.1. Consider b& Cm and A £ CmxN such that r n > N  and 
rank (A) =  r Si 2. If qft. 2 is an integer, then the sequence {.rt GC^}, defined 
by:

Po is given by (4), 
xo =  yob,
To =  In — YqA,

Mk =  I N +  T k +  T l  +  - - - + T qk~ \
Xk + 1 =  M k X k ,

Tk+l =  T qk =  I  +  Mk[Tk - I ) ,  k =  0, 1, . . .

converges to the NLSS solution of the (overdetermined) system Ax =  b, i.e., 
x k —̂ A t b.

P r o o f . Using the following known fact, proved in [4], valid for the pro
cess (5):

Zk =  YkB ,
we immediately conclude

xk =  Ykb.
Now, using Yk —> Â  [13], we get xk —>• A^b. □

R e m a r k  3.1. The initial approximation Yo, chosen in the general form
(4) ensures convergence of the iterative process (2), i.e., the convergence
Yk — > At. We can use more primitive conditions ensuring convergence of

Ic-roo
the method (2). Thus, the general initial approximation Yo, given in (4) can 
be replaced by the following, more operative one ([3], [13]):

* 0 < a ^
2

Ai(A*A)’(7) Y0 =  aA
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where
Ai(i4M)

Also, we can take [13]

is the largest eigenvalue of AA*.

( 8) Y0 =  aA*, 0 < a  ^
tr(AM)

In [13] it is proved that the optimal value for a  in (8) is —  — and
t r (A J

9
the optimal value for a  in (7) is

Ai {A*A)

In the case of rank(A) =  1 we need not to apply the iterative process (6), 
but the following result is applicable:

Lemma 3.1. In the case of rank(A) =  1, the NLSS solution of the linear 
system Ax - b is given by

1
A^b- -A*b.

tr (A* A)'
P r o o f . The proof immediately follows from the known result, valid in 

the case rank(A) =  1 [13]:

A* =
1

tr(A*A)
A*.

□

In the following lemma we investigate the convergence rate of the itera
tive process (6)

L e m m a  3.2. Let given m  x  n  matrix A of rank rank( A )  ^  2. Then the 
iterative process (6) for computing A^b is of an arbitrary high order <7 íí 2, 
identical to the order of the corresponding hyper-power method, (2).

PROOF. Using the following result from Lemma 2.1:
xk =  Ykb:

we get
||a: , - A t6 | |  =  | |Y ^ - A t6 | |^ | |Y fc-A t||||6 ||,

which implies

Y, -  At 9 
(Yk - A l ) b  ‘

I11 this way, the order of convergence of the process (6) is identical with the 
order of convergence of the process (2). □

\xk+i — A'b\\ < ||Y*+1 — AT||
\\xk -Alb\\* = \\Yk — At||9

The rate of convergence of the process (6) is an increasing function of q. 
However, the number of matrix multiplications required at each iteration is 
an increasing function of q. Now, we look for the optimal value of q , which 
minimizes the computation required to achieve a given degree of convergence.
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T h e o r e m  3.2. Consider a linear system Ax — b, where A(zCmxN and 
i)GCm . The optimal value of q in iterative process (6) for computing A^b is 
<7 =  2-

PROOF. In [4] is shown th a t  the optimal value o f q for the process (5) for 
co m pu ting  A^B,  where B  G C m xn, is that q which minimizes the following 
fu nction  f(q):

(9) f (q )  =  (n /N  + q - l ) / h i q ,

where In q denotes the natural logarithm of q. According to (9), in our case, 
we should minimize the function
(10) f 1(q) =  ( l / N  +  q - l ) / l n q ,  2.

Consequently, we should obtain an integer solution of the equation

(11) r/Tnq — g —1  + 1 = 0, q Z  2.

From (11) we get lnq — 1 ^ 0, which implies that the integer solution of 
(11) is q =  2. □

R e m a r k  3.2. The optimal value q =  2 can be obtained using the follow
ing known result, valid for the function f(q)  [4]:

/(2) ^ f(q)  for all q ^ 2  and 0 <  n / N  <  0.71.

In our case is n =  1, TV A 2, and consequently, 0 <  1 /N  Ú 0.5, which means 
/(2 )^ /(< ? ) for all q ^  2.

R e m a r k  3.3. Recall that the hyper-power method for computing gene
ralized inverses is not self-correcting [11], [12]. We know Zielke’s [11] iterative 
refinement process, which solves the self-correcting problem. Namely, the 
iterative refinement for computing the Moore Penrose inverse of A has the 
following form:

Yk =  A*Yk YkYk A*

Tk — I  — YkA
Yk+1 =  (I +  f k +  --- +  f Qk~1)Yk.

This modification is not necessary in each step. In our case, we can define 
the following refinement process, solving the self-correcting problem during 
the computation of A^b by means of the hyper-power iterative method:

xk =  A*bx‘kxkx*kA*b
Mk =  I  +  Tk +  Tk -\------hTk~ 1,

xk+l =  M kx k,
Tk+i =  Tk =  I  +  Mk[Tk - 1], k =  0 , 1 , . . . .
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In [10] it lias been showed that the conjugate-gradient methods for com
puting the Moore- Penrose inverse can be used in refinement of the hyper
power method of the order 2 for computation of the Moore Pcnrose inverse 
defined in [3]. The refinement of the hyper-power method can be done by re- 
placing the hyper-power iterative method from [3] by the conjugate-gradient 
method from [10]. Consequently, in the same way, the iterative process (6) 
(of the order 2) can be refined by the conjugate-gradient method defined in

4. Computing A^b by means of infinite series

It is well known [13] that the q-tli order hyper-power method generates 
the partial sums of the infinite series

OO OOE [(/ -  X 0AY Xo] or [x0 (I -  A X 0)Z
i=0 i=0

More precisely,

<7*' —1 cf i - l

yk=e  [(j - x^ y  *»] °r =e  [xo (7 - Ax°y
i=0 i=0

Zlobec [13] has shown that A  ̂ can be computed by means of the infinite
2

series if we choose Yq — «A*, where 0 < a  < ———— . Our strategy is to
~ tr(i4*A) 6

adapt the infinite series in order to compute A^b.

THEOREM 4.1. Let the m x N  matrix A of rank( A) — r^. 2 be given with 
<7^2. Then the sequence x d e f i n e d  by the following iterative process

Y0 =  aA*, 0 < a ^
tr(A*A) ’

qk - 1

* k =  E  [ ( I - Y oB Y Y q
i=0

b, k =  0 ,1 , . . .

converges to A^b.

5. Application and numerical results

The basic approximate solution to a linear system Ax =  b, A G CTrnxn, 
is defined in [8] as a least squares solution with no more than r  nonzero
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components. Also, in [8] the following method is developed for construction 
of the matrix A$, such that for every vector 6, the basic approximate solution 
of the system Ax =  b is given by xk =  Â b:

x/j =  A^b = b,

where the m  X r matrix B  contains r linearly independent columns of A.

Since A^b = B^b , and m  ^ r, the method analogous to the process (6 )

can be applied in computation of the value j/j =  A+b:

( 12)

Yo = a B *
O

y0 =  Y0b =

To =  /  — YqB,

aB*b

0 < a  ^
2

tr (B*B)’

Mk =  1 +  Tk +  Tk -\------ h 1,
Vk+i  =  M k y k ,

Tk+1 = T qk = I  +  M k[Tk - I ] ,  A: =  0 ,1 ,----

R emark 5.1. Note that r linearly independent columns of A can be 
selected by means of the algorithm described in [8].

R emark 5.2. If the rows i \ , . . .  , i r of A are linearly independent, then 
the basic approximate solution ŷ  can be generated from the best approxi
mate solution A^b in this way:

(A'b)h 1

Vb =

E xample 5.1. Consider a rank deficient matrix A =

the overdetermined linear system Ax =  b, where b =

/  2 0 2 \  
0 1 2 
1 1 3

VO 1 2 /

and

. Implementing

the method (6 ) of the order q =  2 by the initial value Yo selected from (8 ), 
in the package MATHEMATICA,  we obtain the following numerical results:
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«  =
tr(AM ) 31’

31 
13 
31 
35

V 31 /

xq =  Y0b =  nA*b =

Tq ~  I  YqA, M o - 7  +  T o, .x’i — M qx'o —

T i= T 02, M \= I - \ -T \ ,  X2 — M\X\ —

961 
220 
961 
392

' 961 /  
/ 97920 x

_ 923521 
322072

V

923521
546224

/

T2 =  T 2, M2 =  I +  T2, x3 =  M2x2 =

923521
/ 157929548160 \

~~ 852891037441 
383307631024 
852891037441 
608685713888 
852891037441

Continuing in a similar way, we get
-0.249749 \

X’5 : 0.499853 
0.749957 )

/  —0.25 \
xe =  I 0.5 ] =  Â b.

V 0.75 J

E x a m p l e  5.2. In this example we compute the basic approximate solu
tion of the system considered in Example 5.1. It can be seen that the first 
two columns of A are linearly independent. Applying the process (12) of 
the order 2, we conclude that the first two elements of the approximations 
iji of A*h are equal to the corresponding elements in xt, i =  1 , 2 , . . . ,  from 
Example 5.1 and the last element is the zero.
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GENERALIZED SOLUTIONS OF LOCAL INITIAL 
PROBLEMS FOR QUASI-LINEAR HYPERBOLIC 

FUNCTIONAL DIFFERENTIAL SYSTEMS

T. CZLAPINSKI and Z. KAMONT

Abstract

Carathéodory solutions of quasi-linear hyperbolic systems in the second canonical form 
are investigated. Theorems on the existence, uniqueness and continuous dependence upon 
initial data are given. The method of bicharacteristics and integral inequalities are used. 
The local Cauchy problem is transformed into functional integral equations. The existence 
of solutions of this system is proved by using integral inequalities and the Banach fixed 
point principle.

1. Introduction

For any metric spaces X  and Y  let C ( X , Y )  denote the class of all con
tinuous functions from X  into Y . We will denote by M[k,n] the set of all 
k x n matrices with real elements. Suppose that a > 0, b =  (bi , . . . ,  bn), M  — 
(Mj, . . . ,  Mn) € i?" , B.+ =  [0, +oo), and bi > Mia. for 1 ^ ^ n. Let E  be the 
Haar pyramid

E  =  {(z, y) € R Un : x G [0, a], y  =  ( yi , . . . ,  y„), - b  +  M x ^ y ^ b -  M x} .

Here and subsequently the inequality between two vectors means that the 
same inequalities hold between their corresponding components. Write Eq =  
[—r'o, 0] x [—6,6] with r'o € R+ and

Ex =  {(Í, s )  =  (<, Si , . . . ,  sn) G E0 UE : t ^ x}.

Put I[x, y] =  { t : (t, y) G E x \  E{) }, where (x, y) 6 [0, a] x [ - b, b\. Write

Sx — [—&, ft] for x G [—r'o, 0] and Sx =  [—ft +  M x , b -  Mx] for x G [0, a].

Let 0  =  E  x C(Eq U E ,  R.k) and assume that

A : Í2 —> M[k, fc], A =  [Aij ]i(J=li_ k ,

p : Í2 -A M[k, n], Q =  [ ßij ]i= x .....*,^-=1,...,,, - / :  ft - f  R k , f  =  ( / i , . . . ,  /*)

1991 Mathematics Subject Classification. Primary 35L45, 35D05, 35R10.
Key words and phrases. Functional differential systems, second canonical form, gen

eralized solutions, bicharacteristics.

0 0 8 1-6900 /99 /$  5.00 © 1999 Akadémiai Kiadó, Budapest
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are given functions of the variables (x, y, z), z =  ( z \ , . . . ,  z^). Given an initial 
function (j) =  ((/){,..., 4>k): Eq —> R k, consider the Cauchy problem

(1) Au(x, y, z) D xzi{x , y) +  ^  &j(s, V, z )D Vjz t(x, y) =  f i{x,y,z) ,
l=i 3 = 1

i =  1, . . . ,  fc,

(2) z (x ,y )  =  (ß{x,y) on £ 0-

We will consider existence and uniqueness for local generalized solutions 
of problem (1), (2) in the “almost everywhere” sense that is the solution 
u : E c —» R,k, 0 < c a, is continuous, possesses partial derivatives almost 
everywhere on Ec\ E q and satisfies (1) a. e. on Ec \ E q.

Non-linear equations with first order partial derivatives have the follow
ing property: any classical solution of an initial problem exists locally with 
respect to x. This leads to generalized solutions in the sense almost every
where or Carathéodory sense. Generalized solutions of quasi-linear equations 
are also investigated in the case that assumptions for the given functions are 
extended.

Numerous papers were published concerning Carathéodory solutions for 
hyperbolic problems. The main existence and uniqueness results for weakly 
coupled systems can be found in [3], [7], [9]. Integral differential equations 
with an initial condition and with unknown function of two variables was 
considered in [20]. The method of bicharacteristics is the main tool in these 
investigations. This method was adopted by L. Cesari [6]-[8] and P. Bas- 
sanini [1], [2] for quasi-linear hyperbolic systems in the second canonical 
form. The initial and boundary value problems were considered. These 
problems were global with respect to y. The paper [5] deals with the local 
initial value problem for semilinear hyperbolic systems without the function
al dependence. Existence and uniqueness results in the Haar pyramid were 
presented.

Some non-linear hyperbolic systems can be reduced to quasi-linear sys
tems in the second canonical form [10].

Recently numerous papers were published concerning functional differ
ential equations. The existence and uniqueness of Carathéodory solutions is 
proved in [19] for systems with Volterra operators. A general class of func
tional differential problems was investigated in [11]—[14]. All these problems 
are global with respect to y. Note that the model of functional dependence 
introduced in [11] is not suitable for problems which are local with respect 
to y.

For further bibliography on hyperbolic functional differential problems 
see the survey paper [16].

Now we present relations between local and global (with respect to y) 
solutions of differential and functional differential systems.
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Suppose that the function M =  ( Mi , . . . ,  M„) G (?([(), a], R" ) is nonde
creasing and M(0) =  0, b — M(a) > Ü. Let

É  — { (x ,  y ) : x  G [0, a], - b  +  M { x )  ú y ^ b -  M ( x )  }.

Suppose that

Ä : E x R k -> M [ k ,  k], A =  A {

q : E x  R k - » M [ k , n], g =  >

f  : É  x R k —> R k, /  =

and <}>: [—b, b] —> R k are given functions.
Consider the quasilinear system without the functional dependence

(3)
Äu (x. y, z(x, y )) Dxzt (x, y) +  ^  ßij{x, V, z(x, y ) )D yj zt (x, y)

i=i 7 = 1

=  f i(x ,y ,z {x ,y ) ) ,  i =  l , . . . , k ,  

with the initial condition

(4) z(0,y) =  (f>{y) on [ -b ,  b].

For any interval I =  [ao,ai] C R let L ( I 1R + ) be the set of all functions 
/i : /  —> /?,+ such that

Ol

/
«0

p(r) d.r <  +oo.

We formulate now the following assumption on g.
A s s u m p t io n  H . Suppose that the function g of the variables (x, y,p) is 

measurable in x for every (ygp) and it is continuous in (y. p) for almost all x. 
Assume that there exists a function 7 — (71, • . . ,  7„) G L{[0, a ] , R T1 ) such that 
for almost all x G [0, a]

\Qi j {x ,y ,p) \^l j {x) ,  1

for y, p such that (x , y , p ) G E x Rk, and

M(
X

*>=/ 7 (t ) d r  for x G [0, a]

Initial problems for quasilinear systems without the functional depen
dence have the following property:
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Existence and uniqueness results for the Cauchy problem (3), (4) can 
be deduced from known results for the global Cauchy problem [6]. More 
precisely, if

(i) Assumption H is satisfied,
(ii) the functions Ä, g, f  satisfy all the assumptions of Theorem 1 in [6] 

on the set É x Rk (instead of [0, a] x Rn x [—d, d\, [—d, d] C R k),
(iii) the function r/j satisfies all the assumptions of Theorem 1 in [6] on 

[—5,6] (instead of R n),
then there exists exactly one generalized solution ü of problem (3), (4). The 
solution V, is defined on the set Efl ([0,  c] x Rn) with cG (0, a] sufficiently 
small and it depends continuously on given functions.

This result can be proved by exactly the same methods as in [6], see also
[ l ] - [ 3 ] .

The situation is completely different for systems with the functional de
pendence. We discuss the problem.

Several authors introduced various hereditary structures for description 
different situations in partial differential equations. Let us recall some of the 
main settings. For simplicity, let k =  1 and consider the nonlinear equation

(5) Dxz(x, y ) =  F(x,  y ,T { z ; x, y ) ,D yz(x,  y)),

where D yz — (Dyiz , . . . ,  D Vnz) and T  is a delay operator. If T  is given by 
T ( z ; x , y) =  z(x , y) then (5) reduces to a classical equation.

There are a lot of papers concerning equation (5) with T  defined by

(6) T(z- ,x,y)  =  Z ( X i y ) ,

where the function (x , y) —> is a natural extension of the Hale operator
for ordinary functional differential equations [15]. More precisely, let B  =  
[—ro, 0] x [—r, r], where vq G R+  and r =  (rq,. . . ,  rn) G R+. For a function 
z : [—ro, a] x Rn and a point (x , y) G [0, a] x Rn we put

(7) Zfx.j/)^,5) = z { x  +  t , y  +  s), ('t , s ) e B ,

i. e. the function is the restriction of z  to the set [x — ro,x\x[y — r ,y+ r ] .  
Consider the equation (5), (6) with the initial condition

(8) z(x, y) =  0o (x,y)  on [ -r 0,0] x R n.

This formulation is natural and suitable for initial problems which are 
global with respect to y. The paper [16] contains a survey of existence results 
for nonlinear equations and quasi-linear systems in the second canonical 
form.

It is evident from (7) that the formulation (5), (6) is not suitable for the 
local Cauchy problems considered on the Haar pyramid.
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The second group of papers is connected with the initial problems for 
the equation

(9) Dxz{x, y) =  G(x, y, z, Dyz{x , y)),

where G is an operator of the Voltéira type. If we assume that G : E  x  

C(Eo U E) x R n —> R  then we can consider the initial problem consisting of 
equation (9) and the condition

(10) z{x, y) =  0O (x-, y) on Eq.

Quasi-linear system (1) is generated by equation (9).
It follows from the above consideration that the results of the papers

(11) —[14] are not applicable to problem (1), (2).
Until now there are not any results on the existence and uniqueness of 

generalized solutions of problem (1), (2).
An extension of the classic Hale operator to parabolic functional differ

ential problems is presented in the monograph [21].
The aim of the paper is to prove a theorem on the existence and unique

ness of Carathéodory solutions of problem (1), (2). We use the method of 
bicharacteristics. Problem (1), (2) is transformed into a functional integral 
system. The existence and uniqueness of solutions of this system will be 
proved by using integral inequalities and by the Banach fixed point princi
ple.

Hyperbolic systems with a deviated argument and integral differential 
systems can be obtained from (1) by specializing the operators A, g and / .  
Our results in this paper are also motivated by applications of partial differ
ential or functional differential equations considered in [4], [17], [18].

We will say that the function /  satisfies the Volterra condition if for all 
z , z &C{Eq\JE. R k) and (x , y ) £ E , such that z{t, s)=z(t ,  s) for (t.,s)E.Ex we 
have f {x , y , z )  =  f ( x , y , z ) .  Throughout this paper we assume that f , g, =  
(gu, • ■ •! Qin) and Ai =  {An, ■ ■ ■, Aik), 1 ^ ^ k, satisfy the Volterra condition.

2. Bicharacteristics

For y  6 Rn and C =  (Cl, • ■ •, Cfc) € Rk we write

71
IMI =  51 M »  IICII =  inax{|C *|:

i= 1

(We use the same symbol || • || to denote the norms in 7?" and R k.) For

UeM[k,n], t/  =  M i=1.... W = 1 ......
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we define

||17|| =  max| ^  |Uij | : 1 ^ i  ^ A;
j -1

W — (Wl j • • • i ^in) i 1 = * = A-

Now we define some function spaces.
Let || ■ ||x- be the supremum norm in the space C (E X, R.k), where 0 L x L a. 

We will use the symbol C^(EX, R k) to denote the space of all functions 
z G C ( E X, R k) such that

z l l(x]L) =  ®UP
\ \ z( t ,s)-z { t . ,s) \ \  
| i - i |  +  | | s - 5 | |

(t . , s ) e E x < +oo

endowed with the norm

llz l l (x ;0 ,L )  ~  I M U  +  \\z \\{x-,L) ■

Let,

C(EX, Rk-k ) =  { z e  C(EX. Rk) : \\z\\x ^ «;},

Cl (Ex, Rk; k) =  {z G CL(EX. Rk) : | | z | | (;c;o ,l ) g «},

where k G P+ and 0 Sí a: ^ a. Denote by J[P], where P  = (Po, P i, P2) G P+, 
the set of all functions G C(Eo, R k) such that ||i/)(a;,i/)|| Si Po and

IM®> y) -  V>(*> y)ll ^ A k  -  5| +  P2 ||y -  y||

on P o -  Suppose that 0 < c Si a, Q =  (Qo. Q 1. Q2) G P+ and Q, L P,, * =  1, 2. 3. 
Let PQ.^Q] be the class of all functions z G C(E r, Rk) such that

(i) z(x ,y )  =  <l>(x,y) on P 0,
(ii) ||z(.T,y)|| Si Qo and

\\z(x,y) - z (^,y)ll iQ i |a : - ä |  +  Q 2 ||y -y || on Ec.
Write |Q| =  Qo + Qi + Qz-

A ssum ption  H[q\. Suppose that
(1) the function g( - ,y , z )  : I [a ,y]  —> M[k,n]  is measurable for (y , z ) G 

[—6. 6] x C(Eo U E . Rk) and g(x, ■) : Sx x C(EX, R k) —> M[/c, n] is continuous 
for almost all x G [0, o],

(2) for (y, z) G Sx x C (E X, R k) and for almost all x G [0, a] we have

IQij(x, y,z) \<^Mj,  1 L i Si A:, 1 g  j  g n,

where M  =  (Mi , . . . ,  Mn) is the constant vector from the definition of the 
Haar pyramid,
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(3) there is a nondecreasing function ß : R+ —i R.+ such that

IlffOc, y, A  -  e(x, y, z )|| ^ ß(n) [ ||y -  y|| +  ||z -  z||* ]

for (y, z), (y, z) G Sx x C[fiEx,R k; k) and for almost all x G [0, a].

Given f ie  J[P], cG (0,a] and z G R c.<i>[Q} consider the Cauchy problem

(11) V(*) =  Qi{t,v(t),z), T](x) — y, 

where 1 ^ i ^ k, (x, y) G Ec \  E$.
Suppose that Assumption H[g] is satisfied. Let y, [z](-, x, y) be the solu

tion of problem (11). Denoting by [0,Cj(a;,y)] the maximal interval on which 
this solution is defined we see that ( c í ( x , y), fji[z](ci(x, y), x, y)) G 0EC, where 
0EC is the boundary of Ec. The function gi[z] is called the i-th bicharacter
istic of system (1) corresponding to z G K Ĉ [Q\.

LEMMA 2.1. Suppose that Assumption H[g\ is satisfied and cG (0 ,a], 
(j). ej) G J[P], z G K rjf,[Q], z  G K C~[Q\- Then for each i, 1 ^ i ^ k , the bichar
acteristics gi[z]{- ,x, y) and gi[z]{- ,x ,y)  defined on the intervals [0, Cj(.x,y)] 
and [0,Ci(x:y)] exist and moreover we have the estimates

(12) \\gi[z](t.,x,y) -  gi[z\(t,,x,y)\\<:[\\M\\ \x -  x\ +  ||y -  y|| ] exp \ß{\Q\)t\ , 

where (x, y ), (x, y) e E c \ E 0, t e  [0, min{cj(.T, y), cfix, y) } ] and

(13) || 9 i [ z ) { t ,  x , y) -  gi [ z ] { t ,  x , y) || ^ t \ \ z -  z \ \ t  ß ( \ Q \ )  exp [ ß{ \ Q\ ) t ]  ,

where (x, y) G Ec \  E0, t G [0, min{cj(a;, y),Ci(x, y)}  ].

P r o o f . The existence and uniqueness of solutions (in the “almost ev
erywhere” sense) of (11) follows from classical theorems since the right-hand 
side of the differential system fulfils the Carathéodory conditions and the 
Lipschitz estimate with respect the unknown function is satisfied. If we 
transform (11) into the integral equation

t

(14) gi[z\{t ,x,y)  =  y +  j  ei {r ,gi[z](r ,x,y) ,z)dT,
X

then by Assumption H[q\ wc get the estimate

\ \gi[z\( t ,x,y )-g i[z\( t ,x,y)  || g  \\y - y \ \  +  \ \M\ \ \x-x \
t

j  ß(\Q\) ||gi[z\{T,x,y) -  gi[z\(T,x,y) ||dr ,+
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where (x , y), (x, y) £ ECl t £ [0, min{cj(.x, y). c, (x , y) } ]. Hence (12) follows by 
the Gronwall inequality. The estimate

\\gi[z\{t,x,y) -  gi[z]{t,x,y)

<
L l

ß{\Q\) I \\z-z\\dr +ß{\Q\) I \ \gi [z]{T,x,y)-gi[z](T,x,y)\ \dn

where (x , y ) £ Ec \  E q, t, £ [0, min{cj(x, y), cßx.  y) } ], and the Gronwall in
equality imply (13). This completes the proof of the lemma.

3. The integral operator and its properties

A s s u m p t i o n  H[f],  Suppose t h a t

(1) the function /(-, y. z ) : I[a, y] —> R k is measurable for (y, z) £ [—6, b] x 
C(Eo U E. R k) and f(x,  •): ST x C{E,  x R k) is continuous for almost all x £ 
[0 , a ] ,

(2) there is a nondecreasing function a  : R+ —> R+ such that

||/(.t, y, z)\\ S cx( k ) for (y, z) £ Sx x C(EX, f?A'; k) 

for almost all x £ [0, a], and

II/(* , V, z) -  f {x ,  y, z) || g 0{k ) [ ||y -  y|| + \\z -  z\\x ]

for (y, z), (y, z) £ Sx x Cl (EXi Rk: k) almost everywhere on [0, a]. 

A s s u m p t i o n  H[A\. Suppose that
(1) A £ C(fi, M[k, i-]) and there is v > 0 such that det A(x, y, z) ^ v  on S2,
(2) the estimates

II A(x, y, z) || ^ a(K) on E  x C(EX, R k; k)
and

M(-t , y, )̂ -  A(.r, y, z)\\ ^ /?(«) [ |.r -  x\ +  ||y -  y|| + \\z -  z\\x ]

on f i x  C l (Ex, R k] k), where x =  ina,x[.r. x ] are satisfied.

R e m a r k  3.1. In the paper we prove that there exists a constant c £ (0, a] 
such that problem (1), (2) has exactly one solution in the class K Ĉ [Q\. We 
will need some estimates of the constant c. For simplicity of formulation 
of these estimates we assume that the functions /  and A have the same 
estimate on C{EX, Rk; k ) and that they satisfy the local Lipschitz condition 
on Cl (Ex, R k; k) with the coefficient a  (see Condition (2) of Assumption 
H[g] and Condition (2) of Assumptions H[f]  and H[A] ).
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R e m a r k  3.2. Note that if Assumption H[A] is satisfied then A 1 (a:, y ,  z ) 
exists on Ü and A ~ l E C (ÍÍ, M[k,  A:]). Moreover, there are nondecreasing 
functions ä, ß : R.+ —> R.+ such that

||j4“ 1(a:,y>z)||g ä (K ) on E  x C{EX, Rk-, k)
and

\ \A ~ l { x , y , z )  -  A ~ l { x , y , z ) \ \  [ \ x - x \  + | | y - y | |  + ||z -  z\\x \

on E  x Cl {Ex, Rk \ k).
It is important in our considerations that we have assumed the Lip- 

schitz condition for given functions on some special functions spaces. More 
precisely, we have assumed that

(i) the functions g(x, ■) and f (x ,  ■) satisfy the Lipschitz condition on the 
space Sx x Cj_,(Ex, Rk; k) for almost all x £ [0, a],

(ii) the function A satisfies the Lipschitz condition on E  x C l (EoöE, 
R k-,K).

The above conditions are local with respect to the functional variable. 
Let us consider simplest assumptions on / ,  g, A. Suppose that there is 

L E R+ such that for almost all x E [0, o]

(15) \ \ f{x ,y, z)  - f ( x , y , z ) \ \  ^ L [ \ \ y - y \ \  + \ \ z - z \ \ :r]

(16) Ile(*. y . z ) -  q(x , V, z)W g  L [\\y -  y\\ + \\z -  z \\x\ , 

where (y , z), ( y ,  z) E  Sx x  C(Eq U E, R k) and

(17) || A(x, y, z) -  A{x, y, z ) \ \^ L  [|.r -  x\ +  ||y -  y|| +  ||z -  z\\x\

on E  x C(Eq U E , R k).
Of course, our results are true if we assume (15)—(17) instead of (i), (ii).
Now we show that the formulation (i), (ii) are important. More precisely, 

we show that there is a class of quasilinear systems satisfying (i), (ii) and do 
not satisfying (15)—(17).

Consider the system with a deviated argument

(18)

A: r 71

^ 2 Ä ( x , y ,  z ( i p { x ,  y))) D xz , ( x , y ) + ^ f t j (® ,y ,  z ( ip(x,  y ) ) ) D yj z ß x ,  y )  
t = l  L j = 1

=  f ( x , y , z ( i p { x , y ) ) ) ,  i  =

where A, g, /  are given in Section 1 and

1\) =  (rpo, i p \ , . . . , r p n ) e  C ( E ,  E q U E ) .

We assume that ipo(x,y) 5Í x for (x,y)  E E. We get system (18) by putting 
in (1)

/ (x, y, z) =  f {x ,  y, z(ip(x, y))), g(x, y, z) =  g{x, y, z{ip(x, y))),
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A(x, y, z) =  A{x , y, z(t/>(x, y))).

From now on we consider the function g only.
Suppose that there are C,  C  G R+ such that

ll§(®. v,p) -  é (x ,y ,p)II ̂  c  [ ||y - y\\ + Up—p|| ]
and

\\i/>(x,y) - ip(x,y)\ \n+i ^ C 0\ \y -y \ \ ,
where || ■ ||n+i is the norm in the space Rn+1.

It is evident that for (y , z ), (y, z)€ .Sx x Cl (Ex, R k\ k)) and for almost 
all x £  [0, a] we get

||e(®) V: z) ~ e(x, Vi z) || =  ||g(x, y, z{ip{x, y))) -  g{x, y, z(il>{x, y)))||
^ C ( l  +  KCo)\\y-y\ \  +  C \ \ z - z \ \ x.

Then Condition (3) of Assumption H[g] is satisfied.
We see at once that the function g(x, •) does not satisfy the global Lip- 

schitz condition (16) for {y , z ) ,  (y, z) E Sx x C(E q U E, R k). Similar consid
eration apply to /  and A.

Now we construct an integral operator corresponding to initial problem
(1). (2). Suppose that (j)E,J[P], c€(0,a], z E K ĉ Q ]  and that

{gi[z]{- , x , y ) ,  ■ ■ ■ ,9k[z]{- ,x,y) )  =  g[z](- ,x ,y)  

are bicharacteristics of (1) corresponding to z. Let

f \g ,z]{ t ,x,y)  =  ( f i ( t ,g i [ z ] ( t ,x ,y ) , z ) , . . ., f k{t, gk[z\(t,x,y), z)) ,
A[g,z]( t ,x,y)  =  [Aij{t,gi[z](t,xfy), z)]i j = l ... k ,

$[g ,z ] { t ,x ,y )  =  [<ßi(0,gj[z]{t,x,y))]id=lt k ,

Z[g, z]( t , x, y) =  [zi{t, 9j[z\(t, x, y))}iJ=1^ k •

For
U ,VeM [k ,k ] , u  = u V  =  [vij]

we denote by U *V  the vector {d.\,. . .  ,dk), where
k

d% — ^   ̂UijVjíi i — 1 ,.. . , A,. 
j =i

Let us define the operator T,i, for all z £ K c,(/)[Q\ by the formula

T$z{x, y) =  A -1 (x, y, z) {A[g, z](0, x, y) * $[g, z] (0. x, y )}
X

+ A -1 (:r. y, z) j  {D tA[g , z](t, x, y) * Z[g, z](t, x, y) +  f[g, z](t, x, y)}  dt
(19)
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for (x, y) E Ec \  E q and

( 20) T^z{x, y) =  4>(x, y) for (a;, y) E E0-

A s s u m p t i o n  H[Q\. Suppose that the constants {Qo, Q i , Q 2) €  R'\ are 
such that

R emark 3.3. The right-hand side of (19) is obtained in the following 
way.

Considering system (1) along bicharacteristics we get by (11) the relation 

A[g, z)(t, x, y) * D tZ[g , z]{t., x, y) =  f[g , z}(t,x, y ).

Integrating it with respect to t from 0 to x, and making use (2) we get 

A(x, y , z)z(x , y) =  A[g, z](0, x, y) * <%, z}{0, x , ij)

If Assumptions H[q\, H[A] are satisfied then the derivative DfA[g, z](-, x, y) 
exists almost everywhere and is integrable on [0, c]. Thus we may have used 
the integration by parts which yields the functional integral equation z =  T<pz.

LEMMA 3.4. If cf>EJ[P} and Assumptions H[g], H[f], H[A], H[Q\ are 
satisfied then for sufficiently small cE (0,a] we have

Qo>Po, Q l > max {ö((,)o)fv(Qo) {l + P2\\M\\) ,P \ }  ,

Q2 > P‘z[ 1 +  2A(Qo)a(Qo)] •

X

o

T f . K c . A Q ^ K ^ Q ) .

P r o o f . S u p p o s e  t h a t  zE K c_,p[Q\. U s i n g  t h e  r e la t io n s

A ~ \ x , y , z )  { A[g, z\(x, x, ?/)*<%, z]{x, x,y)}  =  0(0, y)

X

A[g, z](.x, x, y) — A[g, z](0, x, y) =  /  D, A[g, z](t, x, y)dt,
0
/
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where

A i (x,y) = J  f[g ,z \{ t ,x ,y )d t ,  
o

(22) A 2(x, y) =■ A[y, z](0, x, y) * {4>[y, z](0, x, y) -  z](®, x, y)}  ,
X

A 3(x, y ) =  I  D tA[g, z\{t, x, y) * {Z[g, *](i, x, y) -  $[</, z](x, x, y)} dt. 
o

By Assumptions i7[p], H[ f], H[A] we have 

l|A i(x,y)|| ^ca(Q o),
(23) ||A2(x ,y ) | |^ c a (Q 0)^ ||M ||>

||A3(x , y) II ^ c2 ß(\Q\) [1 +  l|M||] [Q\ +  Q2\\M\\ ].

In the proof of the last inequality we have used the fact that the Lipschitz 
constant of the function A[g, z](-, x,y)  is an upper bound of || D t[g, z\(t, x, y)||. 
The estimates (23) together with Remark 3.2 imply

\\T<t>z(x,y)\\ ^ P 0 +  a(Qo)H0{c), (x, y) G Ec \  EQ,

where

H0(c) =  c {a (Q 0) (1 +  P2||M|| )+ß( \Q\)  [1 +  ||M||] [Qr + Q2||M||] c} . 

Since
lim Hq (c) =  0 and Qq >  Po

c—> o+
we may take c G (0, a] sufficiently small in order that

(24) ||T ^ (x , y)|| ^ Qo for (x, y) G E c \  E0.

Now we establish the Lipschitz constants for T^z. For (x,y), (x,y) G Ec \ E q 
we have

Tfpz(x1ij) - T <t>z{x,y)  =  r 0 +  r l +r2 + r3,
where

ro =  0(O ,y)-0(O ,y)
+  [A_1(x, y, z) -  A ~ l (x, y, z)\ [Ai(x, y) +  A 2(x, y) + A3(x, y ) \ ,

Fj =  A_1(x, y, z) [A,(x, y) -  A,;(x, y ) ] , * =  1,2,3.
It follows from Assumptions /A[./'], //[A] and (23) that

(25) l|r0|| I  P2 \\y -  y\\ +  ß(\Q\)H0(c) [ |x -  x| +  ||y -  y|| ],
||r11| ^ cä(Qo)ß(\Q\)  exp [ß(\Q\)c\ [ \\M\\ \x -  x| +  ||y -  y|| ],

X

and
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||r3|| i c ä { Q o ) P 2\\M\\a(Q0)ß(\Q\) exp [ß(\Q\)c] [\\M\\ \x - x \  +  \\y -  y||] 
+ á (Q 0)a(Qo) {P2 exp [/3(|C,>|)c] [\\M\\ \x -x \+ \ \y -y \ \ ]+ P 2 \\y-y\\}.

Integrating by parts we may write A3 (a;, y) -  A3(.t, y) =  A] +  A2 +  A3, where

Ai =  {A[g, z](x, x , y) -  A[g, z\{x, x,  y)} * {Z[g, z]{x, x, y) -  $[g,  z](x, x, y)}
-  {A[g,z]{0,x,y)  -  A[g, z](0 ,x ,y )}  * {Z[g, z](0,x,y) -  $[g, z](x, x, y)}

X

~ I  {A[g, z](t.,x,y) -  A[g, z](t . ,x,y)} * DlZ[g,z]{t,x,y)dt.
b

and

X

A 2 — j  D tA \g , z \ { t , x , y ) * { Z [ g , z \ { t , x , y ) - $ [ g , z \ { x ,x , y )
0

-Z \g ,  z]{t, x, y) +  <%, z]{x, x, y)}dt ,
X

A3 =  J D tA[g,z](t,,x,y) * {Z[g, z ] { t ,x ,y ) -$ [g , z ] {x ,x ,y ) }  clt.
X

Applying Assumptions H[g], H[A] we get the estimates

(27) IIAjI) ^ Ai{c) [\x — x\ +  ||y — y|| ], * = 1,2,3,

with constants A,(c) >  0 such that

(28) lira Aj(c) =  0, 7 =  1,2,3.
c—>0+

It follows from (21), (24)-(28) that there exist B\ (c), B2(c) > ü  such that

\\T*z{x, y) -  Tozix, y )II S {«(Qo) H Q o )  +  P2«(Qo) ||M|| ] +  B\ (c)} \x -  x\
+  {P2 [1 + 2ö(Qo)«(Qo)] +  B 2 { c ) } ||y -  y||

on Ec \  E q and
lim B \(c )— lim B 2(c) =  0.

c->0+ c—>0+
Hence by Assumption H[Q] there exists c E (0, a] sufficiently small in order 
that

(29) \\Tfj)z{x, y )  -  T(f)z{x, y) || ^ Q x\x - x \  +  Q2\\y -  y||

on EC\ E 0. Since T^zE C(Ec,Bk) and estimates (24), (29) hold true also on 
Eq we see that T^z E K CJf,[Q\, which completes the proof of the lemma.
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4. Existence and uniqueness of solutions to the Cauchy problem

Set
r(x)=x/3(|Q |)exp[x/3(|Q |)] .

T H E O R E M  4.1. Suppose that ß G J[P] and Assumptions H[g], H[A\, 
H[f],  H[Q\ are satisfied. Then there exists cG (0,a] such that. Problem (1),
(2) has exactly one solution u in the class K Ĉ [Q\. Moreover, if ß E J[P} 
and ü is a solution of system, (1) with the initial condition

(30) z(x, y) =  ß(x, y) on E0, 

then there exists Ac G R + such that

(31) H u-üll* ^ Ac\\ß -ß \ \0, x G [0, c].

P R O O F .  Suppose that. cG (0,a] is sufficiently small in order that T (j, : 
K c.rt>[Q\ —> K Ĉ [Q], which can be done by force of Lemma 3.4.

If z,  z  G K c.q[Q] then we have

T^z{x, y) -  T,pz(x, y) — Bq +  D\ 4- B 2 +  B3,

where

Bo =  {-4 y, z ) -  A 1 (x, y, z)}  [Ai(x, y) +  A 2(x, y) + A3(x, y)]

and
Bj =  A 1 (x, y, z) A i { x , y ) - Ai ( x , y )  , i  =  1,2,3.

The functions A* are given by (22) and A; by the same relations that arise 
from (22) by replacing g , z  with g, z.

It follows from Assumptions H[g], H[f ], H[A] that

\\B0\\^ß(\Q\)H0(x ) \ \ z - z \ \ x, 
l|A1(x>y)-Äi(x,y)||^_.,r;;c!) [ r »  + 1] ||z-z||ZI 

II A 2(x , y) -  Ä2(x, y)|| ^ {xß{\Q\)  [r(x) + 1] P2||M|| +  a(Q0)P2T(x)} \ \z-z\

and

II A 3(x , y) — Ä 3(x, j/)||
A {xß(Q2) [r(x) +  1] [Qi +  2Q2||M|| +  1] +  xß(\Q\)Q1} \\z -  z\\x.

In the last estimate we have used integration by parts analogously to the 
proof of Lemma 3.4. Hence there exists a function A(x) such that

\\T(j>z - T (t>z\\x ^A{x)\\z-~z\\x(32)

^
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and
lim A(x) =  0.

i-»0+
If we choose c £  (0,a] sufficiently small in order that A(c) < 1 then by the 
Banach fixed point theorem there is a unique solution u £ K r<t>{Q\ of the 
equation z =  T^z.

Now we prove that u is a solution of system (1). We have

u(x, y) = A~ 1 (x, y, u) {A[g, u](0, x, y) * <%, ?/,](0,7;, y)}

+ A ~ \ x , y , u )  I  {DtA[g,u\{t ,x ,y) * Z\y, u\{t, x, y) + f[g, u](t, x, y) }  d t ,
b

where (x,y) £ E c \ E q and g is the solution of (11) with u instead of 2. 
Multiplying the above relation by A(x ,y ,u )  and integrating its right-hand 
side by parts we obtain

X

I  { -  A[g, u](t, X, y) * D tZ\g, u](i, x, y) +  f[g, «](<, x , y)} dt =  Ü,
0

and consequently we get our claim by the same considerations as in [6], [8].
Uniqueness of the solution of problem (1), (2) follows from the fact that 

any solution z  £ K CJp[Q] of the problem satisfies the equation z  =  T(/,z which 
has at most one solution.

Suppose that u =  T^u, v, =  Tiü. Slightly modifying the estimates that 
we have used to get (32) we may analogously obtain

||u -  ü||x ^ A (x )||n - n||x. +  Ä(rc)||0 — 0||o,

where
A(s) =  1 + 2á(Q0)a(Qo) + x ä ( Q 0)ß(\Q\) [1 + ||M ||],

and A(:r) is the same as in (32). Since we have assumed that A(c) <  1 the 
estimate (31) holds with

Ac =  Ä(c) (1 — A(c))- 1 .

This completes the proof of the theorem.

5. Carathéodory solutions with generalized Lipschitz condition

Suppose that the function M  = (M i , . .. , M n) £ C([0,o],/?.” ) is nonde
creasing and M(0) =  0, ly — Mßa)  > 0 for 1 ^ i ^ n. Let Eq be the set given 
in Section 1 and

E  =  {{x,i1) : x  £ [0,ct], —b +  M(x)  ^ y  ^ 6 -  M(x)}.
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Let E x, O ^ x ^ a ,  and I[x, y], (x , y ) E [0, a] x [—6, ft], be the sets defined in 
Section 1 with the above given E. Put

Sx =  [—6, 6] for x E [—ro, 0] and Sx =  [—b +  M(.x), b — M (rr)] for x E [0, «].

Let fío — E  x Rk and assume that

A-.n0 ^ M [ k , k \ ,  M[k, n], /  : D -> i?/\ (p:E0 ^  Rk

are given functions. Consider the quasilinear system

Dxzi(x, y) +  ^  g.j {x, y, z)Dyj z t{x, y) 
j=1 J

=  f i{x ,y ,z) ,  i =  l , . . .  ,k,

with initial Condition (2). The matrix A in system (33) depends on z in the 
classical sense.

In Section 4 we have considered Lipschitz continuous solutions of hyper
bolic systems. Now we deal with more general class of solutions for system  
(33).

We will use the symbol Cq,l'{Ex, Rk) to denote the set of all functions 
z E C {E X, R k) such that

(33) Y ^ Aii (x ,y, z{x,y))

(x-L') — sup
f IIz ( t , s ) - z ( t ,5)11
l  II* — «II

: (t, .<>'), ( t , s )  E Ex \ < oo.

For z E Co.l'{Ex, Rk) we write

IMI(*;0,L') =  \\A\x +  \\z\\(*;//), 0 ^ x ^ a,

where || • \\x is the supremum norm in C(EX. R k). Let C(EX. Rk: n) be the 
set given in Section 2 and

CoMEz,Rk; k) = {* e CoMEx, Rk): lkll(*;0,u) ^ «} ,
where k E R+, x E[0, a].

Let (jJq E L([—r0, 0], R + ), P  =  (Pq, Pi ) E R \ .  Denote by J[uj0, P] the set 
of all functions ip E C(Eq, R k) such that ||ip(x, j/)|| ^ Pq and

II ■tp{x,y)\\ ^
X

!  w0(r)dr +  p i \ \ y - y \ \  ouEq.

Suppose that

cG(0,a], Q — (Qo, Qi) E R+, Qo^Po,  Q i ^ P i



GENERALIZED SOLUTIONS 201

and uj G L([-7-o,c]/?.+ ), uj(t.) ^ uo(t) for almost all t G [—ro, 0]. Suppose that 
(/)£ J[tvo,P]. Let Kc ^luj.Q) be the set of all functions z  G C(Ec,R.k) such 
that

(i) z ( x , y )  =  </>(x,y) on E0,
(ii) \ \ z ( x ,  y)|| ^ Q o  and

II z ( x , y ) - z Lo(t )cIt + Q\\\y-y\\ onEc.

Put, IQI =  Q0 +  Qi- Any function z  G K ĉ [cj, Q] satisfies (2). This function 
is a solution of (33) if it satisfies the system almost everywhere on Ec\ E q.

Denote by 0  the class of all functions $ : [0, a] x R + —> R + such that 
(5(-, t.) G T([0, a], R+) for t G R+ and ó( t ,  •) is nondecreasing on R.+ for almost 
all t G [0, a].

Assumption H[g\. Suppose that
(1) the function g(- ,y ,z )  : I  [a, y] —» M[k,k\ is measurable for [y, z) G 

[—b, 6] x C(E 0 U E, Rk) and g(x, •) : Sx x C(EX, Rk) —» M[k,  Ä;] is continuous 
for almost all x G [0, a],

(2) there exists 7 =  (71, • • •, J n ) € L([0, a], 7?") such that

\6 i j ( x , y , z ) \ ^ ' y j ( x ) ,  l g i gA: ,

for (y, z) G Sx x C{EX, R.k) and for almost all x G [0, a],
(3) there exists ßo G 0  such that

IIg(x,y,z)  -  g(x,y ,z ) \ \^ßo{x,K)  [ ||y -y || + | |s - 2 ||x ]

for (y, z), (y, z) G Sx x Cq.l' (Ex, Rk: k) almost everywhere on [0, a],
(4) for x  G [0, a] we have

X

M(x)  ^ I  7 (r)dr.
0

Given (j) G J[lj0, P}.c£ (0, a] and z  G K ĉ [lj, Q\, consider the Cauchy problem 
(11) and its solution Qi[z\(-, x, y) with (x, y) € Ec \  Eq.

Lemma 5.1. Suppose that Assumption H[g} is satisfied and cG (0,a|, 
J[u, P], 2  G K c4 [u), Q], z  G K cj [u , Q}.

Then for each i, l ^ i ^ k  the solutions g,[z\(-, x, y) and (ji[z}{-, x, y) are 
defined on such intervals [0, ct (x, y)] and, [0, C j  (x, y)] that

{ci(x, y),gi[z](ci{x, y), x, y)) G dEc and (cfix, y), gi\z\(ci(x, y) ,x ,  y)) G 0Er.
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Moreover, we have the estimates

\\gi[ z \ { t , x , y ) - ( j i [z\{t,x,y)\\

< \\y-y\\ +

X

j  IIt M I | d r exp
t

j  ß(T, \Q\)dr
X X  J

where (x, y ), y) £ E C\  E0, t £  [0, niin{ci(.-r, y), q (x , y}] , and

| |g i [ z \ ( t , x , y )  - g i [ z ] ( t , x , y ) ||

t t 1
< 1 ß(E\Q\)\\z ~  z\\rdT exp 1  ß { r , \ Q \ ) d T

J
X o J

where (x, y) £ Ec \ E 0,t .£  [0. m i n { c i ( . x ,  y),Ci{x,  ?/)}].

The existence and uniqueness of solutions of (11) follows from classical 
theorems. The proof of the estimates is based on the Gronwall inequality. 
Details are omitted.

A s s u m p t i o n  H[f}. S u p p o s e  t h a t

(1) the function /(•, y, z ) : /[a , y] -> Rk is measurable for (y, z) £ [—6, 6] x 
C{E q U E,  R k) and f(x,  ■): Sx x C (E X, Rk) -> R.k is continuous for almost all 
x e  [0,a],

(2) there exist functions a , ß  G 0  such that

\ \ f ( x , y , z ) U a ( x , K )  for (y, z) £ Sx x C(E0 U E, R k-k) 

almost everywhere on [0, a] and

\ \ f (x ,y ,z )~  f ( x ,y , z ) \ \ ^ ß { x , K ) [ \ \ y - y \ \  +  \ \ z - z \ \ x\

for (y, z),  (y, z) £ Sx x Co.l' E ( E x, R k; k) almost everywhere on [0, a]. 

A s s u m p t i o n  H[A\. Suppose t h a t
(1) A £ C(D0, M[k, A;]) a n d  t h e r e  is v > 0 s u c h  t h a t  d e t  A(x,y,p)  ^ v 

on ffo,
(2) t h e r e  a re  n o n d e c r e a s i n g  f u n c t io n s  a , ß : R + —> R.+ a n d  y. £ L({(). a],R,+ ) 

s u c h  t h a t

|| A ( x ,  y , p )  -  A { x ,  y ,  p )  || ^  ß ( n )  [ ||y  -  y\\ +  | |p  ■

X

I  y { r ) d r

and
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where (x , y ,p ,), (x ,y ,p ) e  D0 and ||p||, ||p|| i  «.
Now we formulate the integral functional problem corresponding to (33), 

(2). Suppose that €  J[a>o, P], c € (0, a], z € K Cmt/,[u>,Q] and gi[z](-,x,y),  
1 ^ i ^ k, are bicharacteristics of (33) corresponding to z. Let f\g, z], <I>[y, z], 
Z[g, z] be the functions defined in Section 2 and

A[g,z]{t.,x,y) =  [AVJ (t ,gi[z\( t ,x,y),z{ t,gi[z\( t ,x,y)) \iJ=h k .

Let us define the operator for all z 6 K c,̂ [u>, Q\ by the formulas 

T0z(a;, y) = A~l (x, y, z(x, y ) )  {A[g, z](0, x, y )  * $[y, z](0, x, y ) }
X

+ A-1 {x, y, z(x, y)) j  D tA[g, z\(t, x, y) * Z[g, z\(t, x, y)

+  f [ 9 , z]{ t ,x ,y ) dt

for (a;, y) € Ec \  Eq and

Tz{x,y)  =  <j){x,y) oh^ q.

The main theorem in this section is the following

TH EO R EM  5.2. Suppose that f  £ -/[mo, P] and Assumptions H[g], H[f], 
H[A] are satisfied.

Then there are c 6 (0, a] and u  € L([0, a], /?.+ ), Q € R \  such that
(i) Q] -> i f c.4 w'

(ii) the transformation has exactly one fixed point uE K (_(j>[oj.Q\1
(iii) the function u is the Carathéodory solution of Problem (33), (2),
(iv) if (j) £ J[oJQ. P] and ü £ K c , Q] is a solution of (33) with the initial 

condition z(x. y) =  c/)(x, y )  on Eq then there is A,,£/?.+ such that

II« -  «II* ^  Ä c ||<£ -  0 ||o , x  e  [0, c}.

The proof of the theorem is similar to the proof of Theorem 4.1 and it 
is based on the Banach fixed point principle and on theorems on integral 
inequalities. Details are omitted.

R e m a r k  5.3. Suppose that the functions g, f  and cp are defined by

e ( x ,  y,  z )  =  QÍX , y ,  z ( x ,  y ) ) ,  f ( x ,  y ,  z ) =  f { x ,  y, z ( x ,  y ) ) ,  <p(x,  y) =  <p(y),

where g, / ,  ip are given in Section 1. Then problem (33), (2) reduces to the 
Cauchy problem without the functional dependence. Note that in this case 
our assumptions on given functions are identical with adequate conditions in



204 T. CZLAPINSKI and Z. KAMONT

[6], where the systems without functional dependence were considered, see 
also [l]-[3].

R emark 5.4. We have been working under the assumption that given 
functions satisfy the Lipschitz condition with respect to (y,z). The following 
examples show that this assumption is essential.

E xample 5.5. Let k — n =  lan d

F(p) =  0 for p < 0 , F ( p ) ~ y / p  for p^O,

ip(y) =  0 for < 0, tp(y) =  y  for y  ^ 0.
Consider the differential integral equation 
(34)

Dxz{x,  y) D yz ( x , y) -  yjf(x,y)D,jz(x, y)

with the initial condition

(35) z {0, y) =  ip(y) for y e  R,

where

y/(x2 +  4y)3 -  x* for (x , y) G [0, a] x R.+ ,

/(® , ?;) =  0 for (x, y) G [0, a] x R_

and R— =  (—oo, 0].
It is easily seen that the functions

u+ (*>y) =   ̂ +  V ^ + 4 y )  , (-'cy) e  [0,a] x (o, +oc),

and
u - (x ,y )  =  0, (x,y)€[0,o.] x ( -o o ,0 )

are unique classical solutions of Problem (34), (35) on [0, a] x (0, +oc) and 
[0, a] x (—oo,0), respectively.

Let

v{x, y) =  u+ (x, y) on [0, a] x R+ , v(x, y) =  u -  (x, y) on [0, a] x (-oo , 0).

The function v is not continuous at points (x, 0) for x  6  (0, a]. It follows that 
Problem (34), (35) has not the generalized solution on the set [0, e] x [—5,5] 
with e >  0, 5 >  0.

Example 5.6. Let k =  n =  1 and

<p(y) — 0 for y <  0 and ip{y) — ^Jy for y~t 0.
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Consider the Cauchy problem 

(36)

Dxz(x, y) z{x ,y )  +  I  z{x,s)d.s Dyz{x, y) -  f (x ,  y )Dyz(x, y),

(37) z (0,y)=(p{y)  for y e R ,

where

'< * •* > - f +12
for ( x ,  rj) 6 [0, a) x R + ,V V  +  4j/)3 - s 3

f { x , y ) = 0  for { x , y ) e R - .

It is easy to check that the functions

u + (x ,  y )  -  ^ (x  +  \ / x 2 +  4y'j for (x,  y )  E [0, a] x (0, +oo),

and
u_ (x, y) =  0 for (x, y) E [0, a] x ( —oo, 0)

are unique solutions of Problem (36), (37) on [0, a] x (0 ,+oo) and [0,a] x 
(—oo, 0), respectively. Let

v ( x ,  y )  = u + ( x ,  y )  on [0,a] x H+ , v ( x , y )  = U - ( x , y )  on [0, a] x (—oo, 0).

The function v  is not continuous at points (:?;, 0) for x  G (0, a,]. It follows that 
Problem (36), (37) has not the generalized solution on [0, e] x [—b, 6] with 
e > 0 ,  b > 0 .

Remark 5.7. Differential systems with a deviated argument and inte
gral differential problems can be obtained from (33) by specializing g and / .  
Functional differential systems considered in [19] are particular cases of (33) 
under suitable assumptions on Voltéira operators.
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APPROXIMATING SOLUTIONS OF 
OPERATOR EQUATIONS AND APPLICATIONS 

USING MODIFIED CONTRACTIONS

I. K. ARGYROS

A bstract

In this study we are concerned with the problem of approximating a locally unique 
solution of an operator equation, using inexact Newton-like iterations in a Banach space 
containing a nondifferentiable term. Earlier results guarantee the convergence of such iter
ations even in cases when the original Newton-like iteration also converges to the solution. 
We provide sufficient conditions even in cases when the original Newton-like method fails 
to converge. We achieve that by carefully choosing the operators involved as well as the 
residuals. Several applications are provided to show that our results apply where earlier 
results cannot. In particular we treat a nonlinear equation appearing especially in the 
harmonic motion of some radioactive particles. Related work can be found in [2], [3], [9].

1. Introduction

In this study we are concerned with the problem of approximating a 
locally unique solution x* of the equation

(1) F(x) +  Q(x) =  0,

where F. Q are continuous nonlinear operators defined on some convex subset 
D  of a Banach space E\  with values in a Banach space E2.

I11 a series of papers [2], [3] we introduced the inexact Newton-like method

(2) Un =  Xn -  A{xn)~' (F(xn) +  Q{xn))

(3) xn+i = y n -  zn 0)

for some fixed Xq G D to approximate a locally unique solution x* of equation 
(1). The points zn G E\  (n íi 0) are chosen so that the sequence {xn} (n =2 0) 
converges to x *. The linear operator A(x)  G L(E\, E2) is usually chosen 
to be an approximation to the Fréchet-derivative F'(x) of F  for all x G D. 
For A(x) =  F'(x), Q(x) =  0 (x G D) and zn =  () ( n 0), we obtain Newton’s 
method. Sufficient conditions for the convergence of the inexact Newton
like method under various very general conditions has been given in [2], [3].

1991 Mathematics Subject Classification. Primary G5.T15, 65B05, 47H17, 49D15. 
Key words and phrases. Inexact Newton method, Banach space, Hilbert space.
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In the above papers our results were compared favorably with earlier ones 
obtained by others and us for Q(x) — 0 (x E D) and zn =  Ü (n ^ 0) [7] [11].

All earlier results guarantee the convergence of inexact Newton-like iter
ation (2)-(3) in cases when the original process

(4) v n+i = v n - A { v n)~l (F(vn) +  Q(vn)) (n^O) with i>0 =

also converges to a solution x* of equation (1) which is unique in U(x*,r*) =  
{x  E E\  I ||m — a;*|| <! r*} for r* A 0 and provided that U(x*,r*) ^ D. In this 
study we will find convergence conditions even in cases when the original 
iteration (4) does not converge to x*.

Besides the application of iteration (2)-(3) in solving fixed point prob
lems we mention that the investigation of the global asymptotical stability 
of certain dynamic market systems also requires the convergence analysis of 
sequences generated by (2)-(3), where n denotes time and xn is the state 
of the system at time period n. For such economic models see, for example
[4], [5], [9]. Concerning approximation (3) we note that if, for example, an 
equation on the real line is solved, F(xn) +  Q(xn) ^ 0 (n ^ 0), and A(xn) 
overestimates the derivative, then yn is always larger than the correspond
ing Newton iterate. In such cases, a positive zn (n ^ 0) correction term is 
appropriate.

Finally several applications are provided to show that our results apply 
whereas earlier they do not. In particular we treat a nonlinear equation 
appearing in harmonic motion [4], [6].

2. Convergence analysis

We can now formulate our main result on the local convergence of iter
ation (2)-(3).

T h e o r e m  1. Let F,Q: D  QE\  -»  E2 be continuous operators. Assume:
(i) equation (1) has a unique solution x* E D;

(ii) for xq sufficiently close to x*, U(x*,r*) =  {x E E\ \ ||x —£*|| ^ r* }  Q D  
for r* ^ ||x0 -£ * ||;

(iii) linear operator A(x) is invertible for all x E U(x*,r*); and
(iv) there exist functions z: U(x*, r*) —>D, a :U (x*,r*) —> [0,1) with

(5) a(x ) A b for some bE [0,1)

such that

( 6) ||s -  A(x) 1{F(x) +  Q(x)) -  z (x ) —:r*|| ^ a{x)\\x -  x*\\
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for all x G U(x*,r*).
Then the inexact. Newton-like method {xn} (n ^ 0) generated by (2) (3) 

with zn — z(xn) (n Si 0) is well defined, remains in U(x*,r*) (n ^ 0) and 
converges to the unique solution x* of equation F(x) +  Q(x) =  0 in U(x*,r*). 
Moreover, the following estimate is true:

(7) H^n+i ~ *̂11 = n  a(xk)\\xo — 3;*ll = bn+lr* (n^O).

P roof. By Hypothesis (iii) the linear operator A(xo) is invertible since 
xo G U(x*, r*). Hence the iterate x\ is well defined and by (2), (3), (5), (6) 
for x =  xq we deduce that x\ G U(x*,r*), and (7) is true for n =  0. Let us 
assume that xm G U(x*,r*) and (7) is satisfied for m  =  0,1, 2, . . .  ,n. Then 
the iterate xm+\ is well defined since the linear operator A(xm) is invertible. 
Moreover, using (2)-(3), (5), and (6) for x =  xm we obtain in turn

ll̂ -'m+l — ® || =  A(xm) (F(xm) +  Q(xm)) Zm X  || fi a(xm) ||xTO X  ||

(8) ^ n  a,(xk) \ \ x o - x * \ \ i b m+1r*<r*.

From estimate (8) we deduce that (7) is true, iteration {xn} (n ^ 0) remains 
in U(x*, r*) for all nTi 0 and converges to x* since b G [0,1).

That completes the proof of the Theorem.
Remark 1. Under the hypotheses of Theorem 1 we deduce that 

Ihn zn =  +  Q(x*)).n—too

Hence x* is a solution of equation (1) if and only if lim z n =  0.
n—>oo

Remark 2. We note that for A(x) =  F'(x), Q(x) =  0, a(x) =  b and 
z (x ) =  0 (x G D) (6) reduces to a condition considered first, by Kantorovich 
[8, Theorem XVIII.1.6], [4, Chapter 5].

We will now provide two applications where we show how to choose z, 
zn (n ^ 0), a and b.

Application 1. Let P , P {- .DQE\  a F 2 be operators such that P  is 
Fréchet-diffcrentiable, whereas P\ is continuous on D. Choose

(9) F(x) =  x - P ( x ) ,  Q(x) =  - P l (x), A(x) =  F'(x) ( x e D ) ,  E 1 = E2 

and

(10) zn =  ( ( I - P ' ( Wn) ) - l - ( I - P \ x n) ) - x}(xn - ( P ( x n) +  Px(xn))) ( n l  0), 

where the sequence {wn} (n ^ 0) is in D.
With the above notation we can formulate the following focal result:
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T heorem  2. Assume:
(i) the first three conditions of Theorem 1 are satisfied;

(ii) there exist nonnegative constants ci,C2 ,C3 such that for 
x  GU  (x*,r*)

(1 1 ) IIP'OOIISC!,

(1 2 ) ||Pi(x) - P i ( x * ) | | ^ c 2 | | . 7 ; - P | | ,

and

(13) Ci,c3 G [0 , 1),

where

(14)
4ci + C2 (1 + C l )  

C3~  (1 - C l ) 2  •

Then the sequence {xn} (n ^ 0) generated, by (2)-(3) is well defined, 
mains in U(x*,r*) for all n  ^ 0  and converges to the unique solution 
of equation (1) in U(x*,r*) provided that the sequence {m„} (n > 0) is 
U ( x \ r * ) .

Moreover, the following estimates are true for all n ^ 0

(15) llí/n x * | |  = — — — "II3-!! X* II 
1 -  C l

(16) i w i s 2ci((11+ C l)t C2,i f e  * 1

and

(17) ||*n+l X* j| ^ C3  \\xn X* I].

P r o o f . The proof follows immediately from (9) (14), (1) (3) by using 
the following approximations for all n ^ 0

(18) Un ~  X* =  ( /  -  P'(.X 'n ) ) - 1{ (/3(.'P1) ~  P { X * ) )

+ (Pl (xn) -  Pi (**)) -  P'(xn)(xn -  X*)},

zn =  (I -  P ' { w n ) ) - 1 (P ' ( w n ) -  P'(xn))(I -  P ' ( x n ) ) - l [(xn -  X * )  

-  (P (x* )  -  P { x n )) +  ( P ( P )  -  P 1( x n ))]
(1 9 )
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and

(20) Zn+l -  X* =  (jIn -  X*) -  Zn.

REMARK 3. Under the hypotheses of Theorem 2, quantities z ,a ,b  ap
pearing in Theorem 1 can be defined as follows

z ( x )  =  [ ( I - P ' ( w ( x ) ) r 1 - ( I - P ' { x ) r 1] ( x - ( P ( x )  +  P l ( x ) ) )  ( x  E U  (x* ,r*))  

for some function w: U(x*, r *) -» U (x* ,r*),

a (x) =  c3 =  b ( x E U ( x * , r * ) ) .

Remark 4. Assume that there exists c\ 0 such that

( 21) H-P'Mz)) -  P'(x)\\ ^ c 4\\w{x)-x\\

for all x E U(x*,r*). Then under the hypotheses of Theorem 2, it can easily 
be seen from (19) that the right-hand side of (16) can be replaced by

( 22)
C'3(l +  Cj +  C2)

(1 - c i ) 2
II W„ -  x.

provided that w(xn) =  wn (n ^ 0).
We can now show an example for Theorem 2. 
Example 1. Consider the real function P  defined by

P(x)
' - ( 3 -2 v /2 )x  x ^  (3-2>/2)- \

< q { x )  ( 3 - 2 7 2 ) - 1 < > x ^ 7 ,

. ( 3 - 2 v/2)(.t - 8 )  x ^ 7,

where q(x) joins the two linear portions of P(x)  smoothly with |i/(x)| 5Í 
(3 -  2y/2). Set P \ (x) =  0 (x E R), c2 =  0, a  =  3 -  2^2, x0 =  (3 -  2\ /2 )~ \  
x* =  0, wq =  F(x0), wn =  0 (n ^ 1). It can easily be seen that with the 
above choices the hypotheses of Theorem 2 are satisfied. Hence iteration
(2)- (3) converges to the unique solution x* =  0 of equation (1). Indeed we 
get x\ =  0 =  X*. However, the original iteration (4) fails to converge.

Application 2. Set E x =  E2 =  Rk, with k a positive integer, in (1) 
Q{x) =  0, F ( x ) = x  — P(x) (x E D),  where P : D - > D .  Moreover, choose 
A(x) =  I  (x G D), zn =  —dnF(xn) (n ^ 0) for some dn E [0,1). Iteration
(2)-(3) can now be written in the form

(23) xn+\ =  dnxn +  (1 — dn)P(xn) (n^0).

The convexity of D implies that the iteration sequence (23) exists for arbi
trary xqE D.  Assume
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(24) (Ci) ||P (a ;)-a :* ||^ JK'(a:)||s-a;*|| f o r a l l z e P ,
where x* E D  is a fixed point of P,  || ■ || is the Euclidean norm, and K : D —> II 
is a real valued function;
(25) (C2) (rr — x*)t l (P(x) — x*) ^ L{x)\\x — x* || for all x E  D.
where L: D —> R is a real valued function. By the Cauchy-Schwartz inequal
ity we may assume that L(x)  ^ K ( x ), otherwise we may replace L(x) by 
K (x ) .  Set

,2g% K n =  K { x 11), Ln =  L(xn),
P(dn) =  d2n( 1 +  K l -  2Ln) -  2dn( K 2 -  Ln) +

W ith the above choices we showed in [5] the following result.

T heorem 3. Assume that for each n il 0, either

(27)

:n g4A>4*oit-HV
II

or

(28) Kn%  1 , Ln Ú K l  Ln ^ l - C b

or

(29) 1 A  K n Ú Ce, Ln ^  1 — cs,

where c-,, c$ are fixed constants. Then with appropriate selection of dn

(30) ||a;B+1- ® * | |S ( l - e ) | |® n - * l  in  = 0)

with som.e £ > 0, therefore iteration (23) converges to x*.

R emark  5. Let K (x )  =  K  and L(x) =  L for all x E  D. Assume that 
either K  < 1, or K  ^ 1 and L <  1. Then iteration (23) converges to x* with 
the appropriate selection of the coefficients dn (n A 0).

R emark  6. If the operator P  is bounded and —P  is monotonic, then all 
conditions of Theorem 3 are satisfied. In this special case the best selection 
is

(31) fi” =  i T P  (" = 0)-

In this case K ( x )  =  K  and L(x)  =  0 for all x E  D.

R emark 7. With the above notation a,b appearing in Theorem 1 can 
be chosen such that

a{xn) -  \JP(dn) (nilO)
and

b— 1 -  £.
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E x a m p l e  2. Consider the nonlinear equation appearing frequently in 
harmonic motion ([5], [6], [9])

where ei, e2, are given positive constants such that ei <  . Choose D =  R
and set P (x ) =  e icos x — e2x +  e3. Since P  decreases in a;, we may select 
L(x) =  0 for all x 6 D. If e2 is sufficiently small, then P  is a contraction 
and therefore iteration (4) (with the above choices of A , F, Q) converges. 
If e2 is large enough, the P  is not a contraction anymore, and iteration (4) 
diverges. However, all conditions of Remark 5 and the last case of Theorem 3 
are satisfied, therefore iteration (23) converges with an appropriate selection 
of dn (n't 0). Since K  can be selected as e\ +e2, Remark 6 implies that the

choice dn =  — — - -2-—rg is satisfactory.
1 + (ei + e 2y

In what follows we provide a semilocal convergence theorem for the in
exact Newton-like iterations generated by (2)-(3).

THEOREM  4. Let F, Q : D Q E 1 —> E2 be continuous operators. Assume:
(i) the linear operator A(x) is invertible for all x 6 U (.x'q, ro) with x'o G D 

and ro t. 0 such that U (xo, r-o) Q D;
(ii) there exist functions z: U(xo, ro) —> D, p, q: U(xo, 7 o) —> [0,1) and con

stants p\,q\ such that

(33) IM *) 1(F (x ) +  Q(x )) +  z (x )\\^Q(x)\\A(y) 1 ( F ( y )  +  Q(y)) +  z ( y ) \ \ ,

q ( x )  ^  qi  <  1

for all x , y  £ U  (xq, ro) with

(iii) The sequence {zn} ( n t  0) with zn =  z(xn) is null.
Then the inexact Newton-like method generated by (2)-(3) is well defined, 

rem.ains in U (.x'o, ro) for all n t  0 and converges to a solution x* G U (x'o, ro) 
of equation (1). Moreover, the following estimates are true:

x =  e\ cos x — e2x +  e$,

(32) IIx - x 0 - A ( x )  l (F(x) +  Q (x ) ) - z (x ) \ \^ p (x ) r 0, p ( x ) ^ p i ^  1,

(34) x =  y - A ( y )  1 (F(y) +  Q(y)) — z(y).

(35) Zn+l - x n\\úqi\\xn - x n-i\\ (11 ^  1)

and

(36)
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P r o o f . Using (i), (32) for x =  xn, (34) for x =  xn+\, y  =  x n and induc
tion on n  ^ 0 we obtain that the iteration {xn} (n L 0) is well defined and 
remains in t/(xo,fo) for all n ^ 0. Setting x  =  x n and y =  xn_i in (33), we 
obtain by (34) that estimate (35) is true for all 1. But (35) shows that 
the iteration {xn} (n L 0) is Cauchy in a Banach space E\ and as such it 
converges to some x* E U(xo,?’o). By letting n —> oo in (2)-(3) and using 
hypothesis (iii) we deduce that F ( x * )  + Q(x*) =  0. Hence x*  is a solution of 
equation (1). From (35) we obtain in turn

||.'fn+ i -  xn\\ ^ qi\\xn -  xn_ 1 1| ^  q(\\xn- i  -  xn_2|| ^  ^  q\l ||®i -  m0||.

Hence for all m L 0 we get

1 — r;m
\ \Xn+m-Xn\ \  ^Ql~,--~  II®1 -*o||,

1-91

and by letting m —»oo we obtain (36).
That completes the proof of the Theorem.

E x a m p l e  3. Let z(x) =  0, Q(x)  = 0 and A{x) =  F'(xo) (x E D). Assume 
that the operator F is defined and Fréchet-differentiable in a ball U(xo,r),  
in which the Frédiét, derivative F'{x) satisfies a Lipschitz condition

| | E / ( . x o ) - 1 ( F ' ( . r ) - F ' ( y ) ) | | ^ / | | . x ' - y | | .

Moreover, set ||F'(xo)_1E(2:o) || ^ yo an<l assume

ho =  lyo <  x and ro =
1 — \ / l  — 2/i(j

1,
< r.

Then for all x E U(xo, ro) we get 

||x; — x0 — F'(xq)~1 F(x)  ||
=  \\F'{xq) ~ 1 (F1 (xo)(x -  .t o ) -  (F(x) -  F(x0)) -  F ' ( t 0 ) - 1F ( t 0 )||

^ ^ ||t - to||2 +  ||F '(to) - 1E (t0)||

^  ^ ‘ro+Vo = r0.

Hence, we can choose p(x) =  p\  =  1 for all x E t/(.To,'ro) in (32). Similarly 
we can show that for all x , y  E U(xo,ro) (33) is satisfied if we choose q(x) =  
l\\x — To|| and q\ = 1 — \ / l  — 2Hq.

The conclusions of Theorem 4 can now follow. We note that with the 
above choices our Theorem 4 reduces to Kantorovich’s Theorem [8, Theorem 
X V III.1.6].
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Conclusion

In this study we examine the problem of approximating a locally unique 
solution of an operator equation, using inexact Newton-like iterations in a 
Banach space containing a nondifferentiable term. Earlier results guarantee 
the convergence of such iterations in cases when the original Newton-like 
iteration converges also. By choosing the operators involved as well as the 
residuals carefully, we showed convergence of the inexact Newton-like method 
to a solution of the operator equation even in cases when the original Newton
like iteration fails to converge. We provide an error analysis for our method. 
Several applications are also given to show that our results apply where 
earlier results cannot. In particular we treat a nonlinear equation appearing 
especially in the harmonic motion of some radioactive particles. Related 
work can be found especially in [2], [3], [5], [9].
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EXISTENCE AND CONSTRUCTION OF 
DEFINITE ESTIMATION FUNCTIONALS

K. DIETHELM

A b strac t

Let G be a continuous linear functional on Cs[a,b]. An estimation functional for G
II s

is a functional of the form E[f] = ^  ^  ajk f^k'1 (xj)- F°r r = si the functional G admits
j = l fc=0

r-positive definite estimation (r-negative definite estimation) if an estimation functional 
E for G exists such that, for every /  6 Cr[a, l>] with ^  0, there holds G[f] — E[f] 0 
(C?[y] — E[f] ^  0). In this paper, we state necessary and sufficient conditions on G for such 
estimation functionals to exist. In particular, we characterize the most interesting func
tionals, namely those that admit both r-positive definite estimation and r-negative definite
estimation. We also solve this problem under the additional restriction that only estima-11
tion functionals of the form E[f] = aj f ( xj )  are allowed. The proofs are constructive.

J= 1
Some examples are also included.

1. Introduction

Let G be a continuous linear functional on C s[a, b], where the (real) linear
4 — 1

space C s[a,b] is endowed with the norm ||/ || =  | / ^ ( ° ) |  +  ||/^ ||o o ' For
A-=0

the approximation of such a functional, one frequently uses (linear) point 
functionals, i.e. functionals of the form

a) e[/]= E Í> ^/w(*a
j= 1 k=0

Such a functional is called an estimation functional for G. One of the most 
useful properties an estimation functional can have is definiteness: For r ^ s, 
E  is called r-positive definite (r-negative definite) with respect to G  if, for 
every /  E C T[a, ft] with ^ 0, there holds G[f] — E[f] ^ 0 (G[/] — E [ f  ] ^ 0). 
(When there is no danger of confusion, we shall drop the reference “with 
respect to G" in the rest of this paper.) If an r-positive definite (r-negative

1991 Mathematics Subject Classification. Primary 41A80, 41A29. 
Key words and phrases. Approximation of functionals, definiteness.

0081-6906 /99 /$  5.00 © 1999 Akadémiai Kiadó, Budapest
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definite) estimation functional E  exists, we say that the functional G ad
mits r-positive definite estimation (r-negative definite estimation). Classical 
examples are, for r =  2, the midpoint formula and the trapezoidal formula

b
as estimations for the integral G[f] =  J f(x)dx  [1, pp. 6 Off.]. A number of

a
criteria are known that can be used to investigate whether a given estimation 
functional is definite or not, cf., e.g., Brass and Schmeisser [2] (where also 
some equivalent characterizations of definiteness are stated), Förster [6], [7], 
Köhler [8] or the author [4],

In this paper, we will discuss the conditions on G that are necessary 
and/or sufficient for definite estimation functionals to exist. The case that G 
admits both r-positive definite estimation and r-negative definite estimation 
is of particular interest since in this case we can give a guaranteed inclusion 
for the true value of G[f] under the assumption that the r-th derivative of /  
does not change its sign: Let E + (E~) be an r-positive definite (r-negative 
definite) estimation functional, then we have

(2) E + [ f ] i G [ f ] i E - [ f ]

if, say. / ( r) ^ 0. We shall see, however, that, in contrast to almost all previous 
observations, there exist functionals that admit r-positive definite estimation 
but not r-negative definite estimation (or vice versa) for some r. An example 
of such a functional has recently been described in [3] (see also § 4 below).

In the remainder of this section, for the convenience of the reader, we 
collect some well-known results which we shall use in the later sections. § 2 
contains the results on the existence of definite estimation functionals. In 
§ 3, we deal with the case that for the estimation of G[f] only function 
values of /  are available, but no information about derivatives. We thus 
have to investigate the problem under the restriction that only estimation 
functionals E  of the form

n
(3) % ]  =  £ “ ; / ( * ; )

3=  1

are allowed instead of the more general form (1). We shall see that additional 
conditions must be imposed on G in order to ensure the existence of definite 
estimation functionals of this restricted form. Finally, § 4 will contain a 
number of examples.

The following results about the representation of continuous linear func
tionals can be found, e.g., in the book of Sard [9, Chapters 1 and 3].

First, we recall that a function f  :[a,b]—> E is said to he a normalized 
function of bounded variation if /  is of bounded variation on [a, 6], / (a )  =  0, 
and f ( x  +  0) =  f(x)  for x >  a. The set of normalized functions of bounded 
variation will be denoted by Vo- Then we have the following representation 
theorem [9, p. 139]:
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THEOREM  1.1. Let G be a continuous linear functional on C s[a, ft], and 
let y G [a, 6]. Then there exist uniquely determined real numbers col3/, C\fV, 
. . . ,  cs- i ty, and a uniquely determined function p.Sty G Vb such that, for every 
f  G C s[a, ft], there holds

(4) G[/] =  X > m / “ M  + (*)•

The representation (4) for G will be called the canonical representation 
for G (with respect to the point y).

It will turn out that it depends on the properties of faSty whether G admits 
.s-definite estimation or not. Therefore, for the application of our results, we 
need some method to calculate /rS)J/ when G is given. Such a method is given 
in [9, Chapter 3, equations (40) and (41)]:

THEOREM  1.2. Under the assumptions of Theorem 1.1, we have that

cj,y = ̂ G[(--yn 0 < ^ 6 - - l .

Furthermore, we have

/H> ,y{x)
0 if x =  a,
lim G[6n(x, •)] if a < x ú b ,

71—>00

and, for s ^ 1,

rII
__

_
✓Sw

-

hm G
(a — 1)! n—>oo /  

. V
[ ■ - t ) s~ l 9n { x , t ) d t

if x =  a. 

if a < x S b,

where
1
1 +  n(x -  t.) 
0

if t ^ x ,
if x < t < X  + 1/n, 
if t i Zx +  1/n.

We remark that a functional that is linear and continuous on C s[a,b] is 
also linear and continuous on all the sets C r[a., b] with r ^ s. Thus, we have a 
canonical representation for such a functional for every r ' t s .  The following 
theorem establishes the relation between the measures /j.s<y and jtr,y.
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THEOREM 1.3. Let G be a continuous linear functional on C s[a, b]. Con
sider the canonical representation of G with respect to y. We have

cs,y =  ß s,y(b) and
X

ps+\,y(x) = -  I  n s,y(t)dt + p S}y{b)(x-y)+.
a

Here, (-) + denotes the truncated power function given by t+ =  0 if t <  0 and 
t.+ =  t if  t ^ 0.

P r o o f . From Theorem 1.2 and Theorem 1.1, we have 
s_! b

s '-Cs,y =  G [ ( - - y ) s} =  J 2 c j ,y j - j { x - y ) s + /  - £ - { x - y ) s dns,y(x) 
i=o ldx  {  ldx  J

b
=  .s! j  d p Siy { x )  =  s \ p s ^ y { b ) .

a
Furthermore, partial integration of (4) yields

"r
G '[ / ]  =  ^ c Jlj/ / { j)( y )  +  / (s) { b ) y s , y ( b )  -  /  p , Siy { x ) d f [ s \ x )

j=0 a
6 -1  b 

=  E cj , y f ij)(y) +  f {s)(l>)hs,y(b)+ I  f ( s+1\ x ) d M ( x ) ,  
j=° a

X

where M ( x )  =  — j  p Sty ( t )d t .  Now, 
a

/ (s)( % 6 »  =  ( / (a)(6) -  .f{s](y)) lh,y(b) +  f (SHy)Hs,y(b)
b

=  / (,) {y)cs,y +  Ms, y(b) J / ('S'+1 ] {x)dx,
y

and thus
s h. b

G[f]  =  Y . chv f U)^  +  >Gy(b) [  ,& +1)(x)dx+ j  f ^ \ x ) d M { x )
3=0

s °
=  E c3, v f i3H v )  +  / / (a+1)(a:)d(M(x) + / ia>y(6)(x- y)+). 

j=0 o
From the uniqueness of the representation (4), the theorem follows. □
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2. Approximation using general estimation functionals

In this section, we discuss the case of general estimation functionals. 
Since the proofs of the results are not essentially different from those con
cerning restricted estimation functionals (cf. §3), we only give explicit proofs 
for the latter. We remark here that, in the proofs of our results, we cannot 
only show that definite estimation functionals exist (if they exist), but we 
will actually construct such estimation functionals.

First of all, let G be a continuous linear functional on C s [a, b]. Then, by 
obvious symmetry arguments, G admits s-negative definite estimation if and 
only if —G admits s-positive definite estimation. Thus, we may restrict our 
attention on the one-sided case to functionals admitting s-positive definite 
estimation.

Our first result gives a characterization of the functionals having this 
property.

THEOREM 2.1. Let G be a continuous linear functional on C s[a, b], given 
by its canonical representation (4) with, respect to the point, y. Then the 
following statements are equivalent:

(a) G admits s-positive definite estimation.
(b) For every y  6 [a, 6], there exists a polynomial py of degree s and a step 

function Ty with finitely many jumps such that the function pts,y~Py~  
Ty is nondecreasing.

(c) There exist y £ [a, b], a polynomial py of degree s and a step function 
Ty with finitely many jumps such that the function //..s. , y —  py —  t v is 
nondecreasing.

The case s =  0 of Theorem 2.1 admits a particularly simple reformulation. 
Recall that, by Theorem 1.2, po,y is actually independent of y.

COROLLARY 2.2. Let G be a continuous linear functional on C°[a. b]. 
Then G admits 0-positive definite estimation if and only if po,y 'ls decreasing 
at finitely many points only.

We can also give a reformulation of Theorem 2.1 in the case s ^ 1. For 
this purpose, we recall that a function <p £ Vo can be decomposed into an 
absolutely continuous function <̂ atl and a step function <-/>M with countably 
many jumps according to =  </>tacl +  cf)*K The function (-/>[acJ will be called the 
continuous part of r/>, and will be called the discontinuous part of <fi. Since 
(/>la<l is absolutely continuous, there exists a function r/>(atl 6 L\[a, /;] such that

X

</>[aci(x) — <̂ acl(a) =  / ( j)^'(t)dt holds for x  6 [a, ft]. The function (j)^'  will be
a

called a (generalized) derivative of . Then we have the following result.

Corollary 2.3. Let s ^ 1, and let, G be a continuous linear functional 
on Cs[(i, 6]. Then the following statements are equivalent.
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(a) G admits s-positive definite estimation.
(b) For every y E [a, b\, the discontinuous part of /is>2/ has got finitely

iaclmany jumps in negative direction, and, for the continuous part
[acl7of p Sty, there holds ess infivs,y (a-') > —oo.

x€[a,b]
(c) There exists y E [a, b) such that p.s ŷ fulfils the conditions of (b).

As mentioned in the introduction, it is particularly useful if G admits 
both s-positive definite estimation and s-negative definite estimation. Based 
on Theorem 2.1, we can now characterize these functionals. We start with 
the case s =  0 and find that, among all continuous linear functionals on 
C°[a , ft], only the trivial functionals admit 0-positive definite estimation and 
O-negative definite estimation.

T h e o r e m  2.4. Let G be a continuous linear functional on C°[a, b]. Then 
G admits 0-positive definite estimation and O-negative definite estimation if 
and only if there exists n E  N and numbers x | , X2 , . . .  ,xn 6 [a, b] and. a i, 0.2,
. . .  , an E E such that

n
G[f] =  ^ aj f { xj).

3=1
For functionals on C s[a, ft], s ^ 1, the situation is slightly more complex.
T H E O R E M  2.5. Let s ^ 1 and let G be a continuous linear functional 

on C s \a,b], given by its canonical representation (4). Then the following 
statements are equivalent:

(a) G admits s-positive definite estimation and s-negative definite esti
mation.

(b) For every y E [a, b\, there exists a step function ry with finitely many 
steps such that n s „ — ry fulfils a Lipschitz condition.

(c) There exist y E [a, b] and a step function ry fulfilling the condition of 
(b).

As a consequence of the results above, we have the following very simple 
sufficient criterion.

COROLLARY 2.6. Let, s >  r ^ 0. Let G\ be a continuous linear functional

on C r[a., b\, and let G-2[f] '■= X] with Xj E [a, b] for j  =  1 , 2 , . . . , «.
j - 1

Then, G := G\ +  G2 is a continuous linear functional on C s[a,b\, and G 
admits s-positive definite estimation and s-negative definite estimation.

R e m a r k s . 1. The case G2 = 0 is especially important. Explicitly, it 
reads: If G is a continuous linear functional on C r[a,,b] and s > r, then G 
admits s-positive definite estimation and s-negative definite estimation.

2. We do not have equivalence in Corollary 2.6. To see this, consider 
a function (f> E C[a. b] with (ffia.) =  0 which is not of bounded variation, and
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define <I>(.t) := J <p(t)dt. Then fulfils a Lipschitz condition, and by Theo-
a

b
rein 2.5, the functional G defined by G [f ] := J f ( s\x )d $ (x )  admits s-positivea
definite estimation and .s-negative definite estimation. Now, assume that G 
is a continuous linear functional on C s~l [a, ft]. Then, from the definition 
of G, a partial integration yields

b I)

G[f] =  - m f {s- 1\ b ) -  I  f ( s~l\x)dcf>(x)= j  f l - lHx)d4>*(x),
a a

where <p* (x ) =  —<p(x) if n ^ x < b and <// (5) =  —2(/>(b). Since </> is not of bound
ed variation, </>* is not of bounded variation either. But by Theorem 1.1, there 
exists a function ip € Vo such that

b
G [ f ]=  j  fG ~'\x)diP(x).

Hence, for every /  6 C s 1 [a, 6], we have that

b
J  f ( ° - 1\x)d(ip(x)-<p*(x)) =  0,
ft

which yields (p* — ip, a contradiction. Thus, G cannot be a continuous linear 
functional on C s~y[a, b]. Another reasoning that can be applied to show this 
uses the fact that, since cp is not of bounded variation, a classical result [9]

b
states that the integral J f ' s~l\x)d(p{x) in the definition of G does not exist

ft
for every /  G C s~l [a, 5].

3. Approximation using restricted estimation functionals

In some situations, information about the derivatives of /  is not avail
able or can be obtained only under unreasonable difficulties. In this case, 
estimation functionals of the form (1) must be replaced by functionals of the 
form n

j =i
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These functionals will be called restricted estimation functionals. Conse
quently, we say that a continuous linear functional G admits restricted s- 
positive definite estimation (s-negative definite estimation) if an .s-positive 
definite (s-negative definite) restricted estimation functional E  exists.

It is immediately clear that G admits .s-positive definite estimation if it 
admits restricted .s-positive definite estimation, and analoguously for neg
ative definite estimation. The converse statement, however, is not true in 
general. In this section, we shall see how the additional conditions on G 
must be chosen. First, we consider the case s =  0. This is the only case 
where no additional conditions are necessary.

It is again obvious that we can restrict our attention on the one-sided 
case to the problem of restricted s-positive definite estimation.

T h eo r em  3.1. Let G be a. continuous linear functional on C°[a, b]. Then 
G admits restricted 0-positive definite estimation if and only if G admits 0- 
posit.ive definite estimation.

PR O O F. The direction “=>” is clear. To prove “•$=”, we note that, if, say, 
G admits 0-positive definite estimation, the associated estimation functional 
is necessarily a restricted estimation functional. □

The principal result in the case s =  1 is the following theorem which 
states that the function /t i in the canonical representation of G must have 
the properties described in § 2 and, additionally, it must not have jumps in 
the “wrong” direction.

THEOREM 3 .2 . Let G be a continuous linear functional on C 1 [a, b\. Then 
the following statements are equivalent.

(a) G admits restricted 1-positive definite estimation.
(b) For every y E [a, 6], there exists a polynomial py of degree 1 such that 

the function Pi , y—p y is nondecreasing.
(c) There exist y  E [a, b] and a polynomial p y of degree 1 such that the 

function p> i y — Py is nondecreasing.
(d) For every yE  [a, ft], the discontinuous part of p.\.y has got no jumps

faclin negative direction, and, for the continuous part p\ of p.\.y , there 

holds ess inf (x) > —oo.
xe[a,6] 1 ,y

(e) There exists yE  [a,b\ such that //,i .y fulfils the conditions of (d).

P roof. The implications (b) =£• (c) and (d) =4> (e) are trivial.
For the proof of (c) => (a), define E[f] p'y(a)(f(b) — f(a)).  Then a 

short calculation yields

b

G [ f ] - E [ f ]  =  I  f ' (x)d(pUy(x) - p y(x))Z 0
a
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if / '  ^ 0. Thus, E  is a restricted 1-positive definite estimation functional 
for G.

To prove (a) => (b), let y € [a, /;]. By assumption, there exists a restricted 
estimation functional E  such that G[f] — E [ f ] ^ Ü whenever / '  ^ 0. Note 
that this implies G[f] — E[f] if /  is a constant function. Thus, the canonical 
representation of G — E  is

b

G [ f ] ~ E [ f } =  I  /'(•/;)d P (x) ,

a

where p is nondecreasing and independent of y. Hence,

b

E [f]  =  c0, y f ( y ) +  I  f ' ( x ) d { f H , y ( x ) - p { x ) ) .

a

Now, since E  is a restricted estimation functional, we see that p\^y — p is 
a piecewise linear spline function and, in particular, it fulfils a Lipschitz 
condition, i.e. there exist real constants cv2,y such that for every x. x € 
[a, 6], we have

_ ^ (Ml,y(x ) ~  P(x )) ~  (Ml,y(x ) ~  P(x )) ^
<X\,y ^  r  _  y -------------------------- i  ( * 2 ,y

Setting py(x) :~a\^yx, we obtain that p i t1J — p — py is nondecreasing. Since 
p is also nondecreasing, statement (b) follows.

For the conclusion (b) => (d), we note that, if either of the conditions of
(d) would be wrong, then we would have a contradiction to statement (b) of 
the present theorem.

Finally, to prove (e) => (c), choose py(x) : =  xess in fp ^  (x). Then a
i£ [a,6 ]

simple calculation shows that p i<y — py is nondecreasing. □

In the case s ^ 2, we must impose even more additional restrictions on 
the measure p,s>y: In addition to the conditions of § 2 and the condition on 
the jumps mentioned for the case s =  1, we must demand a certain “regular” 
behaviour near the end points of the interval [a, 6].

T heorem 3.3. Let, s ^ 2, and let G be a continuous linear functional on 
C s[a.,b]. Then the following statements are equivalent:

(a) G admits restricted s-positive definite estimation.
(b) For every y  € (a, b), the following four conditions hold:

(1+) p Sty does not have jumps in negative direction.
(II+ ) ess in f//,y  (:/;) > -oo .

x£[a,6J
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( c )

( d )

(e)

(III+) liminf(a: —a )1 sß^,j (x) > —oo.
x—)a

(IV+) liminf (6 — (x) > — oo.
x—tb

There exists y £  (a,b) such that conditions (I+)-(IV+) of (b) hold. 
For y =  a, conditions (I+), (11+) and (IV+) of (b) hold, and. there 
holds

(z -a )1- 6'/^« (z )+ (-l)s E  Cj,a{a-x)-J/ { s - l - j ) \
3 = 0

(H i;)  lim inf

> —oo.
For y =  b, conditions (I+), (11+) and (III+) of (b) hold, and there 
holds

(IV1) lim inf
x —*b

{ b - x ) 1 V Í Í  ( * ) + E  c i , b ( b -
3 = 0

■x) J/ { s - l - j ) \ >  —oo.

For the proof, we shall use
Lemma 3.4. Let s ^ 0, and let G be a continuous linear functional on 

C s[a, 6]. For some arbitrary but fixed a < xq <  x\ < x.2 < ■ ■ • < xr <  b, let 
n r[/] be the int.eryola.tiny polynomial for f  with nodes Xo, x \ , . . . ,  xr . Then 
G admits restricted s-positive definite estimation if and only if G — Gr admits 
restricted s-positive definite estimation, where Gr : = G  o i l , .

PROOF. For 0 L j  £  r .  let l j  denote the j - th  Lagrange polynomial with 
respect to the nodes xq, x \, . . .  , x r . Then

Gr[/] =  G[nr[/]] =  G f ( xj )h
3= 0

= E / ( * i ) c [ y -
3 = 0

Therefore, we can see that Gr is a restricted estimation functional. Thus, 
if E\  is an s-positive definite restricted estimation functional for G , then 
E\ — Gr is an s-positive definite restricted estimation functional for G — Gr. 
On the other hand, if E2 is an s-positive definite restricted estimation func
tional for G — Gr, then £+ +  Gr is an s-positive definite restricted estimation 
functional for G. □

P ro o f  of T heorem  3.3. (b) =» (c) is obvious.
To prove (a) (b), let y 6 (a, b), and let E  be an s-positive definite

restricted estimation functional for G. Then E  has got the canonical repre
sentations

f{x)de0,y{x) f ( s \ x ) d e s , y { x ) .

Here, eo}1J is a step function. Therefore, by repeated application of Theo
rem 1.3, we can see that esyj is a piecewise polynomial of degree s which has
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got s-fold zeros at a. and b. Furthermore, we can see from Theorem 1.3 that 
es>y is Lipschitz continuous. Now, since E  is an «-positive definite estimation 
functional for G\ //,SjW — is nondecreasing. Therefore, nSyy cannot have 
jumps in negative direction, proving (I+). Condition (11+) follows in a simi
lar way as in the proof of Theorem 3.2 (d). Since eStV has got an «-fold zero 
at a, we have that, for some Sa > 0 and x € [a, a +  Sa), eStV(x) =  7a(x — a)11.

iaclSince f i s j  — t s.y is nondecreasing, we have that, for x 6 [a, a +  Sa),

^ e's y(x) =  s jaix  -  a)*-1 ,

which implies (III+). Similarly, we obtain (IV+) using the fact that eStV has 
got an s-fold zero at b.

For the conclusion (c) => (a), choose a < xo <  x\ <  ■ ■ ■ <  a;s_i < b and 
construct the functional Gs_i from Lemma 3.4. Then

and
b

H [ f ] : = G [ f } - G , - 1[f}  =  I  f ^ ( x ) d ^ , y ( x) ,

a

where ipSty =  ^s,y ~  Since G+_ 1 is a restricted estimation functional, we 
have that

b

G s- i [ f ]  =  I  f {x)d( j )0,y (x) ,

a

where <f>o,y is a step function with a finite partition. Repeated application of 
Theorem 1.3 now yields that cj)Sty is continuous and a piecewise polynomial. 
Therefore, cpS)y fulfils a Lipschitz condition. Thus, conditions (1+) and (11+) 
are equivalent to

(F+) ips,y does not have jumps in negative direction
and

(11+) ess inf (x) > -0 0 , 
x6[a,i>]

respectively. It is another consequence of Theorem 1.3 that (f)s>y{x) =  0 for 
x e  [a, min(xo, y)\ and 4>s,y{x) =const, for x e  [max(is_ i,i/), 6], Thus, for x 6 
[a, min(3;o,y)] U [max(.7;Ä_i,y),6], there holds <f>'s y(x) — 0. Therefore, (III+) 
is equivalent to

(III+) liminf(a: — a )l~sip^y (x) > —00, 
and (IV+) is equivalent to
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(IV',) liminf(& —z )1 ( x ) > —oo.
x —>6

Now, according to Lemma 3.4, the statement (a) will be proved if we show 
that H  admits restricted .s-positive definite estimation.

iacl/Consider first the case that M  := ess info's,»/ (%) ^ 0. Then '0s,?/ is nonde-
a;G[a,6]

creasing. Therefore, H[f] ^ 0 if /(*) ^ 0. This yields that E  =  0 is a restricted 
s-positive definite estimation functional for H .

In the case M < 0, we construct the required estimation functional in the 
following way. We have

b b
H[f} =  j  f ^ \ x ) d ^ } y {x) +  f  f ^ \ x ) ^ \ x ) d x .

a a

Now, denote the divided difference of the function /  with nodes t,\, i2, ■ ■ ■, i* 
by [i], <2, • • •, tk \f , and define B s_i(x):=[a,  x i , x2, . . . ,  xs- i ,  &](•-»)+“ V(s -  1)! 
to be the s-th Peano kernel of the divided difference. Then, following Schu- 
maker [10, § 4.3], -5.s- i  is the basic spline of degree s — 1. This spline has 
got (s — l)-fold zeros at a and h. and it is positive throughout the open in
terval (a , b ). Therefore, by conditions (II'+), (HI'+) and (IV'+ ), there exists a
constant a  such that i/j^j ( x ) — <x B , _ i (:e ) ^  0 for every x & [ a ,  b\. Now, since 
B s- i  is the Peano kernel of the divided difference, we have that for every 
/  G C s [ a ,  b ] , there holds

[a,xi ,x2, . . . , x s- i , b ] f  =  I f ( s\x ) B s-i(x )d x .

Therefore, assuming ^ 0,

H[f]  -  n[a, x \ , .t2, • ■ ■, x s- U b\ f
b b

=  f  / (S> W # {1 (I ) +  I  f ^ ( x )  { ^ \ x ) - a B s. l ( x ) ) d x ^  0.
a. a

Since a divided difference is a restricted estimation functional, we have now 
found a restricted s-positive definite estimation functional for H  completing 
the proof.

To see that (c) (d), we just have to note that, by Theorem 1.2,

f G [( - -y )s - ( - - a ) s]/s! if x ^ y ,  
if x < y.( 5)
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Therefore, /zS)?/ — //..V1 is a continuous piecewise polynomial, and hence Lip- 
schitz continuous. Furthermore,

0 if x > y,

~  E  c j A a  -  x ) - l~3/(8 -  1 -  j ) \  if x < y. 
j =0

From these relations, the equivalence can easily be seen.
Finally, for the proof of (c) <=S> (e), we proceed in a similar manner using 

the fact that

( 6) h s , y { x ) l l s,b
G[ ( - - y y - ( - - xy]/s\
0

if xl>y,  
if x <  y. □

Now, we turn our attention once again towards the functionals admit
ting both restricted s-positive definite estimation and restricted .s-negative 
definite estimation. As a consequence of the previous theorems, we obtain 
the following characterizations.

COROLLARY 3.5. (1) Let, G be a continuous linear functional on C tí[a. ft]. 
Then G admits restricted 0-positive, definite estimation and restricted. 0- 
negative definite estimation if and only if there exist n E N and numbers 
x \ , X2, ■ ■ ■, xn E [a, i>] and oi, da, • . . ,  an G K such that

3=1

(2) Let G be a continuous linear functional on C 1 [a, b\. Then G admits 
restricted 1-positive definite estimation and restricted 1-negative definite es
timation if and only if there exists yE  [a, 5] such that, p \ ty fulfils a Lipschitz 
condition. This is the case if and only if p.\ty fulfils a Lipschitz condition for 
every y 6 [a, b].

P roof. The first part, is an almost trivial consequence of Theorem 3.1 in 
connection with Theorem 2.4; the second part is an immediate consequence 
of Theorem 3.2. □

Corollary 3.6. Let, s ^ 2. and let, G be a continuous linear functional 
on C s[a, 6]. Then the following statements are equivalent:

(a) G admits restricted s-positive definite estimation and restricted s- 
negative definite estimation.

(b) For every yE  (a,b), pSiy fulfils a Lipschitz condition and =

Msty (&) =  0 for j  =  1 ,2 , . . . ,  s — 1 and is bounded in a neigh
bourhood of a and in a neighbourhood of b.

(c) There exists yE  (a,b) such that pia>y fulfils the conditions of (b).
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(d) p s<a fulfils a Lipschitz condition and =  (—l)-,+1cs_j)a and

^  {b) =  0 for j  =  1, 2 , . . . ,  s -  1 and  ̂  ̂ is bounded in a neigh
bourhood of a and in a neighbourhood of b.

(e) ll s,b fulfils a Lipschitz condition and  ̂(a) = 0  and /x[â  (b) =
[acl(s)

—cs-jfi for j  =  1, 2 , . . .  , s — 1 and p ls f  is bounded in a neighbour
hood of a, and in a neighbourhood of b.

P r o o f . The implication (b)=>(c) is obvious. To prove that (c)«=>(d) and
(c)<t»(e), we proceed as in the respective parts of the proof of Theorem 3.3, 
using equations (5) and (6 ).

For the conclusion (a) => (b), we note that by conditions (1+) and (11+) 
of Theorem 3.3 and their counterparts, the function p.SyV is continuous (and
hence absolutely continuous), and that p'sy  =  p \ i s  bounded from both 
sides. Thus, p.SiV fulfils a Lipschitz condition. Furthermore, from conditions 
(III+) and its counterpart, we can see, for j  < s,

lim (x -  n.)1 3 p's y {x) =  lim (x -  a)s 3 [(a; -  a,)1 s p^y(x)] =  0.x—>a ,J x—M
For j  =  1, we obtain p's y(a) =  0. By induction, using Taylor’s formula, we

obtain that p^:y ^ \a )  =  0 for j  =  1, 2 , . . . ,  s — 1 and that is bounded
in a neighbourhood of a. In the same way, using conditions (IV+) and its 
counterpart, we prove the results on the behaviour of the derivatives of 
at b.

For the proof of (c) => (a), we recall that p Sjy fulfils a Lipschitz condition. 
Hence it cannot have any jumps and its derivative is bounded. Consequently, 
conditions (1+) and (11+) of Theorem 3.3 and their counterparts hold. The 
condition on the derivatives ensures in particular that the derivatives exist. 
Thus,

( x - a ) l - s

3=0

[aclb+B, .
Ps,y ( ° ) (a. _ o)J + l - 8 +

r-
(0

( s - i y .  ’

where, by assumption, the sum vanishes, and therefore the expression on the 
left-hand side remains bounded for x —>• a proving (III+) and its counterpart. 
Conditions (IV+) and its counterpart can be shown in a similar way. Thus, by 
Theorem 3.3, G admits restricted s-positive definite estimation and restricted 
s-negative definite estimation. □

R em ark . With respect, to the construction of the restricted estimation 
functionals using B-Splines (i.e. Peano kernels of divided differences), we

b
remark that, for the special case G[f] =  f  f (x)dx.  a similar process has been

a
described by Ehrich and Förster [5].
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We can now deduce some sufficient conditions for functionals to adm it 
restricted  definite estim ation.

T heorem 3.7. Let G be a continuous linear functional on C s[a,b], and 
let r > s . If G admits restricted s-positive definite estimation and restricted 
s-negative defi.ni.te estimation, then G admits restricted r-positive definite 
estimation and restricted r-negative definite estimation.

PROOF. It is sufficient to give a proof for r =  s +  1. We investigate the 
canonical representations

where y  € (a, 6) is arbitrary but fixed. By Theorem 1.3, p.s+\,y is Lipschitz 
continuous. On the interval [a,y), there holds p.'s+l y =  —fj.s,y Thus, the 
boundary conditions which are required for p.s+\,v at x =  a by Corollaries 3.5 
and 3.6 are fulfilled because of the respective conditions fulfilled by y,s>y. 
Similarly, the conditions for p s+i,y at x  — b are also fulfilled. □

COROLLARY 3.8. Let G be a continuous linear functional on C°[a.,b\, 
and, let s ^ 1. Then G admits restricted s-positive definite estimation and 
restricted, s-negative definite estimation.

PROOF. Choose an arbitrary y €  (a, b), and consider the canonical rep
resentations

S — 1

f ( x ) d p o , y { x )  =  cj , y f Ü ) ( y )  + 
j =0

Since s > 0, /is.y is Lipschitz continuous by Theorem 1.3. Thus, Part 2 of 
Corollary 3.5 implies the desired result for s =  1. Now, the proof for arbitrary 
s ^  1 follows immediately from Theorem 3.7. □

Our next result deals with the case of a functional G that does not admit 
s-positive definite estimation or s-negative definite estimation. It states that, 
under certain assumptions, we can still get an inclusion for G[f] in the sense 
of equation (2) using restricted estimation functionals if information on /  
outside the interval [a, 6] is available.

THEOREM 3.9. Let r > s ^ 0, let G be a continuous linear functional on 
C s[a, b], and let a* < a <  b < b*. Then G is a continuous linear functional

j  f (s\x)dnSiy(x).
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on C s [a*,b*], and, as such, it admits restricted r-positive definite estimation 
and restricted r-negative definite estimation. If additionally there exists y  G 
[a, b] such that p S}V fulfils a Lipschitz condition on [a,b\, then G (interpreted 
as a continuous linear functional on C s[a*,b*]) admits restricted s-positive 
definite estimation and restricted s-negative definite estimation.

R e m a r k . This result can be interpreted as an analógon to the case 
G2 =  0 of Corollary 2.6. Indeed, we may say that the latter result is the 
limit case a* —> a, b* -^b of Theorem 3.9.

P r o o f . The fact that G is a continuous linear functional on C s[a*,b*} 
is obvious.

Now, let G (on Cs[a,b]) have the canonical representation 

,-1 >’
G[f} =  cj , y fU)(y) +  /  f {s)(x )dps,y(x).

„•—n •'

Then on C s[a*,b*}. G has got the canonical representation

s - 1 b
r

G [ f ]  - E c3 , y f b ) ( y ) +  / f i s ) {x)dp*y(x)
3=0 a*

'  0 for a* L  x <  a
Ihn p s,y(z) for x =  a,

h*s , y ( x ) =  < z —ya+ J

P s , y { x ) for a  <  x ^  b,

- l h , y ( b ) for I X x f z l f .
If /J,S}y fulfils a Lipschitz condition on [a, b], then p* also fulfils a Lipschitz
condition on [a*, b*]. Furthermore, p * J ] \ x )  = 0  for x G [a*, a) U (b, 6*] and 
j  =  1 , 2 , . . . ,  s. Thus, by Corollaries 3.5 and 3.6, G admits restricted s- 
positive definite estimation and restricted s-negative definite estimation.

If r >  s, we can see G as a continuous linear functional on Cr[a*, 6*] with 
the canonical representation

g [ / ] = E  /  / w
3= 0 «•

{ x ) d p f i y { x ) .

The usual reasoning with the help of Theorem 1.3 yields that p.*y is Lip
schitz continuous. The fact that the boundary conditions of Corollaries 3.5 
and 3.6 are fulfilled follows in the same way as above for r =  s. Thus, 
G admits restricted r-positive definite estimation and restricted r-negative 
definite estimation. □
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4. Examples

In this section, we apply the results of the previous sections to some of 
the most important examples of continuous linear functionals occurring in 
practice.

4.1. Derivatives. As a first example, we consider the case that we want 
to give an estimation for the functional

G [ / ] : = /W(0 ,

where s ^ 1 and € [a, b]. Since G is already an estimation functional, it 
is clear that it admits r-positive definite estimation and r-negative definite 
estimation for every r ' t s .

However, the question of the existence of restricted estimation functionals 
for G has got a more complex answer. The canonical representation of G (as 
a continuous linear functional on Cs[a, 6]) is given by

b
G[f} =  I  / ('s)(j;)i/p,v / (:r),

a

ßs,y{x ) —
{

0
1

if x < G  
if x ^ G

if £ > a and í l s , y ( x )
0 if X  =  G
1 if X  >  G

if £ = a.

Thus /i.s)y =  0, and //If], has got a step in positive direction. Therefore, from 
Theorems 3.2 and 3.3, we obtain that G admits restricted .s-positive definite 
estimation. An application of these theorems to the functional — G shows 
that G does not admit restricted s-negative definite estimation.

For every r > s and every £ £ (a. I>). G admits restricted r-positive definite 
estimation and restricted r-negative definite estimation by Corollary 3.6 since 
in this case, (x) =  0 in the canonical representation

6

G[.f} =  . & \ 0 +  /  f {r)( x ) d ^ ( x ) .
a

If, however, £ =  a, then conditions (I+), (11+) and (IV+) of Theorem 3.3 
are fulfilled, but the limit condition (III+) is fulfilled if and only if i—  s 
is even. Therefore, G admits restricted r-positive definite estimation if and 
only if r — .s is even. Analogously, we find that G admits restricted r-negative 
definite estimation if and only if r — s is odd. For i  — b, we see in a similar 
way that G admits restricted r-positive definite estimation for every r > s, 
and G never admits restricted r-negative definite estimation.

Let us give an interpretation of this situation in other words. Assume 
we can calculate function values of / ,  but no derivatives. Moreover, assume
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we know that /  is r times continuously differentiable, and that f 1'1'1 ^ 0. If 
we want to find an inclusion (in the sense of equation (2)) for /^ (£ )  (where 
r > s ) ,  we can only succeed if information about /  is available on both sides 
of £. If we have information on one side of £ only (i.e. if £ =  a or f,~b),  then 
one of the required restricted estimation functionals does not exist.

4.2. Weighted integrals. The classical problem in numerical integration 
is the estimation of the functional

b

G [ f } : =  I  w(x)f(x)dx,
a

where the weight function w E Li[a,b] is assumed to be fixed. Here, we set
X

W{x)  :=  f  w(t)dt- and see that the canonical representation of G is given by
a

b
G [ f } =  I  f(x)dW(x).

a

Obviously, W  is absolutely continuous. Thus, G admits (restricted) 0- 
positive definite estimation if and only if W is nondecreasing. This is equiv
alent to w(x)  ^0 a.e.. Similarly we see that G admits (restricted) 0-negative 
definite estimation if and only if w(x) ^0 a.e.. Hence G admits (restricted)
0-positive definite estimation and 0-negative definite estimation if and only 
if w(x)  — 0 a.e., which is equivalent to G =  0.

For every 1, however, by Corollary 3.8, G admits restricted s-positive 
definite estimation and restricted ,s-negative definite estimation (and hence 
also unrestricted .s-positive definite estimation and «-negative definite esti
mation) without any additional conditions.

4.3. Singular integrals. For the approximation of the Cauchy principal 
value integral

- l
with A € (—1,1), the problem of finding definite estimation functionals has 
been considered in [3]. There, it has been stated that G admits restricted 
«-positive definite estimation and restricted s-negative definite estimation 
for every s ^ 2. Moreover, G  admits restricted 1-positive definite estimation 
but not restricted 1-negative definite estimation. The reason can be found 
by a look at the canonical representation of G:

i
G[f] =  / (A)  In ^  + /  f ( x W ltX(x),

-1
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fi\,\{x) =  l +  x +  { X - x ) l n |A -  :/-•!
1 +  Asgn(A — x)

Here is continuous and strictly increasing, but its derivative is not 
bounded from above. Hence does not fulfil a Lipschitz condition, and 
by Corollary 2.3, G does not admit 1-negative definite estimation.

Similar results hold for integrals with singularities of higher order (inter
preted in the finite-part sense).

5. Concluding remarks

We have discussed the problem of finding an inclusion for the value £?[/] 
in the sense of equation (2) under the assumption that some derivative of 
/  has no change of sign. For this purpose it is most convenient to use 
restricted estimation functionals. In § 3, we have given criteria that can 
be used to show whether this is possible or not. Owing to the constructive 
nature of the proofs, we can really find the required functionals if they exist. 
If they do not exist, different things may happen: If the reason for the 
nonexistence is a problem with the boundary conditions of Corollary 3.6, we 
may use information on /  from a larger interval (if such information exists 
and is available), cf. Theorem 3.9. In case of other problems like jumps in 
the “wrong” direction, or if such additional information is not available, we 
may still find an inclusion using general estimation functionals instead of 
their restricted relatives. In this case, conditions for the existence of such 
inclusions and a method for the construction are given in § 2. But, as the 
example of the Cauchy principal value integral in § 4.3 shows, there exist 
functionals which simply do not admit, an inclusion of this type for some s.

The methods and results can also be used if only a one-sided estimation 
is sought and not an inclusion.

REFEREN CES

[1] B rass, H., Quadraturverjahren, Studia Matliematica, Skript 3, Vandenhoeck & Rup
recht, Göttingen, 1977. MR 56 #1675

[2] B rass, H. and Sciim eisser , G., Error estimates for interpolatory quadrature formulae,
Numer. Math. 37 (1981), 371-386. MR  82j:65012

[3] D iethelm , K ., Definite quadrature formulae for Cauchy principal value integrals, Ap
proximation theory and function series (Budapest, 1995), Bolyai Soc. Math. 
Stud. 5 (1996), 175-186. MR 97m:41031

[4] D iethelm , K., A definiteness criterion for linear functionals and its application to
Cauchy principal value quadrature, .7. Comput. Appl. Math. 66 (1996), 167- 
176. MR 97c:41033

[5] E hrich, S. and F ö r ster , K .-J., On exit criteria in quadrature using Peano kernel
inclusions I: Introduction and basic results, Z. Angew. Math. Me.ch. 75 (1995), 
S625-S626.

[6] F örster , K.-.I., A com parison theorem  for linear functionals and  its  ap p lic a tio n  in
quadrature, Numerical Integration (Oberwolfach, 1981), ed. by G. Hämmerlin,



236 K. DIETHELM: DEFINITE ESTIMATION FUNCTIONALS

International Series of Numerical Mathematics, Vol. 57, Birkhäuser-Verlag, 
Basel, 1982, 66-76. MR  83k:65003

[7] F ö r s t e r , K.-J., Exit criteria and monotonicity in compound quadrature of Gaussian
type, Numer. Math. 66 (1993), 321-327. MR  94i:65030

[8] K ö h l e r , P., A note on definiteness and monotonicity of quadrature formulae, Z.
Angew. Math. Mech. 75 (1995), S645-S646.

[9] S a r d , A., Linear approximation, American Mathematical Society, Providence, RI,
1963. MR 28 #1429. 2nd printing with corrections, 1982.

[10] S ch u m a k e r , L. L., Spline functions: basic theory, Pure and Applied Mathematics, J. 
Wiley & Sons, New York, 1981. MR 82j:41001

(Received October f ,  1906)

INSTITUT FÜR MATHEMATIK 
UNIVERSITÄT HILDESHEIM 
MARIENBURGER PLATZ 22 
D - 3 I1 4 I  HILDESHEIM 
GERMANY

Present address:
INSTITUT FÜR ANGEWANDTE MATHEMATIK 
TECHNISCHE UNIVERSITÄT BRAUNSCHWEIG 
POCKELSSTRASSE 14 
D—38106 BRAUNSCHWEIG 
GERMANY

k. diet helm@tu-bs.de

mailto:helm@tu-bs.de


Studio, Scientiarum Mathematicarum Hungarica 35 (1909), 237 24 6

POINTWISE ESTIMATES 
FOR BERNSTEIN-TYPE OPERATORS

S. GUO and Q. QI

A b s tra c t

For Bernstein-type operators and their combinations, Ditzian and Ivanov gave some 
equivalent relations. In this paper we extend these results in the pointwise case using the 
modulus of smoothness uT'A (/, t) (0 ^  A ^  1).

by

1. Introduction

The Bernstein-type integral operators discussed in this paper are given

(1
" r

.1) Mnf  =  Mn(f ,x)  =  ( n+ l ) ^ 2 p n , k { x )  Pn,k{t)f{t)dt,
k=0 {

where pn,k(x ) — — x)n k. Ditzian and Ivanov [1] constructed an

operator Onf  using linear combinations of M nf  as follows:

2r —1
(1.2) On(f, x ) =  ^ 2  oti(n)MUi ( /, x), no =  n < nx < ■ ■ ■ < n2r- i  |  An,

i=o

where A is independent of n. The operators Onf  satisfy [1]

(1.3) O n ( \ , x )  =  1, O n ((- — x ) m , x )  =  0, for m =  1 ,. . . ,  2r — 1,

2r—1
(1.4) ^ K ( n ) | ^ ß .

i= 0

1991 Mathematics Subject Classification. Prim ary 41A25, 41A36.
Key words and phrases. Operators, linear combinations, moduli of smoothness, K- 

functionals.
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Ditzian and Ivanov [1] showed for r > a, ip(x) =  \ / x ( l  — x), 1 ^ p ^ oo that

H 0 „ f - f l l p =  O ( n - ° ) t = * ^ ( / , t ) p  =  O(tla)
7=7 I l f 2' f l i p  =  0 ( n r ~ a ).

n
Recently, for Bernstein polynomials Bn( f , x ) =  ^  /  (£) Pn,k{x ), Ditzian

k=o
[2] gave an interesting pointwise estimate

(1.6) \Bn{ f - , x ) - f ( x ) \ Z C u f a  (OgASl ) .

However, [2] did not give the inverse estimate. Therefore we gave an inverse 
result for 0 < a < 2 ,  published in [3],

(1.7) Bn(f, x) -  f (x)  =  O ((n" V ~ A(*))a )  <=* u;2a(/, /,) =  0 ( tcv).

In this paper, using <n̂ A( /, i), we extend the results (1.5) for the case 
p =  oo and show for r >  a, 5n(x) =  </?(.?;) +  -^ , 0 fi A ^ 1 that

o „  ( / ,  I )  -  /(.<■)=0(7,%(.«)) 7=7 ( / ,  Í ) = 0 ( i 2” )

* = ►  V 2t\ x ) M V ' X í , X )  =  0 ( 7 2< r r ) ) ,

where ryn, \ { x ) = n  2<5* A(x), /  6 C[0,1] and m^A(/ , i )  is defined by (1.9). 
Here we give some definitions (cf. [1], [2], [4]):

(1.9) sup sup |A ^ A(x)/(.'r)|, 
0<k^t x±rhip*(x)€.[0,l]

(1.10) K ipx(f, t2r) = infs(2r-l)eA.C(o -9llc[o,i] + i2l v 2''V2r)llc(o,i]).

(1.11) Ä > ( / , t r) =  inf ( l l / - 5 l l + í 2r|lv2rV 2’')ll+<‘í í | l9 <2r)ll)-
fl(2- i ) e . 4 . c ;oc V /

They are equivalent (cf. [4], Theorems 2.1.1 and 3.1.2). We write

(1-12) ü#  ( /,  í) ~  V  (/, i2r) ~  ~ K ( / ,  f2r).

Throughout this paper C denotes a positive constant independent of n and 
X and not necessarily the same at each occurrence.
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2. A direct theorem

In this section we show a direct estimate for Onf .
THEOREM 1. Let / e C [ 0 , 1], r & N ,  then we have

(2.1) IOn(f ,x)  -  f ( x ) I ^ C u 2; x( f , lnA{x)).

PROOF. From (1.11) we may choose gn =  gn,x,\ for a fixed x and A such 
that

2 r
(2.2) | | / -9 „ ll+ 7 ? iW IIV M 9Í2r)ll+7„:? l t ó 2r)IIS C < 1(/,7»,AW).

We recall that [1]

(2.3) On((- — x)k,x)  =  0, & =  1,2, . . .  ,2r — 1.

For u between t and x we have (cf. [1] Lemma 5.3)

(2.4)
\ t - u \ 2r~l ^ \t. — j;|2r_1 
ip2r^(u) ~ <p2rX(x)

and

(2.5)
\ t - u \ 2r~ l ^ \t — x\2r~l 

s 2 r X ( u )  = W x(x)

Then, by (2.3) and (2.4), using [1] (5.4) we have

\On(gn,x) ~9n(x)\  S
( 2/

l

—yyy J ( t -  u)2r_13n2r) (u)du.a

( 2 . 6) 2r —1

^ £  \ a i ( n ) \ M ni(|t — a;|2r, x)\\<p2rX \\ip~2rX(x)
i=0

^ C n - r02nr {x)\\<p2rXg W \\< p -2rX{x).

Similarly, by (2.3) and (2.5), we have

\On (gn , x ) - g n ( x ) \ ^ C n - X r ^ ) \ \ S 2nrX9 ^ r ) \\S -2rX(x)

Z C n -rölr(l~ » (x )  (!|^2rA5 f )|| +  n-'-A||ff(2r)||) .

Thus for /  E C{0,1], x G En =  [£, 1 -  £ ], when Sn (x )  ~  <p{x), by (2.2) and
(2.6) we may deduce that

\ On( f , x ) - f ( x ) \  Í C  (HZ-ifc.il +  n - re (1' A)W „ ^ 2rM 2r)ll)

(2.7)

( 2 . 8 )

S O # ( / , 7 m (*)).
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(2.9)

For x E E° =  [0, i )  U ( l  -  l ] , 6n{x) ~  by (2.2) and (2.7) we have

|On( / , x ) - / ( o ; ) | ^ c ( | | / - flrJ| +  n - i' e (1"A)^ ) I I ^ V 2r)ll 

+  ( n - * C A( * ) ) ^  llfl

= C^Jxl fnnAx)) -

From (2.8) and (2.9) we get (2.1).

3. A connection between the derivatives and the smoothness

In this section we will give an equivalence relation between the derivatives 
of Mnf  and the modulus of smoothness.

T heorem 2. Let f  € (7[0.1], r € N.  0 ^ A 1, then

(3.1) | ^ a(x) M ^ )  ( / ,  x)\ g ( / 7 7n,A(x))’

P r o o f . To prove (3.1), in view of (1.12) it is sufficient to get

(3.2) \ip2rX( x ) M £ r\ f , x ) \ E C 7 - 2 r( x ) | | / | |o o ,

and

(3.3) |V22rA(x)M (2'-)(/,x )|gC '||^ -2rA/ ( 2r)||00.

First we prove (3.2). We discuss the two cases separately. 
By [5] (3.9) we have

2 r

E
3=0

(3.4) g 2 2rn2r||/ ||.

If x 6 [ 0 , £ ) u ( l - ± l ] ,  then Sn ~  ^  and by (3.4) we have

-l)2r J ^ ' j ( „  +  l) I  PnMj (t)f( t )dt\M i2T\ . f , x ) \ i n 2 r
71 — 2 7 ’

Pn-2r,k{X)
k=0

(3.5)
|(̂ 2rA(.x)M^2r (̂ / ,  x)| E <^A(x)|M(.2í-)( / ,  x)|

^Cn-'3A- 2) | | / | |^ C 7 -J (x ) ||/ | |.

If x ^ [« ) 1 — n]) then 8n ~  <p(x) and by [1] (4.3) we have

(3.6) l¥,2rA(-'c)’̂ n2,^(/; x )l = C(/,2í Â-1 (̂’'z;)n r ||/ll = C7n,Ar(’T) 11/11’
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P75)

From (3.5) and (3.6) wc obtain (3.2).
Next we prove (3.3). By [1] (3.6) and Holder inequality we have (cf. [1]

< (n +  l)!n!
(n — 2 r)!(n +  27')!

/II— 27’ \

X Pn-2r ,k(x ) lP2rX(x ) / Pn+2r,k+2r{ t )V 2rX{ t ) d t )

v * = o  o  2

✓  n—2r 1
r

Ú C (  ( n  +  1 )  ^ 2  P , i - 2 r , f c ( - T ) ^ 2 r (.X') /  P n + 2 r M ,2r ( t ) P~2r
'  k= 0 0

^C'||V»2rA/ (2r)ll-

||<p2rA/ (2r)

||<p2rA/ (2r)

This is (3.3). The proof of (3.1) is complete.
The inverse result is given as follows:

T heorem 3. Let f e C [ 0,1], r e N ,  0 < o g r , 0 ^ A ^ l ,  then

(3.7) \ ^ \ x ) M ^ { f , x ) \ ^ C ^ ~ r\ x )  

implies

(3.8) u l \ ( f , h )  =  0 (h 2a).

PROOF. We will use the commutative property of Mn:

Mn(Mmf){x) =  Mm(Mnf)(x)  for m, n G N.

Let 0 < t ^ h <  ygp, rt.ipx(x) < x < 1 — rt.<px(x). We note the fact

(3.9) max { 6n(x +  jt.ipx(x )) \  ^ 26n(x).
—r=Í=r  ̂ '

In fact, by symmetry, we need only consider the case rtipx(x) ^ x  £  j . Then

0 ^ x — rtipx(x) <  x <  x +  7-tipx(x) 5Í 2x,

therefore, if 2x%^,  then for k =  1 , 2 , . . . ,  r

ip(x — kt,<px(x)) is <p(x) ^ ip(x + kt.ipx[x))
^ tp(2x) ^ 2(p(x).
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If x ^  ̂^ 2x, then

ip(x±kttpx(x)) ^ i p l  - ) ^ 2 < p [ - )  ^ 2  tp{x).

By Theorem 1 and (3.9), we have for m 6 N

<
2 r

^ ( _ l ) 2 r  3 I U O n ( Mmf , x  + ( j - r ) t t p x{x)) 
4 = 0  '  3 '

-  Mm(f, X +  {j -  r ) t i p x (a?))}

(3.10)

+
2i— 1

Y / ^ ( n ) A 2t^ x)M TH(Mmf)(x)
i=0

^ 2 2rCu32A( Mmf,-yntX(x))v

2 r—1

+  £  |a i(n)| /'■ ■ /  +  «4
t=0 7 , A, , V 4=1

From (3.7) we can deduce that by Sn(x) ~  max |<p(i c) ’ vAl} 

(3.11) |<̂ 2rA(a:)M^2r^(/, j;)| ^ Cn~^a~r^2~x\

du i ■ ■ ■ d.U2r ■

(3.12) \^2rX{x ) M^r\ f , x ) \ ^ C r r ^ i p 2^ - x^a- rHx).

Using (3.3), (3.11) and (3.12), we have

£<P'
-2rX

2 r

4 =  1
* + X > *  ) y 2rXM £ r)(f)\\

<> Cip-2rX
2 r

+  UJ
n _(a_r)(2_A))

(3.13)
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and

2 r

M ^ U M ^ x  +  ^ U j
3=1

(3.14) ^ ¥>-2rA+2(l-A)(a-r) L  +  ^  „ \  ||y,2rA+2(l-A)(r-a)Af (2r)^jy

' 3 = 1 '
2 r

£  C < p -* + W -* ) f x +  U j] n~(a~rK 
V j=i '

By [6] (2.6) with Holder inequality we can easily get for 0 ^ /3 ^  2r 

f^ (z)

(3.15) I  ■■ ■ I  ip~l) ^x +  ^ 2  uj Sj  ^ui ''' du2r = Ctp~l3{x)t2r <p2rX(x).
-±<px(x) •?_1

Combining (3.10), (3.13)—(3.15) we obtain

g C aÄ (M m/ >7n,A(*))
2 r—1

(3.16) 5 3  |cvl ( n ) | C m i n { n - ( a - 7')(2- Â 2r, n - ( a - r) í 2V 2(1- A» a - r)(a;)}
i = 0

^  C  { ^ ( M m / , 7 n , A ( x ) )  +  i r 7 X " r ) ( * ) }  •

The following demonstration is very similar to [7] (cf. [7] (5.5)), we omit the 
details. From (3.16) we can deduce (3.8). The proof is complete.

4. An inverse theorem on Onf

In this section, we will give an inverse result of Theorem 1.

T heorem 4. Let f  € C [0,1], r £ N,  0 < a < r ,  0 ^ A ^ 1. Then we have

(4.1) \ O n ( f , x ) - f ( x ) \ Z C T % ( x )

with a constant C independent of n and x if and only if 

(4-2) u # ( / ,< )  =  0 ( i2“ ).
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P R O O F .  We need only to prove that (4.1) =>■ (4.2). By (4.1) we have

|A£»(l)| s  |A -  / M ) l  + |A*»ft ,/MI

2r—1 /* /• ‘2r/  Zr \

/ - / <*’(/•* + E “d
v J=1 y

d 'U \ ■ • • d U 2 r

(4.3)
\ v x (x)

S C * W + E h ( » ) l  / • • •  f  (  M gr)( / - » , * + É

V i? ) ( !7,x +  5 3  Uj  ̂ • • ■ du'2r■

U;

By [1] (4.3), we can deduce that

(4.4)
I (/ ,  x )  I =  *>-2r { x ) \ v lr ( x ) M ™  ( /,  x )  I 

^ C'(/3_2r(x)n’ I

Using this relation and (3.15) we get

5¥>A(z)

h
- f v A(*)

2r
M (2r) +  2 u

i= l
dui • ■ ■ dU2r

(4.5) ^ AW

5íC nr||/  -flll J ■■■ I  (p 2r ( x  +  ^  dui • • • du2r

-%vx(x) J-1

£Cnrt2V ‘ 2r(1_A)( * ) l l / - #

Using (3.4), we have

3V»A(a)

(4.6) -5<Px(x)
f ^ C n 2rt 2rip2rX( x ) \ \ f  — £/||.

d u i  • • • d v ,2 r
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Combining (4.5) and (4.6) we have

/■ r  /  iL
/  /  M<f> ( / - , , ,  I +  | )

(4.7)

dui ■■■ du2 r

^  C n r t?r <p2r* (x )  min{nr , <p-2r(x )} ||/ -  5 | 
^ C n rí2r^ A(.7:)ó'-2r( x ) | | / - « 7||
=  C,i2r7~2r (t ) 11 /  — 11.

On the other hand, by (3.3) and (3.15), we have

du\ - ■ ■ d.U2r

5V>'V)
/• /' /  2'-

J  ■■■ I  M2 r)(t j ix + J 2 u.

(4.8)
-fv>A(x)

fv>A(x)2 ̂  i 2r
Í C  J ■■■ j  lP ~ 2rX (x  + ^ 2  «,) dui • • • du2r\w

/ * \ / \ .7 — 1

2r\g(2r) |

-4vA(x)

g C i2r||v?2rV 2r)ll-

From (4.3), (4.7) and (4.8) we obtain

(4.9)
#2 r

< a( / ,  i) I  <7 7 Ä ( * )  +  -27- Ö Ö < a( / ,7 „ ,aW )  
\  'n,Avrl

and this implies, via the Berens -Lorentz Lemma [8], that

which is the desired result.

R e m a r k . Combining Theorems 1 4 , we have proved the relation (1.8).
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ON FINITE AUTOMORPHISM GROUPS OF 
SIMPLE ARGUESIAN LATTICES

G. GRÄTZER and E. T. SCHMIDT

A b s t r a c t

Let Ő be a finite group. In this paper we prove that there exists a simple arguesian 
lattice M  whose automorphism group is isomorphic to 0 .

1. Introduction

G. Birkhoff [4] proved that every finite group can be represented as the 
automorphism group of a finite distributive lattice. R. Frucht [7] represented 
every finite group as the automorphism group of a finite simple lattice (of 
length three).

The only related result for modular lattices is due to E. Mendelsohn [12]: 
every group can be represented as the automorphism group of a projective 
plane. (See also L. Babai [1].) However, this projective plane cannot be 
coordinatized over a skewfield, or equivalently, it is not arguesian (does not 
satisfy the arguesian identity, see, e.g., [p. 199][8]). Indeed, the automor
phism group of a projective plane over a field is very special; for instance, it 
must contain copies of the symmetric group on three elements.

The main result of this paper is the following

Main Theorem. Let 0  be a finite group. Then there exists an interval 
finite, simple, arguesian lattice M  such that the automorphism, group of M  
is isomorphic to 0 .

See Section 7 for a discussion of related problems.
N otation. For the basic concepts and notation, the reader is referred 

to [8]. 9Efi3 is the five-element modular nondistributive lattice. Let A and B 
be lattices; let D  be a dual ideal of A, let /  be an ideal of B, and let ip be 
an isomorphism between D  and / .  We form the disjoint union of A and B

1991 Mathematics Subject Classification. Primary 06C05; Secondary 08A35.
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and identify each cI e D  with dip G I, obtaining the set C. We define x L y  in 
C iff x, y  G A and x ^ y in A,  or x, y G B and x L y  in B , or x G A, y  G B  
and there is h z E A D B ^ C  with x L z  in A and z  L y  in B. Then C  is a 
lattice, which we call the gluing of A and B over D  and I. Finally, a lattice 
L is called interval finite, if every interval of L is finite.

2. ő'-glued systems

The next two definitions and the theorem that follows are from Ch. Herr
mann [11]; they are stated in a slightly more general form to facilitate their 
application in this paper.

D e f i n i t i o n  1. Let S  be an interval finite lattice. The family of finite 
lattices

£ = { L s \ s e S }

is an S-glued system iff the following conditions are satisfied for s, t G S:
(1) If s L t and Ls fl Lf ^  0, then Ls fl Lt is a dual ideal of Ls and an ideal 

of Lt .
(2) If s L t and a, b G Ls D Lt, then the relation a L b holds in L,s iff it 

holds in Lt-
(3) If s A  t, then Ls fl Li 7̂  0.
(4) L s fl Lt Í  LsM Fl TsVi-

D e f i n i t i o n  2. Let £  =  { L s \ s G S } be an 5-glued system. Let L =  
U( Ls I s G S ) and define the partial order L on L as the transitive extension 
of the union of the partial orders on the Ls, s G S. Then L is a lattice, the 
S-glued sum  of £ and the L s, s G S, are the blocks of L.

THEOREM 1. Let £ =  { L s \ s G S  } be an S-glued, system, and let L be the 
S-glued sum of Z. Then the following statements hold:

(1) A block of L is an interval.
(2) For a, b G L, the relation a'Lb holds in L iff there exists a sequence 

a =  x0, x\, . . . ,  xn =  b of elements of L and a sequence s%, . . . ,  sn 
of elements of S such that Si L s i+i in S for i =  1, . . . ,  n — 1, and 
Xi- 1 ^ Xi in LSi for i — 1, . . . ,  n.

(3) If A and B are blocks indexed by com,parable elements of S, then 
A  U B is a sublattice of L. If A P\B 7̂  0, then this sublattice is a 
gluing of A a.nd B over AC\B.

(4) If a Ab in L, then a A b  in some block.
(5) If s, í G S, Ls =  [a, 6], and Lt =  [c, d], then Ls\jt is of the form [a Vc, e] 

fo r  some e G L, where e íi 6 V d.
(6) If each Ls, s G S, is a complem.ent.ed modular lattice, then L is a 

modular lattice, and the blocks can be recognized as maximal comple
mented intervals.
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(7) Every modular lattice of finite length has a unique finest representa
tion as an S-glued sum, namely, as the S-glued sum of its maximal 
complemented intervals.

Now let £  =  { Ls I s E S  } be an 5-glued system, and let L be the 5- 
glued sum of £. Let Ls =  [as,ös] in L. Let K  be a lattice containing L as 
a sublattice, and define Ls =  [as,i>s]A'- It is easy to see that the Ls, s € S, 
also satisfies the conditions of Definition 1, so £  =  { Ls \ s E S  } is an 5-glued 
system. Therefore, we can form the 5-glued sum of £.

The following lemma is a crucial step in the proof of the Main Theorem.

LEMMA 1. £  is an S-glued system. The S-glued sum of £  can he repre
sented as the sublattice

K z  =  |^J( [a, b]k  I [a, b]i is a block of L )

of K .
P r o o f . T o show that £  is an 5-glued system, we have to verify Con

ditions 1-4 of Definition 1. To verify Condition 1, let a, * e  5, s Ú t, 
and x E LSC\ Lt . Then x 5Í bs and at ^ x, hence ^ bs. It follows that 
Ls n L t =  [at,bs\ic- Since [at,bs\L is a dual ideal of Ls and an ideal of Lt, 
it follows that [at,bs\j< =  Ls fl Lt is a dual ideal of Ls and an ideal of Lt, 
verifying Condition 1. Conditions 2 and 3 are trivial. To verify Condition 4, 
let s, 1E 5; then Ls fl Lt ^ Ls/st D LsVí, which implies that asV< ^ a? V at and 
bs/\t ^ bs A bt, which, in turn, imply Condition 4 for £.

K z  is a sublattice of K . Indeed, let x \ , x% 6 Kz- Then there exist 
[oi, 6i]l and [«2,1)2}r. that are blocks of L and satisfy x\ € [«i , 61]A' and 
X2 € [«21 b‘i\K ■ By Statement (5) of Theorem 1, there exists a block of L of 
the form [oi V 02 , />i] a- It follows that x\ V X2 € [a\ V a.2 , 63]a' = Kz- Dually, 
X\ /\X 2 & Kz-

It remains to show that the partial order on K z  is the transitive exten
sion of the union of the partial orders on the Ls, s £ S  and so K z  satisfies 
the condition in 2. This is really easy because of the following well-known 
statement:

Let A and B  be lattices; let C  be the gluing of A and B  over the (iso
morphic) dual ideal D  of A and ideal I  of B. Let E  be any lattice containing 
A and B as sublattices such that A fl B  =  D  =  I in E. Then A U B  is a 
sublattice of E  and it is isomorphic to C.

Now if a, b£  K z  and a. ^ !> in Kz, then a €  [u, v]k  and b € [u>, z\k , where 
u, v, w, z EL.  By Statement (5) of Theorem 1, we can assume that u ^ w .  
Let

u =  ito -< u\ -< ■ • • -< un =  w 
be a maximal chain in L. Then we can find blocks

[xi,yi\L,  [X2,V2]/„••• , [Xn,Vn]L
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such that

U 0 , U i £ [ x U y i ] ,  U l,  « 2  G [a;2,2/2], « n - l , « n - l  G [* n ,í /n ] -

By 1.3,

can be obtained by repeated gluings, hence by the well-known statement we 
quoted, a ^ b in Ko iff a ^ 6 in the S-glued sum of £. □

3. Constructing a finite distributive lattice

We need the following theorem of G. Birkhoff [4]:

T h e o r e m  2. Every finite group 0  can be represented as the automor
phism group of a finite distributive lattice D.

The proof of the Main Theorem is based on a new proof of this result in 
G. Grätzer, H. Lakser and E. T. Schmidt [10]. We proceed now to outline 
this proof.

By R. Frucht [6] (see also G. Grätzer and H. Lakser [9], for an alternative 
proof), there exists an undirected finite graph (V, E) with no loops (that is, 
V  is a set and E  is a set of two-elements subsets of V) whose automorphism 
group is isomorphic to 0. Since the automorphism group of (V, E) is the same 
as the automorphism group of the complement of (T, E), we can assume that

Let V  =  {v\,V2 , ■ ■ ■ , vn}. Let F  be the free distributive lattice over V 
with zero 0 =  f\ V and unit 1 =  \ /  V.  Define the element o of F  as follows:

o  =  \ J { x A y \ { x , y } e E ) .

Then we can construct the finite distributive lattice D  of Theorem 2 as 
follows:

£> = [o,l].
The zero of D  is o. It is easily seen that {x, y} E E  iff x A y ^ o.

L e m m a  2. The automorphism group of D is isomorphic to 0 .

P r o o f . Let a  be an automorphism of (V,E).  Then a  has a natural 
extension to an automorphism F(a)  of F. and o is a fixed point of F(a).  
So F(a)  restricted to D  yields an automorphism D ( a ) of D.  The map 
cr-> D (a )  is an isomorphism between the automorphism group of (V, E) and 
the automorphism group of D . □

For a more detailed exposition, see [10].
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Lemma 3. Let w \  =  o V V i ,  . . . ,  w n =  o V  vn, a n d  

W  =  o V V =  {u>i,. . .  , wnj.

Then D is freely generated by W , subject to the relations

u>i A Wj =  o, for {vu Vj} E E.

P roof. D  is generated by W, and W  satisfies the above relations, by 
the distributivity of F.

Now let L be a distributive lattice with 0, and let p  be a map of W  into 
L subject to the condition that if {vi ,vj} E E.  then wup A Wjp =  0 in L. Let 
ip- .V-^Lhe  defined by vi'tp =  vvip, . . . ,  vnij) =  wnp. Since F  is free, there is 
a homomorphism i/r. F  —► L extending '</>. Let use define p  as the restriction 
of %/} to D. Then Tp is a homomorphism of D into L, and Tp extends <p; indeed,

WjTp — Wiif =  (o V Ví)i/j =  oipV Viil) =  0 V iOjip =  u>ip,

as claimed. □

Lemma 4. Let P  = J{D) and Z  = P  — W . Then W  is the set of maximal 
el.em.ents of P , every element of P  is a meet of elements of W , and both 
P U{ o}  and Z  U{o} are m.eet-subsemilattices of D.

PROOF. Since V  is a free generating set of F, we conclude, by Lemma 3, 
that every join-irreducible element of D is a meet of a finite nonempty subset 
of V. Let a — f \ W\ ,  where W\  is a nonempty finite subset of W,  and let 
V\ be the corresponding subset of V . Then (A Vj) V o — A W\  =  a, so the 
interval [o, a] in D  is isomorphic to the interval [o A A Vj. A Vj] in F. Since 
A Vj is join-irreducible in F,  it follows that a is join-irreducible in D. □

Observe that we can describe P  as the poset of all nonempty subsets X  
of W  excluding all “edges”, that is, if {up Vj} E E,  then {w ,, Wj} iX,  and 
D  is the lattice of hereditary subsets of P.

4. Constructing an infinite distributive lattice

We construct an infinite distributive lattice, H, a stretched version of D,  
by replacing each w, by an infinite chain Cl.

More formally, let
P  =  ZUC,

where
C =  Ci U C2 U • • • U Cn,

and
Ci =  {u)iti ,Wit2 , . . . } ,  w iti <  w it2 < -----
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We identify uqq with w \ , . . . ,  Wi,n with wn, respectively, and so we identify 
W  with { wi , i , . . .  ,wn,i} ~ P- The partial order on P  is the transitive closure 
of the union of the partial order on P  and the orders on the C, .

Let D  be defined as an interval finite distributive lattice in which ev
ery element is a join of join-irreducible elements and satisfying J(D) =  P. 
Equivalently, D  is the lattice of finite hereditary subsets of P: an element A 
of D  is of the form

A =  \ J { { x \ x S h } \ h e H ) g P ,

for some finite subset H  of P.  Every element of A is contained in a maximal 
element of A (which is in if); there are only finitely many maximal elements 
in A.  If H  is an antichain in P , then the maximal elements in A form the 
set H .

Observe that, by Lemma 4, P  C P , and so D  is a sublattice of D,  in fact, 
D  is an ideal of D. The zero of D , o, is also the zero of D.  Now for a E P, 
we further identify a with { x \  x ' Aa  and i £ P } ,  s o  J(D)  =  P.

is

L e m m a  5. If {vi ,Vj} E E,  then W{^ A Wj,m =  o in D, for any k, m  1. 

P r o o f . This is obvious, since the hereditary set corresponding to w , ^

{ z \ z E Z  and z ^ Wi } U . . . ,  w. k̂}.
So forming the intersection of the set corresponding to w.t^ with the set 
corresponding to Wj,rn we obtain { z  \ z E Z, z A w t and z L w;j } =  0 since 
{ví, Vj} E E.  □

LEMMA 6. D as a distributive lattice is freely generated by C subject to 
the partial ordering of C and the relations

w itk /\Wjírn =  WitiAWjp f o r i ^ j ,  1 ^ j  A n, k, m ^ l;
Witk A WjtTn =  o, where {wj, v j} E P , k, m  ^ 1.

PROOF. A routine computation shows that the poset of join-irreducible 
elements of the free distributive lattice described in this lemma is isomorphic 
to P , hence the statement. □

The following concepts will help us characterize the elements of C  in D.
D e f in it io n  3. Let L be a lattice. A tight chain in L is an infinite 

sequence of join-irreducible elements

Xq -< Xi -<.. .

of L. A tight element in L is an element of a tight chain. 

And here is the characterization:
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Lemma 7. In D, an dement c E C can be characterized by the following 
two conditions:

(1) c is a tight element in D.
(2) If a and b are distinct tight elements in D with c<a,  and c < b ,  then 

a and b are comparable.

P roof. In D , it is obvious that -< w hU+l . is a tight chain; and 
conversely, every tight chain from some point on must be of this form.

Every c E C  is in a tight chain, namely in some Ct. Moreover, if a and b 
are distinct tight elements in D, then there are C:j and Cf and 7I,e C v b E 
such that a ^ ä G C j  and b^bECk-  Since c <  a.^a  and c < b ^ b .  it follows 
that i = j  — fc; therefore a, b E Cj and so they are comparable.

Conversely, let c satisfy Conditions 1 and 2 of Lemma 7. If c ^ C,  then 
cE Z,  so c =  f\ W\  for some W\ Q W  with 1 <  |Wi|. So there are distinct a, 
b E W] satisfying c < a, c < b, and a and b are not comparable. Since a and 
b are tight elements, this contradicts Condition 2 of Lemma 7. □

Let a  be an automorphism of (V,E).  The map D(a),  defined in the 
proof of Lemma 2, is an automorphism of D.  so it yields an automorphism 
of P.  We extend D(a)  to an automorphism P(a)  of P  in the natural way: 
for z E Z, let zP(a )  =  zD(ot), and let tUi^P(a)  =  Wj^, if WjD(ot) =Wj .  In 
other words, P(a)  and D(a)  act the same way on Z. and P(n)  acts on Ct 
as D(a)  acts on wt. The automorphism of P(a)  uniquely extends to an 
automorphism D(a)  of D.

Lemma 8 . The map a  —> D(o) is an isomorphism between the automor
phism group of (V, E) and the automorphism, group of D.

P roof. We already know that the map a. -» D(a)  embeds the automor
phism group of (V, E)  into the automorphism group of D.  To show that 
the map is onto, let ß  be an isomorphism of D.  By Lemma 7, we have an 
algebraic characterization of C, hence ß  must map C  into itself. Thus ß  
induces a map of W  into itself, yielding a permutation a  of V. It is easy to 
see that ß  =  D(a).  □

5. Constructing a modular lattice

In this section, a block is a maximal complemented interval.
The next step is to embed D  into a modular lattice M  satisfying the 

conditions in the Main Theorem. This construction can be carried out for a 
large class of distributive lattices.

THEOREM 3. Let. L be a distributive lattice satisfying the following con
ditions:
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(1) L is interval finite with zero.
(2) Every dement in L is covered by finitely many elements.

Then L can be embedded in an arguesian lattice M l with the same two proper
ties in which every block is an irreducible projective geometry; this embedding 
preserves covering. If, in addition, L satisfies the condition

(3) Let a be an element of L that is not a bound of L; then there is an 
element b £ L  such that a and b are incomparable;

then M l is a simple lattice.

PROOF. We form the irreducible projective geometry G (identified w ith 
its subspace lattice) over the two-element field with \J(L)\ independent 
atom s, which we identify w ith J(L),  and embed L into G as follows:

Map a & L  into V((a] O J(L)),  where (o]f lJ(L)  is regarded as a set 
of independent atoms of G and the join is formed in G. This is a cover 
preserving embedding. We identify L with its image under this embedding 
into G.

Let S  be the set of all blocks of L, partially ordered by [a, b] ^ [c, d] iff 
a T c. It follows easily from Theorem 1 that S  is an interval finite lattice. 
We consider L as the S-glued sum of the 5-glued system £ formed by its 
blocks L s , s £ 5; obviously, £  satisfies the conditions of Definition 1. Every 
Ls is of the form [a, 1)\l ] define Ls — [a, We apply Lemma 1 to obtain 
that £  =  { L s I s € S  } is an S-glued system, and the S'-glued sum of £  is

Ml — |^J( [a, 6]g I [a, b\L is a block of L ).

By Statement (6) of Theorem 1, M l is modular, and the maximal comple
mented intervals are of the form [a, b]c. where [a, I)]l is a block of L.

Now let us assume that, in addition, L satisfies Condition 3 of Theorem 3, 
and we prove that Ml is simple.

Every block of Ml is a simple lattice. M l is interval finite; hence to 
prove it simple, it is sufficient to prove that if y\ and [y. z] are blocks of 
M l and [x,y] is collapsed by a congruence 0 , then so is [y,z\ (and dually).

Since [x,y\ and [y, z] are blocks of Ml , it follows that x, y, z  £ L\ by 
Condition 3 of Theorem 3, there is an element « G f  incomparable with y. 
So y <  y  V u, hence there is an element p 6 L satisfying y -<p^ yWu. Similarly, 
there is an element q 6 L satisfying y  A u L <y A y. The same relations hold in 
M l , and p  is an atom in the block [y, z], while q is a dual atom in the block
[x , y \ -

Obviously, the elements q, y, (p A u) V q. and p form a covering Boolean 
interval in L. hence there is an element rn £ M l such that the elements q, y , 
{p A u) V q, p, and m form an OT3 in Mp.

Since 0  collapses [x,y\, therefore, q =  y(0) .  In ©I3, we get that y =  p(Q),  
hence © collapses [y,z], as claimed. □
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6. Proof of the Main Theorem

Let A4 =  Mjj  as provided by Theorem 3. We show that A4 satisfies the 
requirements of the Main Theorem.

D obviously satisfies the first two conditions of Theorem 3.
Let a £ D  and a > 0. Then in each C*, for 1 ^ i ^ n, there is a smallest 

a, such that «, ^ a fails. If no at is incomparable with a, then a ^ a;, for all 
1 ^ i ^ n, Since a\ A • ■ • A an =  0, it follows that a =  0, a contradiction. So 
Condition 3 of Theorem 3 is verified.

By Theorem 3, A4 is a simple modular lattice. It remains to show that 
the automorphism group of A4 is isomorphic to 0. This is true because C is 
easy to recognize in A4:

Lemma 9. In A4, an element c € C  can be characterized by the following 
two properties:

(1) c is a tight element in A4.
(2) If a and b are distinct tight elements in A4 with c < a  and c < b ,  then 

a and b are comparable.
P r o o f . We only have to observe that if c is a tight element in A4, then 

c is the unique lower cover of a join-irreducible element d € A4. Therefore, 
there exists in M  a block of the form [c, e], and so c € D by Statement (6) of 
Theorem 1. So this lemma reduces to the statement of Lemma 7. □

In Section 4, for every automorphism a  of (V,E), we have defined an 
automorphism D(a)  of D. We claim that D(a)  defines a unique automor
phism of A4. Indeed, let a € A4. Then a is contained in a block [c, d\ of A4. 
Since c, d € D, the block [ca,da] of A4 is well defined. The atoms of [c,d] 
that are in D  form a basis for [c, d], and on those D (a) is already defined. 
Therefore, D(a)  has a unique extension to an isomorphism between [c.d,] 
and [cD(a), dD(a)].  (This is obvious, but we would like to point out that in 
this step—and only in this step—we use the fact that we take a projective 
geometry over the two-elem,ent field. This step is equivalent to the following: 
if y) maps Wf:j into itself and it maps two distinct atoms to two distinct atoms, 
then ip has a unique extension to an automorphism of DJt.3 • This statement 
obviously fails for the subspace lattice of a projective line with more than 
three elements.) Since A4 is an 5'-glued sum of its blocks, D { a )  uniquely 
extends to an automorphism of A4.

Therefore, the automorphism group of A4 is isomorphic to the automor
phism group of D ; a reference to Lemma 8 completes the proof of the Main 
Theorem.

We presented the proof of this theorem in the spirit of its discovery: A4 
is glued together from its parts, which are finite Boolean lattices completed 
to finite projective geometries; the Boolean lattices interface in D, and this 
defines how the projective geometries face each other. This approach is 
very easy intuitively, and it can be easiest to formalize using 5 -glued sums.
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Unfortunately, the arguesian identity is difficult to verify using this approach, 
so now all of M  is built as a sublattice of a projective geometry making it 
possible not to use 5-glued sums at all. Such an approach may be completely 
direct, or it may use the natural tolerance relations on modular lattices (see
H.-J. Bandelt [3]). For yet another alternative approach, see A. Day and Ch. 
Herrmann [5].

7. Discussion

As customary, let V2 denote the quasivariety of all lattices that can be 
embedded into the subspace lattice of a projective geometry over the two- 
element field. We have proved the following stronger form of the Main The
orem:

M ain T heorem'. Let (5 be a finite group. Then there exists a lattice 
M  6  V2 such that the automorphism group of M  is isomorphic to ©.

Two problems suggest themselves.
P roblem 1. Let © be a finite group. Does there exist a finite simple 

arguesian lattice M  such that the automorphism group of M  is isomorphic 
to ©?

In this connection, one may mention a conjecture of L. Babai and D. 
Duffus [2]: for every natural number n, there is a group ©„ that cannot be 
represented as the automorphism group of a finite modular lattice of length 
at most n.

And here is a problem for infinite groups:
P roblem 2. Let © be an arbitrary group. Does there exist a simple 

arguesian lattice M  (M  6 V2) such that the automorphism group of M  is 
isomorphic to 0?

8. New results

(Note added February 22, 1997)

The authors utilized the Main Theorem of this paper to prove the fol
lowing:

Independence T heorem . Let. D be a finite distributive lattice, and let 
© be a finite group. Then there exists a modular lattice M  such that the 
congruence lattice of M  is isomorphic to D and, the automorphism group of 
M  is isomorphic to ©.

This result was presented in the Lattice Theory and Universal Algebra 
Seminar at the University of Manitoba 011 May 16, 1996; the paper containing
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this result is about to be submitted for publication (On. the Independence 
Theorem, of related structures for modular (arguesian) lattices). We also 
solved Problem 2 (On automorphism groups of simple arguesian lattices, 
manuscript).

We sent the manuscript of this paper to Ch. Herrmann in June of 1996. 
In the fall, he sent us the manuscript On automorphism groups of Arguesian 
lattices, in which he solves both problems of Section 7. His paper is to appear 
in Acta Mathematica Hungarica.
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BOOK REVIEW

Jenő Szép: V ectorproducts and A pplications. First, volume of the new series: 
Pure and Applied Mathematics, Akadémiai Kiadó, Budapest, 1998, 110 p.

The author who is well known in group theory, semigroup theory and ring theory, 
in this book (summarizing and completing nine research papers published during a time 
interval of twenty years (1975 1995)) exhibited his skill to invent a new algebraic structure.

His first idea to define setvector based on integer numbers, in a way a set of special 
vectors based on integer numbers form a setvector. Then a componentwise addition of 
integer numbers, defines the addition of the elements (vectors) of the setvector. The defined 
multiplication(s) produce a groupoid. Since in general a groupoid is not associative (neither 
commutative) parentheses must be used to avoid ambiguity. The structure of parentheses 
makes possible unique factorisation.

The book contains 10 chapters. It consists of two parts; the first part is a detailed 
discussion of the discrete case and the second part is a short description of the continuous 
case.

The author exhibits how his new algebraic, structure (which he called Coded struc
ture or Vectorproduct) can be applied to encipher and decipher plaintext. At present 
the most frequently used methods of enciphering (DES, RSA) based on groups and fields, 
the approach in this book seems to be new and hopefully very efficient. The author’s 
idea can be more widely applied in cryptology. Access control, digital signature and dig
ital fingerprint would be some further applications. Unfortunately the latter applications 
are not mentioned in the book. Some other practical applications such as simulation of 
processes in chemistry, nuclear physics and microbiology are briefly mentioned. Also the 
author observed the close connection between coded structures and Lindenmayer systems 
and Theory of automata. The reviewer thinks that this book has theoretical and practical 
values.

,7. Denes (Budapest)
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EIGENVALUE PROBLEMS FOR BESSEL’S EQUATION 
AND ZERO-PAIRS OF BESSEL FUNCTIONS

H. VOLKMER

Studia Scientiarum Mathematicarum Hungarica 35 (1999), 261-280

A b s tra c t

This paper studies an eigenvalue problem for Bessel’s differential equation involving 
two complex parameters. The results are based on an investigation of zero-pairs of Bessel 
functions; these are pairs of complex numbers at which a Bessel function vanishes simul
taneously. Properties of zero-pairs are derived from estimates satisfied by a quotient of 
Hankel functions.

1. Introduction

Eigenvalue problems for Bessel’s differential equation belong to the best 
known and most intensively studied eigenvalue problems in applied mathe
matics. Let us consider the eigenvalue problem for a vibrating membrane 
occupying the region 0 < c ^ r ^ d, O^cp^ip in polar coordinates r, <fi ([3, V,
§5]):

(1.1) r(ru') '+  (Ar2 — v2)u =  0, u(c) =  u(d) =  0.

The order u is determined by ip. The problem consists in determining those 
values of the spectral parameter A for which (1.1) has a nontrivial solu
tion. This is a regular Sturm-Liouville problem which has a monotonically 
increasing and positive sequence of eigenvalues 0 < Ai(c, d) < X2 {c,d) < . . .  
depending on c and d. We do not indicate the dependence of A„ on the order 
v  because we consider u as a fixed nonnegative number.

The eigenvalue problem (1.1) is closely related to the question of finding 
zero-pairs of Bessel functions of order these are numbers a, b for which 
there exists a Bessel function of order v  which vanishes simultaneously at 
a and b. In fact, the solutions of the differential equation in (1.1) are of 
the form CI/(ßr), where ß 2 =  A and Cu is an arbitrary solution of Bessel’s 
differential equation

(1.2) z{zC'u)' +  {z2 - i s 2)C„ =  0

1991 Mathematics Subject Classification. Primary 33C10; Secondary 34B30.
Key words and phrases. Bessel functions, Hankel functions, zeros of Bessel functions, 

eigenvalues of Bessel’s equations.
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262 H. VOLKMER

of order v. Therefore, A >  0 is an eigenvalue of (1.1) if and only if a =  Al/2c, 
b =  \ 1/2d form a zero-pair of order u.

In this paper we investigate the global behavior of the functions An(c,d) 
in their dependence on complex variables c and d. This includes a study 
of complex zero-pairs of Bessel functions. Let us first simplify the task by 
reducing An(c,d) to a function of one variable. This is possible because of 
the homogeneity relation

Xn(tc,td) =  t~2\ n(c,d), t >  0
which is easy to prove. Therefore, it will be sufficient to consider pairs c, d 
with d — c =  2. The choice of the distance 2 between c and d is for convenience 
only. We write
(1.3) C — T 1, d = r  + 1,
where r >  1 is a new variable. Then, setting y(x) =  r1,/2tt(r), r =  r  — x, our 
eigenvalue problem assumes the attractive form

(L4) y"+ ( A+( ] H ^ ) y = 0’
(1.5) y ( - l )  =  y ( l)= 0 .
For given r  >  1 (or r < — 1), we again have a regular Sturm-Liouville problem 
with eigenvalues
(1.6) 0 <  Ai (t) <  A2(t) <  . . .
that agree with those of (1.1) under the substitution (1.3).

It is easy to show that the functions An(r) are analytic for r >  1 (see 
Section 2). It is therefore natural to ask for properties of the analytic con
tinuation of A„(t) into the complex r-plane. Of course, the values of this 
analytic continuation will also be eigenvalues of (1.4), (1.5) in a sense to be 
specified later. In Section 2, we prove that An(r) is analytic at r =  oo and can 
be continued analytically into a domain of the form dist (r, [— 1, lj) >  en >  0 
with en —>■ 0 as n —> oo. Here dist (r, [—1,1]) denotes the distance from r 
to the line segment [—1,1]. It is to be expected that r-values in the inter
val (—1,1) are “critical” because then the regular singular point x =  r of
(1.4) lies between the endpoints —1 and 1 appearing in the boundary con
ditions (1.5). The question now arises how the functions An(r) behave as 
r approaches the segment [—1,1]. Computer calculations show branching 
between the functions An(r) in a neighborhood of [—1,1], The existence 
of branch points is closely related to the phenomenon of level crossing of 
eigenvalues as described in Bender and Ország [2, p. 350].

The location of branch points of the functions A„(r) will depend on the 
value of v. If u =  1/2, then An(r) is identically equal to n27t2/4. There are no 
branch points. In Section 5, as the main result of this paper, we prove that 
the functions An(r) do not have branch points in C \ [—1,1] if  ̂£ [1/3,1/2]. 
More precisely, we will prove the following theorem.
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THEOREM 1.1. If v  £ [1/3,1/2], then the functions An(r), n G N, are 
analytic in the domain C \ [ —1,1] and at t — oo. Moreover, these functions 
are also analytic on the segments t + i0 and r — iO for — 1 < r <  1, and they 
can be extended continuously into r =  1 and r  =  —1.

Of course, the values of An(r + *0) will not match those of A„(r —iO) if 
v  7̂  1/2 because otherwise An{r) would be a bounded entire function and 
thus a constant function by Liouville’s theorem.

The proof of Theorem 1.1 is based on a study of complex zero-pairs a, b 
of Bessel functions in Section 4. It should be noted that it is necessary to 
consider a and b as elements of the Riemann surface Ciog of the logarithm on 
which Bessel functions are analytic. The following observation will be crucial: 
a, b is a zero-pair of order v  if and only if there are complex constants A and 
B,  not both zero, such that

AC„(a) +  B D ^ a)  = 0, AC„(b) +  BD,{b) =  0,

where (?„, D„ form a fundamental set of solutions of Bessel’s equation (1.2). 
It follows that a, b form a zero-pair of order // if and only if

(1.7) Cv(a)D„(b) — Cu(b)Dv (a) =  0.

It will be convenient to choose Cu — H p ,  D u — H ^  because of the simple 
asymptotic behavior of the Hankel functions. Then (1.7) can be written in 
the form

M 2)(a) H ? \ b )
HÍ1](a) HÍ1}(b)'

The quotient of Hankel functions will be investigated in Section 3.
In the final Section 6, we determine the behavior of the functions A„(r) 

for r in the critical interval (—1,1). This corresponds to a study of zero- 
pairs a, b of Bessel functions which have the property that 0 lies on the line 
segment connecting a and b.

Before we begin let us make some final remarks. Concerning the theory of 
Bessel functions, we refer to Watson’s excellent treatise [13]. In particular, its 
Chapter 15 on the zeros of Bessel functions will be of interest to us. Recently, 
many new results on the zeros of Bessel functions have been discovered; we 
refer to [1, 4, 5, 6]. We do not intend to give a complete theory on the 
eigenvalue problem (1.4), (1.5). For instance, it would be of interest to 
investigate whether Theorem 1.1 (or variants thereof) remain valid for other 
ranges of v. For example, if v — 0, then the functions A„(t) are analytic and 
real-valued on the positive imaginary axis but there is branching between 
An(r) and An+i(r) exactly at r =  0 for all odd n. Thus Theorem 1.1 does 
not hold for v =  0 but we do not prove this here.
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2. The eigenvalue problem

We consider the eigenvalue problem (1.4), (1.5) for a given order u 0. 
We say that (t, A) with r G C \  [— 1,1] and A 6 C is an eigenpair of order u 
if there exists a nontrivial solution y : [—1,1] —> C of (1.4) and (1.5). This 
solution will be called an eigenfunction corresponding to (r, A). Clearly, if 
(r, A) is an eigenpair with eigenfunction y(x), then (—r, A) is an eigenpair 
with eigenfunction y(—x), and (r, A) is an eigenpair with eigenfunction y{x).

If we allow r — oo in (1.4) (that means (x — r ) -2 =  0), then (oo, A) is an 
eigenpair if and only if there is n E N such that A =  n27r2/4. The following 
lemma shows that all eigenpairs (r, A) are close to one of these eigenpairs 
provided that |r| is large. The proof uses a standard method of perturbation 
theory; see [9, §1.5] or [7, Ch. 7].

T h e o r e m  2.1. Let (r, A) be an eigenpair of order v. Then there is n € N 
such that

< dist(r, [-1 ,1]) 2.

P r o o f . Let

wn(x) =  sin \ -nn[x 1) n G N

be the normalized eigenfunctions of

w" +  Xw =  0 , w{—1) =  r c ( l )  =  0.

The sequence wn forms an orthonormal basis of L2(—1,1). Let (r, A) be an 
eigenpair with eigenfunction y. Then

w'ny -  wn.y" =  ^A -  ^ 27r2 )̂ P n  +  Q  “  ^  ~  t ) 2ywn .

Thus

1 1

0 =  w'ny - w ny'\l_1=  J  ywn +  Q “ ^2 )̂ f  (x ~ r )~2ywn.
- 1  - 1

Use Parseval’s identity twice to obtain

mm
n— l

\ 1 2 2 A — - n  n 
4

2 ]. oo
\ 1 2 2 A — -n i  

4

2 1r
/  ywn

_1 n= 1 -1
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2
1
4

2

< (list ( t , [ -1 ,

1
Since J |y|2 > 0 , the desired statement follows. □

- l

Let Y { x \ t , A) be the solution of (1.4) which is uniquely determined by 
the initial values y (  — 1) = 0  and y ' { —1) =  1. Set Z)(r, A) =  F ( l ;r ,  A). The 
function D ( t , A) is analytic for r 6 C \  [— 1,1] and A G C. Its zeros are the 
eigenpairs. By introducing a new variable 1/r, we see that D(r,  A) is also 
analytic at r =  oo.

T heorem  2.2. LetnG  N. Define e n ^  0 by

n (2n -l)7T 2

i f  2 a n d  e\ \ = t 2 - T h e n  th e re  e x i s t s  a  u n i q u e l y  d e t e r m i n e d  a n a l y t i c  f u n c 
t i o n  A„(t) f o r  dist (r, [—1,1]) > en i n c l u d i n g  r =  oo su ch  th a t An(oo) =  n 27t2/4  
a n d  s u c h  t h a t  (r, A„(r)) is an e i g e n p a i r  f o r  e v e r y  r.

Proof. Let n G N. By Theorem 2.1, D (r, A) ^ 0 for all A on the circle 
|A — n27T2/4| =  7r2(2n — l) /8  and all r with dist (r, [— 1,1]) > en . For r=oo, 
there is exactly one zero A =  n27r2/4  within the circle (with regard to multi
plicity). By Rouché’s theorem, there is exactly one zero A of D ( t , A) within 
the circle for all r with dist (r, [—1,1]) >  en . The induced function An(r) is 
analytic by the implicit function theorem. If n =  1, then the proof has to be 
modified in an obvious way. □

The following observation follows from the proof of Theorem 2.2.

Corollary 2.3. I f S ^  0 i s  d e f in e d  b y

th e n  a l l  e i g e n p a i r s  (r, A) w i th  dist (r, [—1,1])) > <5 are  g iv e n  b y  (r, An(r)), 
n  G N.

The functions An(r) defined by Theorem 2.2 are even. I f r > l  or r  <  — 1, 
then the functions An(r) agree with the sequence (1.6) of eigenvalues that 
we found by regular Sturm-Liouville theory. It should be noted that the
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functions An(r) of (1.6) were defined for all r >  1 but this is not true for the 
functions An(r) of Theorem 2.2. It is clear that comparison of (1.4) with 
w" +  Xw =  0 cannot give optimal results for t  close to [—1,1].

It will be useful to allow r to assume the values t +  iO and t — iO if 
— 1 <  r <  1. A pair (r ±  iO, A) is called eigenpair if there is a solution y(x)  of
(1.4), (1.5) that is analytic in Imx  is 0, x ^ t +  iO or in Im s^O, x ^  r — iO, 
respectively. We also allow r =  1 and r =  — 1. In this case the regular singular 
point x — T of equation (1.4) coincides with one of the points ±1 appearing 
in the boundary conditions (1.5). Note that the regular singular point has 
exponents 1/2 ±u.  We call (1, A) an eigenpair if a solution of (1.4) belonging 
to the exponent 1/2 +  ̂ at x =  t (without the logarithmic term if u is an 
integer) vanishes at x =  — 1. Using the Bessel function Jv of the first kind, 
such a solution is given by

y{x ) =  (i -  x)l/2J„{ß( l  -  z)),

where ß 2 =  A ^  0. It follows that the eigenpairs (1, A) are given by ( l , . ) /n/4 ), 
n £ N , where 0 < j „ti < j vp  <  • • • denotes the monotonically increasing se
quence of positive zeros of Jv . A similar definition applies to eigenpairs of 
the form (—1, A). The A-components of the eigenpairs (—1, A) agree with 
those of the eigenpairs (1, A).

Let a, 6 G Ciog. We say that a, b form a zero-pair (of Bessel functions) of 
order u if there exists a nontrivial solution of (1.2) which vanishes at a and b.

We now indicate how eigenpairs are connected with zero-pairs.
L e m m a  2.4. Let r G C \  [— 1,1], ß&C with ß  ^  0, and set 

a := ß{x +  1), b := ß ( r  — 1).

Choose arg a, arg b such that | arg a — arg b \ <  tt. Then (r, ß2) is an eigenpair 
of order u if and only if a, b is a zero-pair of order u. The same equivalence 
holds for  t =  t i  iO with t G (—1,1) if we choose arg a and arg b in such a 
way that arg b — arg a =  ±7r, respectively.

PR O O F. This follows from the fact that the solutions of (1.4) with A =  ß 2 
are given by y(x) =  (r — x ) 1̂ 2Cu(ß(T — x)), where Cu is an arbitrary solution 
of (1.2). If x runs from —1 to 1, ß(r — x) describes the line segment from 
a to b. If r G C \  [—1,1], then this line segment does not pass through 0. 
Then choosing arg a and arg b such that | arg a — arg b \ < n, we see that the 
equivalence is true. If r =  r ±  «0, then the line segment from a to b passes 
through zero. Choosing arg a and arg b as indicated, we obtain the desired 
equivalence. □

With Cu(z) also Cu(zeni) and C„(z) (arg z  := — argz) solve (1.2). This 
implies the following lemma.

L e m m a  2.5. If a, b is a zero-pair of order v, then also ae*1, be7'1 and a, b 
are zero-pairs of order u.
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3. Quotient of Hankel functions

We begin with the well known asymptotic formulas for the Hankel func
tions; see [13, p. 198]. For (small) $ > 0, we have

/  o \  I/2
H ^ { z )  = ei ( * - i * « r - W ( l  +  0 ( z - 1))

as 2 —> oo uniformly for — n +  5 ^ arg z — S-, and

/ o x 1/2
H ? \ z ) =  Í —  J e- i ( ^ - i^ - l^ ) ( i  + OÍZ-1)) 

as z —̂ oo uniformly for —27r +  6 is arg z  is n — 6. This gives

(3.1) H\ ^ Z) =  e- « ( * - £ ™ - »  (1 +  0 { z ~ 1))
H „ \ z )

as z —» oo uniformly for — n +  6 ^ arg z — S. This asymptotic formula for 
the quotient of Hankel functions is not sufficient for our purposes because 
we also have to work with values of 2 close to 0. We therefore introduce the 
meromorphic function Qt/(z) defined on Ciog by

r r(2)/ x
(3.2) Q v (z ) :=ex ( * - k " - W f l z W '

H v { z )

By (3.1), this function satisfies

(3.3) Qu{z) =  l +  0 ( z - 1)

as z —> 00 uniformly for — n +  <5 arg z is 7r — <5.
We note some further properties of Qu for v 0. Since

(3.4) HW(z)  =  M z ) + i Y v(z), h W ( z) =  M z) - íYu(z ), 

and J„(z) = 0(1),  |Y[,(z)| —> 00 as |z| —> 0, we obtain

H ^ ( z )
(3.5) ’ - » - 1  as |z |->0 .

H ? \ z )

It follows that

(3.6) Qu(z) —> i e ~ uni as |z| —tO.

By (3.4), \H<i } \ z ) \  =  \ H ^ \ z ) \  for arg2 =  0 so that

(3.7) \Qv(z)\ =  l  for arg 2 =  0.
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The Schwarz reflection principle yields

(3.8) Q v ( z )  =  Q u [ z ) ~ 1.

Thus the value of Qu{z) is the inversion of Quiz) at the unit circle. The 
formulas (see [13, p. 75])

H ^ {ze '" i ) =  - e - v*iH <? X z ) ,

H ^ ( z e n i ) =  2 cos(^7t)HÍ2){z ) +  eV7TiH ^ \ z )

lead to

(3.9) Q u( z e Kl) =  2i cos(^7r)e_2i2: +  Q v ( z ) ~ l .

Once we know Qv(z) for 0 51 arg 2 7t/ 2, then (3.8) will determine Qu{z) for
—7t/ 2 ^ arg z'L 0, and (3.9) will determine Qv(z) for 7t/ 2 ^ arg z ^ n. We will 
need to know the behavior of Q u(z) only in the sector —n/2 Ű argz Si 7r.

A simple calculation using the definition of the modified Bessel functions 
Iu and K u (see [13, p. 77]) gives

(3.10) Q„(ye i ? )  =  e - 2* ( i e- ^  + 7r- | M )  for argy =  0.

Note that I^(y) and K u(y) are positive for y > 0. In particular, we find from
(3.10) and

that

(3.11)

sin(wn)Kv (y) =  - tt{I-„{y) -  Iu(y)), v (jL\

for arg y — 0.

Lemma 3.1. Let v  G [0,1/2], Then the following estimates hold for
\QÁz)V

(i) If 0 arg2 ^ n/2,  then 1 ^ |Q „(2)||[1 +  2 cos(vn) ;
(ii) ? /—7r/2 ^ arg z ^ 0 , then (1 + 2cos(i'7r))~1 ^ \Qts{z)\^ 1;

(iii) if 7t/ 2 fi arg 2 ^ n, f/ien 1 — 2 cos(^7r)e_2Imz ^ |Qy(z)| ^ 1 +  2 cos(i/7r).

P r o o f . Let e >  0. We first show that

(3.12) \Qis{z ) | ^ l  +  2 cos(^7r) + e for 0 arg z 5i 7r.

This is true for arg2 =  0 and argz =  7r by (3.7) and (3.9). By (3.3) it is 
true as z->oo for 0 5[ arg 2 ^ 7r/2. By (3.3) and (3.9), it is true as 2 —> 00 for 
7r/2 ^ arg 2 n. The estimate (3.12) now follows from the maximum-modulus 
principle because Q^(z) is analytic for 0 ^ arg 2 ^ 7r (and continuous at 0).
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We used that H l l\ z )  has no zeros in 0 ^ arg z ^ 7r; see [13, p. 511]. Letting 
e —> 0, we see that (3.12) holds with e =  0. This proves parts of (i) and (iii). 

By [13, p. 441], we have
7T
2

Ii, (y )I - l/(y) =  l j  Io(2ycos0) cos(2i/0) dd. 
o

Since Io(t) > 0 for t > 0, this shows that Iu{y)I-i,{y) is a monotonically 
decreasing function of v  G [0,1] for every fixed y > 0. The formula [13, p. 181]

OO

Ku{y) =  J e~ycosh 1 cosh(H) dt 
o

shows that K u(y) is a monotonically increasing function of u ^ 0 for every 
fixed y > 0; cf. [10, p. 251]. Hence, by (3.11), |QI/(?/e7ri/2)| is a monotonically 
decreasing function of u £ [0,1/2] for every fixed y > 0. Since Q i/2(z) =  1 
for all 2, we obtain |Q„(2)| ^ 1 for arg2 =  7r/2. We now use (3.3), (3.7) 
and the minimum-modulus principle to prove the remaining part of (i). The 
minimum-modulus principle is applicable because Qv is an analytic function 
without zeros in the sector 0 ^ arg2 ^ 7t/ 2 if v  6 [0,1/2]; see [13, p. 511].

Statement (ii) follows from (i) and (3.8). To complete the proof of (iii), 
note that (3.9) and (ii) imply, for 7t/ 2 £[ arg 2 5[ 7r,

IQv(z)\ ^ |Qt/(2e_,ri) |~ 1 — 2cos(i/7r)e_2Imz ^ 1 — 2cos(i/7r)e~21rnz.

This completes the proof of the lemma. □
It should be noted that the lower bound for |Q„(2)| appearing in Lem

ma 3.1 (iii) can be negative. Of course, in such a case the bound is triv
ial. If v  6 (1/3,1/2], then 0 ^ cos(^7r) < 1 /2  and the lower bound is posi
tive. If v  G [0,1/3] we lack a positive lower bound for \Qu(z)\ in the sector 
7r/2 ^ arg 2 ^ 7T. In the borderline case v — 1/3, we still have a positive lower 
bound for \Qv(z)\ in 7r/2 S[ arg 2 < 7r, Iin 2 ^ e >  0 but none for arg z  =  n. In
fact, Q„(z) (or, equivalently, HI '(z)) has zeros in the sector 7r/2 ^ arg 2 ^ it 
if v £ [0,1/3], the zeros lying on the ray arg2 =  n if u =  1/3.

Lemma 3.2. Let u 6 [0,1/2]. Then the following estimates hold for 
a r g  Q„(z).

(i) If —7r/2 ^ arg 2 ^ 7r/2, then 0 $[ arg Q u{z) ^ — is) n;
( i i )  */ 7t/ 2  a r g  2 ^ n and 2 cos(i^7r)e_2Im 2 ^ 1 , then

~<t> ~  Q “ ") n  ~  arg = &
where ( j ) a r c s i n ( 2 c o s ( i / 7 r ) e _ 2 Im 2 ) ;
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(iii) if v  £  [1/3,1/2] and 7t/ 2 arg 2 n, then

- 4 7r^arg (^ (z) ^ 3 7T.

PROOF, (i) By (3.10), the stated inequality is true for argz =  ir/2. By
(3.8), it is then also true for argz =  —7t/2. Now (3.3) and a variant of the 
maximum-modulus principle prove (i).

(ii) Let 7r/2 ^ argz ^ n and r  := 2 cos(n7r)e~2Im21 Ú 1. Then, by (3.9), 
Qv{z) lies on the circle centered at c =  Q„(ze-7r*)_1 with radius r. By 
Lemma 3.1 (ii), the center c satisfies |c| 2: 1. By part (i) of this lemma, 
— (1/2 — u)n ^ arge 5! 0. The information on the radius and center of the circle 
implies that each point w on the circle satisfies —</> — (1/2 — u)n ^ arg io ^ </>. 
This proves (ii).

(iii) Since 2 sinrr ^ sin(3a;) for we have

cf) arcsin ^ 3 7T.

Now (iii) follows from (ii). □
Using Lemma 3.2 we find another positive lower bound for |Q„(z)|.
Lemma 3.3. Let u £ [0,1/2], 0 < e ^ n/2 and n £ Z. If z  satisfies n/2  fL 

arg z ^ 7T and

(n — 1)7T +  - 7r +  -e  Re z ^ nn +  - v n  — -e ,
t; Li Lj

then \Q„(z ) \^sine.

PROOF. By (3.9), Q„(z) =  d — c with d := —2i cos(F7r)e2lz and
c :=  Q iy(ze~ni)~1. The assumptions on z show that d lies in the sector e ^ 
argd ^ 2ir — (1/2 — v)tt — e. By Lemmas 3.1 and 3.2, c satisfies — (1/2 —zv)7r ^ 
arge 0 and |c| ^ 1. It is easy to see that our estimates of c and d imply 
\d — c\ ^ sine. This yields the statement of the lemma. □

4. Estimates of zero-pairs

Let a ,6 e  Ciog be a zero-pair of Bessel functions of order u. Then (1.8) 
and (3.2) imply e~2taQl/(a) =  e~2lbQu(b). If follows that

(4.13) 2 Im (a — b) =  log \Q„{b) \ -  lo g \Qv(a)\,
(4.14) 2 Re (a — b) =  arg Qu(a) — arg Qu(b) mod 27t.

We now apply the results of the previous section to these formulas in order 
to obtain estimates for a — b if a, b is a zero-pair.
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T h e o r e m  4.1. Let a,b be a zero-pair of order u E [0,1/2], Then the 
following estimates hold for Im (b — a).

(i) / /a r g o  and argb lie both in [—7r/2,7r/2], or both in [0,7r], then

|Im (b — a)| ^ -  log(l +  2 cos(i/7r));

(ii) if arg a E [—7t/ 2, 0], arg b E [7t/ 2, 7r] and 2 cos(^7r)e_2Imt’ < 1, then

0 ^ Im (b — a) = ~lf ~  2 cos(^7r)e_2Im,;  ̂ .

P R O O F . W e  p r o v e  (i) b y  c o n s id e r in g  s e v e r a l  c a s e s .
(1) If argaG [—vr/2,0] and arg bE (0 ,7r/2], then (4.13) and Lemma 3.1 

(i) (ii) imply Im (a — b) ^ 0. This is a contradiction which proves that this 
case is impossible if v  E [0,1/2].

(2) If arg a, arg&G [0,7r/2], then (4.13) and Lemma 3.1 (i) give state
ment (i).

(3) If argaG [0,7t/ 2], argfrE [7r/2,7r] and Im i^ Im a , then (4.13) and 

Lemma 3.1 imply 0 ^ Im (a — b) ^ -  log(l -p 2 cos(^7r)).
The remaining cases can be reduced to one of the three previous ones 

by using Lemma 2.5. For instance, if arg a G [0, 7t/ 2], arghG [7r/2,7r] and 
Im a ^ Im b, then we apply the result of the third case to —b, —a in place of 
a and b, respectively. We obtain the desired statement. This completes the 
proof of (i).

(ii) follows immediately from (4.13) and Lemma 3.1. □

In the proof of Theorem 4.1 we saw that there is no zero-pair a,b of 
order v  E  [0,1/2] with argaG [— 7 r / 2 , 0] and arg&E (0, 7 r / 2 ] .  A s  a corollary, 
we obtain the result that a Bessel function of order u G [0,1/2] that is real
valued on arg 2 =  0 (and thus has zeros in conjugate pairs) is zero-free in the 
union of the sectors —ir/2 5Í arg 2 < 0 and 0 < arg z ^ n/2.  This result is due 
to Schafheitlin [12] (cf. [13, p. 482]) in the case of the Bessel functions To of 
the second kind.

Let us give an another application of Theorem 4.1. Consider a zero-pair 
a, b of order u G [0,1/2] with —7r/2 5Í arg a ^ 0 and 7r/2 ^ arg b ^ 7r. We claim 
that

Im  ̂= 2 1°&(1 +  2 cos(i/7r)).

In fact, if this were wrong, then Theorem 4.1 (ii) would imply that 
Im (b — a) < Imö which contradicts Ima ^ 0. We conclude that a Bessel 
function of order u  G [0,1/2] that has a zero a in —7t/ 2  ^ arg a ^ 0 is zero- 
free in that part of the sector -it/2  arg 2 5= n which lies above the line

Im 2 =  -  log(l +  2 cos(vn)). For example, a Bessel function that is real-valued
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for arg z  =  0 has a zero a with arg a =  0 (even infinitely many of them) so that 
this result is applicable. By using Lemma 3.3, we could find other zero-free 
regions but we do not go into the details here.

T h e o r e m  4.2. Let a,b be a zero-pair of order is e [0,1/2]. Then the 
following estimates hold for Re (a — b).

(i) / / arg a, arg 6 G [—7t/2, 7r/2], then there i s n E Z  such that

I Re (a — b) — mr tt;

(ii) if is íí 1/3, arg a E [—7r/2, 7t/2] and arg b € [tt/ 2, 7r], then there is n E Z 
such that

3
2

7T ^ Re (a — 6) — mr ^ - 7T.

P r o o f . Both statements follow directly from (4.14) and Lemma 3.2. □

Let us give an application of Theorem 4.2 to the location of the positive 
zeros j,^n of the Bessel function Ju. By (4.14), we have

jis,n ~ jv,m = 2 Qu{jv,n)  ̂ Qv{jis,m) mod 7T.
For fixed n, we let m go to infinity noting that ([13, p. 509])

1 13v,m = mn —-7T + -isTT +  °{1) as m —>oo.

By (3.3) and Lemma 3.2, we find k  E Z  such that

(4.15) j v , n - k n + - tt - - isnE

if is E [0,1/2]. We know that j u.n is a monotonically increasing function of 
is >  —1; see [13, p. 507]. Therefore,

n7r ~~ ^  =  d - \ / 2 , n  =  j v ,n  ~  j l / 2 , n  =  n n -

It follows that k — n in (4.15). Hence we have proved that

(4.16) nir — — tt +  — isir ^jv,n = nn

for is E [0,1/2] and n E N. A related result was proved in a different way by 
Schafheitlin [11]; cf. [13, p. 490]. In a similar way, we can prove that

(4.17) mr — — n  — — isn ^ j - v,n = nir — î 7rA
for u E [0,1/2] and n E N.

In the next section we will need the following estimates of a — b if a, b is 
a zero-pair with | arg a — arg b\ ^ tt.

n  1 <1 \
0 , - ----- V  7T

' 2 v2  )  _
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T heorem 4.3. Let a,b be a zero-pair of order v E [1/3,1/2] and 
arg a — arg b\ ^ n. Then the following estimates hold.

(i) There is nE  No such that

3
2

tt Ú |Re (a — 6)| — tt;

(ii) if v >  1/3, then

|Im (a — 6)| ^ -  log(l — 2 cos(r,7r)).

P roof. Let a, 6 be a zero-pair with |arga —arg6| ^ tt. Using Lem
ma 2.5, it is easy to see that there is another zero-pair c, d with |Re(c — 
d)I =  |Re (a — 6)| and |Im (c — d)\ =  |Im (a — 6)| satisfying one of following 
three statements: 1) arge, arg dE [0,7r/2]; 2) arg c E [0,7r/2], arg d E [rr/2, it]] 
3) argc€ [—7r/2, 0], arg d E [7r/2, tt] and arg d — arge ^ 7r. Now statement (i) 
follows from Theorem 4.2 (i) in case 1) and from part (ii) of the same the
orem in the cases 2) and 3). Statement (ii) follows from Theorem 4.1 (i) in 
the cases 1) and 2) and from part (ii) of the same theorem in case 3). □

We will also need an estimate for Im (a — 6) in the borderline case v — 1/3.

T heorem 4.4. Let a,b be a zero-pair of order v = 1/3 with |arga—arg6| 
5l tt. Then

|Im (a — 6)| ^ i  log ^2 +  ^ |R e (a -6 ) |^  .

P roof. As in the proof of Theorem 4.3 we have to consider three cases.

In the first two cases, Theorem 4.1 (i) yields |Im (a — 6)| ^ -  log 2. Therefore,
it is sufficient to consider case 3): arg a E [—7t/ 2, 0], arg 6 E [tt/ 2 ,7r] and arg 6— 
arg aúiT. Then Im (6 — a) íi 0 so that (4.13) and Lemma 3.1 imply

(4.18) 0 ^ I m ( 6 - a ) g ~ l o g |Q 1/3(6)|.

If —7r/2 5[ Re 6 51 0, then Lemma 3.3 with n =  0 and e =  tt/3  gives

IQi/ 3 (ö)| ^ Sin ^ V̂ 3 ^ 1/2.

Hence (4.18) shows that 0 ^ Im (6 — a) ^ -  log 2. Therefore, it is sufficient to
consider case 3) under the additional assumption that Re 6 51— t t / 2 .  Since 
arg 6 ^ arg a +  tt, we obtain

(4.19) Im (6 — a) =  Im 6 +  |Ima| ^ Im 6 +
Im 6
|Rc6|

Rea < 1 -|— Rea ) Im6.
TT
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If Im b >  0, Theorem 4.1 yields a second estimate

(4.20) 0 ^ Im { b -  a)  g  log(l -  e“2Im6).

For abbreviation, let us set s =  2 Im b > 0 and t — 1 +  |R e  a ^ 1. Then (4.19) 
and (4.20) imply

(4.21) 0 ^ Im (6 — a) ^ ~ min(si, — log(l — e~s)).

We claim that, for all s >  0 and t  ^ 1,

(4.22) min(st, — log(l — e- s )) Ú log(l + t).

In fact, the substitution u =  e~st leads to the equivalent statement max(u, 1 — 
u}/t ) ^ (1 +  i)“ 1 for 0 < u < 1 which is true because 1 — u1̂  ^ (1 — u)/t .  Now
(4.21) and (4.22) imply

0 ^ Im (6 — a)  ^ -  log ^2 4— R e â j .

Since R ea ^ |Re (a — b)\ this completes the proof. □

5. Proof of the main theorem

We collect all permissible r ’s into a set C*. Thus C* consists of all 
r € <C\ [—1,1] together with r  =  oo, the boundary points r ± i0  for r 6 (—1,1) 
and t  =  ±1. This is a compact space.

T heorem 5.1. Let vE  [1/3,1/2]. Let (r,/32) be an eigenpair of order v 
with t  EC* and K eß  ^ 0. Then there exists n E No such that

(5.1) - I Q - " ) ”'

and

—  log(l — 2 cos(^7r)) if > 1/3,
f
-lo g (3  +  2n) if v — 1/3.

P r o o f . Let (r, ß 2) be an eigenpair with r E C \ [— 1,1] or r  =  r± z 0  with 
t E { —1,1) andRe^^O . We can assume that ß  Ü. Define a =  ß (r  +  1) and 
b =  ß ( r  — 1). By Lemma 2.4, a, b is a zero-pair of order v with the indicated
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choice of arg a and arg b. Then | arg a — arg 6| ^ ix. By Theorem 4.3 (i), there 
is n G No such that

Since ß —  (a —  b)/2 ,  we obtain (5.1). Similarly, Theorem 4.3 (ii) implies (5.2) 
if v > 1/3. If v =  1/3, we use Theorem 4.4 in combination with (5.3) and 
obtain (5.2).

If r =  oo, then ß  =  rnr/2 for some n € N and the statement is trivially 
true. If r =  ±1, then ß  =  j ûn/2  for some n G N and the statement follows 
from (4.16). □

It is important to note that (5.1), (5.2) define a collection of mutually 
disjoint rectangles Rn with Rn containing n7r/2. Theorem 5.1 states that 
the union of the rectangles contains all ß  with Re ^ 0 for which { r ,ß 2) is 
an eigenpair of order u for some r G C*. This is all we need to prove the 
following main theorem. It is another (less important) task to make these 
rectangles as small as possible. In Section 6, we show a picture that gives 
an idea about the quality of the estimates of Theorem 5.1.

THEOREM 5.2. Let i/G [1/3,1/2]. For each uGN, there is a (uniquely 
determined) function ßn(r) which is analytic in C \ [—1,1] and at t =  oo with 
ßn(oo) =  n7r/2 such that (t, ßn(r)2) is an eigenpair of order u for all r. This 
function is also analytic along r± *0  with r G (—1,1), and it can be extended 
to a continuous function on C*.

PROOF. Let nGN. We recall that the function D (r ,/32) is analytic for 
rGC*, r / ± l  and ß  G C. Let R  be a rectangle a little larger than R n. Using 
Theorem 5.1, we see that D ( t, ß 2) 0 along the boundary of the rectangle. If
r =  oo, then D(t, ß 2) has exactly one (with regard to multiplicity) zero within 
the rectangle. By Rouché’s theorem, we find that, for every r, D ( r , ß 2) 
has exactly one zero /3n(r) within the rectangle. By the implicit function 
theorem, this function ßn(r) is analytic.

We claim that ßn(r) is continuous at r  =  ±  1 if we set ßn( ± l )  =  j u,n/2. 
It is sufficient to prove this for r =  1. We know that the range of ßn is 
bounded because it is contained in the rectangle Rn. Therefore, in order 
to prove that ßn{r) is continuous at r =  1, it is is enough to show that 
1 Tk ->■ 1, ßn{Tk) -> ß  implies that ß  =  j^ n/^- Define ak =  ßn{rk){Tk +  1) 
and bk =  ßn(Tk)(Tk — 1). Then ak,bk is a zero-pair of order u if we choose 
arg ak and arg bk according to Lemma 2.4. Using appropriate arguments 
we also have that ak —> 2ß and \bk\ —> 0 as k —> oo. We now use (1.8) for
a =  ak,b =  bk and (3.5). It follows that H ^ ( 2 ß ) / h I^(2ß) =  — 1. Using (3.4) 
we conclude that Jl,(2ß) =  0. Since all zeros of J„ are real ([13, p. 482]), 
we find that 2ß — j v,m for some rn G N. Since ß  is in the rectangle Rn, m 
equals n. The proof is complete. □

(5.3)
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The proof shows that the rectangle f?o does not contain a ß  for which 
(r, ß 2) is an eigenpair for some r G C*. The following two properties of the 
functions ß n( r ) follow easily.

C O R O L L A R Y  5.3. Let (r, A) be an eigenpair of order ^ €[1 /3 ,1 /2] with 
t G C* and A G C. Then there is nE N such that /3n(r)2 =  A.

C O R O L L A R Y  5.4. Let v  G [1/3,1/2] and n G N. Then, for every r G C*, 
ß  :=  ß n (r )  lies in the rectangle given by (5.1) and (5.2).

6. The functions ß n (r  +  iO)

In this section we describe the functions ß n {r  +  *0) of Theorem 5.2 for 
r G [— 1,1] and v G [1/3,1/2]. We know that these functions are analytic in 
(—1,1) and continuous in [—1,1],

We define ao =  0 and

f J - v,(k+l)/2 if k is oddOn =  < . -ci •
I 3u,k/2 lf k 1S even-

The interlacing property of the zeros of J„ and J - u shows that

(6.1) 0 =  ao < O] < «2 <  . . .  .

For n  G N and m — 0 , . . .  , 2n, we define

( 6 .2 )
_ &2n—mn tii — •

am +  a 2n-m

It follows from (6.1) that, for every n,

(6.3) ' 1 =  YjiO <[ Tn\ < ■ ■ ■ < rn 2n—1 ^ 7n,2rc — 1

so that the points rnm, m  =  0 , . . . ,  2n, form a partition of the interval [—1,1]. 
This partition is symmetric with respect to 0, that is, rnm =  —Tn^n-m- In 
particular, we have rnn =  0.

We also define
ßnm =  +  0^2 n—m)-

Lemma 6.1. Let v  G (0,1/2). For every n  G N and m =  0 ,1 , . . . ,  2n, 
(rnm +  iO, ßnm) an eigenpair of order u. There are no other eigenpairs of 
the form (r + *0, A) with r  G [—1,1] and A > 0.

P R O O F . If m =  0 or m =  2n, then ß nrn =  j u,n/^ and (Tmn,ßm n ) an
eigenpair by definition. Let m  =  1 ,2 ,. . . ,  2n — 1. Then

ßnm ijnm  T 1 )  — O m , ßnmiTnm 1 )  =  °l2n—m
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which shows that a ßumi^nm +  1) (with arg a =  0), b := ßnm(jnm ~  1) (with 
arg b =  7r) form a zero-pair of order u . In fact, J„ or vanish at both a  and 
b if m is even or odd, respectively. By Lemma 2.4, it follows that (rm,nßmn) 
is an eigenpair.

Conversely, assume that (r +  i0,/32) is an eigenpair with r €  (—1,1) and 
ß  > 0. Then a := ß ( r  -f 1) (with arg a =  0) and b := ß (r — 1) (with arg b — n) 
form a zero-pair. Thus there exists a nontrivial Bessel function Cu of order v 
that vanishes at a and b. We claim that Cu is a multiple of either J„ or J_„. 
In fact, writing

Cv (z) = AJv(z)  +  BJ_„(z),

we have
AJu(a) +  BJ_^(d) =  0, AJu(b) +  B J_j/(6) =  0.

Since J±v(a) and J±u(b) are real numbers, we obtain that B =  0 or 
both A /B  and e27TI/lA / B  are real numbers. Since 0 < v < 1/2, either A or B 
must vanish. This establishes the claim. If Cu is a multiple of then there 
are p,q  G N such that a — j u<p and b =  —jv,q- It follows that r =  rnm, ß  =  ßnm 
with m =  2p and n — p +  q. Using a similar argument in the other case, we 
complete the proof. □

Let v  € [1/3,1/2]. By Corollary 5.3 and Lemma 6.1, for every n, m, there 
exists k 6 N such that /3fc(rnm) =  ßnm. In order to determine k , we use the 
inequalities (4.16), (4.17) for the zeros y„,n and j - u>n- We obtain

n7r_ Í 2 n ~ Jt/’n = ri7r

nir--TT < j - Uin S nn

This gives

—kn — — 7T < at < — kn 
2 12 “  “ 2 

1 1 
-k n  < a k < -k n  +  - n  
2 -  * - 2  6

and

if m  is even

H— n if m is odd.
6

These estimates for ßnm and Corollary 5.4 imply the following theorem.

1 1 < !nnn — — n < ßnm < -n n  2 12 -  rnm  -  2

- n n ^ ß n m ^  -n n

if k is even 

if k is odd,

1 1
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T heorem  6.2. Let u G [1/3,1/2]. T/jen

ß n  (Tnm T  *0) — ßnm  

for a llííG N  and m  =  0 ,1 , . . . ,  2 n.
If ^g [1/3, 1/2), then Lemma 6.1 and Theorem 6.2 show that Im/ln(r+i0) 

has exactly 2n +  1 zeros for r  € [—1,1], namely the numbers (6.3). We now 
wish to determine the sign of Im/3„(r +  i0) between these zeros. We first 
calculate the derivative of /3n(r).

Lemma 6.3. Let v  G [1/3,1/2], n G N and r G C \  [—1,1] or t  =  t  ± i 0  
with t G ( — 1,1). Set a := ßn(T)(T +  1), b := ßn{T)(T — 1) with arg a and 
arg b chosen as in Lemma 2-4- Let Cv be a Bessel function of order u that 
vanishes at a and b, and let D u be a Bessel fimction of order v that is linearly 
independent from C v  Then

1 b D u{b)2 — a D l/( a ) 2 

Pn[T> 1 - t2 D„{b)*  -  D v { a ) 2 '

P ro o f . In the proof we denote the given value of r by To- Let r denote 
a complex variable close to tq. Then, by (1.7),

C u ( ß n ( T ) ( T  +  1 ) ) D u( ß n ( r ) ( r  -  1)) -  C M t )(t -  1 ))A ,(& (r)(r  +  1)) =  0-
We differentiate with respect to r and set t =  tq. Since Cv{a) =  Cv {b) =  0, 
this gives

/6 4x ( ß n ( To)(r0 +  1 ) + ß n ( T 0) ) C l ( a ) D l,(b)

=  { ß n ( To ) ( r 0 -  1) +  ß n { T o ) ) C l { b ) D „ { a ) .

Now the Wronskian relation

z(Cu(z)D'v (z) -  C l{ z)Du(z)) =  const

yields
aC'v ( a ) D v (a) =  b C U b ) D „ ( b ) .

We use this in (6.4) to eliminate C'u and obtain the desired statement. □
We use Lemma 6.3 to calculate ß'n (Tn m ) for odd m. We choose D u =  Ju 

and obtain with a — ßnm  (l'nm  T  l ) i  b — ßnm  (^~nm 1)

O, , nx 1 bJ„(b)2 - a J u{a)2
+  M b ) 2 _ M a ) 2 ■

Setting w = Ji/{b)2/ Jv {a)2 we find

Im ß'n(Tnm +  iO) =  ( l - T 2m) - 2\ l - w \ - 2( a - b ) l mw.

Since Ju{a) and e~vlTl Ju(b) are real numbers, we see that Imw >  0. This 
shows that lmß'n(Tnm +  iO) > 0 for all odd m. This allows us to determine 
the sign of lm ßn(T +  i0) for r G (—1,1) as stated in the following theorem.
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Fig. 1. The graph of 03(r +  *0), r  £ (—1,1), for v = 1/3

THEOREM 6.4 Let v  € [1/3,1/2). I fm  is odd, then Im/?„ (r +  iO) > 0 for 
Tnm < r  < r„>m+i. Ifm is even, then Im/3n(r+i0) < 0 /o r rnm < r < Tn,m+i.

Figure 1 illustrates Theorem 6.4 and Corollary 5.4 for v  =  1/3 and n =  3. 
The curve /^(r +  fO), r 6 (—1,1), starts at the indicated point ßz$.  The first 
part of the curve (for r € (t3io,T3ii )) lies in the half-plane Imß  < 0. The 
large rectangle shows the bounds for ß% (t) as stated in Corollary 5.4. The 
graph of /?3 (r +  «0) was computed by solving the equation

Ji/(a)J_1/(5) — Jt/(5)J_I/(a) =  0, a = /3(r +  1), b — ß(r  — 1)

for by Newton’s method. The Bessel functions J±v were computed by 
rational approximation; see [8].
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OPTIMAL PACKINGS OF UNIT SQUARES IN A SQUARE

S. EL MOUMNI

A bstract

Let s(n) denote the edge length of the smallest square in which one can pack n unit 
squares whose interiors are pairwise disjoint. We prove that s (7) =  3 and s(15) = 4.

1. Introduction

In this note we determine, for n =  7 and n =  15, the edge length s(n) of 
the smallest square in which one can pack n unit squares whose interiors are 
pairwise disjoint.

In 1975, P. Erdős and R. Graham [1] proved a remarkable theorem: If we 
denote by m(z) the maximum number of unit squares that one can pack in a 
square of side z, and if w(z) =  z2 —m(z),  then w(z) =  0 (z 7/ n ) (7/11 =  0.636). 
According to M. Gardner [2], H. Montgomery has improved this asymptotic

result slightly, by proving that w(z) — —̂ -^ = 0 .6 3 3 ^ . In

1978, K. Roth and R. Vaughan [4] showed that w(z)  ^ 10_100(||z ||z)1/ 2, where 
||z|| =  inf(|z — [z\\, Iz — |zj — 1|)- F. Göbel remarked in [3] that, apart from 
the trivial result s(k2) =  k for every & € No, the only values of n for which 
s(n) is known are n =  2, 3, 5 (s(2) =  2, s(3) =  2, s(5) — 2 +  ^ ) ,  and that E. 
Bajmoczy in Budapest established that s(7) =  3, but the proof of this result 
has apparently never been published.

We are going to prove the following results:

T heorem 1. s(7) =  3.

T heorem 2. s(15) =  4.
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2. Proof of Theorem 1

We first prove the following propositions:
PROPOSITION 1. If we pack a unit square C\ in a square C whose edge 

length is less than 2, then the center of C belongs necessarily to the interior 
of C l

PROOF. Suppose, on the contrary, that we can pack a unit square C\ 
in a square C  =  (abed) of side 2 — 2e (e > 0) in such a way that the center o

O
of C  is not in the interior C i of C\.  We denote by a', b', c', d! , respectively,

O
the midpoint of [a, b], [fo, c], [c, d\, [d,a]. If C\  intersects each of the open

O
squares (aa'od'), (a'bb'o), (ob'cc'), (d'oe'd), then o E C i , a contradiction. Up

O ____
to a symmetry of the square (abed), we may assume that C\ IT (ob'cc') =  (f>. 
Denote by C2 =  (oefg) the unit square such that

[o, b'] C [o, e] and [o, d] C [o, g\.

Thus we have packed two unit squares C\ and C2 in a square of side 2 — e, 
contradicting the fact that s(2) =  2.

P roposition 2. If we draw infinitely many parallel lines Aj (i E Z ) in 
the euclidean plane E 2 in such a way that the distance between any two 
consecutive lines is a constant d satisfying ^  d < 1, then for any unit 
square C ,

Y  \Cn Ai| ^inf(2 (y/2 - d) , l) .
ie z

o
P roof. Since d <  1, we have C d  ( |J Aj) ^  f .  We now distinguish two

ie z
cases: O

Case 1. There exists j  EZ such that Aj intersects C  in a segment ]pj,qj[,
O

where pj  and qj belong to two opposite sides of C. Then |C D Aj| ^ 1, and 
so

^ | C l T A . , | ; > i n f ( 2 ( V 2 - d )  , l )  .

iez
o

Case 2. For each i £ Z, if A; IT C ^ <f> and Aj fl C  =  \pi, qf\, then pi and qi 
belong to two consecutive sides of C. Consider the following two subcases:

Subcase 1. C  intersects only one Aj.
O

Subcase 2. C intersects two consecutive lines Aj and Aj+i (it is impos-
O

sible for C  to intersect three consecutive lines, because the diameter of C  is 
y/2 and 2d^y/2).
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Let s i,S 2;S3,S4 be the vertices of C. We have Aj  D C  =  \pj, qj], where 
Pj and qj belong to two consecutive sides of C. Denote by S3 the vertex 
common to these two consecutive sides, by si the vertex opposite to s3 (as 
in Figure 2), by a  the angle between one of the sides of C  containing S] and 
the line parallel to A j passing through si (0 < a  < n / 2 ).

Study of the 1st subcase. Let d! =  d(s i ,Aj) .  We have \pjQj\ =
sin a  +  cos a  — d' , , ,  ̂ / r- ,\ 1 r- \-, and so \pjqj\ ^ 2 (\/2 — d ) ^ 2 ( \f2 — d ) .

sin a  cos a

Study of the 2nd subcase. We have

sin a  +  cos a  — d 
sin a  cos a

We conclude that in both subcases

JUIC'D Ai| ^ 2 ( v ^ - d ) ^ in f ( l , 2 (>/2 - d ) ) .
iez

P r o o f  o f  T h e o r e m  1. Suppose that one can pack 7 unit squares in a 
square (abef) of side 3 —a (a >  0). Since s(5) =  2+ we have 3 — a  ^ 2+
and s o a i l - y .

We dissect (abef) into 9 little squares of side 1 — e (where a  — 3e), as 
shown in Figure 1.

bi

e2

f  A

(I1 b'

f e

I'PjQjl +  \Pj + i Qj + i \

Fig. 1

Let V  be a packing of 7 unit squares in the square (abef). Note first 
that there are at least 3 unit squares whose interior does not contain any 
of the 4 points a', b e', / ' ,  otherwise (by the pigeonhole principle) there 
would exist 2 unit squares whose interior contains one of the points a', b', 
e', f ,  contradicting the fact that the interiors of the 7 squares are pairwise 
disjoint.
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Call C i, C2, C3 these 3 unit squares. We will prove that the center 
Oj of Ci (i =  1,2,3) belongs necessarily to the union of the open rectangles 
(a i& iei/i) and (02 2̂62/ 2)- In order to do this, we will prove that, if it is 
not the case, then one of the points o', e', f  belongs necessarily to the 
interior of Ci. Indeed, up to a symmetry of the square, we may assume that
01 belongs to the closed square (aaio'ß2). We have Ci C (ab\e' $2) (of side

O
2 — 2e) and, by Proposition 1, a' EC{.

Thus we have shown that the centers o\, 02, 03 of the 3 squares C\ , C'2 , C3 
belong to {a\b\b'a') U (a'b'e' f )  U {b'b^^e') U (e 'e if if )  U (ß2a ' / ' /2). How
ever, two of the centers 01, 02,03 cannot belong simultaneously to one of 
these 5 squares of side 1 — e, otherwise there would be two centers Oi and 
Oj at distance ^ 1 belonging to a square (S1S2S3S4) of side (1 — e), where

0 0 O

si, 52, S3, S4 t C i U C j .  Since the open disc D(ol, 1/ 2) of center o; and radius
O O O

1/2 is contained in Ci and since D(oj,  1/2) C Ci , we would have

{oi ,oj }  n U D{sk, 1/2) =  0,
k=1

and so ot- and Oj would belong to the shaded portion of Figure 2.

Let r i ,r 2,r3,r4 be the midpoints of the sides of the square (S1S2S3S4). 
We have o; G ( r i r 2 r 3 r 4 ) and oj E ( ^ 2 ^ 4 ). But the diameter of the square

O O
(rir2r3r4) is 1 — e. Therefore |e>iOj| < 1, and so Ci  D Cj ^  cf>, a contradiction.

Let Oi be the center of the square Ci (i =  1, . . .  ,7). It follows from the 
preceding arguments that any distribution of the centers of the 3 squares Ci, 
C'2, C*3 is equivalent (up to a symmetry of the large square) to one of the 3 
cases represented in Figure 3.

Case 1. We first prove that | fl[ö2&2]I =  |C in [ a '6 ']|. We have D(o\,  1/2) 
C Ci<z{abef), thus d(oi, [ai, 6 i])^ l/2 . On the other hand, cf([ai, 61], [a', b']) =
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a'
x *,

b'

r
X o 3

e'

/
1 st case

b

a'
X 0 ,

b’

\ X 0 3

r e

2 nd case 

Fig. 3

a

a'
x «>

b'

X ° 2
X o 3

/ ' e'

f
3rd case

1 — e < 1. It follows that d(oi, [a', 6']) < 1/2. Therefore D(oi,  1/2) D [a', 6'] ^  0,
o o o

and so C\  D [o', 6'] ^  </>. The fact that a' ^ (7i and 6' ^ C\,  together with the
O

convexity of C\,  imply that

C ifl [a'2, 62] =  Ci  D [a7, 67].

A similar argument shows that

C3 H [ß2, / 2] =  C 3 n [e7, /'].

By Proposition 2,

|Ci ("I [a', b']\ 2 \/2  — 2(1 — e)

and
|C*3 n [er, / 7]| ^ 2\/2 — 2(1 — e).

o o
If C 2 ft [o', 6'] ^  <f>, then C 2 fl [o', 6'] is a segment whose endpoints belong to 
two neighbourly opposite sides of C2 (otherwise \a'b'\ ^ 1, a contradiction).

The same holds for C 2 fl [6', er], C 2 fl [e7, /'], C 2 fl [/', a7] and, by the convexity
O

of C 2, we have

C2 n [a2l 2̂] =  C2 fl [a7, 67] and C 2 D [e2, =  C2 n [e7, /'].

By Proposition 2,

|C2 n  [a7, 67]| +  IC-2 n  [e7, / 7]| ^ 2 V 2  -  2(1 -  e).
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Therefore

£  ICi n [a', b']\ +  \Ci n [e', /']| ^ \a'b'\ +  |e'/'|,
i=1

from which we deduce that 3 {2\f2 — 2 + 2e) ^ 2 — 2e, that is 6\/2 < 8, a 
contradiction. We conclude that this first case is impossible.

Cases 2 and 3. In each of these cases, the centers oi and 02 of the 
squares C\  and C2 belong to the open squares {ab\b'a') and (a2a '/ ' /2) of 
side 1 — e (the center Oj (i =  1, 2) cannot belong to the segments [a i,/i] , 
[61, ei], [a2, 62], [/*2, 02]), otherwise one of the points a', 6', e', f  would be in
O
Ci, a contradiction.

In the same way as in the 1st case, we have

|C in [ a ' ,6 ' ] |^ 2 \ /2 - 2 ( l - e ) .

On the other hand, C\  D [a\ , o'] ^  </>, otherwise C\ would be contained in the
O

square (aibe^f)  of side 2 — 2e and, by Proposition 1, b' E C  1, contradicting 
the assumption that the interior of C\ does not contain any of the 4 points 
a', 6', e', / ' .

Similarly, we have

|C*2 n ÍV, f ']\^ 2 V 2 — 2(1 — e) and C 2 O [a', 02] 7̂  </>•

Consider the points p, q, r, s, t, u such that

p , q £ [ a J ) ' ] ,

r , s e [a ' , f ' ] ,
O

t E Ci  n  [cti, a'],

[pb1] =  \aq\ =  2\Í2 — 2 

\rf'\ =  |fl/,s| =  2\Í2 — 2
O

uE C2 0  [a2, a'].

o o
The points p, 9, f belong to C \ .  Similarly, r, s, u belong to C2. The situation 
is summarized in Figure 4.
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/  /,

Fig. 4
O O 0 0

By the convexity of C\  and C 2 , the triangles (pqt) C C 1 and (rsu ) C C2-
O

Suppose that there exists a square C4 such that a! 6  C 4 . Thus we have
O O
C 4 D (pqt) =  <t> and C 4 Pi (rsu) =  <j>, and we deduce that C4 is contained in the 
polygon (a a \p b 2 e j \ r a 2 )- Consider the points p \  r ' such that

p ' G[ai,p], r ' e [ a 2 ,r] ,  \p 'r'\ =  1 and p ' r ' / / a i a 2.

We distinguish two cases:

Case 1. The center 04 of C4  belongs to the pentagon (a a i p r a 2)• Now 
d(o 4 , [ai,p]) ^ d(o \ , [0 2 , r]) ^ 5 , |p'r'| =  1, |pr| =  2 \ /2 -4  —e < 1. We deduce 
that 04 does not belong to the polygon (p 'p r r '), otherwise by drawing the line 
A parallel to r 'p '  and passing through 0 1 , we would have A D \p ',p] — p "  and 
A n[r',r] = r " ,  and so \p"r"\ ^ 1, contradicting the fact that |pr| <  \p"r"\ < 
\p 'r '\ =  1. Therefore 04  G (a a \p 'r 'a 2 )■

But two vertices of C4 cannot belong to the open polygon ( r 'p 'b 2 e f i )  be
cause in this case the other two vertices would belong to (aaipV a2 ), therefore 
the intersection of C4 and \p ',r'} would be a segment whose endpoints belong 
to two opposite sides of C4 , and this implies \p'r'\ > 1 , a contradiction.

Hence there are three vertices of C4 belonging to (a a ip 'r 'a 2), from which 
we deduce that there are two vertices of C 4 at distance \ / 2  and belonging to 
the pentagon (a a \p ' r 'a 2 )■

We are going to prove that the diameter of the pentagon ( a a \ p ' r 'a 2) is 
less than %/2, which yields a contradiction. For this it suffices to prove that

l-'l\ir I =  \ip I <  —  ■

Bu t

I ip 'V  =
2 - V 2 - t \  (  \ / 2 ( l  — e) — 1 

y / 2 - 1
+2
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and so we have I ir1 \ip'\ <
V2
2

Case 2. The center o\ of C4 belongs to the pentagon (rpb'e'/'). There is
O

a vertex si of C 4 such that si ^ ( r p 'e 1 f )  because a ' E C 4 . The other vertices 
cannot belong to (r ' p ' p r ). We denote by S2 and S3 the vertices of C 4 adjacent 
to s i. We have

•S2 S 1 S3 =  tt/ 2 .

But ___
S2ű's3 > S2S153 =  7t/ 2 and ra'p t  S20.'s% > 7t/2,

a contradiction.
Therefore a' is not in the interior of any of the other 4 squares. In 

conclusion:

If C \  and C2 are packed as in the 2nd case, then a! cannot belong to 
the interior of any of the other 4 squares packed in (abef), therefore there is 
another square C4 whose interior does not contain any of the points a', b1, 
e1, f , and so we have necessarily a packing of three unit squares equivalent 
to the 1st case, which is impossible.

If we are in 3rd case, the above arguments imply that a1 and b' cannot 
belong to the interior of any of the other 4 unit squares packed in (abef), 
thus there are two other squares C4 and C5 whose interior does not contain 
any of the points a', 6', e!, / ' ,  and so we have necessarily a packing equivalent 
to the 1st case, which is impossible.

We conclude that it is impossible to pack 7 unit squares in a square of 
side 3 — 0! (with a  > 0).

On the other hand, one can clearly pack 7 unit squares in a square of 
side 3.

3. Proof of Theorem 2

We first prove the following proposition:

P roposition 3. If n is an integer ^3 and if s ( n ) ^  \\/n\,  then

s(n) ^ inf
n 2\/2:n

\
U/nJ’ 2 n

IV™]
+  iVn}

PROOF. For any integer n ' t  3, we have y/n Ú s(n ) ^ [\/n] (indeed, n ^ 
s(n )2 ^ \y/n}2)-
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Let V  be a packing of n unit squares Ci (i — 1 , . . . ,  «) in a square (abef) 
of side s(n), and let aj, bj (j =  1 , . . . ,  \_\/n\) be the points such that

s(n)
laal| — \a [^/n\f \  ~~ laf aj + l| —

and
s{n)

\bbi\ = \bly/H\e\ = \bjbj+ i\ =  ( j  =  [V n \  -  1).

If s(n) <  I~y/n\, Proposition 2 shows that for every Ci 

W™\ / / / \ \
.1 •

Moreover,

Thus

and so

Therefore

n ív7«! [\/nJ
E  IC'tn [aj»&j]| ^ E  \a j b j \  =  [ V n \ { n ) .
1=1 j=  1 j=  1

n ].inf ^ 2  ^ \ / 2 -  ^  lVn\s{n),

n ^ or 2n f  \/2  — ^ [xAiJs(n).
V W n \ J

n 2\/2n
s(n) ^ -—-pr- or s(?ij d.

Wn\

We deduce that

(

s(n) íi inf
n

2 n

IV™1

2\/2r

+ 1\/™J

\

Lv^J ’ ...2 n .....+ 1 ^ 1
\Vn] +  LVnJ

P r o o f  o f  T h e o r e m  2. Suppose that s (1 5 )^ 4 . Then, by Proposi-

> 4, contradicting the fact that 5(15) ^ 4.tion 3, s(15) ^ inf I 5, — ■
7 J

Therefore s(15) = 4 .
In the same way, we can show that s(8) =  3 without using Theorem 1.
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ON THE EXCEPTIONAL SET FOR THE SUM OF A PRIME 
AND THE /c-TH POWER OF A PRIME

C. BAUER

1. Introduction

It is well known from the work of Montgomery and Vaughan that the 
exceptional set E(x ) for the binary Goldbach conjecture, i.e. the set of 
even numbers not larger than a real number x which are not representable 
as the sum of two primes, can be estimated by E(x) <C x l~s for a 6 > 0. 
Brünner, Perelli, Pintz [1] and later Zaccagnini [14] applied the method of 
Montgomery and Vaughan to the problem of the representation of a positive 
integer as the sum of a prime and the fc-th power of a natural number. They 
obtained an estimate for the corresponding exceptional set comparable to 
the one of Montgomery and Vaughan. In this paper we improve, for even 
integers satisfying certain congruence conditions, upon their result by giving 
the following theorem:

T h e o r e m . Let

Ek(x) =  \n : n ú x, 2|n, n já l(modp) Vp > 2 with p — 11A:,
n^px  +p% Vpi,p2 e P I,

where P  denotes the set of primes. Then there exists an effectively com
putable constant Q =  @(k) such that

Ek{x) <Zk x l~Q.

After this article had been written, the author became aware that in a 
still unpublished work Liu and Shung [7] have also proved the above theorem. 
Even though both works are based on the circle method, we feel that our work
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is still of interest because our method differs essentially from the method 
used in [7], We basically apply the method of [1] and [14] to our problem, 
whereas Liu and Shung use a method developed in [8 ]. Where we appeal 
to the lemmas 4.6-4.9 in order to calculate the contribution of the intervals 
over the major arcs, Liu and Shung apply a completely different technique 
of the Lemmas 3.1 to 3.4 in [8 ]. Furthermore, in their Lemma 4.6 they make 
use of Jordan’s theorem on Dirichlet’s integral which makes it necessary to 
extend the integration over the major arcs to infinity. Here, instead, we 
proceed differently by calculating precisely the effect of the P -exc lu d ed  zeros 
(defined below).

2. Notation

To a certain extent we follow the notation and the structure of the proof 
in [14]. We define: e (x )  =  e27rtx; a; is a sufficiently large real number, p  denotes 
a prime number, s  =  a  +  i t  is a complex number, g =  ß  + * 7  denotes the 
generic zeros of the L-functions. By x (=  X9), X* (=  Xq)i  Xo{— Xo,q) we denote 
a character, a primitive character and a principal character (modulo q), 
respectively, whereas ym odg <— ^x*mod<7* indicates that the character x  is 
induced by the primitive character x* with q*\q\ cond x =conductor of x ■ We 
denote the Möbius function by p(n), the Euler function by 0(n), the number 
of prime divisors of n by u>(n), the divisor function by r(n), the cardinality 
of a set A  by |H| and the greatest common divisor and the smallest common
multiple of the integers a  and b by (a, b) and [a, 6], respectively. P  is the set 
of prime numbers and for any integer Í M  we define

S i ( a )  =  Y  log P e(°P!). S t {x ,o t)  == Y  x(p)logpe(ap(),

T e {a) =  m e~ 1e ( m a ) ,
1  Sm<i

T (a) =  Ti(a),

and for a fixed k ^ .  2  we define

F g ( a ) =  Y ^  m e~ l e ( m k a ) 1 F { a )  =  F\ (a ).

E  =  E  '• E
X ' m o d q   ̂mOd q a = 1 CL=l 

X p r i m i t i v  ( a , g )  =  l

b

a=n=̂  a

Ci{x,a) =  Y  *x(m)e
m= 1 Q

C  i(x , 1 ) =  t(x),
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for a character x  modulo q.

>l(g,ra,Xi,X2) =  y'*(7 i(x i,a )C fc(x2 ,a)e ( —— ) ,
t i  V 9 J

for characters x i  and X2 modulo q.

M q , r>',Xo,q,Xo,',) =  A ( q ,n ) ,  r ( x , n ) =  ^  logPilogp2,
Pl+P2=n
§ Spi<i

-§rSP2<

L e,e' { x , n )  =  ^  m e xl 0' \  Lu (a;,n) =  L(x,n),
m+lk=nf̂ m<x

-^si< fer

cr(n, R ,  l) =  ^
q̂ R, 

(9,0 = 1

>1(9, n) 
</>2(<7)

<r(n, 7?) =  cr(n, P, 1),

7V(a,T,X) =  |{a : L (a ,X) =  0 , / te a ,  Og|7 |^T}|, 

i V - ( a , P , T )  =  ^  £  *7V(cr,T,x),
X m o d  q

where the possibly existing Siegel zero (relative to P) is excluded.

7V(n, q ) ( z= N (q ))  =  (m, /): mfc + 1 =  n(mod q ) ,r n ,  /€{ 1 , 2 , . . . ,  q}, ( m l ,  q) — 1 

u;(n, q) =  m : =  n(mod 7 ), m € { 1 , 2 , . . . ,  <7}, (m, q) =  1

Ci, C2 , . . .  as well as the O- and <S- constants are effectively computable 
positive constants which may depend on k.

3. Preliminary results

In the following we only argue for a fixed number k. We first quote:

L e m m a  3.1. T here  exists  a positive  c o n s ta n t  c\ <  1 such that L ( s ,  x) 7̂  0 
in  the region

CT “ 1 ~  lo g T ’ l ^ T4fc+7
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for all primitive characters xm od q, qffT,  2 with the possible exception 
of at most one real primitive character x  mod f  . If it exists, the correspond
ing L-function has exactly one zero ß  in the region given above, which is 
real, simple and satisfies

___—----  < 1 - f t <  ° l ...
f ^ l o g 2? — logT

Furthermore, all the other zeros of the L-functions for primitive characters 
to moduls q ^ T  do not lie in the following region

o > 1 — C l

log T
log

ec\
----— ---- ^ \t\ < T 4k+7
S(T)k(T))  ’ 11 =

where 5{T) and k(T) are defined by 

S(T) ==  J (1 — ß )  log T if ß  exists, 
otherwise

k(T) 1 if ß exists, 
Ci otherwise

P r o o f . [2], chapter 14 and [3], paragraph 4.

Set Pi = xbl, where b\ is a sufficiently small constant specified later. Let 
us further choose T =  P\ in Lemma 3.1. With the notation of Lemma 3.1 let 
further

y Pp otherwise

where A, 0 < A =  A(k) <  ̂ is a sufficiently small parameter specified later. 
Then Lemma 3.1 holds with T  — Pi, Aci instead of ci and r ^ P2A (if ß  exists). 
We define the P2, Xc\-*-excluded zeros as those zeros s =  o +  it of the L(s,  x)- 
functions, where x  is a primitive character modg, g ^ P 2, in the region

16 A:2 log log a; Í  (  2 \ io giog* \
l°gx °S {ó(P2)J J

m p 4k+?,

excluding the Siegel zero (relative to P2) and S(P2) is defined by Lemma 3.1 
with T  =  P2 and Aci instead of C\ . (Here e does not denote the exponential 
function, but the number e.) For any number P  with P  =  P^ for an 77 £]0, 1] 
holds Lemma 3.1, obviously with T  =  P  and r]\c\ instead of ci. The P, Xpci- 
excluded zeros are defined as the zeros of L(s, x)-functions to a primitive 
character x mod q, q ^ P ,  in the region

_ 16A;2 log log 2:
ct ^ 1 -------- ------------ log

logx (4fc +  3 ) i(P ) )

excluding the Siegel zero (relative to P) and 5(P) is defined by Lemma 3.1 
with T  =  P  and the constant rjXci. We estimate the number of P,Xpc\-  
excluded zeros by means of
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L e m m a  3.2. There exist constants C3 and c\ such that

N~  (a, T, T 4k+7) 5; C3(5(T)TC4{1_q) ,

where 6(T) is defined as in Lemma 3.1.
PROOF. See Zaccagnini [36], Lemma 3.2.

Applying this lemma we get for a sufficiently small b :

N-
16k2 log logx 

1 ---------log
2(4& +  2) \  log log x

(4 k +  3)<S(P)

5í C3 J(p2) exp ( 16k2b2C4 log log a: — 1 6 k 2 1>204 log

J  , P 2 , P ^ + 7 J

5(P2)(4k +  3 ) \
2(4 k +  2) )

^ 6 5̂ (P 2)\og1̂ x .

So we find by S(P) ^ 1 that there are not more than 

(3.1) ^ lo g 1/3 ^

pairs of numbers (q, q'), where each of the two numbers is an P, Ar/ci -excluded 
zero or a Siegel zero (relative to P) or =  1. Now we prove that for every
fixed P2 we can find a P  with P  =  P2 , 7 € 4fc+2 1 

4fc+3’ 1 , for which further holds

(3.2) a is P, t] \ c\ — excluded zero=> |Im(cr)| &\P4k+3, 16P4fc+3].

First we have for a sufficiently large x and a fixed b2:

(3.3) igOog x)1'6 g  p V 4

Let {71,. ..,7m } be the imaginary parts of the P 2, Aci — * — excluded zeros 
with j7 i| € [ P f +2, P24fc+3] and P 4fc+2 g  |7 l| ^ |72| ^ ^ l7m| ^ P24fc+3. Es
timating the P2, Aci — * — excluded zeros  as in (3.1), we find by (3.3) that 
there holds at least one of the following three inequalities:

3t E ( 1 , . . . ,  m — 1} with l7t+i
N

> 16 or
p4k+3

l7m| ^ 2
1/4 or l l̂ 1 > p i /4

pAk+2 = J 2 '

Setting in the first case |7(| =  P 4fc+3, in the second case |7m | =  P 4fc+3 and
in the third case P24fc+2 =  P 4*+3, we find a P  with P  e  [P24fc+2/4fc+3, P2\. (If 
there holds more than one of the three inequalities, then the definition of 
p4k+3 can be chosen arbitrarily among the possible choices.) But by the 
definition of a P, r/Aci — excluded and a P2, Xc\ — * — excluded — zero  every
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P,r)\c\  — excluded zero is also an P2, Aci — * — excluded zero, because by 
the definition of S(P) and S(P2) by Lemma 3.1 with the constant ciAr/ and 
CiA, respectively and by S(P2 ) í  1 (by Lemma 1) holds:

4k +  2 1 ^ 1
4k +  3 6{P) = 6{P2)'

So every P,r]\ci — excluded zero,  which does not satisfy the condition (3.2), 
would be a P2, Aci — * — excluded zero, which contradicts the choice of P.  So 
P  satisfies the condition (3.2). Then Lemma 3.1 holds with T =  P, c\ =  r/\c\ 
instead of ci and
3̂ 4  ̂ j- jo(4fc+3/4/c+2)A

(if the Siegel zero exists). In order to simplify the notation we write in 
the sequel c\ =  ci and the P, rj\ci — excluded zeros  will be denoted as the 
P  — excluded zeros. Let the P  — excluded characters be the primitive char
acters x(modg), q P , for which P(s, x) =  0) where s is a P  — excluded zero  
and denote by the P  — excluded moduls the moduls belonging to the P  — 
excluded characters. We will also use the following notation:

0 =  {P  — excluded characters}, O' =  {P  — excluded zeros},

(3.5)
P =  xb, ő(P) =  ő, x — exceptional character (to P),

ß =  Siegel zero (to P ).

The unit interval M +  1Q' Q_ 
and the minor arcs m, whic

is now divided into the disjunct major arcs M  
1 are defined by

M = ] T ^ ‘ /(a ,g ) , I(a,q) =
q<£P a- 1

a 1 a 1 
q Q' q +  Q J ’

m  = I I
[Q'1+Q\ \  M, Q =  x P —4fc—3

where P  is defined by (3.2). We obtain

i+(i/Q)

(3.6)

r ( x , n ) =  / S(a)Sk{oi)e(—na)da

1 IQ

=  f  S(a)Sk{a ) e ( - n a )  + j  S(a)Sk(a)e (-na)  =:ri (x,n)  + r 2(x,n),
M

where ri(a:,n) and r2(x ,n ) are real, because the sets M  and m  are even 
mod 1.
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4. Arithmetic and analytic lemmas

Lemma 4.1. Let 0 =  0102 and (01 , qo) =  1.
( a )  JV(g if t ) =  t f ( gy (S .
(b) For any prime numberp and any natural number a  ^ 2 holds: N(pa) = 

pQ_1 N(p).
(c) For an?/ natural number r holds:

p |r

d) Fnf s(p,n) := 1 +  Then we have
( P -  l )2

s(p,n) = P
(P -  1)

r^(p).

P roof, (a) We note that every a with 1 a ^ <7 can be written in a 
unique way as a =  <21(72 +  02 1̂ with 1 ^ a* ^ <p. We write

1 « 9 9 /

* a = l  m = l  /= !  V

mr +  l — n

split the summation over a in the two summations over a\ and a2 and after 
some arithmetical transformations get the lemma.

(b) By definition we have

N(pQ) =  m : rnk 7̂  n(modp),m G {1, 2 , . . .  ,p°}  , (m,p) =  1

For a  ^ 2 we write for (m, q) =  1: m — v +  wpa~l with 1 ^ v 5Í pQ_1, (u,p) =  1 
and 0 ^ ?o ^ p — 1, from which we obtain

N(pa) =  ( v , w ) : v k 7̂  íi(modp), 1 ^ v ^ p a_1, (?;,p) =  1,0 ^ w ^ p  — 1 

= pAf(pQ_1).

Applying (a —2)-times this argument we get part (b).
(c) We get from (a) and (b)

,Otn-ßt— 1

I I  r f ( na \ N (P ) I I  (p _ 1)2(pa - l )2iv (p)
p|r4>2 { r Y ' v ' }^_.<t>2 {p a )

p

p\r
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( d )

s(p, n) =  l +

p v p
E E E e
a— 1 ra=1 /=!

mk+l—n
P a)

(P -1 )2
P P P /  . \

E E *
a = l  m = l  i = l  v ' P

( p - i y { p - i y
;N(p).

Lemma 4.2. For any natural number k^.1,  any primitive character x  
modulo p a , 1 and (a ,p ) >  1 holds:

Ck(x,a) =  0.

P r o o f . Writing a — a /p  and m = u +  vpa 1 we obtain for a ^ 2:

pa
C k (x ,o )=  X I x M e

m=l

a m
a —1

u=l

a u k \  
p a - l j ^ 2 x ( u  +  vpa x),

V — \

which is equal to zero because the last inner sum vanishes for primitive 
characters. For a  =1 the lemma follows by the orthogonality relation of 
characters.

L e m m a  4.3. For any natural number k, q\q2= q > f e  > 94) =  L Xa(modg) 
=  Xa1(modgi)xo2(modg2), Xb{modq) =  X6x (mod qi)xt2 (modg2), and h =  
h\q2 +  h2q\

(a) Ck(Xa' h) — Ck (Xa 1 > bl\)Ck{X(i2 > ^2) •

(b) A{q,n,Xa,Xb) =  A{qun,Xal,Xb1)A(Q2 ,'n,Xa2,Xb2)■
(c ) For any natural number k ^ 1, any primitive character x modulo q, 

q >  1 and (a, q)>  1:
Cfc(x,a) =  0.

PROOF, (a) is shown in the same way as Lemma 4.1 (a). Applying (a) 
we can show (b) in a similar way. (c) There exists a pa || q, a  ^ 1 with 
(p,a) >  1. Writing a =  a2p a +  a\dL, it is by part (a) enough to prove that 
Cfc(Xp"ia i) =  0. But this follows from Lemma 4.2 because of (p, ai) >  1.

L e m m a  4.4. (a) For any natural number n and prime number p

A(p, n ) =  -(iu(n,p) -  l)p  -  1.

Let now be given any n which satisfies the congruence conditions in (1.1).
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(b) If at least one of the two characters x\  and Xi modulo q, q >  1 is 
primitive, then

\A(q, n > Xi > X2) I ^ f i -
p\q

jw{n,p) -  l)p +  1\  

( P -  ! ) 2 )

(c) For any characters xi and X2 modulo q:

l^ (g ,n ,x i,X 2 ) |< ^ 2(9)log4fcg.

(d) For any prime mimber p and s(p,n) defined as in Lemma f . l  (d)

s(p, n) >  0

holds true.

P roof, (a) By the definition of A(p, n) we have

A { p , n )  =  - ^ 2  Y l e -~a) = - { m { n , p ) - l ) p - l .
n— 1 m -1 \  P Ja = l  m = 1

(b) By Lemma 4.2 it holds:

I<t> 2(q)A{q , n , x i ,X 2 )\ =
Q

<fi~2{q) Ci(Xua)Ck{X2 ,a)e
a= 1

—an
<7

</> 2 iq)q Xi (0X2 M
l+m*=n(mod,),lsi 

(lm,q)=1

2(P)P^(P).
Pl<?

where in the last step we have used Lemma 4.1 (c). Noting further that by 
the definition of N(p)  we have:

(4.1) l^ m ^ p  —1, mfc^n(m odp) =  P~  1 ~m{n,p),

we see that the lemma holds by

\<t> 2{q)Mq^n,
1 - w ( n , p ) \  
( p - 1)2 y
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n
v\q

1 -
(w(n ,p ) — l)p +  1

(P~  l ) 2

(c) The lemma is trivial for q =  1. If the characters x i and X2 satisfy the 
condition of part (b), then part (c) follows from part (b), w(n,p) ^ k and so

n
p\q

1 - (■w(n,p) — 1 )p +  1
i p -  ! )2

In the other case we have

< n
p=q

1 +  — \  <  log4* ■
P J

Xi — X*Xo,i or x i  — Xo,q,

where q =  q*l and x * IS a primitive character modulo q*, q* >  1. We quote 
Lemma 5.3 in [9], which states that for a character x  modulo q ^ x *  modu
lo q* and (a, q) =  1 it holds

(4-2) C i(x, a) =  X(a)r(x*)p X* ■

So if x i  =  X*Xo,h w e  can restrict ourselves to the q which satisfies:

(4.3) p ( l ) ^  0, ( /,9*) =  1.

From this we get X2  =  X3X4 with %3 — X3 m odq* and X4 — X4 modi. So we 
obtain from Lemma 4.3 (c) and the first part of the proof:

(4.4) |^(g,n,x i  X2 ) \ <  ^2(?*) log4* q*A(l, n, xo,l, Xa)-

Using further the estimate

(4.5) Cfe( x ,a ) « £<z1/2+£,

which holds for (a,q) =  1 and may be found in [13], note to Lemma 4, we 
obtain

i
(4.6) A(l,n,xoti,X4) = E  Ci(xo,;,a)Cfc(x4,a)e

a— 1
=  <£ i3/2 + £.

So the lemma follows from (4.4) and (4.6). If Xi =  Xo,q the lemma follows 
immediately by arguing like in (4.6).

(d) By Lemma 4.1 (a) it is enough to show that N(p) > 0. Because 
of (4.1) the lemma is proved if w(n,p) =  0. In the other case we know (see 
Ireland, Rosen [5], p. 45) that w(n,p) =  (k ,p — 1), so that by (4.1) the lemma 
is proved in the case p — 1 \ k. By Fermat’s little theorem we know for p — 1 |fc:

a* =  1 (mod p) Va with o^O (m odp).

MAÖYA8
TUDOMÁNYOS AKAÜ-iäWW* 

könyvtara
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So we obtain for p — l\k:

n =  1( mod p) <=> w(n,p) = p  — 1 <=> N(p) - 0, 

which proves the lemma.

Lemma 4.5. For two primitive characters xi  modgi and X2  modg2 let 
g3 =  [g1,g2] ^ P. If n satisfies the congruence conditions in (1.1), there holds:

l^4(<?) n i X lX 0 ,q ,X 2X 0,<?)l  ^  j0g5/c+l p
f t  <PÜ)

( j = 0 (m o d  <73)

PROOF. For g^g let q\l =  g. Analogously to (4.3) we only have to treat 
those q that satisfy

p ( / ) ^ 0 , (l, gi) =  1,

and for which, under the additional assumption [gi,g2] =  g3 and g3|g,

( 4 ' 7 )  ( í ,<73) = 1

holds. So we obtain

XiXo.g =  X1X0 2a.Xo.-2- > X2Xo,<? — X2X0 sa.Xo.-2- >
’ l l  13 '12 S3

and we further have by (4.2), Lemma 4.3 (b) and w(p,n)  ^ k:

I A(m,  n)| ^ JJpA; =  mkF(m).
p\m

Using this, (4.7), Lemma 4.4 (c) and Lemma 4.5 in [14], we finally derive the 
lemma by

E
l^ ( 0rU bX iX o,i?,X 2Xo,9)|

<ii p
<7= 0 (mod <7 3 )

</>2(<?)

2l(g3,n,XiXo,2a.,X2Xo,2a)’gj ’ o192
</>2 (<?3) E

m=Ú
C*7» .<73 )=l

\Mrnin)\
cp2(m)

rnKUlfm) UU.l(m)
« log4k P  Y  -Ö T Y  « loS4fc+1 p  E  ------ «  (loS p )k -z—' (pz ym )  z—' m

m<P m<P
m
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Lem ma  4.6. For all g with 0 ^ Re(^) < 1 and s ^ c^k2 log k it holds:

i
I  \Fp(a.)\2sda  « x(2s/fc)_1 . 
o

P r o o f . Considering the underlying diophantine equation this can be 
shown in the same way as Lemma 5.2 in [14].

Lemma 4.7. (a) Let 2kx ~ 1 <  A < x k ~ l and 0 ^ Re(£>) ^ 1. There holds:

A

j  \Fe{a)\2 da<^x{2/k)~l .
—A

(b) Let 2x~l < A < 1 and 0 ^ Re (g) ^ 1. There holds:

A

J  ITe(a)\2 da <^x.
- A

P r o o f , ( a )  W e  d e f i n e

'U'n —
m Q 1 if n =  mk 6 [x/2k,x[, 
0 otherwise.

Then we get by Gallagher’s lemma ([3], Lemma 1)

(4.8)
A x r r t+ (2A )-1

/ \Fe(a)\2 da<& \ A ^  ] un
-A  x/2k+1 l

For the inner sum holds for a fixed t G [x/2k+1,x\ 

t+( 2 A )-1 ______________

Y  un<^ V (* +  (2A)"1 ~  V ^ <  A_1X(1/fc)_1.
t

Substituting this in (4.8) we obtain the lemma. Part (b) is proved in the 
same way.

Lemma 4.8. (a) Let be given any a =  ß  +  i'y with 0 ^ ß  ^ 1 and |q| ^ x/Q.  
Then for i /Q  |a| ^ 1/2:

Te( a ) « -
r/»-i
Of
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(b) Let be given any a =  ß  +  i'y with 0 ß  ^ 1 and t 1/ 2 ^ I'y| > 16x/Q.  
Then for  |a| ^ l/Q :

x ß

T*t a ) « Í 7 Í '
P r o o f . Part (a) is nearly identical to Lemma 12 in [1] and part (b) can 

be shown in the same way by appealing to Lemmas 4.2 and 4.8 in [11],

Lemma 4.9. If g = ß  + i j  with 0 ^ ß  ^ 1 and |̂ y| ^ P'lk+3J then for any 
s ^ ck2 log k and for all q' with 0 ^ Re (g1) ^ 1:

1/2

/  |Fíy(a)Tp(a ) |d a « T (1/ fc)+/3- 1p - 2íí i . 

i IQ

PROOF. Using Holder’s inequality, the Lemmata 4.6 and 4.8 (a) and the 
definition of Q this inequality can be shown in the same way as Lemma 5.8 
in [14].

L E M M A  4.10. If p =  ß  + i^ with 0 ^ ß  ^ 1 and 16P 4k+3 < j-y| ^ _P4fc+7, 
then there holds for all g' with 0 fS Re (g') ^ 1:

xQ
I  \Fel{a)Te{a)\da<^xllkp - 2k- \

_ J_
Q

PROOF. Using the Lemmas 4.7 (a) and 4.8 (b) we get

l/Qr (  1 IQ \
1/2 /  l/Q \

/  \Fe' (a)Tß(a)\da -C J \FQ'(a)\2dot J \Te(a)\2da

l/Q \-i/<3 ) V-i/Q /

« z 1/fcP ~ 2A:_1.

5. Lemmas for the singular series

Lemma 5.1. (a) For any character x  modulo pai and aq ^ 0

Ck{xXo,a) =  0

holds if xo is the principal character to the modulus pa, p \ a  and a ^ . j  +  
max(jf, a i) , where j  =  1 +  ordjt(p) and m =  ordk{p) <=^pw || k.
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(b) For any primitive character x  modulo pa, p \ a ,  w =  ordfc(p) íí 1 and 
a  ^ 2w it holds:

C k(x ,a )=  0-
(c) Let x  be any primitive character modulo pa for any prime number p 

and a natural number a  ^ 2. Then there holds for any integer 7 , a ^ 7 ^ a /2 :

X ( l + p ' y) =  e
P,a—7

where c =  c(7 ), is a natural number w i thp \c .
(d) Let x  be any primitive character modulo p 3 for any prime number 

p <  2. Then it holds

X (1 +p) = e

where l  f^c^p2, p\c.

P R O O F ,  (a) For 1 ^ Z ^ pQ we have l =  u +  vpa~ i , 1 ^ w ^ p“- -7, 0  ^ w 
p7 — 1. By a  ^ j  + max(j, a i ) is further lk =  uk +  vkuk~lpa~i (mod pa) and 
i =  u (m o d p Ql). So we get:

Pa
Ck{xXo,a) = Y 1  XXo{l)e 

1=1

=  0,

because the inner sum vanishes for any p prime to u. 
(b) We obtain in a similar way

from which the lemma follows because the inner sum vanishes for a primitive 
character.

(c) It remains to show that p\c.  But if y?|c, we obtain

X(1 +  apa l ) =  X °(l + P a~1) =X apa~7~1(l +  P1) =  e (̂ aCPpl _ l  1)  =  1,

which contradicts the primitivity of the character.
(d) Using (1 + p ) p =  1 (mod p3) for p ^  2 (see, e.g., Ireland, Rosen [5];

S. 43) and p | (?)) for p ^  2 the proof is analogous to the one of part (c).
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L E M M A  5.2. In the parts (a)~(d) let be given a natural number q = 
pa , a^.1,  two characters x i and X2 nrodg and p\k,  pa \n.

(a) For q =  p, X\ primitive and X2 =  Xo,q it holds:

A(p,n, xi,X2) ^  {k +  l)p3/2.

(b) For q = p , xi primitive and X2 7̂ X0,q:

M 'P ^ ,X l ,X 2)^ kp3/2.

(c) For q =  pa , a  ^ 4, xi> X2 primitive and p@ || n, ß  51 [^] :

A(pa,n ,x i ,X2 ) ú k p a+^ +W.

(d) For q =  pa , a  G {2,3}, X0 X2 primitive and under the additional 
conditions p ^ 2  and p@ || n, ß ^ l  in the case a  =  3 holds:

A{p2, n , x 0 X2 ) «L /cp(7/4)a+e.

(e) Let be given the principal character xo,a to the module pa and a 
primitive character X2 to the module pai with a\ < a .  Let p@ || n, ßfL [^ ]  . 
If with the notation of Lemma 5.1 (a) a\  ^ max(a — ord^(p), 6, |a ) ,  then 
there holds for any primitive character x i rnodulo pa:

A(pa ,n, x i , Xo,aX2) ^ /c2pQ+[^ii ]+[^]+1.

P r o o f . We first transform >l(g,n,xi>X2) (and >1(<7,n,xi,X o , a X 2 ) ) -  Not
ing that in Parts (a)-(e) xi  is always primitive, that |t(x i)| — q1/ 2 and that
(4.2) also holds for (a, q) > 1 for primitive characters, we see

A (q ,n ,x u X 2) =  Y  'X2{ m ) e ( —------ a \  Y ' X i { l )e ( ~a

í5-1) = t (x i) Y  ’X2{m) Y ' e ( “ -----~ a) x i ( a )
m = 1 a = l  \  9  /

Q
= K x i) |2 Y  *Xi("»* -n)X2(m) = qD{xi,X2),

m= 1

where £>(x i ,X2 ) =  £  - n ) X 2 ( m ) .
m= 1

(a) This case follows immediately from (13.3) in [14] and (5.1).
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(b) For any integer n which is prime to n we can write any character x  
modulo p  as

m ind9 (n) \  

P - 1 /
where m  € { l , . . . , p  — 1} and ind9(n) denotes the index of n relative to 
a primitive root g of the reduced residue class system modulo p. Defining 
especially a character Xs modulo p for (n.p) =  1 by

hid g{ n ) \  

P -  1 /
(and Xs(n ) =  0, if {n ,p) > 1 )) we can write every character x  modulo p as 
X — X T ’ m  £ ( f  > • • • ~  1}) where m = p — 1 <=$■ x  =  Xo- We obtain:

V V
D ( x u  X2 ) = E  X?*1 -  n ) x T ( m )  = ^ x s ((™fc- n ) mi m™2) ,

m =  1 m = l

where m i, m2 6 { 1 ,. . .  ,p  — 2}. Let us denote Fp as the residue class system  
modulo p  and /(x )  =  (xk — n)mixm2. With the notation of Theorem 2C' in
[10] (Weil’s lemma) the character Xs has the order p — 1. If f(x)  is a (p— 1)- 
th power in the sense of Theorem 2C', every zero xq of f(x)  £ Fp[x] has the 
order gXo (p — 1), gxo £ N.  Because of p \n  and m 2 £ { 1 ,. . .  ,p — 2} the order 
of the zero xq =  0 is ^  gXo (p — 1). f(x)  not having more than {k +  l)-different 
zeros, the lemma now follows from Theorem 2C' in [10].

(c) Let 7 =  ]. Writing every number a with 1 ^ a ^ p a as a =  u +
vp1, I ^ u 5 i p 7,0 ^ w 5 í p“~T — 1 and noting that for every integer a, p \ a 
there exists a number a with aa =  l(mod p7), we get:

pi pa~i—1
D ( x i ,X2) =  ^ 2  S  Xi(^fc - n  + k u k~ 1vp1) x 2 {u + vp1 )

u —\  v = 0
pi pa - i _ i

= Ĵ 2 x i ( u k - n ) x 2 (u) Xi (yl + k u ^ v p 1 ^ - n ) ^ X 2 ( l + u v p 1).
U = 1 v = 0

From this we obtain by Lemma 5.1 (c) and (1 +  p7)a =  1 +  ap7 (mod pa) for 
two natural numbers Ci and C2, which are defined by

(5.2)

(5.3)

X z ( l + p 7 ) = e
Ci

p , a -  7
p f C i ,  i  £ {1,2} :

D ( x i ,X2) =  ^ 2 xi (uk - n j  X2(u) ^ 2
C \ k u k l v ( u k — n ) \  (  C2UV

— e
1 2 = 1 U=0

pa—7 VO L — 7
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From (5.2) and (5.3) it. is obvious that (c \C2k(uk — n )u ,p )  =  1. Noting further 
that aa =  l(modp7) =7- aa =  l(m odpa_7), we see that the inner sum in (5.3) 
7^0 if
(5-4) _______

C\kuk~ l (u k — n) + C2Ü =  0( mod j/*~7) ■$=> u k {c \k +  c2) =  C2«( mod pa_7).

If pß  II n  and p s || c i A; +  C2, there holds (by the assumption of the lemma) 
ß  ^ [j]  < a  — 7 . So because of (uc2 ,p) =  1 a necessary condition for the 
solvability of the last congruence is ß  =  6, in which case we can equivalently 
examine the congruence

which has mostly k  solutions modulo pQ_7~^. So there are not more than 
kp2~i-a+ß number modulo p7 for which the upper sum 7̂  0. Together with 
(5.1) and (5.3) the lemma follows.

(d) We argue until (5.4) as in part (c). If p does not divide both n and 
C\k +  C2, the congruence has not more than k solutions modulo pQ~7 and the 
result follows similarly to part (c). In the other case p || n  and p|cifc +  C2 we 
derive from (5.3) and (5.4):

v7
(5-5) D(x u X 2 ) = P ^ 2 xi (uk ~njx2(u)-

11—\

For any n prime to p we define

Xi(n) =  e
(  rrij indg(n) \
vpa - 1( p - 1) /

for mi £ { 1, . . .  ,pa x(p — 1) — 1} and ind5(n) is the index of n relative to a 
primitive root g of the reduced residue system modulo pa. Defining further
more a character x modulo pa for (n,p) =  1 by x{n) =  e ( pá-1 (p~\)) (and 
x{n) =  0, if (n,p) > 1), we have

(5-6) Xi =  Xm‘.

X is primitive by its definition, so we know by Lemma 5.1 (c) and (d) that 
X(1 + p ) =  e ( ^ r )  and Xi(l + p ) =  e ( ^ r ) , where p \ c t, i € { l , 2 ,3 } .  By
(5.6) it follows from this Cj =  mjC3(modpQ_1) (*€{1,2}) and so:

(5 .7 ) p \ c i k  -I- c2 = > p \ m \ k  +  m 2 .
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By (5.5) and (5.6) we know furthermore

pi pi

D ( x i , X 2 ) = p Y l x mi ( « * “ " ) Xm2( u ) = p J 2 x mik+m2 («) X™1 ( l - n r f )  ,
U = 1 U = 1

where ü  is chosen such that ukuk =  l(mod pa~l =  mod p7), because so we get 
by p || n: nukuk =n(m od pa). Furthermore, we know from (5.7) p\m\k +  m 2 , 
from which we derive by 7 =  ex — 1 that

{h +  p7)m1fe+m2 =  hm1k+m2 (mod N _

So we get

x mifc+ma(h +  p7) =  x (( /l + p 7r* + m a ) (^rmfc+ma) =

which shows that is a character modulo p7. For a =  2 we get
from the last identity for D ( x 1, X2) , p  || n <=$■ n =  np , (n ,p) =  1, (5.6) and

Xi ( 1 + f ) —e ( ~ ) :

D { x i , X 2 ) = p j Z x mik+m2{n)e « e P 3/2+£,
« = 1  \  P  /

where the last inequality is derived by applying (4.5) to ^mifc+m2. If a  =  2 
we can now derive the lemma by the last inequality and (5.1). If a  =  3 we 
write any « e { l , . . .  ,p2} as u =  v +  wp, l ^ v ^ p ,  1 ^ w  ^p  — 1, getting so by
(5.6) and the second last identity derived for D ( x i,X 2):

p p - 1

D { X u X2) =P EE X™ik+m2(V +  wp)xi  y l  — npvk — nkVk lwp2
D=1 W=0

= p E x mifc+m2 («)Xi ( l  - n p v k) P̂ 2 x mik+m2
v = l  w = 0

x  (1  +  vwp) x i  ( l  — ( l  — npvk ĵ n k v k~1wp2 Ĵ ,

where aä  =  l(mod p), which implies vvwp =  wp (mod p2), which is sufficient, 
because ^mik+m2 has been shown to be a character modulo pa~l = p 2, and 
implies also (l —npvk) 1̂ — npvkj  nkvk~1wp2 =  hkvk~1wp2(mod p3). We 
know by Lemma 5.1 (c) that

X i(l +  P2) =  e , x ( l+ F 2) =  e , p \c 4c5,
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and, in general,

Xa (1 +  V 2) =  Xa ( ! + P 2) » X a € { x i , X } -

From (5.7) we know further that rn\k+rri2 =  pce and so we get by p\ 
for p > 2

(1 +  vwp)mik+rn2 =  1 +  vmcgp2 (mod p3), 

from which we derive together with the last identity for D (x i ,X 2)'

D (x i ,X 2) = p Í 2 x mik+m2 (v )x i  ( l  ~ n p v k)
V — \

p~ 1 (  C5C6U—C4 1̂ — npvk Ĵ hkvk 1
x 2_ e I w

w = 0

Similarly to part (c) we concentrate on the congruence

C5C6V — C4 1̂ — npvk ĵ hkvk~l = 0(mod p),

which for p|cß is not solvable because of 0̂4 1̂ —npvk Ĵ nkvk~í , p Sj  =  1 and 
in the other case is equivalent to

-*=>■ vk (—c^Cßfip — Cifik) +  C5C6 =  0(mod p).

By (c^c^c^nkjp) =  1 this congruence has at most k solutions modulo p, from 
which the lemma follows together with (5.1) for a  =  3.

(e) Define A =  [Ql2+1 ] +  1. We write a with l ^ a ^ p Qa sa  =  u +  vpx, 1 5Í 
u pA, 0 rí v ^ pa~x — 1. By the assumptions of the lemma we have k =  
kpa~ai+d, with (k,p) — l, d^.0 and for 6^ 3

P2A =  pbX =  0 (mod pa).

Using this we get as in part (c)

E

vx
■ O (X 1 ,X 0 ,q X 2 ) =  ^ X 1  ( u k - n j  X0,aX2{u)

U = 1 XI

XI ( l  +  kpa~ai+duk~1vpx{uk -n ) ' )  X0,aX2 ( l  +  ™pA) ,X
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where a is chosen such that aa =  l(m odpA), in which way we get:

(uk — n){uk -  n)kpa~°‘1+duk~1vpX =  kpa~0tl+duk~1vpx(modpa)

and uuvpx =  vpx(modpa i). By a  -  a x + A 2 f  we get by Lemma 5.1 (c) and 
X o , a X 2 ( m )  =  X 2 ( m ) V m  analogously to (5.2)

x l( i + p ° -« + A ) = e  ( _ ! _ ) ,

Xo,oX2(l + P X) = X 2 ( l + p X) =  e ( ^ tä)  ,

where p\C\C2- We obtain as in (5.3)

U — 1

D( x  1, X0,aX2) =  Xl ( U* ~  n )  X0,aX2(u)

i —A _

£
p q •>i— 1

x 2 ^ e
i>=0

c\kpduk 1v(uk — n ) \  f  C211V 
—  en«l— A P, Q l  — A

Arguing as before we see that because of (c2U, p) =  1 the inner sum can only 
be 7  ̂0 if d =  0, in which case we have to examine the congruence

uk(c\k +  C2) =  C2?r(modpa i“ A).

By ß  <  ol\ — A it is equivalent to the congruence 

u‘ (Clfc +  Q ) s g n (mod
PP pP

that has at most k solutions modulo pQl_A_ ,̂ from which the lemma follows 
similarly to part (c).

Lemma 5.3. For any two primitive characters x im odgi and X2 m od (/2 

with qs =  [qi,q2] ^ x* holds for all but -C xq3 1//16 natural numbers n G 
[(9/10)®, ®[:

. , x .. 2 —(1/32)
^(93,n,XiXo,93, X2Xo,</3) < 9 3

P R O O F .  The case g3 =  1 is trivial. As in (4.3) we can concentrate on the 
case

93 =  9i94, (91, 94) =  !, XiXo,93 =X iX 0,g4,

X2Xo,93 =  X5X6 with X5 mod qx, xe mod q4.
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By applying Lemma 4.3 (b) and arguing as in (4.6) we obtain

M Q 3 , n ,  XiXo,93. X2 Xo,93) =  a (Qi , Xi> XsM(<74, n, xo,94> Xe),
(5.8)

>l(<74,n,xo,<74,X6) «C943/2)+c.

The lemma follows from (5.8), if x i is the principal character to a module 
<7i ^ q l ' \  because in this case we get by (5.1) and (5.8):

n, XiXo,<73I X2Xo,93)|
(3 /2 )+ e

< l/2^(3/2)+t ^ ^(15/8)+t < 2̂—(1/32)
<73 ^03 <73

So we assume in the following that xi is a primitive character to a module 
<7i > q ^ \  By Lemma 4.3 (b) we have
(5.9) '

34(gi,«,xi.X5) = n n n 2l(pa,n,xi,P«,X5,p“),
D e { A , B , C } i = 1 pQ lk i

A(pa ,n,XliPa ,Xs,pa)€Di

where Xi =  FI Xi,pn, * € {1,5}, Xi,pq moci P°, an empty product is equal 
p"ll?i

to 1 and

> 1 ( P Q , ^ , X 1 , P “ , X 5 , p “ ) 

^(pa ,n,xi,p“,X5,p“) 
A { p a , n ,  X i ,p q , X5,pQ) 
4̂(pQ, ri, Xi,pQ > X5,pQ) 

-4(pQ,ra,Xi,pa,X5,p“)

£ yli <=>a =  1, p\k,
£ A2 <=>a =  1, p\kn,
£ A3 <=>a =  1, p\k ,  p\n,
£ B\ <=>x5,pa primitive, a  ^ 2, p\k,
£ B 2 «=>X5,pa primitive, a  =  2, pf k, pa \n  or X5,pa 

primitive, a  =  3, p\k ,  p ^  2, p 0 || n with

ß  ^ 1 or X5,pa primitive, a  ^ 4, pf A:, pß n
a

L4
with ß  £

A(pa, ", Xi,p“, X5,p“) € -83 <=>X5,Pa primitive, a  ^ 2,
A(pa , n, xi,p“ , X5,pa) £ #1 U B2,

£ C\ 4=>X5,pa Ilot primitive, a 2, p  ̂ || n with/3> 

6 C2 <t=»X5,pQ not primitive, a  ^ 2, p^ || n with

yl(pa , n, Xi,p°, X5,pQ) 

- (̂P > ni Xl,pQ , X5,p“ )

a
L6J

/5^ ^ , condx5,pa ^max (ordfc(p )+ l, 6, - a j ,
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^(p“ »«,Xi,p“ ,X5,p“) e C 3 <í=>X5,pa not primitive, a  ^ 2,
A(pa, n >Xi,pa) X5,pQ) £  Ci U C2 .

For >l(pQ, n, xi,pQ, X5,pa) G A3 U-B3 U Ci we have by (5.1) trivially:

(5.10) |^(pa ,n ,x i,p “,X5,P“) |^ P 2“ -

In the following let cond X5,p“ =  a i • For the estimation of A(pa , n, Xi,pa 1 X5,pa) 
G C2, by Lemma 5.1 (a) and by the relation ordfc(p) +  1 is oq, which holds by 
the definition of C2, we can restrict our observations to the case a  ^ ordfc (p) +  
d i. By ß  <i [^] is [^-] the conditions of Lemma 5.2 (e) are satisfied in this 
case. So we get by Lemma 5.2 (a)-(e) for A(pa, n, Xi,p“> X5,pQ) £ A2UB2UC2 :

(5-11) A(pa ,n ,x i,p 0 ,X5,pa)^ c 6A;V17/9)a.

For the estimation A(pa , n, X i ,p " )  X 5 , p q )  £  C3, by Lemma 5.1 (a), we have only 
to look at the case a  is ordfc(p) +  max(ordfc(p) +  1, aq) and so ordfc(p) ^ 1. If 
the maximum on the right side is ordfc (p) +  1, we have

a  ^ 3 ordfc (p).

In the other case it follows from the definition of C3

from which together with the equivalence

2
a i < -  (ordfc (p) +  a i ) <=> aq <  2 ordfc (p)

it follows that:
a i <  6 ordfc(p) and so a  ^ 6 ordfc (p).

So we get in both cases
ordfc (p),

from which we get together with Lemma 5.1 (b) for A{pa ,n ,x i , p a iXb,pa ) G 
Ai U J3i U C3 :

(5.12) \A(pa , n, Xi,pQ)X5,p“)| ^ p 18ord,c(p).

We define now

n
p“ llvi

A ( p a , n , x i tpa ,X5:Pa )EA1UB1UC3

f (q i ,n )  =
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9 Í Q l , n ) =  p a ,
p a Wi\

A ( p a  tn »XltpO ,X 5 ,p a  I S ^ s U B s U C j

h ( q i , n ) =  J J  p ° .
p a l k i

A ( p a  , n , x i ipa  ,X5 )Pct )G-42u ß 2 uC,2

Then we have f(q\ ,n)g(qi ,n)h(qi ,n)  =  q\, g{qu n) ^ 8(gi, n )6 and the three 
factors are pairwise prime. Defining characters x9ii<imodd(gi,n), i 6 {1,5}, 
d G { / ,  g, h }  with X i  =  I I  Xi,di w e  get by Lemma 4.3 (b) and (5.9)-(5.12):

de{f,g,h]

1-4(91, n, Xl, Xs)| =  n  \A (d(qun),n,Xi,d,X2,d)\
d£{f,g,h}

(5.13) ^ k ls{cek2)“^ 1 )g2 (qx, n)/i17/9 (qx, n)

«  (c6A:2)^(9l)p1/9(g i,tt)qJ7/9

« ( c 6fc2r ^ ) ( 9 l,n )2/39j7/9.

Let

-4(a;,9i ) =  n €  [(9/10)m,m[, (qu n ) ^ q l1/10

B{q i ) =  mmod(7i, ( g ^ m ) ^ 1 / 1 0

Then we have obviously

and

-4(x,<7i ) <  ( — +  1 ) B{qi),

B{q \ 7  = r (9i)<7i/10.
d|<7l

d̂ q1 / 1 0

from which we deduce

(5.14) A{x ,q i)<£xql 1/ 10r(gi) <i xq3 'i/4°r(q3) <  xq3 1/lf>.

The lemma follows now from (5.8), (5.13), (5.14) and (cQk2)u q̂A <^e q\. 

L e m m a  5.4. For all n and all l holds:

a ( n ,  R., I) <  (lo g  R ) k + l .
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P ro o f . From Lemmas 4.3 (b), 4.4 (a), (4.2) and Lemma 4.5 in [14] it 
follows that

W (n,R, l) E
qúR

(9,0 = 1

4>2(q) s E f ^ « ‘o s* E
q^R Y q^R

jfe"(9)
<<(logP)fc+i

Lemma 5.5. Lei P  =  x d, where d is a positive constant i i l /1 0 . Let be 
given a set of natural numbers li, l ^ i  ^s<C(log a;)1/3, with Then
for sufficiently small d there holds

( p , < i ) = i

for all but <^xl 01, ^ 0 natural numbers n G [(9/10):r, x[, which satisfy the
congruence conditions in (1.1), and for all i G { 1 , . . . ,  5}.

P roof . The congruence conditions for n are required because of Lemma 
4.5 (c). We first argue for a fixed l G { l \ , . . .  , l s} and set j  =  R. Defining 
A(q ,n , l )  =  p((q, l)2)A(q, n) and noting Lemma 4.3 (b) and (4.2), we obvi
ously have to estimate:

A ( q , n )  _ t t  /  A ( p , n )  \

k k  ^  A U  U v - I Y )

(5.15)
< Y  & 2^ ) A ^ nY) + Y2,<t> 2(q)Mq,n)

=:

R < q < Vq€T>
T\ (n, R) +  T2(n, R),

q 'z v
g e v

where V  =  exp ( :‘̂ g 6/  )  and

T>={q: q E N ,  p,(q)^ 0, p \q = > p ^ P } .  

We first estimate T\(n, R).  We have:

(5.16) (j) 2{q)A(q,n) =<f> 2( q ) ^  A l (m ,n )A 2{q/m,n),
m\q

where we define by Lemma 4.4 (a) and w(n,p)  =  0 for p\n:

Ai{p,n)  = - m((f , 0 2)p M p , n) -  1) p \ n , 
0 p\n,
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M  (p,n l) =  i
' l  m((p ,0

0 2) pt«.
2) (p — 1) pl«1

-4i(9 .n) = n ^ i (p ,n )’i e  i 1’2) ’
pi?

and an empty product is equal to 1. For p \ n  it holds

w(n,p) =  m : mk =  n(modp), m  G (1 ,2 ,... ,p) .

We obtain by Lemma 4.3 in [13], (4.2) and |r(x)| ^ p for p\n:

-«k
w(n,p) =  l  +  - ^ 2 e i - ^ a \  Y  

P ^ t V P /  ± " ,m = l  

P-1

m

= 1+  ̂ E  r ( x )E e ( ^ aj ^ a)
x e A ( p )  a =1 v F 7

= i + ^  E  ir (x)i2x ( - « ) ;= i +  E  x(-«),p x e .4 (p ) x e -4 (p )

where .A(p) denotes the set of non-principal characters x  modulo p, for which 
Xk is the principal character and

(5.17) |-4(p)| =  (/c,p — 1) — 1.

So we deduce for all p:

(5.18) Ai{p,n) =  - p ( { p , l ) 2)p Y  X (-«)-
xe-4(p)

We obtain from (5.15) and (5.16)

Tx(n ,R )^  Y  (p 2{m)\A2[m,
R l / 3 < m < V

m £ T >

(5.19)

+  Y  (t>~2(rn)\A2(rn,
mZR1/3

m £ V

=: F\(n, R) +  F2(n, R).

n Y  <f> 2{d ) \A l (d,n)\
R / m < d < V / m ,  ( d , m )  =  l  

d £ V

n Y  $ 2{d)A i(d ,n)
R / m < . d < V / m  ( d ,m )  =  l  

d £ V

For Fi(n,R)  we get by w(n,p) ^k:
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F i { n , R ) ^ R  1/3 Y  0  2(m)m\A2(m,n)\ Y  <f> 2(d)\Ai(d,n)\
m <  V mGX> d<V

deT>

S f í - v 3 n ^ 1+ ~ ü j í i - i / 3 n ( i +

pt» pi»

(5.20) n >+
p^p

p|^2(p,n)|  ̂ r _ 1/3

(P~

|A i(p ,n )r
( P - 1 ) 2

p!A2(p,n)[
( p - 1 ) 2

^ f T 1/3 í 1 + -  J ]  ( 1 +
P

4(k — 1) 
PPÚp PÚp

« i r 1/3 (log p ) 4A:3“(ri).

For the estimation of F2 (n ,R)  we obtain by the definition of Ai(d, n) and
(5.18):

Y  (f)~2{d)Ai{d,n)
R / m < d < . V / m ,  ( d 1m ) = 1 

d E T >

(5.21) e n
R / m < d < V / m ,  ( d , m )  =  1 p l d  

d £ T >

p ( (p J )2) 
(p -  l ) 2 p X ! * (~ n)

xe-4(p)

X! S  ’f (x )x (~n) ,
R / m < d < V / m  ^  m o d  d  deT>

where

/( x )  =  {  pM ^
if X = riXp with Xp e  -4(p) Vp|d, (ml, d) — 1,

p|d
0 otherwise.

By (5.17) we find for any positive number a and any d£V:

(5.22) £  ' 1 /(0 1 “ S ( * - 1 ) " W n
p

X m o d  d

Now we get from (5.21): 
(5.23)

M d
( p - i y

< (Aa( k -  l ) )w(d) 
da

Y  $  2(d)A\(d, n, l) =  'Y,  Y  S  * /(x )x ( -« ) .
R / m < d < V / m ) ( d , m )  =  l  dev j =1 Qj-\<d^Qj, ^modd 

dev
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where Q0 =  R/ m,  Qj —xJ/2, j  = 1 , . . . ,  L, L ^  2 ^  .
log log x

We have for a fixed j  by (5.22), Lemma 6.5 in [6] and Lemma 4.5 in [14]:

E
ne[(9 /10)x ,i

(5.24)

E  E  */(x)x(-«)
- 1 <d<;Qj ^  mod d 

d ev

(* 1/2 +  e f )  * 1/2

(2j - l ) /2j

x  ( E  E  * i/(x)i2i/(2j- 1)
^Q j - i <d<Qj  ,x m o d  d

j- \ \ ü a-D/2ix (log (xJe))

«  ( 0 j / w - i ) (l°g<?4

1
E

( 16fc )w(d)

(2j - l ) / 2 j

n 1/(2j-i)
^ 7 - 1  Q i - i < d ^ Q ,

d
J - L  V f j -

\  (2j-l)/2j
16M x ( l o g ^ e ) ) ü2- 1)/2jQ7_i/^( 16fc

We deduce from (5.23) and (5.24)

(5.25)
E

n€[(9/10)x,x]
E 4> 2(d)Ai(d,n,l)

R / m < d < V / m ,  ( d , m )  =  l

dev

<^xQq ^ 2(log x) l6k +  x7//8(log x )32̂  (log xJ+1)
3 =2

For the sum in (5.25) we get for a sufficiently small d

j + l \ ( i 2- 1) /2 j

E ( - - - ) ^ E ( ( J +  1) log *)i /2 = 2
log P  /  log P

3 = 2 3 = 2
log log X  \  log log X

log X

'°K P  
lo g  lo g  x

< P J.

From this and (5.25) it follows together with the definition of Qo, m ú  P 1/3 
and a sufficiently small d:

(5.26)
E

n£[(9/10)x,x
E  $ 2{d)Ai(d,n)

W / m  

d ev

<Cx(log x)32fc (P ~ 215 + P 3x “ 1//8̂  <<rP_1/9

R / m < d < V / m  ( d , m )  =  l

d ev
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In order to finish the estimate of ^ (n ,!? ), we need the following result:

(5.27)

Y  $ 2{m)\A2{rn,n )\ ^ ( l  +
nSfl1/3

m £ T >

p̂ P
p |n

P - 1 n (i+
púp
p \n

(P - l)5

Then (5.19), (5.26), (5.27) and 2^  g r(n) < e ne imply

S

(5.28) Y  Y F^ n'P / li^ x P ~1/10-
nG [(9/10)a;,x] *=1

So from the last expression, (5.19) and (5.20) we derive for all but 
n e  [(9/10):r,x[, that satisfy the congruence conditions in (1.1):

(5.29) Ti(n,P/l i)  « P -1/16

for all li, i e { l , . . . , s } .  By Lemma 4.3 (b) we get for T2(n,R.) and v  =  
log log x
2 log P

r2(n,R )^Y  (f)"r2M \Mg, n  (1+P
qev P<:P

, \A(p,n)\
( p - 1 ) 2

By

and

V -v  =  x- l l 2

pv ^ (log x )1/2,

it follows for a sufficiently small d:

4&(log 2;)1/2
P

T 2 ( n , R ) ^ x - ^ 2 TT ! +
(5.30) p<p V

<  x ~ l ' 2 { \og  p ) 4 * ( lo g  * ) 1/2 «  a - i / 3 .

From (5.15), (5.29) and (5.30) the lemma follows.

Lemma 5.6. (a) For all n that satisfy the congruence conditions in (1.1)

A (p, n)
n  >+

p^p ( p - i ) :
» ( lo g  P ) - 2k.
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(b) For any two primitive characters x i (modgi) and \ 2  (mod (72), 93 = 
[9192] = P  tt'nri all n, which satisfy the congruence condition in (1.1)

MQ3,n,xiX0,g3,X2X0,q3) T~r f ,  A{p, n) \  TT A M p1 n) \
^(93) A i + (p - 1)2j <<: i i   ̂ +  (p - 1)2) '

(P i93>= 1

holds true.

PROOF, (a) By 0 ^w(n, p)  ^ (k,p — 1) and Lemma 4.4 (d):

n jw{n,p)  -  l ) p +  1

( p - 1 ) 2 » n
2k < p ^ P

1 -  — )  »  (log P)
P J

- 2 k

from which the lemma can be deduced by Lemma 4.4 (a).

(b) If <73 =  1, the lemma is obvious. For 73 > 1 we distinguish the cases 
(i) q\ =  <73 and (ii) 1 ^ q\ < q̂ . In the case (i) we immediately get the desired 
result from Lemma 4.4 (a) and (b) by

M Q 3 , n , x \ X o , 931X2X0,93) I T T  ( ,  ( 1  A ( p , n ) \
^ 2t e )  I 1 1  V (p - i ) V  =  AA V + ( p - l ) V -

(p>931—1

(ii) Analogously to (4.2) we have only to take into consideration such
93pairs <73 and <71, for which
9i

q\ ) =  1 and so, by Lemma 4.3 (b),

^4(93,R)XiXo,93iX2 Xo,93) = A(9 i ,n,xi)Xö)j4 f — ,n ,x0 2a,Xe J ,
V9i ’ «1 /

for certain characters X5 and X6- Since in (4.6)

93 , n.
3/2+e

,91 ”’«1

furthermore, by Lemma 4.4 (a) and (d)

-1 /  2 k \ ~ x_-  I ^  II II —
(P -1 )P\q-iri Ql

« n
p|f̂ >P>4A: P J <2■w(5f) -  ( q*

9i

Using all this we get together with the result from (i)

(̂93irc,XiXo,<?3.X2Xo,<?3)
4>2{qz) n

púP 
(P.<73) =  1

1 + A(p,n )
( p -  l ) 2

-4(91)n ! Xi) Xs)
02 (9i)
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X n
p^p

(p,<7l) =  l

MP,n) \  
{ p - l ) 2 J

« n
A{p,n) \
(p -  1 )V

r 2

A S3
91 ni Xo 53-) X6 ’«i n

p|sa19i

A{p,n) X 1

( p - i ) v

« n
pgp

A ^ n^ X  
( P - 1 ) 2/  ’

6. The minor arcs

We obtain by Bessel’s inequality and the prime number theorem

Y ,  r2{x , p )2 =  /  15( a ) 51/;(a ) |2d a  re log x  sup |őfc(a)|2 .
(9/10)xgn<x rn Q£m

By the definiton of the minor arcs and Theorem 1 in [4] we have

i/4 fc- 1
sup|St M I « x ‘i ‘ ( 1  +  - ! ^ + Q̂\ 1+e 

X k

Substituting this in the first estimate we obtain

x l+( 2 / k )+e
( 6 . 1) Y  r2(x,n)2<£

(9 /1 0  )x^n<x
p 2 / A k~ l * '

7. The major arcs

Let us suppose in the following l G {1, A;} and S(a)  =  5 i(a). For a  G
I  (a, q) let a  =  ̂+  77. Because of <7 ^ P  and p >  P  for all p appearing in 5; (a)
we get in a well-known way:

Si(a)

(7.1)

Y  log P e [ % l + r ) P l j
^^p<v/5

x Y  X(p)^gp e [ppl ĵ
yY'^p<\/x

= T7FT Y  c i ( X , a ) S i ( x , v ) -
'  '  X m o d  q

Let L =  T  if l =  1 and L =  F  if l =  k. Now VF/(x, 77) is defined in the following 
way:
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(i) For x =  Xo,q let

Wi{x,ri) =  S i{xo ,q ,v ) -L(r i )+  ^  Leiv)-
eee'u/3
C(«)=o

( i i )  For x  =  Xo,qX* w i t h  x*€Ö U x, X o,i l e t

Wi{x,v) =  Si{xo,qX*,v)+ Lgiv)-

(iii) In all other cases let

g e e ' u f f

Me,x*)=o

Wiíx,v)  =  Siix,v)-

We obtain

Sl < j +r?) = W )Cl{X0,a)L{r,) + W )Dl[a,q,r]) +
where

L>i{a,q,v)= ^2  ClíX,a)Wi{x,v),
X m o d g

Ei{a,q,v) =  ~ C i i X o , q X , a ) L L, ( v ) .
x€0ux Qee'up 
cond xl<? L ( e , x ) =  0

Writing W  =  Wi, E =  E\  and D =  D\  we obtain from (3.6) and (7.1)

q LQ
f v v~^ \ —> * ( —CLTl\ ‘

r1(x,n) =  ^ ^  e \ ~ )
- 1 /0  
I/O

q ^ P a =  1

5  ( 7 +  V ) -S'* ( ^ + T) ) e ( - n r ) ) d r )

=  J 2 l T r x A i(l ’n) I  T{r})F(rj)e(—nri)dq 
oúp 9 [Q) _ i/o

9 1/Q
J 2 ' e  C '1^ ° ' a ) /  T ( v ) D k { a , q , v ) e { - n r ) ) d r )

q=p a=1 -w o- i / o
i/o

+  S  XTe ( _y ) c,1(Xo,a> /  T ív)Ekía ,q ,v ) e í -n v )d v
Q=P a=1  - l / Q
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(7.2)

q l!Q
+  Y  Y * e ( _ y )  C^Xo,a) f  F(v)D(a,q,r))e(-nr))dr]

1 = P  a = l  - 1 / 0- i / Q

i/Q

+  5 Z  )  Cfcíxo.a) í  F(v)E(a,q,r))e(-nr))dr]
qáP V M  a=i V q '  _i/Q

g !/Q

+ XI * e  (~"7") /  jDfc(a’9;7?)^(a)9,í7)e(-ní7)(Í77
9=P a=1 -1/0

q^P a

-l IQ 
i/Q

+  ü  W T  É * e ( _ ~  ) /  Dk(a,q,v)D{a,q,ri)e(-nri)dri
- i  IQ 

l IQ

Y  X j * e ( ~ y )  /  D (a^ ^ ) Ek:(a,q,q)e{-nr))dq

1 9 A 

^  ^{q)q^P Y KH> a = l

an
Q

-i/Q
1/0

/

- i /o

E(a, q, -q)Ek(a, g, q)e{-nq)drj

=  : Sí + S2 +  S3 +  5 4 +  S5 +  ^6 +  S7 +  S8 +  5g.

In the following we only take into consideration such n £  [(9/10)®,®[, that 
satisfy the congruence conditions in (1.1).

8. The calculation of Si-Sg

We first estimate S4 . Changing the summation over the characters ac
cording to the inducing primitive characters, we get by Lemma 4.7 (a) and 
Cauchy’s inequality:

( 8 . 1)

i/Q

S* = Y j j 2 ( 7 \  Y  A (qin’X,X 0) / F(q)W(x,q)e(-nq)dq
q%P V [q) xmod9 _{/Q

<iC(i/*)-(i/2) J 2  * Y  j ^ T s \ A (<l’n’XXO,q,XO,q)\
r*£P x  m o d  r  q^P

<7 = 0 (m od  r )
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1 /Q >

I  \W{xo,qX,v)\2dv

1/2

-1 IQ

Because of q ^ P  and p >  P  we have W (xo,9X>p) =  W (x,p), and so we get 
by (8.1) and Lemma 4.5

( 8 . 2)

/  V?  \
S4 « z (1/fc)- (1/2)£  E  ’ /  \ W ( X , V ) \ 2d v

r^PX modr \ _ i/q

E  ^2(9) |4(g>«.xxol9.xo,?)|

/  i/o

1/2

q̂ P 
q =  0 ( m o d  r )

/

1/2

•C log,5fc+l E E ' f  | W ' ( x . > ) ) f dr]
r g P x  mod r \ - \ / Q

We define now for an arbitrary primitive character x mod r:

t + hE x(p)iogp=
t+/i t+h
E  logP - É 1 i f r  =  l,
t t

I t+h
E  x (pX(p)l°gp i f r > l .

Then we get by Lemma 1 in [3] and the definition of W(x,p):
2

1/qQ

I  \W{x ,v) \2d p «  y
-1/<?Q

~ E #x(p)iogpQ tipit+%,
t£^P<x

dt,

from which we get by (8.2): 

(8.3)

S4 <C x xp log5fc+1 x V '  max max (h +  x P  4k 3)'
^  , x/4<t<x h<xP-*k~3rSP  x m0(J r -  — _

t+h

E # * (p )  lo g p
t

Arguing exactly as in (19) in [1] we obtain for the last double sum

Y  E ̂  i8*2+1 los-8*2 x + p ~1-(8.4)
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If we combine (8.3) and (8.4) and argue in the same way for Ss, where we 
use the upper (3.1) for the number of the P-exceptional zeros over which is 
summed in Sg, we obtain

(8.5)
S8k2+lx l/k x l/k  l o g S f c + b S .

Si +  Sg —rr— -----b
log8fc2~5fc~1,5 x ' P

Using Lemma 4.7 (b) we get in the same way for St.

l IQ

S7 =  Y ~ J r )  Y  Y  (̂9>̂Xi.X2) J  W(x,Ti)Wk(xuv)e(-nri)dri
<7̂ P X m o d  q Xl m o d  q - 1 / Q

yo.u)

« ( > + v / *  ioB“ + i- “ 5 x + xi/;y +iij

/  i/Q \ 1/2

x  J  X I  f  | W f c ( X i >7?)|2*7
r\%P Xl m o d r i  \ _ l / Q  )

Arguing as in (8.3) and (8.4) we derive from this

(8.7) 5 7 «  <̂58fc2+V / fc log5fc+1- 8*2 x +  XÍ/L lô k + i x ĵ Wkj

where

Wk =  V  max max ( h + y / x P  4k 3) 1
r% X , ™ d r ,  h« x 1 / k p - 4 k ~ 3

y+h
x Y  Xi(p)!ogP ,

and

( 8 . 8 ) IUfc< (5 8fc+1 log_8fc a; + P _1.

Combining (8.7) and (8.8) and arguing in the same way for 52 and 5e by 
using again (3.1) we obtain

fi8k+\x l p  Xl/k \og5k+1'5 x 
52 +  5 6 +  5 7 «  :— 57— ---- b

log3fc—1,5(8.9) P
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For S i we get by the Lemmas 4.5 and 4.9

I

Sl =  ^ 2  A(q' n) [  T(r])F{ri)e{-nr))dr)

( 8 . 10)

q%P

O
1/2

£ ~ i ^ , n ) i  /  lT ( r / ) F ( r? ) l c i r ?

1 IQ

— a (n, P)L(x,  n) +  0  ( x̂l k̂P  s ĵ ■

Noting that in the sum defining S3 by (4.2) we only have to take into consid
eration such q with l cond x  =  <7, for which (/, cond x) =  1 holds, we obtain 
in the same way as for S i :

( 8 . 11)

s 3 =  - J 2  £  £  - ^ S A ( r , n , x o , r ^ x h [ r i , ^ , A  L lte(x,n)
r < P  v € 0 U v  i/5 ^  'r^P x£0ux ê O'uß

X  m o d  r  L ( q ,X ) = 0

+  o ( x l/kP^r^j .

For the calculation of the remaining terms we define

o[ =  { ß € d ' ö ß : | 7 | g p 4fc+3} ,  e'2 =  0 'u ~ ß \e [ ,

such that by (3.2):

(8.12) £> =  /? +  ry £ 02 = >  It I > 16P4fc+3.

So we obtain
(8.13)

i/i?

s 5 =  -  £  £  £  ~dpTa\ A ^ ' n ’ %Xo,qi Xo,q) /  T e {r i )F{r i ) e ( - nr i ) dT ]
VOII I-Í nCti" Ô P T \H) Jxeöux <>€»', «ge

L ( ff,X) = 0  c o n d  x l v - i / Q

i/Q

- E  E  E  i  ̂ Ob^XXo^Xo,,?) I  T e (r])F{T])e(-nr])dT]
x e e  „ee'2 «ge 9  Wr(i.3c)=o co"dxlo

= : <S5,1 +  55,2•

- l / Q
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We first get from Lemma 4.5, Lemma 4.10 and (3.1)

(8.14)

5s’2- E  E  E
xee see' QiP Y

L ( g , x)=0 c o n d xl*

1 IQ

\MQ,n,XXo,q,Xo,q)\

j  \Te(r])F(r])\dr] «  xl k̂P~2k.

-1 IQ
Arguing as for S3, we get by appealing again to (3.1)

(8.15)

55 = ~ E  E  E  i i i (r' n ^A0,r)
rűP xeeux Bee\ v K ' 

xmodr H,.x)=0

x a  ^n, —, r'j LQt\(x,n)  +  O [ x l k̂P  »

For S() we get similarly to S 3

S 9 =  E  E  E  E  E  ^T^(r,n,xXo,r,xrxo,r)
x£0Ux gg#' xi£öux g'ee'û

£ ( e , x ) = 0  £ ( e ' . X l ) = 0  [ c o n d X , c o n d X 1 ] =  r

(8.16)

x a ( n, —, r ) L o,e'{x ,n)  +  0  (x1/kP  .“ )

9. Proof of the theorem

We first notice that obviously

(9.1) |Leig/(X,n)| =  I (n -  rnk)e~1m e -1 | «  x x̂ kx^~xx ^ ~ x.
n  —  x < m ^ ^ n  —  ( x / 2 )

Arguing in exactly the same way as in (35) in [1] or in Lemma 2.1 in [8], we 
obtain further that

(9.2) E  xß~l +  E  E  ^ ^ ' “^ c e e x p ^ ^ ^ + x - 1/2,
gee1 gee' g'eO'

where in the sequel we will neglect x 1'2, which in (9.10) will be shown to be 
permissible. We define further

H  =  {r  =  [rq^], ri — P-excluded module or exceptional module to F  or 1}, 
G =  { r e H ,  r ^ P x/5}.
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Then we derive from Lemmas 5.3 and 5.4 and (9.1) that for any two char
acters Xi(mod ri),X2(mod r2) £ {0 U x  U Xo,i} with r =  [n ,r 2] = , r  £  G,

(9-3) ^27^y|A(r,n,xiXo,r,X2Xo,r)lk(n, ^ , r ^ \ \L e^{x ,n ) \< ^ x l/kP  1/240,

holds for all but <?C a:/3-1/80 n £  [(9/10)a;, x[. If -  in view of (3.1) -  we apply 
Lemma 5.5 to all r £ H \  G and note that r £  G for a sufficiently small A, 
then for all n £  [(9/10)a;, a;[ that satisfy the congruence conditions in (1.1) 
and n$L A{x) with |̂ 4(m) | -C x P _1/80(log a:)1/ 3 +  x1-íl -C x l~&2, <52 ^ 0, there 
holds by (7.2), (8.5), (8.9), (8.10), (8.11), (8.15) and (8.16):

n(.,»)=n (1 + ̂ ?T̂ ) L{x'n)pgp

-^(~)A(r,n,x,X0,f) fl (* + ̂ =T^) (x’n)
p ú P

(p, r)  =  l

l ^ A ( r , n , x o , f , x ) ü  Í 1 + ) L i j ( x ' n )(p2(r) púp

(9-4) +  ^ 2 ^ A ^ ' n,X,x)  J 7  ^ 2^ Lj j j (x ,n)

(p,f)=i
0 2 1 1  ^  ' (p _ l)2

( p . f ) = l

~ E  E  E  T ^ r ^ n ^ X o . r )  n  ( 1 + 7^ITw) L e >i ( x ' n )
riP xee eee'\0  r  ' ’ púp v ' '
r ( G  x m o d  r  L(tf  *) = 0  ( p , r )  =  l

~ E E  E  TaT^fcn.XO.r,*) I I  ( 1 + £ ^ )  W * . " )
r S P  V 6 »  o e e '  r  v ’ v < P  '  \ F  /r̂ P X€0 e6»'
r g G  x n i o d » ’ L( g , x )=0

p S P
( p , r ) = l

E  E  E  E  E  02^y
XGÖUx XiCŐUx p'ee'u/3 rgp.rgG,

U c v ) = 0  t ( e ' , x ) = 0  [ c o n d x , c o n d x i l = r
(e,p')̂ (/3.4)

-4(L 71) XX0,rj XlX0,r)

x n (*+(p-’ip) Lg-g' (*» n)+°(- • •)
<p.r)=i

=  B X +  ■ ■ ■ +  By +  0 { x 1̂ kP =r L +  a ^ ^ lo g 1-5“3̂ ) ,

where we have used (3.1) for the calculation of the error term. In the fol
lowing s will be chosen fixed according to the preceding discussion. We first
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get by (9.1), (9.2) and Lemma 5.6 (b)

B5 +  ■ • • +  B 7 «  x 1/k n  ( 1 +  JZZ 
p^p

A{p,n)

ÍP -  l )2,

(9.5) ^ C7 exp
2b

E x ß ^  + E  E
Kgeo' geo1 g'eo1

A (p ,n )n (i+
p^p i p - 1)2

We further derive from Lemma 4.1 (c) and (d) that

<»■«> n (1+A(!””n r
p^p pip

(p,r)=i
(p — l ) 2 )  (f)2{r) E 1.

! + m ^ = n ( m o d  f )

In the same way as in the proof of Lemma 4.4 (b) we obtain for the characters 
Xi,X2 6 {xo,f,x}i which are not both equal to xo,f-

(9.7) A ( r , n , x i , X 2) = f  ^  Xl(0X2(m).
Z + m ^ = n ( m o d  f )

1 ^ 1  , m ^ r  , ( l m  , r )  =  l

So we get from (9.4), (9.6) and (9.7)

B\ +  f?2 +  -03 +  04

n ('+^"n f
p^p '

( p , f ) = i

(p — l ) 2 J (/>2(r)

í(L(a:,n)) 1 -  ^ ( r r ,  n) x (0
\  Z d - m ^ = n ( m o d f )  Z-f-m^ E n ( m o d  f )

l ^ Z , m ^ f , ( Z m , f )  —1 l^ Z , m ^ f , ( Z m , f )  =  l

—L l p{x, n) ^ 2  Xim) +  Lß ß(x,n)  x ( 0 x M
Z + m ^ = n ( m o d f )  

l ^ Z , m ^ f , ( Z m , f )  =  l
Z + m ^  = n  (mod f )  

l ^ Z , m ^ f , ( Z m , f ) = l

(9.8) =  TT f i / M W  
V ( p - i ) V  W )

(P.r) =  l

\

E  E  (!-x(Z)o^ x) ( l - x M ^  1
a + 6 ^ = n  Z + m ^ = n ( m o d f )
^ ■ ^ a < x  l ^ Z , m ^ f , ( Z m , f )  =  l

/
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a-fb̂  =n 
â<x

-Â SfX fys

where in the last step we have again argued as in (9.7). If the Siegel zero ß  
exists, we get

1 -  pP~l =  ( l - ß )  log P  P 7“ 1 ^ c14(1 -  ß) log P  =  cu 6.

Applying this to (9.8) we obtain

n
p^p

1 +
M v , n)
( p - 1)2

By +  D2 +  P 3 +  P 4 ^ S2x l'k n Mp,n)  \  
(P~  l )2/

which, by (9.8), obviously also holds if ß  does not exist. So we get for a 
sufficiently small b from the last inequality, (9.5) and Lemma 5.6 (a)

(9.9) |P i +  --- +  P 7| » < s V /fc n A(p, n) \
( p - i ) V

^c7 »  S2x 1̂ k log 2k x.

If ß  exists, we know by Lemma 3.1 and (3.4):

(9.10) ö2 =  ( ( l - ß )  log P )2 »
1

p ( 4 * + 3 ) A / ( 4 * + 2 )  Jog2 x '

Otherwise 5 =  1. We derive from (9.4), (9.9) and (9.10) that for A 
min(jF|T, j ) ,  n [(9/10)a;, s[\A (s) and n satisfies the congruence com 
tions in (1.1):

n  ( x , n )  3> x 1^k 5 2 \ o g ~ 2k x .

We further conclude from (6.1) that

V2{x, n) x l/kP

for all but n €  [(9/10)x, x[ \B{x)  with |P(x)| <g. x l+cP ~6/4k. So we get from
(3.6) and the upper bound for A

r(x , n) 2>x1//fc52 log 2k x

for all but |A(x) U B(x)\ <C x 1_®, 0  > 0 integers n G [(9/10)x,x[, that satisfy 
the congruence conditions in (1.1). Splitting the interval [l,x[ into intervals 
of the type [yjji, t[, we get the theorem.

VII •
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ON CONVERGENCE IN PROBABILITY 
OF MARTINGALE-LIKE SEQUENCES

D. Q. LUU

Sum m ary

Let (fi,A ,P) be a complete probability space and (An) an increasing sequence of 
sub rr-fields of A. A sequence (Xn) of Banach space-valued Bochner integrable functions 
is said to be a game fairer with time, if for every e > 0 there exists p € N such that for 
all q, n 6 N with p'^q'^.n  we have P(||X g(n) — Xg|| > e) <e, where Xq(n) denotes the 
.Ag-conditional expectation of X n. As a corollary of the main theorem we obtain that 
every game fairer with time (X n), satisfying the condition: liminfn E(||An ||) < oo admits 
a unique decomposition: X n — Mn + Pn, where (Mn) is a uniformly integrable martingale 
and (Pn) goes to zero in probability. In fact, we show that this result still holds for several 
classes of martingale-like sequences that considerably generalize the class of games fairer 
with time.

1. Notations and definitions

Throughout this note let (fi, A, P) be a complete probability space, (*4n) 
an increasing sequence of sub-cr-fields of A  and N the set of all positive in
tegers. Unless otherwise stated, we shall denote by V or U cofinal subsets 
of N. Now given a separable Banach space F,  let L l (F) stand for the Ba
nach space of all (equivalence classes of) ^.-measurable Bochner integrable 
functions X  : O F  with the norm: E (||X ||) <  oo. We shall consider on
ly sequences (Xn) in L l (F ) which are assumed to be adapted to (A n), i.e. 
each X n is ^„-measurable. For more information on amarts, the reader is 
referred to the recent monograph of G. A. Edgar and L. Sucheston [7], Here, 
we recall only the following

D e f in it io n  1.1. A sequence (X n ) is said to be
(a) a martingale, if for all q, n £ N with q ^ n  we have X q =  X q(n), where 

X q(n) denotes the ^-conditional expectation of X n (cf. [14]);
(b) a mil, if for every e >  0 there exists p  G N such that for all n €  N with 

p ^ n  we have

P Í  sup ||W9(n) — X q\ \ > e  ) <e;
\P=9=n /

1991 Mathematics Subject Classification. Primary 60G48, 60B11.
Key words and phrases. Banach spaces, decomposition, convergence in probability, 

martingales, mils, sequential games fairer with time.
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(c) a game which becomes fairer with time, if for every e >  0 there exists 
p G N  such that for all q, n G N with p ^ q ^ n  we have

P ( | | X , ( n ) - X , | |  > e ) < £ .

Games fairer with time were first introduced by L. H. Blake [2] who 
proved that every real-valued game fairer with time which is a.s. bounded 
by an integrable function, converges in L l . Later, this result was extend
ed (independently) by A. G. Mucci [12] and S. Subramanian [15] to the 
uniformly integrable case. Recently, the amart theory has been extensively 
developed. Among many others, M. Talagrand [16] has introduced the class 
of mils as a generalization of martingales, uniform amarts [1], pramarts [11] 
and martingales in the limit [13]. The main structure Talagrand’s theorem 
in [16] says that every F-valued mil (Xn) with lim inf E(||Xn||) < oo admits

n
a unique decomposition: X n =  Mn +  Pn, n £ N, where (M„) is a uniformly 
integrable martingale and (Pn) goes to zero, a.s. Also it is known that every 
above-recalled class of martingale-like sequences is strictly contained in the 
next one. In the next section we shall apply the Talagrand’s result to consid
er a decomposition and convergence of the following family of martingale-like 
sequences which considerably generalizes the class of all games fairer with 
time.

D e f in it io n  1.2. Let V  be a cofinal subset of N. We say that (Xn) is a 
game which becomes fairer with the set V of times (or briefly, V-game), if for 
every e >  0 there exists p € N such that for all q € N and v £ V with p ú q f k v  
we have P (11X5(1)) — X 9|| >  e) < e.

In general, if [Xn) is a R-game for some cofinal subset V of N then {Xn) 
will be called an N -sequential game.

Now, let N c denote the set of all cofinal subsets of N. Then N c is a 
directed set filtering to the right with the order (51), given by: V  ^ U iff 
card(í7 \  V) is finite. Clearly, by definition, in the space of all N-sequential 
games, the classes of V -games, when V runs over N c form an increasing fam
ily of classes of martingale-like sequences and the class of games fairer with 
time, i.e. the class of N-games is the smallest one. Moreover, by Example 2.5 
[10] the author has shown that the class of R-games coincides with that of 
t/-games if and only if card(RA{7) is finite. Thus the class of N-sequential 
games considerably generalizes that of games fairer with time. The main 
aim of the next section is to show the following

T h e o r e m  1.3. Let (Xn) be an E-valued V-game with

(1) liminf E ( | | X u ||) <  0 0 .
V

Then (X n) admits a unique decomposition:

(2) X n =  Mn +  Pn, n S N ,
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where (Mn) is a uniformly integrable martingale and (Pn) goes to zero in 
probability.

Consequently, if either the set { X 7l(u;)} is relatively weakly compact a.s. 
or F has the Radon-Nikodym property ( R N P) then (X n) converges in prob
ability to a Bochner integrable function.

It is worth noting that the theorem is independent of Theorem 2.2 [10], 
where instead of (1), we supposed that the subsequence (X v) of (X n) is an 
Lx -amart, i.e. for every e > 0 there exists p g N  such that for all and v, v' 6 V 
with p ^ v ^ v' we have

E ( ||X „ ( i/) -X t;| | ) < e ,  (cf. [8]).

In this case we obtain a Riesz decomposition of the Zd-amart (X„), hence 
of (Xn). So the proof of Theorem 2.2 [10] cannot be applied to prove the 
above main theorem. Finally, in the last section we shall discuss on some 
other generalizations of games for which the Riesz decomposition still holds.

2. Proof of the main Theorem 1.3

To show the theorem we need the following lemmas. The first is an 
extension of Lemma 2.2 of D. Q. Luu [9]. The second is a R-game version 
of a classical result of J. Neveu [14] for martingales and Theorem 6 of M. 
Talagrand [16] for mils which says that every L1-bounded martingale (or 
mil) converges to zero, a.s. if it converges scalarly to zero, a.s. Let us begin 
with

Lemma 2.1. Every V-game contains a subsequence which is a mil.
PROOF. Let (X n ) be a R-game. Then by definition there exists an in

creasing subsequence (vn) of R such that for all q, n £ N with q we 
have

P ( l l ^ > n ) - * „ J | > 2 - 9)< 2 -L

Consequently, if e > 0 is given then for all p, q, n 6 N with 2~p+1 <  e and 
p ^ q ^ n  one get

P( sup ||.X„,(un) - X „ J | >e)
P=Q=n

n

^ E P d l ^ M - ^ J ^ 2"9)
q=p
oo

á £ P ( l l ^ > n ) —* „ J |> 2 -« )
Q—P

^2“P+1<£.
Then by definition, the subsequence (X Vn) of (X n) is a mil.
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Lemma 2.2. Let (X n) be a V -game satisfying (1). Suppose that (X n) 
contains a subsequence, say (X u, uEU),  which converges to zero in proba
bility. Then (Xn) converges itself to zero in probability.

PROOF. Let (Xn), V  and U be as supposed in the lemma. Assume on 
the contrary that (X n) does not go to zero in probability. It means that 
there exists a > 0  such that lim supP(|pfn|| >  5a/4) >  a. We claim that:

n
For every 0 < e < a /4  and v \ E V  there exists t>2 G V  with v\ ^ V2 such 

that for each A G A Vl with P(A) < a/4 and each v G V with V2 ^ v  there 
exists a set B  G A V2 with B  Pi A =  0 and P (B) <  e such that

(3) J \ \ X v\ \dP^a2/A.
B

To prove the claim, let 0 <  e <  a/4 and v\ G V  be given. Then by defini
tion, there exists p G N with v\ ^  p so large that for all v G V with p ú v  we 
have

(4) P (||X p(u) — Ap|| > a/4) < e /2

and if we set C  =  {||X P|| > 5a/4} then P(C) > a.
Consequently, there exists a finite sequence {x*, j  5i?n} of the unit ball 

of F* such that if for every j  ^ rn we take

C } = C  n { { (x* , X p) >  5a/4} \  (J  { (x*j, X 8) >  5a/4} }
s< j

and C 1 =  (J C) then P (C ] ) > 7o/8.
j ’i m

On the other hand, since (Xu, u £ U )  converges to zero in probability 
there is u\ G U with pfku\  such that if we put

D =  {\ \XUl\ \> a /2 }  then P { D ) < e / 2 .

Now let

A G Ay1 
where

V2 — min{u £V, u \  ^  w},
with P(A) < a/4 and v G V with V2 % v. Then by (4), P(G) <  e/2, 

G =  {\\Xp( v ) - X p\ \ > a / 4 } .
Hence,

P(C 2) > 7 a /8 - 3 a /8  =  a /2 ,

where C? =  Gj \ ( G U i )  and G2 =  IJ G2. Similarly, let
j ' im

H  =  {\ \XUi( v ) - X Ul\ \ > a / 4 } .
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Then by (4), P (H) < e /2 .  Further, let D ] = D \ J H  then P(Z)1) < e. Finally, 
for j  ^ m, let Bj  =  Cj  D D \  B =  (J Bj.  Then B  G A U\ , B  fl A =  0 and

j^m
P (B) ^ P (ű 2) <  e. We shall show that constructed in such a way, the set B 
satisfies also (3), proving the claim. To see this, let j | m b e  any but fixed. 
Then we have

f  (x*,Xv)dP =  J  (x*,Xp(v)dP)^aP(Cj)

C1 cf

since Cj G A p and (x*, X p(v)) ^ (x*-, X p) — a/A 5a/4 — a/A =  a on Cj.  Sim
ilarly, define D j  =  (Cj \  D l ) then Dj  G A Ul and on D j  we have

(x* ,XUl (v)) Í  (x*,XUl) + a/A =  a/A +  a/A =  a / 2,

hence, f  (x*,Xv)d.P =  f  (x*,XUl (v))dP ^ a/2P(Cj).  But Bj  n Dj =  0 and
D2 £>2J J

Cj — Bj  U Dj, j  ^  i n  w e  get

I  \\Xv\\dVZ J  (x*,Xv)dP
Bj Bj

= j ( x j , X v) d P -  j ( x * , X v)dP

CJ DJ
^ aP(Cj) -  a/2P(Cj)  =  a/2P(Cj) .

Thus by summation over j  C m  we have

j  \\Xv\\dPZa/2P(C2)Za?/A.
B

It proves (3) and the claim.
Now, returning to the proof of the lemma, we can construct by induction 

an increasing sequence (vp) of V with the following property: whenever 
A G A Vp with P(A) <  a / A and v G V with vp+\ ^  v there is a set B  G A Vp+l 
with BC\A = 0, P(B) <  a2- (p+1) and f  ||X„||ciP ^ a2/A. Thus given p G  N and

B
v ^ v p, one can construct by finite induction for j  disjoint sets Bj E A Vp.
with B\  = 0, P (#j) <  a2~(J+1) and f  ||X„||c/P ^ a2/4. Hence,

Bj

j  \\Xv \ \ d P ^ ( p - l ) a 2/A, where B = \ j B j .
B
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This means that limE(|Î XTt,11) =  oo. It contradicts (1) and proves the lemma.
V

Finally, having these two lemmas in hand we can proceed to the proof 
of the main theorem. Indeed, let (X n) and V be given as supposed in the 
theorem. It is clear that the subsequence, X v, (v E V) is itself a game 
fairer with time w.r.t. (Av). Consequently, by passing to an L1-bounded 
subsequence, Lemma 2.1 implies that there exists a subsequence U of V 
such that the subsequence (Xu) is an ^-bounded mil w.r.t. (A u)■ Then by 
Theorem 8 [16], it follows that (T „) admits a unique decomposition:

(5) X n =  M n +  Pn, n e  N,

where (M n) is a uniformly integrable martingale and the subsequence (Pu) 
is a mil w.r.t. (Au, u e U )  that goes to zero, a.s. Clearly, (P„) is still a 
L-game w ith liminf E(||P„||) <  oo. This with the second lemma shows that

n
(Pn) converges itself to zero in probability which completes the proof of De
composition (2) and of the main part of the theorem. Here, (Mn) is uniformly 
integrable because according to the Talagrand’s proof of Theorem 8 [16] we 
have ||M n || ^ En(h), a.s. n G N, where the function h =  liminf ||AU|| is in-

U

tegrable and En(h) denotes the ^„-conditional expectation of h. And only 
this uniform integrability of (M„) guarantees the uniqueness of Decomposi
tion (5), hence of Decomposition (2) required in the theorem. In addition, if 
the set { X n(u)} is relatively weakly compact, a.s. then, by Decomposition 
(2), so is the set {M„(w)}. Consequently, either in the case or when P  has 
the (R NP), (M„) must converge a.s. and in P1 to an F -valued Bochner in
tegrable function X , according to a Chatterji’s result in [5] or in [6], resp. 
Thus again by Decomposition (2) in the theorem, (X n) converges itself in 
probability to X  which completes the proof.

By the remark after Definition 1.2 and by the main theorem in the section 
we obtain the following corollary which contains all the results of L. A. Blake 
[2, 3], A. G. Mucci [12], S. Subramanian [15] and D. Q. Luu [9] and is new 
even in the real-valued case.

C o r o l l a r y  2.3. Let (X n ) be a game fairer with time or an ^-se
quential game, resp. Suppose that (X n) satisfies the following condition: 
lim inf E(|IAn||) < oo or lim supE (||X n||) < oo, resp. Then (Xn) admits

n n
a unique decomposition: X n =  M n +  Pn, n G N, where (Mn) is a uniformly 
integrable martingale and (Pn) is a game fairer with time or an N-sequential 
game, resp., that goes to zero in probability.

3. Directed case

In this section, let (D,  be a directed set filtering to the right with 
the nonempty set Dc of all increasing cofinal subsequences (tn) of D  and
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(At, t G D) an increasing family of sub-c-fields of A. Then for directed 
processes (Xt) in L l (E), adapted to (At) one can introduce the following

D e f i n i t i o n  3.1. A process (Xt) is called a game which becomes fairer 
with the sequence (tn) of times, briefly {<„}-game, if for every e > 0 there 
exists p G N such that for all t G D  and n G N with tp ^ t ^ tn one has 
P(||X((tn) —A t|| > e) <e.  In general, if (Xt) is a {in}-game for some (tn) G Dc 
then (Xt) is called a D-sequential game.

It is not hard to check that Theorem 1.3 can be extended to all {£„}- 
games with liminf E(||X tn ||) < oo. Consequently, we get the following direct-n
ed versions of the results of the previous section.

T h e o r e m  3.2. Let (Xt) be a { tn}-garne or a D-sequential game, resp. 
Suppose that

liminf E(||X tJ |)  < oo or limsupEdlXdl) < oo, resp. 
n teD

Then (Xt) admits a unique decomposition: Xt  =  Mt -\-Pt, t €  D, where (Mt) is 
a uniformly integrable martingale and (Pt) is a {tn}-game or a D-sequential 
game, resp., that stochastically converges to zero.

A c k n o w l e d g e m e n t . The author would like to express many thanks 
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GENERALIZED COTANGENCY SETS 
IN PROJECTIVE SPACES

Gy. KISS

A b strac t

The notion of cotangency set in the projective plane over any field was introduced by 
Bruen and Fisher [1], They proved that a cotangency set never contains a quadrangle and 
deduced several theorems from this fact. In this paper a generalized definition of cotan
gency sets in the n-dimensional projective space is given. We prove some theorems about 
quadrics and Hermitian varieties which are consequences of the properties of cotangency 
sets.

1. Introduction

Let V — PG(n, F) be the n-dimensional projective space over the commu
tative field F. In the case n =  2 Bruen and Fisher [1] defined the cotangency 
set in the following way:

D e f in it io n  1 .1. Let S  be a set of points in V and assume that there is 
an injective mapping /  from S  into the set of lines of V  satisfying the two 
properties:

(a) if P  is in S  then f (P)  does not contain P;

(b) if Pi and P2 are distinct points of S  then the points P i,P2 and the 
intersection of the lines /(P i)  and /(P2) lie on a line.

They showed that a cotangency set never contains a quadrangle. The 
proof of this theorem is quite simple, but a number of consequences involv
ing Hermitian arcs and conics follow quickly from the theorem by way of 
elementary arguments. In this paper we generalize the notion of cotangency 
set in higher dimensional spaces. The natural generalization is given in Def
inition 2.1. The main goal of the present paper is to prove the following gen
eralization of the result of Bruen and Fisher: a proper n-cotangency set in V
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never contains n +  2 points in general position. We can also generalize the 
corresponding consequences involving non-singular quadrics and Hermitian 
varieties. Finally, in Section 3, we give some examples of 2-cotangency sets 
in V  which contain n +  2 points in general position. This means that the gen
eralization of the theorem of Bruen and Fisher is not valid for 2-cotangency 
sets. But surprisingly, the generalized corollaries are true. These theorems 
were proved in [2],

2. n-dimensional cotangency sets

D e f in it io n  2.1. Let S  be a set of points in V  and A; be a natural number, 
2 k ^ n. Assume that there is an injective mapping /  from S  into the set 
of hyperplanes of V  satisfying the following two properties:

(a) if P  is in <S then / ( P )  does not contain P;
(b) if P \ ,P 2, ■ ■ ■, Pk are distinct points of S  then the subspace generated 

by the points Pi, P2, . . . ,  Pk and the intersection of the k hyperplanes 
f ( P i ) , f { P 2) , . . . , f ( P k) he in a hyperplane.

Then S  is called a fc-cotangency set.

If the dimension of V  is two then the only possible value for k is two, 
and our definition is the same as the original one. It is possible that a k- 
cotangency set contains m  points Pq, P,2, . . . ,  Pirn for some m < k  such that 
the subspace generated by the points Pq, P;2, . . . ,  P,m and the intersection of 
the m  hyperplanes /(P q ), /(P j2) , . . . ,  f(Pirn) lie in a hyperplane. If it hap
pens, we call S  an m-degenerate cotangency set. We would like to distinguish 
these sets from the “proper” cotangency sets.

D e f in it io n  2.2. A A;-cotangency set S  is called proper Pcotangency set 
if there is no m < k such that S  is m-degenerate.

First we prove a simple lemma about proper cotangency sets.

L e m m a  2.3. Let S  =  { P i ,P 2, . . . , P i }  be a proper k-cotangency set 
in V , k >  2. Let Li — / (P i) .  For i > 1 let f  (Pi) be the intersection of FL 
and f (Pi) ,  and let P- be the intersection of the line P\Pi and FL. Then 
the points P2, P3, . . . ,  P/ and the subspaces f '(P2), f  (P3), ■ • ■, / ;[Pi) form a 
proper (k — \)-cotangency set in Ft.

PROOF. Since /  is an injection f'(Pi) is an (n — 2)-dimensional subspace 
in P , thus f'(Pi) is a hyperplane of Ft. P- is well-defined because Pi /  Ft. 
Let us denote the set of points {P 2 , P3, . . . ,  P /} by .

First we prove that P[ £ f'(Pi)- If P/ 6 f'(Pi) then the line P\Pi meets 
/ ( P i )  n /(P j) . Thus the two points Pi,Pj and the two hyperplanes / (P i) ,  
f (P i )  in S  form a 2-degenerate configuration which is a contradiction because 
S  is a proper fc-cotangency set.
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Consider any k — 1 points , P -2, . . . ,  P/ out of <S[, and the corre
sponding k — 1 subspaces out of the set /'(Pa), ■ ■ ■, f'{Pl)}- If the
subspace generated by the points P^ , P/2, . . . ,  P/ and the intersection of 
the fc — 1 hyperplanes / (P/J, / (P/2) , . . . ,  f{P[k_ ) has dimension r in P  then 
the subspace generated by the points Pi, P q , Pj2, . . . ,  Pjt l and the intersec
tion of the k hyperplanes f (P i ) , f (P i l ),f(.Pi2) , - - - , f {P ik_1) has dimension 
r +  1 in V  because Pi ^ P  and f (P(  ) ^  /(P i)-  But 5  is a fc-cotangency 
set hence r +  1 ^ A: — 1. Thus r  5Í k — 2 which means that the points and 
hyperplanes of P  satisfy property 2 of the definition of a cotangency set.

Finally we have to prove that is not m-degenerate. If the subspaces 
generated by any m < k  — 1 points P! , P- , . . . ,  P[ and the intersection of the 
corresponding (n — 2)-dimensional subspaces /(P ^  ), /(P / ) , . . . ,  / (P /m) of V 
would be in a hyperplane of P  -  thus in an (n — 2)-dimensional subspace of 
V -  then the points Pi, Pjt , Pj2, . . . ,  Pjm would form an (m +  l)-degenerate 
configuration in S. But this is a contradiction because m + 1 ^ k, and S  is a 
proper fc-cotangency set.

The lemma is proved.
Our main result is the following

T h e o r e m  2.4. If S  is a proper n-cotangency set in an n-dimensional 
space then S does not contain n +  2 points in general position.

PROOF. We prove by induction on n. If n =  2, then this is the result 
of Bruen and Fisher [1], Let n > 2. Suppose that the theorem is true for 
n —1. Assume that S  contains the points Pi, P2, . . . ,  Pn+2 which are in 
general position. Let P  =  /  (Pi) and define S[ in the same way as we have 
done in the proof of the previous lemma. is a proper (n — l)-cotangency 
set in P  which is an (n — l)-dimensional projective space. S[ contains the 
points P2, P j , . . . ,  P/_|_2 which are in general position. This is a contradiction 
because the theorem is true for (n — l)-dimensional spaces. Thus S  does not 
contain n +  2 points in general position.

We now look at some applications.

C o r o l l a r y  2.5. Suppose that the characteristic of F is not equal to two. 
Let S  be a set of points in V that is disjoint from a non-singular quadric Q. 
Assume that any hyperplane generated by n linearly independent points of S  
has exactly one point in common with Q, but no subspace generated by less 
than n points of S meets Q. Then S  consists of the vertices of a simplex 
circumscribed about Q, or its points lie on a hyperplane which has one point 
in common with Q.

P r o o f . Let S =  {Pi, P2, . . . ,  P*,}. For Pi € S  let /(P i) be its polar hy
perplane with respect to the polarity defined by Q. Since Pj ^ Q, axiom (1) 
for a cotangency set is satisfied. Let P^, P{2, . . . ,  Pjn be n linearly indepen
dent points of S  and let Qiui2,...,in be the unique point in common of the
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hyperplane generated by the points Pi1,Pi2, . . .  ,Pin and P.  From the prop
erties of the polarity, f ( P Lj) passes through Qiui2,...,in for each ij. 
is the unique point in common of the n hyperplanes /(P q ), / (Pj2) , . . .  , f (P in) 
because the points P ^ , P{2, . . . ,  Pjn are linearly independent. Thus axiom (2) 
for a cotangency set is satisfied. S  is not m-degenerate for m < n because 
no subspace generated by m  points of S  meets Q. Hence S  is a proper 
n-cotangency set. The statement follows from Theorem 2.4.

C orollary  2.6. Let S  be a set of points in PG(n,p2r), p odd prime, 
that is disjoint from a Hermitian variety P .  Assume that any hyperplane 
generated by n points of S  has exactly one point in common with P ,  but 
no subspace generated by less than n points of S  meets P .  Then S  cannot 
contain n +  2 points in general position.

P ro o f . It follows from Theorem 2.4 just as Corollary 2.5 did. We need 
to replace Q by P  and interpret /  as the polarity induced by P.

3. Final remarks

The main theorem is not true if we replace the proper n-cotangency set 
by 2-cotangency set.

THEOREM 3.1. If n >  2 and the commutative field F has at least 7 ele
ments, then there is a 2-cotangency set S  in V  =  PG(n, F) which contains 
n +  2 points in general position.

PROOF. We give an example. Let S  be the set of points {Pq, P i , ..., P n , U}, 
where the points have the following coordinates:

P o ( 0 ,0 , . . . , 0 , l ) ;
Pi(0,0 , . . . ,  1 ,0, . . . , 0 , 1) for * =  1, 2 , . . . ,  n;

2
U( 1 ,1 , . . . ,1 ,1) .

Let the equations of the corresponding hyperplanes be

/ ( P 0): xn+i = 0 ;
n

f(Pifi yj  aaXj ~f x n-\-i — 0 ;
j = i

f ( U ): AjXj +  Xn+i = 0 .
j =1

First we prove that P o ,P i, ...,Pn is a 2-cotangency set if aji =  

for i >  j , and an =  0.

1
aij -(- 1

-  1
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Pi is not incident with f{Pi)  because an =  0 and 1 ^ 0 . If both i and j  
are greater than 0 then the point

Qij ( 0 , . . . ,  0, 1 , 0 , . . . ,  0, 1 Qji, 0 , . . . ,  0, (ij i)

is incident with the line PiPj , and both of the hyperplanes /(P j) and f{Pj )  
because Qij =  Pj — (1 +  aji)Pj and a^aji +  a^ +  aji =  0. Hence the in
tersection of the two hyperplanes and the line joining the two points lie 
in a hyperplane. Consider the line PoPj. This meets /(Po) at the point 
Pi — Po =  Qi{0, . . . ,  0, 1 , 0 , . . . ,  0) and this point is incident with the hy-

i

perplane /(P j) because an =  0.
Now we determine A{ such that the set U U {Po, P i , . . . ,  P„} becomes a

2-cotangency set. The line PqU meets /(P o) at the point U — Po which has 
coordinates (1 ,1 , . . . ,  1,0). This point is incident with f{U)  if and only if

(l) Í 2 Ai = o-
3=1

The line Pjl/ for i  > 0 meets /(Pj) at the point

( n n
1, 1 , . . . ,  1,  ^   ̂ a i j , 1 , . . . ,  1,  — 'y   ̂a j j

j = 1 3 =1

This point is incident with f(U)  if and only if

(2.i)

Let
3 - 1

A\  -I------- 1- Ai- i  — A[ ( Ojj j +  ^4j+i +  ■ • • +  An — aij — 0.
j =1

Ai =
1

i +  X) av
3 =1

-  1.

Then equation (2.i) becomes Aj =  0. We show that if n > 2 then there
3=1

exist aij such that X)”=i A i — 0- (If n =  2 then the equation A\ +  Ai  =  0 
becomes a\ 2/ 1 -1-01,2 =  0. Thus in this case there is no solution.)

First we define three matrices. Let
/  n ,  46(6+1) \

#3 =  (bij) =

0
46+1

6
6+1

46(6 +  1) 6
V 1 — 462 _  26 +  1

6+1

0
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í  o

C4 — (Cij) —
c +  1 

0

0
c

0

2c+  1 

0

c +  1 

0

c(3c +  2) 
5c2 +  5c +  2

and

D r =  (díj ,

( 0

V

d2 +  2d +  2 
d2 +  d -  1

0 

0 

0

d2 +  2d +  2 
( d + l ) ( 2 d + l )

0

d2 +  2d +  2 
d +  3 
0

0

0
0

c(3c +  2)
(c +  l ) ( 2 c + l )

0

0

d2 +  2d +  2 
' d2 +  d -  1

0
d

0

0

d

0

0

0
d

\

d +  1 
0

d
2 d + l

d + 1
0

The field F has at least seven elements, hence we can choose b, c and d 
such that

6(5+ l ) ( l - 4 6 2)(4i> + 1)^0,

and

c(2c +  1) (3c +  2) (5c2 +  5c +  2) ±  0

d(d +  1) (2d +  1) (d2 +  d -  1) (d2 +  2d +  2) +  0. 

Let us define

Bi =
1

1 +  Yh bij
i = l

1, Ci =
1
n

1 +  cij 
3 = 1

- 1

A  = - 1 ,
1 +  E  d;l3

and
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then elementary calculations give that
n n n

£ ű . =  £  c f = ^ A = o .
i = l  i = l  i = l

Finally if n — 3k +  j ,  where j  =  0,1 or 2, then let A be the n x n matrix

( B 3

A
B 3

0

0
\

b 3
B3 or Ci or D 5

(The main diagonal of A contains k — 1 times the submatrix B3 and once 
the submatrix B3, C4 or D$ according as j  — 0, 1 or 2. All other entries of 
A are equal to 0.)

Define aij as the corresponding entry of the matrix A. Then an =  0, 
because bn =  cn =  da - 0; alJaJl +  atj +  aji — 0, because bijbji +  btJ + bji =  0, 
CijCji +  Cij +  Cji =  0 and dlJdJl +  dij +  dji =  0. Finally

n

£ * - o
i=l

also holds, because

n 3 3+j
J 2 A i =  ( k - l ) Y / Bi +  '5 2 E i =  0,
1=1 i = 1 1=1

where Ei =  Bi, Ci or Di according as j  — 0, 1 or 2.
Thus equation (1) has at least one nontrivial solution {Ai,  A2, . . . ,  An}. 

Hence the points U, P\, P2 , . ■., Pn form a 2-cotangency set.
Thus Theorem 2.2 is not true if we substitute the n-cotangency set by

2-cotangency set. But Corollaries 2.5 and 2.6 are valid in the following form:
T h e o r e m  3.2. Suppose that the characteristic of F is not equal to two. 

Let Q be a non-singular quadric in V and let S  be a set of points disjoint 
from Q such that the line joining any two points of S  is a tangent to Q. If 
the characteristic of K  does not divide n then the cardinality of S  is at most 
n +  l,  and hence S  does not contain n +  2 points in general position; while if 
the characteristic of K  divides n, then the cardinality of S  is at most n +  2.

T h e o r e m  3.3. Let LL be a Hermitian variety in PG(3 ,p2r), p odd prime. 
Let S  be a set of points disjoint from B  such that the line joining any two 
points of S  is a tangent to B- If any four points of S  form a tetrahedron 
then the cardinality of S  is not greater than 10.

These theorems were proved by Hirschfeld and Kiss [2].
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We conclude with an open problem. Let c(k) be the smallest number for 
which there is a proper c(A:)-cotangency set in the L-dimensional projective 
space over F  containing k +  2 points in general position. Theorem 2.4 states 
that 2 ^ c(k) < k for all k. It follows from Lemma 2.3 that if c(k) =  m  then
c{k — 1) ^ m  — 1. Determine c(k) in general.
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A NEW EXTENSION OF LUBELL’S INEQUALITY 
TO THE LATTICE OF DIVISORS

F. CHUDAK and J. GRIGGS

A bstract

P. L. Erdős and G. O. H. Katona gave an inequality involving binomial coefficients 
summed over an antichain in the product of two chains. Here we present the common 
generalization of this inequality and Lubell’s famous inequality for the Boolean lattice 
to an arbitrary product of chains (lattice of divisors). We also describe the connection 
between this inequality and the LYM property.

1. Introduction

Let X  be an n-set provided with a partition in M  subsets X r, called color 
classes, for 1 ^ i ^ M . Let nt =  \Xi\ for all i. Associated with this coloring, 
we consider the poset R(rii , . . . , nm) =  {0 <  • • • <  n i} x  • • • x {0 <  • • • < n ^ }, 
which consists of the product of M  chains with ranks rtj. This poset is 
isomorphic to the lattice of divisors of N  =  p”1 ■ • - p ] ^ , where the pfi s are 
distinct primes.

P. L. Erdős and G. O. H. Katona [3] discovered the following inequality 
for the product of just two chains in connection with their study of more-part 
Sperner families of subsets: For every antichain IQ R (n \ ,n 2),

( i ) E
(•lhje/

ri2
h

ni +  n2
h  +  i 2

<1.

Their arguments were somehow lengthy, and a proof of a generalization for 
M  colors was not apparent. We present such a generalization here along 
with some related observations.
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T heorem 1.1. I f  I  Q R ( n \ , . . .  , n m ) is an a n tic h a in , th en

E
f n A  i n M\
\ h j  \ í m J

fn i- \------ \-nM\
V *1 +  • —H m /

<1.

Notice that this extends Lubell’s familiar inequality [7] for the Boolean 
lattice B m  of all subsets of an M - set, which is the case that all n; =  1. In the 
next section we present two different proofs, both simpler than the original 
one in [3] for M  — 2. The first is by counting chains, an argument that just 
extends Lubell’s proof of Sperner’s theorem [7]. We recently discovered the 
same proof, for M  =  2 only, in a paper [1] of Ahlswede and Zhang.

It is also stated in [1] that (1) is just the LYM inequality for the poset 
(evidently, R{n \,n2)), which is not quite true.Let P  be a ranked poset, with 
rank function r : P  —> {0 ,1 ,. .. }. Let P\  denote the set of elements with 
rank k. Let Np(x)  denote the number of elements of rank r(x). We recall 
that P  is said to be LYM provided that for every antichain /  QP,

y  1 < l.

It is well known that R { n \ , . .. , u m ) is LYM. (See [4] for a survey.) Note 
that the contribution of an element x € I  to the sum in the LYM inequality 
depends only on its rank, which is not the case for inequality (1).

Our second proof of Theorem 1.1 shows that it is indeed the LYM in
equality but for a weighted poset obtained naturally as a quotient of the 
Boolean lattice Bn of all subsets of X.

We must mention that (1) is in fact just a special case of an earlier 
inequality which lies at the heart of the proof of the product theorem for 
LYM posets, as presented in the survey by Greene and Kleitman ([4], p. 42). 
They show that for LYM, rank-log-concave posets Pi and P2 and maximum 
chains Cj Q P\ and C2 Q P>, every antichain /  Q P\ x P2 satishes

( 2) E
(ti,i2)e/n(CixC2)

N Pl(ii)Np2(Í2)
A/PixP2(h G2)

We obtain (1) when we take Pi to be the Boolean lattice Bni for * =  1,2 
in (2). Restricting the proof of Greene and Kleitman to this instance gives 
another proof of (1), although we cannot yet see how to extend it to prove 
Theorem 1.1 for general M.  However, looking at (2) and Theorem 1.1 to
gether, a common generalization is suggested, with (2) extended to general 
M  and Theorem 1.1 extended to arbitrary LYM, rank-log-concave posets.
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T h e o r e m  1.2. If P \ , . .. ,Pm are LYM and rank-log-concave posets, and 
Ci Q Pi are maximum chains (i =  1 , . . . ,  m), then for any antichain I Q  Pi x
■ ■ ■ x p1 rn i

E
( t l  X  ••• X C m )

N p y j i  l) • • ■ N p m (im) 
N p \  X - x P m  ( * ! ) • • • )  *m)

We use the LYM Product Theorem of Harper, for weighted posets, to 
derive this result in Section 3. Note that it restricts to yet another proof of 
Theorem 1.1 when Pj =  Bni.

2. Two proofs of Theorem 1.1

F i r s t  p r o o f  o f  T h e o r e m  1.1. Suppose that /  is an antichain as stated 
in Theorem 1.1. The total number of maximal chains in the product poset 
{ 0 ,. . .  ,n i}  x • • • x { 0 ,. . .  , n M} is given by

f n \ - \ --------- h n j i i

V n  i , . . .  , u m

(» H -------
ni! • • -nM!

For any vector (ii , . . . ,  Ím ), the number of maximal chains that pass through 
it is given by

f i  i +  • • • +  j’aA  

V *!»••• >*M /
f n \  — i \  d---------h U m  — Í M

\  n\ — njii -
Finally, since I  is an antichain,

E
(*1....

A h ----- t- í m \
V >*M /

í n \  — i \  H-------h nM — iM
V nl — *1) • • • > nM — ÍM

fni  4-------I-tímA
V n u ■ ■ ■ >n M  /  ’

and (1.1) follows after rewriting this last expression. □
S e c o n d  p r o o f  o f  T h e o r e m  1.1. We need to recall a well-known result 

derived from Lubell’s proof of Sperner’s Theorem.
T h e o r e m  2.1. The Boolean lattice Bn of subsets of X  has the LYM 

property. □
A weighted poset is a pair (P,v), with P  a finite ranked poset and v a 

function that assigns a positive real number to each element of P. A weighted 
poset (P, v) satisfies the LYM inequality if for any antichain I Q P ,

Y  < i,
Y l  V(Pr(*))

If P  is a poset and G is a group of automorphisms of P, then the quotient 
poset P / G  consists of the orbits of P  under G ordered by A 5Í B  in P /G  
whenever there exist x G A and y G B  with x ^ y in P.

We will use the following theorem due essentially to Harper (1974) [6]. 
(See [2] for a complete treatment.)
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THEOREM 2.2. A finite ranked poset P  has the LYMproperty if and only 
if (P / G , v ) has the LYM property, where G is any subgroup of the group of 
automorphisms of P  and v(A) is the size |A| of the class A ^ P / G .  □

Now consider the subgroup G of permutations of X  that are color pre
serving, that is, if a e  G, a(Xi )  Q X t, for each 1 £ i ^ M .  Clearly, G induces 
a subgroup of the group of automorphisms of 2X , which we will still call G. 
It is immediate to check that the quotient poset 2x /G  with the canonical 
weight function as described in Theorem 2.2 is isomorphic to the weighted 
poset

P  =  ( { 0 ,. . .  ,n i }  x ■■■ x { 0 , . . .  , n M},v),

where v ( ( i i , . . .  , iM)) = friM
\ ím

Now, since 2X is LYM, by Theorem 2.2 (we are using the ‘easy direction’), 
P  is LYM. Hence, if 7 C {0 ,. . .  , n{\  x • ■ ■ x { 0 , . . . ,  n « }  is an antichain, the 
LYM inequality ensures that

E v({i l, .  . . , i M))
V(Pr({ii,...,iM)))

< 1.

Finally, the stated inequality follows from

V(Pr((ii,...,iM))) £  (:)
X \  H---- b —l lH-----b

0 ̂ Xi T̂li
f n \ - \ --------- h n M \

\ i \  +  ■ ■ ■ +ÍM )
□

3. The proof of Theorem 1.2

A weighted poset (P , v) is said to be weight-log-concave if the sequence 
{n(Pfc)} is log-concave. We recall the following Product Theorem due to 
Harper [6].

T h e o r e m  3.1. If (Pi ,v i)  and (7*2, U2 ) are weight-log-concave and satisfy 
the LY M  inequality, then (P\ x P2 ,v\V2) also satisfies the LYM inequality and 
is weight-log-concave. □

By induction we obtain the following
COROLLARY 3.2. If ( P i ,m ) , . . . ,  (Pm , v m ) are weight-log-concave and 

satisfy the LYM inequality, then {P\ x • • • x Pm , v 1 • • •% ) also satisfies the 
LYM inequality and is weight-log-concave. □

To prove Theorem 1.2 we consider the weighted posets (Ci, Npx) , . . . ,  
(Cm , NpM) and apply the corollary. The inequality in Theorem 1.2 is just 
the LYM inequality for (C\ x ■ • • x Cm , Npi ■ • • AbpM). □
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AN ORLICZ-PETTIS THEOREM WITH APPLICATIONS
TO .A-SPACES

J. WU and R. LI

1. Introduction

Let (E , r) be a Hausdorff locally convex topological vector space (les) 
with continuous dual E'. Let E s (E b) be the space of all sequentially con
tinuous (bounded) linear functionals defined on E. If E  and F  are a pair of 
vector spaces in duality, let ct(E ,F ) ( t (E , F ) , ß (E , F )) be the weak topology 
(Mackey topology, strong topology) on E  from this duality. If X  and Y  are 
topological vector spaces, let L ( X ,Y ) (L S(X ,Y ) ,  B (X ,Y) )  be the space of 
all continuous (sequentially continuous, bounded) linear operators from X  
into Y.

A series Y2 xj  in { ^ i T) is said to be subseries convergent if for each
j

nonempty A =  { j \  <  j 2 <  . ■ ■ } £  N there exists an x<\ G E  such that ^2 xjk
k

is r-convergent to a: a - The classical Orlicz-Pettis theorem states that if 
the series Y2xj  is subseries a(E, E')-convergent, then Y2xj 1S also sub- 

j 3
series t (E , J5')-convergent ([3], [7]). In general, the series Y2xj  sub-

3
series a (E , LJ')-convergent does not imply it must also be subseries ß(E, E')- 
convergent ([3]).

A sequence {xk}  in (E , t) is said to be r — /C-convergent if each sub
sequence of {xk} has a subsequence {x nic} such that the series Y2xnk is

k
r-convergent to an element of E  ([1], §3). A r — /C-convergent sequence is r- 
convergent to 0, the converse does not hold, except in complete metric linear 
spaces ([1], §3). A subset B  of (E , t ) is said to be r —/C-bounded if when
ever {xk} Q B  and { t*,} is a scalar sequence converging to 0, the sequence 
{ tkXk} is t  —/C-convergent ([1], §3). A r — /C-bounded set is r-bounded but, 
in general, the converse does not hold ([1], §3).

(E , r) is said to be an .4-space if every r-bounded subset of (E, r) is t —/C- 
bounded ([4], Definition 3). Li Ronglu and Swartz in ([4], Proposition 5)

1991 Mathematics Subject Classification. Primary 46A03.
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proved that each sequentially complete locally convex space is an „4-space. 
But, in general, the converse does not hold. Locally convex spaces which are 
„4-spaces have been shown to enjoy many important properties, particular 
with respect to the Uniform Bounded Principle (UBP) and hypocontinuity 
for bilinear operators ([2], [4], [11]). „4-spaces seem to be a very natural 
class of spaces for which UBP holds. In this paper, at first, we prove an 
interesting result (Theorem 3) which can be viewed as an Orlicz-Pettis The
orem for ^-multiplier convergent series (0 < p  E 1). This result shows that 
an Zp-multiplier convergent series (0 < p ^  1) is invariant with respect to all 
admissible topologies. From it we can show that „4-spaces under any ad
missible topology are still „4-spaces. That is, /^-multiplier convergent series 
(0 <  p E 1) and „4-spaces are invariant with respect to all admissible topolo
gies. Note that these kinds of full-invariants in locally convex spaces theory 
are rare, except co-multiplier convergent series, /^-multiplier convergent se
ries (1 E p <  +oo) and some trivial facts [6]. Moreover, we also show that for 
each E  E lcs, then (Es, ß ( E s , E))  is an 4-space. This implies that from each 
E € lcs we can obtain a large supply of 4-spaces.

2. An Orlicz-Pettis Theorem for /p-rac series

Let E  E lcs and Y l xj  be a series in E. If for each { t j}  Elp (0 < p  E 1)
j

the series ]T) tjXj converges in E, then the series ]T] Xj is said to be lp- 
i  j

multiplier convergent (/p-mc). Recently, Li and Swartz in [5] gave a few 
characterizations of Banach-Mackey spaces ([10] 10.4.3); this result is related 
to / 1-mc as below.

T heorem  1. For E e lcs, the following conditions are equivalent.
(1) E  is Banach-Mackey space.
(2) If {x'j}QE' is a (E ', E)-bounded and { t j } E l l , then ^ E s.

j
(3) If {x'j} Q E' is a ( E ', E)-bounded and {t j }  E l l , then ^  tjX'■ E E b.

j
(4) If {x'A Q E' is a (E ' , E)-Cauchy, then lima/ E E b.

j  j  j

Now, we prove an Orlicz-Pettis Theorem for lp-me series (0 <  p ^ 1)
E xi-
j

One of the tools used in the proofs below is the matrix theorem of Antosik 
and Mikusinski.

T heorem  2 (Antosik-Mikusinski). Let X  be a topological vector space 
and Xij E X  for i, j  E N. If

(I) lim x^ =  Xj exists for every j  and
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(II) for every increasing sequence of positive integers {rnj} there is a sub

sequence {nj} of {mj}  such that the sequence < Y l x i converges,

then Yunxij =  Xj uniformly for j  E N . In particular, liinxjj =  0.i i

A matrix M  =  [Xy] satisfying conditions (I) and (II) is called a /C-matrix. 
For proofs of more general forms of Theorem 2 see ([1], [4], [8]).

T heorem 3. Let E E lcs and Y l xj be a series in E and let 0 < p ^ l .
j

Then for every { t j }  E lp the series ^  tjXj is a ( E , E')-convergent if and only
j

if for every { t j } E l p, the series )T) tjXj is ß(E,  E')-convergent.
j

P roof. <= is trivial.
=> At first, we show that {xj }  is ß(E,  .©'(-bounded. Indeed, for ev

ery cr(E', ©(-bounded subset B of E ', it suffices to show that {(xj,x'j)} is 
bounded whenever {x'-} Q B. Let tj > 0, lim tj =  0. Consider the matrix 
M  =  [(\/tjXj, s/Tix'j)}. Since {x[} is <r(©', ©(-bounded, the columns of M  
converge to 0. If {rnj} is an increasing sequence of positive integers, there
is a subsequence {rij} of {rrij} such that € lp (0 < p ^  1). It is not
difficult to see that the series \Jt-nj xn3 is cr(E, E')-convergent to some

x E E. So, (^2 \f~trijxnj, \ftix'ij — s/U{x i x 'i) 0) and from Theorem 2, it

follows that tj (xj,x'j) —> 0 so {{xj, x'j)} is bounded. This shows that {xj }  
is ß(E,  ©'(-bounded. Next, we show that for every { t j}  E lp (0 < p ^  1), the 
series tjXj is ß(E,  A'(-convergent. Since { t j }  E lp ( 0 < p ^ l ) ,  we must 

3
have { t j}  G l1. Thus, we may suppose that ]© \tj\ ^ 1 and ^  tjXj is cr(E, ©')-

3 3
n

convergent to x E E. Let Sn =  Y{l l j xji then {Sn} is cr(©, E ')-convergent to x.
3

We prove that {S„} is also /?(©, A'(-convergent to x. For every neighbour
hood U of 0 in {E, ß(E,  E')) there is a bounded subset A of [E',a{E', E)) 
such that A0 Q U  and A0 is er(©, ©'(-closed and balanced. Here A0 is the 
polar of A.

Since {x j}  is ß(E, E '(-bounded and A is a(E',  ©(-bounded, there is an 
M  >  0 such that

Sup{|(xj,y)  |: j G N , y €  A} ^ M.

Note that { t j }  E l1, there is no E N such that whenever m ,n  G N and
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m
m > n ^ no we have ^  \ t j \M  ^ 1. Thus, we have

j= n

sup E
j = n

tjxj-> y :y G^ r  = X ^ ' I M  = L

That is
m

S r n ~  S n - i = J 2  l 3 X 3 £ A ° ^ U .
j - n

Since A 0 is a(E, E')-c\osed and balanced and {á^ } is a(E,E')-convergent 
to x, letting m —> oo we have x — Sn- 1 G A° QU.  This shows that whenever 
n ^ no we have Sn- \  — x G U. It follows that Y2 t j xj  is ß(E,  E')-convergent

From Theorem 3 we can obtain a few important corollaries as follows.

C o ro lla ry  4. Let (E , F ) be a dual pair. Then A ^ E  is o(E, F) — /C- 
bounded set if and only if A is ß(E,  F ) — K,-bounded set.

This corollary improves Theorem 3.3.10 of [9].

C o ro lla ry  5. Let (E , F ) be a dual pair and Y l xj  be a series in E.
j

Then for every { tj}  G lp (0 <  p  ^ 1) the series ^  tjXj is cr(E, F)-convergent
j

if and only if for any topology t  on E admissible with respect to (E , F ), the 
series ^  tjXj is r -convergent for every { t j }  G lp (0 < p  ^ 1). 

j

C o ro lla ry  6. Let (E ,F)  be a dual pair. Then all topologies on E  ad
missible with respect to (E, F ) have the same K-bounded sets. In particular, 
if (E, t ) is an A-space, then E is also an A-space for any topology on E  
admissible with respect to {E,E')-

It follows from Corollary 6 that if (E , r) is an „4-space, then (E, ß(E,  E ')) 
is also an „4-space. But, in general, the converse does not hold.

E x a m pl e  7. Let coo be the space of all sequences which are eventually 0 
and r be the Sup-norm. Then (coo, t)/ =  Z1. Consider the dual pair (Z^coo)- 
(Z1, ß ( l l , coo)) =  (Z1, || • ||i) is a Banach space and, therefore, is an „4-space. 
But (Z1, <t(Z1, coo)) is not an „4-space. In fact, if e* is the sequence with a 1 
in the Arth coordinate and 0 elsewhere, then {kek} Q Z1 is cr(Z1, coo)-bounded, 
but {kek}  is not ß{ß ,  coo)-bounded, it follows from Corollary 6 that {kek} 
is not a ( l l , cqo) — /C-bounded.
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3. Properties of .4-spaces

It follows from Corollary 6 that if (E , r) is an .4-space, then (E , r) is 
a Banach-Mackey space ([10], 10.4.3, [9], Theorem 3.3.12). In [5], Li and 
Swartz gave several characterizations of Banach-Mackey spaces; from them 
we can obtain a few basic properties of .4-spaces as follows.

T h e o r e m  1'. If ( E , t ) is an A-space, then we have
(2') If {a:'•} Q E' is a(E' , E)-bounded and {t j }  G lp (0 < p Ú 1), then 

tjx'j G E s.
i

(3') If {x'j} Q E' is a(E1, E)-bounded and {t j }  G lp (0 < p g  1), then
Z t j x ' j t E » .
3

(4) If {x'A g E' is a{E' , E)-Cauchy, then lima/- G Eb.j j j

THEOREM 8 . If (E , t ) is an A-space, then we have (see [5], Theorems 
21 and 22)

(5) For every locally convex space F, B ((E, ß(E, E')), F) g  B{E ,  F).
(6) For every locally convex space F, L {(E, ß { E , E ' ) ) , F ) g B { E , F ) .
(7) (E , ß ( E , E ' ) ) ' g E b.
(8) E " g { E ' )b.
(9) For every locally convex space F and every pointwise bounded family

T g L s{E, F) is uniformly bounded on bounded subsets of E.
(10) For every locally convex space F if {Tt} g Ls (E , F) and lirn T^x — Tx

k
exists for every x G E, then T  G B(E,  F).

As the following theorem shows from every locally convex space we can 
obtain a large supply of M-spaces.

T h e o r e m  9. Let (E , r ) be a locally convex space, then (Es, ß { E s , E)) is 
an A-space.

PROOF. Consider the dual pair (E, E s). Then we have (E , a { E , E S)) '=ES 
([10], Theorem 8.2.12) and (E , o(E, E s))s =  E s. In fact, let /  € (E, a(E,  E s))s 
and xn -> 0 in (E , t ). Then for every g G E s, g(xn) 0. Thus xn —> 0 
in [E , g {E ,E s]) and hence, f ( x n)->  0. This shows that /  G E s. That is, 
{E,a(E, E s))s =  E s. Thus, (E ,a (E ,E s)) is a Mazur space ([10], 8.6.3). It 
follows from ([10], 8.6.6) that {Es, ß(E s, E)) is complete. By ([4], Proposi
tion 5), {Es, ß (E s, E)) is an .4-space.

Let (Es,ß (E s, E)Y =  E sl. Consider the dual pair ES, E S>. Then from 
Corollary 6 and Theorem 9 we know that for any topology T  on E s admissible 
with respect to (E s, E sl), (E S, T ) is an .4-space. This shows that from every 
locally convex space (E . r ), we can obtain a large supply of .4-spaces. See 
also Theorem 3.4.8 of [9].
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From ([9], Theorem 3.3.12) and ([10], Theorem 10.4.12) we have imme
diately

T heorem 10. If (E ,r )  is a quasi-barrelled A-space, then (E , t ) is bar
relled. In particular, a bornological or metric A-space is barrelled.

R E F E R E N C E S

[1] A n t o sik , P . and Swartz, C ., Matrix methods in analysis, L e c tu re  N o te s  in M a th e 
m a tic s , 1113, S p r in g e r -V erlag , B erlin  -  N ew  Y o rk , 1985. MR 8 7 b :4 6 0 7 9

[2] A n t o s ik , P . and Swartz , C ., B o u n d ed n ess  a n d  c o n tin u ity  for b ilin ea r o p e ra to rs ,  Sta
dia Sei. Math. Hungar. 2 9  (1994), 3 8 7 -3 9 5 . MR 95 m :4 7 0 0 1

[3] D ie r o l f , P .,  T h e o re m s  o f  t h e  O r l ic z -P e t t is - ty p e  fo r lo c a lly  convex  spaces, Manuscrip-
ta Math. 2 0  (1 9 7 7 ), 7 3 -9 4 . MR 55  # 1 0 1 8

[4] L i, R . and  Swartz, C ., S p a c e s  for w hich  th e  u n ifo rm  b o u n d e d n e ss  p rin c ip le  h o ld s ,
Studia Sei. Math. Hungar. 2 7  (1992), 3 7 9 -3 8 4 . MR 9 4 h :46015

[5] L i, R . and Swartz, C ., C h a ra c te r iz a t io n s  o f B a n a c h -M a c k e y  spaces, Chinese J. Math.
2 4  (1996), 1 9 9 -2 1 0 . MR 97L 46008

[6] L i, R . and C ui, C ., A n  in v a r ia n t  w ith  re sp e c t to  all a d m iss ib le  (E, .E ^ -p o la r  to p o lo g ie s ,
Chinese Ann. Math. 1 9 A  (1998), 2 8 9 -2 9 4 .

[7] M c A rthur , C. W ., O n  a  th e o r e m  o f O rlicz a n d  P e t t i s ,  Pacific J. Math. 2 2  (1 9 6 7 ),
297-302 . MR 3 5  # 4 7 0 2

[8] Sw artz , C ., An introduction to functional analysis, M o n o g rap h s  a n d  te x tb o o k s  in
p u re  a n d  a p p lie d  m a th e m a tic s ,  157, M a rc e l D ek k e r, N ew  Y ork , 1992. MR 
9 3 c : 46002

[9] Sw artz , C ., Infinite matrices and the gliding hump, W o rld  S cientific  P u b l.,  S in g a p o re ,
1996. MR 9 8 b :  46002

[101 W ilansky , A ., Modern methods in topoloqical vector spaces, M cG raw -H ill, N ew  Y o rk , 
1978. MR 8 1 d :4 6 0 0 1

[11] W u , J .  and  Li, R ., H y p o c o n tin u i ty  a n d  u n ifo rm  b o u n d e d n e s s  for b ilin ea r m a p s , Studia 
Sei. Math. Hungar. 3 5  (1999), 133-138 .

(Received February 26, 1997)

J. W u
d e p a r t m e n t  o f  m a t h e m a t i c s  
d a q i n g  p e t r o l e u m  i n s t i t u t e
ANDA 151400
p e o p l e ’s r e p u b l i c  o f  c h in a  

Present address: 

d e p a r t m e n t  o f  m a t h e m a t i c s
ZHE JIANG UNIVERSITY 
HANG ZHOU 310 027 
PEOPLE’S REPUBLIC OF CHINA

R. Li
DEPARTMENT OF MATHEMATICS 
HARBIN INSTITUTE OF TECHNOLOGY 
HARBIN 150006
PEOPLE’S REPUBLIC OF CHINA



Studia Scientiarum Mathematicarum Hungarica 35 (1999), 359-313

ON MIRON’S GEOMETRY IN Osc3M.  II

IRENA COMIC

A b strac t

R. Miron and Gh. Atanasiu in [15], [16], [17] studied the geometry of Osck M. Among 
many various problems which were solved, they introduced the adapted basis, the d- 
connection and gave its curvature theory. Different structures as almost product structure, 
metric structure were determined.

Here the attention on E = Osc3M will be restricted especially on variational problem 
and Zermello’s conditions, but the transformation group is slightly different from that used 
in [15]. It will result in different theory.

1. Adapted basis in T(Osc3M)  and T*(Osc3M)

Let E  =  Osc3M  be a 4n-dimensional C^-manifold. In some local chart 
([/,(p) some point u £  E  has coordinates

(xa, y la, y2a, y3a) =  (y0a, y la, y 2\  y3a) =  (yaa),

where xa =  y 0a and

a , b , c , d , e , . . .  = 1 , 2 , . . . ,  n, a , ß , j , S , K , . . .  = 0 ,1 ,2 ,3 .

If in some other chart (U1, ip') the point u € E  has coordinates 
(xa ,y la ,y 2a , y 3a ), then in U DU 1 the allowed coordinate transformations 
are given by

( 1 . 1)

( a ) xa>=  xa ( r r1, x ‘2, . . . , U/ t

(b)
dxa> la dy0a’

y ~ d x « y  : dyOa J

( c )
2a' dyW , a d y la>

y dy0a ^ dy\a -

( d )
3a' dy2a‘ l a dy2al

y dy9a y dyla - d y

2a'
2a V~

d y 2 .,3a

1991 Mathematics Subject Classification. Primary 53B25; Secondary 53B40. 
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Some nice examples of the space E  can be obtained if the points (xa) 6 M  
(dim M  =  n) are considered as the points of the curve xa =  xa(t) and y aa, 
a  =  1, 2, 3 are defined by

la dxa 2a =  cfx^ dy^ 3a =  d V  =  dy2a
 ̂ dt ’  ̂ dt2 dt ’ df3 dt

M  is the base manifold and (xa)eM  is the projection of (xa, y la: y 2a, y 3a)
1 xa

E E  on M .  In [15], [16] yaa =  — ^ , a  =  1 , . . .  , k and the transformations 
(1.1) have different form. If in UHU'  the equation

xa —x a (xl (t), x2(t), . . . ,  xn (t,))

is valid, then it is easy to see that

yla' =  ^  =  ylaV , y la),

( 1.2 ) ,2a'

V3a'

dt
dyw

dt
2a'dy

dt

— y2a (xa, y la, y2a),
=  y3a\ x a, y la, y 2a, y 3a),

satisfy (1.1b), (1.1c) and (1. Id), respectively, and the explicit form of (1.1) 
is the following:

y

x a = x a ( x1 , x 2, , x n) 

la '  _ dxa'
d xa V

( ° )  2qí d2x a' la 16 dxa' 2a
y = ^r^y  V + — y ,

,3a'

dxad x b ‘ 
d3x a'

d xadxbd x <

dxa

y lay V c +  3
d2x a' 1o .26

d x ad x by y  +
dxa
dxa

.3 a

T heorem 1.1. The transformations determined by (1.1) form a group.

W ith determination of the group of allowable coordinate transformations 
the first step to construction of some geometry is made. The second impor
tant step is the construction of the adapted basis in T(E ), which depends 
on the choice of the coefficients of the nonlinear connections, here denoted 
by N  and M.

The following abbreviations

da
dy°

a  =  1,2, 3, and da =  <90a =
d

dxa
d

dy0a
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will be used. From (1.3) it follows

do ay0a' =  01 ay W =  d2ay2a' =  d3ar / a' = dx

(1.4)
d0ay la' =  \ d lay 2a' =  ~ d 2ay 3a'

d3xa'

d K
dt

dddg _  „  2a' _ ] _ ß  3a' 
dt 0aJ 3 0laV d x ad x bd x c 

dCa O 3 a' n a'
~ d T  ®"‘y = ° ‘ ■

— — Aaa i

d2xa'
dxadxby lb =  B aa ,

A  + 7
d2xa', l b nilc  , u  x  „.26_/-ia !

^a ?dxadxby

The natural basis D of T(E)  is

( l -^ )  B  { 0 O a >  0 1 a i  0 2 a  > 0 3 a }  =  { 0 a a } •

The elements of B  with respect to (1.1) are not transformed as d-tensors. 
They satisfy the following relations:

doa =  (doay 0a )d o a '+ (d o ay Ul ) d i a' + ( d o ay 2a )d 2a'+ { d o ay ia  ) d 3a'

dia= (diayia')dw +(diay2a')d2a'+(diay 3a')d3a>

02a =  (0 2 a y 2a')0 2 a '+ (0 2 a y 3a')0 3 a '
( 1. 6)

03« = (03a2/3a')03a'.
The natural basis B* of T*(E) is

(1-7) B * =  { d x \  dy la,dy2a, dy3a} =  {dyaa}.

The elements of B* with respect to (1.1) are transformed in the following 
way (see (1-2)):

dxa
dxa' =  i n r ^ “ ^  dy0a' = (doay0a' )dyOa' 'i ,0a

dxa
(1.8) d.yw  =  (d0ay la')dy0a +  (dlay W )dyla

dy2a> =  (doay2a')dy0a +  (diay2a' )dyla +  (d2ay 2a')dy2a 

dy3a' =  (d0ay 3a')dy0a +  (diay3a')dyla +  (d2ay3a')dy2a +  (d3ay 3a')dy3a. 
The adapted basis B* of T*{E) is given by

(1.9) 
where

( 1. 10)

B *  =  {Sy0a , S y la , 6 y 2a , S y 3a},

S y 0a =  d x a =  d y 0a

S y la =  d y la +  M ^ d y ob

6 y 2a =  d y 2a +  M 2£ d y lb +  M 2£ d y 0b

S y 3a =  d y 3a +  M ^ d y 2b +  M 3£ d y lb +  M ‘̂ d y ob.
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T h e o r e m  1.2. The necessary and sufficient conditions that őyaa are 
transformed as d-tensor field, i.e.

6 y aa =

are the following equations:

dxa
dxa

5yaa, a  =  0 ,1 ,2 ,3 ,

( 1 . 11 )

(a)

(b)

(c)
( d )

(e)

(f)

M ^ d lay W =  M ^ d obyob' +  doby la'

M%d2ay2a' =  M ^ d lby lc' +  dlby 2a'
M^bd2ay 2a — doby°L +  M 2f, doby lc +  doby2a
M%d:iay:W =  M % d 2by2c' +  d2by :W 

M ^ d 3ay3a' =  Mff!dlby lc' +  d lby2c' +  dlby3a'
M ^ d 3ay 3a' =  M $ d oby0c' +  doby lc' + M %  doby2c'+ dQby Za'.

From (1.11) and (1.4) it follows that (1.11) is a system in which equations 
of second, third and fourth order appeared, so there are infinitely many 
functions

M &  =  M ^ (x ,  y1), M 2b =  Mfffix, y 1), M236° =  M%(x,  y1),
(1.12) M q£ — M q̂ (x , y1, y2), M ft  =  M f t ( x , y \ y 2),

M $  =  M j £ ( x , y \ v i , y 3),

which are the solutions of (1.11). The adapted basis B* ((1.9)) depends on 
the choice of M .

Let us denote the adapted basis of T(E)  by B , where

(1.13) 

and

(1.14)

B  — {S0a, 2̂ai ^3a} — {^a«}:

<5o„ =  d o a -N & d u , -N 2bd2b- N 3bd3b, 
Sia= dla- N 2bd2b- N ? bd3b,
S2a=  d2a- N 3bd36,
d3a =  d3a.

T h e o r e m  1.3. The necessary and sufficient conditions that B  ((1.13)) 
he dual to B* ((1.9)) (when B  ((1.5)) is dual to B* ((1.7))), i.e.

6aa,Syßb)  =  ö X ,
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are the following relations:

N t i  =  M l ba

(1.15)

/V26 — M2b — M 2b /Vlc -iv0a — M 0a M lc I'l0a
3b  a t I c  
lc iV0aN^L =  Mfa 

N 't  =  M 2b

jyrZb twT c jyr?>b nj2c
iW,,.  _ÍVn„ ^ 2 c l y 0a

pj3b _  jirSb _  ^rZb pj2c 
J v l a  — lvlla •i w 2 c - 'Vl a  

•36 
2a-N 't  =  M?b

T heorem 1.4. The necessary and sufficient conditions that 6aa with 
respect to (1.1) are transformed as d-tensors, i.e.

(1.16) <W =

are the following formulae:

dxa
dx°t<50 a  = 0 ,1 ,2 ,3 ,

N^doaV™  = N 01Zdlcy LD- d 0ay,0a' 1 c< .16' .lb'

(1.17)

(1.18)

N02b''doay0a' =  N 2fd2cy 2b’ +  N0t d lcy 2b’ -  d0ay2b'

N 30ba'doay0a' =  N tad,cy3b' +  N 2cad2cyM +  A & cy36' -  d0ay 3b' 
Nta'diay W =  N 2cad2cy 2b' -  d [ay 2b'
N?l,dUly Xa' =  N f cad3cy3b' +  N 2cad2cyM -  dlay3b'

N 32b''d2ay2al =  NfadzbyM -  d2ay3b'.

From (1.13) and (1.14) it follows

a =  <̂ 3a

d2a — +  M2â 3b
d \  a  =  <^ ia  +  M 2 b ö 2 b +  M  \ b S;ib

do a =  Soa +  M l b5lb +  M 2b62b +  M*b63b.

T heorem 1.5. With respect to the coordinate transformation (1.3) the 
Liouville vector fields have the form

r (l) = l / laŐ3a,
(1.19) r (2) = í / laÖ2a +  3 l /aŐ3a)2 a ■

r (3) = y ladía + 2y2ad2a + 3yiadí2a; ,3a ; iá

in the geometry where Miron’s transformation group is used ([15], [16], 
[17]) r^) and are the same as here, but T(2) =  y lad2a + 2y2ad3a.
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The vector fields T(Q), a  — 1,2, 3 given by (1.19) in the basis B  has the 
form

r (i) =  z fa53a,
(1 .2 0 ) r (2)= z l aó2a +  z las3a,

r  (3) =  z \a 5\a + Zßa02a +  z \a 5̂ a.

The relation between the components is given by:

z \a =  y l \  z l a =  y l\  z la =  3y2a +  y lbM%
(1.21) z\ a =  y la, z l a =  2y2a +  y lbMlZ

zla =  3 y3a +  2 y 2bM$f + y lbM?£.

The proof is obtained by (1.18). All z from (1.21) with respect to (1.3) 
are transformed as tensors of type (1,0).

2. The adapted basis which is comprehensive with J

It is obvious that the introduced transformation group given by (1.1) 
instead of that introduced by R. Miron [16], [17] results a new adapted basis 
B  ((1.13)) and B* ((1.9)). These bases are dual to each other, their elements 
transform as d-vector (or covector) fields, but they are not convenient for 
the presentation of the almost tangent structure J, for which J4 =  0 and 
JTh =  Tv/,, JT\\ =  T\'2, JT v2 =  Ty3, JTy3 =  0. To obtain such a basis we 
take:

6y0a =  dy0a =  dxa 
6yla =  dy la +  M ^ d y 0b

(2-1) Sy2a =  ~dy2a +  M ftd y u  +  M 2£dyob

Sy3a =  id?/3“ +  l-M % d y 2b +  M f t d y la +  M ^ d y 0b.

T h e o r e m  2.1. The necessary and sufficient conditions that 5yaa (a =  
0,1,2 ,3)  given by (2.1) are transformed as d-tensor fields, are the following



ON MIRON’S GEOMETRY 365

equations:

( 2 . 2)

M ^ d 0ay 0a' =  M $ d obyob' +  doby w  

M f td 2ay 2a' = M $ d lby lb' +  \ d lby 2a'

M ^ d , ay :W =  M $ d 2by2b' +  l- d 2by 3a'

M $b d 2 ay 2a' =  M ^ d o by ob' +  M t f d o b V 1" +  \ d üby 2a' 

M ? Z d 3ay 3a' =  M $ d lby w  +  d lby 2b' + h ) {by :W

M 3? d 3ay 3a' =  M $ d o by ob' +  d oby W  + \ m 3̂  d 0by 2b' +  ^ ,3 a '

From (1.4) it follows that M0’“, M 2£ and M^b have the same law of 
transformation, also M ^L and A4,)" transform in the same way. This fact 
allows us to take

(2.3) M t i  =  M 2Z =  M%, M 2Z =  Mft.

If (2.3) is valid the adapted basis

(2.4) B'* =  {ó'y0a, S'yla, S'y2a, ő'y3a} 

is given by

S'y0a =  dxa =  dy0a 
S 'y la =  d y la +  M ^ d y ob

(2.5) giy 2 a = 1 dy2a + M^ dy^  + M ^ d y ° b

S 'y 3a =  \ d y 3a +  l- M ^ d y 2b +  M 2£dylb + M 3£dy0b. 

THEOREM 2.2 . The structure J defined on T*(E) by

J(dy3a) — 3dy2a, J(dy2a) =  2dyla, 
J(dyla) =  dy0a, J(dy0a) =  0

is a tensor field of type (1.1), and satisfies the relation J4 = 0 . 

PROOF. From (2.6) and (2.5) it follows

J(6'y3a) =  0'y2a, J(S'y2a) =  5'yla, 
J(6'yla) =  6'y0a, J(S'y0a) =  0.

(2.7)
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Let us denote by
£ '  =  { « a A , 4 J

the adapted basis of T(E)  given by

in „ =  dt

(2.8)

J0a 

i'l a =
Í2a =  
Í3a =

6 a N^badlb -  2 N 2bd2b-6N ™ d3bj 3 b  •

dla - 2 N ^ bd2b- SN2bd3b 

2d2a-6N&d3b 
6d3a.

T heorem  2.3. The adapted basis B' and B'* are dual to each other if

(2.9) n & =  m £ - m £ n £
/w-36 , 
i v 0a

Af36 _  M2b Allc — M lb /V2c1V10a M 0c iV0a -M 0 c iV0a-

T heorem  2.4. 77ie elements of basis B' given by (2.9) are transformed 
as d-tensor fields if

( 2 . 10)

^oa'őoay0“ =  Nfcdlcy lb + d 0ay 

N ™ d 0ay0a' =  Nfcd2cy 2b' 1 1 ” lca - 26'

3 6 '  n  „ . 0 a ' _ , v r 3 c o  „ , 3 6 '  , * j \ r 2 c a  „ 3 6 '  , 1 a i - I c «  „ . 3 6 '  U  „ . 3 6 'N ^ d 0alf ,a = Nffd3cy M +  - N f cad2cy M +  - N £ d lcy :d0ay

From (2.6), (2.7) and (2.8) it follows:

(2.11) J(d0a) = d  la, J (3 la) =  252a, J(d2a) = 3d3a, J(d3a)= 0 ,
(2.12) J ( i ( J  =  i'la, J(ő[a) = ó'2a, J(S'2a) = S'3a, J(S'3a)=  0.

The tensor J  in the basis 5  and .B* has the form:
(2.13) J =  dy06 JqY ® ő la +  dy16 J2? ® Ö2ű +  dy2b ® 03a, 
where

T l a   ra  r 2 a  o r a  r3 a    q r a
J 06 — °bi J \b ~ zobi J2b — 00b)

or in the matrix form
' 0 0 0 O' dob

J  =  [dy0bdylbdy2bdy3b] 1
0

0
2

0
0

0
0

d\ 6 
Ő26

0 0 3 0 .d'ib.
The tensor J in the basis B' and B'* determined by (2.8) and (2.4) has 

the form

(2.14) J =  ö'y0a ® S[a +  6'yla ® S'2a +  S’y 2a ® <5'a.
It is easy to see that from (2.14) follow (2.6) and (2.12), and from (2.15) 

follow (2.7) and (2.13).
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3. Variational problem of the Lagrangian of order three

D e f in it io n  3.1. A differentiable Lagrangian of order three on a C°°- 
manifold E  is a function L  : E  —» R  differentiable on i?(rank [ y la ] =  1) and 
continuous in the points of E ,  where y la are equal to zero.

From this definition it follows that

(3.1) 9ab{x,y\ ■ ■ ■ ,V3) =  7,d3ad3bL2

is a symmetric d-tensor field of type (0,2) on E .  We say that the Lagrangian 
L  is regular if rank [gab] =  n  on E .

D e f in it io n  3.2. We call a Lagrange space of order three a pair L ^ n =  
(E , L ) ,  where L  is a regular C^-Lagrangian of order 3 and the d-tensor field 
gab from (3.1) has a constant signature on E .

If the metric tensor G  on T ( E )  is defined by:

G = 9abty0a ® Syob +  gab6yla ® 6ylb +  gabSy2a ® őy2b +  gabőy3a ® Sy3b,

then I ' u . T y x, T y 2 . T y 3 with respect to G  are mutually orthogonal to each 
other.

Let L  : E  —» R  be a differentiable Lagrangian of order three and c : t E 
[0,1] —> (xa(t))da € M  a smooth parametrized curve, such that ím e C  U, 
U being the domain of a local chart of the differentiable manifold M.

The extension c* (of c) to E  is given by

c* : t e  [0,1] -^ x a{t)da +  d\xa{t)d\a +  d2xa(t)d2a + dfxa(t)d3a,

where the notations:

d? =  — , y aa =  d?xa, a  =  1,2, 3 
1 dta y 1

are used.

The integral of the action of the Lagrangian L along the curve c* is given 
by

l l

7 ( c * )  =  J  L(x ,d lt x,dtX,d3x)dt =  j  L (x ,yx, y ‘2, y 3)dt. 
o o

(3.2)
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We consider the curves c* on E: 

c* : t £  [0,1] —>

-> (*“(*) +  eva(t))doa +  (y la(t) +  ev la(t))dla +  (y2a(t) +  ev2a(t))d2a 

+  (y3n(i) + £ v 3a(t))d3a,

where
va(t) =  va(x1( t ) , . . . , x n(t)), 

yaa =  d f x a, vaa =  d<j*va, a  =  1,2, 3,

va(f) are C^-functions along c* and e is a real number sufficiently small in 
absolute value, such that

x a +  eva e U c M .

We assume that

(3.3) ua(0) =  va(l) =  0, d?va(0) =  d?va{l) =  0, a  =  1,2.

The integral of action of Lagrangian L along c* is

l
(3.4) 7(c») =  / L(x +  e v , d\{x  +  ev),d2(x +  ev),d%{x +  ev))dt.

A necessary condition that JA») be an extremal value for J(c.) is

(3.5)
dl.(<4 )

cfe
=  0.

£  =  0

get
Using the regularity, the operators — and / can be permutated, i.e. we

de

d l  1
— = I — L(x +  £v ,d l(x  +  £v) ,d2(x +  £v) ,df(x +  ev))dt

de
(3.6)

I

= J [(d0aL)va +  (dlaL)d\va +  (d2aL)d2t va +  (,d3aL)d3t va}dt.

As

(dlaL)d]va =  dlt ((dlaL)va) -  (,dlt dlaL)va,
(d2aL)d2va =  d\((d2aL)d \va) -  d\{{d\d2aL)va) +  (d2d2aL)va
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{d3aL)d3va =  d\{{d3aL)d2v a) -  d( ((djd3aL)dJva)
+  d\{{d2t d3aL)va) - { d \ d 3aL)va 

the substitution of the above equations into (3.6) yields

i

~ ^ L=  )  {(doaL -  d \d laL +  d2d2aL -  d\d3aL)va

(3.7) 0
+  d\ [{d\aL -  d\d2aL +  d2d3aL)va

+  (d2aL -  d\d3aL)d\va +  d3aLd2va]}dt.

According to (3.3) the last part of (3.7) vanishes and we obtain

l
=  f  (d0aL -  d\dlaL +  d2d2aL -  d\d3aL)vadt =  0. 

o

As va(t) are arbitrary functions we get
T heorem 3.1. In order that the integral of action I{c*) is an extremal 

value for the functionals I{c*), it is necessary that the following Euler- 
Lagrange equations hold:

(3.8) E°a(L) =  daL -  d\dlaL +  d2d2aL -  d3d3aL =  0,

(3.9) y
l a  . dxa

~ d t '
y

2 a d2xa 
~dt2~’ y

3a

Using the relation (1.4) we get

(3.10) E°a =  (daxa,) K -

d3xa
~dt*~‘

THEOREM 3.2. Equation (3.6) is invariant with respect to the change of 
coordinates of type (1.3) if and only if the functions va(x) are transformed 
as d-tensors, i.e. if va =  (daxa )va.

P r o o f . If we introduce the notations:

5°t v a =  v \  5 \ v a =  d \ v a +  M l t v \

(3.11) S2va =  d2va +  M 2ffd\ vb +  M 2tfvb,
S3v3 =  d3va +  M:jfd2vb +  M 3f d \ v b +  M 3f v b,

and use (1.8), then the expression in (3.6) in the basis B has the form:

(3 12) +  d̂ltV<l d̂la +  (d< 2 a  +  (d3t va)d3a)L
=  [«%„ +  (Slt va)Sla +  (S2va)S2a +  (S3va)53a}L.
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If v a(t) under the coordinate transformation (1.3) transforms as d-vector 
field, i.e.

v a'(t) =  (daxa')va(t),

dy3a
then v a(t), d}va, d2va and d3va transform as y la, y2a, y3a and

dt ’
re

spectively. The comparison of (3.11) with (1.10) results that dPu“, 6}va,
„ „ őy0a 5yla 6y2a , 6y3a

ofva: ö^va have the same transformation laws as —— , —7—, —— and
respectively, so they are d-vector fields.

dt ’ dt dt dt

4. Zermello’s conditions in Osc3M

The integral of action Ic* does not depend on the parametrization of the 
curve c* if

1 1

(4.1) j  L ( x ,y 1, y 2, y 3)dt =  J  L ( x , y 1' , y 2' , y 3')ds,

for any change of parameter s =  s(t), where s(t) is at least C4-function, 
s'(t) >  0, s(0) =  0, s( l)  =  1, and

ya a
yaa = d as xa =  - — , a  = 1 , 2 ,  3. 
y s dsa

(4.1) will be satisfied if

(4.2) L(x, y l , y2, y 3) =  L(x, y1', y 2', y 3')s', 

ds
where s =  — . We shall use the notation 

dt

s 0*) =  r _ 1 a  =  1 2 3 .
dta

The equations which give the invariance of Jc* from the parametrization of 
the curve c* are called Zermello’s conditions. By pure calculation we get:

y la =  y la's',
y2a =  y2al(s')2 +  y la' s \

(4.3) y3a =  y 3a' ^ 3  +  y 2a'^ i ,  + y la'gm̂

(s ')4 +  y3a'6 s 'V  +  y 2a' (3 (s")2 +  4 s's'") +  y W s IV.

das

dy3a _  dy3a 
dt ds
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Taking the partial derivatives of (4.2) with respect to s', s", s'” and slv

(diaL)yW +  (d2aL)2s'y2a' +  (03aL)(3(s,)2y3a' +  3 s''y2a')
=  L (x , y u, y 2' ,y3l),

(d2aL)yW +  (d3aL)(3s'y2a') =  0

(d3aL)yla' =  0.

In (4.4)-(4.6) L =  L ( x , y 1, y 2, y 3). If we multiply (4.4) with s', (4.5) with 
2s”, (4.6) with 3s'” and add all these equations we obtain:

(őlaL)ylaV  +  2(d2aL)(y2a' (s')2 +  y la's")
+  3 (d3aL)(y3a'(s')3 +  3 y2a's's” +  y la's'")

— L ( x , y 1' , y 2' , y 3')s'.

The substitution of (4.3) and (4.2) into the above equations results in

(4.7) (d\aL)y la +  2 (d2aL)y2a +  3 (d3aL)y3a =  L.

If we multiply (4.5) with s', (4.6) with 3s" and add all such obtained 
equations we get

(d2aL )(y la' s') +  3(03 aL)(y2a' (s')2 +  y W s”) =  0,

i.e.

(4.8) (d2aL)yla +  3(d3aL)y2a =  0.

Prom (4.6) it follows:

(4.9) (dsaL)yla =  0.

T h e o r e m  4.1. Equations (4.7)-(4.9) are the Zermello’s conditions in 
Osc3M .

The comparison of (4.7)-(4.9) with (1.21) yields:

THEOREM 4.2. The Zermello’s conditions in Osc3M  are:

r (i)L = o , r(2)-k =  o, r (3)L = L .

They are the necessary conditions for the invariance of 7C* from the 
parametrization of the curve c*.

we get:

(4.4)

(4.5)

(4.6)
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EIN KONKRETES BEISPIEL ZU DEN 
SYMMETRISCHEN MÖBIUS-ZWANGLÄUFEN

J. TÖLKE

Dem Gedenken an J. Strommer gewidmet

Abstract

Because of the involved systems of differential equations there are some difficulties to 
construct examples for kinematic motions with more than one pair of centrodes. We give 
one for the symmetric Möbius-motions [2], In the conformal model the centrodes are circles 
and the orbits in general quartics [1],

1. Standardschauplatz S  der Möbiusgeometrie ist die Absolutquadrik Q \x 
des hyperbolischen Raumes PX(R) vereinigt mit deren Außengebiet A Q \X [3,
S. 311]. Die Punkte von Q2X heißen M-Punkte, die von A Q \X M^-Punkte. 
Bezeichnet ( , ) die zugehörige symmetrische Bilinearform der Representation 
U4(R) von Px , so ist die orthogonale Automorphismengruppe A4 3 : V 4 h*
V 4

A  ((z,y) =  0 4=^(</>(:r),</?(y)) =  0), I det(<p)| =  1

die Möbiusgruppe. Einparametrige Scharen <p{t) [t E /  C R) einer probleman- 
gepaßten Differentiationsordnung Cr heißen Möbius-Zwangläufe und ip(t)x 
((x , x ) ^ 0) die Bahnkurve von x. Sind ip(to)x E Q.\x und (to){<p{to)x)
linear abhängig, so heißt (p(to)x ein momentaner Rastpol r(to) und 
<p~l {to)r(to) =:g(to)  ein momentaner Gangpol an der Stelle io-

Somit sind jene Eigenvektoren des bezüglich ( , ) schiefen Endomorphis
mus tp(to) := (to) von V4, die M-Punkte bestimmen, die Rastpole.
Die Sekulargleichung (es gilt det(i/>) ^ 0, rang (ip) ist gerade für t E l )

det(t/> — Aid ) =  A4 -  A2/2 Spur (if2) — (— det(V’)) =  0,

in der die Vorzeichen der Koeffizienten gegenüber Parametertransformationen 
invariant sind, liefert eine momentane Klassifikation [5, S. 35] der Zwangläufe 
in 1. Differentiationsordnung. Es gibt vier Typen. Wie üblich betrachtet 
man nur solche Zwangläufe, die in /  vom selben Typ sind. Die drei nicht 
parabolischen Zwanglauftypen (d.h. Spur (ip2(t)) ^ 0  für t 6 I) haben jeweils 
zwei reelle l.u. Rastpole rq(f),r2(f). Nach H. Lehmann [5] lassen sie sich zu
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einer lokalen kanonischen Basis [ri(t),r2{t),qi(t),q2{t)] =  V 4 ergänzen. Diese 
ist durch die Eigenschaften (i ^  j ,  i , j  =  1,2)

(1) ip(ri) =  eri, ^{r2) =  - g r 2, ip{qi) =  <rq2, ip{q2) = - a q i ,

( 2 )  (ru ri) = {qi,qj ) = (ri ,qj ) =  0 ,  ( r , , rj)  =  -  ( % , qi) =  - 1

bis auf Transformationen der Gestalt

^  rí =  Ari, r5 =  A-1 r2>

q\ = q\ cos Ő +  q2 sin <5, q\ =  —gi sin <5 +  <72 cos 6

(mit Funktionen A,ŐE C r(I), A^O) bestimmt. Wegen (2) gelten Ableitungs
gleichungen der Form

n  =  ßr \  +7191+7292
,.s r2 =  — ß r 2 +  7391 +7492

9 l = 7 3 n + 7 i r2 +C92
92 =  74D + 72^ 2-  C9l-

Da die Funktionen 7$ nach (3) das Transformationsverhalten

7i — A (71 cos (i +  72 sin <5), 72 =  — A(71 sin <5 — 72 cos 6),
73 — (73 cos <5 +  74 sin <5)/A, 74 =  — (73 sin <5 -  74 cos <5)/A

besitzen, können wir o.B.d.A.

(5) 72 =  0 für t G I  

annehmen. Setzen wir

(6) gi\= ip~l r i , qi :=(p~1qi, i =  1,2,

so gilt sinngemäß wieder (2) und damit Ableitungsgleichungen der Gestalt
(4). Nehmen wir hierin die Ersetzungen 17 h-» gi, qi h-> qi vor und bezeichnen 
die Ableitungskoeffizienten mit demselben, aber gequerten Funktionszeichen, 
so gilt wegen (1)

(7) ß =  ß - g ,  C =  C“ <b 7i =  7ö * =  !,••■, 4.

Machen wir für das Folgende die Rcgularitätsforderung (7?+ 7!)(73 +74) 7̂  0 
für í  £ I,  so sind 77 bzw. ĝ  auf Kurven, die Rastpolbahn bzw. Gangpolbahn 
(i =  1,2). Die Kurven r,(i) und (p(to)gi(t) berühren sich für jedes to E I  im 
Punkt ri( t0)=(p(t0)gi(to).
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2. Mit, W. Degen und S. Hartmann [2] heißt ein Möbius-Zwanglauf 
E(f) symmetrisch, wenn ein die beiden Rastpole rj(i) festlassender Möbius- 
Zwanglauf ip(t) derart existiert, daß der Punkt ipx für jeden bezüglich E 
gangfesten M-Punkt x in Bezug auf E rastfest ist. Dies entspricht der Que- 
teletschen Eigenschaft der euklidischen symmetrischen Rollungen [7]. Die 
Durchführung liefert für E mit (5) die kennzeichnenden Bedingungen

(8) (a)<? =  0, (b) 74 =  0, ( c ) a - 2 (  = 0

und für (p (i =  1, 2)

(9) <P(ri) =  ri, (p{qi) =  q\, £(<72) =  ~<72,

sodaß (p eine Projektivspiegelurig an der Ebene des gemeinsamen Tangential
kegelschnittes der Polbahnen ist.

Setzt man E von der Differentiationsordnung voraus, so folgt [2]

(10) gi{t) =  E 1(ío)<^(ío)n(í), * =  1,2.

3. Aus der Literatur [3, 6] ist uns kein Beispiel eines symmetrischen 
Möbius-Zwanglaufs bekannt; wir wollen ein solches für jenen Fall angeben, 
in dem die Polbahnen auf Q Kegelschnitte sind. Sei

Q41 : x\ +  x2 + x\  — x \  =  0

und

( 11)

1 — 3s2 3scj — \/6 sC2 3 sc2
3sc —2 — 3cci \/6 ( l  +  CC2) -3 (1  +  cc2)

— \/6s 2 \/6 (l — c) —5 -f 6c 3^6(1 - c )
- 3 s 6(1 - c ) —3>/6(l ~c) 10- 9 c

mit
s:=sin£,  c:=cost ,  ci := 1 — 2 cost, C2i=2 — 3 cost.

Man überzeugt sich, daß ip(t) ein Möbius-Zwanglauf mit det(<yo(t)) =  1 ist. 
Genau die M-Punkte

(12) X — { x \ , X 2 , Xz , X / i ) 1 , x  =  ipx, 3 x 3 — \/6x4 = 3^3 — V & X 4 =  0

haben Kegelschnitte als Bahnkurven. Wir berechnen

—2 + 3c2 3sc —\/Qs
_ j 3sci —2 —3cci 2 \ / 6 ( l - c )

^ —%/6sc2 \/6(1 +  cc2) — 5 + 6c
—3sc2 3(1 +  cc2) —3\/6(l —c)

3s
-6 (1  - c )  

3 \/6 (l — c) 
10- 9 c .
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Damit bestimmt sich ip(t) := jp(t)ip l (t)

—3c —3s

0 -3 %/6 c —3 c

VE s —3s 
0 0 
0 0.

Also gilt det(ip) =  0, Spur (ip2) =  —12, g — 0, a  =  — \/6  und damit für die 
Rastpolkurven 77(f)

Also folgt ß  = 72 =  74 =  0, 2C — er =  0, 7i =  73 =  1/2, sodaß ip(t) nach (8) 
symmetrisch ist.

Betrachten wir den bahnerzeugenden M-Punkt x  =  (27, X2, £ 3 , X 4 ) 1 • Die 
Projektivspiegelung am Tangentialkegelschnitt <72 (i =  0) liefert den M-Bild- 
punkt

(13) x* =  (27, -2x2 +  \/6Ä3 — 3X4, \ / 6x2 — 27 +  V 6X4 , 3x,2 — v̂ 6^3 +  Ax4)T- 

Damit folgt

D.h.: Die Bahnkurve tpx wird aus Qh  durch einen quadratischen Kegel k 
mit der Kegelspitze x* ausgeschnitten -  sofern x* nicht in der k erzeugenden 
Kegelschnittsebene liegt. Andernfalls ist ipx der Kegelschnitt (12). Dabei 
gilt wegen (14): Der M^-Punkt der Kegelschnittsebene vom ipx ist an jeder 
Parameterstelle zum M^-Punkt ([2 konjugiert. Im konformen Möbius-Modell 
A4 sind die Bildkurven demzufolge i.a. Quartiken [1, S. 210f.] mit dem 
Bildpunkt von x* als singulärem Punkt.

4. Wir wollen die Abbildung auf M  auch noch analytisch verfolgen. Mit 
der Koordinatentransformation

77 = (s/2, —c/2, 0, l / 2 ) r , r2 =  (s/2, - c /2 ,  VE, 5/2)r

und für die auf der reziproken Polare gelegen Punkte <7, <32

<7 = (c, s, 0, 0)T , q2 =  1 /y/E(3s, - 3 c ,  VE, 3)J .

x = Dx mit D  :=

0 0 —v v
1 0  0 0
0 1 0  0
0 0 v v

mit v : = \ / V 2
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Legende1 Die beiden stärker ausgezogenen Kreise sind die Rastpolbahnen Q\,e2 - Die 
Gangpolbahnen 71  (t), 7 2 (f) sind zu zwei Pararneterstellen tg = 0, 1i gezeichnet -  jeweils 
mit den Tangentialkreisen T(ij). Die Bahnkurve £j( t)  von wird vom Punkt Q*, markiert
mit einem Doppelnullkreis, durch Inversion an den Tangentialkreisen T{t) erzeugt. Die mit 
einer Nullkreisscheibe versehenen Punkte gehören zur Bahnkurvenstelle t*.

folgt

(15) x  =  D < p D ~ l x ,

womit der Anschluß an die übliche Darstellung [1, 3] gewonnen ist. Einem 
M^-Punkt bzw. M-Punkt p  =  (po>Pi>P2 >P3 )7 ist in M  der Kreis bzw. der 
Punkt

Po(£2 +  p2) — 2pi£ — 2p2T) +  2p3 =  0 bzw. {pi/po,P2 /po) 
zugeordnet.

Die Polbahnen £>1 ,^2  der momentanen R a s tp o le  R i  bzw. R 2

£1 =  \/2 sin f, r]i — — y /2  c o s t ;

£2  =  V^/(5 — 2\/6) sinf, t)2 =  —\/2 /(5  -  2\/6) cost
sind konzentrische Kreise. Das Bild des M^-Punktes 92 ist der gemeinsame 
Tangentialkreis T ( t )

(£ — 3 \/2 /(3  — \/6) sin t)2 + (t/ +  3\/2 /(3  — \/6) cos t )2 =  rf-, rj1 := 2 \/3 /(3  — \/6)

1Mein Dank gilt meinem Freund Dr. W. Schürrer für die Ausarbeitung der Figur.
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der Polbahnen. Die Rastpolkreise gehen durch die Inversion i ( t )  an T ( t ) in 
die Gangpolkreise 7 i ( i ) ,7 2 (i) über [2]. Nach dem zweiten Abschnitt gilt für 
die B a h n k u r v e  des Punktes

C{ * ) ' ■ = ( ( ( * ) =  i

Sie durchsetzt an der Stelle t o den ( ( t o )  enthaltenden Kreis des zum hyper
bolischen Büschel der beiden Momentanpole R i ( to )  orthogonalen Büschel 
senkrecht.

Der Punkt (*  := ( (* ,r j* )  : = i ( 0)( ist der Bildpunkt von D x*  in Ad. Nach 
dem 3. Abschnitt besitzen die Punkte des zu a l le n  Tangentialkreisen T ( t )

orthogonalen Kreises K  mit der Gleichung ( 2 +  r]2 =  ( \/2 / (3 —\/6 )) ihn 
selbst als Bahnkurve. Liegt der Punkt (*  im Inneren des längs K  geschlitzten 
Ringbereiches TZ := U T ( t ) ,  so inzidiert er mit genau zwei (sich schneidenden) 

te i
Kreisen (die Bahnnormalen) T ( t \ ) , T ( t 2 ). Also ist (*  ein K n o te n p u n k t  der 
Bahnkurve ( ( t ). Liegt (*  im Äußeren von TZ bzw. auf einem der beiden 
Rastpolkreise Q i , Q 2 , so sieht man analog, daß er ein i so l ie r te r  D o p p e lp u n k t  
bzw. eine S p i t z e  der Bahnkurve ist.

Die Bahnkurvenverhältnisse zeigen eine gewisse Verwandtschaft mit jenen 
der u m g e k e h r te n  E l l ip se n b e w e g u n g  [8], deren Bahnkurven sich bekanntlich 
auch durch symmetrische Kreisrollung erzeugen lassen.
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THE MEASURE OF NONCOMPACTNESS 
OF LINEAR OPERATORS BETWEEN SPACES 

OF M th- ORDER DIFFERENCE SEQUENCES

E. MALKOWSKY and V. RAKOCEVIC

Abstract

In this paper we investigate linear operators between certain sequence spaces X  and Y. 
Among other things, if X  is any BK space and Y  is a sequence space of bounded or con
vergent mth-order differences, then we find necessary and sufficient conditions for infinite 
matrices A to map X  into Y . Further the Hausdorff measure of noncompactness is applied 
to give necessary and sufficient conditions for A to be a compact operator.

1. Introduction and well-known results

We shall write u  for the set of all complex sequences x  =  (xjfc)^0 and 
</>, Zqo, c and Co for the sets of all finite, bounded, convergent sequences and 
sequences convergent to naught, respectively, and finally, for 1 ^ p < o o ,

Ip =  < x € u ) : ^ 2  M P<oo > .
I  k = 0 J

By e and e ( n  =  0 , 1 , . . . ) ,  we denote the sequences such that e*, =  1
for k  =  0 , 1 , . . . ,  and =  1 and ej^ =  0 for k  yf n.

A B K  space  is a Banach sequence space with continuous coordinates.
A sequence (b„)^L0 in a linear metric space X  is called a (S ch a u d er- )  

basis if for each x  € X  there exists a unique sequence (A„)^L0 of scalars such 
that x  — 53n=o

A BK space X  D (f> is said to have A K  if every sequence x  — (xfc)£l0 6 X  

has a unique representation x  =

1991 Mathematics Subject Classification. Primary 40H05, 46A45; Secondary 47B07.
Key words and phrases. BK spaces, bases, matrix transformations, measure of non
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Let A  =  (a nk)™k=o be an infinite matrix of complex numbers and x  E u .  
Then we shall write

OO

A n ( x )  =  ^ 2 a nkx k , ( n  =  0 , 1 , . . . )  and A { x )  =  ( A n (x))™= 0 .
k= 0

For any subset X  of u ,  the set

X a  =  { x  E cj : A ( x )  E  X }

is called the m a tr ix  d o m a i n  o f  A  in  X .  For instance, if E  is the matrix 
defined by e nk =  1 (0 ^ k  A  n) and enk = 0 ( k >  n )  for all n  =  0 ,1 , . . . ,  then 
c s  =  c e  and bs =  (loop are the sets of convergent and bounded series.

2 . Spaces of sequences of m th -order differences and their /3-duals

Let m  be a positive integer throughout. We define the operators

k

(A (1)a;)fc =  A ^ x k =  x k - x k - i ,  ( E (1)a;)fc = Y2W x k =  ^ 2  x j  (& =  0 , 1 , . . . ) ,
j'=o

A (m) =  A ( i ) o A (m - i) ) (m  ^  2).

In the case where m =  1, we shall write A — A^1) and f°r short.
For any subset X  of ui, we define the set

X ( A ^ )  =  X A(m) =  { i £ u :  A ^ x  E  A / }  .

Here we shall be interested in the case where X  E  { loo ,  c, Co}. The following 
results are well known (cf. [3]); they hold for all m A  1 and k  =  0 ,1, . . . :

771
K H = B - F

3=o
k

m '
J ) Xk~i E <-»k - j

3=m ax{0 ,fc—m]

m
k - j ■ P3>

( H P  / m  +  k - j - 1
X K  =

3=0
k - j

X j .

P r o p o s i t i o n  2.1 ([5, Proposition 1 and Theorem 1]). The s e t s  
loo(A ^m l ) ,  c(A^mi) a n d  co(A^mi) are B K  spaces  w i th  respec t to the n o r m  
IHIa( m )  defined  by

x||A(m) =sup  
k
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F urther, co(A^m )̂ a n d  c(A^m )̂ are c lo se d  subspaces  o f  l^ ( A ^ ) .
W e def in e  the sequ en ces  bk ( m )  by

&n-1 )M  = ( m ^ n )  {n =  0 , l , . . . ) ,

a n d

( 0 { n ú k  — 1)

^ r n  +  n  — k  — 1^ ( >  k) f o r k ' l l .

T h en  the s e q u e n c e ^ k\ r r i ) ) <̂ >_ 0 is  a basis  o f  C o ( A ^ ) ;  e v e ry  s e q u e n c e  x  =  

(xfc)i£L0 e c 0(A(m)) has a un iqu e  r e p r e s e n ta t io n

2  =  Ak{m )b^k\ m ) ,  w here  A^(m) =  ( ^ A ^ x ' j  (/c =  0 , 1 , . . . ) .
k= 0 k

T h en  the sequ en ce  {b^k\ m ) ) ^ _ _ l is a bas is  o f  c ( A ^ ) ; e v e r y  s e q u e n c e  x  =  

{xk)kLo  S c (A (m)) has a un iqu e  r e p r e s e n ta t io n

oo
x =  +  y~ (̂A k{m) — /)6^(m),

k=o
w h e r e l =  lim

Ac—>oo \ /  k

We shall use the following notations:
For any two sequences x and y, let xy — [xkyk)kLo-
If X  and Y  are arbitrary subsets of oj and z  any sequence, then we shall 

write

z ~ l * X  =  { x  6  w : x z  e X )  and M { X ,  Y )  =  p | x “ 1 * Y.
xex

In the special case, where Y  =  cs ,  the set

X ß = M { X ,  c s )  =  < a £ ca : akXk  converges for all x  € X
k=0

is called the ß - d u a l  o f  X .
By U ,  we denote the set of all sequences u =  (ujt)j*L0 such that U k ^  0 for 

all k =  0 , 1 , . . .  . If u  £ U , then we write

1 /u  =
1

uk /  k=Q
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Given any sequence a we define the sequence R (a) by
00

R (j ! \ a )  =  R k {a) =  ' ^ 2 aj  (k  =  0 , 1 , . . . )  
j= k

and

R̂ m\ a )  =  R^l\ R ^ l\a ) )  (m' t 2) 
provided the series converges. Further we write

X  { R W ) =  I  x  E u j : R ^  W e i }  for any X  C to .

The following well-known result gives the /3-duals of the sets l00(A(m)), 
c ( A ^ )  and c0(A(m)).

P r o p o s it io n  2.2 ([5, Theorem  3]). W e  w r i t e  

c/J" =  { x  E Co : Xk ^ 0 /or all  k } ,  

a n d  p u t

M^0 (m ) =  [ ( (k m) r 1 * c s ) f ] h ( R ^ )

oo oo

a £ u :  k m ak  converges and ^ l 4 m)H I < ° o
fc=0 A;=0

a n d

—M g i m )
(

n  (E(m)”)
\ vGc0

-1
* cs

m  +  k — j  — 1 

k - j

oo k
=  | t t £ w : ^ a ^  

k=0 j = 0

H  j a G w : ^ | i ? 4 m )( a ) |< o o |  .
I k=0 J

Vj converges for all v  6 Cg~

T h e n

( c ( A ™ ) ) 0 = ( l „ ( A ™ ) ) ß =  M *0( m ) ,  [ c 0 ( A ^ ) ) ß =  M ^ ( m ) ,

(zoo(A (m) ) ) V ( c o ( A ( m))} ^ .
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3. Matrix transformations

Let X  and Y  be two Banach spaces. By B ( X , Y ) ,  we denote the set of 
all continuous linear operators from X  into Y , and we write

||L ||=sup{||L(a:)||:||z|| =  l}

for the operator norm of L.  In the special case, where Y  =  C, the com
plex numbers, we write X *  =  B ( X , C )  for the set of all continuous linear 
functionals on X , and

=  sup{|/(a:)|: ||x|| =  1} ( f  £  X * )

for the norm of the continuous linear functional / .  
If X  is a BK space and a € a>, then we put

: Slip
oo

Jfc=0

Ml =  1

provided the term on the right exists and is finite. This is the case whenever 
a e X ß (cf. [8, Theorem 7.2.9, p. 107]).

The following result is well known.

P roposition 3.1 ([5, Lemma 4]). O n  a n y  o f  the sp a ces  (co(A(m)))^, 
(c(A(’”>))il a n d  ( l „ (

0 | r  =  ||fi<™>(o)||1 =  ^ | J i ' m |(a)|.
k=0

If A  is an infinite matrix of complex numbers, then we write A n for the 
sequence in the n th row of A .  For any two subsets X  and Y  of u>. ( X , Y )  
denotes the class of all infinite matrices that map X  into Y . Thus A  G (X, Y )  
if and only if A n € X ß  for all n, and A ( x )  E Y  for all x  £ X .

The following results are well known.

PROPOSITION 3.2 (cf. [6 , Theorem 1]). L et  X  and, Y  be B K  spaces.  
T h e n  { X , Y )  C B ( X , Y ) ,  i .e .  e v e ry  A  G ( X ,  Y )  defines  an  e le m e n t  L a  € 
B ( X , Y ) ,  where

L a {x ) =  A{ x ) (x GX) .

F u r th e r  A  G (X, l ^ )  i f  a n d  on ly  i f

iMir=suPp nir=iiz,Aii<oo.
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F in a l l y ,  i f  { b ^ ) ^ L 0 is  a b a s is  o f  X ,  Y  an d  Y \  are  B K  sp a c e s  w ith  Y\ a c losed  

s u b s p a c e  o f  Y ,  then A  G (X , Y-]) i f  an d  on ly  i f  A  G ( X , Y )  a n d  A ( b ^ )  G Y\  
f o r  a l l  k  =  0,1, . . .  .

P r o p o s it io n  3.3 ([5, Theorem 4]).
(a) A e  (loo(A{m)),Zoo) I f  a n d  only  i f

(3-1)

a n d

(3-2)

A„ G ((fcm)) 1 *cs f o r  a ll  n  =  0 , 1 , . . .

sup ||An||* =sup
n n

R [m\ A n) } < oo.

Further, ( l ^ A ^ ) , Z«,) =  (c(A (m)) , l^).
(b) A  G (co(A(rn)), Zoo) i f  a n d  only  i f  c o n d i t io n  (3.2) holds  an d

(3.3) A n G P | *cs^j f o r  a l l  n  =  0 ,1 , . . . .
nec+

(c) A  G (co(A^m)), cq) i f  a n d  on ly  i f  c o n d i t io n s  (3.2) a n d  (3.3) hold  a n d

(3-4) Ihn V '
71—> OO \  L J\j=k

m  — 1 +  j  — k 

j  - k
anj  =  0 (fc =  0,1,---)-

(d) A  G (co(A(m )̂, c) i f  a n d  on ly  i f  c o n d i t io n s  (3.2) a n d  (3.3) hold  a n d

(3.5) hm  I y 'TJ.-4no l ^
yj=k

m  — 1 +  j  — k

j  - k
I k̂ {k — 0, 1, . . . ).

(e) A  G (c(A("4), cq) i f  a n d  o n ly  i f  c o n d i t io n s  (3.2), (3.1), (3.4) h old  a n d

(3.6) =  0 .

(f) A  G (c(A("4), c) i f  a n d  o n ly  i f  co n d i t io n s  (3.2), (3.1), (3.5) h old  a n d

(3.7,

The following result reduces the characterization of the class (X, Y r )  to 
that of (X, Y ) for triangles T , i.e. matrices T with t n& =  0 (k > n ) and £nn / 0  
(n  =  0 , 1 , . . . ) .
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P roposition  3.4. L et  T  be a t r ia n g le .
(a) Then, f o r  a r b i t r a r y  su b se ts  X  a n d  Y  o fu i,  A e { X , Y t ) i f  a n d  only  i f  

B  =  T A e { X , Y ) .
(b) F urther ,  i f  X  a n d  Y  are B K  sp a c e s  an d  A e  ( X , Y t ),  th e n

(3-8) \\LA \\ =  \ \L B \\.

P ro o f , (a) This is [4, Theorem 1].
(b) Let A  £  (X , Yt ). Since Y  is a BK space and T  a triangle, Y r  is a BK 

space with

(3-9) |M|yr H |T(y)||K  (y € Yt )

(cf. [8, Theorem 4.3.12, p. G3]). Thus A  is continuous (cf. [8, Theorem 4.2.8, 
p. 56]), and consequently

/o im ||Li4|| =  sup{||L i4 (*)||y7.:||ic|| =  l}
= sup {||^4(a;)||yr : ||x|| =  1} < oo.

Further, since B  is continuous,

n  u )  ll^ßll =sup{||Lß (a:)||y : ||s|| = l}
=  sup {||i?(a;)||y : ||a;|| =  1} < oo.

Let x  £  X .  Since A n £  X (i for all n  =  0 , 1 , . . . ,  we have x  £  uja- Further T n £<j) 
(n =  0 , 1 , . . . ) ,  since T  is a triangle. Thus

B ( x )  =  ( T A ) ( x )  =  T ( A ( x ) )

(cf. [8, Theorem 1.4.4, p. 8]), and (3.8) follows from (3.9), (3.10) and (3.11).
□

As a corollary of Propositions 3.2 and 3.4, we have

C orollary 3.5. L et X  be a B K  space.
(a) T hen  A E  ( X , l 00(A^m^)) i f  a n d  o n ly  i f

(3.12) M ( X , l O0( A ^ ) )  =  s u p
71 £  ( - 1 ) 

I = m a x { 0 ,  n —m]

*

<  OO.

(b) F urther ,  i f  { b ^ ) ^ L 0 is  a basis  o f  X ,  then A e  ( X ,  c o ( A ^ ) )  i f  and  
only  i f  c o n d i t io n  (3.12) holds an d

(3.13)
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f o r  e a c h  k  =  0 ,1 , . . . ; A  G (X , c(A^m )̂) i f  a n d  o n ly  i f  c o n d i t io n  (3.12) h o ld s  
a n d

(3-14) lim
71—» OO E <-u

y /= m a x { 0 ,  n —ra }

/or ea ch  k  =  0,1, . . .  .

R e m a r k  1. (a) If X  =  lp (1 <  oo) and Y  is any of the spaces
lo o iA ^ ) ,  c (A ^ )  and co(A^m)), then the conditions for A g {X, Y)  fol
low from the respective ones in Corollary 3.5 by replacing the norm || • ||* 
in condition (3.12) by the natural norm on the /3-dual of lp, i.e. on lq 
{ q = p / ( p ~  l ) , l < p < o c ; g  =  o o , p = l )  which is norm isomorphic to l* Hence 
we have

M ( l p , l

=

( OO

E
k=0

E (-I)"“'
i = m a x { 0 , n —m}

m

n  -

sup
. n,k

E (-1
/ = m a x { 0 , n —7?i}

rn

n  — l
(Hk

(1 < p  <  oo)

(P =  !)•

(b) Let s be a nonnegative integer.
If X  is any of the spaces loo (A ^), c(A^s )̂ and co(A^)), and Y  is any 

of the spaces ^ ( A ^ ) ,  c(A^m)) and cq( A ^ ) ,  then the conditions for Ä G  
( X, Y)  are obtained from the respective ones in Proposition 3.3 by replacing 
the entries of the matrix A  by those of the matrix B  =  T A ,  for instance

sup ||.Sn||* = su p ||R (s)(RJi)||i <  oo,
n n

where
B n =  ] T  (-1)"-'

l = m a x { 0 , n - m }

At.

4. M easure o f n o n co m p a ctn ess  and m atrix  transform ations

If X  and Y  are metric spaces, then /  : X  —» Y  is a compact map if f ( Q )  is 
relatively compact (i.e., if the closure of f { Q ) is compact subset of Y )  subset 
of Y  for each bounded subset Q  of X . In this section, among other things, we 
investigate when, in some special cases (see Corollary 4.3), an operator L a  is 
compact. Our investigations use the measure of noncompactness. Recall that
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if Q  is a bounded subset of a metric space X ,  then the H a u s d o r f f  m ea su re  
o f  n o n c o m p a c tn e s s  of Q  is denoted by x ( Q ) i  and

x ( Q )  =  inf{e > 0 : Q  has a finite e-net in X } .

The function x  is called the H a u sd o r f f  m e a s u r e  o f  n o n c o m p a c tn e s s , and for 
its properties see ([1], [2] or [7]). Denote by Q  the closure of Q .  For the 
convenience of the reader, let us mention that: If Q , Q i and Q 2 are bounded 
subsets of a metric space ( X , d ) ,  then

x ( Q )  =  0 <=> Q  is a totally bounded set,

x ( Q )  =  x ( Q ) ,

Q \  c  Q 2 <=>• x(Qi) ^ x ( Q 2 ),
x (Q i U Q 2) =  m a x { x (Q i) ,x (Q 2 )},

x(Qi n Q 2) ^min{x(Qi ) ,x(Q2 )}-

If our space I  is a normed space, then the function x ( Q )  has some 
additional properties connected with the linear structure. We have, e.g.

x ( Q i + Q 2 ) ú x ( Q i ) +  x ( Q2 ) ,
x(AQ) =  |A|x(Q) for each AeC.

If X  and Y  are normed spaces, then, for A  6  B ( X , Y )  the Hausdorff 
measure of noncompactness of A,  denoted by ||.A||X, is defined by ||j4||x =  
x { A K ) ,  where K  =  { x  € X  : ||x|| ^ 1} is the unit ball in X . Further, A  is 
compact if and only if ||7i||x =  0 , and ||>l||x ^ ||A||.

Recall the following well known result (see e.g. [2, Theorem 6.1.1] or [1, 
1 .8 .1]).

P r o p o s it io n  4 .1 . L et  X  be a B a n a c h  space  w ith  a S c h a u d e r  basis  
{eo,e i , . . . } ,  Q  a bou n ded  su b se t  o f  X , a n d  P n : X  —> X  the p r o j e c to r  o n 
to the l in ear  span  o f  {eo, e i , . . . ,  en } .  T h en

-  Ihn sup ( sup | | ( 7 -  Pn)x|| ) ^ x ( Q )
(41) a n^°° Vi€<5 /

^ inf sup II (7 — P„)a:|| ^ lim sup sup
n  x£Q n -» o o  V i C Q

w here a  =  lim sup ||7 — Pn||.
71—>00

Let us mention that concerning the number a  in Proposition 4.1, if 
X  =  co, then a  =  1, but if X  =  c, then a  =  2 (see e.g. [2, p. 22]).

Concerning Proposition 3.3 and the measures of noncompactness we have

I\ (I~Pn)x\ \
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THEOREM 4.2. L et  A  be a s  in  P r o p o s i t io n  3 .3 , a n d  f o r  a n y  in te g e r s  
m , n ,  r ,  n >  r ,  se t

(4.2) p ||< ’'> = Sup||fi<” )(A „)||1.
n>r

L e t  X  be e i th e r  cq( A ^ )  o r  X  =  c (A ^ m'l), a n d  le t  A  E ( X , Co). T h en  w e  have:

(4.3) ||L 4 ||x =  lim \ \A \ \U .r—>oo

L e t  X  be e i th e r  cq( A ^ )  o r  X  =  c(A ^ ) ,  a n d  let  A  E ( X , c ) .  T h en  w e  h ave :

( 4 . 4 )  I  l i m  | | 4 l | | ( r ) S | | i ^ | | x £  l i m  | | y l | | M .Z r —>oo r —>oo

L e t  X  be e i th e r  l00( A ^ ) ,  c o ( A ^ )  o r  X  =  c(A^171'1), a n d  le t A e  ( X , ^ ) .  
T h e n  w e  have:

(4.5) 0 ^ ||L A||X^ lim p ||< r>.r—too

P r o o f . Let us remark that the limits in (4.3), (4.4) and (4.5) exist. 
Set K  =  { x  E X  : ||x|| ^ 1}. In the case A  E ( X , cq) for X  =  co(A^m )̂ or 
X  =  c(A (m)), by Proposition 4.1, we have:

(4.6) \\La \\x =  X { A K ) =  lim sup \ \ (I  -  P r )A x\\  ,
r ->°° [xeK \

where P r : Co -> cq, r  =  0 , 1 , . . .  , is the projector on the first r +  1 coordi
nates, i.e., P r (x )  = ( x o , x i , . . .  , x r, 0, 0 , . . . ), x  =  (xk)  E Co (let us remark that 
||7 — P r || =  1, r  =  0 , 1 , . . . ) .  Further, by Proposition 3.3, we have

(4.7) ||A||<r> =  sup \ \ ( I - P r )Ax\ \ ,
xG K

and by (4.6) we get (4.3).
To prove (4.4) let us remark that every sequence x  =  {x k )k L 0 E c has a 

unique representation

OO

x  =  le  +  'Z ^ (x k — l ) e ^  where l E C is such that x  — l e E c .  
k=o

Let us define P r : c —» c by P r ( x ) — le  +  YZk=o(x k ~  l)e^k\  r =  0 ,1 ,___ It is
easy to prove that ||7 — Pr|| =  2, r =  0 ,1 ,. . .  . Now the proof of (4.4) is similar 
as in the case (4.3), and we omit it.
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Let us prove (4.5). Now define P r : loo —» by P r ( x )  =  (xo,£i ,  • ••,
x>, 0 , 0 , . . . ) ,  x  =  (xfc) £  loo, r =  0 , 1 , . . . .  It is clear that

A K  C Pr{AK ) +  (7 -  P r ) ( ,4 /0 .

Now, by the elementary properties of function x we have

X(AK) Í  x(Pr(AK)) +  x ( (7  -  Pr)(AK)) =  * ( ( /  -  Pr)(AK))
(^•8 ) ^ sup ||(7 — Pr)Ax||.

X  £ K

Finally, by Proposition 3.3, we get (4.5). □

As a corollary of the above theorem, we have

COROLLARY 4.3. L e t  A  be as  in  T h e o re m  ^.2. T h en  i f  A  £  ( X ,  co) f o r  
X  =  c0 {A<m)) o r  X  =  c(A(m)), o r i f A e ( X , c )  f o r  X  =  c0 {A<m)) o r  X  =  
c ( A(m)), then  in  all  ca ses  w e  have:

(4.9) L a  is  c o m p a c t  i f  a n d  o n ly  i f  lim ||A ||^  =  0.
r —xx)

F urther ,  i f  A  £  ( X ,  loo) f o r  X  =  /«(AÍ"*)), X  =  c0 (A^m)) o r  X  =  c { A<m)), 
th en  w e have:

(4.10) L a  i s  co m p a c t  i f  lim ||A||^r^=0.
r —> oo

The following example will show that it is possible for L a  in (4.10) to 
be compact in the case Hindoo ||A||(r) >  0, and hence in general in (4.10) we 
have just “if”.

Example 4.4. Let the matrix A  be defined by A n =  e (n =  0 ,1 , . . . ) .  
Then, obviously, R^m \ A n ) =  e(°) for all n, and A £  (/00(A^m)), 1 ^ ) .  Further,

||A||(r) =sup ||7?̂ m^(A„)||i =  su p ||e^ ||i =  1 > 0  for all r,
n>r n>r

whence
lim ||A||(r) > 0 .r—>oo

Since A ( x )  = x o e  for all x  £ l 0O( A ^ ) ,  L a  is a compact operator.

Concerning Corollary 3.5 and the measures of noncompactness we have

T heorem 4.5. L e t  X  be a B K  sp a ce  a n d  le t A  be as in  C o r o l la r y  3.5. 
T h en  f o r  a n y  in te g e r  m , n , r ,  n >  r ,  s e t

M i l ?  =  sup
n>r E  M )-'

j= m a x {0 ,n —m)
(4 .11)
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F u r th e r ,  i f  X  has a S c h a u d e r  basis , and A g  ( X ,  co(A^m )̂), then w e have:

(4.12) \ \L A \\x =  lim \\A\\%>.r—>oo

I f  X  h a s  a Sch au der  basis ,  a n d  A  G (A,c(Alml)) ; th e n  w e  have:

(4.13) i  lim HmZ r—>oo r —>oo

F in a l l y ,  i f  A  £  (X, Z00(A(ml)),  th en  we have:

(4.14) 0  ^ H^a IIx = Hm \ \A \ \% \r—>oo

P R O O F .  Let us remark that the limits in (4.12), (4.13) and (4.14) ex
ist. Set K  =  { x  G X  : ||aj| ^ 1}. To prove (4.12), by Proposition 2.1 and 
Proposition 4.1, we have:

(4.15) \\La \\x =  x ( A K ) =  lim sup ||(J — P r ) A x || ,
_x£K

where P r : c0 (A ^ )  —> c0 (Alml), r =  0,1, . . .  , is the projector defined by (see 
Proposition 2.1)

(4.16) P r ( x )  =  Y ^ Xk { m ) b {fc){ m ) ,
k=0

where x  =  YlkLo x k ( m ) ^ kH m )  Gco(A(ml) and Z/fcl(m) is a Schauder basis 
of co(Alml). Let us remark that \\I — Pr|| =  1, (r =  0 , 1 , . . . ) .  Further, by 
Corollary 3.5, we have

(4.17) P llk r) = sup | | ( J - P r )A r||.
x e K

To prove (4.13) let us remark (see Proposition 2.1) that c(Aiml) has the 
Schauder basis b̂ k\ m ) ,  /c =  —1,0,1, . . . ,  and every x G c( A ^ )  has a unique 
representation

OO

(4.18) x  =  lb<'~1̂ (m)+ S^(Xk(m)-l)b^k\m ) , where l = lim (Al''n'>x)k-*  ̂ Ic.—̂ro

Now, let us define P r : c(A^m'1) —> c(Alml), r  =  0 , 1 , . . . ,  by

P r { x )  =  ^ ( A k { m)  -  l ) b {k) { m ) .  
k= 0

(4 .19)
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It is easy to prove that ||7 — P r \\ =  2, r =  0 , 1 , . . . .  Now the proof of (4.13) is 
similar as in the case (4.12), and we omit it.

Let us prove (4.14). Now define P r : l00( A ^ )  ^ • /00(A(m)), by Pr ( x ) =  
(xo, x i , . . .  , x r , 0 , 0 , . . . ) ,  x  =  (Xi ) G l o o ( r  =  0 , 1 , . . . .  It is clear that

A K  C P r { A K )  + (7 -  P r ) { A K ) .

Now, by the elementary properties of the function Xi  we have

X ( A K )  Í  X ( P r ( A K ) )  +  X ( ( I  -  P r ) ( A K ) )  =  X((7 ~  P r ) { A K ) )
(4-20) ^ sup ||(7 — P r )A x\\ .

xe k

Finally, by Proposition 3.4 and Corollary 3.5, we get (4.14). □

As a corollary of the above theorem, we have

COROLLARY 4.6. L e t  X  be a D K  space  a n d  le t  A  a n d  ||A||j^ be as in  

T h eorem  f . 5 .  I f  X  h as  a S c h a u d e r  basis, a n d  e i th e r  A  G ( X ,  co(A^TÔ)) o r  
A g ( I , c( A H ) ) ,  th en

(4.21) L a  is  c o m p a c t  i f  a n d  on ly  i f  lim ||A ||^ = 0 .
r—>oo ^

F urther, i f  A g  ( X , l 00( A ^ ) ) ,  then  we have:

(4.22) L a  is  compact, i f  lim ||A ||^ = 0 .
r-> oo ^

Now, concerning Remark 1, we get several corollaries.

Corollary 4.7. I f  e i th e r  A  g (/p,c0(A (m))) o r  A  G (/p,c(A (m))) (1 < 
p  < oo), then

(4.23) lim sup
r—>co n>r

L a  is  c o m p a c t  i f  a n d  on ly  i f

q = p / { p - \ ) .

=  0,

F urther, i f  e i th e r  A g (Zi , Co(A(to))) o r  A  G [ l \ ,  c(A^m))), th en  

(4.24) L a  is  c o m p a c t  i f  a n d  only  i f

E
j=max{0, n—m}

=  0.(4.25) lim sup
r—>oo n>rj/j
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I f  A  E (Ip, loo ( A ^ ) ) ,  l < p < o o ,  th en

(4.26)
OO

lim sup }
™ „ > r \ ^

L a  i s  com p a c t  i f

£
j = m a x { 0 , n - m }

q = p / ( p - 1)-

m

n - j
ajk =  o,

F in a l l y ,  i f  A  E ( l i ,  l o o i A ^ ) ) ,  th e n

L a  i s  c o m p a c t  i f

(4.27)
lim sup

r —>°° ny r £
j = m a x { 0 , n —m }

m
=  0 .

From Corollary 4.3, Proposition 3.3 and Remark 1 (b), we have

COROLLARY 4.8. L e t  s  a n d  m  be n o n  n eg a tive  in teg ers .  I f  A  €  
( X , c0 ( A W )  f o r  X  =  c o ( A ^ )  o r  X  =  c (AW), o r  i f  A  E (X , c ( A (m)) f o r  
X  =  cq( A ^ )  o r  X  =  c ( A^sl ) , th e n  in  all cases we have:

L a  i s  c o m p a c t  i f  an d  on ly  i f

(4.28)
lim sup

I >00 n y T
R [s) ( E  ( - 1)

y j = m a x { 0 , n - m }

n - j m

n - j
o.

F u r th e r ,  i f  A  6  ( X ,  Zoo(A(m)) /o r X  =  /GO(AW), X  =  c0 (A(s)) o r X ^ c ( A ^ ) ,  
th e n  w e  h ave:

(4.29) lim sup
r - K »  n>r

L a  is  com pac t i f

n

r f- ’ l £  ( - D ”- 4 n ra3 ) A
i j = m a x { 0 , n - m }

=  0.
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ON THE PRESERVATION OF GLOBAL SMOOTHNESS 
BY SOME INTERPOLATION OPERATORS

S. G. GAL and J. SZABADOS* *

1. In troduction

When one approximates an element /  of a function space by a sequence 
of approximation operators { L n ( f ) } ,  it is important to know, for example, 
the relation between the global smoothness properties of /  and L n ( f ) ,  i.e. if 
the following implication

(1) /  £ Lip aí (a; [a, b]) =4> L n ( f )  £  Lip Mi( a \  [a, 6]), n 6 N, 

or the stronger condition

(2) u ( L n ( f ) ; h )  i c w( / ; / i ) ,  0 is h  ^ h0, n  £  N,

are valid. Here

Lipm («; [a, b}) := { /  : [a, 6] -> R; | f { x )  -  f { y ) \ ^ M \ x  -  y \ a , Vx, y  £ [a, b]} ,
0 <  a  ^  1,

and ui represents the modulus of continuity.
The case when L n ( f )  are trigonometric polynomials is settled by the 

following well-known result of S. B. Stechkin.
T h e o r e m  A ([21, pp. 229-230]). I f  f  £  CW an d  {T n } n is  a sequ en ce  of  

t r ig o n o m e tr ic  p o ly n o m ia ls  o f  o rd e r  a t  m o s t  n  sa t is fy in g

|| f - T j Z d u i J f - , ^ ,  Vne N,

th en  there  ex is ts  a c o n s ta n t  c ( k )  > 0  ( in d e p e n d e n t  o f  f  a n d  n )  su c h  th a t  f o r  
all h  >  0  one has

ujk ( Tn - , h ) ^ c { k ) o j k ( f \ h ) ,  Vn€ N,

1991 Mathematics Subject Classification. Primary 41A05; Secondary 41A17.
Key words and phrases. Interpolation operator, smoothness, modulus of continuity.

* R esearch of this author was supported by Hungarian National Science Foundation 
Grant No. T017425.
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398 S. G . GAL and J. SZABADOS

w h e re  uJk is  the w e l l -k n o w n  u n i f o r m  m odulus o f  s m o o th n e s s  o f  o rd er  k.

R e m a r k . In fact, in his paper Stechkin proved much more (see [21, 
Theorem 6 , p. 330]), in the sense that in Theorem A, cu^(/; h) can be replaced 
by a function <p(h) having some suitable properties.

In the case when { L n ( f ) } n are various linear (and sometimes positive) 
operators applied to a non-periodic function /  £ C [a,6], there exists an ex
tensive literature realizing the above relations (1) and (2 ) (see e.g. [1-5], 
[8-9] and [11-18]). But when (1) does not hold for { L n ( f ) } n , a natural 
question arises: how much of the global smoothness of /  is preserved by 
{ L n ( f ) } n , which can be expressed, for example, in the following way: if 
/  E Lip m (o ; [a,£>]) then there exist ß  <  a  and M '  >  0 (independent of n) 
such that L n ( f ) E Lip m ' {ß \  [a, b]) for all n  £ N.

R e m a r k . T h e  f o l l o w i n g  t w o  e x a m p le s  s h o w  t h a t  t h e  a b o v e  p r o p e r t y  
o f  p a r t i a l  p r e s e r v a t io n  o f  t h e  g lo b a l  s m o o t h n e s s  d o e s  n o t  d e p e n d  o n  t h e  
a p p r o x i m a t i o n  p r o p e r t i e s  o f  t h e  s e q u e n c e  { L „ ( / ) } n .

Indeed, if L n ( f )  =  S n ( f )  represents the Fourier sum of order n of /  E C 2-n, 
while it is well-known that \ S n ( f ) } n has no good approximation properties 
for all /  E C 2v, by [21, p. 231] we have

which means that { S n ( f ) }  has the property of partial preservation of the 
global smoothness of / .

As the second example, we choose L n ( f ) =  Pn( /) ,  the best approxima
tion of /  E C[—1,1] by algebraic polynomials of degree at most n. First 
let x , y  E [—1,1], \x — y\  ^ h.  By [25, Section 4.12, (20)] we get ||P^(/)|| ^ 
n 2 u>(Pn ( f ) ,  1/n). Since by Jackson’s theorem1 ||Pn( /)  — / | |  ^ cu>(f;  1/n), we

1 Throughout the paper, c, ci, c2) etc., will denote absolute positive constants, not 
necessarily the same at each occurrence.

w(5„( / ) ; / i )gcw( / ; / i )  log ^

obtain

I P n ( f , x )  -  P n ( f , y )  I =  IP' ( / ) (0I  \ x - v \ ú  \ \ K ( f ) \ \ h



PRESERVATION OF GLOBAL SMOOTHNESS 399

^ 2  cw +  w ( / ; / i ) ^ ( 2c + l ) w ( / ; \ / / t ) ,

which also means that { P n { f ) } n  has the property of partial preservation of 
the global smoothness of / .

The purpose of the present paper is to consider the problem of partial 
preservation of the global smoothness for sequences { L n ( f ) } n of interpo- 
latory type. As it was proved for example in [4], if one takes as L n ( f )  the 
Hermite-Fejér operator based on the Chebyshev nodes of the first kind, then 
(1) does not hold for a  =  1. In Section 2 we will prove some negative results 
about the (partial) preservation of global smoothness by interpolation poly
nomials, while in Section 3 we will obtain some positive results concerning 
the Hermite-Fejér polynomials based on the Chebyshev nodes of the first 
kind, the Lagrange interpolation polynomials based on the Chebyshev nodes 
of second kind and ±1, as well as the Shepard operators.

2. Negative results

In [17], Kratz and Stadtmüller proved the estimate (2) (and then the 
constant c was improved in [4]) for discrete sequences { L n( / ) }n of the form

n
(3) L n { f , x )  =  ^ 2 f ( x kfn) p k)n{x) ,  x  €  [—1,1], /  G C[—1,1]

fc=i

satisfying the conditions

n
(4) ^ 2 p k ,n {% )  =  s n is independent of x G [—1,1], 

fc=i

71

( 5 )  ^  b j f c ,n ( z ) |  ^ < 4 ,  a; € [ - 1 , 1 ] ,
k = 1

( 6)

71

Pk, n€Cl [ - l , l ]  and ^  |(x -  x kin)p'k n { x )\^ c2, x G [ - l , l ]
fc=i

for some constants ci,C2 > 0 .
Since the Hermite-Fejér and Lagrange polynomials are of type (3), it is 

natural to ask if for these polynomials (4)-(6) hold. Unfortunately, this is 
not so for Lagrange interpolation because of the following
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T h e o r e m  1. Let M  — {-M n }neN (M n =  {x k ,n }k= i)  be an arbitrary tr i 
angular m atrix  of interpolation nodes in [—1,1] (i.e.  —1 ^  x n,n <  ® n-i,n  <  
• • • <  x\^n ^  1, n  £  N j and l k , n i x ) the fundamental polynomials of Lagrange 
in terpolation  on M.n- Then fo r  all n ^  2 we have

(7)
1 fí lim inf

n —>oo

i n f  m a x E L i l ® - * * , " !  \l 'k ,n ix )\ M n \x\Sl

inf max Y^k=i |a= — a:* „| \l'k n {x)\
M n \ x \ g l ^  fc’n

S lim sup--------------------------------------------S z.
n —>oo ^

P r o o f . Let us denote =  xjt, k  =  1 , . . . ,  n, and

A n {x\ J^A-ri) ^ ■í'fc,n| Kfcln(2')I’
fc=l

where

, ^  w n ( i )  , 1

u>'n ( x k) ( x - x t Y  ’
n

Unix) ■= J p z - Z f c ) -
fc=i

Consider an index j  E {1, 2 , . . . ,  n )  such that

\u 'n { x j )\ :=max |ŵ (xfc)|.
ISkSn

Then we get

d-n{Xj ] A 4n ) u'nixj)I ^
fc = l

1
=  n  — 1,

which proves the first inequality in (7).
To prove the second inequality, let us choose

Unix) ■■= ^[Tn- 2 Íx) — T n (x)] =  sin t sin(n — l)t, x =  cost,

where T n ix )  :=  cos(n arccos x ) is the Chebyshev polynomial of degree n. 
Then x k =  cos tk, tk =  k̂~z\W, k =  1, . . .  ,n,  and an easy calculation yields

u'n ix k ) \  =
n  — 1 if 2 ^ k ^ n  — 2, 

2 n  — 1 if k  — 1 , n ,
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and
max I u;n(ai)| ^ 1 , max | oj'n ( x ) \ ^ 2n — 2 .
Ix l= i  lx l=i

Thus denoting an index j  for which \x — Xj \ := min \x — Xk\ we obtain
5:71

An( x , M n) ^  \ u'n{x)\
k=\

+
n

s r I W„(x)|

^  K ( x fc)ll*' x k\

5  (2n -  2 )
( n - 2

2n — 2 + 2 + E
A: =  1

sin t
(n — 1 )| cos f — cos tfc|

<2?r +

< 2n +  O
l i - * l

=  2n +  0 (log n),

which completes the proof.

If { L n ( f ) } n are the Hermite-Fejér polynomials based on the Chebyshev 
nodes of first kind, then obviously (4) and (5) hold with s n =  1 and cj =  1, 
but (6 ) cannot hold since then (2) would also hold which contradicts [4].

If {L „(/)}n are the classical Lagrange polynomials for any system of 
nodes then it is known that (5) does not hold. As a conclusion, it seems that 
for classical interpolatory polynomials all of the three conditions (4) to (6 ) 
cannot be verified.

R e m a r k s . 1. This shortcoming can be removed as follows. Let Ln(f,x)  
be of the form (3) with Pk ,n(x ) satisfying (6 ). Then /  €  Lipm (1; [— 1,1]) 
implies Ln(f)  GLipC2Ai(l; [—1,1]) for all nG N. Indeed, we have

\ Ln ( f , x ) - L n { f , y ) \  =

=  \ x - y \

( x  — y )  f (x k,n)Pk,n(£x,y,n) 
k=\ 
n

’y ^ [ / (x k,n) ~  f  (£x,y,n)]Pk,n(£x,y,n) 
k= 1 

n
5  k -  y \ M  \x k,n — ^x,2/,n| \Pk,n(^x,y,n)\ 5  C ^ M \ x  — y\ .

k=l
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2. Let Xfc|T1 := — 1+ , k  =  1, . . .  ,n, be the equidistant nodes in [—1,1]
and H 2n - i  ( / ,  x)  the Hermite-Fejér interpolation polynomials on these nodes. 
D. L. Berman [7] proved that for f { x )  \ = x ,  the sequence { H 2n - i { f ,  x ) } n 
is unboundedly divergent for any 0 < |m| < 1. Hence this sequence has no 
partial preservation of global smoothness. Indeed, if /  G Lipi(l; [—1,1]) and 
if we suppose that there exist 0 < a  < 1 and M  >  0 such that fÍ2n - i ( / )  € 
Lip m {ot, [— 1,1]) for all n  G N, then

x) -  H 2n- i  ( / ,  y )I ^ M \ x  -  y \ a , V x ,  y  G [-1,1], n  G N.

Taking x  =  — 1, 0 < \y\ < 1 and letting n -» oo in the above inequality, we get 
a contradiction.

3. Positive results

First we consider two examples of trigonometric interpolation polynomi
als. For an /  € C^, let I n ( f ,  x )  be the trigonometric interpolation polynomial 
on the equidistant nodes in [0, 27r). It is known (see e.g. [20]) that

\ \ f ~ I n( , f ) \ \  ( 7 ;  ^  logn, VnGN.

Denoting (p(h) :=  u>(f; h) log l /h,  0 < h <  1, by [21, Theorem 6 , p. 230] we 
get

^c'  u{f;h)  l o g i ,  VO <  h < 1. 
h

The second example is the trigonometric Jackson interpolation polyno
mial Jn ( / ,  x )  (see e.g. [22]). Concerning these polynomials, the second author 
proved [2 1 ] the estimate

+ VnGN,

where /  represents the trigonometric conjugate of /  G C ^. Let /  G Lipjjö, 
0 < a í í l .  I f a < l  then it is known (see e.g. [6 , p. 485]) that this is equivalent 
to /  G Lip fi ja,  which, by the above estimate and by [23, Theorem 6 , p. 230] 
give m(Jn(/); /i)^ ch a , h >  0, n  G N, i.e. we can say that in this case { J n { f ) } n  
completely preserves the global smoothness of / .  Also, if a  — 1, then by 
e.g. [26, p. 157] it follows that u ( f - , h )  ^ M h \ o g l / h ,  which again together 
with the above estimate and with [21, Theorem 6 , p. 230] yields

h )  ú c h \ o g  i  0 < / K l , n G N .  
h
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R e m a r k . Let x k =  cos ^|^-7r, k  =  1 , . . . ,  n ,  be the roots of the Cheby- 
shev polynomial T n { x ), and the Hermite-Fejér polynomial of an /  6  C[—1,1] 
based on these roots,

_IL T 2ir'l
H n U , X) =  £  -  XXk) n2^ _  gfc)2 •

The above considerations about the preservation properties of J n ( f , -t) induce 
a property of partial preservation for H n ( f , x ) ,  too. Indeed, if we denote 
g( t )  =  / (cost),  then it is known that (see e.g. [22, p. 406])

H n { f , x )  =  J 2n - i { g , t ) ,  t  =  arccos x.

Now if 0 <  a  <  1 and /  G Lipca, then J 2n - i { g ) ( t )  £ Lip a, which can be 
written as (x  =  cos n, y  =  cos u)

|-ffn(/, z) -  # n ( / ,  y)| =  |^2 n-l(y)(«) ~  ^2 n-l(ö)(u)| ^  c|u -  u|Q 

= c |arccos a: — arccos y \ a ^ -^=|a; — v \a ^ 2 1 Vx, V £ [— 1 ) 1]

(since by e.g. [10, p. 8 8 , Problem 5], arccosx G Lip _e_(1/2; [— 1,1]), which
means that H n ( f )  G Lip cjl(q;/2; [—1,1]) for all n  G N).

\/2
If a  =  1, in the same way we get uj( H 71; h)  ^ c [li |log  ̂| ] 1 2  . However, by 

a direct method we will improve the last consideration about
THEOREM 2. F o r  a n y  f  G C \ — 1,1], h > 0 a n d  n  G N w e h a v e

u>{Hn ( f ) - , h)

- min +  w ( / ; / i )

where the c o n s ta n ts  in  “O ” are in d e p e n d e n t  o f  f, n a n d  h.

P r o o f . First we obtain an upper estimate for \Fl'n ( f ,  x )  |. Let x  G [—1,1] 
be fixed, the index j  defined by |x — X j \  := min \x — Xk\ and denote

1 <k<n

T 2(x )
A k ( x ) : = ( l - x x k ) ~ f  > g .

n z { x - x k y

We have

T % (x)  2 T n { x ) T n [x )  2(1 — x x k ) T 2 (x)

( x - x k y + [ L  XXk) ( x - Xk y  ( x - x k y
A'k (x )  =  - x k
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k  =  1 , . . . ,  n, which immediately implies (by 1 — x x ^  =  1 — x 2 +  x ( x  — X k))

1 2(1 — x 2)\T'n {x)\

{ x - x k )2 (X - X k )2

2 ]T'(x)l 2 (1  - x 2 ) 2

\ x - x k \ \ x - x k \3 (x - x k)2 ’
k  =  1 , . . . ,  n.

For simplicity, all the constants (independent of n and h)  which appear will 
be denoted by c. Since

n n

K i f , x ) =  f ( x k ) A 'k(x ) =  -  /(z)]A'fc(x),
fc=i t= i

we obtain
n

\H'n { S , x ) \ ú - ^ Y l  w(/ ;I®-®*!)

(8)

+

fc =  l

2(1- x 2) , 2|T'(x

3 2 ( l - x 2 )|T'(x)|
■ / \ o

| x - x fc|3 |x-Xjfc|_

( x - x fc) 2 ( x - x fc)2

+ cw(/ ;  | x-Xj | ) |A'  (x)|.

The following known relation (see e.g. [24, p. 282]) will be frequently 
used:

(9) \x — X, 1^ 4 , n \ J  1 - x 2 ~ j ,  | x - x fc|
| j 2 - /c21

Now by (9) and by the combined Bernstein- Markov inequality we get

\ A ' A x ) \ Z
n2\\Aj\\

n y / l — x 2 +  1
< c n

u(f] \x-Xj \ ) \A' j (x) \  úcu> ( / ;
j  î n2  ^ /  1

l - s - l / ;  2 \  n2

and

Also, by (9) we obtain (using also the inequality cu(/; T ) / T  ^ 2 cj(/;  f ) / t  for
t ^ T )

^ ( / ;  /  n2
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E
k^j

uj ( f ;  \x -  x k \ ) { \  -  x 2 )\T'n (x ) \  < ^ ( / ;  \x  ~  x k \ ) n V l  ~  x 2

k^j(•X ~ X k)2 { x - x ky

U){f -,\x - x k \) 4 A  1<
— T l ^( z - z * )

cn e M 4 ) .fc=i x 7

^  ^( / ;  \x  -  x k \ ) { \  -  x 2 ) < c y ^ ^ \ '  n 2
\ j 2 - k 2 \ \ j

n
\ x - x k\

S e n  u

kj t j  1 ""

1 j 2 ^ cn6
Ü2T

I/2 -  fc2|3

„ 2 )  I,'2

n u

n ‘ j  —  |;2 - f c2 | n 2 “  j 2 W (/’n2 J n2 ^1 \  j 2
n"2  1 ’

E
M i

w(/; |x -  x k \) \T ’n {x)\ < c?i2 j-v  w(/; \x -  x*|
|x — x k \

k t j
n

\X — Xk\

^ ' E f “ 4 -it=i

Collecting now all of these estimates, by (8 ) we get 

\H n ( f , x ) \ ^ c n 2 ^ 2  ^ 2  w f /5

Since

fc=i n

n
T . h w { I ''’h ) ~ n j  !fH

l/n  1

d u

~  n
§ - K )

(we have used the equivalence between the Riernann integral sums and the 
integral itself, and made a substitution t  — 1 / u ) ,  the above estimate becomes
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On the other hand, for \x — y\  Ú h and by e.g. [24, Theorem 5.1, p. 168], we 
get

I H n ( f ,  x )  -  H n { f , y)  I ^ \ H n ( f ,  x ) -  f ( x ) \  +  \ f ( x )  -  f { y ) \  + | f ( y )  -  H n { f ,  y ) \

ú2\\Hn{ f ) - f \ \ + u U ^ c Y ^ ¥ u h - - y u { f - , h ) .
k= 1

But similarly to the above considerations,

1 r  “ V ' V - d t - 1 ?
l k- 1l/n

and therefore we get

(11) co(Hn ( f ) - h )  =  0 i>(*£nL fc=l

Now, on the other hand, using (10) we obtain for \x — y\  f^h,

jfc=i
|# n (/, -  # „ ( / ,  y)l g K ( / ,  Ol* ^ c n h  Y ,  u  ( / ; k 2 J ’

i.e.

u ( H n { f ) - h )  =  0 h n J 2  w ( / ; p
fc=i

which together with (11) proves the theorem.

COROLLARY 3. I f  f  €  Lip a, 0 < a  ^ 1 i/ien /or all n £  N and 0 <  /i <  1 
we /lane

u ( H n ( f ) , h )  =

L  ma.(2-a,i+o) 'j i f  0  <  a  <

M o g l

2 a  +  l  ’ 
6

i f  a  =  1 /2  or 1 .

P roof . The optimal point in Theorem 2 is when h =  v n , where

1E w /
7̂1 --

k= 1
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When h < v n , the minimum in Theorem 2 is the first term, and when h  > v n, 
it is the second term. By simple calculations we have

0(n a~2) if 0 < a  < 1/ 2 ,

(  n3/ 2 log n  )
if a  =  1 / 2 ,

0{n~l 2~a) if 1 /2  < a  < 1,

if a  =  1 .

Hence, by using Theorem 2 we arrive at the statement of the corollary. 
R e m a r k s . 1. L e t 0 < a < l .  The obvious inequalities

a  a

2 max(2  — a ,  1 + a)
h l / A> h  log

mean that the preservation property given by Corollary 3 is better than that 
given by the previous Remark.

2. It is an open question if the estimates of h)  in Theorem 2 and
Corollary 3 are best possible. However, if we choose, for example, f o ( x )  : =  
x  € Lipi(1; [—1,1]), then we can prove that u ( H n (fo)-, h)  ~  \ f h .  Indeed, by

H M o, x ) = X - T ^ T " - M  = x  T 2n —1 ( x)  +  T i ( x )
n 2 n

(see [4]), we get

\H'n ( f 0 , x ) \  = 1 - T 2 n - A x ) +  l

2 n
>

\ / l  — x 2
= cn,

for all x  6 1 +  X \ 

2
and

1 — X \ > 1 +  X \

=  \H h ( f o , 0 \ — - / l- ^ c n { l  - X i )  =  c
1 — X \

as claimed. Now we will prove that in fact H n ( f o )  £ Lip^/5 , for all n € N.

Evidently, it suffices to prove that —^ — — € LipM^ f°r all n 6  N. But by 
[10, Problem 5, p. 88]

\T?.n-\{x) — T2n-l {y) \  _
2 n
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| cos(2n — 1) arccos x  — cos(2n — 1) arccos y\  

2 n
(2n  —1)| sin £| | arccos x  — arccos y\

2 n
M  7T ,

5] M | arccos x — arccos y\ ^ -j=-\x — y |1//2,
v 2

which was to be proved.

Now consider the Lagrange interpolation polynomial L n ( f )  based on the 
Chebyshev nodes of second kind plus the endpoints ±1. It is known [19] that

where x k =  cos tk, tk =

k̂ (x)

Ln(f ,x)  =  ^ 2 f { x k)lk{x), 

k -  1

k=1

n  — 1
7r, k =  1 , . . . ,  n, and

(-1 )  l u n{x)
k =  1, n

(l +  áfci +  Skn)(n — l)(.x — xk) ’

with ujn ( x )  =  sinisin(n — l)f,  x  =  c o s t .

T heorem 4. For any f  E C[— 1,1], h >  0 and nE N we have

u j ( L n ( f ) - h ) ^ c m m h n ' j r  a) i f ]  , ló ( f -  M logn +  u { f \ h )
k=  1

where c > 0  is independent of f , n  and h.

P r o o f . The method will follow the ideas in the proof of Theorem 2, 
taking also into account that the relations in (9) hold in this case, too. 
Therefore let x E [0,1] be fixed (the proof in case x E [—1,0] is similar), the 
index j  defined by m in \x — xj\ — min \x — xk\, and let us denote ivn(x) =

U n { x ) (  1 - x 2 ), where Un ( x )  =  

we get

l^k^n 
sin(n — l)f

**(*) =

sint 

( - 1 ) " " 1

, x =  cos t. By simple calculations

(1 +  Sk i +  Skn) ( n - \ ) { x - x k )

U'n ( x ) { l —x 2) 2 x U n (x )  Un ( x ) ( \ - x 2^

(x - x k)2
x

x - x k x - x k



PRESERVATION OF GLOBAL SMOOTHNESS 409

which immediately implies (as in the proof of Theorem 2)

I K { x ) \ { l - x 2)
« U l  F -x j f c i ;u { f ; \ x - x k \)

\ x - x k \

2 \U n (x ) \  , \Un ( x ) \ ( l - x * y
+ - r -----'— , +

x - x k \ (x - x k)2
+  Uj(f-, \x — x j \)\l'j (x ) \ .

Now the Bernstein-Markov inequality yields

l* i(* ) l ^  j t .  IUj(a?)ll ^  — \H X)\\ Í  — ■nv 1 — x2 + 1 3 J

Therefore

w ( / ; \x -  * il)|z;-(*)| ^  w ( / ;  ^ n2“  ( / ;  ■

Now we will use the obvious estimates

\Un ( x ) \ { \  -  x 2 ) ^ \ / l  - x 2 ~ ^ ,
n

Thus we obtain

n

|t/^(2; ) | ( l - x 2) ^ 2 ( n - l ) .

s2E u ;(/; |a - g f c |)  2 

|z - Z f c | É M 4 )A:=l v 7

fc=l x 7

n
1 ,/■ f.  I i\ l^n(® )| ^  w ( / ; |a ;  — Xfc|) ^  1 ^
n  E  -(/■  I* -  -  D j r ^ i  í  E  -" ( * * * ) •

n
1 _ i J 0 » ( * ) l ( l - ® 2) „  c j  ^  w (/; | s - s fc|)_  g  M / , i ,  s  _  g  _ _ _ _ _
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— n 2 2-^í j
kfr  ~ ^ \ x - X k \ 

n z

s ^ E
w (/; \ x - x k \)

kjíj
\ x - x k \ ^ cnE  “' ( / í p  ) •

A:=l

Collecting all of these estimates we obtain

\ K Á f , x ) \ ^ c n j r  új i f ;  ,
k= 1 '  '

which, by the same reasoning as in the proof of Theorem 2, yields

" /  i
(12) u j ( L n ( f ) - h )  ^ c n h Y ^  u  ( / ;  Tz

k=l k 2 '

On the other hand, for \x  — y\ ^ h we get

IL n ( f ,  X ) -  L n ( f ,  y)| g 2||L„(/) -  / | |  +  a;(/; h),

which implies
u ( L n { f ) ; h ) Z 2 \ \ L n { f ) - f \ \  +  u>( f ;h) .

Standard technique in interpolation theory (see [24]) gives

\ \ L n i f ) - m c u , ( f ; ^ \  ||An||,

where An(x) := |/fc(a;)|, x  6 [-1,1], is the Lebesgue function of interpo
lation. Here by (9)

Thus

(13)

k= 1

U n { x ) ( l  -  X2
( n -  l ) ( x - x k) sE

k^j

\ Un { x ) \ { l  -  X 2] 

( n - l ) \ x - x k \ + \h(x)\

s < E
n

2 1.21 ' r j+  M ® ) |
* * , ( » - 1 ) 1 1 ^  

n z 
k

= CY 1  \ k ' 2 - j 2 \ +  \lÁ X)\ = Clog U +  H * ) \  = c l° S n -

u>{Ln ( f ) - , h ) ^ c u  ( / ; -  ) log ti -f" w(/;/i),

which together with (12) proves the theorem.
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C O R O L L A R Y  5. (i) If f  £ L i p  a , 0 < a  ^ 1, then for all n £ N and 
h € (0,1) we have

O h 2~a ( log
2 —2q -\ 

1 \  2-“
h

u(Ln{ f ) ;h )=  O log

O h\+a log
1 *1

1 \  1+n
h

if 0 < a  <  b,

i i a = r

if b < a  ^ 1.

(ii) l fu(f-,h)  =  0 1 , ß  > 1 i/ien

/
1

u { L n { f ) - h )  =  0

W i J
(All the constants in “O ” are independent of n and h.)

PROOF, (i) Let /G L ip a , 0 < a ^ l .  Then (12)—(13) yield

0 { n 2~2ah) i f 0 < a < ^ ,
(14) w(Ln(/);/i)  =  { 0 (nh  logn) i f a = l ,

0 (n h ) if  ̂< a ^ 1,

and

(15) u(Ln(f)\h) =  0 [  +nv

respectively. Now if n is smaller than

i l o g i ) ’- ,  h - W ,  log 1^

in the cases 0 < a  <  1/2, a  =  1/2, 1/2 <  a  ^ 1, respectively, then we use the 
corresponding estimates in (14). Otherwise we use (15).

(ii) In this case we get from (12) and (13)

oj(Ln(f);h) =  0
n2h
logn
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and

u{Ln{f)-,h) =  0
1 1

+ ------
\

log  ̂ 1 n 1
log Ä /

As before, we use these estimates according as n is smaller or bigger than

A O » « « * ' ' -
Finally, let us consider the case of the Shepard interpolatory operator

Y2 f i k / n ) \x ~k/n\  x
SntX(f ,x )  =  ! ^ - ^ ---------------------- ,  ̂= 1, n —1 , 2 , ,

Y2 \x — k/n\~x 
k= 0

defined for an arbitrary /  G C [0,1]. Since by [23, Theorem 1 and Lemma 2] 
we have estimates for H-SV̂a — /II and \\S'n A||, by applying the above method 
we immediately get

u(S n,x(f) ',h)^c  min hn2~x f
l/n

w(/;<) d t ,n 1 A/
l/n

dt +  w(/; h)

l
g chx~l j  0 < h <  1 <  A, n G N,

h
where the constant c is independent of n. In particular, for 1 < A ^ 2, /  G 
Lip a, 0 < a  ú 1 we get

f 0 ( h a) if a  <  A — 1,
^ { S n,x(f)-,h) = \  O (ha l o g \ )  if a  =  A — 1,

( O ^ - 1) if A - l < a .

Now if A > 2 then by

J  j  t i - x d t ^ c h } - x u { f - h )
h h

we get the simpler relation

u{Sn,x{f);h) ^ c u { f ;h ) , 0 < h <  1, A >  2, n G N.
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REMARK. The above results show that when A>2, or 1 < A ^ 2 and a. < 
A — 1, then the Shepard operators completely preserve the global smoothness 
of / .  Also, the case A =  1 remains unsolved, since in this case Lemma 2 in 
[23] does not give an estimate for ||5'[lA||.
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REGULAR POLYHEDRA AND HAJÓS POLYHEDRA

KATALIN BOGNÁR MÁTHÉ and K. BÖRÖCZKY

Dedicated to the memory of György Hajós

1. Introduction

The regular polyhedra in the d-dimensional spaces of constant curvature 
are solutions of various extremal problems. Many characterizations are de
scribed in the book [8] of L. Fejes Tóth and in the survey article [9] of A. 
Florian. In these results, the inradius or circumradius, or the number of 
faces, or some quermassintegral of the polyhedron is prescribed.

On a seminar of G. Hajós in 1960, a method of L. Fejes Tóth in [7] 
(see III. 3) related to a packing of unit circles in the Euclidean plane was 
discussed. The idea is to cut off the corners of a Dirichlet-Voronoi cell by 
a circle of radius The following problem was raised by the participants: 
find the polygon with minimal area among the convex polygons such that 
the polygons contain a circle of radius r\ and vertices of the polygons lie 
on a concentric circle of radius r-z (tt < 7-2). J. Molnár [10] proved that the 
solution is the so called Hajós polygon in any plane of constant curvature: 
each but possibly one side touches the inner circle. Observe that the Hajós 
polygon is a regular polygon for suitable tt and V2-

The original problem can be rephrased in the following way: find the 
convex polygon P  with minimal area such that for some O G P,  the distance 
of O from the edges is at least r i and from the vertices is at least r -̂ We 
consider d-polyhedra under similar conditions. Let 0 < tt 51 • • • ^ rg where in 
the case of hyperbolic space, we allow =  oo. We say that a polyhedron P  
satisfies the distance condition ( t t , . . . ,  r(i) with respect to some O 6 P  if the 
distance of O and any A:-flat containing some A;-face of P  is at least r^-k- If 
Td — oo in the hyperbolic space then the vertices of P  are ideal points.

The distance condition originates from the proof of the so called simplex 
bound for the density of a packing of congruent balls by C. A. Rogers [11] in

1991 Mathematics Subject Classification. Primary 52C17, 52A15; Secondary 52B10. 
Key words and phrases. Packing, polyhedra, spacious.
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the Euclidean, and by K. Böröczky [4] in any space of constant curvature. 
Note that the 2-dimensional case was settled earlier by L. Fejes Tóth (see
[9]) in the Euclidean, and by J. Molnár [10] in any surface of constant curva
ture. We say that a packing of congruent balls satisfies the spacious condi
tion ( r i , . . . ,  r([) if each Dirichlet-Voronoi cell satisfies the distance condition 
( r l , . . .  , rfi). Note that there exist certain optimal ( r i , . . .  , r</) depending on 
d and the curvature of the space such that any packing of balls of radius 
r\ satisfies the spacious condition { r \ , . .. ,rfi). The papers mentioned above 
used the spacious condition in order to give a lower bound for the volume 
of any Dirichlet-Voronoi cell, which estimate in turn resulted in the simplex 
bound.

In the theorems below, certain regular polyhedron is given, and r^-k is 
defined as the distance of a k-ia.ce and the center of this regular polyhedron.

T h e o r e m  1. Let Q be a regular polyhedron in a 3-dimensional space 
of constant curvature, where ideal vertices are allowed in the case of the 
hyperbolic space. Denote by r3_*,, k =  0,1,2, the distance of the center and 
a k-face of Q. Then the volume of any polyhedron P  satisfying the distance 
condition is at least the volume of Q, with equality only if P  and
Q are congruent.

In higher dimensional spaces, we need a technical assumption on P: P  
satisfies the foot condition with respect to O G P  if the orthogonal projection 
of O onto the Ä-plane containing a A;-face lies in the k-iace. We denote the 
volume of Jordan measurable sets by F(-).

T h e o r e m  2. Let Q be a regular polyhedron in a d-dimensional space of 
constant curvature, d^. 4, where ideal vertices are allowed in the hyperbolic 
space. Denote by rd~k, k =  0 , . . .  , d — 1, the distance of the center O of Q 
and a k-face of Q.

(i) In the Euclidean case, if a polyhedron P  satisfies the distance condi
tion {r\, .. . ,rf i)  then V(P)<l V(Q) holds with equality only if P  and 
Q are congruent.

(ii) In the hyperbolic or spherical case, if a polyhedron P  satisfies with 
respect to O both the distance condition (r\ , . . . ,  rfi) and the foot con
dition for k-faces, k^. 3, then V(P) ^ V(Q) holds with equality only 
if P  and Q are congruent.

Probably, in some cases the distance condition in Theorem 1 can be 
relaxed. For example, for some regular polyhedra with triangular faces, it 
might be enough to assume that the bounding planes and the vertices of 
P  are not close, and no need for condition on the edges. J. Molnár raised 
the following problem in the three dimensional Euclidean space: determine 
the convex polyhedron of minimal volume if it contains a given ball and the 
vertices are taken from a concentric sphere.

An edge to edge spherical tiling in S 2 whose tiles are congruent to a given 
spherical Hajós polygon lying in an open hemisphere is called a spherical

KATALIN BOGNÁR and K. BÖRÖCZKY
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Hajós tiling.
Call a 3-polyhedron in a space of constant curvature Hajós polyhedron 

if the faces are congruent Hajós polygons such that each face touches the 
inscribed ball in the circumcenter of the face, and hence the vertices of the 
polyhedron are contained in some sphere. Readily, each regular polyhedron 
is a Hajós polyhedron. Observe that Hajós tilings are exactly the radial 
projections of the faces of the corresponding Hajós polyhedra.

We also define the asymptotic Hajós polyhedron in the hyperbolic three 
space, as a polyhedron whose vertices are ideal points, the polyhedron has 
an inscribed ball and the radial projection of the faces onto S 2 is a Hajós 
tiling (assuming that S 2 is concentric with the inscribed ball). Note that if 
the center of S 2 is given then Hajós tilings and asymptotic Hajós polyhedra 
are in one to one correspondence.

The natural analogue of the problem of J. Molnár asks whether among 
polyhedra which contain the inscribed ball of the Hajós polyhedron and 
whose vertices lie on the circumsphere of a Hajós polyhedron, the Hajós 
polyhedron itself has the minimal volume. This problem has resisted all 
attemps so far.

B. Bollobás characterized Hajós tilings in the 60’s but his result has never 
been published. We provide the list below, and verify in Section 3 that no 
other Hajós polyhedra exist.

T h e o r e m  3. If a Hajós polyhedron is not regular then its faces are tri
angles whose two longer sides have equal length. In this case, denote the 
length of a shorter side by s and of a longer side by l. In the cases (iii), . . . ,  
(vi), there exists a unique polyhedron for any given s and n.

The Hajós polyhedra are:
(i) The regular polyhedra;

(ii) Tetrahedra ivhose four edges have length l, and the other two are 
opposite with length s;

(iii) Bipyramid over a regular n-gon with sidelength s, n ' t  5;
(iv) Consider a bipyrarnid as in (iii) for even n ' t  6. Cut the bipyramid 

into two by a plane containing the top and bottom vertex, and two 
opposite vertices of the n-gon, and hence the section is a square. Fix 
one part, and rotate the square onto itself together with the other part 
by n/2;

(v) The union of an antiprism over a regular n-gon, n t  6, and two 
pyramids (on top and bottom). The edges with length s are the sides 
of the two regular n-gons.

(vi) Consider the polyhedron as in (v) for odd n 't  7. Cut the surface of 
the polyhedron into two by a spatial hexagon whose sides are edges of 
length l and whose vertices are the top vertex and the bottom vertex, 
and two opposite vertices of both regular n-gons. This hexagon has 
a rotational symmetry of degree 2rr/3 around the suitable axis. Fix
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one part of the surface, and rotate the other part by this 2ir/3 degree 
rotation.

R e m a r k . One type of asymptotic Hajós polyhedra are naturally the 
asymptotic regular polyhedra. On the other hand, while the faces of an 
asymptotic Hajós polyhedron corresponding to any of the cases (ii), . . . ,  (vi) 
are regular asymptotic triangles, no face touches the inscribed ball of the 
polyhedron in the center of the incircle of the face.

2. Extremality of the regular polyhedra

In this section, we work in a d-dimensional space of constant curvature, 
and by S  we always denote some ball. The density of S in a Jordan measur
able set T  is defined as

d(T,S)
v ( s r \ T )

V(T)
An orthoscheme Ao . . .  A d is a d-simplex such that for i =  1 , . . . ,  d — 1, the 

subspaces determined by A q, . . .  , A{ and A i , . . . ,  A d are totally orthogonal, 
namely, any line containing Ai and lying in the first subspace is orthogonal 
to any line containing Ai and lying in the second subspace.

The following three lemmas are related to certain statements and meth
ods in Böröczky [4] and Böröczky and Florian [6]. Note that in the special 
case d =  3, the results of Böröczky [4] were already proved in Böröczky and 
Florian [6].

L e m m a  1. Consider a ball S with center A q and orthoschemes T  =  
AqA\  . .. Ad and T  =  A0Ai . .. Aii where Ad and Ad are allowed to be ide
al points in the case of the hyperbolic space. Assume that AoAi ^ AqA í for 
i =  1 , . . . ,  d, and S does not intersect the hyperplanes A\ . . .  Ad and A\ .. . Ad- 
Then d{T,S)  ^ d (T ,S ), and equality holds only if T and T are congruent.

S k e t c h  o f  t h e  p r o o f . Lemma 1 basically coincides with Lemma 10 
in Böröczky [4], p. 256 (note that the dimension of the space is denoted by 
n in that paper). The difference is that now we allow Ad (and hence Ad) 
to be an ideal point. If this is the case, the proof in [4] still carries through 
word by word (see Sections 2 and 3, p. 244-256), with the following change: 
instead of BAd < CAd, write ZCBAd > ZBCAd■

If Ad is ideal and we are not interested in the case of equality, the finite 
case yields the statement by limiting arguments. □

The limit density at a lower dimensional orthoscheme T  = A qA i . . .  Ak, 
l <  d, is also needed in the arguments for the proof of Theorem 2. It is 
defined as

d{T, Ak, S) — lim d(A0 . . . A kA k+i . . . A d,S),Ai-tAi,
i=fc+l,
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where Aq . . .  AkAk+\ ■ ■ ■ Ad is assumed to be an orthoscheme.
Denote by 5 (0 , r) the ball with center O and radius r (if the space 

is hyperbolic and r =  oo then 5 (0 , r) is naturally the whole space). Set 
r =  AftAfc and denote by II the (d — k +  l)-plane containing Ak- \  and totally 
orthogonal to Ao . . .  Ak-\ .  If a is any (d — fc)-dimensional Jordan measurable 
subset of the boundary of 5 (0 , r) fl fl then

d(T, Ak,S) =  d(conv{A0, . . . ,  Ak- i ,  a}, 5).

Lemma 2 below is Lemma 11 in Böröczky [4]. We repeat the proof for sake 
of completeness.

Lemma 2. Consider a ball S with center Aq, a k-dimensional ortho
scheme T  =  AqA \ . . .  Ak (k < d), and a d-dimensional orthoscheme T  =  
AqA\ . . .  Ad- Assume that AqA{ ^ AqA í for i =  1, . . . ,  k — 1, AqA k ^ AoAd and 
S does not intersect the planes A\ . . .  Ak and A \ . . . A d -  Then 
d(T,Ak, S ) < d ( T , S ) .

P r o o f . Let
To =  AqA\ . . .  A k_iA'k . . .  A'd

be an orthoscheme such that AoA[ >  A qA í for i =  k , . . . ,  d — 1 and AqA'c1 =  
AoAk. Then it follows by the definition of d(T, Ak, 5) and by Lemma 1 that

d(T, Ak, 5) ^ d(To, 5) < d(T,S).  □

The last lemma is a rather technical one. The three-dimensional version 
with finite vertices was proved in Böröczky and Florian [6].

Lemma 3. Consider T  =  conv{^4o; -Ai,. . . ,  Ad-3 ,p} with the following 
properties: T  is a full dimensional and p is a two dimensional convex poly
hedron, Aq, A \ , . . . ,  Ad—3 are vertices of T  and if d~t 4 then the subspaces 
determined by Aq, A \ , . . . ,  Ak and Ak, , Ad-3,p are totally orthogonal, k =  
l , . . . , d  — 3. In addition, assume that the orthogonal projection B of Aq on
to the 2 -plane of p lies outside of p, and the vertices of p have the same 
distance from Aq (or each is an ideal point in the hyperbolic space). Ob
serve that p has a unique side D E  separating B from p, and denote the 
orthoscheme conv{Ao, A i , . . . ,  Ad-3, B, C, D }  by To where C is the closest 
point of D E  to Aq. With these assumptions, if 5  is any ball with center Aq 
that does not intersect the (d — 1 )-plane determined by A \ , . . . ,  A d - 3 ,P then 
d (T ,S )< d (T 0 ,S) .

P r o o f . N o t e  t h a t

(1) T =  conv{A0, A i , . . . ,  Ad_3 ,B ,p } \ c o n v {A 0, Au . . . ,  Ad- 3, B,  D, E}.

For any side s* of p different from DE,  denote the closest point of Sj to 
Aq by Ui. Let V) be one of the endpoints of Si (t/j is the midpoint of s.
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unless Vi is an ideal point). Then conv{Ao, A \ , . . . ,  A ^ s ,  B,p}  can be dis
sected into orthoschemes which are congruent to one of T) =  conv{Ao, A4 ,
. . . ,  A d - 3 , B,  Uii Fj}, and conv{Ao, A \ , . . . ,  A^-3, B, D, E}  can be dissected 
into orthoschemes congruent to Tq. We deduce by AqC < AqU1 and Lem
ma 1 that d(T), S) < d(To, S) for i =  1, . . .  ,m, which in turn yields the lemma 
by (1). □

The proof of Theorem 1 uses ideas in Böröczky and Florian [6], p. 240, 
where the case of special (finite) values for rq, r-2, and rj, was considered.

P r o o f  o f  T h e o r e m  1. Based on the center O of Q, divide Q into 
congruent orthoschemes. Let T  =  OAiA^A^ be one of these orthoschemes, 
where A{ sits in a face of dimension 3 — i, and hence rq =  OA{.

Assume that P  is situated so that O has distance at least rt from any 
(3 — i)-plane spanned by some (3 — i)-face of P. Approximating closely the 
part of the boundary of S ( 0 , r s )  contained in intP, a polyhedron P' C P  
can be constructed whose vertices are on the boundary of S{0,  r )̂ and the 
polyhedron still satisfies the distance condition (tt, ?~2, r$) with respect to O. 
If r3 =  00 then simply take P'  =  P.

We define a tiling of P' by skew pyramids and orthoschemes, always 
with apex O in the following way: Let F  be a face of P' and let B be the 
orthogonal projection of O onto the plane of F. If B  0  F then we simply 
take the skew pyramid con v{0 ,P }. If B £ F  then dissect conv{0 ,P } by 
orthoschemes OA1A2A3 where A\ =  B, Ai  is the closest point of an edge of 
L to O, and A3 is an endpoint of this edge. Observe that if r3 is finite then 
A2 is the midpoint of the corresponding edge.

Let T  be a tile defined above. It follows by Lemma 1 if T  is an or
thoscheme, and by Lemma 3 if T is a skew pyramid that d(T, S ( 0 , r \ ) )  Ú 
d(T , S ( 0 , n ) )  with equality only if T is congruent with T. Therefore V (Q ) ^ 
V (P ') ^ V (P ), with equality only if Q and P  are congruent. □

R e m a r k . Even if 0 <  rq <  do not originate from a regular poly
hedron, one can still define the orthoscheme T  corresponding to r i ,r 2,r 3. 
Let P  be a polyhedron satisfying the distance condition ( r i ,^ ,^ )  with 
respect to O. The same argument as above yields that d (P ,S (0 , r  1)) ^ 
d(T , S ( 0 , r  1)), which in turn results in a lower bound for the volume of P.  
If (r ii 2̂ , 'i'3) is the optimal distance condition for a Dirichlet-Voronoi cell 
in a packing of congruent balls and P  is a Dirichlet-Voronoi cell then these 
arguments yield the simplex bound in Böröczky and Florian [6].

In the proof of Theorem 1, we did not need the foot condition. The 
point is that after intersecting with S ( 0 , r 3), the foot condition holds for the 
edges. On the other hand, if the foot condition does not hold for a 2-face 
then Lemma 3 solves the problem.

Unfortunately, no analogue of Lemma 3 is known for higher dimensional 
faces, and so we had to assume the foot condition in Theorem 2 for k-faces 
with k > 3 .
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The proof of Theorem 2 is based on ideas in Böröczky [4]. That paper 
uses special values of r* derived from conditions on a Dirichlet-Voronoi cell 
P  in a packing of congruent balls. In this case, a suitable analogue of the 
foot condition automatically holds for P f l 5 (0 ,  r^) (O is the corresponding 
center) because P  is a Dirichlet-Voronoi cell.

P ro o f  of T heorem  2. Dissect Q into congruent orthoschemes, and 
denote one of them by T. Set S =  S(0 ,  ri).

First consider the Euclidean case, and assume that O is the base point 
for the distance condition. For any flag Po C • • • C Fd-i of the faces of P, 
dimPj =  i , define the skew orthoscheme T  =  co n v {0 ,A j ,. . . ,  Ad} where A{ is 
the closest point of Fd-i to O. One can dissect P  into non-degenerate skew 
orthoschemes of the above type.

Then according to Theorem III.6 in [3], the inequality

d(T, 5 )  ^ d(T , S)

holds for any non-degenerate skew orthoscheme T  with equality if and only 
if T  and T  are congruent. In turn, we conclude Theorem 2 (i).

Now assume that P  is a polyhedron in the hyperbolic or spherical d- 
space satisfying with respect to O both the distance condition ( r i , . . . , r )̂ 
and the foot condition for fc-faces, k ^3. The idea is to dissect P  C\ S(0 ,rd)  
into orthoschemes. If a face F  of P  intersects in t5(0 , r )̂ and dimP ^  2 then 
the foot condition does hold for P, and hence two things cause problems: 
we do not have foot condition for 2-faces, and also some spherical regions 
bound P  P S(0,rd)- Anyway, one can still dissect P fl 5 (0 , r )̂ into a tiling 
where each tile is of the form T =  conv{0, A \ , . . . ,  A&, a}. Here Aj is the 
closest point of the (d — i)-plane determined by a (d — i )-face Fd-i °f P, 
Fd~k C • ■ • C Fd-1, Aj € Fd-i and a is a (d — k — l)-dimensional set lying 
on the relative boundary of Pd_/t fl 5 (0 ,  r^). There are three types of tiles 
according to the type of a.

(i) If a is a point Ad then T  =  OAi . . .  Ad is an orthoscheme.
(ii) a is a convex domain in a Euclidean 2-plane, and the orthogonal 

projection B  of Ad- 3 onto the 2-plane of a lies outside of a.
(iii) a is a (d — k  — l)-dimensional spherical Jordan measurable set ly

ing in the relative boundary of Fd-k P S(0,rd)-  Observe that T =  
conv{0, a}  can occur, where a is a (d— l)-dimensional spherical Jor
dan measurable set on the boundary of 5 (0 , r^), and then we set 
A: = 0.

Note that if =  00 then only cases (i) and (ii) can occur.
We claim for any tile T  in P fl 5 (0 ,  r^) that

(2 )  d(T, 5 )  ^ d(T , 5 ) ,

with equality only if T  and T  are congruent.
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If T  is an orthoscheme then the claim follows by Lemma 1.
Assume that T  is of type (iii) (and hence rd is finite), and choose an 

Ak+1 E a. Then d(T, S ) =  d(T, Ak+\,S),  and Lemma 2 yields the claim.
Finally, assume that T is of type (ii). Since B  is not in a, there exists a 

side D E  of a separating B  from er. Set

T0 =  conv{0, A i , . . . ,  3, B, C, D},

where C  is the point of D E  closest to O. Approximating a by polygons, 
Lemma 3 yields that d(T , S ) ^ d(To, S). On the other hand, we have OC > 
Vd-i,  and hence d(To, S) <  d (T , S ) holds by Lemma 1. Therefore we conclude 
(2), which in turn yields the Theorem. □

K. Bognár Máthé considered polyhedra in the Euclidean 3-space satisfy
ing certain special distance conditions. In the papers [1] and [2], she showed 
that the dual Archimedean semi-regular polyhedra (3,4,3,4) and (3, 5, 3, 5) 
have minimal volumes in suitable classes of polyhedra.

KATALIN BOGNÁR and K. BÖRÖCZKY

3. Hajós polyhedra

The goal of the section is to prove Theorem 3.
The polyhedra described in Theorem 3 (i), . . . , (v)  readily exist. The 

existence of the last type of Hajós polyhedron (more precisely, the existence 
of the corresponding Hajós tiling) is established in II. 2.2.1 below.

Consider a Hajós tiling whose tiles are congruent to the spherical Hajós 
polygon P.

If P  is a regular polygon then Euler’s theorem yields that the Hajós 
polyhedron is a regular polyhedron. So assume that P  is not a regular 
polygon.

Denote the length of the longer sides of P  by a, the shorter side by b, 
the larger angles by ß  and the smaller angle by a.  Finally, let O be the 
circumcenter of P, and let B\  and B2 be the end points of the side of length b. 
Since P  is contained in some open hemisphere, we have

(3) O B x= O B 2 <

The reflected image of a tile through the short side is also a tile. Call 
the union of the tile and the reflected image a twin. Since the twins also tile 
S'2, the number /  of tiles in the tiling is even. We call the tiling determined 
by the twins as twin tiling.

Euler’s theorem yields that P  has at most five sides.
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I P is not a pentagon or a quadrilateral.
Assume that P  is a k-gon, k =  4,5. Then 2a + 2/3 > 2ir holds by a < ß, 

and vertices where angle ß  occurs show that
27T

(4) a +  2/3 =  27r, and hence a < — .
3

Since each side of length a of P  can be seen by an angle less than from O, 
we have

(5) ß  > a >
(k — 3)7t

jfc-1 '

If k =  5 then (5) yields that each vertex of the Hajós tiling has degree 
three. We deduce that /  =  12, and hence

3 a +  2/3 =
47T
12

+  37T =
107T
I T ’

which in turn contradicts (4).
So assume that k =  4. Among the angles in the tiling, we have the 

same number of a ’s and /3’s. We deduce by (4) that there exists a vertex, 
where only angles of size a  lie. Now |  < a  < yields that either a  =  ^  or 
ol =  \ .  Then the angle of the triangle O B 1B2 at 331 is either n /2  or 37t/ 5, 
respectively. We deduce that OB  1 ^ |  holds in both cases, which contradicts
(3).

II P  is a triangle.
Then P  is an isosceles triangle whose two longer sides are equal.

H I  /  =  4.

In this case, the Hajós polyhedron is some tetrahedron, which is readily 
the one described in Theorem 3 (ii).

II 2 f ' t  6.

Instead of the Hajós tiling, from this point we consider only the twin 
tiling. Now the twin is a spherical rhombus with angles a  and 2/3, which 
may degenerate to a 2-gon (if ß  =  n/2). Denote by ft =  f / 2 the number of 
twins. Counting the area of a twin yields that

(6) a  +  2/3= -2-7T.
Jt

We deduce by (6) and /t  ^ 3 that at any vertex only at most two 2/3’s 
meet. Call a vertex of type zero, one or two according to the number of 2/3’s 
meeting at the vertex.
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The number of a ’s and 2/5’s (as the angles of twins) is the same. Thus 
there exists a vertex, where the number of a ’s is at least (or at most) the 
number of 2/5’s. Since it <  a  +  2/3 <  2n, there exists a vertex of type either 
zero or one (where the number of a ’s is greater), and there exists a vertex 
of type two. In particular, at a vertex of type two, we have either

a  +  2 - 2 ß  — 2n or 2-2/5 =  27r.

Call the vertex of a twin sharp (flat) if the angle at the vertex is a  (2/5).

II 2.1 /5 = 7r/2.

Then the rhombus is a 2-gon with angle a. Since a  <  ß  =  7r/2, we deduce 
that f t  ^ 5.

If there exists a vertex of type zero then the corresponding polyhedron is 
the one described in Theorem 3 (iii) (and n =  /t). Otherwise, there exists a 
vertex of type one. At this vertex, the flat vertex of a twin meets the sharp 
vertex of | / (  other twins, which case is described in Theorem 3 (iv). Then 
n =  f t  is even, and hence n^.6.

II 2.2 a + 4/5 =  2ir.

In this case, (6) yields that

4 j q f t ~ 2  <2 = 7-7r and f l=  7r.
f t  2 ft

Then a < /5 yields that f t >  10.

II 2.2.1 There exists a vertex with type zero.

Let A be the vertex of type zero where ^f t  twins meet. The \  ft neigh
bouring vertices of A  are of type two, which are the sharp vertices of ^ft 
additional twins. This way all twins have been enumerated, and the addition
al twins meet at a common vertex D. The whole arrangement has spherical 
rotational symmetry of angle a  around A , and hence A and D are oppo
site points. Therefore the corresponding polyhedron is the one described in 
Theorem 3 (v), and f t =  2n.

Assume that  ̂f t  =  n  is odd. Then

2/5= 1 cv,

and hence the construction described in Theorem 3 (vi) can be actually 
performed.

II 2.2.2 There exists no vertex with type zero.
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Then there exists a vertex A of type one. Since

^ - ~ - a  +  2/3 =  2vr,

we have that ^ft =  2m + 1 for some integer m ^ 3, 2/3 =  ma.  The vertices of 
type two have degree three, and any vertex of type one is the sharp vertex 
of m  +  1 twins.

Denote by T  the twin which has a flat vertex at A, and by T i , . . . ,  Tm+i 
the twins which have a sharp vertex at A. Let C \ , . . . ,  Cm be the neighbours 
of A not contained in T. Then C i , . . . ,  Cm are sharp vertices of m  twins, 
whose other sharp vertex is a common point D.  The union H  of these last 
m twins and T) , . . .  ,Tm+i is a spherical region bounded by a hexagonal line 
whose sides have length a and the angles are alternately either 2/3 or 2n — 2/3.

Since the twin is determined by its angles, all the twins in H  are also 
contained in the twin tiling constructed in II. 2.2.1, and hence A and D  are 
opposite points on S 2.

Observe that D  has type one. Thus there exists an (m +  l) st twin which 
has a sharp vertex at D, and hence the other sharp vertex of this twin is 
a common vertex A with T. One of the twins sharing an edge with T  has 
a sharp vertex at A and a flat vertex at A. Denote this twin by T. Then 
the whole construction based on A and T  can be repeated word by word 
for A and T, resulting in a set H . The twins in H  can be obtained from 
the twins in H  by spherical reflection through the midpoint of the edge AA. 
The hexagonal line bounding H  is also the boundary of H ,  and hence each 
twin is contained either in H  or in H .  We conclude that the tiling is the one 
described in Theorem 3 (vi), and the spherical hexagonal line bounding H  
corresponds to the spatial hexagon mentioned in Theorem 3 (vi).

A c k n o w l e d g e m e n t . We would like to thank Endre Makai for helpful 
discussions.
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ASYMPTOTIC BEHAVIOR OF POSITIVE SOLUTIONS 
TO NONLINEAR SINGULAR DIFFERENTIAL EQUATIONS 

OF SECOND ORDER

T. TANIGAWA

1. Introduction

We are concerned with positive solutions to second order differential 
equations with singular nonlinear terms of the type

for which the following conditions are always assumed to hold:
(a) a  and ß  are positive constants;
(b) p(t) and q(t) are positive continuous functions on [a, oo), a ^ 0;
(c) p(t) satisfies

By a positive solution of (A) on J  C [a, oo) we mean a function y : J -> 
(0, oo) which is continuously differentiable on J together with p\y'\a~1y' and 
satisfies the equation at every point of J. Our attention will be paid exclu
sively to the case where J  is a positive half-line of the form [to, oo), to ^ a. A 
solution of (A) is said to be proper if it can be continued to oo and singular 
otherwise. Clearly, a singular solution must vanish at the right endpoint of 
its maximal interval of existence which is bounded.

There may or may not exist singular solutions of (A). It is shown (Sec
tion 2) that (A) is essentially free from singular solutions if ß  >  1 and that 
(A) does possess singular solutions if ß  <  1 and ß  < a. As regards proper 
solutions, the equation (A) is always shown to have such solutions which may 
exhibit a variety of asymptotic behavior as t —> oo. We classify the totality 
of positive proper solutions into several types according to their asymptotic 
behavior at infinity (Section 3), and establish conditions guaranteeing the

1991 Mathematics Subject Classification. Primary 34C11.
Key words and phrases. Quasilinear differential, singular nonlinearity, positive solu

tion, asymptotic behavior.

(A) ( p { t ) \ y ' \ a  l y ' ) '  =  q { t ) y  ß , f t  a ,
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existence of proper solutions of each of the classified types (Sections 4 and 5). 
As a result we are able to get fairly precise information about the structure 
of the solution set of (A). It is of interest to observe (Section 6) that the 
results for (A) can be applied to the qualitative study of spherically sym
metric positive solutions to singular partial differential equations involving 
the m-Laplacian of the form

(B) div (\Du\Tn~2Du)  =  c(|a;|)ii-n , x e E a ,

where m  > 1 and n > 0 are constants, Du denotes the gradient of u in R^, 
N  ^ 2, E a C RA is the exterior of the ball centered at the origin and with 
radius a >  0, and c : [a, oo) —>• (0, oo) is a continuous function.

Differential equations w ith singular nonlinearities such as (A) and (B) are 
encountered in natural and physical sciences and there has been an increasing 
interest in their theoretical investigations: see, for example, the papers [1,
3—11]. A particular mention should be made of a paper by Motai and Usami 
[9] which is devoted to the asymptotic analysis of positive proper solutions 
of a special case of the equation (A) in which p(t) =  1. The present work 
is designed to extend their main results to a more general case of (A) with 
p{t) ^  1 subject to (1.1) and to append a couple of propositions regarding 
singular solutions of (A) which are not considered in [9].

We remark that the qualitative study of differential equations involving 
operators of the type {p(t)\y'\a~l yt)' goes back to a pioneering paper by 
Elbert [2], which has been so influential as to have motivated a number of 
mathematicians to develop further the theory of [2] in many directions. The 
present paper could be considered as a work in this development.

2. Existence and nonexistence of singular solutions

We begin by showing that there is a large class of equations of the form 
(A) which admits no singular solutions.

T h e o r e m  1.1. There is no singular solution of (A) if ß  >  1 and if p(t) 
and q{t) are locally of bounded variation on [a, oo).

P r o o f . It suffices to prove this theorem for the case where p(t) and q(t) 
are of class C1 on [a, oo). Let y(t) be any solution of (A) defined in some 
right neighborhood of t =  a. Associated with y(t) we define the function

v MM = - ^ t (p W )1+- l y ' w r 1 +  (pW) «<?(*) ■a  +  1 p — 1
A simple calculation gives

j t v m = (P(*))“ ?(i)
m y - ß ,

ß - i  =

( P ( t ) ) ° q { t )

(P(<))“ 9(<)



NONLINEAR SINGULAR DIFFERENTIAL EQUATIONS 429

where [f'(t)}+ =  max{/'(£), 0}, from which we have

(2.1) V[y](t) g  V [y](a)expf Í
\J  (p[s))»q{s) J

in an interval of existence of y[t). It follows that the function
(p(f))«<7(í)(y(f))1-/3/ ( e — 1) is bounded from above by the right-hand side of
(2.1). Since ß  > 1 this shows that y(t) cannot be zero at any finite point to 
the right of a, that is, y{t) can be continued to t — oo. This completes the 
proof.

A question naturally arises: Does the equation (A) with ß  < 1 possess a 
singular solution? A partial answer to this question follows.

T h e o r e m  1.2. Suppose that ß  < 1 and ß  < a. Then, for any T  > a, 
the differential equation (A) possesses a singular solution having [a,T) as its 
maximal interval of existence.

P r o o f . Let k =
a  +  1 
a  +  ß

and define the constants K\  and K 2 by

f  q*/p* \  ° 
\ i - W  ’

where we have used the notation

/  Q*/P* \  " 
\ l - k ß )

[a,T] [a,T}

Defining
,*2 _  a ß

cx= K ? ‘- p‘ K 2 c2 =  K x ,v2
and noting that K\  ^ K 2 implies c\ ^ c2, we consider the set Y  C C[a, T] and 
the integral operator T  : Y  —> C[a, T } given by

Y  =  {y G C[a, T] :c\{T — t)k ^ y{t) %c2( T -  t)k, t G [a, T]}

aß
'TZ*1K f

2

and
T T

(Fy)(t) =  J  (p(s )) 1 J  q{r)(y(r)) 0 dr ds, t G [a, T],

It is not difficult to show that J7 is a continuous mapping which sends Y  into 
a compact subset of Y.  Thus, Schauder’s fixed point theorem applies and 
there exists a function y  G Y such that y — Ty,  that is,

X
q(r){y{r)) 0dr ds, t E [fl, T1].
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Differentiation of this integral equation shows that y(t) is a positive solution 
of (A) on [a,T) and decreases to zero as t —>T — 0. This completes the proof.

We note that the condition (1.1) with regard to p(t) is not needed in the 
above theorems.

3. Classification of the positive proper solutions

A. Classification. We start with a remark that the equation (A) always 
has positive proper solutions. In fact, because of the presence of a negative 
exponent —ß  in (A), it is easily seen that a solution y{ t) having any pre
scribed initial values y(to) >  0 and y' {to) ^ 0, to = ai is increasing and can be 
continued to infinity.

We are interested in the variety of asymptotic behavior of positive proper 
solutions of (A) as t —> oo. Here and in what follows extensive use will be 
made of the function

t
(3.1) P(t)  =  j  (p(s))~äds, t ^ a .

a

It is clear that P(t) —> oo as t oo because of (1.1). Let y(t) be a positive 
solution (A) on [íq, oo), to^ia.  Since (A) implies that p{t)\y'(t)\a~l y'(t) is 
increasing, there are two possibilities either

(3.2) p{t)\y'{t)\a~l y'{t) < 0  for t ^ t 0 

or there is t\  ^ to such that

(3.3) p{t)\y'{t)\a~ly'(t) > 0  for t ^ t i.

Suppose that (3.2) holds. Then, y'(t) < 0 for t ^ to, and p{t)\y'{t)\a~l y'{t) =  
—p(t) (—y'(t))a increases to a nonpositive limit as t  —> oo. We claim that this 
limit is zero. If this is not the case, then there would be a constant k > 0 
such that

- Pm - y ' ( t ) ) a i - k a or p( t ) ( -y ' ( t) )a ^ k a , t ^ h .

Then, —y'(t) Si&(p(£))_ a , t^ . t i ,  and integrating this inequality, we obtain

t
y { h ) J ( p ( s ) ) ~ « d s ,  t ^t i .
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This is impossible, because the left-hand side is bounded, while the right- 
hand side grows to oo as t —t oo by (1.1). Therefore, we must have

(3.4) lim (p (t,))ay\t) =  0. t—y oo

Concerning the limit of y{t) as t ->■ oo there are two possibilities: either
lim y(t) =  const >  0 or lim y(t) — 0. t—> 0 0  t—y oo

Suppose next that (3.3) holds. Then y'(t) > 0  for t ^ t\ and 
p(t)\y'(t)\a l y'(t) =  P(t)(y'{t))a tends to a positive constant or grows to oo 
as t —> oo, or equivalently

(3.5) lim {p{t))ay'(t) =  const > 0 t—►oo

or

(3.6) lim (p(t))°y’{t) =  oo.t—¥00
L’Hospital’s rule shows that

,lim p/.N -  lmx(p(t))a V (*)>t-yoo P\ t )  t—>oo

where P(t) is given by (3.1), and so (3.5) is equivalent to

(3.7) lim ~r-r -- const > 0, i->oo P(t)

and (3.6) is equivalent to

(3.8) lim ?<‘> = o o . 
t->oo P(t)

The above observations suggest that the following four cases are possible 
for the asymptotic behavior of positive proper solutions y{t) of (A):

(I) lim y{t) =  0;
t —> oo

(II) lim y(t) =  const > 0 ; t—y oo

(HI) lim =  const > 0;t—►OO P(t)

(IV) y(t)lim —— - oo. 
t-yoo P(t)

Solutions of types (I) and (II) are called decaying solutions and uniformly 
positive solutions, respectively. Solutions of types (III) and (IV) are collec
tively termed growing solutions, and those of type (IV) are referred to as 
strongly growing sohitions.
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B. Integral equations. The problem of existence of positive proper so
lutions of (A) belonging to the types (I)-(IV) will be discussed in detail in 
the next sections, where a crucial role is played by the integral equations 
characterizing the solutions of all of the corresponding types. Our purpose 
here is to derive them by direct integrations from the equation (A).

Let y ( t ) be a proper solution of type (I) or (II) defined on [io, oo), to t. a. 
Rewrite the equation (A) as

( - p m - y ' ( t ) ) a ) ' = q{ t ) m r ß
and integrate it from t to oo. Using (3.4), we obtain

(3.9) (P(t)) 1 /  q(s)(y(s)) ßds , f t t 0,

which, upon one more integration over [i, oo), yields

(3.10)
OO

y{t.) =  c +  j (P(s))"' /  q(r)(y(r))-ßdr ds, f t  to,

where c =  lim y(£); c =  0 if y(t)  is of type (I) and c > 0  if y(t) is of type (II).
<—> oo

The derivation of (3.9) and (3.10) ensures that q{t){y{t)) ß and

(p(t)) 1 j  q(s)(y(s)) ßds are integrable on [íq, oo).

Let y(t)  be a proper solution of type (III) defined on [U,oo), f t  a. An 
integration of (A) rewritten as

(3.11) (P { t ) { y \ t ) r ) '  =  q( t ) {y { t ) )^

over [£, oo) shows that q(t)(y(t))~ß is integrable in [£i,oo) and

(3.12) y'(t) = (p(£)) Mu/* -  /  q{s){y{s)) ßds , t t t u

where
uj =  lim {p(t))«y'( t)>  0,t—>oo

from which we have

(3.13) y ( t ) = y ( t  i) +
s

t t t  i.
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If y(t) is a type (IV)-solution of (A) on [£i,oo), then integrating (3.11) 
twice from t\ to t, we obtain

(3.14) y'(t) =

and
(3.15)

l

(pit))-1 (p(h)(y'{ t i ))a +  I  q{s)(y(s))~ßdi

y { t ) = y ( t \ ) Jr j  ( p ( s ) ) ~ 1 ( p { t i ) ( y ' { t l ) ) Q +  J  q { r ) { y ( r ) ) - ß d i ds ,

of which (3.15) is the desired integral equation for y{t). From (3.14) and 
(3.6) we see that q{t)(y(t))~ß is not integrable on [fi,oo).

4. Existence of increasing proper solutions

This section concerns the question of existence of (eventually) increasing 
positive proper solutions of types (III) and (IV). Our aim is to establish 
sharp criteria for (A) to possess positive solutions of these two types.

T h e o r e m  4.1. There exists a positive proper solution y{t) of (A) such 
that lim y(t,)/P(t) =  oo if and only if

t—> OO

OO

(4.1) J  q( t)(P( t) )-ßdt =  oo for any b > a.
b

THEOREM 4 .2 . There exists a positive proper solution y(t) of (A) such 
that lim y(t) /P(t)  =  const > 0 if and only if

£ — ► 00

oo

(4.2) J  q(t) (P( t) )-ßdt < oo for any b>  a. 
b

P r o o f  o f  T h e o r e m  4.1. (The “if” part.) Let y(t) be a positive so
lution of (A) defined on [ti,oo), t,\ >  a, and satisfying lim y( t) /P( t)  =  oo.t—y oo
There is a constant k >  0 such that y(t) ^ kP{t)  for Combining this
inequality with the fact that q{t){y(t))~ß is not integrable on [ii, oo) (see the 
remark at the end of the preceding section), we see that

oo oo

oo =  J  q(t){y{t))-ßdt<Lk~ß j  q{t){P(t))~0dt,
11 t i
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which implies the truth of (4.1).
(The “only if” part.) Suppose that (4.1) holds. Let t\ > a be fixed 

and consider the solution y(t)  of (A) determined by the initial conditions
y(ti) —y i > 0 and (p (ii))“ =  y [  ^  0. As remarked at the beginning of
Section 3, for any such y\ and y[, y(t) can be continued to oo as a growing 
positive solution. We claim that

(4.3) lira y ( t ) /P ( t )  =  lim (p(i))°y'(i) =  oo.
t — >00 1—+00

Suppose the contrary. Then there is a constant l > 0 such that y(t) ^ lP(t)  
for t ^ <i, and we have from (3.14)

(p(i))<V (i) ^ t ^ t  i,

which shows that q(t)(P(t))~d is integrable on [£i,oo), contradicting (4.1). 
Therefore, y(t) must satisfy (4.3), and so it must be a strongly growing 
solution of (A). This completes the proof.

R emark 4.1. It is natural to ask how fast strongly growing solutions 
(of type (IV)) of (A) grow as t —» oo. Let y(t) be such a solution on [ti, oo), 
t\ >  a. Then in view of (3.15) we obtain

l S

y { t J  (p(s)r1 f  q(r )(y(r ))~0dr ds,

Since y{t)  is increasing, we have

Z

y( t )^ (y ( t ) )~°  J (P(s)) 1 /  q{r)dr ds, t^. t \

from which it follows that
t

(4.4) y{t)
1 a

“ { /  ^ 5^ 1 j  q(r)dr d s j  , t ^ t v
11 t\

Let us introduce the notation for any r ^ a

t S

(4.5) R{t-,r)= j  (p(s))-1 J  q(r)dr ds, t^.T.
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Q
Then (4.4) says that y{t) grows at least as fast as [R(t-,a)]a+P as t -> oo. 
Noting from (3.15) and (4.4) that

y{t) ^ S{t) := max |?7, [R(t; *i )]“+*} , t~ t tu 

where Tj =  y( t i) > 0 , and using this inequality in (3.15), we obtain

(4.6) y ( t ) ^ v  +
l

/ (P(s)) 1fCa +  J  q(r){S{r)) 0dr ds, t ^ t i ,

where £ =  (p(<i))a y'{ti) > 0, which shows that y(t) grows faster as t -» oo 
than any constant multiple of the function

(4.7)
I  S

J  ( p ( s ) ) - 1 J  q ( r ) ( l + R ( r ; a ) y
j zSL ,a+/3 d r

a
ds.

Information about the growth of strongly growing solutions of (A) drawn 
above from the integral equation (3.15) is fairly sharp in that in some cases 
the functions (4.5) and (4.7) have the same order of growth as t -» oo (see 
the examples given in Section 6).

P roof OF T heorem 4.2. (The “only if” part.) Let y(t)  be a positive 
solution of type (III) of (A) defined on [<*, oo), t \ .> a. There exists a constant 
k > 0 such that y(t)  ^ kP(t)  for Combining this inequality with the
known fact that q(t)(y(t))~0 is integrable on [ii,oo), we have

OO OO

k ~ ß  J  q ( t ) ( p ( t ) ) ~ ß d t  =  J  q ( t ) ( y ( t ) ) ~ ß d t < o o ,

h <i

which implies (4.2).
(The “if” part.) Suppose that (4.2) holds. Let t\ > a  be fixed and choose 

k > 0 so large that

(4.8) j  q(t){P{t))~ßdt ^ 2 ~ a ~ ß (2a -  1 )k a+ß.

Consider the set Y  C C7[ij, oo):

(4.9) Y  =  G C[ti,  oo): ~kP(t )  ^ y(t) <i kP{t), t ^ ii |
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and the mapping T : Y —> C [íi, oo)
(4.10)

t
(Ty){ t )  =  \k P { t , )  +  j {p {s ) ) - l ( k a -  /  9(r ) (y (r )) -^ r ds,

11

Clearly, Y is a closed convex subset of the Fréchet space C[t\ , oo) with the 
topology of uniform convergence on compact subintervals of [ti,oo).

From (4.10) and (4.8) we see that, for any y €E Y and

{Fy)(t) ^ - k P { h )  + k / (p(s)) °ds

I  (p(s ) )  « d s  +  A; ^  (p (s ) )  » d s  

a  £i
t

=  k I  (p(s))~äds =  kP(t),

and

t
(Jry ) ( t ) ^ \ k P ( t 1) +  f (p (s ) ) -1

ß

j  q{r)(P(r))~0dr ĵ

t

= \k P ( t i )  +  l^k ! ( p ( s ) y ° d s = ^ k P ( t ) ,
tl

1
ds

which implies that P y  £ Y, and hence P  maps Y into itself. If {y„} is a 
sequence in Y converging to y & Y  in C[ti,oo),  then using the Lebesgue 
dominated convergence theorem it can be shown without difficulty that the 
sequence {{Pyi/){t)} converges to (Py)(t ) uniformly on any compact subin
terval of [ti,oo). This shows that P  is a continuous mapping. Furthermore, 
since

l- k P { t ) % { P y ) ( t ) ^ k P { t )  and 0 ^ [Py)'{ t)  =  k{p(t))~±

for all y G Y and t ^ t \ ,  we know that the set P ( Y )  =  {Fy : y 6 Y} is a rela
tively compact subset of C[t\ ,  oo). Thus, all the hypotheses of the Schauder- 
Tychonoff fixed point theorem are satisfied for the operator P  acting on Y,
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and so there exists an element y £ Y  such that y £ Ty,  that is,
(4.11)

y ( t )  =  +

i

I ( p ( s ) T l [ k a

oo
ßdi

i_

ds, i .

Then differentiation of (4.11) leads to the conclusion that y(t) is a positive so
lution of (A) on [ii,oo) with the required asymptotic property
lim {p{t))n y'(t) — lim y(t) /P(t)  = k. This completes the proof of Theo-t—>oo t—>oo

rem 4.2.

5. Decreasing proper solutions

Now we turn our attention to the set of decreasing positive proper solu
tions of (A) which, as mentioned in Section 3, can be partitioned into two 
subclasses (I) and (II).

It should be noticed that any positive decaying solution of (A) defined 
near oo can be continued as a solution over the entire interval [a, oo). Indeed, 
let y(t) be such a solution defined on [ti, oo), ti  >  a. Continue it as a solution 
of (A) to the left of t\  and let J be the maximal interval of existence of the
continuation, again denoted by y(t). From (A) the function (p{t))ny'{t) 
is increasing on J  and it is negative on [fi,oo) by hypothesis, we see that 
y' (t) < 0 on J, so that y( t ) is decreasing there. We claim that J  =  [a, oo). If 
J [a, oo), then there must exist to > a, the left end point of J, such that 
y(t) -> oo as t -> to +  0- But this is impossible, since letting t —>■ to +  0 in the 
equation

p(ti)(-y'(ti)r + I  q(r){y{r))
s

to < t ^  f i ,

d s ,

which follows from (A) by direct integrations, we find that the limit lim y{t)
t—>£o+0

is finite. The contradiction obtained shows that J  must coincide with [a, oo) 
as claimed, so that y(t)  can be continued up to a.

We are interested in getting criteria for (A) to possess positive decay
ing solutions of types (I) and (II). If y(t) is one such solution defined on
[fo,oo), <o ^ a, then, as pointed out in Section 3, both q(t)(y(t))~& and 

00 1
are integrable on [to, oc). This fact combined 

t
(p W )  1 J  q ( s ) ( y ( s ) )  ß d s
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with the inequality y(t) ^ y(to), t ^ to, implies that

(5.1)

uu

I  q{t)dt < oo and (pit))- 1 f  q(s )ds dt < oo.

It can be proved that the condition (5.1) is also a sufficient condition for 
the existence of a type (Il)-solution of (A).

T heorem 5.1. Let c > 0  be a given positive constant. Then there exists 
a positive proper solution y(t) of (A) such that lim y(t) — const >  0 if and

t — >oo
only if (5.1) is satisfied.

P ro o f . We need only to prove the “if” part of the theorem. Let c > 0  
be fixed arbitrarily and choose to ^ a so large that

0 0  OC

1  (p( t))-1 I  q(s)ds
to t.

dt < C 1 + n  .

Define the set Y  by
Y  =  {ye.  C[t0, oo): c^  y(t)  g  2c, t i> t0} 

and the mapping T  by

(J7y ) { t ) = c  + (.p (s )) 1 /  q(r)(y(r)) ßdr ds, t ' t  to

l t  is easy to check that T  is well defined on Y  and sends Y into itself. Pro
ceeding as in the proof of Theorem 4.2, we can show that T  is a continuous 
mapping and that the set T { Y )  is relatively compact in C[to, oo). Therefore, 
by the Schauder-Tychonoff fixed point theorem, there exists y € Y  such that 
y =  T y ,  i.e.,

(5.3) y( t)=C + ( P ( s ) r 1 J  q(r)(y(r))~ßdr ds, t ^ t 0-

By (5.3) it is clear that y(t) is a positive solution of (A) on [fo, oo) satisfying 
lim y{t) = c ,  which completes the proof of Theorem 5.1.

Í—> oo

As regards the positive decaying solutions (of type (I)) of (A), we have 
been unable to prove or disprove that (5.1) is also sufficient for their exis
tence. A more stringent condition than (5.1) is needed for us in order to 
construct a desired solution as a solution of the integral equation

(5.4) y{t) =  J  (p{s ) )  1 J  q(r)(y(r)) 0dr
t S

which is the integral equation (5.3) with c =  0.

ds, t ' ta ,
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T h e o r e m  5.2. There exists a positive proper solution y(t) of (A) such 
that lim y(i) =  0 if, in addition to (5.1), the inequality

t - i O O

(5.5)

holds, where

(5.6)

JL 
+£ dsj  (Pis)) 1 f q{s){Q{s))

OO OO

Q{t) =  J  (p(s))-1 J  q(r)dr

dt < oo,

ds.

P r o o f . For n € N let yn(t) be a positive proper solution of (A) defined 
on [a, oo) and satisfying lim yn(t) =  l /n .  The existence of yn(t) is ensured

71- » O O

by Theorem 5.1 and Remark 5.1, and yn(t) satisfies

OO OO J_

(5.7) yn{t) =  fl + J  (P(s ))_1 J  q{r){yn( r ) y ßdr ds, t}f.a.

Noting that yn(t) is decreasing, we have from (5.7) yn{t) ^ (?/n(i)) a Q{t), 
t^Za, or

(5.8) yn(t) ^ (Q(t))^+Z, t^ a .

We use (5.8) in (5.7) to obtain

(5.9)

and

(5.10)

OO oo

Vn{t )^^  +  J  (p ( s ) r 1 j  q{r)(Q(r))~°+&dr ds, t^.a,

IVnWI^

OO J_

C f q(s){Q(s))~^+0ds ,, t ^ a .

The above inequalities show that the sequence {yn(t)} is uniformly bounded 
and locally equicontinuous on [a, oo), so that there exists a subsequence 
{ynk(t)j  of {yn(t)} which converges uniformly on any compact subinterval 
of [a, oo). We now let n  =  in (5.7) and pass to the limit as k  —> oo. 
By means of the Lebesgue convergence theorem we conclude that the limit 
function y(t) =  lim yHk (i) satisfies the integral equation (5.4) for t ^ a. That
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y(t) >  0 for t ^ a is an immediate consequence of (5.8). Therefore y(t) is a 
positive decaying solution of (A) on [a, oo). This completes the proof.

R e m a r k  5 .1 . From (5.8) and (5.9) it follows that the solution y(t) con
structed in Theorem 5.2 is subject to the estimates

OO OO

(5.11) {Q(t))^+0 úy{t)  ^ j  (p(s))-1 j  q(r)(Q(r))
aß

' a+ß d r ds, t i t  a.

Since (5.11) can be derived directly from (5.4) under the assumption that 
y(t) is positive everywhere, it is a property that is possessed by all possible 
positive decaying solutions of (A). The accuracy of the decay estimates (5.11) 
will be tested by means of examples given in Section 6.

R e m a r k  5.2. We combine the four theorems proven above to derive use
ful information about the structure of the set of all positive proper solutions 
of (A).

(i) Suppose that q(t)(P(t)) & is not integrable on [6, oo), b > a. Then 
all positive proper solutions y(t) of (A) are strongly growing: lim y ( t ) /P ( t )
=  oo.

(ii) Suppose that q(t) is not integrable on [a, oo) but q(t)(P(t))~l3 is 
integrable on [6, oo), b > a. Then, all positive proper solutions y(t) of (A) 
grow exactly as fast as constant multiples of P(t)  as t —>■ oo: lim y(t) /P(t)  =
const >  0.

(iii) Suppose that q(t) is integrable on [a, oo) but
OO

(p(*)) 1 /  v(s )ds

1_
a

t
is not integrable on [b, oo), b > a. Noting that q(t)(P(t))~/} is integrable on 
[■b, oo), b >  a, we have the same conclusion as in (ii).

OO 1

(iv) Suppose that q(t) is integrable on [a, oo) and (P(t)) 1 q(s)ds
a

t
is integrable on [5, oo), b > a. Then (A) possesses both growing and decaying 
positive proper solutions. Increasing solutions y(t) have the property that 
lim y ( t ) /P ( t )  =  const > 0. There always exist positive solutions of (A) which

t—► oo
decrease to positive constants as t —> oo. An additional condition is required 
to ensure the existence of a positive solution of (A) decaying to zero as t —> oo.

6. Examples

A. The main results obtained above will be illustrated by the example

(6.i) ( p m r - ' y ' ) '= m t ) r ° { m v y - ß,
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where a  > 0, ß  >  0, 7 and A > 0 are constants, p(t) is a positive continuous 
function on [a, 00) satisfying (1.1) and P(t)  is defined by (3.1). We consider
this equation which is a special case of (A) with q(t) =  \ (p(t))~ä (P(t) )J , in 
[a', 00), a' > a. Simple calculations show that:

( 6.2)

(6.3)

(6.4)

(6.5)

< 00 4=> 7 < - 1;

OO OO 1

dt < 00 4=>- 7  < — a  — 1;
t

00
1  q(t)(P(t))~^dt < OO 4= ^  7  < ß  -  1;

a'

I  (p{t)) 1 j  q(s)ds

OO OO

J  ( p ( t ) r lJ q ( s m s ) y ^ d s dt<  00 7 < —a  — 1.

Here Q(t) stands for the function defined by (5.6).

In view of Remark 5.3 combined with the above results we have the 
following statements:

(i) If 7 ^ ß  — 1, then all positive proper solution y(t) of (6.1) have the 
property that lim y(t) /P(t)  =  00. Applying Remark 4.1 to (6.1), we see thatt—>00
they satisfy for all sufficiently large t

c i P ( t ) ^ y { t ) ^ c 2P{t)( \ogP(t))*  if 7 =  /3 — 1

and
ci(P{t))~z+T %y(t)^C2 {P(t)) °+# if 7 >/? — 1,

for some positive constants c\ and C2.
(ii) If —a — 1 ^ 7 < / 3  — 1, then all positive proper solutions y(t)  of (6.1) 

have the property that lim y(t) /P(t)  =  const > 0.
t—>00

(iii) If 7 < —a  — 1, then the set of positive proper solutions of (6.1) is 
composed of three types of solutions y(t),  z ( t ), w(t) with the properties that

lim =  const > 0, t KX> P(t) lim z(t)  =  const > 0, limuj(£) =  0,Í—>00 t-> OO

respectively. Remark 5.2 specialized to (6.1) shows that there exist positive 
constants k\ and k2 such that

kl (P{t))S£& L4 w ( t ) £ k 2(P{t ))Sf f i ‘
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for all sufficiently large f.
As a more concrete example of (6.1) we give the equation

(6.6) (e -QV r y ) '  =  Ae' V /J, ^ 0 ,

where /l/ is a constant. All positive proper solutions y(t) of (6.6) satisfy 
lim e- i i/(f) =  oo if /i ^ ß  and lim e~ty(t) =  const >  0 if —a  ^ y  < ß. If p <

t—>oo t—> o o

—a, then (6.6) possesses three types of positive solutions y(t), z(t) and w(t)  
such that lim e_ iy(i) =  const > 0, lim z(t)  =  const > 0 and lim w(t) =  0.

t-^OO t—HDO Í - A O O

The decaying solution w{t) is bounded from above and below for all large t 
by constant multiples of e a+£ .

B. It can be shown that the results for (A) can be applied to the qualita
tive study of spherically symmetric positive solutions to partial differential 
equations involving the m-Laplace operator of the form

(6.7) div(\Du\m~2Du) =  c(\x\)u~n, x £ Ea,

where m >  1 and n >  0 are constants, x =  (x\ , . . . ,  x^)  € RA\  IV ^ 2, Du  =  
(d u /d x i , . . . ,  du/dxw),  \ ■ \ denotes the Euclidean length of an IV-vector, 
Ea =  {x  G : \x\ >  a}, a > 0, and c(t) is a positive continuous function on 
[a, oo). A spherically symmetric function u(x) — y(\x\) is a solution of (6.7) 
if and only if y(t) satisfies the ordinary differential equation

(6.8) ( f ^ - V r - V ) '  =  tN~l c(t)y~n, t ^ a,

which is a special case of (A) with a  =  m — 1, ß  =  n, p(t) =  and q(t) — 
fN-1c(t). The condition (1.1) is satisfied for (6.8) if and only if m  ^ IV, in 
which case the function P{t)  given by (3.1) can be taken to be

t m  — 1 m - N
(6.9) P(f) =  lo g -  i f m  — N, P(t) =  ------- - r í ”1“1 i fm>IV.
v w  a m —N

Assuming, in particular, that m >  N,  we consider the following special 
case of (6.7)

(6.10) dxv(\Du\m~2Du) =  \x\lu~n, x £ Ea,

where l is a constant, the one-dimensional version of which, corresponding 
to (6.8), is

( 6 . 1 1 )  ( i ^ - 1  \ y ' \m ~ 2y ' ) '  =  t N + l ~ xy ~ n , t ^ a .

As it is easily seen, (6.11) is a special case of (6.1) in which p(t) =  tN~1,
a  =  m  — 1, ß  =  n ,
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The conditions (6.2), (6.3), (6.4) written for (6.11) then become

. at I , , n ( m - N )
1 < —N, l < —m  and l < — N-\--------------- ,

respectively. Using this fact and applying the known results for (6.1) to
(6.11), we can deduce nontrivial information about the asymptotic behavior 
of spherically symmetric positive solutions of the partial differential equation
(6.10).

ft {rn — N )
(i) If l ^ — N  H-------------- - then all symmetric positive proper solutions

m  — 1
u(x) of (6.10) have the property that

_m — N
lim lad Tn—i u(x) — oo.

|x|—>oo

ti (rn — N )
(ii) If — m ú l < —N  H-------- -—-—- then all symmetric positive proper só

in 1
lutions u{x) of (6.10) have the property that

lim lad u(x') ~  const > 0.
\x\—>co

(iii) If l < —m  then (6.10) has three types of spherically symmetric posi
tive solutions u(x), v(x), w(x) with the properties that

_ m~ N
lim \x\ m-> u ( x )  =  const > 0, lim v ( x )  =  const > 0, lim w ( x )  = 0 , 

|i|->oo |i |—>oo \x\—>oo

respectively. The decaying solution w(x) satisfies

m + l  m + l

k\ |ai| m+n—1 ^ w(x) ^ k2 \x\m+n-i

for some positive constants ki and k2 and for all sufficiently large |a:
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ON THE LAWS OF HOMOGENEOUS FUNCTIONALS 
OF THE BROWNIAN BRIDGE

P. CARMONA, F. PETIT, J. PITMAN and M. YOR

A b strac t

In this note, we give a general and elementary method, which allows to compute the 
distributions of a large number of interesting functionals of the standard Brownian bridge.

1. Introduction

Let (Bf, t~t 0) be a Brownian motion starting from 0, and /  : E —> K a 
locally bounded Borel function. It is well known that the computation of

5
the law of J f ( B u)du is more involved when S  is a fixed time, t say, than 

o
when S  is equal to either Ta — inf{í; Bt =  a},  or t/ =  inf{f; L t >  l},  where 

0) denotes the local time of B  at 0. An obvious “reason” for this is 
that the value of Brownian motion B  at time t is not fixed, whereas Bra =  a 
and Bn — 0.

A classical manner to overcome the difficulty for time t is to replace t by 
S\,  an independent exponential time of parameter A, and use Feynman-Kac 
formula, which allows to compute:

E exp
S\ oc

-M j  f ( B u)duJ =A J e~xtE exp — \x'■ J f ( B u) d u

o
d t

in terms of the solutions of a Sturm-Liouville equation (see, e.g. Jeanblanc- 
Pitman-Yor ([10]) for a discussion of the Feynman-Kac formula in relation 
with certain decompositions of Brownian paths, and/or Brownian excursion 
theory; see also, in the same vein, [20], exercise 4.20, chapter XII). In the 
course of such computations, one obtains in fact the joint Laplace transform 

Sx
of f  f ( B u)du and f  f ( B u)du, where gt =  sup{u < t; Bu =  0}. Recalling

0 9SX
that the standard Brownian bridge (fr„; 0 ^ u £  1) may be represented as

1991 Mathematics Subject Classification. Primary 60J55, 60J60, 60J65.
Key words and phrases. Reflecting Brownian motion, Bessel processes, Ray-Knight 

theorems, generalized arc-sine laws.

0 0 8 1 -6 9 0 6 /9 9 /$  5.00 ©1999 Akadémiai Kiadó, Budapest
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—B ugt;0  u 5] 1̂ ) whereas the standard meander may be represented 
' #  '

as í \Bgt+u(t-gt) 1; 0 it ^ 1), these computations actually yield quite

some information about functionals of the Brownian bridge and Brownian 
meander. See, e.g., Pitman-Yor ([15], [16], [17]) for a number of results on 
the Brownian bridge and Brownian meander derived in this manner; see also 
Revuz-Yor ([20], exercise 3.8, chapter XII).

In this note, we present a different elementary method, which allows to 
compute the distributions of a large number of interesting functionals of the 
standard Brownian bridge. Again, we essentially rely upon the represen

tation of the Brownian bridge (bu\ 0 ^ u 5[ 1) as ug]0 ^ u ^ 1) which,

moreover, is independent of g =  sup{£ ^ 1; B t =  0}. 
N o t a t io n s . In the following, we denote by 
N: a standard Gaussian variable;
Za: a gamma variable of parameter a;
Zafi: a beta variable of parameters a and b.

2. A  basic identity in  law

We consider (A j;i^ 0 ) an increasing process, adapted to the filtration 
of B  and which scales jointly with B .  Precisely, we assume that there exists 
a process Ft(-) on the canonical space C(R+ , R) such that

A t (uj) =  F t (B{uj )) and Fct(w) =  cFt (-^=ui(c-)),

for every c > 0, and t if. 0.
Note that, in particular, for every c >  0,

{Bet, A ct- 0) {' = \ V ~ c B t , c A f , t ^  0),
defbut our hypothesis is stronger. Let us introduce at =  inf{s;As >  £}, the 

inverse of A.  All the results in this note shall be derived from the next
P r o p o s it io n  1.

( 1)
(law) 

A 9 ~
1

cn + B l f ’

where T  is a stable variable of parameter independent of the standard 
Brownian motion B.

PROOF. For a if 0, we consider the set:

{A g ^ a }  =  { g f , a a} =  { l f f  daa},
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where dt =  i n f { u =  0}.
From the scaling property of A, we deduce:

{Ag ^ a} (1= ') {1 ^ adai }.

Hence, we have: A„ ——, and the identity (1) follows from the strong
dQ1

Markov property for B , applied at time a\.  □

COROLLARY 2. Let S  be an independent exponential time of parame
ter Then, denoting A ^  =  Fi (£>(•)), where b is a Brownian bridge, we 
have

2
(2) P  (|iVIV A ^  ^  x j  =  P{SAg ^  x2) =  E e x p ( - y a i - z | . / 5 Ql|)

where N  denotes a standard Gaussian variable, independent of b.

Following the previous corollary, we introduce the notion of Gauss trans
form Qp, of p, the law of X,  an R+-valued random variable: Qp is the law 
of |iV|X, where N  is a standard Gaussian variable, independent of X.

The next (easy) lemma describes some important relationship between 
the laws of p  and Qp.

LEMMA 3. The law of |iV|X has a density </>:R+ —>K+ which is charac
terized by

+ oo

E e x p ( - y A 2)J j  exp{i\x)(l){\x\)dx.

3. A p p lication s

Example 1. The supremum and infimum of the Brownian bridge.
We consider At *= sup B 2. Then, a i =  T* =  inf{i; \Bt\ =  1}, hence, 

Ogs t̂
equation (1) becomes:

sup B t  =
Ogi %g

(law) 1

T * + T

and Corollary 2 yields:

2
p ( |t f |  sup |6a| £ s ) = E  exp^—y (T *  + T ) j  =

ch x
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Hence,

(3) P("|./V| Slip |i>s| 5: x \  =  th X.
V O ^ l '

More generally, the same elementary method also yields:

2
(4) P(|AT|ct+ ^ x , \N \a~  £y )  =

coth x +  coth xy

where o ± =* sup bf.  Another way to obtain (4) is presented in [20], Exercise
ô s<;i

(4.24), Chapter XII, and is based upon excursion theory arguments. 

Example 2. Lévy’s uniform law.
def 1We consider At =  A f  =  /’ l(ßs>o)ds, and we want to check Lévy’s result,

o
def 1i.e. that A+ (b) =  J l ( b a > o ) d s  is uniform on [0,1]. First, recall the following 

o
relation between beta variables:

Za,bZa+b,c — Z a ,6+c>

where, on the left-hand side, the beta variables are independent. Since we
. a. (law) I . . (law) .have AT =  gA^yb) and we know that g — Zi  i , it suffices to prove

y  2  > 2

(5) Z 1  3
2 ’ 2

to recover Lévy’s uniform law. In this case, we have

a t =  a t

Writing t =  A~£ +  A ß , we have:

ot~!~ — 1 4  4  + — 1 +  A1 Qj

— “f inf{S; A f  >  t}.

T(2(il +))
(>aw) ^

because la+ is independent of the local time process 0). Then, if ß
is a reflecting Brownian motion whose local time at 0 is denoted by l, and if 

fi is a stable variable of index -  independent of /3, we may write:

( a f ,  Ba t ) =  {\ +  l\TU ßi).
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Then, formula (1) becomes:

A t  (1= \ l  + i? f i+ 0 ? T ) - l{1^ ) (l +  (I1+ ^ 1)2, \ - i

thanks to the additivity properties of stable variables of parameter de

noting by r* another stable variable independent of the pair 
Then, noticing that:

we find:

(I. +  Á ) 2 " " ’ 2 Z>
2

and T
(law) 1 (law) 1

=  TV2 =  2Z7

+ (law)
9 Zi  +  Z3

(law)
Z l  3 .

2 ’ 2

E x a m p l e  3. Extensions to perturbed Brownian motions.
Here, we want to recover, thanks to the identity (1), the following result 

due to the second author (see [13] and [21], page 102, formula (8.6)):

a- , h 0^) 7 Aq =  Z 1 l .J_,
y  2 > 2 T  2/x

where, denoting by L the local time at 0 of the Brownian motion B,  we have

written A - , / id e f
/  1(| Ba\ t̂iL,)ds.

By equation (1), we have:

A - ' ^ = ] {cc-* +  {Bq- , , ) 2T ) - 1

and, if we denote 

we obtain

0 ^  =  1 +  A+^ ,

and thanks to the same arguments as in the second example, it is equivalent 
to prove that

f e r - +|B->H)2°=>2Zi2t 2ji

w hich is show n in T heorem  1 o f [5].



450 P. CARMONA, F. PETIT, J. PITMAN and M. YOR

E x a m p l e  4. The supremum of Brownian local times.
Here, we consider At =  sup(/“)2.

aER
By Corollary 2 and [8] we have

P (|iV| ^ =  P { S A g ^ x

=  E exp
x

-Oi\ — x
0(2; 3; a;)

sh(f)J (j>{ 1; 1;m)’
where cj)(a\b\z) is the Kummer function (also denoted M(a, 6, z); see [12] 
and [1] who use respectively the first and the second notations):

fc>0
(b)kk\

denoting (a ) k  =  a{a  + 1 ) . . .  (a +  k — 1). Then, we have:

p ( \ N \ s u p l l{ {b )k x )  =
' a6R '

X  — 1

2 sh2( | )

R e m a r k  4. On the contrary, knowing P ( A ^  ^ y), we may recover
P ( S A g ^ x 2). In the particular case where A t =f sup(Z“(|B |))2, we obtain,

a=i0
thanks to Theorem 8.1 of [7]:

P |1V| sup I“(|6|) ^ x
a>0

p V i z i t e m )  ú x
2>0

= th (%

E x a m p l e  5. Successive heights for the Brownian bridge.
For t  >  0, let us consider the sequence

Hpf
M\{t) =  sup |l?s | > M2(t) > • ■ • >  M k{t) > ■ ■ ■

of ranked heights of excursions of the absolute value of Brownian motion B  
up to time t. Let us define { M ^ ) k>i the analogous quantity for the standard

Brownian bridge. We consider A t =f (Mn(t) )2 for some n ^ 1. Then denoting

Oi[n> '=inf{s; (M n(s))2 >  1} =inf{s; M n(s) >  1}, 

we have, thanks to Corollary (2):

P[\N\M^b) ^ x] =  P{SAg ^ x2)

=  E exp

9

= e“xE x  (n)exp ( - y a ]
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PROPOSITION 5. If X  is a random variable, we denote X^)  the sum of 
k independent variables distributed as X . We have:

( 6 ) a (n) ( l aw)  r p *
~  T ( n ) + T { n - 1) )

where:
both variables on the right-hand side are assumed to be independent; 
T * (,aw) inf{5 > 0; \BS\ =  1}; 

f  (‘= } inf{s > 0; Bs =  1}.

As a consequence of identity (6), we have:

(7)

r 2 i n 2 "1

[ e x p ( - y T * ) J E
ex p ( - y T ) .

-1 n —  1

=  y i (e- I )n-1 =  (1 — t,ha;)n.
V ch x /

Thus, we recover the one-dimensional marginal results given in [18] about 
the Markovian sequence (|iV |M ^ )*,:>!. Unfortunately, our method does not 
extend easily to yield multi-dimensional distributions.

P r o o f  o f  P r o p o s it io n  5. We introduce the two following sequences 
of stopping times:

and for any integer k ^ 0,

-,(/c+1) =  inf{s > |2?s| =  1} and T ^ l> =  inf{s > T ^ 1;; B s = 0 } .

T (o) =  T (o) _

( f c + i ) n(fc-l-l) _ r} _ I

Then clearly:

a (n) _  T (n) =  ^  (T (fc+1) _  T (k)) +  (T0(fc) -  T Ífc)).

k= 0 k= l

Identity (6) immediately follows, thanks to the strong Markov property of 
Brownian motion. □

Similarly, we may define the sequence associated with the
successive positive heights of excursions. Formula (7) now becomes:

(8) P [ \ N \ M ^ + ^x]  =  exp(—2 nx).

Further results in the same vein may be deduced from [18], where excursion 
theory arguments are used.
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4. Extension to ^-dimensional Bessel process

The same work may be done, replacing the standard Brownian motion 
o by a (5-dimensional Bessel process (R[^)t>o, with 5 < 2. First we 

recall the following lemma, which follows from the well-known time reversal 
result between and R(4~s  ̂ (for the identity in law (ii), see Getoor ([9])):

Lemma 6. Let us denote the first time a 6-dimensional Bessel pro
cess starting from 1 reaches 0. Then, we have

f ®  ( ' - )  A (4—Í) def { r ( 4 - S )  =  1} (law) ..... 1
(i) É 1 (Ü) 2 V i

2

Then, the same arguments as in Proposition 1 give, with obvious nota
tions:

(9) V ' V  + t ó ' V i - m r 1 .

Let us denote ( r ^ )0<t<i the 5-dimensional Bessel bridge, Zß an independent
— — ß

Gamma variable of parameter p =  1 — Since

def
S S ,su p { tS l; f li{)= 0 } '  =  'Z „,1_ ,  

we have, denoting by S  an independent exponential time of parameter

(law)

P ( v ' V  V a ^ {6)) v )  = P{SAg ^ x2) =  E e x p ( - ^ - )

( 10) =  E

=  E

/  x2
expl ~ y ( 01+jR "!

2

exp( ~ y 2 Z„

In the special case where A t = f sup (f?.^)2, we obtain:
0 < s< i

E exp
4 Z„

(11) p ( ^ 2Z~ß sup r W ^ ) = E  e x p ( - ^ - t {S))
v ogsgi J L v 2 /_

where is the first hitting time of 1 by a 5-dimensional Bessel process

x 1~2K l_s(x)

starting from 0, so that (see [15] for example): 

P 2Zß sup r(5) ^ x) =
— 1+2.  X 1 ' 2

' s
0< s< l 2-1+̂ r(§)/_1+f(x) 2-ar(l—|)

2 K ß (x)
i » r ( i  - t i i - ^ x y

( 12)
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Thus, we recover the following result (see [15], [17] and [16]): 

(13) P U 2 Z ,  sup r ^ ú x )  =  ^ -
V Ogsgl J I - n ( x )

a formula which is closely related to Kiefer’s series expansions for the law of
C sup (see Kiefer [11], and again [15] and [16]).
Mlgsgl '

R e m a r k  7. It is noteworthy that the ratio on the right-hand side of
(13) also occurs in the following:

Px[ T ^ > t / R {P  =  y} = Iß{z)
i - ß { z Y

where z =  —  
t

and Tq̂  =  inf{<; =  0}.

R e m a r k  8. In the case 6 =  1, we recover (3) in Example 1 above:

P sup
Ogsgl

thx,

i.e. supI“(|fe|) *==  ̂4 sup |6S|, thanks to Remark 4. Thus, from equation (8.1)
a  2:0 O ^ s ^ l

of [7], we recover the well-known identity:

1 (law) , .
-  sup m s =  sup |os|, 
1 Ogs l̂ Ogs l̂

where (ms; 0 £  s 5Í1) is a Brownian meander.
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PATH DECOMPOSITIONS OF A BROWNIAN BRIDGE 
RELATED TO THE RATIO OF ITS MAXIMUM 

AND AMPLITUDE

J. PITMAN and M. YOR

A b strac t

We give two new proofs of Csáki’s formula for the law of the ratio 1 — Q of the 
maximum relative to the amplitude (i.e. the maximum minus minimum) for a standard 
Brownian bridge. The second of these proofs is based on an absolute continuity relation 
between the law of the Brownian bridge restricted to the event (Q Ú v) and the law of 
a process obtained by a Brownian scaling operation after back-to-back joining of two 
independent three-dimensional Bessel processes, each started at v and run until it first 
hits 1. Variants of this construction and some properties of the joint law of Q and the 
amplitude are described.

1. Introduction

In his study of asymptotic distributions arising from empirical processes 
in non-parametric statistics, Smirnov [25] showed that the formula

oo oo
(1) P (/5 [a , M ^ b ) =  exp(—2A;2(a +  fe)2) — ^  exp(—2[6-f k(a +  b)]2)

k=—oo k=—oo

for a, b ^ 0 defines the joint distribution of a pair of non-negative random 
variables (/, M). Doob [11] showed that (I, M)  may be constructed as

I  := — inf bu and M sup bu,
0=uá! Ogugl

where (bu, 0 ^ u ^ 1) is a standard Brownian bridge. Besides the many appli
cations of this law of (/, M)  in the theory of empirical processes (for which 
see Shorack and Wellner [24, §2.2]), this law is of interest on account of some 
of its remarkable properties which can be found scattered in the probabilistic * *
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Key words and phrases. Williams’ decomposition, range, three-dimensional Bessel pro

cess, Brownian scaling.
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literature. To quickly recall some of these properties, the asymptotic distri
bution of the Kolmogorov-Smirnov statistic is that of the absolute maximum 
I V M  =  sup |6U|, which can be read from (1) as

Ogu l̂

OO

(2) P ( / V M g 6 )  =  ( - l ) fcexp(—2 k2b2).
k~—oo

As explained by Vervaat’s [27] construction of a Brownian excursion from 
Brownian bridge, the law of the maximum of a standard Brownian excursion 
found by Kennedy [16] and Chung [9] is identical to the law of I +  M,  known 
as the amplitude or range of the bridge, whose distribution is given by the 
formula [12]

OO

(3) P(7 +  M  > b) =  2 k2b2 -  1) ex p (-2 k2b2)
k=l

for 6 ^ 0 . See also [2] for a survey of transformations related to Vervaat’s 
construction. As observed by Chung [9], the distribution of I V M  is charac
terized by the Laplace transform

<4>
while that of I  +  M  is characterized by the companion formula

<5> Eex' ' ( ^ A2(i+M)2) = (ü i( |Ä j)2'
Consequently, the law of (I +  M )2 equals the law of the sum of two in
dependent copies of ( /V M ) 2. For x ^ 0, y >  0 let T^y denote the first hitting
time of y  by a BESx ' process (Rx t , t 0), that is a three-dimensional Bessel

3 (3)process started at x, which may be constructed as R ;x := 

\J {X +  Bi , t)2 +  Bl,t +  ,t where the ^ 0) for i =  1,2, 3 are three inde
pendent standard Brownian motions started at 0. It is well known that for
y >  0

( 6 )
— \2nn(3)
2 °>y )

y A
sinh(yA)

so the identities (4) and (5) amount to the equalities in distribution
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where TJ is an independent, copy of TQV ^ . As far as we know there is still 
no satisfying explanation in terms of Brownian paths for these remarkable 
identities found by Chung. For further discussion of these results, their rela
tion to the functional equations satisfied by the Jacobi theta and Riemann 
theta functions, and various applications, see [5, 4, 30].

Let Q := I / ( /  +  M ). Csáki [10, Theorem 2] deduced from (1) a fairly 
complicated expression for P(7 +  M < u , Q  < v ) ,  from which he obtained by 
letting u —> oo the remarkable formula [10, (2.12)]

oo 1
(8 ) P(Q ^  v)  =  2 v 2 (1 — v )  —5----- - =  (1 — i;)(l — n v  c o t i n v ) )

z—' nz — v z
7 1 =  1

for 0 < v < 1. Section 2 of this paper presents a novel approach to Csáki’s 
formula (8) via the alternative expression

oo 2
,0, P .

0

By (6), for the hitting time of 1 by a BESi'^ process, there is the 
standard formula

( 10)
sinh(wA) 
v sinh(A)

so if we let TVJ  denote an independent copy of and set(3)

then

( 11)

rp* /Ti( 3) I rri(3)
-‘-v 1 v,\ ' ^v,!

In Section 3, the appearance of this quantity as the integrand in (9) is ex
plained in terms of the path decomposition at the maximum for the Brownian 
bridge, deduced as in Pitman-Yor [20] from Williams’ [28] path decomposi
tion at the maximum for a one-dimensional diffusion. The path decompo
sition of the bridge at its maximum allows the law of the bridge restricted 
to the event (Q ^ v) to be constructed by a random Brownian scaling op
eration from a back-to-back joining of the paths of two independent BE S^  
processes run until their first hits of 1. In Section 4 we deduce some corol
laries of this result involving the joint law of M  and Q. Section 5 presents 
a more refined result, which gives an explicit description of the law of the
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bridge conditioned on Q =  q for an arbitrary q E [0,1]. We note in particular 
that in the limiting case q =  0 this conditional distribution on C[0,1] is abso
lutely continuous with respect to the law of a standard Brownian excursion, 
with a density factor at u> E C [0,1] that is proportional to ( sup u>„)2. In

Ogugl
Section 6 we present some further identities involving the local time of the 
bridge at 0 up to time 1. Finally, Section 7 records some basic properties of 
the distribution of Q determined by Csáki’s formula (8).

2. A derivation of Csáki’s formula

Let IN\ denote the absolute value of a standard Gaussian variable N,  so

P( \ N\ ^x)  = j
o

dy

and assume that N  is independent of the bridge (öt, 0 Si t ^ 1). Our starting 
point is the formula

( 12) P (|iV |7 ^ x,  \N \M Zy)  =
2

coth x  +  coth y ’

which we have discussed already in [23, Ex. (4.24) of Chapter XII]. See also 
[8, 22]. As shown by Perman and Wellner [18], the Smirnov-Doob formula 
(l)  can be deduced from (12) by inversion of Laplace transforms. But since

(13) I  ^ 1^1/
' I +  M \N\I +  \N \M

we can proceed directly from (12) to the distribution of Q , without consid
eration of Laplace transforms. Easily from (12), for x, y ^ 0

(14) P ( \ N \ I ^ x , \ N \ M E d y )  =
2 sinh2(a;)dy 
sinh2(x +  y)

which combined with (13) gives

(15)

(16)

P ( Q g u )  =  p ( | A | / ^ ^ ;y|7V|M)

2sinh2( ^ )

sinh2( ^ )
o
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( 17)

so we have arrived at formula (9). To complete the proof of Csáki’s formula 
(8), it only remains to check the identity

o

But after expanding

n = 1

the identity (18) follows easily from the classical identities [13, 3.523.2]

We start by formulating the path decomposition of the Brownian bridge 
at its maximum in terms of the following construction, which we adapt from 
[28, 29, 19, 5, 20]. See also [21] for variations of this construction and [14, 
15, 26] for other decompositions of the Brownian path involving the range 
process and BES1-3  ̂ pieces.

C o n s t r u c t io n  1. Given two continuous path processes with random 
finite lifetimes, each with initial value 0 and final value z, say R (R{t), 0 g 
t g  77) and (R := (R(t) ,0 g t g r j )  with R(r]) =  R{ij) = 2 , construct a random 
element r of C [0,1], say

OO

(19)
0

where Bm is the mth Bernoulli number, and [13, 1.411.7]

( 20)

3. Path decomposition at the maximum

r :=  (r(u),0 g u g  1) := BRIDGE (R(t), 0 g t g  77); (R(t), 0 g t g r j )
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with r(0) =  r(l) = 0 by first pasting R  and R  back to back and then trans
forming the resulting path by Brownian scaling to have lifetime 1; that is

( 21) r(u) :=
C- l / 2R(uQ  if O g u g E

C~1/2ß ( ( l  -u)C) if

where £ :=  r\ + rj and V  :=r]/£.

In the following applications, r/ and rj will be the first hitting times of 
some level z  >  0 by the processes R  and R, respectively. Then V is evi
dently the a.s. unique time at which r attains its maximum level, so V  is a 
measurable function of r with

sup r(u) =  r(V) =  z ( ~ 1̂ 2
0<u<l

and R  and R  can then be recovered from r via the formulae

c =  z 2/ r 2( V )

(R(t), 0 g t g  77) =  ( z r ( t / 0 / r ( V ) ,  0 g  t g  VC)

(R(t) ,OZt£ri)  =  ( z r ( l - t / Q / r ( V ) , O Z t Z { l - V ) Q .

So the joint distribution of (R , R) determines the distribution of r := 
BRIDGE[J2; R], and vice versa.

THEOREM 2. Let (bu, 0 f i u  g  1) be a standard Brownian bridge, and let

(22) (&£, 0 g it g l ) : =  BRIDGE (Bu 0 g t g  crj); (Bt, 0 g t g dx)

where (f?t , 0 g  i g 04) and (.B ,̂ 0 g f g  Sq) are two independent copies of a 
standard Brownian motion started at 0 and run until its first hitting time 
of 1. Then for every non-negative measurable function F defined on the 
path space G[0,1] there is the identity

(23) E[F{bu, 0 g  u g  1)] =  \Z2?r E[F(b*u, 0 g  u g 1 )AP], 

where

(24) M* ■= sup b*u — 1 / \J(J\ +  o\.
0 < u < l

P r o o f . Copy the proof of [20, Theorem 3.1] in dimension 1, with the 
one-dimensional Bessel process ( |B f|,t^ 0 ) replaced by (Bt,t^.O). □

C orollary 3. Fix 0 <  v <  1 and let

(3)
(25)
{bv,u, 0 g  u g  1) := BRIDGE (Rv t v , 0  g t g r j j ) ; ^ - ^ O g f g í g )
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where (R^j, 0 ^ t ^ ) and (R^}, 0 ^ t ^ T ^ )  are two independent copies
of a DEl.ii3* process run until its first hitting time of 1. Then for every non
negative measurable function F defined on the path space C[0,1] there is the 
identity

(26) E[F(bu,0 ^  u g  1)1 (Q Ú u)] =  VTk v 2E F(bv>u, 0 g  u ^ 1 )MV

where

(27) Mv := sup bViU =  with T*v := T^}  +  T $ .
0=w =1 v v

Proof. In (23) replace F( ■ • •) by

F(- ■ ■ )1(Q % v) =  F(- • • )1 ( I /M  Ú a) where v =  a/(a +  1), a =  u / ( l  — v)

to see that

(28) E [F(bu, 0 1)1(Q ^ «)] =  V2^E [F(b*u, 0 l )M * l (G a)}

for Ga the event
Ga (I & i ^ tt) n (A  ̂ ^ ~ a)i

where It := inf B u and hats indicate corresponding variables defined in 
Ô û t

terms of the other independent Brownian motion. Since P(Ga) =  
(a/(a +  l))2 =  v2, formula (28) can be recast as

(29) E[F(bu, 0 ^ u <, 1)1(Q ^ v)] =  V2^ v2E[F(b*u, 0 ú u ú  1 )M* | Ga}.

But conditionally on Ga the processes (Bt, 0 ^ t ^ <j\) and (Bt, 0 ^ t ^ Sy) 
are two independent copies of Brownian motion started at 0 and run until 
its hitting time of 1, with conditioning to hit 1 before —a. By mapping the 
interval [—a, 1] linearly to [0,1], and scaling time by a factor of (a +  l )2 =  
1/(1 — v ) 2, these two processes can be constructed from two independent 
copies of Brownian motion started at v and run until its hitting time of 1, 
with conditioning to hit 1 before 0. As shown by Williams [28], such a
conditioned Brownian motion is a copy of (R^J, 0 ^ t  ^ ). Thus the
processes (Bt, 0 ^ t ^ a i) and (Bt, 0 ^ t ^ a i) given Ga are distributed like 
two independent copies of the process

R (3)
—u): — V

-,0 <zt^
p (  3) 
lv,l

( i - « 0 s
(30)

1 — V
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Thus (29) holds with the process (&£,0^t^l )  conditioned on Ga replaced 
by (bt, 0 5Í t Ú 1) defined as in (25), and with the density factor M* in (29)
replaced by the corresponding quantity defined in terms of the BES(,3̂  pro
cesses, that is

M - _______1______
y/ ( t ; ) / ( l - t , ) »  y/T* ’

and these substitutions in (29) yield (26). □

As a check on formula (26), we note that the previous formula (23) is 
recovered from (26) in the limit as r>tl- To see this, observe that as u | l  
the distribution of the process in (30) converges to that of ( B t ,0  ^ a \ ) ,
and hence the distribution of the process (6U;U, 0 ^ u ^ 1) converges to that 
of (fi*,0 ^ u ^ 1). For a discussion of the limiting case of (26) as uJ-O, see 
the end of Section 5.

4. Some consequences of the path decomposition

If in (26) we take F(bu, 0 ^ u ^ 1) =  M  lf { M )  with M  := sup bu as

before, and /  an arbitrary non-negative Borel function, then we deduce from
(26) that

(31) E {M - lf { M ) l ( Q ^ v ) )  =  V2^v2E f ( 1~v' 
VÄT

where the distribution of T* is determined by the Laplace transform (11). 
In particular, for arbitrary real r

(32) E(Mrl(Q ^ v)) =  V 2 ttv2{1 -  ti)r+1E ((T ;)-(r+1)/2).

For any non-negative random variable X  there is the formula

(33) E(X-P) =  ‘̂ j d X X 2P -1E e x p ^ \ 2x )  (p>0)
o

obtained by application of Fubini’s theorem. So (32) combined with (11) 
yields
(34)

E(Mrl ( Q ^ v ) )  =  V 2 ^ ( l - v ) r+ 1
1 — r  

2 ~

r( 2/
dXXr

sinh(uA)
sinh(A)

(r>  -1) .
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This formula determines the distribution of M  restricted to the event (Q ^ v) 
by a Mellin transform. In the special case r — 0 we recover from (34) the 
alternative form (9) of Csáki’s formula (8).

By another application of formulae (31) and (11), we deduce the following 
characterization of the law of M  restricted to the event (Q ^ v): for all real 
£ and 0 < v < 1

(35) E
M

exp HQZv)
/ö^ sinh2(fo/v) 

sinh2(£/ü)
where v := (1 — v).

5. Conditioning the bridge on Q

Formulae for various conditional expectations given Q =  v are obtained 
by differentiating formulae of the previous section with respect to v. For 
instance, in the special case r =  — 1 formula (32) simplifies to give for 0 ^ v ^ 1

(36) E[M ~h (Q ^v)}  =  V 2 ^ v 2

and hence by differentiation

(37) E(M "! \Q = v) =  2 y / 2 n v / f Q(v),

where, by application of Csáki’s formula (8),

(38) / q (^ )  : =  P(Q €  dv)/dv =  ^ -(1  —v)( l  -  ttv cot (t v )) .

See Section 8 for further discussion of this density. By differentiation of 
formula (35) we obtain for 0 < v < 1, with v := 1 — v,

(39) E
M

exp
2 M 2

1(Q 6 dv)
2-\/ 7̂r £ sinh(£w/i;) sinh(£) 

v 2 sinh3(£/v)

If we apply this formula with A :=£/u and v replaced by q then in terms of 
the amplitude

A : = I  +  M  =  M /( l  — Q) 

we deduce the simpler formula

(40) E i e x p Q  =  q
2\/2n  A sinh(Ag) sinh(A(l — q)) 

f Q(q) sinh3(A)

for 0 < q <  1. In view of (6) and (10) this can be interpreted as follows. Let
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(3) • (3)where T^y is as before the first hitting time of y by a BESx process, and
we now assume that the three random times Tq\ \  t ' ^ , and T^} x are inde
pendent. Then from (6) and (10) we have

(41)

Let

(42)

Asinh(Ag) sinh(A(l — q)) 
q(l — q) sinh3(A)

Aq := 1 /y/Tq-
Then (41) allows (40) to be rewritten

(43) E exp -
A2 

2 A2 Q  =  q
2 \ f 2n q(l  — q)

í q {q)
E exp

It now follows by uniqueness of Laplace transforms that for an arbitrary 
non-negative Borel function g and 0 < q < 1 there is the identity

(44) E[g(A) I Q =  q \ =  q) E(Aqg(Aq)).

That is to say, the conditional density of A at a given Q =  q is identical to 
afAq(a)/'E(Aq), where f^q is the density of A q := 11 In particular, by 
(44) for 5 =  1,

(45) E ( ^ ) 1 /(?(<?) 
2 \ / 2n ^(l -  q)

Formula (61) gives bounds which imply that E(ylg) lies in the interval (0.19, 
0.22) for all q G (0,1). In view of (41), (42) and (33) for p — 1/2, we see that 
(45) amounts to the identity

(46)
Í A sinh(Ag) sinh(A(l — 5)) 

./ sinh3(A)
fejig)

4

This identity can also be deduced by integration of (40) with respect to d \ .  
Since

(47) 4 j  
0

dq A sinh(Ag) sinh(A(l —q)) =  2 \v  cosh(A) — sinh(A)+sinh(A — 2v \ )

the identity (46) is in turn equivalent to
OO

(2Au cosh(A) — sinh(A) +  sinh(A — 2uA))
(48) I d \ -

sinh3(A)
= P {Q ú v )
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as given by Csáki’s formula (8). We were able to confirm this by symbolic 
integration using Mathematica.

The above discussion invites an interpretation in terms of a path de
composition of the bridge conditioned on Q = q. Such an interpretation is 
provided by the following corollary of Theorem 2, which extends the previous 
formula (44) from an identity of one-dimensional distributions to an identity 
of distributions on the path space CfO, 1].

Fix g 6 (0,1). Take three independent BES^ processes, with starting 
levels 0, q and 1 — q, say Ro, Rq and R \ - q, whose hitting times of 1 are 
i f ? .  and T ^ q l . Define a continuous path S := (S(w),  0 ^ w Ú Tq),
starting at q at time 0, and ending at q at time Tq := Tq3̂  +  Tq3̂  + T j^  l5 by 
concatenation of the three paths

(Rq( t ) , 0 Z t ^ T $ ) ,

( r 0( T $ - u) ,O í u í T $ ) ,

( l  -  R ^ T ^ - v ) ^ ^ ^ 3} ^ )  .

Let (bJ,U)0 ^ u ^ 1) be the process derived from S by the Brownian scaling 
operation b\uu := (S(uTq) — q)/y/Tq.  So by construction, (bq,u, 0 ^ u ^ 1) 
is a process starting and ending at 0 whose amplitude is A q := l /y/Tg  as 
above, with the feature that the process attains its maximum value before 
its minimum.

C o r o l l a r y  4 .  Let /9m jn denote the a.s. unique time that the Brownian 
bridge (6u, 0 ^ u ^  1) attains its minimum on [0,1], and pmax the correspond
ing time for the maximum. Then for every non-negative measurable function 
F defined on the path space C[0,1] there is the identity

(49)
E[F(6u, 0 g u g
2 \ / 2n q(l — q)

/ q (q)

1) I Pmax Pminj Q  — 0]

e [f (&J>u>0 £ u £1M ,'

where Aq-.— l/y^Tq is the amplitude of (&JiU, 0 ^ u ^ 1).

PROOF. By application of (23), and the definition of conditional expec
tations, we deduce that for 0 < q <  1

E[F'(tu, 0 ^  U ^  1) I p m ax <  Pmim Q  — Q\

E [* K , 0 I p,*nax < p*min, Q* =  g}
E[M * IPmax<Pmin-<3*=9]
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where M*, p*max, p*m{n and Q* are M, pmix, pmm and Q evaluated for 
(6*,0 ^ u ^ 1) instead of (5U,0 ^ u ^ 1). In particular, by construction 
M* =  l/V o-i + Sy. Now, from the construction of (b*,0 ^ u ^ 1), we see 
that the event {p*m&x < p^in, Q* =  q) is identical to the event (Iai > c, 7~ — c) 
where c l  (c+1) — q,c — q / ( l  — q). With this conditioning, the process (B u, 0 
u ^ cji) becomes a Brownian motion run until it first reaches 1, conditioned 
to reach 1 before reaching —c, while the process (7?u, 0 ^ u ^ oq) is a Brow
nian motion run until it first reaches 1 and conditioned on inf^ Bu =  —c.

0='u=cri
According to Williams’ path decomposition at the minimum [28], the latter 
process can be constructed by concatenation of two B E S^ pieces. After 
rescaling as in the proof of Corollary 3 these two fragments are represented 
by the second two paths in the concatenation of three paths which defines 
the process 5, and the argument is completed similarly to the proof of Corol
lary 3. □

Note that due to the invariance of the bridge under time reversal, the 
event ( p m a x < P m in )  appearing above is an event of probability 1/2 that is 
independent of the pair (Q, A).  Corollary 4 combined with this remark pro
vides an explicit description of the unique family of conditional distributions 
for (bu, 0 ^ u ^ 1) given Q =  q that is weakly continuous in q for q € [0,1]. 
In particular, the law of (bu, 0 ^ u ^ 1) given Q =  0 is obtained either by 
letting q \. 0 in Corollary 4, or by conditioning on (Q  ^ v) and letting v J, 0 
in Corollary 3. (See formulae (58) and (59) for the required asymptotics of 
f q (v) and P(Q^n) as u4,0.) Let (öo.u, 0 ^ u ^ 1) be the process defined by 
formula (25) for v =  0. That is, ( 6 o jU, 0 5] it ^ 1) is constructed by putting
back-to-back two independent copies of a BESq ' run until its first hit of 1, 
then Brownian scaling to obtain lifetime 1. Then formula (26) implies that

(50) 

where

(51)

E [F (6 „ ,0 g u g l )  |Q  =  0] =
7T

F(b0,u, O i u i l ) M 0

Mo ■= sup =  with To : = t o,3i + ^ 0,3l-
O^ugl y l 0

It is known [7] that the law of (6U, 0 ^ u ^ 1) given 7 =  0, defined similarly as 
a weak limit, is the law of a standard Brownian excursion (or BES^3) bridge), 
as determined by [20, Theorem 3.1 with 5 =  3],

(52) E[F(6U, 0 g u  Í  1) I I  =  0] =  E [F(b^u, 0 ^ u  g  1 ){M0y l

Thus the limit in distribution as v |  0 of (bu, 0 ^ u ^ 1) given (Q ^ v), as 
determined by (50), is not the same as the limit in distribution as v 4-0 of
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(bu,0 ^ u ^ 1) given (I ^ v), as determined by (52), despite the identity of the 
events (Q =  0) and (I =  0). See Billingsley [6, p. 441] for similar variations 
of the classical Borel paradox. As a check on the constants of integration, 
it is known [5] that the mean squared maximum of a Brownian excursion is 
7t2/6. Thus (52) for F(- ••) =  M 2 gives

y  =  E(M2 | /  =  0) =  y / |E (M 0) 

in agreement with (50) for F(- ••) =  !.

6. Some further identities

The formula (12) which we used as our starting point was derived in [23] 
as a consequence of the following trivariate identity, which characterizes the 
joint law of ( /, M, L), where

l
L : = l i m — [  dt 1(16*1 < e) 

o

is the local time at 0 of the bridge up to time 1:

(53) P(|iVj/ ^ x, \N\M y, \N\L e  dl) =  exp -(cotha: +  cotli y) ĵ dl.

We note that Corollary 3 could be applied to give another characterization 
of the law of (I, M, L).

Let (Ti,l ^ 0) denote the usual local time process at zero of a standard 
Brownian motion (Bt, t  ^0). As shown in [3], the law of the pseudo-bridge 
(bf , 0  ^ t ^ 1) defined by

bf  := B tTl / y/rf
is absolutely continuous with respect to that of the bridge, with density 
(^/tt/ 2L )-1 . Equivalently, for every non-negative measurable function F 
defined on the path space C [0,1] there is the identity

(54) E[F(6t, 0 g t  g  1)] =  J | e  [F(b* , 0 g t Í  1)L# ] ,

where L* — 1/yT i is the local time at 0 of (bf  ,0 ^ t ^ 1) up to time 1. In 
terms of the Brownian motion (Bt ), define

It ■= ~  inf Bu; Mt := sup B u\ At := I t +  Mt;
Ogugi 0<u<i M
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It was shown in [21] that QTl has uniform distribution on (0,1). In view of
(54) and Csáki’s formula (8), this implies

l
E[L~l g{Q)\ =  J d vg {v )

o

for all non-negative Borel functions g. This formula can also be obtained 
quite easily from Theorem 2. From this formula we deduce that

(55)

Compared with (37), this gives the curious formula

(56) E[M-1 \ Q =  v] =  Av E[L-1 \ Q — v].

As shown by Lévy [17], the random variables M  and 2L have identical 
Rayleigh distributions, with P(M  > x) = P(2L > x) =  exp(—l x 2) for x >  0. 
The conditional distribution of M  given Q — v , which is determined by (35), 
could also be described by a series density derived from (1). It does not seem 
easy to describe the conditional law of L given Q =  q so explicitly, though the 
density of \N\L on the event (Q can be read from (53), and this could 
be used to give integral expressions for conditional moments of L given Q ^ v 
or Q =  v.

7. The distribution of Q

We record in this section some properties of the distribution of Q which 
follow from Csáki’s formula (8) for P(Q^u).  By differentiation of (8), the 
density at q G (0,1) is

(57) f Q(q) -= n <i<y\ — — + ( 2 q -  l)7rcot i r q -  1.
sin -Kq

It is easily checked using (57) that

27T2
(58) / q (9) =  / q (1 - 9 ) ~ - 3 - 9  as q |0 ,

where the first equality is obvious from the symmetry of Brownian bridge 
with respect to a sign change. Easily from (58)

7T2
P ( Q ^ )  =  P ( Q ^ l - g ) ~ y g 2 as g | 0 .(59)
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This distribution of Q is close in most respects to the beta(2,2) distribution 
with density 6g(l — q). Both densities are concave and symmetric about 
1/2. The beta(2,2) distribution is slightly more peaked, with modal density 
3/2 =  1.5 at q =  1/2, whereas

(60) / q (1/2) =  ^ -  1 =  1.4674.. ..

The density of the law of Q relative to the beta(2,2) law is subject to the 
bounds

(61) 0.978 7T2 - 4  < fQ{q) <
6 = 6g(l - q )  = 9

1.097,

where the lower bound is attained at 1/2 and the upper bound is sharp at 
0+ and 1—. The total variation distance between these two densities was 
found by numerical integration using Mathematica to be

l
(62) f  dq\fQ{q)- 6 g ( l  -  q ) \«0.019.

o

l
For n > 0 the nth moment E(Qn) =  f  dqqnfQ{q) can be evaluated by inte

ti
gration by parts as follows:

(63)

For m =  

(64)

i
E ( Q n ) =  j  d v { \  - P { Q ^ v ) ) n v n ~ l

o
l

= -------------b n 7 T  /  dvvn(\  — v) C O t ( T ru ) .
n +  1 J

0

1 ,2 , . . .  there is the classical identity [1, 23.2.17]

l
I  dvB2m+1(u) cot(7ru) =  2(2m +  l ) ! ( - l ) m+1 »

where Bn(v) is the nth Bernoulli polynomial, which is of degree n with 
rational coefficients, and C(s) :== n_s *s Riemann zeta function. 
Also, by symmetry,

(65) E [ ( Q -  l / 2 ) 2m_1] =  0.
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It follows that for n =  1, 2,

(66)

Ln/2J
F rn n \ _  n  , C(2m+1)
E{Q ) ~ n  +  l +  ^  n'm 7r2m

m = l

for some rational coefficients an>m determined by (63), (64) and (65). For 
instance

(67) E{Q) =  \-  £ ( Q 2) =  | - 3C(3)-
7U

F i 0 3 , _ 3  9C(3)

(68) +5 7T2 7T4

REFERENCES

[1] A bram ow itz , M. and St e g u n , I. A. (editors), Handbook of mathematical functions
with formulas, graphs, and mathematical tables, Dover Publications Inc., New 
York, 1966. MR 34 #8606

[2] B e r t o in , J. and P itman, J . ,  Path transformations connecting Brownian bridge, excur
sion and meander, Bull. Sei. Math. (2) 118 (1994), 147-166. MR 95b:60097

[3] B ia n e , P h ., Le G all, J. F. and Y o r , M., Un processus qui ressemble au  pont brown-
ien, Séminaire de Probabilités XXI, Lecture Notes in Math., 1247, Springer, 
Berlin-New York, 1987, 270-275. MR 89d:60145

[4] B ia n e , P h ., P itman, J. and Y o r , M., Probability laws related to the Jacobi theta and
Riemann zeta functions, and Brownian excursions, Technical Report No. 569, 
Department of Statistics, University of California, Berkeley, 1999. Available 
via www.stat.berkeley.edu/users/pitman

[5] B i a n e , P h . and Yor, M., Valeurs principales associées aux temps locaux Browniens,
Bull. Sei. Math. (2) 111 (1987), 23-101. MR 88g:60188

[6] B i l l i n g s l e y , P., Probability and measure, 3rd edition, Wiley Series in Probability and
Mathematical Statistics, Wiley, New York, 1995. MR 95k:60001

[7] B lu menthal , R. M., Weak convergence to Brownian excursion, Ann. Probab. 11
(1983), 798-800. MR 85e:60083

[8] C a r m o n a , P h., P e t it , F., P itm a n , J .  and Y or , M., On the laws of homogeneous
functionals of the Brownian bridge, Studia Sei. Math. Hungar. 35 (1999), 
445-455.

[9] C h u n g , K . L., Excursions in Brownian motion, Ark. Mat. 14 (1976), 155-177. MR
57 #7791

[10] C s á k i , E., On some distributions concerning maximum and minimum of a Wiener
process, Analytic function methods in probability theory (Proc. Colloq. Meth
ods of Complex Anal, in the Theory of Probab. and Statist., Debrecen, 1977), 
ed. by B. Gyires, Colloq. Math. Soc. János Bolyai, 21, North-Holland, Ams
terdam -  New York, 1979, 43-52. MR 81b:60079

[11] D o o b , J., Heuristic approach to the Kolmogorov-Smirnov theorems, Ann. Math.
Statistics 20 (1949), 393-403. MR 11, 43a

[12] G ne d en k o , B. V., Kriterien für die Unveränderlichkeit der Wahrscheinlichkeitsver
teilung von zwei unabhängigen Stichprobenreihen, Math. Nachr. 12 (1954), 
29-66 (in Russian). MR 16, 498c

http://www.stat.berkeley.edu/users/pitman


PATH DECOMPOSITIONS OF A BROWNIAN BRIDGE 473

[13] G r a d s h t e y n , I. S. and R y z h i k , I. M., Table of integrals, series, and products, Correct
ed and enlarged edition, edited by Alan Jeffrey, Academic Press, New York, 
1980. MR 81g:33001

[14] Hsu, P .  a n d  M a r c h , P . ,  Brownian excursions from extremes, Séminaire de Proba-
bilités XXII, edited by J. Azéma, P.-A. Meyer and M. Yor, Lecture Notes in 
Mathematics, 1321, Springer-Verlag, Berlin -  New York, 1988, 502-507. MR, 
89c:60005

[15] I m h o f , J .  P . ,  A construction of the Brownian path from BES3 pieces, Stochastic
Process. Appl 43 (1992), 345-353. MR 94c:60133

[16] K e n n e d y , D. P . ,  The distribution of the maximum Brownian excursion, J. Appl.
Probability 13 (1976), 371-376. MR 53 #6769

[17] L e v y , P . ,  Sur certains processus stochastiques homogenes, Compositio Math. 7  (1939),
283-339. Zbl 22.059

[18] P erman, M. and W ellner, J., An excursion approach to the Koiinogorov-Smirnov
statistic (in preparation).

[19] P itman, J. and Y o r , M., A decomposition of Bessel bridges, Z. Wahrsch. Verw. Ge
biete 59 (1982), 425-457. MR 84a:60091

[20] P itman, J. and Y o r , M., Decomposition at the maximum for excursions and bridges
of one-dimensional diffusions, l td ’s stochastic calculus and probability theory, 
ed. by N. Ikeda, S. Watanabe, M. Fukushima and H. Kunita, Springer-Verlag, 
Tokyo, 1996, 293-310.

[21] P itman , J. and Y o r , M., Random Brownian scaling identities and splicing of Bessel
bridges, Ann. Probab. 26 (1998), 1683-1702.

[22] P itman , J. and Y o r , M., Laws of homogeneous functionals of Brownian motion (in
preparation).

[23] R evuz, D. and Y o r , M., Continuous martingales and Brownian motion, 2 nd  edit ion,
Springer-Verlag, Berlin - Heidelberg, 1994. MR 95h:60072

[24] S h o r a c k , G. R. and W e l l n e r , J. A., Empirical processes with applications to statis
tics, Wiley Series in Probability and Mathematical Statistics: Probability and 
Mathematical Statistics, John Wiley & Sons, New York, 1986. MR 88e:60002

[25] S mirnov, N. V., On the estimation of the discrepancy between empirical curves of
distribution for two independent samples, Bull. MGU 2 (1939), 3-14 (in Rus
sian). Bull. Math. Univ. Moscou, Sér. internat. 2 (1939), fasc. 2, 1-16. Zbl 
23.249

[26] Vallois, P . ,  Decomposing the Brownian path via the range process, Stochastic Pro
cess. Appl. 55 (1995), 211-226. MR 96a:60067

[27] V ervaat, W., A relation between Brownian bridge and Brownian excursion, Ann.
Probab. 7 (1979), 143-149. MR 80b:60107

[28] W il l ia m s , D . ,  Path decomposition and continuity of local time for one-dimensional
diffusions. I, Proc. London Math. Soc. (3) 28 (1974), 738-768. MR 50 #3373

[29] W i l l ia m s , D., Diffusions, Markov processes, and martingales, Vol. I. Foundations,
Probability and Mathematical Statistics, Wiley, Chichester, 1979. MR 80i: 
60100

[30] W i l l ia m s , D . ,  Brownian motion and the Riemann zeta-function, Disorder in physical
systems, ed. by G. R. Grimmett and D. J. A. Welsh, Clarendon Press, Oxford; 
Oxford Univ. Press, New York, 1990, 361-372. MR 91h:60094

(Received October 1, 1998)



474 J. PITMAN and M. YOR: PATH DECOMPOSITIONS

DEPARTMENT OF STATISTICS 
UNIVERSITY OF CALIFORNIA 
367 EVANS HALL 
BERKELEY, CA 94720-3860 
U.S.A.

pitm an@ stat.berkeley .edu

LABORATOIRE DE PROBABILITIES 
UNIVERSITÉ PARIS VI 
TOUR 56 -  3° ETAGE 
4 PLACE JUSSIEU 
F—75252 PARIS Cedex 05 
FRANCE

secret@ proba.jussieu.fr

mailto:pitman@stat.berkeley.edu
mailto:secret@proba.jussieu.fr


Studia Scientiarum Mathematicarum Hungarica 35 (1999), 475-478

BOOK REVIEWS

A sym ptotic M ethods in P robability  and  Statistics, A Volume in Honour of 
Miklós Csörgő, Ed. by B. Szyszkowicz, Elsevier Science B.V., Amsterdam, 1998, xxxiii, 
889 pp. ISBN 0 444 50083 9. '

ICAMPS’97, an International Conference on Asymptotic Methods in Probability and 
Statistics was organized and held in honour of Professor Miklós Csörgő at Carleton Uni
versity, Ottawa, Canada 8-13 July, 1997.

The present volume is the Proceedings of this Conference, containing 55 papers, main
ly on the subjects Miklós Csörgő was a main contributor. The volume consists of 17 Parts 
and reflects the developments in the last few years in the fields of invariance principles, 
local times and other additive functionals, iterated processes, change-point and other non- 
parametric problems, including empirical and quantile processes, etc.. The volume starts 
with a Preface by B. Szyszkowicz, a detailed review of the scientific work of M. Csörgő. 
Part 1: Limit theorems for variously mixing and quasi-associated random variables. (Con
tributors: S. Csörgő, P. Kowalski Z. Rychlik, T. M. Lewis, M. Peligrad.)
Part 2: Central limit theorems for logarithmic averages. (I. Berkes, E. Csáki-A. Földes.) 
Part 3: Strong approximations, weighted approximations. (A. R. Dabrowski-H. Dehling, 
P. Deheuvels, P. W. Glynn, G. R. Shorack.)
Part 4: Empirical distributions and processes. (K. Ghoudi-B. Remillard, P. Massart-E. 
Rio, L. Takács.)
Part 5: Iterated random walks. (K. Grill, P. Révész.)
Part 6: Fine analytic path behavior of the oscillations of stochastic processes. (S. Keprta, 
W. V. Li, Z. Y. Lin-Y. C. Qin, C. R. Lu-H. Yu, J. Steinebach, Y. Xiao.)
Part 7: Multiparameter stochastic processes. (B. Chen, B. G. Ivanoff-N. C. Weber.) 
Part 8: Results related to studies of local time and hitting times of Bessel processes. A 
cautionary note on limiting sigma-algebras. (E. Csáki-A. Földes, D. L. Hanson, Y. Hu-M. 
Yor.)
Part 9: Large deviations, small ball problems, self normalization. (D. A. Dawson-J. 
Gärtner, S. Feng, D. Khoshnevisan-Z. Shi, Q.-M. Shao.)
Part 10: Stochastic bifurcations (K. Burdzy-D. M. Frankel-A. Pauzner)
Part 11: Change-point analysis, U-statistics, non-smooth functions, comparison distribu
tions. (E.-E. A. A. Aly, J. A. Correa, B. Freidlin-J. L. Gastwirth, E. Gombay-L. Horváth, 
M. Husková, F. Lombard, H.-G. Müller, E. Parzen.)
Part 12: Empirical reliability, survival analysis. (L. Rejtő-G. Tusnády, M. D. Rothmann- 
R. P. Russo, H. Yu, R. Zitikis.)
Part 13: Gaussian bootstrap, Monte Carlo simulation. (M. D. Burke, B. J. Eastwood- 
V.R. Eastwood.)
Part 14: Autoregressive and moving average schemes. (G. Haiman, M. Rosenblatt.) 
Part 15: Nonparametric curve estimation, regression diagnostics. (R. J. Kulperger, P. 
Major-L. Rejtő, S. Portnoy.)
Part 16: Testing statistical hypotheses. (M. Alvo-P. Cabilio, J. Babb-A. Rogatko-S. 
Zacks, T. Inglot-W. C. M. Kallenberg-T. Ledwina.)

0081 -6 9 0 6 /9 9 /$  5.00 ©1999 Akadémiai Kiadó, Budapest
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P a rt  17: Tail index estimation, order statistics of order statistics. (S. Csörgő-L. Viharos, 
R. J. Tomkins.)

The papers in this volume axe valuable contributions to asymptotic methods in prob
ability and statistics and is recommended to researchers in this field.

E. Csáki (Budapest)

T he A rt and C raft o f P roblem  Solving, by Paul Zeitz, John Wiley &; Sons, Inc., 
New York -  Chichester, 1999, xvii + 334 pp. ISBN 0 471 13571 2.

How to become a famous mathematician? W hat distinguishes the contest winner 
young talent from the average teenager around the corner? Is there any way to improve 
your, or your kid’s, problem solving capacity? The book of Paul Zeitz has a lot to say 
about these questions.

The author was a member of the very first US team to participate in the International 
Mathematical Olympiad, and almost twenty years later he has been coaching several recent 
teams. The intellectual challenge of solving mathematical problems captured him while 
in high school, and rooted deeply. “As a missionary for the problem solving culture” he 
writes in the Preface, “The Art and Craft of Problem Solving is a first approximation of 
my attempt to spread the gospel.” He compares problem solving to hiking. As the hiker 
is rewarded by the scenery both en route and at the destination, similarly “[t]he problem 
solver climbs to the top of mountains, sees hitherto undreamed vistas. The problem 
solver arrives at places of amazing beauty, and experiences ecstasy which is amplified by 
the effort expended to get there.” The book tries to teach those techniques, methods, 
tricks and know-hows, tactics and strategic thinking, which makes the reader capable of 
making longer tours on higher, and, gradually, more dangerous mountains of mathematical 
thinking.

Part I is an excellent introduction to basic, psychological and non-psychological, tech
niques of problem solving. A successful problem solver must have several qualities, which 
can be developed through hard work, such as confidence, concentration, creativity, and 
open-mindedness. “Just because a problem seems impossible does not mean that it is im
possible. Never admit defeat after a cursory glance.” There are stories about how someone 
solved a long-standing open problem just because had no idea of the enormous (unsuc
cessful) effort put previously into the problem. Also “[n]ice guys may or may not finish 
last, but good, obedient boys and girls solve fewer problems than naughty and mischievous 
ones." Moral: break, or at least bend the rules if they do not lead to the solution. Each 
rule is spelled out explicitly, and is richly illustrated with either “folklore” problems, or 
problems from different m ath competitions. Certain problems are recurring at different 
sections, offering new insight, or new ways of attack.

Once over Part I, and having the basic skills, we could enter the more messy Part II, 
entitled “Specifics.” Here the problems are grouped not by the method which could help 
to solve them, rather by the topic they belong: Algebra, Combinatorics, Number Theory, 
and Calculus. As in Part I, all sections end with at least a dozen problems and exercises 
illustrating the section’s main ideas. Approaching the crux of the book, more and more 
problems are solved, more and more tricks and methods are introduced. After we have 
learnt how to make the first steps, how to arrange our initial ideas, we have to recognize 
that the essence of mathematical problem solving cannot be captured by a few well chosen 
recipes, there is always a place for new ideas, for unexpected connections. And here is 
the only point Paul Zeitz’s excellent book missed. He convinces the reader that (math) 
problems can be solved, that this is an intellectual challenge, and gives satisfaction and 
the feeling of a well-done work; this is not a privilege of a few but can be learnt. What 
he does not say is essentially two important facts. First, there is a significant difference
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between problems set up for solution in a contest (or in a newspaper) and problems arising 
in the everyday life (of mathematics, say). While the former ones do have a simple solution 
(otherwise they could not be posed), the latter ones do not necessarily have any. There are 
hopeless mathematical problems, and they must be avoided during the first years of study. 
Secondly, and this is more important, while there are certain techniques which must be 
mastered, this does not mean that for all problems discussed in the book the most elegant 
solutions should pop out from the student’s head. For several problems it took years, 
sometimes decades, for a simple proof to appear. It is unjust even to suggest that “this 
is the way it should be solved, and if you cannot figure it out by yourself, you won’t be 
a good mathematician.” Several deep and important mathematical facts, theorems, even 
problems have only proofs and solutions which are ugly, lengthy, full of sweat and struggle. 
The most rewarding experience is to find a truly nice, illuminating, simple solution -  a 
proof from The Book. But finding any, even the ugliest one, is equally satisfactory, and 
the fame goes with the first proof.

I recommend “The Art and Craft of Problem Solving” to those, who want to learn 
problem solving techniques; to those who teach that kind of people; and to those who 
simply want to amuse themselves by the myriad of wonderful brain-twisters and math
ematical puzzles. The required mathematics never goes beyond the first undergraduate 
level. Finally, let me quote three simple problems from the book, one from the beginning, 
one from about midway, and one from the end. You may try your own claws on them. 
Problem  2.1.27, (b) Of all the books at a certain library, if you select one at random, 
then there is a 90% chance that it has illustration. Of all the illustrations in all the books, 
if you select one at random, then there is 90% chance that it is in color. If the library 
has 10,000 books, then what is the minimum number of books that must contain colored 
illustrations?
Problem  4.1.22 The 20 members of a local tennis club have scheduled exactly 14 two- 
person games among themselves, with each member playing at least one game. Prove that 
within this schedule there must be a set of 6 games with 12 distinct players.
Problem  8.4.25 Let P — {4,8,9,16,... } be the set of perfect powers, i.e. the set of 
positive integers of the form ab where a and b are integers greater than 1. Prove that
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the book a good acquisition for the library of any Department with research interest in 
ring theory.
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