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A LIMIT THEOREM FOR LACUNARY SERIES £  f ( n kx )

I. BERKES* 1 and W. PHILIPP

To the memory of Alfréd Rényi

Abstract
Let f : R —t R  be a Lebesgue measurable function satisfying

l l
/ ( x  + l) = /(x ) , j  f(x)dx =  0, I  f 2(x)dx =  1. 

o o

Several authors investigated the asymptotic properties of lacunary series y \c k f(nkx ) un­
der the Hadamard gap condition

' A + t ( f e  =  1 , 2 , . . . )

and the behaviour of such series is well known. On the other hand, very little is known 
on the properties of ^2 ck f(n/.x) if («<•) grows slower than exponentially. The purpose of 
this paper is to prove an asymptotic result for such series.

1. Introduction

Let / :  R  —> R  be a Lebesgue measurable function satisfying
l l

(1.1) f ( x  + l) = /(x), J  f{x)dx = 0, I  f 2(x)dx=  1.
o b

The asymptotic properties of lacunary series Y2ckf{'nkx ) have been investi­
gated by many authors and are known to be very similar to those of inde­
pendent random variables. For example, Takahashi proved ([13], [14]) that 
if /  is a Lipsehitz function satisfying (1.1) and (nk) is a sequence of positive 
integers satisfying

(1.2) nk+l/7ik —> oo
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2 I. BERKES and W. PHILIPP

then

(1.3)

and

(1.4)

lim p,{0 ^  x  ^  1 : Y  f{n kx) < tV N }  = (2n) x̂ 2 I  e Û 2duJV-> oo L—' /
- O O

lim sup (2IV log log N )~ 1/2 ^  f{ n kx) = 1 a.e.,

where // is the Lebesgue measure. As an example of Erdős and Fortét (see
[8], p. 646) shows, the CLT (1.3) and the LIL (1.4) become generally false if 
instead of (1.2) we assume only the Hadamard gap condition

(1.5) n k+i/n k ^ q > l  {k = 1 ,2 ,...) .

Indeed, let f (x )  = cos2irx + cos4nx, n k — 2k — 1. Then, as it is not difficult 
to show,

1 i / \ / 2 |  COS7Ts|

lim p.{0 re ^ 1: y '  f  (nkx) < t \ /N } — {2n) x̂ 2 I ds I  
N->oc /  /k<N n JL

<2l2du

and
lim

N —too
sup (2N  log log N) 1/2 f ( n kx) = \Í2 coi 
">0°  k<N

cos ix x a.e.

On the other hand, Kac [7] showed that if /  is smooth and nk = 2k then 
the CLT (1.3) is valid, with the iV(0,1) distribution on the right-hand side 
replaced by N(0, a2) for some o ^ 0. Thus we see that under (1.5) the 
asymptotic behaviour of f ( n kx ) depends not only on the growth speed of 
(nk), but also on its arithmetic properties. This interesting phenomenon 
was investigated in detail by Gaposkin [6] who gave a characterization of 
sequences (nk) satisfying the CLT (1.3) for all sufficiently smooth / .  His 
results imply, e.g., that (1.3) holds if the ratios nk+i/nk are all integers, or if 
nk+i /n k —> ß  where f f  is irrational for all positive integers r. For extensions 
and further limit theorems for f ( n kx) see Gaposkin [5], Berkes [1], Berkes 
and Philipp [3]. It is interesting to note that if we assume only (1.5) then 
the upper half of the LIL still holds for f ( n kx), i.e.,

( 1 . 6 ) lim sup (27V log log N )~ 1/2
N—»oo

/ ( ” **•)
k<N

<C a.e.

for some constant C (see Takahashi [12], Philipp [9]). For further limit 
theorems for f ( n kx) assuming only (1.5) see Berkes [1],
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While under the Hadamard gap condition (1.5) the asymptotic properties 
of f(riyx) are fairly well known, very few results exist in the case when (n*) 
grows slower than the exponential speed required by (1.5). For certain “nice” 
sequences (n*.) the LIL (1.6) still holds: Philipp [10] proved tha t this is the 
case if (nfc) is the sequence consisting of all integers of the form q\'[ ■ ■ • iff' 
(a, '2. 0 integers), arranged in increasing order, where {ryi,. . . ,  qr} is a finite 
set of coprime integers. But, as Berkes and Philipp [4] proved, the LIL
(1.6) is generally false for subexponent.ial (n*,): for any p* —>• 0 there exists a 
sequence (njt) of positive integers satisfying

rik+i/nk ^  1 + (?k (A: =  1 ,2 ,...)
such that

lim sup (2N log log TV)-1/2 ^  fin yx )  = +oo a.e.

with f(x )  — x  — [x] — 1/2. (Here, and in the sequel, [t] denotes the largest 
integer not exceeding x.) The examples in [4] also show that the asymptotic 
properties of Ylk<N f ( nkx ) in the subexponential domain depend on the 
growth speed of (n*,), but no analogues of the LIL (1.6) exist in the literature 
for subexponential (n^). The purpose of this paper is to prove a first result 
in this direction. Indeed, we shall prove the following

THEOREM. Let f : f? —> R be a Lebesgue measurable, function satisfying
(1.1) and assume that f  is of bounded variation on (0,1). Let (n*,) be a 
sequence of positive integers satisfying

(1.7) n k + i/n k ^ l  + ßk (A; =  1 ,2 ,...)

where (ßk) is nonincreasing with Qy—> 0 and

(1.8) Qk ^ k a for some 0 < n < \/2 .

Then

(1.9) lim sup
AT—>oo

E  f(nyx)
k^N

log ^v^vTögTöglV
< +oo a.e..

As a comparison, we note that by a result of Berkes and Philipp [4], for 
any Qk tending to 0 sufficiently slowly there exists a sequence (n*) of integers 
satisfying (1.7) such that

( 1. 10) lim sup
/V—> oo

E  f ( nkx )
k^N

log log j r  \ /N  log log N
^ > 0 a.e.
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with an absolute constant c, where f(x) = x  — [x] — 1/2. Thus for subex- 
ponential (n k) the growth speed of J2k<^ f ( n kx) exceeds the classical LIL 
speed by a factor depending on the speed of convergence of nk+\/n k to 1. 
The upper bound (1.9) and the lower bound (1.10) are of similar charac­
ter, bu t there is a gap between them and the precise order of magnitude of 
E/cgJV f ( n k'x ) remains open.

2. Proof of the theorem
We use the method of our earlier paper [3]; the essential new element will 

be an estimate for integrals f (n kx))2dx for subexponentially growing
(nk) (cf. Lemma 3). Let sn denote the ri-th partial sum of the Fourier series 
of / .  Since /  is of bounded variation on (0,1), the Fourier coefficients of /  
tend to zero as 0 ( l /k )  (see Zygmund [15], p. 48) and thus
(2.1) | | / - SJ  = 0 (n~ 1/2)
where || • || denotes the L-2(0,1) norm. We now approximate the functions 
f ( n kx) by stepfunctions f k (x;) as follows. Let 2l £ nk < 2i+1, put rn 
7 +  120 log A;] and let tpk denote the function in [0,1) which takes the value
2m f (n kx)dx in the interval [i2~m, (i +  l)2~m) (0 g i ^  2rn -  1).
The assumptions made on /  imply that | / |  ú C  and consequently \tpk \ 
for some constant C. Hence using Lemma (3.1) in [1], p. 325 we have

( 2 .2 )

l l
I  (f (nkx) -  <pk {x))4dx Si const ■ J  ( f { n kx ) -  ipk{x))2 dx 
o o

^ const • (2™/n fc) " 1/3 g const • (V 201ogA:) ^  ^ const • A;"20.

Since a  < 1/2 we can choose ft so that a /(  1 — a) < ft < 1. Divide the set of 
positive integers into consecutive blocks 1i, J\, Iz- Ji- ■ ■ ■ , I k, Jk, ■ ■ ■ (without 
gaps) such that

\h \ = \Jk\ = [k%
where |H| denotes, for any set A C fí. the number of integers in A. Set

(2.3) Tk = Y  f { n vx), Dk = Y  <Pv(x )-
u€lk. v€lk

Then by (2.2)

(2.4) IIA: - Tk\U Í C Y ' ^ Í C Y  ,y_5 = Ck~4'
i'äfc

where || • ||p is the Lp(0,1) norm and C denotes positive constants, possi­
bly different at different places. Let T k denote the n-field generated by 
D l , . . .  , Dk.



A LIMIT THEOREM FOR LACUNARY SERIES

Lemma 1. We have*

(2.5) \E(Dk \Fk- l )\ = 0{k~2) a.s. as k-> oo.

P roof. (2.4) shows that the expected value of E{\D^ — T^\ \ is
^  Ck~A and thus the Markov inequality and the Borel Cantelli lemma imply

E(|Da. - T fc||.F*_i) =  0(A r2) a.s. as oo.

Hence to prove (2.5) it suffices to show that

(2.6) \E(Tk \T k-i) \Ű C k ~ 2.

We observe also that for any real u < v and A > 0 we have by the first two 
relations of (1.1)

(2.7) I  f(X x)dx
U

\m \d t .
0

Let b =  b(k) and c — c(k) denote the largest integer of the block Ik - \  and 
the smallest integer of the block /*., respectively. Define the integer / by 
2l ^  rib < 2<+1 and put w = [/ + 120 log b]. From the definition of the s it 
follows that every ipu, 1 ^  u ^  b, takes a constant value on each interval of 
the form I  = [i2~w, (i + l)2 -u;), 0 ^ i ^  2W — 1 and thus each set of T^~\ is 
a union of intervals I  of the above type. Hence to prove (2.6) it suffices to 
show that

(1+1)2-'"
gCAT2 ( i ) ^ i ^ 2 w - 1).

i2~w
( 2. 8) / Tkdx

Using (1.7), (1.8), c^2A;^+1 and c — b= [(A; — 1)^] + 1 we get

c— 1
- ^ H a + r a) ^ ( i + c - (' y - b

J=l)

(2'9> K 1+( 2 ^ ) 3" SBXPG (2*'’+ ,r "i 'i)
=  expiCA:^1- “)-0) ^ exp{ks) (k ^  k0)

* E and P denote expectation, resp. probability in the probability space ((0,1), ß , //) 
where B is the Borel <r-field in (0,1) and // is the Lebesgue measure.
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for some <5 > 0 since ß > a./(I -  a). Thus using (2.7), (2.9), ß  < 1 and 
b ^  2kß+1 we get,

(1+1)2- ( i+ l)2 -

I  Tkdx = 2W I  Y ,  f ( n ux)di 
i2~u' i2~w

o <)w nl+l20\ogb
g 2 WC Y  —  ^  C — 141 ^ C ------------ k

“  n v nc ncveh-
Í  C — b120k ^ C e x p { -k s)(2kß+l) i20k ^  Ck

Ur
- 2

proving (2.8).

Lemma 2. We have

(2.10) E{D4k) ^  Ck2ß+l~T log4 k

for some constant r  > 0.

PROOF. To simplify the formulas, we prove the lemma in the case when 
the Fourier series /  =  Y jL i  aj <:os 2n jx  of /  is a pure cosine series; the general 
case can be treated similarly. (Here, and in the sequel, the convergence of 
trigonometric series is meant in L2 norm.) In view of (2.4) and Minkowski’s 
inequality, it suffices to prove (2.10) with Dk replaced by Tk. Let

/ l =  E  °u cos2T7U
j^ k 10

veh-

f ‘2 =  (ij cos 2njx 
j>k10

T k ] = E  M n*x)
veh

Tkj = E cos 27rJ'n*'*-

E(Tkj )  ^  C [k20 + J ^  C k2ß+1~T

Using (1.7), (1.8) and Lemma (5.2) of [2], we get

( 2 . 11)

for some constant r  > 0. Also,

4” = E “ä
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and here \a,j\  = 0 ( j  1) since /  is of bounded variation (see [15], p. 48). Thus 
using the Minkowski inequality and (2.11) we get

l l T f l l ^  £  \a3\\\Tkj\ \A% C kW +' - TU* £  K l
(2.12) j^k'° j i k i0

iC k W * 1- ^  log A:.

Since /  is of bounded variation, the partial sums of the Fourier series of /
are uniformly bounded (see [15], p. 90) and consequently H/2II4 ^  CWf^W^2. 
Hence another application of Minkowski’s inequality gives

Now (2.12) and (2.13) imply (2.10) with D k replaced by T*. and thus Lemma 
2 is proved.

LEMMA 3. Let 1 ^ mi < m2 < ■ • • < m/y be a sequence of positive numbers 
(not necessarily integers) such that for some 1 < q <3/2  we have

(2.14) m k+]/m k ^  q (k = 1 , . . . ,  N  -  1)

(2.15) m k+i — m k ^ 2 (A; =  1 , . . . ,  N  -  1).

Let, f  — (a/c cos 2‘nkx  +  bk sin 2nkx) be a function with \ak\ ^  1 / k, \bk\ ^ 
1/k (A: =  1 ,2 ,. . .) .  Then for any real a, we have

0 + 1

(2.16) /  ( ^ / ( m , . 7 ; ) ) 2d x ^C '7 v (lo g r 4 T ) 2,
Í Q

where C is an absolute constant.

P roof. To simplify the writing we assume that /  — cfc cos 2irkx is 
a pure cosine series. (The general case can be treated similarly.) We proceed 
in steps.
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for any real a. Indeed, the square root, of the left-hand side of (2.17) equals

cos nik{x + a) L ^  cos m ^x  cos inka
k<N k<N

+

+ E sin m kx sin m ka
k^N

and thus to prove (2.17) it suffices to show that

(2.18) y ]  Afc cos rnkx  ^ 3  \/iV, £  A*sinmfc* ^3  \/~N
k<N k<N

for arb itrary  |Afc| ^ 1. This, however, follows by observing that sinx /x  íí 1/2 
for 0 < x  < 1 and thus

l

cos m kx ) 2 dx  < 4
l

o

Sill X
 ̂ A/,, cos mi-x ĵ dx
k^N

+oo

=4 /  ( ~ ~ )  ( X] ^  cos m^x) dx < <J/V’
-oo ;E

where the last inequality follows from (2.15) by expanding f ^k cos rnkx \
yk^N '

and using the fact that
4- oo

/<
—OO

sill x /x )2dx = 7T and
+oo
J  (sinx /x )2 cos uxdx =  0 for |u |^ 2 .

— OO

The second relation of (2.18) follows similarly.
2. We prove now that under the conditions of Lemma 3 we have for any 

real a

(2.19) ’/ ' ( E / ^ ) ) 2^  S ^ Z T N
a kZN

provided that ||/||2 ^  1; here C is an absolute constant. Indeed, by Lemma
(5.1) in [1], p. 338 we have

0+1
J  f{m ix)f{m .jx)dx (* <  j)>
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where C\ is an absolute constant. The last relation holds also for i = j  as it 
is seen by applying (2.7) with A = m,: and with / 2 — | | / | |2 instead o f / .  Now
(2.19) follows upon noticing that by (2.14) and 1 < <y < 3/2 we have

e
- k / 2

lg ig jgA k=0

N AN
1 — q~x!'2 <y — 1

3. Write
OO

/  = Q cos 2nlx = + + f 2 ,
1=1 /g r i>r

where T  ^  2 will be chosen later. Letting || • ||2,a denote the Z,2(a, a +  1) norm, 
we have by the statement proved in Step 1

( 2.20)

/ i ( m *®)
k^N

2,a sE
1 <̂rT'

cos2nlrn^x
fcgA

= j6 \/jV g 6 \/jV (lo g T + l).
1%T '

2, a

On the other hand, H/2II2 ^ ( Yli>r^ 2) = CT 1/2 and thus by the state­
ment proved in Step 2 we have

( 2. 21)

E  Mmtx) S (3 Í* JV )
—̂' 2 ,a V o — 1 /

A : < A  i

1/2

< (
C T~X>2

' / - l

1/2

Now (2.16) follows from (2.20) and (2.21) upon choosing T =  \/{q  — l)2 and 
noting that log \/{q -  1) ^  1/2. This completes the proof of Lemma 3.

Lemma 4. We have

( 2 . 22) E(D2k \T k- l ) = 0 a.s. as k —> 00.

P roof. Let b,c,w denote the same as in the proof of Lemma 1 and let 
d = d(k) denote the largest integer of the block Ik. Using (2.4) and \Tk\ ^  Ck, 
\Dk\ ^  Ck we get

| | ^ - T 2||1^ C /: | |D ,.-T , | |1^C'fc-3
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and thus by the Markov inequality and the Borel Cantelli lemma it follows 
immediately that

E(|L>f -  Tk \ I T k - i )  — 0 (k ~ l) a.s. as k -> oo.

Hence similarly as in the proof of Lemma 1, (2.22) will follow if we show 
that for k ^  ko

( i+ 1)2-"

(2.23) 2W I  Í J 2  f M
i2~w L'e,k

Here

(2.24) 2W <; 2l+VMlogb <; nbbi20

and the substitution t =  2,t'a; shows that the left-hand side of (2.23) equals

)  d x iC \ I k\ ( \ o g - ± - y  ( 0 ^ i i 2 w- l ) .

where m = 2 wnu. Now d ^  2kß+l ^ k2 for k ^  A,‘o by ß  < 1 and thus using
(1.7) and the monotonicity of gk we get. for k íi ko

inu+\ / m v ^  l + g ( v £ l k),

where q = gk2. Clearly g<  1/2 for sufficiently large fc; on the other hand, for 
u E l k we have by (2.9), (2.24), (1.7), (1.8) and b ^ c ^ d ^ k 2

m l/+i -  rnu = {n„+\ -  n v)2 w if n,
\  n u 0  nbbm

> n,
nbb120 ^ e x p { k s)k~2A0k~2a^ 2

for k  ^  ko and thus (2.23) follows from Lemma 3.

Let now Dk = Dk -  E (D k \ T k-\). Clearly {Dk ,k; ^  1) is a martingale 
difference sequence and Lemmas 1, 2 and 4 easily yield

(2.25) E (D l\F k- l ) = 0  ( | 4 | ( l o g ^ - ) 2)  a .s .a s  1-doo

E ( D l ) ^ C k 2ß+1~T log'1 k.(2.26)
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Relation (2.25) and the monotonicity of gk imply

e  ̂  1̂ -1)=o(i) e  i4i (log y
k i n  k i n  Qkl

= °  ( „ « + '(  l„e ± y )  a.s..

By the martingale version of the Skorohod representation theorem (see [11], 
Theorem 4.3) the sequence (Dk,k  ^  1) can be redefined, without changing 
its distribution, on a suitable probability space together with a Wiener pro­
cess W , nonnegative random variables n ,  t-2, ■ ■ . and an increasing sequence 
(Tik. k ^ 1) of (j-fields such that

(2.28)
k i n  ' k i n  '

further rk is kik measurable and

(2.29) E(r* I Hk-x) =  E 0 1  \ T k. x), E(rfc2) ^ C E (S j).

By (2.29) and (2.26) we have
OO

E E f e - E f o  I « * -,_ )£  < ^ s- E rj

*=1
k 2/5+2 fc2/J+2 = °  Z^ fc5

fc=l *.-1

ml)
kW +2 < +oo

and thus the martingale convergence theorem implies that the sum
OO

E  k ~ { ß + l \ Tk ~  E(rfc I ?4 - i ) )
k=  1

is a.s. convergent. Hence by the Kronecker lemma

E  (Tfc — E(Tfc I ? 4 - i) )  =  o(n^+1) a.s..
k i n

Moreover, (2.27) and the first relation of (2.29) yield

E e (tU % - 0  =  o ( > ‘ ( io6 4 - ) 2) a.s.
kf̂ Ti

and consequently

J >  =  o ( n - ( , o 6 4 - ) 2
k<n

a.s..
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Thus using (2.28), the law of the iterated logarithm for W  and log log xy  ^
log log x  +  log log y (x ^  3, y ^  3) we get

(2.30)
Y  Dk = O ( n {ii+1 )/2 log —  ( log log n +  log log log —  ) 1

tin  V

= O (Vt^+1,/2(log logn )1/2 log — 'j a.s.
V Qn* J

since llQ n -2 ^  n by (1.8). Now (2.4), the Markov inequality and the Borel- 
Cantelli lemma imply \Dk~Tk\ =  0(k:~'2) a.s. as k —> oo and thus by Lemma 1 
we get

\ D k ~ T k \  = 0{k~2) a.s. as k —> oo.
Hence (2.30) implies

(2.31) Y T k = 0  ( n ^ + '^ t o g l o g n ^ l o g — ] a.s..
“  \  6n2 /k S n

Introducing
T'k= £ /(«„* )

i'£'h
we have, similarly to (2.31),

(2.32) Y r k = P  f n ^ +1^ 2(loglogn)1/2 log —  ) a.s.
k in  V Q n2j

and thus setting S n = Y u iN  / ( 7V C) and Nk =  Y v ik  ~cA.,ä+1 it follows 
by adding (2.31) and (2.32) and using the monotonicity of gk that

S Nk = 0  (k(ß+]V2(\oglogk)l' 2 \og —  ) = 0  ( (Nk log log Nk)1̂ 2 log —
V Qk2J \  Qk-2

(2.33)

=  O f {Nk log log N h) l/2 log a.s..
Qn ?

Now if Nk ^  IV < Nk+\ then by |/ |  ^ C and ß  < 1 we get

\SN -  S Nk. I ^  C (N k+i — Nk) ^ C kfi ^  C N ™ ß+1)

^ C N lJ 2

and thus (2.33) implies

SN = 0  ( [N  log log N )1/2 log — ) a.s.
V Qn2 J
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completing the proof of our theorem.
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DECOMPOSITIONS IN DISCRETE SEMIGROUPS

W. E. CLARK, W. C. HOLLAND and G. J. SZÉKELY

Dedicated to the memory of Alfréd Rcnyi

Abstract

In this paper we prove that under some finiteness conditions in a (not necessarily 
commutative and not necessarily cancellative) semigroup every non-unit, is a product of 
weakly irreducible elements. In commutative, finitely generated semigroups every infinitely 
divisible element is idempotent. Without commutativity this is not true. An interesting 
open problem is to find necessary and sufficient conditions for this implication.

1. Introduction

The most well-known semigroups in which every non-unit is a product 
of irreducible elements are the multiplicative semigroup of positive integers 
and the multiplicative semigroup of non-zero polynomials. Their common 
generalization is the class of Gaussian semigroups. These are commutative, 
cancellative semigroups with identity element 1 in which every element (oth­
er than units, that is, divisors of 1) is a product of irreducible elements and 
this decomposition is essentially unique (for necessary and sufficient condi­
tions see e.g. Kurosh [11]). For some more recent factorization results see 
Anderson et al. [1], Halter-Koch [7] and several references there. In these 
papers it was supposed that the semigroup is commutative and cancellative. 
Here we consider similar types of decompositions for not necessarily commu­
tative and not necessarily cancellative semigroups. The classical definition 
of irreducibility is as follows. In a semigroup 5 with an identity, an element 
s of S  is called irreducible if it is not a unit and s = ab (a. b from S ) implies 
a or b is a unit. There is no hope that in every semigroup every non-unit 
turns out to be a product of irreducibles.

E x a m p l e  1.1. Let S  be the semigroup of all subsets of an infinite set 
with the union operation. The singletons are the only irreducibles in S  and 
no infinite set is a “product” (— finite union) of singletons.

In order to avoid this kind of problem we either need some kind of “finite­
ness” condition or we have to introduce a topology. In topological semigroups
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we can, of course, consider infinite products, too, and in this case “finiteness” 
can be replaced by some kind of “compactness” . An important example of 
this type is due to Khintehin [9]. In the convolution semigroup of probability 
distributions (on the real line) endowed with the topology of weak conver­
gence, Khintehin proved that every element is decomposable into a product 
analogous to the above mentioned decompositions. In this special (commu­
tative) semigroup Khintehin introduced a new type of elements that have no 
irreducible divisors at all (examples include the normal and Poisson distribu­
tions). If we call these elements anti-irreducible, then Khintchin’s theorem 
can be formulated as follows: every probability distribution on the real line 
is a convolution product of finitely or at most countably many irreducible 
factors and an anti-irreducible one. Khintehin proved that the divisors of 
every element in this semigroup form a compact set provided that they are 
suitably “shifted”. This is a kind of compactness that can replace “finite­
ness” conditions. Khintehin proved that all anti-irreducible elements are 
infinitely divisible but the converse is not true (examples include exponen­
tial distributions: they are infinitely divisible but not anti-irredicible). This 
idea of Khintehin can be generalized to almost arbitrary topological semi­
groups. We refer to Rúzsa and Székely [19], [20], [21] where an extensive 
literature is included.

In this paper we restrict ourselves to discrete semigroups and want to 
discuss purely algebraic and not topological types of problems. To see that 
finiteness itself is not enough to settle all problems in this context let us 
consider the following example.

E x a m pl e  1.2. Let S  be the commutative semigroup S '=  {1,0, e, e} 
where 1 is the identity element, 0 is the zero element, e is idempotent, c2 =  0, 
ec =  c. In this semigroup there are no irreducibles at all, so no element is a 
product of irreducibles.

To overcome the problem of this example, in Section 2 we are going to 
introduce a weaker notion of irredueibility, and we shall set1 that two elements 
of our semigroup above (e and c) will turn out to be weakly irreducible, and 
0 is a square of a weakly irreducible element.

From the point of view of decompositions, irredueibility is one extreme, 
the other one is infinite divisibility. We shall prove that if S  is commuta­
tive and finitely generated then the only infinitely divisible elements are the 
idempotents, but if we drop the condition of commutativity then this is not 
true anymore.

2. Main results

Let us fix some notation and notions. We assume that all semigroups 
have an identity element which we denote by 1.
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Definition 2.1. For two elements a and b of a semigroup S, we say 
that a divides b, and write a\b, if for some x, y G S, b = xa.y. Further, a and 
b are called associates (denoted a. ~  b) if they divide each other; that is, 
a = xby and b = uav for some, x ,y ,u ,v  from S. (In other words a and b are 
associates if they generate the same two-sided ideal.)

Definition 2.2. All s from S is called weakly irreducible if s is not a 
unit and s = ab implies that either a or b is an associate of s.

In the following, irreducibility always means weak irreducibility except if 
we emphasize that we think of the usual (strong) irreducibility. It is clear that 
for commutative cancellative semigroups, including Gaussian semigroups, 
the notion of weak and strong irreducibility coincide.

If we apply the above introduced notion of irreducibility then in our 
Example 1.2, e and c become irreducible and 0 — c2; thus every non-unit is 
irreducible or a product of irreducibles. (Interestingly, e is infinitely divisible 
and also (weakly!) irreducible.) This example is in fact typical as our first 
result shows.

T heorem 2.1. Let S  be a finitely generated (not, necessarily commuta­
tive) semigroup. Then every element in. S  is either a unit, or a product of 
irreducible elements.

Although this theorem does not cover the case of the multiplicative semi­
group of integers, the following trivial corollary does.

COROLLARY 2.1. If S  is an arbitrary semigroup and the set of divisors 
of an s in S  is contained in a finitely generated sub semigroup then s is a 
unit or a product of irreducible elements.

THEOREM 2.2. (i) If S  is a commutative finitely generated semigroup 
then every infinitely divisible element, is idempotent.

(ii) If S is a finite (commutative or non-commutative) semigroup then 
every infinitely divisible element is idempotent.

(iii) There exist non-commutative finitely generated semigroups where not, 
all infinitely divisible elements are idempotent,.

Remark 2.1. Parts of this theorem, especially part (ii), are folklore but 
for completeness we include two short proofs of part (ii), one of them a nice 
application of Ramsey’s theorem from graph theory.

Finitely generated semigroups are not the only ones having some kind 
of “finiteness” condition. Another well-known type is the residually finite 
semigroups, that is, those semigroups which are subdirect products of finite 
semigroups (a very nice paper on these semigroups is Schein [22]). It is 
clear that the decomposition theorem cannot hold for all residually finite 
semigroups. Take, e.g., a countably infinite product of finite semigroups 
where each factor is the union semigroup of all subsets of a finite (non­
empty) set. The analogue of Theorem 2.2 (ii), however, holds for residually 
finite semigroups.
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THEOREM 2.3. If S  is a residua,Ily finite semigroup then all infinitely 
divisible elem.ents of S are idem.pot.ent.

It is not hard to prove (by induction with respect to the number of 
generating elements) that every finitely generated semigroup in which each 
element is idempotent, is finite. This result is in fact a consequence of a 
Burnside-type theorem for semigroups (see Restivo and Reutenauer [18]). 
Since by (iii) above, in non-commutative semigroups infinitely divisible el­
ements are not necessarily idempotents it is interesting to ask if there are 
non-finite but finitely generated divisible semigroups (where all elements are 
infinitely divisible). This is in fact true. Moreover, very surprisingly, there 
exist infinite but finitely generated divisible groups. See the paper by Guba
[5] and also the book by Ol’shanskii [14]. Now we arrive at an interesting- 
conjecture.

CONJECTURE 2.1 (Dual Burnside Problem). A finitely generated divis­
ible semigroup is finite if and only if it is perrnutable (there exists an n such 
that for the product of any n elem.ents there exists a nontrivial (nonidentity) 
permutation of these elements whose product, is the same).

DEFINITION 2.3. Ill a semigroup S an element s is called anti-irreducible 
if (i) s is not irreducible, and (ii) .s = bac where a is an irreducible element 
from S  implies that either b or c is an associate of s. (In other words s is 
anti-irreducible if it is not irreducible and is not divisible “effectively” by 
any irreducible element where “effective” means that the “other factors” are 
not associates of s.)

D efinition 2.4. For elements a .be  S. we write a C b if there are fac­
torizations

*-n*
- I D .

j=i
where

( i r ^ is  if r ^ s ) .

THEOREM 2.4. Let, S  be a finitely generated (not necessarily commuta­
tive) semigroup. I f s e S  is anti-irreducible, then s2 C .s.

C o r o l l a r y  2.2. I f S  is a commutative finitely generated semigroup, 
then every anti-irreducible element of S  is an associate of an idempotent.

P r o b l e m  2.1. Is there a non-commutative finitely generated semigroup 
where an anti-irreducible element is not an associate of an infinitely divisible
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one? Recall that in the lion-commutative finitely generated case we have not 
characterized the infinitely divisible elements.

In finitely generated semigroups Theorem 2.1 shows that for the decom­
position we do not need anti-irreducible elements. Thus their characteriza­
tion is obviously less important. There exist, however, important discrete 
semigroups (not finitely generated) where anti-irreducible elements play a 
crucial role in decompositions. Take, e.g., the multiplicative semigroup 5*. of 
k x k stochastic matrices (these are k x k matrices with nonnegative entries 
such that all row-sums are equal to 1). Stochastic matrices play a funda­
mental role in the theory of Markov chains. The infinitely divisible elements 
in this semigroup were characterized in Székely- Móri Göndőcs Michaletzky
[24]. Here we only mention the following decomposition theorem. The proof 
will be published elsewhere.

THEOREM 2.5. (i) In. Sit the only units are the permutation matrices.
(ii) Every element of S\: is either a unit or can he decomposed into a 

finite product of irreducihles and an anti-irreducible element.
(iii) For each M  € S\, the number of irreducible factors in the shortest 

such decomposition of M  is bounded above by a constant times k22k log k.
(iv) A necessary condition for a matrix to be strongly irreducible is that 

every row in it, contains at least one 0. (This condition is not sufficient. The 
characterization of irreducible and anti-irreducible stochastic matrices is an 
open problem.)

3. Proofs

P roof of T heorem 2.1. The theorem is a consequence of the following 
lemma.

LEMMA 3.1. I f  X \,. . .  ,Xt is any minimal set of generators for a semi­
group S, then euch, Xi is irreducible or a. unit.

P roof. Suppose xi - si#2. Then by the minimality, without loss of 
generality we may suppose that .sj does not belong to the subsemigroup 
generated by X2,...,X(. Hence, .sq =  ux\v  for some u,v. Thus, since x\ = 
1 -S\S2, si is an associate of x\. This shows that X\ is irreducible if it is not 
a unit.

Now to finish the proof of Theorem 2.1, note that if a is irreducible 
and u is a unit, then ua is also irreducible. Hence, any product of units 
and irreducibles is either a product of units alone, and thus, a unit, or is a 
product of irreducibles.

P roof of T heorem 2.2(i). Mal’cev [12] proved that every finitely gen­
erated commutative semigroup is residually finite. Therefore, this theorem
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follows from Theorem 2.3. We note that a more direct proof is also possible 
using Dickson’s Lemma (see [17, p. 62]).

F irst P roof of T heorem 2.2(ii). Let a E S be infinitely divisible. 
For each s E S. let X s — {n E N  \ sn = a}. Noting that the finite collection of 
sets {X s I .s £ S } covers the set N of positive integers, we color the edges of 
the complete graph on N by coloring the edge between integers p and q with 
any color s such that \q — p\ E X s. By Ramsey’s Theorem (see, e.g., Graham, 
Rothschild and Spencer [4]), there must be a monochrome triangle, that is, 
for some positive integers p < q < r ,  and some .s 6 S, we have q -  p, r — q ,r —p E 
X s. This implies that a2 =  sr~qsq~p = sr~p =  a, and so a is an idempotent.

Second P roof of T heorem 2.2(H). Because S  is finite, for each s E S  
there exists a positive integer n(.s) such that sn^  is an idempotent. If N  
is the least common multiple of (n(s) | s E S}, then for all x  E S, x N is an 
idempotent. If aE  S  is infinitely divisible, then since a = x N for some x , a is 
idempotent.

P roof of T heorem 2.2(iii). Since every countable semigroup is em­
beddable into a semigroup generated by two elements (see e.g. Evans [3] or 
Hall [6]), then the additive semigroup of positive rational numbers is con­
tained in a two-generator semigroup. Clearly, each rational number in this 
semigroup is infinitely divisible but not idempotent.

R emark 3.1. In the proceeding proof, the two generating elements are 
irreducible, according to Lemma 3.1. Thus, every countable semigroup can 
be embedded in a semigroup in which each element is a finite product of 
irreducible elements. In fact, one can easily see much more: every semigroup 
can be embedded in a semigroup in which each element is irreducible. This 
follows from Clifford and Preston [2. §8.5]: Any semigroup is embeddable 
into a simple semigroup with identity. In simple semigroups there are no 
non-trivial two-sided ideals, thus every non-unit is irreducible. It is also true 
that every semigroup is embeddable into a divisible one (see, e.g., Shutov
[23]; for commutative semigroups see Tamura [25]). For groups this is a 
result of Neumann [13] (see also [10]).

P roof of T heorem 2.3. If .s E S  is infinitely divisible and s ^  s2 then 
there exists a homomorphism h from S  into a finite semigroup (one of its 
subdirect factors) such that h separates s and .s2, that is, h(s) is different 
from h(s2). On the other hand h(s) is clearly infinitely divisible in this 
finite semigroup and thus by Theorem 2.2 (ii) h(s) = (h(s))2 = /i(s2). This 
contradiction proves our claim.

P roof of T heorem 2.4. If s is a unit, then s = ssss~1s~1 gives an 
appropriate factorization. If s is not a unit, then by Theorem 2.1, s =  
x\ ■ ■ • x rn — 1 • x\ ■ ■ ■ x rn where each :i:,; is irreducible. Since x t is irreducible 
and s is anti-irreducible, it must be that s ~  x \ • ■ • x l~\ or s ~  x,;+ [ • • • x m;



DECOMPOSITIONS IN DISCRETE SEMIGROUPS 21

that is, x i • • • :cj_i =  prsq, or x-t+i ■ • • xm — p,x<h for some pi, qL E S. In the 
first case, we have a factorization

s =  :cl • • • x m
~  P lSq iX iX l+ 1 • • • X m

~ Pi{x 1 ■ - - Xi— iXjX'j+l • • • Xm )(]iXiXi+ 1 • • • x m
= Pi({pi3Qi)'XiXi+i ■ ■ ■ xrn)qiXiXi+i • • ■ xni

in which s appears and X{ appears twice. The second case is similar. If j  ^  i , 
we may replace the last s in the displayed equation with a similar expression 
involving X j. The result is a factorization in which .s appears and each of 
Xi,Xj  appears twice. Continuing in this way, we obtain a factorization of s 
in which each of the irreducible factors xi appears twice. Therefore, s 2 C s .

P roof of Corollary 2 .2 . If .s2 Q s then s =  s2y  for some y  €  S . Then 
s is an associate of the idempotent s y .

4. Atoms

In decompositions, instead of irreducible factors we might want to use 
any prescribed kind of factors. We shall call these atoms.

D efinition 4.1. Take an arbitrary subset A of a semigroup S  and call 
the elements of A atoms. An s in S  is an anti-atom if (i) ,s is not an atom, and
(ii) s is not effectively divisible by any atom. (For the notion of “effectively 
divisible” see Definition 2.3.)

THEOREM 4.1. In a finite semigroup S  every element, s is a product of 
atoms and anti-atoms.

P roo f . The relation “divides” is a quasi-order on S, and modulo the 
relation ~  , we get the associated partial order <. If s E S  and s has no 
atom as effective divisor, then .s is either an atom or an anti-atom, and we 
are done. In the other case, s =  xa.\y for some atom rq, and say s x. Then 
x < s. We factor x  by an anti-atom 0,2 if possible, and continue in this way. 
The process must stop, since S  cannot have an infinite descending chain in 
the partial order. Finally, .s =  PJ x/aq/, where the a;’s are atoms and the 
Xi,yi s are anti-atoms (or 1).

As an example, the set of idempotents can be chosen to be the set of 
atoms and thus we get that every element is a product of idempotents and 
anti-idempotents. In this way we can get a more systematic description of all 
semigroups of given (small) order. (For a complete list of all semigroups of 
order 2, 3 and 4 see, e.g., Petrich [16]: the total number of these semigroups 
is 4, 18, and 126, respectively.)

If the set of atoms A is the set of irreducibles together with the units, then 
(as we mentioned before) every semigroup can be embedded into a semigroup
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where every element is an atom =  irreducible or unit. In case atoms are 
the idempotents then every semigroup can be embedded in a semigroup in 
which every member is a product of two atoms =  two idempotents (see, 
e.g., Higgins [8] and Pastijn [15]). If atoms - divisible elements then by the 
above mentioned result of Sutov [23] every semigroup can be embedded into 
a semigroup where every element is an atom = divisible.

Let us close this paper with a general problem.
P roblem 4.1. For what kinds of atoms is it true that every semigroup 

can be embedded into a semigroup S  where every element is a product of 
atoms?
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A STRONG INVARIANCE PRINCIPLE 
FOR THE LOCAL TIME DIFFERENCE 

OF A SIMPLE SYMMETRIC PLANAR RANDOM WALK

E. CSÁKI1, A. FÖLDES2 and P. RÉVÉSZ

Dedicated to the memory of Alfred R.cnyi

Abstract,

Let £(a, n) be the local time at a of the simple symmetric random walk on the plane. 
Our main result says, that the difference £; (a. n) — £ (0. n) can be strongly approximated by 
CTaIV(í*1 *(0,n)) where £(0, n) and 0 ^ (0 , n) have the same distribution and tin; latter is 
independent from W( ).

1. Introduction and main results

Let X i, X'2 , . . .  be a sequence of i.i.d. r.v.-s with

P(Y, = (0,1)) =  P(X, = (0 ,-1 )) =  P(Xi  = (1,0)) -  P( X[ = ( - 1 ,0 ) )  =  i

and let So = 0, Sn = X[  +  X 2 +  • • • +  X n (n = 1 ,2 , . . . )  be a random walk on 
Z2 (0 = (0,0)). Its local time is defined by

£(a,n) =  #{&; 0 < fc g n , Sk = a},

where a = (01,02) is a lattice point on the plane. The aim of the paper is to 
prove the following result.

T heorem 1.1. There is a probability space with
(i) a simple symmetric random walk process Sn with its two parameter 

local time £(a, n),
(ii) a standard Wiener process {W (t),t^0 }
(iii) and a process

{£(l)(0,n), n =  0,1,2 , . . .  } =  {£(0, n), n = 0 , l , 2 , . . . }
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such that for an arbitrary but fixed a

(1.1) £(a, n) — £(0, n) — craW (£^(0, n)) +  0 (logn)s a.s.

(1.2) £(0,n) =  ^ ( 0 , n )  + O (logn)t

as n  —> oo, where the processes £P)(0,n) and {W {t), t^O} are independent 
and aa is a constant depending on a.

This result lias a long history. Denoting by (a, n) the local time of a 
simple symmetric random walk on the line, we have

THEOREM A (Dobrushin [8]). For any fixed integer a^Q

(1.3)
^ i ( q ,  w) - ^ i ( O . n )

(41 a I — 2)1/2n1/‘* $ U y / \V \

as n —> oo, 'where U and V  are two independent standard normal variables 
T>and —> denotes convergence in distribution.

As stated here, (1.3) is only a special case of Dobrushin’s theorem. It has 
several generalizations mostly for Brownian local time in one dimension; see 
Borodin [2], Kasaimra [12], Papanicolaou et al. [18], Yor [21], Csörgő and 
Révész [7], Csáki and Földes [5]. The corresponding one dimensional result 
(in fact much more) was proved, and generalized for additive functionals in 
Csáki et al. [3], [4]. A weak convergence version of our present theorem was 
proved by Kesten [14] and Kasaimra [13].

2. Preliminary results

Our theorem heavily relies on some basic results concerning the local 
time of the simple symmetric planar random walk.

T heorem B (Erdős and Taylor [10]).

(2.1) lim P(£(0, n) < x log n) =  1 -  e~nx71-4 00'
uniformly for 0 ^  x  A (log n )3' 4, and

( 2 . 2 ) lim sup
71—>00

< ( 0  /»•) 
log n log j n

=  1 a.s..

Introduce
Po =  0,
Pk = inf{n; n > pk-\, Sn =  0}, A; =  1 ,2 ,...

the consecutive return times of the planar random walk to the origin. The 
portion of the random walk between />k~\ and (>i is called the k-th excursion.

(2.3)
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T heorem C (Dvoretzky and Erdős [9], Erdős and Taylor [10]).

(2.4) P(p, > n) = P(í(0. n) =  0) = + 0 ((log n)~2).
log n

For any lattice point a on the plane put

(2-5) 6(a) =  ^ (a ,p i)-^ (a ,p i_ i) * =  1,2.......

Then {Ci(a)} ^ i is a sequence of i.i.d. r.v.-s and 
T heorem D (Auer [1]).

( P(&(a) =  0 ) = 9(a)
P(íí(a) =  / + 1) =p2(&)ql(&) 1 = 0 ,1 ,2 .. . ,

where p(a)=P(5'. reaches a€Z2 before returning to the origin), p(a)—1—p(a). 
Furthermore

(2.7) E(&(a)) =  l and o2& = Varfr(a) =  2(1 ~ P.(a)).
P( a)

Remark. We can infer from Spitzer [20], Chapter 3, that p(a) = 
1 /(2y(a)). where y(a) is the potential kernel of the random walk. For the 
simple symmetric case, with a =  (a.1, 0,2),

( 2.8)
l - c o s ( a i0i + 02^2) m----- 7—------------------- - (W i ado
1 — 5 (cos 0] +  COS 6 2 )

LEMMA 2.1. Let an=exp((logn)A) and őn=exp((log«)7), where K > 0, 
7 > 0 are arbitrary. Then for any 1 < 77

(2.9) sup (£(0, a +  bn) — £(0, a)) =  0 ( ( logn)v>) a.s..
ago.«

P roof. Observe first that.

(2.10) sup (£(0,a +  6n) — £(0,a)) ^ sup (£(0,pj +  &„) -£(0 ,P i)),
aúan i\ pi^an

and the number of terms in the supremum on the right-hand side is £(0, a.n). 
Moreover

p ( sup (£(0,pi +  b,lk) — £(0,pi)) > (logTl.k-])V,S\
m,Piúank

^ p (  sup {£(0, pi+bnie)—£(0, pi))>(lognfc_i)7n, £(0. a„J<(log  a „ J 3/2)
U;/Jiga„fc '
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+ p (c (0 ,a nj  ^ (lo g a„J3/2), 

where n k =  efc. Using now Theorem B twice, we get

P sup (^(0,pi +bllk)-Z (0 ,p i))  > (log«*-!)™
\i\Pi^u.nk

^  k l h P (£(0. bnk.)>  (A; -  I P )  +  C e x p (-n k T )

f? C k ~  exp —A:7^'-1^  +  Cexp( —7tA;~),

where C  is a constant (the value of which might change here and throughout 
the paper from line to line). Since the right-hand side of the above inequality 
is summable, we get our statement from Borel Cantelli lemma combined with 
the usual monotonicity argument. □

3. Proof of Theorem 1.1

Now assume that {S[^}£L0 and {S[I 'I}'^L0 are two independent simple 
symmetric planar random walks, and denote their respective local times at
a by p ) ( a ,n )  and p ) ( a ,n ) ,  respectively and define pP  (j =  1,2) by (2.3) 
with S  replaced by and similarly %P, j  — 1,2 by (2.5) with £ replaced 
by p )  and p, replaced by p P . Put

(3.1) Z {p  = PP - p p v  j  = 1,2, * — 1 - 2, . . .  .

We will define a new simple symmetric planar walk So, S i , . . .  to be con­
structed in blocks as follows. Let Ak = 2k and rk = Ak — Ak- \  =  2k~1, k = 
1 , 2 . . . .

The excursions with indices A ^-i ^ i < A k form the k-th block. We build 
up our new walk as follows. Consider the excursions of the first, and second 
walks in the A;-th block and the lengths z j J\  j  = 1.2 of the consecutive 
excursions in the two walks. We label the excursions Z P  large if

(3.2) Z p ^ e x  p(rf) ,  Ak^ ^ i < A k, j  = 1,2,

where the value of ß  will be selected later on. Denote by tpK  p.P the number 
of large and small excursions, respectively in the A;-th block. We create the
A;-th block of our new walk as follows. If p P  ^  p P  then we construct {5.} 
by replacing all the p P  small excursions from {S ^}  (within the block) by
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the first p ^  small excursions (first after Pa^ {) from {S ^}  and leaving the 
large excursions from {Sf1 ̂ } unaltered. Keep also the order of the con­

secutive large and small excursions as in (S )1)}. If p j_) <//.[.'; then construct 
{5.} by replacing the first (after PAk^i) P ^  small excursions from (S )1*} by 
the small excursions from {Sf2'} and leaving the large excursions and
the other p ^  — p , ^  small excursions from {S ^}  unaltered. Performing this 
procedure for each block, we obtain a simple symmetric planar random walk 
S'i , 5 2 ,.. . .  Now £(•,•), p, £;(•), and Z, without superscript are the related 
quantities of this resulting random walk.

Introduce the notations

(33) zP(l , /?) =  Z « l ( z “  S e x p ( r f ) )

1 =  1 ,2 , . . . ,  A i -1 ^  i  < A p  j  =  1,2

and

*  ({-P)(,>)) •

and observe that for A^~\ < A^

(3.4) M*( a) =  max
■4/

max
-i ^i<A/ (d n(a max

•4,-igzC.

(3.5) I Ob*'  I (i) sup I p i - p i  ' |S  sup |p; -  Pi
1%N l<:Ah

2 k

sEE E  Z,0 l (i,/3)
i= .4 |_ i+ l

and

(3.6)

su p |£ (a ,p /)-£ (2)(a.pjJ))|
l iN

k
Ú sup |^ ( a , p , ) - ^ )(a,p/(2)) | ^ 2 ( , i 1) 

l=A *• ;= l
+  / f ))M ;(«).

We will prove a number of lemmas now.
LEMMA 3.1. For any ß > 0 and any integer I. ^ 1

(3.7) E (z\j) (/,/?)) < C cxp (r? )iiß, j  = 1,2, A ^ ^ i < A , . .

P roof. The proof is based on Theorem C and the following simple 
identity. For any L ^  3

L

E log k
<C

L
log L '(3.8)
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By Theorem C and (3.8)

[exp(rf)] [exp(rf )] +  l

E [z\3)(/,/?)) £ 2 + Y  p (z l j) ^ k) ^ 2 +  J 2  P(ZÍJ) > fc) =
, , k=3 k=2
(3.9)

[exp(rf )]+l[exp(r, )] +  l

2+ £  ( ú í +°
1

log k
^ C exp(rf)r

k=2 ° " "  °  ' fc=2

Lemma 3.2. For any ß > 0

(3.10) sup I/O; — ^ exp ^(41V)^ a.s.

if N  is big enough.
PROOF. Observe that by Markov’s inequality and (3.9)

(3.11) p ( Y  Zp')( / ,^ ) > r /7 exp(rf) J ^ C 2 {' - 1){1_7- /3).
\i=A(_i +1 J

Select now 7 > 1 to conclude that

i + i

i - m - i - ß ) <  0 0 ,

implying by the Borel- Cantelli lemma, that for / B lu(u>)

A,
(3.12)

Hence by (3.5), for k big enough,

Y  Zi rl  exp (rf) a.s..
i= A /_ i +  l

(3.13) sup |p, -  P;(1) I ^  2C V  2'7 exp(2^) ^ exp(2<*+^) a.s.
' Z A " 1=1

Observe that for 2k~] ^  N  < 2k we have

(3.14) sup I pi -  p\]S> I ^ exp(2^fc+1̂ ) ^ exp (,(4AÍ')':Í')
i<N v '

a.s.

for N  big enough, as 2k+l ^  AN.
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LEMMA 3.3. For any fixed. ß > 0

(3.15) P (^ (1) + u\1] > ^ exp ( - r }~ ß)

if l is large enough.

P roof. Clearly and are both binomial with parameters 77 and
pi — P(pi > exp(r^)) and independent, hence their sum is binomial with 
parameters 277 and p/. Now observe that

P(t'/(l) + 1^2'1 > A) ^exp(—j4)E(exp(/^]  ̂+i/j2 )̂)
(3.16) = ex p (-A )(l + p i ( e -  l))2r' ^  exp(-A) exp(4p/r/)

^  exp(—A + 57rr}~ß) ^  exp(—A  +  I67/ )̂,

where the last but one step follows from Theorem C. Select now A — 17rj~fi 
to get the lemma. □

LEMMA 3.4. For any 0 < ß < l ,  r  > 0. such that ß  + r  > 1 we have

(3.17) sup |£(a, pi) — £(2)(a, pj2))| =  0 ( N T) a.s..
i<N

P roof. By Lemma 3.3 and (2.6)

(3.18) ?(2(iyll )+ ^ 2)) M i ( a ) > r l ) ^ e x p ( - r l - ß) + C(a)rl exp(-d.(a)rJ+ß- 1)

where C(a), d.(a) are positive constants depending only on a. Now (3.18) 
implies by Borel Cantelli lemma that

(3.19) 2(i',(l) +  ;;,(2))M,(a) = 0 ( l)2 ,T a.s.,

hence by (3.6)

k
(3.20) sup K(a,p i ) - í< 2>(a,pi)| = ]T  0 ( l)2 ir =  0 (l)2 fcT a.s.

from which (3.17) follows. □
LEMMA 3.5. On a rich enough probability space there exists a Wiener 

process { W (.s), s ^  0} such that for any fixed a, ß, r  satisfying 0 <  ß  < 1, 
t  >  0 ,  ß +  r >  1 ,  we have

(3.21) K(a,piV) - A r - a afr(A 0| = O(Ar) a.s..

PROOF. Apply the celebrated Komlós Major Tusnády [16] theorem for

e(2)(a , p W ) - N
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(which is now considered as a sum of N  i.i.d. random variables with common 
expectation 1). The existence of the moment generating function of the 
summands follows from Theorem D. Hence we get

(3.22) |e(2)(a, ) -  JV -  oraVT(JV)| =  0(log JV) a.s..

Now apply Lemma 3.4 to get (3.21). □
A simple consequence of our Lemma 3.5 and Theorem B is that for any 

e > 0, under the condition of Lemma 3.5

(3.23) £(a. pí(o,„)) ~  £(0, n )  = ffa^ ( í(0 , n ) )  +  0(log n)r(l+c) a.s..

However, to get the first statement of our theorem, we need to replace 
£(a, P£(otn)) anfl W(£(0,n)) with £(a, n)  and W(^^(0, n)), respectively. To 
be able to perform these replacements we need two further lemmas.

Lemma 3.6. For any «  > 0

(3.24) |£(a,n) -  £(a, p?(0,n))| = 0 (lo g n )°  a.s. 

as n  oo.
PROOF. Consider the local time differences

£(a, P k + 1) -  £(», Pk)■ A; =  (J. 1 ,2 ,----

They are i.i.d. random variables and from Theorem D, for an arbitrary a 1 > 0,
OO

5 1  P(^(a,Pfc+i)-í(a,p/b) > A:ft') <oo 
k = \

implying that

(3.25) Z{*,Pk+i)-t{*,Pk) = 0{k° ')  a.s..

Observe now that

(3.26) s(a. n) £ (a, p^ (o,n)) = £ (a, P^(o,n)+i) £ (aj P̂ (o,n))

and, by Theorem B. £(0,n)  ^ (log?i)1+t for any e > 0 and n big enough. 
Consequently

(3.27) |a a ,n ) - ^ ( a ,p i(o,n)) |- 0 ( lo g n ) a' (1+e) a.s..

Select now a  = ( / ( l  +  f) to get the lemma. □
Lemma 3.7. For ß  > 0 and e > 0

(3.28) |£(l) (0, ?t) — £(0. n)\ = 0(log ?i)^(1+f)

E. CSÁKI, A. FÖLDES and P. RÉVÉSZ

a..s..



STRONG INVARIANCE FOR LOCAL TIME DIFFERENCE 33

PROOF. First, observe that

í l 1> (0 ,n )= í'1'(0,p<i»>(On))

£<»(0, n )-  £(0. n) i £ " > ( 0 , -  £(0.
(3.29)

— í(0,/^o)(o,„)) P^(i)(0n))-

Now observe that, by Theorem B, £(1)(0,n) < (logn)1+á for any <S>0, if n is 
big enough. Consequently, by Lemma 3.2,

(3.30)
^ exp (log n p 1

ip, - p!"i

+&' ) P a.s.

with any S' > S > 0. Now apply Lemma 2.1 with bn =  exp(logn)(1+<5 l̂i and 
a n = n  (being n) g n ) .  Thus we get by (3.30) that

£(1)(0,n) -£ (0 ,n )  = O((logn)(1+f)/3) a.s.

where e> 6 ' > 0. Repeating the argument for £(0, n) — ^^(O, n) we get the 
lemma. □

P roof of the T heorem. Based on the above lemmas we have now 
three local time processes, constructed in such a way that the £ ^ (- ,n )  and 
£(2)(‘ , n) processes are independent. W (■) was constructed to correspond 
to the process £(2)(-,n), hence it is independent from the process £(*)(■, n). 
Moreover, by Lemma 3.6, (3.23) and Lemma 3.7

£(a, n) -  £(0,n) =  £(a, p i( 0ifl)) -£(0 ,  n )  + £(a, n) -  £ (a. pi(0,„))
= £(&, P((o,n)) ~ ((0 , n )  + 0(log n ) a 

=  aaVK(e(0,n)) +  O(logn)T(1+e) +  O(logn)a 

(3.31) =  ^ ( £ (l)(0,«)) + aa (W(£(0, n)) -  (0, n)))
+  0(log n)r(1+t) + 0(log n)a

=  o-aR/'(^(^(0,n)) + 0 (lo g n )_L̂
+  0(logn)T(l+f) + O(logn)“ a.s.

for any e' > e. In the last line we used Theorem 1.2.1 of Csörgő and Révész [6] 
on the maximal increment of the Wiener process. Taking into account that
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the only conditions throughout the construction on ß  and r  were 0</?<l, 
r  > 0, such that ß + r  > 1 (and that a  > 0, e' > e > 0 are arbitrary small), we 
can select e > 0 small enough to have |  7-777 > 1, and select r ( l  + e') =  |  and 
ß{l + e') = \  to get

(3.32) e (a ,n )-e (0 ,n )  =  (raW (^ 1H0,n)) + O(logn)i a .s, 

and from (3.28)

(3.33) ^^(O , n) — £(0, ?i) = O(logn) ö a.s.

that, in turn, also proves our theorem. □

4. Applications

In this section we apply our Theorem 1.1 to obtain some limit theorems 
for £(a, n) — £(0,n). It follows from (1.1) that the limit distribution of

£(a-n) -£(0 ,n)
aaV/log7i

should be the same as that of

\/log n

where ^ ^ (n )  =^'*(0.7i).
Obviously, from Theorem B,

W ( ^ ( n ) )  _  W{C^Hn)) / e(1)(n) P 1J . P 7 

\/logn ^ ( ^ ( n )  V log«

as n  00, where U is a standard normal r.v. and Z  is an exponential r.v. 
with parameter tt, and U and Z  are independent. One can obtain similarly

\/log n
%\U\y/Z,

and

sup
k< n

W ( ^ ( k ) )

\/log n
v  —>\ u \ s f z ,

sup
t ~n A r C z

yiögn
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as n-> oo, where T has the distribution of sup |W(s)| and is independent
sál

of Z. It can be seen furthermore that the distribution of U sfZ, is two-sided 
exponential with parameter v/2tt, he., its density function is

(4.1) <7(s) l l e-|*|VSF — OO <  X <  o o .

The distribution of |t / |\ /Z  is exponential with parameter \/2tt. 
Furthermore by using the formula (cf., e.g., Révész [19])

(4.2)
v -  ' Tr ^  2Ä; +1 1 V 8.C2fc=o x

=  E  ( - l ) k m 2 k + l ) x ) - * { ( 2 k - l ) x ) ) ,
fc= —oo

straightforward calculations give

(4.3)
H(x) = P ( T ^ ^ x )  = ^ ± - ( - D fc

7T (2 k + 1)37T + 8 (2 k +  l)x 2

= 1 -
:osh(:i,'\/27r)

Hence we have the following limit distributions: 

T heorem 4.1.

(4.4) iim p (
n —>oc \  a a  V lO g  Tl

x

% XJ = I  g{u) du,

where g(x) is given by (4.1),

|£(a, n) — £(0,n)
(4.5) lim P

n —>oo CTav/logn
^ x  ) =  1 — exp(—x \ /2 tt)

(4.6) lim P
n —►oo

(  sup |£(a, k) — £(0. A;)| \
1 álcán

—  <  X

V
= #(*)•

/
CTav/logn

We note that (4.4) was given by Kesten [14] and Kasahara [13].
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By applying Theorem 1.1 we can also obtain strong limit theorems for 
£(a, n)  — £(0,n) via establishing the corresponding results for ÍT (£^(n)). 
Standard methods give the following laws of the iterated logarithm

hin sup W  ( £ ^ (n)) 1
a.s.

n—¥ oo \/log n log3 n \ /2 n

and this implies the LIL of Marcus and Rosen [17]:

£(a ,n)-£(0 ,n) a aInn sup — ■ i.. ■. .---------= __ a.s..
n—>oo v  log n log3 n v  2 tt

Concerning liminf results, we first note that one can get the following 
asymptotics from (4.5) and (4.6):

(4.7) 

and

(4.8)

P(\U\\fZ ^x)~xV2n,  x'-a O

P (T \ f Z  ^  x) ~  x2n. x  —> 0.

These results show that one cannot expect proper Chung-type LIL for 
sup(£(a, k) -  £(0, k)) and sup |f  (a, k) -  £(0, k) |. The following integral tests, 
k 5Í n k ̂  n
however, hold true.

T heorem 4.2. (i) Let a(x) be a nonincreasing function such that 
a{x)  \/log x is nondecreasing. Then

(4.9) P sup (£(a, k) — £(0, k)) ^ «(«) \/log  n i.o. 1= 0  or 1
\l<k<n

according as 

(4.10)
OO

/’ « (x ) dx 
x  log x

<oo or =  oo.

(ii) Let ß(x) be a nonincreasing function such that ß(x)\/\ogx is nonde­
creasing. Then

(4.11) P sup |£(a, k) -£(0,fc)| ^ß {n )y / \o g n  i.o. ) = 0  or 1
V l<fc<77 /

accoramq as

(4.12)
I * .

ß 2 (x)dx 
X  log X

< oo or =oo.
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P roof. It follows from Theorem 1.1, that it suffices to prove similar 
results for J(n) := sup W(s) and K(n)  := sup |W'(s)|. The convergent

sgi<l>(n) sgf<D(„)
parts can be seen by considering the subsequence nk = exp(efc) and defining 
the events

Ck =  | j ( n fc_i) ga(?ifc)>/Íögn^|

and
Dk =  ^K(nk- i )  ^ß(rik) \ / lo g rq . |.

It follows from (4.7) and (4.8) that P(Ca) 5Í ca{nk) and P{Dk) ^  cß2 (nk)- 
But X]fca (nfc) and the integral in (4.10) and also Ylh ß2(nk) anti the inte­
gral in (4.12) are easily seen to be equiconvergent, hence the Borel-Cantelli 
lemma and the usual monotonicity arguments complete the proof of the con­
vergent parts.

To show the divergent, part we apply the following Lemma (cf. Klass
[15]):

LEMMA 4.1. Let {An}n>i be an arbitrary sequence of events such that 
P (An i.o.) =  1 und let {Bn}n>i be another sequence of events that is in­
dependent of IAn}„>i such, that liininf P(B„) ^ p > 0. Then we have

n—too
P {AnB n i.o.) Z p -

To show the divergent part of (i). let

An - { j ( n ) S v / w Ö « ( e í<1)(n))}

and
£n =  {£(1)(n) ^logn}.

00
The divergence of the integral in (4.10) implies / u~1a(eu) du =  oo and hence

1
by a theorem of Hirsch [11] (see also Révész [19]) we have

P sup W (s) ^ Vka(ek) 
s^k

=  1.

Since £(t)(n) increases by 1, we also have P(A„ i.o.) =  1. Obviously 
lim P{Bn) > 0  by Theorem B, hence Lemma 4.1 combined with 0-1 law for71—HX)

Sn proves the divergent part of (i).
To show the divergent part of (ii), let

Än =  {£(l)(n) ^ ß2{n ) l°g 71}
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and

Bn =  < sup IW (s) I g ß(n)  x/logn
 ̂S^ß-(n) log TL

Erdős and Taylor [10] proved that P (Än i.o.) =  1 and, clearly, lim P (Bn) > 0.77.—>00
Hence Lemma 4.1 combined with 0-1 law for Sn implies the divergent part 
of (ii). This completes the proof of our Theorem 4.2. □
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ON A PROBLEM ABOUT /-PROJECTIONS'

I. CSISZÁR and L. FINESSO 

Dedicated to the. memory of Alfréd Rényi

A bstract

The minimizer P* of the /-divergence /(P ||Q ) for P  in a set II defined by linear 
constraints is known to be mutually absolutely continuous with Q (P * =  Q) providing a P  
in II exists with P  =  Q and /(P ||Q ) < oo. We ask when the existence of P  and P , both in 
II, with P =  Q and /(P ||Q ) < oo is already sufficient for P* =  Q. We give a positive answer 
for measures on a product space when II is determined by prescribing the two marginals.

1. Introduction

For probability measures (p.m.’s) on a measurable space (X ,X ) ,  the I- 
divergence of P  from Q (or relative entropy or Rollback Leibler distance)
IS

Í /  ( d P "
(1) i( r \ \Q) = l .1

)dQ if P « Q

[ oo otherwise

where

. , f flogt if t >  0
(2) 0 if t = 0.

For a convex set n  of p.m.’s with

(3) inf I(P\\Q) < oo,
pen

if the minimum of I(P\\Q) subject to P  G II is attained, the minimizer P* 
is unique. It is called the /-projection of Q onto ft. A sufficient condition

1991 Mathematics Subject Classification. Primary 94A17, G2B10, G2H99.
Key words and phrases, /-divergence, iterative scaling, specified marginals, Schrödin- 

ger’s problem.
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0081-6906/98/$ 5.00 ©1998 Akadémiai Kiadó, Budapest



42 I. CSISZÁR and L. FINESSO

for its existence is the closedness of IT in variation distance. An important 
property of the /-projection is

For the above results cf. [3].
On account of (4), a (necessary and) sufficient condition for P* =  Q 

(where =  denotes mutual absolute continuity) is the existence of some P  £ II 
with P  = Q, I(P\\Q)<oo.

We will consider the problem whether the hypothesis I(P\\Q) < oo can 
be dropped in the last condition, i.e. whether the following is true.

A ssertion A. The existence of P  6 IT with P  =  Q implies P* = Q.
Notice that subject to (3), Assertion A is equivalent to the apparently 

weaker
A ssertion B. The existence of P e n  with P  = Q implies that to any 

P e l l  w ith P ^ Q , /(P ||Q )<oo, there exists P'eTI with P'<£P, /(P '||Q )< oo .

Indeed, were Assertion A false, applying Assertion B to P  = P* would 
yield a P ' € IT with P'<^ P*, I(P'\\Q) < oo, contradicting (4).

For IT determined by a finite number of linear constraints, i.e.

for given measurable functions ./) on A and constants c,. i = 1 ,2 ,. . . ,  k. As­
sertion A is true, cf. [4].

For IT determined by an infinite number of linear constraints, however^ 
Assertion A may be false. For a counterexample let X  = N  and Q and P  
arbitrary  strictly positive p.m .’s with D(P\\Q) =  oo. Let II be the set of
p.m .’s P  satisfying p o + P i(l ~PÖ)/pi= 1, » =  1 ,2 ,---- Then the p.m. ó'o
concentrated at 0 is in II and has -D(do||Q) < oo, but D(P\\Q) = oo for all 
other P e l l .

In this paper, we will concentrate on the case when II is the set of those 
p.m .’s on a product space that have specified marginals. Let II(Pi, P2) denote 
the (convex) set of those p.m.’s on (Ad, Xy) x (A2, A2) whose marginals are, 
respectively, Pi and P2. Since this set is closed in variation distance, the /- 
projection of Q onto II(P i, P2) exists for any p.m. Q on (Ai, X \ ) x (A2, X-2) 
satisfying the finiteness condition (3), i.e.,

(4) P « P * < Q  for all P e n  with 7(P ||Q )<oc.

Pen(Pi,p2)
inf I(P\\Q) <00.

We will assume in the sequel that

(6) Q «  Q\ x Q-2,
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where Q\ and Q> denote the marginals of Q. Then the /-projection P* of 
Q onto II(P |. P2) satisfies

(7) = a(:i'i)6(:v2) P*-a.s.,

where a and b are strictly positive measurable functions on X\  and X 2 , 
respectively. The latter has been proved in [9]. filling a gap in a proof of [3] 
(the proof in [3] assumed that the set of functions of form ,f(x\) +  g(x2), /  6 
Li{P\), g(zL\(P2) is closed in L\(P*), which is not always true).

One reason for our special interest in the case P* =  Q is that then (7) 
becomes

dP*
(8) —  = a{xi)b(x2) Q- a.s.,d.Q

where the identity holds in the same sense as the Radon--Nikodym derivative 
is determined.

The problem of finding positive measurable functions a(x 1), b(x2) such 
that

dP
(9) —  = a(x\)b(x2) defines a p.m. P e n ( P x.P2)

d.Q

has first been raised, apparently, by Schrödinger [11] who arrived at it treat­
ing a problem about diffusions, of conceptual interest in physics. Since (8) 
provides a solution to this problem, we may assert subject to hypotheses
(5), (6) -  that a solution to Schrödinger’s problem (9) always exists if a 
P  € n(P x, P2) with P  =  Q, I(P\\Q) < oc exists at all; if Assertion A holds 
for II(Pi, P2) and Q , the hypothesis J(P ||Q ) < 00 can be dropped in the last 
condition. Relevant references about Schrödinger’s problem include [1], [6],
[9]. As shown in [6], solutions to (9) with I(P\\Q) <00 necessarily satisfy 
P  = P *, though solutions with /(P ||Q ) =  oo perhaps may exist.

R emark. Assumption (6) is crucial for (8). An example where P* =  Q<£ 
Qi x Q2 and dP*/dQ is not representable as the product of measurable func­
tions, appears in [6]. Still, such representation, with perhaps non-measurable 
a(a;i) and b(x2), is always possible, cf. [1], [6].

2. The countable case

In this section we deal with p.m.’s on countable sets. The probability 
mass function (pmf) of a p.m. denoted by a capital letter will be denoted 
by the same lowercase letter. The support of a p.m. P  on a countable set 
X  is Sp — {.r :p(rr) > 0}. Notice that P Q is equivalent to Sp  C Sq .
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In the countable case, to prove Assertion A for II and Q satisfying (3), 
it suffices to prove the following assertion not involving Q.

A ssertion C. To any P  and P  in II with S P C Sp, S P ^ Sp, there 
exists P ' e l l  with S f  (£ S P such that the pmf of P'  differs from that of P 
on a finite subset of Sp only.

Indeed, if Sp =  S q , the last condition makes sure that I[P\\Q) < oo im­
plies /(P 'H Q ) < oo. Thus Assertion C implies Assertion B which, as noticed 
in the Introduction, is equivalent to Assertion A.

THEOREM 1. If X] and X 2 are (finite or) countable sets, Assertion C 
always holds for II(Pi, P2), hence so does Assertion A subject to the finiteness 
condition (5).

R e m a r k . Hypothesis (6) is trivially satisfied in this case.

P r o o f . Given P and P  in II =  n(Pi,P2) as in Assertion C. notice first 
that a P'  required there can be trivially given if for some (öq, x2) £ Sp \  SP 
there exists X;\ £ X\  and T4 £ AT such that (x3 , x 2) and {x\,x\)  are in 
SP and (x;i, äq) is in Sp. Indeed, changing the pmf of P  at the points 
(5q, x 2), (m3,m2), (m3,m.4), (mi, mq) only, by alternatingly adding and subtract­
ing some e > 0, the resulting P'  has the same marginals as P  and meets all 
requirements in Assertion C.

This simple idea always works if Sp = X 1 x X 2, but not necessarily oth­
erwise. We will show, however, tha t to any (x\,X2 ) £ S p \ S p one can always 
find T 3 ,. . . ,  X'2n—i in X\  and X4 , . . .  , x 2n in X 2 (for some n 2) such that

(10) (m27—1, X'2i) £ Sp.  (x2i+1. X‘2i) £ S p i 1, 2 , . . . ,  a

with the convention X2n+\ =  ®i- This still suffices to obtain a P ' as in 
Assertion C, by changing the pmf of P  at the 2n points in (10) only, by 
alternatingly adding and subtracting some e > 0.

Consider a Markov chain with state space X\  U A2 (assuming w.l.o.g. 
that X \  H X 2 = 0) and transition probabilities

( p('J',y)/'P\ (4;) if x £ X u y £ X 2, ( x , y ) e S p
(11) p(y\x)= < p(y ,x ) /p 2 {x) if x £ X 2,y  £ X[, (y.x) £ SP

( 0 otherwise.

This Markov chain has an invariant p.111. with pmf p(x) = ^jq(x) or \p 2 (x) 
according as x £ X\ or x £ X 2, thus mi with p \ (x \ ) > 0 cannot be transient 
([5], p. 395).

Since X2 can be reached from x\  (in one step, by the assumption {x\ ,x2) £ 
Sp),  it follows that x\ can also be reached from x 2. On account of (11), 
the la tte r is equivalent to the existence of Ti, ■ • •, x 2n satisfying (10). This 
completes the proof of Theorem 1.
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3. The general case

In this section we consider Yl(Pi,P2) and Q as in Section 1 in the case 
of arbitrary [X\,X\).  (X2, X2). Recall the hypothesis Q <CQ\ x Q2. cf. (6), 
and write (for any P  <S Qi x Q2)

( 12)
(IP

d(Q\ x Q2) =  p{x i , x2),
d.Q

d{Qi x Q2)
q{x\,x2).

For the densities p and q define

(13) SP =  {(aii,x2) :p{xi ,x2) >0}, Sq = {(a/i,.r2) :q{xi,x2) > 0}.

While we believe that Assertion A holds in this setting without any 
additional hypotheses, at present we are able to prove this under the following 
condition:

(14) SQ =  U (Aj x Bj), Aj G Xu B3 G X2,
jeJ

where ,7 is a (finite or) countable index set. Since q(x\ ,x2) is not a unique­
ly defined function on Xy x X 2, (14) is required for a suitable version of 
q{x i , x 2).

Notice that (14) is automatically satisfied if X\  or X 2 is (finite or) count­
able, or if Q =  Q\ x Q 2. It is also satisfied if X\  and X 2 are separable metric 
spaces endowed with the Borel cr-algebras, and q(x\ ,x2) is continuous or 
lower-semicontinuous. The hypothesis (14) appeared previously in [1] where
(8) was proved under that hypothesis, assuming (6) and the existence of 
P e U { P i ,P 2) w ith P  =  Q, I(P\\Q) < 00.

THEOREM 2. For Il(P\, P2) and Q satisfying hypotheses (5), (6) and
(14), Assertion A is true.

COROLLARY 1. Under hypotheses (5), (6) and (14), there exists a so­
lution to Schrödinger’s problem. (9) whenever a P £ U{P[, PJ2) with P  = Q 
exists.

For the proof we need the following

Lemma 1. Given any P  G Il(P i, P2) with P ^ Q .  I(P\\Q) <  00, there ex­
ists P' G Il(P i, P2) with P'<£P, I(P'WQ) < 00  if random, variables Y\ , . . .  ,Yn 
with the following properties exist:

(i) Yi takes values in X\ or X 2 according us i is odd or even;
(ii) the joint distribution of (Y^j-i, Y2i) is absolutely continuous with re­

spect, to P, i — 1 . . . . . n, the joint distribution of (Y2j+i,Y2i) is absolutely 
continuous with respect, to Q, 7 = 1 . . . . ,  n — 1, and the joint distribution of 
(Y\ , Y2n) is absolutely continuous with respect, to Q\ x Q2.
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(iii) Pr{(Yi, Y2n) G S q , (Y3 ,Y 2) e S Q\ S P}>  0.

P roof . Write Y2n+\ = Y\ for convenience, and set

(15) C K ,i = {{xi,.x2) ■ P y 2í^ u y 2M \ , x 2 ) < K p(xu x2)} i =  1, —  ,n

(16) D Kj  = {(xi, x2) :py2i+uY2i{xi ,x2) < K q (x \ ,ar2)} i = 1 ,. . . ,  n,

where Py2í- i ,y2í ai‘d Pv'2i+i ,V2. denote the joint densities of the indicated ran­
dom variables with respect to Q\ x Q2. Let denote the event that

( , (Y2l- i , Y 2i) e C K,i, (Y2i+l,Y2i) e D K
1 ) i = l , . . . , n ,  (Y:i, Y2) e S Q \ S p

simultaneously hold. By assumptions (ii), (iii),

(18) Urn Pt{£k } = Pr{ (Y,, Y2n) G SQ, (Y:i, Y2) G Sg \  SP} > 0.
k—>oo

Fix some K  with Pr{£/<-} > 0 . Then (15). (16), (17) imply that the condi­
tional densities of (Y2í- i ,Y2í ), respectively of (Y^i+i) Y2i), on the condition 
Ski  are upper bounded by K p (x \ , x 2)/Pv{£k } and K q (x i , x2) /P r { £p }, re­
spectively. It follows that

p '(xu x2) =p(x i , x 2)

(19) ( .
+ e  I 2 ^ PY2i+uY2i\£i<vx i ’ x v  -  2 ^ P Y 2i - i ,Y 2i\eK {x ^^x v

\ /=l  i= 1

is the density of a p.m. P'  if 0 < e < P r{ £ ^ } /K n .  and that I(P'\\Q) < oc. It 
is obvious from (19) that the marginals of P'  are equal to those of P, hence 
P' e U(P\. P2). Finally, it follows from (19) and the definition (17) of £p  
that

(20) P1 (SQ \ S p ) ^ e  Pr{(Ys, Y2) G SQ \  S P \ £,<} = e > 0, 

thus P' <jLP.
P roof of T heorem 2. As noted in Section 1 it suffices to prove Asser­

tion B. Now, fix P G n ( P i , P2) with P z£Q, I(P\\Q) < oo and P e U(P\,P2) 
with P  =  Q. Let Y \ , Y2, . . .  be a Markov chain satisfying Condition (i) of 
the Lemma such that the joint distribution of (Y2í- \ , Y 2í) is P  and the joint
distribution of (F2i+ i , ^ 2?:) is P, i — 1 ,2 ,----  Then Condition (ii) of the
Lemma is also satisfied, for each n, and it suffices to show that Condition
(iii) is satisfied for some n. As the joint distribution of (Y3, Y2) is P  =  Q, and 
P  <^Q, P ^ Q ,  we have Pr{(Y;i, Y2) G S q \ S p } > 0. Hence, using hypothesis
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(14) and the fact that the joint distribution P  of (yj,Y2) satisfies P < Q ,  it 
follows that for some measurable rectangle A x  B  C S q

(21) Pr{(Yi,y2) € i 4 x B ,  (Y3,Y2) G Sq \ S p } >0.

Denote by £„ the event that

(22) (Y2n- 1, Y2n) e A x  B, (Y2n+1, Y2n) G Sq \  SP.

Since the pairs (Yj, Y2), (Y3, Y4),. . .  form a stationary Markov process, 
£ i ,<?2, • • • is a stationary sequence of events of positive probability, cf. (21). 
Hence, by the Recurrence Theorem ([8], p. 27), there exists n >  2 (actually, 
infinitely many such n ’s) such that

(23) P r{£ ,n  £„}>().

If both £\ and £n obtain then (Y\,Y2) G A x  B  and {Y2n- \ , Y 2n) G A x B, cf. 
(22), hence also (Yj, Y2n) E A x B .  Thus (23) implies that

Pr{(Yi, Y2n) e SQt (Y3, Y2) G \  Sp} ^
Pr{(Yi, Y2n) £ A x  B, (Y:i, Y2) G SQ \  S P} Z Pr{<?, n £ n} > Ü.

This means that Condition (iii) of the Lemma is also satisfied (for a suitable 
n >  2). This completes the proof of Theorem 2. The Corollary is immediate 
from the discussion in the Introduction.

4. Extensions and open problems

Some simple extensions of our results are as follows:

(i) If no P  G n  satisfies P  =  Q, it is still of interest whether in equation
(4) the condition I(P\\Q) <00 can be relaxed to i.e., whether the
/-projection P* of Q onto n  dominates every P  G II dominated by Q. In 
the countable case the latter is obviously implied by Assertion C, thus the 
corresponding extension of Theorem 1 is immediate. Similarly, an obvious 
modification of the proof of Theorem 2 gives that if P  G II(Pi, P2) dominates 
every P  G II(Pi, P>) dominated by Q (the proof of the existence of such P, 
unique up to mutual absolute continuity, is standard) and hypothesis (14) 
holds for P  rather than Q, then P* =  P.

(ii) Corollary 1 about Schrödinger’s problem can he extended to some 
cases when the finiteness condition (5) is not satisfied. Indeed, let be 
a p.m. on X\ x X 2 with X \-marginal P \ , obtained from Q by ’’scaling”,

i.e. having Q\ x Q2-densit,y r /1)(x , , x2) = q(x 1,x 2) (.7:,). A P e n ( P i ,P 2)
dQi
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with I ( P \ \ Q < oc may exist even if none with I(P\\Q) < oo does; this can 
happen if /(P i||Q i) =  oo, since clearly

(24) I(P\\Q) = I(P\\QW)  +  /(P l IIg ,) for all P  £ II(P,. P2).

Applying Theorem 2 to in the role of Q, it follows that the finiteness 
hypothesis (5) in the Corollary can be relaxed to

(25) inf /(P||Q<1))< o o .
pen(p,,p2)

Notice th a t / (P ||Q ^ )  can be interpreted as conditional /-divergence: taking 
the conditional distributions on X 2 given an x.\ £ X\  induced by P  and Q , 
respectively, the average with respect to P) of their /-divergence is equal to 
/ ( P ||Q (1)).'

The p.m. QO  can be further ’’scaled” to get with /^-m arginal P2 

and Qi  x (^-density qW (x \ , x2) = <£1) (.-/■• i , x 2) ■ /j- - (x2) where denotes
dQ[l)

the ^ -m arg in a l of This permits to relax (25) replacing by
These Q ^ ,  are the first two elements of the sequence of p.m.’s 

obtained by ’’iterative scaling” , a procedure that in case of finite X i and X 2 
is known [3] to converge to the /-projection P* of Q onto Il(Pi,P2), when
(5) is satisfied. In the present context, the hypothesis (5) in the Corollary 
of Theorem 2 can be relaxed beyond (25), replacing Qd) there by any 
of the iterative scaling procedure.

R em ark . A proof that the iterative scaling procedure converges to the 
/-projection P* in the general case, subject only to (5), is still elusive. For 
substantial partial results cf. [1], [10].

(iii) Instead of /-divergence, we could have considered (^-divergences [2], 
[7] as well, letting ip in (1) be a continuous and strictly convex function on 
[0, oo) other than (2). The key property (4) and Theorems 1 and 2 remain 
valid whenever ip satisfies:

(26) lim =  — oo. lim = oo.

The general problem raised in this paper appears unexpectedly difficult. 
Already for the three-dimensional analogue of n(P i,p2) in the countable 
case, viz. for the set of p.m.’s on X\  x X 2 x X$ with given one-dimensional 
marginals (or with given two-dimensional marginals), where X\ ,  X 2 , X% are 
countable, we did not succeed in deciding whether Assertion A is true. It 
also remains open in what cases, if any, is Assertion A true, but Assertion 
C false.

A bold conjecture might be that Assertion C always holds for sets of 
p .m .’s on a countable set X  defined by prescribing the probabilities of subsets
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Ai, A ‘2, ■ ■ ■ of X  such that each x  G X  is contained in at most k distinct A /  s, 
for some constant k. Proving this conjecture (if true) apparently requires 
methods different from those in this paper. For the case k =  2, however, the 
positive answer is an easy consequence of Theorem 1.

THEOREM 3. Let A  = (Al, A2, . ■ ■) be a countable family of subsets of a 
countable set X  such that each x G X  belongs to at most, two distinct Aj ’s. 
Then Assertion C holds for

(27) n  = {P : P (A j )=pj , j  =  1 ,2 ,... },

where p j , j  = 1 , 2 , . . .  are given positive numbers such that. 11^0.

P roof. Denote by Ao the subset of X  not covered twice by A , i.e. the 
complement of the union of all pairwise intersections of sets in A. Then the 
(non-empty ones among the) sets A:l and A/flAj, i ^ j ,  i and j  in
N  =  {0 ,1 ,... }. represent a partition of X.  Given P  and P  as in Assertion C, 
a P' as required there can be trivially given if some of these sets with positive 
P-probability contains an x  with p(x) = 0. Henceforth we assume that this 
is not the case. Associate with the given P  and P  on X  p.m.’s on N 2 letting

(28) p(*,j) =  <
^ ( A i H A j )

P(X\\JT=i Aj)
0

if i ? j  
if i = j  = 0  

if i = j ?  0

and similarly defining p(i, j).  Clearly, p ( i , j ) and p(i , j)  are symmetric pm f’s 
on N 2, both having marginals Pi =P -2 with pmf p\ (i) satisfying

(29) Pi (*) =  ^-P(Ai) =  ^P(Aj) =  ^pi, * =  1,2, . . .

cf. (27). By our assumptions on P  and P, the associated p.m.’s on N 2 defined 
above satisfy the hypotheses of Assertion C, i.e. {(i, j ) : p{i, j)  > 0} is a proper 
subset of {(i;.y) >0}. Hence by Theorem 1, there exists a p.m. on
N 2 with both marginals equal to P\ (uniquely defined by (29)) whose pmf 
p'{i,j) differs from p{i,j)  on a finite subset of {('<, j ) : p(i, j) > 0}, and p'{i,j) 
is positive for some (i , j ) G N 2 with p(i,j) = 0. Though Theorem 1 does not 
guarantee it, the symmetry of this p.m. on N 2 can always be assumed, else 
p'{i,j) could be replaced by //'(?, y) =  j)  +p'(j,  *)), retaining the above
properties. Then it is a simple matter to give a p.m. P' on X  that satisfies 
the analogue of (28) with primes, and differs from P  but on a finite subset 
of Sp. The fact that the marginals of p'(i,j) are equal to P\ , given by (29), 
means that P'(Ai) =p,;, « =  1 ,2 ,... hence P' belongs to n  defined by (27). 
Since clearly Sp> is not a subset of Sp, the proof is complete.
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STANDARDIZED SEQUENTIAL EMPIRICAL PROCESSES

M. CSÖRGŐ and R. NORVAISA

To the memory of Alfréd Rcnyi

A bstract

We study the asymptotic extreme value behaviour of standardized sequential empir­
ical processes that are tied down at the points (0,0) and (1,1). These types of empirical 
processes arise naturally in the context of change-point analysis. We relate their asymp­
totic behaviour to the extreme value distribution of a two parameter Ornstein-Ulilenbeck 
process over a sequence of expanding subsets of the unit square [0, l]2.

1. Introduction and the main result

Let {Yi: i ^  1} be a sequence of independent identically distributed real 
valued random variables with a continuous distribution function F. Then 
{F(Yi) : i ^  1} are independent random variables that are uniformly distribut­
ed over the interval [0.1]. Consequently, from the point of view of theorem 
proving for the empirical distribution function on the real line, without loss 
of generality, we let {Ut : i ^  1} be a sequence of independent uniformly dis­
tributed over [0,1] random variables and let Fn be the empirical distribution 
function based on a random sample Ui , . . . ,  Un, i.e.,

(1.0) Fn{ x ) : = - ^ T l [ 0tX](Ui) for x £  [0,1].
4=1

The (uniform) empirical process a n that is defined by

(1.1) an{x) := n 1/2(F„(x) - x ) ,  i € [ 0 , 1],

has played a fundamental role in the development of probability theory (ef., 
e.g., M. Csörgő [5] for a short historical review).
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The study of suprema of weighted empirical processes was initiated by 
Rényi [26]. who investigated the asymptotic behaviour of statistics like

sup a n(x)/x, 0 < a < b ^ l  and sup a n( x ) / ( l —x), 0 ^ a < b < l ,
a = x ̂  b a^x^b

as well as that of their two sided versions (cf. also M. Csörgő [4]). For results 
on replacing the constants a and b in these statistics by constants 0 < a(n) ^  a 
and b ^  b(n) < 1 satisfying, as n  —> oo,

n a (n ) -> oo, n (l — h('n)) —» oo even when a(n) —>0, b(n) —>1,
we refer to Csáki [3], Mason [23], Section 4.5 of M. Csörgő, S. Csörgő, 
Horváth and Mason [6], M. Csörgő, Shao and Szyszkowicz [13], M. Csörgő 
and Horváth [8], and to Chapter 5 of M. Csörgő and Horváth [10].

There is a huge literature that is devoted to the study of the asymptotic 
behaviour in sup norm of weighted empirical processes

{atn (x)/q(x) : 0 < x < 1}
with positive weight functions q on (0,1) that are to satisfy certain integra- 
bility conditions in addition to necessarily being so that

(1.2) q(x)/x 1̂ 2 —» oo as .x |0 , and q(x)/(l  — x) —■> oo as x f  1.
More precisely, in terms of the following class of functions

Qo,\'-={q'- inf q(x) > 0 for all 0 < S < 1/2,

(1.3) q is non-decreasing in a neighbourhood of zero

and non-increasing in a neighbourhood of one.|

and the integral
l

(1.4) I(q, c) := I  - e x p ( - c q 2{t)/(t,(l -  t))dt, c> 0.
o

we have (cf. Chibisov [2], O ’Reilly [24], and M. Csörgő, S. Csörgő, Horváth 
and Mason [6])

THEOREM A. I f q & Q  0,1, then the following two statements are equiva­
lent:

(i) There is a sequence of Brownian bridges {Bn( x ) : 0 ^ x ^ 1} such that, 
as n  —> oc,

sup \an(x) -  Bn(x)\/q(x) = oP(l),
0 < x  < 1

(ii) I(q, c) < oo for all c > 0.
We have also (cf. M. Csörgő, S. Csörgő, Horváth and Mason [6])
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THEOREM B. If q E Qo,\ , then the following two statements are equiva­
lent:

(i) sup K (x)|r/(x) sup \D{x)\/q{x),
OCKl 0<a;<l

as n  —> oo, where { B ( x ) : 0 < x  <1} is a Brownian bridge,
(Ü) l(q, c) < oo for some c > 0.
REMARK 1.1. Wc; note that, if r/ 6 Qo,i is a coding function then, by 

Theorem A, as n —> oo, we have

«»(•)/<?(•) -^B(-) /q{- )  in D[0,1]

if and only if I(q, c) < oo for all c > 0. The latter, characterization of weighted 
weak convergence does not, however, imply the convergence in distribution 
statement (i) of Theorem B. We note also in passing that, omitting the 
absolute value signs, the corresponding version of Theorem B holds true.

For further results and their applications along these lines we refer to 
M. Csörgő, S. Csörgő, Horváth and Mason [0], Shorack and Wellner [27], 
and M. Csörgő and Horváth [8], [9]. For relating these types of results to 
Rényi [26] and Csáki [3] type statistics, we refer to Section 4.5 of M. Csörgő,
S. Csörgő, Horváth and Mason [6] and to Section 4 of M. Csörgő, Shao and 
Szyszkowicz [13].

The results of Theorems A and B do not, of course, hold true with 
q(x) := (x(l — x))1/2 (cf., e.g., Corollaries 2.2 and 3.2 in Chapter 4 of Csörgő 
and Horváth [9]).

Let, for each x  > e<:,

a(:c): = (2 log x )1 /2, b(x) := 2 log x  + 2~1 log log x — 2 ~1 log n,

an : =  a (log n ) and bn := 5(logn).
We have (cf. Eicker [19], Jaeschke [20])

T heorem C. For any -oo  < t <  oo

(1.5) lim p { a n sup a 7l(x)/(x(l -  x ))1/2 -  bn Ú /.} = e x p (-e - t ),
TWOO l 0<l<i J

(1.6) lim P{a.n sup |a n(:;;)|/(x(l -  x ) ) '7'2 -  g i )  = exp(-2e_<).

For a discussion of these results and that of their relationship to the 
one-time parameter Ornstein Uhlenbeck process and the Darling- Erdős [16] 
theorem, we refer to M. Csörgő and Révész [12], to Section 4.4 of M. Csörgő,
S. Csörgő, Horváth and Mason [6], and to Section 5.1 of M. Csörgő and 
Horváth [9] that also contains many more further results along these lines.
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In order to introduce the problem of standardized sequential empirical 
processes that we are to deal with in this exposition, and for the sake of 
summarizing some recent results, we first, assume that we have multivariate 
observations taking values in R'', d. ^  1. Let Y i , . . . ,Y „  be independent 
random vectors in with right continuously defined distribution functions 
F(!)(x), . . .  ,F(„)(x). Suppose we wish to test the ‘no-change in distribution’ 
null hypothesis

Ho:  F(1)(x) =  --- =  F(n)(x) for all xGRr/

against the ‘one change in distribution’ alternative

H,\ : there is an integer k*, 1 ^ k* < n, such that
)(x) =  --- =  F(fc.)(x), F(fc.+1)(x) =  • • • =  F(n)(x) for all x GR'' 

and F(a..)(xo) ^ F (a..+1)(xq) for some x0 € R''.

Since k* of Ha is usually unknown, in order to test Ho versus Ha , it appears 
reasonable to consider (cf., e.g., Darkhovsky [15], Picard [25], Deshayes and 
Picard [17], [18], Szyszkowicz [28], [29], [30], M. Csörgő and Szyszkowicz [14], 
M. Csörgő, Horváth and Szyszkowicz [11], and M. Csörgő and Horváth [10]) 
the sequence of statistics

n 1//2 max sup 
1 űk<n x : 1(-o°,x](Y*) n _ j s X  1(-t»,x](Yi)

i— 1 t—k+\
(1.7)

X !  ^ ( -o o ,x ] (Y i)  n  X  l( -o o .x ] ( Y
^<i<k 1 <i<n

= max sup
l<A;<n x n 1/2

' ( i O - i ) )
where 51 in R^ is meant to compare vectors componentwise, and to reject 
Ho in favour of 7/4. if this sequence of statistics were to produce ‘far too 
many large values’, as n —> 00. This nonparametric heuristic reasoning can, 
for example, be argued via the left-hand side of (1.7) that compares the 
empirical distribution functions of the first k observations to those of the 
remaining n — k observations uniformly in x G R'1, and uniformly in k as well, 
over the possible values l ^ k ^ n  — l of the unknown random variable k*. Via 
the right-hand side of (1.7) it can, however, be easily seen that this sequence
of statistics -—>oc, as n —> oc, even if H0 were to be true. Consequently, in 
order to secure a nondegenerate limiting behaviour under Ho for statistics 
that are based on comparing empirical distributions á la (1.7), we must 
introduce some appropriate renormalization.

We note in passing that a rationalization of introducing the sequence of 
statistics in (1.7) could be simply based also on trying to answer the following
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simple question. Given a sample of independent random vectors Y i , . . . ,  Y„ 
in R(/. is it reasonable to assume that they constitute a random sample? 
That is to say, for the sake of introducing the sequence of statistics in (1.7) 
it is not necessary to use the language of change-point analysis. Instead, we 
could have just simply asked whether a given set of independent data could 
possibly be viewed as being homogeneous in distribution.

Back to (1.7), on multiplying the respective arguments of the max sup
l^fc<n x

functional operations on both sides by (£(1 — £ ))1|/2, we obtain the sequence 
of statistics

Vn := max n 1//2
l^k<n

( 1.8 )

/„y~^(-°o,xi(Yz) _i. y i  i(-oo,xi(Yj)|n —k i=k+1

=  max n  1//2 
1 ̂ k<n E l oo.x] (Y,;) n  1 ( -o o ,x ](Y j)  ■ 

i=k-f I
Again, even if Hq were true, as n —> oo, this new sequence of statistics 

vVn —Aoo, though we are now somewhat nearer to saying something more 
sensible than this. Namely, if for any fixed xo E Rf/, we let
V„(xo)

:= max n 1/2( - f  1 - -
n

1/2

i. y i  i ( - o o , x U] ( Y i )  n _ k  y i  i ( - o o , x o i ( Y z)
Z— 1

— max n
\< k< n

■ 1/2
n

1
n

- 1/2

i—k+1 
n

E l ( - o o ,X 0 ] ( Y z )  1 ( - oo,x0] (Y z)
1=1 r i=k+l

then we have (cf. Corollary 2.2 of M. Csörgő and Horváth [7], or Theorem 
A.4.2 in M. Csörgő and Horváth [9])

(1.9) lim P{anVn(xo) — bn ^t.} = exp(—2e l)
n —>oo

for any —oo < t < oo, where an and bn are as in Theorem C. The key to 
the proofs of (1.5), (1.6) and (1.9), and to the asymptotic equivalence of 
the respective left-hand sides of (1.6) and (1.9) is their relationship to the 
asymptotic behaviour of the one-time parameter Ornstein- Uhlenbeck process 
á la Darling and Erdős [16] (cf. the references quoted right after Theorem C). 
However, the problem, of the asymptotic extreme value behaviour ofVn of (1.8) 
with appropriate sequences of norming constants, say hn and bn, that is to 
say the problem of finding hn and bn such that, as n -A oo,

( 1. 10) hn I ;i bji
V a nondegenerate random variable,
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remains open. One of the aims of this exposition is to throw some light on 
the nature  of the difficulties one encounters when trying to deal with this 
interesting problem of extreme value asymptotics that would be of interest 
to resolve from the point of view of change-point analysis.

Before continuing with studying the asymptotic extreme value behaviour 
of Vn via seeking appropriate norming constants «n and 6n, we summarize 
some recent results for these statistics that deal with renormalizing them so 
that they should have limits based on appropriate Gaussian processes. Let 
(cf. (1.7))

0.

M
f-TT X  1(-oo.x](Y/')------ f-TT X  l ( - o o ,x ] ( Y j )

W n ( x , t ) : = \  1 ‘ i =  1 1 J t = [ n t ] + l

( 1 . 11 )

0 < í < —, n

1 „ „ n  — 1

n 1/2 ( M  ( i -  M l r 1 n n
V 71 V n ) !

n -  1
<t<  1,

=

Ü.

1=1

0 g t < n
1 n — 1

0,

n n 
n — 1

n
<tS l .

where, as usual, [a] is the integer part of a. On denoting the common dis­
tribution function under Hq by F . it can be easily seen via weak conver­
gence of multivariate empirical processes that wn(x.t) converges weakly to 
{rV(x, t.): x e R'i. O ^ t^ l } ,  a Gaussian process with

E F F(x,t) = Q, E T  ,,(x, t)V F(y. s) = {F(x Ay) -  F(x)F(y)}(t A s -  ts),
where xAy = (min(.T|, y i ) , . . . ,  min(.T(/,y,/)), x =  ( x \ , . . .  ,.x,/), y =  (l/i, • • • ,y) € 
Rd. We have also (cf. M. Csörgő, Horváth and Szyszkowicz [11])

THEOREM D. Assume that FIo holds true and that q G Qo,l • Then
(i) there is a sequence of Gaussian processes {Tn(x, t ) : x 6 R'/, 0 ^  t. ^ 1} 

such thai for each n F 1

j r „ ( x , i ) : x 6 R ' ' , 0 ^ C }  = { r F ( x , t ) :x € R ' /, 0 g t ^ l }
and, as n —> oc,

sup sup |lü„(x, t.) -  r„(x, t.)I = Op( 1)
0 < i < l  X
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if and only if I(q, c) < oo for all c > 0, where I(q,c) is defined, in (1.4). 
Moreover,

(ii) I (q, c) < oo for some c > 0 if and only if, as n —> oo,

max supwn(x1k/n)/q{k/n)  sup sup |IY(x, t)\/q[t).
l^k<ri x 0</,< I x

We note in passing that if w«' were to fix the value of x € R'1, then the 
statements (i) and (ii) of Theorem D, formulated accordingly without sup

X

would follow immediately from Corollary 2.1 of M. Csörgő and Horváth [7j. 
It is that we can take sup as well and still have (i) and (ii) of Theorem D in

X

their respective present forms is the essence of this theorem.
Now for the sake of focusing in on the problem of studying the asymptotic 

extreme value behaviour of the sequence of statistics Vn of (1.8), and for the 
sake of simplifying notation, presentation and calculations, we go back to 
assuming, and from now on throughout, this exposition, that. { Y ) :i^ l}  is a 
sequence of independent, identically distributed real valued, random variables 
with a continuous distribution function F. Hence, without loss of generality, 
from now on we base our investigations on the uniform empirical distribution 
function Fn as it is defined in (1.0).

For each n ^  1. we define a two-parameter stochastic process On = 
=  {B;l(:c, t ): (x , t) E [0, l]2} by

( 1. 12) Bn ( x , t . )

’ M ( F h (z ) -F „ ( .t)), for 1/2,
< ( M  + l)(F [nt]+1(x-) -  Fn(x)), for 1/2 < t. < 1, 
, 0, for t  = 1.

Then, for each random sample U\,. . .  ,Un such that 0 < U\.n ^  Un:n < 1, 
the order statistics, we have

sup
(x,<)e(o,i)2

|B„(.-M)|
s / n t ( l  ~ t . ) x (  1 -:/;) Slip sup

1/ngigl-l/n Un.l^X̂ Un:
|B»(.7;,f)l

\ / n t (  1 -  t . ) x ( l - x )

(1.13)

=  max n x/2 ( - (1 ---- ) suplísfcgn- \ n n / 0<x<l

=  max s/n.\ - d - ) sup
1 ŷ A:
A- 2^i=

V n n 0<X<1

Ei=l l [0 ,x](Ui)  -  £ E"=l 1[0,:r](t/i)
y / x { l - x )

k Ei=l 1[0,x](^j) — TTTjf Ei=fc+1 l[0,:c](̂ j) 
\ / x ( l - x )

The right-hand side is a weighted suprema of the difference between the 
empirical distribution functions based on Ui, . . . ,Uk  and Uk+i, ■ ■ ■, Un, re­
spectively. Comparing (1.8) and (1-13) in this context, we call attention to



58 M. CSÖRGŐ and R. NORVAISA

the fact that in the latter we use complete standardization of the underlying 
two parameter stochastic process. This, in turn, will enable us to relate the 
thus modified original problem of (1.10) to the extreme value distribution of 
a two parameter Ornstein -Uhlenbeck process over a sequence of expanding 
subsets of [0, l]2 (cf. (3.1) and (3.2)).

For a set A C [0, l]2, an integer n ^ 1 and the stochastic process 0„ 
defined by (1.12). let

(1.14) Dn(A) s u p .(M )l
(x,t)eA s jn t ( l - t , ) x ( l  - x )

Here we find the asymptotic behaviour of Dn(An) as « —> oo for a certain 
expanding sequence {An: n  ^  1} of subsets of [0, l]2. More specifically, for 
each T  >  ee, let

a(T) := l / \ /4  In T  and

b ( T ) V 4  ln T  +  [p ln(4hiT) -  ~ ln(27r)]/v/41nT.

The numbers o,(T) and b(T) are special cases of the numbers afiT)  and bfiT) 
with d — 2. respectively, defined in Section 2. For each r ^ 0, let

Q(r) = {(x, t) G (0, l ) 2: I In - í - |  + | In - L - \  Í  r} for r  ^  0.1 — x 1 — t.
The following statement is the main result of this paper.

THEOREM 1.1. Let {D n: n ^1} be a sequence, defined by (1-14). Then, 
for each real number z,

fim^ Pr 2 In liin ) )  <a^ n n )z  +  ö(ln n )}) = e x p { -e -2 }.
The proof follows from Lemmas 3.1 and 3.2 below.

2. Multiparameter Gaussian processes

We start with the formulation of an extremal type theorem for a multi­
param eter analogue of the Ornstein- Uhlenbeck process. Let A be a positive 
real number, d be a positive integer and let D(/ be any subset of R(/. A real­
valued Gaussian process Z =  (Z(u): u G Df/} with mean zero and covariance 
function

d
JSZ(u)Z(v) =  exp { — A IUi -  1} , for u =  (u,), v =  (vj) G D ,̂

Í— l
is called a d-parameter Ornstein-Uhlenbeck process with coefficient A. For 
each T  > ee, let a,y(T) := 1 / \ /2d \nT  and let

bd(T) :=V2d \ n T +  [{d -  1 /2) ln(2dhiT) -  (1/2) ln(27r)]/v/2c/hiT.
By Corollaries 1, 2 and 3 of Bickel and Rosenblatt [1], we have:
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T h e o r e m  2.1. Let Z be a d-pammeter Omstein-Uhlenbeck process with 
coefficient, A and let B be a bounded. Jordan measurable subset of Rrf with 
vol(B) =  1. Then, for each real number z,

lirri Pr({ sup Z(u) < a,i(T)z +  b,i(T)}) = exp{—Arfe_z}
r-*oo u /reB

and
lim Pi'({ sup |Z(u)| < a,i(T)z +  b,i{T)}) = exp{—2X(le~z ).

T—yoo u/TeB

We apply this result to a certain class of multiparameter Gaussian pro­
cesses to be defined next. Let X(/ := X\  x x X,i, where each X t is a 
right-open or right-closed interval of non-negative real numbers. Let h be 
a non-negative real-valued function on X'1 *, and let kt, i =  1 , . . .  ,d, be real­
valued functions on X, such that

xi
(2.1) fi(xi) := j  kf(t.) dt. < oo for all xt G X

0
Define a mean-zero Gaussian process G =  (G(x): xEX “} by

*1 xd
(2.2) G(x) := h(x) f  . . .  j  M *i) ■ ■ ■ kd(td) cZW(f,, . . . ,  td)

o o
for x =  (x'j) G Xrf, where W is a Brownian sheet (cf. Example 2.3 below for 
definition) and the integral is stochastic. Using the functions in (2.1), define 
the transformation

Lr. Xd ^ B d := ® {In ffix): xGX,}
«=1

by L/(x) := ( ln /j(x ,)) G R^ for each x =  (xz) G X(/. Since each f t possess a 
well-defined inverse function /  ~ , we can define the inverse transformation 
L] '  by

L j H u) := ( f ~ \ e u’)) G X ’1 for u = (m) G D(/.
The next statement relates Gaussian processes G to the Ornstein-Uhlenbeck 
process Z.

LEMMA 2.2. Let G —{G(x): x G X^} be a mean-zero Gaussian process 
given by (2.2). Then the stochastic process Z =  {Z(u): uGD'1} defined by

1
Z(u) := exp { — -  ^ T u jjx

'4=1
(2-3) / r ‘(«*») f j l( f“d)

X j  ••• j  k { ( t ] )  • ■ ■ k(i ( td) d W( t i , . . . ,  td )  

o o
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is a d-parameter Ornstein- Uhlenbeck process with coefficient A = 1/2, and 

G(x) =  y/EG?(x)Z{Lf (j.)), for all xGX'1.

P ro o f . Due to assumption (2.1), the right-hand side of (2.3) is a well 
defined stochastic integral. Therefore Z is a Gaussian process. Now the 
claim follows simply by computing the covariance function of Z. □

Here is a list of a few examples of Gaussian processes which possess 
integral representation (2.2).

E xample 2.3. A Brownian sheet W =  (W(t): t G [0, oo)d} is a centered 
Gaussian process with covariance

(I
EW(s)W(t) =  Si A ti for s = (s;), t =  (t, ) G [0, oc)d.

2 =  1

Taking ki = ■ ■ ■ =  k(i =  1 and h =  1 in (2.2) we conclude the same covariance 
for G and that (2.1) holds with /i (<) = ■■• =  fu{t) =  t for t G [0, oo).

E xample 2.4. A centered Gaussian process H =  {H(x): xG [0, l]f/} with 
covariance

(I
£THI(x)IHI(y) = J J (x , A y, -  nyi)  for x =  [xt), y = (j/i) G [0, l]rf.

i— 1

In representation (2.2) taking

d

(2.4) h(x) = J | ( l  -  Xi) for x =  (xt) G [0, l)d
2=1

and, for each i, — 1 , . . . ,  d,

(2.5) M*) =  1 /(1 -* ) for t e  [0,1),

we obtain the same covariance for G. In this case (2.1) holds for xG [0. l )d 
with f \ (x ) =  ■ • ■ = f,i(x) = x /(1 —x) for x  G (0. 1) and L j - 1 (u) = (eUt/ ( I  +  e " '))
for u =  (Ui) G R(/.

We note that, unless d =  1, the Gaussian process H does not coincide with 
the Brownian bridge process B(x) := W(x) — vol([0, x])W(l) for x G [0,1]^, also 
called a pinned Wiener sheet, which has covariance function

d d

ElB(x)B(y) = xi A y{ -  x ty, for x =  (xy), y = (yi) G [0, l]f/.
2=1 2=1
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E x a m p l e  2.5. A centered Gaussian process

Krf -  {Kd(x, t): (x, t) G [0,1]'/_1 x [0, oo)}

with covariance

d-1

EKd{x, s)Kd{y, t) =  (a A t) (a* A yt -  x iyi)
i= 1

for x = (xi). y = (j/j) G [0, l]d_1 and s, t G [0, oo). In the representation (2.2) 
taking h as in (2.4) with d — 1 factors instead of d, A;,;, i =  1 , . . . ,  d — 1, as in 
(2.5) and kd(t) — 1 for all t G [0, oo), we get the same covariance for G. Here
(2.1) holds with f i(x)  = ■■■ = f d- f i x )  =  x / ( l  -  x) for x  G [0,1) and f d(t) = t 
for t G [0, oo).

Using integral representation (2.2) we apply Theorem 2.1 to Gaussian 
process H of Example 2.4. For a set A C [0, l]rf, let

H(A) := sup e(x)
£A \/E K 2(x)

and |i/|(A ) := sup
|H(x)|

x£A v/EH 2(x)

Let B^(r) := {x G R(/: Ya = i l®f| be a ball with radius r in the Banach 
space Then

vol(Bd(r)) =  r dvo l|x  G R d: \xi\g  l}  =  (2r)d/d\.
i= 1

Put cd := (d!)1//d/2 so that vol(Bd(cd)) =  1 and

(2.6) Q£/(r ) := L 7 1(B ,(r)):= {xG X í/: L/(x) G Bd(r)},

where Lf(x) = ( ln(cci/(l — x,))) G Rf/. The next statement follows from The­
orem 2.1 and Lemma 2.2.

C o r o l l a r y  2.6. Let H be a Gaussian process defined in Example 2.\. 
Then, for all z GR1,

(2.7) lim Pr ({H(Qd(cdT)) < ad(T)z + bd(T)}) =exp{—2-d e-2 }r~* oo

lim Pr ({\H\(Qd(cdT)) < ad(T)z  +  bd(T)}) =exp{—2l-rfe- '}.
7->oo

and

( 2. 8)
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To elucidate the last statement we restate it for d=  1. In this case we 
identify Gaussian process HI with a Brownian bridge process 1. For each 
positive real number r, let

B {r ) := sup -
r%xi\-r V 33(1 x)

COROLLARY 2.7. Let IB be a Brownian bridge process. Then, for all 
z E R 1, any cE R 1 and ß  G (0,1), we have

(2.9) lim Pr (|.B ((hm )c/?i) <a\(\nn)z  4- hi (Inn)}) = exp{-2e~2}71—»00

and

(2.10) lim Pr {{B(n~ß) <ai(\nn)z + bi(\nn)}) =exp{-2ß2e~z}.
71—»OC

Likewise, (2.9) and (2.10) hold with squared limits if B(x) is replaced by 
|B(x)| in the definition of B(-).

PROOF follows from Corollary 2.6 and Khintchine’s convergence theo­
rem. Indeed, since ci =  1 /2, relation x EQ\ ( c]T) means that |ln(rr/(1—x))\ 
4 T / 2. We note that, for any 0 < a ^  1/2. a ^  x  ^ 1 — a if and only if
1 ln(:r/(l — .'/;))| ^ ln((l — a)/a). Let a := an := (lnn )c/n  and let T := Tn :=
2 ln (n /( ln n )<: -  1). Therefore x G Qi(ciTn) if and only if an x  ^  1 -
an. Moreover, as n —> oo, T,t ~21nn, «i(2 Inn) ~  ai(lnn) and [6i(hm) — 
fei(21nn)]/ai(21nn) ~  — 2 In 2. Therefore, by Khintchine’s convergence the­
orem (cf. Theorem 1.2.3 in Leadbetter, Lindgren and Rootzén [22]), (2.9) 
follows from (2.7). Similar calculations show that (2.10) and corresponding 
relations for the absolute value of B follow from (2.7) and (2.8). □

Corollary 2.7 relates to a classical result of Darling and Erdős [16] (cf. 
also Section 1.9 of Csörgő and Révész [12], and Chapter 5 of Csörgő and 
Horváth [9]).

3. Sequential empirical processes

Let {Ui\ i ^  1} be a sequence of independent uniformly distributed over 
[0,1] random variables and let Fn be the empirical distribution function 
based on a sample U\ , . . . ,  Un, i.e.,

for SG [0,1].
1=1
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For each integer 1, define as in (1.12)

r M ( ^ m (*) -  Fn(x))t for 0 g i g  1/2,
Dn(x, t) := \ ([nt] + l)(F[nt]+1(a;) -  Fn{x)), for 1/2 < t <  1, 

l 0. for í =  1.

Then, for each sample U i , . . . ,U n such that 0 < U\:n g ■ ■ ■ g Un:n < 1 we have

l»n(*,í)| _  .....SUp ----------------------  — l, Li 1 v —
(x,i)e[0,l]2 \Jnt(\ — t)x(l — x) l/n£l£l-l/nUn:i%x£Un:n y / n t . { l - t ) x { l -

sup sup

= max nl<fc<n—1 1 - - )
n n

-1/2

l<fc<n-l
A:

=  max \ /n\  — (1 ---- ) sup
0<x<]

E i = i  1io,Tj(f/') -  Ti S i =  I 1[0,x ] ( U l

y / x { \ - x )

; X a= 1 l[0 ,z](^») ~  ~ ^k  Y li= k+  1 l[0 ,:c ](^ )l 
y j x ( l - x )

sup
0 < x < l

1

The right-hand side is a weighted suprema of the difference between the 
empirical processes based on U\ , . . . ,  Uk and Uk+1 ,.. . ,  Un, respectively. 

Recalling notation (2.6) for the case d = 2, i.e.,

Q‘2(t ) — {(^, t) € (0, l ) 2: I 111 - 1 -I-1 111 ---- - | g 7'} for r  ^  0,1 -  x 1 - V

we have:
L e m m a  3.1. For rach z € R 1,

M M )  Ilim Pr (( sup — 71 ■■■ ..... . < 0.2(11177)2+62(1110) T)=exp{ —e '},
n U  (*,0e0a(/.n) ^ n t ( l - t ) x ( l - x )

where =  In (ti/ (hi 7i)5).
PROOF. By (2.8) with d = 2, using Khintchine’s convergence theorem as 

in the proof of Corollary 2.7, we get that

(3.1) l i m P r f i  supn-roo VI .
|H (M )|

n~*°° v 1 (x,t)eQi(»n) \ / t ( l  - t ) x ( l - x )
< a 2 ( h l 7 l ) 2 :  +  6 2 ( l l l  7 l ) | j

= exp{—e_z},

where H is a Gaussian process defined in Example 2.4 with d =  2. Therefore, 
it suffices to construct, a sequence {{/,;: i ^ 1} of independent uniform random 
variables and a sequence {H„: n ^ 1} of mean-zero Gaussian processes, each 
with the covariance function

EEn(x, t)Mn(y, s) = (.7: A y  -  xy)(s A t -  st) for x, y, t, s e  [0,1]
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such that

(3.2) lim \ fh \2 n su -  y/nH»(^,t)l
( x , t ) eQ2 (ßn)  y / n t {  \  -  t . )x(  1 -  x )

■ 0 in probability.

By Theorem 4 of Komlós, Major and Tusnády [21]. there exist a sequence 
{Ui\ <^1} of independent uniform random variables and a sequence {!,;: i^ l}  
of independent Brownian bridge processes such that

(3.3) lim (Inn) 2 max sup \k[Fk(x) — x\ — B,;(:/:)| C almost surely
v. ôo Ogxgl

for some finite constant C. Then, as in Csörgő and Révész ([12], pp. 22, 
58, 59), one can construct on an enlarged probability space, a Kiefer process 
K  =  {K(:c, f): ( x , t )  E [0.1] x [0,oo)} such that K ( x , n )  = Y a = \  ®i(x ) f°r 
x  E [0,1] and n ^ 1. For each integer n ^  1, define a mean-zero Gaussian 
process Hn = {B„ ( x ,  t ): ( x ,  t )  E [0.I]2} by

Hn (.x, t )  :=  n -1/2(K(a:, n t )  — t K ( x ,  n ) ) .

Then, adding and subtracting a Gaussian process that is defined by replacing 
each indicator l[oi7.](t/l) in (3.1) by the Brownian bridge processes !;(:/;), we 
get

sup |B?t(x, t) -  y/nEn{x, t)I ^ max \\k[Fk -  F] -  K(-, &)ll<x>
(x,t)e[o,i]2 i^kin

(3.4) + ||n[Fn - F ] - K ( - ,n ) | |0O

+ sup sup ||K(-, t  +  .s) -  K(-, / ) lloo +  ||K(-,n)lloo/ra=: A n , 
OáignOgsgl

where F { x )  =  x  for all x  E  [0,1]. By Corollary 1.12.4 of Csörgő and Révész 
[12], we have

(3.5) lim (Inn)- i/' 2 sup sup ||K(-, t + s) — K(-, i)||oo = 23/i2
n->oo OgqSiiOgsgl

almost surely. Moreover, for a Kiefer process K, we have (cf. Corollary 1.15.1 
of Csörgő and Révész, [12])

(3.6) lim ’n )llo° =1/^/2  almost surely. 
n-*oo sjn I112 n

Considering the suprema over Qzif  n) separately over each corner of the 
square [0, l]2 it follows that, for each n ^  1,

1 4
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Then applying (3.3), (3.5) and (3.6) to estimate (3.4), we get

lim n/ ] ii-2 n sup n {x,t.) -  s /nE n {x,t.)\ —  (ln2n )1/2 ,
< Inn -■■■-  .■ ■ A, , =0.

(a,t)60a(/i») \ /nt{l  -:/:)

Therefore (3.2) holds and the proof of Lemma 3.1 is complete. 
LEMMA 3.2. 7 /k, > 0  than, for ally, sufficiently dose to 1,

E d  ( i m W - * )

(Inn)5/2 n

□

(3.7) lim Pi­
ci—» oo

({  sup
V L (x,t)eQn

>
ntx

2 '/7 ln7n j^) = 0 ,

where Qn := {(x, t) G [0, l]2: 2 lri2 n ^  nxt  ^  (Inn)K}.

P roof. The proof is obtained by breaking Qn into three subsets and 
estimating the corresponding probabilities separately using exponential in­
equalities for empirical processes.

Define a function tp on (0, oo) by

(3.8) tp(u
U

' ~ h j ln(l + v) dv for u>  0.

Since 2ip(y/2) > 1 then, for any 7 sufficiently close to 1, we have

(3.9) t'(7) :=273V>(\/2) > 1.

Let N > 0 and Ich, 7 G [1/4,1) be such that fi(7) > 1. For each n 3, define 
kn := min{A; G IN: (ln n)K/k  L ■//}, where 7/ := 1 — ^ 7  Si 1/2. Then, denoting 
Yffix) := (l[0,x](i/i) ~ x) /s /x  for x  G (0,1), we have

Pr ({  sup
V L (x,t)6 Qn

E fc 1 ( i |o ,.] (C i)-z )
> 2 \ / y  I112 n |  j

i p' ({
k

sup |y^Ft(.7,) / Vk, > 2 ^/y  ln2 itmax
x6[2I112 n/k,(\nn)K/k] 1

(3.10)
k

+ P r ({  max sup |y^Y )(:r) / ' / k > 2 \ / y  ln2 n j )' f láfcgfcn x£[2 lna n/k,T)\ ' ^
k

+ P r ( (  max sup |5^Y)(:c) / \ f k  > 2\Jy\wi n } )
V 1 lgfcgfc,. xe[Til(,„„)«/*] I "  >>
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—: Pn, 1 + P„,2 +  ^n,3)

where a suprema over an empty set is defined to be zero.
To estimate Pn,i, for each n ^  3 and / ^ 1, let

Q(l) := Qn(l) ■= {x € [0,1]: 27' ln2 n g x g Valiin)*}
and let m n and Mn denote respectively the smallest, and the largest among 
all integers l such that

(3.11) A(n, /) := {k 6 IN: kn ^ k ^  n} D [7 _z+1,7 _i] ^  0.

Then we have

(3.12) Pn i < Pr f (  max
’ -  ^  V 1 keA(n, l )  IIl=m n

Using exponential inequality (3) on p. 
get, for each k 6 A(n, l),

> 27 \ / 7 ' 1112'//.)).
<2(0 J '

446 of Shorack and Wellner [27] we

Pr ({!
An[7"/

£
i=A:+l

V)
<2(0

> 27 (1 -  7) y/([7 -']A-n)hi2 n } )

(3.13) <2 max P r f { | |y ^ y ] |  > 7 (1 — 7 ) \fkhv>/n,})
~  k£A(n,l) U l l ^ - '  I <3(0

^  — hi ^(lnn)K/ 7  ̂(Inn) c,

where c := 73(1 - 7 )2,0( \/7 ( l —y)/2\/2)/2 > 0. There exists an integer iV such 
that the right-hand side of (3.13) is ^ 1/2. Then using Octaviani inequality 
and exponential inequality (3) on p. 446 of Shorack and Wellner [27], again, 
we get, for each nTl N  and all m n % l 5= Mn,

k
max > Yj 

keA(n,l.) 11

<

M l

p > '( { | |E ‘r , ' |Anv

i=  1 <2(0
> 27 n/ 7 ( ln2 n j j

> 27 V ( [ 7 _,]A n) hi2n ) )
<2(0 J /

1 — max Pr ( <
fceA(n,/) V l Ẑ i=fc+1 Ji

<2(0
> 2 7 ( l - 7 )N/([7 'jA n )!!^ « } )



STANDARDIZED SEQUENTIAL EMPIRICAL PROCESSES 67

= 2Pl'({|| Í  Yl Q(/) > 272 V / An) 1°2 n})

-  17 ln (( ln n )/t/T') exp {  - / ' ( t ) ln2 n},

where 7/(7) > 1 is defined by (3.9). Since Mn ^  1 — Inn / In7, inserting the 
last estimate into (3.12) and summing over I. we get

(3.14) lim P„ i ^  — lim
n-roo ’ 77 n—>00

^1 — In it/ In In ^(lnn)K/ j )  (Inn) ^ 7^=0.

To show (3.14) we were anxious to get the estimate of order (lnn )_1_f 
for some e > 0 of each probability in (3.12) because the number of such 
probabilities is ^  const x Inn. To estimate Pn 2 and Pn$ our task is easi­
er because the inside maximum is taken over { l,.. . ,/c n} rather than over 
{kn, . . . ,  n} and kn < (Inn)K/rj. So, after division of the set { 1 , . . . ,  k n} in­
to blocks {2i_1, . . . ,  2*}, we are facing a sum whose cardinality ^  Inkn/  In2 
^  const x ln2 n. Therefore, it suffices to get an estimate of order (lnra)~r for 
some c > 0 of the corresponding probabilities. To this aim, as above, using 
Octaviani inequality in conjunction with exponential inequality (3) on p. 446 
of Shorack and Wellner [27], we get

(3.15)
12k

lim Pn 2 ^-----  lim (I112 n r(h m ) '= (),
n—>00 ’ 77 n—yoo

where c =  72?/>(v/7 /2 )/4  > 0. Moreover, using again Octaviani inequality 
in conjunction with Dvoretzky Kiefer Wolfowitz exponential inequality (cf. 
p. 354 in Shorack and Wellner, [27]) it follows that

(3.16) lim Pn .\ g
71—> 0 0

116k 
In 2 lim (ln2 n — In 77) (In n) ,n =  0.

7 l - >  OO

Now going back to (3.10), we use (3.14), (3.15) and (3.16) to conclude that
(3.7) holds. □
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RÉNYI CONFIDENCE BANDS * 1

S. CSÖRGŐ

Dedicated to the memory of Alfréd Rényi

A b s t r a c t

Rényi’s asymptotic confidence bands for distribution or survival functions, the width 
of which at each point is proportional to the natural estimator of the function to be 
estimated, are shown to extend far out to small and large order statistics, respectively. 
Certain combinations of these bauds are also proposed.

1. The bands

Let, X \ ) . . . ,  X n be a sample of size n  G N := {1 ,2 ,... }, independent ran­
dom variables with the common distribution function F(x)  := P { X  £ x }, 
x 6 R, where F(-) is assumed to be a continuous function on the whole real 
line R throughout this paper. Denoting by Fn(x) := #{1 ^  j  ^  « : Xj x } /n , 
x  € R, the sample distribution function, Kolmogorov’s well-known result 
from 1933 is that

p {  yfr  sup IFn{x) -  F(x ) \S í/)  —> K(y)  := 1 + 2
l X6R J fc=l

for every y > 0. where an unspecified convergence or asymptotic order rela­
tion is meant to hold as n —> oc everywhere in the paper. In 1949, Doob iden­
tified K(-) as the distribution function of the random variable s u p ^ ^ j  |i?(s)|, 
where {B(s) : 0 ^  s ^  1} is a Brownian bridge, a sample-continuous Gaus­
sian process with zero mean and covariance E(B(s)B(t))  =  min(s,t.) — st,
0 Z a , t Z l .  Thus, letting —A denote convergence in distribution, Kol­
mogorov’s theorem may be written as

x/n sup IFn(x) -  F(x)\ - A  sup \B(s)\ .
i£R OSsgl
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Let i/a > 0 be the unique number for which K(ya) =  1 — a, where a  G (0,1) is 
a fixed number throughout. For testing simple goodness of fit or for estimat­
ing the unknown F, the resulting statement for the Kolmogorov confidence 
band is tha t P{F(x)  G [Fn(x) — ynn ~*/2, Fn(x) + yan ~ 1/ 2], x  G R } —> 1 — a. 
The corresponding half-sided asymptotic confidence lines were derived by 
Smirnov in 1939.

Twenty years after the publication of Kolmogorov’s theorem, dedicating 
his paper to Kolmogorov’s fiftieth birthday, Rényi [12] proved that for each 
fixed p  G (0,1) and all y > 0,

(1)
Fn{ x ) -F {x )sup — ---— ——

F(x)-g\-p l  — F(x)
2<I)(y) — 1,

where <!>(•) stands for the standard normal distribution function, and

( 2 ) sup
\Fn{x) -F (x ) \  

1 — F(x)
L(y) ,

where

L(y) ■■=
4 ^  (_!)*
7r 2k + 1k=o

(2k+\)2-K2

These are in fact the right-tail versions of Rényi’s Theorems 5 and 6, motivat­
ed by the problem of estimation of the survival function 1 — F(x) =  P { X  > x}, 
i g R ,  The (extended forms of the) corresponding, mathematically equiva­
lent left-tail versions are in (5) and (6) below. Rényi’s paper [12] has been 
eminently influential in the directions that the development, of the Hungarian 
school of probability and mathematical statistics has taken.

Exposing the statistical idea behind (the left-tail versions), Rényi [12] 
writes:

Kolmogorov’s theorem considers the difference \Fn(x) — jF'(.c)| with the same 
weight, regardless to the value of F(x)\ so e.g. the difference | Fn(x.) — F(x)\ — 0.01 
has the same weight in a point x with F(x) =  0.5 (where this difference is 2% of 
the value of F(x)) as in a point x with F(x) =  0.01 (where this difference is 
100% of the value of F(x)\). We can avoid this by considering the quotient 
|Fn (a:) — F(x)\/F(x) instead of \Fn(x) — F(.x)|, that is to say, bv considering the 
relative error of Fn(x).

The resulting left-tail theorems then yield simple goodness-of-fit tests for the
hypothesis that the underlying distribution function is indeed F(-):

The character of these tests consists in that they give a baud around F{x) in 
which, if the hypothesis is true, the sample distribution function Fn(x) has to lie 
with a certain probability and the width of this band in all points x is proportional 
to F{x).
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The results are also stated and discussed in Rényi’s textbooks, see for exam­
ple Chapter VIII, §10 in [14], his last book.

Alternative, asymptotically equivalent tests result from replacing the 
weight functions F(-) and 1 -  F(-) by F„(-) and 1 - F (l(-) in the denomi­
nators of the test statistics for the left-tail and right-tail tests, respectively. 
That these replacements can in fact be doin' was pointed out by M. Csörgő
[2] along with several other variants. In his rejoinder to the developments 
inspired by his 1953 paper in the ensuing fifteen years. Rényi [13] himself 
has indicated an easier way to do this. Also, reducing Rényi’s results to ap­
plications of Donsker’s weak convergence theorem for the empirical process, 
M. Csörgő [3] obtained the two limiting distribution functions in (1) and (2) 
above as the distribution functions of the random variables sup0<t<j W(t) 
and sup0<t<j |W(f)|, respectively, where {W(t,):t. ^0} is a standard Wiener 
process, a sample-continuous Gaussian process with zero mean and covari­
ance E(W (.'i)W(t)) =  min(.s, f), s , t ^  0. (See also p. 165 in [6].) In what 
follows {IV*(f) : t. ^  0} will denote another standard Wiener process, inde­
pendent, of {W(t) : t ^  ()}. A great amount of sophisticated work went into 
the determination of the exact distributions of Kolmogorov, Smirnov and 
Rényi-type statistics. A unified theory of this held has been given by Csáki
[1], where the relevant references may also be found; references mentioned 
but not specifically given in the present paper are all included in Csáki’s list 
of 109 items, or in [6].

The price Rényi’s theorems pay for the consideration of relative errors 
is that they exclude a whole fixed proportion p of the sample from analysis 
even asymptotically, or 100/;%, either the smallest or the largest observa­
tions. It is not. possible to extend the supremum to the whole support of 
the distribution since by a classical theorem of Henry Daniels from 1945, for 
every sample size n G N,

(Note that Rényi [13] gives a half-page proof of this, based on his represen­
tation of order statistics, which representation is at the heart of his method 
in [12].) However, taking the limit in the corresponding exact formulae of 
his, Csáki [1] was able to show in his Theorems 2.8 and 2.9 that (1) and 
its left-tail version still remain true if p is changed to pn G (0,1) such that 
pn —> 0, provided npu —> oc.

As one of the easiest applications of the weighted approximations de­
scribed in the next section, it was proved in [4] that if }JJLj is a sequence 
such that 0 < £ p  for some p G (0,1), for all n G N. and npv —> oo, then

P
V
1

for all y ^  1.

i/(3)
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(4) /
npn

1 - P n
sup

F(.x)gl—p„ l - F ( x ) sup |w (t) |,  
0<Í<1

(5)
npn Fn(x) — F(x) V-------  s u p ---------------------

[ - ' P n  Pll£ F ( x )  F ( X )
sup Wt (t.) , 

ogtgi

( 6)
npn \Fn(x) -  F(x)\ D-------  sup ------ --------- ------

1 -  Pn  pnÍF(x) F(x)
sup |VF*(í)|. 

ogígi

If pn = p. these give Rényi’s theorems, the case pn -4 0 in (3) and (5) are 
Csáki’s results. To make the present paper self-contained, the proofs of (3) 
and (4) are given in the next section; the inclusion of these makes it easier 
to present the proofs of the main results. In addition to the individual 
four convergence statements in (3)--(6), Mason [11] has shown that these 
statem ents hold in fact jointly if p„ -4 0. The reason for the asymptotic 
independence of the left-tail and the right-tail statistics is the fact, as his 
proof reveals in an exact fashion, that the maximal deviations in (3) and (4) 
occur for F(x) near 1 —pn, while in (5) and (6) for F(x)  near pn, and if pn —> 0 
the extreme order statistics determining these suprema, taken close to pn and 
to 1 — pn, become sufficiently remote to yield asymptotic independence. A 
version of the argument is in the proof of Theorem 1 below.

The “continuity” in the results in (3)-(6) is remarkable: the smaller pn 
is, the larger is the stochastic order of the largest one-sided and two-sided 
deviations, but the distributional limits remain the same as long as npn -x oo. 
The condition that npn —» oo is necessary for the latter: the second parts of 
Csáki’s [1] Theorems 2.8 and 2.9 show for the cases (3) and (5) that while 
the “continuity” concerning stochastic order still holds even when pn = v /n  
for any fixed v > 0, as expected in view of Daniels’ result above, the limiting 
distributions change drastically.

Simple goodness-of-fit tests may be built on the test statistics in (3)
(6) as before; in fact they all become consistent when pn —> 0. However, if 
a null hypothesis does not specify F  (and, for various well-argued reasons, 
simple goodness-of-fit tests do appear to have been abandoned in statistical 
practice in the last two decades or so), then the statistics in (3)--(6) are not 
determined. In particular, confidence bands for 1 — F  or F can be constructed 
only on intervals determined by the observations and not the unknown F. 
The question is whether the same results can be retained when the one­
sided and two-sided maximal relative error of Fn is taken over the set { x : 
pn 5 Fn(x)} rather than {x :pn ^  F(x)} in (5) and (6), and when the maximal 
relative errors of 1 — Fn are taken over the set {x  : Fn (.'/;) ú 1 —pn } rather than 
{x  : F(x)  ^ 1 -p„}  in (3) and (4). When pn =p,  this is easy to do; in fact the 
very first step of Rényi’s [12] original proof is to show that the two kinds of 
results are equivalent. However, it is far from obvious whether this is true for
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all sequences {p„} such that pn —»0 and npn —» oo. The aim of this paper is 
to pay tribute to Rényi's memory by showing that the answer is affirmative, 
and hence the construction of extended asymptotic Rényi confidence bands 
is in fact possible.

It is more suggestive from the statistical point of view when confidence 
bands are drawn on intervals determined directly by the order statistics 
X i fn ^  ^ X Ui,j of the sample X \ , . . . ,  X n . This is why we state the main
results in the form given below. Also, some recent results for confidence 
bands with censored data are formulated in a similar fashion in [7], so that 
comparisons will be the easiest this way. The theorem determines how far 
out Rényi confidence bands hold.

THEOREM 1. Let, {kn}ff=l be a sequence of integers such that \1fkr,<np, 
n l/p, for some p € (0,1) and kn —> oo. Then the six convergence state­
ments

(7)

( 8) 

(9)

( 10)

( 11)

( 12)

sup
r^Xn_k.

k'n inf
*gA'n_ fc1 _  £ű.n

kn sup
x-iXn_k\ _ !Sjln

kj i inf[ _ !±1Ln

kn
— .. II a

sup
-=̂ -n — kn,

kn

Fn( x ) - F ( x )  y  
1 -  F(x)n v 7

Fn( x ) - F ( x )  y  
» 1 -  F(x)

Fn(x) -  F(x) V 
,, 1 -F„Xx)

Fn(x) -  F(x)  p 
„ 1 — Fn(x)

\Fn( x ) - F ( x ) \  p 
1 ~ F(x)

\Fn( x ) - F ( x ) \  p,
1 - ^ Í A - . : , . , ,  1 -F n (x )

sup W (t ) ,
OStgl

inf W i t ) , 
OgtSl

sup W (t ) ,
Ogigl

inf W(t) ,  
0^ 141

sup \W(t)\,
Og/gl

sup |lT(t)|
Ogtgl

take place jointly. Also, the six convergence statements

Fn{x) -  F(x) V(13)
kri

l -^ o -  J ? k F(x)
sup W,(t),

0<l.<\
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(14)

(15)

(16)

fen iiif Fn(x ) - F ( x )  x>
1 -  ^  x=^kn.n F(x)

i -  ¥  x>a-;
S U J )

Fn( x ) - F ( x )  v  
F„(x)

en iiif Fn( x ) - F ( x )  p
1 -  xgA',„.n F„(®

inf W^í*),Ogtgl

sup VF,(<),
ogtgi

inf W.(t),0<Í.<1

(17) / 1 - fen.n
sup F„(3: ) - F ( x)1

F{x) sup |W,(t)| , 
Ogfígl

(18) sup
X = ̂  * n .»

1̂ ( . t) - F (,;)1
F„(x)

73 sup |W.(Í)| 
Oáí^l

take place jointly. Furthermore, if ku/n  —> 0, then all twelve statements hold 
jointly.

Let > 0 be the unique value for which L(za ) =  1 — a. Linearly in­
terpolating between neighbouring values of the table in [8] and rounding 
off to three decimals, we have zo.oi = 2.806, 20.03 =  2.433, zo.05 — 2.241, 
20 .07  =  2.108, zq,\ = 1.960, 20.15 =  1.780 and z0.2 =  1.599, for example. Let

Cn,fe„(«):= 1 - Z« and < f e , > ) :=1 + 2'

Then, for survival functions, (11) implies that

P
1 Fn(x) 1 Fn(x)
—;——  ^ 1 -  F{x)  g — —777- , x S X n- kn,u } -> 1 -  a

L'n,fe„ («) bi,fe„(«)

and (12) implies that

F { c~kn (a)[l -  Fn(x)]g 1 -  F(x)  g c+kn(a)[l -  F„(.r)], * g }-> l -  a.

Notice that the lower boundary of the first band lies everywhere above the 
lower boundary of the second band, while the upper boundary of the sec­
ond band lies everywhere beneath the upper boundary of the first. This 
fact suggests to consider the inner envelope band l\l ' '(•) :=[{! — F,,(•)}/
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cn,kn(a ) 'cn,k„ (“ ){! ~ ^ h(')}] for the survival function 1 -  F(-). (Ideas of this 
sort appeared first in [9] for estimation under censorship.) The same phe­
nomenon occurs for the corresponding bands [Fn(-)/c^k t(a),Fn(-)/c k (a)]
and lcn,kn(a )Fn{-),cJ kn(a)Fn{-)} for F(-), resulting from (17) and (18) and 
both having asymptotic coverage probability 1 —a  on the half-line [X*w l , oo). 
The suggested uniformly narrower inner envelope band for the distribution 
function F(-) is then

Fn(-)
MFnO)

That the idea works is the first statement of Theorem 2, in (19) and (20) 
below.

For each x  ^  X n-kn,m the width of the band In ~ l \ x )  is {1 — Fn(x)} 
and, for each x Xkn<n, the width of the band j j /d (x) is d ^ kn Fn(x), propor­
tional to 1—Fn(x) and Fn(x), respectively, where d ^ l  :={(c+ k, (a ) ) 2 — 1}/

cnkn (o')- Of course, l\l 1 (̂-) can also written as a band for F(-) rather than 
for 1 — F(-), namely as

1 -  Cn,k, ( a ){ l -F „ ( .) } , l - l - ^ ( - )

Then In (̂3:) is expected to be good for large 3:’s near X n-kn,n while Jn \ x )  
for small x's near XknJi- Indeed, for any cn > 1, simple algebra shows that 
1 - c n{ l - F n(x)} < Fn(x)/cn if and only if Fn(x) < cn/ ( l  +  cn), and 1 - { 1 -  
Fn(x)}/cn ^ cnFn(x) if and only if Fn(x) ^  1/(1 + cn). These facts explain 
the choice below of the lower and upper boundary curves of an all-purpose 
two-sided inner envelope band combined from the previous two combined 
bands.

To introduce these curves, using again the function L(-) in (2), let z* > 0 
be the unique value for which L(z*) = \ / l  — a. In comparison with the values 
of za above, note that Zq 0, = 3.025, Zq 03 =  2.671, Zq 05 — 2.495, Zg 07 =  2.369, 
z h  = 2.231, Zq 15 =  2.064' and z*Q 2 = 1.937. Then set '

'n, kn(a) := 1 + z*

and let Fn 1 (s ) inf{.3; € R : Fn(x) ^ s}, 0 < ,s ^ 1, be the sample quantile
function, so that F ~ 1(s) = X j<n if ^  < s g  £, j  =  1 , . . . ,  n, i r“1(0) := X hn.
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Then the lower and upper boundaries will be

Fn(x)

4 * » = =

- i f  c».kJa) \
1 W c ’n. l j«)) '

( cn,k„ hd < < V
V 1+c* k (a)) = ■L = ■An-*n,n >

, X k,iMi x < F ,  

F - l f  Cn.kJa)

and

Cn,kn  (■T) ) ,n = x  <  - n̂ * (  i+r* ' (a) )  >\ n,hn v ' /

1 _  1 —f|, (j.-) p —l / ___ 1___ V
c* in(a) ’ r n V 1+cn,A„ (a) ) = X = >

noting also that both c* fcn(a ) /[ l  +  c*ifcn(o;)] —>1/2 and 1/[1 + c*l kn (a)] —> 1/2 
under the condition of Theorem 1 on {kn}, for every choice of a  G (0,1).

THEOREM 2. Let {kn}ff=l be a sequence of integers such that 1 ^ kn ^  np, 
n ii 1 /]), for some p G (0.1) and kn —> oo. Then

(19) P

and

(20) P

1 1 3  ^ i _  F(x)^c+kn (o)[l -  Fn(x)], x g
f Cn.,k..\a ) J

—>1 — a

X k„ ,n ^  x  > -> 1 — a  .

Furthermore, i f k n/ n —¥ 0, then

(21) p { 4 t  (*) S r w  S t f i ,  (*). -it,.,» SIS  X„_fc,,„} ->1 -  a .

Of course, the factor (n — kn)/n  can be replaced by 1 everywhere when 
kn/ n  —> 0. However, we prefer to keep it because its presence unifies the 
results, narrows the bands somewhat and, as the proofs show, makes the 
asymptotic approximations more natural. In some statistical situations it 
may not be natural to discard the same number of lower and upper ex­
tremes. If 1 ^  mn < n — k„ <  n  for integers m n —> oo and kn -» oo such that 
both m n/ r t —>0 and kn/ n  —> 0. then the twelve joint convergence relations 
in (7)- (18) remain valid if everywhere in (13)- (18) we replace kn by m n. 
Consequently, a suitably modified form of (21) for the combined band also 
remains true on the interval [Xmn<n, X n-kn,n]i in which the “change points” 
of the two boundaries depend on both c*n rrin{a) and c* (a).

Mason’s [11] asymptotic independence result mentioned above appears 
in fact in a more general context. He extended (3)-(6) by allowing weight
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functions more general than 1 — F(-) and F(-). For example, when pn -» 0 
and npn —¥ oo he shows that

(  np„ F„(.,:) -  F(:r) „ W(t)
\l-fn) (l-fW Si  >° '

np,i 
1 -  Pn

npn
1 -  Pn

1 \Fn( x ) - F ( x ) \  p  \W(t)\
F{* J - Pn [1 - F { x ) ] ‘ o S  t0

ö -i Fn( x ) - F ( x )  V W.(t)
F W  oSsi

np„ y - i  \Fn(x) -  F(x)\ v \W.(t)\
1 - p j  rSw  in*)]*  0™S1 <"

hold jointly, for any constant. 0 6(1/2.1]. (Subsequent results and refer­
ences in this direction are in Sections 5.1 and 5.5 of [5].) Mason [11] also 
proves that if we assume only that 0 <pn ^  p, n 6 N, for some p 6 (0,1) and 
npn - » oo, then the first two joint, statements here remain true provided the 
extra factor [F(:c)]1_fl is included in the denominators and the last two joint 
statements remain true provided the extra factor [1 — F(.t)]1_ö is included 
in the denominators. Starting out from these generalizations instead of (3)
(6), every statement in Theorems 1 and 2 has a natural generalization which 
reduces to the present one when 0 =  1.

Typically, the bands in (19) and (20) will be uselessly wide on the left tail 
and on the right tail, respectively, for the usual nominal coverage probabili­
ties such as 1 — a  =  0.9 . This will happen even for .x’s for which Fn(x) « 1 /2  
if we want to go far out on the tail of interest, that is, if kn is chosen small. 
Of course, this will be even more so for the middle portion of the bands in 
(21). Rényi bands are for tail estimation. For that purpose, the flexibility 
in the choice of kn is a real advantage. It will be of interest to determine 
by an extensive simulation study what combinations of the sample size n 
and the choice of kn make the actual and nominal coverage probabilities 
acceptably close, what is the direction of their deviations, and whether the 
weight functions [1 — F(-)}° and [F(-)]0 for 0 6 (1/2.1) are statistically useful 
in these questions. Since all the bands are distribution-free for any finite 
sample size n, as will be made clear in the next section, only one such study 
is needed. A student of mine will look into these problems*.

2. Proofs

For a sequence {£n}5ÍLi of random variables and a sequence {unl^Li 
of positive constants we write =  Op(an) if lim ^oo l im s u p ^ ^  P{|^„| >

Z. Megyesi, Coverage probabilities of Rényi confidence bands, this volume, 317 332.
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yan} = 0, and write (n — op(an) if lim„_>00 P {|£n | >ya.n} = 0 for every y > 0,
that is, if Cn/an — > 0. The proofs will use a specially constructed probabili­
ty space (fi, A, P) that carries a sequence U\,U-2 , . . .  of independent random 
variables uniformly distributed on (0,1), with order statistics U\tU ^  ••• SÍ 
Un,n pertaining to U\. . . . ,  Un for each n 6 N, and a sequence 2?i(•), B -2 (•),... 
of Brownian bridges such that if Gn(s) := #{1 fs j  n: 
Uj  = s }l'n and U n (s)  := inf{í G [0,1] : Gn(t) ^  .s}, 0 ^ ,s 1, denote the corre­
sponding uniform sample distribution and quantile functions, so that Un(s) = 
Uk,n for < s ^ k =  l , . . . , n ,  and Un{0) =  C/qn, then for the cor­
responding empirical and quantile processes a n(s) := y/n [G„(.s) — .s] and 
ßn(s) :=  \ /n  [.s — Un(s)}, 0 ^  s ^  1, we have

| a „ ( a ) - £ n(*)| ^  f 1 \  j |Ai(»)“ -Bn(a)| ^  /  1 Asup --------------j----- =  Op[ —  and sup --------------- —— = Op[ —t
0<s<1 [« ( l-a ) !* “7 A<a.<j_ A f«(l — »)lä-Ä Kn‘ J

for all fixed 7 G (0,1/4), ó G (0,1/2) and A > 0. This construction was ac­
complished in [4]. (That the first supremum can be extended to the whole 
(0,1) was pointed out in [10].) Note right away that under the conditions of 
Theorem 1, from the second relation.

(22) and

where Op(l /k f t) = op(l) as kn —> 00,

g 1 -  $(:c) = #(-.7:)

for every n  G N and 7; > 0.
Since {Fn(x) : x g R} =  {Gn(F(x)) : x G R}, the distributional equality 

meaning the equality of all finite-dimensional distributions of the two pro­
cesses, the continuity of F(-) implies that all the statistics in (3) (6) are
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distribution free. Furthermore, introducing the quantile function F  1 (s) := 
inf{:r £ R : F(x) Si.s}, 0 < .s ^  1, F -1 (0) := lim.sqo F ~ l(s), we also see. for the 
left-hand side of (7), that

sup Fn( x ) - F ( x )  v  
1 -  F(x) sup G „ (F (x ) ) -F (x )  

1 -  F(x)

sup
0 g a g i / „ _ fcn,B

G,,(.S)-.S 
1 - a

for each meaningful rt; in fact the equality in distribution holds jointly in n, 
but we do not need this in the paper. It is clear then, in exactly the same 
way, that all the statistics in (7) (18) are distribution free. Thus we may and 
do assume in the proofs below that the underlying distribution is uniform on 
the interval (0,1). It is no loss of generality, either, to assume without further 
notice that we are on the special probability space described above and. in 
particular, our statistics arc based on the Uniform(0,1) order statistics for 
which the approximations above hold.

PROOF OF (3) ((i). As was stated already, this proof is from [4], where 
the left-tail versions are detailed. Choose any 7 6  (0,1/4). Then we have

sup
p,,

(23) <

np„ Gn( s ) - s
1 -  Pn  1 -  s

Pn  B n {s )

Pn sup
Pn Ogsgl-pn

1 -  pn 1 -  .S

«„(*') B n{;S')

Pn sup

1 - a  
1

1 -  .s

sup |o,i(s) — B„(s)
1 ~ P n  png l- .^ l (1 - s ) i +1 Og.sgl ( 1 - S)2

v/1 - V 5+7 V n~i J
Pn

= 0 ,' ( ( ^ y ) =0',(1)'
But since

for each n G N, we also have

sup Pn Bn(s) V
1 -  pn 1 -  a

su]) W
0g.sg1-p„

P n
1 -  pn 1 -  .S

= sup W(t)
0<<< I
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and

sup
O^igl—pn

Pn |fl,i(s)| 
1 -  Pn 1 -  S

V= sup
O^sfzl—pn

= sup \W(t)\.
O^ts 1

These imply (3) and (4). The proofs of (5) and (6) are completely analogous 
and are formally given in Section 4.5 of [4]. □

The proof of (9), (12), (15) and (18) in Theorem 1 requires the following
Lem m a . If the sequence {kn}cfiL:l satisfies the conditions of Theorem 1, 

then

sup
o gsgl/,

1 - s
1 — Gn{s)

■ 0 and sup
Í4n.n^á 1 Gn(s)

[13],
P r o o f . Let eG (0,1] be fixed. Then by the simple idea in §3 of Rényi

P { sllP
l  0 g s g t / „ _ fcn,n

1 — s
1 -  Gn (s)

-  1 >£

=  1 -P <  - £ <
1  —  S

1 — Gn(s) - 1 %£, 0

=  1 - P < - ^ — < 1 . G''t('S) -  1 g YZTJ’ 0 ^  S =
1  +  £  1  —  S

< 1 -  P{ -  I  g l- vGJ ~  -  1 ^  o Z s ± u n- kn,n

= P

<P

sup
®=s=Un - i , n ,n

1 — Gn(s)

sup
0^sgl-r/ kn

1 - s
l - G n(s)

l - s

>

- 1 > -  + P  > l - q - 5  ,
71

and similarly,

sup
Vkn.n%s% 1 G„(s)

-  1 >£ }^P<f sup G„(«) -1 > p + p -

for every q G (0,1). It can be seen in several different ways that the second 
terms in the upper bounds go to zero (in fact, for each q G (0,1), they are 
not greater than e~Cqk'1, for some constant C(, > such that lim^o C(j = oo: 
cf. (4.2) and its proof in [7]). The equivalent statements that the first terms 
in the bound go to zero for all q G (0,1) are well known. This was first
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shown by Chang Li-Chien in 1955; perhaps the easiest direct proof is in [16], 
Theorem 0. □

P roof of T heorem 1. Put, p„ := kn/ n , n ]> \/p. Tlien pn <̂ p for the 
p G (0,1) in the condition and npu -> oo, while s/k^Jn =  \ /pu/n  —> 0. What 
we have to show to prove (7), (8) and (11) is

[«»(•■0J/ z>(24) Pn sup
1 ~ P n  0 g Sál/„_*..... 1 ~ a

sup [W(t)]t , l =  1 ,2 ,3 .
0</<l

where flzji := z, [z]-) := —2 and [zja := \z\ for z G R. 
Exactly as in (23), for any fixed 7 G (0,1/4),

Pn-----  sup
1 -P n  0is$Un- kn,n

« n (« )  B n{s)
1 -  S 1 -6 '

< Pn

Since for independent random variables . . . ,  each having the exponen­
tial distribution with mean 1, we have 1/[1 — t/n-fcn,n] = [Y\ + • • • + Yn+1]/
[yn_fcn+1 + ---- hf„] for each n, we see that p£/[l-t/n-fc„,n]*+7 =  O P(rP/ k^),
and so the whole upper bound is Op{\/kn)  = o p (l) . Hence, to prove (24), it 
suffices to show that

(25) Pn sup [fl»(s)1/ T», su p [W (i)],, f =  1 ,2 ,3 ,
1 - P n  0gsgUn-.kn,n I “ « Oátál

for the special construction.
For every y ^ 0 and x  > 0, and for any of I. = 1,2,3, we have

P< Pn iBn(s)},

 ̂ P '1 Oásiíl-p,,—  ̂ A
sup kn VknÚ y ) - P  \ U n- k, - * n

<P< Pn

<P<

sup

Pn sup
1 Pn 0 gsgt/,

[ßn(«)l,

[£«(*)!/
1 - S iiV

kn
1 - s áV>+B< Un. kniU> l - — +xn n

for all n  large enough that make x  ^  yjn/pu and x \Jn /pn 5! 1 — pn. Since

Pn sup [ B n ( s ) l  V sup
 ̂ Q’i s ’iX-p n± X^ /  p n /  n   ̂ S Ogsgl-p,, ± X  y jp n /n   ̂ l>n ^

w Pn 8

1±
= su p U W (i)lt : 0 ^  —

_ X _  /  V n
\ / n  Y  1 Pn

n ;___
' v/"P»

—> sup{|W(t)]];: 0 ^ í ^ 1} ,
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where the last convergence is almost sure by the sample continuity of W(-), 
and since the distribution function of supo<t<j \ W (i)]/ is continuous for every 
l — 1,2, 3, the right-tail part of (22) implies that

P sup [W(t) \£y
Ogigl

idim inf P
n—>oo

Pn sup 
Pn Ogsgf

[g»(s)L
1 — s

^limsup P
n—>oo

I Pn [# «  (*')],. / ------- sup -------- —
V 1  Pn <£sát/„_kn,n 1 ~ 6'

< p sup [W { t ) ] ,£ y \  +  $ ( - z )

for every y ^ 0 and x  > 0, / =  1,2,3. Now (25) follows upon letting x  —> oo.
Thus (7), (8) and (11) are now proved. The Uniform(0,1) versions of (9),

(10) and (12), respectively equivalent to (9), (10) and (12) themselves, follow 
from (7). (8) and (11) combined with the first statement of the Lemma. That 
the six statements hold jointly is clear from the structure of the proof.

The proof of the left-tail versions (13), (14) and (17) is completely anal­
ogous, or mathematically equivalent, to that of (7), (8) and (11), while (15), 
(16) and (18) follow again from (13), (14) and (17) and the second statement 
of the Lemma. It is again obvious, then, that (13)-(18) hold jointly.

To prove the last statem ent concerning asymptotic independence in the 
case when kn/n  —> 0, for j  =  0 and j  = 1, set

Gn( s ) - tJ! (s ) := , / ----”7-----------------  and (s ) := . / -----------— - ,
V  1 -G # )( s )  ’ "  V  1 _  T f- G ^ \s )

where GÍ^(s) =  .s, 0 G ,s G 1, and G n \s )  =  Gn(s), 0 fi .s ^  1, for all n ^  1/p. 
The six convergence relations

kn Gn(s) s

V,!34+'>:= sup sup [W '(t)l,:= U , 3= 0 ,1 ; ( =  1,2,3,
o %^U„ - k „ . n  Ogt l̂

: U ) V

holding jointly, and the six convergence relations

sup [> 0 „ W ],
V «up iw ,( i) ] i := v r .7=0,1; / =  1,2, 3,

also holding jointly, represent (the Uniform(0,1) versions of) the six state­
ments in (7)-(12) and the six statements in (13)-(18), respectively.

Now let {mn}£Lj be a  sequence of integers such that 1 % kn < m.n < n for 
each n ^ 3 and m n/ n  —» 0, but m n/kn —» oo. Introduce

y(3j+0
v n,kn,mn sup

^ —  in a , n  =  * =  n —  kn ,

j  = 0,1; / =  1,2,3,
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and
w n £ X  :=  sup fo»L (*)!/ , j =o, i; / = i, 2,3.

Then, for all the six cases from j  = 0,1 and Z =  1, 2,3,

r(3j+<)(26) l A +° - V \n,kn,nin Tiykn <
J _ fin.

V ^ = o ( l ) O p ( l )  = oP(l)

by (11) and (12), or, what is the same, by the cases j  = 0 and j  = 1 coupled 
with l =  3 in the first, group of convergence relations above, applied with 
{m n } replacing { kn}. Similarly,

t ó t ó  -  W {T ' ] - A  0 , j  =  0 , 1 ; l =  1 , 2 ,3 .n,kn ,mn

Therefore, since
u,kn

v„.t, := « y . ....... V Í5 .) A (V ,.V 4.K »,V ,.V „K ,). = :V in R(6

and

W„,fe„ := « 1 ,  • • •, t ó i , . )  M*. *2*> Ví, V,*, T ;, V*) =: V* in R6, 

and what we have to show is that the convergence in these last two relations
Vis in fact joint, where V = V* and V and V* are independent, we also have

j  __ ( T /( l )  t/ ( 6) 'j
n.kn,mn ■ *n,fe„ ,m„ ’ • • • > ’' n,k„ ,m„ J

V

and
W,r , ■— ( W ^   ̂ —n,kn,m,i •  ̂ ’ n,fe„,mn’ "  ' ’ ' n,kn,m„ J

V in R 1

V* in R 6.

Note that the vector Vn,k„,m„ *s a function only of the upper extreme order 
statistics Un—m„,m • • • • Úntn while the vector Wn fe mn is a function only of 
the lower extreme order statistics UiiU, . . . ,  U,,ln JL. Thus, since rnn —> oo and 
m n/ n —> 0, Satz 4 of Rossberg [15] implies that the random vectors Vn,fen,mn 
and Wn>fcn,m„ are asymptotically independent. But since we have already 
established that

(v„,fcB -  V„.fe„>m<1. w lltkn -  W „ , ) A  (0 ,... ,  0) € R 12,

the random vectors Vn,kn and W„.,kn are also asymptotically independent, 
that is, (VBifc„,Wn,*n) A  (V, V,) in R 12. □

P r o o f  o f  T h e o r e m  2. Setting

C7l,fe„ (®) ■ —
kn Fn(x) -  F(x)

1 -  %• 1 -  F(x)
a n d  p n ,kn (•'•■) :=

kn Fn( x ) - F ( x )
! -% •  1 - F n{x) ’
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the left-hand side of (19) is

{ — Cn,k„ ('7') = z a i x  =  X n —k n,n } F {Pn,k„ (x ) = z cn x  = X n - k n ,n}  }

=  P \ { -  za S  „ inf Cn,kn (®)} n f  sup pnXi (x) <, za } \
( t  *SA „_fcnin ) l x^X n- kn.n J J

P {{ -  ■2" S „M ,M' <‘)}1n { «SI, W{,) } }

P{  sup |W ( i ) |g * 4  = 
0<i<l J

L{za) = 1 -  a

by a joint application of (8) and (9). The left-tail statement (20) follows 
from the joint validity of (13) and (16) in the same way.

Finally, introducing the events

•= { S 1 -  m  S < * .  (n)[l -  F„ W]
1 Cn,knya >

and

Bn,kA*) ■■= { - ^ T  ^ F(x) Í  Cn,kn(a )Fn(x) 
f cn,kn 1“ '

the left-hand side of (21) is

Pn P { { A ntlZn (x )i X k n,n =  x  =  X n-kn ,n } Fl { Bn,k„ (x )i ^ k n,n = x  = X n —k„,n} }

by the argument motivating the introduction of the band in question. Since

P { A n>kJx),  x < X knJI}  -> 1 and P { B n<krt(x). x > -» 1

by (26) and its left-tail analogue, using the proof of (19) and (20) above we 
see that

Pn sup \W(t)\£z*a , sup \W.( t) \£z*  
OStSl

= L2« )  = l - a

by a joint application of the four statements in (8), (9), (13) and (16). □
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RANDOM FRACTAL FUNCTIONAL LAWS 
OF THE ITERATED LOGARITHM

P. DEHEUVELS1 and D. M. MASON2

Dedicated to the. memory of Alfréd Ranyi on the occasion 
of the 75th anniversary of his birth

1. Introduction and statement of main results

We shall establish random fractal versions of Clnmg-type functional laws 
of the iterated logarithm [FLIL] for the local oscillations of the Wiener pro­
cess. In the process we will disclose a general scheme for evaluating the 
Hausdorff dimension of a large variety of random fractals which arise from 
local [FLIL],

Let {FF(i):t^0} be a standard Wiener process, and (Co[0,1],£Y) denote 
the set Co[0,1] of all continuous functions /  on [0,1] with /(0 ) =  0, endowed 
with the uniform topology U generated by the sup-norm ||/ || := sup |/(s)|.

For any /  £ 6 q[(),1], we set

\f \ t i  =

')

oc,

when /  is absolutely continuous on [0,1]

•H dfwith <) =  —-,
as

otherwise.
Further, introduce the following subset of Co[0,1], called the Strassen set of 
functions,

S  = { f € C 0 [0,1]: \ f \n  = 1} ■
For use later on set log2 u = log+ log+ u with log+ u = log (a V e).

The Strassen [21] functional law of the iterated logarithm [FLIL] for W, 
formulated in this notation, asserts that, with probability 1,

(1.1) Ihn inf ||(2Tlog2T )~ l^2W(T-) — / | | = 0.
r-roo fes
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and, for each /  E S,

(1.2) lim inf ||(2T log2 T ) - ^ 2W ( T ■) -  / 1| =  0.
T-*  oo

We shall next discuss analogous FLIL for the increments of the Wiener 
process. Towards this end, we introduce for each t ^  0 and h ^ 0, the incre­
ment function of s £ [0,1]

(1.3) £(/i, Í; .s) =  VF(i + /w) -  W{t).

Recall the Levy modulus of continuity theorem which says that with proba­
bility one

(1.4) lim sup sup (2/i|log(/»)|)-1/2|C (M ;«)| =  l.
/4° üá/,^1-/? Ogs^l

De Acosta [2] (see also Révész [19], Mueller [17] and Dcheuvels and Lifshits
[9]) proved a functional version of the Levy modulus of continuity theorem. 
Namely he showed that as h f  0 the class of functions

(1.5) {(2/i| log(/i)|)-l/2 í(/i,í; •): 0 ^  t i  1 -  h)
converges with probability 1 in the Hausdorff metric to S. Moreover, de 
Acosta [2] established tha t for /  £ S  satisfying \ f \u  < 1, with probability 1,

lim inf |log(/i)| x ||(2/i| log(/i)|)~1/2£(/i,f; •) —/||
^  g\ Hoogtgi

=  2-1 /27^/2 (l -  |/ |/y ) 1/2 ,

where 7^ = 7t2/8. Setting /  =  Ü in (1.6) yields an earlier result of Csörgő and 
Révész [7].

Now, for each f  E S ,  let T>uU) denote the set of all t E [0.1] such that

(1.7) lim inf II (2h | log(fc)|)“1/2í(/b <5 •) -  /II =  0./40

Deheuvels and Mason [10] showed that, with probability 1, the set T>u(f) is 
a random fractal with Hausdorff dimension

(1.8) dim T>u(f) = 1 — I/I/7•

Recall (see e.g. Falconer [12]) that the Hausdorff dimension of a subset E  of 
[0, 1] is defined by

(1.9) dim E  — inf {c > 0: sl — mes E  =  0} , 

where sc—mes E denotes the .s' -measure of E  equal to

(1.10) s c -  mes E  =  lim inf j  ^  \Ij\c : E  Q [ J  Ij, \Ij\ ^ e, j  E J  j ,
j e J  j e J
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In words: the infimuni in (1.10) is taken over all collections { I j  : j  G J } of 
closed intervals with lengths \ I j \   ̂e for all j  G .7, and such that E  C  (J.gy I y  

For each /  G S  and c>  1, let S y ( f , c ) denote the set of all t G [0,1] such 
that

hm inf I log(/i)| x ||(2/i| log(/t)|) 1/2£(/t. /; •) -  / | |
( 1. 11)  740

^ c2 -1/27Í/2( 1 - | / |2 / ) - 1/2.

Orey and Taylor [18] stated in their remarkable paper that in the particular 
case when /  =  0,

dim <S)y(0, c) = 1 — c-2 a.s..
(See e.g. (6.11) in their paper.) Our first main result is the following theorem, 
which determines the Hausdorff dimension of Su(f .  c) for any c > 1 and /  G <S 
satisfying \ f \ H < 1.

THEOREM 1.1. Let, f  G S  satisfy \ f \u < 1. Then, for any c > 0 with 
probability l,

(1.12) dim iS)y(/,c) =  (1 — | / | 2/)(1 — c-2 ).

In the process of proving Theorem 1.1 in Section 2, we shall develop a 
general scheme for establishing results like (1.12). Related results that can 
be readily obtained using this technique are described in Section 3.

2. Proof of Theorem 1.1 and related results
2.1. Preliminary facts and notation

We keep the notation of Section 1. The following facts will turn out. to 
be essential to our proofs.

Fact 1. For any C > 0 ,  we have almost surely

lim sup sup (2a|log(a)|)-1/2|W(t +  u) — W(i)| = 1.
<4° OgtgC 0

This is the Levy [16] modulus of continuity theorem for the Wiener pro­
cess (see e.g. Taylor [22]).

Fact 2. For any f  G S  with \ f  \ u < 1 and for any r > 0, we have

lim A“2 log PdIA-1 W -  / | |  ^  A-2r) =  ~  -  ^ | / |2W.
A-+oo Hr* z

This is Theorem 3.3 of de Acosta [1].
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2.2. A subsequence argument

We shall make use of the following discretization scheme. Let 7 > 0 be 
an arbitrary constant whose value will be chosen later on. For each n t  1, 
set hn =  n L Denote by [uj ^  u < |_u,J +  1 the integer part of u. We set for 
each n't. 1,

Mn :=[l / (hn(\\og(hn)\ ) -K)\, 

and for each * =  0 ,1 , . . . ,  M n,

Si,7. =  *^n(|log(/»„)|) A,

where K  t  3 is arbitrary but fixed. We note for further use that, for any 
t £ [0,1], there exists an i € { 1 ,.. . ,  Mn} such that \t — .s,;,u| ^ hn(\ log(/?,„)|)_A .

LEMMA 2.1. We have almost surely

(2.1) Ihn log(/i,i+1) |)1/2i/n =  0.n—>00 '

where

Un — max sup sup | |£ ( / i ,  f; ■) -  £(/).„, Sj,„ :  Oil-
| t - Si, „ |g /4n(| log(ft„) |)-A‘ hn + l < t é h „

PROOF. Recalling the definition (1.4) of £(/i,/,;•), we first observe, via 
the triangle inequality, that

Un % 2 sup sup |W (i + u ) ~  W{t)I,
0St^2 OgugaJ,

where a';i := fi„(| log(fin)|)_A' + (/),„ -  /i„+i )■ Now our definition of hn = n~7 
‘ ensures that, as n —> 00

h n - h n  + l = (1 + 0 ( l) )7 ? r7_l =o(/l„(|10g(/l„)|)~A) ■

Therefore, by setting a" =  2/?.n(log(l//in))_A we see that for all n sufficiently 
large

U„ ^  2 sup sup I W(t. -Fit) — W(t)\.
07/72 07u7a"

Applying Fact 1, taken with C =  2 and a = a", we infer from this in­
equality and K  t  3 that with probability 1,

t /„ = o  ( k i  io g « ) D 1/2) = » (/.; /2(i iog (/.„)iri/2) ,

which gives (2.1). LI
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2.3. Upper bounds for the dimension of the exceptional set

The following lemma yields the upper half of (1.12). (This is the easy 
part of proving results like (1.12).) Its method of proof based on computing 
moments is readily adapted to other situations. See for instance the proof 
of Theorem 1.1 (i.e. (1.8) above) in [10].

Lemma 2.2. Let f  E S  satisfy |/|/./ < 1. Then, with probability 1, for 
any c > 1,

(2.2) dim Su(f ,c)  ^  (1 — |/ |//) (1  — c-2 ).

PROOF. Fix an arbitrary e > 0, and choose any 7 > 1/e. Keeping the 
notation of Subsection 2.2, we define Y)>n, for i = 1 to be 1 or 0
according as the random variable

log(/in)I x ||(2/in | log(/i„)|)-1/2£(/i„, •) -  / | |

g c ( i  +  £)(W2)1/2(i-|/l/f)"1/2
or not. Making use of Fact 2, we have uniformly over i =  1 as
n —> 00,

(2.3)
P(Yi,n = 1) =  P(Yl,n = 1) =  P  ( | | ^  -  /II S ^7 

— exp flog(/ln) | l  -  | l  -  c2 ^ ^ .^ 2  } _ I/Íh ) + ° ( 1) } )

Consider now the (possibly empty and at most, countable) collection 
{í j : j  € J } of closed intervals of the form [sgn — I'm, a'i.h + hn] for which 
Yi n -- 1, where n ^  1 and 1 ^ i ^ Mn. Set

E  =  l) { I j  : j  €  J }  ,

and
á =  2e + < 1 —

!(1b ) (1 1/1?/)

Introduce the (possibly infinite valued) random variable

jeJ

where ^  (•) is defined to be 0 whenever .7 =  0. Obviously, we have 
je<D

E Z  = Y .  M n(2hn)sP(YUn = 1) =: ] T  un
nS 1 n^l

(2.4)



94 P. DEHEUVELS and D. M. MASON

Note that, as n -4 oo,

M v = [l/(hn(\ log(Än) |) -A)J =  exp((l +  o(l))|log(/in)|).

Thus we infer from (2.3) and (2.4) that for all large n

un = exp ({2e + o(l)} loghn) <1 hen =  n~n .
OO

Since our choice of 7 > 1/e entails that ]T) un < 00, we see that E Z  < 00,
71=1

which, in turn, implies that Z  < 0 0  with probability 1. In view of (1.9) and
(1.10), it follows that, with probability 1, the measure .s'5 — dim E  < 00, and 
hence

(2.5) dim E  Ú 6 = 2c + (l -  c“2(l +  e)~2) (1 - \f\2,,).

We finish by comparing the sets E  and S u ( f , c). By Lemma 2.1, there exists 
almost surely an no < 00 such that for all n ^  n0

h~+i (I log(/in+1) |)1/2 Un ^  c^(7t//2)1/2(l -  | / | / / ) _1/2.

Hence, whenever for some n ^  no, hn+\ < h ^  hn and 0 ^ t ^ 1, we have

I log(^)I x ||(2/i| log(/i)|)-1/2^(/r,/; •) —/||

(2'6) = C(1 +  ^)(Tw/ 2)1/2(1 — l / |/ / ) -1/2)

then there exists an i 6 {1, . . . ,M„} such that both Yi)?l = 1 and t, € 
[sgn hn, .S'í,n T hn].

Since Su(f,c)  is a subset of the set of all points t, such that (2.6) holds 
for some hn+1 < h hn for infinitely many indexes n, it follows that, with 
probability 1, Su(f,c) QE,  which, via (2.5), implies

dim Su ( f , c ) Z  2 r+  j l  -  ^ P 7 j 2  } (! -  !/!//)•

We conclude (2.2) by observing that e > 0 may be chosen arbitrarily small.□

2.4. A binomial scheme for the computation of fractal dimension

The following argument will be instrumental in our proof of the lower half 
of (1-12) and should be of independent interest. In formulating the theorem 
in this section we were strongly motivated by the arguments in Orey and 
Taylor [18]. We begin by introducing some notation.
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Let, {H„ :n ^  1} denote a sequence of constants satisfying the following 
conditions (HI) and (H2).
(HI) H„ 4, 0 < Hn < 1 for all large n ^ 1.

(H2) exp (—H~e) < oo for each c>().
nSl

Assume that, for each n ^  1, Z^n, i = 1 , . . . ,  iVn := [ 1 / / / ítJ , is a sequence 
of independent and identically distributed Bernoulli random variables. Set

Pn = P  (Z]tTl = 1) =  1 P  (Z[<n = 0) .
Further assume that, for some 0 < S < 1. as n  —> oo 
(H3) pn = H sn+0^ .

For each n ^ 1, set ,sn(i) =  iHn, i =  1 , . . . ,  IVn, and introduce the disjoint 
closed intervals
, 0 7s J _  J [»«(*) ~ Hnl2, A'n(i)] when = 1,
[ ' ' i,n \  0 when Zhn = 0.

Our main result in Section 2 is the following theorem.
THEOREM 2.1. Under (Hl), (H2) and (H3), for any e > 0 , there exist, 

almost surely a sequence of integers 1 ^  qy < q% < . . . ,  and sets E \ , Eo. ..., 
such that
(2.8) dim E  ^  1 — S — e,

OO

where E = f] Ej and for each j  ^  1, Fq is a union of some intervals taken 
i=1

/rom i//.e set. : 1 ^  i ^  Ai(/j }.
The proof of the theorem is derived from the forthcoming sequence of 

lemmas. First, we require some more notation.
Throughout this subsection /  will denote a closed interval contained in 

[0,1]. For any such interval I, let
M,(/)  =  # U i , n £ / :  W 0 ,  l ú i Z N n ) ,

and
A5,

Mn ~ N n([^\))  = Y J Znn.
i= l

The following lemmas establish some useful properties of Af„ (I) and J\fn. 
Introduce the function

h(u) =  <
u log u — u +  1 
1
oo

for u > 0, 
for u = 0, 
for u < 0.

W e w ill need the fo llow ing probab ility  inequality.
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Fact 4. Let, S\: be a binomial B(N.p) random. variable. Then, for all 
r  ^  1

(2.9) P ( S N ^  Nrp) g exp(-Nph(r)) ,  

and for all r ^  1

(2.10) P(SN g Nrp) g exp(-Nph(r)) .

For a proof of this fact see Lemma 3.8 of [11].

Lemma 2.3. Under (Hl), (H2) and (H3), we have almost, surely as 
n —¥ oo

(2.11) lim Afn/ { H - 1pn } = l,
OO

and

(2.12) Arv = H ?-l+o{1l

PROOF. Since (2.12) is a direct consequence of (2.11) and (H3), we need 
only show that the latter holds. Choose any e > 0. Replacing N ,p  and r in
(2.9) by N„ = [ l /H n\, Pn and 1 + e, respectively, shows, via (Hl), (H2) and 
(H3), that

P  ( K .  £ (1 +  e)NnPn) ^  exp ( - N nPnh(l + e)) = exp ( - ^ - ,+o(1)) ,

which by (H2) is summable in n. Therefore, the Borel Cantelli lemma im­
plies that almost surely,

lim sup Afn/{Hn 1 Pn) ^  1 +  e.
71—» OO

A similar argument based on (2.10), which we omit, shows likewise that 
almost surely,

lim inf Afn/ (H ~ 'pn) ^  1 -  e.
71—»OC

Since e > 0 may be chosen arbitrarily small, we readily infer (2.11) from 
the above two inequalities. □

The next lemma gives a refinement of the upper bound half of Lemma 2.3.

Lemma 2.4. For each. 0 < e ^ 1 -  <5 there exists almost, surely an rq < oo, 
such, that, for all n i  ?q and for all closed intervals I  Q [0.1], we have

A f n ( I ) / ( A i n \ I  p - ^ J g l  +  e,(2.13)
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where 0/0 := 0.

P r o o f . Choose any 0 < e g 1 — 6. For any integer 1 g k g N n — 1 denote 
by Cn(k) the class of all closed intervals of the form

I  = [sn(i),sn(* +  &)] with 1 g i g Nn -  k.

We will first derive upper bounds for A/"„(/), when for appropriate choices 
of kn, the intervals I  are in Cn(k). Let ei > 0  be an arbitrary constant such
that ei/2 + ő < 1. Set kn = \_Hn & Note that the total number of inter­
vals I  e Cn(kn) is bounded above by Nn — [ l /H n\ g H~1. Also observe that 
when I  e C n(kn), the random variable Afn(I) follows a binomial B(kn,pn) 
distribution. Thus we infer from (2.9) and (H3) that

P \ Slip Mn{I)/\I\ ^  y /1 + el / 2 Pn/Hn
\/eC„(fca)

^ H ~ 1 exp ^—knpnh ( \ / l  + e \/2 )^

= exp(-if-£l/2+o(1)),
which by (H2) is summable in n. Therefore, the Borel Cantelli lemma shows 
that for all large enough n and /  6 Cn(kn),

(2.14) Afn(I) g y /l + ei/2 \I\pn/Hn.

To treat arbitrary intervals I C [0,1] we need to examine three cases.

Case 1. Consider any closed interval IQ  [0,1] such that |/ | ^  H Ya~s~i l . 
Letting kn = [Hn 0 e'^2J be as above, we see that for all large n, I  con­

tains less than
[ 7 ^  m

V 2 knH n
intervals belonging to Cn(kn). Thus, by (2.14), we see that with probabili­
ty 1, for all n sufficiently large, we have uniformly over all intervals IQ  [0,1] 
with \I\ ^  t f l - '5- “ ,

(2.15) Mn(I) g (1 + ^ ) \ I \ { H - lpn} g (1 + ci)|/|W„,

where we have used (2.11). It follows from (2.15) that with probability 1, for 
all n sufficiently large and uniformly over all closed intervals I  Q [0,1] with

( 2 . 16) M n ( I ) / { A i n \ I \l~s- f} g (1 +  ei) | / | í+í g 1 +  ex.
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For the purpose of treating Case 2, stated below, consider now closed 
intervals I  such that /  6 Cn(k) for some 1 ^ k ^  K n := [ Observe 
that the total number of these intervals is bounded above by

(2.17) H ^ - ^ ' l K n N n .

Moreover, for any I  6 Cn(k) with 1 ^ k K n the random variable Mn(I) 
follows a binomial B ( k ,p n) distribution. Therefore keeping in mind that 
|/ | =  kHn, we infer from (2.9) that for any d>  0,

(2.18) Q{I) = exp ( - k p nh ( ( l - e ) d ( k H n) - s- e) ) ,  

where
Q(I) ■= P (Arn(I) l  kPn{( 1 -  e)d,(kHn) - s- c}') .

Next, we observe that our assumptions imply that, uniformly over 
1 ^  k £ kn, we have

k H n ŰKnHn = H 1n- s- t l ,
which converges to 0 as n  —> oo. Making use of the inequality holding for 
any d > 0 and all large enough x,

h{x) = (1 + o(l)) x logx  ^  y

we infer from (H3) and (2.18) that for all large n  and uniformly over 1 ^  k
^  K„

Q(I) Í  exp ( —/c1~'5_tp ,i#n‘5_t) = exP ( ~ H n e/2) ■

This inequality, in turn, implies that, for all large n,

P  max sup Afn(I)
lgfcgAT l e c . d k )  {(1 - f ) H n P n } \ I \ l—S—f =>d

Ú exp (-ff,7 e/2) gexp  ,

which, by (H2) is summable in n. Thus the Borel Cantelli lemma and (2.11) 
implies that with probability 1 for all n sufficiently large, and all

/ e  U  Cn(k),
lgfĉ A'n

we have

(2.19) A7„.(/)/{A7,l| / |1- <5- t }^r/.
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We note for further use that d > 0 in (2.19) is an arbitrary positive constant. 
Case 2. We now consider an arbitrary 7 ^  [0,1] with 77n/2  ^  \I\ <

/ / i - í - f i±±n
It, is readily checked in this case that there always exists an I'  £ Cn(k) 

for some 1 ^  k ^  K n =  J such that both I  Q I' and |7'| ^  3 |/|. This,
in conjunction with (2.19), shows that for all large n

(2.20) Arn( / ) / { M l| / |1"Ä“e}^A7n(7,)/(M l| / T _<5"£3_1+i+£) g 3 1- ,5- fd.

Case 3. In the only remaining case when |7| < 77„/2, we have Afn(I) =  0. 
Thus putting this last case together with (2.16) and (2.20), observing 

that ej > 0  and d>  0 may be chosen arbitrarily small, we conclude (2.13). □
The following lemma gives a lower bound for Afn(I) when 7 is restricted 

to lie within an appropriate class.
LEMMA 2.5. For any e> 0 , we have almost, surely

(2.21) lim m f { t f n( I ) / t fn\I\ : IQ  [0,1], \I\Z H ln~s- ( } = 1 .
n - >  o o  l  J

PROOF. The proof is very similar to the just-given proof of Lemma 2.4 in 
Case 1 (see the argument from (2.14) to (2.15)). Therefore, we omit details.

□
Finally, note that combining Lemmas 2.4 and 2.5 with (2.15), we get the 

following lemma.
Lemma 2.6. For all 0 < r ^  1, we have almost surely

(2.22) lim sup { Î 7 7  "  *1 : 1]. M ^ A  =0.n-voo [ W„|7| J

The next fact is a version of Lemma 2.2 of Orey and Taylor [18] stated 
in a manner appropriate for our needs.

FACT 5. Let K  Q [0,1] he such that K  =  D^ =1Em, where E\ 5 • • • 5  E m 2 
• • • f o r m  -  1 ,2 ,... and Ern = (J^=i *4,7«, with {Jk,m : 1 ^ k . ^  Mm} being, for 
each m~t  1, a collection of disjoint closed nonempty subintervals of [0,1] 
such that maxi<fc<A/„ | —> 0 and Mm -A oo as M  oo. If there exist two
constants A > 0 and d. > 0 such that, for every interval 7C [0,1] with |7| ^  A 
there is a constant m(I)  such that for all. rn ^  m(7),

(2.23) M m(I) := #  { Jk<m C 7 : i p g M ra} ^  d|7|cMm, 

then we have sc — dim K  > 0.
P roof of T heorem 2.1. We have now in hand all the ingredients for 

the proof of Theorem 2.1. We claim that, for any e > 0, there exists with
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probability 1 a sequence 1 ^  q\ < qi <  ■ • • of integers, together with a sequence 
E\  2 E 2 2  • - • of sets fulfilling the assumptions of Fact 5 with c =  1 — 6 — e, 
where, for each j  ^  1, Ej  is a disjoint union of closed nonempty intervals 
taken among : 1 ^  i ^  N (1/ }, as are defined in (2.7). Once these sets are 
constructed, the theorem follows directly from (2.23) using this in combina­
tion w ith definition (1.10). To show this one follows the same arguments as in 
[18], pp. 182-184 (also see [11], pp. 375 -386). For completeness we include 
the Orey and Taylor arguments with some modifications and clarifications 
here.

Choose any 0 < e < 1 — 6 and apply Lemma 2.3 and Lemma 2.4 to find 
with probability 1 an n\ < 00 such that for all n ^ n,\ and for all closed 
intervals IQ  [0,1], we have

(2.24) ^ ( / ^ ( l  + ^ A g / l 1- * - '/4.

Now choose a decreasing sequence of positive constants {efc}fĉ i such that
OO OO OO

0 < CA, <  1 and ek < 00 (which implies 0 < r i d - e*) = n  ( i + ek) < 0 0 ).
k=1 k—\ k=1

Next we apply Lemma 2.3 to find with probability 1, qi ^  ri\ such that for 
all n  ^  q\ ,

(2.25) (1 — e\)H~lpn 5]Aín ^  (1 +  e\)Nnpn.

For each n ^ 1, let Tn denote those intervals among : 1 ^  i ^  N n} which 
are nonempty. Note that # (I„ )  =Mn. Define E x to be the union of those 
intervals in T?i .

We shall now define an increasing sequence of integers {qk}k^ 1 inductive­
ly beginning with q\ . Each E k, for k^. 2, will be the union of those intervals 
in ZQk that are subsets of E k- 1- For any integer qk set

(2-26) P<lk= K k)-

Notice that by (H3)

(2.27) <$(/c) —̂ 6: as k — 00.

We set 7 (k) =  1 -  6 {k). Without loss of generality we can assume that e < 
7 (k) <  1, for all k. Denote the length of the intervals forming Ek by

By Lemmas 2.3 and 2.6 for each 0 < r  < 1 and ü < ß  < 1 with probability one 
there exists an integer m{r,ß) < 00 such that for all n ^ rn{r,ß) and closed 
intervals I  Q [0,1] satisfying \I\ ^ r

(2.28) (1 - ß ) \ I \H - lpn ^ M n(I) Í  ( l  + ß)\I\NnPn.

MAGYAR
rtí'DOMÁIMYOS AKADÉMIA 

KÖNYVTARA
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Suppose that for k ' ^ 2 1 the integers q\ , ..., qk- \  have been defined. Select qk 
large enough so that simultaneously

(2.29) qk > m(e, ) V m(efc, 1) V qk- X\

(2.30)

For integers k ^  1 let

(2.31) M k(I) = # { J ifkQ I : l £ i Z M k},

where {Jz.k : 1 ^  i 5= M k} denote the intervals which form Ek.
Suppose that for some k ^ 1 and j  ^  1

(2-32) T]k+J < \I\ ^T]k+j--i-

We claim that there exists a constant C independent of 1; ^  1 and j  ^  1 such 
that when (2.32) holds

(2.33)
i - 1

Mfc+J(/) ^  C \I \ l ~ s ~ e/4 (2Vk+j) ~ ^ i+k) I S ( i + k )

i — 1

j \ 7(i+fc) 

2.

We shall verify (2.33) by induction. For j  — 1, since qk+ i > q\ ^  n i , we have 
by (2.24) that

Mk+1(I) Í Mqk+1 (1)^(1 + e)Aíqk+11/|l-á-e/4,
which in turn by (2.25) is

^ ( l  +  e ) ( l  +  e 1) | / | 1- i - £/4Af,it+1p (7fc+1^ C '1| / | 1- i - t/ 4 (27?fc+1) - ^ +1).

Now if (2.33) is valid for some j  ^ 1 and Cj, we can apply the stipulation 
that qk+j+i > m(ek, rjk+1) along with (2.28) to each of the intervals Ji,k+j 
that make up Ek+j. Keeping this in mind, along with (2.32), we have

(2.34) Mk+j + i ( I )=  ■M/fc+j+i {Ji,k+j):

which, in turn, is

Mk+j+1 (I) ^ (1 + ek+j) Nqk+j+lPqk+j+i \Jitk+j\
' j  =^}
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^ Mk+j(I)hk+j (2Vk+j+1) - ^ k+j+1) (1 +  e.k+j).

This establishes (2.33) with Cj replaced by Cj+1 =  C\ (1 + ek+j). Thus by 
induction, (2.33) holds for all k:,j if we set C =  f J ^ i ( l  Te*).

A similar induction argument using qk+j ^  m(e, shows that

J-1 / i \ 7(i+fc)
(2.35) Mk+j(I) Í  C\I\ (2 r,k+J) ~ ^  [ ]  V̂ k)

for all intervals I  satisfying for some k ^ 1 and j  ^  1 

(2-36) v V + j - i < \ I \ ^ k +j- i .

Notice that from (2.34) we get that

Mm = M m{[ 0, 1]) =  J ]

which by (2.28) is

^ M m- i  ([0. l])r/m_, (2r/m)_7 m̂>(l -  em) 

m —  1
^M ,([0,1]) [ ]  Vt(2r,l+l) - ^ i+l\ l  -  eM )

2 =  1 

77i— 1
= X /1([0,1]) J ]  )_7(i+1)(l — f;+i),

2 =  1

which by (2.25) is

m— 1
1(1 - e 1) H - lP<n [ ]  r?i(2r,i+1) - 7(':+1) ( l - e l+i)

2=1

m-l  / 1\7(i)
n  -*(o Q )  a - o .

Thus we see that for some constant D>  0 uniformly in m  ^ 1,

m_1 „ s /1 \  1(6
M m Z D ( 2r/mr 7(m) [ ]  v t il) ( ^ )  ■(2.37)
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We are now ready to finish the proof of Theorem 2.1. By Fact 5 it suffices 
to show that for the set.

OO

E  =  D E k ,
k = i

with probability 1 there exist constants do, co and mo such that

(2-38) Mm(I) ^  co\I\l~s~eM m,

for all closed intervals IQ [0.1] with |/ | ^  Sq and m  ^ m().
In order to deduce (2.38) from (2.33), (2.34) and (2.37) it is enough to 

prove that when < |/ | ^  r/m,

rri— 1

(2.39) \I\%C\I\l~s- f n  Ti?®
i= 1

and when T]m+i < |/ |  <i ,

I /  1 \  7Í*)
(2.40) ,7|1-«-c/4 ( - J  .

Both of these inequalities hold by (2.30). Using (2.33), (2.35), (2.37), (2.39) 
and (2.40) it is straightforward to show that (2.38) holds. This finishes the 
proof of Theorem 2.1. □

2.5. Lower bounds for the dimension of the exceptional set

Armed with the results of the preceding subsections, we will now com­
plete the proof of Theorem 1.1 by showing that, whenever \ f \ n  <  1, we have 
almost surely for each c > 1 and e > 0, chosen so that the right-hand side of 
the inequality below is strictly positive

(2.41) dim Su (f,c) Z (1 -  | / | 2„)(1 -  ^  ^  -  e.

Since e > 0 may be selected as small as desired, the proof of (1.12) will follow 
readily from (2.41) and the upper bound result (2.2) in Subsection 2.3.

To establish (2.41), we apply Theorem 2.1, with the following special 
choices of {Hn : n ^  1} and {Z\>n : 1 ^  i ^  N n } fulfilling (Hl), (H2) and (H3). 
Choose a constant 7 > 0 and set hn — n -7 and Hn = /in(| log(/i,71)|)— 1 for 
n ^ 1. Now let =  1 or 0 according as the random variable

I log(/i„)| x ||(2/in| log(hn) \) -l ' 2t(hn,si,n; •) -  /II
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= C(1 ~  e)(7w/2)1/,2(l — |/ 1//) —1/2
or not.

Applying Fact 2, we get, similarly as for (2.3), that

P{Zi,n = 1) =

exp (log{hn) ( 1 - | / I h ) + o(1 )))

=  exp (log(tfn) | l  -  j 1 -  -  )2 I  (1 - \f\2H) +°(1)}) ’

which shows that (H3) holds with <5 =  1 — | l  — j  (l ~ | / |2H). Notice
that, in addition, the assumptions (HI) and (H2) hold trivially. Hence we 
may apply Theorem 2.1 to establish the existence of a set E  such that

dim E ^  1 -  8 -  e =  {1 -  ^  g)2 } { l - \ f \ 2„ ) - e .

To conclude, we observe from the definition of ZiyJl and Lemma 2.1, that 
with probability 1, for all large n, whenever Z, 7t =  1 we have

I log(/in )| X WWnl log(hn) |) " 1/2e(hn,i; •)- / I I  ^  c(7 u / 2 )1/2(l - \ f \2H ) - 1/2

for all t G Ii>n =  jsn(i) — Hn/ 2, s„(z)]. This readily implies that E  ^  Su(f ,  c), 
which yields (2.24). This completes the proof of Theorem 1.1. □

3. Other applications of the general scheme outlined in Section 2

Making use of the methodology of Deheuvels and Lifshits [8], [9] in com­
bination with the methods of de Acosta [1], the arguments of this paper 
can be readily adapted to treat norms || ■ ||T for which there exist positive 
constants kt and yT such that

lim \ - Kt logP(||WH|TgA _1r ) = - — .
A —> o c  r Kr

Aside from the uniform norm, there are very few examples where this con­
dition is known to be hold. Refer, for example, to Theorem 4.4 of Baldi 
and Roynette [3] in the case of the Holder norm. Moreover, in most cases, 
the only information available concerns the rate of convergence to infinity as 
A —» oo of

— log P  (||W1|T ^ A_1r) .
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See, in particular, Stolz [20], Kuelbs and Li [14], Kuelbs, Li and Talagrand
[15], and the references therein. Furthermore, the versions of the Levy mod­
ulus of continuity theorem (see e.g. Fact 2) which must hold for such general 
norms are not known in the literature outside of special cases. Therefore 
to extend our fractal Chung-type FLIL to a more general setting requires 
additional results, which are beyond the scope of this paper.

The basic ingredients that are needed to prove a result like (1.12) (respec­
tively like (1.7)) are a functional small ball result (respectively a functional 
large deviation result) combined with a modulus of continuity theorem like
(1.4). In fact, the Wiener process W  that appears in the definition of the 
increment process (1.3) and the definitions of the random fractals (1.6) and
(1.11) can be replaced by certain separable Banach space valued Wiener pro­
cesses. Then all of the arguments that yielded (1.7) and (1.12) carry over 
nearly verbatim. For the appropriate functional small ball, functional large 
deviation and modulus of continuity results consult de Acosta [1], [2]. It, 
is little more than a matter of bookkeeping to translate our results to the 
general setting given there.

We conclude with a remark about the case when \ f \n  = 1. Notice 
that (1.7) shows that when this condition holds, we have almost surely 
d'unVu(f)  = 0 . Hence, in this case, there is no hope to obtain an appro­
priate definition of Su(f ,  c), since dimA = 0 for all subsets A  of T>u(f).

Acknowledgement. The authors thank Alex de Acosta for kindly 
pointing out to them his paper de Acosta [2].
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REFINED GIBBS CONDITIONING PRINCIPLE 
FOR CERTAIN INFINITE DIMENSIONAL STATISTICS

A. DEMBO* 1 and J. KUELBS2  

To th e  memory of Professor Alfréd Rényi

A bstract

Let X\ ,  X ) , A'n,. . .  be independent, identically distributed random observations tak­
ing values in a Polish space E, and 0 a statistic on E with values in a separable Banach 
space E. We examine the limit law of ( Y i , . . . , A'*.) conditional on /i- 1 E'*= 1 0( A';) being 
in an open convex subset D of E.  In this setting the conditional limit law is a fc-fold 
product probability (P*)k , where P* is determined by the Gibbs conditioning principle. 
Our results describe the allowed dependence of k =  k(n) on n in terms of explicit geometric 
conditions related to smoothness of dD  at a dominating point.

1. Introduction

Let X, X ], X ‘2i . . .  be independent, identically distributed random obser­
vations with empirical measure Ln = ^ {fix, , and common law P \ . In
statistical mechanics, and also in a number of other settings, it. is of interest 
to determine the limiting distribution of the A;-t,uple (X i , . . . ,  X*,) provided 
one conditions on some observation of the empirical measure, say T(L n) be­
ing in some set D. It is intuitively clear that in a number of situations this 
conditional limit law should be a A:-fold product measure (P*)k, but what is 
P*1 Of course, when limn P(T(Ln) £ D) = 1, it is trivial that P* = P \ ,  and 
hence the situation of greatest interest is when the conditional constraint 
{T(Ln) 6 D] is a “rare event.” . There are a variety of such results in the lit­
erature, and we mention [1], [4], [5], [7], and [12], which also include further 
background and references. The paper [11] examines some analogous results 
for discrete parameter Markov processes, and [13] and [14] are also related.

In [5], these results are described in terms of the “Gibbs conditioning 
principle”, which beyond confirmation of the previous intuition also pre­
scribes P* via a variational principle. More precisely, the Gibbs conditioning 
principle claims that the limit law of (X i , . . . ,  X*) conditioned on the event,
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{ T (L n) G D} is a A>fold product measure (P*)k, where P* minimizes the 
relative entropy with respect to P \  over all laws Q satisfying the constraint 
T(Q)  G D.  This is indeed the case in the situations examined in [5], where 
a preliminary study of the relation between properties of the set D and the 
growth of k =  k(n) with n is carried out. In particular, the explicit results of 
[5] are mostly in case D is a subset of Rd for some finite d. Here we look at 
the extension of these results to infinite dimensional (Banach space valued) 
statistics.

To precisely describe our results, and their relationship to [5], we now 
fix some notation. Throughout the i.i.d. observations { X j} have values in 
a measure space (E,Bs), where E is a Polish space, By, denotes the Borel 
subsets of E, and Px  is their common law. Let M i(E) denote the probability 
measures on (E,Be), with the topology of weak convergence, and for any 
measure Q let Qk denote the A;-fold product of Q. If P(Ln G Ü) > 0 for some 
subset n  of Mi(E) and n  ^  k, then P"k\\\ denotes the law of (X i,. . .  , X*,) 
conditioned on {Ln G n}. The relative entropy of p with respect to u is given 
by

Let E  denote a real separable Banach space with dual E*, norm || • ||, 
and assume 6 : E E  is Borel measurable. Let Q x  be the law Px  induces 
on E  through 6 . Since Qx is a probability on (E. Be ) there exist increasing, 
compact, convex sets K m(m  ^  1) such that QA'(U^=1Xm) = b  so we may 
and shall assume throughout that 9(s) G U™=lK m for all s G E (modifying 9 
on a set of measure zero if needed). The statistic of the empirical measure 
we condition on is

and our constraint that (T (L n) G D)  for a convex open D C E  is equivalent 
to (L n G n'} for

(1.2) n ' = < v G Mi (E) w o  9 1 (K m) = 1 for some m  ^  1, / 9d.v G D

Corollary 2.7 of [5] examines the situation when E  = Rd, D is con­
vex and Qx is lattice or strongly non-lattice. Furthermore, the collection 
( X i , . . .  , XQ  is such that k = k(n) may go to infinity as n -» oo. The basic 
ingredients in the proof involve refinements of large deviation probabilities 
and Csiszár’s information theoretic identity for blocks of length k =  k(n).

n
( l . i )
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The goal here is to establish analogous results when T(Ln) is an average of 
infinite dimensional statistics. Our moment assumption on Q \  is that

(1.3) I  el^ d Q x (x)<  oo
E

for all t > 0, which is usual for the study of large deviation probabilities 
in the infinite dimensional setting, but stronger than what one expects to 
assume in However, we do not assume anything about Q \  beyond that, 
and hence the assumptions Q\- being lattice, or strongly non-lattice, need 
not arise in Rd when (1.3) holds.

The usual rate function for Qx  is

(1.4) \(x)  =  sup [h(x) -  log Qa-(M] ( x  G E),
heE*

where

Q x(h )=  I  eh^ d Q x (x) (heE*)-
E

Throughout, we assume that

(1.5) D c E  open, convex inf A(a;)<oo m =  x d Q x ( x ) £ D .
xeD ./

E

Assuming (1.3) and (1.5), by [9, Theorem 1], there exists a unique point 
a,Q e dD such that

(1.6) A(ao) =  inf A(z) < A(x) V x E D .
z6D

This point ao is the so-called dominating point of (D , Q x )•
By the Hahn-Banaeh theorem, in this case, there exist /  6 E* such that

(1.7) su p /(z ) = f ( a o ) < f ( x )  \ /xeD .
{z: A(Z)SA(a0 )}

Suppose in addition to (1.3) and (1.5) that f  E E* satisfies (1.7). Then, when 
m  D , by [9, Lemma 2.6] for g = tof  with a unique to > 0,

(1.8) \ (a0) =  g(a0) - l o g  Qx(g).

In case rn E dD we have A(flo) ^ A(m) = 0, hence cio = in and (1.8) holds, now 
with to =  0 and g the zero linear functional.
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Thus, associated with the dominating point are P* <C Px  on (E, Bz) such 
that for g = tof  satisfying (1.8)

(!-9) “^ 7  =  exp{(<7,$(■)) — log Qa'( í/)}-

If both <7i € E* and (]■> G E* satisfy (1.8), then considering h = (g\ +  <72)/2 
in (1.4), it follows hy Holder’s inequality that g 1 — <72 is constant a.s. Qx,  
hence P* of (1.9) is unique. With Q* denoting the law that P* induces on 
E  through 0 we also have by [9, Lemma 2.6] that

(1.10) a0 = JxdQ*{x)
E

(and (1.10) clearly holds when m G dD for then P* = Px, Q* = Q x  and 
a 0 =  m).

D efinition. Assume (1.3) and (1.5). Let ao be the unique dominating 
point of (D , Qx)- Then, D contains slices whose diameters near ao dominate 
the function r(s) if for some /  G E* satisfying (1.7) there exist xq G E, S > 0, 
and ß  > 0 such that f ( x 0) > 0, and

(1.11) {y + sxo : f{y) = 0, ||y|| < ßr(s),  0 < .s < ö } Q ( D -  a0).

W ith (1.7) and (1.11) invariant to scaling of /  we may and shall assume 
hereafter that f ( x 0) =  1.

R emark. Note that (1.11) holds for r(.s) =  s, any /  G E* and any .To G 
(D - a 0). Indeed, B xo,ß = : ||m —.x-0|| < ß } C ( D - a 0) for ß > 0 small enough,
and with 0 G d(D -  ao), by the convexity of || • || and of (D -  ao) it. follows 
that B sxa^s = sBXOy0 C [D - a Q) for all .s G (0,1].

Our version of the Gibbs’ conditioning principle for f?-valued statistics 
is the following theorem.

T heorem 1. Assume (1.3) and (1.5). Let a.0 £ d D  be the unique domi­
nating point for (D , Qx) an(l Tn = ^"=1 ~  (lo) .for i-i.d. E-valued ran­
dom vectors of common law Q*. Suppose {T7l/y /n}  is bounded in probability. 
Then, for P* of (1.9) and n ' of (1.2),

(1.12) lirn Lf(P"fc(„)|n,|(P*)fc(n))= 0 ,
00 y'  I11

provided one of the following holds:
(i) k(n) = o((n/ log n )1/2).

(ii) k(n) = 0(n} /2) and {Tn/^/n} has the CLT property in E.
(iii) k(n) — o((n/ logn)(|+id /2) and D contains slices near o.0 whose di­

ameters dominate the function r0 (.s) =  ,s1/(1+°) for some a E  (0,1].
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(iv) k(n) = o(n), m  E dD and cither {Tn/y/n) has the CLT property or 
D contains slices near no whose diameters dominate some r(.s) such 
that s -1r(.s) —> oc for s i 0.

Remarks.
(I) Recall that P"-*(„)|n, stands for the law of (A p ...  , X k(n)) conditional

on {Ln E IT), where by (1.3), (1.5) and the infinite dimensional version of 
Cramer’s theorem, P(L„ E IT) = P(n~1 ]C“=1 0(Xj) E D) > 0 for n  sufficient­
ly large.

(II) By Pinsker’s inequality (||/z -  c|Jvar ^  (2H(p\v))1/2, cf. [2, Theorem 
4.1]), the convergence of relative entropies in (1.12) implies convergence to 
zero of the total variation norms | | , n, — (P*)fc(n)||var.

(III) If D contains slices near oo whose diameters dominate ra (s) for 
some a  E [1, oo), then the same applies for a. =  1.

(IV) As shown in (2.23), the measure P* of (1.9) satisfies the Gibbs
conditioning principle (that is H(P*\P\) — inf H(P\P\)) .

Pew
(V) For E  a type 2 Banach space, the assumption in Theorem 1 that 

{Tn/y/n} is bounded in probability and even the assumption of it having 
the CLT property follow directly from the moment assumptions on Q\- 
However, if E  is not of type 2, this need not be the case. Boundedness in 
probability of {Tn/\/ri.}, i.e. sup„ P(||Tn || > Ty/ri) —►0 as r —> oo, is important 
as it allows the application of the Fuk Nagaev inequality of [8] in our proof. 
Of course, if E  is uniformly 2-smooth (see below), then E  is already type 2, 
and the assumptions simplify accordingly.

(VI) From the proof of Theorem 1 we have that (1.12) holds for k(n) = 
o(n) and P* =  P \  as soon as P(L„ E n ')  is bounded away from zero. By 
the law of large numbers for E -valued empirical means this is the case when 
/ I M W a-( x) < oo, m  E D and D C E  is open and convex.

(VII) Part (iv) of Theorem 1 holds for m  E dD , D C E  open and convex, 
even when assumptions (1.3) and (1.5) are relaxed to either J WxW*dQx{x) 
< oo and /  E E* of (1.11) such that f ( x o) — 1, J f ( x ) 2d Q \ (x  + m) > 0 when 
{Tn/i/n} is only assumed bounded in probability, or that D intersects the 
convex hull of Q \  when assuming that n _l//2Tn has the CLT property. In 
particular, since Qx — Q* and a.o =  m with A(m) =  0, the third moment 
assumption allows the immediate application of the Berry-Esseen and Fuk 
Nagaev inequality to (2.10), as in (2.16) and (2.17).

(VIII) If Q \  is concentrated at the single point b, then either b — rn&D 
or else inf A(.7;) =  00. Thus, (1.5) never holds for Qx concentrated at a

xED
single point. However, in this case P(Ln E n ')  is either zero or one with the 
conditioning on {Lv E n '}  of no interest.

Condition (1.11) is a geometric smoothness property of dD at ao. Any 
open convex set D contains slices whose diameters dominate tq(.s) =  s at all
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possible dominating points. In certain Banach spaces, for some a £ (0,1], 
any open ball D also contains slices whose diameters dominate Ta(s) at all 
possible dominating points. For this we recall the following definition.

A Banach space (E , || • ||) is called uniformly (1 + a)-smooth for some 
a  £ (0,1] if for some C < oo and all t £ [0, oo)

(1.13) sup {\\x +  by 11 + ||z -  ty\\ -  2} ^  C\t\1+a.
IWI=i,IMI=i

For example, if E  is the standard Lv space for some 1 ^ p < oo, then it is 
known that E  is uniformly (1 +  a)-smooth with a  =  min(p — 1,1). There 
are no Banach spaces except I? =  {0} which are uniformly (l + a)-smooth 
for a  > 1, but an open set a t a particular boundary point may contain slices 
whose diameters dominate tq (s ) for any a  > Ü. Here is our theorem when 
(E, || • II) is uniformly (1 +  a)-smooth.

THEOREM 2. Suppose D is any non-empty open ball of the uniformly 
(1 + a) -sm.oot,h Banach space (E, || • ||) for some a £  (0,1]. Then, D contains 
slices whose diameters dominate ra(s) near every possible dominating point 
ao £ d D .

The following corollary is therefore immediate from part (i) of Theorem 1 
and Theorem 2.

COROLLARY 1. Assume in addition to (1.3) that a non-empty open ball 
D satisfies (1.5) and {Tn/\/ri,} of Theorem 1 is bounded in probability. Then,
(1.12) holds for P* of (1.9) provided k(n) =  o((n/  log n )1/2). I f i n  addition 
(E , || • II) is uniformly (1 + a)-smooth for some a  £ (0,1] then (1.12) holds even 
for k(n) = o((n/\ogn)(l+a^ 2) whenrn^D, ork(n)  = o{n) w h e n m £ D .

We next provide a partial converse of Theorem 1.

PROPOSITION 1. Assume in the setting of Theorem 1, parts (ii), (iii) 
and (iv), that the characteristic function of f ( Z  — no) LP(R) for some 
p £ fl, oo) and f  £ E* satisfying (1.7). Then, k(n) = o(n) is necessary for
(1.12) to hold for P* of {IB) and W of {1.2).

Much of the proof of Theorem 1 is inspired by a CLT type intuition. It 
is therefore interesting to examine in more detail the special case of Qx  a 
Gaussian measure. As we next show, in this setting one can typically remove 
the log n terms out of k(n ) , leading to a tight characterization of the maximal 
k(n)  when D is smooth enough.

PROPOSITION 2. Suppose (1.5) holds for a Gaussian measure Qx- Then,
(1.12) holds for P* of (1.9) and II' o/(1.2) i f fk{n) — o{n) when either D is a 
non-empty open ball in a separable Hilbert space (E , || • ||) or {D — ao) equals 
the left-side of (1.11) for  r(s) = s1/(1+Q)j a — 1 and some xo, ß  > 0, 8 > 0. 
In contrast, (1.12) fails for some k{n) = o{n) in the latter case, whenever
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rn ^ dD, a  < 1, and the support, of Q \  is an infinite dimensional linear 
subspace of E.

Based on the above intuition, it seems that with more effort the logn 
terms might also he removed in the general (non Gaussian) case (see (5.13) 
for details). However, typically, at most k{n) <  o(n) in (1.12) when rn £ D 
and the diameters of slices of D near ao dominate only t q ( s ) for some a  < 1.

2. Proof of Theorem 1

Let ao be the dominating point of (D, Q \ ) .  The following lower bounds 
on P(Ln £ n ') which are of some independent interest play a key role in the 
proof.

P roposition 3. Assume (1.3), (1.5) and that {Tu/ \ /n}  is bounded in 
probability.

(i) For a = 0, some C\ finite and all n large enough,

(2.1) log P(Ln e  n') ^ -nA(ao) -  C i(logn)(1+o)/2n (1~a)/2.

(ii) If {Tu/^/n} also has the CLT property in E, then one can remove 
the (logn)1/2 term in (2.1) and have C i > 0  arbitrarily small.

(iii) The bound (2.1) holds for a  6 (0,1] when D contains slices near ao 
whose diameters dominate the function Ta(s).

(iv) For m E d D ,  if {Tn/^/n,} has the CLT property or D contains slices 
near ao whose diam,eters dominate some r(s) such that s~ lr(s) —i oo 
for s |0 ,  then

(2.2) p = lim inf P{Ln € Id') > 0.
71—»OO

PROOF, (i) There exists x £ D and ß  > 0 such that B Xt3/3 C D and (1.5) 
holds for D replaced by the open ball Do of radius ß, centered at x. Let 
ao + xo denote the dominating point of (Dq,Q x ) as in (1.6) with P0* ^ ie 
measure associated with it via (1.9) and the measure P0* induces on E 
through 9. In particular, PX(h2g C (D — ao) and by the remark preceding 
Theorem 1,

(2.3) { z : \\z — ao -  «.Toll < 2ßs, 0 < s < l } c D .

Let VT = ^ ’=1 (Y) — a0 — xo) for Y) i.i.d. E -valued of common law Qq. 
Then, E Y  = f  xd.Q^ = ao + xo (compare with (1.10)). Moreover, dQ^/dQx  ^ 
cecllI H for some c < 00 (see (1.9)). Hence, P(exp(f||Y — ao — iCo11)) < 00  for 
all t by (1.3), implying that for some r/ > 0 and all r  large enough
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(cf. [6, Exercise 6.2.21]). The duality identity of [6. (6.2.14)] for h(x) = 
—n K l /jn0 V &B(E") and [ P \ ) n (=. M\ (£”) results with

\og[P(Ln e n ' )  + e - nKP(Ln ^Yl')\
= sup {—K n R ( L n ^ fl ')  — H(R\(Px)n)}-

REMi (En)

For R  = (p*yi~r <g (Pf* y . with r < Sn integer, and N  = H (P0* |P \ ) 
—H (P * \P x )< o o  (see (2.20)), we have

(2.5) log[P(L„ 6 n ') + e r nK] ^  - K n R ( T ( L n) <£D)~ N r  -  n \{a0).

By (2.3) for s =  r /n  < 5,

R(T(Ln) i  D) =  p ( n " 1(r„_r + Vr) + a 0 + y x 0 $ ü )

(2-6) = P{\\Tn-r  +  E-ll ^  2 ßr)
ZP(\\Tn- r \\Zßr) + P(\\VrU ß r ) .

Note th a t Tn = Y ^ i = \ ~  ao), with Z, — o0 i.i.d. of zero mean and exponen­
tial moments, in view of (1.10) and (1.3), respectively. The assumed bound­
edness in probability of {Tn/^ /n}  implies that sup E\\Tn/sJTi\\ < oo (see for

n
example, [10, Proposition 2.3]). Hence, setting r = rn = [(An log n )1/2], by 
the Fuk Nagaev inequality as given in [8, p. 338], we have for A = E\\Z — a,o\\2 
and all n  large enough

(2.7) P(\\Tn- ru || £ ßrn) ^  r~30 (n) + exp{-/32r 2/(96nA)}.

Taking A  > 96A//32, by (2.4), (2.6) and (2.7) we see that nR(T(Ln) ^ D) — 
o(rn ). Therefore, considering K  =  A(«o) + 1 in (2.5) we have log P{L„ € Ü') ^ 
—nX(ao) — C\rn for some C\ < oo and all n large enough.

(ii) Subject to (1.3) and (1.5) holding, [9. Theorem 1] provides the rep­
resentation

(2.8) Jn = P(Ln 6 n ')e nA(oo) = E[e~tô Tn)lr„en(D-ao)]-

In case r n ^  D. to > 0 is specified by [9, Lemma 2.6] so that g = to / satisfies
(1.8) , while fo = 0 otherwise. Since {D — ao) is convex and 0 € d (D  — ao), the 
open sets T;, =  b(D -  a,0) n {z : f{ z )  < b} increase monotonically. In particular,
(2.8) implies for all n  ^ b2,

(2.9) J n Z e - tonl/HP ( n - [/2Tn G r 6).

Recall that n _1/2Trt —> G weakly in (E, || • ||) for G =  G{Z — ao) an E -valued 
Gaussian variable with the same covariance structure as (Z — ao). The con­
dition inf A(./;) < ex) of (1.5) implies that D intersects the convex hull of the

.tED
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support of Q \  (see for example [G, (G.1.4) and Exercise 6.2.21]). Therefore, 
(D — ao) intersects the closed convex hull of the support of Q*(■ + a0) and 
hence also the Enclosure of the Hilbert space associated with G , denoted 
Hc(G)- Fix z € {D — ao) D Hc(G)- Since f ( z )  > 0, it follows that tz  6 Tf, for 
any positive t < b/(f(z)  V 1). In particular, each of the open sets Tf, also 
intersects H ^ c y  By the assumed CLT, for any b > 0,

lim inf P ( n - l' 2Tu £ Tb) > P(G(Z -  a0) £ r b) > 0,n—► oo

and by (2.9) we get (2.1) for a = 0 without the (log«) '/ 2 term and with 
C i =  (to +  l)/> arbitrarily small.

(iii) Suppose now that (1.11) holds for t q ( s ) , a £ (0,1], and some /  £ E* 
satisfying (1.7), xo&E, S > 0, ß  > 0 (with f ( x o) = 1). Since f ( y ) ~  0 for 
y = (x — f(x )xo)/ t  and every t > 0, x  6 E , taking s = f ( x ) / t  it follows from
(1.11) that

(2.10) {x : 0 < f (x )  < t.S, ||:c -  /(:i;):r;0|| < ßtrQ( f  (x)/ 1)} Q t.(D -  a0).

In particular, for t = n and any O iA n g B n k n S , by (2.8) and (2.10)

Jn Z e~ ll)B'1 P (An < f (T n) < Bn, IITn -  /(T„)xo|| < Pn)
^  e~t°Bn[P(An < f ( T n) < B n) -  P(\\Tn -  /(T„)*0|| ^  Pn)},

where pn — ßn.Ta(Au/n).  Set B n — 2An and An = (A \ogn)^+a^ 2n ^ ~ a ^ 2 so 
that

(2.12) fju = ß (A n \ogn)1/2.

Note that / f(x)dQ*(x+ao) = 0 (see (1.10)) and aj = J f ( x ) 2dQ*(x+ao) > 0. 
Indeed, aj — 0 implies f ( x )  = f ( a o) a.s. Q y, hence X(x) = oo whenever 
f (x )  > /(a o ), in contradiction to (1.5) and (1.7).

Since a2 > 0, by the Berry Esseen inequality, for some C > 0 and all n 
large enough

(2.13) P(An < f ( T n) < B n) ^  C(Bn -  An) /n 1' 2 Z 2rCa>2.

Applying the Fuk-Nagaev inequality (see (2.7)), we have for all n  large 
enough

(2.14) P(||T„ -  H T n)xo\\ tPn)  ÚPÜ30(n)  + exp{-^ /(96nA )} ,

where A =  E^H(Z-ao) —/( Z  —ao)xo||2. Taking A > 48A//32 we have by (2.12) 
and (2.14) that

( 2 . 15) P(\\Tn -  f(Tn)xoUPn) =  o(n-1'2)
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and hence as n-> oo combining (2.11), (2.13) and (2.15) we have

Jn ^  exp{—2to(A logn)^1+ft̂ 2n^1_a^ 2}n_a/2.

Considering log Jn, we establish (2.1) for a  € (0,1], C\ > 2 io ^ 1+Q̂ 2 +  0.5 
and n  large enough.

(iv) For m  £ D we have to = 0, ao = m , A(ao) =  0 and Q* = Qx-  In 
this case we get (2.2) out of (2.9) when {Tn/y /n}  has the CLT property. 
Otherwise, suppose D contains slices near ao whose diameters dominate 
some t (s ) such that s _1r(s )  —» oo for s J,0. Since aj  >0, for An — A n1/2,
A  > 0 small, Bn = B n 1' 2, B  large and all n large enough, the Berry-Esseen 
inequality implies

(2.16) P ( A n < f (T „ )< B n) ^  1/3.

Replacing rQ(-) by t (-) in (2.10), we now have Pn — ßA-nln in (2.11) for 
7n =  inf s _1t (s ) t  oo. Thus, applying the Fuk-Nagaev inequality as in

s<Bn/n
(2.14), for some C = C(A) > 0.

(2.17) P(||T„ -  /(T „)zo || ^ Pn) ^  C n ~ 1' 2 + exp( - C j 2n).

Since here P(Ln £ 14') =  Jn we establish (2.2) by combining (2.11), (2.16) 
and (2.17). □

The proof of (1.12) starts with the inequality

(2.18) H (P ^ kM^ Q k^ ) ^ [ n / k ( n ) } ~ lH ( P ^ nln,\Qn)

which holds for any probability measure Q and k(n) ^ n (cf. [5, (2.5)] for 
n /k (n )  integer). Considering in particular Q = P *, the identity

(2.19) H (P Z ullv\(Px )n) -  -  logP ( L n £ n '),

yields the conclusions of Theorem 1 for m  £ OD and P* = P \ , when combined 
with the lower bounds of Proposition 3 on P ( L n £ II').

Assuming hereafter th a t m ^ D ,  by (1.8) - (1.10)

(2.20) H(P*\Px) = H(Q*\Qx) =  A(a0).

Hence, we have the conclusions of Theorem 1 by combining

(2.21) H ( P ^ lni\(P*)n) ^ - \ o g P ( L n e W ) - n H ( P * \ P x ) ,

with Proposition 3, (2.18) for Q = P *, and (2.20).



REFINED GIBBS CONDITIONING PRINCIPLE 117

To prove (2.21) we turn to Theorem 1 in [4], Let K m be the increasing, 
compact convex sets such that 8 (s) G UmK m for every .s G E. We first verify 
that all the conditions of [4, Theorem 1] apply for the convex set

(2.22) FI = | p  G Mi (E ) : v o 9~x(Km) = 1 for some rn ^ 1, j  0c/p G.d |
s

which contains II' of (1.2). Indeed, by [4, Definition 2.3], II being the union 
of the increasing completely convex sets IIm={p G M i (E ): u o 6 ~x(Km) = 1, 
J ddu G D } is an almost completely convex set. By Remark (I), P (L n G IT) 
> 0 for n sufficiently large, whereas { ( s j , . . . , s n) : n _1 SSi G II'} = 
{ (s i,. . .  ,s„) :n _1 YJi= i 0(-s'i) € D} G (Rs)n for all n.

Recall that for II a convex subset of M i(E), the generalized /-projection 
of Px  on II is the unique element Q of M i(E) with lim ||Pm — QHvar^O for

m.
every Prn G II such that

Ynn H(Pm\P\)  — inf H(P\PX ). m Peri

The existence and uniqueness of the generalized /-projection is given by [3, 
Theorem 2.1], which also shows that

H(Q\Px ) i  Mu H(P\Px ).

In view of [4, Theorem 1], we now are able to conclude the proof by verifying 
that

Lemma 2.1. For D the probability measure P* of (1.9) is the gen­
eralized I  -projection of Px  on II of (2.22). Moreover, for II =  {u G M i(E ): 
f E 6 dv G D},

(2.23)
inf H(P\PX )=  inf H(P\Px )=  inf H{P\PX )
pen Pen Pen'

= H(P*\PX ) =  A(a0) < oo.

In the process of proving Lemma 2.1 we use the following simple relation.

LEMMA 2.2. Let Q be a probability on (E , Be ) such that f E h(x)dQ(x) = 
h(mQ) for some t u q  G E  and all h&E*. Then,

(2.24) H(Q\Qx ) ^ X ( m Q).

PROOF. If H(Q\QX ) — oo there is nothing to prove, so assume
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H ( Q \ Q x ) <  oo with q = — — and fix /i€ß* . Then,
dQx

H{Q\Qx)= j  q\og{q)dQx
E

(2.25) =  h(mQ) — J  q{x)I[0 oo){q{x))\og{q-l (x)eh{x))dQx{x)
E

^ h(mQ) — log j  eh^ d Q x (x).
E

The inequality (2.25) follows from Jensen’s inequality since f E qI(o,oc)((l)dQx  
=  1. W ith  h&E* arbitrary, (1.4) implies (2.24). □

P ro o f  of Lemma 2.1. Let rriq = [E xdQ(x) if / 'h{x)d.Q(x) =  h { r r i Q )  

for every h £  E* (and otherwise (E xdQ(x) undefined). In particular, t i i q  — x 
for Q = 8X and any x £ E. Let fl(C') = {Q £ M\(E) : JF xdQ(x) £ C} and 
n 0(C) =  n(C) n { Q e  M \(E)  ■. Q(Km) = l for some m  1}. The condition
(1.5) implies in particular th a t D intersects the convex hull of the support 
of Q x ■ Therefore, applying [4, Theorem 3] with C = D and noting that 
n 0(T>) Q Tlo(D) L n(D ) we have that

(2.26) inf_ H(Q\Qx) = inf_  H(Q\QX ) =  inf H(Q\QX ) <oc.
Qen(D) Qen0(D) QeRo(F>)

Then, by (2.26) and [4, Lemma 3.3]

(2.27) inf_ H(Q\QX )=  inf H(P\PX) = inf H(P\PX )=  inf H(P\PX ).
Qen(D) pen Pen Pen'

By (1.6) and Lemma 2.2 we have

(2.28) inf_ H ( Q \Q x ) ^  iifi \ (x )  = \{a0).
Qen(D) x e ü

Furthermore, P* £ II since by (1.10)

j  OdP* = j  xd.Q*[x) = a0 e  D.
y .  'e

Thus, we get (2.23) by combining (2.20), (2.27) and (2.28). In particular,
H(P*\PX )=  inf H(P\PX ) < oo making P* £ fl the /-projection of Px  on fí. 

Pen
Suppose Pm £ IIQ II is such that

YimH(Prn\Px )= inf H(P\PX ).
rn Pell



REFINED GIBBS CONDITIONING PRINCIPLE 119

Since P* is the (generalized) /-projection of P\- on IT. (2.27) implies that
lim ||Pin — P* || var = Ü. Consequently, by definition, P* is also the generalized m
/-projection of Px  on n. □

Remark. The proof of Lemma 2.1 implies that P* of (1.9) is also the 
generalized /-projection of P \  on II' of (1.2).

3. Proof of Theorem 2

Since E  is uniformly (1 + a)-smooth with respect to || • ||, by scaling (1.13), 
for all x ,y  G E

(3.1) \ \x \n \x  + 2/|| + ||z -  2/||] £ 211*111+" + C||?/||1+°.

Let ao G dD be a possible dominating point for D = {x : ||x — a|| < R} and 
R  > 0. Set xq = a — ao, with D — no the open ball of radius R. =  ||.xo || centered 
at .To. Then. /  G E* satisfying (1.7) is such that (D — ao) Q {// : f{y)  > 0} 
and in particular f ( x o) > 0. Scale /  so that f ( x o) = 1. Set fi = 1/2 and 
/5 =  0.5Z?.C'-1/(1+Q> for C of (3.1).

Let y be such that f(y)  =  0. Then, / ( —?/) = 0  so —y ^ (D — ao) implying 
112/ +  x'o|| ^  R  - For 0 < .s < and x  =  sxq — xq we have

(3.2) ||a : - 2/|| =  ||?/ - z | |  ^ H2/ +  Z0 II -  ||anto|| ^ (1 -  s ) R =  ||z||.

In particular, for our choice of s, x  and y , by (3.1) and (3.2)

\\x +  y \ \ i ( l - s ) R  +  2 C \ \y \ \ l + a R - n .

By our choice of ß, for ||2/|| < pTn(s) the above implies

| |y  +  s x q  —  zo ll ^  (1 - • ‘>’ +  2 _ a .s)||.'E0 || <  ||z o | | ,

and consequently,

(3.3) {y + sx0 : f{y) = 0, ||y|| < ßra(s)} g { D -  a0).

Since each possible dominating point «o G dD satisfies (3.3) for /  G E* sat­
isfying (1.7) and the above choices of x.q, ß , fi, it follows that D  contains 
slices whose diameters dominate ra(s) near every possible dominating point 
ao G dD. □

4. Proof of Proposition 1

For D this is a special case of [5, Proposition 2.12], Indeed, by Lem­
ma 2.1, P* of (1.9) is then the generalized /-projection of P \  on the almost
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completely convex El of (2.22) with \og(dP* /  dPx)  — H(P*\Px) = g(6 {-) — ao) 
by (1.8), (1.9) and (2.20). In particular, the latter random variable is 
in L 2 {P*) by (1.3), and its characteristic function assumed in Lp(E) for 
some p E  [l,oo). In the setting of parts (ii), (iii) and (iv) of Theorem 1, 
n -1/2| log P{Ln € IT) +  nA(ao)| —í► 0 (see Proposition 3), which implies the 
lower bound of [5, (2.13)] and the conclusion follows from [5, (2.14)].

We next extend [5, (2.14)] to the case of vn, E d D , that is, fixing l =  e-1 
a positive integer and n = l,k we prove that ||P£ t..n/ — (P \')fc||var is bounded
away from zero. To this end, the assumption that for /  E E* satisfying (1.7) 
the characteristic function of f ( Z  — ao) is in Lp(E), some pE  [1,oo) allows 
for scaling such that J f ( z  — ao)2dQx(z)  = 1. Moreover, with (j) denoting the 
standard Normal density, as in [5, p.10] the conditional probability densities 
Pn(y\v) of Yn = k~ll2 f {Tk) given Vn = n _1/2/(T n) converge to =
(f>((y — v/eu)/yj\ — e ) /\ / l  — e uniformly in y and uniformly on compacts in v. 
For h: E —> [0,1] monotone increasing, so is v i-> f  h(y)'ipt {y,v)dy. Fix h =  
l[_i,oo) and r/ > 0 for which (1 -  rj) f  h(y)ipt {y, 0)dy > f  h{y)<f>{y)dy. By our 
assumptions, (2.2) holds, so we set K  < oo such that (ß(y)dy ^  pi) for 
p > 0  of (2.2). Then, by (2.2) and the CLT for Vn

lim inf P(Vn g K \L n E U ' ) ^ 1 -  limsup ^  ^ 1 -  rh
n-foo 71-400 P\Pn  t  11 )

Since L n E II' implies that Vn > 0, it follows that

lim inf E(h(Yn)\Ln E II') ^  lim inf P(Vn ^ K\Ln E II') inf /  h(y)pn{y\v)dy
n—too 71.-400 OSvSK J

(4.1)

1 (1  - y )  inf /  h{y)xpe{y,v)dy>  /  h(y)</>{y)dy. 
y=o j  ./

The CLT for Yn implies that E(h(Yn)) —>• f  h(y)<f>{y)dy. In view of
(4.1) , \\C{Yn\Ln E n ')  -  C.(Yn)||var is bounded away from zero, hence so is
l i n i n '  - ( p * ) * l l v a r -  □

5. Proof of Proposition 2

From Proposition 1 we know that k(n) = o(n) is necessary for (1.12), 
where Q x  Gaussian implies the same for Q* (see (1.9)) and in particular 
f ( Z  — a0) being Normal(0, aj),  some aj  > 0, has a characteristic function in 
LP(R), all p.

In case m E D : the sufficiency of k(n) = o(n) for (1.12) has already been 
shown. Assuming hereafter that m £ D we rely on the following representa­
tion.
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Lemma 5.1. For IT' of (1.2), P* of (1.9) a n d l ^ k ^ n ,

(5.1) dpx k\n>/ v  v  , _  E(hn(Tn)\Tk] 
d(P*)k 1’" - ’ k) E[hn(Tn))

where Tk =  Yli=i(@(Xi) — «o) .for X, i.i.d. of common law P* and hn(x) = 
^-n(D-ao)(x )e ~ 9(x) ■

P roof. By (1.9),

d(Px)n
d(P*)Tl (Xu . . . , X n) = e -n \(a 0) e ~g(Tn)

whereas by (2.8),
E[hn(Tn)\ = P (L n £ U')enX(ao), 

so that for every AQT,k measurable,

E[hn(Tn)}Pxk]n,(A) = I  hn(Tn)d(P*)n( X u . . . , X n)

= I  E[hn(Tn)\Tk]d(P*)k(X 1, . . . , X k),
A

out of which (5.1) follows. □
Since Q*(- +  ao) is a centered Gaussian measure, we observe that Tk = 

r tW ' , Tn = r ( tW '+  \ / l  — t2W) for W, W  i.i.d. of law Q*(- +  ao) where r  = \/n 
and t =  s / k / s/n. In particular, with y £ E *, the law of g(Tn ) given Tk is 
Normal (rig (IP'), r"2(l — t2)o2) where a 2 = f  g(w)2 dQ* (w + üq) > 0 .

For v = a ~ 2 ( wg(w)dQ*(w+a,o), clearly W„ = W —y(W)v  is independent 
of g(W) with g(v) =  1 and g(W0) = 0. For u ^ 0 and z £ E  such that g(z) = 0 
let

(5.2) pr (i, z, u) =  P(r~luv + tz + s/l  — t2W0 £ r(D — oo)).

Then, with IP' =  W  — g(W')v we have

N,-(t. W )
(5.3) E[hn(Tn)\Tk\ =  r{ ’ ’

a(JT

for

(5.4) Nr{t,W') = {l - t 2 Pr(t, Wé, u)du
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(recall th a t n{D -  «0) ^  {x : g(x) > 0} and (j) denotes the standard Normal 
density). Moreover, E[hn(T„)\ is obtained by setting t — 0 in (5.3) and (5.4) 
(in which case both Ay (0, W )  and /;,((). W'(),u) are non-random).

Suppose next that for any z £ E  such that g(z) =  0 the limit

(5.5) h(u) =  lim lim pr(t, z , n),
t—>0 r->00

exists, does not depend on z and is such that L°° e~uh(u)du = r/ > 0. I11 par­
ticular, considering t. — 0 we have Nr(0, W )  =  ,/Vr (0) —> g (by bounded con­
vergence). Moreover, (27t(1 — t2 ))l/2Nr(t, W )  ^  sup/>,.(£, W'0,u) ^ 1, hence

(5.5) implies that Nr(t, W r)/N,(0)  —> 1 in L2 as r  —> 00 followed by t -> 0. In 
particular, by Lemma 5.1,

(5.6) H(Pxk]n,\(P*)k) = E
N r(t, W )  ,

. iVr(0) g V JVr(0) J ->0

as r  — n 1/2 —> 00 followed by t =  (k /n )1^2 —»• 0. Since k i-> if(P.y*|n'|(-P*)fe) 
is monotone non-decreasing (for n  fixed), the convergence to zero in (5.6) 
implies that (1.12) holds for all k = o(n).

We turn now to verify (5.5), first in case (E , || • ||) is a Hilbert space 
and (D  — ao) = {x '■ ll-7: — .x'o|| < ll-',:o||}- Since g(x) > 0 for all x £ (D — ao), 
in particular. ||y + xoll ^  ||:ro|| when g(y) = 0. Hence, xq is orthogonal to 
the closed, linear subspace {y : g(y) — 0} and for c = g(xo)-1 > 0, by the 
Pythagorean theorem,

,5 J, Pr(t, Z, u) = P(\\r~lu(v -  CXq) + tz  +  \ / l  -  t2W0 \\2

<  [2cm -  (cM/r)2]||.'r0||2).

The representation (5.7) implies that (5.5) holds for

h(u) = P{\\W0\\ < (2cii)1/2||s 0||)

with 77 =  P(exp( —II W„||2/(2 c||x0||2))) > 0.
Next suppose

(5.8) (D -  ao) =  {y +  sxo : f (y )  = 0, ||y|| < |0s1/(1+a), 0 < a < 6}
for a  =  1, some /?, á > 0 and /  satisfying (1.7) such that /(x'o) > 0. With no 
loss of generality take /(•) = g{-) and assume g(x0) =  1. It is not hard to 
check that then, for v' — v — xq and z such that g(z) =  0,

(5.9) pr(t, z,u) = P{\\r 1 uv' + t z + y / l  — t2 W0 1| < ß u ^ 2) l ^  Sr2)(u).

In case W(, =  0 a.s. we get (5.5) for h(u) = l u>o with g — 1. Otherwise, the 
continuity of p>-> P(||W„|| ^  p) yields (5.5) for h(u) = P(||W 0|| ^ ßu ]̂ 2) such 
tha t 77 =  P(exp(—||W0||2//32)) >0.
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Finally, we turn to show that (1.12) fails for some k(n) = o{n) when 
a  < 1 in (5.8) and Q \  (hence also Q*) is supported on an infinite dimen­
sional subspace of E.  First, let Qoo,t., t € [0,1) denote the mutually singu­
lar centered Gaussian laws that (,?*(•+ «o) induce on Vl  -  t2(W — f](W)v). 
For the rest, of the proof we forgo the change of measure, instead carrying 
out all computations for X L i.i.d. P\ . In particular, for Un =  g(Sn) and 
Sn =  n_1/2 -  a0) (with Xt i.i.d. Py), note that Q0Oi0 is also
the law of Wa =  Sn — Unv (independent of n) and that Un ~  N ( —ß\r,  
for some g.\ > 0 , 0, is independent of W„. Moreover, with W '0 an i.i.d.
copy of W0, both independent of Un, the law Qr t that PA-<,|n/ induces on
(5fc — Ukv) is the same as the law of tW„ +  \ / l  — t2W '0 conditional upon 
Ar = {W0 + Unv G r(D — a0)}.

We next show that the conditional law of W() given A, concentrates at 0 
for r —> oo. To this end, by the independence of Un and W„,

qr(w) — P ( A r I W0 = w)  = P ( w  +  Unv G r(D -  ao)) 
=  P(||'u> + Unv'\\ < ß(raUn)l^ 1+a\ U n < Sr)

(compare to (5.9)). If ||w|| ^45 then

QrW ^  P(Un Z r~a(3b/ß)l+n) +  P(Un I  b/\\v'\\), 

whereas if ||tti|| ^  b then

qr(w) ^  P(Un ^  r~a(2b/ß)l+n) -  P(Un ^  b/\\v'\\) -  P(Un i  Sr).

Since P[Un ^  ar)/P(Un ^  c ,) —> 0 for every ar,cr ^  0 such that r(ar — cy) 
—> oo, it follows that for any b> 0,

(5.10) lim
r —>oo

sup qr{w)
||u;||^46

inf
IMIifc

qr(w)
=  0 .

For every 6 > 0, both P(||W 0|| 5í b) > 0 and

P(\\W0 \\Z4b\Ar)Z
P(Ar \\\W0 \ \Z4b)__________
P (A r \\\W0 \ \ ib )  P(||W0||^ft)-

Hence, by (5.10) also

(5.11) P ( ||W0\\ > b\Ar) = P{\\Wo\\ > b\W0 +  Unv G r(D -  a0)) -> 0 V 6 > 0.

This in turn implies that Qrj  -> Qoo,t with respect to the (^(F^-topology on 
M\{E)  for any fixed /G (0,1). In particular, by the lower semi-continuity of 
tf(-|Qoo,o) and mutual singularity of {Qoo,/} w0 have

(5.12) lim inf H (Qr,t|Qoo,o) ^ #  (Qoo,/|Qoo,o) = oo.
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Since H (Qr,<|Qoo,o) is the relative entropy between the measures induced on 
(Sfc — UkV) by í â'A|n' and by (P*)k, it follows from (5.12) that

lim H(PXk\ni\(P*)k) = oon 1

for k =  n t 2, and arbitrary fixed t>  0. Of course, (1.12) then fails for some 
k(n) — o(n). □

R emarks.
(I) By the above proof, (1.12) fails for some k{n) — o(n) in any set D for 

which (5.11) holds.
(II) Suppose Qx is non-Gaussian, the characteristic function of g(Z — ao) 

is in LP(R) for some p<  oo and (5.5) holds for

(5.13) Pr[t, z, u) = P ( r~ lTr2 G r(D — a0) |r -1Tt2r2 = tz,g(Tri) =  u)

with J0°° e~uh(u)du > 0. Assume moreover that p,.(0,u) =  P(r~ lTr -2 G 
r(D — ao)\g(Tri) = u) —> h(u) when r —> oo. Then, (5.3) and (5.4) hold, now 
with W '0 =  W  and (/) denoting the density of (n — k)~l/2g(Tn —T^)/ag. Since 
these densities converge uniformly to the standard Normal density (see [5, p. 
10]), similarly to the above proof we again have (1.12) holding for k(n ) =  o(n).

(III) Suppose Q*(- +  a,o) is the standard Gaussian measure on E  — Md, 
d íí 3, equipped with the Euclidean norm. Consider the open cone 
(D  — ao) =  {y + s.To : g{y) =  0, ||y|| < s} corresponding to a  =  0 in (1.11), 
with g(-) the 1-st coordinate projection and xo the associated (1-st coor­
dinate) unit vector. Then, <7(J = 1, v = xo with Wa a standard Gaussian 
variable on the (d — l)-dimensional linear subspace {y : g(y) =0}. Here we 
get p r(t,, 2, u) = P{\\tz + V i  — t2IE0|| < r _1u) (compare with (5.9)), and (5.5) 
is no longer useful. Nevertheless, for some Cd- 1 > 0

lim lim r d_1p, (i, z, u ) =  lim Cd-\{u/ \ / l  — t2)d~ l exp(—0.5||iz||2/ ( l  — t 2))
t—>0 r—¥oo ' t —>0

= Cd- 1ud~1.

Hence, we obtain (5.6) and thus (1.12) holds for all k = o(n). Note that here
oo

nd/2P{Ln G n V lA(uo) =  ------> <= ^  I  e~uud~1du.
V y/2^  .1

o

So, in this example the conclusion of [5, Proposition 2.15] holds although 
condition (2.16) of [5] fails.

(IV) Suppose Qx  is Gaussian and D satisfying (1.5) contains slices whose 
diameters near ao dominate r Q(s) for some a  G (0,1). Then, for 6 > 0 small
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enough and all u 6 (0, Sr2)

pr (0, z,u) Z P(\\r~luv' + W0 1| < ß(ra~lUy ^ 1+a))
^  P(\\W0\\ <0.5ß{ra~lu y ^ l+a))

(compare to (5.9)). In particular (see (5.4)), considering brl~a ^  u 2brl~a,
for any b 6 (0,1) and r large enough

OO

P ( L n  €  n ' ) e n A ( a o )  =  —  /  e “ > ( — )pr{0 ,z,u)duogr J ayr

^ 6exp(—3r1-“&)P(||W0|| < 0.5/55),

implying that (2.1) holds without the logn terms and with C\ > 0 arbitrarily 
small. As in the proof of Theorem 1, it follows that k(n) = 0 (n^1+Q)/2) 
suffices for (1.12) to hold. In particular, this is the case for non-empty open 
balls in a uniformly (1 +  a)-smooth (E, || • ||).
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FUNCTIONAL DEPENDENCIES IN RANDOM DATABASES

J. DEMETROVICS, G. O. H. KATONA, D. MIKLÓS 
O. SELEZNJEV and 13. THALHEIM

To the memory of Alfréd Rényi

1. Introduction

A database can be considered as a matrix, where the rows contain the 
data of one individual (object, etc.) and the columns contain the data of the 
same type: last name, first, name, date of birth, etc. The types of data are 
called attributes. These data are sometimes logically dependent. Consider 
the following example, where the attributes are the last name (denoted by 
a), the first name (6), the year of the birth (c), the month of the birth (d), 
the day of the birth (e), the age in years ( /) , the age in months (g) and the 
age in days (/?,). It is obvious that c determines / .  On the other hand, the 
pair {c, d} determines both /  and g, finally the set {c, d, a} determines all of 
/ ,  g and h.

This is formalized in the following way. Let R  be an m x n matrix with 
different rows and ÍI denote the set of its columns, that is, |0 | — n. Suppose 
that A C 0, b € il. We say that h functionally depends on A and write A -Ab 
if R  contains no two rows containing equal entries in the columns lielonging 
to A and different entries in b.

In most of the database theory it is supposed that the functional depen­
dencies A -A b are a priori known by the logic of the data, as in the above 
example. Our way of looking at, the situation is different. We suppose that 
we have to find the functional dependencies in a lai'ge database (both in and 
n  are large). If nothing is known about R, it, is natural to assume that the 
entries are independently chosen. The question is: what the typical size of 
the minimal sets A such that A -Ab is.

Thus the first, mathematical question is the following. Choose the entries 
of the matrix R totally independently, following the probability distribution 
(qi , . . .  ,q,i)- What is the minimum size / of A such that A - ) b  holds with * 0081
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high probability for any set A  C Í2, |A| ^ l and any column b 6  0? The answer 
is

2 Til
- lo g 2(9? + - - - + 92)>

as it is given precisely in Corollary 1. Theorem 2 generalizes this result for 
the case when the entries have different distributions in the different columns.

Section 2 develops a sieve method for estimating the probability of the 
event that all the outcomes of a many times repeated experiment are dif­
ferent. This result is applied for the rows of a random matrix in Section 3: 
Theorem 1 determines the asymptotic probability of the event that the rows 
of the random matrix are different. This theorem is of crucial importance in 
proving Theorem 2.

If A  is larger than the above critical size then A —> b holds with high 
probability for any given b. However, it will not be true for each element b of 
a large set fi. Theorem 3 determines the asymptotic size of the A’s satisfying 
A —> ÍÍ.

The method of the present paper is combinatorial. Paper [2] of the 
same authors contains similar (but not identical) results. The method of 
that paper is probabilistic, and uses the so-called Poisson approximation 
technique (Stein-Chen method, see [1]).

2. A sequence of experiments with different outcomes

We may obtain a counterexample for A —»■ b if the entries of two rows 
in the submatrix determined by A are equal. So the critical situation is 
when all these rows are different. This is why this section is devoted to the 
probability of the event th a t all the outcomes of a repeated experiment are 
different.

Let E U. . . , E S be mutually exclusive events with respective probabilities 
P l , . . . , p s, where Yhi=\Pi =  1- The distribution is denoted by p. Choose 
independently, m  times, from these events with this distribution. That is, 
P(£j =  Ej) =pj  is supposed for all 1 ^ i ^ m  and I Si j  ^ s. Moreover, the £’s 
are totally independent. Let P(//,,m) be the probability of the event that 
£i, • • •, Cm are all different.

Lemma 3 is the main result of the section giving good estimates on
P{p,m).

For an arbitrary sequence of outcomes a trivial graph can be defined. 
The outcomes are the vertices and two vertices are adjacent if they have 
the same value. This is why we consider the following graphs. Our goal is 
actually to estimate the probability that this graph is empty.

The vertex-disjoint union of complete graphs with resp.,
vertices is denoted by G ( m i , .. .  ,mr). A graph consisting of vertex-disjoint 
edges is a matching. The vertex-disjoint union of a matching and a path



FUNCTIONAL DEPENDENCIES IN RANDOM DATABASES 129

consisting of two edges is called a V-matching. Finally, the vertex-disjoint 
union of a matching and a path consisting of three edges is an N-matching.

Lemma 1. Let m i, . . .  ,m r (O^r) be non-negative integers. Then

(!) E (-!)'+ E 1+ E l=0'
matching of j  edges V-matching N-matching

where the matchings, V-matchings and N-matchings are arbitrary subgraphs 
of G (m i , m 2 , . . . ,  rnr ).

PROOF. 2 ^ m; (1 ^ i ^  r) can be supposed. Two cases will be distin­
guished.

(i) m\  =  m2 =  • • • =  m r = 2. The number of matchings of j  edges in 

G(2 , . . . ,  2) is f  . ] therefore the left-hand side of (1) is

which is 0 if 0 < r  and 1 if r  =  0.
(ii) One of the m ’s > 2. An injection will be given from the set of all 

negative terms into a set of some positive terms in (1). Actually the injection 
will be defined on sets of subgraphs of G (m i,m 2,. . . ,  rnr). A negative term 
is generated by a matching M  o f f  edges, where j  is odd. Suppose that there 
are at least two edges of M  in one of the components of G(mi, m 2 , . . .  ,m r). 
Join any two endpoints of these two edges by a new edge. The injection 
assigns this N-matching to M.

Suppose that no component of G(mi,  m 2, ■.. , mr) contains at least two 
edges of M  but there is a component with at least 3 vertices and containing 
exactly one edge of M.  Then this edge will be replaced by a pair of adjacent 
edges in the same component. As the number of such pairs is ^  the number 
of edges in a complete graph on ^ 3 vertices, this can be defined as a part 
of an injection. (Actually the assignment can be made in such a way that 
the pair contains the edge, however, this fact is not needed and its proof is 
somewhat more difficult.)

The only remaining case is when all components with at least three 
vertices are disjoint to M.  Then add an edge of this component to M.  This 
matching contains an even number of edges therefore it generates 1 in (1).

It is easy to see that the function defined above is an injection and it 
assigns positive terms to negative terms, proving (1). □

LEMMA 2. Let m \ , . . .  ,m T (0 < r)  be non-negative integers, at least one 
of them is ^  2. Then

(2> Y. (-1)'-1- E (-D+ E
matching of j  edges V-matching of N-matching
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where the matchings, V-matchings and N-m,atchings are subgraphs of 
G { m i ,m 2, . . .  ,m r ).

P r o o f . The proof is analogous to the previous one. The only difference 
is tha t here the injection assigns a negative term to a positive term generated 
by a matching of even number of edges. □

Lem m a  3.

LfJ

i + E
1=1

771 — 2j +  2 
2

i = l

[  m . ~ 3 j

E l f  m \  f  m, — 3\ ( rn — 5
J\ l 33= o j  X

L ^ J

'in -
r  *)(£«*) ( £ * ) ' -

E l frn\  ( rn — 4 \ f m  — 6
J \i=0 j! V4

rn — 2j — 2\

i —  1 Z — 1

; ( É r f ) ( É r f ) ' s
Z — 1 Z = 1

(3)

I — I

s - E ^ C
rn\ f m  — 2

^  j! V 2
.7 =  1 ^  V

771 —- 2j + 2
2

L ^ J

E j1 ( m \ ( m  — 3 \ A n — 5
j! V 3l=o

[m~4 j
2 1 / m \ f  m — 4 \  f  m  — 6

771 — 2 j  — 1 
2

(E*0’+i=i

(Érf)(Érf)‘
i = l  1 = 1

+

E i
l=o 1- \4 2 m' 2/ ' 2)  (E r f )  ( E ^ ) '

i = l  i = 1

P r o o f . P(p,m) is the probability of the event that £1, £2, • ■ •, £m are all 
different, that is, one minus the sum of the probabilities

(4) P($,u = EVk if u e c k),

where C\, C2, ■ ■ ■, Ct is a partition of { 1 ,2 ,..., m} with at least one C having 
more than  one element, and v i , v 2 ,Vt are different elements of { 1 ,2 ,... ,  s}. 
Such partitions will be called non-elementary.

P(p,m) contains the probabilities in (4) with zero weight, therefore if 
they are counted with the weight given in (1) then it leads to an upper 
estimate. Consider the sum

s í  E (-1)J+ E 1+ E 1Jx
p a r t i t i o n  y m a t c h i n g  o f  j  e d g e s  V - m a t c h i n g  N - m a t c h i n g  J
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(5) xP(Zu = EVk if ueCfc).
If the partition is the elementary one, then the inner sums are empty with one 
exception, the empty matching. This leads to the sum of the probabilities 
where all £’s are different. Therefore (5) is the sum in which the probabilities 
of the events, where all £’s are different stand with weight 1, while the other 
probabilities stand with a non-negative weight. Consequently, (5) is an upper 
estimate on P(p,m ).

Change the order of sums in (5).

E (-1)" E P(Zu = En. i i u e C k)+
m a t c h i n g  o f  j  e d g e s  p a r t i t i o n

(6) +  £  £  p (i» =  EVk if u  € Cjt) +
V - m a t c h i n g  p a r t i t i o n

+ E E P(6/ = EVk if U (z Cfc),
N - m a t c h i n g  p a r t i t i o n

where those partitions are taken for which the given matching is a subgraph 
of the graph generated by the partition. Consider

E  P ( Z u  =  E V h i f u e C k )
p a r t i t i o n

for a given matching of j  edges. This is nothing else but the probability of 
the event that the £’s adjacent in the matching are equal:

i= 1
The number of matchings with j  edges is

1 ( rn\ ( m  — 2\ ( m  — 2j  + 2\
ß \ 2 j \  2 ) " (  2 J '

This gives the fifth row of (3). The second and third rows of (6) lead, in a 
similar manner, to the sixth and seventh rows of (3), resp.

The lower estimate is proved in the same way. □

3. Random matrix with different rows

The Lemma 3 will be used for random matrices. Let R  be a random 
matrix with m  rows and z columns, where the entries of the j t h  column 
can have dj different values with probabilities qji , . . . ,  Qjdj, respectively. All 
the entries are chosen totally independently. Then the probability of the 
occurrence of a certain row in R. is <7h, (/2i2 ■ • • <hiz, where ij is arbitrary 
between 1 and dj. The probability distribution of these sequences will be 
denoted by nz. The following trivial observation will be used later.
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Lemma 4. I f m ^ m 1 then P(irz,m) ^P(7r2, m').
We want to study the probability of the event that the rows of the above 

m atrix are different. Therefore the probabilities qn 1(]2i2 • • • qziz will be taken 
as p ’s in Lemma 3. Consider •_ 1 p-: for these probabilities:

Y  ( Q U i Q 2 Í 2 • • ■ Q z i : ) k  =  Y  9 i t , 9 2 i j  ■ ■ ■ Q kz i z

( 7)
l=*i =di,—,l^z- ̂ dz 
z

-  J J tó i  d------ b Qidt)-
Í— 1

Our investigations will be of asymptotic nature. From now on it is sup­
posed that m  tends to the infinity and the other parameters depend on m : 
z = z(m),di  = di(m), qij — qij{m). Our asymptotic assumption on them will 
be such that the first non-trivial term in the Lemma 3, that is,

(8) m 2 Y  Pi = m2 I l t ó  +  ' "  +  Qidi)
i—1 j=l

tends to a non-zero constant. It will be done in a logarithmic way, therefore
the quantities log((/j21 -I------ f- qfd.) will play an important role.(log will always
mean log of base 2.) Denote the distribution (q n , . . . , q ^ )  by k,-. Rényi
[3] introduced the so-called entropy of order a. For a — 2 it is H2 (k) = 
-  log (q\ + --- + qj) if qd).

Lemma 5. If
Z

(9) 2 log m — £ > < * )-► < >
2 —  1

when m  —> oo then

(10)
3 =  1

H P
ß

m  — 2 j  + 2 
2

tends to
e- 2 u — 1

for the distribution nz .
P roof. Consider the limit of one term for a fixed j.

m m  — 2 m  — 2 j  + 2
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can be replaced by
rn2j
I T -

On the other hand

( É xO ' - í - 'E L ,  «*<*«>
i= 1

follows by the definition of the entropy of order 2 and (7). Therefore the 
limit of the j t h  term in (10) is the same as the limit of

( 11) ( iy  oji 2loRm~ r . - 1

that is,
( - l ) J 2.7(g-n

i!
(9) implies that the sum of (11) and therefore (10) are uniformly convergent, 
hence the limit of (10) is equal to the infinite sum of the limits of its terms, 
that is,

E
3 = 0

í z l l í 2fia-l) □

We want to show that the other terms in the lower and upper estimates 
of (3) tend to zero under condition (9). Before proving that some other 
lemmas are needed.

LEMMA 6 . I f  k = ( q i , , q(i) is a probability distribution, where e ^ qi, q2 

(0 < e ^ 5) then

( 12) ^  1 — 4 e ( i .

P roof. Consider the difference of the denominator and the numerator:

Y 9?+3 Y +3E qiqj+6 Y qhfal - (Y q(>+2 E qiqj I =
i= 1 i<j i<j i<j<k i=l i<j

 ̂ Y qiqj+Y q>qj -2 Y qtqj + 2E (^+ =
i<j i<] i<] i < 3
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= Y  fa j tá i  +  9j -  2gigj) +  2 J ^ (qfq] + qfq]) ^
i<j i<j

^ 2 q \q i+ 2 q \q \ ) ^ A e &.
Using the fact that the denominator is at most 1, (12) easily follows. □

Lemma 7. If k = (qi, . . . ,  q,i) is a probability distribittion, where e ^ qi, q2 

(0 <  e ^ then

H a t
(13) i=l

/  « XA
( E " ?\  = 1 '

< 1 -  2e4

PROOF. The proof is similar but easier than the previous one: 

d d
Y d+2 51 faj ~ Y =
j=i i<j i= 1

□

=  2 Y ^  Qi (l j  =  2^i <?2 =  2£4 •
i<j

Lemma 8. 7/(9) and

(14) £ = qn,qi2 hold, for all i with a fixed e ^0 < e ^

i/ien the second and third, rows of (3) tend to zero.
PROOF. The jth term of the second row of (8) can be upperbounded by

/  2  \  /  Z  \  Í

(15) " '3 IJ(<L31 d------ f  f l u ) ( m2 I I ( ^  ------*■ Qidi)
i= 1 i— 1

The second factor tends to
2J'(a- 1)

j-
as we have seen in the proof of Lemma 5. (9) implies

Z

(16) m 2 JJ(g^ 4------- 1- qfdi) 2“
i=l
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therefore the first factor of (15) can be expressed as

(17) m m
i= 1

-̂----- f (iul, ) =  m
2=1

di
, di ,\ 3 * £  4z«s) n

j = 1
, di N 3

j = 1 /  i=1
( £ « & )

3

The first factor of (17) tends to 25“ while Lemma 6 gives the upper bound 
(1 — 4e6) 5 for the second factor.

The conditions of the lemma imply — log(2£:2) thus (9) results
in 2 —► oo when m —»oo. (1 — 4e6)5 and consequently (17) tend to zero. By 
the uniform convergence, the infinite sum of (15) and the second row of (3) 
also tend to zero.

The convergence of the third row can be proved in the same way, using 
Lemma 7. □

T heorem 1. Let R  be a random matrix with rn rows and z columns, 
where the entries of the j th colum,n can have dj different values with proba­
bilities qji, . . . ,  qjdj, respectively. All the entries are chosen totally indepen­
dently. Suppose that (14) holds. Then the probability of the event that the 
rows of R  are all different satisfies

(  z
0, if 2 log rn -  H2{kí) -a + cx3, 

2=1
-2“- 1 2

if 2 log rn -  Y, H2(kí) -A a, 
2=1

1,
Z

if 2 log m  — H2(kí) - + - oo.
. 1=1

P roof. The middle row of the statement follows by Lemmas 3 and 8. 
The first, and third rows are consequences of Lemma 4. □

In [4] Rényi proved a theorem on random matrices in connection with 
search theory (see also [5] and [6]). It is basically equivalent to the special 
case of the above theorem when nfs  are the same. His method was different.

Remark. The condition that each distribution contains two ’’large” 
probabilities (e qu, qt2) was important in the proof. This is shown by 
the following example. Let «j =  (5, 5m» ■ • • > 2m)- ^ ien t îe left-hand side of
(12) is

2m  \  /  m - 1  \
(m + l)2 /  \  m 2 +  m )  '

which is not bounded from 1. Take z = log m. As H2(kí) —> 2, (9) holds with 
zero. However, the second factor of (17) does not tend to zero. (3) cannot 
be used.
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Another example is - K , . . . , -K). We do not know, however, if
i f i  TYi n n

the statem ent of the theorem holds for these and similar distributions. □

4. Typical sizes of functional dependencies and minimal keys

Let P (/j,,m,k) denote the probability of the event that exactly k pairs 
of £ 1 ,... ,£m are equal to each other and all other pairs are different. (More 
precisely: there are 2 k distinct indices and j i , - - - , jk  such that
h, = tj,  for all 1 5ÍI Ű k, but ^  £jm for all / ^  m, & ^  and & ±  £jt if

LEMMA 9. Suppose that k is fixed, in tends to infinity and (14) holds.

ways to choose the set { i \ , . . .  ■ ,jk}- Suppose that ii =  l , i i  =  2 , . . . ,
ik =  2 k  — 1 ,jk = 2k and determine the probability of the event that £1 = 
£2,. • • ,£2*-1 =  (,2k- The probabilities for the other choices of pairs will be 
the same. It is easy to see that

We need the kth power of this expression. Finally, £1, £ 3 , . . . ,
&k+i, &2A:+2) • • • i Cm must be all different. The probability of this event is 
P(7t2, m  -  k).

Then

P r o o f . There are

P(7rz,m , k)

(18)

The last factor is asymptotically equal to P(7r2,m ) since logm -  log(m — k) 
—» 0. Therefore Theorem 1 gives its limit. The limit of the product of the 
other factors of (18) was determined in the proof of Lemma 5:
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LEMMA 10. If (9) and (14) hold then the probability of the event that 
there are three equal £ ’s tends to zero.

P roof. The sum of the probabilities in Lemma 9 tends to 1. □

Let if denote the set of columns of the matrix R. Suppose A C if, b £ 
if — A. We say that b functionally depends on A if R. contains no two rows 
equal in the columns belonging to A and different in b. In notation: A —> b. 
For sake of simplicity b is supposed to be the 6th column.

T heorem 2. Let R  be a random matrix with m rows and n = n(m) 
columns with the distribution described above f(14) holds, again). Suppose 
that A z is a set of z = z(m) columns of R and b is a column not in A z.

P(Aj -7 6, m) -7 <

0, if 2 log m ~ Y )  H2(kí) —> Too, 
2 =  1

e2" 1(2 1}, if 2 logm ~ Y )  H2(k,í ) ^>a,

1,
z

■if 2 logm  -  H 2(Ki)  -7 -oo .
1=1

P r o o f . Consider the restrictions of the rows of R within A z. These 
rows of length z define a random partition 7 =  (m i,. . . ,  mr ) of m,  where one 
class consists of the equal rows. Suppose (mi ^  ...  ^ m r). S tart with the 
well known equation 
(19)

P (A2 -7&,m) =  P(A2->6|7 = ( m i , . . . , m r) ) P ( 7 = ( m i , . . . , m r)).

The right-hand side of (19) will be divided into two parts: (i) m i ^  2, (ii) 
mi ^  3. For case (ii) the following trivial inequality is needed:

( 20)

^ 2  P{Az -+b,m\'y = (ml , . .. ,m r))P(7 = (m i,. . .  ,m r ))
mi S3,m2,...,mr

T ;  P(7 =  (m i,. . .  ,m r )) =  P(there are 3 equal ^’s).
mi ̂ 3,m2r .,iD,r

The last quantity tends to zero under condition (9) therefore case (i) should 
only be considered. More precisely, if (9) holds then the limit of "P(AZ —> b, rn) 
is equal to the limit of

Y ]  P(A2 —>6.m|7 = ( m i , . . . ,m r))P(7 = (m i,. . .  ,m r )).
m i ^ 2 ,m 2 ,. . . ,m r
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This expression can be rew ritten in the form

F  V(AZ —> b, m |7  =  (2 ,..., 1) (the number of 2’s is k))
k

(21) xP(7 =  (2,. . . ,  1) (the number of 2’s is k))

— b, rn|7 =  ( 2 , . . . ,  1) (the number of 2’s is A;))P(7r2,m , k).
k

Here

P{AZ —> b, m|7 = (2 ,. . . ,  1) (the number of 2’s is k )) — qlj) = 2 ~kH'^Kb\
.7 =  1

On the other hand, the limit of P(7r2,m, k) is given by Lemma 9. Therefore 
the limit of (21) is

-2°
OC

" E h
*.=0

^2(a-l)-li2(«i, ) ^  =  e2“- 1(2-"2

The middle row of the statem ent is proved. The first and third rows are 
consequences of the inequality P(AZ —> b, m ) ^  P(AZ —> b, in') for m  ^ m ' . □

COROLLARY 1. Let R  be a random, matrix with in rows and n — n(m) 
columns, where the entries are chosen totally independently with probabilities 
q i , . . . , qd- Suppose that A z is a set of z = z(rn) columns of R. and b is a

d
column not in Az. Use the notation — — log ^  q f . Then

2—1

P(A2 -» b, in) —» <

0,
„ 2 log m

if z ^  Too, 
B  2

11CM1>MCN 2 log mif z -T a, 
B -2

1,
2 logmif — —------z — oo.

H -2

The main content of the latter statement is tha t if A is a set of columns 
of size definitely larger than  21̂ s)™, then A - * b  holds with high probability 
for any b.

We say, in general, th a t B functionally depends on A and write A —> 
B (A .  B  Q 0) if A —> b holds for each element b of B.  Theorem 2 can be easily 
generalized for this case. We only have to imagine the set of columns in B 
as one column. It is worth supposing that AC\B =  0. Then can be
replaced by /^ (« b ) =  -^2 (««»)■

b e B
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Let us turn back to the case when k, does not depend on i. If the size of 
B  is finite, say u, then the Consequence can be generalized for A -> B, only 
— H2 should be multiplied by u. However, if |B| tends to infinity, then the 
middle probability becomes simply e- 2a"z-'

We say that A ^  0  is a key if A —> 0  (or equivalently A-+LI — A) holds. 
A is a minim,al key if it is a key and no proper subset is a key. The above 
reasoning proves the following statement.

THEOREM 3. Let, R be a random, matrix with m rows and n =  n(m) 
columns, where the entries are chosen totally independently following the 
distribution k. Suppose that n — tends to infinity and A z is a set of
columns of R. Then

P (Az is a, key) —> <

0 , if

na ff -) — 1
e if

1 , i.l

H2
2 log m 

Ho

H o

— z —» +00,

— z —> a,

1
— — z -> —00.

It can be briefly said that the sets A of size somewhat larger than 2 
are keys with high probability.
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BIASED POSITIONAL GAMES ON HYPERGRAPHS

D. DUFFUS, T. LUCZAK and V. RODL

Dedicated to the memory of Alfréd Rényi

A bstract

Let G (p, q, H ) be the game played on a hypergraph H by two players, who alternately 
choose p and q vertices, respectively. The object of the first player is to claim all vertices 
of a hyperedge of H, while the second player tries to prevent him from doing so. We 
give a sufficient condition for the first player to win G (p, q, H) played on an r-uniform 
hypergraph H  and argue that this condition is close to optimal. Furthermore, we answer 
a question of Galvin by proving that the first player has a winning strategy in G(1 , q, H)  
for each 3-uniform hypergraph H with chromatic number large enough.

Erdős and Selfridge [4] introduced the following unbiased game played 
on set systems: two players alternately pick elements of the sets, the first 
who chooses all elements of some set in the system is the winner. Csirmaz [3] 
introduced this biased version. Let p and q be positive integers and let H  be 
a finite hypergraph. The game G(p, q. H) is played by two players -  the first, 
suggestively called Maker, chooses at most p as yet unchosen vertices of H . 
the second, Breaker, chooses at most q unchosen vertices. Maker’s objective 
is to choose all vertices of an edge of H , while Breaker wants to prevent this. 
Players alternate choices until all vertices of some edge are chosen by Maker, 
a win for Maker, or until all vertices are chosen and there is no Maker edge, 
a win for Breaker.

Erdős and Selfridge [4] provided a sharp sufficient condition for Breaker 
to win G(l, 1 ,H).  Beck accomplished the same for G(p,q,H); earlier, Csir­
maz [3] obtained a weaker result. Beck proved the following [1, Theorem 1], 
Given a hypergraph H, let E(H)  denote its set of edges. If

1991 Mathematics Subject, Classification. Primary 90D46, 05C65.
Key words and phrases. Biased positional games, hypergraphs.
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then Breaker has a winning strategy for G (p,q,H).  Moreover, the result is 
sharp in the strong sense that for all p and q there are infinitely many H  for 
which equality holds above and for which Maker wins G(p,q,H) (see [1]).

In addition, Beck obtained a sufficient condition on H  for Maker to win 
G(p, q, H).  Given a hypergraph H  on v(H) vertices with d(H) the maximum 
number of edges containing a pair of vertices, he proved that if

/  \ ~ \ A\
(1) ( 1 +  “ ) >p1q1{p + q)~i d{H)v{H)

AeE(H) '  P '

then Maker has a winning strategy for G(p, q, H)  [1, Theorem 2]. In the case 
of r-uniform, simple hypergraphs H  with e(H) =  \E(H)\, this result amounts 
to following: if

( 2) e(H)> g2(p + q)
,n r  —  2

r—3
-v{H)

then Maker has a winning strategy for G(p, g, H).
In this paper, we improve the second result of Beck in the case of r- 

uniform simple hypergraphs for q large in comparison to p and r (see Theo­
rem 1, §2). As well, we show that this result is quite sharp by proving there 
are Breaker-win hypergraphs with only marginally fewer edges (see Theorem 
2, §3). In the last section, we show how Beck’s results can be used to answer 
a question of Galvin [5] (see Theorem 3, §4) and we pose related problems.

2. A sufficient condition for a Maker win

In this section we obtain an improvement of [1, Theorem 2] in the special 
case of uniform, simple hypergraphs. To that end, we employ some termi­
nology for analysis of the game G(p,q,H). Let us say that, during play, an 
edge is surviving if none of its vertices has yet been chosen by Breaker; the 
size of a surviving edge is the number of its vertices not yet chosen by Maker. 
A round of the game consists of Maker’s selection of p vertices and Breaker’s 
selection of q vertices.

T heorem 1. Let r ^  1, r ^  p and q ^ .2  be integers and let H  be an 
r-uniform simple hypergraph. If

e ( H ) ^ - ± - ( 2 q  + l )r- pv(H)
p+  1

then Maker has a winning strategy for G(p, q, H).
Compare Theorem 1 to Beck’s result in this special case, (2), to see the 

improvement for q large in comparison to p and r. Indeed, for q large, the
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right-hand side of (2) is of the form cp r̂v(H)qr 1, while Theorem 1 ensures 
a Maker win with c'Ptrv(H)qr~p.

PROOF. During the play of G(p, q. H ). after a round has been completed, 
three cases may occur.

Case 1. There is a surviving edge of size at most p.
Case 2. There is a vertex of H which belongs to more than q surviving 

edges, each of size at most p-1-1.
Case 3. All surviving edges have size greater than p and there is no 

vertex as in Case 2.
It is obvious that Maker has a winning strategy in both Cases 1 and 2. 

We argue by showing that it is not possible for Case 3 to hold after every 
round of G(p, q, H).

Let Hi be the hypergraph with vertex set V (H,) = V(H) and edge set 
consisting of all surviving edges of H after round i. Given an edge e € E(Hi), 
we let |e| denote the size of this surviving edge. Set p=  and define

/ m =  pie|-
efzE(Hi)

Observe that with Ho = H ,

f ( H 0) Z - ± - ( 2 q + l ) r- pprv(H).
p +  1

We complete the proof by showing that after round i. if Case 3 holds then 
there is a choice of p vertices so that no matter which q vertices Breaker 
chooses to complete round i + 1, / ( f / J+i) ^  f(Hj).  We proceed by induction 
on i and use the lower bound on /(Wo) above.

For each v € V(Hi), let d(v) — Yh(P^ '-v EeE  E(Hi)). Since Case 3 holds 
and f ( H i ) Z f ( H 0),

£  d(v) ^  (p + 1 )f(Hi) ^  (2q + 1 )r- vprv(H).
vev(Hi)

So, there is a vertex v with

(3) d(v)Z(2q + l ) r- ppr.

Maker chooses p vertices, including a vertex vq such that d(vo) maximizes 
d(v). Breaker completes round i + 1 by selecting w \ , W2 , ■ ■., wq. Let d'(vo) 
be the analogous value to d(vo) for H1+i. Maker’s choice of vq replaces each 
summand p ^  in d(vo) by p^ I-1 in d'(vo). Since Hi is a simple hypergraph, 
there are at most q edges in H, containing vo and one or more of the Wi s. 
As Case 3 holds, each edge of Hi has at least p-1-1 unchosen vertices before 
round i +  1. Thus,

d!(vo) -  d(v0) ^ 2q(d(v0) -  qpp+1 )•



Hence,

f ( H l+l) ^  f(Hi)  +  2q(d(v0) -  qp?+l) -  £  d(Wl).
i — 1

To prove that f (H i+1) ^ / ( f í , ) ,  it suffices to show that

<i
(4) 2qd(v0) -  d(wi) ^  2q2pp+1.

i =  1

But since d(wi) Ű d(vo) for each i, (4) follows from

(2q ~ q)d(vo) > 2q2p“+1

which is a consequence of (3). □
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3. Examples of Breaker-win hypergraphs

To construct Breaker-win hypergraphs with comparatively many edges, 
it is convenient to use a “continuous” variant of the Box Game analyzed 
by Chvátal and Erdős [2], In this game B(N;p,q),  there are two players, 
again Maker and Breaker. The game begins with N  empty bins of unlimited 
capacity. A move by Maker consists of pouring at most p units of a substance 
into any number of existing bins. Maker’s objective is to maximize the 
amount of the substance in any single bin. Breaker’s move is to destroy up to 
q bins. Breaker’s objective is to minimize the maximum amount in any single 
bin. Let b(N;p,q) denote the maximum amount of the substance that ever 
appears in a single bin, with measurement taken only after Breaker’s turns. 
Maker’s best strategy is, basically, to distribute the substance uniformly 
among all bins not yet destroyed by Breaker; Breaker’s optimal strategy is 
to destroy the q bins with the greatest content. It follows from [2, §2] that

(5) b(N-,p,q) ^  -  log N.
q

LEMMA 1. Let H  be a simple r-uniform hypergraph on n vertices, let 
p and q be positive integers, with q ^  2 and r > p ■ Suppose that

1 r-p- 1
q ^  conr~r (logn) T~v , where co = co(p,r). Then Breaker has a winning 
strategy in G (p,q,H).

P ro o f . Let, Ho = H  and let Ht be the subhypergraph of II  with V(Hi) = 
V(H )  and E(Hi) all edges of H  surviving after round i. In order to describe 
Breaker’s play in G (p,q,H),  we define r — j  — 1 games Bj(n-,pj,qo) (j  =
1,. . . ,  r  — p — 1), each an instance of the Box Game variant described above. 
Play in each round of each of these games is tied to play in G(p,q. H); we
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show how Breaker’s strategies in Bj{n;pj,q0) {j = 1,. . . ,  r -  p -  1) yield a 
Breaker win in G (p,q,H).

To define each Bj{n-,pj,qo), for each v £ V { H ) ,  let Cj(v) denote the 
bin corresponding to v. Edges of H  will be placed in these bins as play 
progresses; we declare that Cj(v) =  0 once v is chosen by Breaker and let 
\Cj(v)\ denote the number of edges in bin Cj{v) at a specified point in play.

Also, set qo = ■<-a

Proceed by induction on the rounds of G(p, q, H) to define play in it and 
in each Bj{n;pj, qo). Here is ith round play.

After Maker’s move in round i of G{p, q. H). Breaker’s play in the ith 
round of G {p,q,H) has three components.

(a*) Breaker chooses a vertex from each edge that contains at least two 
vertices chosen by Maker in round i. As Hi-i  is simple, this requires at most
(2) vertices.

Maker’s play in round i of Bj{n;pj,qo) consists of placing in Cj{v) all 
e € Hi -1  such that v G e, and such that e contains exactly j  vertices chosen by 
Maker, a vertex chosen by Maker in round i of G (p,q,H), and none chosen 
by Breaker in earlier rounds or as described in («,).

(bi) Breaker continues play in the ith round of G(y;. q. II): for each j  =
l , . . . , r  — p — 1, Breaker chooses those qo vertices v which maximize \Cj(v)\ 
after Maker’s play in round i of Bj{n;pj,qo).

(cj) Breaker completes play in the ith  round of G(p,q,H) by choosing 
a vertex from each edge of Ht- \  which contains r — p Maker vertices after 
Maker’s move in round i of G(p, q, H).

Complete the ith round of Bj(n;pj,qo) by having Breaker set the bins 
Cj(v) = 0 for each of the vertices v it has chosen in round i of G(p, q, H).

We determine the values of pj and prove that Breaker’s choice of q ver­
tices is sufficient to allow play as described in {(h), {bi), and (c,).

How many edges are put into the bins of By{n\p\,qo) as the result of 
Maker’s choice of p vertices x \ , . . . ,  xp? Each Xk can belong to at most 
edges e, and each such e is placed in r bins Ci(u), so we may set p 1 =  2pn. 
From (5), it follows that

b\{n-px,qQ) ^
2pn 
Qo

log n.

Let d\ =  log n.1 qo
To determine P2 , suppose Maker chooses vertices :r.[, ,  xp during round 

i of B 2 {'n;p2,qo)- For an edge e to be added to some bin 62(11) by Maker 
during round i, e must belong to some C\{xk) after round i — 1. Otherwise, 
two vertices of e would have been chosen by Maker in round i of G {p, q, H),
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so Breaker would have countered by spoiling e as described in (a,). Since 
|Ci(:rfc)| ^  di, and each edge e can be added to at most r bins C2{v), we may 
take p2 =pd\r.  Thus (5) yields

(7) M™;p 2,<7o) ^
pd\r

%
logn.

Let d2 =  ^ l o g  n.
The same reasoning about Bj(n-,pj,qo) shows that

(8) bj(n\pj ,q0) ^ P -L-1 - logn,
Qo

for j  ^  r — p — 1. Let dj = l dj(]Q 1' log n.
We claim that Breaker has a winning strategy in G (p, q, H ) provided that

(9) dr-p-i
P

The components of Breaker’s moves in (ai) and (bt) require at most

(2 )  + (r - P _ 1 )9 0

vertices in each round of G(p,q,H),  so we have at least qo left to complete 
(cj). No matter how Maker chooses its p vertices x i , . . . , x p in its part of 
round i, each can belong to at most qo/p edges which, prior to round i, 
contained r —p — 1 vertices selected by Maker, by (9). So there can be at most 
qo edges with r — p Maker vertices after Maker’s move in round i. Breaker 
selects a vertex from each edge, as described in (e-,), to prevent Maker’s win 
in the next round.

To obtain a lower bound on q that will ensure that (9) holds, note that 
(8) gives

í/r_„_i < 2Í — logn) rr~p~2n.
Wo >

Thus, the following bound on qo suffices:
r — p —2 1 r — p—l

2pr ’—p n r-i, (logn) r~p <qo .

□
Recall that Theorem 1 guarantees Maker a winning strategy for G(p, q, H) 

for any r-uniform hypergraph H  which satisfies e(H) ^ cPtrqr~pv(H).  We 
shall use Lemma 1 to show that this bound is not far from the best possi­
ble, that is, we construct Breaker-win liypergraphs with many edges -  not 
too many fewer than the lower bound in Theorem 1. We would also like to 
“de-couple” n and q, which are tied together in the lemma.



BIASED POSITIONAL GAMES ON HYPERGRAPHS 147

THEOREM 2 . Let p and r be positive integers with r> p .  For q tq o  (p, r) 
and n t  no(r), there is a constant c\ =  c\(p, r) and there is a simple r-uniform 
hypergraph H on n vertices and e(H) edges such that

( 10) e(H) = c!
~r—p

(log q) r - p - 1n

and Breaker has a winning strategy for G (p,q,H).
PROOF. Let p and r be given. It follows from a well known result of 

Wilson [6] that there is an integer Zo(r) such that for all l t  Zo(r) there exists 
a simple r-uniform hypergraph Fi on l vertices and with at least l'2/ r 2 edges. 
Set no = 2lo and

f  _ i _  r - p - l  -I

qo =  |c0/o’-''(log/o) ,

where Co =  co(p,r) is the constant in Lemma 1.
Suppose that n t. no and q t  qo are given. Let / t  Iq be the largest integer 

such that

(11) q Z c0/ r- ''( lo g /)‘ = qo-

Hence,

( 12) l>
p--p

(log?)r - p - i

where F =  c'(p, r).
Observe that if n < / then (11) and Lemma 1 show that Breaker has a 

winning strategy in G(p, q. H) for any simple r-uniform hypergraph H  on 
n vertices. If l < n < 21 we can define II  to be the n-vertex hypergraph 
obtained from Fi by adding 21 — n isolated vertices. Then Lemma 1 shows 
that Breaker has a winning strategy for G (p,q,H). So, assume that n ' t  21 
and let H  be the simple r-uniform hypergraph on n vertices comprised of 
[n/l\ disjoint copies of Fi and the required number of isolated vertices. Then

(13) r 2 -  2r2

Apply (12) to (13) and conclude that

e(H) t  c\
,.i- p

(log q) r - p - I n.

Breaker’s winning strategy for G(p, q. H)  is this: Breaker pursues its strategy 
for G (p, q. F) in whichever component of H  in which Maker has just moved.

□
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4. A problem of Galvin and related questions

We became interested in the games G(p,q,H)  because of this problem 
due to Galvin [5].

P roblem 1. Do there exist 3-uniform hypergraphs H  of arbitrarily high 
chromatic number for which Breaker can win G (l, 2, H).

The answer is no; this can be deduced from [1, Theorem 2] with a little 
work.

THEOREM 3. Let H  be a. 3-uniform hypergraph with chromatic num­
ber x{H)  L (6</3 + l)(g + 1). For all 2, Maker has winning strategy for 
G(1 ,q ,H) .

P ro o f . For purposes of this proof, call a pair {?;,«>} of distinct vertices 
of H  thick if {u, w} is contained in at least 2q +  1 edges of H . Let G be the 
graph with vertex set V (H ) and edges all thick (unordered) pairs.

Case 1. There is a vertex v of degree at least q + 1 in G.
Maker chooses v in the first round and an unchosen neighbor w in the 

second. Breaker cannot prevent Maker from choosing a vertex x in the third 
round such that v, w, x  E E (H )  since there are at least 2q+l  edges of H  
containing v and w.

Case 2. The maximum degree of G is at most q.
Let H'  be the hypergraph with vertex set V(H )  and with edges only 

those edges of H which contain at least one thick pair. Then x{H') = 9 +  1 
since x{G) f f q + l  and any good coloring of G is a good coloring of H ' .

Let, H"  have vertex set V (H ) and edge set E(H")  =  E(H) — E(H'). Then

X(H")  ^
X ( H )  ^ ((k?3+ !)(</ + !)
X ( H ' ) =  9 +  1

=  6 q3 + 1.

There is a subhypergraph S  of H ” such that x(S)  = x(H")  an(l

(14) 3 ^ | ^ x ( S ) - 1 ^ 6 (/3.

Now, specialize Equation (1) to a 3-uniform hypergraph S  w ith p =  1: pro­
vided that

(15) e(S)>q2d{S)v{S),

Maker wins G(1 ,q,S).  But d(S) ^ 2 q, so Equations (14) and (15) show that 
Maker has a winning strategy for G(1 ,q,S) and, hence, for G(1 ,q,H).  □

Note that we give something up in our argument: one can do better 
than  the inequality in (14) and decrease the lower bound (6<y3 + 1)(9+ 1) in 
Theorem 3 somewhat.
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In the same vein as Galvin’s problems relating chromatic number of a 
hypergraph H to the game G(l, ry, / /) , we ask about the following game.

Given q ^ 2 ,  k  ^ 3, and a hypergraph H , let Chr/t(l, q, H) in which Maker 
and Breaker alternate selection of as yet unselected vertices, Maker first 
choosing one vertex, followed by Breaker selecting q vertices. Maker wins 
if the hypergraph induced on its vertices has chromatic number at least k\ 
Breaker wins if it has a strategy to prevent this.

P r o b l e m  2. Given integers k  ^ 3 and r, q ^ 2, is there some K  such 
that for all r-uniform hypergraphs H  with x(H)  = Maker has a winning 
strategy for Chrfc(l, q, H)7

There is a particularly enticing special case of Problem 2.
P r o b l e m  3. Is there an integer K  such that for all graphs G with 

x(G)^ .K , Maker has a strategy to choose an odd cycle in the game, where 
Maker chooses one vertex and Breaker two, in each round?
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STATIONARY STATES OF INTERACTING 
BROWNIAN MOTIONS

J. FRITZ, S. ROELLY and H. ZESSIN

In Memóriám Alfréd Rényi

A bstract

We are interested in a description of stationary states of gradient dynamics of inter­
acting Brownian particles. In contrast to lattice models, this problem does not seem to 
be solvable at a formal level of the stationary Kolmogorov equation. We can only study 
stationary states of a well controlled Markov process. In space dimensions four or less, 
for smooth and superstable pair potentials of finite range the non-equilibrium dynamics 
of interacting Brownian particles can be constructed in an explicitly defined deterministic 
set of locally finite configurations, see [Fr2], This set is of full measure with respect to 
any canonical Gibbs state for the interaction, and every canonical state is a stationary 
one. Assuming translation invariance of a stationary measure, and also the finiteness of its 
specific entropy with respect to an equilibrium Gibbs state, it is shown that this stationary 
state is canonical Gibbs. Related ideas of Alfréd Rényi and some of their consequences are 
also reviewed.

The main purpose of this paper is to identify a class of stationary states of 
the following system of interacting particles as the set of translation invariant 
canonical Gibbs states with interaction U. The evolution law is given by an 
infinite system of stochastic differential equations,

where S  is a countable index set, w = (la/OfceS is a family of independent stan­
dard d-dimensional Wiener processes, and each = Wfc(i), t ^  0 is assumed 
to be a continuous trajectory in R . The potential U : R d >—► R  is symmetric 
and superstable with finite range, that is U(x) = U(—x), there is an R  > 0 
such that U (x ) =  0 if |rc| > /?, and we have constants A ^ 0, B > 0 such that
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1. Introduction

( 1. 1)

j*k

0081-6906/98/$ 5.00 ©1998 Akadémiai Kiadó, Budapest



152 J. FRITZ, S. ROELLY and H. ZESSIN

for any finite sequence qi,q2 , ■ ■ ■ ,qn °f not necessarily distinct points from
Rd

( 1-2 ) +
k=l jjtk

where N  is the number of pairs {j, k) such that | — qj\ ^ R, see [Rul]. 
Let LI denote the set of configurations to =  (u>k)kes having no limit points. 
Although the right-hand side of (1.1) is certainly well defined for such, locally 
finite configurations, to develop a satisfactory existence theory we have to 
restrict the configuration space in a much more radical way. On the other 
hand, the set of allowed configurations should be large enough to support a 
possibly wide set of probability measures including Gibbs states with various 
interactions.

The first mathematical results concerning this model go back to R. Lang, 
see [Lai] and [La2], where the existence of equilibrium dynamics, and also 
the canonical Gibbs property of reversible measures is proven. These dynam­
ics are defined almost surely with respect to a Gibbs state with interaction 
t/, see also the more sophisticated argument of [Os]. For a study of sta­
tionary measures in general, we need a more direct construction involving 
explicit bounds on the rate of convergence of solutions to finite subsystems 
(partial dynamics) when the number of active particles tends to infinity, 
see Section 3 below. Indeed, the problem of stationary measures cannot be 
solved at a formal level of the stationary Kolmogorov equation because a 
full Hille Yoshida theory is not available in the present context. Since we do 
not know any Banach space in which the underlying Markov semigroup is 
strongly continuous, we have to materialize our arguments at a level of finite 
dimensional approximations, see [FFL] and [FLO] for a discussion of related 
questions.

For a generic, locally finite configuration to — let H (u ,m ,r )  de­
note total energy in the ball B(m, r) of center rn E and radius r  A 1, and 
for a  > 0 define

(1.3)

Hn(uj): = 

H(u>, rn, r)

H (u ,m ,r g l /d (m)) 
sup su p -------7— -—--------- where

m £ Z d r£N r< 9 a \ m )

E E U (câ n1)
fc:an,eß(m,r) j j^k:uj jEB(m,r)

and ga {v,) := 1 + |it|Q log(l +  |u|) for u E R, Rd. The set of allowed configura­
tions is now specified as tta := {u> E LI: H n (u>) < +00} ; we shall see that for 
an effective a priori bound we need a  5] 2 — d/2, thus d ^ 4. Let Co(R(/) denote 
the space of continuous ip : Rd h-> M of compact support. Spaces of k times
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continuously differentiable functions with compact supports are marked by 
a superscript k, while a subscript b in place of 0 refers to bounded functions 
without any support condition. For an open and bounded domain A C Rd 
the (7-field is generated by the variables u>{ip) := YlkeS </5(a’fc) such that 
the support of <p G Co(Rd) is contained in A; the number of points in A 
will be denoted by u;(A). This means that configurations are interpreted as 
nonnegative, integer valued measures, and Qa is equipped with the associat­
ed weak topology and Borel structure. Observe that, due to superstability
(1.2), the level sets £la,h [Ha(uj) Í  h\ are compact if h is large enough. 
The restriction of uj G to A is a>\, and Ac denotes the complement of A.

For any bounded domain A C Md, a G and n G N let Qy\(n|cr) denote 
the set of u> G such that cj(A) = n and uj\ c =  o\c. A probability measure 
A is a canonical Gibbs state (with unit temperature) for U if its conditional 
distribution \[d(jj \ \ uj\ c — ctac,u;(A)=n], given the configuration outside of A 
and the number of points in A, admits an nd-dimensional Lebesgue density
/A ,71,

(1.4)
/ a ,7i M < 7 )

exp( — H\.n(u\o))
Z.\,n(fT)

if u  G i i \ (n\a) ,  where

F \ ,h(wH  : = \  ^2 J2 U(u}k - a j )
k  : u J k  G  A  j  k  :l ü j  E  A  u i ^  E  A  cry E  A c

and Z  is the canonical partition function (normalization). Gibbs states are 
the extremal canonical measures, see e.g. [Geo]. In view of the superstability 
estimates of [R2], there exists at least one translation invariant Gibbs state 
A such that A(flo) = 1, of course Qa C^lp if a < ß.

The unique strong solution to — u( t ,a)  to the infinite system (1.1) with 
initial configuration a G fl« is constructed as the a.s limit of partial solu­
tions (J1 =ur(f,<7) when a spatial cutoff 9 is removed. Partial (approximate) 
solutions are constructed in such a way that particles are frozen outside of 
a bounded region, they follow (1.1) in the central part of this domain, and 
there is a continuous transition from a full activity to a vanishing one at 
the boundary. It is relevant that partial dynamics preserve any canonical 
Gibbs measure. More precisely, for any 9 G Cq (Md) with 0 ^ 9 ^  1 there is a 
differential operator Co,

1 d
(1.5) Co<fi:= 2 E  E  <-Hdu)d u ^ M - ~ Hkiu)d k ^ M ),

kes 7=1

where dk,i denotes differentiation with respect to the i coordinate of u>k and

( 1. 6 ) M  := E  ~  ^  •
rtk
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We consider Cg as the (formal) generator of partial dynamics with cutoff 0, 
the infinite system (1.1) corresponds to 6 = 1. All generators of this kind are 
certainly well defined on Cg(il), where Cg (il) is the space of test functions

(1.7) ip G Cjp (K;), </>j G Cg (Kd), l GN. 

The stochastic equations for cutoff 0  read as

(1.8) dujk = \ e Hkdk(6 (uk)e~Hk)dt + \ /9{uk) dwk,

they have a unique strong solution uß =ujß(t, o ) for each initial configuration 
a E fh If A D supp 0 then the particle number in A is a constant of motion, 
that is we(f,ct)(A) = a(A). Therefore (1.8) defines a fairly regular diffusion 
in each f2y\(n|cr), and it is easy to verify that realizations of the canonical 
conditional distribution \[du\\uj\ c = o,\c, w(A)=?i], n E N, a E fl are all re­
versible measures of the associated (nd-dimensional) diffusion process. The 
associated Markov semigroup will be denoted as Vg, it is strongly continuous 
in the Banach space C/,(ilQ) of continuous and bounded (f>: i—> E, and also
in L2(ifQ, A) whenever A is a canonical Gibbs state.

In the paper [Fr2] it is shown that if d Ű 4 then for every initial configura­
tion a E ilo the sequence of partial solutions coe(t, a) converges almost surely 
to a strong solution =  u>(t, a) of (1.1) as 9 —> 1 in a clever way. This limiting 
solution is distinguished by an a priori bound: Ho(uj(t,,a)) is bounded on 
finite intervals of time, and there is no other solution having this property. 
Following the lines of the proof we see that the result extends immediately 
to all a  ^  2 — d/2, see also Proposition 1 in Section 3. Since the rate of con­
vergence of partial solutions does depend on H a(a), the limiting semigroup, 
V1. is not strongly continuous in C/,(flcv), thus the Hille Yoshida theory is 
available in a restricted form only.

As a general reference measure we choose a translation invariant Gibbs 
state A with interaction U and unit temperature, it is also a reversible mea­
sure of each partial dynamics. Introduce F\((p) :=logA(e^), then entropy 
of another probability measure p relative to A is just its convex conjugate
m  a],

(1.9) I[fi\\] :=sup{//(0) -Fx{<f>) ■■ <peC0 {ty} = j  log dn

if>  <  A ; I[fj.I A] =  +00 otherwise. It is easy to verify that //(<£) ^ /[/i|A] + 
F\((p) whenever cf>: Qq E is measurable and fx(<p) < Too. The entropy of p. 
in A C Ef/ is

(1.10) 7a[/í |A]:=/[/m |Aa] =  /[p,aA|A] = sup{/í ((/>)-Fa(0) : </> £ FA n  C0(f2)},
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where p \  is the restriction of /j to T \  and /ja A is the measure obtained by 
extending /ja to the whole space by means of the conditional distribution 
of A, that is (/j,/>iX)(duj) := I f /j is translation invariant
and A„ denotes the centered cubic box of side 2n then

( 1. 11)

/[/j |A] := lirri
n—>oo

Fx{(p):= lim
77—»OO

h M  A]

I An I

^ ] l0g

=  sup{/j(</>) -  € Co(i7)}

[  exp (  sm<f^dX,
meAnOẐ

denotes the (relative) specific entropy of /j, see Section 5 in [OVY]. Here and 
also later on, sm is the shift by m e R d, i.e. srn(j)(uj) = 0(smw). Observe that 
j[//|A] < +oo implies /j,(H„i) = 1 by the ergodic theorem. Our main result is 
the following:

THEOREM 1. Suppose that p* is a translation invariant stationary distri­
bution of the infinite system (1.1), that is /j*(i7(l) = 1 for some 0 Si a. L 2 - 2 /d 
by assumption. I f  I[p* |A] < +oo then p* is a canonical Gibbs state of unit 
temperature with interaction U.

The starting point of the argument is a quite general entropy inequality 
for Markov processes in such situations when the initial distribution has 
finite entropy relative to a stationary reference measure, see e.g. [FLO]. This 
inequality and some of its first consequences are discussed in the next section. 
In Section 3 we develop some uniform estimates on the rate of convergence 
of partial dynamics to the full (infinite) one. These bounds are then used 
in Section 4 to extend the basic entropy inequality to the infinite system, 
which completes the proof.

2. An entropy inequality and its consequences

The idea that relative entropy with respect to a stationary measure is a 
nice and effective tool of the study of ergodic properties of Markov processes 
goes back to A. Rényi [Rel, Re2], where ergodicity of irreducible Markov 
chains in a finite state space is shown by using entropy as a Liapunov func­
tion to show the convergence of the evolved measure. Let us first review 
this argument in a general context of discrete time Markov processes in a 
probability space (X , A, A); see e.g. [Fo] for basic notions and results. Let V 
denote a positive contraction of L°°(A) into itself, it is interpreted as the op­
erator of conditional expectation of the underlying Markov process. If p -C A 
is a probability measure on (A, A) then p.V is defined by pV(ip) =  pfiPp) 
for ip 6 L°°(A); given an initial distribution po =■ p A, the evolved measure
at time t £ N is denoted as pt — pV* ; cPlip := if =  V(p. We are as­
suming that A =  XV is a stationary measure, then V  is a contraction of each
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Lp(A) space with l^ p ^ + o o ,  and I[pV\X] ^  /[p.|A] by convexity. Moreover, 
as noticed by I. Csiszár [Cs], the difference is again a relative entropy:

where p  o V  and Q op are probability measures on X  x X  characterized by

for cf(x,y) =  ip(x)ip{y) with <p, (f> G L°°(X). Here and later on, Q denotes the 
transition operator of the backward process reversed with respect to A ; it is 
just the adjoint of V  in L2(A), i.e. X(ipVip) = \(ipQip) for tp,^ G L 2{A). In 
general we do not know that Q is given by a transition probability, but it 
is again a positive contraction of L2(A), thus pQ := p(Qip), <p G L2(A) is a 
probability measure if p is so, A =  AQ. In view of (2.2), I[p\X] = I[pV\X\ < 
+oo implies p o V  — Q ° p V ,  thus p is a stationary and reversible measure 
of the composed, reversible process TZ:=VQ , see [Frl]. Of course, 1Z1 ^  
V t Qt in general, because V  and Q need not commute. Nevertheless, the 
following reformulation of results by Rényi and Csiszár demonstrates an 
intrinsic relationship of the notions of entropy and reversibility.

T heorem  2. Every absolutely continuous stationary measure p X, 
p = p V ,  is reversible with respect, to 1Z. If p <?C A then so is pV1, and the se­
quence of densities, f t ~ d p ' P t /dX is uniformly integrable with respect to X. 
Moreover, if g.Vtn(p) —> p(<p) .for all <p G L°°(A) as tn —> +oo then p is a 
reversible m,ensure of 1Z, that is we have a weak convergence of the evolved 
state to the set of 7Z-reversible measures.

P r o o f . Suppose first tha t /[/v.|A] < +oo, then I[pVt\X\ ^  I[p\X] implies 
the uniform integrability of f t , f  6N , thus the Dunford-Pettis Theorem ap­
plies. We have to show that every weak limit point p satisfies I[p | A] =  
I[fiV\X\.

If p(ip) =  limn p.Vtn (<p) for all <p G L°°(A) and : X  x X  E is measurable 
and bounded, then

Taking the supremum on the left-hand side we get I[po'P\Q°pV] = 0, whence 
p o V  =  Qo pV. i.e. p =  pTZ. Replacing V by IZ in the argument above, we 
get p o l Z  = lZop, the condition of reversibility of p with respect to 1Z = VQ.

The general case of fiC A  follows by a direct approximation procedure. 
For each e > 0 we have some pe such that I[pr | A] < +oc and \p — pe\\ < e,

( 2 . 1) /[//,|A ] -  I[pt\X] = I[p o V' lQ1 o p t\,

( 2 . 2 )

and

(2.3)
(p°V)(<t>) -lo g (Q o /i)(e0) = lim {ptn ° V){<t>) -  log(S ° ptn+i){e<t>)

n —>oc

^ lim (/[/it„ |A ]-/[/itn+i|A]) =  0.
71—> 0 0
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where | • |j denotes the variational distance. Set f f  :=dpeV t/dX and |zj+ 
max{0, x} ; since V is a contraction of L1 (A),

I \ft - a \ + d \ Z  j | / f  — a\+ dX +  J \ f t -  f t \ d \

S j  l/o — a l+ dX +  J |/o — fo\ d \  ^  2e

if a is large enough, thus ft is still a uniformly integrable sequence. Consider 
now a weak limit point ft of p,V1', tn -> +oc is the subsequence along which 
p,Vl converges to p. and let ße denote a limit point of p£V tn. We have a 
subsequence {t'n} C  {tn} such that for any p E  L°°(A)

ImM  -  fi£{<P)\ = I™ \iiPt>n {ip) -  peV''n (p)| ^ e sup \p(x)\,
xex

so that \ / jl -  /./.e11 ^ e implying pfpTlip) = fj.(ipTZ(p) for G L°°(A). □

This result is useful because usually it is easier to identify the reversible 
measures than the stationary ones. Of course, the set of reversible measures 
of 7Z — VQ  can be much larger than the set of stationary measures of V. 
Anyway, Theorem 2 yields some preliminary information for further, more 
specific investigations.

For example, if X  is a countable set then V  is given by a stochastic 
matrix p = p(x,y),  i.e. Vp>{x) =  ^2yp{x, y)(p{y), then the associated back­
ward transition probability is just q{y,x) := X(x)p(x, y)/X(y) ; A(a;) > 0 for 
all x  G X  may be assumed. From (2.3) with V t in place of V  we get fi o V 1 = 
Qf o ß V l for any limit distribution ft, which reads as

(2.4) mW
X(x)

pt(x,y) =p t (x,y) M y )
M y )

in the present context. Therefore if the chain is aperiodic in the sense that 
for each x G X  there exists an integer t(x) >  0 such that pl(x, x) > 0 whenever 
t ^  t(x), then ß(x) = ßtfx) for t ^ t(x). Similarly, ß \ (x ) = ßt+i (x) if t ^  t(x), 
consequently ß(x) = ßi{x) for all x  G X,  i.e. ß = ßV. The uniqueness of the 
stationary measure follows immediately from a condition of irreducibility: if 
for each pair x, y G X  we have some t = t{x , y) such that pl(x, y) > 0 then we 
get ß(x)/X(x) = ß(y)/X(y), whence ß(x) = X(x) for all x G X , consequently 
we have M x ) M x ) f°r all x  G X  as t, —> oo.

In the case of continuous time it is natural to assume that X  is a complete 
and separable metric space, and both V 1 and its adjoint Qf form strongly 
continuous contraction semigroups in L2(A) and also in C(,(X); basic nota­
tions are the same as above. To obtain a lower bound for I[/i|A] — I[pVt \X\, 
consider an auxiliary distribution u <IC A such that := dv/dX > 0 ; then p<^v
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and I[n\u] = /[p|A] -  ^(log ip), while I \yVt\vVt] — I[yPl |A] -  p(log Qfip) as 
duV1 /dX = Qfip. Since I^ iV '^vV1] I\p\v] by convexity,

7M A] -  I [tl‘Pt I A] ^ /u(log V») -  /i^ (lo g  QV)

 ̂  ̂ ^/i(logV')-Milog ^ V )  ^  I  ^

as logx- — logy ' t { x  — y) / x . Observe that XoVf  is a symmetric measure, thus 
with f  = dy/dX we get

( 2 .6 )
dp =  ^ / /  (A 0 %) (

“  / /  (x ° 'RtS)(dx' dy) v7/ ( * ) V7(y)-

f{x)ip{y)
ip{x)

f(y)ip{x)\
V>(V) '

This means that the right-hand side is maximal if ip =  >//, consequently 
(2.7)

sup{ /* —  dp :-0g L2(A ) |=  j  \ f j {x ){  y/J{x) -  'll' \f]{x)) A(dx)

whenever /i,<A and dp. =  /dA.
Consider now the Donsker-Varadhan rate function D, it is obtained by 

differentiating (2.7) with respect to time:

(2.8) D [p |£ ]:= su p { - j  ~  dy : ip 6 Dom (5, in f '0 > o j,

where fy is any semigroup generator. Remember that Dom Q in the definition 
of D can be replaced by any core of Q in Cb(X). Moreover, if Q is self-adjoint 
in L2(A) and f  = dp/dA, then D[y\Q\ < +00 implies \ / J E Dom (—Q) 1̂ 2 and

(2.9) D\y\G}= I  ( V ^ G y / J f d X  

see (2.7) and Theorem 5 in [DV],
Let C and C* denote the generators of V t and Q' in L 2(A), respective­

ly. Although Vf = V t Qt does not form a semigroup, it is self-adjoint, and 
7Ztcp =  tQcp + °{t) for small i by a formal calculation, where Q = £  + £*. 
Therefore, under some natural conditions the right-hand side of (2.4) be­
comes —ty(Qip/ip) + o(t), thus we have

P roposition 1. Suppose that Q = £  + £* is self-adjoint, in L2(A), and we 
have a dense linear space C* C C^X) such that V'C* C C* and QfC* C C* 
for all t>  0, then

t

I[yVt\X] + 2tD[yt\Q]£I[y\X] where y t ■= j  /  yV s ds.
0
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The argument above can be made rigorous by exploiting our conditions 
postulating a duplicated semigroup structure, see [FLO] for details. There­
fore /[/i|A] < +00 implies D[p\Q] = 0 in a stationary regime, see (2.9) for 
an analytic way of solving this stationary Kolmogorov equation. To get a 
converse statement, set TZl := ets ; it is also a semigroup of self-adjoint con­
tractions in L2(A), its Markov property follows immediately by the Trotter 
product formula:
(2.10) n l = Ihn ( r t /nQt/n)n.n—>+00
The proof of Theorem 1 will be reduced to

Lemma 1. If D[p\Q] = 0 then, under conditions of Proposition 1, 
p{4>'R},4>) — pf'ip’fV'(/>) for all (p,ip € L2(A) and t>  0.

P roof. Observe first that dt logCR'ip/ 'if>) — G'JZlil)/ÍZ,"ip, whence by
D\p\g] = 0

o s  /  l o g ^ S n ' - i f - f )
4> dp.

á " !  +  J (7t/'^2)1/2 dp. g -1  + (p.(^V 2/ ^ 2))1/2-

Choosing ip2 =  /  :=d.p/d.X we get 1 ^ p{VJ\/~f /  yff) ^ (A ('Rtf ) ) 1̂ 2 =  1, whence 
/  =  U f f  A-a.s., i.e. p = pH 1 for all t > 0, which implies also the equation of 
reversibility, see [Fl]. □

It is not rare that Q is heavily degenerated, even Q =  0 is possible as it is 
for Hamiltonian dynamics, when A is an equilibrium Gibbs state, C* =  — C, 
and entropy is a constant of motion. The opposite extreme situation is 
that of reversible diffusion processes. In that case Qf = V 1, i.e. Q =  2£, and 
the verification of the conditions of Proposition 1 amounts to establishing 
smooth dependence of solutions on initial values. Assuming the smoothness 
of the coefficients of the underlying stochastic equations, a standard argu­
ment shows that twice continuously differentiable functions with compact 
supports form a core of the generator. If the diffusion matrix is positive 
then D[p,\Q] = 0 yields p = A, thus poV1 —> A as t —> 00 for all po \ .

Our next task is to extend these results to infinite volumes, this is done 
by means of a familiar argument of Holley [Ho]; in translation invariant 
situations we can pass to the thermodynamic limit. This procedure cannot 
be carried out in a general framework, see e.g. [FFL] and [FLO]; technical 
requirements are summarized in the next section.

3. On locality of dynamics

Results of [Fr2] are not directly applicable in the present situation, that 
is why we review some parts of the argument. A convenient collection O of
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cutoff functions is defined for rn E and l ^  1 by 6 lm =  0[n{x) := 0o(||x — m \ — 
/| + ), where E Cq (R) satisfies 0 ^  0q{u) 51 1 Vu E K, while 0q(v.) =  1 if u 5l 1 
and 0q(u) = 0 if u ^ 2 ; 0  is obtained by joining 0 =  1 to 0. In case of the full 
(infinite) dynamics the mark 0 = 1 is usually omitted, the limiting solution, 
the associated semigroup and its generator will be denoted as — a ) ,  V*
and C, respectively. The basic a priori bound of [Fr2] can be reformulated 
as follows, see Proposition 2 and (3.18) there. Let Nk(uj) denote the number 
of points of to in B(uik, 1) and

(3.1) ■Ng(t, a) 1 + sup max
N k(co°(s))

\Jga {uek(s))

Exploiting the superstability of the interaction, by means of the argument 
of Proposition 2 in [Fr2] we get

P roposition 2. If a  51 2 — d/2 then for each t>  0 and h > 0

lim sup sup P[Ng(t, a) > p] — 0.
p~*°° öeeae n0,h

First we derive a uniform bound on the localization of particles. From 
the stochastic equations

(3.2)

-Ck\^KiNg{t,cr)  j  \ / g a {ujuk{s, a)) ds 
0

\Jo(uj0k(s,a))  dwk

Let g*(u) (1 + H )4/5, by a direct calculation

Sg,k(t,a) := max |u°k(s,o) -cTk\^ fg ( t ,a ){g t {ak) + gt {6ĝ k{t,a))),
s < t

(3.3)
fg(t,a) := K 2 / Ng(s, a) ds + sup max

K -2

kes <?*(°7c) ..
\J0 (ujek(s,o)) dwk

including 0 = 1, whence by assuming <Sgk ^.g*{crk) we get

(3.4) Sotk(t,<T)^Tie(t,<T)g*{(Tk),

where the explicit form rj — is not relevant, we only need

(3.5) lim sup sup P[qg(t,cr)>y]=0 
y^°° 0eeaeQo,h
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for all t , h > 0, which is a direct consequence of the definition of
Now we are in a position to estimate the rate of convergence of partial 

dynamics (J* to its limit u) as 0 -> 1. For any initial configuration ct € let 
S(m,r,cr) denote the set of A: G S  such that |cr*. -rn\  ^ r ,  and consider

(3.6) Alm(t ,r ,a):=  max max \uek(s,a) — oifc(s,cr)| with 9 — 6 lm .
k(LS(m,i\a) s^t.

For any fixed T  > 0 and vq , l ^  1 define r K, k =  0 ,1 ,... ,  x , . . .  by

^  rK+1 =  rK + 2g*(\rn\ + /) ct) +  i?.+ 1, where
0m (T > CT) := inax{f/o(T, or), 771 (T, ct)}, 0 =  <9̂  .

I11 view of (3.4) this means that before time T the particles starting from 
B ( m ,r K) cannot interact with those starting from outside of B (m ,rK+1), 
therefore

&lm(t irK,°)íkLg(\m\ + l)Nln{t,<T) A lm(s,rK+ua)ds ,  where
(3.8) ./0

N lrn{t, ct) := max{7Ve;n (t, ct), IV, (i, ct)}, 

provided that rK+i + R ^ l .
Suppose that (3.8) can x times be iterated, then for t < T

(3.9) A} ( i ,r0, ct) ^  2(1 + l ) ^ , '- (g«(|m|+/)ÍV^(f,CT))x ,
X!

where x = 0(/(|m | +  /)_4/;’) is a random number. Of course, this inequality 
implies the a.s. convergence of partial solutions; this was shown in [Fr2] 
when m  = 0 and / —> + 00. Here we need a more delicate result: tJJ with 
0 =  0in converges even if |m| increases together with /. More precisely, for 
any vq, t.,h,e> 0 we have

(3.10) fim sup{P[ÍV^(í,CT)AÍ„(í,ro,CT) > e]: ct 6 ÍIQi/,, m , l e M n} = 0,
n—Kx a rn

where Mn {m, l : |m| +  / + 7? < n, l > n 5/6}. Indeed, in this situation x of
(3.9) goes a.s. to +oo as n -A oo.

In the next section the following consequence of (3.10) will be needed. 
Suppose that we are given a translation invariant probability measure n such 
that /i(Ort) = 1, and set jj.n := f i \n A. The above calculations are summarized
m
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Lemma 2. For any cf)& Cq(í í ) and t>  0 we have

lim sup{\p.nVssm4> — ij.Vs4>\ :s<t, \m\ < n — n 5/6} = 0 .n—>oo $ rn

P r o o f . Since pn(smf )  =  f i ( f )  if <p, sm f  G F \ n , it is natural to approx­
imate V s4> by if i = Vq<P with 0  = 6 l0 ; remember that smf i  = V srn l(j>. Since cf> 
is Lipschitz continuous by assumption, we can compare smf i  and Vssm(p via
(3.10) , at least if |m| < n  — n 5' 6. The missing part of the argument, namely

(3.11) lim sup A„(iia,/i) = 0
rt—>oo nGN

follows from the basic superstability estimate of Ruelle [Ru2], Indeed, for 
any box A of given shape and size we have A[m(A) >  u \T \ c ]  ^ Ce~cv~, where 
c and C  do not depend on eo. In view of (1.2) this yields A(Í2a ) =  1 by 
the Borel-Cantelli lemma. Since /r(PQ) = 1 by assumption, estimating the 
contribution of particles from Krn to Ha via superstability, we get (3.11) by 
a similar computation. □

R em ark . Since the level sets of H are compact, the Stone Weierstrass 
theorem allows us to extend Lemma 2 to continuous and bounded local 
functions.

4. Passage to the thermodynamic limit

Now we are in a position to prove Theorem 1 by extending Proposition 1 
to infinite volumes. Using the notation /r* =  A of Lemma 2, we have

(4.1) m v t \ X ]  +  2tD[p*nAt\£„} £ I[p*n\\] =  I \ n [/R|A]

for any smooth cutoff 6 , where //* f) t is the time average of the evolved 
measures P*lV'q from s =  0 through s = t. In view of (2.6), D is subadditive 
in the following sense. Suppose that Jg{n) C A„ satisfies 9 ^ and 9lm9lk =  0 
for m , k G Jg(n), k ^  rn then

(4.2) w»\m  E E / ^
meJg(n) meJlg(n)'

for smooth 'ip> 0. Similarly, for all </?g Co(R)

m v l  I A] L I  Sn{Vle{f)) dp*n -  F \ (Sn ( f) ) ,  with

S n { f )  ■= ^ 2  S"lip-
me A„nzd

(4.3)
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Now we can remove the cutoff of dynamics. Keeping Jg(n) = J l{n) C 
An_n5/6 fixed during this procedure we get
(4.4)

tr r _J2, I s ̂  'll}
E / ds / —Xb dKV* = | A ] + -

m e J ' ( n )  o

As far as l is fixed, we may assume that Card J l(n) ^ c/|An | with some 
c/ > 0 ; thus dividing both sides by |A„| we can pass to a thermodynamic limit. 
Indeed, in view of Lemma 2 all terms of [t*nV l (Sn(tp)) become asymptotically 
identical when n —> oo. Since Cat =  smCni , the same holds true on the left-

u m  ( /o

hand side, thus for all 9 £ © with compact support we have some eg > 0 such 
that

(4.6) tce I  dß* Í I [ , C \\] + Fx(<p)-f(<p),

where ipE Co(if) is arbitrary, consequently D[/i.*\Cg] = 0 for all 9 £ ©. In this 
way we have managed to decouple (localize) the equations of stationarity. 
In fact, if A := supp 9 then Cg generates a reversible diffusion with a nonsin­
gular diffusion matrix in each layer ffA(n|er). Such diffusions have a unique 
stationary measure, which completes the proof of Theorem 1 by Lemma 1.
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ON THE MAXIMAL GAIN OVER HEAD RUNS

A. FROLOV, A. MARTIKAINEN and J. STEINEBACH

To the memory of A. Rcnyi

A bstract

Let (Xj ,Y i) be a sequence of i.i.d. random vectors where {X , } are gains and {V,} 
are indicators of successes in repetitions of a game of heads and tails. Put So =  0, —
-Y] + • • ■ + X*,, and let /{•} denote the indicator function of the event in brackets. Then 
M/v = max0<i<m</v(5'm — S;)/{Y / + 1  = ■ ■ ■ =  Ym =  1 } is the maximal gain over sequences 
of successes without interruptions ( “head runs”). We derive necessary and sufficient con­
ditions for strong laws of large numbers for Mpj and find rates of convergence in these 
laws.

1. Introduction and results

Consider a sequence {(X,, Vi)}i=i,2,... of independent, identically dis­
tributed (i.i.d.) random vectors, where

(l.i) p(y1 =  i ) = p  = i - p ( y i = o ) 6 ( o , i ) .

k
Let Sk =  X.,, So = 0, and

7 = 1

M n = max (Sm -  Si)I{Yl+i — ■ ■ 
0

Y„ = 1},

where /{ •} denotes the indicator function of the event in brackets.
Ifp =  1, the random variable Mjg has been studied in various contexts (cf. 

e.g. Derribo and Karlin [7], Karlin and Dembo [10], and the work mentioned 
therein). Typically, if the random walk {Sk} has a negative drift, an almost 
sure limiting behaviour of {M/v} requires a logarithmic normalization.

This phenomenon (of logarithmic normalization) has earlier been ob­
served by Erdős R.ényi [8] and Shepp [12] for maxima of increments over 
subintervals of logarithmic length in a large interval. Csörgő -Steinebach [3] 
studied maxima over increments of at most logarithmic length and obtained 
a first convergence rate result. For the precise rates of convergence, and
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for various extensions and improvements of the Erdős-Rényi-Shepp laws we 
refer to Deheuvels-Devroye-Lynch [5] and Deheuvels-Devroye [6].

In this paper, we focus our attention on the case p < 1, i.e. we are 
interested in the maximal exceedances of a random walk {Sk} over “runs” 
of a companion sequence {Y, }. Since head runs are of logarithmic order (cf. 
Corollary 1 below), one can expect that, if the drift is positive, the maximal 
gain over head runs is of logarithmic order, too. This, however, may fail 
when the drift is negative. In the latter case, the head run corresponding to 
the maximal gain has at most logarithmic length. It turns out that still an 
Erdős-Rényi-Shepp type phenomenon holds for the maximal gain over head 
runs whatever drift the random walk may have.

Note that the limit in our main result does not depend only on EXi 
and/or the marginal distribution of Y\ . It is a function of the full distribution 
of X \  given Y\ =  1, and will be introduced next.

Let
'P(h) = E{ehX'\Y1 = l},

and assume that

(1.2) ho = sup{/i: (f(h) < oo} > 0,

(1.3) E{|X,||Y, = l}< o o .

Define

(1.4) h* =  sup | / i  ^ 0 : (f{h) ^  - 1.

Note tha t 0 < h* ^  oo, and, if h* < ho, then h* is the unique positive solution 
of the equation

If h* =  ho, then p(h*) £ \ / p  by the monotone convergence theorem, but the 
inequality may be strict.

T h e o r e m  1. Let, { (X , ,  Y7) ) , = 1 ? be a. sequence ofi.i.d. random vectors 
satisfying (1.1) to (1.3). Then

(1.5) lim
TV—><QO

M n 
log N

1
h* U.S..

When p = 1, EXi < 0, and the X /s are bounded, a corresponding result 
has been proved by Karlin and Dembo [10].

On choosing X, =  Yu we obtain the Erdős-Rcnyi strong law for the length 
of the longest head run:
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Corollary 1. Let Z ^  be the length of the longest head run in N inde­
pendent tosses of a coin with P( “head”) — pE  (0,1). Then

lim  ■Za _  1
/V—>oo log ./V log(l/p)

Refined and extended versions of the latter statement have been proved 
by Erdős Révész [9] and Deheuvels [4],

R emark 1. Condition (1.2) is also necessary for (1.5). Indeed, if 
lim sup M/v/log N  <oo a.s., then, for some h > 0,

lim sup
N —>oo

X NI{YN = l} 
log AI

So, by the Borel Cantelli lemma,

a.s..

Y  P ( X 1I { Y l =  l } Z - \ o g N ) < o o .
N =  1

Hence oo
Y  V(h'X\ ^  log AIlVi =  1) < oo,
N = 1

which implies (1.2).
We also obtain a convergence rate result for (1.5) provided h* < /io- It 

is an analogue of the Deheuvels Devroye-Lynch [5] improvements of the 
Erdős Rényi Shepp strong laws of large numbers.

We restrict our attention to the case
(1.6) P(Wi =  :r|Y’i =  1) < 1 Vx.

THEOREM 2. Let {(X ,, yi)}i=i,2,... be a sequence of i.i.d. random vectors 
satisfying (1.1) to (1.3) and. (1.6). Assum.e that h* <ho- Then

IT A4n — log Ai 
log log N

— — in probability,

, /RM/v - lo g  Ai 1
hm su p — j—  --- ——  = -  a.s.,log log AI 2

1= — -  a.s..lim inf
N  —>oo

. IT M/y -  log N  
log log N

The case IT =  ho is excluded from Theorem 2 because it involves large 
deviation probabilities in a wider zone than before. A different asymptotic 
of these probabilities may result in a different convergence rate in (1.5).

If (1.6) fails, the behaviour of M/v can also be different. Confer, e.g. 
Theorem 2 in Deheuvels [4].
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2. Large deviation results

Let Z\,  Z2, ■ . . be a sequence of i.i.d. random variables with E|Zi| < 00, 
P(Zi = x) < 1 for all x,

t0 =  sup{t ^  0 : 4>(t) = Ee,Zl < 00} > 0.

Define Tn — Z,, T() =  0, and
i =  1

M(f) =  ^ c  , PÍa ) = inf 4>(t)e~to.

Put A  =  lim p,(t). Then, for all a  G (EZi, A), there exists a unique t* G (0, to)
mo

such th a t y{t*) — a. Moreover we have

p(a) = 4>(t*)e-at’ .

T h e o r e m  3 (Petrov [11]). Under the assumptions above,

P (Tu ^ n a ) V '(« )

uniformly for a G [EZ\ +  e, min{A — e, 1/e}], where £ > 0 is arbitrary, and 
ip(t*) > 0 is a finite constant depending upon t* and the distribution of Z\ 
only.

For nonlattice distributions, fi>{t*) = l/(t*cr(t*)\/2jr), while for lattice dis­
tributions with, span H, ip(t*) = H/({ 1 — e~HI }cr(t*)\/2n), where a(t) = 
p'(t).

We will use the following corollary of Petrov’s theorem.
LEMMA 1. Let aG (EZi, A) and let yn be a sequence of numbers satis­

fying ny'n —> 0 as n —>• 00. Then, uniformly over z with \z\ ^ |yn|, we have

P {Tn Z n{a +  z)) ~  — J-pn(a) e x p |-n z t*  -  }.

P r o o f . We have

(log p{a))' = (log 4>{t*)  -  at*)' = y , ( t * ) ( t * ( a ) ) '  -  t*(a) -a( t*{a)) '  = -t*{a).  

It follows from p(t*(a)) = a  that a ( t * ( a ) ) ( t * ( a ) ) '  =  1 .  Hence,

(i°*  "<“ ) ) " = - ( ' ' < “ ))'

Since t*(a) is a continuous function of a, i p ( t * ( a ) )  is continuous. Apply­
ing Taylor’s expansion we get the conclusion of the lemma.
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3. Proofs

First we prove some auxiliary results under the conditions (1.1) to (1.3) 
and (1.6).

Put
,n  V'(h)rn(h) =

and

(3.1)

<p(/i) ’

h,m = I{Yl +1 = ' ■ ' = Ym = 1}, 

m* = m(h*), m! =m'(h*), C =
h*m*

Let Xj  be a sequence of independent random variables with cumulative
j _

distribution function F(x) = P(Xi < x\Y\ = 1), and Sj = X u Sq = 0. Note
t=i

that

(3.2) P(<Sj > x \Io,j = 1) =  P(<5j >  x).

The proofs below make use of similar techniques as developed in Deheuvels- 
Devroye-Lynch [5] and Deheuvels Devroye [6].

L emma  2.

P r o o f . P u t

h*Mn — log ÍV 1 
A—>oc log log N  2

X =  X N  =  1 ?  l0g N  +  ^  +  £) 2 h *  IOg l0g N '

K x =  [C log N  — A  x/log N  log log N ], K 2 = [C log N  + A y/log  N  log log N],
K 3 = [Cx log N],

where e > 0, and [x] denotes the integer part of x. The positive constants A 
and C i will be specified below. Note that x > 0 for N  > ee.

We have

(3.3)

where

P (Mn > x ) Í P ( N )  + Q(N),

(3.4) P(N)  =  P (M/v > x, I^m = 0 for all l , m such that rn^.1 +  K 3),
(3.5) Q(jV) =  P (//>m =  1 for some l, m  such that rn ^ I. +  K 3).
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Then, for any O' > 0.

(3.6) Q{N) S N 2p ,<3 ^  -N'2+Cl logp =  - N ~ a,
V P

provided C\ =  (2 + 8 ) / log(l/p). From the definition of h* and m* in (1.4) 
and (3.1), it is easy to check that C |  l/lo g (l/p ), so C < C\.

We further get

Kz
P(N)  < iVP( max S j l 0 j > x) < N  V  P(S7/ 0 > x)

1 < j< K 3

(3-7)

= 7 V ^ ^ P ( 5 J > x |/0j = l).
j = i

Hence, by (3.2),

(3.8) P(N)  g N Y ] P'PiS j >x) = N(Pi (N)  +  P2 (N) + PAN)),
.7=1

where
K  3  K-2 K 1

pi(jv)= E  (•)> p2(iv)= E  (■)> w ) = E (
J=/f2 + l j = R'l + l j=l

P u t

en = A\
I log log N  

log IV ’

and let tjv be the unique solution of the equation

1
rn{tN)

h* (C  + £/v)

Note tha t the function m(f) is strictly increasing and therefore i^vt h* - By 
Markov’s inequality

Ah
(3.9) P i(N )^  E  (PV(iiv))Je -ztwg C 1logi\r(p¥»(iJV))Jfa+1e - :Btw,

j=A'2 + l

because, by the strict convexity of <p together with <p(0) = 1, <p(h*) = 1/p > 1, 
one has </?(ijv) <ip{h*). By the definitions of iV2, x and ejy,

(3.10) logN{pp{tN ))Ki+le -xtN Ú (log jv )1- ( t^ /(2#l*))(1+e)jV1',
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where

Since

V = - ^ 7  + {C + £n ) \og(pip(tN)).

log{p<p(tN)) = rn*(tN ~ h*) + — {ín  ~ h*)2 + o((tN -  h*)2), 

we get, by the definitions of C, ín  and e n ,

1 TT) ̂
y = - 1 +(C+£N)m*(tN -  h*) — —  (tN -  h*)+C— (tN -  h*)2+o((tN -  h*)2)

= ~ l + V* {^(77)  - l ) {tN ~ h*) + c T {tN ~ h*)2 + ° {{tN -  h*)2)

= - l  + ~ ( t N -  h*)g(tN) + o({tN -  h*)2),

where

Note that

g(t) = ^ L - i + c ^ - ( t - h * ) .m(t) 2

g'(h*) = -
m  

2 m* <0.

Since g(h*) =  0, we have

g{tN) = g'{h*)(tN -  h*) +  o{(tN -  h*)).

Thus,
v m

y = - l - C ' - j ( t N -  h* )2 + o((tN -  h*)2).

Moreover, by the definition of t^ ,

m
eN = C ( - 1) ~  - C ~ ( t N -  h*) \m(thr) / m*' m{tN)

Here we have used the same argument as for g(t). ft follows that

. m *\2C — (tN ~h*)
3 log log TV

2... .. ' 2 log TV ’

provided A = (3m'//?,*(m*)'3)1/2. Then, for any i^ O , the inequality

'3 \ log log TV
log TV
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holds for all large N.  By (3.9), (3.10) and the last inequality,

(3.11) Pi(N)  ^ C i N ~ l {log N ) - ( 1+T)

for all large N,  if r  > 0 is chosen small enough. 
Let t'N be the solution of the equation

1
h*(C — £;v)'

Then t'N \ .h*. As in (3.9) and (3.10), we have

(3.12) P:i{N) log N{pip(t'N))r<le~xt'N = C{log

where
z = - f-^r + { C - £ N) log {p<p(t'N)). 

In the same way as before,

z = - l  + ±-(t'N -  h*)g(t'N) + o((t'N -  h*)2)

=  -1  -  C y  ( 4  ~ h * )2 + o((t'N ~h*)2) < -  1
/3  _  \ log log N  
V 2 /  log N

for any Ó > 0 when N  is large enough. Hence

(3.13) P3 {N)  ECIV“1(logA0_(1+r)

for all large N,  if t > 0 is chosen small enough.
Finally, put Zj = z n j  =  {x — rn*j)/j. By the definitions of x and m*, we 

conclude that Zj =  O (j_1/2(log j ) 1/ 2 ) if Ül i  ^  j  E  K 2 - By Lemma 1 , uniformly 
in K\ <;j ^ K 2,

P(Sj >x) = J>(Sj >j(m* + zj ))
1>{h

yß
h*

Vj
-p Je

)e_/l*m")iJ exp

x/r exp j (*■

2 jrn'
2

2 jm '

It follows that

P2(1V)^ —xh*+x(m*/m')
s / K l E

i = A " i + l

e - ( x 2 / ( 2 j m ' ) ) + ( j ( m * ) 2 / ( 2 m ' ) )

) -xh* +x(m* /m ')-x 2/{2K\m') y

= VKT
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X (e - ( ^ i + 1)(m*)2/(2m') _ e - (R'2 +l)(m*)2 /(2m '))(i _ e - (m*)2 /(2m' ) ) - 1 

<; B — —_^J_e—xh’—(x—m' Ki)2/(2K\m') < jgt yy_1 (log jV)~(1+r),
\ /K \

where the constants B  and B\ depend on h* and the distribution oi X\  only. 
Hence

(3.14) P2 { N ) Ú B lN - \ \ o g N ) - ^ +T̂

for all large N.  Via (3.11), (3.13) and (3.14), the inequality (3.8) gives

(3.15) P ( N ) ^ B 2( \o g N ) - ^ +T) 

for all large IV, r  > 0 small enough.
Set Nk = minjlV : log N  ^ A:}. Then, for Nk ^  N  < Nk+i, one has k S 

log N < k  + 1, and M ^ k S M/v f. It follows from (3.3), (3.6) and
(3.15) that the series

X !  P ( M N k > X N k ) 

k
converges. Since AL/v, log N  and log log N  are non-decreasing and log iVjt+i — 
log Nk ^ 2, log log Nk ~  log k ~  log log IV*.+1 as k —> oo, Lemma 2 follows via 
the Borel-Cantelli lemma.

Lemma 3. Put b =  m*k + (—u — e)(log k/h*). If e > 0, 0 > 0, s > 0, 
u + s + e ^  0, then

P (Sk ^  b, Sv+k -  Sv Z b)<,p-ke - k' c v - s + P (Sk ^  b)ku+s+£v ~ 0

for k ^  v ^ v\ =  «1 (0).

PROOF. Set s '  =  Sv, S =  Sk — Sv, S' — Sv+k — Sk- The random vari­
ables S  + S and S  are independent, and therefore

P (Sk I  b: Sv+k - S v ^ b ) ^  P(S" i  q) + P (S' + S" ^  6, S" +  5"' ^  6,5" < q)
^  P (S" ^  q) + P(S' +  S" ^  6)P(5"' Z b - q )  
g M t ) ) k- ve - t(> +  P (Sk i  b)(iP(tl ))ve - t^

for any q and any positive t ,t\.
Now choose

t = h*, t i < t ,  q = rn*k- j \og ip( t )  + j \ogv .

P (Sk Zb ,Sv+ k - S v 2b)

We have
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^ p - ke - k/c v - s+P{Sk^b)kt^ u+e^ tvsU/t e x p { - iiv ( jlo g p ( i)-^ lo g y > (ti) )}  

fLp~ke~k/c v~s + P {Sk ^  b)ku+£+s e x p | - i i v ^  logy>(i) -  ~  log </?(H)) }•

Here we used the definitions of h*,C in (1.4), (3.1), and the inequalities 
t\ < t, v ^  k. By the strict convexity of log together with log^(O) = 0 ,

7 log<p(i) -  ^logy>(i1)> 0 .t 11
This gives Lemma 3. 

L e m m a  4.
h* M/v — log N  1 

lim sup — -—  ---——  > -  a.s..
/V—>oc log log N  2

P r o o f . For j  =  1 , 2 , . . . ,  p u t

b’=i  + b ( k - s) Xogl • K=lCj]'
w ith  C  specified in (3.1), an d  define

M j=  m ax (Si+k ~ Si)Iu +k -[ei~1]<l^[ej] — K

Note th a t the Mj are independent.
We prove that P (Mj > bj i.o.) =  1. To do so, it is enough to show that 

the series
J 2 p j = E p ( ^ > M

3 3

diverges, and to apply the Borel-Cantelli lemma.
Let

Ai = {(Sl+K -  S i )h4+K / -  0 ,1 ,...  , N,
where N  = Nj = [eJ] — [eJ_1] — K.  By the Chung-Erdds lemma (cf. Chung- 
Erdős [2]),

p , = p ( l j . 4 , ) a
1=0

(NP(A0) f

N P ( A 0) + (NP{A0 ) )2 + 2N Z  P(A0Ak)
k= 1

By (3.2) and Lemma 1,

P ( A 0) = P(Sk I0,k  ^  bj) = p KV(~SK Z bj)

~PK^ ^ r  exp j —K{h*m* -  logy>(h*)) -  - e )  log ;} .
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It follows that

(3.16) D i j ' 1+£ g N P (A 0) Í  D2j ~ 1+£.

Here and in the sequel, D \ ,D 2, . . .  are positive constants not depending 
on N.

Let
Ä i = {Si+r< — Si ^ bj}, 1 = 0 ,1 ,. . .  ,N .

It is not difficult, to check that

(3.17) P(A0A k) = p k+KP(Ä0Äk) (A: =  0 ,1 ,. . . ,  K).

An application of Lemma 3 with k. =  K ,v  = k ,u=  —1/2, s = 1 + 2/e, gives 

P{Ä0Ä k) <,p-Ke - K/c k~(l+2/£'> +P {Ä 0) K l' 2+2' £+ek - e,

for large k, where 9 is an arbitrary positive constant.
Put l = [Ke' 2]. We have

K 1-1 K
N  pKP(Ä0Äk) = n Y  pKP(Ä0Äk) + n J 2  pKP(Ä0Äk)

k =1 k =1 k=l
K

<: NlpKP(Äo) + N e~ K/c Y  k~{l+2/e) + N pKP{Ä0)K 3/2+2/e+er 6
k —l

K
g D3K ~ i+ ie /2  + N e~ K/cr 2/£ Y  k~' + DAK - l+£K 3/2+2/E+£K ~ ee/2

k=l

^  D3K ~ 1+3£/2 + D5K ~ l logK  + D4K - 1+£K ^ 2+2/E+eK - 6e/2 g D6K ~ l+3e/2,

since 9 can be chosen arbitrarily large. Here we used the definitions of l, N,
(3.16), (3.17) and Lemma 3. It follows that

K K
(3.18) N Y  P(AoAk) Í  N Y p KP(Ä0Äk) Í  D7j ~ 1+3e' 2

k - 1 k - l

for large j.  By the last inequality and (3.16), we get

A —2+2e
pi i D>f̂r,j = D » r 1+,/2,

which implies Lemma 4. Note that log Nj = j  + o(l) as j  —> oc.
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Lemma 5. For any e >  0,

P
h* M]y — log N  ^  1 x

log log N  ~ 2 )

P r o o f . This follows from the proof of Lemma 2 via formally replacing 
1/(2h*) by -1 /(2 h*).

Lemma 6.
r  . h*MN - \ o g N  . 1 Jim ml —     ——  S — —
N=> oo log log N  2

a.s..

P r o o f . Lemma 6 is an immediate consequence of Lemma 5. 
LEMMA 7. For any £ > 0,

( /PM A, - l o g /V_> _ l  N t 
V log log N  = 2 )

P r o o f . Put k = [C log N] with C as defined in (3.1), and set

M n  =  max {Si+k -  Si)Ii i+k,
0

bk = m*k -  Q  + e) log k.

Evidently, and
N - k

{Á4N ^ b k}=  [J  A'h where A[ = {(Si+k — S/) Iu+k ^ bk}.
1=0

P (M n  i> bk) can be estimated as in Lemma 4. Note that the current definition 
of bk differs from the one in Lemma 4. We obtain

D \ j e NP(A'q) D-2j e

instead of (3.16), and
K

N  ^  P(A'0A'k) ^ Dsj 3e/2
k=l

instead of (3.18). This also implies
K

N Y , P ( A ' 0A'k) = o((NP(A'0))2).
k=l
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An application of the Chung-Erdős lemma yields

(NP(A'0) f
P (MN Zbk)Z -> 1.

NP(A'0) + (NP(A’0))2 + 2N Z  P(A'0A'k)
k=l

L e m m a  8.

lirn inf
N —aoo

h*M^  — log N  
log log N a.s..

P r o o f . Put n, =  inf{n : k =  j }  with k as defined in Lemma 7. Via the 
Borel-Cantelli lemma it is enough to prove that, for any e > 0,

(3.19) Y  p (Mn3 <m*j  -  + e )  logy) < oo.
j

Set .7/ =  {*: 21 j  ^  i < (21 +  l)y, i = r[je^2],r =  0 ,1 ,...  }, and define independent 
random variables Qo,Qi, ■ ■ ■ as

Qi. = sup (Sj -\-j 
ieJi

Then
Mn . Z sup Qi,

0^l%l
where L is the largest integer such that (2L + 1 )j — 1 ^ rij — j .  Now,

P  = P [ m Uj logy) ^ Ü  P ( P l < + £ ) loS j)-
1=0

Putting

A% — I  (St+j — S i ) I i ^ + j  ^ rn j  — —   ̂— "L £) 1°6 J } >

we get

P (Q, ^ m* j  -  ±  ( i  +  e) log y) = P ( ( J  V )  ^  S j -  E2,
i eJ i

where
S! =  5 ^ P (A <), S2 = Y  P(A,;A.m).

i£.Ji

Denote the cardinality of J/ by |.7/|. Then |.7/| ~ y 1-£/2 as j  —too  for all l.
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Recall that

P(Al)=p>P(Ál), P(AlArn)= p m- i^ P ( Ä iÄ m) ( t g m g i + i ) ,

where
A, =  {Sj+j -  St ^ m*j -  E  +  e) log j} .

By Lemma 1,

E! = I J,|P(Ao) ^  \Ji\D9e~j / c j £ ^  D 10e - ^ c j 1+£' 2 

for large j.  We further have

M/l-i
E  P ( A A l+r[j' /2]).
r=1

Applying Lemma 3 with k = j,  v = r[j£' 2], u = 1/2, s =  2, we conclude 
that

P(AzAl+r[j£/2]) ^  +  P (Äi)j5' 2+er - 0r 9el2)

for large j, where 0 is an arbitrary positive constant. By Lemma 1,

Mil-i
E  P ( M +r[j../a]) ^  D u jP e-^c j - £ + Disl
V — 1

= o{p?fe-j l c )

as y —t oo, since 0 can be chosen arbitrarily large.
' Thus

£2 = o ( j 1+£/2e~j / c ) =  o(Ei) as j  -too ,
and, for large j,

P -  E ( I  + e ) log j ) Z D Hj 1+£/2e - i / c .

So,

P  ^  ( l-L » i4 j1+£/2e_j/C) L+l
(3.20) , V . o r  ,

^ e x p |- D 14(L +  l ) j 1+£/2e j / r ’|  ^  ex p |-Z ? i5j £/2|

for large j, where we used the inequalities 1 — a; ^ exp(—x) and

L > % : - 2 Z D Vij - l e>,c  
~ 2J
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for large j. By (3.20), the series in (3.19) converges, which proves Lemma 8.
P roofs of T heorems. Theorem 2 follows from Lemmas 2 and 4 t,o 8. 
Under (1.1) to (1.3), (1.6) and h* < ho, Theorem 2 implies Theorem 1.
Now we assume that (1.1) to (1.3) and (1.6) hold, but h* =  ho- Put 

x = ölogn, K  = [alogn], where a > 0, 0 < b < 1/h*. We have

(3.21) P(M/v < x )  ^ ( p (5 /\/o,a: < x ) ) |A//' 1 <g exp{ -  [ ^ ]  P(Sk Iq,k  ^ a;)}-[Ni.

(3.22)

By Chernoff’s [1] large deviation theorem, 

1
K logP{SK ^ x ) }  log p{b/a),

where p(a) = mih{ip(h)e ha} denotes the Chernoff function.
Assume first that h* =  ho < oo. For a  ^  ac — E{A"i|yi =  1} we have 

ip(h)e~ha ^  1, if h < 0, and <p(/i) = +oo, if h > h*. This implies

p(a) =  inf {<p(h)e h a  inf <p(h) > 0
0 g/lg/l* Og/lg/l*

for all a ^ a c. By (3.2) and (3.22), we have

log P{Sh h),K = x) ~  K  \ogpp{b/a) = K  inf {logp<p(h)-hb/a}OShSh*
>(a inf {logpip(h)} — h*b) log N  > (—1 + S) log N,
~ 0

if a is chosen small enough. Hence
OO

(3.23) y~'/ P(Mjy < x) < oo.
N = 1

Assume now that h* =  ho =  +oo. We have, for x > 0,

P (X x ^x)<. <p(h)e~hx Ú -e~hx —* 0
P

as h —> +oo. It follows that P(ATi ^ OITi =  1) =  1. So the limit in (1.5) is 
zero.

If (1.6) does not hold, say P(A î = d\Y\ =  1) = 1, and 0, then the limit 
in (1.5) is zero. I fd > 0 , then l/h* = — d/  logp and

P(Sk Io,k ^ x ) = P(Io,k  = 1)=PK, 

if b < ad. On choosing a such that b/d < a. < — 1/ logp, we get 

logPiStf/o.K ^ x )~ a lo g p lo g N.



180 A. FROLOV, A. MART1KAINEN and J. STEINEBACH

This gives again (3.23).
By the Borel Cantelli lemma,

P (M/v < b\ogN i.o.) =  0

for all b < (h*) l , i.e.

(3.24) lim inf 7——̂7 ^ j — TV—>oo \ogN h* a.s..

To complete the proof of Theorem 1 we need to show that 

(3.25) ,. Mn 1lim su p ------ < —
N -> oc lo g iV  h*

a.s..

Put x  = [a log TV], K  = [C'2 log TV], In the same way as in (3.3) to (3.7), we 
get

1 K
P (Mn > x )< - N 2+Ci logp + N  V  p>P{Sj > x).

y  3 = 1
By Markov’s inequality and the definition of h*,

P (Sj > x ) ^  e~h’x((p(h*)y g e~h' xp - j .

Hence, for any subsequence iVfc =  [ak], a. > 1 fixed,

OOE P (M Nk > a log Nk)<oo,
k= 1

provided C2logp< —2 and ah* > 1. By the Borel-Cantelli lemma, this 
implies

(3.26) lim sup
k —>oo

Mn, 1 
log Nk -  h*

a.s..

Since M/v is a non-decreasing sequence, (3.26) proves (3.25). A combination 
of (3.24) and (3.25) completes the proof of Theorem 1.
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A LIMIT LAW RELATED TO THE LAW 
OF THE ITERATED LOGARITHM

K. GRILL

Dedicated to the memory of Alfréd Rényi

A bstract

We study the upper limiting behaviour of the time the Wiener process spends above 
a given lower class function.

1. Introduction

Let 0) be a standard Wiener process. For a function /(.) > 0
let

t

(!) U(f, t)  = j  l{w(i)>/(i)}(i)rfi-
o

The case where
f( t)  = x/^Tílöglögí

with 0 < 7 ^ 1 was studied by Chan [1],
If 7 <  1, Strassen’s [3] law implies that

lim sup t~1 {/(/, t) =  1 — exp ( —4 [ ----
t KX> V \7

Furthermore, it is obvious that this result remains true if we only have

,o\ /(*) . r-
(2)  l o g  l o g t  ^

Chan presents a large deviation law that is closely related to this question. 
For related results, see Uchiyama [4, 5].

If 7 =  1, Strassen’s law implies that the lim sup above is zero; thus, we 
are left with the question of the right rate of convergence. In this direction, 
Chan proves that (for f( t)  =  \/2t log log t)

(3) limsup(log log t)2' h ~ lUU, t) < oc
t-*oo

1991 Mathematics Subject Classification. Primary 60F15; Secondary 60F17.
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and

(4) lim sup(log log f) = oo.
t—>oo

It is the purpose of the present paper to give the exact limiting behaviour 
for the case 7 = 1. Observe first, that we no longer have the same limiting 
rate for all functions that satisfy

\ j2 t. log log t

as in (2) above. This should be clear from the fact that there are func­
tions /  satisfying this relation for which we have W  (t ) < /(f) eventually with 
probability one. Thus, we are led to have a look at the functions for which 
W (f) > f ( t )  infinitely often (here we commit a slight abuse of notation; actu­
ally, this is meant as “there is a sequence tn —» 00 such that W(tn) > / ( tn)” ; 
throughout this paper “infinitely often” will be understood in this sense). 
This is the subject of the famous Erdös-Feller-Kolmogorov-Petrovski inte­
gral test (cf. Feller [2]) which states as follows:

T h e o r e m  A. Let

(5) rs- II

where

(6) i/>(i)too

and

(7) t r 1/2ip(t)i 0.

Then we have

W

w ( t ) > m  i.o.

(8) M ^ / ^ e x p  ( - « f du —> 00.

Thus, from now on, we assume that /( .)  satisfies equations (5) to (8). 
Furthermore, we assume that

(9) sj2 log log t
1.

Under these assumptions, we have
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T heorem 1. If f  satisfies (5) to (9), then

lirasup p(t)~l U( f , t )  =  1,
t-KX)

where
= 8/logA(Z) 4t.log A(/) 

ip(t)2 log log/,

(we use f( t) ~g{t.) to signify that f{t)/g(t)  —> 1 as t —» oo).

R emark 1. For Chan’s original question, i.e., for ip(t) — \/2  log log Z, we
get

f>{t)
6/ log log log t 

log log /

R e m a r k  2. As A(/) -A oo, we see that (3) remains true in the general 
case; the rate of going to infinity there, however, may be arbitrarily slow. 
On the other hand, there are functions /  for which (4) fails.

Remark 3. If the limit in (9) is less than one, our theorem still gives 
the right rate but the wrong constant. It would not be too hard to combine 
Theorem 1 and (1) into one result that covers both cases.

2. Proof of Theorem 1 — upper part

We have to prove that, for any e > 0,

P(C /(/,Z)>(l + e)p(Z) i.o.) = 0.

Observe that p(t) is nondecreasing and, at least for large Z, greater than 
Z/log log Z. Thus, if

[ /( / ,/)  > ( l  + e)p(Z),

then there are u and v with
et

3 log log Z
ú u ú v  út ,

v - u ' t i  1 + y)p(z),

and
W( u) >f ( u) ,  W{v ) >f ( v ) .

This implies that
v ^ u + ( l  + —)p(u )
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and
v ^  — itloglogw

if u is large enough. Now, let

<n =  exp (y— )-\ log n /
If we have u and v as above, then we can find n such that

tn- i  <U<:tn.
This implies that

i« -i +  ( l  +  y ) p ( t n - ^  =  v  =  ~ t n  loS loS t n-

Now, let

A n = {3u,v :tn-\  ^ u ^ t n ,t.n- i  +  ( l  + y)p(in-l) ^ v ^  ^ i„ log log tn

We have to prove that 

To this end, define
P (An i.O.) =0.

tn9 = tn— 1
and

Obviously,

where

and

Bnm = {3ti, v : in -i ^  U g in, 0mtn ^  9m+ltn,
W ( u ) ^ n t n^ ) , w ( v ) ^ f ( e mtn)}.

m-2

m  1 =

P(-^n) = P(-Snm)?
rn—m\

log ( l  + (1 + t ) f 1)
log 9

m 2 =  (log n) .
By a simple reflection principle argument,

P(-Bnm) g  4P (IT  (in) ^ / (in—0 )  IT (0m+1i n ) £  f{9rntn)) =

4P(IT(ín—i) ^ ( 0 ) - 1/2/( in - l ) ,  W(0mi„) ^  {e)~l l2 f{Bmtn)).
The latter probability can be estimated above using the following lemma 
which we state without proof:
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LEMMA 1. If X i and X 2 have a joint normal distribution with EX,  =0, 
EX? = 1 (* =  1,2) a n d E X 1X 2 = p>0, then

( l - i ( o ) | ( l - * ( ^ t ) ) { P ( X |  i a , X 2 2b)

S 0 ( 1 - * ( . ) ) ( ! - K t = ^ ) ) -

(Here and in what follows, C will denote an absolute constant whose actual 
value may change from one occurrence to the other.)

As a consequence, if a>  0 and b> pa,

P(X1i a , * a * 6 ) s £ « p ( - ^ ) e x p ( - | ^ ) .

For our purposes, this implies that

s  c V ~e ü t w 2(1 + 0_m/2)0

If n is large enough and e is small enough, we obtain

P {Bnm)%C
1

i p ( t r1- 1 )
exp {-------T “ ) eXP( -------- 4------ ) ’

(1 — e/6 )m'

if m < e log n, and

P (£ nm) ^ C V — exp(-% l£)„-/»  
1 p ( t n - 1) 2

if m ^ e log n.
This, in turn, implies that

p (‘4n) - C W P Ä ) « p H 1 + §) iogA (i„_i)).

Thus, the series

E p (A")
is dominated by the integral

C  | ^ ( í ) 2 e x p ( - ^ ^ ) ( A ( í ) ) - ( 1+£/8H í =  C |(A ( í) ) - (1+f/8)dA(í),

so it is convergent, and the Borel-Cantelli lemma implies the upper half of 
our theorem.
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3. Proof of Theorem 1 — lower part

Now. it is our goal to prove that

i.o.) =  1.

Again, let 

Furthermore, let 

and

Define events

tTL=exp ( r — ) ■V log n /

#(*) =  V’(*)(i +  ^ r - ) >  

? ( i )  =

A n = { W ( t n) > V/ínV’(ín), >

By Levy’s arc sine law, we get that

P (5 „)^C T (A n),

where
Bn = A n n {[/(/, <„) > (1 - e ) p ( t n)}.

By a lower estimate derived from Lemma 1, we get

p(B”)>c^ exp( ^ ) (A(i“r<W4’
Thus, the series P (Bn) is divergent. In order to prove that P (Bn i.o.) =  1, 
we employ the following version of the Borel-Cantelli lemma:

L e m m a  2. Let (Ak, fcG N) be a sequence of events satisfying the following 
conditions

(i)

(ii)

Sf2 'P{Ak) = oo 
k=1

lim
71—> 0 0

E L i  E " =iP (A fcA7.) 

(E * = iP (4 k ))2
< M  < oo.

Then it holds:
P(Ak i.o.) ^  M -1 .
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So, we need to find upper bounds to the probabilities

P (BnB n+k).

First,
P{BnBn+k) = P (AnA n+k).

The following estimates are obtained in a similar way as the ones in the proof 
of the upper half of Theorem 1, so we can forego the somewhat intricate 
details:

P{AnAn+k) i  P(An) exp(-Cik)
if k < 2 log n

P(AnAn+k) ^ P ( A n) n -c*

if 2 log n ^ k ^  (log ro)3, and

P(AnAn+k) i C 3P(An)P(An+k)

if k > (logn)3 (the constants C\ , C*2 and C3 above may of course depend 
on e).

Putting everything together, we find that the events B n satisfy the hy­
pothesis of Lemma 2, so we find that

P{Bn i.o.) >0.

This, together with the zero-one law for the Wiener process, proves the lower 
part of our theorem.
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ON ESTIMATION OF ANALYTIC FUNCTIONS

I. IBRAGIMOV

To the memory o f A . Rényi

1. Introduction and main results

The aim of this paper is to present some results about nonparametric 
estimation of analytic functions. We consider the following three problems. 

PROBLEM I. An observed signal X £(t) on the interval [a, b] is of the form

(1.1) dXe(t.) = f(t)dt  + edw(t), a ^ t ^ b .

Here w(t) is the Wiener process, e is a known small parameter and the 
unknown signal /  belongs to a known class F  of functions on [a, b}. Denote 
I • |p the norm in Lp([a,b}). Put

(1.2) Ap(£; F) = Ap(e) = inf sup E , | /  -  / | p

where sup is taken over all f  E F and inf over all possible estimators /  of / .  
We are interested in the asymptotic behaviour of Ap(e; F) when the level of 
noise e goes to zero. The rate of convergence of A depends on / .  Recall 
some known results (see [1], ch. 7 ; [2]).

1. Let F  consist of all periodic functions with uniformly bounded in Lp 
fractional derivative of order ß. Then

Ap(£) x £2̂ 1+2̂ , 2 ^ p < oo,

Aoo(e)^£2/J/1+2/J( ln l /e )2/J/ 1+2̂ .

2. Let F  consist of all periodic functions /  analytic and uniformly bound­
ed inside a strip |Imz| < c, z  =  t  +  i s .  Then

n  d) Ap(e )x ey /ln (l/e ), 2 g p < o o ,
Aoo(e x  v/ln(l/6) \/h i ln(l/e).

1991 M athematics Subject Classification. Primary 62G07.
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Below we study the following problem. How does Ap(e; F) behave when 
e goes to zero if F consists of all functions /  analytic and uniformly bounded 
inside some region G of the complex plane, [a, b] C G?

P roblem II. Assume that one observes iid random variables X \ ,X 2 ,
. . .  , X n taking values in [a, b] and having a density function f ( x )  with respect 
to the Lebesgue measure. As above we define the minimax risk

(1.5) A p(n;F)  =  Ap(n) = infsupE / | 7  - / | p,

where inf is taken over all estimators /  and sup over all /  G F  and study the 
behaviour of Ap(n) when n goes to infinity. Recall that (see [3]):

1. If F  consists of all densities with uniformly bounded in Lp(R l ) frac­
tional derivative of order /?, then

A p (n )x n " W2/3+1, l^ p < o o ,  
A0O( n ) x n - W +1( ln n ) W +1.

2. If F  consists of all densities f(x)  analytic and uniformly bounded 
inside a strip |Imz| < c, z — x +  iy , then

A„(n) >:n ~ 1//2\/lnn, l < p < o o ,
1.7) p ____ T

Aoo(n) n ~ 112 \/hi n V In In n.

In this paper we are interested in the behaviour of Ap(n) when F  consists 
of all functions analytic and uniformly bounded inside a region G of the 
complex plane, [a, b] E G.

P roblem III. Let f ( x )  be an unknown function on [a, 6] belonging to a 
given class of functions F  on [a, b]. To estimate /  one makes n observations 
of the function /  at the points X  \ . , . . . ,  X n and observes

Yj = J (X j ) + Gj(Xj,uj),

where E(Gj(Xj, u>) \ X \ , . . .  , X j - 1) = 0 and the noise variables Gj are condi­
tionally independent under a given observation plan (see details in [4]).

Let

(1.8) A p{n;F) = A p(n) = inf sup E / | / -  f \ p,

where inf is taken over all admissible observation plans and all possible 
estimators and sup is taken over all /  6 F  (see [4]). It has been proved in 
[4 ], [5 ] that

1 . If F consists of all periodic functions with uniformly bounded in Lp 
fractional derivatives of order /?, then
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Ap(n )x n  0/2(i+\  p<  oo, 
ATO( r i , ) x n - ^ +1( l n n ) ^ +1.

2. If /  consists of all periodic functions analytic and uniformly bounded 
inside a strip |Imz| < c, then

^  1Qx Ap(n )x n ~ 1/2\/in n , p<  oo,
Aqo (n) x n _1/2v/lnn\/lnlnn.

We are again interested in the behaviour of Ap(n) when F  consists of 
functions analytic inside a bounded region G , [a, 6] E G.

Notice that in all the results which have been cited above the function 
/  satisfies proper regularity conditions at all real line. All the results (1.3),
(1.4), (1.6), (1.7), (1.9), (1.10) are absolutely similar. In this paper we impose 
regularity conditions on the behaviour of /  in a vicinity of the interval [a, 6] 
only. Of course, functions smooth on the interval [a, b} can be smoothly 
extended onto B ] and nothing will happen with the formulas (1.3), (1.6), 
(1.9). The situation with analytic functions is different, functions analytic 
in G cannot necessarily be extended analytically into a vicinity of the real 
line and the formulas (1.4), (1.7), (1.10) may change. The results below show 
that they really change. Moreover, the behaviour of A is not similar to the 
problems I and III.

T h e o r e m  1. Let the expression A p(e-,F) be defined, by (1.2), where the 
set F consists of all functions f  analytic in some bounded region G, [a,b]cG, 
and bounded there by a common constant M . Then

Ap(e) x e^ /ln  1/e, 2 ^ p < 4 ,

(1.11) A4(£) x x/M T 7^)(ln ln (l/e))1/4,
Ap( e ) x £(ln ( l /e ) )1/2'*, p>  4.

T h e o r e m  2. Let the expression Ap(n; F) be defined by (1.5), where the 
set F consists of all functions f  analytic in som,e bounded region G, [a,b\cG, 
and bounded there by a common constant M . Then

Ap(n) x n '^ V l n n ,  l^ p < 4 ,
(1.12) A4(n) x n - ^ v / h ^ l n l n n ) ’/4,

Ap(n) x  n -1/2(ln n )1-2/p, p> 4.

T h e o r e m  3. Let the expression Av(n\F) be defined by (1.8), where the 
set F consists of all functions f  analytic in some bounded region G, [a, b] C G,
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and bounded there by a comm,on constant M . Suppose also that Gj have finite 
moments of all orders. Then

^  i3 Ap(n) x n _1/2v lnn , p < oo,
Aoo(n) 5cn“ 1/2V lnn(ln lnn)1/2.

Thus the results are really different from those one usually has in such 
kind of problems. At first, in the problems I, II even the order of convergence 
Ap depends on p\ further, the exceptional value of p now is not oo but 4; and 
at last, and it is unexpected, the behaviour of Ap is different for problems I 
and III.

The rest of the paper is devoted to the proofs of the theorems. The 
analysis of Cases I and II is very similar and we give a sufficiently detailed 
proof only of Theorem 1 and do not go into details in Case II. Without loss 
of generality we may and will suppose that [a, b] =  [— 1,1].

Below we denote constants by C or c, i.e. quantities which do not depend 
on parameters under consideration; they may be different even inside the 
same formula. But sometimes we supply these constants by indices.

If G is a region in the complex plane we denote by A(G) a class of func­
tions analytic in G and uniformly bounded there by a common constant M .

2. Proof of Theorem 1

2.1. Upper bounds. The set G contains inside itself an ellipse E  with the 
foci at the points ±1 and the sum of halfaxes equal to R, > 1. Any function /  
from F  belongs also to A(E)  and can be represented by Fourier series with 
respect to the orthonormal Legendre polynomials in the form

OO
(2.1) f{t)  = ^ a 3Pj{t).

o

The value of the best approximation of the function /  in the L2-norm 
by polynomials Q of degree n  is equal to

N

1/2

“i 2 =  ( igf  / If(t) -  Q{t)\2dt
n+l '

1
^  ( in f  / \f{t) -Q ( t ) \2( l - t 2)~1/2dtj

\  1/2

<

-1
7T

= V R? — 1 / R

1/2 M
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where M  = m ax (|/(z ) |: z G E) (see, e.g., [6]). Hence

1/2
( 2 . 2 ) I a* I ^ M R 7 k =  cR~k — ce~lk .

,2 (R -1 ) ,

Consider now the estimators f/v(t) for /  defined by the formula

N
/ ar{t) = ^  akPk{t),

0
where

I

ak = I  Pk(t)dX£(t) = ak + ezk.
~i

The random variables zk = f  Pk{t)dw(t) are iid standard Gaussian variables.

The Legendre polynomials satisfy on the interval [—1,1] the inequalities

\Pk{t) \ZPk{l) =
(2.3)

2k + 1

\ P k ( t ) \ Z d -
2 / 2A: + 1

( l - F j - V S i / r d - ' 2)
- i / 4

7T V 2k V 7T

(see [7], Theorems 7.3.1, 7.3.3). It follows from (2.2) and (2.3) that

(2.4) E\fN - f \ p ^ c ^ N e ~ ^ N +e\ZN\p,

where Z n {í ) is the random polynomial of degree N

N
z N( t ) = y ' z kp k(t).

It follows from (2.3) that

(2.5)

Hence for p < 4

( 2 . 6)

EZN2(t) ^ Z N n - ' i l - t 2) - 1/2,
N 2, U N  >2.

E\ZN\l %cp j { ^  Pk\ t ) ) V/2dt ± CpNp/2.

If p — 4, then
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-1+N~2 1 1
(2.7) E\Zn\p ^ c p (^N4 j dt + N 4 I" dt + N 2 j t~ld t \ % c N 2 ln N.

-1 1 —iv-2 N -2

If p > 4, then
l

(2.8) E\ZN\pp ^ c p (^Np~2 + N p/2 j  t~p/4dt^ ú c pN p~2.
N~2

Combining these inequalities with (2.4) we find that

E |/ jv — /Ip = cp(\ÍNe~lN + e\/~N), p <  4,

(2.9) E |/n - / | 4 ^C4 ( y N e ~ ^ N + e{ \n N )v!4\Zn ^ ,

E |f N ~ f \ P^ c p (x /iV e -^  + eiV1- 2̂ )  , 4< p< oo .

Take here N  =  [(In 1/e)/'y] and denote f E the estimator Fjv with such N . For 
these estimators

E / | / e - / | P^ c pe(ln (l/e))1/2, p<  4,
(2.10) E/ |/£ - / | g c pe(ln (l/e)1/2(ln ln (l/e ))1/4, p = 4,

E / | / £ - / | p ^ c p£(ln(l/e))1_2/p, 4 <p < oo.

To treat the case p = oo we need the following result.
Lemma 2.1 (see [8]). Lei Q be an algebraic polynomial of degree n. Then

(2.11) |Q |oo^(p  +  l ) 1/pn 2/p|Q|p.

The last inequality together with (2.8) gives that 

E|Z/v|og = cpN 2/pE\Zn \p ^  cpN

and hence

(2.12) Ef\ fe — f \ ^ c e  ln (l/e).

The inequalities (2.10), (2.11) prove the part of Theorem 1 concerning the 
upper bounds.

2.2. Lower bounds. We proceed in the following way. Evidently for any
<5 > 0

Ap(e) ^  S • inf sup Pf {\T -  f \ p ^  <5}.
T /6F
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Let, now S  = {} j \ j  =  1 , . . . ,  M}  be a family of functions /  E F  such that 
I fi — f j \p > 26 for any i ^  j.  Then

sup P/{\T  -  f \ P * 6} Z ±  P /. Í \T  - M p *  «}■

The right-hand side can be bounded by Fano lemma (see [1]) and we find 
that

(2.13) Ap(e) ^  sup <5 
d> 0 V ln M — 1 )

where the Shannon’s capacity

Ce(S) ^ sup 
fes

(see for details of these arguments in [1], pp. 355, 356). The construction of 
the set S  depends on p and we consider separately three cases.

1. Estimation of Ap(e) for p<  4. Consider functions f ( t ) of the form

N

fa(t) = e-'*N Y / aj PJ(t), aj  =  ±  1 .

The polynomials Pj(z) for [—1,1] satisfy the inequlity (see [7]) 

\Pn{ z ) \ ^ Csf a  z + (z2 — l ) 1/2 " .

Hence one can choose 7 in such a way that all functions f a{z) are bounded 
by a constant M  for z E E, where E D G is an ellipse with the foci at the 
points ±1. Hence all such functions f a EF.  Evidently

\fa\2 = {N + l)e~2lN.

Lemma 2.2. Let A = A(d) be the set of vectors a =  (ao,. . . ,  a^) such 
that for any a, a' E A

K' “  aj'l > 2(1 ■
Then for the number of elements A we have

(2.14) card (A) ^ 2N+l

Inequality (2.14) is called Gilbert or Varshamov-Gilbert bound (see [9]). 
LEMMA 2.3. Let d in (2.14) be equal to [N/ 4]. Then for all N  > Nq
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(2.15) card (yl) > exp{—AT/8}.

The proof of (2.15) can be achieved by elementary estimation of
£ oA/4 (A)t *) or derived from some elementary results about probabilities of 
large deviations.

Let now S  = {/a, a 6 A}, where A = A([N/4]). We have for any two fa, fa'

\ f a - f a ' \ p ^ ^ /p- l/2\ Í \ - fa ' \2
=  21/P- l / 2 ( ^ | a j _ a/ |2 )1/2e- 7lV

£  2 l / 2 + l / p ( j V  +  ! ) l / 2 e - i N  g  c 7 V ’ / 2 e - 7 ^ )

where c > 0 . It follows from (2.13) that for 2 ^ p < 4

Ap(e) ^ c \VN e  yN (l -  c2N(£2e^ Ncard T(A^/4))-x)

^ ci V n e~lN  (1 -  c3£“2e“27iV).

Take here lV ~c7“ 1 ln(l/e). We find then that

(2.16) Ap(e) L ce\J ln l/e , c> 0 .

Consider now the case p > 4. Let A be a small positive number. Define 
the functions

fo(t) =  exp{—7IV} ^  i j ( i ) ,
N/ 2 g j < : N

(2.17) / 1( i ) = e x p { - 7JV} 5 3  P ; (i),
N/2-^j^N-NX

The collection of functions f 3 will constitute the set S. The number of points 
in this set is close to N/2X. Evidently

\ f j \2 = N  exp{—27A}.

For any ./), f  , 6 S

\fi ~ fj\p = exp{—7iV}
1 /p

dt,

where I ( i , j ) is the interval of the type [xN, yN] and y — xft. A.
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The Legendre polynomials satisfy the inequality

(2.18) _maxi |Pl (<)| =  P ( l)  =  y ? * ± í .

By V. Markov’s inequality (see [8])

(2.19) I P ^ c f c ^ U g c A ; 5/ 2.

Hence one can find 6 > 0 such that for t E [1,1 — 6N~2} and N /2

(2.20) Pk{ t ) ^ 2 - 1y/N.

It follows that for all /;, f j  € S

\fi ~ fj\p = c \ N 3/2~2/pe~'yN.

Apply now (2.13). We find that

Ap(e) ^  cA./V3/,2_2/pe~7iV(1 -  c N £ -2e ~ ^ N{\n 1 /A )'1).

Choosing here N  in such a way that the expression in the brackets is close 
to 1/2,

N  = -  ln(l/e) + -5- ln ln (l/e ) + . . . ,
7 27

we find that
Ap(e) ^ c£ (ln (l/e ))1-2/p.

Consider now the last and the most complicated case p =  4 which needs 
a special treatment (cf. [1], Theorem 2.12.1). Denote F the set of func­
tions f(t.) = ajPj(t)i where the vectors a = (ao,...,ayv) run the ball 
j a  : a2 ^  N 4e2 j  in R N+1. We will denote by T this a-set also. If N  is
chosen from the relation e ~  e~lN then under a proper choice of 7 the set of 
functions F c F .  Hence

1
A4(e) =  A(e) ^ inf meg (r) /  Ea | ^ ( aj -  t3)P.

N

da

( 2 . 21) inf 1
mes (r) E,

r

f i A
1 —ti)Pjv n

x exp^ — |a|2/2e2 +  e 2 j  f{t)dw(t.)
- i

da.
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We have from the last relation that
( 2 . 22)

r-c

where £ =  (£o • • • £jv) denotes the standard Gaussian vector.
Consider now the set A — {x = (xq, . . . ,  x n) : |.t | ^ eN 2 -  eN} and the set 

To =  {a : |a| ^ eN}.  Then the inequality (2.22) gives that

- U ^ \ - ( N + l ) / 2 - ( N + l )A(e) ^ (mes (T)) *(2^)

/  ^  /  |E(°J r ' “i 2/2da1  H t j )
,4 r 0

If we apply Anderson’s lemma to the last integral (see [1]), we find that

A(e) ^  e(mes (T))_1 f  (2n)~(N+l)/2d£ j  1Y , aiPi
A  e - ’To

Denote B  the complement of the set e_1ro. The integral

r l “ l 2/ 2d a .

(2?r) -(/V+l)/2 e -l“l2/2da

Hence

(2.23)

| c7V3/4 /  r N + l e - T2/2d r ^ c N N e - N '2 / 4  < ce2 . 

N

<_XJ

A W ^ = ^ ( 2 - r ) - (' ' +1)/2/ | E ^mes (1 ) ./ 1̂ —'
oo

= 4eE |E  + 0(e2),

P, e- |a|2/2da + 0 (e2)

where £ =  (£o ... Cn) denotes again the standard Gaussian vector. 
Finally, prove that

^ cVlV(\n N ) 1/4, 
4

c > 0.(2.24)
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Let, A be a small positive number. Consider the probability

Q

Since

e I E í t ,  “ S / i E ^ w )  *■>

this probability is

V a r ( I E W I I )

( 3 - A ) 2 [ / ( E 0f'i? W < t
2n 2

Recall some asymptotic formulas for the Legendre polynomials (see [7], ch. 8): 
The Laplace formula: uniformly on e ^ 9  — e

(2.26) Pn (cos 9) =
2 n + 1cos{(n +  1/2)0 — tt/4} +  0 {n  1̂ 2);

nn sin 9

and the Hilb formula: uniformly on 0 Si 9 ^  7r — £

(2.27) Pn(cos 9) = (n +  l /2 )1/2(0 /sinö)1/2 J0{(n + 1/2)0} +  0 { n ~ 1/2),

where . / q ( x ) is the Bessel function.
It follows from (2.26) that the numerator in (2.25)

(2.28) (3 — A); Y ^ pj ( x )dx) 1> c,N4 ln2 N, c > 0,

the numerator in (2.25) is the combination of the summands of the type

i l

*M) = J  I  ( Y , pA*)pM ) \ Y , pH x) ) \ Y , pi M ) bdxdV'
-1 -1

where (a, b) — (2,1) or (4,0).
Applying the Hilb formula (2.27) we find that

I(a, b) = o(N4 ln2 N).
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Thus Q =  o(l) and hence

> ^A 1/4(l +  o(l)).

The last inequality and (2.28) prove (2.24).
Since Ar ~ ln l/e , it follows from (2.23) and (2.24) that

A ^e) ^  ce(ln l/e )1//2(lnln l / e ) 1/4.

Putting  together all upper and lower bounds for Ap(e) we prove Theorem 1.

3. Proof of Theorem 2
3.1. Upper bounds. In general we follow the arguments of Section 2.1. 

Namely, we consider again the expansion of the density function f (x )  into 
Fourier series with respect to the orthonormal Legendre polynomials

All these series converge uniformly with respect to f  inside some ellipse E. 
Estim ate the coefficients aj by the statistics

00

(3.1)

(3.2)
i=i

and the density f(x)  by

N

0

We have
Í n {x ) -  f ( x )  = [Ef N(x) -  f(x)] +  £n {x ) 

where £, n { x ) >s the random polynomial of degree N

Thus

(3.5) E | / j v - / | p g | E / j v - / | p  +  | 6 v | p .
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The first member on the right-hand side

(3.6) \EfN - f \ p = \ y  a,Pj ^ c V N e ~ ^ N, 
' p

where 7 > 0 depends on the ellipse E  (and hence on G) (see Section 2.1). 
The estimation of E|£/v|?; depends on p. Note at first that

E f Pj (Xi) = a j = 0 ( e ~ y .
Hence N 2

E&{x) = - v ( £ t Pj (x)Pj (X 1)) +0(7i~l ),
0

where the O(-) term is uniformly bounded with respect to N.  Thus

(3.7)

r AI
E / I f t v l ^ n - 1 j  f ( x ) J 2 P j ( x ) d x  + 0 (n ~ l )

-1
gcl/looJVn"1.

It follows that for 1 ^  p ^ 2

E |/ai ~ /Ip ^  c (e~l N V N  +  y /N /n j  .

Put here lV ~ ln n /7 . We find then that

(3.8) Ap(n) ^ (ln n /n )1/2, 2.
LEMMA 3.1 (H. Rosenthal). Let Z \ , . . . ,  Zn be independent random vari­

ables. Let EZk = 0 and let p^.2. Then

(3.9)
E‘ p

Z*
' 1

i c { ± n z t \<‘ + { ± ^ z i ) m ).
1 1

where c is a positive constant depending only on p.
The proof of the Lemma can be found in [11], Section 2.3.
We now return to the estimation of E|£w|p. It follows from (3.9) that

1 N

E|6v|v ^ c n - H n  /  E ] T  Pi (x)(Pi (X1) -  E P ^ W d x

(3.10)

+ np / 2
\ j L y  2\ p/2 1

e y p j W P j & i )  ) d x \ .
- 1
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By a formula of Laplace ([7], Theorem 8.21.1) uniformly outside any region 
including the interval [—1,1] when n goes to infinity

Pn(z) ~  (27r)“ 1/2(z2 -  1 r1/4(* + (z2 -  l)V2)n+l/2
Hence by (2.2) l

Pi(x)Pj(x)f(x)dx c > 0,

and

e I ^ P ^ ) ^
2 \ p / 2

da:
- l

(3.11) E  Pi(x)Pj(x) /  Pi{y)Pj{y)f{y)dy
i,j=0 _1

p/2

< r:p
N P/2 da:.

- l
Finally

Thus, for p > 2

A'
< c N 2p.

/  p  N  j 2  \  1/p
(3.12) E |U |p ^ E ]/P |^ |pp ^ c N 2n - 1+Pp + n - P 2( ( J ^ P 2(x )) d x \

V [ '  o '
The integral on the right-hand side has been estimated in Section 2. 

Applying these estimates and taking N  ~  Inn we find that

Ap(n) ^ cpn -1 2̂(lnn)1̂ 2, 2 ^ p < 4 ,
(3.13) A4 cn-1 / 2 (Inn)1/2 (In Inn)1/4, II 4̂

Ap(n) ^  cpn -1 /2 (In n )1_2/p, 4 < p  < 00
To treat the case p =  oo we apply again the inequality (2.10). We have 

then from (3.12) for some p > 4 and N  ~  Inn

E |^ |o o ^ ( p + l ) 1/piV2/pE |^ |p
c(./V2+2/pn~1+1/p + n -1/2lV2/p) ^  cn-1/2 Inn.

2.2. Lower bounds. The proofs are similar to those of the Section 2 only 
instead of (2.13) we apply the following result.
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LEMMA 3.2 ([3], Theorem 3.1). Assume that there are N(6) densities 
fiS G E, i =  l , . . .  such that \fi$ — fjs\P ^  6. Let {fos} be an arbitrary family 
of densities, ö > 0. Let the set S(n, E) be defined as

6{n, E) =  sup 1
\nN{6)

maxi
fit) fjS

vToá

Then for any estimator f n of f

(3.15) supE/ | / n - / | p £ l / 4 i ( n >E).
/€£

The construction of the set {fig} depends on p. If p < 4 the set {fis} 
consists of functions

N
fa(x) =  1/2 + e~7/v ^ 2  o,jPj{x), a.j =  ±1

l

and fos(x) — 1/2. The further arguments coincide with the arguments of 
Section 2.2, the case p<  4, and we omit them. The final result is

(3.16) Ap(n) > cp(n- i  Inn )1/2, cp > 0, p < 4 .

If p > 4 the set {fis} consists of the functions

1/2 +  f j ( x ) ,  j  =  0,1...

and the functions f j{x)  are defined by (2.17). The same arguments as in the 
Section 2.2 and Lemma 3.2 show that

(3.17) Ap(n) ^ cpn -1/2(lnn)1-2/p, cp > 0, 4 < p ^ o o .

The more complicated case p = 4 again as in the Section 2.2 needs special 
arguments (also in the spirit of the Section 2.2, p = 4). Namely, consider the 
set T of densities

1 N
fa(x) =  ! /2  +  ^ =  aJPÁ X))

where the vectors a = (o r,. . .  ,a/v) run the ball ja  : a2 ^  iV4 j .  If N  is
chosen from the relation 7V ~clnn, the set FQF.  Hence
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i r i AA 4(n) ^  in f------ / Eg >^(Qj -  t.j)Pj
t mesT / K—' J J Jr 1

da

~  “ f m esr /  E°{ | H (aJ ^ ' L  I l ( 1 +  S  a3PÁ X '- 
r 1 i=i v  j=i

da.

The rest of the proof is the combination of arguments of the Section 2.2, 
the case p = 4, and the arguments used to prove the Hájek-LeCam minimax 
theorem (see [1], Section 2.12) therefore we omit it. The final result is that, 
as in Section 2.2,

N

A4( n ) ^ c n - 1/2E | ^ í i Pj | ,
l

and (£ i , . . .  ,£#) is the standard Gaussian vector. We have seen that the last 
inequality implies

(3.18) A4(n) ^  cn_1/,2(lnn)1/,2(ln In n )1/4.

The upper bounds (3.13) and (3.14) and the lower bounds (3.16)—(3.18) 
prove the theorem.

4. Proof of the Theorem 3
We need to prove the upper bounds only; the lower bounds have been 

proved in [4], the case p — oo, and in [5], p<  oo (see Section 1).
For the sake of simplicity we consider only the case of Gaussian noise. 

Namely, we suppose that the observations

Yi =  f ( x i ) + £ i ,  i = 1,. .., n,
and are iid Gaussian random variables with E£* =  0, =  1. The general
case can be treated as in [4].

We choose the following plan of observations. Take integers N,  n, r  =  
[n/N], Pick N  knots x ^n  S [—1,1] and at any knot, except maybe one, 
make r observations. The number of observations, at the exceptional knot is 
n  — r ( N  — 1). For the sake of simplicity we suppose below that n = rN.  Let

Y k N  =  f i x k ^ + r ' 1 ^ &  =  / ( z f c ; v )  +  % n

be the arithmetic means of observations at the point XkN- Evidently, pkn 
are Gaussian with means zero and variances equal to r . We write below 
Y k ,  X k ,  etc. instead of Y k N - ,  etc.
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Take as an estimator for f (x )  the statistic

/„ (* )  =  5 3

where lk(x) = lk\-(x) are Lagrange interpolation polynomials and

lkN{xjN) = lk(Xj) = Skj-
We take for the knots xjn the zeros of the Chebyshev polynomial T^{x)  of 
order N  (see [7])

xk = xkN = cos{{2k-l)n{2N) ]).

Then
Í n {x) -  f{x) = [ j 2 H x k)lkN( x ) - H x )  + £ n (x), 

where the random polynomial

(,N{x) = ^ 2 q klk{x).

The rate of approximation of analytic functions /  6 A{G) by the inter­
polation polynomials f ( x k)h(x)

f - T . f ( x k)lk Z c M e - T 1,
—  OO

where 7 > 0 depends on the region G (see [10]). Hence as before

(4.1) E |/  — / aHp = cMe~yN +  E|£jv|p.

Further
1

E|£w|p =  (27r)1/22̂ p+1^2r_p/2r((p +  l)/2) [  ^(x))'" ' ^ .
- l

Prove that 

Let
hk{x) = ^ 1 -  ^7-j ^ (j-a :fc ))  lk{x) = vk{x)l2k{x) 

be the Hermite interpolation polynomials. Then

5 3  hk{x) = 5 3  vk(x)ik{x) = 1
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(see [7], Section 14.1). The Chebyshev polynomials T/v satisfy the equation 
(see [7])

(1 -  x2)T'^{x ) -  x.T'n (x ) +  N 2T n = 0.

Thus T'ú(xk)(T'N(xk))~l = x k (l  - x 2k)~l . Hence

vk(l) = ( l + x l r l Zl/2 ,  Vk( - l ) ^ l ,

and the functions vk(x) ^  1/2. It follows that

l = ^ 2 vk{x)l2k{ x ) ^ ^ Y y i ( x ) .

We have for p < oo

(4 .2 ) EICjvI P^ c p l' 2r - 1'2 = c(pN)l/2n~1' 2.

Take here iV ~ lnn /7 . We find from (4.2) that

If p — oo, we apply (2.10). Then

E M o o  ^  ( p +  l ) 1/pN 2^ N \p Í  c N 2l* y /p y /N fc .

Take here AT~lnn/7, p ~ ln !V . We find

Aoo I  cn_1/2(lnn)1/2(ln ln n )1/2.

The proof is completed.

5. Analytic functions of several variables

Denote F^(G,M) the collection of functions f ( x \ , . . .  , x d) defined and 
analytic on the closed d-dimensional cube J  =  {x =  (aq,...  , x d) ■ \xj\ ^  1}. 
We sujrpose that all functions from have analytic continuation into a 
region G D J  of the complex space of d complex variables z = ( z \ , . . .  , z d), 
zk — x k + iyk, and are bounded there by a constant M.  We suppose that 
G C. E\  x É2 x • • • x E d, where Ek are ellipses of the complex plane zk =  
x k +  iyk with foci at. the points ±1 of the real axis.

Consider multidimensional generalizations of our initial problems I—III.
P roblem 5.1. An observed signal X £{t) is of the form

d X E(t) = f(t)dt + edw(t),
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where /(/,) =  f(t . -xi , . . . ,  Xd~\) and w(t) is a cylindrical Wiener process (see 
details in [12]). The signal /  G F,/(G, M) and Ap(e) are defined as above

Ap(e) = infsup E / | / - / | p

and the upper bound is taken over all /  € F,/.

T heorem 5.1. The expressions Ap(e) satisfy the following asymptotic 
relations

Ap(e)xe( ln ( l / e ) )d/2, 2 ^ p < 4 ,

(5.1) A 4(e) X £( ln ( l /e))d/2( ln l n ( l / e))d/4,
Ap(e) ^e ( ln ( l / e ) )d(1-2/p), p > 4 .

P roblem 5 .II. Assume that one observes iid random d-dimensional ran­
dom vectors X \ , . . . , Xd taking values in J  and having density function /(x). 
Again

Ap(n) =  inf sup E / | / - / | p

and the upper bound is taken over all densities /  G Fd{G, M).

T heorem 5.2. The expressions Ap(n) satisfy the following asymptotic 
relations

Ap x n -1/2(lnn)d/2, l ^ p < 4 ,
(5.2) A4(n) x n ~ 1/2(lnn)d/2(ln ln n )d/4,

Ap(n) x  n -1/2(lnn)d(1_2/p), p > 4 .

P roblem 5.III. Assume that as in Problem III one observes

Yj = n X j )  + Gj{Xj t u>),

where now the points Xj  £ J  and the unknown regression function /  E 
Fd{G,M). Let Ap(n) be defined analogously to (1.8).

T heorem 5.3. The expressions Ap(n) satisfy the following asymptotic 
relations

A p ( n ) x n " 1/2(lnn)'i/2, l ^ p < o o ,  

A 0O(7i,)xn“ 1/2( ln n - ln ln n )d/2.

The proof of these theorems has no new moments with respect to the 
case d — 1. We expand the function /  into the series

f{x) = ^ anPn(x),
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where the multiindex n =  (ni , . . . ,  ng) and the polynomials

Pn(x) =  Pni(x i ) .. .  Pnd{xd)

and PTLk(xk) are Legendre polynomials on [—1,1] and follow the arguments 
of Section 2.4. We omit these arguments (see also [3]).
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ON THE MULTIPLICATIVE FUNCTION niT

I. KÁTAI* 1 and M. V. SUBBARAO 

Dedicated to my teacher and friend

1

Let M. be the set of those completely multiplicative functions /  for which 
|/(n ) | = 1 (n € N). Let Sk be the group of fcth roots of unity, T  be the set of 
complex numbers z with |z| =  1.

In our recent paper [1] we formulated the following

CONJECTURE 1. Let A  = {ai,a:2,. . .  , a*} be the set of the limit points 
of the sequence { /(n  + l) /(n )  | n € N}. Then A  = Sk and f(n)  = nlTF(n), 
where t  is a suitable real num.ber, =  1 (n G N), and for each to G A
there exists a suitable subsequence n„ such that f?(ní/ + 1 )F(nu) = u.

For k = 1 this assertion can be deduced simply from the theorem of 
Wirsing (see [2]) asserting that f ( n +  l ) f (n )  —> 1 (n G N), /  G M  implies 
that /(n ) = nlT. In [1] we proved this conjecture for k Ú 3.

The purpose of this short paper is to analyze the case k =  4.

THEOREM. Let A — {cri,a2,03,0:4}, /  e  A4 be such a function for which 
the set of limit points of { /(n  + 1 )/(n) | n € N} is A. Then there is some 
rG  R such that f (n )  — n lTF(n), and either (A) or (B) hold.

(A) A  = Ő4, F { n ) £ S 4 (n G N).
(B) A  consists of four distinct elements of 65, i.e., A  = {ICíl, /CÍ2, /CÍ3, /CÍ4} 

(7C is a primitive fifth root of unity), F(n)  G 65 and F(n+  1 )F(n) G A  
for every large n.

R em a r k . We th ink  th a t the case (B) cannot hold, especially th a t if 
F  G M , F(n) G £5, F(n) ^  1, then for each o: G S5, F(n + l)F (n) =  a  occurs 
infinitely often.
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Key words and. phrases. Multiplicative functions, characterization.
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2

Let f  E M ,  A  = A f  = { « l , . . .  ,a/cj the set of limit points of / ( n  +  1)/(« ). 
Let C(n)  denote that element of A /  which is closest to f ( n  + l) / (n ) . Since 
A f  is a finite set, therefore C[n ) is uniquely determined for all large n. Since

therefore

( 2 . 1)

d- 1
/ ( n +  l) /(n )  =  f(dn  + {j + 1 ))f{dn + j), 

3=0

d- 1
C(n) = l [ C ( d n  + j ),

3=0

valid for all n > N \ ( d ), where N] (d) is a constant that may depend on d 
and / .

Furthermore, since
/ ( n 2) /(n 2 -  1) = f(n )J (n  -  l ) / ( n ) / (n  + 1),

we obtain that
(2.2) C(n  — 1) =  C(n)C(n2 — 1)
whenever n > 1V2, where 7V2 is a constant.

From (2.2) we obtain that if (C(m),C(m + 1)) =  (/?,7) occurs and 
m > AT2, then ß j  e A.

Similarly, if (C(2m), C(2m +  1)) = (/?, 7) occurs for at least one 
rn > N\  (2), then ß j  € A.

3. Lemmata

L e m m a  1. There exists no such a F e M  for which F(N) = Sq and either

(3.1) A f =  {1, (a =)/C, /C3(= — 1), (/3 =)/C5}
or
(3.2) A f = {1, (;«=)/c, (/?=)/c2,/c3(= - i)} ,
where K. is a primitive sixth root of unity.

L e m m a  2. Let f , g e A i ,  f(n)=g(n)ntT with some rGR. Then A f = A g.
L e m m a  3. If f  6 M ,  A /  Q with some k, then there exists a r  G R 

such that f  (n) = nlTF(n), F(n)k = 1.
Lemma 2 is obvious, since (n + l) rrn~iT —> 1 (n —t 00). Lemma 3 is a 

consequence of the fact that Afk = {1}, and of Wirsing’s theorem, which
implies that f(n) = nlX, whence (f [ n ) /n zX)k = (F{n))k = 1.

We shall prove Lemma 1 in Section 5.
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4. Proof of the theorem

First we deduce the theorem by using Lemma 1, and after that we prove 
Lemma 1.

4.1. Assume that — 1, 1 ^ A f
Let C(n) = £, C(2n) = q, C(2n + 1) =  r , n > N{(2), AI2- Then £ = qr 

according to (2.1). Since 1 A,  therefore £ ^  q, £ r , furthermore (2 .2) 
implies that qr G A,  whence q ^  r. Thus each o z 6 A  can be written as the 
product of two distinct other elements of A , o t =  ajcq. Let oc\ =  «203. Then 
0203 G A,  02Ö3 7̂  02- Since a 203 — 01 would imply that <23 =  «3, i.e. that
03 G {1 , — 1}, we obtain that o2o 3 7^01.

Then there are two cases:
Case A: 0203 =  03, i.e. «2 =  0:3,
Case B: «203 =  04, i.e. «2 =  0304.
4.1.1.1. Case A /l. Let 02 =  «„a„, and assume that either o„ =  o i, or

o„ =  «i.
4.1.1.1.1. Let o„ =  oi- Then a„ =  a 2«i =  03 G A. If 03 =  « i, then 

a i =  «203 =  «3, whence a |  = 1, and so 02 =  «3 G {1, —1}. This is impossible.
Since av ^  a.2, and av = 03 implies that 03 G R, we conclude that a v =

04 = 03. Thus 03 = 02 = otÖ3, whence oi =  03, 04 = 03. Thus A  =  {«i =  «3, 
o 2 =  O3, 03,04 =  03}. Let us write now «3 as o/jO/. We have the following 
possibilities

(a) 03 = «i«2j (b) 03 =  0104; (c) 03 =  0204.

If (a) holds, then 03 = «3, a \ =  1 , whence 0 2 = 0 3 6 ( 1 , —1 }, contrary to 
our assumption.

If (b) holds, then 03 =  0 3 ,  whence 03 =  1 .
It remains to consider the case (c). So we are in the case when:

« 1  = Q 2 « 3 , 0:2 =  0 1 0 4 ,  0 3 = 0 2 0 4 ,

A  = {ai = 03, «2 =  03,03,04 = o 3}.

Now we can proceed as follows. If 04 = «i«2, then 03 = 03, and so o® = 1, 
consequently « 1 = 0 3  = ± 1 . But — 1 ^ A  was assumed. If 04 =  o 2«3, then 
03 =  03, 1 = «3 which leads to 03 G {1 , — 1 }.

There remains the case when 04 =  «103, whence 03 = «3, 03 =  1, i.e. 
A  = {03,03,03,03}, i.e. A  is the set of the fifth primitive roots of unity. In 
this case ( f (n + l ) f (n ) )5 —> 1, and Wirsing’s theorem asserts that / 5(n) = n lT 
(h GN), consequently f(n)  =  nlT/5F(n), where F r’(n) = 1 (nG N ), further­
more A f  — A f , consequently F(n + l)F(n)  7̂  1 if n is large enough.

Thus the theorem (with B) holds in this case.
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4.1.1.1.2. Let otv = a\.  This case can be treated as the previous one in
4 .1 .1 .1 .

4 .1.1.2. Case A /2 . Let a u Aoi\, av ^a t\. Then o 2 =0:30:4. But then 
o 4 =  0203 =«3, consequently card(.A/) < 4 .

4.1.2. Case B. Then aq = a 2«3) «2 — 0304. Let 03 = a uav. We have to 
distinguish the following possibilities: (a) a3 =  a io 2; (b) 0:3 = aqaq; (c) 03 = 
o 2a 4.

From (a) we obtain that a  1 = qio2q:2) whence a 2 G {1 , —1}. If (c) holds 
then a 2 =  030:4 = a 2a 4, i.e. 04 G {1, —1}.

Assume now that (b) holds. Then 0:3 =  (0203)04, whence a 2a 4 =  1 , 
a 4 =  o 2, and so a 2 =  0302, 03 =  o2, a i = a2■ Thus A  = {02,a 2, a 2,ä2}.

Then we should discuss the following cases:
(1) «4 =  0402 which leads to o 2 = o2a 2, o 2 =  1,
(2) 04 =  0:10:3 from which 02 =  o}+2, be. o 2 =  1, whence oq =  a 2 G 

{1, —1}, which is impossible.
(3 ) 04 =  «203, consequently a 2 =  a 2a 2, i.e. a 2 =  1 , 03 = a 2 G {1 , — 1}.
Thus (2 ), (3 ) do not occur. In the case (1) we deduced that A  is the

set of the fifth primitive roots of unity, i.e. =  S's\ {1 }. Hence the theorem
immediately follows.

4.2. Assume that A j  =  { — 1,1, a, /?}, {a, ß} 7̂  {i , —i}.
Then A f t  — { l ,a 2,/?2}. If a 2 =  /32, then from our Theorem in [1], for the 

case card A p  — 2 we obtain that a 2 = ß 2 =  —1, i.e. that {a,ß} = {i, —i}.
Assume that card .4^2 = 3 . Then from our theorem in [1] for k — 3 we 

obtain that a 2 = u;, ß 2 =  u>, where cn3 =  1, w / 1 .
If there is an n > max(Ari (2 ), IV3) for which C(n) — 1, C(n+  1) — a  

(or ß), then a  (or ß) belongs to A/ ,  consequently ß  — ä. In this case there 
exists no such an m  > N2 for which C(rn) =  —1 , C(rn + 1) G {a,/?}, since it 
would imply that —a  =  ß, and this is clearly impossible.

Similarly, if C(rri) = —1, C (m +  1) = a (or ß )  is realizable for some 
m >  IV2, then —a  =  ß.

We obtain immediately that with some primitive sixth root of unity 1C, 
either A f  =  {1 , £ (=  o), £ 3(=  -1 ), /C5(= ß  = ä)}, or A f  =  {1, £ (=  a), /C2(= 
ß  = —a), /C-3 = —1}. Since Q Sg, therefore by Lemma 3 we have that 
f (n)  =  nlTF(n) (n G N), where F 6(n) = 1. Since A f  =  A f , from Lemma 1 
we get that this is impossible.

4.3. The Case A  =  {1 , o, ß, 7}, — 1 ^ A.
Let a  be such an element among a, ß, 7 for which C(n) = 1, C(n +  1) =  

a  occurs infinitely often. Then C(n)C(n + 1) =  o  G A. Let ß — ä. Since 
a ^  ±1, therefore ä  {l,o:}. If there would be a sequence n„ such that 
C(n„ + 1) =  7, C(n„) = 1 , then it would imply that 7 G A,  which is impossible.
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Consequently either (0,7) or [ß,y) occurs as (C{n),C{n+ 1)), infinitely 
often. In the first case (1) a y e A ,  in the second (2) ßy E A.

Assume that (1) holds. Then 077^1, a, consequently either (a) ay — ß, 
or (b) cry = 7.

If (la) holds, then y = a 2, A =  { l , a , a , a 2}.
If (lb) holds, then « = 72, A = {1,7,72,7 2}-
The case (2) can be treated by changing the values a,ß.
Case la. Let us observe that if one of a 2, a 3, c?3, a4 belongs to A,  then 

either A  Q Ő5, or A  ^  S3 or — 1 G A.  In the first case our theorem (with 
assertion B) holds, the two other conclusions are contradictory. So we may 
exclude these cases.

Let £,77 be such a pair of elements of A  for which (C(2n), C(2n + 1)) = 
(£,77) holds for at least one n > N3. We observe that if 7 G {^, 77}, then 
£ =  7 and 77= 1, consequently C(n) = 7 . Indeed, (£,77) A (1,7), since 7 = 
ä 2 £ A, (£, 77) A (a, 7)- since ay  = a 3 £ A,  (£, 77) A (ß, 7), since ß y  =  a 3 A, 
(£, 77) A (7,7)) since y 2=a4tf:A1 furthermore (£,77)7^7, a) since y a = a 3£A, 
(£, 77) A (7, /9) since y ß —a i tfiA. As a consequence we obtain that if C(m)= 7, 
m > 2./V3, then 2 | m and (7 (y )  = 7 .

Let us write each integer 77 as n =  2Ŝ A ( n ) ,  where A(n ) is the highest 
odd divisor of n. From our previous observation follows that if C(n) = 7 , 
then A(n) ^ N%.

From (2.2) we obtain that C{n) ~ C ( n  + l)C(n(7r +  2)). Let n>4N^  be 
such an integer for which C(n) = 7. Then 4 | n, C(n + 1) =  1, consequently 
C(n(7i + 2)) = 7. Since 2117?. + 2, therefore A(n(n + 2)) ^ > 2N$, and this
is a contradiction.

Case lb. Similarly as above we can exclude the cases when one of y3,y, 
belongs to A.  This implies that if n >  N2 and (C(2n), C(2n + 1)) = (£,77), 
then (£,77) #  (7,0), (y,ß), (1,7), (a, 7), (ß,v), consequently the possible 
pairs are (1,1), (a, 1), {ß, 1), ( l,a ) , (l,/3), (7,7) and consequently C(n)—l, 
a, ß, a, ß, y 2 =  a, which means that C(n) = 7 cannot occur if n > N 2 .

4.4. Assume that A j  = { — 1, a, ß, 7}, l $ A f .
Since 1 ^ A f , therefore C(n) A C(n + l) holds for all large n. Then 

(C(2n), C(2n +  1)) =  (—1, £) or (£, — 1) holds for some £ G Af ,  £ A ~ 1- Let a 
be such an element for which it holds. Then C(n) = — £ =  —a, —a A <*, — 1, 
consequently it is another element from A, let 7 = —a.

Let now C(ii) =  ß  — C(2n)C(2n +  1 ) =  £77. If £ or 77 =  —1 , then —ß G A, 
but this is impossible. Clearly, £, 77 A ßi thus either £ =  a, 77 =  7 or £ = 7, 
77 = a, whence ß — —a 2 follows. Thus A f  =  { — 1 , a, — a 2, — a}. Hence A p  = 
{ l ,a 2,a 4}, and by our theorem for card A  p  ^3 , we obtain that either 

(a) card A p  = l, or (b) card A p  =  2, or (c) card A p  =  3.
The cases (a) and (b) obviously cannot occur since they imply that a2 = 

1, —1, and so that card .4/ ^  3 or 1 G Aj .
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It remains to consider the case (c). Then a 2 =a>, a 4 =  uJ, where uj is one 
of the third primitive root of unity.

Consequently A f  = {a =  IC,ß  — K,2, —1 = /C3, 7 =  1C4}, where K. is a prim­
itive sixth root of unity.

Let rí» run over the sequence of integers for which C(nj,) =  ß.  Let 
C(2n„) =  £, C(2n„ + 1) =  77 for some large n„. Then ß  = £77, £77 £ Af.  Since 
—ß  ^ A f ,  therefore £7^—1, 77 A  — 1, consequently £, '7 € {«,7}, £ 7̂  77. Since 
«7 =  7 a  =  A5 ^ 71/, therefore ß  cannot occur in A f .  This is a contradiction.

4.5. Assume that A f  = S4.
Then the theorem (Assertion A) immediately follows from Lemma 3. 

The proof of the theorem is completed.

5.1. Assume that (3 .1) holds.
We use the notation C{n) = F(n  + l)F(n).
Assume that n is bigger than a suitable constant. Then the following 

assertions are true:
(1) If C(n) = - 1, then C(n  — 1), C(n+ 1) £ { — 1 , 1 }. This is clear, since 

—C(n  — 1), —C{n +  1) £ A f ,  and —a, —ß  ^ A f .
(2 ) If C{n) — a then C(n  +  1) A ß\ if C'(ti) =  ß, then C(n + 1) = a. Clear, 

since aß, ßä  £ Af .
(3 ) If C(2n) = a, then C (2n  +  1) /  o; if C{2n) — ß, then C(2n + l ) Aß -  

Clear, a2, ß2 £ Af .
(4 ) If C(n) — ± 1, then C (2n), C(2n+  1) £ { + 1 , —1}. From (4 ) we obtain 

that if M  is large, and C( M)  £ {1, —1}, then

(5 .1) C{21 M  + j )  £ {1 , - 1} for . 7=0 , . . . ,  2 l — 1 .
This is impossible. Let G{n) := F (n)2. Then G £ A4 , G3(n) = 1 , and

(5 .2 ) G(n + l)G(n) =  1

if n £ [2lM, 2lM  + (2 l — 1)} = Ji\ 1 = 1, 2 , . . . .  Hence we shall deduce 
that G(?i) = l identically, which implies that F (t7,)£{1, —1} (7t£N), 
consequently A f  ^  {1 , - 1 }, which contradicts the assumption. If 
2 l > M 5, say, then Jy contains a cube, m 3 £ Jy. Then G(rn3) =  1 , 
consequently G{n) = 1 for all n £ Jy, if 2 l > M ° . Let d be an ar­
bitrary integer. If there is an m, and an l with 2l > M 5 such that 
d.rn3 £ Jy, then 1 =  F ( d m 3) = F(d) follows. Let m\  be the largest 
integer for which dm 3 < 2 lM.  Then d{m\ +  l )3 L dm\ + 2dm}, the 
right-hand side is less than

5. Proof of Lemma 1
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if / is large enough. Consequently d(m\ + l)3 G Ji.

5.2. Assume the fulfilment, of (3.2).

By using (2.1) and (2.2), for all large values of n we obtain immediately:
(1) If C(n) =  /C, then C(n +  1) G {1, £}.
(2) If n is odd, then C(n.) ^  K.2.
(3) If C(n) = 1, then C(n + 1) G {1, — 1}.
(4) If C(n) =  —1, then C(n + 1) G {1, —1}.

Starting with some large value no such that C(no) = 1, C(no — 1) G {1C, 1C2}, 
we write the infinite sequence

C(n0)C(n0 + 1 )... C(n0 + t)...

as C\1Z\C'iTZ'i • • •, where £/t is such a sequence in which only 1 ,-1 , and 1Z/, 
is such a sequence in which only /C, 1C2 occur. From (3) and (4) we have that 
in Ch the first element is 1, and the last element is —1.

(5) Let C h = C{No)C{N0 + 1 )... C(N0 + s ) ,  M  = NQ + s + 1. Then M  
is even, since for odd M  C ( ^ f 1 ) = C{M -  1 )C{M) =  -C { M ) ,  but 
—C{M) £ A  if C(M)  G {/C, /C2}.

(6) The first, element C{M)  in IZh is 1C2. Clear, if C(M) — 1C, then 
C (M -1)= C (M )C (M 2-1 ), C(M —1) = —1, consequently C (M 2- 1) 
= /C2. Since M 2 — 1 is odd, it is impossible. Thus C(M) — 1C2.

(7) If C(n)=K?, then C{n—1) = —1. Since n —l=odd, therefore C(n— 1) 
7̂  1C2, furthermore C(n — l)C(n) G A  holds only if C(n  — 1) =  —1. 
Hence we obtain that the first element of is /C2 and all the others, 
if any, are /C’s.

(8) If C(n) = 1C, then C(2n)_= K and C(2n + 1) -  1. Clearly, K = C(n) = 
C(2n)C(2n + 1), C'(2n)C(2n + 1) G A  is satisfied only if C(2n) =  JC, 
C(2n + 1) =  1.

(9) If C(n) = 1C, then C(n + 1) ^  1C. Assume, to the contrary, that 
C(n+  1) =  /C. Then, by (8)

C(n)C(n + 1) = C(2n)C{2n + l)C(2n + 2)C(2n + 3) =  /Cl/Cl,

but this contradicts our observation, that ah jCj sequence always con­
tains at least two elements. This finishes the proof.
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RANDOM WALKS CROSSING POWER LAW BOUNDARIES

H. KESTEN and R. A. MALLER

Dedicated to the memory of A. Rényi

A b s tr a c t

We collect together some known results, and prove some new results, giving criteria for 
lim sup ISnI/nK =  oo a.s. or limsup Sn/n K =  oo a.s., where Sn is a random walk and k t. 0 .

n —► oo  n —*oo
Conditions which are necessary and sufficient are given for all cases, and the conditions are 
quite explicit in all but one case (the case 5  < k <  1, E|AT| < 0 0 , EA = 0  for lim sup Sn/n K).

71—v o o
The results are related to the finiteness of the first passage times of the random walk out 
of the regions {(n, y ) : n ^  1 , |y| fs anK} and {(n, y ) : n ^  1 , y ^  anK}, where k >  0 , a > 0 .

1. Introduction

There are many applications in sequential analysis, finance theory, and 
elsewhere, of results concerning the time it takes a random walk Sn = X u 
with the increments X t i.i.d., to escape from a region. Here we will be 
concerned with two very basic questions: when are the r.v.’s defined for
k t  0 by

(1.1) TK(a) = min j\ i > l :  |5?l1 > a n K 1 (a > 0)

and

(1.2) TK*(a) =  min > (a > 0)

a.s. finite? (We take TK(a) = 00 if \Sn\ anK for all n ^ 1, and T*(a) =  00 if 
Sn anK for all n't. 1.) In applications areas where the properties of the exit 
time of a random walk from a region with curved boundaries are important, 
the a.s. finiteness of the exit time often follows from strong assumptions (e.g., 
the presence of a nonzero drift) which are not necessary and may obscure 
basic aspects of the problem. On the other hand, it is of course important to

1991 Mathematics Subject Classification. Primary 60G40, 60J15; Secondary 62L10, 
60G50.

Key words and phrases. Random walks, first-passage times, exit times, boundary 
crossing probabilities, limsup behaviour.
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know, alternatively, circumstances in which the exit time will not be finite 
a.s., so tha t a remedy such as a truncated test, or an estimate of the tail 
of the distribution of the exit time, can be constructed. Good references to 
procedures of this kind are in Siegmund ([22], Ch. IV) and Gut ([9], Theorem
5.1, p. 133), for example. In view of these applications there seems to be 
a need for a systematic study of the a.s. finiteness of the exit time. In the 
present paper we give such a study for exiting from power law boundaries, for 
which, as we will show, quite complete results can be obtained. We make no 
apriori assumptions (such as the existence of the mean) on the distribution 
of the X ,.

It is a tautology that TK(a) < oo a.s. if and only if max(|Sj\ / jK) > a

a.s., and similarly for T*(a) < oo, but the distributions of the extended-value
random variables m ax(|5j|/y 't ) and max ( S j / j K) are not easy to deal with,

fsT 1
in general. However, by the Hewitt-Savage 0-1 law, the random variables 
limsup IS n I/ n K and limsup5'n/n K are constants (possibly, oo or — oo), a.s.,

n —»00 n —>oo
and are correspondingly easier to handle. Thus we are led to investigate the 
relationship between the values of these random variables and the finiteness 
or otherwise of the passage times. In Theorems 1-3 we give necessary and 
sufficient conditions (some known, some newly derived) for lim sup | Sn \ /nK

n—> oo
= oo a.s. and lim sup Sn/ n K = oo a.s.. This is best done by considering various

n—»00
cases corresponding to values of k and the finiteness or otherwise of E |X | and 
of moments such as E jV |1/'t . Theorem 4 investigates when we can deduce 
lim s u p \Sn \/nK = oo a.s. from limsup |5n|/n K > 0 a.s., and similarly for the

n —>oo 7i—> oo
one-sided case. Finally in Theorems 5-6 we relate these results back to TK(a) 
and T*(a).

Our first theorem deals with the ‘two-sided’ problem, which is easy to 
handle by means of the Marcinkiewicz-Zygmund law (Chow and Teicher ([1], 
p. 125). Throughout, we let X, Xi be i.i.d. r.v.s which are not degenerate 
at 0 and Sn = X,;; also k ^  0.

T h e o r e m  1. (a) If k  ^  1 or if \  <  k < 1, E |X | <  oo and EX = 0, then

(1.3) lim sup |5ri|/n K =  oo a.s. if and only if  E |X |1̂ h' = oo.
71—» OO

(b) In all other cases, we have

(1.4) lim sup |5n|/n* =  oo a.s..
n —»oo

Next we look at one-sided case. These are not so simple. We will need
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the integrals
X

(1.5) A - (x )  = J  F (—y)dy {x > 0) and ,7+ = j  ,
0 [0,oo)

where F  is the c.d.f. of the Xi. Note that 0 ^  A^(x) ú EJY~, where

X + =  max(0, X)  and JY~ =  .Y+ -,Y

(and similarly for X f  and X~).  We will only need J+ when F(O-) > 0, in 
which case we let A - ( x ) / x  have its limiting value, F(0—), at 0.

In the next theorem, (a) and (b) are due to Chow and Zhang [2] and 
Erickson [5], respectively.

T heorem 2. Assume 0 < F(0~)  ^ F(0)  <  1.
(a) If  k > 1, then lim sup S^/n* =  oo a.s. if and only if

n —>oc

[0,oo)

(b) For k = 1:

(1.7) lim sup5n/n  = oo a.s. if and only if J.|_ = oo.
/1-+00

(c) If  j  < k < 1 and E|2f| =  oo, then

(1.8) limsup Sn/ n K = oo a.s. if and only if J+ = oo.
n—> oo

(d) I fO ^K  ^  then

lim sup Sn/ n K — oo a.s.
(1.9) n->0°

if mid. only if J + = oo or 0 ^  Ê Y ^ E|7f | < oo.

(e) If ^ < k < 1, E|7f| < oo, and EX  ^  0, then

(1.10) lim sup Sn/ n K = oo a.s. if and only if E7i>0.
71 —► OO

Now keep

(1.11) ^ < « < 1 ,  E|JY| < oo and EX = 0.

(f) If  E(X +)1/K =  oo th. en
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(1.12) limsupáVi/n* =  oo a.s..
n—too

(g) If  limsup Sn/ n K =  oo a.s. then
n—yoc

(1.13) E |A |1/k = oo.

(h) It is possible to have

(1.14) E(.Y+)1/'i < oo = E (X _)1/K with lim supSn/n K — oo a.s..
n—y oo

(i) If  lim sup Sn/ n K =  oo a.s. and E(X +)1/K<oo then
n —> oo

\ «/(!-«)
F ( - y ) d y )  dx = oo.

R em arks, (i) If F(0—) =  0, then lim sup Sn/n K = lim sup \Sn\/nK a.s. 
and Theorem 1 can be used. If F{0) =  1, then lim sup Sn/ n K =  oo cannot 
occur. Thus the assumption 0 < .F(0—) ^  F(0) < 1 in Theorem 2 is not 
restrictive.

(ii) A necessary condition for (1.6) is E{X +)1'* = oo and J+ = oo. This is
X

immediate from the definitions. Conversely, let t_ (x ) =  f  y ^ f K)~lF ( —y)dy/n.
o

Then, as x  —> oo, r_(:r) —> E (A - )1/K which is in (0, oo] when JF’(0—) > 0. 
When k > 1, T-(x) ^  x ^ / K̂ ~l A - ( x ) / k. Thus when k > 1, a sufficient condi­
tion for (1.6) is

[0,oo)

(iii) (1.15) is an improvement on (1.13) when E(A+)1/,,C < oo, since it 
follows easily that E ( X ~ ) l/K =  oo when (1.15) holds and  ̂< k < 1. On the 
other hand, for a distribution function with F( —x) =  l / ( x 1̂ K\ogx) (for x 
large), E(AT- )1/'C = oo, but (1.15) fails.

We next give a not very explicit condition which is necessary and suffi­
cient for lim sup5Jl/n 'i to be +oc a.s. which applies in the situation of (h)

71—> OO

of Theorem 2.
T heorem 3. Suppose ^ < k< 1 ; E|A |<oo, EA=0, and E(A+)1/K <oo. 

Let
$(0) = ? { X  > 0} exp [i6E{X I X  > 0}] + E{exp[i0X]; A g 0}.

f  x l/KdF( 
.1 t- { x )

(1.15)
OO OO

/ ( /o x



RANDOM WALKS CROSSING P O W E R  LAW BOUNDARIES 223

Then lim sup Sn/ n K = oo a.s. if and only if, for all A>0,
n—>oc

(1.16)
oo 1/x oo .

de  a 1/(1-K)/ e , p  - „ — ( / „ /
1 0 -oo *( 0 )

dx 
—  = oo. x

R e m a r k , ( iv )  We do not know if i t  is possible to give a more explicit 
NASC than t h a t  in  Theorem 3 for liinsup Sn/ n K = oo a.s. w h e n   ̂ <  « <  1,

71 —► OO

E|A”| < oo, EAT =  0, and E(AT+)1/K < oo. Condition (1.16) of Theorem 3 is 
difficult to apply, and we present it mainly to suggest that a more explicit 
NASC is unlikely. For practical purposes, however, the sufficient condition 
for limsupS'7l/n 'c =  oo a.s. supplied by (1 .1 2 ) is probably useful enough.

n —►oo
(1.15) is a simply-checked necessary but not sufficient condition (see Remark
(v) below).

The following tables summarise the necessary and sufficient conditions 
(NASC) we have for limsup|S'n|/n 'c =  oo a.s. and limsup5n/n K =  oo a.s..

n—¥ oo n—»oo
Table 1

Value of k NASC for limsup \Sn\/nK = oo a.s.
n—>oo'—I'M

VII£VII
o

Always true

2 < * < 1

0 =  EA' < E |A | < oo =  E |A |1/ K 
or

0 < |E A |g E |A |< o o
or

E |A | =  oo
K =  1 E |A | =  oo
K > 1 E|A, |R'c= oo

Table 2

Value of k NASC for lim sup Sn/n K =  oo a.s.
71 —y OO

J+ =  oo or 0 ^  E A  Ú E|A| < oo

tj < K> < 1

When EA = 0 and E|A | < oo =  E (A + )1/K: Always true 
When EA = 0 and E|A| V E(A''+ )1/ K < oo: See Theorem 3 

When 0 < |EA| ^  E |A | < oo: EA > 0 
When E |A | =  oo: J + = o o

K =  1 II 8

« > 1 J minfxl/h, x ^ ) d F ( x ) - o o
tO.oo) V y



224 H. KESTEN and R. A. M ALLER

Next we consider the possible values of the lirnsup in Theorems 1-3. Can 
it lie in (0, oo)? One way of phrasing this is to ask:

(1.17) When does lim sup |5'n |/n K > 0 a.s. imply limsup \Sn\/nK =  oo a.s.?
n —*oo n —> oo

(and similarly for the one-sided version). Case (b) of Theorem 1 shows that
(1.17) need not be considered in the two-sided case unless k ^ I  or ^ < k <  1 , 
E |X | <  oo and EX = 0, and (1.17) is obviously not true in the case k, =  1 
by the strong law of large numbers, when the limsup behaviour of \Sn \/n  is 
obvious. We consider the remaining cases as well as the one-sided situation 
in the next theorem.

T heorem 4. (a) If n > 1 or if I < k < 1, E|X | < oo and EX =  0 then

(1.18) limsup \Sn\/nK >  0 a.s. implies lira sup \Sr,\/nK = oo a.s..
n —>oo n —» oo

(b) Except xuhen «=1, E |X |<oo and EX^O, or when |< / í < 1, E |X |<oo, 
and EX  =  0, we have

(1.19) limsupSn/ n K > 0 a.s. implies limsup5'n/n K = oo a.s..
n —foo n —> oo

However, (1.19) is not true when k — 1, E|X| < oo and EX / 0 ,  or, in gen­
eral, when j  < k < 1, E |X | <  oo, and EX = 0.

R e m a r k , (v) The counterexample we use in the proof of Theorem 4 to 
show that (1.19) does not hold in general relies on a result of Klass [18], [19], 
which gives a condition for lim sup5„/f?n E (0, oo) a.s. for a certain norming

71—> OO

sequence B n. See also P ru itt ([21], Theorem 7.5, p. 26). Klass ([20]) gives 
an example with limsup Sn/ B n E (0, oo) a.s., but it is not clear that B n ~ n K

n —>oo
for any k > 0 in his example. Our counterexample also shows that (1.15) is 
not sufficient for lim sup5n/r?,K =  oo. (See the remark following the proof of

n —foo
Theorem 4.)

We next relate the size of limsup5n/n K to the hniteness of the passage
71—>00

times TK(a) and T*(a) defined in (1.1) and (1.2). We note that it is immediate 
from the definitions that for fixed a ^ 0 ,

(1 .2 0 ) lim sup Is - W a.s. implies TK(a) < oo a.s.
7 1 -0 - 0 0 n K

and

(1 .2 1 ) lim sup Sn ^—  > a ;a.s. implies T*(a.)< oo a.s..
71—>OC n K
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In the opposite direction we have that

(1.22) TK(a) < oo for all a ^ 0 a.s. implies limsup =  oo a.s.
n—too

(1.23) T* (a) < oo for all a ^ 0 a.s. implies .. 5 ?ihm sup —
n—> oo r iK

=  OO a.s.

(1.23) follows from the fact that {T*(a) < oo} = {max ( S j / j K) > a}. 

This shows that, T*(a) < oo for all a ^  0 implies max ( S j / jK) =  oo, hence 

lim supSn/n K =  oo. (1 .2 2 ) can be proved similarly.
n —>oo

The next, theorems discuss also when one can have TK(a) < oo a.s. for 
some a ^ 0, but not, for all a ^ 0, and similar statements for T*(a). We begin 
with TJa).

T h e o r e m  5. (a) If 0 ^  k. ^ or if ^ < k < 1, E|X| < oo and EX ^  0, or 
if 7£ < k < 1 and E |X | =  oo, or if E |X |'/K =  oo and either k ^ I  or ^ < k < 1, 
E|X| < oo and. EX = 0, then TK(a) < oo a.s. for all a > 0.

(b) Suppose K — l and 0 < |EX| ^ E|X| < oo. Then T\(a) < oo a.s. for all
a ^ |E X |, hut bin P{Ti(x) =  oo} = 1; in particular, Ti(x) = oo with positive 

£•—>00
probability for all large x.

(c) In all other cases (that is, when E |X |1//k < oo and either k > \  or 
5 < k 1, E|X| < oo and EX =  0), we have lim P{TK(x) =  oo} = 1; in
1  X - K 3 0

particular, TK(x) =  oo with positive probability for all large x.
R e m a r k , (vi) There need not be a sharp demarcation in values of a for 

which P{TK(a) =  oo} is 0 or 1, in cases (b) and (c) of Theorem 5. When X 
is concentrated on [xq, xq + 1] for some xo > 0 , then for k ^  1 we have

xo ^  X\  í? m ax(|5 j|/jK) ^  xq + 1 a.s..

Thus Tk(o.) < oo a.s. for a, < xq and TK(a) =  oo a.s. for a >  xq +  1. For 
values of a between xq and xo + 1, TK(a) takes the value oo with probability 
P{max(|5'; |/yK) ^ o,}, which lies in (0,1) for some a, if for example X  is

uniform on [xo, a:o +  1]- Note that, EjXl1/* < oo in this example, so we are in 
cases (b) and (c) of Theorem 5.

Now we consider the one-sided case.
T heorem 6 . Assume 0 < F(O-) ^ F(0) < 1.
(a) When 0 ^  k ^  1, T*(a) < oo a.s. implies lim supSn/ n K ^  a a.s. but

n—> oo
when k > 1 it does not, in general.
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(b) When 0 5[ k 1 we have

(1.24) T*(a) < oo a.s. for som.e a > 0 implies T*(a) < oo a.s. for all a > 0,

except possibly in the cases k — 1 and E|X| < oo, EX  ^  0, or \ <  <■c < 1, 
E |X | <  oo and EX  = 0. In these cases we may have limsupS^/n* = a E

n—>oo
(0, oo) a.s., and if this occurs, then Tf(x) < oo a.s. for all x <a but

(1.25) lim P{T*(x) = oo} = 1.
x — »O O

(c) When 0 ^ k ^  1/2, we have
(1.26) T*(a)<oo a.s. for some (and hence all) a> 0

if and only if J+ = oo or O ííEXííE|X |<oo. When l /2 < n < l  and E |X |=oo,
(1.26) holds if and only if J+  =  oo. When 1/2 < k < 1, E|X| < oo and E X  ^  0,
(1.26) holds if and only if EX  > 0.

(d) Keep n = 1. If  E |X | < oo, we have T*(a) < oo a.s. for some a > 0 
if and only if EX  > 0, and in this case T((a) < oo a.s. for all a ^  EX. If 
E |X | =  oo, then T((a) < oo a.s. for some a > 0 if and only if J+ =  oo, and in 
this case T*(a) < oo a.s. for all a > 0.

R e m a r k s , (vii) Although the power law boundary nK in itself is im­
portant in applications, a useful generalisation would be to replace it in our 
results by a more general boundary, g(n), say. For many of the cases we 
have considered this can be done straightforwardly, but others need more 
care. The boundary \/n log log n, for example, is of interest when EX 2 < oo 
with regard to the law of the iterated logarithm, and there are various gen­
eralisations of the law of the iterated logarithm for the case EX 2 = oo, too.

Prof. M. Klass (private communication) has suggested a proof of a gener­
alisation of Theorem 2(f), which says that under (1.11), > ^n} =  oo
implies limsup5'n/6n =  oo a.s., for a certain class of nice sequences {bn} 
which contains all sequences bn —nK with ^ < k < 1, and more. His proof 
relies on techniques developed in Klass [17]—[19], and also on recent work of 
Hahn and Klass [10]. Our quite different method of proof of (1.12) may be 
of use in other problems, too. We will not explore the issue of more general 
norming sequences further here, other than to mention that Chow and Zhang
[2] allow fairly general norming sequences, as do Kesten and Mailer [16]. 

(viii) A natural question, following our discussion of TK(a) and T*(a), is
to relate the last exit times

(1.27) LK(a) =  max <j' > i |S„I< \  n > 1: -----S a >
nK J

(a > 0 )

and

(1.28) L* (a) =  max / n > 1 : — < a l
\  ~ nK J

(a > 0 )
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to the liminf behaviour of Sn. The connection here is close, because for a > 0 

{LK{a) = 0 0 } =  {|5„| g an* i.o.},

so

lim inf
n —toc 71

Snl <a  a.s. implies LK(a) =  0 0  a.s. im lim inf -— f? a a.s.
n —>00 ?/,K-

and similarly for L* (a). As relevant results, we only mention here the ‘other’ 
law of the iterated logarithm of Chung [3] (recently generalised by Kesten 
[12]), and the example of Erickson ([6 ], Theorem 5).

2. Proofs

P r o o f  o f  T h e o r e m  1. We will write the Marcinkiewicz-Zygmund 
strong law of large numbers in the following form: for k > 1 / 2

( 2 . 1)
\Sn — cn Inn sup------ -—

n —>00 n K

for some finite c implies E | 1 1//c < 0 0 , ar

STi -  c'n
( 2 . 2 ) lim

n —>00 n "

- < 0 0  a.s.

id ElA'I1/* < 0 0  implies 

= 0  a.s.,

where d = EX if  ̂ <  k ^ 1 and c' is arbitrary if k > 1. (See, e.g., Chow and 
Teicher [1], p. 125 and their proof.)

Now (1.3) is immediate from (2.1) (2.2) if k ^  1, so keep 5  < k < 1, 
E|X| < 0 0  and EX = 0. Then lim su p \Sn\/nK‘ = 0 0  a.s. implies E |X | =  0 0

71—> OO

by (2.2), and the converse follows from (2.1). Thus (1.3) is proved.
Next take 0 k ^  \  . We will show that, always,

(2.3) |5 „|lim sup . =  0 0
n-+oo n 1!2-

a.s..

Indeed, if this fails then lim sup \Xn\/n * < 0 0  a.s. so by the Borel Cantelli
n—>00

lemma, EX 2 < 0 0 . If EX ^  0 then \Sn\/n —> |EX| > 0 a.s. by the strong law 
of large numbers, so (2.3) holds. If EX =  0 then for each x > 0

limsupP{|Sn | > xn 1/2} > 0
71—>00

by the central limit theorem, so (2.3) holds again by the Hewitt-Savage 0-T 
law. This of course implies (1.4).
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Now take ^ < k < 1. If E|X| < oo and EX 7  ̂0, then limsup |Sn\/nK —
n —>00

lim sup(n1_K|ő'n|/n) =  0 0  a.s. by the strong law of large numbers, so (1.4)
n —>00

holds. If E |X | = 0 0 , then

\Sn\ ^  1 \Xn\
l i m  su p -----I  -  hm su p -------=  0 0

n 2 n
by the Borel-Cantelli lemma, and (1.4) again follows. □

P r o o f  o f  T h e o r e m  2. Assume 0 < F (0—) 5Í F(0) < 1.
(1.6) is immediate from Theorem 1 (i) of Chow and Zhang [2], and (1.7) 

is Theorem 2 (a) of Erickson [5].
Next we prove (1.8). Assume E|X| =  0 0 . Then lim sup Sn/n K =  0 0  a.s.

n —>00

implies J-1_ =  0 0  by (1.21) of Kesten and Mailer [14]. Conversely suppose 
lim sup S n/ n K < 0 0  a.s. for some ^ < k < 1. Then for some c < 0 0

n —»00

(2.4)
£ x +
i—1

n
E X r

< cnK
n

E a t

+ 1

for all large n, a.s.. Now )T] X i j n K -A- 0 0  a.s. when 0 < k < 1 as long as
i= i

n  / n
EX]- > 0, so we obtain from (2.4) that lim sup E) A (+ /  E  A “ < oc a.s..

n—yoo i= 1 ' i = l
This implies J + < 0 0  by Pruitt ([21, Lemma 8.1, p. 36) or Erickson ([5], 
Lemma 3).

W ith k =  0, (1.9) is (1.21) of [14]; call this (1.9)o- Then lim sup Sn/ n K=oo
71-AOO

a.s. for any k 0 implies (1.9)o, so the forward direction in (1.9) is immediate. 
Conversely, let J+ = 0 0  or 0 5] EX £[ E|X| < 0 0 . We will show then that

(2.5) lim sup ——
n —>00 n l / z

— 0 0 a.s.

from which lim sup Sn/ n K =  0 0  a.s. for 0 ^  ^  1/2 follows. We now prove
71—> 0 0

(2.5) . If J_|_ =  0 0 , then we know from (1.7) that lim supSn/n  — 0 0  a.s., so
(2.5) holds. If ,J+ < 0 0  then by assumption 0 ^  EX ^ E|X| < 0 0 . When 
EX > 0, (2.5) is immediate from the strong law of large numbers. Thus we 
only have to consider the case EX = 0. (2.5) then follows directly from the 
Theorem of Stone [24], ((2.5) can also be easily obtained from a result of 
K lass-Pruitt ([21], Theorem 7.5, p. 26)). This completes the proof of (1.9).

(1 .1 0 ) is of course trivial from the strong law of large numbers.
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Now we prove (1.12). Assume that (1.11) holds. Define

( 2 . 6)

and

(2.7)

P Á X) = ^  I  y [l/K) : (1 -  F{y))dy
0

oo

\{x) = J (1 -F{y) )dy

( t h i s  is f in i te ,  b e c a u s e  E|X \  <  oo) .

L e m m a  2.1. If  0 < k < 1, E|A| < oo, EX  = 0, and E(X+ ) 1/k =  oo ,  then

dF(x)
( 2 .8) / pK{x)/x l/* + \ ( x ) / x

=  oo.

P r o o f  o f  L e m m a  2.1. Assume that E(A+)1/K = oo. We will suppose 
that (2 .8 ) fails, so

(2.9) /
dF(x)

[l,oo)
pK(x ) /x llK + \ { x ) /x

<  oo.

Our first step is to show that this implies

x ^ K{ l - F { x ) )
( 2 . 10)

To this end we note that

Pk(x )
xM k

pK{x) + x(1/K) 1 X(x)
-►0 .

X

= [ y {1/K)~ l ( I " F{y))dy
o

l

= k /  -F{xy))dy

is decreasing in x > 0. Also A(.-e), and hence \{x)/x ,  is decreasing in x > 0. 
Therefore, for any z > 0 ,

( 2 . 11)
z ' / * ( l - F ( z ) )

pK(z) + z'P!
F(z)) ^  f
* )- iA (z )  “  ./

dF(x)

(z, oo)
pK{x)/xXlK + \ { x ) /x
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Thus (2.10) is an 
The next step

immediate consequence of (2.9). 
is to show that either

(2.12) H*) /x  ; 0 
pK{x)/x1/K

or

(2.13) • r X(x)/X ^ n lim inf . > 0 .
x^°°  pK(x) XllK

Suppose in fact that neither of these holds, so for some e > 0

(2.14)
\{x)/x

b£ 2 p * ( . ) / .■ / .

and

(2.15) lim in f )<*>/* = 0 .  
x->oo pK[x)/xL/K

Our proof now is 
McConnell ([8], p 
rk —> oo such that

; a minor modification of Proposition 3.1 of Griffin and 
. 2029). Just as in their proof we can find sequences sk ^

(2.16)
pK{Sk)/sk'

(2.17)
H r k)/rk _ 

Pn{rk)/rlJ K

(2.18) \ ( u ) / u  s r  s  f w  1/K ^  forrfcgu^Sfc pK{u) / u l' K

and

(2.19) — -> 7 G [l,oo]. 
rk

Now fix D > 1 and let u G [rk , Drk}. Given r; > 0, we can, by (2.10), choose k 
large enough for

(2.20) rjk(l -  F(rk)) i  (r?e/T>1/K)(r  ̂ (1/ k)Pk(^ )  +  A(r*)).

Then for k large enough
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u

A(u) = A(rk) -  f  {l ~ F(y))dy~tX(rk) - u (  1 -  F(rk))

= A(rfc) — Drk{\ — F(rk))

(2 .2 1 ) ^ H r k) - r ,E D l- ^ K\ r l- ( 1/K)pK(rk) + \ ( rk)) (by (2 .2 0 ))

=  ( l - V e D 1- ^ ) X ( r k) - r 1e D 1- ^ ^ r 1- {1/K)p K( r k )

£  (1 -  (r,e + 2r1)D l- ( 1' ^ )X (rk) (by (2.17)).

Similarly
U

pK(u )= p K(rk) + -̂ I  y(1//c)_1(l -F (y ) )dy
Tk

(2-22) á p K(rk) +  ( u ^ K - r l /K) ( l - F ( r k ))

i p K(rk) + (Dl' K- l ) r lk/K( l - F ( r k)) 

ú  (1  +  Vz)Pk [rk) + m r[ l/k) ~ 1 A{rk). 
Consequently, for u 6  [rk,D rk], we have

(2.23)

X(u)/u
pK{u)/ul/K

= u ( ! /« ) - !  > u ^ / ^ i ( l - ( ' r ]e +  2v ) D ^ / - ) ) X ( r k)

P k (u ) (1 +  r/e)/oK(rfc) +  y£r[.'/ 'v)" 1 A(rfc)

=  /  ( 1  -  (ye +  2 y ) D ' - ^ * ) ) X ( r k ) / r k
\rir > { l  +  r ] e ) p K { r k ) / r l /h + y e X { r k ) / r k

Suppose 7  < oo in (2.19). Then take D =  7  +  1 and u = sk. Divide out 
PK.(rk)/rk/ h on the right-hand side of (2.23) and use (2.17) and (2.19) to get

Ihn inf A('Sfc)/ ^  ^  XU^)-i(l - ( v £ + 2 v)Dl (1A0)£
(2.24) pK{sk) l sXJ K ( l + y e j + y e 2

-> 7 (l/K)_1£ ( a s y | 0 ).

Since 7 ^ 1  and 1/ k > 1 , this contradicts (2.16).
Next suppose 7  =  0 0  in (2.19). Then take u = Drk, D > 1, in (2.23) to 

get, as in (2.24),

(2 .2 5 )
lim inf

fc—► 00

A (Drk)/(Drk) 
PK( Dr k ) / { D r ky / K

> d (i / k) - i ( l ~ (y e  + 2y ) D l (1/K))e 
(1  + rj£) + rje2

_ > d (i / k) - i £ (a S y ; o ) .
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On the other hand we may take u = Drk in (2.18) to get

(2.26) X(Drk)/(Drk) 
r "  Pn{Drk) I (Dr k)'I*

lim snp < £.

Since D  >  1 and 1/ k > 1, (2.25) and (2.26) are contradictory. Thus indeed
(2.12) or (2.13) holds.

It is now easy to deduce a contradiction from (2.9). If (2.12) holds then
(2.9) implies that

(2.27)
f  x llKdF(x)

J  f  y1/KdF(y) ’
lb°°) [0 ,x)

because pK(x)+x(1/K)~1X(x) ~  pK(x) ~  J y l/KdF(y) under (2.10) and (2.12)
[0,z)

(integrate by parts in (2.6)). Now (2.27) implies that E ( X +)lF  <oo, by the 
Abel- Dini Theorem, but we assumed EtX"1")1/* =  oo. Alternatively, if (2.13) 
holds then by (2.9)

oo > c
[boo)

* d F  ('■>■■) ^ Í
OO =  /
f ( l - F ( y ) ) d y
X

xdF(x)  
f  ydF(y)

(x,oo)

for some c > 0, which is also impossible by Abel Dini. This proves Lem­
ma 2 .1 . □

Now we can prove (1.12). We define

(2.28) C„ = inf < x > 0 PkO'-') +  Apr) <  6_ 
.t1/« x  — n

Then Cn t  oo as n —>• oo and

npK(Cn) , ri\(Cn)
(2.29)

while

C n /K C "
= s,

pK( x ) + for x & c
x l/K x n 

It follows from Lemma 2.1 th a t for no large enougl

/
dF(x)

(Cn0 , OO)

Pk (x ) / xM k +  \ ( x ) / x
oo =
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=  < r ‘ n ( ( l - F ( C „ _ , ) ) - ( l - F ( C n )))
n>no

=  6 - '  Y ,  ( l - F i C j - i V  +  S - ' i n o  +  W - F l C n , ) ) .
j> no+ l

This shows that Y1 (1 ~ F{Cn)) — oo.
1

Next we will show that

£ ( X , + - E X + )

(2.30) lim sup—-------—---------= oo a.s..
71—KX> T l

For this it will be convenient to let

(2.31) X,  = X f  -  EX+ and Sn = J ^ X i .
i— 1

Fix a €  (0,1/2) and choose

(2.32)
„ . a  a
0 <S<  min I —, —

2 32c+ k

where c+ is a constant, depending only on the distribution of X + , which we 
now specify. Let Y * — (X\ Ax) V (—x) and define A[x) = E(y]x). Then, for 
x ^ E X + ,  '

A{x) =  /  (P (X , > y ) ~  P(X, ^ - y ) )  dy
o
i+ E A ' E.V +

/ P ( X + >y)dy I  P ( X + ^y)dy

(2.33) EA + 

x+EX+

E.Y + -X  

EA’ + EA' +

j  P ( X + > y )d y -  I  P { X + > y ) d y -  j  P { X + i y ) d y
0  0  0  

I+ E .V +  oo

=  j  (l - F { y ) ) d y - E X + = -  j  (1 -  F ( y ) ) d y .

x + E A  +
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Thus we have

(2.34) ~Á(x) = A(j: +  EAr+) ^ A(x), í o r x ^ E X +.

Also, for x ^ E X +,

(2.35)

X

l- E ( Y ? ) 2 =  j y [ P ( X  > y )  +  P ( X  % - y ) ) d . y

o
x EA' +

g j y P ( X > y ) d y +  j (EX + -  y)P(X+ g y ) d y  

o o
X

ű  j y ( l  — F ( y ) ) d y  + (EX+ )2/2 
0

x

<12c+ j  y ( l - F ( y ) ) d y  = c+U+{x), say, 
o

for some c+ > 0 , where c+ is a constant depending only on the distribution 
of X +. This is the value we take in (2.32).

Take n  > m > 1, and write

(2.36)

Sj. max —
tm S jín  C j

p (  mg > a }

^ J ] P { 5 i _ 1 > - a C j } P { ^ > 2 a ^ i
X i

j= m

x k \max —  L
jf H-1 ̂  A.' ̂  n 0  '

Let Zf, =  (Xk A Cj) V {—Cj) =  YfcCj. Now for Cj > EX

(2.37)

P { $ j - i  ^  - « C j )
j -  1

g  p { E ( ^  A Co) v (-C 'f) -  (i -  V M C j)  Ú -aC j  -  (j -  1)A(C,-)}
k=1

+ 0  — i )p  {A, < -Cj ]

s p { I > * - EZi ) s - ^ c 4 ’
fc=l

(by (2.29)) g ^ a C j  (by (2.32)),

b e c a u s e  b y  (2.34)
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while P {Xj  < — Cj} = P{X,+ < EJY+ — Cj}  = 0  when Cj > EJf+ . Chebychev’s 
inequality applied to (2.37) gives

(2.38) n S i - x ú - a C j } ^
■1,/E: Z í )~

" F

Notice that, since 1/k <2,

U+{x) = 2  j  y ( l - F { y ) ) d y
0

x

Si 2 x 2 ~ l ! K j  -  F{y))dy = 2 k x 2~ {1/ k ) p K { x ) .

o

Using this, (2.35), and (2.38) in (2.37) gives

P{5j_i > - aCj }  ^ 1
(8c+ )2K,yC;-(1/K)p«(CJ) =  i _  16c+Kj pK(Cj)

a2C] a2 C]/K

^ i  _  16|£+*£ (by (2>29))

> 1
=  2

(by choice of ó in (2.32)). 

Returning to (2.36) we see that, for large enough m,

P { max > a} ^ ^ P { ^/- > 2a ^ max ^ } 
Im ijSn C j  J 2  . —J l C j  j + l < k < n  C k  'j=m

Xi= -p( max - ^ - > 2a 
2  l m^j^n Cj

Letting n —t oo then rn —> oo shows that

(2.39)

}■

p( >  a i.o.]
l I

^  > 2 a i.o.)> > - p^
X c ,  J -  2  1, Cj J

Since a < 1 / 2  and ^ ( 1  -  F(Cn)) =  oo the right-hand side of (2.39) is 1 / 2 , 
and consequently, by the Hewitt- Savage 0-1 law, the left-hand side of (2.39) 
is 1. Thus

(2 .40) lim sup ^  a
n—> oo (-'n

a .s ..
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But by (2.29) and the fact that E(X +)1/K = oo,

and so (2.40) gives

(2.41)

Our final step is to transfer this to Sn. By (2.41), for each x > 0 there 
are w.p. 1 infinitely many integers such that

Let nk be the successive indices for which (2.42) occurs and let Q be the 
cr-field generated by { X ^ , i  ^  1}. The event that (2.42) occurs i.o. and the 
values of the are immeasurable. Now let WL have the conditional distribu­
tion of — Xi + ~E{Xr I X; < 0}, given that Xi < 0, and take the Wx independent. 
From Remark (vi) of [15], noting that the r.v.’s Wi are bounded below and 
have mean 0 , we have that for some c > 0 ,

Moreover, for any event G £ 5, conditionally on an event of the form

G D {nt =  N )  fl {Xi ^  0 when i is one of the indices i\ < 12 < ■ ■ ■ < ir ^  N  
but Xi  < 0 for i G [1, IV] \  ir }},

the random variables X ~  — E {X ~  \ X x < ()}/[.T, < 0], 1 £ i ^ N, are condi­
tionally independent. They take the value 0 for i = {i i , . . . ,  ir }, and have the 
distribution of Wt when i € [1, N] \  {R ,. . . ,  ir}. It follows that for any k , a.e. 
on the event {n*, < oo},

(2.42)

M

(2.43)
MSI I f —'
n i i n P Í V  W ^ o j ^ O O .

p { y  tA7  -  E í A l_ IA * < <  0 ]] ^ 0 1 g ]
i=li=l

M
m m i n p j y  Wi ^ o )  ^c.

But then

P j  y  [Xr -  E{X( I Xi  < 0}/[X; < 0]] m 0 for infinitely many k
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for which (2.42) holds | ( / |  =  1

a.e. on the set on which (2.42) occurs i.o.. Now for any for which (2.42)
nk.

occurs as well as [X} -  E{X/~ | X r < 0}/[X; < 0]] 5Í 0, we have (recall 
2 = 1

EX  = 0)
71A nk

S n k =  £ ( * +  -  E .Y + )  -  -  E X f )
i= 1 i=1
nk nk

= -  e x +) -  y , [ * r  -  m r  i *  < m xi  <  o]]
2 =  1 

nk
E{X~  I X < 0} I[Xt < 0] + nkEXf

i= 1

i=l
nk

z  xn% -  E{X~ I X  < 0} J[x i < o] + n fcEX“ .
2 = 1

Now by the law of the iterated logarithm,
rik

lim
1

k—¥oo n £ .
-E{X~ I X < 0} T[X i < 0] + nkEX-

2=1
= 0  a.s..

Thus lim supSn/ n K =  oo a.s., proving (1.12).
n—>oo

(1.13) is immediate of course from Theorem 1.
Now we give an example to demonstrate (1.14). This is simply based on

p p
the observation in [16], Proposition 3.2, that Sn — > oo implies S n/ n K — > oo 
for 0 ^  k < 1. The latter of course implies lim sup Sn/n K = oo a.s., so we need

71 —>00

only find a distribution function F  for which E|X|<oc, EX=0. E ( X + ) 1//k < oo  

= E(JY_)1//'t for some 1/2 < k < 1, but A(x) / (xF(—x)) -a o o  as x  —> oo. The
p

last condition implies Sn — > oo by [13], Theorem 2.1. The following example 
qualifies. Let S > 0 and

=  F ( - I ) = i i ^ r  x > ° 2'

and
1 — F(x)=c \ ,  0 < x < a \ , F ( —x ) = C2 , 0 < x ^ a , 2 -

Here a i ,a 2 ,Ci,C2 are positive constants. Note that F  has a jum p of size 
1 — ci — C2 at 0. We have

a i oo

EX + = / c , á x  +  / í g j = < . 1c1 + 4 j
' 0 ai
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and
a 2

EX = j  c2d,x
0 a-2

We can choose the constants so that

J

J x(\ogx) 2

dx 1
=  a 2C2 +

log a2

EX = (oiCi +  1 /(<5o-i)) -  (a2c2 +  l / lo g a 2) = 0; 

take, for example

k 1 5 +  1 / (<510Ä) -  l /k
oi = 1 0 , a2- e  , ci =  - ,  c2 = ----------------------- ,

where k is so large that c2 < Then E|X| < oo, EX =  0, and for large x

X  OO

A{x) = f  (1 -  F(y) -  F ( —y))dy = -  j {  1 -  F(y) -  F(-y))dy

= I F{-y)dy  -  ( \ l  -  F{y))dy = ilog x Sxö log x

Thus
A(x)

x F ( —x)
- log x  —> oo

so S n ——>■ oo as required, yet E (X +) '/K<oo for all k> 1/(1+<5) and E(X _ )1/ K 
= oo for all 0 < k < 1. This proves (1.14).

(1.15) is just the contrapositive of the following lemma.

Lemma 2.2. Suppose \ <  k < 1, E|X| < oo, EX =  0, E(X+)1/K < oo, and2

OO oo

(2.44)

Then

(2.45)

y j  F{-y)dy dx < oo.
0 x

limsup — ^ 0  a.s..
n-+oo n K

P roof of Lemma 2.2. If E(X )1/'i < oo then Sn/n K -a 0 a.s. by (2.2), 
so (2.45) holds. We therefore assume E(X _ )1/K =  oc and consequently
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F ( —x) > 0 for all x > 0 for the remainder of this proof. We have, since 
EX+ = EX - ,

(2.46)
£ ( X + - E X + )  £ (  E X r - X :

J n _  i = 1_______________ i=l_____________
n" r

The first term on the right-hand side of (2.46) is o(l) a.s. by the Marcinkie- 
wicz-Zygmund law. Thus, letting

n

Xi = E X r - X r  and =  £ * , • ,
2—1

it will suffice to show that limsup S n/ n K ^  0 a.s.. For 6 > 0, x > 1, define

(2.47) C(x) = inf j j /  : j  F ( - z ) d z ^ J ^  J ,
y

so that for large x
OO

(2.48) x l~K I  F (—z)dz = 6 .
C{x)

An argument just like that in (2.33) shows that for x ^ EX-
OO OO

4 ( s ) := E ( ( I i A i ) V ( - 3:))=  j  F { - y ) d y ú  j  F ( -y )dy ,
x-fEA'-  x

SO

(2.49) x 1-KÄ (C (x))^A

Note also that the X; =  EX -  — X ~  are bounded above, so by Remark (vi) 
of [15] we have for some A > 0

(2.50) min P{5„ ^ 0} ^ A > 0.
n ^ l

It follows that
n

P{ max S j > x }  = S~' P{ max Sk < Sj}
l <j<n l<k< j - \

3=1
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^ rc n

(2.51) ?{]<“ < * _ S k i k x < Sj,  E  X * = °}
j= l = =J i=j+i

{Sn >x}.

Now set
Z - = ( X l AC(2k) ) \ / ( - C ( 2 k)),

and use (2.51) and (2.49) to write

P{ max S n > 262Kk) £ ^ P { S 2fc > 2 S2 Kk} 
l ^ n ^ 2 k A

^  ^ p { ^ ( X , ; A C{2k)) V {-C{2k)) -  2kA{C(2k)) > 0 2 " * }

2=1
(2.52)

+  ~ P { Ä 1 >C(2")}

=  i p { E  (zki - v zki)>MKk}
4-1

for k large enough; note tha t P{A"i > C(2 A')} =  0  for k so large that C(2 k) > 
EX~.  We have (cf. (2.35))

C ( 2 k )

E(Z?)2 g4c_ f iyF(-y)dy = 2c^U-(C(2k)), say, 
o

where c_ is some constant depending only on the distribution of X  . From
(2.52) and Chebychev’s inequality we get

(2.53) P{ max
2c-2‘ £/_(C(2*))

for some constant c > 0. Next

U_(C(2k))
/  y 2 (2 /í —1 )/c E —/ c2(2n—\)k Z-^j
k> 1 k> 1 j=l

(5 2 2 (2 K-l)fc

C(2>)

x F ( - x ) d x
C( 2J - 1)

+ " - W » ) E 5 ;
Jt>l

2 ( 2 k — l) / c
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C( V)

(2.54) /' V -  1 U-(C{  1))
^  ^  2 (2/c ')a‘ 2 2 / c _ 1  — 1
J = 1C(2J-‘)

V2 /c

2 2 « - i _  ! £  /

k^j

C( V)
■ x F (—x)dx U-(C(  1 ))

2 (2 k- 1)j +  2 2 k _ 1  — 1 ’
= 1C(2 J - ‘)

Now by (2.47), a: ^  C(V)  implies f  F{-y)dy  ^  6 / 2 ^ l~K\  so (2.53) and (2.54)
X

give, for some ci,C2 ,

<$1/(1-*) V  P { max S n >2ó2Kk\
k  l****

(2.55) °r /  °r \  (2/t—1)/(1—k)

“ Cl /  ( /  F ^~y d̂ y )
c{ I) *

x F (—x)dx + C2

Integration by parts shows that the last integral converges if (and only if) 
(2.44) holds. Consequently by the Borel Cantelli lemma

(2.56)
max S n

i= n=2 *'lim sup----—t----^ 2<) a.s..
k —>oo 2

Thus for large k and 2k~x < j  Ú2k,

Sj  < [ max S n] V 0 < 3<52Kfc < 362Kj K.
J - l2 *=-igng2 * J J

Given a large n choose k = k(n) so that 2k~x ^ ?i < 2fc. Then

_ 2K[ max 5,1 VO
S n K _
n K = 2 kA:

This shows that lim sup S n/ n K 5j302K. Let to get (2.45).
n —> oo

P r o o f  O F  T h e o r e m  3. Since E(X+)1/'i <  oo, we have by the Marcin- 
kiewicz Zygmund law (see (2.2)) that

É  [ ^ + - E { X i | X > 0 } / [ X l > 0 ]]
1 = 1

rT
• 0 3>.S.,
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so we may replace X x by the constant E{W | X  > 0} when Xi > 0, without 
influencing the value of lim sup 5'n/n ,t. We may therefore assume that X + 
can take only one value >  0. We denote by Xi  the modified random vari­
able which is obtained by replacing Xi by E{X | X  > 0} when Xi > 0. Its 
characteristic function is <f>. We further write Sn =  Xi-

Now let o\ < <72 < • • • be the successive strict upward ladder indices of 
the random walk Sn and take oq = 0. Then the Sak+l — Sak are i.i.d. and 
take values in (0. E{X | X  > 0}], so that

We now estimate E{or Acc}. For brevity write K  = E{X | X  > 0} and 
Ci =P{W  = E{X I X >0}} =  P{W >0}. Then X+ = 0  or = K.  Therefore,

Since

(2.58) lim sup Sn/n K = oo a.s.

if and only if

(2.59) r  s aah m su p ----= oo a.s.,
n—>oo

we see from (2.57) that (2.58) is equivalent to

lim inf " = 0  a.s..
n.—> ao  n  1 K

By [25], Theorem 1. this is in turn equivalent to

(2.60)

for all A > 0, where for x > 0,

m(x) — E(fT] A x) = ^  A:P{(Ti =  A:} +  x P { a \  > a;}.
/c<£

p{CTl = n} = P{Sn_i 6  {—K, 0], S i ^  0,0 ^  i g n -  1}P{X = K } 
=  C 1P{5n_ 1 e (-ü f ,0 ] ,5 j g 0 , 0 ^ t g n - l } .

(2.61)
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Next we use a simple argument based on the fact that all cyclical per­
mutations of X i , . . . ,  X n- \  are equally likely (see [23]; proof of Proposi­
tion 32.5). If v is any index <n — 1 at which max S, is achieved, and

Sn- \  = E r=i' Xi ^ 0 , then at least the cyclical permutation

(2.62) Xv+i , . .. , X n- i , X i , . .. ,X„,

has all the partial sums 5[0, as one easily checks. Therefore, by (2.61)

(2.63) P{a1 = n } ^ P { S n_i €(-/<:,()]}.

Now first assume that {Sn} is aperiodic, in the sense of [23], Definition 2.2. 
Since EX = 0, {5n} is interval recurrent. From this it follows that for 
any fixed number L > 0 and set A C [—L,L] and any open interval I  =  
(a — r),a + r)), say, there exists a 1 ^  j  = j (L ,  I) < oo and a constant C2 — 

I) > 0 such that uniformly in n,

P {Sn+i. € /  I Sn 6  A}
i= 1

j
=  Y p {Sr +  X G I }

i= 1

lin y  p (ez L> mm
pez 

|p |g2L /rj 1=1

^ C 2 .

s'i+PTj, -  a < n
2 /

It follows that for any fixed S > 0 there exists some j  and C3 > 0 such that

j  j
£  P{CTl =n-M} ^  ] T  P{S„_1+J E (-X,0]}

(2.64)
1 = 1 Í— 1 

Ő

^ —  / P {\Sn-! \<s}ds .  n '

If {Sn} is periodic, then it can take all values kX, k G Z, for some A ^  0. 
Then the preceding argument still goes through if we restrict x  to multiples 
of A and if /  contains a multiple of A. Therefore, (2.64) is valid also in the 
periodic case.
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For an estimate in the opposite direction we introduce the set

i  n
r  =  Tn =  | g  =  (j i , ■.., x n) : Xj ^  0, l ^ j g n - l ,  and E (0, K]j ,

i— 1 i=1

and for any sequence of length n, x = (®i,. . . ,  x n), we define its cyclical 
permutations r kx  =  (xk+i, . .. , xn, x \ , . . . ,  x^), 0 ^ k ^  n — 1. By (2.61)

(2.65) P{al = n }  =  P { ( Í 1, . . . , Í n) e r } .

Next we note that for any x E F, none of the permutations Tkx  with 1 ^  k 
n — 1 lies in T, because

n  n  k

E  ^ = E ^ - E ^ > ° -
i = k + 1 i=l i=l

Moreover for x 6  F and k < /, we must have r fca: ^  t i . Indeed r fca; =  r*:r 
would imply that the periodic extension of x with period n would also have 
period l — k and then also period p :=g. c. d.(n, l — k). But this would force 
"Ya —i x i >  0) because ]E”= 1  Xi > 0, and xi>  0 is impossible for x E F and 
p < n .  Therefore, given r kx  for some i GT, one can find k and x  uniquely, 
and the sets t*T := {Tfc.-r : i GF}, 0 ^ k  ^ n — 1, are disjoint. Finally, if we 
take into account that

E i
n

Tkx)l = Y ^ x i e  (o, K]
i= i

for any x E T. we obtain

1 n — 1

p { CT| =n} = P { (x 1 ........x n) e r }  =  i p { ( j f 1 ........ x n) e U  r* r}
k= 0

i -P {~ S n e(0 ,K)} .
n

Analogously to (2.64) we then also have for any fixed 6 > 0 that there exist 
constants C\ < oo and j  < oo so that

5 3

(2.66) P W i = n } ^ ~  I Y .  P i l^ + il  < s}ds.
n  o i = 1

Now
rn(x) =  E((7i A x ) f  E c i =  oo, (t —̂ oc)
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because E.Y =  0 (see [9], Theorem 9.2). It, follows from this and (2.64) that 
for some constant C5 > 0

m ( x ) = y  (n A x)V{o\ =n}
n^l

J

^ C5 ^  ^ ^ (n  A j;)P{cti =  n + 1 + i)
i=  1 71̂ 1

Ö

= — ("A i)  /  P{|5„| < s}ds.
71 0

Similarly, by means of (2.66),
<5

m(%) ^ y ;  —  (n A x) I P{|Sn| < s}ds. 
n ^ 1 ”  0

We may therefore replace m(x) in (2.60) by
<5

(2.67) /( lA - )p { |S „ |< a } c fe ,
n=  ̂ 0

and if we define (1 A :r/0) = 1, then we may even start the sum at n = 0.
The proof of (1.16) now only requires a few manipulations from analysis. 

One easily checks that (1 A x/n)  lies between two constant multiples of

Moreover

( 2 .68)

J  e~ny/xdy. 
0

00
<s}ds =  ^ J  4>n(0) —— cos 66

o 2
dO

(see Chung and Fuchs [4]). Therefore the sum in (2.67) (starting with n =  0) 
lies between two constant multiples of

<x>
— cos 60

(2.69)
E
n=0 V

-ny / x dy f - d o
0

1 00

I
0  —00

1 — cos 60
1 - e ~ y / x${0 )

d o .
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Note tha t the interchange of the summation and integration here is justified 
by the following estimates

oo ). oon

E /«-~ny / xd y  /  
J

n = ° 0 —oo

oow
fVII e - 2 Ln/2 j y/x

I

p ^ j l - c o s W ^

oo

= ^ E  /—n J

— OO

Ő

m—0  q

e~2my/xdy / P{|Tm| < s}ds,

where Tjn =  ^ j"  X.,; — X ', with all X l, X '1 i.i.d. (because X, — X[ has
characteristic function |4>($)|2). But EX =  0 and X  not degenerate at 0 
implies that P{X > 0} > 0 and P{X < 0} > 0, so that X  is not degenerate. 
We then have for some constant Cj < oo that

6

I P{\TTn\ < s } d s ^ 6 P{\Tm\ < S } ^ - ß = ,
./ V m  +  1
o

by a general concentration function inequality ([7], Theorem 3.1). Thus

OO

E
771=0 '/

1 6’
e-2my/xdy I P{|Tm| < s}ds = O

0

oo

E
m= 0

1 A
1

m )  \Jm + 1
< oo.

Thus the interchange of summation and integration is permissible by Fubini’s 
theorem.

Replacing m(x) in (2.60) by the right-hand side of (2.69) with <5 =  1 and 
changing the variable gives (1.16). □

P roof of T heorem 4. (a) Let k>1 or ^< k<1, E|X|<oo and EX=0, 
and lim sup \Sn\/nK > 0 a.s.. If lim sup \Sn\/nK < oo a.s., then E |X |1/,K<oo

71—̂ OO 71—>00
so \Sn \/nK —»0 a.s. by (2.2), which is a contradiction.

(b) We consider the various cases, excluding the two mentioned.
The case k > 1 is covered by Corollary 1 of [2].
For k =1,  we know that lim sup Srl/n  can only take the values +oo or

71—>00
—oo when E|X| = oo by Corollary 3 of [11], proving (1.19) in this case. If 
E |X | < oo and EX = 0 then neither condition in (1.19) can occur for « =  1, 
so the result is true vacuously.
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Next let If lim sup Sn/nK > 0 a.s., then lim sup Sn =  oc a.s., so
71—»OO 71—»OO

lim sup5n/n K — oo a.s. by (1.9). (Note tha t (1.19) is trivial if F (0 —) =  0 or
TL—»OO

F(0) = 1.)
Next let 5 < K < 1, E|X| < oo and EX ^  0. If lim sup SrJ n K > 0 a.s., then

71—»OO
EX > 0  (by 1.10)), so Sn/n K oo a.s. by the strong law of large numbers, 
and (1.19) is true. When  ̂ < « < 1, E |X | =  oo and limsup Sn/ n  < oo a.s.,

7i—»OO
then we have Sn/ n —> — oo a.s. by Corollary 3 of [11]. This is not possible 
when lim supSn/ nK > 0  a.s., so the latter implies limsupSn/n  = oo a.s. and

71—KX) 71—»OO
consequently lim sup Sn/ nK = oo a.s.. Again (1.19) is true.

n—> oo
When k = 1, E|X | < oo and EX 0, (1.19) is obviously not true by the 

strong law of large numbers.
Finally, let, ^ < k < 1. We will use a result of Klass [18], [19] to give a 

random walk with E|X | < oo and EX =  0 and
§

(2.70) 0<  lim sup—  < oo a.s.,
71—>oo TlK

showing that (1.19) is not true in this case either. To do this, define as 
in Klass ([19], Equation (2.1), p. 152) a positive function K(x)  (uniquely) 
satisfying, for x  > 0 ,

K 2 {x ) = x E X 2I ( \ X \ Í  K{x)) +  xK{x)E \X\I{ \X \> K{x)).

Clearly K(x)  —> oo as x  —> oo, and integration by parts shows that
K(x)

(2.71) K 2 {x) = 2 x  I yP(|X| > y ) d y  + xK{x) j  P(|X| > y ) d y .

o

Then by Theorem 2.5 of Klass [19],

K{x)

(2.72)

provided

(2.73)

1 glim  sup -— —r ^  1.5 a.s. 
ti—700 «2nA (n /I2n)

P{X > l2n K { n / l 2n)} < oo.

Here l2n = log log n  for n > e. We can satisfy (2.73) by taking X  to be 
bounded above, so to prove (2.70) we need merely find a random walk, whose 
increments are bounded above, with E|X | <  oo, EX = 0, and, for some c > 0,

(2.74) l2nK[n / l2n) ~  cn^ (n —>oo).
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To do this, let the distribution F  of X  put all its mass in (0, oo) on one 
point and satisfy

(2.75) F { - x ) ^ c x - 1/,i(l2x)1- 1/K, x->oc,

and EX  =  0. (Note that E |X | < oo when (2.75) holds.) Since X  is bounded 
above we have for some x\  and large x

y P ( \ X \ > y ) d y ~ ( 2 -  1 /«) J yl/K̂ ^ K)/li + const
XI

x 2—\/n r

(I2X)d  K)/K
as x —> 0 0 .

Also, as x  —>• 0 0 ,

, , , , \ f  cdy (2 - 1  / k)cx1~ ^ ^
y 1 K̂(hy)^

X  X

Thus K ( x / 1 2 x ) satisfies, by (2.71),

(1 / k -  1 ){l2x)(1~K)/K

K ( x / l 2x )  00

KHx/hx±=2 r yp(\X \>y)dy + K ( x / l 2x) I P(|X | >y)dy
{x / l 2x) J ./

0 K ( x / l  2x)
(-K { x / h x ) ) 2- V Kc 

~  ( 1  - k ){12 ( K ( x /12x ) ) ) ^ k)/k :

or

(2.76) ( K ( x / l 2 x ) ) V K ~
cx

(1 - k ) (12 x ) (12 ( K ( x / 1 2 x ) ) ) ( ^ ) / k '

Clearly then, \og(K(x/ l2x)) is bounded above and below by multiples of 
logic, so l2 (K(x/l2x)) ~ l2x. Thus

(■K ( x / h x ))1/K~
CX

( 1  -  k ) ( 1 2 x ) 1! k  ’

proving (2.74). Hence (2.70) holds by (2.72). □

R em ark . It is easy to see that (1.15) holds for the example just given, so 
this example also demonstrates that (1.15) is not sufficient for lim sup Sn/n K

n —KX)
=  00 a .s..
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P r o o f  o f  T h e o r e m  5. (a) Keep k ^ 0 and a >  0. It follows trivially 
from the definitions that lim sup \Sn\/nK > a a.s. implies TK(a) < oo a.s., so

71—» OO
Theorem 1 shows that we have TK(n) < oo a.s. for all a > 0 under the specified 
conditions.

(b) Keep k = 1 and 0 < |EX| ^ E|X | < oo. Suppose EX > 0. By the 
recurrence of the random walk ^ ”=1(Xt — EX), we have

l =  P{Sn - n E X > 0  i.o.} =  P {S „> n E X  i.o.} ^  P{(|5„|/n) > |EX| i.o.}
^ P{max(|5n |/n) > |EX|} =  P{T, (|EX|) < oo}.

n>l

Using a similar argument when EX < 0, we see that Ti(|EX|) < oo a.s. when 
EX 0, so T[ (a) < oo a.s. for all a ^  |EX|.

Next take a > |EX| and ö > 0 . By the strong law of large numbers we 
have |5n| / n —> |EX| a.s. so we can choose mo(a,ó) so large that

(2.77) P{ max (|5 7 | / j ) > a} ^  P { ( |S j|/j)  > a for some j  > m}  ^  5/2
r n < j^ n

whenever n ^ rn ^  niQ. We can then choose Xq = xo(rno, Ö) so large that 

(2.78) P{ max ( \ S j \ / j )> x } Z 6 /2
lSjSmo

whenever x

(2.79)

^ x q . Thus for x  ^ xq A a and n > mo we have

P{ max { \Sj \ / j )>x}
i=J=n

^P { max (|S j|/i)> a ;}  +  P {  max ( |5 j|/j)  > a} <1 <5.
I S j S m o  m o < j S n

Letting n —> oo in this shows that P{sup(|5 j|/j) > x} ^  <5 for x  ^  Xq, which
i t  1

proves P{Ti (x) =  oo} —> 1 as x —> oo.
(c) Now let ElXl1/* < oo and either k > 1 or  ̂ 1 (so E|X | < oo)

and EX =  0. Then by the Marcinkiewicz-Zygmund law (see (2.2)) we have 
\Sn\/nK —> 0 a.s.. The same working as in (2.77) (2.79), with the divisor j  
replaced by j K, and a positive but otherwise arbitrary, shows that P{TK(x) 
=  oo} —► 1 as x —> oo. □

P roof of T heorem 6. (a) Keep 0 ^ k ^  1 and suppose T*(a) < oo a.s. 
for some fixed a ^  0. Take T0* =  0 =  So, T* = T*(a.), and for k = 2, 3, . . . ,  
define

T*k = min {n > T'k_, : Sn > ST^  + a(n -  Tfc*_1)'i } .

Let A*, =  Tk —T£_v  k i l l .  Then the A*, are i.i.d., each with the same 
distribution as T*, and so A*, < oo a.s.. Hence Tk < oo a.s., k = 1, 2 , . . . ,  and
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T£ —> oo a.s. as k —> oo. Now for all k ^ 1

-  s T -j>a- r ; . , ) «

= « E Ai > “ ( E AJ
3 =1 J=1

= a{T*k ) \

(when 0  ^  k ^  1 )

Thus, for all k, St * > a(Tj*)K a.s., proving that lim supSn/ n K ^  a a.s..
n—»oo

Now take k > 1. Let X  be such that X ^  xo a.s., where xq > 0 is a 
constant, but E(X1/K) < oo. Then when a < xq

1 =  P{Xi > a} <= P{max ( S j / j K) > a}, 
j ^ 1

so that T*(a)< oo a.s.. But Sn/n K-+ 0 a.s. by the Marcinkiewicz-Zygmund 
law (2 .2 ).

(b) Keep 0 ^ k ^  1, a > 0, and let T*(a) < oo a.s.. Then lim sup5'„/nK ^
71—> OO

a > 0  a.s. by part (a), so lim sup Sn/n K — oo a.s. by Theorem 4(b), except
n —̂ oo

possibly in the cases k, =  1 and E|X| < oo, EX ^  0, or  ̂< k < 1, E|X | < oo 
and EX =  0. This proves (1.24). In the exceptional cases, we may have

g
(2.80) lim sup —  =a  G (0 , oo) a.s.,

n —> oo

as was shown in Theorem 4 (b), and if (2.80) occurs, then for all x < a, 
P {Sn/ n K > x i.o.} = 1, and hence T*(x) < oo a.s.. A similar proof to that of 
Theorem 5 shows that, also, P{T*(x) = oo} —> 1 as x —> oo.

(c) Part (a) of the present theorem shows that, when 0 ^  k Si 1, T* (a) < oo 
a.s. for some a > 0 if and only if lim sup Sn/ n K > b a.s. for some b > 0. In

71—»OO
turn, with the exception of the cases k = 1, E |X | <  oo and EX /  0, or possibly 
^ < k < 1, E |X |< oo  and EX =  0, this occurs if and only if lim sup Sn/ n K — oo

71—>00

a.s. (by Theorem 4 (b)). Then T*(a) < oo a.s. for all o > 0  apart from those 
exceptional cases. We can read off the corresponding analytic equivalences 
from Theorem 2 (b)-(e).

(d) Suppose T* (a) < oo a.s. for some a > 0. Then by part (a) of the 
present theorem, we have lim sup Sn/n ^ .a  a.s.. If E |X | = oo then by Kesten

71—»OO
([11], Corollary 3, p. 1195) we have lim sup Sn/n  — oo a.s. and J+ = oo (by

71—»OO
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(1.7)), and hence T*(a) < oo a.s. for all a > 0. If E|X| < oo, then by the 
strong law of large numbers, EX ^ a, hence EX > 0. Now

P [ — > E X  i.o.} =  p [ ^ ( X i - E X ) > 0  i.o.} =  l
2=1

so T*(a) < oc a.s. even for a = EX, hence for 0 ^ a 51 EX.
Conversely, if J+ =  oo then lim sup5n/n  =  oo a.s. by (1.7), and hence

n —>oo
T*(a) < oo a.s. for all a > 0. If 0 < EX' ^  E|X| < oo then T*(a) < oo a.s. for 
a =  EX, hence for 0 5Í a ^  EX, as just shown above. □
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ERDÖS-RÉNYI-SHEPP LAWS FOR DEPENDENT 
RANDOM VARIABLES

R. KIESEL and U. STADTMULLER

To the memory of Alfréd. Rényi

Abstract

We prove an Erdős Rényi-Shepp law for the partial sums of a uniform strong mixing 
stationary sequence.

While there is a large amount of literature on versions of the Erdős- 
Rényi-Shepp law for sequences of independent, identically distributed (i.i.d.) 
random variables, see e.g. [11, 3, 4, 5, 6 , 7, 12, 13], not much is known for 
dependent random variables (see [9] for a first result in this direction). Using 
a recent large deviation result by Bryc [1] we proceed to a more general 
setting.

Let {Xn} be a stationary sequence. We define (F™~o{Xk :n^k%m)  the 
canonical cr-algebra generated by X n, . . . ,  X rn and the 0-mixing coefficient

We say that a sequence {An} is 0-mixing if 0n —> 0 for n —> oo.
We shall need the following hypergeometric rate of convergence

THEOREM B. Let {An} he a stationary 0 -mixing sequence of random 
variables such that |X i| ^ C < oo and (1.1) holds. Define Zn = (X i +  . . .  
+ X n)/n, n ' t  1. Then the limit

1. Introduction and main results

( 1. 1)) eKn(j)n —>0 (n —>oo) for each K  t  0.

We have the following large deviation theorem by Bryc [1].

l i m n  1 log E (exp(nAZn)} = L(X)

exists for each A G K and the function I : R —> [0, oo] defined by

I(x) := snp{xA — L(A)}
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is a convex, continuous function. For {Zn} the large deviation principle 
holds true with the good rate function I, that is,

(1.2) lim supn-1 log P (Zn G F) ^  — inf I(x)
n->oo x£F

for each closed set F QR, and

(1.3) liminf n ~ l log P (Zn G G) ^  — inf I(x)
n-y oo x eG

for each open set G ^  K.
Lem m a . Let {Xn} be a stationary f-mixing sequence of random vari­

ables, such that |2fi| ^  C < oo, E(Xi) = 0 but E(A^) > 0 and (1.1) holds. 
Then we have with xq := sup{x ^  0; I(x) = 0}, x\  sup{x > 0; I(x)  < oo} 
and A \ =  sup {I(x)} (xvhere sup{/(.)} := — oo} that

0<x<xi  0

(i) L(.) is convex and hence continuous on R and L(A) CA, A ^  0;
(ii) O ^ xq^ x i ^ C ;

(iii) I f  .To <x\ ,  I  ■ [to, t i ) —> [0, Ä) is continuous and strictly increasing 
and hence I*~ : [0, A) —> [to, x i) exists.

CONVENTION. To obtain our main result in a closed form we define 

I <~(x) : :=xi  if x ^ max{0, A}.

Using (1.2) resp. (1.3) for F — [a, oo) resp. G =  (a, oo) with any a G 
(xo,x\)  we obtain by the strict monotonicity of I  that for any sufficiently 
small e > 0 and n sufficiently large

(1.4) P(Zn ^  a)  ^  exp{-n /(a  -  e)}

and

(1.5) P(Zn > a) ^exp{—nl(a + e)}.

We consider in the sequel the following random variables

Sk+b„ ~  “Sfc
( 1 . 6 ) Vn := max

0 < k < n —bn

with S n := X\  4------b X n and bn := [clog n] for c > 0.
We can now state our main result, in which A := sup {I(x)} as above.

0 < i< i i

THEOREM. Let { x n }  be a stationary, <f>-mixing sequence of random vari­
ables, such that |Xi| ^  C  <  oo, E(X[) =  0 but E(Ai^) > 0 and (1.1) holds. 
Then we have for any c > 0

lim Vn =  I*~ (1/c) a.s..
n —*oo
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2. Proofs

P r o o f  o f  t h e  L e m m a . It is obvious that ipn(X) n 1 log{E(e"A2n)} ^ 
A C for nonnegative arguments and exists for all A since — C  ^  Zn ^ C .  As 
a limit of convex functions (cumulant generating functions) L(.) is convex 
and hence continuous. Next we shall show that I(x) =  oo for all x > C. This 
follows from the fact that (use E(A'i) = 0 )

I{x) =  sup{Ax — L(A)} ^ sup{Ax — AC} = oo for x > C.
Â o Â o

Hence Xi 5] C. By definition /(.) is strictly positive for x > £o- By Lemma 
2.2.5 in [8 ] it is a good rate function and is hence convex and lower semicon- 
tinuous. If xo <x,\ then it is continuous in (£o,£i) and we show that /(.) is 
strictly increasing on [£o,£i). By general arguments I(x) is nondecreasing 
for x ^ 0 (see e.g. [8 ], pp. 28 or [10], p. 4). We show now that /(.) is increas­
ing, i.e., we have I ( x 2) < I (x 3) if xq fí £ 2  < £3 < x\ . By the last step we can 
restrict ourselves to prove the case £ 2  > xq. There exists a sequence (A„) 
such that I(x 2) =  lim ( \ nX2 — L(Xn)) and Xn ^.ő with some 6 E (0,1), sincen—>oc
otherwise I{x2 ) =  0 in contradiction to the last step. For 0 < e < (£3 — £ 2 M 
we have for 7/, large enough

I { x 2 ) =  XnX2 — L(Xn) +  e

<  An (.£'3 — — L(Xn) -I- e

gAn£3 -L (A n) g / ( £ 3),
giving the Lemma. □

P r o o f  o f  t h e  T h e o r e m . Let us begin with the cases A > - 0 0 , i.e. 
A > 0 and c > 1 /A.

(a) Our first claim is

(2.1) lim sup Vn % 7^(1 /c) a.s..
71—> 0 0

Choose £ > 0 and set x I^~(l/c) + 2e < £ 1 . Define for n ^ 1 the events

An := {ca : Vn ^ £'}•

We have to show that

(2.2) P(An i.o.) =  0.
Hence we estimate P(A7j). Using successively the sub-additivity of the prob­
ability measure, the stationarity of the sequence {X n} and (1.4) we obtain 
for n large enough

P M n )  =  P  ^  ( J  : S- Jb - S-  ^  * } )
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5Í ?rexp {—bnI(x  — e)} = nexp { -b nI(I*~(l/c) + £)} 
nexp { — (1  +  5) log n}

for some 5 > 0 by the Lemma.
Now choose T  the smallest integer such that TS > 1; then

OO

(2.3) ^ P ( .4 „ r ) < o o .
7 1 = 1

Hence P (Anr i.o.) = 0. Setting for w 1

max
0 <k^n—ba

S k + b n - 1 ~  S k

bn ~ 1
>

similarly we see that
OO

(2.4) ^ P ( H ; t ) < oc.
n—1

Now for n  large enough we have h(n+1)r — bnr ^ 1 and using (2.3) and (2.4) 
this implies that (2 .2 ) holds true (see [2 ], p. 1 0 0  for this type of argument),

(b) Our second claim is

(2.5) lim inf Vn ^  I ^ ( l / c )  a.s..

Choose £ > 0 so that x := I*~(l/c) — 2e> x0. Define for n  ^  1 the events

B n := {u;: Vn ^ x} .

We have to show that P (Bn i.o.) =  0. By the Borel Cantelli lemma it suffices 
to show

OO

(2.6) p (Bn) < oo.
7 1 = 1

Let (dn) be any sequence of positive integers with dn —» oo (n —> oo). Then 
we have

-i-n 1 j
O C

n  { » ■ ■
^ i ( b n + d n ) a i ( b n + d n ) - b n  ^  _  (

b n  -  j
8=1 ^V
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For i = 1, n~bnbn+dn — 1 we define the events

. Sj(bH+d,i) ^ ‘(bn+dn)-bn < 1
bn = J

Using standard techniques for sequences of ^-mixing, stationary random 
variables we get for any positive integer N

P

''TV—1

= p n  e 'e n
\  t=i /

^((ßdn + P { EN))P ( fj Ek
'N- 1

\  i — I 

fN- 1
=  (<t>dn + P ( £ a ) ) P  f l  E i

. i=l
+ P ( ^ 1))iV" ' p (m o ­

using our large deviation estimate (1.5) and stationarity we get for n large 
enough

P ( £ i )  =  P 1IIVi

col - p ( ^
bn ~ J 1  K

> x

^ 1 -  exp { —bnI(x  +  e)} =  1 -  exp { -b nI{I*~(1/c) -  e )} 
^ 1 -  exp {-6„((1  -  S)/c)} = 1 -  exp { -(1  -  <5) log n}

for some <5 > 0, by the Lemma. Combining the above estimates we get, with 
dn := [log n],

P(-ßn) ^  (1 -  (exp {-(1  -  Ő) logn }  -  <j>d n ) )  [u+ryfcr] 
n — br,= exp

= ex P 

= exp

(c+  1 ) logn 
n — bn

_(c+ 1 ) log n 
n — b■

- 2  log (1  — (exp { —(1 — <f) log n } - 4>dn))

1
2 \  L(c+ 1 ) logn

(n (1 S)-<fidn) j

2^ n _ 1̂_<̂  j1 ^ exp cns/  lo g n | ,

where c is a positive constant. Observe that we used the inequality 
log(l — x) ^  —x (for x < 1 ) and then the hypergeometric mixing rate in the 
next to last inequality.

By the above estimate we get (2.6) and hence claim (b) is true.
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Combining claims (a) and (b) the proof for the main case is complete. 
In the remaining cases (A = —oo, i.e., xq =  x\ or A  > 0 but 0 < c ú 1 /A) we 

have for any x > x\ = I*~(l/c) that I(x) = oo and hence we get the following 
large deviation inequality. For any M  > 0 there exists some no 6 N such that 
for n  ^  no

P(Z n ^ x) £ exp{—nM }

holds. Similar arguments as above lead to the upper bound

limsupFn Si x\.
n —>oo

If x \  =  0 we are done, since replacing X  by —X  leads to lim Vn = 0 a.s.. If
n —>oo

0 < xo = X] then for any x < x \  we have I(x) =  0 and hence for any e > 0 we 
obtaip for n large enough

P (Zn ^  x) 5; exp{ -n e j

and therefrom we can deduce the lower bound (2.5) as above. Finally if 
Xq < x \ and x < x\ then we have cl(x) < cA 5i 1 since c ^ l / A  now. Again 
our reasoning above goes through, giving the desired result. □
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POINTWISE BOUNDED APPROXIMATION

J. KOMLÓS and G. TUSNÁDY 

To the memory of A . Rényi

A b s tr a c t

We show that a sequence of partial sums of i.i.d. random variables can be approximated 
by a sequence of normally distributed random variables in such a way that the difference 
is finite almost surely.

1. Introduction

V. M. Zolotarev posed the following peculiar question. Let Sn be a 
sequence of partial sums of i.i.d. random variables. Is it possible to approxi­
mate Sn by a sequence Tn of normally distributed random variables in such 
a way that sup \ Sn — Tn\ is finite almost surely ?

71
Observe that here, unlike in standard embedding questions, it is not 

assumed that Tn are partial sums, or, for that matter, anything about the 
joint distributions of the random variables Tn (they do not even have to be 
joint normal).

This was a question that grew out from his work on embeddings us­
ing higher order terms in the Cornish- Fisher expansion (Sn — a;n)/(a^/n) = 

k
n~ll2pk(Nn) + £nn~ki~, where a and a2 are the mean and variance of the

i = 0
terms in Sn, Nn are standard normal, and pk are polynomials. (He has the 
following result -  see in [11]: If the terms in Sn have r > 4  moments and 
satisfy the Cramer condition, then in the above mentioned Cornish-Fisher 
expansion with k — \r — 4] — 1 one has en -A 0 a.s.. Our Lemma 2 below is a 
particular instance of his theorem.)

In this paper we give an affirmative answer to the above question. In 
fact, we will construct a pointwise bounded approximation for a quite general 
class of random sequences Sn,Tn. * 0081
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Let us first explain why we called the question peculiar. The central 
limit theorem easily implies tha t the partial sums Sn can be approximated 
by normal variables Tn in such a way that the difference Sn — Tn is stochasti­
cally bounded uniformly in n  (that is, for every e > 0  there is a i f  such that 
P (ISn — Tn\ > K) < c for all n). In this approximation, only the individual 
distributions of Sn and Tn appear, and it is not clear at first sight whether 
the joint distributions of Sn m atter or not in Zolotarev’s question. If the joint, 
distributions of the Sn are given then simple-minded applications of the cen­
tral lim it theorem are doomed, for the above mentioned uniform stochastic 
boundedness alone is not sufficient to guarantee pointwise boundedness. An 
embedding of the pair (Sn,T n) is a joint distribution of the variables (Sn,Tn) 
with the prescribed marginals. This joint distribution determines the con­
ditional distribution of Tn given Sn. One is tempted to use the conditional 
distribution of Tn given Sn independently for different n, but it will not work, 
for independent errors add up. The crucial point in our construction is that 
we use the same randomization (that is, a kind of mixture) for different n. 
It tu rns out that this embedding works regardless how we specify the joint 
distributions of the sequence Sn.

Usually the joint distributions of both Sn and Tn are fitted (see in Bretag- 
nolle and Massart [2], Csörgő and Hall [4], Csörgő and Révész [5], Kornlós, 
Major and Tusnády [7], Major [8 ], Tusnády [10]). In this situation a bounded 
error embedding is certainly impossible since the error terms tend to infinity 
pointwise according to the theorem of Bártfai [1].

In the following theorem Sn and Tn are general sequences of random 
variables.

T h e o r e m  1. Let e(x ) be a monotone decreasing positive function with 
lim e(x ) =  0, and A n a sequence of positive numbers with lim A n =  oo.

X—>oo ' n ->  oo
If  the (marginal) distributions of the random variables Sn,Tn satisfy the 
following condition:

P (a < 5 „  <b) ^  (l + e(6 — a ))P (a < T n <b) 
for all a, b with 1 ^ b — a ^  A n,

then, given arbitrary joint distributions for the Sn> one can construct (on 
some probability space) sequences Sn,Tn with the prescribed marginal and 
joint distributions such that

(2) sup \Sn — Tn | < oo almost surely.
n

R e m a r k . Note that the condition (1) is equivalent to the existence of
an e(x ) as above and a non-negative sequence 6n with lim 6n = 0 such that

n->  oo

(3) P (a  < Sn < b) ^ (1 + £n {b -  a ))P (a< T n < b) for all a, b with b -  a ^  1,
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where en(x) is the truncated sequence en(x) -  max{e(:c), <i„}. (Indeed, choose 
6n = e(An/2), and partition the interval (a, b) into intervals of lengths be­
tween An/2 and A„.)

T heorem 2.

variables with

n

Let =  where X \  are i.i.d. continuous random
k= l

(4) E X i= 0 , EX i = 1, E| Aj |r < oo 
for some r ^  4. If they satisfy the Cramér condition

(5) limsup \EextXl | < 1
|í|->00

then one can construct (on some probability space) two sequences S'n,Tn such 
that the joint distributions of S' are the same as those of Sn, Tn are normal 
with ET„ = 0, ET* =  n, and'

sup I S'n — Tn I < oo almost surely.
n

The strategy of our proof is the following. The natural candidate, the 
quantile transform, does not work for the construction of a pair (S'n,Tn) 
which satisfies Theorem 2. But we show in Lemma 2 with the help of the 
Cornish-Fisher expansion that this condition works if Sn is approximated
by Tn +  k (jjf- — 1 j  with an appropriate constant k. Theorem 1 enables us
to replace this approximating sequence by the sequence Tn. The main idea 
in the proof of Theorem 1 is to construct, for a fixed sequence Sn, random 
variables Tn and U for which \Sn —Tn\^ U ,  and the variable U is independent 
of the sequence Sn. This independence enables us to ensure that the sets 
where |Sn — Tn \ is large are contained in a set which does not depend on the 
index n.

2. Proof of Theorem 1

2.1. A matching lemma

LEMMA 1. Given random variables X , Y, Z  such that X  Sí Y , and for all 
a, b,
(6) P(a< X Í Y  < b ) ^ P { a < Z < b ) .

Then there are random, variables X ',Y ' ,Z '  (on some probability space) such 
that the joint distribution of X ',Y ' is the sam.e as that of X ,Y ,  the distri­
bution of Z 1 is the same as that of Z , and X '  ^  Z' ^  Y '.

Note that the above sufficient condition is also necessary.
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P r o o f . Strassen’s [9] marriage lemma gives the following condition for 
the existence of such an embedding. For an arbitrary two-dimensional open 
set V  C { ( x ,y ) : x ^ y j ,

(7) P ( ( x , Y ) e V ) i P ( Z e W ) ,

where W  = W (V) =  {w : a ^  w 5í b for some (a, b) EV }.
W  is open, and thus it is a countable union of disjoint open intervals. If 

W  is one single open interval, say W  — (a, b), then V  is a subset of {(x, y ) : 
a < x  ^  y < &}, and thus (6) implies (7). □

2.2. The construction

The main idea is to generate a positive random variable U controlling 
the size of \Sn — Tn\. In fact, we will construct Tn as a mixture of Tn(U), 
such th a t the difference |,i?n — Tn(U)\ is bounded by U for large n. As we 
will see it is to our advantage to choose U to be independent of the whole 
process Sn.

Given Sn (on a large enough probability space), we first truncate Sn at a 
(very high) level Mn by choosing a number xn such that P(x„ — 1/2 < Tn Ű 
xn) > 0 and P(:c„ ^ Tu < x n +  1/2) > 0, and then defining

5 , f S n if |S „ |g M n
n \  x n otherwise.

We assume that the alternative condition (3) is satisfied, replace the 
function e{x) with a new function 'q(x), and set rjn(x) =  max{r](x),őn}. Mn 
and r/(x) will be chosen to satisfy the following conditions.

(A) £ P ( |S n|> M „ )< o o .
n

(B) P (ISn I > Mn) 5Í <5nP(a < Tn < a + 1) whenever a is such that a < x n < 
a -f-1 .

(C) r/(4a;)^P(|Tn | Ax) for all x > Mn.
(D) r?(x) i; 2e(x) and r]{4Mn) ^  Sn.
Now we choose a random variable U ^  uo, independent of the whole 

sequence Sn, with
P(I7 ^  u) ^  r/(2u) for uo,

where uq is such that uq ^  1 and t](2uq) ^ 1 .
We will prove (under the conditions of Theorem 1) the following inequal­

ity:

(8 ) P (a<  S'n -  U rg S'n + U <b) ^ P (a  <Tn < b) for all a, 6 .

Thus, condition (6 ) is met for

X  = S'n - U ,  Y  = s'n + U, Z = Tn.
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Hence, by Lemma 1, we can put Tn in between S'n — U and S'n + U. That is,
15^ — TnI ^ U, and (2) is proven, since S'n = Sn for large n almost surely.

Lemma 1 only gives the three-dimensional distributions Fn(s ,u ,t)  of 
(S'n,U ,Tn) separately for each n. In applying it in our situation, we use 
further independent randomizations to generate the sequence T„, using the 
conditional distributions Fn(t\s,u) obtained from Fn(s,u ,t), by assuming 
that Tn is conditionally independent of the sequence [Sm •.rn^n] under fixed 
S'n , U .  □

2.3. Proof of (8)

If b — a < 1 then the left-hand side of (8) is 0, so we may assume b — a ^  1. 
For the same reason, we may also assume that the interval (a, b) intersects 
the interval (—M n,M n). We start with the obvious inequality

P(a < S'n -  U ^  S'n + U < b) <: P(a <S'n <b) P{U < m),

where m  =  rnin{(6 — a ) /2, M n -  a, Mn +  b}. We distinguish four cases: 
(i) b — a ^  4Mn, (ii) b — a>  4Mn and a ^  — M n, (iii) b — a>  4Mn and b ^  M„,
(iv) a < —Mn and b > M n. In case (i), we have

P{U < m) g P {U < ( b -  a)12) ^  1 -  r?(b -  a) = 1 -  i]n(b -  a).

In case (ii),

P(U < m) ^  P (t/ < Mn — a) ^  P(U <2M n)
ú 1 -T](4Mn) = 1 -r/„(4M „) ^  1 -r )n(b -a ) .

Case (iii) is similar.
Conditions (B) and (D), together with (3) imply

P(a < S'n < b) ^ P(a < Sn <b) + P(|S„| > M„, and a < xn < b) 
g P(a < Sn <b) + SnP{a < Tn < b)
^ (1 + en{b -a ) + őn)P (a< T n <b) 
g (1 +r]n(b -  a))P(a< Tn <b).

That, is, (3) holds with S'n replacing Sn and r)n replacing e„. Using it, we 
get, in the first, three of the above four cases,

P(a < S'n -  U <> S'n + U < b) í  P(a < S'n < ft)(l -  r?n(6-  a)) í  P(a < T n <b)

as required. It remains to consider case (iv). Let c =  min{|a|,6}. Then, by
(C),

P{U < m) g P (U < 2c) £ 1 - »/(4c) ^ P(|Tn | < c) g P (a <Tn < b).
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2.4. Conditions A, B, C, D

(A) and (B) can be ensured by simply choosing Mn large enough. To 
satisfy (C), we may apply the following fact with /„(.t) = P(|Tn| ^  x ), the 
sequence an equal to Mn already chosen according to (A) and (B), g(x) = 
rj(Ax), and bn being the new choice for Mn.

F a c t . Let f n(x) be monotone decreasing functions tending to 0 as 
x  —> 00, and an be any sequence. Then there is a sequence bn and a function 
g(x) such that bn ^ an, lim g(x) =  0 as x —t 00, and g(x) ^  f n(%) for all x ^ b n.

Finally, to satisfy (D) it is enough to further increase g.

3. Proof of Theorem 2

3.1. Cornish-Fisher expansion

The Edgeworth expansion is an approximation of the distribution func­
tion of partial sums. When working with embeddings, one translates these 
approximations to random variables along the lines of the expansions of Cor­
nish and Fisher [3].

L em m a  2. Let Sn be as in Theorem 2. Assume also that the probability 
space is sufficiently rich, and let Tn be defined by the quantile transformation:

( 9) Fn{Sn) = Gn{Tn),

inhere Fn(x) and Gn(x) = are the distribution functions of Sn
and Tn. Then

Tn + K
T-L 1n
n

1 ) ) —> 0 almost surely,

where a =  ( l / 6)EAf.
P r o o f . This lemma is a particular case of the result of Zolotarev men­

tioned in the introduction, but since his results were reported without proofs, 
we give a proof of Lemma 2 here for the sake of completeness.

We will use the Edgeworth expansion (Theorem 3 in XVI.4 in Feller [6]): 
Conditions (4), (5) with integer r ^ 3  imply that, as n —>0 0 ,

( 10) Fn(xy/n) — 4>(cc) — ip(x) ^  n 1 k/2R k{x) = o(n1 r/2)
k=3

uniformly in x. Here Rk is a polynomial depending only on the moments 
EX ( , j  =  3,4, ...,&, but not on n and r (or otherwise on the distribution 
of Ad); in particular R.3(2:) =  k ( 1 — x2).

We apply the following technical lemma.
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Lemma 3. There exist positive constants c,d such that the following es­
timate holds for any x and y such that |y| ^  c/( 1 + |a:|):

$ (2; +  y — z) ^  <h(x) + y<p{x) ^ $ ( x  + y + z),

where z = d{ 1 + \x\)y2.

P roof. We show that the choice c — 1/4, d = 2 is appropriate. Let us 
apply the Taylor formula

$(x +  y +  ii) -  [${x) + v(x)y] = (p{x)u + y>'(£){y + u)2/ 2,

where £ is between x  and x + y + u. If u is such that here in the right side 
the modulus of the first term is larger than that of the second one, then the 
sign of the right-hand side is dictated by the sign of u. Thus it is enough 
to show that this is the case with |u| = z. On applying <//(£) =  — £</?(£), and 
z ^  cd\y\ = |y|/2, it is enough to show that

d(l + \x\)y2 ^ \ e ^ ~ ^ 2 (3|y|/2)2/2.

Here y2 cancels out, the term |£| is less than 1 + |x|, and the exponent 
(x2 — £2)/2 is easily seen to be less than 3/8. □

Let us denote the left-hand side of (10) by C, and let t < 1. Then, for 
some e > 0,

C
= o (n  1/2M x ) )  = o(n e) =  o f y - ^

<p{x)

uniformly for |x| ^  t \/log n as n —> oo. Similarly, for

r

B  = B (x , n) = n 1-fc/2i?fc(s)
Jt=3

we have
\B\ = 0  ((logn)3/2/x /n ) =  o ^  J

uniformly for |x| ^  t\/\og n as n —¥ oo.
The law of iterated logarithm implies that

\Sn\/>/n = ty/logn

almost surely for any positive t and large enough n. Hence, for such Sn, 
Lemma 3 applies with x  = Sn/ \ /n  and y = B  ±  C/<p(x) provided n is large 
enough.
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In our case Sn is continuous, thus the quantile transform (9) defines 
a unique function Hn(x) such that Fn{xy/n) =  Q(Hn(x)). Lemma 3 and 
formula (10) imply that

IHn{x) ~ { x  + B )| £ C/<p(x) + 8(1 +  Ix \)B 2,

which goes to zero almost surely provided \Sn\ ^  ty/n  log n.
Thus we proved already tha t Tn — y/nDn (Sn/  y/n) goes to zero almost 

surely, where Dn(x) = x + B. Hence

whence

—> 0 almost surely

almost surely. □

3.2. A simple inequality

L e m m a  4. For every positive ß <  1 there is an a  >  1 and a threshold oq 
such that, for all cr^oo,

P (a < a Z + Z 2 < b)^{l+ a~ß )P (a< aZ  <b) for all |a| ^  a", l g b - a ^ 2 ,

where Z  is standard normal.
COROLLARY. Let Z he standard normal. For every positive ß < 1 there 

is an a  > 1 and a threshold cjq such that, for all a^.ao,

P(a < a Z  + Z 2 < b )^ {  1 + o~0) P (a < a Z < h )

for all intervals (a,b) of length at least 1 intersecting the interval (—aa,a a).
P r o o f . Set X  = aZ, Y  =  o Z  +  Z 2, and let us denote the corresponding 

densities by /  and g, respectively. Then

where

f(x ) = - ip  a
and g(x) ip{zx) + ip{z2) 

\Jo2 +  Ax

zi
\/ a2 + Ax — a 

2
— \/cr2 +  4.x — a

z2 =

g(z)
f{x ) < 1  +

It is enough to show that
2
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holds true if |a:| ^  oQ, a > a o, and a, ao are chosen appropriately. The term 
<*p{z2) here is negligible because

^ 3 ^ 1 <? x z2 ^ - - a ^ - - a ^
4 4 a

For the term <p(z\), if x < 0 then |zi| > |x|, thus in this case it is enough to 
prove that

a 1
Va2 + 4x ~ ’

which is an elementary fact. If x > 0 then a  ^  \Ja 2 + 4x, thus it is enough to 
show that

"  = a*3 ’
(? )

which follows from the inequality

i s ( l + l ) ^ 4 ,

valid for all u ^  0 (in our case u =  4x2/a 2). □

3.3. Proof of Theorem 2

Lemma 2 already defines a sequence Tn (through the quantile transfor­
mation (9)). With this Tn define = (Tn +  kT 2/ ti), and

t „ ( T '  i f |T ' |g n ° / 2
11 \  0 otherwise,

where a  was defined in Lemma 4. Then, by Lemma 2, Sn — T" is bounded 
almost surely. Now we still have to define another normal sequence Tn ap­
proximating T ”. The Corollary to Lemma 4, applied with Z — Tn/^ /n  and 
a =  \/n, implies that Condition (3) holds for T ” and Tn, with arbitrary e(x) 
and 6n =  2n~2a. The application of Theorem 1 concludes the proof. □

4. Concluding remarks

It is very likely that three moments are enough, and that Cramér’s con­
dition is not needed in Theorem 2. We needed it only in Lemma 2, where 
probably it is sufficient to assume that X \ is a non-lattice variable. As 
a matter of fact, we do not need the full strength of Lemma 2, only the
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boundedness of Sn — (Tn +  kT%/n) is used. For this, probably the existence 
of some moments is enough.

The main differences betweeen previous embeddings of partial sums and 
the one developed here are the following:

the joint distributions of normal approximation are not fitted here, and
the Cornish- Fisher expansion is used instead of a simple one-term normal 

approximation.
One may ask what would be the result of a joined strategy: to use the 

diadic scheme with a Cornish-Fisher like expansion for conditional distribu­
tions (if there are any).

Our proof guaranteed the finiteness of sup|5',i — Tn\ but not the finite-
n

ness of its expectation. This method probably gives P(sup \Sn — Tn\ > x) =
n

0 ( l / x ) ,  bvit nothing better. We believe that for any embedding, E sup |Sn —
n

Tn I =  oo.
Concerning Theorem 1, it would be interesting to have a simple charac­

terization for all sequences of distributions Fn, Gn such that for any sequence 
Sn w ith marginals Fn there is a sequence Tn with marginals Gn such that
(2) holds.

R e f e r e e ’s REMARK. It can be seen by means of a small trick that -  as 
the authors guessed - the Crarnér condition formulated in (5) can be dropped 
from the conditions of Theorem 2. Indeed, let us consider a random vari­
able Z, E Z  =  0,EZ2 =  1, with finite moments whose characteristic function 
is concentrated in a finite interval (such a random variable exists), and which 
is independent of the sequence Sn. If we replace the random variable Sn by 
Sn — Z  + Sn- 1, then the distribution of Sn satisfies the Edgeworth expansion
(10). Hence the proof of Theorem 2 yields that Theorem 2 holds without 
the assumption (5) if Sn is replaced by Sn. But then it also holds for the 
original sequence Sn.

The condition about the existence of four moments in Theorem 2 can be 
weakened, but it remains an open question whether the existence of three mo­
ments suffices, as the authors guess. This is an intriguing question, because 
a positive answer to it would mean that the conditions which are needed for 
the stochastic boundedness of the single random variables \Sn — Tn\ are also 
sufficient for the stochastic boundedness of the expression sup \Sn — Tn\ with

n
an appropriate construction.
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ALMOST SURE FUNCTIONAL LIMIT THEOREMS 
PART I. THE GENERAL CASE

P. MAJOR

Dedicated to the memory of A. Rényi

A bstract

In this paper we formulate and prove the almost sure functional limit theorem in 
fairly general cases. This limit theorem is a result which states that if a stochastic process 
X(t,  o j ) ,  t ^ 0, is given on a probability space with some nice properties, then an appropriate 
probability measure A  ̂ can be defined on the interval [1,T] for all T  > 1 in such a way 
that for almost all ui the distributions of the appropriate normalizations of the trajectories 
Xt(-,uj) =  X(t-,u>), considered as random variables £/■(£), £G[1,T], on the probability 
spaces ([1, T], A, X-p) with values in a function space have a weak limit independent of ui as 
T —¥ oo. We shall consider self-similar processes which appear in different limit theorems. 
The almost sure functional limit theorem will be formulated and proved for them and their 
appropriate discretization under weak conditions. We also formulate and prove a coupling 
argument which makes it possible to prove the almost sure functional limit theorem for 
certain processes which converge to a self-similar process. In the second part of this work 
we shall prove and generalize — with the help of the results of the first part — some known 
almost sure functional limit theorems for independent random variables.

1. Introduction

The following “almost, sure central limit theorem” is a popular subject in 
recent research. Let X \ (a;), X 2 (u>), . . .  be a sequence of iid. random variables,

E X i = 0, E X f — 1, Sn(u>) — Xk(u)) on a probability space (ÍI, A, P). (In
fc=i

the sequel we denote by (ÍI, A , P) the probability space where the random 
variables we are considering exist.) Then

(1.1) lim —-— Y  \ l  f  < y \  = $ (u ) for almost all uj G fln->oc log n  k  V V k  J

and all numbers u, where /(A) denotes the indicator function of a set A, 
and $(u) is the standard normal distribution function. This result was 
discovered by Brosamler [2] and Schatte [7]. It states that appropriate­
ly normalized partial sums of iid. random variables satisfy not only the

1991 Mathematics Subject Classification. Primary 60F17; Secondary 28D05.
Key words and phrases. Almost sure invariance principle, Ornstein-Uhlenbeck pro­

cess, ergodic theorem, self-similar processes, compactness.
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central limit theorem, but for a typical w 6 Íi the weighted averages of 
the functions gk(u, u) — I  (^S'k(ui) < uy/k^j with appropriate weights converge
to the normal law. Later this result was formulated in a more general 
form which states that not only the weighted averages of the functions
I  [ S k ^ X u V k )  converge to the normal distribution function for a typi­
cal tu, but a similar result also holds for sequences of random broken lines or 
polygons Gn(u) =  Gn(u , tu), n — 1 ,2 ,. . . ,  defined in an appropriate way on 
the interval [0,1] by means of the partial sums «Si(tu),. . . ,  Sn(tu).

Define a random measure /j.n =  //„ (tu) for all n by attaching an appropri­
ate weight a,k = ak,n to the functions G/c(u,tu) for all 1 ^ k ^ n. Then these 
measures converge weakly to the Wiener measure for almost all tu. Such a 
result is called an almost sure functional limit theorem. Later we formulate 
this notion in a more detailed form.

The almost sure central (and also the functional) limit theorem shows 
some similarity to the ergod theorem which states — in physical terminol­
ogy that the space and time averages of ergodic sequences agree. In 
the case of the almost sure central limit theorem an analogous result holds

Sk{ w)for the normalized partial sums
y fk

k =  1, 2 , . . . .  Now the time average

is replaced by a weighted time average, where the fc-th term gets weight 

ak — CLk,n — \— 7— ttt 1°§ —r— ~  —----- , 1 k ^  n, in the n-th block in-log(n - 1)
1

k k\ogn
stead of the weight — given to the first n  terms in the ergod theorem. On

n
s  (̂ )the other hand, n is asymptotically normally distributed, with expec-

s/n
tation zero and variance one. Hence the right-hand side in formula (1.1)

Sn( <U)
y/n

< u I, and this expression resembles to a space av-equals lim E l
n —> oo

erage. This similarity of the almost sure central limit theorem to the ergod 
theorem may be put even stronger by an appropriate time scaling to be 
explained later.

The relation between the ergod theorem and almost sure central (and 
functional) limit theorem is deeper than the above mentioned formal analogy. 
It was pointed out, — by our knowledge it was discovered by Brosamler [2], 
Fisher [5] and Lacey and Philipp [6] — that these theorems can be deduced 
from the ergod theorem applied to the Ornstein-Uhlenbeck process.

In the present paper we discuss how the almost sure central and func­
tional limit theorem can be generalized and proved by means of the ergod 
theorem in a natural way. The proof has two main ingredients. The first 
one is to show that a result analogous to the almost sure functional limit 
theorem holds for the Wiener process. This can be deduced from the er­
god theorem for the Ornstein-Uhlenbeck process. This is an ergodic process
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which can be obtained from the Wiener process by means of a well-known 
transformation. The second ingredient is to show that, since the random 
polygons or broken lines constructed from the partial sums of independent 
random variables in a natural way behave similarly to the Wiener process, 
the almost sure central limit theorem for the Wiener process also implies 
this result for the random polygons (or broken lines) made from normalized 
partial sums of independent random variables.

First we show that the method of proving the almost sure functional 
limit theorem for the Wiener process by means of the ergod theorem for 
the Ornstein-Uhlenbeck process can be generalized for a large class of other 
processes, for the so-called self-similar processes. The stationarity prop­
erty of the Ornstein-Uhlenbeck process is equivalent to the self-similarity 
property of the Wiener process, a property which holds for all self-similar 
processes. Actually, self-similar processes are those processes which appear 
as the limit in different limit theorems. Similarly to the construction of the 
Ornstein-Uhlenbeck process generalized Ornstein-Uhlenbeck processes can 
be constructed as the transforms of self-similar processes. These generalized 
Ornstein-Uhlenbeck processes are stationary processes, and the application 
of the ergod theorem for them enables us to prove the almost sure functional 
limit theorem for general self-similar processes. Then with the help of some 
further work we can also prove the almost sure functional limit theorem for 
their appropriate discretized versions.

In the next step we want to find a good coupling argument which enables 
us to prove the almost sure invariance principle not only for (self-similar) 
limit processes but also for processes in the domain of their attraction. To 
carry out such a program a coupling argument has to be introduced which 
is adapted to the present problem. We shall do it by introducing a notion 
we call the Property A.

In Part II of this work we shall prove the almost sure functional limit 
theorem for independent random variables whose partial sums converge to 
the normal or to a stable law. In the proofs we shall exploit that the Wiener 
process and the stable process are self-similar, hence the results of the present 
paper can be applied for them. Then we can prove, by applying the cou­
pling argument of the present paper, the almost sure invariance principle for 
independent random variables which satisfy certain (weak) conditions.

There are other processes which are natural candidates for almost sure 
functional limit theorem type results, e.g. random processes in the domain of 
attraction of a self-similar process subordinated to a Gaussian process (see 
Dobrushin [3]). But such problems will not be discussed here.

Several results of the present paper can be traced down in earlier works. 
Our main goal is to explain the main ideas behind these results and to present 
a unified treatment of various problems in this subject. The first part of 
this work considers general results where no independence type condition is 
assumed. In the second part different arguments — the techniques worked 
out for the study of independent random variables — are applied, and we deal
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there with almost sure functional limit theorems for independent random 
variables. This paper consists of three sections. In Section 2 we formulate 
the main results, and Section 3 contains the proofs.

2. The main results of the paper

To formulate our results first we recall the definition of self-similar pro­
cesses with self-similarity parameter a and define with their help a new 
process which we call a generalized Ornstein-Uhlenbeck process.

D e f i n i t i o n  of self-similar processes. We call a stochastic process X  (u , w), 
■U ^  0, X (0, u>) = 0, self-similar with self-similarity parameter a , a > 0, if

(2.1) X (u ,u )  = 0 51 u < oo,

for all T  > 0, where = means that the processes at the two sides of the equa­
tion have the same distribution. (Here we consider the distribution of the 
whole process X (u , tu), u ^  0, and not only its one-dimensional distributions.)

The Wiener process is self-similar with self-similarity parameter a — 2. 
Similarly, for all stable laws G with parameter a, 0 < a  < 2, a ^  1, a so- 
called stable process X ( u, uj) can be constructed which has independent and 
stationary increments, X (0,i<;) = 0 , which is self-similar with self-similarity 
param eter a, and the distribution function of X (l, w) is G. The case a  =  1 is 
exceptional. In this case (except the special case when X (l, cj) has symmetric 
distribution) only a modified version of formula (2.1) holds, where a norming 
factor const. logT must be added with an appropriate non-zero constant 
to one side in formula (2.1). Another example for self-similar processes 
was given by Dobrushin in paper [3], who could construct new kind of self­
similar processes subordinated to a Gaussian process. He constructed them 
by working with non-linear functionals of Gaussian processes.

Now we introduce the following notion:
D e f i n i t i o n  of generalized Ornstein-Uhlenbeck processes. Let X (u ,u ), 

u ^  0, be a self-similar process with self-similarity parameter a  > 0. We call 
the process Z(t,iv), — oo < t < oo, defined by formula

. , . X (e l ,u>)
(2.2) Z(t, uj) = ----jj^— , —oo< t< oo ,

the generalized Ornstein-Uhlenbeck process corresponding to the process 
X  (u , u>).

Let us remark that the generalized Ornstein-Uhlenbeck process corre­
sponding to the Wiener process is the usual Ornstein-Uhlenbeck process.
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A Wiener process W(t.,to), t ' t  0, has continuous trajectories, the tra­
jectories of a stable process X(t,to) are so-called cädläg (continue ä droite, 
limité ä gauche) functions, i.e. all trajectories X(-,u;) are continuous from 
the right, and have a left-hand side limit in all points t > 0. Hence the 
Wiener process W (t , to) and any of its scaled version A p W (T t , to), 0 ^  t 1, 
where T  > 0 and Ap  > 0 are arbitrary constants, can be considered as ran­
dom variables taking values in the space C7([0,1]) of continuous functions 
on the interval [0,1]. The processes X(t,to), ApX(t.T,to), 0 ^  t ^  1, where 
X(t,to), 0 ^ t < oo, is a stable process, can be considered as random variables 
on the space D([0,1]) of cädläg functions on the interval [0,1],

We shall work not only in the space C([0,1]) but also in the space 
D([0,1]). To work in the space D([0,1]) one has to handle some unpleasant 
technical problems. But since we also want to investigate stable processes in 
Part II of this work, we also have to work in this space. We shall apply the 
book of P. Billingsley [1] as the main reference for this subject.

We consider both spaces C([0,1]) and -D([0,1]) with the usual topology, 
and the Borel er-algebra generated by this topology. Both spaces can be 
endowed with a metric which induces this topology, and with which these 
spaces are separable, complete metric spaces. A detailed discussion and proof 
of these results and definitions can be found in the book of P. Billingsley [1]. 
Since we shall need the exact form of these metrics we recall these results. 
In the (7([0,1]) space the supremum metric p(x,y) — sup |a;(f) — a;(s)| is

OStgl
considered. In the space D([0,1]) the following metric do(•, •) satisfies these 
properties: For a pair of functions x, y G Z?([0,1]) do(x, y) e, if there exists 
such a homeomorphism A( t) : [0,1]

for which A(0) =  0, sup log ^  ^
ty£s t  — S

[0,1] of the interval [0,1] into itself 

Si e, and |x(i) — y(A(f))| ^  e for all

t 6 [0,1]. (See for instance Theorems 14.1 and 14.2 in Billingsley’s book [1].) 
In the sequel we shall apply these metrics in the spaces (^([0,1]) and D([0,1]), 
and denote them by p(-, •).

Let us also recall that given some probability measures on a metric 
space K indexed by T  E [1, oo) or T  = {Ai, A 2 , • • • }, lim A n =  00, the mea-

n—>00

sures pp converge weakly to a measure p on K as T  —> 00 if 
lim f  Jr{x)pT{dx) =  /  Jr{x)ii(dx) for all continuous and bounded func-

T —>00 K K
tionals T  on the space K. The next result states the almost sure functional 
limit theorem for a self-similar process which satisfies some additional con­
ditions. The proof is based on the ergod theorem applied for the generalized 
Ornstein-Uhlenbeck process corresponding to this self-similar process.

THEOREM 1. Let X{u,to) be a self-similar process with continuous or 
cädläg trajectories, and Z(t,ui) the generalized Ornstein-Uhlenbeck process 
corresponding to it. The process Z(t,co), — 00 < t < 0 0 , is stationary. Let 
us assume that the process Z(t,,u>) is not only stationary, but also ergodic.
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Then for all measurable and bounded functionals T  on the space (7([0,1]) or 
D ([0 ,1]) (depending on whether the trajectories of X(-,ai) are continuous or 
only cádlág functions)

Let us define for all uj &Q and T  2; 1 the (random) probability measure p t (u ) 
in the space C([0,1]) or Z)([0,1]) which is concentrated on the trajectories 
Xfico), 1 ^  t ^  T, and takes the value Xfiuo), 1 ú t f j T ,  with probability 

1 dt---------- . More formally, for a measurable set A C C'(fC), ll) or A C D([0,1])
log T  t
put h t (uj)(A.) = X r{t: X t(u) € A}, where Xt  is a measure on [1,T] defined 

by the formula Xt {C) =  -— — J — for all measurable sets C C [1,T].

The following version of Formula (2.3) also holds: For almost all to ELI 
the probability measures /Jj’(co) converge weakly to the distribution of the 
process X\(u,u>) defined in (2.4) with t = l, which we denote by po in the 
sequel. In other words, there is a set of probability one such that if u  is in 
this set then relation (2.3) holds for this lo and all bounded and continuous 
functionals F .

I f  X  (u , uj) is a Wiener or stable process, then the generalized Ornstein- 
Uhlenbeck process corresponding to it is not only stationary, but also ergodic. 
Hence the results of Theorem 1 are applicable in this case.

We want to prove a discretized version of the above result, where the 
measures pr{^) concentrated in the set of trajectories Xfioo), 1 ^  í |  T, 
are replaced by some measures p n {u) which are concentrated on a set of 
trajectories X a(_̂Nfiu>) with appropriate weights, and the numbers a ( j ,N ) 
constitute a finite set. Then we want to make a further discretization, where 
the trajectories X a,̂j N) are replaced by their discretized version. To prove 
these results in the case when the trajectories of the process X (-,uj) are 
cädläg functions we impose the following additional condition:

T

where

(2.4)

(2.5)

First we formulate a result which serves as the basis of the discretization 
results formulated later.
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THEOREM 2. Let X(u,u>), Xt(u,  u>), p t {cj) an<l  Mo be the same as in 
Theorem 1. Let us assume that the conditions of Theorem 1 are satisfied, 
and also the additional condition (2.5) holds in the case when the process 
X (-,cj) has cádlág trajectories. Let us define, similarly to the trajectories 
X t(-,ui) defined in (2.4), the following transformed functions xt = xt{-) of a 
function x G C([0,1]) or x € ([0,1]) by the formula

(2.4') Xt(u) =Xt,Q(u) = t~ 1/ax(ut), O ^ u ^ l ,  0 < t ^ l ,

where a is the self-similarity parameter of the underlying self-similar process 
X (-,uj). Then for almost all uj £ LI

(2.6) lim lim p t {o>) sup p{xs, Xt) > 6 =  0 for all 6 > 0 ,
e->0T->oo ‘ J

where p(-, •) is the metric whose definition was recalled before Theorem 1, and 
with which C([0,1]) or £>([0,1]) are separable, complete metric spaces. (Let 
us recall that the (random) measure p t Í^) is concentrated on the trajectories 
X u( - , u l ^ u ^ T ,  of the process X(-,o>) defined by formida (2.4).)

Condition (2.5) had to be imposed to control the behaviour of the tra­
jectories of the processes X t{u,u) in the end point u = 1. This is not a strict 
restriction. For instance the next simple Lemma 1 gives a sufficient condi­
tion for its validity. It implies in particular, that the stable processes with 
self-similarity parameter a, 0 < a  < 2, a ^ l ,  satisfy relation (2.5).

L e m m a  1. Let X (-,u ) be a self-similar process with self-similarity pa­
rameter a>  0 which is also a process with stationary increments, and whose 
trajectories are cádlág functions. Then it satisfies relation (2.5).

Now we formulate the result about “possible discretization” of the mea­
sures p t  in the result of Theorem 1. Before this we make some comments 
which can explain the content of this result.

For all T  > 1 let us consider the probability space ([1, T], A , Xt ), where 
A  is the Borel cr-algebra, and Xt  is the measure defined in the formula­
tion of Lemma 1. Fix an u  G Ll, and let us consider the random variable 
£(t.), l ^ t ^ T ,  as £(t) —X t(-,uj), defined in formula (2.4), in the probabil­
ity space ([1, T], A, Xt )- This is a random variable which takes its value 
in the space (7([0,1]) or £>([0,1]), and it has distribution p t {oj). Let us 
consider the above construction with some T  = B n , together with a dense 
splitting 1 =  £?/v,i < B n ,2 < • • • < ß jv ,^  =  B n  of the interval [1, B n ]- Let 
us define the random variable £(t) such that £(t) = £(-B/fc,/v) =  X g k N (•, u>) if 
t £  [Bk,Ni -Bfc+i.iv]- This random variable is close to the previously defined 
random variable £(t), hence it is natural to expect that if pBn{oj) denotes 
its distribution, then the measures pgN(aj) have the same weak limit as the 
measures pgN(u) as N  —> oo. The first statement of Theorem 3 is a result
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of this type. Then we prove that an appropriate small modification of the 
functions £(í?A:,n ) = X Bk^ ( - ,  w) does not change the limit behaviour of the 
measures (i Bn (w). The second statement of Theorem 3 is such a result.

T heorem 3. Let us assume that the conditions of Theorem 1 and The­
orem 2 are satisfied. For all N  = 0,1, . . .  let us consider a finite increasing 
sequence of real numbers 1 =  B \ ^  < .02,at < • • • <  BkN,N, and for the sake 
of simpler notation let us denote -Bfc,v,iV by B n - Let us assume that these 
sequences satisfy the following properties:

(2.7) lim B n  —  o o ,
TV—>oo

lim
N —> oo

log BjtN 
log B n

=  0 for all fixed j,

and
lim sup

7—>o° : j% k < N

Bk+l,N
Bk,N

= 1.

Moreover, assume the following strengthened form of the relation limßjv= oo:
N—soo

( 2 . 8) lim inf Bj n  =  00.
j —>00 N:  N ^ j

For all u>(zLl define the (random,) measures N  = 1,2,. . . ,  with the
help of the sequences 1 =  B \:n  < 7?2,iV < • • • < B^n ,n  the following way: 

The measure N  = 1,2,. . . ,  is concentrated on the trajectories
X qi N(-,uj), \ ú j< k ,N , where X t{-,uj) is defined in (2.4), and

(2.9) fiN(w){XBj'N(-,u>))
1

log B n

B j + 1  ,N

B j . N

1
log!5v

log B j  + l , N  

B j , N

1 i j < kN.

Then for almost all lo the measures (in (u ) converge weakly to po defined in 
Theorem 1.

For all uj & LI let us also define the following random broken lines 
X Bj n (-,oj) which are “discretizations” of the trajectories X Bj N(-,uj).

X BjN{s,u) = X BjJ
B,l - l , N

B j , N
-,UJ if

b i - i ,n  < s  <  B 1,N

Bj , N B j , N

l ^ l ^ j ,  l ^ j < k N, a n d  X Bj<N(l ,u) =  X BjN{l ,u),

where £?o,iV =  0. (The definition 7?o,jV = 0 is needed to define X Bj N (s, ui) also 
for 0 ^  sB hN < B i)N.)
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Define the measures g,\ (lo) (with the help of the already defined measures 
£ ;v M ) as 
(2.9')

p N(u )(X Bj =p,N{u)(XBj'N(-,u)) =
log B n

log
D'J + l ,N

B' j ,N
1 ^  j  < kN.

Then for almost all u  6Í! the probability measures Pn (oj) converge weakly to 
the probability measure go defined in Theorem 1 as iV —>• oo.

We have defined XBjN (-,co) as a broken line with discontinuities and not

as a polygon where the values of X ßj n in the points B[ n
— are connected

13'j,N
by

linear segments. The reason for working with broken lines is that we want 
to prove results which are valid also in the case when the processes Xt(-,u) 
take their values in Z)([0,1]) but not necessarily in the space C7([0,1])- In 
the general case the results we want to prove are valid only when broken 
lines are considered. In the case of processes with continuous trajectories 
we also could have defined them as random polygons. Moreover, it follows 
from some results of the general theory (see e.g. Section 18 in Billingsley’s 
book [1]) that if the distribution of the processes consisting of the above 
defined random broken lines converge to a measure in the C( [0,1]) space, 
then the distributions of the naturally defined random polygon version of 
these processes have the same limit in the (^([0,1]) space.

Let £n(u)), n = 1 ,2 ,. . . ,  be a sequence of random variables, and let us
71

define the partial sums Sn(u>) =  £/c( )̂> n =  1 ,2 ,... ,  So(co) =  0. Let us
fc=i

also consider two appropriate monotone increasing numerical sequences A n 
and B n, n = 0 ,1 , . . . ,  of positive numbers such that

( 2 . 10) Bo =  0, lim An =  oo,
n—»oo

lim B n =  oo,n—»oo and lim
n—►oo

Bn+ 1
B n

=  1.

For all k =  1 ,2 ,... let us consider the partition 0 = so,fc ^  ^  ' i  sk:k of
B a '

the interval [0,1], defined by the formula Sjk = - = r 0 ^ j  ^  k. Let us also
-&k

define with the help of the quantities £n(u>), An and Bn, n =  1 ,2 ,...  the 
following random broken lines S/fis, cu), 0 s ^  1, k = 1 ,2 ,. . . ,
( 2 . 11)

Sk{s,uj) S j-  i M  
Ak i f S j - i f k ^ s < S j tk, l< : j£ k , Sk{ l,u ) = Skjgj)

Ak

Now we introduce the following definition:
D e f i n i t i o n  of the almost sure functional limit theorem. Let £n(u;), 

n =  1 ,2 ,. . . ,  be a sequence of random variables, and let two monotone in­
creasing sequences of non-negative real numbers An and Bn, n =  1 ,2 ,. . . ,
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be given which satisfy formula (2.10). Let us consider the random broken 
lines Sk(s,uj), 0 £ s  ^  1, defined with the help of their partial sums Sk(u), 
k = 1 ,2 , . . . ,  by formula (2.11). For all u  E Ú and Af = 1 ,2 ,... ,  define the 
random measure /xjv(oj) in the following way: The measure h n (w) is concen­
trated on the random broken lines Sk(-,u), 1 k < N , and

(2.12) /j,N(u}){Sk{-,uj)) =  -  log l ^ k < N .

lo g s 7
We say that the sequence of random variables £n(w), n = 1 , 2 , ,  satisfies 
the almost sure functional limit theorem with weight functions An and B n, 
n =  1, 2 , . . . ,  and limit measure /to on the space Z)([0,1]) if for almost all 
u) E if the probability measures converge weakly to the measure //o as
N  —> oo. In the special case when the limit measure /jo is the Wiener measure 
we say that these random variables satisfy the almost sure functional central 
limit theorem.

If the limit measure /to is concentrated in the space C([0,1]), then the 
broken lines Sk(-,u) can be replaced by a natural modification which is a 
random polygon. Then we can consider a version of the measures /rjv(tu) 
which are defined in the same way as the original ones, only the random 
processes Sk(-, u) are replaced by their random polygon version. Then the 
convergence of the original measures /xjv(u;) to /To in the space D([0,1]) im­
plies the convergence of their modified version in the C([0,1]) space with 
the same limit. Let us also remark that although we allowed fairly large 
freedom in the choice of the sequence A n in the definition of the almost 
sure functional limit theorem, nevertheless we shall always choose it in a 
very special way. Namely, in all almost sure functional limit theorems we 
shall prove the limit measure is the distribution of a self-similar process with 
a self-similarity parameter a  > 0 restricted to the interval [0,1], and A n is
chosen as A n — B n °  ■

Let us remark that if the random variables £/c(w) satisfy the almost sure 
functional central limit theorem with weight functions An = y/n and Bn = n, 

and in Part II we shall prove that under the conditions imposed for the 
validity of formula (1.1) this is the case, — then they also satisfy relation
(1.1). To see this, fix a real number u and define the functional T  = Tt in the 
space C ([0 ,1]) by the formula B[x) — 1 if x (l) < u , and B(x) = 0 if x(l) ^  u , 
where x E C([0,1]), i.e. it is a continuous function on the interval [0,1]. This 
functional B  is continuous with probability one with respect to the Wiener 
measure/to- Hence f  B (x) dfj,n(uj)(x) —> J J-(x) dfio(x) for almost all u. This 
relation is equivalent to formula (1.1). Indeed, the right-hand side of this 
relation equals the right-hand side of formula (1.1), while the left-hand side 
is a slight modification of the left-hand side of (1.1). The difference between

1 k +  1
these formulas is that the weights -  in (1.1) are replaced by log ——  in therC rC
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other formula, and summation goes from 1 to n — 1 instead of summation

these two relations are equivalent.

We formulate the following statement because of its importance in later 
applications in form of a Corollary.

COROLLARY. Let X ( - , u j) be a self-similar process with self-similarity pa­
rameter a  > 0 such that its trajectories are in the C7([0,1]) or D ([0 ,1]) space, 
it satisfies relation (2.5), and the generalized Ornstein-Uhlenbeck process 
corresponding to it is ergodic. Let tn, n = 0 ,1 ,. . . ,  <o = 0, be an increas­
ing sequence of real numbers such that lim tn = oo, lim ”+1 =  1. Put

n—>oo n—>oo t n
T)n{u) = X ( tn, 0j) -  X ( tn-i,o j), B n = tn, An — Bn/a , n=  1 ,2 ,... . Then the 
sequence %(w), n = l , 2 , satisfies the almost sure functional limit the­
orem with weight functions An and B n and limit measure po which is the 
distribution of the process X(u,u>), restricted to 1.

To prove this Corollary define the process X'(u, w) = A f l X (B \u , u>) and 
observe that it has the same distribution as the process X ( u, uj). Define

tk
the real numbers B k n  — — > 1 k £ N , consider the random broken lines

11
X'Bi v(-,cj), 1 ^  j  ^  N, and the random measure p n [w) defined in the for­
mulation of Theorem 3 with this process X '(-,uj) and these numbers B k,Ni 
(with the choice k ^  — N), and apply Theorem 3, — whose conditions are 
satisfied, — for these random measures fijy(u>).

On the other hand, define the random broken lines Sk(s,uj) by formula
1 , k

(2.11) with B n =  ÍN, A n =  Bn a and the partial sums Sk{uj) =  ( X (ti,w ) —
i=i

X (ti-i,w )) , and let us also define the measure p n {^) by formula (2.12) with 
these random broken lines. Then a comparison shows that the above defined 
broken lines X'B v (',a;) and and also their distributions, the random
measures Jí n (^) and p n {u ) agree. Hence the second statement of Theorem 3 
implies the almost sure functional limit theorem in this case.

If a sequence of random variables £n(w)> n =  l , 2 , i s  close to this 
sequence r/n (o»), then it is natural to except that this new sequence satisfies 
the same almost sure functional limit theorem. We want to give a good 
coupling argument that enables us to prove this for a large class of processes 
£n(oj). For this aim we define a Property A. We prove that if Property A 
holds for a pair of sequences of random variables (£n(w), r]n(u)), n =  1,2, . . . ,  
and the sequence r]n(aj), n — 1 , 2 , ,  satisfies the almost sure functional limit 
theorem, then the sequence £n(^)) n =  1, 2, . . .  also satisfies the almost sure 
functional limit theorem with the same norming constants and limit law.

D e f i n i t i o n  of Property A. Let rjn (u)), n =  1,2, . . . ,  be a sequence of 
random variables which satisfies the almost sure functional limit theorem

from 1 to n. Since log k  +1 1
= - + 0 | F
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with a limit measure /io in the space C([0,1]) or D ([0,1]) and some weight 
functions A n and B n satisfying relation (2.10). Let us also assume that the 
limit measure po is the distribution of the restriction of a self-similar process 
X(u,co) with self-similarity parameter a  > 0 to the interval 0 ^ u ^  1, and
the weight functions An and B n are such that A n = B n '01.

Define the indices N(n)  as N(n) = inf{/c: B k ^  2"}, n = 0,1, . . . .  The 
pairs of sequences of random variables (£n(w), rjn(uj)), n = 1,2, . . . ,  satisfy 
Property A if for all e > 0 and á > 0 there exists a sequence of random 
variables £n(uj) = £n(e, <5, ui), n = 1 , 2 , ,  whose (joint) distribution agrees 
with the (joint) distribution of the sequence £n(cu), n =  l , 2 , a n d  the

n n
partial sums Sn(u>) =  ^2 €k{w) and Tn(u>) =  ^  r)k(u) satisfy the following

k —\ /c=l
relation:

N  (n)

(2.13) lim su p -
n->oo n f—' B kk=1

(J
sup \Sj(u))-Tj(w)  

o<j<;/c ■Au Ak [JJ
< 5

for almost all u> € Í2, where 1(A) denotes the indicator function of the set A.
R e m a r k . Let us remark that the joint distribution of the random vari­

ables £n(u;), n — 1 ,2 , . . . ,  determines whether it satisfies the almost sure 
invariance principle. It is not important how and on which probability 
space these random variables are constructed. This can be seen for in­
stance by applying the following “canonical representation” of the sequence 
£n(tv), n = 1,2, . . . ,  on the probability space (Cl,A,P). Define the space 
(R°°, B°°,ß), where R°° = {(aq, X2 , ■ ■ ■): Xj E R, j  — 1,2,. . .  }, B°° is the 
Borel a-algebra on R°°, /1(B) = P((Ci,^2 , ■..) G B) for B 6 B°°, and define 
the random variables | n (xi, X2 , ■ ■ ■) = xn, n = 1 , 2 , ,  on this space. Then 
the random variables on the space (R°°,B°°,ß) have the same joint dis­
tribution as the random variables £n(w), and these two sequences satisfy the 
almost sure invariance principle simultaneously.

T h e o r e m  4. Letrjn(uj), n = 1,2, . . . ,  be a sequence of random variables 
which satisfies the almost sure functional limit theorem, and let a pair of se­
quences of random variables (£n(uj), qn(uj)), n — 1 ,2 , . . . ,  satisfy Property A. 
Then the sequence of random variables £n(o>), n = 1 , 2 , ,  also satisfies the 
almost sure functional limit theorem with the same weight functions A n and 
B n and limit measure po as the sequence of random variables pn(u>).

We shall prove in Part II of this work that Theorem 4 is applicable in 
several interesting cases. We shall prove with the help of a Basic Lemma 
formulated there that when partial sums of independent random variables 
are considered, then an appropriate construction satisfies the conditions of 
Theorem 4 under general conditions. In such a way it will turn out that the
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necessary and sufficient conditions of limit theorems for normalized partial 
sums of independent random variables are also sufficient conditions for the 
almost sure functional limit theorem.

We shall prove still another result which states that a small perturbation 
of the weight functions B n does not affect the validity of the almost sure 
functional limit theorem. The reason to prove such a result is the following. 
We have certain freedom in the choice of the weight functions B n, and there 
are cases when no “most natural choice” of the weight functions exists. We 
want to show that different natural choices yield equivalent results. Let 
us remark that a modification of the weight functions B n also implies a 
modification of the random broken lines Sn(t,u>) appearing in the definition 
of the almost sure functional limit theorem.

T heorem 5. Let a sequence of random variables £n(u>), n = 1, 2, . . . ,  
satisfy the almost sure functional limit theorem with some limit measure po
and weight functions Bn, An = B ^/a with some a > 0, n =  0 ,1 , . . . ,  which 
satisfies relation (2.11). Let Bn, n =  0 ,1 , B q = 1, be another monotone

B„ -  R1/“increasing sequence such that lim —-  =  1. Put An — B nn—>oo B n Then the se­
quence of random variables £n(u>) also satisfies the almost sure functional 
limit theorem with the limit measure po and weight functions B n and A n.

3. Proof of the results

P r o o f  o f  T h e o r e m  1. We can write

Z(t +  T , uj) X{et+T,uj) a X { e \u )
e { t + T ) / a  e { t + T )  /  a  e - T  /  a

X(el,uj)
ei/Q Z(t,  to)

for all —oo < T  < oo. Hence the process Z(t,  w), —oo < t < oo, is stationary. 
If it is not only stationary, but also ergodic, then the ergod theorem can be 
applied for the process Z(-,ui) and all bounded and measurable functionals 
Q on the space B, p), where /jf-00’00) is the space of functions
on the interval (—00, 00), Bo is the cr-algebra induced by the usual Borel 
(product) topology on f?(-00,00\  p is the distribution of the process Z(-,uj) 
on the space (f?.(_00,0°), Bo), and B is the closure of the cr-algebra Bo with 
respect to the measure p. This means that B 6 B if and only if there exists 
some Bo € Bo such that p(BoAB) = 0 for the symmetric difference B0AB, 
or more precisely there is a ßo-measurable set C such that p(C) =  0 and 
B0AB C C. Furthermore, we introduce the shift operators Ts defined by 
the formula Ts(z(-)) = z(s + •) for all z(-) G i?!-00’00) and put Z s(v , uj) =
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Z{s +  v,co), —oo < v < oo. Then the ergod theorem implies that

lim
T  —>oo

1
log T

I G{Ts{Z{u, u) ) ds=  lim —
J T —yoo log T
0

log T

j  g(Zs(u,co))ds 
o

(3.1)
= EQ(Z(u, co)) for almost all co G Q.

Given a bounded measurable functional T  on the space C([0,1]) or 
Zi>([0,1]) let us extend it to the space of all measurable functions on the 
space fit0-1] of all functions on the interval [0,1] by defining T[x)  =  0 if the 
function x = x(-) is not in the space (7([0,1]) or T>([0,1]). Then we define 
the functional Q = G{T) on the space R(-°°,oo) by the formula Q(z) = Jc(xz) 
with xz(u) =  u1̂ az( log u), 0 < u fí 1, z(0) =  0. We can write

T  log T

= /  H X A ; u ) ) d s
1 0

log T

= logT /  ^(^(■>CJ))ds’
0

since G(Zs(-,uj)) — E ( X es (-.ui)). Indeed,

x Zs(.,UJ) ( u ) = ul/o‘Zs(\ogu,uj) = u1/aZ{s + \ogu,uj) 

X  (ues ,co)

= u 1/Q
X{esS +  lOg U CO

O(s+log u)/a

os/a for all 0 ^ u ^ 1,

hence x z s ( - , uj ) = 2fes (•, u>), where X,(-,u>) was defined in (2.4). This relation 
(with the choice s = 0) implies in particular that

Eg(Z(-,üj)) =  Eg(Z0(;üo)) = E T ( X 1{;co)).

These identities together with relation (3.1) and the definition of the mea-
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sures ßr{uj) introduced in the formulation of Theorem 1 imply that

(3.2)

lim /  X(x) dfir(uj)(x) 
T - k x ) . /

T

=  lim — ~̂= I j F ( X t {-,uj))dt
T  —>oo log 1 J t 

1
logT

=  lim - L -  I g(Zs(;cu))ds =  EG(Z(; uj))
T  —>oo log I  J  

0

=  jE?^(X1(-,w)) =  J  E ( x ) d p 0(x) for almost all uj E^t.

To prove Theorem 1 we have to show that relation (3.2) holds simultane­
ously for all bounded and continuous functionals T  for almost all uj E Í2, 
and the exceptional set of uj E 12 of measure zero should not depend on the 
functional T.  We prove this with the help of the following

Lem m a  A . Under the conditions of Theorem 1 the closure of the set 
of (random) measures p t (u>), T ^  1, are compact in the topology defining 
weak convergence of probability measures in the space C([0,1]) or D([0,1]) 
(depending on where the distribution of the process X ( - , uj) is defined) for 
almost all uj ESI ■

P r o o f  o f  Lemma  A. We apply the result that a set of probability 
measures /.ip on a separable complete metric space (endowed with the topol­
ogy inducing weak convergence) is compact if and only if for all e > 0 there 
is a compact set K = K(e) on the metric space such that mt(K) ^  1 — e for 
all measures pr- Both spaces C ([0,1]) and D([0,1]) can be endowed with 
a metric which turns them to a separable complete metric space. (See e.g. 
Theorems 6.1 and 6.2, 14.1 in Billingsley’s book [1].) Because of these results 
the following statement has to be proved. For almost all uj E and all e > 0 
there exists a compact set K = K(e,u;) in the space C([0, lj) or -D([0,1]) such 
that w)(K) ^ 1 —e for all T ^  1. In the proof we shall apply formula
(3.2) which is valid for all bounded and measurable functionals T  and some 
classical results which describe the compact sets in C([0,1]) and D([0,1]). 
These results can be found for instance in the book of Billingsley [1]. (The­
orem 8.2 gives a description of compact sets in C([0,1]) and Theorem 14.4 
a description of compact sets in _D([0,1]).)

Let us first consider the case when the distributions of the processes 
X t {-,uj) defined in formula (2.4) are in the C([0,1]) space. We shall prove 
that for almost all uj E Í2 and all e > 0 and r)> 0 there exist some numbers
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K  =  K ( e , u>) and ő = ő(e, r), uj) > 0 such that

(3-3)

/í t (w ) ^ x GC([0, 1]): sup |x(u)| ^  K  
O^ugl

^  A and

A«t M  (a: G C([0,1]): |wx(fl)| ^ J?) ^  e,

for all T  ^  1, where wx{ő) =  sup |as(í) — x(s)| for a function x G C([0,1]).
| t -s |g<5

First we show that relation (3.3) implies that for almost all u) G fl and all 
T  ^  1 and e > 0 there exists a compact set K(e) =  K {e,uj) C C([0,1]) for 
which //7’(o;)(K(e)) ^  1 — e. Indeed, let us fix some e > 0, and consider the 
sets

Jo = ( x  G C ([0,1]): sup |x(u)| > K  )V o ^ u g i  J

and
J„ = (x G C([0,1]): K (<U I > 2~ne) , n = 1 ,2 ,...

with such constants K  = K(e ,u)  and 6n = <5n(e,cu) for which /ix(w)(Jn) ^  
e2_n_1, n  =  0 ,1 ,. . . ,  T ^ l .  Such sets J n really exist because of relation
(3.3). (The numbers K  and 6n in the definition of the sets J„ and thus

OO
the sets J„  may depend on u>.) Define the set K(e) =  f) J ra, where J  is

71 =  0
the complement of the set J. Then K(e) is a compact set in C([0,1]), and 
for almost all u  and T  2; 1 h t {u>)(K(e)_) ^ 1 — e. Applying this result for all 
en =_2~n , n  = 1 ,2 ,. . . ,  we get a set of il of probability one, such that for all 
uG Ö , T  ^  1 and e > 0 there exists a compact set K(e) = K(e,o;) such that 

K(e)) ^  1 — e. In such a way we reduced the proof of Lemma A in the 
case of continuous trajectories X(-,u>) to the proof of relation (3.3).

To prove formula (3.3) we shall apply relation (3.2) with appropriate 
functionals T\  and T 2 on the space C7([0,1]). Put

F\{x) =  T i ,k (x) =  I sup
V ° ^ i

\x {u ) \^K

and

X 2(x) <5, r}(x) =  /  sup |x(s)
\ s , t e [ 0 , l ] : | t —

with appropriate constants K  > 0, 77 > 0 and d > 0. For fixed e > 0 and 
77 > 0  the constants K  = K(e) > 0  and S =  S(e, 77) > 0  can be chosen in such
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a way that EX\(X\(-,u>)) < e2 and E T ‘z{X i(-,w)) < e2. Then, because of 
formula (3.2) for almost all uj 6 il there exists such a threshold T0 =  T0(u>) 
for which f  Ti(x) d/j,r{uj)(x) ^ e for all T  ^  To(u;) and * =  1,2. Since Xi(x) = 0 
or Ti(x) =  1, i = 1,2, this relation implies that h t [uj){x \ X í (x ) ^  0) ^  e, for 
T  ^  T o(cj), i = 1,2. This means that relation (3.3) holds for T  ^  To(ca). 
Furthermore, since X ar ( u , uj) = a~l/aX r  (au, uj) for all 0 < a ^  1,

/xtiw) (x :  oSupJa;(u)| j ^ / iTo(w)(w) ( x: sup \x(u)\^> K T 0(uj) 1/0 j ,  

and
0 < u < l

(i((w )(reC ([0 ,l)): |iar (<5)| ^r/)

( x e C ( [ 0 , l } ) :  K í á T o M J I ^ r / T o M - 1/ “ )

if 1 g i g To(üj). These probabilities can be taken small by choosing a suffi­
ciently large K  > 0 and sufficiently small 5 > 0 which depend only on To(u;). 
Hence relation (3.3) holds not only for T^To(w) but also for all T  ^  1 with 
a possible modification of the constants ő ( £ , t] , u j ) and K( u i )  in it.

The proof in the case when the processes X t {-,u>) defined in (2.4) take 
their values in the space D([0,1]) is similar, hence we only indicate the 
necessary modifications. Because of the description of compact sets in the 
space D([0,1]) (found for instance in Theorem (14.4) in Billingsley’s book [1]) 
we can reduce the proof of Lemma A in this case, by a natural modification 
of the argument presented after the formulation of formula (3.3), to the 
following modified version of relation (3.3): For all e > 0 and 77 > 0 there 
exist some K  > 0 and S > 0 such that

H t { u ) ( x  €  £>([0,1]): sup |x(ii)| ^  K  ] g  e ,
\  Ogu g l  J

(3-3') /jt (w) ( i GD([0,1]): \w"{6)\Zri) ^ e ,
^ T { u j ) ( x e D { [ 0 , 1 ] ) :  w x [ 0 1 S ) ^ T ] ) ^ e  

H T { u ) { x e D ( [ 0,1]): w x [ l - 0 , l ) ^ r ] ) ^ £  

for all T  ^  1, where

wx(6) = sup m in{ |a:(í)-x(íi)|,|a;(Í2)-a:(í)|}) 
0 g t lg tg t2 , |Í2 - í l |á í

and w x [ a , b) = sup \ x ( t )  — x(s)| for all numbers 0 g a  < b g 1.
a^s,t<b

The proof of formula (3.3') is similar to that of formula (3.3). Let us 
introduce the functionals

F i { x )  —  I \  SUP ? 2  ( x )  =  I  ( w " { ö ) ^ T ] )  ,
\ 0 g t g l  /

JF 3 ( x ) =  I  ( u i x [0 ,  Í )  ^  rj) a n d  T ^ { x )  =  I  ( u i x [ l  -  6 , 1 )  ^  7 7 )
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on the space JD([0,1]), where the constants K  = K(e)  and ő = 6(e,r)) will be 
appropriately chosen. Let us observe that with their appropriate choice we 
can achieve that E T i ( X (■, lj)) 5= e2 for i = 1,2, 3,4. To see this it is enough 
to observe that for all x £ T>([0,1]) sup |x(í)| < oo, limuj"(d) = 0  (see e.g.osjtgi <5-̂ °
formulas (14.8) and (14.46) in Billingsley’s book [1]), lim u;x[0, d) =  0 and

S —y 0
Ihn wx[\ — 6,1) =  0. These functionals take values 0 and 1, and formula

ö  — ^ 0
(3.3') can be proved similarly to (3.3) with the help of relation (3.2). In such 
a way Lemma A is proved.

Now we turn back to the proof of Theorem 1. We prove with the help 
of Lemma A, formula (3.2) and a compactness argument that for almost all 
uj £ fl the sequence of measures p r(^ ) converges weakly to po as T  —» oo. 
First we show that for all eo > 0 and e > 0 there exists a set flo = flo(eo, e) C f2 
and a compact set K =  K(£o5£) in C([0,1]) or D([0,1]) such that P(flo)
1 — £o and p7’(o;)(K) ^  1 — e for all w £ flo and T  ^  1. This can be deduced 
from formulas (3.3) in the space C([0,1]) and from formula (3.3') in the 
space D ([0 ,1]) by an argument similar to the proof of the compactness of the 
measures p r(^ ) by means of these relations. Thus for instance in the space 
C([0, 1]) we define the sets J n, n  = 1 ,2 ,. . . ,  and K =  K(e) similarly to the 
definition given after formula (3.3) with the only difference that in this case 
the numbers K  and dn appearing in the definition of the sets J„ are chosen 
independently of co in such a way that P{{uj: pr(^)(Jn ) = £2~r1” 1 for all 
T  ^  1}) ^  1 — eo2_n_1. The argument in the case of the D{[0,1]) space with 
the help of relation (3.3') is similar.

For a large number L > 0 let F(L) denote the class of continuous and 
bounded functionals T  on the space C([0,1]) or D ([0,1]) such that \T(x)\ 51 L 
for all x £ C^O, 1]) or x £ D ([0 ,1]). Fix an e0 > 0 and e > 0, and choose a set 
Q0 C fl and a compact set K =  K(eo, e, L) in such a way that P(flo) ^ 1 — £o
and pT(<n)(K) ^ 1 -  — for all u  £ flo and T  ^  1. Fix two small numbers
r) > 0 and d > 0, and let the set F(L, e0,e, rp d) C F(L) consist of those func­
tionals T  £ F(L) for which sup \P{x) — P(y)\ = V- For all Ő > 0

i ,i/E K ,  p(x,y)^S
fix a finite d-net in the compact set K corresponding to it, i.e. a finite set

=  {xq, . . . ,  xr] C K such that for all x € K min p(x , x s) if d. Such a d-net
lípár

really exists because of the compactness of the set K.
Consider the above fixed numbers £q > 0, e > 0 and L > 0, together with 

the sets flo and K corresponding to them. First we show that there exists 
an fl'0 C flo such that P (flo \  fig) =0, and

lim sup
T —>oo

F{x)pT{u>){dx) -  

for all P  £ F(L)

!  P{x)p0{dx) 

and l j  £ fl'0.

< £
(3.4)
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To prove relation (3.4) let us first observe that because of the uniform con­
tinuity of the functionals T  G Fp on the compact set K the relation

(3-5) Q  f ( l ,£0 , £ , t7, Í ) = F ( L )
n = l  '  '

holds for all fixed e0 > 0, e > 0, 77 > 0 and L > 0.
Put S = consider the ^-net J i /n =  { x \ , . . .  , x rj corresponding to it, 

and make a partition of the set F (L, £0 , 6 , 77, ^) into subclasses

F ( L , £0 , 6 , 77, - , j ( l ) , . . . , j ( r )
V n

with integers |j(s)| (L + 1 )77"“1, s =  1, . . .  ,r,  which consist of those func­
tionals T e F ( L ,  e0, £, 77, i )  for which T ( x a) G [jsrj, (js + 1 )77), s =  1 , . . . ,  r. If 
T\  and T 2 belong to the same subclass F(L, £0 , 6 , 77, A, j ( l ) , . . .  , j ( r )), then 
\J-\ (x) — J~2 (x) I < 277 for all x E K because of the module of continuity of these 
functionals on the set K. and because of the relation ß'p{u))(K) ^ 1 — — for

I-J
till to E ÍÍ07

/ Ti (x)fj,T (uj)(dx) -  T -2 {x)fiT{w){dx) < £ + 2 l).

Let us choose an arbitrary functional T  from all non-empty sets

F ( L , £ 0 ,£ , 77 ,
n

We get by applying formula (3.2) for these functionals T  and the previous 
estimation a weakened version of relation (3.4) on a set to € Q'ó(n) C ilo such 
that P ( íí0 \ííg (n )) = 0, where F(L) is replaced by F (L, £ 0 ,6 .7 / ,  ^), and the 
upper bound £ by e + 27/. Then we get, by applying this relation for all 
n =  1, 2, . . .  together with relation (3.5) the weakened version of (3.4) for all

OO
w £ fl f4o(n) and T  € F (L) with upper bound £ + 2t/ instead of e. Finally,

n=l
we get formula (3.4) in its original form by letting 77 —>• 0.

It is not difficult to see that relation (3.4) implies the weak convergence 
Ht {u ) to 77.0 for almost all u  G fi. Indeed, let us fix a number L > 0 and e > 0. 
Then we get, by applying relation (3.4) for all £o(n ) =n~  , n =  1, 2, . . .  that

there exists a set Ho(n), P(ilo(^)) =  1 ---- , such that relation (3.4) holds for
71 OO

all <jj G ilo(^)- This implies that relation (3.4) holds for all u  G Í2 =  (J iio(n),
71=1

i.e. on a set of probability 1. Then, since relation (3.4) holds for all L > 0 and
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e > 0 w ith probability 1 we get by letting L —> oo and e —> 0 in this relation 
that the sequences of measures //'/-(a;) converge weakly to the measure po for 
almost all d  € fb

To complete the proof of Theorem 1 still we have to show that in the 
case of a Wiener or a stable process the generalized Ornstein-Uhlenbeck pro­
cess corresponding to it is ergodic. This follows from a natural modification 
of the zero-one law for sums of independent identically distributed random 
variables to processes with independent and stationary increments which can 
be found for instance in Feller’s book [4], Chapter 4, Section 7, Theorem 3. 
The continuous time version of this result which can be proved similarly, also 
holds. It states that if X(t), t it 0, is a stable process with some parameter a , 
0 < a  ^  2, and a set A is measurable with respect to the (tail) u-algebra T  
which is the intersection X  =  (~) Xt , where Xt  =  cr{X(t, ■): t ^ T}, then A

T>  o
has probability zero or one. The same result holds if the set A is measurable 
with respect to the a-algebra p] X'T, where X'T =  a{X(t ,  •): t ^ T } .  (This

T>  0
result follows for instance from the observation that t~^'aX  (y,w) is also 
a stable process.) These relations are equivalent to the statement that the 
generalized Ornstein-Uhlenbeck process Z(t) corresponding to this stable 
process has trivial cr-algebra at infinity and minus infinity, i.e. all sets which 
are measurable with respect to the a-algebra generated by the random vari­
ables t ^  T  (or t ^ T )  for all —oo < T  < oo have probability zero or one. This 
is a property which is actually stronger than the ergodicity of the process.

P R O O F  o f  T h e o r e m  2. Theorem 2 will be proved by means of formula 
(3.2) w ith an appropriately defined functional X  in the space C([0,1]) or 
F>([0, 1]). Let us define the functional T  = XE)s with some e > 0 and 5 > 0 as

Fe,ö{x) = I \  sup p{xs{-),xt (- ) )^S  
yl-egs,i5p

where the function x t is defined in (2.4'), and p(-, •) is the metric introduced 
in Section 2. We claim that under the conditions of Theorem 2

(3.6) lim EJ-; i(Ai(-,a>)) =  0£—>0
for all 6 > 0.

Let us also observe that by relation (3.2)

lim p t M  sup p(xs, x t) > S  = lim / X£js{x) dp,T{u){x) 
T-*oo y i-e g s ,tg l  )

= EX£ts (X1(; U>))

for all e > 0 and <5 > 0 and almost all w, where the function xt was defined in 
formula (2.4'). Then we get relation (2.6) with the help of formula (3.6), by
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letting £ —>0 in the last formula. Hence to prove relation (2.6) it is enough 
to prove formula (3.6).

If Xi(-, w) 6 C([0,1]), then this relation follows from the observation that 
for all 77 > 0 there is a compact set KJ; in C([0,1]) such that P ( X i(-,cu) 
G K,;) ^  1 — 77, and for all 6 > 0 there exists an e =  e(r/) > 0 such that 
|x(tt) — x(v)\ <6  if x G K^, and |u — v\ ^  e. There is also a constant L > 0
such that sup |.x(u)| is L. Since these relations hold for all 6 > 0 and appro-

xeKn
priate L > 0  they imply that lim sup p(xt,x) = 0. This means that

£—>0 x£K^,l—
for sufficiently small e > 0 , F£j (X\  (•, w)) = 0  if Xi(-,u;) GK,,, i.e. in the case 
when an event of probability greater than 1 — 77 occurs. Hence relation (3.6) 
holds in this case. The situation in the space D([0,1]) is more sophisticated. 
In this case formula (2.5) also has to be applied.

Since all functions x(t) in the space D([0,1]) have a limit as t —T 1 — 0 it 
follows from relation (2.5) that for all ő > 0

P  lim sup |X ( t ,u ; ) - X ( l )W) | £ -  =0. \e-+°1_e<i<1 2 1

Hence there is a set K =  K,; in the space D([0,1]) such that P(X\  (-,0;) G K) ^ 
1—7 7, the closure of the set K is compact, and for all .tGK lim sup \xt—x\

l - e g t g l
ő Ő

< —, where the function xt was defined in (2.4'). There is a finite - -n e t in K, 
2

i.e. a finite set J =  {cc^,. . . ,  x ^ } , x^r  ̂G K, r  =  1 ,... ,s, in such a way that

for all x G K there is some x ^  G J such that p ( x , x ^ )  ^ -. Then to prove
5

formula (2.6) it is enough to show that for all x ^  G J there is some e > 0C
such that p(x\r\ x ^ j  ^  -  for all 1 — e ^  t ^  1. Indeed, if this statement holds,

then for arbitrary x G K there is some x ^  G J such that p(x, x ^ )  ^  - .  Theno
p(xs, x t) ^  p{xs, Xg'1) + p(xt, x[r )̂ + p(x[7\ x ^ ) .  Let us also observe that 
because of the definition of the functions Xt for sufficiently small e > 0 for all
x G £>([0,1]), 1 — e ^  t ^  1 and x ^  G J the inequality p(xt ,x]r ) ^  -p (x , x r )̂

holds, and p(x£ \  x[' *) ^  p(x£ \  x ^ )  +  p(x[r \  x ^ ) .  The above inequalities 
imply that p(xs,xt) ^  <5 for 1 — e ^ s , t f í l  if x  G K. Hence P£̂ (X \  (-,o;)) =  0 
with e = e if Xi(-,o;) G K. Then formula (3.6) follows from the relation 
P ( X i (-,uj) GK) ^ 1 - 1).

Thus to complete the proof of formula (2.6) it is enough to show that

for an arbitrary function x G D([0, ll) such that lim \x(u) — x (l) | < -  theu->i-o 2
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relation lim p(xt,x) < -  holds. (This relation means in particular that the£—>0 2
limit exists.) To prove this relation let us define for all -  ^ t < 1 the mapping
At{u) of the interval [0,1] into itself as At{u) =  tu for 0 ^  u ^  t*(t) with 
t*(t) =  1 — y/l  — t, and define At(u) in the remaining interval (t*(t), 1] also 
linearly, i.e. let At(u) = (y/l — t + t)u + 1 — t — \J\ — t for t*(t) ^ ii ^  1. Then

At(u) -  \ t (v)lim sup log
Í—>1 uz£ v  'U V

it is enough to show that

=  0. Because of the definition of the metric p = do

lim sup |o;í (u) — x(At(u))| =  lim |x(u) — rr(l)| < - .

It is known that for an x G D([0,1]) function 

Billingsley’s book [1]). Hence

sup |a;(u)| < oo (see e.g.

sup \xt(u) -  x(Xt (u))\^  (t 1/q -  1) sup |rr(t/)| 
o  á t l á t *  ( t )  O g u S l

<1 const. ( r 1/Q -  1) ->0 if i —> 1 — 0.

Similarly, since a function ie f l ( [ 0 , l ] )  has a right-hand side limit in the 
point 1, sup Ixt(u) — .x(At(u))| —> 0 as t —> 1 — 0. Finally, in the point

i* ( t ) ^ u < \

u =  1 At (l) =  1, and lim |®t (l) — x(Ai (l))|
t - 4 l - 0

x(l) lim x(t) t—>i—o
relations imply that lim^ p(xt, x) =  lim ja^ i) — x(l)| < Theorem 2 is

< - .  These 
2

proved.

P roof of Lemma 1. We have to prove that for arbitrary 5 > 0

lim P
£-40

sup \X (t, lo) — X(l,u>)\
l-E^ígl

=  0 .

Because of the stationary increment and self-similarity property of the pro­
cess X(t,u>) with parameter a > 0  yields that

P i  sup |X(t,w) — X (l,w )| >A ] = P  sup \X(t ,u) - X ( e, u ) \>6
l-£<t<l ,0<f<£

= P \  sup |X ( í ,w ) - X ( l ,w ) |> Í£ _1/a .
\ 0 < t < l  /
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Then tending with e —> 0 we get that Se x/a —>• oo, and the required property 
holds.

To prove Theorem 3 first, we formulate and prove the following technical 
Lemma:

Lem m a  B. Let (M ,M ,p )  be a separable, complete metric space such 
that Ad is the a-algebra generated by the open sets of this space. Let two 
sequences of probability measures p ^  and p ^ ,  N  =■ 1 ,2 ,. . . ,  be given on the 
space (M ,M ,p )  such that the measures p ^  weakly converge to a probability 
measure pa on (M, Ad,p) as N  —> oo, and
(3.7) lim inf (p,^v(F; ) —/i^r(F)) ^ 0 for all closed sets F G Ad and e>  0,

N-too

where A£ — {x: p(x, A) < e} denotes the e-neighbourhood of a set A 6 Ad. 
Then the measures p /v converge weakly to the same limit measure pa as 
N  —>oo. Moreover, condition (3.7) can be slightly weakened. It is enough to 
assume that it holds for all compact sets K G Ad and e > 0.

P r o o f  o f  L em m a  B. The weak convergence of the m easures p u  to pa
as N  —> oo is equivalent to the relation lim inffi^(G) ^ Po{G)  for all open

N —*oo
sets G G A4. For all open sets G G Ad and e > 0 there exists a compact set
K = K£ G Ad such that K C G and /no(K) ^  po(G) — e. Then there exists some
q > 0 such that also the q-neighbourhood of K satisfies the relation K’ cG .
Consider the 77/2 neighbourhood K7̂ 2 of the set K. Since G contains the q/2
neighbourhood of the closure of K'l//2, and the measures p,\r converge weakly
to the measure pa as N  —> 00 we can write with the help of relation (3.7)
that lim infp n (G) ^  lim infp ^ f K 11̂2) ^  pofK11̂2) ^  po{G) — £. Since the last 

N-¥00 N —too
relation holds for all e > 0 and open sets G, it implies the convergence of the 
measures p ^  to pa as N  —>0 0 .

To complete the proof of Lemma B let us observe that because of the com­
pactness (convergence) of the measures p ^  in the weak convergence topology 
for all e > 0 there is a compact set K G Ad such that p n (K) > 1 — e for all 
N  = 1 ,2 , . . . .  Then for a closed set F G Ad the set F n K is also compact,
and lim inf (p^(Fe) — piw{F)) ^ liminf (/2yv((F fl K)£) — /iyv(FflK)) — e ' t  —e.

N—> oo N—kx)
Since this relation holds for all e > 0, it is enough to assume relation (3.7) 
for compact sets K.

Now we introduce the notion of good coupling we shall use later and 
formulate a simple consequence of Lemma B.

D e fin it io n  of good coupling. Let two sequences of probability mea­
sures p n  and p ^ ,  N  = 1 ,2 ,. . . ,  be given on a separable complete metric 
space (M, Ad,p), where Ad denotes the cr-algebra generated by the topol­
ogy induced by the metric p. These two sequences of measures have a 
good coupling if for all e > 0 and 6 > 0 there is a sequence of probabili­
ty measures , N  = 1 ,2 ,. . . ,  on the product space (M  x M, Ad x Ad,p),
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p((x i ,y i ) ,  (x2 ,y2)) = p{xi ,x 2) + p(yi,V2) which satisfies the following prop­
erties.
(i) The marginal distributions of P ’f f  are p ^  and /7/v, i.e. P^ f  (A x M)  = 

p tv (A) and Pê ó(M x A) =  /2/v(A) for all A € Ad, and n =  1,2 ,.. .  .
(ii) lim su p P ^({(:r,y ): yo(m, 2/) > £r}) ^ A.

N —t  00

C orollary of Lemma B. If two sequences of probability measures p ^  
and p  jv, iV =  l ,2 , . . . ,  on a complete separable metric space (M,A4,p) have 
a good coupling, and the sequence of measures p n  converge weakly to a prob­
ability measure po, then the measures p jv converge weakly to the same mea­
sure p, 0.

P roof of the Corollary. Fix an e > 0. For all <5 > 0 we can write

lim inf (p^r(Fe) — //jv(F)) ^  -  limsup P£rfS{{{x, y ) : p{x,y)>e})  ^  -S.
N  —>00 N - x x

We get the statement of the Corollary by letting 6 —» 0.
P roof of Theorem 3. We shall prove the weak convergence of the 

measures p n {w) for almost all c0 with the help of Lemma B with the choice 
of p b n {co) as pn  and ßp(u .>) as p ^ .  Then (for almost all lo) the measures 
P N  converge weakly to p o ,  and it is enough to show that for almost all u> G

lim inf (/r/v(w)(F£) — p g N (w)(F)) ^ 0  for all closed sets
(3.8) N^°°

F C D ([0 ,1]) or F C C([0,1]) and e ^ 0.

Let us recall that for arbitrary measurable set B c ű ( [0 . 1]) (or B c C ([0 ,1])) 

Hb n {u )(B) = X b n { s  : s G [1, B n ], X s(-,lo) G B}

and

Pn (uj)( B) = \ b n {s : there is some 1 ^ j < k ^  such that
B hN ^ s < and XßjN (•, w) G B},

where the measure Ät  was defined in the formulation of Lemma 1.
For a pair of numbers e > 0 and p > 0 define the set

X{e,y) = \ x €D([0,  1]): sup p{xs, x t) Ú e > .

Given some e > 0 and 6 > 0 fix some p = p(u, e, 6 ) > 0 and N0 = N q(iv, e, Ö) 
in such a way that pb n (u>) (A(e, p)) > 1 — 6 for N  ^  iVo- By Theorem 2 such 
a choice of p and Nq is possible for almost all u> G fh Then we can choose, 
since the numbers B^ j  satisfy condition (2.7), some number jo = jo{v) and
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Ni i> Nq in such a way that ^ 1 +  2 if N  ^  N\ and jo k < N,  and
t>k,N

í°g B 30,n  <  s if N  > ATj. Then for all N  > Ni 
log B n

ß N{u)(Fe) ^  Aar(U})(XBk n (-,uj) G F£, for some k ^ jo)
=  AßN({s: there is some jo ^ j < k j y  such that

Bj,n ^ S <  B j+itN and
^ ^ bn ({s : Bj0tN <̂ s < B n and X s(-,w) G F fl A(e, 7/)}).

The last inequality in this relation holds, because, in the case when X s(-,uj) € 
F D Ajv and s G [f?j,jv> -Bj +i .w) with some jo ^  j  < (observe that the re-

kjv — l
lation [Sjo.at, B n ) =  U [Bj,N>Bj+i,N) holds), then X Bj N(-,uj) G F£, and 

3 =  j o

this implies that all points sG {B j^ ,B j . )-i,iv] are contained in the set whose 
At  measure is considered in the previous expression. To see the validity 
of this statement observe that with the notation x =  X s(-,u>), x  G .D([0,1])

X Bj N (•, u>) = xu with u — J'N , which satisfies the inequality 1 — ryjj ——=■ ^
S  1 + 2

u ú  1, where the function xu is defined in formula (2.4'). Hence x G A (e,77)nF 
implies that i u £ FE, as we claimed. Then we get that

Aat(w)(F£) ^ X Bn (s : s G [1, Bj\f), and I s(-,w)GF)
(3-9) -  \ Bn ([1, Bj0tN)) -  p b n (D([0,1]) \  A(e, r,))

=AßN ( s : s E[1,Bn ), and X s{-, u)  G F) -  25=^Bn (F) -25 ,

because ß Bfi (D([0,1]) \  A(e, 7 7 ) )  ^ 5 and

A B h  ( [ ! )  B j 0 j v j )
1

log B N

b 10, n

1

log^o.N
log B n

Letting á -» 0 in formula (3.9) we get formula (3.8). This implies the first 
part of Theorem 3.

We prove the second statement of Theorem 3 with the help of the Corol­
lary of Lemma B, where ß^(u>) plays the role of (j,n  and the role of
A;v- We define the measure P£N =  Pn {w) on the space D([0,1]) x ZA([0,1]) 
independently of the parameter e in the following way: The measure Pn (uj) 
is concentrated on the trajectories {XBj^ { - , u ) , X Bj ̂ {-,u)),  and

PN(io)(XBjt^(-,uj), X Bjin (-,u ))
1

log B• j + l , N

log B N B j , N
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Such a coupling can be constructed e.g. in the following way: For all N  =
1 , 2 , . . .  let A n  denote the set =  {1 , . . .  , k^} ,  A n  the u-algebra consist­
ing of all subsets of A n , and define the probability measure un , ^n (j ) —

:---- —— log — , 1 < j  < k,N on (An , A n )- Then for all w G 0  define the
log B n  Bj'N
random variable £u (j) =  ( X Bj ,n (' ,  w), X Bj ,n (' , w)), 1 ^ j  ^ fcjv, on the proba­
bility space (An , A n , v n ), and let -Pjv(w) be the distribution of the random 
variables in the space D([0 , 1]) x D([0 , 1]).

The marginal distributions of the measures Pn (u ) are p n (^) and p n {v ). 
Hence by Corollary of Lemma B it is enough to prove that for almost all u  
the relation

(3.10) lim Pn (oj)(An (s , u>)) =  0
N —>oo

holds with

Ajv(e,cu) = { (XBj ,n (-,u ), X Bj ,n (-,u )) : p(XBj,n (-,u ) , X Bj,n (-,u))  > e}

for all e > 0. Since the measures fiN are compact for all p > 0 there is a 
compact set K = K(r/) C D ([0 ,1]) such that p n (K) > 1 — /? for all iV = 1 , 2 , . . . ,  
and formula (3.10) can be reduced to the statement

(3.11) lim PyvM (AAi(e,a;)n(K  x £>([0,1]))) = 0
N —>oo

for arbitrary compact set K c ö ( [ 0 ,1]). Moreover, this statement can be re­
duced to a slightly weaker statement. To formulate it let us define for all r) > 0 
and N  = 1,2, . . .  the number j (N)  = j (N,  p) as j (N)  = m ax{j: log Bj tN ^ 
iylog-B/v}. Because of condition (2.7) imposed on the numbers Bj tk in Theo­
rem 3 j (N)  —» oc as N  -> oo. Because of the definition of the measures piv(u>)

and the number j (N)  the inequality p n (u ) s (J X Bj N (■, u) > 5= 77 holds.
[ j  ■ j<ibv; J

Define the set

A l ( e ,u )  = { ( X Bj,N(-,“ ) ,XBj>NM ) - - j ( N , T l ) Z j Z k N ,
p{XBjiN {- ,u ) ,XBj,N{-,u)) >e}  .

Then p n (u )(An (e, u>) \  A \ r(e, w)) ^ 77, and relation (3.11) can be reduced to 
the relation

(3.IT)  lim P 7v H ( A ^ ( e , w ) n ( K x D ( [ 0 ,l]))) = 0
N —too

by letting 77 -A 0 .
We claim that for an arbitrary compact set K C D([0,1]), e > 0 and 77 > 0 

there is some No = ATo(K, e, rj,u) such that for all N  ^ Nq and j  ^  j (N )  the
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relation X Bj n (■, w) G K implies that p(XBj n (•, ui), X Bj n (•, w)) <  e, hence the 
set APN(e,uj) D (K x D ([0,1])) is empty for large enough N. This statement 
clearly implies relation (3.11').

To prove this statement let us observe that the trajectory X Bj N (■,<*>) is 
obtained as a discretization of the trajectory X bj n (•, oj) of the following type: 
There is a partition 0 =  tj,o,N < < • ■ ■ < tj , j ,N  = 1 of the interval [0,1]
such that X B .'N ( t , u )  = X B .'N(tjii - i iN,u}) if ú t < tj,i,N,  1 I k ^ h  and
X Bj w(l,w) — X B. ^(ljCu). The numbers thi ^  could be given explicitly as

tj,i,N =
B j ,  N

but we do not need their explicit form. What we need is the

fact that conditions (2.7) and (2.8) imposed on the numbers B j ^  imply that
lim limsup sup sup (t j j tN = 0. This relation holds since for all

j->°o AT->oo N ^ j ^ j  1 g i<?
rj> 0 there exist some j \  = j \ ( tj) ,  )2 = h ( v )  and =  No(rj) in such a way

that 1 + 3 and N  ^  No, and rjBj2t n ^ Bjlt n  if N  ^ iVo-
B i~i ,n

Then for all N  ' t j  ^  j 2 and N  t  N0 t j ^ N -  ^ B ‘'N D———  ^ V for

j Z I Z  h ,  and Íí ^  V if 1 ^  l Ú h-  The width of the

partitions considered above tends to zero if J = j(N)  —► oo, as we claimed. 
Indeed, the previous calculations imply that it is less than r? for j t j 2(g). 

We claim that this relation implies that

lim sup p(XjtN{- ,u) ,Xj t at(-,u>)) =  0
N ^ o o j: j l j ( N ) ,X j tN(-,uj)eK

for all compact sets K C Z?([0,1]), and this relation implies formula (3.1 T) 
and hence the second part of Theorem 3.

Let us define the following function g(x , 6) for x  G D([0,1]) and 5 > 0:

(3.12) g(x,S)=  sup P(x,xt0,...,t.),
0 = t o < i l  < - " < i s  =  l

where

xto....t#(i) =  x(t j - i )  if t j - 1  ̂t < tj, j  =  1,. . . ,  s and xto,...lta (1) =  x(l).
We shall prove the following Lemma C which is probably well-known among 
experts, but whose explicit formulation we did not find in the literature.

Lemma C. For all functions x e D ( [ 0 ,1 1 )  lim g(x, S) = 0 . Moreover, for
<5—>0

all compact sets K C D([0,1])

lim sup g(x, (5) =  0.
s~^°xeK'
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Then to finish the proof of Theorem 3 it is enough to show that

lim sup g(x, S) = 0

for all compact sets K c h ( [ 0 , l ] ) ,  where the function g(x,ő) is defined in 
formula (3.12), and this is the content of Lemma C.

REMARK. Condition (2.8) about the properties of the numbers B j ^  
in Theorem 3 could have been dropped with the help of a slightly more 
complicated analysis. We could exploit that an upper bound on tj^ry — 
tj,l-i,N only for such triples 1 ^  I ^  j  ^  N  is needed which also
satisfy the relation j  ^  j(N,  77), j(N,  77) =  max{j : log -Byjv ^  V log B n }; and 
lim Bz at =  0 0  for such 7. But since this is a condition which is automaticallyN—+OC ’

satisfied in the cases interesting for us we did not omit it.

PROOF OF Lemma C. It is known (see e.g. Billingsley’s book [1] formu­
las (14.6) and (14.7)) that for all 77 > 0 there is some a  =  0 (77) > 0 and a parti­
tion 0 =  iio < u\ < ■ ■ ■ < ur =  1 of the interval [0, 1] such that for uj — Uj-i  > a, 
and sup sup \x(s) — x ( t ) \ < g. Let us consider an arbitrary partition

l = i  =  r  U j  — l % S , t < U j

0 =  to < t \  < ■ • • < ts = 1 of the interval [0, 1] such that sup \tj — t j - 1| <  arj.
l<7^

We claim that in this case p ( x , x t l t . . . tt s ) Since this relation holds for all 
77 > 0, it implies the first statement of Lemma C.

To prove this statement let us consider the partition 0 =  To < T\ < ■ ■ • 
< Tr , such that the interval [Tj,Tj+1) is the union of those intervals [f/, b+1) 
for which t[ e [uj,Uj+i). Let A(-) be that mapping of the interval [0,1] into it­
self which maps the interval [uj, Uj+1) linearly to the interval [Tj, Tj+1). Then

sup |x(A(u)) -  2ctli...its(u)| ^ 77, and also sup log
t^s

A(*)-A(s) 
t — s ^  V- Hence

p(x , x t1,...,ts) ^  r), as we claimed. This implies the first statement of Lem­
ma C.

The second, more general statement follows in the same way. We only 
have to observe that the number a = 0 (77) can be chosen as the same number 
for all x  G K in a compact set K 6  D([0,1]). This follows from the charac­
terization of compact sets in the space D([0,1]). (See relation (14.33) in 
Theorem 14.3 in the book of Billingsley [1].)

P r o o f  o f  T h e o r e m  4. Let us construct the following coupling of the 
random broken lines S jv(- ,uj) and Tn (-,lo) which are defined with the help 
of the random variables Sk(u>) and Tfc(o>), k = 1,2, . . . ,  in formula (2.13). 
Let P ^ S(ix), ui £ Q, be a measure on D([0,1]) x -D([0,1]) concentrated on the
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pairs, (Sk(-,uj),Tk{-,u))) in such a way that

P’/M C S t (;u,),Tt (;u))=H NW (T„(;u)) = —! g - lo g l ? |Ü ,
'o g - ^

1 g  k < N.

(The parameters e > 0 and S > 0 in the definition are the same e and <5 which 
appear in formula (2.13).)

Then the marginal distributions of are the distributions //jv(w)
and ßiy(u)) appearing in the definition of the almost sure functional limit 
theorem. By the Corollary of Lemma B it is enough to prove that

lim sup P ^ 6(u){(x, y ) : p(x ,y )> e}< 6  
N —toc

for almost all oj E fb Since p(x, y) ^  d(x, y) with d(x, y) =  sup \x(u) — y(u)\,
Ogu^l

9 ^ 1 r>
P £/{uj){(x ,y ):  p(x ,y )>e}  ^  ^  ^  log - ^ - I { d { S k{-, w), Tk{-, u)) > e)

for sufficiently large N.  For a number N  choose the number n — n{N)  such 
that 2n~1 ^  B n < 2n. Then N  ^  N(n),  and log B n ^ n — 1. Hence

Pe/ ( u ) { { x , y ) :  p(x ,y )>e}  

1<
N ( n )

S  los
k=1

Bk+1
n -  1 z- ' " °  Bk

(  f sup |5j(ai) — Tj(uj)
1 gjgfc

V

> £

with this n = n(N).  As n(N)  tends to infinity as N  -> oo relation (2.13) 
implies that the lim sup of the right-hand side of the last expression is less 
than S for almost all ui as N  —1 oo. Theorem 4 is proved.

P r o o f  o f  T h e o r e m  5. Let p n {x>) and fijv{uj) denote the probability
k

measures on the space .D([0,1]) defined by the partial sums 5fc(o>) =  £j(w)
1=1

through formulas (2.11) and (2.12) with weight functions B n, A n =  Bn and
-- -- -- I  /  Q

B n, An = Bn' , respectively. Let us also introduce the random polygons 
S'n(u)) and the random measures p'N{<x) which are defined with the help of 
the partial sums Sk(uj) with the new weight functions Bn and the original
sequence A n = B?l/ a by formulas (2.11) and (2.12). First we show the fol­
lowing (weaker) version of Theorem 5. For almost all u> € Í2 the sequence
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p'N {u>) has the same limit po if N  —> oo as the sequence of measures 
By Lemma B to prove this statement it is enough to show that for arbitrary 
compact set K C £ ([0 ,1]) and e > 0

(3.13) limsup(p)v(u;)(K') — p,yv(w)(K)) ^  0 for almost all oj G Í2,
yv~> oo

where =  {x: p(x, K) ^  e} is the e-neighbourhood of the set K. Define for 
all k = 1, 2 , . . . ,  and u> E O the set

A  A;

k
A*(«)=Û (-I«')}CD([0,1]).

j= i

Then we have

(3.14) lim p N{u>){Ak{uj)) = 0
A'—>oo

for arbitrary fixed k>  0. Hence to prove relation (3.13) it is enough to show 
that for arbitrary e > 0 there is some Nq = No{e) such that

P ( S n ( - , u ) , S ' n ( - , u ) )  ^  £

if N  ^  No and Sn (-,uj) E K. Indeed, this relation implies a modified version 
of (3.13), where p^(uj)(K) is replaced by p^(uj)(K \  A n0). Then relation
(3.13) follows from this statement and (3.14) if we let IVo—>oo.

The above statement holds, but we must be careful in its proof. It follows 
immediately from the conditions of Theorem 5 that

lim d(SN (-,ui),SN{-,uj)) =  0,
N -> o o

if the metric p = do applied in this paper is replaced by the following met­
ric d(-, ■) in the space £>([0,1]): The relation d(x,y) ^  e, x, y E £>([0, 1]), 
holds, if there is a strictly monotone increasing continuous function A(t) 
which is a homeomorphism of the interval [0,1] into itself, and sup |A(t) —t\

OStól
^  e, sup Iy(t) -x(X(t,))\ ^  e. The metric d induces the same topology as the 

O áiá l
metric p =  do in the space £>([0,1]), but it has the unpleasant property that 
the space £([0,1]) is not a complete metric space with this metric. A de­
tailed discussion about the relation between the metrics (/(■,■) and do(-, •) is 
contained in the book of Billingsley [1].

In the proof we have to overcome the following difficulty. The natural 
transformation A(-) for which Sn (\(-,uj)) is close to is the map
which transforms the point to the point and is linear between these 
points. This transformation shows that the corresponding trajectories are
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close in the d,(-, •) metric, but it supplies no good estimate for the distance 
in the do(') •) metric.

We recall the following result from Billingsley’s book [1] (see Lemma 2 in 
Section 14): If d(x, y) ^ S2, 0 < 6 ^  1/4, then p(x,y) = do{x,y) ^  + vj'x(S),
where the inequality wx(S) ^  e for a function x E D{[Q, 1] means that there 
exist some numbers 0 = to < ti < ■ ■ ■ < ts = l such that tj — t j - \  ^  e, and 

sup |a:(n) — *(v)| ^  e for all j  = 1 ,2 ,. . . .
Sj_i ^ u , v < t j

We have lim wx(6) = 0 for arbitrary x E D([0,1]). Moreover,

lim sup iux (6) — 0
xEK

for arbitrary compact set K C D([0,1]). (See Theorem 14.3 in Billingsley’s 
book [1].) Given some 6 > 0 and a compact set K cD ([0, lj) choose a number 
0 < 77 < 1/4 such that 5r/ < <5 and a number 77 > 0 such that w'x (rj) < 7/ if 
x E K. Then there is an index No = No(r], 77) such that d(5jv(-, u), S'n (-,lj)) ^ 
min(772, fj2), if NTiNo- The above relations imply that p(Sn (■, cú) , Sn (■, w)) 
^  411011(77,77) +w's ^  ̂ (̂77) ^ 6 ,  if TV ^ iV0 and Spf(-,u>) E K. As we have 
pointed out, relation (3.13) is a consequence of this statement and relation
(3.14). This implies the modified version of Theorem 5 with the modified 
weights B n and the original weights A n.

To complete the proof of Theorem 5 in its original form we compare 
the measures p n (lo) and p'N(uj). It is enough to show that for almost all 
w £ il and all e > 0 (and 5 = e) the sequences of measures p^r(u>) and ß'N{u>) 
have a good coupling. We make the following coupling of these measures 
(independently of the parameter e). Put

PN{u)(Sk(-,u>)iS'k{-iUj)) = p N{Sk(-,u)) = ----log 1 < k <  N.
log B n B k

b 7

Ak - AkObserve that u) — ~ - S k(-,uj), and lim —  = 1. This relation implies
Ak k-> 00 Ak

that for arbitrary 6 > 0

N  —>00
lim P V M I \ ( S k ( u ) , S k {uj))-. p{Sk{-,u),S'k{-,uj))>6 sup |5'a:(-,uj)| M =  0

0<I <1

On the other hand, the measures p n (u ), N  = 1,2, . . . ,  are compact for almost 
all u) E 12, hence for almost all e > 0 there exists a K  =  K (uj) such that

VN sup \x ( t ) \>K  
0<t<i

< £ for all N  =  1 ,2 , . . . .
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Applying the previous estimate with ő — ~  we get that

liinsup PN(uj){{(x,y): (x,y) = (Sk(-,uj), S'k(-,uj)),
./V—>oo

with some p(Sk(-, u>), S'k(-,uj)) > e}) < e.

Since this relation holds for arbitrary e > 0 the Corollary of Lemma B implies 
Theorem 5 in its original form.

A c k n o w l e d g e m e n t . I would like to thank István Berkes for many use­
ful discussions on this subject.
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A CONDITIONED LAW OF LARGE NUMBERS 
FOR MARKOV ADDITIVE CHAINS

A. MEDA and P. NEY

To the memory of A. Rényi

A bstract

Let Yn =  (Ynj, y„2), n =  1,2, . . .  be a sequence of Revalued random variables with 
YUl 6  Rd*, i =  1, 2, d\ + d-2 =  d, and assume that

lim n _ 1 log Eexp(a, Yn) =  A (a) ^  oo, a 6  Rd,

exists, and is strictly convex and essentially smooth. ((•, ■) is inner product.) Then Yn i/n  
converges exponentially with respect to the conditional probability measures IP( • |Yn2/n £  
C  C Kd2), to a point which is specified in terms of A and C. This result is specialized to 
a conditional LLN’s for Markov-additive chains.

1. Background

Let Xi,  X 2 , . . . ,  be a sequence of independent identically distributed 
(i.d.d.) random variables taking values in a measurable space (S,S),  f  a

n
function on S , Sn =  f(Xi) .  Stimulated by the important papers of O. Va-

i= l
sicek [16], and especially I. Csiszár [1], a considerable literature has devel­
oped on the limit laws of X \ , . . . ,  X^,  conditioned on Sn/n . In [1], Sn/n  is 
represented as the empirical measure of X \ , . . . ,  X n, and it is shown that 
(X i,. . . ,  X n I Sn/n  € C ), where C is a “completely convex” set of probability 
measures, are asymptotically “quasi-independent” with a limiting measure 
given by a so-called “/-projection”. (These terms are defined in the above 
paper.) Recently Dembo and Kuelbs [3] have shown that for / :  S  -A- E  = a 
separable Banach space, (X i,. . . ,  X/,|Sn/n£D )  with D an open convex set, 
converge in a strong sense (that implies total variation norm convergence) 
to independent random variables with identifiable distributions. They al­
low k = k(n) —» 00 with k(n) depending on D. (Typically k(n) = o (j^ ^ ) .)  
Their analysis used an extension to the Banach space setting (by Einmahl 
and Kuelbs [5]) of a dominating point construction introduced in the finite
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dimensional case by Ney [10]. (See also the use of “exposed points” , e.g. in 
Dembo and Zeitouni [4] p. 44.)

A related conditional law of large numbers (with X \ , X 2, ■ ■ ■ still i.i.d.), 
also resting on the dominating point concept, was the work of Nummelin
[13], and Lehtonen and Nummelin [8], [9]. Say that a sequence of random 
variables {V^} converges exponentially to v, written Vn v, with respect to 
a sequence of probability measures Pn if given any e > 0, there exist 0 < b < oo 
such tha t

Pn {\\Vn - v \ \ > e } ^ e - bn
for sufficiently large n.

Lehtonen and Nummelin proved that for functions g : S  -* Rdl and 
u : S  —y R^2 one has

(1.1) n _ 1 ^ g ( A i) - ^ u
2=1

with respect to the conditioned measures
n

(1.2) P ( -  | n - 1^ u ( A l)G C '),
2=1

with v being identified as a “dominating point” (as described below).
Extensions of the original set-up of Csiszár [1] to Markov chains have been 

carried out in Csiszár, Cover and Choi [2], and Schroeder [14]. These exten­
sions are required even in the i.i.d. setting, if one wants to treat functions

n n

of the form n _1 ^  g{Xi, X j+i), rather than n _1 2 ^ g (X i ) .  Independence is
1=1 i=l

lost in this case, but the Markov structure is retained (see e.g. [2]). In this 
note we will show that results like (1.1), (1.2) hold quite generally. We show 
first th a t analogs hold for “general” sequences of random variables satisfying 
the hypotheses of the Gärtner Ellis Theorem. We then specialize this result 
to show how an explicit determination of the limit point in (1.1) can be made 
in the case of Markov-Additive (MA) chains (which are somewhat more gen­
eral than  ordinary Markov chains, and are defined below). Our conditions 
on the underlying Markov chain are less restrictive than in the above cited 
papers.

2. General sequences

For any F C Kd, let T° =  interior of T, F =  closure of T, and ő r  =  
boundary of T. Let (•, •) denote inner product. For any F : —» [0, oo], let
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T>(F) = [x £ Rd : F(x) < oo}. Let Y\, Y2, . . .  be Revalued random variables 
with probability law C{Yn) =  /x„, n =  1, 2 , . . . .  Assume that

Hypothesis (H I).

(i) lim ^ log Ee('a^ n') — A(a) 00 exists for a £ Mrf, and
(ii) A is strictly convex and essentially smooth (see Rockafellar [17] p. 

251).
From (ii) it follows that 

(2.1) O e V ° {  A).

From Hypothesis (HI) we can draw several conclusions, which we summarize 
in Lemma 2.1 below. (This is part of the Lemma in Ney [10].) Let A*(u) = 
sup [(a, v) — A(a)] = the convex conjugate of A. Condition (2.1) implies that

the level sets of A*, La(A*) =  {v : A.*(v) ^  a} are compact for a £ [0, 00), and 
is needed in the following lemma. Let V denote gradient.

Lemma 2.1. Assume (HI) and let B  be open and convex with [B fl 
£>(A*)]V0. Then

(i) inf[A*(u): v £ B] is achieved at a unique point Vß & B r\T>°(A*).
(ii) The equation

( 2 . 2) VA(a) =  vb

has a solution a VB £ Rd.
(iii) If a VB ^  0 then Vß£ dB, and

(2.3) ((v — Vß),aVB) > 0 for all v £B.

We call vb the dominating point of (A, B). We will abbreviate inf[A*(w): 
v £ B] =  A*{B), and a VB = ö ß . From (HI) we can also conclude that

Lemma 2.2. If  (HI) holds and B  is open and convex with [B n "D(A*)]° 
0, then

(2.4) lim i l o g f i — £ b \  =  -A*{B) =  - A * { v b ).n->00 n { n J

This is just the Gärtner-Ellis Theorem specialized to convex sets. (See 
e.g. Dembo and Zeitouni [4], Theorem 2.3.6.)

With the above background, we can now turn to



308 A. MEDA and P. NEY

Lemma 2.3 (Conditional weak law of large numbers). Assume {Yn} sat­
isfies (HI) and that B  C Rd is open and convex with [B fl D(A*)]° 
7̂  0. Then for all e > 0

(2.5) Yn
------VBn >e n

exp 0 as n oo.

R em ark . Without the condition Yn/nE B,

( 2 .6 )
exp o.

(See e.g. Ellis [6], Theorem II.6.3 or Dembo and Zeitouni [4].) But under 
(HI) A*(VA(0)) = 0, and A*(v) ^ 0 for all v. Hence A*(VA(0))= inf A*{v).

v € R d

Now if VA(0) G B , then inf A*(v) = inf A*(v) =  vb =  VA(0) in (2.5), and
ueRd v e B

comparing with (2.6) we see that in this case the conditioning in (2.5) has 
no effect. This should be contrasted with the case VA(0) $ B , in which 
W V A (O ).

P roof of Lemma 2.3. Let { A ( a ) ; a e l (i} be as defined in (Hl)(i). Let 
||x|| =  max{|x;|, 1 ^ i ^  d} for x  =  (rci,. . . ,  xfi) £ and let

B ^  = B  fl {u G : ||u — vb || > e}.

Let

and

where

Then

Bt =  {v G Rd : {Vi -  vB,i) > e} fl

Bd+i = {u G Rd : -  (vi -  vB,i) >e}D B,  i = l , . . . , d ,

vB,i =  the ith coordinate of vB. 

2d
B ^  = ( j B i .

i= 1
If [Bl r\V(A*)]° 0, then by Lemma 2.1 there is a dominating point vBi with
A*(vBi) = inf A*(v). By the uniqueness of the dominating point and the

construction of B t,

A*(Bi) =  A*(vBi)>A*(vB) =  A*(B).

For [B-i nL>(A*)]° =  0, since B lt is open and A* is strictly convex, one has 
A* (Bi) = oo, and trivially A*(Bi) > A*(vB) =  A*(B). Hence

A * { B ^ ) > A * { B ) .(2 .7 )
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Then by Lemma 2.2

1 ( Ylim sup — log P< - e B (f)
n—Yoo TI Tl

1 r r  ̂ i' ^
= lim sup — log P< —  E B ^ \  — log P< — e B

n->oo n  L l n  J I n

i 2d y
^ lim sup -  log p ( — £ ß ,:} +  A*(B)

n->oo n  ^  1
z = l

g -  min [A*(Bi)] + A*(5)
l S z S 2 a

=  -A *(ßW ) +  A *(ß )< 0  by Lemma 2.1(i).

This implies the Lemma. □

In some applications, as in [9], one wants a limit law for one function, 
conditioned on another function. We will state a general theorem of this 
kind. We use the notation that for any v € Rd, we write v = (v i ,v2) with 
vi E ! dl, v2 G Rd'2, d\ + d2 = d. Thus Yn = (Ym , Yn2), Yni 6 Rd' , Yn2 e Rd2. 
Also, for a = (oq, a 2) G Rd,

(2.8) A(aq,0) =  A^^(oii), A (0,«2) = A(2)(a2),

where
A ^  (afi = lim — log Ee^ai^ ni\  i = 1,2. 

n
Write

A{l'l' (v i)=  sup [(ai,Vi) -  Aw (a,)], Vi£Rdi.
aie&di

One can check that if {Yn} satisfies (HI) on Rd then also {yni,A^^} 
satisfy (HI) in Rdi. Hence if C is open and convex with [C n P ( A ^  )]° ^  0, 
then the unique dominating point vq exists and

(2.9) VA{2){a2) = vc , a 2 6 Rd'2, vc £R d2

has a solution denoted by ac  G Rd’2 ■
We can now state

T heorem 1. Assume (HI), and let C  C Rd '2 be open and convex, with 
[ C n V { A ^  )]°7^0. Let vc G Rd2 be the dominating point for (A(2\ C ) ,  and 
a c  be as defined in (2.9). Then

Ym - v i > e ^ G C }  n J
exp

(2 .10)
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■where

(2.11) v\ =  (VA(0, a c ))i .

R e m a r k . As in the remark following Lemma 2.3, if VA^2)(0) € C, then 
the conditioning has no effect. The interesting case is VA^2)(0) £ C .

A pplication . Let {X n, n — 1, 2 ,... } be a sequence of random variables 
on a measurable space (S, S),  let g : S —> Rdl, u : S  —» Rd'2, f  = (g, u ) : S  —*

n n n
Yn = y ^ J ( X j ) ,  y n i  = y ^g(Xj),  y„2 = Assume that {T„} satisfies

1=1
(HI). Then

i = l 1=1

(2.12) - J 2 g ( X i ) ^ ( V A ( 0 , a c ))in  z—'i=i

with respect to

(2.13) p |  ■ - E ^ . ) e c } .n  ' Ji=i

This formulation is relevant in the MA case below.
P ro o f  of Theorem 1. Take C as specified in the theorem and let 

B = Mdl x C. Then (A,B)  satisfy (HI) and we can apply Lemma 2.3. The
conditioning in (2.5) becomes Gf?j =  £ c j ,  as required in (2.10).
We will identify vb in (2.5) as

(2.14) v B =  VA(0,ac).

Then
( — - v b )  =  — - ( V A ( 0 , a c ))! v n / 1 n

as required.
Thus it remains to prove (2.14). To this end we have

A*(vb ) = A*(B) by the property of the dominating point,
= A*(Rdl x C) = inf A*(!dl x {c})

= inf inf A*(u), where 7r(ui,U2) = t>2,
c£C  {u:tt(v) = c}

= inf A ^  (c) by the contraction principle,
c£C

= A(2)*(C,) =  A(2)*(nc )-

(2.15)
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Now recall by (2.8) that A(0,02) =  A2(a2) for oli G Mrf'2, and that by (2.9) 
there exists olq G Md2 such that VA2(ac) =  v c ■ Hence VA(0, a c ) exists, with

(2.16) (VA(0,ac ))2 =  VA2(ac )= n c .

Also clearly if for some v 6 Rd, a v G Rd, VA(av) exists and =  v, then

(2.17) A*{v) = (av,v) -  A(av).

Now substituting v =  VA(0, ac )  in (2.17), and applying (2.8), (2.15), (2.16), 
we get

A*(VA(0, a c )) = ((0, a c ), VA(0, a c )> -  A(0,ac )
= (ac ,VA(2) ( a c ) ) - A ^ ( a c )
=  A(2>* (VA(2) (ac)) =  A(2)* (tic) = A* (vB).

By the uniqueness of the dominating point

VA(0, a c )  =  v b -
□

3. Application to Markov additive chains

To define the MA chain let {ATn; n =  0 ,1 ,...  } be a Markov chain (MC) 
taking values in a measurable space (S,S),  irreducible with respect to some 
measure ip on (5, S), and let {£n; n =  0 ,1 ,. . .  } C Rd be an adjoined sequence 
such that {(Xn,£n)} is itself a MC on (S  x Rd,S  x TZd) (lZd =  Borel sets 
on Rd), with transition function

(3.1) P{(X n+i,£n+i) G A x T I X n = x,£n = s}=p{x ,A  x T)

for A  x T G <S X TZ<1, x  G S. Note that the right side is assumed to be inde-
n

pendent of s. Let Sn = Yl£i- Then { (X n, Sn)] n =  0 ,1 ,... } is called an MA
i=0

chain. Examples are n
Sn = ^ 2 f ( X i ) ,  

i=l 
or n

S„ = £ / i ( X i _ i  ,Xi),
i=l

for some /  : S  -> Rd, h: S  x S  —>Rd.
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Let,

(3.2) P (a) =  {p(x, A; a)} = |  j  e<'a,s^p(x, A  x ds),a G Md| .

Thus P(a)  is a (non-stochastic) irreducible kernel on (S,S). Let R(a)  be 
its convergence parameter, which always exists under the cp-irreducibility 
condition (see [12]). Under suitable further hypothesis, A(a) = f?~1(Q:) is 
an eigenvalue of P(a),  with left eigenmeasure {/(A; a) : A 6 5} and right 
eigenfunction {r(x; a) : x E 51}. An (unnecessarily strong) sufficient condition 
for this is the existence of a measure u on (S' x Rd, S  x TZd) such that for some 
0 < a ^  b <  oo, mo > 0
(H2) a i y ( d x r ) ^ mo( x , A x r ) ^ ! / ( i x r ) .
(See Lemma 3.1 of Iscoe, Ney, Nummelin [7], hereafter referred to as [INN].)

There are weaker conditions for the existence of A, l and r (see e.g. Ney 
and Nummelin [11]), but we will assume (H2) for definiteness and since it 
simplifies some arguments. Also note that (H2) implies irreducibility of { X n} 
with <p(A) = u(A x Rd).

Let
(3.3) H  = the convex hull of the support of u(S x •).
We will assume that
(H3) P(A) is open, and H () ^  0,
where T>{A) =  {a : f?.(a) > 0} by definition.

Now one can check that
pn(x,A;a)  = Ex[ e ^ s^ - X n eA}.

The following lemma summarizes some relevant parts of Lemma 3.4 and The­
orem 5.1 (and its proof) from INN. From this lemma we can then conclude 
that the measures

Px{5'71 e ■, X n £ A}, A e S  with <p(A)> 0, 
satisfy the conditions of hypothesis (HI).

L e m m a  3.1. Assume (H2) and (H3). Then
(i) A =  log A (as defined above) is analytic and strictly convex on P(A).

(ii) A is essentially smooth on P(A).
(iii) VA(o') = v has a solution a v C  P(A) for all v G H°.
(iv) lim ~ log Ex[e(a,Sn); X n 6 A] = A(a) f o r x d S ,  A & S  with l (A, 0) > 0, 

and a  G P(A ).
(v) P°(A *) = H°.
R e m a r k . Under (H2), l(A, 0) > 0 is equivalent to ip{A) >0. From now 

on, to avoid trivialities, we assume y>{A) > 0 for the sets A referred to in 
Lemmas 3.2, 3.3 and Theorem 2.

Thus the hypothesis (HI) is satisfied and we get from Lemmas 2.1 and
2 .2 :
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Lemma 3.2. Assume (H2) and (H3), and let B be open and convex, 
with (B n H)° ± 0. Then

(i) inf[A*(w); v G B] is achieved at a unique point vB E B  n H° (the dom­
inating point),

(ii) XA(a) = vB has solution a Vg ERd,n
(in) lim -  lo g p j-^  € B, X n G a )  =  - A *(B) = -A*(vB). n I n J
(Note that P°(A*) = H° (see e.g. the proof of Theorem 5.2 of INN).)

Y„
Replacing the measure p | Yn e

P;r { Sn G

Yn 'i
— E B  > in Lemma 2.3 by 
n J

- e 5 , A „ 6 A }  
n J

we also obtain
LEMMA 3.3. Assume (H2) and (H3) and let B be open and convex with 

R P I / /V 0 -  Then

. { I I -UI n vB > e S n

n
€ B , X n € A j- exp

The proof is exactly the same as Lemma 2.3, except that (2.8) is replaced 
by

lim sup — log Px{ —  G B ^  I —  G B, X n G a } n In  In J
= lim sup i   ̂log Px{ G B ^ \ X n G A j  -  log Px{ ^  G B, X n G A j ,

with Lemma (3.2) (iii) then applied to the above expression.
To state an analog of Theorem 1, we again use the convention that for 

any v G Rd, we write v =  (ui, V2 ) with wi G Rdl, v2 G Rd'2, d\ +  d^ = d, so v\ is 
the first d\ coordinates of v.

n

Now consider the MA chain (xn,Sn , and write £n=(£nl, £n2)eKd,

n

with £ui G Rdl, £„2 € Rd2, and write Sni — i =  1,2. Then {X n, 5ni} is
k = \

an MA chain with transition function

(3.4) p(1) ( i , A x r 1) = p ( ^ A x ( r 1 x K ‘l2)) for Ti G 7Zdl,

and transform kernel

(3.5) P (1)(c*i) = {p[l)(x, A ; « i ) }  =  {p{x ,A ; ( a t ,0))} ,  a i  G Rdl , ( a i , 0) G Rd.
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Similarly {Xn,Sn2} is an MA chain with

(3.6) p{2){ x , A x r 2) = p ( x , A x m d' x v 2), r 2 £77d2,

and

(3.7)

f P \ x , A \  a 2) = p ( x , A; (0,a2)), a 2 £ Rd2, (0, a 2) £ Md. 
We want to prove that

Sn l  exp

n

with respect to the conditioned measures

S n2(3.8) Jx{-I Cc: nc/2

and to identify the dependence of v on C.
To this end, note first, tha t under (H2), p(l\  i — 1,2 will satisfy

(3.9) avi{A x f , ) | pW"’0 (x, A x r,) ^ 6n'(A x r 2), T, C l d’:,

where

(3.10)
ux{A x T l ) = t /{Ax(Ti  x Rd'2)),
zx2 ( A x r 2 ) =  i / ( A x ( R d x r 2 ) ) .

Then there will exist A rl(-,ai), a , £ R d', i =  l,2 . Let = 
log AW, and define 77^ analogously to (3.3).

Note that

(3.11) A(c*i,0) =  A(1)(m), A(0, a 2) =  A^2̂ (ö2),

and

(3.12) (VA(«1,0 ))1 = V A (1)(a1), (V A (0,a2))2 = VA(2)(a2)

One can check that if C  C Rd'2 is open and convex with C fl H ^  0, 
then (A^2\  , Sn2) satisfy the hypotheses and conclusions of Lemmas 3.1
and 3.2. Hence there again exists a unique dominating point vc  and solution 
a c  £ M.d'2 of VA(a2) =  v c ■ Taking B = Mrfl x C, and arguing as in Theorem 1, 
we conclude that

T heorem 2. Let {(ATn , 5n);n — 1,2, . . .  } be an MA chain satisfying 
(H2) and (H3), and let C, vc,  etc be as given above. Then for every e > 0

Snl
n ~ v\ >e Sn2

n
G C, X n £ A j- exp 0 as n ■ 00,
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where
ui =  (VA(0,c*c))i.

Special Case . Take =  f { X n), / :  5  Kd, and take f(s)  =  {g{s), u{s)), 
s € S, g E Rdl, u € l d'2. Then

1 n 1 71

t=i i=i
■ oo.
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COVERAGE PROBABILITIES OF RÉNYI CONFIDENCE BANDS

Z. MEGYESI

Dedicated to the memory of Alfréd Rényi

A bstract

The applicability of Rényi confidence bands, as extended by S. Csörgő [6], are inves­
tigated by an extensive computer simulation study. Some new bands are also proposed.

1. Introduction

Theorems 5 and 6 of Rényi’s paper [8] provide the possibility of drawing 
confidence contours and bands to the continuous distribution function F(-) 
or to the survival function 1 — F(-) the width of which is proportional to 
the natural unbiased estimator of the function to be estimated. Such bands 
are called Rényi confidence bands. M. Csörgő pointed out in [2] that F(-) in 
the denominator of these theorems of Rényi can be replaced by the sample 
distribution function Fn(-) if the supremum of the relative error of F(-) is 
taken over the set {x : p ^  Fn(x)} rather than {x \p ^  F(x)},  for any fixed 
p 6  (0,1). E. Csáki showed in [1] that Rényi’s Theorem 5 remains true if the 
fixed p is changed to a sequence pn such that pn £ (0,1) and pn —>■ 0 provided 
npn —> oo. M. Csörgő, S. Csörgő, L. Horváth and D. M. Mason [3] proved 
that both theorems of Rényi remain true if {pn}^=i is a sequence such that 
0 <pn ^P  for some p £ (0,1) and npn oo; thus even pn —> 0 is not necessary.

S. Csörgő proved in [6], Theorem 1, that F(-) can be replaced by Fn(-) 
and {x \pn ^F(x )} ,  the set over which the supremum is taken, by {x : p n ^ 
Fn(x)} under much more general conditions than in the paragraph above. 
Also, his Theorem 2 shows the existence of certain narrowed and combined 
versions. Later on we use the notations and definitions of [6], so our pa­
per should be regarded as a continuation of [6]. We use some terminology 
consistently throughout: we write confidence band if it can be used for the 
estimation of the unknown F(-) or 1 — F(-), (i.e., it is determined by the 
sample itself) and at every point of its support it gives both lower and up­
per bounds for F(-) or 1 — F(-), respectively, and confidence contour if the 
statistics can be used for estimation, but give either only lower or upper 
bound on the function to be estimated. When a band can be drawn only if

1991 Mathematics Subject Classification. Primary 62G05.
Key words and phrases. Asymptotic confidence bands, distribution and survival func­

tions, coverage probabilities, simulation.

0081-6906/98/$ 5.00 ©1998 Akadémiai Kiadó, Budapest
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a simple goodness-of-fit null hypothesis specifies jP(-), it will be referred to 
as a test band. This is the case for the test contour and band (1) and (2) 
below, which arise from Rényi’s original theorems in the case of pn =p. We 
write one-sided band if the band is motivated by the problem of estimation 
of either the left or right tail of the distribution, and two-sided band if it can 
be used to estimate both tails. Almost all of our bands are one-sided, but, 
for example, (8) and (9) are two-sided. We formulate all of our results in 
detail in the form motivated by the problem of estimating the right tail, or 
more precisely, the survival function 1 —F(-); the left-tail versions are briefly 
touched upon at the end of Section 6.

The results mentioned above are all limit theorems, with the exception of 
Csáki’s formulae in [1]; the la tter give the exact actual coverage probabilities 
of test contours. It would be very useful for any application to know for 
what sample sizes n of practical statistical use and — using the notations 
of [6] — for what choice of kn or pn are the actual and nominal coverage 
probabilities tolerably close and when do the actual coverage probabilities 
reach the nominal one. The aim of this paper is to describe the results of an 
extensive computer simulation investigating these questions.

Let a  £ (0,1) be a fixed number and let ya , za and wa denote the unique 
values for which K(ya) = L(za) =  2<f>(u;Q) — 1 =  1 — a, where K(-) is the 
Kolmogorov distribution function, L(-) is the distribution function of the 
absolute supremum of a standard Wiener process on the interval [0,1] and 
$(•) stands for the normal distribution function. The critical values ya and 
wa can be obtained from many textbooks, for zQ we refer the reader to [4]. 
However, for the sake of greater precision, these values were also computed by 
our programs directly by using the formulae for the corresponding functions. 
Let us define, for any pn £ (0 ,1),

7 Í ( a )  := l + «̂ a
1 ~  Pn  

npn 1 CPn • 1 T
1 - P n

npn Cpn := 1  -* a
1 Pn

npn
If pn = p  then Rényi’s [8] Theorem 5 implies that 

1 -  Fn(x)
( 1 )

Ipn («)
^ l - F ( x ) ,  F { x ) Z l - p n > - H - a ,

and his Theorem 6 implies tha t 

(2) P 1 g i  — F ( x ) Z  1 F ( x ) ^ l - P n } - + l - a .
«?»(“) ‘ ' ' cPn(a)

From (3) and (4) of [6] we know that (1) and (2) hold for any sequence 
Pn  G (0 ,p) for any fixed p £ (0, 1), as long as npn -» oo. Theorem 1 of [6] also 
implies that

(3 )
1 ~ F n(x)

7*b(«)
^  1 -  F{x), x ^ X n- kritTl > -> 1 -  a  ,
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where

%tfcn =  1 +  Wq 1
\ _ ha.

for a sequence of integers {kn}™=l such that 1 5Í kn g np, n ^  1 /p, for some 
p G (0,1). Note that (1) is a test contour, while (3) can be used for estimation 
as well, and if we choose pn = kn/n  then (1) and (3) are the same on the 
common part of their supports. We call them analogous in this sense. We 
use this term for bands, too. The formulae (11) and (12) of [6] imply that

(4) 1 -  Fn(x) 
c+ (a)TL ,/in ' '

g l  - F { x ) ^ 1 - F n(x)
Cn,kn (a )

% = X n—kn,n f  ̂ f O ,

(5) p { ' , ; , i . ( « ) [ i - F . w ] s i - f w s < i , ( o ) | i - f . ( . ) i ,  « s i , - . . , }

— ^  1  —  < x ,

by the above conditions on {kn}™=l. Hence (4) and the original Rényi con­
fidence band (2) are analogous. One can expect that

((i) P { c ^ { a ) [ l - F n { x ) ] ^ l - F ( x ) ú c ^ { a ) [ l - F n ( x) ] ,  F ( x )  Z  l - p n }

—> 1 — a
holds under the above conditions on here (6) is the test version
of (5). We shall prove in the next section that this is indeed the case.

From the first part of Theorem 2 of [6] we have that
1 -  Fn (x )

(«)
^ l - F ( x ) ^ C+fc> ) [ l - F n(x)], x ± X n tn,n ^ —> 1 — a .

That theorem also shows that if kn/ n  —> 0 then from (7) and from the cor­
responding left-tail version we can construct a two-sided confidence band

(8) P { 4 1  (*) ^ F (x ) Í  U{na)kn(x) , X kniUi x i  -> 1 -  a  .

For the upper and lower contours and L^'l we refer the reader to [6].
The first and most important fact we have to mention is that (l)-(8) are 

distribution-free: for any meaningful pn,kn,n ,a  the actual coverage proba­
bility does not depend on F(-), as the first step of the proofs in [6] shows. 
This provides the possibility of studying them by investigating only the par­
ticular case of the Uniform(0,l) distribution, with all our findings being 
universally applicable for any continuous distribution function F(-). Thus 
we may and do assume that the underlying distribution is the Uniform(0,l),
i.e., F(x) = x  identically on [0,1]. Obviously it is enough to watch only the 
order statistics to see whether F(-) lies in the band determined by Fn(-).

We concentrate on the investigation of the bands, we study the contours 
mostly to check our simulation. We used several thousand hours of running 
time on IBM Pentium personal computers.
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2. Coverage probabilities of one-sided bands

Our investigations cover the cases when the sample size n is between 10 
and 2000, and a  6 {0.1, 0.05, 0.01}; these are the most important and cus­
tomarily typical cases for practical use. All our qualitative and quantitative 
statem ents are for these three situations. Rényi confidence bands are for 
tail estimation, so we may restrict ourselves to the values pn £ (0, A) and 
kn £ ( 1 , . . .  , }. (The upper and lower integer parts of x are denoted by
|V| and LmJ, respectively.)

We generated 100000 samples of the appropriate sizes and we obtained 
the actual coverage probabilities as the means of these 100000 Bernoulli- 
trials. Thus the error of our simulated values are not more than

a  =  0.1 a =  0.05 
0.00156 0.00113
0.00186 0.00135
0.00244 0.00177

a  =  0.01
0.00052 with 90% probability
0.00062 with 95% probability
0.00081 with 99% probability

Table 1

From the formulae (l)-(8) one can see that the width of these bands 
and the distance of the contours from the unknown F(-) decrease as pn or 
kn grow, so the behaviour of the actual coverage probabilities is far from 
obvious.

Let us first investigate the narrowest band, (7). In this particular case, 
as kn grows, the actual coverage probability also grows as expected. In spite 
of this, the actual coverage probabilities are quite far from the nominal ones 
even for kn close to [ |J  . For example, if n =  100 then the actual coverage 
probabilities are not more than 0.8656, 0.92 and 0.9728 instead of 0.9. 0.95 
and 0.99, The situation is, of course, better for larger samples, but even 
for n  =  1000, the actual coverage probabilities reach only 0.8868, 0.9397 and 
0.9856, respectively. That is, the actual coverage probabilities of (7) converge 
to the nominal one from below, and the rate of convergence is quite slow. 
For sample sizes between 10 and 2000 they are not close enough, so the band
(7) is not suitable for practical use.

Let us now look at the bands (4) and (5). If the true distribution function 
F(-) lies in the band in (7) then it lies both in those in (4) and (5), thus we 
can expect a better behaviour for these two bands.

Indeed, the actual coverage probabilities grow in these cases as kn grows, 
but in the case of (4) they get close to the nominal one and they reach it 
only for samples of very large sizes. In the case of (5) the actual coverage 
probabilities increase rapidly with kn and even for relatively small values 
they reach the nominal coverage probability and remain above it. (We deal 
with the question what “relatively small” means in Section 6.)
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Figure 1. The actual coverage probabilities of (4), (5), and (7), shown by thin, medium 
wide and broken lines, respectively, in the case of n =  1 0 0  and a  =  0 .1 , as functions of kn.

We have to mention about the band (4), and this is also true for the test 
band (2), that for very small kn or pn, c~k (ct) or c~n(a) become negative, 
respectively, so the upper contours of these bands vanish. This occurs if

kn <
1 + 5a.n

or Pn ^ n + Z2

respectively. In these cases we considered the actual coverage probabilities 
to be 0.

The width of (4) is always larger than that of (5). If we denote the 
widths of these bands, which are proportional to 1 — Fn(-) in both cases, by
^•n,i„(a )[ 1 ~ ^n(®)] and d ^  ((of)[l -  F„(x)], respectively, then

d{i). (a) =  —n,kn ' ' i,

yielding that,

2 z.a \J k n ( 1  -  y f)
, , , and d^'l (a) = 2zQ<

* n ~ z l (  1 - W
1 - l f

(a) = r/T (a)-w(5)
k n - z l {  1 - t )

The actual coverage probabilities of the Kolmogorov band were also al­
ways recorded in the course of our investigations. We did this partly with the
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aim of checking of our simulation. It is well-known about the Kolmogorov- 
Smirnov bands and contours from experience tha t for each finite n their ac­
tual coverage probabilities are above the corresponding nominal ones. Our 
simulation agreed with this for the case of the Kolmogorov band. The em­
pirical observation was proved as a mathematical fact by Massart [7] for the 
Smirnov confidence contour.

Our simulation showed that the actual coverage probabilities of Rényi’s 
original test band (2) exceed the nominal one for every meaningful choice of 
n and pn , i.e., the (2) band is, like the Kolmogorov band, conservative in the 
above sense.

Figure 2. The actual coverage probabilities of the test band (2) (as function of pn), in 
the case of n =  20 (broken line) and n =  500 (continuous line).

We prove (6) before investigating it. Let us denote the actual coverage 
probability of (6) by 7r„(a). By using a simple idea of §3 of Rényi [9] we have

7Tn ( a )  =  P 

=  P

| cPi i( o ) [1  -  Fn(x)] <; 1 -  F{x) ^  c + ( a ) [ l  -  Fn(x)}, F{x) g  1 - p „ }  

1 — Fn (x)1 _  < < 1
Cpn(a) l - F { x ) cPn(a)

-z,

, F ( x ) g l - p n

J F zEil 
1V nP"

Of

^ F ( x ) - F n( x ) ^  
= 1 -  F(x) ~

Z a \ !  n p n

Cpn (a)
,F{x) ^  1 -Pn
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that is,

P npn-------- sup
Pn  F ( x ) ^ l —p„

\Fn( x ) - F ( x )

1 F{X)
Ú Fn(a)

<p n-Pn sup
Pn F(x)511- P n

1 F n(x ) -F (x ) \  
1 — F(x)

<
/ l-Pn 

2qV «Pn
where formula (4) in [6] shows that the upper and lower bounds both converge 
to 1 — a  as long as npn -A- oo, by the continuity of the limiting distribution 
function. Thus (6) is proved.

The behaviour of the actual coverage probabilities of (6) is very similar 
to that of (4): they grow as long as pn grows, but they reach the nominal 
coverage probability only for samples of very large sizes. Thus (6) produces 
worse results than (2), so it cannot be recommended for practical use in 
simple goodness-of-fit tests.

Figure 3. A typical view of (5) at n = 100, kn = 9, a  = 0.1, in comparison to the 
Kolmogorov band, which is depicted in thin lines. As Rényi confidence bands are for tail 
estimation, the figure concentrates on the right tail.

However, it is interesting to compare the behaviour of (2), (6), (4) and
(5). If we choose pn — kn/n,  the expectation of the support length of the 
band in (4) and (5) is almost the same as the support length of the band
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in (6) and (2). (This error results from the way we defined (4) and (5) 
and vanishes asymptotically.) The test band (2) is the test analogue of (4), 
while (6) is that of (5). By comparing (4) and (5) one can see that (5), the 
narrower band, is proved to be surprisingly far better, but the test band (6), 
which is the test analogue of (5) was beaten by (2). This shows that even 
for a  simple goodness-of-fit test, for which all our bands can be used, there 
can be a drastic difference between analogous bands with the same nominal 
coverage probabilities.

This fact points to the significance of (5), which can be regarded as 
an almost always conservative all-purpose narrowed version of the original 
conservative Rényi confidence band (2).

3. Confidence contours

The investigation of Rényi’s original test contour (1) was the most ade­
quate way to check our simulation, because the exact values can be computed 
by Corollary 1.4.2 of Csáki’s paper [1]. The simulated and computed proba­
bilities were close indeed, their difference followed an approximative normal 
distribution with an expectation near to 0 and with variance according to 
the size of the Monte-Carlo. (This comparison was made in fact for the 
corresponding left-tail versions.)

Figure 4 shows the actual coverage probabilities of (1) at n =  100, a  =  0.1. 
The diagram is interesting in itself. One can see that the actual coverage 
probabilities grow rapidly with pn and they get close to the nominal coverage 
probability very fast, then the actual ones oscillate for quite a long time near 
to the nominal one, later they reach it, and even while decreasing they remain 
above it.

The band (3), which is analogous to (1), produces far worse results. In 
this case the actual coverage probabilities of (3) grow monotonically with kn, 
but they do not reach the nominal one. The relationship between (1) and
(3) is similar to that between (2) and (4), as discussed at the end of the 
previous section.

4. Two-sided bands

In  Section 1 above, (8) is the only example of a two-sided band. It is 
obtained by combining (7) and the corresponding left-tail version. We have 
seen th a t the actual and nominal coverage probabilities remain far apart in 
the case of (7) for sample sizes of practical use. This property of (7), which 
makes it unusable for any practical application is inherited by (8). So, let 
us try  to draw a two-sided confidence band from the best one-sided band 
available, that is, (5).
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Figure 4- The actual coverage probabilities of (1) and (3), based on computed and 
simulated values, respectively in solid and broken lines, choosing pn =  kn/n  for (1 ) in the 
case of n =  2 0 0 , a  =  0 .1 .

Let z* be the unique value for which L(z*) = \ / l  — a  and let

\ / i  -  %■ J T -
*cn,kn := 1 ~ z a and *c+kn{ a ) : = l  +  z*a

The formula (18) of [6] and the formula (5) of this paper imply that 

(*) P { ^ " fcn(a)Fn(x) ^  F(x) Í  *c+kn(a)Fn(x ) , x ^  X K ,n)  -> y/T^ a ;

(**)
p { l -  (a)[l -  Fn(x)} Í  F(x) Í  1 -  *C -*>)[1  -  ’

^ X n—kn ,n J*  ̂ n/ 1  ^  •

If Fn(x) ^ 1 /2  then the upper contour of (*) is beneath that of (**) and 
the lower contour of (*) is above that of (**). This motivates the choices of 
the contours of a two-sided band shown below:

{
Cri,fcn (a )^'n(x )i X kn TÍ ^ X <

Cn,Jt„ (a)[l ~ -̂ n(x)]> ^\n/i\,n=x = Xn-kn,ni
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Figure 5. The coverage probabilities of (9) in the cases of n =  200 (continuous line) 
and n = 2000 (broken line). In the second case 1/10 of the real values of kn are shown on 
the vertical axis.

* < / > ) : =
Cn,kJa )Fn(X), Xkn,n = 3-4 X^nj2\tr

1 - * Cn , k n ( ° l) [ 1 ~ F n ( x )], X \ n / 2 - \ , n ú x Ú X n - k n ,n

T hen for any sequence of integers {fc„}^_1 such that 1 ^  kn ^ np and 
n  ^  l / p  for some p G (0,1), and kn -> oo and kn/n  -» 0 we have that

(9) - { • 4 1  w  í  r  4 1 w ,  s  x s  i - a .

This statement can be proved in the same way as (8), which is denoted 
by (21) in [6], by using the formulae (12) and (18) of [6]. The width of (9) in 
the intervals x G [Xkn,n, X \ n/ 2-\,n) and [^|h/2l,n> X n- k n,n\ is proportional to 
Fn (x) and 1 - F n(x), respectively. Let us denote this width by d ^ kn(a)Fn (x) 
and d^pkn (a)[l -  Fn(x)], respectively, where

d'(9)
n . k , (a) = 2<



RENYI CONFIDENCE BANDS 327

Figure 6. A typical view of (9), in the case of n = 100, kn — 17, a  =  0 .1 , in comparison 
to the Kolmogorov band (thin lines).

We expected (9) to inherit the good properties of (5). Indeed, the actual 
coverage probabilities grow together with kn and they reach the nominal one 
quite fast and later remain above it. Figure 5 shows the coverage probabilities 
of (9) at samples of two different sizes.

5. On a narrowed Kolmogorov band

S. Csörgő and L. Horváth published the following result in [5], which 
narrows the Kolmogorov confidence band:

( 10)

P {Fn( x ) - ^  + v l
n 1/2 nFn(x) -\-yan 1/2

% F { x )

v l
n 1/2 n[l — Fn(x)\ + yan 1/2

, — oo < x  <oo > —11 — a .
}

Our investigations were extended to this band. The simulation showed 
that by narrowing the Kolmogorov band it loses its conservatism and the 
convergence of the actual coverage probabilities occurs from below, and they 
remain far from the nominal one. The actual coverage probabilities are 
shown in Figure 7.
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Figure 7. The coverage probabilities of (10), for a =  0.1, a  =  0.05 and a = 0.01, shown 
in continuous, broken, and dense broken lines, respectively.

The authors of [5] write:

“We have conducted a small scale Monte Carlo simulation to check the applica­
bility of the Theorem [which yields (10)] at n =  50. We generated 40 samples of 
size 50 from the uniform (0,1) distribution and constructed the bands [ . . .  ] with 
1 — a  =  0.9. Maybe we were lucky, but F(t) = t went out of the band only once.”

This simulation was probably wrong, given that the actual coverage prob­
ability is only 0.443 in the above case, based on our results from 100000 
samples. If their simulation is correct, the probability of the event described 
above is about 3.61 ■ 10-13; i.e., less than 10000th part of the probability of 
winning the jackpot in the Hungarian National Lottery, where one has to 
pick 5 numbers out of 90.

The negative results obtained for (7) and (10) provide reason for some 
scepticism concerning the practical use of narrowing of conservative bands 
by mixing them; it seems easy to loose the conservatism and it may occur 
that the actual coverage probabilities remain far from the nominal one for 
sample sizes of practical use.
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6. Rules of thumb

In this section we describe the conditions of applicability of some pre­
viously discussed bands of “good behaviour” . For easier use we give some 
“rules of thumb”.

We have noted about Rényi’s original test band (2) that it is conservative 
for any pn E  ̂ i 5) for sample sizes between 10 and 2000, i.e., (2) can be 
used for simple goodness-of-fit tests without any further consideration.

The actual coverage probabilities grow rapidly with kn in case of (5) 
and (9), then they reach the nominal one and remain above it. We call 
the kn for which the nominal coverage probability is achieved a point of 
conservatism and we denote it by K„(a). When we want, to emphasize the
band whose point of conservatism is being discussed, we write K n \ a )  or 
Kn\a) ,  respectively.

The first general observation resulting from the simulation is that for 
any fixed n, Kn(a ) grows as a decreases. In the case of a = 0.1, the actual 
coverage probabilities grow quite rapidly for values of kn close to /in (0.1), so 
the exact values of «„(0.1) can be determined quite accurately. For a  =  0.05 
the growth of the actual coverage probabilities for kn close to Kn (0.05) is 
much slower (cf. Figure 5), so the determined value of /in(0.05) has a larger 
error resulting the random fluctuation of the simulation. This is even more 
true for k„(0.01).

We prefer to give some simple inequalities instead of lengthy tables of 
points of conservatism. These rules are constructed for practical use, and 
they do not state anything concerning the asymptotic behaviour of Kn(a). 
The “rules of thumb” for (5) are:

4 5 > (0 .1 )^ 4 n ° - 2  

*45)(0.05) g  1.5 n 0  5 5  

«45)(0.01) p . 8 n 0'8.

For example if a = 0.1 and we have a sample of size 270, then the actual 
coverage probability of (5) is at least 0.9 if n /2  ^ ^ 4 • 270° 2, tha t is, if
135 ^ kn ^  13. These values are valid for n  ^  200, but they are not sharp 
enough, so we have the following table of (a) for this small values of n.
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1 0 2 0 30 40 50 60 70 80 90
0.9 3 4 5 6 6 7 7 8 8

0.95 3 5 7 8 10 (9) 11 1 2 13 14
0.99 3 6 9 1 2 14 17 (16) 19 2 2  (2 1 ) 24 (23)

1 0 0 1 2 0 140 160 180 2 0 0

0.9 9 (8 ) 9 1 0 1 0 1 1  (1 0 ) 11

0.95 15 17 19 (18) 2 1  (2 0 ) 23 (22) 24 (23)
0.99 26 (25) 31 (30) 34 (33) 40 (38) 44 (42) 46 (44)

Table 2

The above values are observed from 2500000 samples of the appropriate
sizes. If there are two values in a cell, this means that the value of K n \ a )  
could not be determined unambiguously. If kn equals to the larger one, the 
actual coverage probability reaches the nominal one with a probability of at 
least 0.9, but even if kn equals to the smaller one, which is in brackets, this 
will happen with probability of at least 0.1.

The inequalities for (9) are even easier to remember:

4 9)(0.1)g0.7 n0'7 

4 9)(0.05) g0.6 no s 
*49)(0.01) g0.5 n°'9.

These are sharp for small n as well, so it is not necessary to give an additional 
table. One can see that (9) becomes conservative somewhat later than (5).

There is no point in giving such rules for the test contour (1), because the 
exact coverage probabilities can be computed by the formulae of Csáki’s [1]. 
We mention that if one only requires an actual coverage probability of 0.885 
instead 0.9, (1) satisfies this for pn >7/n  if 10 g n g 400 and for pn > 10/n  
if 400 <  n  g 2000. In fact, one can give similar rules for any other value less 
than the nominal coverage probability (cf. Figure 4).

Finally, we spell out the equivalent left-tail versions of the bands dis­
cussed in this paper. For test bands it is obvious that for any choice of 
O<C1< I < C 2<00 and any pn £ (0,1) and n

p { ClFn(x) g F(x) g c2Fn(x), F(x)  ^ p n} =

-  P { d [ l  - F n(s)] ^  1 -  F (x )g c 2[ 1 -  Fn{x)l  F(x) g 1 - p n}.

For confidence bands we have

p | c i F „ ( x ) g  F { x ) ^ C 2 Fn (x) ,  x  >  X fc|i+i,n j  =

=  p |c i [ l  -  Fn(x)] g 1 -  F{x) g c2[ 1 -  Fn(x ) \ , x g X n- kn^ Y
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since Fn(-) is right-continuous.
Notice that in [6] the corresponding left and right-tail versions are not 

equivalent in this sense, however, for (8) and (9) we followed the style of [6]. 
We did so with the aim of the compatibility with [6]. Of course, one can 
write these two bands so as to be equivalent on the tails, then asymptoti­
cally everything remains the same, and the actual coverage probabilities get 
slightly better.

7. Conclusion

Summarizing our investigations, we can state that the original Rényi test 
band (2) can be used for any choice of pn € 5) for simple goodness-
of-fit tests against alternative hypotheses describing deviations on the tails. 
When one is interested in the behaviour of the unknown F(-) on one tail, 
then (5) can be used for this purpose, or, more importantly for estimation
purposes if kn ^  nyn (a). When one wants to estimate the unknown distri­
bution function on both tails, (9) is suitable for this purpose if kn ^  Kn\ot). 
All of our statements are for n 6 { 1 0 ,..., 2000} and a G {0,1; 0, 05; 0, 01}.

It remains for me to discharge the pleasant duty of expressing my thanks 
to Professor Sándor Csörgő who drew my attention to the topic discussed in 
this paper and helped with many valuable suggestions to improve the paper.
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ASYMPTOTICS OF PERIODIC PERMANENTS

T. F. MÓRI

To the memory of Professor Alfréd Rényi

A b s tr a c t

A limit theorem is proved, as n —t oo, for the permanent of the mn  x m n  matrix tiled 
with n2 copies of a fixed positive m x m  matrix.

1. Introduction

Let A =  (a,ij) be a fixed m  x m  matrix with positive entries. We want to 
study the asymptotic behaviour of the permanent of the (nm) x (n m ) matrix 
consisting o f n x n  blocks, each identical with A. Formally, let

Pn(A) =  Per

A
A

A
A

A ' 
A n blocks.

A A

Why study that? One possible motivation comes from the following ob­
servation. When the elements of A are all equal: = a, we have Per (A) =
amm\, that is, a =  (Per (A)/(m)!)1/,m. This suggests tha t <f>(A) =: 
(Per (A)/(m)!)1/,Tn could be used as a “mean value” of the elements of a 
square matrix A. <F(A) is easily seen to lie between the geometrical and the 
arithmetical means of the elements, and, in addition, it mirrors somehow the 
matrix structure, too. Unfortunately,

$(A) = $ A
A

fails in general, though such an identity might be required. Therefore, one 
might want to modify the definition of <£>(A) to lim (Pn(A )/(m n)!)1/mn,

n—>oo
provided the latter exists. The existence of the limit follows from a general 
theorem of Girko [4]; still it is of interest to determine its concrete value 
for these periodic matrices. Girko’s method was based on the fact that a 
permanent can always be represented as the second moment of a random
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Key words and phrases. Permanent, local CLT, saddle point method.

0081-6906/98/$ 5.00 ©1998 Akadémiai Kiadó, Budapest
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determinant. This time we use another, elementary method to obtain more 
precise asymptotic results for P„(A).

Permuting the rows and columns we can see that
"A n A12 Aim

1.1) P n(A) =  Per A21 A22 A 2m

_ Ami Am2 Amm _
where all elements of the n x n  matrix Atl are equal to atj. 

The general term in the expansion of Pn(A) is of the form
m  m

n i l “« '.
i= i j =i

where n ,7 denotes the number of elements taken from A,r  One can see that
m  m

riik = n, and n^j =  n  for every i , j ,  1 ^  i if m, 1 ^ j  ^ m. 
k= 1 k=1

How many terms of this form are there? Let us first choose the rows of 
the elements to be taken from A-(?, then the corresponding columns, finally 
we assign a column to each row. In that way we obtain

Pn(A)
71!

( 1.2 )

■ w - E n n
N i=l j=l

f r f  m '
m m  m m

) II 11 nb ! 1111 a5 j
i=\ j=l i=l j=ll \ \ Y .[ n«!,

J i
anij

nij-'
where the summation runs over m  x m  matrices N =  (rnj) with nonnegative 
integer entries, such that its row sums and column sums are all equal to n.

Such a sum can be estimated similarly to what is usually done in the proof 
of the Moivre-Laplace theorem [3, Ch. VII]. One first selects the maximal 
term of the sum, then nearby terms can be estimated through their ratio 
to the maximal term, yielding a sum asymptotically equivalent to a Gauss 
integral. And this is just what we are going to do in the next section.

This plan of work has a drawback: it relies on the positivity of A. It 
happens several times — even in the most interesting applications — that 
permanents of 0-1 matrices are considered. For instance, the number of 
1-factors (matchings) in a bipartite graph with 2-colorization {U, V}, U = 
{ rii,.. . , un}, V = {ui,. . . ,  vn } is equal to the permanent of the n x n  matrix 
A =  (ay ), where at] denotes the number of (uí, Vj)-edges [5, Problem 4.21]. 
For his result [4] Girko needed the same restriction. That is not surprising. 
Things may become messy with zero or negative entries. As an illustrative 
example, in Section 3, we give a complete discussion of the most simple case 
of 2 x 2 matrix A. Our tools will be generating functions and saddle point 
method; they do not seem to help in the general case.
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2. A limit theorem

In order t,o formulate our result we first need the following fact.
LEMMA. There exists a unique m x m  matrix T =  ( itJ) such that for every 

i =  l, 2, . . . ,m ,  and j  — 1 ,2 ,... ,m
m m

T ,  tkj =  m, y  tik =  m  and Uj -  Cidjaij
k=1 fc=l

for some positive constants C{ and dj.

P r o o f . Let A =  A /  and define the linear family
* j

£  =  =  (i‘ij)mxm '■ tij ^ 0, ' t-kj =  'y '  tik = ~ , Vi, Vj j-.
/c fc

The correspondig exponential family of distributions (see [2]) is

£ = {Q =  (qij)mxm -Qij =Cidjäij for some c, > 0, dj > ()},

and its closure cl £ is of the same form with c. Si 0, dj Si 0.
Let us minimize the Kullback-Leibler divergence

(2.1) £>(T||Á) =  £ £ í y log(tyVaü)
« j

over £. It is well known [2] that the minimum is attained for a unique 
probability distribution T called the /-projection of A on £, and this is the 
only element of £ f lc l£ . In addition, since for A there exists a distribution 
in £  with the same support, the /-projection T falls into £ itself. Now, let 
T = m2t .  □

REMARK 1. For numerical computations it is useful to know that T can 
be obtained as the limit of a natural iteration procedure. Starting from A, in 
each step we divide the rows by the row means (= 1/m times the row sums), 
then the columns by the column means and so on, alternately (iterative 
proportional fitting procedure, IPFP). This is so because £  =  £ j Pi £-2, where

£ l =  | t  =  (i i j ) m x m  '■ t i j  = 0, y  ' t ik — Vi
k

£ 2 =  = {iij)mxm-iij ^ 0 , y  tkj  =  ^ , V j} ,
k

and IPFP, as described above, is just an alternating sequence of /-projections 
onto £1 and £2, resp. (apart from a constant factor), see [2].
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Let. M denote the following m x (m — 1) matrix

( 2 . 2) M =

and G =  M ® M  (Kronecker product).
The main result of the present note is the following theorem.
T h e o r e m  1. Let T be the matrix constructed to A in the Lemma above. 

Define A =  [diag(vec(T))]-1 . Then

(2.3) Pii(A) ~  (nm)l
f  det(G'G) det(A) \  1/2 / Per (A) ^ " 
V det(G'AG) )  \  Per (T)

as 7i  —> oo.
R em ark  2. Some of the components in (2.3) can be expressed in a more 

explicit way, e.g.
l / m  /  m  r n  \  — 1Per (A) 

Per (T) impi=i j=i

m m
n c' n  ^
i= 1 3=1

det(G'G) = det(M' ® M'M ® M) = det(M'M ® M'M) = m 2 m — 2

det(A) = I U I '  
\=1 j=l

m m  \  —1

However, formula (2.3) has the advantage that in the case where all entries 
of A are l ’s it reduces immediately to (nm)\.

P roof of Theorem 1. In (1.1), let us multiply the rows and columns 
through Ay by cl and dj, resp. In that way we obtain that

( m m \ —1

n Ci n  di ) per
Z = 1 j = 1 '

hence it suffices to deal with the case A = T.
Now consider (1.2). Define N° = (nP)mxm with nonnegative integer en­

tries in such a way that its row sums and column sums be all equal to n, 
and n°- =  ^ t tj + 0(1) as n tends to infinity, 1 ^  i ^  771,

For a general term of the sum in the right-hand side of (1.2) let

T T ... T
T T ... T

T T .. .  T

m m

s ( N ) = n n
t=i j=1

.nij

n ij■
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Introduce stJ by n lJ =  nP + Sij Clearly,

f c = i  f c = i

holds for every i and j. Suppose 

(2.5) \sij\ ^ K  = K{n) = o(n1' 6).

Then, using Stirling’s formula, we can write 

S(N)
log

5(N°)
/  m  m

^ ( n n ‘r ' 5 ) = E E ^ ^ '
0 j \ m m

i=\j=\ 
m  m

i=1 j=1
Mil M l  /  -  \

+ E E  «  +  2 ) ~ n°ij ~ ( n ij + 2 ) loSnb + "tj +  0{K /s /n )  J .
i= 1 j = l

The double sum in the last line can be treated as follows.
m m  / 1

E E  (n°ij -  riij) log n° -  (ntJ + 2 ) loS ^  + (n*i ~  nij) + 0{K/y /n)
2=1 j = 1 

m  m
*7

2=1 j— 1

Mil I IO /   ̂ ^

E E  - ^ ( log^ + l o g í i i + ° ü )

(nij +  v ny fly + 2) ( - 9 L V 
2?iP + 0(K /y /n )3 ) ) + 0{K/>/n).

Hence,

( 2 . 6) log S{ N) 
S(N°)

- m m
= - 5 E E 4  + 0 ( K 3/ v̂ ) ,

1=1 J = 1

where the remainder is uniform.
Next, we shall estimate S'(N) for matrices N not satisfying (2.5). Clearly,

rn2 nm
S (N ) =  7---- rrPr(Xy =  n y , 1 g  i g  m, 1 g  i  g  m),

(777.71)!
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where X =  (Xij)mxm is a random matrix with polynomial distribution of or­
der ran and parameters T =  (m~2tij). Therefore, applying Chernoff’s bound 
on the tail of the binomial distribution [1, p. 236] we obtain

E «") s =I-*«-«&!>«>/&)
N :  3 ( i , j ) , \ Si j \ > K

2  nm

(ran)1

2  nm m m
< m

(mn)\ E E Pr(
i = l  j = 1

X  - - t -  
l] m l] >

< m 2  nm

(mn)\
2m2 exp(—K 1 /2m).

On the other hand,
rn2nm

5(N°) =  7---- —Pr(X = N°) ^  const.
(ran)!

2nm
-  n-mV 2
(ran)!

thus

(2.7) 5 2  5(N) =  o(5(N0)),
N : 3 ( t j ) , | s y | > K

whenever Li2 — m3 log n oo.
Comparing (2.6) and (2.7) we get

( 2 .8 )

Pn(A) ~  (n!)2m 5 2  5 (N)

- m m

N  i =  1 j = l

In the rightmost sum S =  (s^) varies in the (m — l)2-dimensional linear 
subspace TZn C Rmxm defined by (2.4). More precisely, since is inte­
ger, S runs over a lattice in 1Z. Let us compute the volume of an elementary 
cell. Such a parallelepipedon is spanned by the following vectors.

For 1 £  i ^  m — 1, 1 ^ j  5= m  — 1, let

i m

Ejj — 1 -
I

( — 1)'

( - 1)
I

( 1 )

-J 

■ m
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(that is, only four elements of Ejj differ from 0). A base of 7Zn can be obtained 
by dividing the elements of these E,j’s by the square roots of the correspond­
ing elements of N°. In other words, by introducing D„ =  [diag(vec(N°))]_1, 
we obtain a base of 72n in the form

{D,1/ 2vec(Ejj): 1 ^ i 5Í m  — 1,1 j  ^  m  — 1}.

Let G denote the rn2 x (m — l)2 matrix with columns vec(Ejj) ordered lexico­
graphically. It is easy to see that G = M<g>M with M defined in (2.2). Thus, 
lZn is the column space of D12G and the volume of the parallelepipedon is 
equal to the product of non-zero characteristic values of that matrix, that

777/
is, to (det G'DjjG)1/2. Since Dn ~  —A, we have that

n

det(G 'DnG) ~  (m /n)(m“ 1)2 det(G'AG).

Note that the sequence of subspaces 72„ also converges to

m m
72 =  | ( s i j )  G Kmxm ; S ikJ i~ k =  S k j y / t k j  =  0 

k=1 k=1
These and (2.8) together imply that

/ - m m
exp ( - ö E E 4 j

n  i=1 i=i
dX,

where A is the Lebesgue measure on (the Borel sets of) 72. This integral is 
well known to equal (27r)(m-1)2/2, for dim 72 =  dim 72n =  (m — l)2.

The last step of the proof is the estimation of 5(N°). By the Stirling 
formula and some calculation one obtains

\ m )
2n7r\("1- i)2/2

5(N°) =  (n!) 2m
~ i \2  irt m  m 4. i jf2mr^(rn-i)2/2 j -j. j -j.

V ) 0 I
1=1 j =1 

- 1/2III III . jr\ "I  "*• i

»=1 i=l i=lj=l *•?i=l j=\

Let us take the logarithm of the last double product.

m m  m m ,

E  E  «I x -O fc )  -  £  E - & 3 :  - 1+0(n"2)) =i = l  j = 1 U 1=1 7 = 1IJ i=l j = 1
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that is, the product in question converges to 1. Thus, by Remark 2,

P„(A )~(nm )!m m 1 (IIII ^(detG 'A G ) - 1/2

= (nm) \ ^

i=i j=i 
det(G 'G)det(A )^i/2 

det(G'AG)

as claimed. □
R emark  3. Consider the general term in the sum (1.2) and maximize

it in N. Let T = ----N. Then by the Stirling formula we havemn
771 771 ^ n i j  771 771iog(n n = n m + n m  Y i  Y i (ios iáij/tij)\ ill O ! / V

i — 1 J =  1 J i = l  J = 1

log ( E E » « )  — log(nm)^ +  o(n)

■ nm + n m l o g f ^ )  — nmD(  T||A) +  o(n) 
\ nm  /

■ max!

Thus, T is asymptotically equal to the /-projection of A on C. This explains 
how the reference term S (N0) was selected in the proof.

R E M A R K  4. More precise calculation shows the rate of convergence: in
(2.3) exact equality can be achieved with the right-hand side multiplied by

a factor

3. The 2 x 2  case

Apparently, there exists no explicit formula for the matrix T that played 
central role in Theorem 1. In general we have a system of nonlinear equations 
for the multipliers c% and d j , namely,

771 771

(3.1) cq/edfc = m/cj, and dkjck = m/dj ,  1 ^  i ^ m,
k=l fc=l

In the simplest nontrivial particular case, i.e., where m =  2, equations (3.1) 
can be solved explicitly. Let
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then

,j,_  t 2 — t _  ac\d\ ßc\d2- -  - _  do t  A  =  - _______ *
2 - t  t J |_7c2di 5c2d2 \ '  ' t2( 2 - t ) 2 c2lcld2d2aß'y6

1

M = } , G'AG =  4 Per (A) = ---------- ,
L_ 1 J t { 2 - t y  Per (T) Clc2d]d2

and
2 = t +  (2 -  t) = (\ZaS +  \ / ß j ) \Jc\c2d\d.2.

Consequently,

2n+ l

(3-2)

In Section 2 we only dealt with positive matrices A. A naturally arising 
question is what can be said when positivity is not required. That seems 
hard in general, but in the 2 x 2  case it can be answered by applying the 
saddle-point method.

A key to the answer is the observation that

is just the coeffient of zn in the polynomial

(3.3) g(z) =  (n])2(z +  a6)n(z + ßy)n — (n!)2(z2 + Pz + a ß jS ) n ,

where P  =  Per (A) = aS + /Fy. We shall also apply the notation D =  det(A) = 
aS —  ß 7 .

From (3.3) Pn(A) can be read off directly in some simple particular cases. 
Ifa/37<5 = 0, then P„(A) =  (n!)2P71 ~  (2n)!\/n7r(P/4)n.
If P  — 0, then Pn(A) =  0 for odd n, and for even n

In the general case aß-yö ^  0 and P  7̂  0. For the sake of simplicity, by 
the help of exchanging rows or columns, and multiplying them, if necessary, 
by —1, we can always achieve that a ,ß ,ö ,P  and D are positive.

k=0

(A) = (n!)2 (n/2 ) ~ (2n)!>/2(a/?)n(-l)n/2
= (—l) n/2(2n)!\/2(i)/4)n.



342 T. F. MÓRI

T heorem 2. Suppose a ,ß ,S ,P ,D > 0 ,  7 <  0. Then

I f a S+ ß ^ \  nH/2/ /2n + l
4 ~)

R f'Zn+L \ y2n+l \ . ,\
(cos\  2 ~ ‘V +Sml—2~" V +° ^ )  ’P n (A )= (2n)!(-a07i)-* (-

, a d  +  / ? 7
where p  =  arccos —-— — .

a o  — P 7

PROOF. In order to approximate Pn(A) we apply saddle-point method. 
By the Cauchy integral formula we have

Pn(A) = (r !)2x— i  z - n- 1(z2 + Pz  + aß'yö)ndz 2m  J

,  ,  T
27xi f  \ z /

, n2 1 /  / „ aß'yS\ n dz
= (n!) f  [Z + P + -  '

| z |= r

+  7T

(n!)5
27T

re” + P  +
a/Fyd _it\ n

* ) ndt.

Introduce

R - relt + P
aß'yS _ 
———e 

r
aß'yS

= r 2 + ( r  -  ^  ) '2 +  2P  (r  + ^  ) cos Í  + 4a /S7i  cos2 (.

In the case of 7 > 0, r  fixed, P  becomes maximal when cost — 1, i.e.,
f =  0. Then R — (r + P +  ^ , which is minimal for r =  y/aß'yS. Thus the
saddle-point is zo = ßaß'yS, and standard calculations, details omitted, lead 
to (3.2).

The case 7 < 0 is more interesting. For sake of convenience we apply 
the notation d = i /—aß'yS. For r > 0 fixed let us take the maximum of R  in 
y =  cos t over the interval [—1; 1]. The derivative is

R \y )  = ^  = 2 P ( r - d 2/ r ) - 8 d 2y. 
oy

If R'(  1) = 2P(r — d2/r)  — 8d2 > 0, then the maximum of R  is at y = 1,

max R = R{1) = (P  +  r  -  ß 2/r )2 > (P + 4d2 /  P )2 = D4/ P 2 > D2.

If R '{—1) = 2P(r — d2/r )  +8i92 < 0, then the maximum of R is at y =  — 1,

max R = R { - l )  = ( P - r  + d2/ r )2 > (P +  4 d 2/ P ) 2 > D2.

and

and
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Finally, if i?/(l) ^  0 ^ 1), i.e., P\r — •d2/r\ ^  4$2, then the maximum 
of R  is attained at the solution yo of R'(y) =  0. Thus,

V o =
P(r  +  i92/r)  

"4^2 and R{yo) =
D2(r — d2/ r ) ‘ 

4i92

This latter is minimal when r  =  #, then P '(l)  = —8tf2 < 0 < 8i92 =  -R '(-l), 
j/o =  0 and the minimum is R(yo) — D 2. Hence the saddle-points are zq =  ±ii?. 
Returning to the integral we can write

(3.4)

Pn(A) =  (n!)2-!- [  (P + 2di sin t)ndt 27r J
— 7r

7r
= {n\)2^-Re(^l  (P +  2iH sin t)ndt,

0
+ 7 T

= (n!)2—R e ^ y  (P  + 2$f cos t)ndt
— 7T

+ 7 T
i /  /* / 2i97 \ 71

= (n!)2-R e ^ (P  +  2iP)n j  ( l  ~ p  + 2,|̂ (1 ~ cos *)) dt

Substitute t = x/y/n.  Then the last integral is asymptotically equal to

+0° 2

x/I7n I  e x p ( ~ 1 _  i p / 2{)\ ) dx = V ^ A V 1 ~i P/ M,
—oo

where the last square root is chosen to have positive real part.
Since P  + 2di =  Delip, from (3.4) we obtain

P„(A) = (n!)2^ R e ((P  + 2i9í)n+1/2(7r/m9f)1/2(l + o( 1)))

=  (2n)!2_2nP ri+1/2i9_1/2 ^ c o s^ n  + ^ a rg (P  +  2$z) — ^  + o (l) j 

=  (2n)!(P/4)n+1/2i9-1/2(co s((n  + T s in a n  +  ^ 9 2 )  +°(1))-

The proof is completed. □
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4. Back to the motivating problem

By Theorem 1 the modified mean of a positive matrix A could be defined
as

$ ( A ) = :  lim (P ;
n —> o o

1(A)/(mn)!)'/“ = ( ^ A | ) 1/'

m m  1 /2
Oij \  ! /m=cnnf

2—1 j  =  l  J

m m

n Ci n  (̂ i
»=i j —i

- l/m

(with the notations introduced in the Lemma of Section 2). Particularly, 
^(A ) =  1 for all matrices with

m
Y ^ ak j= m ,  
k=1

m
aik=m,

k= 1

For 2 x 2  matrices A = a
7

ß
Ő we obtain

$ ( A )  =
VaS + s/JTy

2
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ALMOST SURE BEHAVIOUR OF SOME RANDOM SEQUENCES

V. V. PETROV

Dedicated to the memory of Alfréd Rényi

A bstract

This note examines the almost sure behaviour of sequences of random variables under 
conditions expressed in terms of characteristic functions. We obtain generalizations of 
some results of Chung and Erdős related to sums of independent identically distributed 
random variables.

1. Introduction

The set of functions ip(x) that are positive and non-decreasing in the re­
gion x > xq for some xq (depending on ip) and such that the series ^  1/(nip(n)) 
converges (diverges) will be denoted by T c (respectively, T^). For example, 
xp G T,; for every p > 0; (log x)p G T(; if p > 1; log x G 4'd-

Chung and Erdős [1] proved that if {X n} is a sequence of independent 
random variables having a common distribution function with non-zero ab­
solutely continuous component and if EXj =0, E |X i|5 < oo, then

(1) lim infn1//2̂ ('n)|57l| > 0  a.s.
n—>oo

for every function ip G 4/c, but if ip G 4^, then

(2) liminf n 1//2i0(n)|5n| = 0  a.s..
n —>00

Here Sn =  £ " = i* ; -
In [3] and [4] (see also Theorem 6.20 in [5]) it was proved that if {X n} is a 

sequence of independent identically distributed random variables satisfying 
the Cramer condition

(C) limsup |Ee',Al | < 1, 
|t|—>oo

then

(3) lim n 1/2i/>(n)|SJl| =  oo a.s. 
n—> oo

1991 Mathematics Subject Classification. Primary 60F15; Secondary 60F05.
Key words a.nd. phrases. Sequences of random variables, almost sure behaviour, char­
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for every ip G VÊ; if the additional assumptions EX\  =  0 and EXf < oo are 
satisfied, then (2) holds for every ip G Note that there are no moment 
conditions in this proposition connected with (3).

In [6] relation (3) was proved for sums of arbitrary (not necessarily inde­
pendent or identically distributed) random variables under some conditions 
expressed in terms of the characteristic functions of these sums; for a se­
quence of independent random variables sufficient conditions are given in 
terms of characteristic functions of summands. Unfortunately, the above 
mentioned generalization and strengthening of the Chung-Erdős theorem 
connected with (1) does not follow from results in [6]. The present note 
contains a more general result which is free of this disadvantage.

2. Results and proofs

Consider an arbitrary sequence of random variables Yf, Y2, . . . .  We put 
f n{t) =  EeitYn.

T h e o r e m  1. Let i p £ ^ c. Let {g(n)} be a sequence of positive numbers. 
Suppose that the following condition is satisfied:

(4) J  \fn(t)\dt =  0{g(n))
\t\^eng(n)i/j(n)

for some positive constant e. Then

(5) lim ng(ii)ip(n)\Yn\ =  00 a.s..
n —>00

PROOF. For an arbitrary random variable X  the Levy concentration 
function Q(X]  A) is defined by the equality

Q(X]  A) =  sup P(a: ^ X  ^ x +  A).
X

By Esseen’s inequality [2] (see also [5], Lemma 1.16) we have

Q { X - \ ) ^ A \  j  \f(t)\dt

for every A > 0 where f ( t ) is the characteristic function of X  and A  is an 
absolute positive constant. For our sequence of random variables {Yn} we 
obtain

Q(Yn]\ ) ^ A \  j  \fn(t)\dt

l^l/A
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for every A > 0.
Let ip € 'I’c. Put A =  L/(ng(n)ip(n)). Then

( 6) Q ( ^ ; A ) g
AL

ng{n)ip(n) j  \fn{t)\dt,
B

where B = {t: \t\^ng(n)ip(n)/L}.
Let e be a positive constant satisfying condition (4). If L  is sufficiently 

large, L > 1/e, then

J  \fn{t)\dt = 0{g(n)) (n —» oo).
B

It follows from (6) that

Q(Yn; \)ú C

for all sufficiently large n where C is a positive constant. We have

P (jy ri| ^L/{2ng{n)ip{n)) ^  Q{Yn- L /{ng in^ in ) )^

Ú C / ( n i p ( n ))

for all sufficiently large n. By the Borel-Cantelli lemma,

(7) P(\Yn\^L /(2ng(n)^ (n) )  i.o.) =  0,

since ip £ 4/c.
The only restriction on L is L > 1/e where e is a positive constant satis­

fying condition (4). Therefore we conclude that (7) holds for an arbitrarily 
large L. The relation (5) follows. Theorem 1 is proved.

The following proposition is an immediate consequence of Theorem 1 in 
the case when g ( n )  = n -1/2.

T heorem 2. If
OO

J  \fn(t)\dt = 0 ( n ~ 1' 2 )

— OO

then
lim n 1/2i/>(n)|yn | = oo a.s.

n—>oo

for every function tp £ ^ c.
Theorem 2 is a generalization of a result in [6]. Theorem 2 does not 

imply the main result of [3] connected with relation (3). However, the latter
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result follows from Theorem 1 with g(n) = n l/2. It can be proved along the 
lines of the proof of Theorem 1 in [3].
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BOUNDS ON PROBABILITIES AND EXPECTATIONS 
USING MULTIVARIATE MOMENTS 

OF DISCRETE DISTRIBUTIONS

A. PRÉKOPA

To the memory of Professor Alfréd Rényi

A bstract

The paper deals with the multivariate moment problems in case of discrete proba­
bility distribution. Assuming the knowledge of a finite number of multivariate moments, 
lower and upper bounds are provided for probabilities and expectations of functions of 
the random variables involved. These functions obey higher order convexity formulated 
in terms of multivariate divided differences. As special cases, the multivariate Bonferroni 
inequalities are derived. The bounds presented are given by formulas as well as linear 
programming algorithms. Numerical examples are presented.

1. Introduction

In this paper we present bounds on functionals of an unknown prob­
ability distribution under some moment information. Our functionals are 
expectations of higher order convex functions (see Popoviciu [17]) of ran­
dom variables and probabilities of some events. Moments, at least some of 
them, are frequently easy to compute (even in experimental sciences, see, 
e.g., Wheeler and Gordon [24]) and the bounds that can be obtained on 
this ground are frequently very good, in the sense that the lower and upper 
bounds on some value are close to each other.

While the literature is rich in papers handling univariate moment prob­
lems of this kind, the multivariate case has not been studied enough until 
recently. The papers by Dulá [4], Kall [9], Kemperman and Skibinski [13] and 
Prékopa [21] can be mentioned as examples. Examples for more general mo­
ment problem formulations can be found, e.g., in the paper by Kemperman 
[12] .

A few years ago the sharp Bonferroni inequalities of Dawson and Sankoff
[3], Kwerel [14] and others, have been discovered as discrete moment prob­
lems by Samuels and Studden [23] and Prékopa [20]. In this case the random
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Key words and phrases. Multivariate moment problem, stochastic inequalities, linear 
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variables of which some of the moments are known are occurrences con­
cerning event sequences and the moments are binomial rather than power 
moments.

Given the information tha t a random variable is discrete, where the sup­
port is also known, the application of the general moment problem (where 
the support is unrestricted) provides us with weaker bounds than the appli­
cation of the discrete moment problem. In fact, in the latter case the set of 
feasible solutions is smaller than in the former case. Discrete random vari­
ables w ith known support are quite frequent in applications. Thus, research 
in discrete moment problems is important both from the point of view of 
theory and applications.

Research in connection with the multivariate discrete moment problem 
has been initiated by Prékopa [21]. This paper presents further and more 
im portant results in this respect.

Let £1, . . . ,  £s be discrete random variables and assume that the support 
of is a known finite set Zj  =  {zjo, . . . ,  zjnj}, where Zjo < • • • < zjnj, j  =
1, . . . ,  s. Then the support of the random vector £ =  (£i , . . . ,  £s)T is part of 
the set Z =  Z\ x • • • x Zs. We do not assume, however, the knowledge that 
which part of Z is the exact support of £.

Let us introduce the notations

(1 .1 ) Pi i ■~i. =  P ( Z  1 — Z l i X 5 • • • l£>S — Zsi3 )
n \ n s

( 1 .2 ) P a \ ■ P Cn II

M z u i  ■ ■ ■ z s i , P i i - i .
z i = 0 ia=  0

where aq , . . . , aq  are nonnegative integers. The number pQl...Qs is called 
the (a q ,. .. , a s)-order moment of the random vector (£i, ■.. ,£«). The sum 
aq +  • • • +  a s is called the total order of the moment.

We assume that the probabilities in (1.1) are unknown but known are 
some of the multivariate moments (1.2). We are looking for lower and upper 
bounds on the values

(1.3) E [ m , -

(1.4) IIV . , 6 £ r .)

(1.5) P ( 6 = n , . - . «0 IICC

where /  is some function defined on the discrete set Z and Tj € Zj, j  = 
1 The problems of bounding the probabilities (1.4) and (1.5) are
special cases of the problem of bounding the expectation (1.3). In fact, if

( 1. 6) f ( z u . . . , z s) =
1, if Z j ' Z r j ,  j  = 1, . . .  , s  

0, otherwise,
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then (1.3) is equal to (1.4), and if

(1.7) f { z  u - - - , z s
1, if Z j = r j ,  

0 , otherwise,
j  i j  — 1 , . . . ,  s

then (1.3) is equal to (1.5). In spite of this coincidence, the condition that 
we will impose on / ,  when bounding the expectation (1.3), does not always 
allow for the functions (1.6) and (1.7). Hence, separate attention has to be 
paid to the problems of bounding the probabilities.

As regards the moments (1.2), two different cases will be considered:
(a) there exist nonnegative integers such that pai...as are

known for O ^ a j  £ rrij, j  =  1 , . . . ,  s;
(b) there exists a positive integer m such that /ia i...Qs are known for

oí\ H------1- a s ú m ,  aj  ^ 0 , j  = 1 , . . . , s.
Case (b) is of course more practical than Case (a). If, e.g., we know all 

expectations, variances and covariances of the random variables £ i , . . . ,£ s, 
then Case (b) applies. If only the expectations and the covariances are 
known, then Case (a) applies. However, when the covariances are known 
then, in most cases, the variances are known, too.

We formulate the bounding problems as linear programming problems. 
For the sake of simplicity we will use the notation / j r ..js =  f ( z u 1, . . . ,  zsis). 
In both problems formulated below the decision variables are the Piv - is , all 
other entries are supposed to be known. In Case (a) the bounding problems 
are

min(max)
i 1 = 0  is = 0

( 1. 8 )

subject to
n\  n s

ii= 0  ij= 0

for 0  ^  aj  ^ rrij, j  =  1 , . . . ,  s 
Pii -is = 0 ) >•••> is­

in Case (b) the bounding problems are

min(max)
i i = 0  is —0

subject to

i l = 0  is= 0

for aj  ^  0 , j  = 1 , . . . , s ; a\  4------1- a s ^ m
P i i  ' is =  H j ■ • • ) *s-

(1.9)



352 A. PREKOPA

We reformulate these problems, using more concise notations. Let

/  1 1 ■ 1 ^
ZjO Z j  1 • Zjn j

m. j
\ V

m j
V  •

m;
■ Zi ni  )

A  = A\  0  • • • 0  A s,

J =  1 , - - s

where the symbol ® refers to the tensor product. For example the tensor 
product of A\  and A 2 equals

A \  ® A 2 =

A
Z20A 1

Ax
Z21A 1 Al \^2ri2 A\

m-2
20 A y 7m'2 A , Z21 2:m  2 

2 712M )
Note tha t the tensor product is noncommutative but it has the associative 
property (see, e.g., Horn and Johnson [7]). We further introduce the nota­
tions:

=  ( m o o  - 0 ,  h l 0  - - 0 ,  • • • 1 h m  1Ű- - 0 )  M 0 1 0 - - 0 )  M l l - ' - O )  • • • ) 7

P = {Ph-is , O g i l  g m i , . . . , 0 g i s ^ m s ) 7

where the ordering of the components in p and f  coincides with that of the 
corresponding columns in the matrix A = (oq...^).

The optimum values of the linear programming problems

( 1. 10)

min(max) f 7 p 
subject to

A p  =  b 

P = 0

provide us with the best lower and upper bounds for E[f(£i , . . . ,  £s)j in Case 
(a). We call these bounding problems.

In Case (b) we define b as the vector obtained from b in such a way that 
we delete those moments /xa i ...Qs for which a\ + ■ ■ ■ + a s > m. Deleting the 
corresponding rows from A, let A designate the resulting matrix. Then, in 
Case (b), the bounding problems are:

min(max) f 7 p
subject to

( 1. 11)
A p  =  b

p  ^ 0 .



BOUNDS ON PROBABILITIES 353

The matrix A has size [(mi +1) • • • (ms +  1)] x [(ni + 1 ) • • • (ns +  1 )] and is 
of full rank. The matrix A has size N  x [(ni + 1) • ■ • (ns + 1)], where N  = (s+tm) 
and is also of full rank.

It is well-known in linear programming theory that any dual feasible basis 
(i.e., that satisfies the optimality condition but is not necessarily primal fea­
sible) has the property that the value of the objective function corresponding 
to the basic solution is smaller (greater) than or equal to the optimum value 
in case of a minimization (maximization) problem.

Let Vjnin (Vmax) designate the minimum (maximum) value of any of the 
problems (1.10) and (1.11). Let further B\ (B 2 ) designate a dual feasible 
basis in any of the minimization (maximization) problems (1 .1 0 ) and (1 .1 1 ). 
Then, in view of the above statement, we have the inequalities

(1 .1 2 ) f£ lP/Jl g Fmin ^  E  [ /(6 , . . • , 6 )] ^  Vmax g f£apBa,

where f# and p 0 designate the vectors of basic components of f  and p, 
respectively.

We use some of the basic facts from linear programming and the dual 
algorithm of Lernke [15] for the solution of the linear programming problem. 
A simple and elegant presentation for both can be found in Prékopa [22]. 
For the reader’s convenience the dual algorithm is briefly summarized in 
Section 7.

Note that, as it is customary in linear programming, the term “basis” 
and the symbol “B” mean a matrix and, at the same time, the collection of 
its column vectors.

We look for dual feasible bases allowing for inequalities (1.12) and pro­
viding us with bounding formulas. If such a bound is not sharp then, start­
ing from the corresponding basis, as an initial dual feasible basis, the dual 
method of linear programming provides us with a sharp algorithmic bound. 
It is shown by Prékopa [18], [19], [20] that in case of s = 1 the dual method 
can be executed in a very simple manner. We will show that some simplifi­
cation is possible in the multidimensional case, too.

We can look at the moment problems from a more general point of view, 
by replacing Chebyshev systems for the matrices A \ , . . . ,  A s. Such a general­
ity in handling the problem does not present any new theoretical challenges 
as compared to the power moment problem, however. On the other hand, 
the nice formulas that we obtain through Lagrange interpolation polynomi­
als would not be immediately at hand. Therefore we keep the discussion on 
a more specialized level.

There is one case, however, to which we pay special attention, in addition 
to the multivariate power moment problem. This is the multivariate binomial 
moment problem.

We take Zj =  {0, . . . , rij}, j  = 1 , . . . , s, introduce the cross binomial mo-
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ments of £1 , . . . ,  as

and formulate the problems

(1.13)

and

(1.14)

min(max)
n i

E "

ns

)  " f i l —i s P i l —ta

subject to 
n 1 ns

ii= 0 is = 0

E - " E  (J . ) ' '
( i \

' \ a s) Pil is = Sai*l = 0 d=o
for 0 ^ sVII

P l V - i s  ^0 , all i i, • ■ ■ J

n i ns

min(max) E - E
*1=0 is = 0

subject to
n  i

E -

n s .

- E
( i s \  q
I P h - i s - Z a v a s

i l= 0 i s —0 \ ( <s /

for

ÖAll8

> 3  =  1 a i  H---------l - Q s ^ m

P i i - i , , ^ o , all . . .  , i s .

Problems (1.8) and (1.13) can be transformed into each other by the 
multivariate generalization of the transformation presented in Prékopa [20].

Problems (1.9) and (1.14) can also be transformed into each other by 
another but still simple rule.

It follows that a basis in problem (1.8) is primal (dual) feasible if and only 
if it is primal (dual) feasible in problem (1.13) and this simple correspondence 
carries over to problems (1.9) and (1.14), too.

2. Divided differences and Lagrange interpolation

First, let s =  l and, for the sake of simplicity, designate the elements of 
Z\ simply by z0 , . . . , z n.

The divided difference of order 0, corresponding to Zi, is f ( z i ), by defini­
tion. The first order divided difference corresponding to Zi1, Zi2 is designated 
and defined by

t e n  z h ; / ]
/ t e a )  - / t e l )

Zi 2 -  Zn
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where 7  ̂z,;2. The fc-t,h order divided difference is defined recursively by

r„ „ . rl _  [Z*2! • • • » z ik+i i /] — [z i\ > • • • 1 z ik Í /]
lz h ) z h  > • • • ) z ik 1 z ik+\ > J J ~~ _  >

z ik+i z n
where , . . . ,  Zik+1 are pairwise different.

For the case of an arbitrary s, the divided difference corresponding to a 
subset

^ / l  —  {-2-l i  j * €  I \  } X  • • •  X  { Zs i : i d : I f l } =  Z \ i l X  • • • X  =  Z S[S

of the set Z can be defined in an iterative manner in such a way that first 
we take the Aq-th order divided difference of /  with respect to z\, where 
k\  = | / i |  — 1 , then the fo-th order divided difference of that with respect 
to Z2 , where k,2 = I/2 I — 1, etc. This can be executed in a mixed manner, the 
result will always be the same.

Let [ z i i ,  1 6 / 1 ; . . . ;  z si , i  €  I s ', f ]  designate this divided difference and call 
it of order (fci,. . . ,  k s). The sum k\ + ■ ■ ■ + ks will be called the total order 
of the divided difference.

The set on which the above divided difference is defined is the Cartesian 
product of sets on the real line. Let us term such sets rectangular. Divided 
differences on non-rectangular sets have also been defined in the literature 
(see, e.g., Karlin, Micchelli and Rinott [11]). These require, however, smooth 
functions while ours are defined on discrete sets.

A Lagrange interpolation polynomial corresponding to the points in 
{zu, i G Ii} x ■ • • x {zsi, i G Is} is defined by the equation

I ' l l —Is t z l ) • • • ! Zs)

(2jl) = X ] f ( z l h ’- - ’zsis)L hii(z l ) ' "  LI,is(zs),

where

(2.2) L I j i j ( z j ) =  J ]  Zj ~ J jh  , j  =  l , . . . , s .

neij-{ij}Zjij Zjh
The polynomial (2.1) coincides with the function /  at every point of the set 
Z i 1...j s and is of degree m \  - • - m s .

Newton’s form of the Lagrange polynomial (2.1) can be given as follows.
(k )Let us order each set z ih  and let /j  3' designate the first kj + 1 elements of 

I j , 0 ̂  kj  ^ m j ,  j  =  1, . . . ,  s.  Then the required form is

(2.3)
L h . . . i , { z i , . . . , z s )

m  1 m s s

=  n  i z i ~ z i h )  z l h , h £ l [ k ' ) ' , . . . ' , z s h , h e l {sks) ' , f
k i =  0 fc3 = 0 j = : l / i € / (*J - l )
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Let us introduce the notations b(zi , ... ,zs), b ( z i , . . . ,  zs), where 

b(zi, ■ ■ •, zs) =  (1 , z i , . . . ,  zj711) ® ■ ■ ■ <g> (1 , zs, . . .  , z™°)

and b (z) is obtained from b ( z )  by deleting those components z“ 1 • • • z f s for 
which op +  • • • + as > m. Then we have the equalities

b =  E[b(Zu . . . , t s)},

b =  E [ b ( ^ , . . . ^ s)}.
Let U =  {ui, . . . ,  um } be a set of points in and H  =  {(ori, . . . ,  a s)} a 

finite set of s-tuples of nonnegative integers (aq, . . .  , a s).
We say that the set U admits Lagrange interpolation of type H  if for 

any real function / ( z), zG U ,  there exists a polynomial p( z) of the form

(2.4) p{ z )=  c(a i) • ■ • ia s ) z i l ■ ■ ■ z f s,
(ai,...,as)eH

where all c(aq, . . . ,  as) are real, such that

(2.5) p (u i )= f (u i ) ,  i = M.

Equations (2.5) form a system of linear equations for the coefficients 
c (aq, . . . , a s). If |LT| =  M, then in (2.5) the number of equations is the same 
as the number of unknowns. Simple linear algebraic facts imply that if U 
adm its Lagrange interpolation of type H 1 then it admits a unique Lagrange 
interpolation of type H.

Let B  be a basis of the columns of the matrix A and H  the collection of 
all power s-tuples of the components of the vector b (z i , . . . ,  zs). In this case 
\H\ = (m\  +  1) • • • (m s + 1). Let

(2 .6 ) I  = { ( i i , . . . , i s) I aiv..is <EB}.

Then the unique H -type Lagrange polynomial corresponding to the set

(2.7) U = {{zu 1 , . . . , z sis) \ { i i , . . . , i s) e l }  

is equal to

(2.8) .. , z s) = fßB~lb { z i , . . . , z s).

Since b(ziii ; . . . ,  zsls) =  aq...^, it follows that the basis B  is dual feasible 
in the minimization (maximization) problem (1 .1 0 ) if and only if

f { zu . .. ,zs) ^  L / ( z i , .. . , zs), all (zi , . . .  , z s) G Z
{f{zi, ■ • • )Zs) = L j ( z \ , . . .  ,zs), all ( z i , . . . , z s)eZ ) .

(2.9)
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Note that in (2.9) equality holds for all (z\ , . . . ,  zs) G U.
Let B  be a basis of the columns of A and H  the collection of all power 

s-tuples of the components of b(zi , . . .  , z s). If we define I  and U as

(2.10) I  = {(iu . . .  , i s) I ail...is EB )

(2.11) U = {{zUl,. .  . , z sis) \ ( i i , . . . , i s) e l }  
then

(2.12) L j ( z i , . . .  , z s) = ( ~ B ~ 1b ( z i , . . .  ,zs)

is the unique II-type Lagrange polynomial corresponding to the set U.
The dual feasibility of the basis B  in the minimization (maximization) 

problem means that

/ 2  13j f { z i , . . . , z s) ^ L i { z i , . . . , z s), all ( z i , . . . , za) e Z
(/(* l, ^  L i(z  l, ■ ■ •, zs), all (zu . . . , z s) e  Z),

where equality holds in case of (zi, . . . ,  zs) € U.
The inequalities (2.9) and (2.13) are the conditions of optimality of the 

minimization (maximization) problems (1 .1 0 ) and (1 .1 1 ), respectively.
Replacing (£j, . . .  ,£s) for ( z \ , . . .  , z s) and taking expectations, relations

(2.9) and (2.13) provide us with bounds for E[f(£ i , . . .  ,£s)] in Cases (a) and 
(b), respectively. If the basis is also primal feasible, then it is optimal and 
thus, the obtained inequality is sharp.

3. Inequalities based on rectangular dual feasible bases

In this section we assume that f { z \ , . . .  , z s) =  f\{z\) ■ ■ ■ f s{zs) for Zi £ Zl, 

For each j ,  1 ^  j  ^  s, we consider the univariate moment problem
Tlj

inin(max) ^  fj{zji)Pjj) 
i=0

(3.1) subject to
ni

Sj ) = a4 j)> a  = 0 , . . .  ,m.j
i= 0

p f ] ^ 0 , t =  0 , . .. ,nj,

where = E(£?), a =  0 , . . . ,  mj, j  =  1 , . . . ,  s are known, together with the 
sets Zj = {zji, i =  0 , and the unknown decision variables are the
Pi3) =  P  (£j =  Zji), i = 0 , . . . ,  rij, j  = 1 , . . . ,  s.
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T heorem 3.1. Suppose that fj{z)^. 0 for all zEZj.  If for each j , l<?'5is, 
we are given a Bj that is a dual feasible basis relative to the maximization 
problem (3.1), then B  = B\  <g> • • • ® Bs is a dual feasible basis relative to the 
maximization problem (1 .1 0 ).

Moreover, if the set of subscripts of Bj is Ij and Lj. (z) is the correspond­
ing univariate Lagrange polynomial, then we have the inequality

(3.2) E [ f ( C i , . . . ^ s ) ] ^ E [ L h ((1) - - - L Is(Q} .

PROOF. The dual feasibility of the bases B \ , . . .  , B s means that

£ /i(-z i)^ /i(z i) .
(3.3) :

I-'Is (^s) = /s(^s)) Zs E Z s.

On the other hand, the unique íí-type Lagrange polynomial, with H  =  
{ ( a i , . . . ,  a s) I 0 aj nij, a.j integer, j  = 1,.. . , s}, is given by (2.8). Since 
f ( z i , . . . , z s) = f \ ( z i ) - - -  f s{zs)i if follows that the polynomial (2 .8 ) takes the 
form

(3-4) L h - h  (zu . . . , z s) = Lh (zi) ■ ■ • L Is [zs).

Since the dual feasibility of B  relative to the maximization problem (1-10) 
is the same as the second inequality in (2.13), the theorem follows by (3.3) 
and (3.4). □

THEOREM 3.2. Suppose that Lj (z) ^  0 for all z E Z j .  If for each j, 
1 Í 3 Ú S ,  we are given a B j  that is a dual feasible basis relative to the mini­
mization problem (3.1), then B = B\®- ■ ■® B S is a dual feasible basis relative 
to the minimization problem (1 .1 0 ).

Moreover, if the set of subscripts of B j  is I j  and L/  ̂{z) is the correspond­
ing Lagrange polynomial, then we have the inequality

(3.5) E [ f ( f 1 , . . . , t s ) } ^ E [ L I l ( Z1) - - - L I s ( f s ) } .

PROOF. The proof is the same as that of Theorem 3.1, with a slight 
modification. □

Theorem 3.1, combined with the one-dimensional dual feasible basis 
structure theorems of Prékopa [20] provides us with a variety of upper bounds 
for probabilities and expectations. Below we present a few examples. Define

f j ( z )
0 , if z < zr .
1, if 2  ^  Z Tj  .
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9 O 0 0 0 0 0 0 0 0 0

8 0 0 0 0 0 0 0 0 0 0

7 • 0 0 0 • 0 • • 0 0

6 • 0 0 0 • 0 • • 0 0

5 • 0 0 0 • 0 • • 0 0

4 0 0 0 0 0 0 0 0 0 0

3 0 0 0 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0

0 • 0 0 0 • 0 • • 0 0

0 1 2 3 4 5 6 7 8 9

Figure 1. Illustration of a rectangular dual feasible basis through the planar points to 
which the basic columns of A correspond in the maximization problem (1.10). We chose 
mi +  1 =  4, r, =  4, m 2 +  1 =  4, r2 =  5.

Example 1. Let s =  2, Zj — { 0 , . . . ,  9}, j  =  1,2, m, -- 3, m 2 =  3 and 
choose the dual feasible bases, relative to the maximization problem (3.1), 
as follows:

h  =  {0 , r*i, k, k+  1 }, r , ^ 1

h  -  {0 , r 2, M  + 1 }, r 2 ^ l .
Then we have

{ z - i ) ) ( z - k ) ( z - k -  !) ( z - Q ) { z - r l ) { z - k - l )
h[ ’ (n  - o ) ( n  - k ) { n  - k -  1 ) { k - 0 ) { k - r l ) { k -  k -  1 )

( z - 0 ) ( z - r , ) ( z - A: )
{ k + l - 0 )(k + l - r i ) ( k  + l - k )

(z -  0 )(z — t)(z — t — 1 ) ( z - 0 ) ( z - r 2 ) ( z - f - l )
h Z ir2 -  0 )(r2 -  t)(r2 - t -  1 ) (t -  0 ){t -  r2){t - t -  1 )

[z — 0 )(z — r2)(z — t)
(t +  1 — 0 )(í +  1 -  r2){t + 1 -  t)

To be more specific, let r 1 =4, r2 — 5, k =  6 , t = 6  (see Figure 1). Then 
the above polynomials take the forms

£ / ' ( * )  =  ^  (z2 - 1 7 2  +  94)

L h  (Z) =  2 JÖ (Z* ~ 1 8 2  + 107) '
The inequality (3.2) specializes to

P ( i l  ^  4 , 6  1  5 )  g  (P33 -  18/132 +  107/131

— 17/123 + 306/i22 — 1819/i2i 
+94/1,3 -  1619/1,2 + 10058/1,,).
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E xample 2. Let m,j = 2, rj =  1, j  = 1 , . . . ,  s. Then the only dual feasible 
bases relative to the maximization problem, are those that correspond to the 
subscript sets Ij =  {0,1, rij}, j  =  1 , . . . , s. The Lagrange polynomials take the 
form

In case of s = 1 the bound (3.2) is sharp because the unique dual feasible 
basis must be primal feasible, too (we have assumed that the right-hand 
side values in problem (3.1) are moments of some random variable which 
implies that the problem has feasible solution; it has finite optimum, too, 
because the set of feasible solutions is compact). The bound (3.2) is sharp 
in the multivariate case, too, in the sense that the basis in problem (1 .1 0 ), 
corresponding to the subscript set I  = I\ x • • • x I s is primal and dual feasible, 
hence optimal.

Of particular interest is the case where Zj =  {0 ,... , rij}, j  =  1 , . . . ,  s and 
the random variable is equal to the number of events that occur among 
some events E j \ , . . . ,  E jnj , j  =  1, . . . ,  s. We may write L ( z )  in the form

E/j (z) = -
(z -  Zjo) ( z  -  Z j n . )  ( z -  z j 0 ) ( z  -  Zj  1)

zj n j  Z j  1
+

( Zj  rij Z j 0 ) (  Z j  n - Z j  i )

Lij ( z ) = z -
z ( z  —  1 ) 2  

2 r i j ’
j  =  1 , . . .  , s

from which we derive

Li . i zi ) ---  L i3{zs) =
zi(zi -  1 ) 2

2  nx zs
Zs(zs 1 ) 2

2  ns

Using the cross binomial moments Sai...as, the inequality (3.2) can be ob­
tained. It is also a sharp one. For example, if s  =  2 then we obtain

P{{An  U • • ■ U A lni) n (A2i U ■ • ■ U A2n2)) =  i ^ U 6  ^ 1)
2 2 4

^ Si i ------Si 2 -------S2 i +  — —S2 2 ■n 2 n  1 n in 2

This result was first obtained by Galambos and Xu [6 ].
The general formula can be written in the form

s rij

p{ n u Â)=jP(6=i>---’6=i)j= ii= i

^  Y ,  ( - 1  r +- +a° - ss a i ...as n Ql —1 n f ' " 1 '

(3.6)
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Example 3. Let r , =  1, zj0 =  0, rrij =  2, Ij =  {0,Zji}, zj i j+1}, j  =  l , . . . , s .  
Then the basis corresponding to the subscript set Ij is dual feasible in the 
minimization problem (3.1). The Lagrange polynomial L ^ (z ) takes the form

L „W = f ~ - j2 h ± ll +
zjij\zjij zjij +1) ĵij+1 \zjij A1 zjij)

_ zjzjtj +Z j i j + \ - z )  
zjij =  zjij +1

This polynomial is nonnegative for 0 ^ z  ^  2 nj iff Zjl} + zj l / + 1 ^  .
In the special case where {zjo,. . . ,  } =  {0 ,. . . ,  rij}, the nonnegativity

condition for Li{(z) is that 2ij +  1 'tn.j. Assuming this to be the case, for 
each j, 1 ^  j  ^  s. we may write

(3.7) T T  £ j ( 2 i j  +  1 -  £ j )  

j = 1 *7 (ij +  1)

If £;) i  = 1 , • ■ • ,s  designate the occurrences concerning the event sets 
E j i , . . . ,  Ejnj , j  = 1 , . . . ,  s, respectively, then it is desirable to give (3.7) an­
other form, expressed in terms of the cross binomial moments. For the case 
of s = 2 the inequality (3.7) gives the following result

r 2  r

P ( t i *  1 , 6 ^ 1 ) ^ n
(3.8)

2 t j  2  (tjj
j h j  T  1 i j { i j  +  I) V 2

Si,i
(*1 + 1 )(« 2  + 1) 

4
(*1 +  I)i2 (i2 +  1 )

S2,l + -tv
S i ,2

(*2 +  i)n(*i +  1) ’ *l(*l +  1)*2(*2 +  1)

For an arbitrary s the formula is:
S n j

S 2,2 -

■ ( n u A . )
j =1 i=l

(3.9) = P ( 6 ^ 1 , . . . , 6 ^ 1 )
> Z_1 «̂1 H----haa-sq ____________ ______________

lSoj£2,i=l... a

where it is assumed that i j  ^ (rij — l ) / 2 , j  =  1, . . .  , s .
It should be mentioned, in connection with problem (1.10), that the 

optimal basis is not necessarily a rectangular one as it has been shown by
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Prékopa [21]. We can reach the optimal basis by starting from any dual 
feasible basis and carry out the dual method for solving problem (1 .1 0 ).

In order to find a good rectangular dual feasible basis we can choose Ij, 
j = 1,. .. , s in such a way tha t Ij is optimal for problem (3.1), provided that 
it is a maximization problem. In case of the minimization problem we choose 
the best among those dual feasible bases for which the Lagrange polynomial 
is nonnegative. The term best means that any dual step that improves on 
the objective function does not preserve the nonnegativity of the Lagrange 
polynomial.

Note that having the best univariate bases I \ , . . . ,  Is, the basis /  =  I\  x 
• • • x I s is not necessarily the best rectangular basis.

4. Bounds based on multivariate moments of total order m

We assume that the known moments are: p ai ...as, where aj ^ 0 , j  =  
1 , . . .  , s, « i H----- 1- a s ú m .

T h e o r e m  4.1. Let I  =  { ( i i , . . .  , is)\ij ^  0, integers, j  =  1, . . . ,  s, ii +  - ■ ■ + 
is ^  m} and assume that all divided differences of total order m + 1 , of the 
function f , are nonnegative. Then the following assertions hold.

(a) The set of columns | ( i i , . . . ,  is) £ 1} is a basis B  for the columns
of A in problem (1.11).

(b) The Lagrange polynomial , z s), corresponding to the points
{(ziij, . . . ,  zsis)I =  ( i i , . . . ,  is) 6  /} is unique and is the following

(c) We have the inequalities

(4.2) f ( z i , . . . , z a) 'Z L I { z i , . . . , z s), for ( z i , . . . , z s) e Z ,

i.e., B is a dual feasible basis in the minimization problem (1.11),

If  B  is also a primal feasible basis in problem (1.11), then the in­
equality (4.3) is sharp.

(d) If  all divided differences of total order rn + l are nonpositive, then all 
assertions hold with the difference that B  is a dual feasible basis in

L i { z i , . . . , z s)
S 1

(4.3)
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the maximization problem  (1.11) and the inequalities (4.2), (4.3) are 
reversed.

PROOF. We m ention, w ithout proof, th a t the determ inant of B  has a 
sim ple form

s m —1 m - ( / i + l )

i*i- nn n
j =1 h—0 i=0

This implies that |B| ŷ O, hence (a) holds. Assertion (b) follows from (2.13).
Let Zhi = {zh0, . . . ,  2 /jj}, Z^  =  {2T/i0 5 • • •) «/ii, «/i}> i =  0,... ,77i, h —

1, . . . ,  s and define the function zs), ( z i , . . . ,  zs) E Z  as follows:

R i ( z i , . . . , z s)

~ /  ! y  ' [«1 , • • • > z h .- l \  ^hih\ Zh+lih + 1\ ■ ■ ■ i Zsis'i f]
h = l  t/iH--Ha=m

0 £ r i j  , j = h , . . . , s

ih s  i j  — 1

JJ(«/l — zhl) J^[ J"J [zj ~ zjk)-
1=0 j=h+ 1 fc= 0

We show that Li{z\ ,.  .. ,«a) +  Ri{zu . . . ,«s) =  /(« i , . . . , z s).
The proof can be carried out by induction. For s = 1 it reduces to

(4.5) f { z )  — Lj{z) = H i z - Z j ^ i E l - J ]
zei

which is well-known in Lagrange interpolation theory. For the case of s = 2 
we have

L i {z i , z2)
2 Ú - 1

(4-6) =  [ziO,---,ZUl ;Z20,..-,Z2i2- J ] ' [ [ Y l { zj - Z jh),
Ú + í2 á m  j= 1 h=0

®=ij=nj J=l,2

b - i
where (Zj — Zjh) =  1 for ij  — 0, by definition, and 

h= 0

Rl{zi,  z2) = [zi0 , ■ ■ ■ , Zim, Zi; Z20; f]{zi -  Zio) • ■ ■ {zi -  ZXTn)
+ [«10, • • • , «lm-1 , «1 ; «2 0 , «2 1 ; / ] ( « 1  -  «10) • • • («1 -  «lm -1 ) (« 2  ~  «20)

(4.7) :

+  [«10, « 1 ; «20, • ■ • , «2m; / ] ( « 1  -  «10) («2 -  «20) • • • («2 -  « 2 m -1 )

+  [« l! «20, • • • , «2m , «2; / ] («2 -  «20) • • ' («2 -  «2m)-
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Combining terms from (4.6) with terms from (4.7), we may write 

L i { z i , z 2 ) +  R i ( z i , z 2 )

i - i
, z i i ' , z 2 0 ; f ]  Q(zi - z \ h ) 

l 2 = 0 /l=0
m  ^

+  [ z i o , . . . , Z i m , Z i - Z 2 0 - f ]  Q ( z i  - Z l h )  >

h=0 J

{
m —l  i—1

^ [ z i o , . . . , z u ;  z 2 0 , z 2 i - f] Q ( z i  -  z ih)(z2 -  z20)

i = 0 h= 0
m —l

+  [ z i 0 , • • • , Z\  m —l ? Z l ] Z 2 0 , Z 2 l ] f ]  Q (zi -  Z l h ) { z 2 -  z20) l
h=0 J

(4.8)
f m—l

+ S [zw, z2o, ■■ -,32m;/] n
{ fc= 0

m—l
+[^10, Zi; z20, . . . ,  z2m; /](zi -  Zio) IQ (* 2  -  *2*) }

k = 0 J
m

+ [zi;Z2 0 , ■ ■ ■ , z 2m ,z 2 -,f] Q ( z 2 -  Z2k)
fc=0

=  /  ( z i , ^ 2 0 )  +  [z\ ; 2 2 0 ,  Z2 1 ; / ]  (z2 -  Z2 0 ) 4—

+ [zi; Z2 0 , ■ • •, z2m, z2; /](z2 -  z20) • • • (z2 -  z2m)
=  f ( z i , z 2).

Assuming that the assertion holds for the case of s  — 1, for any function, 
we derive the equality

Li{z \ , . . . ,  z s ) +  Z?/(zi,. . . ,  zs)
b - i

(4.9) =  E [*!>•■ ■ > ^ - i ; ^ o . - ■ • , *«», ; / ]  Q - z s/l)
(S = 0 / i= 0

m

+  [ z i , . . . , z s _ i ; z s 0 ) . . .  ; z s m , z s ; / i n  ( * s  - z s /i)-

h= 0

By (4.5) we see that this is further equal to [zi; . . . ;  zs_i; zs; /] which is the 
same as / ( z i , . . . ,  zs).
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Since R ( z i , . . . ,  zs) ^  0 for every ( z i , . . . ,  zs) £ Z, we have the inequal­
ity (4.2) and its consequence (4.3). The rest of the theorem follows in a 
straightforward manner. □

Figure 2 illustrates a dual feasible basis of Theorem 4.1 for the case of 
ZX = Z2 = {0, . . .  ,9}.

9 0 0 o o o o o 0 o 0

8 o o 0 o o o o o o o
7 o o o o o o o o o 0

6 0 o 0 0 0 o o 0 0 0

5 o o o o o o o o 0 0

4 • o 0 0 0 o o 0 0 o

3 • • 0 o o o o o o 0
2 • • • 0 o o o o 0 o

1 • • • • o o o o o o

0 • • • • • o o o o o

0 1 2 3 4 5 6 7 8 9

Figure 2. Illustration of a dual feasible basis through the planar points to which the 
basic columns of A correspond in the minimization problem (1 11). We chose m  +  1 =  5.

Remark. If Zj — {0 ,. . . ,  nj}, j  = 1 ,. . . ,  s, then (4.3) can be written in 
the form

(4 .1 0 ) =  ^  ' *i! • • • *s![z i 0 ! • • • i z \ i \ ; • • • 1 z s0, • • ■ ,Zsia, f ] S i v - is -
i\H---Ha

T heorem 4.2. Let I  =  {(h , . . .  , i s)\ij ^  0, integers, j  =  1 , . . . ,  s, n\  — ii +
■ ■ ■+ns — is "L. m} and assume that all divided differences of total order m  + 1 , 
of the function f , are nonnegative. Then the following assertions hold.

(a) The set of columns \(i i, . . .  , i s) 6  1} is a basis B for the columns
of A in problem (1.11).

(b) The Lagrange polynomial L j ( z \ , . . .  , z s), corresponding to the points 
{{z\ix, . . . ,  2 sjs) |( ii , . . .  , i s) £ I}, is unique and is the following

(4.11)
Lr{z \ , . . . , z s)

'y  ) [-Zlni) • • • j ^ l n i — i \ ) •
Ú-I---------------------- |-ns - m

0=b'=nfd=l.--.is 
s nj

X j Q  ( Z j — Zj h) .

j= 1 h=rij—ij + l

■ I z sris > • • • j z sns—is ; / ]
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(c) I f  m  + 1 is odd, then

(4.12) f ( z i , . . . , z s) ^ L i ( z i , . . . , z s), for (zx, . . . ,  zs) € Z,

i.e., B  is a dual feasible basis in the maximization problem (1.11), 
and

(4.13) E[f(£ 1, . . . , t i s) } i E [ L I (Z1, . . . , ( ;s)}.

I f m  + 1 is even, then the inequalities (4.12) and (4.13) are reversed, 
i.e., B  is a dual feasible basis in the minimization problem (1.11). In 
either case the expectation inequality is sharp, if B is also a primal 
feasible basis in problem (1 .1 1 ).

(d) I f  all divided differences of total order m  +  1 are nonpositive, then 
all assertions hold with the difference that (4.12) and (4.13) hold for 
m  +  1 odd, and the reversed inequalities hold for m + 1 even.

PROOF. The polynomial (4.11) coincides with /  at the points { ( z u i , • ■ ■, 
zsis)i (il) • • • sis) £7}, for every / .  This proves assertions (a) and (b).

Assertion (c) can be proved in the same way as that of Theorem 4.1. 
If all divided differences that appear in the suitably defined Ri(z \ , . . .  , zs) 
are nonnegative (nonpositive), then still the sign of R i ( z \ , .. .  , z s) depends 
on the number of factors that multiply the divided differences in each term. 
Since all factors are nonpositive for all {z \ , . . .  , zs) G. Z  and there are m  +  1 
factors in each term, the assertion in (c) follows. Assertion (d) is a trivial 
modification of assertion (c). □

Figures 3.a and 3.b illustrate dual feasible bases of Theorem 4.2. We 
chose Z\  =  Zi — {0, . . . ,  9}.

9 O o 0 o 9 O o o o o

8 o o o o o 8 o o o o 0 o • • •
7 o o o o o o • • • • 7 o o o o o o o • •
6 o 0 0 o o o o • • • 6 o o o o 0 o o 0 •

5 o o 0 0 o o o o • • 5 o o o o 0 o o o o

4 o o 0 0 o o o o o • 4 o o o o 0 o 0 o o o

3 o o o o o o o o o o 3 o o o o o o o o o o

2 o o o 0 o o o o o o 2 o o o o o o o o o o

1 o o 0 o o o o o o o 1 o o o o o o o o o o

0 o o o o o o o o o o 0 o o o o o 0 o o 0 o
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

(a) (b)

Figure 3. Illustration of dual feasible bases through the planar points to which the 
basic columns of A correspond in the minimization problem (1.11). The basis in Figure 
3.a (3.b) yields an upper (lower) bound because m +  1 =  5 is odd (m +  1 = 4 is even).
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REMARK. If Zj = {0, . . .  ,nj},  j  = then the inequality (4.13) can
be written in the form

(4.14)

E [ m  i ,  ■■■,&)]

Y l  (rii -  n)! ■ • • (ns -  is)![ni, ...,ni — *i; ...;ns , . . . ,ns - i s
ÚH ---- 1- n 3 —s

°áh=nj ,j=l,...,s
x  S n i — i \■■■ns - i s ■

5. Some bivariate inequalities

T heorem 5.1. Let, I  — {(0,0), (1,0), (0,1), (ni,0), (0 , n2 ), (ni , r i2 )} and 
assume that all divided differences of total order 3 of the function f  are 
nonnegative. Then the following assertions hold.

(a) The set of columns {ai1j2 |(*i,i2) G 1} is a basis B for the columns of 
A in problem (1.11).

(b) The Lagrange polynomial L i (z\ , z2) corresponding to the points 
{{zh , Zi2 ) I (*1 ,^2 ) G 1 } is unique and is the following

Lr{zi ,z2) = f { z \Q,Z2o) + [zio,zn',z2o;f]{zi - z 10)
+  [*lo;*20,*2i;/](22-32o)

(5.1) + [zio, Zn, z\nT, Z20 ', f]{zi -zio){zi  - Z n )
+ [zio;Z20,Z2 l ,Z2n2;f]{z2 - Z 2o)(z2 - Z 2 l)
+ [^10,^171,; Z20, Z2n2; f](z\ -  2io)(*2 ~ ^20)•

(c) We have the inequalities

(5.2) f ( z i , z 2) ^ L i ( z i , z 2) for (zi ,z2) G Z,

i.e., B is dual feasible in the maximization problem (1.11),

(5-3) £ [/(& , f c ) ] ^ [ £ / ( £  1 , 6 )]-

If B is also a primal feasible basis in problem (1.11), then the in­
equality (5.3) is sharp.

(d) If  all divided differences of total order 3 are nonpositive, then all 
assertions hold with the difference that B  is dual feasible in the min­
imization problem (1.11) and the inequalities (5.2) and (5.3) are re­
versed.

P roof of (a). It is a simple exercise to check that \B\ 7^0 . Thus, B  is 
in fact a basis.
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PROOF OF (b). The uniqueness of the Lagrange polynomial follows from
( a ) .

That the polynomial L j (z i , z2), given by (5.1), is the Lagrange polyno­
mial corresponding to the points {{zu1, z2i2), (*i,*2 ) £ /}, follows from the 
fact that L[(z\,Z2 ) coincides with f ( z i , z 2) on these points.

Now we show that (5.2) holds. First we assume that z\ > zio, Z2 > z 2 q . 

In view of the assumption that the (2,1), (1, 2)-order divided differences 
are nonnegative, we have the inequalities

[zi0 , z i; z20, z 2 ;f] ^  [zw , zini\z20, z2-, /]  ^  [2 1 0 , z ini; z2o,z2n2', /]•

It follows from this that

^  ^  f{z i ,Z2) ^ f { z i o , Z 2) + f(z i ,Z2o ) - f ( z iO ,Z 2o)
+  [zio, Zini\ Z20, Z2n2] f](zi  -  Zio){z2 -  Z2o)-

On the other hand, the nonnegativity of the (3,0)-order divided differences 
and the fact that {0 , 1 , ni} is a univariate dual feasible basis structure in the 
problem

n 1
max {zu, z20)p[i>

i- 0

subject to
n 1

(5.5) Z^p\l} = ß o0, 0  =  0,1,2
i= 0

p,(L)^ 0 , i = 0 , . . . , n 1,

(see [2 0 ]) imply that

, . f { z i , z 2o ) ^ f { z 10, z20) + [zio,zn ;z2o; f] (z i - z io )
+  [^101 Z\ni, 2 1 2 ; Z2Q\ f]{z\ -z\o){z i  - z n )-

In a similar way we obtain

, 7) f {z  10, z2) S U z io ,z20) + [2 1 0 ; ^2 0 , Z2 \-J]{z2 -  z20)
+  [ ^ 1 0 ;  ^ 2 0 ,  Z2 l ; z2n2 ; / ]  {Z2 ~  Z2o) ( Z2 ~ Z 2 l ) -

The inequalities (5.4), (5.6) and (5.7) imply (5.2).
The expectation inequality (5.3) follows from (5.2). If B  is also primal 

feasible, then it is optimal in the maximization problem (1 .1 1 ), hence the 
inequality is sharp. Assertion (d) follows from the fact that in this case the 
function —/  has nonnegative divided differences of total order 3, hence the 
inequalities (5.4), (5.6) and (5.7) hold if we replace —/  for / .  These imply 
the reversed inequalities of (5.2) and (5.3).
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9 • O O 0 0 0 0 0 0 •
8 O O O 0 0 0 0 0 0 0
7 O O O 0 0 0 0 0 0 0
6 O O O 0 0 0 0 0 0 0
5 O O O 0 0 0 0 0 0 0
4 O O O 0 0 0 0 0 0 0
3 O O O 0 0 0 0 0 0 0
2 O O O 0 0 0 0 0 0 0
1 • O O 0 0 0 0 0 0 0
0 • • O 0 0 0 0 0 0 •

0 1 2 3 4 5 6 7 8 9

Figure 4. Illustration of a dual feasible basis through the planar points to which the 
basic columns of A correspond in the maximization problem (1.11).

If z i = z\o and/or z2 =  2 2o, (5.2) reduces to (5.7) or (5.6). This completes 
the proof. □

A dual feasible basis of Theorem 5.1 is illustrated in Figure 4.
Remark . If Z \  =  {0,. . .  ,ni}, Z2 = {0, . . .  , « 2 }, then the inequality in

(5.3) takes the form

E [ m ,  6 ) ]  ^  /(0 ,0 ) +  [0,1; 0; / ] S 10 +  [0; 0,1; /]S 0i
+2[0,1, n i; 0; f]S2o +  2[°; 0,1, n2; / ] 5 02 + [0, ni; 0, n2; f ] S n .

T H E O R E M  5.2. Let I  — {(0, 0), (0,1), (1,0), (1,1), (0,n2), (ni, 0)} and as­
sume that all divided differences of orders (2 , 1 ), (1 , 2 ) of the function f  are 
nonnegative while the divided differences of orders (3,0), (0,3) are nonposi­
tive. Then the following assertions hold.

(a) The set of columns {aii»2 |(*ij*2 ) 6  1} is a hasis B for the columns of
A in problem (1.11).

(b) The Lagrange polynomial T/(£i , z2), corresponding to the points
{ (z j,, Zi2)\(ii, i2) € / }  is unique and is the following

Li{zi ,Z2 ) = f { z w ,Z2o) + [zio,zu]Z20 \f]{zi ~Z\o)
+ [zio', Z20, Z2T, f](z2 -  Z20)

(5.9) + [ z w , z u , z i n i ]Z2 o;f]{zi  -  Z\o)(zi - 2 1 1 )
+  [2 1 0 ; Z2 0 , 2 2 1 , Z2 n2 ; / ]  (22  -  Z2o)(z2 ~  Z21)
+  [2 1 0 , 2 li; Z20 , 2 21 ; f ] ( z i  -  Zio)(z2  ~  22 o)-

(c) We have the inequalities

(5.10) f { z i , z 2) ^ .L i (zi ,Z2 ) for (z i ,z2) G Z,

i.e., B  is dual feasible in the minimization problem (1.11),

(5.11) £ [ / ( 6 ,6 ) U £ [ M 6 ,6 ) ] -



370 A. PREKOPA

I f  B  is also a primal feasible basis in problem (1.11), then the expec­
tation inequality (5.11) is sharp.

(d) If  all divided differences of orders (2,1), (1,2) are nonpositive, and 
those of orders (3,0), (0,3) are nonnegative, then all assertions hold 
with the difference that B  is dual feasible in the maximization problem
(1.11) and the inequalities (5.10) and (5.11) are reversed.

PROOF. The proof is very similar to that of Theorem 5.1 and is omitted.
□

Figure 5 illustrates a dual feasible basis of Theorem 5.2.

9 • o o o o o o o o o
8 O o o o o o o o o o
7 o o o o o o o o 0 o
6 o o o o 0 o o o o o

5 o o o o 0 o o o 0 o

4 o o o o 0 o o o o o

3 o o o o 0 o o o o o
2 o o o o o o o o o o
1 • • o o o o o o o o

0 • • o o 0 o o o o •
0 1 2 3 4 5 6 7 8 9

Figure 5. Illustration of a dual feasible basis through the planar points to which the 
basic columns of A correspond in the minimization problem (1.11).

REMARK. If Z\  =  { 0 , . . . , ni},  Z2 =  {0 , . . .  , 712}, then the inequality in
(5.11) can be written in the form

£ [ / ( £ i ,6 ) ] ^ / ( 0 ,0 )  +  [0 ,l ;0 ; /]S 10
(5.12) +  [0; 0,1; /]S 0i +  2[0,1, m ; n2/]S 20

+  2 [0 ; 0 , l , n 2;/]So2 +  [0 ,l ;0 , l ; / ]Sn .
The proof of Theorem 5.1 allows for the derivation of simular dual fea­

sibility assertions for other lattices, using other assumptions. For exam­
ple, if m  =  2 and the divided differences of orders (2 , 0 ), (2 , 1 ), (1 , 2 ) and 
(0,4) are nonnegative, then the set of points { ( z i q , 2 2 j2 ) | ( i i , * 2 )  £ /} , with 
I  =  {(0, 0), (0,1), (0, 2), (0, 3), (1,0), (1,1)}, determines a unique Lagrange in­
terpolation and a dual feasible basis in the minimization problem (1.11). The 
Lagrange polynomial is

L i (z i , z2) =  [ z i o ;  2 2 0 ;  / ]  +  [ z io ;  z i o ,  * 2 1 ;  f ] { z 2 -  2 2 0 )

+  [210;  2 2 0 , 3 2 1 , 2 2 2 1  f ]{z2 -  Z2o ) { z 2  ~  2 2 1 )

+  [210; 2 2 0 , 2 2 1 , 2 2 2 , *231 / ] ( z 2 ~  2 2 0){z2 ~  Z2 l ) ( z 2 ~  2 2 2 )

+ [zio,zn;z20-,f]{zi -Zio)
+  [2 1 0 ,2 l i ;  Z 2 0 , 2211 / ] ( 2 i  -  Z i o ) ( z 2  -  220)■

From here inequalities of the type (5.2) and (5.3) can be derived for s = 2.
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6. Multivariate Bonferroni inequalities

In this section we assume that Zj =  {0, . . . ,  nj], j  = 1 , . . . ,  s. Defining

If for at least one j  we have ij = 0, then the above divided difference is 0.
Let A j i , . . . ,  Ajnj, j  =  1 , . . . ,  s be s finite sequences of arbitrary events 

and let designate the number of those, in the jth  sequence, that occur. 
Then ^ 1 is the same as L N o w ,  Theorem 4.1 and relation (6.1) 
imply

THEOREM 6.1. I f m  + l — s i s  even, then we have

we easily see that

[0 , • ■ • ,i\g\ -  ( - 1 ) 1 f o r r a l .

Let f ( z i , .. , , z s)=g(z i)  ■ ■■ g{zs), ( z \ , . .. , z s) € Z. Then we have

S

( 6 . 1)

and if m  + l — s is odd, then we have

(6.3) P
(

For the case of s = 1 we obtain
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if rn is even, and
( n \  m

i= 1 /  i= 1

if m  is odd. These are the original Bonferroni inequalities (see [l]j.
We can also deduce inequalities for P(£i = r i , . . .  ,£s = rs) and P(£i ^ 

ri , ■ ■ ■ , £ s ^ r s).
In the first case we define

f j ( z )
0 , if z /  Tj
1 , if z =  r j

and f ( z i , . . .  ,zs) — f i ( z i )  ■ ■ ■ f s(zs) ior ( z i , . . . ,  z s) E Z . By the determinantal 
form of the univariate divided differences (see, e.g., Jordan (1947)) we easily 
deduce that

[0, . . . , ij-Jj] = i-iyi-'lJy ()()

which implies that

(6.4)

[0 , ■ • •, i \ ;. ■ ■; 0 , . . . ,  is\ f] — [0 , . . . ,  i j ; fj]
j=1

= n < - D -
3 = 1

1 ( i
0 ! VO

This is nonnegative if i\ + ■ • • +  is -  (rq 4---- +  rs) is even, otherwise it is
nonpositive. Hence Theorem 4.1 implies

T heorem 6.2. J / m + l - ( r H ------ f-rs) is even, then we have

(6.5) P(Z1= r 1, . . . , Z s = r s) Z  E  f t )
ÚH yis^rn j = 1 J

q=h=nj

and if  m  +  1 — (rq +  ■ ■ • +  rs) is odd, then we have

(6.6) P ( 6 = n , . . . , 6 = r , ) g  E  I K - 1) ^ ^ ) ^ , . , ,
i i  U yis^rn j = 1 J

ri =h =ni ii=i

Finally, in order to obtain inequalities for P(£i ^  rq, ■ ■ ■, £s = rs) we define

f:i(z )
0 , if Z < Tj
1 , if Z ^  Vj
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arid f ( z i , . . . , z s) = f i ( z i ) - - - f s(zs) for (z\ , . . . ,  zs) £ Z. Again, rising the de- 
terminantal form of the univariate divided differences, we get

[0 , • • • ,* ; ; / ]=  É t - 1)'
1 f i

h=r, i j \ \ h

On the other hand, we have the combinatorial identity

D - 1) '- “ j = ( - u
h=r

i — 1 

r -  1

Thus, we have the following formula for the multivariate divided differences
S

[0 , . . . ,  n ; . . . ;  0 , . . . ,  is] f] = J J [ 0 , . . . ,  i j ; fj]

(6.7) 7 = 1 
s

7  =  1

Theorem 4.1 and equation (6.7) imply
T h e o r e m  6.3. If m  + 1 — (n  +  • • • +  rs) is even, then we have the in­

equality

( 6 . 8)

P{£l = r U- ■ ■ if,s = r s) = E  ü t - 1 )
i i -n  ‘7

Ú H -------h  7 = 1

■ Sii-'-is

li — 1

rj ~ l

and if m  + 1 — (ri 4------ 1- rs) is odd, then we have the inequality

P ( z  1 ^ 1 , . . f l i - T - "
*H-----h i j S m i  j7\sT

VII•r~>
V

IIÍ*. ,,s

The inequalities (6.2), (6.3), (6.4), (6 .6 ), (6.7) and (6 .8 ) have been derived 
first by Meyer [16].

7. Algorithmic bounds and numerical examples

The significance of the knowledge of a dual feasible basis is twofold. 
First, we can immediately present bound for the optimum value of the linear
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programming problem we are dealing with. Second, starting from this basis, 
we have an algorithmic tool with the aid of which we can improve on the 
bound or obtain the best possible bound. This tool is the dual method of 
linear programming, due to Lernke [15]. For a short and elegant description 
of it see [2 2 ].

Given a linear programming problem

min(max) c 1 x 
subject to

(7.1) Ax = b
x^O.

where A  is an m  x n m atrix (m ^  n), assumed to be of full rank, any basis 
B  is a nonsingular m  x m  part of A. We say tha t B  is feasible or primal 
feasible if the solution of the equation B xb =  b produces x# ^ 0. Let I  or Iß 
designate the set of subscripts of those columns of A  which are in the basis. 
Further, let cB designate the vector of components Cj, iE / ,  arranged in the 
same order as they are in c.

The basis B is said to be dual feasible if the solution of the equation 
yTB  =  Cß satisfies the constraints of the dual of problem (7.1):

max(min) b ; y
(7.2) subject to

ATy i ( l ) c .

If B  is both primal and dual feasible, then it is optimal.
Let A  =  (oi , . . . ,  an), cJ =  (ci, . . . ,  cn). W ith these notations the dual 

feasibility of B  can be formulated as follows:

(7.3) c rBB ~ lah ^(>)ch, h = l , . . . , n .

For h E  I  equality holds in (7.3).
The dual method of linear programming starts from a dual feasible ba­

sis B.  Then the following steps are performed. We assume the problem is a 
minimization problem.

Step  1. Check if B ~ l b ^  0, i.e., the basis B  is primal feasible. If yes, 
then stop, optimal basis has been found. Otherwise go to Step 2.

Step  2. Pick any negative component of B ~ lb. If it is the ith one, then 
delete the ith  vector from B . Go to Step 3.

Step  3. Determine the incoming vector maintaining dual feasibility of 
the basis and making the objective function value nondecreasing. Go to 
Step 1.

Step 3 is usually costly. In case of the univariate discrete moment prob­
lems (see [2 0 ]), however, the structure of the dual feasible bases have been
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found and Step 3 can be carried out by performing simple combinatorial 
search.

In case of the multivariate discrete moment problems we have only a few 
dual feasible basis structures and we cannot spare Step 3 when solving the 
problem to obtain the best possible bound.

Still, the availability of an initial dual feasible basis is of great help. We 
can save the time needed to execute the first phase in a two-phase solution 
method that is roughly 50% of the time needed to solve the LP. In addition, 
since moment problems are numerically very sensitive, the knowledge of an 
initial dual feasible basis increases numerical stability.

The dual method, as applied to these problems, has many other features. 
For example, we may have more detailed information about the possible 
values of the random vector (£i,. . . ,  £s), i.e., we may know that some of the 
values in the set Z  =  Z\ x • • • x Zs are not possible, in other words, have 
probability 0. Information of this type has not been exploited so far in 
former sections of the paper. The dual method, however, allows to take such 
information into account, in a trivial way. In fact, we simply have to delete 
those columns from the problem that are multiplied by the probabilities 
known to be 0. The basis remains dual feasible with respect to the new 
problem. This way we even improve on the bound.

Below we present one small numerical example for illustration.
Let ni =  « 2  =  9, m i +  m 2 =  3. The following power moments have been 

obtained from the uniform distribution: Pixi2 =  1/100 for each 0 ^  i\,  *2 ^  9:

M o o  —  1) M io  =  4 . 5, ^ 2 0  =  28 . 5, M30 =  202.5
p o i = 4 . 5 , M in  =  20. 25, /u .21  =  128. 25,
M 0 2  =  28 . 5 , p\2  =  128. 25,
M 0 3  =  202 . 5 .

We want to obtain the sharp lower bound for P(£i ^ 1 ,^ 2  ^  1)- We start 
from the dual feasible basis with subscript set I  =  {(0,0), (1,0), (0,1), (2,0),
(1,1),(0,2),(3,0),(2,1),(1,2),(0,3)}.

As optimal solution, for the minimization problem (1-11), we obtain

P40 =  0.075, 
P04 =  0.175, 
P95 =  0.075,
P 99 =  0 ,

p50 =  0.125, P90 = 0,
P94 = 0.125, p45 = 0.225, 
P09 = 0.025, p59 = 0.175, 

and all other pixi2 = 0 .

The value of the objective function is the sum of those pXxi2 probabilities 
for which we have i\ ^  1, *2 ^  1- This sum equals 0.6. Thus, the result is

P ( t i *  1 , 6 ^ 1 ) £ 0 .6 .
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Note th a t the true probability is the sum of those Pixi2 = 1/100, for which 
*1 ^  1, *2 ^  1- This number is 0.81.

Suppose now that we have the information concerning and £2 that 
£1 + £ 2  = 12. This means that the set of possible values of the random vector 
(£1,^2 ) is °nly a subset of the set {(*, j)|0 ^ i ^ 9, 0 ú j  ^9}. Thus, we may 
delete those columns, variables and objective function coefficients from prob­
lem (1.11) which correspond to (i , j ) with i + j  > 12. Solving the restricted 
problem, the optimal solution is

P30 = 0.11393, 
P45 =  0.23637, 
P97 = 0.12531, 
p59 = 0.65259,

P03 =  0.09749, 
P55 =  0.1185 7, 
P09 = 0.05191,

P04 = 0.08732, 
P56 — 0.00985,
P49 =  0.10666,

and all other Pili.2 — 0 .

The value of the objective function ÍSP4 5 +P5 5 + P 5 6 +P 9 7 +P49+P59 =  0.64935. 
This improves on the former lower bound that is 0.6.

In case of m  = 3 the Bonferroni inequality (6.2) produces the irrealistic 
result:

p f n U AJ ' )  ^ S n - S 12-  521 = 20.25 - 5 4  - 5 4 =  -87.75.
y = 1 *=° /

This number is, at the same time, the value of the objective function in 
case of the initial dual feasible basis.

For further numerical examples see Prékopa [21].
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THE RANGE OF A CRITICAL BRANCHING WIENER PROCESS

P. RÉVÉSZ

To the memory of A. Rényi

A bstract

Consider a critical branching Wiener process on IR1. Let R(n) be the range of the 
locations of the particles at time n. A limit distribution theorem is proved for n ~ l ̂  2 R(n).

1. Introduction

Consider the following 
Model 1.
(i) a particle starts from the position 0 € K1 and executes a Wiener 

process W  (t ) € K1,
(ii) arriving at time t = 1 to the new location W(  1 ) it dies,

(iii) at death it is replaced by Y  offspring where

P{Y = 0} = P { Y  = 2 } = 1- ,

(iv) each offspring, starting from where its ancestor dies, executes a Wie­
ner process (from its starting point) and repeats the above given steps 
and so on. All Wiener processes and offspring-numbers are assumed 
independent of one another.

A more formal definition is given in Chapter 6 , p. 91 of [1].
Let
(a) B(n) be the number of particles living at time n, the particles born 

at time n to be counted as alive at time n but not at time n +  1 , i.e.
5(0) =  1, P { 5 ( l ) = 0 }  = P{B(l) =  2} =  l /2,

(b) X n\, X n2 , ■ ■ ■ , X n B(n} be the locations of the particles at time n in 
K1,

(c) Mn — max{Xni, Xn2 , • • •, X niB(n)},
(d) M  + (n, x) = P{M+ < xn1/ 2 | B(n) > 0},
(e) M n min{X n\ , X n2 , • • •, X n B n̂ }̂,

1991 Mathematics Subject Classification. Primary 60G57; Secondary 60J65, 60J80. 
Key words and phrases. Critical branching Wiener process, limit distribution, random 

trees, range.
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(f) M. (n,x) = P{Mn < x n 1/ 2 \ B(n) > 0},
(g) R n =  M+ — M ~,
(h) 7Z(n, x) = P{Rn < x n 1//2 | B(n) > 0},
(i) Fn(x,y) = P{M+ < x n 1/ 2 , M~ > y n 1/ 2 \ B(n)  > 0}.
In [2] we studied the limit properties of M+. We proved the following

and d(-, •) is the Levy distance.
T H E O R E M  B .  There is only one distribution function which satisfies 

(1.2) and (1.3).
In the present paper we prove similar results for R n. Our main result is:
T h e o r e m  1. There exist distribution functions 1Z(x) and F ( x , y ) such 

that for any n big enough we have

two theorems.
T H E O R E M  A. There exists a distribution function M +(x) ( x G K 1 ) such 

that for any n big enough we have

(1.1) d ( M +(n, x), M +(x)) ^ n 1/2 (logn)4,

(1.2) 1 — M.+{x) +  A4 + (—x) $1 exp if x ^  2 0 0 ,

M. +(x) is a solution of the integral equation

1 +oo

(1.3)
0 —oo

where

(1.4) d,(7l(n, x),TZ(x)) ^ n  1 2̂ (logn ) 4

(1.5) d(Fn{x ,y ) .F {x ,y ) ) ^n  1/ 2 (logn ) 4

F(oo, x) +  (1 — F(  oo, —x)) + (1 — F(x,  — oo)) + F(—x, — oo)
( 1. 6 )

(1.7)
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F(-,-) is a solution of the integral equation
1 +oo

(1 .8 ) F(u,v)  =  J  j  {F(a~1/2 { u - y ) , a ~ ] / 2  (v -  y)))2<pa(y)dyda.
0 -o o

F(-, •) is the only distribution function which satisfies (1.6) and (1.8). Further 
we have

H(z) = j" d(F(x, -oo ) -  F(x, y)),
As

where
A z =  {(u, v) G M2, —o o < v < u < o o ,  0 <u — v < z} .

2. A simplified model

Let
{Wni(t), t *  0 , i = \ , 2 , . . . , 2 n~ \  n = l , 2 , . . . }  

be an array of independent Wiener processes. Let

{U(n,i), i = 1 , 2 , . . . , 2 " - 1, n = l , 2 , . . . }

be an array of independent, uniform-[0,l] r.v.’s. We assume that the arrays 
{Wni(t)} and {U(n,i)} are independent. Let

7(1, 1) = U(1,1),
V(2,l )  = U ( l , l )U(2 , l )  = V(l , l)U(2 , l) ,
7(2,2) = 17(1, l)[/(2,2) =  V(l, l)C/(2,2),

F(n, 2 /c — 1) =  V(n — 1 , k)U(n, 2 k — 1 ),
V(n, 2k) =  V(n -  1, k)U(n, 2 k),

(A; =  1 , 2 , . . . ,  2 n_2, n =  2 ,3, . . . ) .
Model 2. Let

x j ?  =  Wu ( l - 7(1,1)),

^ 2 ? = ^ í ?  + Wr21( V ( l , l ) - 7(2,1)),

=  4 ?  +  ^ 22( 7 ( 1 , 1 ) - 1 / ( 2 , 2 ) ) ,

4 1 - 1 =  4 - i , * + ^ ,2 fc - i(7 (n  -  1, k) -  V(n, 2 k -  1 )),

4 1  =  4 - 1,it + Wnt2k(V(n -  1, k) -  V(n, 2 k)),

(A: =  1 , 2 , . . . , 2n“2, n =  2,3, . . . ) .
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Introduce the following notations:
(a) M+  (2 ) =  m ax(*<?, X ™ X ™n_,),
(b) P { M + ( 2 ) < x }  =  M t ( n , x ) ,

(c) M - (2 ) =  m i n ^ , X $ , . . . ,  X ^ ),
(d) M 2 ( n , x )  =  P { M ~ ( 2 )  < x } ,
(e) R m (2) =  (2 ) — M ~  (2 ),
(f) /R 2 {n,x) = P{Rn(2) <x} ,
(g) F i 2)(x,y) = P{M +(2)<x,  M ~ (2) > y}. 
In [2] we have proved:
T h e o r e m  C. Let

and

M +{2)= lim M+(2) a.s.
n—> 00

M 2 (x) = P {M + (2) < x} = lim Mj t f i , ! ) ,

where the second limit is in weak sense. Then we have
(i) P{|M+(2) - M + ( 2 ) |  ^ e x p ( - l (T 3n)} ^exp(-0 .2n),

(ii) M .\{x  — exp( — 1 0 - 3 n))
^ A i t  (n, x) ^ M 2 (x  + exp( —10_3n)) + exp(—0 .2 n),

(iii) 1 — M 2 (x) + x ) = exp
x

‘2 Ö
if x Z  2 0 0 ,

(iv) X42 (x) a solution of the integral equation (1.3),
(v) X42 (x) *s the on ŷ distribution function which satisfies (iii) and (1.3).

Theorem C clearly implies 

THEOREM 2. The following limits exist:

M: ■ lim M n (2) a.s.,
n  —> 00

R.2 = lim R n{2)
71—>00

a.s.,

M 2 (x) =  P {M 2 < x} = lim Ad2 (n ! x),
n —foo

^ ( x )  = P { i ?2 <x} =  lim 7?.2 (ro,x),
n—>00

F2 (x,y) =  P{M 2+ < x, M2~ > y} =  Jiin i^ 2)(x,y),

where the last three limits are in weak sense.
Further we have
(i) P{|M~(2) — M 2 \ ^  exp( —10~3n)} ^  exp(—0.2n),

(ii) P{|i?„(2) -  R 2\ ^  2 exp( —1 0 _3n)} <; 2 exp(-0.2n),
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(iii) M 2 (x — exp( —10 3n))
^ M 2 (n, x) ^ M 2 (x + exp(—10_3n)) + ex p (—0.2n),

(iv) 1 - M 2 ( x ) + M 2 ( - x ) gexp if x ^200,

(v) F2(oo,x) +  (1 -  F2(oo, - x ) )  +  (1 -  F 2 ( x , - o o ) )  +  F2(—x, -oo )

= 2 exp if x ^  200,

(vi) 1 - U 2 ( x )  5iexp if x  = 400.

T heorem 3. F2(-,-) is a solution of the integral equation
1 +oo

(2.1) F2(u, v ) = J J  {F2(a~1/2{ u - y ) , a ~ 1/2{ v - y ) ) ) 2(pa {y)dyda,
0 —oo

where cpQ(y) is defined in Theorem A.
P roof. Observe that

r(2) y(2) v(2)Mn (2) =  m ax(m ax(X ^, X $ X ^ „ _ 2), max(X(2 n_2+1, . . . ,  )),

M~{2) = min(min(X7j21), X r[22 , . . . ,  X ^ n_2), m in (X ^ n_1+1, . . . ,  ^ 2„_i)),

m a x ^ i? ,  X & \  . . . ,  X ^ n_2) = (F (l, 1))1/2M+_1(2) + W n (l ~ V ( l t 1))
and

m in im i?,4 ? , . . . ,  X $ n_2) =  (P (l, 1))1/2M -_1(2) + W u ( 1 -  V(l, 1)). 

Hence

A  2)

P {M + (2)< u , M ~ ( 2 ) > v \V ( l , l ) = a ,  Wn ( l - a )  = y }  =

— (P {M*_i(2) < a~l/2(u — y), M~_x > a ^ 2 {v -  y)})2. 
Consequently,

P { M + < y , M2 > v \ V ( l , l ) = a ,  W n ( l - a )  = y }  =

= (P{M+ < a~ 1/2(u -  y), M2 > a ~ ^ 2(v -  y)})2
and

F2(u ,v )— P{M 2 <u, Mfi > v)
= E{P{M2+ < u , M2- > « |V r( l , l )  =  a, W n ( l - a )  =  i/}} =

1 + o o

-  j  J  (P{M2+< c r 1/2(u - y ) ,  M 2 > a~l/2(v — y)})2ipa(y)dyda.
0 —oo
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Hence we have (2.1).
T heorem  4. F2(-,-) is the only distribution function which satisfies (v) 

of Theorem 2 and the integral equation (1.8).
P r o o f . Let

{Z ni = (Zni( l) ,Z ni(2)), * =  l ,2 , . . . ,2 n- 1, n =  l ,2 , . . .}  
be an array of i.i.d. random vectors with

P{Zni( l ) < x ,  Zni(2) >y} = F(x,y),
where the distribution function F(-,-) is a solution of the integral equation
(1.8) satisfying (v) of Theorem 2.

The existence of such a distribution function follows from Theorems 2 
and 3. Assume also that the arrays {Znk} and {VPnfc(-)} are independent. 
Let

Yn  =  Z l u

Y21 =~Xn +  {V (1, l))1/2Zn,

T22 = Ä (i? +  ( P ( l , l ) ) 1/2Zi2,

Yn,2k- i  = X {Z \ k +  (V(n -  l ,k ) )1/2Zn,2k-i,

Yn, 2k =  X n U k  +  (F (n -  k))l/2 Zn,2k,
where

“y(2) _ / y(2) y(2)\

h n i =  ( y „ , ( i ) , y „ i ( 2 ) ) .

Let
/in = max(yni ( l ) ,y n2(l), • • •, Y ^ n -ii l) ) ,
i'n = min(yni(2),y„2(2),. . . ,  F„)2n-i (2)),

h { t)  =  ( y ( i , i ) ) _ 1 / 2 ( í - i T i i ( i - y ( i , i ) ) ) -

Observe that

/i2 =  (F(l,  1))1/2 m ax(Z n (l), ^ 12(1)) +  W u  (1 -  F ( l ,  1)),
^2 =  (V(l, l) )1/2 m in(Zu (2), Zi2(2)) + W n (l -  V(l,  1)).

Hence
P{H2 <u, V2>v}

=  P{max(Zn(l), Z i2(l)) < h(u), min(Fu (2), Z 12(2)) > h(v)j 
1 +00

=  J f (F2{a~1/2( u - y ) , a ~ 1/2{ v - y ) ) ) 2(pa {y)dyda = F2{u,v).
0 —00

( 2 . 2)
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By (1.5) we have
P{max(y3i(l) , y32(l)) < u, min(y3i (2), V32(2)) > v | £}
= P{max(y33(l),y34(l)) <u, min(y33(2),y34(2)) > v  |£} 
= F(h(u),h(v)),

where

Since given V(l, 1) and W n(l — V(l, 1)) the random vectors
max(y3i( l ) ,y 32(l)), min(y3i (2),y32(2))

and
max(y33(l) ,y 34(l)), min(y33(2),y34(2))

are independent, we have

P{m  < « , " 3 > v \ V (l,  1), W n(  1 -  y ( l ,  1))} = (F2(h(u), h(v)))2.
Hence

P{/v,3 < u , v z> v )
1 +oo

=  J  J  (F2(a~1/2( u - y ) , a ~ 1/2( v - y ) ) ) 2ipa(y)dyda =  F2 (u,v).
0 —oo

Similarly we have
P{/in <u, un > v} =  F2(u, v).

Conditions (v) of Theorem 2 imply that

lim |/in - M + ( 2 ) |  = 0  a.s.,n—>oo
lim \vn — M ~ (2)| =  0 a.s..

n—>oo

Hence the limit distribution of nn:vn and M+(2), M~ (2) are equal to each 
other and we have Theorem 4.

THEOREM 5. For any z > 0  we have

7̂ 2(2) =  J d(F2(x, - 00) - F 2{x,y)),
Az

where
A z = {(u, v) E R2, —o o < v < u < o o ,  0< i i  — v <  z} 

and PjjÍ'j ‘) defined in Theorem 2, determined in Theorems 3 and 4- 
P ro o f . Since

P{M+ <u, < u} =  F2(u, —0 0 ) -  F2(u, u),
Theorem 3 implies Theorem 5.
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3. Proof of Theorem 1

In [2] we evaluated the limit distribution of the most right particle in 
case of Model 2 and we proved a kind of invariance principle saying that the 
limit properties of Model 2 were essentially the same as those of Model 1. 
Now we evaluated the limit distribution of the range in case of Model 2 and 
we show that Model 1 inherits the results of Model 2.

Consider Model 1. Then for any 0 ^ k < n  let Q(k,n) be the number 
of those particles which are living at time k and which have at least one 
offspring living at time n. Clearly

B { k )^ Q { k ,n ) ,  B (n )2 Q (k ,n ) ,

{Q(k,n) = 0} = {B(n)=0} ( O ^ k ^ n ) .
Q (k ,n )  is a nondecreasing function of k (0 5Í k 51 n) and Q(0, n) = 1 provided 
tha t B (n)  ^  1. Hence on the set {B(n) >0} we can define a r.v. i/u = i'\i(n) 
as follows:

i'll — inf'{ k : 0 < k ú n ,  Q (k ,n) = 2}.
At time u\ i we have two particles and both of them have at least one 

offspring living at time n. v n  will be called the first branching time of the 
process. These two particles can be considered as the roots of two indepen­
dent branching processes living at least till time n  (starting from vn).  Let 
i/2 i =  i/2 i (ra) resp. i / 2 2 —  u 2 2  ( h ) be the first branching times of the branching- 
processes starting from v \\ .  Clearly i>n <U2i ^ n  (i = 1,2). In case v\\ = n 
define V2i =  n. Note that in case vn  = n — 1 we have also V2i = n.

We can say again that a t times 1/21 (resp. U22) we have two (resp. two) 
particles and they can be considered as the roots of four independent branch­
ing processes living at least till time n. Let 1/31 =  1/ 3 1 (71) (resp. 1/32 =  1/32(11)) 
be the first branching times of the branching processes starting from z/21. 
Similarly let 1/33 =  1/3 3 (11) (resp. 1/34 =  1/34(71))  be the first branching times of 
the branching processes starting  from 1/22- Note th a t in case 1/21 ^  n — 1 we 
have 1/31 =  1/32 — 7i  and in case 1/22 ^ n — 1 we have z/3 3  =  1/34 = n.

In general at time z/fc? ( j  = 1 , 2 . ,  2k~]) we have two particles and they 
can be considered as the roots of two independent branching processes living 
at least till time n (starting from v^j)- Let Vk+\,2j-\ =  ^k+i,2j-iin ) resp. 
i'k+i^j =  i/fc4-1 ‘i j (11) be the first, branching times of the branching processes 
starting  at i/kj. Note that i/fc+i,2j - i  =  */fe+i,2j =  n  if "kj ^ n - l .

Now we build up our
M odel 3.
Let

{Wni(t), 0, i = l,2 , . . .  ,2n- \  n  =  l ,2 , . . .}
be an array of independent Wiener processes which is independent from the 
array

W » ,  j  =  l ,2 , . . . ,2 fc- \  A: =  1, 2 , . . . ,  n}.
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Let

^ i ?  = ^ 1(1̂ 1),

+W'2l(* * l-* 'll) .
= X {$  + W22{v22- u n ),

^m,2k-l ~  Xm-\,k "I" ^m,2fc—1 {^mfik-l ~ l'm-l,k)i

X %2k = X m-l,k +  W ruM ^mlk ~ Vm-l,k),

(k =  1 ,2 ,. . . ,  2m-2, m =  1 ,2 ,... ,n).
Note that the sequence

{X2>, k = l , 2 , . . . , 2 n~1}

is equal to the sequence

{X nk, k = 1 ,2 ,...  ,I?(n)}

except that the elements of the second sequence might occur many times in 
the first sequence. Hence

M+ (3) := m a x i l J J , X < $ } = M+

(3.1) M- := m i n { x £ \ x i 32\ . .., = M"
Än(3):=M+(3)-M-(3) = Än.

Let

=  * n  +  W2i(n (V (l,  1) -  V (2 ,1))),

*?2 = X {$  +  W22{n(V( 1,1) -  V (2 ,2))),

X % k-x = Ä i j k  +  Wm,2fc-i(n(V(n  -  1 , k ) -  V(n, 2k -  1))),

X % k = X ^_ i,k  + Wm,2k(n(V(n  -  1 , k ) ~  V(n, 2k))),

(k — 1 ,2 , . . . ,  2m~2, m =  1, 2 , . . . ,  n).
Note that

{n1/2X % l k = l , 2 , . . . , 2 m~ \  m = 1 ,2 ,... ,n} =

= { * m l Ä =  1 ,2 ,... ,2m-1, m = 1 ,2 ,... ,n}.
Now we recall



388 P. RÉVÉSZ

THEOREM D. For any n  = 1 ,2 ,... there exist:
(i) a probability space {fin , «Sn, P?l},

(ii) a branching process (cf. Section 3) on fin with B(n)>  0,
(iii) an array of independent, uniform-[0,1] r .v .’s

{U (k ,i), * =  1 , 2 , . fc = l,2,...,n},
(iv) an array of independent Wiener processes {Wjy(-)j A: =  1 , 2 , ;  j

1 ,2 ,. . . ,  2k~1} which is independent from {ukj} and {Ukj} 
such that

(3.2)

P{ max max max \A(k, j, l ) \> C(logn)2} 
XWk<iK. l%j%2k~x l=2j-l,2j ~

< K2 « - iex p ( . i ! 2 i ^

where

A (k ,j , l )  = Wk+i,i(vk+i,i ~ vk,j) -  W k + i, i (n V (k ,j) ( l-U {k+ l,l) ) )

and

(3-3)
P { |^ n ( H i i ) - ^ n ( n ( l - P ( l , l ) ) ) |^ C ( l o g n ) 3/2}

=  exP
log2 n

Further

(3-4)

and

P < max V (k, l) ^
1 l  < i< 2n - x

f  99 y
víööy

6_\K
To

(3.5) P {n = vKU 1 = 1,2, . . . , 2 K x} £ 1 -  exp log y  ̂  log n

where

and

Consequently,

(3.6)

k = [C log n] 

2
C>

log 100 ' 
99~

P{ max max \ X $ - n l' 2X $ \  > C(logn)2}

(log n )2
^  k2k~x exp I - -

2
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; n

Note that by (3.4) we have

(3.7) P { X (* ) = X $ ,  j  =  l ,2 , . . . ,2 « - 1} ^ l - e x p ( - ( c i o g y ) l o g 1

/o\
taking into account only the different elements of the sequences {XR' } and 

{*!$}■ Hence

(3.8)

and by (3.6)

P{|i?.K( 3 ) - n 1/2JRK(2 ) |^C (lo g n )2}

P{i?K(3) ^ i ? „ ( 3 ) }  ^ e x p  ( -  ( C lo g y  ) logn

(3.9)
^ k2k 1 exp

(logn)2

(3.11)

(3.1), (3.8) and (3.9) combined imply

P{|i?n - n 1/2i?.K(2 ) |^C (lo g n )2}
(3-!0) ^ (  ( m  1 0 \ ,  \  nK- i  (  (logn)5= exp ( — ( C log — 1 log n 1 +  k2 exp I ------ -—

Remember that (ii) of Theorem 2 claims that

P{ |n1/2RK(2) -  nH2i?2| ^  2n1/2 exp(-10“3/i)}
^ 2 exp(—0.2k).

Hence (3.10) and (3.11) imply that for any K  > 0 there exists a C =  C (K )  > 0 
such that
(3.12) P { |n -1/2i?n -  R21 ^ C 'n -1/2(logn)2} ^ n~K.
Consequently, we have Theorem 1 by Theorems 2 and 3.
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ASYMPTOTICS OF MULTIVARIATE EXTREMES 
WITH RANDOM SAMPLE SIZE

D. S. SILVESTROV and J. L. TEUGELS

Dedicated to the memory of Alfréd Rényi

Abstract

We investigate the asymptotics of multivariate extremes with random sample size 
under general dependence-independence conditions for samples and random sample size 
indexes.

1. Introduction

Asymptotics of extremes with random sample size indexes have been 
thoroughly studied for two types of models with asymptotically independent 
sample and sample size indexes. In papers by Berman [3], Thomas [21], 
Galambos [7], [9], [10], Gnedenko, B. and Gnedenko, D. [11], Beirlant and 
Teugels [2] and Korolev [12] the model where the sample and the sample 
size indexes are independent has been investigated. The papers by Berman
[3], Barndorff-Nielsen [1], Mogyoródi [14], Sen [17], Galambos [6], [8], [9] deal 
with the model where sample size indexes depend on the sample but converge 
in probability. This type of convergence is stronger than weak convergence 
of random sample size indexes. It implies the asymptotic independence of 
random sample size indexes and the corresponding extremes with the non- 
random sample size due to a well-known result by Rényi [16] concerning 
mixing sequences of random events.

In a recent paper, Silvestrov and Teugels [20] derived limit theorems for 
extremes with random sample size for the model where the sample and the 
sample size are dependent in an arbitrary way. The general limit theorems 
for superpositions of random processes developed in Silvestrov [19] have been 
used as a basic tool. In the present paper we generalize some of the main 
results of Silvestrov and Teugels [20] from the univariate to the multivariate 
model of extremes with random sample size. We also show how the results, 
related to the model where sample and sample size indexes are asymptoti­
cally independent, can be obtained from these general theorems. Finally we 
present general triangular array versions of the results related to the case 
where the sample size indexes converge in probability. As was already men­
tioned above, the remarkable result by Rényi concerning mixing sequences 
of random events plays here an essential role.
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2. Weak convergence of multivariate extremal processes 
with random sample size indexes

For every e > 0, let {£E)„ =  z =  1, - - -, m), n =  1 ,2 ,...}  be a se­
quence of real-valued i.i.d. random vectors. Further we need random vectors 
JX£ =  (/ue>j, i — 1 ,... ,m) with non-negative components, and non-random 
functions n £ > 0 for which n£ —> oo as e —>• 0.

If we are interested in multivariate extremal processes with non-random 
sample size indexes then we deal with the vector process £e(i) =  (£e,i(t), 
i = 1 , . . .  , m), t ^  0 where

(1) £e,i(0 =  max ££jkii, f> 0 .
k S tn e

In formula (1) and below, we assign the value zero to a maximum over 
an empty set.

Our interest lies in the relevant analogues of these processes when the 
sample size indexes are random as well. So, define (£{t) = ( C * =  
1 ,. . .  , m), t ^  0 where

(2) (Eti{ t)= m a,x  C£,k,i, t>  0.
kSí/í£i?:

Let us denote by — g,£^ /n £ normalized random sample size indexes 
and v£ =  (zz£)j, i = 1 , . . . ,  m). Then the process {(£(t):t > 0} can be represent­
ed in the form of the vector composition of the two processes {^£(i) ,i  > 0} 
and {v£(t) = tv £, t>  0}, i.e. ( £ ( t )  =  i=  1, ■ ■ ■ ,m), t ^ 0 where

(3) CeA t )=Ze,i(tt'e,i), t >  0.

This representation points to the use of limit theorems for compositions of 
random processes as a tool in obtaining limit theorems for extremal processes 
with random sample size.

Let G be the class of non-increasing continuous functions g(ü) acting from 
Rm into [0, oo] such that e~9 û\ is an m-dimensional distribution function. 
(If g{u) = oo we understand continuity in such a point in the sense that 
g(y) —> oo as v ^ ü, v —> ü.)

Define G£{ü) = P{£e,i ^  ü}. The following condition is standard in papers 
dealing with limit theorems for extremes:

A(p n £(l — G£(ü) ) —y g{u) as c —̂0, ü G f i m .
Denote by Drn the space of step functions on (0,oo), taking values in 

Rm, continuous from the right and with a finite number of jumps in every 
finite interval (a, b), 0 < a < b < oo; these jumps have to be non-negative and 
strictly positive in at least one component.

It is known (see for example Resnick [15], Leadbetter, Lindgren and 
Rootzén [13]) that Condition A0 is equivalent to the condition
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A: {G(í), í >  0} =*>• {£o{t),t> 0} as £->-0.
The limiting process {(,o{t),t > 0} in A is called an extremal process. It is 

a stochastically continuous Markov jum p process whose trajectories belong 
with probability 1 to the space Dm\ its transition probabilities are given by

(4) P{lo{s + t ) ^ ü \ lo ( s ) = v }  = x {v^ü )e~ t!l{u\

where x(A) is the indicator of the event A.
We also have to assume a condition concerning the asymptotic behaviour 

of the random sample size which is consistent with A. A minimal such 
condition is

B: v£ =  p£/ n £ => i>0 as e -* 0, where üq = (^o,o * = 1, - - -, m) is a random 
vector with a.s. positive components.

It can be expected that Conditions A and B are sufficient to provide the 
weak convergence of extremal processes when the extremal process {£e(f), 
t > 0} and the random sample size index v£ are independent. However, in the 
case of dependence, Conditions A and B need to be replaced by a stronger 
condition in terms of the joint distribution of and ü£, i.e.

C: {(G(f), üe),t  > 0} =► > 0} as £ -A 0 where {&>(*), i > 0}
and £>o were defined in Conditions A and B, respectively.

Let w > 0. Denote by w < TitW < T2,w < . . .  the successive moments of 
jumps of the process £oW in the interval [m, oo). For convenience we put 
To,w = T-itW =  iv. Denote by S  the set of points t > 0 for which P{rfciU,n = 
tvQ i} =  0 for all i = 1 , . . . ,  m and k , n — 1 ,2 ... where wn — n ~ y. The set 
5  contains not more than a countable number of points since it coincides 
with the set of atoms for the distributions of random variables TktWn/i'o,i,
i =  1 , . . . ,  m; k ,n  — 1 ,2 ,__  Therefore the set S  is (0, oo) up to at most a
countable set of points.

The set S  coincides with (0, oo) if the random variables t^ ^ J vo,», 
i =  1 , . . . ,  m; k, n  — 1 ,2 ,... have continuous distributions. Since the ran­
dom variables have continuous distribution functions, Tk,Wn/vo,i al­
so have continuous distribution functions and so 5 = (0, oo) if the process 
{£o(i), t > 0} and the random variable P0 are independent or at any rate, the 
random variables TfciU,n and iso,i are independent for every i = 1 , . . .  ,m  and
k , n — 1 ,2 ,__  In the latter case the process {lo(t),t > 0} and the random
vector i>o can be dependent.

The main result of this paper is the following theorem which generalizes 
Theorem 1 in [20] to the case of multivariate extremes with random sample 
size indexes.

T h e o r e m  1. Let Condition C hold. Then

{G(*) =  ( & , * =  l , . . . ,m ) ,  teS}=$
{Co(0 =  (£o,i(tm,i)> * =  !)•••> m), t e S }  ase->  0.

(5)
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PROOF. Theorem 1 can be obtained by using general results concerning 
weak convergence of randomly stopped processes as given in [18], [19]. How­
ever, thanks to the monotonicity of extremal processes we are able to give 
a simplified version of the proof by following the procedure in [20] for the 
univariate case.

Note first of all that the definition of the extremal process, as given in 
(1) causes some side effect at zero. The process C£(i) has step trajectories, is 
continuous from the right and has possibly jumps only at points k /n £, k^.  1. 
All jum ps with k^.2  have non-negative components and at least one of them  
is positive; hence all components of the resulting process are monotonically 
non-decreasing on the interval [ l/n £,oc). However, on the interval (0,1 / n e) 
the process takes the value zero and the first jum p can possess negative 
components if the random vector j has negative components. To avoid 
this situation we consider a slight modification of the extremal processes as 
defined by (1) and (2). We replace the respective processes by

( 6)

and

(7)

£e,í (A)— max 0
k^(tn£ V I )

C£,iW= max i> 0 .

By the definition of these processes, Ce,i{t) — C =  £e,i,iXÍive,i = l / n <r) 
and under Condition B for any t > 0

(8) P{sup |Ce,t(s) — Cm (s )I > o} = < l / n e} **■ as e —>0.
1 s^t J

For this reason both versions of the extremal processes with random 
sample size indexes will have the same asymptotic behaviour in the sense of 
weak convergence.

For every n =  1 ,2 ,. . . ,  let < z_i>n < z0,n < Zi,n < ■ ■■ be a partition 
of the interval (0, oo) such that: (a) z_k,n “^0 as k c o \  (b) Zk,n —> oo as 
k -» oo; (c) hn = maxfc(zfc+i)n -  zk,n) -> 0 as n  -> oo.

For every e > 0 and i — 1 , . . . ,  m  we define the approximative extremal 
processes with non-random sample size

(9) ^ t , n , Á t ) - ^ e A z k +  f o r  z k , n ú t < Z k + l ,n  -  OO <  k <  OO

and in the limiting case for every i =  1 ,. . . ,  m

(10) £0̂ , ^ ) =  for Zk,n^t<Zh+l,n -00<k<CO.

Similarly, we define for every e ^  0 and i = 1 , . . . ,  m  and the corresponding 
approximative extremal processes with random sample size indexes

( 11) Ctn A t )  = t i n ß ve,i) t > 0 .
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By definition of the approximative processes {(*n -(t), t  > 0} for all i  =
1, . . .  ,m, n  =  1,2 ,.. .  a n d e > 0

(12) i  Ce,i(í) ^ C ,iW  for * > 0-

Similar inequalities are valid for all i  =  1 ,... ,m, n = 1 ,2 ,. . .  in the lim­
iting case e = 0

(13) W ^ C o .iW ^ C o + n .iW  for i > 0.

Also by the definition of the partitions {z^n}

(14) ICo,i(i)-Co,n,iW\= sup lío)t(*WB,i)-ío,*(í^)>» +  a)|,
\s\Zhn

where £oy(s) =  0 for s  ^  0.
By the definition of S, the random point it'o,; is with probability 1 a point 

of continuity of the random process { £ o > 0} for every i  =  1 , . . . ,  m  and 
t  E  S. Using this fact and taking into account that h n -» 0 as n —> oo, the 
relation (14) implies that for i  =  1 , . . . ,  m  and t  E S

(15) CÍn.iW-^Co.iW as n -A oo.

From (13) and (15) follows that

(16) {(CÍn.iíO. * =  l , . . . ,m ) ,  tES}=>
{(Co,i (^), i =  1 , . . . ,  777.), í e 5”} asn-> oo .

Let us take arbitrary points t \ , . . .  , t r  E S . By definition for every e  > 0 

p {C Ín ,t(tj)i«y i * =  !.•• i  =  l>---»7'}
rn r oo

(17) X /  P{&a (%-f i± i,n )= UU)i=l j =1 k j=—oo
t j ^ e , i  £  2fcj+l ,n)> 1 = 1 , . . . ,  TTL, j  =  1,  . . . , r } .

We can always choose the partitions Zfc,n in such a way that Zk,n E S  and 
=  Zk,n} =  0 for all i , j , A: and n. In this case using (17) and Condition 

C we get for all n =  1, 2 . . .

( C i = 1. • • • I m, j  = 1 ,...  r) =► 
(Cfn̂ O. * = l,...,m, r) ase->0.

It is always possible to find a set U of points (uij,i =  1 j  =
l , . . . , r )  dense in R mr, which are points of continuity for the distribution
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functions of random vectors ( C o i =  1, • •., m, j  = 1 , . . . ,  r) and (C*n 
i = 1 , . . . ,  m, j  — 1 , . . . ,  r) for all n ^  1. Using the inequality (13), and rela­
tions (15) and (18) we get for points (Uij, i =  1 ,...  , m, j  =  1 , . . . ,  r) G U

!imp {Ce,i(*j) ^  Uij, i = l , .  ■■ ,m, j  = 1 , . . .  ,r}
e—>0

,U1, ^ lim limp {C+n i (ij) = j  = l , . . . , r }
(19)

=  lim PÍCÍn.tfo) = * = 1. • • ■ J =  1. ■ • •»r}71—>U

= p {Co,»(ij) ^ u ij, i = 1, • • • ,m, j  =  1 ,. . .  ,r}  

and in an analogous fashion

( 20)
linip {C£,i(tj) ^ U i j , i =  1 ,. . . , m, j  = 1 ,. . .  ,r}  

^ p {Co,i(tj) = i = j  = l , . . . , r } .

Relations (19) and (20) are equivalent to

( 21 )
(Cc,i(*j)» * =  1 , . . .  ,m, j  = l , . .. ,r )  =>
( C o i = j  = l , . . . , r )  as e —>• 0.

Now we can use the relation (8) and come back to the extremal processes 
(Ce: ( í ) ,  t > 0}. The relations (21) and (8) imply that

,22) (Ce,*(ij), » =  l , . . . ,m ,  j  = l , . . . ,r )= >
(Co,i(*j), i =  l , - . . ,m ,  j  = l , . . . , r )  as £->0.

Since ti, i = 1 , . . . ,  m  are arbitrary points in S  the last relation completes 
the proof. □

3. Consequences of the main theorem

Let us first apply Theorem 1 to the important case where the sample 
and the sample size indexes are asymptotically independent. In addition to 
the basic Condition C we assume the following condition:

D: the process {Co( )̂j t > 0} and the random vector vo are independent.
As was mentioned in Section 1 Condition D implies that the set S  — 

(0, oo). So, as a corollary to Theorem 1, we can formulate the following 
theorem.
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T h e o r e m  2. Let Conditions C and D hold. Then 

{Ce (^) =  (£e,i{l'l/£,i)i i =  m )i t > 0 }  =>

{Co(i) = (io,i(^o,i), i = 1, • • •, m), t > 0} as e -> 0.

Theorem 2 obviously covers the case where the sample values {£gi„, 
n =  0 ,1 .. .  } and the vector sample size index jj,£ are independent for ev­
ery e > 0. In this case Condition D automatically holds and Condition C is 
equivalent to Conditions A and B.

This reduction of Theorem 1 to the case of independent sample and 
sample size indexes is a triangular array vector version of the results given 
in a variety of different forms by Berman [3], Thomas [21], Galambos [7], [8], 
Gnedenko, B. and Gnedenko, D. [11], and Beirlant and Teugels [2].

An even more interesting application of Theorem 1 deals with the model 
where the random sample size indexes converge in probability.

It is natural to assume in this case that the random vectors {£gi„, 
n =  1 ,2 ,...}  and Jle for all e > 0 are defined on the same probability space. 
We assume also that the independence condition for the random variables

is satisfied in the following stronger sense.
E: The sets of random vectors { |e,n, e > 0} are mutually independent for 

n =  1 ,2 ,. . . .
Obviously, Condition E holds for the scale-location model. In this case 

the random vectors ££in are represented in the form = (£nij — aej) /b Ej, 
i =  1 , . . . ,  m, where = (£n,i, i = 1 , . . . ,  m), n =  1 ,2 ,... are i.i.d. random vec­
tors, and aejt,6e,i, i = l , . . .  ,m  are some non-random centralization and nor­
malization constants. It also holds for the more general model with random 
vectors =  he(£n), n =  1 ,2 ,... where he(-) are non-random measurable 
functions acting from R m into R m.

The condition for weak convergence B is replaced by the following con­
dition:

p  _ _
F: ve =  ne/n s —> vq as e —> 0, where uq is a random vector with all com­

ponents a.s. positive.
Note that the independence of the sample and sample size indexes is not 

assumed. However, as we see, Conditions A, E and F imply Conditions C and 
D, i.e. asymptotic independence of the extremal processes with non-random 
sample size and the random sample size indexes.

The following theorem is a triangular array vector version of the results 
given in different variants for the case of a scale-location model by Berman 
[3], Barndorff-Nielsen [1], Mogyoródi [14], Sen [17], Galambos [7], [8], [9] and 
Eriksson [5].

T h e o r e m  3. Let Conditions A, E and F hold. Then

{Ce(<) =  (íe,i(ÍI/e,*)i * =  1, • . .  , m ), f >  0} =>

{Co(i) =  (£o,i(fr'o,t), t =  l , . . . ,m ) ,  0  0} as e —>0,
(24)
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where the process {£o(t),t>0} and the random vector uq are independent.
P ro o f . The proof of this theorem follows from the following statement 

which generalizes to a triangular array scheme the analogous statements 
obtained for the scale-location model in the above named papers. The proof 
of this result, which seems to be of some independent interest, is based on 
the use of a key result by Rényi [16] concerning mixing sequences of random 
events.

We are going to prove that Conditions A, E and F imply that

(25) {(&(*), i'e),i>0}^{(£o(t),i>o),<>0} ase -» 0 ,

where the process {£o(t),t>  0} and the random vector are independent.
Let us take some subsequence £n —> 0 as n —» oo and choose some 0 < t\ <

• ■ ■ < t r < oo and s,i ^  ^  Sir < oo for i = 1 , . . . ,  m. Define

A n =  { max Zen,k,i ^ S i j ,  i = 1 , . . . ,  m, ;  = 1 , . . . ,  r} 
k = tj nen

and

We are going to prove first that the sequence of events {An} is a mixing 
sequence in the sense of [16], i.e. for any l ^  1

(26) lim P(An nA,) =  P(A)P(A,).
71—>00

The latter result is only non-trivial in the case when P(A) > 0. Obviously, 
the event A n can be written in the form A n = A ^  0  Ani where

A~. -  { max ^en,k ,i^sn , i = l, .. . ,m }
k  ̂  Í 7' 71 £ ̂

and
A nl = { m a x  Zen,k>i ^ s i j , i  =  l , . . . , m , j  = l , . . . , r } .trn£l <k^tjU€n

From Condition A and supposition P(A) > 0 it follows that for chosen
Si =  (Sn, . . . , SjtiI)

(27) lim P (A-t)=  lim {G£n (si)}[i”nE‘] =  1.n—>oo n—too
Now, taking into account that for n large enough tmnei < t \nEn and using 

A and E, we get by (27)

lim P ( A „ n i i ) =  lim P f d ^ n d ^ n d i )
71—>00 71—̂ OO

=  lim P (A + )P (A ^nA ,) = lim P(A+)P(A,)
71—>00 , u  ,U  71->00

=  lim P (A + n A -,)P (A ,)=  lim P(An)P(A,) =  P(A)P(A,).
71-^00 71—>00

(28)
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Since the sequence An is mixing in the sense of [16], P(An n  B) —> 
P (A) P (ß ) as n —> oo for an arbitrary random event B. We can choose this 
set as ß 2 = {i>o ^  z}. Let also B Zjl = {vEn ^  z}. From Condition F follows 
that P(BzABzin) —> 0 as n -> oo for any z  which is a point of continuity for 
the distribution function of the random vector ;/q. Using these asymptotic 
relations we finally get

(29) lim P(An n % ) =  lim P{An n B s) = P(A)P(B-Z).
n—>oo n—too

As the choices of a subsequence en, the points 0 < 11 < ■ • • < tm < oo and 
si ^  ^  sm < oo are all arbitrary, relation (29) leads to (25).

From (25) it follows that Condition C holds with the independence be­
tween the limiting process {£o(0>^ >0} and the random vector !>q. Thus, 
Theorem 3 follows directly from Theorem 2. □
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PERFECTNESS OF REVERSIBLE MATRIX MAPS

E. JÜRIMÄE

Dedicated to Professor Károly Tandori on the occasion of his 7Oth birthday

1. Introduction

In the present paper we shall consider the matrix maps y — Ax, i.e.

Vn — 7T. G N,
k

where A = (ank) is an infinite matrix of complex scalars and x  =  (x^),y  =  
(yn). Let X  and Y  be sets of sequences of complex numbers. We shall write 
A £ (X , Y) if A x £ Y  for every x £ X. We shall consider the case Y  = (see 
Section 2). For these matrices domains cvA are defined. We shall investigate 
some properties of these domains under the hypothesis A £ (cp,cn) or A £ 
(cx ,cn), where cp is a rate-space with rate p and cr a space with speed A. 
Similar properties have been studied by several authors in case A £ (c, c), i.e. 
for conservative matrices (see [5, 8]). The purpose of this paper is to show 
that many concepts (coregularity, conullity, perfectness etc.) and methods 
applied in summability could be profitable for more general cases of matrix 
maps. These possibilities are demonstrated by the study of conditions for 
the perfectness. By the way, our general definition and the investigations in 
Sections 3 and 4 originate from the ideas of [6] and [3, 4].

If Y  is an F K - space, then the set (the domain of A)

YA :— {x £ u \  Ax £ V}

is also an F K -space.
D efinition 1.1. If A £ ( X ,  Y)  and

cl YaX  = Ya ,

then A is said to be (X, T)-perfect.

1991 Mathematics Subject Classification. Primary 40A05, 40D09, 40H05; Secondary 
46A45, 46B15.

Key words and phrases. Matrix map, rate-space, space with speed, perfectness, coreg­
ularity, conullity.
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In Section 3 we shall consider the case A £ (cp, cn) and give some condi­
tions for (cp, c^-perfectness for coregular and also for conull matrices. It is 
shown that a matrix A  can be perfect by one pair of spaces (cp,cn) but not 
by another pair.

In Section 4 the same questions are studied if A& (cA,c7r).
In the investigations in Sections 3 and 4 we shall apply the concepts of 

the spaces m ^ c^ co n and ln (see Section 2) the rate-spaces with rate 7r.

E. JÜRIMÄE

2. Notations and preliminaries

Let 7r =  (7rn) be a sequence of positive numbers and a; be the set of all 
sequences of complex numbers. We shall consider the sets:

m n := {x = (xk) Guj | ( — ) 6 m}, 

cn := {x  6 mv \ 3 lima; := lim — },7T n 7Tn
cott := {x 6 cn I lima; =  0},7T

ln := {x 6 c07r I I — |<oo}.
k ^

The sets m n,c7r and con are Uff-spaces with norm

= sup 
h

Xk

Some properties of the spaces and con are investigated in [1], It is
also shown there that these spaces are closely connected with spaces

cx \= {xE c\  31imAfc(a;fc — lima;)}, 
k

where A =  (A )̂ is a sequence of positive numbers with lim A =  oo. The connec­
tion between the rate-spaces and spaces with speed is given by the relation

cA = ci © < e >,
A

where e =  (l, 1,...) (see [1]).
Here we shall mention some properties of the spaces ln which are BK -  

spaces with norms

II® H= 2
k

Xk,
TTfc

Let efc = (0,..., 0 ,1 ,0 ,...) (non-zero term 1 in the A:-th place) and <f> be 
the set of all finitely non-zero sequences. Then we have the next properties.
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P roposition 2.1. 

P roposition 2.2. 

P roposition 2.3. 

P roposition 2.4. 

P roposition 2.5. 

P roposition 2.6.

ek £l^, Vfce N.

0 C Ire ■
0< ő ű icn £N=> ln Cl. 
0 < 6 < ^ < M o l w =  L.— Pn — r

Pn ^  0 ( l T n ) 4^ Ip ^  In. 

ln has A K  (sectional convergence), i.e.

: = ^  x kek
k

for every x E l n.

The proofs of these propositions are trivial. We mention only that 2.5 
follows from the theorem of Knopp-Lorentz on the map A G (/, l).

If A =  (ank) is an infinite matrix, then we call the set

ĉ a := {x G u> I A x  G cn}

the domain of the matrix A. It is an FK-spa.ce and every /  G (cOTj4)' has a 
representation

(1) /(* )  =  £  tk% k ^   ̂7"n ^   ̂Q'nk^'k "h ß

where ^
(ífc) € (c^ )^ , /i G C, lima; := lim — y ^ a nkxk,

7TÁ n  7Tn 'k

T = (Tn) e l i  and - “ (TTfc1)-7T 7T
If A  is Cjr-reversible, i.e. for each y £ c n there exists a unique x  such that 

Ax  =  y , then is a B K -space and every /  G (ĉ a )/ has a representation  
(1) w ith tk = 0 V7c G N.

The next statements are true (see [1]).

T heorem 2.7. A matrix A — (ank) G (cp ,^ ) if and only if it satisfies 
the following conditions:

(i) 3 lime*; =  lim =: ak, k G N,7T A TI 7T
3 lim p =  lim — V  ankpk =:apn,

7xA n 7Tn k
E l a nfc \ P k  =  0 ( n n ).
k

(ii)

(iii)
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I f  x  E cp, then

l]m s=  (ap7r -  Y  akPk) lima: +  Y  al xk- 
k P k

T heorem  2.8. A matrix A =  (ank) E (cA, cn) if  and, only if the following 
statements are true:

(i) 3 lime*: = al, k e  N,
IT A

(ii) 3 lim i  =  lim —  =: aX *n,rA A n -Kn ^  \ k
k

(iii) 3 lim e = lim —  ank=:aln,7tA n 7Tn  '
n k

(iv) E ^  =  0(7Tn).
k Ák

I f  x  £ c \  i/ien

lima; =  a1* lim a +  (a A_̂  ~ Y i t )  A(*) +  $ 2  ^ ( t ),
1/1 k k k k

where
Xk(x) = Xk{xk — lima:) and A(a;) =  lim Xk(x).

k

Let A E (cp,c7r). Then the matrix A is called (cp, c^)-coregular (see [2]) if 

Xcp (^) :=  aP7r ~ Y  akPk i  0
k

and (cp, c7r)-conull if the characteristic Xcp(^) =  0. Similar definitions are 
also used for matrices A E (cx ,cn). In this case

k k

3. (cp, cvr)-perfectness

In this and in the next section we shall only consider c^-reversible m atri­
ces whereas the representation of linear continuous functionals which have 
an im portant role in our investigations is simpler in this case.

By 1.1 a matrix A  is said to be (cp, c7r)-perfect if

C ĉttA CP =  crA -
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The set E  =  {p, | k G N} is fundamental (see [1]) for cp. Therefore we
get by the Hahn-Banach theorem that A is (cp, cw)-perfect if and only if 
f (x)  — OWx G E  implies /  =  0. By (1) it means that the system

)  CLnkTn + p \im ek = 0 , k e  N,—̂' 7\A
(2) A v .> > ankPkTn + P hm p = 0L ' L ' 7TAn k

has in l \  only trivial solution rn = p = 0, Vn G N.
7T

If A is (cp, c7r)-coregular, then the system (2) is equivalent to the system

(3) dnkTn — 0, A: € N.
n

So we get the next theorem.

THEOREM 3 .1 . Let A be c^-reversible and (cp,^)-coregular. The next 
conditions are equivalent:

(i) A is (cp,Cn)-perfect;
(ii) (3) has only trivial solution in l \ ;

7T

(iii) the matrix (ir~lank) is of type M .

C o r o l l a r y  3 .2 . If a c^-reversible and (cp,cn)-coregular matrix A is 
(cp,cn)-perfect, then it is (cK,cn)-perfect for any k whenever A is (cK,cn)- 
coregular.

E x a m p l e  3.3. Let

Í ,1
if k =  n —1,

Unk =  S if k =  n,

1 o if ky£n —1, n

This matrix A = (an/1) is triangular and (c, c)-coregular. For A  all solu­
tions of the system (3) can be represented in the form

T  =  ( ( ( ~ l ) n  /  ( n  — 1 ) ! ) t i ) ,

where t\ G C. It means that this matrix is not (c, c)-perfect.
The matrix A  is also (cp, c„-)-coregular if pk = ^k\ and nn =  (n — 1)!. 

Whereas f G h  only for ti = 0 , then A  is (cp, (-perfect.
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C orollary 3.4. Let M  ^  nn ^  e > 0 Vn G N. Then a cn-reversible and 
(cp,Cir)-coregular matrix A is (cp,cn)-perfect if and only if A is of type M.

The class “matrix of type M ” can be defined only for coregular matrices. 
A similar class of conservative matrices was introduced by the author in 1970 
and denoted by P.

D efinition 3.5. A conservative matrix B  — (bnk) is said to be of type 
P  if the system

has only trivial solution rn =  p =  0, n G N, in l.
In [4] G. Kangro proved the next theorem.
T heorem 3.6. Let B  =  (bnk) be a conservative matrix with right inverse 

B' =  (h'nk). Then B  is of type P if
(i) B  is coregular and bn := (b G rn 

or
(ii) B  is conull, 6n =  (6,nA.)^ l1 G c and bk =  \imbnk 7^0 for some k.

The right inverse of a matrix A is connected with the existence and form 
of the solution of the equation y = Ax. This becomes obvious in the next 
theorem.

T heorem 3.7. Let A = (ank) be a cn-reversible matrix. Then A has a 
unique right inverse A' = (a'kv). The rows of A' belong to l \ .  There is a
sequence b such that the equation y = Ax has, for y(zcn, the unique solution

PROOF. Applying the representation of /  G ( c^ a ) ' to the coordinates,
we have for x G cnA and y =  Ax, Xk =  Pk +  Yh Tkn anu%k = Pk limy +

■kA  n  u 7T
E  T k n V n ,  where (Tfcn)~=1 G 11 . Now setting b = (pk) and o!kv =  rkv we have all
n n

the theorem except that A! =  (a'ku) is a right inverse. We see this by taking 
y = e„ =  (<5„„). Then limefc =  0 and xk = E  rnk5un =  rkv = a'kv. The equation

^  71

y =  A x  becomes

P roof . This assertion follows from 2.4 and 3.1. □

7r

x  =  b limy + A'y.■K

i.e. A A ' = I. □
The proof for the case 7r =  e is given in [8] (Theorem 5.4.5).
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Lemma 3.8. (i) If  A = (an*) € (cp, c^), then B  =  j € (c, c), i.e. 7?
is conservative.

(ü) / /A  is (cp,cn)-coregular, then B  is (c,c)-coregular.
(iii) If  A has a right inverse A' = {a'klf), then B  has a right inverse B' —

f a'ku ^ \
Pk
PROOF. Theorem 2.7 implies (i) and (ii). For (iii) we have

£
O-nkPk 

Kn Pk
ST' I _ 1Xv £ _  £/  j Q'nkQ'kv — “ni/ — ^nu- VTn □

The assertion “system (2) has only trivial solution in l \ "  is equivalent
7T

to the statement “the matrix B = ( &) is of type P ". Therefore we get 
the next theorem.

T heorem 3.9. Let A £  (cp,Cn) be a cn-reversible matrix. Then the next 
statements are equivalent:

(i) A = (anh) is {cp,cn)-perfect;
(ii) B  =  (anf Pk) is (c,c)-perfect;

(iii) B is of type P.
Applying Theorems 3.6 and 3.9 and Lemma 3.8 we get the next assertion.

T heorem 3.10. Let A = (ank) € (cp,c„-) be a cn-reversible matrix with 
right inverse A' = (a'nk). Then A is (cp, c^)-perfect if

(i) X cp (^ )# °  and (a'nk)kL i e m Ir  7Tor
(ii) XCcZ{A)=0, {a'nk)^=1e c i  and ajf^O for some k.p 7r
Example 3.11. Let A = (RK,Pk) with pk>  0 be Riesz matrix of order k. 

Then, for inverse matrix, — 0 for k > u +  k (see [7]). It means that a" = 
£ m \ .  Therefore, every (cp, cw)-coregular Riesz matrix is (cp,c„•)-

TV

perfect.

4. (cA, c,r)-perfectness

In this section we shall study the conditions for (cA, c^-perfectness which 
are a little more complicated because of the structure of cA. By Definition 
1.1 a matrix A — (ank) is (cA, c^-perfect if

clc7rAcA =  °*A‘



408 E. JURIMAE

The set G = {e, A 1, e>t | k E N }  is fundamental in cA (see [1]). Therefore a 
c^-reversible A is (cA, c^-perfect if and only if the next system ( /  £ (cwa ) ')

(4)

/(^ a) ^   ̂ T M̂A — 0, A; £ N,
n

m = £ £  ̂ nk^n “I” — 0,
n k

/ ( * - ) = £ £ ^ . +
n k K

pax in = 0

has in / i_ only trivial solution // =  r„ = 0 Vn £ N.
7T

If 4̂ is a (cr, c7r)-coregular matrix, then the next theorem is true.

T h e o r e m  4.1. Let A  — (ank) be a cn-reversible and (c^c^)-coregular 
matrix. Then A is (cx, cn)-perfect if and only if the system

(5)
CLnkTn = 0, k £ N,

n

£ £  O’nk'̂ n — 0
n A

/ias in on 2̂/ trivial solution r  =  (Tn) =0.
7T

In the general case the last equation of (5) does not follow from the 
others.

E x am ple  4.2. Let

1 + 271 — 1 k = n — 1,

bnk — -2n~ \  k — n,
0, k ^  n — 1, n.

If A =  (2") then B  =  (bna ) £ ( ca , c). For this matrix the system

X^&nAPn=0, fc€N,

has in l solutions r° =  (r° ), where

0 22 •23 • . . . • 2n-2 ^ T!
Tjl (l +  22) . . . ( l  +  2 "-1) Tl 2 " -1’ '

We have
2  H  bnkT” = S  T" ^ 0 Íf Tl ^ °'

71 /C 71
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The matrix B  is (c \  c)-coregular and a triangle (bnn /  0 and bnk =  0, k>n) ,  
therefore it is also c-reversible.

Our investigation implies that
clcB{A- \ e fe |/cG N }^c0

but
clcfl{A-1 ,e ,e fc,|A;GN} = Cß.

This means that B  is not (c^-i, c)-perfect but it is (cA, c)-perfect. □
If the rate n = (irn) is sufficiently great for the matrix A, then we can 

omit the last equation of (5). This follows from the next theorem.
THEOREM 4.3. Let A = (ank) be a -reversible, (cA, cn)-coregular matrix

m
and sup -r- | ]T] ank |< oo. Then the following statements are equivalent:

n,m n k= l
(i) A is (cA, cn)-perfect;

(ii) the system

£ a nfcrn =  0, V/cGN,
n

has only trivial solution in l i ;
7T

(iii) the matrix (n~lank) is of type M.
PROOF. We must ascertain that for r  =  (rn) G l \  the equality

7T

E E  tonkin — 0
n k

follows from

It is so if the limit

Y ^ ankTn = 0, Vfc G N.
n

rn m

lim V '  ankTn = lim V  Y ] 
m z L — * m  i '

k ~ l  n  n k= 1

exists for any r  =  (rn) Gl \ .  This is equivalent to the condition:

l i m ^ y :  —  (7r„Tn)m ^ ^  7r„
n  k = 1

exists for every (7r„Tn) e l.  By Hahn’s theorem (see [8], Ch. 8) this is true if

E ^nk I .---- |< OO. □
n ,m  fc=1 VTn

We can represent the conditions for perfectness of a matrix by the right 
inverse of A (cf. [8], Ch. 3 and [4]). Similar assertions are also true in our
case.
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THEOREM 4.4. Let A  be a cn-reversible, (cx ,cn)-coregular matrix and
suppose that A has a right inverse A' = (a'nk) with columns K k)n = i e m i .

Ä
Then A  is (cx,cn)-perfect.

P r o o f . If
^   ̂d n k T n  — 0) ' d k  G N,

then by 2.8 for any i / £N

0 = ünkTn = ^ ( Tnnn ) - ^ ^ { ^ k a 'k„)^n^k

— ^  ] Tn ' anka kv ~  ^  ' Tn^nu — Tw  ^
n k n

For (cA, c^-conull matrices the third equation in (4) is an implication 
from the first one. So, we can say that a c^-reversible and (cA, c7r)-conull 
m atrix A  = (ank) is (cA, c^-perfect if and only if the system

H ek) = ^ 2 a nkTn + pal = 0, \ /k e  N,

(6) ^
=  £  E  Q"nkTn T  0

n k

has in l \  only trivial solution p  =  r„ = 0 Vn G N.
7T

We shall prove

T heorem 4.5. Let A =  (ank) be a cn-reversible, (cx ,cn)-conull matrix 
with a£ ^  0 for some k and suppose that A has right inverse A' = (a ku) with 
columns av = G cA H c0. Then A is (cA, cn)-perfect.

PROOF. Since Aav =  e„ =  (6nv) we have by 2.8

0 = lim =  lim a17 = a l7r limaj.,, +  - ^ \ k{a?) =
n 7Tn vrA k ^  \ k

an
=  a ln \ima'k„ +  2 2 ^ X k(a,kl/- \im a 'kl/). 

k k

The hypothesis a? = (a'k„)<kLi € cA f]co gives that

5Z a*a*«'=0> ^eN-
k
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Applying this and Theorem 2.8, the first equation of the last system (6) 
implies that

0  =  Ü 'y ' a koa k 5 3  a ko 5  y a nkTn =  
k k n

= H  J2^nrn)^j-(Xka'kl/) = T" 53 ̂ nkaki/ —^n^k

£ n^n u —  4 V -

The hypothesis a£ 7̂  0 for some A: implies now that /t =  0 in (6). This 
completes the proof of the theorem. □

5. Appendix

In this paper we have considered for reversible matrix maps some con­
ditions for the perfectness which are described by several infinite systems 
of equations. These conditions are quite perspicuous and by them it is also 
quite easy to settle whether a given reversible matrix map is perfect or not.

For non-reversible matrix maps the (c, c)-perfectness has been studied by 
several authors using the test functions and the corresponding distinguished 
subsets of the domain (see [5, 8]). It could be assumed that this way can 
also be used in more general cases which have been discussed in the present 
paper. In connection with this, it should be emphasized that the nature of the 
perfect part of a matrix A 6 (cA, cn) (and also A E (cp, cn)) is an interesting 
question in itself.
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THE METHOD OF LINES FOR FIRST ORDER 
PARTIAL DIFFERENTIAL-FUNCTIONAL EQUATIONS

BARBARA ZUBIK-KOWAL

A b str a c t

The Cauchy problem for nonlinear first order partial differential-functional equations 
in unbounded domains is treated with a general class of the method of lines. Existence and 
convergence properties of the method are investigated under the assumption that the right- 
hand side of the equation satisfies the Lipschitz condition with respect to the functional 
argument. The theorems are proved by means of the differential-difference inequalities 
technique. Examples of differential-functional problems and corresponding methods of 
lines are given.

1. Introduction

For any two metric spaces X  and Y  we denote by C(X, Y)  the class of all 
continuous functions from X  into Y. We will use vectorial inequalities with 
the understanding that the same inequalities hold between their correspond­
ing components. Let D =  [—to, 0] x [—r, r], where to G R+, R+ =  [0, +oo) and 
t =  (t i, . . . ,  Tn) G R” . Write

£  = [0 ,a]xR ", Eq =  [—t0, 0] x Rn, 0  =  £ x C ( P , l ) x l "  

and suppose that
f  \ 0  —̂ R, tp; Eq —̂ R

are given functions. For any function z: Eq U E —> E and for (x,y) G E, 
y = (y u - - - ,y n ), we define a function z(x>y): D -> K by z ^ y){t,s) = 
z(x + t,y  + s), (t , s ) G D. The function Z(x y) is the restriction of z to the 
set [x — to, x] x [y — r ,y  + t\ and this restriction is shifted to the set D.

The paper deals with the nonlinear Cauchy problem

(1) Dxz{x,y) =  f(x,y,Z(Xty),Dyz(x,y)),  {:x , y ) e E ,

(2) z(x,y) = <p(x,y), { x ,y ) e E 0,

1991 Mathematics Subject Classification. Primary 65N40; Secondary 35A40.
Key words and phrases. Cauchy problem, unbounded solutions, differential-difference 

inequalities, comparison technique.

0081-6906/98/$ 5.00 ©1998 Akadémiai Kiadó, Budapest
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where D yz  =  (Dyiz , . . . ,  DVnz). We will consider classical solutions of prob­
lem (1), (2). We will assume that there exists a classical solution of (1), (2). 
Sufficient conditions for the existence can be found in [3], [4], [12].

In general, first order partial differential equations are used to describe 
the growth of a population of cells which constantly differentiate in time, 
see [6], [7]. The paper [10] discusses, using differential-integral equations, 
optimal harvesting policies for age-structured populations harvested with 
effort independent of age. In the theory of the distribution of wealth [8] a 
differential equation with a deviated argument is used. Differential-integral 
equations describing the dynamic of muscle contraction was studied in [9]. 
There are various problems in nonlinear optics [1] which lead to non-linear 
hyperbolic differential-integral equations.

Differential and differential-functional equations considered in [1], [6], [7],
[8], [9], [10] are particular cases of (1). We give next examples in Section 6.

2. Discretization

For y, y 6 Rn we write y * y  = (y\y i , . . . ,  ynyn)• We will use the letters Z 
and N to denote the set of integers and the set of natural numbers. Now we 
define a mesh in Rn. Suppose that for h = (h i,. . . ,  hn), where hi > 0, there 
exists N  =  (IVi, . . . ,  Nn) £ N" such that N * h  = r. We denote by Iq the set of 
all h having the above property. Let m = (m i,. . . ,  mn) £ Zn and ym = m *h,  
ym = (y™1, . . . ,  y™n). Write =  {ym : m £ Z"} and

Eh =  [0, a] x , Eo.h =  [—To, 0] x R]}, Dh =  D n E 0.h.

Let <5 =  (5 i,. . . ,  6n) be a difference operator defined in the following way. Put 
S = { - l , 0 , l } n and

(3) M * ,y m) =  ^ £ 4 : U * , y m+r),
1 r e s

where z : F?o,/i and cf(m are given numbers, 8z =  {8z \ , . . .  , 8zn). We
will approximate Dyz(x ,y rn) by means of 5z(x,ym). In the next part of
the paper we adopt additional assumptions on Since the coefficients
Cr}n depend on m  6 Z", the approximation of the spatial derivative may be 
different in different points of the spatial mesh.

For z: Flo./iUF/j—>R, xG[0,a], m eZ" we define a function Z(x m) : Dh~
by

Z(x,m){t,yS) = z ( x  +  t , ym+s), (t , y s) e D h.

Let Qh — Eh x C(Dh, R) x Rn and suppose that

$ /i ; ©/[ R (frh'- E o .h  R
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are given functions. We will approximate the solutions of (1), (2) by means 
of the solutions of the problem

(4) Dxz (x ,y m) = $ h{x,ym,z(x<m),őz{x,ym)), {x,ym) e E h,
(5) z (x ,y m) = (/)h(x ,yTn), (x ,ym) E E0,h.

The initial-value problem (4), (5) will be called the method of lines for 
(1), (2). The function <1?* and the difference operator 6 characterize a general 
class of differential-difference schemes which can be applied to (1), (2). We 
give sufficient conditions for the solvability of (4), (5) and for the convergence 
of the sequence {un} of solutions of (4), (5) to a solution of (1), (2). We will 
consider unbounded solutions of (1), (2) and (4), (5).

The main theorems concerning (1), (2) and (4), (5) will be based on a 
comparison theorem where a function satisfying some differential-difference 
inequalities in an unbounded domain is estimated by a solution of an ade­
quate ordinary differential-functional problem. The first result of this type 
was given by Lojasiewicz [13], (see Lemma 1, p. 96) for a function of two 
variables satisfying linear differential-difference inequalities with constant 
coefficients. It is an essential fact in [13] that the differential-difference in­
equalities are periodic with respect to the spatial variable.

The comparison result from [13] is extended in [20] (see also [5]) on 
differential-difference inequalities with a functional argument and on nonlin­
ear comparison problems. It is an essential fact in [20] that the finite systems 
of differential-difference equations have been considered.

In the paper we consider infinite systems of equations (4) or infinite 
systems of differential-difference inequalities. The comparison theorem given 
in Section 3 is new also in the case when /  does not depend on the functional 
argument.

There is a great amount of literature on the method of lines. The mono­
graph by Walter [18] contains a large bibliography. The existence, unique­
ness, monotonicity and convergence properties of the method of lines for the 
Cauchy problem for nonlinear parabolic differential equations in unbounded 
sets are given in [16]. The convergence of the method of lines for a parabolic 
differential equation is shown in [17]. The error estimations for the method 
applied to the first boundary value problem and for the Cauchy problem for 
parabolic equations are given in [18, 19]. The method is also treated as a 
tool for proving the existence theorems. Such existence theorems based on 
the method of lines are given in [18, 19]. The method of lines for a first order 
differential system with a functional right side as well as for an equation of 
the parabolic type is studied in [11]. The method for equations of higher 
orders is studied in [14].

The method of lines is treated as a tool of numerical solving of differential 
problems. The book [15] demonstrates lots of examples of the use of the 
numerical method of lines.
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3. Comparison theorem

For a function u: [—To, a] —> E and for x  £ [0, a] we define a function 
o»(x) : [—to, 0] —» E by =  uj{x + t), t £ [—to, 0]. We denote by || ■ || the
Euclidean norm in E” and by || • ||o the supremum norm in C([—to, 0], E). We 
use the symbols \\-\\d and || • Hjt̂  to denote the supremum norms in C (D , E) 
and C (D h, E), respectively.

We will prove that problem (4), (5) has exactly one solution in the fol­
lowing class of functions.

D e f i n i t i o n . Let a , ß £  E. A function z: [a, ß]  x E[[ —» E will be called 
the function of class if the following conditions are satisfied

(i) z(-,ym) £ C([—to, a], E) for all m £ Z";
(ii) there exists a function T : E+ —> E+ such that
(a) has a continuous derivative on E_)_ which is bounded and non­

negative,
(b) lim 4'(i) =  +oo,

t —̂ “(“OO
(c) for i £ i + we have

max{\z{x,ym) \ : x e [ - T 0 ,a], \\ym \\

In a comparison theorem we will estimate a function of several variables 
by means of a function of one variable. Therefore we will need the following 
operator Fh: (7(7^1) —> C{[—To, 0]E+). If w £ C(Dh,  E) then

[T/jU;]^) =  max{|io(i,i/m) | : — N  ^  m  ^ N}.

Suppose that a: [0, a] x C([—To, 0], E+) —> E+ and A = (Ai,. . . ,  A„): Eh x 
C(Dh,  E) —>■ En are given functions. In the section we consider the differential- 
difference inequalities

(6) D zz(x, y ) i V ) =

(z ,ym) G (0, a] x E£.
1=1

T h e o r e m  1. Suppose that
1° the function er: [0,o] x (?([—t0,0], E+) —> E+ is continuous, nonde­

creasing with respect to the functional argument and there is K  £ E+ such 
that

(7) \cr(x,w) — cr(x,w)\^ K\\w-w\\o on [0, a] x C([—to, 0], E+),

2° u : Fo./i U Eh —» E is of class E, there exists the derivative Dxu(x,y)  
for (x , y ) £ (0, a] x E£, u satisfies differential-difference inequalities (6),
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3° there are L — (Lx, .. .  ,L n) £ R" and rj £ C ([-t0, 0], R+) such that 

\ \ i (x , y ,w) \^Li  on E h x C { D h, E), i =

and

(8) \u(x,y)\^r](x) on E0.h,

4° the operator 6 and the function A satisfy the condition

for r £ S  — {0},
(x , y m) e  (0,a] x R£, * =  l , . . . ,n ,

5° there exists C\ such that ^  \éf]n\ ^  C i  for i  =  1 , . . . ,  n, m £ Z n .
r e s

Under these assumptions we have

\u{x,y)\^uj{x-r]), (x , y ) £ E h,

where is the solution of the problem

Dxu(x) =cr(x,w(x)), x £ (0, a], 
u j ( x ) =T]{x), x £ [—to, 0].

P r o o f . We first show that u(x ,ym) ^ w {x \ t]) for (x ,ym) £  [0,a] x R 
Let us define

y) = u(x , y) -  u>(X-, 7?), {x, y) £ E0,h U Eh

and
'I'oW = max{u(3), y ) : (x , y) £ Eh, ||y|| ^  t}, t £ R+.

It follows from assumption 2° that there exists a function 'L: ®+->R+ such 
that conditions (a), (b) of Definition are satisfied and \I/o(i) ^  'L(i) for t £ R+. 
Let C > 0 be the constant such that ^ '(t)  for t £ R+ . We define the 
function H : Eo U E  —>• R in the following way

H (x , y) = e x p ( \/í+ÍÍj/ÍP) +x ( \ + K expiCHrlD+Ci exp(C||h||)
i=i

for (x, y) £ E,

H(x, y) = exp ( s / \  +  ||y||2) ) for ( x ,y )£ E 0.

It can be shown that H  is a solution of the differential-difference inequality
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(9) Dxz{x, ym) Z z(x, ym) + K\\z{Xtm) ||0ft +  U\Síz{x , ym)|,
i=l

(x ,y m) G (0, a] X  Kj*.

Let e > 0 be fixed. It follows that there exists A > 0 such that

(10) w r ^ \ < £ for (* ,l/)e(0 ,fl]xR ji, \\y\\ZA.H(x,y)

Write

U(x, y)
u{x,y)
H (x ,y ) '

fl{x,y)

V(x,y)

u{x\v)
H (x ,y) '

v { x , y )
H(x, y) ’

where (x, y) G Eo.h U Eh- We prove that

(11) V {x ,y )< e  for { x ,y ) e E 0,h U E h, ||y|| < A.

The initial inequality (8) implies V(x,y) ^ 0  for ( x ,y ) G - E o ./i - Suppose that 
assertion (11) is false. Then there exists x  G (0, a] and m G Z" such that 
||ym|| < A  and

(12) V (x ,y m) <£  forxG[0, x), m € Z n,
(13) V(x, y™) =  mSLx{V(x, ym) : m  G Zn} =  e.

Using the definition of function v and (6) we get

n

D x v[x,  y  ~ ) ~I- &{x: ^(x))  = ^(^5 4” ^   ̂^ ( x ,  y ~ 1 V " )•
2 =  1

We have 8v{x,ym), therefore from (3), (13) and from assumptions 3°, 4° it 
follows that

n

^   ̂Aj(i, y ~ j /U’(x,rh))<5i'u>(xj y ~)
2=1

= ± X l( í , y * ,u ( i M ) K r i Y ,£ ) h'’tíh+r)W
i=1 res

- £  E  *.-*«& *<*. rf*. u{itrh)) V ( x , y ^ +r)H (x ,y ^+r)
i=1r£S
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^ V (5, yrn) ^ 2  |Aj(x, ym, u(ii7h))| |SiH[x, yrn)\ 
2 =  1 

n
g 7 ( x , y ™ ) ^ L ^ t f ( x , y ™ ) | .

2=1

Hence
n

(14) Dxv{x, ym) + a{x , a>(i)) <; a(x, T /,« ^ ))  +  V (x, ym) ^  Li\SiH(x, ym)\.
i=1

Let '■ Dh —>■ R defined by

M{x,m}{t, s) = m ax{rhU(e>s)(t, s),w(i)(i)}, (t, s) 6  Dh.

It is easy to verify that

(15) \\M[itjn} “ w(i)llo ^V{%,ym)\\H(x,y™)\\D-
Since

7(5,y™ )> 0, DxV(x,y™ )^  0,
H (x ,y A )>  0, DxH(x,y™)>  0,

and the function a is nondecreasing with respect to the functional argument, 
it follows from (14), (15) and (7) that

0 ^ Dxv(x, y™) = DxV (x , y™)H(x, y™) + 7 (5 , y™)DxH(x, y*)
n

^  ct( x , M{iifhj) -  c r ( x ,  w(4)) +  7(5, ym) ^  L ^ i ^ x ,  ym)|
2=1

n
Ú K V(x, y n W H ^ W o  + 7(5, yA) £  £ ^ # ( 5 ,  y*)|.

2=1

Therefore

0<ZV7(x,y™ )tf(x,y™ )

g 7(5 , y™) [tf ||f f(s>y* )||0 + ^  L í \SíH (x , yA)| -  D ,JÍ(5 , y™)'.
2=1

(16) and (9) give a contradiction. Then (11) is proved. It follows from (10), 
(11) that V (x, ym) <  e for (x, ym) E Eh where e > 0 is arbitrary. Then we have 
u(x ,ym) ^w(x;y) on Eh . The proof of the inequality — u(x, ym) ^w(x;r/), 
(x, ym) E Eh, is analogous. The proof of the theorem is complete.
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4. Stability and existence theorem

In this section we prove that there exists a solution of problem (4), (5) 
and th a t the method of lines is stable. Denote by Uh: -Eo.fc a
solution of problem (4), (5) and suppose that Vh: Eq^ U Eh —> R. Assume 
that Uh and Vh are of class E and that the derivatives D x V h ( x , y m ) exist 
for (x , y m ) E (0,a] x R)J. Suppose that there are 70,71: K+ —> R+ such that
lim 70 (t) = lim 71 (t) = 0 andt-> 0 t—> 0

\vh{x,ym)-<f>h(x, ym)\ = 7o(INI), (x ,ym) eEo.h,IDxvh(x,ym) - <$>h(x ,y m, (vh) ^ tm), 5vh{x,ym)) | g  71 (INI), 
(x ,y m)E { 0 ,a] x l j .

The method of lines (4), (5) is called stable if there exists to: R+ —> R+ such
that limm(f) =  0 andt—>0

\uh{x,ym) -  vh{x ,ym) \^w(||/i||), {x,ym) e E h.

THEOREM 2. Suppose that
1° the function &h characterizing the method of lines satisfies the Lip- 

schitz condition

(17) \$h(x,y ,w ,q) -  $ h(x ,y ,w ,q ) \^  K\\w -  w\\Dh

for every (x ,y ) E Eh, w,w E C(Dh , R), q G Rn, where K  > 0,
2° there exist partial derivatives Dq$h =  {Dqi<&h, ■ • • > Dqn$>h) on ®h and 

for every (x , ym, w , q) E ®h, r  E S  — {0}, i =  1 , . . . ,  n, the inequalities

(18) Dqi$ h(x ,ym,w,q)c(r% ^ 0 ,

(19) \Dqi®h(x,ym,w,q)\ %Li, 

are satisfied, where Li ^  0,
3° there exists C\ such that \cf}m\ ^ C\ for i = 1 , . . . ,  n, m E  Zn,

r e s
4° (ph '■ Eo.h -> R, hE lo , is of class E.
Then there exists a solution Uh‘. f?o./i U Eh —> R of the problem (4), (5) 

belonging to class E and the method of lines is stable.
PROOF. Let h E /o be fixed. We shall show the existence of the solution 

of the problems (4), (5). Let X  be the set of all real sequences £ =  {£m}mezn, 
£m € R, such that sup{|£m| : m  E TT) <00. A is a Banach space if we define 
the norm

ll£l|x =sup{|£TO| : m E l n}.
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Then C([—To, 0], X ) is also a Banach space with the norm 

IMIca  =max{||u;(t)||x € [ - r 0,0]}

for w E C([—to, 0], X). Define Am : (?([—t0, 0], X) C(Dh, M) for m  E Zn in 
the following way:

[Amw](t,ys) = wm+s(t),

where w E C([—to, 0], X), (f, ys) E D^. Let 0/i: Eqjl U E ^ -^ R  be defined by 
4>(x, s ) =  <f>h{x, s) for (x, s) E Eom and ^ ( x ,  s) =  0/,(O, s) for (x, s ) E E h. We 
also define the function : [0, a] x C([—To, 0], X) -> X by

9h ( x iw) = $ h{x,ym,A mw + (̂ >/1)(x,m)!^ ( 0 ,y m) + 0(j)h(x ,y m)),

where x E [0, a], w E C{[—to, 0], X), m E Zn.
Consider the following problem

(20) C'(®)=i«i(*,C(*))> ®G[0,o],
(21) C(®) = 0, xe[-r0,0],
in the Banach space C{[—to, 0], X). Let us show that the function satisfies 
a Lipschitz condition with respect to the functional argument. We have

19h ( x , w ) - g ^ ( x , w ) \

^ \®h(x, ym, A mw + (<j>h)(Xim), Sw{0, ym) + 8~4>h{x, ym))
-  $h (x ,  ym, A mW + (<f>h)(x,m),6w( 0, ym) + 6<j>h(x, ym))\

n

g K\\Amw -  A mw\\Dh + Li\6i{w -  ü>)(0, ym)\
»=1

^ K  max{|to(f, ym+s) -  w{t, ym+s) | : t E [ - r 0, 0], - N ^ s ^ N }  

+  C i t r  max{|u;(0, ym+r) -  ü>(0, ym+r) \: r  € 5}

< i=l C A,

for x  E [0, a], w , w  E C7([—tq, 0], X) and arbitrary m E Z71. Therefore

\\gh(x,w) -  gh{x,w)\\x ^ L[h]\\w -  w\\cx,

where L[h] is a constant depending on h.
We consider differential-functional problem (20), (21) in the Banach 

space X. The right-hand side of the equation satisfies the global Lipschitz 
condition with respect to the functional argument. Hence problem (21), (22)
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has exactly one solution £: [—To, a] -» X.  The function Uh ■ Eq^ U Eh —> E 
defined by

uh(x,ym) =  cm( x ) - M x , y rn),
x  £ [ — t o ,  a], m  £ Zn, is a solution of (4), (5) belonging to class S.

Now we shall prove the stability of (4), (5). Let us define oj: [—to, a] x 
®L|_ —» R+ in the following way:

u(x ,t)  = exp{Kx) —7i(i)+ 7o  (i) 7i(i). *e[0 ,a],

w (x ,i)= 7 0(t), x £ [—t0, 0].

It is easy to verify that the function u>(-, ||/i||) is a solution of the problem

J{x)  = K\\uj{x)\\0 + 7i (IHI), x € (0, a], 
w(x) =7o(||fi||), x  £ [—t0,0]

and lim m(x, ||/i||) = 0 uniformly with respect to x  £ [—to, a]. Since 
h~+ o

D x[uh(x,ym) - v h{x,ym)]
=  V i {'U,h ) ( x ,m) i  ^ u h { x i y  )) — ^ h { x i V  {u h ) ( x ,m) i  y  ))

+  ®h(x, ym{uh)(Xtm),8vh{x, ym)) -  $fc(x, ym, («/»)(*,*»)> i«fc(x, ym)) 
+  K ) ( x ,m ) ,  ^ ( x ,  ym)) -  Dxvh{x, ym)

for x £ (0, a], m  £ Z", it follows that 

IDx[uh(x,ym) -  vh(x ,y m)\

- ^ 2  Dqi$ h(Qrn(x,s))dsöi[uh(x ,y rn) -  vh(x,yr
i = l

= -̂ 11 ( /̂i)(x,m) (^/i)(x,m) IU "h 7l (ll^ll)
=  — v h ) ( x , m ) 110 + 7l (

for x £ (0, a], m £ Z", where

Qm(x, s) =  (x,ym, (u/»)(x>m), 6vh(x,ym) + s(<5u/l(x, ym) -  Äv/^x, ym))). 

The function Uh -  v/, is of class E. Thus in force of Theorem 1 we have 

\uh(x,ym) -V h {x ,y rn)\^üj(x,\\h\\), x  £ [0, a], m £ Z n,

which completes the proof.
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5. Convergence theorem

We will need the following
Assumption H. Suppose that
1° the operator S satisfies the conditions

r . _  x .  .
/  . ' r , m ' ]  °i , ]
r £ S

for i, j  =  1 , . . . ,  n, m G Zn, where <5* j  is the Kronecker symbol,

£ 4 1 = o
r£S

for i =  1 , . . . ,  n, m  G Zn,
2° there exists C2 > 0 such that h ih j1 ^ C2, i, j  =  1 ,... ,n.
Remark. Suppose that Assumption H and Condition 3° of Theorem 2 

are satisfied. If z : E  R is of class C2 and \Dyiyjz(x, y)\ ^ C2, (x , y ) G E , 
1 = b Í  = n ) then there is C ^  0 such that

(22) \\S~z(x,ym) - D y~z(x,ym)\\úC\\h\\, (x ,ym) e E h.

We omit a simple proof of (22).
T heorem 3. Suppose that assumptions l°-4° of Theorem 2 are satisfied

and
1° v G C2 (E, R) is a solution of the problem (1), (2) satisfying the inequal­

ities \Dy.y v(x,y)\ ^  C3 on E  for every i , j  = l , . . . , n  and a certain constantc 3 > 0 ,  ' J
2° the function Vh: £o./iU£/i —> 1, defined by Vh—v\Eoh\jEh is of class £, 
3° /  G C(Sl, R) and \DQtf(Q)\ % C4 for every Q G fi,
4° there exist functions Xi: R+—>R+, i =  0 ,1, such that lim Xi(a ) and

a-> 0+

(23) \fi{x, ym) -  <t>h{x,ym)\g Xo(||^||)i (z,2/m) € E0.h,

(24)

I f{x,  ym, V(Xtym),őv{x, ym)) -  $/,(x, ym, {vh)(x,m)> <M x, ym))| 
ÚXi(\\h\\), (x, y m ) G E h -

Then there exist a > 0 and d : [0, a] —> R+ such that 
lim i?(a) =  0 and |u/,(x, ym) -  vh{x, y m )\  ^ tf(||h||)a-+0+

for ||/i|| G (0, ä], xG [0, a], m  G Zn, where U h E E  is a solution of the problem 
(4), (5).

P roof. We will apply Theorem 2. From (23) we have

\vh{x,ym) -  <ph{x,ym)\^xo{\\h\\) for {x,ym) G E0.h-
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There exists C e  such that (22) holds. Thus from assumption 6° and (23) 
there exists a function x  ■ ®+ -7 M+ such that lim x ia ) = 0 andO->0+

\Dxvh(x, ym) -  $h(x, ym: { v h )(x , m ) i ővh { x ,  y m ))\ 

g I f ( x ,  ym, V(Xtym), Dyv(x, ym)) -  f(x ,  ym, v(x<ym), Sv(x, ym))\
+  I f (x ,  ym, v{Xtym),őv(x, ym)) -  $ h{x, ym, {vh)(XtJn),Svh(x, ym))\ 

^x(IW I) + Xi (ll^ll) for x e  (0, a], m e  Zn.

The assumptions of the Stability Theorem are satisfied by

7o =  Xo, 7i = X  +  Xi-

Taking i?(||/&||) =  w(a, ||/i||) we have the assertion of the Convergence Theo­
rem.

6. Examples of the method of lines

Let F ( X , Y ) denote the set of all functions mapping X  into Y, where 
X , Y  are arbitrary sets. We will denote by T\  : F(Eoh U E /j, E) —> F (E q U 
E. M) the approximating operator defined in the following way. Put S+ = 
{0, l} n . If (x , y) e Eq U E  then there exists m e  Z” such that ym ű y ú  ym+1, 
where m +  1 = (mi + 1 , . . . ,  m n + 1). For w e F (E 0,h U Eh, 1) we set

[■Thw\(x,y)= Y  w (x i ym+T)
r e S +

r y - y mi r r, y - y m]
l h L h

1—r

where

(25)
[y T Y - n i *  2=1

77? 1 22
[ i - v7  ] = n [ i -  

2=1
Vi  ~ V i  1 • 

hi

and we put 0° = 1 in (25).
E x a m pl e  1. Let us consider the problem (1), (2) with the continuous 

function / :  —> E satisfying the Lipschitz condition with respect to the
functional argument and condition 6° of Theorem 3. Let fco£N satisfies the 
inequalities 1 ko n and let us assume that

DqJ ( Q ) Z 0, Q e f i ,  * =
Dqif(Q) = Qi Q eQ , i = k0 +  l , . . . , n .
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We denote i(m) =  m +  e*, —i(m) =  m — e{, where e* =  (0 ,. . . ,  0 ,1 ,0 , . . . ,  0) 
and 1 is standing on the i-th place i =  1,..., n. Define

5iz(x, ym) = h r l {z{x, ym) -  z{x, y~l{m)), i = l , . . . , k 0,
6 i z (x ,y m) = h r 1(z{x,yt('m')) -  z (x ,ym)), i  =  k0 + l , . . . , n

for a: 6 [0, a], m  G Zn. Consider the method of lines (4), (5) with the function 
: 0/j —> M, h £  Io, defined by

(26) & h ( x , y  , Z( x ,m) iO)  f i - E i V  i

where (x , ym) G Eh, z G C(Eo.h U Eh, K), q G K". The function <fr/j and the 
difference operator 6 satisfy (18).

We can define the difference operator in different ways. For example

Stz(x, ym) = h r \2 z ( x ,  y*™) -  3z(x, ym) + z(x, y ^ ) ) ,

i = 1 ,... , n ,  x  G [0, a], m  G Zn. If we assume that Dqif(Q )  ^  0 for Q G D, 
i =  1,. . .  , n ,  then the above operator and the function 4»̂  satisfy (18).

Example 2. Consider the differential-integral equation

(27) Dxz{x,ym) — f{^x,y, j z ^ ( s ) d s , S z ( x , y m) J , ( x ,y ) e E ,
D’

with the initial condition

(28) z(0,y) = 4>(y), yGMn, 

where D1 — [—t , t ] and ^(Xi!/) : D' —> K is given by

,)(s) = z(x ,y  + s), s£D '.

One of the method of lines for Cauchy problem (27), (28) is the following 

Dxz{x, ym) = f  ym, J  [Thz}iXtym){s)ds, 6z{x, yTn) ĵ ,
D'

x  G [0, a], m G Zn,
z(0,yrn) = (t>{ym), m  G Z".

We have obtained the Cauchy problem for infinite system of ordinary differ­
ential equations with

1 n N—1
[Thz\x,ym){s)ds = -— 'W h i ^  z(x,ym+'+r),

1 = 1  l= -N r£ S +I
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where N  — 1 = (N\ — 1 , . . . ,  N n — 1).
EXAMPLE 3. Let, g: E  x R x t n -> R, a: E  —> [0, a], ß: E  —> Rn be given 

functions. Define f(x ,  y, w, q) = g(x, y, w[a(x, y) — x, ß(x, y) — y\, q). Equa­
tion (1) reduces to the differential equation with a deviated argument

Dxz{x, y) = g(x, y, z(ot(x, y), ß{x, y)), Dyz{x , y)).

If we set

$ /> (£ , y m , Z ( X i J n ) , q )  = g(x, ym, [Thz]{a(x, ym),ß{x, ym)), q )  

then we obtain (4).
E x am ple  4. Now we present a numerical example. Let us consider the 

following Cauchy problem

Dxz{x, y) = D yz{x , y) -  x(l + y2) /  z(x, y + s)ds

W  V - I ^

+  x y - z ( x , y -  + F ( x ’ V ) i

(x ,y)  G [0,1] x K,

(30) z(0,y) = l + y, y G K,

where-F^rr,y) = 1 + y — xy(l +  :r)(l + |  — :ry)(l +  y2) The solution of the 
problem is v(x,y) = l+ x + y  + x y , a; G [0,1], y G K. After applying the method 
of lines to the problem (29), (30) we get a Cauchy problem with a system of 
ordinary differential equations. If we apply the Euler method to the system 
then we get the following difference method:

(31) z i+1’j
x lyi

1 +  (yj )2
5zl'i—xl (1 + (y7 )2) I 1’-7 + xlyi z iMhj)

i =  o , . . . , N 0, j e z ,
(32) z°’j  = l + yj , j e  Z,

where we use the following notation: xl = iho, y-7 = jh ,  zl'] — z{xl, y-7), -F1’-7 =  
F (x i , y-7), /io > 0 is a step of the time mesh and h > 0 is a step of the spatial 
mesh, S is the difference operator defined in the following way

6ziJ = h~1{zi'i - z * * - 1), i = 0 , . . . ,  ATo, j  € Z, j >  0, 
5 z^  = h - \ z ^ +1 - z ^ ) ,  i = 0 , . . . ,  No, j  G Z, j  ^  0,
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0
and I 1'3 is the integral / z(xl,y3 +s)ds  counted by using the following

-----i+(id)2
complex trapezium method

=  2 E  { z { x \ y j+ l+l) +  z{x\y>+l) \
1=0

where M(j)  is the integer number such that yM^  1 < — 1+̂ j^  ^  yMti) and

k(i,j)  is the integer number such that yk(l’i)~l < yi _ ^  yWd). The
natural number N q satisfies the condition Noho =  1.

Denote by uy0y the solution of (31), (32) and define

e> =v(0.5,yJ) - u hok{0.5,yJ), e> =v{1.0,yj ) — «h0fc(l-0, jr7), j  6Z.

Some values of the errors e, é for the steps ho = h — 0.001 are listed in the 
tables.

Table of errors for x =  0.5

yJ : -0.35 - 0 . 2 -0.05 0.05 0 . 2 0.35
: -0.00688 -0.00265 -0.00049 -0.00013 -0.00241 -0.00680

Table of errors for x =  1 . 0

yj  : -0.35 - 0 . 2 -0.05 0.05 0 . 2 0.35
e? : -0.08248 -0.03247 -0.00388 - 0 . 0 0 2 0 2 -0.03316 -0.08950

The computation was performed by the computer IBM AT.
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GENERALIZED UNIFORM SPACES AND APPLICATIONS 
TO FUNCTION SPACES

H. RENDER

A bstract

Using non-standard methods we investigate the class of small-set symmetric spaces. 
The importance of this class stems from the fact that many results being valid for uniform 
spaces carry over to this larger class, as the Ascoli Theorem, the exponential law and some 
further results. Examples show that our assumptions cannot be relaxed contradicting some 
results in the literature.

0. Introduction

One of the most intuitive applications of non-standard analysis is the 
description of nearness in a uniform space (X, V): for x, y in the non-standard 
model * X  we define y to be near to x, more briefly y rí x, to mean that 
(x ,y ) 6 h ~  /t(V) := riyev*V and the set y,[x] := {y € *X : y «  x} is called the 
monad of x. Obviously, these definitions apply to any filter V on X  x A; 
it is well known that V is reflexive (symmetric, transitive) iff the relation 
rí has the corresponding property, cf. [12]. Thus V is uniform iff rí is an 
equivalence relation on *X .  But for topological applications it is very often 
sufficient to know that rí is only an equivalence relation on the nearstandard 
points of* A. This leads to the concept of a small-set symmetric space which 
was introduced by N. Vakil as a Wattenberg infinitesimal. The importance 
of this class of generalized uniform spaces stems from the fact that many 
results being valid for uniform spaces carry over to this larger class, e.g. the 
Ascoli Theorem and further classical results as we will show in our paper. We 
give several (standard) characterizations for small-set symmetric spaces and 
relate our definition to some other concepts like point-symmetry and local 
symmetry known from the theory of quasi-uniform spaces. The definition 
of a small-set symmetric space can be used to give a characterization of a 
certain class of quasi-uniformities answering a question in [1, p. 9]. This 
is all done in the first section. In the second section we give very elegant 
and short proofs of results given in [10, 14, 20]. For example, we give a 
very simple construction of the splitting and jointly continuous topology 
for a locally bounded space, cf. the results in [10]. Moreover, we show by
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examples that some results in [14] are false and we give the correct form of the 
corresponding results. In the last section we discuss completeness properties 
of locally transitive spaces. We show that the non-standard characterization 
“X  complete if and only if ns*X =  pns*X” still holds for locally transitive 
spaces. Furthermore non-standard proofs of some known results are given. 
Then we answer positively two questions posed by S. Naimpally: there exists 
a locally symmetric quasi-uniform compact Hausdorff space X  such that the 
set of all (continuous) functions from X  to X  is not complete for the quasi­
uniformity of uniform convergence. It also disproves Theorem 2.10 and 3.6 
in [16]. On the other side, the set of all continuous functions is convergence 
complete with respect to the filter of compact convergence if the domain 
space is a A>space and the image space is a small-set symmetric, locally 
symmetric and complete quasi-uniform space. The reader should be familiar 
with the basic framework of non-standard topology as developed in [4, 12]. 
We assume a sufficiently saturated non-standard extension of the standard 
universe containing all the underlying spaces.

1. Small-set symmetric spaces

A filter V on the set X  x X  is reflexive if every F  eV  contains the diagonal 
A of X  x X .  Then V induces a topology ry calling a set T  C X  open if for 
every x E X  there exists V E V with V[x\ := {y E X  : (x, y) E V] C T. A locally 
transitive filter V is a reflexive filter such that for every V  6 V and x E X  
there exists W E V with W  o W[x] C F[x]; if W  only depends on V, then V 
is transitive. Thus every quasi-uniform space (cf. [1]) is locally transitive. 
Locally transitive spaces are also called locally quasi-uniform spaces [11]. It 
is easy to see that a reflexive filter V is locally transitive iff V satisfies the 
relation
(1) z ~ y  and y ~ * x  imply z ~ * x  for all z , yE*X,  x E X .

As usual let V-1 := { F _1 : V E V}. If (X , r) is a topological space, then 
m(x)  := r\uer,xeU*U is the (topological) monad of x  E X  and we write y ~ Tx 
for y E m ( x ) .  Moreover ns*X := Ux&xm {x)  is the set of all nearstandard 
points. Further cpt*X := Uk c x  compact *K is called the set of all compact 
points. It is well known that X  is compact iff ns*X =  *X and that X  is 
locally compact iff ns*X =  cpt*X. A filter V on X  x X  is compatible if ry =  r. 
Let (X,W),(Y, V) be reflexive spaces. A function f : X —* Y  is uniformly 
continuous if for every V E V there exists U E l A  with {f {x), f  (y)) E V  for 
all (x,y)  EU.  Equivalently, this means: y «  x implies *f {y )~*f ( x )  for all 
x , y  E *X.  Finally aX  := {*£ : x E X}  is the copy of X  in the nonstandard 
model *X .

PROPOSITION 1.1.  Let (X,  V) be a locally transitive space. Then the 
system of all V[x\ with V  E V is a neighbourhood base of x E X  and ss is an 
extension of ~ r(V) •
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P roof. Confer the proof of Lemma 1.3 in [24]. □
DEFINITION. Let V be a reflexive filter. We call W  E V semisymmetric 

in x  6 X  if (x , y) E W  implies (y , x) E W  for all y E X .  V is called small-set 
symmetric if for all F  E V and x E X  there exists a neighbourhood U[x] with 
U E V and W  E V being semisymmetric in x E X  such that W  o W[y] C V[y\ 
for all y E U[x\.

In the following theorem we characterize small-set symmetric spaces. The 
equivalence of (a)-(d) and some further elementary properties are already 
proved in [22]. If V is a quasi-uniformity then Theorem 1.2 and Lemma 4 
in [8] show that our definition of small-set symmetry coincides with the 
definition given in [8]. For further characterizations we refer to [2],

THEOREM 1.2. Let V be a locally transitive filter. Then the following 
assertions are equivalent.

(a) ss is an equivalence relation on ns*X x ns*X.
(b) 1/ ä ‘x and z m* x  imply y ~ z  for all y ,z  E *X, x E X .
(c) y&*x implies p[y] = p[*x].
(d) Every V EV  is a neighbourhood of A.
(e) V is small-set symmetric.
(f) There exists a compatible small-set symmetric filter U with VCU.
If V is quasi-uniform then in addition are equivalent:
(g) y K* x  implies *xmy  for all y E *X, x E  X .
(h) tv— i C ry.
(i) V has a base of closed neighbourhoods of the diagonal.
(j) There exists a compatible uniform filter U with VCW.
P roof. (a)=>(b) is trivial and the converse is straightforward using the 

local transitivity. The equivalence of (b) and (c) is obvious. For the equiva­
lence of (c) and (d) observe that F  is a neighbourhood of A iff m(x) x m(x) 
C *V for every x E X .

(a)=>(e). Choose Wo E *V with Wo C p and let W  := Wo U (Wo[*a;] x 
{*£}). Then W E *V and (a) yields W  C p. Now let V EV.  It is easy to 
see that W o W[y] C V[y\ for all y ~  *x. Now straightforward arguments 
(via the transfer principle) yield (e). For (e)=i>(b) let and z ^ * x  and
V E V. Choose W, U as in the above Definition. Then y E *U[x\ and therefore 
*W o * W[y] C *V[y\- Since z E *W °*W[y] we obtain z E *V[y\ for all V EV, 
i.e., that y ~ z .  Obviously, (e)=i>(f) is trivial and for (f)=4>(b) consider the 
uniformly continuous identity map id: (X,U)  —> (X,  V).

(a)=>(g) is trivial and for (g)=>(h) observe that y « y  *x  =► *x  ~v y =>
y ~ v - 1  *x-

For (h)=^(i) apply the results in [1, p. 8] and (i)=i>(d) is trivial. For 
(h)=i>(j) consider the uniform space V fl V-1 generated by the system 
{F n F -1 : F  € V} and (j)=>(f) is obvious. □

Theorem 1.2 (j) shows that a small-set symmetric quasi-uniform space 
has necessarily a completely regular topology, cf. Theorem 3.8 in [22]. But
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in general, a small-set symmetric space has only a regular topology; for the 
proof of regularity one needs only the property that for each V  G V, x  G X  
there exists W  G V being semisymmetric in x  G X  such that W  oW[x] C V[x\, 
cf. [16, p. 770]. On the other side, let (X, r) be a regular space; then the 
filter A t of all neighbourhoods of the diagonal A in X  x X  is a compatible 
small-set symmetric space, cf. Theorem 1.4 in [24] or Proposition 1.9 or 
Theorem 3.10 in [22].

A reflexive filter V is called point-symmetric [1, p. 36] if for each V  G V 
and i £ l  there exists a symmetric IF G V such that W[x] CV[x].

P roposition 1.3. Let (X,  V) be a locally transitive space. Then the 
following assertions are equivalent:

(a) X  is point-symmetric.
(b) *x ssy implies y ^ * x  for all y G *X, x  G X .
(c) tv C tv- i .

P r o o f . We prove only (b)=^(a) since the im plications (a)=^(c)=^(b) are 
obvious. Choose Wo G *V w ith  Wo C p and let W  :=  Wo U Wq 1- It suffices 
to show th a t W[*t ] C *V[*x\ by the transfer principle. Let y G W[*rr]. Now
(b) shows th a t y&*x  and therefore yE*V[*x\. □

For a quasi-uniform space (X, V) we have the following duality: V is 
small-set symmetric iff V "1 is point-symmetric. Of course, V-1 is in general 
not small-set symmetric if V is small-set symmetric, cf. Example 1.6.

C orollary 1.4. Let X  be a compact space. Then every compatible 
small-set symmetric space is uniform.

PROOF. By compactness we have ns* A =  *X, hence «  is an equivalence 
relation on *X. □

Similarly one may show that a compact locally transitive filter is tran­
sitive. The following result is a slight generalization of Theorem 1 in [9]; as 
shown in [9] it is not valid for arbitrary quasi-uniform spaces.

T heorem 1.5. Every continuous function from a compact locally tran­
sitive space into a small-set symmetric space is uniformly continuous.

P r o o f . Let f : X  —>Y be continuous and y «  x with y, x  G *X. Since 
X  is compact there exists xq G X  with x «  *xo and by (1) we have y «  *rco. 
The continuity of /  yields * f ( x ) ^ * f ( *  xo) and *f(y)  ~  *f(*xo). Since Y  is 
small-set symmetric we obtain *f(y)  ~ * /(x ). □

J. Williams has called a filter V locally uniform if V is symmetric and 
locally transitive. V is called an NL U-space if in addition for every V  G V, 
x G X  there exists W  G V with W[x\ x W[x\ C V . Theorem 1.2 (d)=>(e) 
shows tha t every NLU-space is small-set symmetric. Thus Corollary 1.4 can 
be seen as a generalization of Theorem 3.7 in [24]. A concept weaker than 
local uniformity is the following [11]: a reflexive filter V is locally symmetric
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provided that for every V  G V and x  G X there exists a symmetric W  G V 
with W  o W[x] C V[x\. Observe that we do not require the transitivity as 
in [1], Example 1.6 shows that a small-set symmetric quasi-uniform space V 
need not be locally symmetric, in particular not locally uniform and not an 
NLU-space.

Example 1.6. Let X  :=R and Vn :={(x,y)  e x  x X :  \ x - y \ < £}. Con­
sider the filter V which is induced by the sets VU)X := (Vrn\({a;} xX ))U {(x, a:)} 
with n G N, x G X.  It is easy to see that y a  x  iff y =  x for x  G aX  := {*z : 
z G X }  and y « R x  otherwise where « R is defined by the uniform structure 
on the real numbers. Thus (X, V) is quasi-uniform; it is small-set symmetric 
since the induced topology is discrete. But (X, V) is not point-symmetric, 
in particular not locally symmetric.

P roposition 1.7. Let (X, V) be a locally transitive space. Then the 
following assertions are equivalent:

(a) X  is locally symmetric.
(b) y «  z and ym*x  imply z ^ * x  for all y ,z  G *X, x E X .
(c) p[z\ fl p[*x] 7̂  0 implies p[z] C p[*x] for all z G *X, x  G X .
P roof. (a)=>(b). Let V G V and choose W  G V symmetric with W  o 

W[x\ C V[x\. If y «  z we have (z, y) € *W and therefore (y, z) G *W . Since 
(*x,y) G *W we obtain z G *W o *VP[*x] C *V[*x]. Since V  G V is arbitrary 
we have z ~  *x. For the converse choose Wq G *V with Wq C p. Then W  := 
Wo U IEq- 1 symmetric. It suffices to show that W o W[*a;] C *V[*x] for 
every V  G V. For z G W  o IF[*a;] there exists y G *X with (*x, y), (y, z) G W . 
If (*x,y) G then (b) implies yzz*x. Since z a y  or f / a z  (1) resp. (b)
yields z «  *x. The equivalence of (b) and (c) is obvious. □

Proposition 1.7 (b)=>(a) has the following consequence: A compact quasi­
uniform space (X, V) is locally symmetric iff ry is regular. Indeed, let y ~ z  
and y ~  *x. Since X  is compact there exists zo G X  with z ~  *zq. Thus 
y«*zo and yzs*x. The regularity yields *zo~*a;. By (1) we have zrss*x.

Corollary 1.8. Let (X, V) be a locally transitive space. Then the fol­
lowing assertions are equivalent:

(a) For each V G V, x  G X there exists a symmetric W  G V and a neigh­
bourhood U[x] of x  such that W  o W[y\ C V[y] for all y G U[x\.

(b) X is small-set symmetric and locally symmetric.
I f  X  is quasi-uniform then in addition are equivalent:

(c) X  is small-set symmetric and point-symmetric.
(d) t v  =  t v - i .

P roof. (a)=>(b) is trivial. For the converse choose Wo 6  *V with Wo C p 
and let W  := WoUWq 1. It is enough to show that Wo W[y] C *V[y] for every 
y «  *x. For z G W  o W[y] there exists w G *X with (y, w), (w, z) G W.  Now 
the local symmetry shows that w «  *x and therefore z ~  *x. Since X is 
small-set symmetric and yzs*x we obtain z « y ,  i.e., that zG *V[y]. Now let
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us show (c)=^(b). Let y ~ z  and y~*a:. Then * x ~ y  and therefore *x ~  z. 
Since A  is point-symmetric we infer z & *x. The other implications are clear.

□
A small-set symmetric locally symmetric quasi-uniformity is not neces­

sarily symmetric (or equivalently locally uniform): Let X  — E and consider 
the quasi-uniformity V generated by the sets Vn := A U {(a;, y) E R x R : n iS 
y ^  x}  with n E N. Then ry = rv-i is the discrete topology but V is not 
symmetric.

Now we want to give a sufficient criterion for local transitivity and small- 
set symmetry. Therefore we need the following

D e f i n i t i o n . Let (A, V) be a reflexive space. V is called full if rív is 
an extension of ~ Ty and for every x E X  there exists a neighbourhood base 
t\>(x ) of x  such that for each G i ,G2 € Ty(x) with Gi C G\ C G2 the set 
{G2 x G2) U ((A \  GO x (X  \  Gx)) is in V.

P r o p o s i t i o n  1.9. Let (A, V) be a full reflexive space. Then the follow­
ing assertions are equivalent:

(a) For every V E V, x E X  there exists a symmetric W  E V and a neigh­
bourhood U[x\ of x  E X  such that W  o W[y\ C V[y\ for all y E U[x\.

(b) V is small-set symmetric.
(c) ry is regular and every V EV is a neighbourhood of A.
P R O O F .  (a)=>(b)=>(c) are clear. To prove (c)=>(a), let V E V, x E A. 

Since V  is a neighbourhood of (x,x) 6 A we can choose G3 E ry(x) with 
G3 x G3C V. Since Ty is regular there exist Gj E ry(a:) with Gj C Gj+i for 
i = 1,2. Let Cfi := (G<+! x Gi+i) U ((A \  Gi) x (A \  GO) € V. Then W := 
U\ fl U2 E V is symmetric. If y E Gi and z E W  o W[y] then there exists r E X  
with (y, r) E W  CU\  and (r, z) E W C U2. Since y E G \  it follows that r e G2 
and similarly z E G3 . Hence (y, z) E G3 x G3 C V . □

Let (A, r) be a topological space. It is not very difficult to show that 
the filter Ar of all neighbourhoods of the diagonal A in A x A is full if r  is 
Hausdorff or regular, or more general, an I?o-space, cf. [1, p. 6]. Proposition 
1.9 shows that Ar is small-set symmetric iff r  is regular iff Ar is locally 
transitive. In [13] it is proved that Ar is quasi-uniform (or uniform) iff r  
is almost 2-fully normal. In [1, p. 9] it is asked for which quasi-uniform 
spaces V the family of all r-neighbourhoods of flvey P  is a compatible quasi­
uniformity where r  is the supremum of ry and Ty-i. Assume that ry is 
Hausdorff. Then A =  flygyP  and the induced topology of Ar is r . Thus 
At is compatible iff r v-i C ry. We infer that among the Hausdorff spaces 
exactly the small-set symmetric quasi-uniform Hausdorff spaces which are 
almost 2-fully normal have the above property.

Now let us take a look at the famous Pervin quasi-uniformity V  of a 
topological space (A, r)  which is by definition the filter generated by the sets 
ST := (T x T) U ((A \ T)  x A) with T E t . Since y{V) = nTeT*Sr  we obtain 
that y Ki-p x iff y E m(x)  r\Ter,xe"T*T. Since ss-p is obviously transitive
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the filter V  is a (compatible) quasi-uniformity. This yields the well-known 
result that every topological space possesses a compatible quasi-uniformity; 
this improves Theorem 2.10 in [22]. Observe that the topology of V ~ l is 
discrete if X  is a Ti-space: y «-p-i *x implies *x zt-p y. Choose U X  \  {x} 
being open. If y ^  *x then y €*U  but *x ^ *U, a contradiction. Proposition 
1.3 (c) shows that V  is point-symmetric; Theorem 1.2 (e), (h) shows that V 
is small-set symmetric iff X  is discrete. Finally we note that V  is full since 
Sg2 n Sx ^  c  (G2 X G2) U ((X \  GO X (X  \  Gi)).

Let (X, r) be a topological Ti-space and consider the filter C generated 
by the sets S f,u •— {F x U) U ((X \  F)  x X)  with F  closed, U open and 
F  C U. Then y rjc x  iff y G c{x) := r\Fcu,xe*F,X\F,U£T*Ul in [23] c{x) is 
called the coarse monad of x  G *X. Obviously, C is symmetric and it is easy 
to see that every SFtu is a neighbourhood of A with respect to the product 
topology induced by r. Thus C is locally transitive iff C is locally symmetric 
iff C small-set symmetric iff r  is regular, since regularity [normality resp.] 
obviously implies local transitivity [transitivity resp.] of ~c- This improves 
Theorem 3.11 in [22], Similarly we obtain that r  is normal iff C is uniform: 
indeed, if C is uniform then c[x\ fl c[y] = 0 or c[x] = c[y] and Lemma 2.5 
(ii) =>- (i) in [23] yields the normality.

2. Applications to function spaces

Let X, Y  be topological spaces, C ( X , Y )  be the space of all continuous 
functions and the compact-open topology. For every compatible reflexive 
filter V on Y  we define the equicontinuity of a family H C C(X,  Y):  for every 
x E X  and V e V  there exists a neighbourhood U of x  such that { f ( y ) , f ( x ) ) €V  
for all f  £ H,  y E U. A well-known non-standard characterization is the 
following:

(2) y ^ * x  implies f { y ) ~ f { *x )  for all f £ * H ,  x £ X .

A family H  is pointwise bounded if every image set {/(x) : /  G H}  is rela­
tively compact, i.e., that the closure is a compact set. Recall that a k-space 
[k^-space resp.] is a topological space X  on which a Y-valued function is 
continuous if its restriction to each compact subspace is continuous for every 
topological [regular resp.] space Y.

T h e o r e m  2.1. Let X  be a k^-space and Y  a small-set symmetric space. 
Then H  C C( X, Y)  is relatively compact if and only if H is equicontinuous 
and pointwise bounded.

In fact, Theorem 2.1 is equivalent to the topological Ascoli-Theorem in [3] 
if we can show that equicontinuity is equivalent to the (weaker) topological 
concept of even continuity for a pointwise bounded family: Let H  be evenly 
continuous and let /  G *H, x £ X  and y ss *x. Since H  is pointwise bounded
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there exists z E Y  with f (*x)  asz. Now the non-standard characterization of 
even continuity yields f ( y)  « 2 , cf. [4, p. 162], Thus f { y ) ~ z  and f(*x) &z.  
Since Y  is small-set symmetric we infer f ( y)  «  f(*x).  □

The following example shows that Theorem 2.1 is not valid for an ar­
bitrary quasi-uniform space (Y, V) even if Y  is a compact point-symmetric 
Hausdorff space. Moreover, it shows that some results in [14] are not cor­
rect; the error depends on the false Theorem 4.23 in [15] that has already 
been pointed out in its review MR 35 #2267. In a recent paper H. P. Kiinzi 
has given examples showing that in Theorem 2.1, Proposition 2.3 and The­
orem 1.5 “Y small-set symmetric” cannot be replaced by “quiet” , cf. [7], 
where also standard proofs of these theorems can be found.

E xam ple  2.2. Let X  — Y  be an abelian topological group with a com­
pact, non-discrete Hausdorff topology, e.g. X  =  S 1. Let V be the translation 
(left) invariant uniformity and V  be the Pervin quasi-uniformity on Y . It 
is easy to see that the set H  := {tx : x E X }  of all translations (defined by 
Tx(y) — x  + y) is Tfc-compact. By 2.1 it is V-equicontinuous and evenly con­
tinuous. We show that H  is not P-equicontinuous: obviously ym*x  implies 
—y «  —*x. If H  is P-equicontinuous then rw(—y) ~ tw(—*x ) for all w E * Y . 
With w :=y + *x we obtain *x a-p y. By 1.2 (a) and ns*Y = *Y we infer that 
P  is uniform. Then (Y, P ) is discrete [1, p. 43], a contradiction. This shows 
that Theorem 1.1, 1.3 and 1.5 in [14] are not correct (where / :  X  x ! - ) 7  
is defined by f { x , y ) ~ x  + y).

Let a  be a family of subsets of X  and let (Y, V) be a reflexive space. 
Then the system of the sets W  (A, V ) := {(/, g) : ( f  (x), g(x)) E V for all x E  A}  
induces a reflexive filter on the set F ( X , Y) of all functions f : X  —» Y. Define 
a  pt *X  := U Aea*A; note that cpt*X — k pt *X  for the system k of all compact 
subsets of X .  The following characterization of the relation of the induced 
filter is obvious:

(3) /  ~ q 9 <=> f ( x)  ssy g(x) for all x E a p t * X .

The induced topology r Q(V) is called the topology of V-uniform convergence 
on a. But in general the topology rQ(V) depends on the filter V even if 
a  is the set k of all compact sets: It is not very hard to see that the set 
H  in Example 2.2 is not Tfc(P)-compact, thus we have Tfc(P) #  t*, — Tfc(V), 
cf. Proposition 2.3. Thus Corollary 2.2, 2.4 and 2.5 in [14] are false. Note 
that Tfc C Tfc(V) for any locally transitive filter. Proposition 2.4 yields further 
counterexamples.

In passing we note that the problem when two topologies of uniform 
convergence agree has a very nice non-standard solution. Let a, ß  be systems 
of closed subsets of a completely regular space X .  Then it is not very difficult 
to show that r Q(V) C  ^ ( V )  on C(X,  R) if and only if a p t *X C  /3 pt *X\  for 
details and some more general results see [17].
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P roposition 2.3. Let (Y , V) be a small-set symmetric space. Then = 
T*(V).

PROOF. The following non-standard characterization of t*, is valid if A 
or Y  is regular or Hausdorff (cf. [17]): /  G *C(A, Y) is near to /o G C(X,  Y) 
iff /(x )  ss fo{xo) for all xGcpt*A, xo £ A with x«Xo- Using (3) the proof 
is straightforward. □

PROPOSITION 2.4. Let X  be a locally compact Hausdorff space and let
V be the Peruin quasi-uniformity on the Sierpinski space {0,1}. Then t^ — 
Tk{V) on C ( X , {0,1}) if and only if X  is discrete.

PROOF. V  is generated by the set V  := {(0,0), (1,0), (1,1)}. We identify 
the set C(X,  {0,1}) with the space of all closed subsets of X.  Let i G l  and 
/  be the characteristic function of {x}. It is easy to see tha t the Tk{V)- 
neighbourhoods of /  are the sets {A : K  fi A C {x}} where K  is an arbitrary 
compact subset of X . If (xj)j is a net in X  converging to x G X  then {xj} 
converges to {x} in the compact-open topology. If =  t^(P) then {xj}Cx 
for almost all i G I. Thus X  is discrete. The converse is left to the reader. □

The above-mentioned characterization of the compact-open topology on 
C(X,  Y)  can be used to give very elegant and short proofs of standard results 
as the exponential law and the Ascoli Theorem, see [17, 23]. Recall that a 
topology r  on C( X, Y)  is splitting if every continuous function / :  T  x X  ->
Y  induces a continuous function / :  T  -» C( X, Y)  [where f ( t ) (x)  := f ( t , x )] 
for any topological space T. The topology r  is jointly continuous if the 
evaluation e : C(X,  Y)  x X  - * Y  defined by e(f,  x) = f (x)  is continuous. Here 
we want to illustrate some related results recently given by Lambrinos in
[10]. At first we need some definitions: a subset A of a topological space X  
is bounded if every open cover of the whole space X  has a finite subcover 
for the set A. It is easy to sec that A is bounded iff * A C ns* AT. Thus every 
relatively compact set is bounded and for regular spaces the converse is also 
true. X  is locally bounded if every x  G X  has a bounded neighbourhood, or 
equivalently, ns* A =  6pt *X  where b is the system of all bounded subsets.

THEOREM 2.5. Let X  be locally bounded and Y  regular. Then T(,(V) is 
the unique jointly continuous and splitting topology on C ( X , Y )  (and at the 
same time, the smallest jointly continuous one) where V is any compatible 
small-set symmetric filter.

PROOF. To prove that T(,(V) is splitting, let t « íq and xG bpt *X.  Then 
there exists xo G X  with x «  xo- Therefore (t , x) «  (to) ^o) and the continuity 
of /  implies * f(t)(x) = *f ( t , x)  & f(to,xo) = f{to)(^o)- Now (3) shows that 
* f ( t )  /(to) proving the continuity of / .  Further it is very easy to check 
that Tfc(V) is jointly continuous since ns*A =  5pt*A. Finally, a topology r 
on C(A, Y)  which is splitting and jointly continuous is uniquely determined 
and weaker than every jointly continuous topology, cf. [17]. □
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R emark 2.6. The regularity of Y  is essential in Theorem 2.5. For ex­
ample, let X  = M and Y  — {0,1} the Sierpinski space then T(,(V) =  Tfc(V) 
and Tfc(V) is jointly continuous. But r,t(V) is not splitting since otherwise 
r /fc(F) =Tfc, a contradiction to Proposition 2.4.

Finally we give very easy non-standard proofs of results in [19, 20].
T heorem 2.7. Let X  be a point-symmetric locally transitive space and 

let G be an equicontinuous group of homeomorphisms of X  onto X . Then G 
is a topological group under the topology tp of pointwise convergence.

P r o o f . At first we show that the composition o : G x G - } G  is con­
tinuous. Let /  ~p /o and g go where / ,  g E *G, /o,<?o 6 G and « p is 
the monad of rp. (3) yields g{*x) «  go(x) for any x E X  and (2) shows 
f{g(*x))  «  f{*go{*x)). On the other side (3) implies f{*go{*x)) «  fo(go(x)) 
and by (1) we obtain f (g(*x))  «  fo{go(x)), i.e., f o g z z p f 0 og0. For the conti­
nuity of the inversion it suffices to show that /  wp id implies / -1 ?sp id where 
id is the identity element. It is easy to see that id is also the identity function 
on X .  Thus /(* £ )«  i .  Now (2) implies *x — f ~ 1( f ( * x ) ) ~ f ~ 1(*x). If Y  is 
point-symmetric we obtain f ~ 1(*x) &*x. The proof is complete. □

R emark 2.8. Seyedin works in [20] with a topology r weaker than the 
induced topology ry  of a locally symmetric quasiuniformity V. But the 
assumptions of Theorem 6 in [20] always imply T =  Ty. Let x ^ r xo. Since 
id E G we have by (3) that x  =  *id(x) ~ y  *xo, i.e., r y  C r .  Since every locally 
symmetric space is point-symmetric the main result Theorem 6 in [20] is 
covered by Theorem 3 in [19].

3. Completeness

A reflexive space (X , V) is precompact if for every V E V there exist 
x \ ,  ■ ■ ■, x n G X  with X  — Ffaq] U • • • U F[a;n]. Let pns*A” := fly6y Uie x  *F[r] 
be the set of all prenearstandard points. Easy saturation arguments show 
that X  is precompact if and only if *X = pns*A. A filter T  on the set AT is a 
Cauchy filter if for every V  E V there exists x  G X  with V[x\ 6 T. Let /  be an 
index set in the standard universe; then *1^  denotes the set of all infinitely 
large l € */. A net (r/);e/ is a Cauchy net if for every V  G V there exists 
x  6 X ,  l0 6 I  such that xi E V[x] for all l ^  l0. X  is complete [convergence 
complete] if every Cauchy filter has an adherence [limit] point. It is easy 
to see that m(X) :=r)pe^ * F  is contained in pns*X for every Cauchy Filter 
(briefly CF) T . This yields the inclusion part of

(4) U rn(F) = pns*X := f | U *V[x].
t c f  v e v x e x

For the converse let y E pns*X and consider the filter subbase {F[x] : 
V  E V, x E X  with y E *F[a:]}. Then the induced filter T y is a Cauchy filter:
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for V  G V there exists x  G A with y G * V [ x ]  (since y  G pns*A), i.e., that 
V [ x ] G T y . Since y  G m ( F )  the proof is complete.

It is well known that a filter T  in a topological space A has the limit 
[adherence] point x  G X  iff m ( F )  C m ( x )  [resp. m { F )  fl m ( x )  ±  0].

THEOREM 3.1. L e t  X  b e  a  l o c a l l y  t r a n s i t i v e  s p a c e .  T h e n  t h e  f o l l o w i n g  
a s s e r t i o n s  a r e  e q u i v a l e n t :

(a) X  i s  c o m p l e t e .
(b) m(.7r)nns*A  7̂  0 f o r  a l l  C a u c h y  f i l t e r s  F .
(c) m ( F )  C ns*X  f o r  a l l  C a u c h y  f i l t e r s  F .
(d) ns*A =  pns*A.
(e) F o r  e v e r y  C a u c h y  n e t  ( x i ) i ^ j  i n  * X  s u c h  t h a t  I  i s  i n  t h e  s t a n d a r d  

u n i v e r s e  t h e r e  e x i s t s  l G */oo w i t h  x i  G ns* A.

PROOF. (a)=>(b) and (d)=>(c)=4>(a) are clear. Let us prove (b)=i>(d). Let 
y  G pns* X .  Then the filter F { A  C X  : y  G * A )  is a Cauchy filter. Assume 
that y  £ ns* A. For every x  G X  there exists V  G V such that y  ^ * V { x \ .  
Thus m ( F )  C *(A \  W[a;]) for some W  G V with W  o W [ x \  C V [ x \  and by 
Proposition 1.1 m(^r) C * X \ m ( x ) .  Since this holds for all x  G X  we obtain 
a contradiction to (b). The equivalence of (a) and (e) is left to the reader.□

The next example [1, p. 50] shows that completeness and convergence 
completeness are not the same.

E x a m p l e  3.2. Let X  = [0,1] and Vc := Au[{0} x [0, e)]U[{l} x (1 -e , 1]]U 
[(1/2 —e, 1/2) x ((0, e) U (1 — e, 1))]. Then pns* A =  ns*A =  aX  Um(0)Um(l). 
Hence A is a point-symmetric complete space. But the filter T  generated 
by the sets (0, e) U (1 — e, 1) is a non-convergent Cauchy filter.

If A is a uniform space it is well known that for every Cauchy filter T  
there exists y  G *A with m(A) C p [ y ]  and y  is necessarily in pns*A. The 
last example shows that the latter property is not valid for quasi-uniform 
spaces. We refer to [18] for a discussion of further concepts of completeness 
via nonstandard techniques.

P roposition 3.3. L e t  X  be a  r e f l e x i v e  s p a c e  a n d  T  be a  f i l t e r  o n  X .  
T h e n  T  i s  a  C a u c h y  f i l t e r  i f f  t h e r e  e x i s t s  F  G *T, y G * A w i t h  F  C p [ y \ .

P roof. Choose F  G * T  with F  C m(F)  and consider S y  ■= {y G * A : 
F  C *F[y]} for every LG V. If T  is a Cauchy filter then S y  is non-empty 
and obviously Syx fl • • • D S y n  D S'v1n-nv„ • saturation there exists y G * A 
with F  C *V [y] for all LG V. For the converse consider for every L G V the 
following statement: (3y £* X) ( 3F E*F)(F C*V[y]).  □

We give now non-standard proofs of some classical results proved in [21] 
and [1].

THEOREM 3.4. A  c o m p a c t  l o c a l l y  t r a n s i t i v e  s p a c e  i s  c o n v e r g e n c e  c o m ­

p l e t e .
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P R O O F .  Let T  be a Cauchy filter on X ,  and let F E *T , y  E * X  with 
F  C n[y).  By compactness there exists x  E X  with y  «  *x. Since z w y for 
all z E F  we infer F  C m{x)  by (1). The transfer principle shows that T  
converges to x. □

T h e o r e m  3.5. A locally transitive space is compact if and only if it is 
both convergence complete and precompact.

P R O O F .  Let X  be compact. By Theorem 3.4 X  is convergence complete 
and precompactness follows from ns*X cpns*X  C *X =  ns*X. Conversely, 
we have *X = pns*X by precompactness and pns*X C ns*X by completeness.

□
P r o p o s i t i o n  3.6. Let X  be a locally symmetric space. I f  a Cauchy filter 

J- has a cluster point x E X  then T  converges to x  E X .  In particular, X  is 
convergence complete if and only if it is complete.

P R O O F .  Let F E *F, y  E *X  with F  C y[y\. Since a: is a cluster point 
we have F f l m j i ) / ! .  Thus /x[y] D y[*x] 0 and Proposition 1.7 yields
F  C /r[y] C y[*x\. Thus T  converges to x.  □

If A  C X  is a subspace then it is easy to see that pns*A C pns *X  n  *A. 
The following example [1, p. 48] shows that the inclusion may be proper even 
if X  is complete.

E xample 3.7. Let X  =  {0} U { l / n : n £ N } d  with the induced topolo­
gy. For each n E N define Vn := Au{(0,  l /k) :k E N, k > n).  Then the induced 
filter is a compatible, locally symmetric, quasi-uniform compact Hausdorff 
space: it is obvious that for x  E X ,  y  E *X  we have i/ r íT  iff y = *x for x  /  0 
and y  wR 0 for x  = 0. Hence aX  U m(0) =  ns*X =  *X.  For A := {1/n : n E N} 
we obtain aA — ns* A =  pns*A ^  pns*X fl *A. In particular, A  is complete 
but not closed in X.

Let X  be a set and Y  be a complete uniform space. It is a well-known 
fact th a t F(X,  Y)  is complete for the uniformity of uniform convergence. We 
give now an example in order to show that this result is not valid if Y  is only 
a locally symmetric quasi-uniform (compact) space. This answers questions 
in [16] and disproves Theorem 2.10 and 3.6 in [16].

E xam ple  3.8. Let X  as in the previous example and define for each nGN 
continuous functions gn E F( X,  X) by gn(x) = x  for x 'A .l/n  and gn(x) =  0 
for x < 1/n. Let T  be the filter generated by the sets Fn := {g* : k > n}. 
Since Fn C W (X,Vn)[gn] we infer that T  is a Cauchy filter. Assume now 
that F ( X , X )  or C( X, X)  is complete. Then there exists X € * N \ N  with 
*gjy E ns*F(X,X) ,  i.e., that there exists g: X  —> X  with *gN(%) ~  *y(x) 
for all x  E *X.  Hence g(x) =  x  for all x E X.  Choose x =  1/(2N).  Then 
gN{x) =  0 «  x, a contradiction.

Observe that F ( X , X )  and C( X, X )  in the last example are not point- 
symmetric (in particular not locally symmetric) although X  is a locally sym­



GENERALIZED UNIFORM SPACES 441

metric quasi-uniform space. This is clear since *g ss gyy but not gn «  *g, 
where g is the identity on A.

P roposition 3.9. Let X  be a topological space, (F, V) be a reflexive filter 
and let C(X,  Y)  be endowed with the filter of compact V-uniform convergence. 
Then the following assertions are true:

(a) If Y  is small-set symmetric then C ( X , Y ) is small-set symmetric.
(b) If Y  is small-set symmetric and locally symmetric then C ( X , Y ) is 

small-set symmetric and locally symmetric.

PROOF. At first we prove that “F  small-set symmetric” implies that 
C ( X , Y ) is locally transitive, i.e., satisfies (1): Let f , g  G *C(X, Y) ,  h G 
C(X,  F ) and let f ~ g  and gze*h. Since h E C ( X , Y )  we know that *h{x)E 
ns*F for every x  G cpt* A. Using (3) it is easy to see that there exist y G F 
with f (x)zeg(x) t t*h(x)xiy .  Hence f ( x)m*h(x)  by 1.2 (a) and (1). Hence 
/  ~  *h. Further it is now obvious that / ss *h and g ^ * h  imply /  « g. Simi­
larly one proves property (b) of Theorem 1.2 for C(A, F). Statement (b) is 
also straightforward using 1.7. □

THEOREM 3.10. Let X  be a k-space and Y  be a small-set symmetric, 
locally symmetric, complete quasi-uniform space. Then C ( X , Y ) is conver­
gence complete for the filter of compact V-uniform convergence.

P roof. Let /  G pns*C(A, F). Assume that /  is standardizable and 
cpt*X-continuous, i.e., that (i) f (*xo) G ns*F for all xq€ X  and (ii) f (*xo) ~  
*y implies f (x)  ss *y for each x € cpt* A, xq G X  with x  «  xo and y G F. 
It is not very difficult to see that an internal, standardizable and cpt* A- 
continuous function is contained in the set of all nearstandard points of 
C( X, Y )  with respect to = Tk(V) (Proposition 2.3) if A  is a fc-space; cf.
[17] for details. Hence Theorem 3.1 and Proposition 3.6 show that C(A, F) 
is (convergence) complete.

Condition (i) is easily proved since f (*xo) G pns*F = ns*F. Now we prove
(ii): let f{*x o) «  *y and K  compact and x  G * K,  xqE K  with x  «  xo- We have 
to show that f (x)  G *V*[*y] for every V  G V. Since F is locally symmetric there 
exists a symmetric V\ G V such that V\ o Vi [y\ C V[y\. By transitivity there ex­
ists [ /GV with U °U oU CV\. As /  G pns*C(A, F) there exists gu € C^A, F) 
with (*9UJ )  G *W{K,U)  where W ( K , U ) := {(g,h) : Vx G K  (g(x),h(x)) 
G U}. Hence (*gu{x), f{x))  G *U and {*gu{*x0), f{*x0)) G *U. Since gv is 
continuous and x ?zxq we infer *gy{x)« *gu(*xo)- Small-set symmetry im­
plies *gu(.*%o)~*9u(x)  and * y ~ f ( * x 0). Hence (*gy(x), *gy(*x0)) G *U and 
(*9 u(*x0) , f (*x0)) e*U and (f (*x0), *y) G *U. Thus (*gu(x), *y) G *Vv  Since 
Vi is symmetric we obtain (*y, *gy{x)) G *V\. Now (*gy(x), f {x))  G *U C*Vi 
implies that (*y,f{x))  G *VX o*Vi. Thus f {x)  G *Vi o*Vi[*y] C *V[*y], The 
proof is complete. □
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SEMICONTINUITY OF TOPOLOGICAL LIMITS 
OF MULTIVALUED MAPS

J. EWERT

A b s t r a c t

For topological limits of quasicontinuous m ultiva lued maps we descr ibe  th e  sets of 
po in ts  of upper and  lower semicontinuity.

In a topological space {X,T)  by Int A and CIA we denote the interior 
and the closure of a set A C X.  A set A is called semi-open if A C Cl (Int A),
[9]; semi-closed if X  \  A is semi-open, [1]. The family

Tq = {U \ H : U ET, H  is of the first category}

is a topology on X . The Tq-closure and the Tq-interior of A will be denoted 
by ClqA and IntqA, respectively. Then, if (X ,T)  is a Baire space, we have:

(1) the spaces (X , T ) and (X ,Tq) have the same classes of the first cate­
gory sets, [6];

(2) a set A C X  is Tq-semi-open (Tq-semi-closed) iff it is of the form 
A = B \ H  (resp. A = B  U H), where B  is semi-open (semi-closed) and H  is 
of the first category, [5];

(3) if A is T9-open, then Cl A = ClqA, [6].

Lemma 1. Let (X ,T )  be a Baire space. Then:
(a) If a set A C X  is Tq-semi-open, then Cl A =  ClqA.
(b) A set A C X  is Tq-semi-open if and only if it is of the form A = 

(G \ H ) \ J L , where G is open, H, L are of the first category and L c C IG .

P roof, (a) If A is Tq-semi-open, then applying (3) to the set IntqA 
we obtain IntqA C A C Clq(IntqA) =  Cl (IntqA), hence Cl A =  Cl (IntqA) = 
Cl,(IntqA) =  ClqA.

(b) Let A be a Tq-semi-open set. According to (2) it is of the form A — 
B \ H , where B  is semi-open and H  is of the first category. Then B  = GUHi, 
where G is open and H\ C (Cl G) \  G. Thus we obtain A =  (G \  H)  U (Hi \  H) 
and it suffices to put L = H \ \ H .  Conversely, assume that A =  (G \  H) U L, 
where G is open, H , L of the first category with L C Cl G. Then G \ H  6 Tq
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and C\G = C \{G \H )  = Clq{G \  H ). Thus L C Clq(G \  H ) which implies 
A C C l^G  \  H)  C Cl9(IntgA) and the proof is completed. □

For a sequence {An : n  ^  1} of subsets of a topological space the sets 
LsAn and LiAn are defined as follows [7]:

x  € Ls A„ iff each neighbourhood of x intersects infinitely many sets A n;
x  GE Li A n iff for each neighbourhood U of x  there is no such that U D A n 

^  0 for each n ^ no-
If Li A n = Ls An, then this set will be denoted as Lt An.

Let X, Y  be topological spaces; a multivalued map F: X  -A Y  is a 
function defined on X  and assuming non-empty values in the power set 
of Y.  For a multivalued map F: X  -> Y  and a set W  C Y  we will write: 
F+{W) = {x e l :  F { x ) c W }  and F~(W) =  { x £ i :  F ( x ) n W ^ ® } .  Fur­
thermore, the symbols C +{F) and C~(F) will be used to denote the sets of 
all points at which F  is upper or lower semicontinuous, respectively. A mul­
tivalued map F : X  —> Y  is called upper (lower) quasi-continuous if for each 
open set W  C Y  the set F +(W),  (resp. F ~ ( W )) is semi-open [12]. Now, 
let F,Fn : X  -» Y, n i t  1, be multivalued maps. We will write F = LsFn, 
F  = L iFn, F  = LtFn if F(x)  =  Ls Fn(x), F(x) = LiFn(x) or F(x) = Lt Fn(x) 
for each i G l ,  respectively.

In [10] “Baire continuous” multivalued maps are considered; these are 
defined as follows: a map F : X  -4- Y  is called upper (lower) Baire continuous 
if for each open set W  C Y  the set F +(W), (resp. F~ (W)) belongs to the class 
Br =  { A  C X : A  =  (G \  H)  U L  where G is open, H, L of the first category, 
L C Cl G}. If X  is a Baire space, then in virtue of Lemma 1, the upper (lower) 
Baire continuity coincides with the upper (lower) Tq-quasi-colitinuity. Thus, 
the result presented in [10] can be rewritten in the form:

(4) Let A be a Baire Tf space and Y  a compact metric one. If F,Fn: X ^ - Y ,  
n ^  1, are multivalued maps with F = LsFn and Fn are lower Tg-quasi- 
continuous, then the set X  \  C +(F ) is of the first category.

An extension of this result will be given in Theorem 1.
A topological space Y  is said to be perfect if each closed subset of Y  is 

G/j. We recall that a topological space Y  is perfect normal (need not be Ti) 
iff for every open set W  C Y  there exists a sequence W i , W2, ... of open

OO

subsets of Y  such that W  — (J Wn and Cl Wn C W  for n ^  1 [3, p. 73]. This
7 1 = 1

fact and [2, p. 372] give the following characterization: a topological space Y
OO

is perfect normal iff each open set W  C Y  is of the form W  = \J Wn, where
71 =  1

Wn are open sets with Cl W n C Wn+\ for n ^  1.

LEMMA 2. Let X  be a non-empty set, Y  a perfect normal space and let 
F,Fn : X  —> Y , n ^ 1, be multivalued maps with F  = LsFn . If for each x  £ X
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there is n t  1 such that Cl ( (J Fj(x)j is compact, then for each open set
' j= n

LJ C Y  we have
o o  o o  o o

f +{u )= u u n ^(ciwik),
A;=l n = 1 j —n

o o

where Wk are open sets with Cl Wk C Wk+1 for k t l ,  and U — U Wk.
k= \

P roof. Let W  C Y  be an open set and let x £ F +(IF); then

OO / OO \fl Cl(U F j ( x ) ) c w .
n = l ' j= n  '

There is an no such that j c i  ( 1J Fj(x)') : n ^ no j  is a decreasing sequence
 ̂ ' j= n  '  '

of compact sets, so we can choose n such that Cl  ̂ (J Fj(x)^J C W . Hence, 

using that F  has compact values, we obtain
:=n

F +(W) C U fl F+(W) C (J fl F + (C \W )C F +(C\W).
n = \ j = n  n = l j —n

Now, let U C Y  be an open set. It can be represented in the form
OO OOu =  U  U  c i w kt

k - 1 * = 1

where are open sets with Cl Wk C Wk+\ for each 1. Thus

OO OO OO OO o o

F +(U)= U  F +{Wk)C  u U  n F+(C\Wk)C  U  F+(ClWk)cF+ (U ) ,
k = 1 k = l n = l j = n  k= 1

which completes the proof. □
T H E O R E M  1. Let (X , T) be a Baire space, Y  a separable metric one and 

let F, Fn : X  —> Y , n ^  1, be multivalued maps with F  = LsFn . If  for each
x  £  X  there i s n ' t  1 such that Cl ( (J F j  ( x )  J is compact and all F n are lower

' j= n
Tq-quasi-continuous, then X  \  C+ (F) is of the first category.

P R O O F .  Following Lemma 2, for an open set U C Y  it holds
OO OO OO

F +(U)= u U  fl F+(C\Wk),
k= 1 n = l j = n
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oo
where W k are open sets with Cl Wk C Wk+i for k ^  1, and U=  (J Wk. Since

k = \

the maps Fn are lower Tg-quasi-continuous, the sets 

semi-closed; thus the sets

n  F+(C\Wk) are Tq-
J—n

oo oo
n  F+(ClWk) \ l n t  n Fj~(C lWk)

j = n J—n

are of the first category. Furthermore, we have

F +(U)\  Int F +{U) C
OOOO/OO oo ooc U U (n F+(C\W k) \  U U Int

k = l n = l ^ j = n  m = l i = l

oo \
n  ^ / ( c i w m))

j —i '
c

00 00 / 00 OO \
c  U  U  (  f i  Fj~ (Cl Wk) \  Int D  F+(ClWk))

k = l  n = 1 'j = n  j= n  '

From this it follows that F +(U) \ I n t F +({7) is of the first category for each 
open set U C Y. Let B be a countable open base in Y.  By {Um: m ^ 1} we 
denote all finite sums of elements of B; then — since F  has compact values 
— we have

OO

X \ C +(F )=  \ J ( F +(Un) \ l n tF + ( U n)).
n = l

Thus X  \  C +(F) is of the first category which finishes the proof. □

As shown by the example given below, in Theorem 1 the limit Ls cannot 
be replaced by L i. Moreover, for upper T?-quasi-continuous maps Fn the set 
X  \  C~  (Ls Fn) need not be of the first category. Also it follows from [4] that 
for upper (lower) T?-quasi-continuous maps Fn the sets X  \  C,+ (Ls Fn) and 
X  \  C'+ (Lt Fn) (resp. X  \  C~ (Li Fn) and X  \  C ~{Lt Fn)) can be of the second 
category. But up to now the following problem formulated in [10] is not 
resolved: is the set X  \  C~(F)  of the first category if F  =  Li Fn and Fn are 
upper Tg-quasi-continuous? A partial answer will be given by Theorem 2.

E x a m p l e . Let p denote the Lebesgue measure on the real line, Q = {qj : 
j  ^  1} the set of rational numbers and R the space of real numbers with the 
usual metric. For each n ^  1 and j  G {1, 2 ,. . .  ,n}  we fix numbers anj, bnj 
satisfying

a n j  < q j <  bnj

[(inji bnj \  n [uni, bni\ =  0 for i 7̂  j, i, j  G {1, 2 ,. . .  ,n}
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Now we put:
n oo oo oo oo

A n — U {®nj  1 b n j ) i  A  ~  P| u A k  cind B  — U Pi A k -
j —1 n = lk = n  n = l k= n

Then p(A) =  0, Q C (J A^ for each n ^  1, all sets An, R \ A n are semi-open.
k= n

Hence A and R \ A  are dense sets and R \ A  is of the first category. Moreover, 
B  is dense and p(B)  =  0, so R \ B  is dense, too. Now we define multivalued 
maps Fn : R  -> [0,2] assuming

F = / Í0,1} { o r x ^ A n,
n( ) 1 {1,2} for x E R \ A n.

The maps Fn are lower and upper T^-quasi-continuous and

Li Fn{x)

Ls Fn(x)

( {0,1} for x £ B,
< {1} for x E A \ B ,
1 {1, 2} for x  G R \  A,

{0,1} for x  € B,
< {0,1,2} for x E A \ B ,
, {1,2} for x e R \ A .

Then we have C+(Li Fn) = 0 = C-(Ls Fn), so R\C+{U Fn) and R \ C ~ ( Ls Fn) 
are of the second category. □

Lemma 3. Let X , Y  be topological spaces and let F, Fn : X  —» Y , n  ^  1, 
be multivalued maps with F  = LtFn. Then:

OO OO

(a) F~(V)  C U  f l  F - (V )
n—1m =n

for each open set V  C Y ;
OO OO

(b) U n  F - ( M ) C F - ( M )
n— 1 m=n

for each compact set M  C Y;
(c) if Y  is a locally compact separable metric space, then for each open 

set V C Y  it holds
OO OO OO^-00= u u n f ~ (intAj )  = u u n f - ( A j ),

j = 1 n = l  m= j=1 n = 1 m = n

oo
where Aj are compact sets with Aj C Int Aj+\ for j 1, and V = |J  Aj.

3=1
PROOF. If V  C Y  is an open set, then — since F  = Li Fn — the inclusion 

(a) is an immediate consequence of the definition of the limit Li.
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oo oo
Let M  C Y  be a compact set and let x  € [J P| F~(M ). We choose no

7 1 =  1  m—n
such th a t Fn(i)flJli ^  0 for each n ^  no. Then we obtain 0 ^  Ls (Fn(x)r \M) C 
(Ls Fn (:c)) fl M = F(x ) fl M , and this gives

OO oou n F - ( M ) C F - ( M ) .
n=  1 m = n

Now we are going to prove (c). Let U C Y  be an open set. Under the
OO

assumptions on Y  it can be represented in the form V  = [J A?, where Aj
i =1

are compact sets and Aj  C Int Aj+i for j  ^  1 [7, p. 51]. Applying (a) and (b) 
we obtain

OO OO OO OO
F - { V ) = \ J F - ( I n t A j ) c \ J  U fi F~  (Int Aj) C

j =1 j=l n=l m—n
oo oo oo oo

c  U U n  F-(Aj)  C U F -(A ,)  =  F-(U ).
j=\n—\m=n j= l

Thus we have shown (c) and the proof is completed. □
THEOREM 2. Let (X , T) 6e a Baire space and Y  a locally compact separa­

ble metric one. If F,Fn : X  —> Y , n ^ 1, are multivalued maps with F  — Lt Fn 
and Fn are upper Tq-quasi-continuous, then the set X  \C~(F)  is of the first 
category.

P r o o f . Let V  C Y  be an open set with C1U compact. Then from (a) 
and (b) in Lemma 3 we obtain

(OO OO \ / OO OO \U n F - ( V ) ) \  Int U n F - ( V ) ) c
7 1 = 1  771=71 '  ' ‘7 1 =  1 771=71 '

OO/OO OO OO \
c  u  ( n  F - ( C I V ) \  U Int n F-(C IV ) )  C

7 1 = 1  '7 7 1 = 7 1  k =  1 T f l — k

00 / 00 OO \
c  u ( n  *•-( c i m i n t  n

7 1 =  1 '7 7 1 = 7 1  771= 71  7

OO
Since are upper T(/-quasi-continuous, the sets f] Fm (Cl U) are Tf/-semi-

771= 71

closed. Hence the sets
oo OOn F - ( a m i n t  n w h o

7 7 1 = 7 1  771= 71

are of the first category, so also F~(V)  \In t F _ (Cl U) is of the first category. 
Now, by {Vj : j  ^  1} we denote a base of Y  consisting of open sets with Cl Vj
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compact for j  ^  1. Then by regularity of Y we have

00

x  \  C-(F)  = U (F-(Vj) \  Int F - (Cl V3)),
j =i

which finishes the proof. □

The properties (a) and (b) from Lemma 3 can be used to obtain also 
other results. We remind that the graph of a multivalued map F : X  —» Y  is 
the set Gr(F) =  {(x, y) E X  x Y : y E F(a:)} and:

(5) Let X  be a topological space, Y  a locally compact one and let 
F: X ->Y be a multivalued map with closed values. The graph of F  is closed 
if and only if for each open set W  C  Y  with Y  \  W  compact the set F +(W) 
is open [11].

T heorem 3. Let (X, T) be a Baire space, Y  a locally compact separable 
metric one and let Fn, F : X  —> Y, n ^  1, be multivalued maps with F  — Lt Fn. 
If  Fn have closed values and the sets Gr(Fn) are closed for n ^  1, then the 
set X  \  C~ (F ) is of the first category.

P R O O F .  Let V  C  Y  be an open set. Under the assumptions on Y  it
OO

can be represented in the form V — [J An, where An are compact sets and
n = l

An C  IntXn+i for 1 [7, p. 51]. From Lemma 3(c) we have

OO OO OO OO OO OO

f - ( v ) =  u u n F-(int^)= u u n
n = \ j = lm = n  n = l  j= lm = n

According to (5) the sets Fffl {Aj) are closed, so F~(V)  is an Fa set for each 
open set V  C  Y.  Furthermore

OO

X  \  C~(F)  = \J (F~(Vn) \ Int F-(Vn)),
71=1

where {Vn : n 1} is an open base of Y, so the proof is completed. □

REMARK. It is easy to see that in Theorem 3 it suffices to suppose that 
Gr(Fn) are closed in the space (X ,Tq) x Y.

In the sequel u>\ denotes the first uncountable ordinal number. A mul­
tivalued map F : X  —> Y is said to be of the upper (lower) class a < uq if 
for each open set W  C Y the set F + (IY) (resp. F~(IY)) is of the additive 
class a  [8]. As simple consequences of Lemma 2 and 3(c) we get

COROLLARY 1. Let X  be a topological space, Y  a perfect normal one and 
let Fn,F: X  Y , n^.  1, be multivalued maps with F = LsFn. I f  Fn are of
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lower class a  and for each x  E X  there is n ^  1 such that Cl 

compact, then F is of the upper class a +  1.

is

□
COROLLARY 2. Let X  be a topological space, Y  a locally compact sep­

arable metric one and let Fn ,F: X  —>Y, n 1, be multivalued maps with 
F = L t F n . Then:

(a) if  Fn are of an upper class a, then F  is of the lower class a  +  1;
(b) if  Fn are of a lower class a, then F is of the lower class a + 2. □
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TIME DEPENDENT ANALYSIS OF T-POLICY 
M / M / l  QUEUES — A NEW APPROACH

KANWAR SEN and RITU GUPTA

A b s t r a c t

This paper demonstrates a simple and elegant lattice path combinatoric technique 
for computing transient probabilities concerning M /M / l  queueing models. Through this 
lattice path approach time dependent analysis of T-policy M /M / l  queue is presented. 
The transient probabilities computed herein are free from modified Bessel function and 
are amenable to pragmatic probabilistic interpretations. As a special case the results for 
ordinary M /M / l  queues are checked.

1. Introduction

Consider a T-policy M / M / l  queueing model which activates the server 
T time units after the end of a busy period to determine if customers are 
present. If no customers are found when the server scans the queue, it 
is turned off, and the system is scanned again after an interval of length 
T. This procedure is repeated until the server finds at least one customer 
waiting, after which the server is kept in active state until the system becomes 
empty. This model can also be viewed as one where the server takes a 
sequence of vacations each of duration T, at the end of busy period (see 
Doshi [4]). Henceforth T-policy M / M / l  queueing model will be referred to 
as M / M / l (T).

Different aspects of T-policy queues were studied by Heyman [8] (see also 
Teghem [21], Takagi [20]). However, little effort was made to find the tran­
sient solution of this model (see [20]). As opposed to classical method which 
entails formulation of tedious unwieldy difference-differential equations, in 
this paper the lattice path approach — a new combinatorial technique is 
adopted for studying transient behaviour of M /M / l (T )  queues. Starting 
initially with k  (^ 0) units, the probability of i arrivals and j  departures up 
to time t  is found for the M / M / l  (T) queue. This probability in turn leads to 
the probability of the number of units in the system up to time t .  Over the 
years combinatorial techniques have been successfully employed in solving 
queueing problems (refer to Takács [18], [19]). Recently, using lattice path 
combinatorics Mohanty and Panny [15], Böhm and Mohanty [2], Kanwar

1991 Mathematics Subject Classification. Primary 60K25; Secondary 60J15.
K ey words and phrases. T-policy, vacation period, busy period, M / M / l ( T ) model, 

discretized M / M /1 {T )  model, slot, lattice path, transient probability.

0081-6906/98/$ 5.00 ©1998 Akadémiai Kiadó, Budapest
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Sen, Jain  and Gupta [12] obtained transient solutions of M / M / l  queues, 
M / M / l  queues under (M, N)  and (0. K) control policies, respectively.

In the lattice path approach transient probabilities are computed by 
using a four stage procedure:

(a) discretizing the continuous model and then representing it by a lattice 
path;

(b) computing the number of lattice paths stipulated by the process;
(c) computing probabilities associated with such paths;
(d) applying limiting process to these probabilities so as to obtain the 

transient probabilities of M /M /1 (T )  queues.
In addition to evolving a simple solution to the said problems this method 

leads to the results which are conducive to significant probabilistic interpreta­
tions and provide meaningful insight into the nature of the process involved.

2. Lattice path approach

For determining the transient solution we first propose a discrete time 
analogue of M /M /l(T ) queueing process. Assume that the time interval 
(0, t) is segmented into a sequence of t /h  time intervals (slots) each of du­
ration h (>0) such that t / h  and T /h  are integers. Consequently, scanning 
period for T-policy will be T / h  time slots. We further assume that

(i) No more than one customer may arrive or finish being served in a 
given slot;

(ii) Events in different slots are independent. Observe the system at 
epoch 1 ,2 ,. . .  , t /h  each of which marks the end of an interval of duration h.
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Associate a lattice path with the queueing system representing an arrival, a 
departure, and a stay in a slot by a unit horizontal step, a unit vertical step, 
and by a unit diagonal step, respectively (see Figure 1).

If the state of the system is described by the pair (x,y) (x ^  y, x ' t  k), 
where x  — k denotes the number of arrivals and stays and y denotes the 
number of departures and stays. The transition probabilities associated with 
the queueing system are 

(i) Under busy period

( 2 . 1)

P[(x, y) —> (x + 1, y)] = P[an arrival in a slot]
= Xh + o(h)

P[{x, y) —>(x, y +  1)] =  P [a departure in a slot]
_  ( yh + o(h), x ^ y ,

I 0, x  =  y ,

P[{x, y) -> [x + 1, y +  1)] =  P[stay in a slot]
f 1 — Xh — yh + o(h), x ^ y  
\  1 —A h + o(/i), x = y.

(ii) Under vacation period

( 2 . 2)

P[(x, y) —>■ {x +  1, y)] = P[an arrival in a slot]
— Xh + o(h)

P[{x, y) -> (x + 1, y + 1)] =  P[stay in a slot] =  1 — Xh + o(h).

Let the probability that the discretized M / M / l ( T ) queueing process 
encounters i arrivals and j  departures in t /h  time slots starting initially 
with k (^ 0) units be denoted by:

Pi,j-,k{t/h, T/h )

i Pi, jAt/ h’T/ h)

When the system encounters no vacations (i.e. without 
being empty in-between).
When the system encounters at least one vacation and the 
queue length attained is less than or equal to the number 
of arrivals encountered in the last sequence of vacations. 
When the system encounters at least one vacation and 
the queue length attained is greater than or equal to the 
number of arrivals encountered in the last sequence of 
vacations.

Further let
T P i , j - k { t / h , T / h )  denote the probability that M /M /1(T) queueing process 

encounters i arrivals and j  departures in t / h  time slots. 
The discretized M /M / \ ( T )  model leads to binomial probability distri­

butions of arrivals and departures within a given period of time. And by a 
suitable limiting process ( h  —> 0; oo; Ah —> 0, y h —>0), these distribu­
tions tend to Poisson distributions. Hence the transient probabilities for the



456 KANWAR SEN and RITU GUPTA

.**(*), p:,r,k^T ) and 1 Pt r , k ^ T ) and r P P ^ t )

continuous time model following Poisson distribution can be obtained from 
discrete time analogue by passing on to the limit as h -+ 0 (Meisling [13]), 
W hittle [22]). Further, let *.(<), P. 
be the respective continuous time analogue.

For computing the probabilities defined above we require the number 
of lattice paths stipulated by the discretized M /M /1(T)  queueing process. 
Counting of lattice paths is performed in two stages. Firstly, we delete all 
diagonal steps to construct new path called skeleton path (see Figure 2).

Figure 2. Skeleton lattice path

Lemmas 1, 2 and 3 stated below give the number of skeleton lattice paths 
nomenclatured as LPdltd2,.-,dr (&, r \ mJn) from (A;, 0) to (m, n) comprising of 
m  — k  horizontal steps, n vertical steps, touching r  times the barrier y = x 
and having at least d, 1) horizontal steps preceding a vertical step after 
the ith  (i — 1 ,2 ,..., r) touch with the barrier x — y, respectively. These could 
be computed following arguments and constructions in Csáki and Vincze [3], 
Kanwar Sen [9], Kanwar Sen, Jain and Gupta [12], Mohanty [14],

Lem ma  1. For k >  0, 1 ú m  — n ú d r, dj ^ 1 (t =  1, 2 , . . . ,  r)

(2.3) LPdl ,d2,---,dr ( k ,  r \ m ,  n )
m + n — k — d 

n

For k  >  0, m — n > dr, di^ .1  (i = 1 ,2 ,... ,  r)

(2.4) LPdud2r..idr{k ,r -m,n) =
m + n — k — d

m — dr

(m + n — k — d\
m )  '

(m + n — k — d\
m )  J ’

where d =  d\ + ------ 1- dr .

P r o o f . Consider a skeleton path R  envisaged in Lemma 1 (see Fig­
ure 3).



TIME DEPENDENT ANALYSIS 457

Figure 3. Skeleton lattice path; k = 4, m  =  16, n=  12, r  = 3

Make the following transformations on R.
(i) Remove k horizontal steps starting from the origin.
(ii) Remove d\, o?2, ■ • •, dr horizontal steps immediately following 1st, 2nd, 

. . . ,  r th touch point, respectively.
(iii) Concatenate the truncated path segments in succession. The trans­

formed path is shown in Figure 4.

This path from (0,0) to (m — k — d, n) is characterized by not crossing 
the barrier X  — Y  — (k + d). The number of such paths as given by reflection 
principle (see Feller [6], Mohanty [14]) is

m + n — k — d\  i m  + n — k — d 
n J \  m

Hence (2.3) is established.
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Further, (2.4) can be proved by using similar transformations on skeleton 
lattice path stipulated. The transformed skeleton path in this case is a 
path  from (0,0) to (m — k — d , n), which touches or crosses the barrier X  =  
Y  — (k + d — dr), and remains below the barrier X  =  Y  — (k + d). Therefore 
the number of such paths

( 2 .6)

= number of skeleton paths from (0,0) to (m  — k — d, n), which 
touch or cross the barrier X  = Y  — (k + d — dr)— number of 
paths from (0, 0) to (m — k — d, n) which touch or cross the 
barrier X  = Y  — (k + d). 

rm + n — k — d \  i m  + n — k — d^
m — dr J V m

Hence (2.4) follows.

L e m m a  2. For k = 0, 1 <  rn — n ^ dr, di ^  1 (i =  1 ,2 ,. . . ,  r)

, \ „  , , \ (m  + n — d — 1
(2.7) LPdud.2,. ;dr (0, t \ m, n) = Í ^

For k = 0, m — n ^  dr , di^.1 (i =  1 ,2 ,... ,  r)

,  ̂ , \ í m  + n — d — 1(2.8) LPdltd2,...,dr( Q x \ m ,n ) =  _
\  TTL CL-p

m + n  — d — 1 
m

m + n — d — 1 
m

L e m m a  3. Lattice paths envisaged with m  — n will not encounter any 
horizontal step after the r th contact point.

Hence for m = n, k > 0, di ^  1 (t =  1 ,2 ,. . . ,  r  — 1)

(2.9) LPdud2t'..}dr_1(k,r-,m,n) = 

and for m  = n, k = 0, dj ^  1 (i =  1 ,2 ,... ,  r — 1)

(2.10) LPdl42t„,4 r _ 1 (0, r; m, n) =

2m — k — d — 1 
m — 1

2m — k — d —1
m

2m — d — 2 
m  — 1

2m — d — 2 
m

Lemmas 2 and 3 can be proved by following constructions as in Lemma 1.
Lastly, the number of lattice paths stipulated by the process is obtained 

by inserting diagonal steps at the intervening vertices of the skeleton lattice 
path (see, for example, Dua, Khadilkar and Kanwar Sen [5], Kanwar Sen and 
Ahuja [10]). Then on associating transition probabilities defined in (2.1) and
(2.2) with the number of lattice paths stipulated and passing on to the limit 
h —> 0, we get the probabilities for M /M /l (T )  queueing process.
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3. Probability for discrete time model

Transient probabilities for discretized M /M /1(T) queueing process (see
[15]) are developed in Theorems below.

T heorem 1.

P i , j -A t / h ’ T / h ]

(3.1)

j - k + l  ,

= e  e e e (;: m
r=l Ri R 2 R s V 9=1

T /h i + j -  d 
j

i + j  — d  
i + k

t/h — sT /h  
i + j - d (A h + o(h)Y(ph + o(h)Y

x (1 -A h + o(h)){sTlh)~d 
x (1 -  A h -  f i h  +  0 ( h ) f / h ) - ( s T / h . ) - ( i + j - d )

and

l P i j A * / ^ / ^
j - k + l

(3-2)

E E E E O n
r=l Ri R 2 R 3 X 9=1

T /h
dn

i + j - d  
i + k —dr

i + j - d  
i + k

t/h  — sT/h  
i + j - d (A h + o(h)Y(jih + o(h))J

x (1 —Ah + o{h))(sT' V - d 
x (1 -  Ah - j i h  + o(/i))(t//,)_(sT/'l)_(<+J'“d) (

where
R i : Summation over d from r to min^—r, ;

R,2 ‘. Multiple summation over d i,d2, . . . , d r such that 1 ^  dj ^
T

(* =  1 ,2 ,... , r —1), 1 ^ i + k —j ^ d r ^ Y  and d — d\+d2+- ■ -+dr;

T
h ’

i?3: Summation over s from r to t .. . ,, h '- - ( i  + y - d ) - j ;

h ’R i : Multiple summation over d i ,d 2 ,.. . ,d r such that 1 ^  dj £

(* =  1 ,2 ,... ,r ) , 1 ^  dr ^  min^i+fc—j, — ̂  and d=d\+d2+ - . -+dr.

= 0  for r < 0 and [t] denotes the largest integer in x.

PROOF. Lattice paths stipulated in Theorem 1 starting from the point 
(A;, 0) to (t/h — j  + k , t /h  — i) will have i horizontal steps, j  vertical steps,
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/  t  \  'J'
( -— i —j  ) diagonal steps and will encounter vacations of fixed duration — at '  h J fi
each of the contact points with the barrier. On removing the diagonal steps 
the lattice paths will reduce to skeleton lattice paths from (A;,0) to (i + k , j ) 
having i horizontal steps and j  vertical steps. Vacations encountered are of 
two types.

I. Vacations with no arrivals.
II. Vacations with at least one arrival.
In  the sequence of the vacations encountered at each contact point only 

the last vacation will be of IInd type. Consequently, at the ith contact point 
with the barrier di arrivals could occur in a vacation of IInd type in

(3.3) fj* ) e - i .

ways. Taking the total number of vacations to be s and r the number of 
touches with the barrier there will be (s — r) vacations of Ist type which can 
be distributed at r  contact points on the barrier by using “balls into cells 
technique” (see [6]) in

(3.4)

ways. Further (------ ----- i — j  +  d] stays or diagonal steps in a busy period
\h  h J

occur at ( i + j  — d + 1) vertices of the skeleton lattice path in

(3.5)
t_ _ sT
h h

i+ 3  -  d.

ways. The number of skeleton lattice paths envisaged in the Theorem con­
sisting of horizontal and vertical steps only, can be obtained from (2.3) on 
replacing m  by i + k and n by j  given by

m - c t f r ) ]
which on multiplying by (3.3), (3.4) and (3.5) gives the number of lattice 
paths stipulated. This number multiplied by appropriate probabilities in
(2.1) and (2.2), summed over r, d \ , d? ,. . . ,  dr and s yields (3.1).

(3.2) can be proved similarly.
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T heorem 2.

M i l )
=e e e e (::!)ii

r=1 fii fi2 R3 V

T /h
i \  ^ 9 9=1 x ^

i + j  — d — 1\ f i + j  — d — 1

(3.7) *E
Rs L

t /h  — (sT/h) — m — 1 
i +  j  — d — 1

(A h +  o(h)f(ph  +  o(h)y

and

x ( l  — Xh + o(h))rn+('sT/h^~d 
x (l -  Ah - f i h  + o(/i))<i//l) - (sT’//l) - (i+J- rf)-

t T>/ i i \
lFb * K h ' h )

r=  1 fíi /?3
=EEEE(;:!in T / h \  [ f i  + j  — d —l \  f i  + j  — d —1

. \  ^99=1 '  v

(3.8) x E
Rs L

t /h — (sT/h) — m — 1 
i + j  — d — 1

i — dr

(Xh + o{h))l (nh + o(h))j

x { l - \ h  + o(h))m+(sT/h)- d 
x { l - X h - p h  + o(/i))(t/ /l)-(i r /',)-m-(i+J- <i) ,

where
R \ : Summation over d from r to m i n — l j ;

i?2‘ Multiple summation over di ,d2 , ■ ■. ,dr such that 1 ^  d; ^  
(t =  1 ,2 ,... ,r) ,

1 = ^— J =  d r =  ~r a n d  d  =  d \  + d% +  ■ — I- d r \ h

R.3 : Summation over s from r to — — (i + j  — d)— ;

i?4.' Multiple summation over d\, d2 , . . . ,  dr such that 1 ^  d, ^ 
(t =  l ,2 , . . . , r ) ,

dr ^  min^i — j, —  ̂ and d = d\ + d2 + • • ■ + dr -,

»■
IS

 
5-

14
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R 5 : Summation over m  from 0 to t sT
(i + j - d )-h h

Theorem 2 can easily be proved by following decomposition of stays (or 
diagonal steps) as in Theorem 1 and Lemma 2.

T
R e m a r k  1. For — =  1, which in turn reduces the value of d\, d,2 , ■ ■ . ,  dr h

to 1 each, results stated in Theorems 1 and 2 yield those for the case of 
ordinary discretized M / M / l  queue.

For i + k = j  the last contact point coincides with the final state reached 
(i.e. a vacation is encountered necessarily) hence this results in a system 
ending with a vacation. Further in some cases this situation may lead to 
an incomplete vacation. Let T\ denote the duration of an incomplete va-

/ 1 T  T
cation and n the number of arrivals in time Ti. Define vPn fH  t > T j —

\h  h h
the probability that the discretized M /M /l(T ) process ending with vaca-

rp
tion, encountering j  departures and an incomplete vacation of duration —

attains queue length n in — slots, starting initially with k 0) units. This
hrp1

probability summed over — , yields the probability of occurrence of j  +  n — k
t ™

arrivals, j  departures in — time slots and ending with a vacation denoted by
h

f t  T \
vPj+n-k  j-kyT’ J )  ■ The corresponding probabilities for the continuous time
model are denoted by VP* j.k(t,T,Ti)  and vPr>j+n-k,j;k.k(t,T),  respectively.

T h e o r e m  3. If the system is in vacation at time then for k>  0,

(3.9) v P j + n - k , j ~ j ~ )  = vPn,j-k{t/h,T/h,Ti/h)
T i /h

T /h

(3.10)

-E  E 1£ £ £ ( r: i) n ( T UT,/*T L = 0  P = 1  Ä 1  r 2 r 3 Vr V  9=1 V n

-k

' 2j  — k — d —l \  f 2j  — k — d —l
i - 1 ) - (  i

t /h  — (s /T/h)  — {Ti/h) — 1 
2 j  — k — d — 1

x (nh +  o{h)Y (1 -  Ah + o{h ) )W Q -< n /h)~d- n 
x (1 -  Ah - n h  + /h)-(2j-k-d)

(a h +  o{h )y+n
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and for k = 0

<3-> - M s - D
T/h

H -0 r=1 Re R-2 Ä4
h _U

r  —1T/h j-k+l  ,

- E E EEE(rl,)n
9=1

T //i\ /T1//1
dn n

2j - d - 2

j ~  1
2j  — d — 2

j
(3.12)

i / / i -  (s T /h ) -  (Ti/ h ) - m -  2 
2 j  -  d -  2 (Xh + o{h))j+nx E

Rs L

x (M/i +  o(/i))J(l -  A/i + o(/i))(sT/,l)- (Tl/,l)-d- n+m 
x (1 -  Xh -  ph + o(/i))(i/ /l)-(ÄT/ /l)-(r > /A)-"*-2j+rfj

where
R i : Summation over d from (r — 1) ío min^(r — 1) —, j^j ;

T
R 2 - Multiple summation over d\, d? ,. . . ,  dr_i such that 1 ^  di ^  —,h

(i = 1 ,2 ,... , r  — 1), and d = d \+  d^-\------ hdr- l /
r(t _ Tl)

i?3 : Summation over s from (r — 1) to

i?4 : Summation over s from (r — 1) io 

i?5 : Summation over m  from 0 to

T  (2 j  + k - d ) - ] ;

{ t ~ Tl) ( 2 j - d ) | ] ;
( Í - T , )  «T
— ------ T “ 2j +  d

T
i?6 : Summation over d from (i— 1) to min^(r — 1)— — 1, (j — 1) j  .

Proof of Theorem 3 can be constructed by following the decomposition 
of stays (or diagonal steps) as in Theorems 1-2 and then using Lemma 3.

T  T
REMARK 2. For — = 0, — = 1, which in turn reduces the values of 

h h
d \ , d2 , ■ ■ ■, dr-i to 1 each and n =  0, results stated in Theorem 3 would yield 
those for the case of ordinary discretized M / M / l  queue.

T heorem 4. For k >  0

Qi,j;fc(t/h) — i + j
i

i + j  
i + k

t/h
i + J

. (Ah + o(h)Y

x (ph + o(h)y (l — Xh — ph + i *
(3.13)
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and

(3-14)

[t/h-i-j] -
Qi,j;o{t/h) = 'y '

m=0

i + j -  1 
i — 1

i + j  -  1 f//i — m — 1 
i + j  - I

x (Ah +  o(h))l (nh + o(h)y 

x (1 -  A/» -  nh + o(/i))(t/fc)-<-i~m(l -  A/» + o(h))m.
REMARK 3. The p robab ility  TPi, j ,k( t /h ,T/h) ,  A;>0 can be obtained by 

considering  the following two m utually exclusive cases:
(a) System encounters no vacation in t /h  time epoch;
(b) System encounters at least one vacation in t / h  time epoch.
The probability for the former case is given by (3.13) and for the later 

case is given by (3.1) or (3.2), accordingly as the queue length attained is < 
or ^  1, the number of arrivals encountered in the last sequence of vacations. 
Thus by adding up the probabilities for the two cases we get the required 
probability which is given by

i + j
i

i + j  
i + k

t/h  
i + j

(Ah +  o(h)Y(fih +  o(h)Y x

: ( 1 - Ah - n h  + o ^ y / b - t - i
(3.15)

j-k+l  /„  1\ r
+ e  E E E ( ; : ( ) n

r = l  Ri R í  R 3 '  7 q=1

T/h
( i , j , k ,d ,d r )

t /h — sT /h  
i + j  - d

x

x(Ah  +  o ( h ) y  (/i/i +  o { h ) ) j { 1 -  X h  +  o { h ) ) s T l h~ d

(1 -  Ah - n h  +  o ( h ) j t l h - s T l h - i - j + d ,

where R\  and R/>, are summations as defined in Theorem 1 and
R 2 : Multiple summation over d\, ^ 2 ,... , dr, 1 ^  di ^  T /h  

(i = 1 ,2 ,... ,r) and d = d\ +d2 H------h dr. Further,
'i +  j  -  d\ _ f i  +  j  -  d> 

j  J \  i + k  
i + j - d \ _ f i + j - d >

 ̂i + k — dTJ \  i + k

('i , j ,k ,d ,dT) =
i + k — j  <dr, 

, i + k — j ^ . d r .

Similarly, we can obtain for the case k =  0.

4. Transient probabilities

Lemma 4 stated below gives limiting results which are employed to com­
pute the transient probabilities for the continuous time model from its dis­
crete analogue.
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Lemma 4. If 
(4.1)

TI a T  '

. f t  s T  \  } h " P-

H h '  T ' p) = h  E
m=0

t sT

P - 1
x (1 -  A/i - p / i  +

(4.2)

e ' j (
m = 0  '

[ i  sT T. "|
L/i —“K—  X  >pj t sT  Ti o

h ~  T  ~  ~h ~ r n ~ 2
P - 2

x (1 -  A/i + o(|1))m+W)+(T./M-rf 

x (1 -  \ h  -  ( i h  +  o { h ) ) ('t / h '>~('s T / fl'>-(T i / h '>-rn- ( 2 i ~ d)^

(4.3) « r , P.(.T ) =  r ' X ; ( rS_ 1)
s=r '  ' p!

(4.4)

M r , P , t , T , T x) = T r Y ,  ( r S
s=r—1 '

V i - a T - T O P  
1 / P!

then

(4 .5) ’i ' f M k ' k - ’1) ( i _  e-n(t-sT) 0 
n=0

-nV-sT-Ti)

(4.6)
e~Ai /

“ pP"1 ( 1_(
, -n ( t - s T -T i) ( p ( < - s T - T i ) ) n

^  n!n = 0 )■

(4 .7)

U m * (r ,p .t,T )=  £T">0 (r - 1 — m)! V P

x ( i - Y . - m ! e S r \
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Lim  V>4( r ,p , i ,T ,T i )  

(4.8) 7W 0

r —1

E
m=0

(*)r—l —mt( —l)m / m + p \  / I  \ m + p + l

(r — 1 -

m+p

‘-E«'
n=0

- m)! P )(?

n:

R esu lt (4.5) can be proved by differentiating partia lly  a finite geometric

series o f the  type {x mys }, m  varies from  0 to
' t sT
L h ~ T - p , w .r.t.

x (p — 1) tim es where x  =  1 — Ah +  o(h), y = 1 — Xh — ph + o(h) and taking 
lim it as h —» 0. Results (4.6)-(4.8) can be proved sim ilarly by considering 
ap p ro p ria te  series (see [1]).

4.1. Bivariate distribution of the number of arrivals 
and departures up to time t

T h e o r e m  5. F o rk>  0

Pijf i faT)
j - k + 1 (

= E EEE ■-A T(s-r) S — r

(4.9)
r —1 R \ R  2 /?3 ^

x | ( A ( i - ST ) r d( p ( i - ST)V 

i +  j  — d \  f i + j  — d

: n -AT/ \'T'\d(XT)dq

9=1
(>—(X+p)(t—sT)

w

( i + j  - d ) \

and for k >  0

PP,k(t,T)
j - k +1

= E EEE , ' A T ( s - r )

(4.10)
r— 1 ßj /?3

5 — 1

x U \ ( t - s T ) y - d(p ( t - s T ) )

n
7=1

p-(X+n)(t-sT)

( i + j  — d)\

-XT( \  T)dq
K )!

i + j - d  
i + k — dr

i + j - d  
i + k

where
R i : Summation over d from r to i;
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R 2: Multiple summation over d\, d,2 , . . . ,  dr such that l f?i + k —j ^ d r and 
d = d\ +  c?2 +  ■ • • +  dr;

R 3 : Summation over s from r to —
i?4 : Multiple summation over d\, c/2, • • •, dr such that i + k — j  ^  dr, and 

d — d\ T Ĉ2 “f" * * * "f~ dr.

T heorem  6.

(4.11)

and

(4.12)

Pij f l& T)

= EEEE
r=l Ei R 2 R 3

x { (e- ^ ) ( ^ - d( i _ e-M t-sr ) I+^  ' w - j n r y

- i r T - o - r m r

= EEEE
r= 1 R\ R4 R3

-X  T(s-r) (::0 n ( ^ T ) X

{(e-A ( t- s T ) \ \ i - d

0
. - r t t - .T ) i+v í _1(K ( í-* r ) )”E

n=0 n!

X
/ i  +  ;  - d  -  1\
V * — dr J

i + j - d

where
Ri:
R2:

R3:
R 4 :

Summation over d from r to i — l; 
Multiple summation over d\,d2, . . .  
(i= 1 ,2 ,... , r), and d = d\ + c?2 + •

Summation over s from r to -t-
.T .

Multiple summation over d\,d2,. 
(i = 1 ,2 ,. . . ,  r) and d = d \+ d 2 +

dr such that 1 ^ i — j  < dr, d i ^ .1  
■ +  dr;

, dr such that dr ú i  — j ,  di ^  1, 
+  dr .

(4.9) can be obtained on substituting the value from (3.1) and taking the 
limit as h -» 0. Similarly, (4.10) can be proved on using (3.2). (4.11) and
(4.12) can be proved as a limiting case of Theorem 2 on using (4.6).
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R E M A R K  4. Results in Theorems 5-6 can be interpreted probabilistically 
by tracing the dissection of time t , through the following bijective transfor­
m ation in Figure 3. Collect the segments of d\, d2 ,.. .  ,dr horizontal steps af­
ter 1st, 2nd, .. .  , r th contact points, respectively. Concatenate these segments 
in succession and append the resulting path segment at (k, 0). Collate the 
remaining truncated segments and append the path segment at (k +  d, 0). 
The resulting path is shown in Figure 4.

Considering the division of time t as suggested by Figure 3 referring to
(4.9) for fixed values of r, d \ , c^j • • •, dr, T  and s the two terms within paren­
theses inside the summations are the probabilities of occurrence of (s—r) 
vacations of first type and r  vacations of second type with di arrivals in the 
ith vacation (i = 1 ,2 ,. . . ,  r) and of queue length being (i + k — j)  in time 
(t — sT)  starting with k + d units without being empty in between (see [11]).

R emark 5. To obtain the transient solution in continuous time for or­
dinary M / M / l  queue from Theorem 5, we will have to pass to the limit 
T  —> 0 and set d\ = ^2 =  • • • =  dr — 1, an obvious implication of the former 
(Greenberg and Greenberg [7]). Under same conditions Theorem 6, on using
(4.7), reduces to

L im P,:,l0(f,T) =  e - «  ( - ) ’ £

(4.13)

• ]

x { ^

r —1 L
r i + j - r - 1 r-1

E E
n=0 m =0

i + j  — r — l \  f i  + j  — r — l 
i — 1

m  + n \  (—l)m 
n )

1
( r  — 1 — m ) \ —  E 4?)}a=0 '  '

3 r

e‘A,u) EE (—l)m(/if)r 171 ( i  + j  — r + m — 1
(r — m)\

X \ i

^  r—1 m = 0

i + j  — r — l \  ( i  + j  — r — 1
i - 1 ) ~ \  *

m + i + j _ r _ l

E ^ >
v a= 0  7

m

which checks with the result P i j ( t )  (see (10) in Pegden and Rosenshine [16] 
of ordinary M / M / l  queues).

T heorem  7. If  the system is in vacation at time t, then for n 7Z. 0, 
j  ^  k  >  0

vPj+n-k,j]k(ti T)
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= / E E  E  E Í e"AT<"r+1) (P 5 1) e~>ri(Ar‘>n
0  r=l Ri R2 R3 L V '

n

r- !  „ -X Ttt  e - (*T)dq \ \ \  (2 j  - k - d - \ \  _ (2j
ü  W  J U V  3 - 1 J l

— k — d — 1 
3

(4.14)
e - (X + ß ){ t-s T -T \)

r^x(2j — k — d — 1)!1

x (A(i - s T -  Tx) y - d~k{^{t - s T -  Ti))J_1 jdTi

and /or n ^ 0

(4.15)

vPj+n,j;o(̂ >

= / e e e e {
n  r = l  f i 4 / Í 2  R . i  k

r — 1
—Arfs—r+l) (  * V ^ I I A T , ) "

n!

V-r1 c_AT(AT)‘<g'l f / A y - dn
9=1

K )! ) /ae -(A+/í)(I~sT—T*i),

2/ — d — 2^ f  2j  — d — 2 

j ~  1 3
2j —d—2

I _  e-^ -»T -T i ) ( /x (< -sT -T i))r

m = 0
ml

dTu

where
R \ : 
Ä2:

ß 3:
i?4:

Summation over d from (r — 1) to j;
Multiple summation over d\ , 2̂» • • •, dr_i such that di ^ 1 
r  —1), and d — d\ + d-z-\------hdr- i /

Summation over s from (r — 1) to 
Summation over d from (r — 1) io j .

( i - T i ) -

(* =  1 ,2 ,..

Theorem 7 can be proved as a limiting case of Theorem 3 on using (4.6).
R emark 6. In order to obtain probabilistic interpretations of (4.14) 

and (4.15), referring back to Figure 4, we observe that for fixed values of 
r ,d \ ,d2 , • • • ,dr- i ,  the number of complete vacations is s each of duration T  
and an incomplete vacation of duration T\ . The two terms within parentheses 
inside the summations are the probabilities of occurrence of (s — r) vacations 
of first type, an incomplete vacation of duration T\ with n arrivals and r
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vacations of second type with dt arrivals in the zth vacation (i = 1 ,2 ,... , r  — 1) 
and of dropping the level k + d to level zero in time (i — sT — T\) encountering 
j  services without being empty in-between (see [11]).

R e m a r k  7. In order to obtain transient solutions in continuous time for 
ordinary M / M / 1 queues from (3.9) and (3.11) we pass to the limit as h —>0 
and T  —» 0 by using (4.8), (4.6) and set d\ =  di  =  ■ • • =  dr- i  = 1, T\ — 0 and 
n =  0 an obvious implication of the later (see [7], [16]).

T h e o r e m  8. For k > 0

* + A
i + k )

and for k — 0

e-(A+A.)t(A t y ^ t y(4.16) i + j

(4.17)

i + j  -  1
i — 1

i + j  -  1
i

X
n! /

x

R e m a r k  8. TP*j-k{t ,T)  can be ob tained  as a lim iting case of 
t P*j - k i t / h ,  T /h )  com puted in  Remark 3.

For k > 0

(4.18)

t P ^ T )

'* +  A  _  ( i  + j
i )  \ i  + k

j - k + l

+ E E E E «
r —1 f íj Ä3

\ i — d

- A T (s - r ) n r (AAdA ..
/

j  (A(t -  -  sT)) -̂ e- (A+,)(f- sr) . d r) 1,
l {i + j - d ) \  J

where R\  and Rj, are summations as defined in Theorem 5, A(i,j, k ,d ,dr ) is 
defined in (3.15),

: Multiple summation over d \ ,  d i ,  ■ ■ ■, d r , di (^ 1), i — 1,2, . . . ,  r  and 
d — d\ F  g?2 F  * * * F  dr .

4.2. Queue length distribution

The probability that starting initially with k units (k ^  0) there are n 
units in the system at time t after having been empty at least once in­
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between, denoted by P*.k(t,T) is given by

OO

(4.19) T) = Y ,
j-k

In particular, (4.19) on using (4.9), reduces to

=É E EE{<rAT<""') (;:;) n } -
r=l Ri R2 R3 1 V 7 9=1 V q'  7

(4.20) x j e-(A+/d(t-ST ) ^ ^ x

x ^n-fc-d(2\/Äp(i -  sT)) -  In+k+d(2y/\Ji(t -  sT)) j,
where summations are as defined in respective Theorems.

R emark 9. In (4.20) the term in the last parentheses denotes the prob­
ability that starting with (k + d) units at time t =  0, there are n (> 0) units 
in the system at time (t — sT) in the presence of an absorbing barrier at 
the origin (see [11]). Thus P*.k(t,T) is amenable to identical probabilistic 
interpretation.

The probability that M/M/1(T)  system ending with vacation attains 
queue length n in time t starting initially with k (^ 0) units, denoted by 
vP*.k{t,T) is given by

(4.21) v P n — v^>j+n-k,j;k(^'i T).
j=k

Then for k > 0, n ^  0,

T

■w t / e e e I'
r= 1 J0 R i R2 Rz K

-AT(s—r+1)
r — 1

„-AT1(A Txy
n\

(4.22)
r—1*n
9=1

AT(A T)d*
(dq)'.

,-(A+/i)(t-sT-Ti) / k + d \ 
\ t  — sT  — Ti /

/A ._íí±4I) ,__ A
x ( - )  2 h + i & y f ä i i t - s T - T t f j d T x ,

where summations are as defined in respective theorems.
R emark 10. In (4.22) the terms in the last parentheses denote the prob­

ability that starting with (k +  d) units at time t =  0, the system becomes
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empty a t time (f — sT — Tf) (see [17]). (4.22) can then be interpreted in a 
routine way.

R emark  11. P*-.k{t,T)  and PP.k(t,T,Ti)  are expressions involving on­
ly finite sums. Hence computations of P*.k{t,T) and F0*.fc(í,T, Tf) could be 
comfortably handled from (4.19) and (4.21) since the infinite sums does not 
involve Bessel functions explicitly.

Acknowledgement. The authors express their thanks to the referee 
for his valuable comments.

R E F E R E N C E S

[1] A br a m o w itz , M. and S t e g u n , I. A. (eds.), Handbook o f mathematical functions, with
formulas, graphs and mathematical tables, Dover Publications, New York, 
1966. MR 34 #8606

[2] B ö h m , W. and Mohanty , S. G., The transient solution of M / M / 1 queues under
(M, Ar)-policy. A combinatorial approach, J. Statist. Plann. Inference 34 
(1993), 23-33. M R  94c:60152

[3] C s á k i , E. and V incze, I., On some problems connected with the Galton-test, Magyar
Tud. Akad. Mat. K u ta tó  Int. Közi. 6 (1961), 97-109. M R  26 #3138

[4] D o s h i , B. T., Queueing systems with vacations -  a survey, Queueing Systems Theory
Appl. 1 (1986), 29-66. M R .89b:60212

[5] D u a , S., K hadilkar, S. and S e n , K., A modified random  walk in the presence of
partially reflecting barriers, J. Appl. Probability 13 (1976), 169-175. M R  53 
#4235

[6] F e l l e r , W., An introduction to probability theory and its applications, Vol. 1, 3rd ed.,
John Wiley, New York -  London, 1968. M R  37 #3604

[7] G r e e n b e r g , H. and G r e e n b e r g , I., The number served in a queue, Operations Res.
14 (1966), 137-144. M R  32 #  4756

[8] H e y m a n , D. P., The T-policy for the M / G / l  queue, M anagement Sei. 23 (1977),
775-778. Zbl 357. 60022

[9] S e n , K ., On some com binatorial relations concerning the sym m etric random walk,
Magyar Tud. Akad. M at. Kutató Int. Közi. 9 (1965), 335-357. M R  33 #6715

[10] S e n , K. and Ahuja, Y. L., On certain probability model in random walk, Calcutta
Statist. Assoc. Bull. 21 (1972), 71-76. M R  50 #1341

[11] S e n , K. and J ain, J. L., C om binatorial approach to  Markovian queueing models, J.
Statist. Plann. Inference 34 (1993), 269-279. M R  93j:60148

[12] S e n , K .,  J ain, J. L. and G u p t a , J .  M., Lattice path approach to transient solution
of M I M I I  with (0, k)  control policy, J. S tatist. Plann. Inference 34 (1993), 
259-267. M R  93j:60147

[13] M e is l in g , T., Discrete-time queueing theory, Operations Res. 6 (1958), 96-105. M R
19, 1092e

[14] M o h a n t y , S. G., Lattice path counting and applications, Probability and Mathemat­
ical Statistics, Academic Press, New York -  London, 1979. M R  81f:60020

[15] M o h a n t y , S. G. and P anny , W., A discrete-time analogue of the M / M / l  queue and
the transient solution: a geometric approach, Sankhya Ser. A 52 (1990), 364- 
370. MR 93f:60146

[16] P e g d e n , C. D. and R osensh ine , M., Some new results for the M /M /l queue, M an­
agement Sei. 28 (1982), 821-828. M R  83L60115

[17] S a a t y , T. L., Elements o f queueing theory, with applications, McGraw Hill, New York
-  Toronto -  London, 1961. M R  24 #A3010



TIME DEPENDENT ANALYSIS 473

[18] T a k á c s , L., Combinatorial methods in the theory of queues, Rev. Inst. Internat.
Statist. 32 (1964), 207-219. M R  31 #2770

[19] T a k á c s , L., Combinatorial methods in the theory of stochastic processes, John Wiley,
New York -  London -  Sydney, 1967. M R  36 #947

[20] T a k a g i , H., Queueing analysis: a foundation o f performance evaluation, Vol. 1: Va­
cation and priority systems. Part 1, North-Holland Publ. Co., Amsterdam, 
1991. M R  93e:60188

[21] T e g h e m , J., J r .,  Control of the service process in a queueing system, European J.
Oper. Res. 23 (1986), 141-158. M R  88e:90035

[22] W h i t t l e , P., Optim ization over time, Vol. 2: Dynamic programming and stochas­
tic control, Wiley Series in Probability and Mathematical Statistics: Applied 
Probability and Statistics, John Wiley, Chichester, 1983. M R  85e:90062

(Received August 12, 1992; in revised form  October 16, 1996)

D E P A R T M E N T OF STATISTICS
U NIVERSITY OF DELHI
FACULTY O F MATHEMATICAL SCIENCES
IND—1 1 0 0 0 7  DELHI
INDIA

m a n j u _ a g a r w a l @ h o t m a i l . c o m

mailto:manju_agarwal@hotmail.com




Studia Scientiarum Mathematicarum Hungarica 34 (1998), 415-486

ON THE SIMULTANEOUS APPROXIMATION OF FUNCTIONS 
AND THEIR DERIVATIVES BY THE GAMMA OPERATORS

S. GUO and Q. QI

In this paper, we investigate the degree of approximation by Gamma operator for 
functions whose derivatives have only discontinuity points of the first kind on [0, oo). Our 
estimates are essentially the best possible.

Let /  be a function defined on the interval [0, oo). The Gamma operator 
Gn{f,%) is defined as follows:

where gn{%, u) =  e Xuxn+1un/n\.
Several authors [1-5] studied the convergence of some famous operators 

for functions of bounded variation. There are some results of convergence of 
Gn for functions of bounded variation on [0, oo) (cf. [6]).

In this paper, we consider the degree of simultaneous approximation
(ct)by Gamma operator for functions in B). . We shall also prove that our 

estimates are essentially best possible. = { / | / ( r_1) € C[0, oo), f ± \ x )  
exist everywhere and are bounded on every finite subinterval of [0, oo) and 
f ± \ x )  =  0 ( x Q)(x —> oo) for some a  > 0}, where r = 0 ,1 ,2 ,. . .  and f ± \ x )  
means f (x±) .

1991 Mathematics Subject Classification. Primary 41A28; Secondary 41A36.
Key words and phrases. Operators, simultaneous approximation, derivatives, moduli 

of smoothness.
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A bstract

1. Introduction

oo

( 1 . 1)

0
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2. Theorem

Let
f + \ t )  - & \ x ) ,  x < t ;

( 2 . 1) hr (t) =  < 0, x = t\
r(r)/+\ Ar), o ^ t < x ,

ojx(t)=u}x (hr,t) =sup{| hr(x + s) — hr (x) |, | s |^ i} .
It is clear that if x G [0, A\{A > 0), then
(2.2) ux(t)^u}A(t),
where o>a {í ) =  sup{a;x(t), x  G [0, A]}.

T heorem . If f  G (r G {0} U Â ), x  > 0, i/ien /or n sufficiently large,
we have

|G Í )( / , * ) - ^ ( / í !M + / ! r)to )l

(2.3) s a - E
33 / / A(a:)  ̂ ( r (r), f (r)- * ■ ~ t r

k=1
* ,+i/rw-/7'wio^

+ 0 i i M Z  + —
\/n  — r  V 2 n

/ i r)(s) +  / i r)(a;)

where ivx (t) =  tux(hr,t) is the pointwise modulus of continuity of hr at x and
n ^ T

hr is defined by (2.1), A(x)  =  max{l,rr2}, Cr =

an integer so that cr^p-
n(n  — 1) • ■ ■ (n + 1 — r) » P ls

3. Lemmas and preliminaries

In order to prove the above theorem we need the following lemmas. 
Le m m a  1 ([7]). If  f ^  G L\, then we have

(3.1)

where CT =

CXJ

G ^ ( f , x )  = Cr f  gn- r{x, u - ')  du, 
u.

n
n{n — 1) • • • (n +  1 — r)

L e m m a  2. If p is a positive integer, then

(3.2)

OO
J { n t ) pgn- r f s ,  ^  ^  = 0(1)

(2x)p2r f V e \ n

2x
n

\Jn — r \  2
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P r o o f . Let

1 =
(n

OO

h y . h ^ r
2x

r+1 _ zd t  e t —. 
t

Then I  is the left part of (3.2). By replacement of the variable in the integral, 
we have

(3.3)

OO

=  - J —  f( n - r ) !  J
.  / m \ n- r+1 _n*du

i v —  I e u —
\ u /

2x
OO

= ( ^ ö í / < ” )p0 "
-r+1 _n dv 

e v —
V

n n—r+ l

(n — r)
■x.p J  e~T t~(n~r+2~p^dt.

Using integration by part again and again for the term on the right-hand 
side of (3.3), we get

J  e- l r (n-r+2-p)df =  J  e - nttn~r~pdt 
2 0

e~ 2
+(n — r — p + l)2n r P+1 n— 5—  , - r - p  + 1 J

r ntt n - v - V+ l d t

(3.4)

2n

= £
k=0

n
(n — r — p + l)(n — r — p + 2 ) ■ ■ ■ (n — r — p + k + l)2n r

+
n271-f*l

(n — r  — p +  1) • • • (3n — r — p + 2 ) / e - ntt3n- r- p+2dt.

to
 13
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When n  is sufficiently large, the right-hand side of (3.4)

— X—"V 1
n 2 n ~r~P+k+l

k=0 

R 1=  2e~ 2 —--------+

+  2 if  t 3 n —r-~p+2dt
0

2 / r 3 „ - ^ r + 3

- P  +  3 V2,1

Since

(3.5)

2  n

=  T <
1 \  2

, hence for n sufficiently large, we have4 / \ e r

R /- ~~  .* e~2 (1
/ '

Ti-(n-r+2-p)^<3<
n V 2

2P.

By (3.3), (3.5) and Stirling’s formula

n! =  v/2mmne nHn,

Hn = e 12Ü, (O<0„<1)

we get

3e“ t n n- r (2a;)p 
= (n — r)!2n_r

____________ 3e~^ nn~r (2 x)p__________
yj2'n(n — r)(n — r)n~re~(n~r)2n~r Hn_r 
Q{l){2 x)p2 r i ^ ~ e \n 

y/n — r V 2 /

Lemma 3. I f n  is sufficiently large, then:
(1) For 0 ^  y ^ —, n ^  2 r2 +  2, we have

o
X

(2) For — < z < oo, n ^  2 r2 +  2, we have

du 8 x 2
u2 -  n(x — n z ) 2

(3.7)
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P roof. By simple computation we have

OO

J gn- r( x ,u )d u -  1,
0

00
1 Í \ n j  UX/ gn- r(x, u)—du = ------ ,

J u n — r
o

00
/  9 n - r { x i u) Í — j d u = - -------- .J \ u / (n —r)(n —r —1)
o

Hence for n ^ 2r2 +  2, we have

2 2 n x

Cr J  9n—r(x > ^) ^
(n +  r 2 +  r)n r 1x2

< 2nr xrJl

1) ■ • • (n — r — 1)

2a:2
(n — 1) • • • (n — r — 1) (l -  ( l -  £) ■ • ■ (1 -  £)(n -  r -  1)

< 4x2 < 8a;2

n (l — n)r n

Therefore

f  . l . d u . / ’ /a; — n u \ 2 f  1 \  du
J  gn- r ( x , - ) J  9n- r { X' u ) ^

< 8x2
n{x — ny)2

So (3.6) is proved. The proof of (3.7) is similar. 

Lemma 4.

(3.8)

(3.9)
OO

J 9 n - r ( x , u ) d u  =  -  +  0

n
x
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P r o o f . Let

n
x

1 n { x )  =  J  g n - r { x , u ) d u  =  j x n —r+lg—x u ^ n - r

(n — r)! du

r tn~re J (n — r)\
dt.

Using integration by part, we have

An[x)  = ö r b jT  + (» -  +  ■•■ + ( « -  r)OI5]

=  1 — e
n

+
n n - r - l  \

/ , "TTT +  • • • +  n +  1[n — r j! (n — r — 1)! j

From the relation ([6] Lemma 1), if n is a positive integer, then 

, n n 2 n” . en
1 +  lT +  ¥ + ' "  + i r i' (" ) =  r

where 0(n) lies between -  and i  We can obtainZ O
1 „ n - r + l

A n(x) = l - e- n [ - e n - - ------ — -
2 (n — r + 1)!

n
n\ 6 {n)

1
= 2 + e ~

n n —r +1
(n — r 4-1)!

n n 1 n"
+ — e{n)

(n  — 1)! n!

(3.10) n" r  — 2
n

r — 3
n

1 -
n

“ 2 In!
n(r +  1) H----j-ö(n)
n:

By Stirling’s formula, we get

(r +  l)e  nn" e nn n6 (n) 
\ /2mrnne~nHn \ /2m m ne~nHn
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= o

Hence

An{x)=2+ 0 { ^ ) -
(3.9) can be obtained from An(x) + B n(x) =  1, where Bn(x) is the left side 
of (3.9).

4. Proof of the Theorem

Let 6 =  \ A(x) =  max{l, x2}. From
V n

f {r\ t )  = ^ ( / | r)(x) + / i r)(a;)) +  M *) +  I  (/+r)(a:) -  f - \ x ) j  sign ( t - s ) ,

we have

GiT)( / , * ) - ^ ( / i r)(*) + / i r)(*))

„  7 , i n \  , „ „ , Cr( / ir)(o ; ) - / ir)(x))
— Cr I 7ir  ̂  ̂ J gn—r[x, t)dt +  2

(4.1) n
oo X

{^j -  j ^ j g n-r {x , t )d t+  Cr2 1 ( / | r)(x) +  / [ r) (*))
ZL 0
x

'■= S i +  S 2 +  S 3 .

Obviously, for n > 2r, we have £7r — 1 ^  2r~1r/n . So

2r"V
(4.2) n|S 3| ^  -----1 f+ \%) + f - ’ix)rW/

From (3.8) and (3.9), we have

|S2| = |/+r)(a :) - / ir)(a;)|0 ( - ^ )  .(4.3)
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Next, we evaluate S i, replacing the variable -  by f, we obtain

1 \  dt
t ¥

(4.4)

Si — Cr hr (rii)gn— 
o

x—ő x-j-S 2x 
n n n oo

= C t U  +  / +  / + / )
0 x —ő x+6

n n
= c T{h + h  + h  + h).

hT (n t ) r t  ̂dtt1

Let

K,
t / n  00

,{x,t) = j  9 n ~ r ^  “■ du = j  gn- r (x,u)du. 
o l/t

Obviously, if [a, 6] C [0, oo), we have
b oo
J dKn( x , t ) ^  J dKn(x,t) = 1.

C —
n

=  y  |7ir (nf) — hr{x)\g:
1 \  dt

n - r  1 t  I t 2 ’

V — Ő 
n

|L | ^  y  uJx{x-nt)g ,
1 \  dt

n - r  \ X, t  I i 2

0
x—S

lb

=  y  u)x( x - n t ) d tK n(x,t).
o

Using integration by parts, from (3.6) (3.7), we have
x—S

x—S
\Ii\^üJx( x - n t ) K n(x,t)\0n -

o
x—S

8x2 f  dt(—u)x{x — nt))

n

y  K n(x, t)dtuJx{x — nt)

_ 8x 2

o
(re — n t)2
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x—6 x—6
n n

dt{ - v x(x -  nt)) wx{0 ) u x{x) , _ f  uJx{ x - n t )
/ (x — n t )2
o

Hence

62
H----- n----b 2 nx * / (x — nt ) 3

dt.

x—6 
n

2 f  ujx(x — nt)\Ii I ^  - u x{x) + 16z2 /
n J ( x -

8  , x= -U)x(x) + n

o
x—S

nt )3
dt

16ar Í  u}x (x — u) 
n J (x — u )3

du.

Replacing the variable u in the last integral by x — \ J we find that

7 '« * ( £ = £ * , =  1 /  „ , (Ä „
J (x — u )3 2A(x) J  v V v

1 ? ’
n

< 1 V
= 2AW é t

.̂T
A(x)

Hence

(4 .5 )  | ^ i |  ^ - w x (a;) + -n n k=l

A(x ) \ 16
< - Vn A-*k=1

A(ar)

Now let us turn to the estimation of I2 :
X + £ 

n
x+6

n

(4 .6 )

1-̂ 21= J  Ihr(nt) hr(x)\dtKn(x, t) ^  ujx(S)
X  — <?

n

1 "
< ' >1-n «

X  — 6  
n

Wx
k=l

A{x)

Similarly, using integration by parts and (3.7) (3.8), replacing the variable u
IA hr)

in the estimation by x  +  \ —-—, we have

2x
n

|-̂ 31 = J u x(nt — x)dt(—K n(x, t)),
x+6

n
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2x
__  n

where K n(x ,z )= f  gn- r
Z

dt

Hence

(4.7)

2x
n

■ _ I . 8 x 1 8x2 f
| /3 | S ^ . W  + —

8x2 f  dt(u>x(nt — x))

x+S
(nt — x )2

2x
n

< 8 UJx(x) 2 f  — x)
(nt — x )3+  1 6 a:

n /
n

-dt ,

2x
n  2x

ux( n t - x ) 1 f  u x( u - x )[  7 (n t ~ J d t = i  Í
J (n t - x )3 n J

c+<5 x + áx+5
n

(U — x)3
du

n

2 n A ( x )  /

/ A ( x ) dv
A (x)

71

<
2nA(

A(x) dv

n
< ----------V

2 n A ( x )  j“

' A ( x )

fc=l

Applying Lemma 2, we have

(4.8)

1-̂4 I =

oo
; J  \hr(nt)\gn
2x

X'~t
dt
¥

=  0 ( 1)
(2x)p2r 
\Jn -  r

Collecting (4.1)-(4.8), we can obtain (2.3).
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5. Remarks

(1) I f / (r) is not constant in any neighbourhood of x , since ^ -  < 1 , for 
n sufficiently large, we have

“ '  k= 1
\/n  — r

A ( i )

hence

So in that case (2.3) becomes

(5.1) < r  34< Cy— > ujx 
n  ' 

k =  l

+
2r_1r

n / i r)(z) + / - r)(z)

A(x)
+ I f + ( x )  — f_' (x)  I O (•/s)

(2) If /M  is continuous at x, then (5.1) can be further simplified to

34
(5.2) \ G V ( f , x ) - f ( r\ x ) \ i C r- Y , u .

k= 1

(3) As far as the precision of the above estimates is concerned, we can 
prove that (5.2) cannot be asymptotically improved. Consider the function

t tr — 1 t\

m =  / / ■ ■ ■ /  |u — x \ d u d t l ■ ■ ■ d tr—i
o o  o

r factors

at t — x. From (5.2) we have

I G W ( / , * ) - / ( r ) ( * ) | £ C ,
34x
y/n'

(x > 0)

On the other hand, we can prove (similarly to [6], here we omit the details)

(5.3) |G Í > ( / ,* ) - / <r)( * ) l 2 - Í = .V27rn
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Hence
- 4 =  á\G£Hf,x)-fV(x)\íCr^ .
\/27rn Vn

Therefore (5.2) cannot be asymptotically improved.
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