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A LIMIT THEOREM FOR LACUNARY SERIES £ f(nkx)

. BERKES*and W. PHILIPP

To the memory of Alfréd Rényi

Abstract

Let f : R—+R be a Lebesgue measurable function satisfying
I I
/(x +1)=/(x), j f(x)dx=0, 1 f2(x)dx=1
0 0

Several authors investigated the asymptotic properties of lacunary series y \ckf(nkx) un-
der the Hadamard gap condition

A+t (fe =1.2..)

and the behaviour of such series is well known. On the other hand, very little is known
on the properties of ~2 ckf(n/.x) if («<¢) grows slower than exponentially. The purpose of
this paper is to prove an asymptotic result for such series.

1. Introduction

Let /: R —R be a Lebesgue measurable function satisfying
I I
(1.1) f(x +1)=/(x), J f{x)dx =0, I f2(x)dx= 1
0 b

The asymptotic properties of lacunary series Y2ckf{'nkx) have been investi-
gated by many authors and are known to be very similar to those of inde-
pendent random variables. For example, Takahashi proved ([13], [14]) that
if / is a Lipsehitz function satisfying (1.1) and (nk) is a sequence of positive
integers satisfying

(1.2 nk+1/7ik =00
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2 I. BERKES and W. PHILIPP

then
H N AN . —
(1.3) Ir>noop,{0 X l.LY_, f{nkx) <tVN} = (2n) x"2/| e U 2du
-00
and
(1.4) limsup (2IVIoglogN)~%2~  f{nkx) =1 a.e.,

where // is the Lebesgue measure. As an example of Erd6s and Fortét (see
[8], p. 646) shows, the CLT (1.3) and the LIL (1.4) become generally false if
instead of (1.2) we assume only the Hadamard gap condition

(1.5) nk+i/nkrg>1  {k=1,2,..).

Indeed, let f(x) =cos2irx + cos4nx, nk—2k —L Then, as it is not difficult
to show,

1 i/\/2| COSTTs|
lim p{0 r™ 1y f(nkx) <t\/IN}—{2n) x2 | ds I < 2du
N->oc / /.

k<N n JL

and
limsup (2N loglogN) 12 f(nkx) = \I2 cob ixx a.e.
N ~igp k<N

On the other hand, Kac [/] showed that if / is smooth and nk = 2k then
the CLT (1.3) is valid, with the iV(0,1) distribution on the right-hand side
replaced by N(0,a2) for some o~ 0. Thus we see that under (1.5) the
asymptotic behaviour of f(nkx) depends not only on the growth speed of
(nk), but also on its arithmetic properties. This interesting phenomenon
was investigated in detail by Gaposkin [6] who gave a characterization of
sequences (nk) satisfying the CLT (1.3) for all sufficiently smooth /. His
results imply, e.g., that (1.3) holds if the ratios nk+i/nk are all integers, or if
nk+i/nk —R where ff is irrational for all positive integers r. For extensions
and further limit theorems for f(nkx) see Gaposkin [5], Berkes [1], Berkes
and Philipp [3]. It is interesting to note that if we assume only (1.5) then
the upper half of the LIL still holds for f(nkx), i.e.,

(16 limsup (27Vlog log N)~ 12 [ (") <C a.e.

for some constant C (see Takahashi [12], Philipp [9]). For further limit
theorems for f(nkx) assuming only (1.5) see Berkes [1],
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While under the Hadamard gap condition (1.5) the asymptotic properties
of f(riyx) are fairly well known, very few results exist in the case when (n*)
grows slower than the exponential speed required by (1.5). For certain “nice”
sequences (n*.) the LIL (1.6) still holds: Philipp [10] proved that this is the
case if (nfc) is the sequence consisting of all integers of the form q\'[ mmeiff'
(a, 20 integers), arranged in increasing order, where {ryi,..., gr} is a finite
set of coprime integers. But, as Berkes and Philipp [4 proved, the LIL
(1.6) is generally false for subexponent.ial (n*,): for any p* —0 there exists a
sequence (njt) of positive integers satisfying

rik+i/nk ~ 1+ (% A=1,2,.)
such that

limsup (2N log log TV)-1/2~  finyx) = +00 a.e.

with f(x) —x —[X] —1/2. (Here, and in the sequel, [t] denotes the largest
integer not exceeding x.) The examples in [4] also show that the asymptotic
properties of YIk<N f(nkx) in the subexponential domain depend on the

growth speed of (n*,), but no analogues of the LIL (1.6) exist in the literature
for subexponential (n"). The purpose of this paper is to prove a first result
in this direction. Indeed, we shall prove the following

THEOREM. Let f : f2—=R be a Lebesgue measurable, function satisfying
(1.1) and assume that f is of bounded variation on (0,1). Let (n*) be a
sequence of positive integers satisfying

¥7 nk+i/nk”™l + Rk A=1,2,..)
where (Bk) is nonincreasing with Qy—0 and
(1.8) &"k a for some 0<n<\/2.
Then

E f(nyx
(1.9 lim sup KN " < +00 a.e..

Arson log AvAvTOgToglVv

As a comparison, we note that by a result of Berkes and Philipp [4], for
any k tending to O sufficiently slowly there exists a sequence (n*) of integers
satisfying (1.7) such that

E f(nkx)
. k"N
(1.10 lim sup A>0 ae.
N—00 loglogjr \/N loglog N
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with an absolute constant ¢, where f(x) =x —[X] —1/2. Thus for subex-
ponential (nk) the growth speed of J2k<"f(nkx) exceeds the classical LIL

speed by a factor depending on the speed of convergence of nk+\/nk to 1
The upper bound (1.9) and the lower bound (1.10) are of similar charac-
ter, but there is a gap between them and the precise order of magnitude of
E/cgdV f(nKx) remains open.

2. Proof of the theorem

We use the method of our earlier paper [3]; the essential new element will

be an estimate for integrals f(nkx))2dx for subexponentially growing
(nk) (cf. Lemma 3). Let sn denote the ri-th partial sum of the Fourier series
of /. Since / is of bounded variation on (0,1), the Fourier coefficients of /
tend to zero as 0(l/k) (see Zygmund [15], p. 48) and thus

(2.2) [|/-S) =0(n~Y2)

where || ¢| denotes the L-2(0,1) norm. We now approximate the functions
f(nkx) by stepfunctions f k(x;) as follows. Let 21 £ nk < 2i+1, put m
7+ 120 log A] and let tpk denote the function in [0,1) which takes the value
2m f(nkx)dx in the interval [i2~m, (i + I)2~m) Ogi”" 2m- 1).
The assumptions made on / imply that |/| 0 C and consequently \tpk\

for some constant C. Hence using Lemma (3.1) in [1], p. 325 we have

| I
I (f(nkx) - gk{x))4dx Sconst mJ (f{nkx) - ipk{x))2dx
(2.2) 0 0

A const +(2™/n 9" U3 g const (V 20MogA) A~ const +A"20.

Since a < 1/2 we can choose ft so that a/(1—a) < ft <1 Divide the set of
positive integers into consecutive blocks 1i, J\, Iz- Ji- mmm |k, Jk, mmm (without
gaps) such that

\h\ =\Jk\= [k%
where |H| denotes, for any set A Cfi. the number of integers in A. Set

(2.3) Tk=Y f{nvx), Dk=Y <Puax)
u€lk vElk
Then by (2.2)
(2.4) lIA: - TKWIC Y '~ IC Y y5=Ck-4
i'afc

where || ¢||p is the Lp(0,1) norm and C denotes positive constants, possi-
bly different at different places. Let Tk denote the n-field generated by
DI,... ,Dk.
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Lemma 1. We have*
(2.5) \E(Dk\Fk- IN=0{k~2) a.s. as k-> oo.

Proof. (2.4) shows that the expected value of E{\D" —T™ \ is
N Ck~Aand thus the Markov inequality and the Borel Cantelli lemma imply

E(|Da-Tfd|.F*_i) = 0(Ar2) a.s. as 00.
Hence to prove (2.5) it suffices to show that
(2.6) \E(Tk\Tk-i)\U Ck~2.

We observe also that for any real u <v and A> 0 we have by the first two
relations of (1.1)

@.7) | f(Xx)dx \m\dt.
U 0

Let b= b(k) and c—c(k) denote the largest integer of the block Ik-\ and
the smallest integer of the block /*, respectively. Define the integer / by
2l M rib< 2<Hl and put w= [/ + 120log b]. From the definition of the s it
follows that every ipu, 1™ u” b, takes a constant value on each interval of
the form | = [i2~w, (i + 1)2-u;), 0™ i~ 2W—1 and thus each set of TA~\ is
a union of intervals | of the above type. Hence to prove (2.6) it suffices to
show that

(1+1)2_III
(2.8 / Tkdx gCAT2 (Hrir2w- 1)

i2~w
Using (1.7), (1.8), c"2A;"+1 and ¢ —b= [(A—1)"] + 1 we get

c—1
-"H a+ ra)’(i+c-(y-b
J=1)

29> K 1+( 2 ~ ) 3 SBXPG (2*+,r"i')
= expiCA:"1- “)-0) » exp{ks) (k™ k0)

* E and P denote expectation, resp. probability in the probability space ((0,1), B,//)
where B is the Borel <r-field in (0,1) and // is the Lebesgue measure.
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for some &> 0 since B > a./(l - a). Thus using (2.7), (2.9), B < 1 and
b 2kR+1we get,

(1+1)2- (i+1)2-
I Tkdx = 2W | Y, f(nux)di
i2~u i2~w
0 w nl+120\ogb
g2WwCy —"r"C—141"C--mmmmmmms k
nv nc nc
veh-

i CU— b120k ~C exp{-ks)(2kB+1)i20k » Ck 2
r

proving (2.8).

Lemma 2. We have
(2.10) E{DK) " Ck2R+I~Tlog4k

for some constant r > 0.

PROOF. To simplify the formulas, we prove the lemma in the case when
the Fourier series/ = YjLi aj <cs2njx of/ is a pure cosine series; the general
case can be treated similarly. (Here, and in the sequel, the convergence of
trigonometric series is meant in L2 norm.) In view of (2.4) and Minkowski’s
inequality, it suffices to prove (2.10) with Dk replaced by Tk. Let

/l1= E ~°ucos2T7U f2= (ij cos 2njx
j~k10 >k

Tk]:Eh M n*X)
= o

Using (1.7), (1.8) and Lemma (5.2) of [2], we get

veh-

2.11) E(Tkj) * C [k20+ J A CKR+I~T

for some constant r > 0. Also,

47=E ‘4
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and here \a,jy =0(j 1) since/ is of bounded variation (see [15], p. 48). Thus
using the Minkowski inequality and (2.11) we get

HTfI1A £ \a3WTKWAGCKW +-TU* £ K
(2.12) ke jikio
iCKW *1- ~ logA

Since / is of bounded variation, the partial sums of the Fourier series of /

are uniformly bounded (see [15], p. 90) and consequently H?2Il4 ~ CWfW"2.
Hence another application of Minkowski’s inequality gives

Now (2.12) and (2.13) imply (2.10) with Dk replaced by T* and thus Lemma
2 is proved.

LEMMA 3. Let 1 mi < m2< me< m/y be a sequence of positive numbers
(not necessarily integers) such that for some 1< g<3/2 we have

(2.14) mk+]/mk” q (k=1,...,N-1
(2.15) mk+i —mk”" 2 A=1,...,N- 1.
Let, f — (akcos 2hkx + bksin 2nkx) be a function with \ak\~ 1/k, \bk\”
1/k A=1,2,...). Then for any real a we have
0+1
(2.16) [ (M (m,.7;))2x"C'7v(logrdT)?2,

l Q
where C is an absolute constant.

Proof. Tosimplify the writing we assume that / — cfccos 2irkx is
a pure cosine series. (The general case can be treated similarly.) We proceed
in steps.
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for any real a. Indeed, the square root, of the left-hand side of (2.17) equals

cosnik{x+a) L ~ cosm”xcosinka +
k<N k<N

+ E sinmkx sin mka
k"N
and thus to prove (2.17) it suffices to show that

(2.18) y] Accosrnkx  ~3 ViV, £ A*sinmftr ~3V-~-N
k<N k<N

for arbitrary |Afd ™ 1 This, however, follows by observing that sinx/x ii 1/2
for 0 < x < 1and thus

| |
Sill x

cosmkx)de <4 A A, cos mi-xj dx
o k~N
+00
=4/ (~~) (X]" csm’x) dx<<V
-00 E

where the last inequality follows from (2.15) by expanding f . "k cos rnkx\

yk"N
and using the fact that

4-00 +00

/< sill x/x)2dx=7T  and J (sinx/x)2cosuxdx =0 for |u|*2.

—00 —D
The second relation of (2.18) follows similarly.

2. We prove now that under the conditions of Lemma 3 we have for any
real a
(2.19) T'(E I~ )y)y2r SMZTN
a kZN

provided that ||/||2 * 1; here C is an absolute constant. Indeed, by Lemma
(5.1) in [1], p. 338 we have

0+

J f{mix)f{m.jx)dx (*<j)>
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where C\ is an absolute constant. The last relation holds also for i =j as it
is seen by applying (2.7) with A= m,: and with / 2—]|/||2 instead of/. Now
(2.19) follows upon noticing that by (2.14) and 1< ¢< 3/2 we have

-k/2 N AN

e ~xI' —
IgigjgA k=0 1—g~x2 g1

3. Write

/= Qcos2nlx = + +f2,
1=1 lgr i>r

where T ~ 2 will be chosen later. Letting || ¢||2,a denote the Z,2(a, a+ 1) norm,
we have by the statement proved in Step 1

) N
/i (m *®) zaSEW cos2nlrn~x '
K~N ! fcgA

= 16\V/jV g6\/jV (logT+1).
1%T '

(2.20y

On the other hand, H2l12~ (Yli>r* 2) =CT ¥2and thus by the state-
ment proved in Step 2 we have

s 1/2
E. Mmb, . S(31V)

(221) A:I<A
- CT~-X2 12

(o

Now (2.16) follows from (2.20) and (2.21) upon choosing T = \/{q —I)2 and
noting that log \/{q - 1) ® 1/2. This completes the proof of Lemma 3.

Lemma 4. We have

(2.22) E(DR\Tk-1)=0 a.s. as k —00.

Proof. Let b,c,w denote the same as in the proof of Lemma 1 and let
d =d(k) denote the largest integer of the block Ik. Using (2.4) and \Tk\” CKk,
\Dk\* Ck we get

||~ - T 2JJ1AC/:||D,.-T,||17C'fc-3



10 I. BERKES and W. PHILIPP

and thus by the Markov inequality and the Borel Cantelli lemma it follows
immediately that

E(L>f - Tk\NITk-1) —0(k~1) a.s. as k->oo.

Hence similarly as in the proof of Lemma 1, (2.22) will follow if we show
that for k ~ ko

(i+1)2-"

(2.23) 2w | iJ2 fM ) dxiC\lk\(\og-%-y (0Mii2w-1).
i2~w L'e,k

Here

(2.24) 2W< 21+VMIogb < nhoi20

and the substitution t = 2ta; shows that the left-hand side of (2.23) equals

where m =2 wnu. Now d”~ 2kB+l ~ k2 for k » Ao by B < 1 and thus using
(1.7) and the monotonicity of gk we get. for k ii ko

inun\/mvAl+g  (VEIK),

where q= gk2 Clearly g< 1/2 for sufficiently large fc, on the other hand, for
uE Ik we have by (2.9), (2.24), (1.7), (1.8) and b*c~rd k2

ml+ - ru={n,,+\ - nv)2 wifn, \ nu 0 nbom

> M Nexp{ks)k~2Ak~2a"2
) p{ks)
for k ~ ko and thus (2.23) follows from Lemma 3.
Let now Dk=Dk- E(Dk\Tk-\). Clearly {Dk,k; 1) is a martingale

difference sequence and Lemmas 1, 2 and 4 easily yield

(2.25) E(DNFk-1)=0 (|4|(log”~-)2) a.s.as 1l-doo

(2.26) E(D 1)~ C k 28+1~Tlog'lk.
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Relation (2.25) and the monotonicity of gk imply
e IM)di)e Aily y
kin kin QK

=° (,«+'(l,ex y) as.

By the martingale version of the Skorohod representation theorem (see [11],
Theorem 4.3) the sequence (Dk,k * 1) can be redefined, without changing
its distribution, on a suitable probability space together with a Wiener pro-
cess W, nonnegative random variables n, t2, s and an increasing sequence
(Tik. k ™ 1) of (j-fields such that

(2.28)
kin "kin

further rk is kik measurable and

(2.29) E(r* IHk-x) = EO 1 \Tk. x), E(re) » CE(S])).
By (2.29) and (2.26) we have
(00] .
Efe-Efo I«*-, )E <”s- Erj mlz
E k2/5+2 T2 =0 zn < *00
*=1 c= *-1

and thus the martingale convergence theorem implies that the sum
00

E k~{g+n Tk ~ E(r1?4-1))
k=1

is a.s. convergent. Hence by the Kronecker lemma

E (c—E(Tcl?4-i)) = o(n™+1) as..
kin

Moreover, (2.27) and the first relation of (2.29) yield
E e(fU% -0 =0 (> ‘(io64-)2) as.
KFTi

and consequently

J> =o0o(n-(,064-)2 as.

k<n
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Thus using (2.28), the law of the iterated logarithm for W and log log xy *
loglogx + loglogy (x” 3, y ™ 3) we get

Y Dk=0 (n{ii+1)/2log— (loglogn + logloglog— ) 1
= O (Vt™+1,/2(log logn)Y2log — '] a.s.
v arJ

since 1IQn2” n by (1.8). Now (2.4), the Markov inequality and the Borel-

Cantelli lemma imply \Dk~Tk\ = 0(k:~'2) a.s. as k =00 and thus by Lemma 1
we get

\Dk~Tk\ =0{k~2) a.s. as k —o00.
Hence (2.30) implies

(2.31) YTk=0 (n*+'"toglogn”log— ] a.s..
sn \ 6n2/
Introducing
Tk=£/(«,,*)
i'E'h
we have, similarly to (2.31),
(2.32) Y r k=P fn~+172(loglogn)¥2log— ) as.
kin \Y Qn2j
and thus setting Sn = YuiN /(™ Q and Nk= Yvik ~CA. &+1 it follows

by adding (2.31) and (2.32) and using the monotonicity of gk that

SNk=0 @(B+]V2(\oglogk)l'2\og @3 = ({ ( (Nklog log Nk)¥2log —

Q2
(2.33)
= O f {Nk log log Nh)1/2 log a.s..
n?

Now if Nk * IV< Nk+\ then by |/| # C and B < 1 we get
\SN - SNkI” C(Nk+ —NKk)~ Ckfi » CN™ R+1)
ACNUD 2

and thus (2.33) implies

SN=0 UN log log N') 1/2 log

6123 a.s.
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completing the proof of our theorem.
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DECOMPOSITIONS IN DISCRETE SEMIGROUPS
W. E. CLARK, W. C. HOLLAND and G. J. SZEKELY

Dedicated to the memory of Alfréd Rcnyi

Abstract

In this paper we prove that under some finiteness conditions in a (not necessarily
commutative and not necessarily cancellative) semigroup every non-unit, is a product of
weakly irreducible elements. In commutative, finitely generated semigroups every infinitely
divisible element is idempotent. Without commutativity this is not true. An interesting
open problem is to find necessary and sufficient conditions for this implication.

1. Introduction

The most well-known semigroups in which every non-unit is a product
of irreducible elements are the multiplicative semigroup of positive integers
and the multiplicative semigroup of non-zero polynomials. Their common
generalization is the class of Gaussian semigroups. These are commutative,
cancellative semigroups with identity element 1in which every element (oth-
er than units, that is, divisors of 1) is a product of irreducible elements and
this decomposition is essentially unique (for necessary and sufficient condi-
tions see e.g. Kurosh [11]). For some more recent factorization results see
Anderson et al. [1], Halter-Koch [7] and several references there. In these
papers it was supposed that the semigroup is commutative and cancellative.
Here we consider similar types of decompositions for not necessarily commu-
tative and not necessarily cancellative semigroups. The classical definition
of irreducibility is as follows. In a semigroup 5 with an identity, an element
s of S is called irreducible if it is not a unit and s=ab (a. b from S) implies
a or bis a unit. There is no hope that in every semigroup every non-unit
turns out to be a product of irreducibles.

Example 1.1. Let S be the semigroup of all subsets of an infinite set
with the union operation. The singletons are the only irreducibles in S and
no infinite set is a “product” (—finite union) of singletons.

In order to avoid this kind of problem we either need some kind of “finite-
ness” condition or we have to introduce a topology. In topological semigroups
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we can, of course, consider infinite products, too, and in this case “finiteness”
can be replaced by some kind of “compactness”. An important example of
this type is due to Khintehin [9]. In the convolution semigroup of probability
distributions (on the real line) endowed with the topology of weak conver-
gence, Khintehin proved that every element is decomposable into a product
analogous to the above mentioned decompositions. In this special (commu-
tative) semigroup Khintehin introduced a new type of elements that have no
irreducible divisors at all (examples include the normal and Poisson distribu-
tions). If we call these elements anti-irreducible, then Khintchin’s theorem
can be formulated as follows: every probability distribution on the real line
is a convolution product of finitely or at most countably many irreducible
factors and an anti-irreducible one. Khintehin proved that the divisors of
every element in this semigroup form a compact set provided that they are
suitably “shifted”. This is a kind of compactness that can replace “finite-
ness” conditions. Khintehin proved that all anti-irreducible elements are
infinitely divisible but the converse is not true (examples include exponen-
tial distributions: they are infinitely divisible but not anti-irredicible). This
idea of Khintehin can be generalized to almost arbitrary topological semi-
groups. We refer to Rlzsa and Székely [19], [20], [21] where an extensive
literature is included.

In this paper we restrict ourselves to discrete semigroups and want to
discuss purely algebraic and not topological types of problems. To see that
finiteness itself is not enough to settle all problems in this context let us
consider the following example.

Example 1.2. Let S be the commutative semigroup S'= {1,0, e, €}
where 1 is the identity element, O is the zero element, e is idempotent, c2= 0,
ec= c. In this semigroup there are no irreducibles at all, so no element is a
product of irreducibles.

To overcome the problem of this example, in Section 2 we are going to
introduce a weaker notion of irredueibility, and we shall setlthat two elements
of our semigroup above (e and c) will turn out to be weakly irreducible, and
0 is a square of a weakly irreducible element.

From the point of view of decompositions, irredueibility is one extreme,
the other one is infinite divisibility. We shall prove that if S is commuta-
tive and finitely generated then the only infinitely divisible elements are the
idempotents, but if we drop the condition of commutativity then this is not
true anymore.

2. Main results

Let us fix some notation and notions. We assume that all semigroups
have an identity element which we denote by 1.
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Definition 2.1. For two elements a and b of a semigroup S, we say
that a divides b, and write a\b, if for some x,y GS, b=xay. Further, a and
b are called associates (denoted a~ b) if they divide each other; that is,
a=xby and b=uav for some, x,y,u,v from S. (In other words a and b are
associates if they generate the same two-sided ideal.)

Definition 2.2. All s from S is called weakly irreducible if s is not a
unit and s = ab implies that either a or b is an associate of s.

In the following, irreducibility always means weak irreducibility except if
we emphasize that we think of the usual (strong) irreducibility. It is clear that
for commutative cancellative semigroups, including Gaussian semigroups,
the notion of weak and strong irreducibility coincide.

If we apply the above introduced notion of irreducibility then in our
Example 1.2, e and c¢ become irreducible and 0—c2; thus every non-unit is
irreducible or a product of irreducibles. (Interestingly, e is infinitely divisible
and also (weakly!) irreducible.) This example is in fact typical as our first
result shows.

Theorem 2.1. Let S be afinitely generated (not, necessarily commuta-
tive) semigroup. Then every element in. S is either a unit, or a product of
irreducible elements.

Although this theorem does not cover the case of the multiplicative semi-
group of integers, the following trivial corollary does.

COROLLARY 2.1. If S is an arbitrary semigroup and the set of divisors
of an s in S is contained in a finitely generated subsemigroup then s is a
unit or a product of irreducible elements.

THEOREM 2.2. (i) If S is a commutative finitely generated semigroup
then every infinitely divisible element, is idempotent.

(i) If S is a finite (commutative or non-commutative) semigroup then
every infinitely divisible element is idempotent.

(i) There exist non-commutative finitely generated semigroups where not,
all infinitely divisible elements are idempotent,.

Remark 2.1. Parts of this theorem, especially part (ii), are folklore but
for completeness we include two short proofs of part (ii), one of them a nice
application of Ramsey’s theorem from graph theory.

Finitely generated semigroups are not the only ones having some kind
of “finiteness” condition. Another well-known type is the residually finite
semigroups, that is, those semigroups which are subdirect products of finite
semigroups (a very nice paper on these semigroups is Schein [22]). It is
clear that the decomposition theorem cannot hold for all residually finite
semigroups. Take, e.g., a countably infinite product of finite semigroups
where each factor is the union semigroup of all subsets of a finite (non-
empty) set. The analogue of Theorem 2.2 (ii), however, holds for residually
finite semigroups.
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THEOREM 2.3. If S is a residua,lly finite semigroup then all infinitely
divisible elem.ents of S are idem.pot.ent.

It is not hard to prove (by induction with respect to the number of
generating elements) that every finitely generated semigroup in which each
element is idempotent, is finite. This result is in fact a consequence of a
Burnside-type theorem for semigroups (see Restivo and Reutenauer [18]).
Since by (iii) above, in non-commutative semigroups infinitely divisible el-
ements are not necessarily idempotents it is interesting to ask if there are
non-finite but finitely generated divisible semigroups (where all elements are
infinitely divisible). This is in fact true. Moreover, very surprisingly, there
exist infinite but finitely generated divisible groups. See the paper by Guba
[6] and also the book by Ol’shanskii [14]. Now we arrive at an interesting-
conjecture.

CONJECTURE 2.1 (Dual Burnside Problem). A finitely generated divis-
ible semigroup is finite if and only if it is perrnutable (there exists an n such
that for the product of any n elem.ents there exists a nontrivial (nonidentity)
permutation of these elements whose product, is the same).

DEFINITION 2.3. 1ll a semigroup S an element s is called anti-irreducible
if (i) s is not irreducible, and (ii) s= bac where a is an irreducible element
from S implies that either b or c is an associate of s. (In other words s is
anti-irreducible if it is not irreducible and is not divisible “effectively” by
any irreducible element where “effective” means that the “other factors” are
not associates of s.)

Definition 2.4. For elements a.be S. we write a C b if there are fac-

torizations * *

where
(ir™is ifr”s).

THEOREM 2.4. Let, S be afinitely generated (not necessarily commuta-
tive) semigroup. IfseS is anti-irreducible, then s2C s

Coroltary 2.2. If S is a commutative finitely generated semigroup,
then every anti-irreducible element of S is an associate of an idempotent.

Probtem 2.1. Isthere a non-commutative finitely generated semigroup
where an anti-irreducible element is not an associate of an infinitely divisible
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one? Recall that in the lion-commutative finitely generated case we have not
characterized the infinitely divisible elements.

In finitely generated semigroups Theorem 2.1 shows that for the decom-
position we do not need anti-irreducible elements. Thus their characteriza-
tion is obviously less important. There exist, however, important discrete
semigroups (not finitely generated) where anti-irreducible elements play a
crucial role in decompositions. Take, e.g., the multiplicative semigroup 5* of
k x k stochastic matrices (these are k x k matrices with nonnegative entries
such that all row-sums are equal to 1). Stochastic matrices play a funda-
mental role in the theory of Markov chains. The infinitely divisible elements
in this semigroup were characterized in Székely- Mori Gond6cs Michaletzky
[24]. Here we only mention the following decomposition theorem. The proof
will be published elsewhere.

THEOREM 2.5. (i) In. Sit the only units are the permutation matrices.

(i) Every element of S\: is either a unit or can he decomposed into a
finite product of irreducihles and an anti-irreducible element.

(iii) For each M € S\, the number of irreducible factors in the shortest
such decomposition of M is bounded above by a constant times k22k log k.

(iv) A necessary condition for a matrix to be strongly irreducible is that
every row in it, contains at least one 0. (This condition is not sufficient. The
characterization of irreducible and anti-irreducible stochastic matrices is an
open problem.)

3. Proofs

Proof of Theorem 2.1. The theorem is a consequence of the following
lemma.

LEMMA 3.1. If X\,... Xt is any minimal set of generators for a semi-
group S, then euch, Xi is irreducible or a unit.

Proof. Suppose xi - si#2. Then by the minimality, without loss of
generality we may suppose that .5 does not belong to the subsemigroup
generated by X2,...,X(. Hence, 5= ux\v for some u,v. Thus, since x\ =
1-S\S2, si is an associate of x\. This shows that X\ is irreducible if it is not
a unit.

Now to finish the proof of Theorem 2.1, note that if a is irreducible
and u is a unit, then ua is also irreducible. Hence, any product of units
and irreducibles is either a product of units alone, and thus, a unit, or is a
product of irreducibles.

Proof of Theorem 2.2(i). Mal’cev [12] proved that every finitely gen-
erated commutative semigroup is residually finite. Therefore, this theorem
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follows from Theorem 2.3. We note that a more direct proof is also possible
using Dickson’s Lemma (see [17, p. 62]).

First Proof of Theorem 2.2(ii). Let @E S be infinitely divisible.
For each sES. let Xs—{n EN \sn=a}. Noting that the finite collection of
sets {Xs1sS£ S} covers the set N of positive integers, we color the edges of
the complete graph on N by coloring the edge between integers p and q with
any color s such that \g—p\ E X's. By Ramsey’s Theorem (see, e.g., Graham,
Rothschild and Spencer [4]), there must be a monochrome triangle, that is,
for some positive integersp<qg<r, and some s6 S, we haveq-p,r—q,r—pE
Xs. This implies that a2= sr~gsg~p=sr~p=a, and so a is an idempotent.

Second Proof of Theorem 2.2(H). Because S is finite, for each s E S
there exists a positive integer n(.s) such that sn® is an idempotent. If N
is the least common multiple of (n(s) |s E S}, then for all x ES, xN is an

idempotent. If aE S is infinitely divisible, then since a =x N for some x, a is
idempotent.

Proof of Theorem 2.2(iii). Since every countable semigroup is em-
beddable into a semigroup generated by two elements (see e.g. Evans [3] or
Hall [6]), then the additive semigroup of positive rational numbers is con-
tained in a two-generator semigroup. Clearly, each rational number in this
semigroup is infinitely divisible but not idempotent.

Remark 3.1. In the proceeding proof, the two generating elements are
irreducible, according to Lemma 3.1. Thus, every countable semigroup can
be embedded in a semigroup in which each element is a finite product of
irreducible elements. In fact, one can easily see much more: every semigroup
can be embedded in a semigroup in which each element is irreducible. This
follows from Clifford and Preston [2. §88.5]: Any semigroup is embeddable
into a simple semigroup with identity. In simple semigroups there are no
non-trivial two-sided ideals, thus every non-unit is irreducible. It is also true
that every semigroup is embeddable into a divisible one (see, e.g., Shutov
[23]; for commutative semigroups see Tamura [25]). For groups this is a
result of Neumann [13] (see also [10]).

Proof of Theorem 2.3. If SES is infinitely divisible and s ” s2 then
there exists a homomorphism h from S into a finite semigroup (one of its
subdirect factors) such that h separates s and .82, that is, h(s) is different
from h(s2). On the other hand h(s) is clearly infinitely divisible in this
finite semigroup and thus by Theorem 2.2 (ii) h(s) = (h(s))2= /i(s2). This
contradiction proves our claim.

Proof of Theorem 2.4. If s is a unit, then s =ssss~1s~1 gives an
appropriate factorization. If s is not a unit, then by Theorem 2.1, s =
x\ mexm—1ex\ mmxm where each i, is irreducible. Since xt is irreducible
and s is anti-irreducible, it must be that s~ x\ emxI~\ or s~ Xx;+[**exm;
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that is, xieee:cj_i = prsg, or xt+i wexm —px<h for some pi, gLE S. In the
first case, we have a factorization

S=:Cleeexm
~ PISqiXiX|+1eeeXm
~ Pi{X 1m-Xi—iXjX'j+ eeeXm)(iXiXi+1leeexm
= Pi({pi3Qi)"XiXi+i mmmrn)qiXiXi+i oemni

in which s appears and X{ appears twice. The second case is similar. Ifj ~i,
we may replace the last s in the displayed equation with a similar expression
involving Xj. The result is a factorization in which s appears and each of
Xi,Xj appears twice. Continuing in this way, we obtain a factorization of s
in which each of the irreducible factors xi appears twice. Therefore, s2Cs.

Proof of Corollary 2.2. If 2Qs then s=s2y forsomey € S. Then
s is an associate of the idempotent sy.

4, Atoms

In decompositions, instead of irreducible factors we might want to use
any prescribed kind of factors. We shall call these atoms.

Definition 4.1. Take an arbitrary subset A of a semigroup S and call
the elements of A atoms. An s in S isan anti-atom if (i) sis not an atom, and
(if) s is not effectively divisible by any atom. (For the notion of “effectively
divisible” see Definition 2.3.)

THEOREM 4.1. In afinite semigroup S every element, s is a product of
atoms and anti-atoms.

Proof. The relation “divides” is a quasi-order on S, and modulo the
relation ~ , we get the associated partial order <. If SES and s has no
atom as effective divisor, then s is either an atom or an anti-atom, and we
are done. In the other case, s = xa.\y for some atom rqg, and say s x. Then
X <s. We factor x by an anti-atom 02 if possible, and continue in this way.
The process must stop, since S cannot have an infinite descending chain in
the partial order. Finally, s= PJx/aqg/, where the a;’s are atoms and the
Xi,yi s are anti-atoms (or 1).

As an example, the set of idempotents can be chosen to be the set of
atoms and thus we get that every element is a product of idempotents and
anti-idempotents. In this way we can get a more systematic description of all
semigroups of given (small) order. (For a complete list of all semigroups of
order 2, 3 and 4 see, e.g., Petrich [16]: the total number of these semigroups
is 4, 18, and 126, respectively.)

Ifthe set of atoms A is the set of irreducibles together with the units, then
(as we mentioned before) every semigroup can be embedded into a semigroup
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where every element is an atom = irreducible or unit. In case atoms are
the idempotents then every semigroup can be embedded in a semigroup in
which every member is a product of two atoms = two idempotents (see,
e.g., Higgins [8] and Pastijn [15]). If atoms -divisible elements then by the
above mentioned result of Sutov [23] every semigroup can be embedded into
a semigroup where every element is an atom = divisible.

Let us close this paper with a general problem.

Problem 4.1. For what kinds of atoms is it true that every semigroup

can be embedded into a semigroup S where every element is a product of
atoms?
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A STRONG INVARIANCE PRINCIPLE
FOR THE LOCAL TIME DIFFERENCE
OF A SIMPLE SYMMETRIC PLANAR RANDOM WALK

E. CSAKIL A. FOLDES?2 and P. REVESZ

Dedicated to the memory of Alfred R.cnyi

Abstract,

Let £(a, n) be the local time at a of the simple symmetric random walk on the plane.
Our main result says, that the difference £(a. n) —£(0. n) can be strongly approximated by

CTalV(i*1*(0,n)) where £(0, n) and 0~ (0, n) have the same distribution and tin; latter is
independent from W( ).

1. Introduction and main results

Let Xi, X'2, ... be a sequence of i.i.d. r.v.-s with
P(Y, = (0,1)) = P(X, = (0,-1)) = P(Xi =(1,0)) - P(X[=(-1,0)) =i

and let So=0, Sn=X[ + X2+ eee+ Xn (n=1,2,...) be a random walk on
Z2 (0= (0,0)). Its local time is defined by

£(a,n) = #{&; 0<fcgn, Sk=a},

where a = (01,02) is a lattice point on the plane. The aim of the paper is to
prove the following result.

Theorem 1.1. There is a probability space with

(i) a simple symmetric random walk process Sn with its two parameter
local time £(a, n),

(if) a standard Wiener process {W (1),t"0}

(iif) and a process

{£E)(O,n), n=0,1,2,... }={£0,n), n=0,1,2,...}
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60.115.
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such that for an arbitrary but fixed a

(1.2) £(a,n) —£(0, n) —craW (£”~(0, n)) + 0(logn)s a.s.

(1.2) £(0,n) =~(0,n) + O(logn)t

as n —o0, where the processes £P)(0,n) and {W{t), t~O} are independent
and aa is a constant depending on a.

This result lias a long history. Denoting by  (a, n) the local time of a
simple symmetric random walk on the line, we have

THEOREM A (Dobrushin [8]). For any fixed integer a*Q

Ni(g, w) -Mi(0.n)

4Bl1—=22)¥2nYy*

as n —>00, 'where U and V are two independent standard normal variables
T> . . . .

and —>denotes convergence in distribution.

As stated here, (1.3) is only a special case of Dobrushin’s theorem. It has
several generalizations mostly for Brownian local time in one dimension; see
Borodin [2], Kasaimra [12], Papanicolaou et al. [18], Yor [21], Csorgd and
Révész [7], Cséki and Foldes [5]. The corresponding one dimensional result
(in fact much more) was proved, and generalized for additive functionals in
Csaki et al. [3], [4]. A weak convergence version of our present theorem was
proved by Kesten [14] and Kasaimra [13].

(1.3) $U YNV

2. Preliminary results

Our theorem heavily relies on some basic results concerning the local
time of the simple symmetric planar random walk.

Theorem B (Erd6s and Taylor [10]).

(2.1) 7hiﬂ‘(ljoP(E(O, n) <xlogn) =1- e~nx
uniformly for 0" x A(logn)34, and
. < (0 /») _
(2.2 lim sulo logn logjn 1 as..
Introduce
2.3) Po= 0,

Pk =inf{n; n>pk-\, Sn=0}, A=1,2,..

the consecutive return times of the planar random walk to the origin. The
portion of the random walk between />k-\ and (3 is called the k-th excursion.
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Theorem C (Dvoretzky and Erd6s [9], Erd6s and Taylor [10]).
(2.4) P(p, >n) =P(i(0.n)=0) = logn + 0 ((log n)~2).

For any lattice point a on the plane put
(2-5) 6(a) = ~(a,pi)-"(a,pi_i) *=1,2....
Then {Ci(a)}"i is a sequence of i.i.d. r.v.-s and
Theorem D (Auer [1]).
( P(&(a) = 0)=9(a)
P(ii(a) = /+ 1) =p2(&)ql(&) 1=0,1,2...,

where p(a)=P(5'". reaches a€Z2 before returning to the origin), p(a)—1—p(a).
Furthermore

2.7 E(&()) =1 and o&=Varfr(a) = 2(1 ~ P(a)).
P(a)

Remark. We can infer from Spitzer [20], Chapter 3, that p(a) =
1/(2y(a)). where y(a) is the potential kernel of the random walk. For the
simple symmetric case, with a= (a1,02),

) . A
28 1:cgs(aifi+ 0279 . m
1 —5(cos Q] + cose2

LEMMA 2.1. Let an=exp((logn)A) and 6n=exp((log«)7), where K=>0,
7 > 0 are arbitrary. Then for any 1< 7

(2.9) sup (£(0, a + bn) —£(0, a)) = 0((logn)v>) a.s..

ago.«
Proof. Observe first that.

(2.10) sup (E(0,a+ 6n)—£(0,a)) » sup (£(0,pj + &,)-£(0,Pi)),
alian i\pi”an

and the number of terms in the supremum on the right-hand side is £(0, an).
Moreover

p( sup (£(0,pi + blk) —£(0,pi)) > (logTLk-])V,S\
m,Pitlank

Ap( sup {E(0, pi+bnie)—£(0, pi))>(lognfc_i)7n, £(0. a,,J<(log a,,J 3/2)
£ !

U;/Jiga,,
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+p(c(0,anj ~ (loga,J3/2),

where nk = efc Using now Theorem B twice, we get

P Sup (A(O,pl +b||k)-Z(0,p|)) > (IOg«*_!)TM
\i\Pi”u.nk

ANklhP (E0.brk)> A- IP) + Cexp(-nkT)
f?2Ck~ exp  —AN-1M + Cexp(—f#A;~),

where C is a constant (the value of which might change here and throughout
the paper from line to line). Since the right-hand side of the above inequality
is summable, we get our statement from Borel Cantelli lemma combined with
the usual monotonicity argument. O

3. Proof of Theorem 1.1

Now assume that {S[*}£L0 and {S[I1}"LO are two independent simple
symmetric planar random walks, and denote their respective local times at

aby p)(a,n) and p)(a,n), respectively and define pP (j = 1,2) by (2.3)
with S replaced by and similarly %P, j —1,2 by (2.5) with £ replaced
by p) and p, replaced by pP . Put

(3.1) Zp =PP-ppv  j=12,  *—12,. .

We will define a new simple symmetric planar walk So, Si,... to be con-
structed in blocks as follows. Let Ak =2k and rk=Ak —Ak-\ = 2k~1, k=
1,2....

The excursions with indices A*-i ™ i < Ak form the k-th block. We build
up our new walk as follows. Consider the excursions of the first, and second

walks in the A-th block and the lengths zjJ\ j = 1.2 of the consecutive
excursions in the two walks. We label the excursions ZP large if

(3.2) Zp~exp(rf), AN i< Ak j=1,2

where the value of B will be selected later on. Denote by tpK p.P the number
of large and small excursions, respectively in the A-th block. We create the

A;-th block of our new walk as follows. If pP ~ pP then we construct {5.}
by replacing all the pP small excursions from {S”*} (within the block) by
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the first p~ small excursions (first after Pa® {) from {S”} and leaving the

large excursions from {Sf1'} unaltered. Keep also the order of the con-
secutive large and small excursions as in (S)1}. Ifpj) <//.[."; then construct
{5.} by replacing the first (after PAK*i) P~ small excursions from (S)1*} by
the small excursions from {Sf2'} and leaving the large excursions and

the other p» —p,” small excursions from {S”} unaltered. Performing this
procedure for each block, we obtain a simple symmetric planar random walk
Si,52,.... Now £(,*), p, £;(*), and Z, without superscript are the related
quantities of this resulting random walk.

Introduce the notations

(33) zP(1,/?)=Z «1(z* Sexp(rf))
1=1,2,..., Ai-1Mi<apj=12

and

@4 M@=max  max (dn@ M. (p)(>)) -

and observe that for AM~\ < Ar

2 k
. OhE - -
(3.5) sup bi-pi®Ys Isg&fp, = SE E e Zzoiin

i=.4]_i+]
and
ISitlilpIE(a,p/)-E(Z)(a-pJ’J))I
(3.6) , Kk
UIS:UAP* 1" (a,p.)-")(a,p(2) I";fl (D + 7£)M;(«).

We will prove a number of lemmas now.
LEMMA 3.1. For any B >0 and any integer 1" 1

@7 E(2\])(.1?) <Ccexp(r?)iiB, j=1,2, A”riI<A,..

Proof. The proof is based on Theorem C and the following simple
identity. For any L ~ 3

L L
(3.8) E ogk <ClogL-
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By Theorem C and (3.8)
[exp(rf)] [exp(rf)]+ |
E[2\3u./?) £2+ Y p@Elj)~rk)r2+ J2 PZU)>f)=
—_— k_
(3.9

[exp(r, )]+ 1 [exp(rf)]+I

P N Cexp(rf)r
2+ £, (4ad+° . : o logk

Lemma 3.2. For any B3>0

(3.10) sup IQ— Nexp M41V)N as.

if N is big enough.
PROOF. Observe that by Markov’s inequality and (3.9)

(3.11) o (Y Zp')(/,")>r77exp(rf)JJ"C2{-1){1_7—/3).
\i=A( i+

Select now 7 > 1to conclude that

i-m-i-B) _ o,
i+i

implying by the Borel- Cantelli lemma, that for / B luu>)

A,

(3.12) Y Zi rl exp(rf) a.s.
i=A/_i+]

Hence by (3.5), for k big enough,
(3.13) sup |p, - PQIN 2CV 27exp(2™) N exp(2<*+”)  as.
'ZA" 1=1

Observe that for 2k~]”* N < 2k we have

(3.14) sup i - p\PA” exp(@*fcHN) M exp (((4ART)  as.
i<N v '

for N big enough, as 2k+1 ~ AN.
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LEMMA 3.3. For any fixed. >0
(3.15) P("@®+u\y> Nexp (-r}~R)
if | is large enough.

Proof. Clearly and are both binomial with parameters 77 and

pi —P(pi > exp(r*)) and independent, hence their sum is binomial with
parameters 277 and p/. Now observe that

P(t'Al) + 1721>A) “exp(—4)E(exp(IrM+ilj2Y)
(3.16) zexp(-A)(I +pi(e- D)2r ~ exp(-A) exp(4p/r/)
Nexp(—A + 5rr}~R) N exp(—A + 167/ N,

where the last but one step follows from Theorem C. Select now A —17rj~fi

to get the lemma. O
LEMMA 3.4. For any 0<B<I, r >0. such that B +r > 1 we have
(3.17) sup IE(a, pi) —£(2)(a, pj2))l = O(NT) as..

Proof. By Lemma 3.3 and (2.6)

(3.18) 2(2(iyll)+ ~2))Mi(a)>rl)*exp(-rl-B) +C(a)rlexp(-d.(a)rd+k- 1)

where C(a), d.(a) are positive constants depending only on a. Now (3.18)
implies by Borel Cantelli lemma that

(3.19) 20 + @M, (@) =0(H)2,T a.s.,
hence by (3.6)
k
(3.20) sup K(a,pi)-i<2>(a,pi)| =]1T 0(l)2ir=0(I)2fT a.s.
from which (3.17) follows. O

LEMMA 3.5. On a rich enough probability space there exists a Wiener
process {W (.s), s 0} such that for any fixed a, B, r satisfying 0< 3 < 1,
t>0, B+ r> 1, we have

(3.21) K(a,piV)- A r-aafr(A0| = O(Ar) a.s..
PROOF. Apply the celebrated Komloés Major Tusnady [16] theorem for

e(2)@pw)-N
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(which is now considered as a sum of N i.i.d. random variables with common
expectation 1). The existence of the moment generating function of the
summands follows from Theorem D. Hence we get

(3.22) le(2)(a, )- V- oravT(dV)| = 0(log JV) a.s..
Now apply Lemma 3.4 to get (3.21). O

A simple consequence of our Lemma 3.5 and Theorem B is that for any
e> 0, under the condition of Lemma 3.5

(3.23) £(a. pi(0,,)) ~ £(0, n) =ffa”(i(0, n)) + 0(log n)r(l+c) a.s..

However, to get the first statement of our theorem, we need to replace
£(a, P£(otn)) anfl W(£(0,n)) with £(a, n) and W(~"(0, n)), respectively. To
be able to perform these replacements we need two further lemmas.

Lemma 3.6. For any « >0
(3.24) |E£(a,n) - £(a, p?(On))| = 0(logn)® as.
asn 0o

PROOF. Consider the local time differences

£(a, Pk+1)- £(» Pkm A= 11,2,

They are i.i.d. random variables and from Theorem D, for an arbitrary a1>0,

@
51 P(™(a,Pfc+i)-i(a,p/b) > Aft) <oo0
k=\
implying that
(3.25) Z{*,Pk+i)-t{*,Pk) = 0{k°") a.s..
Observe now that
(3.26) s(a.n) £(a, p*(o,n)) =£(a, P*(o,n)+i) £(ajP¥o,n)

and, by Theorem B. £(0,n) * (log?i)1+t for any e> 0 and n big enough.
Consequently

(3.27) laa,n)-"(a,pi(on)|-0(logn)a’'(lte) a.s..
Select now a = (/(l + f) to get the lemma. O
Lemma 3.7. For R >0 and e>0

(3.28) I£() 0, %) —£(0. )\ = O(log ?2i) (1+)  a.s.
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PROOF. First, observe that
i12>(0,n)=1"2(0,p<i»>On))

£<»(0, n)y £0.n)i £ " > (0, - £0.
(3.29)
—i(0,/70)(0..,)) PA(i)(On))-

Now observe that, by Theorem B, £(1)(0,n) < (logn)1+4 for any <S>0, if n is
big enough. Consequently, by Lemma 3.2,

ip, - p!"i
(3.30)
Nexp(lognp I'&)P  a.s.
with any S >S>0. Now apply Lemma 2.1 with bn = exp(logn)(%#51i and
an =n (being n) g n). Thus we get by (3.30) that

£(1)(0,n) -£(0,n) = O((logn)(1+H)/3) a.s.
where e> 6' > 0. Repeating the argument for £(0, n) —**(O, n) we get the
lemma. O

Proof of the Theorem. Based on the above lemmas we have now
three local time processes, constructed in such a way that the £/(-,n) and

£(2)(‘,n) processes are independent. W (@ was constructed to correspond

to the process £(2)(-,n), hence it is independent from the process £(*)(m, n).
Moreover, by Lemma 3.6, (3.23) and Lemma 3.7

£(a,n) - £(0,n) = £(a, pi(Qifl)) -£(0, n) + £(a, n) - £(a. pi(0,,,))
£(& P((on) ~((0,n) + 0(log n)a
aaVK(e(0,n)) + O(logn)T(1+e) + O(logn)a
(3.31) =" (£ ((0,«) +aa(W(E(0, n)) - 0.n)))
+ 0(log n)r(1+t) + O(log n)a
= oaR/(™(*(0,n)) + O(logn)_L*
+ 0(logn)T(I+) + O(logn)“ a.s.

for any e’ >e. In the last line we used Theorem 1.2.1 of Csorgé and Révész [6]
on the maximal increment of the Wiener process. Taking into account that
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the only conditions throughout the construction on B and r were 0</?<I,
r >0, such that B+r > 1 (and that a >0, € >e> 0 are arbitrary small), we

can select e> 0 small enough to have | 7-777> 1, and select r(l + €)= | and
R{l +¢e) =\ to get

(3.32) e(a,n)-e(0,n) = taW (*1HO,n)) + O(logn)i a.s,

and from (3.28)

(3.33) AN(O, n) —£(0, %)= O(logn) 6  a.s.

that, in turn, also proves our theorem. O

4. Applications

In this section we apply our Theorem 1.1 to obtain some limit theorems
for £(a, n) —£(0,n). It follows from (1.1) that the limit distribution of

£(a-n) -£(0,n)
aaVllog7i

should be the same as that of

Vlogn
where A (n) =7N"*(0.71).
Obviously, from Theorem B,
W (*(n)) _ W{C*Hn)) /e@)(n) P 1.P7
\/logn A(™M(n) V loge

as n 00, where U is a standard normal r.v. and Z is an exponential r.v.
with parameter , and U and Z are independent. One can obtain similarly

%\U\y/Z,
\/log n
sup W (" (k))
k<n Vv
—\u\sfz,
Vlogn
and
sup
t~n ArCz

yidgn
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as n-> oo, where T has the distribution of sg? W (s)| and is independent
sa

of Z. It can be seen furthermore that the distribution of UsfZ, is two-sided
exponential with parameter V2t he., its density function is

(41) <7(S) Il e'|*|VSF — 00 < X< oo0.

The distribution of [t/|\/Z is exponential with parameter \/2tt
Furthermore by using the formula (cf., e.g., Révész [19])

v - ' TR 28+1 1Y 8@
(4.2) oo §
= E (-l)km 2k+1)x)-*{(2k-1)x)),
f=—eo

straightforward calculations give

— AN = A - (-DT
HOO =P (TR =20 % ks 13+ 82k + )x2
4.3)

:0sh(:1,'V27r)
Hence we have the following limit distributions:

Theorem 4.1.

X

(4.9) iim p ( %XJ = | g{u) du,

n—oc \ aaVIogT

where g(x) is given by (4.1),
|£(a, n) —£(0,n)

. Ay

(4.5) nILm00 P CTav/logn X )= 1—exp(—x\/2ty)
( sup [E(a, k) —£(0.A)

4.6 lim p 2N X = #(r

(4.6) N> CTavlogn ~ = =#()

V /

We note that (4.4) was given by Kesten [14] and Kasahara [13].
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By applying Theorem 1.1 we can also obtain strong limit thporems for
£(a, n) —£(0,n) via establishing the corresponding results for IT(£/(n)).
Standard methods give the following laws of the iterated logarithm

hin su W (£7(n)) 1
n—~¥o \/lognlog3n \/2n
and this implies the LIL of Marcus and Rosen [17]:

Inn sup E(GRe@n)_ a2

n—=m vVvlognlog3n vZ&

Concerning liminf results, we first note that one can get the following
asymptotics from (4.5) and (4.6):

a.s.

4.7 PO\UWfZ Ax)~xV2n, x-a0
and
(4.8) P(T\fZ ~ x) ~ xan. x —0.

These results show that one cannot expect proper Chung-type LIL for
sklép(E(a, k) - £(0, k)) and ks/yp |f(a, k) - £(0, k)|. The following integral tests,
n n

however, hold true.

T heorem 4.2. (i) Let a(x) be a nonincreasing function such that
a{x) \/log x is nondecreasing. Then

(4.9) P y sl?p (E(a, k) —£(0, k)) " «(«)V/logn i.0.1=0 or 1
<kK<n
according as
' d
(4.10) /« (x) dx <00 Or = 00.
x log x

(i) Let B(x) be a nonincreasing function such that B(x)\/\ogx is nonde-
creasing. Then

4.11 P sup |E(a, k) -£(0,fc)| “"R{n)y/\ogn i.0. )=0 or 1
(4.11) \/I<fcg77|()( )| *B{n)y/Nog )
accoramg as

R2(x)dx
(4.12) <00 Or =00.

| * X |OgX
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Proof. It follows from Theorem 1.1, that it suffices to prove similar

results for J(n) :=  sup  W(s) and K(n) := sup . |W'(s)|. The convergent
<) o)

parts can be seen by considering the subsequence nk = exp(efc) and defining

the events
Ck = |j(n fci) ga(?if)>/i6gn”|

and
Dk= "K(nk-i) "3(rik) \/logrq.|.

It follows from (4.7) and (4.8) that P(Ca) i ca{nk) and P{Dk) * cR2(nk)-

But X]fca (nfo and the integral in (4.10) and also Ylh R2(nk) anti the inte-
gral in (4.12) are easily seen to be equiconvergent, hence the Borel-Cantelli
lemma and the usual monotonicity arguments complete the proof of the con-
vergent parts.

To show the divergent, part we apply the following Lemma (cf. Klass

[15]):
LEMMA 4.1. Let {An}n>i be an arbitrary sequence of events such that

P(Ani.0.) = 1 und let {Bn}n>i be another sequence of events that is in-
dependent of 1An},>i such, that ILiDRi)ng(B,,) Ap>0. Then we have

P{AnBni.0.) Zp-
To show the divergent part of (i). let

An-{j(n)Sv/w O «(ei<)(n)}

and
£n = {£(1)(n) “logn}.
0y
The divergence of the integral in (4.10) implies iu~1a(eu)du = 00 and hence

by a theorem of Hirsch [11] (see also Révész [19]) we have
P SUE W (s) * Vka(ek) =1
S/\

Since £(t)(n) increases by 1, we also have P(A,, i.0.) = 1L Obviously
im,P{Bn)>0 by Theorem B, hence Lemma 4.1 combined with 0-1 law for

Sn proves the divergent part of (i).
To show the divergent part of (ii), let

An= {E()(n) » R2{n) I°g 71}
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and

Bn= < IW (s) Ig R(n) x/logn
S 5P g 19 8(0) x/log

ErdGs and Taylor [10] proved that P (An i.0.) = 1and, clearly, %P(Bn) > 0.

Hence Lemma 4.1 combined with 0-1 law for Sn implies the divergent part
of (ii). This completes the proof of our Theorem 4.2. O
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ON A PROBLEM ABOUT /-PROJECTIONS'
I. CSISZAR and L. FINESSO

Dedicated to the. memory of Alfréd Rényi

Abstract

The minimizer P* of the /-divergence /(P||Q) for P in a set Il defined by linear
constraints is known to be mutually absolutely continuous with Q (P*= Q) providing a P
in 11 exists with P = Q and /(P||Q) < oo. We ask when the existence of P and P, both in

Il, with P = Q and /(P||Q) < oo is already sufficient for P* = Q. We give a positive answer
for measures on a product space when Il is determined by prescribing the two marginals.

1. Introduction

For probability measures (p.m.’s) on a measurable space (X,X), the I-
divergence of P from Q (or relative entropy or Rollback Leibler distance)
IS

i/ dP"d if P«
D i(r\Q) =11 ( )0Q i ©

[ oo otherwise
where

., fflogt if t>0
@) 0 if t=0.
For a convex set n of p.m.’s with

3) Inf 1I(P\Q) < oo,

if the minimum of 1(P\\Q) subject to P Gl is attained, the minimizer P*
is unique. It is called the /-projection of Q onto ft. A sufficient condition
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Key words and phrases, /-divergence, iterative scaling, specified marginals, Schrddin-
ger’s problem.
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for its existence is the closedness of IT in variation distance. An important
property of the /-projection is

@) P«P*<Q forall Pen with 7(P||Q)<oc.

For the above results cf. [3].

On account of (4), a (necessary and) sufficient condition for P* = Q
(where = denotes mutual absolute continuity) is the existence of some p £ Il
with P = Q, 1(P\\Q)<oo0.

We will consider the problem whether the hypothesis 1(P\\Q) < oo can
be dropped in the last condition, i.e. whether the following is true.

Assertion A. The existence of p 6 IT with P = Q implies P* = Q.

Notice that subject to (3), Assertion A is equivalent to the apparently
weaker

Assertion B. The existence of Pen with p = Q implies that to any
Pell with P*Q, /(P||Q)<o0o0, there exists P'eTI with P'<EP, /(P'||Q)<o00.

Indeed, were Assertion A false, applying Assertion B to P = P* would
yield a P' € IT with P'<? P*, I(P"\Q) < o0, contradicting (4).
For IT determined by a finite number of linear constraints, i.e.

for given measurable functions /) on A and constants c,. i =1,2,..., k. As-
sertion A is true, cf. [4].

For IT determined by an infinite number of linear constraints, however”
Assertion A may be false. For a counterexample let X =N and Q and P
arbitrary strictly positive p.m.’s with D(P\\Q) = oo. Let Il be the set of
p.m.’s P satisfying po+Pi(l ~PO)/pi= 1, »= 1,2, Then the p.m. do
concentrated at 0 is in Il and has -D(do||Q) < oo, but D(P\Q) = oo for all
other Pell.

In this paper, we will concentrate on the case when Il is the set of those
p.m.’s on a product space that have specified marginals. Let I1(Pi, P2) denote
the (convex) set of those p.m.’s on (Ad, Xy) x (A2, A2) whose marginals are,
respectively, Pi and P2. Since this set is closed in variation distance, the /-
projection of Q onto I11(Pi,P2) exists for any p.m. Q on (Ai, X\) x (A2, X2)
satisfying the finiteness condition (3), i.e.,

Peni(gl;’pz)l(P\\Q) <00.

We will assume in the sequel that

(6) Q« Q\ x Q2,
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where Q\ and Q> denote the marginals of Q. Then the /-projection P* of
Q onto 1I(P |. P2) satisfies

() = a(iie(v2)  P*-as.,

where a and b are strictly positive measurable functions on X\ and X2,
respectively. The latter has been proved in [9]. filling a gap in a proof of [3]
(the proof in [3] assumed that the set of functions of form ,f(x\) + g(x2), / 6
Li{P\), g(zL\(P2) is closed in L\(P*), which is not always true).

One reason for our special interest in the case P* = Q is that then (7)
becomes

8 P apxi b(x2
8 To ~alxp(x2)  Q-as,
where the identity holds in the same sense as the Radon--Nikodym derivative
is determined.

The problem of finding positive measurable functions a(x1), b(x2) such
that

9 % = a(x\)b(x2) defines a p.m. Pen(PxP2)

has first been raised, apparently, by Schrodinger [11] who arrived at it treat-
ing a problem about diffusions, of conceptual interest in physics. Since (8)
provides a solution to this problem, we may assert subject to hypotheses
(5), (6) - that a solution to Schrddinger’s problem (9) always exists if a
P €n(PxP2) with P = Q, I(P\Q) <oc exists at all; if Assertion A holds

for 11(Pi, P2) and Q, the hypothesis J(P||Q) < 00 can be dropped in the last
condition. Relevant references about Schrdodinger’s problem include [1], [6],
[9. As shown in [6], solutions to (9) with I(P\\Q) <00 necessarily satisfy
P =P¥* though solutions with /(P||Q) = oo perhaps may exist.

Remark. Assumption (6) is crucial for (8). Anexample where P* = Q<
Qi x Q2 and dP*/dQ is not representable as the product of measurable func-
tions, appears in [6]. Still, such representation, with perhaps non-measurable
a(a;i) and b(x2), is always possible, cf. [1], [6].

2. The countable case

In this section we deal with p.m.’s on countable sets. The probability
mass function (pmf) of a p.m. denoted by a capital letter will be denoted
by the same lowercase letter. The support of a p.m. P on a countable set
X is Sp —{r:p(rr) > 0}. Notice that P Q is equivalent to Sp C Sq.
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In the countable case, to prove Assertion A for Il and Q satisfying (3),
it suffices to prove the following assertion not involving Q.

Assertion C. Toany P and P in Il with SP C Sp, SP~ Sp, there
exists P 'ell with Sf (ESP such that the pmf of P' differs from that of P
on a finite subset of Sp only.

Indeed, if Sp = sq, the last condition makes sure that 1[P\\Q) < 00 im-

plies /(P'HQ) < oo. Thus Assertion C implies Assertion B which, as noticed
in the Introduction, is equivalent to Assertion A.

THEOREM 1. If X] and X2 are (finite or) countable sets, Assertion C
always holds for II(Pi,P2), hence so does Assertion A subject to the finiteness
condition (5).

Remark. Hypothesis (6) is trivially satisfied in this case.

Proof. Given P and P in Il = n(Pi,P2) as in Assertion C. notice first
that a P' required there can be trivially given if for some (6q,x2) £ Sp \ SP
there exists X\ £ X\ and T4 £ AT such that (x3,x2) and {x\,x\) are in
SP and (x;i,&q) is in Sp. Indeed, changing the pmf of P at the points
(5q,x2), (mM3,m2), (m3,md), (mi, mg) only, by alternatingly adding and subtract-
ing some e> 0, the resulting P' has the same marginals as P and meets all
requirements in Assertion C.

This simple idea always works if Sp =X 1x X 2, but not necessarily oth-
erwise. We will show, however, that to any (x\,X2) £ Sp\Sp one can always
find T3,..., Xean— in X\ and X4,... ,x2nin X2 (for some n 2) such that

(10) (N3, X2i) £ Sp.  (x2i+LX8)£Sp i 1,2,.. a

with the convention Xen+\ = ®i- This still suffices to obtain a P' as in
Assertion C, by changing the pmf of P at the 2n points in (10) only, by
alternatingly adding and subtracting some e> O.

Consider a Markov chain with state space X\ UA2 (assuming w.l.0.g.
that X\ HX2=0) and transition probabilities

(p(IWI'P\(4) if xEXuUy£EX2 (x,y)eSp
(12) p(y\x)= < p(y,x)/p2{x) if xEX2,y £ X[, (y.x) £SP
(0 otherwise.

This Markov chain has an invariant pl1l with pmf p(x) = 2jg(x) or \p2(x)
according as x £ X\ or x £ X 2, thus m with p\(x\) > 0 cannot be transient
([3], p. 399). _ _

Since X2 can be reached from x\ (in one step, by the assumption {x\,x2) £
Sp), it follows that x\ can also be reached from x2. On account of (11),
the latter is equivalent to the existence of Ti, me, x2n satisfying (10). This
completes the proof of Theorem 1
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3. The general case

In this section we consider YI(Pi,P2) and Q as in Section 1 in the case
of arbitrary [X\,X\). (X2, X2). Recall the hypothesis Q <CQ\ x Q2. cf. (6),
and write (for any P <SQi x Q2)

(IP
d(Q\ x Q2)

For the densities p and g define

dQ

(12 o
d{Qi x Q2)

= p{xi,x2), q{x\,x2).

(13)  SP= {(aii,x2) :p{xi,x2) >0}, Sq = {(ai,.r2) :q{xi,x2) > O}.

While we believe that Assertion A holds in this setting without any
additional hypotheses, at present we are able to prove this under the following
condition:

(14) sQ= U (Aj x Bj), Aj GXu B3GX2,
jed

where |7 is a (finite or) countable index set. Since q(x\,x2) is not a unique-
ly defined function on Xy x X2, (14) is required for a suitable version of
g{xi,x2).

Notice that (14) is automatically satisfied if X\ or X2 is (finite or) count-
able, or if Q = Q\ xQ 2. It is also satisfied if X\ and X2 are separable metric
spaces endowed with the Borel cr-algebras, and g(x\,x2) is continuous or
lower-semicontinuous. The hypothesis (14) appeared previously in [1] where
(8) was proved under that hypothesis, assuming (6) and the existence of
PeU{Pi,P2) withP = Q, I(P\Q) <O00.

THEOREM 2. For II(P\, P2) and Q satisfying hypotheses (5), (6) and
(14), Assertion A is true.

COROLLARY 1. Under hypotheses (5), (6) and (14), there exists a so-

lution to Schrodinger’s problem. (9) whenever a P £ U{P[, PR2) with P =Q
exists.

For the proof we need the following

Lemma 1. Given any P GII(Pi,P2) with P*Q. I(P\\Q) < oo, there ex-
ists P' GII(Pi,P2) with P'<£P, [I(P'WQ) <oo0 if random, variables Y\,... ,Yn
with the following properties exist:

(i) Yi takes values in X\ or X2 according us i is odd or even;

(if) the joint distribution of (Y”j-i, Y2i) is absolutely continuous with re-
spect, to P, i—1..... n, the joint distribution of (YZ+i,Y2) is absolutely
continuous with respect, to Q, 7= 1....,n—1, and the joint distribution of
(Y\,Y2n) is absolutely continuous with respect, to Q\ x Q2.
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(iii) Pr{(Yi, Y2n) GSq, (Y3,Y2)eSQ\S P}> 0.

Proof. Write Y2n+\ = Y\ for convenience, and set

(15) cK,i={{xi,x2)wy2iruy2m \,x2) <Kp(xux2)} i=1— ,n

(16) DKj = {(xi, x2) :py2i+uY2i{xi,x2) <Kqg(x\,ar2)} i=1,...,n,

where Py2-i,y2Z ai‘d Pv2A+i V2 denote the joint densities of the indicated ran-
dom variables with respect to Q\ x Q2. Let denote the event that

( . (Yal-i,Y2i)e C K, (Y2i+l,Y2i)eD K
1) i=1,....,n, (Yi,Y2)eSQ\Sp

simultaneously hold. By assumptions (ii), (iii),

(18) Um Pe{Ek}=Pr{ (Y, Y2n) GSQ, (Y, Y2) GSg \ SP}> 0.

Fix some K with Pr{f/<-} >0. Then (15). (16), (17) imply that the condi-
tional densities of (Y2i-i,Y2i), respectively of (Y”i+i) Y2i), on the condition
Ski are upper bounded by Kp(x\,x2)/Pv{£k} and Kq(xi,x2)/Pr{Ep }, re-
spectively. It follows that

p'(xux2)=p(xi,x2)

(19) i .
+e 127~ PY2i+uY2i\fi<vxi’xv - 27~PY2i-i,Y2i\eK{x™xv
\/=1 i=1

is the density ofa p.m. P' if0<e<Pr{£2}/Kn. and that I(P'"\\Q) < oc. It
is obvious from (19) that the marginals of P’ are equal to those of P, hence

P' e U(P\. P2). Finally, it follows from (19) and the definition (17) of £p
that

(20) P1(SQ\Sp)~e Pr{(Ys, Y2) GSQ\ SP\E<}=e> 0,

thus P <jLP.

Proof of Theorem 2. As noted in Section 1 it suffices to prove Asser-
tion B. Now, fix P Gn(Pi,P2) with P z£Q, 1(P\Q) < o0 and P e U(P\,P2)
with P = Q. Let Y\,Y2,... be a Markov chain satisfying Condition (i) of
the Lemma such that the joint distribution of (Y2i-\,Y2i) is P and the joint
distribution of (F2i+i,"2) is P, i—1,2,-——- Then Condition (ii) of the
Lemma is also satisfied, for each n, and it suffices to show that Condition
(iii) is satisfied for some n. As the joint distribution of (Y3,Y2) is P = Q, and
P <"Q, P"Q, we have Pr{(Y;i,Y2) GSq\S p} > 0. Hence, using hypothesis
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(14) and the fact that the joint distribution P of (yj,Y 2) satisfies P<Q, it
follows that for some measurable rectangle Ax B C Sq

(21) Pr{(Yi,y2)€i4xB, (Y3,Y2)GSq\Sp}>0.
Denote by £,, the event that

(22) (Yan- 1, Y2n)e Ax B, (Y2n+1,Y2n)GSq\ SP.

Since the pairs (Yj, Y2), (Y3,Y4),... form a stationary Markov process,
£i <2 ++¢ is a stationary sequence of events of positive probability, cf. (21).
Hence, by the Recurrence Theorem ([8], p. 27), there exists n> 2 (actually,
infinitely many such n’s) such that

(23) Pr{£,n £,}>().

If both £\ and £n obtain then (Y\,Y2) GAx B and {Y2n-\,Y2n) GA x B, cf.
(22), hence also (Yj, Y2n)EAXxB. Thus (23) implies that

Pr{(Yi,Yn) e SQ& (Y3,Y2G \Sp}~
Pr{(Yi,Y2n)£ Ax B, (Yi,Y2)GSQ\SP}ZPr{<? nEn}>U

This means that Condition (iii) of the Lemma is also satisfied (for a suitable
n> 2). This completes the proof of Theorem 2. The Corollary is immediate
from the discussion in the Introduction.

4. Extensions and open problems

Some simple extensions of our results are as follows:

(i) If no P Gn satisfies P = Q, it is still of interest whether in equation
(4) the condition I(P\\Q) <00 can be relaxed to i.e., whether the
[-projection P* of Q onto n dominates every P GIlI dominated by Q. In
the countable case the latter is obviously implied by Assertion C, thus the
corresponding extension of Theorem 1 is immediate. Similarly, an obvious
modification of the proof of Theorem 2 gives that if P GI1(Pi,P2) dominates
every P GII(Pi, P> dominated by Q (the proof of the existence of such P,
unique up to mutual absolute continuity, is standard) and hypothesis (14)
holds for P rather than Q, then P* = P,

(i) Corollary 1 about Schrddinger’s problem can he extended to some

cases when the finiteness condition (5) is not satisfied. Indeed, let be
a p.m. on X\ x X2 with X\-marginal P\, obtained from Q by ”scaling”,

i.e. having Q\ x Q2-density r/)(x,,x2)=q(x 1,x2)OIQi (7). APen(Pi,P2)
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with I (P \\ Q < oc may exist even if none with 1(P\\Q) < 0o does; this can
happen if /(Pi||Q1i) = oo, since clearly

(24) I(P\Q) = I(P\\QW) + /(P11lg,) forall P £II(P,.P2).

Applying Theorem 2 to in the role of Q, it follows that the finiteness
hypothesis (5) in the Corollary can be relaxed to

(29) /(P||Q<1))<o00.

inf
pen(?)llpz)

Notice that /(P||Q”) can be interpreted as conditional /-divergence: taking
the conditional distributions on X2 given an x.\ £ X\ induced by P and Q,
respectively, the average with respect to P) of their /-divergence is equal to
I(PIQ (1))

The p.m. QO can be further ”scaled” to get with /A-marginal P2

and Qi x (*-density qW (x\,x2) = <€) (mi,x2) w--(x2) where denotes
dQ[l)

the ~-marginal of This permits to relax (25) replacing by
These Q ™, are the first two elements of the sequence of p.m.’s

obtained by iterative scaling”, a procedure that in case of finite X i and X2

is known [3] to converge to the /-projection P* of Q onto II(Pi,P2), when

(5) is satisfied. In the present context, the hypothesis (5) in the Corollary

of Theorem 2 can be relaxed beyond (25), replacing Qd) there by any

of the iterative scaling procedure.

Remark. A proof that the iterative scaling procedure converges to the
/-projection P* in the general case, subject only to (5), is still elusive. For
substantial partial results cf. [1], [10].

(iii) Instead of /-divergence, we could have considered ("-divergences [Z],
[7] as well, letting ip in (1) be a continuous and strictly convex function on
[0, 00) other than (2). The key property (4) and Theorems 1 and 2 remain
valid whenever ip satisfies:

(26) lim = —o0. lim = 0o0.

The general problem raised in this paper appears unexpectedly difficult.
Already for the three-dimensional analogue of n(Pi,p2) in the countable
case, viz. for the set of p.m.’s on X\ x X2 x X$ with given one-dimensional
marginals (or with given two-dimensional marginals), where X\, X2, X% are
countable, we did not succeed in deciding whether Assertion A is true. It
also remains open in what cases, if any, is Assertion A true, but Assertion
C false.

A bold conjecture might be that Assertion C always holds for sets of
p.m.’s on a countable set X defined by prescribing the probabilities of subsets
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Ai, A2, mmof X such that each x GX is contained in at most k distinct A /s,
for some constant k. Proving this conjecture (if true) apparently requires
methods different from those in this paper. For the case k = 2, however, the
positive answer is an easy consequence of Theorem 1

THEOREM 3. Let A = (Al, A2, .mm) be a countable family of subsets of a
countable set X such that each x GX belongs to at most, two distinct Aj &.
Then Assertion C holds for

(27) n={P:P(Aj)=pj, j=1,2,... }

where pj, j =1,2,... are given positive numbers such that. 11”0.

Proof. Denote by Ao the subset of X not covered twice by A, i.e. the
complement of the union of all pairwise intersections of sets in A. Then the
(non-empty ones among the) sets Aland A/flAj, iMj, iandj in

N = {0,1,... }. represent a partition of X. Given P and P as in Assertion C,
a P' as required there can be trivially given if some of these sets with positive
P-probability contains an x with p(x) = 0. Henceforth we assume that this

is not the case. Associate with the given P and P on X p.m.’s on N2 letting

A(ATHAJ) it 7]
(28) P(*J) = < p(X\IT=i Aj) T 1=]=0
0 if i=j? 0

and similarly defining p(i,j). Clearly, p(i,j) and p(i,j) are symmetric pmf’s
on N2, both having marginals Pi =P2with pmfp\ (i) satisfying

(29) Pi (*) = ~-P(Ai) = ~“P(A]) = "pi, *=1,2,...

cf. (27). By our assumptions on P and P, the associated p.m.’s on N 2 defined
above satisfy the hypotheses of Assertion C, i.e. {(i,j) :p{i,j) > 0} isa proper
subset of {(i;.y) >0}. Hence by Theorem 1, there exists a p.m. on
N 2 with both marginals equal to P\ (uniquely defined by (29)) whose pmf
p'{i,j) differs from p{i,j) on a finite subset of {(<j) :p(i, ) >0}, and p'{i,j)
is positive for some (i,j) GN2 with p(i,j) =0. Though Theorem 1 does not
guarantee it, the symmetry of this p.m. on N2 can always be assumed, else
p'{i,j) could be replaced by //'(?,y) = J) +p'(j, *)), retaining the above
properties. Then it is a simple matter to give a p.m. P' on X that satisfies
the analogue of (28) with primes, and differs from P but on a finite subset
of Sp. The fact that the marginals of p'(i,j) are equal to P\, given by (29),
means that P'(Ai) =p,;, «=1,2,... hence P' belongs to n defined by (27).
Since clearly Sp> is not a subset of Sp, the proof is complete.
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STANDARDIZED SEQUENTIAL EMPIRICAL PROCESSES
M. CSORGO and R. NORVAISA

To the memory of Alfréd Rcnyi

Abstract

We study the asymptotic extreme value behaviour of standardized sequential empir-
ical processes that are tied down at the points (0,0) and (1,1). These types of empirical
processes arise naturally in the context of change-point analysis. We relate their asymp-
totic behaviour to the extreme value distribution of a two parameter Ornstein-Ulilenbeck
process over a sequence of expanding subsets of the unit square [0, 1]2.

1. Introduction and the main result

Let {Yi:i™ 1} be a sequence of independent identically distributed real
valued random variables with a continuous distribution function F. Then
{F(Yi):i™ 1} are independent random variables that are uniformly distribut-
ed over the interval [0.1]. Consequently, from the point of view of theorem
proving for the empirical distribution function on the real line, without loss
of generality, we let {Ut: i » 1} be a sequence of independent uniformly dis-
tributed over [0,1] random variables and let Fn be the empirical distribution

function based on a random sample Ui,..., Un, i.e.,
(1.0) Fn{x):=-~TI[0](Ui) for x£ [0,1].
=

The (uniform) empirical process an that is defined by
(1.1) an{x) :=n1/2(F,,(x) -x), i€[0,1],

has played a fundamental role in the development of probability theory (ef.,
e.g., M. Csorgd [5] for a short historical review).
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cesses, multiparameter Ornstcin-Uhlenbech processes, multiparameter Gaussian processes,
change-point analysis.
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The study of suprema of weighted empirical processes was initiated by
Rényi [26]. who investigated the asymptotic behaviour of statistics like

sup an(x)/x, o<a<b”l and sup an(x)/(l—x), o*a<b<l,
a=x”"b a™x™b

as well as that of their two sided versions (cf. also M. Csorg6 [4]). For results
on replacing the constants a and b in these statistics by constants 0< a(n) * a
and b” b(n) < 1satisfying, as n —00,

na(n)->oo, n(l —h('n)) —»o00 even when a(n) —0, b(n) =1,

we refer to Csaki [3], Mason [23], Section 4.5 of M. Csorgd, S. Csorg6,
Horvath and Mason [6], M. Cs6rg6, Shao and Szyszkowicz [13], M. Csérg6
and Horvath [8], and to Chapter 5 of M. Csérgé and Horvéath [10].

There is a huge literature that is devoted to the study of the asymptotic
behaviour in sup norm of weighted empirical processes

{atn(x)/q(x) :0<x < 1}

with positive weight functions g on (0,1) that are to satisfy certain integra-
bility conditions in addition to necessarily being so that

(1.2) q(x)/x»r2—»o00 as .x|0, and q(x)/(l —x) -—moo as xf L
More precisely, in terms of the following class of functions

Qo\N-={g’- inf q(x)>0forall 0<S<1/2,

(2.3) g is non-decreasing in a neighbourhood of zero

and non-increasing in a neighbourhood of one.|

and the integral
I

(2.4) I(q,c) :=1 -exp(-cq2{t)/(t,(I - t))dt, c>0.
0

we have (cf. Chibisov [2], O’Reilly [24], and M. Cso6rgd, S. Csorg6, Horvath
and Mason [6])

THEOREM A. 1fq&Q 0,1, then the following two statements are equiva-
lent:

(i) There is asequence of Brownian bridges {Bn(x):0” x ~ 1} such that,
as n —oc,
sup \an(x) - Bn(x)\/q(x) = oP(l),
O<x<1
(i) 1(qg,c) < oo for all c> 0.

We have also (cf. M. Csorg6, S. Csorgd, Horvath and Mason [6])
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THEOREM B. If E Qo)\, then the following two statements are equiva-
lent:

(i) sup KX)|r/(x) sup \D{x)\/q{x),
OCKI O<a;<I
as n —o00, where {B(x):0<x <1} is a Brownian bridge,
(U) I(q, ¢) < oo for some ¢> 0.

REMARK 1.1. Wt note that, if /6 Qo,i is a coding function then, by
Theorem A, as n —00, we have

«(*)/<?(*) -*B(-)/q{-) in DI[0,]

ifand only if1(qg,c) < oo for all c>0. The latter, characterization of weighted
weak convergence does not, however, imply the convergence in distribution
statement (i) of Theorem B. We note also in passing that, omitting the
absolute value signs, the corresponding version of Theorem B holds true.

For further results and their applications along these lines we refer to
M. Csorg6, S. Csorg6, Horvath and Mason [0], Shorack and Wellner [27],
and M. Csorg6 and Horvath [8], [9]. For relating these types of results to
Rényi [26] and Cséki [3] type statistics, we refer to Section 4.5 of M. Csorgd,
S. Csorg6, Horvath and Mason [6] and to Section 4 of M. Csérg6, Shao and
Szyszkowicz [13].

The results of Theorems A and B do not, of course, hold true with
g(x) := (x(I —x)) 22 (cf., e.g., Corollaries 2.2 and 3.2 in Chapter 4 of Csorgd
and Horvéath [9]).

Let, for each x > e<,
a(:c):=(2logx)¥2, b(x) :=2logx + 2~1log logx —2~1log n,

an:=a(logn) and bn:=5(logn).
We have (cf. Eicker [19], Jaeschke [20])
Theorem C. For any -00 <t< 00

(1.5 _Il\i/\%p{lanoiqgi af(x)/(x(l- x))V2- bn U/.}:exp(-e-t),

(1.6) lim P{a.n sup |an(;;)I/(x(l - x))'72- gi) =exp(-2e_<).

For a discussion of these results and that of their relationship to the
one-time parameter Ornstein Uhlenbeck process and the Darling- Erd6s [16]
theorem, we refer to M. Csorgé and Révész [12], to Section 4.4 of M. Csobrg6,
S. Csorg6, Horvath and Mason [6], and to Section 5.1 of M. Csbrgé and
Horvath [9] that also contains many more further results along these lines.
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In order to introduce the problem of standardized sequential empirical
processes that we are to deal with in this exposition, and for the sake of
summarizing some recent results, we first, assume that we have multivariate
observations taking values in R", d”~ 1 Let Yi,...,Y, be independent
random vectors in with right continuously defined distribution functions
F(N)(x), ... ,F(,,)(X). Suppose we wish to test the ‘no-change in distribution’
null hypothesis

Ho: F(D)(X) = ---= F(n)(x) for all xGRY
against the ‘one change in distribution’ alternative
H,\:  there is an integer k* 17 k* <n, such that
)(X) = --- = F(fc)(x), F(fc+1)(x) = eee= F(n)(x) for all xGR"
and F(a.)(xo) " F (a.+1)(xg) for some x0€ R".

Since k* of Ha is usually unknown, in order to test Ho versus Ha, it appears
reasonable to consider (cf., e.g., Darkhovsky [15], Picard [25], Deshayes and
Picard [17], [18], Szyszkowicz [28], [29], [30], M. Cs6rg6 and Szyszkowicz [14],
M. Csérg6, Horvath and Szyszkowicz [11], and M. Csorgé and Horvéath [10])
the sequence of statistics

n1/2 max sup - 1(-0° X]|(Y n js X 1(-t»x](Yi
xSy - (-0°X](Y?) _J o (-t» x](Yi)

(L.7) X1 AC-oo,x](Yi) n X I(-00.x](Y
A<k 1<i<n
- I?A?;L(nsgp 1/2
nl/z . .
(10 -1))

where 5l in R* is meant to compare vectors componentwise, and to reject
Ho in favour of 7/4. if this sequence of statistics were to produce ‘far too
many large values’, as n —00. This nonparametric heuristic reasoning can,
for example, be argued via the left-hand side of (1.7) that compares the
empirical distribution functions of the first k observations to those of the
remaining n —k observations uniformly in x GR'], and uniformly in k as well,
over the possible values 1" k ~ n — of the unknown random variable k*. Via
the right-hand side of (1.7) it can, however, be easily seen that this sequence

of statistics —>oc, as n —oc, even if HO were to be true. Consequently, in
order to secure a nondegenerate limiting behaviour under Ho for statistics
that are based on comparing empirical distributions & la (1.7), we must
introduce some appropriate renormalization.

We note in passing that a rationalization of introducing the sequence of
statistics in (1.7) could be simply based also on trying to answer the following
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simple question. Given a sample of independent random vectors Y i,..., Y,,
in R(/. is it reasonable to assume that they constitute a random sample?
That is to say, for the sake of introducing the sequence of statistics in (1.7)
it is not necessary to use the language of change-point analysis. Instead, we
could have just simply asked whether a given set of independent data could
possibly be viewed as being homogeneous in distribution.

Back to (1.7), on multiplying the respective arguments of the max sup
I*fc<n X

functional operations on both sides by (£(1 —£))1)/2, we obtain the sequence
of statistics

Vn = max n 12 1,,y~"(-°0,xi(YZz) ik izki 1i(-oo,xi(Yj)|
(1.8)
= 1m(a<xnn ]//2 E I OO.X] (Y,,) n l(-OO,X](Yj) L)
i=k-fl

Again, even if Hg were true, as n —o00, this new sequence of statistics

Vn —VAoo, though we are now somewhat nearer to saying something more
sensible than this. Namely, if for any fixed xo ERT/, we let

V,,(x0)
1/2

= max nl2(of L - LY iGooxuvy ok Yi iooxoi(v2)
£ i—k+1
-1/2 n
«1/2
—max n 1 - - 00,X z

then we have (cf. Corollary 2.2 of M. Csorgé and Horvéath [7], or Theorem
A.4.2 in M. Csorgé and Horvéath [9])

(1.9 nILmOOP{anVn(xo) —bn"t.} =exp(—=2e 1)

for any —e0 < t < 00, where an and bn are as in Theorem C. The key to
the proofs of (1.5), (1.6) and (1.9), and to the asymptotic equivalence of
the respective left-hand sides of (1.6) and (1.9) is their relationship to the
asymptotic behaviour of the one-time parameter Ornstein- Uhlenbeck process
& la Darling and Erd6s [16] (cf. the references quoted right after Theorem C).
However, the problem, of the asymptotic extreme value behaviour ofVn of (1.8)
with appropriate sequences of norming constants, say hn and bn, that is to
say the problem of finding hn and bn such that, as n -Aoo,

(1.10) hnl;i b V' a nondegenerate random variable,
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remains open. One of the aims of this exposition is to throw some light on
the nature of the difficulties one encounters when trying to deal with this
interesting problem of extreme value asymptotics that would be of interest
to resolve from the point of view of change-point analysis.

Before continuing with studying the asymptotic extreme value behaviour
of Vn via seeking appropriate norming constants «n and 6n, we summarize
some recent results for these statistics that deal with renormalizing them so
that they should have limits based on appropriate Gaussian processes. Let
(cf. (1.7))

0. 0<i< —
n
M
£TT X 1(-00.X](Y /')------ £TT X 1(00.x]1(Y))
Wn(x,t):=\ 1 *i=1 1 Jt=[nt]+l 1, .,n—1
n 12(M G.mir 1 n n
Van V n )!
i <t< 1,
(1.11
<
0 Ogt 0
_ 1 n—1
B n n
1=1
n—I1
<tSl.
0, N

where, as usual, [a] is the integer part of a. On denoting the common dis-
tribution function under Hqg by F. it can be easily seen via weak conver-
gence of multivariate empirical processes that wn(x.t) converges weakly to
{rV(x,t.):xe R'i. O~t"l}, a Gaussian process with

EFF(x,t) =Q ET,,(x, t)VF(y. s) = {F(x Ay) - F(x)F(y)}(t As - ts),
where XAy = (min(.T|,yi),..., min(.T¢,y./)), x= (x\,... \.x[/), y= (I/i, esey) €
Rd. We have also (cf. M. Csorg6, Horvath and Szyszkowicz [11])

THEOREM D. Assume that Flo holds true and that g GQo,l* Then

(1) there is a sequence of Gaussian processes {Tn(x,t):x 6 R'/, 0~ t~ 1}
such thai for eachn F 1

jr,(x,i):x6R",0rC} = {rF(x,t):x€ER"'/,0gt™I}

and, as n —oc,

sup sup |Ii,.(x, t) - r,,(x, t)I= Op(1)
o<i<l X
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if and only if I(g, c) < oo for all ¢ >0, where 1(q,c) is defined, in (1.4).
Moreover,
(i) 1(g,c) <oo for some c>0 if and only if, as n —00,
max_supwn(xik/n)/q{k/n) suP sup |1Y (x, t)\/q[t).
INk<ri X o</ <1l x

We note in passing that if w were to fix the value of x € R'1, then the
statements (i) and (ii) of Theorem D, formulated accordingly without sup

would follow immediately from Corollary 2.1 of M. Csorgé and Horvath ﬁj
It is that we can take sup as well and still have (i) and (ii) of Theorem D in

their respective present forms is the essence of this theorem.

Now for the sake of focusing in on the problem of studying the asymptotic
extreme value behaviour of the sequence of statistics Vn of (1.8), and for the
sake of simplifying notation, presentation and calculations, we go back to
assuming, and from now on throughout, this exposition, that. {Y ):i*l} is a
sequence of independent, identically distributed real valued, random variables
with a continuous distribution function F. Hence, without loss of generality,
from now on we base our investigations on the uniform empirical distribution
function Fn as it is defined in (1.0).

For each n ~ 1 we define a two-parameter stochastic process On =
= {B;l(.c,t): (x,t) E[O, 112} by

"M (Fh (2)-F,(.t)), for 1/2,
(112 Baxt) < (M + D)(F[nf+106) - Fn(x)), for 1/2<t<1,
, 0, fort = 1
Then, for each random sample U\,... ,Un such that 0 < U\.n A Unin<
the order statistics, we have
sup [B,,(.--M)| » Slip sup |B»(.7;,H)I
x<e(,i)2 s/nt(l ~t)x(1-;)  1/ngigl-1/n UnAXUn: vine 1=ty x (1-x)
(1.13)
Ed 1[0,x](Ui) - ctE4H ]pm'/i)
= max n x/2(-(1----) sup
listcgn- n n’/ 0<x<I y/x{l-x)
ARSI 04() TR Ei=foH 0 Y
abA=l 10X(N) —ITiF Ei=fe+11[0:](y)
= max sn\-d- ) su
vn n <l \/x(I-x)
The right-hand side is a weighted suprema of the difference between the
empirical distribution functions based on Ui,...,Uk and Uk+i, mmm Un, re-

spectively. Comparing (1.8) and (1-13) in this context, we call attention to
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the fact that in the latter we use complete standardization of the underlying
two parameter stochastic process. This, in turn, will enable us to relate the
thus modified original problem of (1.10) to the extreme value distribution of
a two parameter Ornstein -Uhlenbeck process over a sequence of expanding
subsets of [0, 1]2 (cf. (3.1) and (3.2)).

For a set AC[0,1]2, an integer n ~ 1 and the stochastic process 0,,
defined by (1.12). let

(1.14) DN(A) sup (M)
(x,0eA sjnt(l-t,)x(1 -x)
Here we find the asymptotic behaviour of Dn(An) as « —00 for a certain

expanding sequence {An: n ™ 1} of subsets of [0, 112. More specifically, for
each T > ee, let

a(T) :=1/\/4 InT  and
b(T)V4 InT + [pIn(4hiT) - ~In(27r)]/v/41nT.

The numbers o,(T) and b(T) are special cases of the numbers afiT) and bfiT)
with d —2. respectively, defined in Section 2. For each r ~ 0, let

Q) ={(x ) G(0, 2: Nn 57| +]In;L -\ ir} forrno.

The following statement is the main result of this paper.

THEOREM 1.1. Let {Dn:n ~1} be a sequence, defined by (1-14). Then,
for each real number z,

fim" Pr 21Inliin)) <a”nn)z + 6(Inn)}) =exp{-e-2}
The proof follows from Lemmas 3.1 and 3.2 below.

2. Multiparameter Gaussian processes

We start with the formulation of an extremal type theorem for a multi-
parameter analogue of the Ornstein- Uhlenbeck process. Let Abe a positive
real number, d be a positive integer and let D( be any subset of R(/. A real-
valued Gaussian process Z = (Z(u): uc Dff} with mean zero and covariance
function

d
JSZ(u)Z(v) = exp { —A - L, foru= (u), v= (vj) GDN
I
is called a d-parameter Ornstein-Uhlenbeck process with coefficient A For
each T > ee, let a,y(T) := 1/\/2d\nT and let

bd(T) :=Va2d\nT+ [{d- 1/2) In(2dhiT) - (1/2) In(27r)]/v/2c/hiT.
By Corollaries 1, 2 and 3 of Bickel and Rosenblatt [1], we have:
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Theorem 2.1. Let Z be ad-pammeter Omstein-Uhlenbeck process with
coefficient, A and let B be a bounded. Jordan measurable subset of Rif with
vol(B) = 1. Then, for each real number z,

liri Pr({ sup Z(u) <a,i(T)z + b,i(T)}) = exp{—Afe_z}
r-*oo u/reB
and

lim Pi'({ sup |Z(u)| <a,i(T)z + b,i{T)}) = exp{—2X(e~2).
T—yo00 u/TeB
We apply this result to a certain class of multiparameter Gaussian pro-

cesses to be defined next. Let X(:= X\ X X X,i, where each Xt is a
right-open or right-closed interval of non-negative real numbers. Let h be

a non-negative real-valued function on X'I*and let kt, i= 1,... ,d, be real-
valued functions on X, such that
Xi
(2.1) fi(xi) :=j kf(t.)d. <oo for all xtGX
0
Define a mean-zero Gaussian process G= (G(x): XEX*“} by
*1 _xd
(2.2) GX):=hx) f ... j M *i) mmmkd(td) c2WM(T,,..., td)
0 0

for x = (X]) GXrf, where W is a Brownian sheet (cf. Example 2.3 below for
definition) and the integral is stochastic. Using the functions in (2.1), define
the transformation

A o H .
Lr. Xd* B d: «(z)l{lnfflx). xGX,}

by L/(x) := (In/j(x,)) GR” for each x = (x2) GX(/. Since each ft possess a
well-defined inverse function / ~ , we can define the inverse transformation
L]1" by

LjHu) := (f~\eu)) GX1 foru= (m) GD(.

The next statement relates Gaussian processes G to the Ornstein-Uhlenbeck
process Z.

LEMMA 2.2. Let G—{G(x): x GX"} be a mean-zero Gaussian process
given by (2.2). Then the stochastic process Z= {Z(u): uGD'TD} defined by

Z(u) ;= exp {—lf‘T ujjx
=}
(2-3) Ire@s)  fjld)
X ) e ] K{(t]) mmkG(td)dW(LI, ..., td)
0 0
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is a d-parameter Ornstein- Uhlenbeck process with coefficient A= 1/2, and
G(x) = yIEG?(x)Z{Lf(j.)), for all xGX'l

Proof. Due to assumption (2.1), the right-hand side of (2.3) is a well
defined stochastic integral. Therefore Z is a Gaussian process. Now the
claim follows simply by computing the covariance function of Z O

Here is a list of a few examples of Gaussian processes which possess
integral representation (2.2).

Example 2.3. A Brownian sheet W= (W(t): t G[0, oo)d} is a centered
Gaussian process with covariance

(
EW(S)W(t) = Si Ati fors=(s;), t= (t,) G[0 oc)d.

2= 1

Taking ki = mmm= k(= 1and h= 1in (2.2) we conclude the same covariance
for G and that (2.1) holds with /i (<) = == fu{t) = t for t G[0, 00).

Example 2.4. A centered Gaussian process H= {H(x): xG [0, I]f} with
covariance

(
ETHIIHIY) = JJ(x, Ay, - nyi) for x= [xt), y= (/i) G[O, I]rf.
i—1

In representation (2.2) taking

d

(2.4) h(x) =J|(I - Xi) forx= (xt) G0, I)d
=1

and, for each ii—1,..., d,

(2.5) M*) = 1/(1-*) for te [0,1),

we obtain the same covariance for G. In this case (2.1) holds for xG [0. I)d
with f\ (x)= mm=fi(x) =x/(1 —x) forx G(0. 1) and Lj-1(u) = (eW/(l +e™"))
for u = (Ui) GR(/.

We note that, unless d = 1, the Gaussian process H does not coincide with
the Brownian bridge process B(x) := W(x) —vol([0, x])W(I) for x G[0,1]*, also
called a pinned Wiener sheet, which has covariance function

d d
EIB(x)B(y) = xi Ay{- xty, for x= (xy), y= (vi) G[O, I]f/.
p=il =i
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Example 2.5. A centered Gaussian process

Kif - {Kd(x, t): (x,t) G[0,1]/ 1 x [0, 00)}
with covariance

d-1
EKd{x s)Kdfy, t) = (@aAt) (@ Ayt- xiyi)
i=1

for x = (xi). y = (/j) G[0,1]d_1 and s,t G[0, 00). In the representation (2.2)

taking h as in (2.4) with d —1 factors instead of d, A; i=1,...,d—1, as in

(2.5) and kd(t) —1 for all t G[0, 0o0), we get the same covariance for G. Here

(2.1) holds with fi(x) = mm=1fd-fix) = x/(l - x) for x G[0,1) and fd(t) =t
for t G[O, 00).

Using integral representation (2.2) we apply Theorem 2.1 to Gaussian
process H of Example 2.4. For a set A C [0, I]f, let

o e(x) : — IH(X)|
HA) = VEK 2(x) and - [II(A) = s VIEH2(x)

Let BA(r) := {XGR(: Ya=i I®f be a ball with radius r in the Banach
space Then

vol(Bd(r)) = rdvol|x GRd: \xi\g 1} = (2r)d/d\.
i=1
Put cd:= (dl)V/d/2 so that vol(Bd(cd)) = 1 and
(2.6) QE(r):=L71(B,(r)):={xG Xil: L/(x) GBd(r)},

where Lf(x) = (In(cci/(I —x,))) GRfl. The next statement follows from The-
orem 2.1 and Lemma 2.2.

Corollary 2.6. Let H be a Gaussian process defined in Example 2.\.
Then, for all zGR1,

2.7 rLi@ooPr ({H(Qd(cdT)) <ad(T)z + bd(T)}) =exp{—2-de-2}
and

28 _lim Pr ({\H\(Qd(cdT)) <ad(T)z + t(T)}) =exp{—2l-rfe-}.
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To elucidate the last statement we restate it for d= 1 In this case we
identify Gaussian process H with a Brownian bridge process 1. For each
positive real number r, let

B{r):= su -
tn) r%xR-r V31 X)

COROLLARY 2.7. Let IB be a Brownian bridge process. Then, for all
zER1, any cER1and R G(0,1), we have

(2.9 _Air%Pr (].B((hm)c/?i) <a\(\nn)z 4 hi(Inn)}) = exp{-2e~2}
and

(2.10) anEEC Pr{{B(n~R) <ai(\nn)z + bi(\nn)}) =exp{-2R2e~z}.

Likewise, (2.9) and (2.10) hold with squared limits if B(x) is replaced by
|B(x)| in the definition of B(-).

PROOF follows from Corollary 2.6 and Khintchine’s convergence theo-
rem. Indeed, since ci = 1/2, relation xEQ\(c]T) means that |In(rr/(1—)\
4 T/2. We note that, for any O0<a” 1/2. a”~ x ~ 1—a if and only if
Un(Cr/(I =) N In((I —a)/a). Let a:=an:= (Inn)c/n and let T := Tn :=
2In (n/(Inn)<- 1). Therefore x GQi(ciTn) if and only ifan x " 1-
an. Moreover, as n —>00, T,t~21nn, «i(2 Inn) ~ ai(lnn) and [6i(hm) —
fei(21nn)]/ai(21nn) ~ —21In2. Therefore, by Khintchine’s convergence the-
orem (cf. Theorem 1.2.3 in Leadbetter, Lindgren and Rootzén [22]), (2.9)
follows from (2.7). Similar calculations show that (2.10) and corresponding
relations for the absolute value of B follow from (2.7) and (2.8). O

Corollary 2.7 relates to a classical result of Darling and Erd6s [16] (cf.
also Section 1.9 of Csorg6 and Révész [12], and Chapter 5 of Csérgé and
Horvath [9]).

3. Sequential empirical processes

Let {Ui\ i~ 1} be a sequence of independent uniformly distributed over
[0,1] random variables and let Fn be the empirical distribution function
based on a sample U\,..., Un, i.e,

for SG [0,1].
1=1
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For each integer 1, define as in (1.12)

rMm(™m (*)- Fn(x))t for 0gig 1/2,
Dn(x,t) :=\ ([nt] + (F[nt]+1(®) - Fn{x)), for 1/2<t< 1,
| O fori=1

Then, for each sample Ui,...,Un such that 0< U\:ng sy Un:n < 1 we have

I»n(*,0)] — s - B
xi)e[0,12 \Int(\ —t)x(I —x)  In€IE-I/nUn:i%xEUn:n y/nt. {1-t)x{I-

-172 o :
Ei=i lioTj(f/") - 1 Si= I1[0x](uU1

= n 1-- Ssu
|<?(.Qﬁ—]: n n) o<xB| y/Ix{\-x)

1
i\ é(l---—) sup  Xa=110.2)(™) = ="k Yli=k+ 11[0,:](")!

= a
IM‘I 0<x<] yix(l-x)

The right-hand side is a weighted suprema of the difference between the
empirical processes based on U\,..., Uk and Uk+1,..., Un, respectively.
Recalling notation (2.6) for the case d=2, i.e.,

Q2ft) —{(~ 1) € (0. )2: 11, ~THIM-—;g7} forr "0,

1-
we have:
Lemma 3.1. For rachz € R,

impPr(( sup — MMl . <o0201177)2+621110) T)=exp{—e '},
noU o (*%0e0a(n) Ant(l-t)x (1-x)

where = In (u/ (hi 7i)5).
PROOF. By (2.8) with d =2, using Khintchine’s convergence theorem as
in the proof of Corollary 2.7, we get that

i i |H(M)| a2 71)2: + 62 7 j
3.1) %PrM(xﬁg&(»n) Vt(l -t)x (1-x) = e b

= exp{—e_z},

where H is a Gaussian process defined in Example 2.4 with d = 2. Therefore,
it suffices to construct, a sequence {{/,;: i * 1} of independent uniform random
variables and a sequence {H,,: n 1} of mean-zero Gaussian processes, each
with the covariance function

EEn(x, )Mn(y, s) = (FAy - xy)(s At- st) forx,y,t,se [0,1]
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such that
su - yinH» (™Dl
(x,t)eQz2(Bn) y/nt{\ - t)x(1- x)

(3.2) lim \fhwn ) in probability.

By Theorem 4 of Komlés, Major and Tusnady [21]. there exist a sequence
{Ui\ <71} of independent uniform random variables and a sequence {!,;: i*l}
of independent Brownian bridge processes such that

(3.3) Vlir%o(lnn) 2 max Osgu>%l \K[Fk(x) =\ —  B,;(/))] C almost surely

for some finite constant C. Then, as in Csorgé and Révész ([12], pp. 22,
58, 59), one can construct on an enlarged probability space, a Kiefer process
kK = {K(c, f): (x,t) E [0.1] x [0,00)} such that K(x,n) = ya=\ ®i(x) f°r

x E [0,1] and n~ 1 For each integer n * 1, define a mean-zero Gaussian
process Hn= {B,, (x, t): (x, t) E [0.1]2} by

Hn(x, t) ;= n-1/2(K(a;, nt) —tK(x, n)).

Then, adding and subtracting a Gaussian process that is defined by replacing
each indicator I[oi7Z](t/l) in (3.1) by the Brownian bridge processes !;(:/;), we
get

su B(x, t) - y/nEn{x, ) » max \\k[Fk - F] - K(-, Sll<c
(x,t)e[%,i]zl (x, 1) - y/nEn{x, t) max [ 1- K- &
(3.4) +|In[Fn-F]-K (-,n)||@O
+ sup sup ||K(-,t + .9) - K(-,/)lloo+ ||K(-,n)lloo/ra=: An,
OaignOgsgl

where F{x) = x for all x e [0,1]. By Corollary 1.12.4 of Csorgé and Réveész
[12], we have

(3.5 nI_i>rgo(lnn)- i2 OSguJ)SiiOSéJSBI |[K(-, t + 5) —K(-, i)|]|joo = 23i2

almost surely. Moreover, for a Kiefer process K, we have (cf. Corollary 1.15.1
of Csorg6 and Révész, [12])

(3.6) lim o 'mlle® =1/~/2 almost surely.
n-*oo sjn I1112n

Considering the suprema over Qzifn) separately over each corner of the
square [0, 1]2 it follows that, for each n ~ 1,

1 4
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Then applying (3.3), (3.5) and (3.6) to estimate (3.4), we get

lim #]ii2n  sup n{ot) - sEn{th g QE2mI2 o
(@h60afi»)  \/nt{l ~:1) (Inny52

Therefore (3.2) holds and the proof of Lemma 3.1 is complete. O
LEMMA 3.2. 7/k>0 than, for ally, sufficiently dose to 1,

N Ed (im W -*) :
(3.7 lim Pi-(f  sup >2'/7In7njn) =0,
ci—»00 (x.t)edn ntx
where Qn:= {(x, t) G[0, 1]2: 2Iri2n ~ nxt ~ (Inn)K}.

Proof. The proof is obtained by breaking Qn into three subsets and
estimating the corresponding probabilities separately using exponential in-
equalities for empirical processes.

Define a function tp on (0, 00) by

U

(3.8) tp(u, - h J In(l +v)dv for u> 0.

Since 2ip(y/2) > 1 then, for any 7 sufficiently close to 1, we have
3.9) t'(7) :=273v>(\2) > L

Let N> 0 and I 7 G[1/4,1) be such that fi(7) > L For each n 3, define
kn := min{A; GIN: (Inn)K'k L W/}, where 7:= 1—"7 9 1/2. Then, denoting

Yffix) = (I[0x](i/i) ~ x)/s/x for x G(0,1), we have

or Efcl(ilo,.](Ci)-2) > 2\Jy 120 ]
gL(x,%jsan y .

k

P max su ARL(L7,) VK >20y In2it
i p'({ x6[2|]]2n/kP(\nn)I4k]|1y (1) y

(3.10) )

+ Pr(.{f Ia'ﬁfafm)qur%k,m lyAY)(r) I'7k>2\]y In2n )

k

vPT % Iéfncg%(c, XEIT"%:B)«/*] FHAY)(:C) /\fk > Z\Jy\WI nl;
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—Pn,1+ P,,2 + *n,3)

where a suprema over an empty set is defined to be zero.
To estimate Pn,i, foreach n”~ 3 and /" 1, let

Q) :==Q(l) =={x€[01]: Z/" In2n g xg Valiin)*}

and let mn and Mn denote respectively the smallest, and the largest among
all integers | such that

(3.11) A, /) :={k6IN: kn~k~n}D[7_z+1,7_i]" 0.

Then we have

(3.12) Pnji< I,:\mnPr %kerl\](an%l) " 20 > 27\/7 ].'IJZ//J.)I).

Using exponential inequality (3) on p. 446 of Shorack and Wellner [27] we
get, for each k6 A(n, I,

[7' /An
Pr ({| £ 20 >27(1- 7)y/([7-7A-n)hi2n})
(3.13) 52 kErRax P rfU{“y y]| > 7 (1 —7)\tkhv>/n})

A —hi AM(Inn)K 7~ (Inn) c,

where ¢c:=73(1- 7)20(\/7 (1 —y)/2\/2)/2 > 0. There exists an integer iV such
that the right-hand side of (3.13) is ~ 1/2. Then using Octaviani inequality
and exponential inequality (3) on p. 446 of Shorack and Wellner [27], again,
we get, for each nTI N and all mn %l =Mn,

k
Ike%ﬁ.) 1; 1Yj 20 >27d7 (In2njj

p>"({I[ET,"|Anv > 21V ([7_,JAn) hizn))

20

1— Pr (< i . A
fcmnx/) rgl ZN=fc+l Ji (>27(| TIN([7 'jJAN)!11A«})
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=2PI{|l T Mon>2”V [ An)i2n})

- 17 In ((Inn)AUT) exp{ -/'(t)In2n},

where 7/(7) > 1 is defined by (3.9). Since Mn” 1—Inn/In7, inserting the
last estimate into (3.12) and summing over | we get

(3.14) nI_irrgl0 P,i" — lim M —nit/In  In*(Inn)Kj) (Inn) " 77=0.

77 N—00

To show (3.14) we were anxious to get the estimate of order (Inn)_1 f
for some e > 0 of each probability in (3.12) because the number of such
probabilities is ~ const x Inn. To estimate Pn2 and Pn$ our task is easi-
er because the inside maximum is taken over {l,...,/cn} rather than over
{kn,..., n} and kn < (Inn)Kirj. So, after division of the set {1,..., kn} in-
to blocks {2i_1,..., 2*}, we are facing a sum whose cardinality ~ Inkn/ In2
A const x In2n. Therefore, it suffices to get an estimate of order (Inra)~r for
some ¢ > 0 of the corresponding probabilities. To this aim, as above, using
Octaviani inequality in conjunction with exponential inequality (3) on p. 446
of Shorack and Wellner [27], we get

) A L2k .
(3.15) nILng0 Pn 2 5 nI|_rtr)(1b(I]JZn r(hm) '=(),

where ¢ = 722>\7/2)/4 > 0. Moreover, using again Octaviani inequality
in conjunction with Dvoretzky Kiefer Wolfowitz exponential inequality (cf.
p. 354 in Shorack and Wellner, [27]) it follows that

(3.16) lim Pn\g 1;62" lim (In2n —In7)(Inn) ,n = 0.
Now going back to (3.10), we use (3.14), (3.15) and (3.16) to conclude that
(3.7) holds. O

REFERENCES

[1] Bicker, P. and Rosenbrate, M., Two-dimensional random fields, Multivariate Anal-
ysis, Il (Proc. Third Internat. Sympos., Wright State Univ., Dayton, Ohio,
1972), ed. P. R. Krishnaiah, Academic Press, New York, 1973, 3-15. MR 50
#1327

[2] chibisov, D., Some theorems on the limiting behaviour of an empirical distribution
function, Trudy Mat. Inst. Steklov. 71 (1964), 104-112 (in Russian). MR 30
#2543. See also: Selected Transl. Math. Statist. Probab. ¢ (1964), 147 156.

[3] Csaki, E., On tests based on empirical distribution functions, Mayyar Tud. Akad.
Mat. Fiz. Oszt. Koézi. 23 (1974), 239 327 (1977) (in Hungarian). MR 57



(4]

(5]

(6]
1

8]
[

[10]
(1]

[12]
[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

M. CSORGO and R. NORVAISA

#4415. English translation: Selected Translations Math. Statist. Prohab. 15,
American Mathematical Society, Providence, RI, 1981, 229- 317.

Csorgé6, M., A new proof of some results of Rényi and the asymptotic distribution
of the range of his Kolmogorov-Smirnov type random variables, Canad. J.
Math. 19 (1967), 550-558. MR 35 #3712

Csorgé, M., Empirical processes with applications to statistics, by Galen R. Shorack
and John A. Wellner, Wiley, 1986. Review in Dull. Amer. Math. Soc. (New
Series) 17 (1987), 189-200.

Csorgé, M., Csorgs, S.. Horvath, L. and Mason, D. M., Weighted empirical and
quantile processes, Ann. Probab. 14 (1986), 31-85. MR 87e:60041

Csorgé, M. and Horvath, L., Nonparametric methods for changepoint problems,
Handbook of Statistics, Vol. 7, Ed. by P. R. Krishnaiah and C. R. Rao, North-
Holland, Amsterdam-New York-Oxford, 1988, 403-425. See MR. 90i:62125

Cso6rgé, M. and Horvath, L., Rényi-type empirical processes, J. Multivariate Anal.
41 (1992), 338-358. MR 939:60069

Csorgé, M. and Horvath, L., Weighted approximations in probability and statis-
tics, Wiley Series in Probability and Mathematical Statistics. Probability and
Mathematical Statistics, John Wilev & Sons, Chichester. 1993. MR. 94¢:60060

Csorgs, M. and Horvath, L., Limit theorems in change-point analysis, John Wiley
& Sons, Chichester, 1997.

Csérg6, M., Horvath, L. and Szyszkowicz, B., Integral tests for suprema of Kiefer
processes with application, Statistics & Decisions 15 (1997), 365-377.
Csorgé6, M. and Reéveész, P., Strong approximations in probability and statistics, Aka-

démiai Kiad6, Budapest and Academic Press, New York, 1981. MR. 84d:60050

Csorgé6, M, Shao, Q.-M. and Szyszkowicz, B., A note on local and global functions
of a Wiener process and some Rényi-type statistics, Stadia Sei. Math. Hungar.
26 (1991), 239 259. MR 93i:G0078

Csorgs, M and Szyszkowicz, B., Applications of multi-time parameter process-
es to change-point analysis, Probability theory and Mathematical Statistics
VSP/TEV, 1994, 159-222.

Darhovskii, B. S., A non-parametric method for the a posteriori detection of the
“disorder” time of a sequence of independent random variables, Teor. Vero-
jatnost. i Pnmenen. 21 (1976), 180-184 (in Russian). MR. 54 #3952. See also
Theory Probab. Appl. 21 (1976), 178-183.

Darling, D. A. and Erdés, P., A limit theorem for the maximum of normalized sums
of independent random variables, Duke Math. J. 23 (1956), 143-155. MR 17,
635¢

Deshayes, J. and Picard, D., Ruptures de modéles en statistique, Theses d’Etat,
Université Paris Sud, 1983.

Deshayes, J. and Picard, D., Off-line statistical analysis of change-point models using
nonparametric and likelihood methods, Lect. Notes in Control and Inform. Sei.
77 (1986), 103 168.

Eicker, F., The asymptotic distribution of the suprema of standardized empirical
processes, Ann. Statist. 7 (1979), 116-138. MR. 80g:62010

Jaeschke, D., The asymptotic distribution of the supremum of the standardized em-
pirical distribution function on subintervals, Ann. Statist. 7 (1979), 108-115.
MR. 80g:62009

Komlés, J., Major, P. and T usnady, G., An approximation of partial sums of in-
dependent RV’s and the sample DF. I, Z. Wahrscheinlichkeitstheorie Verw.
Gebiete 32 (1975), 111-131. MR 51 #11605b

Leadbetter, M. R., Lindgren, G. and Rootzén, H., Extremes and related properties
of random sequences and processes, Springer Series in Statistics, Springer-
Verlag, New York Berlin, 1983. MR 84h:60050



(23]
[24]
[25]
[26]

[27]

(28]

[29]

(30]

STANDARDIZED SEQUENTIAL EMPIRICAL PROCESSES 69

Mason, D. M., The asymptotic distribution of generalized Rényi statistics, Acta Sei.
Math. (Szeged) 48 (1985), 315 323. MR 87e:60042

O’Reilly, N.,, On the weak convergence of empirical processes in sup-norm metrics,
Ann. Probability 2 (1974), 642-G51. MR 52 #4367

Picard, D., Testing and estimating change-points in time series, Adv. in Appl. Probab.
17 (1985), 841 867. MR 87a:62122

Reényi, A., On the theory of order statistics, Acta. Math. Acad. Sei. Hunijai. 4 (1953),
191 231. MR 15, 885e

Shorack, (L R. and Wellner, .1 A, Empirical processes with applications to statis-
tics, Wiley Series in Probability and Mathematical Statistics: Probability and
Mathematical Statistics, John Wiley & Sons, New York, 1986. MR. 88e:60002

Szyszkowicz, B., Empirical type processes and contiguity, C. R. Math. Rep. Acad.
Sei. Canada 13 (1991), 161-166. MR 92i:60063

Szyszkowicz, B., Weak convergence of stochastic processes in weighted metrics and
their applications to contiguous changepoint analysis, Ph. D. Thesis, Carleton
University, Ottawa, 1992.

Szyszkowicz, B., Weak convergence of weighted empirical type processes under con-
tiguous and changepoint alternatives, Stochastic Process. Appl. 50 (1994),
281 313. MR. 95e:62057

(Received November 12, 1997)

DEPARTMENT OF MATHEMATICS AND STATISTICS
CARLETON UNIVERSITY

1X25 COLONEL BY DRIVE

OTTAWA, ONTARIO

KIS 5B6

CANADA

mcsorgo@meth.carleton.ca

DEPARTMENT OF MATHEMATICAL SCIENCES
INSTITUTE OF MATHEMATICS AND INFORMATICS
AKADEMIOS 4

LT—2600 VILNIUS

LITHUANIA

norvaisa@ ktl.mii.lt


mailto:mcsorgo@math.carleton.ca
mailto:norvaisa@ktl.mii.lt




Studio, Scientiaruin Mathematicarum Hungariai ‘1 (1998), 71 87

RENYI CONFIDENCE BANDS *
S. CSORGO

Dedicated to the memory of Alfréd Rényi

Abstract

Rényi’s asymptotic confidence bands for distribution or survival functions, the width
of which at each point is proportional to the natural estimator of the function to be
estimated, are shown to extend far out to small and large order statistics, respectively.
Certain combinations of these bauds are also proposed.

1. The bands

Let, X\)..., X'n be a sample of size n GN := {1,2,... }, independent ran-
dom variables with the common distribution function F(x) := P{X £ x},
X 6 R, where F(-) is assumed to be a continuous function on the whole real
line R throughout this paper. Denoting by Fn(x) :=#{1 " j "« : Xj x}/n,
x € R, the sample distribution function, Kolmogorov’s well-known result
from 1933 is that

p{ yfr sup IFn{x) - F(x)\Si/) =K(y) := 1+ 2
I X6R J fc=l

for every y > 0. where an unspecified convergence or asymptotic order rela-
tion is meant to hold as n —oc everywhere in the paper. In 1949, Doob iden-
tified K(-) as the distribution function of the random variable sup*”j |i?(s)],

where {B(s) :0” s~ 1} is a Brownian bridge, a sample-continuous Gaus-
sian process with zero mean and covariance E(B(s)B(t)) = min(s,t.) —st,

0Za,tZIl. Thus, letting —A denote convergence in distribution, Kol-
mogorov’s theorem may be written as

x/n sup IFn(x) - F(xX)\ -A  sup \B(s)\.
iﬂg (x) - F(x) OSsF(_);]I (s)
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25732.
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72 S. CSORGO

Let i/a > 0 be the unique number for which K(ya)= 1—a, where a G (0,1) is
a fixed number throughout. For testing simple goodness of fit or for estimat-
ing the unknown F, the resulting statement for the Kolmogorov confidence
band is that P{F(x) G [Fn(x) —ynn~*/2,Fn(x) + yan~¥2],x GR} —1—a.
The corresponding half-sided asymptotic confidence lines were derived by
Smirnov in 1939.

Twenty years after the publication of Kolmogorov’s theorem, dedicating
his paper to Kolmogorov’s fiftieth birthday, Rényi [12] proved that for each
fixed p G (0,1) and all y > 0,

sup X -F{x)
FO)-g\-p | —F(x)

where <X stands for the standard normal distribution function, and

@ 29)(y) =L

\Fn{x)-F (x)\

(2 sup 1—F(x) L(y),

where
4an  (h*  (kH)2R

L(y) m==
t k=02k +1

These are in fact the right-tail versions of Rényi’s Theorems 5 and 6, motivat-
ed by the problem ofestimation of the survival function 1—F(x) = P{X >x},
igR, The (extended forms of the) corresponding, mathematically equiva-
lent left-tail versions are in (5) and (6) below. Rényi’s paper [12] has been
eminently influential in the directions that the development, of the Hungarian
school of probability and mathematical statistics has taken.

Exposing the statistical idea behind (the left-tail versions), Rényi [12]
writes:

Kolmogorov’s theorem considers the difference \Fn(x) —§F(c)| with the same
weight, regardless to the value of F(x)\ so e.g. the difference |Fn(x) —F(x)\ —0.01
has the same weight in a point x with F(x) = 0.5 (where this difference is 2% of
the value of F(x)) as in a point x with F(x) = 0.01 (where this difference is
100% of the value of F(x)\). We can avoid this by considering the quotient
|[Fn(a) —F(x)\/F(x) instead of \Fn(x) —F(.x)|, that is to say, bv considering the
relative error of Fn(x).

The resulting left-tail theorems then yield simple goodness-of-fit tests for the
hypothesis that the underlying distribution function is indeed F(-):

The character of these tests consists in that they give a baud around F{x) in
which, if the hypothesis is true, the sample distribution function Fn(x) has to lie
with a certain probability and the width of this band in all points x is proportional
to F{x).
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The results are also stated and discussed in Rényi’s textbooks, see for exam-
ple Chapter VIII, 810 in [14], his last book.

Alternative, asymptotically equivalent tests result from replacing the
weight functions F(-) and 1- F(-) by F,(-) and 1-F (I(-) in the denomi-
nators of the test statistics for the left-tail and right-tail tests, respectively.
That these replacements can in fact be doin' was pointed out by M. Cso6rg6
[2] along with several other variants. In his rejoinder to the developments
inspired by his 1953 paper in the ensuing fifteen years. Rényi [13] himself
has indicated an easier way to do this. Also, reducing Rényi’s results to ap-
plications of Donsker’s weak convergence theorem for the empirical process,
M. Csorg6 [3] obtained the two limiting distribution functions in (1) and (2)
above as the distribution functions of the random variables supO<t<j W(t)
and supO<t<j |W (f)|, respectively, where {W(t,):t. *0} is a standard Wiener
process, a sample-continuous Gaussian process with zero mean and covari-
ance E(W (.'"))W()) = min(s, f), s,t* 0. (See also p. 165 in [6].) In what
follows {IV*(f) :t ~ 0} will denote another standard Wiener process, inde-
pendent, of {W(t) :t” ()}. A great amount of sophisticated work went into
the determination of the exact distributions of Kolmogorov, Smirnov and
Rényi-type statistics. A unified theory of this held has been given by Csaki
[1], where the relevant references may also be found; references mentioned
but not specifically given in the present paper are all included in Cséaki’s list
of 109 items, or in [6].

The price Rényi’s theorems pay for the consideration of relative errors
is that they exclude a whole fixed proportion p of the sample from analysis
even asymptotically, or 100/;%, either the smallest or the largest observa-
tions. It is not. possible to extend the supremum to the whole support of
the distribution since by a classical theorem of Henry Daniels from 1945, for
every sample size n GN,

P L forally~ 1
\%

(Note that Rényi [13] gives a half-page proof of this, based on his represen-
tation of order statistics, which representation is at the heart of his method
in [12].) However, taking the limit in the corresponding exact formulae of
his, Cséki [1] was able to show in his Theorems 2.8 and 2.9 that (1) and
its left-tail version still remain true if p is changed to pn G (0,1) such that
pn—>0, provided npu—oc.

As one of the easiest applications of the weighted approximations de-
scribed in the next section, it was proved in [4] that if  }J4j is a sequence
such that 0<  £p for some p G(0,1), for all n GN. and npv —00, then

(€)) i/
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npn
4 su sup |w (t)],
@) /1—Pn F(.x)gﬁ)—p,, I-F(x) 0<|£1| Wl
- S0 gy p PR Y p we,
[-'Pn PIEF(x) F(X) ogtgl
6 _npn. s \Fn(x) - F(x)\

u sup_ [VE*(i)|.
1- pn pnIFFEx) F(x) ogigi | O
If pn = p. these give Rényi’s theorems, the case pn-40 in (3) and (5) are
Cséki’s results. To make the present paper self-contained, the proofs of (3)
and (4) are given in the next section; the inclusion of these makes it easier
to present the proofs of the main results. In addition to the individual
four convergence statements in (3)--(6), Mason [11] has shown that these
statements hold in fact jointly if p,, -4 0. The reason for the asymptotic
independence of the left-tail and the right-tail statistics is the fact, as his
proof reveals in an exact fashion, that the maximal deviations in (3) and (4)
occur for F(x) near 1—pn, while in (5) and (6) for F(x) near pn, and ifpn —0
the extreme order statistics determining these suprema, taken close to pn and
to 1—pn, become sufficiently remote to yield asymptotic independence. A
version of the argument is in the proof of Theorem 1 below.

The “continuity” in the results in (3)-(6) is remarkable: the smaller pn
is, the larger is the stochastic order of the largest one-sided and two-sided
deviations, but the distributional limits remain the same as long as npn -x oo.
The condition that npn —00 is necessary for the latter: the second parts of
Cséki’s [1] Theorems 2.8 and 2.9 show for the cases (3) and (5) that while
the “continuity” concerning stochastic order still holds even when pn=v/n
for any fixed v >0, as expected in view of Daniels’ result above, the limiting
distributions change drastically.

Simple goodness-of-fit tests may be built on the test statistics in (3)
(6) as before; in fact they all become consistent when pn—0. However, if
a null hypothesis does not specify F (and, for various well-argued reasons,
simple goodness-of-fit tests do appear to have been abandoned in statistical
practice in the last two decades or so), then the statistics in (3)--(6) are not
determined. In particular, confidence bands for 1—F or F can be constructed
only on intervals determined by the observations and not the unknown F.
The question is whether the same results can be retained when the one-
sided and two-sided maximal relative error of Fn is taken over the set {x:
pn 5 Fn(x)} rather than {x :pn” F(x)} in (5) and (6), and when the maximal
relative errors of 1—Fn are taken over the set {x :Fn(/;) 0 1—pn}rather than
{x :F(x) ~1-p,,} in (3) and (4). When pn=p, this is easy to do; in fact the
very first step of Rényi’s [12] original proof is to show that the two kinds of
results are equivalent. However, it is far from obvious whether this is true for
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all sequences {p,,} such that pn—0 and npn—00. The aim of this paper is
to pay tribute to Rényi's memory by showing that the answer is affirmative,
and hence the construction of extended asymptotic Rényi confidence bands
is in fact possible.

It is more suggestive from the statistical point of view when confidence
bands are drawn on intervals determined directly by the order statistics
Xim”™ A XU, of the sample X\,..., Xn. This is why we state the main
results in the form given below. Also, some recent results for confidence
bands with censored data are formulated in a similar fashion in [7], so that
comparisons will be the easiest this way. The theorem determines how far
out Rényi confidence bands hold.

THEOREM 1. Let, {kn}ff=l be a sequence of integers such that \1fkr,<np,
n |/p, for some p € (0,1) and kn—00. Then the six convergence state-
ments

Fn(x)-F(x) y

7 sup sup W(t),
) rMXnk n 1- F)y OSth)]I ()
8) Kn inf Fn(x)-F(x)

y . :
1 %j_ *gA'n_t » 1- F(X) Olg%l wit),

kn Fn(x) - F(x) V
© B x-i)%H_k . 1-F,,XX) S’Si& W(t),
i e PN FOO P
> Cw ™ Te oMY
kn \Fn(x)-F OO\ p
\W(D)\,
(11) L ar=’3rl1]£)kn, 1~F(x) oo (t)
12 n WFn(O-FOON P i)
1-/\|’A-.:,.,, 1-Fn(x) Ogtgl

take place jointly. Also, the six convergence statements

Kii Fr{) - FOO Vo w ),

(13) I-r0- J?Kk F(X) 0<l.<\
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N
(15) — R st VR
(16) L Xg‘j\i,‘;.nF”(XFi;(;(x) P inf, W),
(17) [1m sup F,,(3F){;()F(X)1 s W.(0)] |
(18) sup LCOFEL w

w.(i
M=+ 5 F..(x) SgiP‘l W

take place jointly. Furthermore, if ku/n —0, then all twelve statements hold
jointly.

Let > 0 be the unique value for which L(za) = 1—a. Linearly in-
terpolating between neighbouring values of the table in [8] and rounding
off to three decimals, we have zo.oi = 2.806, 20.03 = 2.433, z0.05 —2.241,
20.07 = 2.108, zg\ = 1.960, 20.15= 1.780 and z02 = 1.599, for example. Let

fe, («):=1- Z and < fe >):=1 + 2

Then, for survival functions, (11) implies that

1_;_Fn_(x) N1-F{X) g 1__Fn7(7x_) , XSXn-knu}->1- a
Infe, («) bife,, («)

and (12) implies that
F{c~kn(a)[l - Fn(x)]g1- F(x) gct+kn(a)[l - F,(.N], *g }->1 - a.

Notice that the lower boundary of the first band lies everywhere above the
lower boundary of the second band, while the upper boundary of the sec-
ond band lies everywhere beneath the upper boundary of the first. This

fact suggests to consider the inner envelope band NI ''(s) :=[{! —F,,(9 )}/



RENY! CONFIDENCE HANDS 77

cn,kn(a)'enk,, (“){! ~ "~ h()}] for the survival function 1- F(-). (ldeas of this
sort appeared first in [9] for estimation under censorship.) The same phe-
nomenon occurs for the corresponding bands [Fn(-)/c”kt(a),Fn(-)/c k (a)]
and lenkn(a)Fn{-),cJ kn(a)Fn{)} for F(-), resulting from (17) and (18) and
both having asymptotic coverage probability 1—a on the half-line [X*w 1, 00).

The suggested uniformly narrower inner envelope band for the distribution
function F(-) is then

Fn() MFnO)

That the idea works is the first statement of Theorem 2, in (19) and (20)
below.

For each x » X n-kn,m the width of the band In~1\x) is {1—n(x)}
and, for each x  Xkn<n, the width of the band jj/d(x) is d*knFn(x), propor-
tional to 1—Fn(x) and Fn(x), respectively, where d*l :={(c+k, (a))2—1}/

cnkn(o)- Of course, NI 1”{-) can also written as a band for F(-) rather than
for 1—F(-), namely as

1- @k @{-F.O30- )

Then In 3) is expected to be good for large 3’s near Xn-kn,n while Jn \x)
for small x's near XknJi- Indeed, for any cn > 1, simple algebra shows that
1-cn{l-Fn(x)} <Fn(x)/cn ifand only if Fn(x) <cn/(l +cn), and 1-{1-
Fn(x)}/cn” enFn(x) if and only if Fn(x)  1/(1 +cn). These facts explain
the choice below of the lower and upper boundary curves of an all-purpose
two-sided inner envelope band combined from the previous two combined
bands.

To introduce these curves, using again the function L(-) in (2), let zx >0
be the unique value for which L(z*) =\/l —a. In comparison with the values
of za above, note that Zq0, = 3.025, ZgB = 2.671, Zq0b—2.495, Zg 07 = 2.369,
zh =2231, Zq15= 2.064'and ZQ2 = 1.937. Then set '

nkn(@) =1+ z*

and let Fn 1(s) inf{3;€ R:Fn(x) " s}, 0< s” 1, be the sample quantile
function, so that F~1(s) = Xj<hif * <sg £, j=1,....,n, ir“10) := X hn.
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Then the lower and upper boundaries will be

Fn(x) VT -if c».kJa) \
, XkiMix<F, LW e h1j«))"
4%» == F-1{ &
TR 5)) Sws sn-*nn >
and
Cn,kn @) ) N=x< - *Qi”ﬁ'm(ﬁ)/) >
1_ 14, (- —+___ 1V
- c*_ﬁn(aa)) ; lpn VI+cnA,@@)) =X= >

noting also that both c¢* fan(a)/[1 + c*ifon(o;)] —=1/2 and 1/[1 + 1 kn (a)] —=1/2
under the condition of Theorem 1 on {kn}, for every choice of a G(0,1).

THEOREM 2. Let {kn}f=I be a sequence of integers such that 1~ kn ”* np,
n ii 1/]), for some p G(0.1) and kn—00. Then

199 P113 A FE(x)Ac+kn ()1 - Fn(¥)], X g M2
on k.\a) J

and

(20) P Xk, ,n"x >->1—a .

Furthermore, ifkn/n—¥0, then

@) p{4t®*Srw Stfi, (). -it,»SIS X, 5, }->1-a.

Of course, the factor  (n —kn)/n can be replaced by 1everywhere when
kn/n —0. However, we prefer to keep it because its presence unifies the
results, narrows the bands somewhat and, as the proofs show, makes the
asymptotic approximations more natural. In some statistical situations it
may not be natural to discard the same number of lower and upper ex-
tremes. If 12 mn<n—Xk,, < n for integers mn —>00 and kn-» 0o such that
both mn/rt—0 and kn/n —0. then the twelve joint convergence relations
in (7)- (18) remain valid if everywhere in (13)- (18) we replace kn by mn.
Consequently, a suitably modified form of (21) for the combined band also
remains true on the interval [Xm<n, Xn-kn,n]i in which the *“change points”
of the two boundaries depend on both ¢hrrinfa) and ¢* (a).

Mason’s [11] asymptotic independence result mentioned above appears
in fact in a more general context. He extended (3)-(6) by allowing weight
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functions more general than 1—F(-) and F(-). For example, when pn-»0
and npn—¥o00 he shows that

\Ifh) EAETE S

np,i 1 \Fn(x)-F(x)\ p \W(t)\
1- Pn FEJ-P [L-F{x)]* 0S 10
npn 0-i Fn(x)-F(x) Vv W.(t)
1-Pn Fw 0Ssi
np,, Y- i \Fn(x) - F()\ v \W.(E)\
1-pj FSW in%)* oSl <

hold jointly, for any constant. 0 6(1/2.1]. (Subsequent results and refer-
ences in this direction are in Sections 5.1 and 5.5 of [5].) Mason [11] also
proves that if we assume only that 0 <pn” p, n 6 N, for some p 6 (0,1) and
npn-» 0o, then the first two joint, statements here remain true provided the
extra factor [F(:c)]1 fl is included in the denominators and the last two joint
statements remain true provided the extra factor [1 —F(.t)]1 o is included
in the denominators. Starting out from these generalizations instead of (3)
(6), every statement in Theorems 1and 2 has a natural generalization which
reduces to the present one when 0= 1

Typically, the bands in (19) and (20) will be uselessly wide on the left tail
and on the right tail, respectively, for the usual nominal coverage probabili-
ties such as 1—a = 0.9. This will happen even for .x’s for which Fn(x) «1/2
if we want to go far out on the tail of interest, that is, if kn is chosen small.
Of course, this will be even more so for the middle portion of the bands in
(21). Rényi bands are for tail estimation. For that purpose, the flexibility
in the choice of kn is a real advantage. It will be of interest to determine
by an extensive simulation study what combinations of the sample size n
and the choice of kn make the actual and nominal coverage probabilities
acceptably close, what is the direction of their deviations, and whether the
weight functions [1—F(-)}° and [F(-)]0 for 06 (1/2.1) are statistically useful
in these questions. Since all the bands are distribution-free for any finite
sample size n, as will be made clear in the next section, only one such study
is needed. A student of mine will look into these problems*.

2. Proofs
For a sequence {£n}5iLi of random variables and a sequence {unl”Li
of positive constants we write = Op(an) if lim~oo limsup”” P{|",| >

Z. Megyesi, Coverage probabilities of Rényi confidence bands, this volume, 317 332.
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yan} = 0, and write (n—op(an) if lim,,_>0P {|£n| >ya.n} =0 for every y > 0,
that is, if n/an — >0. The proofs will use a specially constructed probabili-
ty space (fi, A, P) that carries a sequence U\,U-2,... of independent random
variables uniformly distributed on (0,1), with order statistics U\tU” eee §
Un,n pertaining to U\...., Un for each n 6 N, and a sequence 2?i(), B2(¢),...
of Brownian bridges such that if Gn(s) = #{1 fs | n:
Uj =s}'n and un(s) :=inf{i G[0,1] :Gn(t) ~ s}, 0N s 1, denote the corre-
sponding uniform sample distribution and quantile functions, so that Un(s) =
Uk,n for <sh k=1,...,n, and Un{0) = Cl/gn, then for the cor-
responding empirical and quantile processes an(s) := y/n[G,,(.s) —g and
Bn(s) := \/n [s—Un(s)}, 0~ s 1, we have

wup 125 QUERCU Gl 1N i (0 JAIR) @l 4 LA
O<s<l [«(l-a)!*“7 A<a<j_A f«(l —»)l&-A Kn® s

for all fixed 7 G(0,1/4), 6 G(0,1/2) and A> 0. This construction was ac-
complished in [4]. (That the first supremum can be extended to the whole
(0,1) was pointed out in [10].) Note right away that under the conditions of
Theorem 1, from the second relation.

(22) and

where Op(I/kft) =op(l) as kn—00,

g 1- $(:c) = #(-.77)

for every n GN and 7.> 0.

Since {Fn(x) :x g R} = {Gn(F(x)) :x GR}, the distributional equality
meaning the equality of all finite-dimensional distributions of the two pro-
cesses, the continuity of F(-) implies that all the statistics in (3) (6) are
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distribution free. Furthermore, introducing the quantile function F 1(s) :=
inf{ir£ R :F(x) sis}, 0< s™ 1, F-1(0) := limgo F~I(s), we also see. for the
left-hand side of (7), that

Fn(x)-F(x) v G.,(F(x))-F(x)

W R sup 1- F(x)

G,.(.S)-.S
sup
O0gagi/,,_fcnB 1-a

for each meaningful rt; in fact the equality in distribution holds jointly in n,
but we do not need this in the paper. It is clear then, in exactly the same
way, that all the statistics in (7) (18) are distribution free. Thus we may and
do assume in the proofs below that the underlying distribution is uniform on
the interval (0,1). It is no loss of generality, either, to assume without further
notice that we are on the special probability space described above and. in
particular, our statistics arc based on the Uniform(0,1) order statistics for
which the approximations above hold.

PROOF OF (3) ((i). As was stated already, this proof is from [4], where
the left-tail versions are detailed. Choose any 76 (0,1/4). Then we have

sup np,, Gn(s)-s Pn  Bn{s)
D, 1- pPn 1-5 1-pn 1- s
Pn Sup «n( ) Bn{;S)
Pn Ogsgl-pn 1-2 1-s
) < Pn sup 1 - su |0,i(s) —B,,(s)
1-pn pngl-~1 (1-s)i+1 Ogsgl  (1-S)2
v/1-V Pﬁ'-',+7 Vi J
=0,"(("y) =0
But since

for each n GN, we also have

Pn Bn(s) v = sup W(1)

su su) w o °n
P 1-pn 1- a @sg]_f.p” 1- pnl- s 0<<< |
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and

su P fLiGs) v sup = sup \W(t)\.
OnNigl-pn  1-Pn 1- s O"sfzl—n OMs1

These imply (3) and (4). The proofs of (5) and (6) are completely analogous
and are formally given in Section 4.5 of [4]. O
The proof of (9), (12), (15) and (18) in Theorem 1requires the following

Lemma. If the sequence {kn}@Ll satisfies the conditions of Theorem 1,
then

sup 1-s W and  sup
ogsgl/, 1—Gn{s) fan.n"a1 Gn(s)

Proof. Let eG (0,1] be fixed. Then by the simple idea in 83 of Rényi
[13],

1—s
P{,..3P - 1>£
0gsgt/,,_fenn 1- Gn(s)
1 — S
=1-P< -£< - 10
1—Gn(s) 1%E, O

=1-P<-A—<1 .GY9- 1g YZTI 0~S=

<1-P{-1gl-vG ~ -1~ 0Zsxun-knn

_p sup 1—Gn(s) S
®=s=Un-i,n,n 1-s

<P sup 1-Gnd) ;5. 4p >1-q-5
orsgl-r/kn - 1-s a

and similarly,

G.,(«)
su - 1 >EP<f su -1
VKnno&Yd Gu(S) ’ P > P *p-

for every qG(0,1). It can be seen in several different ways that the second
terms in the upper bounds go to zero (in fact, for each q G (0,1), they are
not greater than e~Cgk'l, for some constant C( > such that lim”o C( = oo:
cf. (4.2) and its proof in [7]). The equivalent statements that the first terms
in the bound go to zero for all g G(0,1) are well known. This was first
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shown by Chang Li-Chien in 1955; perhaps the easiest direct proof is in [16]
Theorem 0.

Proof of Theorem 1. Put, p,, :=kn/n, n p\/p. Tlien pn <p for the
p G(0,1) in the condition and npu-> 0o, while s/k"Jn = \/pu/n —0. What

we have to show to prove (7), (8) and (11) is
(24) Pn [cx(-m0) 2z

sup
1~Pn ogSal/,,_*.... 1~ a
where flzji :=z, [z]-) := —2 and [zja := \2\ for z GR.
Exactly as in (23), for any fixed 7 G(0,1/4),

sup [W(t)]t, 1=1,2,3.
0</<I

P g M0 BN P
1-Pn Ois$Un-knp 1- S 1-6°
Since for independent random variables ..., each having the exponen-

tial distribution with mean 1, we have 1/[1 —t/n-fcnn] = [Y\ + eee+ Yn+1]/

[yn_forl + -—--hf,,] for each n, we see that p£/[l-t/n-fc,,,n]*+7 = OP(rP/ k"),
and so the whole upper bound is Op{\/kn) =op(l). Hence, to prove (24), it
suffices to show that

(25) Pn sup [fl»(s)1/ T, sup[W (i)],, f=1,2,3,
1-Pn 0OgsgUn-knn |*“ « Oatal

for the special construction.
For every y * 0 and x > 0, and for any of L =1,2,3, we have

P< Pn sup iBn(s)}, Uy)-P\Un-k, kn ., Vkn
A P'10ésifl-p,— A n
<p< PN sup  E<C 4y
1 Pn ogsgt/, -S
<< sup BN voipe un s 1M

for all n large enough that make x * yjn/pu and x\Jn/pn% 1—pn. Since

Pn sup [Bn(s)l V sup W Pn 8

N QsiX-pnxxr/pn/in N S Ogsgl-p,, «x yjpn/n Nn A

1+ -*- ! vn

=supUW (DIt:0 A — ‘r; v

—sup{|W()]];:0" i~ 1},

AV >



84 S. CSORGO

where the last convergence is almost sure by the sample continuity of W(-),
and since the distribution function of supo<t<j\W (i)]/ is continuous for every
I —1,2, 3, the right-tail part of (22) implies that

P sup [W(D\E idim infP PN sup [9»(s)L
Soigy V(DY n—>00 on o T 1-
AMimsup P /-P1. sup [ECCOL
n—00 Vi Ppn <fséat/,, knn 1~ 6

<p sup [W{t)].£y\ + $(-2)

for every y~0and x >0, /= 1,2,3. Now (25) follows upon letting x —>00.

Thus (7), (8) and (11) are now proved. The Uniform(0,1) versions of (9),
(10) and (12), respectively equivalent to (9), (10) and (12) themselves, follow
from (7). (8) and (11) combined with the first statement of the Lemma. That
the six statements hold jointly is clear from the structure of the proof.

The proof of the left-tail versions (13), (14) and (17) is completely anal-
ogous, or mathematically equivalent, to that of (7), (8) and (11), while (15),
(16) and (18) follow again from (13), (14) and (17) and the second statement
of the Lemma. It is again obvious, then, that (13)-(18) hold jointly.

To prove the last statement concerning asymptotic independence in the
case when kn/n —0, for j = 0and j = 1, set

TIPSl ) d = 8 ,
©=y 1ene 8 ©) Vi1 GM)

where Gi*(s) =5 0GsG 1, and Gn\s) = Gn(s), 0fi s~ 1, for all n ~ 1/p.
The six convergence relations

VI+'>:=  sup ) v sup [W'(t)l,:=U, 3=0,1; (= 1,2,3,
0%"U,,-k,,.n Qg

holding jointly, and the six convergence relations

sup [>0,W7], © «p iw,(i)]i:=vr .7=0,1; /=123

also holding jointly, represent (the Uniform(0,1) versions of) the six state-
ments in (7)-(12) and the six statements in (13)-(18), respectively.

Now let {mn}£Lj be a sequence of integers such that 1%kn <m.n <n for
each n”~ 3and mn/n =0, but mn/kn—o00. Introduce

Y@ sup j=01; /=123,

A —ina,n=*= n-kn,
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and
wnef£X = Sup (O (*)!/, j =0, i; /= i, 2,3.

Then, for all the six cases from j =0,1 and Z= 1, 2,3,

(26) I Awrtfin- Vi < J ﬁnV/\:o(I)Op(I)zoP(I)

by (11) and (12), or, what is the same, by the cases j =0 and j = 1 coupled
with 1 = 3 in the first, group of convergence relations above, applied with
{mn} replacing {kn}. Similarly,

tq’],r(r{),mn' Wl{!'kn']-A o, j=o,1;1=1,2,3.

Therefore, since

Vot 2y L VIB) A(V,.V4.K»V,V,K,). =V inRP
and

W, fe, ;= « 1 , eee t01i,.) M*. *2>Vi, V* T;, V¥) =: V* in R6,

and what we have to show is that the convergence in these last two relations
is in fact joint, where V Y \#and V and V* are independent, we also have

j T/l d(6 vV .
: n.kn,mn ._( *(n,)fe" m,, Teee> "(n’z(” ’m”{] V In R 1
and
A A .
W kn,mi L nfe.mn ™ " Wiknm.y V¥ inR6.

Note that the vector Vnk,,m, % a function only of the upper extreme order
statistics Un—m,,,meseeeUnin while the vector Wn mm is a function only of
the lower extreme order statistics UiiU ..., U,,InJL Thus, since rnn —00 and
mn/n —0, Satz 4 of Rossberg [15] implies that the random vectors Vnfmmm
and Wrefmm,, are asymptotically independent. But since we have already
established that

(v, BB- V,fesmdwlitn- W, , )A (0,...,00£R12,

the random vectors Vnkn and W,,kn are also asymptotically independent,
that is, (VBfg, Wn*n) A (V,V,) inR12 O
Proof of Theorem 2. Setting
kn  Fn(x) - F(x) kn  Fn(x)-F(x)

d , o =
C?I,fe,, (®) - l_ (y(’ 1- F(X) an pn kn(‘.) l_% . 1_ F n{X) ’
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the left-hand side of (19) is
{—Gk, (7) =zai x = xn—knn}F {Pnk, (X)=zcn x =X n-kn,n} }

=P\ {-za$S inf ~ Qkn(® f Xi \
(E{ 2a *§Al,r,]_fmin all )} n IxA)?#-pkn.n pXi () <Za3J

P{{- S, M M)} {«SI, W,) }}

P W (i)|g*4 = L{za)=1- a
{os<“i3|| ()lg ! {za)

by a joint application of (8) and (9). The left-tail statement (20) follows
from the joint validity of (13) and (16) in the same way.
Finally, introducing the events

={ rkmas S L M s<*.m)[ - Ewi
and

Bn,kA*) -2# ankn-E AF(x) T ykn(a)Fn(x)
the left-hand side of (21) is

Pn P {{Antlh(x)i Xkn,n=x = Xn-kn,n}H{Bnk,, (x)i “kn,n=x = Xn—k,,,n}}
by the argument motivating the introduction of the band in question. Since
P{ArkJIx), x <Xkndl} ->1 and P{Bndkt(x). x > -» 1

by (26) and its left-tail analogue, using the proof of (19) and (20) above we
see that

Pn sup \W(t)\Ez*a, sup \W.(t)\£z* =L2«) =1-a
ostsl

by a joint application of the four statements in (8), (9), (13) and (16). O
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RANDOM FRACTAL FUNCTIONAL LAWS
OF THE ITERATED LOGARITHM

P. DEHEUVELS1and D. M. MASON?2

Dedicated to the. memory of Alfréd Ranyi on the occasion
of the 75th anniversary of his birth

1. Introduction and statement of main results

We shall establish random fractal versions of CInmg-type functional laws
of the iterated logarithm [FLIL] for the local oscillations of the Wiener pro-
cess. In the process we will disclose a general scheme for evaluating the
Hausdorff dimension of a large variety of random fractals which arise from
local [FLIL],

Let {FF(i):t*0} be a standard Wiener process, and (Co[0,1],£Y) denote
the set Co[0,1] of all continuous functions / on [0,1] with /(0) = 0, endowed
with the uniform topology U generated by the sup-norm ||/|| := sup |/(s)].

For any / £ 6 q[(),1], we set
)

when / is absolutely continuous on [0,1]

\f\ti =
' with 3= df
as

oc, otherwise.

Further, introduce the following subset of CoJ[0,1], called the Strassen set of
functions,
S={f€Co[0,1]: \f\n =1} m
For use later on set log2 u = log+ log+ u with log+u = log(a Ve).
The Strassen [21] functional law of the iterated logarithm [FLIL] for W,
formulated in this notation, asserts that, with probability 1,

1.1 Ihn jnf ||(2Tlog2T)~1"2W(T-) —/|| = 0.

(L) hn inf [|(2Tlog2T)~1"2W(T-) —|
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and, for each / ES,
(1.2) Iil'm*i(%f [|(2T log2T)-"2W(Tm- / 1=0.

We shall next discuss analogous FLIL for the increments of the Wiener
process. Towards this end, we introduce for each t~ 0 and h”" 0, the incre-
ment function of s £ [0,1]

(1.3) £(/i, T; ) = VF(i + i) - W{t).

Recall the Levy modulus of continuity theorem which says that with proba-
bility one

(1.4) lim iR o Sy (2fillog(/»)])-1/2|C (M ;«)| = 1.

De Acosta [7 (see also Révész [19], Mueller [17] and Dcheuvels and Lifshits
[9]) proved a functional version of the Levy modulus of continuity theorem.
Namely he showed that as h f O the class of functions

(1.5) {2/ 1og(D)-1/21(/i,i; +): 0~ ti 1- h)

converges with probability 1 in the Hausdorff metric to S. Moreover, de
Acosta [2] established that for / £S satisfying \f\u <1, with probability 1,

lim inf_[|log(/i)| x ||(2/i| log(/1)|)~12E(/i,f; &) —||
Aog\ Hoogtgi

=2-1/21™M2 (1 - (N|ly) 12,
where 77 = #2/8. Setting / = Uin (16) yields an earlier result of Csorgé and

Révesz [7].
Now, for each f ES, let T>uU) denote the set of all t E[0.1] such that

(1.7) limyinf 1(2h] log(fe)))“ 12i(/b %9 - /11 = 0.

Deheuvels and Mason [10] showed that, with probability 1, the set T>u(f) is
a random fractal with Hausdorff dimension
(1.8) dim T>u(f) = 1—1/1/7e

Recall (see e.g. Falconer [12]) that the Hausdorff dimension of a subset E of
[0, 1 is defined by

(1.9) dim E —inf {c>0:sl —mes E = 0},
where sc—mes E denotes the .s'-measure of E equal to

(1.10) sc- mesE = liminfj ™ \j\c:EQ[J Ij, \lj\"*e jEJ]j,
jed jed
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In words: the infimuni in (1.10) is taken over all collections {1j :j GJ } of
closed intervals with lengths wijy  €for all j G.7, and such that e ¢ (J.Qy 1y

For each / GS and c> 1, let Sy(f,c) denote the set of all t G[0,1] such
that

hminf [og(/i)| x ||(2/i] log(/t)]) L2E(/t. /; ) - /||
(111, 740
Ne2-U27102(1-1121)-12.

Orey and Taylor [18] stated in their remarkable paper that in the particular
case when / = Q,
dim <9y0,c) = 1—c-2 as..

(See e.g. (6.11) intheir paper.) Our first main result is the following theorem,
which determines the Hausdorff dimension of Su(f. ¢) foranyc> land / G<S
satisfying W\\H< 1

THEOREM 1.1. Let, f GS satisfy \f\u < 1. Then, for any ¢ > 0 with
probability I,
(1.12) dim iS)y(/,c) = 1 —/|2)(1 —c-2).

In the process of proving Theorem 1.1 in Section 2, we shall develop a
general scheme for establishing results like (1.12). Related results that can
be readily obtained using this technique are described in Section 3.

2. Proof of Theorem 1.1 and related results
2.1. Preliminary facts and notation

We keep the notation of Section 1. The following facts will turn out. to
be essential to our proofs.

Fact 1. For any C>0, we have almost surely

lim su

sup (2allog(a)|)-1/2|W(t + u) —W(@)| = 1
<4°0gtgco p (2allog(a)l)-1/2|W( ) 0]

This is the Levy [16] modulus of continuity theorem for the Wiener pro-
cess (see e.g. Taylor [22]).

Fact 2. For any f GS with f \u <1 and for any r > 0, we have
im A*2log PdIA-1W - /|| » A-2r) = ~ e ’Z\|/|W
r*

This is Theorem 3.3 of de Acosta [1].
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2.2. A subsequence argument

We shall make use of the following discretization scheme. Let 7 > 0 be
an arbitrary constant whose value will be chosen later on. For each nt 1,
set hn=n L Denote by [uj » u< |uJ+ 1 the integer part of u. We set for
each n't. 1,

Mn :=[1/(hn(\og(hn)\)-K)\,
and for each *=0,1,..., Mn,

Si7.= *An(llog(/»,)]) A,

where K t 3 is arbitrary but fixed. We note for further use that, for any
t £ [0,1], there exists ani € {1,..., Mn} such that \t—s;u|” hn(\ log(/?,,,)])_A.

LEMMA 2.1. We have almost surely

(2.1) Jhgy . log(fii+1)[)12i/n = 0.
where
Un— IBex sup sup i, T, - £),, s OF

[t-Si,,g/4n( log(ft,)])-A hn+l<téh,,

PROOF. Recalling the definition (1.4) of £(/i,/,;*), we first observe, via
the triangle inequality, that

Un %2 su su W(i +u)~ W{t)l
Gy ooy W+ u)= Wi
where a’i := fi,(| log(fin)|)_A + ()),,, - /i,,+i m Now our definition of hn =n~7
ensures that, as n —00
hn-hn+l=@+0(1))7?r7_l =o(/1,,(|210g(/l,,)])~A) =

Therefore, by setting a" = 22n(log(l//in))_A we see that for all n sufficiently
large
U, 2 sup sup IW(t. -Fit) —W(t)\.
07/72 07u7a"

Applying Fact 1, taken with C = 2 and a=a", we infer from this in-
equality and K t 3 that with probability 1,

t/,=0 (k iiog«)D12) =»(/.:/2(i0g(l.,)iri/2) ,

which gives (2.1). u
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2.3. Upper bounds for the dimension of the exceptional set

The following lemma yields the upper half of (1.12). (This is the easy
part of proving results like (1.12).) Its method of proof based on computing
moments is readily adapted to other situations. See for instance the proof
of Theorem 1.1 (i.e. (1.8) above) in [10].

Lemma 2.2. Let f ES satisfy |/|/./ < 1. Then, with probability 1, for
any c¢> 1,

2.2) dim Su(f,c) A~ (L —/|/)(1 —c-2).

PROOF. Fix an arbitrary e > 0, and choose any 7 > 1/e. Keeping the
notation of Subsection 2.2, we define Y)>n for i = 1 to be 1or 0
according as the random variable

log(/in)l x ||(2/in]|log(/i,,)|)-V2£(/i,,, - /||
ge(i + B (W2)Li-|/1/f)" 12
or not. Making use of Fact 2, we have uniformly over i = 1 as
n —00,
P(Yin=2)=P(YI,n=2)=P (|| - I S~7
(2.3)

—exp flog(/Iny |1 - |1 - 22722} 1/in)+°(1)})

Consider now the (possibly empty and at most, countable) collection
{ij:j €J} of closed intervals of the form [sgn —I'm ai.h+ hn] for which
Yin--1 where n 1and 1~i” Mn. Set

E=D{lj:j€J},
and
d=2+ <1— 2
ab ) @ v

Introduce the (possibly infinite valued) random variable

jed

where (¢ is defined to be 0 whenever .7= 0. Obviously, we have

(2.4) EZ=Y.Mn(2hn)sP(YUn=1)=:]T un
nS1 nMl
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Note that, as n -4 oo,

Mv = [I/(hn(\Mog(An)|)-A) = exp((I + o(1))|log(/in)]).
Thus we infer from (2.3) and (2.4) that for all large n

un=-exp ({2e + o(l)} loghn) <he=n~n.

Since our choice of 7 > 1/e entails that ;l'l_)lun < 00, we see that EZ < 00,

which, in turn, implies that Z <oo with probability 1. In view of (1.9) and

(1.10), it follows that, with probability 1, the measure s5—dim E < 00, and
hence

(2.5) dim E U6=2c+ (I - c*2(1 + e)~2) (L- \f\2).

We finish by comparing the sets E and Su(f,c). By Lemma 2.1, there exists
almost surely an no < 00 such that for all n ~ nQ

h~+i (I log(/in+1)|)2Un~ c~(7t/12)1/2(1 - |/]/1)_1/2.
Hence, whenever for some n » no, hnt\ <h”~ hnand 0" t” 1, we have
Hog(™1 x ||(2/i] log(/D)])-1/12~(/r,1; &) ||
(2'6) = QL1+ MN(Tw/ 2)172(1 —I/|11)-1/2)
then there exists an i 6 {1,...,M,,} such that both Yid= 1 and t €
[sgn hn, SinT hn].
Since Su(f,c) is a subset of the set of all points t such that (2.6) holds

for some hn+1< h hn for infinitely many indexes n, it follows that, with
probability 1, Su(f,c) QE, which, via (2.5), implies

dim Su(f,c)Z 2r+ jl - AP 7j2 } (1 - YI)s

We conclude (2.2) by observing that e> 0 may be chosen arbitrarily small.C]

2.4. A binomial scheme for the computation of fractal dimension

The following argument will be instrumental in our proof of the lower half
of (1-12) and should be of independent interest. In formulating the theorem
in this section we were strongly motivated by the arguments in Orey and
Taylor [18]. We begin by introducing some notation.
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Let, {H,, :n ™ 1} denote a sequence of constants satisfying the following
conditions (HI) and (H2).

(HD H,,4, 0<Hn<1 forall large n~ 1

(H2) exp (—H~e) < oo for each c>().
nSl

Assume that, for each n~ 1,Z"n,i=1,..., ivh:= [1///it], is a sequence
of independent and identically distributed Bernoulli random variables. Set

Ph=P (Z]tT=1)=1 P (Z[«=0).
Further assume that, for some 0< S< 1. as n =00

(H3) pn=Hg+H".
For each n~ 1, set sn(i) = iHn, i=1,..., IMh, and introduce the disjoint
closed intervals
,0 7S J _J P«(*) ~ Hnl2, An(i)] when =1,
[ in \0 when Zhn=0.

Our main result in Section 2 is the following theorem.
THEOREM 2.1. Under (HI), (H2) and (H3), for any e>0, there exist,

almost surely a sequence of integers 1" qy < o< ..., and sets E\, Eo. ..,

such that

(2.8) dimE~" 1—S—,

where E = f] Ej and for each j ® 1, Fg is a union of some intervals taken
i=1

/rom i/le set. AN AR

The proof of the theorem is derived from the forthcoming sequence of
lemmas. First, we require some more notation.

Throughout this subsection / will denote a closed interval contained in
[0,1]. For any such interval I, let

M,(/) =#Ui,nE£/: W 0, 1aizNn),

A
Mn~ N n(["\)) =Y JZnn.

and

The following lemmas establish some useful properties of Af,, (I) and J\fn.
Introduce the function

ulogu—u+ 1 foru>0,
h(uy =<1 for u=0,
00 foru<O.
We will need the following probability inequality.
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Fact 4. Let, S\: be a binomial B(N.p) random. variable. Then, for all
ro~1

(2.9) P(SN” Nrp) g exp(-Nph(r)),
and for all r~ 1
(2.10) P(SN g Nrp) g exp(-Nph(r)).

For a proof of this fact see Lemma 3.8 of [11].

Lemma 2.3. Under (HI), (H2) and (H3), we have almost, surely as
n —¥00

(2.11) IirroloAfn/{H -1pn} =1,
and
(2.12) Av =H?-l+of{ll

PROOF. Since (2.12) is a direct consequence of (2.11) and (H3), we need
only show that the latter holds. Choose any e> 0. Replacing N,p and r in
(29) by N,, = [I/Hn\, Pn and 1+ e, respectively, shows, via (HI), (H2) and
(H3), that

P (K. £ @+ e)NnPn) * exp(-NnPnh(l +¢)) =exp (-" - ,+0(1)) ,

which by (H2) is summable in n. Therefore, the Borel Cantelli lemma im-
plies that almost surely,

limsup Ain/{Hn PPn) " 1+ e.

71—»00

A similar argument based on (2.10), which we omit, shows likewise that
almost surely,

liminfAfn/(H~"pn)" 1- e

71—»

Since e> 0 may be chosen arbitrarily small, we readily infer (2.11) from
the above two inequalities. O

The next lemma gives a refinement of the upper bound half of Lemma 2.3.

Lemma 2.4. For each. 0<e” 1- &there exists almost, surely an rq < oo,
such, that, for all ni ?q and for all closed intervals | Q[0.1], we have

(2.13) Afn()/(Ain\ip-~Jgl + e
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where 0/0 :=0.

Proof. Choose any 0<eg 1—s. For any integer 1g k g Nn —1 denote
by Cn(k) the class of all closed intervals of the form

I =[sn(i),sn(*+ &)] with 1gig Nn- k
We will first derive upper bounds for A/",,(/), when for appropriate choices

of kn, the intervals I are in Cn(k). Let ei >0 be an arbitrary constant such

that ei/2 +8< 1 Set kn=\H & Note that the total number of inter-
vals | e Cn(kn) is bounded above by Nn—[I1/Hn\ g H~1 Also observe that
when | e C n(kn), the random variable Afn(l) follows a binomial B(kn,pn)
distribution. Thus we infer from (2.9) and (H3) that

P\ Slip Mn{DAIN™ y/1+el/2Pn/Hn
\/eC,,(ﬁ:a) th Y

N H~1lexp *~knpnh (\/I +e\/2)*

=exp(-if-22a2),

which by (H2) is summable in n. Therefore, the Borel Cantelli lemma shows
that for all large enough n and / 6 Cn(kn),

(2.14) Afn(l) g y/l + ei/2 \I\pn/Hn.

To treat arbitrary intervals | C [0,1] we need to examine three cases.

Case 1L Consider any closed interval 1Q [0,1] such that |/| » H &~s~il.

Letting kn= [Hno €72] be as above, we see that for all large n, | con-
tains less than

[7 ~ m
Vv 2 knHn

intervals belonging to Cn(kn). Thus, by (2.14), we see that with probabili-
ty 1, for all n sufficiently large, we have uniformly over all intervals 1Q [0,1]
with \\N A tfl-'5

(2.15) Mn(l) g L+ ")NIN{H-1pn}g (1 + ci)l/|W,,,

where we have used (2.11). It follows from (2.15) that with probability 1, for
all n sufficiently large and uniformly over all closed intervals | Q [0,1] with

(2.16) Mn(1)/{Ain\I\I~s-f}g (1 + ei)|/|i+i g 1+ ex.
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For the purpose of treating Case 2, stated below, consider now closed
intervals | such that / 6 Cn(k) for some 1" k™ Kn:=| Observe
that the total number of these intervals is bounded above by

(2.17) HA-A'TKnNn.

Moreover, for any | 6 Cn(k) with 1~k Kn the random variable Mn(l)
follows a binomial B (k,pn) distribution. Therefore keeping in mind that
|/l = kHn, we infer from (2.9) that for any d> 0,

(2.18) Q) =exp (-kpnh((l-e)d(kHn)-s-¢)),
where
Q) m=P (Am(l) I kPn{(1- e)d,(kHn)-s-c}) .

Next, we observe that our assumptions imply that, uniformly over
1~ k £ kn, we have

kHnUKnHn=H &- s-tl,
which converges to 0 as n —o00. Making use of the inequality holding for
any d > 0 and all large enough x,
h{x) = (1 + o(l)) x logx * y
we infer from (H3) and (2.18) that for all large n and uniformly over 1~ k
A K”
Q() I exp (—k1~5 tp,i#n5 t) =exP (~Hne/2) m

This inequality, in turn, implies that, for all large n,

P max_ sup Amn(1) |_g¢ =
IgfcgAT 1ec.dk) {(1-f)H n Pn}uN -
U exp (-ff,7¢e/2) gexp ,

which, by (H2) is summable in n. Thus the Borel Cantelli lemma and (2.11)
implies that with probability 1 for all n sufficiently large, and all

le U Cn(k),
Igfic™An

we have

(2.19) AT, (DAAT /|1 St} ).
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We note for further use that d > 0 in (2.19) is an arbitrary positive constant.

_ Case 2. We now consider an arbitrary 7~ [0,1] with 77n/2 ~ \I\ <
ﬁh—l-fl

It, is readily checked in this case that there always exists an I' £ Cn(k)

for some 1~ k™ Kn= J such that both 1 QI' and |7 ~ 3|/|. This,
in conjunction with (2.19), shows that for all large n

(2200 AM()/{M I|/|T" A} ATNT,)/(MI|/T S'£3_1+i+£) g3 1- 5 fd.

Case 3. In the only remaining case when |7| < 77,,/2, we have Afn(l) = 0.
Thus putting this last case together with (2.16) and (2.20), observing
that ej >0 and d> 0 may be chosen arbitrarily small, we conclude (2.13).0O

The following lemma gives a lower bound for Afn(1) when 7 is restricted
to lie within an appropriate class.

LEMMA 2.5. For any e>0, we have almost, surely
(2.21) lim mfﬂtfn(l)/tfn\l\ :1Q [0,1], \INZ H h~s- (} =1.

PROOF. The proofis very similar to the just-given proofof Lemma 2.4 in
Case 1 (see the argument from (2.14) to (2.15)). Therefore, we omit details.
O

Finally, note that combining Lemmas 2.4 and 2.5 with (2.15), we get the
following lemma.

Lemma 2.6. For all 0 <r” 1, we have almost surely

(2.22) AiBosup a7 7 " 1 1. M~ A; =0.

The next fact is a version of Lemma 2.2 of Orey and Taylor [18] stated
in @ manner appropriate for our needs.

FACT 5. Let K Q[0,1] he such that K = D* =1Em, where E\ 5 ¢e¢5 Em 2
eeeform - 1,2,... and Em= (J*=i *4,7« with {Jkm:17k.» Mm} being, for
each m~t 1, a collection of disjoint closed nonempty subintervals of [0,1]
such that maxi<fc<A/,, | —0 and Mm-Aoo as M  oo. If there exist two
constants A > 0 and d >0 such that, for every interval 7C [0,1] with |[7] * A
there is a constant m(l) such that for dl. rn * m(7),

(2.23) Mm(l) :=# {JkamC 7 :ip g M ra}” d|7|cMm,
then we have sc—dim K > 0.

Proof of Theorem 2.1. We have now in hand all the ingredients for
the proof of Theorem 2.1. We claim that, for any e > O, there exists with
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probability 1asequence 1~ g\ < gi < me of integers, together with a sequence
E\ 2 E2 2 +-¢ of sets fulfilling the assumptions of Fact 5 with c= 1—6 —¢,
where, for each j * 1, Ej is a disjoint union of closed nonempty intervals
taken among AN P AN@ Y, as are defined in (2.7). Once these sets are
constructed, the theorem follows directly from (2.23) using this in combina-
tion with definition (1.10). To show this one follows the same arguments as in
[18], pp. 182-184 (also see [11], pp. 375 -386). For completeness we include
the Orey and Taylor arguments with some modifications and clarifications
here.

Choose any 0< e< 1—s6 and apply Lemma 2.3 and Lemma 2.4 to find
with probability 1 an n\ < 00 such that for all n ~ n\ and for all closed
intervals 1Q [0,1], we have

(2.24) NI (L +MAgll-*- 4,
Now choose a decreasing sequence of positive constants {efc}fchi such that

0< A< land ek < 00 (which implies0< rid -e*)=n (i+ ek) <00).
k=1 k—\ k=1

Next we apply Lémma 2.3 to find with probability 1, qi ~'r\ such that for
all n ~ q\,

(2.25) (1 —e\)H~Ipn5JAin™ (1 + e\)Nnpn.

For each n ™ 1, let Tn denote those intervals among 217 i~ Nn} which
are nonempty. Note that #(l,)) =Mn. Define Ex to be the union of those
intervals in T?i.

We shall now define an increasing sequence of integers {gk}k™ 1 inductive-
ly beginning with g\. Each EKk, for k*. 2, will be the union of those intervals
in ZCk that are subsets of Ek- - For any integer gk set

(2-26) Rtk= K k)-
Notice that by (H3)
(2.27) <q/0) —L6: as k —00.

We set 7(k) = 1- 6{k). Without loss of generality we can assume that e<
7 (k) < 1, for all k. Denote the length of the intervals forming Ek by

By Lemmas 2.3 and 2.6 for each 0<r < 1and <R < 1with probability one
there exists an integer m{r,R) <00 such that for all n » rn{r,R) and closed
intervals | Q0,1] satisfying \IN~ r

(2.28) (1- R)\I\H-IpnA*Mn(1) T (1 + B)\I\NnPn.
MAGYAR

rt'DOMAIMYOS AKADEMIA
KONYVTARA
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Suppose that for k'*21the integers g\, ..., gk-\ have been defined. Select gk
large enough so that simultaneously

(2.29) gk > m(e, )Vm(efc D Vak- X

(2.30)

For integers k ~ 1 let
(2.31) Mk(l) =#{JitkQ 1:1£iZ M Kk},

where {Jzk:1” i 5Mk} denote the intervals which form Ek.
Suppose that for some k~ 1and j N 1

(2-32) Tk < \I\ AT]K+H--i-

We claim that there exists a constant C independent of L~ 1and j  1such
that when (2.32) holds

i\ 7(+o)

i-1
(2.33) Mfct)(/) A C\INI~s~e/a (2VKk+j)~7itk) 1 S0 )

i—1

We shall verify (2.33) by induction. For j —1, since gk+i > g\ ~ ni, we have
by (2.24) that

Mk+L(I) T Mde (1)1 + e)AickHL/|1- & 64,
which in turn by (2.25) is
AL+ e)(l + el)|/|1- i - EIAARit+1p (Tfc+1NC 1]/ | 1- i - t/4(272fc+l) - A +1).
Now if (2.33) is valid for some j 1 and Cj, we can apply the stipulation

that gk+j+i > m(ek, jk+1) along with (2.28) to each of the intervals Ji,k+
that make up Ek+j. Keeping this in mind, along with (2.32), we have

(2.34) Mk+ +i(1)= mVIfcH+ {Ji k+):

which, in turn, is

Mk+j+1(1) ™ (1 + ek+j) Ngk-H-+Pok-HH \Jitk+j\

i ="}
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A MK+ (1) hk+j (2VkH+1) - A k+H+1) (1 + ek+j).

This establishes (2.33) with Cj replaced by Cj+l = C\ (1 + ek+j). Thus by
induction, (2.33) holds for all k:,j if we set C = fJ™i(l Te*).

A similar induction argument using gk+ ~ m(e, shows that

J-1 1\ 7(i+c)
(2.35) Mk+j() T C\I\ 2rk+d) ~ ~ [1V K

for all intervals | satisfying for some k™ 1and j 1
(2-36) vV +j-i<\I\ K +j-i.
Notice that from (2.34) we get that

Mm=Mm{[0, 1]) = J]

which by (2.28) is

A Mm-i ([0. IPDr/m_, (2r/m)_7"m>(1 - em)

m-1
AM,([0,1]) []1 viCerl+D)-7i+I\] - eM )
7
= X /1([0,1]) J] )_7(i+1)(1 —F;+1i),
which by (2.25) is
m—1
1(1 -e1)H-IPn [T rAi(2r,i+1)-7(C:+1) (1-e 1+i)
2=1

m-1 [ 1\7(i)
n -*(oQ) a-o.

Thus we see that for some constant D> 0 uniformly in m ~ 1,

ml ,s/1\16
(2.37) MmZD (2r/mr 7(m) [] vtil) () n
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We are now ready to finish the proof of Theorem 2.1. By Fact 5 it suffices
to show that for the set.

E= Dex,
k=i
with probability 1 there exist constants do, co and mo such that
(2-38) Mm(l) ~ co\l\l~s~eMm,

for all closed intervals 1Q [0.1] with |/| » Sgand m * m().
In order to deduce (2.38) from (2.33), (2.34) and (2.37) it is enough to
prove that when <|/| ™ rm,

rri—1
(2.39) \N%C\I\l~s-f n  TI®
i=1
and when Tm+i < |/| < ,
| [ 1\ 71%
(2.40) T1-«-d4 (3"

Both of these inequalities hold by (2.30). Using (2.33), (2.35), (2.37), (2.39)
and (2.40) it is straightforward to show that (2.38) holds. This finishes the
proof of Theorem 2.1. O

2.5. Lower bounds for the dimension of the exceptional set

Armed with the results of the preceding subsections, we will now com-
plete the proof of Theorem 1.1 by showing that, whenever \f\n < 1, we have
almost surely for each ¢> 1 and e> 0, chosen so that the right-hand side of
the inequality below is strictly positive

(2.41) dimsu(fc)z (- |[/|2)1-~ ~ -

Since e> 0 may be selected as small as desired, the proof of (1.12) will follow
readily from (2.41) and the upper bound result (2.2) in Subsection 2.3.

To establish (2.41), we apply Theorem 2.1, with the following special
choices of {Hn:n " 1} and {Z\>n:17 i~ Nn} fulfilling (HI), (H2) and (H3).
Choose a constant 7 > 0 and set hn —n-7 and Hn = /in(] log(/i,)|)—2 for
n”~ 1L Now let = 1 or 0 according as the random variable

llog(/i,,)| x ||(2/in|log(hn)\)-1"2t(hn,si,n;e) - /1l
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=Qql~e)(7Tw/2)V1 —/ ¥/)-/2
or not.
Applying Fact 2, we get, similarly as for (2.3), that

P{Zi,n=1) =
exp (log{hn) (1-1/1h)+o(1)))
=exp (log(tin) |1 - j1- - 21 @- ey +°(1)})
which shows that (H3) holds with $= 1—|1 — j (1~|/|®). Notice

that, in addition, the assumptions (HI) and (H2) hold trivially. Hence we
may apply Theorem 2.1 to establish the existence of a set E such that

dimmE"1-8-e={1-" 92} {I-\f\2)-e.

To conclude, we observe from the definition of Ziyl and Lemma 2.1, that
with probability 1, for all large n, whenever Z, #= 1 we have

Hog(/in)] X WWnl log(hn)|)"¥2e(hn,i; ¢)-/11 ~ c(zu/2)12(1 - \f\&4) - 1/2

for all t Gli>n= jsn(i) —Hn/ 2, s,,(z)]. This readily implies that E ~ Su(f, c),
which yields (2.24). This completes the proof of Theorem 1.1. O

3. Other applications of the general scheme outlined in Section 2

Making use of the methodology of Deheuvels and Lifshits [8], [9] in com-
bination with the methods of de Acosta [1], the arguments of this paper
can be readily adapted to treat norms | m|T for which there exist positive
constants kt and yT such that

lim \- KelogP(|WH|TgA_1r) = - — .

A—>oc r Kr
Aside from the uniform norm, there are very few examples where this con-
dition is known to be hold. Refer, for example, to Theorem 4.4 of Baldi
and Roynette [3] in the case of the Holder norm. Moreover, in most cases,
the only information available concerns the rate of convergence to infinity as
A—»00 of

—log P (J|W1|T™ A 1r) .
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See, in particular, Stolz [20], Kuelbs and Li [14], Kuelbs, Li and Talagrand
[15], and the references therein. Furthermore, the versions of the Levy mod-
ulus of continuity theorem (see e.g. Fact 2) which must hold for such general
norms are not known in the literature outside of special cases. Therefore
to extend our fractal Chung-type FLIL to a more general setting requires
additional results, which are beyond the scope of this paper.

The basic ingredients that are needed to prove a result like (1.12) (respec-
tively like (1.7)) are a functional small ball result (respectively a functional
large deviation result) combined with a modulus of continuity theorem like
(1.4). In fact, the Wiener process W that appears in the definition of the
increment process (1.3) and the definitions of the random fractals (1.6) and
(1.11) can be replaced by certain separable Banach space valued Wiener pro-
cesses. Then all of the arguments that yielded (1.7) and (1.12) carry over
nearly verbatim. For the appropriate functional small ball, functional large
deviation and modulus of continuity results consult de Acosta [1], [2]. I,
is little more than a matter of bookkeeping to translate our results to the
general setting given there.

We conclude with a remark about the case when \f\n = 1. Notice
that (1.7) shows that when this condition holds, we have almost surely
d'unVu(f) =0. Hence, in this case, there is no hope to obtain an appro-
priate definition of Su(f, c), since dimA = 0 for all subsets A of T>u(f).

Acknowledgement. The authors thank Alex de Acosta for kindly
pointing out to them his paper de Acosta [2].
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REFINED GIBBS CONDITIONING PRINCIPLE
FOR CERTAIN INFINITE DIMENSIONAL STATISTICS

A. DEMBOt and J. KUELBS:2

To the memory of Professor Alfréd Rényi

Abstract

Let X\, X),A'n,... be independent, identically distributed random observations tak-
ing values in a Polish space E, and 0 a statistic on E with values in a separable Banach
space E. We examine the limit law of (Yi,...,A™) conditional on /i- 1E*=10(A";) being
in an open convex subset D of E. In this setting the conditional limit law is a fc-fold
product probability (P*)k, where P* is determined by the Gibbs conditioning principle.
Our results describe the allowed dependence of k = k(n) on n in terms of explicit geometric
conditions related to smoothness of dD at a dominating point.

1. Introduction

Let X, X], X 2i... be independent, identically distributed random obser-
vations with empirical measure Ln= " {fix,, and common law P\. In
statistical mechanics, and also in a number of other settings, it is of interest
to determine the limiting distribution of the A-tuple (Xi,..., X*) provided
one conditions on some observation of the empirical measure, say T(Ln) be-
ing in some set D. It is intuitively clear that in a number of situations this
conditional limit law should be a A-fold product measure (P*)k, but what is
P*1 Of course, when limnP(T(Ln)£ D) =1, it is trivial that P* =P\, and
hence the situation of greatest interest is when the conditional constraint
{T(Ln)6 D] is a “rare event.”. There are a variety of such results in the lit-
erature, and we mention [1], [4], [5], [7], and [12], which also include further
background and references. The paper [11] examines some analogous results
for discrete parameter Markov processes, and [13] and [14] are also related.

In [5], these results are described in terms of the “Gibbs conditioning
principle”, which beyond confirmation of the previous intuition also pre-
scribes P* via a variational principle. More precisely, the Gibbs conditioning
principle claims that the limit law of (Xi,..., X*) conditioned on the event,
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{T(Ln) GD} is a ASfold product measure (P*)k, where P* minimizes the
relative entropy with respect to P\ over all laws Q satisfying the constraint
T(Q) GD. This is indeed the case in the situations examined in [5], where
a preliminary study of the relation between properties of the set D and the
growth of k = k(n) with n is carried out. In particular, the explicit results of
[5] are mostly in case D is a subset of Rd for some finite d. Here we look at

the extension of these results to infinite dimensional (Banach space valued)
statistics.

To precisely describe our results, and their relationship to [5], we now
fix some notation. Throughout the i.i.d. observations {Xj} have values in
a measure space (E,Bs), where E is a Polish space, By, denotes the Borel
subsets of E, and Px is their common law. Let Mi(E) denote the probability
measures on (E,Be), with the topology of weak convergence, and for any
measure Q let Qk denote the A-fold product of Q. If P(LnGU) > 0 for some
subset n of Mi(E) and n ™ k, then P"K\\\ denotes the law of (Xi,... ,X*)

conditioned on {LnGn}. The relative entropy of p with respect to u is given
by

Let E denote a real separable Banach space with dual E*, norm | ¢|,
and assume 6 :E E is Borel measurable. Let Qx be the law Px induces
on E through 6. Since QX is a probability on (E. Be) there exist increasing,
compact, convex sets Km(m ~ 1) such that QA'(UM=1Xm)= b so we may
and shall assume throughout that 9(s) GU™=IKm for all s GE (modifying 9
on a set of measure zero if needed). The statistic of the empirical measure
we condition on is

(1.i)

and our constraint that (T (Ln)GD) for a convex open D C E is equivalent
to (LnGn'} for

(1.2) n'=<vGMi(E)ywo 9 1(Km)=1forsomem” 1 / 9dvGD

Corollary 2.7 of [5] examines the situation when E = Rd, D is con-
vex and QX is lattice or strongly non-lattice. Furthermore, the collection
(X1i,... ,XQ issuch that k = k(n) may go to infinity as n -» 00. The basic
ingredients in the proof involve refinements of large deviation probabilities
and Csiszar’s information theoretic identity for blocks of length k = k(n).
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The goal here is to establish analogous results when T(Ln) is an average of
infinite dimensional statistics. Our moment assumption on Q\ is that

(1.3) I el*dQ x (x)< oo
E

for all t > 0, which is usual for the study of large deviation probabilities
in the infinite dimensional setting, but stronger than what one expects to
assume in However, we do not assume anything about Q\ beyond that,
and hence the assumptions Q\- being lattice, or strongly non-lattice, need
not arise in Rd when (1.3) holds.

The usual rate function for Qx is

(1.4) \(x) = su{g*[h(x)- log Qa(M] (x GE),
he
where

Qx(h)= 1 edQx (x)  (heE*)-
E

Throughout, we assume that

(1.5) D cE open, convex XiQBA(a;)<°° m=

/ xdQx(x)ED.
E

Assuming (1.3) and (1.5), by [9, Theorem 1], there exists a unique point
aQe dD such that

(1.6) A(ao) = inf A(z) < A(X) vxED.
z6D
This point ao is the so-called dominating point of (D,QX)e
By the Hahn-Banaeh theorem, in this case, there exist / 6 E* such that

(1.7) sup/(z) =f(ao)<f(x) \/xeD.
{z:A(Z2)SA(a0)}

Suppose in addition to (1.3) and (1.5) that f E E* satisfies (1.7). Then, when
m D, by [9, Lemma 2.6] for g =tof with a unique to > 0,

(1.8) \(a0) = g(a0)-log Qx(g).

In case rn EdD we have A(flo) » A(m) = 0, hence do=in and (1.8) holds, now
with to= 0 and g the zero linear functional.
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Thus, associated with the dominating point are P* <CPx on (E, Bz) such
that for g = tof satisfying (1.8)

(1-9) N7 = exp{(<7,5(w)) —og Qa(i/)}-

If both <i € E* and (wGE* satisfy (1.8), then considering h = (g\ + <72)/2
in (1.4), it follows hy Holder’s inequality that g1—<2 is constant a.s. Qx,
hence P* of (1.9) is unique. With Q* denoting the law that P* induces on
E through O we also have by [9, Lemma 2.6] that

(1.10) a0 = IxdQ*{x)
E

(and (1.10) clearly holds when m GdD for then P* = Px, Q*= Qx and
a0= m).

Definition. Assume (1.3) and (1.5). Let ao be the unique dominating
point of (D,Qx)- Then, D contains slices whose diameters near ao dominate
the function r(s) if for some / GE* satisfying (1.7) there exist xqGE, S> 0,
and R > 0 such that f(x0) > 0, and

(1.11) {y + sxo :f{y) =0, [lyll < Br(s), 0< s<6}Q(D- a0).

With (1.7) and (1.11) invariant to scaling of / we may and shall assume
hereafter that f(x0) = 1

Remark. Note that (1.11) holds for r(.s) = s, any / GE* and any .ToG
(D-a0). Indeed, BxoR= :|m—x0|| <R} C (D -a0)for R >0small enough,
and with 0 Gd(D - ao), by the convexity of || ¢|| and of (D - ao) it follows
that Bsxa*s =sBxoo C [D -a Q for all sG(0,1].

Our version of the Gibbs’ conditioning principle for f?-valued statistics
is the following theorem.

Theorem 1. Assume (1.3) and (1.5). Let aO£dD be the unique domi-
nating point for (D,Qx) an(l Tn=""=1 ~ (lo) .for  i-i.d. E-valued ran-
dom vectors of common law Q*. Suppose {T4/y/n} is bounded in probability.
Then, for P* of (1.9) and n' of (1.2),

(1.12) |i|’r(')lo Lf(P};'f(g,)|jr1,|(P*)fC(n))=0,

provided one of the following holds:
(i) k(n) =o((n/ logn)1/2).
(i) k(n) =0(n}/2) and {Tn/~/n} has the CLT property in E.
(iii) k(n) —o((n/ logn)(|+id/2) and D contains slices near 00 whose di-
ameters dominate the function r0(s) = s¥/(1+°) for some aE (0,1].
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(iv) k(n) =o(n), m EdD and cither {Tn/y/n) has the CLT property or
D contains slices near no whose diameters dominate some r(.s) such
that s-1r(.s) —oc for s i 0.

Remarks.

() Recall that P"-*(,,)|n, stands for the law of (A p... ,Xk(n)) conditional

on {LnEIT), where by (1.3), (1.5) and the infinite dimensional version of
Cramer’s theorem, P(L,, EIT) = P(n~1]C*=1 0(Xj) ED) > 0 for n sufficient-
ly large.

(1) By Pinsker’s inequality (|[/z- clvar » (2H(p\v))¥2, cf. [2, Theorem
4.1]), the convergence of relative entropies in (1.12) implies convergence to
zero of the total variation norms | | , n, —(P*)f(n)||var.

(1) 1f D contains slices near oo whose diameters dominate ra(s) for
some a E [1, 00), then the same applies for a = 1

(IV) As shown in (2.23), the measure P* of (1.9) satisfies the Gibbs
conditioning principle (that is H(P*\P\) _F!Q\]:v H(P\P\)).

(V) For E a type 2 Banach space, the assumption in Theorem 1 that
{Tn/y/n} is bounded in probability and even the assumption of it having
the CLT property follow directly from the moment assumptions on Q\-
However, if E is not of type 2, this need not be the case. Boundedness in
probability of {Tn/\/ri.}, i.e. sup,, P(||Tn]| > Ty/ri) —»0as r —o00, is important
as it allows the application of the Fuk Nagaev inequality of [8] in our proof.
Of course, if E is uniformly 2-smooth (see below), then E is already type 2,
and the assumptions simplify accordingly.

(V1) From the proof of Theorem 1 we have that (1.12) holds for k(n) =
o(n) and P* = P\ as soon as P(L,, En") is bounded away from zero. By
the law of large numbers for E-valued empirical means this is the case when
/IM W a(x) <00, m ED and D C E is open and convex.

(V1) Part (iv) of Theorem 1 holds for m EdD, D C E open and convex,
even when assumptions (1.3) and (1.5) are relaxed to either J VWAA*OQ{X)
< o0 and / E E* of (1.11) such that f(x0) —1, J f(x)2dQ\(x + m) >0 when
{Tn/i/n} is only assumed bounded in probability, or that D intersects the
convex hull of Q\ when assuming that n_I//2Tn has the CLT property. In
particular, since QX —Q* and @ = m with A(m) = 0, the third moment
assumption allows the immediate application of the Berry-Esseen and Fuk
Nagaev inequality to (2.10), as in (2.16) and (2.17).

(V) If Q\ is concentrated at the single point b, then either b—rn&D
or else )EEEA(J;) = 00. Thus, (15) never holds for QX concentrated at a

single point. However, in this case P(Ln En") is either zero or one with the
conditioning on {Lv En'} of no interest.

Condition (1.11) is a geometric smoothness property of dD at ao. Any
open convex set D contains slices whose diameters dominate tq(s) = s at all
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possible dominating points. In certain Banach spaces, for some a £ (0,1],
any open ball D also contains slices whose diameters dominate Ta(s) at all
possible dominating points. For this we recall the following definition.

A Banach space (E,| «|]) is called uniformly (1 + a)-smooth for some
a £ (0,1] if for some C <oo0 and all t£ [0, 00)

(1.13) sup  {\W+ byl+ |lz- t\\ - 2} A C\t\1+a.
=i, IM=i

For example, if E is the standard Lv space for some 1” p < oo, then it is
known that E is uniformly (1 + a)-smooth with a = min(p —1,1). There
are no Banach spaces except 1?7 = {0} which are uniformly (I + a)-smooth
for a > 1, but an open set at a particular boundary point may contain slices
whose diameters dominate tq(s) for any a > U Here is our theorem when
(E, || <) is uniformly (1 + a)-smooth.

THEOREM 2. Suppose D is any non-empty open ball of the uniformly
(1 + a) -smoot,h Banach space (E, | *|) for some a£ (0,1]. Then, D contains
slices whose diameters dominate ra(s) near every possible dominating point
a0 £dD.

The following corollary is therefore immediate from part (i) of Theorem 1
and Theorem 2

COROLLARY 1. Assume in addition to (1.3) that a non-empty open ball
D satisfies (1.5) and {Tn/\/ri,} of Theorem 1 is bounded in probability. Then,
(1.12) holds for P* of (1.9) provided k(n) = o((n/ logn)¥2). Ifin addition
(E, || «I) is uniformly (1 + a)-smooth for some a £ (0,1] then (1.12) holds even
for k(n) =o((n/\ogn)(l+a*2) whenrn”D, ork(n) =of{n) whenm£D.

We next provide a partial converse of Theorem 1

PROPOSITION 1. Assume in the setting of Theorem 1, parts (ii), (iii)
and (iv), that the characteristic function of f(Z —no) LP(R) for some
p £ fl,00) and f £ E* satisfying (1.7). Then, k(n) =o(n) is necessary for
(1.12) to hold for P* of {IB) and W of {1.2).

Much of the proof of Theorem 1is inspired by a CLT type intuition. It
is therefore interesting to examine in more detail the special case of Qx a
Gaussian measure. As we next show, in this setting one can typically remove
the log n terms out of k(n), leading to a tight characterization of the maximal
k(n) when D is smooth enough.

PROPOSITION 2. Suppose (1.5) holds for a Gaussian measure Qx- Then,
(1.12) holds for P* of (1.9) and II' 0/(1.2) iffk{n) —o{n) when either D is a
non-empty open ball in a separable Hilbert space (E, || ¢|]) or {D —ao0) equals
the left-side of (1.11) for r(s) = s¥(#Qj a —1 and some xo, B >0, 8 > 0.
In contrast, (1.12) fails for some k{n) = o{n) in the latter case, whenever
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rn~ dD, a < 1, and the support, of Q\ is an infinite dimensional linear
subspace of E.

Based on the above intuition, it seems that with more effort the logn
terms might also he removed in the general (non Gaussian) case (see (5.13)
for details). However, typically, at most k{n) < o(n) in (1.12) when rm £ D
and the diameters of slices of D near ao dominate only tq(s) for some a < 1

2. Proof of Theorem 1

Let ao be the dominating point of (D, Q\). The following lower bounds
on P(Ln £ n") which are of some independent interest play a key role in the
proof.

Proposition 3. Assume (1.3), (1.5) and that {Tu/\/n} is bounded in
probability.
(i) For a =0, some C\ finite and all n large enough,

(2.1) logP(Lne n') ~-nA(ao) - Ci(logn)(1+o)/2n(1~a)/2.

(i) If {Tu/~n} also has the CLT property in E, then one can remove
the (logn)¥2 term in (2.1) and have Ci >0 arbitrarily small.

(iti) The bound (2.1) holds for a 6 (0,1] when D contains slices near ao
whose diameters dominate the function Ta(s).

(iv) For mEdD, if {Tn/*/n,} has the CLT property or D contains slices
near ao whose diam,eters dominate some r(s) such that s~Ir(s) — oo
for s|0, then

(2.2 p= I|75n é@f P{Ln€ Id) > 0.

PROOF, (i) There exists x£ D and 3 > 0 such that BX33C D and (1.5)
holds for D replaced by the open ball Do of radius 3, centered at x. Let
ao + xo denote the dominating point of (Dq,Qx) as in (1.6) with PG ~ie
measure associated with it via (1.9) and the measure PG induces on E
through 9. In particular, PXteg C (D —ao) and by the remark preceding
Theorem 1,

(2.3 {z:\z—a0- «Tdl<2Bs, 0<s<l}cD.

Let VT=" ’=1(Y) —a0—xo) for V) i.i.d. E-valued of common law Qgq.
Then, EY =f xd.Q" =ao+xo (compare with (1.10)). Moreover, dQ"/dQx "

ceclll Hfor some ¢ < 00 (see (1.9)). Hence, P(exp(f||Y —ao —iGill)) <00 for
all t by (1.3), implying that for some /> 0 and all r large enough
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(cf. [6, Exercise 6.2.21]). The duality identity of [6. (6.2.14)] for h(x) =
— K I/jno V &B(E") and [P\)n &M\ (£”) results with
\og[P(Lnen") +e-nKP(Ln"YI')\
= _su —KnR(Ln~flI") —H(R\(Px)n)}-
REM'?En){ ( ) —H(R\(Px)n)}

For R = (p*yi~r g (PFy. with r < Sn integer, and N = H(PG|P\)
—H(P*\Px)<oo0 (see (2.20)), we have

(2.5) log[P(L,, 6 n") + ernK]”* -KnR(T(Ln)<€D)~ Nr - n\{aO0).

By (2.3) for s=r/n <5

R(T(Ln)i D)=p(n"L(r,_r+Vr)+ao+yxo$i)

(2-6) = P{\\Tn-r + E-ll * 2Rr)
ZP(\Tn-r\\ZRr) + P(\\WrURr).

Note that Tn=Y"i =\~ ao), with Z, —o00 i.i.d. of zero mean and exponen-
tial moments, in view of (1.10) and (1.3), respectively. The assumed bound-
edness in probability of {Tn/*/n} implies that SLrl]p EW\Tn/sJTi\\ < 0o (see for

example, [10, Proposition 2.3]). Hence, setting r =rn= [(Anlogn)Y2], by
the Fuk Nagaev inequality as given in [8, p. 338], we have for A= E\\Z —,0\2
and all n large enough

(2.7) P(\Tn-ru|| £ Brn) ~ r~30 (n) + exp{-/32r2/(96nA)}.

Taking A > 96A//32, by (2.4), (2.6) and (2.7) we see that nR(T(Ln) " D) —
o(rn). Therefore, considering K = A(«o) + 1in (2.5) we have log P{L,, € U") »
—nX(ao) —C\rn for some C\ < oo and all n large enough.

(i) Subject to (1.3) and (1.5) holding, [9. Theorem 1] provides the rep-
resentation

(2.8) Jn=P(Ln6 n')enAoo) = E[e~td" Tn)Ir,.en(D-a0)}

In case rn™ D. to> 0 is specified by [9, Lemma 2.6] so that g = to/ satisfies
(1.8) , while fo= 0 otherwise. Since {D—ao) is convex and 0€d(D —ao), the
open sets T;,= b(D- a0)n {z :f{z) <b} increase monotonically. In particular,
(2.8) implies for all n ” b2,

(2.9) JnZe-tonl/HP (n-[/2Tn Gr6).

Recall that n_1/2Tt —G weakly in (E, | ¢||) for G= G{Z —a0) an E-valued
Gaussian variable with the same covariance structure as (Z —ao). The con-
dition tiEE)A(./;) < &) of (1.5) implies that D intersects the convex hull of the
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support of Q\ (see for example [G (G.1.4) and Exercise 6.2.21]). Therefore,
(D —a0) intersects the closed convex hull of the support of Q*@m+ a0) and
hence also the Enclosure of the Hilbert space associated with G, denoted
Hc(G)- Fix z € {D —ao0) DHc(G)- Since f(z) > 0, it follows that tz 6 Tf, for
any positive t <b/(f(z) V 1). In particular, each of the open sets T, also
intersects H~cy By the assumed CLT, for any b> 0,

liminfP (n-1'2Tu £ Th) >P(G(Z - a0)£rb) >0,

and by (2.9) we get (2.1) for a = 0 without the (log«)'/2 term and with
Ci= (to+ I)> arbitrarily small.

(iii) Suppose now that (1.11) holds for «q(s), @ £ (0,1], and some / £ E*
satisfying (1.7), xo&E, S>0, # > 0 (with f(x0) = 1). Since f(y)~ 0 for
y = (x —f(x)xo0)/t and every t >0, x 6 E, taking s = f(x)/t it follows from
(1.11) that

(2.10) {x:0<f(x) <t§S |:c- /Ci;):r;0] < BtrQXf(x)/ 1)} Qt.(D- a0).
In particular, for t=n and any OiAngBnknS, by (2.8) and (2.10)
JnZe~-nyB1P(An<f(Tn)<Bn, IITn- /(T,)xol|| < Pn)
N e~t’Bn[P(An<f(Tn)<Bn)- P(\WTn- /(T,)*0|| ~ Pn)},

where pn —@n.Ta(Au/n). Set Bn—2An and An = (A\ogn)*+a*2n~~a~ 2 SO
that

(2.12) flu=R(An\ogn)1/2.

Note that / f(x)dQ*(x+ao0) = 0 (see (1.10)) and aj =J f(x)2dQ*(x+ao) >0.
Indeed, aj —O0 implies f(x) =f(ao) as. Qy, hence X(x) = oo whenever
f(x) >/(a0), in contradiction to (1.5) and (1.7).

Since a2 >0, by the Berry Esseen inequality, for some C >0 and all n
large enough
(2.13) P(An<f(Tn)<Bn)” C(Bn- An)/n12Z2rCa=2.

Applying the Fuk-Nagaev inequality (see (2.7)), we have for all n large
enough

(2.14) P(||T,, - HTn)xo\ tPn) UPU30(n) +exp{-~/(96nA)},

where A= E"H(Z-a0) —/(Z —ao)xo||2. Taking A >48A//32we have by (2.12)
and (2.14) that

(2.15) P(\Tn- f(Tn)xoUPn) =o0(n-12)
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and hence as n-> 0o combining (2.11), (2.13) and (2.15) we have
Jn” exp{—2to(A logn)"1+t" 2n*1_a” 2}n_a/2.

Considering logJn, we establish (2.1) for a € (0,1], C\ > 2i0"1+Q*2+ 0.5
and n large enough.

(iv) For m £ D we have to=0, ao=m, A(ao) = 0 and Q* =Qx- In
this case we get (2.2) out of (2.9) when {Tn/y/n} has the CLT property.
Otherwise, suppose D contains slices near ao whose diameters dominate
some t(s) such that s_1r(s) —»oo for s J,0. Since aj >0, for An —An12,

A >0 small, Bh=Bnl2, B large and all n large enough, the Berry-Esseen
inequality implies

(2.16) P(An<f(T,,)<Bn)" 1/3.

Replacing rQ(-) by t(-) in (2.10), we now have Pn —RA-nIn in (2.11) for

7n . ié]f/ s_1t(s) t 00. Thus, applying the Fuk-Nagaev inequality as in
s<Bn/n

(2.14), for some C =C(A) > 0.

(2.17) P(||T,, - /(T,)zo|| ~Pn)~ Cn~12+ exp(-Cjh).

Since here P(Ln £ 14) = Jn we establish (2.2) by combining (2.11), (2.16)
and (2.17). O

The proof of (1.12) starts with the inequality
(2.18) H(P"kM”™ Q kM)A[n/k(n)}~IH(P"nIn\Qn)

which holds for any probability measure Q and k(n) ~ n (cf. [5 (2.5)] for
n/k(n) integer). Considering in particular Q = P *, the identity

(2.19) H(PZullv\(Px)n)- - logP(Ln£n"),

yields the conclusions of Theorem 1form £ OD and P* = P\, when combined
with the lower bounds of Proposition 3on P(Ln £ II").

Assuming hereafter that m~D, by (1.8) - (1.10)
(2.20) H(P*\Px) = H(Q*\Qx) = A(a0).
Hence, we have the conclusions of Theorem 1 by combining
(2.21) H (P Ini\(P*)n)*-\ogP(LneW)-nH(P*\Px),

with Proposition 3, (2.18) for Q =P*, and (2.20).
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To prove (2.21) we turn to Theorem 1in [4], Let Km be the increasing,
compact convex sets such that 8(s) GUmKm for every sGE. We first verify
that all the conditions of [4, Theorem 1] apply for the convex set

(222) H=|p GMi(E):vo9~x(Km)=1for somern™ 1, j 0Odp G.d|
S

which contains II' of (1.2). Indeed, by [4, Definition 2.3], Il being the union
of the increasing completely convex sets lIm={p GMi(E):uo06~x(Km)=1,
J ddu GD} is an almost completely convex set. By Remark (1), P(LnGIT)
> 0 for n sufficiently large, whereas {(sj,...,sn):n_1 SS GII'} =
{(si,... ,s,,) :n_1YJi=i 0(si) € D} G(Rs)n for all n.

Recall that for Il a convex subset of Mi(E), the generalized /-projection
of Px on Il is the unique element Q of Mi(E) with Irinm||Pm —QHvar™O for

every PmGII such that

Yon H(Pm\P\) —inf. H(P\PX)

The existence and uniqueness of the generalized /-projection is given by [3
Theorem 2.1], which also shows that

H(Q\Px)i MuH(P\Px).
In view of [4, Theorem 1], we now are able to conclude the proof by verifying
that

Lemma 2.1. For D the probability measure P* of (1.9) is the gen-
eralized | -projection of Px on Il of (2.22). Moreover, for 11 = {u GMIi(E):
fEedv GD},

inf H(P\PX)= inf H(P\Px )= _inf H{P\PX)
(2.23) pen Pen Pen
= H(P*\PX) = A(a0) < oo.

In the process of proving Lemma 2.1 we use the following simple relation.

LEMMA 2.2. Let Q be a probability on (E,Be) such that f Eh(x)dQ(x) =
h(mQ) for some ... GE and all h&E*. Then,

(2.24) H(Q\Qx )X (m Q).

PROOF. If H(Q\QX) — oo there is nothing to prove, so assume
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H(Q\Qx) < oo with g= a?— and fix /i€R*. Then,
X

H{Q\Qx)= ] qlog{q)dQx

E

(2.25) =h(mQ) —J q{x)Ioo){q{x))\og{q-I(x)en{x))dQx{x)

E

Ah(mQ) —log j eh*d Q x (x).

E

The inequality (2.25) follows from Jensen’s inequality since f E gl(o,0c)(()dQx
= 1 With h&E* arbitrary, (1.4) implies (2.24). O

Proof of Lemma 2.1. Let rrig= [E xdQ(x) if /'h{xX)d.Q(X) = n¢rrio)
for every » ¢ E* (and otherwise (ExdQ(x) undefined). In particular, «iiqa —X
for Q =8Xand any x £ E. Let fl(C) ={Q £ M\(E) :JFxdQ(x) £ C} and
n0(C) = n(C) n{Qe M\(E) mQ(Km) =1 for some m 1}. The condition
(1.5) implies in particular that D intersects the convex hull of the support
of Q x m Therefore, applying [4, Theorem 3] with C = D and noting that
n0(T>) QTlo(D) Ln(D) we have that

(2.26) QJR{D) H(Q\Qx) = Qeinnof(D) H(Q\QX) = QeFi&fF>)

Then, by (2.26) and [4, Lemma 3.3]
(2.27) inf_ H(Q\QX)= inf H(P\PX) = inf H(P\PX)= inf H(P\PX).
Qen(D) pen Pen Pen’

H(Q\QX) <oc.

By (1.6) and Lemma 2.2 we have

(2.28) inf_ H(Q\Qx)" iifi \(x) =\{a0).
Qen(D) xel

Furthermore, P* £ Il since by (1.10)

] 0dP* = ] xd.Q*[x) =aoe D.
y. ‘e
Thus, we get (2.23) by combining (2.20), (2.27) and (2.28). In particular,

H(P*\PX)= inf H(P\PX) < 0o making P* £ fl the /-projection of Px on fi.
Pen

Suppose Pm£E HQ Il is such that
YerH(Prn\Px): Iggﬁ H(P\PX).
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Since P* is the (generalized) /-projection of P\- on IT. (2.27) implies that
I;Tr1n [|Pin—P*||var = U Consequently, by definition, P* is also the generalized

/-projection of Px on n. O

Remark. The proof of Lemma 2.1 implies that P* of (1.9) is also the
generalized /-projection of P\ on II' of (1.2).

3. Proof of Theorem 2

Since E is uniformly (1+ a)-smooth with respect to | ¢||, by scaling (1.13),
for all x,y GE

(3.1) WX\N\X + 2 + ||z - 2] £ 2411+ + C|[2/)|1+.

Let ao GAD be a possible dominating point for D = {x :||x —al|| < R} and
R > 0. Set xq=a—ao, with D —no the open ball of radius R = ||.xo|| centered
at .-To. Then. / GE* satisfying (1.7) is such that (D —a0) Q {/ : f{y) > 0}
and in particular f(xo) > 0. Scale / so that f(xo0)= 1L Set fi=1/2 and
/5= 0.52?.C-1(1+Q>for C of (3.1).

Let y be such that f(y) = 0. Then, /(—/)=0 so —y " (D —ao0) implying
W+ Xo|»R- For 0< s< and x = sxq —xq We have

3.2 llaz-2|| = |[7-z[| *H + Zol- [laid| ~ (1- s)R= |z]|.
In particular, for our choice of s, x and y, by (3.1) and (3.2)
Wx+ y\\i(l-s)R + 2C\\y\l+aR -n.
By our choice of 3, for ||2]| <pTn(s) the above implies
[ly + sxa —zoll ~ (1 -+ 2_ag)||'E0|| < [|zo]],
and consequently,
(3.3) {y +sx0:f{y) =0, |lyll <Rra(s)} g{D - a0).

Since each possible dominating point «o GdD satisfies (3.3) for / GE* sat-
isfying (1.7) and the above choices of xq, B, fi, it follows that D contains
slices whose diameters dominate ra(s) near every possible dominating point
ao GdD. O

4. Proof of Proposition 1

For D this is a special case of [5, Proposition 2.12], Indeed, by Lem-
ma 2.1, P* of (1.9) is then the generalized /-projection of P\ on the almost
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completely convex H of (2.22) with \og(dP*/dPx) —H(P*\Px) =g(6 {-) —a0)
by (1.8), (1.9) and (2.20). In particular, the latter random variable is
in L2{P*) by (1.3), and its characteristic function assumed in Lp(E) for
some pE [l,00). In the setting of parts (ii), (iii) and (iv) of Theorem 1,
n-1/2|log P{Ln € IT) + nA(ao)| —0 (see Proposition 3), which implies the
lower bound of [5, (2.13)] and the conclusion follows from [5, (2.14)].

We next extend [5, (2.14)] to the case of m EdD, that is, fixing | = e-1
a positive integer and n = Lk we prove that ||PEt.n/ —(P\")fdjvar is bounded
away from zero. To this end, the assumption that for / E E* satisfying (1.7)
the characteristic function of f(Z —ao) is in Lp(E), some pE [1,00) allows
for scaling such that J f(z —a0)2dQx(z) = 1 Moreover, with () denoting the
standard Normal density, as in [5, p.10] the conditional probability densities
Pn(y\v) of Yn = k~Il2f{Tk) given Vn =n_1/2/(T n) converge to =
>y —v/eu)lyj\ —e)/\/1 —e uniformly in y and uniformly on compacts in v.
For h: E —[0,1] monotone increasing, so is v i->f h(y)'ipt{y,v)dy. Fix h=
I[i,00) and r/> 0 for which (1 - rj)f h(y)ipt{y, 0)dy >f Ky)<f>{y)dy. By our
assumptions, (2.2) holds, so we set K < oo such that (R(y)dy ~ pi) for
p>0 of (2.2). Then, by (2.2) and the CLT for Vn

liminfP(Vhng K\LnEU")"*1- limsup 2 NT-
n-foo (Vng ) 71-4(11D P\Pnt 11)

Since Ln E II' implies that Vn > 0, it follows that
liminfE(h(Yn)\LnEII") ~ lim infP(Vn”~ K\Ln E 1)
n—t00 71-400

odnf { h(y)pn{y\v)dy

(4.1)
1(1 -y) )i/r_lgj/ h{y)xpe{y,v)dy> / h(y)</>{y)dy.

The CLT for Yn implies that E(h(Yn)) —f h(y)<t>{y)dy. In view of
(4.1) , WC{Yn\LnE n’) - C.(Yn)[|var is bounded away from zero, hence so is
linin' - (p*)*llvar- 0

5. Proof of Proposition 2

From Proposition 1 we know that k(n) = o(n) is necessary for (1.12),
where Qx Gaussian implies the same for Q* (see (1.9)) and in particular
f(Z —a0) being Normal(0, aj), some aj > 0, has a characteristic function in
LP(R), all p.

In case m ED: the sufficiency of k(n) =o(n) for (1.12) has already been
shown. Assuming hereafter that m £ D we rely on the following representa-
tion.
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Lemma 5.1. For IT of (1.2), P* of (1.9) andI~k”n,

dpx K\n>/v v ,_ E(hn(Tn)\TK]

(5.1)
d(P¥k 1"-’ k) E[hn(Tn))

where Tk = Yli=i(@(Xi) —«0) .for X, i.i.d. of common law P* and hn(x) =
A-n(D-ao0)(x)e~9(x) m
Proof. By (1.9),

d(Px)n —e-n\(a0)e~g(Tn)

d(P*)'l(Xu ..., Xn)
whereas by (2.8),

E[hn(Tn)\ =P (Ln £ U")enX(ao),

so that for every AQT,k measurable,

E[hn(Tn)}Pxk]n,(A)

I hn(Tn)d(P*)n(Xu ..., Xn)

I E[hn(Tn)\TK]d(P*)k(X1,..., X K),
A
out of which (5.1) follows. O

Since Q*(- + ao) is a centered Gaussian measure, we observe that Tk =
rtw', Tn=r(tw'+ \/l —2W) for W, W i.i.d. of law Q*(- + ao) wherer = \/n
and t = s/k/s/n. In particular, with y £ E*, the law of g(Tn) given Tk is
Normal(rig (IP"), r2(1 —2)o2) where a2 = f g(w)2dQ* (w + ugq) >0.

Forv=a-~2 (wg(w)dQ*(w+a,0), clearly W,, =W —y(W)v is independent
of g(W) with g(v) = 1and g(W0)=0. For u”~ 0and z £ E such that g(z) =0
let

(5.2) pr(i, z, u) = P(r~luv +tz + s/l —2Wo £ r(D —o00)).
Then, with IP'=W —g(W')v we have

CONA(E, W),
(5.3) ELn(T\TA=

for

(5.4) Nr{twW)={l-t2 Pr(t, Wé, u)du
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(recall that n{D - «0) » {x :g(x) > 0} and () denotes the standard Normal
density). Moreover, E[hn(T,,)\ is obtained by setting t —0 in (5.3) and (5.4)
(in which case both Ay(0, W) and /;,((). W(,u) are non-random).

Suppose next that for any z £ E such that g(z) = 0 the limit

(5.5) h(u) = Jim lim pr(t, z,n),

exists, does not depend on z and is such that L°° e~uh(u)du =v> 0. I11 par-
ticular, considering t —0 we have Nr(0,W) = M (0) —g (by bounded con-
vergence). Moreover, (27¢(1 —t2))I/2Nr(t, W) ” sup/>.(E Wo,u) * 1, hence

(5.5) implies that Nr(t, Wr)/N,(0) —=1in L2 as r —00 followed by t->0. In
particular, by Lemma 5.1,

Nr(t, W) ,
ivio) gV MO J
as r —n 1Y/2—00 followed by t = (k/n)1r2 —0. Since k i-=>if(P.y*|n'|(-P*)fe)
is monotone non-decreasing (for n fixed), the convergence to zero in (5.6)
implies that (1.12) holds for all k = o(n).
We turn now to verify (5.5), first in case (E, | *|) is a Hilbert space
and (D —ao) = {x w7 —x0o| < IF:0|]}- Since g(x) > 0 for all x £ (D —a0),
in particular. |ly + xoll ~ ||:ro|| when g(y) = 0. Hence, xq is orthogonal to

the closed, linear subspace {y :g(y) —0} and for ¢ = g(x0)-1 > 0, by the
Pythagorean theorem,

(5.6) H(Pxk]n,\(P*)k) = E ->0

5 J, Pr(t,Zu) = P(\\r~lu(v - Cg) + tz + \/l - t2Wow
< [2em- (cM/r)2]||'r0]2).
The representation (5.7) implies that (5.5) holds for

h(u) = P{\\WO\ < (2cii)1/2||s0]])
with 7= P(exp(—IW,,||2/(2 c||x0][2))) > 0.
Next suppose
(5.8) (D - a0) = {y + sxo :f(y) =0, |ly|| < |0sl/(1+a),0<a<s6}

for a = 1, some /?,4> 0 and / satisfying (1.7) such that /(x'0) > 0. With no
loss of generality take /(*) = g{-) and assume g(x0) = 1. It is not hard to
check that then, for v' —v —xq and z such that g(z) = 0,

(5.9) pr(t,z,u) =P{\\r luv' +tz+y/l —t2Wol< Bu”2)I" Sr2)(u).

In case W(=0as. we get (5.5) for h(u) = lu>0 with g —1 Otherwise, the
continuity of p>>P(||W,,|| * p) yields (5.5) for h(u) =P(J]|WO| * Bu]*2) such
that 7= P(exp(—{WQ0]||2//32)) >0.
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Finally, we turn to show that (1.12) fails for some k(n) = o{n) when
a<1lin (58) and Q\ (hence also Q*) is supported on an infinite dimen-
sional subspace of E. First, let Qoot., t € [0,1) denote the mutually singu-
lar centered Gaussian laws that (,?*(e+ «o0) induce on VI - t2(W —f](W)v).
For the rest, of the proof we forgo the change of measure, instead carrying
out all computations for XLi.i.d. P\ . In particular, for Un= g(Sn) and

Sn=n_12 - a0) (with Xt i.i.d. Py), note that QoQd0 is also
the law of Wa= Sn —Unv (independent of n) and that Un~ N (—8\r,
for some g\ >0, 0, is independent of W,,. Moreover, with Wo an i.i.d.

copy of WO, both independent of Un, the law Qrt that PA<|n/ induces on

(5fc —Ukv) is the same as the law of tW,, + \/l —2Wo conditional upon
Ar={WO0+ Unv Gr(D —a0)}.

We next show that the conditional law of W() given A, concentrates at 0
for r —o00. To this end, by the independence of Un and W,,,

gr(w) —P(ArIWo=w) =P(w + Unv Gr(D - ao0))
= P(|l'u>+ Unv\\ <R(raUn)I* 1+a\U n < Sr)
(compare to (5.9)). If ||w|| ~45 then
Qrw A P(Un Zr~a(3b/B)I+n) + P(Un I bAW'\),
whereas if ||tti]| * b then
gr(w) » P(Un” r~a(2b/B)I+n) - P(Un”" bAW'\\) - P(Uni Sr).

Since P[Un ™ ar)/P(Un ~ c,) =0 for every ar,cr * 0 such that r(ar —cy)
—00, it follows that for any b> 0,

sup gr{w)
(5.10) N [T .
' r—o0 inf qr(w)
IMIichI W)
For every 6> 0, both P(||WO0| 5b) >0 and
P(Ar\\\Wo\\Z4b)

PAWONZADVANZ "5 A rwwollib) PIWO[IA)-

Hence, by (5.10) also
(5.11) P(||WO\> b\Ar) = P{\\Wo\\ >b\Wo + Unv Gr(D - a0)) >0 ve> 0.

This in turn implies that Qrj -> Qoo,t with respect to the (*(F~-topology on
M\{E) for any fixed /G (0,1). In particular, by the lower semi-continuity of
tf(-JQ00,0) and mutual singularity of {Qoo,/} WO have

(5.12) lim infH (Qr,t|Qo0,0)  # (Qo00,/|Q00,0) = 00.
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Since H (Qr,94Qo0,0) is the relative entropy between the measures induced on
(Sfc —UKV) by i"8An" and by (P*)k, it follows from (5.12) that

lim H (PXKyni\(P*)k) = 00

for k = nt2, and arbitrary fixed t> 0. Of course, (1.12) then fails for some
k(n) —o(n). O
Remarks.

(I) By the above proof, (1.12) fails for some k{n) —o(n) in any set D for
which (5.11) holds.

(1) Suppose Qx is non-Gaussian, the characteristic function of g(Z —ao)
is in LP(R) for some p< oo and (5.5) holds for

(5.13) Prit,z,u) =P (r~1Tr2 Gr(D —a0)|r-1Tt22=tz,g(Tri) = u)

with JO°e~uh(u)du > 0. Assume moreover that p,.(0,u) = P(r~ITr2G
r(D —ao)\g(Tri) = u) —=h(u) when r —>00. Then, (5.3) and (5.4) hold, now
with Wo= W and () denoting the density of (n —k)~1/2g(Tn—T")/ag. Since
these densities converge uniformly to the standard Normal density (see [5, p.
10]), similarly to the above proofwe again have (1.12) holding for k(n) = o(n).

(I11) Suppose Q*(- + a,0) is the standard Gaussian measure on E —M,
d ii 3, equipped with the Euclidean norm.  Consider the open cone
(D —ao0) = {y +sTo:g{y) = O, |ly|l < s} corresponding to a = 0 in (1.11),
with g(-) the 1-st coordinate projection and xo the associated (1-st coor-
dinate) unit vector. Then, <=1, v = xo with Wa a standard Gaussian
variable on the (d —I)-dimensional linear subspace {y :g(y) =0}. Here we
get pr(t, 2,u) = P{\\tz + Vi —t2IEQ| <r_21u) (compare with (5.9)), and (5.5)
is no longer useful. Nevertheless, for some Cd- 1>0

lim lim rd 1p, (i, u) = lim Cd-\{u/\/l —2)d~1 exp(—0.5]jizl|2/ (I —2))

= Cd- 1ud~1.
Hence, we obtain (5.6) and thus (1.12) holds for all k = o(n). Note that here
0
P{L V1 = ——--> = N | e~uud~adu.
nd/2 {/nGn A(U0) yfz’\UL,Jld 1du

So, in this example the conclusion of [5, Proposition 2.15] holds although
condition (2.16) of [9 fails.

(1V) Suppose Qx is Gaussian and D satisfying (1.5) contains slices whose
diameters near ao dominate rQ(s) for some a G(0,1). Then, for 6 >0 small
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enough and all u 6 (0, Sr2)

pr(0,z,u) ZP(\\r~luv' + Wol< B(ra~IUy * 1+a))
A P(WWON <0.5R8{ra~luy " I+a))

(compare to (5.9)). In particular (see (5.4)), considering brl~a” u 2brl~a,
for any b6 (0,1) and r large enough

P(Lntn')enhfa) - Bgrl B> (ayr)pr{o,z,U)du

A Bexp(—8ri-“&)P([WO| < 0.5/55),

implying that (2.1) holds without the logn terms and with C\ >0 arbitrarily
small. As in the proof of Theorem 1, it follows that k(n) = 0(n"1+Q)/2)
suffices for (1.12) to hold. In particular, this is the case for non-empty open
balls in a uniformly (1 + a)-smooth (E, | ||).
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To the memory of Alfréd Rényi

1. Introduction

A database can be considered as a matrix, where the rows contain the
data of one individual (object, etc.) and the columns contain the data of the
same type: last name, first, name, date of birth, etc. The types of data are
called attributes. These data are sometimes logically dependent. Consider
the following example, where the attributes are the last name (denoted by
a), the first name (6), the year of the birth (c), the month of the birth (d),
the day of the birth (e), the age in years (/), the age in months (g) and the
age in days (/7). It is obvious that c determines /. On the other hand, the
pair {c, d} determines both / and g, finally the set {c, d, a} determines all of
/, g and h.

This is formalized in the following way. Let R be an m x n matrix with
different rows and Il denote the set of its columns, that is, |0] —n. Suppose
that A CO, b€ il. We say that hfunctionally depends on A and write A -Ab
if R contains no two rows containing equal entries in the columns lielonging
to A and different entries in b

In most of the database theory it is supposed that the functional depen-
dencies A -Ab are a priori known by the logic of the data, as in the above
example. Our way of looking at, the situation is different. We suppose that
we have to find the functional dependencies in a lai'ge database (both in and
n are large). If nothing is known about R, it, is natural to assume that the
entries are independently chosen. The question is: what the typical size of
the minimal sets A such that A -Ab is.

Thus the first, mathematical question is the following. Choose the entries
of the matrix R totally independently, following the probability distribution
(qi,... ,q,0)- What is the minimum size / of A such that A-)b holds withé
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high probability for any set A C i2, |Al ~ I 'and any column be 0? The answer
is
2Til
-log2(9?+ ---+92)>

as it is given precisely in Corollary 1 Theorem 2 generalizes this result for
the case when the entries have different distributions in the different columns.

Section 2 develops a sieve method for estimating the probability of the
event that all the outcomes of a many times repeated experiment are dif-
ferent. This result is applied for the rows of a random matrix in Section 3:
Theorem 1 determines the asymptotic probability of the event that the rows
of the random matrix are different. This theorem is of crucial importance in
proving Theorem 2.

If A is larger than the above critical size then A —b holds with high
probability for any given b. However, it will not be true for each element b of
a large set fi. Theorem 3 determines the asymptotic size of the A’s satisfying
A —ll.

The method of the present paper is combinatorial. Paper [Z] of the
same authors contains similar (but not identical) results. The method of
that paper is probabilistic, and uses the so-called Poisson approximation
technique (Stein-Chen method, see [1]).

2. A sequence of experiments with different outcomes

We may obtain a counterexample for A —mb if the entries of two rows
in the submatrix determined by A are equal. So the critical situation is
when all these rows are different. This is why this section is devoted to the
probability of the event that all the outcomes of a repeated experiment are
different.

Let EU...,ESbe mutually exclusive events with respective probabilities
PIl,...,ps, where Yhi=\Pi = 1- The distribution is denoted by p. Choose
independently, m times, from these events with this distribution. That is,
P(Ej = Ej) =pj is supposed for all 1~i”~m and | Sj ~s. Moreover, the £7s
are totally independent. Let P(/,,m) be the probability of the event that
£i, e*+ Om are all different.

Lemma 3 is the main result of the section giving good estimates on
P{p,m).

For an arbitrary sequence of outcomes a trivial graph can be defined.
The outcomes are the vertices and two vertices are adjacent if they have
the same value. This is why we consider the following graphs. Our goal is
actually to estimate the probability that this graph is empty.

The vertex-disjoint union of complete graphs with resp.,
vertices is denoted by G(mi,... ,mr). A graph consisting of vertex-disjoint
edges is a matching. The vertex-disjoint union of a matching and a path
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consisting of two edges is called a V-matching. Finally, the vertex-disjoint
union of a matching and a path consisting of three edges is an N-matching.

Lemma 1. Let mi,... ,mr (O”r) be non-negative integers. Then
1
0 E @)+ E & E I
matching of j edges V-matching N-matching

where the matchings, V-matchings and N-matchings are arbitrary subgraphs
of G(mi,m2,..., rnr).

PROOF. 2~ m; (1™ i”r) can be supposed. Two cases will be distin-
guished.

(i) mM\ = m2 = eee=mr = 2. The number of matchings of j edges in
G(2,..., 2) is f .] therefore the left-hand side of (1) is

which is 0 ifO<r and 1ifr =0.

(i) One of the m’ > 2. An injection will be given from the set of all
negative terms into a set of some positive terms in (1). Actually the injection
will be defined on sets of subgraphs of G(mi,m2,..., rnr). A negative term
is generated by a matching M off edges, where j isodd. Suppose that there
are at least two edges of M in one of the components of G(mi, m2,... ,mr).
Join any two endpoints of these two edges by a new edge. The injection
assigns this N-matching to M.

Suppose that no component of G(mi, m2,m.. ,mr) contains at least two
edges of M but there is a component with at least 3 vertices and containing
exactly one edge of M. Then this edge will be replaced by a pair of adjacent
edges in the same component. As the number of such pairs is  the number
of edges in a complete graph on ~ 3 vertices, this can be defined as a part
of an injection. (Actually the assignment can be made in such a way that
the pair contains the edge, however, this fact is not needed and its proof is
somewhat more difficult.)

The only remaining case is when all components with at least three
vertices are disjoint to M. Then add an edge of this component to M. This
matching contains an even number of edges therefore it generates 1in (1).

It is easy to see that the function defined above is an injection and it
assigns positive terms to negative terms, proving (1). O

LEMMA 2. Let m\,... ,mT (0<r) be non-negative integers, at least one
of them is * 2. Then

e Y ()1 E (DrE

matching of j edges V-matching of N-matching
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where the matchings,
G{mi,m2,... ,mr).

Proof. The proof is analogous to the previous one. The only difference
isthat here the injection assigns a negative term to a positive term generated
by a matching of even number of edges. O

V-matchings and N-m,atchings are subgraphs of

Lemma 3.

LfJ

. E 771—2j + 2
| +
1=1 2 i=1
[”“'E"” | fm\ fm—3\ (rn—5 'in -
3=0 ' % ro ) E«*)(£*)"-
"éJ | frn\ (m—4\ fm —6  m—2j —2\ )
=y Mva (Erf)(Erf)’s
(3)
I—
rn\ fm —2 m—2j+ 2
- "iCy . (B0
LAJ .
4 (m\ (m—3\ An—5 m—2] —1 z z c
E 4 I (Em(ED”
[m~4
d/m\fm—4\ fm —6
I=o I \4 2 m 2" 2 (Elrf) (:Ell\)'

Proof. P(p,m) is the probability of the event that £1,£2, +m, £m are all
different, that is, one minus the sum of the probabilities

4) PGu=EWifueck),

where C\, C2, mm Ct is a partition of {1,2,..., m} with at least one C having
more than one element, and vi,v2 Mt are different elements of {1,2,..., s}.
Such partitions will be called non-elementary.

P(p,m) contains the probabilities in (4) with zero weight, therefore if
they are counted with the weight given in (1) then it leads to an upper
estimate. Consider the sum

si E (D E W E 1X

partition ymatching ofJ edges V-matching
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) XP(Zu = E\K if ueCfc).

If the partition is the elementary one, then the inner sums are empty with one
exception, the empty matching. This leads to the sum of the probabilities
where all £°s are different. Therefore (5) is the sum in which the probabilities
of the events, where all £’s are different stand with weight 1, while the other
probabilities stand with a non-negative weight. Consequently, (5) is an upper
estimate on P(p,m).

Change the order of sums in (5).

E (':D'E P(Zu=En.iiueCKk)+

matching ofj edges partition

6) + £ p(i»= EX ifu € Cjt)+

V-matching partition

+ E E F(G:E\k ifU(szc)

N-matching partition

where those partitions are taken for which the given matching is a subgraph
of the graph generated by the partition. Consider

E P(Zu = EVhifueCk)
partition

for a given matching of j edges. This is nothing else but the probability of
the event that the £°s adjacent in the matching are equal:

i=1
The number of matchings with j edges is
1(rn\ (m —2\ (m —2j + 2\
BRA2j\v 2 )" ( 2 J'
This gives the fifth row of (3). The second and third rows of (6) lead, in a

similar manner, to the sixth and seventh rows of (3), resp.
The lower estimate is proved in the same way. O

3. Random matrix with different rows

The Lemma 3 will be used for random matrices. Let R be a random
matrix with m rows and z columns, where the entries of the jth column
can have dj different values with probabilities qji,..., Qjdj, respectively. All
the entries are chosen totally independently. Then the probability of the
occurrence of a certain row in R is </, (/22 we<hiz, where ij is arbitrary
between 1 and dj. The probability distribution of these sequences will be
denoted by nz. The following trivial observation will be used later.
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Lemma 4. Ifm~m1then P(irz,m) "P(7r2,m").

We want to study the probability of the event that the rows of the above
matrix are different. Therefore the probabilities gni(pi2 *+qgziz will be taken
as p’s in Lemma 3. Consider < 1p-:for these probabilities:

Y (QUiQ2i2 **mMQzi: )k = Y 9it,92ij wmmQkiz
I=*i =di,—1"z-"dz
(7) z
- JIt6i d——- b Qdt)-
—

Our investigations will be of asymptotic nature. From now on it is sup-
posed that m tends to the infinity and the other parameters depend on m:
z = z(m),di =di(m), gij —qgij{m). Our asymptotic assumption on them will
be such that the first non-trivial term in the Lemma 3, that is,

®) m2Y Pi=m2l1té +'" + Qi)
i—1 j=I

tends to a non-zero constant. It will be done in a logarithmic way, therefore
the quantities log((j2 +--—-- f-gfd.) will play an important role.(log will always
mean log of base 2.) Denote the distribution (gn,...,q") by k- Rényi
[3] introduced the so-called entropy of order a. For a —2 it is H2(k) =

- log(q\ + --- +qj) if qd).
Lemma 5. If

z

) 2logm —£><*)-p <>
2.1

when m —00 then

m—j +2
@0) HP J

tends to
-2 u—1

for the distribution nz.
P roof. Consider the limit of one term for a fixed j.

m m —2 m—2j +2
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can be replaced by

rng
IT-

On the other hand

(E xO '"-i-'EL, &X
i=1
follows by the definition of the entropy of order 2 and (7). Therefore the
limit of the jth term in (10) is the same as the limit of

(11) ( iy gji2loRm~r.-1

that is,
( -_II) J2.7(g-n
i!
(9) implies that the sum of (11) and therefore (10) are uniformly convergent,

hence the limit of (10) is equal to the infinite sum of the limits of its terms,
that is,

g fzlli2fia-l) =
3=0

We want to show that the other terms in the lower and upper estimates
of (3) tend to zero under condition (9). Before proving that some other
lemmas are needed.

LEMMA 6. Ifk=(q i, ,q@) is aprobability distribution, where e ~ qi, g2
(0< e~ 5) then

(12 ANl —seli

Proof. Consider the difference of the denominator and the numerator:

Y 93Y 3446 Y dfd- (Y ¢+E dqi=

i< i< i<j<k i<

~Yag+yog-2rdg +E(N+ =

i< i<] i< i<3
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=Y fajtai + 9j - 2gigj) + 23~ (afq] +qfq]) ~
i<j i<j

N20\gi+2g\g\)"Ae&
Using the fact that the denominator is at most 1, (12) easily follows. O

Lemma 7. Ifk=(qi,..., qi) is aprobability distribittion, where e ” qi,
(0O<en then

Hat
i=I

| « XA

(557

(13) <1- 2e4

PROOF. The proof is similar but easier than the previous one:

j\:d(id+251f6j Y =

1<

= 2YAQij = 27N <R= 2£4s
i<j

Lemma 8. 7/(9) and
(14) £=qgn,qiz hold, for all i with afixede "™<e”

i/ien the second and third, rows of (3) tend to zero.
PROOF. The jth term of the second row of (8) can be upperbounded by

/ 2 \ / z Vi

(15) "3(<LAo-—-f flu) (M2 11 ("~ ----m- wQidh)
i=1 i—

The second factor tends to
2J(@- 1)
j-
as we have seen in the proof of Lemma 5. (9) implies

z

(16) m2J3J(g" 4 tofdi)  2¢
i=l
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\3*:4
(17) m m A fqul,)= @/ 1—1

The first factor of (17) tends to 25« while Lemma 6 gives the upper bound
(1 —4e6)5 for the second factor.

The conditions of the lemma imply —log(2£:2) thus (9) results
in 2—»00 when m —»00. (1 —4e6)5 and consequently (17) tend to zero. By

the uniform convergence, the infinite sum of (15) and the second row of (3)
also tend to zero.

The convergence of the third row can be proved in the same way, using
Lemma 7. O

therefore the first factor of (15) can be expressed as

£«&)

Theorem 1. Let R be a random matrix with rn rons and z columns,
where the entries of the jth column can have dj different values with proba-
bilities qji, ..., qjdj, respectively. All the entries are chosen totally indepen-
dently. Suppose that (14) holds. Then the probability of the event that the
rows of R are all different satisfies

( z
0, if 2logrn - H2{ki) -a+ o3
g - {ki)

2“1 2
e if 2logrn- Y, H2(ki)-Aa,
2=l

z

1, if 2logm —  H2(ki)-+ - oo.
1=1
Proof. The mlddle row of the statement follows by Lemmas 3 and 8.
The first, and third rows are consequences of Lemma 4. O

In [4 Rényi proved a theorem on random matrices in connection with
search theory (see also [5] and [6]). It is basically equivalent to the special
case of the above theorem when nfs are the same. His method was different.

Remark. The condition that each distribution contains two “large”
probabilities (¢ qu, gt2) was important in the proof. This is shown by
the following example. Let «j = (5, Sm» me>2m)- ~ ien t/ie left-hand side of
(12) is

am \ / m-1\
(m+ D2/ \ m2+m) '

which is not bounded from 1. Take z = logm. As H2(ki)—2, (9) holds with
zero. However, the second factor of (17) does not tend to zero. (3) cannot
be used.
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Another example is . =K,...,-K). We do not know, however, if
the statement of the theorem holds for these and similar distributions. O

4. Typical sizes of functional dependencies and minimal keys

Let P (/j,,mk) denote the probability of the event that exactly k pairs
of £1,... ,£m are equal to each other and all other pairs are different. (More
precisely: there are 2k distinct indices and ji,---,jk such that
h, =tj, for all 151 Uk, but ~ fm for all /* m, & and & + £jt if

LEMMA 9. Suppose that k is fixed, in tends to infinity and (14) holds.
Then

Proof. There are

ways to choose the set {i\,... mjk}- Suppose thatii=1,ii =2,...,
ik = 2k —1,jk = 2k and determine the probability of the event that £1 =
£2,. ¢+ £2*-1 = (2k- The probabilities for the other choices of pairs will be
the same. It is easy to see that

We need the kth power of this expression. Finally, £1,£3,...,
&k+i, &A+2) ++«i0Om must be all different. The probability of this event is
P(7€2,m - k).

P(7rz,m, k)
(18)

The last factor is asymptotically equal to P(7r2,m) since logm - log(m —k)
—»0. Therefore Theorem 1 gives its limit. The limit of the product of the
other factors of (18) was determined in the proof of Lemma 5:
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LEMMA 10. If (9) and (14) hold then the probability of the event that
there are three equal £% tends to zero.

Proof. The sum of the probabilities in Lemma 9 tends to 1. O

Let if denote the set of columns of the matrix R. Suppose A Cif,b£f
if —A. We say that b functionally depends on A if R contains no two rows
equal in the columns belonging to A and different in b. In notation: A —h
For sake of simplicity b is supposed to be the 6th column.

Theorem 2. Let R be a random matrix with m rows and n = n(m)
columns with the distribution described above f(14) holds, again). Suppose
that Az is a set of z=1z(m) columns of R and b is a column not in Az.

0, if 2logm~Y) H2(ki) —Too,
=1
P(Aj-76,m) -7 < e2" 12 B, if 2logm~Y) H2(ki)">a,
z
1, mf 2logm - H2(Ki) -7 -00.
1=1

Proof. Consider the restrictions of the rows of R within Az. These
rows of length z define a random partition 7= (mi,..., mr) of m, where one
class consists of the equal rows. Suppose (mi ” ... *mr). Start with the
well known equation
(19)

P(A2-7&,m) = P(A2->6|7=(mi,....mr))P(7=(mi,...,mr)).

The right-hand side of (19) will be divided into two parts: (i) mi * 2, (ii)
mi ~ 3. For case (ii) the following trivial inequality is needed:

n2 P{Az -+b,m\'y=(ml,... mr)P(7 = (mi,... ,mr))
mi S3,m2,...,mr

T; P(7=(mi,... ,mr)) = P(there are 3 equal *’s).
mi *3,m2r .iDr

(20

The last quantity tends to zero under condition (9) therefore case (i) should
only be considered. More precisely, if (9) holds then the limit of "P(AZ—>b, rn)
is equal to the limit of

Y] P(A2—6.m|7 = (mi,....mr))P(7=(mi,... ,mr)).
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This expression can be rewritten in the form

F V(AZ—b m|7 = (2,..., 1) (the number of 2% is k))

k
(21) xP(7 = (2,. .., 1) (the number of 2’s is k))
— brn|7 = (2,..., 1) (the number of 2’s is A))P(7r2,m, k).
k
Here
P{AZ—b m|7 = (2,..., 1) (the number of 2’s isk)) — glj) =2~kH"Ko

7=1
On the other hand, the limit of P(7r2,m, k) is given by Lemma 9. Therefore
the limit of (21) is
@ L
2 N2(a-1)-1id«,)™ = e2'- 1(2-"2
" h
=0

The middle row of the statement is proved. The first and third rows are
consequences of the inequality P(AZ—=bm)" P(AZ—b,in") form *m'. O

COROLLARY 1. Let R be a random, matrix with in rows and n —n(m)
columns, where the entries are chosen totally independently with probabilities
qi,...,qd- Suppose that Az is a set of z = z(rn)OI columns of R and b is a

column not in Az. Use the notation = ——og 2"_1qf. Then

, 2logm

0, if z" Too,
B2
P(A2-»bin) —»< © =2~ n  jf 2';‘-’"‘ z-Ta,
2
.. 2logm
1 if - —-—-——-z —e0.
’ H-=2

The main content of the latter statement is that if A is a set of columns
of size definitely larger than 21's)y™ then A-*b holds with high probability
for any b

We say, in general, that B functionally depends on A and write A —
B(A. B QO0) if A—b holds for each element b of B. Theorem 2 can be easily
generalized for this case. We only have to imagine the set of columns in B
as one column. It is worth supposing that AC\B = 0. Then can be
replaced by /" («b)= X A2 («oym

eB
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Let us turn back to the case when k, does not depend on i. If the size of
B is finite, say u, then the Consequence can be generalized for A -> B, only
—H?2 should be multiplied by u. However, if |B| tends to infinity, then the
middle probability becomes simply e-2a"z-'

We say that A~ 0 is a key if A—0 (or equivalently A-+LI —A) holds.
A is a minim,al key if it is a key and no proper subset is a key. The above
reasoning proves the following statement.

THEOREM 3. Let, R be a random, matrix with m rows and n = n(m)
columns, where the entries are chosen totally independently following the

distribution k. Suppose that n — tends to infinity and Az is a set of
columns of R. Then

0. it L, —Z —»+00,
P(Az is a key) <, ™™ Z'E%m —7->a,
1 || T -> _OO
Ho

It can be briefly said that the sets A of size somewhat larger than 2
are keys with high probability.
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BIASED POSITIONAL GAMES ON HYPERGRAPHS

D. DUFFUS, T. LUCZAK and V. RODL

Dedicated to the memory of Alfréd Rényi

Abstract

Let G (p, g, H) be the game played on a hypergraph H by two players, who alternately
choose p and q vertices, respectively. The object of the first player is to claim all vertices
of a hyperedge of H, while the second player tries to prevent him from doing so. We
give a sufficient condition for the first player to win G(p,q, H) played on an r-uniform
hypergraph H and argue that this condition is close to optimal. Furthermore, we answer
a question of Galvin by proving that the first player has a winning strategy in G(1,q,H)
for each 3-uniform hypergraph H with chromatic number large enough.

1. Introduction

Erdés and Selfridge [4] introduced the following unbiased game played
on set systems: two players alternately pick elements of the sets, the first
who chooses all elements of some set in the system is the winner. Csirmaz [3]
introduced this biased version. Let p and g be positive integers and let H be
a finite hypergraph. The game G(p, g. H) is played by two players - the first,
suggestively called Maker, chooses at most p as yet unchosen vertices of H.
the second, Breaker, chooses at most g unchosen vertices. Maker’s objective
is to choose all vertices of an edge of H, while Breaker wants to prevent this.
Players alternate choices until all vertices of some edge are chosen by Maker,
a win for Maker, or until all vertices are chosen and there is no Maker edge,
a win for Breaker.

Erdds and Selfridge [4] provided a sharp sufficient condition for Breaker
to win G(l, 1,H). Beck accomplished the same for G(p,q,H); earlier, Csir-
maz [3] obtained a weaker result. Beck proved the following [1, Theorem 1],
Given a hypergraph H, let E(H) denote its set of edges. If

Aetj(H)
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then Breaker has a winning strategy for G(p,q,H). Moreover, the result is
sharp in the strong sense that for all p and q there are infinitely many H for
which equality holds above and for which Maker wins G(p,q,H) (see [1]).

In addition, Beck obtained a sufficient condition on H for Maker to win
G(p, g, H). Given a hypergraph H on v(H) vertices with d(H) the maximum
number of edges containing a pair of vertices, he proved that if

/ \~\VA\
(1) (1+ %)  >pigl{p+q)~id{H)v{H)
AeE(H) ' P

then Maker has a winning strategy for G(p, g, H) [1, Theorem 2]. In the case
of r-uniform, simple hypergraphs H with e(H) = \E(H)\, this result amounts
to following: if

r—3
2 e(H)> PP D u(h)

then Maker has a winning strategy for G(p, g, H).

In this paper, we improve the second result of Beck in the case of r-
uniform simple hypergraphs for g large in comparison to p and r (see Theo-
rem 1, 82). As well, we show that this result is quite sharp by proving there
are Breaker-win hypergraphs with only marginally fewer edges (see Theorem
2, 83). In the last section, we show how Beck’s results can be used to answer
a question of Galvin [5] (see Theorem 3, 84) and we pose related problems.

2. A sufficient condition for a Maker win

In this section we obtain an improvement of [1, Theorem 2] in the special
case of uniform, simple hypergraphs. To that end, we employ some termi-
nology for analysis of the game G(p,q,H). Let us say that, during play, an
edge is surviving if none of its vertices has yet been chosen by Breaker; the
size of a surviving edge is the number of its vertices not yet chosen by Maker.
A round of the game consists of Maker’s selection of p vertices and Breaker’s
selection of q vertices.

Theorem 1. Letr 1, r~p and q*.2 be integers and let H be an
r-uniform simple hypergraph. If

e(H)"-pi+-(12q +1)r-pv(H)

then Maker has a winning strategy for G(p, g, H).

Compare Theorem 1 to Beck’s result in this special case, (2), to see the
improvement for q large in comparison to p and r. Indeed, for g large, the
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right-hand side of (2) is of the form cp*v(H)qr 1, while Theorem 1 ensures
a Maker win with c'Ptrv(H)qr~p.

PROOF. During the play of G(p, g H). after a round has been completed,
three cases may occur.

Case 1 There is a surviving edge of size at most p.

Case 2 There is a vertex of H which belongs to more than q surviving
edges, each of size at most p-1-1

Case 3. All surviving edges have size greater than p and there is no
vertex as in Case 2.

It is obvious that Maker has a winning strategy in both Cases 1 and 2.
We argue by showing that it is not possible for Case 3 to hold after every
round of G(p, g, H).

Let Hi be the hypergraph with vertex set V(H,)=V(H) and edge set
consisting of all surviving edges of H after round i. Given an edge e € E(Hi),
we let |e| denote the size of this surviving edge. Set p= and define

Im = piel-
efzE(Hi)

Observe that with Ho =H,
f(Ho)Z -pt+- &2 g+ 1)r-pprv(H).

We complete the proof by showing that after round i. if Case 3 holds then
there is a choice of p vertices so that no matter which g vertices Breaker
chooses to complete round i+ 1, /(f/J+i) » f(Hj). We proceed by induction
on i and use the lower bound on /(Wo) above.

For each v € V(Hi), let d(v) —Yh(P” '-vEeE E(Hi)). Since Case 3 holds
and f(Hi)Zf(HDO0),

£ d(v) ™ (p+ Df(HI) ~ (29 + L)r-vprv(H).
vev(Hi)

So, there is a vertex v with

(3) d(v)Z(2q + I)r-ppr.

Maker chooses p vertices, including a vertex vg such that d(vo) maximizes
d(v). Breaker completes round i+ 1 by selecting w\,\W., s, wqg. Let d'(vo)
be the analogous value to d(vo) for H1+i. Maker’s choice of vq replaces each
summand p” in d(vo) by p~F1l in d'(vo). Since Hi is a simple hypergraph,
there are at most g edges in H, containing vo and one or more of the Wi s.
As Case 3 holds, each edge of Hi has at least p-1-1 unchosen vertices before
round i+ 1. Thus,

d!(vo) - d(v0) * 2q(d(v0) - qpp+1)
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Hence,

f(HI+D) ™ f(Hi) + 2q(d(v0) - gp?+l)- £ d(W).
i—1
To prove that f(Hi+2) ~/(ffi,), it suffices to show that
e
4 2qd(v0) - d(wi) ™ 2g2pp+1.
i=1

But since d(wi) Ud(vo) for each i, (4) follows from
(29 ~ g)d(vo) > 2q2p+1

which is a consequence of (3). O

3. Examples of Breaker-win hypergraphs

To construct Breaker-win hypergraphs with comparatively many edges,
it is convenient to use a “continuous” variant of the Box Game analyzed
by Chvatal and Erd&s [2], In this game B(N;p,q), there are two players,
again Maker and Breaker. The game begins with N empty bins of unlimited
capacity. A move by Maker consists of pouring at most p units of a substance
into any number of existing bins. Maker’s objective is to maximize the
amount of the substance in any single bin. Breaker’s move is to destroy up to
g bins. Breaker’s objective is to minimize the maximum amount in any single
bin. Let b(N;p,q) denote the maximum amount of the substance that ever
appears in a single bin, with measurement taken only after Breaker’s turns.
Maker’s best strategy is, basically, to distribute the substance uniformly
among all bins not yet destroyed by Breaker; Breaker’s optimal strategy is
to destroy the g bins with the greatest content. It follows from [2, §2] that

(5) b(N-,p,q) » q log N.

LEMMA 1. Let H be a simple r-uniform hypergraph on n vertices, let
p and qi be posritive integers, with g~ 2 and r > pm Suppose that

g” conr~r(logn) T™v , where co =co(p,r). Then Breaker has a winning
strategy in G(p,q,H).

Proof. Let, Ho =H and let Ht be the subhypergraph of Il with V(Hi) =
V(H) and E(Hi) all edges of H surviving after round i. In order to describe
Breaker’s play in G(p,q,H), we define r —j —1 games Bj(n-,pj,qo) (j =
1,...,r—p —1), each an instance of the Box Game variant described above.
Play in each round of each of these games is tied to play in G(p,g. H); we
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show how Breaker’s strategies in Bj{n;pj,q0) {j = 1. r- p - ]) yield a
Breaker win in G(p,q,H).

To define each Bj{n-,pj,qo), for each VEV{H), let Cj(v) denote the
bin corresponding to v. Edges of H will be placed in these bins as play
progresses; we declare that Cj(v) = 0 once v is chosen by Breaker and let
\Cj(v)\ denote the number of edges in bin Cj{v) at a specified point in play.

Also, set gp= ™<-a

Proceed by induction on the rounds of G(p, g, H) to define play in it and
in each Bj{n;pj, qo). Here is ith round play.

After Maker’s move in round i of G{p, q. H). Breaker’s play in the ith
round of G{p,q,H) has three components.

(@*) Breaker chooses a vertex from each edge that contains at least two
vertices chosen by Maker in round i. As Hi-i is simple, this requires at most
(2) vertices.

Maker’s play in round i of Bj{n;pj,qo) consists of placing in Cj{v) all
e € Hi-1 such that v Ge, and such that e contains exactly j vertices chosen by
Maker, a vertex chosen by Maker in round i of G(p,q,H), and none chosen
by Breaker in earlier rounds or as described in («,).

(bi) Breaker continues play in the ith round of G(y;.qg. I): for each j =
I,...,r —p —1, Breaker chooses those qo vertices v which maximize \Cj(v)\
after Maker’s play in round i of Bj{n;pj,qo).

(cj) Breaker completes play in the ith round of G(p,q,H) by choosing
a vertex from each edge of Ht-\ which contains r —p Maker vertices after
Maker’s move in round i of G(p, q, H).

Complete the ith round of Bj(n;pj,qo) by having Breaker set the bins
Cj(v) =0 for each of the vertices v it has chosen in round i of G(p, g, H).

We determine the values of pj and prove that Breaker’s choice of q ver-

tices is sufficient to allow play as described in {(h), {bi), and (c,).
How many edges are put into the bins of By{n\p\,go) as the result of

Maker’s choice of p vertices x\,..., xp? Each Xk can belong to at most

edges e, and each such e is placed in r bins Ci(u), so we may set p1= 2pn.
From (5), it follows that

2pn
b\{n-px,qQ log n.
Q@

Let d\1: log n.

To determine P2, suppose Maker chooses vertices :r.[, , xpduring round
i of B2{'n;p2,q0)- For an edge e to be added to some bin 62(11) by Maker
during round i, e must belong to some C\{xk) after round i —1. Otherwise,
two vertices of e would have been chosen by Maker in round i of G{p, q, H),
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so Breaker would have countered by spoiling e as described in (a,). Since
|Ci(:rfc)| ~ di, and each edge e can be added to at most r bins C2{v), we may
take p2 =pd\r. Thus (5) yields

™ 1 2Tg) A pdir logn.
(7 M™:p2<70) g
%

Let d2="~1log n
The same reasoning about Bj(n-,pj,qo) shows that

©) bj(n\pj,q0) " P-Lé%- logn,

forj ~r—p—L Let dj = I4(QL logn.
We claim that Breaker has a winning strategy in G(p, q,H) provided that

9 dr-p-i

The components of Breaker’s moves in (ai) and (bt) require at most

(2) +(r-P_1)90

vertices in each round of G(p,q,H), so we have at least qo left to complete
(cj). No matter how Maker chooses its p vertices xi,...,xp in its part of
round i, each  can belong to at most go/p edges which, prior to round i,
contained r —p —1 vertices selected by Maker, by (9). So there can be at most
qo edges with r —p Maker vertices after Maker’s move in round i. Breaker
selects a vertex from each edge, as described in (e-), to prevent Maker’s win
in the next round.

To obtain a lower bound on g that will ensure that (9) holds, note that
(8) gives

ilr , i<2i—Ilogn rr~p~2n.
_n_ Wo g )> p
Thus, the following bound on qo suffices:

r-p—2 1. r-p—
2pr —p nr-i,(logn) rp <qo .
O

Recall that Theorem 1 guarantees Maker a winning strategy for G(p, g, H)
for any r-uniform hypergraph H which satisfies e(H) ~ cPtrgr~pv(H). We
shall use Lemma 1 to show that this bound is not far from the best possi-
ble, that is, we construct Breaker-win liypergraphs with many edges - not
too many fewer than the lower bound in Theorem 1 We would also like to
“de-couple” n and g, which are tied together in the lemma.



BIASED POSITIONAL GAMES ON HYPERGRAPHS 147

THEOREM 2. Letp and r be positive integers with r>p. For qtqo (p,r)
and n t no(r), there is a constant c\ = c\(p, r) and there is a simple r-uniform
hypergraph H on n vertices and e(H) edges such that

(10) e(H) =cl! -p- 1N
(logo)" ™"
and Breaker has a winning strategy for G(p,q,H).

PROOF. Let p and r be given. It follows from a well known result of
Wilson [6] that there is an integer Zo(r) such that for all I't Zo(r) there exists
a simple r-uniform hypergraph Fi on | vertices and with at least I'2/r 2 edges.
Set no = 2lo and

f i r-p-1-
qo = |c0/o-""(log/0) ,
where @@= co(p,r) is the constant in Lemma 1

Suppose that nt.no and gt goare given. Let /t Igbe the largest integer
such that

@) qZ cO0/r-"(log/)* =
Hence,
p--p
(12 1> -
(log?)r P

where F = c'(p, r).

Observe that if n </ then (11) and Lemma 1 show that Breaker has a
winning strategy in G(p, g H) for any simple r-uniform hypergraph H on
n vertices. If I <n <21 we can define Il to be the n-vertex hypergraph
obtained from F by adding 2L—n isolated vertices. Then Lemma 1 shows
that Breaker has a winning strategy for G(p,q,H). So, assume that n't 2
and let H be the simple r-uniform hypergraph on n vertices comprised of
[n/I\ disjoint copies of Fi and the required number of isolated vertices. Then

(13) r2- 2r2
Apply (12) to (13) and conclude that

5-i- p
(logg) """

Breaker’s winning strategy for G(p, g. H) is this: Breaker pursues its strategy
for G (p, g. F) in whichever component of H in which Maker has just moved.
O

e(H) t c\ n.
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4. A problem of Galvin and related questions

We became interested in the games G(p,q,H) because of this problem
due to Galvin [5].

Problem 1. Do there exist 3-uniform hypergraphs H of arbitrarily high
chromatic number for which Breaker can win G(l, 2, H).

The answer is no; this can be deduced from [1, Theorem 2] with a little
work.

THEOREM 3. Let H be a 3-uniform hypergraph with chromatic num-
ber x{H) L (6<&3+ I)(g + 1). For all 2, Maker has winning strategy for
G(1,q,H).

P roof. For purposes of this proof, call a pair {?,«} of distinct vertices
of H thick if {u, w} is contained in at least 2q+ 1 edges of H. Let G be the
graph with vertex set V (H) and edges all thick (unordered) pairs.

Case 1 There is a vertex v of degree at least g+ 1 in G.

Maker chooses v in the first round and an unchosen neighbor w in the
second. Breaker cannot prevent Maker from choosing a vertex x in the third
round such that v, w, x E E(H) since there are at least 2q+1| edges of H
containing v and w.

Case 2 The maximum degree of G is at most q.

Let H' be the hypergraph with vertex set V(H) and with edges only
those edges of H which contain at least one thick pair. Then x{H') =9+ 1
since x{G) ffg+1 and any good coloring of G is a good coloring of H".

Let, H" have vertex set V (H ) and edge set E(H") = E(H) —E(H'). Then

o MBS

X (= 9+ 1

There is a subhypergraph S of H” such that x(S) =x(H") an(l

(14) 3M|MXx(S)-176 (8.

Now, specialize Equation (1) to a 3-uniform hypergraph S withp= 1. pro-
vided that

(15) e(S)>q2d{S)v{S),

Maker wins G(1,q,S). But d(S) ~2q, so Equations (14) and (15) show that
Maker has a winning strategy for G(1,q,S) and, hence, for G(1,q,H). O

Note that we give something up in our argument: one can do better
than the inequality in (14) and decrease the lower bound 638+ 1)(9+ 1) in
Theorem 3 somewhat.
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In the same vein as Galvin’s problems relating chromatic number of a
hypergraph H to the game G(l, ry;//), we ask about the following game.

Given g”2, k™ 3, and a hypergraph H, let Chr/t(l, g, H) in which Maker
and Breaker alternate selection of as yet unselected vertices, Maker first
choosing one vertex, followed by Breaker selecting g vertices. Maker wins
if the hypergraph induced on its vertices has chromatic number at least k\
Breaker wins if it has a strategy to prevent this.

Problem 2. Given integers k » 3 and r,q” 2, is there some K such
that for all r-uniform hypergraphs H with x(H) =  Maker has a winning
strategy for Chrf(l, g, H)7

There is a particularly enticing special case of Problem 2.

Problem 3. Is there an integer K such that for all graphs G with
x(G)".K, Maker has a strategy to choose an odd cycle in the game, where
Maker chooses one vertex and Breaker two, in each round?
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STATIONARY STATES OF INTERACTING
BROWNIAN MOTIONS

J. FRITZ, S. ROELLY and H. ZESSIN

In Memoériam Alfréd Rényi

Abstract

We are interested in a description of stationary states of gradient dynamics of inter-
acting Brownian particles. In contrast to lattice models, this problem does not seem to
be solvable at a formal level of the stationary Kolmogorov equation. We can only study
stationary states of a well controlled Markov process. In space dimensions four or less,
for smooth and superstable pair potentials of finite range the non-equilibrium dynamics
of interacting Brownian particles can be constructed in an explicitly defined deterministic
set of locally finite configurations, see [Fr2], This set is of full measure with respect to
any canonical Gibbs state for the interaction, and every canonical state is a stationary
one. Assuming translation invariance of a stationary measure, and also the finiteness of its
specific entropy with respect to an equilibrium Gibbs state, it is shown that this stationary
state is canonical Gibbs. Related ideas of Alfréd Rényi and some of their consequences are
also reviewed.

1. Introduction

The main purpose of this paper is to identify a class of stationary states of
the following system of interacting particles as the set of translation invariant
canonical Gibbs states with interaction U. The evolution law is given by an
infinite system of stochastic differential equations,

11
J*k

where S is a countable index set, w = (la/OfceS is a family of independent stan-
dard d-dimensional Wiener processes, and each = WIc(i),t ~ 0 is assumed
to be a continuous trajectory in R . The potential U :rd >#r is symmetric
and superstable with finite range, that is U(x) = U(—x), there isan R >0
such that U(x)= 0 if [rg > /?, and we have constants A~ 0, B >0 such that
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for any finite sequence gi,q2, mmqn °f not necessarily distinct points from
Rd

1.2y +
k=l jjtk

where N is the number of pairs {j, k) such that | —qgj\ * R, see [Rull].
Let U denote the set of configurations to= (u>k)kes having no limit points.
Although the right-hand side of (1.1) is certainly well defined for such, locally
finite configurations, to develop a satisfactory existence theory we have to
restrict the configuration space in a much more radical way. On the other
hand, the set of allowed configurations should be large enough to support a
possibly wide set of probability measures including Gibbs states with various
interactions.

The first mathematical results concerning this model go back to R. Lang,
see [Lai] and [LaZ], where the existence of equilibrium dynamics, and also
the canonical Gibbs property of reversible measures is proven. These dynam-
ics are defined almost surely with respect to a Gibbs state with interaction
t/, see also the more sophisticated argument of [Os]. For a study of sta-
tionary measures in general, we need a more direct construction involving
explicit bounds on the rate of convergence of solutions to finite subsystems
(partial dynamics) when the number of active particles tends to infinity,
see Section 3 below. Indeed, the problem of stationary measures cannot be
solved at a formal level of the stationary Kolmogorov equation because a
full Hille Yoshida theory is not available in the present context. Since we do
not know any Banach space in which the underlying Markov semigroup is
strongly continuous, we have to materialize our arguments at a level of finite
dimensional approximations, see [FFL] and [FLO] for a discussion of related
questions.

For a generic, locally finite configuration to— let H(u,m,r) de-
note total energy in the ball B(m, r) of center rnE  and radius r A1, and
for a > 0 define

Hn(uj):= sup SupH(u,r}]_,rgI/d(m))

mE£Zd rEN r<9a\m )

Hu=,m, r) E E L@\ rﬂ)

fc:an,eR(m,r)  jj*k:ujjEB(m,r)

where

(1.3)

and ga{v,) := 1+ |it|Qlog(l + |u]) for u ER, Rd. The set of allowed configura-
tions is now specified as tta := {{"E LI:Hn (™ < +00} ; we shall see that for
an effective a priori bound we need a 52—d/2, thus d”~ 4. Let Co(R(/) denote
the space of continuous ip : Rd =M of compact support. Spaces of k times
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continuously differentiable functions with compact supports are marked by
a superscript k, while a subscript b in place of 0 refers to bounded functions
without any support condition. For an open and bounded domain AC Rd
the (7-field is generated by the variables uX{ip) := YlkeS #afc) such that
the support of G Co(Rd) is contained in A; the number of points in A
will be denoted by u;(A). This means that configurations are interpreted as
nonnegative, integer valued measures, and Qa is equipped with the associat-
ed weak topology and Borel structure. Observe that, due to superstability
(1.2), the level sets £lah  [Ha(uj) I h\ are compact if h is large enough.
The restriction of 4 G to Ais a3\, and Ac denotes the complement of A

For any bounded domain AC Mi, a G and n GN let Q¥(n|cr) denote
the set of G  such that cj(A) = n and u\ c= o\c. A probability measure
Ais a canonical Gibbs state (with unit temperature) for U if its conditional
distribution \[d(jj\\u\ c—ctag, u;(A)=n], given the configuration outside of A
and the number of points in A, admits an nd-dimensional Lebesgue density
AL

/ ) exp(—H\.n(u\o))
afiM<7
| Z\n(f)

F\,h(wH :=\ A2 J2 Uuk-aj)

k :ulJkGA j k staj EA uirEA cryEAc

if u Gii\(n\a), where
(1.4)

and Z is the canonical partition function (normalization). Gibbs states are
the extremal canonical measures, see e.g. [Geo]. In view of the superstability
estimates of [R2], there exists at least one translation invariant Gibbs state
Asuch that A(flo) = 1, of course Qa C/lp if a <BR.

The unique strong solution to—u(t,a) to the infinite system (1.1) with
initial configuration a Gfl« is constructed as the a.s limit of partial solu-
tions (J1=ur(f,<7) when a spatial cutoff 9 is removed. Partial (approximate)
solutions are constructed in such a way that particles are frozen outside of
a bounded region, they follow (1.1) in the central part of this domain, and
there is a continuous transition from a full activity to a vanishing one at
the boundary. It is relevant that partial dynamics preserve any canonical
Gibbs measure. More precisely, for any 9 GCq(Md) with 0~ 9/ 1 there is a
differential operator Co,

1 d
(1.5 Cofi:=2E E <Hdu)du"M -~ Hkiu)ddk"*M),
kes 7=1

where dk,i denotes differentiation with respect to the i coordinate of uk and

(1.6) M ._E ~ N .
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We consider Cg as the (formal) generator of partial dynamics with cutoff 0,
the infinite system (1.1) corresponds to 6 = 1. All generators of this kind are

certainly well defined on Cg(il), where Cg (il) is the space of test functions

(1.7) ipGQp(K;), 4 GCqg (Kd), |1 GN.

The stochastic equations for cutoff o read as
(1.8) dujk = \ e Hkdk (e (uk)e~Hk)dt + \/9{uk) dwk,

they have a unique strong solution ul =uji(t, o) for each initial configuration
a Efh If ADsupp 0 then the particle number in A is a constant of motion,
that is we(f,a)(A) = a(A). Therefore (1.8) defines a fairly regular diffusion
in each f2y\(ncr), and it is easy to verify that realizations of the canonical
conditional distribution \[du\\u\c= o,\c, w(A)=?i], n EN, a Efl are all re-
versible measures of the associated (nd-dimensional) diffusion process. The
associated Markov semigroup will be denoted as Vg, it is strongly continuous
in the Banach space C/,(ilQ) of continuous and bounded (& =E, and also
in L2(ifQ, A) whenever Ais a canonical Gibbs state.

In the paper [Fr2] it is shown that if d U4 then for every initial configura-
tion a E ilo the sequence of partial solutions coe(t, @) converges almost surely
to a strong solution = u=(t, a) of (1.1) as 9—>1in a clever way. This limiting
solution is distinguished by an a priori bound: Ho(uj(t,,a)) is bounded on
finite intervals of time, and there is no other solution having this property.
Following the lines of the proof we see that the result extends immediately
to all a » 2—d/2, see also Proposition 1 in Section 3. Since the rate of con-
vergence of partial solutions does depend on Ha(a), the limiting semigroup,
V1 is not strongly continuous in C/,(flo), thus the Hille Yoshida theory is
available in a restricted form only.

As a general reference measure we choose a translation invariant Gibbs
state Awith interaction U and unit temperature, it is also a reversible mea-

sure of each partial dynamics. Introduce F\((p) :=logA(e”), then entropy
of another probability measure p relative to A is just its convex conjugate

m aj,
(1.9) I[fi\\] :=sup{//(0) -Fx{<>) m<peCo{ty} =j log dn

if> < A; I[fjlA = +00 otherwise. It is easy to verify that //(<E) ~ /[/i|A] +
F\((p) whenever & Qq E is measurable and fx(<p) < Too. The entropy of p
in ACEf is

(1.10) 7afi|A]:=/[/m |Aa]= /[paAA] = sup{/i (/>)-Fa(0) : £ FAn CO(f2)},
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where p\ is the restriction of /j to T\ and /jaAis the measure obtained by
extending /ja to the whole space by means of the conditional distribution
of A that is (j/4X)(duj) := If/j is translation invariant
and A,, denotes the centered cubic box of side 2n then

A= [ NMOOA . i .
A= i = = suedlis) € Co(i7)}
(1.11
Fx{(p):=77ljpgo A ] DJ[ exp ( sm<frdX,
meAnOZ

denotes the (relative) specific entropy of /j, see Section 5 in [OVY]. Here and
also later on, sm is the shift by meRd, i.e. sm()y) = 0(smw). Observe that
jI/M/A] < +oo implies /j,(H,i) = 1 by the ergodic theorem. Our main result is
the following:

THEOREM 1. Suppose that p* is a translation invariant stationary distri-
bution of the infinite system (1.1), that is /j*(i7(I)= 1for some 0Sa L2-2/d
by assumption. If I[p*|A] < +00 then p* is a canonical Gibbs state of unit
temperature with interaction U.

The starting point of the argument is a quite general entropy inequality
for Markov processes in such situations when the initial distribution has
finite entropy relative to a stationary reference measure, see e.g. [FLO]. This
inequality and some of its first consequences are discussed in the next section.
In Section 3 we develop some uniform estimates on the rate of convergence
of partial dynamics to the full (infinite) one. These bounds are then used
in Section 4 to extend the basic entropy inequality to the infinite system,
which completes the proof.

2. An entropy inequality and its consequences

The idea that relative entropy with respect to a stationary measure is a
nice and effective tool of the study of ergodic properties of Markov processes
goes back to A. Rényi [Rel, Re2], where ergodicity of irreducible Markov
chains in a finite state space is shown by using entropy as a Liapunov func-
tion to show the convergence of the evolved measure. Let us first review
this argument in a general context of discrete time Markov processes in a
probability space (X, A, A); see e.g. [Fo] for basic notions and results. Let V
denote a positive contraction of L°°(A) into itself, it is interpreted as the op-
erator of conditional expectation of the underlying Markov process. Ifp -CA
is a probability measure on (A, A) then p.V is defined by pV(ip) = pfiPp)
for ip6 L°°(A); given an initial distribution po -mp A the evolved measure
at time t£ N is denoted as pt —pV™*; cPlip:= if =WV(p. We are as-
suming that A= XV is a stationary measure, then V is a contraction of each
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Lp(A) space with I*p~+o00, and I[pV\X] * /[p.JA] by convexity. Moreover,
as noticed by I. Csiszar [Cs], the difference is again a relative entropy:

2.1 Al - 1pt\X] = 1[po V' IQlopt),

where p oV and Qop are probability measures on X x X characterized by

and
(2.2)

for cf(x,y) = ip(X)ip{y) with g9 &G L°°(X). Here and later on, Q denotes the
transition operator of the backward process reversed with respect to A; it is
just the adjoint of V in L2(A), i.e. X(ipVip) = \(ipQip) for tp,* GL2{A). In
general we do not know that Q is given by a transition probability, but it
is again a positive contraction of L2(A), thus pQ :=p(Qip), PG L2(A) is a
probability measure if p is so, A= AQ. In view of (2.2), I[p\X] = I[pV\X\ <
+00 implies poV —Q°pV, thus p is a stationary and reversible measure
of the composed, reversible process TZ:=VQ, see [Frl]. Of course, 121"
VtQt in general, because V and Q need not commute. Nevertheless, the
following reformulation of results by Rényi and Csisz&r demonstrates an
intrinsic relationship of the notions of entropy and reversibility.

Theorem 2. Every absolutely continuous stationary measure p X
p=pV, is reversible with respect, to 1Z If p <CA then so is pV1 and the se-
quence of densities, ft~dp'Pt/dX is uniformly integrable with respect to X
Moreover, if g.Vtn(p) —p(<p) .for all pGL°°(A) as th —+oo then p is a
reversible m,ensure of 1Z that is we have a weak convergence of the evolved
state to the set of 7Z-reversible measures.

Proof. Suppose first that /[v|JA] < +00, then I[pVE\X\ " I[p\X] implies
the uniform integrability of ft,f 6N, thus the Dunford-Pettis Theorem ap-
plies. We have to show that every weak limit point p satisfies I[p|A =
I[fiVAX\.

If p(ip) = limnp.Vin(x) for all pGL°°(A and :X xX  E is measurable
and bounded, then

(P°V)(<t>) -log(Qo/i)(e0) = lim {ptn ° V{<t) - 10g(S ° pin+i){eH

(23) A IirrolO (/[1it,,|AT-/[/itn+i]A]) = O.

Taking the supremum on the left-hand side we get I[po'P\Q°pV] = 0, whence

poV = QopV. ie p=plZ Replacing V by IZ in the argument above, we

get polZ =1Zop, the condition of reversibility of p with respect to 1Z=VQ.
The general case of fiC A follows by a direct approximation procedure.

For each e > 0 we have some pe such that I[pr|A < +oc and \p—pe\\ <e,
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where | ¢|j denotes the variational distance. Set ff :=dpeVt/dX and |zj+
max{0, x} ; since V is a contraction of L1(A),

I \ft-a\+d\Zj |/f —a\+dX + J\ft- ft\d\

Sj lfo—al+dX+ \J|/o—fo\d\"2e

if a is large enough, thus ft is still a uniformly integrable sequence. Consider
now a weak limit point ft of p,V1 tn-> +oc is the subsequence along which
p,VI converges to p. and let Re denote a limit point of p£Vtn. We have a
subsequence {tn} c {tn} such that for any pE L°°(A

ImM - fiE{<P\= I™ \iiPta{ip) - peV'n(p)| "esgp \p(x)\,
Xex

so that . - //elL” e implying pfpTlip) = fj.(ipTZ(p) for GL°°(A). O

This result is useful because usually it is easier to identify the reversible
measures than the stationary ones. Of course, the set of reversible measures
of Z—VQ can be much larger than the set of stationary measures of V.
Anyway, Theorem 2 yields some preliminary information for further, more
specific investigations.

For example, if X is a countable set then V is given by a stochastic
matrix p =p(x,y), i.e. Vp>{x) = "2yp{x, y)(p{y), then the associated back-
ward transition probability is just g{y,x) := X(X)p(x, y)/X(y) ; A@) > 0 for
all x GX may be assumed. From (2.3) with Vt in place of V we get fioVi=
Qf oBV 1 for any limit distribution ft, which reads as

mW

(2.4) %60

— My)
t(x,y) =pt(x,
pt(x,y) =pt(x,y) M)

in the present context. Therefore if the chain is aperiodic in the sense that
for each x GX there exists an integer t(x) > 0 such that pl(x,x) > 0 whenever
t N t(x), then B(x) =Rtfx) for t~ t(x). Similarly, B\(x) = Bt+i (x) if t~ t(x),
consequently 3(x) =Ri{x) for all x GX, i.e. B =RV. The uniqueness of the
stationary measure follows immediately from a condition of irreducibility: if
for each pair x, y GX we have some t =t{x,y) such that pl(x,y) >0 then we
get B(x)/X(x) = B(y)/X(y), whence B(x) = X(x) for all x GX , consequently
we have M x) Mx) f°rall x GX as t—00.

In the case of continuous time it is natural to assume that X is a complete
and separable metric space, and both V1 and its adjoint Qf form strongly
continuous contraction semigroups in L2(A) and also in C(,(X); basic nota-
tions are the same as above. To obtain a lower bound for I[/i|A] —I[pVt\X,
consider an auxiliary distribution u d4CAsuch that :=dv/dX > 0; then p<”v
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and I[n\u] = /[p|A] - *(logip), while N\yVt\vVt]—I[yPI|A]l - p(log Qfip) as
duVi/dX = Qfip. Since I1"iV'AvVI I\p\v] by convexity,

TMA- I[UPLIA ~ fulog\y) - /i~ (log QV)
AA Ali(logV?)-Milog AV ) A | A

as logx- —ogy't{x —y)/ x. Observe that XoVf is a symmetric measure, thus
with f =dy/dX we get

A oy TIPLY)  T(y)ipDO
(2.6) dp =" 11 (AD %) ipfy \HV)

“ 11 (x°RSX dy) VT (*)VT(y)-

This means that the right-hand side is maximal if ip= >//, consequently
(2.7)

sup{ *  — dp :-0gL2(A)|= j \[iOO){y/3{x) - "I'\F]{x)) Adx)

whenever /i, <A and dp. = /dA.
Consider now the Donsker-Varadhan rate function D, it is obtained by
differentiating (2.7) with respect to time:

(2.8) D[p|lE]:=sup{-j ~ dy :ip6Dom (5 inf'0>o0j,

where fy is any semigroup generator. Remember that Dom Q in the definition
of D can be replaced by any core of Qin Cb(X). Moreover, if Qis self-adjoint
in L2(A) and f = dp/dA, then D[Y\Q\ < +00 implies \/JE Dom (—Q) 1*2 and

(2.9) DW\G}= | (VAGY/JIfdX

see (2.7) and Theorem 5 in [DV],

Let C and C* denote the generators of Vt and Q' in L2(A), respective-
ly. Although Vf =VtQt does not form a semigroup, it is self-adjoint, and
TZtp= tQp + °{t) for small i by a formal calculation, where Q= £ + £*.
Therefore, under some natural conditions the right-hand side of (2.4) be-
comes —ty(Qip/ip) + o(t), thus we have

P roposition 1. Suppose that Q= £ + £* is self-adjoint, in L2(A), and we
have a dense linear space C* C C~X) such that V'C* C C* and QfC* C C*
for all t> 0, then

I[yVt\X] + 2tD[yt\Q]£I[y\X] where ytm=j / yVsds.
0
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The argument above can be made rigorous by exploiting our conditions
postulating a duplicated semigroup structure, see [FLQO] for details. There-
fore /[/i|A] < +00 implies D[p\Q] = 0 in a stationary regime, see (2.9) for
an analytic way of solving this stationary Kolmogorov equation. To get a
converse statement, set T4 := ets ; it is also a semigroup of self-adjoint con-
tractions in L2(A), its Markov property follows immediately by the Trotter
product formula:

(2.10) nil= nIhgc:(rt/th/n)n.
The proof of Theorem 1 will be reduced to

Lemma 1. If D[p\Q] = 0 then, under conditions of Proposition 1,
p{4=>R> —pf'ipfV'(5 for all (pip€ L2(A) and t> 0.

Proof. Observe first that dt logCR'ip/ i) —GJAil)/iZip, whence by
D\p\g] =0

n'-if-f)
0s 1o g ™S e P

a1+ J (U212 dp. g -1 + (p.("V 27 2))1/2-

Choosing ip2=/ :=d.p/d.X we get 1" p{VI\/~f/yff) » (AC'Rtf)) 2= 1, whence
/ = Uff A-as., ie. p=pHzifor all t> 0, which implies also the equation of
reversibility, see [FI]. O

It is not rare that Q is heavily degenerated, even Q= 0 is possible as it is
for Hamiltonian dynamics, when A'is an equilibrium Gibbs state, C* = —C,
and entropy is a constant of motion. The opposite extreme situation is
that of reversible diffusion processes. In that case Qf =V 1 i.e. Q= 2£, and
the verification of the conditions of Proposition 1 amounts to establishing
smooth dependence of solutions on initial values. Assuming the smoothness
of the coefficients of the underlying stochastic equations, a standard argu-
ment shows that twice continuously differentiable functions with compact
supports form a core of the generator. If the diffusion matrix is positive
then D[p\Q] =0 yields p = A thus poVi—Aas t —00 for all po \.

Our next task is to extend these results to infinite volumes, this is done
by means of a familiar argument of Holley [Ho]; in translation invariant
situations we can pass to the thermodynamic limit. This procedure cannot
be carried out in a general framework, see e.g. [FFL] and [FLO]; technical
requirements are summarized in the next section.

3. On locality of dynamics

Results of [Fr2] are not directly applicable in the present situation, that
is why we review some parts of the argument. A convenient collection O of



160 J. FRITZ, S. ROELLY and H. ZESSIN

cutoff functions is defined for rnE  and 1™ 1 by 6ln= Q[n{x) := Oo(||x —m\ —
/|+), where  ECq(R) satisfies 0" Ocfu) 8.1 Vu E K while Og(v)=1ifuld 1l
and Og(u)=0ifu” 2;0 is obtained by joining 0= 1to 0. In case of the full
(infinite) dynamics the mark o =1 is usually omitted, the limiting solution,
the associated semigroup and its generator will be denoted as —  a), V*
and C, respectively. The basic a priori bound of [Fr2] can be reformulated
as follows, see Proposition 2 and (3.18) there. Let Nk(uj) denote the number
of points of to in B(uik, 1) and

Nk(co°(s))
\Jga{uk(s))

(3.1) mNg(t,a) 1+ sup max

Exploiting the superstability of the interaction, by means of the argument
of Proposition 2 in [Fr2] we get

P roposition 2. Ifa512—d/2 thenfor eacht> 0 and h>0

lim sup sup P[Ng(t, a) > p] —O.
p~*°° 6eeaenO,h

First we derive a uniform bound on the localization of particles. From
the stochastic equations

-Ck\"KiNg{t,cr) j \/ga{ujl{s, a)) ds
3.2) 0

\Jo(ujOks,a)) dwk

Let g*(u) (1 + H)4/5, by a direct calculation
Sg.k(t,a) := max |uk(s,0) -cTk\*fg(t,a){gt {ak) + gt{egk{t,a))),

s<t

&) fo(t K2/ N d m K2 \Jo (ujk(s,0)) dwk
= , + 0 (Ue(s,o w
g(t.a) 2/ Ng(s, ) ds kes % <10 - J

including 0= 1, whence by assuming <§k ~.g*{crk) we get

(3.4) Sotk(t,<T)"Tie(t,<T)g*{(Tk),
where the explicit form j— is not relevant, we only need
(3.5) lim sup sup P[qg(t,cr)>y]=0

y*°° oeeaeQoh
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for all t,h >0, which is a direct consequence of the definition of

Now we are in a position to estimate the rate of convergence of partial
dynamics (J* to its limit u)as 0-> 1. For any initial configuration o€ let
S(m,r,cr) denote the set of AGS such that |a* -rn\ ~r, and consider

(3.6) Am(t,r,a):= max max \uk(s,a) —oifc(s,cr)) with 9—e6n.
k(LS(m,i\a) SMt.

For any fixed T >0 and vq,I ™ 1definerKk=0,1,...,X,... by

A rkK+l= rK+ 2g*(\rn\ + /) a)+i?.+1 where
Om(T>0) := inax{f/o(T, or), 7A(T, ®}, 0= <.

111 view of (3.4) this means that before time T the particles starting from
B(m,rK) cannot interact with those starting from outside of B(m,rK+1),
therefore

(3.8) &(tirK,°)ikLg(\m\ + )NIn{t<T) = An(s,rK+ua)ds, where

N In{t, o) := max{7Ven(t, a), IV, (i, B},

provided that rk+i + R"1.
Suppose that (3.8) can x times be iterated, then for t<T

(3.9 A} (i,r0, )™ 21+ 1)" ),(|'- (g«(Im[+/)IVA(F,CT))x,

where x = 0(/(Im| + /)_4/7) is a random number. Of course, this inequality
implies the a.s. convergence of partial solutions; this was shown in [F2]
when m = 0 and / —+o0o0. Here we need a more delicate result: tJJ with
0 = 0in converges even if |m| increases together with /. More precisely, for
any vqg,t.,h,e> 0 we have

(310)  fim %ug{P[iV’\(i,CT)Ai,,(i,ro,CT) >e]:ab6 11Q/,, m,leM n}=0,

where Mn {m, | :|m| + /+ 7?2<n, | > n56}. Indeed, in this situation x of
(3.9) goes a.s. to +00 as n -Aoo.

In the next section the following consequence of (3.10) will be needed.
Suppose that we are given a translation invariant probability measure n such
that /i(Ort) = 1, and set jjn :=fi\nA The above calculations are summarized
m
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Lemma 2. For any c)&Cq(ii) and t> 0 we have
n@m%{\p.nVssmb—ij.Vs&:sq, \m\<n-—56}=0.

Proof. Since pn(smf) = fi(f) if @9smf GF \n, it is natural to approx-
imate V s4>by ifi = VgPwith 0 =60 ; remember that smfi = Vel{> Since ¢&
is Lipschitz continuous by assumption, we can compare smfi and VSSm{via
(3.10) , at least if [m| <n —5' 6. The missing part of the argument, namely

(3.11) lim_sup A, iia/i) =0

follows from the basic superstability estimate of Ruelle [Ru2], Indeed, for
any box A of given shape and size we have A[m(A) > u\T\.; * Ce~cv~, where
c and C do not depend on eo. In view of (1.2) this yields A(i2a) = 1 by
the Borel-Cantelli lemma. Since /r(PQ = 1 by assumption, estimating the
contribution of particles from Kn to Ha via superstability, we get (3.11) by
a similar computation.

Remark. Since the level sets of H are compact, the Stone Weierstrass
theorem allows us to extend Lemma 2 to continuous and bounded local
functions.

4. Passage to the thermodynamic limit

Now we are in a position to prove Theorem 1 by extending Proposition 1
to infinite volumes. Using the notation /r* = Aof Lemma 2, we have

(4.2) mvt\X] + 2tD[p*nAt\E,;} £ I[p'n\\] = I\ n[/RA]

for any smooth cutoff 6, where //* ft is the time average of the evolved
measures P*Vqg from s = 0 through s=t. In view of (2.6), D is subadditive
in the following sense. Suppose that Jg{n) C A,, satisfies 9~  and 9m9k = 0
for m, k GJg(n), k™ rn then

@ w»\m E E /A
meJg(n) meJg(n)'
for smooth 'ip>0. Similarly, for all %9 Co(R)

mv I IAL I Sn{VE{f)) d¥n- F\(Sn(f)), with

(4.3)
Sn{f) .= ~2  S'ip-
meA,,nzd
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Now we can remove the cutoff of dynamics. Keeping Jg(n) = JI{n) C
An_n56 fixed during this procedure we get
4.9

c Jai2$6'aee | AT+

meJ'(n) O

As far as | is fixed, we may assume that Card JI(n) * c/|An| with some
¢/ > 0;thus dividing both sides by |A,,| we can pass to a thermodynamic limit.
Indeed, in view of Lemma 2 all terms of ffnV I(Sn(tp)) become asymptotically
identical when n —po0. Since Cat = smC(r)oi, the same holds true on the left-

hand side, thus for all 9£ © wituhmcompact support we have some eg > 0 such
that

(4.6) tce | dR*T1[,C\] + Fx(<p)-f(<p),

where ipE Co(if) is arbitrary, consequently D[/i.*\Cg] = 0 for all 9 £ ©. In this
way we have managed to decouple (localize) the equations of stationarity.
In fact, if A:=supp 9 then Cg generates a reversible diffusion with a nonsin-
gular diffusion matrix in each layer ffA(nler). Such diffusions have a unique
stationary measure, which completes the proof of Theorem 1 by Lemma 1
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ON THE MAXIMAL GAIN OVER HEAD RUNS
A. FROLOV, A. MARTIKAINEN and J. STEINEBACH

To the memory of A. Rcnyi

Abstract

Let (Xj,Yi) be a sequence of i.i.d. random vectors where {X,} are gains and {V.}
are indicators of successes in repetitions of a game of heads and tails. Put So =0, —
-Y] + eom+ X*, and let /{+} denote the indicator function of the event in brackets. Then
MV = max0<i<m<M(5'm —S;)/{Y/+1 = mm= Ym= 1} is the maximal gain over sequences
of successes without interruptions (“head runs”). We derive necessary and sufficient con-

ditions for strong laws of large numbers for Mpj and find rates of convergence in these
laws.

1. Introduction and results

Consider a sequence {(X,, Vi)}i=i,2,... of independent, identically dis-
tributed (i.i.d.) random vectors, where

(1.1) p(yl=i)=p=i-p(yi=0)6(o,i).

k
Let Sk = X.,, So=0, and

7=1

Mn =g Max (Sm- Si){YI+i —mm Y, - 13

where /{ ¢} denotes the indicator function of the event in brackets.

Ifp = 1, the random variable Mjg has been studied in various contexts (cf.
e.g. Derribo and Karlin [7], Karlin and Dembo [10], and the work mentioned
therein). Typically, if the random walk {Sk} has a negative drift, an almost
sure limiting behaviour of {M/} requires a logarithmic normalization.

This phenomenon (of logarithmic normalization) has earlier been ob-
served by Erdés R.enyi [8 and Shepp [12] for maxima of increments over
subintervals of logarithmic length in a large interval. Csorg6 -Steinebach [3]
studied maxima over increments of at most logarithmic length and obtained
a first convergence rate result. For the precise rates of convergence, and

1991 Mathematics Subject Classification. Primary 60F15; Secondary 60F10.
Key words and phrases. Head run, increment of random walk, strong law of large
numbers, large deviations, convergence rate.

0081-6906/98/$ 5.00 ©1998 Akadémiai Kiadd, Budapest
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for various extensions and improvements of the Erdés-Rényi-Shepp laws we
refer to Deheuvels-Devroye-Lynch [5 and Deheuvels-Devroye [6].

In this paper, we focus our attention on the case p<1, ie. we are
interested in the maximal exceedances of a random walk {Sk} over “runs”
of a companion sequence {Y,}. Since head runs are of logarithmic order (cf.
Corollary 1 below), one can expect that, if the drift is positive, the maximal
gain over head runs is of logarithmic order, too. This, however, may fail
when the drift is negative. In the latter case, the head run corresponding to
the maximal gain has at most logarithmic length. It turns out that still an
Erdés-Rényi-Shepp type phenomenon holds for the maximal gain over head
runs whatever drift the random walk may have.

Note that the limit in our main result does not depend only on EXi
and/or the marginal distribution of Y\. It is a function of the full distribution
of X\ given Y\ = 1, and will be introduced next.

Let

P(h) = E{ehX'\Y1= 1},

and assume that

(1.2 ho = sup{/i: (f(h) < oo} > O,
(1.3) E{|IX,||Y, = I}<o00.
Define

(1.4) * = sup [/i *0:(f{h) ~ - 1.

Note that 0< h*”~ oo, and, if h* <ho, then h* is the unique positive solution
of the equation

If h* = ho, then p(h*) £ \/p by the monotone convergence theorem, but the
inequality may be strict.

Theorem 1. Let, {(X,, Y7)),=1? be a sequence ofi.i.d. random vectors
satisfying (1.1) to (1.3). Then

(1.5) lim us..

When p =1, EXi <0, and the X/s are bounded, a corresponding result
has been proved by Karlin and Dembo [10].

On choosing X, = Yu we obtain the Erdds-Rcnyi strong law for the length
of the longest head run:
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Corollary 1. Let Z™ be the length of the longest head run in N inde-
pendent tosses of a coin with P( ‘head”) —pE (0,1). Then

lim ®a _ 1
NM->wlog N log(l/p)

Refined and extended versions of the latter statement have been proved
by Erd6és Révész [9] and Deheuvels [4],
Remark 1. Condition (1.2) is also necessary for (1.5). Indeed, if
limsup M/v/log N <oo a.s., then, for some h >0,
. XNI{YN=1}
lims .S..
|N _}gop log Al a.s

So, by the Borel Cantelli lemma,

Y P(X1{YI=1}Z-\ogN)<oo.
N=1
Hence o
Y  V(h'X\ ~ log AllVi = 1) < 00,
N=1

which implies (1.2).

We also obtain a convergence rate result for (1.5) provided h* < fio- It
is an analogue of the Deheuvels Devroye-Lynch [5] improvements of the
Erd6s Rényi Shepp strong laws of large numbers.

We restrict our attention to the case

(1.6) PWi=Yi=1)<1 Wx

THEOREM 2. Let {(X,, yi)}i=i,2,... be a sequence of i.i.d. random vectors
satisfying (1.1) to (1.3) and. (1.6). Assum.e that h* <ho- Then

IT Adn —log Ai _ N
log log N —— in probability,
b sup WV -log Al 1

SUP—fogiog A~ 2 2%

liming MY - loON 1
N—0 loglogN
The case IT = ho is excluded from Theorem 2 because it involves large
deviation probabilities in a wider zone than before. A different asymptotic
of these probabilities may result in a different convergence rate in (1.5).
If (1.6) fails, the behaviour of M/v can also be different. Confer, eg.
Theorem 2 in Deheuvels [4].
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2. Large deviation results

Let Z\, Z2,m. be a sequence of i.i.d. random variables with E|Zi| < 00,
P(Zi =x) < 1for all x,

t0=sup{t * 0:4xt) = Ee,Zl < 00} > 0.

Define Tn— Z,, T)= 0, and

M =" c , Pla)=inf4>(t)e~to.

Put A = limp,(t). Then, for all a G(EZi, A), there exists a unique t* G (0, to)
mo
such that y{t*) —a. Moreover we have

p(a) = 4¢t*)e-at’.
T heorem 3 (Petrov [11]). Under the assumptions above,

P(Tu”na) V'(«)

uniformly for a G[EZ\ + e, min{A —e, 1/e}], where £> 0 is arbitrary, and
ip(t*) > 0 is afinite constant depending upon t* and the distribution of Z\
only.

For nonlattice distributions, fix{t*) = I/(t*cr(t*)\/2jr), while for lattice dis-
tributions with, span H, ip(t*) = H/({1—e~H }cr(t*)\/2n), where a(t) =
p'(1).

We will use the following corollary of Petrov’s theorem.

LEMMA 1. Let aG (EZi, A) and let yn be a sequence of numbers satis-
fying ny'n —=0 as n —»00. Then, uniformly over z with \2A » |yn|, we have

P{Tnzn{a + z)) ~ — J-pn(a)exp|-nzt* - }.

P roof. We have
(log p{a))’ = (log4>{t+) - at*)' =y, (t*)(t*(a))’ - t*(a) -a(t*{a))" = -t*{a).
It follows from p(t*(a)) =a that a(t*(a))(t*(a))' = 1. Hence,

(iex <)==y

Since t*(a) is a continuous function of a, ip(t*(a)) is continuous. Apply-
ing Taylor’s expansion we get the conclusion of the lemma.



ON THE MAXIMAL GAIN OVER HEAD RUNS 169

3. Proofs
First we prove some auxiliary results under the conditions (1.1) to (1.3)
and (1.6).
Put
— V'(h)
rn(n) =
hm=I{Yl+l="®=Ym= 1},
and
(3.1 m* =m(h*), m!=m'(h*), C

- h*m*
Let Xj be a sequence of independent random variables with cumulative
distribution function F(x) =P(Xi <x\Y\ = 1), and Sj = ~ Xu Sq=0. Note
=i
that

32 P(<sj > x\I0,j = 1) = P(<5) > X).
The proofs below make use of similar techniques as developed in Deheuvels-
Devroye-Lynch [5] and Deheuvels Devroye [6].

Lemma 2.

h*Mn —log iV 1
A—=a loglogN 2
Proof. Put

X=XN= 1?2 I0gN + A + £)2h* 10glOg N *

Kx= [ClogN —A x/log N loglogN], K2=[ClogN + Aylog N loglogN],
K3 = [Cxlog N],

where e >0, and [x] denotes the integer part of x. The positive constants A
and Ci will be specified below. Note that x > 0 for N > ee.
We have

(3.3 P(Mn >x)IP(N) + Q(N),
where
(3.4) P(N) = P(Miv > x, I”"m= 0 for all I,m such that rn*.1 + K 3),

(3.5) Q@(V) = P(//>m= 1 for some I,m such that m” L+ K3).
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Then, for any O> 0.
(3.6) Q{N) SN2p,s”™ -N'2#0 logp= -N ~ g,

v P

provided C\ = (2+ 8)/log(l/p). From the definition of h* and m* in (1.4)
and (3.1), it is easy to check that C| l/log(l/p), so C <C\.
We further get

Kz
P(N) <iVP(_max Sjloj>x) <N V P(S70 >X)
1<j<K3
3-7)
=7V ANP(53>x]/0) =1).
j=i
Hence, by (3.2),

(3.8) P(N) g N Y JP'PiSj >x) =N(Pi(N) + P2(N) + PAN)),
7=1

where

vij= E (> pai)= E @ w)=E
J=/f2+1 j=RI+I =1

Put
llog log N
loglv ~’

and let tjv be the unique solution of the equation

n = A\

M) e e + £v)

Note that the function m(f) is strictly increasing and therefore i*vt h*- By
Markov’s inequality

Ah
(3.9) Pi(N)» E  (PV(iiv))Je-ztwg C Llogi\r(p¥x(iN))Jfatle - Bw,
JFA2+I

because, by the strict convexity of ptogether with <p(0) = 1, p(h*) = 1/p > 1,
one has <ijv) <ip{h*). By the definitions of iV2, x and e}y,

(3.10) logN{pp{tN))Ki+le-xtN U (log jv)1- (t*/ (24*))(1+e)j V1
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where
V=-~7 + {C+ £n)\og(pip(tN)).

Since
log{p<p(tN)) = rn*(tN ~ h*) + — {in ~ h*)2+ o((tN - h*)2),

we get, by the definitions of C,in and en,

Y= -1 +(C+EN)M*(IN - h¥)—> (tN - h*)+C2 (tN - h*)2+0((tN - h%)2)

=~1+V{"T77) - ){IN~h*)+cT {tN~h*2+ °{{tN- h*)2)
=-1 +~(tN- h*)g(tN) + o({tN - h*)2),
where
g(t):/r\n&)' i+ C "-2(t-h*).
Note that
%) — m <0
g'(h*) =- oy <Y
Since g(h*) = 0, we have
g{tN) = g'{h*)(tN - h*) + o{(tN - h*)).
Thus,
v
=-1-C'-J(tN- h*)2+0o((tN- h*)2).

Moreover, by the definition of t*,

m %
eN=C by~ ) N )

Here we have used the same argument as for g(t). ft follows that

.m &2 3 loglog TV
¢ 2...(tN hj 2 logTVv ’
provided A = (3m'//?,*(m*)'3)¥2. Then, for any i*O, the inequality

'3 \ log log TV
log TV
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holds for all large N. By (3.9), (3.10) and the last inequality,
(3.11) Pi(N) "CiN~I{logN)-(1+T)

for all large N, ifr > 0 is chosen small enough.
Let tN be the solution of the equation

h*(C1—£;v)'
Then tN\.h* As in (3.9) and (3.10), we have
(3.12) P:i{N) log N{pip(t'N))rde~xt'N= C{log
where
z=- fr + {C-£N)log{p<p(t'N)).

In the same way as before,

Z=-1 +2(U'N- h®)g(t'N) + o((tN - h*)2)

B s N ~h* /3 _ \loglogN
=-1-Cy (4 ~h*)2+0o((tN~h*)2)< -1 V2 logN
for any O> 0 when N is large enough. Hence
(3.13) P3{N) ECIV*“1(logA0_(1+r)
for all large N, if + > 0 is chosen small enough.

Finally, put Z =znj = {x —rn*j)/j. By the definitions of x and m*, we
conclude that 1= O(j_1/2(logj) v2) ifuri ~ j € k 2- By Lemma 1, uniformly
in K\ <;j"K 2,

P(Sj >x) =3>§ >j(m* +7)))

> Ye_/I*m"}) exp -
yR , 2jrn
h* i (m
-p Je x/r ex _
v " J

It follows that

P2(1V)’\ —xh*+x(m*/m") E e-(x2/(2im "))+ (i(m*)2/(2m"))
s/K 1 -
i=A"i+]
) -xh*+x(m* /m")-x2{2K\m") y

= VKT
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X (e-(Ni+ 1) (m*)2/(2m*) _ e- (Re+1)(m*)2/(2m*"))(i _ e- (m*)2/(2m*)) -1
s B —\/—_\’\J_e—xh’—(x—m' Ki)2/(2K\m') < jgtyy 1(log jV)~(1tr),
K

where the constants B and B\ depend on h* and the distribution oi X\ only.
Hence

(3.14) P2{N)UBIN -\\ogN)-"+T"
for all large N. Via (3.11), (3.13) and (3.14), the inequality (3.8) gives
(3.15) P(N)~B2(\ogN)-"+T)

for all large IV, r > 0 small enough.

Set Nk = minjlV :logN ~ A} Then, for Nk # N < Nk+i, one has k S
logN <k + 1, and Mk S M/v f. It follows from (3.3), (3.6) and
(3.15) that the series

X1 P (M Nk>XNk)

k

converges. Since AL/v, logN and log log N are non-decreasing and log iVjt+i —
log Nk ~ 2, log log Nk ~ logk ~ log log M*+1 as k —00, Lemma 2 follows via
the Borel-Cantelli lemma.

Lemma 3. Put b= m*k + (—u —e)(log k/h*). 1fe>0, 0>0, s> 0,
u+s+e”0, then

P(Sk™ b, Sv+k - SvZb)<,p-ke-k'cv-s+ P(Sk " b)ku+s+£v-~0
for k" v/~ W = «(0).

PROOF. Set s' = Sv,S = Sk —Sv,S§" —Sv+k —Sk- The random vari-
ables S +S and S are independent, and therefore

P(Sk1 b:Sv+k - S vAb)A P(S" i g)+ P(S' +S" A 6S" +5" A6,5" <q)
AP(S"A Q)+ P(S +S"AB)P(B™ Zb-q)
g Mt))k-ve-t>+ P(Ski b)iP(tl))ve -t

for any g and any positive t,t\.
Now choose

t=h* ti<t, g=rn*k-j\ogip(t) +j\ogv.
We have

P(SkZb,Sv+k-Sv2b)
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~Ap-ke-kicv-s+P{Sk*b)kt* u+e* tvsU/texp{-iiv(jlogp(i)-~logy>(ti))}
fLp~ke~k/c v~s+ P{Sk”™ b)ku+E+sex p|-1iv " logy>(i) - ~ log</?(H)) }*

Here we used the definitions of h*,C in (1.4), (3.1), and the inequalities
t\ <t, v~ k. By the strict convexity of log together with log”"(O) =0,

{ log<p(i) - *Jogy>(i1)>0.

This gives Lemma 3.
Lemma 4.
. h*M/v —logN _ 1
limsup — — -—-—— >-" as.
log log N 2

Proof. Forj=1,2,..., put

B=i +b (k-s)Xg  K=ICj]'
with C specified in (3.1), and define

Mj= [ei~1]rglﬁfej]—K(Si+k ~ Si)lu+k -

Note that the Mj are independent.
We prove that P(Mj > bj i.0.) = 1. To do so, it is enough to show that
the series

J2pj=E p(">M
3 3
diverges, and to apply the Borel-Cantelli lemma.

Let
Al ={(SI+K - Si)h4+K /- 0,1,...,N,

where N = Nj = [eJ]—[eJ_1] —K. By the Chung-Erdds lemma (cf. Chung-
Erdds [2]),

. NP(AQ)f
p.=p(1].4.)a (NPA9
1=0 NP (AQ)+ (NP{Ao0))2 + 2N kZ_lP(AoAk)
By (3.2) and Lemma 1,
P(A0)=P(SkI0k " bj) =pKW-~SK Z hj)
~PKM M1 expj —K{h*m* - logy>(h*)) - -e) log;}.
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It follows that
(3.16) D ij'1+#£g NP(AQ) I D2j~ 1+
Here and in the sequel, D\,D2,... are positive constants not depending

on N.
Let

Ai= {Si+r<—Si ~bj}, 1=0,1,... ,N.
It is not difficult, to check that

(3.17) P(A0AK)=pk+KP(AoAk) (A=0,1,..., K).
An application of Lemma 3 with k = K,v =k,u= —1/2, s = 1+ 2/e, gives
P{A0AK) <,p-Ke-K/ck~(I+2E£>+P{A0)KI'2+2' £+ek - €,

for large k, where 9 is an arbitrary positive constant.
Put I = [Ke'2]. We have

K 1-1 K
N  pKP(AoAk)=n Y pKP(AoAk)+n J2 pKP(AoAk)
k=1 k=1 k=1
K
<NIpKP(A0) + Ne~K/cY k~{l+2/e) + NpKP{A0)K3/2+2/e+er 6
-
K

g D3K ~i+ie/2 + Ne~K/cr 2ZEY k~'" + DAK - [+£K 3/2+2/E+HK ~ee/2
k=l
AN D3K ~1+3£/2 + D5K ~ | logK + D4K - 1+£K " 2+2/E+eK - 6e/2 g D6 K~ 1+3e/2,

since 9 can be chosen arbitrarily large. Here we used the definitions of I, N,
(3.16), (3.17) and Lemma 3. It follows that

K K
(3.18) NY P(AoAk)i NYp KP(AoAk)i D7j ~1+3e'2
k-1 k-1

for large j. By the last inequality and (3.16), we get
A—2+2e
pi i Df=D » r1+/2,

which implies Lemma 4. Note that logNj =j + o(l) as j —oc.
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Lemma 5. For any e > 0,

h*M]y —ogN ~ 1 x
loglogN  ~ 2 )
Proof. This follows from the proof of Lemma 2 via formally replacing
1/(2h*) by -1/(2h*).
Lemma 6.
h*MN -\ogN 1

Slm ml _Iog IogN_ S—2 a.s..

Proof. Lemma 6 is an immediate consequence of Lemma 5.
LEMMA 7. For any £> 0,

(IPMA-logN> | N t
V loglogN = 2 )

Proof. Put k=[Clog N] with C as defined in (3.1), and set
Mn = . max {Si+k- Si)li i+k,

bk = m*k - Q +e) logk.

Evidently, and
N -k

{AAN"*bk}= [J Ah where A[ = {(Si+k —S/) lu-+k ~ bk}.
1=0

P(Mn i>bk) can be estimated as in Lemma 4. Note that the current definition
of bk differs from the one in Lemma 4. We obtain

D\je NP(A'q D2e
instead of (3.16), and

K
N~ P(A'0AKk) " Dsj 3e/2
k=l
instead of (3.18). This also implies

K
NY,P (A'0AK)=0((NP(A'0))2).
k=l
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An application of the Chung-Erd6s lemma yields

(NP(A'0) f

P (MN Zbk)Z > 1

NP(A'0) + (NP(AD)2 +2N Z P(A'0AK)

Lemma 8.
.. h*M* —ogN
lirn inf as..
N-sco  loglogN

Proof. Put n, = inf{n:k =j} with k as defined in Lemma 7. Via the
Borel-Cantelli lemma it is enough to prove that, for any e > 0,

(3.19) Y p(Mn3<m*j - +e) logy) < oo.

j
Set /={=24 "i<(@+1)y,i=r[je2],r=0,1,... }, and define independent
random variables Qo,Qi, mmmas

- SiAi
Q ?élﬁ(JJ

Then

Mn.Z su i,
o’\IdBoI Q

where L is the largest integer such that (2L + 1)j —1” rij —j. Now,

P=P[mUy logy) * U P(PI< +£) loSj)-
1=0

Putting
Mo—1 (St+ —siytir+j A j — A—LE) 1°6J}>
we get
P(Q, "m*j- + (i+e)logy)=P((J V)~"Sj- E2
iedi

where
SI=57"P(AS, S2= Y P(A,;A.m).
i£.Ji

Denote the cardinality of J/ by |.7/l. Then |.7/|~y1-£/2asj —too for all I.
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Recall that
P(AI):p>P(AI), P(AIAM)=pm-i*P (AiAm) (tgmgi+i),

where
A = {Sj+] - St"m*j - E +e) logj}.

By Lemma 1,
E! = I,|P(A0) " \Ji\Dge~j/cjEN D10e-"cCj 1+£'2
for large j. We further have

M/I-i
E P(AAIH['/2).
r=1

Applying Lemma 3 with k=j, v=r[j£2], u = 1/2, s= 2, we conclude
that

P(AZAI+[E2]) » + P(Ai)js'2+er-or 9el2)
for large j, where O is an arbitrary positive constant. By Lemma 1,
Mil-i
E P(M +r./a])» DujPe-"cj-£+ Disl
1
= o{p?fe-jlc)

as y—too, since 0 can be chosen arbitrarily large.
" Thus
£2 =o0(j1+£/2e~j/c)= o(Ei) asj -too,

and, for large j,
P - E (1 +e) logj)ZD Hji1+£2e-ilc.
So,

P~ (I-L»idjl+£/2e_jIC) LH
(3.20) , V . 0 r ,
Nexpl|-D 4L + 1)j1+E2e jir’| N exp|-Z?i5 £/2|
for large j, where we used the inequalities 1—a; * exp(—x) and

L>%:-2ZDVj-lesc
~ 2]
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for large j. By (3.20), the series in (3.19) converges, which proves Lemma 8.

Proofs of Theorems. Theorem 2 follows from Lemmas 2 and 4 to 8.
Under (1.1) to (1.3), (1.6) and h* < ho, Theorem 2 implies Theorem 1

Now we assume that (1.1) to (1.3) and (1.6) hold, but h* = ho- Put
x = 6logn, K =[alogn], where a> 0, 0< b< 1/h*. We have

(3.21) P(M/v <x) ™ (p (5/\lga < x))|A/I' lgexp{ - ENj'P(Sk lgk " a)}-
By Chernoff’s [1] large deviation theorem,
(3.22) Kl logP{SK”x)} logp{b/a),

where p(a) =mih{ip(h)e ha} denotes the Chernoff function.
Assume first that h* = ho <oo. For a » ac—E{A"ilyi = 1} we have
ip(h)e~ha” 1, if h <0, and <p(fi) = +o0, if h> h*. This implies

p(a) = Og}lrg;l* {<p(h)e ha Od/?gI;I* <p(h> o0

for all a”~ac. By (3.2) and (3.22), we have
log P{Sh h),K =x) ~ K \ogpp{b/a) =K d%*{logpq(h)-hb/a}
f(a 0 inf  {logpip(h)} —h*b) logN > (—1+ S) log N,

if a is chosen small enough. Hence

C))
(3.23) y~'l P(Mjy < Xx) < 00.
N=1

Assume now that h* = ho= +00. We have, for x > 0,
P(Xx"x)<. <p(h)e~hx U E)e~hx—*0

as h —+oo. It follows that P(ATi ~ OITi = 1) = 1. So the limit in (1.5) is
zero.

If (1.6) does not hold, say P(AN =d\Y\ = 1) = 1, and 0, then the limit
in (1.5) is zero. I1fd>0, then I/h* = —d/ logp and

P(Sklok " x)=P(lok =1)=PK,
if b<ad. On choosing a such that b/d <a <—1/logp, we get
logPiStf/o.K *x)~alogplogN.
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This gives again (3.23).
By the Borel Cantelli lemma,

P (M/v < b\ogN i.0.) =0

for all b< (h*) I, ie.

3.24 im i ATAN j— as..
(3.24) iR daf GoN " | 2

To complete the proof of Theorem 1 we need to show that
(3.25) limsup Mn < S a.s..

N->oc logiv  h*

Put x = [alog TV, K = [C2log TV], In the same way as in (3.3) to (3.7), we
get

1 K
P(Mn >x)< -N 2+Cilagp+ N V p>P{Sj >x).
y 3=1
By Markov’s inequality and the definition of h*,

P(Sj >x)" e~h"x((p(h*)y g e~h"xp-j.

Hence, for any subsequence iVit= [ak],a > 1 fixed,

g P(MNk>alogNk)<oo,
k=1

provided C2logp< —2 and ah* > 1 By the Borel-Cantelli lemma, this
implies

. Mn, 1
(3.26) Ilpjogp log Nk - h*

a.s..
Since M/v is a non-decreasing sequence, (3.26) proves (3.25). A combination
of (3.24) and (3.25) completes the proof of Theorem 1
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A LIMIT LAW RELATED TO THE LAW
OF THE ITERATED LOGARITHM

K. GRILL

Dedicated to the memory of Alfréd Rényi

Abstract

We study the upper limiting behaviour of the time the Wiener process spends above
a given lower class function.

1. Introduction

Let 0) be a standard Wiener process. For a function /(.) >0
let

t
0) Uttt =i Kwi)>/()}i)rfi-
0
The case where
f(t) = x/"Tiloglogi
with 0< 7 ~ 1 was studied by Chan [1],
If 7< 1, Strassen’s [3] law implies that

limsupt~1{/(/,t) = 1—exp (—4 [ -
msup t~1{/(/, P (1

Furthermore, it is obvious that this result remains true if we only have

,0\ (%) .or-
(2) log logt A

Chan presents a large deviation law that is closely related to this question.
For related results, see Uchiyama [4, 5].

If 7= 1, Strassen’s law implies that the lim sup above is zero; thus, we
are left with the question of the right rate of convergence. In this direction,
Chan proves that (for f(t) = \/2t log log t)

®)) limsup(log logt)2'h ~1UU, t) <oc
t-*00
1991 Mathematics Subject Classification. Primary 60F15; Secondary 60F17.

Key words and phrases. Functional laws, strong approximation, sums of independent
random variables.
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and
4 li log | = 00.
4 '?li&p( 0g log f) =00

It is the purpose of the present paper to give the exact limiting behaviour
for the case 7 = 1. Observe first, that we no longer have the same limiting
rate for all functions that satisfy

\j2tlog log t

as in (2) above. This should be clear from the fact that there are func-
tions / satisfying this relation for which we have W (t) < /(f) eventually with
probability one. Thus, we are led to have a look at the functions for which
W (f) > f(t) infinitely often (here we commit a slight abuse of notation; actu-
ally, this is meant as “there is a sequence tn—oo0 such that W(tn) >/(tn)”;
throughout this paper “infinitely often” will be understood in this sense).
This is the subject of the famous Erdds-Feller-Kolmogorov-Petrovski inte-
gral test (cf. Feller [2]) which states as follows:

Theorem A. Let

©) e =

where

(6) i/>(i)too
and

7 tr/2ip(t)i 0.

Then we have
w(t)>m io.

W

() M ~/~rexp (-« f du—oo.

Thus, from now on, we assume that /(.) satisfies equations (5) to (8).
Furthermore, we assume that

(9) sj2log log t

Under these assumptions, we have
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Theorem 1. Iff satisfies (5) to (9), then
lirasup p(t)~1U(f,t) = 1,
t-KX)
where
= 8/logA(Z) 4t.log A(/)
ip(t)2 log log/,
(we use f(t) ~g{t.) to signify that f{t)/g(t) —1 as t—»00).

Remark 1. For Chan’s original question, i.e., for ip(t) —\/2 log log Z we
get
6/ log log log t
log log /

Remark 2. As A(/) -A 0o, we see that (3) remains true in the general
case; the rate of going to infinity there, however, may be arbitrarily slow.
On the other hand, there are functions / for which (4) fails.

Remark 3. If the limit in (9) is less than one, our theorem still gives
the right rate but the wrong constant. It would not be too hard to combine
Theorem land (1) into one result that covers both cases.

2. Proof of Theorem 1 — upper part
We have to prove that, for any e> 0,
P(C/(1,Z2)>(l + e)p(2) i.0.) = 0.

Observe that p(t) is nondecreasing and, at least for large Z greater than
Z/log log Z Thus, if

L/(17) > (1 + e)p2),
then there are u and v with

et L
audv ut,
3log log Z
v-u'til+y)p(z),

and
W(u)>f(u), W{v)>f(v).

This implies that
viu+ (I+—)p(u)
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and
v~ —loglogw
if u is large enough. Now, let
= Exp W@n)'
If we have u and v as above, then we can find n such that
tn-i <u<:tn.
This implies that

i«<-i+ (I +y )p(tn-~ =v = ~tn loSloStn-

Now, let

An={3u,v:tn-\ *urtntn-i + (I +y)p(in-1) ~v~ i, loglogtn

We have to prove that

P(An i.0) =0.
To this end, define
9= tn
th—
and
Bnm={3ti, v :in-i ~ Ugin,0mtn  ~ 9m+ltn,
W (u)?ntn™),w(v)Nf(emtn)}.
Obviously,
mz
P(-"n) = P(-Snm)?
M=\
where
1= log (1 + A+¢t)f 1)
B log 9
and
m2 = (logn) .

By a simple reflection principle argument,
P(-Bnm) g 4P (1T (in) ~ / (in—0) IT(Om+1in) £ f{{9mtn)) =

AP(IT (in—D) ~ (0)-1/2/(in-1), W(Omi,) ~ {e)~112f{Bmtn)).

The latter probability can be estimated above using the following lemma
which we state without proof:
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LEMMA 1. If Xi and X2 have ajoint normal distribution with EX, =0,
EX? =1 (*= 1,2) andEX1X2=p>0, then

(I-i(o)[(l-*(~t)){P (X | ia,X22b)

SO(1-*(.))(!'-Kt="))-

(Here and in what follows, C will denote an absolute constant whose actual
value may change from one occurrence to the other.)
As a consequence, if a> 0 and b> pa,

P(Xlia,*a*6)sf«p (-~)exp (-|").

For our purposes, this implies that

S cVel tw 2(1+0_m/2)0
If n is large enough and e is small enough, we obtain

1—e/6)m’

P{Bnm)%C ip(tn- 1) exp{ ------- T ) eXP(-mmm- Ao )’

ifm <elogn, and

PEnm)~rcV — exp(-%wI£),,-/»

1p(tn-1) 2
if m~ elogn.
This, in turn, implies that
p(4n)- cw P A ) «pH 1+ 8)iogA(,_i)).

Thus, the series
E p(A")
is dominated by the integral

CIM(1)2exp (A7) (A (i))-(1+/8HT = C |(A (1))-(1+8)dA(),

so it is convergent, and the Borel-Cantelli lemma implies the upper half of
our theorem.
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3. Proof of Theorem 1 — lower part

Now. it is our goal to prove that
o) =1
Again, let
tT=exp “@n) ]
Furthermore, let
#(*) = V)i + "r-)>
and

2(i) =
Define events

An={W(tn) > MinV’(in), >

By Levy’s arc sine law, we get that
P(5,)"CT(An),
where
Bn=Ann {[/(/,<,)> (1 -e)p(tn)}.
By a lower estimate derived from Lemma 1, we get

pB)>c™ eq * ) AlfT<WA

Thus, the series P (Bn) is divergent. In order to prove that P(Bn i.0.) = 1,
we employ the following version of the Borel-Cantelli lemma:

Lemma 2. Let (Ak,fcGN) be a sequence of events satisfying the following
conditions

(i) $2 'P{AK) = 00
k=1
(i) 71"?20 ELiI E"=iP(AfAY)
B (E*=iP(4k))2
Then it holds:

<M < oo0.

P(AKi.0) A M-1.
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So, we need to find upper bounds to the probabilities

P(BnBn+k).

First,
P{BnBn+k) = P (AnAn+k).

The following estimates are obtained in a similar way as the ones in the proof
of the upper half of Theorem 1, so we can forego the somewhat intricate
details:

P{AnAn+k) i P(An)exp(-Cik)

ifk<2logn
P(AnAn+k)"P (An)n-c*

if 2logn k" (logro)3, and
P(AnAn+k) i C 3P(An)P(An+k)

if k > (logn)3 (the constants C\,C2 and C3 above may of course depend
on e).

Putting everything together, we find that the events Bn satisfy the hy-
pothesis of Lemma 2, so we find that

P{Bn i.0.) >0.

This, together with the zero-one law for the Wiener process, proves the lower
part of our theorem.
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ON ESTIMATION OF ANALYTIC FUNCTIONS

. IBRAGIMOV

To the memory of A. Rényi

1. Introduction and main results

The aim of this paper is to present some results about nonparametric
estimation of analytic functions. We consider the following three problems.

PROBLEM I. An observed signal X£(t) on the interval [a, b is of the form
(1.1) dXe(t) = f(t)dt + edw(t), a™t"b.

Here w(t) is the Wiener process, e is a known small parameter and the
unknown signal / belongs to a known class F of functions on [a, b}. Denote
le|p the norm in Lp([a,b}). Put

(1.2 Ap(E;F) =Ap(e) =infsupE, |/ - /|p

where sup is taken over all + e F and inf over all possible estimators / of /.
We are interested in the asymptotic behaviour of Ap(e; F) when the level of
noise e goes to zero. The rate of convergence of A depends on /. Recall
some known results (see [1], ch. 7; [2]).

1. Let F consist of all periodic functions with uniformly bounded in Lp
fractional derivative of order 3. Then

Ap(£) x £2" 1427, 2" p<oo,
Aoo(e)ME2J1+2/)(Inl/e) 2 1+27.

2. Let F consist of all periodic functions / analytic and uniformly bound-
ed inside a strip |[Imz| <c, z =t+ is. Then

n d) Ap(e)xey/In(l/e), 2gp<oo,
Aoo(e x v/In(1/6) \/hi In(l/e).

1991 Mathematics Subject Classification. Primary 62G07.
Key words and phrases. Curve estimation, nonparametric estimation, white noise
model, density estimation, regression.
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Below we study the following problem. How does Ap(e; F) behave when
e goes to zero if F consists of all functions / analytic and uniformly bounded
inside some region G of the complex plane, [a, b C G?

Problem Il. Assume that one observes iid random variables X\, X2,
..., X n taking values in [a, b] and having a density function f(x) with respect
to the Lebesgue measure. As above we define the minimax risk

(1.5) Ap(n;F) = Ap(n) = infsupE/|7 - /|p,

where inf is taken over all estimators / and sup over all / GF and study the
behaviour of Ap(n) when n goes to infinity. Recall that (see [3]):

1. If F consists of all densities with uniformly bounded in Lp(RI) frac-
tional derivative of order /?, then

Ap(n)xn" W23+, I"p<oo,
A0Qn)xn-W +1(Inn)W +1.

2. If F consists of all densities f(x) analytic and uniformly bounded
inside a strip |Imz| <c, z—x + iy, then

A, (n) >:n~V2/Inn, I<_|_p<oo,

1.7) P
Aoo(n) n~12VhinVInTnn.

In this paper we are interested in the behaviour of Ap(n) when F consists
of all functions analytic and uniformly bounded inside a region G of the
complex plane, [a,b] E G.

Problem Ill. Let f(x) be an unknown function on [a, 6] belonging to a
given class of functions F on [a, b]. To estimate / one makes n observations
of the function / at the points X\. ..., Xn and observes

Yj =J (X)) + Gj(Xj,uj),

where E(Gj(Xj, B\X\,... ,Xj-1) =0 and the noise variables Gj are condi-
tionally independent under a given observation plan (see details in [4]).
Let

(1.8) Ap{n;F) = Ap(n) =infsupE/|/- f\p,

where inf is taken over all admissible observation plans and all possible
estimators and sup is taken over all / 6 F (see [4]). It has been proved in
4], [5] that

1. If F consists of all periodic functions with uniformly bounded in Lp
fractional derivatives of order /?, then



ON ESTIMATION OF ANALYTIC FUNCTIONS 193

Ap(n)xn 0/2(iH p< 00,
ATri,)xn-~+1(Inn)" +1.

2. If / consists of all periodic functions analytic and uniformly bounded
inside a strip |Imz| < c, then

NIX Ap(n)xn~1/2\/inn, p< 0o,
Ap(n) x n _1/2v/Inn\/InInn.

We are again interested in the behaviour of Ap(n) when F consists of
functions analytic inside a bounded region G, [a, 6 EG.

Notice that in all the results which have been cited above the function
| satisfies proper regularity conditions at all real line. All the results (1.3),
(1.4), (1.6), (1.7), (1.9), (1.10) are absolutely similar. In this paper we impose
regularity conditions on the behaviour of / in a vicinity of the interval [a, §
only. Of course, functions smooth on the interval [a b} can be smoothly
extended onto B] and nothing will happen with the formulas (1.3), (1.6),
(1.9). The situation with analytic functions is different, functions analytic
in G cannot necessarily be extended analytically into a vicinity of the real
line and the formulas (1.4), (1.7), (1.10) may change. The results below show
that they really change. Moreover, the behaviour of A is not similar to the
problems I and Il1.

Theorem 1. Let the expression Ap(e-,F) be defined, by (1.2), where the
set F consists of all functions f analytic in some bounded region G, [a,b]cG,
and bounded there by a common constant M . Then

Ap(e) xe™In 1/e, 2"p<4,
(1.11) A4(E) x XM TT7M)(InIn(l1/e)) Y4,
Ap(e)xE(In(l/e))V2*, p> 4.

Theorem 2. Let the expression Ap(n; F) be defined by (1.5), where the
set F consists of all functions f analytic in som,e bounded region G, [a,b\cG,
and bounded there by a common constant M . Then

Ap(n) xn'*ViInn, "p<4,
(1.12) Ad(n) xn-~v/h™Inlnn)’/4,
Ap(n) x n-1/2(Inn)1-2/p, p> 4.

Theorem 3. Let the expression Av(n\F) be defined by (1.8), where the
set F consists of all functions f analytic in some bounded region G, [a, bj C G,
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and bounded there by a comm,on constant M . Suppose also that Gj have finite
moments of all orders. Then

N3 Ap(n) xn _1/2vinn, p < 0o,
Aoo(n) 5cn“Y2VInn(Inlnn)1/2.

Thus the results are really different from those one usually has in such
kind of problems. At first, in the problems I, Il even the order of convergence
Ap depends on p\ further, the exceptional value of p now is not oo but 4; and
at last, and it is unexpected, the behaviour of Ap is different for problems I
and 111.

The rest of the paper is devoted to the proofs of the theorems. The
analysis of Cases | and Il is very similar and we give a sufficiently detailed
proof only of Theorem 1 and do not go into details in Case Il. Without loss
of generality we may and will suppose that [a, b = [—1,1].

Below we denote constants by C or ¢, i.e. quantities which do not depend
on parameters under consideration; they may be different even inside the
same formula. But sometimes we supply these constants by indices.

If G is a region in the complex plane we denote by A(G) a class of func-
tions analytic in G and uniformly bounded there by a common constant M .

2. Proof of Theorem 1

2.1, Upper bounds. The set G contains inside itself an ellipse E with the
foci at the points £1 and the sum of halfaxes equal to R, > 1L Any function /
from F belongs also to A(E) and can be represented by Fourier series with
respect to the orthonormal Legendre polynomials in the form

®
2.1) f{t) =" a 3Pj{t).
0

The value of the best approximation of the function / in the L2-norm
by polynomials Q of degree n is equal to

1/2
“i2= (igf / W(t) - Q{t\adt

N+
1 \ 12
A Gl (L -Q()\2( 1 - t 2)~U2dt]
1
7-|- 1/2 M

VR? —1/ R
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where M =max(]/(z)|:z GE) (see, e.g., [6]). Hence

1/2

2.2 * A MR7k=cR~k—ce~Ik.
(£.2) la* | 2(R-1),
Consider now the estimators f/v(t) for / defined by the formula
N

Jaft) =~ akPk{t),
0

where

ak =1 Pk(t)dX£(t) = ak + ezk.
~i
The random variables zk = f Pk{t)dw(t) are iid standard Gaussian variables.

The Legendre polynomials satisfy on the interval [,1] the inequalities

2k + 1
\Pk{t)\ZPk{l) =

(2.3)
2 A+ 1 . . -i/4
\Pk(D\Zdo\, o (I-Fj-V S\lLrd-'2)
(see [7], Theorems 7.3.1, 7.3.3). It follows from (2.2) and (2.3) that
(2.9 E\fN-f\p~cA*Ne~~"N +e\ZNp,
where Zn {i) is the random polynomial of degree N

N
ZN(t) =y 'zkpk(t).

It follows from (2.3) that
ZNn-'il-t2)-12,

2.5 EZN2(t) »

29 ® N 2, UN >2.
Hence for p <4

(2.6) E\ZN\l %cpj {  Pk\t)) V/2dt + CpNp/2.

If p —4, then
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-1+N~2 1 -1
(2.7) E\Zn\p"cp("N4 J dt+N4 1" dt+N2 J t~1dt\%cN2InN.
-1 I-v-2 N-2
If p > 4, then
I
(2.8) E\ZNp cp("Np~2+Np/2 j t~p/4dt" GcpNp~2
N~2

Combining these inequalities with (2.4) we find that

E|/jv—/1p = op(\INe~IN +e\/~N), p< 4,
(2.9) El/n-/|47C4 (yNe~AN +e{\nN)VMAZn

EIfN~f\Prcp (x/iVe-N +eiVL-2) | 4<p<o0o0.

Take here N = [(In 1/e)/'y] and denote fEthe estimator Fjv with such N . For
these estimators

E/|/le-/|P"~cpe(In(l/e))l/2, p< 4,
(2.10) E/|/E-1]g c pe(In(l/e)1/2(InIn(l/e))1/4, p=4,
E/|/E-T|p~cpE(In(l/e))1_2/p, 4<p < 00.

To treat the case p =00 we need the following result.
Lemma 2.1 (see [8]). Lei Q be an algebraic polynomial of degree n. Then

(2.11) |Qloo”(p + 1) Lpn2/p|Q]p.
The last inequality together with (2.8) gives that
E|Z/v|ag= N 2pE\Zn \p ™ cpN
and hence
(2.12) Ef\fe—f\~ce In(l/e).

The inequalities (2.10), (2.11) prove the part of Theorem 1 concerning the
upper bounds.
2.2.  Lower bounds. We proceed in the following way. Evidently for any

>0
Ap(e) » Seinfsup Pf{\T - f\p~ <&}
p(e) T/6E { p



ON ESTIMATION OF ANALYTIC FUNCTIONS 197

Let, now S = {}j\j = 1,..., M} be a family of functions / E F such that
ifi —fj\p>26 for any i~ j. Then

sup PI{\T - \P*6}Z+  PLINT-Mp* Qm

The right-hand side can be bounded by Fano lemma (see [1]) and we find
that

213 A
(2.13) APE TSRS M )

where the Shannon’s capacity
Ce(S) ™ sup
fes

(see for details of these arguments in [1], pp. 355, 356). The construction of
the set S depends on p and we consider separately three cases.

1 Estimation of Ap(e) for p< 4. Consider functions f(t) of the form

N

fa(t) =e-"*NY /ajPI(t), aj=+1

The polynomials Pj(z) for [1,1] satisfy the inequlity (see [7])
\Pn{z)\"Gfa z+ (z2—I)¥2".

Hence one can choose 7 in such a way that all functions fa{z) are bounded
by a constant M for z EE, where E DG is an ellipse with the foci at the
points +1. Hence all such functions faEF. Evidently

\fa\z = {N + I)e~2IN.

Lemma 2.2. Let A = A(d) be the set of vectors a= (ao,..., a*) such
that for any a, @' EA

K'“ajl > Z1m
Then for the number of elements A we have

(2.14) card (A) N 2N+l

Inequality (2.14) is called Gilbert or Varshamov-Gilbert bound (see [9]).
LEMMA 2.3. Let d in (2.14) be equal to [N/4]. Then for all N > Nq
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(2.15) card (yl) > exp{—AT/8}.

The proof of (2.15) can be achieved by elementary estimation of

£ &/4 (AX™ or derived from some elementary results about probabilities of
large deviations.

Let now S = {/a,a 6 A}, where A = A([N/4]). We have for any two fa, fa'

\fa-fa'\p~~/p- 1/2\i\-fa"\2
= 2UP-1/2 (~ |aj_ al|2)12e-TN

£ 21/2+1/p(jV + 1)1/2e-iN g c7V'/2e-7 ")
where ¢>0. It follows from (2.13) that for 2”p<4
Ap() " c\VNe yN (I - c2N(£2e™ Ncard T(A"/4))-x)
AciVin e~IN (1- C3E“2e"27iV).
Take here IV~c7“1In(l/e). We find then that
(2.16) Ap(e) L ce\dInl/e, c¢>0.

Consider now the case p > 4. Let Abe a small positive number. Define
the functions

fo(t) = exp{—IV} ~ ij(i),

N/2gj<:N

(2.17) I1(i)=exp{-7TM} 53 P,
N/2-7N-NX

The collection of functions f3 will constitute the set S. The number of points
in this set is close to N/2X. Evidently

\fj\2 =N exp{—=27A}.
For any /), f,6S

1/p
\fi ~ fj\p =exp{—7iV} dt,

where 1(i,]) is the interval of the type [xN, yN] and y —xft. A
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The Legendre polynomials satisfy the inequality
(2.18) _maxi[PI(Q[=P(l) = y?*£i.

By V. Markov’s inequality (see [8])

(2.19) IP~rcfc™~UgcA ;52

Hence one can find 6 > 0 such that for t E [1,1 —6N~2}and N/2
(2.20) Pk{t)"2-1y/N.

It follows that for all /;, fj € S

\fi ~ fj\p = c\N 3/2~2/pe~'yN.
Apply now (2.13). We find that
Ap(e) » cAN3I2 2/pe~7TiIV(1 - cNE£-2e~"N{\n1/A)']).
Choosing here N in such a way that the expression in the brackets is close
to 1/2,
=- In(l/e) + -5- InIn(l/e) + ...,
o In(l/e) + (I7e)
we find that
Ap(e) “cE(In(l/e))1-2/p.
Consider now the last and the most complicated case p = 4 which needs
a special treatment (cf. [1], Theorem 2.12.1). Denote F the set of func-
tions f(t.) = ajPj(t)i where the vectors a = (ao,...,ayv) run the ball
ja i a2” Nd4e2j in RN+1l. We will denote by T this a-set also. If N is

chosen from the relation e~ e~IN then under a proper choice of 7 the set of
functions F cF . Hence

N
Ad(e) = A(e) Minf megl(r) / Ea|”™ (aj - t3)P. da

1 fiA

(2.21, nf mes (r) E \]7 ) —ti)Pj
r

X exp —a|2/2e2+ e 2j f{t)dw(t.) da.
-i



200 I. IBRAGIMOV

We have from the last relation that
(2.22)

r-c

where £ = (£o ***£jv) denotes the standard Gaussian vector.
Consider now the set A —{x = (xq,..., xn) : [t]*eN2- eN} and the set
To= {a:|a] » eN}. Then the inequality (2.22) gives that

A(e) A (mes (T)) " *@m(N+D/2-(N+1)

| N |1E(°5| tj) r'“i22da
4 r0

If we apply Anderson’s lemma to the last integral (see [1]), we find that
Ae)Me(mes(T) 1 )~(NH)/2E | I ,alP ri<i2/2da.
A e-"To

Denote B the complement of the set e_1ro. The integral

()" (VH/2 e-1“l22da

| c7V3/4 | rN+1le-T2/2dr~cN Ne-N2/4 < ce2.
N

Hence
A

A=A " A - |aj2/2da + 0(e2)
AW 1) (i pEr Pl
(2.23) ies 1 o

= 4eE |E +0(e2),

where £ = (£0... Cn) denotes again the standard Gaussian vector.
Finally, prove that

(2.24) ,NVIVONN) V4, c> 0
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Let, Abe a small positive number. Consider the probability

Q

Since
elEit, “S/TiE*w ) "m
this probability is
Var(IEW I1)

2n 2
(3-A)2[/(E®i?W <t

Recall some asymptotic formulas for the Legendre polynomials (see [7], ch. 8):
The Laplace formula: uniformly on e*9 —e

n+1

- N\
(2.26) Pn(cos 9) = ansin 9 cos{(n + 1/2)0 —w/4} + 0{n 172);

and the Hilb formula: uniformly on 0S9" 7#—£
(2.27)  Pn(cos9) = (n+ 1/2)1/2(0/sin6)Y2J0{(n + 1/2)0} + 0{n~12),

where ./q(x) is the Bessel function.
It follows from (2.26) that the numerator in (2.25)

(2.28) B—A);  YApj(x)dx) BcN4I2N,  ¢>0,

the numerator in (2.25) is the combination of the summands of the type
il

*M)=J 1 (Y,pA*)pM )\Y ,pHX))\Y ,piM ) bdxdV
1-1

where (a, b —(2,1) or (4,0).
Applying the Hilb formula (2.27) we find that

I(a, b) = o(N4In2N).
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Thus Q = o(l) and hence

SAAT4A(] + o(l)).

The last inequality and (2.28) prove (2.24).
Since Ar~Inl/e, it follows from (2.23) and (2.24) that

Ane) A ce(In I/e)ViInIn 1/e) V4.

Putting together all upper and lower bounds for Ap(e) we prove Theorem 1

3. Proof of Theorem 2

3.1. Upper bounds. In general we follow the arguments of Section 2.1.
Namely, we consider again the expansion of the density function f(x) into
Fourier series with respect to the orthonormal Legendre polynomials

0o

(3.1)

All these series converge uniformly with respect to f inside some ellipse E.
Estimate the coefficients aj by the statistics

(3.2)
i=i

and the density f(x) by

We have i
In{x)- f(x) = [EFN(XX) - f(X)] + £n {x)
where ¢. (x) »the random polynomial of degree N

Thus

(3.5) E/jv-/lpg|E/jv-/]p + [6V]p.
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The first member on the right-hand side

(3.6) \EfN-f\p=\Y a,Pj "cVNe-"N,
'p

where 7 > 0 depends on the ellipse E (and hence on G) (see Section 2.1).
The estimation of E|£/v|? depends on p. Note at first that

EfPj (Xi)=aj =0(e~y.
N 2

Hence
E&{x) =-v (£ tPj (X)Pj (X1)) +0(7i~I),
0
where the O(-) term is uniformly bounded with respect to N. Thus
r A
(3.7) E/Iftvi®n-1j f(x)J2Pj(x)dx +0(n~1)
-1
gcl/looJvn"1l

It follows that for 1~ p " 2
E|/d~/lp"c(e~INVN + y/N/nj .
Put here IV ~Inn/7. We find then that

(3.8) Ap(n) ~ (Inn/n)12, 2.

LEMMA 3.1 (H. Rosenthal). Let Z\,..., Zn be independent random vari-
ables. Let EZk =0 and let p*.2. Then

E -
"1

ic{tnzt¥&+{x"zi)m).
1 1

(3.9)

where ¢ is a positive constant depending only on p.

The proof of the Lemma can be found in [11], Section 2.3.
We now return to the estimation of E|Ew|p. It follows from (3.9) that

1 N
E|6vivAicn-Hn / E]T Pi(x)(Pi(X1)- EP AW d x
(3.10)

\jLy Ap2 1
A0 e ypjWPRj&I) ) dx\,
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By a formula of Laplace ([7], Theorem 8.21.1) uniformly outside any region
including the interval [,1] when n goes to infinity

Pn(z) ~ (27r)* 1/2(z2 - 1r :VZ(*+ (z2- 1)V2)n+l/2
Hence by (2.2) |

Pi(x)Pj(x)f(x)dx c>0,
and
2\p/2
el N P N ) N
-1
. . . . p/2
(3.11) E Pi(x)Pj(x) / Pi{y)Pj{y)f{y)dy
i,j=0 1
N
<rp Plzcb:.
-1
Finall
y A
<cN2p.
Thus, forp> 2
/'p N iz \ ]/p
(3.12) E|U|p"E)/P|*MprcN2n-1+Pp+n-P2( (J"P2(x)) dx\
V[' o '

The integral on the right-hand side has been estimated in Section 2.
Applying these estimates and taking N ~ Inn we find that

Ap(n) ~ cpn-172(Inn) 172, 2"p<4,
(3.13) A4 cn-1/2(Inn)¥2(Inlnn)Y4, =%
Ap(n) N cpn-1/2(Inn)1 2/p, 4<p <00

To treat the case p = oo we apply again the inequality (2.10). We have
then from (3.12) for some p >4 and N ~ Inn

E[*loo”(p+1)/piV2IpE | |p
c(/V2+2/pn~1+l/p+ n-1/2IV2/p) » cn-1/21nn.

2.2. Lower bounds. The proofs are similar to those of the Section 2 only
instead of (2.13) we apply the following result.
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LEMMA 3.2 ([3], Theorem 3.1). Assume that there are N(6) densities
fiSGE, i=1,... such that \fi$ —fjs\P~ 6. Let {fos} be an arbitrary family
of densities, 6> 0. Let the set S(n, E) be defined as

Lo i S

B =S inge) M e

Then for any estimator fn of f

3.15 SupE/|/In-/|pEll4di(n>E).
(3.15) /€g | |p (n>E)

The construction of the set {fig} depends on p. Ifp <4 the set {fis}
consists of functions

N
fa(x) = 1/2 + e~7v "2 0,jPj{x), aj=+1
I

and fos(x) —1/2. The further arguments coincide with the arguments of
Section 2.2, the case p< 4, and we omit them. The final result is

(3.16) Ap(n) > cp(n-i Inn)V2, cp>0, p<4.
If p >4 the set {fis} consists of the functions
12+ £j(x), i=0,1...

and the functions fj{x) are defined by (2.17). The same arguments as in the
Section 2.2 and Lemma 3.2 show that

(3.17) Ap(n) ~ cpn-1/2(Inn)1-2/p, cp>0, 4<p”oo.

The more complicated case p = 4 again as in the Section 2.2 needs special
arguments (also in the spirit of the Section 2.2, p =4). Namely, consider the
set T of densities

1 N i
fa(x) = 1/2 + ~= aJPA X))

where the vectors a = (or,... ,a/v) run the ball ja : a2”™ iV4j. If N is
chosen from the relation 7V ~clnn, the set FQF. Hence
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A4() " in e /EQKA"(QJ - L)P] da

~“fmesr / E°{|H (@ ~'L J1(1+ S  a3PAX: da.
r 1 =1 v =i

The rest of the proof is the combination of arguments of the Section 2.2,
the case p =4, and the arguments used to prove the Hajek-LeCam minimax
theorem (see [1], Section 2.12) therefore we omit it. The final result is that,
as in Section 2.2,

N

A4(n)~cn-Y2E |MTi0Pj|
I

and (£i,... ,£#) is the standard Gaussian vector. We have seen that the last
inequality implies

(3.18) A4(n) » cn_12(Inn)V2(In Inn) V4.

The upper bounds (3.13) and (3.14) and the lower bounds (3.16)—3.18)
prove the theorem.

4, Proof of the Theorem 3

We need to prove the upper bounds only; the lower bounds have been
proved in [4], the case p —o00, and in [5], p< 00 (see Section 1).

For the sake of simplicity we consider only the case of Gaussian noise.
Namely, we suppose that the observations

Yi = f(xi)+£i, i=1...,n

and are iid Gaussian random variables with EE*=0, = 1 The general
case can be treated as in [4].

We choose the following plan of observations. Take integers N, n, r =
[n/N], Pick N knots x*n S [—1,1] and at any knot, except maybe one,
make r observations. The number of observations, at the exceptional knot is
n —r (N —1). For the sake of simplicity we suppose below that n =rN. Let

YKN = fixk”™+r'"1~ & = /(zfc;v) + %n

be the arithmetic means of observations at the point XkN- Evidently, pkn
are Gaussian with means zero and variances equal to r . We write below

Yk, Xk, etc. instead of ykn-, etc.
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Take as an estimator for f(x) the statistic
/,(*) =53
where Ik(x) = Ik\-(x) are Lagrange interpolation polynomials and

IKNOIN) =1K() =X4-

We take for the knots xjn the zeros of the Chebyshev polynomial TA{x) of
order N (see [7])

xk = xkN = cos{{2k-1)n{2N) 7).

Then
In{x)- f{x) = [[2HXK)IKN(x)-HXx) +£n(x),

where the random polynomial
(N{x) = "2 qklk{x).

The rate of approximation of analytic functions / 6 A{G) by the inter-
polation polynomials  f(xk)h(x)

f-T.f(xkJlk ZcMe-T1,
where 7 > 0 depends on the region G (see [10]). Hence as before

4.2) E |/ — db =cMe~yN + E|fjv|p.
Further

Elgwlp = (InV22p+1n2r_plar((p+ D/2) [ ~(0)™ '~
-1

Prove that

Let
hk{x) = ~1- ~7-j N (j-a:fc)) Ik{x) = vk{x)IR{x)

be the Hermite interpolation polynomials. Then

53 hk{x)=53 vk(x)ik{x) = 1
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(see [7], Section 14.1). The Chebyshev polynomials T/v satisfy the equation

(see [7])
(- x2)T'"Mx)- xTn(x)+ N2Tn =0.

Thus T'G(xk)(TN(xk))~1 = xk(I - x R)~I. Hence
vk() = (1+ x1r1Z1/2,  K(-1)A"I,

and the functions vk(x) » 1/2. It follows that
I =22 vk)IR{X) " Yyi(x).
We have for p <o0

(4.2) EIGjvIPAcpI'2r-12=c(pN)l/2n~1 2.
Take here iV~Inn/7. We find from (4.2) that

If p —o0, we apply (2.10). Then
EMoo ~ (p+ ID)UpN2* NI cN2l*y/py/Nfc.
Take here AT~Inn/7, p~In!'V. We find

Aoo | cn_1/2(Inn)¥2(InInn)Y/2.

The proof is completed.

5. Analytic functions of several variables

Denote F*(G,M) the collection of functions f(x\,... ,xd) defined and
analytic on the closed d-dimensional cube J = {x = (aq,... ,xd) mxj\ * 1}.
We sujrpose that all functions from have analytic continuation into a
region G DJ of the complex space of d complex variables z= (z\,... ,zd),
zk —xk +1iyk, and are bounded there by a constant M. We suppose that
G C E\ x E2x eeex Ed, where Ek are ellipses of the complex plane zk =
xk + iyk with foci at. the points +1 of the real axis.

Consider multidimensional generalizations of our initial problems I-HI.

P roblem 5.1. An observed signal X£{t) is of the form

dX E(t) = f(t)dt + edw(t),
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where /(/,) = f(t.-xi,..., Xd~\) and w(t) is a cylindrical Wiener process (see

details in [12]). The signal / GF,/(G, M) and Ap(e) are defined as above
Ap(e) = infsupE /|/-/|p

and the upper bound is taken over all / € F//.

Theorem 5.1. The expressions Ap(e) satisfy the following asymptotic
relations

Ap(e)xe(In(l/e))d/2, 2"\p<4,
(5.2) Ad(e) XE(In(l/e))d/2(InIn(l/e))d/4,
Ap(e) “e(In(l/e))d(1-2/p), p>4.

Problem 5.11. Assume that one observes iid random d-dimensional ran-
dom vectors X\, ..., Xd taking values in J and having density function /(x).
Again

Ap(n) =infsupE /|/-/]|p

and the upper bound is taken over all densities / GFd{G, M).

Theorem 5.2. The expressions Ap(n) satisfy the following asymptotic
relations

Ap xn-1/2(Inn)d/2, I"p<4,
(5.2 A4(n) xn~21/2(Inn)d/2(InInn)d/4,
Ap(n) x n-1/2(Inn)d(1_2/p), p>4.

Problem 5.111. Assume that as in Problem 11l one observes
Yj =nXj) +Gj{Xjtw),

where now the points Xj £ J and the unknown regression function / E
Fd{G,M). Let Ap(n) be defined analogously to (1.8).

Theorem 5.3. The expressions Ap(n) satisfy the following asymptotic
relations

Ap(n)xn"1/2(Inn)'i/2, I"p<oo,
AO07i,)xn“U2(Inn-Inlnn)d/2.

The proof of these theorems has no new moments with respect to the
case d—1 We expand the function / into the series

f{x) =~ anPn(x),
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where the multiindex n= (ni,..., ng) and the polynomials
Pn(x) = Pni(xi)... Pnd{xd)

and PTL(xK) are Legendre polynomials on [—1,1] and follow the arguments
of Section 2.4. We omit these arguments (see also [3]).
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ON THE MULTIPLICATIVE FUNCTION niT

I. KATAlItand M. V. SUBBARAO

Dedicated to my teacher and friend

1

Let M. be the set of those completely multiplicative functions / for which
|/(n)] = 1 (n€ N). Let Sk be the group of fcth roots of unity, T be the set of
complex numbers z with |z| = 1

In our recent paper [1] we formulated the following

CONJECTURE 1. Let A ={ai,a:2,... ,a*} be the set of the limit points
of the sequence {/(n + I)/(n) |[In€ N}. Then A =Sk and f(n) =nlITF(n),
where ¢« is a suitable real num.ber, =1 (n GN), and for each to GA
there exists a suitable subsequence n,, such that f?(ni/ + 1)F(nu) = u.

For k = 1 this assertion can be deduced simply from the theorem of
Wirsing (see [2]) asserting that f(n+ I)f(n) =1 (nGN), / GM implies
that /(n) =nlT. In [1] we proved this conjecture for k U3,

The purpose of this short paper is to analyze the case k= 4.

THEOREM. Let A —{cri,a2,03,0:4}, / e A4 be such afunction for which
the set of limit points of {/(n + 1)/(n) |n € N} is A. Then there is some
rG R such that f(n) —nITF(n), and either (A) or (B) hold.

(A) A=, F{n)£S4 (nGN).

(B) A consists offour distinct elements of 65, i.e., A = {ICil, /Ci2, /Ci3, /Ci4}

(ICis aprimitive fifth root of unity), F(n) 65 and F(n+ 1)F(n) GA
for every large n.

Remark. We think that the case (B) cannot hold, especially that if
FGM , F(n) G£5, F(n) ~ 1, then for each 0:G S5, F(n + I)F(n) = a occurs
infinitely often.
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2

Letf EM, A =Af ={«l,... ,alcj the set of limit points of /(n + 1)/(«).
Let C(n) denote that element of A/ which is closest to f(n +1)/(n). Since
Af is a finite set, therefore C[n) is uniquely determined for all large n. Since

d-1
I(n+ D/(n) = f(dn + {j + 1))f{dn +]j),
3=0
therefore
d-1
2.1 C(n) =I[C(dn +)),
3=0

valid for all n>N\(d), where N] (d) is a constant that may depend on d
and /.
Furthermore, since

/(n2)/(n2- 1)=f(n)J(n- D)/(n)/(n + 1),
we obtain that
(2.2) C(n—1)=C(n)C(n2—1)

whenever n > I\2, where A2 is a constant.

From (2.2) we obtain that if (C(m),C(m + 1)) = (/?,7) occurs and
m > A2, then Bj e A.

Similarly, if (C(2m),C(2m + 1)) = (/2,7) occurs for at least one
rn > N\ (2), then Bj € A.

3. Lemmata

Lemma 1. There exists no such aF e M for which F(N) = Sqg and either

(3.1) A= {1, (a=)/C, /C3(= —1), (3=)/C5}
or
(3.2) Af= {1, (<=)c, (17=)/c2,/c3(=-1)},

where K is a primitive sixth root of unity.

Lemma 2. Let f,geAi, f(n)=g(n)ntT with some rGR. Then Af=Ag.

Lemma 3. Iff 6 M, A/ Q with some k, then there exists ar GR
such that f (n) = nITF(n), F(n)k=1

Lemma 2 is obvious, since (n+ I)rrn~iT—1 (n —+00). Lemma 3 is a
consequence of the fact that Afk = {1}, and of Wirsing’s theorem, which

implies that f(n) =nlX whence (f[n)/n2X)k = (F{n))k= 1
We shall prove Lemma 1 in Section 5.
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4. Proof of the theorem

First we deduce the theorem by using Lemma 1, and after that we prove
Lemma 1.

4.1. Assume that —, 1A f

Let C(n) = £ C(2n) =q, C(2n+ 1) =71, n >N{(2), A2- Then £=qr
according to (2.1). Since 1 A, therefore £~ g, £ r, furthermore (2.2)
implies that qr GA, whence g™ r. Thus each 0z6 A can be written as the
product of two distinct other elements of A, ot= ajcq. Let o\ = «203. Then
0203 GA, 0203 702- Since a203 —01 would imply that <3= «3, i.e. that
03 G{1,—}, we obtain that 0203 7701.

Then there are two cases:

Case A1 0203 =103, i.e. «2= 03,

Case B: «203 = 04, i.e. «2=0304.

4111 Case A/l. Let 02 = «,a,,, and assume that either o,, = oi, or
0,, = «lI.

41.1.1.1. Let 0,, =0i- Then a, = a2i = 03 GA. If 03 = «i, then
ai = «203 = «3, whence a| = 1,and so 02 = «3 G{1,—} This is impossible.

Since av”™ a2, and av= 03 implies that 03 GR, we conclude that av=
04 = 03. Thus 03 = 02 = 0tO3, whence o0i = 03, 04 = 03. Thus A = {«i = «3,
02= 03, 03,04 = 03}. Let us write now «3 as o/jJO/. We have the following
possibilities

@ 03=«i«2j  (b) 03=0104; () 03= 0204

If (a) holds, then 03 = «3, a\ = 1, whence 02=036(1,—}, contrary to
our assumption.

If (b) holds, then 03 =03, whence 03 = 1.

It remains to consider the case (c). So we are in the case when:

«l =Q 2« 3, 0:2=0104, 03=0204,
A = {ai = 03, «2 = 03,03,04 =03},

Now we can proceed as follows. If 04 = «i«2, then 03 = 03, and so o®= 1,
consequently «1=03 = +1. But — ~ A was assumed. If 04 = 02«3, then
03 = 03, 1= «3 which leads to 03 G{1,—}

There remains the case when 04 = «103, whence 03 = «3, 03 = 1, i.e.
A ={03,03,03,03}, i.e. A is the set of the fifth primitive roots of unity. In
this case (f(n+1)f(n))5—1, and Wirsing’s theorem asserts that / 5(n) =nlT
(h GN), consequently f(n) = nIT/5F(n), where Fr(n) = 1 (nGN), further-
more Af —A ¥, consequently F(n + I)F(n) ™1 ifn is large enough.

Thus the theorem (with B) holds in this case.
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41.1.1.2. Let av=a\. This case can be treated as the previous one in
4.1.1.1.

4.1.1.2. Case A/2. Let auAoi\, av”at\. Then 02=0:30:4. But then
04= 0203 =«3, consequently card(.A/) < 4.

4.1.2. Case B. Then aq = a 2«3) «2 —0304. Let 03 =auav. We have to
distinguish the following possibilities: (a) a3=aio2; (b) 03=agaqg; (c) 03 =
02a4.

From (a) we obtain that al= qio2g2) whence a2G{1,—}. If (c) holds
then a2=030:4=a2a4,ie 04 G{1,—}

Assume now that (b) holds. Then 03 = (0203)04, whence a2a4= 1,
a4=02,and so a2= 0302, 03=02,ai=a2mThus A = {02,a2,a2,42}.

Then we should discuss the following cases:

(1) «4 = 0402 which leads to 02=02a2,02= 1,

(2) 04 = 0103 from which 02 = 0}+2, be. 02= 1, whence og = a2G

{1, —1}, which is impossible.

(3) 04 = «203, consequently a2=a2a2, ie. a2=1,03=a2G{1,—}

Thus (2), (3) do not occur. In the case (1) we deduced that A is the
set of the fifth primitive roots of unity, i.e. = S's\{1}. Hence the theorem
immediately follows.

4.2. Assume that Aj = {—1,1, a, /?}, {a, B} ™ {i,—i}.

Then Aft —{I,a2,/?2}. If a2= /32, then from our Theorem in [1], for the
case card Ap —2 we obtain that a2=82= —4, i.e. that {a,R} = {i, —}.

Assume that card .4*2 = 3. Then from our theorem in [1] for k —3 we
obtain that a2=u, 2= u» where a3= 1, w/1.

If there is an n > max(Ar (2), VM3 for which C(n) —1, C(n+ 1) —a
(or B), then a (or B) belongs to A/, consequently B —a&. In this case there
exists no such an m > N2 for which C(rn) = —, C(rn + 1) G{a,/?}, since it
would imply that —a = B, and this is clearly impossible.

Similarly, if C(rri) = —1, C(m+ 1) = a (or B) is realizable for some
m> N2, then —a = R.

We obtain immediately that with some primitive sixth root of unity C
either Af = {1,£(= 0),£3(= -1),/CG5(=r = 4&)}, or Af = {1,£(= a), IC(=
R =-—), /IC3=—} Since Q Sg, therefore by Lemma 3 we have that
f(n) = nITF(n) (n GN), where F6(n) = 1. Since Af = Af, from Lemma 1
we get that this is impossible.

4.3. The Case A = {1,0,RB, 7}, a4 "MA.

Let a be such an element among a, 3, 7 for which C(n) =1, C(n + 1) =

a occurs infinitely often. Then C(n)C(n+ 1) = o0 GA. Let B —&. Since
a”™ +1, therefore & {l,0:}. If there would be a sequence n,, such that
C(n,,+1)=17, C(n,) = 1, then it would imply that 7 GA, which is impossible.
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Consequently either (0,7) or [RB,y) occurs as (C{n),C{n+ 1)), infinitely
often. In the first case (1) ayeA, in the second (2) Ry E A.

Assume that (1) holds. Then 07771, a, consequently either (a) ay —&,
or (b) cry=7.

If (la) holds, theny=a2 A= {l,a,a,a2}.

If (Ib) holds, then « =72, A ={1,7,72,72}

The case (2) can be treated by changing the values a,B.

Case la. Let us observe that if one of a2a3,¢23,a4 belongs to A, then
either A Q 05, or A ~ S3or — GA. In the first case our theorem (with
assertion B) holds, the two other conclusions are contradictory. So we may
exclude these cases.

Let £77 be such a pair of elements of A for which (C(2n), C(2n + 1)) =
(£,77) holds for at least one n > N3. We observe that if 7 G {* 77}, then
£=7 and 77=1, consequently C(n)=7. Indeed, (E77) A (1,7), since 7 =
42EA, (E DA (a,7)- sinceay =a3£ A, (£, 7A (B 7), since By =a3 A,
(E, 7 A (7,7)) since y2=ad4tf:Alfurthermore (£,77)7"7,a) since ya=a3£A,
(E, 7D A (7,19 since yR—aitfiA As a consequence we obtain that if C(m)=7,
m > 2N3 then 2|m and (7 (y) =7.

Let us write each integer 7as n = 23*A(n), where A(n) is the highest
odd divisor of n. From our previous observation follows that if C(n) =7,
then A(n) » N%a

From (2.2) we obtain that C{n) ~C(n + DC(n(7r + 2)). Let n>4N" be
such an integer for which C(n) =7. Then 4|n, C(n + 1) = 1, consequently
C(n(7i +2)) = 7. Since 212+ 2, therefore A(n(n + 2)) » > 2N$, and this
is a contradiction.

Case Ib. Similarly as above we can exclude the cases when one of y3,y,
belongs to A. This implies that if n> N2 and (C(2n), C(2n + 1)) = (£77),
then (£77) # (7,0), (y,R), (1,7), (a,7), (B,v), consequently the possible
pairs are (1,1), (a, 1), {%, 1), (I,a), (1,/3), (7,7) and consequently C(n)—,
a, 3, a, B y2=a, which means that C(n) =7 cannot occur if n > Nz2.

4.4, Assume that Aj ={—,a,RB, 7}, I$SAf.

Since 1™ Af, therefore C(n) A C(n + 1) holds for all large n. Then
(C(2n), C(2n + 1)) = (L, £) or (£, —1) holds for some £ GAf, £A ~1- Let a
be such an element for which it holds. Then C(n) =—£= —a, a A<
consequently it is another element from A, let 7 = —a.

Let now C(ii) = B —C(2n)C(2n + .) = £77. If £ or 7= —., then —B GA,
but this is impossible. Clearly, £ 7 A Bi thus either £=a, 7=7 or £=7,
7= a, whence 8 ——a?2 follows. Thus Af = {—,a, —a2,—a}. Hence Ap =

{l,a2,a4}, and by our theorem for card Ap "3, we obtain that either
(@ cardAp =1, or (b)cardAp =2, or(c)cardAp =3

The cases (a) and (b) obviously cannot occur since they imply that a2=
1,—1, and so that card .4/~ 3 or 1GAj.
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It remains to consider the case (c). Then a2=a>, a4= uJ), where 4 is one
of the third primitive root of unity.

Consequently Af = {a= IC,s —K2,—1=/C3,7 = LA}, where K is a prim-
itive sixth root of unity.

Let ri» run over the sequence of integers for which C(nj) = 8. Let
C(2n,,) = £, C(2n,, + 1) = 77 for some large n,,. Then g = £77, £7£ Af. Since
—& N Af, therefore £72—1, 77A —1, consequently £,'7€ {«,7}, £ 77 Since
«7 =7a = A57 71/, therefore 8 cannot occur in Af. This is a contradiction.

45. Assume that Af = S4.

Then the theorem (Assertion A) immediately follows from Lemma 3.
The proof of the theorem is completed.

5. Proof of Lemma 1

5.1. Assume that (3.1) holds.

We use the notation C{n) = F(n + I)F(n).

Assume that n is bigger than a suitable constant. Then the following

assertions are true:

(1) If C(n) =- 1,then C(n —1), C(n+ 1)£ {—,1} This is clear, since
—C(n —1), —C{n + 1) £ Af, and —a, —R ™ Af.

(2) If C{n) —a then C(n + 1) AR\ if C'(td) = B, then C(n +1)=a. Clear,
since al, Ra £Af.

(3) If C(2n) = @, then C(2n + 1)/ o; if C{2n) —R, then C(2n +|)AR-
Clear, a2,R2£Af.

(4) If C(n) —x1,then C(2n), C(2n+ 1) £ {+1,—1} From (4) we obtain
that if M is large, and C(M) £ {1,—}, then

(5.1) C{amM +j) £{1,-1}for.7=0,..., 21 —1.

This is impossible. Let G{n):=F(n)2. Then G £ A4, G3(n) =1, and
(5.2) G(n+1)G(n) =1

if n £ 2IM, 2IM + (2l —1)}=Ji\ 1=1,2,.... Hence we shall deduce

that G(?i)=1 identically, which implies that F(&,)E{l, 4} (AEN),
consequently Af ~ {1,- 1}, which contradicts the assumption. If
21 > M5, say, then Jy contains a cube, m3£ Jy. Then G(rn3) = 1,
consequently G{n) = 1 for all n £ Jy, if 21 > M°. Let d be an ar-
bitrary integer. If there is an m and an | with 21 > M5 such that
dm3£ Jy, then 1= F(dm3) = F(d) follows. Let m\ be the largest
integer for which dm3 < 2IM. Then d{m\ + 1)3Ldm\ + 2dm}, the
right-hand side is less than
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if / is large enough. Consequently d(m\ + 1)3GJi.

5.2. Assume the fulfilment, of (3.2).

By using (2.1) and (2.2), for all large values of n we obtain immediately:

(1)
)
©)
(4)

If C(n) = /C, then C(n + 1) G{1, £}.
If n is odd, then C(n.) » K2.

If C(n) = 1, then C(n + 1) G{1, —1}.
If C(n) = —4, then C(n + 1) G{1, 1}

Starting with some large value no such that C(no) = 1, C(ho —1) G{1C 1@},
we write the infinite sequence

C(n0)C(n0+ 1)... C(n0+1)...

as C\1Z\CiTZi «=e, where £/t is such a sequence in which only 1,-1, and 17,
is such a sequence in which only /C 12 occur. From (3) and (4) we have that
in Ch the first element is 1, and the last element is —.

®)

Let ch = C{N0)C{NO+ 1)... C(NO+s), M =NQ+s+ 1 Then M
is even, since for odd M C (A f1) =C{M - 1)C{M) = -C{M), but
—C{M) £A if C(M) G {/C IC2}.

(6) The first, element C{M) in Izh is 1@. Clear, if C(M) —I1C then

(7)

®)

©)

C(M-1)=C(M)C(M2-1), C(M—1)=—4, consequently C(M2- 1)
= /C2. Since M 2—1 is odd, it is impossible. Thus C(M) —1C.

If C(n)=K?, then C{n—1)=—1 Since n—=o0dd, therefore C(n—L)
™12, furthermore C(n —I)C(n) G A holds only if C(n —1) = —
Hence we obtain that the first element of is /C2 and all the others,
if any, are /Cs.

If C(n) = 1C then C(2n)_ =K and C(2n+ 1)- 1 Clearly, K=C(n) =
C(2n)C(2n + 1), C'(2n)C(2n + 1) GA s satisfied only if C(2n) = )G
C2n+ =1

If C(n) =1C then C(n+ 1) » 1IC Assume, to the contrary, that
C(n+ 1)=/C Then, by (8)

C(n)C(n + 1) = C(2n)C{2n + [)C(2n + 2)C(2n + 3) = /CI/CI,

but this contradicts our observation, that ah j§ sequence always con-
tains at least two elements. This finishes the proof.
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RANDOM WALKS CROSSING POWER LAW BOUNDARIES
H. KESTEN and R. A. MALLER

Dedicated to the memory of A. Rényi

Abstract

We collect together some known results, and prove some new results, giving criteria for

limsup ISn1/nK= o0 a.s. or limsup Sn/nK= 00 a.s., where Snis a random walk and kt. o.
n —»0 n—*o00
Conditions which are necessary and sufficient are given for all cases, and the conditions are

quite explicit in all but one case (the case 5 < k< 1, EJAT| <00, EA =0 for lim sup Sn/nK).

71—voo0
The results are related to the finiteness of the first passage times of the random walk out
of the regions {(n,y):n " 1,ly| fsank} and {(n,y):n " 1,y ™ ankK}, where k > 0, a > o.

1. Introduction

There are many applications in sequential analysis, finance theory, and
elsewhere, of results concerning the time it takes a random walk Sn = Xu
with the increments Xt i.i.d.,, to escape from a region. Here we will be
concerned with two very basic questions: when are the r.v.’s defined for
kt O by

(1.2 TK(@) = min j\i> |: |Er31?!% >al (@a>0)
and
(1.2) TK(a) = min > (@a>0)

a.s. finite? (We take TK(a) = 00 if \Sn\ anKfor all n~ 1, and T*(a) = 00 if
Sn anKfor all n't. 1.) In applications areas where the properties of the exit
time of a random walk from a region with curved boundaries are important,
the a.s. finiteness of the exit time often follows from strong assumptions (e.g.,
the presence of a nonzero drift) which are not necessary and may obscure
basic aspects of the problem. On the other hand, it is of course important to

1991 Mathematics Subject Classification. Primary 60G40, 60J15; Secondary 62L10,
60G50.

Key words and phrases. Random walks, first-passage times, exit times, boundary
crossing probabilities, limsup behaviour.
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know, alternatively, circumstances in which the exit time will not be finite
a.s., so that a remedy such as a truncated test, or an estimate of the tail
of the distribution of the exit time, can be constructed. Good references to
procedures of this kind are in Siegmund ([22], Ch. 1V) and Gut ([9], Theorem
51, p. 133), for example. In view of these applications there seems to be
a need for a systematic study of the a.s. finiteness of the exit time. In the
present paper we give such a study for exiting from power law boundaries, for
which, as we will show, quite complete results can be obtained. We make no
apriori assumptions (such as the existence of the mean) on the distribution
of the X,.

It is a tautology that TK(a) <oo as. if and only if max(|Sj\/jK) > a

a.s., and similarly for T*(a) < oo, but the distributions of the extended-value
random variables rPgl_x(|5j|/y‘t) and ma>1<(Sj/jK) are not easy to deal with,
S

in general. However, by the Hewitt-Savage 0-1 law, the random variables

limsup ISni/nKand limsup5'n/n Kare constants (possibly, oo or —e0), a.s.,
n —»00 n—>00

and are correspondingly easier to handle. Thus we are led to investigate the
relationship between the values of these random variables and the finiteness
or otherwise of the passage times. In Theorems 1-3 we give necessary and
sufficient conditions (some known, some newly derived) for Iirr]n_%%p |ISn\/nK

= 00 a.s. and limsup Sn/n K= 00 a.s.. This is best done by considering various
N—00

cases corresponding to values of k and the finiteness or otherwise of E|X| and

of moments such as EjV|¥'t. Theorem 4 investigates when we can deduce
limsup\Sn\/nK= 00 a.s. from limsup [5n|/nK> 0 a.s., and similarly for the

n—=00 71—00

one-sided case. Finally in Theorems 5-6 we relate these results back to TK(a)
and T*(a).

Our first theorem deals with the ‘two-sided’ problem, which is easy to
handle by means of the Marcinkiewicz-Zygmund law (Chow and Teicher ([1],
p. 125). Throughout, we let X, Xi be i.i.d. r.v.s which are not degenerate
at 0 and Sn= X;;; also k0.

Theorem 1 (a) Ifk~1lorif\<k<1 E|X|< 00 and EX =0, then

(1.3) limsup [5ri|/n K= 00 as. if and only if E|X|¥Y1= oo.

71— 00

(b) In all other cases, we have

(1.4) lim sup |5n|/n* = 00 a.s..
n —»00

Next we look at one-sided case. These are not so simple. We will need
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the integrals

(1.5) A-(x)=J F(—y)dy {x>0) and ,+= | :
0 [000)

where F is the c.d.f. of the Xi. Note that 0~ A*(x) U EJY~, where
X +=max(0,X) and JY~=.Y+-Y

(and similarly for X f and X~). We will only need J+ when F(O-) >0, in
which case we let A-(x)/x have its limiting value, F(0—, at O.

In the next theorem, (a) and (b) are due to Chow and Zhang [2] and
Erickson [5], respectively.

Theorem 2. Assume 0< F(0~) ~"F(0) < 1.
(@ If k>1, then limsup S*/n* = oo a.s. if and only if
n—C

[000)
(b) For k=1
1.7 limsup5n/n =00 as. if and only if J| = oo.
(L7) msup y it IL

() If j <k<1and E|2f| = 00, then

(1.8) limsup Sn/nK= 00 as. if and only if J+ = 00.
n—00

(d) IfOMK ™  then
limsup Sn/nK—oo0 a.s.
(1.9 n->
if mid. only if J+ =00 or 0™ E*Y  E|7f| < 00.

(e) If "<k< 1, E|7f| <00, and EX ~ 0, then

(1.10) limsup Sn/nK=00 as. if and only if E7i>0.
Now keep
(1.11) N<«<l, EJY|]<oo and EX =0

(f) If E(X+)VK= oo then
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(1.12) limsupaVi/n* = oo as..
n—oo

(g) If limsup Sn/nK= 00 a.s. then
n—yoc

(113) ElAl]fk: oo.
(h) It is possible to have
(1.14) E(Y+)V'i<oo=E(X_)YK with limsupSn/nK—oo0 as..
n—y0

(i) If limsupSn/nK= 00 as. and E(X+)VYK<oo0 then
n—00

\ «/(1-«)

(1.15) / (/ F(-y)dy) dx = oo.
0 \x

Remarks, (i) If F(0— = 0, then limsup Sn/nK= limsup\Sn\/nK a.s.
and Theorem 1 can be used. If F{0) = 1, then limsup Sn/nK= 00 cannot
occur. Thus the assumption 0 < .F(0—5 ™ F(0) < 1 in Theorem 2 is not
restrictive.

(if) A necessary condition for (1.6) is E{X+)1* = oo and J+= 00. This is

immediate from the definitions. Conversely, let t_ (x)= f y*fK~IF(—y)dy/n.
0

Then, as x —00, r_(:r) —=E(A-)YKwhich is in (0, 00] when F(0— > 0.
When k> 1, T-(x) » x"/K~IA-(x)/k. Thus when k> 1, a sufficient condi-
tion for (1.6) is
f xI/KJF(
1 t-
[00) {x)

(iii) (1.15) is an improvement on (1.13) when E(A+)%,C< 0o, since it
follows easily that E(X~)I/K= oo when (1.15) holds and "< k< 1 On the
other hand, for a distribution function with F(—) = I/(x1K\ogx) (for x
large), E(AT-)1'C= oo, but (1.15) fails.

We next give a not very explicit condition which is necessary and suffi-
cient for limsup5Jl/n'i to be +oc a.s. which applies in the situation of (h)

71—>00

of Theorem 2

Theorem 3. Suppose “<k<1; E|A|<oo, EA=0, and E(A+)VK<oo0.
Let
$(0) = ?2{X >0} exp [I6E{X IX >0} + E{exp[i0X]; A g O}.



RANDOM WALKS CROSSING POWER LAW BOUNDARIES 223

Then limsup Sn/nK= 00 as. if and only if, for all A>0,

n—0c
(1.16)
00 1x 00 .
/e , p -, — ( / . / de a l/(l-K) % = 00.
: o 00 *(0) X

Remark, (iv) We do not know if it is possible to give a more explicit
NASC than that in Theorem 3 for liinsup Sn/nK= 00 a.s. when "< «< 1,

E|A”| < 00, EAT = 0, and E(AT+)VYK< 0o. Condition (1.16) of Theorem 3 is
difficult to apply, and we present it mainly to suggest that a more explicit
NASC is unlikely. For practical purposes, however, the sufficient condition

for Iim_s.%pS'ﬂ/n‘c: 00 a.s. supplied by (1.12) is probably useful enough.
n

(1.15) is a simply-checked necessary but not sufficient condition (see Remark
(v) below).

The following tables summarise the necessary and sufficient conditions
(NASC) we have for Iim_%lp|8'n|/n'c: 00 a.s. and limsup5n/nK= o0 a.s..
n 0

N—s00
Table 1

Value of k  NASC for limsup \Sn\/nK= 00 a.s.
n—00

o< mélg-_ Always true
0=EA'<E|A|<00=E|A|VK
or
2<*<1 O<|EAI|gE|A|<o00
or
E|A| = oo
K=1 E|A| = oo
K> 1 E|A |R'c= oo
Table 2
Value of k NASC for limsup Sn/nK= oo as.
Ve o)

J+=o000r 0~ EA UE|A| <00
When EA =0and E|A| < 00 = E(A+)VK: Always true
When EA =0 and E|A| VE(A"+)1 K< oco: See Theorem 3

g < K<1 When 0< [EA| N E|A| < 00: EA >0
When E|A| = o0: J+=00
K=1 = o
>t J minfxl/h,x*)dF (x)-00

tO00) \Y y
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Next we consider the possible values of the lirnsup in Theorems 1-3. Can
it lie in (0, 00)? One way of phrasing this is to ask:

(1.17) When does limsup |[5'n|/n K> 0 a.s. imply limsup \Sn\/nK= 00 a.s.?

n—*00 n—00

(and similarly for the one-sided version). Case (b) of Theorem 1 shows that
(1.17) need not be considered in the two-sided case unless k™1 or "< k< 1,
E|X| < 00 and EX =0, and (1.17) is obviously not true in the case k= 1
by the strong law of large numbers, when the limsup behaviour of \Sn\/n is
obvious. We consider the remaining cases as well as the one-sided situation
in the next theorem.

Theorem 4. (@) If n>1orifl <k<1, E|X| <00 and EX =0 then

(1.18) limsup \Sn\/nK> 0 a.s. implies lirasup \Sr\/nK= 00 a.s..
n—00

n—»00

(b) Except xuhen «=1, E|X|<00 and EX”O, or when |</i<1, E|X]|<00,
and EX = 0, we have

(1.19) limsupSn/nK> 0 as. implies limsup5'n/nK= 00 as..
n—foo n —00

However, (1.19) is not true when k—1, E|X| < oo and EX /0, or, in gen-
eral, when j <k<1, E|X]| < 00, and EX = 0.

Remark, (v) The counterexample we use in the proof of Theorem 4 to
show that (1.19) does not hold in general relies on a result of Klass [18], [19],
which gives a condition for limsup5,,/f?n E (0, oo) a.s. for a certain norming

71—>00

sequence Bn. See also Pruitt ([21], Theorem 7.5, p. 26). Klass ([20]) gives

an example with limsup Sn/B n E (0, 00) a.s., but it is not clear that Bn~n K
n—=00

for any k> 0 in his example. Our counterexample also shows that (1.15) is
not sufficient for limsup5n/r?,K= 0o. (See the remark following the proof of

n—foo
Theorem 4.
We next relate the size of limsup5n/nKto the hniteness of the passage

times TK(a) and T*(a) defined in (1.1) and (1.2). We note that it isimmediate
from the definitions that for fixed a” o,

(1.20) limsup IskW a.s. implies TK(a) <oo as.
and

. Sn 2 . . -
(1.21) lim sup n_K> a as. implies T*(a.)< oo as..

71—>0C
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In the opposite direction we have that

(1.22) TK(a) < oo for all a~ 0 a.s. implies limsup = 00 as.
n—o0

(1.23) T*(a) <oo for all a~ 0 a.s. implies hmsup 7. w0 as.
N—0 rikK

(1.23) follows from the fact that {T*(a) < oo} = {max(Sj/jK) > a}.
This shows that, T*(a) < oo for all a”™ 0 implies max(Sj/jK) = oo, hence
limsupSn/nK= 00. (1.22) can be proved similarly.
msup (1.22) P y

The next, theorems discuss also when one can have TK(a) < oo a.s. for
some a” 0, but not, for all a” 0, and similar statements for T*(a). We begin
with TJa).

Theorem 5. (@) IfOM k"N orif "<k<1 E|X|<o00and EX" O, or
if E<k<1land E|X|= o0, or if E|X]|'/K= 00 and either k| or " <k <],
E|X| <00 and. EX =0, then TK(a) < oo as. for all a> 0.

(b) Suppose K—I1 and 0< |[EX| ™ E|X]| < 00. Then T\(a) < oo a.s. for all
a™|EX]|, hut Ebigo P{Ti(x) = oo} = 1; in particular, Ti(x) =00 with positive
probability for all large x.

(c) In all other cases (that is, when E|X|¥k< oo and either k >\ or
5 <k 1 E|X|<o00 and EX = 0), we have lim P{TK(x) = oo} = 1; in
particular, TK(x) = oo with positive probability for all large x.

Remark, (vi) There need not be a sharp demarcation in values of a for
which P{TK() = oo} is 0 or 1, in cases (b) and (c) of Theorem 5. When X
is concentrated on [xq,xq + 1] for some xo > o, then for k* 1 we have

xo M X\ i?max(|5j|/jK " xqg+ 1 as..

Thus Tk(a) < 00 a.s. for 3 <xq and TK(a) = oo as. for a> xg+ 1 For
values of a between xq and xo + 1, TK(a) takes the value oo with probability
P{max(|5;|/yK ”~ 0}, which lies in (0,1) for some a, if for example X is

uniform on [xo, a0+ 1J- Note that, EjXI1* < oo in this example, so we are in
cases (b) and (c) of Theorem 5.

Now we consider the one-sided case.

Theorem 6. Assume 0< F(O-) *F(0) < 1

(@ When 0N k™ 1, T*(a) < oo as. implies limsupSn/nK” a a.s. but
N—00

when k > 1 it does not, in general.
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(b) When 0k 1 we have
(1.24) T*(a) <oo as. for som.e a> 0 implies T*(a) <oo as. for all a>0,

except possibly in the cases k —1 and E[X| < 0o, EX * 0, or \< ®< 1],
E|X| < oo and EX = 0. In these cases we may have limsupS*/n* =aE
—00

n
(0, 00) a.s., and if this occurs, then Tf(x) <oo a.s. for all x <a but
(1.25) lim P{T*(x) =00} =1

(c) When 0™ k" 1/2, we have
(1.26) T*(a)<oo a.s. for some (and hence all) a>0

if and only if J+=00 or OIiEXIiiE|X|<00. When I/2<n<I and E|X|=00,
(1.26) holds ifand only if J+ = 00. When 1/2< k<1, E|X|<o00oand EX * 0,
(1.26) holds if and only if EX > 0.

(d) Keep n=1 If E|X| < oo, we have T*(a) < oo as. for some a> 0
if and only if EX >0, and in this case T((a) < oo as. for all a™ EX. If
E|X] = oo, then T((a) <oo as. for some a>0 if and only if J+= oo, and in
this case T*(a) <oo as. for all a>0.

Remarks, (vii) Although the power law boundary nKin itself is im-
portant in applications, a useful generalisation would be to replace it in our
results by a more general boundary, g(n), say. For many of the cases we
have considered this can be done straightforwardly, but others need more
care. The boundary \/n log logn, for example, is of interest when EX2 < 0o
with regard to the law of the iterated logarithm, and there are various gen-
eralisations of the law of the iterated logarithm for the case EX2 = 00, too0.

Prof. M. Klass (private communication) has suggested a proof of a gener-
alisation of Theorem 2(f), which says that under (1.11), > "} = 00
implies limsup5'n/6n = oo a.s., for a certain class of nice sequences {bn}
which contains all sequences bn —nKwith * < k < 1, and more. His proof
relies on techniques developed in Klass [17]-19], and also on recent work of
Hahn and Klass [10]. Our quite different method of proof of (1.12) may be
of use in other problems, too. We will not explore the issue of more general
norming sequences further here, other than to mention that Chow and Zhang
[2] allow fairly general norming sequences, as do Kesten and Mailer [16].

(viii) A natural question, following our discussion of TK(a) and T*(a), is
to relate the last exit times

(1.27) LK(a) = max §n 3k Jﬁ}z a% (@a>o)

and

(1.28) L*(a)=max(n31:m<<aj (a>o)
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to the liminf behaviour of Sn. The connection here is close, because for a> 0
{LK{a) =o00}= {|5,,| gan* i.0.},
S0

.. . Snl Lo . o
lim inf <a a.s. implies LK(a) = o0 a.s. im liminf — f?a a.s.
n—toc 71 N—soo 7K

and similarly for L* (a). As relevant results, we only mention here the ‘other’
law of the iterated logarithm of Chung [3] (recently generalised by Kesten
[12]), and the example of Erickson ([6], Theorem 5).

2. Proofs

Proof of Theorem L1 We will write the Marcinkiewicz-Zygmund
strong law of large numbers in the following form: for k> 1,2

\Sn —cn
(2.1 Innsup--—-—-—-<o0 as.

N —so00 n

for some finite c implies E |1 Yfc< oo, arid EIA'IY* <00 implies

(2.2) lim ST: cn =0

N —o00 n

a.s.,

where d = EX if A< k™1 and c¢' is arbitrary if k> 1 (See, e.g., Chow and
Teicher [1], p. 125 and their proof.)

Now (1.3) is immediate from (2.1) (2.2) if k™ 1, so keep 5 < k <1,
E|X] <00 and EX = 0. Then limsup\Sn\/nK= o0 a.s. implies E|X| = oo

71—>00

by (2.2), and the converse follows from (2.1). Thus (1.3) is proved.
Next take 0 k” \. We will show that, always,

. 5
(2.3) lim sup el = g0 as.
n-+oo n1l2

Indeed, if this fails then limsup\Xn\/n*<o00 a.s. so by the Borel Cantelli

N—o0

lemma, EX2<oo0. If EX” 0then \Sn\/n —|EX]| > 0 a.s. by the strong law
of large numbers, so (2.3) holds. If EX = 0 then for each x >0

limsupP{|Sn|>xn12}>0
pP{|Sn]| }

by the central limit theorem, so (2.3) holds again by the Hewitt-Savage O-T
law. This of course implies (1.4).
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Now take "< k<1 |If E|X| <00 and EX 70, then limsup |[Sn\/nK—
n—00

limsup(ni_K|6'n|/n) = oo a.s. by the strong law of large numbers, so (1.4)

n—o0

holds. If E|X| = o0, then

lim sup-\-S-r-'\-IA-lhm sup-lxm: 00
n 2 n
by the Borel-Cantelli lemma, and (1.4) again follows. O
Proof of Theorem 2. Assume 0< F(OH 5|'F(O) <1l
(1.6) is immediate from Theorem 1 (i) of Chow and Zhang [2], and (1.7)

is Theorem 2 (a) of Erickson [5].
Next we prove (1.8). Assume E|X| = oo0. Then limsup Sn/nK= o0 a.s.

n—00
implies J-1 = oo by (1.21) of Kesten and Mailer [14]. Conversely suppose
limsup Sn/nK< o0 a.s. for some *<k< 1 Then for some c< oo

N —o00

Ex+ cnK
(2.9) < +1
E xr E at

for all large n, ass.. Now )T] Xi jnK-Aoo0 a.s. when 0< k< 1 as long as
i=i
/ n

n
EX]- > 0, so we obtain from (2.4) that limsup E) A¢ / E A“ <oc as..
n—yoo i=1 "=l

This implies J+ < o0 by Pruitt ([21, Lemma 8.1, p. 36) or Erickson ([5],
Lemma 3).
With k=0, (1.9) is (1.21) of [14]; call this (1.9)o- Then "%n,asc%p Sn/nK=o00

a.s. for any k 0 implies (1.9)o, so the forward direction in (1.9) is immediate.
Conversely, let J+=100 or 05 EX fE|X| <o00. We will show then that

(2.5) lim sup —00 a.S.

N—soo nl/z

from which limsup Sn/nK= o0 as. for 0 ~ 1/2 follows. We now prove

(2.5) . If J] = o0, then we know from (1.7) that limsupSn/n —oo0 a.s., so
(2.5) holds. If 3+ < 00 then by assumption 0 * EX " E|X| < o0o0. When
EX > 0, (2.5) is immediate from the strong law of large numbers. Thus we
only have to consider the case EX = 0. (2.5) then follows directly from the
Theorem of Stone [24], ((2.5) can also be easily obtained from a result of
Klass-Pruitt ([21], Theorem 7.5, p. 26)). This completes the proof of (1.9).

(1.20) is of course trivial from the strong law of large numbers.
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Now we prove (1.12). Assume that (1.11) holds. Define

(2.6 PAX)=" 1 y[I/K) :(1- F{y))dy
and
2.7) \{x) = j(l -F{y))dy

(this is finite, because E|X\ < o0).
Lemma 2.1. If 0< k<1 E|JA| <00, EX=0, and E(X+)1lk= oo, then

28, dF(x) _
' / PREX) /X% +\(x)/x

Proof of Lemma 2.1. Assume that E(A+)YK= o0o. We will suppose
that (2.8) fails, so

dF(x)

29) /) KO /xIK+ \{x)/x = *°

[l,00
Our first step is to show that this implies

xMK{I-F{x))

210 DKEX) + (UK 1X(x) "

To this end we note that

Pk(x) "
MK = [ y{UK~1(1" F{y))dy

0
|

= k/ -F{xy))dy

is decreasing in x > 0. Also A-e), and hence \{x)/x, is decreasing in x > 0.
Therefore, for any z > o,

2'*(I-He)) »~ f dF(x)
pPK(z) + ZP'*)-iA(z) « 1 PpK{X)/XxAK+ \{x)/x

(z,00)

(2.11,
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Thus (2.10) is an immediate consequence of (2.9).
The next step is to show that either

(2.12) H*)/x ;0
' PK{x)/xUK
or

(2.13) liminf X)X 2

X"°° pK(x) XIIK
Suppose in fact that neither of these holds, so for some e > 0

\{x)/x

(2.14) bE 2 p*(.)/.m/.
and
(2.15) AT ok Tkizk =°

Our proof now is; a minor modification of Proposition 3.1 of Griffin and
McConnell ([8], p.- 2029). Just as in their proof we can find sequences sk
rk —00 such that

(2.16)
pK{Sk)/sk
(2.17) Hrk)/rk
' Pn{rk)/rb K

\(Wiu s r S
(2.18) oktu /uiljlﬁ forrfcgunSfc
and
(2.19) — ->7 G[l,00].

rk

Now fix D >1and let u G[rk, Drk} Given r;> 0, we can, by (2.10), choose k
large enough for

(2.20) k(- F(rk)) i (reM>UKr™ (VKPK(™) + A(r*)).

Then for k large enough
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AU) = Ark) - T {0~ F@y))dy~tx(rk) -u (1- F(rk))

= A(rfc) —Drk{\ —F(rk))

(2.21) AHrKk)-r,EDI- A Rr I-(/KpK(rk) +\(rk))  (by (2.20))
=(l-VeD1L-")X (rk)-reD1 ™ ~r 1- {I/K)pK(rk)
£(Q- (re+2)DI-('M)X(rk) (by (2.17)).

Similarly
pK(u)=pK(rk) + ~ | y(1/c)_1(1 -F(y))dy
Tk
(2-22) apK(rk) + (urK-r 1/K) (1-F (rk))

ip K(rk)+ (DI'K-1) r KK(I-F (rk))
U @ + Vz)PK[rk) + mr[1/K)~ 1A{rk).
Consequently, for us [rk,Drk], we have

XU = ro-t >unr/~i(1-(rle+ 2v)DA/-)) X (rk)
(2.23) Pr{u)/ulik Pi(u) (1 + rle)oK(rfo) + yEr[.'/ V)" 1A(rfo)
=1 (1 - (ye+ 2y)D'-~A*))X(rk)/rk
\rir > {1+ rle)pK{rk)/ri/h +yeX {rk)/rk

Suppose 7 < 00 in (2.19). Then take D =7 + 1 and u = sk. Divide out
PK(rk)/rk h on the right-hand side of (2.23) and use (2.17) and (2.19) to get

Ihninf A(Scy~ ~ XUM)-i(l -(vE+2v)Dl (1A0)£
(2.24) pK{sk)IsXK (I+yej+ye2
->7 (I/K_1£ (asy]o).
Since 7~1 and 1/ k> 1, this contradicts (2.16).

Next suppose 7 = oo in (2.19). Then take u=Drk, D > 1, in (2.23) to
get, as in (2.24),

lim inf A(Drk)/(Drk) >d (i/k)-i (I~(ye + 2y)DI (UK)e
(2.25) fo00 PK(Drk)/{Drky/K (1 + rjf) + rjez
_>d (i/k)-if (aSy;o).
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On the other hand we may take u=Drk in (2.18) to get

<

. X(Drk)/(Drk)
(226) M3 b (Drigl (Drky

Since D > 1and Y k> 1, (2.25) and (2.26) are contradictory. Thus indeed
(2.12) or (2.13) holds.

It is now easy to deduce a contradiction from (2.9). If (2.12) holds then
(2.9) implies that

f xIKIF(x)

J f yJKdF(y)’
1b°°) Pb.X)

(2.27)

because pK(x)+x(1/K~1X(x) ~ pK(x)~ J yl/KdF(y) under (2.10) and (2.12)
[0.2)

(integrate by parts in (2.6)). Now (2.27) implies that E(X+)IF <00, by the

Abel- Dini Theorem, but we assumed EtX"I)1/* = oo. Alternatively, if (2.13)

holds then by (2.9)

*dF () N i XdF(X)
a = |/
f dF
oo 1(1-F (1)) dy YaFw)

(x,00)

0c0>C

for some ¢ > 0, which is also impossible by Abel Dini. This proves Lem-
ma 2.1. O

Now we can prove (1.12). We define

. PkO-) + Apr) < 6
(2.28) C,=inf<x >0 £l « —n
Then Cnt oo as n—»00 and

npK(Cn) , ri\(Cn) =3
Cn/K c" ’

(2.29)

while
pK(x) + for x&c
x I/K X n

It follows from Lemma 2.1 that for no large enougl

dF(x)

00 =
/ Pk(x)/xM k + \(x)/x
(Cn0,00)
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=<r n((l-F(C, _,))-(I-F(C n)))
n>no

=6-' Y, (I-FiCj-iV +S-'ino+W-FICn,)).
j>no+l

This shows that Y1 (1 ~ F{Cn)) —oo.
1

Next we will show that

E(X ,+-EX+)

(2.30) limsup—-------—------- =00 as.
71— Tl

For this it will be convenient to let

(2.31) X, =Xf - EX+ and Sn=JAXi.
i—1

Fix a€ (0,1/2) and choose

a a

) 0 <S< mi —
(2.32) 6 <S m|nI2,32dk

233

where c+ is a constant, depending only on the distribution of X +, which we
now specify. Let Y*—(X\ Ax) V(—x) and define A[x)= E(yKk). Then, for

XMNEX+, !

Alx) = 1 (P(X, >y)~ P(X, " -y)) dy

0

i+EA’ EV+

/ P(X+>y)dy I P(X+"y)dy
(2.33) EA + EY+-X

X+EX+ EA’+ EA'+
j P(X+>y)dy- | P{X+>y)dy- j P{X+iy)dy
0 0 0

I+E.V+ 00

= 0 (-Ffyndy-Ex+=- j (1- F(y)dy.

X+EA +
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Thus we have
(2.34) ~A(x) = AG:+ EAr+)~» AX), forx"EX+.
Also, for x"E X +,

lE(Y?)2= y[P(X >y) + P(X %-y))d.y

X EA+
g JyP(X>y)dy+ J (EX+ - y)P(X+ gy)dy
(2.35) 0 0

G |yl —F(y))dy + (EX+)2/2

X
<12c+ | y(1-F(y))dy =c+U+{x), say,
0

for some c+ > o, where c+ is a constant depending only on the distribution
of X +. This is the value we take in (2.32).
Take n >m > 1, and write

Si
gmmsgj)l(n Cj g a

X k
NIJP{5i_1>- aCJ}P{’\>2a’\J|er/§£((\n \L
1 0

(2.36)
j=m
Let Zf, = (Xk ACj) V{—€j) = YIEj. Now for Cj > EX
PLS$j-i » -«Cj)

j-1
gp{E (» ACo)v (-C'f) - (i- VMCj) U-aCj - (j- 1)A(C,-)}

(2.37)
+0 —i)p{A, <-Cj]

sp{1%;|>*-EZi)s-’\c4 ’
because by (2.34)

(by (2.29)) g"aCj (by (2.32)),
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while P{Xj < —Cj} = P{X,+ < BEJY+—Cj} =0 when Cj > EJf+. Chebychev’
inequality applied to (2.37) gives
ml/EZi)y

"F

(2.38) nSi-xa-acCijin

Notice that, since 1/k<2,

U+{x) =2 y(I-F{y))dy

0
X

So2x2-11K j - F{y))dy = 2kx 2~ {1/k)pK{x).

0

Using this, (2.35), and (2.38) in (2.37) gives

(8¢c+)2K,yC;-(UK)p«(CJ) = i _ 16c+KjpK(Cj)
a2C] a2C]/K
N 16lE+*E (by (2>29))

P{5j_i>-aCj} ~1

> 1 (by choice of 6 in (2.32)).

2

Returning to (2.36) we see that, for large enough m,

Pi max >a AN {’\/ >2a™ max °
mijSn Cj j+¥l<k<n Ck °
— Xi -
=- -N->2a
pﬁmj n Cj ? :F

Letting n —t 0o then rn —p0 shows that
. a i.o. >> }V‘ >2ai.0.
(2.39) P(, >aiol>;p,. >zaio)

Since a< 172 and ~ (1 - F(Cn)) = oo the right-hand side of (2.39) is 1/2,
and consequently, by the Hewitt- Savage 0-1 law, the left-hand side of (2.39)
is L Thus

(2.40) lim sup Na as.
n—=00 (-'n
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But by (2.29) and the fact that E(X+)Y/K= oo,

and so (2.40) gives

(2.41)

Our final step is to transfer this to Sn. By (2.41), for each x > O there
are w.p. 1 infinitely many integers  such that

(2.42)

Let nk be the successive indices for which (2.42) occurs and let Q be the
cr-field generated by {X”,i » 1}. The event that (2.42) occurs i.0. and the
values of the  are immeasurable. Now let WLhave the conditional distribu-
tion of —Xi +~E{Xr IX; < 0}, given that Xi <0, and take the Wxindependent.
From Remark (vi) of [15], noting that the r.v.’s Wi are bounded below and
have mean o, we have that for some ¢>o,

M

(2.43) niinPiV W A0jr00.
MSI 1 f—

Moreover, for any event G £ 5, conditionally on an event of the form

GD{nt=N) fl{Xi ~ 0 when i is one of the indices i\ <12 < mm<ir” N

but Xi <0 for i G[1, M\ ir}},
the random variables X~ —E{X~ \Xx< O}[.T, < 0], 1£i~ N, are condi-
tionally independent. They take the value O for i = {ii,..., ir}, and have the

distribution of Wtwhen i € [1, N] \ {R,..., ir}. It follows that for any k, a.e.
on the event {n*, < oo},

p{y. tA7 - EiAL IA*< < o]l ~ 0 19]
=
M

mminpjy Wi”o) “c.
But then

Pjy [Xr- E{X( IXi <0}[X;<0]] mO for infinitely many k
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for which (2.42) holds |(/| = 1
a.e. on the set on wnhkich (2.42) occurs i.0.. Now for any  for which (2.42)
occurs as well as [X} - E{X/~ | Xr< O}/[X; <] 930, we have (recall
EX = 0) ”

1A nk
Snk=£ (* + - E.Y+) - - EXT)
i=1 i=1
nk nk
= - exH-Y,[*r-MTix <MXI < q]
i=1 =1
nk

E{X~ IX <0} I[Xt<Q0]+nkEXf
i=

nk
zxn%- E{X~IX <0} JKi<o+nfEX".

2=1

Now by the law of the iterated logarithm,
rik

. 1 - —
kIlQWmnE . -E{X~ IX <0} . TXi<0+nkEX- =0 as.
Thus limsupSn/nK= 00 a.s., proving (1.12).
Nn—00

(1.13) is immediate of course from Theorem 1
Now we give an example to demonstrate (1.148. This is simply based on

the observation in [16], Proposition 3.2, that Sn— >00 implies Sn/n K— >00
for 0" k< 1. The latter of course implies lim sup Sn/nK= 00 a.s., so we need

700

only find a distribution function F for which E|X|<oc, EX=0. & (x +) ¥k < oo
= EQY_) Y for some 1/2 < k<1, but A(x)/ (xF(—x)) -aco as x —>00. The

last condition implies Sn — >00 by [13], Theorem 2.1. The following example
qualifies. Let S> 0 and

= F(-1)=ii~ r x>°2
and
1—+(x)=c\, O<x<a\, F(—)=Q, o<x"a,z2-

Here ai,a2,Ci,C2 are positive constants. Note that F has a jump of size
1—ci —C at 0. We have

ai 00
EX+=/c,ax +/ igj=<.1c1+ 4]

"o ai



238 H. KESTEN and R. A. MALLER

and
a2

EX =] cadx

0

dx = a2+
J x(\ogxy2 2 log a2
a2

We can choose the constants so that
EX = (0iCi + 1/(<5€H))- (azc2 + lI/loga2)=0;

take, for example

0i = 10, a2-ek, ci:-l, e = 2E L5100 I/k,

where k is so large that cc<  Then E|X| < 00, EX =0, and for large x

A{x) f(l- F(y) - F(=y)dy = - ﬁl F(y) - F(-y))dy

I F{-y)dy - (\I - F{y))dy = log X %xt’) log x

Thus
A(x)

-1 -
XF(—X) og X 00

so Sn—mo as required, yet E(X+)'/K<oo for all k> 1/(1+<5) and E(X_)VK
= oo for all 0< k<1 This proves (1.14).
(1.15) is just the contrapositive of the following lemma.

Lemma 2.2. Suppose y< k<1, E[X|<o00, EX =0, E(X+)VK< oo, and

@ oo
(2.44) yj F{-y)dy dx < oo.
0 X
Then
(2.45) limsup — ~o0 as..
n-+00 nkK

Proof of Lemma 2.2. IfE(X )Y¥'i< oo then Sn/nK-a0 as. by (2.2),
so (2.45) holds. We therefore assume E(X_)VK= oc and consequently
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F(—x) > 0 for all x > 0 for the remainder of this proof. We have, since
EX+ =EX-,

E(X+-EX+) E£(EXr-X:
(246) Jn _ i=1 i=l
n"

r
The first term on the right-hand side of (2.46) is o(l) a.s. by the Marcinkie-
wicz-Zygmund law. Thus, letting

Xi=EXr-Xr and =f£* e,

it will suffice to show that limsup Sn/nK” 0 a.s.. For 6 >0, x > 1, define

(2.47) C(x):infjj/:j F(-z)dz~J"J,
y
so that for large x
(6 0]
(2.48) xI~K 1 F(—z)dz =s.
C{x)

An argument just like that in (2.33) shows that for x * EX-

(e0] (e0]
4 (s):==E((ITAN)V (-3))= | F{-y)dya j F(-y)dy,
x-fEA'- X
(2.49) x1-KA (C (x)) A

Note also that the X; = EX- —X~ are bounded above, so by Remark (vi)
of [15] we have for some A >0

(2.50) mip P{5, "0}*A>0.
n/\

It follows that
n
P Sj> =S~'P Sk <Sj
R, S92 = 5P, e i3
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LA (o n
(2.51) {]<“<* Skikx<Sj, E X*=°}
j=I == i=j+i
{Sn >x}.

Now set
Z-=(X1AC(2k))\/(-C(2k)),

and use (2.51) and (2.49) to write

P{ max Sn>262KK) £ "P{S &> 252Kk}
I"n"2k A

ANAp{r(x ;A C{2k)) v {-C{2k)) - 2kA{C(2Kk)) >02"*}
2=1
(2.52)

+ ~P{A1>C(2")}

=i p{E (zk-vz K >IVK¢

for k large enough; note that P{A"i > C(2A} = o for k so large that C(2k) >
EX~. We have (cf. (2.35))

C(gk)
E(Z?)2 g4c_ f iyF(-y)dy = 2c”U-(C(2k)), say,

where c_ is some constant depending only on the distribution of X . From
(2.52) and Chebychev’s inequality we get

2c-2° £/ (C(2%))
(2.53) P{ max 622 (2K-l)fc

for some constant ¢> 0. Next

C(2>)

U_(C(2k)) xF(-x)dx

[y 20Qf—)k  E— 2(2n=V)k Z-N
k>1 k>1 = ey

+"-W » ) E25k;—l)lc

J>l
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c(v
(250 I V- 1 U-(C{1)
N A/\' 2(2ec e 22/c_1 —1
J=1C(23-9) k%
C(Vv)
\le m xF(—=x)dx U-(C(1))
22¢-i _ | £ 2(2k-1)j + 22k_1 —1’
=1C(2J-%)

Now by (2.47), a™ C(V) implies f F{-y)dy " 6/2"I~K so (2.53) and (2.54)

give, for some ci,Cz,

SUIL*V P{ max Sn>262KK
k

[ Frx
(2.55) r | °r \ (ft—)/(1—)
‘a | (I Freynly) XF(—x)dx + C
cfh *

Integration by parts shows that the last integral converges if (and only if)
(2.44) holds. Consequently by the Borel Cantelli lemma

“max Sn

—n=o*

(2.56) lim sup-——t——" 24 as..
—0 2

Thus for large k and 2k~x<j U2k,
j 2K K
S!]_<L max Sn1v0<3<5M:<36 qul

*=-igngz2*

Given a large n choose k = k(n) so that 2k~x”™ ?i< 2fc Then

_ 2{mex 51\O
SnK _
nK= 2 KA
This shows that lim sup Sn/nK5j302K Let to get (2.45).

n—00

Proof OF Theorem 3. Since E(X+)1'i < 0o, we have by the Marcin-
kiewicz Zygmund law (see (2.2)) that

E [~+-E{Xi|X >0}[XI>0]]

1 35,

rT
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so we may replace Xxby the constant E{W | X > 0} when Xi > 0, without
influencing the value of lim sup 5n/n,t. We may therefore assume that X +
can take only one value > 0. We denote by Xi the modified random vari-
able which is obtained by replacing Xi by E{X | X > 0} when Xi > 0. Its
characteristic function is € We further write Sn = Xi-

Now let 0\ < <2 < eee be the successive strict upward ladder indices of
the random walk Sn and take og=0. Then the SakH —Sak are i.i.d. and
take values in (0. E{X | X > 0}], so that

Since

(2.58) lim sup Sn/nK= 00 a.s.
if and only if

(2.59) hmsup®®=00 as.,

n—00

we see from (2.57) that (2.58) is equivalent to

Ilnnl>!1gfn 1K= a.s..

By [25], Theorem 1. this is in turn equivalent to

(2.60)

for all A> 0, where for x >0,

m(x) —E(fT] Ax) =~ AP{Ti = A}+ xP{a\ >a}
[e<£

We now estimate E{or Acc}. For brevity write K = E{X | X > 0} and
Ci =P{W = E{X IX >0}} = P{W >0}. Then X+ =0 or =K. Therefore,

p{CI=n} =P{Sn_is {~K,0,Si* 0,07 ign- 1}P{X =K}

(2.61) ) )
= C1P{5n_1e(-0f,0],5jg0,0rtgn-1}.



RANDOM WALKS CROSSING POWER LAW BOUNDARIES 243

Next we use a simple argument based on the fact that all cyclical per-
mutations of Xi,..., Xn-\ are equally likely (see [23]; proof of Proposi-
tion 32.5). If v is any index <n —1 at which max S, is achieved, and

Sn-\ = Er=i' Xi "o, then at least the cyclical permutation
(2.62) Xv+i,..  Xn-i,Xi,...,X,,,

has all the partial sums 5[0, as one easily checks. Therefore, by (2.61)
(2.63) P{ai=n} P { S n_i €(-/<:;,01}

Now first assume that {Sn} is aperiodic, in the sense of [23], Definition 2.2.

Since EX =0, {5n} is interval recurrent. From this it follows that for

any fixed number L > 0 and set A C [L,L] and any open interval | =

(a—r),a+r), say, there exists a 1~ j =j(L, 1) <oo and a constant C2 —
1) > 0 such that uniformly in n,

P{Sn+. €/ 1Sns A}

i=1

1

P{sr + xG1}
1

> nin . . <N
e y p(LSI+PTJ, a <,
Iplg2L/rj 1=1

N C2.

It follows that for any fixed S> 0 there exists some j and C3 > 0 such that

j j
E P{AI=n-M}~ 1T P{S,_WE(-X,0]}

1=1 l—

(2.64) o)
AW { P{\Sn-N\<s}ds.

If {Sn} is periodic, then it can take all values kX, k GZ, for some A" Q.
Then the preceding argument still goes through if we restrict x to multiples
of Aand if / contains a multiple of A Therefore, (2.64) is valid also in the
periodic case.
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For an estimate in the opposite direction we introduce the set

i n

r=Tn=1|g =(Gi,m., xn): Xj~0, 1*jgn-1, and E (0, K1j,
i— i=1

and for any sequence of length n, x = (®i,..., xn), we define its cyclical

permutations rkx = (xk+i, ... ,xn,x\,..., x"), 0k~ n—1 By (2.61)

(2.65) P{al=n} =P {(l1,...,In)er}.

Next we note that for any x E F, none of the permutations Tkx with 1/ k
n —z1 lies in T, because

n n k
E A _E N E NS o
i=k+1 i=l i=I
Moreover for x6 F and k </, we must have rfa ® ti. Indeed rfm = r*r

would imply that the periodic extension of x with period n would also have
period | —k and then also period p:=g. c. d.(n, | —k). But this would force
"Ya—t x i > 0) because JE»=1 Xi > 0, and xi> 0 is impossible for x E F and
p <n. Therefore, given rkx for some i GT, one can find k and x uniquely,
and the sets t*T := {Tfer:i GF}, 07"k ~n —1, are disjoint. Finally, if we
take into account that

E j Tkx)I=Y"xie (o,K]

for any x ET. we obtain

1 n—i
p{C=n} = P{(x1........ xn)er} =ip{(jfr...... xn)eU r*r}
k=0

i-IrZ]’{~Sne(O,K)}.

Analogously to (2.64) we then also have for any fixed 6 > 0 that there exist
constants C\ < oo and j < oo so that

5 3
(2.66) PWi=n}"r~ 1Y.Pil*+il <s}ds.
n o0 i=1
Now
rn(x) = E((7i Ax)f Eci = 00, (t —2o0c)
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because EY = 0 (see [9], Theorem 9.2). It, follows from this and (2.64) that
for some constant Cs > o
m(x)=y (nAx)V{o\ =n}
Nl
J
ANCsN AN(n Aj))P{di=n+ 1+1)
i=1 711
5
= — ("AI) | P{|5,,] < s}ds.
7 0
Similarly, by means of (2.66),
m(%) *y ; — (nAx) | P{|Sn|< s}ds.
n~1 7 0
We may therefore replace m(x) in (2.60) by

(2.67) I(IA-)p{]|S,|<a}cfe,

and if we define (1 A:r/0) = 1, then we may even start the sum at n = 0.
The proof of (1.16) now only requires a few manipulations from analysis.
One easily checks that (1 Ax/n) lies between two constant multiples of

J e~ny/xdy.
0
Moreover

(2.68) <s}ds = A J 4=ﬂ(0) —C088,

(see Chung and Fuchs [4]). Therefore the sum in (2.67) (starting with n = 0)
lies between two constant multiples of

E '”y/Xdy -F —<:0560_do
n=0Yy

1

(2.69) 0
1 —C0s 60 4o
1-e~y/x${o)
0
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Note that the interchange of the summation and integration here is justified
by the following estimates

© ) R
E /((;ny/xdy / |
n=°0 —\1)0
2 i p™jl-cosw ~
éé e- 2Lni2jy/x -
=i —@®
00 o]
— A e~2my/xdy / P{|Tm]|< s}ds,
m:é‘i
where Tjn = A j" X, — X', with all XI,X1 i.i.d. (because X, —X[ has

characteristic function |4>($)[2). But EX = 0 and X not degenerate at 0

implies that P{X >0} > 0 and P{X <0} >0, so that X is not degenerate.
We then have for some constant Cj <oo that

6
/| P{TT <s}ds"eP{\Tm\< §} /-8 =

i)
m + 1
0

by a general concentration function inequality ([7], Theorem 3.1). Thus

o 1 6 ﬁ )
e-2my/xdy | P{|Tm|<s}ds=0 1A
T7E0] o m) \Jm+ 1
Thus the interchange of summation and integration is permissible by Fubini’s
theorem.
Replacing m(x) in (2.60) by the right-hand side of (2.69) with $= 1 and
changing the variable gives (1.16). O

Proof of Theorem 4. (a) Let k>1 or "<k<1, E|X|<00 and EX=0,

and limsup\Sn\/nK>0 a.s.. If limsup\Sn\/nK< 00 a.s., then E|X |V, K<oo0
71—00 7100
so \Sn\/nK—0 a.s. by (2.2), which is a contradiction.
(b) We consider the various cases, excluding the two mentioned.
The case k> 1is covered by Corollary 1 of [2].
For k=1, we know that limsup Sr/n can only take the values +oo or
->00

!

—o00 when E|X]| = oo by Corollary 3 of [11], proving (1.19) in this case. If
E|X| < oo and EX = 0 then neither condition in (1.19) can occur for « = 1,
so the result is true vacuously.
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Next let If I|m sup Sn/nK> 0 a.s., then limsup Sn= oc a.s., so

71—-00
limsup5n/n K—oo a.s. by (1 9). (Note that (1.19) is trivial if F(0— =0 or
TL—00

F(0) =1)
Next let 5 < K< 1, E|X| <ooand EX ~ 0. If limsup SInK> 0 a.s., then

71—-00
EX >0 (by 1.10)), so Sn/nK 00 a.s. by the strong law of large numbers,
and (1.19) is true. When "<« < 1, E|X]| = 00 and Ii;n_)%JDp Sn/n < oo as,
I

then we have Sn/n ——o0 a.s. by Corollary 3 of [11]. This is not possible

when limsupSn/nK> o a.s., so the latter implies limsupSn/n = 00 a.s. and
T1—KX) =0

consequently limsup Sn/nK= oo a.s.. Again (1.19) is true.
n—00

When k=1, E|X| <oo and EX 0, (1.19) is obviously not true by the
strong law of large numbers.

Finally, let, * < k < 1 We will use a result of Klass [18], [19] to give a
random walk with E|X| < 0o and EX = 0 and

8
(2.70) O< limsup— < o0 as.,
oo TIK

showing that (1.19) is not true in this case either. To do this, define as
in Klass ([19], Equation (2.1), p. 152) a positive function K(x) (uniquely)
satisfying, for x > o,

K2{x) = xE X2l (\X\T K{x)) + xK{x)E\X\I{\X\> K{x)).
Clearly K(x) —00 as x —00, and integration by parts shows that

K(x)
(2.71) K2 =2x | yP(X|>yyay + xK{x) ] P(X] >y)ay.
0 K{x)

Then by Theorem 2.5 of Klass [19],

2.72 1gli —r N 15 as.
@72 R TN
provided

(2.73) P{X > lanK{n/l2n)} <oo0.

Here I =loglogn for N >e. We can satisfy (2.73) by taking X to be
bounded above, so to prove (2.70) we need merely find a random walk, whose
increments are bounded above, with E|X| < 00, EX = 0, and, for some ¢ > 0,

(2.74) I2nK[n/I2n) ~ cn™ (N —00).
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To do this, let the distribution F of X put all its mass in (0, 0o0) on one
point and satisfy

(2.75) F{-x)"cx-1/,i(l2x)1- UK X->0c,

and EX = 0. (Note that E|X| < oo when (2.75) holds.) Since X is bounded
above we have for some x\ and large x

yP(\X\>y)dy~(2 - 1/«) JW A m+const
Xl

x243/nr
as X —00.
(12x)d  K/K
Also, as x —»00,
. : A f cdy (2-1 /K)exl~ 1A
. y 1°K(hy)~ (1/ k- 1){I2x)(1~K/K
Thus k (x/12x) satisfies, by (2.71),
K(x/12x) 00
KHX/hxt=2 r ypax\sy)dy +K(x/lzx) | P(X| >y)dy
{x/12x) J
K(xTl )
K{x/hx))2-VK
~ (1 - K{12(K (x/12x))) ™ K)/k :
or
cX
(2.76) (K(x/12x))VK~

(1 - k)(@2x)(12(K (x/12x))) (") /K"

Clearly then, \og(K(x/l2x)) is bounded above and below by multiples of
logic, so I2(K(x/l2x)) ~ lI2x. Thus

CX

@& (x/hx)) UK~

(1 - k)(12x)1lk "
proving (2.74). Hence (2.70) holds by (2.72). U

Remark. Itiseasy to see that (1.15) holds for the example just given, so
this example also demonstrates that (1.15) is not sufficient for lim sup Sn/n K
n—KX)

=00 a.s..
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Proof of Theorem 5. (a) Keep k~ 0 and a> 0. It follows trivially

from the definitions that limsup\Sn\/nK> a a.s. implies TK(a) < 0o a.s., sO
71—-Q0

Theorem 1shows that we have TK(n) < oo a.s. for all a> 0 under the specified
conditions.

(b) Keep k= 1and 0< |[EX| M E|X| < 00. Suppose EX > 0. By the
recurrence of the random walk ~ "=1(Xt —EX), we have

| =P{Sn-nEX>0 i.0o.}=P{S,>nEX i0.}"*P{(|5,//n) > |[EX] i.0.}
A P{rrqglx(|5n|/n) > |EX|} = P{T, (JEX]) < 00}

Using a similar argument when EX < 0, we see that Ti(|[EX]|) < oo a.s. when
EX 0,50 T[(a) <oo0as. for all a™ |EX]|.

Next take a> |[EX| and 0> 0. By the strong law of large numbers we
have |5n|/n —|EX| a.s. so we can choose mo(a,0) so large that

(2.77) P{ max (|57|/j)>a} ~ P{(|Sj|/j) > a for some j >m} "~ 5/2
rn<j”n

whenever n * rn A niQ We can then choose Xq= xo(rno, Q so large that

(2.78) P{ max (\Sj\/j)>x}Z6/2
ISjSmo

whenever x * xq. Thus for x * xq Aa and n > mo we have

P{ max {\Sj\/j)>x}

(2.79) 1=J=n . .
AP{ max (|Sjl/i)>a;} + p{ max (|5j|/j) >a}a$b
I1SjSmo mo<jSn
Letting n —00 in this shows that P{sup(|5j|/j) > x} * $for x * Xq, which
it
proves P{Ti (x) = oo} =1 as x —00.

() Now let EIXI¥* < 0o and either k> 1 or 1 (so E|X]| < 00)
and EX = 0. Then by the Marcinkiewicz-Zygmund law (see (2.2)) we have
\Sn\/nK—0 a.s.. The same working as in (2.77) (2.79), with the divisor j
replaced by j K and a positive but otherwise arbitrary, shows that P{TK(x)
= 00} —»1 as X —00. O

Proof of Theorem 6. (a) Keep 0™ k” 1land suppose T*(a) <00 a.s.
for some fixed a” 0. Take T¢= 0= So, T* =T*(a.), and for k =2, 3,...,
define
TkK=min{n>Tk_, :Sn>ST +a(n- T& 1)'i}.

Let AY, = Tk —T£ v kill. Then the A* are i.i.d., each with the same
distribution as T*, and so A* < 0o a.s.. Hence Tk <oo a.s., k=1,2,..., and
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TE —00 a.s. as k—00. Now for all kK™ 1

STRr;.,)«

:«EA|>“(EAJ (WhenOAkAl)
3=1 J=1

=a{Tk)\
Thus, for all k, St*> a(Tj*)K a.s., proving that limsupSn/nK” a as..

Nn—00
Now take k> 1 Let X be such that X ™ xo a.s., where xq> 0 is a
constant, but E(XYK) < 0o. Then when a < xq

1= P{Xi > a} <P{max(Sj/jK) > a},
jrt

so that T*(a)< oo a.s.. But Sn/nK-+0 a.s. by the Marcinkiewicz-Zygmund
law (2 .2).
(b) Keep 0* k™ 1, a> 0, and let T*(a) < oo a.s.. Then limsup5',,/nK"
71—
a>0 a.s. by part (a), so limsupSn/nK—oo0 a.s. by Theorem 4(b), except
n —200

possibly in the cases k=1 and E|X| <00, EX" 0, or "< k<1, E|[X|< 00
and EX = 0. This proves (1.24). In the exceptional cases, we may have

g
(2.80) limsup — =a G(0,00) a.s.,

n—00

as was shown in Theorem 4 (b), and if (2.80) occurs, then for all x <a,
P{Sn/nK>x i.0.}= 1, and hence T*(x) < 0o a.s.. A similar proof to that of
Theorem 5 shows that, also, P{T*(x) = 00} —1 as x —00.

(c) Part (a) of the present theorem shows that, when 0" k31, T*(a) < 00

a.s. for some a >0 if and only if limsup Sn/nK> b a.s. for some b> 0. In
71—Q0

turn, with the exception of the cases k=1, E|X| < oo and EX / 0, or possibly
N< k< 1 E|X|<o00 and EX = 0, this occurs if and only if lim sup Sn/n K—o0

71—=00

a.s. (by Theorem 4 (b)). Then T*(a) < 0o a.s. for all 0>0 apart from those
exceptional cases. We can read off the corresponding analytic equivalences
from Theorem 2 (b)-(e).

(d) Suppose T*(a) < oo a.s. for some a > 0. Then by part (a) of the
present theorem, we have limsup Sn/n”.a a.s.. If E|X| = oo then by Kesten
71—00

([11], Corollary 3, p. 1195) we have limsup Sn/n —o0 a.s. and J+= 00 (by
7100
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(1.7)), and hence T*(a) < oo a.s. for all a>0. If E|X| < 0o, then by the
strong law of large numbers, EX ” a, hence EX > 0. Now

P[—>EX i0}=p[*(Xi-EX)>0 i0}=1
2=1

so T*(a) < oc a.s. even for a= EX, hence for 0" a5LEX.
Conversely, if J+= o0 then Iinli%pSn/n = 00 as. by (1.7), and hence

n
T*(a) <oo as. for all a> 0. If 0<EX "~ E[X]| < 00 then T*(a) < 00 as. for
a= EX, hence for 05la” EX, as just shown above. O
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ERDOS-RENYI-SHEPP LAWS FOR DEPENDENT
RANDOM VARIABLES

R. KIESEL and U. STADTMULLER

To the memory of Alfréd. Rényi

Abstract

We prove an Erd6s Rényi-Shepp law for the partial sums of a uniform strong mixing
stationary sequence.

1. Introduction and main results

While there is a large amount of literature on versions of the Erdds-
Rényi-Shepp law for sequences of independent, identically distributed (i.i.d.)
random variables, see e.g. [11, 3, 4, 5, 6, 7, 12, 13], not much is known for
dependent random variables (see [9] for a first result in this direction). Using
a recent large deviation result by Bryc [1] we proceed to a more general
setting.

Let {Xn} be a stationary sequence. We define (F™~o{Xk :n"k%m) the
canonical cr-algebra generated by Xn,..., Xm and the 0-mixing coefficient

We say that a sequence {An} is 0-mixing if 0On—=0 for n —0o0.
We shall need the following hypergeometric rate of convergence

(11) eKnpn—0 (n—00) for each Kt O.
We have the following large deviation theorem by Bryc [1].

THEOREM B. Let {An} he a stationary 0-mixing sequence of random
variables such that |Xi| # C <00 and (1.1) holds. Define Zn = (Xi + ...
+Xn)/n, n't 1. Then the limit

limn 1log E (exp(nAZn)} = L(X)
exists for each AGK and the function | :R—=[0, 00] defined by
1(x) :=snp{xA —L(A)}
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254 R. KIESEL and U. STADTMULLER

is a convex, continuous function. For {Zn} the large deviation principle
holds true with the good rate function I, that is,

(1.2) limsupn-1 log P (Zn GF) » —inf I(x)
n->00 XEF

for each closed set F QR, and
L _ A

(1.3) Ilnrf}lorgfn I log P (Zn GG) X|er23f 1(x)

for each open set GM K

Lemma. Let {Xn} be a stationary f-mixing sequence of random vari-
ables, such that |2fi| » C <00, E(Xi) =0 but E(A*) >0 and (1.1) holds.
Then we have with xq :=sup{x * 0; I1(x) =0}, x\  sup{x > 0; I(x) < oo}
and A\=sup {I(x)} (xvhere sup{/(.)} := —o0} that

0

O<x<xi
(i) L(.) is convex and hence continuous on R and L(A) CA, A" 0;
(i) Orxg™ xi"C;
(iii) If To<x\, | mto,ti) —>[0,A) is continuous and strictly increasing
and hence I*~:[0,A) —[to, xi) exists.

CONVENTION. To obtain our main result in a closed form we define

I =(x):=xi if x» max{0, A}.

Using (1.2) resp. (1.3) for F —J[a, 00) resp. G = (a, 00) with any a G
(xo0,x\) we obtain by the strict monotonicity of | that for any sufficiently
small e > 0 and n sufficiently large

(1.4 P(Zn~ a) ~exp{-n/(a- e)}
and
(1.5) P(Zn > a) "exp{—nl(a +¢e)}.
We consider in the sequel the following random variables
16 Vi o= _max Sk+b, ~ X

with Sn:= X\ 4--—--- bXn and bn:=[clogn] for c> 0.

We can now state our main result, in which A := sup {l(x)} as above.
0<I<II

THEOREM. Let {x n} be a stationary, <f>mixing sequence of random vari-
ables, such that |Xi| » C < oo, E(X[) = 0 but E(Ai*) > 0 and (1.1) holds.
Then we have for any ¢> 0

lim Vn= I*~(1/c) as..
n—*00
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2. Proofs

Proof of the Lemma. Itisobviousthat ipn(X) n 1log{E(e"A2n)} "
AC for nonnegative arguments and exists for all Asince —€ ~ Zn~C. As
a limit of convex functions (cumulant generating functions) L(.) is convex
and hence continuous. Next we shall show that I(x) = oo for all x >C. This
follows from the fact that (use E(A'i) = o)

{x) = SAJ/%{AX —| (A} %%{Ax —AC} =00 for x >C.

Hence Xi 5 C. By definition /(.) is strictly positive for x > £0- By Lemma
2.2.5 in ] it is a good rate function and is hence convex and lower semicon-
tinuous. If xo <x,\ then it is continuous in (£0,£i) and we show that /(.) is
strictly increasing on [£0,£i). By general arguments I(x) is nondecreasing
for x ~ 0 (see e.g. [8], pp. 28 or [10], p. 4). We show now that /(.) is increas-
ing, i.e., we have I(x2) < I(x3) if xqfiz2 <£3 <x\. By the last step we can
restrict ourselves to prove the case 2 > xg. There exists a sequence (A,)
such that I(x2) = nIi_gg)s(\an —1(Xn)) and Xn".6 with some 6 E (0,1), since

otherwise I{x2) = 0 in contradiction to the last step. For 0< e < (£3 —2M
we have for 7/ large enough

1{x2) = XnX2 —L(Xn) + e
< An(£3— —L(Xn)4-e
gAnEs -L(An)g/(£3),
giving the Lemma. O

Proof of the Theorem. Let us begin with the cases A > - oo, ie.
A>0and c> VA.
(@ Our first claim is

(2.1) limsup Vn %77(1/c) as..

71—>00

Choose £> 0 and set x  1"~(l/c) + 2e < £1. Define for n * 1 the events
An:={a:Vn" £}

We have to show that

(2.2) P(Ani.0)=0

Hence we estimate P(A7). Using successively the sub-additivity of the prob-
ability measure, the stationarity of the sequence {Xn} and (1.4) we obtain
for n large enough

pMn) = p " (] S\b S‘A*
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5 2rexp {—bnl(x —e)} = nexp {-bnl(I1*~(l/c) + £)}
nexp {—1 + 5) log n}
for some 5> 0 by the Lemma.
Now choose T the smallest integer such that TS > 1; then

e 0]
(2.3) "P(.4,r)<00.

71=1

Hence P (Anr i.0.) = 0. Setting forw 1

max Sk+bn-1~ sk >
O<k™n—a  bn~1
similarly we see that
(6 0]
(2.4) AP (H ;t)< oc.
n—
Now for n large enough we have h(n+1)r —bnr ~ 1 and using (2.3) and (2.4)

this implies that (2.2) holds true (see [2], p. 100 for this type of argument),
(b) Our second claim is

(2.5 liminfvn” I2(l/c) as..

Choose £> 0 so that x := 1*~(l/c) —2e> x0. Define for n * 1 the events
Bn:={u;: Vn"x}.

We have to show that P (Bn i.0.) = 0. By the Borel Cantelli lemma it suffices
to show

(e0]
(2.6) p (Bn) < oo.

71=1

Let (dn) be any sequence of positive integers with dn — 00 (h —00). Then
we have

C
ANi(bn+dn) ai(bn+dn)-bn ~ _ (
n {»mm bn

V 8=1 A - j



ERDOS—RENYI-SHEPP LAWS FOR DEPENDENT RANDOM VARIABLES 257

Fori=1 bnn:-l)&n —1 we define the events

-Sj(bHHdi) A f(bn+dn)-bn < 1
bn =1
Using standard techniques for sequences of ~-mixing, stationary random
variables we get for any positive integer N
"TV—1
= N e'en
P \ t=i /
'N-1
~N(Bdn+P{EN))P ( ] Ex
\i—l
fN- 1
= (®dn +P (£a))P fl Ei
A=l
+P(M"D))V'' p (mo-
using our large deviation estimate (1.5) and stationarity we get for n large
enough

09

P(E£i) =P = ~p > X

- < ( N

bn ~ J 1 K
N1-exp{—nl(x +e)} = 1- exp {-bnl{l*~(1/c) - e)}
N1-exp{-6,((L- S)c)}=1- exp{-(1 - Hlogn}

for some $> 0, by the Lemma. Combining the above estimates we get, with

dn := [logn],

P(-Bn) ~ 1- (exp {-(1 - Ologny - $Un)) [u+ryfer]

- n —1,

= exp (c+ 1)logn 2 log (1 —(exp {—@ —f)logn } - 4%n))
n _bn - -

- exP _(c+ 1) logn (n @ S)-<fidn) j

=exp 1 n —bm 2An_M<jirexp  cns/ logn|,

2 \ L(c+ 1) logn

where c is a positive constant. Observe that we used the inequality
log(l —x) » —x (for x < 1) and then the hypergeometric mixing rate in the
next to last inequality.

By the above estimate we get (2.6) and hence claim (b) is true.
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Combining claims (a) and (b) the proof for the main case is complete.

In the remaining cases (A = —00, i.e.,, xq=x\ or A>0but0<cl VA) we
have for any x > x\ = I*~(l/c) that I(x) = oo and hence we get the following
large deviation inequality. For any M > 0 there exists some no 6 N such that
for n * no

P(Zn"x) £ exp{—M}

holds. Similar arguments as above lead to the upper bound

limsupFn Sx\.

n —=00

If x\ = 0 we are done, since replacing X by —X leads to Iim)OOVn =0as. If

n
0 < xo = X] then for any x <x\ we have 1(x) = 0 and hence for any e > 0 we
obtaip for n large enough

P(Zn”x) 5exp{-nej

and therefrom we can deduce the lower bound (2.5) as above. Finally if
Xg< x\ and x <x\ then we have cl(x) <cA 5 1 since c*I/A now. Again
our reasoning above goes through, giving the desired result. O
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POINTWISE BOUNDED APPROXIMATION

J. KOMLOS and G. TUSNADY

To the memory of A. Rényi

Abstract

We show that a sequence of partial sums of i.i.d. random variables can be approximated
by a sequence of normally distributed random variables in such a way that the difference
is finite almost surely.

1. Introduction

V. M. Zolotarev posed the following peculiar question. Let Sn be a
sequence of partial sums of i.i.d. random variables. Is it possible to approxi-
mate Sn by a sequence Tn of normally distributed random variables in such
a way that sup \Sn—Tn\ is finite almost surely ?

n

Observe that here, unlike in standard embedding questions, it is not
assumed that Tn are partial sums, or, for that matter, anything about the
joint distributions of the random variables Tn (they do not even have to be
joint normal).

This was a question that grew out from his work on embeddings us-
ing higher order terms in the Cornish- Fisher expansion (Sn—a;n)/(a®/n) =

k

n~Il2pk(Nn) + £nn~ki~, where a and a2 are the mean and variance of the
i=0
terms in Sn, Nn are standard normal, and pk are polynomials. (He has the
following result - see in [11]: If the terms in Sn have r>4 moments and
satisfy the Cramer condition, then in the above mentioned Cornish-Fisher
expansion with k —\r —4] —1 one has en -A0 a.s.. Our Lemma 2 below is a
particular instance of his theorem.)

In this paper we give an affirmative answer to the above question. In
fact, we will construct a pointwise bounded approximation for a quite general
class of random sequences Sn,Tn#

1991 Mathematics Subject Classification. Primary 60F15, 60G50; Secondary 05D15.
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Let us first explain why we called the question peculiar. The central
limit theorem easily implies that the partial sums Sn can be approximated
by normal variables Tn in such a way that the difference Sn—Tn is stochasti-
cally bounded uniformly in n (that is, for every e > o there is a if such that
P(ISn —Tn\>K) <c for all n). In this approximation, only the individual
distributions of Sn and Tn appear, and it is not clear at first sight whether
the joint distributions of Sn matter or not in Zolotarev’s question. If the joint,
distributions of the Sn are given then simple-minded applications of the cen-
tral limit theorem are doomed, for the above mentioned uniform stochastic
boundedness alone is not sufficient to guarantee pointwise boundedness. An
embedding of the pair (Sn,Tn) is ajoint distribution of the variables (Sn,Tn)
with the prescribed marginals. This joint distribution determines the con-
ditional distribution of Tn given Sn. One is tempted to use the conditional
distribution of Tn given Sn independently for different n, but it will not work,
for independent errors add up. The crucial point in our construction is that
we use the same randomization (that is, a kind of mixture) for different n.
It turns out that this embedding works regardless how we specify the joint
distributions of the sequence Sn.

Usually the joint distributions of both Sn and Tn are fitted (see in Bretag-
nolle and Massart [2], Csorg6 and Hall [4], Csorgd and Révész [5], Kornlds,
Major and Tusnédy [7], Major [8], Tusnady [10]). In this situation a bounded
error embedding is certainly impossible since the error terms tend to infinity
pointwise according to the theorem of Bartfai [1].

In the following theorem Sn and Tn are general sequences of random
variables.

Theorem 1 Let e(x) be a monotone decreasing positive function with
lim e(x) =0, and An a sequence of positive numbers with I|m An = oo.

X—>00
If the (marginal) distributions of the random variables Sn, Tn satlsfy the
following condition:

P(a<5,, <b) » (I + e —a))P(a<Tn <b)
for all a, b with 1~ b—a ™ An,
then, given arbitrary joint distributions for the Sr> one can construct (on
some probability space) sequences Sn,Tn with the prescribed marginal and
joint distributions such that

2 sup \Sn —Tn|< oo almost surely.
n

Remark. Note that the condition (1) is equivalent to the existence of
an e(x) as above and a non-negative sequence sn with lim en =0 such that
n->o0o0

(3) P(a<Sn<b™ (L+£n{b- a))P(a<Tn<b) for all a, bwith b- a” 1,
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where en(Xx) is the truncated sequence en(x) - max{e(:c), <,.}. (Indeed, choose
6n = e(An/2), and partition the interval (a, b) into intervals of lengths be-
tween An/2 and A,,.)

n
Theorem 2. Let = where X\ are i.i.d. continuous random

variables with

4 EXi=0, EXi=1 EAj|r<oo
for some r 4. If they satisfy the Cramér condition
(5) limsup \EextXl | < 1

lil->00

then one can construct (on some probability space) two sequences S'n,Tn such
that the joint distributions of S' are the same as those of Sn, Tn are normal
with ET,, =0, ET*=n, and’

sup ISn —Tnl< oo almost surely.
n

The strategy of our proof is the following. The natural candidate, the
quantile transform, does not work for the construction of a pair (Sn,Tn)
which satisfies Theorem 2. But we show in Lemma 2 with the help of the
Cornish-Fisher expansion that this condition works if Sn is approximated

by Tn+ k (jjf- —1j with an appropriate constant k. Theorem 1 enables us

to replace this approximating sequence by the sequence Tn. The main idea
in the proof of Theorem 1 is to construct, for a fixed sequence Sn, random
variables Tn and U for which \Sn—Tn\"U, and the variable U is independent
of the sequence Sn. This independence enables us to ensure that the sets
where |Sn—Tn\ is large are contained in a set which does not depend on the
index n.

2. Proof of Theorem 1
2.1. A matching lemma
LEMMA 1. Given random variables X ,Y, Z such that X 9Y , and for all
a, b,
(6) P(a< X 1Y <b)~P{a<Z<b).

Then there are random, variables X', Y',Z"' (on some probability space) such
that the joint distribution of X',Y" is the sam.e as that of X,Y, the distri-
bution of Z1is the same as that of Z, and X'~ Z' A Y".

Note that the above sufficient condition is also necessary.
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Proof. Strassen’s [9 marriage lemma gives the following condition for
the existence of such an embedding. For an arbitrary two-dimensional open
set V C {(x,y):x"yj,

) P((x,Y)eV)iP(ZeW),

where W =W (V)= {w:a”w5b for some (a b) EV}.

W is open, and thus it is a countable union of disjoint open intervals. If
W is one single open interval, say W —(a, b), then V is a subset of {(x,y):
a<x”y<4& and thus (6) implies (7). O

2.2. The construction

The main idea is to generate a positive random variable U controlling
the size of \Sn —Tn\. In fact, we will construct Tn as a mixture of Tn(U),
such that the difference [il —Tn(U)\ is bounded by U for large n. As we
will see it is to our advantage to choose U to be independent of the whole
process Sn.

Given Sn (on a large enough probability space), we first truncate Sn at a
(very high) level Mn by choosing a number xn such that P(x,, —1/2 < Tn U
xn) >0 and P(:c,, * Tu<xn+ 1/2) >0, and then defining

5, fSn if |S,,|gMn
n \ xn otherwise.

We assume that the alternative condition (3) is satisfied, replace the
function e{x) with a new function 'q(x), and set rjn(x) = max{r](x),6n}. Mn
and r/(x) will be chosen to satisfy the following conditions.

(A) £P(|Sn|>M ,,)<o00.
n .

(B) P(ISnI>Mn)5 &P(a < Tn<a+ 1) whenever a is such that a<xn<
a-f-1.

(C) r/(4a;)"P(|Tn|Ax) for all x > Mn.

(D) r?(x) i; 2e(x) and r]{4Mn) ™ Sn.

Now we choose a random variable U~ uo, independent of the whole

sequence Sn, with
P17 ~ u) ~ r/(2u) for uo,

where uq is such that ug” 1 and g(2uqg) " 1.
We will prove (under the conditions of Theorem 1) the following inequal-

ity:
(8) P(a< Sn- UrgSn+ U<b)*P(a<Tn<b) foralla,s.
Thus, condition () is met for

X=Sn-U, Y=shn+U, Z=Tn.
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Hence, by Lemma 1, we can put Tn in between Sn—U and Sn+ U. That is,
BN —Tnl” U, and (2) is proven, since Sn= Sn for large n almost surely.
Lemma 1 only gives the three-dimensional distributions Fn(s,u,t) of
(Sn,U,Tn) separately for each n. In applying it in our situation, we use
further independent randomizations to generate the sequence T,,, using the
conditional distributions Fn(t\s,u) obtained from Fn(s,u,t), by assuming
that Tn is conditionally independent of the sequence [Sme.rn”n] under fixed
S'n,U. O

2.3. Proof of (8)

If b—a < 1then the left-hand side of (8) is 0, so we may assume b—a " 1
For the same reason, we may also assume that the interval (a, b) intersects
the interval (—Mn,Mn). We start with the obvious inequality

P(a<Sn- UM Sn+U<b) <P(a <S'n<b) P{U < m),

where m = min{(6 —a)/2, Mn- a, Mn + b}. We distinguish four cases:
(i) b—a” 4Mn, (ii) b—a> 4Mnand a® —Mn, (iii) b—a> 4Mn and b* M,,,
(iv) a<—Mnand b> Mn. In case (i), we have

PlU<m)gP{U<(b-a)l2) " 1- r(b- a)=1- ijn(b- a).
In case (ii),
PU<m)"P(t/<Mn—) * P(U <2Mn)
4 1-T](4Mn)= 1-r/,,(4M,,) " 1-r)n(b-a).
Case (iii) is similar.
Conditions (B) and (D), together with (3) imply

P(a<Sn<b)”P(a<Sn<b)+P(S,|>M,, and a<xn<h)
gP(a<Sn<b)+SnP{a<Tn<h)
N (L +en{b-a) +6n)P(a<Tn<b)
g (L +r]n(b- a))P(a<Tn <b).

That, is, (3) holds with Sn replacing Sn and nn replacing e,,. Using it, we
get, in the first, three of the above four cases,

P(a<Sn- UsSn+U<b)i Pla<Sn<fi)(l- m(6- a))i P(a<Tn<b)

as required. It remains to consider case (iv). Let c= min{|a|,6}. Then, by
©),
PlU<m)gPU<2c)£ 1- »(4c)”P(|Tn|<c)gP(a<Tn<h).
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2.4. Conditions A, B, C, D

(A) and (B) can be ensured by simply choosing Mn large enough. To
satisfy (C), we may apply the following fact with /,,(.t) = P(|Tn|” x), the
sequence an equal to Mn already chosen according to (A) and (B), g(x) =
rj(Ax), and bn being the new choice for Mn.

Fact. Let fn(x) be monotone decreasing functions tending to 0 as
x —>00, and an be any sequence. Then there is a sequence bn and a function
g(x) such that bn~ an, limg(x) = 0 as x —+ 00, and g(x) ™ fn(%9 for all x*bn.

Finally, to satisfy (D) it is enough to further increase g.

3. Proof of Theorem 2

3.1. Cornish-Fisher expansion

The Edgeworth expansion is an approximation of the distribution func-
tion of partial sums. When working with embeddings, one translates these
approximations to random variables along the lines of the expansions of Cor-
nish and Fisher [3].

Lemma 2. Let Sn be as in Theorem 2. Assume also that the probability
space is sufficiently rich, and let Tn be defined by the quantile transformation:

(9) Fn{Sn) = Gn{Tn),
inhere Fn(x) and Gn(x) = are the distribution functions of Sn
and Tn. Then
Ta
Tn+K 0 1))—=0 almost surely,

where a= (I/6)EAT.

Proof. This lemma is a particular case of the result of Zolotarev men-
tioned in the introduction, but since his results were reported without proofs,
we give a proof of Lemma 2 here for the sake of completeness.

We will use the Edgeworth expansion (Theorem 3 in XVI.4 in Feller [6]):
Conditions (4), (5) with integer r*3 imply that, as n —o00,

(10) Fn(xy/n) —4>(cc) —ip(x) * nl k/2Rk{x) =o(nl r/2)
k=3
uniformly in x. Here Rk is a polynomial depending only on the moments
EX(, ] = 3,4, ..,& but not on n and r (or otherwise on the distribution
of Ad); in particular R3(2) = k(1—x2).
We apply the following technical lemma.
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Lemma 3. There exist positive constants c¢,d such that the following es-
timate holds for any x andy such that |y| ~ c/(1+ |a|):

$(2+y—2) " <) + y<p{) "$(x +y +2),
where z = d{1+ \x\)y2.
Proof. We show that the choice c—1/4, d=2 is appropriate. Let us
apply the Taylor formula
$(x +y+ii) - [${x) +v(x)y] = (p{u +y>"EXy + u)2/ 2,

where £ is between x and x +y +u. If u is such that here in the right side
the modulus of the first term is larger than that of the second one, then the
sign of the right-hand side is dictated by the sign of u. Thus it is enough
to show that this is the case with |u| =z. On applying </(E) = —£</(£), and
z ™ cdW\ = |y|/2, it is enough to show that

d(l +\x\)y2~ \e » ~ ~ 2(3|y|/2)2/2.
Here y2 cancels out, the term |£| is less than 1+ |x|, and the exponent

(x2—£2)/2 is easily seen to be less than 3/8. O

Let us denote the left-hand side of (10) by C, and let t < 1. Then, for
some e > 0,

C
=o(n 12M x)) =o(n e)=ofy-~
<) =° )) =o(n e)=ofy
uniformly for |x| ~ t\/log n as n —oo0. Similarly, for

.
B=B(x,n) = n 1-fc/ 2i?fc(s)
Jt=3
we have
\B\ =0 ((logn)3/2/x/n) =0 " J

uniformly for |x| » t\/A\ogn as n —¥oo.
The law of iterated logarithm implies that

\Sn\/>/n =ty/logn

almost surely for any positive t and large enough n. Hence, for such Sn,
Lemma 3 applies with x = Sn/\/n and y = B + C/<p(x) provided n is large
enough.
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In our case Sn is continuous, thus the quantile transform (9) defines
a unique function Hn(x) such that Fn{xy/n) = Q(Hn(x)). Lemma 3 and
formula (10) imply that

Hn{x) ~{x + B)| £ C/<p(x) + 8(L + X\)B2,

which goes to zero almost surely provided \Sn\” ty/n log n.
Thus we proved already that Tn—y/nDn(Sn/y/n) goes to zero almost
surely, where Dn(x) = x + B. Hence

—0 almost surely

whence
almost surely. O

3.2. A simple inequality

Lemma 4. For every positive B < 1 there is an a > 1 and a threshold og
such that, for all cr*oo,

P(a<az+z2<b)Ml+a~R)P(a<aZzZ <b) for all |a| *a", Igbh-a"2,

where Z is standard normal.

COROLLARY. Let Z he standard normal. For every positive B < 1 there
is an a > 1 and a threshold dgq such that, for all a*.ao,

Pla<az +Z2<b)*1l+o0~0)P(a<az<h)

for all intervals (a,b) of length at least 1 intersecting the interval (—aa,aa).

Proof. Set X =aZ, Y = 0Z + Z2,and let us denote the corresponding
densities by / and g, respectively. Then

ip{zx) + ip{z2)

f(x) = -i and X
(x) AP g(x) \Jo2+ Ax
where
~ Va2+ Ax—a —\cer2 + 4x—a
Zi 5 2= ,

It is enough to show that

92 _. ,
ix) <
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holds true if |a| » 0Q a >ao, and a, ao are chosen appropriately. The term
<pz2) here is negligible because

oA 3 A f X
S R S

For the term <p(2\), if x < 0 then |zi| > |x|, thus in this case it is enough to

prove that
a 1

Vaz2+4x ~ ’

which is an elementary fact. If x >0 then a » \Ja2 + 4x, thus it is enough to
show that

W g
(?)

which follows from the inequality
is(l+1 ) ~ 4 |

valid for all u” 0 (in our case u = 4x2/a2). O

3.3. Proof of Theorem 2

Lemma 2 already defines a sequence Tn (through the quantile transfor-
mation (9)). With this Tn define = (Tn+ kT 2/ ), and

t, (T' if|T'lgn°/2
I \ 0 otherwise,

where a was defined in Lemma 4. Then, by Lemma 2, Sn—T" is bounded
almost surely. Now we still have to define another normal sequence Tnh ap-
proximating T”. The Corollary to Lemma 4, applied with Z —Tn/*/n and
a = \/n, implies that Condition (3) holds for T”” and Tn, with arbitrary e(x)
and 6n = 2n~2a. The application of Theorem 1 concludes the proof. O

4. Concluding remarks

It is very likely that three moments are enough, and that Cramér’s con-
dition is not needed in Theorem 2. We needed it only in Lemma 2, where
probably it is sufficient to assume that X\ is a non-lattice variable. As
a matter of fact, we do not need the full strength of Lemma 2, only the
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boundedness of Sn—(Tn + kT%/n) is used. For this, probably the existence
of some moments is enough.

The main differences betweeen previous embeddings of partial sums and
the one developed here are the following:

the joint distributions of normal approximation are not fitted here, and

the Cornish- Fisher expansion is used instead of a simple one-term normal
approximation.

One may ask what would be the result of a joined strategy: to use the
diadic scheme with a Cornish-Fisher like expansion for conditional distribu-
tions (if there are any).

Our proof guaranteed the finiteness of sup|5',i —Tn\ but not the finite-

n

ness of its expectation. This method probably gives P(sup \Sn—Tn\> x) =
n
0 (1/x), bvit nothing better. We believe that for any embedding, E sup |Sn—
n

Tnl= oo.

Concerning Theorem 1, it would be interesting to have a simple charac-
terization for all sequences of distributions Fn, Gn such that for any sequence
Sn with marginals Fn there is a sequence Tn with marginals Gn such that
(2) holds.

Referee’s REMARK. It can be seen by means of a small trick that - as
the authors guessed - the Crarnér condition formulated in (5) can be dropped
from the conditions of Theorem 2. Indeed, let us consider a random vari-
able Z, EZ =0,EZ2= 1, with finite moments whose characteristic function
is concentrated in a finite interval (such a random variable exists), and which
is independent of the sequence Sn. If we replace the random variable Sn by
Sn—Z + Sn- 1, then the distribution of Sn satisfies the Edgeworth expansion
(10). Hence the proof of Theorem 2 yields that Theorem 2 holds without
the assumption (5) if Sn is replaced by Sn. But then it also holds for the
original sequence Sn.

The condition about the existence of four moments in Theorem 2 can be
weakened, but it remains an open question whether the existence of three mo-
ments suffices, as the authors guess. This is an intriguing question, because
a positive answer to it would mean that the conditions which are needed for
the stochastic boundedness of the single random variables \Sn—Tn\ are also
sufficient for the stochastic boundedness of the expression sup \Sn —Tn\ with

n

an appropriate construction.
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ALMOST SURE FUNCTIONAL LIMIT THEOREMS
PART I. THE GENERAL CASE

P. MAJOR

Dedicated to the memory of A. Rényi

Abstract

In this paper we formulate and prove the almost sure functional limit theorem in
fairly general cases. This limit theorem is a result which states that if a stochastic process
X(t, o5, t N 0, is given on a probability space with some nice properties, then an appropriate
probability measure A™ can be defined on the interval [1,T] for all T > 1 in such a way
that for almost all ui the distributions of the appropriate normalizations of the trajectories
Xt(-,uj) = X(t-,u>), considered as random variables £/m(£), £G[1,T], on the probability
spaces ([1, T], A, Xp) with values in a function space have a weak limit independent of U as
T —¥o00. We shall consider self-similar processes which appear in different limit theorems.
The almost sure functional limit theorem will be formulated and proved for them and their
appropriate discretization under weak conditions. We also formulate and prove a coupling
argument which makes it possible to prove the almost sure functional limit theorem for
certain processes which converge to a self-similar process. In the second part of this work
we shall prove and generalize — with the help of the results of the first part — some known
almost sure functional limit theorems for independent random variables.

1. Introduction
The following “almost, sure central limit theorem” is a popular subject in
recent research. Let X\ (), X2(>),... be a sequence of iid. random variables,
EXi =0, EXf—1 Sn{»® —f ‘Xk(u)) on a probability space (il, A, P). (In
=]

the sequel we denote by (il, A,P) the probability space where the random
variables we are considering exist.) Then

. j —— <y\ = j
(1.1) rl%m Y }(I \/Vk yJ\ $(u) for almost all yj Gfl

and all numbers u, where /(A) denotes the indicator function of a set A,
and $(u) is the standard normal distribution function. This result was
discovered by Brosamler [2] and Schatte [7]. It states that appropriate-
ly normalized partial sums of iid. random variables satisfy not only the
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cess, ergodic theorem, self-similar processes, compactness.

0081-6906/98/$ 5.00 ©1998 Akadémiai Kiad6, Budapest



274 P. MAJOR

central limit theorem, but for a typical w 6 [i the weighted averages of
the functions gk(u, u) —I ("Sk(ui) <uy/k®j with appropriate weights converge

to the normal law. Later this result was formulated in a more general
form which states that not only the weighted averages of the functions

I [SkA"XuV k) converge to the normal distribution function for a typi-

cal tu, but a similar result also holds for sequences of random broken lines or
polygons Gn(u) = Gn(u,tu), n —1,2,..., defined in an appropriate way on
the interval [0,1] by means of the partial sums «Si(tu),..., Sn(tu).

Define a random measure /.n=//,, (tu) for all n by attaching an appropri-
ate weight ak=ak,n to the functions G/c(u,tu) for all 1~ k~ n. Then these
measures converge weakly to the Wiener measure for almost all tu. Such a
result is called an almost sure functional limit theorem. Later we formulate
this notion in a more detailed form.

The almost sure central (and also the functional) limit theorem shows
some similarity to the ergod theorem which states — in physical terminol-
ogy that the space and time averages of ergodic sequences agree. In
the case of the almost sure central limit theorem an analogous result holds

for the normalized partial sums Skiw) k=12,.... Now the time average
yfk

is replaced by a weighted time average, where the fc-th term gets weight

— J— °8 —(— ~ - N i - in-

ak —dkn \ro—gzn—_ttlt1§ IE Kogn’ 1 k”n, in the n-th block in

stead of the weight —given to the first n terms in the ergod theorem. On

the other hand, Sgln) is asymptotically normally distributed, with expec-

tation zero and variance one. Hence the right-hand side in formula (1.1)

equals lim EI Sn(Y < u I, and this expression resembles to a space av-
n—00 n

erage. This similarity of the almost sure central limit theorem to the ergod
theorem may be put even stronger by an appropriate time scaling to be
explained later.

The relation between the ergod theorem and almost sure central (and
functional) limit theorem is deeper than the above mentioned formal analogy.
It was pointed out, — by our knowledge it was discovered by Brosamler [2],
Fisher [5] and Lacey and Philipp [6] — that these theorems can be deduced
from the ergod theorem applied to the Ornstein-Uhlenbeck process.

In the present paper we discuss how the almost sure central and func-
tional limit theorem can be generalized and proved by means of the ergod
theorem in a natural way. The proof has two main ingredients. The first
one is to show that a result analogous to the almost sure functional limit
theorem holds for the Wiener process. This can be deduced from the er-
god theorem for the Ornstein-Uhlenbeck process. This is an ergodic process
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which can be obtained from the Wiener process by means of a well-known
transformation. The second ingredient is to show that, since the random
polygons or broken lines constructed from the partial sums of independent
random variables in a natural way behave similarly to the Wiener process,
the almost sure central limit theorem for the Wiener process also implies
this result for the random polygons (or broken lines) made from normalized
partial sums of independent random variables.

First we show that the method of proving the almost sure functional
limit theorem for the Wiener process by means of the ergod theorem for
the Ornstein-Uhlenbeck process can be generalized for a large class of other
processes, for the so-called self-similar processes. The stationarity prop-
erty of the Ornstein-Uhlenbeck process is equivalent to the self-similarity
property of the Wiener process, a property which holds for all self-similar
processes. Actually, self-similar processes are those processes which appear
as the limit in different limit theorems. Similarly to the construction of the
Ornstein-Uhlenbeck process generalized Ornstein-Uhlenbeck processes can
be constructed as the transforms of self-similar processes. These generalized
Ornstein-Uhlenbeck processes are stationary processes, and the application
of the ergod theorem for them enables us to prove the almost sure functional
limit theorem for general self-similar processes. Then with the help of some
further work we can also prove the almost sure functional limit theorem for
their appropriate discretized versions.

In the next step we want to find a good coupling argument which enables
us to prove the almost sure invariance principle not only for (self-similar)
limit processes but also for processes in the domain of their attraction. To
carry out such a program a coupling argument has to be introduced which
is adapted to the present problem. We shall do it by introducing a notion
we call the Property A

In Part Il of this work we shall prove the almost sure functional limit
theorem for independent random variables whose partial sums converge to
the normal or to a stable law. In the proofs we shall exploit that the Wiener
process and the stable process are self-similar, hence the results of the present
paper can be applied for them. Then we can prove, by applying the cou-
pling argument of the present paper, the almost sure invariance principle for
independent random variables which satisfy certain (weak) conditions.

There are other processes which are natural candidates for almost sure
functional limit theorem type results, e.g. random processes in the domain of
attraction of a self-similar process subordinated to a Gaussian process (see
Dobrushin [3]). But such problems will not be discussed here.

Several results of the present paper can be traced down in earlier works.
Our main goal is to explain the main ideas behind these results and to present
a unified treatment of various problems in this subject. The first part of
this work considers general results where no independence type condition is
assumed. In the second part different arguments — the techniques worked
out for the study of independent random variables — are applied, and we deal
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there with almost sure functional limit theorems for independent random
variables. This paper consists of three sections. In Section 2 we formulate
the main results, and Section 3 contains the proofs.

2. The main results of the paper

To formulate our results first we recall the definition of self-similar pro-
cesses with self-similarity parameter a and define with their help a new
process which we call a generalized Ornstein-Uhlenbeck process.

Definition Ofself-similar processes. We call a stochastic process X (u,w),
" 0, X (0, =0, self-similar with self-similarity parameter a, a >0, if

(2.1) X(u,u) = 0 5Lu < oo,

for all T > 0, where = means that the processes at the two sides of the equa-
tion have the same distribution. (Here we consider the distribution of the
whole process X (u,tu), u” 0, and not only its one-dimensional distributions.)

The Wiener process is self-similar with self-similarity parameter a —2.
Similarly, for all stable laws G with parameter a, 0<a <2 a” 1, a so-
called stable process X (u,uj) can be constructed which has independent and
stationary increments, X (0,i<;) =0, which is self-similar with self-similarity
parameter a, and the distribution function of X (I, w) is G. The case a = 11is
exceptional. In this case (except the special case when X (I, ¢j) has symmetric
distribution) only a modified version of formula (2.1) holds, where a norming
factor const. logT must be added with an appropriate non-zero constant
to one side in formula (2.1). Another example for self-similar processes
was given by Dobrushin in paper [3], who could construct new kind of self-
similar processes subordinated to a Gaussian process. He constructed them
by working with non-linear functionals of Gaussian processes.

Now we introduce the following notion:

Definition Of generalized Ornstein-Uhlenbeck processes. Let X (u,u),
u” 0, be a self-similar process with self-similarity parameter a > 0. We call
the process Z(t,iv), —oo < t <00, defined by formula

X(el
(2.2) Z(t, uj) = --E?jj’k'i, —00<t<00,
the generalized Ornstein-Uhlenbeck process corresponding to the process
X (u,w).

Let us remark that the generalized Ornstein-Uhlenbeck process corre-
sponding to the Wiener process is the usual Ornstein-Uhlenbeck process.
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A Wiener process W(t.,to), t't 0, has continuous trajectories, the tra-
jectories of a stable process X(t,to) are so-called cé&dlag (continue & droite,
limité & gauche) functions, i.e. all trajectories X(-,u;) are continuous from
the right, and have a left-hand side limit in all points t > 0. Hence the
Wiener process W (t,t0) and any of its scaled version ApW (T t,to), 0t 1,
where T >0 and Ap > 0 are arbitrary constants, can be considered as ran-
dom variables taking values in the space C7([0,1]) of continuous functions
on the interval [0,1]. The processes X(t,to), ApX(t.T,to), 0~ t~ 1, where
X(t,to), 0™ t< 0o, is a stable process, can be considered as random variables
on the space D(]0,1]) of cadlag functions on the interval [0,1],

We shall work not only in the space C([0,1]) but also in the space
D([0,1]). To work in the space D([0,1]) one has to handle some unpleasant
technical problems. But since we also want to investigate stable processes in
Part Il of this work, we also have to work in this space. We shall apply the
book of P. Billingsley [1] as the main reference for this subject.

We consider both spaces C([0,1]) and -D(]0,1]) with the usual topology,
and the Borel er-algebra generated by this topology. Both spaces can be
endowed with a metric which induces this topology, and with which these
spaces are separable, complete metric spaces. A detailed discussion and proof
of these results and definitions can be found in the book of P. Billingsley [1].
Since we shall need the exact form of these metrics we recall these results.
In the (7([0,1]) space the supremum metric p(x,y) — sup |a;(f) —a;(s)| is

Ostgl

considered. In the space D([0,1]) the following metric do(e, ¢) satisfies these
properties: For a pair of functions x,y GZ?([0,1]) do(x,y) e, if there exists
such a homeomorphism A(t): [0,1] [0,1] of the interval [0,1] into itself

for which A(0) = 0, s&g log ~ A Se, and |x(i) —y(A(H))| " e for all

t—S
t 6 [0,1]. (See for instance Theorems 14.1 and 14.2 in Billingsley’s book [1].)
In the sequel we shall apply these metrics in the spaces (*([0,1]) and D([0,1]),
and denote them by p(-, *).
Let us also recall that given some probability measures on a metric
space K indexed by T E[1, 00) or T = {Ai, A2, e}, n"”QOA” = 00, the mea-

sures pp converge weakly to a measure p on K as T —o0 Iif
I|m f Ir{x)pT{dx) = / Jr{x)ii(dx) for all continuous and bounded func-

400K
tionals T on the space K The next result states the almost sure functional
limit theorem for a self-similar process which satisfies some additional con-
ditions. The proof is based on the ergod theorem applied for the generalized
Ornstein-Uhlenbeck process corresponding to this self-similar process.

THEOREM 1. Let X{u,to) be a self-similar process with continuous or
cadlag trajectories, and Z(t,ui) the generalized Ornstein-Uhlenbeck process
corresponding to it. The process Z(t,co), —60 < t <oo0, is stationary. Let
us assume that the process Z(t,u=>) is not only stationary, but also ergodic.
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Then for all measurable and bounded functionals T on the space (7([0,1]) or
D([0,1]) (depending on whether the trajectories of X(-,ai) are continuous or
only céadlag functions)

where
(2.4)

Let us define for all 4y &Q and T 2 1 the (random) probability measure pt(u)
in the space C([0,1]) or Z)(]0,1]) which is concentrated on the trajectories
Xfico), 1t~ T, and takes the value Xfiuo), 10tfjT, with probability

1dt More formally, for a measurable set A C C(fC), Il) or AC D([0,1])

logT t
put ht(u)(A) = Xr{t: Xt(u) € A}, where Xt is a measure on [1,T] defined
by the formula Xt {C) = — —J — for all measurable sets C C [1,T].

The following version of Formula (2.3) also holds: For almost all to ELI
the probability measures /Jj’(co) converge weakly to the distribution of the
process X\(u,u>) defined in (2.4) with t =1, which we denote by po in the
sequel. In other words, there is a set of probability one such that if u is in
this set then relation (2.3) holds for this lo and all bounded and continuous
functionals F.

If X (u,uj) is a Wiener or stable process, then the generalized Ornstein-
Uhlenbeck process corresponding to it is not only stationary, but also ergodic.
Hence the results of Theorem 1 are applicable in this case.

We want to prove a discretized version of the above result, where the
measures pr{") concentrated in the set of trajectories Xfioo), 1~ i | T,
are replaced by some measures pn{u) which are concentrated on a set of
trajectories Xa(/Nfi=) with appropriate weights, and the numbers a(j,N)
constitute a finite set. Then we want to make a further discretization, where
the trajectories Xaj N) are replaced by their discretized version. To prove
these results in the case when the trajectories of the process X(-,uj) are
cédlag functions we impose the following additional condition:

(2.5)

First we formulate a result which serves as the basis of the discretization
results formulated later.
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THEOREM 2. Let X(u,u>), Xt(u, u>), pt{c) ad M be the same as in
Theorem 1. Let us assume that the conditions of Theorem 1 are satisfied,
and also the additional condition (2.5) holds in the case when the process
X(-,¢j) has cédlag trajectories. Let us define, similarly to the trajectories
Xt(-,ui) defined in (2.4), the following transformed functions xt = xt{-) of a
function x GC([0,1]) or x€ ([0,1]) by the formula

(2.4) Xt(u) =Xt,Q(u) =t~ZYax(ut), O u”l, 0<t”I,

where a is the self-similarity parameter of the underlying self-similar process
X (-,uj). Then for almost all 4£ U

(2.6) |el_r;’b_lj_l>r80pt{o>) sup  p{xs,Xt) >6J =0 for all 6>0,

where p(-, *) is the metric whose definition was recalled before Theorem 1, and
with which C([0,1]) or £>([0,1]) are separable, complete metric spaces. (Let
us recall that the (random) measure p t1*) is concentrated on the trajectories
Xu(-,ul”?u”T, of the process X(-,0>) defined by formida (2.4).)

Condition (2.5) had to be imposed to control the behaviour of the tra-
jectories of the processes Xt{u,u) in the end point u= 1 This is not a strict
restriction. For instance the next simple Lemma 1 gives a sufficient condi-
tion for its validity. It implies in particular, that the stable processes with
self-similarity parameter a, 0<a <2, a” |, satisfy relation (2.5).

Lemma 1. Let X(-,u) be a self-similar process with self-similarity pa-
rameter a> 0 which is also a process with stationary increments, and whose
trajectories are cadlag functions. Then it satisfies relation (2.5).

Now we formulate the result about “possible discretization” of the mea-
sures pt in the result of Theorem 1. Before this we make some comments
which can explain the content of this result.

For all T > 1 let us consider the probability space ([1, T], A, Xt), where
A is the Borel cr-algebra, and Xt is the measure defined in the formula-
tion of Lemma 1 Fix an u GLI, and let us consider the random variable
E(t), I"tAT, as £(t) —Xt(-,uj), defined in formula (2.4), in the probabil-
ity space ([1, T],A, Xt)- This is a random variable which takes its value
in the space (7([0,1]) or £>([0,1]), and it has distribution pt{oj). Let us
consider the above construction with some T = Bn, together with a dense
splitting 1= £2v,i < Bn2< eee< Rjv,» = Bn of the interval [1L,Bn]} Let
us define the random variable £(t) such that £(t) = £(-Bfci) = XgkN(e, ) if
tE [Bk,Ni-BfcH.iv]- This random variable is close to the previously defined
random variable £(t), hence it is natural to expect that if pBn{oj) denotes
its distribution, then the measures pgN(aj) have the same weak limit as the
measures pgN(u) as N —00. The first statement of Theorem 3 is a result
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of this type. Then we prove that an appropriate small modification of the
functions £(i?An) = X Bk (-, w) does not change the limit behaviour of the
measures (iBn (w). The second statement of Theorem 3 is such a result.

Theorem 3. Let us assume that the conditions of Theorem 1 and The-
orem 2 are satisfied. For all N =0,1,... let us consider afinite increasing
sequence of real numbers 1= B\" < 02,a < «*s< BkN,N, and for the sake
of simpler notation let us denote Htv,iV by Bn- Let us assume that these
sequences satisfy the following properties:

log BjtN

2.7 lim 80 — oo, NIEWOO logBn - 0 for all fixed j,
and

lim sup Bk+IN _ 1

7—0° 1j%k<N  Bk,N

Moreover, assume the following strengthened form of the relation Nli_g;Oij: 00:

(2.8 dim inf Bjn=00.
j—00 N: NA~j
For all u>(zLI define the (random,) measures N =1,2,..., with the
help of the sequences 1= B\:n < 72iV< eee< BMnn the following way:
The measure N =1,2,..., is concentrated on the trajectories

X qi N(-,uj), \ Uj<k,N, where Xt{-uj) is defined in (2.4), and

Bj+1,N
1 Bj+I,N
lo
logBn log!5v Bj.N
Bj.N

1i j <kN.

(2.9) fiN (W){XBj'N (- u>))

Then for almost all 1o the measures (in (u) converge weakly to po defined in
Theorem 1.

For all 4 &U let us also define the following random broken lines
X Bj n (-,0j) which are ‘discretizations” of the trajectories X Bj N(-,uj).

Bisin bi-in <s< BLN
y _,u] - 3 3
Bjn LA Bj

IA1~f, 17j<KN, and XB<N(I,u) = XBjN{l,u),

X BjN{s,u) = XBjJ

where £20,iV = 0. (The definition 720jV =0 is needed to define X Bj N(s, ui) also
for 0~ sBhN < Bi)N.)
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Define the measures g,\ (19 (with the help of the already defined measures

£;vM) as
(2.9)

: _ an1e Ny Dy+I N :
PN(u)(XBj =p,N{u)(XBj'N(-,u)) = log Bn log B, 17j <kN.

Then for almost all u 61! the probability measures Pn (o) converge weakly to
the probability measure go defined in Theorem 1 as iV —»00.

We have defined XBjN (-,co) as a broken line with discontinuities and not

Bl

13'|,N
linear segments. The reason for working with broken Ill'nes is that we want
to prove results which are valid also in the case when the processes Xt(-,u)
take their values in Z)([0,1]) but not necessarily in the space C7([0,1])- In
the general case the results we want to prove are valid only when broken
lines are considered. In the case of processes with continuous trajectories
we also could have defined them as random polygons. Moreover, it follows
from some results of the general theory (see e.g. Section 18 in Billingsley’s
book [1]) that if the distribution of the processes consisting of the above
defined random broken lines converge to a measure in the C([0,1]) space,
then the distributions of the naturally defined random polygon version of

these processes have the same limit in the (*([0,1]) space.
Let £n(u)), n =1,2,..., be a sequence of random variables, and let us

7

define the partial sums Sn{® = ; £lc™>n=1,2,..., So(co) = 0. Let us
(o=

as a polygon where the values of X j n in the points D are connected by

also consider two appropriate monotone increasing numerical sequences An

and Bn,n=0,1,..., of positive numbers such that

. _ . _ B
(2.10y Bo =0, r]Il»rr(}oAn—oo, n“—>maoan_OO’ and nllrpm Bn - 1
For all k= 1,2,... let us consider the partition 0= sofc” At oskk of

B
the interval [0,1], defined by the formula Sjk = :8=;1r0"j A k. Let us also

define with the help of the quantities £n(u>), An and Bn, n=1,2,... the
following random broken lines S/fis, cu), 0 s~ 1, k=1,2,...,
(2.11)

Now we introduce the following definition:

Definition Of the almost sure functional limit theorem. Let £n(u;),
n=1,2,..., be a sequence of random variables, and let two monotone in-
creasing sequences of non-negative real numbers An and Bn, n= 1,2,...,
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be given which satisfy formula (2.10). Let us consider the random broken
lines Sk(s,uj), 0£s ™ 1, defined with the help of their partial sums Sk(u),
k=1,2,..., by formula (2.11). For all u EU and Af=1,2,..., define the
random measure /xj(oj) in the following way: The measure hn(w) is concen-
trated on the random broken lines Sk(-,u), 1 k <N, and

(2.12) AN (UD{Sk{-uj)) = - log I"k<N.
logs7

We say that the sequence of random variables £n(w), n=1,2,, satisfies
the almost sure functional limit theorem with weight functions An and Bn,
n=12,..., and limit measure /o on the space Z)([0,1]) if for almost all
u) E if the probability measures converge weakly to the measure //o as
N —o00. In the special case when the limit measure /jo is the Wiener measure
we say that these random variables satisfy the almost sure functional central
limit theorem.

If the limit measure /w is concentrated in the space C([0,1]), then the
broken lines Sk(-,u) can be replaced by a natural modification which is a
random polygon. Then we can consider a version of the measures /rjv(tu)
which are defined in the same way as the original ones, only the random
processes Sk(-,u) are replaced by their random polygon version. Then the
convergence of the original measures /xjMu;) to /To in the space D([0,1]) im-
plies the convergence of their modified version in the C([0,1]) space with
the same limit. Let us also remark that although we allowed fairly large
freedom in the choice of the sequence An in the definition of the almost
sure functional limit theorem, nevertheless we shall always choose it in a
very special way. Namely, in all almost sure functional limit theorems we
shall prove the limit measure is the distribution of a self-similar process with
a self-similarity parameter a > O restricted to the interval [0,1], and An is

chosen as An—Bn°m

Let us remark that if the random variables £/c(w) satisfy the almost sure
functional central limit theorem with weight functions An=y/n and Bn = n,

and in Part Il we shall prove that under the conditions imposed for the
validity of formula (1.1) this is the case, — then they also satisfy relation
(1.1). To see this, fix a real number u and define the functional T =Tt in the
space C([0,1]) by the formula B[x) —1if x(l) <u, and B(x) =0 ifx(l) * u,
where x E C([0,1]), i.e. it is a continuous function on the interval [0,1]. This
functional B is continuous with probability one with respect to the Wiener
measure/to- Hence f B(x) dfj,n(uj)(x) =J J-(x) dfio(x) for almost all u. This
relation is equivalent to formula (1.1). Indeed, the right-hand side of this
relation equals the right-hand side of formula (1.1), while the left-hand side
is a slight modification of the left-hand side of (1.1). The difference between

1 k+ 1
these formulas is that the weights ;Cin (1.1) are replaced by log o in the
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other formula, and summitlorigoes from 1to n —1 instead of summation

from 1to n. Since log these two relations are equivalent.

=-+0]|F
We formulate the following statement because of its importance in later
applications in form of a Corollary.

COROLLARY. Let X(-,uj) be a self-similar process with self-similarity pa-
rameter a > 0 such that its trajectories are in the C7([0,1]) or D ([0,1]) space,
it satisfies relation (2.5), and the generalized Ornstein-Uhlenbeck process
corresponding to it is ergodic. Let tn, N=10,1,..., <=0, be an increas-

ing sequence of real numbers such that lim tn=o00, lim ”+1 = 1 Put
n—00 n—00 tn

Tn{u) =X (tn,q) - X(tn-i,0j), Bn=tn, An—Bn/a, n=1,2,... . Then the
sequence %(w), n = |, 2 , satisfies the almost sure functional limit the-
orem with weight functions An and Bn and limit measure po which is the
distribution of the process X(u,u>), restricted to 1

To prove this Corollary define the process X'(u, w) =A fIX(B\u, v and
observe that it has the same distribution as the process X (u,uj). Define

tk
the real numbers Bkn _E>1 k £ N, consider the random broken lines

X'Bi v(-,¢i), 1*j ~ N, and the random measure pn[w) defined in the for-

mulation of Theorem 3 with this process X'(-,uj) and these numbers BKk,Ni
(with the choice k» —N), and apply Theorem 3, — whose conditions are
satisfied, — for these random measures fijy(u>).

On the other hand, define the random broken lines Sk(s, u1) by formula

(2.11) with Bn = IN, An = Bn a and the partial sums Sk{uj) = _(X (ti,w)—
=i

X(ti-i,w)), and let us also define the measure pn {") by formula (2.12) with
these random broken lines. Then a comparison shows that the above defined
broken lines X'B v(',a;) and and also their distributions, the random

measures Jn (") and pn{u) agree. Hence the second statement of Theorem 3
implies the almost sure functional limit theorem in this case.

If a sequence of random variables En(wy»n=1, 2 ,is close to this
sequence r/n(o»), then it is natural to except that this new sequence satisfies
the same almost sure functional limit theorem. We want to give a good
coupling argument that enables us to prove this for a large class of processes
£n(oj). For this aim we define a Property A. We prove that if Property A
holds for a pair of sequences of random variables (En(w), fn(u)), n= 1,2,...,
and the sequence rn(aj), n —1, 2, , satisfies the almost sure functional limit
theorem, then the sequence £n(®)) n=1,2,... also satisfies the almost sure
functional limit theorem with the same norming constants and limit law.

Definition Of Property A. Let rjin(u), n= 1,2,..., be a sequence of
random variables which satisfies the almost sure functional limit theorem
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with a limit measure /io in the space C([0,1]) or D([0,1]) and some weight
functions An and Bn satisfying relation (2.10). Let us also assume that the
limit measure po is the distribution of the restriction of a self-similar process
X(u,co) with self-similarity parameter a > 0 to the interval 0" u” 1, and

the weight functions An and Bn are such that An=Bn'Q
Define the indices N(n) as N(n) =inf{/c: Bk ™ 2"}, n=0,1,.... The
pairs of sequences of random variables (En(w), rjin(uj)), n =1,2,..., satisfy
Property A if for all e > 0 and &> 0 there exists a sequence of random
variables £n(uj) = £n(e, ui), n =1, 2,, whose (joint) distribution agrees
with the (joint) distribution of the sequence £n(cu), n=1,2,and the
n n

partial sums Sn(® = "2 €k{w) and Tn) = " r)k(u) satisfy the following
k—\ /c=I
relation:

) \Si o
N (n) (.J oi]”i';)/c Sj(u))-Ti(w)

(2.13) Iinrp>ggpﬁ &:_1 Bk J Ak .A:[J <5

for almost all € i2, where 1(A) denotes the indicator function of the set A.

Remark. Let us remark that the joint distribution of the random vari-
ables £n(u;), n —1,2,..., determines whether it satisfies the almost sure
invariance principle. It is not important how and on which probability
space these random variables are constructed. This can be seen for in-
stance by applying the following “canonical representation” of the sequence
£n(tv), n =1,2,..., on the probability space (CI,A,P). Define the space
(R°°, B°°,B), where R°° = {(aq, X2, mm): Xj ER, j —1,2,... }, B°° is the
Borel a-algebra on R°°, /1(B) = P((Ci,”2,m..) GB) for B 6 B°°, and define
the random variables | n(xi, X2, mm) = xn, n =1, 2,, on this space. Then
the random variables  on the space (R°°,B°°,R) have the same joint dis-
tribution as the random variables £n(w), and these two sequences satisfy the
almost sure invariance principle simultaneously.

Theorem 4. Letrjn(uj), n=1,2,..., be a sequence of random variables
which satisfies the almost sure functional limit theorem, and let a pair of se-
quences of random variables (En(uj), gn(uj)), n —1,2,..., satisfy Property A.
Then the sequence of random variables £n(c>), n =1, 2,, also satisfies the
almost sure functional limit theorem with the same weight functions An and
Bn and limit measure po as the sequence of random variables pn ().

We shall prove in Part Il of this work that Theorem 4 is applicable in
several interesting cases. We shall prove with the help of a Basic Lemma
formulated there that when partial sums of independent random variables
are considered, then an appropriate construction satisfies the conditions of
Theorem 4 under general conditions. In such a way it will turn out that the
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necessary and sufficient conditions of limit theorems for normalized partial
sums of independent random variables are also sufficient conditions for the
almost sure functional limit theorem.

We shall prove still another result which states that a small perturbation
of the weight functions Bn does not affect the validity of the almost sure
functional limit theorem. The reason to prove such a result is the following.
We have certain freedom in the choice of the weight functions Bn, and there
are cases when no “most natural choice” of the weight functions exists. We
want to show that different natural choices yield equivalent results. Let
us remark that a modification of the weight functions Bn also implies a
modification of the random broken lines Sn(t,u>) appearing in the definition
of the almost sure functional limit theorem.

Theorem 5. Let a sequence of random variables £n(u>), n = 1,2,...,
satisfy the almost sure functional limit theorem with some limit measure po

and weight functions Bn, An= B”*/a with some a>0, n=0,1,..., which
satisfies relation (2.11). Let Bn,n=0,1 , Bg=1, be another monotone

increasing sequence such that lim By o 1 put An=—Bd“ Then the se-
Nn—oo Bn

guence of random variables £n(® also satisfies the almost sure functional
limit theorem with the limit measure po and weight functions Bn and An.

3. Proof of the results

Proof of Theorem 1. We can write

X{et+T.uj) a  X{elu) X (el,uj)

Z(t+ T,u) e{t+T)/a e{t+T)/ae-T/a ei/Q

Z(t, to)

for all —e0 < T <o00. Hence the process Z(t, w), —60 <t < 00, is stationary.
If it is not only stationary, but also ergodic, then the ergod theorem can be
applied for the process Z(-,ui) and all bounded and measurable functionals
Q on the space B, ), where /Jf-000) is the space of functions
on the interval (—60,00), Bo is the cr-algebra induced by the usual Borel
(product) topology on f?(-00,00\ p is the distribution of the process Z(-,uj)
on the space (f2.( 00,0°), Bo), and B is the closure of the cr-algebra Bo with
respect to the measure p. This means that B 6 B if and only if there exists
some Bo € Bo such that p(BoAB) = 0 for the symmetric difference BOAB,
or more precisely there is a Ro-measurable set C such that p(C) = 0 and
BOAB c C. Furthermore, we introduce the shift operators Ts defined by
the formula Ts(z(-)) = z(s + ¢ for all z(-) Gi?!-00'00) and put Zs(v,uj) =
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Z{s + v,c0), —0 < Vv < 00. Then the ergod theorem implies that

log T log T
Tlirz)0 JI G{Ts{Z{u,u))ds= Tll;noo@_l_ J 9(Zs(u,co))ds
0 0
(3.1)

= EQ(Z(u, cg)) for almost all ©GQ.

Given a bounded measurable functional T on the space C([0,1]) or
Z5([0,1]) let us extend it to the space of all measurable functions on the
space fit0-1] of all functions on the interval [0,1] by defining T[x) = 0 if the
function x = x(-) is not in the space (7([0,1]) or T>([0,1]). Then we define
the functional Q= G{T) on the space R(-°°,00) by the formula Q(z) = J(xz)
with xz(u) = ulaz(logu), 0< ufil, z(0) = 0. We can write

T logT
= [ HXAj;u))ds
1 0
log T

logT /o ~("(m>C))ds’

since G(Zs(-,u)) —E (Xes(-.ui)). Indeed,

_ c N _— X{e§+ 0gu
xZs(,W) (u)=ul/o’Zs(\ogu,uj) = ul/aZ{s + \ogu,uj) = u1Q Qs+log u)/a
X (ues,co)
os/a forall 0" un1,

hence x : < (.uy = 2fes(e, 1), where X,(-,u>) was defined in (2.4). This relation
(with the choice s =0) implies in particular that

Eg(Z(-,0j)) = Eg(Z0(;U0)) = ET (X 1{;c0)).

These identities together with relation (3.1) and the definition of the mea-
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sures Br{uj) introduced in the formulation of Theorem 1 imply that

lim 1 X(x) dfir(u)(x)

m }
= T'E?m_gffal' | (Xt{-,ui))dt
(3.2) ogT
= Jim GLi 1 9(Zs(ew)ds = EG(Z(; u))

0
= E?NX1(-,w)) = J E(x)dp0(x) for almost all 4 EMt.

To prove Theorem 1 we have to show that relation (3.2) holds simultane-
ously for all bounded and continuous functionals T for almost all 4 E I2
and the exceptional set of y E 12 of measure zero should not depend on the
functional T. We prove this with the help of the following

Lemma A. Under the conditions of Theorem 1 the closure of the set
of (random) measures pt(u>, T ~ 1, are compact in the topology defining
weak convergence of probability measures in the space C([0,1]) or D([0,1])
(depending on where the distribution of the process X(-,uj) is defined) for
almost all 4ESIm

Proof of Lemma A. We apply the result that a set of probability
measures /.ip on a separable complete metric space (endowed with the topol-
ogy inducing weak convergence) is compact if and only if for all e >0 there
is a compact set K= K(e) on the metric space such that me(K) » 1—e for
all measures pr- Both spaces C([0,1]) and D([0,1]) can be endowed with
a metric which turns them to a separable complete metric space. (See e.g.
Theorems 6.1 and 6.2, 14.1 in Billingsley’s book [1].) Because of these results
the following statement has to be proved. For almost all 4E and alle>0
there exists a compact set K= K(e,u;) in the space C([0, Ij) or -D([0,1]) such
that w)(K) ~ 1—e for all T~ 1 In the proof we shall apply formula
(3.2) which is valid for all bounded and measurable functionals T and some
classical results which describe the compact sets in C([0,1]) and D([0,1]).
These results can be found for instance in the book of Billingsley [1]. (The-
orem 8.2 gives a description of compact sets in C([0,1]) and Theorem 14.4
a description of compact sets in _D([0,1]).)

Let us first consider the case when the distributions of the processes
X t {-,uj) defined in formula (2.4) are in the C(]0,1]) space. We shall prove
that for almost all 4 E 2 and all e > 0 and r)> 0 there exist some numbers
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K =k (e, ud and 6= 6(e, 1), uj) > 0 such that

lit(w) "xGC([0, 1]): sup [x(u)]*K ~ A and
O"ugl

(3-3)
AcM (& GC([0,1]): [wx(f) ~ 1)~ e,

for all T~ 1, where wx{6) = sup |a&() —x(s)| for a function x GC([0,1]).
|t-s]g<5

First we show that relation (3.3) implies that for almost all u) Gfl and all

T~ 1 and e > 0 there exists a compact set K(e) = K{e,uj) C C([0,1]) for

which //7°(0;)(K(e)) » 1—e. Indeed, let us fix some e > 0, and consider the

sets

Jo= VGC([O,l]): oildgi [x(u)| > KJ)
and
J,= (XGC([0,1]): K(<UIl>2~ne), n=12,..

with such constants K = K(e,u) and 6n = & (e,cu) for which /ix(w)(Jn) »
e2 n_1, n=0,1,..., T~Il. Such sets Jn really exist because of relation
(3.3). (The numbers K and en in the definition of the égts J,, and thus

the sets J,, may depend on u=) Define the set K(e) = f) Jra where J is
7n=0
the complement of the set J. Then K(e) is a compact set in C([0,1]), and
for almost all u and T 21 he{w)(KE)) ™ 1—e. Applying this result for all
en=_2~n,n=1,2,..., we get a set of il of probability one, such that for all
uGO, T ~ 1land e >0 there exists a compact set K(e) = K(e,0;) such that
K(e)) » 1—e. In such a way we reduced the proof of Lemma A in the
case of continuous trajectories X(-,u>) to the proof of relation (3.3).
To prove formula (3.3) we shall apply relation (3.2) with appropriate
functionals T\ and T2 on the space C7([0,1]). Put

F\{X) =Tik(x)=1 V%U/Pi \x{u)\"K
and

X2(x) srHx) =/ sup |X(s)
\s,te[0,1]: [t—

with appropriate constants K >0, 7> 0 and d > 0. For fixed e > 0 and
77> 0 the constants K =K(e) >0 and S= S(e, 7 > o can be chosen in such
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a way that EX\(X\(-,u>)) <e2 and ETz{Xi(-,w)) <e2. Then, because of
formula (3.2) for almost all i 6 il there exists such a threshold TO= TOW>)
for which f Ti(x) d/j,r{uj)(x) ~ e for all T ~ To(u;) and *= 1,2. Since Xi(x) =0
or Ti(x) = 1, i = 1,2, this relation implies that ht[u){x\ Xi(x)” 0) ~ e, for
T ™ To(ej), 1 = 1,2. This means that relation (3.3) holds for T " To(ca).
Furthermore, since Xar(u,uj) =a~I/aXr (au, yj) for all 0<a” 1,

Ixtiw) (x: oSupJa;(u)| Jj MiTow)Ww) (x: sup WX(u\™>KTO(u) 10 j,

O<uc<lI

and

(i((w)(reC([0,1)): liar (D) *r/)
(xeC([0,1}): KIATOMJIAr/ToM -1/*)

if 1gig To(uj). These probabilities can be taken small by choosing a suffi-
ciently large K > 0 and sufficiently small 5> 0 which depend only on To(u;).
Hence relation (3.3) holds not only for TATo(w) but also for all T ~ 1 with
a possible modification of the constants s(z,«,u) and K(ui) in it.

The proof in the case when the processes Xt {-,u defined in (2.4) take
their values in the space D([0,1]) is similar, hence we only indicate the
necessary modifications. Because of the description of compact sets in the
space D([0,1]) (found for instance in Theorem (14.4) in Billingsley’s book [1])
we can reduce the proof of Lemma A in this case, by a natural modification
of the argument presented after the formulation of formula (3.3), to the
following modified version of relation (3.3): For all e > 0 and 7> 0 there
exist some K >0 and S> 0 such that

He fu) (x € £2([0,1]): sup [x(ii)|~ K Jge,
\ Ogugl J
(3-3) fit(w) (i GD([0,1]): \w"{6)\Zri) "e,
AT{uj)(xeD{[0,1]): wx[01S)~T])"e
HT {u){xeD ([0,1]): wx[t1-0,1)~r1)r¢
for all T ~ 1, where
wx(6) = sup min{|a:(i)-x(ii)|,|a;(i2)-a:(i)|})
Ogtlgtgt2,|i2-il|ai
and wxra,b) = sup xt) —x(s)| for all numbers 0ga <bg 1
a’s,t<b

The proof of formula (3.3") is similar to that of formula (3.3). Let us
introduce the functionals

Fi{x) —1\ SUP 22 (x) = 1 (w"{8)"T]) ,
\0gtgl /

FI(x) = | (uix[o, 1)y ~ rj) and T~{x) = | (uix[l - 6,1) » 1)
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on the space JD([0,1]), where the constants K = K(e) and 6 =6(e,r)) will be
appropriately chosen. Let us observe that with their appropriate choice we
can achieve that ETi(X (m1j)) 5e2 for i = 1,2, 3,4. To see this it is enough
to observe that for all x £ T>([0,1]) suE. [x(i)] < oo, g@uj"(d) =0 (see eg.

formulas (14.8) and (14.46) in Billingsley’s book [1]), 5“_% u;x[0,d) = 0 and
Ihrg)wx[\ —6,1) = 0. These functionals  take values 0 and 1, and formula

(3.3") can be proved similarly to (3.3) with the help of relation (3.2). In such
a way Lemma A is proved.

Now we turn back to the proof of Theorem 1 We prove with the help
of Lemma A, formula (3.2) and a compactness argument that for almost all
y £ fl the sequence of measures pr(”) converges weakly to po as T —»00.
First we show that for all eo > 0 and e > 0 there exists a set flo = flo(eo, e) C 2
and a compact set K= K(£05€) in C([0,1]) or D([0,1]) such that P(flo)
1—£0 and p7’(0;)(K) » 1—e for all wE flo and T A 1. This can be deduced
from formulas (3.3) in the space C([0,1]) and from formula (3.3") in the
space D ([0,1]) by an argument similar to the proof of the compactness of the
measures pr(~) by means of these relations. Thus for instance in the space
C([0, 1]) we define the sets Jn, n =1,2,..., and K= K(e) similarly to the
definition given after formula (3.3) with the only difference that in this case
the numbers K and dn appearing in the definition of the sets J,, are chosen
independently of © in such a way that P{{uj: pr(*)(Jn) =£2~11"1 for all
T~ 1}) ™ 1—e02_n_1. The argument in the case of the D{[0,1]) space with
the help of relation (3.3") is similar.

For a large number L > 0 let F(L) denote the class of continuous and
bounded functionals T on the space C([0,1]) or D([0,1]) such that \T(x)\ 5LL
for all x £ C"O, 1]) or x £ D([0,1]). Fix an e0> 0 and e >0, and choose a set
QOC fl and a compact set K = K(eo, g, L) in such a way that P(flo) » 1—fo

and pT(<n)(K) ~ 1- —for all u £ floand T A~ L Fix two small numbers

N> 0 and d> 0, and let the set F(L, e0,e, rpd) C F(L) consist of those func-

tionals T £ F(L) for which sup \P{x) —P(y)\ =\ For all 6>0
i J/EK, p(x,y)"S

fix a finite d-net in the compact set K corresponding to it, i.e. a finite set

= {xq,..., Xxr] CK such that for all x € K I%iz?r p(x,xs)ifd. Such a d-net

really exists because of the compactness of the set K.

Consider the above fixed numbers £g> 0, e > 0 and L > O, together with
the sets flo and K corresponding to them. First we show that there exists
an fl'0OC flo such that P (flo\ fig) =0, and

limsup FOOpT{u=>){dx) - ' P{x)p0{dx) <£
(3:4) T—0

for all P £F(L) and «; £ fl0.
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To prove relation (3.4) let us first observe that because of the uniform con-
tinuity of the functionals T GFp on the compact set K the relation

(3-5) Q f(l£0£17l) F(L)

n=1

holds for all fixed eo>0,e>0, 7> 0 and L > 0.
Put S=  consider the ~-net Ji/n = {x\,... ,xrj corresponding to it,

and make a partition of the set F (L, £0,6,77, ) into subclasses
F(L £0,6,77, ,J(|) )

with integers |j(s)|] (L+ 1)7™*1, s=1,...,r, which consist of those func-
tionals TeF (L, e0,£ 77,i) for which T(xa) G [jsy, (js+ 1)7), s=1,...,r. If
T\ and T2 belong to the same subclass F(L, £0,6,7, Aj(1),... ,j(r)), then
\J-\ (X) —J-2(x) I< 277 for all x E K because of the module of continuity of these

functionals on the set K. and because of the relation ('p{u))(K) » l—for
till to E lo7

/ Ti 0Of), T (uj)(dx) - T20)fiT{w){dx) <£+ 2I).
Let us choose an arbitrary functional T from all non-empty sets
F(L,£0,£77,
n

We get by applying formula (3.2) for these functionals T and the previous
estimation a weakened version of relation (3.4) on a set to€ Q'6(n) C ilo such
that P (iio\iig(n)) = 0, where F(L) is replaced by F (L,£0.,6.7/, ), and the
upper bound £ by e+ 27. Then we get, by applying this relation for all
n= 1@% together with relation (3.5) the weakened version of (3.4) for all

wE fII f4o(n) and T € F(L) with upper bound £+ 2¢ instead of e. Finally,
n=
we get formula (3.4) in its original form by letting 7—>0.
It is not difficult to see that relation (3.4) implies the weak convergence
Ht {u) to 7o for almost all u Gfi. Indeed, let us fixa number L > 0 and e >0.

Then we get, by applying relation (3.4) for all fo(n)=n~ ,n=12,... that

there exists a set Ho(n), P(ilo(")) = 1---- 1 such that relation (3.4) holds for
@

all §Gilo(*)- This implies that relation (3.4) holds forallu Gi2= (J iio(n),
1=1

i.e. on a set of probability 1. Then, since relation (3.4) holds for aII L>0and
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e >0 with probability 1 we get by letting L —00 and e —0 in this relation
that the sequences of measures //'/-(a;) converge weakly to the measure po for
almost all d € fb

To complete the proof of Theorem 1 still we have to show that in the
case of a Wiener or a stable process the generalized Ornstein-Uhlenbeck pro-
cess corresponding to it is ergodic. This follows from a natural modification
of the zero-one law for sums of independent identically distributed random
variables to processes with independent and stationary increments which can
be found for instance in Feller’s book [4], Chapter 4, Section 7, Theorem 3.
The continuous time version of this result which can be proved similarly, also
holds. It states that if X(t), titO0, is a stable process with some parameter a,
O<a ™ 2, and a set A is measurable with respect to the (tail) u-algebra T
which is the intersection X = () Xt, where Xt = cr{X(t, m: t~ T}, then A

T>o0
has probability zero or one. The same result holds if the set A is measurable
with respect to the a-algebra p] XT, where XT = a{X(t, *): t"T}. (This
T>0

result follows for instance from the observation that t~"'aX (y,w) is also
a stable process.) These relations are equivalent to the statement that the
generalized Ornstein-Uhlenbeck process Z(t) corresponding to this stable
process has trivial cr-algebra at infinity and minus infinity, i.e. all sets which
are measurable with respect to the a-algebra generated by the random vari-
ablest™ T (ort~T) for all —o0 <T <00 have probability zero or one. This
is a property which is actually stronger than the ergodicity of the process.

PROOF of Theorem 2. Theorem 2 will be proved by means of formula
(3.2) with an appropriately defined functional X in the space C([0,1]) or
F>([0, 1]). Let us define the functional T = XBs with some e>0and 5> 0 as

Fe,6{x) =1\  sup_ p{xs{-),xt(-))"S
yl-egs,i5p

where the function xt is defined in (2.4"), and p(-, *) is the metric introduced
in Section 2. We claim that under the conditions of Theorem 2

(3.6) E—@OEJ_; i(Ai(-,2>) =0

for all 6> 0.
Let us also observe that by relation (3.2)

lim ptM sup  p(xs,xt)>S
)

lim / Xgs{x) dp,T{u){x)
T-*00 yi-egs,tgl

EXfs(X1(; W)

for all e > 0 and &> 0 and almost all w, where the function xt was defined in
formula (2.4"). Then we get relation (2.6) with the help of formula (3.6), by
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letting £—0 in the last formula. Hence to prove relation (2.6) it is enough
to prove formula (3.6).

If Xi(-, w) 6 C([0,1]), then this relation follows from the observation that
for all 7> 0 there is a compact set K} in C([0,1]) such that P (Xi(-,cu)
GK;) " 1—7, and for all 6> 0 there exists an e = e(r/) > 0 such that
[x(tt) —x(V)\ <6 if x GK?, and |u—\ ~ e. There is also a constant L > 0
such that sg£n|.x(u)| isL. Since these relations hold for all 6 >0 and appro-

X

riate L>0 they imply that lim su xt,x) = 0. This means that
p y imply that fimy o AHP p(xt,x)
for sufficiently small e>0, F£j (X\ (s, w)) =0 if Xi(-,u;) GK,,, i.e. in the case
when an event of probability greater than 1—w occurs. Hence relation (3.6)
holds in this case. The situation in the space D([0,1]) is more sophisticated.
In this case formula (2.5) also has to be applied.

Since all functions x(t) in the space D([0,1]) have a limit as t —F1—0 it

follows from relation (2.5) that for all §>0

P\ diMoy sup_, IX (tu)-X (DW[£ 5, =0.

Hence there is a set K= K,; in the space D([0,1]) such that P(X\ (-,0;) GK) »
1—, the closure of the set K is compact, and for all tGK lim sup \xt—x\
l-egtgl

< ;where the function xt was defined in (2.4"). There is a finite -O-n et in K,
i.e. a finite set J = {ccn,..., x}, x*"GK, r=1,...,s, in such a way that
for all x GK there is some x # GJ such that p(x,x") » = Then to prove
formula (2.6) it is enou@ to show that for all x» GJ there is some e >0
such that p(x\r\x ~j ~ - for all 1—e ™ t~ 1. Indeed, if this statement holds,

then for arbitrary x GK there is some x* GJ such that p(x, x*) * 5 Then

p(xs,xt) N p{xs, Xg') + p(xt,x[r) + p(x[Ax"). Let us also observe that
because of the definition of the functions Xt for sufficiently small e > 0 for all

X GE>([0,1]), 1—e Mt~ land x” GJ the inequality p(xt,x]r ) -p(x,x r)

holds, and p(xE\ x['® ™ p(XE\ x™) + p(x[r\ x*). The above inequalities
imply that p(xs,xt) » $for 1—e s, tfil ifx GK. Hence P£EMN(X\ (-,0;)) =0
with e = e if Xi(-,0;) GK. Then formula (3.6) follows from the relation
P(Xi(-,u) GK) ~ 1- 1)

Thus to complete the proof of formula (2.6) it is enough to show that

for an arbitrary function x GD([O, II) such that u_li>r|n_0 \x(u) —x ()] < 5 the
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relation E;rrbp(xt,x) <é holds. (This relation means in particular that the

limit exists.) To prove this relation let us define for all - ~ t < 1 the mapping
At{u) of the interval [0,1] into itself as At{u) = tu for 0™ u ” t*(t) with
t*(t) = 1—y/l —, and define At(u) in the remaining interval (t*(t), 1] also
linearly, i.e. let A(u) = (y/l —t+t)u+ 1— —\J\ — for t*(t) ~ii™ 1L Then
. At(u) - \t(v)

lim sup log

|—1 uzg v VY

it is enough to show that

= 0. Because of the definition of the metric p = do

lim sup |ai(u) —x(At())| = lim [x(u) —r(1)] < -.

It is known that for an x G D([0,1]) function sup |[a;(u)] < oo (see e.g.

Billingsley’s book [1]). Hence
sup  \xt(u) - x(Xt(u))\" (t Yg- 1) sup |rr(t/)|
oatlat® (t) Ogusl
dconst. (r Q- 1)->0 ifi—1—0.

Similarly, since a function iefl([0,1]) has a right-hand side limit in the
point 1, sup Kt(u) —x(At(u))] =0 as t —==1—0. Finally, in the point

i*(t)yru<\

- = i —x(Ai li t) <-. Th
u=1A(l) =1 and t_I4|r|1_10 |@t(1) —x(AI (D)  x(I) t_|>rlllex() 5 ese
relations imply that [lim”p(xt, x) = limja”i) —x(I)| < Theorem 2 is
proved.

Proof of Lemma 1. We have to prove that for arbitrary 5> 0

lim P su \X (t, 10 —=X(I,u>)\ - 0.
£-40 |_E/\?g| (t 1) ( )

Because of the stationary increment and self-similarity property of the pro-
cess X(t,u>) with parameter a>0 yields that

Pi sup [X(tw) —=X(I,w)|>A]=P sup \X(t,u) -X (e,u)\>6
I-£<t<| , O<f<£

=P\ sup |X(i,w)-X(l,w)|>1£_1/a
\0<t<lI /
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Then tending with e —0 we get that Se x¥'a —»00, and the required property
holds.

To prove Theorem 3 first, we formulate and prove the following technical
Lemma:

Lemma B. Let (M,M,p) be a separable, complete metric space such
that Ad is the a-algebra generated by the open sets of this space. Let two
sequences of probability measures p* and p~, N -m1,2,..., be given on the
space (M,M,p) such that the measures p” weakly converge to a probability
measure pa on (M, Ad,p) as N —o00, and

(3.7) I;\In_]t(i)gf (PV(F;) —irr(F)) ~ 0 for all closed sets F GAd and e> 0,

where AE—{x: p(x, A) < e} denotes the e-neighbourhood of a set A6 Ad.
Then the measures p/A converge weakly to the same limit measure pa as
N —00. Moreover, condition (3.7) can be slightly weakened. It is enough to
assume that it holds for all compact sets K GAd and e > 0.

Proof of Lemma B. The weak convergence of the measures pu to pa
as N —00 is equivalent to the relation I’i\lminffi’\(G) " po{G) for all open
—*00

sets G GA4. For all open sets G GAd and e > 0 there exists a compact set
K= KEGAd such that K C G and /no(K) * po(G) —e. Then there exists some
g > 0 such that also the g-neighbourhood of K satisfies the relation K’ ¢G.
Consider the 77/2 neighbourhood K7'2 of the set K. Since G contains the g/2
neighbourhood of the closure of K'l//2, and the measures p\r converge weakly
to the measure pa as N —00 we can write with the help of relation (3.7)

. T N N o :
that |’I\mébr8fpn(G) Ill\lnltlorgfp fK12) » pofK12) » po{G) —£. Since the last

relation holds for all e > 0 and open sets G, it implies the convergence of the
measures p” to pa as N —00.

To complete the proof of Lemma B let us observe that because of the com-
pactness (convergence) of the measures p” in the weak convergence topology
for all e > 0 there is a compact set K G Ad such that pn (K) > 1—e for all
N =1,2,.... Then for a closed set F GAd the set Fn K is also compact,
and |K|n_:lan)f (p™(Fe) —piw{F)) ~ Wﬂ!%f (12yv((F fl K)E) —iyv(FfIK)) —e't —e.
Since this relation holds for all e > 0, it is enough to assume relation (3.7)
for compact sets K.

Now we introduce the notion of good coupling we shall use later and
formulate a simple consequence of Lemma B.

Definition 0f good coupling. Let two sequences of probability mea-
sures pn and p®, N =1,2,..., be given on a separable complete metric
space (M, Ad,p), where Ad denotes the cr-algebra generated by the topol-
ogy induced by the metric p. These two sequences of measures have a
good coupling if for all e > 0 and 6 > 0 there is a sequence of probabili-

ty measures , N=1,2,..., on the product space (M x M, Ad x Ad,p),
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p((xi,yi), (x2,y2)) = p{xi,x2) + p(yi,V2) which satisfies the following prop-
erties.

() The marginal distributions of Pff are p® and /7iv, ie. P (A X M) =
pt(A) and Peo(M x A) = /2/v(A) for all A€ Ad, and n= 1,2,... .
@) limsupPA({(:r,y): yom2)> &)~ A
N —00
Corollary of Lemma B. If two sequences of probability measures p”
and pjv, iVv=1,2,..., on a complete separable metric space (M,A4,p) have
a good coupling, and the sequence of measures pn converge weakly to a prob-

ability measure po, then the measures pjv converge weakly to the same mea-
sure p,0.

Proof of the Corollary. Fix an e >0. For all $> 0 we can write

lim inf (p~r(Fe) —//jv(F)) ~ - limsup PES{{{x, y): p{x,y)>e}) ~ -S.

N —o00 N -x
We get the statement of the Corollary by letting 6 —0.

Proof of Theorem 3. We shall prove the weak convergence of the
measures p n{w) for almost all ® with the help of Lemma B with the choice
of pbn{co) as pn and Bp(u> as p”. Then (for almost all 10 the measures
PN converge weakly to po, and it is enough to show that for almost all » G

lim inf (/riv(w)(FE) —pgN(w)(F)) ~0 for all closed sets
(38) N FCD([0,1]) or FCC([0,1]) and e” 0.
Let us recall that for arbitrary measurable set BcG ([0. 1]) (or BcC ([0,1]))
Hon {u)(B) = xbn {s : SG[L, Bn], Xs(-,10 GB}
and

Pn (u)(B) =\bn{s: there is some 1" j< k” such that
BhN”"s< and XBjN (-, w) G B},

where the measure At was defined in the formulation of Lemma 1
For a pair of numbers e > 0 and p > 0 define the set

x{e,y) =\ x €D([0, 1]): sup p{xs,xt) Ue >.

Given some e>0 and 6 > 0 fix some p=p(u, e,6) >0 and NO= Ng(iv,e, O
in such a way that pbn () (A(e, p)) > 1—6 for N ~ iVo- By Theorem 2 such
a choice of p and Nqis possible for almost all w>Gfh Then we can choose,
since the numbers B”j satisfy condition (2.7), some number jo =jo{v) and
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Ni >Ngin such a way that KN N1+ 2 ifN~N\Vand jo k<N, and

i’gB30,n < s if N > ATj. Then for all N >Ni
I0g B n

BN{u)(Fe) N Aar(J) (XBk n(-,uj) GFE, for some k ” jo)
= ABN({s: there is some jo *j<kjy such that
Bjn"S< Bj+itN and
A pn({s:BjOtN <s<Bn and Xs(-,w) GF fl Ae, 7))}).

The last inequality in this relation holds, because, in the case when X s(-,uj) €
FDAjv and s G [f?j,jvkj?-l?;_ri.w) with some jo N j < (observe that the re-
v

lation [Sjoa,Bn)= U [Bj,N>Bj+i,N) holds), then XBjN(-,uj) GFE£, and
3=jo
this implies that all points sG {Bj",Bj.)-i,iv] are contained in the set whose
Ac measure is considered in the previous expression. To see the validity
of this statement observe that with the notation x = Xs(-,u>), x G.D([0,1])
XBj N(,1® = xu with u — JN, which satisfies the inequality 1—ryjj —2:-/\
s 1+

ul 1, where the function xu is defined in formula (2.4"). Hence x GA(e,7/)nF
implies that i u£ FE as we claimed. Then we get that

Aat(w)(FE) *X Bn (s : s G[L Bj\f), and | s(-w)GF)
(3-9) - \ Bn([1, BjOtN)) - pbn (D([0,1]) \ A(e, 1))
=ABN(s: s E[1,Bn), and X s{- u) GF) - 25="Bn (F) -25,

because R Bfi (D([0,1])\ A(e, ) ~ 5 and

b10,n
1 log"o.N

ABR (I BIOIVI)  5g BN logBn
1

Letting &-» 0 in formula (3.9) we get formula (3.8). This implies the first
part of Theorem 3.

We prove the second statement of Theorem 3 with the help of the Corol-
lary of Lemma B, where *u>) plays the role of (jn and the role of
Av- We define the measure PBl = Pn{w) on the space D(]0,1]) x ZX[0,1])
independently of the parameter e in the following way: The measure Pn (uj)
is concentrated on the trajectories {XBj™{-,u),XB"{-,u)), and

B.j+1,N

PN (i0) (XBjt"(-,uj), X Bjin (-,u)) B

logBN log
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Such a coupling can be constructed e.g. in the following way: For all N =
1,2,... let An denote the set = {1,... ,k*}, An the u-algebra consist-
ing of all subsets of An, and define the probability measure un, *n(j) —
——--——log — ,1<j <kNon (An,An)- Then for all wGo define the
logBn Bj'N
random variable £u(j) = (XBj,n (', w), XBj,n (", w)), 1~ ] " fgjv, on the proba-
bility space (An,An,vn), and let Fv(w) be the distribution of the random
variables in the space D([o,1]) X D(Jo, 1]).

The marginal distributions of the measures Pn (u) are pn(*) and pn {v).
Hence by Corollary of Lemma B it is enough to prove that for almost all u
the relation

(3.10) ’\lli_r;noO Pn(a)(An(s,u®)) =0
holds with
Ajv(e,cu) = {(XBj,n (-,u), XBj,n(-,u)): p(XBj,n (-,u),XBj,n (-,u)) > e}

for all e > 0. Since the measures fiN are compact for all p> 0 there is a
compact set K= K(r/) C D([0,1]) such that pn (K) > 1—?forall iVv=1,2,...,
and formula (3.10) can be reduced to the statement

(3.11) lim PyvM(AAi(e,a)n(K x £>([0.1]))) = 0

for arbitrary compact set K c6 ([0,1]). Moreover, this statement can be re-
duced to a slightly weaker statement. To formulate it let us define for all )> 0
and N =1,2,... the number j(N) =j(N, p) as j(N) = max{j: log BjiN *
iylog-B/v}. Because of condition (2.7) imposed on the numbers Bjtk in Theo-
rem 3j(N) —»oc as N -> 00. Because of the definition of the measures piv(u>)

and the number j(N) the inequality pn(u) s .(l, XBj Nmu) >57 holds.
. L <y J
Define the set
Al(e,u) = {(XBj,N(-,“),XBj>NM)--j(N,TI)ZjZkN,
p{XBjiN{-,u),XBj,N{-,u)) >e} .

Then pn(u)(An(e,uid\ A\r(e, w)) » 77, and relation (3.11) can be reduced to
the relation

(3.1T) Jlim PaH(A”(e,w)n(KxD([o,])) =0

by letting 7-Ao.
We claim that for an arbitrary compact set K C D([0,1]), e> 0and #>0
there is some No = ATo(K e, rj,u) such that for all N ~ Ngand j ~ j(N) the
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relation XB nmw) GK implies that p(XB n (s, ui), XB n(s, w)) < e, hence the
set AN(e,uj) D (K x D([0,1])) is empty for large enough N. This statement
clearly implies relation (3.11").

To prove this statement let us observe that the trajectory X Bj Nm< is
obtained as a discretization of the trajectory X bj n (¢, oj) of the following type:
There is a partition 0= tj,o,N < < m tj,j,N = 1 of the interval [0,1]
such that X B/N(t,u) = X B.'N(tjii-iiN,u}) if at<tj,iN, 11k~ h and
XBj w(l,w) —X B.~(ljCu). The numbers thi™ could be given explicitly as

tj,i,N = but we do not need their explicit form. What we need is the

Bj, N
fact that conditions (2.7) and (2.8) imposed on the numbers B j* imply that

lim limsup sup sup (tjjtN = 0. This relation holds since for all
j->°0 AT->00 N~j~j 1gi<?

rji> 0 there exist some j\ =j\(y, )2= h(v) and = No(rj) in such a way
that 1+ 3 and N ~ No, and rjBj2n ~ Bjltn if N N iV

Bi~i,n

Then for all N 'tj ~j2and Nt NOtj~N - N B“N D——— MV for

jZ1Z h, and fi AVif 17 1 Uh- The width of the

partitions considered above tends to zero if J=j(N) —»00, as we claimed.
Indeed, the previous calculations imply that it is less than r? for j t j 2(g).
We claim that this relation implies that

lim sup P(XjIN{-,u), Xjtat(-,u>)) = 0
N”ooj: jlj(N), X jtN(-,uj)eK

for all compact sets K C Z?([0,1]), and this relation implies formula (3.1T)
and hence the second part of Theorem 3.
Let us define the following function g(x,6) for x GD([0,1]) and 5> O

(3.12) g(x,S)= sup P(x,xt0,...,t.),

0O=to<il <-"<is =

where
xto.. W) = x(tj-i) Iftj-1™M<tj, j=1,..,5 ad xtw..ta(@)= Xx().

We shall prove the following Lemma C which is probably well-known among
experts, but whose explicit formulation we did not find in the literature.

Lemma C. For all functions xeD ([o,11) lim g(x, S)=0. Moreover, for
5—>0
all compact sets K C D([0,1])

lim su x,®=0.
s~"°xeFI)<g( ®
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Then to finish the proof of Theorem 3 it is enough to show that

lim sup g(x, S) =o

for all compact sets Kch([0,1]), where the function g(x,6) is defined in
formula (3.12), and this is the content of Lemma C.

REMARK. Condition (2.8) about the properties of the numbers Bj*
in Theorem 3 could have been dropped with the help of a slightly more
complicated analysis. We could exploit that an upper bound on tj*ry —
tj,1-i,N only for such triples 1~ 17~ ) ~N is needed which also
satisfy the relation j ™ j(N, 77), j(N, 7) = max{j : log-Byjv* VlogBn }; and
I\I%Bz’az oo for such 7. But since this is a condition which is automatically

satisfied in the cases interesting for us we did not omit it.

PROOF OF Lemma C. It is known (see e.g. Billingsley’s book [1] formu-
las (14.6) and (14.7)) that for all 7> 0O there is some a = o (77) > 0 and a parti-
tion 0 = iio < u\ <mm< ur = 1 of the interval 0, 1] such that for uj —Uj-i > a,
and sup sup  \x(s) —x(t)\<g. Let us consider an arbitrary partition

l=i=rUj—1%S,t<Uj

0=to <t\ <we<ts=1of the interval [0, 1] such that Isu_/p/\ \tj —tj-1| < arj.
<

We claim that in this case p (x,xtit..its) Since this relation holds for all
7> 0, it implies the first statement of Lemma C.

To prove this statement let us consider the partition 0= To< T\ < mm
< Tr, such that the interval [Tj, Tj+1) is the union of those intervals [f/, b+1)
for which t[ e [uj,Uj+i). Let A(-) be that mapping of the interval [0,1] into it-
selfwhich maps the interval [uj, Uj+1) linearly to the interval [Tj, Tj+1). Then
A(*)-A(s)

t—s

p(x,xtl,..ts) ), as we claimed. This implies the first statement of Lem-
ma C.

The second, more general statement follows in the same way. We only
have to observe that the number a =o (77) can be chosen as the same number
for all x GK in a compact set Kes D([0,1]). This follows from the charac-
terization of compact sets in the space D([0,1]). (See relation (14.33) in
Theorem 14.3 in the book of Billingsley [1].)

sup [x(A(u)) - xtli...its(u)] » 77, and also st/qp log A\ Hence
S

Proof of Theorem 4. Let us construct the following coupling of the
random broken lines Sjv(-,uj) and Tn (-,10) which are defined with the help
of the random variables Sk(u>) and Tfc(@>), k = 1,2,..., in formula (2.13).
Let P A S(ix), ui £ Q, be a measure on D([0,1]) x -D([0,1]) concentrated on the
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pairs, (Sk(-,uj),Tk{-,u))) in such a way that

PIM CSt(;u,),Tt(;u))=HNW(T,,(;u)) =tg-logl?|U,
'0g-n

lg k <N.

(The parameters e > 0 and S> 0 in the definition are the same e and $which
appear in formula (2.13).)

Then the marginal distributions of are the distributions //jv(w)

and Riy(u)) appearing in the definition of the almost sure functional limit
theorem. By the Corollary of Lemma B it is enough to prove that

limsup PA6(W{(x,y): p(x,y)>e}<6

N —toc

for almost all g Efb Since p(x, y) * d(x, y) with d(x,y) = OSUF’)‘I \x(u) —y(u)\,
gu

9 M1 >
PEuj){(x,y): p(x,y)>e}p~ * ~# log -*-1{d {Sk{w), Tk{- u)) >¢)

for sufficiently large N. For a number N choose the number n —n{N) such
that 2n~1" Bn <2n. Then N ~ N(n), and logBn » n —L Hence

Pe(u){{x.y): p(x,y)>e}
N(n) ( f sup [5j(ai) —Tj(uj)
< 1 Bk+1 Igjgfc >f
ilos
n-19-11% Bk y

with this n=n(N). As n(N) tends to infinity as N -> oo relation (2.13)
implies that the limsup of the right-hand side of the last expression is less
than S for almost all ui as N —too. Theorem 4 is proved.

Proof of Theorem 5. Let pn{xy and fijv{uj) denote the proEabiIity

measures on the space .D([0,1]) defined by the partial sums 5fc(c>) = £j(w)
1=1

through formulas (2.11) and (2.12) with weight functions Bn, An=Bn and
Bn, An=Bn'", respectively. Let us also introduce the random polygons
Sn(u)) and the random measures p'N{<{ which are defined with the help of
the partial sums Sk(uj) with the new weight functions Bn and the original

sequence An=B7Ta by formulas (2.11) and (2.12). First we show the fol-
lowing (weaker) version of Theorem 5. For almost all i€ 12 the sequence
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pP'N{» has the same limit po if N —00 as the sequence of measures
By Lemma B to prove this statement it is enough to show that for arbitrary
compact set KC£([0,1]) and e>0

(3.13) limsup(p)v(u;)(K") —p,yv(w)(K)) ~ 0 for almost all g Gi2,
W
where = {x: p(x, K) ~ e} is the e-neighbourhood of the set K. Define for

all k=12,..., and vE O the set

o RGN

Then we have

(3.14) Aim pN{){A{u)) =0

for arbitrary fixed k> 0. Hence to prove relation (3.13) it is enough to show
that for arbitrary e> 0 there is some Ng= Nofe) such that

P(Sn (-,u),S'n (-,u)) N E

if N~ No and Sn(-,u) EK. Indeed, this relation implies a modified version
of (3.13), where p~(uj)(K) is replaced by p~(uj)(K \ An0). Then relation
(3.13) follows from this statement and (3.14) if we let IVo—0o0.

The above statement holds, but we must be careful in its proof. It follows
immediately from the conditions of Theorem 5 that

Jim - d(SN(-,ui) SN{-uj)) = 0,

if the metric p=do applied in this paper is replaced by the following met-
ric d(-, ® in the space £>([0,1]): The relation d(x,y) ~ e, x,y E £([0, 1]),
holds, if there is a strictly monotone increasing continuous function A(t)

which is a homeomorphism of the interval [0,1] into itself, and sup |A(t) —t\
ostal

Ne, osup ly(t) -x(X(t,)\ ~ e. The metric d induces the same topology as the
Oaial

metric p = do in the space £>([0,1]), but it has the unpleasant property that
the space £([0,1]) is not a complete metric space with this metric. A de-
tailed discussion about the relation between the metrics (/(mm) and do(-, ¢) is
contained in the book of Billingsley [1].

In the proof we have to overcome the following difficulty. The natural
transformation A(-) for which Sn (\(-,u)) is close to is the map

which transforms the point to the point and is linear between these
points. This transformation shows that the corresponding trajectories are
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close in the d(-, ¢ metric, but it supplies no good estimate for the distance
in the do(’) ¢) metric.

We recall the following result from Billingsley’s book [1] (see Lemma 2 in
Section 14): If d(x,y) * S2, 0< 6" 1/4, then p(x,y) =do{x,y) * +vi'X9),
where the inequality wx(S) ~ e for a function x E D{[Q, 1] means that there
exist some numbers 0 =to <ti < mm<ts =1 such that tj —tj-\ ~ e, and

sup  jai(n) —=x(v)|Meforalj=1,2,...
Sj_iNu,v<tj

We have lim wx(6) = O for arbitrary x E D([0,1]). Moreover,
lim sup iux(6) —0
XE& ©

for arbitrary compact set K C D([0,1]). (See Theorem 14.3 in Billingsley’s
book [1].) Given some 6> 0 and a compact set KcD ([0, 1j) choose a number
0 < 77< 1/4 such that 5/ < $and a number 7> 0 such that wx(r) < 7 if
x E K. Then there is an index No = No(r], 77 such that d(5jv(-, u), Sn (-, 1j)) *
min(772,1j2), if NTiNo- The above relations imply that p(Sn (@ ), Sn (Ww))
A ANON(77,77) +w's™ N77) 26, if TVA MO and Spf(-,u>) E K. As we have
pointed out, relation (3.13) is a consequence of this statement and relation
(3.14). This implies the modified version of Theorem 5 with the modified
weights Bn and the original weights An.

To complete the proof of Theorem 5 in its original form we compare
the measures pn(lo and p'N(uj). It is enough to show that for almost all
w£E£il and all e> 0 (and 5=¢e) the sequences of measures p*r(u>) and IN{»
have a good coupling. We make the following coupling of these measures
(independently of the parameter ). Put

PN{u)(Sk(-,u=)iSK-iVj)) = pN{Sk(-,u)) = ----Igg BK 1<k< N.
log n
b7
Ak . . Ak _ . C
Observe that u) —A-kS k(-,uj), and kl)ngg v 1 This relation implies

that for arbitrary 6> 0

lim PVMI \ (sk(u),sk{uj))-. p{Sk{-,u),S'k{-,uj))>6 sup |5a(-,uj)] M =0

N —00 0<lI<1
On the other hand, the measurespn(u), N =1,2,..., are compact for almost
all u) E 12 hence for almost all e > 0 there exists a K = K(uj) such that

VN sup \x(t)\>K <f forallN=1,2,....
O<t<i
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Applying the previous estimate with 6—~ we get that

liji\rggop PN(upD{{(x.y): (xy) = (Sk(-uj), Sk(-,uj)),
with some p(Sk(-, u3, Sk(-,uj)) >e}) <e.

Since this relation holds for arbitrary e > 0 the Corollary of Lemma B implies
Theorem 5 in its original form.

Acknowledgement. | would like to thank Istvadn Berkes for many use-
ful discussions on this subject.

REFERENCES

[1] Bitringsiey, P., Convergence of probability measures, John Wiley & Sons, Inc., New
York-London-Sydney-Toronto, 1968. MR. 38 #1718

[2] Brosamier, G, An almost everywhere central limit theorem, Math. Proc. Cambridge
Philos. Soc. 104 (1988), 561-574. MR 89L60045

[31 Dobrushin, R. L., Gaussian and their subordinated self-similar random generalized
fields, Ann. Probab. 7 (1979), 1-28. MR 80e:60069

[4 rerrer, W, An introduction to probability theory and its applications, Vol. I, Second
edition, John Wiley & Sons, Inc., New York-London-Sydney-Toronto, 1971.
MR 42 #5292

[B] Fisner, A., Convex invariant means and a pathwise central limit theorem, Adv. in
Math. 63 (1987), 213-246. MR. 88g:60058

[6] Lacey, M. anda Phitipp, W., A note on the almost sure central limit theorem, Statist.
Probab. Lett. 9 (1990), 201-205. MR 91e:60100

[l scnatte, P., On strong versions of the central limit theorem, Math. Nachr. 137
(1988), 249-256. MR 89L60070

(Received May f, 1998)

MTA MATEMATIKAI KUTATOINTEZETE
POSTAFIOK 127

H—1364 BUDAPEST

HUNGARY

major@ math-inst.hu
and

EOTVOS LORAND TUDOMANYEGYETEM
BOLYAI KOLLEGIUMA

AMERIKAI UT 96

H—1145 BUDAPEST

HUNGARY


mailto:major@math-inst.hu

Studia Scientiarum Mathematicarum Hungarica 34 (1998), 305-316

A CONDITIONED LAW OF LARGE NUMBERS
FOR MARKOV ADDITIVE CHAINS

A. MEDA and P. NEY

To the memory of A. Rényi

Abstract

Let Yn= (Ynj,y,,2), n= 1,2,... be a sequence of Revalued random variables with
YUes Rd* i= 1,2 d\ +d2= d, and assume that

limn_1log Eexp(a, Yn)= A(a) ~ 0o, as Rd,

exists, and is strictly convex and essentially smooth. ((e, ® is inner product.) Then Yni/n
converges exponentially with respect to the conditional probability measures IP(¢Yn2/n£

C C Kd2), to a point which is specified in terms of A and C. This result is specialized to
a conditional LLN’s for Markov-additive chains.

1. Background

Let Xi, X2,..., be a sequence of independent identically distributed
(i.d.d.) random variables taking values in a measurable space (S,S), f a
n

functionon S, Sn= ' f(Xi). Stimulated by the important papers of O. Va-

i=1
sicek [16], and especially I. Csiszér [1], a considerable literature has devel-
oped on the limit laws of X\,..., X*, conditioned on Sn/n. In [1], Sn/n is
represented as the empirical measure of X\,..., Xn, and it is shown that
(Xi,..., XnISn/n € C), where C is a “completely convex” set of probability
measures, are asymptotically “guasi-independent” with a limiting measure
given by a so-called “/-projection”. (These terms are defined in the above
paper.) Recently Dembo and Kuelbs [3] have shown that for /: S-AE = a
separable Banach space, (Xi,..., X/,|Sn/n£D) with D an open convex set,
converge in a strong sense (that implies total variation norm convergence)
to independent random variables with identifiable distributions. They al-
low k = k(n) =00 with k(n) depending on D. (Typically k(n) =o(j*").)
Their analysis used an extension to the Banach space setting (by Einmahl
and Kuelbs [5]) of a dominating point construction introduced in the finite

1991 Mathematics Subject Classification. Primary 60F10, 60F05; Secondary 60K15.
Key words and phrases. Laws of large numbers, large deviations, Markov-additive
chains.

0081-6906/98/$ 5.00 ©1998 Akadémiai Kiad6, Budapest
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dimensional case by Ney [10]. (See also the use of “exposed points”, e.g. in
Dembo and Zeitouni [4] p. 44.)

A related conditional law of large numbers (with X\, X 2, mmstill i.i.d.),
also resting on the dominating point concept, was the work of Nummelin
[13], and Lehtonen and Nummelin [8], [9] Say that a sequence of random
variables {V"} converges exponentially to v, written Vn v, with respect to
a sequence of probability measures Pn ifgiven any e > 0, there exist 0< b< 00
such that

Pn{\\Vn-v\\>e}"e-n

for sufficiently large n.
Lehtonen and Nummelin proved that for functions g :S -* Rdl and
u:S —yR"2 one has

(1.1) n_17g(AiQ)-~u
2=1

with respect to the conditioned measures

(1.2) P(- [n-17u (A 1)GC)),
2=1

with v being identified as a “dominating point” (as described below).
Extensions of the original set-up of Csiszar [1] to Markov chains have been
carried out in Csiszar, Cover and Choi [2], and Schroeder [14]. These exten-
sions are required even in the i.i.d. setting, if one wants to treat functions
n n

of the form n_1~ g{Xi, Xj+i), rather than n_1 2~g(Xi). Independence is

1= i=l
lost in this case, but the Markov structure is retained (see e.g. [2]). In this
note we will show that results like (1.1), (1.2) hold quite generally. We show
first that analogs hold for “general” sequences of random variables satisfying
the hypotheses of the Gartner Ellis Theorem. We then specialize this result
to show how an explicit determination of the limit point in (1.1) can be made
in the case of Markov-Additive (MA) chains (which are somewhat more gen-
eral than ordinary Markov chains, and are defined below). Our conditions
on the underlying Markov chain are less restrictive than in the above cited
papers.

2. General sequences

For any FC Kd, let T° = interior of T, F = closure of T, and 6r =
boundary of T. Let (s, *) denote inner product. For any F: —]0, 00], let
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T>(F) = [x £ Rd:F(x) <o00}. Let Y\,Y2,... be Revalued random variables
with probability law C{Yn)=/x,,n=12,.... Assume that

Hypothesis (H1).
@) lim~logEe(@a*n)—A(a) 00 exists for a £ Mf, and

(if) A is strictly convex and essentially smooth (see Rockafellar [17] p.
251).

From (ii) it follows that
(2.) OeV°{A).

From Hypothesis (HI) we can draw several conclusions, which we summarize
in Lemma 2.1 below. (This is part of the Lemma in Ney [10].) Let A*(u) =
sup [(a, v) —A(a)] = the convex conjugate of A. Condition (2.1) implies that

the level sets of A*, La(A*) = {v :A*(v) » a} are compact for a £ [0, 00), and
is needed in the following lemma. Let V denote gradient.

Lemma 2.1. Assume (HI) and let B be open and convex with [B fl
£>(A*)]V0. Then

(i) inf[A*(u):v £ B] is achieved at a unique point VB &B r\T>°(A*).
(i) The equation

(2.2) VA(a) = vb

has a solution a\B £ Rd.
(iii) 1f a\B”~ 0 then VRE dB, and

(2.3) ((v—VR),avB)>0 for all v£EB.

We call vb the dominating point of (A, B). We will abbreviate inf[A*(w):
v £ B] = A*{B), and a\B=06 . From (HI) we can also conclude that

Lemma 2.2. If (HI) holds and B is open and convex with [B n "D(A*)]°
0, then

(2.9) nI-IQEDInI 0g f{Jn— £ bJ\ = -A*{B) = -A*{vb).

This is just the Géartner-Ellis Theorem specialized to convex sets. (See
e.g. Dembo and Zeitouni [4], Theorem 2.3.6.)
With the above background, we can now turn to
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Lemma 2.3 (Conditional weak law of large numbers). Assume {Yn} sat-

isfies (HI) and that B C Rd is open and convex with [B fl D(A*)]°
70. Then for alle>0

(2.5) SVB e “P0asn oo

Remark. Without the condition Yn/nE B,

exp

(2.6) 0.

(See e.g. Ellis [6], Theorem 11.6.3 or Dembo and Zeitouni [4].) But under
(HI) A*(VA(0)) =0, and A*(v) ~0 for all v. Hence A*(VA(0))= inf A*{v).
VERd
Now if VA(0) GB, then uiéHdA*(v) = inf A*(v) = vb = VA(0) in (2.5), and
veB
comparing with (2.6) we see that in this case the conditioning in (2.5) has

no effect. This should be contrasted with the case VA(0) $ B, in which
WVA(O).

Proof of Lemma 2.3. Let {A (a);ael(i} be as defined in (HI)(i). Let
[[X]| = max{|x;|, 1~ i~ d} for x = (rci,..., xfi) £ and let

BA=BfI{uG :flu—vb|> e}

Let

Bt = {vGRd:{M - vB,i) > e} 1l

and
BdH ={uGRd:- (vi- vB,)>e}DB, i=1,...,d,

where

vB,i = the ith coordinate of vB.
Then 2d

BN =(jBi.
i=1

If [BIN\V(A*)]° 0, then by Lemma 2.1 there is a dominating point vBi with
A*(vBi) = inf A*(v). By the uniqueness of the dominating point and the

construction of Bt,
A*(Bi) = A*(vBi)>A*(vB) = A*(B).

For [BinL>(A*)]° = 0, since BLkis open and A* is strictly convex, one has
A*(Bi) = oo, and trivially A*(Bi) > A*(vB) = A*(B). Hence

2.7) A*{B")>A*{B).
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Then by Lemma 2.2

1 Y
li — Pé- B
P 3109 8 0

. 1r r n PN
= limsup— logP<— EB "\ —ogP<— e B
n->00 n L In J In
Aimsup - tog 2 p(L £8,:3+ A%(B)
n->00 n n 1

z=1

(o]

- min, [A*(Bi)] + A*(5)

-A*(BW) + A*(B)<0 by Lemma 2.1(i).
This implies the Lemma. O

In some applications, as in [9], one wants a limit law for one function,
conditioned on another function. We will state a general theorem of this
kind. We use the notation that for any v € Rd, we write v = (vi,v2) with
vi E!dIl, v2GRd2, d\ +d2=d. Thus Yn= (Ym,Yn2), Yni 6 Rd', Yn2 e Rd2.
Also, for a = (0g,a2) GRd,

(2.8) A(aqg,0) = A™(oii), A(0,«2)= A(2)(a2),
where

A" (afi = lim n—log Ee™ai” ni\ i=12.
Write

A{lr'(vi)= sup [(ai,Vi) - Aw (a,)], ViERdi.
aie&d

One can check that if {Yn} satisfies (HI) on Rd then also {yni, A"}

satisfy (HI) in Rdi. Hence if C is open and convex with [CnP (A" )]°" 0,
then the unique dominating point vq exists and

(2.9 VA{){a2) =vc, a2 6 Rd2, vc £Rd2

has a solution denoted by ac GRd2m
We can now state

Theorem 1. Assume (HI), and let C C Rd2 be open and convex, with

[CnV{A" )]°7"0. Let vc GRA® be the dominating point for (A(2C), and
ac be as defined in (2.9). Then

Ym v N exp
(2.10) vi >e nG C }J
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mnhere
(2.11) v\ = (VA(0, ac))i .

Remark. Asin the remark following Lemma 2.3, if VA®2)(0) € C, then
the conditioning has no effect. The interesting case is VA™)(0) £ C.

Application. Let {Xn,n—1,2,... } be a sequence of random variables
on a measurable space (S, S), let g:S—Rdl,u:S —»Rd2, f = (Q,u):S =
n n n

Yn=yrJ(Xj), 0 =y rg(Xj), y.2= Assume that {T,} satisfies
1=1 i=1 1=1
(HI). Then
(2.12) 329 (Xi)N(VA(0,ac))i
=

with respect to

_ N
(2.13) pl.”Eizi'.)eC}J
This formulation is relevant in the MA case below.

Proof of Theorem 1. Take C as specified in the theorem and let
B =Ml x C. Then (A,B) satisfy (HI) and we can apply Lemma 2.3. The

conditioning in (2.5) becomes Gf?j = £ cj, as required in (2.10).
We will identify vb in (2.5) as
(2.14) vB=VA(0,ac).
Then
{/_n - Vb) 1: T -(VA(0,ac)!
as required.
Thus it remains to prove (2.14). To this end we have
A*(vb)= A*(B) by the property of the dominating point,
= A*(Rdl x C) = inf A*(!dl x {c})

(2.15)

inf inf  A*(u), where 7r(ui,U2) = t
c£C {uit(v)=c} ( ) ( ) 2

ngA’\ (c) by the contraction principle,
C

= AQ*(C) = A@*(nc )y
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Now recall by (2.8) that A(0,02) = A2(a2) for oli GMf2, and that by (2.9)
there exists olqg G MR such that VA2(ac) = vcmHence VA(0, ac) exists, with

(2.16) (VA(O,ac))2= VA2(ac)=nc.
Also clearly if for some v 6 Rd, avGRd, VA(av) exists and = v, then
(2.17) A*{v) = (av,v) - A(av).

Now substituting v = VA(0Q, ac) in (2.17), and applying (2.8), (2.15), (2.16),
we get
A*(VA(O,ac)) = ((0,ac), VA(0,ac »- A(0,ac)
= (ac ,VA(2)(ac))-A"(ac)
= AZ*(VA@Q (ac)) = A(*(tic) = A*(vB).
By the uniqueness of the dominating point

VA0, ac) = vb-

3. Application to Markov additive chains

To define the MA chain let {ATh;n = 0,1,... } be a Markov chain (MC)
taking values in a measurable space (S,S), irreducible with respect to some
measure ipon (5,S), and let {En;n=0,1,... }C Rd be an adjoined sequence
such that {(Xn,En)} is itself a MC on (S x Rd,S x Ta) (1zd = Borel sets
on Rd), with transition function

(3.2) P{(Xn+i,En+i) GAXTIXn=Xx,En=5}=p{X,A X T)

for AX TG<Sx TZ4 x Gﬁ. Note that the right side is assumed to be inde-

pendent of s. Let Sn= _\ﬁl0£i- Then {(Xn,Sn)]n=0,1,... } is called an MA
1=

chain. Examples are n

Sn="2f(Xi),
i=|
or n
S, = £/i(Xi_iXi),
i=|

for some / :S ->Rd, h: S x S —Rd.
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Let,
(3.2) P(a) = {p(x,A;a)} = | j e®s'p(x, A xds),aGM|.

Thus P(a) is a (non-stochastic) irreducible kernel on (S,S). Let R(a) be
its convergence parameter, which always exists under the cp-irreducibility
condition (see [12]). Under suitable further hypothesis, A(a) = f?~1(Q) is
an eigenvalue of P(a), with left eigenmeasure {/(A;a) :A 6 5} and right
eigenfunction {r(x; a) :x E5%. An (unnecessarily strong) sufficient condition
for this is the existence of a measure uon (S x Rd, S x Tzd) such that for some
0O<a”b<oo0 mo>0
(H2) aly(dxr)?*mo(x,Axr)M/(ixr).
(See Lemma 3.1 of Iscoe, Ney, Nummelin [7], hereafter referred to as [INN].)
There are weaker conditions for the existence of A | and r (see e.g. Ney
and Nummelin [11]), but we will assume (H2) for definiteness and since it
simplifies some arguments. Also note that (H2) implies irreducibility of {Xn}
with <p(A) = u(A x Rd).

Let
(3.3) H = the convex hull of the support of u(S x ).
We will assume that
(H3) P(A) is open, and H()" 0,

where TX{A) = {a :f?.(a) > 0} by definition.
Now one can check that
pn(x,A;a) =Ex[e”s"-X neA}.
The following lemma summarizes some relevant parts of Lemma 3.4 and The-
orem 5.1 (and its proof) from INN. From this lemma we can then conclude
that the measures
Px{57e mXn£f£ A}, AeS with <p(A)>0,

satisfy the conditions of hypothesis (HI).

Lemma 3.1. Assume (H2) and (H3). Then
(i) A= logA (as defined above) is analytic and strictly convex on P(A).
(i) A is essentially smooth on P(A).
(iii) VA(0") =v has a solution avc P(A) for all vGH®°.
(iv) lim ~logEx[e(a,Sn); Xn6 A] =A(a) forxdS, A&S with I(A, 0) > 0,
and a GP(A).
(v) P°(A* =H".
Remark. Under (H2), I(A, 0) > 0 is equivalent to ip{A) >0. From now
on, to avoid trivialities, we assume y>{A) > 0 for the sets A referred to in
Lemmas 3.2, 3.3 and Theorem 2

Thus the hypothesis (HI) is satisfied and we get from Lemmas 2.1 and
2.2:
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Lemma 3.2. Assume (H2) and (H3), and let B be open and convex,
with (B NH)° = 0. Then

(i) inf[A*(w); v GB] is achieved at a unique point vBEB NH®° (the dom-
inating point),
(i) XA(a) =vB rpas solution a\y ERd,

(in) “mh Iogp'i-r;\ € B, XnGa?J = -A*B) =-A*(vB).
(Note that P°(A*) = H°® (see e.g. the proof of Theorem 5.2 of INN).)

. Y .
Replacing the measure p|Yne F“ EB J'>|n Lemma 2.3 by

Pr{Sn G -ne5 A LB A }J

we also obtain

LEMMA 3.3. Assume (H2) and (H3) and let B be open and convex with
RPI//VO- Then

4 vB >e Sn” €B, Xn€Aj P

The proof is exactly the same as Lemma 2.3, except that (2.8) is replaced
by

. . N
I|msupn—long{In GB |n GB,XnGa}:|
=limsupi MogPx{ GB~"\XnGAj - logPx{” GB, XnGAj,

with Lemma (3.2) (iii) then applied to the above expression.
To state an analog of Theorem 1, we again use the convention that for
any v GRd, we write v = (ui, V2) with wi GRdI, v2GRd2, d\ + d* =d, so W is

the first d\ coordinates of v.
n

Now consider the MA chain (xn,Sn , and write £n=(£nl, £n2)eKd,

with £ui GRdI, £,2 € Rd2, and write Sni — ’ i=1,2. Then {Xn,5ni} is
an MA chain with transition function =

(3.4) p (i, AxrD)=p(~Ax(ri1xK?112) for Ti G7zl,

and transform kernel

(3.5) P (1)) = {p[1)(x, A;«i)} = {p{X,A;(at,0))}, ai GRdI, (ai,0) GRd.
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Similarly {Xn,Sn2} is an MA chain with

(3.6) PA{x,Axr2)=p(x,Axmd x v 2), r2£77d2,

and
fP\x,A\a2)=p(x,A; (0,a2), a2£ Rd2, (0,a2) £ M.
We want to prove that
Snl exp
(3.7) 0

with respect to the conditioned measures
(3.8) {1 5"? Cc: 2

and to identify the dependence of v on C.
To this end, note first, that under (H2), p(I\ i —1,2 will satisfy

(3.9) avi{Ax f,) |pwW™0(x, Axr,) *6n' (A xr2, T,Cld,
where
(3.10) ux{A x TI)=t/{Ax(Ti x Rd2)),
x2(A xr2)y=il(Ax(Rdx r 2)).

Then there will exist A ri(-,ai), a, £ERd, i=1,2. Let =
log AW, and define 77~ analogously to (3.3).

Note that
(3.11) A(c*i,0) = A(D)(m), A(0,a2)= A262),
and
(3.12) (VA(«1,0))1=VA(D(a), (VA(0,a2))2=VA()(a2)

One can check that if C C Rd2 is open and convex with CflH * 0,
then (A2 ,Sn2) satisfy the hypotheses and conclusions of Lemmas 3.1
and 3.2. Hence there again exists a unique dominating point vc and solution
ac £ M2of VA(a2)= vcmTaking B = Mfl x C, and arguing as in Theorem 1,
we conclude that

Theorem 2. Let {(ATn,5n);n —1,2,... } be an MA chain satisfying
(H2) and (H3), and let C, vc, etc be as given above. Then for every e>0

Snl VS Sn2

’ 2 GC,XnEAj “P 0asn wo,
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where

ui = (VA(0,c*c))i.
Special Case. Take =f{Xn),/: 5 Kd,and take f(s) = {g{s), u{s)),

S€S, gERdI, u€1d2 Then

(1
[2

[
(4]
Bl
[6]

]

Bl
(1]
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1 n 17
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COVERAGE PROBABILITIES OF RENYI CONFIDENCE BANDS

Z MEGYESI

Dedicated to the memory of Alfréd Rényi

Abstract

The applicability of Rényi confidence bands, as extended by S. Csérgé [6], are inves-
tigated by an extensive computer simulation study. Some new bands are also proposed.

1. Introduction

Theorems 5 and 6 of Rényi’s paper [8] provide the possibility of drawing
confidence contours and bands to the continuous distribution function F(-)
or to the survival function 1—F(-) the width of which is proportional to
the natural unbiased estimator of the function to be estimated. Such bands
are called Rényi confidence bands. M. Csorg6 pointed out in [2] that F(-) in
the denominator of these theorems of Rényi can be replaced by the sample
distribution function Fn(-) if the supremum of the relative error of F(-) is
taken over the set {x :p”™ Fn(x)} rather than {x \p ~ F(x)}, for any fixed
p6 (0,1). E. Csaki showed in [1] that Rényi’s Theorem 5 remains true if the
fixed p is changed to a sequence pn such that pn£ (0,1) and pn —a0 provided
npn —>00. M. Csorg8, S. Csorgd, L. Horvath and D. M. Mason [3] proved
that both theorems of Rényi remain true if {pn}"=i is a sequence such that
0<pn”P for somep £ (0,1) and npn  00; thus even pn —0 is not necessary.

S Csorg6 proved in [6], Theorem 1, that F(-) can be replaced by Fn()
and {x\pn”~F(x)}, the set over which the supremum is taken, by {x:pn”
Fn(x)} under much more general conditions than in the paragraph above.
Also, his Theorem 2 shows the existence of certain narrowed and combined
versions. Later on we use the notations and definitions of [6], so our pa-
per should be regarded as a continuation of [6]. We use some terminology
consistently throughout: we write confidence band if it can be used for the
estimation of the unknown F(-) or 1—F(-), (i.e., it is determined by the
sample itself) and at every point of its support it gives both lower and up-
per bounds for F(-) or 1—F(-), respectively, and confidence contour if the
statistics can be used for estimation, but give either only lower or upper
bound on the function to be estimated. When a band can be drawn only if

1991 Mathematics Subject Classification. Primary 62G05.
Key words and phrases. Asymptotic confidence bands, distribution and survival func-
tions, coverage probabilities, simulation.

0081-6906/98/$ 5.00 ©1998 Akadémiai Kiadd, Budapest
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a simple goodness-of-fit null hypothesis specifies jP(-), it will be referred to
as a test band. This is the case for the test contour and band (1) and (2)
below, which arise from Rényi’s original theorems in the case of pn=p. We
write one-sided band if the band is motivated by the problem of estimation
of either the left or right tail of the distribution, and two-sided band if it can
be used to estimate both tails. Almost all of our bands are one-sided, but,
for example, (8) and (9) are two-sided. We formulate all of our results in
detail in the form motivated by the problem of estimating the right tail, or
more precisely, the survival function 1—F(-); the left-tail versions are briefly
touched upon at the end of Section 6.

The results mentioned above are all limit theorems, with the exception of
Csaki’s formulae in [1]; the latter give the exact actual coverage probabilities
of test contours. It would be very useful for any application to know for
what sample sizes n of practical statistical use and — using the notations
of [6] — for what choice of kn or pn are the actual and nominal coverage
probabilities tolerably close and when do the actual coverage probabilities
reach the nominal one. The aim of this paper is to describe the results of an
extensive computer simulation investigating these questions.

Let a £ (0,1) be a fixed number and let ya, za and wa denote the unique
values for which K(ya) = L(za) = 2uQ —1= 1—a, where K(-) is the
Kolmogorov distribution function, L(-) is the distribution function of the
absolute supremum of a standard Wiener process on the interval [0,1] and
$(¢) stands for the normal distribution function. The critical values ya and
wa can be obtained from many textbooks, for zQ we refer the reader to [4].
However, for the sake of greater precision, these values were also computed by
our programs directly by using the formulae for the corresponding functions.
Let us define, for any pn£ (0,1),

o 1~Pn 1-Pn 1 Pn
Pp— - — _*
71(a) :=1+«a npn 1 CPne 1T npn gn:=1-*a npn
If pn =p then Rényi’s [8] Theorem 5 implies that
o 1-Fn0) A LE(x), F{X)ZI-pn>-H-a,
Ipn ()
and his Theorem 6 implies that
2 P 1 gi —F(x)Z 1 F(x)M-Pn}-+1I-a.
«(*) ‘ e cPn(a)

From (3) and (4) of [6] we know that (1) and (2) hold for any sequence
Pn G(0,p) for any fixed p £ (0, 1), as long as npn -» 0oo. Theorem 1 of [6] also
implies that

- L=Fn0) A . B, xA Xn-kitl >->1- a
7*b(«)
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where
\
%tfen = 1+ Wl

for a sequence of integers {kn}™=l such that 15kngnp, n~ 1/p, for some
p G(0,1). Note that (1) is a test contour, while (3) can be used for estimation
as well, and if we choose pn=kn/n then (1) and (3) are the same on the
common part of their supports. We call them analogous in this sense. We
use this term for bands, too. The formulae (11) and (12) of [6] imply that

1- Fn(x) 1-F n(x)
4 I'F A 00: N
@ ctin (@) g {x) k) 6= Xn—knnf ~f O,
G p{',;,i.(«)[i-F.w ]si-fws<i,(o)]i-f.(.)i, «si,-..,}

—n 1 - <x

by the above conditions on {kn}™=Il. Hence (4) and the original Rényi con-
fidence band (2) are analogous. One can expect that

(@ P{cr{a)[l-Fn{x)]~I-F(x)dac~r{a)[l-Fn(x)], F(x) Z1-pn}

—1-—a

holds under the above conditions on here (6) is the test version
of (5). We shall prove in the next section that this is indeed the case.
From the first part of Theorem 2 of [6] we have that

1- Fn(x)
(«)

That theorem also shows that if kn/n —0 then from (7) and from the cor-
responding left-tail version we can construct a two-sided confidence band

® P{41 *"FX)I UKn(X), XkniUix i >1-a.

M-F(x)MCER ) [I-F n(x)], x£Xn thnr —=1—a.

For the upper and lower contours and LMl we refer the reader to [6]

The first and most important fact we have to mention is that (I)-(8) are
distribution-free: for any meaningful pn,kn,n,a the actual coverage proba-
bility does not depend on F(-), as the first step of the proofs in [6] shows.
This provides the possibility of studying them by investigating only the par-
ticular case of the Uniform(0,l) distribution, with all our findings being
universally applicable for any continuous distribution function F(-). Thus
we may and do assume that the underlying distribution is the Uniform(0,l),
i.e., F(x) =x identically on [0,1]. Obviously it is enough to watch only the
order statistics to see whether F(-) lies in the band determined by Fn(-).

We concentrate on the investigation of the bands, we study the contours
mostly to check our simulation. We used several thousand hours of running
time on IBM Pentium personal computers.
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2. Coverage probabilities of one-sided bands

Our investigations cover the cases when the sample size n is between 10
and 2000, and a 6 {0.1, 0.05, 0.01}; these are the most important and cus-
tomarily typical cases for practical use. All our qualitative and quantitative
statements are for these three situations. Rényi confidence bands are for
tail estimation, so we may restrict ourselves to the values pn£ (0, A) and
knf (1,..., }. (The upper and lower integer parts of x are denoted by
|[V| and LmJ, respectively.)

We generated 100000 samples of the appropriate sizes and we obtained
the actual coverage probabilities as the means of these 100000 Bernoulli-
trials. Thus the error of our simulated values are not more than

a=01 a=0.05 a =001

0.00156  0.00113 0.00052 with 90%probability
0.00186  0.00135 0.00062 with 95%probability
0.00244  0.00177 0.00081 with 99%probability

Table 1

From the formulae (I)-(8) one can see that the width of these bands
and the distance of the contours from the unknown F(-) decrease as pn or
kn grow, so the behaviour of the actual coverage probabilities is far from
obvious.

Let us first investigate the narrowest band, (7). In this particular case,
as kn grows, the actual coverage probability also grows as expected. In spite
of this, the actual coverage probabilities are quite far from the nominal ones
even for kn close to [|J . For example, if n = 100 then the actual coverage
probabilities are not more than 0.8656, 0.92 and 0.9728 instead of 0.9. 0.95
and 0.99, The situation is, of course, better for larger samples, but even
for n = 1000, the actual coverage probabilities reach only 0.8868, 0.9397 and
0.9856, respectively. That is, the actual coverage probabilities of (7) converge
to the nominal one from below, and the rate of convergence is quite slow.
For sample sizes between 10 and 2000 they are not close enough, so the band
(7) is not suitable for practical use.

Let us now look at the bands (4) and (5). If the true distribution function
F(-) lies in the band in (7) then it lies both in those in (4) and (5), thus we
can expect a better behaviour for these two bands.

Indeed, the actual coverage probabilities grow in these cases as kn grows,
but in the case of (4) they get close to the nominal one and they reach it
only for samples of very large sizes. In the case of (5) the actual coverage
probabilities increase rapidly with kn and even for relatively small values
they reach the nominal coverage probability and remain above it. (We deal
with the question what “relatively small” means in Section 6.)
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Figure 1. The actual coverage probabilities of (4), (5), and (7), shown by thin, medium
wide and broken lines, respectively, in the case of n = 100 and a = 0.1, as functions of kn.

We have to mention about the band (4), and this is also true for the test
band (2), that for very small kn or pn, c~k (ct) or c~n(a) become negative,
respectively, so the upper contours of these bands vanish. This occurs if

kn < or N
1+ % PR+ 22

respectively. In these cases we considered the actual coverage probabilities
to be 0.

The width of (4) is always larger than that of (5). If we denote the
widths of these bands, which are proportional to 1—Fn(-) in both cases, by

Nenii, (@)1~ (@®)] and d * ((ofN)[l - F,,(x)], respectively, then

2Za\Jkn (1 - yf) 1-1f
df)..(a) = — , ., and d¥l (a)=2z2Q< *°
fkn bn~z1(1-w
yielding that,
() 2B (a)
kn-zI{1-t)

The actual coverage probabilities of the Kolmogorov band were also al-
ways recorded in the course of our investigations. We did this partly with the
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aim of checking of our simulation. It is well-known about the Kolmogorov-
Smirnov bands and contours from experience that for each finite n their ac-
tual coverage probabilities are above the corresponding nominal ones. Our
simulation agreed with this for the case of the Kolmogorov band. The em-
pirical observation was proved as a mathematical fact by Massart [7] for the
Smirnov confidence contour.

Our simulation showed that the actual coverage probabilities of Rényi’s
original test band (2) exceed the nominal one for every meaningful choice of

n and pn, i.e., the (2) band is, like the Kolmogorov band, conservative in the
above sense.

Figure 2. The actual coverage probabilities of the test band (2) (as function of pn), in
the case of n = 20 (broken line) and n =500 (continuous line).

We prove (6) before investigating it. Let us denote the actual coverage
probability of (6) by 7r,,(a). By using a simple idea of 83 of Rényi [9] we have

M (a) = Pl cPii(o)[1 - FN(X)] < 1- F{X) ~ c+(a)r1 - Fn(X)}, F{X) ¢ 1-p,. }
1 <1—Fn(x) < 1

P an@ 1-F{x) (e T )al-pn

Z ]_%/anl A F(X)-Fn(X)A Za\l npn F{X)A 1-Pn
o = 1-Fx) ~ Qn@
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that is,

\Fn(x)-F(x 3
R sup )-F 00 UFn(a)
Pn F(x)*l—p,, 1 F{X)

<p n-Pn sup ]Fn(x)-F(x)\ <
i 1—F(x -
Pn F(x)511- pp (x) 2q\; I«grrll
where formula (4) in [6] shows that the upper and lower bounds both converge
to 1—a as long as npn -Ao00, by the continuity of the limiting distribution
function. Thus (6) is proved.

The behaviour of the actual coverage probabilities of (6) is very similar
to that of (4): they grow as long as pn grows, but they reach the nominal
coverage probability only for samples of very large sizes. Thus (6) produces
worse results than (2), so it cannot be recommended for practical use in
simple goodness-of-fit tests.

Figure 3. A typical view of (5) at n =100, kn=9, a = 0.1, in comparison to the
Kolmogorov band, which is depicted in thin lines. As Rényi confidence bands are for tail
estimation, the figure concentrates on the right tail.

However, it is interesting to compare the behaviour of (2), (6), (4) and
(5). If we choose pn—kn/n, the expectation of the support length of the
band in (4) and (5) is almost the same as the support length of the band
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in (6) and (2). (This error results from the way we defined (4) and (5)
and vanishes asymptotically.) The test band (2) is the test analogue of (4),
while (6) is that of (5). By comparing (4) and (5) one can see that (5), the
narrower band, is proved to be surprisingly far better, but the test band (6),
which is the test analogue of (5) was beaten by (2). This shows that even
for a simple goodness-of-fit test, for which all our bands can be used, there
can be a drastic difference between analogous bands with the same nominal
coverage probabilities.

This fact points to the significance of (5), which can be regarded as
an almost always conservative all-purpose narrowed version of the original
conservative Rényi confidence band (2).

3. Confidence contours

The investigation of Rényi’s original test contour (1) was the most ade-
quate way to check our simulation, because the exact values can be computed
by Corollary 1.4.2 of Cséki’s paper [1]. The simulated and computed proba-
bilities were close indeed, their difference followed an approximative normal
distribution with an expectation near to 0 and with variance according to
the size of the Monte-Carlo. (This comparison was made in fact for the
corresponding left-tail versions.)

Figure 4 shows the actual coverage probabilities of (1) at n= 100, a = 0.1.
The diagram is interesting in itself. One can see that the actual coverage
probabilities grow rapidly with pn and they get close to the nominal coverage
probability very fast, then the actual ones oscillate for quite a long time near
to the nominal one, later they reach it, and even while decreasing they remain
above it.

The band (3), which is analogous to (1), produces far worse results. In
this case the actual coverage probabilities of (3) grow monotonically with kn,
but they do not reach the nominal one. The relationship between (1) and
(3) is similar to that between (2) and (4), as discussed at the end of the
previous section.

4, Two-sided bands

In Section 1 above, (8) is the only example of a two-sided band. It is
obtained by combining (7) and the corresponding left-tail version. We have
seen that the actual and nominal coverage probabilities remain far apart in
the case of (7) for sample sizes of practical use. This property of (7), which
makes it unusable for any practical application is inherited by (8). So, let
us try to draw a two-sided confidence band from the best one-sided band
available, that is, (5).
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Figure 4- The actual coverage probabilities of (1) and (3), based on computed and
simulated values, respectively in solid and broken lines, choosing pn= kn/n for (1) in the
case of n = 200,a=o0.1.

Let z* be the unique value for which L(z*) =\/l —a and let

\/i- %@ JT-
*cnkn = 1~za and *c+kn{a):=1 + 7a

The formula (18) of [6] and the formula (5) of this paper imply that

(*) P{~r"fna)Fn(x) ~ F(x) | *c+kn(a)Fn(x), x~ XK n) ->y/T" a;

(**) p{l - (a)[l - Fn(x)}i F(X) i 1- *C'*>)[1 - ’
AN Xn—knn¥ “n1 N e

If Fn(x) ~1/2 then the upper contour of (*) is beneath that of (**) and
the lower contour of (*) is above that of (**). This motivates the choices of
the contours of a two-sided band shown below:

(@a)r'n(x)i XknTi~ X<

Q@[ ~ )P Mn/i\,n=x =Xn-knni
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Figure 5. The coverage probabilities of (9) in the cases of n = 200 (continuous line)
and n = 2000 (broken line). In the second case 1/10 of the real values of kn are shown on
the vertical axis.

h,kJa)Fn(X), Xkn,n=3-4 X*nj2\tr
*<[/>):=
1-*Cn,kn(°D[1~ Fn(x)], X \n/2-\,nGx U X n-kn,n

Then for any sequence of integers {fc,}* 1 such that 1~ kn " np and
n” 1/p for some pG(0,1), and kn->00 and kn/n -» O we have that

(9) {41l wi r 41w, S XS j- a.

This statement can be proved in the same way as (8), which is denoted
by (21) in [6], by using the formulae (12) and (18) of [6]. The width of (9) in
the intervals x G [Xknn, X\n/2n) and ["h/2I,n> X n-knn\ is proportional to
Fn(x) and 1-F n(x), respectively. Let us denote this width by d*kn(a)Fn(x)

and d*pkn(a)[l - Fn(x)], respectively, where

d,§9z (a) = 2<



RENYI CONFIDENCE BANDS 327

Figure 6. A typical view of (9), in the case of n =100, kn—17, a = 0.1, in comparison
to the Kolmogorov band (thin lines).

We expected (9) to inherit the good properties of (5). Indeed, the actual
coverage probabilities grow together with kn and they reach the nominal one
quite fast and later remain above it. Figure 5shows the coverage probabilities
of (9) at samples of two different sizes.

5. On a narrowed Kolmogorov band

S. Csorg6 and L. Horvath published the following result in [5], which
narrows the Kolmogorov confidence band:

A4 vl .
PAFn(x) nl¥2 nFn(x) -\-yanJIZO/F{X)

vl
, —00 <X <00 >—11—a.
nU2  n[l —Fn(x)\ +yan¥2 X =00y

(10)

Our investigations were extended to this band. The simulation showed
that by narrowing the Kolmogorov band it loses its conservatism and the
convergence of the actual coverage probabilities occurs from below, and they
remain far from the nominal one. The actual coverage probabilities are
shown in Figure 7.
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Figure 7. The coverage probabilities of (10), for a = 0.1, a = 0.05 and a = 0.01, shown
in continuous, broken, and dense broken lines, respectively.

The authors of [B write:

“We have conducted a small scale Monte Carlo simulation to check the applica-
bility of the Theorem [which yields (10)] at n = 50. We generated 40 samples of
size 50 from the uniform (0,1) distribution and constructed the bands [... ] with
1—a = 0.9. Maybe we were lucky, but F(t) =t went out of the band only once.”

This simulation was probably wrong, given that the actual coverage prob-
ability is only 0.443 in the above case, based on our results from 100000
samples. If their simulation is correct, the probability of the event described
above is about 3.61 ml0-13; i.e., less than 10000th part of the probability of
winning the jackpot in the Hungarian National Lottery, where one has to
pick 5 numbers out of 90.

The negative results obtained for (7) and (10) provide reason for some
scepticism concerning the practical use of narrowing of conservative bands
by mixing them; it seems easy to loose the conservatism and it may occur
that the actual coverage probabilities remain far from the nominal one for

sample sizes of practical use.
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6. Rules of thumb

In this section we describe the conditions of applicability of some pre-
viously discussed bands of “good behaviour”. For easier use we give some
“rules of thumb”.

We have noted about Rényi’s original test band (2) that it is conservative
for any pnE » i 5) for sample sizes between 10 and 2000, i.e., (2) can be

used for simple goodness-of-fit tests without any further consideration.

The actual coverage probabilities grow rapidly with kn in case of (5)
and (9), then they reach the nominal one and remain above it. We call
the kn for which the nominal coverage probability is achieved a point of
conservatism and we denote it by K,,(a). When we want, to emphasize the

band whose point of conservatism is being discussed, we write Kn\a) or

Kn\a), respectively.

The first general observation resulting from the simulation is that for
any fixed n, Kn(a) grows as a decreases. In the case of a = 0.1, the actual
coverage probabilities grow quite rapidly for values of kn close to /in(0.1), so
the exact values of «,,(0.1) can be determined quite accurately. For a = 0.05
the growth of the actual coverage probabilities for kn close to Kn(0.05) is
much slower (cf. Figure 5), so the determined value of /in(0.05) has a larger
error resulting the random fluctuation of the simulation. This is even more
true for k,,(0.01).

We prefer to give some simple inequalities instead of lengthy tables of
points of conservatism. These rules are constructed for practical use, and
they do not state anything concerning the asymptotic behaviour of Kn(a).
The “rules of thumb” for (5) are:

4 5>(0.1)™4n°-2
*45)(0.05) g 1.5n0 55
«45)(0.01) p .8 n 08.

For example if a = 0.1 and we have a sample of size 270, then the actual
coverage probability of (5) is at least 0.9 if n/2 A~ A 4270° 2, that is, if
135~ kn ™ 13. These values are valid for n ~ 200, but they are not sharp

enough, so we have the following table of (a) for this small values of n.
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10 20 30 40 50 60 70 80 0
0.9 3 4 5 6 7 7 8 8
095 3 5 7 s 10(9 11 12 13 14
099 3 6 9 12 14 17 (16) 19 22 (21) 24 (23)
100 120 140 160 180 200
0.9 9 (s) 9 10 10 11 (10) 11
0.95 15 17 19 (18) 21 (20) 23 (22) 24 (23)

099 26 (25) 31 (30) 34 (33) 40 (38) 44 (42) 46 (44)

Table 2

The above values are observed from 2500000 samples of the appropriate

sizes. If there are two values in a cell, this means that the value of Kn\a)
could not be determined unambiguously. If kn equals to the larger one, the
actual coverage probability reaches the nominal one with a probability of at
least 0.9, but even if kn equals to the smaller one, which is in brackets, this
will happen with probability of at least 0.1.

The inequalities for (9) are even easier to remember:

4 9)(0.1)g0.7 n0'7
4 9)(0.05) g0.6 nos
*49)(0.01) g0.5 n°'9.

These are sharp for small n as well, so it is not necessary to give an additional
table. One can see that (9) becomes conservative somewhat later than (5).

There is no point in giving such rules for the test contour (1), because the
exact coverage probabilities can be computed by the formulae of Cséki’s [1].
We mention that if one only requires an actual coverage probability of 0.885
instead 0.9, (1) satisfies this for pn>7/n if 10 g n g 400 and for pn > 10/n
if 400 < n g 2000. In fact, one can give similar rules for any other value less
than the nominal coverage probability (cf. Figure 4).

Finally, we spell out the equivalent left-tail versions of the bands dis-
cussed in this paper. For test bands it is obvious that for any choice of
0O<C1l<1<C2<00 and any pn£ (0,1) and n

p{CIFn(x) g F(x) gc2Fn(x), F(x) "pn} =
- P{d[I -Fn(s)] »1- F(x)gc2[l- Fn{x)l F(x) g 1-pn}.
For confidence bands we have

p|ciF,(x)g F{x)*"C2Fn(x), x > X fc|li+i,nj =

=plci[l - Fn(¥)] g 1- F{x) gc2[1l- Fn(x)\, xg Xn-kn"Y



RENY!I CONFIDENCE BANDS 331

since Fn(-) is right-continuous.

Notice that in [6] the corresponding left and right-tail versions are not
equivalent in this sense, however, for (8) and (9) we followed the style of [6].
We did so with the aim of the compatibility with [6]. Of course, one can
write these two bands so as to be equivalent on the tails, then asymptoti-
cally everything remains the same, and the actual coverage probabilities get
slightly better.

7. Conclusion

Summarizing our investigations, we can state that the original Rényi test
band (2) can be used for any choice of pn€ 5) for simple goodness-

of-fit tests against alternative hypotheses describing deviations on the tails.
When one is interested in the behaviour of the unknown F(-) on one tail,
then (5) can be used for this purpose, or, more importantly for estimation

purposes if kn” ng (a). When one wants to estimate the unknown distri-

bution function on both tails, (9) is suitable for this purpose if kn~ Kn\ot).
All of our statements are for n 6 {10,..., 2000} and a G{0,1; 0, 05; 0, 01}.

It remains for me to discharge the pleasant duty of expressing my thanks
to Professor Sandor Csoérgé who drew my attention to the topic discussed in
this paper and helped with many valuable suggestions to improve the paper.
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Abstract

A limit theorem is proved, as n —too0, for the permanent of the mn x mn matrix tiled
with n2 copies of a fixed positive m x m matrix.

1. Introduction

Let A= (a,ij) be a fixed m x m matrix with positive entries. We want to
study the asymptotic behaviour of the permanent of the (nm) x (nm) matrix
consisting o fnxn blocks, each identical with A. Formally, let

A A A’
Pn(A) = Per AA A n blocks.
A A

Why study that? One possible motivation comes from the following ob-
servation. When the elements of A are all equal: =a, we have Per (A) =
amm\, that is, a = (Per (A)/(m))Ym.  This suggests that <A =:
(Per (A)/(m)NYTn could be used as a “mean value” of the elements of a
square matrix A. <F(A) is easily seen to lie between the geometrical and the
arithmetical means of the elements, and, in addition, it mirrors somehow the
matrix structure, too. Unfortunately,

A
$(A) = $ A

fails in general, though such an identity might be required. Therefore, one
might want to modify the definition of <€XA) to nIlr>n00(Pn(A)/(mn)!)]/mn,
provided the latter exists. The existence of the limit follows from a general
theorem of Girko [4]; still it is of interest to determine its concrete value
for these periodic matrices. Girko’s method was based on the fact that a
permanent can always be represented as the second moment of a random
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Key words and phrases. Permanent, local CLT, saddle point method.
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determinant. This time we use another, elementary method to obtain more
precise asymptotic results for P, (A).
Permuting the rows and columns we can see that

"An AL Aim
11) Pn(A) = Per A2 AZ A2m
Ami A2 Amm _

where all elements of the n x n matrix Atl are equal to atj.
The general term in the expansion of Pn(A) is of the form

n I I “ 1
I=ij=i
where n,7 denotes the number of elements taken from A,r One can see that
rilk =n, and n*j=n forevery i,j, 17iifm, 1*j~m.
k=1 k=1

How many terms of this form are there? Let us first choose the rows of
the elements to be taken from A<(?, then the corresponding columns, finally
we assign a column to each row. In that way we obtain

[ frf m ]]]]
P(A) py. [n«l) I_I\J1:||-nb'|_ e

(1.2
anij

"W R Lk i
where the summation runs over m xm matrices N = (rnj) with nonnegative
integer entries, such that its row sums and column sums are all equal to n.

Such a sum can be estimated similarly to what is usually done in the proof
of the Moivre-Laplace theorem [3, Ch. VII]. One first selects the maximal
term of the sum, then nearby terms can be estimated through their ratio
to the maximal term, yielding a sum asymptotically equivalent to a Gauss
integral. And this is just what we are going to do in the next section.

This plan of work has a drawback: it relies on the positivity of A. It
happens several times — even in the most interesting applications — that
permanents of 0-1 matrices are considered. For instance, the number of
1-factors (matchings) in a bipartite graph with 2-colorization {U, V}, U=
{rii,.. .,un}, V= {ui,..., vn} is equal to the permanent of the nxn matrix
A= (ay), where at] denotes the number of (ui,Vj)-edges [5 Problem 4.21].
For his result [4 Girko needed the same restriction. That is not surprising.
Things may become messy with zero or negative entries. As an illustrative
example, in Section 3, we give a complete discussion of the most simple case
of 2 x 2 matrix A Our tools will be generating functions and saddle point
method; they do not seem to help in the general case.
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2. A limit theorem

In order to formulate our result we first need the following fact.
LEMMA. There exists a uniqgue m xm matrix T = (itJ) such that for every
i=1,2....,m, andj —1,2,... . m
m m
T, tkj =m, y tik=m and Uj- Cidjaij
k=1 fc
for some positive constants  and dj.

Proof. Let A= A/ and define the linear family
.
J
£= = (iij)mxm ®ij ~ 0, "tk="'y ' 'tik=~ Vi, Vjj-.
k fc

The correspondig exponential family of distributions (see [2]) is
£ = {Q = (qij)mxm -Qij =Cidjaij for some c, >0,dj > ()},

and its closure cl £ is of the same form with c. S0, dj S0.
Let us minimize the Kullback-Leibler divergence

(2.1) £5(TIIA)= £ £ iy log(tyVai)

« J

over £. It is well known [Z that the minimum is attained for a unique
probability distribution T called the /-projection of A on £, and this is the
only element of £flcl£. In addition, since for A there exists a distribution
in £ with the same support, the /-projection T falls into £ itself. Now, let
T=m2t. O

REMARK 1. For numerical computations it is useful to know that T can
be obtained as the limit of a natural iteration procedure. Starting from A, in
each step we divide the rows by the row means (= 1/m times the row sums),
then the columns by the column means and so on, alternately (iterative
proportional fitting procedure, IPFP). This is so because £ = £j Pi £2, where

£l = |t = (iij)ymxm wij =0, y "tik— M
k

£2= = {iijymxm-iij ~o0, y th =~ ,Vj},
Kk

and IPFP, as described above, isjust an alternating sequence of /-projections
onto £1 and £2, resp. (apart from a constant factor), see [2].
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Let. M denote the following m x (m —1) matrix
(2.2 M =

and G= M®M (Kronecker product).
The main result of the present note is the following theorem.

Theorem 1. Let T be the matrix constructed to A in the Lemma above.
Define A = [diag(vec(T))]-1. Then

’s _— | 14et(G'G) det(A)\ 12 / Per ()"
@3) HA) =~ (M get@'ac) )\ Per (M)

as 1 —o0.

Remark 2. Some of the components in (2.3) can be expressed in a more
explicit way, e.g.

Per(A) i /m /r?qc'nmA\—l
Per (T) iz.lj:Ii'O i=1 &1

det(G'G) = det(M' ® M'M ®M) = det(M'M ® M'M) = m*" ~*
mm \ 1
det(A)= 1U I’
\=1j=I
However, formula (2.3) has the advantage that in the case where all entries
of A are |’s it reduces immediately to (nm)\.

Proof of Theorem 1. In (1.1), let us multiply the rows and columns
through Ay by cl and dj, resp. In that way we obtain that

(m m A\ T $ $
n Gn d) per
£1 j=1"° T T .7

hence it suffices to deal with the case A=T.

Now consider (1.2). Define N° = (nP)mxm with nonnegative integer en-
tries in such a way that its row sums and column sums be all equal to n,
and n°- = ~ttf + 0(1) as n tends to infinity, 1~ i~ 771,

For a general term of the sum in the right-hand side of (1.2) let

m m .nij

N)= ..
() L0
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Introduce stJ by nlJ=nP + Sjj Clearly,

fc=i fc=i
holds for every i and j. Suppose
(2.5) \sij\* K =K{n) =o(nl6).

Then, using Stirling’s formula, we can write

S(N)
|
Og 5(No)
/' m m 0j\ mm
N ‘r'5 = E E ~ n
( —\J ) i=1j=1
1] m - \
+ EE « +2) ~n%~ (nij +2) loSnb + "tj + 0{K/s/n) J.
i=1j=I

The double sum in the last line can be treated as follows.

mm / 1
E E (- riij) logn® - (ntJ+ 2) loS* + (n*~ nij) + 0{K/y/n)
21j=1 7

1] m

"Z':llj:'—l -~ ( log™ +logiii+® 0 )

\Y
(nij + v nyfly + 2) 9L gp * O(KIY/M)3) ) + O{K/>/n).

Hence,
S(N) -m m
26 lo = .
(2.6 gS(N) 51—E13E14 + 0(K3 W),

where the remainder is uniform.
Next, we shall estimate S'(N) for matrices N not satisfying (2.5). Clearly,

nZﬁm

S(N) = 7————rrPr(Xy =ny,lgigm,1gigm),
(777.71)!
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where X = (Xij)mxm is a random matrix with polynomial distribution of or-

der ran and parameters T = (m~2tij). Therefore, applying Chernoff’s bound
on the tail of the binomial distribution [1, p. 236] we obtain

E  )Spy  F&xH8)

NG 3(iLj)\Sij\>K

<mznm EEH‘(X -t >
(mn)\ 1= e 17 mi
mznm
< (mn)\ 2m2exp(—K 1/2m).
On the other hand,
rn2nm 2nm
5(N°) = T Pr(X = N°) ~const. n-mvz2
thus
2.7 52 5(N) = 0(5(N0)),

N:3(tj),|sy|>K

whenever Li2—m3logn  oo.
Comparing (2.6) and (2.7) we get

Pn(A) ~ (n1)2m 52 5(N)
(2.8 -m m

N i=1j=1

In the rightmost sum S= (s”) varies in the (m —I)2-dimensional linear
subspace TZzn C Rmxm defined by (2.4). More precisely, since is inte-

ger, S runs over a lattice in 1Z Let us compute the volume of an elementary
cell. Such a parallelepipedon is spanned by the following vectors.
For 1£i"m—1, 17j 5=m —1, let

Eij —
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(that is, only four elements of Ejj differ from 0). A base of 7Zn can be obtained
by dividing the elements of these E,j’s by the square roots of the correspond-

ing elements of N°. In other words, by introducing D,, = [diag(vec(N°))]_1,
we obtain a base of 72n in the form

{D1 2vec(Ejj): 17 idm —1,1 j~m —1}.

Let G denote the rn2x (m —)2 matrix with columns vec(Ejj) ordered lexico-
graphically. It is easy to see that G = M<g>M with M defined in (2.2). Thus,
I1Zn is the column space of D12G and the volume of the parallelepipedon is
equal to the product of non-zero %aracteristic values of that matrix, that

is, to (det G'DjjG)Y2. Since Dn~ ?A, we have that

det(G'DnG) ~ (m/n)(m*“ )2 det(G'AG).

Note that the sequence of subspaces 72, also converges to

m m
72=|(sij) GKmxm ; SikJi~k = Skjy/tkj = 0
k=1 k=1
These and (2.8) together imply that
-m m
exp (-0 E E 4 X
n i=1 i=i

where Ais the Lebesgue measure on (the Borel sets of) 72. This integral is

well known to equal (27r)(m-1)2/2, for dim 72= dim 72n= (m —I) 2.
The last step of the proof is the estimation of 5(N°). By the Stirling
formula and some calculation one obtains

TN 22, o famrr (=122 . . 40
5(N°) = (n!
L) T ) =1 O
noo Y i
b= i=lj=l ®

Let us take the logarithm of the last double product.

mm m m

E Eu«lx-Ofg) - fufy-& 3: - 1+0(n"2) =
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that is, the product in question converges to 1. Thus, by Remark 2,

P,.(A)~(nm)!mm 1(|||| A(detG'AG) 12
=i j=i
det(G'G)det(A)i/2
= \A
(MM Get(G'AG)
as claimed. O

Remark 3. Consider the general term in the sum (1.2) and maximize
itin N. Let T= Fﬁ-ﬁN' Then by the Stirling formula we have

qﬂ g/ =hm+nmYiYi \(&u/tu)
13=1"73

i=l J=1

log(E E » «) —og(nm)™ + o(n)

N ]
mm+nmlo \g Em )/ —mD(T||A) + o(n) m=max!

Thus, T is asymptotically equal to the /-projection of A on C. This explains
how the reference term S (NO) was selected in the proof.

REMARK 4. More precise calculation shows the rate of convergence: in
(2.3) exact equality can be achieved with the right-hand side multiplied by

a factor

3. The 2x2 case

Apparently, there exists no explicit formula for the matrix T that played
central role in Theorem 1. In general we have a system of nonlinear equations
for the multipliers c%and dj, namely,

T m
(3.1) ajedic = m/cj, and dkjck=m/dj, 1~i~m,
k=1 fc=l

In the simplest nontrivial particular case, i.e., where m = 2, equations (3.1)
can be solved explicitly. Let
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then
J_ t2—t _ ac\d\ Rc\d2 dot A = ) 1
2-t t J |_7c2di 5c2d2\' ' t2(2-t)2 ckcld2d2alk'y6
M= } , G'AG= 4 Per (A) = --——--—-,
L 1J t{2-ty Per (T Clc2d]d2
and

2=t+ (2- t) = (\zaS+ \/Rj)\Jc\c2d\d.2.
Consequently,

2n+l

(3-2)

In Section 2 we only dealt with positive matrices A. A naturally arising
question is what can be said when positivity is not required. That seems
hard in general, but in the 2x2 case it can be answered by applying the
saddle-point method.

A key to the answer is the observation that

k=0

is just the coeffient of zn in the polynomial
(3.3) g(z) = (n)2(z + a6)n(z + Ry)n—(n!)2(z2+ Pz + aBjS)n,

where P = Per (A) = aS +/Fy. We shall also apply the notation D = det(A) =
aS_ R,
From (3.3) Pn(A) can be read off directly in some simple particular cases.
Ifa/37<5 = 0, then P,,(A) = (n1)2P A~ (2n)!\/n7r(P/4)n.
If P —0, then Pn(A) = 0 for odd n, and for even n

(A =M)2(n/2) ~ (@) 2Aa?)n(-1)n'2
= ()n/2(2n)\/2(i)/4)n.
In the general case aB-yo ™ 0 and P ™0. For the sake of simplicity, by

the help of exchanging rows or columns, and multiplying them, if necessary,
by —1, we can always achieve that a,,0,P and D are positive.
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T heorem 2. Suppose a,B,S,P,D>0, 7< 0. Then

1 faS+R™M\ nH/B  {Zn+lL \ 2n+l 0\
Pn(A)=(2n)!(-a07i)-*(- 4 (cos\ 2~V +Sm?/—2~"v+° nY

ad + /2?7

ao —P7

PROOF. In order to approximate Pn(A) we apply saddle-point method.
By the Cauchy integral formula we have

where p = arccos

Pn(A) = (r!)2§ﬁ j z-n-1(z2+ Pz + aBR'yd)ndz

_ n2 1 [ [/ , aB'yST\ndz
= (nh) 27xi f KZ+ t-oz
|z|=r
!5 7
(n!) o '€ +P+

—%

alFyd its .

Introduce
R- relt+P a_By_Se_
r
R'yS
=r 2+ (r- REY )2+ 2P (r+”~ ) cosi+ 4a/Sricos2(.

In the case of 7> 0, r fixed, P becomes maximal when cost —1, i.e.,
f=0. ThenR—(r+P+ A, which is minimal for r = y/al'yS. Thus the

saddle-point is zo = Ral'yS, and standard calculations, details omitted, lead
to (3.2).

The case 7 <0 is more interesting. For sake of convenience we apply
the notation d=i/—aR'yS. For r > 0O fixed let us take the maximum of R in
y = cost over the interval [—1; 1]. The derivative is

R\ly) =~ =2P(r-d2/r)-8d2y.
oy
If R"(1) = 2P(r —d2/r) —8d2 > 0, then the maximum of R is at y = 1,
and
maxR=R{1)=(P +r - R2/r)2> (P +4d2/P)2=D4/P2>D2.

IfR'{—1) =2P(r—d2/r) +8i92< 0, then the maximum of R isat y = —4,
and
maxR =R{-1) = (P -r +d2/r)2> (P + 4d2/P)2>D2.
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Finally, if i?/() ~ 0~ 1), i.e., P\r —e2/r\ * 4%$2, then the maximum
of R is attained at the solution yo of R'(y) = 0. Thus,

P(r +i92/r) D2(r—d2/r)*
Vo= "AND and R{yo) = 4

This latter is minimal when r = #, then P'(l) = —8tf2< 0< 8192 = -R'(-1),
jlo= 0and the minimum is R(yo) —D 2. Hence the saddle-points are zq = #ii?.
Returning to the integral we can write

Pn(A) = (n!)2-2!7-rJ[ (P + 2di sint)ndt
-3

T
={n\)2"-Re("l (P + 2iHsint)nd,
0

= (n)2—Re”y (P + 2$f cos t)ndt

i/ Ty 2i7 \2
= (n1)2-Re~(P + 2iP)nj (I ~p +2P (1~006*) dt

(3.4)

Substitute t =x/y/n. Then the last integral is asymptotically equal to
+0° 2

X170 1 exp(~1_ip/2)\ ) dx=V AA V 1~iP/M,
_m

where the last square root is chosen to have positive real part.
Since P + 2di = Delip, from (3.4) we obtain

P,,(A) = (nH2"Re((P + 2i91)n+1/2(7r/m9f)1/2(1 + o(1)))
= (2n)!12_2nP ri+l/2i9 1/2”cos™n + Marg (P + 2$z) —* +o(l)j
= (2n)!(P/4)n+1/2i9-1/2(cos((n + Tsinan + ~92) +°(1))-

The proof is completed. O
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4. Back to the motivating problem

By Theorem 1the modified mean of a positive matrix A could be defined
as

s(A)=: lim (PAA)MN))/* = (A A |) Y

mm 5\ il_//n% m m -I/m
zcnnT n dn (i
Zj=1 3 =

(with the notations introduced in the Lemma of Section 2). Particularly,
~A(A) = 1 for all matrices with

m m
Y Makj=m, aik=m,
k=1 k=1

For 2x2 matrices A = 3 % we obtain

VasS + s/JTy
$(A) = )
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ALMOST SURE BEHAVIOUR OF SOME RANDOM SEQUENCES
V. V. PETROV

Dedicated to the memory of Alfréd Rényi

Abstract

This note examines the almost sure behaviour of sequences of random variables under
conditions expressed in terms of characteristic functions. We obtain generalizations of
some results of Chung and Erd6s related to sums of independent identically distributed
random variables.

1. Introduction

The set of functions ip(x) that are positive and non-decreasing in the re-
gion x > xq for some xq (depending on ip) and such that the series  1/(nip(n))
converges (diverges) will be denoted by Tc (respectively, T*). For example,
XpGT, for every p>0; (logx)pGT(ifp> 1 logx G4'dc-

Chung and Erd6s [1] proved that if {Xn} is a sequence of independent
random variables having a common distribution function with non-zero ab-
solutely continuous component and if EXj =0, E|Xi|5< 00, then

D liminfn22*('n)|57| >0 as.
n—00

for every function ip G 4/c, but if ipG 4”, then

2 ILminfnﬂ/ZO(n)|5n|:0 a.s..

Here Sn=£"=i*;-
In [3] and [4] (see also Theorem 6.20 in [5]) it was proved that if {Xn} isa

sequence of independent identically distributed random variables satisfying
the Cramer condition

(C) limsup |[Ee" Al |< 1,
|t|—00

then

(3) nlir}gon Y2i/>(n)|SJl|= 00 as.

1991 Mathematics Subject Classification. Primary 60F15; Secondary 60F05.
Key words and phrases. Sequences of random variables, almost sure behaviour, char-
acteristic functions.
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for every ip G\B if the additional assumptions EX\ = 0 and EXf < 0o are
satisfied, then (2) holds for every ipG Note that there are no moment
conditions in this proposition connected with (3).

In [6] relation (3) was proved for sums of arbitrary (not necessarily inde-
pendent or identically distributed) random variables under some conditions
expressed in terms of the characteristic functions of these sums; for a se-
quence of independent random variables sufficient conditions are given in
terms of characteristic functions of summands. Unfortunately, the above
mentioned generalization and strengthening of the Chung-Erdds theorem
connected with (1) does not follow from results in [6]. The present note
contains a more general result which is free of this disadvantage.

2. Results and proofs

Consider an arbitrary sequence of random variables Yf, Y2,.... We put
fn{t) = EeitYn.

Theorem 1. Letip£”c. Let {g(n)} be a sequence of positive numbers.
Suppose that the following condition is satisfied:

(4) J \fn(t)\dt = 0{g(n))
\t\*eng(n)i/j(n)
for some positive constant e. Then

(5) nIim ng(ii)ip(n)\Ym\=00 a.s..

PROOF. For an arbitrary random variable X the Levy concentration
function Q(X] A) is defined by the equality

Q(X] A) =supP@”X ~x+ A).
By Esseen’s inequality [Z] (see also [5], Lemma 1.16) we have

Q{X-VDMA\ j \f(D\dt

for every A> 0 where f(t) is the characteristic function of X and A is an
absolute positive constant. For our sequence of random variables {Yn} we
obtain

QIYN]\)AA\ | \fn(t\dt
INA
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for every A> 0.
Let ip€ 'I'c. Put A= L/(ng(n)ip(n)). Then

6) Q(":A)g J \fn{o)\d,

nQ{H)l (n)

where B = {t: \t\*ng(n)ip(n)/L}.
Let e be a positive constant satisfying condition (4). If L is sufficiently
large, L > 1/e, then

J \fn{t)\dt = 0{g(n)) (n—»00).

B

It follows from (6) that
QYn;\)d

for all sufficiently large n where C is a positive constant. We have

P(jyri|*L/{2ng{n)ip{n)) * Q{Yn-L/{ngin™in))"
Uc/(nip(n))
for all sufficiently large n. By the Borel-Cantelli lemma,
(M PO\YnM\"L/(2ng(n)”(n)) i.0)=0

since ip£ 4/c.

The only restriction on L is L > 1/e where e is a positive constant satis-
fying condition (4). Therefore we conclude that (7) holds for an arbitrarily
large L. The relation (5) follows. Theorem 1 is proved.

The following proposition is an immediate consequence of Theorem 1in
the case when g(n) =n-1/2.

Theorem 2. If

00
J \Mn(\dt=0(n~12)
— 00

then _ _
nIanOO nY2i/>(n)lyn|=o00 as.
for every function tp£ ~ c.

Theorem 2 is a generalization of a result in [6]. Theorem 2 does not
imply the main result of [3] connected with relation (3). However, the latter
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result follows from Theorem 1 with g(n) =n /2. It can be proved along the
lines of the proof of Theorem 1 in [3].

[
(2

(8]

(4

B
6]
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BOUNDS ON PROBABILITIES AND EXPECTATIONS
USING MULTIVARIATE MOMENTS
OF DISCRETE DISTRIBUTIONS

A. PREKOPA

To the memory of Professor Alfréd Rényi

Abstract

The paper deals with the multivariate moment problems in case of discrete proba-
bility distribution. Assuming the knowledge of a finite number of multivariate moments,
lower and upper bounds are provided for probabilities and expectations of functions of
the random variables involved. These functions obey higher order convexity formulated
in terms of multivariate divided differences. As special cases, the multivariate Bonferroni
inequalities are derived. The bounds presented are given by formulas as well as linear
programming algorithms. Numerical examples are presented.

1. Introduction

In this paper we present bounds on functionals of an unknown prob-
ability distribution under some moment information. Our functionals are
expectations of higher order convex functions (see Popoviciu [17]) of ran-
dom variables and probabilities of some events. Moments, at least some of
them, are frequently easy to compute (even in experimental sciences, see,
e.g., Wheeler and Gordon [24]) and the bounds that can be obtained on
this ground are frequently very good, in the sense that the lower and upper
bounds on some value are close to each other.

While the literature is rich in papers handling univariate moment prob-
lems of this kind, the multivariate case has not been studied enough until
recently. The papers by Dula [4], Kall [9], Kemperman and Skibinski [13] and
Prékopa [21] can be mentioned as examples. Examples for more general mo-
ment problem formulations can be found, e.g., in the paper by Kemperman
112;.

A few years ago the sharp Bonferroni inequalities of Dawson and Sankoff
[3], Kwerel [14] and others, have been discovered as discrete moment prob-
lems by Samuels and Studden [23] and Prékopa [20]. In this case the random

1991 Mathematics Subject Classification. Primary 62H99, 90C05.
Key words and phrases. Multivariate moment problem, stochastic inequalities, linear
programming, Lagrange interpolation.
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variables of which some of the moments are known are occurrences con-
cerning event sequences and the moments are binomial rather than power
moments.

Given the information that a random variable is discrete, where the sup-
port is also known, the application of the general moment problem (where
the support is unrestricted) provides us with weaker bounds than the appli-
cation of the discrete moment problem. In fact, in the latter case the set of
feasible solutions is smaller than in the former case. Discrete random vari-
ables with known support are quite frequent in applications. Thus, research
in discrete moment problems is important both from the point of view of
theory and applications.

Research in connection with the multivariate discrete moment problem
has been initiated by Prékopa [21]. This paper presents further and more
important results in this respect.

Let £1,..., £s be discrete random variables and assume that the support
of is a known finite set Zj = {zjo,..., zjnj}, where Zjo< see< zjnj, j =
1,..., s. Then the support of the random vector £ = (£i,..., £5) T is part of
the set Z= Z\ x eeex Zs. We do not assume, however, the knowledge that
which part of Z is the exact support of £

Let us introduce the notations

(1.1) Piim~i. = P(Z1—Z1iX5¢¢ I8 —Zsi3)
n\ ns

(1.2) Pa\mag = s zui mmmzsi,Pii-i.
zi=0 ia=0

where aq,...,aq are nonnegative integers. The number pQl.G is called
the (aq,... ,as)-order moment of the random vector (£i, m.. £«). The sum
ag + *+++ as is called the total order of the moment.

We assume that the probabilities in (1.1) are unknown but known are
some of the multivariate moments (1.2). We are looking for lower and upper
bounds on the values

(13) E [m ) -

(1.4) 2 6 Er.)

(1.5) P(6=n,.-. g &

where / is some function defined on the discrete set Z and Tj € Zj, j =
1 The problems of bounding the probabilities (1.4) and (1.5) are

special cases of the problem of bounding the expectation (1.3). In fact, if

1, iij'er, j = 1,... .S

(1.6) f(zu...,zs) = 0. otherwise
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then (1.3) is equal to (1.4), and if

L ifzj=rjij—,...,s

1.7
(.7) H{zu 28 o, otherwise,

then (1.3) is equal to (1.5). In spite of this coincidence, the condition that
we will impose on /, when bounding the expectation (1.3), does not always
allow for the functions (1.6) and (1.7). Hence, separate attention has to be
paid to the problems of bounding the probabilities.

As regards the moments (1.2), two different cases will be considered:

(a) there exist nonnegative integers such that pai..as are

known for O*aj £ rrij, j = 1,..., S;
(b) there exists a positive integer m such that /iai.. are known for
o\ H----- tasum, aj™o,j =1,...,S.

Case (b) is of course more practical than Case (a). If, e.g., we know all
expectations, variances and covariances of the random variables £i,...,£5s,
then Case (b) applies. If only the expectations and the covariances are
known, then Case (a) applies. However, when the covariances are known
then, in most cases, the variances are known, too.

We formulate the bounding problems as linear programming problems.
For the sake of simplicity we will use the notation /jr.js= f(zul,..., zsis).
In both problems formulated below the decision variables are the Piv-is, all
other entries are supposed to be known. In Case (a) the bounding problems
are

min(max)

subject to
(1.8, n\ ns

ii=o  ij=0
foro™aj™rrij, j=1,...,8
Pii -is =0) Seee>jS-

in Case (b) the bounding problems are

min(max)
ii=o is—o
subject to
(1.9
i1I=0  is=0
foraj o, j=1,...,5;a\ 4---- ras™m

Pii 'is = Hjmeo)*s-
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We reformulate these problems, using more concise notations. Let

/1 1 17
Zio zjl . Zjnj
m.j m j m;
\Vv V *m zini)
A = A\ o eeep As,

where the symbol ® refers to the tensor product. For example the tensor
product of A\ and A2 equals

A AX
Z20A1 221A1 /\zﬁ‘zlA\ \
A\ ® A2 =
May  IR2A, 257M )

Note that the tensor product is noncommutative but it has the associative
property (see, e.g., Horn and Johnson [7]). We further introduce the nota-
tions:

= (moo -0, h10 --0, e+s1hm 10--0) M010--0) MII-'-0) s+ «) 7

P={Ph-is, Ogil gmi,...,0gis”"ms)7

where the ordering of the components in p and f coincides with that of the
corresponding columns in the matrix A = (0g...").
The optimum values of the linear programming problems

min(max) f7p

subject to
(1.10y Ap=b
P=0
provide us with the best lower and upper bounds for E[f(£i,..., £3)] in Case

(a). We call these bounding problems.

In Case (b) we define b as the vector obtained from b in such a way that
we delete those moments /xai.. for which a\ + mm+ as>m. Deleting the

corresponding rows from A, let A designate the resulting matrix. Then, in
Case (b), the bounding problems are:
min(max) f7p

subject to
(1.11,
Ap=Db

p ~0.
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The matrix A has size [(mi +1) eee(ms+ 1)] x [(ni + 1) eee(ns+ 1)] and is

of full rank. The matrix A has size N x [(ni + 1) em (ns+ 1)], where N = (s+tn)
and is also of full rank.

It is well-known in linear programming theory that any dual feasible basis
(i.e., that satisfies the optimality condition but is not necessarily primal fea-
sible) has the property that the value of the objective function corresponding
to the basic solution is smaller (greater) than or equal to the optimum value
in case of a minimization (maximization) problem.

Let Mnin (Vmax) designate the minimum (maximum) value of any of the
problems (1.10) and (1.11). Let further B\ (B2) designate a dual feasible
basis in any of the minimization (maximization) problems (1.10) and (1.11).
Then, in view of the above statement, we have the inequalities

(1.12) fEIPAJl g Fmin™ E [/(6 ,..*,6 )] Vmax g fEapBa,

where f# and p0 designate the vectors of basic components of f and p,
respectively.

We use some of the basic facts from linear programming and the dual
algorithm of Lernke [15] for the solution of the linear programming problem.
A simple and elegant presentation for both can be found in Prékopa [22].
For the reader’s convenience the dual algorithm is briefly summarized in
Section 7.

Note that, as it is customary in linear programming, the term “basis”
and the symbol “B” mean a matrix and, at the same time, the collection of
its column vectors.

We look for dual feasible bases allowing for inequalities (1.12) and pro-
viding us with bounding formulas. If such a bound is not sharp then, start-
ing from the corresponding basis, as an initial dual feasible basis, the dual
method of linear programming provides us with a sharp algorithmic bound.
It is shown by Prékopa [18], [19], [20] that in case of s = 1 the dual method
can be executed in a very simple manner. We will show that some simplifi-
cation is possible in the multidimensional case, too.

We can look at the moment problems from a more general point of view,
by replacing Chebyshev systems for the matrices A\,..., As. Such a general-
ity in handling the problem does not present any new theoretical challenges
as compared to the power moment problem, however. On the other hand,
the nice formulas that we obtain through Lagrange interpolation polynomi-
als would not be immediately at hand. Therefore we keep the discussion on
a more specialized level.

There is one case, however, to which we pay special attention, in addition
to the multivariate power moment problem. This is the multivariate binomial
moment problem.

We take Zj = {0,...,rij}, j =1,...,s, introduce the cross binomial mo-



354 A. PREKOPA

ments of £1,..., as

and formulate the problems
ni ns

min(max) E "™ ) "fil—ispil—ta
11=0 is=0
subject to
ni ns -
(i\
1.13 " o _
(49 E: " EL G )y as)Pil is=sai
for on Lo
PIV-is AO, a” iiy--]
and
ni ns
min(max) E - E
=0  Is=0
subject to
ni ns . _
(114) - - E (IIS\Ph-is-anvas
iIE:O is—0 \ (st
for = 2O, 3= 1 ai H-------- I-Qs”"m
Pii-i" "0, all R

Problems (1.8) and (1.13) can be transformed into each other by the
multivariate generalization of the transformation presented in Prékopa [20].

Problems (1.9) and (1.14) can also be transformed into each other by
another but still simple rule.

It follows that a basis in problem (1.8) is primal (dual) feasible ifand only
ifit is primal (dual) feasible in problem (1.13) and this simple correspondence
carries over to problems (1.9) and (1.14), too.

2. Divided differences and Lagrange interpolation

First, let s=1 and, for the sake of simplicity, designate the elements of
Z\ simply by zo,...,zn.

The divided difference of order 0, corresponding to Zi, is f(zi), by defini-
tion. The first order divided difference corresponding to Zil, Zi2 is designated
and defined by

/tea) -/tel)

ten zh;/] 7ip . 7
12 - n
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where 77z;2. The fcth order divided difference is defined recursively by

r, v ML [ZAeeesziksi i]] —zi\ > oo 1zik |/

IZh )zh >eee)zik 127k+ >35=~ ] _ [ ] >
z ik+i zn

where ..., Zik+1 are pairwise different.

For the case of an arbitrary s, the divided difference corresponding to a
subset

Al {20 * € IV} X eee X {Zsizid:Ifl} = Z\il X o+ X = ZS[S

of the set Z can be defined in an iterative manner in such a way that first
we take the Ag-th order divided difference of / with respect to z\, where
k\ = /iy —1, then the fo-th order divided difference of that with respect
to 22, where k2 = I/21—1, etc. This can be executed in a mixed manner, the
result will always be the same.

Let (zii,16/1;...; zsi,i € 1s,f] designate this divided difference and call
it of order (fci,..., ks). The sum k\ + mm+ ks will be called the total order
of the divided difference.

The set on which the above divided difference is defined is the Cartesian
product of sets on the real line. Let us term such sets rectangular. Divided
differences on non-rectangular sets have also been defined in the literature
(see, e.g., Karlin, Micchelli and Rinott [11]). These require, however, smooth
functions while ours are defined on discrete sets.

A Lagrange interpolation polynomial corresponding to the points in
{zu, i Gli} x wex {zsi, i Gls} is defined by the equation

I"I1—stzl)eee1Zs)

2jh = X] f(zlh’--"zsis)Lhii(zl)'" Ll,is(zs),
where
(2.2) L1jij(zj)= J] Zj ~Jjh , i=1,... s.

neij-{ij}Zij zZh
The polynomial (2.1) coincides with the function / at every point of the set
zil.js and is of degree m\ -+-ms .
Newton’s form of the Lagrange polynomial (2.1) can be given as follows.

Let us order each set zih and let /j(k3) designate the first kj + 1 elements of
1j,0"kj *mj, j=1,...,s. Then the required form is

(2.3) m1 ms s

= n izi ~ zih) zlh,h£I1[k")",...",zsh, h e | §ks)',f
ki=0  f3=0j=:1/i€/(*-1)
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Let us introduce the notations b(zi,... ,zs), b(zi,..., zs), where
b(zi, me, zs)= (1,zi,..., Z71) ® mmgp(1,25,... ,2™)

and b (z) is obtained from b(z) by deleting those components z«1eeezfs for
which op + eee+as>m. Then we have the equalities

b= E[b(Zu...,ts)},

b=E[b(",... s)}

Let U = {ui,..., um} be a set of points in and H = {(ori,..., as)} a
finite set of s-tuples of nonnegative integers (aq,... ,as).

We say that the set U admits Lagrange interpolation of type H if for
any real function /(z), zGU, there exists a polynomial p(z) of the form

(2.4) p{z)= c(ai)emias)zil mmwfs,
(ai,...,as)eH

where all c(aq,..., as) are real, such that
(2.5) p(ui)=f(ui), i= M.

Equations (25) form a system of linear equations for the coefficients
c(aq,...,as). If|LT= M, then in (2.5) the number of equations is the same
as the number of unknowns. Simple linear algebraic facts imply that if U
admits Lagrange interpolation of type H1then it admits a unique Lagrange
interpolation of type H.

Let B Dbe a basis of the columns of the matrix A and H the collection of

all power s-tuples of the components of the vector b(zi,..., zs). In this case
\H\ = (m\ + 1) eee(ms+ 1). Let
(2.6) I = {(ii,...,is) laiv..is <EB}.
Then the unique H-type Lagrange polynomial corresponding to the set
2.7) U={{zus,...,zsis)\{ii,...,is)el}
is equal to
(2.8) ..,28) =fRB~Ib{zi,...,zs).
Since b(ziii;..., zsls) = aq...”, it follows that the basis B is dual feasible

in the minimization (maximization) problem (1.10) if and only if

f{zu ... ,zs) " L/(zi,...,z9), all (zi,... ,zs)GZz

(29) {t{zi, ®*)Zs) = Lj(z\,... ,zs), all (zi,...,zs)eZ).
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Note that in (2.9) equality holds for all (z\,..., zs) GU.
Let B be a basis of the columns of A and H the collection of all power

s-tuples of the components of b(zi,... ,zs). If we define | and U as
(2.10) I ={(iu ... ,is) lail..is EB)

(2.11) U= {{zUl,.. .,zsis)\(ii,...,is)el}

then

(2.12) Lj(zi,... ,zs)=(~B~1b(zi,... ,z9)

is the unique 1l-type Lagrange polynomial corresponding to the set U.

The dual feasibility of the basis B in the minimization (maximization)
problem means that

12 13 f{zi,...,zs)"Li{zi,...,z59), all (zi,...,za)eZ
(/(*1, A Li(zl, me, z5), all (zu...,zs)e 2),
where equality holds in case of (zi,..., zs) € U.

The inequalities (2.9) and (2.13) are the conditions of optimality of the
minimization (maximization) problems (1.10) and (1.11), respectively.

Replacing (£j,... ,£s) for (z\,... ,zs) and taking expectations, relations
(2.9) and (2.13) provide us with bounds for E[f(£i,... ,£8)] in Cases (a) and
(b), respectively. If the basis is also primal feasible, then it is optimal and
thus, the obtained inequality is sharp.

3. Inequalities based on rectangular dual feasible bases
In this section we assume that f{z\,... ,zs) = f\{z\) mmf s{zs) for Z £ ZI,

For each j, 1~ j s, we consider the univariate moment problem

Tj
inin(max) ~ fj{zji)Pjj)
i=0
(3.2) subject to
ni

§)==«j)> a=o,...,mj
i=0

pf]*o, t=o,...,nj,
where =E(£?),a=0,...,mj, j=1,..., s are known, together with the
sets Zj = {zji, i = o, and the unknown decision variables are the
Pi3) = P (£ = Zji), i=0,...,rij,j =1,...,s.
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Theorem 3.1. Suppose that fj{z)*.0 for all zEZj. Iffor eachj, 1<?'5is,
we are given a Bj that is a dual feasible basis relative to the maximization
problem (3.1), then B = B\ ge+*®Bs is a dual feasible basis relative to the
maximization problem (1.10).

Moreover, if the set of subscripts of Bj is 1j and Lj. (z) is the correspond-
ing univariate Lagrange polynomial, then we have the inequality

(3.2) E[f(Ci,...As)]"E[Lh ((1)---LIs(Q}.
PROOF. The dual feasibility of the bases B\, ... ,Bs means that
Eli(-zi)™i(zi).
(3.3) :
I-'Is ("s) = /s("s)) ZsEZs.

On the other hand, the unique ii-type Lagrange polynomial, with H =
{(ai,..., as)10 aj nij, aj integer, j = 1,.. .,s}, is given by (2.8). Since

f(zi,...,zs)="f\(zi)--- fs{zs)i if follows that the polynomial (2.8) takes the
form
(3-4) Lh-h (zu ...,zs)=Lh (zi) mmeLIs[zs).

Since the dual feasibility of B relative to the maximization problem (1-10)
is the same as the second inequality in (2.13), the theorem follows by (3.3)
and (3.4). O

THEOREM 3.2. Suppose that Lj (z) ~ O for all zezj. If for each j,
113US, we are given a Bj that is a dual feasible basis relative to the mini-
mization problem (3.1), then B = B\®- m®BS is a dual feasible basis relative
to the minimization problem (1.10).

Moreover, if the set of subscripts ofsj is1j and L/ {z) is the correspond-
ing Lagrange polynomial, then we have the inequality

(3.5 E[Lf(fL,..., ts)}AE[LII(ZL)---L Is(fs)}.

PROOF. The proof is the same as that of Theorem 3.1, with a slight
modification. O

Theorem 3.1, combined with the one-dimensional dual feasible basis
structure theorems of Prékopa [20] provides us with a variety of upper bounds
for probabilities and expectations. Below we present a few examples. Define

_ 0o, ifz<zr.
fi(z) 1, if2" 2z
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O

9 0 0 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0 0 0 0
7 . 0 0 0 . 0 4 . 0 0
6 . 0 0 0 . 0 . . 0 0
5 . 0 0 0 . 0 4 . 0 0
4 0 0 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0
0 . 0 0 0 . 0 . . 0 0

0 1 2 3 4 5 6 7 8 9

Figure 1. Illlustration of a rectangular dual feasible basis through the planar points to
which the basic columns of A correspond in the maximization problem (1.10). We chose
mi+1=4r,=4mz2+1=4,r2=5.

Example 1. Let s=2, Zj —{0,...,9}, j =12, m, -3, m2= 3 and
choose the dual feasible bases, relative to the maximization problem (3.1),
as follows:

h = {o,r i, k, k+ 1}, r, 1
h - {o,r2,M + 1}, ra”™l.
Then we have
{z-1))(z-k)(z-k- 1) (z-Q){z-r){z-k-1I)
hf > (n-o)(n -kK){n -k- 1) {k-0){k-rI){k- k- 1)
(z-0)(z-r,)(z-A>)
{k+1-0)k+1I-ri)(k +1-k)
(z- o)(z—t)(z —t—1) (z-0)(z-r2)(z-f-1)
h Z ir2-o0)(r2- t)(ra-t- 1) (t-o)ft- r2){t-t- 1)
[z—0)(z —r2)(z =)
t+1—0)(i+1-r2){t+1- 1t

To be more specific, let r1 =4, r2—5, k=16, t =6 (see Figure 1). Then

the above polynomials take the forms

EI'(*) =" (z2- 172 + 94)

Lh (2= 2JO (Z*~ 182 + 107)"
The inequality (3.2) specializes to

P(il ~4,6 15)¢g (P33 - 18/132 + 107/131

—17/123 + 306/i2 —1819/i 2i
+94/1,3 - 1619/1,2 + 10058/1,,).
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Example 2. Letmj=2,rj=1j=1,...,s Then the only dual feasible
bases relative to the maximization problem, are those that correspond to the
subscript sets Ij = {0,1, rij}, j = 1,...,s. The Lagrange polynomials take the
form

. (z- Zjo)(z- Zjn, (z-2j0)(z- Z1
E/j(z) = - +
zinj  zj: (zjrij  zjo)(zjn-  zji)

In case of s = 1 the bound (3.2) is sharp because the unique dual feasible
basis must be primal feasible, too (we have assumed that the right-hand
side values in problem (3.1) are moments of some random variable which
implies that the problem has feasible solution; it has finite optimum, too,
because the set of feasible solutions is compact). The bound (3.2) is sharp
in the multivariate case, too, in the sense that the basis in problem (1.10),
corresponding to the subscript set I = I\ x eeex Is is primal and dual feasible,
hence optimal.

Of particular interest is the case where Zj = {0,... ,rij},j=1,..., s and
the random variable is equal to the number of events that occur among
some events Ej\,..., Ejnj,j = 1,..., 5. We may write L (z) in the form

.. z(z - 1)2 .
=7- =1,...
Lij(z)=2- ", L i =t
from which we derive
L ) _ zi(zi - 1) 2 Zs(zs 1) 2
Li.izi)--- Li3{zs) = ; . s , s

Using the cross binomial moments Sai..as, the inequality (3.2) can be ob-
tained. It is also a sharp one. For example, if s = 2 then we obtain

P{{An UsemUAIni)n (A2 UesUA22)= i~UB6 ~1)
2 4

A S j =S 2 oo S2i+——S22m
n2 nin2

This result was first obtained by Galambos and Xu [s].
The general formula can be written in the form

p{n u AQ):JP(6=|>—’6 =)

c L A SSALES g

(3.6)

nf'*i1’
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Example 3. Letr, = 1,zj0= 0, rrij = 2, Ij = {0,Zji},zjij+1},j = I,...,s.
Then the basis corresponding to the subscript set 1j is dual feasible in the
minimization problem (3.1). The Lagrange polynomial L” (z) takes the form

LW= f ~-j2ht I+
Zjij\zjij  zjij+1)  NijHL\zjij AL zjij)
_ Zjzjtj +Zjij+\-z)
zjij = zjij+1
This polynomial is nonnegative for 0~ z ~ 2nj iff 41} + zji/+ 17
In the special case where {zjo,..., }={0,..., rij}, the nonnegativity

condition for Li{(z) is that 2ij + 1'tn.j. Assuming this to be the case, for
each j, 17j ~s. we may write

3.7 TT £j(2ij + 1- £))
=1 #(ij+ 1)
If £) i = 1,m s designate the occurrences concerning the event sets
Eji,..., Ejnj,j =1,..., s, respectively, then it is desirable to give (3.7) an-

other form, expressed in terms of the cross binomial moments. For the case
of s = 2 the inequality (3.7) gives the following result

ra r ot ) (i
P(ti* 1,6 ~1) N r' ) ] o )
hj T 1 ij{ij+1) V2
3.8 i . Si,2
38 (*1+1)(«2+1)SI’I 1+ Diz2(i2 + 1) !
4

. . 9"'- S22-
2+ Dn(*i + 1) *ICT + 1)*2(*2 + 1)

For an arbitrary s the formula is:

S nj
m(nuA.)
j=1li=l
39 =P(671,...,6"1)
> Z 1 ™~ H--haa-sq
ISoj£2,i=l... a

where it is assumed that ij ™ (rij —)/2,j = 1,... ,s.
It should be mentioned, in connection with problem (1.10), that the
optimal basis is not necessarily a rectangular one as it has been shown by
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Prékopa [21]. We can reach the optimal basis by starting from any dual
feasible basis and carry out the dual method for solving problem (1.10).

In order to find a good rectangular dual feasible basis we can choose 1j,
j =1,...,sinsuchaway that Ij is optimal for problem (3.1), provided that
it is @ maximization problem. In case of the minimization problem we choose
the best among those dual feasible bases for which the Lagrange polynomial
is nonnegative. The term best means that any dual step that improves on
the objective function does not preserve the nonnegativity of the Lagrange
polynomial.

Note that having the best univariate bases I\,..., Is, the basis / = I\ x
eee X Is is not necessarily the best rectangular basis.

4, Bounds based on multivariate moments of total order m

We assume that the known moments are: pai..as, where aj 20, j =
1,...,S, «i H—-—-tasum.

Theorem 4.1, Letl = {(ii,... ,is)\ij~ o0, integers, j =1,..., s, ii +-mm

is” m} and assume that all divided differences of total order m + 1, of the
function f, are nonnegative. Then the following assertions hold.

(a) The set of columns |(ii,..., is) £ 1} is a basis B for the columns
of A in problem (1.11).

(b) The Lagrange polynomial ,28), corresponding to the points
{(ziij,..., zsis)l = (ii,..., is)e /} is unique and is the following
Li{zi,...,z9)

(c) We have the inequalities
(4.2) f(zi,...,za)'ZLI1{zi,...,z9), for (zi,...,zs)eZ,
i.e., B is a dual feasible basis in the minimization problem (1.11),
4.3)

If B is also a primal feasible basis in problem (1.11), then the in-
equality (4.3) is sharp.

(d) If all divided differences of total order rn+ | are nonpositive, then all
assertions hold with the difference that B is a dual feasible basis in
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the maximization problem (1.11) and the inequalities (4.2), (4.3) are
reversed.

PROOF. We mention, without proof, that the determinant of B has a

simple form
s m—Aim-(/i+l)

"N N

This implies that |B| y"O, hence (a) holds. Assertion (b) follows from (2.13).
Let zhi = {zh0, ..., 2/jj}, Z" = {cTosese) «/ii, «i}> i = 0,...,77i, h —

1,..., s and define the function zs), (zi,..., zs) EZ as follows:
Ri(zi,...,z9)
~ /1 y ' [«1,*ee>h .-\ *hih\ Zh+lih+1\ me Zsis'i ]

h=1 _tiH-Hem
0  £rij,j=h,....s

ih s ij—t

JI(«/l —zhl) I 3 [z] ~ zjk)-
1=0 j=h+ 110

We show that Li{z\,. .. ,«<a)+ Ri{zu ... ,«s) = /(«i,...,z9).
The proof can be carried out by induction. For s=1 it reduces to

4.5) f{z) —Lj{z) = Hiz-ZjNiEI-J]
zei

which is well-known in Lagrange interpolation theory. For the case of s = 2
we have

Li{zi,z2)
2 U 1
(4-6) = [2iO,---,ZUl ;Z20,..-,22i2-J]'[[Y I{zj - Z jh),
U+i2am j=1h=0
®=ij=nj J=1,2
b-i
where (Zj —zjh) = 1 for ij —0, by definition, and
h=0

RI{zi, z2) = [zio, mm Zim, Zi; Z20;f]{zi - Zio) -mm{zi - ZXIn)
+ [«10, %00, «IM-1,«1;«0,«21;/](«1 - «10)**®(«1 - «lM-1) («2 ~ «20)
4.7

+ [«10, «1;«20, +me, «2m; /](«1 - «10)(«2 - «20) e**(«2 - «2m-1)
+ [«I! «20, e, «2m, «2; /] («2 - «20) ¢¢"' («2 - «2m)-
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Combining terms from (4.6) with terms from (4.7), we may write

Li{zi,z2)+ Ri(zi,z2)

i-i
zii',z20;f] CXZI -z\h)
/l=0 A

| 2=
m
+ [zio,..., Zim,Zi-220-f] Q (zi -Zlh) >
h=0
I i—1
[zio,..., zu;zzo,zZi-f]Q(zi - Zih)(ZZ- 220)
0 h=0

m —I

+ [2i0, eee, Z\m—12211220,221]f] Q (zi - zin){z2 - ZZO)J
h

4.8
(4.8) . L
+ S[zw, z20, m&,32m;/] n
{ fco

m—+
+[M0,4; 220, ..., z2m;/](zi - Zio) IQ (*2 - *)J}

m

+ [zi;Z20, mm z2m,z2-f] Q (22 - Z22K)
=0

=/ (zi,720) + [2\;220, z21;/] (22 - Z20) 4—
+ [zi; Z2o,mee, 22m, 22;/](22 - 220) *** (22 - z2m)
= f(zi,z2).

Assuming that the assertion holds for the case of s —1, for any function,
we derive the equality

Li{z\,.... zs)+ Z?/(zi,..., 25)

b-i
(4.9 = E [*>mm>"-i;70.-m,*>»,;/]] Q - z sl
(s=0 /i=0
m
+ [zi,..., zs_i;zs0)... ;zsm,zs;/ i n (*s -2z sli)-
h=0

By (4.5) we see that this is further equal to [zi;...; zs_i; zs;/] which is the
same as /(zi,..., zS).
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Since R(zi,..., zs) » 0 for every (zi,..., zs) £ Z, we have the inequal-
ity (4.2) and its consequence (4.3). The rest of the theorem follows in a
straightforward manner. O

Figure 2 illustrates a dual feasible basis of Theorem 4.1 for the case of
ZX=272={0,... ,9}.

O - N W d 01 O N © ©
e & O O O O O

* O O O O o o

e O O O O O O o

e O O O O © O o o

e O O O © O © 0o 0o o
Ul O O O O O O O o o o
O O O O O O O o o o o
~N O O O O O 0o ©o o o o
0 O O O 0O O © O o o o
© O O O O 0O O O o o o

0 1 2 3 4

Figure 2. Illustration of a dual feasible basis through the planar points to which the
basic columns of A correspond in the minimization problem (1 11). We chose m + 1= 5.

Remark. If Zj —{0,...,nj}, j =1,..., s, then (4.3) can be written in
the form

(4.10) = A *il eee*gl[zjoleeejz\i\;eee1730, eom Zsia, f]Siv-is-

I\H--Ha

Theorem 4.2. Letl = {(h,... ,is)\ij 0, integers, j = 1,...,s,n\ —i +
mm+ns—is 'Lm} and assume that all divided differences of total order m + 1,
of the function f, are nonnegative. Then the following assertions hold.

(@) The set of columns \(ii,... ,is)e 1} is a basis B for the columns

of A in problem (1.11).
(b) The Lagrange polynomial Lj(z\,... ,zs), corresponding to the points

{{z\ix, ..., 2sjs)|(ii,... ,is) £ 1}, is unique and is the following
Lr{z\,...,z9)
(4.11)
'y ) [-ZIni)eeejrIni—i\)+ mlzsris>eeejzsns—is;/]
[ B |-ns-m
o=b'=nfd=l.--.is
S nj
X iQ (Zj—2jh).

j=1h=rij—ij +I
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(c) Ifm+1is odd, then
(4.12) f(zi,...,zs)"Li(zi,...,zs), for (zx..., 29) € Z,

i.e., B is a dual feasible basis in the maximization problem (1.11),
and

(4.13) E[f(E1,...,tis) HE[LI(ZL,...,(;s)h

Ifm + 1is even, then the inequalities (4.12) and (4.13) are reversed,
i.e., B is a dual feasible basis in the minimization problem (1.11). In
either case the expectation inequality is sharp, if B is also a primal
feasible basis in problem (1.11).

(d) If all divided differences of total order m + 1 are nonpositive, then
all assertions hold with the difference that (4.12) and (4.13) hold for
m + 1 odd, and the reversed inequalities hold for m + 1 even.

PROOF. The polynomial (4.11) coincides with / at the points {(zui, *mm
zsis)i (il) eeesis) £7}, for every /. This proves assertions (a) and (b).

Assertion (c) can be proved in the same way as that of Theorem 4.1.
If all divided differences that appear in the suitably defined Ri(z\,... ,zs)
are nonnegative (nonpositive), then still the sign of Ri(z\,... ,zs) depends
on the number of factors that multiply the divided differences in each term.
Since all factors are nonpositive for all {z\,... ,zs) GZ and there are m + 1
factors in each term, the assertion in (c) follows. Assertion (d) is a trivial
modification of assertion (c). O

Figures 3.a and 3.b illustrate dual feasible bases of Theorem 4.2. We
chose 7\ = zZi —{0,..., 9}.

O R, N Wh U N ©®O©
© o 0o oo o0 0o 0 o QO
v O 0O OO 0o 0o oo o o
N O OO0 0o ©o o oo o o
W O 0O O o O oo o o o
A OO o o oo o oo
01 ©o o o o 0o o o o
o o o o o o o o
O © o o o o
©® o o o o ©o
© © © o ©

O L N WhROUO O N ®©
© 0o o oo oo 0o o o Q
b O 0O 0o 0O 0O 0o 0o 0o o o
N O O oo oo o o o o
w o o oo oo 0o o o ©
No oo o oo oo oo
Ug1© ©o 0o o o o o o o
» o 0o o o ©o o o
O O O 0O 00 O e e
© © 0 0 0o 0o O
© o o o o o

~~
&

(b)

Figure 3. lllustration of dual feasible bases through the planar points to which the
basic columns of A correspond in the minimization problem (1.11). The basis in Figure
3.a (3.b) yields an upper (lower) bound because m+ 1= 5is odd (m+ 1= 4 is even).
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REMARK. If Zj={0,... ,nj}, j = then the inequality (4.13) can
be written in the form

E[mi, nam&)]
Y1  (rii - n)! mwe(ns- is)![ni, ...,ni —*i;...;ns,...,ns-1i8s

UH ; . 1ln3—s
°ah=nj,j=,....;s

(4.14)

XSni—i\mmmns-ism

5. Some bivariate inequalities

Theorem 5.1. Let, I —{(0,0), (1,0), (0,1), (ni,0), (0,n2), (ni,ri2)} and
assume that all divided differences of total order 3 of the function f are
nonnegative. Then the following assertions hold.

(@) The set of columns {aiyj2|(*i,i2) G1} is a basis B for the columns of

A in problem (1.11).
(b) The Lagrange polynomial Li(z\,z2) corresponding to the points
{{zh,Zi2) 1(*1,2) G1} is unique and is the following

Lr{zi,z2) = f{z\QZ20) + [zio,zn",z20;f]{zi -z 10)
+ [*lo;*20,*2i;/](22-320)
(5.1) + [zio, Zn, 2\nT, 220", f]{zi -zio){zi -Zn)
+ [zi0;220,221 ,Z2n2;f]{z2 - Z 20)(z2 - Z 2I)
+ [MO0M71,; 220, 22n2; f](z\ - 2i0)(*2 ~ ~20)»

(c) We have the inequalities
(5.2) f(zi,z2)"Li(zi,z2) for (zi,z2)GZ
i.e., B is dual feasible in the maximization problem (1.11),

(5-3) E[/(&, Fc)] M [E/(E 1,6 )}

If B is also a primal feasible basis in problem (1.11), then the in-
equality (5.3) is sharp.

(d) If all divided differences of total order 3 are nonpositive, then all
assertions hold with the difference that B is dual feasible in the min-
imization problem (1.11) and the inequalities (5.2) and (5.3) are re-
versed.

Proof of (a). It is a simple exercise to check that \B\ 7*o. Thus, B is
in fact a basis.
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PROOF OF (b). The uniqueness of the Lagrange polynomial follows from
(a).

That the polynomial Lj(zi,z2), given by (5.1), is the Lagrange polyno-
mial corresponding to the points {{zul,z2i2), (*i,*2) £ /}, follows from the
fact that L[(z\,Z2) coincides with f(zi,z2) on these points.

Now we show that (5.2) holds. First we assume that z\ > zio, 22 > :24.

In view of the assumption that the (2,1), (1, 2)-order divided differences
are nonnegative, we have the inequalities

[zio,zi;z20,22;f] » [zw,zini\z20,225/] ™ [210,ziNi;Z20,22n2)/]e
It follows from this that
NA f{zi,z2)"f{zi0,Z2) +f(zi,Z220)-f(ziO,Z20)
+ [zio, Zini\Zo, 22n2]f](zi - Zio){z2- 20)-

On the other hand, the nonnegativity of the (3,0)-order divided differences

and the fact that {o,1,ni} is a univariate dual feasible basis structure in the
problem

n1
max {zu, z20)p[i>
i- 0
subject to
ni
(5.5) Z p\}=R00, o =0,1,2
i=0
p!(L)AO; i:0,...,n1,

(see [20]) imply that

. f{zi,z20)"f{z10,220) + [zi0,zn ;z20;f](zi-zi0)
+ [Mo1 ZAni, 212; 2Qf]{z\ -z\o){zi -z n)-

In a similar way we obtain

, 1) f{z10,22) S Uzi0,z20) + 10;"20,22\-J]{z2 - z20)
+ [~10; 720, Z221;22N2;171 {Z2 ~ Z20)(Z2 ~Z2l)-

The inequalities (5.4), (5.6) and (5.7) imply (5.2).

The expectation inequality (5.3) follows from (5.2). If B is also primal
feasible, then it is optimal in the maximization problem (1.11), hence the
inequality is sharp. Assertion (d) follows from the fact that in this case the
function — has nonnegative divided differences of total order 3, hence the
inequalities (5.4), (5.6) and (5.7) hold if we replace — for /. These imply
the reversed inequalities of (5.2) and (5.3).
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Figure 4. lllustration of a dual feasible basis through the planar points to which the
basic columns of A correspond in the maximization problem (1.11).

If zi = 2\o and/or z2 = 220, (5.2) reduces to (5.7) or (5.6). This completes
the proof. O

A dual feasible basis of Theorem 5.1 is illustrated in Figure 4.

Remark. If z\ = {0,... ,ni}, Z2={0,... ,«2}, then the inequality in
(5.3) takes the form

E[m, 6)]~/(0,0) +[0,1;0;/]S10+ [0;0,1; /]SOi
+2[0,1,ni; 0; f]S20+ 2[° 0,1,n2;/]150+ [0, ni; O,n2;f]Sn .

THEOREM 5.2. Let I —{(0, 0), (0,1), (1,0), (1,1), (O,n2), (ni, 0)} and as-
sume that all divided differences of orders (2,1), (1,2) of the function f are
nonnegative while the divided differences of orders (3,0), (0,3) are nonposi-
tive. Then the following assertions hold.

(@ The set of columns {aii»2|(*ij*2) e 1} is a hasis B for the columns of

A in problem (1.11).

(b) The Lagrange polynomial T/(£i,z2), corresponding to the points
{(zj,, Zi2)\(ii, i2) €/} is unique and is the following
Li{zi,Z2) =f{zw,Z20) + [zio,zu]Z20\f]{zi ~Z\0)
+ [zi0, 220, 22T, f](z2 - 220)
(5.9) +[zw,zu,zini]Z:0;f]{zi - Z\o)(zi - 211)
+ [210;220,221,22n2;/] (22 - Z20)(z2 ~ Z21)
+ [e10,21i; 220,221;f](zi - Zio)(z2 ~ 220)-
(c) We have the inequalities
(5.10) f{zi,z2)".Li(zi,Z2) for (zi,22)GZ
i.e., B is dual feasible in the minimization problem (1.11),

(5.11) £[/(6,6)UE[M 6,6)]-
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If B is also a primal feasible basis in problem (1.11), then the expec-
tation inequality (5.11) is sharp.

(d) If all divided differences of orders (2,1), (1,2) are nonpositive, and
those of orders (3,0), (0,3) are nonnegative, then all assertions hold
with the difference that B is dual feasible in the maximization problem
(1.11) and the inequalities (5.10) and (5.11) are reversed.

PROOF. The proof is very similar to that of Theorem 5.1 and is omitted.

|

Figure 5 illustrates a dual feasible basis of Theorem 5.2.
9 o o 0 0 0 0 0 o o o
g O o o o o o o o0 o o
7 o 0 0 o 0 o 0 o 0 0
6 0 0 0 0 0 0 0 0 0 0
5 0 0 0 o] 0 0 0 0 0 0
4 0 0 0 o] 0 0 0 0 0 0
3 o] o] 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 0 0
1 . . 0 0 0 0 0 0 0 0
0 L b o] o] 0 0 0 0 0 b
o 1 2 3 4 5 6 [ 8 9

Figure 5. lllustration of a dual feasible basis through the planar points to which the
basic columns of A correspond in the minimization problem (1.11).

REMARK. If Z\ = {0,...,ni}, Z2= {0,... ,712, then the inequality in
(5.11) can be written in the form
£[/(£i,6)]"/(0,0) +[0,1;0;/]S10
(5.12) + [0;0,1;/]S0i + 2[0,1,m; n2/]SD
+ 2[p;0,1,n2;/]So2 + [0,1;0,1;/]Sn.

The proof of Theorem 5.1 allows for the derivation of simular dual fea-
sibility assertions for other lattices, using other assumptions. For exam-
ple, if m = 2 and the divided differences of orders (2,0), (2,1), (1,2) and
(0,4) are nonnegative, then the set of points {(ziq,22j2)|(¢ii,*2) £/}, with
I = {(0,0), (0,2), (0, 2), (0, 3), (1,0), (1,1)}, determines a unique Lagrange in-
terpolation and a dual feasible basis in the minimization problem (1.11). The
Lagrange polynomial is

Li(zi,z2)= [zio; 220; /1 + [zio; zio, *21; f]{z2 - 220)
+ [210; 220 ,321,2221 f]{z2 - Z20){z2 ~ 221)
+ [210; 220,221,222,%231/ 1(z2 - 220){Z2 - z21)(z2 - 222)
+ [zio,zn;z20-,f]{zi -Zi0)
+ [210,21i; z20,2211/](21 - zio)(z2 - 220)m
From here inequalities of the type (5.2) and (5.3) can be derived for s = 2.
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6. Multivariate Bonferroni inequalities

In this section we assume that Zj = {0,..., nj], j =1,..., s. Defining

we easily see that

[o,om i\g\ - (-1)1 forral.
Let f(zi,..,,zs)=g(zi) mmg{zs), (z\,... ,zs)€ Z Then we have

S

(6.1

If for at least one j we have ij =0, then the above divided difference is 0.
Let Aji,..., Ajnj, j = 1,..., s be s finite sequences of arbitrary events
and let  designate the number of those, in the jth sequence, that occur.

Then " 1listhesameas L N o w , Theorem 4.1 and relation (6.1)
imply

THEOREM 6.1. Ifm + | —sis even, then we have

and if m + 1 —s is odd, then we have

(6.3) P

For the case of s =1 we obtain
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if rn is even, and

(n V' m
i=1 /[ i=1
if m is odd. These are the original Bonferroni inequalities (see [l]j.
We can also deduce inequalities for P(£i = ri,... ,Es =rs) and P(Ei

ri, mmm £5/r5).
In the first case we define

_ o, ifz/ Tj
fi(z) 4 ifz=1j

and f(zi,... ,zs)—fi(zi) mmmf s(zs) ior (zi,..., zs) E Z. By the determinantal
form of the univariate divided differences (see, e.g., Jordan (1947)) we easily

deduce that
G..., ij-Ji1 =%y ()

which implies that

p,me i\;. mmo, ... is\f]l— [o,...,i];fj]

(6.4) 1= .
1 (i
"SNPt o

This is nonnegative if i\ + mee+ is- (rq4-— + rs) is even, otherwise it is
nonpositive. Hence Theorem 4.1 implies

Theorem 6.2. J/m+1-(rH -——-- f-rs) is even, then we have
(6.5) P(Z1=r1l,...,Zs=rs)Z E ft)
oH YISt j=1 J
q=h=nj

and if m+ 1—(rq+ mme+ rs) is odd, then we have

(6.6) P(6=n,...,6=r,)g E IK -1)~n~ )y~ o,
iiu yistrn =1 R
ri=h=niii=i

Finally, in order to obtain inequalities for P(£i ™ rq, mmm £5 = rs) we define

_ 0o, IfZ<Tj
Fiz) 4 ifza vy
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arid f(zi,...,zs)="fi(zi)---fs(zs) for (z\,..., zs)£ Z Aagain, rising the de-
terminantal form of the univariate divided differences, we get

[ *:/]= E 1) L 1
0,000 *:-[]= t - 1) ..
her. ij\\h
On the other hand, we have the combinatorial identity
i—1
rE>_-1)'-“J'=(-u r- 1
=r
Thus, we have the following formula for the multivariate divided differences

S

Booin:e o, is]f] = J3[o,.... ij:fi]
6.7) =1

S

Theorem 4.1 and equation (6.7) imply

Theorem 6.3. Ifm+ 1—(n + eee+ rs) is even, then we have the in-
equality

i H,—1
P{£] =rU- mmifs =rs) = E oot - 1)” no

(6.8) OH—h 721 rj~ 1

m6ii-'-is
and ifm + 1 —(ri 4------ £rs) is odd, then we have the inequality

P(zi~1,..

The inequalities (6.2), (6.3), (6.4), (6.6), (6.7) and (s.8) have been derived
first by Meyer [16].

7. Algorithmic bounds and numerical examples

The significance of the knowledge of a dual feasible basis is twofold.
First, we can immediately present bound for the optimum value of the linear
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programming problem we are dealing with. Second, starting from this basis,
we have an algorithmic tool with the aid of which we can improve on the
bound or obtain the best possible bound. This tool is the dual method of
linear programming, due to Lernke [15]. For a short and elegant description
of it see [22]

Given a linear programming problem

min(max) c1X

subject to
(7.2) Ax =D

x"O.

where A is an m x n matrix (m ~ n), assumed to be of full rank, any basis
B is a nonsingular m x m part of A, We say that B is feasible or primal
feasible if the solution of the equation Bxb = b produces x# ~ 0. Let | or IR
designate the set of subscripts of those columns of A which are in the basis.
Further, let cB designate the vector of components Cj, iE /, arranged in the
same order as they are in c.

The basis B is said to be dual feasible if the solution of the equation
yTB = CR satisfies the constraints of the dual of problem (7.1):

max(min) b;y
(7.2) subject to
ATyi(l)c.

If B is both primal and dual feasible, then it is optimal.
Let A = (oi,..., an), cJ = (ci,..., cn). With these notations the dual
feasibility of B can be formulated as follows:

(7.3) cBB~lah”~(>)ch, h=lI,...,n.

For hE | equality holds in (7.3).

The dual method of linear programming starts from a dual feasible ba-
sis B. Then the following steps are performed. We assume the problem is a
minimization problem.

Step 1. Check if B~Ib " 0, i.e., the basis B is primal feasible. If yes,
then stop, optimal basis has been found. Otherwise go to Step 2

Step 2. Pick any negative component of B~ Ib. If it is the ith one, then
delete the ith vector from B . Go to Step 3.

Step 3. Determine the incoming vector maintaining dual feasibility of
the basis and making the objective function value nondecreasing. Go to
Step 1.

Step 3 is usually costly. In case of the univariate discrete moment prob-
lems (see [20]), however, the structure of the dual feasible bases have been
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found and Step 3 can be carried out by performing simple combinatorial
search.

In case of the multivariate discrete moment problems we have only a few
dual feasible basis structures and we cannot spare Step 3 when solving the
problem to obtain the best possible bound.

Still, the availability of an initial dual feasible basis is of great help. We
can save the time needed to execute the first phase in a two-phase solution
method that is roughly 50% of the time needed to solve the LP. In addition,
since moment problems are numerically very sensitive, the knowledge of an
initial dual feasible basis increases numerical stability.

The dual method, as applied to these problems, has many other features.
For example, we may have more detailed information about the possible
values of the random vector (£i,..., £s), i.e., we may know that some of the
values in the set Z = Z\ x eeex Zs are not possible, in other words, have
probability 0. Information of this type has not been exploited so far in
former sections of the paper. The dual method, however, allows to take such
information into account, in a trivial way. In fact, we simply have to delete
those columns from the problem that are multiplied by the probabilities
known to be 0. The basis remains dual feasible with respect to the new
problem. This way we even improve on the bound.

Below we present one small numerical example for illustration.

Let ni =«2 =9, mi + m2= 3 The following power moments have been
obtained from the uniform distribution: Pixi2 = 1/100 for each 0" i\, =2 9

28.5, M30= 202.5
128.25,

Moo — 1) Mio = 4.5, 720
poi=45  Min= 2025  fu2l
M02= 285, p\2= 128.25,

M03 = 202.5.

We want to obtain the sharp lower bound for P(£i ~ 1,~2  1)- We start
from the dual feasible basis with subscript set I = {(0,0), (1,0), (0,1), (2,0),
(1,1),(0,2),(3,0),(2,.1),(1,2),(0,3)_}: o _

As optimal solution, for the minimization problem (1-11), we obtain

P40 = 0.075, pso= 0.125, P90 =0,

P04 = 0.175, Poa=0.125, pas= 0225,
Pos = 0.075, P09 =0.025, ps9= 0.175,
P®O= 0, and all other pix2=o.

The value of the objective function is the sum of those pXi2 probabilities
for which we have i\ A 1, =2~ 1- This sum equals 0.6. Thus, the result is

P(ti* 1,6 "1)Eo0s.
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Note that the true probability is the sum of those Pixz = 1/100, for which
*» N 1,2 N 1- This number is 0.81.

Suppose now that we have the information concerning  and z2 that
g1 +£2 = 12. This means that the set of possible values of the random vector
(E1,”2) is °nly a subset of the set {(*,j)|0 ~i~9, 04j ~9}. Thus, we may
delete those columns, variables and objective function coefficients from prob-
lem (1.11) which correspond to (i,j) with i+ j > 12. Solving the restricted
problem, the optimal solution is

P30=0.11393, P03 = 0.09749, P04 = 0.08732,
Pss = 0.23637, Pss = 0.11857, P56 —0.00985,
P97 = 0.12531, po9 = 0.05191, P49 = 0.10666,
ps9 = 0.65259, and all other Piliz—o.

The value of the objective function [SP4s+Ps5+Ps6+P9o7+P49+Pso = 0.64935.
This improves on the former lower bound that is 0.6.

In case of m = 3 the Bonferroni inequality (6.2) produces the irrealistic
result:

p fnU A')"Sn-S12- 521=2025-54 -54= -87.75.
y =1*=° /

This number is, at the same time, the value of the objective function in
case of the initial dual feasible basis.
For further numerical examples see Prékopa [21].
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THE RANGE OF A CRITICAL BRANCHING WIENER PROCESS

P. REVESZ

To the memory of A. Rényi

Abstract

Consider a critical branching Wiener process on IRL. Let R(n) be the range of the
locations of the particles at time n. A limit distribution theorem is proved for n~172R(n).

1. Introduction

Consider the following

Model 1
(i) a particle starts from the position 0 € K1 and executes a Wiener
process W (t) € K1,
(i) arriving at time t =1 to the new location W(1) it dies,
(iif) at death it is replaced by Y offspring where

P{Y =0} =P{Y =2}=1,

(iv) each offspring, starting from where its ancestor dies, executes a Wie-
ner process (from its starting point) and repeats the above given steps
and so on. All Wiener processes and offspring-numbers are assumed
independent of one another.

A more formal definition is given in Chapter s, p. 91 of [1].

Let

(@ B(n) be the number of particles living at time n, the particles born
at time n to be counted as alive at time n but not at time n + 1, i.e.
50) =1 P{5(1)=0} =P{B(I) = 2} = 1/2,

(b) Xn\, X n2, mm X nB(n} be the locations of the particles at time n in
K1,

(€) Mn —max{Xni, Xnz,eee, XniB(N)},

(d) M +(n,x) =P{M+ <xnv2|B(n) >0},

€ Mn  min{Xn\,Xnz,ees, Xn BN},
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380 P. REVESZ

) M. (n,x) =P{Mn <xnwv2\B(n) > 0},

@ Rn=M+—"M~,

(h) 7Z(n,x) = P{Rn < xnuwr |B(n) >0},

(i) Fn(x,y) =P{M+ <xnuv2, M~ >ynv2\B(n) > 0}.

In [2] we studied the limit properties of M+. We proved the following
two theorems.

THEOREM A. There exists a distribution function M +(X) (xc k 1) such
that for any n big enough we have

(1.1) d(M+(n, x), M +(x)) ~n 1/2(logn)4,

(1.2) 1 —M.+{x) + Ad+(—x) Hlexp if X~ 200,

M. +(x) is a solution of the integral equation

1 +oo0

(1.3)

where

and d(-, ) is the Levy distance.

THEOREM B. There is only one distribution function which satisfies
(12.2) and (1.3).

In the present paper we prove similar results for Rn. Our main result is:

Theorem L1 There exist distribution functions 1Z(x) and F(x,y) such
that for any n big enough we have

(1.4 d,(71(n, X),TZ(x)) *n 12 (logn)s
(1.5) d(Fn{x,y).F{x,y))*n 1/2(logn)s

F(oo, x) + (1 —F (00, —x)) + (1 —F(x, —00)) + F(—x, —00)
(1.6

(1.7)
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F(-,-) is a solution of the integral equation

1 +00
(1.8) F(u,v) :\] J {F(a~1/2{u-y),a~12(v- y)))2ga(y)dyda.

0 -o00

F(-, ¢ is the only distribution function which satisfies (1.6) and (1.8). Further
we have

H(z) = j" d(F(x, -00) - F(X,Y)),
As

where
Az={(u,v) GM, —00<v<u<o00, 0<u —v<z}.

2. A simplified model

Let
{Wni(t), t* o, i=\,2,...,2n~\ n=1,2,...}

be an array of independent Wiener processes. Let
{U(n,i), i=1,2,...,2"-1, n=1,2,...}

be an array of independent, uniform-[0,I] r.v.’s. We assume that the arrays
{Wni(t)} and {U(n,i)} are independent. Let

7(1, 1) =U(1,)),
V(2,h) =u,hu,h =v,nu,,
7(2,2) =17(2, D[/(2,2) =V, NCI/(2,2),
F(n, 2c—1) = V(n —1,k)U(n, 2k —1),
V(n, 2k) = V(n - 1, k)U(n, 2k),

AB=1,2,...,2n_2, n=2,3,...).
Model 2. Let

xj? = Wu (1-7(1,1)),
A=A 7 + WRL(V (1,1)-7(2,1)),
=42 o+ N 227 (1,1)-1/(2,2)),
41 -1=4-0, %+~ 2fc-i(7(n - LK) - V(n, 2k - 1)),
41 =4 -jt+ Wntk(V(n - 1,k) - V(n, 2k)),
B=1,2,...,2n“2, n=2,3,...).
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Introduce the following notations:

(@ M+ (2)=max(*<?,X ™ X ™p_),
(b) P{M+(2)<x} =Mt(n,x),

€ M-()=m in® X$,.., X ")
(d) M 2(n,x) = P{M~(2) <x},

€ Rm@)=  (2)—M~(2),

() R2{nx) =P{Rn(2) <x},

(@) Fi2)(x,y) =P{M+(2)<x, M~(2) >y}.
In [2] we have proved:
Theorem C. Let

M +{2)= nILn‘g0 M+(2) as.

and
M2(x) =P{M+() <x}= lim Mjtfi,!),

where the second limit is in weak sense. Then we have
(i) P{IM+(2) -M+(2)| "exp(-1(Tsn)} "exp(-0.2n),
(i) M.\{x —exp(—i0-3n))
A At (n,x) » M2 (x + exp(—10 3n)) + exp(—s .2n),

(i) 1—M 2 (x) + X) =exp if XZ 200,

X
20
(iv) X42 (x) asolution of the integral equation (1.3),

(v) X4z (x) % the on’y distribution function which satisfies (iii) and (1.3).
Theorem C clearly implies

THEOREM 2. The following limits exist:
M: =mlim Mn (2) as.,
n —00
R2= 71I|_r>r(1)0 Rn{2) as,
M2 (x)=P{M2 <x} = nlifnowo Ad2 (n!x),
AN(x) =P{in <x}= nIirgO 7?2(ro,X),
F2(x,y) = P{M2 < x, M2 >y} = Jiin i"2)(X,y),
where the last three limits are in weak sense.
Further we have

i) P{IM~(2) —M2\" exp(—10~3n)} " exp(—0.2n),
(i) P{i?,,(2) - R2\™ 2exp(—0_3n)} < 2exp(-0.2n),
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(iii) M 2 (x —exp(—10 3n))
AM 2(n,x) A M 2 (x +exp(—10_3n)) +exp (—0.2n),

(iv) 1-M 2(x)+M 2(-x)gexp if x 7200,

(v) F2(oo,x) + (1- F2(00,- x)) + (1- F2(x,- 00)) + F2(—X, -00)
= 2exp if x 200,

(vi) 1-u 2(x) biexp if x =400.

Theorem 3. F2(-,-) is a solution of the integral equation
1 +oo
21  F2(uv)=J J {F(a~12{u-y),a~12{v-y))) 2 {y)dyda,
0 —e0
where qQ(y) is defined in Theorem A.
Proof. Observe that

Mn 2= max(max($3 X@ s YA 2 maxxen 2+1,..., *? ),
M~{2) = min(min(X3§,X§2,..., X *n_2), min(X n_1+1, ..., 2,i)),

max”i?, X&\ ..., X *n2)=(F(l, 1)V2M+_1(2) + Wn (I ~ V (I1t1))
and
minimi?,4?,..., X$n2)= (P(l, 1))V2M-_1(2) + Wu (1- V (I, 1)).
Hence
P{M+(2)<u, M~(2)>v\V(l,l)=a, Wn(l-a) =y} =
—(P{M*_i(2) <a~1/2(u—y), M~_x>a ™ 2{v- y)})2.
Consequently,
P{M+<y, M2 >v\V(l,I)=a, Wn(l-a) =y} =
= (P{M+ <a~12@u- y), M2 >a~"2(v- y)})2
and
F2(u,v)—P{M2 <u, Mfi >v)
= E{P{M2<u, M2>«|Vr(l,l1)=a, Wn(l-a)=i}}=

- j 3 (P{MZ<cri2(u-y), M2 >a~I/2(v—y)})2ipa(y)dyda.

0 —oo
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Hence we have (2.1).

Theorem 4. F2(-,-) is the only distribution function which satisfies (v)
of Theorem 2 and the integral equation (1.8).

Proof. Let
{Zni = (2Zni(1),Zni(2)), *=1,2,...,2n-1, n=1,2,...}
be an array of i.i.d. random vectors with
P{zZni(l)<x, Zni(2) >y} =F(x,y),

where the distribution function F(-,-) is a solution of the integral equation
(1.8) satisfying (v) of Theorem 2.
The existence of such a distribution function follows from Theorems 2

and 3. Assume also that the arrays {Znk} and {VPnfc(-)} are independent.
Let

Yn = Zlu
Yo =~Xn + {V(1,1))1/2Zn,
T2=A{ + (P(1,1))12zi2,
Yn2k-i =X £ \k+ (V(n - 1,k))1/2Zn,2k-i,
YnX=XnUk + (F(n- k))l/2Zn2K,

where
V(@) _1y(@) y@)\
hni = (y..(i),y,i(2)).
Let
fin=max(yni(l),yn2(l), e*, Y *n-iil)),
i'n=min(yni(2),y,2(2),..., F,,)n-i (2)),
h{t) = (y (i, i))_1/2(i-iTii(i-y(i,i)))-
Observe that
fiz= (F(l, 1))YV2max(Zn (1), ~12(1)) + Wu (1 - F(I, 1)),
2= (V(, D))Y2min(Zu (2), Zi2(2)) + Wn (I - V(I, 1)).
Hence
P{H2 <u, V2>v}
P{max(zn(l), Zi2(l)) < h(u), min(Fu (2), Z12(2)) > h(v)j

(2.2 o
J f (F2{a~1/2(u-y),a~12{v-y)))2(pa{y)dyda =F2{u,v).

0 —o00
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By (1.5) we have
P{max(y3i(l), y32(1)) < u, min(_y3i (2), V32(2)) > v | £}
= Pimax(y&1),y3Al)) <u, min(y332),yA2) >v |E}
= F(h(u),h(v)),

where

Since given V(I, 1) and Wn(l —V (I, 1)) the random vectors

max(y3i(l),y32(1)), min(y3i(2),y32(2))
and
max(y33(1),y 34(1)), min(y33(2),y34(2))
are independent, we have
P{m <«, "3>v\V(l, 1),Wn(1- y(I, 1)} = (F2(h(u), h(v)))2.
Hence
P{v3<u, vz>v)
=J J (FR2(a~1/2(u-y),a~12(v-y)))2ipa(y)dyda= F2(u,v).

Similarly we have
P{/in<u, un> v} = F2(u,v).
Conditions (v) of Theorem 2 imply that

Hi_%mn -M+(2)] =0 as.,

lim \vn—M~(2)|=0 as.

n—00
Hence the limit distribution of nn:vn and M+(2), M~ (2) are equal to each
other and we have Theorem 4.

THEOREM 5. For any z>0 we have

72(2) = J d(F2(X, - oo) - F 2{X,y)),
Az

where
Az={(u,v) ER2, —0o<v<u<oo0, 0<ii—v< 7}

and Pjji'j)  defined in Theorem 2, determined in Theorems 3 and 4-
Proof. Since
P{M+ <u, <u} = F2(u, —e0) - F2(u, u),
Theorem 3 implies Theorem 5.
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3. Proof of Theorem 1

In [2] we evaluated the limit distribution of the most right particle in
case of Model 2 and we proved a kind of invariance principle saying that the
limit properties of Model 2 were essentially the same as those of Model 1
Now we evaluated the limit distribution of the range in case of Model 2 and
we show that Model 1 inherits the results of Model 2.

Consider Model 1. Then for any 0™ k <n let Q(k,n) be the number
of those particles which are living at time k and which have at least one
offspring living at time n. Clearly

B{k)"Q{k,n),  B(n)2Q(k,n),

{Q(k,n) =0} ={B(n)=0}  (O"k"n).
Q(k,n) is a nondecreasing function of k (05 k 5L.n) and Q(0, n) = 1 provided
that B(n) ~ 1 Hence on the set {B(n) >0} we can define a r.v. i/u = i'\i(n)
as follows:
i'l —inf'{k: 0<kun, Q(k,n) = 2}.

At time Wi we have two particles and both of them have at least one
offspring living at time n. vn will be called the first branching time of the
process. These two particles can be considered as the roots of two indepen-
dent branching processes living at least till time n (starting from vn). Let
il2i = i/2i (ra) resp. w22 — u22 (h) be the first branching times of the branching-
processes starting from v\\. Clearly i>n<Uz2i*n (i =1,2). In case v\\ =n
define V2i = n. Note that in case vn = n—1 we have also \2i = n.

We can say again that at times 12L (resp. W2) we have two (resp. two)
particles and they can be considered as the roots of four independent branch-
ing processes living at least till time n. Let s = 431(x2) (resp. ¥32= ¥32(11)
be the first branching times of the branching processes starting from z21.
Similarly let 1ss = 4ss(11) (resSp. wsa= 13a(71)) be the first branching times of
the branching processes starting from 122- Note that in case 2L~ n —1 we
have 151 = 132 — and in case 122 * N —1 we have zss = 14 = N.

In general at time zf? (j =1, 2., 2k~]) we have two particles and they
can be considered as the roots of two independent branching processes living
at least till time n (starting from vYj)- Let Vk+\2j-\ = *k+i,2j-iin) resp.
i'k+i7j = ifA-llj (1) be the first, branching times of the branching processes
starting at i/kj. Note that iffc+i,-i = *Mfeti,j=n if "kj *n-1.

Now we build up our

Model 3.

Let

{Wni(t), 0, i=1,2,....2n-\ n=1,2,...}

be an array of independent Wiener processes which is independent from the
array
W », j=12,.,2t\ A=12,...,n}.
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Let
N2 = A LD,

FW2A (< *1-*11).
=X$ +W22{v22-un),

Am,2k-1 ~ Xm-\,k 'T"*m,2fc2{*mfik-1 ~ I'm-1,k)i
X%2k = Xm-lI,k + WruM”mlk ~ Vm-1,k),

(k=1,2,...,2m-2, m=1,2,... ,n).
Note that the sequence

{X2>, k=1,2,...,2n~1}
is equal to the sequence
{Xnk, k=1,2,... ,1?(n)}

except that the elements of the second sequence might occur many times in
the first sequence. Hence

M+ 3) :=maxillJ, X < $ }= M+
(31 M- =min{x£\xid . .., =M
An(3):=M+(3)-M-(3) = An.
Let

=*n +W2(n(V(, 1- V(2,1)),
*22 =X § +W22{n(V(1,1) - V(2,2)),
X% k-x =A ijk + Wm2fc-i(n(V(n- 1,k)- V(n, 2k - 1)),
X% k=X"_ik + Wm2k(n(V(n - 1,k)~ V(n, 2k))),

(k—1,2,...,2m~2, m=12,...,n).
Note that

{nU2X%Il k=1,2,....2m~\ m=1,2,... .n} =

={*ml A=1,2,... 2m-1, m=1,2,... n}.
Now we recall
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THEOREM D. For any n =1,2,... there exist:

(i) a probability space {fin,«, P},

(i) a branching process (cf. Section 3) on fin with B(n)> 0,
(iii) an array of independent, uniform-[0,1] r.v.%s

{Uk,i), =1 ,2 ,.t=12,..,n}

(iv) an array of independent Wiener processes {Wjy(-)j A=1,2,; |

1,2,..., 2k~1} which is independent from {ukj} and {Ukj}
such that

P a<)i(KI%5%/22)I(<~xI=g}?ﬁ2j \A(K, J, I)\z C(logn)2}
(3.2)
< RK2«-iexp(.it2in
where
A(k,j, 1) = WKk+i,i(vk+i,i ~ vkj) - Wk+i,i(nV(k,j)(1-U{k+1,1)))
and
P{I"n(Hii)-*n(n(I-P(1,1)))|*"C (logn)32}
(3-3) log2n
= exP
Further
f 9y 6_\K
- N —
&4 DL VD gy T
and
(3.5) P{n=vkU 1=1,2, ..., 2K X}£ 1- exp logy ” log n
where
k=[Clogn]

and - 2

| 100

% -

Consequently,

P{max max \X$-nl'2X$\ >C(logn)2}

(3.6)

N k2k~xexp | - -(IOQZ n)2
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Note that by (3.4) we have
8.7 P{X(*)=X$, j=12,...,2«-1} l-exp(-(ciogy)log;h

fo\
taking into account only the different elements of the sequences {XR'} and
{*'$}m Hence

(3.8) P{i?K(3) ~i2,(3)} ~exp (- (Clogy )logn
and by (3.6)

P{|i?.K(3)-nY2RK(2)|*C(logn)2}
(3.9 A 2k Texp (logn)2

(3.1), (3.8) and (3.9) combined imply
P{]i?n-n V2i?K(2)|*"C(logn)2}

(3-10) Zexp t—t810g 0togn 'L+ k! exp L1090

Remember that (ii) of Theorem 2 claims that
P{InV2RK(2) - nH2i?2|* 2n1/2 exp(-10“3/)}
N 2exp(—9.2k).

Hence (3.10) and (3.11) imply that for any K >0 there existsa C = C(K) >0
such that

(3.12) P{|n-1/2i?n - R21* C'n-¥2(logn)2}~ n~K.
Consequently, we have Theorem 1 by Theorems 2 and 3.
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ASYMPTOTICS OF MULTIVARIATE EXTREMES
WITH RANDOM SAMPLE SIZE

D. S. SILVESTROV and J. L. TEUGELS

Dedicated to the memory of Alfréd Rényi

Abstract

We investigate the asymptotics of multivariate extremes with random sample size
under general dependence-independence conditions for samples and random sample size
indexes.

1. Introduction

Asymptotics of extremes with random sample size indexes have been
thoroughly studied for two types of models with asymptotically independent
sample and sample size indexes. In papers by Berman [3], Thomas [21],
Galambos [7], [9], [10], Gnedenko, B. and Gnedenko, D. [11], Beirlant and
Teugels [2] and Korolev [12] the model where the sample and the sample
size indexes are independent has been investigated. The papers by Berman
[3], Barndorff-Nielsen [1], Mogyorddi [14], Sen [17], Galambos [6], [8], [9] deal
with the model where sample size indexes depend on the sample but converge
in probability. This type of convergence is stronger than weak convergence
of random sample size indexes. It implies the asymptotic independence of
random sample size indexes and the corresponding extremes with the non-
random sample size due to a well-known result by Rényi [16] concerning
mixing sequences of random events.

In a recent paper, Silvestrov and Teugels [20] derived limit theorems for
extremes with random sample size for the model where the sample and the
sample size are dependent in an arbitrary way. The general limit theorems
for superpositions of random processes developed in Silvestrov [19] have been
used as a basic tool. In the present paper we generalize some of the main
results of Silvestrov and Teugels [20] from the univariate to the multivariate
model of extremes with random sample size. We also show how the results,
related to the model where sample and sample size indexes are asymptoti-
cally independent, can be obtained from these general theorems. Finally we
present general triangular array versions of the results related to the case
where the sample size indexes converge in probability. As was already men-
tioned above, the remarkable result by Rényi concerning mixing sequences
of random events plays here an essential role.

1991 Mathematics Subject Classification. Primary 26A12; Secondary 60FO05.
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2. Weak convergence of multivariate extremal processes
with random sample size indexes

For every e >0, let {£B, = z=1----m), n=1,2,...} be a se-
quence of real-valued i.i.d. random vectors. Further we need random vectors
D= (luey, i —1,... ,m) with non-negative components, and non-random
functions n£> 0 for which nE—00 as e —0.

If we are interested in multivariate extremal processes with non-random
sample size indexes then we deal with the vector process £e(i) = (Ee,i(t),
i=1,...,m), t" 0 where

1) £6,i(0 = max ££jkii,  f>0.
kStne

In formula (1) and below, we assign the value zero to a maximum over
an empty set.

Our interest lies in the relevant analogues of these processes when the
sample size indexes are random as well. So, define (E{t) = ( C *=
1,...,m), t~ 0 where

) (B{)=ma Gki  t>0

Let us denote by —g£M/n£ normalized random sample size indexes
and VE= &), i=1,..., m). Then the process {(£(t):t >0} can be represent-
ed in the form of the vector composition of the two processes {"E(i),i > 0}
and {v£(t) =tvEt> 0}, ie (£(t) = i= 1, mmm), t~ 0 where

3) @At)=Ze,i(ttei), t> O.

This representation points to the use of limit theorems for compositions of
random processes as a tool in obtaining limit theorems for extremal processes
with random sample size.

Let G be the class of non-increasing continuous functions g(i) acting from
Rm into [0, oo] such that e~9u\ is an m-dimensional distribution function.
(If g{u) = oo we understand continuity in such a point in the sense that
g(y) =00 as v~ 0, v—i.)

Define GE{u) = P{£e,i * (i}. The following condition is standard in papers
dealing with limit theorems for extremes:

A(p nE(l —GE£(u))—yg{u) as c—20, UGfim.

Denote by Dm the space of step functions on (0,00), taking values in
Rm, continuous from the right and with a finite number of jumps in every
finite interval (a, b), 0< a<b<00; these jumps have to be non-negative and
strictly positive in at least one component.

It is known (see for example Resnick [15], Leadbetter, Lindgren and
Rootzén [13]) that Condition AO is equivalent to the condition
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A {G(i), i > 0} =={£o{t),t> 0} as £->-0.
The limiting process {(,o{t),t > 0} in A is called an extremal process. It is

a stochastically continuous Markov jump process whose trajectories belong
with probability 1 to the space Dm\ its transition probabilities are given by

4) P{lo{s + t)*i\lo(s)=v} = x{vAi)e~tIu

where X(A) is the indicator of the event A.

We also have to assume a condition concerning the asymptotic behaviour
of the random sample size which is consistent with A. A minimal such
condition is

B: vE= pf/nE=>i0 as e-* 0, where ig= (0,0 *= 1,---, m) is a random

vector with a.s. positive components.

It can be expected that Conditions A and B are sufficient to provide the
weak convergence of extremal processes when the extremal process {£e(f),
t >0} and the random sample size index v£ are independent. However, in the
case of dependence, Conditions A and B need to be replaced by a stronger
condition in terms of the joint distribution of and U£, i.e.

C: {(G(f), Ge),t >0} > > 0} as £-A0 where {&>(*),i > 0}

and £o were defined in Conditions A and B, respectively.

Let w > 0. Denote by w < TitW< T2,w < ... the successive moments of
jumps of the process £0W in the interval [m, 00). For convenience we put
Tow=T-itW=iv. Denote by S the set of points t >0 for which P{rfciun=
tvQi}=0foralli=1,...,mand k,n—1,2... where wn—n~y. The set
5 contains not more than a countable number of points since it coincides
with the set of atoms for the distributions of random variables TktWi'o,i,
i=1,...,m; k,n—1,2,  Therefore the set S is (0,00) up to at most a
countable set of points.

The set S coincides with (0, 00) if the random variables t*”"J vo»,
i=1,...,m kn—1,2,... have continuous distributions. Since the ran-
dom variables have continuous distribution functions, TkWh/vo,i al-
so have continuous distribution functions and so 5 = (0, oo) if the process
{£o(i), t > 0} and the random variable PO are independent or at any rate, the
random variables TidUn and isoi are independent for every i = 1,... ,m and
k,n—1,2,  In the latter case the process {lo(t),t > 0} and the random
vector o can be dependent.

The main result of this paper is the following theorem which generalizes
Theorem 1in [20] to the case of multivariate extremes with random sample
size indexes.

Theorem 1. Let Condition C hold. Then
{GH=( & , *=1,....,m), teS}=$

®) {Co(0 = (Eo,i(tm,i)> *= 1)eee>m), teS} ase->0.
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PROOF. Theorem 1 can be obtained by using general results concerning
weak convergence of randomly stopped processes as given in [18], [19]. How-
ever, thanks to the monotonicity of extremal processes we are able to give
a simplified version of the proof by following the procedure in [20] for the
univariate case.

Note first of all that the definition of the extremal process, as given in
(1) causes some side effect at zero. The process (E(i) has step trajectories, is
continuous from the right and has possibly jumps only at points k/n£, k*. 1.
All jumps with k”*.2 have non-negative components and at least one of them
is positive; hence all components of the resulting process are monotonically
non-decreasing on the interval [I/n£,0c). However, on the interval (0,1/ne)
the process takes the value zero and the first jump can possess negative
components if the random vector j has negative components. To avoid
this situation we consider a slight modification of the extremal processes as
defined by (1) and (2). We replace the respective processes by

(6) &,i(A)—kA@gg ! 0
and
U] CE,iW= max i>0.
By the definition of these processes, Ce,i{t) —C = £e,i,iXlivei = 1/n<)

and under Condition B for any t >0
(8) P{lsup |Ce,t(s) —Cm (s)I > 03 = <Il/ne} W ase—0.
s™M

For this reason both versions of the extremal processes with random
sample size indexes will have the same asymptotic behaviour in the sense of
weak convergence.

For every n=1,2,..., let < z_in< z0h < Zi,n < mm be a partition
of the interval (0, 00) such that: (a) z k,n “*0 as kco\ (b) Zkh—00 as
k -» 00; (c) hn=maxfdzfcH)n- zkn)->0as n -> oo.

For every e>0and i —1,..., m we define the approximative extremal
processes with non-random sample size

9  rtonAt)y-ne A zk+ for zk,nat<zk+ln - 00< k< 00
and in the limiting case for every i=1,...,m
(10) £0n~,N)= for Zk,n*<Zh+I1,n -00<k<CO.

Similarly, we define for every e 0Oand i=1,..., m and the corresponding
approximative extremal processes with random sample size indexes

(11 @nAt) =tinBvei) t>0.
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By definition of the approximative processes {(*n -(t),t > 0} for all i =
1,....m,n=12,.. ande>0

(12) i Cei) ~C,iW  for *> 0

Similar inequalities are valid foralli=1,... m, n=1,2,... in the lim-
iting case e=0

(13) WACo.iIWACo+n.iW fori>0.

Also by the definition of the partitions {z*n}
14 1Co,i(i)-Co,n,iW\= _sup lioX(*WB,i)-io,*(i")»+ a)|,
(14) (i) 4P, TIOX(-WB,i)-f0,*(i")>+ a)|

where £oy(s) = 0 for s ~ 0.

By the definition of S, the random point it'o,; is with probability 1 a point
of continuity of the random process { £ o >0} foreveryi=1,..., m and
t E S. Using this fact and taking into account that hn -» 0 as n —o00, the
relation (14) implies that fori=1,..., m and tg S

(15) Cin.iWw-~Co.iW as n -Aoo.
From (13) and (15) follows that

{(Cin.ii0. *=1,...,m), tES}=>
{Goji(™, i=1,...,77),ie 5} asn->00.

Let us take arbitrary points t\,... ,tr E S. By definition for every e >0

(16)

pLCIN (W) jgyi = ee i = 1>o7)

(17) X/ _P{&a(%-fiti,n)=W)

i:|j:1kj:"@

tjire,i £ 2fcj+l,n)>1=1,..., TTL o= 1, ..., r}.

We can always choose the partitions ZAcn in such a way that Zkne S and
= zk,n} = 0 for all i,j,Aand n. In this case using (17) and Condition
Cwegetforalln=12...

( C i=2Leeelm,j=1,...71) >
( *=1,...,m, r) ase->0.
It is always possible to find a set U of points (uij,i = 1 j=

l,...,r) dense in Rmr, which are points of continuity for the distribution



396 D. S. SILVESTROV and J. L. TEUGELS

functions ofrandom vectors ( C o0 i=1°.,m,j=1,...,r) and (C*n
i=1,....,m,j—1,...,r) for all n™ 1 Using the inequality (13), and rela-
tions (15) and (18) we get for points (Uij,i=1,... ,m,j=1,...,r) GU

!imlo{Ce,i(*j)’\ Uij, i=I,.mm, j=1,. r}
Ul Alim limp {C+n i (ij) = j=1,...,r}
= Jim,PiCin.tfo) = *= 1 eem J= 1 mex}
= p{Co»(ij)  uij, i= L eeem, j=1,... ,r}
and in an analogous fashion
linip{CEi(tj) Nvuij,i=1,....m, j=1,..,r}
A p{Coi(t)) = i= j=1,....r}.

Relations (19) and (20) are equivalent to

(20

CeiCgp» *=1,... m,j=1,...,r)=
(C o i= j=1,...,r) ase—0.

(21

Now we can use the relation (8) and come back to the extremal processes
(Ce(r), t > 0}. The relations (21) and (8) imply that

,22) Ce*j), »=1,....m , j=I,....,r)=>
Co,i*p, i=1,-...m, j=1,...,r) as £->0.
Since ti, i=1,..., m are arbitrary points in S the last relation completes
the proof. O

3. Consequences of the main theorem

Let us first apply Theorem 1 to the important case where the sample
and the sample size indexes are asymptotically independent. In addition to
the basic Condition C we assume the following condition:

D: the process {Co(™)jt > 0} and the random vector vo are independent.

As was mentioned in Section 1 Condition D implies that the set S —

(0, 00). So, as a corollary to Theorem 1, we can formulate the following
theorem.
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Theorem 2. Let Conditions C and D hold. Then
{Ce(®) = (Ee,i{l'VE,i)ii = mdit>0} =
{Co(i) = (i0,i("0,i),i =1,ee,m),t >0} ase->0.

Theorem 2 obviously covers the case where the sample values {£gi,,
n=20,1... } and the vector sample size index jj,£ are independent for ev-
ery e > 0. In this case Condition D automatically holds and Condition C is
equivalent to Conditions A and B.

This reduction of Theorem 1 to the case of independent sample and
sample size indexes is a triangular array vector version of the results given
in a variety of different forms by Berman [3], Thomas [21], Galambos [7], [8],
Gnedenko, B. and Gnedenko, D. [11], and Beirlant and Teugels [2].

An even more interesting application of Theorem 1 deals with the model
where the random sample size indexes converge in probability.

It is natural to assume in this case that the random vectors {£qgi,,
n=1,2,...} and Jle for all e > 0 are defined on the same probability space.
We assume also that the independence condition for the random variables

is satisfied in the following stronger sense.

E: The sets of random vectors {|e,n, e > 0} are mutually independent for

n=1,2,....

Obviously, Condition E holds for the scale-location model. In this case
the random vectors ££in are represented in the form = (Enij —aej)/bHg,
i=1,...,m,where =(£nji=1,....,m),n=1,2,.. arei.id. random vec-
tors, and aejt,6e,i, i=1,... ,m are some non-random centralization and nor-
malization constants. It also holds for the more general model with random
vectors = he(En), n= 1,2,... where he(-) are non-random measurable
functions acting from Rm into Rm.

The condition for weak convergence B is replaced by the following con-
dition:

F: ve= ne/nsi>\7q as e —0, where ug is a random vector with all com-

ponents a.s. positive.

Note that the independence of the sample and sample size indexes is not
assumed. However, as we see, Conditions A, E and F imply Conditions C and
D, i.e. asymptotic independence of the extremal processes with non-random
sample size and the random sample size indexes.

The following theorem is a triangular array vector version of the results
given in different variants for the case of a scale-location model by Berman
[3], Barndorff-Nielsen [1], Mogyorddi [14], Sen [17], Galambos [7], [8], [9] and
Eriksson [5].

Theorem 3. Let Conditions A, E and F hold. Then
{Ce(<) = (ie,i(il/e®)i *= 1,+.. ,m), f> 0} =

(24)
{Co(i) = (Eo,i(fro,t), t=1,....m), 0 0} ase—0,
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where the process {£0(t),t>0} and the random vector ug are independent.

Proof. The proof of this theorem follows from the following statement
which generalizes to a triangular array scheme the analogous statements
obtained for the scale-location model in the above named papers. The proof
of this result, which seems to be of some independent interest, is based on
the use of a key result by Rényi [16] concerning mixing sequences of random
events.

We are going to prove that Conditions A, E and F imply that

(25) {(&(*), i'e),i>0}*{(E0(t),i>0),<>0} ase-»0,

where the process {£0(t),t> 0} and the random vector  are independent.
Let us take some subsequence £n—>0 as n — 00 and choose some 0 < t\ <

emm<tr <oo ands,i NSir<oofori=1,..., m. Define
An={ max Zenki”sij, i=1,...,m,;=1,...,r}
k=tj nen
and

We are going to prove first that the sequence of events {An} is a mixing
sequence in the sense of [16], i.e. forany |~ 1

(26) lim P(AnnA,) = P(A)P(A).

The latter result is only non-trivial in the case when P(A) > 0. Obviously,
the event An can be written in the form An= A" 0 Ani where

A~ - {m “en,k,i*sn, i=1,...,m
{ max “enk,i%sn, i =1, ..m}
and
Anl:{trnﬂ'&ﬁ"tjumzen’h sij,i=1,....m,j=1,....r}.

From Condition A and supposition P(A) > 0 it follows that for chosen
Si=(Sn, ..., Sl)

@7) lim P (A-)=_ligy {Gin(si)}['E] = 1

Now, taking into account that for n large enough tmne < t\nEn and using
A and E, we get by (27)

lim P (A, nii)= _lim PfdAndAndi)
71—00 7200

28) Jim P(A+)P(ANnA,) = lim P(A+)P(A,)

lim P(A+nA-)P(A,)=_lim P(AN)P(A,) = P(A)P(A,).
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Since the sequence An is mixing in the sense of [16], P(Ann B) —
P(A)P(R) as n —00 for an arbitrary random event B. We can choose this
set as R2= {ro” z}. Let also Bzjl = {vitn~ z}. From Condition F follows
that P(BzABzin) —0 as n ->o00 for any z which is a point of continuity for
the distribution function of the random vector ;/q. Using these asymptotic
relations we finally get

(29) nIi_r>n00 P(Ann % )= nlitrgg P{Ann Bs) = P(A)P(B-2).

As the choices of a subsequence en, the points 0< 11< me< tm < 00 and
si” "Nsm<oo are all arbitrary, relation (29) leads to (25).
From (25) it follows that Condition C holds with the independence be-

tween the limiting process {£0(0>" >0} and the random vector Xy. Thus,
Theorem 3 follows directly from Theorem 2. O
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PERFECTNESS OF REVERSIBLE MATRIX MAPS

E. JURIMAE

Dedicated to Professor Karoly Tandori on the occasion of his 70th birthday

1. Introduction
In the present paper we shall consider the matrix maps y —AX, i.e.

vn — TGN,
k

where A = (ank) is an infinite matrix of complex scalars and x = (x"),y =
(yn). Let X and Y be sets of sequences of complex numbers. We shall write
A £ (X,Y) ifAX £Y for every x £ X. We shall consider the case Y =  (see
Section 2). For these matrices domains cvA are defined. We shall investigate
some properties of these domains under the hypothesis A £ (cp,cn) or A £
(cx,cn), where cp is a rate-space with rate p and cr a space with speed A
Similar properties have been studied by several authors in case A £ (c, ¢), i.e.
for conservative matrices (see [5, 8]). The purpose of this paper is to show
that many concepts (coregularity, conullity, perfectness etc.) and methods
applied in summability could be profitable for more general cases of matrix
maps. These possibilities are demonstrated by the study of conditions for
the perfectness. By the way, our general definition and the investigations in
Sections 3 and 4 originate from the ideas of [6] and [3, 4].
IfY isan FK-space, then the set (the domain of A)

YA —{x £u\ Ax £ V}

is also an FK-space.
Definition 1.1. IfFAE(X, Y) and

clYaX =Ya,
then A is said to be (X, T)-perfect.
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46A45, 46B15.

Key words and phrases. Matrix map, rate-space, space with speed, perfectness, coreg-
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In Section 3 we shall consider the case A £ (cp,cn) and give some condi-
tions for (cp, cN-perfectness for coregular and also for conull matrices. It is
shown that a matrix A can be perfect by one pair of spaces (cp,cn) but not
by another pair.

In Section 4 the same questions are studied if A& (CAcT).

In the investigations in Sections 3 and 4 we shall apply the concepts of
the spaces m”~c”con and In (see Section 2) the rate-spaces with rate 7.

2. Notations and preliminaries

Let #= (/m) be a sequence of positive numbers and a; be the set of all
sequences of complex numbers. We shall consider the sets:

mn := {x=(xk) Gy | (—) 6 m},
cn:={x6 mv\3IlHJa; = Iirqn ﬁ}’
att:= {X 6 cn Iliﬂna; = 0},

In:={x6cOrl | — |<oo0}.
k N
The sets mn,c* and con are Uff-spaces with norm

Xk
=su
hP

Some properties of the spaces and con are investigated in [1], It is
also shown there that these spaces are closely connected with spaces

ox \= {xEc\ 3limAfc(afc —lima)},

where A= (A" is a sequence of positive numbers with lim A= oo. The connec-
tion between the rate-spaces and spaces with speed is given by the relation

CA=ci©< e>,
A

where e= (I, 1,...) (see [1]).
Here we shall mention some properties of the spaces In which are BK-
spaces with norms

X
IOH=2 T

Let ec= (0,...,0,1,0,...) (non-zero term 1 in the A-th place) and $>be
the set of all finitely non-zero sequences. Then we have the next properties.
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Proposition 2.1. ek£Il®, Vfce N.

P roposition 2.2. 0C Iem

Proposition 2.3. 0<@f(icn EN=> In ClI.
Proposition 2.4. 0 < 6_<P’r: <Molw= IT

P roposition 2.5. pn ™ o(ITn) 4 Ip ™ In.

Proposition 2.6. In has AK (sectional convergence), i.e.

=N xkek
k

for every xEIn.

The proofs of these propositions are trivial. We mention only that 2.5
follows from the theorem of Knopp-Lorentz on the map A G(/, ).
If A = (ank) is an infinite matrix, then we call the set

d‘a ;= {x GwIAx Gcen}

the domain of the matrix A. It is an FK-spa.ce and every / G (cC®)' has a
representation

Q) [(*)= £ tkwk " ~Th™ Mgnkvk "he
where A
T RYA i i = lim — v A
(ifc) € (c™)™, i GC, I7|TrAr\1a,. Ilnm — yklankxk,

T=(m)eli, and - (T

If A is Cjr-reversible, i.e. for each y£cn there exists a unique X such that

AX =y, then is @ BK-space and every / G(c*a)/ has a representation
(1) with tk=0 VItGN.
The next statements are true (see [1]).

Theorem 2.7. A matrix A —(ank) G (cp,”) if and only if it satisfies
the following conditions:

() 3 lipe*; = jm . =: ak, k GN,
(ii) 3 IiAmpzlim—V ankpk =:apn,
X

n 7 k
(iii) EklanfC\Pk:O(nn).
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If x Ecp, then

Iims= (apt- Y akPk) lima:+Y alxk
k P k

Theorem 2.8. A matrix A = (ank) E (cAcn) if and, only if the following
statements are true:
(M 3 lime*: =al, ke N,

ITA
(i) 3 IH@ iy = Hmm,\k \k =:aX ™M,
(iii) 3 I%Rezlr%m; ~ank=:aln,
n k

iv E 2~ =0(7Tn).
(iv) = A (7Tn)
Ifx £c\ ilien

lima; =al*lima+ (aA™ ~ Y it) A*)+$2 " ( t),

11 k Kk kK k

where
Xk(x) = Xk{xk —lima:) and A@) = Ii&n Xk(x).

Let A E (cp,cT). Then the matrix A is called (cp,c”)-coregular (see [2]) if
Xep(N) =aPr~Y akPki 0
k

and (cp,c7)-conull if the characteristic Xcp(®) = 0. Similar definitions are
also used for matrices A E (cx,cn). In this case

3. (cp, cu)-perfectness

In this and in the next section we shall only consider c”-reversible matri-
ces whereas the representation of linear continuous functionals which have
an important role in our investigations is simpler in this case.

By 1.1 a matrix A is said to be (cp,ch)-perfect if

CcttACP = crA-
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The set E = {p, | k GN} is fundamental (see [1]) for cp. Therefore we
get by the Hahn-Banach theorem that A is (cp,cw)-perfect if and only if
f(x) —OWx GE implies / = 0. By (1) it means that the system

,\_,C]_ran+ p\ﬂnekzo, ke N,

) A Vo ankPkTn + P =
1 1 p_o
LG e

has in I\ only trivial solution rn=p =0, VnGN
m
If Ais (cp, ch)-coregular, then the system (2) is equivalent to the system

3) dnkTh—0, A€ N
n

So we get the next theorem.

THEOREM 3.1. Let A be c*-reversible and (cp,”)-coregular. The next
conditions are equivalent:
(i) A is (cp,Cn)-perfect;
@iy (3) has only trivial solution in I\;
m
(iif)  the matrix (ir~lank) is of type M.

Corollary 3.2. If ac”-reversible and (cp,cn)-coregular matrix A is
(cp,cn)-perfect, then it is (cK,cn)-perfect for any k whenever A is (cK,cn)-
coregular.

Example 3.3. Let
if k=n—,
Uk= s if k=n,

10 if kyEn—1n

This matrix A = (anfl) is triangular and (c, c)-coregular. For A all solu-
tions of the system (3) can be represented in the form

T= (((~-)n/ (n—1))ti),
where t\ GC. It means that this matrix is not (c, c)-perfect.

The matrix A is also (cp,c,-)-coregular if pk = ~k\ and nn= (n —21).
Whereas fG h only for ti =0, then A is (cp, (-perfect.
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Corollary 3.4. Let M *nn”e>0VnGN. Then a cn-reversible and
(cp,Cir)-coregular matrix A is (cp,cn)-perfect if and only if A is of type M.

P roof. This assertion follows from 2.4 and 3.1. O

The class “matrix of type M ” can be defined only for coregular matrices.
A similar class of conservative matrices was introduced by the author in 1970
and denoted by P.

Definition 3.5. A conservative matrix B —(bnk) is said to be of type
P if the system

has only trivial solution rn=p =0, n GN, in I.
In [4 G. Kangro proved the next theorem.

Theorem 3.6. Let B = (bnk) be a conservative matrix with right inverse
B' = (hhk). Then B is of type P if

(i) B is coregular and bn:= (b Grn
or
(i) B is conull, 6n= (6MA)M1Gc and bk = \imbnk 770 for some k.

The right inverse of a matrix A is connected with the existence and form
of the solution of the equation y = Ax. This becomes obvious in the next
theorem.

Theorem 3.7. Let A = (ank) be a cn-reversible matrix. Then A has a
unique right inverse A' = (akv). The rows of A" belong to ut. There is a

sequence b such that the equation y = Ax has, for y(zcn, the unique solution
X=Db Iimy +A'y.

PROOF. Applying the representation of / G (c~a)' to the coordinates,

we have for x GenA and y = Ax, Xk= Pk A + Yh Tkn . anu¥k = Pk Iimy +

E Tknvn, where (Tfon)~=1 Gll Now setting b= (pk) and dkv = rkv we have all

the theorem except that A| = (aku) is a right inverse. We see this by taking
y=e, = (35,,) Then limeft= 0 and xk=E rnk5un = rkv = akv. The equation

7

y = Ax becomes

ie. AA'=1. O
The proof for the case &= e is given in [8] (Theorem 5.4.5).
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Lemma 3.8. (i) If A= (an*) € (cp,c”), then B = j € (c,c), ie. 7?
is conservative.

(@) //A is (cp,cn)-coregular, then B is (c,c)-coregular.

@iii) If A has a right inverse A' = {akif), then B has a right inverse B' —

fa'ku™\
Pk
PROOF. Theorem 2.7 implies (i) and (ii). For (iii) we have
O-nkPk T _ Mg 0
Kn Pk ? jQridw—\m ni/ =""nu

The assertion “system (2) has only trivial solution in I%" is equivalent

to the statement “the matrix B = ( &) is of type P". Therefore we get
the next theorem.

Theorem 3.9. Let AE (cp,Cn) be a cn-reversible matrix. Then the next
statements are equivalent:

0] A = (anh) is {cp,cn)-perfect;
(i) B = (af Pk) is (c,c)-perfect;
(i) B is of type P.

Applying Theorems 3.6 and 3.9 and Lemma 3.8 we get the next assertion.

Theorem 3.10. Let A = (ank) € (cp,c,,-) be a cn-reversible matrix with
right inverse A' = (ahk). Then A is (cp,c")-perfect if

0] Xep(M)#° and (ank)kLi em_]
or
(i) XCF:)Z{A):O, {ank)"=1e c} and ajf*O for some k.

Example 3.11. Let A = (RKPk) with pk> 0 be Riesz matrix of order k.
Then, for inverse matrix, —0 for k >u + k (see [7]). It means that a" =
£m\. Therefore, every (cp,cw)-coregular Riesz matrix is (cp,c,)-

v

perfect.

4. (cAc,r)-perfectness
In this section we shall study the conditions for (cA c”-perfectness which
are a little more complicated because of the structure of cA By Definition
11 a matrix A —(ank) is (cAc”-perfect if

clcrAcA= °*A*
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The set G={e, A 1,et|kKEN} is fundamental in cA (see [1]). Therefore a
cM-reversible A is (cAc”-perfect if and only if the next system (/ £ (cwa)")

I(ha) A A TMA—0, AEN,

n

@ m = £ £ kT  —0,
n k

*_) = A pax in=0
I(F-)=E B % ot

has in /Tir_ only trivial solution //=r,=0 Vn£N
If M is a (cr, ch)-coregular matrix, then the next theorem is true.

Theorem 4.1. Let A — (ank) be a cn-reversible and (c”c”)-coregular
matrix. Then A is (cx,cn)-perfect if and only if the system

Arkin=0, kE£N,
n
©
£ £ Ok™M—0
n A

fias in . on’d trivial solution r = (Tn) =0.

In the general case the last equation of (5) does not follow from the
others.

Example 4.2. Let

bnk — -2n~\  k—n,

If A= (2") then B = (bna) £ (ca,c). For this matrix the system

XN&nAPNn=0, fc€N,

has in | solutions r° = (r°), where

0 22+23e...02n-2 AT
T (1+22)...(1+2"-)T 2"-1’ !

We have
2 I—/|CkrkT’:S TAQ If TIN
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The matrix B is (c\ c)-coregular and a triangle (bnn/ 0 and bnk= 0, k>n),
therefore it is also c-reversible.
Our investigation implies that
clcB{A-\e £]/cGN}”*cO
but
clcfl{A-1,e,efc|A;GN} = CR.
This means that B is not (c”-i,c)-perfect but it is (cA c)-perfect. O

If the rate n = (ir) is sufficiently great for the matrix A, then we can
omit the last equation of (5). This follows from the next theorem.

THEOREMm4.3. Let A= (ank) bea -reversible, (CA cn)-coregular matrix

and sup -r- | JT] ank |< oo. Then the following statements are equivalent:
nm n k=I

® A is (cA cn)-perfect;
(i) the system

£ a nfon=0, VI/cGN,

n
has only trivial solution in Iin;

(i) the matrix (n~lank) is of type M.
PROOF. We must ascertain that for r = (rn) GI\ the equality

E E tonkin—0
n k

follows from
Y MankTn =0, Vic GN
n

It is so if the limit
rn m

limV' ankin=IlimV Y]

m z L —* m i

k~1 n n k=1

exists for any r = (rn) GI\. This is equivalent to the condition:

Iljnm “Ya T (7r,,Tn)

n k=1
exists for every (7r,,Tn)el. By Hahn’s theorem (see [8], Ch. 8) this is true if
E :\_n_lf ||<' (@0 0
n,m fc=1 Vh

We can represent the conditions for perfectness of a matrix by the right
inverse of A (cf. [8], Ch. 3 and [4]). Similar assertions are also true in our
case.
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THEOREM 4.4. Let A be a cn-reversible, (cx,cn)-coregular matrix and
suppose that A has a right inverse A' = (ahk) with columns Kk)n=iemi.

Then A is (cx,cn)-perfect.

Proof. If
A ngnktn —0) ek GN

then by 2.8 for any i/EN

0= unkTn = " ( Tnnn),-\’r;gi’\ka'k,,)
—”"~ 1Tn "ankakv ~ N " Tnnu —Tw n
n k n

For (cAc”-conull matrices the third equation in (4) is an implication
from the first one. So, we can say that a c”-reversible and (cA c#)-conull
matrix A = (ank) is (cA c”M-perfect if and only if the system

Hek) =~2ankTn+pal =0, \/ke N,
(6) n

=t E ommT 0
n k

has in I\ only trivial solution p=r,=0 VnGN
m
We shall prove

T heorem 4.5. Let A= (ank) be a cn-reversible, (cx,cn)-conull matrix
with af ~ 0 for some k and suppose that A has right inverse A' = (aku) with
columns av = GCcAH c0. Then A is (cA cn)-perfect.

PROOF. Since Aav = e, = (6nv) we have by 2.8

0=1lim = limaZ= altlimaj.,, + -Mk{a?) =
n 7 VIA k NNk

an
= aln\ima’k,, + 22~ X k(akl/-\im a"'kl/).
k k

The hypothesis a? = (ak,,)kLi € cAf]co gives that

5kZ a*a*¢=0>"eN-



REVERSIBLE MATRIX MAPS 411

Applying this and Theorem 2.8, the first equation of the last system (6)
implies that

o=U'y "akoak 53 akos yankTns=
k k n

=H J2"nrn)’A‘j1-Ag<Xka'kI/): T' 53 Mkald/ —
£ n™nu— av-

The hypothesis aE 70 for some Aimplies now that /t= 0 in (6). This
completes the proof of the theorem. O

5. Appendix

In this paper we have considered for reversible matrix maps some con-
ditions for the perfectness which are described by several infinite systems
of equations. These conditions are quite perspicuous and by them it is also
quite easy to settle whether a given reversible matrix map is perfect or not.

For non-reversible matrix maps the (c, ¢)-perfectness has been studied by
several authors using the test functions and the corresponding distinguished
subsets of the domain (see [5, 8]). It could be assumed that this way can
also be used in more general cases which have been discussed in the present
paper. In connection with this, it should be emphasized that the nature of the
perfect part of a matrix A 6 (cAcn) (and also A E (cp,cn)) is an interesting
question in itself.
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THE METHOD OF LINES FOR FIRST ORDER
PARTIAL DIFFERENTIAL-FUNCTIONAL EQUATIONS

BARBARA ZUBIK-KOWAL

Abstract

The Cauchy problem for nonlinear first order partial differential-functional equations
in unbounded domains is treated with a general class of the method of lines. Existence and
convergence properties of the method are investigated under the assumption that the right-
hand side of the equation satisfies the Lipschitz condition with respect to the functional
argument. The theorems are proved by means of the differential-difference inequalities
technique. Examples of differential-functional problems and corresponding methods of
lines are given.

1. Introduction

For any two metric spaces X and Y we denote by C(X, Y) the class of all
continuous functions from X into Y. We will use vectorial inequalities with
the understanding that the same inequalities hold between their correspond-
ing components. Let D = [—to, 0] X [+, r], where ®wGR+,R+ = [0, +00) and
t= (ti,..., ") GR”. Write

£ =[0,a]xR", Eg=[0,0xRn, 0=£xC (P,l)xI"
and suppose that
f\0 2R, tp;Eq—2R

are given functions. For any function z:. EQUE —E and for (x,y) GE,

y = (yu---,yn), we define a function z(>y): D -> K by z/*y){t;s) =

z(x +t,y +5s), (t,s) GD. The function Z(xy) is the restriction of z to the

set [x—to,x] X [y—r,y + t\ and this restriction is shifted to the set D.
The paper deals with the nonlinear Cauchy problem

&) Dxz{x.y) = f(x.y,ZO).Dyz(x.y)), {x.y)eE,

) z(x,y) =<p(xy), {x,y)eEO,

1991 Mathematics Subject Classification. Primary 65N40; Secondary 35A40.
Key words and phrases. Cauchy problem, unbounded solutions, differential-difference
inequalities, comparison technique.

0081-6906/98/$ 5.00 ©1998 Akadémiai Kiadd, Budapest
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where Dyz = (Dyiz,..., DVnz). We will consider classical solutions of prob-
lem (1), (2). We will assume that there exists a classical solution of (1), (2).
Sufficient conditions for the existence can be found in [3], [4], [12].

In general, first order partial differential equations are used to describe
the growth of a population of cells which constantly differentiate in time,
see [6], [7]. The paper [10] discusses, using differential-integral equations,
optimal harvesting policies for age-structured populations harvested with
effort independent of age. In the theory of the distribution of wealth [g] a
differential equation with a deviated argument is used. Differential-integral
equations describing the dynamic of muscle contraction was studied in [9].
There are various problems in nonlinear optics [1] which lead to non-linear
hyperbolic differential-integral equations.

Differential and differential-functional equations considered in [1], [6], [7],
[8l, [9], [10] are particular cases of (1). We give next examples in Section 6.

2. Discretization

For y,y 6 Rn we write y *y = (y\yi,..., ynyn)» We will use the letters Z
and N to denote the set of integers and the set of natural numbers. Now we
define a mesh in Rn. Suppose that for h= (hi,..., hn), where hi >0, there
exists N = (IVi,..., Nn) £ N" such that N*h =r. We denote by Iqthe set of
all h having the above property. Let m = (mi,..., mn)£ Zn and ym =m*h,
ym= (y™1,..., y™). Write = {ym:m £ Z"} and

Eh=[0ax , Eoh=[To0xR} Dh=DnEOh.

Let $= (5i,..., 6n) be a difference operator defined in the following way. Put
S={-1,0,1}nand

3 M* ym)="£4:U * y m+r),

lres
where z : Fo/i and cf(m are given numbers, 8z = {8z\,... ,8zn). We
will approximate Dyz(x,yrn) by means of 5z(x,ym). In the next part of
the paper we adopt additional assumptions on Since the coefficients

Crin depend on m 6 Z", the approximation of the spatial derivative may be
different in different points of the spatial mesh.
For z: Flo./iUF/[—R xG[0,a], meZ" we define a function Z(xm): Dh~

b
d Z(x,m{t,yS) =z (x + t,ym+s), (t,ys)eD h.

Let Qh —Eh x C(Dh, R) x Rn and suppose that

$/i;© R (- Eo.h R



THE METHOD OF LINES 415

are given functions. We will approximate the solutions of (1), (2) by means
of the solutions of the problem

4) Dxz(x,ym)=$h{x,ym,z(x<am),6z{x,ym)), {x,ym)eEh,
(5) z(x,ym)=h(x,yT), (x,ym)EEOQh.

The initial-value problem (4), (5) will be called the method of lines for
(1), (2). The function <*and the difference operator 6 characterize a general
class of differential-difference schemes which can be applied to (1), (2). We
give sufficient conditions for the solvability of (4), (5) and for the convergence
of the sequence {un} of solutions of (4), (5) to a solution of (1), (2). We will
consider unbounded solutions of (1), (2) and (4), (5).

The main theorems concerning (1), (2) and (4), (5) will be based on a
comparison theorem where a function satisfying some differential-difference
inequalities in an unbounded domain is estimated by a solution of an ade-
quate ordinary differential-functional problem. The first result of this type
was given by Lojasiewicz [13], (see Lemma 1, p. 96) for a function of two
variables satisfying linear differential-difference inequalities with constant
coefficients. It is an essential fact in [13] that the differential-difference in-
equalities are periodic with respect to the spatial variable.

The comparison result from [13] is extended in [20] (see also [5]) on
differential-difference inequalities with a functional argument and on nonlin-
ear comparison problems. It is an essential fact in [20] that the finite systems
of differential-difference equations have been considered.

In the paper we consider infinite systems of equations (4) or infinite
systems of differential-difference inequalities. The comparison theorem given
in Section 3 is new also in the case when / does not depend on the functional
argument.

There is a great amount of literature on the method of lines. The mono-
graph by Walter [18] contains a large bibliography. The existence, unique-
ness, monotonicity and convergence properties of the method of lines for the
Cauchy problem for nonlinear parabolic differential equations in unbounded
sets are given in [16]. The convergence of the method of lines for a parabolic
differential equation is shown in [17]. The error estimations for the method
applied to the first boundary value problem and for the Cauchy problem for
parabolic equations are given in [18, 19]. The method is also treated as a
tool for proving the existence theorems. Such existence theorems based on
the method of lines are given in [18, 19]. The method of lines for a first order
differential system with a functional right side as well as for an equation of
the parabolic type is studied in [11]. The method for equations of higher
orders is studied in [14].

The method of lines is treated as a tool of numerical solving of differential
problems. The book [15] demonstrates lots of examples of the use of the
numerical method of lines.
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3. Comparison theorem

For a function u: [J0,a] —E and for x £ [0,a] we define a function
0AX) : [—to,0] - E by = uifx +1), t£ [—to,0]. We denote by | = the
Euclidean norm in E” and by || ¢/lo the supremum norm in C([—to, 0], E). We
use the symbols \\-\\d and || «Ht* to denote the supremum norms in C(D, E)
and C(Dh, E), respectively.

We will prove that problem (4), (5 has exactly one solution in the fol-
lowing class of functions.

Definition. Let a,8£ E. A function z: [a, 8] x E[[ - E will be called
the function of class if the following conditions are satisfied

(i) z(-,ym) £ C([—to,a], E) forall m £ Z";

(if) there exists a function T : E+ —E+ such that

(a) has a continuous derivative on E) which is bounded and non-

negative,

(b) t_IAllrtnOO4(|) = +00,

(c) for i£ i+ we have

max{\z{x,ym)\:xe[-To,a], \\ym\

In a comparison theorem we will estimate a function of several variables
by means of a function of one variable. Therefore we will need the following
operator Fh: (7(7”1) —C{[—0,0]E+). If w £ C(Dh, E) then

[T/iUY) = max{Jio(i,i/m)|:—N ~ m ~ N}.

Suppose that a: [0,a] x C([—To, (], E+) —=E+ and A= (Ai,..., A,): Eh x
C(Dh, E) —=En are given functions. In the section we consider the differential-
difference inequalities

(6) Dzz(x,y ) iv ) =
1=1
(z,ym)G(0, g x EE.

Theorem 1. Suppose that

1° the function er: [0,0] x (?(]—t0,0], E+) —E+ is continuous, nonde-
creasing with respect to the functional argument and there is K £ E+ such
that

@) \cr(x,w) —cr(x,w)\ K\\w-w\\o  on [0, a] x C([—to,0], E+),

2° u: Fo/iUEh —E is of class E, there exists the derivative Dxu(x,y)
for (x,y) £ (0, a] x EE, u satisfies differential-difference inequalities (6),
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3° there are L —(LX,... ,Ln)£ R" and £ C([-10,0], R+) such that
W\i(x,y,w)\*Li on EhxC{Dh,E), i=
and
(8) \u(x,y)\*r](x) on EOh,

4° the operator 6 and the function A satisfy the condition

for r£S —{0},
(x,ym)e (0,a] x RE, *=1,...,n,
5° there exists C\ such that ~ \éflm\~ ci fori=1,..., N, mezn.

res
Under these assumptions we have

\u{x, y)\Vuj{x-r]), ,y)EEh,
where is the solution of the problem
Dxu(x) =cr(x,w(x)), x £ (0, a],
ui(x) =T{X), X £ [—to,0].

Proof. We first show that u(x,ym)~ w{x\d) for (x,ym) £ [0,a] X R
Let us define

y):U(X,y)- U>(X',7?), {va)£EO’hUEh
and
ToW = max{u(3),y):(x,y) £Eh, |ly]| * t}, t£R+.

It follows from assumption 2° that there exists a function 'L: ®+->R+ such
that conditions (a), (b) of Definition are satisfied and \l/o(i) » 'L(i) for t £ R+.
Let C > 0 be the constant such that ~'(t) for t £ R+. We define the
function H : Eo UE —R in the following way

H(x,y)=e x p (Vi+ilj/iP) +x (\+ K expiCHrID+Ci exp(C||h||)
i=i
for (x,y) £ E,

H(x,y)=exp (s/\+]yl|2) for (x,y)EEOQ.

It can be shown that H is a solution of the differential-difference inequality
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9) Dxz{x, ym) Z z(x, ym) + K\\z{&m) ||Oft + U\Siz{x,ym)|,
i=I
(x,ym)G(0, a] x K*.

Let e > 0 be fixed. It follows that there exists A > 0 such that

(10) BAA S € for (*1De(0 fIxRji, WWZA
Write
U{XaY) v{x, )
Uy iy Vo) H(X,yy),
figy) [0

where (x,y) GEo.h UEh- We prove that
(11) V{x,y)<e for {x,y)eEohUEh, |y| <A

The initial inequality (8) implies V(x,y) ~o for (X,y) c-eosi- Suppose that
assertion (11) is false. Then there exists x G(0,a] and mGZ" such that
llym| < A and

(12) V(x,ym)<£ forxGJ[0, x), m€Zn,
(13) V(x, y™) = mSLx{V(x,ym): m GZn}=e.

Using the definition of function v and (6) we get

n

Dxv[x,y =)+ &{x: (x)) = "5 4N nAn(x,y~1 Ve
21

We have sv{x,ym), therefore from (3), (13) and from assumptions 3°, 4° it
follows that

n

A AAJ(L Y ~JOXM)SWg Y ~)

2=1

. =+ X I(i,y*,u(iM)KriY,£)h"tih+r)W
i=1 res

CEE RR@FE P Uit V (X, y A+ H (X, +)
i=1rES
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AV (B, ym) A2 |AJ(x, ym,u(ii7h))| |[STH[x, ym)\
:nl

g7(x,y™)MLAtE(x,y™)I.
2=1

Hence
n

(14) Dxv{x,ym)+a{x,ai)) sa(x, T/,«™)) + V(x,ym)”~ LiI\SiH(x, ym)\.
i=1

Let mDh —=R defined by
M{x,mHt, s) = max{rhUEe>s)(t, s),w(i)(i)}, (t,s) 6 Dh.
It is easy to verify that

(15 \WMitjn} “ willo "V{%, ym\\Hxy™\D

Since

7(5,y™)> 0, DxV (x,y ™)* 0,
H(x,yA)> 0, DxH(x,y™)> 0,

and the function a is nondecreasing with respect to the functional argument,
it follows from (14), (15) and (7) that

0~ Dxv(x, y™) = DxV (X, y™)H(x, y™) + 7(5, yM)DxH (X, y*)
n

A rie, MR - croe, W(d)) + 7(5, ym)A L Airx, ym)|
2=1
n

UKV(X,ynWH” W o +7(5, yA)£ E£7#(5,y*).
2=1

Therefore
0<ZV7(x,y ™)tf(x,y ™)

g 7(5, y™) [tF|[FFEY)]0 + ~ Li\SH (x,yA)| - D,Ji(5, y™).
2=1

(16) and (9) give a contradiction. Then (11) is proved. It follows from (10),
(12) that V (x, ym) < e for (x, ym) EEh where e > 0 is arbitrary. Then we have

u(x,ym) *w(x;y) on Eh. The proof of the inequality —u(x, ym) *w(x;r/),

(x, ym) EEh, is analogous. The proof of the theorem is complete.
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4. Stability and existence theorem

In this section we prove that there exists a solution of problem (4), (5)
and that the method of lines is stable. Denote by Uh: -Fofc a
solution of problem (4), (5) and suppose that Vh: Eq* UEh —=R. Assume
that Uh and Vh are of class E and that the derivatives b xvh(x,ym) exist
for (x,ym) E (0,a] x RJ. Suppose that there are 70,71: K+ —=R+ such that

lim 70(t) = lim 71.() = 0 and

\vh{x,ym)-<f>h(x, ym)\ =7o(INI), (x,ym) eEo.

I)xvh(x,ym) = $h(x,ym,(vh)*tm),5vh{x,ym))|g 71 zll\l),
(x,ym)E{o,a] xIj.

The method of lines (4), (5) is called stable if there exists to: R+ —=R+ such
that {i_n}bm(f) =0 and

\uh{x,ym) - vh{x,ym)\*w(||/i|]]), {x,ym)eE h.

THEOREM 2. Suppose that
1° the function & characterizing the method of lines satisfies the Lip-
schitz condition

17) \$h(x,y,w,q) - $h(x,y,w,q)\* K\w - w\\Dh

for every (x,y)EEh, w,w E C(Dh,R), gGRn, where K > 0,
2° there exist partial derivatives Dgsh = {Dqi<& m+>Dgn$>h) on ®h and
for every (x,ym,w,q) E®h, r ES —{0}, i=1,..., n, the inequalities

(18) Dqi$ h(x,ym,w,q)c(% ~0,

(19) \Dgi®h (x,ym,w,q)\ %Li,

are satisfied, where Li " 0,
3° there exists C\ such that \cfIm\~ C\ fori=1,...,n, mE Zn,

res

4° (ph'wmEo.h ->R, hElo, is of class E.
Then there exists a solution Uh! f20/i UEh —R of the problem (4), (5
belonging to class E and the method of lines is stable.

PROOF. Let hE/o be fixed. We shall show the existence of the solution
of the problems (4), (5). Let X be the set of all real sequences £= {£Em}mezn,
E£m€ R, such that sup{|Em|: m ETT) <00. A is a Banach space if we define
the norm

HElX =sup{|ET@:mEIn}.
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Then C([—To, 0], X) is also a Banach space with the norm
IMlca =max{]|u;(t)||x € [-r0,0]}

for w E C([—to, 0], X). Define Am: (?([—0,0], X) C(Dh,M for m E Zn in
the following way:

[Amw](t,ys) = wm-s(t),
where w E C([—to, 0], X), (f,ys) ED”. Let 0/i: EqjIUE"-"R be defined by

4%, s) = <=hfx s) for (x,s) EEom and " (x, s) = 0/,(O,s) for (x, s)EEh. We
also define the function : [0,a] x C([—To, (], X) -> X by

oh(xiw) =$ h{x,ym,Amw + (~)(x,m)!*(0,y m) +oQh(x,ym)),

where x E [0,a], w E C{[—to,0], X), m E Zn.
Consider the following problem

(20) C®=«4(q¥)> ®F00],
() a® =0, xe[-rog],

in the Banach space C{[—to,0], X). Let us show that the function  satisfies
a Lipschitz condition with respect to the functional argument. We have
Bh(x,w)-g~(x,w)\
A A®h(x, ym, Amw + (§Hm), SW{0, ym) + 84hfx ym))
- $h(x, ym, AmW + (<f>h)(x,m),6w(0, ym) + 64>h(x ym))\

n
g KA\Amw - Amw\\Dh + Li\ei{w - U>)(0, ym)\
»=1
N K max{|to(f, ym+s) - w{t, ym+s) [:tE[-r0,0],-N *s”* N }

+C itr max{|u;(0, ym+r)- >0, ym+r)\:r € 5}

for x E [0, a], w,w E C7([—tq,0], X) and arbitrary m E Z7L Therefore
W\gh(x,w) - gh{x,w)\\x ~ L[h]\\w - w\\cx,

where L[h] is a constant depending on h.

We consider differential-functional problem (20), (21) in the Banach
space X. The right-hand side of the equation satisfies the global Lipschitz
condition with respect to the functional argument. Hence problem (21), (22)
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has exactly one solution £: [—To,a] -» X. The function LhmEg® UEh —E
defined by

uh(x,ym)=cm(x)-M x,y ),

X £ [—+0, @], m£Zn, is a solution of (4), (5) belonging to class S.
Now we shall prove the stability of (4), (5). Let us define oj: [—to,a] X
®| —» R+ in the following way:

u(x,t) =exp{Kx) —7i(i)+70 (i) 7i(i). *e[0,al,

w(Xx,i)=70(t), x£ [—0,0].
It is easy to verify that the function (-, ||/i||) is a solution of the problem

I{x) = KW\j{x\0+ 7i (IHI), x € (0, a],
w(x) =7o(|[fil]), x £ [—0,0]

and rlri_rpom(x, |I/ill) = O uniformly with respect to x £ [—to,a]. Since

Dx[uh(x,ym) - v h{x,ym)]

= Voifuh)(x,m)i fuh{xiy ))—"h{xiv {uh)(x,m)i y )
+ ®h(x, ym{uh)(Xm),svh{x, ym)) - $fc(x, ym, («»)(**»)> i«fc(x, ym))
+ K)(x,m), M (x, ym))- Dxvh{x, ym)

for x £ (0, a], m £2Z", it follows that
IDx[uh(x,ym) - vh(x,ym)\

-2 Ddai$ h(Qrn(x,s))dsdi[uh(x,yrm) - vh(x,yr

i=1
=M Axm)  (Mi)x,m) 7N
= —vh)(x,m)ID+ 7I(

for x £ (0,a], m £ Z", where
Qm(x, s) = (x,ym, (u»)pem), svh(x,ym) + s(<Sul(x, ym) - Avirx, ym))).
The function Un- v/, is of class E. Thus in force of Theorem 1 we have
\uh(x,ym) -Vh{x,yrm)\*j(x,\\h\\), x £ [0,a], m£Zn,

which completes the proof.
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5. Convergence theorem

We will need the following

Assumption H. Suppose that
1° the operator S satisfies the conditions

IoemtT AT
res

fori,j =1,...,n, m GZn, where &j is the Kronecker symbol,

£41=o0
r€S
fori=1,....,n, mGZn,
2° there exists C2 > 0 such that hihj1” C2, i,j = 1,... ,n.
Remark. Suppose that Assumption H and Condition 3° of Theorem 2
are satisfied. Ifz: E R is of class C2 and \Dyiyjz(x, y\ » C2, (x,y) GE,
1=bi =n)then there is C * 0 such that

(22) \\S~z(x,ym) - D y~z(x,ym)\\aC\\h\\, (x,ym)eE h.
We omit a simple proof of (22).

Theorem 3. Suppose that assumptions 1°-4° of Theorem 2 are satisfied
and

1°vGC2(E, R) is a solution of the problem (1), (2) satisfying the inequal-
itie; \Dy.y v(x,y)\ » C3 on E for everyi,j =1,...,n and a certain constant

320,

2° the function Vh: £0./iU£/i —1, defined by Vh—V\Eoh\jEh is of class £,

3° / GC(SI, R) and \DQf(Q)\ %C4 for every Q Gfi,

4° there exist functions Xi: R+—R+, i= 0,1, such that a!i)rg)w+ Xi(a) and

(23) \fifx, ym) - €a{x,ym)\g Xo(")i  (z,2/m) € EON,

IF{x, ym, V(xtym),6v{x, ym)) - $/,(x, ym, {vh)(x,m)> <M x, ym))|
UXi(\h\\), (X, ym) GEn-

Then there exist a> 0 and d: [0, a] =R+ such that

aﬂrr& i?(@) =0 and |u/,(x,ym)- vh{x,ym )\~ tf(||h]|)

(24)

for ||fi|| G(0,d], xG [0,a], m GZn, where UhEE is a solution of the problem
4), ().

Proof. We will apply Theorem 2. From (23) we have
\vh{x,ym) - sh{x,ym)\*xo{\\h\\)  for {x,ym) GEOQh-
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There exists C e such that (22) holds. Thus from assumption 6° and (23)
there exists a function x m®+ -7 Mt such that di;’&_xia) =0 and

\Dxvh(x, ym)- $h(x, ym:{vh)(x,m)iévh{x, ym))\
g f(x, ym MXym), Dyv(x, ym)) - f(x, ym,v(x<ym), Sv(x, ym))\

+ If(x, ym,v{Xtym),6v(x, ym)) - $h{x, ym,{vh)(XtJn),Svh(x, ym))\
AX(IWI) + Xi (IMl) for x e (0,a], me Zn.

The assumptions of the Stability Theorem are satisfied by

70= Xo, 7i=X + Xi-

Taking i?(|[/&][) = w(a, ||/i|]) we have the assertion of the Convergence Theo-
rem.

6. Examples of the method of lines

Let F(X,Y) denote the set of all functions mapping X into Y, where
X,Y are arbitrary sets. We will denote by T\ : F(Eoh UE/j,E) =F(EqU
E. M the approximating operator defined in the following way. Put S+ =
{0, I}n. If (x,y) e EQUE then there exists me Z” such that ym{y 0 ym+1,
where m+ 1= (mi+1,...,mn+ 1). Forwe F(EOhUEh, 1) we set

) 1+
Whw\(x,y)=Y W(lem+'l')ry y mi Ir_ y ﬁ/m]
reS+
where
[yT Y -n
2-1
(25) 1
Vi V| 1

[1-v7 ] _AI-

and we put 0° = 1in (25).

Example 1. Let us consider the problem (1), (2) with the continuous
function /: —E satisfying the Lipschitz condition with respect to the
functional argument and condition 6° of Theorem 3. Let fco£N satisfies the
inequalities 1 ko n and let us assume that

D@J(Q)Z0, Qefi, *=
Dgif(Q) =@ QeQ, i=ko+1,...,n
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We denote i(m) = m + e~ —i(m) = m —e{, where = (0,...,0,1,0,...,0)
and 1 is standing on the i-th place i= 1,..., N Define

5iz(x, ym) = hrl{z{x,ym)- z{x,y~K{m)), i=1,...,k0,

6iz(x,ym) = hrai(z{x,ytm))- z(x,ym)), i=ko+1,..., n

for a6 [0,a], m GZn. Consider the method of lines (4), (5) with the function
:0/j =M h£ lo, defined by

(26) &h(x,y ,Z(x,mio) fi-Eiv I

where (x,ym) GEh, z GC(Eo.h UEh, K), g GK". The function <} and the

difference operator 6 satisfy (18).

We can define the difference operator in different ways. For example
Stz(x, ym) =hr\2z(x, y*™) - 3z(x,ym)+z(x,y ) ),

1,....,n, xGJ[0,a], m GZn. If we assume that Dqif(Q) ~ 0 for Q GD,

1,... ,n, then the above operator and the function 4» satisfy (18).

Example 2. Consider the differential-integral equation

@) Dxefxym—irxy, | 27 (s)ds, 20 ymI,  (xy)eE,
.

with the initial condition
(28) 2(0,y) =4xy), yGMn,
where D1—[—,+] and MXY): D' —=K is given by
J() =z(x,y +s), SED'.
One of the method of lines for Cauchy problem (27), (28) is the following

Dxz{x,ym)=f ym,J [Thz}iXtym){s)ds, ez{x, y T,
D

X G[0,a], m GZn,
z(0,ym) = ({tym), m GZ".
We have obtained the Cauchy problem for infinite system of ordinary differ-
ential equations with
1N N—
| [Thz\x,ym){s)ds = — "W hi A z(X,ymH+r),
1=1 I=-Nr£S+
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where N —1=(N\ —1,..., Nn —1).

EXAMPLE 3. Let, g: E x Rxtn->R a: E —J0,a], B: E —Rn be given
functions. Define f(x, y,w, @) = g(x, y,w[a(x, y) —x, B(x, y) —y\, q). Equa-
tion (1) reduces to the differential equation with a deviated argument

Dxz{x, y) = g(x, y, z(ot(x, y), B{x, y)), Dyz{x,y)).
If we set
$/>(£,ym ,z(xian),q) = g(x, ym, [Thz]{a(x, ym),B{x, ym)), a)

then we obtain (4).

Example 4. Now we present a numerical example. Let us consider the
following Cauchy problem

Dxz{x,y) = Dyz{x,y) - x(1 +y2) [ z(x,y+ s)ds
W \Y% -
+Xxy-z(x,y- + F (x V)i

(x,y) G[0,1] x K
(30) z(0,y) =l +y, yGK

where-FArry) = 1+ y—xy (I + :r)(1 + | —ry)(1 + y2)  The solution of the
problem isv(x,y) = 1+x+y +xy, a G[0,1], y GK After applying the method
of lines to the problem (29), (30) we get a Cauchy problem with a system of
ordinary differential equations. If we apply the Euler method to the system
then we get the following difference method:

(31) zi+l1]j 1:('(3';1_ )252I'i—xl(l+ (y7)2)1 17+ xlyi 2iMhj)
E 0,...,N0,jBZ,
(32) z°j =1 +yj, je z

where we use the following notation: x| =iho, y7=jh, zIT—z{xl,y7), -F17=
F(xi,y7), fio>0is a step of the time mesh and h >0 is a step of the spatial
mesh, S is the difference operator defined in the following way

62id =h~1{zi'i -2**-1), i=0,....Alg | €Z j> 0,
528 =h-\zA+1-2z"), i=0,....No, j GZ j "0,



THE METHOD OF LINES 427

0
and 13 is the integral I z(xl,y3+s)ds counted by using the following

1 (id)2
complex trapezium method

=2 E {z{x\yj+1+) + z{x\y>+1)\
1=0

where M(j) is the integer number such that yM* 1< —1+*j* ~ yMti) and
k(i,j) is the integer number such that yk(11)~1 <vyi _ ~NyWd). The

natural number N qgsatisfies the condition Noho = 1
Denote by uyOy the solution of (31), (32) and define

e=v(0.5,yJ) - u hok{0.5,yJ), e=v{1.0,yj) —h0fc(I-0, jr7, j 6Z.

Some values of the errors e, é for the steps ho = h —0.001 are listed in the
tables.

Table of errors for x = 0.5

yJ: -0.35 - 0.2 -0.05 0.05 0.2 0.35
-0.00688 -0.00265 -0.00049 -0.00013 -0.00241 -0.00680

Table of errors for x = 1.0

yj - -0.35 - 0.2 -0.05 0.05 0.2 0.35
e?: -0.08248 -0.03247 -0.00388 - o0.00202 -0.03316 -0.08950

The computation was performed by the computer IBM AT.
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GENERALIZED UNIFORM SPACES AND APPLICATIONS
TO FUNCTION SPACES

H. RENDER

Abstract

Using non-standard methods we investigate the class of small-set symmetric spaces.
The importance of this class stems from the fact that many results being valid for uniform
spaces carry over to this larger class, as the Ascoli Theorem, the exponential law and some
further results. Examples show that our assumptions cannot be relaxed contradicting some
results in the literature.

0. Introduction

One of the most intuitive applications of non-standard analysis is the
description of nearness in a uniform space (X, V): for x, y in the non-standard
model *X we define y to be near to x, more briefly y ri X, to mean that
(X,y)6 h~ /t(V) :=riyev*V and the set y,[X] :={y € *X :y « x} is called the
monad of x. Obviously, these definitions apply to any filter V on X x A;
it is well known that V is reflexive (symmetric, transitive) iff the relation
ri has the corresponding property, cf. [12]. Thus V is uniform iff ri is an
equivalence relation on *X. But for topological applications it is very often
sufficient to know that ri is only an equivalence relation on the nearstandard
points of* A. This leads to the concept of a small-set symmetric space which
was introduced by N. Vakil as a Wattenberg infinitesimal. The importance
of this class of generalized uniform spaces stems from the fact that many
results being valid for uniform spaces carry over to this larger class, e.g. the
Ascoli Theorem and further classical results as we will show in our paper. We
give several (standard) characterizations for small-set symmetric spaces and
relate our definition to some other concepts like point-symmetry and local
symmetry known from the theory of quasi-uniform spaces. The definition
of a small-set symmetric space can be used to give a characterization of a
certain class of quasi-uniformities answering a question in [1, p. 9. This
is all done in the first section. In the second section we give very elegant
and short proofs of results given in [10, 14, 20]. For example, we give a
very simple construction of the splitting and jointly continuous topology
for a locally bounded space, cf. the results in [10]. Moreover, we show by
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examples that some results in [14] are false and we give the correct form of the
corresponding results. In the last section we discuss completeness properties
of locally transitive spaces. We show that the non-standard characterization
“X complete if and only if ns*X = pns*X” still holds for locally transitive
spaces. Furthermore non-standard proofs of some known results are given.
Then we answer positively two questions posed by S. Naimpally: there exists
a locally symmetric quasi-uniform compact Hausdorff space X such that the
set of all (continuous) functions from X to X is not complete for the quasi-
uniformity of uniform convergence. It also disproves Theorem 2.10 and 3.6
in [16]. On the other side, the set of all continuous functions is convergence
complete with respect to the filter of compact convergence if the domain
space is a A>space and the image space is a small-set symmetric, locally
symmetric and complete quasi-uniform space. The reader should be familiar
with the basic framework of non-standard topology as developed in [4, 12].
We assume a sufficiently saturated non-standard extension of the standard
universe containing all the underlying spaces.

1. Small-set symmetric spaces

A filter V on the set X x X is reflexive ifevery F eV contains the diagonal
A of X x X. Then V induces a topology ry calling a set T C X open if for
every X E X thereexists V EVwith V[x\ :={ye X :(x,y) EV] CT. A locally
transitive filter V is a reflexive filter such that for every V 6 V and x e X
there exists W e V with W oW[x] C F[x]; if W only depends on V, then V
is transitive. Thus every quasi-uniform space (cf. [1]) is locally transitive.
Locally transitive spaces are also called locally quasi-uniform spaces [11]. It
is easy to see that a reflexive filter V is locally transitive iff V satisfies the
relation

Q) z~y and y~*x imply z~*x forall z,yE*X, XEX.

As usual let V-1 := {F_1:V eV} If (X,r) is a topological space, then
m(x) := r\uer,xeU*U is the (topological) monad of x EX and we write y ~ Tx
for yEm(x). Moreover ns*X := Ux&m{x) is the set of all nearstandard
points. Further cpt*X := Ukex compact *K is called the set of all compact
points. It is well known that X is compact iff ns*X = *X and that X is
locally compact iffns*X = cpt*X. A filter Von X x X is compatible ifry =r.
Let (X,W),(Y,V) be reflexive spaces. A function f: X —=*Y is uniformly
continuous if for every V g V there exists U ela with {f{x),f (y)) e V for
all (x,y) EU. Equivalently, this means: y « x implies *f{y)~*f(x) for all
X,y E *X. Finally aX := {*£ :x e X} is the copy of X in the nonstandard
model *X .

PROPOSITION 1.1. Let (X, V) be a locally transitive space. Then the
system of all V[x\ with V EV is a neighbourhood base of XE X and ss is an

extension of ~r(\)e
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Proof. Confer the proof of Lemma 1.3 in [24]. O

DEFINITION. Let v be a reflexive filter. We call W E v semisymmetric
inx 6 X if (x,y) EW implies (y,x) EW for all y EX. V is called small-set
symmetric if for all F EV and x E X there exists a neighbourhood U[x] with
UEV and W EV being semisymmetric in x EX such that W o W[y] C V[y\
for all y E U[x\.

In the following theorem we characterize small-set symmetric spaces. The
equivalence of (a)-(d) and some further elementary properties are already
proved in [22]. If V is a quasi-uniformity then Theorem 1.2 and Lemma 4
in [8 show that our definition of small-set symmetry coincides with the
definition given in [8]. For further characterizations we refer to [2],

THEOREM 1.2. Let V be a locally transitive filter. Then the following
assertions are equivalent.

() ss is an equivalence relation on ns*X x ns*X.

(b) Ya *x and zm*x imply y~z for ally,z E*X, xEX.

(c) y&*x implies p[y] = p[*x].

(d) Every V EV is a neighbourhood of A.

(e) V is small-set symmetric.

(f) There exists a compatible small-set symmetric filter U with VCU.

If V is quasi-uniform then in addition are equivalent:

(@) yK*x implies *xmy for all y E*X, xE X .

(h) ev—Cry.

(i) V has a base of closed neighbourhoods of the diagonal.

(j) There exists a compatible uniform filter U with VCW.

Proof. (a)=>(b) is trivial and the converse is straightforward using the
local transitivity. The equivalence of (b) and (c) is obvious. For the equiva-
lence of (c) and (d) observe that F is a neighbourhood of A iff m(x) x m(x)
C *V for every XEX.

(@=>(e). Choose Wo E *V with Wo Cp and let W := Wo U (Wo[*a;] x
{*£}). Then W E*V and (a) yields W Cp. Now let V EV. It is easy to
see that W oW[y] C V[y\ for all y ~ *x. Now straightforward arguments
(via the transfer principle) yield (e). For (e)=i>(b) let and z**x and
V EV. Choose W, U as in the above Definition. Theny E *U[x\ and therefore
*W o*Wy] C *V[y\- Since z E*W °*W[y] we obtain z E*V[y\ for all V EV,
i.e.,, that y~z. Obviously, (e)=i>(f) is trivial and for (f)=4>(b) consider the
uniformly continuous identity map id: (X,U) —=(X, V).

(@)=>(g) is trivial and for (g)=>(h) observe that y «y *x =»* ~vy =

~V., *X‘
y For (h)="(i) apply the results in [1, p. 8] and (i)=i>(d) is trivial. For
(h)=i>(j) consider the uniform space V fl V-1 generated by the system
{FnF-1:F€V}and (j)=>(f) is obvious. O
Theorem 1.2 (j) shows that a small-set symmetric quasi-uniform space
has necessarily a completely regular topology, cf. Theorem 3.8 in [22]. But
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in general, a small-set symmetric space has only a regular topology; for the
proof of regularity one needs only the property that for each V GV, x GX
there exists W GV being semisymmetric in x GX such that W oW[x] C VI[x\,
cf. [16, p. 770]. On the other side, let (X,r) be a regular space; then the
filter At of all neighbourhoods of the diagonal A in X x X is a compatible
small-set symmetric space, cf. Theorem 1.4 in [24] or Proposition 1.9 or
Theorem 3.10 in [22].

A reflexive filter V is called point-symmetric [1, p. 36] if for each V GV
and i £ | there exists a symmetric IF GV such that W[x] CV[x].

Proposition 1.3. Let (X, V) be a locally transitive space. Then the
following assertions are equivalent:

(a) X is point-symmetric.

(b) *xssy implies y**x for allyG*X, xGX .

(c) tvCov-i.

Proof. We prove only (b)="(a) since the implications (a)="(c)="(b) are
obvious. Choose Wo G*V with Wo C p and let W := Wo UWgq 1- It suffices
to show that W[*t]C *V[*x\ by the transfer principle. Let y GW[*rr]. Now
(b) shows that y&*x and therefore YE*V[*x\. O

For a quasi-uniform space (X, V) we have the following duality: V is
small-set symmetric iff V"1 is point-symmetric. Of course, V-1 is in general
not small-set symmetric if V is small-set symmetric, cf. Example 1.6.

Corollary 1.4. Let X be a compact space. Then every compatible
small-set symmetric space is uniform.

PROOF. By compactness we have ns*A = *X, hence « is an equivalence
relation on *X. 0

Similarly one may show that a compact locally transitive filter is tran-
sitive. The following result is a slight generalization of Theorem 1 in [9]; as
shown in [9] it is not valid for arbitrary quasi-uniform spaces.

Theorem 1.5. Every continuous function from a compact locally tran-
sitive space into a small-set symmetric space is uniformly continuous.

Proof. Let f : X —Y be continuous and y « x with y,x G*X. Since
X is compact there exists xg GX with x « *xo and by (1) we have y « *rco.
The continuity of / yields *f(x)"*f(*xo) and *f(y) ~ *f(*x0). Since Y is
small-set symmetric we obtain *f(y) ~*/(x). O

J. Williams has called a filter V locally uniform if V is symmetric and
locally transitive. V is called an NL U-space if in addition for every V GV,
X G X there exists W GV with W[x\ x W[x\ C V. Theorem 1.2 (d)=>(e)
shows that every NLU-space is small-set symmetric. Thus Corollary 1.4 can
be seen as a generalization of Theorem 3.7 in [24]. A concept weaker than
local uniformity is the following [11]: a reflexive filter V is locally symmetric



GENERALIZED UNIFORM SPACES 433

provided that for every V GV and x G X there exists a symmetric W GV
with W o W[x] C V[x\. Observe that we do not require the transitivity as
in [1], Example 1.6 shows that a small-set symmetric quasi-uniform space V
need not be locally symmetric, in particular not locally uniform and not an
NLU-space.

Example 1.6. Let X :=R and Vn:={(x,y) ex xX: \x-y\<£}. Con-
sider the filter V which is induced by the sets VUX:= (Mn\({a;} xX))U{(x, a)}
with nGN, x GX. It is easy to see that ya x iffy=x for x GaX := {*z:
z GX} and y « Rx otherwise where « R is defined by the uniform structure
on the real numbers. Thus (X, V) is quasi-uniform; it is small-set symmetric
since the induced topology is discrete. But (X, V) is not point-symmetric,
in particular not locally symmetric.

Proposition 1.7. Let (X, V) be a locally transitive space. Then the
following assertions are equivalent:

(@ X is locally symmetric.

(b) y« z and ym*x imply z**x for all y,z G*X, x EX.

(c) p[2\ fl p[*x] 70 implies p[z] C p[*x] for all zG*X, x GX.

Proof. (a)=>(b). Let V GV and choose W GV symmetric with W o
W[x\ C V[x\. Ify« z we have (z,y) € *W and therefore (y,z) G*W. Since
(*x,y) G*W we obtain z G*W o *VP[*x] C *V[*x]. Since V GV is arbitrary
we have z ~ *x. For the converse choose WqG*V with WqC p. Then W :=
Wo UIEg1 symmetric. It suffices to show that W oW[*a;] C *V[*x] for
every V GV. For z GW o IF[*a;] there exists y G*X with (*x,y), (y,z2) GW.
If (*x,y)G then (b) implies yzz*x. Since zay or f/faz (1) resp. (b)
yields z « *x. The equivalence of (b) and (c) is obvious. O

Proposition 1.7 (b)=>(a) has the following consequence: A compact quasi-
uniform space (X, V) is locally symmetric iff ry is regular. Indeed, let y~z
and y ~ *x. Since X is compact there exists zo GX with z ~ *zq. Thus
y«*z0 and yzs*x. The regularity yields *zo~*a;. By (1) we have zrss*x.

Corollary 1.8. Let (X,V) be a locally transitive space. Then the fol-
lowing assertions are equivalent:
(a) For each V GV, x GX there exists a symmetric W GV and a neigh-
bourhood U[x] of x such that W o W[y\ C V[y]for all y G U[x\.
(b) X is small-set symmetric and locally symmetric.
If X is quasi-uniform then in addition are equivalent:

23 X is small-set symmetric and point-symmetric.

Proof. (a)=>(b) is trivial. For the converse choose Wo 6 *Vv with Wo C p
and let W := WoUWgq L. It is enough to show that Wo W[y] C *V[y] for every
y« *x. For zGW o W[y] there exists w G*X with (y, w), (w,z) GW. Now
the local symmetry shows that w « *x and therefore z ~ *x. Since X is
small-set symmetric and yzs*x we obtain z«y, i.e., that zG *V[y]. Now let
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us show (c)="(b). Let y~z and y~*a:. Then *x~y and therefore *x ~ z.
Since A is point-symmetric we infer z &*x. The other implications are clear.
O

A small-set symmetric locally symmetric quasi-uniformity is not neces-
sarily symmetric (or equivalently locally uniform): Let X —E and consider
the quasi-uniformity V generated by the sets Vn:= AU{(&,y) ERx R:n iS
y A x} with nEN Then ry = rv-i is the discrete topology but V is not
symmetric.

Now we want to give a sufficient criterion for local transitivity and small-
set symmetry. Therefore we need the following

Definition. Let (A, V) be a reflexive space. V is called full if riv is
an extension of ~Ty and for every xE X there exists a neighbourhood base
t™>(x) of x such that for each Gi,G2€ Ty(x) with Gi C G\ C G2 the set
{G2x G2)U((A\ GO x (X \ GX) isin V.

Proposition 1.9. Let (A,v) be afull reflexive space. Then the follow-
ing assertions are equivalent:
(a) For every VEV, x EX there exists a symmetric W EV and a neigh-
bourhood U[x\ of x E X such that W o W[y\ C V[y\ for all y E U[x\.
(b) V is small-set symmetric.
(c) ry is regular and every V EV is a neighbourhood of A.

prooF. (a)=>(b)=>(c) are clear. To prove (c)=>(a), let V EV, x EA.
Since v is a neighbourhood of (x,x) 6 A we can choose G3E ry(x) with
G3 x G3C V. Since Ty is regular there exist Gj E ry(a:) with Gj C Gj+i for
=12 Let Ci:= (G<+! x Gi+ti) U((A\ Gi) x (A\GO) €V. Then W :=
W fl U2 E V is symmetric. Ify EGi and z EW oW[y] then there exists r EX
with (y,r) EW CU\ and (r,z) EW CU2. Since yEG\ it follows that r e G2
and similarly z EG3. Hence (y,z) EG3x G3C V. O

Let (A, r) be a topological space. It is not very difficult to show that
the filter Ar of all neighbourhoods of the diagonal A in A x A is full ifr is
Hausdorff or regular, or more general, an I?0-space, cf. [1, p. 6]. Proposition
1.9 shows that Ar is small-set symmetric iff r is regular iff Ar is locally
transitive. In [13] it is proved that Ar is quasi-uniform (or uniform) iff r
is almost 2-fully normal. In [1, p. 9] it is asked for which quasi-uniform
spaces V the family of all r-neighbourhoods of flveyP is a compatible quasi-
uniformity where r is the supremum of ry and Ty-i. Assume that ry is
Hausdorff. Then A = flygyP and the induced topology of Ar is r. Thus
At is compatible iff rv-i Cry. We infer that among the Hausdorff spaces
exactly the small-set symmetric quasi-uniform Hausdorff spaces which are
almost 2-fully normal have the above property.

Now let us take a look at the famous Pervin quasi-uniformity V of a
topological space (A, r) which is by definition the filter generated by the sets
ST:=(TxT)U(A\T) x A) with TE t. Since y{V) =nTeT*Sr we obtain
that y Kipx iff y E m(x) rTer,xe"T*T. Since ssp is obviously transitive
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the filter V is a (compatible) quasi-uniformity. This yields the well-known
result that every topological space possesses a compatible quasi-uniformity;
this improves Theorem 2.10 in [22]. Observe that the topology of V~I is
discrete if X is a Ti-space: y «-p-i *x implies *x zt-py. Choose U X \ {x}
being open. Ify” *x then y €*U but *x ~ *U, a contradiction. Proposition
1.3 (c) shows that V is point-symmetric; Theorem 1.2 (e), (h) shows that V
is small-set symmetric iff X is discrete. Finally we note that V is full since
Sg2n Sx* ¢ (G2x G2)U ((X\ GO x (X \ Gi)).

Let (X, r) be a topological Ti-space and consider the filter C generated
by the sets Sfu—{F x U) U((X\ F) x X) with F closed, U open and
F CU Then yrjcx iff y Ge{x) := r\Fcuxe*F X\F,UET*Ul in [23] c{X) is
called the coarse monad of x G*X. Obviously, C is symmetric and it is easy
to see that every SRu is a neighbourhood of A with respect to the product
topology induced by r. Thus C is locally transitive iff C is locally symmetric
iff C small-set symmetric iff r is regular, since regularity [normality resp.]
obviously implies local transitivity [transitivity resp.] of ~c- This improves
Theorem 3.11 in [22], Similarly we obtain that r is normal iff C is uniform:
indeed, if C is uniform then c[x\ flc[y] = 0 or c[X] = c[y] and Lemma 25
(i)y=>(i) in [23] yields the normality.

2. Applications to function spaces

Let X, Y be topological spaces, C(X,Y) be the space of all continuous
functions and  the compact-open topology. For every compatible reflexive
filter Von Y we define the equicontinuity of a family H C C(X, Y): for every
XEX and VeV there exists a neighbourhood U of x such that {f(y),f(x))€V
for all f £ H, y EU. A well-known non-standard characterization is the
following:

)] y~r*x implies f{y)~f{*x) for all fE*H, x£X.

A family H is pointwise bounded if every image set {/(x) :/ GH} is rela-
tively compact, i.e., that the closure is a compact set. Recall that a k-space
[k*-space resp.] is a topological space X on which a Y-valued function is
continuous if its restriction to each compact subspace is continuous for every
topological [regular resp.] space Y.

Theorem 2.1. Let X be ak®space and Y a small-set symmetric space.
Then H C C(X,Y) is relatively compact if and only if H is equicontinuous
and pointwise bounded.

In fact, Theorem 2.1 is equivalent to the topological Ascoli-Theorem in [3]
if we can show that equicontinuity is equivalent to the (weaker) topological
concept of even continuity for a pointwise bounded family: Let H be evenly
continuous and let / G*H, x£ X and y ss*x. Since H is pointwise bounded
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there exists zEY with f(*x) asz. Now the non-standard characterization of
even continuity yields f(y) «2, cf. [4, p. 162], Thus f{y)~z and f(*x) &z.
Since Y is small-set symmetric we infer f(y) « f(*x). O

The following example shows that Theorem 2.1 is not valid for an ar-
bitrary quasi-uniform space (Y, V) even if Y is a compact point-symmetric
Hausdorff space. Moreover, it shows that some results in [14] are not cor-
rect; the error depends on the false Theorem 4.23 in [15] that has already
been pointed out in its review MR 35 #2267. In a recent paper H. P. Kiinzi
has given examples showing that in Theorem 2.1, Proposition 2.3 and The-
orem 1.5 “Y small-set symmetric” cannot be replaced by “quiet”, cf. [7],
where also standard proofs of these theorems can be found.

Example 2.2. Let X —Y be an abelian topological group with a com-
pact, non-discrete Hausdorff topology, e.g. X = S1. Let V be the translation
(left) invariant uniformity and V be the Pervin quasi-uniformity on Y. It
is easy to see that the set H :={tx :x EX} of all translations (defined by
Tx(y) —x +y) is Tfc-compact. By 2.1 it is V-equicontinuous and evenly con-
tinuous. We show that H is not P-equicontinuous: obviously ym*x implies
—y « —*x. If H is P-equicontinuous then rw(—y) ~ tw(—) for all w E*Y.
With w :=y + *x we obtain *xa-py. By 1.2 (a) and ns*Y = *Y we infer that
P is uniform. Then (Y, P) is discrete [1, p. 43], a contradiction. This shows
that Theorem 1.1, 1.3 and 1.5 in [14] are not correct (where /: X x 1-)7
is defined by f{x,y)~x +y).

Let a be a family of subsets of X and let (Y,V) be a reflexive space.
Then the system of the sets W (A, V) := {(/, 9) : (f (x), g(x)) EV for all XE A}
induces a reflexive filter on the set F(X,Y) ofall functions f : X —»Y. Define
a pt *X := UAea*A; note that cpt*X —k pt *X for the system k of all compact
subsets of X. The following characterization of the relation  ofthe induced
filter is obvious:

(3 [ ~q9<>f(x) ssy g(x) for all xEapt*X.

The induced topology rQ(V) is called the topology of V-uniform convergence
on a. But in general the topology rQ(V) depends on the filter V even if
a is the set k of all compact sets: It is not very hard to see that the set
H in Example 2.2 is not Tfc(P)-compact, thus we have Tfc(P) # «* — Tfc(V),
cf. Proposition 2.3. Thus Corollary 2.2, 2.4 and 2.5 in [14] are false. Note
that Tic C Tic(V) for any locally transitive filter. Proposition 2.4 yields further
counterexamples.

In passing we note that the problem when two topologies of uniform
convergence agree has a very nice non-standard solution. Let a, B be systems
of closed subsets of a completely regular space X. Then it is not very difficult
to show that rQ(v) c ~(v) on C(X, Rr) ifand only ifapt *X c /3pt *X\ for
details and some more general results see [17].
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Proposition 2.3. Let (Y,V) be asmall-set symmetric space. Then =
T*(V).

PROOF. The following non-standard characterization of ¢* is valid if A
or Y is regular or Hausdorff (cf. [17]): / G*C(A,Y) is near to /o GC(X, Y)

iff /(x) ssfo{xo) for all xGcpt*A, xo £ A with x«Xo- Using (3) the proof
is straightforward.

PROPOSITION 2.4. Let X be a locally compact Hausdorff space and let
V be the Peruin quasi-uniformity on the Sierpinski space {0,1}. Then t"—
Tk{V) on C(X,{0,1}) if and only if X is discrete.

PROOF. V isgenerated by the set V := {(0,0), (1,0), (1,1)}. We identify
the set C(X, {0,1}) with the space of all closed subsets of X. LetiG | and
/ be the characteristic function of {x}. It is easy to see that the Tk{V)-
neighbourhoods of / are the sets {A :K fi A C {x}} where K is an arbitrary
compact subset of X . If (xj)j is a net in X converging to x GX then {xj}
converges to {x} in the compact-open topology. If =t*(P) then {xj}Cx
for almost all i GI. Thus X is discrete. The converse is left to the reader.O

The above-mentioned characterization of the compact-open topology on
C(X, Y) can be used to give very elegant and short proofs of standard results
as the exponential law and the Ascoli Theorem, see [17, 23]. Recall that a
topology r on C(X,Y) is splitting if every continuous function /: T x X ->

Y induces a continuous function /: T -» C(X,Y) [where f(t)(x) :=f(t,x)]
for any topological space T. The topology r is jointly continuous if the
evaluation e: C(X, Y) x X -*Y defined by e(f, x) =f(x) is continuous. Here
we want to illustrate some related results recently given by Lambrinos in
[10]. At first we need some definitions: a subset A of a topological space X
is bounded if every open cover of the whole space X has a finite subcover
for the set A. It is easy to sec that A is bounded iff *A C ns*AT. Thus every
relatively compact set is bounded and for regular spaces the converse is also
true. X is locally bounded if every x GX has a bounded neighbourhood, or
equivalently, ns*A = 6pt *X where b is the system of all bounded subsets.

THEOREM 2.5. Let X be locally bounded and Y regular. Then T(,(V) is
the unique jointly continuous and splitting topology on C(X,Y) (and at the
same time, the smallest jointly continuous one) where V is any compatible
small-set symmetric filter.

PROOF. To prove that T(,(V) is splitting, let t « ig and xG bpt*X. Then
there exists xo GX with x « xo- Therefore (t,x) « (to)*0) and the continuity
of / implies *f(t)(x) = *f(t,x) &f(to,x0) = f{to)(*0)- Now (3) shows that
*f(t)  /(to) proving the continuity of /. Further it is very easy to check
that Tfc(V) is jointly continuous since ns*A = 5pt*A. Finally, a topology r
on C(A,Y) which is splitting and jointly continuous is uniquely determined
and weaker than every jointly continuous topology, cf. [17]. O
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Remark 2.6. The regularity of Y is essential in Theorem 2.5. For ex-
ample, let X =Mand Y — {0,1} the Sierpinski space then T((V) = Tfc(V)
and Tfc(V) is jointly continuous. But rt(V) is not splitting since otherwise
rffic(F) =Tfc, a contradiction to Proposition 2.4.

Finally we give very easy non-standard proofs of results in [19, 20].

Theorem 2.7. Let X be a point-symmetric locally transitive space and
let G be an equicontinuous group of homeomorphisms of X onto X. Then G
is a topological group under the topology tp of pointwise convergence.

Proof. At first we show that the composition 0: G xG -3} G is con-
tinuous. Let / ~p/o and ¢ go where /, g E *G, /0<?0 6 G and «p is
the monad of rp. (3) yields g{*x) « go(x) for any x EX and (2) shows
f{g(*x)) « f{*go{*x)). On the other side (3) implies f{*go{*x)) « fo(go(x))
and by (1) we obtain f(g(*x)) « fo{go(x)), i.e., fogzzpfoog0. For the conti-
nuity of the inversion it suffices to show that / wpid implies / -1 ?spid where
id is the identity element. It is easy to see that id is also the identity function
on X. Thus /(*£)« i. Now (2) implies *x —f~1(f(*x))~f~1(*}). IfY is
point-symmetric we obtain f~ 1(*x) &*x. The proof is complete. O

Remark 2.8. Seyedin works in [20] with a topology r weaker than the
induced topology ry of a locally symmetric quasiuniformity V. But the
assumptions of Theorem 6 in [20] always imply T = Ty. Let x " rxo. Since
id E G we have by (3) that x = *id(X) ~y *xo, i.e., ry Cr. Since every locally
symmetric space is point-symmetric the main result Theorem 6 in [20] is
covered by Theorem 3 in [19].

3. Completeness

A reflexive space (X,V) is precompact if for every V EV there exist
x\, mmm xn GX with X —Ffaq] UeeeUF[a;n]. Let pns*A”:= fly6y Uiex *F[r]
be the set of all prenearstandard points. Easy saturation arguments show
that X is precompact if and only if *X =pns*A. A filter T on the set AT is a
Cauchy filter iffor every V E V there exists x GX with V[x\6 T. Let/ be an
index set in the standard universe; then *1* denotes the set of all infinitely
large | € */. A net (r/);e/ is a Cauchy net if for every V GV there exists
X 6 X, lo6 1 such that xi E V[x] for all I 10. X is complete [convergence
complete] if every Cauchy filter has an adherence [limit] point. It is easy
to see that m(X) :=r)pe”*F is contained in pns*X for every Cauchy Filter
(briefly CF) T . This yields the inclusion part of

4 U rn(F) =pns*X:= f| U *V[X].

tcf vevXxex

For the converse let y E pns*X and consider the filter subbase {F[x] :
V EV, xEX with y E*F[a:]}. Then the induced filter Ty is a Cauchy filter:
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for V GV there exists x GA with y G*v[x] (since y G pns*A), i.e., that
vix]GTy. Sincey Gm (F) the proof is complete.

It is well known that a filter T in a topological space A has the limit
[adherence] point x Gx iff m (F) Cm(x) [resp. m{F) flm (x) £ Q].

THEOREM 3.1. Let X be a locally transitive space. Then the following
assertions are equivalent:

(@) x is complete.

(b) m(.7r)nns*A 70 for all Cauchy filters F.

(C) m(F) CNS*X for all Cauchy filters F .

(d) ns*A = pns*A.

(e) For every Cauchy net (xi)i”j in *X such that | is in the standard

universe there exists | G*/00 with xi GNS*A.

PROOF. (a)=>(b) and (d)=>(c)=4>(a) are clear. Let us prove (b)=i>(d). Let
y Gpns*x . Then the filter r { A Cx :y G*a) is a Cauchy filter. Assume
that y £ ns*A. For every x Gx there exists v GV such that y ™ =v{x\
Thus m () C *(A\ W[a]) for some w GV with w ow[x\ Cv[x\ and by
Proposition 1.1 m(*r) C =x\m (x). Since this holds for all x Gx we obtain
a contradiction to (b). The equivalence of (a) and (e) is left to the reader.C)

The next example [1, p. 50] shows that completeness and convergence
completeness are not the same.

Example 3.2. Letx =[0,1] and Vc:= Au[{0} x [0, e)JU[{I} x (1-e, 1J]U
[(1/2 —e, 1/2) x ((0,e) U(1 —=, 1))]. Then pns*A = ns*A = aX Um(0)Um(l).
Hence A is a point-symmetric complete space. But the filter T generated
by the sets (0,e) U (L —e, 1) is a non-convergent Cauchy filter.

If A is a uniform space it is well known that for every Cauchy filter T
there exists y G*A with m(A) Cpry] and y is necessarily in pns*A. The
last example shows that the latter property is not valid for quasi-uniform
spaces. We refer to [18] for a discussion of further concepts of completeness
via nonstandard techniques.

Proposition 3.3. Let X be a reflexive space and | be a filter on X.
Then T is a Cauchy filter iff there exists F G*T, yG*A with F Cp[y\.

Proof. Choose F G*T with F Cm(F) and consider sy m={y G*A :
F C *F[y]} for every LG V. If T is a Cauchy filter then sy is non-empty
and obviously Syxfl eesDsyn D SvIn-nv,, * saturation there exists y G*A
with F C *V[y] for all LG V. For the converse consider for every L GV the
following statement: (3y £*X)(3F E*F)(F C*V[y]). O

We give now non-standard proofs of some classical results proved in [21]
and [1].

THEOREM 3.4. A compact locally transitive space is convergence com-
plete.
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PROOF. Let T be a Cauchy filter on X, and let F E*T, y E*X with
F C n[y). By compactness there exists x EX with y « *x. Since z wy for
all zEF we infer F C m{x) by (1). The transfer principle shows that T
converges to x. a

Theorem 3.5. A locally transitive space is compact if and only if it is
both convergence complete and precompact.

PROOF. Let X be compact. By Theorem 3.4 X is convergence complete
and precompactness follows from ns*X cpns*X C *X = ns*X. Conversely,
we have *X = pns*X by precompactness and pns*X C ns*X by completeness.

O

Proposition 3.6. Let X be a locally symmetric space. If a Cauchy filter
J- has a cluster point xXE X then T converges to x EX. In particular, X is
convergence complete if and only if it is complete.

PROOF. Let F E*F, y E*X with F Cy[y\. Since a is a cluster point
we have Fflmji)/!. Thus /Xy] Dy[*x] 0 and Proposition 1.7 yields
F C /rly] C y[*x\. Thus T converges to x. O

If A C X is a subspace then it is easy to see that pns*A C pns *X n *A.
The following example [1, p. 48] shows that the inclusion may be proper even
if X is complete.

Example 3.7. Let X = {0} U {I/n:n£N }d with the induced topolo-
gy. For each n E Ndefine Vvn := Au{(0, I/k) :k EN, k>n). Then the induced
filter is a compatible, locally symmetric, quasi-uniform compact Hausdorff
space: it is obvious that for x EX, y E*X we have i/ riT iffy =*x forx/ 0
and y wRO for x = 0. Hence aX Um(0) = ns*X = *X. For A := {1/n:n EN}
we obtain aA —ns*A = pns*A * pns*X fl *A. In particular, A is complete
but not closed in X.

Let X be aset and Y be a complete uniform space. It is a well-known
fact that F(X, Y) is complete for the uniformity of uniform convergence. We
give now an example in order to show that this result is not valid if Y is only
a locally symmetric quasi-uniform (compact) space. This answers questions
in [16] and disproves Theorem 2.10 and 3.6 in [16].

Example 3.8. Let X as in the previous example and define for each nGN
continuous functions gn E F(X, X) by gn(x) =x for x'A.l/n and gn(x) =0
for x < 1/n. Let T be the filter generated by the sets Fn:= {g* :k > n}.
Since Fn C W(X,Vn)[gn] we infer that T is a Cauchy filter. Assume now
that F(X,X) or C(X,X) is complete. Then there exists X€*N\N with
*gjy E ns*F(X,X), i.e, that there exists g- X —X with *gN(%) ~ *y(x)
for all x E *X. Hence g(x) = x for all x EX. Choose x = 1/(2N). Then
gN{x) = 0« x, a contradiction.

Observe that F(X,X) and C(X,X) in the last example are not point-
symmetric (in particular not locally symmetric) although X is a locally sym-
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metric quasi-uniform space. This is clear since *gss gy but not gn « g,
where g is the identity on A.

P roposition 3.9. Let X be a topological space, (F, V) be a reflexive filter
and let C(X, Y) be endowed with the filter of compact V-uniform convergence.
Then the following assertions are true:

(@) IfY is small-set symmetric then C(X,Y) is small-set symmetric.

(b) 1fY is small-set symmetric and locally symmetric then C(X,Y) is
small-set symmetric and locally symmetric.

PROOF. At first we prove that “F small-set symmetric” implies that
C(X,Y) is locally transitive, i.e., satisfies (1): Let f,g G*C(X,Y), hG
C(X, F) and let f~g and gze*h. Since hEC(X,Y) we know that *h{x)E
ns*F for every x Gept*A. Using (3) it is easy to see that there exist y GF
with f(x)zeg(x)tt*h(x)xiy. Hence f(x)m*h(x) by 1.2 (a) and (1). Hence
| ~ *h. Further it is now obvious that / ss*h and g"*h imply / « g. Simi-
larly one proves property (b) of Theorem 1.2 for C(A, F). Statement (b) is
also straightforward using 1.7. a

THEOREM 3.10. Let X be a k-space and Y be a small-set symmetric,
locally symmetric, complete quasi-uniform space. Then C(X,Y) is conver-
gence complete for the filter of compact V-uniform convergence.

Proof. Let / Gpns*C(A, F). Assume that / is standardizable and
cpt*X-continuous, i.e., that (i) f(*x0) Gns*F for all xg€ X and (ii) f(*x0)~
*y implies f(x) ss *y for each x € cpt*A, xq GX with x « xo and y GF.
It is not very difficult to see that an internal, standardizable and cpt*A-
continuous function is contained in the set of all nearstandard points of
C(X,Y) with respect to =Tk(V) (Proposition 2.3) if A is a fc-space; cf.
[17] for details. Hence Theorem 3.1 and Proposition 3.6 show that C(A, F)
is (convergence) complete.

Condition (i) is easily proved since f(*x0) G pns*F = ns*F. Now we prove
(ii): let f{*xo0) « *y and K compact and x G *K, xqEK with x « xo- We have
to show that f(x) G *V*y] for every V G V. Since F is locally symmetric there
exists a symmetric VA GV such that Wo Vi A € V[y\. By transitivity there ex-
ists [/GV with U°U oU CV\. As/ Gpns*C(A, F) there exists gu € C"A, F)
with (*9UJ) & *W{K,U) where W(K,U) := {(g,h) : Vx G K (g(x),h(x))
G U}. Hence (*gu{x), f{x)) ¢ *U and {*gu{*x0), f{{*x0)) G *U. Since gv is
continuous and x Zzxq we infer *gy{x)« *gu(*x0)- Small-set symmetry im-
plies *gu(.*%0)~*9u(x) and *y~f(*x0). Hence (*gy(x), *gy(*x0)) G *U and
(*ou(*x0),f(*x0)) e*U and (f(*x0), *y) c *U. Thus (*gu(x), *y) G *W Since
Vi is symmetric we obtain (*y, *gy{x)) G *V\. Now (*gy(x), f{x)) G *U C*Vi
implies that (*y,f{x)) G *VXo*Vi. Thus f{x) G *Vi o*Vi[*y] C *V[*y], The
proof is complete. a
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SEMICONTINUITY OF TOPOLOGICAL LIMITS
OF MULTIVALUED MAPS

J. EWERT

Abstract

For topological limits of quasicontinuous multivalued maps we describe the sets of
points of upper and lower semicontinuity.

In a topological space {X,T) by Int A and CIA we denote the interior
and the closure of a set AC X. Aset A is called semi-open if A C CI (Int A),
[9]; semi-closed if X \ A is semi-open, [1]. The family

Tg={U\H : UET, H is of the first category}

is a topology on X . The Tg-closure and the Tg-interior of A will be denoted
by CIgA and IntgA, respectively. Then, if (X,T) is a Baire space, we have:

(1) the spaces (X, T) and (X, Tq) have the same classes of the first cate-
gory sets, [6];

(2) a set AC X is Tg-semi-open (Tg-semi-closed) iff it is of the form
A=B\H (resp. A=B UH), where B is semi-open (semi-closed) and H is
of the first category, [5];

(3) if A'is T9-open, then ClI A= ClgA, [6].

Lemma 1. Let (X,T) be a Baire space. Then:

(@) If aset A C X is Tg-semi-open, then ClIA= ClgA.

(b) A set AC X is Tg-semi-open if and only if it is of the form A =
(G\H)\JL, where G is open, H, L are of the first category and LcCIG.

Proof, (a) If A is Tg-semi-open, then applying (3) to the set IntgA
we obtain IntgA C A C Clq(IntgA) = CI (IntgA), hence CIA = CI (IntgA) =
Cl,(IntgA) = ClgA.

(b) Let A be a Tg-semi-open set. According to (2) it is of the form A —
B \H , where B is semi-open and H is of the first category. Then B = GUHi,
where G is open and H\ C (CI G)\ G. Thus we obtain A= (G\ H) U(Hi \ H)
and it suffices to put L = H\\H. Conversely, assume that A= (G\ H) UL,
where G is open, H, L of the first category with LCCIG. Then G\H 6 Tq
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and C\G = C\{G\H) =Clg{G\ H). Thus L C Clg(G\ H) which implies
A C CI*G \ H) CCI9(IntgA) and the proof is completed. O

For a sequence {An:n ~ 1} of subsets of a topological space the sets
LsAn and LiAn are defined as follows [7]:

x € Ls A,, iff each neighbourhood of x intersects infinitely many sets An;
x &Li An iff for each neighbourhood U of x there is no such that U DAn
A 0 for each n” no-

If LiAn=LsAn, then this set will be denoted as Lt An.

Let X,Y be topological spaces; a multivalued map F: X -AY is a
function defined on X and assuming non-empty values in the power set
of Y. For a multivalued map F: X ->Y and a set W CY we will write:
F+{W) = {xel: F{x)cW} and F~(W) = {x£i: F(x)nW*®}. Fur-
thermore, the symbols C+{F) and C~(F) will be used to denote the sets of
all points at which F is upper or lower semicontinuous, respectively. A mul-
tivalued map F : X —Y s called upper (lower) quasi-continuous if for each
open set W CY the set F+(W), (resp. F~(W)) is semi-open [12]. Now,
let F,Fn: X -»Y, nit 1, be multivalued maps. We will write F = LsFn,
F=LiFn, F=LtFnif F(x) = LsFn(x), F(x) =LiFn(x) or F(x) = Lt Fn(x)
for each iG |, respectively.

In [10] “Baire continuous” multivalued maps are considered; these are
defined as follows: amap F : X 4Y iscalled upper (lower) Baire continuous
if for each openset W C Y the set F+(W), (resp. F~ (W)) belongs to the class
Br={ACX:A=(G\H) UL where G is open, H, L of the first category,
L C CIG}. IfX isaBaire space, then invirtue of Lemma 1, the upper (lower)
Baire continuity coincides with the upper (lower) Tg-quasi-colitinuity. Thus,
the result presented in [10] can be rewritten in the form:

4 Let A be a Baire Tf space and Y acompact metric one. If F,Fn:X"-Y,
n ” 1, are multivalued maps with F =LsFn and Fn are lower Tg-quasi-
continuous, then the set X \ C+(F) is of the first category.

An extension of this result will be given in Theorem 1

A topological space Y is said to be perfect if each closed subset of Y is
G/j. We recall that a topological space Y is perfect normal (need not be Ti)
iff for every open set W C Y there exists a sequence Wi,W2, ... of open

subsets of Y such that W — (J Wnand CIWnC W for n”~ 1[3 p. 73]. This
fact and [2, p. 372] give the fgl_llowing characterization: a topolo(%cal space Y
is perfect normal iff each open set W CY is of the form W = \J Wn, where

n=1

Whn are open sets with CIWn C Wn+\ for n™ 1

LEMMA 2. Let X be a non-empty set, Y a perfect normal space and let
F,Fn: X —Y,n”" 1, be multivalued maps with F = LsFn. Iffor each x £ X
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there isnt 1 such that CI( (J Fj(x)j is compact, then for each open set
"j=n

e+gy= U U1 A(CIwik),

A=In=1j—n

LJCY we have

where WK are open sets with CIWk C Wk+1for ktl, and U— U Wk.
k=\

Proof. Let W CY be an open set and let x £ F+(IF); then

nﬁC‘j@ Fj(x})cw.

There is an no such that jCI ( A FJ(X)) nn no; is a decreasing sequence
'I=n

of compact sets, so we can choose n such that ClI~ (J Fj(x)"J C W . Hence,
=n
using that F has compact values, we obtain
F+(W)C U fl F+(W)C (J fl F+(C\W)CF+(C\W).
n=\j=n n=1Ij—
Now, let UCY be an open set. It can be represented in the form
00 00 .
U= 0 U ciwk
k, 1 *=1
where are open sets with Cl Wk C Wk+\ for each 1 Thus
00
F+(U)= | F+{wk)C uuvrh F+(C\Wk)C U F+(CIWK)cF+(U),
k=1

__|Jn =1

which completes the proof. O

THEOREM 1. Let (X,T) be a Baire space, Y a separable metric one and
let F,Fn: X =Y, n " 1, be multivalued maps with F = LsFn. If for each

x £ X there isn't 1 such that CI ( (J Fj(x)J is compact and all Fn are lower
j—n
Tg-quasi-continuous, then X \ C+(F) is of the first category.

PROOF. Following Lemma 2, for an open set UCY it holds

F+(U)= Tj flF-+(C\WK),

—1n— j=n
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@
where Wk are open sets with CI Wk C Wk+i for k~ 1, and U= (J WK. Since
k=\

the maps Fn are lower Tg-quasi-continuous, the sets n F+(C\Wk) are To-
J—h

semi-closed; thus the sets

" N
n F+(CIWk)\Int Fj~(CIWk)
Jh

j=n
are of the first category. Furthermore, we have

F+(U)\ IntF+{U) C

C?jxtj)/%?l F+(C\WK)\ 6 ﬁlnt N, A/(c|w m))C

kln I"

0 U1 Fj (CIWk)\IntD F+(CIWk))
k=1n 'i=n

From this it follows that F+(U) \IntF +({7) is of the first category for each
open set UCY. Let B be a countable open base in Y. By {Um: m " 1} we
denote all finite sums of elements of B; then — since F has compact values
— we have

X\C +(F)= \J(F+Un)\IntF+(Un)).
n=1

Thus X \ C+(F) is of the first category which finishes the proof. O

As shown by the example given below, in Theorem 1 the limit Ls cannot
be replaced by Li. Moreover, for upper T?-quasi-continuous maps Fn the set
X \ C~ (Ls Fn) need not be of the first category. Also it follows from [4] that
for upper (lower) T?-quasi-continuous maps Fn the sets X \ C+(LsFn) and
X\ C'+ (Lt Fn) (resp. X \ C~ (Li Fn) and X \ C~{Lt Fn)) can be of the second
category. But up to now the following problem formulated in [10] is not
resolved: is the set X \ C~(F) of the first category if F = LiFn and Fn are
upper Tg-quasi-continuous? A partial answer will be given by Theorem 2.

Example. Let p denote the Lebesgue measure on the real line, Q = {qj :
j ™ 1} the set of rational numbers and R the space of real numbers with the
usual metric. For each n”™ 1 and j G{1,2,... ,n} we fix numbers anj, bnj
satisfying
anj <qj< bnj

[(Ginji bnj\ N [uni, bni\= 0 for i, i,j G{1,2,... ,n}
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Now we put:
n tj 00 00
An— U {®njibnj)i A ~ Pl Ak cind B — U Pi ak-
i—1 n=Ilk=n n=Ilk=n

Then p(A) =0, QC (J A™ for each n” 1, all sets An, R\ A n are semi-open.
k=n

Hence A and R\A are dense sets and R\A is of the first category. Moreover,

B is dense and p(B) = 0, so R\B is dense, too. Now we define multivalued

maps Fn:R ->[0,2] assuming

F =/ |’O,l} {orx"An,
n() 1{12} forxER\An.

The maps Fn are lower and upper T"-quasi-continuous and

( {0,1} for x £ B,
LiFn{x) < {1} for x EA\B,
1 {1,2} forxGR\A
{0,1} forx € B,
LsFn(x) < {0,1,2} for xEA\B,
. {1,2} forxeR\A.

Then we have C+(Li Fn) =0= C-(Ls Fn), so R\C+{U Fn) and R\C ~(Ls Fn)
are of the second category. O

Lemma 3. Let X,Y be topological spaces and let F, Fn: X —»Y , n " 1,
be multivalued maps with F =LtFn. Then:

@ F~(V)c u fl F-(V)
n—Lm=n
for each open set V CYVY;
(b) U1 n F-(M)CF-(M)
—1lm=n
for each compact set M C Y;

() if Y is a locally compact separable metric space, then for each open
set VCY it holds

7-00=u u ne-(intan = 0 U e-can

j=1n=Im=

where Aj are compact sets with Aj CIntAj+\ forj 1, andV = |J Aj.
3=1

PROOF. IfV CY isan open set, then — since F = Li Fn — the inclusion
(@) is an immediate consequence of the definition of the limit Li.
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Let M CY be a compact set and let x€ [J P| F~(M). We choose no
71=1 M—A

such that Fn(i)flJli » 0 for each n * no. Then we obtain 0 Ls (Fn(x)r\M) C
(LsFn(:c)) fIM = F(x) fl M, and this gives

U 0 e-myce-my.

n=1m=n
Now we are going to prove (c). Let UCY be an open set. Under the

00
assumptions on Y it can be represented in the form V = [J A? where Aj

i=1
are compact sets and Aj C Int Aj+i forj ~ 1 [7, p. 51]. Applying (a) and (b)
we obtain

00 00 00

F- {V)—\JF (IntAj)e\d U fi F-(IntAj)C
j= j

cJU\I._J\ n F(AJ)CUIF(A)—F(U)

Thus we have shown (c) and the proof is completed. O

THEOREM 2. Let (X, T) 6e a Baire space and Y a locally compact separa-
ble metric one. IfF,Fn: X —Y,n" 1 are multivalued maps with F —Lt Fn
and Fn are upper Tg-quasi-continuous, then the set X \C~(F) is of the first
category.

Proof. Let VCY be an open set with C1U compact. Then from (a)
and (b) in Lemma 3 we obtain

fi k- (V))\Int/ o e (V))c

=1 771=71 “71= 1771=71

0%/00 @ \
cu (n F-(CIV)\ Ut N F-(CIv)) C
00 00 * 00 \
c U(n *(cimint n

00
Since are upper T(-quasi-continuous, the sets f] Fm(Cl U) are Tf-semi-

771=71

closed. Hence the sets

ﬁF-(amint ﬁw h o

771=71 771=71

are of the first category, so also F~(V) \Int F _(Cl U) is of the first category.
Now, by {Vj :j * 1} we denote a base of Y consisting of open sets with CIVj
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compact for j ~ 1. Then by regularity of Y we have

x \C-(F) =_th(F-(Vj) \'IntF - (CI V3)),
J=i

which finishes the proof. O

The properties (a) and (b) from Lemma 3 can be used to obtain also
other results. We remind that the graph of a multivalued map F : X —»Y is
the set Gr(F) = {(x,y) EX xY :yEF(a:)} and:

(5) Let X be a topological space, Y a locally compact one and let
F: X ->Y be a multivalued map with closed values. The graph of F is closed
if and only if for each open set W ¢ Y with Y \ W compact the set F +(W)
is open [11].

Theorem 3. Let (X, T) be aBaire space, Y a locally compact separable
metric one and let Fn,F : X —=Y, n " 1, be multivalued maps with F —Lt Fn.
If Fn have closed values and the sets Gr(Fn) are closed for n ~ 1, then the
set X \ C~(F) is of the first category.

PROOF. Let V c Y be an open set. Under the assumptions on Y it
[e]e)
can be represented in the form V — [J An, where An are compact sets and

n=1
Anc IntXn+i for 1[7, p. 51]. From Lemma 3(c) we have

e-ony= 0 U F-(int"): U n

n=\j=Im=n n=1j=Im=n

According to (5) the sets Fffl {Aj) are closed, so F~(V) is an Fa set for each
open set V c Y. Furthermore

X\ C~(F) = \J (F~(Vn)\ Int F- (V)

where {Vn:n 1} is an open base of Y, so the proof is completed. O

REMARK. It is easy to see that in Theorem 3 it suffices to suppose that
Gr(Fn) are closed in the space (X,Tqg) x Y.

In the sequel U™ denotes the first uncountable ordinal number. A mul-
tivalued map F : X —Y is said to be of the upper (lower) class a <uq if
for each open set W CY the set F+(lY) (resp. F~(1Y)) is of the additive
class a [8]. As simple consequences of Lemma 2 and 3(c) we get

COROLLARY 1. Let X be a topological space, Y a perfect normal one and
let Fn,F: X Y, n” 1, be multivalued maps with F =LsFn. If Fn are of
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lower class a and for each x EX there is n * 1 such that Cl is

compact, then F is of the upper class a+ 1. O

COROLLARY 2. Let X be a topological space, Y a locally compact sep-
arable metric one and let Fn,F: X —Y, n 1, be multivalued maps with
F=LtFn. Then:

(@) if Fn are of an upper class a, then F is of the lower class a + 1;

(b) if Fn are of a lower class a, then F is of the lower classa +2. O
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TIME DEPENDENT ANALYSIS OF T-POLICY
M /M /1 QUEUES — A NEW APPROACH

KANWAR SEN and RITU GUPTA

Abstract

This paper demonstrates a simple and elegant lattice path combinatoric technique
for computing transient probabilities concerning M /M /1 queueing models. Through this
lattice path approach time dependent analysis of T-policy M /M /I queue is presented.
The transient probabilities computed herein are free from modified Bessel function and
are amenable to pragmatic probabilistic interpretations. As a special case the results for
ordinary M /M /1 gueues are checked.

1. Introduction

Consider a T-policy M/M/1 queueing model which activates the server
T time units after the end of a busy period to determine if customers are
present. If no customers are found when the server scans the queue, it
is turned off, and the system is scanned again after an interval of length
T. This procedure is repeated until the server finds at least one customer
waiting, after which the server is kept in active state until the system becomes
empty. This model can also be viewed as one where the server takes a
sequence of vacations each of duration T, at the end of busy period (see
Doshi [4]). Henceforth T-policy M/M /I queueing model will be referred to
as M/M/I(T).

Different aspects of T-policy queues were studied by Heyman [8] (see also
Teghem [21], Takagi [20]). However, little effort was made to find the tran-
sient solution of this model (see [20]). As opposed to classical method which
entails formulation of tedious unwieldy difference-differential equations, in
this paper the lattice path approach — a new combinatorial technique is
adopted for studying transient behaviour of M/M/I(T) queues. Starting
initially with k (” 0) units, the probability of i arrivals and j departures up
to time t is found for the M/M/I (T) queue. This probability in turn leads to
the probability of the number of units in the system up to time t. Over the
years combinatorial techniques have been successfully employed in solving
queueing problems (refer to Takéacs [18], [19]). Recently, using lattice path
combinatorics Mohanty and Panny [15], Bohm and Mohanty [2], Kanwar

1991 Mathematics Subject Classification. Primary 60K25; Secondary 60J15.
Key words and phrases. T-policy, vacation period, busy period, M /M /I(T) model,
discretized M/M/1{T) model, slot, lattice path, transient probability.

0081-6906/98/% 5.00 ©1998 Akadémiai Kiad6, Budapest
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Sen, Jain and Gupta [12] obtained transient solutions of M/M/I queues,
M /M /1 queues under (M, N) and (0. K) control policies, respectively.

In the lattice path approach transient probabilities are computed by
using a four stage procedure:

(a) discretizing the continuous model and then representing it by a lattice
path;

(b) computing the number of lattice paths stipulated by the process;

(c) computing probabilities associated with such paths;

(d) applying limiting process to these probabilities so as to obtain the
transient probabilities of M/M/1(T) queues.

In addition to evolving a simple solution to the said problems this method
leads to the results which are conducive to significant probabilistic interpreta-
tions and provide meaningful insight into the nature of the process involved.

2. Lattice path approach

For determining the transient solution we first propose a discrete time
analogue of M/M/I(T) queueing process. Assume that the time interval
(0,1) is segmented into a sequence of t/h time intervals (slots) each of du-
ration h (>0) such that t/h and T/h are integers. Consequently, scanning
period for T-policy will be T/h time slots. We further assume that

(1) No more than one customer may arrive or finish being served in a
given slot;
(i) Events in different slots are independent. Observe the system at

epoch 1,2,... ,t/h each of which marks the end of an interval of duration h.
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Associate a lattice path with the queueing system representing an arrival, a
departure, and a stay in a slot by a unit horizontal step, a unit vertical step,
and by a unit diagonal step, respectively (see Figure 1).

If the state of the system is described by the pair (x,y) (x *vy, x't k),
where x —k denotes the number of arrivals and stays and y denotes the
number of departures and stays. The transition probabilities associated with
the queueing system are

(i) Under busy period

P[(x,y) =(x + 1,y)] =P[an arrival in a slot]

= Xh +o(h)
(2.1 P[{x, y) =(x,y + 1)] = P [a departure in a slot]
_ (yh+o(h), x"y,
1 O, X =y,

P[{x,y) > [x+ 1,y + 1)] = P[stay in a slot]
f 1—Xh —yh +o(h), x"y
\ 1—Ah+ o(/i), X =Y.

(if) Under vacation period

PL(x,y) —={x + 1,y)] = P[an arrival in a slot]
(2.2) —Xh + o(h)
Pl{x,y) -> (x+ 1,y + 1)] = P[stay in a slot] = 1—Xh + o(h).

Let the probability that the discretized M/M/I(T) queueing process
encounters i arrivals and j departures in t/h time slots starting initially
with k ( 0) units be denoted by:

When the system encounters no vacations (i.e. without
being empty in-between).

Pi,j-,k{t/h, T/h)  When the system encounters at least one vacation and the
queue length attained is less than or equal to the number
of arrivals encountered in the last sequence of vacations.

i’i,jAt/h’T/ hy When the system encounters at least one vacation and
the queue length attained is greater than or equal to the
number of arrivals encountered in the last sequence of
vacations.

Further let

TPi,j-k{t/h,T/h) denote the probability that M/M/1(T) queueing process
encounters i arrivals and j departures in t/h time slots.

The discretized M/M/\(T) model leads to binomial probability distri-
butions of arrivals and departures within a given period of time. And by a
suitable limiting process (h —0; 00; Ah—0, y h —0), these distribu-
tions tend to Poisson distributions. Hence the transient probabilities for the
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continuous time model following Poisson distribution can be obtained from
discrete time analogue by passing on to the limit as h -+0 (Meisling [13]),
W hittle [22]). Further, let .***(.(K)),, B._ r,kAT) and 1Ptr,k~T) and rP P t)
be the respective continuous time anafogue.

For computing the probabilities defined above we require the number
of lattice paths stipulated by the discretized M/M/1(T) queueing process.
Counting of lattice paths is performed in two stages. Firstly, we delete all
diagonal steps to construct new path called skeleton path (see Figure 2).

Figure 2. Skeleton lattice path

Lemmas 1, 2 and 3 stated below give the number of skeleton lattice paths
nomenclatured as LPdItd2,.-,dr (& r\mJdn) from (&, 0) to (m, n) comprising of
m —k horizontal steps, n vertical steps, touching r times the barrier y = x
and having at least d, 1) horizontal steps preceding a vertical step after
the ith (i—1,2,..., r) touch with the barrier x —y, respectively. These could
be computed following arguments and constructions in Cséki and Vincze [3],
Kanwar Sen [9], Kanwar Sen, Jain and Gupta [12], Mohanty [14],

Lemma 1. Fork>0, 14m —nadr,dj~1 (t=1,2,...,r)

23 LPd m+n —k —d +n —k —d\
(2.3) (d2,--dr (K, r\m 0 ) N c m )

For k>0, m—n>dr, di*.1 (i=1,2,...,71)

_ _ m+n—k—d +n—k —d\,,
(2.4)  LPducbr.idr{k,r-m,n) = o ( mo )

where d=d\ + - idr.

Proof. Consider a skeleton path R envisaged in Lemma 1 (see Fig-
ure 3).
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Figure 3. Skeleton lattice path; k=4, m =16, n= 12, r= 3

Make the following transformations on R.

(i) Remove k horizontal steps starting from the origin.

(i) Remove d\, d2 me, dr horizontal steps immediately following 1st, 2nd,
..., r'th touch point, respectively.

(iif) Concatenate the truncated path segments in succession. The trans-
formed path is shown in Figure 4.

This path from (0,0) to (m —k —d,n) is characterized by not crossing
the barrier X —Y —(k +d). The number of such paths as given by reflection
principle (see Feller [6], Mohanty [14]) is

m+n—k—d\ im+n—k—d
n J \ m
Hence (2.3) is established.
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Further, (2.4) can be proved by using similar transformations on skeleton
lattice path stipulated. The transformed skeleton path in this case is a
path from (0,0) to (m —k —d, n), which touches or crosses the barrier X =
Y —(k + d—dr), and remains below the barrier X =Y —(k +d). Therefore
the number of such paths

= number of skeleton paths from (0,0) to (m —k —d, n), which
touch or cross the barrier X =Y —(k + d —dr)— number of
paths from (0, 0) to (m —k —d,n) which touch or cross the
barrier X =Y —(k + d).
m+n—k —d\ im +n—k —d"
m—dr J V m

(2.6)

Hence (2.4) follows.
Lemma 2. Fork=0, 1<m—n”"dr,di*"1(i=1,2,...,1)

\fm+n/\—d—1 m+n—d—1

\ .
(2.7) LPduc, ;dr{0, t\m, nj = .

For k=0, m-—n~dr, di*.1 (i=1,2,...,1)

N ; o end1
(2.8) LPdltdz,...,or(Qx\m,n):\l\m +n—d—1 m +n —d

L™ ap m

Lemma 3. Lattice paths envisaged with m —n will not encounter any
horizontal step after the rth contact point.

Hence form=n, k>0, di*1(t=1,2,...,r —1)

(29) LPdUdZtI..}d_l(k,r-,m’n) — zank_f 1 m . d

and for m =n, k=0,dj*1(i=1,2,...,r—1)

(2.10) LPdi142t,,4r_1(0,r; m, n) = 2m —d —2 2m—d—2
m —1 m

Lemmas 2 and 3 can be proved by following constructions as in Lemma 1

Lastly, the number of lattice paths stipulated by the process is obtained
by inserting diagonal steps at the intervening vertices of the skeleton lattice
path (see, for example, Dua, Khadilkar and Kanwar Sen [5], Kanwar Sen and
Ahuja [10]). Then on associating transition probabilities defined in (2.1) and
(2.2) with the number of lattice paths stipulated and passing on to the limit
h —0, we get the probabilities for M/M/I(T) queueing process.
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3. Probability for discrete time model

Transient probabilities for discretized M/M/1(T) queueing process (see
[15]) are developed in Theorems below.

Theorem 1.

Pi,j-At/h’T/h]
o T/ i+j-d i+j—d
r=I Ri Rz Rs 9=1 ]
3.1
31 “ih+_jS_Td’h (Ah +0(h)Y(ph + o(h)Y

X (1-Ah+ o(h)){sTih)~d
X (L- Ah- fih + 0(h)f/h)-(sT/h.)-(i+j-d)

and
IPijA* /NN
J_EIE E E O T/h i+j-d i+j-d
— - n dn i +k—dr i+k
r=I Ri Rz Rz X 9=1
3-2
(32 Uh —sT/h — ap 4 o(h)Y(jih + o(h))J
i+j-d
X (1 —Ah + ofh))(sT'V -d
X @1- Ah-jih +o(/i)®,)_(ST/')_(<+I“d)(
where

Ri: Summation over d from r to min®*—, ;

R2! Multiple summation over di,d2,...,dr such that 1~ dj » I]
*=1,2,...,r), 1*i+k—+4"d r’\J and d —d\+d2+- m+dr;

i?3: Summation over s from r to L (i"+y-d) -hjl;

Ri: Multiple summation over di,d2,...,dr such that 1~ dj £ h
*=1,2,...,r), 1~ dr®» minti+fc—, — and d=d\+d2+-.-+dr.

=0 for r <0 and [t] denotes the largest integer in x.

PROOF. Lattice paths stipulated in Theorem 1 starting from the point
A,0) to (t/h — + k,t/h —i) will have i horizontal steps, j vertical steps,
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é-;— i — J) diagonal steps and will encounter vacations of fixed duration —at
each of the contact points with the barrier. On removing the diagonal steps
the lattice paths will reduce to skeleton lattice paths from (A;,0) to (i +k,j)
having i horizontal steps and j vertical steps. Vacations encountered are of
two types.

I. Vacations with no arrivals.

Il. Vacations with at least one arrival.

In the sequence of the vacations encountered at each contact point only
the last vacation will be of IInd type. Consequently, at the ith contact point
with the barrier di arrivals could occur in a vacation of lind type in

(3.3) f1*)  e-i.

ways. Taking the total number of vacations to be s and r the number of
touches with the barrier there will be (s—) vacations of Ist type which can
be distributed at r contact points on the barrier by using “balls into cells
technique” (see [6]) in

(3.4)
ways. Further (F] ----- H---i — + d]J stays or diagonal steps in a busy period
occur at (|+J —d + 1) vertices of the skeleton lattice path in
=%
3.5
(3.5) i+3 -d

ways. The number of skeleton lattice paths envisaged in the Theorem con-
sisting of horizontal and vertical steps only, can be obtained from (2.3) on
replacing m by i+k and n by j given by

-ctfr)]

which on multiplying by (3.3), (3.4) and (3.5) gives the number of lattice
paths stipulated. This number multiplied by appropriate probabilities in
(2.1) and (2.2), summed over r, d\,d?,..., dr and s yields (3.1).

(3.2) can be proved similarly.
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Theorem 2.

Mil)

- I i+j—d—1\ fi+j—d—1
—eeee (! Dii
r=1 fii f|2 9= 1 k"8
t/h —(sT/h) —m —1
3.7) *E i J(fj " (Ah + o(h)f(ph + o(h)y

x (1 —Xh + o(h))m+{(sT/h~d
x(1 - An-fih + o(/i))<illl) - STIN)- (i+J- f)-

and
[t Tk
IFb*Kh'h)
_ - 1 T/h\ [fi+j —d—I\ fi+j—d—1
r=1 fii 123 o=r v "9
t/h —(sT/h) —m —1 .
38) ¢ iij M= (xh+ of)i (nh + o(h))]
Rs L
x{I-\h +o(h))m+(sT/h)-d
x{I-Xh-ph +o(/D))WN-(ir/")-m(i+J- <),
where
R\: Summation over d fromr tom i n —lj;
i?2° Multiple summation over di,d2, s dr such that 1~ d; » :
t=1,2,...,r),
1=~M—3 =dr = H and d=d\ + do+ m—ldr\
R3: Summation over s fromr to ——(i +j —d)— ;

i?4! Multiple summation over d\, d2,...,dr such that 1~ d,
t=12,....r),

»A|S

dr » min™i —j, — and d=d\ +d2+ eem+dr;



462 KANWAR SEN and RITU GUPTA

R5: Summation over m from 0 to :] sr']l' (i+j-d)

Theorem 2 can easily be proved by following decomposition of stays (or
diagonal steps) as in Theorem 1 and Lemma 2.

T
Remark 1. For —= 1, which in turn reduces the value of d\, d>, =m., dr

to 1 each, results stated in Theorems 1 and 2 yield those for the case of
ordinary discretized M /M /1 queue.

For i + k =) the last contact point coincides with the final state reached
(i.e. a vacation is encountered necessarily) hence this results in a system
ending with a vacation. Further in some cases this situation may lead to

an incomplete vacation. Let T\ denote the duration of an incomplete va-
. . L . . /1 T
cation and n the number of arrivals in time Ti. Define vPn fH\ﬁ> jF

the probability that the discretized M/M/I(T) process ending with vacr%-

tion, encountering j departures and an incomplete vacation of duration —
attains queue length n in —slots, starting initially with k  0) units. This

probability summed over — , yields the probability of occurrence of j + n —k
™
arrivals, j departures in :]—time slots and ending with a vacation denoted by
ft T\
vPj+n-k j-kyT’J) mThe corresponding probabilities for the continuous time
model are denoted by VWP*j.k(t,T,Ti) and vPﬁn_k,j;%(t,T), respectively.

Theorem 3. If the system is in vacation at time then for k> 0,

T/h

(3.9) VPj+n-k,j~j~) =  vPn,j-k{t/h,T/h,Ti/h)
Ti/h

-ECEELEGNA(T UL

‘9] —k —d —I\  f2j —k —d —I

(3.10) i1 ) -( i
t/h —(s/T/h) —{Ti/h) —1
2j —k—d—1
x (nh + 0{h)Y(1 - Ah+o0{h))WQ-<n/h)~d-n
x (- Ah-nh + /h)-(2i-k-d)

(ah + o{h)y+n"K
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and for k=0
T/h
<3-> -Ms-D
Th j-ket ' T Tun
-E E EEE(rl,)n &
H-p r=1 Re R2 A 0=1
2j-d -2 2j —d—2
i~ 1 J
(3.12)
i//i- (sT/h)- (Ti/h)-m - 2 :
x E 2 - d- 2 (Xh +o{h))j+n

where
Ri:
R2-

i?3:

i76 :

Rs L
X (Mi+ o(/i))J(l - Ai+ o(/i))(ST/)- (TI/.I)-d- n+m
X (1- Xh- ph +o(/i))(i/M)-(ATN)-(r SA)-"*-2j+rfj

Summation over d from (r —21) io min™(r —)—j% ;

. . . R
Multiple summation over d\,d?,...,dr_i such that 1~ di » T

i=1,2,...,r—1), and d=d\+ d"-\--—- hdr-1/
r(t_TI)

Summation over s from (r—1) to T @) +k-d)-1;
Summation over s from (r —1) io {t~Tl) (2j-d)]|];
(I-T,) «T

— T “2j+d
Summation over d from (i— 1) to min®(r —1)—1, (j —1)j .

Summation over m from 0 to

Proof of Theorem 3 can be constructed by following the decomposition
of stays (or diagonal steps) as in Theorems 1-2 and then using Lemma 3.

REMARK 2. For T— =0, T—: 1, which in turn reduces the values of

d\,d2, mm dr-i to 1each and n= 0, results stated in Theorem 3 would yield
those for the case of ordinary discretized M/M /I queue.

Theorem 4. For k>0

(3.13)

i+ i+j t/h
. ik i o)y

x (ph +o(h)y (I —Xh —ph + i *

Qi,j:fe(t/h) —



464 KANWAR SEN and RITU GUPTA

and
t/h-i-j] - _
Qij'O{t/h):[-y-J] i+j- 1 i+j-1 flli—m—1
(3-14) m=0 i—1 i+j - I

x (Ah+ o(h))I(nh +o(h)y
X (1- Ab- nh +o(/i))(t/fc)-<-i~m(l - Ab+ o(h))m.

REMARK 3. The probability TPi,j,k(t/h,T/h), A;>0 can be obtained by
considering the following two mutually exclusive cases:

(a) System encounters no vacation in t/h time epoch;

(b) System encounters at least one vacation in t/h time epoch.

The probability for the former case is given by (3.13) and for the later
case is given by (3.1) or (3.2), accordingly as the queue length attained is <
or N 1, the number of arrivals encountered in the last sequence of vacations.
Thus by adding up the probabilities for the two cases we get the required
probability which is given by

i+ ] i+ ] t/h
i i+Kk i+]
(1-Ah-nh +o”y/b-t-i

(Ah + o(h)Y(fih + o(h)Y x

(3.15)

j-k+l L, 1\ r g o t/h —sT/h
+ e EEE(l;:()n (i.j.k.d.dr) i+j-d
a=1

r=1 Ri Ri Rs
X(Ah + o(h)y (fifi + ogh))j{1- Xh + ofh))sTIh~d
(- Av-nh + o(h)jtlh-sTlh-i-j+d,

where R\ and R are summations as defined in Theorem 1 and
R2: Multiple summation over d\,*2,...,dr, 1~ d ~ T/h
(i=1,2,...,r) and d = d\ +d2 H----- hdr. Further,

itj-d\ _fit+tj- o>

i\ itk
i+j-d\_fi+j-d>
N+k—dT) \ i+Kk ’
Similarly, we can obtain for the case k= 0.

i+k—j <dr,
(i,j,k,d,dT) =
i+k—j".dr.

4. Transient probabilities

Lemma 4 stated below gives limiting results which are employed to com-
pute the transient probabilities for the continuous time model from its dis-
crete analogue.
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Lemma 4. If

(4.1)
TI aT ' t ST
Cft osT } h " P
HhoT P =h E, P-1
Xx@- Ai-pl/i+
(4.2)
bi 5% % n t sT T 0

h~T ~~h~rn~2
e I P-2

m=0

X (L- Ali+ o(|D)m+W)+(T./M-rf

X (1- \h - (ih + of{h))(t/h'>~(sT/fI'>-(Ti/h'>-rn- (2i~d)»

(4.3) «r,P(T)=r'X ;(6_1

s=r
(4.4)

Mr,P.t,T,Tx=Tr Y, (rs Y1I@T-TOP _qv.sT.Ti)
s=r— ' 1/ P!
then

e-n(t-sT) 0
n=0

O 1EMKkk- (i

(4.6) ,
e~A/ ,-n(t-sT-Ti) (p(<-sT-Ti))n
“ pP"1(1_( ~o n! )
*(r,p.t,T)= £ I
o i) (- 1) Vo

X (i-Y.-mleSr\
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1 r——mt_ .
Lim \#(r,p,i,T,Ti) E ()(r_l_tfm))'m/m:lo\ ARLETEY

(4.8) TWO e

B«

Result (4.5) can be proved by differentiating partially a finite geometric

ST
series of the type {xmys }, m varies from 0 to , W.r.t.

th ~T -
X (p —1) times where X = 1—Ah+ o(h), y = 1—Xh —ph + o(h) and taking
limit as h —0. Results (4.6)-(4.8) can be proved similarly by considering
appropriate series (see [1]).

4.1. Bivariate distribution of the number of arrivals
and departures up to time t

Theorem 5. Fork>0

PijfifaT)
=E EEE & %' n "0
. W
r—= R\ R2 /3 9=1
(4.9) (—X+p) (t—ST)
XI(A (i-ST ) rd(p (i-SDV o
i+j—d\  fi+] —d
and for k> 0
(t,T)
:JkE E EE Aten 5 —1 n -XT(\T)dq
r— 1?3 7=1 K)!
(4.10) p-(X+n)(t-sT)
XU\(t-sT)y-d(p(t-sT)) (i+] —d)\
i+j-d i+j-d
i +k—dr i+k

where
Ri: Summation over d from r toi;
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R2: Multiple summation over d\, d2, ..., dr such that If?i +k—~ d r and
d=d\ + 2+ we+ dr;

R3: Summation over s fromr to —

i?4: Multiple summation over d\, ¢/2, **+, dr such that i + k — ~ dr, and
d—d\ T G2 **"£dr.

Theorem 6.

Pijfl&T)

=EEEE

r=I Ei R Rs

(4.12)
x{(e-™ ) (N -d(i_e-Mt-sr)I+* 'w -jnry
-1rT -0-rm r
and
— -XT(s1r) 7. . A
EEEE (:On(~T) -
(4.12) (t-sT) \\i-d .-rtt-.T)i+‘E’_1(K(|’-*r))”
{eA 0 =0 n!
fi+;-d - 1\ i+j-d
vV *—dr J
where

Ri: Summation over d from r toi—I;
R2: Multiple summation over d\,d2,... dr such that 1" i— <dr, di~.1
(i=1,2,...,r), andd=d\ + 2+ » m dr;

R3: Summation over s fromr to

R4: Multiple summation over d\,d2,. ,dr such that drai —j, di ~ 1,
(i=1,2,...,r) andd=d\+d2+ +dr.

(4.9 can be obtained on substituting the value from (3.1) and taking the
limit as h-» 0. Similarly, (4.10) can be proved on using (3.2). (4.11) and
(4.12) can be proved as a limiting case of Theorem 2 on using (4.6).
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REMARK 4. Results in Theorems 5-6 can be interpreted probabilistically
by tracing the dissection of time t, through the following bijective transfor-
mation in Figure 3. Collect the segments of d\, d2,... ,dr horizontal steps af-
ter 1st,2nd, ... ,rth contact points, respectively. Concatenate these segments
in succession and append the resulting path segment at (k, 0). Collate the
remaining truncated segments and append the path segment at (k + d, 0).
The resulting path is shown in Figure 4.

Considering the division of time t as suggested by Figure 3 referring to
(4.9) for fixed values of r, d\,c"j eee,dr, T and s the two terms within paren-
theses inside the summations are the probabilities of occurrence of (s—)
vacations of first type and r vacations of second type with di arrivals in the
ith vacation (i=1,2,...,r) and of queue length being (i + k —j) in time
(t—sT) starting with k + d units without being empty in between (see [11]).

Remark 5. To obtain the transient solution in continuous time for or-
dinary M/M/1 queue from Theorem 5, we will have to pass to the limit
T —0 and set d\ = 72 = eee= dr —1, an obvious implication of the former
(Greenberg and Greenberg [7]). Under same conditions Theorem 6, on using
(4.7), reduces to

_ 1 e i i —r —
LimP, 10(fT) = e-« (-) £ -

r— L
rooi+j-r-1r-1

X{A E E m+n\ (—Hm

n=0 m=0
1

(4.13) e, — EEO 4’?)}
\ i (H)m(/if)yr m(i+j —r+m —1
e‘Aj) E E (r —m)\ m

r—lm-=o0

i+j—r—I\  (i+j—r—1
i-1 )~ *

m+i+j_r_|

E " >

which checks with the result rij(t) (see (10) in Pegden and Rosenshine [16]
of ordinary M/M/I queues).

Vv

Theorem 7. If the system is in vacation at time t, then for n z 0,
jMk>0

VPj+n-k,jk(ti T)
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= | E E_E E [e/R (P51 e>ri(Arn

0 Rz R3

Bt e XT (*T)dg\ \\ (2j -k -d -\\ _ (2j —k—d—1

U W JUvV 3-1 J | 3
(4.14)
e-(X+RB){t-sT-T\)
. r/\x
2 —k—d—1)"1
X(AG{-sT- TYy-d~k{™Mt-sT- Ti))J 1jdTi
and/orn”0
vPj+n,j;o>
—Arfs—+) ( * VAIIAT,)"
=/e e e e r—1 n!
n r=1 fi4 Ji2 R.i k
C_ATAT)Y'l f/IAX-d (AN (I~sT-F),
(4.15) Tf K)! § fae A+ )
9=1 ’
2/ —d—2n  f2j —d—2
j~ 1 3
pi R ) .
| enenT-Ti) 0 UX(<-ST-TiYr
ml
m:D
where

R\: Summation over d from (r —1) to j;

A2: Multiple summation over d\,”2»eee dr_i such thatdi* 1 (*= 1,2,..
r —1), and d —d\ + d-z-\------ hdr-i/

R3: Summation over s from (r—1) to

i?4: Summation over d from (r —1) io j.

(i-T)-

Theorem 7 can be proved as a limiting case of Theorem 3 on using (4.6).

Remark 6. In order to obtain probabilistic interpretations of (4.14)
and (4.15), referring back to Figure 4, we observe that for fixed values of
r,d\,dz2,eee,dr-i, the number of complete vacations is s each of duration T
and an incomplete vacation of duration T\. The two terms within parentheses
inside the summations are the probabilities of occurrence of (s—r) vacations
of first type, an incomplete vacation of duration T\ with n arrivals and r
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vacations of second type with dt arrivals in the zth vacation (i=1,2,... ,r—1)
and of dropping the level k + d to level zero in time (i—sT —T\) encountering
J services without being empty in-between (see [11]).

Remark 7. Inorder to obtain transient solutions in continuous time for
ordinary M/M/ 1 queues from (3.9) and (3.11) we pass to the limit as h—0
and T —0 by using (4.8), (4.6) and set d\ = di = me=dr-i = 1, T\ —0 and
n = 0 an obvious implication of the later (see [7], [16]).

Theorem 8. Fork>0

(4.16) I+] A e-(AA)(AY Mty
i+ k)
and for k —0
i+j-1  i+j- 1
i1 i X
(4.17)
X
nt /

Remark 8. TP*j-k{t,T) can be obtained as a limiting case of
t P*j-kit/h, T/h) computed in Remark 3.

For k>0
tP AT)
*EA (i +]
i) \i+k

4.18 AT(sor

(4.18) +E EEE « AT (s-1) n r(AAdA/..
r—1  fij A3
j (A(t- v - sDY-e- (A+)(f- sr) : dr)1,
| {i+j-d)\ J

where R\ and Rj, are summations as defined in Theorem 5, A(i,j, k,d,dr) is
defined in (3.15),
Multiple summation over d\, di, mm dr, di (~1), i—1,2,...,r and
d—d\ F g2F ***F dr.

4.2. Queue length distribution

The probability that starting initially with k units (k™ 0) there are n
units in the system at time t after having been empty at least once in-
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between, denoted by P*.k(t,T) is given by

(4.19) Ty =Y,
j-k

In particular, (4.19) on using (4.9), reduces to

EEERORY N, b

r=l Ri R2 R

(4.20) X j e-(A+d(t-ST ) A A x

X ~n-fc-d(2VAp(i - sT)) - In+k+d(2y/\Ji(t - sT)) j,

where summations are as defined in respective Theorems.

Remark 9. In (4.20) the term in the last parentheses denotes the prob-
ability that starting with (k +d) units at time t= 0, there are n (> 0) units
in the system at time (t —sT) in the presence of an absorbing barrier at
the origin (see [11]). Thus P*k(t,T) is amenable to identical probabilistic

interpretation.

The probability that M/M/1(T) system ending with vacation attains
gueue length n in time t starting initially with k (* Q) units, denoted by
vP*.k{t,T) is given by

(4.21) v Poon — vk k(i T).
=k
Then for k>0, n~ 0,

T

. -AT(s—+1) AT 1(ATxy
1Y, t [/eeel r—1 n\
r=10 Ri R2 Rz K
1
“2) *‘n ATATYd (AHfi)(tsT-Ti)/  k+d
' o1 (da). \t —sT —Ti /
IA_ii+4l) A

x(-)_ 2 h+i&yfaiit-sT-TtfjdTx,

where summations are as defined in respective theorems.

Remark 10. In (4.22) the terms in the last parentheses denote the prob-
ability that starting with (k + d) units at time t = 0, the system becomes
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empty at time (f—sT —Tf) (see [17]). (4.22) can then be interpreted in a
routine way.

Remark 11. P*-.k{t,T) and PP.k(t,T,Ti) are expressions involving on-
ly finite sums. Hence computations of P*k{t,T) and FGf(i,T, Tf) could be

comfortably handled from (4.19) and (4.21) since the infinite sums does not
involve Bessel functions explicitly.

Acknowledgement. The authors express their thanks to the referee
for his valuable comments.
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ON THE SIMULTANEOUS APPROXIMATION OF FUNCTIONS
AND THEIR DERIVATIVES BY THE GAMMA OPERATORS

S. GUO and Q. QI

Abstract

In this paper, we investigate the degree of approximation by Gamma operator for
functions whose derivatives have only discontinuity points of the first kind on [0, 00). Our
estimates are essentially the best possible.

1. Introduction

Let / be a function defined on the interval [0, 00). The Gamma operator
Gn{f,%) is defined as follows:

(1.1

where gn{% u) = e Xuxn-+iun/n\.

Several authors [1-5] studied the convergence of some famous operators
for functions of bounded variation. There are some results of convergence of
Gn for functions of bounded variation on [0, 00) (cf. [6]).

In this paper, we consider the degree of simultaneous approximation
by Gamma operator for functions in B)@. We shall also prove that our
estimates are essentially best possible. = {/|/(r_1)€ C[O, 00), f£\Xx)
exist everywhere and are bounded on every finite subinterval of [0, 00) and
f£\x) = 0(xQ(x —00) for some a > 0}, where r = 0,1,2,... and f+\x)
means f(xz%).
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Key words and phrases. Operators, simultaneous approximation, derivatives, moduli
of smoothness.
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2. Theorem
Let
f+\t) -&\x), x<t;
(2.1 hr(t) = < 0, x =1\
r(/A  Ar), ort< X,
ox(t)=u}x(hr,t) =sup{| hr(x +s) —hr(x) |, |s |"i}.
It is clear that if x G[0, A\{A > 0), then

(2.2) ux(t)*utA(t),
where o= {i) = sup{a;x(t),x G [0, A]}.

Theorem. Iff G (r G{OyUAN), x > 0, ifien/or n sufficiently large,
we have

IGD)(/,*)-~(/TIM +/11)to)l
23  sa>e 1A frw-17 Vi ON
k=1

+0iiM Z + — [ir)(s) + /in(a
\Vin— V2 n )(s) ) @)

where ivx (t) = tux (hr,t) is the pointwise modulus of continuity of hr at x and
hr is defined by (2.1), A(x) = max{l,rr2}, Cr =

an integer so that cr™p-

n(n —1) +mm(n + 1—) >P I

3. Lemmas and preliminaries

In order to prove the above theorem we need the following lemmas.

Lemma 1 ([7]). Iff~ GL\, then we have
0.

(3.1) GM(f,x) =Crf gn-r{x,u h') du,

n
where CT= n{n —1) eee(n + 1—7)

Lemma 2. Ifp is a positive integer, then
()]
3. I0nt (s A A =01 (2x)p2r fVe\ln
(32) {nt)pgn-rfs, - ()\Jn—r\z
2X

n
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Proof. Let

0o

r+1 Z[dt
1= e—1—.
(nhy . Ao t

477

Then | is the left part of (3.2). By replacement of the variable in the integral,

we have
£ “ /'m \In- r+1e_nu*du
S-mr g \ud B
-1y 3
23 * -r+l e_r\1/ dv
49 = ("6 1/<” )po " y
n—+1
?n ) mp] e~T t~(n~r+2~p"dt.

Using integration by part again and again for the term on the right-hand

side of (3.3), we get

Jeir (n-r+2-p)df = J e - nttn~r~pdt
2 0

e~2 r nttn-v-V+ldt

(n——p+D2nr PH * n-r -5p_+ 1J
(3.4

2
n n

:k£:0 n—r—p+)(n—r—p+2)mmn—r—p+k+1)2nr

n 2714

+ / e-nttan- r- p+2dt.
(n— —p+ L) eee(3n —r —pp +2)

to 13
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When n is sufficiently large, the right-hand side of (3.4)

—xV 1
n2n~r~p+k+l * 2 it 130 p2dt
k=0 0
:2€~§—--} _____ + 2 /r 3,-"r+3
-P +3V21
Since = < 1\ 2 hence for n sufficiently large, we have
b S ver y large,
(3.9) iiei-(/l’l-r:F-'Z-p-j/\<3<e~2 (1 "
/" IV 3

By (3.3), (3.5) and Stirling’s formula
nl = v/2mmne nHn,
Hn=e2  (0<0,<1)
we get
3e“tn n-r(2a)p
= (n—)12n_r
3e~"nn~r(2x)p
yj2'n(n —r)(n —r)n~re~(n~r)2n~rHn_r

Q{h{2x)par i*~e\n
yin— V2/

Lemma 3. Ifn is sufficiently large, then:
(1) For0ry ™ —n " 2r2+ 2, we have

0
2 Forx—<z <00, N 2r2+ 2, we have

du 8X2

(3.7
u2- n(x —nz)2
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Proof. By simple computation we have

0o

J gn-r(x,u)du- 1,

0
00]
fran- b w)miu = UK
u —r
0
© n2x?

Hence for n ~ 2r2+ 2, we have

N (n+r2+r)nr Ix2

Crl 9n—F(X >’\) 1) e (n —r _l)

. on k! 2a2

(n—1) eee(n——1) (I - (I- £) wm(1- £)(n-T1- 1)

< 4x2 < 832
n(l —n)r n

Therefore
f . l.du./"/a;—u\?2 f 1\ du
Jgn-r(x ,-)J 9n-r {X'u ) "
< 8x2
n{x —ny)2

So (3.6) is proved. The proof of (3.7) is similar.

Lemma 4.
(3.8

(3.9) JQn-r(x,u)du:- + 0
n

X

479
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Proof. Let

n
J - xn—r+|gTu’\n-r
In{x) = gn—r{x,u)du:J (n—r)l du
tn~re
dt.
(n—n)\
Using integration by part, we have
An[x) =0rbjT + (»- + ml+ («- r)0Ol5]
nn-r-| \

1—e T+ o--+n+1j

n N '
fn —rj!  (h—r —1)!
From the relation ([6] Lemma 1), if n is a positive integer, then

, n n2 n” . en
1+ IT+ ¥ +'"" +iri'(")=7r

where 0(n) lies between > and b We can obtain

1 Ln-r+l n
An(x)—l-e-n[-2en--(-ﬁ-:rTl)-! n\e{n)
1 n”—"+1 nn 1 n"
+—e{n)
=2+e~ (Nn—¥4D! (n—1
" _2 .
(3.10) n ' r—s3 1-
n n n

«p (DRG0

By Stirling’s formula, we get

(r+ e nn" e nnné (n)
\/2mrnne~nHn \/2mmne~nHn
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Hence

An{x)=2+0{") -

(3.9) can be obtained from An(x) + Bn(x) = 1, where Bn(x) is the left side
of (3.9).

4. Proof of the Theorem
Let 6 = \V 0 A(x) = max{l, x2}. From

f{nt) =~ (/In)x)+/ir)@&)) + M*) + 1 (/+r)@&)- f-\x)j sign(t-s),

we have

GT)(/,*) -~ (1in(*) +/ir)(*¥))
—Cr 77ir MY gn—[x, f)dt + Cr/in(o;)-fine))
@.1) g

{7 - iNgner{x,t)dt+ Cr2 1(/[r)(x) + /[1) (*))
1 0

X

®=Si + S2+ S3.

Obviously, for n > 2r, we have £ —1” 2r~1r/n. So

2V
(4-2) 31~ 1 14196) + 17V

From (3.8) and (3.9), we have

(4.3) |S2|=|/+r)(a:)-/ir)(@;)|0 (-") .
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Next, we evaluate Si, replacing the variable - by f, we obtain

Si —Cr  hr(rii)gh— 1\ dt
t ¥
0
X—8 x-S 2X
n n n 00
4.4 hT(nt r tAdt
(4.4) =CtuU +/,,+/+/)() t1
0 X—6  xt6
n n
=cHh+h +h +h).
Let
't X n 00
K, ,{x,t)=J “ldu=J gn- r(x,u)du.
0 It

Obviously, if [a 6 C [0, 00), we have

b vy]
JdKn(x,t)" J dKn(x,t) =1

G—
" 1\ dt
=y [Ar(nf) —hrd\gnr o ¢ 12
Va9
n
1\ dt
IL| Ay uk{X-nt)g,n-r \ X, t Ii2
0
X—S

Ib
= y ux(x-nt)dtKn(x,t).
0

Using integration by parts, from (3.6) (3.7), we have
X—S
X—S n
VA GIX(x-nt) Kn(x,t)\0n -y Kn(x, t)dtuk{x —nt)
0
X—S

_8x2 8x2 f dt(—ux{x —nt))
(re—nt)2
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X—6 x—6
n n
/ dt{-vx(x - nt)) wx{0) H-L-j-)-(RQ--bZn uk{x-nt)
(x —nt)2 62 X* (x —t)3
0
Hence
X—6
n A . t)
\lE A -ux{x) + 1625 } X (x —n
n % (x- nt)3

X=S

16ar I ux(x —u) du

_
_nU)X(Xj(Jr n J (x—u)s

Replacing the variable u in the last integral by x —\ J  we find that

7'«*(£:£*,— 1 / ,,,(A »

J  (x—u)3 - 2A(x) J vV v
1?7
, A(x)
< 1 V AT
=2AW ét
Hence
AXx)\ 16
(4.5) A w x@@) - - (x) <Py, Aar)
n " k=l =1
Now let us turn to the estimation of 12 :
XtE X+6
n n
2= J thr(nt)  hr(x)\dtkn(x, t) * uix(S)
(46) XEQ XHS
1" A{x
<ppiw 0
k=l
Similarly, using integration by parts and (3.7) (3.8), replacing the variable u

hr)

. L 1A
in the estimation by x + \ ——=, we have

2x
n

|"81= J ux(nt —x)dt(—Kn(x, t)),

X+6
n
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2X
— n dt
where Kn(x,z)= f gn-r
2X
n
m|.8x1 8x2 f di(u>x(nt —x))
73S~ W +— (nt —x)2
X+S
P4
n
8Lk (x) 2 f —X)
< + a:
e [ ()3t
n
2X
" t- 1 fzxux(u-x)
I XEng=x) g =3 i du
(n't-x) n (U—x)3
#5 X+4
n
n
/A (X) dv
2nA (x) |/
A(x)
< A(X) dv
2nA(
n '
< . v A (x)
2nA (x) j
Hence
@.7)
fe=1
Applying Lemma 2, we have
00
- J \hr(nt)\gn at
(4.8) 2
(2x) par
=01
( )\Jn -r

Collecting (4.1)-(4.8), we can obtain (2.3).
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5. Remarks

(1) 1f/(r) is not constant in any neighbourhood of x, since * - <1, for
n sufficiently large, we have

A(i)
\/In —r ke 1
hence
So in that case (2.3) becomes
5.1 SEE s ix A a0 —f () 10
(5.1) yn k:IlJX (x) _'(x) (’/S)

2r 1r
+ E lin(z) + /-1

(2) If /M is continuous at x, then (5.1) can be further simplified to

34
52)  \GV(f,x)-f("x)\iCr-Y ,u.
k=1

(3) As far as the precision of the above estimates is concerned, we can
prove that (5.2) cannot be asymptotically improved. Consider the function

tr—2

m = //mmm/ [u—\dudt! mmir— (x>0
00 0

r factors

at t—x. From (5.2) we have

34x

IGW (/,*)-/(r)(*)|EC, y/n

On the other hand, we can prove (similarly to [6], here we omit the details)

(5.3) |G 1> (1,%)-1<)(* )12k
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Hence

{/24”:” a\G£Hf,x)-fV(x)\|Cr’\>n.

Therefore (5.2) cannot be asymptotically improved.
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