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GENERALIZED P.P. RINGS AND RINGS 
OF tt-REGULAR QUOTIENTS

R. GONCHIGDORZH

The recent papers [8], [10] and [6] have been devoted to the study of non- 
commutative and commutative generalized p.p. rings with identity. In the 
noncommutative case the existence of classical right rings of quotients was 
assumed. In the present paper we continue these investigations for noncom
mutative normal generalized p.p. rings not necessarily having an identity 
element. In this case we cannot assume existence of the classical ring of 
quotients, because it may happen that such a ring has no cancellative ele
ment. So, it is a natural question to find a construction of ring-extensions for 
generalized p.p. normal rings not necessarily having identity which can be 
considered as a substitution of the construction of the classical rings of quo
tients. We shall present a construction of a ring of right 7r-regular quotients 
of a normal generalized p.p. ring. This is a generalization of the rings of 
right regular quotients of reduced rings introduced by the author in [4], The 
latter one was used in [5] for characterizing semihereditary and hereditary 
reduced rings without assuming the existence of an identity element (similar 
results for semihereditary and hereditary rings with identity were obtained 
by M. Ohori in [10]).

The first section is preliminaries and there we recall some definitions and 
results needed later.

In Section 2 we shall define rings of right 7T-regular quotients of normal 
generalized p.p. rings and we shall give some sufficient and necessary con
ditions for the existence of rings of right 7r-regular quotients and corollaries 
for rings with identity. These results can be considered as characterizations 
of normal generalized p.p. rings with rings of right 7r-regular quotients. So, 
there is some generalization of results in [8].

In the third section we shall consider normal generalized p.p. rings with 
Köthe radical and there a characterization will be obtained for a normal 
generalized p.p. ring having a ring of right 7T-regular quotients with Pierce 
stalks which are local rings.

The last section is devoted to a characterization of normal generalized 
p.p. rings with 7r-regular rings of right 7r-regular quotients. This is a gener
alization of some results in [10].
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2 R.  GONCHI GDORZH

1. Preliminaries

Throughout this paper, all rings considered are associative and without 
assuming the existence of identity elements, unless otherwise indicated. Let 
R be a ring and S be a subset of R. Then rR(S )  and £R(S) denote the right 
and left annihilator of 5  in R , respectively. ann^(5) will stand for rR(S) 
when rR(S ) = £R(S). E (R ) and B(R) denote the set of all idempotents and 
the set of all central idempotents of the ring R , respectively. A ring R  is said 
to be a normal ring if E (R ) — B(R), i.e. if every idempotent of R  is central.

DEFINITION 1.1. A ring R is said to be a right generalized p.p. ring 
if E (R )R  = R  and for any a £ R there exist a positive integer n and an 
idempotent e G E(R) with rR(an) = rR(e). A left generalized p.p. ring is 
defined analogously. A ring R  is a generalized p.p. ring (abbreviated g.p.p. 
ring) if it is both right and left generalized p.p. ring.

It is clear that if the ring R  has an identity this definition coincides with 
the usual one given in [8], [10]. An extension of the concept of g.p.p. ring 
to rings without identity was made in [7]. There it was not assumed that 
E {R )R  =  R  and of course, in such a ring some nil direct summand may 
occur. Nil rings, however, can be considered as a trivial case of g.p.p. rings. 
Therefore, in our definition of a g.p.p. ring R  we have supposed the condition 
E ( R ) R — R  for excluding such trivial cases.

Lemma 1.2 (cf. [8, Corollary 4]). Let R be a normal ring. Then R is 
g.p.p. ring if and only if R  ■ E (R ) = R and for any a G R there exist a positive 
integer n and an idempotent e G E(R) such that for every K  > n annR(aK ) = 
= ann/i(e) and aK e = aK .

P roof. The necessity is obvious.
Let £  be a g.p.p. ring and a be an arbitrary element of R. Then there 

are integers m ,n >  0 and idempotents e, /  G E (R )  such that rR(an) — rR(e), 
£R{aTn) — rR( f) .  Then for all K  ^ max{n,m} we have rR(aK ) — annfi(e) 
and £R(aK ) — ann/*(/) (cf. [8, Lemma 3]). For, let an+16 = 0, b G R. Then 
0 = eab =  aeb and hence aneb = 0, rf>(an+l ) — rR(an). In a similar way we 
have l R (am+1) = £Ii {am).

Now, let rR(ah ) = ann/?(e), £R(aK ) = annfi(/). Then 0 = ah ( /  — e f)  = 
= ( /  — e f ) a K , and hence / ( /  -  ef)  = 0, f  — ef .  Similarly we have e = 
= e f  and therefore e — f  and rR(aK ) = ann«(e) = £R(aK ), i.e. ann/j(aA ) = 
= annR(e). Because E(R)- R =  R, we have an idempotent e' G E(R)  such that 
ah — eah = e'(aK — eah ) = (e' — e'e)aK . Since e(e' — ee') = 0, we have 0 = 
= (e' — ee')aK = aK — eaK and so, aK = eaK .

D efinition 1.3. An element r G R is called reduced if there is a central 
idempotent e G B (R ) such that ann#(r) = ann/{(e) and r = er. In this case 
it is easy to verify that the central idempotent e is unique and we call it 
associated idempotent of the reduced element r.
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Corollary 1.4 (cf. [9, Theorem 1]). Let R be a normal ring. Then the 
following are equivalent:

(1) R is q.p.p. rinq;
(2) a) E(R) ■ R = R,

b) every a G R  can be written in the form a = r + n where r is a 
reduced element and n is a nilpotent element, and the sum is orthogonal, i.e. 
rRn  = nRr = (0).

P roof. (1) => (2): Let R be a g.p.p. ring. Then by Lemma 1.2 for some 
integer K  > 0 aK is reduced element with an associated idempotent e G B(R).  
Putting r = ea and n — a — ea we have rRn — nRr — 0 and (ea)K = eaK = 
= ah = (ea -f a -  ea)K =  (ea)K + nh . Hence n is nilpotent and, of course, r 
is reduced.

The implication (2) =>• (1) is obvious, because if r is a reduced element, 
then for every integer K  > 0 rK is reduced.

In the rest of this section we shall give some notations, general remarks 
for sheaves and Pierce sheaves of rings. More details one can find in [1], [3] 
or in [11], [12].

Let X  be a topological space with the set T ( X ) of open subsets. Then 
T( X)  is a category with morphisms being inclusions of open subsets of X.  
Every contravariant functor P : T (X )->SET, where SET is the category of 
sets, is called presheaf on X . So, if a presheaf P  on X  is given, for each 
open subset U Q X  we have a set P(U) and for every pair of open subsets 
V, U Q X  with V QU there is a restriction map Qy : P(U ) —► P(V)  and these 
restriction maps satisfy the natural conditions of compatibility.

Presheaf P  on X  is called a sheaf on X  if for an arbitrary U G T( X) ,  
for given an open cover {Í7, | i G 1} of U and a family of elements s, G P(t/,),
i € / ,  such that for each pair (i , j )  we have Qu]nUj(si) -  Qu,ciUj{si)i there 
exists a unique element s G P(U ) with Qy.(si) — s for all i G / .  The stalk Px 
of a presheaf P  at a point x of X  is defined as the colimit Px = lim P(U)

U^x
of the sets P( U ) as U ranges over all open neighbourhoods of x which form 
a filter in T( X) .  If s G P ( U ) for some neighbourhood U G T ( X)  of x G X , 
we write sx for the image of s in Px and call it the germ of s at x. The 
collection of the stalks {Px | x G X} is an X-indexed family of sets and we 
write S(P)  for the disjoint union of the Px with its canonical projections 
x : S( P) —*■ X . We define a topology on S(P)  declare V Q S(P)  to be open if 
for all U G T ( X )  and all s G P(u),  the set {x G U | sx G V)  is open in X .  We 
write T(U,S(P))  for the set of all continuous partial sections <p\ U —► S(P)  
of the projection x: S( P ) —*• X  (i.e. is inclusion of U in X ). A global 
section is that a section with U = X . Then if s G P(U ) for some U, the map 
x —>■ sx defines a partial continuous section s: U —* S(P)  over U.

Now, let R  be a ring and B( R)  be the set of all central idempotents of R.
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Then B ( R ) forms a Boolean ring under the following operations

e ® /  - e  + /  — 2e f
e ‘ /  —ef-

The Boolean spectrum spec B ( R ) of the ring R consisting of all prime ideals 
of B( R)  with the Zarisky topology is a totally disconnected, local compact 
Hausdorff space (i.e. Stone space) and we denote it by X( R) .  An important 
property of the space X( R) ,  the partition property of X ( R )  can be formulated 
as follows.

Lemma 1.5. Let U be an open compact subset of X( R)  and {Ua,a  £ /} 
be an open cover of U. Then there exists a finite set {V(,i=  1 ,2 ,. . .  , n} of 
open compact subsets in X ( R )  such that

i) for every i ^ n  there is an index a £ I  with C f7a ,
ii) Vi n V,' = 0 if i f i  j ,

iii) U = \ J V i .
i=1

We define a presheaf on X{ R)  as follows. Let U be an open subset in 
X ( R ) .  Then we write P(U) = R /  P| xR  (we note that a: is a prime ideal in

xeu
B( R)  and xR  is an ideal in R)  and we define

Qy: R /  f) x R —>R/  p| yR,  where V QU,  
xeu yev

to be the canonical projection. It is easy to get that, in fact, this presheaf is 
a sheaf and a calculation gives that the stalks Px = R / x R  for all x £ X(R) .  
We shall write Rx instead of Px . This sheaf P  is called a Pierce sheaf of the 
ring R  and the stalks are called the Pierce stalks of R. An adaptation of [11, 
Proposition 1.1] gives

Lemma 1.6. Let R be a ring with B(R)  ■ R  = R. Then every Pierce 
stalk R x of R is a ring with identity. Moreover, each Pierce stalk Rx is 
indecomposable (i.e. without nontrivial central idempotents) if and only if R 
is a normal ring.

In the rest, we suppose that R is a normal ring with B( R) R  = R. Let 
S ( R ) =  (J Rx be the display space and f : X ( R ) —> S(R)  be a map de- 

xeX(R)
fined by an element r € R  by f(x) = rx for all x £ X( R) .  Then f is a con
tinuous global section of the Pierce sheaf of R and the Pierce sheaf P(R)  = 
=  (S ( R ) , X ( R )) is a sheaf of rings Rx, x £ X ( R )  with identity in the sense of 
[3, Definition 2.2]. Moreover, the set of all global sections T = T(X(R) ,  S(R))  
forms a ring under naturally defined ring operations and a map i : R  —► T with 
i(r )  = r is a monomorphism of rings. Hence we can identify the ring R with 
the subring i(R) — R — {r \ r £ R}.  It is well-known that R = T if and only
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if R  has an identity element. Let a be a global (continuous) section in T. 
Then supp a denotes the support of a, i.e. supp a = { i £  X ( R )  \ o ( x ) ^  0X}. 
We shall end this section with a useful remark: a subset U C X ( R )  is open 
and compact if and only if U = supp e for an idempotent e £ B(R) .

2. The ring of 7r-regular quotients of normal g.p.p. rings

In order to define the ring of 7r-regular quotients of normal g.p.p. rings, 
at first we shall establish some facts about Pierce stalks of normal g.p.p. 
rings, about reduced elements and about some extensions of normal g.p.p. 
rings.

Lemma 2.1. Let R be a normal g.p.p■ ring. Then for each x £ X( R)  
every zero divisor of the Pierce stalk Rx is nilpotent.

P roof. Let rx € Rx. By Lemma 1.2 for a positive integer m  and an 
idempotent e £ B(R)  we have rme — r m, ann^(rm) = ann/i(e). So if ex = 0X, 
then r™ = r™ex = 0X and rx is nilpotent. Let ex ^  0X and rx • sx — 0X for an 
element sx £ Rx. Then r s f  = 0 for some idempotent /  £ B(R)  with f x ^  0X. 
Moreover, also e f  = /  holds. Hence 0 = (s f )e = s f  and, in particular, 0X = 
= sx f x =  sx . Therefore, rx is right non-zero divisor in Rx. Similarly we can 
show that rx is a left non-zero divisor in R x.

Corollary 2.2. Let R be a normal g.p.p. ring. Then an element r £ R 
is reduced if and only if for every x £ supp r rx is a non-zero divisor in R x and 
in this case supp r is open compact in X( R) .  Moreover, annfl(r) = annfí(í) 
if and only if supp r = supp e.

P roof. Obvious.
D efinition 2.3. Let R and R be rings with R C R. Then R is called 

a unital extension of R, if for every element r £ R E(R) f  ^  0, rE( R)  ^  0 
whenever f  0.

Lemma 2.4. Let R be a normal g.p.p. ring with a unital extension R. 
Then for every element r of R there exists at most one element r* £ R such 
that

(*) r*rm+1 = r m, ann^(r*) = ann^(rm) = ann^(e)

for some integer m > 0 and idempotent e £ B(R).
If there exists such an element r* £ R  then we call it the 7r-regular inverse 

of the element r and throughout this paper the notation r* will be used only 
in this sense.

P roof. Let r*, r#  £ R satisfy Condition (*) for some element r £ R. 
In view of Lemma 1.2 we may suppose that the integer and the idempotent
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appearing in (*) are the same. So we have (r* — r # ) r m+1 = 0 and hence 
(r* — r&)e =  0 (Lemma 1.2). Moreover, if /  is an arbitrary idempotent of R 
then (r* — r # ) ( /  -  e f)  = 0, since e ( /  -  e f) — 0. Therefore, we have

(r* -  r * ) f  = (r* -  r*){ f  -  e f  + ef )  = 0

and hence (r* — r*)B( R)  — 0. Because R  is a unital extension of R  the last 
equality yields r* = r# .

It is clear that in any unital extension every nilpotent element has a ir
regular inverse which is zero. We know that every element of a normal g.p.p. 
ring is an orthogonal sum of a reduced element and a nilpotent element 
(Corollary 1.4). Moreover, Lemma 2.1 and Corollary 2.2 imply that these 
reduced and nilpotent parts are uniquely determined by the element. So we 
have

Lemma 2.5. Let R be a normal g.p.p. ring and r be an element of R 
with orthogonal decomposition r = a -f b, where a is a reduced, b is a nilpotent 
element. Then the element r has a 7r-regular inverse r* in unital extension 
if and only if the element a has a* in this extension and a* = r*.

D efinition 2.6. Let R be a normal g.p.p. ring and Q be a unital ex
tension of R. Then Q is said to be the ring of right it-regular quotients of R 
if the following conditions are satisfied:

(i) every element r £ R has 7r-regular inverse r* in Q,
(ii) every element q £ Q has a form q = rs* for some elements r ,s  £ R.
The ring of right 7r-regular quotients Q of the ring R (for brevity we 

denote it by Qrn(R)) has the following universal property, if it exists: Let P  
be a unital extension of R such that every element of R has 7r-regular inverse 
in P. Then there exists a unique homomorphism

<p:Qrw(R ) -* P

such that <p(r) = r  for all r £ R. Therefore, Q„(R)  is unique up to isomor
phism. Moreover, we can analogously define the ring of left 7r-regular quo
tients Qi(R)  of R. The above universal property says that if both Qrw(R) 
and Q ^(R) exist, then they are naturally isomorphic.

Before formulating the main result of this section in view of Lemma 2.5 
we notice that Conditions (i) and (ii) in Definition 2.6 can be changed by 
the following conditions:

(i) ' every reduced element of R has a 7r-regular inverse in Q,
(ii) ' every element q £ Q has the form q = rs* for some r,s £ R where s is 

reduced.
T heorem 2.7. Let R be a normal ring. Then the following are equiva

lent:
(1) R is a g.p.p. ring having a ring of right n -regular quotients,
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(2) a) every Pierce stalk Rx of R is a right Ore ring with identity and 
each zero divisor in Rx is nilpotent,

b) for every element r E R the set

{x E X (R ), rx is non-zero divisor}

is open compact in X ( R ) and supp r Q supp /  for some f  E B(R).
(3) R is g.p.p■ ring with right n-Ore condition: that is for every pair of 

elements a,bE R  where b is reduced, there exist c , d£ R such that

ad = bc, annfl(d) = ann#(6).

P r o o f . (1) => (2): a) By Lemma 2.1 it is sufficient to prove that Rx is 
right Ore ring for all x E X( R) .  For, let ax, bx E Rx be non-zero elements and 
let bx be a non-zero divisor in Rx. Then we have 6*a = cd* for some c, d E 
E R  and by Lemma 2.5 we conclude that both b and d are reduced. Hence 
bb*ad =  bcd*d and noting that bxb* = l x, d*dx = l x (Corollary 2.2) we have 
the right Ore condition: axdx — bxcx , where dx is non-zero divisor in Rx.

Condition (2), b) follows immediately from Definition 1.1 and Corollaries 
1.4 and 2.2.

(2) => (3). At first we prove that R is g.p.p. ring. Let r be an arbitrary 
element of R. By the assumption there are idempotents e, /  such that

supp e = {x E X(R) ,  rx is non-zero divisor}

and supp r Q supp / .  Since ann#(re) = ann^(e) and r /  = r, r = re + r ( /  — e), 
we see that re is a reduced element and reRr( f  — e) = 0. Now we prove 
that r' = r ( f  — e) is nilpotent. Since supp(/ — e) is open compact and r'x is 
nilpotent for every x E supp(/ — e) by the standard Pierce sheave argument 
(cf. Lemma 1.5) we get an orthogonal set of idempotents { e i , . . .  , en} with 
1̂ + € 2  +  .. . + en = /  — e and integers 7it, * = 1 ,2 ,...  , n such that (r 'e ,)^ ' = 0 

for all i. Then taking K  = max{/i, | i = 1 ,2 ,...  , n} we have (r' )h = 0, as 
desired.

Now we will test the 7r-Ore condition. We take elements a,6E R, where 
b is reduced. By Corollary 2.2 for every x E supp 6 bx is non-zero divisor in 
Rx, and hence by our assumption there are elements cx,dx E R x, where dx 
is a non-zero divisor in R x, such that axdx = bxcx. Noting that if rx is non
zero divisor in Rx we can assume that r is reduced (see Corollary 1.4) and 
using again the standard Pierce sheave argument we get an orthogonal set 
{ e i,. . .  , en] of idempotents and a set { c j,. . .  , c„, d\ , . . .  , dn} of elements of 
R  such that each d,e, is reduced and ad,e, = 6c,ei, e\ -Ye-i + . .  . + en = e, where

n n
supp e = supp b. Hence, putting d = d,e,, c = ^  c ie i we §et the desired

i=i i=i
equality ad = be with ann/t(d) = ann«(6), where d is reduced (see Corollary
2 . 2 ) .

The implication (3) => (2) is obvious (see the proof of (1) => (2)).
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Now we prove that Condition (1) follows from Conditions (2) and (3). 
Assume Conditions (2) and (3). It is well-known that R is a subdirect 
product of its Pierce stalks Rx, x  £ X( R) .  So, for every reduced element r £ 
£ R we can construct a unique element r* e n Qrct(R x), where Qrc({Rx)

*eX(R)
is the classical right ring of quotients of the ring Rx, as follows:

if x £ supp r, 
otherwise.

Let Q be a subring of ][[ generated by the set
xeX(R)

R U { r^ , r-reduced element of R}.

We shall prove Q = Qr̂{R).  It is clear that Q is a unital extension of R.  As 
we have noted, we have to test Conditions (i)' and (ii)'.

Condition (i)' is obvious, because r# is the 7r-regular inverse of the re
duced element r £ R. Further we shall write r* instead of r# .

Testing of (ii)': It is enough to prove the following two conditions:
(ii)i: for every pair of elements a,b£ R, where b is reduced, there exist 

elements c, d £ R such that d is reduced and b*a = cd*.
(ii)^: for every pair of reduced elements a , b£  R there exist elements 

c , d e R  such that d is reduced and a* + b* = cd*.
The first one follows immediately from the 7r-0re condition in (3).
For the second one let e and /  be the associated idempotents of a and 6, 

respectively (see Definition 1.3). We orthogonalize the sum a* + 6* by

a* + b* = a*(e -  e f)  + b"(f -  e f ) + (a* + b*)ef

where the summands are mutually orthogonal (we recall, two elements u, v £ 
£ R  are orthogonal, if uRv  =  vRu  = (0)). Hence, if we can find c, d £ R  with 
(a* +  b*)ef — cd* we will have

a* + b* = (e ® /  + c)[a(e -  ef )  + b(f  -  e f )  + d]*

(we could suppose, without loss of generality that c — cef,  d = def).  There
fore our problem is reduced to the case e = f .  Let e = / .  By the 7r-Ore 
condition we have as = bt with annß(s) = ann#(6) for some elements s and 
t of R , where s is reduced. Moreover, since a, b and s are reduced elements 
with the same associated idempotent e and for every x £ supp e tx is not 
a right zero-divisor. Hence tx is not nilpotent. Therefore tx is a non-zero 
divisor in Rx and we can assume that t is a reduced element with associated 
idempotent e. So we have a* — s(bt)* and

a* + b* = s(bt)* + eb* = s(bt)* + tt*b* = (s + t)(bt)
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as desired. Thus the theorem is proved.
Let R be a normal g.p.p. ring such that Q = QTn(R). Then we can 

construct the Pierce.sheaf (S(Q),  X( R) )  of the right Ä-module Q,  where 
S(Q) = U Qxi Qx = Q/ XQi x £ X ( R ) .  Now we shall consider the ring 

xeX(R)
Q — Qr„(R) as constructed in the proof of the implication ((2) and (3)) =>• (1) 
in Theorem 2.7.

Let (fix : Q —► Qtf iRx)  be the natural projection. It is clear that xQ C 
C ker <px. Let q G ker ipx and q = ab, where a, b G R, b is a reduced element 
with associated idempotent e G B(R).  Then 0 = qx = axb*x holds and hence 
either ax = 0X or bx = 0. In the first case we have a G xR  and q G xRb* C xQ\ 
in the second case e G x and hence q = ab* = ab*e G eQ C xQ. Hence we can 
easily verify that Qrc((R x) = Q/xQ for all x G X( R)  and so we have proved 
the following

Corollary 2.8 (cf. [10, Lemma 10]). Let R be a normal g.p.p. ring 
with Q = Q ^ R ). Then for every x G X( R) ,  Qx is the classical right ring of 
quotients of Rx.

The ring of right 7r-regular quotients Qrn{R) of the ring R is, in particular, 
a unital extension of R  in which every element of R  is 7T-regular, i.e. for every 
r G R there exists an element q G Qrn(R) with rmqrm = rm for some integer 
m > 0.

Concerning the converse statement we have

T heorem 2.9. Let R be a normal ring with E( R) R= R. Then the 
following are equivalent:

(1) R is a g.p.p. ring with Qrv(R),
(2) there exists a unital extension Q of R such that

a) every element of R is 7r-regular in Q ,
b ) E ( Q)  = E ( R ) , J
c) for every element q G Q there exists a reduced element r G R such 

that qr G R and qQ =  qrQ .

P roof. (1)=>(2). Conditions a) and c) are clear for Q — Qrn(R). For
b) let e be an idempotent of Q. Then e = ab* for some a,&G R, where 
b is a reduced element, and by Corollary 2.8 ex = l x for each x G suppe. 
In particular, if a' is the reduced part of the element a and ei,e2 are the 
associated idempotents of a' and b1, respectively, then we have e = a'b*, and 
hence e = e ^  G E(R) ,  as desired.

(2) =>■ (1). At first we prove that R is g.p.p. ring. Let r G R and r m = 
_  rm qrm for sorne q e Q an(j an integer m > 1. Then rmq, qrm E(Q) = B(R) ,  
and rn ( rm) = rn(qrm) = ann/t(grm), ^«(rm) = ÍR(rmq) = annft(rm<7). Thus, 
the ring R is both left and right g.p.p. ring with E ( R ) R =  R,  hence by 
definition R is g.p.p. ring.

Now we shall verify that R satisfies the right 7r-Ore condition. Let a, b£  
G R and 6 be a reduced element. We can prove that every reduced and
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hence every element of R has a 7r-regular inverse in Q. Therefore, by the 
assumption for the element b*a £ Q there exists a reduced element d' £ R 
such th a t b*ad' £ R and b*aQ = b*ad'Q. Let e and /  be the associated 
idempotents of b and d', respectively. It follows from the last equality that 
b*a = b*ae = b*ad'q for some q £ Q. Since 66* = e, we have ea =  ead'q, and 
hence fe a  — fead'q = ead'q — ea, (e — fe)a = 0. We put c = b*ad', d — e — 
-  fe  +  ed'. Then ead! = be and ad = a(e — f e ) -f ead' = be. Moreover, it is 
clear th a t d is a reduced element with annnd  = ann#6. So, we get the right 
7r-Ore condition for R and for R  the ring Q ^ R )  exists (Theorem 2.7).

Corollary 2.10. Let R be a normal g.p.p. ring with Qrn(R). Then 
E( Q\ ( R) )  = B(R) and QTn(R) is a normal ring.

P roof . By Theorem 2.9 there exists a ring Q with Conditions a), b) 
and c). Then by the universal property of Q ^ R )  and by Condition a) we 
conclude that Qrn(R ) Q Q. Then by Condition c) we have Q = Q ^ R ) .  Hence 
Condition b) gives the desired equality E ^Q ^R )) = B(R).  Now let r be an 
arbitrary reduced element of R  and e € B(R).  Then

r*e — r*rr* err* = r*rr*rer* = er*rr*rr* = er*.

Therefore e is a central idempotent in Q ^ R ) .
In the rest of this section we shall specialize our results for rings with 

identity element. As a key for such specializations we have the following

P roposition 2.11. Let R be a normal g.p.p. ring with identity. Then 
R has the classical right ring of quotients Q ^ R )  if and only if it has the 
ring Q Tn(R). Moreover, if they exist then Q^f(R) = Qrn(R).

P roof. Suppose R has the ring Qrc((R). It is clear that if r is a non-zero 
divisor in R, then r is reduced and r -1 = r*. Let r be a reduced element of 
R  with associated idempotent e. Then r + (1 — e) is a non-zero divisor in 
R  and r* = e(r + (1 — e))-1 . Therefore Q ^(R )  is the ring of right 7T-regular 
quotients of R \ Qlf(R)  = Qrv(R).

Conversely, let R  be a ring with Q'K(R). We shall prove that every 
element q £ Qrn(R) has the form q = ab*, where 6 is a non-zero divisor in R. 
Let q =  cd* for some c, d £ R, where d is a reduced element with associated 
idempotent e. Then putting a = ce and 6 = d + (1 -  e) we have q = ab*. Now 
it is clear that Qrn(R) = Qrc((R).

From Theorems 2.7 and 2.9 and Proposition 2.11 we immediately have 
the following

C o r o l l a r y  2.12. Let R be a normal ring with identity. Then the fol
lowing are equivalent:

(1) R is a g.p.p. ring with Q^(R) .
(2) a) Every Pierce stalk of R is a right Ore ring in which every zero 

divisor is nilpotent.
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b) For every element r G R, the set

{x G X{ R)  I rx is a non-zero divisor} 

is open and closed in X( R) .

Corollary 2.13. Let R be a normal ring with identity. Then the fol
lowing are equivalent:

(1) R  is a g.p.p. ring with Q ^ R ) .
(2) There exists an extension Q of R which contains the same identity 

as R such that
a) every element of R is n-regular in Q,
b) E(Q)  = E(R),
c) for every element q G Q , there exists a non-zero divisor r G R with

qr G R.
(3) R has the classical ring of right quotients Q ^(R) such that

a) every element of R is n-regular in QrcfiR),
b) E(Q'ci(R)) = E{R).

We note that the equivalence of the Conditions (1) and (4) in Corollary 
2.1.3 has been proved in [8, Theorem 2],

3. Normal g.p.p. rings with Köthe radical

We recall that a ring R  is said to be a ring with Köthe radical K(R)  
if K( R)  is a nil ideal of R  containing all one-sided nil ideals of R. It is a 
well-known open question whether every ring has Köthe radical. We also 
recall that a ring R is called a local ring if the ring R/ J( R)  is a division ring, 
where J(R)  denotes the Jacobson radical of R.

From Lemma 2.1 and from the proof of the implication (2) =$■ (3) in 
Theorem 2.7 we have

P roposition 3.1. Let R be a normal ring. Then R is a g.p.p. ring if 
and only if the following conditions are satisfied:

1) in each Pierce stalk R x of R every zero divisor is nilpotent,
2) for every element r G R the set

{x G X(R) ,  rx is non-zero divisor in Rx}

is open compact in X(R)  and supp r C supp /  for an idempotent f  G B(R) .

An addition needed for the main result of this section and also having 
its own interest is the following.
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P r o p o s it io n  3.2. Let R  be a right Ore ring. Then the following are 
equivalent:

1) for an arbitrary element r £ R either r is non-zero divisor, or r + s is 
non-zero divisor for all non-zero divisor s(z R,

2) Q tfiR ) is a local ring.

P r o o f . l)=i>2). Let q = r s -1 £ Q be a non-invertable element of Q, 
where Q = Q ^ R )  and r , s £ i  Then r is zero divisor, and hence by the 
assumption r + s is a non-zero divisor and l + r s -1 =  (r +  s)s-1 is invertable. 
Now we verify that

J (Q ) =  {q £ Q, q is not invertable}.

The inclusion C is obvious. Let q be a non-invertable element. Now q is a 
zero divisor in Q. Let p be an arbitrary element of Q. If q is a right zero 
divisor (the left case is similar) then qp is a right zero divisor, and hence, as 
we have proved, 1 + qp is invertable. Thus qQ as a quasi-regular right ideal 
must be contained in J(Q) ,  in particular, q€  J(Q).  Therefore Q/ J ( Q ) is a 
division ring and Q is a local ring.

2) =>• 1) Let r be a right zero divisor in R , and s be a non-zero divisor in 
R. We have to verify that r -f s is a non-zero divisor. Since q = r s -1 is a non- 
invertable element of Q by assumption <? £ J ( Q ) and 1 + r-s_1 is invertable. 
Therefore r + s = (1 + r s -1 )s is invertable in Q and r + s is a non-zero divisor 
in R.

T heorem 3.3. Let R be a normal ring.
(A) The following conditions are equivalent:

a) R is a g.p.p. ring with Köthe radical,
b) in each Pierce stalk Rx every zero divisor is nilpotent, and the sum 

of nilpotent elements in Rx is nilpotent and for every element r £ R the set

{x G X( R) ,  rx is non-zero divisor}

is open and compact and s u p p r i  supp /  for some / £  B(R).
(B) Moreover, if R is a g.p.p. ring with Qr̂ R )  the above conditions are 

equivalent with the following:
c) every Pierce stalk Qx of the ring Q^^R) on x £ X( R)  is a local

ring.

PROOF. At first we prove the following

Lemma 3.4. Let R  be a normal g.p.p. ring. Then R has Köthe radical 
if and only if the set of all nilpotent elements of R is an ideal of R.

P roof of the Lemma. The necessity is obvious. Let R  be normal g.p.p. 
ring with Köthe radical K  and let a be a nilpotent element of R. Then for 
every element b £ R ab is nilpotent, because (ab)x = axbx is a zero divisor,
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hence the reduced part of the element ab is zero. Therefore aR  is a nil right 
ideal. In particular, a 6 K  and K  is an ideal of all nilpotent elements of R.

Now we continue the proof of Theorem 3.3.
a) => b): Let ax , bx be nilpotent elements of Rx. Then for some e 6 B(R)  

with ex = l x , the elements ae and be are nilpotent. So, by the assumption 
and by Lemma 3.4 ae + be is nilpotent, and hence ax + bx is nilpotent. The 
rest of Condition b) follows from Proposition 3.1.

b) =>• a). It is enough to verify that the sum of nilpotent elements of R is 
nilpotent and this can be done by the standard Pierce sheave argument (see 
the proof of Theorem 2.7 (2) => (3)).

(B) b)=s>c). Let R be a ring with Qrn(R) and let Condition b) in (A) 
be satisfied. By Corollary 2.8 Qx — for all x € X( R) .  Moreover,
Rx satisfies Condition 1) of Proposition 3.2, because if rx -\-sx and rx are 
nilpotent, then sx is nilpotent, too. Therefore by this proposition Qx is a 
local ring.

c) => b): Let Qx = Q ^(Ä X) be a local ring, and ax, bx € Rx be nilpotent. If 
ax + bx is not nilpotent, then it is non-zero divisor and hence by Proposition 
3.3 ax = (ax + bx) — bx is non-zero divisor. This is, however, impossible and 
so ax + bx is nilpotent.

Corollary 3.4. Let R be a normal g.p.p. ring with classical right ring 
of quotients Q. Then every Pierce stalk of the ring Q is local ring if and only 
if R has Käthe radical.

For the proof we note that B(Q) — B(R).
With respect to Corollary 3.4 we have the following

CONJECTURE. Let Q be a classical right ring of quotients of a normal 
g.p.p. ring with identity. Then every Pierce stalk of the ring Q is a local 
ring.

4. Normal g.p.p. ring with 7r-regular ring of right 
7T-regular quotients

In this section we shall give a characterization for the rings in the title 
of this section.

We recall that if Q is the classical right ring of quotients of a ring R then 
R is called a right order in Q.

T heorem 4.1. Let R be a normal ring. Then the following are equiva
lent:

1) R is a g.p.p. ring with Qrn(R) which is n-regular,
2) R is a g.p.p. ring with Qrn(R) which is g.p.p. ring,
3) a) every Pierce stalk Rx of R is a right order in a n-regular ring and 

every zero-divisor in Rx is nilpotent;
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b) fo r every element r E R the set

{x € X( R)  | rx is non-zero divisor}

is open and compact and supp r  C supp /  for an f  € B(R).
4) There exists a unital extension Q of R such that

c) Q is 7T-regular,
d) E(Q)  = B(R),

e) for every q € Q there exists a reduced element r 6 R such that qr £ R 
and qQ = qrQ .

P roof. 1 )^ 2 )  is clear, since any 7r-regular (normal) ring is a g.p.p. 
ring.

2) =>• 3): By Corollary 2.8 for verifying Condition a) in 3) it is enough to 
prove th a t every Pierce stalk Qx — Q ^ R i )  of Q = Q ^ R )  is a 7r-regular ring. 
Since by the assumption Q is g.p.p. ring, in Qx every non-invertable element 
is nilpotent. Therefore Qx is 7r-regular, as desired. Condition b) is obvious.

3) =>• 4): By Theorem 2.7 R is g.p.p. ring with Qrn(R) and by Corollary 
2.8 every stalk of Qrw(R) is 7T-regular. Therefore, by the standard Pierce 
sheave argument we can prove that Q^^R) is 7r-regular (see [2, Proposition 
3.3]).

4) => 1): By Theorem 2.9 R is a g.p.p. ring with Qrn(R). Moreover, one 
can prove that Q — Q^^R) (see the proof of Corollary 2.10), and hence Qrn(R) 
is 7r-regular.

Lemma 4.2. Let R be an indecomposable normal ring with identity in 
which every zero divisor is nilpotent. Assume that R has Q = Q^(R) .  Then 
the following conditions are equivalent:

1) Q is local ring whose Jacobson radical is nil,
2) Q is a 7T-regular ring,
3) if  a, b£ R and a is nilpotent, and b is non-zero divisor, then ab~x is 

nilpotent.
P roof. Obvious.
From Theorem 4.1, Proposition 2.11 and Lemma 4.2 we get the following

Corollary 4.3 (cf. [10, Theorem 1]). Let R be a normal ring with 
identity. Then the following are equivalent:

(1) R is a right order in a tt-regular ring Q and E(Q)= B(R).
r2) R is right Ore ring and both R and Q ^ R )  are g.p.p. rings.
(3) R is a right order in Q and for any x 6 X( R)  the Pierce stalks of Q 

on X  (R) are local rings whose Jacobson radicals are nil.
(4) a) For any x 6 X( R)  the Pierce stalk R x is a right order in a 7r-regular 

ring, and every zero-divisor in Rx is nilpotent,
b) for any r 6 R the set

(x € X( R) ,  rx is non-zero divisor}
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is open and closed,
(5) c) for any r £ R there is a positive integer n such that for any m>n ,  

supp rm = supp r" is open and closed,
d) for any x £ X( R)  the Pierce stalk R x is a right order in a ring Q 

such that any zero divisor r £ R x and any q£  Q(x> rq is nilpotent.
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DIALECTICAL LOGIC: THE PROCESS CALCULUS

tiolXivtovoc , appovtrj — itaXivr poiroc, appooig 

R. E. KENT

A bstract

Dialectical logic is the logic of dialectical processes. The goal of dialectical logic is to 
reveal the dynamical notions inherent in logical computational systems. The fundamental 
notions of proposition and truth-value in standard logic are subsumed by the notions of 
process and flow in dialectical logic. Standard logic motivates the core sequential aspect 
of dialectical logic. Horn-clause logic requires types and nonsymmetry and also motivates 
the parallel aspect of dialectical logic. The process logics of Milner and Hoare reveal the 
internal/external aspects of dialectical logic. The sequential internal aspect of dialectical 
logic should be viewed as a typed or distributed version of Girard’s linear logic with 
nonsymmetric tensor. The simplest version of dialectical logic is inherently intuitionistic. 
However, by following Glivenko’s approach in standard logic using double negation closure, 
we can define a classical version of dialectical logic.

Introduction

Abstract objective knowledge, such as general science and philosophy, 
originated in the fifth and sixth centuries B.C. in the thought, teachings and 
writings of the preSocratic Greek philosophers. The aim of the preSocratics 
was to give a nonmythological account of the origin of the world (kosmos), 
and to rationally explain its motion. By far the most common explanation 
given by the preSocratics for the origin and motion of the kosmos was in 
terms of pairs of opposing tendencies, such as the hot and the cold, the wet 
and the dry, love and strife, etc. In fact, the notion of complementary pairs 
of opposing tendencies has occurred throughout the history of ideas. Ancient 
examples of opposing tendencies occur not only in preSocratic Greek philos
ophy, but also in naturalistic Chinese philosophy, as the dualistic concept of 
yin and yang; and in Indian Hindu philosophy, as Brahma the creator and 
Shiva the destroyer with Vishnu the preserver.

For the preSocratics, who were postmythological but prelogical, the com
ponents of such opposed pairs were neither properties nor objects, but motive 
forces. The dynamics in this world-view is obvious. Unfortunately, much of 
this dynamical world-view was lost to the history of ideas when logic was
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conceived as a study of static notions. A central theme of this paper is 
that much of this dynamical world-view needs to be re-revealed, re-devel
oped, and extended, in order to comprehend modern logical computational 
systems. A modern theory of dialectics offers the appropriate conceptual 
framework for doing this; it takes the notion of opposing tendencies as its 
central concept, and calls it dialectical contradiction. This modern dialec
tical theory still retains the motive force interpretation for the components 
(aspects) of dialectical contradictions: dialectical contradictions specify di
alectical motion, where motion is not mere physical motion, but any change 
whatsoever; motion is synonymous with transformation. The distinction be
tween the concepts of dialectical contradiction and dialectical motion, two 
fundamental notions of dialectics, is itself dialectical, the potential aspect 
and the actual aspect. These two concepts occur in ancient and modern 
interpretations of the fragments of Heraclitus, the most dialectically orient
ed preSocratic [Hussey], and are contained here in the subtitle: n a \ lvtovoc, 
appovLT) — TTaXiurponot; appoverj (palintonos harmonie — palintropos har- 
monie); (crudely) polar tension structure — polar turning structure; the 
“tension” interpretation — the “oscillation” interpretation, of Heraclitus; or 
for us, dialectical contradiction — dialectical motion.

The history of dialectics is replete with intuitively suggestive, but ill-de
fined and non-rigorous, ideas and examples [Bernow, Piccone]. If the di
alectical point of view is to be useful as a human conceptual structure, its 
objective aspect must have a rigorous foundation. The notion of dialectical 
contradiction is monistically objectified [Lawvere] by the mathematical idea 
of adjunction. Since adjoint pairs are (one of) the most important concepts of 
category theory, this point-of-view is summarized by the statement: C atego
ry T heory  h  Objective  D ia l e c t ic s . The notion of dialectical contradiction 
is pluralistically objectified [Kent87] by the mathematical idea of dialectical 
base. In objective dialectics, since dialectical contradictions are represent
ed by adjunctions, systems of dialectical contradictions are represented by 
diagrams in the unbounded category (to apeiron) whose morphisms are ad
joint pairs of functors. Such a diagram, whose component categories usually 
have certain completeness properties, is called a dialectical base of preorders. 
From a static, non-dynamic, non-dialectical point-of-view, this has also been 
called an indexed category [Hyland], Within the notion of dialectical contra
diction the distinction between the concepts of adjunctions and dialectical 
bases is dialectical, the one-many dialectic.

The notion of dialectical motion can be specified [Kent87] by the math
ematical idea of dialectical system, or parallel pair of distributed terms. 
Dialectical systems have the following essential aspects: [ancient] they are 
based upon contradictions or opposing tendencies; they define motion, flow 
or development; [modern] they contain internally interacting and combining 
objects or entities in dialectical motion; and they specify the reproduction 
or renewal of such entities, where reproduction is equilibrium of dialectical 
motion. Dialectical systems are the “motors of nature” specifying the di
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alectical motion of structured entities, and a dialectical base provides the 
“motive power” for this motion. The notion of dialectical motion can be 
realized by the mathematical idea of dialectical flow, which is the oscilla
tion (alternation-composition) of inverse flow along one term and direct flow 
along the other term. Direct and inverse flow are suitably generalized Kan 
extensions which make use of a dialectical base. Dialectical systems specify 
dialectical flow, and dialectical flow is the realization of dialectical systems; 
the specification-realization dialectic.

It has been known for some time now [Lawvere] that logic is dialecti
cal in nature, but the full force of its dialectical structure has only recently 
[Girard, Kent88] been discussed. Dialectical ideas, not only come chronolog
ically and historically before logical ideas, but also come conceptually before 
them as well. The theory and practice of computer science and dynamic 
systems contain many dialectical contradictions. Two of the most important 
of these, the flow dialectic and the constraint dialectic, constitute the proper 
study of dialectical logic [Kent88]; whereas a third, the part-whole dialectic, 
is important in its standard aspect [Kent89]. Dialectical logic is the log
ic of dialectical processes. It invests the dynamical view of systems theory 
with the fundamental ideas of category theory; but in turn, it gives these 
categorical notions that dynamical view. Dialectical logic provides a unified 
semantics for both the object paradigm and the process paradigm of pro- 
gramming-in-the-large. By subsuming process logic [Milner, Hoare78] along 
with clause logic, it allows the specification of strongly-typed parallel logic 
programs. In dialectical logic aspects of the process paradigm are modelled 
as a flow dialectic, whereas aspects of the object paradigm are modelled as 
a constraint dialectic orthogonal to flow. The flow (or product-implication) 
dialectic is the internal aspect of dialectical logic, whereas the constraint 
dialectic is its external aspect.

Dialectical logic is based upon the two interdependent concepts of struc
ture and dialecticality. Dialecticality is built out of the aspects of dialectical 
tension and dialectical flow, as mentioned above. Structure is concentrated 
in the compositionality of monoids and comonoids (this includes the grand 
unification principle [Manes] that “composition determines semantics”), and 
in the type-summability of orthogonal terms (the object calculus, discussed 
below). Structure occurs peripherally in the interactions of limits, the com
binations of colimits, and the reproduction of fixpoints. The structurality of 
limits and colimits, being special Kan extensions, has obvious dialecticality. 
This is but one indication of the interdependence of structure and dialectics; 
other indications are the simple facts that monoids have associated adjoint 
pairs, and adjoint pairs compose into monoids and comonoids. Parsimonious 
use of (1) abstract monoidal concepts for modelling “construction”, “com
position” and “interaction” , along with (2) adjointness notions for modelling 
“dialectical flow” (such as “predicate transformation”) has great potential 
in the computational and system sciences.

Dialectical logic is an extension of standard logic. The extension of
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propositional calculus is called the process calculus; the extension of predicate 
calculus is called the object calculus. In this paper we are mainly concerned 
with the process calculus; its intuitionistic and classical semantics, and its 
classical axiomatics. In a succeeding paper [Kent88] we will be concerned 
chiefly with the object calculus. In order tha t readers may begin to explore 
the fascinating possibilities of dialectics, I have included in the appendix to 
this paper an introduction to this object aspect of dialectics.

1. Preliminaries

Dialectical laws. The “laws of dialectics” are laws of logic. The most 
fundamental dialectical law, the law of the interpenetration of opposites, is 
represented in general by adjoint pairs of functors or monotonic functions, 
and in particular by the flow dialectic (tensor product — tensor implication 
adjointness). As a special case of this, the dialectical law of the negation of 
the negation is represented in general as a self-adjoint functor or monotonic 
function, and in particular by tensor negation. Here we discuss the general 
case. The paper as a whole is a discussion of the particular case.

Two opposed monotonic functions (B , < b ) (A ,< a ) and (B , < b ) £-
(A, m )  between preorders form an adjoint pair, denoted f  ~\g, when they 
satisfy the equivalence /(&) <a a iff b ^ b 5(0). This equivalence can be inter
preted as the “polar-tension structure” of the preSocratic Greek philosopher 
Heraclitus [Hussey], and in Greek is rendered TvaXioroi/ot; appovLg. The fact 
that /  H g is an adjoint pair is equivalently defined by the “unit” inequality 
B  <] f - g  and the “counit” inequality g - f  < A. The composite monotonic func
tions (B , <g) (B , <g) and (A, <a ) (A, <a ) are closure and interior

koperators, respectively. A closure operator { B , ^ b ) (B , < b ) is a mono
tonic endofunction which is “increasing” B < k and “idempotent” k ■ k — k.
Dually, an interior (or kernel) operator (A, <4)-^» (A, <a ) is a monotonic 
endofunction which is “decreasing” A ~ t j  and “idempotent” j - j  — j .  An 
adjoint pair f  -\g is a reflective pair when the counit is an equality g • f  — A, 
stating that the interior operator g - f  is an identity. So an adjoint pair /  H <7 
is a reflective pair iff /  is a surjective monotonic function iff g is an injective 
monotonic function. An adjoint pair /  H g is a coreflective pair when the unit 
is an equality B = /  • g, stating that the closure operator f - g  is an identity. 
So an adjoint pair /  H g is a coreflective pair iff /  is an injective monotonic 
function iff g is a surjective monotonic function.

The corestriction (B , < b ) (k (B ), ^k(B)) °f a closure operator k to its
image k ( B ) = {k(b) | 6 6 B)  of k-closed elements of B forms a reflective pair 
( )*k d ine with the inclusion {k(B),<iĉ ßY —-> (B , < b )■ The corestriction

( )° df(A, — l 0 (A ), ^j(A)) °f an interior operator j  to its image j ( A)  = {j(a)  |
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I a G A) of j-open elements of A forms a coreflective pair Inc H ( )°j with
the inclusion ( j (A) ,  ^  j(A)) — * So for any adjoint pair /  H g, the
subpreorders of /  • y-closed elements B* Q B  and g ■ f - open elements A0 Q A 
participate themselves in the special adjunctions ( )* H Inc and Inc H ( )° of 
reflective and coreflective pairs, respectively. The restriction of the adjoint 
pair to closed/open elements forms an inverse pair of monotonic functions, 
making 5-closed elements isomorphic to A-open elements B* = A 0. The 
adjoint pair, the closed element reflection, the open element coreflection, 
and the inverse pair, form a commuting square of dialectical contradictions. 
For a reflexive pair /  H g, all elements of A  are open >1° = A, and hence A 
is isomorphic to the 5-closed elements B* = A. Any reflective pair f  -\ g is 
equivalent to the ( )* H Inc#« reflective pair which factors the closure operator 
f  • g through its image B*. For a coreflective pair /  g, all elements of B are 
closed B* = B,  and hence B  is isomorphic to the A-open elements B = A°. 
Any coreflective pair /  H g is equivalent to the Inc^o -| ( )° coreflective pair 
which factors the interior operator g • f  through its image A0. So any inverse 
pair is an adjoint pair with the identity orderings, and any adjoint pair 
determines an inverse pair. Adjointness is a kind of generalized inverseness 
(another related kind of generalized inverseness is the notion of orthogonality 
defined below).

The special case of self-adjoint ness, where f  — gop and A — B op, defines
the notion of “negation” . When a monotonic function (A, -A (A, ^ op is 
self-adjoint /  -\ f op it is called a negation. The polar-tension structure is 
the equivalence a f (a' )  iff a' < f(a),  and A-closed elements and Aop-open 
elements coincide, with dialecticality expressed as duality A* = (Aop)° = 
= (A*)op. So restricting /  to the / 2-closed elements of A makes /  into an 
involution: “idempotent” / 2(a) = a, “monotonic” if a < b then f(b) < f(a),  
and satisfying f(aWb) = / ( a )  A /(&) (a De Morgan’s law) and /(_L) = T when 
the joins exist.

Biposets. A biposet is another name for an ordered category; that is, a 
category P = (P, o, Id) whose homsets are posets and whose composition is 
monotonic on left and right. We prefer to view biposets as vertical structures, 
preorders with a tensor product, rather than as horizontal structures, ordered 
categories.

In more detail, a biposet P consists of the following data and axioms. 
There is a collection of P-objects x ,y , z ,  ••• called types, and a collection of 
P-arrows r, s ,t ,  ••• called terms. Terms could also be called “preprocesses”, 
since processes (which are discussed in [Kent88]) are terms which satisfy 
certain constraints or closure conditions. Each term r has a unique source 
type y and a unique target type x, denoted by the relational notation y - ^ x .  
The collection of terms from source type y to target type x is ordered by 
a binary relation <y<x called term entailment, which is transitive, if r ■< s 
and s X t then r ■< t, reflexive r < r , and antisymmetric, r  =  s implies r =
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= s, where r =  s means r < s and s < r. Dialectical logic entailment ^ VjX 
between term s generalizes standard logic entailment h between propositions. 
For any two terms z y and y x with matching types (target type of 
s = source type of r) there is a composite term z x, where o is a binary 
operation called tensor product, which is associative t 0  (s 0  r) = (t o s) o r, 
and monotonic on left and right, s ^  s' and r < r ' imply (á o r )X  (s' o r'). 
Tensor product allows each term  y -A x to specify a right direct flow P[z, y] —> 
P[z,x] and a left direct flow P[x,z] ™ P[y,z] for each type z. Any type x 
is a term  x  x, which is an identity, r 0  x — r and x 0 s = s. A biposet 
with one object (universal type) is called a monoidal poset. For each P- 
type x , the collection P[x,x] of endoterms at x is a monoidal poset. If 
P is a biposet, then the op-dual or opposite biposet Pop is the opposite 
category with the same homset order as P, and the co-dual biposet Pco 
is (the same category) P with the opposite homset order. A morphism of
biposets P -* Q is a functor which preserves homset order. Any Heyting 
algebra is a biposet, where tensor product coincides with lattice meet so r  = 
= s A r. The category Rel of sets and (binary) relations is a biposet, where
tensor product is relational composition S o R = {(z,x) | :^ey (z ,y ) G S and

Ft( y , x)  € R}.  A bimodule y  —r X  between two preorders y  =  (Y, < y) and 
X  — (X , ^ x ) is a monotonic function y op X X  —> 2. The category Bim of

Rpreorders and preorder bimodules (bimodules y  —r X  are in bijection with 
closed-above subsets R Q iyop x X)  is a biposet, where tensor product is again
relational composition 5 o Ä  = { ( z , i ) |^ ey (z ,y )6 Ä l and (t/ ,x) g ä ). Given 
an alphabet A,  the category of formal A-languages V(A*)  is a biposet; whose 
arrows are formal languages, whose composition is language concatenation, 
and whose identity is singleton empty string {e}.

Given two types y and x in a biposet P, two opposed terms (terms op
positely directed) x y and x y are semi-orthogonal at x, denoted s i^ r , 
when s o r <x>x x. Semi-orthogonality is a nonsymmetric notion. By com
bining semi-orthogonality at source and target we get a symmetric notion: 
two opposed terms y x  and y t-  x form an orthogonal pair of terms or an
orthoterm, denoted by y ’ x,  when they satisfy semi-orthogonality at y and 
semi-orthogonality at x; th a t is, rTs iff (r 0s < y and so r  ^  x). In this case, 
we say that r is orthogonal to s. Orthoterms axiomatize “ring-structured 
P-term s”. Orthoterms compose in the obvious way: ( i l s ' ) o ( r l r ' )  = (so 
o r ) l ( r 'o s ') ,  and (x_Lx) is the identity orthoterm at x. The homset order 
on orthoterms is defined by: (p-Lq) ^  (r± s) when p ■< r and q >s .  So each 
biposet P has an associated orthoterm category P 1 , whose objects are P- 
types and whose arrows are P-orthoterms. There are two projection functors
pop £o p i  <h avhose product pairing functor is the inclusion P 1 ^  Pop X
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X P. Let _L(r) denote the collection of all terms opposed and orthogonal to
r; _L(r) = {x y | r±s}. Then l_(r) is a closed-below subset of P[x, y]. In 
defining the phase semantics for linear logic, Girard implicitly uses the notion 
of orthogonality with respect to a single subset of “antiphases” _L. Since or
thogonality is defined with respect to types (identity endoterms) x, y, z, • • •, 
Girard’s set of antiphases J_ corresponds to any arbitrary P-type. Orthog
onality of terms in biposets for dialectical logic generalizes disjointness of 
elements in Heyting algebras for standard logic.

A monoid M is symmetric (or commutative) when its tensor product is 
commutative: s o r = r o s. More generally, a biposet P is quasisymmetric or 
orthogonally balanced when s l^ r  implies rlyS for all P-types y and x and 
all opposed pairs of P-terms y x and y -4- x. Obviously, these implica
tions can be replaced by logical equivalences. Quasisymmetry asserts that 
semi-orthogonality is equivalent to orthogonality: r± s  iff iff r i^ s . A 
symmetric monoidal poset (ordered commutative monoid) is quasisymmetric 
as a one object biposet.

Internal dialectics. For any opposed pair of ordinary relations Y  —r X
sversus Y  X  the “unit inequality” Y  Q R o  S  and the “counit inequality” 

S o R  Q X  taken together are equivalent to the facts that R  is the graph R  =
= y 1( f )  = {(y, f (y) )  I y £ T} of a function Y  -£• X  and that S  is the transpose 
S  = Rop = y 1( f ) op = y °(/) = {(f{y) ,y)  \ y €E Y} .  On the other hand, the graph

Y y^ X  of any function Y  X  and its transpose y°(/) = (y1( / ) ) op satisfy 
the unit and counit inequalities. So these conditions describe functionality

Rin the biposet Rel. For any opposed pair of preorder bimodules y  —r X  
sversus y  X  where A is a complete lattice, the “unit inequality” y  ^  R o  S 

and the “counit inequality” S  o R Q X  taken together are equivalent to the 
facts that R is the graph R = y*(/) = {(j/,x) | f ( y)  of a monotonic
function y  X  where /  is given by f (y)  = [\{x £ X  \ yRx],  and that S 
is the transposed graph of f ' s  order-theoretic involution S = (y1( / oc))op = 
= y ° ( / )  = {(*, y) I X ^xf(y) }  with /  given by f ( y)  = \ / {x £ X  \ xSy}.  On

yl t f
the other hand, the graph y  —*■ X  of any monotonic function y  A  X  and 
its transpose y °(/)  = (y1( / oc))op satisfy the unit and counit inequalities. So 
these conditions describe functionality in a part of the biposet Bim. In the 
general case, when X  is not necessarily complete, the “unit inequality” Y  S 
Q Ro  S  and the “counit inequality” S o R C X  taken together are equivalent 
to the facts that R  is the tensor implication (Bim is a Heyting category) R = 
= S - \  X  = {(y, z) I (Vx') if x 'Sy  then x' and that S  is the implication
S  = X /-R  = {(z, y) I (Vx') if yRx' then z So these conditions describe
a potential functionality in the entire biposet Bim, and can be used as a way 
of axiomatizing potential functionality in general biposets. But they are also
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the defining conditions for internal adjoint pairs.

Two opposed terms y x and y 4- x form an adjoint pair of terms or an
adjunction, denoted by y x, when they satisfy the “unit inequality” y ■< 
■<ros and the “counit inequality” s o r ^ i .  This axiomatizes “functionality” 
of P-term s. The term r is called the left adjoint and the term s is called the 
right adjoint in the adjunction r ~\ s. It is easy to show that right adjoints
(and left adjoints) are unique, when they exist: if y r x and y r-42 x then

r  r opsx = s2- Denote the unique right adjoint of y —* x by y x. A functional P-
term is a P-term  with a right adjoint. We usually use the notation y —>■ x

/H/opfor functional terms. For any adjoint pair y —r x: when the unit is equality 
y = f  o f op they are a coreflective pair, when the counit is equality f op o /  =  x 
they are a reflective pair, and when both unit and counit are equalities they
are an inverse pair. For any functional term y —r x: the adjunction /  d 
d f op is a coreflection iff /  is a monomorphism (iff f op is an epimorphism); the 
adjunction is a reflection iff /  is an epimorphism (iff f op is a monomorphism); 
and the adjunction is an inversion iff /  is an isomorphism (iff f op is an 
isomorphism), iff / op = / _1 is the two-sided inverse of / .  Again we see 
that (in this case, internal) adjointness is a kind of generalized inverse. An
internal coreflective pair y '-^ x  is also called a subtype of x. Adjoint pairs 
compose in the obvious way: (g d gop) o ( /  d f op) = (g o / )  d ( / op o gop), and 
(x d x) is the identity adjoint pair at x. So each biposet P has an associated 
adjoint pair category P H, whose objects are P-types and whose arrows are 
P-adjunctions. Equivalently, P H-arrows are just functional P-terms. There
is an inclusion functor P H^>P . The construction ( )H can be described as 
either “internal dialecticality” or “functionality” .

In objective dialectics, since dialectical contradictions are represented 
by adjunctions, systems of dialectical contradictions are represented by di
agrams in (pseudofunctors into) the category Adj whose objects are small 
categories and whose morphisms are adjoint pairs of functors. We call such
a (pseudo)functor P —► Adj a dialectical base or an indexed adjointness, and
use the notation E(y  x) =  (E r d Er): E(y)  —♦ E(x).  A dialectical base

e ( )
can be split into its direct flow aspect P — ► Cat and its inverse flow aspect

E, )
P op — > Cat. Objects of P are called types and arrows of P are called terms. 
A dialectical system y x is a graph in P, with inverse flow specifier l 
and direct flow specifier o. Dialectical systems are the “motors of nature” 
specifying the dialectical motion of structured entities, and a dialectical base 
provides the “motive power” for this motion (from a dialectical point-of- 
view “motion” is synonymous with “transformation”). In this paper we are 
chiefly concerned with dialectical bases of preorders. Here a dialectical base
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P — > adj factors through the category adj of preorders and adjoint pairs of
) J5/( \

monotonic functions, and direct flow P — ► PO and inverse flow P op — PO 
map to preorders (and usually semilattices). Any functional term y -L x

p /
in a biposet P defines a direct image monotonic function P[y,?/] — * P[x,x] 
defined by P-^(g) = f op o q o f  for endoterms y -Í y, and an inverse image 
monotonic function P[j/, y\ P[x, x] defined by P j(p) — f  o p o f op for en
doterms x x. It is easy to check that direct and inverse image form an

adjoint pair of monotonic functions P(y —rx)  = P[y, y] — * P[a:, x] for each
functional P-term y —r x. The construction P, mapping types to their 
poset of endoterms P(x) = P[x,x] and mapping functional P-terms to their 
adjoint pair of direct/inverse image adjunction, is a dialectical base (indexed
adjointness) PH ► adj.

Bisemilattices. The structural aspect of both the intuitionistic and clas
sical semantics of dialectical logic is defined in terms of bisemilattices. A 
join bisemilattice or semiexact biposet is a biposet whose homsets are finitely 
complete (join-)semilattices and whose composition is finitely (join-)continu- 
ous. Horizontally the term “semilattice-valued category” might be indicated, 
but vertically from a bicategorical viewpoint the term “bisemilattice” seems 
appropriate. In more detail, a join bisemilattice P = ((P, ■<, o,Id), V, J_) con
sists of the data and axioms of a biposet P =  (P, X, o,Id), plus the following.
For any two parallel terms y ^ - x  there is a join  term y 4-Xr x satisfying s \/ r < 
2<y,x t iff s -<ytX t and r <ytX t. For any pair of types y and x there is an empty
(or bottom) term y ±-^x x satisfying _LV>X X r. The tensor product is finitely 
(join-) continuous (distributive w.r.t. finite joins) on the right and the left, 
s o ( n  V • • • V rn) = (s o ri) V ■ • • V (s o rn) and (si V • • • V sm) o r = (.Si o r) V • • • V 
V (sm o r) for any natural numbers n and m, including 0. A join bisemilattice 
with one object (universal type) is called a monoidal join semilattice. For 
any P-term y x the associated closed-below subset l ( r )  of terms orthog
onal to r is also closed under finite joins: _LX)tf € -L(r), and if s i ,S 2 6 -L(r) 
then (si V ) 6 X(r) also. So ± (r) is an order ideal called the orthogonality 
ideal of r. If P is a join bisemilattice, then the opposite biposet Pop is also 
a join bisemilattice. A meet bisemilattice is a biposet whose co-dual biposet 
is a join bisemilattice; that is, whose homsets are finitely complete (meet-) 
semilattices and whose composition is finitely (meet-)continuous. For any
two parallel terms y ^  x there is a meet term y x satisfying t ■<ViXs A r iff 
t diy,x 5 and t -<y<x r. For any pair of types y and x there is a full (or top)
term y ^  x satisfying r < Ty >x. A morphism of join bisemilattices P Q is 
a functor which preserves homset order and finite homset joins. A bilattice
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or exact biposet is a join bisemilattice whose homsets are lattices. Note: a 
bilattice is not necessarily a.meet bisemilattice.

To recapitulate, a join bisemilattice P = (P, ■<, o,Id, v, J.) is the central 
structural notion in dialectical logic. It should be viewed as a direct gener
alization of a distributive lattice L = (L, A, T , V, J_). The generalization 
occurs in two different senses. (1) A join bisemilattice is a distributed struc
ture: the notion of types is included, and the lattice operations are distribut
ed over and between types. (2) The lattice meet sA r  is replaced by the tensor 
product sor ,  and the top (meet unit) T is replaced by the identities x^-r x. 
Since a lattice meet is associative, unital, commutative, idempotent, and unit 
bounded, whereas a tensor product is only associative and unital, we see that 
commutativity, idempotency and unit-boundedness are discarded globally in 
the generalization. However, these three properties are incorporated in di
alectical logic in two distinct ways. On the one hand, in the object aspect 
of dialectical logic the laws of idempotency and partiality (unit-bounded
ness) are incorporated locally in the idea of comonoid (see appendix). These 
local comonoidal contexts are standard contexts. Comonoidal structures 
define the generalized topological notions of interior and closure of terms, 
which are the modalities of affirmation and consideration from linear logic 
[Girard]. In axiomatics and proof theory, the idempotency and partiality 
axioms are known as contraction and weakening. On the other hand, in 
the construction of the classical context from the intuitionistic context, a 
natural weakened form of commutativity, called quasisymmetry, is found to 
be essential. Moreover, in the object aspect of classical dialectical logic, 
quasisymmetry is equivalent to internal (topological) dialecticality!

A complete Heyting category or complete bilattice, abbreviated cH c , is 
the same as a complete join bisemilattice; th a t is, a join bisemilattice H 
whose homsets are complete join semilattices (arbitrary joins exist) and 
whose tensor product is join continuous (completely distributive w.r.t. joins) 
on the right and the left, s o (V,r,) = V,(.s o r,)  and (VjSj) or  — V.j(sj o r). 
Since the homset H [x,z\  is a complete lattice and the left tensor prod
uct H[a:,z] ™ H[y,z] is continuous, it has (and determines) a right adjoint

H [x ,z]r̂ H [y ,z ] called left tensor implication, and defined by r - \ t  = \ / {x  A  
z I r o s -<ylZt}. Adjointness means that left tensor product and left tensor 
implication satisfy the dialectical axiom r o s < ytZt iff s <x,z r~\ t .  Sim
ilarly, the right tensor product H[z,y] —> H [z,x] has (and determines) a

right adjoint H[z,y]'<— H[z,x] called right tensor implication, and defined
by s /- r  = V (2 ~* y \ t o  r <z<x s}. Adjointness means that right tensor prod
uct and right tensor implication satisfy the dialectical axiom t o r  -<ZtXs iff 
t <z>y s/-r. A complete Heyting category with one object (universal type) is 
called a complete Heyting monoid [Birkhoff, Henkin] M = (M , o, e, - \, /-, V
V,.L,A,T). If M is symmetric, then the two tensor implications are one:
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=>•= - \  = /-. A complete symmetric Hey ting monoid is known as a closed 
[monoidat) poset.

Examples. Complete Heyting categories are everywhere. The datatype 
2 = ({0,1}, A, 1, =>, V, 0) = 'P(l) of Boolean values is a complete Heyting 
monoid, whose tensor product is the homset lattice meet A = and with unit 
1 = true , and whose homset Boolean sum is V = or with bottom  _L = 0 = 
= fa lse . The powerset datatype V( A)  = (V(A),  D, A, U, 0) of subsets 
of a fixed set A is a complete Heyting monoid. More generally, any complete 
Heyting algebra M = (M,  ^ ,A ,T ,= > ,V ,J.) is the same as a complete Carte
sian Heyting monoid, where tensor product coincides with homset lattice 
meet s o r = 5 A r. The category Rel is a complete Heyting category. Given 
a monoid M = (M, o ,e ,)., the category of formal M-languages 'P(M) is a 
complete Heyting monoid, where tensor product is language concatenation 
L * K  with unit {e}, and the two tensor implications are (left and right)
language division or cut L \  K  = {m E M  \ if n € L then n o m € A'}. In 
particular, given an alphabet A, the category of formal A-languages V(A*)  
is a complete Heyting monoid (the free complete Heyting monoid over the 
set A). The extended nonnegative real numbers R = ([0, oo], >, + , 0, —, A, oo, 
V,0) with opposite order is a complete (non-Cartesian) Heyting monoid, 
where tensor product is numerical sum s +  r with unit 0, and tensor impli
cation is numerical difference s — r = s — r i f s ^ r ,  = 0 otherwise. There is 
a complete Heyting monoid P(R) associated with the extended nonnegative

Rreal numbers R, whose morphisms 0 — 0 are subsets of reals R Q [0, oo] with 
-1-0,0 = 0 and T0,o =  [0, oo], whose homset order is the closed-above order S  ■<
■< R when S Q|  (Ä), whose composition is defined pointwise by 5  o Ä =  {3 -f-

+ r I 5 £ S, r € Ä), and whose identity is 0 ^  0. The singleton operator

R- ^ - i p ( R)  functorially embeds R into 'P(R). The infimum operator A is
a functor T*(R) — > R, and (on the single homset) infimum reflects A H { } 
the powerset of reals 'P(R) into the reals R. The examples V[A*)  and "P(R) 
motivate and are special cases of the following important construction. Just 
as every set C has an associated subset Heyting algebra V(C),  so also every 
category C has an associated subset category C), whose objects are C-ob-

Rjects, and whose arrows are subsets of homsets: y x  when RQ C[j/,x]. So 
V(C )[y, x] = V[C[y,  x]) with = 0 and Ty,x = C[j/, x]. The tensor product
in V(C)  is defined pointwise, S o R = {z x \ s £ S, r £ R }, generalizing 
the concatenation of formal languages and the addition of nondeterministic
reals. The identity at x is the singleton set x x,  which can be identified 
with x itself. The left tensor implication is defined by R - \T  = {x —> z | (Vr) 
if r 6 R then r -c s £ T }  for any two 7?(C)-arrows y —r x and y —r z, and the
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right tensor implication is defined dually. The Booleans are the “simplest” 
subset category 2 = 7?(1).

More generally, every biposet P has an associated closure subset category 
"P(P), whose arrows, tensor product, and identities are as in the unordered 
(identity order) case, and whose homset order is the closed-below order S ■< R  
when S (R).  The definition of the implications follow from the continuity

df Sof the tensor product: the left tensor implication is Ä -\T  = (J{a:-^2 | fZo5^< 
■< T},  and the right tensor implication is defined dually. Since every category 
C is a biposet with the identity order on homsets, the subset construction 
V(C)  is a special case of the closure subset construction. It is easiest and most 
natural to  define closure subset categories. Furthermore, this accords exactly 
with the appropriate generalization when biposets (or better, bipreorders) 
are replaced by bicategories. However, it is standard practice to use partial 
orders and closed subsets of terms. Any closure subset category V(¥)  has an 
associated closed subset category /C(P), whose objects are the principal ideals
{j. (x) I x a P-type}, whose arrows |  (y) —- j  (x) are closed-below subsets of 
terms R  Q P[y, x] and R  = j  (Ä), whose homset order is subset inclusion S •< R  
when S  Q R, and whose tensor product is the closure of the 7?(P)-composition
S o R  = j  ({z x I s G S, r 6 f£}). The definition of the implications is as 
above R \ T  = (J{J, (x) —'I  (x) | R o S < T}. For any biposet P, the closed 
subset category P) is a complete Heyting category. For any P-term y x

-L(r)the orthogonality ideal is a term x —r y in £ (P ) . In fact, orthogonality is a 
contravariant lax functor, ±(x)  = j  x and -L(r) o _L(s) Q ±(s o r), which is also 
hom-set contravariant, if s ■< r then J.(r) C _L(s).

Type sums. The closure subset construction 'P(P) does not capture the 
notion of “relational structures” completely. Although it introduces nonde
terminism on the arrows, it leaves the objects alone. Type sums introduce 
distributivity on objects in a constructive fashion. We give a brief survey of 
type sums here.

A popular “external” model for predicates in logic is provided by sub- 
types. These are often constructed by a factorization/inclusion adjointness 
on slice categories of functional terms. Subtypes are closely connected with 
the “internal” model for predicates called comonoids (discussed in the ap
pendix). For any type x, an x-subtype y '- ^ x  is another name for an internal 
coreflective pair i Hp between y and x; tha t is, y = i op and p o i  < x .  The
interior term x ^  x is the comonoid associated with the subtype. We can 
define the usual subtype order between any two x-subtypes y —? x and z  ̂  x 
as (y, i)  ^  (z , j ) when there exists a functional term y —>■ z such that i = 
= ho j  and q o hop = p. The largest x-subtype is the identity x x. A term 
x —- y is an (external) source subterm of a term y x, when s = i o r for some
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source subtype z y. Two terms z x and y x with common target 
type x satisfy the domain(-of-definition) order s C r  when 2 is a subtype of
y mediated by the coreflective pair z ' ^  y and s < i o r. A more complete 
axiomatization of subtypes and comonoids is given in [Kent89].

The empty type 0 is a special type such that for any type x there are 
unique terms between x and 0 in either direction. So 0 is an initial type, 
satisfying the condition 0 x implies r = lo )X; and 0 is a terminal type, 
satisfying the condition x 0 implies r = l^o- A type that is both initial 
and terminal is a null type. The null type 0 is the “empty sum”, the sum of 
the empty collection of types. For any pair of types y and x, the bottom term
y ^  x is the composition ly tX = ly,ooloiX. The empty type 0 x js the
smallest subtype of any type x, and its associated comonoid is the smallest 
comonoid. Given two types y and x, the sum of y and x is a composite type
y ® x having y and x as disjoint subtypes y

i„Hp;v  „  ' i H p iy ®  x T - x which cover
y ® x. So y © x comes equipped with two injection terms y y ® x x and 
two projection terms which satisfy the “comonoid covering
equation” (py 0 iy) V (px o ix) = y © x stating that the subtype comonoids 
cover the sum type, and satisfy the “subtype disjointness equations” iy 0  

0  py = y, iy o px = ly >x, ix 0 py = i^ >y, and ix o px = x, or the “comonoid 
disjointness equation” (py o iy) A (px o ix) = -L,,®* stating that the subtype 
comonoids partition the sum type.

Equivalently, the sum type y © x is both a coproduct via the injections 
and a product via the projections of the types y and x. Given any pair of
terms y -t- z 4- x there is a unique term y 0  x ^  2, called the sum source 
pairing of t and s, which satisfies the source pairing conditions iy o [i, s] = t
and ix 0  [t, s] =  s. Just define [f, s] = (py 0 t) V (px o s). These properties say 
that the sum y® x  is a coproduct. Equivalently, any term j/®x 2 satisfies 
the “subterm covering condition” ry V rx = r and the “subterm disjointness 
condition” ry Arx = ly®XiZ, where the j/-th and x-th internal source subterms
of r are defined by ry = (py 0 iy) 0 r and rx = (px o ia) o r. Dually, given any pair

of terms y z x there is a unique term 2 y ® x, called the sum target 
pairing of t and s, which satisfies the target pairing conditions (t, s) o py = t
and (t,s) o px =z s. Just define (t, s) = (t o iy) V (a o ix ). These properties say 
that the sum y ® x is a product. Equivalently, any term 2-^  y© x satisfies 
the “subterm covering condition” ry V r 1 = r and the “subterm disjointness 
condition” ry A rx = ly®X)Z, where the y-th and x-th internal target subterms
of r are defined by ry = ro( py o iy) and rx = r o (px otx). An object which is 
both a product and a coproduct of two other objects is called a biproduct. So 
type sums are biproducts. A join bisemilattice P is said to have type sums
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or biproducts when type sums exist for any (finite) collection of types.

Domains/totality. The “action” of a term y —r x is concentrated in and 
localized to  a “locus of activity” , a source subtype called the domain-of-def- 
inition of r  (and a target subtype called the range of r). This domain is a 
kind of “effect” or “read-out” of a term r, and defines predicate transfor
mation [Kent89] so that r becomes a predicate transformer. There are two 
approaches for formulating this.

One approach regards the notion of total term as fundamental, and do- 
main-of-definition as derived. In this approach a term y x is defined to be 
total when s o r = ±ziX implies s = J_jjy for any term z -t- y. We then axiom- 
atize the notion of domain-of-definition by assuming that inclusion of total 
terms has a right adjoint right inverse ( )* called the totalization or total sub
term operator at x, forming a coreflective pair Inc H ( )f with Inc • ( )* = Id.
This means that t C r iff t C r* for any total term z x and any term y x; 
moreover, = t for any total term t. Equivalently, r * is the largest total 
term under r  in the domain order: (1) r T r  and (2) ( C r  implies t C r*
for to ta l t. So, there is a y-subtype d ' ^  y called the domain subtype of r, 
such th a t r * -<ior. Since total terms are closed above we must have equality 
rf =  i o r. The associated r-subterm r* is called the totalization of r. The 
domain subtype d ' ^  y is the y-subtype where the term y x  has non-nil 
action. It is the largest y-subtype whose associated r-subterm is total, in 
the sense that any other such subtype factors through the domain subtype. 
We need additional axioms to ensure that any term r is recoverable from its 
totalization by the identity r  =  p o r*.

Another, perhaps better, approach regards the notion of domain-of-defi
nition as fundamental, and defines totalness as a derived notion. The domain
subtype of any term y x is the source subtype do(r) = dr ' r- í >r y which sat
isfies the axioms: (1) “minimality” z X do(r) iff p o i o r = r for any source
subtype z '-^y; (2) “composition” do(s o r) = do(s opr) for any composable 
term  z y; and (3) “monotonicity” r <r '  implies %(r) < do(r') for any par
allel term  y x. Define the totalization of r to be the r-subterm r* = ir o r . A 
term  y —r x is total when its domain is the largest source subtype, the entire 
source type do{r) — y. Some identities for the domain operator do are: types 
are their own domain do(x) = x; the totalization is total, since do(r^) =
=  do(ir o r)  = do(ir opr) =  do{dr ) = dr ; functional terms y —>■ x are total, 
since the counit inequality y < f  o / op implies y = do(y) ^  do(f  o / op) = do(f  o
op fop) ■< do(fox) — do( f ) ■< y; in particular, subtypes are total ő o ( y x) = y; 
domain subtypes are their own domain, since do(pr) = do(pr 0 dr) = do(pr °
o r f ) =  do{r) = dr ; only zero has empty domain do(r) = 0 y iff r = 0yjX
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for any term y x; and given any two total terms z A  y and y x, the 
composite term z x is also total, since do(s o r) = do(s o pr ) = do(s o y) = 
= d0 (s) = z.

Total terms are close above w.r.t. term entailment order. Since func
tional terms (in particular, identity terms) are total, and the composite of 
total terms are also total, total terms form a biposet P*, a subbiposet of P, 
p Hg p f g p ,  which is the homset order closure of P H. So P f is a subbiposet 
P, which preserves homset joins but usually does not have a bottom. Total 
terms in Heyting categories have been suggested [Hoare87] (although not by 
that name) as good models for programs (brief discussion in the section on 
Heyting categories).

Matrices and distributors. There is a cHc with type sums Ad(R) asso
ciated with the complete Heyting monoid of nonnegative reals R = ([0,oc], 
> , + , 0 , — ,A,oo,V,0); whose objects are sets X, Y, Z, ■ ■ •, whose morphisms
7 - t l  are Y  X X-indexed collections of reals <j> = {<t>yx | y € Y, x G X} (that
is, real-valued characteristic functions Y  X X —► [0,oo]), whose composition
Z X  for morphisms Z  Y and Y  X is (ip o <f)zx = f \ yeY [V’zy +

Xand whose identity X —>• X  at X  is defined by X xix = 0 if x' = x, = oc oth
erwise. Terms Y  X can be viewed as fuzzy relations, where <f)yx measures 
the degree of membership in <f>, with <f)yx = 0 asserting full (crisp) member
ship (y, x) 6 4> and 4>yx = oo asserting full nonmembership (y, x) £ <f>. More 
generally, every cHc H has an associated matrix category Af(H), whose ob
jects are H-vectors X  = (X, | |* ) where X is an indexing (node) set and

11^ RX  Obj(H) is a (typing) function, whose arrows y  —r X  are H-main-
ces where R is a Y  X X-indexed collection of H-terms R =  ^|y|y; |x |^  |

I y € Y, x € x j  (in other words, a generalized Ar(H)-valued characteristic

functions Y  X X Ar(H) compatible with source and target), whose hom
set order is pointwise order (syx) < (ryx) when syx < ryx for all y £ Y  and 
x 6 X , whose composition is matrix tensor product (5  o R )zx =  o R Yx =

s= \J yeY{szy 0 ryx) “matrix tensor product” for composable matrices Z  —r T
R Xand y  —r X , whose identity at X  is the diagonal matrix X  —r X  defined

Maas identity H-terms Xxx = \x\x  —>■ \x\x on the diagonal and zero (bottom)
H-terms Xxix = \x'\x -i- \x\x  off the diagonal, and whose matrix tensor im
plications are (S/-R)zy = Szx f-R yx  = f \ xe x (s*xhryx) “right matrix tensor 
implication” and (R \T)XX = R yx \ T Yz = f \ yey (ryx\ t yz) “left matrix tensor

implication”. Matrices Y  X  can be viewed as fuzzy H -relations. For any 
cHc H, the matrix category M .(H) is a complete Heyting category for which
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biproducts (type sums) exist. For the complete Cartesian Heyting monoid 
of Boolean values 2 = {{0,1}, A, 1, =>, V, 0) = 'P(l) the associated cHc with 
biproducts is Ad(2) = ^ ( ^ ( l ) )  =  Rel the category of ordinary relations.

Every category C has an associated distributor category P(C ) defined
by T>(C) =  Ai(V(C)). In more detail, T>(C) is the category, whose objects 
are distributed C-objects or C-vectors X  -  (X , | |,y) as above, whose arrows
y  —r X  are distributed C-arrows or C -distributors where R Q Y  X Ar(C) x X  is 
a digraph between the underlying node sets consisting of compatible triples: 
if (y , r, x)  € R then |y|y —> \x \x  is a C-arrow, whose tensor product is defined 
pointwise as (5 o R)ZiX = Uygy [Szy 0 ÄyI], and whose identity at X  is the

C-distributor X  = {(a;, \x \x , x ) | x e A ' } Q X x  Ar(C) x A' consisting (on the 
diagonal) of all the C-identities indexed by X. The (y,a:)-th fiber of a V(C)-
term y  X , defined by R yx =  {y -A x \ r € R}, is a 73(C)-term y A1 x, and 
R  is the disjoint union R — U yey x^X °f ^s ^(C j-term  fibers. For any 
category C, the distributor category P(C) is a complete Heyting category 
for which biproducts (type sums) exist. The category of relations is the 
“simplest” distributor category Rel = V{\). Since any category C has a
unique functor C -A 1 to the one-arrow category, every distributor category

D (!)
has a functor (morphism of distributor categories) X>(C) — > Rel = 2?(l).

In distributor categories X>(C) a comonoid W  of type X  is essentially 
a subobject (subset) W  Q X , and so ÍÍ(X) = V {X ). More generally, every
biposet P has an associated closure distributor category £>(P) = ^ ( ^ ( P ) ) ,  
whose objects, arrows, tensor product and identities are as above, and whose 
homset order is the pointwise closed-below order. Given any set of attributes 
or sorts A, a signature £  =  {£y,a | y € multiset(A), a € A) over A  determines 
a term  category Ts, the initial algebraic theory over £ , whose objects are 
multisubsets of A (arities, tuplings, etc.) and whose arrows are tuples of E-
term s. A parallel pair of arrows y  X  in the distributor category P(TgP) 
is a Horn clause logic program, whose predicate names are X-nodes, whose 
clause names are X-nodes, whose clause-head atoms are (w.l.o.g.) collected 
together as 5, whose clause-body atoms are collected together as R, and 
whose associated fixpoint operator (see appendix) is the inverse/direct flow 
composite (( )/~R) o S  defined on Herbrand interpretations with database 
scheme X. In much of the logic of dialectical processes (in particular, for 
G irard’s completeness theorem) closure subset categories suffice. Howev
er, for the constraint dialectic, the full nondeterminism and parallelism of 
distributor categories is essential.
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2. Semantics

Flow is at the heart of computational and dynamic systems. From the 
calculi and semantics of processes comes the notion of process communication 
and process flow. From logic programming and Petri net theory comes the 
idea that flow is dialectical, in the sense of moving in both a direct and 
an inverse direction. Flow is the behavior of dialectical processes. Direct 
flow is modelled by a nonsymmetric tensor product, whereas inverse flow is 
modelled by both a left (reverse-time, source, quo-object) tensor implication 
and a right (forward-time, target, subobject) tensor implication (or tensor 
exponentiations). This bidirectional notion of flow is called the flow (or 
motion) dialectic.

Both dialectical logic and linear logic deal principally with the dynamical 
notions of state and transitions (involving “dialectically contradictory” activ
ities [Kent87], such as the creation/destruction or production/consumption 
of values, often representing resources), whereas standard logic, both classi
cal and intuitionistic, deals with the relatively static notion of monotonically 
increasing tru th  values (once true, true forever). Dialectical and linear logic 
are proper extensions of standard logic, relegating the Cartesianness of the 
standard fragment [Kent88] (weakening, contraction, etc.) to local contexts: 
that is, they have locally Cartesian-closed semantical structures. Presently 
linear logic requires the commutativity or symmetry of tensor product, in 
order to define a simpler semantics. However, the semantics of dialectical 
processes, which includes traditional process semantics, is not commutative. 
This argues strongly that commutativity should be excluded initially, and 
only included later when desired via a symmetrization construction on the 
nonsymmetric case. The semantics and logic of dialectical processes in this 
paper agrees with linear logic in subject studied and philosophy. They dis
agree in approach taken (I use a previously developed theory of dialectical 
systems) and in emphasis: linear logic emphasizes the importance of the lin
earity properties of implication and negation; whereas dialectical logic em
phasizes the importance of the central dialectical contradiction (adjointness) 
between tensor product and tensor implication, thus giving logic a process 
interpretation. The logic of dialectical processes is more general than linear 
logic for two reasons: 1. dialectical logic is nonsymmetric (has a nonsym
metric tensor product operation) with linear logic a symmetric subcase; 2. 
linear logic is a typeless subcase of dialectical logic (all types are merged into 
one type).

Heyting categories. The full intuitionistic semantics of dialectical logic 
is defined in terms of Heyting categories. Concisely speaking, a Heyting 
category is a closed bilattice; that is, a bilattice H whose tensor product has 
right adjoints on both left and right. The underlying bilattice represents 
the structural aspect of a Heyting category, whereas the closedness property 
represents the dialectical or flow aspect.
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In more detail, the flow aspect consists of the following data and ax
ioms. For any two H-terms y x and z x with common target type there
is a composite term z —- y between their source types, defined by the di
alectical axiom to r -< ZyXs iff t-<Ztys/-r, stating th a t the binary operation 
f- called right tensor implication, is right adjoint to tensor product on the 
right. Right tensor implication /-, like all exponentiation or division op
erators including numerical ones is covariantly monotonic on the left and 
contravariantly monotonic on the right. This dialectical axiom, generaliz
ing the deduction theorem of standard logic, defines the formal semantics 
of tensor implication f- in terms of tensor product o. From the dialectical 
axiom easily follows the inference rule of right modus ponens (sf-r) o r ^ i  
and the inference rule t< ( t  o r)f-r. Also immediate from the axioms are the 
transitive, reflexive, mixed associative and unital laws: (tj-s) o (sf-r) •< (tf-r), 
V Ű t r /~r ), tf~{s 0 r) — {thr )h s i (r t x ) — r - Right tensor implication allows
each term  y x to specify a right inverse flow H[z,j/] H[z,x] for each 
type z. The above mixed associative and unital laws say that right inverse 
flow f-T is (contravariantly) functorial in r with respect to the category H. 
Thus, each term r, using right tensor product and right tensor implication, 
specifies a “right dialectical base” for each type z. Dually, for any two H-
terms y x and y -X z with common source type there is a composite term
x —* z between their target types, defined by the dialectical axiom r o s < 
■<y z t iff s -<x,zr\ t ,  stating that the binary operation -\ called left tensor 
implication, is right adjoint to tensor product on the left. Left tensor impli
cation allows each term y x to specify a left inverse flow H[x, z] ^  H[j/, z] 
for each type z. The mixed associative and unital laws say that left inverse 
flow r-\ is (covariantly) functorial in r with respect to the category H, thus 
defining a “left dialectical base”. Together the left and right implications 
satisfy the mixed associative law s \( tf lr )  = (s \ t ) j - r . From both the left and 
right modus ponens, we get the derived rules (r f-r ) \r  = r = r j-(r \r ) . Since 
tensor product is left adjoint on both left and right to tensor implication, it 
preserves arbitrary joins i o ( r V r ' )  = ( i o r ) V ( s o  r'), s o 1^ x = ± j X, (s V s') o 
o r  =  ( «o r )V( s / or)  and !*jy o r — 1ZyX. Since tensor implications are right 
adjoint to tensor product, they preserve arbitrary meets r \ ( t  At') = ( r \ t )  A 
A ( r \ t ') ,  r \T y tZ = TXiZ, (s A s')f-r = {sf-r) A (s'f-r) and TZyXf-r = T z>y. The 
two dialectical axioms assert that the bilattice H is closed.

For any functional Heyting term y —r x , tensor implication relates the 
adjoints by /  = f op\ x  and f op = x flf. More generally, left /-product is equal 
to left / Op-implication f o ( )  — f op\ (  ) and right / Op-product is equal to right 
/-implication ( ) o / op = ( )/- /, and we have the adjoint triples

/ ° P o( ) H/ o (  ) = / opA( H  A (  )
( ) o / H ( ) o / op = ( ) A / H ( ) / / ° p.
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Such adjoint triples appear naturally in the dialectical view of dynamic logic 
called the standard aspect [Kent89], which discusses the equivalent notions 
of hyperdoctrines of comonoids and spannable dialectical flow categories. 
A Heyting category with one object (universal type) is called a Heyting 
monoid M = (M, <, o, e,-\, /-, V, X, A, T). A preliminary version of Heyting 
monoid without homset lattice notions, was investigated early on [Lambek], 
and called residuated preorder. See also [Birkhoff, Henkin]. The opposite 
biposet Hop is a Heyting category with implications switched. Since complete 
Heyting categories are Heyting categories, Heyting categories are ubiquitous; 
in particular, subset categories V(C) and distributor categories X*(C) are 
Heyting categories.

Concurrent with the development of this paper, an algebraic theory for 
the “laws of programming” has been advocated [Hoare87], whose axioms are 
essentially those for Heyting categories; or more precisely, Heyting categories 
(in particular, cHc) with affirmation/consideration modalities and domain 
subtypes. The affirmation modality is defined in the appendix. The consid
eration modality is its order-theoretic dual. The topological notions of affir
mation and consideration are discussed further in both the standard aspect 
and the object aspect of dialectical logic [Kent88, Kent89j. In the program 
interpretation, arbitrary Heyting terms represent program specifications, to
tal Heyting terms represent programs, and either subtypes or comonoids 
(see appendix) represent conditions. Types represent local contexts for local 
states of the system. Term entailment order is interpreted as a measure of 
“nondeterminism” with r X s  asserting that r is more deterministic than s.
The top term y ^  x represents the worst (most nondeterministic) program, 
and functional terms represent fully deterministic (minimally nondetermin
istic) programs. The bottom term y 4̂.* x, although deterministic, is not a
program since its domain-of-definition is empty. The totalization of
a term y A  x is the least deterministic program (on the domain-of-defini
tion) of that specification. In summary, the “Laws of Programming” can be 
interpreted in Heyting categories as follows (see p. 36).

More recently [Kent89] these laws (concerning structure and flow in 
Heyting categories) have been connected with the older program semantics 
which uses Hoare triples.

Tensor negation. Glivenko’s theorem, defining the classical part of stan
dard intuitionistic logic, seems to rely in part upon the symmetry (commu
tativity) of the Boolean product (lattice meet) in Heyting algebras. Recall 
that a biposet P is quasisymmetric when rLs  iff iff rlyS  for all P-types 
y and x and all opposed pairs of P-terms y x and y 4- x. We can de
fine quasisymmetry for P-terms alone: a P-term y x is quasisymmetric or 
orthogonally balanced when s i^ r  iff rlyS for all P-terms x y opposed to 
r. I cannot overemphasize the importance of the notion of quasisymmetry,
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“Laws of programming” Heyting categories

program specifications 5  
programs P  
conditions b

r
terms y —■■ x 
total terms y —■- x 
comonoids u € il(z )  
subtypes y *—? x

nondeterminism order P  Q Q  
sequential composition P\ Q 
nondeterministic choice P  (J Q 
SKIP, the nop II

ABORT, the worst program _L 
weakest prespecification S/T

term entailment order r X s 
tensor product s o r  
Boolean sum s V r
identity * 

(types-as-terms) x —• x
Ty,*top term y —» x 

tensor implication tf-s
conditional or branch P < b > Q

i f  b th en  P  else Q

iteration or while-loop b • P
w hile b do P

derived expression (ti o r) V (~  t> o s) 
where ~  u =  (n =>■ Ly) =  (u-\±y)° 

and ( )° is the affirmation modality 
derived expression (u o r)*o ~  u 

where ( )* is the consideration modality

especially in the object aspect of classical dialectical logic [Kent88]. Dually, 
a P-term y x is coquasisymmetric when it is quasisymmetric in the codual 
Pco, which is P with the opposite homset order; that is, when r o s hy,yV iff
s o r  y x>xx for all P-term s x y opposed to r. Identities are quasisymmet
ric, and quasisymmetric P-terms are closed under composition. The center 
of P, denoted by Z { P), is the sub-biposet consisting of all P-types and all 
quasisymmetric P-term s. All P-isomorphisms are quasisymmetric. Qua
sisymmetric P-terms are closed under arbitrary joins w.r.t. ■< (when they 
exist). When arbitrary joins of quasisymmetric terms exist, the center Z {P) 
is a kind of generalized topology with finite tensor products functioning as 
“finite intersections” and arbitrary Boolean sums (joins) functioning as “ar
bitrary unions” [Kent88]. For this reason quasisymmetric terms are also 
called 2'(P)-open terms.

Now let the biposet P be a Heyting category H. For any H-term y ^ - x ,  
the left x-dual of r is xf-r, the largest term with source x and target y which 
is semi-orthogonal to  r at x: (x/-r)_Li;r , and if s l^ r  for x -t- y then s <Xyyxf-r. 
Dually, the right y-dual of r is r \ y , the largest term with source x and target 
y which is semi-orthogonal to r at y. We have r l s  iff ( s l^ r  and r ly s )  iff 
(5 ^ x,yxf~r and s ■<x>yr \ y ) iff s <x<y{ r \y )  A {xf-r). Define the tensor nega
tion of the Heyting term y x to be the term ->r — -<yXr = ( r \y )  A {xf-r). 
So for any Heyting term y x, the orthogonality ideal J_(r) is the princi
pal ideal ± (r)  = |  (->r) =4 ((r \y )  A {xf-r)), and tensor negation is the
largest (oppositely directed) term orthogonal to r: t  = T_L(r); or, phrased
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as an equivalence, r_Ls iff s Xi y ~'r - The definition of Boolean categories 
below uses this equivalence to axiomatize tensor negation without the need 
for tensor implications. The sense of this equivalence is that tensor negation 
is the “tensor complement” of r. So tensor negation in dialectical logic is 
entirely analogous to (and generalizes) Boolean negation in standard logic, 
where the Boolean negation of a Heyting element a is the largest element dis
joint from a, aAfc = 0iff&< ->a. Since tensor negation H[y, x] —̂  H[x, ji]op is 
contravariantly monotonic, s ^ y,xr implies ~>r Xx>y->,s, it is a dialectical nega
tion. In more detail, since orthogonality is a symmetrical notion, s :<x,y-iyxr 
iff r± s  iff r ^y)X—>xy3, tensor negation is a self-adjoint monotonic function 
-iyx H ->xyop. Since tensor negation -1 is self-adjoint, it maps arbitrary joins to 
meets ->(V,r,) = A ,(-r,), which in the binary case gives the DeMorgan’s law: 
-i(s V r) = -is A ->r and in the nullary case gives the law: ~<lv<x = TXtV. We 
also have the derived rule -i*x(s o r) = (r-\(z-\s)) A ((x/-r)/-s). As remarked
before, the generalized inverseness notion of an adjoint pair of terms y r-^  x 
forms a kind of polar-tension structure, since there is only one possible right 
adjoint r H s iff s = r op. However, the generalized inverseness notion of an
orthogonal pair of terms y r—r x  does not form a polar-tension structure. But 
we can make orthogonality that by assuming the existence of tensor nega
tions: y r —rr x forms a kind of polar-tension structure, since there is only
one possible tensor negation r_Ls iff s X ->r. A subtype y '- ^ x  has only one 
kind of complement -ii = p  = iop and ->p = -i(iop) = i, whereas a functional
H-term y —- x has two kinds of complements: its tensor negation x y and
its right adjoint x —r y. In general, these two complements are related by 
-I f  < f op = x f- f  and ->(/op) •< f  = / op-\x. The two complements are identical
- i f  = f op iff y x is a subtype.

A Heyting term y x is quasisymmetric precisely when the left and right 
orthogonal duals coincide and equal the tensor negation - r  =  xf-r — r \y ,  
since s o r ^ x i f f s ^  xf-r iff s < r \ y  iff r o s < y. For a quasisymmetric func
tional term y X  x, the two kinds of complements, tensor negation and right
adjoint, are one: - if  = f op and f  =->/ op; so that, y x is a subtype. This 
is an indication that quasisymmetry is a very strong and restrictive concept. 
This should be compared with the result in the object aspect of dialecti
cal logic, that “quasisymmetry is equivalent to topological dialecticality” . 
Tensor negation is contravariant lax functorial ->r o -is -<XiX- i(s o r) , so that 
tensor negation and tensor product are related by the inequalities s o r ■< 
< -i-i s o —i—ir < —1(—>r o -is) and i o r ^  -i-i(s o r ) ^  —»(—>r o -is). A Heyting term
y x is coquasisymmetric when it is the tensor negation r = -is of a qua
sisymmetric term x y. This notion of Heyting coquasisymmetry is close 
to, but not identical with, the notion of biposet coquasisymmetry above.
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However, they agree on closed Heyting terms (see below). By definition ten
sor negation maps quasisymimetric terms into coquasisymmetric terms. A 
term y -A- x  is an H-isomorphism iff its tensor negation is a categorical in
verse: -ir o r — x and r o ->r = y. Isomorphisms are both quasisymmetric and 
coquasisymmetric. For isomorphisms the tensor implications are expressible 
as r \ t  =  —>r o t and sj-r — so  ->r.

Double negation. Let H be a  Heyting category. Let -n  symbolize dou
ble tensor negation, defined by -n yxr = ~'Xy(~lyxr ) for any pair of types y 
and x , and any term y —r x. Double negation -n  is a local closure opera
tor: “monotonic” r X y)Xs implies -n r  Xy.j-ns, “increasing” r Xy)Xn->r, and
“idem potent” -n(-nr) = -n r . A term y -A x is double-negation closed when 
r = -n r ;  or equivalently, when r  =  ->s for some term x -A y. Denote the collec
tion of closed terms in H[y, x] by -nH[y, x]. Then -nH[t/, x] is a lattice, which 
is a meet-subsemilattice of the lattice H[j/,x] with meets in -nH[t/,x], called 
classical Boolean products, identical A,r,-= A,r,- to meets in H[y,x], and 
joins in -nH[j/,x], called classical Boolean sums defined (following Glivenko) 
as the double negation 0,r,- =  -n (v ,r,) of joins in H [y,x]. Double nega
tion H[y, x] ^>-nH[y, x] reflects -n  -line arbitrary Heyting terms into closed 
terms. Identity terms (types) are closed, since x =  ~>x. The smallest and
largest closed terms from y to  x  are 0y>x = ~rn-ty,x = nTXiy and l y)X = -nTV)X — 
= Ty>x =  —iTj y = -'0x,y, respectively. If H is a quasisymmetric category, then 
all functional terms are subtypes, all subtypes are double-negation closed, 
its functional part Hh is a “preorderlike” category consisting only of subtype
term s y x, and the dialectical base H"1 adj is an “extension/restriction”H

base with direct image H[y, y] P-^X H[x,x] being “extension to x” and in
verse image H[j/,y]'<— P H [x,x] being “restriction to y". So, if we are in
terested in a general notion of “functionality” in Heyting categories (such 
as ordinary functions in Rel or functors in Cat), then we should not assume 
quasisymmetry.

If y -A x is a quasisymmetric term, then -n r  =  [j//-(r-\t/)] A [(x/-r)-\x] (in 
a quasisymmetric category -n r  = yf~(r\y) = (x / - r ) \x ). If y -A x is quasisym
m etric, then -nr is also quasisymmetric, since p o -n r  X x implies po r X x iff 
p X n r  = n -n r implies - n r  o p X y.

L e m m a  1 (Functoriality). Double negation is lax functorial on quasisym
m etric terms: -ns o -n r  X x a.-n(s o r) /o r all composable pairs o f quasisym
m etric terms 2 -A y and j / L i .

P r o o f . We prove something equivalent: for all composable pairs of qua
sisymmetric terms z  -A y and y -A x, so  -n r  X 2)X-n(s o r) when s is dou
ble negation closed. By modus ponens on left and right ((x/  r ) /  s) o s o 
o ((x/-r)-\x) X x. So (1) s o ((x/-r)-\x) Xz x((x/-r)/-s)-\x = (x/-(s o r))-\x. On
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the other hand (j//-(r-\y)) o (r-\-<s) o (->s \ y )  < y by transitivity (used twice). 
But s = -r->s < -is-\y since s is closed and quasisymmetric. So (y/~(r\y))o  
o (r-\-is) o s < y .  Again since s is quasisymmetric s o (y f-(r\y ))  o (r-\-is) < z. 
Hence, (2) so (y /-(r \y ))  < z/-(r\->s) = z f - ( r \ ( s \z ) )  = z f-((so r )\z ) . Putting 
both facts together s o -n r  = so [j//-(r-\j/)] A [(x/-r)-\x] X[í o (i//-(r-\j/))] A[so 
o((x/-r)-\x)] ;< [z/-((sor)-\z)] A[(x/-(sor))-\x] = -n(sor). Finally, -n jo -n r  X 
^z,x-ri(-rn'So r ) ^z,x~r~'(~r~'(-so r)) = - ^( sor)  by monotonicity and idempoten- 
cy of -n. □

By rights this functoriabty lemma should be called the “bottleneck lem
ma” since we need it [Girard] to prove associativity of the classical tensors 
defined below. The concept of quasisymmetry, although quite natural by 
itself, was motivated by this lemma.

Following Glivenko, in analogy with the definition of the classical Boolean 
connectives, the tensor connectives for classical dialectical logic, classical 
tensor product ® and classical tensor sum V, are definable in terms of the 
Heyting tensor product o and tensor negation -i. For any two o-composable
terms z A y and y x the tensor product term z *—? x and the tensor sum
term z x are -n-closed terms define by s ® r = -1-1(50 r) and sV r = -i(-ir ® 
® -15) = —1(—ir 0 -15). For all terms we immediately have the DeMorgans laws 
-i(sVr) = -ir ® -15 and -i(s © r) = -isA-ir, for 2(H)-open terms we have 
the DeMorgans inequalities -i(s ® r) ■< ->rV->s and -i(sAr) < -15 ® -1 r, and 
for -n-closed terms we have the DeMorgans laws -1(5 ® r) = -irV-15 and 
i( s A r)  = -15 © ->r.

A Heyting term is polar when it is -n-closed and 2(H)-open; that is, 
when the term is in -n2 (H ). The pole of any Heyting term is the double 
negation of its 2(H)-interior (if it exists). The lax functoriabty of double 
negation -n impbes that the classical tensor product is associative t ® (s ® 
© r) = (t © 5) ® r on polar terms. Also, types are identities y® r = r = r ® x  
on polar terms. The Boolean pole of 2(H ), denoted by 2(H)®, is the join 
bisemilattice 2(H)® = ((-n2(H ), Id), 0 , 0) consisting of ab types and 
ab polar terms (join bisemilattice since finite homset joins exist, but not nec
essarily finite homset meets), with the classical tensor product and Boolean 
sum. 2(H)® is a lax (Heyting) subcategory of 2 (H ). Dually, a Heyting term 
is antipolar when it is -n-closed and 2(H)-closed; that is, when it is the tensor 
negation of a polar term. The image ->Z(H) of tensor negation on the pole is 
the collection of ab antipolar terms. The tensor DeMorgans laws (and the as
sociativity of the tensor product ®) imply that the classical tensor sum V is 
associative tV (sV r) = (fVs)Vr on antipolar terms. Also, types are identities 
j/Vr = r = rVx on antipolar terms. The Boolean antipole of 2(H ), denoted 
by Z ( H)0, is the meet bisemilattice 2(H )y  = ((->2(H), X, V, Id), A, 1) con
sisting of ab types and ab antipolar terms, and the classical tensor sum and 
Boolean product. Moreover, tensor negation is a 2-involution, a morphism 
of join bisemilattices 2(H)® 2 (H )y C°°p and a morphism of meet bisemi-
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lattices 2 (H )® C°°P 2 (H )y : -» is self-inverse n r  = r, i x  = x, -i switches
source and target i ( y  -2 x) = x ^2 y, and -i is (contravariant) monotonic on 
homsets r  -<ytXs implies i s  -<Xty->r. This complex, consisting of a join and 
meet bisemilattice and the negation involution between-them, is called the 
Boolean of 2(H ) or the Boolean center of H, and is denoted by B (2 (H)).

The special property iff s ^  ->r called the orthogonality-entailment
axiom, which relates term-orthogonality with term-order, holds for all po
lar terms. Equivalently, the special property sT y  r  iff i s  -< r, which relates 
term-coorthogonality with term-order, holds for all antipolar terms. The 
Boolean center B (2 (H)) is quasisymmetric: the Boolean pole 2(H)® is a
quasisymmetric category since a Heyting term y 2-, i  is o-quasisymmetric iff 
it is ^-quasisymmetric, and the Boolean antipole Z ( H)y is a coquasisym- 
metric category since a Heyting term y -2- x being o-coquasisymmetric im
plies th a t it is V-coquasisymmetric. For any pair of terms in either the pole 
or the antipole of the Boolean center, the Heyting tensor product and the 
classical tensor connectives are arranged as s o r < s ® r < s V r .  When H is 
quasisymmetric the Boolean center #(H) consists of all -n-closed terms.

A polarized bisemilattice P consists of two bisemilattices, a join bisemi
lattice P® = ( (P ^ ,^  ®,0,Id) ,©,O) and a meet bisemilattice Py = ((Py, 
■< v ,  V ,Id), A, 1), called the pole and antipole of P respectively, and two 
morphisms of bisemilattices, a morphism of join bisemilattices P® -A p A co°P

and a morphism of meet bisemilattices P®c°°p Py which are inverse -> • 
• - icoop = Id to each other. Just as for Heyting categories, objects and arrows 
in either the pole P® or the antipole Py are called types and terms, respec
tively. The Boolean center B (2 (H)) of any Heyting category H is a polarized 
bisemilattice. Morphisms of polarized bisemilattices can be defined in either
a polar or an antipolar sense. A morphism of polarized bisemilattices P —> Q

H®
consists of a morphism of join bisemilattices P® Q® called the pole of H ,

jj  A
and a morphism of meet bisemilattices P0 —2  called the antipole of H ,
which are interdefinable with Hy = i p  ■ (H®)coop ■ ( i q )coop and H® = i p  ■ 
•(H0 )coop- ( i Q)coop.

Boolean categories. Ignoring idempotency and commutativity, a Boolean 
algebra B = (B , ^  A, V, 1,0, —<) can be viewed as two monoidal semilattices, 
a monoidal join semilattice B^ = ((B,  <, A, 1), V,0) and a monoidal meet 
semilattice B* = ((B , <, V ,0), A, 1) on an underlying poset (B , <) with nega
tion -i being an internal involution: a monoidal join semilattice morphism 
5 v s acooP) b <  b, .mplies ^ b  ̂ A b ) = (_,cj v =  o, -,(b V
V b') = (ib) A ( ib ')  and ->0 = 1, and a monoidal meet semilattice morphism 
B)(coop i_ ßA  ̂ js self-inverse i ( i b )  = b or -i • - ico°p  = Id. More general



DIALECTICAL LOGIC 41

ly, a Boolean category B is a polarized bisemilattice for which the term-sets, 
type-sets and homset-order of the pole and the antipole coincide Ar(B) = 
= Ar(B®) = Ar(B0), Obj(B) =  Obj(B®) = Obj(B$) a n d ^ 0 = ^ ^  (and 
are not just isomorphic as in polarized bisemilattices, where the term-sets 
and type-sets are not identical, but only in bijective correspondence via nega
tion), and which satisfies the orthogonality-entailment axiom

slg ,r iff s <-<r

for all opposed terms y A  x versus y A- x, which relates term-orthogonality 
with term-order (because of the precise duality expressed through tensor 
negation, iff ->r±y-i.s, polar orthogonality can be expressed as, and is 
equivalent to, antipolar coorthogonality).

In more detail, a Boolean category B consists of a set of types (objects) 
Type(B), a set of terms (arrows) Term(B) ordered type-wise by a partial 
order < which has homset lattice join ® and homset lattice meet A and two 
category compositions ® and V, where the pole B® = ((B, <, ®, Id), ®, 0) 
and the antipole By =  ((B, ■<, V,Id), A, 1) are join and meet bisemilattices, 
respectively, with an internal 2-involution B® A  B yC°°p. A Boolean category 
is finitely distributive in two senses: from the left .s® (®,r,) = ©,-(s®r,-) in B® 
and sV (A ,r,) = A ,(sV r,) in By, and also from the right in both poles. The 
tensor negation is (1) a doubly-contravariant (everything “flips”) morphism 
of join bisemilattices B® A  B yC°°p identity on types, —<(y A  x) = x A  j/, 
-i(s ® r) = (-ir)V(-is), -ne = x, r X y xr' implies -ir' < x,v~'T and ->(r ® r') = 
= (- ir )A (- r /); (2) a doubly-contravariant morphism of meet bisemilattices 
g©coop jn reverse direction and opposite sense, ->(sVr) = ( i r ) ®
® (->5) and i( rA r ')  = ( - r )  ® (—•7*/); (3) which is self-inverse -i(-ir) =  r. In 
a Boolean category orthogonality preserves composition, in the sense that: 
qLs and p ± r  implies (p® g)_L(.s ® r). Also, a Boolean category satisfies the 
product-sum comparison (or “mix”) axiom: s® r < ZiIsV r for all terms z  A  y 
and y A x . A one object Boolean category is called a Boolean monoid. The 
homsets B[x,x] are Boolean monoids for each type x. A Boolean category 
is complete when the poles are both complete Heyting categories; that is, 
the homsets are complete lattices, tensor product is completely distributive 
(continuous) w.r.t. Boolean sum, and tensor sum is completely distributive 
(continuous) w.r.t. Boolean product. Morphisms of Boolean categories are 
just morphisms of polarized bisemilattices.

A term y —- x in a Boolean category is invertible when its tensor negation 
is a categorical inverse: ->r ® r = x and r ® ->r = y. So invertible terms 
are the same as B-isomorphisms. For isomorphisms the direct and inverse 
image operators are isomorphisms of Boolean monoids. Clearly, all identities 
are isomorphisms. Isomorphisms are closed under tensor product, tensor 
sum and tensor negation. In fact, the tensor sum collapses to the tensor
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product sV r =  5 ® r for composable isomorphisms. When all terms in a 
Boolean category are isomorphisms, the Boolean category is known as a 
lattice-ordered groupoid. In general, the collection of all isomorphisms in a 
Boolean category B is a Boolean subcategory of B which is a lattice-ordered 
groupoid. A summary of the appropriate semantic domains for various logics 
is given in Figure 1.

In tu itio n istic C lassical

S tan d ard  logic Heyting algebras 
(in particular, subset algebras)

Boolean algebras

L inear logic commutative Heyting monoids 
(in particular, “phase spaces”)

commutative Boolean monoids

D ia lec tica l logic
(this paper)

Heyting categories 
(in particular, subset categories)

(quasisymmetric) Boolean 
categories

D ia lec tica l logic
(extended version)

Heyting categories 
with type sums

(in particular, distributor categories)

(quasisymmetric) Boolean 
categories with type sums

Figure 1. Semantic domains for various logics

Recall that a term y x is B®-quasisymmetric when p ® r < x  iff r ® 
(g>p < y ,  and is By-coquasisymmetric when pV r X x iff rVp >; y. So r is B®- 
quasisymmetric iff ->r is By-coquasisymmetric. This means that the tensor 
negation 2-involution restricts and corestricts precisely to the center of B® 
and the cocenter of By : Z(B®) —> Z(By)coop. Call this the center of B, and 
denote it by Z (B). A Boolean category B is quasisymmetric when Z ( B) = 
=  B. Quasisymmetric Boolean categories (and the Boolean center of their 
associated closed subset categories) are fundamental semantic structures for 
complete classical dialectical logic.

Let yd-r z be any fixed B®-term. For any B^-term y ^  z  with source

type in common with r, define the left tensor implication B^-term  x z by 
r \ t  =  -1 rVi. Similarly, for any B^-term z x  with target type in common

with r define the right tensor implication B^-term z -C y by s/-r = sV-ir. 
The dialectical axioms t ® r <  z>xs iff t ■< z,ys/-r and r ® s ■< y>zt iff s ■< x<2 r \ t  
hold on quasisymmetric terms. Adjoining these implication operators to 
the center pole Z(B®) makes this into a quasisymmetric Heyting category 
'H (Z (B)) called the Heyting center of B, whose tensor negation is the same 
as in B. So all terms in 'H (Z(B)) are double negation closed.

T heorem  1 (Center Reflection). 7/H is a quasisymmetric Heyting cat
egory, then the Boolean center B(H) is a quasisymmetric Boolean category.
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Any quasisymmetric Boolean category B is a quasisymmetric Heyting cate
gory ?f(B). For any quasisymmetric Boolean category B, the Boolean center 
of B as a Heyting category is just B itself B(H{B))= B. For any quasisym
metric Heyting category H, the Boolean center as a Heyting category, is just 
the center pole 'H(B(H)) = H®, the lax subHeyting category of H consisting 
of double negation closed terms.

3. Classical axiomatics

We follow both the semantics of dialectical processes and the axiomat
ics given by Girard for linear logic. However, when linear logic deviates 
from dialectical process semantics, we follow the latter. A hallmark of both 
dialectical and linear logic is the fact that the standard connectives and 
truth-values split into tensors and Booleans, as in Table 1.

Standard loeic D ialectical loeic Uses
A Boolean product ®z,y,x tensor (horizontal) product direct flow

Av.x Boolean (vertical) product parallelism & inverse flow
T true (m, x ) monoids (comonoids) tensor validity

lt/.x top process Boolean validity
V Boolean sum Vz,ylX tensor (horizontal) sum inverse flow

©v.r Boolean (vertical) sum parallelism & direct flow
-L false (m, i )  monoids (comonoids) orthogonality

0y,x bottom process disjointness

Table 1. Splitting of connectives and truth values 
Language. There is a collection of type symbols x , y , z ,  •••, and a col

lection of atoms or atomic term symbols a,b,c, - • •. Each atom a is a term 
formula, and has a unique source type y and a unique target type x, denoted
by y —r x . Each atom y x has a dual or complement x y. Atoms and their 
duals are called literals. So type symbols are the nodes of a graph Lang, and 
literals (and other composite term formulas) form the edges. For each pair
of types y and x, there are two distinguished term symbols y x and y -i- x. 
Each type x is represented as a term formula x ^  x, which is a self-loop at 
node x in the graph Lang. Composite term formulas are built up recursively 
from literals by horizontally applying the tensor operation symbols ® and V, 
and vertically applying the Boolean operation symbols © and A, in an obvi
ous type-consistent fashion. Term formulas are also called terms. This will 
be legitimized below when it is shown that the (equivalence classes of) term 
formulas form a Boolean category. Following Girard’s approach, there is an
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external involution Lang Langop called tensor negation, which is defined 
recursively on terms as follows: base->a = á and -i(á) = a; recursion->x = x , 
—>(/3 ® a ) =  (-ia)V(->/3) and ->(/?Va) = (~ia) ® (—>/3), -1(0 © a') = (-ia)A(->a/) 
and i ( a A a ')  = (->a) ® (-■a'), and -1 (y x) = x -i- y and ->(y -i- x) = x y.

Fact  1. -i(-ia) = a  for every term a.
In addition to the previous symbols which specify types and terms, there 

are two special symbols h and J_ which specify the binary relation of entail- 
ment between parallel terms and the binary relation of orthogonality between 
opposed terms, respectively. The entailment and orthogonality relations on 
terms give two equivalent ways in which to specify dialectical logic.

Inference rules. The formal semantics of classical dialectical logic will 
be defined via axioms and inference rules. The novelty of this approach lies 
in the use of orthogonality assertions, rather than just term entailment as
sertions alone. An orthogonality assertion is a statement of the form ß ± a
for two opposed terms y x versus y x, and when ß L a  holds, we say 
that a  is orthogonal to ß. An orthogonality assertion is interpreted as the 
orthogonality of the terms specified by the opposed term formulas. The 
orthogonality relation _L has a negation-dual relation _Lco, called coorthog
onality, and defined by ß±.coa  when ->a±-iß. An entailment assertion is a
statem ent of the form a h  ß  for two parallel terms y x, and when a h  ß 
holds, we say that a entails ß. The entailment relation I- has an obvious 
dual relation h op defined by ß  h opa when a h  ß] so that, h op =H. We use 
the equivalence notation a H  ß  when both a h  ß  and ß h  a hold, and we say 
that a  is entailment equivalent to ß. When “a  entails identity” , tha t is when 
a h x  holds, we say that the term a itself is provable. So an endoterm x —r x 
is provable iff a 6 |  (2;) the principal ideal of the identity term.

We give two versions of inference rules for the term calculus: an entail
ment version which is closely related to the semantics of dialectical logic, 
and an orthogonality version which extends Girard’s version [Girard] of the 
linear logic. In each version we group the rules according to their semantics: 
the vertical aspect in Table 2 and the horizontal aspect in Table 3. The 
homset-order axioms in the two versions are immediately equivalent; in fact, 
the logical axioms are equivalent to reflexivity of entailment, the cut rule is 
equivalent to transitivity of entailment, and symmetry is equivalent to con- 
travariance of tensor negation. So entailment is a homset preorder on terms, 
and Lang is a preordered graph. Similarly, the tensor axioms, the ©V-rule 
and monotonicity of tensor product ®, are equivalent. By applying tensor 
negation, the monotonicity of tensor product ® and the monotonicity of ten
sor sum V are equivalent facts. The cut rule implies that orthogonality is 
monotonic: if ß l a  and a ' I- a  then ß l.a '. The Boolean rules assert that © is 
a least upper bound and that A is a greatest lower bound in the entailment 
order. The zero rule provides the axiomatics for both bottom 0 and top 1.
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E N T A IL M E N T  V ERSION O R T H O G O N A L IT Y  V E R S IO N

H om set order

a I-a (reflexivity) 
for terms y —• x

a h ß ß  I- 7 (transitiv ity)a h 7
, . a,0 7for terms y —* x versus y x

a h  ß 
->/? I—>a (contravariance)

0for terms y —■» x versus y x

a-L-ia (logical axiom ) 
for terms y —• x

a  _!_->/? /J-l- 7
(cu t)a±7

, . < * . / *  7for terms y —>■ i  versus y — x

/?-La
(sym m etry)a_L/?

for terms y x versus y x

Booleans

Oyr t- a (b o ttom )
for terms y -^ x

a h  (a © a ')  ( 1 st u .b .)
, a,a'
for terms y — x

a 'h (a (B a ')  ( 2 nd u .b .)

a,a'for terms y —* x

a h ß a 1 h ß
(l.u .b .)

(a © a') h ß 
f a,a',ßtor terms y —• x

Oyr_La (zero) 
for terms y x

a ± ß
(a A a ')l/? (1st A)

f * a,a Plor terms y —• x versus y x

a' L ß (2nd A)
(a A a')l/?

. a,a/ ^for terms y —r x versus y t— x

al/? a '  T ß  
(a © a').!/? ^

.  a , a '
for terms y — x versus y *— x

Table 2. Vertical aspect of term rules
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Table 3. Horizontal aspect of term rules

Thus, the (internal) vertical aspect of term formulas has the structure of a 
lattice; with the (external) tensor negation, ignoring types, it has the struc
ture of a Boolean algebra. The entailment axioms, minus contravariance, 
are essentially the axioms for a join bisemilattice. The vertical aspect of the 
basic calculus corresponds to standard (propositional) logic. The horizon
ta l aspect of the basic calculus, minus the orthogonality definition axiom, is 
a dialectical logic analog or typed version of the “multiplicative fragment” 
adjoined by linear logic. The definition of orthogonality, which axiomatizes 
“Boolean orthogonality” or the definition of orthogonality in Boolean cate
gories, separates dialectical logic from typed linear logic. We want to show 
th a t the horizontal aspect of term formulas has categorical structure for both 
tensor product and tensor sum. We can do this quite simply by extending 
entailment to sequences of term formulas.

Sequents. A sequent a  is a path of term formulas (Lang-edges) y x =
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= y ^  i„ _ i —■■----- r x i^ r  x. Such a path is a typed version of a sequence of
term formulas. The concatenation of two sequents z A- y and y x is denoted
by x. The empty sequent at type symbol x is denoted by x -e4  x. So 
sequents are arrows in a free (path) category Lang* having concatenation o 
as composition and empty paths £x as identities. The category of sequents 
Lang* inherits from the graph of terms Lang a weak vector entailment homset
order b, defined by a b ß  when |a | = \ß\ and a, b ß ,• for all 1 < i ^  n, where 
a  = q„ o • • • o q j . Clearly, sequent concatenation is monotonic w.r.t. vector
entailment: if ß b S and a  b 7 then (ß o a) b (<$ 07) for any two composable

ß ,6parallel pairs of sequents z ^  y and y ° -^x . So Lang* = (Lang* , b) is a 
bipreorder (preordered category). Extend tensor negation to sequents by
defining the sequent “vector” tensor negation ->a = ->ai o • • • o ->an for any 
sequent y ^  x which is the path of terms a = an o ■ ■ ■ 0 07; in particular,
->£x = £x. Vector tensor negation is contravariant: if a  b ß then ->ß I----ia.
So vector tensor negation is a categorical involution - n a  = a; tha t is, a

contravariant functor Lang* —► (Lang*)coop, which is self-inverse 1 •(->)coop = 
= Id. The category of sequents, vector entailment, and vector tensor negation
form a polarized bipreorder Lang*.

df

Sequents will be interpreted in Boolean categories. A sequent can be 
interpreted in a Boolean category in either a polar sense (using ®) or an 
antipolar sense (using V). The two senses are inter-translatable via tensor 
negation. In Girard’s version of linear logic, sequents are interpreted in 
the antipolar sense. The interpretation of a sequent y ^  x in the polar
sense is done via the tensor product term y ® ^  x, a sequent of length one, 
which is defined by ®(a) = a n ® ® 07. More precisely, base ®(fx) = x
for any type x, and induction ®(/3 o a) = ß  ® ®(a) for any term z -£• y and 
any sequent y x. In particular, ®(a) = a ® x for any term y ^  x. So the
tensor product operator is a type-preserving graph morphism Lang* — > Lang 
from the category of sequents Lang* to the graph of terms Lang. Dually, 
the interpretation of a sequent y x in the antipolar sense is done via
the tensor sum term y V(c

V(a) = a„V
x, a sequent of length one, which is defined by 

Vai .  More precisely, base V(Ej;) = x for any type x, and
induction V(/J o a) = V(/3)Va for any sequent z y and any term y x. 
In particular, V(a)  = xV a for any term a. So the tensor sum operator is
also a type-preserving graph morphism Lang* — > Lang. By induction we 
can show that the tensor product and tensor sum operations are related by
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the DeMorgan’s laws -i(®a) =  V(->a) and ->(Va) = ®(->a).
In the polar sense of interpretation, we require that each sequent a be 

logically equivalent to its tensor product term ® (a). So define a polar en- 
tailment homset order b g> by a b g/? when ® (a) b ®(/3). Polar entailment 
partially orders Lang*-homsets, if we quotient out by logical equivalence H  $ 
defined by: a \—\@ß when both ab®/3 and ß b g a  hold. Then any sequent 
y x is entailment equivalent to its associated tensor product term a H  g 
®(a), as is required by the polar interpretation, since ®(®(a)) = ®(a)® x 
H  ®(a). The tensor product of terms is associative, up to polar entail
ment equivalence (for sequents), since 7 ® (ß ® a) I—I ®7 0 (ß 0 a) = (7 o ß) o a  
H  ®(7 ® /?) ® a . Polar entailment equivalence H  ® extends term entailment 
equivalence H ; that is, polar entailment equivalence coincides with entail
ment equivalence on terms, ß H  0a  iff ß H  a  for all terms y°-^ x. So, the 
tensor product of terms is associative, up to term entailment equivalence: 
7 ® (ß  ® a ) H  (7 ® ß) ® a. By induction tensor product preserves composi
tion, up to term equivalence ®(/3oq) H  ®(/3)® ®(q ). Sequent concatenation 
is monotonic w.r.t. polar entailment: if ß b g,<$ and a b $7 then (ß o a) b 0
(£07) for any two composable parallel pairs of sequents z ^ y  and y ° ^  x, 
since tensor product is monotonic. So, the category of sequents Lang* forms
a bipreorder Lang^ = (Lang*,bg) with polar entailment b®. By induction 
using the monotonicity rule, the tensor product operator is monotonic w.r.t.
vector entailment: if a  b ß then ®(a) b ®(/3). So vector entailment is weaker
than polar entailment: if a  b ß then a  b g,/3.

Dually, in the antipolar sense of interpretation, we require that each 
sequent a be logically equivalent to its tensor sum term V (a). So define an 
antipolar entailment homset order b y  by a b y/3 when V(a)bV(/3) .  The
category of sequents Lang* forms a bipreorder Langy = (Lang*, b y )  with 
antipolar entailment b y- Again, vector entailment is weaker than antipolar
entailment: if a  b ß  then a  b y/3. The polar and antipolar orders are two 
alternate interpretations for the entailment relation b on sequents. They are 
polar duals, and are interdefinable via the equivalence: a b $/? iff -iß b y -ia .

More concisely, vector tensor negation is an involution Lang0 (Langy )coop. 
So the category of sequents, the two polarities of entailment, and vector 
tensor negation form a polarized bipreorder Lang*.

The term category. Entailment partially orders Lang-homsets, if we 
quotient out by logical equivalence bH. Entailment equivalence quotienting 
is done automatically when we use the closed subset construction. For any
term y x, let [y] ^  [2] denote the quotient term (entailment equivalence 
class) of a. Let Term denote the quotient graph of Lang; that is, Term is the 
graph of types and quotient terms. Define the Boolean and tensor operations
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on quotient terms via representatives. For example, define the tensor product
and tensor sum of quotient terms by [ß\ ® [a] = [ß ® a] and [/?]V[c*] = [/3Va]. 
Define the quotient entailment order by [o] h [ß] when a h ß, and define the 
quotient orthogonality relation by [/?]±[a] when ß l a  is provable. Finally,
define the quotient tensor negation by -i[a] = [-ia]. These operations and 
relations are well-defined, and the tensors are associative. Since term tensor 
product and sum are monotonic w.r.t. entailment order, the tensor product 
and sum of quotient terms are also monotonic w.r.t. entailment order. So 
there is a join bisemilattice Term® = ((Term, h, ®, Id), ®, 0) called the quo
tient term pole, whose objects are (quotients of) types, whose arrows are quo
tient terms, whose composition is the tensor product of quotients, and whose 
homset order is quotient entailment. Similarly, there is a meet bisemilattice 
Termy =  ((Term, h, V,Id),  A, 1) called the quotient term antipole. Tensor 
negation is an involution of join bisemilattices Term® (Termy)coop, and 
also an involution of meet bisemilattices (Term®)coop <— Termy. So the two 
quotient term poles and quotient tensor negation form a polarized bisemi
lattice, also denoted by Term, for which the orthogonality-entailment axiom 
and the orthogonality definition axiom hold.

THEOREM 2. The category Term of quotient terms is a Boolean category.

The DeMorgan’s law -i(®a) = V (-ia) states that the pair of tensor term
( ® > V )operations is a morphism of polarized bipreorders Lang* Term. It is 

a quotient functor (a full functor which is a bijection on objects), which 
constructs Term as the entailment-quotient category of Lang*.

Soundness and completeness. A classical structure (3, B) for the ba
sic calculus, the internal language of classical dialectical logic, consists of a
Boolean category B and an interpretation map (graph morphism) Lang —̂  B 
which preserves negation, identities, entailment order, zeroes, ones, Boolean 
products and sums, and tensor products and sums. The interpretation map 
3 assigns to each type symbol x a B-type 3(x) and assigns to each atom

y x a B-term 3(y) '^ O (x ) . Following the polar sense of interpretation, we 
extend the interpretation 3 to sequents by defining 3g(a)  = 3 (0a)  for any 
sequent y x. So 3 is a morphism of polarized bipreorders Lang* — B, 
with the polar interpretation embodied in the polar part Lang* B® of 
3 (a morphism of bipreorders), and the antipolar interpretation embod
ied in the antipolar part Lang* By of 3 (which is defined by 3v = “»• 
(3®)coop • (~'b )coop)- 3® preserves order, since if ß  h a for any two parallel
sequents y ^  x then 3®(/3) = 3(0/9) < 3 (0 a ) =  3®(a)- Since ß H  a im
plies 3®(/9) = 3®(<*) for any two parallel sequents y ^  x, there is a functor



50 R. E. KENT

'J©
Term® — B® uniquely satisfying the functorial equation 3® = ®( ) -3^- 
The extended interpretation 3^ is the polar part of a morphism of Boolean 
categories Term B. The antipolar part, using the antipolar interpreta
tion and tensor sum terms, is defined by 3y = ■ (3^ )coop • (_,s ) coop- The
entailment quotient and the term category define the fundamental classical 
structure ([ ],Term), whose extended interpretation is the identity functor
[ 1® = I^Term-

T h e o r e m  3. The Boolean category Term is free (w.r.t. the connectives) 
over the language (type-atom graph) tang.

An orthogonality assertion /?J_a, for two opposed sequents y x ver
sus y S- x, is ( tensorially) valid in a structure 3 when the orthogonality 
3(/3)i-3(c*) holds in the Boolean category B. As a special case, an endose- 
quent x x is valid in 3 when 3(a) X 3(z). A tautology is an orthogonality 
assertion ß ± a  which is valid in any classical structure.

T h e o r e m  4 (Soundness). The basic calculus for dialectical logic is sound 
w.r.t. validity in classical structures.

T h e o r e m  5 (Completeness). The basic calculus for dialectical logic is 
complete w.r.t. validity in classical structures.

P r o o f . Suppose /3-La is a tautology at x. Then, since ß L a  is valid in 
every classical structure, it is valid in the free classical structure ([ ],Term), 
and so the orthogonality [/3]J_[a] holds in Term. But by definition, [/?]j_[a] 
iff /3_La is provable. □

Summary. In this paper we have discussed the internal process aspect 
of dialectical logic, which is the logic of the flow dialectic. In the promised 
extension [Kent88] of this paper we will also discuss the external object as
pect of dialectical logic, which is the logic of the flow constraint dialectic. 
This external aspect involves the semantic notions of monoids (preorder ob
jects), processes, topologies and topomonoidal structures, and the axiomatic 
notions of exponentials (Girard’s affirmation and consideration modalities) 
and quantifiers.

A. Subtypes

Comonoids. For any type x in a bisemilattice P a comonoid u at x, 
denoted by u : x, is an endoterm x x which satisfies the “p a rt” axiom 
(coreflexivity) u < XiXx,  stating that u is a part of the type (identity term) 
x, and the “idempotency” axiom (cotransitivity) u< XtXuou .  A comonoid 
is also called an interior term. Since u o u ^ . x o u  = u, we can replace the
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inequality in the idempotency axiom with the equality u o u  = u. For a func-
/H/op . . . /op°/tional term (adjoint pair) y x the composite interior endoterm x —<■ x

is called the comonoid of the functional term / .  This comonoid is the top
comonoid / op o /  = x iff /  is an epimorphism iff /  H / op is a reflective pair.
The comonoids y of subtypes y ' ^ x  are special x-comonoids which split 
(through y). In this sense comonoids are generalized subtypes. Comonoids
of type x are ordered by entailment < x — XjX. The bottom endoterm l x 
is the smallest comonoid of type x. The join v V u of any two comonoids 
v , u  of type x is also a comonoid of type x. Denote the join semilattice of 
comonoids of type x by fi(x). We can interpret the semilattice il(x) as a 
“state-set” indexed by the type x , with a comonoid u £ il(x) being a “state” 
of a system. The state u £ il(x) has internal structure and is a composite 
object sharing an ordering of nondeterminism ■< x with other states.

For any two comonoids u,v  £ fi(x) the tensor product is a lower bound 
u o v  <u  and u o v < v  which is an upper bound for comonoids below u and 
v : if w < u and w ■< v then w ■< u o v. If u and v commute u o v = v o u 
then the tensor product u o r  is a comonoid; in which case it is the meet 
u o v = u A v in fi(x). [Standardization property:] the bisemilattice P is 
said to be locally standard when il(x) is closed under tensor product for 
each type x; that is, when the tensor product u o v  is a comonoid for any 
two comonoids u ,v  £ il(x). Then f2(x) is a lattice, with the tensor product 
v o u of two comonoids v ,u  £ i)(x) being the lattice meet in fl(x), and the 
tensor product identity (or type) endoterm x being the largest comonoid of 
type x. Furthermore, the meet distributes over the join. We assume that 
any join bisemilattice P is locally standard. This standardization property 
means that the local contexts (monoidal semilattices) of comonoids (fl(x) | x 
a type} are standard contexts (distributive lattices).

In a complete Heyting category H an endoterm x x contains a largest 
comonoid of the same type x, called the interior of p and denoted by p°.
The interior is defined as the join p° = \/{u> € Í2(x) | w X xp},  and satisfies 
the condition w < xp iff w ■< xp° for all comonoids w £ il(x). In an arbitrary 
join bisemilattice P, we use this condition to define (and to assert the ex
istence of) the interior of endoterms. The interior p°, when it exists, is the 
largest generalized P-subtype inside p. The interior of endoterms models 
the “affirmation modality” of linear logic [Girard]. Any comonoid w £ fi(x) 
is its own interior w° = w. Without the local standardization assumption, 
meets would still exist in il(x): the interior of the tensor product is the meet 
(u o v)° = u Av = (vo u)°.

We are especially interested in join bisemilattices P for which any P- 
endoterm has such an interior. Such bisemilattices can be called interior 
(or affirmation) bisemilattices. A join bisemilattice P is an interior bisemi
lattice when at each type x the inclusion-of-comonoids monotonic function
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Í2(x) —̂  P[x, x] has a right adjoint P[x,x]'-+ Q(x)  called interior, which 
with inclusion forms a coreflective pair of monotonic functions Incx H ( )°. 
Composition ( )° -Incx is a general interior operator on endoterms. Any meets 
that exist in P[x, x] are preserved by interior (p A q)° = p° o q° for endoterms 
p , q£  P [x,x], since interior is a right adjoint. In an interior Hey ting category 
H, the distributive lattice of comonoids il(x) at each type x is actually a 
complete Cartesian Heyting monoid, which is another name for a complete 
Heyting algebra. Since interiors exist, for any two comonoids u, v £ fl(x) we
can make the definition u =>■ v =  (u-\v)°. Then u =>• v = (u-\v)° = (vf-u)° is 
a locally standard implication, since w < u v w < (u \v )°  iff w < (u \ v ) 
i f f u o m ^ u i f f w o u ^ u i f f  w ■< (v/-u) iff w < (vf-u)°. Comonoids in bisemi
lattices, and even more strongly in interior Heyting categories, play the role 
of “localized truth values” . Any complete Heyting category is an interior 
Heyting category.

In a bisemilattice P, for each P-adjunction (functional term) y /-!/op

and each P-comonoid v E fl( j/) at y, the endoterm x  ̂ x is a P-comonoid 
( / op o vo f )  E il(x) at x. So the direct image monotonic function P^ restricts

to P-comonoids. Denote this restriction by fl(y) fi(x) and call it the
direct image also. When P is an interior bisemilattice, the direct image func
tion has a right adjoint Í7(y) fl(x) called the inverse image monotonic
function, and defined by = ( / o u o  / op)° for each P-comonoid u E il(x).
If we denote this adjointness by fl( /)  = (il^ HD/),  then the comonoid con
struction Í! is an indexed adjointness (dialectical base) P H -^-+adj, mapping 
functional P-terms into the subcategory of adj consisting of distributive lat
tices and adjoint pairs of monotonic functions.

In subset categories V( C)  a comonoid of type x is either the empty
endoterm x - ^ x o r  the identity singleton x ^  x, and these can be interpreted 
as the truth-values false and true, so that i)(x) is the complete Heyting

walgebra il(x) = 2. In closure subset categories 'P(P) a comonoid x —r x of 
type x is a closed-below subset W  C P[x, x] of P-endoterms x x, which are 
subparts of the identity w < x and which factor (possibly trivially) w <v  o 
o u into two other endoterms v,uE W.  Since 'P(P) is a cHc, the lattice of 
comonoids fip(p)(x) is also a complete Heyting algebra. Any P-comonoid

x x is embeddable as the "P(P)-comonoid x ^  x. So we can regard "P(P)- 
comonoids as generalized P-comonoids called closure subset P -comonoids. 

For any source and target comonoids v € il(y) and u E il(x) the term
v u defined by rvu = v o r o u is called the (v, u)-th subterm of r. A P-co- 
process v —- u is a P-term  y ^ x  which satisfies the external source constraint 
v o r y  ytXr saying th a t r restricts to the source comonoid v : y, and which
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satisfies the external target constraint r  o u y  y>xr saying that r corestricts to 
the target comonoid u : x .  The source/target restriction conditions can be 
replaced by the two equalities vor  = r and r o a  = r; or by the single equality 
rvu = v o r o u  = r. Thus, the notion of coprocess allows comonoids to func
tion as identity arrows, or objects, of some category. To make this precise we 
define the biposet fl(P), whose objects are P-comonoids and whose arrows 
are P-coprocesses. Although íl(x) C P[x,x], note that f l(x )/: P[x,x], since 
endoarrows exist which are not comonoids. Given any P-term y —* x, let
To(r) Q il(y) denote the collection IFo(r) = {u | v o r y  y>xr} of all comonoids 
at the source type y satisfying source restriction. Since .^ ( r )  is closed above 
and closed under finite meets (= tensor products) it is a filter in the lattice 
Íl(y) called the source filter of r. Similarly, the target filter F \{r) of r  is the
collection .Fi (t’) = {u \ r < yiXr o u} Q Í2(x) of all comonoids at x satisfying 
target corestriction. Given two comonoids v : y and u : x, a term y x is a 
coprocess v u iff u G Po(r) and u G ^ i ( r ) .

Unfortunately, the category il(P) is not as useful as one might desire; 
in particular, there is no canonical functor to the underlying category P of 
types and terms since identities are not preserved. But by suitably weak
ening the constraint v o r  = r = r o u  we get a very useful and interesting 
category. A Hoare triple or Hoare assertion v :y —> u:x ,  denoted tradition
ally although imprecisely by {n}r{u}, consists of a “flow specifying” P-term 
y —r x and two P-comonoids, a “precondition” or source comonoid v G fi(j/) 
and a “postcondition” or target comonoid uG fi(x), which satisfy the “pre- 
condition/postcondition constraint” v o r - < r o u .  Clearly, composition of 
Hoare triples {in}s{n} o {n}r{u} = {tn}(sor){u} is well-defined and {u}x{u} 
is the identity Hoare triple at the comonoid u:x .  Also, there is a zero triple 
{n}0yiX{u} for any precondition v G and postcondition u G fi(x), and if 
{u}r{u} and {u}s{u} are two triples with the same precondition and post
condition then {n}(r©s){u} is also a triple. So typed comonoids as objects 
and Hoare triples as arrows form a join bisemilattice 7f(P) called the Hoare 
assertional category over P. There is an obvious underlying type/term  func-
tor 7í(P) —̂  P which is a morphism of join bisemilattices. For each type x 
in P, the fiber over x is the subcategory T p1(x) Q ?f(P) of all comonoids and 
triples which map to x. The objects in Tfi1(x) are the comonoids of type 
x and the triples in Tf i1(x) are of the form {V}x{u}, pairs of comonoids of 
type x satisfying u' < u. Hence, the fiber over x is just the join semilattice 
(actually, lattice) of comonoids Tf iJ(x) = fi(x). The axiomatics, semantics 
and dialectics of Hoare assertional categories and associated constructions, 
and their relationship to dynamic logic, is explored in detail in [Kent89].

Topotypes and topomatrices. The closure subset construction ^ (P )  does 
not capture the notion of “relational structures” completely. Although it 
introduces nondeterminism on the arrows, it leaves the objects alone. The
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notions of “topology” and “subtype” can be naturally combined and locally 
defined in any eile H. Topologies of subtypes introduce distributivity on 
objects. A topology of H -comonoids or H-topotype W  = (W,x),  denoted 
by W  : x, is a topology W  in the complete lattice il(x) of comonoids at 
x regarded as a one-object subcategory of H (the more general notion of 
a topology in a cHc H is discussed in [Kent88]); that is, IT is a collection 
W  Q i)(x) of comonoids of x , which is closed under finite tensor products 
and arbitrary homset joins. A topotype is a kind of “power type”, which 
is not imposed from without, but arises naturally out of the mathematical 
structure. Since tensor products are finite homset meets for comonoids, a 
topotype W  : x is just a standard topology in the complete lattice il(x). 
An advantage of standard topologies over general tensor product topologies 
is that homset order is more directly related to topological meet. W  is 
interpreted to be an object of inner truth-values at type x, and its topological 
nature can be used to define approximation or limit structures on terms 
whose source or target is x. Any comonoid u : x can be identified with the 
topotype u = {±x, u, x}.

A topomatrix is a matrix indexed by topologies. Given two topotypes
RV  : y and U : x, an K-topomatrix V  : y —r U : x, denoted by R — (rvu \ v €

£ V , u £  U), is an íl(H)-matrix V  x U —> Ar(fi(H)) monotonically indexed by 
the source and target topologies. Monotonie indexing means that if v X v' 
and u -<u' then rvu ■< rviui. This monotonic indexing property is similar 
to the compatibility of ordinary partial functions on the overlap of their 
domains of definition. Every cHc H has an associated category of topoma-

Rtrices A fr(H ), whose objects are topotypes U : x, whose arrows V  :y~ ^U  : x 
are topomatrices, whose homset order is pointwise order (s„u) X (rvu) when 
svu ^  fvu f°r all v 6 V  and u€.U,  whose tensor product is the matrix product
(5  o R )wu = V„6v [•Sum o r„u], and whose identity at U : x is the topomatrix
(u' ou  = u ' A u \ u ' , u £  U). The join operator is a join functor M. r ( H )  -X- H, 
which maps each topotype to its underlying type \J{U : x) = x and maps each 
V x U  topomatrix R = (r„u) to its join term \J R = \ l vevueu  r «u> th e j° in °f 
all the coprocess entries in R. The (y, Í7)-th component of the join functor \f
is a join  join-continuous monotonic function Afr(H)[V :y,U:x]  H[j/,x].
The category of comonoids fl(H) can be embedded il(H) A1t (H) into 
the category of topomatrices M.p{H) by Inc(u : x) = {J_, u, x} : x and Inc(u: 
y -Xu ;*) = {(_!_, ± , ± ) , ( ± , ± , u ) , ( ± , ± , x ) , ( u , ± , ± ) , ( y , ± , ± ) } U { ( u , r ,  u)} U 
U {(v, r, x), (y , r, u), (y , r, x)}. The composition of comonoid embedding with 
join is the underlying type functor Inc • V = Uh ■ The restriction of the 
comonoid-as-topology embedding to identity comonoids defines the indis
crete-topology functor H -—X M t (H), where (x) = {JL,x} : x and {r} = 
=  {(±, J., ±),  (X, ±,x) ,  (y, J., -L)} U {(y,  r, x)}. This functor is clearly ful
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ly-faithful, since for two fixed types y and x, there is a bijection H[j/,x] = 
Adr(H)[{y}, {i}]. Also, {} -\ f  = Id//- This implies that the join functor is 
surjective on objects.

A representation theorem. Let V  : y and U : x be any two H-topo-
(r )D

types, and let y x be any H-term. The topomatrix V  : y U : x de
fined by (r)y = u | u G V, u £  l / 'j , where rvu = v o r o u is the (u, u)-th
subterm of r, is called the decomposition matrix of r. Such decomposi
tions, especially w.r.t. topological bases of comonoids, give an internal rep
resentation of cHc’s as distributor-like categories. This defines a decompo-

-ff- Y U
sition join-continuous monotonic function H[y,x] — M t {H )\Y  : y , U : x], 
where # v,u{t) = (r ) y . Moreover, any H-term y x is recoverable from 
its decomposition matrix (r)y by applying the join functor V vc/(#y,l/(r )) =
V v,u((r )v ) = Vvev,ueu rv, u — r. This means that the join functor is full (sur-

R.jective on arrows). Conversely, an H-topomatrix V : y —- U :x  is recoverable 
from its join term V R  by applying the partition function #y,t/(Vy i/(-^)) ~ 
= R. This means that the join functor is faithful (injective on arrows). 
So for two fixed topotypes V  : y and U : x, the decomposition and join 
monotonic functions are inverse to each other, and define an isomorphism 
n [ y , x ] * M T(n)[V:y ,U:x] .

Lemma 2. The join functor M j ( H)-^>H is fully-faithful, and a surjec
tion on objects.

FI rA topomatrix V : y —- (x ) is called a column H-topovector. If y —>• x is
any term and V : y is a topology at y, then the V-source decomposition of 
r is the column topovector V : y {x} defined by ]r[y= ^ v ^ ? x  | rvx = vo

o r , t ) £  v j .  The V-source cotupling of a column topovector V : y {z}, 

where R is the V-indexed collection of coprocesses x | v € , is the

H-term y x defined by [Ä]y = \Jv^y rvx• The source decomposition and 
cotupling operations are inverse to each other, with [ ]r[y]y = r and ][Ä]y[y=
= R. Dually, a topomatrix (y) U : x is called a row H-topovector. If y x 
is any term and U :x  is a topology at x, then the U-target decomposition
of r is the row topovector {j/} ^  U : x defined by )r(u = ^  u \ ryu = r o

o u ,u  € u 'j . The U-target tupling of a row topovector {y} U : x, where 

R  is the {/-indexed collection of coprocesses [ y T̂  u \ u € U^j, is the H-term 

y —r x defined by (R)u — VU£[/ ryu- The target decomposition and tupling
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operations are inverse to each other, with {)r(u )u  =  r and )(R)U(U= R.
Any topology U : x at x decomposes the identity term x x in either 

of two ways: as the source decomposition colurpn topovector U : x {x} 
defined by by = ]x[(/= x  | u £ u \ , or as the target decomposition row

topovector {x} ^  U : x defined by 7vy =)x(^= ^x u \ u £ U^j. Moreover, 
the identity matrix at U : x  decomposes as byoiry,  and the identity matrix at 
{x} decomposes as %y o by, so  that U : x ^  {x} and {x} ^  U : x are inverse 
topomatrices. Since by and 7i y  are inverse pairs, they are adjoint pairs in
both directions U: x Lû ?u {x} and {x} Ku- ^ u U : x . So, given any term y x 
and any topotypes V  : y and U : x,  (1) the term r and its source decomposition 
]t’[v are expressible in term s of each other via the direct and inverse left 
flow expressions ]r[^= £y 0 {^} =  ttvAÍ7-} an(  ̂ ( r ) — tívq\t[v = iyAMv'» and 
(2) the term r and its target decomposition )r(u  are expressible in terms 
of each other via the direct and inverse right flow expressions )r(u = {r} o 
o n y  =  {r}f-by and {r} = )r(u oby =)r(u f-ny. Furthermore, given any two 
topotypes V  : y and U : x, (1) a term y x and its decomposition matrix 
# v ,u (r )  = (r)y are expressible in terms of each other via the direct flow 
expressions r = %y o j j v u ( r̂) o by and #v ,u (r ) =  by o {r} o xy , and (2) an

R WRH-topomatrix V :y —r U :x  and its join term y —- x are expressible in terms 
of each other via the direct flow expressions R — by 0 {\J R} o ny  and V R = 
— 7Ty O Ro by.

For each topotype U : x  the topomatrix isomorphism {x} U : x is 
the ( U : x)-th component of a “counit” natural isomorphism 7r: \J •{} = >  
=> since {V R}  o ivy = 7ry 0 R.

T h eo r em  6. For every cHc H, the indiscrete-topology and join functors 
form  a categorical equivalence {} H V between H and its category of topo
matrices A tr(H), with identity unit Id# = {} • V am  ̂ natural isomorphism 
counit n: t (H)-

Given three topotypes W  : z, V : y and U : x and two terms z y and 
y x, the (w,u)-th. subterm  (sor)wu is the join ( so r ) wu = V„ey swvorvu, so 
th a t decomposition maps tensor products of terms to products of matrices 
W w ° ( r ) v  = ( s o r ) ^ .  Also, the U x U decomposition matrix of the identity 
term  x x is the identity matrix (x)y — by o ny,  where {x)y ( = u' o u = 
= u' A u. The type x is a direct sum of T-open comonoids when x = \J X  for 
some collection X  Q V  of pairwise disjoint comonoids.

Let W he a standard topology on the lattice of all H-comonoids ÍÍ(H). 
W can be partitioned into a collection of topotypes W = {W(x) Q ii(x) | x £ 
£ Obj(H)}. We call such a collection W a topotypeal structure. A topotypeal 
structure is a “choice functor” , choosing a topology at each H-type. Topo-
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typeal structures are a type-indexed version of Girard’s topolinear spaces 
in linear logic. Any topotypeal structure W defines, and can be identified
with, an embedding H H), of H into its category of topomatrices
Adr(H ) called the Vi-decomposition of terms. On types j jw  =  W(x) is the
x-th topotype of W, and on terms # w (t) = (r )vv(y) *s the W(y) x W(x) 
decomposition matrix of r. Partition followed by join is the identity func
tor # w  • V = Id//. The indiscrete-topology inclusion functor H H)
is the decomposition functor {} =  for the trivial topotypeal structure 
A = {{_L, x} Q fi(x) I x £ Obj(H)}. For any topotypeal structure W, the W- 
decomposition category Adr(W ) Q A dr(H), is the full subcategory which is 
the image of the W-decomposition functor There is a Vi-join functor
Adr(W ) —̂  H which is the restriction of join V to W-matrices A d ^ W ), and
a W-decomposition functor H — ► Mp ( Vi )  which is the corestriction of W- 
decomposition Jjw to W-matrices A ip (V l). For a fixed topotypeal structure 
W, these decomposition and join functors are inverse to each other.

T heorem 7. Any cHc H is isomorphic to each of its decomposition 
categories: H = M j { V i )  for any topotypeal structure W.

So each topotypeal structure W defines a representation of the cHc H 
inside of its category of topomatrices M r ( H); namely, M r{V i).

Flow decomposition. For any cHc H, in the category of H-topomatrices 
H) source and target tuplings are related to direct and inverse flow by 

the identities

<(txv I v € F ))v o [(rvx I v <G V)]v  = ° r vx\ v £ V )
“right tensor product along V-source tupling” 

t o ((ryu I u € U))u = ((t o ryu | u £ U))u 
“right tensor product along U-target tupling”

[(rVI I v £ V)]v  os = [(r„x o s | v £ V)]„
“left tensor product along V-source tupling”

((ryu I u £ U))V o [(sux I u £ U)]u = Vue[/(r yu 0 «uz | u € U)
“left tensor product along U-target tupling” 

sft[{rvx I v £ V)]v  = ((sf-rvx | v £ V) )v  
“right tensor implication along V-source tupling”

((szu I u £ U))U f-((ryu I u £ U))u = A u€U(s,u/-rVu \ u £ U)
“right tensor implication along U-target tupling”

[(»■«* I v  e I V € V ) ) v  = AveV(rvx/-tvz I V £ V)
“left tensor implication along V-source tupling”
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((ryu I u <E U))u\ t  = [(ryu-\í | u G U)\u 
“left tensor implication along U-target tripling”

These identities reduce the action of direct and inverse term flow to compo
nents.

B. Dialectical reproduction

We work in a Heyting category H, and assume the existence of a special 
type 1 which is a separator of terms in the following sense: for any two paral
lel terms y a-̂ - x, \i rp o s — ip or for all terms 1 —- y then s = r. A term 1 x is 
called an object of type x , and denoted by <p £ x. In relational database the
ory, where the Heyting category H is the category of monoids and processes 
[Kent88] of closed subsets of E-terms, a monoid m : x (H-type) represents a 
constrained database scheme consisting of database scheme x and semantic 
constraints m, and an m-object is a database which satisfies that scheme and 
those semantic constraints. In the general theory of dialectics, two possible 
meanings for “entities in dialectical motion” are (1) comonoids u G il(z); and
(2) objects 1 x. Here we discuss the flow of objects in more detail. In a 
succeeding paper [Kent89] we will discuss the flow of comonoids, and we will 
also discuss the important notion of transformation between these two kinds 
of entities.

Let Obj(x) denote the lattice of all objects of type x with object order
■<x l x; that is, Obj(a;) = H[l,x]. Terms define a dialectical (bidirectional) 
flow of objects which is expressed in terms of tensor product and implication: 
for any term y —t x let Objr = ( ) o r denote right tensor product by r, 
and let Objr = ( )f-r denote right tensor implication by r. So Objr is the 
right direct flow and Objr is the right inverse flow of r. We identify this 
dialectical flow of objects as the behavior of the term r. The separator rule 
states that terms are distinguished (and can be identified) by their direct flow
behavior. Direct flow Obj(y) O bj(i) and inverse flow Obj(y) <̂ - r Obj(x) 
are monotonic functions, and the dialectical axioms state that these form 
an adjoint pair Objr H Objr . As noted before direct flow is “functorial” , 
Obji0r = Obj* • Objr and Objx = Idobj(x)5 and inverse flow is “contravariantly 
functorial” , 0 bj»or = 0 b Ír • 0 b L and Objx =  I d o b j( i) -  In summary, if we 
combine the adjoint pairs as Obj(r) = (Objr H Objr ), then the above laws and 
rules are equivalent to the statement that the object concept or flow dialectic
is functorial H adj, mapping types to their object lattice and terms to 
their behavior. This is the sense in which terms specify the dialectical motion 
of objects.
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So tensor product defines the direct aspect of terra flow, whereas tensor 
implication defines the inverse aspect. As is clear now (manifested by the 
doubling of implication) and more clear latter (however, see Kelley’s develop
ment of tensors using hom-objects), the direct aspect of flow is the principal 
aspect. This notion of principal aspect seems to occur often in applied di
alectics. We develop here the full theory of dialectical terms. However, an 
interesting and coherent direct subtheory of terms, using only the direct as
pect of flow, is included. This direct subtheory seems to include much of 
traditional process theory, but is impoverished by not having the concept of 
inverse flow.

Since the behavior of terms is identified with (dialectical) flow, either 
direct flow or inverse flow, one means of interaction/communication between 
terms is by flow composition. If we make the identification “types=ports” , 
then terms communicate through their source and/or target ports. A parallel
pair of terms y"-̂ - x, a graph in a Heyting category, is known as a dialectical 
system. The dialectical interaction (complementary union) of the component 
terms of a dialectical system occurs through both source and target ports. 
The notion of reproduction in a system is specified by the dialectical flow 
(fixpoint operator) ©*( ) = (( )f-r)os.  This reproduction operator can be 
interpreted as the “polar-turning structure” of the preSocratic Greek philoso
pher Heraclitus [Hussey], and in Greek is rendered xaXivTponoq appoi/irj. 
An object 4> is reproduced when it satisfies the fixpoint equation ©*(</>) = 
= ({>. [A philosophical note: The notion of complementary union (two work
ing together in one) is not that of “synthesis” . Neither of the opposites is 
“transformed”. Indeed, with synthesis, dialectical motion would cease! The 
notion of “reproduction” is one of equilibrium of motion, not lack of motion.] 
Here the yin-yang symbol ©* is used as a reminder of ancient dialectics; yin 
inverse flow along r and yang direct flow along s. Starting with (quotient) 
objects at the source type, there is an op-dual “reverse time” yin-yang fix- 
point operator (s o (r-\()). There are also yang-yin operators with direct 
flow first and reverse flow last: To claim a type of uniqueness for reproduced 
objects (f> we can use: the least fixpoint rule ©£(</>) = <t>, and if ©*(i) =  t then 
4><t\ or the greatest fixpoint rule ©*(</>) = <f>, and if ©*(i) = t then t <<f>. 
The system motion is graphically represented as follows:

Obj (dd)

proper 
motion

,s continual .. . continual ..
0 b l i k d )  0 b jW  0 b J< " )

where the collection of y-subtypes led, dd, dk and kk  consists of, respectively, 
the “atomic subtype”, “proper subtype”, “negative subtype” and “nil sub
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type” of the source type y. These correspond to clause types in Horn clause 
logic.

For any term y ^  x, dialectical flow along r is decreasing: Q rr((f>) < <t>
<f>for every object l —r x. For any functional term y —r x, dialectical flow 

along /  is equal to dialectical flow along the associated interior comonoid 
f op o f ,  © J = ©£p° / ,  since ( ) o / ° p = ( )f -f  implies = [( )f~f) •
• [( ) / - / op] • [() ° / ° p] ■[ ( )  o / ]  =  [ ( )  o / ° p] • [( ) H op] • [() o f° p} • [( ) o
>)[() 0 / op]; [( ) ° /] = [( )/-/] • [( ) o /] = ©y. This fact includes subtypes 
as a special case. So for dialectical flow along functional terms, we can re
strict our attention to comonoids. Let V : y be any topotype (topology of 
comonoids at y). The join of the dialectical flows of the topotype comonoids
is unity V„ev ©" = since = ip o y = ° (V „ey «) = Vu£v(V’ 0 v) =

-  Vv e v i ^ ^ y ) o v -  Vvev (̂ /-(Vu'ev®')) o v  = o v ^
< Wvev A v'ev(('<JJ/-v')0V) 1  V v e v W M ov) ^ Vvev = V» for every y-object 
i — y-

Fa c t  2. For any dialectical system y x and any source topotype V  : y, 
dialectical flow decomposes as

©: = V ©;: •
v£V

P r o o f . V„€v ©": =  V*evK )A(^or)]- [ ( )o(®oa)] =  V„ev[( J /^ H i  ) H '

•[()««]•[()•<]=v.svK )H • e; -io °«] = [( )m  ■ (v„sv ©;)•[() h  =
= i ( W - K  ) « » ] = © : ■

This is an abstraction of the AND-process decomposition of clausal logic 
programs.
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К ТЕО РИ И  Э К С ТРЕМ А Л ЬН Ы Х  
П О Л И Н О М И А Л ЬН Ы Х  О П ЕРАТО РО В

Д. Л. БЕРМАН

1 °. Пусть задан полином
п

( 1 )

Известно, что полином
П

( 2 ) t ( x ) — ^ ^ { а к sin к х  — bk cos к х )  
к= 1

называется сопряженным по отношению к полиному ( 1 ). Множест
во всех полиномов вида (1) обозначим через П„. Обозначим через 
L  множество всех суммируемых 2л--периодических функций. Введем 
линейное нормированное функциональное пространтсво Е ,  облада
ющее свойствами: 1) элементы Е  суть функции из Ь \  2) если /  £  Е ,  
то смещенная функция f t ( x )  =  f ( x  + t ) при любом —оо < t  <  оо также 
из Е ,  причем | |/ (|| ^ | |/ | |;  3) Е  содержит множество всех тригономе
трических полиномов.

Важнейшим частным случаем пространства Е  является про
странство С  27г-периодических непрерывных функций f ( x )  с нормой 
||/(х ) || = max |/(х ) |. Очевидно, что пространство Ь р функций / ( х ) пе
риода 27Г интегрируемых с р-ой степенью, р >  1 , с нормой

также является пространством типа Е .
Настоящая заметка примыкает к заметке [1 ], но в ней рассматри

вается сопряженная задача. Обозначим через Ô ^ +m(E), где п , т , г
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41A35.

Key words and phrases. The set of trigonometric polynomials, extremal polynomial 
operator.

0

Akadémiai Kiadó, Budapest
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— натуральные числа, множество всевозможных линейных опера
торов Un , n + m ( f , x )  из Е  в Е ,  обладающих свойствами: 1) для любой 
f  Ç. Е , Unin+ m ( f , X s) G Пп _̂т , 2) если T  G П„, то U n ,n-\-m (Г ,х ) =  Г И (* ), 
где / ( г)(х) — производная порядка г  от f ( x ) .  Простейшей операци
ей из & n l i +r n ( E )  является выражение

Tn { f , x )  =
m  + 1

к=п

n-f-m
^  S {kr)i f , x ) ,

где S k ( f , x )  — частная сумма порядка к  ряда Фурье функции f ( x ) .

inf ||Hni„+m||. Пусть оператор U  GПоложим д (п\ }п +т  =
С/п,п+тбП(пГ)п + т (Е)

G Будем говорить, что он экстремальный в классе
если \ \Ü\ \  = р„„+ т - Возникает естественный вопрос о нахождении в 
множестве операторов Й[1г|1+ т (Б ) оператора с наименьшей нормой
и о вычислении . m. З ад ач а  подобного рода была поставлена в 
[3]. Реш ить поставленную задачу при произвольном натуральном m  
видимо очень трудно. В настоящей заметке дается полное решение 
этой задачи для любых натуральных л и г и  m = n - l .

2°. Т е о р е м а  1. Д л я  л ю б о г о  н а т у р а л ь н о г о  г  и л ю б о г о  T  G Пп и м е е т  
м е с т о  т о ж д е с т в о

17 п - 1
/  Г  7Г \

dt.~ / \ 1  I /  Г7Г
(3) T ^ r \ x )  =  -  / Т ( х  — t )  sin^nf +  —

— TZ

Д о к а з а т е л ь с т в о . Из (2) следует, что

п - 1

г + 2  V ' k r cos(п -  k ) t
к = \

Т ( х )

7Z

- и

П

П О  У s i n  к{х — t)dt.
к= 1

Поэтому

W  п
f ( r \ x ) = -  у  н о  k r  sin [*(* -  о +

Г  7Г

т
dt.

Стало быть,

(4 )
Г

f ( r \ x )  =  -  / И * - 0 ^ * г “ п (** + у )  
Ж L  к= 1

d t .

С другой стороны, для любого Т  G Пп выполняется равенство
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п—1
d t  - 0 .

Л Г '* А
(5) -  /  Т(х  -  t) kr sin [(2n - k ) t +  у

- я -  * = 1

Из (4) и (5) следует, что

T^r \ x )  ~ — J T ( x  — t )  n r sin ( j i t  + —  ̂  +

( 6 ) П— 1
+ ^ Ч 'Г sin (^kt -f + sin ^(2 n — k ) t  + .

k= 1

Так как sin [ k t  + * y )  + sin ((2n — k ) t  + = 2 sin (ni + íy )  cos(n — k ) t ,  то
из ( 6 ) вытекает (3).

3 ° .  Построим теперь экстремальный оператор.
Т е о р е м а  2. О п е р а т о р

гг — 1
(7) Й ( / , * ) Л  /  /(х  -  í) sin^ní + —  ̂ [пг +  2  fcr cos(n — fc)íj d

- я  fc=!

п р и н а д л е ж и т  к л а с с у

Д о к а з а т е л ь с т в о . Очевидно, что

1 }  Г 7 Г 1  " - 1
Ü ( f , x )  =  — /  /(<) sin n(x — í) + —  nr -f 2  k r cos(n -  fc)(x — t )*J. 1 2 ) 1  tű d t .

Поэтому ясно, что оператор (7) переводит функции в тригономет
рические полиномы порядка 2п — 1. Далее, в силу теоремы 1 для 
T  G Пп, Ü ( T , x )  =  f l r ) ( x ) .  Итак,

4 ° .  Д ля дальнейшего нужна
Т е о р е м а  3. Д л я  в с е х  t G (—оо, оо) в ы п о л н я е т с я  н е р а в е н с т в о

П—1
(8 ) Fn(í) = пг + 2  /:г cos(n — fc)i > 0 .

fc=i

Д о к а з а т е л ь с т в о . Теорема 3 доказана в [1] и [6 ]. Поэтому мы 
здесь только наметим доказательство. Л. Фейер [2] доказал теорему: 
Пусть полином

Tn(x) = а 0 + 2ах cos t  + . . .  + 2ап cos n t
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( ^ ) W .

удовлетворяет условиям
а„ -  2 а „ +1 + а „ + 2 > 0 , те = 0 , 1 , . . .  , (те -  2 ), an_i -  2 а п > 0 , а п >  0 . 

Т о г д а  Т п ( х )  > 0, —оо <  х  <  оо .

С помощью неравенств
а  + Ь \ к  ̂ а к + Ьк

Т
легко проверяется, что полином (8 ) удовлетворяет всем условиям 
теоремы Фейера. Поэтому выполняется (8 ).

С л е д с т в и е  1. П р и  в с е х  t  € ( —оо, оо) в ы п о л н я е т с я  р а в е н с т в о

(9) sign sin ( n t  + Fn { t )  = sign sin (ref +

з а  и с к л ю ч е н и е м  к о р н е й  п о л и н о м а  Fn ( t ) ,  г д е  л е в а я  ч а с т ь  р а в е н с т в а  (9) 
р а в н а  н у л ю .

5°. Д ля дальнейшего нужен аналог теоремы из [3].
Т е о р е м а  4. С п р а в е д л и в о  р а в е н с т в о

К  2п  — 1 ( ^  ) — X(ol\ , • • • , On_ 1, ß \ , . . . , ß n —\  ) )
<*k,ßk

г д е

1 Г I " - 1J = -  / I Öir)(í) + У~ (̂Qj COs(re + j) f+  /3j sin(n +  j)í)|cíí, -Dn(f) =  sin ref.
V .  J=1 "=1

Е с л и  и н т е г р а л  X  д о с т и г а е т  н а и м е н ь ш е г о  з н а ч е н и я  п р и  a j  — , ß j  —

=  ß j X\  j  — 1 , 2 , . . .  , (те — 1 ), т о  о п е р а т о р

( 1 0 ) А ( / ,х )  =  — /  f ( x - t )  D ^ \ t )  +  y cos(n+j)l + /3*1) sin (n+ j)f)
J=1

я в л я е т с я  э к с т р е м а л ь н ы м  в  к л а с с е

Так как D n ' 1 нечетная функция при г четном и четная функция 
при г нечетном, то справедливы равенства

П —  1

( п :

inf / |д < 2я)(о  + У ]( a j  cos(re +  j ) t  + ß j  si 
<*k'ßk J ' ,

- n  J = 1

}  _ — 1
—- inf /  Üi2s)(í) + y ^  7 j sin (те + j ) t

I  U

sin(re + _/)f) d t  =

Д ,
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( 1 2 )

inf / D^a+1\ t )  + Y"Voy COS(n + j ) t  + ßj sin(n + j ) t  
<k,ßk J 1 •“

J=1

dt —

= inf J  D^e+1\ t )  +  ’̂ 6 j cos(n + j) t
k  — 7Г J = 1

dt.

Воспользуемся теперь известными фактами теории наилучших при
ближений в метрике L [4]. Тогда из теоремы 4 и равенств (11), (12) 
получим

Т е о р е м а  5. 1) Для того чтобы оператор (10)  обладая наимень
шей нормой в классе операторов необходимо и достаточно,
чтобы числа {у,}"^1 из формулы (11) удовлетворяли условиям

Г п~1
/  sign [.Dj,2*^ ) + ^  7j sin(n -b j ) t  sin(n + i)t dt -  0, i = 1 ,2 ,... , (n — 1). 

n 7=1

2) Для того чтобы оператор (10) обладал наименьшей нормой 
в классе операторов необходимо и достаточно, чтобы числа

из формулы (12) удовлетворяли условиям
7Г

I  sign [d 2̂ä+1
n — 1

> « ) + £  6j cos(п-\- j ) t  
j =1

cos(n -f i)t dt — 0, i — 1 ,2 ,... , (n — 1).

Поэтому из следствия 1 вытекает
С Л Е Д С Т В И Е  2 .  1 )  Для того чтобы оператор ( 7 )  обладал наимень

шей нормой в классе операторов необходимо и достаточно,
чтобы выполнялись равенства

(13)
7Г

/ sign sin nt sin j t  dt = 0, j  = n + 1 , . . .  , (2n -  1).

2) Для того чтобы оператор (7) обладал наименьшей нормой в
классе операторов необходимо и достаточно, чтобы выполня
лись равенства

( 14)

7Г

J  sign cos nt cos j t  dt = 0, j  = n -f 1 , . . .  , (2n — 1). 
0
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Т е о р е м а  6 .  С р е д и  в с е х  л и н е й н ы х  о п е р а т о р о в  Ĉn,2n -i( /)  *) и з  С  в  

С , п е р е в о д я щ и х  ф у н к ц и и  и з  С  в  п о л и н о м ы  п о р я д к а  2 л -  1 и о б л а д а ю 
щ и х  т е м  с в о й с т в о м ,  ч т о  д л я  л ю б о г о  п о л и н о м а  Т  п о р я д к а  н е  в ы ш е  п  
и м е е т  м е с т о  р а в е н с т в о  Un ,2 n - \ { T , х )  — Т ^ г \ х ) ,  о п е р а т о р  ( 7 )  о б л а д а е т  
н а и м е н ь ш е й  н о р м о й .  П р и  э т о м

(15) £>L,2n -i = ~ п  ' г =  1 » 2 ,. . . .

Д о к а з а т е л ь с т в о . В [4], стр. 99-100, доказано следующее ут
верждение. Пусть интегрируемая функция Ф(х) удовлетворяет ус
ловию Ф(х + 7г) = — Ф(х). Пусть т и п  — целые числа и отношение 
^  не есть нечетное число, тогда

7Г

(16) Í  е' т х Ф ( п х ) б х  — 0 .

В частности, беря Ф(х) =  sign sin х  и Ф(х) = sign cos х ,  получим из (16) 
равенства (13) и (14). Д ля вычисления 2„_i заметим, что из фор
мулы (7) следует, что

(17)

Т ак как

то

в
( г )
n , 2n  — 1

7Г

sin X
2 4 cos 2kx
7Г 7Г 4 к 2 — 1 ’к = \

(18)
2
7Г

4

7Г £ < - п ‘
fc=i

cos 2 k n t  

4 к 2 — 1

И з (17) и (18) выводим (15).

6 °. Наряду с множеством операторов П^2П_1 введем множест
во операторов которое определяется следующим образом.
1) Д ля любой f e C  U n y2 n - \ { f i x ) есть тригонометрический полином 
порядка не выше ‘l n  — 1; 2 )  если Т  е  Пп, то Un ,2n —i ( T , x )  =  T W ( x ) .  

Положим р|гГ2п_ 1  = inf IIU пДп—1 II• В [1] доказано, что
un.

(г) _  4 г
@п,2п-1 ~  П ’ ’ 7Г

(19) г =  1 , 2 , . . .  .
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Из (15) и (19) вытекает, что

- ( г) (г) 
í*n,2n-l — в  n,2n—1 —=  —П Г = - 1 ) 2 , .  . .

7°. Обозначим через Z  множество всех функциональных про
странств типа Е .

ТЕОРЕМА 7. И м е е т  м е с т о  р а в е н с т в о

SUP ё п ,L - i (£ )  = в п ,L - i ( C ) =  •
Е е е  тг

ДОКАЗАТЕЛЬСТВО. Будем рассматривать оператор (7 )  как опе
ратор из Е  в Е .  Обозначим его через U ( f , x , E ) .  Было доказано, что 
он принадлежит классу Известно [5] что для интеграла
и нормы имеет место неравенство || J  f d p || ^ J  Ц/Цс/д. Поэтому из (7) 
получим

7Г

(2 0 ) \ \ Ü ( f , x , E ) \ \ < ±  J | | / ( x - í ) | | |s in ( n í  + y ) | F n(í)dt.

Согласно определению пространство типа £ ,  ||/(х  — t)|| ^ | |/ | | .  Стало 
быть, из (2 0 ) выводим, что

7Г

(21) \ \ Ü ( f , x , E ) \ \ < \ \ f \ \ l-  y | s i n ( n í + y ) |F n(0d<

Из доказательства теоремы 6  видно, что интеграл из правой части
(21) равен 4пг. Поэтому в силу (21) получим, что для любого про
странства типа Е ,  ||7/|| ^ п г . Отсюда и из очевидного неравенства
9 {Х - Л Е ) й \ \ и \ \  получим, что pn,2n - i(£ )  < £ п г . Следовательно,

(22) sup g n ,2 n - i { E )  < - п г .
Е ее я

С  другой стороны, поскольку С  пространство типа Е , то

suP ^ L - i ( £ ) ^ éÍ L - i(C )-Е е е

Согласно теореме б =  Стало быть,

(23) sup р Ц „ _ 1  > ^ п г.
Е р £ К
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Из (22) и (23) выводим теорему 7.
З амечание. Из теоремы 7, в частности, следует что простран

ство С  является экстремальным среди пространств типа Е , ибо не
равенство

Æ L - i ( £ > s  \
при Е  =  С  переходит в равенство.

Так как пространство L p , р >  1, является пространством типа Е ,  
то из теоремы 7 вытекает

Й Г,2 п -1  (Ьр)й^Г1Г, Р>  1 .
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INTEGRATION OF VECTOR-VALUED CONTINUOUS FUNCTIONS 
AND THE RIESZ REPRESENTATION THEOREM

L. A. KHAN

A b str a c t

We define and establish existence of the integral of functions in Cj(X , E) with respect 
to certain E '-valued measures. We also obtain a Riesz representation type theorem.

1. Introduction

Let X  be a completely regular Hausdorff space, E a real Hausdorff topo
logical vector space (TVS) with non-trivial dual E', and Cb(X, E ) the vector 
space of all bounded continuous ^-valued functions on X  endowed with the 
uniform topology. In Section 2, we introduce some terminology and prove 
a density theorem. In Section 3, we dehne and establish existence of the 
integral of functions in Cb(X, E)  with respect to certain E'-valued measures 
defined on the algebra generated by zero sets of X . Finally, in Section 4, 
we obtain a Riesz representation theorem which characterizes the dual of a 
subspace of Cb(X, E).

2. Terminology and preliminaries

Let Ctb(X,E)  (resp. Crc(X ,E ) )  denote the subspace of C b(X ,E )  con
sisting of those functions /  such that f ( X ) is totally bounded (relatively 
compact). When E = R, the real held, we shall write Cb{X) for Cb(X,E).  
Let Cb(X)® E  denote the vector space spanned by the set of all functions 
of the form g® a, where g £ Cb{X), a £ E,  and (g ® a)(x) = g(x)a (x £ X). 
The uniform topology u on Cb(X,E)  is dehned as the linear topology which 
has a base at 0 consisting of all sets of the form { / 6 Cb(X, E): f ( X )  9 ^ } )  
where W  varies over a base W of neighbourhoods of 0 in E.

Following [6], [8], E is said to be admissible (resp. have the approxima
tion property) if the identity map on E  can be approximated uniformly on

1980 Mathematics Subject Classification. Primary 46E40, 46G10; Secondary 28A25. 
Key words and phrases. Vector-valued bounded continuous functions, uniform topol

ogy, density theorem, vector-valued measures, existence of integral, Riesz representation 
theorem.

Akadémiai Kiadó, Budapest



72 L. A. KHAN

compact (totally bounded) sets by continuous (and linear) maps with range 
contained in finite dimensional subspaces of E.

We now prove the following density theorem which will justify somewhat 
our assumption in Section 4 tha t C t(X )0  E is u-dense in Ctb{X,E).

T heorem 2.1. (a) E  is admissible iff, for all topological spaces X ,  
Cb( X )  0  E is u-dense in Crc(X ,  E).

(b) If  E has the approximation property, then Cb(X )  0  E is u-dense in 
Ctb( X , E ) .

(c) I f  X  is a normal space of finite covering dimension [3] and E any 
TVS, then Cb( X ) 0  E is u-dense in Crc(X ,E) .

P roof, (a) Suppose E  is admissible, and let /  £ Crc(X, E) and W  £ W 
be balanced. Then there exists a continuous map u : f (X ) -+  E with range 
contained in a finite dimensional subspace of E  such that u(a) — a £ W  for 
all a £ f ( X ) .  Then h — uo f  £ Cb(X)  0  E and h (x ) — f ( x )  £ W  for all x £ X .

Conversely, let A Q E  be a compact set and W  £ W. Since, by hypothesis,
n

Cb(A ) ® E  is u-dense in Cb( A , E), there exists some v = X) u,-0eq (*4 € Cb(A),
1 = 1

a, £ E)  in Cb(A) 0  E  such that v(a) -  a £ W  for all a £ A. Note that the 
range of v is contained in the subspace spanned by ( a i , . . .  , an). Thus E  is 
admissible.

(b) Its proof is similar to the first part of (a).
(c) Since X  is normal, its Stone-Cech compactification ß X  also has finite 

covering dimension ([3], p. 245). So, by [8], Theorem 1, Cb(ßX)  0  E  is u- 
dense in Cb(ß X , E). Note that each function in Cb( X ) or Crc( X , E ) has 
a continuous extension to all of ßX.  Hence Cb( X ) ®  E and Crc( X , E )  are 
linearly isomorphic to Cb( ß X ) ®  E and Cb(ßX ,  E),  respectively, and so the 
result follows.

We mention here th a t if E  is a complete TVS, then Crc(X, E) = Ctb( X , E).
We next introduce some measure theoretic terminology. Let B (X )  denote 

the algebra generated by zero sets of X  and M ( X )  the space of all bounded 
real-valued finitely-additive regular (with respect to the family of zero sets) 
measures on B(X).  By a theorem of Aleksandrov (see [9], part I, Theorem 6), 
(Cb(X),u) '  — M ( X )  via the linear isometry L —> p, where L(g) = J  gdp for

a:
all g £ Cb(X). Following [9], a measure p £ M ( X )  is called a-additive if, for 
any sequence {Znj  of zero sets of X  with Zn ]. <f>, \p\(Zn) —>-0; p is called 
r-additive if, for any net {Z\}  of zero sets of X  with Z\  \  <j>, \p\(Z\) —* 0. If 
every cr-additive measure in M (X)  is r-additive, then X  is called measure 
compact [7].

For each W  £ W ,  let Mw(X,  E') denote the set of all finitely-additive 
JE'-valued set functions rn on B(X)  such tha t

(i) for each o /  0 in F , 7na(T) = m(jF)(a) (F  £ B(X))  determines an 
element ma of M (X );
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(ii) there exists a constant r > 0 such that |m |w (X ) ^ r, where, for each 
F  £ B (X ) ,  we define |m |w  by

|m |w (F ) = sup ^ 2  |m (F,)(a,)|,
I

(it would be the same for a balanced W)  the supremum being taken over 
all finite partitions {F,} of F  into sets in B { X ) (henceforth referred as a 
.S(X)-partition) and all finite collections {a,}Q lF.

Let M ( X , E') = U M w (X ,  E'). By an argument similar to the one 
wew

used in ([5], Lemma 2.3(i)), it is easy to verify that if m £ M w ( X ,  E'), then 
\m\w e M ( X ) .

3. The definition and existence of the integral

By Klee [6], we can always assume that W is a base consisting of closed 
balanced shrinkable neighbourhoods of 0 in E. (A neighbourhood W  of 
0 in a TVS is said to be shrinkable if kW  Q int W  for 0 fi k < 1.) The 
advantage of taking such a base is that the Minkowski functional p\\r of each 
I f  G W is continuous and absolutely homogeneous, and further that W  = 
= {x £ X : pw(x) < 1} ([6], Theorem 5). For this reason, our approach is 
simpler than [5] and [4] where the notions of F-seminorms and bipolars are 
used, respectively. If /  6 Cb{X, E)  and W  £ W, we write ||/ ||w  = \\pw 0 /11- 

Let m  € M w ( X , E 1) (W  £ W) and /  G Cb(X,E).  Let D be the collection 
of all a = ( F i , . . .  , Fn; x \ , . . .  , xn}, where {F,} (1 < i < n) is a F(A')-partition 
of X  and x, £ F, . If a i ,  c*2 € D, define a\ ^ 02 iff each set which appears in 
Qi is contained in some set in 02- In this way, D becomes an indexing set.

n
Let Sa = ^  77i(F,•)/(£,•). We now define the integral of /  with respect to m 

»=1
over X  by

/ d m f  — lim Sa.aeD
X

Regarding the conditions under which this integral exists, we obtain the 
following lemma.

Lemma 3.1. The integral f  d m f ,  defined above, exists in each of the
x

following cases:
(a) /  £ Ctb(A , E);
(b) /  £ Cb(X , E) and |m |w is r-additive;
(c) /  £ Cb{X, E), \m\w is a-additive, and the range of f  is measure 

compact.
P r o o f . We need to show that, in each case, {Sa : a £  D } is a Cauchy 

net in R.
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(a) Let £ > 0. Choose a balanced shrinkable F  £ W such that F  + V  C 
C £kF. Since /(X ) is totally bounded, there exist y i , .. ■ , € X  such that

/(X )  Q (J (/(t/,) + F). Let Vi -  {x e X :  p v ( f ( x )  -  /(&■)) ^ 1}. Then each
i = l

I—l
Vi £ B ( X ) .  Let G\ = Vi and G, = Fj \  |J  Vj (2 < i < n). By keeping those

j=i
Gi's which are non empty, we get, {G i,. . .  , Gk} say, a 5(X )-partition of X. 
Choose Xi £ G, and let ao = { G i,. . .  , G*,; . . .  , a;*,}. Note that if x , y are
in the same Gi, then f ( x )  — f (y )  £ elF. Then, for oq, «2 ^ op, we have

|5ai -  5a2| < \Sai -  5Qo| + |5O0 -  5Q2|.

Suppose aq = { iq , . . .  , Fg; Zi, . . .  , zq}, where each Fj is contained in some 
G; and Zj £ Fj. Now

\Sai - S ao I = 1 ^  m(Fj) f (z j ) -  m(Gi)f(xi)
j=i i=i

j=i i = l J 
FjCOi

= ]jT 7n(Fj)(£ - /(x,-))) ge|m|wr(X).
t=i a 

FjCd,

Similarly, we can prove that |5a2 — 5ao| < £\m\w{X).  Thus |5ai — 5Q2| < 
^  2£|m |w(X), and consequently {5Q : a  £ D } is a Cauchy net in R.

(b) Let £ > 0, and choose an open balanced shrinkable F  £ W with F  + 
+  F  C eW.  The collection V = { f ~ 1 ( f (y)  + F ) : y £ X ) is a cover of X 
consisting of cozero sets. Labelling V as {Fa : A £ /} , we make I  into a 
directed set by saying that A > 7 iff V\ C V1. By the r-additivity of |m |w,

there exist 3/1,... , y^ £ X  such that \m \w [X  \  (J Fa, ) < £, where
'  1=1 '

Fa, = r 1 (/(</,) + F) = {x £ X : pv ( f ( x )  -  f(y,)) < 1).

Define Gx = FAl, G, =  ( v Xt \  ‘Ü  FAj) (2 < i < fc), and Gh + 1  = X \  (J Fa,. As-
v j = 1 '  .=1

suming that G{ s are non-empty, choose x, £ G, and let Qo = { G i,. . .  , G*+i;
X\ , . . .  , Xfc+i}.
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Let ot\,oti> op- Suppose aq = { F i,. . .  , Fq; z i , . . .  , zq}, where each F} is 
contained in some G, and'Zj E Fj. Then

l£»i ~ S Qo\ < \ Y 1  m(Fi K / ( ^ ) - / ( x«)) + I m (Fi ) f ( zi)
t = l j j

FQG, FjQGk+i

+ 1 m (Fj ) f ( x k+i) = £(\m \w(X)  + 2\\f\\w)-

+

FQGk+1

Similarly, we obtain |502 — Sao| < e( \m\w(X)  + 2 ||/||m )- Consequently, 
{5a : a E D} is a Cauchy net in R.

(c) Suppose \m\w is cr-additive, and let p(A)  = \m \w(f~ 1 (A)) for every 
Baire set A of f ( X ) .  Then p is also a-additive. Now, taking V as in part 
(b) and using the fact that p is r-additive (since f ( X )  is measure compact), 
we can complete the proof by the argument of part (b).

Remark. Parts (b) and (c) were proved in ([1]; [2], Lemma 3.11) as
suming E a normed space.

Lemma 3.2. Let m E MW(X, E') (W  E W) and f  E Cb{X, E). If the 
integral f  d m f  exists, then 

X

j  d m f  % 1 /  (pw o f)d\ 
X X

m\w w\m\w{X).

P roof. It is a slight modification of [5], Lemma 2.3(ii) and is therefore 
omitted.

It is easy to verify that, if m E M ( X ,E ' ) ,  g E Gf,(X), and a E E,  then 
/  dm{g ® a) = J g dma. 
x  x

4. The Riesz representation theorem

In this section we characterize the u-dual of Ctb(X,E) via the inte
gral representation. Throughout we assume that Cb(X)® E  is u-dense in 
Ctb(X ,E) .

T heorem 4.1. (Ctb(X, E ) , u ) ' = M (X ,  E') via the linear isomorphism 
L —> m given by

(1) L( f)  = j  d m f  ( f e C tb( X , E )).
x
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Furthermore, if L is represented as in (1) with to £ M\v(X,  E') (W  £ W), 
then | | i ||w = |m |w(X), where

\\L\\w = sup{|Z/(/)|: f  eCtb{X,E), \ \ f \ \w < l } .

P roof . Let to £ M w ( X ,  E ') (W  £ W), and suppose that L is the linear 
functional on Ctb(X ,E ) defined by (1). Then, by Lemma 3.2,

\L{f)\ ^ WfWwlmlwiX) ^ \m\w(X)

whenever /  E Ctb(X, E) with f ( X )  C W.  Hence L E (Ctb(X, E ), u)'. We now 
show th a t ||L||w = \m \w (X ). Clearly, ||L||w < \m\w(X).  For any e > 0, there 
exist a B ( X )-partition {F i , . . .  , Fn) of X  and a collection {a i, . . .  , an} C W  
such th a t

\m\w{X)  ^ IE ”*(«)(“•)
1 =  1

+ £•

Using the regularity of each m a< and complete regularity of X , as in [10], 
Lemma 4, we easily obtain

fi\\L\\w + e.
i=i

Thus \ m \ w ( X ) % ||Z/1|iv-
Conversely, suppose that L E (Ctb(X, E ), u)'. Then there exist a LU £ W 

and r  > 0 such that

(2) \L ( f) \<r\\ f \ \w ( f E C tb(X,E)) .

For each a ^  0 in E, let La(g) — L(g ® a) (g E Cb(X)). By (2), we have 
\La(g)\ £ HMbwK0) for all g E Cb(X), and so La E (Cb{X),u)'. Hence, by 
Aleksandrov’s theorem, there exists an m a E M { X ) such that La(g) = /  gdma

( g E C b( X ) )  and ||La|| = |ma|(X ).
For each F E B(X),  define m(F)(a)  = m a(F) (a E E). Then |m(.F)(a)| ^ 

< |m a |(X ) < rpw(a), and consequently to is a finitely additive ^'-valued set 
function on B{X).  Using again the argument of [10], Lemma 4 and also (2), 
it follows that \m\w(X) ^ r .  Thus m E M\v(X , E').

k
Now, for any /  = £  /,• ® a, (/,■ £ Cb(X), a, £ E) in Cb(X) ® E ,

i=i
k

1=1

f ,dma% / (fm(/,-®fl|)= / dmf.  
j _2 * X  J  A

Since, by our assumption, Cb(X)®E  is u-dense in Ctb{X, E), the above holds 
for all f  E Ctb(X, E). This completes the proof.
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A GENERALIZATION OF THE RICCATI EQUATION

I. BIHARI

1. Consider the ordinary second order linear differential equation
oo

(1) (py')'+qy = o, x e J[x0 ,oc), p > o ,  p ,q £ C (J ) ,  J p~1=°°-
Xo

The function £ = ^ -----where y is a solution of (1) — satisfies the Riccati
equation

(2) £ ' + -  + <7 = 0
P

with the restriction y ^  0, thus the estimates obtained by (2) concerning 
y will also be restricted, while in the present paper results without such 
restriction will be given, both for oscillatory and nonoscillatory cases, too.

This defect (disadvantage, insufficiency, inadequacy) of the Riccati equa
tion can be eliminated or we can get rid of it as it will be done in the sequel. 
It is well known that the function

(3) A[y] = py2+ —
<7

of y — called amplitude of y — plays an important role in many investiga
tions (oscillation, asymptotic behaviour, stability, some monotonicity prob
lems, etc.). Another important function is

(4) B[yl , y 2] = yl + yl = ri(x) = 11

— where (j/1,2/2) is a PaR °f linearly independent solutions of (1) — called 
the “weight” of the pair (2/1,2/2)-

Let us deduce a Riccati-like equation concerning

z = —
V

1990 Mathematics Subject Classification. Primary 34A30; Secondary 34C11, 34E05. 
Key words and phrases. Riccati equation, estimate of solutions, qualitative theory.
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which has the advantage — compared to (2 ) — that rj never vanishes. We 
have in turn

or

, {pp')'p -  pp'2 (pp')' 1 /p p ' \2 
rf rj p \ r ] /

, 22 _ W
Z i —

P P

Here

{pp')' = 2[p(yiy[ + y2y'2)]' =
= [̂{py'\)'y\ + {py '̂y? + p{y? +  y?)] =  

= 2[—q(yl + y\) + p(y\ +  y2 )]

and
2pA > A = „?  +  !,?.

V 7?
Thus

. z 2 2pA 
z  + + 2q —

P V

This is not sufficient for our purposes, since we cannot do with the term 
Therefore we proceed as follows. Applying the identity

(«1^1 + U2V2)2 + (U!U2 -  U2Vi)2 = (ul + U%)(vl + v])

to
U, = y„ V i - y ', i — 1,2

we get
(yiy'i + y2 y'2f  + (2/12/2 -  2/22/i ) 2 = (2/? + 2/2 X2/Í2 + y2 )

or
7j'̂  C
—  + IV2 =  tjA, W -  y[y2 -  y'2y\ -  ~ , c = const
4 p

whence
2pA z 2 2 c2

T] 2 p ^  prj2 ’

finally

(5)
; *2 n 2c2

2 + 7T + 2<7 — ---
2 p pr]z(5)
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which is the Riccati-type equation looked for and valid without any restric
tion on the values of y(t).  The last remark holds also concerning the following 
estimates involved by (5)

X

( 6 ) z < z 0 - 2  J ( q ( s ) - c 2p~l (s)rj~2( s ) ) d sd=  f(x) ,  z0 = z (x0),
X  0

(7) V < Vo exp (  Í  f(s)p 1 ( s ) d s ) d= F(x),
*0

(8)
, f 2 2c2 

2 + 2 p + 2 q > p P '

(9) 2 > z ° /  ( 2p + 2i pF^ d x = 9 { x } '
X q

(10)
X

r]> r/o exp f  I  gp~ld x j  =f G(x),
x 0

(11) G(x) <T]< F(x).

These estimates have another insufficiency. Namely the term
X

/(x ) = J  p~1 (s)r]~2 (s)ds 
*0

involved in the above formulas is unknown in general, since it involves rj. 
However, (6 ) - ( ll)  can be useful provided the integrals

X

/(x ), 7i(x) = J  q(s)ds, or c2 I - I \
*0

are convergent or at least bounded as x —► oo. I\ must be bounded from 
below, too.
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In general, nothing is known in this respect, but some important partic
ular cases were studied earlier:

(A) If (1) is non-oscillatory, suppose

( 12) — oo < l i m  i n f  7i <  l i m  sup 7i < oo
X~ l,'00 x —>-oo

which is satisfied if q > 0. Namely, then lim 7i exists [1]. Furthermore there
X — K X )

is a “small” solution y\ with
OO

h  = J  p - ' v T 2 = oo

and for every other solution r/2 — which is linearly independent of y\ — 
called “large” solution — we have

OO

h  = J  p~l y2 2 < oo

involving
OO

h  = J  P~l P~X < oo, 7? = y\ + y\

(see [2, p. 355]). Now we show that 7(x) is also convergent as x —» oo provided 
q > 0 (or q < 0). Clearly, in this case y\ and y2 are convex (concave), non
vanishing and monotonic for x > x\ with some x\ > 0 and lim y2 exists,

X — ►OO

lim yi,  too, and finite or infinite, but by all means greater than £, where
X — ► OO

£ > 0 is a fixed number. This follows from the convergence of I3 . On the 
other hand if y2 is concave it has to be increasing for x > x\,  having no zero 
greater than Xi, i.e., again lim y\ > £, implying q> £ and the convergence

X —> 0 0

of 7(x) as x —>■ 00. — The case q < 0 can be treated in the same way.
By the way, let it be remarked that if we drop the condition 5 ^ 0  (or 

q ^  0) throughout J  then we can construct such a q that I4 is convergent and 
/  is not (see Example 3).

Thus in the present case z <k  = const, and the estimates (6)—(11) make 
sense.

What is about the accuracy of these estimates? Of course, the omitted 
term ^  of (5) must be small compared to c2p~1 q~2 — q as x —* 00, i.e.

2 —1 —2 2 —2 c*p 77 * — q c 77 — pq
R = --------2------- — --------0-----d. z2

p
must be large compared to 1 as x —► 00.
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(B) If (1) is oscillatory then in general such estimates cannot be obtained. 
However, there are examples where both I\ and I  (or c2/  —1\) are convergent 
and the above estimates can be carried out. An example where I\  and I  are 
not convergent but c2I  — I\ converges is as follows.

E x a m p l e  1. As it is well-known the Bessel function Jv{x) with the index 
v — I — or more precisely — the functions

('sin x
cos xVi = s / x J ^ x )  = y - |

y2 = y / x J - „ ( x ) =  -  sin*)

satisfy the equation

3v = -  
2

Here

< = *(Jl  + Jl„)  = - ( -  + 1), * = -  = -7r \ x z J n

3x2 + 2

T] x(x2 + 1) ’

c
? = x2(x2 + l ) 2

, c l  — I\ is convergent

as x —► oo and
3x2 + 2

It - ---- --------► oo as x —► oo.

Therefore the approximations above are good enough. 
E x a m p l e  2. If in equation

2 
7T

y "  +  y  =  0 ' A>0’ x0 > o

i°

2°

3°

A > 4, then y\ = y/xx*1, y2 = sfxx /r = | y ^ ——

77 = x(x2/j + x 2/J), c = 2 n, lim R -  — T  \ /  A — 4
16

A = 4, then y\ = y/x, y2 = y/x logx, tj — x (l + log2 x), c = — 1

lim R = - \  = - ~ .  x—>oo A 4
0 < A < 4, then y\ = -y/x cos(izlogx), y2 = ^/x sinolog x)

1 / 4 - A  p 1v = - \ ! —-— , i] = x, c = —i/, lim R =
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In all the three cases I\ and I  are convergent, the estimates make sense, but 
are not good, since R  is not large as x —*• oo.

We can raise the problem of finding the value of the parameter k, which 
furnishes the maximum of R  as x  —> oo when we replace — at fixed (2/1,7/2) 
— 77 by rj =  n y \  + j/2. In Example 1 this value is k  =  1 .

There is another way to establish the accuracy of (6)—(1 1 ). The two 
limits

x  X  x

X q X q X q

exist or do not exist at the same time as it can be proved in the wake of a
2

theorem by P. Hartman [2 , p. 3 6 5 ]. This means that is “integral small” 
instead to be small in common sense.

2. In the non-oscillatory case, analysing the problem of convergence of 
the integral I ( x ) as x —> 00 we need some formulas expressing 3/1, t/2 and 9 
by 77. For the sake of simplicity assume p =  1 . If 7/1 is a solution of (1 ) with 
2/1O0) =  1, 2/(20) = 0, then

X

2/2
f  d s  

= 2/i / -2J  2 / i*0
is a solution with 7/2(20) =  0 , y ' ^ x 0) = 1 and 7/1,772 are linearly independent 
and

(1 3 ) 2 , 2  2 v = 2/1 +  2/2 = 2/1

Let f  7/j 2 d s  — u ( x ) ,  then rj =  ^ ( 1  + u2), whence
X q

u' 1
— x =  arctgu :. L —1 + u 2 77

X

I ' - 1
d x  + C.

Xq

Thus

( 1 4 )
u = j y " i s = l g { j  W ) + c ) -

X Q X q

y \  77 cos2( / y + c)
. », = v ^ o s  ( / ^ j  + C

*0

Hence
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and

But

X

2/2= x / ^ ?  = V ^ sin( /  ^ J j + C ) '
XQ

2/1(20) =  y /r jo C O S  C - 1,
2/2(20) = v /^sin  C = 0, Vo = 1

giving C = 0. Since f  y1 =00 (being y\ the “small solution”) (14) implies
XQ

f  T] ldx = I  involving f  = j -  j .  Finally,
x o xo

OO OO

y , = ^ s'm U ^ ) ) ’ si=v/icos( / ^ ) ) -
The coefficient q can be expressed from equation

/ 2:2 - 2  v 'z + 2 q — 2 v , z =  — 2 r)

obtaining

9 =
4 + rf2 — 27/7/" 

4r) 2

Now we can construct an 77 (i.e. an equation (1)) with

lim < 00, lim /  = 00.
X —♦OO

A function like (a  > 0) or cannot be chosen as ^ y ,  since then
both I 2 and I  are convergent. Therefore such a function has to be modified 
as follows.

E x a m p l e  3. Let
°° 1

n=l v ’

then

but

^*>=5 : ^ - E ( i ) ’
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provided a ^ 2. Now let us construct a sequence of functions f n(x ) the graph 
of which are triangles having as basis the intervals (n, n + ( 2 ^ )  °f the x axis
and the heights an (n = 1 ,2 , . . . )  and / n(x) =  0 elsewhere, then by adding 
/ n(x) to one of the above functions we obtain a function rj-1 with

OO OO

/ i < 0 0 '
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HERMITE-FEJÉR INTERPOLATIONS 
OF HIGHER ORDER. I ll

R. SAKAI and P. VÉRTESI1

1. Introduction

Let X  = = cos i)kn} C [-1,1],

(1.1) 1 ^ ^nn ^2-n — 71 — 1 ,2 ,... ,

be an infinite triangular interpolatory matrix. The unique Hermite-Fejér 
interpolatory polynomial Hnm(f, X ,  x ) of order ^ mn — 1 (m > 1, fixed inte
ger) for an arbitrary continuous function f ( x ) in [—1,1] (f £ C , shortly) is 
defined by

(1-2) Hnm(f’X , x kn) = 6 otf(xkn), k = 1 ,2 ,. . .  ,n , < = 0 ,1 ,. . .  , m -  1.

By (1.2) and some obvious short notations Hnm can be written as

n

(1.3) Hnm( f , x )  = '£ 2 f (xk )hknm(x), n = 1 ,2 , . . . ,
k=l

where for the polynomials hk of degree exactly mn  — 1

(1.4) h\ f \x j )  = 6 ot6 kj, 1 < k , j  <n,  0 < f < m - l .  

An explicit form of hk is

m — 1

(1.5) hknm(x) = l™n(x) ^  eiknm(x -  x k) \  l ^ k ^ n ,
»=o

1980 Mathematics Subject Classification (1985 Revision). Primary 41A05.
Key words and phrases. Interpolation, Hermite-Fejér parabolas.
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where /*. are the Lagrange fundamental polynomials of degree exactly n — 1,
n

i.e. with íJn{ x ) cn Ü (x ~ x k) 
fc=i

lkn(x)
u n{x)

u'n(xk)(x -  xk)'
l  < k  < ti,

the coefficients e,k can be obtained by (1.4) (cf. R. Sakai [1] or P. Vértesi
[2D-

When X  = X^aß\  i.e. when the nodes (1.1) are the roots of the n-th 
Jacobi polynomials Pn°ß \ x ) , a , ß  > — 1 (cf. G. Szegő [3; 4.1]) as a detailed 
analysis shows the behaviour of the polynomials H ^ f \ f , x )  resembles the

Lagrange interpolatory polynomials H ^ ß \ f , x )  = f ( x k)lß ß \ x ) ,  when-
k— 1

ever m  is odd supposing certain conditions on coefficients e,fc while the cases 
of even values of m  are similar to the Hermite-Fejér interpolation (cf. [1; 
Parts 3 and 4], [2, Theorems 2.1 and 2.7]).

The accomplishment of the corresponding conditions on e,* for odd m 
was investigated in [1] and R. Sakai [4]; a (sometimes sketchy) proof was 
given in [4] if a = ß = —1/2. While the ideas were nice and correct, in many 
places a more detailed, finer and sometimes a modified argument may be 
useful. This plan is realized by this paper for arbitrary fixed a ,ß  > 1.

2. Notations and preliminary results

For arbitrary X  and m > 1 we have

(2.1) eok = l

1 <_1
(2.2) etk = - - ^ 2 ( t ) rerk{ l ^ { x ) } ^ l ,  l < i < m - l ,  (m> 2)

r = 0

where (f)0 = 1, (t)r = t(t — 1 ) .. .  (t -  r + 1), r > 0,

(2.3) (r+ ,,m )l ^ ( x ,) = ___ _
k {r+l)w 'n(xk)

for arbitrary k, 1 ^ k n (cf. [2, (3.2), (3.4) and (3.8)]).
From now on let u n(x) = x), a , / 3 > —1 are fixed, with

(2.4) Pn(l)  = na , P (na ß \ - x )  = ( -1  )nP ^ a\ x )
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(an ~  bn iff 0 < Cl  < an/bn < c2, 6„ ^  0).
The following facts are well known. If x — cost?, x = cos 1 ^

< < n, are the roots of P^a,^ \ x )  then with xo„ = 1, xn+i,n =  —1, i?on = 0,
^n + l,n — 7T)

(2.5)
n 1 k 

n n
Further if X j  is the nearest root(s) to x  (j

(2.6)
i i \j ~  k\(j  +  k)
F  XA:| ~  9 i

H 1 H IIA c*
(2.7) |Fn(x ) |~ |x  Xj \  / 3  ~  |i?

i k í  h

na + 1

uniformly in x € [—1 + £, 1]. Finally we need

|F '(x fc)|~A :-0- 3/2na+2, 0<t?fc< 7 r - £.
(See [3; (4.1.1), (4.1.3), (8.9.2)] and [2] for other references; the symbol 
is uniform in n and k (cf. [3; 1.1]); c,ci . . .  may denote different constants; 
their dependence of certain parameters will be clear from the corresponding 
formulae; 0 < £ < 2, fixed.)

Using the differential equation
( 2 .8 )

(1 -  x 2 )p(s\ x )  + {ß -  a -  (a  + ß + 2s -  2)x}Pjf~1\ x )  +
+ {n(n + a +  / 3 + l ) - ( s -  2  )(a + ß + s -  l)}P^s_2^(x) = 0, s =  2 ,3 , . . .

([2; (3.16)]) we get the following statement. If K  — min(/c, n — k + 1), d(j, k ) = 
= (a  — ß + (a + ß + 2j)xk)/2  and M > 1, fixed integer, then we have

Statement 2.1 . L e t \ < r < M .  Then we can write

( —IV /  n \2 i
2j t t ( ^ t )  ( 1 + f t )  , / r = 2 j '

B i - s ^ y , { d u + h k ) + £ t )  , / r = y + i

(2.9) lir\ * k )  =

for 1 < k < n, n> 2 .

Here and later {£*} = {^[“ ’̂ ^(r)} denotes a properly given sequence which 
may be different even in subsequent formulae. However, they fulfil

k £ ^ )(» - ) l^ c (a ,/J ,A Í ) (^ + ^ J ) ,  1 < r < M ,  1 Z k < n ,  n > 2,
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where c ( a , ß , M)  > 0 does not depend on its occurrence.
Statement 2.1 can be derived from [2, Lemma 3], but we will prove it 

(Part 4), for sake of completeness.

3. Results

By previous notations and (2.9) we will prove
THEOREM 3.1. For arbitrary real s with |s| < M  we can write if  1 < k ^

< n, n — 1,2, . . .

(3-D « I ) « > : -  { ( 4 ^ ) ) - } ^ i = ( - i p ( ^ ) ' ’ f e W  + M 0 }

if j  = 0 ,1 ,2 ,. . .  , [{M -  l)/2 ] where

(3.2) Po(s) = l ,  Pj(s) = Y , ( - l ) J 'a (i , j )s ' ,  j >  1
i=i

V %{s) — 0, q2j € P2j)

further they fulfil the relations

(3.3) w (» +  1) = 2 j  +  l g

(3.4) i,qf , s) i  Ini.

2 i Pi(s),

= \^k I ) t = o , i , . . . , j .

By (3.2) and (3.3), the coefficients a(i,y) do not depend on k or n, even 
they are independent of a and ß. Further it is easy to get

(3.5)
1

Pj(o) =  o ( i >  i ) ,  Pj{ i )= 2j + l

Pj ( t )>  0 for t = 1 , 2 , . . .  , M.

Again by (3.2)-(3.3) one can successively get

p0 { s ) =\ ,  Pi(s) = ^ ,  p 2 (s) = 5S- 15-2- ,

. . 35s3 - 4 2 s 2 + 16s , , 175s4 -  420s3 + 404s2 -1 4 4 s
P3(,)  = ----------63----------’ P4(S) = ----------------- 135---------------- ’

etc. (cf. [1] or [4]) which suggest
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T heorem 3.2. With the previous conditions and notations

(3.6) a(i , j )>  0, t = 1 ,2 , . . .  , j ,  j >  1.

An important consequence of (3.6) is that

(3.7) Pi[ t )±  0 if |í| = l , 2 , . . .  ,M , j>  1.

Indeed, if u > 0, we remarked it before; if u = —t, t > 0, by definition 

Pj(—t) = ( — 1)J ]C o(*,Í)í* whence (3.6) gives (3.7).
i=i

By (3.7) and (3.4)

(3.8) if K > c 0, |i| = 1 ,2 , . . .  , M\sin Vk/

(cf. [2; (3.30)]).
Definition. Let R 0 (s) = 1 and

j
(3.9) RJ(s) = Y ^a ( i , j ) s ' ,  j >  1, |a|£M.

Relations (3.9), (3.7) and (3.6) immediately give

Pj(-'») = ( - 1), -ßi(Ä), Äj ( - 's) =  ( - 1)JPi(a), 0

Rj ( s )>  0 if s > 0, Rfit) /  0 if |i| = 0 , l , . . . , M ,  j  > 1.
Now we can formulate our main relations.

T heorem 3.3. For arbitrary fixed m >  1 and a ,ß  > — 1 we have for  1 < 
< k < n, n = 1,2, . . .

(3.10) j

By (3.10)

(3.11) e2t,k

^0 kn m  — 1?

e2 tMm = ( l  +  £fc), 1 %t< m — 1

/  n \ 2 i
h r  , i < t <Vsm wt/

m — 1
if K  > c0.

An important application: If m  =  1 ,3 , . . .  is fixed, odd, then for a proper
f e e  ____

üm \\Hfaß\ f , x ) \ \ c  = oo, a , / ? > - ! ,  fixed

(cf. [1; Th. 3], [2; Th. 2.7] and [4]).
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4. Proofs

P r o o f  of S t a t e m e n t  2.1. We use induction. (2.8) with s = 2 gives

P " _ q - / ?  + (q-f/3 +  2 )sfc 
Pú sin21?*

whence by (2.3) we get (2.9) for l'k(xk) (with £*(1) = 0)- If 3 = 3, from (2.8), 
by the previous formula

P"' n2 f q + / ? + l  q + /? + 2 
Pú sin2 \  n n2
a - ß  + (a + ß + 4)xfc q - / ?  +  (q  + /3 + 2)at |

n2 sin2 1?̂  J

which proves (2.9) for l'k(xk) with £*(2) =  { . . . }  —1 (cf. (2.3); we use 
(n sin t9k ) ~ 2 £ c / f 2 (see 2.5)).

Now supposing (2.9) for r  = 1,2, . . .  , t we get by (2.3) and (2.8)

, , p(*+2)
( (+  2)I<,+I,(xt ) = =

■*n
_  q — /3 + (q-f/I  + 2f +  2)xjt P„ + ^

sin2 P^
n2 f q + /?+ 1 i(q  + /3 + t + 1)) Pn ^

sin2 \  n ra2 /  Pú

whence we get (2.9) for r  =  í+  1 (cf. [2, Lemma 3.4] for other details). □
P r o o f  o f  T h e o r e m  3.1. When j  = 0, (3.1) obviously holds. If j  > 1 

we define the polynomials pj and </2j as follows. For arbitrary real s

(4.1) « M ) (J) =

*1+*2 + ...+** = J

where A(I)  = A(i\,  i2, . . .  , it) > 0, integer. E.g.,
(4.2)

( /K i) ) '= « r * ( * ) 4 ( * ) ,  w w ) * = w a i f , ( » ) ( 4 w ) a + » i r 1(» )g (* ). 

( « * ) ) " = w ^ r 3« « « ) 3 + 3 ( » v r 2( * ) '« * w w + • 4 - 1(* )C (* ),
( 'i(x )),,V)= ( » l i i r 'w t 'K * ) ) 4 + 6(»)3í; - 3('U *))2'K x)+  

+ 3 ( « v r 2(*)(ff(*))2 + 4 (» V i‘ J(*)4 (* ) C ( i ) +
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Now let J  = 2j  and x = x*. Consider a term  for which all the ir are even.

t 53
Then by ir > 2 and 53 *V = 2j ,  t < j ,  by (2.9) its sign is ( - l ) r=1 =  ( -1 )J

r =  l
t

53 .v
and its exact order is (n / sin 1h ) r=l = (« / sin ők)2*- If 5 3 ^  denotes the sum 
of these terms (see the underlinings at (4.2)), we write

£ > ( / ) « ,  n  *'>}=
r =  l

where Uj € Vj  and as it is easy to get, | % |ejt|, 0 < v < j .  Let Pj(s) :=

= 53(1)(A (/)(s)t n  T ^ r)- N°w take a term  in which there are (at least

two) odd ir. Using (2.9) it can be estimated by sin-4 i?jt(rc/ sin i?fc)2ji-2 = 
(n sini?jt)-2 (n / sin i?*,)2-7 ^ |£jt|(n/ sini?fc)2j (by (n sin dk) ~ 2 ^ cK~2) whence

if their sum is 5 3 ^  f°r v2j(-s) := 53^2  ̂^ŷ (^)('s)t II 4' )̂ we obviously have

= l£*l (ilirW) 3 ' 0 =  v = •?> i -e - we obtain (3.4) with q2j := uj+ 
+( — l)J(sin f lk/n)2*v2j. For example if j  = 1, we have (cf. (4.2) and (2.9))

t e r =- K ^ r ) 2«1+•*(*))■+ *  -  -3 \ sm Vk / sin vie

( "  V f 5 I r /ON* , W . f c i + f f c U ) ) 2 . , .  
i 3 + £ ‘ (2,3 +  —

i.e. Pi(s) = I and qk(s) = {. . .} — |  (cf. the proof of [2; Lemma 3.9] for a 
more detailed argument).

These definitions give (3.1), (3.2) and (3.4). To prove (3.3) we write by 
Leibniz rule

(0 W) = m >m> = E  (3)  «'o1'1'®"0=(4 .4)



94 R. SAKAI and P. VERTES!

=  £  ( 22 - ) ( 4 ) ,2,,' f  “ 2,) +  £  ( 2/ í  1) ( ' i ) (2' " 1)' f  " 2,+1) ~  Si + s

Here S 2 G V2j and it can be handled as the sum before. For S i, using 
th a t pj(  1) = 1/(2j  + 1) (use (2.9) and the definition ofpj(s)) we write, using 
induction and previous considerations,

5 i = ( - 1)J( ^ k ) J É  ( S )  ■(p*(s)+92,(s)) ( 2j -  l i + 1 + ^ - 2*(1))  -

: - i ) j

2 j

i = 0

n \  2r
sin i?jt.

where U2j G F*2j and |t4j I = l£fcl» n ^ i < j . Noting

(2 A  1 = + 1 \  1
\ 2 i /  2j — 2t + 1 V 2i J 2 j  + V

we obtain (3.3) □

P r o o f  of T h e o r e m  3.2. If

D = := {(x,s); |x -  xjt| < 6n and |s| < M \}

(k and n are fixed Sn > 0 is small enough) then, obviously, L(x, s ) := /£n(x) is 
differentiable finitely many times (as a function of two variables) whenever 
(x, s ) £ D.

Lemma 4.1. If 0 ^ u, v M 2 and Sn > 0 is small enough, then

(4.5) ( xq , őq) G D.

Indeed, applying d2 F/(dxds )  = d2 F/(dsdx)  (Young’s theorem) for L and 
its partial derivatives we get that either side of (4.5) is equal to 
(«9 u+vL / ( d x “dsv))x=X0,s=S0. □

By (3.1), (3.2) and (3.4)

n
sin ) 2j {p(J ](s) + <l 2j(«)},=0

(4.6)
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Changing the order of derivatives (cf. [4])) we get, using dtL /d s t = 
= /£(x)log‘ lk(x),

(4.7) 

Using

(4.8)

/  d2J / dlL \
\ d x 2J V dsl ) t=o) _
v  /  X = x k

= 0 ° g '« » » I S , -

(,og ,l ( l ) ) i «>= =  ( E  ^ ) w _ ,) =

- ( 2 i - l ) ! £

i*k 
1

U { x ~ x ' )23'

by (4.5)-(4.8) we get

(4.9) 0 < ( - l ) '( lo g 'i , ( x ) ) i24  = ( ij^ - ) 2j{l!a(l,; )  + £*}. H I ,

when t = 1, whence a ( l , j )  > 0. To obtain (4.9) for t > 1, we prove

(4.10) (log' k (* ))
(2j-l)
x = x k 3 l  1,

first when t — 1.
Indeed, by induction for j ,  (loglk(x))^l~p  = X) B(I)lk 1̂ lk 2̂ .. with 

certain coefficients J3(/) =  j3(ii, *2, . . .  , i r ) ? where ^  ir = 2j — 1, 1 ^  ^  *2 ^
^ .. At  ^ 2j — 1. But then at least one ir is odd, whence by (2.9) we get
(4.10) as before. Now we prove (4.9) when t — 2 (whence by (4.5)-(4.8), 
a (2 ,j)> 0 ) . Indeed, by

(log2 /k(x))(2j) = (log lk(x) ■ log /jt(x))(2j) =

= E  f  oO  f̂c(x))(2,)(loS /fc(x ))(2'7 2,)+
•=o '  '

+ E  ( 2 i _  2)  ^ (*))(ai_1)(iog /*(x))W -2i+i).

Using now (4.9) and (4.10) for t — 1, we get (4.9) when t = 2. The further 
steps are obvious. □

P roof of T heorem 3.3. Let

(4.11) Cj(s) := E ( —!)' fo O  Bi(s)pj~i(s), j > l ,  M <M .
n '  '
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The main ingredient of the proof is the relation

(4.12) Cjit) = 0, j  > 1, i = 0, ± 1 , . . .  ,M

(cf. [1; Th. 4]). Cj(0) = 0 is obvious by 0) =  Rj{0) = 0 (j  ^ 1). Now 
we remark that Cj{—s) = Cj(s) for any real |s| ^  M. Indeed, by p ,(—s) = 
= ( - l ) ‘Ä,-(s) and R i( -s )  = ( - 1  )'pi(s), i > 0,

C j ( - s )  =  £ ( - ! ) '  ( I1)  R t( - S)Pi- . ( - s )  =
i=0

D - ‘ > Pi(s)Rj-i(s) = Cj(s),
i = 0

as it was stated. This means it is enough to verify (4.12) only for t = 
= 1 ,2 , . . .  ,M .  By

2j
0 = (/-■+■ )<«> =  £  

we get as in Part 4.1
1=0

,)( 4 ) (2j-*) 0 ^ 1 )

o = Pj (o) = ) p i ( - 1) P j —i (1) =
1=0 '  '

i= 0

Now, induction. Supposing Cj(t) = C j(—t) = 0, by (4.11) and (3.3)

o = C j( - t )  =

Here using the relation

'2 jN 1
k2iJ 2 j  — 2 i + \ 

and changing the order of summations

J -2 j -

2 j  — 2i + 1\ /  2 A  1 /2 ; '- 2 A :+ l \
2 k )  ~ \ 2 k )  2 j - 2 k + l \  2  i )

fc= 0  1=0

1 / 2 j - 2 k+l
2 j - 2 k+ l  V 2i(  J 2i W  =  Ci ( <+1)
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which completes the proof of (4.12).

Relations (3.10) is proved by induction, again. If t = 0, (3.10) holds true. 
Supposing it until t — 1, we write by (2.2)

e2t,k =  - 7 ^ 7 ( ^ ( 2 0 2 . 6 2 .',fc(/Jt')<2i 2l> +  y^(2Q 2,-+ie2.-+ i,fc ( /jn (2*~2‘~ 1) } .
' '' 1 = 0  i=o

Here the second sum can be estimated by |£fc|(n/sin i?t)2< (see [2, Lemma 
3.11]). For the first sum, J, by (3.10) and Theorem 3.1

J = 1 +£k
(20

which gives (3.10) for t, considering that by (4.12), { ...}  = R t(m). □

Addendum. Recent results corresponding to e2t+i,*:nm (see Theorem 3.3) 
are in our subsequent paper [5].
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LOWER BOUNDS FOR THE NUMBERS OF EXTREMAL 
AND EXPOSED DIAMETERS OF A CONVEX BODY

V. P. SOLTAN and M. H. NGUEN

1. Introduction

Further A will denote a convex body (i.e. a compact convex set with 
non-empty interior) in n-dimensional euclidean space E n. A chord [a, 6] of 
A is said to be an affine diameter of A if and only if there exists a pair of 
different parallel hyperplanes each containing one of the endpoints a, b and 
supporting A. It is known that every point x € A belongs to at least one 
affine diameter of A, and for any direction in E n, there is at least one affine 
diameter of A parallel to this direction [1].

An affine diameter [a, 6] will be called extremal for A if a, b 6 ext A, and 
will be called exposed for A if A fl H — {a}, AC\G — {6} for some parallel 
hyperplanes I I , G supporting A. Any convex body in E n has no more than 
2n points each being the endpoints of an extremal diameter, and has exactly 
2" such points if and only ifit is an n-dimensional parallelepiped [2]. Up to 
now the following problem is not solved: to determine the least upper bound 
for the cardinality c of points each two being the endpoints of an exposed 
diameter of A. The equality c = 2n — 1 was proposed in [3], but from [4] it 
follows that c > (1.15)".

2. Main theorems

Denote by p(A) and q(A) the numbers of all extremal and exposed di
ameters of A, respectively.

T h eo r em  1. The numbers p(A) and q(A) are positive. Any of them is 
finite if and only if A is a polytope.

T h eo r em  2. p(A) > n(n + l) /2 . Equality p(A) = n(n + l) /2  is fulfilled 
if and only if A is an n-dimensional simplex.

T h e o r e m  3 . q(A)>n. Equality q(A) — n is fulfilled if and only if  A is 
an n-dimensional octahedron.

1980 Mathematics Subject Classification (1985 Revision). Primary 52A20; Secondary 
52A37.

Key words and phrases. Convex sets in n dimensions, inequalities, extremum problems.

Akadémiai Kiadó, Budapest
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3. Some auxiliary lemmas

L e m m a  1. Each point x £ ext A is the end of some extremal diameter 
of A.

P r o o f . Let L be some hyperplane supporting A at x , and denote by 
N  another hyperplane parallel to L and supporting A. If y is any extremal 
point of A n IV, then y £ ext A. Hence [x,y] is an extremal diameter of A. 
□

Recall that a segment [a, b] C A is named a metric diameter of A if 
\\a — b\\ — max{||u — n|| : u, v £ A}.

L e m m a  2.  Any metric diameter [a, 6] of A is an exposed diameter of A.
P r o o f . Let L, N  be two hyperplanes passing through a,b perpendicu

larly to segment [a, b]. It is well-known that L, N  support A, and AC\L — {a}, 
A fl N  = {6}. This means that [a, 6] is an exposed diameter of A. □

L e m m a  3. Any vertex a of a convex polytope B  C E n is the end of some 
exposed diameter of B .

P r o o f . Let H  be a hyperplane satisfying the condition A fl H = {a}. 
Denote by G another hyperplane parallel to H  and supporting B. We can 
slightly move hyperplanes H  and G in order to make the set B n G  one-vertex 
and to preserve the relation B fi H = {a}. If B  fl G = {&}, then [a, b] is an 
exposed diameter of A. □

A point a £ A is named fc-extremal for A if it does not belong to the 
relative interior of any (k +  l)-dimensional simplex 6  C A and belongs to the 
relative interior of some &-dimensional simplex a C A [5]. In our notations, 
ext A consists of all 0-extremal points.

L e m m a  4. Let A be a union of some convex bodies Bo, B \ , . . .  , B m whose 
interiors are pairwise disjoint. If a point x £ int A is k-extremal for Bo, then 
it belongs to at least n — k of the sets B i , . . .  , B m.

Proof of Lemma 4 will be organized by induction on n. The case n — 1 
is trivial. Suppose the assertion of Lemma 4 is true for all n / — 1, and let 
A be a convex body in E l.

First the case k > 0 will be considered. Let S C Bo be any &-dimensional 
simplex containing x in its relative interior, and H be some hyperplane 
satisfying the conditions:

x £ H ,  6 c H, in t i? o n f /^ 0 .

Let us denote by C \ , . .. ,CP all the members of the family {B i , . . .  , Bm} 
whose interiors intersect H . Relative to H , a convex body AC\H is the union 
of convex bodies BqC\H ,C\C\H , . . .  , Cp n H  having pairwise disjoint interiors. 
By the inductive hypothesis, x belongs to at least (n — 1) — (k — 1) = n — k

MAGYAR
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members of the family {C\ fl H ,. . .  , Cp D H}. Hence x belongs to at least 
n — k sets from {Hx,. . .  , Hm}.

Now let us consider the case k = 0. W ithout loss of generality we may 
suppose that x belongs to the sets .. , Bq, q ^ m ,  and only to them.
Then, for some r > 0, the ball £ r(x) of radius r and centre x is contained in 
int A and does not intersect each of the sets Bq+1, . . .  , Bm. Therefore from 
the relation A = Bo U B\ U . . .  U Bm one has

Sr (x) = [H0 n Er(x)] U . . .  U [Bq n £ r(x)].

We are going to show that Bo is locally conic at x. Indeed, let y be any 
point from bd Bq H £ r(x). Then y £ H, for some index i = 1 ,. . .  , q. Because 
of convexity of Bo and H,, we obtain the inclusion [x,y] C B0 fl H,. Hence 
[x,y] C bd Bq. The last inclusion means that Bo is locally conic at x. In this 
case, from the relation

A = conv({x} U (ext A \  {x}))

it follows the existence of a one-dimensional face of Bq of the form [x, z\. Any 
point v £]x, z[ is 1-extremal for Bq. By the demonstrated above, v belongs to 
some n — 1 cones D i , . . .  , Z)„_i from the family {B1?.. .  , Bq}. Hence <? > n.

Denote by L any two-dimensional plane passing through [x ,z\  and inter
secting int A. A convex figure C = B 0  fl L is locally conic at x. Therefore 
two segments of the form [x,z], [x,s] exist in bdC . Let us select any point 
w £]x, s[flSr(a:). Since ]n,m [cintHo and H i , . . .  , Hm are convex, one has 
w £ Bj  for some set B} different from D \ , . . .  , D„_ i.  Hence q ' tn .  □

Let K. be any family of cones in E n with common zero vertex. Two 
cones L ,M  £ /C will be called antipodal provided L C\(—M ) ^  {0} (or M fl 
n ( - L )  {0}, which is the same). Denote by t(K) the number of all pairs of
antipodal cones in K.

Lemma 5. Let K. = {K I , . . .  ,A’m} be a family of closed convex acute 
cones with common zero vertex satisfying the conditions

n

(1) (̂ J = E n, int K, fi int K j = 0, i / j .
t=i

Then t(JC) > n(n + 1 ) /2 . Equality t(JC) = n(n  + l) /2  holds if and only if 
m = n +  1.

Proof of Lemma 5 will be carried out by induction on n = dim E n. The 
case n = 1 is trivial: m = 2 and t = 2 .

Let us suppose that the assertion of Lemma 5 is true for all n ^  k — 1, 
and K be a family of cones in E k satisfying conditions (1). Denote by / some 
extremal ray of K \.  By Lemma 4, / belongs to at least k -  1 cones from the
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family IC \  {Aj}. The ray — l belongs to a new cone Kj £ 1C. Therefore Kj is 
antipodal to at least k cones from 1C.

Denote by H some hyperplane whose intersection with /v, is equal to 
{0}. We may suppose, that int Kj  H H ^  0 for each cone Kj  satisfying the 
condition K j  n H /  0 (otherwise one can slightly move H in order to obtain 
the desired property). If L \ , . . .  , Lr are the cones in 1C intersected by H , then 
in the (k — l)-dimensional space H the family of cones C = {H f"l L \ , . . .  , H  fl 
fl L r} satisfies conditions (1). By the inductive conjecture, we have f(£) ^ 
> k(k — l)/2 . Hence the family { L \ , . . .  , L r} contains at least k(k — 1) pairs 
of antipodal cones from 1C. Taking into account k antipodal pairs containing 
A',, we obtain

i(/C) ^ k(k -  l)/2  + k = k(k  + l)/2 .
If m = k + 1, then every n cones in 1C have a common ray. Let /, be a ray 

belonging to the intersection of cones Kj ,  j  ^  i. Since — /; ^ (J Kj ,  one has

— /, C Kj. Hence each cone Kj belongs exactly to n pairs of antipodal cones 
from 1C. From this observation, we obtain that <(/C) = n (n +  l)/2 .

Conversely, let t(K) = n(n + l)/2 , and suppose that m > n + 1. Denote 
by Kj a cone from 1C having a maximum number s of antipodal cones in 1C. 
Repeating previous considerations, we obtain inequality f(/C) > n(n — 1 )/2  + 
+ s. Therefore s — n, and, by the inductive assumption, the hyperplane 
H intersects exactly n cones, say, K \ , . . .  , K n. From the condition t(K.) = 
=  n(n + l)/2 , we obtain that K u is not contained in any pair of antipodal 
cones different from { K j ,K u}. This situation can be realized only in the 
case K u Cint( —A',). Since K u has at least n faces of dimension n — 1, there 
are at least n new cones in K. intersecting int( — A',). Thus s> n, which is in 
contradiction with the obtained relation s = n. Hence m — n + 1. □

4. Proofs of main theorems

P r o o f  o f  T h e o r e m  1. From Lemma 1 it follows that p(A) > 0 . If A 
is a polytope with m  vertices, then p(A) < (™). Conversely, if for a convex 
body A C  E n the number p(A) is finite, then the set ext A is finite, i.e. A is 
a polytope.

By Lemma 2, we have q(A) >0. If A is a polytope, then from the obvious 
inequality <?(A) ^ p(A) it follows the finiteness of q(A). Conversely, let A be a 
convex body having the finite number q(A) = m, and let [c,, b,], i = 1 , . . .  , m, 
be all the exposed diameters of A. Suppose A  is not a polytope. Then A 
does not coincide with the polytope

B = conv{c!,... , cm, &i,. . .  ,bm).

Choose any point z £ A \  B and a hyperplane H strictly separating z 
from B. Let R, S be two different hyperplanes parallel to H and supporting
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A. Suppose that x lies between R and / / .  Denote by /  a linear dilation of 
E n with coefficient r > 1 in the direction orthogonal to H . If r is sufficiently 
big, then one of the ends of any metric diameter [f(a),f(b)] of /(A ) does 
not lie between hyperplanes f {H)  and f ( S ) .  By Lemma 2, [ /(a ) ,/(6 )] is an 
exposed diameter of /(A ). Therefore [o, b] is an exposed diameter of A, and 
it is not contained in B. This fact is in contradiction with the choice of B. 
Hence A is a polytope. □

P r o o f  of T h e o r e m  2. Following Theorem 1, we may suppose that A 
is a poly tope. Let a j , . . .  ,a m be all the vertices of A. Let us denote by 
A, the cone of all the external normals to A at a,, and consider the cone 
Ki — Ni — a, obtained from A,- by a translation on vector — a;. It is easy 
to see that K \ , . . .  , Km are closed convex polyhedral acute cones satisfying 
conditions (1). A chord [a,-, a,j] is an extremal diameter of A if and only if 
the cones A',, K j  are antipodal. Hence the assertion of Theorem 2 follows 
from Lemma 5. □

P r o o f  of T h e o r e m  3. Following Theorem 1, we may suppose tha t A 
is a polytope. Let S  be some (n — l)-dimensional face of A. Then S  contains 
at least n vertices a i , . . .  , an of A. By Lemma 3, each point a, is the end 
of some exposed diameter [a,, 6,]. We can choose two parallel hyperplanes, 
which determine the exposedness of a,, bt, sufficiently close to aff 5  so tha t 6; 
will be situated out of S. In this case all the diameters [a,-, 6,], i =  1 , . . .  , n, 
are different. Hence q(A )'tn .

If A is an n-dimensional octahedron, i.e.

A -  conv{ei, - e x, . . .  ,e „ ,-e„ }

for some linearly independent vectors e i , . . .  , e„ € A", then only the chords 
[e,, —e,], i = 1 ,. . .  , n are the exposed diameters of A. In this case q(A) = n.

Conversely, let q(A) = n for some convex polytope A. By the demon
strated above, each (n — l)-dimensional face of A is a simplex with n vertices, 
and each vertex of A is the end of exactly one exposed diameter. Let S  be 
any (n — l)-dimensional face of A. Denote by H a hyperplane parallel to aff S 
and supporting A out of 5. Let T = AC \H . We can take all the hyperplanes 
//,, which determine the exposedness of S, sufficiently close to aff S  such 
that parallel hyperplanes G, support A at vertices of T. From these consid
erations it follows that T  is an (n — l)-dimensional simplex (otherwise some 
vertex of T  would be the end of at least two exposed diameters). Because of 
q(A) = n, all the exposed diameters of A are of the form [aj, 6,-], i — 1 , . . .  , n 
where o i , . . .  ,a„ and b \ , . . .  ,bn are the vertices of S  and T, respectively. 
From Lemma 3 it follows that A = conv(5 U T).

Denote by K, the convex cone with the apex a, generated by 5 , and 
denote by A, the convex cone with the apex 6, generated by T. We want 
to show that K, and A, are symmetric to each other relative to the point 
c = (a; + 6,)/2. Suppose the contrary. Then the cones A', and (ai — bi) — A,



do not coincide. Let, for example, /if; C (a, — 6,) — Ni (the case (a,- — 6,-) — 
— Ni C K{ is considered analogously). Then some vertex aj, j  ^  i, does not 
belong to (a, — 6,) — N{. In this case [<ij, 6,] is a new exposed diameter of A, 
which is in contradiction with the above. Hence /v, = (a,- -  &,) — Ni.

The extremal rays of the cones /v, and iV, are generated by the edges 
[a,-, a,] and [6,-, bj], j  = 1 , . . .  , n, j  ^  i, respectively. Hence the edges [a,-, a,] 
and [bi,bj\ are parallel to each other and the Simplexes S, T  are homothetic 
to each other with some coefficient /x < 0.

Now we shall show that 5 and T  are congruent. Suppose the contrary: 
let S  be | /lx| times (/x < —1) greater than T. Then for any two vertices a,, 
aj from S , it is possible to choose parallel to each other hyperplanes P , Q 
supporting A at a,-, aj, respectively, so that A \  {a{,aj} lies strictly between 
P, Q. In this case [a, , aj\ is an exposed diameter of A. The last is impossible 
because of the assumption q(A) = n. Hence S  and T  are congruent.

From the above it follows that A is an octahedron. □
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EXTENDING A QUASI-METRIC

J. DEÁK

A b str a c t

The non-symmetrical analogue of Hausdorff’s theorem on extensions of compatible 
metrics holds for bounded quasi-metrics, but not for unbounded ones. Some related results 
on extending quasi-(pseudo)metrics will also be proved.

Hausdorff [16] proved that a compatible metric given on a closed subspace 
of a metrizable space has a compatible extension, see also [6, 21, 5]; the 
related question of continuously extending a pseudometric was investigated 
e.g. in [4, 12, 19, 14, 2, 1]. In this note we shall deal with analogous problems 
for quasi-(pseudo)metrics (see § 0 for definitions).

Extensions of pseudometrics can be of use when trying to extend unifor
mities [3, 15, 22]; in the non-symmetrical case we shall proceed conversely: 
results for quasi-(pseudo)metrics, at least for bounded ones, can be deduced 
from what is already known about extensions of quasi-uniformities [7 to 11], 
see § 1. The case of unbounded quasi-(pseudo)metrics is more delicate. The 
problem can be split into two: find extensions from dense subspaces (§ 3), 
respectively from closed ones (see § 2, which contains results for open sub
spaces, too).

§ 4 deals with similar questions in bitopological spaces.

§ 0. Preliminaries

0.1 Terminology. A non-negative real function d on X  X X  is a quasi
pseudometric on X  ([23], see also [18, 13]) if d(x,x) = 0 (x, y G X ) ,  and 
the triangle inequality holds, i.e. d(x , y ) -f d(y, z ) j> d(x, z ) (x, y ,z  £ X); d is a 
quasi-metric if, in addition, d(x, y) — 0 implies x = y (x, y 6 X ). If d is a quasi- 
(pseudo)metric then so is d~l defined by d~l (x, y) = d(y,x). A pseudometric
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is a symmetrical quasi-pseudometric, i.e. for which d-1 = d. In the topology 
induced by the quasi-pseudometric d, the sets B^(x)  =  {y: d(x, y) < e} (s > 
> 0) form a neighbourhood base at the point x £ X ; a ball is a set of the 
form B '( x ) .  In a topological space X  = (X, T), d is compatible if it induces 
the topology T; it is continuous if it induces a topology coarser than T  (this 
means continuity in the second variable at (x ,x)). For S C X ,  let B ^(S) = 
= (J B ' (x) and d(S, y) = inf d(x, y). 

i e s  xeS
d I S  denotes the restriction of d to S (in fact to 5 X S ). The restriction 

of a continuous/compatible (quasi)-(pseudo)metric has the same property 
with respect to the subspace topology. A quasi-pseudometric e on Y  D X  
is an extension of d if e | X  = d. If Y  is a topological space then the trace 
filter of p £ Y  is the trace on X  of the neighbourhood filter of p. (The zero 
filter exp X  has to be allowed here.) A quasi-pseudometric d on X  is weakly 
bounded if X  is a ball; it follows from the triangle inequality that in this case 
there is for each x £ X a number n(x) such that X  = B ^ x^(x). A filter f on
X  is d-round if for any S  £ f there are T  £ f and £ > 0 such that B^{T) C 5.

Concerning quasi-uniformities, see any of [13, 8, 9]. The quasi-uniformity 
induced by d is denoted by U(d). Uc(d) = {(x, y ) : d(x, y) < e}. N is the set 
of the positive integers, R the set of the real numbers.

0.2 Necessary conditions. Let Y  be a topological space, 0 /  X  C Y ,  d 
a continuous quasi-pseudometric on X. It is clearly a necessary condition 
for the existence of a continuous extension of d that each trace filter should 
contain a ball. The trace filters have to be round as well in case there is a 
compatible extension. Finally, a trivial necessary condition: if there exists 
a compatible quasi-(pseudo)metric extension then Y  is, of course, quasi- 
(pseudo)metrizable. It will turn out that these conditions are sufficient only 
in some special cases.

§ 1. Extending bounded quasi-metrics

1.1 We begin with a construction in which boundedness is not assumed. 
Let y  be a topological space, 0 ^  X  C Y , d a quasi-pseudometric on X , and 
e on y .  Generalizing a definition given in [6] for metrics and in [22] for 
pseudometrics, put

de(a, b) = m in|e(o, 6),inf{e(a, x) + d(x,y) + e(y, 6): x ,y £ X } | (a, 6 £ y ).

L e m m a . Assume that d ^ e | X .  Then de is a quasi-pseudometric on Y ,  
de I X  =  d and de < e. I f  e is continuous then so is de. I f  d and e are 
both compatible quasi-metrics and the trace filters are d-round then de is a 
compatible quasi-metric, too.
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Remark. It is enough to assume that the trace filters of the points in 
clX  \ X  are round, since the trace filters belonging to the points in X  (i.e. 
the neighbourhood filters in the subspace) are always round with respect to 
a compatible quasi-pseudometric, while the zero filter is evidently round. In 
particular, the condition on roundness is vacuous in case X  is closed.

P roof. An elementary calculation gives the triangle inequality (see in 
[6], where symmetry is assumed but not used). de | X  = d, de £ e and the 
statement on continuity are evident.

Assume now that d and e are compatible quasi-metrics and the trace 
filters are round. To prove the compatibility of de, we have to show that 
if a £ Y  and G is a neighbourhood of a then G contains a ball B fc(a). (It 
is then clear that de is a quasi-metric, since the existence of the compatible 
quasi-metric e implies that Y  is a Ti-space.)

Let f be the trace filter of a. Using the compatibility of e, pick 8  > 0 with 
1?2s(a) C G. As f is round, there is a positive £ < 8  such that

(1) B ^ B ec( a ) n x ) c B eg(a )n X .

Now B'*(a) C B ^{a)  C G. Indeed, if de(a, b) < £ then either e(a, b) < £ <28 
or there are x ,y  £ X  such that e(o, x) + d(x, y) + e(y, b) < e, and in this case 
(1) implies e(a, y) < 6 , hence e(a, b) < S + £ < 28. □

1.2 LEMMA. Let d be a compatible quasi-metric and d' a quasi-pseudo- 
metric on X , d1 d. Assume that Y  is quasi-metrizable, d' has a continuous 
extension to Y , and the trace filters are d-round. Then d has a compatible 
quasi-metric extension.

Remark. It follows from the conditions that d! is a compatible quasi
metric, too. We shall only use this lemma in the special case when d = d!.

P roof. Let d" be a continuous extension of d', and take a compatible 
quasi-metric eo on Y .  Now Lemma 1.1 can be applied with e = eo + d". □

1.3 Lemma. I f  d is a bounded quasi-pseudometric on X  and U(d) has a 
continuous extension to Y  then so has d.

PROOF. We may assume without loss of generality that d < 1. Let V 
be a continuous extension of U(d), and choose inductively Vn £ V (n > 0) 
such that F^+1 C Vn and Vn \ X  C U2 -n{d). The Metrization Lemma ([17] 
6.12) gives a quasi-pseudometric e satisfying Vn C U2- »(e) C V„-i (n € N). 
e is clearly continuous. Now U2 -n(e \ X )  C f72-n+i(d), thus 4e \ X  > d, and 
Lemma 1.1 can be applied to 4e instead of e. □

1.4 Lemma. Let d be a bounded compatible quasi-metric on a subspace 
of a quasi-metrizable space, and assume that the trace filters are d-round. 
Then the following conditions are equivalent:

(i) d has a compatible extension;
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(ii) d, regarded as a quasi-pseudometric, has a continuous extension;
(iii) U(d) has a compatible extension;
(iv) U(d) has a continuous extension.
P r o o f . (i)=^(iii)=^(iv): Evident. (iv)=>(ii): Lemma 1.3. (ii)=>(i): Lem

ma 1.2. □
This lemma implies tha t the results known about extensions of quasi-uni

formities [7 to 11] have corollaries for bounded quasi-metrics. In particular, 
we can obtain through this lemma all the theorems of the next two sections 
in the special case when the quasi-metric is bounded.

§ 2. Extensions from closed or open subspaces

2.1 Closed subspace. L e m m a . If  X  is a closed subspace of Y , d is a 
continuous quasi-pseudometric on X , and d~l is weakly bounded then d has 
a continuous extension to Y .

P roof. Fix a point z0 € X ,  and choose t > 0 with B f  1 (io) = X .  Now

d \a , b)
' d(a, b) if a, b £ X ,  

i 0 if b e Y \ X ,
. t  + d(x0 ,b) if a E Y  \  X, b  £ X

defines a continuous extension. □
T h e o r e m . If d is a compatible quasi-metric on a closed subspace of a 

quasi-metrizable space, and d~x is weakly bounded then d has a compatible 
extension.

P r o o f . Lemmas 2.1 and 1.2. □
E xamples. Weak boundedness cannot be dropped from the above the

orem.
a) A simple non-Hausdorff example. Let X  = N, Y  \  X  the set of all the 

infinite sequences in N, and take the following quasi-metric on Y: e(n,p) — 
= l / p n if n £ X , p £ Y  \  X , and pn denotes the nth element of p; otherwise 
e(a, 6) =  1 for a ^  b. Let the topology of Y  be the one induced by e. Now the 
metric d on X  defined by d (n ,m ) = |n — m| has no compatible quasi-metric 
extension.

Indeed, assume that d" is a compatible extension, and take a point p €
OO

e n B f  (n) (there exists such a point, since d"(n,p) < 1 if p„ is large
n = l

enough). With n >  d"(p, 1) +  2, the triangle inequality will not hold for 
the points n, p and 1.

b) A more complicated regular example. Let Q be the set of the rational 
numbers, 1=  R \ Q, Í  the Euclidean topology on R. Assign to each s £ Q a
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series G(s,n)  of disjoint £-open sets such that s is in the ^-closure of G (s ,n ) 
(s € Q, n € N). For each pair (5, n), let ^4(5, n) be a maximal almost disjoint 
collection of sequences in G (s ,n )H l that ^-converge to s. Put

I  = U M (s ,7 i) :s e Q ,n e N } , Y  = X  Ul.
X  is clearly almost disjoint, so the usual topology on Y  is regular (in fact, 
zero-dimensional): let the points of I be isolated, and for x £ X ,  let

I {x}U(* \  F ): F  is finite j

be a neighbourhood base of x. It is easy to see that Y  is quasi-metrizable. 
(Construct a compatible quasi-metric directly, or apply Theorem 3.1 with 
the role of X  and Y  \  X  interchanged.) X  is a closed subspace, and the 
topology of X  is discrete. Consider the following compatible quasi-metric on 
X:

d(x, y) = max{n — fc, 1} ifx £ A (.s ,n ), y£A( t , k ) ,  x^fiy.
d is weakly bounded, but it has no compatible extension.

Indeed, assume that d has a compatible extension d", and fix points 
Po £ Y  \  X  and xo £ X.  It follows from the Baire category theorem that 
there are an m £ N and an interval ]u,u[ such that d"(p,p0) < m  holds for 
p £ D where D is an £-dense subset of In]u,v[. Pick now an s £ Qfl]u, v[. 
Choose for each n £ N  a sequence Sn C B  C\G(s, n ) that ^-converges to 5 . It 
follows from the maximality of A(s , n) that the series Sn clusters to some 
yn £ A (s,n ) ,  so there is a qn £ Sn with d"(yn,qn) < 1. From the triangle 
inequality we have
d(yn,Xo) = d”(yn,x 0) ^ d"(yn,qn) + d"(qn,p0) + d"(po,x0) < l + m + d"(p0 , x Q), 
a contradiction, because yn £ yl(s, n) implies that d(j/„, xo) —̂ 00.

2.2 Open subspace. L e m m a . If X  is an open subspace of the topological 
space Y , and d is a weakly bounded continuous quasi-pseudometric on X  
then d has a continuous extension to Y .

P roof. Assume that B?(x0) = 
r d(a,b) 

d\a, b) = i 0
„ t + d(a, x0)

X  and let 
if a, b £ X , 
if a £ Y  \  X ,  
if a e X , b e Y \ X . □

T heorem. I f  d is a weakly bounded compatible quasi-metric on an open 
subspace of a quasi-metrizable space, and the trace filters are d-round then d 
has a compatible extension.

P roof. Lemmas 2.2 and 1.2. □
P roblem. Assume that d is a compatible quasi-metric on a (dense) 

open subspace of a quasi-metrizable space, each trace filter is d-round and 
contains a ball. Does d have a compatible extension?
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§ 3. Extensions from dense subspaces

3.1 Loose extensions. Let us now consider the case when Y is a loose 
extension of X  belonging to trace filters f(a) (a € Y), which means that 
{{a} U S : S  € f(a)} is a neighbourhood base of a in Y . X  is open in Y, so 2.2 
can be applied; more is true, however: we are going to show that the answer 
to Problem 2.2 is positive in this special case.

Lemma. Assume that Y  is a loose extension of X , d is a continuous 
quasi-pseudometric on X , and each trace filter contains a ball. Then d has 
a continuous extension to Y .

P roof. Fix balls Sp € f(p) (pG Y \ X ) ;  for x G X ,  let Sx — {x}. Define
now

d'(a, b) — inf{f € R: SbC Bt(Sa)}. □

T heorem. If  d is a compatible quasi-metric on X , Y  is a loose extension 
of X  and it is a first countable T\-space, the trace filters are round, and each 
trace filter contains a ball then d has a compatible extension to Y .

P roof. It is enough to show that Y is quasi-metrizable, because then 
Lemmas 3.1 and 1.2 can be applied.

U =  U(d) has a countable base, the trace filters are ZV-round (because 
ZV-round = d-round), and Y is first countable; according to [10] 6.5, these 
conditions are sufficient for the existence of a compatible extension V having 
a countable base. V is quasi-pseudometrizable (e.g. [18] 11.1.1), so Tj implies 
tha t V is quasi-metrizable. □

The example below shows that the quasi-metrizability of Y cannot be 
replaced in Theorem 2.2 by the assumption tha t Y is a first countable Ti- 
space (not even when X  is dense and d is bounded).

E xample. Let Z\  be a first countable Ti-space that is not quasi-metriz
able (see [13] for such spaces), and Zi  = N U {cu} a convergent sequence with 
the limit point u.  Take Y = Z\  X Zi, X  — Z\  x N, and modify the product 
topology on Y by declaring the points of X  isolated. Consider the (quasi-)- 
metric d on X  defined by d(x,y)  = 1 if x f i y .  The trace filters are clearly 
round, d is compatible, X  is dense and open, Y is first countable and T i, 
but it is not quasi-metrizable, because its subspace Y \ X  is homeomorphic 
with Z\.

3.2 Other extensions. Recall that a filter f is d-stable (where d is a quasi
pseudometric) [8, 10] if for any e > 0, f) B fiS )  G f.

S€f

Lemma. If X  is a dense subspace of the topological space Y , d is a  
continuous quasi-pseudometric on X , the trace filters are stable and each 
trace filter contains a ball then d has a continuous extension to Y .
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P roof. Define
d'(a, b) = inf{i € R : S  € f(a) =► B?(S) € f(6)>.

d'(a,b) is finite: pick a point x 6 Q B^(S);  now B^(x)  £ f(6) for a suit-
561(a)

able s £ R (because f(6) contains a ball), thus d \a ,b ) < s + 1. d' is clearly a 
quasi-pseudometric with d! \ X  — d. To prove that d1 is continuous, fix a £ Y  
and £ > 0; we have to show that B£ (a) is a neighbourhood of a in the origi
nal topology of Y . Using the stability of f(a), take an open neighbourhood 
G of a such that G D  X C  f) For eac  ̂ & € G, G fl X  £ f(6), thus
G c B f ( a ) .  □ 5ef(a>

T heorem. Let d be a compatible quasi-metric on a dense subspace of a 
quasi-metrizable space, assume that the trace filters are d-round and d-stable, 
and each trace filter contains a ball. Then d has a compatible extension.

P roof. Lemmas 3.2 and 1.2. □
Remark. If Y  is a strict extension of X  (i.e. the coarsest one belonging 

to the given trace filters) then the quasi-metrizability of Y  can be replaced 
in the above theorem by the assumption that Y  is a Ti-space. In this case 
the quasi-pseudometric d! defined in the proof of the lemma is already a 
compatible quasi-metric on Y  if d satisfies the conditions of the theorem.

§ 4. The bitopological case

A quasi-pseudometric d is compatible/continuous in the bitopological 
space X  = (X ;T _1,T 1) if d’ is compatible/continuous in (X , T ' ) (i = 
= ±1), where d} = d. Now if X  is a subspace of the bitopological space 
Y  then we may ask whether d has a continuous or compatible extension to
y .  There is one more necessary condition besides the ones in 0.2: if a point 
p  € y  \  X  belongs to the closure of X  in both topologies then the trace filter
pair (f-1(p), f!(p)) has to be d-Cauchy. filter pair (f—1, f1) is d-Cauchy if 
for any £ > 0 there are sets 5, € f  such that d(z_x,a;i) < £ whenever x, G f* 
(i = ±l>.)

Sufficient conditions can be obtained (at least when d is bounded) from 
the results known about extending quasi-uniformities in bitopological spaces, 
see [9, 10] and [11] § 2. For this purpose, observe that the bitopological 
analogue of Lemma 1.4 is valid (where Lemma 1.1 is needed in the proof, 
apply it both for (d,e)  and (d-1 ,e -1), and check that (de)-1 = (d-1 )e- i.

[10] Theorem 9.1 is the only result known to the author about extensions 
of unbounded quasi-pseudometrics in bitopological spaces.

Added in proof. See [24] 4.3 and [25] for more about the bitopological 
problem.
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ON AN ALGEBRAIC DIFFERENTIAL EQUATION 
OF BERNOULLI TYPE

T. FÉNYES

Introduction
In paper [1] we discussed the algebraic Bernoulli type differential equa

tion

(1) D { x ) - \ - a x b x m =  0

in the discrete Mikusinski operator field based on the Cauchy product of 
functions. Here m is an arbitrary integer ( m ^  0,1), a, b are arbitrarily 
given real valued functions defined on the set of the non-negative integers, 
D is the symbol of the algebraic derivative.

In the present paper we shall deal with (1) in the case where the operator 
field is based on the number-theoretical Dirichlet product of functions defined 
on the set of the positive integers.

The paper consists of three chapters. In Chapter 1 we summarize the 
elements and known results of the operational calculus based on the Dirichlet 
product (see [2], [3], [4]). Chapter 2 contains the operational theory of (1) 
in the case of m = 2.

The more complicated cases for m / 2  are treated in Chapter 3. In what 
follows Z,  R will denote the sets of natural and positive rational numbers, 
respectively.

§1. Discrete Mikusinski operators based on the Dirichlet product
Let a = {a(n)} be an arbitrary real-valued function defined on Z.  The 

symbol a(n) denotes the value of this function for arbitrary fixed n.
Let E  denote the set of the discrete functions. If we introduce in E  the 

following two operations
(i) a + b: (a(n)}-f {6(n)} = {a(n) + 6(n)} addition,

(ii) ab: {a(n)} {b(n)} = j £  a (I/)K ^)j' multiplication,
vi>|n
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then E  becomes a commutative ring without divisor of zero and can be 
extended to a quotient field. This is called the discrete Mikusinski operator 
field and is denoted by M ß. The elements of M o  are called Mo-operators.

The definition and properties of the “discrete” Dirac-function

We define the discrete Dirac-function by
6 (N) = {6 (n, N)} ,

where
6 ( n , N)  =

0, for n^fi N,
1, for n = N.

For later purposes we enumerate some properties of the Dirac function. 
P roperty 1. 6 (N){a(n)} = (6(n)},

( 1 . 1) 6(rz) = /  “ (^ ) ’ ÍOTN\ n ’
1 0 otherwise.

(1.2) 6 {N1 )6 ( N2) = 6 (N1 N 2), N u N 2 e Z .  

P roperty 2.

(1.3) x =  G E, N e Z
6 (N)

holds if and only if
(1.4) a(n)= 0
for those values of n for which N  is not a divisor of n. If (1.4) holds, then
(1.5) x - { a ( n N ) } .

The field K  of the real or complex numbers can be embedded isomorphi- 
cally into the operator field Mp.  The common unit element of K , E,  Mo  is 
the function «5(1) and we write

«(1) = 1.
Moreover,

c<5(l) = c, c{a(n)} = {ca(n)}; 
for every c G K  and every a G E.

Every operator of the form
{a(n)}

x =
« » ) }

i s  a  f u n c t i o n  i f  6 ( 1 )  0 .  M o r e o v e r
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The operator function 6 (e) 

For arbitrary rational number e — ^  6 R we define

( 1.6 ) 6 (e) = t ( N  0
s(N2y

From this definition it follows that for e — N  we have
6(e) = 6(N) = {6(n,N)} .

If

then

Ni = N1  
N2 n 4 '

‘ ( £ H ( t )
holds.

P roperty 3. Let a ,ß  be arbitrary positive rational numbers, then 
(1-7) 6(a)6(ß) =  6(aß)
and it is easily seen that

( 1.8 )

is also true.
\ a J  6(a)

The definition of the ring E *

Let E * C Md be the subset of Mp  whose elements are of the form

(1.9) X = ~6 (N) N e Z ’ a e E '
E* is a ring-and, by choosing N = 1, we have

E C E \
P roperty 4. Obviously,

x = ——- 6 E*, e = —p (N\,  N 2 are relatively primes).
<5(e) N 2

Moreover, x 6 E  if and only if
a(n) = 0

for those values of n for which iVi is not a divisor of n. If the condition is 
satisfied, we have

x ( „ ) = { ° ( ^ L) -  f o r ^ l " '
otherwise.
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Definition of the convergence in the ring E 

Let űfc G E, (k — 1 , 2 , . . . ) be an infinite sequence of functions. By defini
tion

( 1. 10)

if for every fixed n

lim {ak(n)} = {a(n)>k—> o o

lim ak(n) = a(n).
k —►oo

This convergence can be extended to infinite series of functions as usual. 
Let

OO

f ( z ) = ^ r , ß k zk, ßk G k
k - 0

be an arbitrary entire function of the complex variable z. Then
OO

(1.11) f (a)  = ^ ß k { a ( n ) } k, a £ E, a0  = 1
k = 0

holds in the sense of the convergence defined above. We have
OO £

e<, = S l 7 ’ a e E ' a° = l

having the property

( 1. 11#)

moreover, if we write 

so

( 1. 12)

holds. Moreover, let

( 1-120

k=0

eaeb = ea+b a,b G E,

ea = {ea(n)}

ea( l )  =  ea(1)

OO

jk  e K
k = 0

be an arbitrary formal infinite series and let a £ £  an arbitrary function with 
a ( l)  = 0. Then

( 1. 12" )

k= 0

also converges in the sense of convergence defined above.
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The algebraic derivation and integration

For the sake of easy reading we recapitulate some definitions and facts 
of the algebraic derivation and integration.

(1.13) ű(a) = {—logn a(n)}, a £ E

(113')
/ a \  _ bD(a) -  aD(b)

D \ b )  = 62 a, 6 £  E , M°-

P roperty 5.

(1.14) {— log g Q(n )} e E ' , a £ E , € —N±
N2'

(1.14') ^ [% )]  = -iog£<H£)-

P roperty 6.

(1.15) ű (ea) = D(a)ea, a £ E .

If for a given x £  Md there exists a y £  Mo  such that

D(y) = x

we say that x is algebraic integrable and we write

y = / x.

P roperty 7. If a: E M d  and

D(x)  = 0

then x is an arbitrary complex number.
Two algebraic integrals of an operator may differ only by an arbitrary 

number.
The algebraic differentiation and integration is a linear operation over 

the field of the real (complex) numbers.

P roperty 8. The operator

a
W r

a£  E,  £ = —r  £ R 
1*2

(1.16) x =
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is algebraic integrable in Md  if and only if either e ^  N , N £ Z , or e = N  
and a(7V) = 0 holds true. Every algebraic integral of (1.16) belonging to E* 
is given by

(1.17) c £ K

where in the case of e =  N  the symbol denotes an arbitrary real (com-
l°g JJ

plex) number. We shall choose this to be null.
For e — 1 we have that a is integrable if and only if o(l) = 0, and

h - A - m -
Let us consider the differential equation

(1.18) D ( x ) - f x - h  f , h £ E  
with respect to which the following theorem holds.

T heorem (see [2], [3]). The homogeneous equation
(1.19) D ( x ) - f x  = 0 
has a nontrivial solution in Mp if o,nd only if

a — e £ R.
The general solution of {1.19) is of the form

( 1.20) x — c<S(a)exp / ( / - / ( ! ) ) c £ K

being a function for c ^  0 if  and only if a £ Z . (1.18) has a solution xp £ M ß 
if and only if one of the following conditions holds.

(i) Q = e " /(1) ^ Z
(1.20') or

(ii) a  = e - '« 1> e Z > H(a) = 0,
where

H = {tf(n)} = / ie ~ /(/-/(1)).
Moreover

(1'21) ^ = ( iog»g+( / ( i )} explog n 4- / ( l )  
where in the case of (ii) the symbol

H(a)

e E ,

( 1.22)
log Q + / ( l )

0
Ö

denotes the number zero.
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§2. The case rn — 2

Let us consider the Bernoulli equation

(2.1) D(x) + ax + bx2 = 0, a , b £ E ,  6 /0 .

By the application of the substitution

1x — —
z

(2.1) can be reduced to the linear equation of the form

( 2 .2 ) D(z ) — az = b.

We extend the definition of 6(a) for irrational a by 6(a) = 0. So we have the 
following

T heorem  1. I f  e ~ a ^  £ Z, th e n  th e  g e n e r a l  s o lu t io n  o f  (2.1) i s  o f  th e  
f o r m

(2.3) z = a(e- ° ( D ) - {  g (n )  -}1 \ - / (a- a(1», c e K
v ’ I log n +  a( 1) i

where

(2.4) G = b e ~ f (a~a(1)).

If  e “í1) G Z, then (2.1) has a nontrivial solution in Md if and only if 
G(e~a^ )  = 0. If so, then (2.3) is the general solution of (2.1), where

G(e~a(1)) _ Q
log e- ^ 1) + a (l)

Moreover, if e £ R, then x € E, iff 6(1) /  0. If e N  G Z,
(N  > 2), then x G E for every c /  0 and for c = 0, x G E iff 6(1) /  0.

I f  e~aÍ1) = jj-, (M and N are relatively primes), M > l, N  > 1, then 
x G E iff c — 0 and 6(1) /  0. Finally, let e- ^ 1) = N , N  G Z and G (N ) = 0. If
N  = 1, then x G E iff c /  0. If N > 1, then x G E iff b{\) /  0.

P r o o f . Taking into account the Theorem of the preceding chapter, we 
can see that only the existence criteria of nontrivial solutions x G E  of (2.1) 
are to be proved.

Since
eh eh  =e f l +h, fl-, h  € E ,
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it is obvious that x £ E  iff 

(2.5) y = ( c<(e—<■>)-( .g - ”-1- . } )
V l log n + a ( l ) ) J

- l
e'E.

log n + a ( l)  ■

I. If e~aM $ R, then S(e~a(1)) = 0. Since by (1.12), (2.4)
G(l) = b(l)

it is easily seen by Property 2 that y £ E  iff 6( 1) ^ 0.
II. If e~a = -fa, ( N  > 2), we write

6 (N)
( 2 .6 ) 2/ =

From Property 1 and 2 it follows that for c ^  0 x £ E holds. For c = 0 the 
case I is obtained.

III. If e~a = jj- £ Z , M  > 1 we write

6 (N)(2.7) y =
: S ( M ) - 6 {N)  { c (") ) '  

lo g n + a ( l )  J

For c = 0 the case I is obtained again. Let c /  0. We show that y £ E.  Let 
us suppose the contrary. If y£  E,  then by Property 1

n
( 2 .8 )

holds, where
- ( f ) N ) = w , n = 1 ,2 ,...

f G(n)  i 
9  ^ I log n + a ( l ) I

For n = N  we have

and for n = M
cy(1) - 0.

Consequently r/( 1) =  0 and 0 = 1, a contradiction.
IV. Let e- “)1) = N , N  £ Z . If IV > 1, then the value of the function

G(n)

equals to
G(l) 6(1)
a(l) a ( l)

for n — 1, so by Property 2 we have that y £ E  for every c iff 6(1) ^  0.
If N  = 1, then by the Theorem of the preceding chapter we have that 

(2.3) exists iff 6(1) =  0. But if 6(1) = 0, then y £ E  iff c ^  0.
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§3. The case m ^ 2

In the sequel we shall deal with (1) if m ^  2. For m  > 2 (1) has the trivial 
solution i  = 0. If m is odd and x 0 £ Mp  is a solution of (1), then — x0 is also 
a solution of (1). In the sequel we shall not distinguish between solutions 
differing from each other only in their signs. Moreover, we find only real 
solutions of (1). An x £ Mp  is called to be real if x = | ,  a,b £ E,  and the 
functions a, b are real-valued.

By the application of the substitution

(3.1) z = x 1~m

we can reduce (1) to the linear equation of the form

(3.2) D(z)  — (m — l)az = (m — l)b.

If (1) has a nontrivial solution in M p  (3.1) shows that (3.2) is also solvable in 
Mp. The converse statement does not hold. If (3.2) has a solution z £ Mp, 
we obtain

(3.3)
1

X =  Z 1 — m

as a formal solution of (1). However, (3.3) does not exist necessarily, since 
the field M p  is not algebraically closed. We show this.

We define the subsets Ék C E  as follows (k = 1 ,2 ,...) .
D e f in it io n . z £ É k  iff

m
e E

and z(k)  ^  0. By Property 2 we see that for z £ Ék

m
{z(kn)}.

If z £ E,  z( 1) ^  0, then z £ E\.

Lemma 1. Let q£ Z, (q> 2), p £  R, z £ Ék. Then %/b(p)z £ M p  exists 
if and only if

VpkeR
and for even q, z(k) > 0. Moreover,

(3.2') y S ( p ) z  =  6  ̂Y p k ^ j  y z ( k )  exp ^ J  —̂

where u = {z(fcn)}.
P r o o f . Let us show first that for every /  £ E, / ( 1) ^  0

/ 2 L Q
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holds. By the theorem of the first chapter it is easily seen that the differential 
equation

(*) D(w) -  w = 0
/

has the general solution of the form

w = c exp /
D U )

f  ’
c e K .

Moreover, /  is also a solution of (*). Then 3c £ K  such that

DU)f  — c exp / f
Substituting n = 1, we have

/ ( ! )  = £

/  =  / ( ! )  exp /  E M I

We obtain
z  r -D(u)

6 (p)z = 6 ( p ) - ^ 6 (k) = 6 (pk)u = 6 (pk)z(k)eJ “ .

Let <!/pk € R. By (1.11') it can be seen that (3.2') holds true if for even q, 
z (k ) > 0. Let us assume th a t there exists a r £  M d  such that

y zS{p) — T.

Then 

We have
Tq - zS(p) = uS(kp).

D(rq) — qrg 1D ( t )  = -  log kpS{kp)u +  S(kp)D(u).  

Multiplying by r

qTqD(r)  = ( -  log kp 6 (kp)u + 6 (kp)D(u))r  

and the following differential equation is obtained:

(3.2") D ( t ) - q t  = 0,

where
1 D(u) log kp

Q = -------- -----------q u 9
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Since tt(l) = z(k)  ^  0, so is £ E,  g £ E  and applying the theorem of 
Chapter 1

holds and the lemma has been proved. On the base of what has been told 
we pronounce

Lemma 2. Le t m^ í  2. (1) has formal solutions iff

e —(m —l)a(l) g z  or g —(m —l)a(l) g % Qnd

(;3.2"') Gm = 0 ,

where

(3.3) Gm = ( m - l ) 6 e - / (m- 1)(a- a(1)).

The general formal solution of (1) is of the form 
(3.4)

exp [ - / ( a - a ( l ) ) ]
x = , for m > 2

x = |m|+( /c í(e - (m- 1)a(1)) — Í ------- G™(n \  ) - J (a- a(i)) /o r m < 0
V 1 log n + (m — l)a ( l)  J

where in the case of e 1)a(1) £ Z

Gm (e-(™-i)°(i)) 
log e-l"1-1)“!1) -f (m — l)a (l)

denotes the number zero.
It arises now the following question. Under what conditions do the formal 

solutions represent proper solutions of the Bernoulli equation?
Obviously, only in the case when the roots occurring in (3.4) exist. In 

the sequel we give only simple sufficient criteria guaranteeing the existence 
of (3.4) in M o  or E , respectively.

We need the following trivial 
S t a t e m e n t . 1. If for 7 i ,T2 £ M o, q € Z

</Ti = Ru V t ~2 = Ri ,

then ^ 7 \T 2 = R XR2, especially
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If for Q i , Q2 € Md , exists and y/Qif does not, then ^/Q\Q2, y  q j 
do not exist in Md -

2. Let pi £ Ék, P2 € E, j>2( 1) Í  0. Then

¥> =  { H Pl^ P2{ ~ ) }  e ^k

and

holds.
(p(k) = pi(k)p2 (l )

From Lemma 2 and the above statement we obtain the following

Corollary. Let e-(m-i)<»(i) =  N  £ Z and b £ É k -  If  N  =  k, then (1) 
has no formal solution. I f  k is not a divisor of N', then (3.4) is the general 
formal solution of (1).

Now we can prove the following

T heorem 2. I. Let e-l™ -1)“!1) be irrational or c — 0 and b £ É k -  Let us 
assume that for any integer value of g-i"»-1)“!1) the condition (3.2"'), (3.3) 
is satisfied. For m > 2 (3.4) exists in Md if and only if m~y/k £ Z and for  
odd m

_______m ______ < 0 .
log k + (m — l)a (l)

I f  so, then

x £ E, if k>  1 
x  £ E, if k = 1.

For m  < 0 (3.4) exists in M d  i f  and only if |m|+\/£  £ Z  and for odd \m\

b(k)
log k + (to — l)a ( l)  >

I f  so, then

(**) x e E .

II. Let c ^  0 and e— 1)a(1) = N  £ Z.  For m >  2 (3.4) exists in M d 
if and only if rn~^N  £ Z and for odd m ,c>  0. I f  so, then

x £ E.

For m  < 0 (3.4) exists in M d if and only if  £ Z and for odd |m |,
c > 0. I f  so, then

x  £ E if N  = 1.
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X £ E if N  > 1.

III. Let c / 0  and = N,  (N > 1), b G Ék, (k ± N) .  I f k \ N ,
and the condition (3.2'"), (3.3) is satisfied, then the existence criteria of the 
case I  and (*); (**) hold. I f  N  \ k, then the existence criteria of case II  hold. 
Moreover, for m > 2 x £ E, for m < 0 x G E holds.

P roof. I. Let us introduce the notation

^  _  f _____ Gm(n)_____ \
V 1 log n + (m — l ) a ( l ) / ’

Since (3.2'"), (3.3) is satisfied, by (3.4) we have

e- /(«-«(!))
(3.5) x = -----  for m > 2,

(3.6) x — |m|+V~V^"e f o r m < 0.

Since b G JSfc, it follows from the second part of the statement that ipm G 
By (1.12), (3.3)

J log* + (m - l )a ( l )*
Applying Lemma 1, (3.2') for p=  1, and the first part of the statement, 

we obtain that for m  > 2 x exists in Mp  if and only if

(3.7)

and for odd m

(3.8)
/

m~Vk G Z  

b(k)
log k + (m — l)a(l) <0.

By taking again into account (3.2') we see that if (3.7), (3.8) hold, then x G E 
iff k = 1.

The case m < 0 can be proved similarly.
II. By (3.4) we have

(3.9) x =
e - f ( a - a (  1))

~]/c6 (n ) ~lt>r
m >  2,

(3.10) x = -  1p m  e~ / (a-a(1)), m  < 0.
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For arbitrary q € Z

(3-11) <c6 a ) t/Vn —
l c - 8 (N)rJ> „

6 (N)

We have by Property 1 that 6 (N)ipm is a function having the value zero for 
n =  1. (For N  = 1, i.e. for a ( l)  = 0, tpm( 1) must be equal to zero by Lemma 
2 .)

It follows from Lemma 1, (3.2') and the first part of the Statement that
(3.11) exists in Md iff £ Z  and for even q c > 0. If this condition is 
satisfied, then we can write by introducing the notation /i

H =
(3.11')

It is easily seen that

' c — 6 (N)ipm _  y c -  6 (N)Tp„ 
6 (N)  ~  6 (>/N)

1 6{YN)
A4 V e -  6 (N)ipm

f i e E  iff N  = 1

— G E  for every N  € Z. 
A4

By taking into account (3.9), (3.10) it is obvious that the theorem holds.
III. By (3.4) we have

e -  / ( a - a ( l ) )

(3.12) x = — 7 -r  ^  _ =, m >  2,
- y cy 7 V )-^ m ’

(3.13) x =  |m|+y c y iV ) -  V»me~ / (a_a(1)), m < 0.

By the above Corollary k ^  N .  By our assumption (3.2"'), (3.3) is satisfied, 
so (3.4) holds. Since b € Ék,  so ip m  € Ék, and if k | N,  then

c6 (N)  -  V>m £ Ék

also holds. Taking into account the proof of Case I it is easily seen that the 
statement of Case III of Theorem 2 holds for k \ N.

If N  ! k, then from the Corollary follows that (3.4) holds. We write for 
q e z

y C8(N) -  VVn = d s ( N ) c — 6
Ipm
m . '

(3.14)
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Obviously, 6  (j^) Jpy € E  having the value zero for n = 1. Comparing (3.11'),
(3.14) we obtain that the existence criteria of Case II hold true and

x £ E,  for m  < 0, 
x £ E,  for m > 2.

REMARK. Our discussion can be easily extended to arbitrary positive or 
negative rational values of m, since for z ( k ) > 0 the formula (3.2') can be 
generalized to arbitrary rational values of q in the usual way. We leave this 
to the reader.
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JOIN DECOMPOSITIONS IN LOWER CONTINUOUS LATTICES

A. WALENDZIAK

1. Introduction

The results of the present paper are a continuation of those of paper [2].
Let L be a complete lattice. We say th a t L is lower continuous iff for every 

a G L and for every chain C Q L, aV f \ C  =  /\{a  V c : c € C). A lattice is lower 
continuous iff its dual is upper continuous. Therefore, from Theorem 2.3 [1] 
it follows that the dual of an algebraic lattice is always lower continuous.

For two elements a, 6 G L (a ;> 6) we define

a/b := {x £ L : b < x < a}.

An element c G a/b is called completely join-irreducible in a/b iff, for all T  Q 
Qa/b, c= \J  T  implies c G T. We denote by J(a/b)  the set of all completely 
join-irreducible elements of a/b.

If a G L, then a representation a = \J T  with T Q J(L)  is called a (join) 
decomposition of a. A decomposition o = \ /T  is irredundant if \ / ( T —{f})^  
/  a for all t G T.

In this paper we shall study infinite join decompositions of elements of 
lower continuous lattices.

2. The existence of decompositions

Let L be a lattice and let —< denote the covering relation in L. L is said 
to be weakly atomic iff for every pair of elements a, b G L with b < a, there 
exist two elements u,t)G  a/b such that u —<v. L is called strongly dually 
atomic (cf. [2]) iff for every pair of elements a, b G L with b < a, there is an 
element pG a/b covered by a. Each strongly dually atomic lattice is weakly 
atomic.

Our first theorem is a generalization of the classical existence theorem 
(cf. [1], p. 43).
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T h e o r e m  1. I f a lower continuous lattice L is weakly atomic, then every 
element o f L has a decomposition.

P r o o f . Let a be an arbitrary element of L , and we set

b : — \J(x  £ J{L) : x < a).

Suppose now b < a. Since L is weakly atomic, there exist u,v  £ a/b such 
tha t u —< v. Let P be the set of all p € L with v — uM p. P is nonempty, 
since v G P. Let C be a chain in P. By lower continuity, i íV /\C  =  f \(u  V 
V c :c e C )  = t), Then f \C  E P  and P contains a minimal element q by Zorn’s 
Lemma. Obviously, q € J{L)  and by the definition of the element b we have 
inequality q < b. Hence v = u \ / q ^ u \ / b  — u, a contradiction. Therefore a — 
= V(x € J (T ) : x < a) is a decomposition of a, and thus the proof is complete.

We say that a complete lattice L satisfies the property (*) (cf. [2], p. 
243) iff a G L and b € J(L)  imply a V b £ J(a V b/a).  It is obvious that every 
modular lattice has this property.

Now we prove the next
T heorem 2. Let L be a complete lattice satisfying the condition (*). If 

every element of L has a decomposition, then L is weakly atomic.
P r o o f . Let a,b & L with b < a, and let a = \J T  be a decomposition. 

Since b < a, there is an element to € T  such that to %. We set

u := i0 v 6  and u := W(x € L :b < x < v)

(u exists, since b < v and L is complete). From (*) it follows tha t v is 
completely join-irreducible in v/b, and hence u < v. Now, by the definition 
of u we obtain that u —< v. Then L is weakly atomic.

As a consequence of Theorems 1 and 2 we get the following existence 
theorem:

T heorem 3. Let L be a lower continuous lattice satisfying (*). Every 
element of L has a decomposition iff L is weakly atomic.

From Theorems 8 and 10 of [2] it follows
T heorem 4. Let L be a lower continuous lattice satisfying (*). Every 

element of L has an irredundant decomposition iff L is strongly dually atomic.

3. Lattices with unique irredundant decompositions

We say that a complete lattice L has replaceable irredundant decompo
sitions if each element of L has at least one irredundant decomposition and 
whenever a = \J T  — \ / R  are two irredundant decompositions of an element
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a G L, for each t0 £ T  there exists r0 G R such that a = ro V \ /(T  — {<o}) and 
this decomposition of a is irredundant. If every element of a complete lattice 
L has exactly one irredundant decomposition, then we say that L has unique 
irredundant decompositions.

G. Richter has proved the following

T h e o r e m  5 (cf. [2], p. 248). A strongly dually atomic lower continuous 
lattice L has replaceable irredundant decompositions iff L satisfies (*).

Now we need the following
L e m m a  1. Let L be a lower continuous strongly dually atomic lattice. 

Then L satisfies (*) if L has the following property:

For every a G L and for every x, y G J(L),  if 
x V a = y V a and x V y ^  a, then x — y.

P roof. Suppose that L does not satisfy (*). Then there is an element 
a G L and an element x G J(L)  with b = a V x J(b/a).  Hence, since L is 
strongly dually atomic we conclude that b/a contains two distinct dual atoms 
c and d. An application of lower continuity and Zorn’s Lemma yields the 
existence of an element y ^ d which is minimal with respect to the property 
that y V c = 6. Clearly, y is completely join-irreducible in L. Thus we have 
x , y  £ J ( L ), b = x \ / c  = y Vc  and x\ /  y %c. Hence using (**) we obtain x = y. 
Then x < d and consequently b = a \ / x < a \ / d  = d<b.  This contradiction 
shows that L satisfies condition (*).

Finally, we shall prove the following

T h e o r e m  6. A strongly dually atomic lower continuous lattice L has 
unique irredundant decompositions iff L satisfies (**).

P roof. Let us assume that L has unique irredundant decompositions 
but it does not satisfy (**). Then there is an element a £ L  and there are 
two distinct elements x, y G J(L)  such that x V a  = y \ / a  = b and x V y ^  a. 
By lower continuity, there are elements ci,C2 £ a which are minimal with 
respect to x V C\ — b and y V C2 = 6, respectively. Let c\ — \j T  and C2 = \J R 
be irredundant decompositions of ci and C2, respectively. Then

b = x v \ J  T  = y \ / \ J  R

are two irredundant decompositions of b. They are also distinct, since x j- y 
and x £ R .  This contradiction proves that L has the property (**).

Conversely, suppose that L satisfies (**). From Lemma 1 it follows that 
L satisfies (*), and therefore every element of L has irredundant decom
positions by Theorem 4. Let a G L and a = VT = Vß be two irredundant 
decompositions of a. Pick an element t G T  and we set t : = \ / ( T  — {<}). By 
Theorem 5 there is an element r G R such that a = rV t. Then, a =  rV i =  tVf.
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Moreover, r V t ^ t, because decomposition a = \J T  is irredundant. Applying 
(**) we conclude that r — t. Hence R = T,  and thus every element of L has 
unique irredundant decomposition.
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POLYNOMIAL APPROXIMATION ON LOCALLY COMPACT 
ABELIAN GROUPS

R. WINKLER

A b str a c t

The set of all unary functions / :  G —* G in a locally compact abelian Hausdorff group 
G which can be approximated pointwise or uniformly by polynomial functions is studied.

1. Introduction

Let (£z,+) be an abelian group and T* a topology on the set

-  GG = { f  \ f :  G —>G}

of all maps from G to G. We shall consider the set

(1) V = \ J V k, Vk = { f e f \ 3 a e G V x e G : f ( x )  = a + k x } ,
kez

of polynomial functions on G and ask: “W hat does the set V  (topological 
closure of V  with respect to T*) look like?” Throughout the paper by G we 
mean — if not specified in a different manner — a locally compact abelian 
Hausdorff group. There are two reasons why this class of topological groups 
can be investigated very effectively.

The first one: There is a very strong duality theory for locally compact 
abelian groups, which will be used several times.

The second one: The set V of polynomials is given by a handy set of 
normal-forms, cf. (1).

In the following we shall consider two topologies T*, that of uniform 
and that of pointwise convergence. In both cases we use the notion of a 
character \  on a topological group G, tha t is, a continuous homomorphism 
which maps the topological group (G , + ) to the unit circle (one-dimensional 
torus) T := ({2 G C | \z\ = 1}, •) (= (R, +)/(Z, -f)) in the complex plane with 
the natural topology. The set of characters on G with multiplication • defined 
pointwise and the topology of uniform convergence on compact subsets again 
forms a topological abelian group (Eg , •), the character group of G.

1980 Mathematics Subject Classification (1985 Revision). Primary 22B05; Secondary 
08A40.

Key words and phrases. Pointwise approximation, uniform approximation, polynomial 
endomorphisms, congruence compatible functions, topological algebras.

Akadémiai Kiadó, Budapest



136 R. WINKLER

2. Uniform approximation

Let T  be a topology on G.  It is well known th a t, for every neighbourhood 
base U of 0 (for the rest of this paper U is always used in this meaning) with 
respect to T,

(2) Bf  := {{g G T G \ g{x) -  f (x)  € U Vx G G} | U € U)

is a neighbourhood base of /  G T g with respect to the topology T* of uniform 
convergence. In most cases the set V turns out to be “very small” . This fact 
is expressed by

T h e o r e m  1. Let G be not totally disconnected (i.e., there are connected 
subsets with more than one element). Then V  is closed in the topology of 
uniform convergence and is the countable union of the separated closed sets 
V k — {p = a + kx I a G G}, each of them homeomorphic to G. Hence only 
(trivial) approximation of polynomials by polynomials (with the same k)  is 
possible.

P r o o f . It suffices to prove the following four facts: 
i) 317 eld: Vfcx ^  k 2 G Z, a i ,a 2 G G: 3x G G:

(k\x  + ai) -  (k2x + 02) ^ U

Ü) f e v ^ 3 k e _ Z :  f e v k
iii) g z : f e v k = > f e v k
iv) Vk G Z: 4>k : G —* V k, a >-> (j)k( a ) a  + kx,  is homeomorphism.
ad i): From duality theory it is known that, for G not totally discon

nected, there exists a character \  £ — g which is onto, i.e., x(G ) = T. U : — 
— x -1({z G T I 2 7̂ - 1 } )  is an open neighbourhood of 0. With k := kx — k2, 
a a\ — a2 there exists a solution x G G of x (x )fc = — x(a) (x denotes the 
conjugate complex number of 2 G C) because x  is onto.

=> X((k ix +  ai)  -  (k 2x + a2)) = x ( kx +  a) =  x ( x )kX(a) = - 1
=>■ (kxx a 1) -  f k 2x +  a2) U.
ad ii): Let /  G P, U from i). From the continuity of the group operations 

follows

B V e U :  2VQ 1 /A - V  = V
(2V = V + V  = {vx + v2 \vx,v2e V} ,  - V  = { - u  I V G U}).

Bűi G G, k x GZ: Vx G G : / ( x) — kxx — űi G F. 

Claim: /  G Pkl • Let W  £U  arbitrary, w.l.o.g. W  Q V.

f e v = >
3a2 G G, k 2 G Z : Vx G G : f ( x )  — k2x  — a2 G W  

(k xx -(- ax) -  (k2x -f a2) — (/(x ) -  k2x -  a2) -  ( /(x )  -  kxx -  ai) G TV C U.
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Hence by i) k2 = k 1? therefore indeed /  £ Vk,.
ad iii): For /  £Vk  we claim Vx £ G : /(x ) = /(0 ) + fcx. Let W  £ U  arbi

trary. We shall show /(0 ) + kx — f ( x ) 6 IF Vx € G: Take V  such that 
21/CVF, -1 / = V.

/  £ Pfc => 3a £ G Vx £ G : a + fcx — /(x )  £ V => Vx £ G : /(0 ) +  A;x — /(x )  =
= (a +  kx -  /(x ))  + (/(0 ) -  a -  fcO) £ 1/ + F  C VF.

Since VF £ U is arbitrarily chosen and G satisfies the HausdorfF separation 
axiom, we have Vx £ G: /(x )  = /(0 ) + A:x and thus /  £ 'Pfc- 

ad iv): trivial.
If G is totally disconnected, Theorem 1 fails to be true. This can be 

shown by the following counterexample:
Let G := Z2 X Z3 X Z5 X . . .  the direct product of infinitely many dif

ferent discrete cyclic groups of prime order and T  the product topology. 
By Tychonoff’s theorem G is a compact abelian IVgroup. Let us consider 
f  .  G ► G, (fli,  fl 2, • j  • ,Rn?***) 1 * (lUi,2il2>*** ,  .  .  .  ).

Claim i): /  £ V: Let U £ U. According to the definition of product 
topology there is an n £ N with {0} x . . .  X {0} X ZPn+1 x ZPn+2 X . . .  C \J. The 
Chinese Remainder Theorem guarantees the existence of a solution k of the 
congruence system k = i modp,, * =  1 , . . .  , n, therefore kx — f ( x )  £ Í7 Vx £ G, 
hence indeed f  £ V .

Claim ii): /  ^ V: f  £ V  and /(0 ) = 0 would imply f  = kx  with k = i 
mod p, for all primes pi which is impossible.

3. Pointwise approximation

With the same notation as in (2) a neighbourhood base Bf  of a function 
/  with respect to the topology T* of pointwise convergence has the form

Bf = {{p £ T I g(x) -  /(x )  £ U Vx £ T} | U € U, T Q G, T  finite}.

For the rest of the paper we only consider this topology. For the description 
of the set V  we also use the following notations:

J-Q := { /  £ Jr \ /(0 ) = 0} . . .  “normalized functions”

'Po := { /€  F I 3k £ Z Vx £ G: f ( x )  — k x } . . .  “power functions”

K, := { / £ T I VA: N  closed subgroup of G =>■ f ( N ) Q N }  . . .
“maps respecting closed subgroups”

/C := { /£ .F |V n £ N  VA : A closed subgroup of G" 
and ( c i ! , . . .  ,a „ )£  A = > ( /( a j) , . . .  ,/(a „ ))  £ A} . . .

“maps respecting closed subgroups of powers”
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£: = {/G T  | Va, &GG: /(a + 6 )= /(a ) - f /(& )}... “endomorphisms of G"
Lemma 1. In every topological abelian group G the following equivalence 

holds for every f  € J-:

f e p & g - - f - f ( 0 ) e p 0.

P r o o f . Clear.
By Lemma 1 we may restrict our investigations to the smaller set Pq. 
The main result, which gives the relations between the classes of functions 

listed above, is
T heorem 2.

V0 QPo = JCQ£ n / c j  f. %£ U/CgJFogjF.

First we prove
Lemma 2. The following conditions are equivalent:
0) f e v o

(ii) Va1, . . .  ,an e G :  ( / ( a i ) , . . .  ,/(a„))G  ( ( a i , . . .  ,a„))
(iii) V ai,. . .  ,a„ € G, Xi> • • • -Xn£

Xl(al) ' • • • ’ Xn(ön) = 1 => X l(/(a l)) • • • • • X n ( f M )  = 1

(iv) f e i c .
In  (ii) ( (a i , . . .  ,a n)) denotes the topological closure of the subgroup of Gn 
generated by the element (ax ,. . .  , an) G Gn.

P r o o f . (i)<í=>(ii). /  G Vo VP GW, ai . . .  , a„ e G 3k e Z: /(a ,)  — 
— fca, € U, i = 1 ,...  , n <£>(ii)

(ii)=>(iii). Let X» € Hg , t = 1 ,.. • ,n  and X i(« i) ' • • • • Xn{an) = 1. Then 
x (x x, . .. ,x„) := Xi(x i ) ' • • •' Xn(^n) defines a character x G . =í> X-1 ({!}) 
is a closed subgroup of Gn containing (ai , . . .  , a„) =>■

( f {a i ) , . . .  , / ( a n))G ((o i,... , an) ) C x  ^ { l } ) ^
=> X i( /(“ i ) ) ' • • • • Xn(f(an)) = 1-

(iii) ==^(iv). Take any /  G T  which satisfies (iii). Let N  be a closed 
subgroup of Gn and ( a i , . . .  , an) G N.  If ( / ( a x ) , . . .  , /(a„)) ^ N  then — as 
is well-known from duality theory — there exists a x € Hg" of the form 
x ( ( x i , . . .  ,z n)) = X i(z i)-----X n(zn) with Xj G “ G such that x ( N)  = 1 and 
x ( / ( a i ) , . . .  , /(a„)) ^  1, which contradicts (iii).

(iv) =>(ii). ((a1;. . .  , an)) is a closed subgroup of Gn, hence (iv) imme
diately gives ( /(a x ) ,. . .  , /(a „ ))  G ((ax, • • • , a„)).

P r o o f  o f  T h e o r e m  2. V q Q S  =  £  together with Lemma 2 implies 
K = P0 Q£ = £. The remaining relations in Theorem 2 are trivial.
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Corollary 1 (cf. [2]). If  |G| > 2 then there is a function f : G —*G 
which cannot be approximated pointwise by polynomial functions.

P roof. By Lemma 1 and Theorem 2 it suffices to find an f  £ £ with 
/(0 ) =  0. But every map with /(0) = 0, f ( x ) = a /  0 for all x p  0 does this 
job.

Corollary 2. f  e P  (i.e. “f  can be approximated by polynomials point- 
wise”) if and only if f  “respects closed congruences in the powers Gn ”, i.e., 
for every n E N, every closed subgroup N  Q Gn and all a{,b, EG, i = 1 , . . .  , n 
/  satisfies the implication

(ű i, . . .  , cin) — (6j , . . .  , bn) E N  =£■
( f ( a 1 ) , . . . J ( a n) ) - ( f ( b 1 ) , . . . J ( b n) ) E N .

P roof. Clear.
Now we are going to look at some special groups.
T heorem 3. In the case of a finite abelian group with discrete topology 

the identity Vo — Po — IC — Í  fl K holds.
P roof. It suffices to show £C\K Q Vo- G has a representation G = Zmi x 

X . . .  X Zmn as a direct product of cyclic groups of orders mn|mn_ i| . . .  |m i, 
forming a chain of divisors. Let /  € Í  fl K. We have to find a k E Z with 
f ( x )  = k x V x E  G.

N% := { (0 , . . .  , 0 , / ,0 , . . .  , 0) I / € Zm,}

is a (closed) subgroup, hence f  E 1C implies

/ ( ( 0 , . . .  ,0 ,1 ,0 , . . .  ,0)) = (0 , . . .  ,0 ,fc „ 0 ,.. . ,0 )

with 0 < k{ < m,. Furthermore

M, := { (0 ,...  ,0, /,,/,+!, 0, — , 0) IZ, =  /1+i mod m,+1}

is a closed subgroup, too, hence (using f  E £ Cl K,) one gets immediately

(0 ,...  , 0, ki, ki+i, 0 , . . .  ,0) = / ( ( 0 , . . .  ,0 ,1 ,1 ,0 ,. . .  ,0 ))e M „

therefore A:, = fc,+j mod mI+1 for i = 1 ,. . .  , n — 1. Now obviously we have 
fc, = k k\ mod mi for all i = 1 ,... , n, thus

n
/ ( a l , . . .  ,a„) = ^ a , / ( 0 , . . .  ,0 ,1 ,0 , . . .  ,0) =

1 = 1 
n

— 5 > ( 0 f . . .  , 0, A;, 0 ,. . .  ? 0) — k(cii), , ,  , ö«)
i=i
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for all (e ti,. . .  , an) G G, the desired result.
Lemma 3. Let ((?;),£/ be a family of abelian Hausdorff groups (locally 

compact or not). Consider the direct product G = X\ Gi. Then every f  G
iei

G K G H Eg has the form

/((*<).'€/) = (/.(* .)).€ /

with fi  G K g, fl Eg, ■ For the case that there exists a topological isomorphism 
4>: Gii ~ * Gi2 between two factors Gil = G ,2 of the product we even have
</> ° Ux =  f i 2 0 <t>-

P r o o f . For every io G I , x G G,0 let fi0 : G,0 —► G;0 be defined by / ,0 (a:) := 
7T,-0(/((a:i),•£/)), with x,0 =  x and x,- = 0 for i ± i0, where 7r,0 : G -* G{0, 

(x i ) i e l1—1” *»o ? is the projection to the io-th coordinate. We show

*io( f ( ( x i)iei)) = V(x,)l€/ G G.

For an arbitrary (x,),ej G G let us consider the element (y,),e/  defined 
by Vi0 ■— x i0 and Vi ■— 0 for i ^  io and define the closed subgroup 7V,0 := 
{(x,■),■£/ I x,0 = 0). (x,)te/ -  (y,)iei G N , 0 and /  e K GDEG imply /( (x ,) ,e / ) -  
f ( ( y i ) i e l ) £ F ,0, hence 7r,0(/((x,),-6/)) = Trio(f ((yi) ieI)) = /i0(x,0). Of course 
indeed / ,0 G /Cg,0 D Eg , 0 , which proves the first assertion. The second one 
follows by considering the closed subgroup

:= {(xi),G/ |0 ( x i l ) = x,-2 A i { n , i2} =>■ xi = 0}

and using /  G KG.
In the following R and Z denote the additive groups of the real resp. inte

gral numbers, {z G C | \z\ = 1} the multiplicative group of complex numbers 
on the unit circle. Furthermore we define

T := R/Z = {z G C | \z\ = 1} . . .  the one-dimensional torus

and

Tn := Rn/Z" = T X . . .  X T (n times) . . .  the n-dimensional torus.

T h e o r e m  4. For G = Tn, n G N we have

V 0  = K = E n K .

P r o o f . By Theorem 2 we have to show E  f l  K  Q Vo-  We use the charac
terization (iii) of Lemma 2. Let

X, =  (x<,'), . . . , x ( 1’))G T ", x f  G T,
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Xi characters of T" and /  £ £ D/C. Lemma 3 gives / ( x j , . . .  , xn) = ( /(x  i ) , . . . ,  
/(x „ ))  with f  £ £t  n/CT . We know (see [1]) that every character \ i  of Tn 
has the form

X , ( x i , . . .  , x n ) =  e(k['^xi + . . .  + k ^ x n) 

with e(x) = e2n,x. Hence we get

>='(EÉ*f40).
.=i j=i

which implies

thus for f  £ St

and

£  £  k? * T 6 z -
i=l 2 — 1

•=l i=i

n

i ( £ £ * S M ’)  H ( £ £ * ? / < 4 ° > )  =
\  ,=i >=i /  '=i j=i

= X Á f ( X 1 ) ) . . . . - Xk( f ( X k)).

By Lemma 2 (iii) the proof of Theorem 4 is now complete.
T heorem 5. In T furthermore the inclusion S QIC holds and therefore 

we have Vo = K = S D AC = S , the inclusion Vo C Vo is strict.
P roof. With

Xj(x ) — e(k]X) — e2n,k,x, f  £ S and Xi(x i) • •. • • Xn(xn) =  1

we get

and

n  n

1 — e ( y  '  kjXjJ, y  '  kjXj £ Z
j=i j=i

n n

Y 2  kj f ( x í ) = ki x i ) e z ’
j=i }= 1

thus X l(/(xj ) ) ' • • • ' X n(/(xr>)) = 1. Lemma 2 gives £ C £  and hence by 
Theorem 2 V0  = !C = £ C\ K. = £.
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In order to prove the second statement we mention that by Vq = £ our 
set V q is just the dual group of the discrete torus Tj, which is different from 
Vo, cf. [1], pages 405-406.

T heorem 6. For G -  Rn (n may also denote an infinite cardinality) the 
equalities Vq = Vo = IC = £ fl K, are valid.

P roof. First we prove the assertion for n =  1. Let /  G £ D /C. For every 
a G R N a .— {ka \ k G Z) is a closed subgroup. /  G K, hence /(a )  = kaa, ka G Z. 
We have to show ka = kb for a ^  b.

First case: a, b independent over Q (or equivalently over Z):

ka+bd + ka+bb = ka+b(a + b) = f(a  + b) =  f (a)  + f(b) = kaa + kbb,

hence (ka+b - k a)a + (ka+b — kb)b = 0, which implies ka+b - k a = ka+b — kb = 0 
and ka = ka+b = kb.

Second case: a, b dependent. There exists a real number c such that c, a 
and c, b are independent. Then the first case gives ka = kc = kb. Now we have 
found an integer k G Z such that f (x)  = kx Wx G R. The generalization from 
R to R" now is an immediate consequence of Lemma 3.

The interesting yet unsolved question remains if jC = £ C\ 1C holds in the 
general case. We are only able to prove

T h eorem 7. The inclusions Vo Q Vo, £ n /C ^ £ ,  £  C\ K.QJC, £  Q £  U K, 
/ C C ^ u / C ,  f U / C Q  To, and T o Q T  of Theorem 2 (in general) cannot be 
replaced by equalities.

P roof. V q ^ V q : cf. Theorem 5.
£ f \ K  ^  £ and hence K ^  £ U/C: Take G = G\  X G\, f(a,  b) = (b,a), |G j| >

> 1.
£ fl K 7̂  K. and hence £ ^  K.ö£: G — l p (p prime) is simple, hence JC = To 

but certainly £ To for p > 2.
£ U )C ^  T 0; Take G — Z4, f : 0 > 0, 1,2,3 1—* 1.
T 0  /  T: Take |G| > 1, /(0 ) = a ± 0.

REMARK. Although polynomials are continuous, the closure V q may con
tain functions that are not. Examples are the functions f  £ V  o\Vo given by 
the second statement of Theorem 5.

R e m a r k . Although Vo is countable, for /  G Vo it is not necessary that 
there exists a sequence (pn)neN of power functions such that p„(x) — knx  —► 
—* f ( x )  pointwise. It is even possible to prove

T heorem 8. Let G be compact, not totally disconnected and (knx)n^n 
an arbitrary sequence of power functions, kn pairwise different, then the set 
M  of all points x where (knx )nen converges has Haar measure p (M)  — 0.

P roof. First we prove the assertion for the case G — T. We use the 
following “norm” || • || on R describing the topology on T: ||a:|| := min |x — k |.
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With
M e,n i,n2 := -{z€T| ||(A:ni -fc„2)x| |<£}

and OO OO
M Cin  ■= n n ni ,ri2

i*i =N ri2  =N

we have

M  = {x £ T I (fcnx)„eN converges in T} =
= { x £ T |\ /£ > 0  3 N  Vni, n2 ^ || (kni -  fcn2)x|| < £} =

OO=n u m '*n
c>ON=\

and /i(M£iniin2) < 2z. Hence < 2e VAT, e > 0 and therefore {{Mc,n )n ^íí
is a monotonous sequence of sets)

OO
[J = lim /i(Me,/v)< 2e Vf > 0

n =i ->°°

and OO

e>0 N = 1
The general case can be treated in the following manner: Let us consider 

the sets
M  = { x e G \  (knx )„£n  converges in G}

and
M'  = {y £ T I (kny)neN converges in T}.

It is easily checked that they form subgroups of G resp. T. Because G is not 
totally disconnected there is a character x  which is onto (duality theory), 
hence |G /x -1(Af')| = |T/A/'| and by continuity M  Q x~ 1 ( Ml). By the first 
part h t (M') = 0, hence by translation invariance and <7-additivity of /ix 
T / M '  is infinite (even uncountable), therefore also G /x -1(Af) is infinite and 
by the same argument p(M)  < p(x~ 1 (M'))  = 0.

Most results in this paper said that, in a certain sense, there are only few 
functions which can be approximated by polynomials. A converse statement 
is

T h eo r em  9. Let G be connected and compact with a countable topologi
cal base. Then for every n £ N there is a set T  Q Gn which has Haar measure
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p{T) — 0 and is meager (i.e., countable union of sets whose closure has emp
ty interior) such that for every (o i,. . .  , an) £ Gn — T  every f : G —> G can be 
approximated at the points a \ , . . .  , an by polynomial functions.

P roof. As in Lemma 2 one sees that approximation of /  by power 
functions only is impossible if the implication

x ( a i? • • • , a „ )  =  l = > x ( / ( a i ) , - -  - , / ( ß n ) )  =  1

fails for a character x  °f Gn. This can occur only if the assumption is 
satisfied. Therefore the set T  of all ( a j , . . .  , a n) £ Gn such that not every 
function can be approximated at the points a j , . . .  ,a n satisfies

(3) T c y { x - i ( { i } ) | x 6 EGn , x ^ l } .

First we investigate p(T):  Every nontrivial character of the connected 
group Gn is onto (duality theory), the Haar measure p on the compact 
group Gn satisfies p(Gn) = 1 and is translation invariant, which implies (T 
is infinite) for every 2 £ T

(4) /i(x "1(W )) = M x -1({ 1})) = 0

for every \  € =-Gn- W ith G, Gn has countable base too, therefore only count
ably many different characters (duality theory), thus (3), (4) and cr-additivity 
of p give p(T)  = 0.

For showing that T  is meager it suffices to show that for every nontriv
ial character x  the closed subgroup N  = X-1 ({1}) has empty interior N°.  
Suppose N° 4>. First we claim that N°  is a subgroup of G: x , y  £ N°  
implies the existence of an open neighbourhood U of y such that U Q N . 
{x — z \ z ( z U } Q N  is an open neighbourhood of x — y contained in N , hence 
x — y £ N°.  Thus indeed N°  is a subgroup. The factor group G/N°  consists 
of an infinite number of disjoint open classes, which contradicts compactness. 
Thus the proof of Theorem 9 is complete.
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NONUNIFORM CONVERGENCE RATES IN THE CENTRAL 
LIMIT THEOREM FOR MARTINGALES

K. JOOS

A b stract

Nonuniform convergence rates in the central limit theorem for martingale difference 
arrays are derived. The main result is for variables with finite moments of order 2 +  26, 
6 > 0. Consequences are two results where only second moments are assumed finite. In 
addition examples are constructed which demonstrate the optimality of the results.

1. Introduction and results

Let ( X nii, (Fn,i, 1 <j i <[ k(n) ,n  £ N) be a martingale difference array (mda). 
According to the well-known central limit theorem of Brown [1] the condi
tions

( 1 . 1 )

and

f c ( n )

E(^n,.7^n ,i-i) —♦ 1 in prob.
1 — 1

k(n)

(1.2) 2  E(X2,t/( |X „ ,t| > £)/*■„,i- i)  — - 0 in prob. Ve > 0

are sufficient for the validity of a CLT. With the aim to derive a convergence 
rate under weak conditions some authors expressed estimates in the moment 
terms

*(") M") 1+5
Ln,2S := £  E (|X „,,|2+2Ä) and Nn,2S := e ( | £  -  l | ) .

i=i i=i
If L n<26 + ^ 1 for some 6 > 0, then there exists a constant 0 < C& < oo,
which depends only on 6 , such that for all x £ R

I Ä  \
(1.3) | P ( ^ n l „ , , < i ) - ^ )  <Cs(Lnas + NnaS)1/{3+2S)( l + |x |2+2V -

i=i
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(See [4], Theorem 1.) The exponent 1/(3 + 2<$) in the uniform part Ln^g + 
+ Nn t2 6  is exact: there is in Häusler [3] a martingale difference array
( X n<i, T n,i, 1 ^ i S n, n e N) with

n

lim sup sup P ( V ' X Uyi < x ) — <J>(x)
n —*oc xGrI ’ 't =  l

Furthermore (1.3) is exact w.r.t. the nonuniform part: In the case of inde
pendent X n\ , . . .  , X nn it is well-known that the term (1 + |x |2+2i)-1 is sharp 
for large |x| if the variables have moments of order 2 4- 26, see i.e. Remark 
1 in [5]. Nonuniform bounds like (1.3) provide for example rates of conver
gence of moments and Tp-norms in the CLT, whereas these do not follow 
from uniform bounds. From now on let (X,-, 1 < i ^  n) be a martingale
difference sequence (mds for short) and

n

£ n l 2 Ä : = ^ E ( | X , | 2 +2 Ä) ,  6 >  0 ,

>=i

(^„,25 + iVn,2Ä) - 1/(3+2Ä)> 0 .

• • 1 I fj
Nn,2s:= e ( | ^ E ( X 2/X,_i ) —l| ) ,  6>0,

i=i

^ : = E E ( Ä ) - 1  •II --- oo
1=1

Our main result is the following Theorem, which generalizes (1.3). There 
we drop the restriction that the Ljapunov term Ln^s and the norming term 
N n,2S have the same parameter 6.

T heorem. Let 6 > 0 and Ln^g ^ 1 /2.
(i) Let 0 ^ r < oo and iVn>2r ^ 1/2. There exists a constant 0 < Cg,r <  oo, 

which depends only on 6 and r, such that for all x € R
n

1=1
^ t s)+

r l / ( 3 + 2 r  
' n , 2 r 1 + \x 2 + 2 s \

where s := min{á, r).
(ii) Let Nnt* 1/2. There exists a constant 0 < Cg < oo, which depends 

only on 6, such that for all x £ R

p ( e  ^ *) -  *(x)\  i  cg ( f ^ +2ä) + N $ )  ( i + |2+2Í\ —1

1=1

Since < / (r3+2r) X  N XS  f°r r ^  may be expected that (ii) follows
directly from (i). But we need some modification for the proof of (ii) because
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in (i) we use the Burkholder inequality, and therefore the constant C$,r goes 
to oo.

The following example is a concrete situation, where the Theorem gives a 
better estimate than (1.3), that is, we have a mds (Xni,, ,, 1 ^  i < n, n G N) 
with

lim sup sup
n—►oo xER

P ( E  X n,i < x)  -  4>(x)|(Ln<2S +  Nnasr ' / ^ )  = 0
«=1

and

lim sup sup P
n—>oo ( £1 — 1

X n,, < x ) - < h ( 2:) |( j l / ( 3 + 2  6)  
n,2£ > o .

Example 1. Let n > 2 and a n =  l/ln (n ). Let XM , . . .  , X n,n_l7 Y n be 
independent r.v. with

£{Xn,i} = iV(0, (1 a„)/(n -  1)), l < t < n - l ,  P(y„ = ± a „ )  =  1/2.

Let Nn- i  = ^ " J j1 X n { and X n n = YnI ( N n-1 G [0,an]). Then we have for all
6 > 0

r l / ( 3 + 2  6 )  n  
L n , 2 S  ~ C 5a„,

at1/(3+2ä) ~  c W 2+2Ä)/(3+2Ä>n , 2 6  >

< i 2 =  a„,
and because

n 1
P ( E  x ".‘ á  ° )  =  P (X n—1 < 0) +  -P (0  < iV„_! < Q„),

i=l
we have

n

K £ * « . i S o ) - * ( 0 )
1 = 1

^ C an. □

As consequences of the Theorem we obtain the following results, where we 
only assume that the second moments are finite. Motivated by the Lindeberg 
condition (1.2) we define for ß  > 0

n

L{n, ß) := E  E(-X7/(|X,| > ß)).
i=i

Corollary 1. Let ß >  0, S > 0 and
n

N n,o < 1/8, L(n, ß) < 1/8, E  E ( |* ,|2+2i/ ( |* , |  ^ ß)) < 2~3~2S.
i=i
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Then there exists a constant 0 < Cs < oo, which depends only on b, such that 
for all x G R

n
| p ( £ x ,  < * ) - * ( * )

1=1

^ c i  [ x ;  E (|x ,|2+2Ä/( |X ,| ^ /?))]1/(3+2i) + L(n, ß )1'3 + < 7o j ( l  + x2) - 1.
 ̂ *=i

In our next result we use the same Lindeberg term as Móri [6], who 
showed the uniform version of Corollary 2. Let

W „:= / ^ E ( X 2/( |X ,|> £
1=1

L(n,e)d£.

Then we obtain as a consequence of Corollary 1
C o r o l l a r y  2. Let W n < 1/16 and N Uio < 1/8. There exists a constant 

0 < C < oo, such that for all x G R

p( £ X,- < x ) -  $(x) < C \ w ^ A+ N,1/3
n, 0

l
1 +  X2

The bound in Corollary 2 is sharp in all terms. Obviously it is exact 
w .r.t. the nonuniform part. That it is also exact in the uniform part we see 
in the next two examples. Example 2 demonstrates that the exponent 1/4 in 
the Lindeberg term Wn (and moreover 1/(3 + 2<5) in the Ljapunov term L„,2i 
in the Theorem) cannot be improved, even in the special case that the sum

n

of the conditional variances E(X2/X ,_i) is equal to 1. Finally Example
i = l

3 shows that the exponent 1/3 in the norming term  iVn,0 is sharp.

E x a m p l e  2. Let n > 2 and a„ := l/ln (n ). X n>i , . . .  , X„in_i ,Yn>n, . . . ,  
y n,2 n are independent r.v. with £{Xn)} = iV(0, (1 -  a 2)/(n  -  1)), l < i < n — 
-  1, P(y„,„ = ± a„) = 1/2 and C{Yn,,} = iV (0,o£/n), n + 1 ^ i < 2n. Let

N n - 1  := £  x n,i, Xn,n ■= Yn<nI(N n. i  £ [0 ,an]) and Xn,, := Yn<iI(N n. x
i - 1

2n
[0, Qnj) for n + 1 ^  i 2n. Then E(X2 J T n,i- i)  =  1. With

i=i

f ( \ v  .12+25\ 1 6  for i ^ n
\  =Q2+2ip(jVn_i e [o,Qn] ) ~ C Äa^+2i for i = n
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we get 

and

r  l / ( 3 + 2 Ä )
Ln,2S ~  Q "

1
Wn <Cn- ' l *  + J  E(Xl nI( \Xn,n\>y) )dy  =

o
Oln

= C n-1/4 + a 2n j  E(/(JVB_1€ [ 0 ,a n]))d»<Ca|i

implies
W lJ A~ a n.

n
p ( ^ i n, ^ o) - $ ( ° )  =

i—i
an 2n

= / [ ^ - P ( £  y n , . ^ - * ) ] P(^ n - l€ d * )  =
0 • = " + 1

C* n
= | [ ^ - ^ ( - x a - 1)]p(iVn_1Gdx)

and so we have

| ? ( £ * . , •  s o ) - * ( o ) | >

i—i

> [ $ ( 0 ) - $ ( - ! ) ]  p (jvn_l€  [ ^ B,a „ ] )  ^ C 0n.

2 n
So we have shown that the convergence rate for ^  X „, is q„. □

i=i
Example 3. Let n >  2 and a n := l/ln (n ). X „ ti , . . .  , X n<n, yn,n+ i , . . . ,  

yni2n are independent r.v. with C{Xn<i} — N(0,  n -1 ), 1 < t < n, C{Ynj}  =

= N (0, a^n-1 ), n + l < i <2n.  Let Nn := £  X n,t and Xni, := Y„ti(N n G
i = i

G [0, a n]) for n + 1 < i < 2n. Then we have
2n

£  E(Xn2, / ^ , , _ 1) = (1 + a*)J(JVn G [0 ,an]) + 7(JV„ £ [0,q„])
i=i
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and therefore IV* q3 ~  C a n. Furthermore ~  Cn  1/8. Now consider the 
convergence rate: Taking into account tha t £{iVn} = N (0,1) and

( ^71 ^
C\ Y! 5n,i f = iV(0, a£), we obtain

'■«=n+i ’ -1

2" i 7
p ( £ * Bfi< o )  =  -  +  J  I  a n)v (y )dy

* — 1 n

and this implies

2n

P ( E * » , i < ° )  -  ^ (° ) | ^ ^ ( - i / 2) /  <p(y)dy>Can. □ 
1=1

Oin / 2

2. Proofs
To simplify somewhat the notation we define for a random variable X  

and t > 0

D ( X ) sup{|P(X ^ u) — <b(u)|; u € R} 
d(X, t )  := s u p { |P (X < u )-$ (u ) |;  u > i} .

For the proofs of the Theorem and the Corollaries we will need the following 
Lemma, whose proof is an easy technical exercise and therefore omitted.

L e m m a . Let X  and Y  be r.v. Then
(i) D ( Y ) < D ( X )  + {2n)~1/ 2a + P(\X - Y \ > a )  Va > 0

d(Y ,t) < d(X, t — a) + ap (t -  a) + P(|X — Y\ > a) VO < a < t.
(ii) For any s >  1 with E ( | X  — F |s) ^ 1 there exists a constant C(s) such

that
D(Y)  < D ( X )  + C ( s ) E ( | X  -  y | 4) 1/ ( 1+s)

and for all t>  0

d(Y, t ) < d(X,  t /2)  + C(s)E(|X -  Y |*)1/(1+s> r \

Furthermore we need the following Lemma 2 of [4]:
L e m m a  2. Let X  and Y  be r.v., K  > 0, p > 1.
(i) There exists a finite constant Cp such that

D(X)  < Cp [p{x + Y)  + IIE (|y |p/X ) | |^ p) .
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(ii) Let ||E (|F |P/X ) ||00 < K.  There exists a finite constant Cp k  such 
that for all x > 0

d(x,  x) í  d{X +  y , x/2) +  c p,K ( d (x ) +  \\E(\Y\^/X)\\^ + ||E(|Y|p/x ) | |oo )

and

d(X + Y,X)< d(X, x/2) +  CP,K ( d (X) +  | |E ( |y |p/^ ) | lL /p +  | |E ( |y |p/ X ) | |0O) .

P r o o f  of  t h e  T h e o r e m . Let C — C(S, r) and t := max{<$, r}. First we 
prove (i). We define a stopping time r  by

I
r  := sup j /  € { 0 ,... , n}; ^  E(X,2/ j ; _ i )  < l |

i=i

and set Fj := X ,/( r  > i) for i = 1 ,. . .  , n. For a > 0 and i — 1 ,. . .  , n let

Xi  := X ,I(\X i\ < a) -  E (X,I(\X,\  Í  o ) /^ i_ ,) ,

%  := X,I( \X, \  > a ) ~  £(X,I( \X, \  > a)/

Then we have
n n

P ( | E * -i=i
~ E y ,| > 8 a ) =

i=i
C

LVII X , > 2 « ) + p ( | x : X, > 2a) + Ca 2-26 E E ( l ^ . l 2+2i)
.=r + 2 i=r+2 1=1

For the second summand on the r.l l.s. we get

n

5(| E > 2a^ <a _2E(| É  x >2) =
t=r+2 i=r+2

= a~ T (
n

: e < a -2~2SLnt26
«=r+2

Now consider p ( E"=r+2 X, > 2a . For k = 1 , . . .  , n let

k
Wk: =Xkl [  J ]  E ( X - / ^ , _ 1) ^ a 2) / ( r ^ A : - 2 )

i=r+2
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Zfc: = X fc/ (  Y ,  E ( x í / ^ _ i ) > a 2) / ( r < A ;- 2 ) .
\ — T-f-2

The VTfc and Zk are martingale difference sequences and with a well-known 
inequality of Rosenthal (see [2], Theorem 2.11) it follows

n

p (| Y  *i\  > 2a) ^
«=r+2

n  n

= P ( |  E  W i | > « )  +  P ( |  E  Z\ > * ) ±
« =  T +  2 .= r  +  2

i = r +  2

S « '2_2'E (I £  M '.f ) + « - j e ( | 2  z i| ) S
i —r+ 2  i = r + 2

S C o - 2- 2‘ e ( |  5 3  E ( H , 2 / ^ . _ i ) | 1+' ) + C a - 2- 2 , E ( m a x  |W',|2+2‘ )  +

+ « -2e ( E  z ,2) s
t=T + 2

E  E(jfJ/^fc_ i ) / ( E  EC^/Jw-r) < aa)< C a -2-2f [
Lfc=r+2 i=r+2

+ C a _2_2<E(

11+t\

) +
+:( max |X fc|2+2iV 

n k
+ C o_2e ( E  E ( ^ / ^ - i K ( E  E (X ? /^ ,-1) > a 2) ) = : / .

A:=r+2 t = r + 2

In the first summand [ . . . ] <  a2, and therefore a 2 2t[. . . ] 1+i< a  2 2r[. . . ]1+r. 
Furthermore |X,| < 2a implies

-2-21 \(  max I X f c l ^ ^ ^ - V ^ E f  max |X fc|2+2Ä) .
\ l < f c < n  /  “  \ l < f c ^ n  /

So we get

I < C a - 2~2re ( [ E  E (X Í/^ fc- 1) / ( E  E ( ^ / ^ 1_1) ^ a 2) ] 1+r]  +
k 1.--- I O i= r+ 2  'k = r + 2

+ C a - 2- 2ÄF„,2Ä + C a -2E( E  E(XJ/^fc- i ) / (  E  E ^ / ^ x )  > a2) )  <
/c=r-f 2 t = r + 2
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k  =  T  +  2

+ C a _2_2r E (

< C a " 2" 2rE ([  £  E ( A j ^ - i ) ]  r ) + C a - 2- 2ÄL„,2i+
2

:([ £  E ( x i / ^ _ l)] 1+r) <
fc=r+2

< C a - 2" 2rE ([  £  E(X2/ ^ i - i ) ] 1+r)  + Ca~2~2SLn,26 ^
» = r + 2  
n

$ C a - 2- 2rE ( |^ E ( X 2/J-,_1) _  i | 1+r) + C a -2- 2ÄZ
1 =  1

-/n,2£ •

So we have shown that
n n

P (| E  ~ E  ^ I  > 8ö) = C a -2~2rNnt2r + Ca~2~2SLnas.
•=i i=i

Applying the Lemma with a := + -ZV̂ 2̂ +2r  ̂ we obtain

(2.1a) ű ( É ^ ) ^ ( E ^ + < 2 +2í)+ ^ 5 r +2r)
i=i i=i

and for x > 0 with a := ( E / 25+2^  + Ar̂ 2*r3+2r^  x/4

(2.1b) r f ( £  X„ x) < d ( £  x /2) + C + < < 3+2r))  * - 2 - 2 *

1 = 1 i = l
Let 0 < ß < 1 and (Yi);>„ be a r.v. with P(Yj = ±ß) = 1/2 and T n,Y n+\, 
y n+2, . . .  be independent. For i > n let T x o{Tn, yn+i , . . .  , Vi),

l
v := max j /  € N, ^  E(V;2/^ '1_1) < 11 .

i=i

Of course n<v<n- \ - [ß  2]=: N  — 1.
For 1 < i < A — 1 let Z{ := Y il(v  > i) and

ZN := YNß - 1 ( l  -  J ]  E( Y 2/ ^ ) ) 1' 2.
i=i

N

E
i=i i=i

p ( | E r ' - E z ' | > “) s

Then we get for all a > 0
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^ a -2 -2 rE(j Y ,  ^ . |2+2r/ ( r  =  n ) ) + a - 2- 26E(| Y  ^ . |2+24/( i-< n ))  = : / .
t = n + l

Because (Z , I ( t  < n), Fi, n +  1 5? i < N)  and (Z ,/( r  = n ), JT,-, n + 1 ^ i ^ IV) are 
mds, we obtain by a well-known inequality of Burkholder (see [2], Theorem 
2 . 10)

N
CaI < C a ~ 2~2rE(|  Y  Z> r / ( ^  =  « ) )  +

i = n + l

^ C a~2~2rN n,2r + Ca 
In the last step we used 

N

- 2 - 2 S ,
(I £  z ; \ H ‘«T<

t = n + l

- 2 - 2 r M I ^ , - 2- 2^ L n a 6 .

Y  Zf l ( r  = n ) \ = [ l - Y ^ 2/ ^ . l ) \ l ( Y ^ X i / ^ - i ) ^ )
t = n + l i — l i = l

and
N

i= n + l

We have for all a > 0
N

Y  Z i I (T < n) < max E(X2/ ^ ,_ i ).

(2.2) P ( | ^ y ,  - ^ Z , |  > a )  < C a - 2- 2riVn,2r +  C a - 2- 2ih n,2Ä.
i=i «=i

Using the Lemma with a :=  L 1J ^ +26'> + N ^ r +2^  we Set 

(2.3a) ű ( X > )  ^  ^ ( E Z0  + C L ^ r 2Ä) +  ^ < 72(r3+2r)
i=i «=1

and for x > 0 with a := +2r^  x /8

(2.3b) < É ^ | ) ^ < í : ^ í ) + c ( ^ M)+ < /i w r ) ) *
—2 —2 s

i = l

The variables Z, satisfy

N

«=1
(2.4)
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and

(2.5)

N N

E E(î i2+2i)^EE(î i2+2Ä)+/j2Ä E E(z.2)̂
«=i i = l  i = n + l

j2SiLn,26 + ß “ .

We choose ß := and get with Theorem 1 of [4] for all x € R:

N
(2.6) | P ( E ^  * ) - * ( * )

i=i
< C L 1l / ( 3 + 2 i ) _ _______________

"’2Ä l + |x|2+2Ä'

So we have the result in the case x > 0. The case £ < 0 follows from the just 
proved case applied to the mds (—X, , X,, 1 < i < n).

n
Now we prove part (ii) and set a := E(X2/X,_i)

i=i
Let 0 < ß < 1 and (X,■),■>„ r.v. so tha t Xn,X n+i,X n_|_2,. . .  are indepen

dent and P(X, = ± ß)  = 1/2 for i > n. For i > n let X, := <r(Xn, X n+ i , . . .  , X,).

r := max
l

{ / C N i E E i X ^ O i o } .
i = i

Clearly, then n $ r  ^  n + [a/? 2] =: X — 1. For 1 < z < X -  1 let Lj := X ,/( r  > i) 
and

Tat := Xyv/T1 (« -  E  E ( X ? /^ - i) )  ^
i=i

Now we use the Burkholder inequality and the special construction of the 
Yj, n < i ^ X and get

(2.7)

TV TV
/I 2+2,5 x /I  o l+ tf \

E ( |  E ^  / ^ „ ) < C E ( |  E / ? n ) <
i = n + l

<c
i = n  +  l  

1 +«5
a - E E ( X ? / ^ _ ! )  < C X ^ .

i=i
Now we apply [4], Lemma 2, and get

N
(2.8a) D ( E  * , )  ^ CD ( E  ^ i) + C N XJ 2

i=i i=i
and for x > 0

(2.8b) d[E X it x )  < d (E , I )  +  c ( d  (E y.) + N ^ x - 2- 2*.
i=i i=i i=i



156 K.  JOOS

The variables Z, satisfy

(2.9)

and

N
] T E ( y , 2/ ^ - i )  = a
1=1

N N

( 2 . 10)
^ E ( | y , | 2+2á) < ^ E ( | X I|2+2í) +  /J2í Y ,  E(Y,2) ^
i=i i = l  i = n + l

o2S^ Ln,26 +  2/l ./Vn,,.

We set ß  := and obtain with Theorem 1 of [4] for all z €

N
< CL l / ( 3 + 2 i )(2.11) IP ^a-1 / 2 ^  Yj ^  a _1/ 2x^ — 4>(a-ly/2a;)

i=i

Furthermore

(2.12) |<J>(a-1/2x) -  $(z)| ^ C N n 2|x|exp [ - x 2/3]. 

(2.11) and (2.12) imply for all x € R

N

"’2Ä l + |x |2 + 25'

| p ( ^ y ,  < x) -  4>(x)
1 = 1

(2.13)

P (a ^ Y i < a 1/,2x^ -  $(a 1̂ 2x) + |$ (a  1/,2x) -  4>(x)| ^ 
i=i

< C ( 1 1/(3+2Ä) + /y1/2') 1____
= C V " ’25 + I n ’• ) l  + \x\2+2S,

and so we have shown part (ii) in the case x ^  0. The case x < 0 follows from 
the just proved applied to the mds (—X,-, X,, 1 < i < n ). □

P r o o f  of  C o r o l l a r y  1. Let for 1 ^ i < n

X, := X ,/ ( |X , j  < /3) — E (X ,/( |X ,j  < ß)/fi-i),

% ■= X,l(\x,\ >ß)~ E(X,/(|X,| > /?)/X,-i).

e ( | E X  -  E X * f) ^ e ( £ x ?/(|X ,| >/?)),
1=1 1=1 1=1

Then
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and therefore with the Lemma
n  n

(2.14a) d -C ^ n ,/? )1/3
t = i  1=1

and for x > 0

(2.14b) d(j>2 X„ x ) < d ( j 2  X „  | )  + CL(n,  /?)1/3—
i = i  i = i

Using

E( É E(X' / j r - i ) _ 1 l) =
i = i

e(|E e(*?/*-i) - J2 E(̂ .2/̂ -i|) + e(|E e(x-2/ -̂i) - 1|) ̂
1 = 1 1 = 1 1 = 1

n

< 2e Q T  X?I(\Xi\ > ß ))  + N n,0 -  2L(n,/J) + 7Vn,0 (< 1/2),
i=i

we apply the Theorem with r = 0 and obtain

n

S  c {  [ ±  E d X i l « * ) ]  1 / < W ‘ I  +  E ( | ±  E ( X ? / * . . )  -  1 1 ) , / 3 }  ^  S
^ i = l  1=1 J

S  [ £  E ( |7 ,|!+24)] l/(3+24) +  i ( » , « 1/3+

The fact ]T E(|X,|2+2Ä) ^ 21+2Ä ^  E(| X I|2+2,5/(|X.-| ^ /?)) implies for all x € R
t=i i=i

n

K e * * ^ ) - * ^ )
i= i

< c |  [ g  E(|X,|2+2ä/ ( |X , |  < /?))]1/(3+2Ä) + L(n, ß )^  +  _L_. □

P roof of Corollary 2. We use Corollary 1 with <5 = 1/2,/? = !:
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|P ( £ , X i < z ) - * ( x )
i= 1

^ c {  [ £  E(|AM37 ( |^ , | < 1))]1/4 + L(n, l ) 1/3 + 

if N Ujo < 1/8, L(n, 1) < 1/8 and ^  E(|A’',|3/( |X ,| Ű 1)) < 1/16. Of course
í=i

Z(n, 1) ^  Wn. Because |X ,|/( |X ,| < 1) ^ /  7(|X,-| > y)dy, we get
o

^ E ( |X , |3/ ( | X , | < 1 ) ) < ^ e ( x ? j  I ( \X i \>y) dy)  =
,=i ,=i v J0 '

) n )
= J  E E(X«2/d X ‘l > y ) ) dy =  j  L(n,y)dy = W n ( < - ) .  □
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TWO COMMUTATIVITY PROBLEMS FOR RINGS

H. E. BELL1 and A. A. KLEIN

A b stra ct

Polynomial identities of the form [zn, y\ =  n in_1[i, j/] frequently occur as intermedi
ate steps in commutativity proofs for rings. In Section 1 of this paper, we explore the 
commutativity implications of the weaker condition
(f) for each element z of the ring R, there exists an integer n =  n(z) > 1 such that [xn, y\ =  

=  nz" _ 1 [z, j/] for all y £ R.
Our motivation for studying (f) was an attempt to prove a theorem extending a recent 
result of Abu-Khuzam and Yaqub [2, Theorem 2], and we present this theorem in Section 2.

Throughout the paper, R will denote a ring with center Z and commutator ideal C(R). 
As usual, [x,y\ will denote the commutator xy — yx.

1. Rings satisfying (f)

T heorem 1. If  R is any ring satisfying (f), then C{R ) is nil.

P roof. We need only establish commutativity in the case of R with no 
nonzero nil ideals; and since such a ring is a subdirect product of prime rings 
with no nonzero nil ideals, we assume henceforth that R is prime with no 
nonzero nil ideals. We shall show that R is radical over Z, in which case 
commutativity follows by an old theorem of Herstein [4],

Fix x 6 R, and let n = n(x). If char R — p and p \ n, it is immediate 
from (j) that xn 6 Z ; therefore, we assume that either p \ n or char R = 0. 
Replacing y by yz in (j), we get

[xn,y]z + y[xn,z] = nxn~l [x,y}z + nxn~l y[x,z\, 

and using (f), we get
y[xn,z\ = nxn~l y[x,z\.
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Replacing the left side of this equality by nyxn 1 [x,z] now yields 
n[xn_1, y][x, z] = 0, hence

(1) [xn_1, t/][x, z\ = 0 for all y , z £ R .

Substituting zw for z in (1) gives

[xn-1,i/]Ä[x,u;] = {0},

and primeness of R implies that either x £ Z  or [xn_1,j/] = 0 for all y £ R. 
Thus x"_1 £ Z, and R is radical over Z  as claimed.

The existence of prime nil rings shows that (f) does not imply commu
tativity, even in prime rings; however, under additional hypotheses we can 
indeed prove commutativity.

For each x £ R, define Nx to be the set of all integers n't. 2 for which
[xn ,r/] = nxn~l [x,y] for all y £ R. If R satisfies ( |) , it is easy to show that
N x is infinite for each x £ R.

T heorem 2. Let R be a 2-torsion-free semiprime ring with 1. I f  each N x 
contains three consecutive integers (depending on x), then R is commutative.

P roof. Suppose u £ R  satisfies u2 = 0 f  u, and let n ,n +  1 and n + 2 
be elements of N\+u. The condition that [(1 + u)n, y] = n(l + u)"-1 [l + u , y] 
reduces at once to

(2) n(n — 1 )u[u, y] — 0 for all y £ R;

and replacing n by n +  1 gives

(3) (n +  l)nu[u, y] — 0 for all y £ R.

Subtracting (2) from (3) yields 2nu[u,y] = 0; and since we can also obtain 
2(n  +  l)u[u,i/] = 0 by applying the same arguments for n + 1 and n + 2, we 
conclude that 2u[u, y] = 0 for all y £ R. Thus, u[u, y] = 0 = uyu for all y £ R, 
so th a t u — 0 by semiprimeness of R. Hence R  has no nonzero nilpotent 
elements, and commutativity of R follows from Theorem 1.

Letting R satisfy (f), for each x £ R define dx to be the g.c.d. of the set 
{n(n — 1) I n £ Nx}. Then 2 | dx for each x £ R. Moreover, a careful analysis 
of the proof of Theorem 2 reveals that the three-consecutive-n hypothesis 
can be replaced by the hypothesis that R  is dx-torsion-free for each x £ R. 
The latter hypothesis can be satisfied in a variety of ways, each yielding a 
variant of Theorem 2. For example, since (n(n — 1), (n + 2)(n + 1)) is either 
2 or 6 for each n > 2, we obtain

T heorem 3. Let R be a 6-torsion-free semiprime ring with 1. If  each 
N x contains a pair of integers differing by 2, then R is commutative.
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2. An application

Abu-Khuzam has proved the following pretty theorem, which was gen
eralized somewhat in [2]:

T heorem A-K ([1]). If  R is a semiprime ring such that for each x £ R 
there exists n = n(x) > 1 for which (xy)n = xnyn for all y £ R, then R is 
commutative.

It is our purpose to prove an extension of this result — specifically,
T heorem 4. Let R be a semiprime ring with the property that 

( tt)  f or each x € R, there exists an integer n = n{x) > 1 such that (xy)n —
— xnyn £ Z for all y £ R.

Then R is commutative.
P roof. Since R is a subdirect product of prime rings, we assume from 

the beginning that R is prime, in which case R  is a domain by [2, Lemma 3]. 
By (ft) and Theorem A-K, it is clear that Z ^  (0); and we can localize at 
Z \{0} , obtaining a domain R* with 1, in which R  is embedded. It is readily 
seen that R * inherits ( tt) ; moreover, as we now show, R* is a division ring.

We need only show that for each x £ R \  {0}, there exists u £ R such that 
xu £ Z\{0}; and this will be the case if for each x £ Ä\{0}, there exists w £ R 
such that (xwy)n(IW) — (xw)n(xw^yn(xw) /  0 for some y £ R. The alternative 
is that there exists x £ R \  {0} such that for each v £ xR, there exists m — 
= m(v) > 1 such that (vy)m = vmym for all y £ R, and in particular for all 
y £ xR; and xR  is therefore commutative by Theorem A-K. But a domain R 
with a nonzero commutative right ideal is itself commutative, which implies 
that Ä* is a field.

From now on, we assume that R is a division ring. Fixing x £ R \  {0} 
and taking n — n(x), we see from ( | | )  that

(4) x yxnyn — xnynxy for all y £ R;

thus, R satisfies a generalized polynomial identity (GPI). Now Amitsur has 
shown that a division ring R satisfying a GPI is finite-dimensional over Z  [3, 
Theorem 13]; consequently, if Z  is finite, R is finite, and thus commutative 
by Wedderburn’s theorem.

It remains only to treat the case of a division ring with Z  infinite. We 
return to (4), which we rewrite as

(5) x[xn,y]yn + xn[yn,x]y = 0  for all y £ R.

Substitute y + 1 for y in (5), obtaining

(6) x[xn,y](y+ l ) n + xn[(y-|- l)n,x](y+  1) = 0 for all y £ R.
Expanding (6) and collecting terms of the same j/-degree, we obtain the equa- 

n + l
tion Yfj wi{y) = 0) where m,(y) denotes the sum of the terms of y-degree i.

i=i
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Replacing y by Ay for n + 1 different A £ Z \  {0}, and using a standard Van
dermonde argument, we see that tu,(t/) = 0 for all y £ R  and all i — 1 ,2 , . . . ,  
n +  1. But examination of (6) shows that u>1(?/) = x[xn,y] + nxn[y, x]\ and by 
equating to zero and cancelling an x , we get [x 11, y\ — nxn_1[x, y] = 0. Thus, 
R  satisfies (f) and is commutative by Theorem 1.
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COVERING OF A TRIANGLE BY HOMOTHETIC TRIANGLES

É. VÁSÁRHELYI

Let B  be a convex domain in the Euclidean plane and a finite
set of homothetic copies of B. L. Fejes Tóth proposed the following problem: 
how large must be the sum of the areas of the B{, so that B can be covered 
by translates of the f?,?

We shall deal here with a related problem. (For earlier results, see refer
ences [1], [2], [3], [4].)

Consider a triangle T, the area of which will also be denoted by T, in 
the Euclidean plane and another triangle T v , which is obtained from T  by 
a rotation through a given angle tp. The problem we are interested in is 
to determine /^(T ), the minimal number with the following property: if 

is an arbitrary finite set of homothetic copies of T v with total area 
at least T f v(T), then T  can be covered by translates of T f  (i — 1 , . . .  , N).

We note that for the case <p = 180° it was proved in [4] that /i8o°(T) =  4, 
which implies the inequality

(*) m ax /v(T) ^4 .

A. Bezdek and K. Bezdek [1] conjectured that equality holds if and only 
if T  is a regular triangle.

In the original problem one can neglect the metrical difference of affine 
equivalent domains but in this problem we try  to characterize the regular 
triangle among all triangles by the equality in (*).

First we show that
max fv{T) > 4, 

v
for any non-regular triangle.

In order to prove this, let us note that, for a triangle T  = ABC  with at 
least two different angles (for example ß  > a > 7), there is an angle tp = a 
for which (in case N  = 1) the triangle T  cannot be covered by homothetic 
copies of T a with total area 4T, that is f a{T) > 4.

The second part of the conjecture is connected with regular triangles. 
Since a regular triangle A has a rotational symmetry of order 3, it is sufficient
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to examine only the values G [0°; 60°]. For this, we have only the following 
partial results (a), (b), (c).

A. Bezdek and Z. Füredi [3] proved that, for any triangle T

fo°(T) — 2.

In the case of regular triangles A we consider the triangles A, inscribed in 
A f ,  where A, is a homothetic copy of A.

If <p € [0°; 15°], then A,- > |A f ,  and we have

whence

(a) / v( A ) < 4, for ^  e [0°; 15°].

The case ip = 60° corresponds to the covering by triangles in the “oppo
site” position. It was proved in [4] that feo°(T) — 4, thus

(b) /60°(A) = 4.

Now we shall show that, for regular triangles,

(c) /300(A) <4.

T h e o r e m . Let A  be a regular triangle in the Euclidean plane and A' 
another one obtained by rotation of A through the angle 30°. I f  { A J } ^  is 
a set of homothetic copies of A ' with total area at least 4A, then A  can be 
covered by translates of A( (i = 1 , . . .  , N).

In order to prove the theorem we need two auxiliary results.

L e m m a  1. Consider a regular triangle A  (=  A 0 U0 Co) with side length 1. 
Let , Rjy be rectangles with side length c , - ,  c , ^  (i =  1 , . . .  ,  A ;  c\
> C2 ^ ^ c/v), whose side of length c, is perpendicular to BqCq. Let
(=  B C A A q) be a trapezoid determined by

AqA\\BoCo, A qA  — c y/3 B € AqBq, A0jB = 1 + ^ c;

BC \\B 0 Co, AC||AoCo with c~tci (Fig. 1). I f  the total area of the rectangles 
is not smaller than the area of the trapezoid T, i.e.

N

E " ' ä r =
»=1

( i )

H
liv
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then the triangle AqBqCq can be covered by translates of the rectangles R,.

A0

LEMMA 2. Consider a regular triangle A (= ^o-BoCo) with side length 1 
and the points Po, Qo, /i'o, Bo, Mo, with

Po&AoBo, Qo^AoCo, AoPo — AoQo — a.^.0 , I io^AoCo,  
LqE B qCq, KoCo — b, K qLo-LBqCq, Mq = K qLq fl PoQo-

Let R i , . . .  , Rjv be rectangles with side length c,-, c , ^  (i = 1 , . . .  ,N ; C\ > 
> c2 ^ ^ cat), whose side C{ is perpendicular to BqCo. Let T  (=  P B L M q)
be a trapezoid determined by c> c \,  MqL — MqLq + c, MqP = M qPq + c ^ ,  
PB\\AqBo, and LB\\B0 Cq (Fig. 2). I f  the total area of the rectangles is not 
smaller than the area of the trapezoid T, i.e.

E * > í = ( 2 - 2 a  + 4 c f ) ( ? A  + í  + c ^ ) A ,( 2 )
i=i

then the trapezoid LqM qPqBo can be covered by translates of R \, R 2, . . .  , R n•
P r o o f  o f  t h e  L e m m a s . Since the proofs are similar, we sketch the 

proof of Lemma 1 only.
We define classes of rectangles. Let TZi =  {Ä, | i = 1 , . . .  , j  1} where j \  is 

determined by

—  c, > B0 C0 > —  2 2  Ci.
i—i 1=1

The straight line parallel to BoCq at distance Cjv intersects A in B\ and C\. 
Let n 2 be the second class of rectangles, where

/Ö R / 0  >2 - 1

^ 2  = {Ä,-|i = j 1 +  l , . . .  , j 2}, —  ci = B iC i> —  ^  c,.
*=ii+l «=J1+1

The straight line parallel to B\C\ at distance Cj2 intersects A in B 2 and C2. 
Repeat the process given above for B2 C2 starting with the (j 2 +  l)-th  rect
angle. We obtain the trapezoids BS- \ C S- \C aBs and the classes of rectangles

F-t — {Äj I i = js—1 + 1, . . . , ja },



166 É.  VÁSÁR HELYI

where the index j s satisfies

v/3
2

3‘ \/3
y ,  C ,  ^  5 s - l C s - l  >  — -

«=Ía+l •  =  J 3 - 1  + 1

C,

with jo =  0. This process may be continued until an index n. We have to 
stop if either

(3) d o ^n -l =
2\/3 

3 Cin
or

(4)
V3
2

N
^  ' c, < BnCn

i = J n  + 1

(In the first case the straight line parallel to at distance cJn has at
most the point /10 common with A. In the second case we have not enough 
rectangles for the new class 7£n+i.)

We suppose that the process has to stop because of (4). We put the 
rectangles one after the other in monotone decreasing sequence according to 
Figure 3. One can see easily that the area of the trapezoid BC A A q gives an 
upper bound of the total area of and we have T  > £ |=1 Ri contrary
to the hypothesis of Lemma 1. It follows that our process may be continued 
until (3). The trapezoids B qCqC\B\, B^Ci C^B?, . . .  , Bn- 2 Cn- 2 Cn~i Bn-i 
and the triangle Zfn_ iC n_i^4o can be covered by the classes TZi, H i , . . .  , Hn-\  
and TZn, respectively. □

Fig. 3 Fig- Í
P r o o f  o f  t h e  T h e o r e m . Let A be a regular triangle of side 1 and 

let a, denote the side of AJ. In this case the condition of the theorem is 
equivalent to the inequality

*—l

( 5 )
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The proof is by induction on N. We may assume, without loss of gener
ality, that ax > a2 .. .> a/v- We note that the triangle A can be covered by a 
homothetic copy of A' with side length at least \/3, and a right triangle at 
a vertex of A with hypothenuse u can be covered by a homothetic copy of 
A' with side length at least |u \/3 .

First we prove our statement for N  — 1,2,3. In cases N  = 1, N  — 2 we 
put a2 = a3  = 0 and a3  = 0, respectively. Translate the triangles A3 and A 2 

so that they cover the triangles T3 and T2 with hypothenuse 0,4a3VS and 
0,4a2\/3 respectively (Fig. 4). If a3 + 0,4a2 + 0,4a3 ^ VS, then one can 
easily see that A'x can cover the remaining part of A.

We consider ax, a2 and a3  as coordinates of a point in a rectangular 
system of coordinates. The tetrahedron with vertices

Pi(0;0;0), P2(VS; 0; 0), P3 ( jV S ;  jVS;  o )  , P2 (^VS; ^Vs-

contains all of the points P (ax; a2; a3), whose coordinates satisfy the condi
tions

ai = a 2 = a3 and V s > <zi + 0 ,4a2 + 0 ,4a3.

On the other hand, the tetrahedron P\P2P3P^ is contained in the interior of 
the ball a\ + a\ + a | = 4. Thus, if ax -f a2 + a3 ^ 4, then the point P{a\; a2; a3) 
is outside the tetrahedron, and Ax, A 2 and A3 can cover A.

Now we suppose that our statement is true for N  < m  and prove it for 
N = m. We assume that VS > ax ^ a2 . . .  > a ^ ,  while in the case ax > Vs,  A 
can be covered by A'x.

Introducing the intervals:

/, =
V s \

—

° ; 3 ) '  
VS 2y/Z\ 
2 ’ 3 /

h  =

h  =

Vs Vs 
3 ’ 2 J' 
\2VS

;v 5 )

the case a, £ Ih (i = 1,2,3) will be designated by the three-place number 
j i j 2j 3. That is, we have to show in 20 cases that A can be covered by 
{A()lLx, but some of them can be proved together.

C a s e  1. 444, 443, 442, 433, 432, 333.
If ax = a2 = and a3 = ^  then the triangles A x, A'2 and A3 cover 

A (Fig. 5), and this guarantees the covering for 432, 433, 442, 443 and 444. 
The same is true for 333 (Fig. 6).



168 É. VÁSÁRHELYI

Fig. 6

Case 2. 411.
We cover by Aj a hexagon so that there are three congruent rightangled 

triangles at the vertices of A, whose points are not covered. We complete 
these triangles by reflexion to regular triangles with side length

6i =
V S - ai

which are homothetic to A. It is possible to divide the triangles A2, A 3 ,...,  
AC into three classes so tha t the total area of each class is at least 4 (4  — 
- a l - 2 a l ) .

A simple calculation shows, for the case 411 that

-(4  — Oj — 2a]) > 46j.

Thus, by the inductive hypothesis, each of the new triangles with side length 
6j can be covered by the triangles of a class.

Case 3. 441, 431, 421, 331, 321.
We consider aj and 02 as coordinates of a point in a rectangular system 

of coordinates. The trapezoid

M t  ; T  t )  f t (  ^  (
Vs Vs

2 /

contains all of the points P (aj;a2 ), whose coordinates are determined by 
the condition of this case. If ay + 0,4a2 ^ \/3, then A can be covered 
by A j and A^; consequently, we may assume that P G P1 X 1 X 2 P4 , where
X \  VS] , X 2 ^ f\/3 ; § ̂ 3^  . Now we translate Aj so that a rightangled
triangle with hypothenuse 0,4ß2\/3 and two congruent rightangled triangle 
with hypothenuse

, 3 Vs Vs
2 2 2 5

remain uncovered. The first one can be covered by A^. In order to cover the 
remaining two, we divide the triangles A 3 , . . .  , A ^ again into classes, but
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now we need just two classes. The total area of a class is at least y  (4 — aj —
— a\ — 03). Thus, we have to show that

] ^ { A - a \ - a \ - a l ) > A b \ .

Since a3 < ^  it is sufficient to prove that

 ̂ 2 49 2 24 _  /-  24 f-  43 „
(6) 7űj + — 0 2  + — 0 ^ 2  -  12oiV3 -  — a2v 3 +  — ^ 0.

ZD D 0  u

Note that (6) defines an elliptical domain containing the points P\, X \ , X 2, 
P4 in its interior; therefore, (6) holds for any P € P4 X 1 X 2 P4 . This implies 
that both of the non-covered triangles can be covered by a class.

C a s e  4. 422 and 322.
We cover by A3 and A2 a triangle with hypothenuse 0,4 and 0 ,Aa,2 \ / 3  

respectively, and we put A \  in the obvious way to them. Let &3 = 2,6 —
— Oj\/3 — 0,4a2\/3. If 63 < 0 then A is covered by A j, A'2 and A3. In the 
opposite case there is a rightangled triangle with hypothenuse 63, which is 
not covered. We cover instead of this a bigger one, a regular triangle A with 
side length 63, which is homothetic to A. From the condition of the theorem 
we obtain

N
a< = A — ßj — a2 — ctg > 4 — aj — 2a2.

1=4
Now we have the condition of the induction in the following form

4 — ßj — 2a2 > 463,

which is equivalent to the inequality

(7) 13űj -j- 3, 92a2 4- 9, 6aia2 — 20, 8űjV̂ 3 — 8, 32a2v̂ 3 T 23,04 ^ 0.

Formula (7) defines an elliptical domain containing the convex hull of 
the points

*1
( V 3 >/3\ ( y j3 v/3
V 2 ’ 2 ) '  Ä 2 \  2 ’ 3

2 ,2^3  \/3 
_ 3 ’ T

2n/3_ n/3 \  
~ 3 ~ '  2 )

together with the points P (a i;a 2) whose coordinates satisfy the conditions 
of cases 422 and 322 with 63 > 0. In consequence of this the triangles 
A 4 ,... , A'N cover A, and so A can be covered by A i , . . .  , A'n .

C a s e  5. 332.
We cover a trapezoid in A by Aj and A 2, and we have to show that the 

remaining regular triangle with side length 64 = |  1̂ — a i^ ^ j  can be covered 
by A3, . . .  , Ajy.
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From the condition of the theorem we have 
N

J 2 a^ = 4 ~ ai ~ a2= 4 - 2ai-
>'=3

Since ß1? u2 G h ,  the inequality 4 — 2a\ > 4 holds, which completes the proof 
of this case.

Case 6. 222.
Now we have a; G J2, * =  1,2,3. The proof is similar to those given above; 

we just use three of the triangles in order to cover the trapezoid and obtain
a non-covered regular triangle with side length 65 = 1 — ß i ^ .  One can easily 
verify the inequalities

N

^ 2  al ^  4 -  aj -  a] -  a] > 4 -  3ß? > 4b\.
1=4

The proof of the other cases 311, 221, 211 and 111 depends upon our 
lemmas. In order to apply the lemmas we consider the rectangles R t with
side length a , ~  and Iß,-, which are inscribed in A ' and have area |A ' 
(* = 1 , . . .  ,N ).

Case 7. 111. We make use of Lemma 1 with the values c = c, =  
The hypothesis of our theorem implies that

,  N  N  r „ 1 0

1—1 1=1
and thus the condition of Lemma 1 holds. The inscribed rectangles cover A. 

Case 8. 211, 311.
We translate the triangles A \  and A'2 so that (corresponding to Figure 7) 

they cover at the vertex Co a rightangled triangle K qLoCo with hypothenuse
ß i 2̂  and at the vertex Ao a regular triangle A qPqQo with side length ß 2 ^  
(which is homothetic to A ), respectively. The non-covered points of A are 
contained in the trapezoid L qM oPqBq. In order to complete the covering of 
A we are going to apply Lemma 2.

Fig. 7
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Let a = 0 2 ^ ,  b = ci\ 2^-, c, = ^  (i — 3 ,4 , . . .  , N), c = From the con
dition of the theorem we obtain

( 8)
A  i^ f í , > - ( 4 - a ? - a2)A,
i=3

Ű j -f- — Gj \/d -f- - a 2V S -  1 ^  0.
3

and we shall show that

\ . t 2 2\ a  ̂ (n o n/ 3 „ \ / 3 \ / 3  v/3 VS\  A-(4  -  a, -  a2)A > (2 -  2a2 —  + 4g2 — ) (4 ~ a i~4~ + a2 —  + a2— J A,

which is equivalent to

(9)

The circle in (9) contains the quadrangle

(X3, X 4 are on the boundary and X \,  X 2 are inside of it.) Therefore the 
coordinates of any point P(a\',a.2 ) considered in this case satisfy (9). From 
(8) and (9) we obtain that the condition of Lemma 2

o . > /3 \ /3  v/3 ^ n/5 VS\
22 R '  =  ( 2 -  2a2-^- + 4a2T J  (4 ~ a i T  + fl2T y  +  a2x )1=3

A

holds, and the inscribed rectangles cover the remaining part of A.
Case 9. 221.
The proof of Case 9 is similar to that of Case 8, but now we have to 

choose c — ^  > <̂13. The new forms of our inequalities are

Y  Ri = \ ( 4 -  a? -  a2)A > (2 -  2 0 3 ^  + | )  ( j  -
1=3

V s V s
d \----- b Ö-2----“b4 12 4

and

( 10) 9oj 4- 602 +  9 a ia 2 — 1 2űj V s — 802V s  T 1 2 ^ 0 .
The points, for which (10) holds form an elliptical domain. It can easily be 
verified by calculation that and are its boundary

points, and A3( ^ ; ^ )  is inside. Since the triangle X \ X 2 X$ contains all
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of the points P (a i,a 2) considered in this case, (10) holds and this completes 
the proof of the theorem. □
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LEARNING WITH FINITE MEMORY

J. KOMLÓS,* * L. REJTŐ and G. TUSNÁDY

A b str a c t

Let the input of a finite automaton be a sequence of independent symmetric ±1 
variables. The automaton has no output but a total payoff is given which is the modulus 
of the conditional expectation of the sum of input elements on the final state. Let C(n, m ) 
denote the maximal expected payoff for n inputs and m states. It is proven here that 
C(n,2) is bounded, while C(n, 3) ^ k log n with some positive constant k .

1. Introduction

Let A be an arbitrary N  X N  matrix with non-negative elements. A 
particle is wandering on N  possible states in the following way. Being in 
state i, 1 < i ^ N ,  let , T/v be independent random variables with
exponential distributions with parameters A,i ,A,2 ,... , A ,-jv, where A,,-s are 
the entries of A. If Tj is the minimum of T\,Ti , . . .  ,Tjy, then the particle 
moves to state j  in time Tj.

If the indices of positive elements of A define a strongly connected di
rected graph then the process defined above is ergodic. Thus A determines 
a distribution, the stationary distribution of the random walk. In the case

X,j = a,j exp (E, -  Ej),  1 < i , j  < N,

where aji = a tJ is the adjacency of an undirected graph and the “energy level” 
Ei, E2 , . . .  , Epj are arbitrary real numbers, the stationary distribution is

Pi = k exp (—2£’,),

where k is a norming factor. (The infinitesimal transport on edge i , j  is 
exp( — Ei -  Ej) in both directions.)
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In case N  — 2k the energy function E  of states may be given by a 
quadratic form xTW x,  where x is a fc-dimensional ±1 vector and IF is a 
k x k symmetric real matrix. The edges of the graph connect vertices which 
differ only in one coordinate. This model is called associative memory and 
the “association” matrix W  may be used to store the system of its stable 
states.

(A state is stable if the energy has a local minimum there.) If an i.i.d. 
sequence of fc-dimensional binary vectors is generated by the stationary dis
tribution of an associative memory then we would like to reconstruct the 
m atrix W  from the sequence in an economic way. One idea for this may 
be to calculate the covariances. Sometimes we are satisfied by computing 
their signs, and this is the situation which suggested the problem discussed 
in this note. The estimator of a given element in the covariance matrix is 
a scalar product of two ±1 vectors, here we simply use the sum of indepen
dent ±1 bits. An automaton attempts to memorize the sign of that sum, 
and the natural prediction for that sign is the conditional expectation of the 
sign conditioned under the present state of the automaton. This way, the 
problem is reformulated as a control problem.

For related statistical problems, see Robbins [2], Wagner [4], and Cover- 
Freedman-IIellman [1].

2. Optimal control

We are given an automaton with m states. In the t-th step the input is ut 
and the state is xt. Here ut is independent of the past U\,X\,... , ut- 1, x t~i, 
and

P{ut = 1) = P{ut = —1) = 1/2.

In case ut = 1 the system is controlled by the stochastic matrix Pt:

Pt(i,j)  = P(x t = j  I x t - 1  = i ,u t = 1)

and in case ut = — 1 the control is given by Qt:

Q t( i , j ) -  P (x t = j  I Xt-! = i ,u t = -1 ) .

Writing Sn = «1 + . . .  + Ji„, the conditional expectation

Kn = E(Sn I xn)

depends on the sequence of control matrices

C n  — ( P \ i Q \ , P 2 , Q 2 , - - -  i P n - l i Q n - l )
(we will use Zq = !)•
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We would like to maximize the expected payoff E \K n\ in C„:

C(n, m) = sup E\K n\.
Cn

Let Tn be the sign of Kn:

(  +1 if A „^0, 
1 - 1  if K n < 0.

The payoff is TnSn, and E \K n\ = ETnSn.
Example. Let m — 2, and let us use the values ±1 (rather than 1 and 

2) to code the states of x t. We define the updating rules:
1) If u t — x t - i  then x t = x t- \ .
2) If ut =  — x t~\ then x t = — xt_i with probability pt — \ / t .

In other words,

Pt =
1

1 It
0

1 -  l / t Qt =
l - i /t

o

Then, Eu{Xt = l / t  for all i, 1 £ i < t, and E\R't Eu{Xt = 1.

Remark. Santosh Venkatesh [3] showed that among all rules of the 
above type (with possibly different probabilities pt), the above choice pt = 1/i 
is optimal in that it maximizes the minimal covariance min \EuiXt \.

Misinterpreting a classical lemma of Wald one may expect C ( n , m 1. 
The next lemma shows that this is not the case.

Lemma 1. C (3 ,2 )^ 5 /4 , and sup C(n, 2) ^ 4/3.
n

We will use the following notations

P t ( i ) =  P{xt - i ) ,  e t ( i )  — P(xt = i)E (S t I x t = i) = f  S t .

Thus,
m  m

^ 2  et(i) = ESt = 0 and ^  \et(i)\ -  E\Kt\.
«=1 i=l

Remark. Our strategy will be deterministic; the automaton mechan
ically follows the input signals. Since the payoff function is a multilinear 
form of the control parameters, all control parameters must take the ex
treme values 0 or 1 in the optimal solution, that is, the automaton must be 
deterministic.
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Just as in the first example, we code the states by ±1.
F irst put X\ — U\. Next, set x2 = 1 for u2 = x \ — 1, and set x2 = — 1 

otherwise. Finally, let £3 =  — 1 for «3 = x2 = — 1, and let £3 = 1 otherwise. 
(This corresponds to the control matrices

P i  = 1
1

P2 =
1 0 
1 0

0
1

and the usual initial condition £0 = 1, that is, itq = (1,0), eo = (0, 0).)
Thus, for inputs (— 1, — 1, — 1), (— 1,1, — 1), (1, — 1, — 1), the final state will 

be £3 =  —1, and it will be £3 = 1 otherwise.
Consequently, E(s$ | £3 =  1) = 1, E(s$ | £3 = —1) = —5/3, and E\R'3 \ = 

=  5/4.
To improve the bound 5/4 to 4/3, we repeat the above two choices for 

P2, Q 2, P3  alternately. This leads to

et * \ [ e t- i  + (2 /3 ,-2 /3 )]

whence lim et = (2/3, —2/3) and lim E\Kt \ = 4/3.
It is not hard to see th a t the last example is optimal, and we have the 

exact optimum

< ? (.,* )=  í ( l - 4 - W * l ) S Í .

For the sake of simplicity, we only prove the weaker upper bound 2, for we 
only want to emphasize the drastic difference between the cases m = 2 and 
m  =  3.

Lemma 2. For all n ,C ( n ,2 )^2 .
The following claim clearly proves the lemma.

Claim. L etm  — 2. Then, |et(*)| = | /  S tx (x t = *)l = 1 fo r i  = 1,2.
We use induction on t. For t = 1 the claim is trivial. For t > 1, we have

( 1 ) Pt =Pt- 1
P t  +  Q t e, = et- 1

P t  F  Q t  , .  P t  — Q t
----Ö----+Pt-1— H-----•

(Here we used p* to indicate row-vectors, but in the following we will be 
sloppier, and drop the sign * of transpose.)

Write et_i = (a, —a), Pt-i = (p, 1 — p), where | a |< l , 0 ^ p ^ l .  Then,

let(l)l ^ ^[la + Pl+ +  I1 -  a - P l + + \a ~ P \ + + I -  1 -  a + p |+] 1

where |£ |+ = max{£, 0).
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LEMMA 3. C(n, 3) > k log n, where k is a positive constant.
Remark. The fact that a 3-state memory is infinitely more powerful 

than a 2-state memory rhymes with similar phenomena observed in the sta
tistical literature.

P r o o f . Starting with po(l) = 1, Po(0 = 0 for i > 1, we have e0(i) = 0 for 
i > 1. Using the recursion (1), our task is to maximize

m
E\Kt\ = J2\et(i) \ ,

i= 1

or at least to show that it tends to infinity with rate logi if m > 3. For 
this aim we will define the control strategies Pt, Qt in such a way that if 
E \K t\ = a then E\Kt+v\ > a + 1 holds true with v ^ a2°.

In our construction the states 1 and 3 will be “large collectors” with 
opposite signs, while the state 2 will have an auxiliary character. At the 
beginning of the recursion step, we gather everything in large collectors: 
et( l)  = —a /2, e*(3) = a /2. We may suppose that pt(3) > pt( 1). Thus E (S t \ 
x t = 3) < a. First we push everything from state 3 to state 2. The conditional 
expectation here will be drained step by step walking from 2 to 3 with ut — 1 
and remaining in 2 with ut = — 1.

In one step, the conditional expectation decreases with 1, thus in less 
than a steps the modulus of the expected value at state 2 will be less than 1. 
With an appropriate last step we can change it to 0. In the meantime the 
probabilities will decrease to 2_a, yielding 2_a gain in a steps. Repeating 
the whole procedure 2a times, the desired increase is achieved.

3. Open problems

As the reader can see, we only have preliminary results. We do not know 
the optimal strategy or even the order of magnitude of C (n,m ) for m ^ 3. 

Standard subadditivity arguments give a lower bound

C (n,m ) > (k log

where M  = log m / log 3. We believe this to be close to the true order of 
magnitude, but cannot prove it. In fact, we do not have any reasonable 
upper bounds on C(n, m), to > 2.
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RESTRICTIONS OF ADJOINT OPERATORS IN HUBERT SPACE

Z. SEBESTYÉN

The characterization problem for restrictions of positive bounded opera
tors on Hilbert space to (subsets or to) linear subspaces of the ground Hilbert 
space is given in [3, Theorem] (see further [4], [5]). The same problem for 
positive self-adjoint and not necessarily bounded operators is solved in [4, 
Theorem 1].

The aim of this note is first to characterize restrictions of adjoint oper
ators of densely defined linear operators to linear and not necessarily closed 
subspace of the ground Hilbert space. Our necessary and sufficient condi
tion (ii) in Theorem below is a counterpart of (ii) in [4, Theorem 1] for the 
positive self-adjoint case.

The characterization problem of restrictions of self-adjoint operators to 
not necessarily dense linear subspace of the ground Hilbert space remains 
still open.

Our approach is elementary in the sense tha t it goes back to the definition 
of an adjoint operator. One resembles also the range characterization of 
adjoint operators in Hilbert space given in [2, Theorem 1].

As a second corollary we give a factorization result generalizing earlier 
ones in [1] and [2].

Let £  be a given linear operator defined on a linear subspace D of a 
(complex) Hilbert space H with values in I I . It is natural to ask the follow
ing question: under what condition does there exist a densely defined, not 
necessarily bounded linear operator A in the Hilbert space II such that the 
adjoint operator A* extends E. This means in other words that D (A ), the 
domain of A, contains D and at the same time that
(1) A*x = E x  holds for each x from D.

The answer is contained in the following
THEOREM. Let E be a linear operator defined on a linear subspace D of 

a Hilbert space I I . The following two statements are equivalent:
(i) There exists a densely defined operator A in H satisfying (1);

(ii) K  := [ y£H:  sup{|(.Ex, t/)|: x £ D, ||x|| ^  1} < oo] is dense in H .
P roof. Assume first (i). Then the domain D(A) of A is dense in H . 

Hence the inclusion D(A) C K  proves (ii); indeed, to prove that a vector y
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from D(A)  belongs to Ii it is enough to use (1) for each x from D and the 
adjoint identity

(E x ,y )  = (A*x,y) = (x ,A y )  

to get the desired majorization

I (Ex, y) I < ||Ai/||||x|| for each x from D and y from D(A)\

Assume now that (ii) holds true. Then we define an operator A  on K  
with values in D, the closure in norm of D, as follows. Given a vector y 
from K  we know by (ii) in Theorem that the linear functional on D with 
values (E x ,y ) in x (from D) is bounded. Thus it has a unique continuous 
extension to D. The celebrated Riesz representation theorem gives a unique 
vector Ay  in (the Hilbert space) D such that

(E x ,y ) = (x, Ay) holds for each x from D and y from K .

T hat the map A: y Ay so defined on Ii with values in II is linear, is plain. 
The identity (2) shows that D belongs to the domain of the adjoint A* of A 
and the identity (1) as well. Hence A* extends E  or E is a restriction of A* 
to D. The proof is complete.

Corollary 1. For the linear operator E: D —> H the following state
ments are equivalent:

(i’) E is a restriction of a bounded linear operator on I I ;
(ii’) K  = I I ;

(in’) E is bounded.

PROOF. Assume first (i’): let 0  be a bounded linear operator on H 
with restriction E  to D. Then A* = B does the same if A — B* and since 
II — D(A*) C K  we get (ii’). Now assuming (ii’) we see that the linear 
functionals used in proof of the Theorem are pointwise bounded in y, y G 
G K , ||y|| ^ 1 hence uniformly bounded by the Banach-Steinhaus theorem. 
\(E x,y)\  < m||x||||j/|| holds for each x from D and y from II, where m > 0  
is a constant independent of x and y. This shows that E is bounded, (in’) 
follows. It is easy to see that (iii’) implies (i’).

Corollary 2. Let B and C be densely defined operators in H such that 
domain D(B) of B contains domain D(C) of C.

(a) There exists a densely defined operator A such that

(3) Cx = A*Bx holds for each x from D(C),

(b) K  := [y € I I : sup{|(Cx, y) | : x € D{C), ||i?x|| < 1} < oo] is dense in I I .

P roof. Assuming (a) we see D(A) C K  thus (b):

|(Cx, y)I = I{A’ Bx, y) | = |{Bx, Ay)\ < ||Ay||||flx||
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follows by (3) for each x from D(C) and y from D(A).
Assume now (b). For any y from K  the linear functional on range of B 

R(B), Bx  H-» (C x ,y ), where x runs over D(B),  is continuous. Replacing D 
of Theorem with R (B ) we have an operator A on K  with values in R (B ) 
such that

(Cx,y)  = (Bx, Ay) holds for each x from D(B) and y from K.

This shows that R(B)  belongs to domain D(A*) of A*, the adjoint operator 
of A  and the identity (3) as well.

C o r o l l a r y  3. A is bounded in Corollary 2 if and only if K  = II if and 
only if

(c) ||Ca:|| < m||i?a;|| holds for each x from D(C), where m~t 0 is some 
constant.

R e m a r k . Corollaries 2 and 3 are versions of [1, Theorem 1] expressed 
in adjoints but for unbounded factorization, too.
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ON APPROXIMATION BY TRIGONOMETRIC POLYNOMIALS
IN LÜ-SPACES

N. X. KY

Introduction

In the present paper we investigate the best approximation by trigono
metric polynomials in weighted spaces with weights satisfying the so-called 
Ap-condition introduced by R. Hunt, B. Muckenhoupt, R. Wheeden [5]. Such 
weights play an important role in solutions of many different problems of 
harmonic analysis, theory of operators, approximation theory (see e.g. [4], 
[5], [6]). In Part 1 Jackson and Bernstein type inequalities are given. As 
a consequence of that, we obtain an equivalent theorem, which states the 
relation between the order of the best approximation, the simultaneous ap
proximation and the norm of derivatives of best approximating polynomials. 
In Part 2 we give the relation between the best approximation and Peetre 
A'-functional.

1. Jackson and Bernstein inequalities

Throughout this paper, let 1 < p < oo and let c(p, . . . )  denote a constant 
depending only on its variables (it may be different in different formulas).

A 27r-periodic measurable function u(x) is called satisfied the Ap-condi- 
tion if 0 < u(x) < oo a.e. and for every finite interval 7, we have

(1) ( ± J u ( x ) d x ) ^ J u - ^ - ' \ X)dx )  <c(p)
I I

here |/ |  denotes the length of 7.
Let Ap be the set of all weights satisfying the Ap-condition. Such weights 

were introduced by R. Hunt, B. Muckenhoupt, R. Wheeden [5] for investi
gation of the trigonometric conjugate operator. We remark that in the case 
p = 2, those weights were considered early by H. Helson and G. Szegő [4].

1980 Mathematics Subject Classification (1985 Revision). Primary 42A10.
Key words and phrases. Jackson and Bernstein inequalities, yip-condition.

Akadémiai Kiadó, Budapest



184 N. X.  KY

Let Lu be the Banach space of 27r-periodic measurable functions with 
the norm

2n 4 1
| | / | |Pl« =  |/ (* ) |p^ * ) d* J  (<oo).

o
In the case u = 1, we write Lp, | | / | |p instead of Lu, | | / | |PiU, respectively.

From the definition of the Ap-condition it follows that if u G Ap then it 
is integrable on [0,27t]. Consequently, the space contains every trigono
metric polynomial. We can define

(2 )  F „ (/)p ,u  =  in f  1 1 / -  f„||p,ti ( f e L p , n  =  0 , 1 , . . . )r̂iGiri

where Tn denotes the set of all trigonometric polynomials of degree at most n.
We introduce the following classes of functions: Mp0„ = Lu, and for k = 

=  1 ,2 , . . .  , Mp̂ u consists of all functions /  having the property that / , / ' , . . .  , 
are absolutely continuous on [0,27t], G Lu- 

The following theorem is true.
(k)

T h e o r e m  1 .  Let u G A p and let k>  1 be an integer. For every f  G M Pi„  

and n = 1 ,2 ,... we have

(3)

For the proof of the theorem we need

L e m m a  1.  Let u G Ap. I f  f  G Lu then it is integrable on [ 0 , 2 7 r ]  and

( 4 )  \\f\\i ^ c ( p , u ) | | / | | P)U.

P roof. Let I  := [0,2ir]. Since u G Ap we have

> 0

therefore from (1) it follows that

/ u 1̂ p ^(x)dx < oo.

Let now 4 + 4 = 1. Then /  can be written in the form:
p <7 J

f  — { f  up )(u lŷ p 1̂ )q =:gh.
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Since g € Lp, h £  Lq we have /  6 L1 and (3) follows by Holder’s inequality.
Let now y> 6 Lf,. Since y? 6 L1 it has the trigonometric conjugate function 

which will be denoted usually by <p. In [5] the authors proved that

(5) II¥’IIp,<<^c(p >'u)IMIp,u-

On the other hand, the function has the Fourier-series

( 6 )

OO

+ ^ ( a j t  cos kx  + bk sin kx). 
k- 1

Denote by crn(<p) the n-th Fejér mean of series (6). From Theorem 8 of [5] 
we get

(7) lkn(v’)||p,u ^c(p,u)||y>||PiU (n = 0 ,1 ,...) .

Consequently, by the Banach-Steinhaus theorem

Ikn(v>) -  ‘r’llp.u -► 0 (n  —► oo).

So for every /  € L’ú
En( f ) p,u-+ 0 (n —> oo).

P ro o f  of  T h e o r e m  1. It is enough to see (3) for k — 1. The cases 
k> 2  then can be obtained by induction. Let /  6 A/p'j and

OO

(8) f ( x)  ~  + ^ 2 ( ak cos kx  + bk sin kx)
k= 1

then
OO

(9) f i x )  ' / f b k  cos kx — ak sin kx).
k=l

Since /  is absolutely continuous, it is easy to see that
OO

(10) / '(  x) ~  cos — a*, sin fcx).
fc=i

Furthermore by (7) we have

( 1 1 )  H M / O H p . u  ^  c ( p , u ) | | / ' | | p , u  ( n  =  0 , 1 , . . . ) .

Now, by (11) using Lemma 1 of [1] for two series (9) and (10) we get

(12) IM/) - i f ) ||PiU ̂  i n = 1,2,...).



186 N. X. KY

Using twice (5) for the function <̂ = a„(/) — /  we obtain

I K ( / )  -  / | |P,u ^ c(p, u)\\an(f) -  f\\P,u (n = 1 ,2 ,...)  

which together with (12) proves that

IM/) - /IU S ^ l l / ' I U  (n = 1,2,...)
and the last inequality implies (3) for k=  1.

T heorem 2. lUe haue /or euer?/ <„ € Tn (n = 1, 2, . . . )

(13) l|fnllp,u^C(Piíí)n llín||p,U.
P r o o f . It is enough to see (13) for any <„€Tn for which ||in ||P)U =  1- Let

tn{x)
do
Y

+ £ ( a *  cos kx + bk sin kx).
fc=i

Then

t'n( x ) =  h(6fc cos kx — a t sin fcx),
fc=i

n
i„(x) =  ^^(6fc cos fcx — sin fcx).

fc=i
Using (5) and (7) we have

, /I / M, ^ , ^ „ 3  M „ c (p ,ti),u „ „ c(p,u)K ( t n/n)\\p u < c(p, u )- ||i„ ||PiU ^ —w ■■ IIIn||p,u ^ ■

Therefore by application of Lemma 2 in [2] for the polynomials t'n and tn as 
two series we get

(14) \Wn{t'nln)\\p,u <c{p,u).

By the same way we have also

(15) \W2 n(t'n/n)\\pU<c(p,u).

Let now 6n — 2<72„ — crn be the de la Vallée-Poussin operator. Then from 
(14) and (15) it follows tha t

(16) \\^n(t'n/n)\\p u <c(p,u).

Finally, since 9n(t'n/ n ) = we have by (16)

Klip,* ^ C(P) u ) n  =  C ( P ,  uMWIp,u>
which was to be proved.
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2. An equivalent theorem

Peetre A'-functional between and is defined by the formula

( 17)
Kk( L U , t ) =  inf { | | / - 5 ||P,U + % W ||P)U}

seA/pu
( / e £ £ ,  0 < < < oo, fc =  l , 2 , . . . ) .

Let furthermore tn( f )  be the n-th polynomial of best approximation of 
/ i n  Lpu. By virtue of Theorem 3 in [3], using Theorems 1 and 2 we get

T heorem 3. Let j , k, r be positive integers, a > 0, and 1 <? s < oo. Let 
f  £ Lu- The following statements are equivalent:

( a )  { £ [ » ' + » £ ; „ ( / ) ] ' i } ' <
fn=l n ‘

(b) f e M ^ a n d l f :  [rT+«-fc||^ -)( / ) - / W | | J Si }
1 i n )

• 1 1 1
< oo (k < r + q)

(c) { £  W +a J\\t(n )(/)llPlU| (r + a < j )v.n_i l n )
( OO J/ V

(d) { /  [t~{r+a]/jKj (Lpu, f , t ) Y  y }  < oo.

3. A direct and converse theorem

The relation between En( f ) PtU and K k(Lu, f , t )  can be written in the 
following stronger form.

THEOREM 4. Let k> 1 be an integer. For any f  £ Lpu we have

(18) En( f ) PiU<c(p,u)Kk ( L ? , f , ^ )  (n > k )

(19) KJ LpuJ ,  - )  ^ i t ,  j k~l EjU)p,u ( n > l ) .\ n /  n*- L—' k- 1

The idea of the proof of Theorem 4 is known. It will be based on two 
inequalities (3) and (13). The analogue of the proof can be found for example 
in [6], therefore here is omitted.

REMARK. One of the most important problems in approximation theory 
is to give estimates of the best approximation in terms of some constructive 
properties of functions, for example in terms of moduli of continuity. In the 
case of the best approximation (2), this problem is still open.
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ON THE FOURIER TRANSFORM OF THE MODIFIED 
BESSEL FUNCTION WITH RESPECT TO THE ORDER

T. FÉNYES

In [1] Cooke proved that
OO

/

r ros d)

for Iarg z\ < |
OO

1 f  j  7T +  4> 7T — $  'I

2ír J  \  (^+d>)2+ i2 $ ) 2+<2 J
0 0

if |<í>| < 7T. The first term is replaced by ^  if |4>| = it , and by zero 
In particular, for $  = 0,

e~zchtdt

otherwise.

OO OO

r ez r e~zcht
<2> / ' « < * » =  7

0 0
In this paper we calculate the integrals

OO

(3) /  I((t) sin t > 0,
o

OO

(4) i >0 .
o

We shall apply the above integrals to the solution of an integral equation of 
convolutional type in connection with a heat-conduction problem.

We start with the known formula
7T OO

(5) 7 ^ )  = ^ / e — c o s e ^ O - ^  J  e~tchu-*u du
0 0 

(see Watson [2], p. 181).
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So we have
OO

(6)  J  I t ( t )ÚD.${dt  = gl ($)  +  g2(Q),
o

where

(7)

OO  7T

P l( $ )  =  i  J  s i n £ $  J  etcos0 cos Q£dOd£
0 0
oo oo

£r2(<í>) =  — — J  sin£<I> sin£7r J  e~tchu~*udu d£

| í » |  /  7T.

Though 5x(^), 52($) have singularities if $ = ±7r, we show that their sum is 
continuous for $ = ±n.  By the legitimate inversion of the order of integration 
in #2(30 we obtain

OO OO

ff2($) = _ i -  J / c o s ^ - ^ e - ^ W
0 0

oo oo

(8) + -^~ J  J cos(̂ * + 7r)^e tchud£ du =
o o

OO

1 [  /  u u
27T J  \  U2 +  ( $  — 7r)2 U2 +  ( $  +  7t) 2 

0

Integration by parts gives

~tchudu.

(9) ff2( * ) = 2 ^ l0g
7T — 4> 

7T +  $

-t
OO

±  f  +
47r y  u 2 +  ( $  +  7r)2

o
shue_tchudu.

Here the integral does not exist for t = 0, however, the whole second term 
tends to zero if t —*■ 0.

Applying the Fourier series expansion

OO

é  c o s  0  =  7 0 ( t )  +  2  ^ 2  / n ( 0  COS 7 1 0

n = 1
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(see Luke [3]) we can write

OO T

5i($) = ^  /  sin £$ J  Ĵ /q(í ) H" 2 ^   ̂ / n(£) cos Ti0 j cos Q£dOd£ —
n=l

( 10)

I o ( t )  f  sin £$ sin f i r  2 A  . . f f
= ——  J  -------------- - d £  + — 2J In{t) I s in f$  J  cos 7i0 cos Q £ d Q d £  =

n n=l r. n

/ 0( í ) ,  1^ +  ̂log 1
2 n  7r —$ ^ t m ] (

n  =  l  Í

sin(í+n)7T . sin(f-n)7r
sm £$ + — r5--- - s m

Z + n Z ~ n Z*)dZ-

Here the inversion of the order of integrations and summation is legitimate, 
which can easily be seen. We must evaluate

( 11) = / ( -
sin(£ + 77)77 . sin(£—77)77

■ sin £$ H----- —----- -— sm
Z + n Z ~  n Z*)dZ-

Applying elementary trigonometrical additional formulas, and introducing 
the substitutions £ + rc = u, £ — n = u, respectively, after some routine steps 
(10) can be reduced to the form

/ = -  COS $71 
2

OO

(/
COs(77 —$)u  —COs(77 + $)t7 f  COs(77 —$)i7-COs(77 +  $)77-du+

1 • ^  (  f  si+ 2 sin $771 / -
— n

( 12)

r
n

OO

-du +

sin(7T —$)u+sin(x+$)u f  sin(77-$)ri+sin(77+$)77
' - d u - J ’ -du =

=  COS $71 /
COs(7T —$)li —COs(7T + $)u f  — COs(7T — $)u + COs(7T + $ )u-du+ J  - -du +

+ sin $77

n

/
sin(7T —$)u + sin(7T +  $)7i

du—

= sin $77 [5,[(7r + $)77] + 5,[(7r-$)77]] +  COS $77 log 

+ COS $77 [ ^ [ ( tT -  $)77] -  5 x[(7T + $ )ti]] ,

77 + $
7T — $ +
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where

Si(x) = j  S- ^ d u ,  S \(x) = J -— cos u
du.

So by (10), (12) we have

^o(0 ,
5 lW  = _̂ r log

7T +  4>

7T —$

1 .
+ -  log

7T +  4>

7T — <1>
y  In(t) cos 4>n+
n = l

i 00
+ -  y  I„(t) cos <t>n [5 i [ ( 7r - $ ) n ] - 5 i [ ( 7T + 4>)n]] +7r ^ ^

n = l

1 °°
(13) + -  y  /„(*) sin $n [S i[(7T +  4>)n] +  Sj[(7r -$ )n ]]

n = l

27r
log

7T +  4>

7T-$

oo
e tcos<i- _|—  y  Jn(f) cos 4> n (5 i[(7T -$ )n ]-S 'i[(7r  +  4>)n])+ 

7T
n = l

1 °°
+ -  y  I„(t) sin $n(S,-[(7r + 4>)ra] +  Si[(7r-$)n]).7r «

n = l

It is easily seen that for fixed i the infinite series occurring in (13) converge 
uniformly with respect to 4>.

Summing (9) and (13) we have

OO

J  *{(*)«
1

sin = —  log
Z7T

7T +

7T — <í>
( e ic o s $ _ e- t )

(14)

oo
t f  , u2 + (4> -  7r)2 -írhti t

/  log 2 I /a — ToShue h du+
47T y  U2 +  (<f> +  7T)2 

0
1 00

+ -  y  /„(í) cos $ íz(5 i [(7t -  4>)n] -  5i[(7r + 4>)n])+7T c ' 
n = l

1
+ -  y  /n (0  sin 4>?i(S;[(7r + $)n] + 5,[(7r -  4>)n]).7r ^ J

n = l

Since
log 7T -f $  

7T — 4>
(c*co»* -c "* )
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tends to zero for |4>| —► 7r, applying Fourier’s theorem we get tha t (14) also 
holds for |4>| = 7r. On the other hand, we can see that (14) is more compli
cated than (1).

Let us now consider the integral
OO

(15) J  £cos
o

which obviously converges uniformly, since

OO OO 1 OO

J  £ cos $ É / €( f K |  < J  tlt( t)d £ <  J  It(t)d£ + J  £/*(<)#, 
0 0 0 1 

and applying the recurrence relation

(16) h - i ( t )  -  h+i ( t )  =

we have
OO 1 OO

I  J  / < ( 0 r f f + | / ( / { - 1( 0 - ^ + i W K  =
0 0 1

1 oo oo 1 2

=  J  W d t + ^ J  I ( ( t ) d ( -  J  I t { t ) d t )  =  J  h { t ) d t + l- j  / * ( * ) # •

0 0 2 0 0

So by an 
obtain

elementary property of the Fourier transformation with (14) we

J  t i e ( t )d t  =
o

d_

(17) = \ { e l — e- t ) + t [  9 1 9 shu e"fchudu+
7T* J U* + 7T*

0

2 oo 2 °°
+ -  V ' nI„(t)Sj(irn) + —r Y ' / n(t)(cos7rn -  1).7r L y it L—/

n = l  n —\

Here the differentiation under the integral sign is legitimate for every fixed t > 
> 0 and so is the termwise differentiation of the infinite series in (14) since the 
obtained integral and infinite series are uniformly convergent, as it can easily
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be seen by a simple majorization and application of the above recurrence 
relation (16). Moreover,

[  „ 1 -, sh ue~tchudu
J U 2 +  7T2

tends to zero for t —>• 0, since by integration by parts we have

t
OO

/
sh u — t ch U -t c h i

U 2 +  7T2

taking the value zero for t =  0. So it is

(7T 2  +  U 2 Y
du,

OO OO

/ t r 9

0 0 "_1
OO 2 00

V '  /„(*) + -  V  n In(t)S i(nn).
7TZ z ^ 7T z '

n  =  1 n = l

Substituting
OO

e - ‘ =  /o(i) +  2 ^ ( - i r / n(i)
n =  1

oo

e( = Jo(f) + 2 A>(0
n = l

in the above formula we obtain the final result
oo oo „_t r 9

i h { t)d i= e— - 2  /  " e - tchud n + - ^ n 5 ,( 7 r n ) / „ ( 0 -
^ 7 (u2 + 7T2) TT

0 0
(18) is very convenient for numerical calculations. It is easy to obtain a 
numerical value for the integral for any fixed t. On the other hand, the 
functions 5;(7rrc), 7n(t) are tabulated (see Abramowitz-Stegun [4], Luke [3]).

An application o/(18) to a heat-conduction problem 

Let us solve the following integral equation:
t

J  f ( T)Ko(t — t )dr — 1,
o

(19) t > 0,
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which occurs if we use the fractional calculus to the solution of the cylindrical 
heat equation

dd(r,t) 1 di)(r,t) _  1 dd(r,t) 
dr2 ^  r dr a dt

If we denote the Laplace transform of /(<) by F(p), we have

(20) £[/(i)] = F(p ) —------ ~ (see example [4]).
V log (p+  y/P2 ~ !))

Moreover, (20) can be written as

F(p) = v V  - 1 -  . +
plog (p +  yjp2 ~ l)  log (p + yjp2 -  l )

Here the inverse transform of V p2 - 1 - p
p

is

£ _1 V p 2 ~ 1 - p  
P

l ^ u .J  U

For the determination of the inverse transform of the logarithmic term, 
we make use of the idea of the papers Riihs [5], Schaar [6], in which the 
authors applied Mikusinski’s operational calculus in solving singular integral 
equations.

Obviously
OO

- =  [  e~pudu, Re[p] > 0,
P J o

so we have

log (.

It is known that

Consequently

OO OO

, +  V F H )  /  / ( p + v i ^ T ) "
du.

( p +  V p2 ~ l )

= C
l 1^

, u > 0.

1

log (p + x/p2 -  l)
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Applying the Faltung theorem of the Laplace transformation we obtain
OO OO t

(21) f( t)  = — J  u lu(t)du  — -  J  u lu(t)du* J Ä —-du,

where * denotes the convolution. Taking into account (18) and

h ( t )  In(t) n + l l n+i(t)*
t t

and introducing the notation
n t

( 22 )

we obtain 

(23)

g(t)
e _ l  _  O  r  _____a _____ p - l c h u j

l  (-2+-2)2

/ ( 0  =  5 (0  +  — n5i(7rn)/„(i)-
n = l

1 oo 1

—g(t)* I  — — ---- ^ ( n  + l)5,(7rn) Í
l  U ^  n=i /

fn + l(u) du

having an integrable singularity for t = 0.
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ON THE FOURIER TRANSFORM OF THE BESSEL FUNCTION 
WITH RESPECT TO THE ORDER

T. FÉNYES

In [1] Cooke evaluated the integral

(1) J I t ( z )  cos 4>tid£,
o

on the other hand Fényes {2] did the same for the integral

( 2)

OO

J  *{(*)«>sin </>£(/£,

and showed that

(3)
r e- t  i n  2

k h { m = - - 2  — ----- - j  e~tchudu + - Y ^ n S , { i n i ) I n(t), t> 0
J J (u *  + 7T2)2 ^

where I£ is the modified Bessel function of the first kind:

S,(x)=  j  S— du.
J uo

In this paper we calculate the integrals
OO OO OO

(4) /  J{(t) cos</>£r/£, J Jz(t) sin and /  t M m ,  t> o

resp., where J{ is the Bessel function of the first kind.
We start with the known formulas
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Key words and phrases. Bessel functions, Fourier transform.
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(5)

ír oo

J 6 (t) = ̂  J c o s ^ Q - t  sin Q ) d Q - S- ^ -  J e~tshu^ udu,

cos(t sin 0 )  = Jo(t) + 2 ^  J2 k(t) cos 2kQ,

( 6 )
k=1

sin(í sin 0 )  = 2 J2fc+i(0  sin(2/c + 1 )0
k= 0

(see Watson [3], Luke [4], Abramowitz-Stegun [5]). So the first integral in
[5] can be written as

(7)

-  .  OO

— I  cos £0 (^Jo(t) + 2 ^  J2k(t) cos2L-0^d0+ 
* o

+ — /  sin£0 V ' <72fc+i(̂ ) sin(2fc + l)0cf0.
* J r r i

Applying elementary trigonometrical additional formulas, by a legitimate 
termwise integration of the infinite series, (7) can be reduced to the form

( 8)

We write

(9)

where

1 sin £7t

7T £

sin f n  
+ ----—

* ( 0  + ^  + ^ )  + 

X^^2fc+i(<)(^ + 2A. +  i  -  (2Jfe+ 1 )) '

OO

J  Jz(t) c o s  = gi((t)) +  g2(<l>),

oo 00 oo
. Jo(í) í  sin 7rf cos<f>£ , ,  I  f  . ,  , ,v-^ t

9 \{<t>) =  — L l  /  ------- 7----- - d £ + -  /  sinTT^cos^N J2it(0 x
77 J £ 77 4 f r i0 0 fc- 1

<10> x ( i T » + i T 5 E ) <e+
1  ?? oo J  J

+ -  y  sin «{ cos <K ■£  W O  (  { + 2 t+ 1  -  j T p F M j )  ’
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( 1 1 )

oo oo

= ~ ~  J  s*I17r£ cos<££ J  e-íshu_íudu d£.

By the inversion of the integration in (11) we obtain

<12> * < « ~ s / ( ( i
7T + 4>

+
7T — (f)

■ + 4>)2 + u2 (n -  4>)2 +
0

The value of the first term of gi(</>) is

— ) e - tshudu. ul /

M t)  
2 ’

for \<t>\ < *
(13) 0, for \4>\ > 7T

M t )
4 ’

for II

Let \<j>\ ^  7T. In (10) we may interchange the order of integration and 
summation, so we obtain the expression

(14)

i 00 r
; E  / (

k= 1 n

sin 7T£ cos (/>£ sin 7r£ cos

+

£ +  2/c ' £ — 2k

1 v '  , / / s i n ^ c o s #  sin 7r£ cos </>£ \
- L, W O  J  { - J ^ 2 k + 1  ~ f-(2*+l)K-*.=0

We should evaluate the integrals

(15) “  ° 1 ,
W  =  / » n ^  c o s « ( TT± T T - r - ?i T T I)rfi .

0

Applying again elementary trigonometrical additional formulas, and intro
ducing the substitutions f  -f 2A: = u, £ — 2fc = u, f  +  2 k  + 1 = u, and £ — (2A: -f 
+ 1) = u, respectively, after some routine steps (15) can be reduced to the 
form
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h k  = -
cos 2k<f) f /■sin(7r+<?í>)íi+sin(7r -  <f>)u f  sin(7r4-</>)w+sin(7r—<f>)uV2 k

du-\- I
-2 k

-du +

(16)

+
sin 2 k<f> í co s(n -4>)u—cos(n-\-<i>)u^ í  cos(7T — <f))u-cos(ir-\-4>)u

[J  u J u
2 k -2  k

(17)

I lk + \  — ~

oo

- /

cos(2fc -f \ ) 4>
OO

/
SÍn(7T -f 4>)u -f SÍn(7T — <t>)udu-

2fc+l

sin(7r 4- <t>)u -f sin(7r — (f))u du sin(2fc + 1U H----- ---------— x
—2fc—1

OO

/
cos (7r+</>)«—cos(7T—<f>)u  ̂ ^  f  cos(n+<j>)u-cos(ir-<f>)uI -du

2 k + l  

So we get
- 2fc—1

(18) / 2fc=cos 2fc0
OC

/
sin(7r+<?í>)u+sin(7r—(t))u ̂  _jncos2k<p, for \4>\ < n,

u 0, for \(f)\ > 7T.

I 2 k+i — cos(2 k -f l)(p[S,((2k + 1) ("7T -f </>)) -f S{((2 k -f 1 )(7r — <£))] +

-f sin(2fc - f i  )4>
uu

[/
COs(7T + (j))u — COs(7T — <f>)udu-\-

2A. + 1
(19) + /

COs(7T — (f>)u — COs(7T -f (f))u
du

— cos(2k - f i  )4> [5,-((2A; -f 1)(tt -f (f>)) -f Si((2k -f 1)(tt — </>))] +
7T — (f)

-f sin(2fc -f \)<j> log 

Here is
7T + (f)

+ S\{(2 k -f 1)(7T -f <f>)) — Si((2k -f 1)(tt — </>))

S Á x ) = í l ^ i dn.
J u
0

Consequently, for |</>| < 7r, we have by (10), (13), (14), (15), (18), (19)
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(11 <̂> 1 “K Ó <̂>
9\{4>) = ~ ~  + Y ]  J2k(t) cos2 k<p+-\og V  J2 h¥l{t)sin (2k+ l ) H

2 *■—'  7r 7T +  (p I L— ‘k=zl k—0
oo

(20) H— J2k+\(t) sin (2fc+1 )<£ [Si ((2A:+l)(7r+<£))—Si ((2fc+l)(7r —</>))] +
n-=o

1 °°
-|— N ^2fc+i(0 cos(2fc + 1 )<̂  [S,((2fc+l)(7r-|-<^))-|-S,((2/7-|-l)(7r—</>))].

7T *
k= 0

Taking (6) into account we get

, ,. cos(f sin <f>) 1 ,
5 , ( 0 )  =  ^ — ! + - l o g

7T — (f)
7T + sin(i sin <f>)+

1 °°(21) + — ̂ ^ J 2k+i(t) sin(2A:+l)</> [5j((2fc+l)(7r+<̂)) —5i((2fc+l)(7r —î>))]T
n  k=o

1 °°
H— ^  ' Jik+iify cos(2A: T l)(/> [S,((2A: + l)(7r + </>)) + S,((2k + 1)(7r — </>))].7r *

k= 0

By (9), (12) we have for |<̂>| < 7r

/ .. . , ,  ,, cos(f sin <f>) 1 ,
J ^ i)  cos = ------------ - + — log27T

7T — (f>
7T + (j)

sin(< sin <(>)+

1 , ^
— V ' J2k+i{t) sin(2fc+l)<£ [Si((2fc+l)(7r+<£))-Si((2A:+l)(7r—</>))}f
7T *—'

( 22)
&=0

ooi
— 'V ' ^2fc+i(0  cos(2fc+l)$ [S,((2/;+l)(7r+</>))+S,((2A;-f l)(7r—</>))}-
7T *

fc= 0
oo

2 7T j  ( ( 7T
7T + <J)

+
n  —  <t>

— )e~ tshudu.llz /+  0 ) 2 +  U2 (7T-</))2 +
0

It is easily seen that for |c/>| > tt the first term is replaced by zero. Since

7T — (j)
log

7T + (j)
sin(t sin <j>)

tends to zero for \<j>\ —* n, applying Fourier’s theorem, we get that by replacing 
the first term by (22) also holds for \<f>\ = 7T. The above infinite series
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converge uniformly with respect to 0, which can easily be seen by a simple 
majorization.

In particular for <f> = 0

OO ^  OO t  h

(23) Í  Jz(t)dt = ^  +  — y ;  J 2k+i{t)Sj[(2 k + l)7r] -  Í  ^  u2 du'
o k=° o

Let us consider the second integral in [4]. Applying [5], [8] we can write

OO

(24) J  Jt ( t )  sin<££ d£ =  +  hi(<t>),
o

where, for \<f>\ /  7r,

hi (<t>) -
J0 (t) [  sin 7t£ sin ^  | 1

(25)

7T / — /  sin 7r£ sisin ^  x

Z (X )  ̂ -

x { E  •'“ « ( { T U  +

OO 1 1 1

+ S  j2k+' ( l K j + 2 k  + i  ~ f - ( 2 1 b + l ) ) rf^ } ’

(26) h2(<̂>) = ---- J  sin7r£sin<^>£ J  e ishu ^Udud£.
0  o

Though /ii((/>), A-2(<?!>) have singularities if <f>= ±7r, we show that their sum is 
continuous for <f>— ±7r. The evaluation of hi(cf>) is wholly analogous to that 
of g\(4>) so we omit here the details. We obtain the result:

If \4>\ < 7T, then

, . sin(t sin 4>) 1 ,
W ) =  2 + ^ ‘°S

7T + 4>
7T — (f)

cos (f sin <̂>)+

+ -  Y ' /2fc(0 sin 2Ar<y>(5'i[2/c(7T + </>)] + Si[2k(n -  <£)])+7r *
k=i

l 00
+ - J 2 k(t) cos 2 k(J)(Si[2 k(ir -  <f))] -  Si[2k(n + </>)]),

7T
f c= i

( 2 7 )
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and for \<f>\ > n the first term in (27) is replaced by zero. By interchanging 
the order of integration in (26) we have

(28)
OO

U 2 4  (7T -  0)2 U 2  + (0 4  t )

and an integration by parts gives
(29)

h2 (<t>) = - ± \ o g 7T 4  0
7T — 0 4n J lQg ctme tshU(lu>n + (0 + tt)

Here the integral does not exist for t = 0, however, the whole second term 
tends to zero if t —> 0. Consequently, by (24), (27), (29)

/
„ . , . , . sin(i sin 0) 1 ,

J ^ t )  sin 0£ d £  = ------+ —  log
7T +  0

7T — 0 (cos{t sin 0) — 1) +

1 °°+ — V ' J2k(t) s\n2k4>(Si[2k(n + 0)] + 5,[2A:(7r -  0)])+7r ^—J
(30) k= 1

OO1
4 1  Y  J 2k(t) cos2/j0(51[2A:(7r -  0)] -  S ^ i r  4  0 )])-7r * ^

A:=l
oo

~  /  lo g -  
A ir J  u

u 2 4 ( 0 - tt)2 _ t s h u

4  (0 4  tt)2
chite s udn, for |0| < tt,

and s'n((| in<̂ ) is replaced by zero in (30) if |0| > n.
Since

log —-t— (cos(i sin 0) — 1)
7T — 0

tends to zero for |0| —► 7r, applying Fourier’s theorem it can easily be seen 
that (30) also holds for |0| = 7r.

Let us now consider the integral

OO

J £cos <t>ZJ((t)d£,

which obviously converges uniformly since
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oo oo oo
J £cos « J t m \ <= j  i\Jt(t)\d£<  J £It(t)dS.
0 0 0

So by an elementary property of the Fourier transformation with the aid of
(30) we obtain

(31)

OO OO

J J Jt(t) sin <f>£
0 0

oo
t 4 ^  f  chue_tsht

= j  + n S  kJ 2k(t)Si(2 kx) +  t J  u 2  - ^
du

and by an integration by parts we obtain the final result
OO _ _  OO

M j ^ J OO M

(32) J  M t ) d t = -  + -  + - ' £ kJ2k{t)s i( 2kTr)-2 J

Here the differentiation under the integral sign is legitimate for every t > 0 
and so is the termwise differentiation of the infinite series in (30) since the 
obtained integral and infinite series are uniformly convergent, as it can easily 
be seen by a simple majorization.

(31), (32) are very convenient for numerical calculations. It is easy 
to obtain numerical values for the integrals for any fixed t. On the other 
hand, the functions J2 k{t), J 2k+i(t), 5,-[2fc7r], 5,-[(2fc + l)ir] are tabulated (see 
Abramowitz-Stegun [5], Luke [4]).
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TRUNCATED HERMITE INTERPOLATION POLYNOMIALS

P. VÉRTESI* and Y. XU

A b stra ct

The convergence behaviour of the truncated Hermite interpolation polynomials is dis
cussed in both the weighted lP  norm and the uniform norm. The rate of convergence is 
given in terms of the modulus w^{f \ t )  of Ditzian and Totik.

1. Introduction

Let w be a Jacobi weight function defined by w(x) = (1 — x )" ( l + x)&, 
|x| < 1, a > —1, ß  > —1, and w(x) = 0, |x| ^  1. Let pn(w ,x) be the Jacobi 
polynomials orthonormal with respect to w. Let xkn(w) be the zeros of 
pn(w, x) with

(1.1) l<Cxnn(tn)<Cxn(n_ i(tn )< C ...^x rj(i(tc,) <Cl.

For any given integer m 't  1, let be the Hermite interpolating
operator, which is defined to be the unique polynomial of degree at most 
mn  — 1 satisfying

(1-2) H ^ l( w , f ,x kn) = f (]\ x kn), l< k < n ,  < m -  1, 

where xkn = xkn(w).
The mean convergence of this Hermite interpolating polynomial has been 

studied recently by the authors [13]. However, the uniform convergence has 
not been fully studied for an arbitrary given integer m. The only result 
we know is due to Esser and Scherer [2], which states that for the zeros of 
Chebyshev polynomial, the rate of convergence of Hmn(w ,f)  for /  G C m_1 
is (logn /n )m-1Wp(/(m-1); n _1), where up( f , t )  is the usual pth modulus of 
continuity. In the investigating of the mean convergence of ) [13],
we realized that our approach is really like the uniform method. It is the
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Key words and phrases. Interpolation, Jacobi polynomials, mean convergence.
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purpose of this paper to unify the mean convergence and the uniform conver
gence method, to show the similarity between the two cases. In doing this, 
we shall consider a more general situation, namely, the interpolating poly
nomial -ffr,m,n(w, / )  which is defined to be the unique polynomial of degree 
m n  — 1 satisfying the following conditions

where r  is a fixed integer, 0 ^ r ^ m — 1. When r — m — 1, we drop the 
second line of (1.3), and write -ffm-i,m,n(w, / )  = Hmn(w ,f) . We shall call 
Ĵ r,m,n(w, / )  the truncated Hermite interpolation polynomials, while r = 0, 
H o f )  is the Hermite-Fejér interpolation of higher order.

We shall present mean convergence results for all m ^ 2, r 0 and uniform 
convergence results for all m  > 2, r > 0. The case r = 0 in the uniform 
convergence is of some different character, it has been discussed by Vértesi 
[10] and Xu [14], We shall prove only sufficient conditions on the rate of 
convergence, and try to concentrate more on ideas and methods. Let us 
note here that the previous results [10], [11] and [12] are mostly “if and only 
i f ’ statements. For mean convergence when m  = 1 and m — 2, see [4, 5].

The results of this paper generalize those in [7], [8], [11] and [12], Through
out this paper we shall apply the u v (f\  t ) modulus (see [1]) which seems to be 
more natural than the usual one (cf. [14]). Using even in the previously 
proved special cases, we have better results.

Throughout this paper, we shall adopt the following convention. The 
letters c, C \ , . .. will denote positive constants, being independent of variables 
and indices, unless otherwise indicated. Their value may be different at 
different occurrences, even in subsequent formulae. We define Lp (0 < p < 
< +oo) in the usual way: spaces of real variable functions on [—1,1]. For 
sake of convenience we use the norm notation || ■ ||p even if 0 < p < 1. || • ||oo 
denotes the maximum norm on [—1,1], while

(1.3)

2. Main results

( 2 . 1)

- l

Furthermore, | | / ^ | |*  is defined by

(2.2) | | / (j)||. := max ( -  **„) V j)(*fcn) ,maxl<Jfc<n
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for 0 < j  < m — 1, where m  is a fixed integer. Let <p(x) — \ / l  — x 1. The 
weighted modulus of continuity of /  defined by Ditzian and Totik [1] is given
by

“v ( / ; 0  = sup ll/(- + M - ) / 2) - / ( - - M - ) / 2)lloo,
0 <hSt

where if x ±  h<p(x) / 2  £ ( — 1,1), the expression inside || • || is taken to be zero. 
En( f ) is defined by

£ „ ( /)  = min 11/-P ||o o
where the minimum is taken over all polynomials of degree at most n.

As before, w denotes the weight function with which the interpolating 
knots associated, a and 0 will always be the parameters of w. We define

(2.3) T - max{a,/?}, 7 =  min{a, 0 },

and
1 2 ^  1 1

(2.4)
2 m C m ~ ~ 2 ~ m

The following assumptions on a and 0 will be used throughout the paper 
(see [10, 11] for the reasoning)

(2.5a) 7 > A m, for odd integer m,

and
2

(2.5b) 7 > Cm or A m < 7 < Cm and T -  7 < —, for even integer m.m
When we deal with uniform norm, we assume more, namely,

(2.6) 7 > Am, for odd integer m.

Finally, we define

wm(x)=  (u>(x)v/ l - x 2)

We now state our main results.
T heorem 2.1. Let m > 1, 0 < r < m — 2. Let 0 < p < 0 0 , u be a Jacobi 

weight, u £ Lp. Then, for every integer A ^ 0, any f  £ Cr,

(2.7) (i) II Hr,m,n( w J )  -  /II«, < ( / (r); b )  ( l  +

if

(2.8) w ^xv x £L°°-

( 2 . 9 ) ( i i )  II H r,m<n( w J )  -  f  | |oo ^  ^ v ( / ( 0 ;  I ) ,
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if  7  >  Cm and

(2.10) ™ - V V /p e £ p-

THEOREM 2.2. Letm >  1. Let 0 < p < +oo, u be a Jacobi weight, u G Lp. 
Then, fo r every integer A ^  0, any f  G Cm~1,

(2.11) (i) +

if

(2.12) t u - V e L 00;

(2.13) (ii) ||Hm,n(w, f )  -  / | | u,p ^ ^ r r x En{ f ^ - l)), 

if  7  > Cm and

(2.14) u i - V Aw1/p € Ép.

By choosing A = r — 1 in the above theorems, we have convergence for 
the largest range of a and ß  (cf. (2.8) and (2.10)). By choosing A =  0, we 
have the fastest rate of convergence. Theorem 2.2 with A = m — 1 improves 
the result of [2] mentioned before. Further remarks and results are given in 
Section 4.

3. Proofs

The Hermite interpolating polynomial (1.2) can be written as

m  — 1 n
(3 .1 )  Hmn(w, / ,  x) =  E E  f {t)(Xkn)h tkm(x')) TR— 1 ,2 , . . .

t = 0  k = 1

where htkm are the polynomials of degree mn — 1, which are uniquely defined
by

(3.2) h[km(x3" ) ~  0 < : i , t < m - l , l < j k < n .

From (2.1) we have that / / r,m,n(m, / )  defined in (1.3) can be written as
r n

( 3 . 3 )  Hrimín(w, f , x )  =  ^ 2 Y ^  / ( i)(zj tn) / l t fcm(z) -
t=0 k=l

Let j  be the index determined by \xj — x\ = min \x — £fc„|. Our main lemmas
l^k<n

are the following
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Lemma 3.1. Let t>  0, m — t be odd integers, 0 ^ r ^ m  — 1. I f  t > r, 
7  ^ A m or t = r, 7  > A m, then

(3-4) ^ ( y>(”fc" ') ) ^  (tP(x jn))r logn + u>m(x jn) 1

and if t — r , 7 = A m, then

( 3 .5 )  Y  l ^ r* m( ® ) |  [<̂>(:rjri)r +  wm(xj„) x] .
k=l

Lemma 3.2. Let t>  0, m -  t be even integers, 0 ^ r < to — 1. Then for 
t> r ,

<3'6> E ( ^ - y ) '  r | '“«»(*)l £ £  +

P r o o f . The proof of these two lemmas can be reduced to the proof of 
[11, Lemma 3.2]. Actually, if along the lines of the proof in [11], we write 
down the first one or two estimates on these quantities, we will see tha t (3.4) 
follows from the estimates there for t — r. So does (3.5). The case r — 0 has 
been considered in [13], too.

We also need the following lemma proved recently by the second author
[15].

L em m a  3.3. For r > 0, /  £ Cr, there exists a polynomial Pn o f degree at 
most n such that for all — 1 < x < 1,

(3.7) I f (t\ x )  -  P % \x )I < c[A„ (* )]-* £ „_ ,( /( ') ) , 0 < t < r 

and

(3.8) |/*> (* )| <c[An( * ) r ^ ( / ( r); £ ) ,  t> r , 

where A „(i) = <^(x)n_1 + n ~2.
P r o o f  o f  T h e o r e m  2.1. We first prove the uniform estimate (2.7). 

By (3.3), we have from Lemmas 3.1 and 3.2 with r — 0 that

|í W k , / ,* ) I  S E  ll/(,)ll. E ( ^ - j ) ' l M * ) l  S
t=0 ¥>(**«)'

1 /log n
^ cnA Y  l l /(,)l|.*—t ( - ^ T  + Wm{Xj;„) V (*jn)A)

t = 0
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where we use r u p ( x j n ) |> c which follows from

@k+l , n  — @kn ~ n

with X k n  = cos Okn,  0 < k <  n +  1, z0„ =  1, £ n + i , n  =  “ 1 (cf. [5]). Therefore 
under condition (2.8) we have

(3.9) | | / W « ,  /) I U  S É  ll/w l l - i ( 1 + ^ r ) -
t=0

Now let Pn be the polynomial in Lemma 3.3. By the triangular inequality, 
we have
(3.10)
||tfr,m ,n(w ,/)-/||oo  ^ || ffr,m,n(^, f ~ K  ) ||oo+|| H r,m,n{w, Pn)~Pn ||oo+|| P ~ f \ \oo 

From (3.7) and (3.9) it follows that

■>, f  ~ r „ ) | |„  S ^ n ( / (r)) ^  ( l  + ^ ) .

Since
E M )  S ^ ( / W) S ^

c
nr

where the last inequality follows from [1, Theorem 7.1.1], we only need to 
estim ate the second term in (3.10). Since Hmn( w , f ) preserves polynomial 
of degree mn — 1, we have from (3.1) and (3.3) that

m  — 1  n
Pn(x) — H rim t n ( w ,  Pn,x )  = ^  ^  P ^ ( x k n ) h t k m { x ) .

< = r + l  J t = l

Therefore, by (3.8), Lemmas 3.1 and 3.2,

|P„(x) -  tfr,m,„(iy, P„, z)| <

m —1

= nt~r £  r p " )( * fc») |  ( ^ ( x ^ ) )  =

^ ( / (r); WiZjnY log n +  Wm(xjn)_1] <

where in the last inequality, we use rup(xjn ) > c and condition (2.8) again. 
Thus, the proof of (2.7) is completed.
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We now prove the mean convergence part (2.9). In [13] we proved that 
under condition (2.10) and 7 > Cm,

m — 1 ..

\\Hnm(w J ) \\UiP̂ c n x ^ 2  -W f^ W .,  
i=o 7

[13, Lemma 4.2], Since Hmn(w ,f)  preserves polynomial of degree mn -  1, 
we have that for any polynomial p of degree < mn -  1,

m —1
(3.11) l|p|kPS ™ A£ - y i p (,)l|.

t=0 7

under condition (2.10) and 7 > Cm. By (1.3) and (3.11) with ;> = Lfr,m,„(w, /)> 
we then have

(3.12) I I / ) | L P S c»A £  4 l l / “ , ll-
t=o

Let P be the polynomial in Lemma 3.3. From (3.7) and (3.12) we have 

l|tfr,m ,nK /  -  P )lk p  ^ cnX £  - \ l l / (t) -  ^ (0||. ^ ~ ^ E n( f {r))-í—' nl nT A
i= 0

Using (3.8) and (3.11) with p — P -  Hrrnn(w, P ), we have from (1.3) that

m —1 1 .
| |F - 7 / r„„(» ,i> )||„ ,p < CnA £  _ | | f W ||,<  '  ) .

t = r  +  l

Therefore the desired result follows from the triangular inequality

| |#r ,m ,n(t i> ,  / )  ~  / | |u , p  ^  || / / r,m ,n ( ^ ,  /  “  P ) | |u ,p  +

+ \\P -  Hr>m<n(w,P)\\UtP+ \\f  -  P\\u,p

and by £ „ ( / (r)) ^ c ^ ( / ( r); 1/n).
P roof  of T heorem 2.2. The proof is similar to that of Theorem 2.1 

but simpler, Hmn(w, / )  preserves polynomial, we do not need to consider 
the term P -  Hnm(w, P).

4. Further results and remarks

If we apply Bernstein-Markoff inequality for Lp, 0 < p<  +00 (cf. [6]), we 
have from Theorems 2.1 and 2.2 the following
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T heorem 4.1. Let m > 1, 7 > Cm and 0 < p < + 0 0 . Let u be a Jacobi 
weight, %up~3P € L1, for a fixed j ,  0 ^  j  < r. Then for each integer A > 0,

V / s C ' ,  0 S r S m - 2 ,

and

i t ó K  / )  -  S  ^ h F T E „ ( f ím- 1>), v /  e  c " - \

if
e L p.

For the counterpart of the uniform norm, we must use \\<p*(Hrlm<n (w , f ) ~  
— f U))\\oo, and the reader can state  the results quite easily from Theorem 2.1 
by using Bernstein-Markoff inequality. For the norm of derivatives without 
weights, see [16] when m — 2, which partially justifies why we do not have 
an analogue of Theorem 4.1 under the unweighted norm.

T heorem 4.2. Let m  ^  1 be a given integer. Then

I K ( t f r , m, n K  / )  -  /)lloo ^ ( / (r)5 ,

V / G C r , 0 ^ r ^ m - 2 ,

and
\\wm(Hmn(w, f )  -  y o iu  ^  c l̂ E n( f ^ - %  V/ € C— 1.

The proof of this theorem is similar to that of Theorem 2.1. One only 
needs to notice that the extra weight wm(x) will cancel out w^f (x)  in (3.4)- 
(3.6). From this, it seems th a t the natural measurement for the uniform 
convergence of this type operator is the norm with suitable weight. See also
[3]-

The norm estimate of Hermite-Fejér interpolation for m  = even is given 
by 0 ^ /; ([14]), however, it seems unlikely that our estimate can be

improved to ^/ (r); for either m = even or m — odd. The reason
is th a t the estimates are sharp in Lemmas 3.1 and 3.2 as shown by [11].
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SEMIGROUPS (RINGS) HAVING A PRIMITIVE REGULAR 
(COMPLETELY SEMISIMPLE) IDEAL

O. STEINFELD

A non-zero quasi-ideal Q of a semigroup with 0 (a ring) A  is called 
canonical if Q is an intersection of a 0-minimal (minimal) right ideal R  and 
a 0-minimal (minimal) left ideal L of A. This notion is due to A. H. Clifford
[2]. In the papers [12], [11] we proved that the product of two canonical 
quasi-ideals of A is either 0 or a canonical quasi-ideal of A, that is, the 
set V  of all canonical quasi-ideals of A and the zero element 0 of A form 
a multiplicative semigroup with 0 with respect to the multiplication of the 
quasi-ideals of A.

The first purpose of this paper is to answer the following question of It. 
P. Sullivan: “In which semigroups and rings is this multiplicative semigroup 
FUO regular?” In Theorem 1.4 we give several solutions of this problem. We 
mention here only one of them: V  U 0 is a regular semigroup with 0 iff every 
canonical quasi-ideal Q = R  D L of A is such that R and L are (globally) 
idempotent. These canonical quasi-ideals of A  will be called distinguished.

Our second aim is to give a simple joint characterization of the primi
tive regular (in particular, completely 0-simple) semigroups with 0 and of 
the completely semisimple (in particular, completely simple) rings by means 
of their distinguished canonical quasi-ideals (see Theorem 4.1 and Corol
lary 4.3).

§1. Several solutions of a problem of R. P. Sullivan

An additive subgroup (a non-empty subset) Q of a ring (a semigroup) A 
is called a quasi-ideal of A if QAHA Q  C Q. A non-zero quasi-ideal Q of a 
semigroup with 0 (a ring) A  is called canonical if Q is the intersection of a 
0-minimal (minimal) right ideal R  and a 0-minimal (minimal) left ideal L of 
A, that is, 0 ^  Q = R n  L. This important notion was introduced by A. H.
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Key words and phrases. Quasi-ideal of a semigroup (ring), regular semigroup (ring), 

completely zero-simple semigroup, completely simple ring.
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Clifford [2] for semigroups with 0, and he has proved in [2] many interesting 
results concerning it.

R e m a r k  1.1. It is not difficult to prove the following proposition (see 
e.g. Lemma 6.27 in Clifford-Preston [4]): if R  is an idempotent 0-minimal 
(minimal) right ideal of a semigroup with 0 (a ring) A  and if L is a 0-minimal 
(minimal) left ideal of A  such that L2 = 0, then R  fl L =  0. (Evidently, the 
left-right dual of this result also holds.) On the other hand, Example 3.1 
in Steinfeld-Thang [12] and Example 3.1 in Steinfeld [11] show that there 
exist semigroups with 0 and rings which have canonical quasi-ideals Q = 
= R  fl L such that R 2 — L 2 = 0. These facts mean that a canonical quasi
ideal Q = R n L of A has the property either R 2 = R, L 2 = L or R 2 = L 2 = 0.

We shall say that a canonical quasi-ideal Q = R í) L of A is distinguished 
if R 2 = R  and L2 = L hold.

R e m a r k  1.2. It is easy to show that every canonical quasi-ideal Q = 
=  R n L  of a semigroup with 0 (a ring) A is a 0-minimal (minimal) quasi-ideal 
of A  (see e.g. Theorem 6.1 in our book [10]). But Example 7.1(a) in [10] 
shows that not every 0-minimal (minimal) quasi-ideal of A is canonical. From 
Theorems 6.3 and 6.5 of [10] it follows that a 0-minimal (minimal) quasi
ideal Q of A is either idempotent or Q2 = 0. Hence a canonical quasi-ideal 
Q = R  fl L of A is also either idempotent or a zero semigroup (zero ring); if 
R 2 — L 2 — 0, then evidently Q2 = 0. It is evident that every canonical quasi
ideal Q — RC\L of a full m atrix ring Dn of degree n(> 2) over a division ring 
D is distinguished, but the case Q2 = 0 is also possible.

In the papers Steinfeld-Thang [12] and Steinfeld [11] we have proved:

P R O P O S I T I O N  1 . 1  ( s e e  Corollary 2 . 7  in [1 2 ]  and Corollary 2 . 6  in [ 1 1 ] ) .  If 
the semigroup with 0 (the ring) A contains at least one canonical quasi-ideal, 
then the union (the sum) U of all canonical quasi-ideals of A is a two-sided 
ideal of A.

(Examples 3.6 and 3.2 in Steinfeld [10] show that the union (the sum) of 
two quasi-ideals of a semigroup (a ring) A  is not always a quasi-ideal of A.)

P r o p o s i t i o n  1.2 ( s e e  Corollary 2.10 in [12] and Corollary 2.9 in [11]). 
Assume that the semigroup with 0 (the ring) A has at least one canonical 
quasi-ideal. Let V  denote the set of all canonical quasi-ideals of A, then V  U0 
is a multiplicative semigroup with 0 with respect to the multiplication of the 
quasi-ideals of A.

(Examples 3.7 and 3.8 in [10] show that the product of two quasi-ideals 
of a semigroup S  is not always a quasi-ideal of S. Concerning rings, see 
Problems 3.1a and 3.1b in [10].)

P roblem of R. P. Sullivan. Characterize the semigroups with 0 (the 
rings) A in which the multiplicative semigroup V  U 0 is regular.
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In order to solve this problem we have to define some notions and we 
need some preliminaries.

A non-zero idempotent element e of a semigroup with 0 (a ring) A is called 
primitive if, for any non-zero idempotent /  of A, the relation e f  — fe  = f  
implies that e = f .

A regular semigroup S with 0 is said to be primitive regular if every 
non-zero idempotent of S is primitive. We shall say that an ideal M  of a 
semigroup S with 0 is a primitive regular ideal of S  if M  is a primitive regular 
semigroup.

A semigroup S with 0 is called 0-simple if it has only two two-sided ideals 
{0} and S, furthermore S 2 ^  0. According to Theorem 2.48 of ClifTord- 
Preston [3], by a completely 0-simple semigroup we shall mean a 0-simple 
semigroup S containing at least one 0-minimal left ideal and at least one
0-minimal right ideal. We shall say that an ideal M  of a semigroup S  with 0 
is a completely 0 -simple ideal of S if M  is a completely 0-simple semigroup.

A ring A is called simple if it has only two two-sided ideals {0} and A, 
furthermore A2 ^  0. In view of Corollary 5.4 B of Artin-Nesbitt-Thrall [1] 
(see also Proposition 2.5), by a completely simple ring we shall mean a simple 
ring having at least one minimal left ideal or at least one minimal right ideal. 
We shall say that an ideal M  of a ring A is a completely simple ideal of A if 
M  is a completely simple ring. Let a ring A  be the discrete direct sum of its 
completely simple ideals, then A is said to be a completely semisimple ring. 
An ideal M  of a ring A is called a completely semisimple ideal of A if M  is 
a completely semisimple ring.

Let 5  be a semigroup with 0. The union of {0} and of all the 0-minimal 
right ideals of S  is called the right socle °f *$'• The left socle of S 
is the union of {0} and of all the 0-minimal left ideals of S. Theorem 6.29 
of Clifford-Preston [4] gives the structure of the two-sided ideal Y)r U of 
5; there is a strong analogy with Dieudonné’s theory of the right and left 
socles of a ring. (See Dieudonné [5].) We shall say that S  is the 0-direct 
union of the subsemigroups {5, : i £ 1} if S  is their 0-disjoint union and if 
S,Sj = SjSi = 0 for i ± j  (i , j  £ I).

T h eo r em  1.3a (see Theorem 6.29 in Clifford-Preston [4]). Let S denote 
a semigroup with 0, and let C(C') be the union of {0} and all those non- 
nilpotent 0-minimal right (left) ideals of S which have a non-zero intersection 
with some 0-minimal left (right) ideal of S . Then C — C , and C is a two- 
sided ideal of S which is the 0-direct union of {0} and all the completely 
0 -simple ideals of S .

Let {A,: i £ 1} denote a non-empty family of subrings of a ring A. Then 
the subring of A generated by (J A, is called the sum of the subrings {A,-: i £

iei
£ /} . A sum of an empty set of subrings of A is defined to be equal to zero. 
The sum of all minimal right (left) ideals of a ring A is called the right (left)
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socle of A. The following theorem is analogous with Theorem 1.3a. I think 
tha t it may be known, but I could not find it in the literature. Its proof is 
given in the next section.

T heorem 1.3b. Let A be a ring, and let C (C ') denote the sum of all 
those non-nilpotent minimal right (left) ideals o f A which have a non-zero 
intersection with some minimal left (right) ideal o f A. Then C — C ,  and C 
is a two-sided ideal of A which is the discrete direct sum of all the completely 
simple ideals of A.

R e m a r k  1.3. Let A  be a semigroup with 0 (a ring). In the case when 
the union (the sum) C — C  defined in Theorem 1.3a (Theorem 1.3b) is not 
zero, then we shall say tha t C — C  is the amicable part of the right and left 
socles o f A.

Now we are able to give the main result of this section.

T h e o r e m  1.4. Assume that the semigroup with 0 (the ring) A has at 
least one canonical quasi-ideal. Then the following conditions are equivalent:

(1) the set V of all the canonical quasi-ideals of A together with 0 forms 
a regular multiplicative semigroup with 0;

(2) every canonical quasi-ideal of A is distinguished;
(3) the union (the sum) U of all canonical quasi-ideals of A equals to the 

amicable part C — C  of the right and left socles of A;
(4) the union (the sum)  U of all canonical quasi-ideals of A is a primitive 

regular ideal (a completely semisimple ideal) of A;
(5) A has a primitive regular ideal (a completely semisimple ideal) B 

which contains all the canonical quasi-ideals of A.

We shall prove this theorem in Section 3.
At the end of this section we are going to prove a useful general relation.

P r o p o sit io n  1.5. Let A be a semigroup with 0 (a ring) having at least 
one canonical quasi-ideal. Then the union (the sum) C — C  defined in The
orem 1.3a (Theorem 1.3b) is always contained in the union (the sum) U 
defined in Proposition 1.1.

P r o o f . In the case when C = C  is zero, our assertion is trivial. Now let 
C = C  be not zero. Consider an arbitrary non-nilpotent 0-minimal (minimal) 
right ideal R of A contained in C . Then there exists a 0-minimal (minimal) 
left ideal L of A such th a t RD L  0, whence RD L CU. Consider the product 
(R  n  L)A. Since R is a non-nilpotent 0-minimal (minimal) right ideal of A, 
it is easy to show that (R n L ) A  is a non-zero right ideal of A contained in R, 
whence (RC\ L)A = R. On the other hand, by Proposition 1.1, U is an ideal 
of A, so we have R = (RC\ L)A  C U A C U .  This inclusion and Theorem 1.3a 
(Theorem 1.3b) imply th a t the union (the sum) C — C  is always contained 
in the union (the sum) U , in fact.
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Remark 1.4. In Remark 1.1 we have mentioned that there exist rings 
and semigroups with 0 which have canonical quasi-ideals Q = RC\L such that 
R 2 = 0 and L 2 = 0. Since also these canonical quasi-ideals are contained in 
U , but they are not contained in C = C ,  the inclusion U C C  = C  is not 
always true.

§2. Preliminaries

In order to prove Theorems 1.3b and 1.4 we need some known or partially 
known results.

Lemma 2.1 (see Theorems 1.3 and 1.7 in Gluskin-Steinfeld [6] and the 
proofs of Theorems 3.2 and 3.3 in the papers [12] and [11], respectively). Let 
A be a semigroup with 0 (a ring). I f  Q is an idempotent canonical quasi-ideal 
of A, then AQA is a completely 0-simple (completely simple)  ideal o f A. I f  R 
and L are 0-minimal (minimal) right and left ideals of A, respectively, such 
that R L ^ O , then A R LA  is also a completely 0-simple (completely simple) 
ideal of A.

Remark 2.1. It is easy to show that the product R L {^  0) is also an 
idempotent canonical quasi-ideal of A.

Lemma 2.2a (see Theorem 6.39 in Clifford-Preston [4] and Theorem 10.1 
in Steinfeld [10]). The following conditions on a semigroup S  with 0 are 
equivalent:

( 1 )  5  is primitive regular;
(2) 5  is the 0 -direct union of its completely 0 -simple ideals;
(3) 5  is regular and the union of its 0 -minimal quasi-ideals.

Lemma 2.2b (cf. Theorem 78.2 in Kertész [7], Theorem 8.1 in Steinfeld 
[10] and Szász [13]). The following conditions on a ring A are equivalent:

(a) A is completely semisimple, i.e. A is the discrete direct sum of its 
completely simple ideals;

(b) A is regular and the sum of its minimal right ideals;
(c) A is regular and the sum of its minimal quasi-ideals.

Remark 2.2. It is known that conditions (a) and (b) characterize the 
semisimple rings satisfying the minimum condition for principal right ideals 
(see Szász [13], Kertész [7]).

Lemma 2.3 (cf. Lemma 6.38 in Clifford-Preston [4] and Lemmas 10.3a 
and 10.3b in our book [10]). Let A be a ring (semigroup with 0)  and let e 
be a non-zero idempotent element of A, then the following conditions are 
equivalent:

(1) e is a primitive idempotent element, and every element o f the left 
ideal Ae is regular;
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(2) Ae is a minimal (0-minimal) left ideal of A .
P r o p o s it io n  2.4 (see e.g. van der Waerden [14]). Any minimal right 

ideal R  of a ring A is either a zero ring or it has a non-zero idempotent 
element e such that R = eA.

P r o p o s it io n  2.5 (cf. Corollary 5.4B in Artin-Nesbitt-Thrall [1]). Let e 
be a non-zero idempotent element of a simple ring A . Then Ae is a minimal 
left ideal of A if and only i f  eA is a minimal right ideal of A.

Now we shall prove the following important
T h e o r e m  2.6 (cf. Rich [9] and Gluskin-Steinfeld [6]). If M  is a com

pletely simple (completely 0-simple) ideal of a ring (semigroup with 0) A, 
then for every minimal (0-minimal) right ideal R  of M  there exists a min
imal (0-minimal) left ideal L of M  such that M  =  LR  and RL ^  0, and for 
every minimal (0 -minimal) left ideal V  of M  there exists a minimal (0 -m in
imal) right ideal R' of M  such that M = L'RI and R 'L ' /  0. Furthermore 
any minimal (0-minimal) right and left ideals o f M  are minimal (0-minimal) 
right and left ideals of A, respectively.

P r o o f . First let A be a ring and let M  be a completely simple ideal of A. 
In view of Lemma 2.2b, M  is a regular ring, furthermore from Proposition 2.4 
it follows that every minimal right ideal R of M  has the form

(2.1) R  = eM  ( 0 / e 2 =  e £  M ).

By Proposition 2.5, the left ideal L = Me of the simple ring M  is minimal. 
The simplicity of M  implies that LR — M e2M  = M , furthermore RL — eM  ■ 
• M e ^  0. From the dual of Proposition 2.4, it follows that every minimal 
left ideal L' of M  has the form

(2.2) L' = M f  ( 0 ^ / 2 = /<EM).

Again by Proposition 2.5, we get that the right ideal R' = fM  of M  is 
minimal such that V  R' - M  f 2M  = M  and R' V  - f M  • M f  /  0.

From the relations (2.1) and (2.2), it follows immediately that any min
imal right (left) ideal of M  is a minimal right (left) ideal of A.

Now let A be a semigroup with 0 and let M  denote a completely 0-simple 
ideal of A. In view of Lemma 2.2a, M  is a regular semigroup with 0. Since 
any 0-minimal right ideal R  of M  is generated by any non-zero element r of 
R  and there exists an element m  in M  such tha t r  = rm r , we get that for the 
idempotent element rm  =  e of R it holds R =  eM  (0 7̂  e2 = e £ M ). Again by 
Lemma 2.2a, the idempotent element e of M  is primitive and every element 
of the left ideal M e — L of M  is regular. From Lemma 2.3 it follows that 
L = M e is a 0-minimal left ideal of M . Since M  is a 0-simple semigroup, 
we have that LM  = M e 2 M  — M  and RL — e M M e  ^  0. If we consider an 
arbitrary 0-minimal left ideal V  of M,  then one can conclude by the dual
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of the foregoing argument that there exists an idempotent element / ( /  0) 
in M  such that L' = M  / .  By Lemma 2.2a and by the dual of Lemma 2.3 
one gets that f  M  = R' is a 0-minimal right ideal of M . The proof can be 
continued as above.

Finally, one can show immediately that any 0-minimal right and left 
ideals of M  are 0-minimal right and left ideals of A, respectively.

Now we are able to begin the
P r o o f  of Theorem 1.3b. Let R be a non-nilpotent minimal right ideal 

of a ring A such that there exists some minimal left ideal L of A  such that 
R fl L ^  0. Since R must be idempotent and the intersection R n  L is not zero, 
from proposition given in Remark 1.1 it follows that the left ideal L of A is 
also idempotent, that is, R 2 = R, L 2 = L and f in  L ^  0 hold. Proposition 2.4 
and its dual imply that there exist non-zero idempotent elements e and /  in 
A such that R = eA and L = A f,  and evidently

0 ^ R C \L  — e AC\ Af  = eAf .
Since A f  is a minimal left ideal of A and 0 ^  eA f  C A 2 f  C A f  holds, we have 
that A 2f  — A f ,  whence eA ■ A f  — e A f  0. This relation and Lemma 2.1 
imply that A R L A  = A e A A f  A — K  is a completely simple ideal of A. Since 
0 /  RLA  is a right ideal of A contained in the minimal right ideal R  of A, 
we have that RLA — R, whence R = R 2 = R R L A  C A RLA = K . From the 
definition of C given in Theorem 1.3b and from R C K  it follows th a t C is 
contained in the discrete direct sum C* of all the completely simple ideals 
of A.

Conversely, let M  be a completely simple ideal of A and let R be a (non- 
nilpotent) minimal right ideal of M . By Theorem 2.6, there exists a minimal 
left ideal L of M  such that 0 ^  RL  C f i n  L. Again by Theorem 2.6, R  and L 
are minimal right and left ideals of A,  respectively. These facts imply that 
R C C .  On the other hand, by Lemma 2.2b, the completely simple ring M  
is the sum of its minimal right ideals. This property and R C C  imply that 
M  C C . Thus the discrete direct sum C* of all the completely simple ideals 
of A is contained in C . We conclude that C * = C .

By the left-right duality of the foregoing reasoning one gets that C* — C , 
which completes our proof.

§3. Proof of Theorem 1.4

First let A be a semigroup with 0.
(1) = >  (2). Let Q1 be an arbitrary canonical quasi-ideal of A. By condi

tion (1), there exists a canonical quasi-ideal Qi of A such that QxQ^Qx — Q i- 
Since Q1 Q2 = Q3 is an idempotent canonical quasi-ideal of A, from Lem
ma 2.1 it follows that AQ 3 A is a completely 0-simple ideal of A. Evidently 
it holds

Q 1 =  (Q\Q2)Qi — Q 3 Q 1 =  Q 3 Q 1 ^  AQ3A.
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On the other hand, the canonical quasi-ideal Q\ of A has the form Q\ = 
= R i n  L \ , where R\ and L\ are O-minimal right and O-minimal left ideals 
of A , respectively. Consider an arbitrary non-zero element x of Qi, then x 
belongs to R\. In view of Lemma 2.2a, the completely 0-simple ideal AQ 3 A 
of A is a regular semigroup, thus we have that

Ri = xA C  (AQ3 A)A  C AQ 3 A,

whence R \ = R\. Dually we get that L\ = L \. These mean that Q\ = R i OL i  
is a distinguished canonical quasi-ideal of A, in fact.

(2) => (3). By Proposition 1.5, the union C — C  is always contained in 
the union 17. In order to show the inclusion U C C = C ,  consider an arbitrary 
canonical quasi-ideal Q = R í) L of A. By condition (2), the O-minimal right 
ideal R  and the O-minimal left ideal L of A are not nilpotent. These facts 
and Q = Rf] L ^  0 imply that R C C  and L C C . From these inclusions and 
from Theorem 1.3a it follows that Q — RC\ L C C  = C .  Since U is the union 
of all the canonical quasi-ideals of A, we conclude that U C C  — C  indeed.

(3) => (4). Assume that the equality U =  C = C  holds, then Theo
rem 1.3a and Lemma 2.2a imply that U is a primitive regular ideal of A, in 
fact.

The implication (4) =>• (5) is trivial.
(5) => (1). Consider an arbitrary canonical quasi-ideal Q = R n  L of A, 

where R  and L are O-minimal right and O-minimal left ideals of A, respec
tively. By condition (5), A has a primitive regular ideal B which contains Q. 
Let q be an arbitrary non-zero element of Q = R  fl L C B. Since q(£ B ) is a 
non-zero regular element, and it belongs to the O-minimal right ideal R  and 
O-minimal left ideal L of A, we have that

R = qA and L — Aq ( O ^ q C Q C B ) .

The regular element q(G B)  has the form q — qxq for some x in B,  then qx — e 
and xq= f  are idempotent elements in B such that

R - e A  and L = A f  ( 0 ^ e 2 = e, 0 ^ / 2 = / ) ,

whence Q = RC\ L = eAC\ A f  = eAf .  Since the elements e and /  belong to 
the ideal B , not only R = eA and L = A f ,  but also Ae and /A  are contained 
in B. By condition (5), the idempotent elements e and f  of B are primitive, 
furthermore every element of the left ideal Ae and every element of the right 
ideal /A  are regular. These facts, Lemma 2.3 and its dual imply tha t Ae 
and f  A are O-minimal left and O-minimal right ideals of A, respectively.

The intersection /A  fl Ae = f  Ae is either 0 or a canonical quasi-ideal of 
A. In order to show that f  Ae is not zero, consider a non-zero element ea f of 
the canonical quasi-ideal Q — e A f  of A. Since A f  is a O-minimal left ideal of 
A and 0 ^  A e A f  C A f  holds, we get A ea f — A f ,  whence f  A ea f — f  A f . This
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relation implies that there exists at least one non-zero element fbe  in f  Ae 
such that fbeea f = f .  We can conclude that fA e  is a canonical quasi-ideal 
of A such that

f  Aee A f  — f  A f.
Premultiplying this equation by e A f  we have that

e A f f  Aee A f  = e A f f  A f  C eA f.

Evidently, e A f f  A f  is a non-zero quasi-ideal of A contained in the 0- minimal 
quasi-ideal eA f  of A, so we have that

e A f f  A eeA f = eA f .

This relation means that V  U 0 is a regular multiplicative semigroup with 0, 
in fact.

Now let A be a ring. The proof of the implications (1) = >  (2), (2) = 
=> (3), (3) = »  (4), (4) =>• (5) and (5) = >  (1) runs analogously as in the 
case of semigroups, if we apply Theorem 1.3b and Lemma 2.2b instead of 
Theorem 1.3a and Lemma 2.2a.

§4. On primitive regular semigroups and on completely semisimple rings

By means of Theorem 1.4 it would be possible to characterize the primi
tive regular semigroups and the completely semisimple rings, but these char
acterizations would be too complicated.

In view of Lemmas 2.2a and 2.2b, a semigroup with 0 (a ring) A is 
primitive regular (completely semisimple) if and only if A is regular and 
the union (the sum) of its 0-minimal (minimal) quasi-ideals. In Theorem 
4.1 we can get rid of the requirement of regularity by imposing two simple 
additional properties of these 0-minimal (minimal) quasi-ideals of A. (Cf. 
condition (D) in Theorem 10.1 and condition (C) in Theorem 8.1 of Steinfeld 
[10]; see also Section 1 in Márki [8].)

T heorem 4.1. Let A be a semigroup with 0 (a ring). A is primitive 
regular (completely semisimple) if  and only if A is the union (the sum) of its 
distinguished canonical quasi-ideals.

For the proof we need the following
P roposition  4.2 (see Corollaries 7.3a and 7.3b in Steinfeld [10]). Let A 

be a regular semigroup with 0 (a regular ring). Every 0-minimal (minimal) 
quasi-ideal Q of A is distinguished canonical, more precisely, every Q has 
the form Q = eAC\ A f  (0 ^  e2 = e £ A, 0 ^  f 2 = f  E A), where eA and A f  are 
idempotent 0-minimol (minimal) right and left ideals of A, respectively.

P roof  of Theorem 4.1. First let A be a semigroup with 0. Assume that 
A is primitive regular. By Lemma 2.2a, A is the union of its 0-minimal
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quasi-ideals, which are, in view of Proposition 4.2, distinguished canonical 
quasi-ideals of A.

Conversely, assume that A  is the union of its distinguished canonical 
quasi-ideals Qyg = Ry C\ Lg (7 £ T, 6 £ A), where R1 and Lg are idempotent 
0-minimal right and left ideals of A, respectively. Hence

(4.1) A = ( J  Ry = \ J  Lg (Ä7 = Ry, Lg = Lg).
7er se a

Consider an arbitrary non-zero element a of A. In view of (4.1), the element 
a belongs to an idempotent 0-minimal left ideal Lg = L (6 £ A) of A, whence 
Aa C L. The O-minimality of L implies that either Aa = 0 or Aa = L. We 
shall show that Aa is not zero. From the assumption Aa = 0 (0 7̂  a £ L) it 
follows namely that the set M  of all elements a of L such that Aa = 0 is a 
non-zero left ideal of A contained in L. By the 0-minimality of L, we have 
M  =  L, that is, AM  = AL = 0, whence L2 = 0, what is a contradiction. So 
we get that Aa = L. This relation implies the existence of an element e in 
A such that ea = a. Again by (4.1), the element e belongs to an idempotent 
0-minimal right ideal Ry = R  (7 € T) of A, whence a — ea £ R. Since R is a 
0-minimal right ideal of A, either a A = 0 or a A — R holds. Dually as above 
we get that aA = R must hold. So there exists an element x in A such that 
ax = e. This equation and ea =  a imply that a — axa , that is, A is a regular 
semigroup.

On the other hand, let /  denote an arbitrary non-zero idempotent ele
ment of A. Then /  belongs to a 0-minimal left ideal Lg> — L'(S' £ A) of A, 
whence L' — A f.  By Lemma 2.3, the idempotent element /  of A is primitive. 
Q. e. d.

Now let A be a ring. Assume that it is completely semisimple, that 
is, A is the discrete direct sum of its completely simple ideals. By Lemma 
2.2b, A is a regular ring and the sum of its minimal quasi-ideals. In view of 
Proposition 4.2, every minimal quasi-ideal of A is distinguished canonical.

Conversely, assume that A is the sum of its distinguished canonical quasi
ideals Qyg = Ry fl Lg (7 £ T, S £ A), where the Ry and Lg are idempotent 
minimal right and left ideals of A, respectively. Hence

(4.2) A = Y , r ^ = Y , Ls = L* = L*)•
7er sea

Consider a fixed idempotent minimal right ideal Ä7. = R  (7* £ T) of A. We 
have that

(4.3) RA  =  R (^2  Ry ) = ^ ( Ä Ä 7) ^  0.
7er 7er

In view of (4.2) and (4.3) one gets that

0 y£RA = Ä ( £  Lg) = RLg.
Se A S 6A
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From this relation it follows that for any fixed idempotent minimal right 
ideal Ä7. = R  (7* G T) of A there exists at least one minimal left ideal Lg* = 
= L (6* € A) of A such that RL /  0. By Lemma 2.1, the product ARLA = B 
is a completely simple ideal of A. Since RL  ^  0 and L2 =  L hold, we have 
that

0 ^ R L = R L 2 C R L A C R ,
whence RLA = R. This relation and R 2 — R  imply that

r 1. = r  = r 2 = r r l a c a r l a  = b  (7* e r ) .

This relation means that any idempotent minimal right ideal Ä7. = R{7* G 
G T) of A is contained in a suitable completely simple ideal B — A R L A  of A. 
From this fact and from (4.2) it follows that the ring A = Ä7 is just the

7er
discrete direct sum of its completely simple ideals, that is, A  is a completely 
semisimple ring, in fact.

Theorem 4.1 has the following
C orollary  4.3. Let A be a semigroup with 0 (a ring). A is completely 

0-simple (completely simple) if and only if  it is the union (the sum) of its 
canonical quasi-ideals Q^g — Ä7 0 Lg (7 G T, S G A) such that

(4.4) RyR^i = Ä7 for a l l £ T and LgLgt = Lgi for all 6 ,6 '£  A.

P r o o f . First let A be a semigroup with 0. Assume that A  is completely 
0-simple. By Lemma 2.2a, A is primitive regular. From Theorem 4.1 it 
follows that A is the union of its canonical quasi-ideals Qyg = fi7 fl Lg (7 G 
G T, 6 G A). For any two 0-minimal right ideals Ä7, iiy  (7 ,7 ' G T) of A it 
holds evidently

either Ä7Ä7/ = 0 or Ä7Ä7/ = Ä7.

Since A is 0-simple, {0} is a prime ideal of A, therefore the case f?7Ä7< = 0 
is not possible.

One gets dually that LgLgi = Lgi must hold for all 6,6' G A.
Conversely, assume that A is the union of its canonical quasi-ideals Q1g — 

Ä7 fl Lg (7 G T, 6 G A) satisfying condition (4.4). In view of Theorem 4.1, A 
is a primitive regular semigroup, so we have to show that A is 0-simple. Let 
B be a non-zero (two-sided) ideal of A. Since A is regular, B 2 is not zero. 
Hence

0 /  B 2 C BA  = B( (J (J (Ä7 n Lg)) C (J BLg.
7eríeA ieA

This relation implies that for some 6* G A the product BLg. is not zero. As 
BLg- ( í* G A) is a non-zero left ideal of A  contained in the 0-minimal left 
ideal Lg* of A, we have that

Lg* = BLg* C B A  C B.
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This relation and condition (4.4) imply that

^ U U ( ”  7 n L j)C  Lg = (̂ J Lg* Lg — Lg* ( L g)C B A C .B ,
-reríeA se a äca <seA

that is, A  is 0-simple, indeed.

Now let A be a ring. The proof runs analogously as in the case of semi
groups, but we have to use Lemma 2.2b instead of Lemma 2.2a.

R emark 4.1. Condition (4.4) implies that the minimal right ideals Ry 
(7 £ T) and the minimal left ideals Lg (6 £ A) of the ring A are (globally) 
idempotent. By Proposition 2.4 and its dual, every minimal right ideal Ry 
(7 € T) (minimal left ideal Lg (6 E A)) of A is generated by an idempotent 
element.

It is easy to prove the following proposition (see Proposition 6.12a in 
Steinfeld [10]): Let e, f  be non-zero idempotent elements of an arbitrary 
ring A  such that e A ,fA  (Ae-, A f )  are minimal right (left) ideals of A. Then 
e A , fA  (A e ,A /) are A-isomorphic right A-modules (left A-modules) iff the 
quasi-ideal e A f is not zero.

These relations imply th a t the minimal right ideals Ry (7 £ T) (minimal 
left ideals Lg (6 £ A)) of A  satisfying (4.4) are pairwise A-isomorphic right A- 
modules (left A-modules). Corollary 4.3 is a much simpler characterization of 
the completely simple rings than  condition (C*) in Theorem 8.8 of Steinfeld 
[10].

R emark 4.2. Proposition 2.4 and its dual are not true for semigroups, in 
general, but if a semigroup A with 0 is the union of its canonical quasi-ideals 
Q-fg — R y fl Lg (7 £ T, S £ A) satisfying condition (4.4), then Theorem 4.1 
and Proposition 4.2 imply th a t every 0-minimal right ideal Ry (7 £ T) (0- 
minimal left ideal Lg (6 £ A )) of A is generated by an idempotent element 
of A . Since Proposition 6.12b in [10] is a semigroup theoretical analogue 
of Proposition 6.12a in [10] (see Remark 4.1), the mentioned relations and 
Proposition 6.12b in [10] imply that the 0-minimal right ideals Ä7 (7 6  T) 
(0-minimal left ideals Lg (Ó E A)) of A satisfying (4.4) are pairwise right 
sim ilar ( left similar) (the definitions are given on page 23 in [10]). Corollary 
4.3 is a simpler characterization of the completely 0-simple semigroups than 
condition (D*) in Theorem 10.10 of [10].

R emark 4.3. Finally we mention the following corollary of Theorem 4.1: 
Let 5  be a semigroup with 0. Then S is an inverse semigroup in which 
every non-zero idempotent is primitive iff S is the union of its distinguished 
canonical quasi-ideals Qyg = Ry fl Lg (7 E T, £ £ A) such that for every 0- 
minimal right ideal Ry (7 £ T) there exists a unique 0-minimal left ideal 
Lg^y'j (<5(7) E A) of S so th a t Ry n Lg(7) is a group with 0. (Cf. condition (d) 
in Corollary 10.9 of Steinfeld [10].)
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Csörgő, M. and H orváth, L., Weighted approximations in probability and statis
tics, John Wiley Sons, Ltd., 1993. ISBN 0471936359.

The properties of the empirical distribution played an important role in mathemat
ical statistics since the earliest time. The limit distribution of the distance between the 
empirical -  and the real distribution functions was given by Kolmogorov in 1933. Already 
Kolmogorov himself realized that his statistic did not give too much information about 
the tails of the underlying distribution and proposed to investigate a weighted statistic 
instead. Rényi in 1953 was the first one who solved this problem using a special weight. 
Since then a number of results were published on the weighted empirical process using 
more and more general weights.

In 1949 Doob observed that the properties of the empirical process imitate those of 
a Brownian bridge. This observation initiated a new direction of research. Within this 
direction the best result is the so-called Hungarian construction.

The authors intend to give a complete overview of the properties of the weighted 
empirical and quantile processes via the Hungarian construction. They succeeded. In fact 
they can prove so-strong approximation results which can produce not only the known 
results of this theory but a lot of new theorems. One can say that having this book it is 
hard to find any new question on these weighted processes.

Beside the detailed study of the weighted processes the authors devote a chapter 
of their book to the renewal process. They prove that a renewal process can be also 
approximated by a Wiener process and they show how this approximation can be used to 
investigate the properties of a renewal process via having the corresponding properties of 
a Wiener prpcess.

The only thing that bothers me is the numbering. For example it is very disturbing 
that the Theorems are numbered by an other system than the formulas.

P. Révész (Vienna)

Akadémiai Kiadó, Budapest
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ON AN APPLICATION OF A BINOMIAL SERIES EXPANSION 
OF DISCRETE OPERATORS

T. FÉNYES

Introduction

Let us consider the discrete Mikusinski operator field Mjg based on the 
number-theoretical Dirichlet product of functions defined on the set of the 
positive integers. In the paper [1] we have discussed the algebraic Bernoulli- 
equation

(1) D(x) + ax -f bxm — 0 x € Mo

in Md for integer values of m  and briefly showed that the discussion can be 
easily extended to rational values of m. In (1) a, b £ E, where E  denotes the 
ring of functions with the ordinary addition and with the Dirichlet product

f9  = f ’9 € E ,  n = 1,2, . . . ,
v\n

moreover D denotes the well-known algebraic derivative (see [1]).
In this paper we shall deal with (1) if m  is irrational. Irrational powers 

of the elements of Mo cannot be defined in general. However, we shall show 
that for every h € E, h( 1) > 0, and for every real number r, hr can be defined 
by an operationally convergent binomial series. Let É  C E  be the subset of 
E, such that for every h ^ E ,  h{ 1) > 0.

So (1) can be defined for x G E  and for irrational values of m. By applying 
the results of paper [1] we prove simple existence criteria for the solutions of 
the Bernoulli equation and give the explicit form of the solutions belonging 
to E.

The reader can find the elements of the discrete operational calculus in 
the paper [1]. For the applied notations used in this paper we refer also to 
[1].

1991 Mathematics Subject Classifications. Primary 44A40; Secondary 11A99, 13N99. 
Key words and phrases. Operational calculus, number theory.
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232 T . FÉNYES

§ 1. On a binomial series expansion of discrete operators

We state  the following
T heorem 1. L e t  f  e E ,  /(1 ) = 0, a n d  l e t  r  b e  a n  a r b i t r a r y  r e a l  n u m b e r .

T h e n

( 1. 1) ' M - t Q r
v=o v 7

i n  t h e  s e n s e  o f  th e  p o i n t w i s e  c o n v e r g e n c e  f o r  e v e r y  f i x e d  n .  

P roof. Let us consider the algebraic differential equation

( 1.2 ) D („ ) _ r M > „ =0i
1 + /

V £  M e>.

(1.2) has the general solution

v  — 7 exp I r
■ J \

D U )
+  f

(see [1]), where 7 is an arbitrary number. We show that

(1.3)
i/=0
E  , r

is also a solution of (1.2). (1.3) converges pointwise for every n, since from 
/(1 ) =  0 and from the properties of the Dirichlet product follows that for 
every fixed n ,  (1.3) has only a finite number of nonzero terms. Moreover,
(1.3) can trivially be differentiated term by term . So we have

(1.4) D £ ( : ) / 1 - < / > £ ( ; > / -
1 /— 0 v * i / = i y '

By substituting (1.3), (1.4) into (1.2) we have

P U )

D U )  
1 +  /

= ̂ [ £ C > ^ +£ ( :> r - r tQ r ] .
J V=1 X 7 v—\ x 7 V-0 x 7
OO /  \  OO ✓  v  OO

r + E
/ i= l  ^  7 v - l  V 7 v - \

r
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So we obtain tha t there exists a number D such that

and by substituting n = 1 we get D ’ 1 = 1, and D = 1, so the theorem has 
been proved.

We have shown in paper [1] that

1 + /  = exp J  f £ E ,  /(1 ) = 0.

Consequently, for arbitrary rational number p, we have

(1.5) ( i + / r = « »  [ , / £ & ] - £ ( ; ) r .
t/=0 N '

From elementary properties of the exponential function follows that for ra
tional p,p i,p 2

D [ ( U - m = p ( l  + f ) p- 1D (f),
( i + / r ( i + / r = ( i + / r +p2

holds.
Now we can extend (1.5) for the elements of É by the 
D e f in it io n . Let h e É .  Then

5 '  : =  ( 5 ( 1 )  +  5  -  5 ( 1 ) ) '  =  ( 5 ( 1 ) ) '  ( l  +  =

(1.7)
5(1)

=  ( W £
u= Q

h —
" W )■ e E

for every real r. The definition is correct since it can easily be seen that 
(1.6) remains true if we replace the numbers p , p\, p2 by irrational r, iq, r2 

(see also Mikusinski [2], page 183).

§ 2. Application to Bernoulli equation

Let us consider the algebraic differential equation of Bernoulli

( 2 . 1) D (x) + ax + bxm = 0, a ,b £  E, x € E



2 3 4 T .  FÉNYES

for arbitrary  irrational to. If x  € E, then by the substitution z = x 1 m we 
have D(z)  = (1 — m)x~m D(x)  and (2.1) can be reduced to the linear equation

(2.2) D(z) — (to -  l)a z =  (to -  1)6, z £ M d ,

so we can apply the results of paper [1] where m  was an integer. If we restrict 
ourselves to z € É, then by 1

x = z 1-™

follows th a t (2.1), (2.2) are equivalent.
In [1] we defined the 6 operators for arbitrary a > 0, as follows: 
if a  is irrational, then £(a) = 0,
if a  is integer, then 6(a) € E, having the value 1 for n = a and zero for
n f  or,
if a  is rational (a =  where M ,N  are relatively primes), then 6(a) =

We use the following extension of Lemma 2 of paper [1]. 

L e m m a . (2.1) has formal solutions in E  if and only if

or
e is not an integer,

e - ( m - l ) a ( l )  -g  a n  l n l e g e r  a n c l

(2-20
Gm(e_(m_1)a(1)) = 0, where

1_-|
—m /  («—(!))

Gm = (to — 1)6 exp J (to -  l ) ( a - o ( l ) )

The general formal solution of (2.1) is of the form  

(2.3)

where in the case that e_(m_1)a(1) is an integer

Gm (e-(m- 1)a(1))
log e~(m- i)a(i) + (to — l)a ( l)

denotes the number zero (c is an arbitrary real number).
If (2.3) formally exists, then — as it can easily be seen — (2.3) is a 

proper solution of (2.1) if and only if

(2.4) C6(e — (m — l) a c . ( » l
log n + (to — l)a (l)

_____ 1
-  l)a (l)J

e E .
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I. Let 7 = e- (m-1)a(1) be not an integer. Then (2.3) formally exists.
If 7 is irrational, then £(7) =  0, if 7 is rational, then we must choose 

c =  0, since for c ^  0 06(7) £ E and (2.4) does not belong to E. So (2.4) 
reduces to

(2.5) - {
Gm(n)

log n + (m — l)a ( l) .

By (2.2') this function has the value — for n = 1. 
belongs to E iff

6( 1)

a (l)
< 0.

Consequently, (2.5)

II. Let 7 be an integer.
If 7 = 1, i.e. a ( l)  =  0, then by the Lemma we have that the formal solution

(2.3) exists only for Gm(l) = (m — 1)6(1) = 0. So 6(1) = 0 must hold.
Taking again into account the above Lemma it can be seen that (2.4) 

belongs to E iff c > 0. If 7 > 1, then by (2.2') it follows that (2.4) belongs to 
E  iff HU < 0. So the following theorem is valid:

THEOREM 2. Let us consider the Bernoulli equation (2.1) for arbitrary 
(positive or negative) irrational m, and let

For
I. Let 7 be not an integer. Then (2.1) has a solution in E  iff 

<0 (2.1) has exactly one solution in E of the form
<0.

exp [ - / (a  — a ( l ) )  .

II. Let 7 be an integer.
I f  7 = 1 ,  i.e. a ( l )  = 0, then (2.1) has a solution in E iff 6(1) = 0. If 

6(1) =  0 holds, then (2.1) has infinitely many solutions in E. The general 
solution is of the form

- H

Gm(n)
log n + (m — l)a ( l)  J

( 2 .6)
Gm(n)
log n exp [ - / ( a  - a ( l ) )  ,

where c > 0.
7 /7  > 1, then (2.1) has a solution in E  iff

(**)
6( 1)

a(l) < 0.Gm(7 ) = 0 and
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//(** ) is satisfied, then (2.1) has infinitely many solutions in E. The general 
solution is of the form  (2.6), where c is an arbitrary real number.
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ON A CONJECTURE OF KÁTAI

K . K O V Á C S

Let / ,  fi denote total additive arithmetical functions. Kátai conjectured 
that

8

(*) ^  /t(a ,n  +  bt) = o(logn) (a, G IN, 6, G Z)
i=l

implies fi(p) = c.logp for all but finitely many primes p.

Conjecture (*) would be a generalization of an important theorem due to 
E. Wirsing [3], namely that / ( n  + 1 ) - /(n )  = o(logn) implies /  = clog. Kátai 
proved the conjecture in some special cases [2]:

T heorem 1. (*) is valid 2/ ^  = 1  and f, = a f  (c, G R).
We got the following result:

T heorem 2. I f  conjecture (*) is true for the choices /, = c , /  and for all 
a, G IN, then it is true in general.

Here we show some examples that the choice a, =  1 and /,• = c ,/  is not 
necessary in (*).

T heorem 3. Let f \  and f 2 be total additive functions and A >  0, C > 0, 
B, D integers.

(i) If for B /  AD

fi(A n  + B) + / 2(n + D) = o(logn),

then
f i ( n ) = ~ f i{ n) — —c log n.

(ii) Let & = AC (A + l ) ( C + l) (A D -B C ) j lO . If

fi(A n  + B) + / 2(Cra + D) —* c,

1991 Mathematics Subject Classifications. Primary 11A25.
Key words and phrases. Characterization of additive functions, the function c log n. 
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t h e n
f i ( n ) =  ~ í i { n )  — c i  l°g n  f o r  a l l  (n, A) =  1.

T heorem 4. Let f  and g be total additive functions, A  > 0, B ^  0 inte
gers and t € R . If

f(A n  + B) + f ( n  + B) + tg{n) = o(log n ),

then
/(n ) = clogn and for t^ O  g(n) = (—2 c/<)logn.

T heorem 5. Let f \  and f 2 be total additive functions, D > 0, A ^  0, B 
integers, for which AB  > 0 and A =  A B D (A 2 — B 2) ^  0. I f

fi(D n  + A) + h (D n  + B) + f 2( n ) c,

then
/ a(n) = - / 2 (n ) / 2  = cilogn for all (n ,A ) = l.

T heorem 6 . Let fi =  C{f and g be total additive functions and 6 , 6  Z. I f
m

f i ( n  -  2 b l )  +  ff(2ra -  !) = °(log n)»
1=1

then
/(n ) = clogn (and g{n) — c'\ogn for (n, 2 ) = \).

T heorem 7. Let fi i e {1,2,3} 6e total additive functions and f 3j =  Cj/ 3

j  € { 1 , . .  •, m}.
(i) I f  a i  =  a 2 =  a 3j  mod 4 or

(ii) i f  there exists an odd prime p, for which

a\ = a$j mod 2 p and a! = a2 mod p,

then
m

F(n) = /i(n  + ax) +  / 2(n +  a2) + ^  f 3j{n + a3j) =  o(log n)
j=i

in the case F  ^  0 implies
m

fi(n ) — Ci log n with C\ +  C2 + ^  CjCß =  0 .
3 =1

P roofs. We need a theorem of Elliott [1].
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T h eo r em  8 . Let f  be an additive function, A>  0, C > 0, B, D integers 
and A = AC(AD -  B C ) £  0. I f

f ( A n  B)  -  f ( Cn  D) -*• c,

then
/ (n )  =  C i lo g ra  for all (n, A) = l .

P r o o f  o f  T h e o r e m  3. We need the following
L em m a  1. Let f  be a total additive function, A>0 ,  B and D integers.

If

(1) f ( A n  + B ) - f ( n  + D )  = o(logn),

then f (n)  = dogra.
Replacing rabyra — O i n ( l )

(2) /(a n  + 6) — /(ra) = o(logra) 

with a = A and b = B  — AD. Replacing ra by \b\n in (2)

(3) f ( an  + sgn b) — /(ra) = o(logra).

If b < 0 then (3) gives

(4) /(ara — 1) — /(ra) = o(logra) 

and replacing ra by an2 in (3) we get

(5) /(ara + 1) + /(ara -  1) -  2/(ra) = o(logra).

The difference (5) — (4) implies

(6) /(ara + l ) - / ( r a )  = o(logra),

which we have direct in the case 6 > 0 (see (3)).
Using (6) and (ara +  l)(ara + k) = a[ara2 + (fc + l)ra] + k by induction we 

get
/(ara + t) -  /(ra) = ot(log ra) 

for all t e IN. The special choice t = a gives

/(ra + 1) — /(n )  = o(log ra),

so by the mentioned result of Wirsing /  = clog. □
(i) Replacing ra by ra — D we have

( 7 ) / i ( . 4 n  +  B )  +  / 2 (ra) =  o ( l o g  ra).
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By n —►(A + l)n  + B

(8) f i ( An  + B)  +  f 2 ((A + l)n  + B)  =  o(log n).

So the difference (8) -  (7) gives

f 2 ( ( Á+  l )n  + ß ) - / 2(ra) = o(logn).

Using the lemma we get / 2(n) = clogn and for the total additive function 
/ 3 =  f x — c log / 3(ari + 6) =  o(logn). Some elementary methods give / 3 =  0.

(ii) Replacing n by (A +  l )n  + B in

(9) f i ( A n  + B )  + f 2(Cn + D )  -+ c

we have

(10) h (A n  + B) + f 2(C(A + 1 )n + C B  + D ) c.

For the difference (10) — (9 )  we can apply Theorem 8. □
P r o o f  of T h eo r em  4 . Replacing n by \B\n

(11) f {An  + sgn B ) +  / ( n  + sgn B ) + ffif(n) =  o(logn). 

n —*• An  in (11) gives

(12) f ( A2n + sgn B)  +  f ( An  + sgn B)  -f tg(n)  = o(logn).

For the difference (12) — (11) we can apply Lemma 1. /(n )  = clogn in (11) 
implies g(n) = (-2 c /i)  log n, if t ^  0 . □

P r o o f  of T h e o r e m  5. Replacing n by |A |n resp. \B\n and composing 
the two rows Theorem 8 is applicable. □

P r o o f  of  T h e o r e m  6. Replacing n by n +  1 resp. 2n2 in
m

(13) ^ / i ( n - 2 6 - )  + 5(2n - l )  = o(logn) 
1 = 1

we have

(14)
m

5 3 /• '(”  +  1 -26- )  + 5(2n +  l)  =  o(logn)
«=i

and

(15) 5 3 / . ( 2ra2 -  2f»-) + ff(4n2 -  1) =  o(logn). 
1 = 1
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The composition (15) — (14) — (13) contains the /,•’s only. Theorem 1 is 
applicable. □

P roof of T heorem 7. (i) We may assume A ^ 0, Aj  ^ A, Aj  0 and 
Aj  ^  A,  in the form after replacing n by n — ai

m
(16) f i (n)  + f?(n  + 4,4) + f 3j(n + 4Aj) = o(logn).

j=i

By n —+ 2n + 4A
m

(17) f i ( n  + 2A)  + / 2(n + 4A) + ^  / 3j (n  + 2Aj  + 2,4) = o(logn).
j=i

In the difference (17) — (16)
m

(18) / i ( n  -f 2A) -  f \ (n)  + ^ [ / 3j(n +  2A +  2Aj)  -  f 3j(n + AAj)\ =  o(logn)
j=i

let us replace n by 2n resp. 2n + 2A and summarize these two rows. We get

(19)
f i ( n  +  2A) — f i ( n )  + ^ [ / 3 >(n +  A +  Aj)  +  f 3j ( n  + 2 A  +  A j) — 

j=i

- h j ( n  +  2A j) -  / 3j(n  +  A  +  2Aj)] =  o(logn).

For the difference (19) — (18) we can apply Theorem 1, i.e. / 3(n) = c3logn. 
Putting this in (18), by Lemma 1, f i (n)  — c\ log n. (17) gives / 2(n +  a i) = 
= c'log n + o(log n), which implies / 2(n) =  c2 log n.

(ii) The proof is similar as in (i). Replacing n by n — a* we have
m

(20) /i(n )  + f 2(n + ph)  + f 3j(n + 2pt2) = o(log n).
j=i

Replacing n by pn +  (p2 — p)t
m

(21) / i(n  + ( p -  l )i i )  + / 2(n  + p<1) + ^ / 3j (n  + ( p -  l)<i + 2<2) = o(logn).
>=i

In the difference (21) — (20) let us replace n by 2n, resp. 2n + ( p — l ) t i  and 
summarize these two rows. Composing it by (20) Theorem 1 is applicable. 
□
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CHARACTERIZATIONS OF CAUCHY, NORMAL, AND 
UNIFORM DISTRIBUTIONS

G. G. HAMEDANI

In a recent paper, Glänzel, Teles and Schubert [2] established, among 
other things, an interesting characterization theorem for non-negative con
tinuous random variables based on a simple relation between two truncated 
moments. In a more recent paper, Glänzel [1] extended that result for arbi
trary continuous real-valued random variables (Theorem G) and then applied 
his theorem to give a very nice characterization of the normal distribution 
(Proposition G).

Following Glänzel’s ideas we first state a slightly different version of 
Proposition G (Proposition G l) and then apply Theorem G to give char
acterizations of uniform and Cauchy distributions.

T h eo r em  G . Let ( i l , A , V ) be a given probability space and let H — 
=  [a, b] be an interval for some a <b (a = —oo and b = -foo might as well al
lowed). Let X : Q —> H be a continuous random variable with the distribution 
function F and let g and h be two real functions defined on H such that

E { g ( X ) \ X >x }  = E { h ( X ) \ X > x } \ 9h(x), x e H

is defined with some real function A .̂ Assume that g, /i € Â  € C^(H)
and F is twice continuously differentiable and strictly monotone function on 
the set H . Finally, assume that the equation h \9h = g has no solution in 
the int H. Then F  is uniquely determined by the functions g, h and X9h, 
particularly

F(x) =  J  C A W
A(u)h(u) -  g(u)

exp (-s(u))du,

where the function s is a solution of the differential equation s' = \h~g ant  ̂
C is a constant, chosen to make f ^ d F  = 1.

P r o p o s it io n  G. Let X  : if —> R be a continuous random variable and let 

g(x)  =  x 2 — mx — o 2, xGR

1980 Mathematics Subject Classifications (1985 Revision). Primary 62E10, 62H05. 
Key words and phrases. Characterization of distributions.
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and
h (x ) =  x — m, i 6 R

be two real valued functions with the parameters m  £ R and a 6 R+ . The 
distribution of the random variable X  is normal if and only if the function 
X9h defined in Theorem G has the form

\ 9h(x) = x, i € R .

We now restate Proposition G in the following manner:

P r o p o s it io n  G l. Let X  : fl —► R be a continuous random variable and 
let h{x) =  x — m, x £ R, where m ? R  is a constant. The distribution of X  is 
N ( m , o 2) if and only if there exist functions g and \ ah defined in Theorem G 
satisfying the differential equation

( 1 )
A'(s) 1

\ ( x)h(x)  — g(x) <r2’ ^

R e m a r k s  1. (i) The general solution of the differential equation (1 ) is
( 2)

where D is a constant.
(ii) In view of (i) one set of functions satisfying both the hypotheses of 

Theorem G and equation (2) (with D = 0) is

g(x) — x 2 — mx  — a 2, i £ R

A ® ( x )  =  x ,  x € R .

These are the functions considered in Proposition G.
(iii) We note that there are other sets of functions which satisfy both, 

the hypotheses of Theorem G and equation (2), e. g.

g(x) = x 2 — m2 -  <t2, x € R

A^(x) =  x + m, i £ R .

The following proposition gives a characterization of the uniform distri
bution over a bounded interval which we assume, without loss of generality, 
to be H  = [0,1].
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P r o p o s it io n  1. Let X :  ÍÍ —> H be a continuous random variable and 
let h(x) = 1, x € H . The distribution of X  is uniform over H if  and only if 
there exist functions g and A® defined in Theorem G satisfying the differential 
equation

(3) A * )
\ ( x ) - g ( x )

1
1 — x ’ x € [0 , l).

P r o o f . Let X  be Í7[0,l] and let (for example)

g(x) = x,  x e [ 0 ,1]

K ( x ) = \ ( l +*)> * € [ 0,1].

Then clearly F,h,g  and A® satisfy both the hypotheses of Theorem G and 
the equation (3).

Conversely, if there exist functions g and A® with the stated properties, 
then s(x) = ln(l — x)-1 , x 6 [0,1). Thus from Theorem G, X  is U[0,1]. 

R e m a r k s  2. (i) The general solution of the differential equation (3) is

(4) K ( x )
i

1 — x X  + D , *€[0 ,1).

(ii) Clearly, there are other sets of functions which satisfy both the hy
potheses of Theorem G and equation (3), e. g. g(x) = —xex and A^(x) = — ex 
which we obtain from (4) with D = 0.

The following set is due to our colleague M. Ahsanullah: h(x) = 1, g(x) — 
= c(x — 1), c a constant, 0 < |c| < oo, and A®(x) = | ( x  — 1).

(iii) It may be possible to have similar characterization in which h is not 
necessarily a constant function (cf. Glänzel [3]).

Finally we like to give, as another application of Theorem G, a character
ization of Cauchy distribution which we assume, without loss of generality, 
to have probability density function (p df)

(5) / ( x ) = (  tt(1 + x 2 ) )  1 , xGR.

The next proposition has the same format as that of Proposition G. 
P r o p o s it io n  2 . Let X  : ÍI —► R be a continuous random variable and let

£f(x) = l, x € R

h(x) = x / (l + x2) 1/i2 , x€R.
and
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The p d f  o f X  is (5) if and only if the function X9h defined in Theorem G has 
the form

(6) A®(x) = (l + x2) 1//2 -  arctana:^ , i6 R .

P roof. If X  has p d f (5), then

and
( l - F ( x ) ) E { g ( X ) \ X > x

From the definition we obtain that 
E { g ( X ) \ X > x }  ,

(l + x2) - 1/2, x e R,

1 / 7r \
---- arctan x , x G R.

7T V.2 /

:2) 1/2 — arctan , for all

i.e.

(7)

Now we need only to show that the equation h \9h — g has no solution in R,

r — arctana;^ — 1

has no real solution. Let

<p(x) — x — arctan x'j , x € R.

It can be shown that <p'(x) > 0 for all x £ R and therefore <p(x ) is strictly 
increasing with lim <p(x) = 1. Thus (7) has no solution in R.x—►OO

Conversely, assume that Â  has the form (6). Then

X'(x)h(x) x
s \x )  =

and hence

We also observe that

X(x)h(x)  — g(x) 1 + x 2 ’ 

s(a:) =  In (l + x2) 1//2 , i € R .

x € R,

A'(x) _ 1
X(x)h(x) — g(x)  ~ (1 -f x2)1/2 ’ XGR'

Thus, from Theorem G, X  has a Cauchy distribution with pdf  (5). 

R emarks 3. (i) Proposition 2 also holds if we replace h and Â  by

> ( , ) = i ( n . V ' i e R '
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and
A®(x) = (l + x2) 1̂ 4 ( ^  — arc tan i) , zGR.

In this case the equation h \9h = g is

(8) Í  ( |  “ arctanz ) = 1

and if we let
ip(x) = — — arctanz^ , z € R,

we find that Y>(z) is strictly increasing on R with lim =  i .  Thus (8)
X —+OQ

has no solution in R.
(ii) Here again it may be possible to have similar characterization in 

which g is not necessarily a constant function. This is indeed the case as was 
shown by Glänzel [3]. His characterization employs

h(x)  = - 2 z / ( l  -f z 2), g(x) = (1 — z2) /( l  + z2), and A®(z) = z for all z G R.

A c k n o w l e d g e m e n t . I am deeply grateful to Professer Glänzel for 
his careful reading of the manuscript and for calling my attention to his 
interesting example (Glänzel [3]) which has now been added in Remarks 3 
(ii).
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ON THE CONVERGENCE OF THE FOURIER SERIES 
OF L-ALMOST PERIODIC FUNCTIONS

KÁLMÁN I. KOVÁCS

Abstract
This paper generalizes previous theorems of H. Bohr and Sz. Gy. Révész.
Bohr proved that if /  is a limit periodic function satisfying a Lipschitz condition then 

we can define an arrangement of the Fourier series of /  so that there exists a subsequence of 
partial sums uniformly convergent to the function / .  Révész showed that for any continuous 
periodic function there exists a rearrangement of its Fourier series so that a subsequence 
of the partial sums tends to /  uniformly. Later Révész gave a common generalization of 
the theorems above: For any uniformly almost periodic function /  we can find an ordering 
of the Fourier series of /  such that there exists a subsequence of the partial sums which is 
uniformly convergent to / .  We work out another generalization of the theorems: Let /  be 
a bounded, finite-dimensional L-almost periodic function. Then for any Fourier series of /  
there exists an ordering of the Fourier series, so that there exists a subsequence of partial 
sums which is locally uniformly convergent to the function / .  Moreover if /  is uniformly 
almost periodic then the convergence is uniform.

Introduction

This paper generalizes previous theorems of Harald Bohr [1, p. 46] and 
Szilárd Révész [6, Theorem 1]. Bohr proved that if /  is a limit periodic 
function (that is, /  can be represented as the uniform limit of a sequence 
of purely periodic continuous functions [1, p. 35]) and satisfies a Lipschitz 
condition

sup \ f ( x  + Í) -  /(x ) | < c6° (6 > 0)

with some constants c > 0, 0 < g ^ 1, then we can define an arrangement of 
the Fourier series of /  such that there exists a subsequence of partial sums 
uniformly convergent to the function / .

Révész showed that for any continuous periodic function there exists a 
rearrangement of its Fourier series so that a subsequence of the partial sums 
tends to /  uniformly. In [5, Theorem 2] Révész gave a common generalization 
of the theorems above: For any uniformly almost periodic (u.a.p.) function 
/  we can find an ordering of the Fourier series of /  such that there exists a 
subsequence of the partial sums which is uniformly convergent to / .

1980 Mathematics Subject Classifications. Primary 42A75; Secondary 42A20, 42C20.
Key words and phrases. Fourier series of u.a.p. and L.a.p. functions, de la Vallée 
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We work out another generalization of the theorems mentioned above ex
tending the result to bounded, finite-dimensional L-almost periodic (L.a.p.) 
functions.

§1

Let us recall Levitan’s definition of L.a.p. functions [4, p. 143]. 
DEFINITION 1. A continuous function /  is L.a.p. if there exists a se

quence of real numbers {A„} =  A (depending on / )  such that for every e > 0 
and N  G N there exist an integer m  = m(£,N)  and a real T] = T){e, N ) with 
the following property:

For every t £ R satisfying the system of inequalities

(1) |A„ • f| < T] (mod 2t ) (n = l , . . . , m )  

we also have

(2) \ f (x  + t ) - f ( x ) \ < £  (|x| < A ).

D e f in it io n  2. An L.a.p. function is called finite-dimensional if the set 
M. f  depending only on the function /  (see (4)) is a finite-dimensional vector 
space over the rational field Q.

THEOREM. Let F be a bounded, finite-dimensional L.a.p. function with 
Fourier series (5). Then there exists an ordering of the Fourier series (i.e. 
an ordering of M f ) ,  such that there exists a subsequence of partial sums 
which is locally uniformly convergent to the function f .  Moreover, if f  is a 
u.a.p. function then the convergence is uniform.

§ 2. Fourier analysis of L.a.p. functions

2.1. Following Levitan [4] and Levin [3, pp. 73-74], we shall consider 
functions that satisfy

r+T

(3) y lim fin f ^  J \f{t)\d?j = K  < oo.
r -T

Let the set A = (An : n G N} be a generator-sequence of /  as described in 
Definition 1 and let M  = A i f  denote the vector space generated by A over 
Q, tha t is

k
M  =  { ^ X j A j :  k e N , Xj e q ,  AjG a }.

j =1
( 4 )
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Note that M  is uniquely defined1 for / ,  i.e. M  is independent of A (see [3, 
Theorem 8, p. 75]).

Let the sequence {ßn} denote a basis of A over Q. We can define the 
Fourier series

(5) / ~  £  a(M)e iMx,
M  £ M

where

(6) a(M) = J f (p)xM(p)dp  (M e M ).

Tf

(Here Xm (p ) is the character of the topological group Tj  extending e'Mx 
(x € R) to Tf,  dp is the Haar measure on Tf,  and f(p) is an extension of /  
to Tf,  see [3, (2.35) and (2.36), p. 74]).

If /  satisfies (3) then the Fourier series (5) exists.
In particular, if /  is a bounded, L.a.p. function then it has Fourier series. 

Let us note that there exists abounded L.a.p. function to what Fourier series 
is not unique [4, pp. 151-153].

From now on we shall use the notation above for all the Fourier series of
L.a.p. functions. If we mention Fourier series we think of a formal series (5) 
with coefficients (6) where M  — M f ,  its basis {/?„} and also the generator 
sequence A are fixed.

2.2. If /  is an L.a.p. function satisfying (3) then there exist finite trigono
metric sums tending locally uniformly to the function /  [3, Theorem 10, p. 
77].

For bounded /  a sequence of trigonometrical sums tending to /  can be 
expressed from the Fourier series by the Bochner-Fejér summation [4, pp. 
158-163].

We can express any A; £ A as the linear combination of finitely many 
basis elements ßj. Therefore for any m  = m(e, N ) >0, m £ N  and any tj = 
= ri(e, N ) > 0 there exist integers dm = d{ \ \ , . . .  , Am) and pm = p (A i,. . .  , Am) 
and a real 6m = 6(pm, Ai,. . .  , Am) > 0 such that

(7)

and if for a t € R

( 8)

dm ß
A» = y ] ki,j (1 = 1 , . . .  , m), k i j e i

U  Pm

Pm
< (mod 2k ) ( j  = l , . . . , d m)

1 Levin [3] denotes by M  the modulus of the exponents of the characters, but here, 
following Levitan [4], we use the notation for the vector space generated by this modulus.
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hold, then t satisfies (1), too.
We introduce the following notations

ßi ßd.

(9)

>— )  €R dm,
'Pm Pm 1

k = ( k u . . . , k dm) e z dm,

j =i Pm
Q = (< 3 i,...,Q d m) e N dm.

The well-known Fejér kernel is

Kq(p )=  ( 1 _  *g)**(P) ( P t T f ) ’
1*1 <Q

fCQ(x) =
sin2 ( f )

Q sin2 (f)
(x G R),

and the Bochner-Feiér kernel is
( 10)

j=1 I fciKQi
O' = 1) • • • > dm ) •

We form for any /  satisfying (3) the Bochner-Fejér polynomial corresponding 
to Q and 3 as* Í_m

°ß ,q(x ) =  /  f ( x +P)%0 ,QÍP)dP =— T7X —  1 — m  —

( 11) = J C  ( 1 - !̂ ) - ( 1 - !̂ ) “ ( ( i . ä » > )^

(x £ R, j  — 1 ,. . .  , dm)

) x

where a( ( k , ß^) )  is defined in (6).
Let every coordinate sequences {Q„,;} of the vectors Q n  =  ( Q n , i ,  

■ ■ ■ > Q n , d n )  be increasing.
Applying Theorem 11 of [3, pp. 78-79] for the sequences {en =  and 

{Nn — n)  (n 6 N) we get increasing sequences {dn} and {£?L°̂ } such tha t for
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every Q  =  ( Q i , . . .  , Q d n ) ,  Q j > Q n ] (j = !,•••  ,dn)

(12) ~ f ( x ) < “  ( M < n)

Applying (12) to the de la Vallée Poussin polynomials

Vß ,q ( x ) =

(13)

we get

(14)

=  ( _ l ) d n  +  ( e l +  — + e d n )  . 2 ( C l "*■•••+ e<1n  )(7

ejeio.l} 
(j = l|*** idn)

(l + «i)0 (*)
ß . (  : )

I V ^ , q (x ) - / ( x ) <3dn — ( |x |< n )n

whenever Q > Hence we can formulate the following
LEMMA 1. I f  f  is a bounded, finite-dimensional L.a.p. function then for 

any increasing sequence {Qn} with Qn > Q„°̂  we have

(15) I VL ,Qn( x ) - f ( x ) <3d-n (|x| < n).

Remark 1. If /  is a u.a.p. function then Vß ,q „ { x )  tends uniformly to 
/  since in (13) we can write i£ R  instead of |x| < n. See [4, p. 161, (3.4.6)].

2.3. B. Ya. Levin [3] proved the Parseval’s formula for L.a.p. functions 
satisfying some conditions. On purpose to prove the Theorem it is enough 
to state the following weaker

Lemma 2 („Bessel’s inequality”). Let f  be an L.a.p. function satisfying 
condition (3). Then

£  \a(M)\2 < K.
MeM

PROOF. Cf. [3, Theorem 6 on p. 73 and Theorem 7 on p. 74]. □
2.4. Next we give an example of a bounded, finite-dimensional L.a.p. 

function which is not u.a.p.
Lemma 3. Let f  be an L.a.p. function and A = {A/t} be a generator- 

sequence of f .  Let g be continuous on Range(/). Then (go f )  is also an
L.a.p. function and A is a generator-sequence of (go f ) ,  too.

P roof. Let e  > 0 and N  € N be arbitrary. Since /  is continuous, 
f ( [—N ; N ]) = [a; b] C Range(/) and there exists i0 = ^o(A) > 0 such that g
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is uniformly continuous on the interval /  = [a — So', b + £o] H Range(/). Hence 
for every £ > 0 there exists a 6, 6 <6 o such that

(16) \g(z) -p (y ) | <£ , if \y -  z\< 6, y and 2 € I.

Let i G R b e a < $ - A  almost period of / ,  that is

(17) \ f (x + t ) - f ( x ) \ < 6  (|x| < N).

Since y = / (x )  G [a; b]c I  and z = f ( x  + t) G I  by (17), applying (16) we get

(18) |(f l° /)(*  + /■)-(0 0 /) ( x ) |< £  (1*1 <^V)-

Hence all the 6 -  N  almost periods of /  are £ -  N  almost periods of (go / ) ,  
too. □

Note tha t if /  is a u.a.p. function and g is uniformly continuous then 
(g o / )  is also a u.a.p. function (see [1, p. 3]).

E x a m p l e . Let /(x )  = 2—sin(x)—sin(\/2x), g{x) = jfpj, /i(z)=m in|x—fc|.
Then v(x) = (hog)(x) is a bounded, finite-dimensional L.a.p. function which 
is not u.a.p.

N o t e . A similar function is described in [3 , pp. 1 0 0 - 1 0 1 ] without de
tailed proof.

P r o o f . v ( x )  is obviously bounded.
/  is a u.a.p. function, /  ^  0 and A( /)  = {1; V2}  is finite-dimensional. 

Applying Lemma 3 twice g and also v are L.a.p. functions, and moreover, 
A is a generator-system belonging to g and also to v. Hence t; is a finite
dimensional L.a.p. function.

Finally, we have to prove that v is not u.a.p. It is sufficient to show that 
v is not uniformly continuous. We will prove that for every 6 > 0 we can find 
x', x"  G R such that

(19) |x' -  x"\ < 6, but ^(x ') -  u(x,,)| > i .

To (19) it is enough to show that for some N  G N

(20) \ g ( x ' ) - N \ < ^  and g{x") -  ( n  + | )
1

< 8 -
In other words

( 2 1 )

ai

a2

=  — i - y  <  2  — s i n  x' -  s i n  \ f i x '  <  — -—p  =  & i , 
A -f g N  — g

= — r  < 2 — sin x" — sin \Í2x" < ------ y  = b2.
N +  5- N  + 3
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Obviously, [aj; 6j] fl [02; 62] = 0 and 62 < ai-
In view of the continuity of /  it is sufficient to prove that for every 

positive 6 there exists N  £ N and xq £ R such that

( 22) 2 sin xq — sin VÖ.X0  <
1

*  + ! ’

(23) 2 — sin(x0 + Ö) — sin V2(x0 + 6) > ——y ,

hold simultaneously. If we choose N  to be large enough (for example 
N  > 400/S2) then (23) follows from (22). But for every A £ N we can find 
xq £ R which satisfies (22), since it follows from the Kronecker Theorem [2, 
p. 382] that

inf (2 — sin x — sin \/2x) =  0. □

§ 3. Proof of the Theorem

Let /  be a bounded, finite-dimensional L.a.p. function, let A be a finite
dimensional generator-sequence of /  and let ß = (/31(. . .  ,ßj)  be a basis be
longing to A.

3.1. Take the sequences £n = „ and Nn = n (n £ N). In view of Defini
tion 1, for every n £ N  there exist sequences mn = m(n) £ N and t/„ =  r/(n) € R 
such that t £ R is en — N n almost period of /  if t satisfies

(24) |A/i| < Vn (mod 2x), A/£ A ( /=  1 ,. . .  , m„).

Moreover, there are sequences {£„}, f>n = £(«) > 0 and {<?„}, qn =  q(n) £ N, 
qn increasing such that

(25) ~ kltj
( n )  ßj

j=1 qn\ k jy  € l  (/ = ! , . . .  ,m„),

and if t G R satisfies the system of inequalities

(26) t < 6n (mod 27r) = ,d)

then also (24) holds true.
Introduce the following notations:
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11*11 = max \kj\,

■%,,«(*) =  E  » ( ( f c á J K “ 4'2- ' ’*.
llfcJKQ

3.2. Lemma 4. With the notation above there exists a sequence {Qn}, 
Qn —* oo which satisfies the following conditions for every n € N:

(27) ,Qn (1=1, . . .  ,m „),
—n

(2 8 ) 2Qn_! C AÍ/3 ,Q„,—n—1 —n

(29) Q „> Q i0),

(30) Qn >28d,

(31) E  K < f c £ . » l 2 <
Qn |̂|fcl|<2Q„ d2 log '

P roof. Choosing Qn large enough conditions (27), (29), (30) are satis
fied trivially. If Qn > 2qnQn- \ ,  (28) will be satisfied, too. Let us denote Q* 
the minimum of Q„ satisfying (27)-(30). Put for fixed n € N

<p(t) = <pn(t) = ^  K ( * ,£ J ) I 2- 
iiai<*

In view of Lemma 3 <p(t) is integrable on [1, oo). Hence there exists a sequence 
{Q{rn)}, Q("*+1) > 2Q(m) such that

2 Q (m)

Q(”>)

see, e.g. [5, Lemma 5]. Consequently, for m > m ( n ) (31) will be satisfied with 
Q(m) i n  place of Qn. Choosing an m  >  m(n)  such that Q >  Q*n , Q n  — 
defines a sequence { Q n }  satisfying conditions (27)-(31). □
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Note that if {Q„} is a sequence satisfying condition (28) then we also 
have

(32) lim Mß  ,q„ = A4.n—► OO —n

3.3. Let us introduce on the d-dimensional torus

Td = Rd/2irZd

the following notations:

*(") = (^-7 *1, • • • » — y x d) € Td,yqn'- qn'- '
S*n{x) = S'ß <Qn(x)= Y ,  a ((fc ,^ ))e ‘^ (n)>. 

iiilko

We also put

(34) K.'(x) = V J ,,„ (x )=  p « » ( íW (í.& ,)K fa W ).
IIÍ]l<2Qn

where

PQ(i) = n P « ( A:j ) ’
J=1

1
PQ{k)= <

if |fc| < Q,

2 - f  ifO < |fc |< 2 Q ,
0 otherwise,

that is

(35) V„*(aE) = j ; ( i ) +  E  P Q Á iÚ a .((k ,l)y ^ 1'"l.
Q„<||fc||<2Qn

2

Now we apply [5, Lemma 6] with 77= b(k) = A((k,  ̂ ) )  and with 
Q„ in place of n. The conditions of [5, Lemma 6] are satisfied according 
to (30) and (31) of Lemma 4. Hence there exists a sequence coj.’ ̂  € {0,1}, 
(Qn ^ ||£|| < 2f?n) such that

(36) sup
x6Td v;(i)-(i;te)+ E <8e-

<3n<||ül<2Qn
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Let us return to R using for any <P: —► R the diagonal function

We get for the de la Vallée Poussin polynomials Vn(x ) = Vß ,q„(x ) that with
—n

Sn(x) =  Sß ,Qn(x) we have
—n

Vn( x ) ~  (s„ (x ) + Y  wi")a( ( ^ ^ n))e,<t- n>X) | < 8 f»-
Qn<||fc||<2<3 n 1

3.4. Let us define the ordering i/ in the following way.

OO

v -  (J t'n,
n = l

(38) vn:Mß  ,2Q„\Mß ,2Qn_1^  ((4Qn- i  + l ) d> (4Qn+ l)d]>
— n  — to —  1f  ((4Q„_1 + l ) d,(2Q n +  l)d],
V n = l  J n ~  ((2Q„ + l ) d, N„],

l ^ C n -  ( N „ ,  ( 4 Q n +  l ) d],

where
'Hn = M ß ,Qn \ M ß  ,2Qn~l >—n —n—1

Jn = { M e  M ß it2Qn \  M L ,Qn :M  = (k , ^ ) , 4 n) = 1},

>Cn = { M e M ß  ,2Qn\ M ß ,Qn: M  = (k1ß ^ ) , J " ) = 0},

7V„ = (2Q„ + l ) d +  | J n|.
That is, vn counts first the exponents from 7i n , then those exponents from 
M ß  ,2Q„ \  M ß  ,Qn which have = 1, and finally those with u>^ =  0.

— n  — to —  —

Since {C?n} satisfies (28) and (32), i/ defines an ordering on A4.
3.5. Consider the i^-arranged Fourier series of /  and put for the A-th 

partial sum „5jv(x). According to (38) we have

(39) vSNn(x) = Sn(x)+ Y  "fc0 a ((^> ^ n))e'<- - " >1 •
<3 n<||Íli<2Qn

(37) sup

Hence we get from (37) that

(40) |K(a:) -  iASV„(a:)| < 8ir„ (z€R ).
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Finally, an application of Lemma 1 concludes the proof of the Theorem, 
also taking into consideration Remark 1 when /  is u.a.p.
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ON THE DIRECTIONAL DERIVATIVES

I. JOÓ and M. PALKÓ

J. Marcinkiewicz’s theorem on universal functions has been extended to 
Lp-spaces in [1] for 0<p<l and the problem has also been raised fo rp> l. The 
negative answer was given independently by the authors of [2]-[4]. The most 
elegant solution is due to M. Horváth, who has proved, roughly speaking, 
that “the difference quotient is bounded below in mean for every function 
which is non-constant in every direction”. The exact meaning of this and 
the proof is given in M. Horváth’s paper [2] (see also the reference there).

The aim of the present note is the investigation of the pointwise proper
ties of partial derivatives of “smooth” functions. The motivation for this is 
Horváth’s result mentioned above.

Let ÍI C R^ (N  > 1) be a domain and /  be any function /  : Q C 
(M  > 1). Denote (as usual) D f ( X , e ) the set of “one-sided directional se
quential derivatives of /  in the set x (E £1 in the direction e” , i.e.

Df(x ,
f ( x  + Xn) - f ( x )

\ > if exists
} •

The following theorem shows that the compact non-empty set D f ( x , e ) can 
be “exotic” even for smooth function / .

T h e o r e m . (1 ) There exists a function f  :R2 —► R2 suchthat f  and / -1 € 
€ Lipl and

q E R z :3pE D f (x ,  eo) such that q =
I M I  J

=  5 1

holds only for one direction eo. S 1 denotes the unit circle, i.e. 5 1:={gGR2.-
Ikll = 1}-

(2) Let N  >2. There exists a function f  : RN —► such that f  and
/ -1 € Lipl and

Iq  € R^ : 3p € Df(x ,  e) such that q = -pr- j  = S N~l

1991 Mathematics Subject Classifications. Primary 26B05; Secondary 26A16. 
Key words and phrases. Directional derivative, Lipschitzian functions.

Akadémiai Kiadó, Budapest
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holds fo r  every e € \  {0}. Here S N 1 := {<? € : ||q|| = 1}.
It would be possible to think that the curve f ( x  + teo) is rotated around 

/(x )  for t —* +0. But if the rotation changes the direction after any rotation 
appropriately, then we can approximate /(x ) without rotating around it. 
The numerical details are given below in the proof of (i).

P r o o f  o f  (1). Define the function f ( x , y )  by the following formulas. 
Let / (0 , 0) =  (0,0), for x > 0 let

/(x , 0) =* (x cos In x, (—l) t i r ]x  • sin In x j

i.e. the rotation of (x,0) by the angle ( - l ) t lnx/2,rHn x, [z] denotes the entire 
part of z.

/ ( - x , 0 ) = ( x c o s ( í c o s ( ! ^ ) ) , - x s i „ ( í c o s ( ! ^ ) ) )

the rotation of (x,0) by the angle — ̂  cos
It is easy to see that the mod 2x distance of ( — l)!1" 1/2*] In x and 

— ̂  cos is between j  and 7r. Now let (x, y) = (r cos a, r sin a). We de
fine f ( x , y ) as the rotation of the point (r, 0) by an angle which depends 
linearly on a. Namely define

{2)2* := z — 2koir, ko := max{& : 2kit < z}. 

For 0 < a  ^  7T let /(x , y) be the rotation of (r, 0) by the angle

(for r =  e(4fc+2),r by the angle '!L̂ l2-k + ^ = 27r — for — tv ^ a < 0 /(x , y) be 
the rotation of (r, 0) by the angle

7T —

|tt

(for r = e(4fc+2)’r by the angle — f ).
It is easy to see that for eo = (1,0), D /((0 ,0 ), eo) =  5 1 and for any e ^  eo, 

\e\ =  1, D /((0 ,0),e) is only a part of S1 (does not contain eo). It remains 
to verify the Lipschitz property of /  and f ~ l . Suppose indirectly that there 
exist two sequences x„, yn € R2 such that

/ ( S n ) - / ( y n )

%n Vn
(a) 0 0
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or

( b )
f ( x „ ) - f ( y „ )

%n Vn
0 .

Since |x„| = |/(x „ ) |, |j/„| = |/(j/„)| we must have in both cases |^“-| —> 1. 
Denote an, ßn, £*„(/), /?„(/) the angles of the vectors x„, yn, /(x „ ), f ( y n). 
Then in the case (a) we have

l^n ~ ßn\2ir \o<n{f) ~ ßn(f)\2n

and in case (b)
|« n (/)  -  ßn{f)\2n <  |«n ~ ßnU*,

where \zi — z2\2lt denotes the mod 2w distance of z\ and z2 and a < t  means 
11111 —* 0. We use the following

Lemma. Let x„, yn £ R2, 1^1->1. Then

x n ~  t)n\ =  C |®n| -  12/n| | a „  - /3„| <  C In
Vn

Using this, prove first that /  6 Lipl. Let first 0 < a n,ßn < 7r. Then by 
definition

M / ) . w / )  =  ^ ( {(_ 1)[ ^ l ln |ln l} j>  + | cos(! ^ ) )

0) + ^ ( { ( - l ) [ ^ ] l „ | s„ |} 2 i - { ( - l ) [ ^ ) l „ | x „ | } J

, ß n  (  /In | t / „ | \  / 'ln |x n|^ '\
+ T  ^ v 2  f — C 2  /  / '

Consequently (using ß n — a„ —► 0)

<*„(/) -  /3„(/)|27r ^ 4|/?„ -  a n |2x + 10 

By |a„ -  ß n \2* <  Ian( / )  -  /3„(/)|2t, this implies

In
Vn

K- ßn \ 2*Z \ <Xn( f ) - ß n( f ) \ 2 * i M

and then our Lemma implies

In
Vn

, (n>n0)

| / ( a : n ) - / ( l / n ) | ^ c | | / ( x n ) | - | / ( y n ) |  = c |x n| - | j / n| < c |x n - t / n|,
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a contradiction. The case —7r ^ a n,ßn ^ 0 goes along the same lines. If 
0 < a„  < 7T and —n < ßn < 0, then there are two cases:

( a i )

M

Here we have instead of (i)

<*«“-*■0+, ßn —>0+;
a n - * n ~ ,  / 3 „ - > - 7 t +

« . ( / )  -  w / ) = m  i. . i} „  + §  -  h M )  _

dl)

n ßn f  /'lnli/nh ^ln |a :„ |^
- 2 t ~ T  \ cos \ —  ) - C0 8 l - r v J -

In case (ai) we get |a„( f )  — ßn( f )bír by subtracting 2jr and then 

!<*„(/) -  ßn( f ) I ^  c | q „  -  ßn\,

contradiction. In case (a2) we have \an - ßn\ — \an + ßn\ > |/3n + 7r|, hence we 
get

I OLn { f )  ~  ß n ( f ) \  Ú C\a n ~  ß n \ i*  +  C
, F nln i— r 

\yn\
which can be finished as above. Hence /  is Lipschitzian, indeed.

Now consider (b). Let first 0 < a n, ß „  5í 7r, then as we have remarked,

(*)
7T l n | x r 37T

CO S
2 = 2

(except for x„ = e(4fc+2)ff).
Since \an( f ) - ß n( f ) \2n<.  \an - ß n\2x, hence we get from (1) that |a „ ( / ) -  

-  ß n ( f ) I = |a„ (/) -  /?„(/)\2* and then \ßn - a n\ = \ßn -  a n\2n ^ c In SO

|®n Vn I =  6 =  CF n  -  Vn

contradiction. In case —7r ^  a„,/3„ $0  we have 

^n ß\

l / ( * n ) |- | / ( y n)| Z c \ f ( x n) - f ( y n)\.

CXn(f )  ~  ß n { f )  =  a \  "" ( { ( - 1 ) ^  ^l n lX" l } 2 x _ 2 7 r + | COS^ Y !^ )  -

(iii) -  * *  ^  ( ( - l ) l J * r 1h n |y B| -  { ( - l ) [ JL̂ ü h n |x „ |} 2̂ ) -

/3„ /  ln Ir/„I In |xr
' cos----------cos — —-Pn (

------- c2 V
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Since (except for |x„| = e(4*+2)»)

37r f , , J l-knll . ,1 „ 7T lnlxl 7T

hence we can finish this case as the case 0 < a n,ßn ^ir.
Finally let 0 < a„ < 7r, — tt ^ ßn ^  0. The equality (ii) can be rewritten as

(**)

where

Since

<*n(/) -  ßnU ) = - — t +  —  (2tt -  t) + 0  f  ln —  ^ T 27T, 
Tt Tf \  t/n /

7T r I \flnlIn111 i .1 ln |x„l 37t
j S { ( - l ) l  . h „ |x „ |}  + - c o s - L - i < - .

0 > -  —  t +  —  (2tt — t)> -27r
7T 7T

and since an( f )  — ßn{f)  0, we have two possibilities

(bi)
(b2)

ön - *0+, ßn —*0 —
a n —>7T —, /?r» —*■ —7T +  .

In case (bj) we have again by (**) and by |a n( /)  -  /?„(/) 
that |a n -  ßn \ %c ln

2ir ^  l^n ß n  |2ir

and thenand K ( / ) - / 3 n( / ) |2T<c l n |£

l* n -J /n |^ c  |x „ |- |y „ | = c \ f ( x n)\ -  \ f (yn)\ < c |/(x„) -  /(y„)|. 

Finally, in case (b2) we have

M / ) - / W ) l * r  = — — t +  —  (27T — í )  +  27T
7T 7T

+ 0 (H ill)-
* - « n  A  +  >T( 2 t  ()

+ o ( In
7T 7T V

< /^n|2ir T In
2/n

<

and we are ready with the proof of /  1 € Lipl.
REMARK 1. Theorem (1 )  remains valid for large dimensions N  > 2 (for 

/ :  Rn - + R ^  ), too. Contrarily to the case N  =  2 this is simple to see: if we 
are given a curve t h-» / ( x + fe) which meets infinitely often every direction 
for t —► 0+, we can move it at a distance < e such that this property fails. 
We do not discuss the details.
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R emark 2. In Theorem (2) we take Peano-type curves (i.e. curves whose 
central projection to the unit ball surface across every point infinitely often 
if t —*■ 0+ ). We rotate this curve to obtain a function /  : —> R^ whose
Lipschitz property will easily follow from the construction. The main diffi
culty will be the verification of the Lipschitz property of f ~ 1. The methods 
are similar to the above ones, hence we omit the details.

R e m a r k  3. Several other questions can be posed.
Problem 1. Construct /  : R2 —► R2 such that D f ( x ,  eo) = R2.
Problem 2. Can it be for all |e0| = 1?
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COMPOSITIONS OF AN INTEGER AND DISTRIBUTIONS 
OF RANK ORDER STATISTICS

JAGDISH SARAN

A b stract

This paper deals with the two-sample (equal sized) problem where Fn(x) and Gn(x) 
are the two empirical distribution functions and investigates the null joint and marginal 
distributions of certain rank order statistics, viz. ßn, the number of equalizations between
Fn{x) and Gn(x); ßn , the number of equalizations between Fn(x) and Gn(x) from positive 
side; An, the number of intersections between Fn(x) and Gn(x); and Rn, the number of runs 
in the ordered pooled sample by using combinatorial methods and generating functions, 
thus generalizing and extending the earlier work due to Csáki and Vincze [1], Jain [3], 
Kanwar Sen [4, 5] and Srivastava [10]. Also the interpretation of some of these results in 
terms of compositions of a positive integer n has been given.

1. Introduction

In [7], Narayana has considered a generalized occupancy problem which 
can be viewed as a problem in compositions of integers. Narayana and Ful
ton [9] considered the r-composition (or r-partition) of a positive integer n 
(1 ^ r <j n) and discussed its various properties. Also they discussed the re
lation of ‘Domination’ defined on the r-compositions of n, which is reflexive, 
transitive and antisymmetric. Thus it represents a ‘Partial Order’ defined 
on the r-compositions of n.

Narayana [8] discussed the same domination principle and the partial 
order defined on the compositions of an integer and gave some of its ap
plications in probability theory. He gave a geometric representation of the 
r-compositions of n and proved that the number of r-compositions of n dom
inated by the r-compositions of n is given by

In the terminology of ‘lattice paths’, this is equivalent to the number of 
lattice paths from (0, 0) to (n, n ) starting with a horizontal step and never

1980 Mathematics Subject Classification (1985 Revision). Primary 62G30.
Key words and phrases. Two-sample problem, random walk, rank order statistics, 
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strict domination.
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crossing the line y = x, each path having exactly r horizontal and r verti
cal components. Clearly, both horizontal and vertical components of each 
path represent an r-composition of n. Also, in terms of the usual ‘Random 
walk model’, this is equivalent to the number of random walk paths from 
(0,0) to  (2n, 0) starting with a positive step, having 2r runs and never cross
ing x-axis. Using the above mentioned approach of ‘partial orders’ defined 
on compositions of an integer, Mohanty and Narayana [6] gave two simple 
alternative solutions to ‘ballot problems’ [2, p. 69] in probability.

Srivastava [10] derived the joint distribution and the joint limiting dis
tribution of the statistic based on the number of runs and that based on the 
number of intersections by using the method of composed paths. In this pa
per, we shall consider the two-sample problem and the random walk model as 
considered by Csáki and Vincze [1], Jain [3], Kanwar Sen [4, 5] and Srivasta
va [10] and propose to derive, under H0 : F (x ) = G(x),  the joint distributions 
of statistics based on the number of runs, returns, positive returns and in
tersections by using combinatorial methods and generating functions, thus 
generalizing and extending the earlier works in [1, 3, 4, 5, 10, 11]. Further we 
give the interpretation of some of these results in terms of the compositions 
of a positive integer n.

2. Notations

Let X i,X 2 ,. . . ,X „  and Yí, Y2,. . .  , Y„ denote random samples drawn 
from populations with unknown continuous distribution functions F(x) and 
G (x), respectively. Let F „(x) and G„(x) be the corresponding empirical 
distribution functions. Let the 2n random variables be arranged in increasing 
order and denote the ordered combined sample by Z\ < Z2 < . . .  < Zm  and 
let Z q =  — oc. Now we introduce the random variables

f 4-1 if Z, is one of the observations X i,X 2 ,. . .  ,X„
\  -1  if Z, is one of the observations Yf, Y j,. . .  , Yn

i =  1 ,2 , . . .  ,2n. This new sequence of n (4-l)’s and n (—l ) ’s is called the 
sequence of rank order indicators. Under Ho : F(x)  = G(x), there are (2f[1) 
equally likely sequences of rank order indicators. A random variable which 
is a function of X ’s and Y ’s only through these rank order indicators is 
called the rank order statistic. Generally, rank order statistics are defined in 
terms of Fn(x) and Gn(x). Alternatively, such statistics can also be defined 
in terms of the partial sums £,■ of the random walk {5,} generated by the 
sequence of independent random variables {©,} defined below.

Let
Si = 0 i  4- ©2 +  • • • + ©;> ? = l , 2 , . . . , 2 n

with So = 0 = S2n. If the points (i, S ,) are plotted in a plane and each one of 
them  is connected with the next one, we obtain the usual illustrative figure
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of random walk path starting at the origin and returning after 2n steps to 
the origin. The array (5 o ,5 i , . .. ,S2n) is called the path of the particle for 
the two-sample problem of size n each.

The statistical problem in question is to ascertain whether or not two 
samples are from the same population (i.e., F  = G), and thus it is important 
to derive probability distributions of various statistics when H0 : F ( x ) = G(x ) 
is true. Some rank order statistics follow whose distributions, under Ho, will 
be derived in the sequel:

ßn, the number of returns to the origin.
ßn = the number of points (i , Si) such that 5,- = 0. 

ß* , the number of positive returns to the origin.
ß* = the number of points (i, 5,) such that 5,- = 0 and 5,_i =  +1.

Xn, the number of intersections of the origin.
An = the number of points (i, 5,) such that 5,- = 0 and 5 ,_ i5 ,+ i =  — 1. 

= the number of changes of sign in Si, S2 ,... , S in.
R n, the number of runs in the sequence 0 i ,  02, • • • , 02n-

Rn = 1+ (the number of changes of sign in 0 i , 0 2, . . .  , 02«)-

For simplicity of writing we introduce the following symbols:
Fzn: a path from (0,0) to (2ra, 0).

V-point: a point (i, Si) of an F^n path for which Si = 0, we call it a return 
to the origin. The point (0,0) is not regarded as a V-point. 

V +(V_ ): a V-point (i,  Si) such that Si- 1 = +1 (Si- 1 = —1) and is called a 
positive (negative) return.

W  = wave: the segment of a path included between two consecutive V-points 
is called a wave. The path segment between the origin and the 
first V-point is also regarded as a wave.

W* (W~):  a wave (IV) with Si > 0 (Si < 0) at the intervening positions and 
is called a positive (negative) wave.

T-point: a point (i, Si) of an F2„ path for which 5, = 0, 5,-+i = —1.
This is called the intersection point of the x-axis.

S = section: the segment of a path included between two consecutive T-points 
is called a section. We also treat as sections two other segments 
of the path, viz. the one from the origin to the first T-point and 
that from the last T-point to the last V-point.

5 + (S~): a section (5) with 5,- > 0 (Si < 0) in-between.
fí. TTl •F ^  '■ an T2n path having R  runs and m T-points.
F*+,rn(F2R- ,m): an F ^ m path starting with a positive (negative) 

step.
): an F ^ ,m( F ^ ' Tn) path having p V-points.
): an f ^ + ’m’P ( /^ - ’m’P) path having q (0 ^ <7 ^ 

points.
p )  y +

riR+,m,p/  p f i - , r a , p  
r 2 n  \ r 2 n

r n H + , m , p , i  /  j p R - , m , p , q  
r 2 n  \ r 2 n
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^ n 'm’P( ^ ’m’P): an F2n path starting with a positive (negative) step 
and having m T-points and p L-points.

F2*'m ’p'9 (F2~'m'p'q): an F2̂ ’m,p (F2~’m,p) path having q (0^q ^p )V + points.
1V( A): number of all possible paths of type A, e.g., N (F2n) =

a-)-

3. Joint distributions based on /?„, ß * , X„ and R n

We note from [10; (3.6) for j  -  0] that

(2 )

= coeff. of (yz)n in
y l ~ J ~ T T l  A y >  i * » «  * ' •

. ( 1 - t , y +m (1 - z ) r~m ~ (1 — t/)r+fn+1 ( l - * r

An F2̂ +,2m path, as shown in Fig. 1, consists of (2m + l)5 , i.e., (m -fl)5 + 
and m S~  and has 2r runs. On changing the signs of O’s of all those seg
ments lying below the x-axis (as shown by dotted lines in Fig. 1) we get an
F22<r+m)+'° path having (2m +  l) 5 +. On using the reverse transformation we 
get back the original path and hence the transformation is one-to-one.

Thus we can regard the expression on the right-hand side of (2) as the 
generating function of the number of paths from (0, 0) to (2n, 0) starting 
with a positive step, having (2r + 2m) runs, (2m + 1)5 and never crossing 
x-axis.

Now on using the above result (2) we derive the following lemmas.
L e m m a  1.
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P roof. To derive (3), let QA\Bi V{V2 .. .Ap-kB p-kVp (Fig- 2) be an 
•̂ 2n+’°’P Pa th with Vi, V2, . . .  , Vp as the p F-points. This path consists of p 
PV+. Let k (k = 0 ,1 ,. . .  ,p) out of p PV+ be of length two each, i.e., each 
having two runs as well. Let the remaining (p — k ) W + (each of length > 2)

p-k
have 2rj, 2r2 ,. . .  , 2rp_fc runs, respectively, such that rj = r — k. Draw a

j=i
line y = 1 (see Fig. 2) and remove the portions of the path between y — 0 
and y = 1. On joining the remaining segments of the path end-to-end, in 
order, we get an F ^ S 2p +̂'° path having (p — k ) 5 +. Thus on using (2) we 
can write the generating function of N (fr’2^+’°’p) by replacing therein r by 
^(2r — p — k + 1) and m  by \{p  — Ar — 1), i.e.,

(4)

N { F ^ 0,P) = coei f .oi (yz)n
p
E
k=0 © ̂

yT-kzr-p

.(i-»r‘(i-*rp+1 ( i - s )
= coeff. of (yz)n in

yrzr yrzr

yT-kzr-p

(i -  y)r(i -  z y - p +1 (i -  j/^ + h i  -  zy - p

The factor (£) is taken due to the reason that there can be any k W + , each of
length two, out of p W + and (yz)p is the generating function of the portion 
of the path of length 2p between the lines y = 0 and y — 1. Hence

N (f £ +’0,p) =
/  - r  \  / - r  + p -  l \  _ i - r -  1\ / —r + p \  
\ n - r j \  n — r )  \ n - r j \ n  — r )

(n - l \ / n - p \  / n \ / n - p - l \
r - l j \ r - p j  \ r  )  \ r  -  p -  1 )  ’

leading to the first part of (3). The second part of (3) is also valid due to 
symmetry.

Deductions, (i) Putting p = 1 in (3), we get

(5) *  ( í r " )  = = ; ( ; : ( ) ( ; :  j ) .



272 J .  SARAN

(ii) Summing (3) over p from 1 to r and using the summation formula 
in Feller [2; II (12.16)], it verifies (1).

(iii) Summing (3) over r  from p to n and using [2; II (12.9)], we get

N (F2+n'°'p) = N (F ,- '° ’p) =
_ p _ i 2 n - p \  
2n — p \  n ) '

verifying a result in Feller [2, p. 90].
Remark. Narayana [8] has defined that . . .  ,tr) is an r-composi-

tion of a positive integer n (1 < r < n) if and only if
r

y ]  i, = n and f,- > 1, i = 1 ,2, . . .  , r.
.'=l

Further, the r-composition ( t i , t 2, • • • , tr) of n dominates another r-composi- 
tion (t j ,  t'2, . . .  ,t'r) of n if the following conditions hold:

h  > t[
h + t 2 > t[ + 1'2 

t\ + 2̂ + 3̂ = t'l + t '2 + Í3

(6) i
t l  +  t 2 +  • • • +  t r—1 ^  t'i +  t 2 +  . . . +  t'r-1

tl + t2 + . . . +  tr = t'l + t2 + . . .  + t'r = n.

According to Narayana [8, p. 93], an r-composition of n dominated by an
other r-composition of n can be represented geometrically by a lattice path 
from (0, 0) to (n, n) not rising above the line y = x and having exactly r hor
izontal and r  vertical components. Hence the expression in (1) is equivalent 
to the number of lattice paths from (0,0) to (n, n) never rising above the 
line y = x  and each having exactly r horizontal and r vertical components. 
Clearly both horizontal and vertical components of each path represent an 
r-composition of n.

Likewise we can interpret the right-hand side of (3) as the number of r- 
compositions of n dominated by r-compositions of n subject to the restriction 
that any p — 1 relationships out of the first r — 1 in (6) are equalities (so that 
the last relationship in (6) becomes the p-th equality) and the rest are strict 
inequalities. In other words, (3) is the number of lattice paths from (0,0) 
to (n , n)  with r horizontal and r vertical components, never rising above 
the line y = x and having exactly p contacts with y = x (including the last 
one at (n,n)) .  In a similar manner we can interpret (5) as the number 
of r-compositions of n ‘Strictly dominated’ by r-compositions of n (strict 
domination means the (r — 1) inequalities in (6) are all strict inequalities).
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In other words, (5) is the number of lattice paths from (0,0) to (n,n)  lying 
entirely below the line y = x, never touching it in-between except at the end 
points, each path having exactly r horizontal and r vertical components.

Lemma 2.

(7) N (F 2̂ +'2m’p’q) =

(8) N (F £ - '2m'p,q) =

P ( q - 1\ ( P - q ~ l \ ( n ~ P ~ 1\ (  71-1 
r +  m \  m J \  m — 1 J \ r - \ - m - p ) \ r  + m —

P ( q ~ 1 \ ( p ~ q ~ l \ ( n ~ p ~ 1\ (  n ~ 1 
r + m \ m - l j \  m  J \ r  + m —p j \ r  + m —

0

0
and

jy (^ (2r+1)+.2m+1W ) _  7Vr(F(2r+1) - ’2m+i ,p’9) =
(9)

P A - l U p - t - l U  n - p - l  
r  + m + 1 \  to J \  m J \ r  -f m — p + 1/ \ r  -f m )

P roof. An i r2n+’2rn,P’9 path consists of (m +1) S + (comprising q W*)  
and m S~ (comprising (p — q) W~).  On changing the signs of all those
segments lying below the z-axis, we get an j ^ r+m)+’°’p path. Since (m -|-1) 
S+ and to S~ can be constructed out of q ordered W + and (p — q) ordered 
W ~ in (*m) ('’m--!1) ways, we get (7) by using (3) where r is replaced by 
r + m. Others are similarly established.

Deductions, (i) For m = 0, (7) and (8) reduce to

jV( f - +.o,P) = = ; ( B ” ^ ” 1) ( " : i1) ,

since in this case q will be equal to p and 0 in (7) and (8), respectively, thus 
verifying result (3).

(ii) Summing (7) and (8) each over p — m < r < n  — m  and (9) over 
p — m — 1 < r  ^ n — m — 1 and using [2; II (12.9)], we get, respectively

N (F2l ' 2rn'p'q

N{F2- '2m'p'q) =

P /2 n  — p \ /g  - 1\ ip  -  q -  
2 n — p \  n — l

_ p _  f 2 n ~ p\  / í - i U p - í -
2 n — p \  n m

1

and

jy ^ ^ T ' + ,2 m + l ,p ,g y  __ j y ^ j n -  — ,2 m + l ,p ,g P ( 2 n - p \ i q - l \ i p - q -  
2n — p \  n J \  m J \  m



274 J .  SARAN

verifying known results in [3].
(iii) Summing (7) over m + 1 < q< p — m,  (8) over m < q < p  — m — 1 and 

(9) over m  + l ^ q ^ p  — m — 1 and using [2; II (12.16)], we get, respectively

( 10) -P)=jV(F22' _,2m’p)=
P

r+ m
n — p — 1 
r+ m —p

n — 1 \  
r + m —1J

and

( 11)

N ^r+l)+,2m+l,p^ _  ^y^^(2r+l)-,2m+l,p-j _

p Í  p - \ \ f  n — p — 1 \ / n - l \
r + m + 1 \ 2 m  + 1 /  \ r  + m  — p + l j  \ r  + m j

(iv) Setting m — 0 in (10), it verifies (3).
(v) Summing (10) over 2 m  + l < p ^ r  + m and (11) over 2 m  + 2 < p < 

^ r +  m  +  1 and using [2; II (12.16)], we get, respectively

JV(F,2; +'2m) = N (F l:~ 3m) = 2m +  1n
n

r — m — 1
n

r + m

and

n
r - m - l

n
r +  m + 1

verifying [10; (3.6) for j  — 0], [10; (3.10)], [10; (3.8)] and [10; (3.12) for j  =  0], 
respectively.

(vi) Summing (10) over p — m < r  <n — m  and (11) over p — m — 1 ^  r £ 
^ n — m — 1 and using [2; II (12.9)], we get, respectively

^ 2 n ’2m’P) = N (F 2- '2m’P) = P f 2 n - p \
2n — p \ 2 m  J \  n J

and

N (F 2+’2m+1’p) = N( F2- , 2 m + l , p j  __ ___ jP
2n 2 n — p

P - 1
2m + 1

2 n — p
n

verifying known results in [3].
The foregoing lemmas lead immediately to the following joint distribu

tions.
T h e o r e m .

’ P  [A„ = 0, /?„ = p, R n = 2r] = 2{ ( n ; p : 1) ( : ) / ( 2: ) .n V r - p  J \ r j  /  \  n j
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P [K  = 2rn,ßn = P,R n = 2 r )= 2J ’ ( ’’ - 1) ( n ; ’’ - 1) (  »
n \  Im  J \ r  + m — p j \ r  + m j  /  \ n  J

P  [An = 2m + 1, ßn = p, Rn = 2r + 1] =
'2  nN

and

_ 2p /  p -  1 \  /  n - p -  1 \  /
n \2m  + l / \ r  + m — p + l / \

n
r + m + 1

2n\  
n )  ’

A„ =  2m, ßn = p ,ßn = q, Rn = 2r

p(p -  2m) /  g 
ng \ m

W p - 9 _ l W n _ p - l W  n \  / / 2 n \  

J \  m — 1 /  \ r  + m -  p) \ r  + m )  /  \ n /

An = 2m + l , ^ n = p,/3n =g, Ä„ = 2 r + 1

_ 2 p / g - l A / p - g - l A /  n - p - 1  \ /  n
n \  m J \  m  )  \ r  -\-m — p + l / \ r  + m +  l

2  n 
n
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COVERING A DISK WITH SMALLER DISKS

S. KROTOSZYNSKI

Let D be a disk in the Euclidean plane. By D(k) we denote the smallest 
positive ratio of k homothetical copies of D whose union covers D.  The
following values of D(k) are known: D( 1) = D(2) = 1, D(3) = D(4) =
= D(5) = 0 .609 ..., D(6) = 0 .556 ..., and D(7) = i  (see [1-4]).

In this paper an index is understood as corresponding number between 
1 and k — 1 modulo k — 1. The boundary and the interior of a plane convex 
body A are denoted by bdA and int A, respectively. The segment with 
endpoints a and b is denoted by ab, and its length is denoted by |a6|. The 
distance of sets A and B is denoted by d(A, B).

T heorem. I f k e  {8,9,10,11}, then D(k)=  ( l  + 2 c o s ^ -^  \

For the proof we need the following lemmas.
Lemma 1. Let k be a positive integer greater than 7. I f ß i  > 0 and /3,_x + 

+ ßi + ß i+1 < 7T for i = 1, . . .  , k -  1 and if ß x + .. ■ + ßk-i = 27T, then

k- 1

fc-1

s £

^ [s in  /?,-_! + sin (ßi + /3I+1)] ^
i—i

. ß i-1 +  ßi +  ß i + 1 , . 2 (ßi-\ +  ßi +  ßi+1) sin--------- --------1— h sin —-----------------
i—l

The equality holds if and only if  ß x = . . .  = ßk~\ — 2n/(k — 1).
Lemma 2. Let k be a positive integer greater than 7. I f  0 < 7; < n for 

» =  , k — 1 and 1/71 + . . .  + 7jt-i = 6tt, then

k- 1

£
«=1

1 • , • 7.' , . 27,]-  sin 7,- + sin — + sin —  <

s £ \ / sí" Í 7 . ( 1 + 2 “ s f í t ) 2
1 =  1

Sln - j l i

1980 Mathematics Subject Classifications (1985 Revision). Primary 54A45. 
Key words and phrases. Covering, disk, convex polygon.

Akadémiai Kiadó, Budapest
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with equality if and only if 71 = . . .  = 7fc-i = 2tv/ { k  — 1).
P r o o f  of  L e m m a  1. We present the proof only for k -  8 because for 

k G {9, 10,11} the procedure is analogical.
Let us consider the function 

fc—l r
F ( X ! , . . .  , x t )  =  ^ 2

( 1 )

x , _ i + x , + x , + i  . 2 ( x , _ i + x , + x , + 1 )
s i n ------------ r --------------- b s i n --------3 ' ~  3

-  ^ [ s in x ,_ i  + sin(x,- +  x,+x)],

>=i L 
fc-i

i=l
where x; >  0 and x , _ x  +  x* +  x,+x <  tt for i =  1 , . . .  , 7  and xx - f . .  . +  xjt_i =  2 ir. 

Suppose that x,- ^  xj for i — 2, . . .  ,7. We show that

( 2) i f
dF
dxi

=  0 , then xx  =  x 2 =  X3 =  X6 =  X7 .

We have
dF  1 
őxx 3

(3) 2

+ 3

cos

X x + X 6 + X 7 , X x + X 2 + X 7 , Xx+X2+ X 3cos--------------- j-cos-------------- 1-cos-------------
3 3 3

2 ( xx+ x 6 + x 7) 2 ( xx+ x 2+ x 7) 2 ( xx+ x 2+ x 3 )

+

- +  COS -f cos
3 1 3 ' '  3

— [cos Xx -f COs(xx + X7) + COs(xx + x2)].

The function cos <p is decreasing for belonging to the closed interval 
[0, tt]. Hence and from x3 < Xx and from Xß ^  xx we obtain

OF > 1
őxx -  3

2xx +  x7 2xx + x2 xx +  x 2 +  x 7
cos---- ------- b cos---- ------- b cos--------------- +

(4) + 3
2 ( 2 xx +  x 7) 2 (2 xx +  x 2) 2 ( xx +  x 2 +  x 7)

c o s  — ------ --------- - +  c o s  —■—  ------------b c o s  —
3 3 3

— [ c o s  Xx +  C O s(xx  +  x 2 ) +  c o s ( x x  +  X 7 ) ] .

We have the following inequalities:

/ r ,  1 2 x j  +  x 2 2  2 ( 2 x i  +  x 2 ) 1 , 2  /  , \
( 5 )  -  c o s ----------------+  -  c o s --------------------- ^  -  c o s  X j  +  -  c o s ( x x  +  x 2 ) ,

1 2 x x +  x 7 , 2  2 ( 2 x x +  x 7 ) l  , 2  , N
( 6 ) 3  c o s  ---------------- +  -  c o s  ---------------------  >  -  c o s  Xx +  -  c o s ( x x  +  X7 ) ,

1 Xx + X 2+ X 7 2 2(xx+x2+ x 7) 1 1-cos--- ---- +-COS---- ----- > -cosxx + -cos(xi+x2}bÍ 7\ O O O  O O Ö3
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Let us show (5). For 0 ^ x < |x i  and 0 < y < x\  the function H(x)  = 
= I  cos(x + y) + § cos(y — x ) attains the maximum for x = 0. Thus

1 2  1 2
(8) -  cos y + -  cos 2y > -  cos(x + y) + -  cos(y -  x)

for every x £ [0, |x i]  and every y £ [0, Xi]. Putting x = |( x i  — x2) and y = 
= |(2 x i +  x2) in (8) we obtain (5). Analogously we show (6) and (7). Adding 
inequalities (5), (6) and (7) we get > 0 with the equality only for xi  = 
= x2 = X3 = X6 = X7. This implies

dF(9) —— = 0 for * =  7 if and only if xj = x2 = . . .  = X7.

It is easy to check that the function F  defined in (1) has the minimum 
equal to 0 for X\ =  . . .  =  X7 =  27t/ 7 . Thus -F(xi,. . .  , X7) >  0 for X i , . . .  , X7 
fulfilling the assumption of Lemma 1.

We omit an analogous proof of Lemma 2.

P r o o f  of  t h e  T h e o r e m . Let k £ {8,9,10,11}. Consider the disk D 
of radius 1. Denote by s  the centre of D. Let D \ , . . .  , Dk be disks of radius 
rfc = (1 + 2 cos jjrp)-1 . The symbol s, means the centre of D, for i = 1 , . . .  , k. 
Let T>k — {Di , . . .  , Dk}.

For the proof of our Theorem we will show the following five statements:

(a) There are positions of D \ , . . .  , Dk such that D\U .. .L) Dk D D.

(b) If D\  U . . .  U Dk D D,  then there exists a unique i’o € {1, . . .  , k} such 
that D{0 C int D.

(c) If D\  U ..  .U Dk D D , then there are translations T \ , . . .  , Tjt such that 
the intersection of each pair of the disks T,(D,), for i = 1, . . .  , k, has at most 
one point in bd D.

(d) If Di  U . . .  U Dk D D and if each three disks of T>k have at most one 
point in common, then D \ , . . .  , Dk coincide with disks described in (a).

(e) If D i  U . . .  U D k D D  and if the intersection of some three disks of T>k 
consists of more than one point, then there exist a number r'k < Tk and disks 
D [ , . . .  , D'k of radius r'k such that D [  U . . .  U D'k D D .

PROOF OF (a). If Sj =  s and if s 2 , . . .  , Sk are the vertices of the regular 
(fc — l)-gon with the centre s and such that every three disks of Vk  have at 
most one point in common, then Di  U . . .  U Dk D D (see Fig. 1).
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Of course, the inclusion does not hold if we lessen the radius of D \ , . . .  , Dk-

P r o o f  of  (b). Let us assume that some m*, disks of T>k are subsets of 
int D.  Then the union of the k — mk remaining disks covers bd D.

Observe that each of these disks is able to cover a part of bd D with the 
central angle not greater than  2 arcsin(l + 2 cos ^ r r ) _1. Hence

(k -  m k) arcsin ( l  + 2 cos ^ r.

From this inequality it follows that ms < 1.22, mg < 1.97, mio < 2.27 and 
m u  < 2.99. Since mg and mg are smaller than 2, we see that (b) holds true 
for k — 8 and k = 9.

Now, we consider the case when k -  10 (for k — 11 we proceed analo
gously). Let IT be a regular octagon with the centre in s and with radius 
rw =  5.1 of the circumscribed circle. It is not hard to see that if some two 
disks of Z>io are subsets of int D,  then they cover at most four sides of W.  
Since the union of the remaining disks of X>i0 is able to cover only three sides 
of W , it is impossible to cover the whole octagon W  by the union of disks of 
^ío-

Thanks to the above considerations we may assume that Dk C int d.

P r o o f  of ( c). Let Dk C int D and let the points s i , . . .  , Sk-i be consec
utive vertices of a (k — l)-gon, according to the orientation of the plane. The 
common point of D{, bd D ,+1 and bd D is denoted by a, for i = 1, . . .  , k — 1. 
By a(- we denote the common point of bd D, , LL+i and bd D for i = 1 , . . . ,  
k - 1 .

From Di  U.. .U Dk D D it easily results that s j , . . .  , Sk are in int D. Re
ally, if Si ^ int D for some i 6 {1, . . .  , k — 1), then let S(Di ) be the symmetric 
image of D{ with respect to the straight line through a,_i and a[. Obviously,



COVERING A DISK WITH SMALLER DISKS 281

the centre of S(D ß  is in int D and the sum of S(D i) and the sets Dj for 
j  €  { 1 ,... , k  — 1} and j  ^  i  covers D.

Moreover, for each i = 1 , . . .  , k — 1 we take the translations T, of D, such 
that bd Ti(Di) contains the points a, and a,_x and that the centre of T;(Di) 
is in int D. Of course, Ti(D i) U .. .UTfc_x(Dfc_x) U Dk D D and T,(a<) = a, 
for t = 1 ,. . .  , k — 1.

P r o o f  o f  (d). We denote by fq the point of intersection of bdZ),, 
bd D ,+i and bd Dk for i = 1 , . . .  ,k  — 1 and we denote by bk the point of 
intersection of bd D\, bd and bd Dk-

Moreover, let aq = <ajsa,+x and /?,- = <6,Sfc6l+i for i = 1 ,.. .  , k — 1. Hence 
ßi +  ßi+1 = <s,+if>,+x-s,+2 and /?í_ i + ßi + ßi+i = <a(Si+iai+i for i  = 1 , . . . ,  
Ar — 1.

Let us consider the following figures: the rhombi with vertices s \, b\, 
-s,+i, bi+1 and 6,, s,, a,, 6,-+1 for i = 1 ,. . .  , k — 1, the triangles with vertices 
a,-, Si+i, a,+x for i = , k — 1, the segments of the disk D with chords
a,cq+1 f°r * = 1 ,. . .  , k — 1. Since D\ U.. .U Dk D D, the sum of areas of these 
figures is equal to the area of D. Thus

sin /3,_x + sin(/?,• +  ßi+1) + \  sin(/?,_x +  /?,• + ßi+l) a, -  sin a , '
--------------------- 7---------------- T2---------------------+ -------~------  =7r-

^1 +  2 cos £~x J

Moreover, c*x + . . .  +  (*k-i — 27T and

sin a, = 2\Jr\ sin2 ^{ß i-\  + ßi + ßi+i) -  r* sin4 ^ (ß i-i + ßi + ßi+i) 

for i = l , . . .  , k — 1. Hence we obtain the equality 

* -1 !
^ [ s i n  ß i-i -f sin (ßi + ßi+i ) + — sin(/?i_x + ßi + ßi+i)\ =

( 10)

k-1 j-------------2^ ;— 2------ x------------------------------ X----------------------
= E y  ( 1+ 2cos J Z i )  sin2 2 ^ i- 1+i3i+f3i+ ^ ~ sin4 j i f t - i + A + f t + i ) .

1=1

From Lemmas 1 and 2 it follows that (10) holds if and only if ot\ =  . . .  =  

=  ak~i =  ßi =  . . .  =  ß k-i = 2n /(k  — 1). Hence our covering coincides with 
the covering described in part (a).

P r o o f  o f  (e). We consider the case k =  9. (For k = 8,10,11 we proceed 
analogously.)

Let the sets Di fl D2 fl Dg and D\ fl D$ fl Dg have in common more than 
one point. Denote by xx the centre of gravity of D\ D D2 n Dg and denote 
by X2 the centre of gravity of D\ fl Ds (~l Dg.

k - 1 r

E
1=1



282 S. KROTOSZYNSKI

Let t\ G int D\ be such point of the ray from s through Si tha t rg = 
=  max{|íiXi|, IÍ1X2I}. We provide the disk K 1 with the centre and with 
radius rg. We denote by Ci the common point of D2, bd K\ and bd D and we 
denote by c8 the common point of Dg, bd K \ and bd D. The point t 2 £ D is 
the centre of the disk K 2 of radius rg such tha t a2, c\ G bd K 2 and the point 
tg G D is the centre of the disk Kg of radius rg such that 07, Cg G bd Kg.

We denote by di the point of intersection of D9 , bd K 1  and bd K 2 and we 
denote by d2 the point of intersection of D g ,  bd K 2 and bd D3. Analogously, 
we denote by d-; the point of intersection of D g ,  bd D7 and bd Kg and we 
denote by dg the point of intersection of D g ,  bd K 1  and bd Dg. Of course d\, 
d2, di and dg are in int D g .

We provide two tangents to the disk D g  through the points b3 and bg. 
The point of intersection of these lines is denoted by p. Let us consider the 
ray from p through y, where y G b3 b6. For i =  1,2 ,7 ,8  we denote by y, the
point of bd Dg such tha t the vectors d,?/, and py are parallel and that they 
have the same sense.

Let Tiy = min{|di2/i|, \d2 y2\, \d7 y7\, |d8y8|} and we define the number 

A =  max{?íy : y G b3 b6 and b3  ±  y f  b6}.

It is easy to see tha t there exist u G b3bg and j  G {1,2,7,8} such that
A =  \ b j U j \ .  The point w9  G int D9 satisfying the condition s9wq — —| b j u j  is 
the centre of the disk Lg of radius rg. It is obvious that the points d, for 
i — 1 ,2 ,7 ,8  and the points 6, for i -  3 ,4,5,6 are in int Lg.

Let Di — Ki for i = 3 , . . .  ,8. We denote by v, for i = 1 ,. . .  , 8 the centre of 
gravity of /v,- fl A',+i (~l L9. The point te,- G int Z>, for i = 1 ,...  , 8 is the centre 
of the disk Li with radius rg such that in,- lies on the ray from s through s; 
and that rg = max{|u;iVi_i|, |u7;n,|}. Moreover, it is easy to check that the 
following sets: A ,  = L,_ 1  fl L,- fl Lg and Yj- = L,_i fl L, fl bd D for i — 1 , . . .  , 8 
(where Lq = Lg) have more than one point.

We define the numbers

Si — min {max(|ini_im|, \wim \, |u>g7n|)} 
meXi

and
£,• =  min{max(|u;i_in|, |m,n|)}

for i =  1 ,. . .  ,8 (where w0  — wg). From the above considerations we conclude 
th a t Si < rg and £,■ < rg for i — 1 ,...  ,8. Hence we obtain that the number

r = max{dx,. . .  , <$8,£ i , • • • ,£8} is smaller than rg.

The disks D[, D2, . . .  , D '9 with centres w\ , . . .  , tng and with radius r fulfil 
the inclusion D[ U . . .  U D '9  D D. This ends the proof of (e).
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From statements (a)-(e) it follows tha t r*, where k £ {8,9,10,11}, is the 
smallest number such that the disks £> i,... ,Dk with radius r* cover D of 
radius 1. Hence we have D (k) = r* for k = 8,9,10,11. The proof is complete.

Finally, let us point out that

£>(12) < ( l + 2 cos _1 = 0.372 . . . .

Figure 2 shows disk D with the centre s  and with the radius 1 covered 
by disks H i , . . .  , £>i 2 of radius r. The centres of disks Di, £>2, £>3 are the 
vertices of the regular triangle T with the midst in s. The length of the side 
of T  is equal to r. The centres of disks £>4, . . .  , D i2 are the vertices of the 
regular nonagon with midst in s such tha t the following sets have one point 
in common: £>i f~l £>2 fl £>7 , H2 H £>3 n £>10, £>1 PI £>3 D £>4.

It is easy to check that r < (1 +  2 c o s |j ) -1 . Hence £>(12) < r < 
< (1 + 2 cos fy)-1 .

REFERENCES
[1] Bezdek, K., Über einige Kreisüberdeckungen, Beiträge Algebra Geom. 14 (1983),

7-13. MR 85a:52012
[2] Lássák, M., Covering plane convex bodies with smaller homothetical copies, Intuitive

geometry (Siófok, 1985), Colloq. Math. Soc. J. Bolyai, Vol. 48, North-Holland, 
Amsterdam-New York, 1987, 331-337. MR 88i:52023

[3] Molnár, J., Uber eine elementargeometrische Extremalaufgabe, Mat. Fiz. Lapok 49
(1942), 249-253. MR 8-218

[4] Neville, H., On the solution of numerical functional equations, Proc. London Math.
Soc. (2) 14 (1915), 308-326. Jb. Fortschritte Math. 45, 1230

(Received January 4, 1990)
INSTYTUT MATEMATYKI I FIZYKI ATR 
AL. PROF. S. KAL1SKIEGO 7 
PL-85-790 BYDGOSZCZ 
POLAND





Studia Scientiarum  M athematicarum Hungarica 28 (1993), 285-288

RINGS WITH LOCAL UNITS AND DESCENDING 
CHAIN CONDITION

PHAM NGOC ANH

Answering a question of Szász ([4], Problem 8 and Problem 9) in [1] 
we characterized primary rings with descending chain condition on finitely 
generated left ideals. The aim of the present paper is to describe direct sums 
of these rings and to discuss some interesting special cases. Our results are 
motivated by the investigations of Numakura [2], [3].

Recall (see e.g. [1]) that a ring R  is said to have local units if for any 
finite subset A of R there is an idempotent e G R which acts as an identity 
on A on both sides. A ring R is said to be primary if it has local units and 
its factor by the radical is a simple ring. For any ideal I  of an arbitrary ring 
R we define by transfinite induction the ideals

I  = 1 1 ,  / „ + ! = /„ • / ,
P+1 P P

and /= n i ,  /p= nL* a</ia a</i
if p is a limit ordinal. Clearly, there is an ordinal a with Ia = Iß and /  = /  for

o r ß

all ß > a. These Ia and /  will be denoted by /» and / ,  respectively. Moreover,
a  *

they satisfy /* • /  = /* and / 2 = / .  An ideal I  is called transfinitely nilpotent* *
if /» = 0. It is well known that the radical of a ring with descending chain 
condition on finitely generated left ideals is transfinitely nilpotent. First we 
prove:

THEOREM 1. For a ring R with local units the following are equivalent:
1) R is Morita equivalent to a direct sum of local perfect rings.
2) R is a direct sum of primary rings satisfying the descending chain 

condition on finitely generated left ideals.
3) R satisfies the descending chain condition on finitely generated left 

ideals and each idempotent ideal K  is a ring theoretic direct summand of R.
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P r o o f . The equivalence 1 ^  2 is an immediate consequence of Corollary 
3.8 in [1].

2 => 3. It suffices to show th a t K  is a ring-theoretic direct summand of R 
if K 2 =  K . Since R — ©P,- and each Ä, contains only the trivial idempotent 
ideals 0 and R, by the transfinite nilpotency of the radical, the images K , 
of K  under the projections R —*Ri are Ä, or 0. On the other hand, one can 
deduce easily that K  is a direct sum of if,-. Therefore K  is a direct summand 
of R.

3 => 2. Clearly, it is enough to see that R  is a direct sum of primary
rings. Let {P,} be the set of all maximal ideals of R and Q, = P, for every*
index i. Every idempotent of R  is obviously a sum of orthogonal primitive 
idempotents, and for every primitive idempotent e £ R  there is a P, with 
e Pi and hence e ^ Qi. Therefore Q{t = 0, because Q, is a ring-theoret
ic direct summand of R. Consequently, fjQ,- = P| P(1 — e) = 0 holds.

e2=eEi?
Consider now the ring homomorphism

<t>'R I W Q > : r *+(. . .  , r  +  <2

4> is injective, for f)Q, = 0. Since each idempotent belongs to almost all Pi and 
hence Q i, as it is easy to check, and R has local units, <f> is a monomorphism 
from R  into the direct sum ®R/Qi-  On the other hand, R/Qi  is obviously a 
prim ary ring with radical P ,/Q ,, and 4>{R) — ® R / Q % because Qi is a direct 
summand of R. Thus is an isomorphism between R and ®R/Qi,  which 
completes the proof.

A ring R is called weakly artinian if its finitely generated left ideals 
are artinian left P-modules. Let R be a primary weakly artinian ring with 
local units. By Corollary 3.8 in [1], R is a strongly locally matrix ring over 
the artinian local ring eRe where e2 = e is a primitive idempotent in R. 
Consequently, the radical of R  is nilpotent. This fact implies the following 
assertion.

P roposition 2. The radical of a weakly artinian primary ring with local 
units is nilpotent.

Similarly to the case of artinian rings we have

P roposition 3. Any finitely generated left ideal of a weakly artinian 
ring with local units is a noetherian module, i.e. it is of finite length.

P r o o f . Let e be an arbitrary idempotent of R. By the assumption 
there is a positive integer k with J ke = J ne for all n > k, consequently J ke — 
=  0 holds by the transfinite nilpotency of the radical J  of R. Therefore, 
similarly to the Hopkin’s Theorem on artinian rings, one can deduce that 
the left P-module Re is of finite length, from which the statement follows 
because R has local units.
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PROPOSITION 4 .  n J "  =  0 holds for the radical J  of a weakly artinian 
ring R with local units.

P r oof . By the proof of Proposition 3 for each idempotent e € R there 
is an integer n with J ne—0, i.e., J nC R (l—e). Therefore DJn C f") R ( l—e) =

e2=e
= 0, since R has local units.

P roposition 5. I f P is any maximal ideal of a weakly artinian ring R 
with local units, then there is an integer k with Pk = Pn for all n>  k.

P roof. LetQ  = nP ". By P-\-J = Q + J  we have that P/Q  is the radical 
of the primary ring R/Q . Therefore by Proposition 2 there is an integer k 
with (P /Q )k = 0, i.e., Pk = Pn for all n > k.

Let {P,} be the set of maximal ideals of a weakly artinian ring with local 
units. Since the idempotents of P, are trivially contained in Qi = Q P " and 
the radical of R  is a small ideal, we have Qi + Q s = R for all i ^  j . Therefore 
for i £ { n , . . .  , it holds

(*) Q> + (Q,l n . . . n Q tn) = R.

P roposition 6. Let Pi be the set of maximal ideals in a weakly artinian 
ring R with local units, and Qi =  HP" for all indices i. Then flQi = 0 if and 
only if one of the following conditions is satisfied:

1) P,Pj =  Pj P, for all i and j ,
2) Q,Qj = QjQi for all i and j .
P roof. Assume indirectly flQi 7̂  0. Then there are an element c € HQ,-, 

c and an idempotent e 6 R with e = ce = ec. By Proposition 3 the R- 
module Re is of finite length, and hence P*1 . . .  Pkn Re = 0 for finitely many 
maximal ideals P i , . . .  , Pn and positive integers k \ , . . .  , kn. This shows that 
c £ P Í l ...P * " .

1. First assume P, P} = P, P, for all i /  j .  Since Pk + P™ = R  for all i ^ j  
and integers k, m, we have

P,k n P f  = (P* n P™)R = (P f n PJm)(P/; + P ”1) c  PkP™.

This ensures P k n Pj" = P/'Pj" for all i ^  j .  Similarly one can see P,̂ *1 . . .  
P™n = P™1 f l . . .  nP™n for different indices t ' i , . . . , t n. Therefore we get
c ^  Pjfcl . . .  Pkn = Pf' n . . . n  Pk" D nQi which contradicts c 6 C\Qi- Thus 
HQ, = 0 holds in this case.

2. Secondly assume QiQj = QjQi  for all indices i , j .  Similarly to the 
above consideration one can show that Qi D . . .  D Qn = Q i . . .  Qn for any 
finite collection Q i , . . .  , Qn. By Q“f = Qi we have

C ^  P ^ 1 • • • Pn” 2  Q Í 1 • “ Qnn — Q\ - - -Qn = Q \L \...r\Q n'2  D Q « »
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which contradicts c 6 flQi. Thus HQ, = 0.

Now using the equality (*) we can show R=  ® R/Q i, where each R/Q i 
is clearly a primary ring, in the same way as it was done in the proof of 
Theorem 1. Observing that a local artinian ring has nonzero one-sided socles, 
by Theorem 1 and Corollaries 3.6 and 3.8 in [1] we have

T h e o r e m  7. Let R be a ring with local units. The following assertions 
are equivalent:

1) R is Morita equivalent to a direct sum of local artinian rings.
2) R is a direct sum of primary weakly artinian rings.
3) R is a weakly artinian ring and each idempotent ideal K of R is a 

ring-theoretic direct summand of R.
4) R is a weakly artinian ring and any two maximal ideals of R commute.
5) R is a weakly artinian ring and any two Qi commute, where Qi = flP" 

and the Pi are the maximal ideals of R.
6) R is a direct sum of Rees matrix rings over local artinian rings with 

independent sandwich matrices.
C o r o l l a r y  8 .  A ring R with local units is a direct sum of local artinian 

rings if and only if it is weakly artinian and satisfies one of the following 
conditions:

1) Any two maximal left ideals commute.
2) Any two maximal right ideals commute.
P r o o f . Let R be a weakly artinian ring and P be an arbitrary maximal 

ideal of R. Then R /P  is a simple ring with minimal one-sided ideals and thus 
R /P  is a direct sum of minimal left and right ideals, respectively. From this 
fact we can see by direct computation that under the assumption of Corollary 
8 the maximal ideals of R  are maximal one-sided ideals, too. Therefore our 
statement is an immediate consequence of Theorem 7.
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ÜBER DIE SYNTHETISCHE BEHANDLUNG DER 
KRÜMMUNG UND DES SCHMIEGZYKELS DER EBENEN KURVEN 

IN DER BOLYAI-LOBATSCHEFSKYSCHEN GEOMETRIE

I. VERMES

I

Wir betrachten einen Kurvenbogen AB, der einen konvexen Bereich 5
mit seiner Sehne AB  so begrenzt, daß jede Strecke, die zwei Punkte von AB
verbindet, in Inneren von S  läuft. Zu jedem Punkt des Bogens A B  gehört je 
eine Tangente, die als Grenzlage der zum Berührungspunkt gehörigen Sehnen 
entsteht.

Setzen wir voraus, daß der Bereich S  quadrierbar ist. Der Inhalt von 
S  stimmt mit dem Grenzwert der Inhalte der konvexen Vielecke überein,
die durch die Sehne AB  und die, mit ihr verbundenen, in den Bogen AB  
eingeschriebenen, unbegrenzt verfeinerten, konvexen Streckenzügen begrenzt 
werden. ^

Sei der Kurvenbogen A B  rektifizierbar und sei seine Bogenlänge gleich
dem Grenzwert der Längen von Polygonzügen, die aus den in AB  einge
schriebenen und unbegrenzt verfeinerten konvexen Streckenzügen bestehen. 
Wir setzen für das folgende voraus, daß die untersuchten Kurvenbögen eine 
solche Eigenschaft haben — wie zum Beispiel Kreis-, Horozykel- bzw. Hy- 
perzykelbogen — , nach der der Quotient der Bogenlänge und der zu ihr 
gehörigen Sehnenlänge gegen 1 strebt, falls die Sehnenlänge gegen 0 geht. 

Für die obenerwähnten Kurven können die Begriffe der Krümmung in
einem Punkt und der totalen Krümmung eines Bogens A B  (das ist ein Maß 
für die Richtungsveränderung der Tangenten zwischen A  und B ) erklärt 
werden. Da die Richtungsveränderung der Tangenten in der Bolyai-Loba- 
tschefskyschen Geometrie nicht analog der euklidischen Geometrie feststell
bar ist, deswegen müßte man den Begriff der Verschiebung auf brauchbare 
Weise für unsere Geometrie hinüberretten. Es ist daher eine charakteristis
che Verschiebung der Tangente entlang eines Kurvenbogens zu bestimmen, 
und dann ist die Richtungsveränderung der Tangente als ein Winkel meßbar.
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D i e  V e r s c h ie b u n g  e i n e r  H a lb g e r a d e . Die Halbgerade e wird entlang der 
Strecke A B  in die Lage e ' verschoben, wenn der Winkel £ zwischen e und 
A B , und der Winkel e ' zwischen e ' und der aus В  in die Richtung A B  
ausgehenden Halbgerade kongruent sind, und alle beide auf derselben Seite 
von der Geraden A B  liegen (Fig. 1). .

\
\

Fig. 1 Fig. 2
Falls man die Halbgerade e  entlang der Strecke A B  bzw. A C  und C B  in 

den Punkt B  verschiebt, so erhält man die Halbgeraden e ' bzw. e"  (Fig. 2). 
Es ist leicht zu sehen, daß e"  bzw. e' und die Richtung A B  den Winkel z"  — 
— ip +  iv — 7  — ß  bzw. z '  — <p -f öl einschließen. Folglich ergibt sich der Winkel 
von e ' und e" aus

z "  - z '  =  í r -  ( a  +  ß  +  7 ),
der aber der Winkeldefekt des Dreieckes A B C  ist. Der Winkeldefekt kann 
auch auf folgende Weise geschrieben werden:

wobei T  der Inhalt des Dreieckes ist, und k  die Konstante der Geometrie 
bedeutet.

Schließt eine Halbgerade /  mit e den Winkel 1/  ein, so schließen beide 
verschobenen Halbgeraden / '  bzw. f "  mit e' bzw. e"  auch den Winkel v  ein, 
womit das Verschiehungsverfahren in diesem Sinne winkeltreu ist. Falls man 
eine Halbgerade entlang der Strecke B A  bzw. B C  und C A  aus dem Punkt 
B  in den Punkt A  verschiebt, so schließen die erhaltenen Halbgeraden auch 
den Winkeldefekt von A B C  ein.

Auf Grund unserer Kenntnisse für das Dreieck A B C  ergibt sich unmittel
bar ein Korollar, (das durch vollständige Induktion bewiesen werden kann) 
wie folgt: Verschieben wir eine Halbgerade e entlang des konvexen Strecken
zuges (Polygons), A A i ,  A 1 A 2 , . . . ,  A„_ 1 , B  bzw. entlang der Strecke A B  in 
die Lage e"  bzw. e' (Fig. 3), und bezeichne T„ + 1 den Inhalt des konvexen 
(n +  1 )-Eckes A , A \ ,  . . . ,  An_ 1 , B , so kann der Winkel von e"  und e ' in der 
Form "j-1 geschrieben werden.
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Die Verschiebung entlang einer Kurve. Es sei ein konvexer Kurvenbogen
AB  gegeben, und sei A, A\, . . . ,  An- 1, B  ein konvexes Polygon in AB  
eingeschrieben. Das Verschiebungsverfahren entlang eines solchen Polygons 
gibt den Winkel von e" und e', dessen Größe -ffi- ist. Verfeinern wir die 
einbeschriebenen Polygone unbegrenzt, so strebt der Inhalt Tn+1 zunehmend
gegen T , wobei T  den Inhalt zwischen dem Bogen AB  und der Strecke AB  
bedeutet. Die Halbgeraden e " ( i  = 1, 2, . . . )  entfernen sich von e ' bis zur 
Grenzlage e" (Fig. 4), und gleichzeitig wird der Winkel zwischen e '  und e" 
zu: <(e', e " ) =  p -. Folglich können wir die Verschiebung einer Halbgeraden 
e entlang eines konvexen Kurvenbogens so definieren, daß die verschobene 
Halbgerade e" mit der die Strecke A B  entlang verschobenen Halbgeraden e' 
den Winkel von der Größe p- einschließt.

D e f in it io n . Unter der totalen Krümmung des Kurvenbogens A B  ver
stehen wir den Winkel Aa, der zwischen den Halbgeraden e  und ejg ein- 
geschloßen wird (Fig. 5), wo und es  die Tangenten der Kurve in den 
Punkten A bzw. B  sind, und e sich durch die Verschiebung von den
Bogen AB  entlang ergibt.

Fig. 6
Die Krümmung einer Kurve in ihrem Punkt P. Betrachten wir einen

konvexen Kurvenbogen PQ , dessen totale Krümmung Aa und dessen Bo
genlänge As ist. Die Krümmung dieser Kurve in P ist der Grenzwert des



292 I. VERMES

Quotienten 4 j ,  wenn der Punkt Q gegen P strebt (d.h. As gegen 0) (Fig. 
6). Wir setzen im folgenden voraus, daß dieser Grenzwert existiert:

K =  Hm
A i —>0 A s

Wir können voraussetzen, daß K  nicht verschwindet.

n
Die Krümmung eines Kreises vom Radius r. Sei der Mittelpunkt eines

Kreisbogens AB  mit O und der Zentriwinkel mit bezeichnet (Fig. 7). Die 
Tangente in B und die Sehne A B  schließen den Winkel ß ein. Für die totale
Krümmung A a des Bogens A B  erhalten wir

A a = ^  + 2ß,

wo T  den inhalt des Kreissegmentes bedeutet. Die Bogenlänge von A B  ist
A s1) r

As = fc^sh—.
k

Der Inhalt des Sektors O A B 2) ist:

Ti = fc2tf(ch£  -  1),

und der Inhalt des Dreieckes OAB  ergibt sich zu

^  + 2  - /? ) ]  } = fc2(2 /3 - ’i').

Damit ist der Inhalt T  des Kreissegmentes

D Vgl. [3] S. 89, [4] S. 99, [5] S. 184
2) Vgl. [3] S. 95, [4] S. 101, [5] S. 243
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und es gilt

r = T 1 - T 2 = k2 (tfchj-

Aö = 'kch—.
k

Insgesamt erhalten wir

Aq 'Pchr 1 , r
—-  = - --- .  ■■■ = —cth—. As fc^shj k k

Wenn As gegen 0 strebt (d. h. 'k —♦ 0), bleibt der Quotient unverändert,
weil er von 't  unabhängig ist. Die Krümmung K{r) des Kreises vom Radius 
r ist damit:

= i  cth£.

Die Krümmung des Horozykels (Grenzkreises). Betrachten wir den Horo-
zykelbogen AB. Bezeichne 2x = AB  und II(z) den zum Lote x gehörigen 
Parallelwinkel. Die Tangente in A und die Sehne AB  schließen den Winkel 
ß  ein (Fig. 8):

ß = l ~ n ( x ) .

Der Inhalt T\ des zur Sehne A B  gehörigen Grenzkreissektors bzw. die Bo
genlänge AB  können auf folgende Weise geschrieben werden:

Ti = kA B  3)

bzw.

AB — 2fcsh^. * 4> k

3) Vgl. [l] bzw. in [2] Bolyai 5 32. V. S. 32.
4) Vgl. [4] S. 106, [5] S. 187.
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Folglich ist der Inhalt T  des Grenzkreissegmentes:

T  = 2k2s h y - 2 k 2ß. 
k

Die totale Krümmung von A B  ist:

A a = ^ T  + 2/? = 2 s h |.

Weil As = 2Ärsh| besteht, so gibt sowohl der Quotient als auch sein 
Grenzwert (im Falle As —*• 0) den Wert jk Die Krümmung des Horozykels 
(in allen Punkten) wird

Die Krümmung eines Hyperzykels (einer Abstandslinie) vom Abstand l.
Zum Hyperzykelbogen AB  gehört eine Strecke A \B i  =  x auf der Grundlinie, 
und die Tangente in A schließt den Winkel ß mit der Sehne AB  ein, wobei
ü + ß  — |  besteht (Fig. 9). Die Bogenlänge As des Hyperzykelbogens A B  
ist

As = zch—. 5)
k

Als Inhalt T\ zwischen dem Bogen AB  und der zu ihm gehörigen Strecke 
Ai B i erhalten wir

Ti = kish-p.k
Der Inhalt T2 des Saccheri-schen Viereckes A B B 1 A 1 ist

T2 = k2(it — 2d).

Also ergibt sich der Inhalt T  des Hyperzykelsegmentes:

T  = T 1 -T - i  = k 1 ( | s h l - 2 i )  .

5) Vgl. [3] S. 95, [4] S. 119, [5] S. 184.
6) Vgl. [3] S. 95, [4] S. 120, [5] S. 243.
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Die totale Krümmung A a von AB  ist:

A a = ^  +  2 / 3 = |s h t

Daraus folgt sofort, daß der Wert und der Grenzwert (im Falle As —» 0) von 
übereinstimmen. Es ergibt sich für die Krümmung K (l) eines Hyper- 

zykels vom Abstand l (in allen Punkten):

Die Figur 10 zeigt die graphische Darstellung der Krümmungen der Kreise, 
des Horozykels und der Hyperzykeln.

Fig. 10
Der Schmiegzykel ebener Kurven. Betrachten wir eine Kurve g und ihre 

Punkte P, Q. Die Normale in P und die die Strecke PQ senkrecht hal
bierende Gerade bestimmen ein Strahlbüschel in der Ebene. Sei c der Zykel 
durch P, Q, der zu diesem Büschel gehört (Fig. 11). Dieser Zykel berührt 
die Kurve g. Setzen wir voraus, daß der Zykel c eine Grenzlage hat, falls Q 
gegen P  strebt. Diese Grenzlage wird Schmiegzykel der Kurve g im Punkt 
P  genannt.
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Fig. 11
W ir beweisen, daß die Krümmung der Kurve g und die Krümmung des 

Schmiegzykels übereinstimmen.
Verschieben wir die zu P  gehörige gemeinsame Tangente entlang der 

Kurve g bzw. des Zykels c in den Punkt Q: sind die erhaltenen Halbgeraden 
V bzw. t*. Bezeichnen t\ bzw. t\ die Tangenten von g bzw. c im Punkt Q. 
Es seien <(t', t\) = A a, <(f*, ij) = Aß, und seien die Längen der Bogen
PQ  von g bzw. c mit As bzw, Aa bezeichnet. Falls Q gegen P strebt, so 
gilt A s —> 0 und A a —> 0, und auch der Winkel von und t\ strebt gegen 0, 
weil sowohl der Winkel von t\ und PQ als auch der Winkel von t\ und PQ 
gegen 0 strebt. Wenn Q —* P  strebt, so strebt sowohl der Inhalt zwischen 
der Sehne PQ und der Kurve g als auch der Inhalt zwischen der Sehne PQ 
und dem Zykel c gegen 0, folglich wird der Inhalt zwischen g und c, und 
der Winkel von t' und t* beliebig klein. Daraus folgt, daß die Abweichung 
zwischen A a und A ß  beliebig klein wird, und so ^  gegen 1 strebt:

r  Aq 1 lim 1 •
Q -> P  Aß

Weil
Aa PQ Aa 

M  ~ Aß A s PQ '
Acr

und lim -éA = 1 bzw. lim -577 = 1 bestehen, so ist 
Q —> p  q —>p

Aa
K n

lim = y t  = 1, q^ p M  Kc
A n  L

wo K g bzw. Kc die Krümmung von g bzw. c in P  bedeutet. Also ist K g =  K c, 
was zu beweisen war.
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SATURATION ORDERS OF SOME APPROXIMATION PROCESSES 
IN CERTAIN BANACH SPACES

S. P. YADAV

1 . Introduction

1 .1  Some Banach spaces of functions. We write X , to mean the space 
C[—1,1] of all continuous functions, which is a Banach space if the norm is 
given by

(1.1.1) ||/ | |y =C7= max If ( x )I
— 1 SxS1

or the spaces Lp (1 S=p< oo) with the weight function

(1.1.2) p(">0)(0) = (sin0/2)2a+1(cos0/2)2̂+1, (a>/3>-l/2)
(a: = cos#), which are Banach spaces if endowed with the norms

(1.1.3) ii/i\ x . u * { j  i/(co
o

Again, X  — L°° is a Banach space of functions if the norm is given by

(1.1.4) ||/||oo=ess sup |/(cosö)|, (z = cos0)
0 < 0 < 7 T

and also X  = M  the space of all regular finite Borel measures on [—1,1] is 
Banach space with the norm

7T

(1.1.5) IHIa/ = J  |d/x(cos0)|.
o

1980 Mathematics Subject Classifications (1985 Revision). Primary 41A40; Secondary 
41A65, 41A25.

Key words and phrases. Saturation orders, approximation method, Jacobi polynomi
als, convolution, generalized translates.

Akadémiai Kiadó, Budapest
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W ith f  6 X  (= C or Zp (1 < p < oo)) we associate the Fourier-Jacobi expan
sion

OO

(1.1.6) f(cosO) ~  £  r ( n ) u ^ R ^ \ c o s 6 ) ,
n=0

where the Fourier-Jacobi transforms /~ (n ) are defined by

(1.1.7)

such tha t

r ( n ) =  /  f(cos6)R(na’ßXcos0)p(a’f3X0)d9 
o

^"’̂ (cos 0) d= p ( ° ’ßX cos 6) / /»^(l)

(1 .1 .8 )  J  Rla’ßXcoSe ) R t ßX ^ s e ) p ^ ’ßXe)d9 = 6nm{J na’ßX - X
o

6nm being the Kronecker delta and P^ß'^Xcosö) the Jacobi polynomial of 
degree n and order (a ,ß ) (see Szegő [7]) and

LO
(1.1.9)

a ß) (2n +  a  + /3 + l) r (n  -(- a  -f /? -f l ) r (n  + a  4- 1)
1 ’ ~  r ( n  +  ß  +  l ) r ( n  +  l ) r ( a  +  l ) r ( a  +  1 )

n2cr+l

[F(a + l)P
(l + 0 ( l / n ) ) t f n2o+1P(n)

(definition of i(n )) .

1.2 Convolution structure for certain matrix transforms. Generalized 
translate of /  with expansion (1.1.6) is defined (see [1]) as T ^ f  with expansion

OO

(1 .2 .1 ) T*/(cos 0 ) ~ Y  /~(n)wji"’/3)P!"’/3)(cos 6 ) R ^ ’ß X c o s  <f>).

n=0
It is known that T is a positive operator for a  > ß  ^ —1/2 and has operator 
norm 1 (see [6]). Convolution structure introduced by Askey and Wainger 
[1] is given as

7T

(1.2.2) ( / i * / 2)(cos0) =  J  T<t>f l {cosO)h{cos<t>)p(a’ßX<t>)d(t>
o

where the binary operation * (called convolution) is commutative, associative

(1.2.3) H /* i7 lU < ||/||i||fflU , f e L X g e x

MAGYAR
-TUDOMÁNYOS AKAOÉMIA 

4<ÖNYVTÁftA
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(1.2.4) ( f  * g r (n )  = f , g € X .

Also we have (see [2] and [6])

R ^ 'ß\c o s 9 )R ^ ’ß\co s  <f>) =

(1.2.5)

= J  R ^ 'ß\cosxp)K(cos9,cos<p, cos xp)P^a’ß\xp) dtp, 
o

where K(cos0, cos <f>, cos iß) is a symmetric function in 6, <p, xp and is positive 
for a > ß  > —1/2, and

7T

(1.2.6) /  /i (cos 9, cos <f>, cos ip )P ^ ’ß\xP)dxP= 1.
0

Thus the generalized translate of f(cosO) 6 L 1 has the form

T+f (cos 9) = /(cos 0, cos <f>) =

(1 -2 .7 )

= J  /(cos xp)K(cos9, cos <̂>, cos xp)P^a'ß\xp) dip 
o

with the Fourier-Jacobi expansion given by (1.1.6). If we denote the partial 
sum of (1.1.6) by sn(f,c o s6 ,X )  then by (1.2.5) and (1.2.6),

sn(f, cos 9 , X)  — f(cos6) =

" }
(1.2.8) = ] j r  / (/(cos <p)-f (cos 0 ) ) J “’t3'>R[ta’ßXcos 0)R[a’ß\cos 4>)P̂ a'ß\<t>)d<p=

7T
= y  [T0/(cos 0) -  /(cos 0)]LnÄ(,a+1^(co s  xp)p(a'ß\xp) dtp 

0
(see [8]), where

r r (n  +  a  +  /? +  2 ) ia+u3)m  =  Q +  l  (q+ un
(1.2.9) " T(a + l)T(n + ß + l )  " V ; 2n + a  + /? + 2 n

= n2o+2{l + 0 ( n -1 )} =f u2a+2An
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so th a t Ln is positive slowly varying function of n (see Bavinck [2]). We 
consider matrices ((An,k)) with A„)0 = 1 or ((AA,,,*)), AA„,jt = \ n>k -  An>jt+i,
n
"Y A A „fc = 1, attributing them primary and secondary matrices, respec- 
fc=°
tively. Mapping A : {.s„} —> {cr„} being linear and an endomorphism in a 
sequence space is a transformation from X  to X  given by

n
cr̂ A)( / ,  cos 9, X )  -  AA„)fc sk(f ,  cos 9, X) .

k = 0

Thus, by (1.2.7),

7T
anA\ f i  cos 9 , X ) ~  f(ct>s9) =

(1.2.10) = J  P V /O cos 9) — /(cos 0)]Ä^Ai(cos dip —
0

= ( /  * A'£A))(cos 6) -  /(cos 9),

where

(1.2.11) K ^ \ c o s ^ )  =f K^A\ip ) = ^ 2  AA„,jtXfc^“+1,/3)(c°s ^ )
k = 0

(for details see [8]).
It may be remarked that primary and secondary lower triangular m atri

ces ((An,fc)) and ((AAn>fc)) are interconnected in the sense that any concrete 
example of one reveals the other. Most of the summability kernels and ap
proximation kernels are defined by ((AAnifc)). In general, for the m atrix 
( ( A n , k ) )  its (n ,k )-th element is

fc-i
1 k <n,

i/=0
0, k > n.

Some interesting and commonly known matrices are given by

(1.2.13) (i) AA„,fc = <Í i / ( n + 1)> 
l 0,

k ^ n  
k>  n,

(used for (C, l)-mean)

(1.2.14) (ii) AAn,fc = <|' C l / # ,  
0,

k <n  
k > n,

(used for (C, /r)-mean)

( 1.2 . 12) A n , k  =
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(1.2.15) (iii) AA _ /  Pn n,k — S
- k / P n, k < n

0 , k > n,
n

Pn = Pj/ 7̂  0 are real or complex numbers

(used for (N , P„)-mean)

i/=0

l
(1.2.16)

(iv) AA„,*=<! (fc+1) E j r r
, k ^ n

j=o (used for (Ä ,logn, l)-mean)
0, k >  n,

{1 k Tt
’ (used for identity transformation)

0, k yt n,
and there are many matrices which fall under the generality of our work.
Some other examples are
(1.2.18)

(vi) +
l  0, k > to,and

(1.2.19) (vii) AA„)fc = < j= 0

0, k > n.
We notice that matrices ((AA«,*)) whose (n, fc)-th elements are given by

n
(1.2.13) to (1.2.20) are such that An>o = X) AA„fc = 1. Thus their correspond-

fc=o
ing primary forms ((Anj*)) are known by (1.2.12) which we use somewhere 
else for the characterization of functions which allow certain known orders.

1.3 Approximation processes on Banach spaces. Modulus of continuity 
in a Banach space X  through the concept of generalized translates has been 
adjudged by Bavinck [2] as

(1.3.1) u(ct>J,X)^u(<t>) = sup ||2 V /( .) - /(- )IU -
0<ij><<t>

Again if c G R + and
(1.3.2) u(<t>,f,X)ic<t>r
then /  is said to belong a Lipschitz space Lip(r, X), (0 < r ^ 2). If

(1-3-3) ll/llLiP(r,X) = ll/IU  + sup (nru ( n ~ l , f , X ) )
n£Z+

is a norm in Lip(r, X )  then this is a Banach space and Lip(r, I ) C I .  Re
cently, the author [8] gave the following results.
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T heorem A. Let ((AA,,^)) be a lower triangular matrix such that
n
53 AAn,k = 1. Let {AAn)fc} be non-negative and non-decreasing with respect 

k = 0
to k and

(1.3.4) i ^ k í n .
AAn,j

Then the saturation order for A-transform process of approximation to f  £ X  
through (1.1.6) is given by

1 1 / ( 0  -  * £ A ) ( / ,  ( 0 , * ) I U  =  1 1 / ( 0  -  ( / *  <A ) X  O I U  ^
(1.3.5)

£ A A nin_„(»-«/+ l )“+1/2I ( n - i / ) + n - 2̂ - 2)
i /=0

( a * ß > - l / 2 )

and Favard’s class or the saturation class F(X,  o ^ )  is a collection of all 
f  E  X  for which the right-hand side tends to zero as n —+ oo.

Since the non-negative and non-decreasing nature of {AAnijt} with
n
53 AAntk = 1 implies AAn,jt < l / ( n  — fc + 1), so we can avoid condition (1.3.4), 
Jfc=0
which is used in the proof of Q\ only (see [8]). Thus a modified form of The
orem A is

T h e o r e m  A l. Let ((AA„tjt)) be as in Theorem A. Then the A-transform 
process o f approximation is saturated with the order given by

11/(0 -  <4A,(/. (0, X)iu = 11/(0 -  (/* idA,)(0IU s

i/=0

and the saturation class or Favard’s class F(X,<j ^ )  is the collection of all 
f  E X  for which the right-hand side of (1.3.6) tends to zero as n-+ oo.

n  oo
Also 5 3  AArhk = 1. Thus the series 5 3  is of non-negative terms 

k=o ’ k=o
and converges. Consequently, by Pringsheim’s theorem, for every £ > 0 there 
exists a value of k, say no, such that noAA„if,0 < e, so that we have Qi < As 
(see the proof of Q\ in [8]). Thus a more refined form of Theorem A l is
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T heorem A2. Let ((AAnifc)) be a lower triangular matrix with 53 AAnifc
k=o

= 1. Let {(& + l ) ° +1/2AAn)fc} be non-negative and non-decreasing. Then the 
saturation order for A-process o f approximation in X  through (1.1.6) is given 
by

l l / ( )  -  <4A,( / .  (•), * ) i i x  s  n / (o  -  ( / .  a '<a>)(-)i u  s

k=0 i/=0

The saturation class F(X,ar(A)) is the collection of all f  € X  for which the 
right-hand side of (1.3.7) tends to zero as n —>oo.

Again if we restrict the modulus of continuity by

, { A ik  + l ) a-2^~3/2(n — k + l ) - " -1/2

U-3-8) » ( e Í t ) í  or
1 B(k  + l )Q,_2̂ _1/2(n — k 1)- " -3/2

(n large enough, k = 0 ,1 ,2 ,. . . ;  a > ß >  —1/2), then we have

T heorem B. Lei {AAnijt} be given as in Theorem A and let (1.3.8) be 
satisfied. Then

l l / ( 0 -o < A|( / , ( 0 , x ) |u <
(1.3.9)

S  a ( £  £  A W .  -  - + 1  r ' ^ c  - . ) )
jt=0 ' ' i/=0

and the saturation classes are given as in the previous cases. 

R emark  1.

j  |Ä'iA)(ö)|p M \ 0 )  d0 > An log n (AAn,n)x
0

x /  |^ A : 2“+1(logit)-1L(A:)4“+1’/3)(cos0)|R("-^(0)d0 
o *»'

> Anlogn(A A n>n), (0 g r/ < 77 ^ n).

(Appearance of rj, rj' depend upon AAn)fc. Thus the choice of ((AAn)jt)) may
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make the integral on the right-hand side to have a lower bound B  > 0.)

> An~a+1/2na+1/2 log n (AAn,„) ^
n k

(1.3.10) > A ^ ( k  + l)~ “+3/2 A A - 1/ + l ) “+1/2i ( n  -  */) >
jfc=o i /=0

k
E  a w -  - . + i r +1/2n »  - »)

(for some /  € X), i.e. there exists non-trivial element for which the inequali
ties are reversed. This exhibits the saturation property (see [5], p. 88) if the 
order tends to zero as n —» oo.

The following corollary of Theorem A is noteworthy. If we denote (C, 1)- 
mean of (1.1.6) by 5*(/, cos0 ,X ) then the (C, l)-transform defined by the 
m atrix (1.2.13) has the following estimate:

C o r o l l a r y  1. For the series (1.1.6), a > /?> —1/2

(1.3.11) 11/(0 - S \ U Á - \ X ) \ \ x < A n a- ^ Y
k=0

u>(l/(k + 1))
(fc +  l ) l / 2 + a

(here we write n~a 2/3 3/ 2 =  0 (1 ) and notice that (1.3.4) is satisfied).
Condition (1.3.4) is necessary to avoid identity transformation (AAn>fc = 

= 0, k ^  ra; = 1, k — n), for

(1.3.12)
AAnifc _  0 
AAn,t “ O’

i<  k <n

is unwanted which arises in Theorems A and B. However, this identity trans
formation is applicable in A l, A2 though then we get only estimates for the 
partial sums. Also the restriction (1.3.4) is not quite superfluous as the proof 
suggests.

From Theorem A1 or A2 we conclude by substituting AAn)jt = 1 for n = k 
and zero otherwise

(1.3.13) \\Sn( f , ( - ) ,X) \ \ x <
Ana+1/2, a  > —1/2, 
A logn ,a  = -1 /2 ,

where S n( f , ( - ) , X)  is the partial sum of (1.1.6) associated with any / E X .
Our other theorem in [8] along with Theorems A and B is also inter

esting one. If we consider a lower triangular matrix ((AAn>fc)) with An)o =
n

= Y) AA„tfc — 1 then, summing by parts, using A„jn+i = A„jn+2 = . . .  = 0, we 
Jt=o
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have, from (1.2.10)

(1.3.14)

ct̂ a ) ( / ,  c o s 0 , X )  -  / ( COS0) =

= A2A„,fc(A: + 1 cos 0, X ) -  /(cos 0)},
k=0

and (1.3.11) yields
T heorem C. We have, for a > ß > - 1/2

(1.3.15)

1 1 / ( 0  -  < 4 A , ( / , ( - ) . x ) l l x  S  a ( £  | A  £
fc=0 i/=0

0> ( l/( l /+ l) ) \
(J/+ 1)1/2+« ;•

2. Some new processes of approximation

2.1 Statement of results to be proved. We have in mind that the structure 
given by (1.2.10) defines approximation processes for an /  £ X  when {AA,,^} 
or {{k+ l)a+1/2AA„,jt} are non-negative and non-decreasing. Here we are 
interested in probing the other aspects, too, i.e. what does it happen when 
{(k+ l )Q+1/2AAnJt} is non-negative and non-increasing for 0 ^ k < n? To 
this end we prove

T heorem 1. Let ((AAnjt)) be a lower triangular matrix such that
n

53 AAn)1/ = 1 and let {(& + l ) a+1/2AAn)fc} be non-negative and non-increas-
i/=0
ing for 0 ^ k < n and

( 2 . 1. 1)
AA n,fc
AAn,.

< y4n“+1/2, (*, k ) <| n,

Then the saturation order for the A-transform process of approximation to 
f  € X  through (1.1.6) is given by

(2.1.2)
1 1 / ( 0 - < 4 A , ( / . ( - ) . * ) l l x <  

r " ( > / ( * + i ) )  ‘s a( E  X > +> +»— •)

for a > ß >  —1/2. The saturation class or Favard’s class F ( X , o (A)) is the 
collection of all f  £ X , for which the right-hand side o / (2.1.2) tends to zero 
as n —► oo.
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Further, if there exists M  (an absolute constant) such that for n large 
enough,
(2.1.3) w ( l/n )> M n " 2'5- 2,
then we have

T heorem 2. Let ((AA,,^)) be as in Theorem 1 and let (2.1.3) be satis
fied. Then Theorem 1 holds with

( 2 1 '4) S A ( ±  ^ 5 ^  £ ( , +
k = 0  '  ‘ i/—0

(a = ß =  — 1/2/, 1Ti place o f (2.1.2).
R emark 2. Condition (2.1.1) though very lighter in the sense that the 

ratio is allowed to be infinite with the order na+1l2, is strict in the sense 
that it does not permit to use identity transformation (i.e. AAn jfc = 0 (for 

k) and = 1 (for n = k )), or a sequence with some terms zero. Changing 
our arguments a little we fill up the gap and find

T heorem 3. Let ((AAn>fc)), (n — 0 ,1 ,. . . ,  k = 0 ,1 ,2 , . . . )  be a lower tri-
n

angular matrix with 53 AAn>1/ = 1 and the sequence {(& + l ) a+1/2AAnifc} be
I/—0

non-negative non-increasing for  0 < k < n. Then A-transform processes of 
approximation of f  through (1.1.6) have an order estimate

(2.1.5) < . / 'y '  ^ (l/(fc  + 1 ))  
= ' Í 3  (* + 1)3/2+”

X )  A A ^ + l  )a+ll2L{o)+n-2ß- 2)
u=0

or if  (2.1.3) is satisfied, then

( 2 . 1 .6 )
a;(l/(fc + l))
(k +  l ) “ + 3 / 2

k
£  AAn,,( i/ + l ) a+1/2F(I/)) .
t/=0

A is independent of f .  The orders in (2.1.5), (2.1.6) exhibit the property 
of saturation order if these orders tend to zero as n oo. The respective 
saturation class or Favard’s class F(X,  a (A)) is the collection of those f  £ X  
for which the corresponding order tends to zero.

R e m a r k  3. Since the non-increasingness of {(/: + l)a+1/2AAnijt}, (a  > 
^ —1/2, 0 ^ k ^ n) does not allow anyone to suppose that {AAn)fc} is non- 
decreasing. Thus a .•onclusion similar to (1.3.6) is not possible in these 
processes.

It may be noted that a corollary similar to (1.3.11) does not hold for all 
a  except a = —1/2 which is not negligible at all. Thus we have by (2.1.2)
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Corollary 2. Let S„(f ,  cosd, X )  be (C,l)-transform of (1.1.6). Then 
for a = ß = — 1/2;

(2.1.7)
t ó / .  (•). a ) -  m u  s a ( ±  £  a a „ , + » - ' ) <

n

< A n - '( X ;w ( l / ( *  +  l)) +  0 ( l ) ) .

Corresponding result for (2.1.4) also holds by putting AA„iIy = l / ( n  + 1) 
for v £ n and zero otherwise, and leads Theorem C in the present case a = 
= ß = —1/2 as well, i.e. if u>(l/ra) ^ M n ~1 then from (2.1.4) for a  = ß = —1/2

n

(2.1.8) ||/ (0  -  £ > (/,(0 ,* ) IU  ^ A n -1 ( X > ( l / ( *  + 1))).
k —0

Thus for a  = ß = —1/2 (Chebyshev polynomial of first kind) and any se
quence {AAn>fc} arising out of lower triangular matrix ((AAn>fc)) with
n
^2 A A„tk = 1, we have 
k-o

(2.1.9) ||/( .)  -  <4A)( / .(9 ,X )l |jr  < a { J 2  |A2A„j,| J > ( l / ( * + 1)))
k=0 */=0

(by using (1.3.14)).
An appealing consequence of Theorems 1 and 2 is that now we can use the 

matrix (1.2.16) for —1/2 < a ^ 1/2 which gives (Ä, logn, l)-mean of Jacobi 
series. Moreover, the case c n >ß >—1/2, — 1/2 íí a  ^ 1/2 covers the important 
polynomials such as Chebyshev, Legendre, and ultraspherical.

Furthermore, the following concrete matrix leads a process of strong 
approximation for / €  X  through (1.1.6)

(2 .1.10) AAn>fc = < (*+!)" ZöTTFi—O
0,

k ^ n, 

k > n

when p > a + 1/2 and the saturation orders for this process are given by
(2.1.2), (2.1.4), (2.1.5) and (2.1.6).

2.2 Results to be used in the proof. We shall need the following results 
to prove our theorems.
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LEMMA 1. Let {(& +  l ) a + 1 / 2A A nifc} be non-negative non-increasing for 
0 < k ^ n ,  then for 0 < a < 6 < oo, 0 <t <i r  and for every n,

( 2 .2 . 1) | £ V A A „ , fc(fc +  i ) “ + i / V fct| ^  A Y ,  A A ntk(k +  l )a+1' 2
a k —O

where r  is the integral part o f l / t .
P ro o f . If t ^ b, we have

b

| £ A A n>*(* + l ) “+1/ V ‘kt

i k t

where

< AXn,k(k + i ) a+1/2e,fct| + |]T  AAn,fc(fc +  l ) a+1/V
a r

= /i  + / 2 (say),

h ú  ^ 2  I AAfi,fc(^ + 1)“+1/2| (for |e,fct| =  1)
a

T

< \^ 2  AA„jt(fc+ i)° + 1/ 2 (for all terms are non-negative),
k=0

and

h  < AAn Tr a+1/ 2 max V  eikt
T < p < p ' < b  ^

< A t {AAnjrr " +1/2} <

< A £  AA„,fc(A: +  1)“+1/2, (as {AA„,*(A: +  1)Q+1/2} \ ) .
fc=o

Thus (2.2.1) holds. 
Again, if r  > b

^ A A n>jt(fc + l)Q+1/V *
a

ú | £  AAnifc(fc +  1)“ +1/ V fct| + AAn)fc(A; +  l ) a+1/2e

< A ^ A A n,fc(A: + l)“+1/ 2
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(as above in I\) . □
Lemma 2. Ifu((f>) is a non-negative real-valued function of<f>£ [0,7r] and 

for every £ > 0, </>£u;(<̂ ) is non-decreasing and tends to zero as 4> —► 0 then

(2.2.2a)

n 20 2w (l/n) ^  AAniJ/(i/ + 1 )°+1/2I(i/) ^
t/=0

for the non-negative sequence {AAn)fc}, 0 < k ^ n. In particular, (2.2.2a) 
holds for defined by (1.3.1).

//{(Jt + l ) a+1/2AAn,fc} is non-negative non-increasing with respect to k, 

0 <;k<n,  £  AAn,fc$ A ^ O ,  a > /3 > —1/2, then
k=0

(2.2.2b) u ( l /n )<
k=0

u ( l / ( k + l ) )  
( k +  1)3/2+«

k
5^(*/ + l)a+1/2AAnil/L(i/)
i/=0

/or a// positive integers n.
Further if (2.1.3) is satisfied then

(2.2.3) Í  A £  | >  + 1 „ .„ if .

/or n large enough.
PROOF. Proof of (2.2.2a) is a crystallized form of the proof of (3.9) in 

[8]. Also

(L(v)  = 1 + 0((i /+ l ) -1 ) = 0(1))-
n

> ( l /A)u(l /n) ^2 A *n,k = Au(l /n)
k=0

(this proves (2.2.2b))

= Aco(l/n)n2̂ +2n-2^-2 ^ n-2^-2 (see (2.1.3)).
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This proves (2.2.3) in persuance of our convention that A is not the same at 
each occurrence.

Besides these lemmas many properties of Jacobi polynomials given in 
Szegő [7] are used. An im portant formula of Hilb’s type is extracted as 
follows (see Bingham [4]).

For C / n ^ O  ^ x — C/ n,  where n is large enough, a ^  ß ^ —1/2,

(2.2.4)
w(a,/3)Ä(a,/3)(c o s0) =

2 3 / 2

-na+1' \  s in0/2)-“- 1/2x
7r1/2r ( a  + 1) 

x(cos 0 /2 )- ^-1/2 cos{n0 +  (a  + ß + 1)0/2 }L(n)

where L(n)  = 1 + 0 ( l /n ) .

P r o o f  of  T h eo r em  1. From (1.2.10)

7r

0
> r / ( n + l )  j r - i r / ( n + l )  ir

-  j  A J  + J  = P + Q + R (say).

But

(2 .2 .5)

f r / ( n + l )  i r - i r / ( n + l )

n / ( n + l )

P< J  u ( r P , f , X ) \ K ^ ) \ P ^ ’̂ ) d ^
0

n

^  Au(x/ (n  + l))(n  + l ) - 2 « “ 2 ^  AAn,kLk
k—0

(Lk =  k2a+1 L(k)) see (1.2.8)

(by Lemma 2, (2.2.2a) or (2.2.2b)).
Let no be a number such that for n > n0, the order given by (2.2.4) holds,
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then

r - i r / ( n + l )

/' ' ' n0
^ J , X ) \ ^ A \ n<kLkR[a+1’ß\ c o s ^ ) \ p ^ \ r P )

fc=o
d t p

j r / ( n + l )  

* ■ - i r / ( n + l )/ »•
o;(V’, / ,X ) | 5 ^  AA„)fcZfc4 a+1’/3)(cosV’) |^ (a’/3)( ^ ) ^

I___ I i*/("+l) f c = n o + l

= Qi + Q 2 (say)

such that

/ n p

V>W+1w (V >,/,*)53A A „t*<ty
fc=o*/(n+l) 

*Y(*+1)
^  a \  í  , 2 o r + l  t I \  j  I +  l ) A A „ f c ( A :  +  1 ) a + l / 2 L ( k )<An„AA„i0g  J  *

V(fc+2)

for AA„)fc/ 0 ,  fc = 0 ,1 ,2 ,... ,n) (see (2.1.1)).

<>1AA „ V u;(1/ ( fc + 1)) (fc + 1) 3/2 ° V " a A ii/ + i r +1/2Lfi/l
^  (^ + l)3/2+a(^ + l )Q+3/2AAn,fcî  ".-( + ) ( )

fc=0 (* + i ) 3/2+a
k

x 5 3 A A n> + i r + i/2i ( i,)
i /=0

(for {(* + i)« + i/2AA„,fc} \  => ! /{ ( / ;  + i r ^ A X n<k} / )

(2.2.6) < 4 5 3  * / ^  Y , A \ nA v + i r +1/2L(v) (by (2.1. !))•
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Again for a  > ß > -1 /2

5 r-7 r/(n + l)

23/2
02 = ^ i7 2 f(^ T T jx

ka+3 / 2 L(k)í  / ( J  ^  A1 ka+3 ' 2 L(k)  / ,  , a  + /? + 2 \
/  AA"'t  2* + a  +  ß  +  2 COS ( * » + 2 V

7 r / ( n + l ) f c = n 0 +  l

X
/ \jj\oc-1/2/ fp\ 0+1/2
l s in 2J ( “ 0

T , n  [i/V-1
^ A /  £  AAb.„(i/ + i r +1/2i( i/)  (by (2.2.1))

. / ,,, ^  i/=o
7 r / ( n + l )

(for the integrand is positive)

(2.2.7)

g A
7r/(fc+l)

E  /
fc=o „ r , .V/(fc+2)

(̂V>)
•01/2 «

[1/-A]
AABi„(i/ + \)a+l' 2 L{v)

i/= 0

<

n

s ^ E
k= 0

u>(l/(k + 1)) 
(k + 1)3/2+»

k
$ >  + l  )“+1/2AA„,1/L (0 .
i/=0

Again

But

where

7T

Ä  ^ J  u(ip)\K^A\ip)\P^a'ß\rp)dip.
7T -ff/(n+ l)

K ^ i t p )  = F(costp) -  AA„ifcifci?[a+1,/3)(cos V») =
fc=0

= ^  &(fc)fc_1w[a+1’̂ i ^ a+1,/^(cos V») + &(0),
fc=i

&(*) =

(q + l)AA„ifc
o I Q+/3+2 ’
Z “T fc

(q + 1)AA„|0
a  +  /3 +  2 ’

k > 0;

k = 0 .

Thus with an application of an argument ([3], pp. 785-86), we see that 
F(cos ip) is continuous in 0 < ip^ 7r (e.g. see the abstract of [3]). Thus for n
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large enough

( 2 .2.8 )

7T

R £ A  J  u;(V’) ^ 2a+1(7r -  V>)2/3+1 dV’ =

jr- ir /(n+l)

jr/(n+l)

=  A J  ip2()+1diP = A n - 2f3- 2.

Further argument similar to (1.3.10) holds and we conclude that (2.1.2) is 
saturation order, because

(2.2.9)

J  |tf<A)(V0|.P(“’/J)(V0 dTl>^Ana+3'2AA„,o >
o

(for some A > 0)

> a V ' ^(l/(fc + 1)) 
= j ^ ( f c  + l)a+3/2

h
^ A A n,1/(I/ + l)“+1/2L(i.)
t/=0

for some non-trivial f  E X . This proves Theorem 1.

R e m a r k  4. It may be remarked that our all these estimates are the 
orders of some strong approximation processes only when they tends to zero 
as n —► oo. And these orders become saturation orders if AA„ jt are (non-zero) 
positive for all n, k and the corresponding conditions are satisfied.

P r o o f  o f  T h e o r e m  2. The proof of this theorem follows on the lines 
of the proof of Theorem 1. But in the present case we use (2.2.3) of Lemma 2 
to get a single term in the right-hand side of (2.1.4).

P r o o f  of T h e o r e m  3. If we do not use the condition (2.1.1) which is 
only used in the proof of Qi, we remember that

n0 no
Qi Í  a  £  AAn,fc < A £ ( f c  + l ) “+1/2AAn,*£(*;) <

k=0 ik=0
k

(2.2.10) S  A  £  í > +  i r +1/2AA„,„L(^) S

S *  t  X >  + 1 (n > »„)

where A depends upon / .  With this the proofs of Theorem 1, 2 furnishes 
the proofs of (2.1.5) and (2.1.6). □
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R e m a r k  5. From Theorems 1, 2 and 3 and the theorems of [8] we con
clude tha t the monotonicity of {(& +  l ) a+1/2AAn)jt} (a  ^ ß  ^ —1/2) generates 
the processes of strong approximation in X  and the orders obtained are sat
uration orders.

REFERENCES

[1] A sk ey , R. and Wainger , S., A convolution structure for Jacobi series, Amer. J. Math.
91 (1969), 463-485. MR 41#8728

[2] B avinck, H., Approximation processes for Fourier-Jacobi expansions, Applicable Anal.
5 (1976), 293-312. MR 54#3243

[3] B avinck, H., A special class of Jacobi series and some applications, J. Math. Anal.
Appl. 37 (1972), 767-797. MR 46#7589

[4] B ingham , N. H., Tauberian theorems for Jacobi series, Proc. London Math. Soc. (3)
36 (1978), 285-309. MR 58#29795

[5] B utzer  P. L. sind B erens, H., Semi-groups of operators and approximation, Die
Grundlehren der mathematischen Wissenschaften, Bd. 145, Springer-Verlag, 
New York, 1967. MR 37#5588

[6] G a sper , G., Positivity and the convolution structure for Jacobi series, Ann. of Math.
(2) 93 (1971), 112-118. MR 44#1852

[7] Szeg ő , G., Orthogonal polynomials, Third edition, American Mathematical Society
Colloquium Publications, Vol. 23, American Mathematical Society, Provi
dence, R. I., 1967. MR 46#9631

[8] Yadav, S. P., On the saturation order of approximation processes involving Jacobi
polynomials, J. Approx. Theory 58 (1989), 36-49. MR 91c:41065

(Received February 5, 1990)

departm ent  of mathematics
G O V E R N M E N T  M AHARAJA C O L L E G E  
A .P .S .  U N IV E R S IT Y , REWA 
IN D —4 7 1  0 0 1  CH H A TA RPU R, M .P . 
IN D IA



Studio Scientiarum  M athematicarum Hungarica 28 (1993), 317-320

ON THE ACTION OF p'-AUTOMORPHISMS ON p-GROUPS 
HAVING SOFT SUBGROUPS

L. HÉTHELYI

In this paper we shall derive some properties of the action of p'-auto- 
morphisms on p-groups with soft subgroups. The notion of soft subgroup 
was introduced in [1] where the basic properties of p-groups having soft 
subgroups were established. In this paper we show that the action of a p'- 
group on a p-group with soft subgroups is very similar to tha t of the action 
of a p'-group acting on a p-group generated by two elements. We establish 
some general properties of the action of p'-automorphism on p-groups and 
then investigate them in the case of p-groups with soft subgroups.

P roposition 1. Suppose G is a p-group, A ^A ut(G ), (p, |A|) = 1 and 
G' ^ C g(A). Then A acts trivially on G /Z 2 (G).

P roof. Let C2 = Ca (A), C = Cg(G'). Then C2 < G and cl(C) ^ 2 
for C' < Z(C). As [G, G', A] = [G\ A,G]=  1 we have [A, G, G1] = 1 by the 
Three Subgroup Lemma. Thus [G,A] < C and [G, A\ = [C,A\. Let C\ = 
= [C,A]. Then Ci<G  and G = C1 C2. As [CU C2 ,A\ = [C2, A,Cj] = 1 we 
have [CU C2] = [A,Ci ,C 2] = 1 by the Three Subgroup Lemma. We now 
show that Ci 5í Z2(G).

It is easy to see that Z(C\)  < Z(G). Let a bar denote homomorphic 
images in G/Z(C\).  Then G = C i •C2, [Ci,C2] = 1 and so as Ci is abelian 
Ci ^  Z(G). Thus Ci ^ Z 2 (G) which proves the proposition. Q.E.D.

Corollary 1. Suppose G is a p-group, A <A ut(G ), (p, |A|) =  1. If A 
acts trivially on G' • Z2 (G) then A is trivial on G.

Corollary 2. Suppose G is a p-group, cl(G) > 3, A ^ A ut(G), (p, | A|)= 
= 1. If  A acts trivially on Zn(G) (where Zn{G) is the last proper term of the 
upper central series of G) then A is trivial on G.

Corollary 3. Suppose G is a p-group generated by two elements, and 
that cl (G) ^ 3. Suppose A < Aut(G), (p, |A|) = 1. If A acts trivially on G' 
then A is trivial on G.

P roof. As cl (G) > 3, Z2 {G) <  $(G). Then A is trivial on G /$ (G ), so 
A is trivial on G. Q.E.D.

We now prove a partial converse of Proposition 1.

1991 Mathematics Subject Classifications. Primary 20D15; Secondary 20D45.
Key words and phrases. Group, automorphism, maximal abelian group, commutator.
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P roposition 2. Suppose G is a p-group, A ^A u t(G ), (p, |A|) = 1. I f  A 
acts trivially on G/Z 2 (G) then A  acts trivially on K^{G).

P roof. Let the bar denote homomorphic images in G/Z(G). Then 
[G, A] < Z{G) and thus [G, A] =  1 so [G', A] ^ Z(G)  and [G', A, G] = 1 follows. 
Moreover, [A, G, Gx] = 1. Thus we have [G, G', A ]  = 1 by the Three Subgroup 
Lemma. Q.E.D.

We shall now investigate some of the action of p'-automorphisms of a 
p-group with soft subgroups.

L emma 1. Suppose G is a p-group, B is a soft subgroup of G of index 
at least p2. Let R(G) = G' ■ Z(JVG(B)). Then Z 2 {G) is abelian and R{G) < 
< C g (Z2(G)).

P roof. If Bx is any soft subgroup of G of index at least p2 then Z2(G)^ 
< N g ( B i ). In particular, if M  is the unique maximal subgroup of G con
taining B  then Z2 (G) < Z 2 (M )  by [1]. Moreover, |Z2(G) • Z ( M ) : Z ( M )| < p 
which shows that Z2(G) <, R (G )r \N a(B). As Z 2 (G) <. Cg{G')) and Z2(G) ^ 
< Cg {Z{N g{B))) we have Z2(G) < Z(A(G)). Q.E.D.

P roposition 3. Suppose G is a p-group, B is a soft subgroup of G of in
dex at least p2. Suppose A  < Aut(G) acting trivially on R(G) = 
= G' • Z ( N g(B)). Then A  is trivial on G.

P r o o f . The proposition follows from Proposition 1 and Lemma 1. Q.E.D.

P roposition 4. Suppose G is a p-group, B  is a soft subgroup of G of 
index at least p2. Let R(G)  =  G' • Z(NG(B)). Then either Cg(R(G)) < R(G) 
or C g (R(G))  is of index p in G containing R(G).

P roof. Suppose Cg(R (G )) ^  A(G). Let M  be the unique maximal 
subgroup of G containing B.  If Cg(A(G)) £ M  then there is an element g 
in B \  fi(G) such that g G Gg (A(G)). So R(G) < B  and then R(G) < Z{M).  
Thus M '  = 1 which does not hold. So Cg(A(G)) ^  M .

In particular G' is abelian. Then G'-Z(M)  is a maximal abelian subgroup 
of M  contained in R(G) by Statement 3 of [2], However, both G' and Z{M)  
centralize R(G) which means that G' ■ Z(M) — R(G).  Q.E.D.

P roposition 5. Suppose G is a p-group and B  is a soft subgroup of G 
of index at least p2. Suppose A  < Aut(G) and (p, |A |)=  1 and that A acts 
trivially on G'. Then [G, A] ^  Z(G).

P roof. Let C = Gg(G '), and M  be the unique maximal subgroup con
taining B.  By the Three Subgroup Lemma we have [G, A] < C. Let C\ — 
= [G, A], C2 = Ca (A). If C'x =  1 then as [CX,C 2] =  1, Cx g Z{G) would 
follow. Thus we can suppose that C[ ^  1 and so C' ^  1 and so G % M  by 
Statement 3 of [2]. So C ■ B  = G and so G' ^  G, which means that G' is 
abelian and C C\M — G' ■ Z ( M ) .  Then C = G' • Z(M )(y )  for some y G G \  M .
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Thus C /Z (M )  • G' is cyclic and as G' < Z (C ), C /Z ( M ) is abelian so C  $ 
< Z(M).  As C[ í  1 but C H M  is abelian, Cx i  M  follows. Then C[ < G'. 
If G' /  C[ then [Gi/C[, A] < Ci/C[  and thus [C\,Ä\ < C\ which is not the 
case. So G' = C[ < Z{M).  So B <G which is a contradiction. Q.E.D.

C o r o l l a r y  5 .  Suppose G is a p-group, B is a soft subgroup of G of 
index at least p3. Let M  be the unique maximal subgroup of G containing 
B. Let the bar denote homomorphic images in G/Z(M).  Let A  <[ Aut(G), 
(p , |A |)= l .

If  A acts trivially on G', then A acts trivially on G.
P r o o f . By Proposition 5 A is trivial on G/Z(G). However, as |Z(G)| = 

= p, Z (G )< G '< $ (G ). Q.E.D.
P r o p o s i t i o n  6. Suppose G is a p-group, B is a soft subgroup of G of 

index at least p2. Let M  be the unique maximal subgroup of G containing B. 
Let 22(G) = G' • Z(N g(B)). Suppose A < Aut(G), (p, |A|) = 1 and that A is 
trivial on G/R(G).  Then [G, A] < Z{M).

P r o o f . We first prove that A  centralizes M '. As [G, A] < R(G), R(G)- 
■Ca(A) > [G, A] • Ca(A) = G. Thus CG{A)DM % R(G). So by Propositions 3 
and 4 in [2] there exists an element a of M  in CG(A) such that (a,ab)' = M'  
for any b e CG(A ) \  M.  Now [12(G), A] = [G, A] so [G, A] = [M, A]. Thus by 
Proposition 5 [G ,A ]<Z (M ). Q.E.D.

C o r o l l a r y  6 .  Suppose G is a p-group, B is a soft subgroup of B of 
index at least p3. Let M  be the unique maximal subgroup of G containing 
B. Let a bar denote homomorphic images in G/Z(M). Let A £ Aut(G), 
(p , |A |)= l.

If  A acts trivially on G/R(G ) then A acts trivially on G.

P r o o f . A is trivial on G / Z ( M ) by Proposition 6. So A is trivial on 
M ' . As \ Z ( M ) \ ^ p 2 and as \M' fl Z(M)\  > p, \[Z{M), A]| i? p. However, 
[Z{M),A]<G  so [Z(M),A] < Z(G ) < G' < $(G). Thus A is trivial on G. 
Q.E.D.

P r o p o s i t i o n  7 .  Suppose G is a p-group and B is a soft subgroup of G 
of index at least p2. Let M  be the unique maximal subgroup of G containing 
B. Let R(G) = G' ■ Z (N G(B)). Let N  be an abelian normal subgroup of G 
not contained in M . Then R(G) ■ N  is a characteristic subgroup of G of 
index p.

P r o o f . Let L = Z^{G) D G'. Then L < N  and both R(G)  and N  cen
tralizes L. As Z2(G) D R(G) > Z(G)  (1G', R(G) ■ N  is a proper subgroup of 
G. Moreover, N  D M  = N  fl R{G) and thus 12(G) • N  is of index p in G. Thus 
R(G) • N  is a characteristic subgroup of G of index p. Q.E.D.

Finally we shall examine the actions of p'-automorphisms on a p-group 
of maximal class.
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Lemma 2. Suppose G is a non-exceptional p-group of maximal class. 
Suppose A  < Aut(G), (p, |A|) =  1 and that A is trivial on Zi(G). Then A is 
trivial on G.

P r o o f . Let C = Cq(Z 2 {G)) and Cx =  [G, A]. As [A,Z2(G),G] =  
= [Z2(G ),G ,A ] = 1, Ci ^  C  by the Three Subgroup Lemma. Then C\ = 
= [G, A], Let C2 = Cq(A).  Then Cx • C2 = G and so we can assume that 
C\ % G '. Thus |G : Gi| =  p and C2 • G' ^ G is of maximal class. Also 
Z(G2 • G ') =  Z(G). Thus (c) X  A  acts on G' and the centralizer of (c) in 
G' is centralized by A  where c is an arbitrary element of G2 \  G'. Then by 
the Thompson Direct Product Lemma, A acts trivially on G' and then on G 
by Corollary 3. Q.E.D.

P r o p o sitio n  8. Suppose G is a p-group of maximal class of order at 
least p4. Let A ^ Aut(G), (p , |A |) = 1. If A acts trivially on Z^{G) then A is 
trivial on G.

P r o o f . Let G = G/Z(G).  Then G is a non-exceptional p-group of max
imal class. So the Proposition follows from Lemma 2. Q.E.D.
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ON THE ESTIMATE OF (xmin + xmax)/2. II 

I. JOÓ and S. SZABÓ

In [1] the estimate (a;min + 2;max)/2 has been investigated for symmetrical 
distributions. The aim of the present note is to extend these results for non- 
symmetrical case.

The following problem often occurs in the practice: we have to measure 
some quantity and the results of n independent measurements are x i , . . .  , xn 
(real numbers). Give a “good” approximation for the quantity considered, 
using the values x,-. Usually we consider n-1(xi + . . .  +  x n) as an approx
imation. Another possible approximation is, e.g. 2- 1 (x mjn + xmax), where 
^min := m in(x i,. . .  , i„ ) ,  xmax := m ax(x i,. . .  , xn). This approximation is 
very sensitive with respect to the errors, hence it is improbable that for 
n —► oo the exactness of the estimate increases. We have investigated this 
estimate in [1] for the case that x j , . . .  , x„ are the values of a symmetri
cal random variable and we have found that in some cases (e.g. for F(x) = 
= x + | ,  — I  < x < | ,  which is the special case of V  in [1], when ß — 7 = C9 = 
= 1,^ = 0, h — 1/2) this estimate is better than that of the arithmetic mean 
n -1(xi + . . .  +  x„). Here we investigate some cases, when x i , . . .  , xn are the 
values of a non-symmetrical random variable. We consider only some special 
non-symmetrical distribution. First we prove the following

T h e o r e m  A. Let F  be a distribution function on R such that F(x) =  0 
if x < 0, and 0 < F (x ) < 1  if x > 0. Suppose F is absolute continuous and 
denote /(x )  = F'(x). Fix 0 < b < 1. Then for the solution y of the equation

y
n J  [F(2 y — x) — F(x)]n_1/(x)dx = b

—  OO

we have
F(2y)=  ^ + O ( ö " )  + O (2y_max<2y/ ( 0 )  

where 0 < D < 1 is a fixed constant, independent of b and of n.
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P r o o f , (a) y > 0 because f ( x ) = 0 if x < 0. First we prove that y —* oo. 
Indeed, if 0 ^ yi < Í/2 then

yi V2
n J [F(2 y2 — x ) — F(x)]n~1 f(x)dx.

o o

If we suppose indirectly that y — 0 (1 ) then we obtain

y  o ( i )

b — n j  [F{2 y -  x) -  F(x ) ] n ~ 1 f ( x )d x  < n J  [F (0(1) — x) — F(x ) ] n ~ 1 f ( x )dx  
o o

0 ( 1 )

<n J  dn- 1 f(x)dx  = 0 (ndn- 1),
o

where 0 < d < 1 is a fixed constant. But b = 0 (ndn_1) is a contradiction.
(b) We shall show that

n  J  [F(2 y — x) — F(x)]n 1f(x)dx =  
o

= n / [ f ( 2 , ) - c i2 max  ̂ f ( t ) - F ( x )  f(x)dx + c2n(l -  F ( l))n_1,

0 < c i , c 2 < l ,  where instead of 1 in the upper bound of the last integral we 
can write arbitrary positive real number. According to y —> oo (n —>oo) we 
can assume y > 1, namely this holds for n > no- Obviously, we have for y > 1

y

o
i y

- n J  [F(2y-x) -F(x) ]n~1 f {x)dx  +  n J [F(2y-x) -F(x) ]n~1 f ( x ) dx - I i +I2, 
o 1

further
y y

I2= n j [ F( 2y  -  x )-F (x )]" -1 f {x)dx < nJ[ l -F( l ) ]n~1 f{x)dx < n ( l - F ( l ) ) n.
l l



THE ESTIMATE OF (xmi„+ x m»x)/2 323

According to the Lagrange inequality

F{2y) — F { 2 y -  x) < c \  max f ( t ) ,  (0 < x < 1)2y—l<t$2y

and summarizing our estimates we have

( 1 )

y

n J  [F(2 y -  x) -  F (x ) ]" '1 f ( x ) d x  =

0 
1

=n([F(2y)—C\ max f ( t ) — F ( x ) ] n ~ 1f ( x ) d x - \ - C 2 n ( l - F ( l) )n_1.J 2y-l<t<2y
0

(c) Now we give the desired estimate for y. From (1) we get 

y

b = n J [F(2y ~x)~ m r 1 f ( x ) d x  = [F(2 y) -  Cj ^ r n a x ^  /(<)]"-

— [ F ( 2 j / ) - F ( l ) - c i  max /(*)]” + c2n(l -  F (l))"  x.2y—1S íS 2y

Here
0 < F(2y) — F ( l)  — cj max f i t )  < B < 1 (n> ni) ,

2y—l<t<2y v ” ’
where B is a fixed constant and n\ is an effective constant. So we have 

F(2y) = V b{  1 + 0((1 -  F ( l) ) " -1) + 0 ( n - ' B ")) + 0 ( ^  m a x ^  /(*))

and Theorem A is proved.
R e m a r k  1. In the application we have to estimate y before we apply 

Theorem A, using the ideas of its proof. Namely, we saw that

y 1

n j  [F{2 y -  x) -  F(x)]n_1 f(x)dx  = n J  [F(2 y -  x) -  F(x)]n_1 f (x )dx+
0 0

+c2( n ( l - F ( l ) ) " - 1),

where
1 1

n j  [F(2 y -  x) -  F(x ) ] n ~ 1 f (x )dx  J  [F(2 y) -  F(x)]""1 f{x)dx  =
0 0
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= (F(2y))n -  (F(2y) -  F ( l ) )n,

hence
y

b = n j  [F(2y — x) — F ( x ) ] n ~ 1 f ( x )dx  ^ (F(2y))n + n (l -  F (l))" , 
o

consequently

(2) F(2y)></b + 0 ( ( l - F ( l ) ) n), n>  1.

Remark 2. Obviously, l / b =  1 + + 0(n  2) so in the case

max f ( t ) > c / n  (for some c > 0)
2y-l<t^2y

we have to modify the calculations in order to obtain better estimate. Let 
0 < £n —*• 0 (n -» oo), (we will choose it later) and consider the partition

y

n J  [F(2 y — x) -  F (x ) ] n ~ 1 f ( x )dx  = n J  [F(2 y -  x) — F(x ) ] n ~ 1 f (x )dx+
o o

y
+n j  [F(2y -  x) -  F (z )]" -1 f{x)dx = h  + / 2.

Obviously,

y
I 2 = n J  [F{2y -  x) -  F{x)]n~l f(x )dx  < (1 -  F(en))n,

F ( 2 y ) ~  F ( 2 y - x )  = c1en max /(f) , 0 < x < en, 0 < cx < 1,2y-e„^t<2y

consequently,

n J[F(2y — x) — F(a:)]n 1 f{x)dx — 
o

- n f [ F ( 2 y )~  cxsn max f { t ) -F (x ) ]n~l f{x)dx-\-c^(\-F(en))n,
J  2 y - e n < t < 2 y

( 3 )
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and hence 
v

b - n  i [ F ( 2 y - x ) ~  F(x)]n~1 f(x )dx  = [ F (2 y ) - c 1en max /(* )]" -
J  2y-e„St<2y
0

- c 4([l -  F(e„) -  Ci£n max /(*)]") + c3(l -  F(e„))n.\  2y-e„<i<2y /

Now choose e„ —> 0 so that if possible (1 — F(£„))n —> 0, further

£„ max f ( t )  = o(n~l )
2 y - c n <t<7y

be fullfilled. We obtain

T h e o r e m  B. Under the assumptions of Theorem A we have 

F(2y)=  \ft> + 0(en max /(*)) + 0 (n _1(l -  F(en))n).2y-e„ St<2y

The following theorem is true for probability distribution functions with 
finite and infinite support of density functions.

T h e o r e m  C. Suppose F is a probability distribution function such that 
F(x) = 0 for x < 0, F > 0 for x > 0 and F  is continuous at 0. Suppose 
0 < a(n ), ß(n) are monotone increasing sequences, tending to +oo arbitrarily 
slowly and suppose a(n) = o(n). Let en and 6 n be such that F(en) = a(n)/n,
H 6 n) = T O -  Then

(4) v ^ ( 1 + o (  n ;

(5)
/ / e- a (")> 

+ n )

P r o o f . Denote F  the smallest closed interval containing supp / .  We 
may suppose without loss of generality that in the case that supp /  is finite
F =  [0,1].

(i) The case F  =  [0,1].
(a) y > 0, because /(x )  = 0 if x < 0. First we prove that y < q < 1/2 is 

false, where q > 1/3 is an absolute constant. Indeed, if 0 ^ y\ < j/2 ^  1/2 then

Vl 1/2
n J[F(2yi  -  x) -  F(x)]”“ 1 f(x)dx < n J[F(2y2- x ) - F( x ) ] n~1 f(x)dx.  

o o
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If we suppose that y < q < 1/2 (q is an absolute constant, q > 1/3), then

y
b — n J  [F(2 y — x) — ,F(x)]n-1 f(x )dx  <? 

o

1/2

<n J  [F(2 q -  x) -  F(x)]n_1 f( x )dx  < 
o

1/2

<n J  [F{2 q ) - F { x ) ] n- X f ( x ) d x < 2 F n(2 q). 
o

But b < 2Fn(2q) is a contradiction.
(b) Let e„, Sn be such tha t 0 < 6 „ < en < 1/4, en —► 0. We will choose £„, 

6 n below.

f ( x ) d x = n
Sn cn y

0 Sn en

— I\ + I 2 + I 3  ■

Estimate I\\

I 1 = n J  [F(2y — x) -  F(x)]" 1 f(x )dx  ^ 
0

i n  J( l -F (x ) r1 
0

Estim ate I3 :

f(x)dx - 1 — ( l  — F ( in))"] .

y
h  = n j  [F (2 y -  x) -  F(x)]"-1 f ( x )dx  <

Cn
y

< n J  [1 -  E ( x ) ] " - 1 f(x)dx =  0(1 ) [1 -  F(£„)]"  .
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Estimate 12:

Cn Cn
I2=nJ[F(2y-x) -F(x) )n~1 f ( x ) dx>n  j  [ F ( 2 y - £ „ ) - F ( x ) ] " - 1 / ( x ) d x =

ön ön
= [F (2 y -  en) -  F(6n)]n -  [F (2 y -  e„ ) -  F (e„ )]n =

= r - ( 2 „ - £4 ( i - ? j g § L ) n +  o ( 1) [ i - F ( £„ ) r .

On the other hand

n J  [F(2y — x) — F(x)]n 1 f ( x )dx^n J  [F(2y -  6n) -  F(x)]n 1 f(x)dx  =

Summarizing the above estimates we obtain

6 > 0(1) [1 -  F (fB)]" + 0(1)[1 -  (1 -  F(i„))"]+
( 6)

further

(7)
b < 0(1) [1 -  F (£n)]" + 0(1)[1 -  (1 -  F(i„))"]+

Now choose en and 6 n. Let e„ and 6 n such that (1 -  F(en))n —> 0 as n —► +00 
and (1 — F(Sn))n -+ 1 as n —* +00. Because e„ —> 0, n —* +00, hence F(e„), 
F( 6 „) —* 0 as n —► +00. New let F(en) = a(n) /n ,  where 0 < a(n) tends to 
infinity arbitrarily slowly and a(n) = o(n), further F(6 n) = 1 /nß(n) ,  where 
0 < ß(n) tends to infinity arbitrarily slowly. Then

(1 -  F ( i „ ) f  =  ( l  -  2 M ) "  =  0 ( l ) e - “ W ,

) '  ■ “ ■

further
1
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F( Sn )
F ( 2 y - 6 n) Y  = 1 + 0 ( 1 )

1
ß(ny

namely, we have seen in (a) that for n > no(F,b) we have y > 1/4, hence 
F ( l / A ) < F ( 2 y - e n) < \ .

Using the above estimates we obtain from (6) and (7)

‘  =  + 0 ^ m +  ~ c" i 1 + o m W ) ) ’

further

t < 0(1 )«-<■> + 0 (  l ) ^ j  + f ” (2» - M ( l  + O ( l ) ^ j ) .

hence

+  0  + 0 ( ^ j ) )  Í  f ( 2S -  £").

* * * » - « •
(ii) The case F  = [0,oo]. y > 0 because f ( x ) = 0 if a; < 0. The same 

m ethod as in the proof of Theorem A gives that y —► +oo (n —*■ oo). After 
this we can repeat the proof of (i) hence we omit the details.

The proof of the Theorem is complete.

Applications

I. Consider the case f ( x )  = e lo«2;r/2: “lognormal density function”. 
It is well-known that

OO

J e~t2/2dt = e~x2 l 2 (x~x -  x - 3 + 0 (x~5)), x > 1.
X

Using this fact and taking into account that y —>+oo ( n —> oo) we get

log2y oo

F(2!,)=vb /  e ~'2 / 2 d , = 1 - 7 s  /

=  1 -
e — log2 2y/2 . I

^l°g 2 y

log 2y

( i ^ 2 i  + 0(loS"3!,))-
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On the other hand
^ = 1 + Iog6 + O ( ra_2).

We obtain from (2) without giving the details,

dog log n s.o g * a ^ ( 1 + 0 ( a s t » ) ) .
log n

Using this estimate we obtain, applying Theorem A,

e~ lo62 2v/2 , log 1 /6
-(1 + O(log-1 n)) =  - ^ - ( 1  + 0 ( 0 ) -

\/27rlog 2 y n

Hence
( 8)
log2 2/ + log27T-f 21oglog2j/ + 0(log 1 n) = -21oglog 1/6 + 21ogn + (n x).

We are looking for \og2y in the form log2j/ = ylog 2n(l -f y>(n)) where 
<p(n) -* 0 as n —» oo. We obtain from (8):

log log n + y>(n)(4 log n +  2) + v?2(n)2 log n =

= —2 log log ^ -  log 27t -  log 2 + 0(log~x n) + 0 (ip2 (n)).

Choose <p(n) so that

<̂2(n)2 log n + y?(n)(4logn + 2) + log log n -f 2 log log ^ + log47r = 0.
o

From this we obtain
log log n 2 log log 1/6 +  log 47r

v>(») = - •

Hence

4 log n 4 log n

2 y = e v ^ e ^ ^ n )  = ( l  +  V ^ I o g ^ n )  + O(log ny>2(n))) =

= ,y /f iZp;(A _ log log n _ 2 log log 1/6 -f log 47t _ ^  /"(log log n )2\ \
V 2-^/2logn 2^/2logn \ log n / /

i.e.

Q 3/4-Q 1/4 _  r, / r j ^ / log lo g 4 -lo g lo g 3 /4  t (loglogn)2^
2 \ 4\/2  log n \  log n ) '

II. Now consider the case f ( x )  = \e~*x, x > 0, A > 0: “exponential density 
function”.
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In this case F (x ) = 1 — e Xx and from (2) we obtain

> logn

and so

^ ^ ( l  + OQog 1 n))

max f( t) = 0 (n M.
2y-£„<t<2y'W

Applying Theorem B we get

F(2y) = Vb + 0 ( £ j n ) + 0 ( e " A"e") 

and hence we obtain in the case of en = 2 :An

F(2s) =  1 + ^ + 0 ( ! ^ ) ,  

log n log log 1/6 /  log n '
hence

y =
i.e.

q  ( log// \
2A 2A V n ) '

Q 3/4 “  Q i/4 _  log log 4 - l o g log 4/3 + 0  ^logn^
4A

III. Now consider the case

/ ( * ) =  r(p)r(g)aP ^ 1 - *^ 0  < x < l;p,g> 0  :

“beta density function”. We need the following lemma.
Lemma. Let (xn) 6 e such that limi„ = 1,0 < x n < 1. Then

Xn
r  (p + q)
T{p)T(q)

t y - 'A t  = 1 -  -  In)" + 0(1)(1

where 0 ( 1 )  is an effective constant depending only on p and q. 
P r o o f . Obviously,

x„ 1
r  (p + q)
n p ) m

/ « - ( i - « ) « - '* = i - ^ ± ä / , - ■ ( ! - i r
In

further
l

I  r - \ i - t r ' d t = J ( t ’> - ' - m - t r ' d t + J ( \ - t y - id t=

Xn)q+\

xdt,

h  + h -
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We have
1

i 2 -  J { i - t ) q~i d t = ^ ( i ~ x ny ,
X n

1 1 _1 h = -  j{\- 0 (  1 -  t)q~1dt = - J  ^ = ^ - ( 1  -  t)qdt.

Obviously,
1 -  tp~l

lim —---:— = p — 1 if p 7̂  1

and

hence

t — 1 - 0  1 -  t

1 -  tP- 1

1 - t  

1 -  tP- 1

1 - t

= 0 if p = 1

=  0 ( 1),

where 0(1) is an effective constant depending only on p. Consequently,

i
h  = 0 ( 1) / ( I  -  t)qdt = 0(1)(1 -  xn)q+1.

Xn

The Lemma is proved.

Because F( 6 n) < F(£„) = —> 0 and F is continuous in 0 hence
0 < 6 n < en —* 0 (ra —»• oo). According to F (z ) X z p , 0 < z < 1/2 we have 
F (£„)X £P, F ( in) x i p.

Let
( r a ( n ) y / p  í  - i ^  1 1i n i  ’ ó" - _ l n̂ß(n)/

Because \/6 < 1 and lim \/&= 1 (0 < b < 1), hence it follows from (4) and
n —kx>

(5) that 2y -  £„ < 1 further y-*  1/2 (n —>• oo).
Applying the Lemma and taking into account (4) and (5) we get

1 + ! ^  + o (n -20) + o ( £ ^ i ) + o (  '  ) >
n V n / vnp(n)/

ä ‘ - ^ | ) r | (1 - 2“ + £ " ) , + 0 ( ( 1 - 2 s+ £ " ) ,+ ,) ’

1 +  !££‘ +  0 ( „ - !) +  0 ( 5 Z ^ ) + 0 ( » ) <
n \  n / vnp(n)/
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<- i - M M h i^ 29+li'),+0((1- 2y+Krl)’
i.e.

(9)
lo g h r f r ) r ( g )

» r (P + ?) .
l  +  O in - 'J  + O ie - W j  +  O ^ )

( 10)

<(1 — 2y + en)q [1 + 0(1 -  2y + £„)],

¥ ? w i f [ I + 0 (" _1) + 0 (e _ " <", ) + 0 ( ^ j )
> (1 -  2y+  i„)«[l + 0(1 -  2 y +  í„)].

According to 0(1 — 2y+Sn) = o(l) we obtain from (10) 1 —2y+6n = 0(1)( 
Using this and taking into account (10) again we get

t1 + 0(n_1) + 0 i1̂ ) + 0(e' “W) + ° ( ^ ) 1  ar(p  + ?)

> ( l - 2 y + Sn)q.
Choose /?(n) = en. Then it follows

( 11)
y > - ~  
U ~ 2 ( los i )

i\?r(p)r(?)
r (p + q) J

1 + 0(n-1) + 0 (l/ij/n^ + O(e-a,90)

Now we give an upper estimate for y. Because

1 — 2y + £„ = 1 — 2 y +  6 n + (sn — £„) = O ^1 /y « ^  + 0  )

hence from (9) we get

+0(«-"<">) +  o  ( - L ) ]  < (1 -  2 j,+  £„)«,

i.e.

( 12) y  < --------
y ~ 2 « )

iN 9r(p )r(? ) 11/«

b) r(p  + g) y ü

3I
~
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l + 0 ( » - ' )  + 0 ( l / ^ ) + 0 ( ( 2 0 l l ) l / ’')  +  0 ( e - W )  + 0 ( ( ^ ) ,,P)
a (n ) \  i/p^

From (11) and (12) we obtain

i  _  \(} í\ sEípEís1Y/9 JLs
" 2  [ y  g b) T(p + q) \ ^

x l + 0 (» -» )+  ( l / ^ T )  + 0 ( ( ^ 1 ) 1/P)  + 0 ( e - W ) j  + 0 ( ( ^ ) 1/P) ,  

consequently,

Q3 / 4 - Q 1 / 4  _  (log4)1/q- ( l o g | ) 1/^ gr(p)r(g)^i/g  1

'a ( n ) \  Vp>

ZW J1X92) 
\  re» + a) )r(p  + g) /

1 + 0 ( n - ‘) +  o ( l / ^ )  + 0 ( ( ^ ) ,/P) + 0 (e-«<"»)]+ o ( ( ^ ) ,/P) .

If q > p , then let a(n)  = logn. Then we obtain

C3/4-Q 1/4 (logd)1/«!-(log 1 )1/9 , gr (p )r(9)x 1/9 1

V r(p  + g) / n

x 1 + 0 (n !) + 0  + 0((logn)1/,pn<i p) j .

It follows that in the case g < 2 our estimate is better, in the case q = 2 
our estimate is equally good, further in the case q > 2 it is worse than the 
arithmetic mean.

If g < p, then
Q3 / 4 - Q 1 / 4 = 0 ^ a (n) y /pj

which is better at p < 2 than the estimate given by the arithmetic mean. 
P roblem. W hat is true if g £ p i

Remark 1. In [1] (VII.) we have considered the probability density 
functions

f ( x )  = d2 --------— « + C  + 2 (x > xi  > 0), di
(axß -f 7) 0

where
a = 0, ß > 0, 7 > 0, 6 e R ,  e< -1 ,

or
a  > 0, ß > 0 , 7 €Ä , 6  > -1 , £ (E R,
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or
a € R, ß < 0 ,  7 > 0, 6  € R, £ < -1 .

The reason of this is the following. Let £ and rj be independent random 
variables with density functions

c + 1

hW  = w t ± n x ' e~axß' a:>0; a » 0 > ° ;  £ > ~ 1
1 i ß )

and
6 ± 1

= W J + n x *e ~^X&' a;>05 7 ,/?>0; s > —1,
1 1 ß )

respectively. Then f ( x ) is the density function of the random variable £ / t}. 
Namely, according to [3] (p. 105) the density function s(x) of £/rj is

c + 1 6+1 oo
ßa ß ß j  ß [ e

, { x ) = m F m W ) l y x y
ee - a x ßyß y6 e - i y ß

r í F f T ) ,

Calculating the integral on the right-hand side we obtain

dy.

/ J a * i S T T ( i ± t t l )  ,w ,

i.e. s(x ) and / ( x ) are the same type. Taking into account f  s(x)dx = 1,
— oo

(s(x) is a density function) we get

s+i+ 2 i _«±i _ i ± i r ( £̂ i ) r ( ^ i )
(13) f  , ,  n ._£±*±* , 1 _i±i _i±iJ  x (axp + 7) ß dx = —a £ 7  ß r ( |± |t2 )

A special case of this formula is given in [4] (p. 292, 3. 241 (4)). As 
illustrations we give two special cases of this formula.

(a) Let z — 0; 0 ,7  = !; = 1, ß >  1. Then we get from (13)

OO

0

r ( i ) r ( i - J )
ß

The left-hand side is elementarily integrable (see [5], II, 459, 484.) and we 
obtain

7r _ / 1 \ _ /  1\
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i.e.

(14) - = r ( x ) r ( l  -  x),  0 < x < 1.sin 7xx

Taking into account the periodicity of the sine function and the equation 
T(x -f 1) = x r ( x )  we obtain (14) for any x £ R \ Z .

(b) Let a, ß, 7 = 1; £, 6  > —1. Then we get from (13)

OO
r x* r(g + i)r(g + i)

J  ( i  +  x ) ^ 2 r ( i  +  e  +  2 )  ’
0

and hence, by the substitution = y,

r(g + l)T(^ + l)
r($  4- £ +  2) ( M >  - 1 ) .

The integral on the left-hand side is widely known, this is Euler’s beta func
tion.

R em a r k  2. Next we show that our formula (13) gives an elemantary 
proof for a Titchmarsh formula for the Riemann function. To this let

a  > 0, ß > 0 such that — 1 < — — 4  < 1 and
a  ß

(15)
OO

z<* q 1 sintz dz, t € R.

According to our assumptions, the integral exists. The substitution z = u/t
shows that f( t )  = 1). Multiplying both sides of (15) by e~pt(p > 0),
and integrating with respect to t from 0 to + 0 0  we obtain

OO O O O O

/ ( 1) J  ta~*e~ptdt = J  ( J  -1 sin tz dz^e~ptdt,
0 0

and by Fubini’s theorem we get

( . 6 )  / w ( D - - ; ”  r ( | - l  +  1 ) . /  1
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(Using (13) in the case p =  1, a  = 7 = 1, /? = 2, £ =  ^  — §, f  ^ we obtain
OO

(17) / ( 1)= / Z“" « " 1 s in z dz = —— -=  --------------------- ~s------•
/  2 r ( ? - i  +  i ) s i n f ( i - f  + i)

Let s  — £ — £  +  1 and ß  >  1, i.e. 1 <  s <  2. Then using (16) and (17) we get
OO

/ 1 \ *  2 . 7TŐ /  1 1 ,

( p )  = H s m T J  '
0

and hence, summing in p from 1 to 00 we obtain

1
-dz.\  2 • n s  C(s) =  - s m -

7r z /  — y  —J  ZS_1 p 2 +  2 2
n P=1

It is well-known that
1 2 z 2 z

7T cot xz = -  + —— — H---- + —— H------, z £ C \ lz z 2  — \ 2 z 2 — k 2

hence

p 2 +  2 2 =  ~
p= l

consequently

7r cot 7Tiz +  j  7T e** -f e *■*
2iz 22 6”

+ e -”  1 1 /  +, 1 \
------------------—- r  =  —  7T C O th  7TZ --------- ,
- C - «  2 z 2 2 z  \  2 /

OO

C(s) = — s in—  /  — ( x coth 7T 2 ---- ]d2, 1 < s < 2.
w  7r  2  7  2s V 2 /

0
Consider the decomposition

OO 1
/ I ( tT coth 7T2 — CÍ2 =  J C O th  7T2 — -  j  ^ 2+

+

OO
/ 1 ( 7 T  coth 7T2 -  (f 2 =  / 1  +  I 2 .

1
Using the well-known expansion

1 00 o2n n
c o t h  x  =  — h  Y  n x 2 n - 1 , 0  <  X < 7T,x ' (2n)! 

n = l  v ’
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(here l?2n denotes the 2n—th Bernoulli number)

22"tr2nfl2n 1 
(2n)! 2 n — s '

and applying this we get

C(2m) = (-!)"* -
i (2^)2m

2(2m)! 2m

i.e.

On the other hand

2 n — s C(2 n).

Summarizing our results we obtain

(18)
7TS

y
( - i ) n+1

2 n — s

where 1 < 5 < 2.
Here

OO

dz <c{s) < oo, sGR,
l

which means that (18) holds for every s G R \  {1}. The function on the right- 
hand side of (18) is analytical in R \  {1, 0 ,2,4, . . .  , 2m, . . . }  it has a pole in 
5 = 1 ,  analytically continuable to R \  {1), in real sense. According to the 
unicity of the analytical continuation we obtain that (18) holds for every 
5 G C \  {1}.
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MAL’TSEV FUNCTIONS ON SMALL ALGEBRAS

I. CHAJDA and G. CZÉDLI

A b stract

The following problem is considered. Given an n-element set A and a set L of permut
ing equivalences on A , does there exist a Mal’tsev function A3 —* A  which is compatible 
with all members of LI The answer is negative in general when n >  25, it remains open 
for 9 < n < 24, and it is shown to be affirmative for n < 8. Moreover, there is even a 
commutative Mal’tsev function when n < 8.

Introduction and result

Given a set A, a function p: A 3 —► A is called a Mal’tsev function if 
p(x, y, y ) = p(y, y, x) = x holds for any x ,y  € A. If an algebra A  has a Mal’tsev 
function p: A 3 —» A which is compatible with all congruences of A  then A 
is congruence permutable. However, the converse is not true in general (cf. 
Gumm [3]). The purpose of the present paper is to furnish the converse 
statement under the additional condition |A| < 8. In order to obtain a some
what stronger statement we formulate our result not only for algebras. Then 
it may be of some interest in studying intersections of certain maximal clones 
on a finite set with less than nine elements. A Mal’tsev function p: A3  —► 
—> A is called commutative if p(xi„, x 2u, x3t) = p (x i , x 2 , x 3) holds for any 
(*i,*2>*3) € A 3 and any permutation it: {1,2,3} —*• {1,2,3}.

T h e o r e m . Let A be a set with |A| < 8 and let L be a sublattice of the 
lattice of equivalences on A. Then the following three conditions are equiva
lent:

(a) the equivalences belonging to L permute, i.e., for any p ,v  £ L, p oi/ = 
= uop;

(b) there exists a Mal’tsev function A 3  —» A which is compatible with any 
member of L;
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Key words and phrases. Congruence permutability, Mal’tsev term, finite algebra.
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(c) there is a commutative Mal’tsev function A3 —*■ A which is compatible 
with (any member of) L.

Our method yielding the equivalence of (a) and (b) for |A| ^ 8 is possibly 
applicable for |A| = 9 or | A| =  10 or even more. However, the length of 
the proof would grow rather fast with |A| and we do not want to make it 
astronomically long. Another excuse for stopping at eight is that for |A| = 9
(a) and (c) are not equivalent. Really, if A is the square of the three element 
group and L is its congruence lattice then (a) holds but (c) does not (cf. 
Gumm [4, Thm. 3.2]).

While the equivalence of (a) and (b) is an open problem for |A| € {9,10, 
. . . ,  24}, they are not equivalent for |A| > 25. Moreover, we have the following

O bser v a tio n . For any natural number n > 25 there is an n-element 
algebra A such that A has permutable congruences but no Mal’tsev function 
A 3  A  is compatible with all congruences of A.

PROOF. Starting from a five-element non-associative loop (cf. Gumm 
[4, Fig. 2.4]) Gumm constructed a twentyfive-element A  with the required 
property in [3]. Suppose we already have an n-element algebra A — (A , F ) 
as required, then we construct an (n + l)-element algebra B in the following 
way. Put B  = 4U{w} where w £ A. For / :  Ak —► A  in F  define fg: B k —> B,

_  Í / (&i , . . . ,  6*) if b i , . . . , b k e A  
1’ ” "’ * \  w otherwise.

Further, for any c € A, define gc : B  —> B by

. . ( x if x ± w
9c\X) — \ -r[ C i f  X  =  w.

Now put B  = (B ,{ fg  : f  6  F}  U {gc : c € A}). Then for any nontrivial congru
ence a  of B  the block [u;]a is a singleton and a\^  is a congruence of A. Thus 
the congruences of B permute. We can observe that any congruence of A is 
the restriction of a (unique) congruence of B. In particular, B has a congru
ence k with exactly two blocks: A and {u;}. Suppose B  permits a compatible 
Mal’tsev function p: B 3 —► B.  Then, for x , y , z £  A, p(x, y , z)np(x ,  x ,x)  = x 
whence p ( x , y , z ) e A .  Therefore the restriction of p to A is a compatible 
Mal’tsev function on A, contradicting the induction hypothesis. Q.e.d.

P r o o f  of the T h e o r e m . The implication (b) => (a) follows from the 
classical argument of Mal’tsev [5]. Namely, if u, v € A, q , ß  € L and (u, v ) € 
6 a  o ß  then there is an element w € A with uawßv.  If p is a compatible 
Mal’tsev function then

u = p(u, v ,v )  ß p(u,w,v) ap(u ,u ,v )  = v

whence (u, v) 6 ß o a. The implication (c) =>■ (b) being trivial we have to 
show only that (a) implies (c). This will need several preliminaries.
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We will often consider diamonds (five-element non-distributive modular 
sublattices) in L\ their elements will be denoted by u ,a ,ß ,~ / , i  such that 
u>—< a —< t, lj—< ß —< i, u - <  7 —< l. The bottom and the top of L is 
denoted by 0 and 1, respectively.

Let n ^  8 and assume that (a) =>• (c) for sets consisting of less than n 
elements. We fix an n-element set A and a permutable sublattice L of the 
equivalence lattice of A. We have to show the existence of a commutative 
Mal’tsev function which is compatible with L. A particular case is settled 
by the following

Lemma 1. If  there exists a p £ L\{0} such that / i<w holds for every dia
mond {u;,a,/?,7,t} in L then we are done. (I.e., then there is a commutative 
Mal’tsev function which is compatible with L.)

P r o o f . The proof of this lemma borrows a lot of ideas from Pixley 
[6, p. 183]. By the induction hypothesis, there is a commutative Mal’tsev 
function : (A / p )3 —* A / p  preserving all r̂ //x where p < v £ L. For each A £ 
£ L  we intend to define a commutative Mal’tsev function p\  : (A/A)3 —>■ A/A 
preserving all v/X (A < 1' £  L) such that for any Ai < A2 £ L

(1) PAi([z]^i, [y]Ai, [z]Ai) c  pa2([x]A2, [y]A2, [*]A2)

for any x , y , z  £ A. Then we will be ready as A3 —► A is what we are 
looking for.

Let us fix a linear order on A. First we define p\  for A ^ p  as follows:

Pa([z]A, [y]A, [z]A) = { t £ A :  ([<]/*, [y]p, [z]p)) £ X/p).

Roughly speaking, this is \p^,([x]p,[y]p,[z]p)\X/p apart from the canonical 
correspondence between A/A and (A / p ) / ( X /p ). Then for A =  p  p \  is just the 
previously defined pß. A routine calculation shows that p\  is a commutative 
Mal’tsev function preserving all v / \  (v > A) and (1) holds for p  < Ai < A2.

Now we define p\  for A ^ p via a downward induction on the height of 
A. (Note that L is a modular lattice, for its members permute.) Assume 
that X ^ p  and p\> is already defined for each X' > X such tha t the required 
properties, including (1), are satisfied for these A'. Let i q , . . . , i ^  be the 
upper covers of A and define p\  as follows.

Let [2/]A, [z]A) = [a]A where if two of the blocks [z]A, [j/]A and [z]A
coincide then a is the first element in the remaining block. Otherwise let a 
be the first element in the intersection

k
(2) n  Pui{[x]vi,[y\vi,[z\vi).

i= 1

(This will be shown nonempty later.)
Now if, e.g., [x]A = [j/]A then [x]vi = [y]vi yields that [z]A is a subset of (2). 

Therefore a always belongs to the intersection (2). Thus p \  is a commutative
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M al’tsev function. The property (1) extends to A easily. Indeed, if A < 
< A2 then A-< V{ ^  A2 for some i and p,\([a;]A, [y]A, [z]A) = [a]A Q [a]vi = 
=  p^([x]i/,, ^pA2([^]^2,[y]^2)[-^]^2)- Using a routine calculation
or referring to Pixley’s proof [6, p. 183] we can see that p\  is compatible with 
all v / \ ,  v  j> A.

Now we set off to prove th a t (2) is not empty. We claim that 
j -1

(3) JJ(izy +  Vi) = v3 for 2 < j < k .
i—i

(Here and in the sequel +  and • stand for the lattice operations join and 
meet, respectively.) Since the role of the vi (1 < Í ^ Ar) is symmetric, it 
suffices to deal with j  =  3. Then (3) turns into (1/3 + vi)(v3 + v2) = V3. It 
belongs to the folklore of lattice theory that if (#3 -f- xi)(x3 + x2) > £3 for 
distinct atoms £ i,£ 2,£3 in a modular lattice M  then {xi ,X 2 ,xz} generates 
a diamond with bottom Om  and top £3 + 21. Indeed, by the properties of 
the height function (cf., e.g., Grätzer [2]), £3 + £1 and £3 + £2 are of height 
two and so is their meet by the assumption. Thus £3 + x\  = £3 + £2. Since 
£1 +  x2 is of height two either and £1 + £2 ^ (£ 3  + £1) + ( £ 3  + £2) = £3 + £1, 
x\  +  £2 = *3 + *i- Since L is modular (cf., e.g., Grätzer [2, Thm. IV.4.10 
and the remark after its proof]), we can apply the above observation for the 
interval [A, 1]. Therefore (1/3 +  v1X1/3 + v2) — V3 as otherwise A would be the 
bottom  of a diamond in spite of A ^ p.

The next step is to show
If a,- £ A  and for all i , j < k  (a,, ay) £ 1'i + Vj

(4) then there exists an element b £ A  such that 
(a,, 6) £ for all i ^ k.

Indeed, this says nothing for k = 1 and follows from Vi + v2 = v\ 0 v2 for 
k = 2. If we have found an element b already such that (a,, 6) £ 1/, for i = 
= 1 ,2 , . . . ,  j  (2 < j  < k) then (6, ay+i) 6 i/,- 0 (1/,• +  t/y+1) =  i/,- +  Vj+1 for all i < j  
and (3) yields (6, ay+i) £ J} (i/y+i + 1/,) = i/y+1. Therefore (a;, b) £ j/, holds for

all i S k.
Now, returning to (2), pick an element a,- in pVt{[x]vi, [y\v{, [z]vi), i = 

=  1 , 2 , . . . ,  k. By the induction hypothesis made on A, for i , j ^ k  we have

ai^Pui(\x]vi,[y]vi,[z]vi)Q 

Í  P«+Vj ([*] (■Vi +  v 3 )» [y] ( Vi + Vj ), [z\ ( Vi +  Vj  ) ), 
and ay belongs there, too. Hence (a,-,ay) £ V{ -f vj. Now (4) supplies us with 
an element b such that 6^,a, for all i. I.e., b£  [a,]i/,- = Pv,([x]ví, [y]vi, [z]ví). 
This b belongs to the intersection (2). Q.e.d.

Let us call an element p £ L semicentral if p o v — pi)  v (set theoretic 
union) holds for every v £ L. (Note that p o v  = p + v by permutability.)
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Lemma 2. I f  there exists a semicentral p  E 2/\{0,1} then we are done.

P r o o f . Let B \ , B i , . . . , B t be the ^-blocks. Since/x is not in {0,1}, we 
have t < n and |5 , | < n for all i. Observe that the restrictions of members 
of L to B{ permute. Indeed, if p, u E L, a ,b ,c£  Bi, ape and cub then there 
is a dE A with audpb. If d £ B{ then (c, d) E p o u = p U u yields cud, whence 
aub by transitivity. Therefore aubpb, showing that the restrictions of u and 
p to Bi permute. By the induction hypothesis on |A| there is a commutative 
Mal’tsev function p, : Bf  —*■ Bi preserving the restrictions of members of L 
for each i, 1 < i < t. Similarly, there is a Mal’tsev function p ^ : (A / p ) 3  —► A / p  
preserving all the p/p,  p < p £  L. Now let us fix an element 6, E Bi for each t, 
1 < i < i. For x , y , z £  A let Bk = Bk(x, y, z) be p^([x\p, [y]p, [z]/x) and define 
u = p(x, y, z ) as follows:

(a) if x, y, z belong to the same p-block Bj  then u = pj(x,  y, z) (note that 
j  = k);

(/?) if \{x,y,  z } PI Bk\ = 1 then u E {x, y, z } n Bk;
(7) if {x, y, z] n  Bk = 0 then u = bk.

Since p^ is a commutative Mal’tsev function, |{x, y, z] 05*1 = 2 is impossible 
and it is easy to see that p: A3  —► A is a commutative Mal’tsev function. We 
do not have to use semicentrality to check that p preserves p if p  < p or 
P = Pi the trivial details will be omitted. Now let p E L, p\\p, x , x ' , y , z  £ A 
and xpx' . We have to show that p(x, y, z)pp{x', y, z ). Suppose this is not the 
case. Since p preserves p 0 p g L, we have (p(x, y, z),p(x', y , z ) )E .p o p  = p ö  
U p whence p(x,y ,z)pp(x ' ,y ,z ) .  Therefore Bk in the definition of p(x ,y , z )  
and p (x ' , y , z ) is the same. If the same of (a), (ß ) and (7) applies to both 
p(x, y, z ) and p(x ', y, z ) then p(x, y, z)pp{x ' , y, z). Moreover, if (a ) applies to 
one of p(x, y, z ) and p(x', y, z ) then it applies to the other as well. Thus we 
may assume that (/3) applies to p(x, y, z) and (7) applies to p(x', y, z ). Then 
p(x, y, z ) = x, p{x', y, z ) = bk and x' ^  Bk. From bkpxpx'  and p o p =  pi) p we 
conclude (bk, x') E p. Then we obtain p(x', y, z ) = bkpx = p(x, y, z ) from x'px 
and transitivity; this is a contradiction. Q.e.d.

Whatever it is evident the following lemma offers a comfortable way to 
exploit the permutability of L.

Lemma 3. Let p , p £  L, let B and C be distinct p-blocks and suppose 
that xpy for some x E B, y E C. Then

SP{p, p ) : (V6 E ß)(3c E C)(bpc) and (Vc E C)(36 E B){bpc).

(The notation SP stands for “shifting principle” and gives an economic 
way of referring to the lemma.)

The proof is a trivial application of the fact that p 0 p = p o p.

We say that an equivalence is of pattern t'i + 12 -\------1- h  if it bas t blocks
and these blocks consists of *i, Í2 , .. . , i t  elements.
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L emma  4. If  L has a member of pattern j  + 1  +1  -j—  • +1 where 1 < j  < 
< n <  8 o r 3  + 2 + l + l  +  - ’ - + l  where 5 <j n <? 8 then we are done.

P r o o f . We will show that Lemma 2 is applicable. Assume that p £ L 
is of pa ttern  j  + 1 + • — (-1 and let B be the j-element block of p. We claim 
that p  is semicentral. Indeed, if (x, y) £ p  o p =  p o p but (x, y) £ p  then, e.g., 
x £ B  and zpzpy holds for some z £ A. Since [x]p is a singleton, SP(/x,p) 
yields ( x , y ) £ p .

Now let p be of pattern 3 + 2 + 1 4 ------ 1-1. Assume that p is not semi
central. Let B = {a,b,c} and C = {d,e} be the nontrivial /z-blocks. We 
can consider a v £ L and x , y  £ A  with (x, y) £ (p o z/)\(/x U v). If |{x, D 
n ( ß U  C)  I = 1, say x £ B,  then SP (p, v) yields (x, y) £ (B U {y})2 Q v, a 
contradiction. Therefore x £ B  and y £ C (or conversely). If u\c = l c  then 
(x, V) £ (-S U C )2 C j/ by SP(p, v). Therefore (d , e) ^ u. Using SP(p, u) we 
have B  = {z £ B : zi/d} U {z £ B : zve} and we conclude that p D v is of p a t
tern 2 +  1 4- • • •+ 1. Therefore pC\v £ L is semicentral and Lemma 2 applies.

Lemma 5. If  there are p , v £ L  such that 
p < v ,
v has exactly two blocks B and C ,
\B\>1, \ C \ > 1 ,
C is a block of p and 
there is a b £ B with [b]p = {6} 

then we are done.
P r o o f . We intend to show that v is semicentral. Assume that v o p 

= i/Up  for some p £ L. Then there are x ,y  £ A with (x, y) £ p\ v. By SP(i^, p), 
there is a c £ C with bpc. From SP(p,p) we conclude that bpz holds for all 
z £ C . I.e., C 2 Therefore SP(i^,/)) yields p — 1, a contradiction. Q.e.d.

Lemma 6 . Let M 3  = {w, a, ß, 7 , 1.} be a diamond in L. Then every non
trivial block of i / u  consists of four elements. The restriction of any of a/u>, 
ß / u  and j / u  to a four-element block of i / u  has two two-element blocks. 
If  i/u> has only one nontrivial block (in particular, if \A/w\ < 8 ) then the 
interval [u, 1] of L coincides with M 3 .

P r o o f . Since the p / u  (where u> < p £ L) permute, we can assume that 
u  = 0. Let B  be a nontrivial i/w-block. Since M 3  is simple and the restric
tion map of M3 to the equivalence lattice of B  is a lattice homomorphism, 
{ 0 ß ,a |ß ,/J |ß ,7 |ß , Ib — l\b } is a diamond, too. It follows from Gumm [3, 
Lemma 3.2] and \A/u\ ^  8 that |P | = 4 and any of a |ß , ß\ß and 7 |ß  has two 
two-element blocks. We infer from Lemma 3 that beside a\g, ß\g and 7 | ß  no 
nontrivial equivalence on B  permute with a\g, ß\ß  and 7 | ß  simultaneously. 
Thus [0, l\ — M3 , provided B  is the only nontrivial block of l/ u . Q.e.d.

In virtue of Lemma 1 we have to prove our theorem only for those cases 
when L  includes a diamond M 3 = { w , a , ß , j ,i}. L can include more than 
one diamond but M 3 = {u,  a,  ß,  7 , /,} will always denote a fixed diamond for
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which u  is minimal. It is well-known in the theory of modular lattices that 
if a modular lattice M  has a diamond whose bottom is x £ M  then there is 
an interval [x, y] of length two which includes a diamond. (Having no simple 
reference at hand we refer to the far more general Freese [1, Thm. 1.7].) 
Therefore we always assume that our fixed diamond M3  with minimal u  
also satisfies u>—< a —< 1 , u —< ß —< 1 and u —< 7 —< 1 . By Lemma 6 we do 
not have too many possibilities for M 3 . Moreover, if Lemma 4 or Lemma 5 
applies for u  and/or t then we are done. Now it is easy to check that we 
are left with ten cases only; they are depicted on Figs. 1-10. On these 
figures, the nontrivial «.-blocks are denoted by rectangles while the nontrivial 
w-blocks, if there is any, are encircled. When some or all of the elements of 
A are labelled, we always assume that (a, d), (b, c) £ a , (b, d), (a,c) £ ß and 
(c, d),(a,6) 67 ; this convention generally determines a, ß and 7 in virtue of 
Lemma 6. Sometimes «.-blocks are labelled with capital letters.

In Case 1 (cf. Fig. 1) we can equip A  with an Abelian group structure 
so that A be of exponent two and Con (A) = L. Then p(x, y, z) = x -f y + z is 
a commutative Mal’tsev function compatible with L.

In Cases 2, 3, 7, 8 and 9 we are going to show that for any other diamond 
{a/, a', ß', 7 ',«/} in L we have u  < u'. (Then Lemma 1 is applicable with p = 
= w.) Suppose this is not the case, i.e., u>||u/. We intend to show that 
u'  must have less than four blocks, which contradicts Lemma 6. Take an 
(x,y) e u>'\u. Using SP(7,u/) or SP(/?,u>') we may assume that x = d. If 
y £ [a]w then SP(u;,u/) yields ([a]w U {d})2 Q a /  and, by using SP(/?,u/), we 
can see that u/ has at most |[c]w| £2  further blocks beside [a]u/. Similarly, 
if y  € [£>]u; then SP(u;,u/) yields ([4]w U {(f})2 Ca)' and, by SP(7,u/), uj' has 
at most |[c]w| +  1 ^ 3  blocks. Now suppose x G [c]w. Then, by SP(u;,u/),
(d) U [c]uj Q [d]u>’. If |[a]a>| < 3 or |[f»]w| < 3 then, by SP(/3,u/), u'  has at 
most three blocks. Therefore u/ may have four blocks only in Case 8 and, 
apart from labelling, these blocks are {a, 6}, {e,g}, { f ,h }  and {c, d). By 
Lemma 6, p = abeg; fhcd  £ [u/,«/] Q L. (Here and often in the sequel an 
equivalence relation is denoted by the list of its nontrivial blocks separated 
by semicolons.) Hence SP(p,u;) leads to a contradiction.

To settle Case 4, assume that « is not semicentral. Then there is a p £ 
€ L\{1) such that (x, y) E p\t. If pQ B 2 (j(CU D )2 then Lemma 2 applies for 
L + p = abcd\efgh, which is semicentral. Indeed, if we had, e.g., (a, e) E 1«\(« + 
+ p) for some u £ L\{1} then SP(w,i«) would give [a]v 2 (a, e , /} ,  SP(i, v) 
would yield [a]^ 2 B U C  and SP(«7p) would lead to a contradiction since 
[g\p D C ^  0 and [h\p fl C 0 by SP(u;, p). Therefore (x, y) = (a, e) £ p can be 
assumed. Then [a\p 2 Ő U C  like in case of v before. Hence [a\p =  B  U C as 
otherwise SP(«,p) would lead to p — 1. Now either Lemma 4 applies for p or 
Lemma 5 applies for u  < p.

The treatment for Case 5 starts with assuming that l is not semicentral. 
Then p 0 « /  p U « for some p £ L \{0 ,1}. If [h\p = {h} then B  U C is the 
only nontrivial block of p + l and Lemma 4 applies. Observe that [h\p fl
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implies ( B  U {h})2 Q p  and [h]p  fl C  Y ®  implies (C U { h })2 C p  by 
SP(t,p), but only one of these two possibilities can occur as p  Y  1. Therefore 
if [h]p  Y  (h) then Lemma 5 applies for i  and i  + p .

In Case 6 we may assume by Lemma 1 that there exists another diamond 
M 3 = { uj' , a ' ,  ß ' ,  7 ', t'} with uj ^  uj' . We choose this M3 so that uj' be minimal. 
Like in case of M3 we may assume that uj' —<  a ' —<  if ,  uj' —<  ß ' —<  1' and 
uj' - <  7 '—< 1'. Since u/ | | l> and the previous cases have been handled, we 
may suppose that uj' is also of pattern 2 -f 2 + 2 -f 2 . As uj' \ \uj, they can 
have 0 , 1 or 2  blocks in common. However, if they had exactly one block in 
common then Lemma 4  would apply to u/(1u;; if they had two blocks, say 
{a,e} and {&,/}, in common then SP(a,u /) would lead to a contradiction. 
Therefore, by SP(u;,u/), we may assume that the situation is as depicted 
on Figure 1 1 , where the horizontal lines indicate uj'. Since the role of a ', 
ß '  and Y  is symmetric, we assume that a!  — a b e d ; e f g h ,  ß '  = a b e / ;  e d g h  and 
Y  =  a bg h ;  e d e f . Let Z2 = {0,1} denote the two-element Abelian group. We 
consider A  the (support of) as indicated on Figure 1 1 . Since Con(Z2) 
admits a commutative Mal’tsev function p ( x ,  y , z )  =  x - \ - y + z ,  it suffices to 
show that L C Con (Zj). If 0 < p  ^ uj for p  £  L then p  =  u  by SP(a ', p ) .  I.e., 
uj is an atom in I ,  So is u ' ,  for the role of M3 and M3 is symmetric. If 
p  G L  is in [w, i] = [u;, 1] or [uj' , 1'] = [u/, 1] then p  6 Con (Zj) by Lemma 6 and 
•M3, M3 Q Con (Z2). Suppose p  € L\{0 } but uj p ,  uj' % p .  Then p  fl uj — p  D 
flu/ = 0 . If p  ^ uj-\-uj' then a standard argument with the height function of L 
yields that (0 , uj, uj', p , u j + u j ' }  is a diamond, which contradicts the minimality 
of uj. Hence p  ^  uj + uj' , whence x p y  holds for some x  € {a, 6, e, /}  and y  £  
6 { c , d , g , h } .  We can suppose x  = a by SP(w,p) and SP(u/,/>). Since the 
possibilities a p d , a p e ,  a p g  and a p h  are quite analogous, we detail the case 
a p d  only. Then using SP(u>,p) and SP(u/,p) we derive p  3  ad; be;  f  g ' , e h .  If 
p  =  ad ]  be; f g \  e h  then p  £  Con (Z2). So suppose p  D ad ]  be] f g ]  e h .  Since p  fl 
nw = p (W  = 0 , it follows either a p f  or b p e .  By SP(w,/>) both hold. Hence 
P =  a d f g ]  bce h .  Since p  ^  1 , p  — a d f g ]  b ce h  £  Con(Zf).

In Case 1 0 , the restriction map to any block of 1 is injective, for it 
does not collapse u  =  0  and 1. Therefore a  = ad]  be] eh ]  f g ,  ß  = bd]  ac]  eg]  f h  
and 7 =  c d ] a b ] e f ] g h  can be assumed. We consider A  as Z2 exactly the 
same way as before. We intend to show í  C C o n ^ ) .  Evidently, M3 = 
= {0 , a ,  ß ,  7 , 1 } Q  Con (Z2 ). To show [0 , 1] = M3  assume that 0 <  p  <  1, p  £  
L \ M z .  Applying Lemma 6 to { p \ ß  : p  6 [0 , <■]} and { p \ c  : p  £  [0 , i]} we derive 
that the restriction of p  to either block of 1 coincides with the restriction 
of a member of M 3 . E.g., p \b  =  a |s  but p \ c  ^  oje. Then p \ c  Y  u \ c  implies 
0 < p  D a  <  a  while p \ c  = l \c  yields a  <  p  < 1, both contradicting 0—< a —< 1. 
Having seen that [0 , i] C C o n ^ )  let us assume that p ^ i ,  p  £  L \{ 1 }. Then, 
e.g., a p e .  Now SP(7,p) gives b p f  and SP(a,p) gives a e ] b f ] c g ] d h Q p .  If 
we have equality then p  £  Con (Zf). If ae; b f ]  cg]  d h  C p  then p  fl a  /  0 or 
/> n /? /0 o r p r i7 ^ 0 .  E.g., suppose p C \ a  Y  0 . As a  is an atom, p ^ a .  Hence
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Fig. 11

p > aedh\ bfcg. Le., p — 1 or p — aedh- bfcg, whence p G Con (Zj). Q.e.d.
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ON fc-CRITICAL GRAPHS WITH MANY EDGES 
AND NO SHORT CYCLES

H. L. ABBOTT and B. ZHOU

A b stract

Denote by /j. ;(n) the largest integer for which there exists a ^-critical graph of order n 
having girth at least 1+1 and f k /(n) edges. We prove that for l =  4 or 5 and for each fc ^ 4 
there exists a positive constant c* such that A  ;(n) > ckn3/ 2 for all sufficiently large n.

Let k be an integer, k >3. A graph G is said to be fc-critical if it has 
chromatic number k, but every proper subgraph of G is (k — l)-colorable. It 
is an old result of König [10] that the only 3-critical graphs are the cycles of 
odd length. G. A. Dirac [4] proved that if k > 4, n > k and k + 1 then 
there exists a ^-critical graph of order n. For n = k the only such graph is, of 
course, the complete graph of order k. We suppose in what follows that k > 4 
and n > k + 2. P. Erdős raised the following question: What is the largest 
integer /fc(n) for which there exists a ^-critical graph of order n with /fc(n) 
edges? Dirac [5] observed that if C\ and Ci are cycles of length 2 t +  1 and 
if each vertex of Ci is joined by an edge to each vertex of C2 the resulting 
graph is 6-critical. Thus, if n = 4f + 2,

(1) f6{n)>n2/4 + n.

Dirac also remarked that if G is a /^-critical graph of order n, the graph 
obtained by joining a new vertex to each vertex of G is a k + 1-critical graph 
of order n + 1 and thus

(2) A +i(u + l)> /* :(n) + n.

It follows from (1) and (2) that for each k > 6 there exists a positive constant 
ctk such that for infinitely many integers n

(3) f k { n ) ^ a kn2.

The above constructions of Dirac yield no information in the cases k = 4 
or 5. That (3) holds for infinitely many n in each of these cases was estab
lished by B. Zeidl [20] and B. Toft [15]. In fact, Toft showed that if k — 3q + r,
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0 < r  < 2, then for infinitely many n

(4 ) fk(n)  > <

V 1 » 2 if  r =  0
2  q

7„ - 6  ,  
14g +  2

i f  r = 1

23g — 15 2 

46 q +  1 6 n
i f  r =  2

A proof of the first inequality had been given earlier by Dirac and Erdos [6]. 
It follows from the classical theorem of Túrán [18] that

(5 ) /*(«) <
k - 2 

2 k — 2
-n

Note tha t if ßk is taken to be the supremum of the numbers for which (3) 
holds for infinitely many n then from (4) and (5) it follows that lim ßk =  §.

k—*oo
However, ßk has not been determined for any value of k.

We propose in this paper to investigate a variant of the problem described 
above. It is a classical result in graph coloring theory that for each pair k, 
/, k > 4, l > 3, there exist A:-critical graphs with no cycles of length at most 
l (th a t is, whose girth is at least l + 1). In fact, there exists a least integer 
N ( k , l ) such that if n > N ( k , l )  there exists such a graph of order n. For 
n > N ( k , l ) denote by fk,i(n) the largest integer for which there exists a k- 
critical graph of order n whose girth is at least / + 1 and which has fk,i(n) 
edges.

Consider first the case 1 = 3. The following construction is given in [15]. 
It is one of the constructions used in establishing (6). Let t be an odd integer, 
t > 5. Let A\  and A 2 denote the color classes of the complete bipartite graph 
K tit • Let C\ and C2 be cycles of length t and set up matchings from C\ to 
Ai  and from C2 to A 2. The resulting graph clearly has no triangles and it 
is shown in [15] that it is 4-critical. It follows that if n = 4i, t odd, then

( 6 )  / 4 , 3 ( n )  ^  J ő  +  n .

By the well-known construction of Mycielski [12] we get

(7) fk+\,z{2n + 1) > 2 / t i3(n) -f n

and it follows from (6) and (7) that for k > 4

,2n
fk,3 (n) > ^ r( 8 )
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holds for infinitely many n. One may in fact show that for each k  > 4 there 
exists a positive constant 7* such that

(9) fk,3(n ) = 7 kn2

for all sufficiently large n .  It would be of interest to decide whether f k ß ( n )  > 
> 7n2 holds for some positive constant 7 which does not depend on k .

The nature of the problem changes substantially for l > 4. Denote by 
g ( n )  the largest integer for which there exists a graph of order n  having 
girth at least 5 and g ( n ) edges. It is known that, as n-+ 0 0 ,

( 1 0 ) g ( n )  =  Q  + o ( l ) )  ™3/2-

This result is due to Erdős, Rényi and Sós [8], Erdős and Rényi [7] and 
Brown [2]. Since /fc,;(n) < <7(71) we get

( 1 1 ) f k , i ( n )  <  c n 3 /2

for all c >  ̂ and all sufficiently large n .  The graphs which show that equality 
holds in (10) are bipartite and thus give no information concerning lower 
bounds for f k , i ( n ) .  There are many constructions (explicit and random) of 
graphs with prescribed chromatic number and girth. See [17], Section 2, for 
an account of some of these and for references to the literature. However, 
the graphs constructed in many of these papers have not been proven to be 
color-critical, and for those constructions for which this has been done the 
graphs in question are very sparse and give lower bounds for /&,/(«) which 
grow only linearly with n. For example, the well-known construction of 
Tutte [19] gives only / 4i/(n) > (2 -f o (l))n  for / = 4 or 5. Tutte’s construction 
gives fc-chromatic graphs with girth 6. However, these are not known to be 
^-critical except in the case k  = 4.

We now state our main result.
T heorem. F o r  1 =  4  o r  5 a n d  f o r  e a c h  k ^ . 4  t h e r e  e x i s t s  a  p o s i t i v e  c o n 

s t a n t  c  — c ( k , /) s u c h  t h a t  f o r  a l l  n  >  n ( k , l )

( 1 2 ) fk,l{n)> c n 3 / 2 .

P r o o f . The construction establishing (12) is complicated. We show 
first that it holds for k  = 4  and l  = 5. The graph constructed by Toft which 
was described earlier in connection with the proof of (6) has a large number 
4 and 5-cycles, all of which involve edges from the bipartite portion of the 
graph. We wish to destroy these cycles. This may be achieved via splitting 
operations similar to those described in [3], [11], [14], [15] and [16]. However, 
in doing this the number of new vertices added is very large and the number 
of new edges added is of the same order of magnitude so tha t the lower
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bound obtained for / 4)/(n) grows only linearly with n. The novelty of our 
argument involves combining these splitting operations with the geometric 
constructions of [2] and [8] th a t are used in establishing (10).

Let G be a 4-critical graph of girth at least 6 with a vertices and b edges. 
Let uv be an edge of G; we refer to uv as the special edge. Let q be a prime, 
q't  5, and let Gi,G2, . . . ,  Gq2 _i  be copies of G. Denote the special edge of G, 
by UiV{. Delete the special edges, identify v, with u,+i for i = 1 ,2 ,. . . ,  g2 — 2 
and relabel as uq2. Denote the resulting graph by G*. Note that G*
has (a — 1) g2 -  a + 2 vertices and (6 -  1) g2 — 6 + 2 edges. G* is 3- colorable but 
in any 3-coloring the special vertices ui, u2, . . . ,  uq 2 are assigned the same 
color.

Let Zq denote the finite field with q elements and consider the affine 
plane geometry P over Zq. For i = 1 ,2 ,. . . ,  q and j  =  1 ,2 , . . . ,  q let

Li,j = { (x ,y )  : x , y e  Zq, y = ix + j }

and for j  =  1 ,2 ,. . . ,  q let

Lq+i,j = { ( j , y ) : y £ Z q}.

Note tha t we are denoting the zero element of Zq by q instead of 0. Less 
formally, is the set of points on the line whose equation is y = ix + j ,  if 
i ^  q +  1, and Lq+ i j  is the set of points on the “vertical” line x = j .  This 
gives q +  1 partitions P i , P2, . . . ,  Pq+1 of the points of P  where P, is given by

Pi =  Li ,x U X,-,2 U ... U Litq.

We refer to Li j as the j th  part of Pt. Note that if i\ ^  then each 
part of Pil intersects each part of P,2 in exactly one element of P. It will be 
convenient to denote the points of P by z\,  2 2 ,.. . ,  zq 2 and to suppose that 
the labelling is such that the first part of Pi is {z\,  Z2 , . . .  , zq}; equivalently, 
that L it 1 = {z i , z 2 , . . . , z q}.

Let Ci, C2, Di, D2 , . . Dq be cycles of length q. Let A = (ui, a2, . . . ,  a9} 
and B  =  {b\,b2, .. , ,bq} be sets of size q. It is understood that the sets 
A, B , Si,  S2, . . . ,  Sq and the vertex sets of C\, C2, Di, D2, . . . ,  Dq are pairwise 
disjoint and are disjoint from the vertex set of G* and the points of the 
plane P.

Let Hq be the graph whose vertex set consists of the following points 
(the reader will find it useful to examine Fig. 1):

(i) The vertex sets of C \ , C 2, D1, D2, . . . ,  Dq.
(ii) The elements of A, B  and Si, S2, . . . ,  Sq.

(iii) The points of the plane P.
(iv) The vertex set of G*.

The edges of Hq are as follows:
(a) The edges of the cycles Ci, C2, Di, D2, . . . ,  Dq.
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(b) A matching from Ci to A.
(c) A matching from C2 to B.
(d) The edges a .s .j, i = 1 ,2 , . . . ,  q; j  = 1 ,2 , . . . ,  q.
(e) All edges joining bj to each point of the j th  part of Pq+l, j  =

=  1, 2 ,
(f) A matching from Dj to the j th  part of Pq+i 1 j  — 1 ,2 , . . . ,  q.
(g) All edges of the form SitjZm where zm is in the j th  part of Pj. Note 

that there are q3 such edges.
(h) A matching from {uj, u2, . . . ,  to U5i.
(i) The edges of G*.

One easily verifies that the number of vertices of Hq is (a +  2)q2 + 4q — 
— a + 2 and the number of edges is q3 + (6 + 3)g2 + 4q — b + 2.

We verify that Hq is 4-chromatic. Suppose that Hq has a 3-coloring 
in colors red, blue and green, say. Then ui, 112, ■.., uq 2 must be assigned 
the same color, say red. This implies, because of (h), that each vertex of

Fig. 1
The graph Hb. Not all edges are shown
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US, must be colored blue or green. If, for each i, 5, has both blue and 
green vertices then all vertices of A must be colored red, because of (d). 
This implies, via (b), that the vertices of C\ must be colored blue or green, 
contradicting the fact that C\  is a cycle of odd length. Hence for some i the 
vertices of 5, are monochromatic; suppose they are blue. Since each vertex 
of P  is joined to some vertex of Si, no vertex of P  is colored blue. Because 
of (f), each part of Pq+l must contain both red and green vertices; otherwise 
the vertices of some odd cycle Dj  cannot be properly colored. This implies, 
by (e), that all vertices of B  must be colored blue. But then, because of
(c), we cannot properly color C2. It follows that Hq is not 3-colorable. It is 
clearly 4-colorable and thus 4-chromatic.

We do not know whether Hq is 4-critical. We show, however, that every 
4-critical subgraph of Hq must contain all of the edges of type (g) and thus 
at least q3  edges. Delete an edge e of type (g). We shall show that Hq — e is
3-colorable. There is no loss of generality in supposing that e = s^iZi. Recall 
th a t the labelling is such th a t is joined to Zj, z2, . . . ,  zq. There is also no 
loss of generality in supposing that z\ is adjacent to S2,i> £3,1,..., s9ix. 3-color 
G* in colors red, blue and green so that the special vertices u.\,u2, . . .  ,uqi 
are green. Color the vertices of P and US', as follows:

red blue green
Z\

S i j ,  j  =  l , 2 , . . . , q
&i,j) ® =  1 , 2 , . . . ,  q', j  = 2 , 3 , . . . , q

%2 ? Z3 * • • • ? Zq 
$2 ,1 >53 ,1 > . . . , SQi 1

Zq+1 j Zq-1_2, . . . , Zg2

There are obviously no green edges (at this stage). There are also no red 
edges, for if s ,jz i, j  ^  1, were a red edge, we would have i = 1 so that z\ is 
in the j th  part of Pi, contrary to the fact that Zi is in the first part of P\. 
Suppose there were a blue edge, say st)izm, 2 < i <q, 2 < m < q .  Then zm 
is in L{ \ and also in L \ t\ so that P) ^1,1 = {zm}. However, by (g), this 
implies that zi and zm are both in the first parts of P\ and Pi and this is 
not so. Hence there are no blue edges.

We now extend the coloring to the rest of the graph. Color a\ blue and a} 
green for j  = 2 ,3 , . . . ,  q. Color the vertex of C\ incident with ai green and the 
remaining vertices alternately red and blue. For each j ,  there is one vertex 
in the j th  part Lq+it] of Pq+\ colored red or blue and the remaining vertices 
of L q+i j  are colored green. Color the vertex of Dj  which is adjacent to the 
red or blue vertex of Lq+i j  green and the remaining vertices alternately red 
and blue. Color bj red if it is not adjacent to z\. In this case bj will have 
one blue neighbor in P  and q — 1 green neighbors. If bj is adjacent to z\, it 
cannot be adjacent to any of Z2 , Z3 , . . . ,  zq, so tha t we may then color bj blue. 
Thus precisely one vertex b of B is colored blue and all others are red. We 
may then color the vertex of C2 adjacent to b red and the remaining vertices 
of C 2 alternately blue and green. This gives the desired 3-coloring of Hq — e.
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Let Hq denote a 4-critical subgraph of Hq of maximal order. It is straight
forward to check that Hq, and hence also Hq, has no cycles of length at 
most 4. In fact, it is clear that if there is such a cycle, it must have length 4 
and must involve one vertex from US,-, a vertex bm of B and two vertices z,- 
and zj of P. This implies that z, and z} are in the mth part of P?+i and since 
this part intersects each part of Pt , for any í < q + 1 exactly once, z, and zj 
cannot have a common neighbor in U5,-. Thus there are no cycles of length 4 
either. Hq does have cycles of length 5 and thus Hq may also have 5-cycles. 
However, it is clear that any such 5-cycle must have an edge e which is not 
of type (g), (h) or (i). Recall the well-known construction of Hajós [9]. Let 
Ti and T2 be fc-critical graphs with girth at least / + 1 and let a\b\ and a2&2 
be edges of Ti and T2. Delete aibi and a2&2, identify ai with a2 and join 
bi and 62 by a new edge. The resulting graph is /^-critical and also has no 
cycles of length at most /. Let e be an edge of H'q not of type (g), (h) or (i) 
and which lies on a 5-cycle. Apply the Hajós construction to Hq and a copy 
of G with e playing the role of one of the special edges. The 5-cycle is then 
destroyed. It therefore follows that by applying the Hajós construction at 
most 4q2 -f Aq times, all of the 5-cycles of Hq will be destroyed. Denote the 
resulting graph by H*. If H* has nq vertices and mq edges, then

(13) 2q2 <:nq < (5a + 2)q2 + (4a + A)q < 6aq2 

and

(14) ?3 = = <73 + (56 + 3)<72 + (46 + 4)g.

Furthermore we have

(15) f 4 ,5 (nq) > m q.

Let p= h(q) be the least prime such that 2p2 > nq. Then, from (13), we 
get

(16) 2 q2 < nq < 2 p2 ^ np < Gap2.

By the theorem of Chebyshev (see [13], p. 131-136) asserting tha t there is a 
prime between x and 2 x for all x > 2  we have p < (2nq)ll 2 so tha t p2 < 2nq. 
It then follows from (16) that

(17) nq < np < \2anq.

Let qi = 5 and for i > 1 let g,-+1 = /i(g,). We then have, from (15),

(18) f 4 ,$(nqi) ^  m qi.

For A (4 ,5) ^ r < ng,+1 — nq> 4- N(A, 5) — 1, let Tr be a 4-critical graph with r 
vertices, s edges and girth at least 6. Apply the Hajós construction to H*



356 H. L. ABBOTT and B. ZHOU

and r r . This gives a 4-critical of girth at least 6 having nqi + r -  1 vertices 
and m qx + 3 - 1  edges. It follows that

(19) f 4 , s ( n qi +  r - l ) > m qi +  s - l .

Let n  be a large integer. Determine i by nqi +  N ( 4,5) — 1 ^ n < n9i+l + 
+ iV(4,5) -  2. Then n =  nqi +  r -  1 for some r in [iV(4,5),n,i+1 -  nqi + 
+  N ( 4, 5) — 1]. We then get

/4 ,5 (n )  = / 4,5(n«j, +  r - l )

m qi + 3 - 1 ,  by (19)

>9?, by (14)
/  j  X3/2

i ( ^ n „ )  . by (13)

/  j  x 3/2

’ by(17)

- ( ? ^ ( n _ i V ( 4 ’5) + 2))  ^  by(19)

>cn3/2
where c depends only on a.

We have thus proved (12) for k = 4. We now proceed by induction on k. 
Suppose k > 4 and that (12) has been established for k; that is, suppose that 
we have established the existence of an integer n(k ) and a constant Cjt such 
that

f k , 5 ( n )  > ckn3/2
for all n > n(k). Let T be a (k + l)-critical graph with t vertices and s edges 
and having no cycles of length at most 5. Let T* be the graph obtained from 
n — 1 copies of T in the way in which G* was constructed from G. Let the 
special vertices of T* be u\,  U2 , . . .  ,un. Let H be the graph constructed by 
setting up a matching from the vertices u\, 112, . . . ,  un of T* and the vertex 
set of a ^-critical graph of order n and girth 6 with s(n) edges. It is 
straightforward to check th a t H  is [k + l)-critical and has girth 6. H has 
t(n  — 1) +  2 vertices and /^ ( r a )  +  s(n -  1) + 1 edges.

Thus
fk+ iAK n -  !) +  2) ^ /jt,5(n) + s(n -  1) + 1.

Here t depends only on k +  1. We could for example take t = N(k  + 1,5). It 
follows that

w » >  — £ i -------------” 3/2(JV(fc + 1,5))3/ 2
n
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Thus (12) holds for k + 1 for infinitely many integers n. One may now appeal 
to the Hajós construction again in order to ensure that (12) holds for k + 1 for 
all sufficiently large n. We suppress the details of this part of the argument.

We remark that the constants obtained in the above proof are very small. 
It would be of interest to improve them. We do not know what is the order 
of magnitude of fk,i(n) for l > 6. We hope to return to this question in a 
later paper.
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NOTE ON ADDITIVE FUNCTIONS SATISFYING 
SOME CONGRUENCE PROPERTY. I

PHAM VAN CHUNG

Let Ad, A4*, A  and «4* denote the set of integer-valued multiplica
tive, completely multiplicative, additive and completely additive arithmetical 
functions, respectively. We shall denote by Z resp. N the set of integers and 
positive integers.

In 1966 M. V. Subbarao [6] proved that if /  € Ad and /  satisfies the 
relation

(1) / ( n  + m) =  /(m )(m odn) 

for every positive integer n and m, then

(2) /(n )  = na (n e N )

where a  is a non-negative integer. In [1] A. Iványi extended this result 
proving that if /  E Ad and (1) holds for a fixed m and for every positive n, 
then /  also has the form (2). For some generalizations of these results we refer 
to [2], [4] and [5]. Recently, K. Kovács [3] has proved analogous theorems 
for integer-valued additive functions.

Our purpose in this paper is to give a characterization of those functions 
f  E A  which satisfy f {n  -f M) = C(mod n ) for fixed M  E Z, C E Z and for all 
n > max{0, — M}.  We prove the following

T heorem. Let M, C be fixed integers and let f  EA. If

(3) f ( n  + M)  = C(modn) for all n > max{0, — M],  

then /  =  0.
P roof. The theorem will be proved in three cases on M  > 0, M  = 0 and 

M  < 0.
Case I. We prove our theorem for M  > 0 in three steps.
1. First we show that, if /  E A  and (3) holds for every n E N, then

(4) C = f ( M ) .
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This time we use (3) with n given by M 2st where s and t run over the natural 
numbers. Since (M , M s t  +  1) = 1 we have

(5) f ( M s t  + 1) = C — /(M )(m o d t) 

for all s , t  6  N.  Using (5) with t given by ml, we get

/(M sm ! +  1) = C — /(M )(m odm )

for all natural numbers s ,m .  For fixed m > 1, let us summarize these con
gruences for all s running from 1 to m. We have

m

(6) f ( M s m \  + 1) = m(C — F(M))(modm).
s=1

The left side sum can be written in form 1) since (Mim\  +
+ 1 , M j m \  + 1) = 1 for all i ^  j .  Replacing n by M 2 Am  in (3) we get

f ( M A m  + 1) = C — /(M )(m od m).

This by (6) gives

m
+ 1) = C — /(M ) =  0(modm)

5 =  1

for all m > 1, i.e. C =  f ( M ) .  So for s = 1 (5) gives

(7) f ( M m  +  1) = 0 (mod m) (m € N ).

2. Let p be a prime which is coprime to M .  For any prime q > p, and 
fixed fc^N, there are infinitely many primes x > y > q such that

(8) py = l(mod qM  ) 

and

( 9 )  pkx =  l(modqM).

The congruences (8) and (9), by (7), give

f ( p k+1x y ) -  f (pkx ) -  f (p y ) =  0(modg)

which implies q\f{pk+1) — f ( p k) — f(p)- Hence we obtain f{pi3) = ß f (p )  for 
all ß  € N. By (3), we have

f ( M )  = f ( p aM ) = af(p) + /(M )(m od  (pa -  1)),
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i.e. pa -  l |a /(p ) . So a —» oo gives

(10) f{p^) = f(p)  = 0 for all p ]fM,ß€. N.

3. Let pß\\M with ß  > 0. For any 0 < a < ß there are infinitely many 
q € N such that, using (10),

f ( M )  = f(qpa + M) = f ( q + ^  + f (pa) = f (pa)( mod q).

So we get

(11) /(M )  =  /(p “ ) = /(p °) =  0 ifO i a < ß .

For any fixed 7 > 0 and for all (n, M ) =  1, by (10) and (11), we have

0= /(M ) = f { ? M n )  = f(p^+0) + f  ( ^ j  + /(n )= /(p ^ ) (m o d (p ^ n -1 ) ) .  

Hence n —► 00 gives also

(12) f ( p s) = 0 for all 6 = 7 + ß > /3.

So (10), (11) and (12) imply /  = 0.

Case II. Let us consider the case M  = 0. We get from (3) tha t

(13) /(n )  = C(mod n).

Let u be a fixed positive integer. Since there exist infinitely many positive 
m  with (m, u ) = 1, we obtain from (13) that

/(u )  +  C = f(u)  + /(m ) = f ( u m ) = C(mod m).

So we have f ( u ) =  0(modm) for all m  G N, which implies f ( u ) =  0.

Case III. Finally we assume that M  < 0. In this case we can apply (3) 
with n given by \M\2ms  to get

(14) /( |A f |ms -  1) = C — f ( \ M |)(modm).

Similarly, as in Case 1.1, applying (14) with odd integer m, we also have
m

0 = ^  f i \ M |sm! — 1) =  C — /(|M |)(m odm ),
»= 1

i.e.
/( |M |)  =  C.
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So the choice s = 1 in (14) gives

(15) f{ \M\m  — 1) =  O(modm) for all m  € N.

If M  is even, then it follows from (15) that

f ( \ M \ m  + 1) = f ( \M \m  +  1) +  f ( \ M \ m -  1) = / ( |M |2m2 -  l)  = 0(modm)

since ( \ M \ m — l , |M |m + l ) = l .  The last congruence gives similarly to Case I 
tha t /  =  0.

It remains to consider the case with M  odd. Then (15) implies that

/(2 |M |m  +  l) = /(2 |M |m  + 1) +  f(2\M\m -  1) = /(4 M 2m2 -  1) = O(modm)

and so, similarly as in Case I, f (n )  = 0 for all positive integers n coprime 
to 2.

Finally we show / ( 2k) =  0 (k € N). Let Q be coprime to 2M.  We get

f(2kQ’ \M\) -  / ( 2fc) + f (Q ’) + / ( |M |)  = / ( 2k)

because f{\M\) -  f (Q *) = 0 holds. Using (3), replacing n by (2kQa + 1)|M |, 
we get

f ( 2 k) = f[(2kQa + 1)\M\ -  \M\] = f ( \ M \) = 0(m od \M\(2kQs + 1)).

Thus s —* oo gives / ( 2k) = 0.
A c k n o w l e d g e m e n t . I wish to express my gratitude to K. Kovács for 

her remarks.
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SOME SUFFICIENT CONDITIONS FOR CONVEXITY 
OF MULTIVARIATE BERNSTEIN-BÉZIER POLYNOMIALS 

AND BOX SPLINE SURFACES

MING-JUN LAI

A b str a c t

A sufficient condition on the /J-net of a multivariate polynomial in Bernstein-Bézier 
representation to guarantee that its graph is a convex surface is presented in this paper. 
Some further studies on the convexity of trivariate polynomials are also included. As an 
application, some sufficient conditions for convexity of bivariate box spline surfaces are 
given. These conditions improve some of the results in [8].

1. Introduction

Let v0 , . . . , v ä € R ’ be 5 + 1 distinct points such that the convex hull 
(v°,.. . ,va) = I A,-v’ : ]£ A; = 1, and A, > o ]  is an s-simplex in Ra, s > 1. 

Let Aj, i = 0 , . . . ,  s, satisfy
8 8

x = ^ A , v‘, J^ A , = 1
i= 0  i= 0

and let T  = (v°,. . . , vs). Then A  = (A0, . . . ,  Aa) are the barycentric coordi
nates of x with respect to T. It is known that each A, is a linear function 
of x. Thus,

Pn(*)= ca Ba( A)
|a|=n

with Ba(X) — ~yA q 0 . . .  A " * ,  a  €  Z*+1, is a polynomial of total degree ^  n. It 
is well-known that any polynomial of total degree < n can be expressed in 
the above way. Such representation for a polynomial pn is called Bernstein- 
Bézier representation, in short, B-form (cf. [1]). The coefficient ca of pn is
called B-coefficient with respect to T, a  G Ẑ .+1 with |a | = n. The coefficients

8

ca together with xa = t̂ t 53 a *v' with |a | = n constitute the B-net ofpn which 
“  i= 0
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contain “visible” information about the geometric feature of the surface pn. 
This is one of the reasons why polynomials in B-form have been widely used 
in Computer Aided Geometric Design.

The relation between properties of B-coefficients ca , |a | = n and the con
vexity of the polynomial surface pn have been explored for many years. The 
first sufficient condition on {ca : |a | = n} to ensure the convexity of bivariate 
polynomial p„ was given by Chang and Davis in [3]. This condition has 
been improved and generalized since then for instance in [4], [8] and [10]. 
See a recent survey [9] on the study of shape preservation property of multi
variate Bernstein-Bézier polynomials for further references. We need some 
necessary notation to discuss the results mentioned above and to conduct 
our investigations.

Let A, B  G R* be two distinct points. Define the derivative Da- b  along 
direction A B  by

D a - b Í { * )  = lim
t —+0

f ( x  + t ( A -  B ) ) -  f (x )  
t

We denote D,j Dv,_vJ, i ^  j ,  i , j  = 0 , . . . ,  s. Then it is known that 

D{jPn(x) — W ^   ̂ (^a+e1 —
|a|=n — 1

(cf., e.g., [1]). Furthermore, define the difference operator A a l o n g  the 
direction v'v-7 by

A,-jCa = ca+e, - c a+eJ, i ^ j ,  i , j  = 0 , . . . , s .

Chang and Davis’ sufficient condition for the convexity of a bivariate 
polynomial p„(x) on (v ^ v ^ v 2) is that

AioA20Ca ^ 0,
(1) AoiA2lCQ^0 ,

Ao2Ai2CQ > 0,

n —2. Later, the following improved conditions were established 

A f0Ca^O, V|a| = n — 2

( A io A 2 o C a ) ( A o i A 2 l C a ) +  ( A ioA 2 oCq ) (  A o 2  A i2 C a )

(2b) ( A 0 i A 2 i c a ) ( A o 2 A i 2 C a )  5;  0 ,  V | a |  =  n - 2 .

In [8], Dahmen and Micchelli established conditions similar to (1) for the 
general multivariate case. However, while the precise analog to (1) is shown

for all I or I = 
in [4]

(2a)

and



MULTIVARIATE BERNSTEIN—BEZIER POLYNOMIALS 365

in [8] to work still in the trivariate case, an example is given there which 
demonstrates that this form of conditions does not guarantee convexity in 
higher dimensional cases.

Let us reapproach this problem to find certain sufficient conditions on 
the B-coefhcients of pn(x) = ^  caBa(X) to guarantee that pn is a convex

M=n
surface on T.

For any direction d in R4, we can write it as

< * = ! > ( » ' - A
1=1

for some rp, i = 1 , . . . ,  s. Then
S

Djpn(x) = n(n -  1) ^ 2  T]tr)j A ioA JocaBQ(X)
| a | = n - 2  i , J = l

= n ( n - 1) V ^ s i ^ l B a i X )
|a|=n—2

where r] = (rji, . . . ,  r)ay  and

• • • AioA^oCa
• • • A2oAÄoCa

/\2 p• • * J

It is well-known that pn is convex on T  if and only if D^pn(x) ^  0, Vx G T  for 
any direction d.

A trivial sufficient condition to ensure that pn is convex on T  is that Cs(a) 
is positive semi-definite for |a | = n — 2. This condition is also necessary when 
n = 2 and n = 3 for any s > 1. When s — 2, C2(a) is positive semi-definite if 
and only if (2) holds.

It is known from linear algebra that Cs(a) is positive semi-definite if and 
only if det(Cfc(a)) > 0, for 1 ^ k < s which is equivalent to saying that all 
the eigenvalues of Cs(a) are nonnegative. In the present text it is important 
to find possibly simple conditions for positive semi-definiteness of a matrix 
which is given explicitly in term of the control coefficients ca and which are 
easy to verify. Certainly, condition (1) is simple. But it cannot be simply 
generalized to the multivariate setting when s > 4 as shown in [8].

There is another kind of sufficient conditions proved in [3] that if the 
piecewise linear interpolant to the B-coefRcients of bivariate pn on T  is con
vex, then pn is convex on T. This condition was later generalized to any 
multivariate setting by Dahmen and Micchelli and extended to the box spline 
surfaces. See [8].

(3 ) C,(a) =
A i0ca AioA2oca 

A2oAioCa A 20 Cq,

. A s0Aioca A2oA s0cq
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We will prove in the next section a simple sufficient condition on the B- 
coefficients of a multivariate polynomial pn with respect to T  to ensure that 
it is convex on T. When s =  2, our condition is better than (1). When s = 3, 
there is no comparison between our sufficient condition with the condition 
in [8] (see Condition (5) below) which is a generalization of Condition (1). 
Our condition can also guarantee the convexity of a polynomial surface even 
if a piecewise linear interpolant to the B-coefficients of a polynomial pn on 
T  is not convex.

We further study sufficient conditions for the trivariate setting in Sec
tion 3 and obtain a sufficient condition which is better than the one in [8]. As 
an application of our condition in Section 2, we also study the convexity of 
bivariate box spline surfaces and deduce some sufficient conditions to ensure 
the convexity of spline surfaces.

2. Multivariate case

Let us begin with a definition of weak* diagonal dominance of a matrix. 
DEFINITION. A  square matrix A = ( a , j ) „ Xn is called weak* diagonally 

dominant if it satisfies

K l £ $ > ; ! ’ f = i,---,-s-
i/*

W ith this definition we can prove the following
Lemma 1. Let A =  (a,y)nXn be a symmetric real matrix with nonnega

tive diagonal elements, i.e., a„- ^ 0, i = 1 , . . .  ,n .  I f  A has weak* diagonal 
dominance, then A is positive semi-definite.

The proof of this lemma is folklore. We omit here.
Thus, we obtain immediately the following
T heorem 1. If  the B-coefficients ca of a polynomialpn(x) = co#a (A)

|o |= n
defined on T  satisfy

S

(4) A-0 ca > ^  |Aj0 A i0 ca|, V|a| = n —2, t = l ,2 , . . . , a ,  
j=i

then pn is convex on T.
P roof. In view of Lemma 1, Condition (4) implies that Ca(a), as de

fined in (3), is positive semi-definite. Hence Djp„(x) > 0,Vx€ T  and for any 
direction d. Thus, pn is convex on T. This completes the proof of Theorem 1.

Similarly, we can prove the following
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Corollary. For a polynomial pn(x) 

B-coefficients ca ’s satisfy

53 ca fla ( A) defined on T, if its
\a \= n

8

A -,ca ^ |A j/A j /c a |, V |a | =  n - 2 ,  i j U
j = 0

}*•,}¥>
for some 0 < / < s, then pn is convex on T.

R emark. It is known that when A is positive semi-definite, a„ = 0  im
plies that a,j = 0, and a,,- =  0,V/ 7̂  i. This indicates that weak* diagonal 
dominance is close to a necessary condition for the positive semi-definiteness 
of A.

We now consider the special case s = 2.
P roposition 1. Let pn be a bivariate polynomial of total degree n de

fined on (v°, v1, v2). I f  they satisfy Condition (1), its B-coefficients satisfy 
Condition (4).

P roof. A j0ca — A10A20C0 = Aio(Aio — A 2o)ca — A i0A 12ca = 
= A oiA 2iCa > 0 by Condition (1). Thus, we have A j0co > A ioA 2oca = 
= |A ioA 2oca |. Similarly, we can show that A \ 0 ca > |A ioA 2oc„| for |a | = n — 
— 2. Thus, C2(a) has weak*diagonal dominance and hence, ca satisfies our 
Condition (4). This completes the proof.

Fig. 1
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Let us consider the following quadratic polynomial p2(x) defined on 
(v°, v1, v2, v3) with zero B-coefficients except for C(0 2io,o) = 2, C(0 0j2)o) = 
= 3,C(0]o,o,2) = 3,C(o,i,i,o) =  — 1 > c(o,o,i,i) = —2, c(o,i,o,i) = 1 as shown in Fig
ure 1.

It is easy to find that A?0c(0i0)o,o) = 2, A^0c(0,o,o,o) = A |oc(0,o,o,o) = 3, but 
A ioA 2oC(o1o,o,o) — — F  A ioA3oC(00)o,o) = 1 and A 2oA3oC(00io,o) = —2. By our 
Condition (4), the polynomial p 2 is convex on (v°, v1, v2, v3). But the condi
tion in [8] which is a generalization of Condition (1) fails to see the convexity 
of p2.

However, the following example g2(x) with zero B-coefficients except 
c(2,o.o.o) — 2,C(0,2,o,o) = l>c(o,0,2,0) = 1) and C(0)o,o,2) — 1 as shown in the fol
lowing Figure 2. By the condition in [8], it is convex. But our Condition (4) 
fails to see that.

Fig. 2

3. Trivariate case

We now further study the trivariate case. Let
' 1 0 O' 0 0 O' 0 0 O'

P l = 0 0 0 F 2 = 0 1 0 0 0 0
. 0 0 0 . . 0 0 0 . . 0 0 1 .

r l 1 r ■1 1 O' ' 1 0 r

II 1 1 l P s = 1 1 0 II

rif 0 0 0
1 1 l 0 0 0 1 0 l
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be positive semi-definite matrices. Then it can be easily shown that

C3 (a) =
A i o  Ca  A i o A 2 0 C a  A i o A 3 o C a  6

A i o A 2o C a  A j p C a  A 20 A 30  ca =  2 2 t Á c* ) p j
AioA 3oCa A 2oA3oCa AIqCc J j = l

with íi(a ) = A21A31CC t 2 ( a )  = A02A12 ca , *3(0) = A03A13 ca,
t4 (a) = A2oA30ca , t5 (a) = A 02A 3ica, and t6 (a) = Ax2A 3oca . Thus we have 
the following proposition.

P roposition 2. 7 / <,(o) > 0 ,Vi = 1, . .  . ,6 and|o| = n - 2 ,  then C3( a) 
is positive semi-definite for each |a | = n — 2 and hence, p„(x) is convex on 
<v°,v\v2 ,v3).

Furthermore, let
■0 0 O'

p7 = 0 1 1
0 1 1

be another positive semi-definite matrix. It is easy to see that Pi + P2 + P3 + 
+ P4 -  P5 — Pß — P7 = 0 . Now we have

Lemma 2. I f  min f,(o) > max{—ij(o)}, then C3 (a) is positive semi-
1< i < 4  5 < 6

definite.

P r o o f . We consider two cases.
Case 1. min i ,(o )< 0 .

1 <«<4

Let j/,(a) = 2/7(0)+ i,(o ) ,i = 1 , 2 , 3 , 4 and 27,(0) =  - y 7 ( o t )  +  t j ( a ) , 5 ^ j ^ 6  
for such 1/7(0) > 0 that

min U(a) > -yr{a) >  m a x j - ^ a ) }
l < i < 4  5 < j < 6

Then 2/1(0) ^ 0 , 1  ^ i  ^ 6. Since

7

Ci(a) = J^3 /,(q)P,,
i—i

C3(a) is positive semi-definite.
Case 2 . min t ; ( a )  >  0 .1SiS4 ~
Let 2/,(o) = —1/7(0) + L'(o), i = 1,2,3,4 and yfia) = y7 (a) + tj(a), j  = 5,6 

for some 2/7(0) ^ 0 such that

min f , (o )  > j/7(o )  > m a x  { - ^ ( o ) } .
1 S i S 4  5 S j S 6
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Then y ,(a) > 0, i = 1 , . . . ,  7. Since

7

C3(a) =  J > ( a ) P . - ,
i=i

we conclude that C3(a) is positive semi-definite. Hence, the proof is com
plete.

C orollary (Dahmen and Micchelli). If  the B-coefficients ca ’s of pn 
satisfy

(5 ) AifcAjjfeCc > 0 , i , j , k  =  0 , 1 , 2 , 3 , V|a| = n - 2 ,

then C3(a ) is positive semi-definite for all |a | = n — 2 and hence, pn is convex.

P r o o f . We only need to show that under the assumption (5 ), 
min f,-(a) > max {—fj(a)} , that is, -A o2A 3ica ^ f,-(a),* = 1 ,2 ,3 , 4  and

1 ^  i  ̂  4  5 < j <  6

- A 12A 30cq <U(a),i = 1 ,2 ,3 ,4 .
For instance, —Ao2A 3ica = Ao2A i3ca = Ao2Ao3ca -(- Ao2Aioca = 

=  A o2A o3cq -  A o 2A oiC a  <  A o2A o3cq =  Í 4 ( a ) .
Also, —Ao2A 3ica = Ao2A i3ca = Ao3A i3ca + A 32A i3ca ^ Ao3A i3ca = 

— t3(a )  since A32A i3 — — A 23A i3 ^ 0.
Similarly, we can show that — A 20A 3i < ti(a )  and < t2(a).
By the same argument we can show that — A i2A 3oca ^ f ,(a ) ,i = 1 , 2 , 3 , 4 . 

This completes the proof.

By using Lemma 1 and 2 , we immediately get

T heorem 2 . Letpn{\)  — Y  co,Ba(ty defined on (v°,v1,v2,v3). Sup-
\ a \ = n

pose that for each a with |a | =  n — 2, C3(a) satisfies either A ?Qca > 
3

> Y  |A,oA,oca |,i  = 1 , 2 , 3  or min t,(a) > max tj(a). Then p„(x) is convex
j^t i=*=4 5=i=6

on (v°, v1, v2, v3).

We conclude this section with the following example. A quadratic poly
nomial r2(x) with given B-coefficients: C(2 0 ,o,o) = c(i,i,o,o) = c(o,2,o,o) =
=  c(o,o,i,i) = c(i,o,o,i) =  c(i,o,i,o) — c(o,1,0,1) = c(o,1,1,0) = I» and C(0,o,2,o) = 
=  C(0jo,o,2) = 2 . See Figure 3  for reference. Then it is easy to find out that 
i i ( 0 ) =  - 2 , t2(0 ) = 0 , t3(0 ) -  0 , f4(0 ) = - 2  and i5(0 ) = 2 , t6(0 ) = 2 . By using 
Lemma 2 , C3(0 ) is positive semi-definite. But, A 2oA 30C(0i0,o,o) = —2  which 
violates (5 ). Thus, (5 ) fails to see the convexity of r 2(x).



MULTIVARIATE BERNSTEIN—B EZIER  POLYNOMIALS 371

4. Bivariate box spline case

In this section, we shall apply the sufficient condition discussed in Sec
tion 2 to the study on the convexity of bivariate box spline surfaces.

First, let us recall some necessary definition and notations. Let X n = 
= {x1, . . . ,  xn} C Z2\ { 0 } be a direction set. Then the box spline !?(•; A'„) is 
defined by requiring that

J  f ( x )B (x ;X n)dx= J  / i ^ A . x ' j d A
R 2 [ - 1 / 2 , 1 / 2 ] "  ' ’ = 1  '

holds for all continuous functions /  on R2. Fix a box spline B ( - ] X n ) .  The 
box spline surface S'(-;Xn) is defined by

S{-;X„ )=  Y ,  f(<*)B(--cr,Xn). 
a e  z2

For properties of box spline and box spline surfaces, see, for instance, [2] 
and [7].

Our purpose in this section is to find some sufficient conditions on / ( a )  
to ensure the convexity of 5 (-;Xn). It is known that the convexity of 
/(■) does not guarantee that 5 (-;Xn) is convex (cf. [8]). It was also shown 
in [8] that if the piecewise linear function s q on a three-directional mesh



372 M IN G-JU N LAI

interpolating /(a ) ,  a £ Z2 is convex, then 5 (-;X„) is convex provided X„ 
contains e1, e2, and e1 + e2, where e1 = (1 , 0 ) and e2 = (0 , 1). (The results in
[8] are formulated for the general s-variate case.) Their results is based on 
the following

P r o p o s it io n  3 (Dahmen and Micchelli). I f  S{-\Vm) is convex, then 
S(-; Vm U {v}) is convex for any direction v.

However, a fact is that even if the piecewise linear interpolant so is not 
convex, 5 (-;X„) may also be convex. Thus, we need further study to find 
finer conditions to ensure the convexity of S(- ;Xn).

Let I3 = {e1, e2, e1 + e2},Y4 = {e1, e2, e1 +  e2, e 1 — e 2 }  and I5 = {e1, e 1 , e 2 , 
e 2 , e 1 +  e2}.

We first consider 5 (-;Xn) with I5 C X n. The B-coefficients of B ( - ; Y 5 ) 
can be found in [5] or [6]. Let [/, and L, be the upper and lower triangles of 
[i,i -f 1] X [j, j  + 1], respectively. After the computation of all second differ
ences along directions e2 and e1 + e2 of the B-coefficients of 5'(-;Y5)|[/i and 
all second differences along directions e1 and e1 + e2 of the B-coefficients of 

we apply Theorem 1 and Proposition 3 to get
T h e o r e m  3 . For any X n which contains Y5, S(-]Xn) is convex if fij 

— /(*, j ) ,  (i , j ) £ Z2 satisfy the following conditions

m in {/,j+i — 2 f i j  T f i , j —1, f i + i , j  ~  f i —i , j  T f i j - 1-1 — f i , j —1 — 2 (/ij — f i —i,j—1)}

= l/»,j+l — f i j  ~  / ‘- l  ,3 T f i —l , j —1 1,
min{/t',j+l — 2/,'j "I- f i , j - 11 2( /i+l.j+l — f i j ) ~ ( f i + l j  ~  f i - l , j )  ~  ( f i , j +1 — f i , j —1 )} 

= |/i+ lj+ l — f i + l , j  ~  f i j  + f i , j —111 
m in{/,_ ij+i -  2 / , - i j  + f i - i j - i ,  f i+ i j+ i  -  2fi j  + /,•_i j - i }

= l/»,j+i — f i j  ~  f i —i j + i  T f i —1,j I,
and

— 2 f i j  4- f i —i j ,  f i + i , j  — f i —i j  T f i , j + i  — f i , j - 1 — 2 ( f i j  — /»—i,j—1)}

= \ f i + l j  — f i j  ~~ f i , j - 1 + f i  1,J —1 I J 
m m { f i + i j - i  -  4- / i - i j - i ,  /«+i,j+i — 2 f i j  + / , - i j - i }

= l/i+l.j -  f i j  -  f i , j - 1 + / i - l j - l l ,
— 2 f t j  T f i —l , j » 2 ( / ,+xy+i — /ij ) — (/i+i,j — f i —i j  ) — (/i,j+l — f i j —1)} 

= I/1+1,i+i — f i j +1 — /íj T / i—1, j I
for (i , j ) £ Z2.

R e m a r k . When S(-;Y3) is convex, that is, f i j , ( i , j ) £ Z2 satisfy that

/»+i,j — 2/,j + f i —i j  ^ 0,
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f i j + l  ~  V i ,  +  f i j - 1 = o>
and

/•+ lj+ l — f i j  ~  f i j + 1  d" /»—l,i = 
f i , j + 1  — f i j  ~  f i + l j + l  d" f i + l j  = 0, 
f i + l j + l  -  f i j  -  f i + l j  +  f i j - 1 = 0.

It is easy to verify that f i j , ( i , j)&  Z2 satisfy the condition of Theorem 3, 
too. Hence, />(•; X„) is convex provided Y$ C X n.

Next, we consider 5(-; X n) with X n containing Y4 . The B-coefficients 
of J3(-;l4) can be found in [5] or [6]. After the computation of all the 
second differences of the B-coefficients of restricted to each of the
four triangles of [i , i + 1] X [j,j + 1], we apply Theorem 1 and Proposition 3 
to obtain the following

T heorem 4. For any X n containing l4 ,5 (-;A „) is convex if fij := 
= /(*>Í)>(*>Í) € Z2 satisfy the following condition

( f i + i j + i  ~  2/i'j+i + /.- i,j+ i)  + ( / . ' + i j  -  2f i j  + f i - i j )  ^

= |/i+l,j+l — f i j + l  ~  f i j  d" f i —1,jI»
( f i + i j + i  ~  2/.+i,j + f i + i j - 1) +  ( / í,j+i -  2/.J + f i j - i )  ^

= l/i+l.j+l — f i + l j  ~  f i j  d~ f i j - l  I»
and

2(/«+i,j+i — f i j ) — (/t+l,j — f i - i j )  — ( f i j + l  — f i j  1) =

2 max{|/i+i >J+x — f ij+i ~ fij d- f i - i j \i l/i+i,j+i ~ f i+ij  ~ fij d~ f i j —1|}> 

(/i,i+i — /« j- i) d- (f i+lj ~ f i—i j )  ~ 2( f i j  ~ f i—i j —i ) = 
2m ax{|/,+i j  — f i j  — fij- 1 T / i—i j —11, 1 f i j+i ~ f i - i j  ~ fij d- /»—i,j—11} 

for all (i , j ) € Z2.

R E F E R E N C E S

[1] B o o r , C. d e , ß-form basics, Geometric modeling, G. Farín ed., SIAM Publication,
Philadelphia, PA, 1987, 131-148. MR 89b:65010

[2] B o o r , D . d e  and H ö ll ig , K., B-splines from parallelepipeds, J. Analyse Math. 4 2
(1982/83), 99-115. MR 86d:41008

[3] C h a n g , G. and D avis, P . J . ,  The convexity of Bernstein polynomials over triangles, J.
Approx. Theory 4 0  (1984), 11-28. MR 85c:41001

[4] C h a n g , G. and F e n g , Y. Y., An improved condition for the convexity of Bernstein-
Bézier surfaces over triangles, Comput. Aided Geom. Design 1 (1984), 279- 
283.

[5] C h u i, C. K., Multivariate splines, CBMS-NSF Reg. Conf. Ser. Appl. Math. 54, SIAM
Publication, Philadelphia, 1988. Zbl 687.41018



374 M IN G -JU N  LAI: MULTIVARIATE B E R N ST E IN —BEZIER POLYNOMIALS

[6] Chui, C. K. and L a i, M. J., Computation of box splines and B-splines on triangulation
of non-uniform rectangular partitions, Proceedings of China-U.S. Joint Con
ference on Approximation Theory (Hangzhou, 1985), Approx. Theory Appl. 
3 (1987), 37-62. MR 89e:65012

[7] Dahmen, W. and Micchelli, C. A., Recent progress in multivariate splines, Approxi
mation Theory, IV, (College Station, Tex., 1983), Academic Press, New York, 
1983, 27-121. MR 85h:41013

[8] D a h m e n , W. an d  M ic c h ell i, C. A ., Convexity of multivariate Bernstein polynomials
and box spline surfaces, Studio Sei. Math. Hungar. 23 (1988), 265-287. MR 
90g:41005

[9] Goodman, T. N. T., Shape preserving representations, Mathematical methods in com
puter aided geometric design (Oslo, 1988), T. Lyche and L. L. Schumaker eds., 
Academic Press, 1989, 333-351. MR 91a:65031 

[10] Zheng, W. and Liu, Q., An improved condition for the convexity and positivity of 
Bernstein-Bézier surfaces over triangles, Comput. Aided Geometric Design 5 
(1988), 269-275.

(Received April 5, 1990)

D E P A R T M E N T  O F M ATHEM ATICS 
T H E  U N IV E R S IT Y  O F UTAH 
SALT L A K E  C IT Y , U T 8 4 1 1 2  
U .S .A .

P re se n t a d d ress :

D E P A R T M E N T  O F  M ATHEM ATICS 
U N IV E R S IT Y  O F  GEO RGIA  
A T H E N S, G A  3 0 6 0 2  
U .S .A .

e-m ail: m jla i@ w iener.m ath .uga.edu

mailto:mjlai@wiener.math.uga.edu


Studia Scientiarum  M athematicarum Hungarica 28 (1993), 375-378

COVERING A PLANE CONVEX BODY WITH 
NEGATIVE HOMOTHETICAL COPIES

M. LASSAK and É. VÁSÁRHELYI

Covering a plane convex body with positive homothetical copies is con
sidered by many authors (for references see for survey paper [3]). On the 
other hand, every plane convex body C can be covered by a homotheti
cal copy of C of ratio —2 (see [7]). A natural question emerges about the 
covering of C with more than one negative copy.

T h e o r e m . Every plane convex body C can be covered by two homotheti
cal copies of ratio —y/2 , by three copies of ratio —1, by four copies of a ratio 
greater than —1.

P r o o f . By Lemma 3 of [5] we can inscribe in C a centrally symmetric 
hexagon H = hih^h^h^h^hß with

( 1 ) h i h\ —
---- ►
h^hz.

Let o denote the centre of H . Three of the lines containing the sides of 
H bound a triangle V  = 515335 containing H , and three other a triangle W  — 
= 523436; the notation is chosen such that si, h2, h$, 03 are successive points 
on a line, and that 3,4.3 is symmetric to s, with respect to o for i=  1,2,3. 
Let S = V  UIV. Since H is inscribed in C, the convexity of C implies C C 
C S.  Let pi denote the intersection of segments h\s3 and h4s\.  Let P2 be 
the intersection of segments his 4  and h4 se- From (1) it results that 333] =
= - y / 2 hih4 = S4S6. Consequently, S  is covered by the union of homothetical 
copies of H with centers pi, p2 and ratio -%/2. Thus the inclusions H C C 
and C C S  show that C is covered by two copies of ratio — y/2.

It is well known [1] that an affine image K  = k ^ k ^ k ^ k ^ k a  of a regular 
hexagon can be inscribed in C. Three lines containing the sides of H  bound 
a triangle X  and the other three a triangle Y.  Let Z = X  U Y .  Since H is 
inscribed in C, from the convexity of C we obtain C C Z.  Observe that Z  
is covered by the union of the homothetical copies of H  with ratio —1 and 
centers in the midpoints of the sides of the triangle kxk^k^. This and the

1991 M athem atics Sub jec t C lassifications. Primary 52A45.
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n -1 n - 2

Fig. 1

inclusions H  C C and C  C Z  imply that C  is covered by three homothetical 
copies of C  of ratio —1.

The last statement of Theorem is obvious when C  is a triangle (see 
Fig. 1 ). Consider the case when C  is not a triangle. Then there exists 
a parallelogram P and its image Q under a homothety with positive ratio 
u> < 2 such that the inclusions P  C C  C Q hold true [6]. Of course, four 
homothetical copies of P  of the ratio cover Q. From the inclusions
P  C C and C  C Q we see that C  can be covered by four homothetical copies 
of the ratio — >  — 1.

The proof is complete.
Denote by g m { C ) the greatest negative ratio of m  homothetical copies of 

C  whose union covers C .  A short consideration analogical to that on p. 163 
of [4 ] shows that the number g m ( C ) exists. Our Theorem and the fact quoted 
before that every plane convex body C  can be covered by a homothetical 
copy of ratio -2  can be formulated as follows:

(2) 9 i ( C )  >  -2 , g 2 ( C ) > - V 2 , 53(C) > - l ,  54(C) > - 1 .

C o n j e c t u r e . F o r  e v e r y  p l a n e  c o n v e x  bo dy  C  w e  h a v e  5 2 ( C )  >  — |  a n d

9 4 ( C )  ^ - 1

Proposition formulated below shows that the estimates for 51(C) and 
53(C) in the Theorem, and for 52(C) and 54(C) in the Conjecture cannot be 
improved.
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PROPOSITION. For every triangle T we have <jq(T) = —2, g2 (T) = — 
g3 (T) =  - l  and gi {T) = - \ .

P r o o f . It is sufficient to consider the regular triangle of unit side. From 
Fig. 1 we see that

(3) 9 i (T) > -2 ,  g2 ( T ) > - l ,  g3 ( T ) > - l  and ff4( T ) > - | .

I f - 2 ^ A ^ - | ,  then By a\ we denote the maximum of the length of the 
part of the boundary of T  which can be covered by a homothetical copy of T 
with ratio A having nonempty intersections with all sides of T. If — 1 < A < 0, 
then by b\ we mean the maximum of the length of the part of the boundary 
of T which can be covered by a homothetical copy of T with ratio A disjoint 
with at least one side of T. We omit a simple consideration which shows 
that

(4) a\ = — 1 — 2A and b\ = —A.

In Parts (i)-(iv) we show that the four inequalities in (3) can be replaced 
by equalities.

(i) From (4) we have a\ < 3 for A > —2, and thus gi(T) = —2.
(ii) Consider the covering of T  by two homothetical copies Y  and Z of T 

with negative ratio A of homothety. For instance, let Y  contain two vertices 
of T. The set T \ Y  is a homothetical copy of T with ratio at least 2 + A. 
From T \ Y  C Z and from the equality g\(Z) — - 2  shown in (i) we conclude 
that A ^ —2(2 + A). Consequently, A < — By the second inequality in (3) 
we obtain g2 (T) = — | .

(iii) From a\  < 1 and b\ < 1 for A > — 1, and from the third inequality in
(3) we obtain g3 (T ) = — 1.

(iv) Let T be covered by a family T  of four homothetical copies Ti ,T2, T3, 
T4 of T  with a negative ratio A > — |  of homothety. Thanks to g^T)  > — |  
given in (3), it is sufficient to show that A < — | .

Observe that if at least one triangle from T  has nonempty intersection 
with every side of T, then A < — In this case from (4) and from a\ < b\ for 
— |  < A < —̂  we obtain 3(—A) + ( — 1 — 2A) > 3. Thus A < — | .

Consider the opposite possibility when every triangle from T  is disjoint 
with a side of T. Then a side S of T is covered by two triangles from T, say, 
Ti and T2. Let the notation be chosen such that the length /x of S C T\ is 
not smaller than the length of S f\T2. Denote by v the vertex of T  which is 
not an endpoint of S . Consider two cases.

If n > | ,  then T\ has empty intersection with the homothetical copy W\ 
of T  with the ratio |  + A and the centre v. Since W\ CT 2 \JT2 \J T4, and by 
the equality g3 {W\) = — 1 established in (iii), we conclude that A < — f  — A. 
Consequently, A < — | .



Let fi<  §. By the choice of Tj we have 1 — A4 < //. Denote by Wi  the 
homothetical copy of T  with the ratio 2 — p + A and the centre v. Observe 
that the interior of W2  is disjoint with Ti UT2 . By (ii) we have <72( ^ 2) = — § 
and consequently, A ^ —1(2 — p -f A). This and fj. ^ |  imply A ^ — | .

The proof of the Proposition is complete.
Considering the areas of a triangle T and of the negative copies covering 

T, and using the result of [8] we conclude that
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—2 / yjn 5; gn{T) - 1  / \ fn

for every natural n .  From [2] we get

lim y / n g n l C ) ^  — \/3 /2
n —► 00

for every plane convex body C ,  with equality only when C  is a triangle.

REFERENCES

[1] B es ic o v it c h , A. S., Measure of asymmetry of convex curves, J. London Math. Soc.
23 (1948), 237-240. MR 10-320

[2] F á r y , I., Sur la densité des réseaux de domaines convexes, Bull. Soc. Math. France
78 (1950), 152-161. MR 12-526

[3] L ássák, M., Covering plane convex bodies with smaller homothetical copies, Intuitive
Geometry (Siófok, 1985), Colloq. Math. Soc. J. Bolyai, Vol. 48, North- 
Holland, Amsterdam-New York, 1987, 331-337. MR 88i:52023

[4] Lássák, M., Covering a plane convex body by four homothetical copies with the
smallest positive ratio, Geom. Dedicata 21 (1986), 151-167. MR 88c:52013

[5] L ássák, M., Approximation of plane convex bodies by centrally symmetric bodies, J.
London Math. Soc. (2) 40 (1989), 369-377. MR 91a:52001

[6] L ássák, M., Approximation of convex bodies by parallelotopes, Bull. Polish Acad.
Sei. Math, (to appear).

[7] N eumann, B. H., On some affine invariants of closed convex regions, J. London Math.
Soc. 14 (1939), 262-272. Zbl 26,359

[8] V ásárhelyi, É., Über eine Überdeckung mit homothetischen Dreiecken, Beiträge Al
gebra Geom. 17  (1984), 61-70. ZW 554.52011

(Received April 20, 1990)

IN S T Y T U T  M ATEM ATYKI I  F IZ Y K I 
A T R
P L —8 5 - 7 9 0  BYDGOSZCZ 
P O L A N D

E Ö T V Ö S  LORÁND T U D O M Á N Y E G Y E T E M
T E R M É SZ E T T U D O M Á N Y I KAR
G E O M E T R IA I TANSZÉKE
R Á K Ó C Z I Ú T 5
H—1 0 8 8  BU D A PEST
H U N G A R Y



Studio Scientiarum  M athem aticarum  Hungarica 28 (1993), 379-386

HERMITE-FEJÉR INTERPOLATIONS OF HIGHER ORDER. IV

R. SAKAI and P. VÉRTESI

This paper is a continuation (or, the second part) of [1], That means, all 
the notations, necessary definitions and theorems can he found in the four 
parts of [1]. Here we refer to them without any further explanation.

5. Further results

5.1. Theorems 3.1-3.3 dealt with even derivatives of l k(x) and eg,t,k- 
Here we state theorems on and e2t+i,fc. By previous notations (cf.
Part 2) we have

T heorem 5.1. F o r  a r b i t r a r y  r e a l  s  w i t h  |s| < M  ( M  >  2 ,  a r b i t r a r y  f i x e d  
i n t e g e r ) ,  w e  c a n  w r i t e ,  u n i f o r m l y  i n  n ,  k  a n d  j ,
(5.1)

(^ ) (2i+1) =  { ( ^ >(* )) '}
(2J+1)

x—x(«./*)
kn

( ~ 1 ) J

sin2 — )  sin flk )

2 j

i f  j  — 0 , 1 , . . .  , [4p] — 1 , tt, ( s ), q f i s )  £ V i ,  t h e y  d e p e n d  o n  k  a n d  n  a n d  s a t i s f y  

r e l a t i o n s

(5.2) (
7Tj(0) = 0, 7T1 (s) = d ( l ,  k ) s

(5.3)
92j-i(0) = 9i(s) = 0 .

1 =  0 , 1 , . . .  J ,

Using Theorem 5.1 we express 7Tj(s) in a more compact form. Namely 
T heorem 5.2. W i t h  p r e v i o u s  c o n d i t i o n s  a n d  n o t a t i o n s ,  f o r  j  =  1,2, . . .

(5.4)

* A a ) s  +  s  +  j - Pj- i(*), \*\£M.
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By (5.4) we can get statements saying 7Tj(s) 7̂  0 for certain j  and s. We 
give two examples.

Corollary 5.3. Let a ^ ß >  —1, M >  2 and 0 < e <  1 be arbitrary fixed. 
Then with proper cq > 0 and 61 > 0, for t — 1 , 2, . . .  , m

(5.5) |jTj(f)l =  | jT j ( f ,Z fcn) |  >  c0 ■f Í a)  X kn  € [f, 1),
I b) xkn e  ( —1, —<5i],

n > n 0, or 
n > uq.

Here, as above, j  — 1 ,2 ,. . .  , [4p]. Analogous statement holds when q ^ ß.
The next complicated looking example is very useful in investigating the 

process Hnm.
Corollary 5.4. Let a, ß  > -1  and let m > 2 be even. Then

(5.6) 7r m ( - m ) 7r ^ ( - m , x fcn) > c0 > 0 , n>. n0,

if any of the following conditions holds.
(i) a  > Bm and 0 < a\ < xk < 1,

(ii) a  =  Am -  6 2  and 0 < a2 ^ xk < 1,
(iii) ß  = Am -  6 3  and - 1  < xk g a3 < 0,
(iv) Am < a -  ß + £  + 6 4  < Bm and -1  < xk < an < 0.

//ere Am = -  Bm = ^  , 6 2 , 6 3 , 6 4  > 0, the numbers c0, ai, a2, a3,
a4  are properly chosen. Using symmetry, analogous statements hold when 
ß > a .

D e f in it io n . Let

(5.7) Q j(5) =  ( - 1 )J+l7rj ( - 5 )> J =  1 ,2 , .
m ' 

."2 .
Isl < m.

Then clearly (— l)ji+1Qy(—s) = 7Tj(s). By Qj we can formulate our main 
relation.

5 . 2 .  THEOREM 5.5. For arbitrary fixed a , ß >  —1, m >  2, we have if 
1 < A: < n, n > 2 ,. . .  ,

(5.8) 2̂t+l, knm
Q t + 1(^) 4“
(2i + 1)! sin2 i/fc

-  1.

5 . 3 .  Now we give an interesting application of the previous statement. 
By Theorem 2.1 in [2] and [3; 2, Remarks 2] we have

Let — 1 < a < 1, a, ß > — 1 and let m = 2 ,4 ,. . .  be fixed even. Then 

lim | | ^ ) ( / , x ) - / ( x ) | | M  = 0 V/GC
n —►00 L *

(5.9)
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if
(5.10) a e [A m, 5 m), ß > A m and a - ß < 2 / m .

The sharpness of condition (5.10) is showed by a slight improvement of [2, 
Theorem 2.3]:

Let a , ß >  — 1 and m > 2, even. If (5.10) is violated then (5.9) does not 
hold (in the sense that there exist an interval [a, 1] and a function f  EC with
lim ||H^mß\ f , x )  -  f(x)\\[a i] > 0 ) supposing

n —+ oo L 1

(5.11) -h = -̂0) %kn £  I j

where the interval I  is defined by the violating condition (that means, if a = 
= Am — 6 2 , say, then I =  [02,1) (cf. Corollary 5.2).

So the sharpness of (5.10) depends on the validity of (5.11). However, by 
(5.8), (5.11) holds true whenever | i j t n)| ^ c0 > 0. Using |7Thi(—m)| = 
= |C?H>(m)| (see (5.7) and Corollary 5.4), we get that (5.10) is sharp or, with 
other words, conditions (5.9) and (5.10) are equivalent.

Using symmetry we can prove theorems on 1 ) — /(a :)||[_1
5.4. Another similar application corresponds to the mean convergence of 

H^m^if, x) (cf. [3]). We omit the details.

6 . Proofs

6.1. P roof  of  T heorem  5.1.  First we give the definitions of the poly
nomials, 7Tj(s) and q2 j~i(s)  (k and n fixed). Arguing as at 4.1, for sake of 
simplicity we consider only the special case j  = 1. By (4.2) and (2.9)

(rV" ( A W . ^ O  +  ^ i 1 ) ) 3 M  d(l,k) + ek(l) n2 (Ut) = ( 5)3-------ZIZT2----------- (S12------ --------------1" ~~2 "á~ (1 +  £fc(2))~sin6 sin2 19k sin2

sin2 tik Vsin f̂c
( d ( 2 ,* )  +  e*(3)) =

= 2 { (*hd(l ,k) + sd(2 , k) -  (s)3^
sin2 Vk \ s m  Vk J  { n

*) + ^ ( l ) ) 3
+i2  sin2  I?*,

+ (-s)2 (£*(l) + d(l,fc)£fc(2) +  £fc(l)£fc(2)) + $£*:(3) j ,

where the “main part” of { . . . }  is 7r2(s ) , i.e. 7T2(s) = (s)2d ( l ,k )  + s d ( 2 , k )

while g3 (s) : = { . . . }  — 7t2 (s). By (n sini? * ) - 2  < c ( a , ß ) K ~ 2 we get Ig^i«)!  ̂
< |ft|. Analogous definitions give tt̂ -s) and g2 j_i(s), j  >  2 .  As for g3, we
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obtain |<?2j+il = l£*l- Relations ^i(s) =  d (l, k)s and gi(s) = 0  come from
(££)' =  si'k =  § p1)1 = sd( 1, k ) (cf. (2.3), (2.8) with s =  2 and (5.1)), while
7Tj(0) =  92i-l(0) = 0 is obvious.

Finally by

3- 1

(<J+‘ )W-') =  K 4 )< w- .)  =  E ( 2j'2i 1
«=0

+ e ( « : ! ) (£‘ )(2'+1,£‘2,‘ 2' «=0 x '

—2i—2)

we get (5.2) considering (2.9), (3.1), (5.1), (2.9) and the relation 
( 2 1 + 1 ) 2 j—2 »—i = 2 7  Gf+i)- R°r a more detailed argument cf. 4.1. □

6.2. P roof OF T heorem 5.2. Denote 77 (̂5 ) the right-hand side of (5.4). 
By 7Tj, rjj G Vj, it is enough to prove (5.4) for at least j + 1 values. Namely we 
prove 7Tj(i) = 7/j(t) if i = 0 , 1 , . . .  , m  (consider relation j  +  1  <! [y] + 1  < m).

We apply induction. If t  — 0, (5.4) gives r j j ( 0) = 0 (if j  = 1, { . . . }  = 0; 
when j  > 1, p_,-i(0) = 0 (cf. (3.5))), whence using (5.2), (5.4) holds true for 
t  =  0. Now we suppose n j ( i )  = r j j { i )  if i  = 0 ,1 , . . .  , t  and prove it for i  = t  +  1. 
By (5.2)

*í (« + i ) = E ( \  ’ )  { eT i  + ( ^ + - ' )
»=0 

j - 1

x ( 2 i  - f 1) 

Here, by (3.3)

- 1  (^  >««)+
1 = 0  x '  i=0 x

| Q 2 - t +  2 + < + }?•(*) := S 1 -  2̂ + S3 .

Si = (2 j  -  1) j  + j )  } P i- i(i + 1).

Further, by 

and again by (3.3)

S 3  -  S i  =  (2 j  -  1) I — ^—2 ^ t  + t*J P j - i ( t  + 1),

w h e n c e  S i  -  S i  +  S 3 =  r]j(t  +  1 ) .  □
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6.3. P roof of Corollary 5.3. Let ß  =  -1  + 7 , a  = ß  +  2 p  and x k >  e  
( 7  > 0, p  > 0, £ > 0). If (5.5) were not hold then with a proper subsequence 
AT, \ n j ( t ,  = o(l) if n € AT, x kn € [ e ,  1). By (5.4), using p j - i ( t )  ^  B  (cf. 
(3.5))

o (l) = {...},= t = pí + ( ( - l  + 7 + P)í + í + J -  1 )xk, n e A f ,

whence b y i> l ,£ < a : j t< l  and j  > 1

( 6. 1) o(l) = — + 7 + P + ^ - r “ >2/3 + 7) n e A f ,  
x k t

a contradiction. Now let x kn S  —6 \ .  Analogously as above

o ( l )  =
7 — 1 P  

1  +  P + J— —  +  —
t  X k =  1  +  P ~ 6 ~ > 2 '  U e ^

(if Ai < 1 is big enough), a contradiction. □
P r o o f  o f  C o r o l l a r y  5.4. If a = ß  + 2 p  { p  may be negative) and ß  — 

= — 1 + 7 , 7  > 0, we get supposing that (5.6) does not hold

(6.2) — + 7 +  p + — -  ^ =  o ( l ) ,  n€Af
x k m 2

(cf. (6.1)). By (6.2)

a =  - 1  + 7  + 2/5 = —^ — + p ( 1 -  —  J + o (l) , neAf  
2, Ti l  \  X k  J

which gives a contradiction in both cases (i) and (ii) if <Zi(« 1 ) and ü2 (~  1 ) 
are properly chosen (when a  «  — |  — jjj-). Now we consider (iii). Again from
( 6 .2)

(6.3) / ? = - l + 7  =  -
1

2
— - p ( 1  +  —  ) + o( l ) ,  neAf,  
m  \  x k )

if (5.6) were not true. But (6.3) contradicts to (iii) with a proper <Z3 («  — 1). 
Finally, by (iv) ß  = -  |  -  jL -  S5 (£5  > 0), so (6.3) can be used again. □

6.4. P roof of T heorem 5.5. Let

D M  = É ( - l ) “ ( 2[ +u ' )
u=0 '  '

u=0 '  ~  '

(6.4)
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We prove (cf. (4.12))

(6.5) Dt(t) =  0, £>0,  |i| = 0 , l , . . .  ,m.

If t  — 0, (6.5) comes from 7Ti(,s) =  -Q i( s )  (cf. (5.7) and (5.4)). To go further 
we prove D f( - s )  -  Dt(s). Indeed, by (3.9) and (5.7)

*m - » ) = e ( 2 ot 1) A .w (- i )' ' ”o « - + i W +
u=Ó '  '

+ E  Qlt l )  « < -(* )  := 1

which, applying the new variable v  =  l -  u ,  gives I  = D t ( s ) .  So it is enough 
to prove (6.5) for t  = 0 ,1, 2, . . .  , m  (because D i  is even). Now, induction for 
t  ( l  > 1, fixed). If t  — 0, -0/(0) =  0 is obvious by (5.7) and 7Tj(0) = 0.

Supposing 0/(0) = £ )/(± l) = . . .  = D((±t)  = 0 we prove -D/(i + 1) =  0. 
First a remark. Using (5.2), simple computation gives

( 6 .6 )
* A S + 1) = ^ X ] { ( a - /3  + (Q + ^ + !)**) ( 2j2u !)  + 

+(2j -  ( X „  2)  + Tj %  ( i u i  l ) « '

so by (6.4), (6.6) and (3.3)

0 =  Dt( - t )  = ^ ( - l ) u Ru( - t ) \ X ; j ( a - / ?  + (a + /3 + l)x fc)x

> P u ( - t -  1) +

+ E ( - i ) “( “ t  - 1)+

+B - * C  E ><-* -1) =■
i/=0

■— S\  +  S 2  +  S 3 .

At S i  we apply Rn( - t ) =  (-l)"p„(í), pv( - t  -  1) = (-1  )vRv(t +  1), some
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combinatorical identity and change the order of summations, i.e. we get

5 ‘ = É ( 2í2t 1) ( ' i r f i ‘'< !+ 1 ) í £ { (“ ' ' J + ( Q + 'J + 1 , I ‘ )x

/ 2 * - 2 i /  +  l \  (2 1  — 2 u \  1
* (  2 u  j + ( « - 2 ‘' + l K (  2„ J j p - M -

Using similar considerations for 52 and 53, we get 0 = 5 i-f 52 + .S3 = D((t + l).
Now we can prove (5.8) by induction. Let E(2t+l )  denote the right-hand 

side of (5.8). Then, by elknm =  -(£g*)' (cf. (2.2) and (3.10)), E( 1) = elknm 
(cf. (5.7), (5.2) and (2.9)). Suppose E(2i -  1) = e2,-i,fcnm, *’= 1 ,2 , . . .  , t, and 
we prove it for * = t + 1. Indeed, by (3.10), (5.1) and (3.1)

{ £ < 21 + 1 W ( / r  )(,,+ ,- ai,+

Í - 1

+ B 21+ ‘ W . W ? ) 1“ 1) =  - 7 5 n r n r í  É  ^ ^ ( 1 + ^ ) x
.=0

2| r _ i  \ t - i

i)k \sin i?fc

(2< +  i ) ! I  (2*)!

21—2 <

(7rt_,-+ i ( m )  +  £fc) +;S i( ra )( E i J )  ' L l
\ sm  i)kJ sin"

v - '  (2 t +  1 )2 1 + 1  Q i+ i(r a )  +  gfc /  n  \ 2* vt_ j v 
(2i+ l ) !  sin2 dk \  sin $k J

sin dk

2 1—2 «
Pt_i(m)(l + e k) > =

1 n

(2i + 1)! sin2 

'2 í  +  1

2 1

: ( _ 1 ) t+1  j x j  ( 2 i2̂ 1) ( - 1 ),ß .(m ) ( 7r<-*+i(m) + £fc) X

t-1

E
1= 0

2 i +  1

2* +  1 ( —1)* (Q>+i(™) + £k)pt- i {m)

Here, by Dt+i(m) = 0, we get { . . . }  = ( - l ) <+1(Qt+1(m) + £*) whence we get 
(5.8) for t = t + 1 (cf 4.3). □
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ÜBER EINE DARSTELLUNG VON LÖSUNGEN 
DER KOMPLEXEN DIFFERENTIALGLEICHUNG b(FtG)w

Erzeugendenraum und jedes Element von E d 0 heißt Erzeugendenvektor.
Bezeichnet ÜD  den Vektorraum über R der in D CC Do reellen Vektor

funktionen u  — , so heißt w  =  E u  G E D D  in D  eine pseudoholomorphe
Funktion l.Art, wenn für z  = x  + i y

eigentlich existiert. Wir wollen die Menge der pseudoholomorphen Funktio
nen mit Pd {E) bezeichnen. Es ist bekannt, daß die Menge Pjg(E) einen 
additiven Vektorraum über R bildet, wenn Pjg(E) vorhanden ist.

Ist w  = Eu G Pd (E), so ist u  G C 1 x C 1, w  — Euz und Euz =  0.

Ist speziell E =  ( l , i )  = :  A, so erweist sich Au als holomorph in D ,P d (A) 
bezeichne demgemäß die Menge der in D  holomorphen Funktionen.

Nach L. Bers [3] nennt man die durch E = (F,G) erklärten Funktionen

1980 Mathematics Subject Classification (1985 Revision). Primary 30G20; Secondary 
30D60.

Key words and phrases. Pseudoholomorphic functions, generating vector, generating 
series.

K. KOCA

1. Einleitung

Es sei D q C C ein einfach zusammenhängendes Gebiet und H j-,q die 
Klasse der über D o  erklärten komplexwertigen Funktionen, die partielle 
Ableitungen erster Ordnung nach x  und y  besitzen und Hölder-stetig mit 
z  =  z  + i y  G D q sind, dann nennt man die Menge

E D o : = { E = ( F , G ) \ E : D 0 ^ C x C ,

V z  e D 0 ; E e  H x H lD o , Vz G D o ,  Im ( F G )  >  0}

( 1 )

Akadémiai Kiadó, Budapest
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( 2 )
a E : =  - ( F G z - F z G )  A, 

A e  : =  —( F G Z — F ZG ) / A,
bE  : =  (FG* -  F ZG ) / A  

B E : =  ( F G Z - F 2G ) / A

die charakteristischen Koeffizienten m odF, wobei A = F G  — F G .  Außerdem 
nennen wir die Funktion

(3) , w  =
iF G - i F  _

------ t u ---------- --------w =  íp +  itp

pseudoholomorphe Funktion 2.Art m odF.
Wenn w  £  P d { E ) ist, dann erfüllt w  die Differentialgleichung

(4) w z =  a E w  +  bE w .

Wenn die Lösungen von (4) die Darstellung w  — F( p  +  G ip  mit G SID  

besitzen, dann ist

(5)
F<pz + G tpz =  0,

a(FG)w -
w  = v '— =  w z — A e w  — B e w  =  F<pz + GV’z 

d z

Aus der Theorie der pseudoholomorphen Funktionen wissen wir, daß w  
in (1) sowie die Potenzen w n  mit n  6  Z keine Elemente von P d ( F )  sind.

2. Eine Darstellung von Lösungen 
der Differentialgleichung w z = b^FG^w

In [5] (siehe etwa [4]) ist die Differentialgleichung

Wz =  a.(F,G)W

mit G = f F ,  f  e  P d ( A ) behandelt worden. Die Differentialgleichung (4) geht 
durch die Transformation W  = w e A unter Bedingung a E  = A z

(6 ) W z = a W

über, wobei a  =  bE e A ~ A  ist. Bezeichne der Koeffizient a(z, z )  in (6 ) eine 
differenzierbare Funktion, die im betrachteten Gebiet nicht verschwindet, 
dann erfüllen die Lösungen von (6 ) auch die elliptische Differentialgleichung

(7) W 2Z -  (log a ) z W z -  a ä W  =  0.

Die Lösungen von (7) hat I. N. Vekua [7] als komplexe Potentiale der Differ
entialgleichung (6 ) genannt und die Lösungen von (6 ) sind mit Hilfe gewisser
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Integraloperatoren dargestellt worden. Andererseits hat man in [2] die Differ
entialgleichung (6 ) durch Differentialoperatoren bei den komplexen partiellen 
Differentialgleichungen behandelt (man vergleiche auch [1]).

In der vorliegenden Arbeit wollen wir die Differentialgleichung

(8 ) W i  = b(FtG)w

im Sinne von L. Bers behandeln. Es sei w  £  P d { E ) und wir nehmen nun an, 
daß w  der Differentialgleichung

Wz ~  b(F,G)W

genügt und F  reellwertig ist. Dann ist aus (2) a(F,G) = 0, d.h.

(9) G-z =  (.Fg/ F) Ö.

Weil G  £  P d { E )  (siehe etwa [3]) ist, muß &(f ,G) = F*/F  sein. Also ist die 
charakteristische Koeffizient b ß  unabhängig von G. Dann gibt es eine Rela
tion zwischen F  und G .  Wir nehmen an, daß die Funktion G  in der Form

(10) G ( z )  =  h ( z ) F n ( z )

mit h  £  C 1( D ) , n  £ Z schreibbar ist. Setzt man (10) in (9) ein, dann ergibt 
sich durch Vergleich der Koeffizienten von F n und F n+1

( 1 1 ) h z — 0  n h  =  R.

Also h  ist holomorph in Do-  Aus der zweiten Gleichung in (11) erhält man 
n h  =  h ,  d.h. n ( h  — h )  =  h  — h.  Daraus folgt n  =  —1. Also ist h  =  i h \ ,  wobei 
h i  reellwertig ist. Weil h  holomorph ist, muß h \  =  c £  R  konstant sein. Dann 
ist E  = (F, i c F ~ x) £  E d 0 mit c £  R + .

Weil die charakteristischen Koeffizienten

a (F,icF~1) =  0» b(F,icF~l ) -  (Log\ F \ ) z ,  A(FlcF-i) =  0, R ^ ic F - 1) =  (Log |F |) j 

sind, ist die Funktion

(12) w  — F < p i c F ~ l i!) 

die Lösungen von (8 ) unter Bedingung

(13) Fi fi i  +  i c F ~ 1rpi  =  0.

Andererseits ist (13) equivalent mit dem reellen System

F V x  -  cxl>y =  0

F V v  +  cV>* =  0.
(14)
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Hieraus erhält man

(15) ¥>xx + <Pyy + 2(Log | F | ) i ¥3x + 2(Log I F \ ) y <py = 0.

Wenn <p eine reelle Lösung von (15) ist, so kann man die Funktion tp durch 
das Kurvenintegral

d y

berechnen, wobei z, zq G D ,  z  j í  Zq ist.
Es sei w  eine Lösung von (8 ) und wir betrachten nun die Form

(16) iu =  $ ( z ) < p  +  ß ( z ) < p z

wobei <£> eine Lösung von (15) und $, ß  G H p ,  $  /  0, ß  ^  0 in D  sind. (Ver
gleiche etwa [6 ].) Setzt man die Funktion (16) in (8 ) ein, so erhält man

(17) ß y Zz + -  y r ß ^ j  V z  + ß z V z  + P  -  0-

Es sei $  eine partikuläre Lösung von (8 ). Dann ergibt sich

(18) y xx -|- <fiyy +  ^  ~ ~yr ß  +  ß z ' j  ¥ x  +  ~ß ~  - j r ß  ~  ß i ' j  <Py =  0 -

Weil eine Lösung von (15) ist, erhält man aus (18)

, . *  -  (Log \ F \ ) aß  + ß-z = (Log \ F \ ) x ß

1 ’ *  -  (Log \ F \ ) z ß  -  ß-z =  - i(L o g \ F \ ) v ß .

Also ist die Funktion ß  in der Form ß  = g F  schreibbar, wobei g  G P d ( A )  ist. 
Aus (19) erhält man

* = ß ( F z / F )  + ß ( F z / F )  =  g F z + gF-z .

So ist $  eine reellwertige Lösung von (8 ). Dann muß $ die Differentialgle
ichung

(2 0 )  $ z =  b(F,icF-l )*&

erfüllen. Nach [5] ist $ in der Form $ = o F  mit a  G Pd {A) schreibbar. Weil 
$ reell wertig ist, muß die Funktion a  eine reelle Konstant sein. Hieraus 
erhält man $ = k F  mit k  G R. Setzt man $ und ß  in (16) ein, dann ist

(21) w  =  F(k<p +  g<pz ) .

Außerdem gilt die Relation Re(^Fz) = |F .
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F o l g e r u n g  1. W e n n  d i e  F u n k t i o n  <p e i n e  r e e l lw er t i g e  L ö s u n g  v o n  (15)  
i s t ,  d a n n  g e n ü g t  (21) d e r  D i f f e r e n t i a l g l e i c h u n g

w z =  b(F,icF~1)™

u n t e r  B e d i n g u n g e n  (19) m i t  g  =  F ~ 1ß .

S atz  1. W e n n  w £  P o ( F , i c F ~ l ) i s t ,  d a n n  e x i s t i e r t  w i  £ P d ( F 2 , i c ) ,  
s o d a ß  W\  -- F w  i s t  u n d

(u>i)z = F f f w  + w )  =  a ( F 2 iic)w i  + b (F2 tic)w x

d(F*,ic)w l  d(F,icF~l )w  Wi = -------:------- =  r  -
d z d z

B e w e i s . Der Beweis folgt unmittelbar aus der Definition von w  und 
unter Berücksichtigung von (12).

F o l g e r u n g  2. P o { F , i c F ~ l ) =  f P d { F 2 , i c ) .

F o l g e r u n g  3. D i e  E r z e u g e n d e n v e k t o r e n  E  := ( F , i c F  *) u n d  E *  := 
= (F 2 , i c ) s i n d  ä h n l i c h  in  D o .  (Siehe etwa [3], Seite 38.)

Wir definieren zwei Funktionen durch E  = ( F , G )  £ E d 0 :

_ G  — i F  _ G - i F
P(F,G) ■= ■ ■ A  Q{F,G) - = — •

F o l g e r u n g  4.  E s  s e i e n  w \ E  P d { F 2 , i c ) ,  w  £ P d ( F ,  i c F ~ l ) .  S o  i s t

P(F,icF~l )w \ +  Q tF . ic F - 1)™! =  F u ,

P(F,icF~l ) =  F P (F*,ic), Q  (F,icF~ 1) =  PQ(F*,ic)

w o b e i  u  =  <p + i ip (F , i c F ~ 1) - p s e u d o h o l o m o r p h  2 . A r t  i s t .

F o l g e r u n g  5. W e n n  w  £ P d ( F , í c F ~ 1 ) i s t ,  s o  i s t

P(F2,ic)w  +  Q(F*, ic)w  =  UJi / F ,

w o b e i  d i e  F u n k t i o n  u \  ( F 2 , i c ) - p s e u d o h o l o m o r p h  2 . A r t  i s t .  

F o l g e r u n g  6.
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Es seien E  =  ( F , i c F  x), E n := ( F n , i c F  ") mit n £  Z. Dann sind die 
charakteristische Koeffizienten

a-E„ =  0, bEn =  n b ß ,  A En =  0, B En = n ß E .

S atz  2 . W e n n  w  £  P d ( F ,  i c F ~ l ) u n d  w  e i n e  r e e l l w e r t i g e  L ö s u n g  v o n  (8 )  
i s t ,  s o  i s t  w n £  P E ( E n ) u n d

( w n ) z =  bE n w n , 

d tF ”,icF-’')wn d E W—---------- -—  — n w  ------.
d z  d z

B eweis. Der Beweis folgt aus (4) und (5).

Satz 3. W e n n  tu* e i n e  L ö s u n g  d e r  D i f f e r e n t i a l g l e i c h u n g

« ) . = ( - i ) ” ( £ ) ”» s .® ;

i s t ,  s o  i s t  tu* £  P e ( E * ) ,  w o b e i  n £ l , h £  P p ( A ) ,  E * [ ( i h F ) n , i ( i c h F ~ 1) n ] £

£ E d 0 -

B eweis. Der Beweis folgt unmittelbar aus der Definition von P E ( F , G ) .

Folgerung 7. W e n n  h  = F z , d .h.  F zz  = 0 i s t ,  d a n n  i s t  E v := [ ( i h f f F ,  

i i i c h f f F - 1] m i t  v  £  Z e i n e  E r z e u g e n d e n f o l g e  i m  B e r s ’s c h e n  S i n n e  f ü r  d i e  
D i f f e r e n t i a l g l e i c h u n g  (8 ) (siehe etwa [2]).
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A NOTE ON SUMMABILITY

M. A. SARIGÖL

A b str a c t

In this paper we give necessary and sufficient conditions in order that the summability 
=► gn|t, k >  1. Therefore we extend the known results of [1], [4] to the case k > 1. 

Moreover we discuss its special cases.

1. Introduction

Let a n be a given infinite series with s n as its nth partial sum. If (p n ) 
is a sequence of positive constants, and

Pn = P o  + P i  + • • - +  Prx oo as n~*oo (P_„ = p_„ = 0, v  >  1)

then the Riesz mean t n of 5 3  a n is defined by

l n = - ß - ^ P v S v ,  ( P „ ^  0 ) .
n u=0

If (<„) e  bv ,  i.e.,
OO

^  |<n -  i n - l |  <  OO, ( i - 1  =  0 )
n = 0

then the series 53 a n is said to be summable |JV,p„|. Concerning the |./V,pn|- 
summability the following result is due to Sunouchi [1].

T heorem 1.1. L e t  (pn) a n d  (qn) be p o s i t i v e  s e q u e n c e s  s u c h  t h a t  

( 1 ) qn P n — 0 ( p n Q n) a s  n  ► oo.

T h e n  |JV,pn| =» |ÍV,g„|.
In 1950, wliile reviewing this paper, Bosanquet [4] observed that Condi

tion (1) is not only sufficient but also necessary for |iV,p„| => |iV, qn|. Later

1980 Mathematics Subject Classification (1985 Revision). Primary 40G99; Secondary 
40F05.

Key words and phrases. Absolute and strong summability, direct theorem on summa
bility.
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on, the concept of the summability ^ , ^ „ 1  was extended to the concept of 
the summability |7V,pn|*., ^  1 , defined by

[2] ,

We may also note th a t, while it is clear tha t the |A^,p„|fc-summability 
with k  = 1 reduces to the |jV,p„|-summability, these methods arc in general 
independent of each other, for k  > 1. Therefore this also raises the problem: 
what are the necessary and sufficient conditions for |iV, | =>-1̂ | , k  >  1 
and conversely. We obtain an affirmative answer to this question.

We require the following lemma and theorems.

Lemma 1.2. S u p p o s e  t h a t  k  > 0,p„ > 0, P n —> oo a s  n —> oo. T h e n  th e r e  
e x i s t  t w o  ( s t r i c t l y )  p o s i t i v e  c o n s t a n t s  M  a n d  N , d e p e n d i n g  o n l y  k ,  f o r  w h i c h  
f o r  a l l  v >  1 ,

s E
Pn

P n P L x 1

w h e r e  M  a n d  N  a re  i n d e p e n d e n t  o f  (p„), [2].

T heorem 1.3. T  =  (a„„) € (f i ,4 )  »/ a n d  o n l y  i f

( 2 ) sup Ei
n = l

<  OO

f o r  t h e  c a s e s  1 < k  <  oo, w h e r e  ( £ i , h )  d e n o t e s  t h e  s e t  o f  a l l  in f in i t e  m a t r i c e s  

T  w h i c h  m a p  i n t o  £k =  { a  =  (a v): ^  |a„|fc < oo, k  >  1}, [3].

T heorem 1.4. T  =  ( a n v )  e ( £ q, h )  i f  a n d  o n l y  i f

oo 9

(3) s u p E
b  t , =  l ngjE

<  OO

w h e r e  q  =  k ( k  — 1) 1 > 1 a n d  E  i s  a n y  f i n i t e  s u b s e t  o f  p o s i t i v e  i n t e g e r s  [5].

2

The purpose of this paper is to derive necessary and sufficient conditions 
in order that |iV,pn| => |lV,<7n |jfc, k  >  1, so to extend results [1], [4], and to 
consider its special cases.
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THEOREM 2.1. A  n e c e s s a r y  a n d  s u f f i c i e n t  c o n d i t i o n  in  
IIV, p n I =£■ IIV, Qn , k  ^  \ , i s

(4) q v P v  = 0 ( p kv Q v ) a s  v —► oo.

P roof. Let t n denote the (IV,p„)-mean of the series ^  a n . 
the definition we have

1  n j n
t n =  p  ^   ̂P v $ v  — p  ^ ^ ( P n  — P « - l  ) a ti-p  rv " P1 n n 1 n „v=0 u=U

ff 5 7  a n is summable |iV,p„|, then

OO

(5 )  5 3 l A * n - i | < 0 0 .

Since

n=l

A < „ _ i — I  +  p  I  P « - i a w 
1 " - 1 n > „=0

P n

P n P n-1
Pv-i<iv, n > l ,  ( P _ ! = 0 )

t»=l

we have, for n  > 1 ,

p  PnPn-l a , . Pn —  lPn  —  2 A ,
* n —l^ n  — AA*n — 1 i — 2?

i.e..

( 6)

Pn

Pn . Pn- 2

Pn —1

a n = ----- - A f n - !  4----‘ A i n_ 2 , ( i _ ! = 0 ) .
Pn Pn—1

If Tn denotes the (IV, <7„)-mean of XI a n ,  we get similarly, by (6 ),

A Tn~1 = ~Q~Q 7 X)G«»-ia«» =V n V n - 1  U=1

=  - 7 T ^ —  X > - i  +  ^ A < „ _ 2 U
Q n Q n - l  "  l  Pt» P t»-1  J

*7n Pn 

P n Q  r

n—1
A tn_i + - - y * ---- V  Q i»-1~ Ai„_

Q n Q n - 1  ~  P v

o r d e r  tha t

Then, by
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TI..Q n Q n -1  "  Pv

(7)

?n Pn
P n Q n

qnP,

n—1
A t„_i +  - — "—  — Q VP V- 1)

V n W n -l U=1

P-A i„_i +  7 r ^ ~  E  ( « . -  - A  Ai„_  
'n QnQn-1 ^  V Pv /

A iu -x

Now, if we write a n =  A tn_i and /?„ = ( f f )  AT„_i for all n  >  1, then

-  ^ ( 2 * ) ' - ‘ - 1 a . + ( 8 a ) £  A  -  ^ A  a. ,
Q n P n  \  Qn J  Q n Q n  — 1 \  Qn J  . V Pv /

i.e., (/?„) is T  = (a„„) transform sequence of (an) G fi, where

qn í Q n\ l- k~l f~ P.

®nti — (

( « a y -  i f i s „ < n - i
Q n Q n - 1 V in '  '  Pu '
qn Pn / Q n \ 1- fc_1Qn* n /  tc n \  
P n Q n  ' 9n ' 

0,

if v  =  n  

if v >  n.

So, whenever 53 an is summable |iV,pn|> i.e., (ön) Gfu, it is also summable 
|./V’,<7„|fc, k  > 1, that is, (/3„) G Ik if and only if T  G On the other
hand,

I ' - 1*- ( & ) * ( £ )
fc-i

+ n  ^Q  V ?u
Pv

* v  z' 1-  y ^ - y - 1
„ i i . W n o . - j  u ;

However, the boundedness of the first term on the right-hand side of the 
last equality implies the boundedness of the second. This can be shown as 
follows. Since, for k  >  1 ,

(  qv >
\Qv' V p„ /  V qv )

so by Lemma 1.2,
OO

£ (
n=v-f 1

qn \ k(Q " \k
Q n Q n - 1 '  '  qn '

q v P y

Q v  Pv

as v  —> oo.
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It follows that

= o { i  + qyPy

Q v P v
} = 0 ( 1 )-

Hence, sup Y  < oo is equivalent to Condition (4), which completes
v  n = l

the proof of the theorem together with Theorem 1.3.
As it is clearly shown, we get immediately Theorem 1.1 and Bosanquet’s 

result by taking k  =  1 in our above theorem. We can now discuss the other 
special cases.

T heorem 2.2. T h e  n e c e s s a r y  a n d  s u f f i c i e n t  c o n d i t i o n  f o r  |fV,pn|=>- 
l^,Pn|fc, k > \ ,  i s

(8 ) P n =  0 ( p n ) a s  n —► oo.

We note that, if we choose p n = 1 for all n, then P n =  n  + 1. In the case, 
IN , p n j£ reduces to |C ,  l|fc. Since (n-f 1) 7  ̂0 (1), Condition (8 ) does not hold. 
Therefore we can derive the following result from Theorem 2.2.

Corollary 2.3. F o r  k  > 1, |C, 1| 7^ |C, l|fc, i . e . ,  t h e r e  e x i s t s  a t  l e a s t  o n e  
s e r i e s  th a t  i s  s u m m a b l e  1(7,11 bu t  n o t  s u m m a b l e  |C, 1|*.

Corollary 2.4. T h e  n e c e s s a r y  a n d  s u f f i c i e n t  c o n d i t i o n  f o r  |JV,pn|=» 
|C ,1 U, * > 1 , i s

P *  =  0 ( n p „ )  a s  n  —> 0 0 .

Corollary 2.5. F o r  k >  1, |C, 1| |JV, g„U-
OO

In this case, Condition (4) contradicts to Y  — 0 0  •
n= 1

It is now natural to ask such question as under what necessary and 
sufficient condition does |iV, p„|* => |TV, gn| for k  > 1. But we have not been 
able to solve this. It is^ however, possible to answer the problem in particular 
case, i.e., |./V,p„|fc =>\ N , p n \ , k  >  1 .

T heorem 2.6. \ N , p n \k f i \ N , p n \ f o r  k > \ .

P roof. Follow the way in the proof of Theorem 2.1. If we say o„ = 
= (p^)1-* 1 A in_i and ß n = A t n - \  for n > 1, then by (7) we have

ß n ~ \ P j

that is, ( ß n ) is T-transform sequence of the sequence (a„) € where
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On the other hand, for the above matrix, Condition (3) of Theorem 1.4 is 
reduced to

OO

which is not possible. Therefore, T  1 ), that is, there exists a series
which is summable |iV,pn|fc but not summable |iV,pn|, for k >  1.

Considering the above theorem with p n = 1 and Corollary 2.3, the fol
lowing result can be obtained.

Corollary 2.7. T h e  s u m m a b i l i t i e s  \ C ,  1| a n d  |C, l|fc are n o t  e q u i v a l e n t  
f o r  k  >  1 .
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A MESH-INDEPENDENCE PRINCIPLE FOR 
NONLINEAR OPERATOR EQUATIONS IN BANACH SPACE 

AND THEIR DISCRETIZATIONS

I. K. ARGYROS

A b stra ct

The mesh-independence principle states that, when Newton’s method is applied to 
a nonlinear equation between two Banach spaces as well as to some finite-dimensional 
discretizations of that equation then the number of steps required by the two processes to 
converge to within a given tolerance is essentially the same. This result has been proved in 
[2] under the assumption that the Frédiét derivative of the operator is Lipschitz continuous. 
Here we extend these results to include the case when the derivative of the operator is only 
Holder continuous.

Introduction

Consider the equation

( 1 ) F ( x )  =  0

where F  is a nonlinear operator defined between two Banach spaces E \ , E .  
The Newton’s method

(2) x n + i  =  x n -  F ' ( x n ) ~ 1F ( x „ ) ,  n = 0 , l ,2 , . . .

has been used extensively to approximate a solution x*  of (1). The iterates 
{xn}, n = 0 , 1 , . . .  can rarely be computed in infinite dimensional spaces. 

That is why we replace (1) by a family of discretized equations

(3) F h ( z )  =  0, h >  0

where Fh is a nonlinear operator between two finite dimensional spaces E^  
and Eh-  The discretization on E \  is defined by the linear operators Lh  : E \ ~ *  
- E l

The Newton’s iteration for (3) is given by

(4) z% =  L h ( x o ) ,  4 + i  = z ^ ~  F ,h ( z ^ ) - l F h ( z ^ ) ,  n = 0 , l , . . . .
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In the excellent paper in reference [2], it is shown that under certain 
assumptions the solution and the iterates satisfy the relations

z*h =Lh{x*) +  0{h*), 
zhn - z t = L n{xn - x * )  + 0{K*), 

zn+l ~ z n = L h ( x n+1  -  Xn ) + 0 ( h q) ,  q >  0,

and for any e  > 0

I min{n > 0 , ||xn — x*|| < £> -m in { n > 0 , ||z* -  z*h \\ <£>| < 1

for h  sufficiently small and xo in a hall centered at x* and of some specific 
radius r  >  0 .

One of the basic assumptions in [2] is that the Fréchet derivative of F  is 
Lipschitz continuous on a subset E 2 C E \ .

Here we show that the above results can be extended to include the 
case when the Fréchet-derivative of F  is only (7 , A)-Hölder continuous (to be 
precised later) for some 7  > 0 and A £  [0,1]. Our results reduce to the ones 
in [2] for A =  1 .

An example is also provided for A = |  for a scalar, second order, two- 
point boundary value problem, where our results apply where the ones in [2 ] 
do not.

Relevant work has been done in [1], [3], [5]-[7], [10]—[12], and the refer
ences there.

To make the paper as self-contained as possible we will use some of the 
techniques developed in the proofs of the results in [2 ].

The norms in all spaces will be denoted by the same symbol || ||.
D e f i n i t i o n . We say that the Fréchet-derivative F ' ( x )  of F  is (7 ,A)- 

Hölder continuous on E 2 C E \  if for some 7  > 0, A € [0,1]

(5) ||F '(x) -  F '( 2/)|| ^ 7 | | * - í/||A for all x , y £ E 2 .

We then say that F ' ( - )  € H e 2( 7 , A).
It is well-known that if E 2 is convex then

(6 ) | |F ( x ) - F ( 2/ ) - F /( x ) ( x - y ) | |< ^ - ^ | | x - 2/||1+A for all x , y £ E 2 .

We assume that (1 ) has a solution x* £  E 2 which is simple in the sense 
that F '(x*) has a bounded inverse with norm /?= ||F '(x*)_1||.

Finally, we denote by U ( x , r ) ,  U ( x , r )  the open and closed balls, respec
tively, with center x and radius r  > 0 .

The following result has been proved in [11] and improved in [10] for
A = 1.
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T heorem 1. L e t F : E i —+E. Assume F \-)  £ , \ )  on a. convex set
E 2 C E \. I f  x* E E 2 is a solution of

F(x)  = 0

for which F'(x*) is nonsingular, set

t r  =  F ( * V ) ,

with

(7) 0 < r* < 1 +  A
( 2  +  A ) / ? 7 J

l/A
A e (o ,l]

such that U* C E?.
Then, for any xo E U*, Newton’s iteration (2) converges to x* and the 

iterates satisfy

( 8) lkn+1 - * * | |  ^
ß l  H^n — a;* II

1 + A 1 — /3'y ||a:„ — a:* ||A ’ n = 0 ,1 , . . .  .

P roof. By the standard perturbation lemma it follows that F'(x) is 
nonsingular in U* and

m  fora"

Hence Newton’s iteration function

P(x) = x -  F \ x ) ~ l F(x),  xEÜ*  

is well defined on U* and from

11*00 -  * 1  ^ ||JPf(*)“1||||-F’(**) -  F(x) -  F'(x)(x* -  *)|| <

s i -^IIx- x-IIAaI i7111 "*'l|1+i = “M»* - x’“’
for all x E U* and . ßq/(r*)x

d( r }  — -------------- ---- -------------1
(A + 1)(1 ~ ß l ( r * ) x )

we obtain the results.
We now state a theorem that can be found in [8 , p. 145], whose proof 

follows exactly as the proof of the Newton-Kantorovich theorem for A = 1 
[8 , p. 143],

T heorem 2. Let F: Ei~+E.  Assume:
(a) the linear operator F'(-) E H e *(j , A), where E$ = U(x0, R ) C E\
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f o r  s o m e  x o  £ E i  a n d  R  >  0;
(b) t h e  l i n e a r  o p e r a t o r  F ' ( x o) - 1  e x i s t s  a n d  s a t i s f i e s

(10) U F U T ' W i b o ,  | |F /(a: o r 1F (x o ) ||< i7o, t o  =

w h e r e  s  i s  the  m i n i m u m  p o s i t i v e  roo t  o f  the  e q u a t i o n

<n > ( r h ) * - « 1 - ) 1
\1+A m («*.§) w i t h  0 < A < 1.

I f

( 12) R > r 0 =
Vo

w h er e  po  =
l - p o  “  " u ( l +  A ) ( l - 4 )  

t h e n  N e w t o n ’s  i t e r a t i o n  (2) c o n v e r g e s  to  a u n i q u e  s o l u t i o n  x*  o f  the  e q u a t i o n

F ( x )  =  0

in  U ( x 0 , r 0 ).

As in [2] consider a subset W * C E \  such that

(13) x * e W * ,  x n € W \  x n - x * e w * ,  x n + 1 - x n e w * ,  n  =  0 ,1 ,2 , . . . .  

Consider the discretization method given by the family

(14) { F h ,  L h ,  L h } ,  h >  0 

where
E h : D h C E l  -> Eh, h >  0 

are nonlinear operators and

Lh  : E i  —» E l ,  L h ' - E —> E h ,  h >  0 ,

are bounded linear discretization operators such that

(15) L h ( W * n i r ) c D h , h >  0 .

The discretization (14) is called A- H o l d e r  u n i f o r m  if there exist constants 
w >  0 , t  >  0  such that

(16) U(Lh(x*),w)  C Dh, h >  0

and

(17) \ \Eh(w i )  ~  E'h( w 2)|| ^ l \ \ w !  -  ™2| | \  
A e [0 ,l) , h  > 0, w \ , w 2 £ U ( L h ( x * ) , w ) .
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Moreover, the discretization (14) is called b o u n d e d  if there is a constant b >  0 
such that

(18) ||XA(ic)|| < 6 ||u||, u e W , h >  0 , 

s t a b l e  if there is a constant d  > 0  such that

(19) ll̂ /»(-£/»(tt))-1ll = d, u e W n u \ h > o,
c o n s i s t e n t  o f  o r d e r  q > 0 if there are two constants cq >  0 , c \  >  0  such that

(2 0 ) ||Ifc(F(*)) -  J ’fc(Lfc(*))|| < c 0h q , x e W r \ U * , h >  0

(21) \ \Lh ( F ' ( u ) ) ( v ) - F ^ L h ( u ) ) L h ( v ) \ \ < c 1h q , u e W M T ,  v £ W \ h >  0. 

We can now prove the main result:
T h eo r em  3. L e t  F : E 2 C E i  —* E  be a n  o p e r a t o r  s a t i s f y i n g  th e  h y p o t h e 

s e s  o f  T h e o r e m  1 a n d  c o n s i d e r  a u n i f o r m  d i s c r e t i z a t i o n  (14) w h i c h  i s  b o u n d 
ed,  s t a b l e  a n d  c o n s i s t e n t  o f  o r d e r  q.  T h e n  (3) h a s  a l o ca l l y  u n i q u e  s o l u t i o n

(22) z mh =  L h ( x * )  +  0 ( h q )

f o r  a l l  h >  0  s a t i s f y i n g

(23) 0  < h  ^ h 0 =  min

w i th  e  =  \  a n d  m =  (l% 7 i-e)-e-
M o r e o v e r ,  i f  t h e  f o l l o w i n g  c o n d i t i o n  i s  sa t i s f i ed :

<*> c < °
wi t h

A = ( \  +  2 ) d l  

5  =A + 1 , Ag (0 , 1 )
C  = 2 r*(A + \ ) t b

H=2(A + l)c, c =  max(co, ci).

T h e n  th e r e  e x i s t  c o n s t a n t s  h i  £  (0,/io], ri £  (0, r*] s u c h  t h a t  N e w t o n ’s  
i t e r a t i o n  (4) c o n v e r g e s  t o  z £ a n d  t h a t

(25) z *  =  L h( x n ) +  0 ( h q ) ,  n -  0 ,1 ,2 ,...

z n ~  z h ~  L h { x n -  x * )  + 0 ( h q ) ,  n  = 0 , 1 , 2 , . . .(26)
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f o r  a l l  h  6  (0 , hi ] ,  a n d  a l l  s t a r t i n g  p o i n t s  zq £  U ( z * ,  r \ ) .

P roof. For simplicity, we will prove the theorem for A E (0,1). By 
Theorem 2, when

(27) l 0 = l0(h) = ctf |K (Z ,,(x * ))-1F,,((T/,(z*))|| < 3 = s(h) < e

Vo ( h )

r°  =  r ° {h )  =  l T M h ) i w '

with

(28) p 0 ( h ) =
______ A)______
(1 + A)(l -  Co)

then (3) has a unique root z£ E U(Lh(x*),ro).
By (20), (21) and (23) we get

Co Í  d 2C\\Fh ( L h ( x *)) -  I h(F(x*))|| ^  d H c 0h q <  e

and

(29) ro S m d c o h q < w ,

which shows that (27) and (28) hold for all h  satisfying (23).
Thus (22) follows from

(30) \\zh ~  Lh(x*)\\ < r 0 ^ m d c 0h q .

By applying Theorem 1 to (3) we see that the Newton sequence (4) 
converges to z£ if

(31) U h { x 0) -  zhII < G||^(2*)-l||)

(32) U ( z l  ||Z/,(*o) -  z£||) C U ( L h ( x * ) ,  w ) .

But (32) holds if

(33) ||z'h -  L h { x * ) \ \  + \ \Lh( x 0 ) -  z *h|| < w ,

and by (18) and (30) we have

| | I A(*o) -  *£11 ^ IIL h ( x 0 )  -  £/i(x*)|| + ||L h( x * )  - z ' h U  

< ö||xo — x*|| + m d c o h q .

Hence (33) is satisfied if

(35) &||xo — x*|| + 2 m d c o h q <  w .
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Since,

K ( * h )  =  F'h { L h{ z * ) ) { I  -  F'h { L h { z * ) ) - \ F ' h { L h{ x ' ) )  -  F'h {z*h ) ) \  

using (17), (14) and (30) we get

II F'h{ L h { z ' ) ) - ' \ \  ______ d
(36) llfi(z jt)-11 “  l - i | |F / i(Z,h(z*))-1||||i ,/l(x*) -  z^||A -  \ - i d { m d c 0h t ) x ' 

Thus, (31) holds when

(37) 6||x0 — -T 2mdc0/z9 < ^  ^
e  f  1 — £ d ( m d c o h q) ^ \ ^  

d  /

By setting,

(38) h 2 = min
' / w  

. \ A m d c

^ 1 / 9

■(
1 \  1/9 /e ( l  — £ d w x)\!/^9

4 m d c ) { i d

and

(39) r 2 = min
■ w  1
.26’ 26

/e ( l  — I d w *)
l  i d

it can easily be verified that (34) and (37) hold for all h  € (0 , ^ 2] and X q € 
6 U ( x * , r 2 ). That is, for these h  and Xo, the sequence (4) converges to 

Let us now define the function v  by

(40) v  =  v ( h )  =  c 2h q , c 2 >  0.

We now prove that for h  € (0, h i )  and x q  E U  ( x * ,  r  1) and all n = 0 ,1 ,. . .  
the estimate

( 4 1 )  l | Z n - 6 f c ( * „ ) | |  g v

holds, where

(42) h i  = min ho,
( C - B ) 2 \  1 /9  / - T \ i / 2 /  1 \ 

4 A D  )  D  )  \ £ d c $ )

1 / 9 * 1

and

(43) r! = m in(r2, r*).

We use induction. For n = 0 (41) is trivially true.

5"
 #
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Consider the identity,

z ^ 1 - L h( x i+1) =  F{l( z ^ - 1 { [F ll ( z ^ - L h( x i ) ) - F h( z ^  +  Fh( L h( x i ) ) ] ^

(44) + [ ( F ^ ) - F ^ L h ( x i ) ) L h ( F \ x i ) - 1F ( x i ) ) } +

^ F ,h ( L h ( x i ) L h ( F , ( x i ) - 1F ( x i ) ) - L h ( F ( x i ) ) ]  +  ß h ( F ( x i ) ) - F h ( L h ( x i ) ) ] } .  

As in (36) we can obtain

(45) IIFiUz?)-1" "  d1 — Idtv*

Using a standard argument we have that

P í ( * ? ) ( * ?  -  ** (* .•)) -  +  f . í »II <

S ^ < 1 1 * ?  -  U ( X . ) \ \ W  i

Also,

(46)

\ \ (F h ( z i )  ~  F'h ( L h( x i ) ) ( L h( F ' ( x i ) - 1 F ( x i ) )  || ^

(47)
< l b \ \ z £  -  I a(*í)||A||* í -  *i+i|| ^ 2 l b v x \ \ x 0 -  ®*|| < 2 i b v xn

(since by Theorem 1 ||x,+i — x*|| ^ ||x,- — x*||).
Finally, from (20) and (21) we obtain

(48) ||F ’h ( L h ( x i ) ) L h ( F ' ( x i ) - 1 ( F ( x i ) )  -  L h F ( X i )\\ g <  c h q

and

(49) ||FaF (x.) -  F h( L h( X i ))\ \ g c0h q <: c h q .

Using the above estimates in (44) we obtain that

(50) k + i  - i f c ( * ,- + i ) | |  < — tdv^
1

A T 1
t v x+1  + 2  i b v x r* + 2 c h q

Define the real functions /  and g  by

(51) f ( v )  =  A v x+1 -  B v  + C v x +  D h q

and
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(52) g(v) = Av 2 + (C — B)v  + Dhq. 

By the choice of r\ and hi

(53) C < B ,

(54) (C - B ) 2 -  AADhq >0,

and /  has two positive solutions.
Therefore, the function g has a minimum at

(55) 

and

(56)

Vm —
B - C  

2 A

f(vm) = T + Dhq

which according to (24) and the choice of h is negative. Since f ( v ) is contin
uous, /(0 ) > 0 and f ( v ) > 0 for v sufficiently large we are assured that f ( v ) 
has two positive solutions. Denote by V\ the smallest positive root. Then 
the right-hand side of (50) is equal to V \ .

Moreover,

(57) — B + = -Dtí*

or

(58) tq = ----------r ------T T ^B -  Av* -  Cv*~l

with

(59) B -  A v* -  Cv * - 1 > 0.

By (59), there exist v2)^3 sufficiently close to v\ 
that

(60) B - A v $ -  Cv$~l > 0.

Therefore, by (58), we obtain that

vi Ú
D

B - A v * -  Cv*~l
(61) h9 =  c2/i9
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by setting
_  D

C 2 ~  B  -  Av$ -  C v j-1 ’ 
This proves (25) since, we have

(62) \\^u~ Lh(xn)\\<v1 ^ c 2 hg.

Finally, by (30), (41), and (62), we get

(63)
| | ( 4  -  4 )  -  L h ( x n -  x*)|| < ||4  -  Lh(xn)\\ + 114 -  £*(*•)» ^

< mdc0 hq + c2 hq — c3 hq

by setting c3  — mdco + c2, which shows (26) and that completes the proof of 
the theorem.

We can now prove the following to justify the claims made in the intro
duction.

T heorem 4. Assume:
(a) the hypotheses of Theorem 3 are true;
(b) there exists a 6  > 0 such that

(64) lim inf ||T/,(«)|| > Ä||u|| for each u E W * .  h> 0

Then fo r  some f  G (0,ri), and for any fixed s > 0 and xo G Z7(x*,r) there 
exists a  constant h depending on e and z0  with h G (0, hi] such that

(65) I min{n > 0, ||xn -  x*|| < e) -  min{n > 0, ||z£ -  411 < 41 ^ 1 

for all h G (0, h].
P roof. Let k  be the unique integer defined by

(66) ||xfc+1-x * || ||x,--x*H

and h 3 > 0 such that

(67)

Set

\\Lh(xi -  x*)|| ^  <5||x,- -  x*||, with 0 < h < h 3.

r = min
b \ i /> \  

a + d l l '  / ’
( 68)
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(69) 

and

(70)

a =
dt

1 + A’
6 =  min

(* .5 . 5 ) .

h = min
3 \a + dib/  \2 mdc0) ’ \c 3/ J '

We will prove the theorem for the above choices of f  and h.
By (63) and (70) we obtain that

(71) |k V  -  4 \\  < ||Ifc(*,-+i -  x*)|| +  c3 hq íb e  + c3 hq g 2be, 
and from (34), (68), (70) and (8)

\zi+ 2  — zh\\ ^
di\\zi+1- z l* 111

(72)
(l + A ) [ l - d % i+1-z*||*]

r* II Adt_
+ A7 (1

By (67) and (63) we get

(73) £ < ||x, -  z*|| < i | |^ ( z ,-  -  x*)|| < i(||z,h -  z'hII + c3 hq)

or

(74) I*?- z t \ \ 2 6 e - c 3h < > S e - j  = j .

w - s i k j s *

If ||zí*_i — 2/Üll < £) then as in (72) we get

(75) llJ* 

which contradicts (75). That is,

(76) ll*?-i-*fcll^e-
The result now follows from (66), (72), and (76). 

R e m a r k s , (a) The condition (64) follows from

(77) lim ||L/,(u)|| = ||n||, u£W*.
h—►O

(b) For some discretizations we have
(78) lim ||T/,(u)|| = ||u|| uniformly for u £ W*. 

h—>0

Both conditions above hold in many discretization studies [1]—[3], [5]—[7],
[9], [12].

The following result is now immediate.
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C o r o l l a r y . Assume:
( a )  the hypotheses of Theorem 3 are satisfied;
(b) the condition (78) holds uniformly for u G W*.
Then there exists r\ G (0, r\\ and, for any fixed s > 0, some hi =  hi(e) G 

G (0, hi] such that

I min{n > 0, ||x„ -  x*\\ < /•} -  min{n > 0, ||z* -  z*h\\ < e}| < 1

holds f o r  all h G (0, hi] and all z0  G U(x*,fi).
E x a m p l e . Consider the differential equation

y" + y 1+X = 0, for A G (0,1)
2/(0) = 2/(1) = 0.

Define the operator

F : M  C C 2 [0,1] -*• C[0,1] x R2,

F(y) = {y" +  2/1+A; 0 < x S 1, 2/(0), J/(l)}.
Assume that M  is such that the equation F(y) = 0 has a unique solution 
x* G M  and set

U{x*, w ) =  {(x^x^Xg) G R3; 0 ^  xj < 1,1^2 -  x*(x^)| < w, |x3 -  x*'(x})| < in}.

It can easily be seen that x* G C 3[0,1].
The Fréchet derivative of F  is given by

F'(y)u = {u" + (1 +  A)y(tn)xu, 0 ^ x, tn g 1, u(0), u(l)}

and hence Newton’s iteration becomes

^ n + l  =  ~ x ri  ̂ T  ( 1  +  ^ ) x n(tri)(x n ~  ^ n + l )

with
x„+i(0) = xn+i( l)  = 0.

Define the norm on Cm[0,1], m  > 0 with

||u|| = {(max|«‘(x)|, 0 < x < 1, i — 0 ,1 , . . .  , m).

Choose x0 G C 2[0,1] then xn+1 G C3[0,1], n = 0 ,1 ,2 ,__ We will assume also
that xo G C 3[0,1]. By the convergence of x„ to x* in the norm of C 2[0 ,1], 
there exists K  > 0 such that

x„ G Wk — (x G C3[0, l];sup |x0)(2)| < K ,i  = 0 ,1,2,3}, n = 0 ,1 ,2 ,...  .
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By choosing sufficiently large K  we assume

x* e W K, xn - x *  e W K and x n -  xn+i € WK, n = 0 ,1 ,----

We now divide the interval [0,1] into n subintervals and set h = A. We 
denote the points of subdivision by

Po = 0 < pi < . . .  < pn -  1

with the corresponding values of the function j/,- = y(pi), i = 0 ,1 ,2 , . . .  ,  n.
A simple approximation for the derivative at these points is

II Ui—l  ~  ^Vi + 2/i+l • 1 n 1y, ~ ----- — ^ --------- , 4 = 1 ,2 ,... , n — 1.

Since 2/o = yn = 0 this leads to the following system of nonlinear equations

h2y{+X ~  22/1 +  2/2 = 0,

y,-i + h2 y1+x - 2 y, + yi+ 1  = 0 , i = 2 ,3 ,... , n -  1,

2/n—2 +  h2y lX \  ~  22/n-i =  o.
We therefore have an operator H : Rn 1 
may be written as

Rn —1

H \y )  =

(1+A)h2?/*—2 1 0
1 ( l+ A ) / iV - 2  1

0

whose Frechet-differential

0
0

( l + \ ) h 2 yx_ 1 - 2 _

Choose A = I for simplicity and let x E R" 1 with norm given by

||x ||=  max \ X j \ .1SjSn—1

The corresponding norm on Q € R"-1 x R"-1 is
n—1

||Q ||=  max
l S j S n - l  L— *~ k= 1

Then for all j/,z£R  with |j/;| > 0 , \zí\ > 0, i = 1 ,2 ,... , n — 1

IIH \ y )  -  H \ z )\\ = ||diag { ^ 2(i/j/2 - z) ' 2)} = \y) /2 ~ z) /2\ =

= l h\ < ^ < x 1 1w -  zj\}1/2 =  l h2\ \ y ~ z W1/2-Z 1 S j S n  — 1 Z
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Here £= | h? and A = | ,  therefore the results in [2], [3], [5]—[7], [10]—[12] 
cannot be applied here. As in [2] the discretization method {Th, Lh, Ln} is 
defined as follows:

Gh -  {Pi = i h , i  = 0 , 1 , ,  n), Gh = G h \  {0,1),

E\ = {v- Gh —* R) > Vi = v(Pi), * =  0 ,1 , . . .  ,n, 

Eh = {(ri,a,by,r]6G0h-*R,a,b,eR}, 

Lh(y) = y /Gh, Lh(y,a,b) = (y/G°h,a,b),
r i t \  f r? ,+ i -  2 rji +  77i_x , 3 /2  . ,  „  „ 1
E h ( v ) = [ -------^2-------+ V ; » = 1,2 ,... ,n -  1,770,7/„|.

The following norms are used in the corresponding spaces

IMI = m ax{|y'(x)|, 0 < ar < 1,* = 0 ,1 ,2 ), y € C2[0,1]

H7 II = m ax{|u(x)|,a ,6; 0 ^ x <  1},

I M I  = max Vi+1 - 2  7. + 7.-1 
h2

7 =  (u, a, 6) G C[0,1] X R2 

» = 1, 2, . . .  , n - l j ,  y Z E l

11(11 = max{|a|, |6 |,M l, * =  1 ,2 ,... , n -  1), (  = (7, a> b) G Eh.
It can now easily be seen that (18) is satisfied for 6 = 1 and (20), (21) 

are satisfied with q — 3/2.
Moreover, we can easily see with the above norms that

l|ifc (« )II^ IM I^II^ (« )|| + ^ ( ^  + l ) / i  for u e w K, 

that is, (78) is satisfied.
Therefore, Theorem 3 and the Corollary may now apply.
Further examples on differential equations can be found in the references.
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NEWTON-LIKE METHODS AND NONDISCRETE 
MATHEMATICAL INDUCTION

I. K. ARGYROS

A bstract

The method of nondiscrete mathematical induction is applied to Newton-like methods. 
The method yields a simple proof of the convergence and generally better error bounds 
than previously obtained.

1. Introduction

Consider the equation

(1) F (x ) =  o, x e x ,  o e v

where F  is a nonlinear operator mapping some subset D of a real Banach 
space X  into a subset of a real Banach space Y . It is known that an iteration 
of the form

(2) xn+l = P (xn)

with

(3) P(xn) - x n - A ~ xF(xn)

is called a Newton-like method and the fixed points x* of P are roots of 
equation (1). Here {d„} denotes a sequence of invertible linear operators. 
This is plainly too general and what is really implicit in the title is that An 
should be a conscious approximation to F '(X n) since when An = F '( X n), the 
method is the obvious generalization of the classical Newton-Kantorovich 
method.

Sufficient conditions for the convergence of the sequence {x„}, n = 0,1, 
2 , . . .  generated by (2) to a root x* of (1) as well as estimates for the distances 
||x„ — **||, have been given by several authors.

Most of this work can be found in the excellent papers by W. Rheinboldt
[10], [11], J. Dennis [2], and the references there.
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Key words and phrases. Newton-like methods, Banach space, nondiscrete mathemat

ical induction.

Akadémiai Kiadó, Budapest
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Here motivated by the work of F. Pótra and V. Ptak for Newton’s method
[6], [7], [8], we apply the method of nondiscrete mathematical induction to 
the Newton-like method (2).

The method yields a simple proof of the convergence and generally better 
estimates for the distances ||xn — x*|| than the ones given in [2].

Our results reduce to the ones obtained in [6] for Newton’s method when 
A n = F '(xn), n = 0 ,1 ,2 , . . .  in (2).

To make the paper self-contained we state some of the results obtained 
in [2] and [6].

2. Basic results

We will need the following version of Theorem 2.6 in [2].
T h e o r e m  1. Assume
(1) the Fréchet-derivative F' of F  exists and F' £ Lipjt-Do, where Do is 

the closure of an open convex set and D0 C D;
(2) for every n with Xo, x \ , . . .  , x„ € Do and given by

Xn+1 — A n F(xnfi n — 0 ,1 ,2 ,. . .  

there is an invertible An £ L (X , Y ) and a positive real number an such that

(4 ) I I O I ^ 1;

(3) for o > \ ,  A > 0, both independent of n,
n

(5) ||T '(xn) -  A n\\ < an + ok ^ 2  I\ x j  -  X j_ i | |  -  A;
j = i

(4) the sequence {an}, n = 0 ,1 ,2 ,...  is uniformly bounded above;
(5) the following estimates are true:

(6) 1 ^ hrj  ^ |lA ö 1F(xo)||a0 ^

(7 ) U(x0, r 0) C D0, where l - V l - 2  h K
r0  = ------- r —  A.ok

Then the sequence {z„}, n = 0 ,1 ,2 ,. . .  given by (2) is well defined and con
verges to a root x* of the equation

F{x) = 0.

The error satisfies the estimate
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(8) \\Xa + 1  -  X*|| ^  r0 -  t „  -  an 1 { ^ a k t 2n  -  A t„) + a0P 0 1 ̂ (*o)||; 

where

(9) t o =  0 an d tn+i= (2 a 0)~1ktl + 6 t n  +  \\Aö1F(x0)\\, n=  1 ,2 ,. . .  

with

(10) 6  = \ \F \x 0 ) - A \ \ /  a0.

Moreover assume:
(6) The following estimates are true:

( 11) « < 1 ,

( 12)
2  a0(l — 6 ) 2

(13) U(xo, ró) C Do, where r '0 = -----^  (1 -  S)a0.

Then x* is the only root of F in U(xo, rj) fl Do- 
We can now prove the theorem:
T heorem  2. Assume
(1) the Fréchet-derivative F' of F exists and F 1 € Lip ̂  Do, where Dq is 

the closure of an open convex set and Do C D;
(2) the linear operator Ao € L (X ,Y )  is invertible with

(14) M ö l F (a;o)||S*7>

(15) | | ^ 1| |< ^ s a ^ 1 

for some rj,ß> 0;
(3) there exist real nonnegative sequences {<7n} and {pn}, n = 0 ,1 ,2 ,. . .  

such that for every n for which xo, xi, x^ ,. . .  , x n as defined by (2) are in Do,
n

(16) ||/p/(ar„) — >1„|| < — = Bn,
j=i

(17)
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(18) PnÚP'i 

(4) the following estimates hold

(19) ßp0  + 2ßp< l;

(20) i > t a .2 =

and

(21) U (io ,fo)cD o, where r0 =

(1 -  2ßp -  ßp0y '

1 -  > /l -  2 h
ß( 2 q + k) ( l - 2 ß p -ß p o ) .

Then the sequence {xn} given by (2) is well defined in U(xo, ro) and converges 
to a unique root of F  in U(xo,Ri), where

(22)

with

(23)

Ä 1 = w p * (1 _ ^ o)
ßk

t i  =
ßkr)

(1 - ß p ) 2’

Moreover if

(24) t i  <
1

then the root x* of F is unique in DoC\[j(xo, R 2 ) where

1 + y / l - 2 t i ,
(25) Ä2 = ßk

- ( l - ß p 0).

Finally, the following estimate is also true:

llXn+l -  X*|| <
(26) 1

^ r 0 - t n - ( - ß ( k + 2 q ) t l - ( l - ß ( p 0 + 2 p ) t n + T i ) / ( l - ß ( p n + p 0 ) - ß ( k + q ) t n)

with to = 0, t\ = 77 and tn, n = 2 , 3 , ,  given by (9).
P r o o f . We will make use of Theorem 1. Assume that

n
x0,Xi, . . .  , x „ e u ( x 0, r 0) and ^  ||s j ~ xj-lll < rQ-

3=  1

Then
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\\An -  Ao\\ < \\An -  F ' ( z n)|| +  | | r ( * „ )  -  F ' (* 0)|| +  \\F \x 0) -  A0\\ <
n

Ú Pn + Qn ( 5 3  \\X3 ~ XJ -l |l)  + k \\Xn ~ *o|| + P0 £
}=1

(27)
^ Po + P n  + (k + q) 5 3  llxi  -  xi - 1II < Po + P  + (fc + q)ro ^  

j=i

= Po +  P + ( l  — 1 — 2/i)(l -  2ß p  -  ß p 0 ) / ß  ^

Hence, WAq1 An —1\\ ^  ß(po + pn) +ß{k + q) J2 ||*j —* j- i || and by the Banach
i=i

lemma on invertible operators, A ~1 exists and 
(28)

M n 1| |^ a ^ 1= /3 (l -  ß P n -  ß p o -  ß(k + q ) ^ 2 \ \Xj - X j _ i | | )  ^ a ö 1, n > 0.
j=i

We now need to find a and A such that
n n

9n(53llXJ“ Xi-lll) +Pn^g(]T II*;-X;-lll) + Pn̂
i=1 j=l

n  n

< (i -  /?pn - /?p0 -  /?(*+?) 53 iixJ -  xj-i ii)^-1+ak 53 ifo ~ xi-iii - A-
j=i j=i

It can easily be checked that for

(29)

and

_  1 - 2 ß p -  ßp0

ß

(30) a = 2  <7

&
the above inequality is satisfied.

The conclusions of the Theorem follow immediately now from Theorem 1.
D e f i n i t i o n . A function w : T  = { r G R , 0 < r < 6 , s  fixed) —*• T  is called a 

rate of convergence on T  if the series

a(r) = 5 3 w(n)(r )
n = 0

(31)
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is convergent for each r  €  T, where the iterates of u  are defined as follows

(32) u/°)(r) = r, u;(,1+1)(r) = u>(u/")(r)), n = 0 ,1 ,2 , . . . .

From the definition of u  and a it follows immediately that

(33) o(u(r) )  = a(r) -  r, r e T .

E x a m p l e  1. By Lemma 2.2 in [6], it follows that the function
-2

(34) w (r )  = r, a> 0
2(r2 + a2)1/21

is a ra te  of convergence on T  and the corresponding function is given by 

(35) <r(r) — r — a + (r2 + a2)1/ 2.

Moreover, the following estimates are true:

(36) 

and

(37) 

where

(38)

w(»>(r ) ,  2^ ^ 2"
1 _ [0(r)]2"+1

' ( " ' " ( ' » ' r W ’ n =  0 , l , 2 , . . . ,

e{T)J £ ± s ? 2 ! l ^ L < i ,  tor r > 0 .

We will need the Theorem in [6].
T heorem 3. If we can attach to the pair (P, xo) a rate of convergence u  

on an interval T and a family of sets Z(r) C X , r 6 T such that the conditions

(39) x0 e Z ( r 0) for a certain r0 e T ,

(40) (r £ T  and x € Z(r))  —► P(x) 6U (x ,r) n Z(u>(r)) 

are satisfied then the iteration

2-n+l ~ E ( x n), 71 = 0 ,1 ,2 ,. . .

is well defined and converges to a fixed point x* of P such that

(41) x n e Z ( J n\ r 0))
(42) Ikn -  x„—ill ^ w(n)(r0)

(43) Ikn -* * || ^ cr(w(n)(r0)).
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Moreover if for certain n £ { 1 ,2 ,...}

(44)  xn. 1 e Z (  | | x „ - x „ _ i | | )  

then

(45)  | |xn - x * | |  < Q ( | | x „ - x n_ 1||) 

where we have denoted

(46) Q(r) — cr(r) -  r.

We can now prove the main result.
T heorem 4. Assume
(1) the hypotheses of Theorem 2 are satisfied;
(2) there exists a positive increasing continuous function V  such that

(47)

(48) F(u>(n-1)(r)) -  [(D„_i

(49)

V ( * i ) f c « o ,

+ Bn) + k J n- 1\ r ) ] > V ( ^ n\ r ) ) ,  

"-1)(r ))2 + J5n(w(" - 1)(r ))] = u;(n)(r)

for every n =  1 ,2 ,...  and r > R\. Then iteration (2) is well defined and 
converges to a unique solution x * of the equation

F(x) = 0

in U(xo, Ri)  D D0.
The following relations are true:

(50) x„ € Z (i> > (Ä l))

(51) | | X „ - X „ _ 1 ||  ^ ^ ^ ( Ä ! )

(52) ||xn -  x*|| ^ <r(w(n)(Ri))

(53) ||xn - x Q,||< i? ( ||x n -x „ _ i

where u ,a ,Q  are as defined by (34), (35) and (46), respectively. 
Here,

v/1 -  2 h' ( l - ß p 0),(54) a =
ßk
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(55) e = ß(Ri) 

and
Z ( J n\ r ) )  = {x n e x \  ||x„ -  Zoll < a (R x) -  <7(^(n)(r))},

A n is boundedly invertible and

(56) M ; 1f ( i „ ) | |< a , l ”l(r).

P roof. According to Theorem 3, we need to show that conditions (39), 
(40) and (44) are satisfied. The hypotheses of the Theorem imply that 
Z ( R X) =  {xo}, so that (39) is satisfied. We will use induction to show that 
X n+1 e Z(w"+1(r)) if Xj e  Z(u;0')(r)), j  = 0 ,1 ,2 ,. . .  , n.

Since
2-n+l = Zn An P (xn)

we have
Ikn+l -  £o|| fi ||xn+1 ~ Zn || + ||xn -  X0 || <

< u;(n)(r) + u(R i)  — cr(u/n)(r)) = a(R x) — <r(a^n+1)(r)). 

p - | 1i r i ^ i K i r i - i iA n+1- A n |i^

> V(u;i">(r)) -  [||A„ -  F /(xn)|| + ||F'(x„) -  F'(xn+X )|| + ||^ /(x„+1 -  An+11|] > 

^ V ( J n\ r ) )  -  [fln +  Bn+i + k ( J n\r ) ) ]  > V ( J n+1\ r ) )
(by (48)).

From the identity

(57)
F (xn+i) = F(xn+i) -  F (x n) -  F'(x„)(xn+1 -  x n) +  (F '(xn) -  A„)(xn+1 -  x„)

we get

l l ^ 1F(i„+1)|| < [V '(^")(r))]-‘ fh(u.(">(r))J + Sw<"+1|(r)L2

(by (49)).
Thus conditions (39) and (40) are then satisfied.
Also, since xn+i £ Z(cj(n~1)(Rx)) and the monotonicity of the functions 

a and V  we get

I I * «  -  * « - i l l  =  | | A ^ 1 F K - i ) | |  ^  « ^ ( Ä O ,

| | x„ _i  -  Zoli fí cr(Ri) -  a(w(n_1)(Ä!)) < <r{Rx) -  <x(||xn -  z n_ i  ||), 

l l ^ - l i r 1 ^  V ( J n- l\ R X)) if v( \\xn -  Zn-ill).

That is, (44) is also verified.
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Finally, the proof of the Theorem can be completed if we use the conti
nuity of F  in (57) to obtain

F(x*) = 0.

E x a m p l e  2. (a) The function V  cannot easily be found at this gener
ality. The conditions (47), (48), (49) may not even be satisfied for r = R\. 
However, if V  can be found then the relations (52), (53) indicate the possi
bility of obtaining sharper error bounds than previously known (sée, e.g. [2], 
[10]).

(b) In the special case when A„ = F '(xn) then

Pn=P = qn = q = 0 in (16), n = 0 ,1 ,2 ,...

and Theorem 2 reduces to the well-known Newton-Kantorovich theorem [3]. 
Moreover, it can easily be seen then as in [6] that the function

(58) V(r) = a0 -  k(a(Ri) -  a (r)) = k(r + (r2 + a2)1!2)

satisfies conditions (47), (48), and (49).
(c) If, say, inequality (48) (or (49)) holds for every n = 1 ,2 ,. . .  with r > 0 

fixed, then
lim Bn — 0TI—+00

and by (16)
lim ( F \ x n) - A n) = 0.

n—►CO

The above observation can lead to a remark similar to the one in (b). 
However, in practice since the estimates given by (51), (52) and (53) will 

be computed until a finite n =  no and since the existence of x* is guaranteed 
by Theorem 2, we will only require (48) and (49) to hold until t/0.

Another problem left then is the choice of V. A good candidate for V  
may then be the function given by (58).
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NOTE ON ADDITIVE FUNCTIONS SATISFYING 
SOME CONGRUENCE PROPERTY. II

PHAM VAN CHUNG

Let A and A* denote the set of integer-valued additive and completely 
additive functions, respectively. We shall denote by N resp. Z the set of 
positive integers and integers.

K. Kovács [2] proved that if /  G A* and for some a > 0, 6, c G Z

/(a n  + b)  = c (mod n) 

then /(n )  = 0 for all (n, a) = 1.
In [1] we get the same result for /  G A if a = 1. Here we prove the 

following generalization of the above result:
THEOREM. Let A >  0, B and C be integers. If f  G A satisfies the condi

tion

(1) /(A n  + B) = C (mod n) for all n > max{0, — B /A ] ,

then f(n )  = 0 for all n £ N which are coprime to A.
P r o o f . We shall prove the theorem in three cases according to B >  0, 

B = 0 and B < 0.
Case I. If B > 0, then replacing n by 5 2n in (1), we have

(2) f ( A B 2n + B) = C (mod n) 

which implies

(3) f ( A B n  + 1) = C — f ( B )  (mod n).

Using the method of our paper [1], one can deduce from (3) and (1) that

(4) C = f ( B ),

(5) f (A B n  + 1) = 0 (mod n)
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and

( 6) f (n )  — 0 for all (n, ,4j9) = 1.

It remains to consider the case with (n ,A ) = 1 but (n, B) ^  1. We may 
assume th a t n = pk where p is a prime and k £ N.

Let us denote pa\\B if pa\B  but pa+1 \ B. We show first f (p k) = 0 for all 
0 ^ k < a. Since (p , A) = 1, there are infinitely many positive u for which

(7) (Au + pa~k,AB) = l.

By (1), (4) and (7), we get

= l { A ^ k u + B )  = + ^ Au  + P° *) (m odu)-

But (6) and (7) yield f (A u  +  pa~k) = 0, i.e. f ( B )  = /  {pirn) (modu). Thus 
we have

f ( B ) = f ( S j ) for a11 0 ^ A: ^ a.

B

Since
<p'

B
/ ( # ; ) = / ( £ ) + / ( / >

for all 0 < k <| a, we obtain f ( p a) = f(pk) for all 0 ^ k ^ a. The choice k = 0 
implies

(8) f (p a) = 0 

and so we have

(9) f(,pk ) ~  0 for all 0 < A: < a.

Let us consider the case k > a. To prove f (p k) = 0 we show that

f ( B p s) = f(B )  for all s <E N.

By (p, A) = 1, there exists a positive integer D > 1 such that (D ,A B )  = 1 
and

(10) psD = l + AT.

So by the theorem of Euler we get

(11) = i (mod.4). 

(10) and (11) yield

(12) paB D l+* W m = B{mo&A).



ADDITIVE FU NCTIONS. II 429

From f ( D l+^ A m̂) = 0, the congruences (12) and (1) imply

f (p 'B )  = f (p aB ) + /(2 ji+ ^ )" * )  =  f ( B  + A B Im) = f ( B ) (m od /m).

If Im —*■ oo, then we have
f ( PsB) = f (B ) ,

which yields
f (p a+a) = f (p a) for all N,

hence f (p k) = f (p a) = 0 for all k > a.
Case II. We can prove similarly as in [1] -
Case III. If B < 0, then similarly to the Case III in [1] we get f ( n )  — 0 for 

all n coprime to A. If A B  is odd, then we obtain f(n )  — 0 for all n coprime 
to 2A  only, but an analogous proof to the Case I with p3 = 2k implies also 
/ ( 2fc) = 0.
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ÜBER KUGELSYSTEME UNTER GERÄUMIGKEITSBEDINGUNGEN

KATALIN BOGNÁR MÁTHÉ

Das Problem der dichtesten Packung kongruenter Kugeln ist bekanntlich 
für den dreidimensionalen euklidischen Raum E 3 noch ungelöst. Eine der 
besten oberen Abschätzungen für die Dichte d ein solcher Packung stammt 
von Rogers (1958). Er bewies die Vermutung d dn, wonach die Dichte d 
einer jeden Packung von Kugeln mit Radius r in E n nicht größer sein kann, 
als die Dichte dn in einem regulären Simplex mit der Kantenlänge 2r, das 
durch die Mittelpunkte von n + 1 einander gegenseitig berührenden Kugeln 
vom Radius r bestimmt ist. In dem dreidimensionalen euklidischen Raum
gilt nach Rogers d < 0, 7796__  Diese Abschätzung für die Dichte d wurde
von K. Böröczky auf d ^  0 ,7784... verbessert.1 Es wird vermutet, daß die 
dichteste Kugelpackung die Dichte d ^ = 0, 7404 . . .  besitzt.

Bei den Untersuchungen von Kugelsystemen werden zumeist zusätzliche 
Eigenschaften gefordert; so werden Kugelpackungen mit Gitterförmigkeit, 
Schnurförmigkeit oder mit sonstigen Nebenbedingungen untersucht.

Die Schnurförmigkeit schwächt die Bedingung der Gitterförmigkeit ab, 
aber fordert immerhin eine gewisse Regularität. Das Problem wurde von L. 
Fejes Tóth und K. Böröczky aufgeworfen. Bei einer schnurförmigen Kugel
packung sind die Kugeln auf Geraden aufgefädelt. Die Abstände der Mit
telpunkte in einer Reihe von Kugeln sind gleich, aber die Kugeln berühren 
einander nicht unbedingt. Nach einem Ergebnis von E. Makai kann die 
Dichte der dichtesten schnurförmigen Kugelpackung nicht größer sein, als 
die Dichte der dichtesten gitterförmigen Kugelpackung.

Eine große Anzahl von Kugelpackungen ist homogen oder zeigt in ir
gendeinem Sinne Regelmäßigkeiten. Ein solches Kugelsystem ist z.B. die 
würfelgitterförmige Kugelpackung. Diese Kugelsysteme können durch gewisse 
Nebenbedingungen als die Dichtesten charakterisiert werden. Eine solche 
Nebenbedingung ist z.B. die Geräumigkeit.

In der Ebene konstanter Krümmung hat J. Molnár den Begriff des ge
räumigen Kreissystems eingeführt [6], [7]. Der Name der „Geräumigkeit” 
stammt von L. Fejes Tóth.
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W ir wählen einen Kreis Ki  mit Mittelpunkt O, des Kreissystems {if,}, 
und betrachten die zu O, nächstliegende Ecke E t der Dirichlet-Voronoischen 
Zelle DV{. Wir nennen den Abstand 0,E, die Geräumigkeit des Kreises 
A,-. Man nennt ein Kreissystem {K,} geräumig, wenn die Abstände der 
DVi Zellen-Ecken jedes Kreises A, vom Mittelpunkt O, in einen gewissen 
Sinne „groß” ist. Präziser gefaßt versteht man unter der Geräumigkeit eines 
Kreissystems {A,} das Infimum der Abstände OjAj bezüghch aller Kreise 
Ki.

Unter der Geräumigkeitsbedingung r  eines Kreissystems versteht man, 
daß die Geräumigkeit von {A,} mindestens r  ist.

Bei den Packungen der kongruenten Kreise mit Geräumigkeitsbedingun
gen gibt das eingeschriebene Kreissystem aller regulären Mosaike eine dich
teste Kreispackung. Darüber hinaus gab J. Molnár [7] in der euklidischen 
Ebene für alle Geräumigkeitsbedingungen r  > ^ r  die dichteste Packung von 
Kreisen mit Radius r an.

In den drei- und höher-dimensionalen Räumen konstanter Krümmung 
beschäftigte sich K. Böröczky mit geräumigen Kugelsystemen. Bei den Un
tersuchungen von Kugelsystemen kann man verschiedene Begriffe der Geräu
migkeit einführen.

W ir betrachten ein Kugelsystem {A,} der Kugeln A, vom Radius r 
im dreidimensionalen euklidischen Raum, und bezeichnen wir die Dirich- 
let-Voronoische Zelle der Kugel Ki mit Mittelpunkt O, mit DVi. Wir führen 
drei verschiedene Begriffe der Geräumigkeit ein.

Unter der Eckengeräumigkeit irgendeiner Kugel A, von {A,} versteht 
man den Abstand der zu O, nächstliegenden DVi-Ecke vom Mittelpunkt 
O,. Analog definiert man die Kanten-, bzw. Flächengeräumigkeit won Ki als 
den Abstand der zu O, nächstliegenden DVi-Kante, bzw. DVi-Fläche vom 
M ittelpunkt O,. Unter der entsprechenden Geräumigkeit eines Kugelsystems 
{A,} versteht man dann das Infinum der jeweiligen Geräumigkeiten von allen 
Kugeln A, .

Im Falle einer Packung kongruenter Kugeln von Radius r sind die Ecken-,
Kanten-, bzw. die Flächengeräumigkeiten bekanntlich mindestens r r 2 .

V3’
bzw. r. Diese letzteren werden triviale Geräumigkeiten genannt.

Wenn eine Kugelpackung z.B. mit Geräumigkeitsbedingung r3 angegeben 
wird, verlangt man, daß die Eckengeräumigkeit mindestens gleich r3 ist, d.h. 
daß die Abstände der DVj-Ecken vom Mittelpunkt O, mindestens gleich r3 
sind. Analog kann man über eine Kantengeräumigkeitsbedingung r2, bzw. 
über eine Flächengeräumigkeitsbedingung sprechen.

Nach Ergebnissen von K. Böröczky [1] vertreten alle regulären Mosaike 
im dreidimensionalen sphärischen, euklidischen und hyperbolischen Raum, 
deren Zellen regulären Polyeder sind, bei entsprechenden Geräumigkeitsbe
dingungen extreme Werte.

Die Eckengeräumigkeitsbedingung r3 ist damit äquivalent, daß die Stütz
kugeln des Mittelpunktsystems der Kugelpackung mindestens den Radius r 3
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haben.
Wenn bei einer Packung der kongruenten Kreise bzw. Kugeln nur die 

Eckengeräumigkeitsbedingung r3 vorgeschrieben wird, dann nennt man ein 
solches Kreis- bzw. Kugelsystem auch ein p-System, wo r = p + r ist. Die 
Untersuchung der p-Systeme hat J. Molnár [8] eingeführt.

M. Hollai [5] hat über die Dichte des gitterförmigen p-Systems der Kugeln 
genaue Schranken angegeben. M. Hollai hat zu einem jeden Wert

eine dichteste gitterförmige Packung angegeben.

Uber ein quasi-geräumiges Kugelsystem im euklidischen Raum

Die Geräumigkeitsbedingungen können abgeschwächt werden. Man kann
z.B. die Geräumigkeitsbedingung etwa nur für bestimmte ausgezeichnete 
Ecken der DV-Zellen einer Kugelpackung fordern. Diese speziellen Geräu
migkeitsbedingungen nennen wir Quasi-Geräumigkeitsbedingung.

Werden wir uns einer Quasi-Geräumigkeitsbedingung zu! Zwei Ecken 
einer DV-Zelle heißen benachbart, wenn sie eine Kante beranden. Eine 
Kugelpackung erfüllt genau dann eine Quasi-Geräumigkeitsbedingung r3, 
wenn von je zwei benachbarten Ecken mindestens eine die Bedingung r3 
erfüllt. (Die Abschwächung der Geräumigkeitsbedingung stammt von K. 
Böröczky.) Es bedeutet soviel, daß der Radius von mindestens einer der 
benachbarten Stützkugeln des Mittelpunktsystems mindestens r |  ist. Dabei 
nennt man zwei Stützkugeln benachbart, wenn sie mindestens drei Punkte 
des Mittelpunktsystems gemeinsam haben. Offensichtlich sind die Mittel
punkte der benachbarten Stützkugeln benachbarte Ecken einer DV-Zelle.

Untersuchen wir jetzt eine Kugelpackung im dreidimensionalen euklidi
schen Raum mit Quasi-Geräumigkeitsbedingung r j . Es bedeutet keine Be
schränkung, wenn man ein Einheitskugelsystem betrachtet.

Sa t z . Im dreidimensionalen euklidischen Raum sei ein Einheitskugel
system {K{}, das der Quasi-Geräumigkeitsbedingung r3 = i/2 genügt, gege
ben. Dann ist die Packungsdichte des Kugelsystems {Kf) höchstens -7= .
Diese Abschätzung ist genau z.B. im Falle der dichtesten gitterförmigen 
Kugelpackung.

Somit ist unter gewissen — nicht notwending gitterförmigen — Kugel
packungen die dichteste gitterförmige Kugelpackung eine der dichtesten. 
(Durch obigen Satz ist eine von K. Böröczky aufgestellte Vermutung be
wiesen.)

Beim Beweis dieses Satzes spielt der von K. Böröczky eingeführte Begriff 
der Grenzdichte eine grundlegende Rolle.
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Es seien im dreidimensionalen euklidischen Raum Q0Q1Q2Q3 ein Tetra
eder und K  eine Kugel mit dem Mittelpunkt Qq. Bezeichne 6 (Qq, Q 1 Q 2 Q 3 )  
die Dichte von K  bezüglich des Tetraeders QoQ 1 Q 2 Q 3 ,  die wie üblich definiert 
wird. W ir betrachten den Grenzwert 6 (Q0 ,Q i, Z) von £(Qo, Q1Q2Q3) für 
den Fall, daß Q2 und Q3 gegen einen gemeinsamen Punkt Z  streben, wobei 
Z  nicht auf der Geraden Q 0 Q 1  liegt. Dabei gilt

6 (Q o,Q i,Z )=  Um 6{Qo,Q i Q2Q3)-
Q2,Q3—*6

Bezeichne Ra( X ) einen Rotationskörper, der aus dem Gebiet X  durch 
eine Drehung um die Achse a entsteht. Dann ist offenbar

6 (Qo,Qi, Z)  =  6[Rq0qx(Q oQ \Z)].

Im Beweis kommt oft der Begriff des zwei- bzw. dreidimensionalen Ortho- 
schems vor. Das zweidimensionale Orthoschem ist ein rechtwinkliges Dreieck 
Q oQ iQ z, wobei Q 0 Q 1  senkrecht zu Q iQ z  ist. Das Tetraeder Q0Q1Q2Q3 ist 
ein Orthoschem, wenn die Kante Q 0 Q 1  zu der Fläche Q 1 Q 2 Q 3  normal ist, 
wo Q 1 Q 2 X Q 2 Q 3  ist.

Für das Weitere benötigen wir die folgende Hilfssätze:

HILFSSATZ 1. Es sei K  eine Einheitskugel mit dem Mittelpunkt O. Fer
ner seien 0 0 \ E \  und OO2 E 2 je ein zweidimensionales Orthoschem, wo 
0 0 \  =  OO 2 ^ 1 und 0 \E \  < O2 E 2 sind. Behauptung: 6 { 0 ,0 \ ,  E\) >
> 6 (0 , O 2 , E 2 ).

H il f s s a t z  2. Es seien QoQ 1 Q 2 Q 3  e2n Tetraeder mit VolumenV und K  
eine Kugel mit Mittelpunkt Q0, die die Ebene Q 1 Q 2 Q 3  nicht trifft. Ferner sei 
Z ein (innererj Punkt der Strecke Q 2 Q 3  und sei 6 (Q0, Q1, Z ) eine monotone 
Funktion von Q2 Z. Behauptung: Die Dichte 6 (Qo,Q i Q2 Qs) liegt zwischen 
den Grenzdichten 6 (Qo, Qi, Q 2 ) und 6 (Q0, Qi, Q3).

H il f s s a t z  3. Es sei K  eine■ Einheitskugel mit dem Mittelpunkt O . Fer
ner seien 0 0 \TA  und O Ö \TÄ  zwei dreidimensionale Orthoscheme, wo 
0 0 \  > OÖ1 't. 1 ,OT  > OT und OA OA sind. Dann 6 (0 ,0 \T A )  ^ 
< 6 ( 0 ,Ö \T Ä ),  und Gleichheit tritt dann und nur dann auf, wenn 0 0 \  — 
= 0 Ö U O T -  OT und OA = OA gilt.

(Hilfssätze 1-3 sind bei K. Böröczky [1], [2] zu finden.)

H il f s s a t z  4 . Es sei K  eine Einheitskugel mit dem Mittelpunkt O . Fer
ner seien 0 0 \ B  und OÖ\B je ein zweidimensionales Orthoschem, wo 0 0 \  >
> 0 0 \  > 1 ist (Abb. 1). Es folgt 6 ( 0 ,0 \ ,  B ) ^ 6 ( 0 ,0 1, B ).
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Abb. 1
B e w e is . E s sei 6(0,  0 \ ,  B)  =  lim 6(0 ,0 \TB)  und 6 ( 0 ,Ö\ ,  B) —

T  —
= \im^6(0,ÖiT'B),  wo 0 0 \ T B  und OÖ\T'B  je ein Orthoschem ist, sowie

OT = OT'.  Laut Hilfssatz 3 ist 6 ( 0 , 0 \ T B )  <  6(0,Ö\T'B).  So gilt nach 
dem Grenzübergang

6 (0 , 0 l , B ) < 6 (0 ,Ö 1 ,B).

HILFSSATZ 5. Es sei K  eine Einheitskugel mit dem Mittelpunkt O . Ferner 
sei OÖ\B ein zweidimensionales Orthoschem, wo OÖ\ ^ 1 und O B — < /| 
ist (Abb. 2). Dann wird 6(0, Öi, B) < d  = -^g.

Abb. 2
B e w e is . Drehen wir das rechtwinklige Dreieck OÖ\B  um die Achse 

OOi. Nach üblichen Definition von Grenzdichte und Dichte gilt
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wobei Vfc(a) das Volumen eines Kugelsektors mit Winkel a  ist (a  = 
= (OÖi, OB)); und V ^ qq^ O Ö i B)] das Volumen des Kegels Rqq^ O O i B) 
ist. Dabei ergibt sich

Vk{a) =  ^7rr2m = ( l  -  ,

wo r = OÖ\ — 1 und m  ist die Höhe des Kugelsegments mit Winkel a, d.h.

m = coSQ( y | - l )  = ( l - V| ) .

Weiters gilt

V [R oo 1 ( ° Ö iB ) \= 7̂ r l m k =

wobei rjt = OB = mjt =  0 0 \  = 1 sind. Deshalb ist 6 (0 ,0 \ ,  B) = 

= 4 ( l  -  = 0 ,7 3 4 0 1 4 ...<  Also gilt 6 (0 ,Ö 1 ,B )< d .

Wenden wir uns jetzt dem Beweis des Satzes zu.
Ohne Beschränkung der Allgemeinheit können wir uns auf eine gesättigte 

Kugelpackung {Ä',} beschränken, so daß im Raum leere Kugeln mit einem 
größeren Radius als 2 \/2  nicht Vorkommen können.

Wir betrachten jetzt die D V  - Zellenzerlegung, die zum Kugelmittelpunk
tssystem gehört.Es sei K  eine Kugel des {A,}, deren Mittelpunkt 0  ist. Die 
DV-Zelle der Kugel A  ist ein konvexes Polyeder P , denn es handelt sich um 
eine gesättigte Kugelpackung. Nach den trivialen Geräumigkeitsbedingungen 
betragen die Abstände der Flächenebenen, Kantengeraden bzw. Ecken des 
P  vom Mittelpunkt O mindestens

r  1 = 1, r2 = - 7= bzw. r3 = 
v3

Nach den Quasi-Geräumigkeitsbedingungen des Satzes ist der Abstand we
nigstens einer der benachbarten Ecken (an der Kante) vom Mittelpunkt O 
das Minimum — \/2.

Wir betrachten die mit K  konzentrischen Kugeln S3  und S 2 vom 
Radius 7-3, r3 bzw. r 2 (Abb. 3).
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r

Abb. 3

Schälen wir mit der Kugel S3 das Polyeder P  ab! Die Dichte der Kugel K  
in P ist höchstens so groß wie im enstandenen Körper PS3, da der geschälte 
Teil leer ist (P f l S3 = PS£). PS3 ist im allgemeinen kein Polyeder mehr. 
Die Oberfläche des Körpers PS |  stammt einerseits von der Oberfläche der 
Kugel S3, anderseits von der Oberfläche des Polyeders P.

Bezeichnen wir den Teil der Fläche PS£ auf der Fläche der Kugel S3 mit 
S und den Teil der Fläche PS3 auf einer Flächenebene des Polyeders P  mit 
Pj (wo J = 1 ,2 , . . .  ,1, falls l  Flächen des Polyeders P zur Entstehung von 
PS3 beitragen).

Zerlegen wir den Körper P S | in ein kegelförmiges Gebilde mit Spitze O 
und dem Kugelflächen-Teil S als Grundfläche bzw. in die Kegel (Pyramiden) 
Pj mit Spitze O, die zu den Flächen pj gehören.

In dem kegelförmigen Gebilde mit der Grundfläche S und der Spitze 0  
beträgt die Dichte 6 (S)  der Kugel K:

Betrachten wir die Kegel Pj mit den Grundflächen pj und der Spitze 0 ,  
und untersuchen wir diesen die Dichte S(Pj )  der Kugel K . Der Fußpunkt 
der von O auf die Flächenebene von pj  gefällten Lote sei Oj.  (Oj  ist hier 
der Mittelpunkt des Kreises k%, wo £3 =  S | flp j und 0 0 j > r\ = 1.) Wir 
unterscheiden zwei Fälle je nach dem, ob die Fläche pj  den Punkt Oj  enthält 
oder nicht.

Wenn die Fläche pj  den Punkt Oj  nicht enthält (Oj  liegt außerhalb pj), 
dann gibt es eine Seite (z.B. AiAk)  von pj,  die pj  von Oj  trennt (Abb. 4). 
(Sei F e Pj der O, nächstliegende Punkt.)
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Der Punkt F  ist ein Punkt der Kante des Polyeders P, so gilt gemäß der 
Kantengeräumigkeits-Bedingung:

O F > T 2 =  -7=.
V3

Betrachten wir die mit der Kugel K  konzentrische Kugel S '2 vom Radius OF  
und schneiden wir damit den Kegel Pj  ab (Abb. 5). Im so abgestumpftem 
Kegel Pj ist die Dichte der Kugel K  größer als in Pj, da wir mit S2 einen 
leeren Teil ahgeschnitten haben. So es gilt:

r 3 1 o /ö
6 {Pj) < t t f )  Í  i  =  Tjläz  = = ° ’64951V./5I

2 < d  =
7T

7 Ü '

W ir untersuchen im weiteren den Fall, daß die Fläche pj den Punkt Oj 
enthält. (Oj liegt innerhalb pj.) Wir unterscheiden weitere zwei Fälle je 
nachdem, 0 0 j > r2 bzw. 0 0 j < r?.

(A) Wenn 0 0 j> .r 2; d.h., wenn die Grundebene pj des Kegels Pj die 
Kugel S 2  vom Radius r2 nicht durchschneidet, gilt die Dichtenabschätzung 
wie vorher

* ( P j )  <  K P j )  =  ̂  = °, 64951 • • • < d  =  - j = = .

(Hier ist Pj ein durch eine Kugel 52 abgestumpfter Kegel Pj.)
(B) Im Fall 0 0 j < r 2, also wenn die Grundebene pj des Kegels Pj die 

Kugeln 5 | ,  S3 und 52 vom Radius r%, r3  bzw. t-i durchschneidet, dann seien 
5g n  p j  = Á3, 53 H pj -  k3  bzw. 52 fl P j  -  k2.

Es sei P\ einer der Kegel Pj und sei 0 \  die orthogonale Projektion des 
Kegelmittelpunktes O auf der Grundfläche pj, wo 0 0 \  1.

Bezeichnen wir die Ecken des Grundpolygons des Kegels P\ mit A,, die 
Fußpunkte der von Oi auf der Seiten |_i gefällten Lote mit T, (Abb. 6).
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Abb. 6

Verbinden wir den Punkt 0 \  mit den Ecken der Fläche pi, und zerlegen 
wir zugleich den Kegel P\ mittels Ebenen, die mit der Geraden 0 0 \  inzi- 
dieren, in Teilkegel. In diesen Teilkegeln werden wir die Dichte der Kugel K  
untersuchen.

Wenn man die Typen der Begrenzungselemente des Polygons P\ in Be
tracht zieht, kann man die Teilkegel von Pi folgendermaßen sortieren.

1. Das Begrenzungselement ist ein Kreisbogen (z.B. A 0 Ai); der dazu 
gehörige Teilkegel ist ein Kegel mit einer Kreissektor-Grundfläche (z.B. 
0 0 \AoA \ ).

2. Das Begrenzungselement ist eine Seitenstrecke die den Kreis k$ nicht 
durchschneidet, höchstens berührt. Die dazu gehörenden Tetraeder 
(0 0 \AiAi+\) kann man

(a) im Fall T  G zerlegen und zwar mittels der Ebenen 0 0 \T i  in
dreidimensionale Orthoscheme (z.B. 0 0 \T iA \) .

(b) Im Fall Ti ^ A.A.+i zerlegen wir die Tetraeder nicht weiter; (z.B. 
OO1 A 4 A 5 ist ein sogenanntes stumpfwinkligen Tetraeder oder O-Te- 
traeder).

3. Das Begrenzungselement ist eine Seitenstrecke, die den Kreis durch
schneidet. Die eine Ecke liegt auf dem Kreisbogen kj und die andere liegt im 
Bereich des Kreisringes (z.B. AqA*,). Wenn die andere Ecke nicht auf 
den Kreisbogen k3 fällt, dann bezeichne B  jenen Schnittpunkt der Strecke 
A 0 A 5 mit dem Kreisbogen £3, der von A q entfernter liegt, als A 5 . Zerlegen 
wir das dazu gehörende Tetraeder (z.B. OO i AqA*,) mit einer eventuellen 
Ebene 0 0 \ B  in zwei weitere Tetraeder. Dabei ist

a) eines ein Tetraeder von Typ 00 \B A r ,  und
b) das andere ein Tetraeder von Typ 0 0 \A o B .
Wir untersuchen, wie sich die Kugeldichte bei allen möglichen Typen der 

im Laufe der Zerlegung entstandenen Kegel, Tetraeder und dreidimensio
nalen Orthoschemen gestaltet. Dabei werden die vorgeschriebenen Geräu-
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migkeitsbedingungen in Betracht gezogen.
(1) Im  Kegel mit Kreissektor-Grundfläche (z.B. OOiAoAi) kann die 

Dichte der Kugel K  auf Grund der Definition der Grenzdichte und des Hilfs
satzes 1 folgendermaßen geschrieben werden:

6(0 ,  Oi, A0 Ai)  =  6[ROOl( 00 i Ai ) \  = 6(0,  Ou A x) < 6(0, Ou B).

(2a) Betrachten wir in den Orthoschemen OOiT,Aj (j  = i bzw. j  — i + 
+  1 )  — z.B. im OOiT\Ai  — die Dichte der Kugel K.  Es sei E ein Punkt 
der Strecke TjAj.  Laut des Hilfssatzes 1  ist 6(0,  Oi,  E)  eine monotone ab
nehmende Funktion von T{E.  So gilt nach dem Hilfssatz 2:

6 ( 0 , 0 i T , A J) < 6 ( 0 , 0 i , T i).

Wieder Hilfssatz 1 angewandt gilt

6 ( 0 ,OiTiAj)  < 6 ( 0 ,Ox, B).

(2b) Untersuchen wir die Kugeldichte im sogenannten stumpfwinkligen 
(oder O-) Tetraeder von Typ OO 1 A4 A5 .

Es sei E  ein Punkt der Strecke T4 A4 . Auf Grund des Hilfssatzes 1 ist 
die Grenzdichte eine monotone abnehmende Funktion von T\E,  so gilt mit 
Hilfssatz 2, und anschließend Hilfssatz 1

6 ( 0 ,0 i A 4 A 5) < 6 (0 ,Oi, A s) < 6(0, OxB).
Betrachten wir nur die zweidimensionalen Orthoschemen OOiB  und 

O Ö iB ,  wo 0 0 1 ^ OÖ1 = 1 ist. Laut Hilfssatz 4

6 ( O ,O i ,B ) < 6 (O ,0 i ,B ) ,

da B  m it £3 inzident ist (B  —e— £3), gilt OB — ^ /f .  Nach Berechnungen des 
Hilfssatz 5, ist

6 (0 ,Ö i ,B ) < d  = -? = .

Dies mit dem oben unter (1), (2a) und (2b) gesagten, gilt

6 (0 , OiA qA i ) < d und 6 (0 , OiA, A,+i) < d.

So ist bewiesen, daß in einem jeden Teilkegel der Gruppe (1) und (2) des 
Kegels Pi die Dichte der Kugel K  kleiner ist als d.

(3) Betrachten wir die Kugeldichte im Tetraeder des Types OOiAoAs. 
Zerlegen wir es durch die Ebene OOiB  in zwei Tetraeder.

(a) Das Tetraeder OOiBA$  ist im wesentlichen ein Tetraeder von Typ 
(2b), weil T  £ BA 5 ist (siehe ,,Ö”-Tetraeder OO1A4A5). Also gilt, wie oben 
bewiesen,
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6(0, Oi B A 5) < 6(0, Oi, B) < 6(0, Öu B) < d.
(b) Schätzen wir die Kugeldichte K  beim Tetraeder des Types 0 0 \A B , 

wo Aq = A &3, B -e — k3 ist. Drehen wir die Grundebene 0 \A B  des 
Tetraeders 0 0 \A B  um die Achse A B  in eine Tangentialebene der Kugel 
K (A B  fl K  = 0). Bezeichnen wir den Berührungspunkt mit Ö\ (Abb. 7).

Abb. 7
(b l) Behauptung: 6 (0 ,0 iA B ) < 6 (0 ,Ö \AB ).
Wir zerschneiden die Tetraeder 0 0 \ A B  und OÖ\AB  mit der Ebene 

[OOiT] = [00\T]  in je zwei Orthoscheme. Untersuchen wir in den so ent
standenen Orthoschemen die Änderung der Kugeldichte.

Einerseits gilt für die Orthoscheme 0 0 \ T B  und 0 0 \ T A  wegen der Be
dingung OB  < OA  auf Grund des Hilfssatz 3:

6b : =  6 ( 0 , 0 \ T B)  >  6(0,  OxT A )  = :  6 A.
Ebenso gilt nach der obigen Drehung

6 b : =  6(0 , ÖiTB )  >  6(0,  Ö ^ A )  = 6 A.
Anderseits gilt für die Orthoscheme 0 0 \ T B  und OÖ\TB  sowie 0 0 \ T A  
und OÖ\TA  ebenso wegen der Bedingung 0 0 \  > OÖ\ unter Anwendung 
des Hilfssatz 3:

6 b  =  6(0,  OiTB) < 6(0 ,Ö\TB)  = 6 B 

6 a =  6(0, OiTA )  <  6(0,  ÖiTA) = 6 A.
(Also wurde die Dichte von K  nach der Drehung der Grundebene in den 
einzelnen Orthoschemen größer.)

Die Kugeldichte im ganzen Tetraeder ist das gewichtete Mittel der Dich
ten in den einzelnen Orthoschemen. Es bezeichne u und v die Länge der 
Strecken TB  und TA,  dann gilt

V0 0 J B  =  u = Vq q TB  
V00lTA v Vo 0 iT A '
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wo z.B. VoOyTB das Volumen des Tetraeders 0 0 \T B  bezeichnet. So ist die 
Kugeldichte in den Tetraedern O O iAB  und O Ö \AB

6 ( 0 , 0 1 A B ) : = 6 = - 6? t V- £ ,
u-\-v

bzw.

í ( 0 , Ö1A B ) : = Í = "*b + vÍa.

Davon kommt offensichtlich

6  = 6 ( 0 ,0 \A B )  < 6 (0 ,Ö \A B ) = 6 .

(Also ist das Gewichtverhältnis der einzelnen Dichten nach dem Eindrehen 
unverändert geblieben, und die Dichte hat in Gesamtheit zugenommen.)

Danach drehen wir die Seitengerade AB  des Grunddreiecks Ö \AB  um 
den Punkt A in die Lage, die den Kreis der Kugel S2 berührt. Der 
Berührungspunkt sei T, die Ecke B kommt sich am Kreis k3 von A entfernend 
zum Punkt B, und so geht das Dreieck 0 \A B  ins Dreieck 0 \A B  (A  = A ) 
über (Abb. 8).

Abb. 8

(b2) Behauptung: 6 (0 ,Ö \A B ) < 6 (0 ,Ö \Ä B ).
Zerlegen wir die Tetraeder OOiAB  und O Ö \ÄB  mit der Ebene [OÖiT] 

bzw. [O Ö \T ] in je zwei Orthoschemen. Wir untersuchen in den einzelnen 
Orthoschemen die Änderung der Dichte.

In den Orthoschemen O Ö \TA  und OÖ\TA, sowie 0 0 \T B  und 0 0 \T B  
gilt wegen der Ungleichung O T  > OT im Sinne des Hilfssatzes 3:

SA = (0 , Ö iTA ) < 6 (0 , Ö \TÄ ) = 6 Ä,

6  = ( 0 , Ö 1 T B ) < 6 ( 0 , Ö 1 TB)  = ~6 b .
sowie
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Das Verhältnis des Volumens bei den einzelnen Orthoschemen beträgt vor 
und nach der Drehung:

Vq q T B  ^  x 

voöiT A  x + l/ ’
wo z = T B  = T B ' , y = AB' sind, bzw.

V p ö j B  =  z'
Vo ö iT Ä  x' + y"

wo x' = T B  = T B ', y — AB' sind (B ' bzw. B' bezeichnet die zweiten Schnitt
punkte der Strecken AB  bzw. AB  mit Kreis £3). So beträgt die Kugeldichte 
in den Tetraedern O Ö \AB  und OÖ\ÄB:

e (o ,ö 1A B ) = t = x h ,+ (* +1,f o
V '  2x + y

6(0 ,Ö \ÄB ) = _  x '6 ß + (x' + y')6 Ä 
2 x' + y'

Untersuchen wir die Änderung des Gewichtverhältnisses! (Abb. 9.) Of
fensichtlich 2x' > 2z und 0 <y' < y, denn in den Dreiecken A Ö \B ' und ÄÖ\B' 
für die Winkel gilt:

A O x B 'o A O iB '< , so ist AB' > AB'.

Abb. 9
Deshalb

x  x  x  x
— > -  d.h. — ------ > - ------ .
y  y  2z' + y '  2 x  +  y

Das Gewichtverhältnis des Orthoschemes mit Ecke „fl” hat bei der Drehung 
zugenommen.



444 KATALIN BOGNÁR MÁTHÉ

Drücken wir diese Ungleichungen durch gewichtete Mittelwerte aus:

x
S = S ( 0 ,ö 1A B )= * J ^ £ ± ^ <

2.X +  y
. t e  +  l ± J L h  =

2 x  +  y  "  2 x  +  y  

x' +  y'
=  + ( s í p ?  -  W iiY * *  -  h )  +  <

< ~Vß +

V  2  x  +  y

x '  +  y '

2 x '  +  y '  2x' +1/

Im Tetraeder OÖ\ÄB  beträgt die Dichte

(0 ,Ö 1 Ä B ) = d = *

2 x '  +  y '

- 6 Ä = 6 (0 ,Ö 1Ä B ) = =S

V i s '

Das um die Einheitskugel geschrieben Rhombendodekaeder kann in 48 
Stücke zerschnitten werden, welche mit dem Tetraeder 0 ,Ö \A B  kongruent 
sind. W enn man die Flächen- und Winkelverhältnisse des Tetraeders O Ö \ÄB  
in Betracht zieht, sieht man daß nur das Rhombendodekaeder in Teile zerlegt 
werden kann, die mit dem Tetraeder OÖ\ÄB  kongruent sind.

Die D V- Zellen der dichtesten gitt er förmigen Kugelpackung sind aber 
Rhombendodekaeder.

Die Behauptungen (b l) und (b2) zusammenfassend gilt:

<5( 0 ,0 xAB) < 6 ( 0 ,0 1A B ) < 6 ( 0 ,0 1A B ) = d

d.h. es ist
S < 6  < 6  = d.

Es ist also bewiesen, daß die Dichte der Kugel K  in jedem Teiltetraeder der 
Gruppe (3) des Kegels P\ höchstens d=  ist.

W ir haben bewiesen, daß die Dichte der Kugel K  in einem beliebigen 
Kegel P j , im Konvexkörper P S 3 und so im Polyeder P d.h. in einer beliebi
gen DV-Zelle des Einheitskugelsystems {/v\}, das den Quasi-Geräumigkeits
bedingungen 73 = i/2 genügt, höchstens d ist.

Diese Dichte kann aber dann Vorkommen, wenn Polyeder P in mit dem 
Tetraeder 0 0 \A B  kongruente Teile zerlegt werden kann, d.h. wenn Polyeder 
P  ein Rhombendodekaeder ist.

Die dichteste gitterförmige Kugelpackung ist auch unter den Kugelpack
ungen m it Quasi-Geräumigkeitsbedingung r3 = \/2; es ist die dichteste. D.h. 
unter den betrachten nicht unbedingt gitterförmigen Kugelpackungen ist es 
gelungen, die dichteste gitterförmige Kugelpackung als eine der dichtesten 
anzugeben.



KUGELSYSTEME 445

L I T E R A T U R V E R Z E I C H N I S

[1] B ö röczky , K ., Gömbkitöltések állandó görbületű terekben [Sphere packing in spaces
of constant curvature] II, Mat. Lapok 26 (1975), 67-90 (in Hungarian). MR 
58 #24015

[2] B ö röczky , K . u n d  F lo r ia n , A ., Uber die dichteste Kugelpackung in hyperbolischen
Raum, Acta Math. Acad. Sei. Hungar. 15 (1964), 237-245. MR 28 #3369

[3] F ejes  T ó t h , L., Lagerungen in der Ebene, auf der Kugel und im Raum, Zweite
verbesserte und erweiterte Auflage, Die Grundlehren des math. Wissenschaf
ten, Band 65, Springer-Verlag, Berlin-New York, 1972. MR 50 #  5603

[4] F ejes  T ó t h , L ., Reguläre Figuren, Akadémiai Kiadó, Budapest, 1965. MR 3 0  #  3408
[5] H ollai, M ., Das dichteste gitterförmige p-System der Kugeln, Ann. Univ. Sei. Bu

dapest. Eötvös Sect. Math. 24 (1981), 157-180. MR 88b: 52029
[6] M olnár , J . ,  Körelhelyezések állandó görbületű felületeken, Magyar Tud. Akad. Mat.

Fiz. Oszt. Közi. 12 (1962), 223-263. MR 28 #  1535
[7] M olnár , J . ,  Kreislagerungen auf Flächen konstanter Krümmung, Math. Ann. 158

(1965), 365-376. MR 31 #  2663
[8] M olnár , J . ,  On th e  p -sy s te m  o f  u n it  c irc les, Ann. Univ. Sei. Budapest. Eötvös Sect.

Math. 20 (1977), 195-203. MR 58 #  12733
[9] M olnár , J . ,  Packing of congruent spheres in a strip, Acta Math. Acad. Sei. Hungar.

31 (1978), 173-183. MR 58 #  7406

(Eingegangen am 26. August 1985.)

YBL MIKLÓS FŐISKOLA 
TH Ö KÖ LY  ÚT 74  
H—1 1 4 8  BU DA PEST 
HUNGARY





Studia Scientiarum M athem aticarum  Hungarica 28 (1993), ^ 7-^52

MATRIX EQUATION IN RADICALS

M. ASLAM and A.M. ZAIDI

A bstract

Let Rn be a complete ring of n x n matrices over a ring R. R. E. Propes [5] has given 
necessary conditions under which a certain radical class V satisfies the matrix equation
V(Rn) =  (V(R))n .

In this paper, necessary conditions are found for a certain class of rings under which 
lower radical and upper radical class satisfy the matrix equation. Moreover, the idea of a 
matrix equation is extended to the sum of radical classes.

Introduction

Throughout this paper, we shall work within the class of associative rings. 
R. E. Propes [5] has discussed necessary conditions under which a certain 
radical class V  satisfies the matrix equation V (R n) = (V(Rn))n, where Rn 
denotes the complete ring of n X n matrices over a ring R. In the present 
paper, we will investigate conditions under which matrix property of certain 
classes M  and M *  of rings is carried over to lower radical class L M  or the 
upper radical class U M ". Moreover we extend the idea of matrix equation 
of radical classes to the sum of radical classes (c.f. [4]). W will denote a 
universal class of all associative rings and I  ^  R ,J  < R denote ideals of R, 
but J  /  R.

1. Matrix equation in lower radicals

Let M  be a subclass of W and let M 0  be the homomorphic closure of 
M . We define the following classes from a given ring R:

H R =  set of all homomorphic images of Ä;

D1 (R) = { I : I £ R } .
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Key words and phrases. Ring, radical classes, matrix equation, homomorphic closure, 

hereditary, homomorphically close, embed, upper radical, lower radical, regular class of 
rings, Baer lower radical, nilpotent ring, Brown-McCoy radical, sum of two radical classes.
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Inductively define

77„+i(72) = {7:7 is an ideal of some ring in 77n(72)}

77(72) = ( j7 7 n(72), n = 1 ,2........

Then by [2], L M  = {R £ W : 77(72/7) fl M 0 7̂  0, V 7  < 72} is the Lee con
struction of lower radical class determined by Ad. Sulinski et alia [7] gave 
the following characterization of the lower radical class determined by ho- 
momorphically closed class Ad of rings. Let Ad = Adi and AdTO has been 
defined for m <n. Define

A/f„ = {R £ W : D i(R /I )  (~1 Adm 7̂  0 for some m < n, V 7 < 72}.

Then L Ad = (JAdn, n = 1,2, 3 . . .  is the lower radical class determined by 
Ad. Observe that 0€ Ad, whenever Ad is homomorphically closed. Further, 
S V  will denote the semisimple class of the radical class V . For more details 
of radical theory we refer to [8] and [9].

L e m m a  1.1. If Ad is a class of rings such that R  £ Ad implies that R n £ 
£ Ad then A40 has this property on rings, too.

P r o o f . Let R £ Ad0, then R = S / I  for some S £ Ad and Rn = (S /7)„ = 
Sn/ I n . Since S £ Ad implies tha t Sn £ M ,  therefore Sn/ I n € Ad0 and hence 
R n G Ad0. This completes the proof.

T h e o r e m  1.2. 7 /Ad is a class of rings such that R £ Ad implies that 
Rn G Ad, then LA4 has this property.

P r o o f . We will show th a t if R n $ Ad implies that 72 ^ Ad, then L A i  = P  
has this property. Let 72„ ^ L A i  then by Snider [6, Lemma 7] P(72„) — 7„ for 
some 7 < 72. We will show that 77(72/7) f) Ad0 = 0. Let J / I  £ 77(72/7) f) Ad0; 
assume that 0 /  7/7. Now we will have sequence J \ /1 , J2 /1 , ■ ■ ■ ,J m/ I  of 
subrings R / I  such that 7 /7  < J \ / I  . . .<  R /I .  This implies that (7 /7)„ < 
Ú ^ Ú ( # /7 ) n, since (72/7)„ = 72„/7n and 72„/7„ G sP ,
and sP  is hereditary, therefore (7 /7 )n 6 sP. (Here sP  denotes the semisimple 
class of P .)  By P  fl sP  = 0 and Ad0 C P , it follows that (7/7)n ^ Ad0. By 
Lemma 1.1, 7/7 ^ Ad0 which contradicts the fact that 7 /7  € Ad0 and hence 
7 /7  =  0. This shows that 77 ( 72/7) flAd0 = 0 for 7 < 72 and consequently 
72 £ 7 ,Ad.

LEMMA 1.3. 7 /Ad is a homomorphically closed class of rings (not nec
essarily all with unity) and 72„ £ Ad implies that 72 € Ad, then M 2 has this 
property on rings with unity.

P r o o f . Let 72 be a ring with unity, and let 72 ^ AÍ2- Then there exists 
0 7̂  72/7 such that 77i(72/7) n Adi = 0 and hence 72/7 ^ Adi = Ad. This 
implies tha t (72/7)„ ^ Ad. To show that 77i((72/7)n) fl Adi = 0 let 0 7̂  L„ € 
€ 771((72/7)„). Since 72 is a ring with unity, therefore by [2, p. 38], L n = 
= ( K / I ) n for some K / I < R / I  and hence 77/7^ Ad (by 77i(72/7)n Adi =  0).
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This implies that (K / I ) n £ M \  or Ln ^ A4i. As Ln is an arbitrary non-zero 
ideal of (R/I)„  such that Ln f. A4i, this shows that D i( ( R /I )n) D M \  = 0 
and consequently D i(R n/ I n) fl M \  = 0. This implies that R n £ M 2 - Now 
R Í  Ad2 implies that R n £ M 2 or R„ £ M 2 implies that R £ M 2 - This 
completes the proof.

Lemma 1.4. I f  M  is a homomorphically closed class of rings and Rn £ 
£ M  implies that R £ M , then for each n, M n has this property on rings 
with unity.

P r o o f . Straightforward by induction.

THEOREM 1.5. I f  M  is a homomorphically closed class of rings and 
Rn € M  implies that R £ M , then LM  has this property on rings with unity.

P r o o f . Let R  be a ring with unity, and suppose that R f  L M  =  (JM n- 
Then R £ M n for all n. By Lemma 1.4, R n M n for all n. This implies 
that Rn (J M n or R n £ L M , which completes the proof.

LEMMA 1.6. Let V be a hereditary radical class which satisfies the matrix 
equation on rings with unity. Then V also satisfies the matrix on the ring 
without unity.

P r o o f . Suppose R e W  has no unity element. Embed R  into a ring S 
with unity. Since V  is hereditary, therefore by [9, Theorem 13.1] V (R )  = RC\ 
C\V(S), and hence

(l)  (P(R))„  = (R  n p (S ))n = R„n (P(S))„ = R n n (P (S n)).

Since P  is a hereditary and Rn ^ S n, therefore V{Rn) = R n n (^(5 ,,)). This 
proves that V (R n) = (P(R))„  (by (1)).

By [5] and Theorems 1.5, 1.2 and Lemma 1.6, we obtain the following

COROLLARY 1.7. I f  M  is a class of rings which is homomorphically 
closed, hereditary and R E  M  if and only if R n E M . Then C M  satisfies the 
matrix equation.

Remark that Corollary 1.7 proves the well-known classical result that the 
Baer lower radical class of all nilpotent rings satisfies the matrix equation.

2. Matrix equation in upper radicals

A subclass M *  of W is said to be regular if 0 6 A4* and R  6 A4* implies 
that H I  n A4* 0, V 0 ^  /  € D ^R ). By [9, Theorem 7.2], U M m = {R £
€ W : HRC\ A4* = 0} is the upper radical determined by A4*.
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T h e o r e m  2.1. I f  M * is a regular class of rings such that R £ M * if 
and only i f  R n £ M *. Then U M * — V satisfies the matrix equation on rings 
with unity.

P r o o f . Let R be a ring with unity and R £ UM*. Suppose Rn ^ U M *, 
then we have 0 ^  Rn/ J  $ M * . Since R is a ring with unity, therefore J  = In 
for some I  < R and hence R n/ J  = R n/ I n■ By (R / I ) n — Rn/In, it follows that 
we have R / I  £ M* and hence R £ U M *  which is a contradiction. This proves 
tha t R n £ UM*. For the converse, let Rn £ UM*. Suppose that R £ UM*. 
Then we have 0 ^  R / I  such tha t R / I  £ M*. This implies that (R / I ) n £ M* 
or R n/ I n G M *. It follows th a t R n UM* which is a contradiction. By [5], 
V (R n) = (V (R))n.

Let M *  be the class of all simple rings with unity and P — UM* be its 
upper radical class, known as Brown-McCoy radical class. It is easy to see 
that R  £ M *  4=> R„ £ M *  and hence by the above theorem V  satisfies the 
m atrix  equation. This proves the following classical result.

C o r o l l a r y  2.2 (see [1], [8,page 171 Theorem 38.7]). The Brown-McCoy 
radical class satisfies the matrix equation.

Lemma 1. 6 and the above theorem lead to the following

C o r o l l a r y  2.3. I f M *  is a regular class of rings such that R £ M* 
if  and only if Rn £ M *; and UM* = V is hereditary, then V satisfies the 
matrix equation.

A class M* of rings is a  special class of rings (see for instance [8, page 
68]), in the sense of Andrunakievich if M* is hereditary, consists of prime 
rings and is closed under essential extension, that is if I  is an essential (or 
large) ideal of a ring R  and I  £ M *  then R £  M * . The upper radical UM* 
of the special class M* is called special radical. It is well-known that special 
radicals are always hereditary (see for instance, [8]) and by Corollary 2.3, we 
have the following

C o r o l l a r y  2.4. I f  M *  is a special class o f rings such that R £ M * if 
and only if Rn £M *, then the special radical V  = UM * satisfies the matrix 
equation.

Remark that one can generalize the above corollary by taking M *  as 
weakly special class (for the definition see [8, page 66]) instead of special 
class. The upper radical U M * —V  generated by weakly special class is 
known as super nilpotent radical, which is always special (e.g. [8]). This 
leads to  the following

C o r o l l a r y  2.5. I f M *  is a weakly special class of rings such that R £  
£ M *  if  and only if R n G M * , then the super nilpotent radical V  — UM* 
satisfies matrix equation.
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3. Matrix equation in sum of two radical classes

If V\ and Vi are two radical classes, then the sum is defined as V\-\-Vi = 
= {R  6 W  : V \(R) + P 2(Ä) = R}. In [4] it was shown that V \(R )  + Vi{R) is 
the largest (V\ + P 2)-ideal. Hence we can write V \(Ä) + Vi{R) = 
= (V\ + Vi)(R). We say that V\ + Vi satisfies the matrix equation if 
(Pi + Vi){Rn) =  {{Vx + Vi){R))n, V R e W .

We shall frequently use the following

L em m a  3.1 [2]. Let R be a ring and I , J  be ideals of R; then ( /  + J )n =
= In + Jn-

T heorem 3.2. I f  V i and Vi are radical classes and R is a ring, then 
{V\ + V i)(R n) = /„ for some I  <R.

P roof . This follows from Lemma 3.1 and by [6, Lemma 7].

T heorem 3.3. I f  V i and Vi are radical classes of rings satisfying the 
matrix equation, then V\ + Vi also satisfies the matrix equation.

P r o o f . This is obvious from Lemma 3.1.

T h eo r em  3.4. Let V\ and V i be radical classes and R be a ring. Then 
the following statements are equivalent:

(i) R e (V x  + V i ) ^ R n &(Vx + V iy}

(ii) ((Pl + V i)(R ))n C (V 1 + V i)(R n).

P r o o f . This is similar to [5, Theorem 1]; use the fact that {V\ + V i)(R n) 
ist the largest {V\ + T^-ideal of Rn (c.f. [4]).

T h eo r em  3.5. Let V\ and Vi be radical classes and R be a ring. Then 
the following statements are equivalent

(i) ä „ € ( P i + P 2) ^ ä € ( P i + P 2);

(ii) (Pi + V i)(R n)C ((V 1 + V i)(R ))n.
P r o o f . This is obtained from [5, Theorem 2] by using Theorem 3.2 

instead of Lemma 7 of [6].

C o r o l l a r y  3.6. I fV \ and Vi are radical classes, then V\ + P 2 satisfies 
the matrix equation on a ring R, if and only if R  € P i -f P 2 <=> R n € P i + P 2.

T h eo r em  3.7. I f  V\ + P 2 is hereditary sum of two radical classes V\ 
and Vi such that Vi + P 2 satisfies the matrix equation on rings with unity, 
then it also satisfies on rings without unity.

P r o o f . This is similar to that of Lemma 1.6. Use [4, Proposition 6] 
instead of [9, Theorem 13.1].
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ON THE PRODUCT OF k- AND /-SPACES

H. RENDER

0. Introduction

Lambrinos raised the question whether the product of a locally bounded 
space X  and an arbitrary /-space Y  is an /-space. We show that this is not 
true even if X  is a compact space. Thus the category of all /-spaces is not 
convenient in the sense of [9]. On the other side we show that the product 
X  X Y  is an /-space if X  is a basic locally compact space extending a result in 
[3, Proposition 1.7]. Another byproduct of our investigations is the following 
result: the product T  X Y  of two A:-spaces T, Y  is a fc-space iff the exponential 
law is valid for the triple (T ,Y , Z ) with Z  arbitrary. A similar result is valid 
for /^-spaces where Z  is an arbitrary regular space.

1. The results

Let Y, Z  be topological spaces and a  be an arbitrary system of subsets 
of y . Then Ca(Y, Z) denotes the set of all functions whose restrictions on 
each set A € a  are continuous and C (Y , Z) the set of all continuous functions. 
We call y  an a-space (resp. c*3-space) if Ca(Y, Z) = C(Y, Z) holds for all 
topological (resp. regular) spaces Z. As in [4] / denotes the system of all 
closures of bounded subsets. For unexplained terminology we refer to [4].

The set-open topology ra on Ca(Y, Z) is generated by the sets [A, V]:= 
:= { f  € Ca( Y ,Z ) : f ( A ) c V }  with A £ a  and V  open. Let ( /,) ,£ / be a net 
in Ca(Y ,Z ). We say that (/,), converges a-continuously to f  C. Ca(Y, Z) 
provided that for every A € a, for every y E Y  and for every net (jlj)j£j 
in A converging to y £ A  the net (f i ( yj )) converges to f (y) .  The following 
proposition can be seen as an improvement of Corollary 3.1.4 (a) in [6] and 
it shows that ra is a splitting topology, cf. Theorem 3.1.2 and Theorem 2.5.2 
in [6].
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Key words and phrases, /-spaces, fc-spaces, locally bounded spaces.
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P r o p o s it io n  1. Let Y, Z  be topological spaces and a be a system of 
compact subsets o f Y .  I f  a net in Ca(Y, Z ) converges a-continuously to f  £ 
£ C (Y , Z ) then it converges to f  with respect to ra .

PROOF. We show that f i  is in [A, V ]  for almost all i £  I. Assume the 
contrary. Then there exists infinitely many i £ I  and r/,- £ A  such that /,(j/,) ^ 
V. Furthermore there exists a subnet (V j ) j e J  converging to some y  in the 
compact space A. Clearly ( f j ) j e J  converges «-continuously to / ;  therefore 
we obtain f j ( y j )  —*■ f ( y )  6 V , a contradiction.

Suppose now that the evaluation e: Ca(Y, Z )xA -+ Z  defined by e(/, x):=  
:= /(x )  is continuous for ra and for every Aeon. Then the following converse 
of Proposition 1 is obvious:

(1) If (fi)i  converges to /  £ Ca(Y, Z) then (/,),• converges «-continuously.

(1) is satisfied for the system k of all compact sets if each K £ k is contained 
in a basic locally compact space or Z is regular or Hausdorff, see [5]. More 
generally (1) is satisfied for a so-called hereditarily closed network « (for 
definition see [6, p. 5]) if Y  or Z  is a regular space. For example, if cs is 
the system of all convergent sequences in a metric space X  then Theorem 2 
shows th a t the exponential law is valid for all metric spaces F, Z  with respect 
to the topology tcs which is in general strictly coarser than r^, cf. [2]. If ß, a 
are families of subsets then ß  ® a denotes the system of all sets B X A  with 
B £ ß ,  A  6  a.

T h e o r e m  2. L e tT ,Y ,Z  be topological spaces, a  be a family of compact 
subsets o fY  and ß be a family with U BeßB = T.  Assume that ra on Ca(Y, Z) 
satisfies (1). Then the following assertions are equivalent:

(i) Cß®a{T x Y , Z )  = C (T  x Y ,  Z).
(ii) Ca(Y, Z) = C(Y, Z ) and Cß(T, C(Y, Z)) =  C(T, C(Y, Z)) 

and ra satisfies the exponential law for (T ,Y ,Z ).

P r o o f . It is easy to see that Ca(Y, Z) = C( Y, Z) .  Now let / :  T  —► 
—*C (Y , Z) be continuous on each set B £ ß. Let (x,),- be a net in B converg
ing to  x £ B and (yj)j  a net in A  € « converging to y G A. The continuity of /  
on B  means that /(x ,) converges to /(x). By (1) we infer that f (xi)(yj)  := 
=  /(x,-, yj) converges to f ( x ) ( y )  = /(x , y). Thus /  e Cß®a(T  x Y, Z) and 
(i) yields the continuity of / .  Thus ra satisfies the exponential law for T. 
Now let (x,-)i be an arbitrary net in T  converging to x € T. Then the con
tinuity of / :  T  x Y  —> Z  shows that /(x ,) converges «-continuously to /(x ) . 
Proposition 1 yields the continuity of / :  T —> C (Y, Z).

For the converse let /  G Cß®a(T xY, Z) .  Since T  =  UßeßB we have /(x )  G 
G Ca (Y, Z). By (ii) it is enough to show that f  £ Cß(T, Ca(Y, Z)). Let (x,),- 
be a net in B £ ß converging to x £ B. We have to show that /(x ,) converges
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to /(x ). By Proposition 1 this is the case if /(x ,) converges «-continuously 
to /(x ) , i.e. that /(x ,•)(%) = /(*<, !/j) converges to f (x) (y)  -  f ( x , y )  for every 
net (jij)j in A € a . But this is just the continuity of / :  B x A  —» Z.

Let Y  be a basic locally compact space and T  be an /-space. Since 
Condition (ii) is fulfilled for ß = l and a  = k for all spaces Z  we conclude 
that the product T x Y  is an /-space since C/®/(T x Y,Z)  C C/®fc(T X Y, Z). 
Similarly we obtain the following improvement of Theorem 3.3 in [8]: the 
product T x Y  of a A^-space T  and a locally compact space Y  is a Ar3-space.

Now let Y  be a regular /-space (or A;-space) which is not locally com
pact. Endow Z := { 0 ,1 }  with the Sierpinski topology {0, {0} , Z) .  Then 
T := (C(Y, Z),rjc) is compact, cf. [1]. Suppose that T x Y  is an /-space. 
Then we have Cj®fc(T x Y ,  Z) = C(T x Y ,  Z)  since every bounded subset of 
y  is relatively compact. By Theorem 2 rk satisfies the exponential law for 
(T, Y, Z).  But the identity function id: T  —► C(Y, Z)  is continuous and e = id, 
i.e. the evaluation e: T X Y  —* Z is continuous. Then Y  is locally compact 
(cf. [5]), a contradiction.

C o r o l l a r y  3 .  Let Y be regular. Then Y is locally compact if and only 
if X  x Y  is an l-space (or k-space) for all compact spaces X .
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A NOTE ON THE ALGEBRAIC DERIVATIVE AND 
INTEGRAL IN A DISCRETE OPERATIONAL CALCULUS

T. FÉNYES

In the paper [1] we gave a discrete operational calculus based on the 
number-theoretical Dirichlet product of functions defined on the positive 
integers. We introduced a Mikusinski-type operator field as follows. Let Z, 
R, K , E  denote the set of the natural numbers, positive rational numbers, 
the complex numbers, and the ring of the real-valued functions defined in Z, 
respectively. The ring operations were introduced by the usual addition and 
the Dirichlet product by

(1) ab= a , b e E , n  = 1 ,2 , . . . ,
v\n

where M  denotes the field of the Mikusinski operators based on the prod
uct (1).

The operator function i(a ) , a £ R  was defined by tf(a) = G M, 
a — N\,  N 2 € Z,  where

S(N) = {6 ( n , N) } ,  N e Z ,

for n ^  N  
for n = N.

K  C E  C M,  and the common unit element of K , E , M  is £(1) =  1. We 
denoted by E* the subring of M  whose elements are of the form

( 2) a e R , a e E .

Obviously, E  C E*.
We defined the exponential function e^, for /  € E by its operational 

Taylor series (which converges pointwise for every /) .
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The definition of the algebraic derivative is

(3 )
jD(a) = {—log ra • a(n)}, a £ E

D(x) =
bD{a ) -a D{b ) 

b2
a,b 6 E,  b^O,  x = -  b

(see also [2]).
If a  € K,  then D(a) = 0. Moreover,

D[6(ß)] =  - \ ogß6( ß) ,  ß e  R,

r _ a j  _  { - log ?-a(n )}  
i(E)J S(e)

a 6  E,  e e R

D{e*) = D(f)e*,  f e E .

The algebraic integral denoted by f  is the inverse of D.
In the paper [1] we proved the following statements.

I. I f  x £ E* and D(x) = 0, then x is an arbitrary number.
II. Let a e E, £ e R. f  exists in the ring E* if and only if £ £ Z, or 

s (E Z  and a(e) = 0. Moreover,

(4 ) c e K ,

where in the case of £ £ Z the symbol denotes an arbitrary number. 
Consequently, if 7 G /£, 7 0, then J  7 does not exist in E*.

III. The algebraic differential equation

( 5 ) D ( x ) - f x  = 0, f £ E ,

has a nontrivial solution in E * if and only ife  £ R, moreover, the general
solution of (5) has the form

( 6 ) x = c<$(e /(1))exp J ( f  - / ( ! ) ) ] .

We have stated in [3], [4] that the above statements hold in the whole 
discrete operator field M , too. Moreover, we have used these statements in 
this generalized version. In this note we will show that this generalization 
can be made. The following holds:
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D(p) q- pD( q)  = 0 

D \ p ) q - PD \q )  = 0.

T h e o r e m . In Statements I, II, III, E* can be replaced by M .

P r o o f . I. We follow Mikusinski [5]. Let x = |  (p,qE E),  and let D = 
= 0. We have
(7 )
and
( 8)

From (7), (8) we have
(9) D \ p ) D ( q ) - D ( p ) D 2 (q) = 0.
By differentiating it follows
(10) D3 ( p ) D( q ) - D( p ) D\ q )  = 0.
From (7), (10) we obtain
(11) D 3 { p ) q - D \ q ) p =  0.
Generally, we have
(12) D m( p ) q - p D m(q) = 0, m = l , 2 , . . . .
By the definition of the algebraic derivative we can write

D - i o g ^ r  ~ pi l ) q^ \ = 0 ,
( 13)

Let
n = 1 ,2 , . . . ,  to = 1 ,2 ,... .

F ( ^ ) = P( ^ ) - p Q qM .

We show that for every fixed n and v \ n F(v, ^) = 0. If n is a prime number 
we choose m = 1 and obtain

— log n F(n,  1) = 0.
Let us fix n and let ri, r? ,. . .  , be the divisors of n (ri > 1, r* = n). From 
(13) we have

] T lo g r ,F ( r ,- ,^ )  = 0 ,
i—i
k

(14)
^ ( l o g r , ) 2F ( r „ ^ ) = 0 ,
i—i

^ ( l o g r , ) feF ( r „ ^ ) = 0 .
i=i '
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(14) can be considered as a homogeneous system of algebraic equations for 
the unknowns F(r,-, *7 ), i  =  1 ,2 , . . .  , k .  Since the determinant of (14)

we obtain that

(15)

or

log r x 

(log r x) 2

log r 2 ...log  r k 

(log r2)2 ...(log  r k ) 2

(logrx )*1 (log r2)fc .. .(logr k )k

p ( v ) q ( a )  -  p ( a ) q ( i / )  = 0 , v  > 1 , a  > 1 . 
Since q  7  ̂0, there exists a value of a  such that q(cr) 7  ̂0. So

(16) p ( v )  =  a q ( v )  for 1 < < 0 0 ,

where a  =

C o r o l l a r y . L e t  x x , X 2 , y  (z M  a n d  l e t

J y = x " / 2/ =  * 2 ,

t h e n
x i  = x 2 + c, c e  K.

II. It follows from the Corollary of I that we have to show only that J  

does not exist in M  if a(e) 7  ̂0 ( e  G Z ). We have

(17)

Í  a  r  (a(n) -  a ( e ) 6 ( e )  + a ( e ) 6 ( e ) j

J  6 ( e )  ~  J  6 ( e )

= / w ^ r a m + y 0(£).

From Statement II we see that the first integral on the right-hand side of
(17) exists, so we must prove that J  a ( e )  does not exist.

Let 7  be an arbitrary number ( 7  7  ̂0) and let us assume that 3 x  =  |  G M ,  
a , b  6  E  such that

(18) D ( x )  =  7 -
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If 6(1) ^  0, then x £ E  and we have

— logna:(n) =  7 for n = 1 ,2 , . . . ,

and 7 = 0. This is a contradiction. So x ^ E.  Let 6(1) =  6(2) = 6(3) = . . .  = 
-  b(N -  1) = 0, b(N) ^  0. From (18) we obtain

(19) ^ log ^ a ( i / ) 6 0 )  = 7 ^ & ( i ') & Q ) ,  n = 1 ,2 , . . . .
i / \ n  i s \ n

For n = N  we have logiV • a(l )b(N)  = 0 and a(l) = 0. For n = 2N  we have 
log f  a(2)b(N) = 0 and a(2) = 0.

If we continue this procedure for n = 3N , 4N , . . . ,  so for n = (N  — 1 )N 
we have

log -  l)6(iV) = 0 and a(N -  1) = 0.

For n = N 2 we have 0 = 762(iV), a contradiction. So f  j  does not exist.
III. Let us consider the algebraic differential equation

(20) D ( x ) - f x  = 0, f e E .

Let e~Ex) £ R. Then

x = <5(e- / (^)exp [ J ( f  -  /( l) ) ]

is a solution of (20). Let y ^  0 be an arbitrary solution of (20). So

(21) D ( y ) - f y  = 0.

We have
D(x) x
D(y) y'

and
yD(x)  -  xD(y)  = 0.

We get
/ x \  ^  yD(x) -  xD(y) __ Q 
\ y J  y2

The Corollary of I gives that x = Cy, C £ K , and the general solution of (20) 
is of the form

x = C6(e-/(1))exp [ J  ( f  -  f (  1))].

(In [1] we have shown that for C ^  0, x 6 E if and only if e- ^ 1) £ Z.)
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Let e we show that (20) has only the trivial solution. By
applying the substitution

x = 2 exp [ J ( / - / ( ! ) ) ] ,  z e M

we get

(22) D (z ) - /( l)z = 0 .

Let us assume that z =  £ ( a ,  6 E E ,  6 ^  0) is a solution of (22). If 6(1) ^  0, 
then z E E  and we have

(log n +  /( l ) )z (n )  = 0, n = 1 ,2 ,-----

Since ^ Ä, log ra-b /(l) vanishes for no value of n, consequently, z(n)
and x(n)  vanish identically. Let 6(1) = 6(2) = . . .  = b(N — 1) = 0 and b(N) ^  0. 
From (22) it is easy to deduce the identity

(23) = 0 ’ n = 1 , 2 , . . .  .
i/\n

We have for n — N
(log N  — /(l))a(l)6(iV ) = 0, 

so a ( l)  =  0. For n = 2N  we have

( l o g f  ~/(l))a(2)6(iV) = 0,

so a(2) =  0. By continuing this procedure we obtain that for n — kN  (k E Z)

( l o g f - f ( l ) ) a ( k ) b ( N )  = 0

holds. So a(k) — 0 and a vanishes for every value of n. Consequently, z = 
= x =  0 and the Theorem is proved.
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A NOTE ON A NONLINEAR OPERATIONAL 
DIFFERENTIAL EQUATION SYSTEM

T. FÉNYES

In this paper we consider the operational differential equation system

m  D(x) = - x ( x  + y)f ,
D(y) = y(x + y ) f

in the operator field Mp  of Mikusiriski-type based on the Dirichlet product 
of functions defined on the set of the natural numbers. Here D denotes the 
algebraic derivative, and /  is an arbitrarily given real-valued function.

We prove existence criteria for the operational and function solutions of 
(1), and give the explicit form of these solutions. Though we are interested 
only in real (operational) solutions of the system (1), we can find these 
solutions by introducing the complex operators, i.e. the discrete operators 
that are based on the complex valued functions defined on the above set.

The following notations are used: Z,  R, K , E , Ec denote the set of 
natural numbers, positive rational numbers, the complex numbers, the ring of 
the real-valued functions defined in [2], the ring of complex valued functions 
defined on the natural numbers n =  1 ,2 ,3 , . . . ,  respectively.

The algebraic derivative is defined as follows:

D(a) = {— logna(n)},
bD( a) - aD( b ) 

D(x)  = --------^ --------

a £  Ecy n =  1 , 2 , . . .
a

, a , b e E c, x = ~.

9

An operator x is real if x = | ,  a, b 6 E.
The reader can find the elements of the discrete operational calculus, and 

the properties of the algebraic derivative and integral in the papers [1], [2], [3],
[4]. However, for the sake of easy reading we give here the following theorem 
referring to the first order homogeneous algebraic differential equations.

T h e o r e m . The algebraic differential equation

(2) D(w) -  gw = 0, g € E c
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has a nontrivial solution in M d if and only if  5(1) is real and e 9M € R- 
The general solution of (2) is of the form

(3) w = j 6 (e a(1))exp 7 € RT,

moreover, for 7 0, w £ Ec if and only if e~9^  £ Z. In (3) the integral
denotes the algebraic integral (which is the inverse o f D), and we agree that 
J ( f  — /(1 ))  is that integral o f f  — f (  1) which has the value zero for n = 1, the 
exponential function is defined by its pointwise convergent operational Taylor 
series, so the exponential function occurring in (3) takes the value one for  
n=  1 , 6 (e~9^ )  is defined by the quotient of “discrete” Dirac functions:

6{e~at' )) = W )  for
6 (M ) = 1 fo r n = M, and zero for n ^  M ,
S(N) = 1 for n = N,  and zero for n ^  N .

6(1) =  1 is the unit element o f the field Md -
We say that (1) has a solution in Md , Ec, E , respectively, if 3x, y 6 M d , 

Ec, E , respectively, satisfy (1).
From (1) we have

yD{ x ) = - xy(x  -I- y ) f , 
xD(y)  = xy(x + y)f ,

and
xD(y)  + yD{x) = D(xy)  -  0, 

so by an elementary rule of the operational calculus

x y = - c ,  c6 K

(see [6]). If c = 0, then x = 0 or y = 0.

For x =0 D(y) — y 2 f ,  
and for y =0 D(x) = —x 2 f .

The equations (4) are algebraic Bernoulli equations. A detailed discussion of 
the Bernoulli equation can be found in the paper [4], therefore in our paper 
we assume c /  0. However, since we look for the real solutions of (1), we also 
assume that c is real.

Substituting xy = —c to the first equation of (1) we obtain the Riccati 
equation

( 5 ) D(x) + f x 2 = c f
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having as particular solution x = yjc. £ K . So x = ± \ / c ,  y -  ^ y / c  are function 
solutions of the system (1). We call these the trivial solutions of (1), which 
are real if c > 0. Let us determine the nontrivial solutions of (1). By applying 
the substitution

(5') X = y / c + z £ M d ,

(5) can be reduced to the linear inhomogeneous algebraic differential equa
tion

(6) D(z) -  2y f i f z  = f

having the particular solution z — — ̂ = .
Here we distinguish the cases /(1 )  =  0, / ( l )  ^  0.
I. /(1 ) = 0. By applying the Theorem we have that the general solution 

of (6) is of the form

= - 2 ^  + ^ ß ’ ß € K ,

consequently
x = y/c +

1
1

After some calculation we obtain with g = 2y/cß

(7)

and

X =  yfc
Qe

ge

2̂ J f  + 1

( 8) y = - V c
ge2 ^ P - l

ge2 ^ I f  + 1

First let c > 0. (7), (8) are real operators if we choose g to be real. Excluding 
the value g = 0 (7), (8) give the general real nontrivial operational solution of
(1) in M o . Since the functions ge2̂  f t  + 1, ge2̂  -  1 take the value g+  1 
and g — 1, respectively, for n=  1, it is easily seen by an elementary property 
of the Dirichlet product that x £ E iff g ^  l ,  y £ E iff p ^  — 1. Consequently, 
the solution (7), (8) is the general, nontrivial function solution of (1) if and 
only if |p| ^  1. Let now c < 0. In order to find the real (operational) solutions 
of (1) we must choose g in the complex form

p = pi + ip2-
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From (7) we have 

(9) * = .v m -
(01 + *02) cos2v/jc| J f  +  i s m 2 y / \ c \ J f + 1

(0 1 + *02) cos 2 vlcf J f  + i  sin 2 vlcj J f -  1

It can easily be shown that the imaginary part of (9) vanishes if and only if 

(10) f?? + i?2 = l

and the real solution of (1) is of the form

( 11)

( 12)

/j-j 02 cos 2 \ f \ c \  J f  + Q\ sin 2 y /\c \ J f  
1 + Q2 sin 2 viel J f - ß i  cos 2 vlcf / / ’

_ _  / 7 - | l  + g2 sin 2 y / \ c \  J f  — Q l  COS 2 y / \ c \  J f  
0 2  cos 2 viel J f  + ß !  sin 2 vTcf J f

q {  + ß l  = 1

We show that x £ E  if and only if g x = 1 (then g 2 = 0) and y £ E  if and only 
if =  — 1 ( g 2 = 0). Obviously, the function

1 + 02 sin 2 Viel J f ~ 9 1 cos2v1<1 J f

takes the value 1 — £>i for n =  1. So for gx ^  l, x £ E  holds. Let gi = 1, then 
g2 = 0 and we have

x = 7 R I .
1 -  cos 2 v iel J f

A Taylor series expansion gives that

* = W \

(13)

2y/HJ/-(Vy /lV Viíl S' f ~ -
1 ( l  1 . . . )

, (2 v/W / / ) 2 , (2v /N / / ) 4
I  ö|  r  ti  • • •

VHjV _ (V hJ>F
2 ! 4! +

so the denominator of (13) vanishes for n = 1, the numerator of (13) takes 
the value v lef lor n  = 1. Consequently, x  £ E .  The function
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takes the value £>2 for n = 1. So for £>2 7̂  0, y E E  holds. Let g2 =  0» then 
Qi = 1, or —1. If £»1 = 1 then by (13) and y = ^  it follows tha t y E E. If 
Qi — — 1 then we have

(14) y = y / R
1 +  cos 2 -y/jcj / /  

sin 2 -y/jcf J f

The denominator of (14) vanishes for n =  1, its numerator, however, does not 
vanish for n =  1. Therefore y £ E. So (11), (12) is the nontrivial function 
solution of (1) if and only if |pi| /  1.

II. / ( I )  ^  0. If c < 0, or c > 0 and e_2v/^/(1) ^ Ä, then applying the 
Theorem it can easily be seen that (1) has only trivial solutions.

Let c>  0 and e ~2'/^/(1) = M , N  are relative primes. Applying (5'),
(6) and the Theorem we obtain

x = Vc +
ß 6 ( f ) e x p  I s fc / ( / - / ( ! ) ) 1

Vc
ß € K .

A simple calculation gives with g = 2y/cß

S
g 6 (M ) exp

(15)
gS( M) exp

2 v ^ i / - / ( l ) )

2\/c / ( /  — /( ! ) )

+ S(N)

- 6 (N)

y = S -
g 6 (M)ex  p 2 \ /c / /  — / ( l ) ) - S ( N )

g S(M) exp ' V 5 / ( / - / (  1» + S{N)

Choosing g to be real and g ^  0 (15) determines the general nontrivial real 
solution of (1). We show that x, y  E E  if and only if M  = 1, or N  =  1. If 
M  = 1, then N  > 1. The functions

pexp 2 y/c J ( f - f ( l ) ) ] ± 6 (N)

have the value g for n = 1. So by an elementary property of the Dirichlet 
product x , y  E E.  If N  = 1 , then M  > 1 . Since the function S(M)  exp [...] 
vanishes for n — 1, we obtain that for n =  1 the functions

g 6 (M)  exp 

g 6 (M)  exp

/ ( / - / ( 1 ) ) ]

2\/5 / ( / - / ( ! ) ) ]

- 1 ,

+ 1
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have the value -1  and 1, respectively. Consequently, we have x , y e E  again. 
Let M  ^  1, N  /  1. Let us assume that x = {z(n)} G E.  Then by (15)

(16)
gx 6 ( M ) exp [2y/c j { f  -  / ( l ) ) ]  -  8 ( N)x  =

= yfcg 8 (M ) exp [2y/c J ( f  ~ / ( l ) ) ]  +  Vc 8 (N)

holds. By an elementary property of the á-functions, for every h G E , and 
every r G Z

*<’•)'■ =  M i ) } '
where h ( j )  is zero for such values of n, for which r  is not a divisor of n. By 
introducing

u — exp [...] , v — x exp [ ...]  =  xu
(16) can be written in the form

(17) g 6 (M)v  — S(N)x — \/cg 6 ( M)u + \ / c 6 (N).

Consequently,

(18) s v { i i ) - x ( j ; ) = '/ ~CÍ!n( i í )  + '/ í l { N '>

holds for n — 1 ,2 ,__ Substituting n -  M  we have

gv 1 = \/cgui

and substituting n — N  in (18) we get

- x ( l  )  =  V c .

Since u ( l)  = 1, u(l) = x (l) , we obtain

x ( l )  =  \fc.

This is a contradiction, so 2 £ E. Analogously we have that y £ E.
The results may be summarized in the following
THEOREM 1. Let us consider the nonlinear algebraic differential equation 

system

n  . D(x) = - x ( x  + y ) f
D(y) = y(x + y ) f

in the discrete operator field M p, where f  is a given real-valued function. 
For every real solution 2 ,y  0/(19) 2y — —c holds, where c is an arbitrary 
real number.
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Let /(1 ) = 0. For c > 0, the general real nontrivial solution of (19) is 
of the form  (7), (8) where g /  0 is an arbitrary real number. (7), (8) is 
the general nontrivial function solution if and only if |f>| ^  1. For c < 0 
the general real nontrivial solution is o f the form (11), (12), where Qi,Qi 
are arbitrary real numbers satisfying g\ -f- g\ — 1. (11), (12) is the general 
function solution of {19) if and only i/ |ßi| ^  1.

Let /(1 ) ^  0. For c < 0, or c > 0 and e-2^ - ^ 1) ^ R, (19) has only triv
ial solutions. For c > 0 and e-2v^/(i) = M ,N  £ Z, ( M , N  are relative 
primes), the general real nontrivial solution of (19) is given by (15), where 
g^O  is an arbitrary real number. (15) is the general real nontrivial function 
solution of (19) if and only if M — 1, or N  — 1.

R E F E R E N C E S

[1] F én y es , T. and S zil á r d , K., Uber diskrete Mikusinskische Operatoren, die auf Grund
der Dirichletschen Produktenformel erzeugt werden, Studio Sei. Math. Hun- 
gar. 11 (1976), 181-199. MR 81b:44014b

[2] G esztely i, E ., The application of the operational calculus in the theory of numbers,
Number Theory (Colloq., János Bolyai Math. Soc., Debrecen, 1968), Colloq. 
Math. Soc. J. Bolyai 2, North-Holland, Amsterdam, 1970, 51-104. MR 42  
#5922

[3] F én y es , T., On a discrete nonlinear operational differential equation system based on
the Dirichlet product, Studio Sei. Math. Hungar. 22 (1987), 471-484. MR 
89g:44006

[4] F én y es , T., On an operational differential equation system, Studio Sei. Math. Hungar.
2 4  (1989), 365-375. MR 921:44002

[5] F én y es , T., On an algebraic differential equation of Bernoulli type, Studio Sei. Math.
Hungar. 2 8  (1993), 115-129.

[6] F én y es , T., A note on the algebraic derivative and integral in a discrete operational
calculus, Studia Sei. Math. Hungar. 28 (1993), 457-463.

(Received July 10, 1990)

MTA M ATEM ATIKAI K U T A T Ó IN T É Z E T E  
POSTA FIÓK  127  
H—1 3 6 4  B U D A PEST 
HUNGARY





Studio Scientiarum  M athem aticarum  Hungarica 28 (1993), j 78-^83

EXTERNAL ILLUMINATION ACCORDING TO L. FEJES TÓTH

V. SOLTAN

Illumination by points

In 1977 L. Fejes Tóth [1] introduced the following notion of illumination: 
a set X  C E n is called illuminated by a set Y  C E n \  X  provided for every 
point x e b d X  there is a point y £ Y  such that ]x, j/[nX = 0. A stronger type 
of the illumination (see [2]) is known: a set V  C E n is called illuminated by 
a set W  C E n \  V  if for every point v £ bd V  there is a point w £ W  such that 
]u, w[(~\V = 0 and the ray [tn, v) with the apex w passing through v intersects 
int V.

Below these two types of the illumination will be called weak and strong, 
respectively.

There are some problems about the strong illumination of convex bodies 
(see for example [3]). In this paper we investigate analogous problems about 
weak illumination.

Let K  be a convex body (a proper closed convex set with non-empty 
interior) in the n-dimensional linear space E n. Denote by p(K)  (respectively, 
by q(K))  the least number of points in E n \  K  which strongly (weakly) 
illuminate K . Put p(K)  = oo (q(K ) = oo) if K  cannot be strongly (weakly) 
illuminated by any finite number of points from E n \  K . Obviously, q{K) ^ 
±P{K) .

The problem on the upper bound for p(K)  is open up to now. For a 
compact body K  this problem is equivalent to the famous Hadwiger problem 
on the covering of K  by the least number of smaller homothetic copies [4], 
Therefore the inequality p(K)  £ 2" is conjectured (see [3] for details).

The following result shows that the upper bound for q{K) appears much 
simpler.

T heorem 1. For a compact convex body K  C E n one has 2 < q (K ) < 
< n -f 1.

P roof. Let S  = conv(ai,. . .  , an+i) be any n-dimensional simplex with 
vertices a l5 . . .  , an+1 such that K  C int S. Choose any point x € bd K  and

1980 Mathematics Subject Classification (1985 Revision). Primary 52A40.
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some hyperplane H supporting K  at x. Denote by P  the open half-space 
which is bounded by H  and does not intersect K.  The inclusion K  C int S 
implies that at least one of the points a i , . . .  , an+i, say a,, belongs to P. 
Then ]a,-, x[C P, and ]a,-, x[C\K = 0. Thus K  is weakly illuminated by the set 
{ a i ,. . .  , an+1}, i.e., q (K ) ^ n +  1. The inequality q (K ) > 2 is trivial. □

It is easy to verify that q(B) = n -f 1 for any euclidean ball B  C E n. 
Therefore the inequality q(K)  £ n + 1 is sharp.

For an unbounded convex body K  C E n the values p (K ) and q{K) can 
be infinite. For example, if K  C E 2 is a convex figure bounded by a parabola, 
then p(K)  — q(K) = oo.

It is known (see [3, p. 251]) that an unbounded convex body K  C E n is 
strongly illuminated by a finite number of points if and only if it is almost 
conic {K  is called almost conic provided it is contained in some r-neighbour- 
hood of its characteristic cone).

If K  C E n is an almost conic unbounded convex body, then p ( K ) < 2 for 
n = 2 and p{K)  < 4 for n = 3 (see [2] and [3], respectively).

C o n j e c t u r e  1. For an unbounded almost conic convex body K  C E n, 
one has p(K)  < 2"-1 .

In case of weak illumination, the problem to describe the family of all 
convex bodies K  C E n, n ^ 3 satisfying the condition q(K) < oo still remains 
open. The following example shows that this family is larger than the family 
of all almost conic bodies.

E x a m p l e  1. Let H  be some (n — l)-dimensional paraboloid in E n, n > 3 
and x € E n \  aff H . The convex body K  =  conv(x U H)  is not almost conic. 
At the same time q(K) = 2.

It is easy to prove the following lemma.
L e m m a  1. An unbounded convex figure K  C E 2 is weakly illuminated by 

a finite number of points if and only if it is almost conic.
T h e o r e m  2. If  for an unbounded convex body K  C E n the value q(K)  

is finite, then 1 < q(K)  £ n.
For the proof of Theorem 2 we need some auxiliary notions and results. 

Denote by Hx some hyperplane supporting K  at a point x e b d iif , and by 
Qx that open half-space bounded by Hx which does not intersect K . If N  C 
C bd K  is any open subset, then No will denote the set of all regular points of 
K  contained in N.  For any regular point x £ bd K  let ex be the unit vector 
in E n parallel to the external normal to K  at x. Put Sn  — {ex : x £ N q}.

L e m m a  2. A set N  C bd K is weakly illuminated by a point from E n \  K  
if and only if the set := C\{QX : x £ N0} is not empty.

P r o o f . Suppose that N  is weakly illuminated by some point 
z £ E n \  K . One has z £ Qx for any point x £ iVo (otherwise }x,z[ inter
sects int K).  Hence z £ C\{QX : x £ N q}. Choose in int K  some open ball V .



AN ILLUMINATION PROBLEM 475

Since V does not intersect the set (~){QX : x € N 0 }, any ray [u, z) with apex 
v 6 V  passing through z intersects each open half-space Qx, x £ No- Hence 
Rn  contains some open cone with apex z. So Ryy ^  0.

Conversely, assume that R j y  ^  0 . Choose any point w £  R j y  and some ball 
V  C int K . As above, we show that Rjq contains some open cone T  with apex 
w.  Since [in,x[C Qx for each point x £ No,  the set No is weakly illuminated 
by w.  All singular points from N  which are not weakly illuminated by w 
may be situated only on the boundary of the cone with apex w  generated by 
K  (denote this cone by W).  We choose any point j/£ int T \W . It is easy to 
see that y weakly illuminates the whole set N . □

P r o o f  o f  T h eo rem  2. Suppose that q(K) <  oo, and let z \ , . . .  , zm be 
some points in E n \  K  weakly illuminating K . Denote by A,- all points in 
bd K  weakly illuminated by i = 1 , . . .  , m. By Lemma 2, one has Rjy, ^  0, 
i = 1 , . . .  , m.

K  being unbounded, contains a ray, /. Denote by S the set of all unit 
vectors which are translates of the external normals to K  at its regular points. 
Clearly, if /  is the unit vector in /, then (e, / )  < 0 for any e £ S . Hence S 
belongs to some closed hemisphere $  of the unit sphere in E n.

It is possible to cover $ by some n closed spherical segments $ i , . . .  , $ n 
smaller than a hemisphere. Denote by lj the ray with apex O which lies 
inside <I>j in the axis of symmetry of <!>_,, and by ej the unit vector in lj. Put 
Sij = Sn , H i = l , . . .  , m, j  — 1 , . . .  , n and

Sj  = U{5,y : 1 ^ i < m}.
Denote by Mj (Mt]) the set of all regular points s £ bd K  for which the 

corresponding vector e„ belongs to Sj (Sij),  and put
Rj = n{Qx : x e M j } ,  Rij = n{Qx : xe  Mij } .

Since Rn , ^  0, each of the sets Rjj  is not empty. We have (ej,t) > 0 
for any vector t £ Sij. Hence the ray lj intersects each of the sets Rij, i — 
= 1 , . . .  , m. Therefore, the intersection

lj n  Rj  = n {lj n  R t j : 1 <; i < m)

is non-empty. By Lemma 2, the closed set M j  is weakly illuminated by some 
point Wj.  The obvious relation bd K  =  U  {M j  : 1 = j = n] implies tha t the set 
{u>i,. . .  , uy,} weakly illuminates K , i.e., q(K ) < n. □

A set of points illuminating a convex body K  is called primitive if none 
of its proper subsets illuminates K  (see [5, p. 422]). Denote by p(K)  (re
spectively, by q(K))  the supremum of cardinalities of primitive sets strongly 
(weakly) illuminating K . Put p(K)  = oo (respectively, q(K)  =  oo) if the 
supremum is infinite.

Obviously, p(K)  ^ p(K ) and q ( K ) % q(K).
Observation 1. Unlike the inequality q(K) <p(I(), the relation q(K )<  

< p ( /i)  is not true for any body K  (compare Theorems 3 and 4).
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T heorem 3. For a convex body K C E n, one has q(K ) < oo if and only 
if  K  is polyhedral. I f  K  is polyhedral, then q(K) equals the number f n~1 (K)  
of all facets of K .

P roof. Suppose that K  is not polyhedral. Then for any natural num
ber m  it is possible to find m  regular points x i , . . .  , xm € bd K  such that 
the hyperplanes , Hm supporting K  at the points x i , . . .  , xm, respec
tively, are different. Denote by Qi that open half-space which is bounded 
by Hi and does not intersect K.  For each point x,- we can choose a point 
Zi t  Qi \  (UQj : j  7̂  i) weakly illuminating some open neighbourhood F, of x, 
on bd K.  Put

Z = {zu . . . , z m}, W  = E " \ ( K U Q 1 U . . . U Q J .

Clearly, W  weakly illuminates the closed set

T  := bd K  \  (U\ U .. .U Um).

Following the standard compactness arguments, we can choose in W  
some at most countable subset G (G is finite if K  is compact) which is a 
primitive weakly illuminating set for T.

The set Zl)G  weakly illuminates K,  and each point w € G cannot weakly 
illuminate any of the points x \ , . . .  , xm. Therefore any subset of ZilG  weakly 
illuminating K  contains Z.  Hence any primitive weakly illuminating set 
contained in Z  U G has at least m elements. The last shows that q(K)  ^  m.  
Since m  is arbitrary, one has q(K)  = oo.

Suppose that K  is polyhedral, and put t = / n_1(X). Near each facet 
Fi of K  we can place a point y, G E n \ K  sufficiently close to F, such that 
yi weakly illuminates only F,, i = 1 ,. . .  , t. Then { jq ,. . .  , yt} is a primitive 
weakly illuminating set for K . Hence q(K) ^ f n~1 (K).

Conversely, let Y  be any primitive weakly illuminating set for K.  For 
each facet F, of K  we choose some point x,- € rint F,- and a point w, £ Y  weakly 
illuminating Xj, t = 1 , . . .  , t. Then W{ weakly illuminates the whole facet F,-. 
So the set {u>i,. . .  , wt} weakly illuminates K.  One has X = {w i,. . .  , wt}, 
since Z  is primitive. Hence q(K) < f n~1(K).  □

Corollary 1. For a convex body K  C E n, one has q(K) ^ 1. The 
equality q(K)  =  1 holds if and only if K  is a half-space. If K  is compact, 
then q(K)  ^ n -f 1 with q (K ) =  n + 1 only for simplices.

Now we shall study the value p(I(). A suitable description for p(K)  can 
be realized for fine-free convex bodies. Therefore the general case will be 
reduced to this one.

It is well-known that each convex body K  C E n can be uniquely repre
sented (up to an affinity) as a direct sum K  = L + M , where L is a linear 
subspace and M  is a fine-free closed convex set.
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T heorem  4. Suppose that a convex body K  C E n is represented as a 
direct sum K  = L + M , where L is a linear subspace and M  is a line-free 
closed convex set. Then p(K) < oo if and only if M  has a finite number of 
extremal points. In this case p(K)  = card ext M .

We divide the proof of Theorem 4 into a sequence of Lemmas 3-5.

Lem m a  3. One hasp(K) = p(M), where p(M) means the corresponding 
number for M  in the linear space aff M.

P r o o f . p(K) = p(M)  if both numbers p(K),p (M )  are infinite. Suppose 
that p(K) < oo, and let some points tq , . . .  , Vk £ E n form a primitive strongly 
illuminating set for K.  Then the projections of these points on aff M  parallel 
to L form a primitive strongly illuminating set for M  in the space aff M . 
Hence p{K)  < p(M).

Conversely, if some points wi , . . .  , wm £ aff M  form a primitive strongly 
illuminating set for M, then, also, they form a primitive strongly illuminating 
set for K  in E n. Hence p(M) ^p (K ) .  □

L em m a  4. A set X  strongly illuminates a line-free convex body K  C E n 
if and only if X  strongly illuminates the set ext K .

P r o o f . The well-known assertion of V. Klee [6] states that for any line- 
free convex body K  C E n the following relation holds: K  = conv(ext K  U 
U rex t/f) , where rext K  means the union of all extremal rays of K.  This 
assertion makes it obvious that any point z £ bd K  \  ext K  belongs to some 
open interval ]v, u;[c bd K  such that v £ ext K.

Now we turn to the proof of Lemma 4. If a set X  strongly illuminates K,  
then X  strongly illuminates the set ext K . Conversely, let a set X  strongly 
illuminate ext K , and z £ bd K  be any point which is not extremal for K .  By 
the above, z belongs to some open interval ]u, u>[C bdK  such that v £ ext K.  
A trivial verification shows that if some point x £ X  strongly illuminates v, 
then x strongly illuminates z. Hence X  strongly illuminates K . □

L em ma  5. Let K  C E n be a line-free convex body. Then p(K)  <  oo if 
and only if K  has a finite number of extremal points. In this case p (K)  = 
= card ext K .

P r o o f . First we shall demonstrate the validity of the following asser
tion: if card ext K  > m , then p(K) > m.

From the assumption card ext K't. m  and the well-known relation ext K  C 
exp K  there follows the inequality card exp K  > m. Let X j,. . .  , x m be some 
exposed points of K,  and L j , . . .  , Lm be some closed half-spaces in E n such 
that Li fl K  = {x,}, i = 1 , . . .  ,m . For each point x, we can choose a point 
Zi G Li \  (ULj : j  i) strongly illuminating some open neighbourhood [/,■ of 
x, on bd K . Put

Z  =  { z j , . . . , z m}, W  = E n \  (K  U Í-! U . . .U Lm).
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Clearly, W  strongly illuminates the closed set 
T  : = b d K \  (U\ U .. .U Um).

Following the standard compactness arguments, we can choose in W  
some at most countable subset G (G is finite if K  is compact) which is a 
primitive strongly’illuminating set for T.

The set Z  U G strongly illuminates K,  and each point w £ G cannot 
strongly illuminate any of the points x i , . . .  , xm. Therefore any subset of 
Z  U G strongly illuminating K  contains Z.  Hence any primitive strongly 
illuminating set contained in Z u G  has at least m  elements. The last implies 
that p{K) > m.

If K  has an infinite number of extremal points, then, by the above, one 
has p (K )  = oo.

Suppose now that K  has a finite number of extremal points: ext K  = 
= { x i , . . .  , xm}. As demonstrated above, p(K)  ^ m. Let Y  be any strongly 
illuminating set for K.  We choose in Y  some points y i , . . .  ,ym such that 
yi strongly illuminates a?,-, i = 1 , . . .  , m. By Lemma 4, the set {y i , . . .  , ym} 
strongly illuminates K.  Hence any primitive illuminating set for K  has at 
most m  points, i.e., p(K)  ^  m.  □

C orollary  2. For a convex body K  C E n one hasp(K)  ^ 1. The equal
ity p (K )  = 1 holds if and only if K  is a cone. I f  K  is compact, then p (K )>  
> n +  1 and p(K)  = n -f 1 holds only for simplices.

Illumination by directions

V. G. Boltjanskii [4] introduced the notion of illumination by (oriented) 
directions: a convex body K  C E n is called illuminated by a family C of 
directions in E n provided for each point x G bd K  there is a direction l £ C 
such th a t the ray lx with apex x and direction l intersects int K.  This type 
of illumination will be called below strong.

Analogously to illumination in the sense of L. Fejes Tóth, we shall in
troduce the following type of illumination: a convex body K  C E n is called 
weakly illuminated by a family C of directions in E n provided for each point 
x € bd K  there is a direction l £ C such that the ray l'x with apex x and the 
direction opposite to l intersects K  at the point x only.

Denote by s(K)  (respectively, by r(K))  the least number of directions in 
E n which strongly (weakly) illuminate K.  Put s (K) — oo (r(K) — oo) if K  
cannot be strongly (weakly) illuminated by any finite family of directions. 
Obviously,

r(K) < s (K )< p (K ) ,  r (K)  < q(K)<p(K).
THEOREM 5. For any convex body K  C E n, one has r (K ) < 2.
P roof. From [7] there follows the existence of a line l C E n which is 

not parallel to any line segment in bd K.  Note that / does not belong to K
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(otherwise K  would be a cylinder whose boundary contains line segments 
parallel to /). Denote by l\, I2 two opposite directions determined by /. It is 
easy to verify that the directions l\, 12 weakly illuminate K . Hence r (K )  2. 
□

The problem on the upper estimation of s ( K ) is still open. For a compact 
body K  it is equivalent to Hadwiger’s covering problem (see [4]). Therefore 
the validity of the inequality s(K)  ^  2n is conjectured. For an unbounded 
body K  the value s ( K ) can be infinite (s ( K ) = 00 for K  in Example 1). The 
description of all convex bodies K  C E n for which s(K) < 00 has not been 
found (this family is larger than the family of all almost conic bodies).

C o n je c t u r e  2. If  for an unbounded convex body K  C E n, the value 
s ( K ) is finite, then 1 < s(K) < 2n_1.

For any unbounded convex figure K  C E 2 one has s(I() < 2 [2].
A family of directions illuminating a convex body K is called primitive if 

none of its proper subfamilies illuminates K  (see [5, p. 422]). Denote by s ( K ) 
(respectively, by r(K))  the supremum of cardinalities of primitive families 
strongly (weakly) illuminating K.  Put s (K )  = 00 (respectively, r (K )  =  00) 
if the supremum is infinite.

Obviously, s ( K ) ^ s ( K ) and r { K ) < r(/v).
Observation 2. Unlike the inequality r ( K ) < s(K), the relation r(K)  < 

^ s ( K )  is not satisfied for an arbitrary convex body K.
T heorem 6. For a convex body K  C E n, one has s(K) >  1, with s(K) =  

= 1 if and only if K  is a cone.
P r o o f . The first statement of the theorem is trivial. If K  is a cone, 

then, clearly, s (K )  = 1.
Conversely, let s(K)  = 1. We need the following assertion [8]: if C is the 

characteristic cone of a line-free convex body N , then

C = D{Q(N, x) — x :x £ expN},

where Q(N,  x):=U {x + A (N — x ) : A ^ 0).
Suppose that K  is not a cone. Let K  = L + M  be a representation of K  

as a direct sum of a linear subspace L and a line-free closed convex set M . 
Then M  is not a cone. By the above,

W  := rint Q(M, x ) \  (rintC (M ) + x) ± 0

for any point x € exp M . Fix some point a € exp M,  and choose in IF a ray 
la with apex a. A trivial verification shows that the direction l determined 
by la strongly illuminates some open neighbourhood U of the exposed face 
F := a + L of K , and l does not illuminate strongly the whole body K.

Let H be a hyperplane in E n such that H fl K  = F, and /  be a unit 
normal to H in the direction of K . Let C be the family of all directions in
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E n which form with /  an angle > x/2. It is easy to verify that C strongly 
illuminates bd K  \  U, and no direction from C strongly illuminates F.

Following the standard compactness arguments, we can choose in £U {/} 
some at most countable subfamily Af (Af is finite if K  is compact), which is 
a primitive strongly illuminating set for K.  Hence s (K)  > cardAf > 2, which 
is impossible. □

T h eo r em  7. For a convex body K  C E n, one has f (K )  > 1, with r (K )  = 
= 1 if  and only if K  is a half-space.

P r o o f . The first statement of Theorem 7 is trivial. If it' is a half-space, 
then, clearly, f ( K )  = 1.

Conversely, let f ( K )  = 1, and suppose that K  is not a half-space. Then 
two points a, 6 € bd A' can be chosen such that ]a, 6[c int K.  Denote by / i , /2 
the opposite directions determined by the line (a, b). We can slightly change 
the directions /1; l2 in order to illuminate the whole body K  (see Theorem 5). 
Hence r(K)  2, which is impossible. □

If a convex body K  C E n is compact, then s (K )  n -\-1 (see [3]). There
fore one has s(I() > s (K)  > n + 1 if K  is compact.

C o n j e c t u r e  3. If  a convex body K  C E n is compact, thenr(K) > n +  1.
The problem to determine the least upper bound for s(K)  is posed by B. 

Grünbaum [5, p. 423], who observed that s (K)  < 6 for any convex figure K  C 
C E 2, with s(K) = 6  holding only for hexagons with parallel opposite sides. 
It is easy to see that s (K )  < 3 for an unbounded convex figure K  C E 2.

Note that r(K)  ^  4 for any convex figure K  C E 2, and r(K) ^ 3 if K  is 
unbounded.

B. Grünbaum [5, p. 423] conjectured the validity of the inequality s (K )  ^ 
^  2(2n — 1) for any compact convex body K  C E n, n ^  3. Below we give an 
example of a compact convex body K  C E 3  such that s(K) = r(I() — oo.

E x a m p l e  2. Let Q =  {(x, y, z ) : x2 +  y2 <  z 2, 0 < z <  1} be a bounded 
circular cone in E 3. Denote by /o the direction determined by a vector 
( —1,0, £ — 1), 0 < e < 1. An easy computation shows that l0 weakly illumi
nates the upper disc

D = {(x ,y ,  z ) :x 2 + y2 < l , z =  1}

and a closed sector C  of the lateral surface of Q bounded by the generatrices 

= {(Ap, Aq, A): A > 0}, V2 = {(Ap, - \q,  A): A > 0},

where

p = ( \ / l  + 2 e -  e2 + 1 -  £:) /2, q = ^-\/l +  2 s -  e2 -  1 + e'j /2.

Note tha t the width of C  becomes arbitrarily small if e —* 0.
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Now it is clear that for arbitrary to > 4 it is possible to choose a suitable e 
such that the directions l o , l i , . .. , Zm_i determined by the respective vectors

( — cos(2 ttk /m),  — sm(2irk/m),£ — 1), k = 0 , 1 , . . .  , m — 1,

form a primitive weakly illuminating family for Q. Hence r(Q) =  oo.
The direction /<j strongly illuminates not only the interiors of D and C. 

Also, it illuminates strongly the least open arc of the circle F — {(x, y, z ) : x 2 + 
-1- y2 = 1, z = 1} bounded by the points (p, q, 1), (p, — q, 1). Note that Iq does 
not illuminate strongly the apex (0,0,0) of Q. The direction /' determined by 
the vector (0,0,1) strongly illuminates the apex of Q, but does not illuminate 
strongly any of the points from F.

Hence for arbitrary to > 4 it is possible to choose a suitable £ such that the 
above mentioned directions /o, / i , .. • , lm- i  together with l' form a primitive 
strongly illuminating family for Q. So s(Q) = oo.

Observation 3. After obtaining this example, the author learned about 
the similar example of K. Bezdek for the case of strong illumination. This will 
appear in his paper “Hadwiger-Levi’s covering problem revisited” , submitted 
to the book edited by J. Pach Recent progress in discrete and computational 
geometry at the Springer-Verlag.

External visibility

F. A. Valentine [9] introduced the notion of external visibility, which 
coincides with the notion of illumination according to L. Fejes Tóth. Below 
we study briefly a weaker type of visibility introduced by E. Buchman and 
F. A. Valentine [10, 11].

Let K  be a convex body in E n. We say that a point x £ E n \ K  sees a 
set IV C bd K  (or N  is visible from x) if [x, y] flint K  = 0 for any point y £ N . 
A set X  C E n \  K  sees K  provided for any point y £ bd K  there is a point 
x G X  which sees y.

Denote by v(K)  the least cardinality of a set in E n \  K  which sees the 
whole body K . Put v ( K ) =  oo if any finite set X  C E n \  K  cannot see K . 
Obviously, v{K)  < q(K).

T h eo r em  8 . F o r  any convex body K  C E n one has v(K) =  q(K).
P r o o f . It is sufficient to prove the inequality q(K)  ^ v(K) .  Suppose 

that some set { z i , . . .  , zm} C E n \ K  sees K . For any i =  1 ,. . .  , m denote by 
C{ the cone with apex z, generated by K :

C,  =  U { z , -  +  X(K —  Zi) : A  >  0 } .

Let C[ denote the cone with apex z,- symmetric to C ;: C[ = 2z,- — C,-. An 
easy verification shows that for any points i/t £ int C\ , i = 1 , . . .  , m, the set 
{ 2/ 1 , . . .  , ym} weakly illuminates K.  Hence q(K)  ^  v(K) .  □
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A set of points which sees a convex body K  is called primitive if none of 
its proper subsets sees K.  Denote by v (K ) the supremum of cardinalities of 
primitive sets which see K .  Analysis of the proof of Theorem 3 shows that 
it remains true if we shall substitute q(K) by v(K).  Therefore v(K) = q(K).

We shall say that a direction l in E n sees a set N  C bd K  (or N  is visible 
in a direction /) if for any point y £ N  the ray ly with the apex y having the 
direction opposite to l does not intersect int K.  A family C of directions sees 
K  provided for any point y £ bd K  there is an / £ C which sees y.

Denote by w{K)  the least number of directions in E n \  K  which sees the 
whole body K.  Obviously, 'w(K)  < r(I(). It is easy to see that w(K)  = 2 if 
K  is compact, and w(K)  = 1 if K  is unbounded.

Let w(K)  denote the supremum of cardinalities of primitive families of 
directions which see K.  As in the proof of Theorem 7, we obtain w ( K ) > 1 
with w( K)  = 1 if and only if K  is a half-space.

C o n j e c t u r e  4 . If  a convex body K  C E n is compact, then w(K)  > n+ 1.

Note that w(K)  £ 3 for any convex figure K  C E 2, and w ( K ) < 2 if K  
is unbounded. The value w( K)  can be infinite in case n > 3: for the convex 
body Q in Example 2, one has w(Q) = oo.
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