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BEMERKUNGEN ZUM PROBLEM DER DÜNNSTEN 
ÜBERDECKUNGEN DER HYPERBOLISCHEN EBENE DURCH 

KONGRUENTE HYPERZYKELBEREICHE

I. VERMES

Wir wollen in dieser Arbeit das Problem der dünnsten Überdeckungen der 
hyperbolischen Ebene untersuchen, wobei die Bereiche in den Überdeckungen kon
gruente Hyperzykelbereiche sind, für die gewisse zusätzliche Geräumigkeitsbedin
gung gefordert ist.

Man versteht unter einem Hyperzykel (oder einer Abstandslinie bzw. Äquidis
tante) die Gesamtheit derjenigen Punkte der Ebene, die von einer Geraden gleichen 
Abstand / haben, und alle auf derselben Seite von ihr gelegen sind. Die beiden kon
gruenten Äquidistanten auf verschiedenen Seiten von der Geraden (d. h. der Grundlinie) 
begrenzen einen Teil der Ebene, der als Hyperzykelbereich vom Abstand / heißt.

Unsere Untersuchungen verknüpfen sich zu den Arbeiten [2], [4] bzw. [3], [5] 
(s. noch [6] 224—238). In diesen Arbeiten beschäftigte L. Fejes Tóth sich mit den 
Kreisausfüllungen der hyperbolischen Ebene und mit der dichtesten Horozyklen- 
lagerung bzw. mit den Kreisüberdeckungen der hyperbolischen Ebene und mit der 
dünnsten Horozyklenüberdeckung. Die Ergebnisseseiner Untersuchungen zeigen, daß 
die dichteste Ausfüllungen bzw. die dünnste Überdeckungen in den Fällen der regel
mäßigen Bereichsysteme zustande kommen.

Auf die Anregung dieser Ergebnisse wurden die oberen Dichteschranken der 
Ausfüllungen der hyperbolischen Ebene durch kongruente Hyperzykelbereiche in 
[10] und die dichtesten Konfigurationen in [9] gegeben. In derartigen Üntersuchungen 
sind die Abschätzungen der Dichten in jedem Fall auf je einer vieleckigen Zelle der 
geeigneten ausgewählten Zellenzerlegungen der hyperbolischen Ebene durch die 
obere bzw. untere Schranke der Dichten gegeben. K. Böröczky hat nämlich in [1] 
gezeigt, daß kein Dichtenbegrifif bezüglich der ganzen hyperbolischen Ebene existiert 
werden kann, der die trivialen und natürlichen Bedingungen — mindestens im klas
sischen Sinne — erfüllen könnte.

Es ist im allgemeinen notwending einige Voraussetzungen für die Bereiche in den 
Untersuchungen der Überdeckungsprobleme stellen, daß die übertriebenen Häufun
gen der Bereiche ausschließbar seien.

In dieser Arbeit untersuchen wir diejenigen Überdeckungen der hyperbolischen 
Ebene durch die kongruente Hyperzykelbereiche vom Abstand /, zu den je eine Hyper
zyklenausfüllung durch kongruente Exemplaren der Bereiche vom Abstand / — d 
existiert, falls man den zu den Hyperzykelbereichen gehörigen Abstand / mit demsel
ben Abstand d verkleinert (l>c/>0). Also ist die Existenz von einem solchen d als

1980 Mathematics Subject Classification. Primary 52A45; Secondary 52A40.
Key words and phrases. Packing, covering, tiling, inequalities and extremum problems, con

vex sets.
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2 I. VERM ES

zusätzliche Geräumigkeitsbedingung angenommen. Diese Geräumigkeitsbedingung 
ist wirklich eine unentbehrliche Voraussetzung für die Überdeckungen, denn kann 
solche Überdeckung gegeben werden, in der die Grundlinien der Hyperzykelbereiche 
paarweise je ein gemeinsames Lot haben, da aber existiert mindestens ein Punkt in 
der Ebene, der im Inneren unendlich vieler Bereiche liegt [13].

Fortan werden wir über geräumige Hyperzyklenüberdeckung sprechen.
Betrachten wir die Zerlegung der Ebene in die Dirichletschen Zellen, die zu einem 

solchen System der Hyperzykelbereiche gehört. Die Dirichletschen Zellen der Hyper
zykelbereiche geben eine eindeutige Zerlegung der Ebene ebenso, wie im Falle der 
Kreissysteme, denn der Begriff der Potenzlinien zweier Abstandslinien kann auf 
ähnliche Weise erklärt werden. (Die Potenzlinie zweier kongruenter Abstandslinien 
ist die Symmetrieachse ihrer Grundlinien.) Die oben erwähnten Zellenzerlegungen 
Übereinkommen mit der Dirichletschen Zellen der entsprechenden Hyperzyklenaus
füllungen vom Abstand l —d.

Es wird gezeigt, daß die Eckpunkte der betrachteten Dirichletschen Zellen die 
eigentlichen Punkte der hyperbolischen Ebene sind, und die Anzahl der in einem Eck
punkt sich treffenden Seiten eine endliche — bezüglich der ganzen hyperbolischen 
Ebene — beschränkte natürliche Zahl ist.

In der Tat, falls ein Eckpunkt in den Zellenzerlegung ein uneigentlicher Punkt 
wäre, so könnte man keine Überdeckung aus einer Hyperzyklenausfüllung vom 
Abstand l—d durch die Steigerung der Abstände der Hyperzykelbereiche erzeugen. 
Andererseits hätte die Anzahl der in einem Eckpunkt sich treffenden Seiten keine 
obere Schranke, so hätten die Größen der Winkel der Dirichletschen Zellen keine 
untere Schranke, folglich wären die Radien der die entsprechenden Grundlinien 
berührenden Kreise um die Eckpunkte der Zellen (s. Fig.) auch unbeschränkt. In 
diesem Falle könnte man auch keine Überdeckung aus einer Hyperzyklenausfüllung 
vom Abstand l—d durch die Steigerung der Abstände der Hyperzykelbereiche 
erzeugen.

Es ist leicht zu sehen, daß die obere Schranke (N) der Anzahl der in einem Eck
punkt sich treffenden Seiten und der Abstand d voneinander abhängen. Man kann 
solche Überdeckung konstruieren, in deren die Eckpunkte der Dirichletschen Zellen 
n-tes Grades für jede Werte von n Vorkommen können, wobei 3 ^ n ^ N  ist.

Fig. 1
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Betrachten wir jetzt die zu den Dirichletschen Zellen gehörigen dualen Zerlegun
gen der hyperbolischen Ebene. In einer solchen dualen Zerlegung gehört je ein recht
winkliges 2«-Eck («^3 ist und n hat eine obere Schranke, wie es früher gezeigt 
wurde) zu jedem Eckpunkt der Dirichletschen Zellen, dessen Seiten einerseits die 
gemeinsamen Lote der Grundlinien der Abstandslinien sind, deren Potenzlinien in 
diesem Eckpunkt sich treffen; andererseits gehören die Strecken zu den Seiten dieses 
Vieleckes, die zwischen den Fußpunkten der gemeinsamen Lote auf den Grundlinien 
liegen. Die Seiten eines solchen 2n-Eckes liegen abwechselnd auf den Grundlinien 
bzw. auf ihren gemeinsamen Loten.

Wir wollen das Minimum der Überdeckungsdichten auf diesen 2n-Ecken bestim
men. Wir zeigen, daß das Minimum sich auf einem geeigneten regelmäßigen 2n-Eck 
verwirklicht.

Nehmen wir ein solches 2n-Eck aus der dualen Zerlegung (s. Fig.), wobei der 
Punkt O ein Eckpunkt in der Zerlegung in die Dirichletschen Zellen, und deshalb der 
Mittelpunkt eines Kreises ist. Dieser Kreis berührt die Grundlinien der zum O gehö
rigen Abstandslinien. Es seien die Eckpunkte dieses 2n-Eckes: An , A12, A21, A22, A31, 
A32, ..., An , Ai2, ..., Anl, A„2, das Radius des Kreises r und der Fußpunkt des aus 
dem Punkt O auf die Strecke Aa , Ai2 gefällten Lotes Tt. Die aus dem Punkt O ausge
henden Potenzlinien halbieren und senkrecht schneiden die Seiten A^_1)2An bzw. 
.̂•2 ^(i+i)i in den Punkten Bn =B(l_1)2 bzw. Bi2=B^i+1)1 (1=1,2, 3, ..., n und 

natürlich mit der Bezeichung An2 = An2). Es seien noch die Strecken Aa Tt und TiAi2 
mit xtl bzw. xi2, und die Winkel BaOT, und TtOBi2 mit <xn bzw. ai2 bezeichnet.

Auf Grund der trigonometrischen Beziehungen der Lambertschen Vierecke1 2 
ergibt sich die folgende Beziehung für das Viereck AilT1OBi l :

Daraus folgen für das Viereck A^TiOB^ und auf änhliche Weise für das Viereck 
Ai2TiOBi2 die Gleichungen:

Betrachten wir die Überdeckungsdichte auf dem Vieleck An , A12, A21, A22, A31,

ctg ocn =  sh r th xu

wobei r>A(atij) und oĉ -e-̂ - ^also sh r j bestehen2.

1 S. z. B. [8] § 10 und § 13 (S. 37—40 bzw. S. 71—78).
2 bezeichnet das zum Winkel au gehörige Parallellot.

1*
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Ctg X TZ
Jetzt beweisen wir, daß die Funktion xi->-y=arth-—----  im Intervall 0 < x < —sh r 2

( ctg x   ̂im Falle —;— <1 konvex ist. 
shr )

Die erste und zweite Ableitungen dieser Funktion sind

y
sh r

sh2 r sin2 x — cos2 x und

_  sh r sin 2x (sh2 r + 1)
^  (sh2r sin2x —cos2x)2 ’

(
71 ^  C t g  X0<x-= — I , deshalb ist die Funktion x >-»■>’= arth ^ r ~ (von

unten) konvex.
Wenden wir die Jensensche Ungleichung3 für die Funktion D{1) an:

D(l) =

n
sh / 2 ! arth

i= l
7 = 1 , 2 ____

ctg y-jj 
sh r

(n — 2)n
sh l

(n — 2)ir 
2 n

2  arthi = l
Ctg«,7 
sh r

sh l ■ arth

nctg — n
sh r

(n—2)n 
2 n

= D(l, n, r).

71Die Gleichheit besteht nur im Falle, wenn jeder Winkel aij= — >st, was die Regel
mäßigkeit des Vieleckes bedeutet.

In [11] und [12] wurden die reguläre Überdeckungen der hyperbolischen Ebene 
durch kongruente Hyperzylcelbereiche untersuch, die aus den regulären Ausfüllungen 
der Ebene durch kongruente Hyperzykelbereiche (s. [9]) abgeleitet werden können, 
wenn man den Abstand der Hyperzykelbereichen nur minimalermaßen zur Über
deckung steigert. Die Überdeckungsdichten wurden auch in diesen Untersuchungen 
bezüglich der den Direchletschen Zerlegungen entsprechenden dualen Zerlegungen 
betrachtet, und die Dichtefunktion ist

sh l ■ arth

nr*f o —
Ctfc n

D(I, ri) = 

und n S 3 sind.

sh/
(« — 2)71 

2 n

wobei / <  + “

S. [7] S. 31—34.
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In den zitierten Arbeiten wurde — unter anderem — die Ungleichung

D(l, 7J +  1) =»/>(/, n) bewiesen, wo natürlich /> d  — ist; daraus folgt, daß die
v« + l I

dünnste reguläre Überdeckung der hyperbolischen Ebene durch kongruente Hyper- 
zykelbereiche vom Abstand / sich im Falle n = 3 verwirklicht. Ferner gilt 

j/l2(hm D(l,3) =—-—, was die dünnste Horozyklenüberdeckungsdichte der hyper
bolischen Ebene ist.

Es ist leicht zu sehen, daß die folgende Ungleichung für die regulären Über
deckungen zwischen den Funktionen £)(/, n) und D(l,n,r) im Falle /&r gilt:

D(l, n, r) ^  D(l, n)

und die Gleichheit nur im Falle l=r besteht.

Daraus bereits ergibt es sich, daß die dünnste Hyperzyklenüberdeckung sich für 
gegebenen Abstand l der Hyperzykelbereichen so verwirklicht wird, falls n = 3 und die 
Überdeckung regulär ist, ferner die entsprechenden Hyperzyklen sich in den Eckpunkten 
der Dirichletschen Zellen schneiden.

A n m e r k u n g . Man soll bemerken, daß Bui Van Dung — nach dem Eingang des 
Manuskriptes dieser Arbeit — sich in seiner Dissertation mit der ^-Systeme der 
Hyperzykellagerungen — auf Grund der Idee von J. Molnár — beschäftigte. (Vgl. 
J. Molnár, On the ^-system of unit circles, Ann. Univ. Sei. Budapest. Eötvös Sect. 
Math. 20 (1977), 196—203 und Bui Van Dung, g-cncTCMa oÖJiacTCíí riinepumcjioB 
(im Druck).) Bui Van Dung hat sich noch mit den losen Überdeckungen durch 
kongruente Hyperzykel- bzw. Hypersphere Bereiche beschäftigt. (Vgl. Bui Van Dung, 
O pbixjiocTH noKpbiTHH objiacTUMH ranepiuncjiOB h rniiepcijiep b ranepßojiHHecKnx 
njiocKOCTH h npocTpaHCTBe (im Druck).)
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ON THE GENERALIZED HANKEL TRANSFORMATION

|l. FENYŐI

There are several definitions of the Hankel transformation of certain classes of 
generalized functions. One [1] was given by us and is based on a relation between the 
Fourier and Hankel transformation. A quite different way was followed in order to 
give applicable definition of the Hankel transformation of generalized functions by 
A. H. Zemanian [2], [3], [4]. The present paper has the aim to give a new definition of 
the Hankel transformation of a certain class of distributions using an idea of Gelfand 
and Schilow [5, p. 153—155] defining the Fourier transformation of distributions. 
We define the Hankel transformation of distributions having their support on the 
positive axis but only for entire order in contrary to the definition of Zemanian [4], 
who elaborated a definition for arbitrary order. But it seems that the definition given 
below is much simpler than that of Zemanian and do not need to introduce very 
special testing function spaces.

1. Let D+ (a) be the Schwartz testing function space whose functions have the 
support on [0, a] (a > 0). For a given nonnegative entire n and a (a> 0) we denote by 
Hn(a) the space of functions i/r fulfilling the following conditions :

a) \j/ is an entire function;
b) |ski/r(s)| ^  Ck exp(a |Im s|) for great |s|, (fc =  0, 1, 2 ,...); 

c„) iA(-s) =  (-1)" iMs);

d„) f  sk \j/(s)ds = 0, k =  n, n+2, n+4 , ...;
0

e„) |<Ms)| =  0(M"), (s -  0).

Under the Hankel transform (of order n) of a function / :  R + -*R we under
stand the following expression (if it exist for every s£R)

(1) ^ B(/)(s) =  /  tJn{st)f(t)dt (n = 0 ,1 ,2 ,...)
0

where Jn(t) denotes the Bessel function of the first kind of order n.

1980 Mathematics Subject Classification. Primary 46F12; Secondary 42B10, 44A15. 
Key words and phrases. Generalized functions, Hankel transformations.
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Theorem 1. The Hankel transformation 3fn is an algebraic isomorphism between 
D+{a) and Hn{a).

Proof. What we have to prove is that ij/£Hn(a) iff there exist a unique function 
<p£D+(a) for which \p =3Tn{(p).

Let us consider first a function cp£D+(a). Its Hankel transform (of order n) is

(2)
a

•K(<p)(s) = Ip(s) = f  t /„(sO cp(t)dt
o

and therefore, /„ being an entire function, a) holds. From (2) also the property c„) 
follows immediately.

In order to show b) let us consider the Bessel differential operator 36„ defined for 
a function x£C2 as follows

(3) &n(x)(0 =
d2x  1 dx n2
~dtr + 7~di ~F

If we substitute now for x  our testing function q> then we see

&n(.<P)£D+(a)
as (p vanishes together with all his derivatives at the point t= 0. By a well-known 
theorem (see e.g. [7, p. 61 (32)])

(4) *en[ a n(<p)) = - s '* n  (<p)(s).
But all testing function of Z>+ (a) fulfils conditions (a) and (ß) in the theorem of 

Griffith [8] and therefore by the statement (ii) of the quoted theorem

(5) |s6/2 Jfn(s)I =  Is1/2 (a n(<p)(s)) I S  C'e“lImsl
for great values of | j|. From this immediately follows b) for k = 0, 1,2.

Using the relation (4) to the second iterated 3d2 of 36n we get

(6) {361 (<?)) (s) =  s4 (<P) (s).
As 362n((p)£D+{a), we get

|s9/a^fn(<p)(s)| á  C" e°lImsl

and from this follows b) for k = 3, 4. By induction we see the validity of b) for every 
*=0, 1,2, 3 ,....

Let us now prove the statement d„). By b) the Fiánkéi transform (of order n) 
of ip € Tfn (a) exists and by the well-known inversion theorem of Hankel transforma
tion (see e.g. [7]) (2) implies

(7) <P(0 =  /  sJn(ts)\p(s)ds.
0

All the derivatives of (p vanish at / =  0. By the power series expansion of the Bessel 
function of order n in is positive integer) this condition is automatically fullfilled for 
the derivatives of order 0, 1, 2, ..., n — n + \, n+3, ....
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Let us now consider the integral

(8') / ’s2J '  (ts)ip(s) ds.
0

For n>0 we have by a well-known formula (see e.g. [9] p. 360 (C)): 

and therefore (80 becomes

(8'0 t  f  s2[J„-i(ts)-Jn+i(ts)]il'(s)ds
2 0

and by (80 this exists uniformly with respect to t.
For n= 0 we use the relation (t) = —J1(t) and this guarantees the uniform

convergence of (80 also in the case n=0. As (80 equals (8"), therefore

(8"0 /  s3d i  (is) t ( s ) d s = ± - f  s3 [J U  its) -  J '+1 (is)] ijf (s) ds.
o z o

We use again the relation above which shows the uniform convergence with 
respect to t of the left-hand side of (8"). By induction we see the uniform convergence 
of

oo

(8*0 j  sk+1 J™ (ís) i/í(s) ds (k = 0 ,1 ,2 ,...)>
o

Therefore from (7) it follows
oo

(9) <PW(0 = j  s*I+1/„(*l)(/s) \jj(s) ds (k = 0,1,2,...)
o

and so, as 7„(*:)(0)?í0 for k=n,n+2, »+4, the assertion follows immediately.

The property e„) is just the statement (v) in the theorem of Griffith.
Let us now show that also the converse is true. Let i\r. C-*C be a function 

satisfying the properties a)—e). Then, obviously, the Flankel transform of \)/ exists. 
But also all the integrals of the form (8*1) exist. Let us define q>: R + -+R by (7), then 
(pdC°°(R + ) and the derivatives of cp are given by (9). If the conditions a)—e) are ful
filled all the other conditions (i)—(v) in [8] are fulfilled, and by this reason, by the 
theorem of Griffith, cp(t)=0 if t>a. By the representation (9) and by d„) <pw(0) = 0 
(/c=0, 1, 2, ...) therefore <p belongs to D + (a).

The one-to-one correspondence between cp and i// follows from the properties of 
the Flankel transformation.

The theorem has been proved.
2. Let us introduce in D+ (a) the usual topology by the system of norms

M p =  sup |<pw (t)|
t € (0, a)

k  =  0 , 1,  . . . , p

( 10)
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and in H„(a) the topology generated by the following system of norms

(11) \\'l'\\p= sup |sfc «A(s)| e-°lImsl (il/eHn(a),p = 0,1,2,...).
sec

11= 0 ,1 ..........p

We see at once by (9) that the mapping is not only an algebraic isomorphism 
between H„(a) and D+ (a). We denote the inductive limit (for fixed n) of the spaces 
Hn(a) by Hn and that of D + (a) for by D+. The notation of the dual spaces
should be //,' and D'+, respectively.

If we denote by Z the ultradistribution testing function space we see immediately 
by a) and b) that

(12) H„ <z Z  (n = 0 ,1 ,2 ,...)
and this inclusion is proper. The topology induced by Z  in H„ is just that what we 
defined above.

It is important to remark that the topology in Hn is independent from n.
3. Let udD'+ an arbitrary distribution. We will now give a definition of 2^n{u), 

the Hankel transformation of u of order n (n=0, 1,2, ...). For this purpose we need 
the following statement.

Lemma. Let Then s2p+1\l/(s)£Hn+1, s2pi//(s)(:Hn (p=0, 1, 2, ...).
Proof. The conditions a) and b) are fulfilled for every n, further for x2p+1i/f 

obviously cn+1), d„+1) and e„+1); for s2p̂  the properties c„), d„) and e„) are valid.
Definition of the Hankel transformation of a distribution. Let u£D'+, we define 

.Yfn (u) as an element of H '+1 by the following prescription:

(14) sxj/) = (u, t^ n W )
for every testing function Here ( . ,  . ) denotes the scalar product of a func
tional with the corresponding testing function. The definition (14) makes sense as 

l/)=(p£D+ and by the lemma sil/£HnJrl. We see at once that by (14) .Tff u) is a 
special ultradistribution, more precisely, it is the restriction of an ultradistribution to 
a subspace of Z. It is easy to see that the definition (14) goes into the classical defini
tion of the Hankel transformation if u is a regular distribution generated by a func
tion / f o r  which t ll2f( t )£ L 2(R +). In this case the right-hand side of (14) will be

(15) j  f{t)Up(t)dt
0

and this is, by the Parseval theorem concerning the Hankel transformation [6, Theo
rem 1], equal to

oo

(16) /  ^ n(f)(s)sK(cp)(s)ds.
0

If <p runs over the functional space D+ then the set of values of the integrals (15) 
uniquely defines/ (a.e) [5] and therefore also (16) defines Tfn{ f ) which is the classical 
Hankel transform of /.
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4. We will now give a definition of the Hankel transformation 3tPn of a linear 
continuous functional v defined on H„+1. Also this can be done by using the Parseval 
theorem. 383„{v) should be a distribution in D'+ defined by the prescription

(17) <«r.(t>), =  <V, sip) tyZH J.
This definition makes sense by the fact p)£D+ (ip£Hn). Also this is a gener

alization of the classical Hankel transform by the Parseval theorem.
The following statement is valid :
Theorem 2. Let u£D'+, then

(18) X ’n & M )  =  U 

and for v£H '+1

(19) jr„(.* » )  =  v.

Proof. Using the notation J8fn(}p)=(p from which \p =3tf’„((p), we get immedi
ately from (17) and (14)

( jrn(jrn(u)), tcp> =  =  <*;(«), si» =  <«, /<?>

for all (p£D+. This proves the statement.
The relation (19) can be proved in a similar way starting from (14).

5. We can now show that the Hankel transformation given by (14) possesses 
the formal properties of the Hankel transformation of usual functions. These proper
ties provide the possibility of applications of the generalized Hankel transformation.

Theorem 3. Let u£ D'+ and 38„ the Bessel differential operator defined in (3). 
Then
(20) *?n(38n(u)) = sW „ (u ).

Proof. The adjoint operator of the linear differential operator 38n denoted by 
38* is as follows:

(21) W ) = r - ( f )  —£ - /  (« = 0,1 ,2 ,...)
( /€ C 2). Then
(22) (38n(u), q>) = <«, 38*n{(p)) (p£D+
holds. A simple calculation shows

j  38*,(tcp) = 38 n (<p),

and therefore by a well-known theorem [7, p. 61 (32) and p. 62 (35)]

( y  (a) =  (38n(cpj)(s) = - s 2 ip(s)(23)
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where iJ/=3tf’n((p). By the inversion theorem of Hankel transformation 

(24) - t j r nW ) ( i )  = 0Utq>m-

Using the definition (14) and the relations (22), (24) v/e get

< S ^ „(á?„ (« )), »A) =  < « „ (« ) ,  t y )  =  (u,@*„(tq>)) =  - ( U ,  t  J f „ ( s 2 ^ ) )  =

=  s2t/r) = -<s3[ r̂„(M)], I»

for every \//^Hn+1, this proves the statement (20).

4. An other well-known formula for Hankel transformation of functions can 
also be generalized for Hankel transformation of distributions.

T heorem 4. Let u£D'+ and 3>u its (distributional) derivative, 1. Then 

X » ( ß u )  =  —

(25)

Proof. By (14) we have

(s 3^n(ßu), I//) = (S>u, tJtf’M ) )  =

= -  {it, - j f  [* 0/0]) = -  <«, («A)> -  («, t -^jj x n(\A))-

But

(26)
" ̂  + t ~clt :/fn ̂  =  /  ŝ /" +  /s2 ^  'l'(s)ds =

= /  s —  (sJ„(ts))\j/(t)dt.

Applying the well-known relations (5) and (7) in [7, p. 512] we get

=  /  [s ( l-n ) /„ ( ís )  +  ís2 /„ - 1(ís)]^(s)ds =

-  f f —J  L 2«
2 H

is2 —  ,/„ (is) + tS'2 /„_i(ts) I l//(s) ds =  
is 1

=  /
1 — ft 1 — n
2n ( is )+  - ^ ~ tS* J n + l  (ts) + tS2 J„ _1 (is) \[/ (s) ds =

t X '- i  (s^  + i - Í L  t ^ n  + M ) .2 n 2 n



G EN ERA LIZED  H A N K EL TRANSFORM ATION 13

Substituting this expression into (25), we obtain

(s3 P n( ß u ) ,  \ji) =  — — "2“  ( u> ^  + 1( # ) >  =

=  -  ( sJ ^ - xCk) , Sl/l>---- ( S t f ’n + ̂ U ) , S\j/)

for every 1Jj£Hn+1. This completes the proof.
7. In order to show how to calculate with our results let us consider for example 

the classical Bessel differential equation

(27)

which equals to

(28)

d2u l du
dt2 / dt ^ u 0

38 nu =  —u.

We intend to look for the general distributional solution of (27) resp. (28) in D'+. 
Using the generalized Hankel transformation to (28) and after this the result (20), we 
get

(29) JT. (38 Ju)) = - s 2.#„ (u) =  -  * m(u)

for every s, from which J0p„(u)=O. An other solution of (29) is S1 (i.e. (ő1,ij/) = 
=«A(i), <AeiTn+i). But

sil/) = (J„, tq>) = f  tJn(t)cp (t)dt = J?n{(p){ 1) =  «A(l) =  (Si, $),
0

therefore

(30) jr„(jn) = s1.

T heorem  5. The homogeneous differential equation (27) has no other solutions in 
the domain D'+ than the classical ones.

The function J„(t) has in the classical sense no Hankel transform but his gene
ralized Hankel transform exists. Therefore the results (30) seems to be interesting.
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ON THE DEGENERATION OF THE FOCAL LOCUS OF 
A SUBMANIFOLD IN EUCLIDEAN SPACE

H. SINGH

The concept of focal points of a submanifold in euclidean space has been applied 
in several cases, e.g., by J. Milnor [3] in his lecture on Morse theory and J. Szenthe [6] 
studied focal points of a principal orbit of submanifold in euclidean space. Recently,
H. Singh [7] considered the locus of focal points of a submanifold in euclidean space. 
Singh [7] gave a sufficient condition under which the focal locus of an /«-dimensional 
submanifold is the union of m hypersurfaces, the so-called focal hypersurfaces.

In this paper we shall consider the locus of all focal points of an /«-dimensional 
submanifold in Rn, where 1 1 and obtain sufficient conditions under which
it is the union of m submanifolds, the so-called sheets.

Milnor [3] has applied the fact that along any normal line at a point of a subman
ifold of dimension m embedded in a euclidean space, there are at most m focal points. 
We shall apply this results, too, and follow the notations used by Milnor [3] in this 
paper.

The author is thankful to Prof. J. Szenthe for providing useful discussion during 
the preparation of this paper.

1. Introduction

Let Rn be a euclidean space of dimension « and let / b e  an immersion of an 
«/-dimensional differentiable connected manifold M  into R". Let the normal bundle 
T(M )± of M  be defined by

T(M)1 = {(p, w'\p()M, w' normal to M  at p).

Obviously, T{M)-L is an «-dimensional bundle space differentiably embedded in 
the tangent bundle TRn of R".

Consider the end-point map
<P: T (M )± -  Rn,

defined by
&ÍP, w') =  /> + w', (p, w ')eT(M )1-.

A point s£R" is called a focal point of M  if s=p + w' is a critical value of the 
end-point map.

1980 Mathematics Subject Classification. Primary 53A05; Secondary 53B25, 53C40. 
Key words and phrases. Submanifolds in euclidean space, focal locus o f a submanifold-



16 H. SINGH

Let kt , ..., km be the principal curvatures of M  at p in the normal direction w- 
Then the reciprocals /cf1, ..., k~ x of these principal curvatures are called principal 
radii of curvatures.

Consider the normal line L  which contains all focal points p+Rw, where w is 
a fixed unit vector orthogonal to M  atp and let R be a radius of curvature at the point 
on M  in the direction w. Then the set of these focal points (p, Rw) 6 T(M )1- of M  
will be called focal locus of M in the normal bundle and the set of points p + Rw(LRn is 
called the focal locus of M  in Rn.

The following well-known lemma ([3], pp. 34) is used in this paper.
Lemma. The focal points o f M  along L are precisely the points p + k f  hr, where 

l S i ^ m ,  ki7±0 and p £ M. Thus there are at most m focal points of M along L.
Since there are at most m focal points of M  along L, therefore the focal locus of 

the submanifold M  can have at most m connected components.
Our aim in this paper is to find conditions under which these components are 

submanifolds of given dimension at least n—m — 1 and at most n — 1 ini?".
In order to find the conditions we require the Weingarten map and Rodrigues 

formula in case of submanifold, which have already been defined and derived respec
tively by Singh [7]. From now we suppose that the normal connection V1- of the normal 
bundle T(M )L is flat, i.e. V* w=0. So, according to [7], if if  is a principal vector for 
the direction of the normal vector field w, then the Rodrigues formula yields that

Yx -w = -k X ,

where k  is a principal curvature and V' is the covariant derivation with respect to the 
canonical connection on Rn.

2. Conditions for the focal locus to be a submanifold

Let cp1, ..., cpn~m~1 be a spherical coordinate system on a unit sphere in Rn~m 
with base (e1, ..., Then any unit vector is given by

n — m
2  <T'0\ ..., (pn- m~1)ei,
i = 1

where ^(cp1, ..., (pn~m~1) are components of the unit vector in the base (ex, ..., e„_m).
If (u \ ..., um) is a local coordinate system in a neighbourhood U of p£M . Let 

(vv,, ..., w„_m) be defined in the neighbourhood U of p such that it is an orthonormal 
base for the normal space TP(M )L of M  at every point of the neighbourhood. Then 
a local coordinate system (w1, ..., um; cp1, ..., (pn~m~~1) can be defined in a neighbour
hood V of a point q of the manifold of unit normals to M.

Consider an isomorphism of the normal space TP(M )-*- to the space Rn~m such 
that W;—C;. Then the unit vector w(ux, ...,u m; cpt, ..., <pn~m~1) at point p of M will 
be given by

n—m

w = 2  £‘wi>
i= l

where ^‘(cp1, ..., cpn~m~1) are components of its image vector in Rn~m.
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Let Rj be the jth  radius of curvature at the point r on M  in the direction of w. 
Then the corresponding focal point q' on focal locus is given by

r \ u \  ..., um\ <p\ ..., < p =  r{u\ ..., um) + R j(u\ .... um; <p\ ..., (pn- m~1)
w{ux, ..., um\ <p\ ..., cpn~m~v).

The partial derivative of this expression with respect to u1 and cp“, respectively, give 

dtr' = dir+(diRj)w+Rjdiw; di = d/dul, 1= 1 ...... m,
and

d'ar' = (()'aRj)w + Rj(f)'aw); d'a = dld(pa, a = 1, . . . ,n - ? n - l ,  
since d'ar= 0.

If d; r is in principal direction then by Rodrigues formula [7]
diW = —ktdir,

where k, are m principal curvatures of the submanifold M  at p, i.e., ,
R i

d S  = (1 -k ,R j)d ir + (d,Rj)w.
Our next aim is to find general conditions for they'th sheet to include a submani

fold of given dimension.
For the yth sheet we have

and

dt r' = dtr+d , w, / =  1, . . . , ; - l , j  + l, m.

We shall now consider three cases.
Case I. The sheet includes a submanifold of dimension at least n —m — 1.

Case II. The sheet includes a submanifold of dimension k {n—m — 1 — 1).

Case III. The sheet is a submanifold of dimension n — 1.
The Case III has already been considered in [7].

Case I. Consider the wedge product

dir' A ...A £_m_1r ' =
-  m R j)w + R j{d i w)}A ...A {(d'-m_1̂ ) w + ^ ( a '- m_1 w)}.

This reduces to
n—m —1

d'1r'A...Ad'n- m- 1r' = 2  { ( W J I J — A...
a = 1

...Ad'a- 1wAwAd'a+1wA...Ad'n- m- 1w}+Rnj - m- 1d'1wA...Ad'n- m- 1w, 
since h’Aw=0.

2
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The vectors d[w, ..., d'„-m~iw are linearly independent, since (cp1, ..., cpn~m~1) 
is a coordinate system on the unit sphere of dimension n —m —\\ hence their wedge 
product is not zero. Moreover, the vectors w, d[w, ..., are linearly inde
pendent, and therefore the multivectors

d'1wA...Ad'a-iwAwAda+1wA...Ad'n- m- 1w,
and

diwA.-.Ad'n-n-iW

are linearly independent, too. Thus the jth  sheet r '—r + RjW is an {n—m — 1)- 
dimensional submanifold if dtr '=  0 for /=  1, which is true if and only if
(1 — klRj)dir+(diRJ)w=0. This holds if and only if the following conditions hold:

(1) d,Rj = 0, i.e., R j{u \...,u m\
does not depend on (u1, , um),
(2) R: = Rj for / =  1, ..., m,
i.e., R 1.. . ,R m coincide withjth sheet. Thus we have

T heorem  2.1. A sufficient condition for the jth sheet to be a submanifold o f dimen
sion n — m —1 is that

(i) Rj — constant with respect to u’s.
(ii) d'aRj, a = l ,  ..., n — m —l are not all zero.

(iii) Rj coincides with Rlt ..., Rj-!,R j+1, ..., Rm.
From the above Theorem 2.1 the following questions arise.

Q u e stio n  2.1. Is there a submanifold of Rn where the ,/th sheet coincides with 
the remaining sheets and thejth sheet is a flat submanifold of dimension n—m — 1.

The answer is yes. Proof is given below.
Let Sm be a unit sphere immersed in R" with centre at the origin. Consider a de

composition of Rn into two disjoint subspaces Rm+1 and such that Rn =
<=7?m+1X-R',_m~1 and Rn- m~1 is an orthogonal complement of Obviously,
S m is fixed in Rm+1. If (x1, ..., x") is a local coordinate system in the neighbourhood 
of a point in R", then Sm, Rm+1 and Rn- m~1 will be defined, respectively, by

Sm= {(jc1, . .. ,x m+1, 0, ...,0)|(x1)2 + -  +  (^m- 1)2= 1},
R"+1 = { (x \ . . . ,x m+1, 0, ..., 0)},

and
Rn- m~ i =  {(0, ..., 0, xm~2, ..., jc")}.

Let (u1, be a local coordinate system of a point p on Sm with position
vector r and let Rt , ..., Rm be the principal radii of curvature of Sm at p, then it 
can easily be seen that Rj does not depend on (u1, um) and Rj coincides with 
Rx, ..., Rm as studied earlier. The remaining is to show that the jth  sheet of focal 
locus is a flat submanifold of dimension n — m —l. To prove this it is sufficient to 
show that r+RjW is a point of Rn~m- 1,
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Let NpSm=Rn~m~1@{vv} be the normal space of S'" at the point p, where 
w£NpSmr)Rm+1 is the unit normal vector to Sm at p in Rm+1 passing through the 
centre of the sphere. Let w£Rn~m~1, a normal vector to Sm at p in Rn- m- 1, Then for 
w£NpSm we have w —Xw+w, where X is a scalar, so that X =  (w, vv), as vv is ortho
gonal to vv.

Since Rj is the radius of curvature corresponding to the jth  sheet, therefore
-  =kj is an eigenvalue of the second fundamental form (w, a(X, 7)) in the 

R j
direction of w, where

K(Z’ 7 ) =  , l d A r ^  d A r  =  W *

Using the values of vv and oc(X, Y) we have
. m m

(w, 2  d j d i r ^ r ] 1 )  =  { X w + w ,  2  « W c V )  =
j,i=1 j,i

, m .
= X(w, 2

7.i=i
since weR"-"1- 1 and 2  djdir '̂t],RmJ>'1. Thus the “second fundamental form of S'"

J. f
at p in the direction vv” is equal to X times the “second fundamental form of Sm at p 
in the direction vv” . This means that

i.e.,

(A)

Rj(W) = j Rj(w) =

Rj(w) cos(vv, vv) =  Rj(w).

Since j  is arbitrary, therefore this holds for all sheets. This concludes that Rj is the 
hypotenuse of the right angle triangle defined by pOw. Consequently, the fecal point 
is the intersection of the ray defined by vv with R"~n,_1. Since R"-"1- 1 is a fiat sub
manifold of dimension n — m — 1, therefore the sheet which lies on Rn- m~1 is a flat 
submanifold of dimension n—m —l, too.

From Relation (A) the following remarks may be deduced.

R emark 1. If vv coincide with vv, i.e., cos (vv, vv) = l, then Rj(w)=Rj(w) this 
means that the focal locus is a point, which is the centre of the sphere. This happens 
only if sphere is of dimension n — 1.

R emark 2. If vv is orthogonal to vv, i.e., cos (vv, vv)=0, then R^(vv)=0 or RJ(w) = 
=  a». This implies that there is no focal point of Sm.

Q uestion 2.2. Are conditions (i) and (iii) independent,

or

Does (iii) => (i) in general?

2 *
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Answer. Conditions (i) and (iii) are not independent, i.e., (iii) always implies (i).

For the answer we shall use the following Theorem ([5], pp. 110—111).

Theorem. For n 5=2, let M" cr Rm be a connected immersed submanifold o f Rm 
with all points umbilic. Then either M  lies in some n-dimensional plane or else M  lies in 
some n-dimensional sphere in some (n +1)-dimensional plane.

Condition (iii) means that the principal radii of curvature are equal and this 
implies that the point p is umbilic. Since p is an arbitrary point on M, M  is an umbilic 
submanifold of R". Then by the above theorem M  either lies in some n-dimensional 
plane and then the principal curvatures will be zero, which means that the focal locus 
is empty; or M  lies in some n-dimensional sphere, then Rj does not depend on
( m1,

Thus condition (iii) implies condition (i) in both cases.
Case II. Consider the wedge product for they'th sheet

d 1r 'A . . . / \ d J r 'A . . . R d q r 'A d i r 'A . . . / \ d 'n- m- 1r ' =

=  {(' (1 7 ) »}A~ A8'  (i t K - # - t : W +4 t ; )  “] a

A {F; (di vv)+(cTO w}A... A { R j i d ^ i w H i l f . ^ R j )  w};

q ^ m

d1rA...AwA...AdqrAd'iwA...Ad'„-m- 1w.

Since d1r, ..., ()j-ir, w, dj+1r, ..., dar, d[\v, ..., d'n- m- i\v are q+n — m — 1 linearly 
independent vectors, therefore their wedge product is not zero. Since Rj?±0,

if

Thus we have

dir'A ...Adqr'Adir'A...Ad'n- m- 1r' ^  0

Theorem 2.2. A sufficient condition for the jth sheet to include a submanifold o f 
dimension k= q+ n—m —l is that

® ^  (^7)  ̂°-
(ii) kq 7±kj, q = l , . . . ,m ,

i.e. kj is different from  /q , ..., kq.
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EINE METHODE ZUR BESTIMMUNG DER DÜNNSTEN 
GITTERFÖRMIGEN k-FACHEN KREISÜBERDECKUNGEN

ÁGOTA H. TEMESVÁRI

1.1. Eine Menge von kongruenten abgeschlossenen Kreisen bildet eine k-fache 
Überdeckung in der Ebene, wenn jeder Punkt der Ebene zu mindestens k  der Kreise 
gehört. Die k-fache Kreisüberdeckung ist gitterförmig, wenn die Kreismittelpunkte 
die Gitterpunkte eines Gitters f  sind.

Wie im allgemeinen bei Überdeckungen, so ist es auch bei den gitterförmigen 
k-fachen Kreisüberdeckungen eine Grundaufgabe, das Minimum der Dichte und die 
dem Minimum entsprechende Kreisüberdeckung oder Kreisüberdeckungen zu be
stimmen. (Die Definition der Dichte siehe z. B. in [2].) Die Kreisüberdeckung mit der 
minimalen Dichte wird die dünnste genannt. Kershner hat die dünnste einfache 
Kreisüberdeckung ohne die Voraussetzung der Gitterförmigkeit in [4] bestimmt. Die 
dünnsten k-fachen Kreisüberdeckungen sind für die folgenden Werte von k bekannt: 
für k=  2, 3, 4 Blundon [1], für k — 5, 6 Subák [6] und für k  — 1 Haas [3]. Die Ergeb
nisse von Subák und Haas wurden nicht publiziert. (Die Dissertation von Haas hat 
ungefähr 200 Seiten.) Eine andere Lösung für k —5 kann man in [7] finden.

Von Linhart [5] stammt ein Verfahren, mit dessen Hilfe wir das Minimum der 
Dichte der gitterförmigen k-fachen Kreisüberdeckung mit einer beliebigen Genauig
keit berechnen können. Das geht zur Zeit ungefähr auf 3—4 Stellen. (Linhart hat auf 
2 Stellen gerechnet.) Auf Grund dieses Verfahrens gibt er gute Vermutungen für das 
Minimum der Dichte im Fall k s 20 an.

In dieser Arbeit geben wir eine Methode an, mit deren Hilfe man die dünnste 
gitterförmige k-fache Kreisüberdeckung für einen beliebigen Wert von k bestimmen 
kann. Dazu müssen wir die Minima von endlich vielen Funktionen von einer Verän
derlichen bestimmen. (Diese Funktionen können eventuell eine implizite Darstellung 
haben.)

Als Fortsetzung dieser Arbeit bestimmen wir die dünnsten gitterförmigen 6-, 7- 
und 8-fachen Kreisüberdeckungen mit Hilfe dieser Methode. Es scheint, daß wir eine 
einfachere Lösung im Fall k —1 angeben können als in [3]. Für k=8 sehen wir die 
Richtigkeit der Vermutung in [5] ein.

1.2. Zuerst führen wir einige Bezeichnungen ein. Es sei O ein beliebiger Punkt der 
Ebene. Mit X  bezeichnen wir den Ortsvektor OX und auch seinen Endpunkt. Es sei 
\X\ die Länge von X.

Mit F bezeichnen wir das durch die linear unabhängigen Vektoren A und B 
bestimmte Gitter, das aus den Vektoren mA+tiB (m und n sind ganze Zahlen) be-

1980 Mathematics Subject Classification. Primary 52A45; Secondary 51M05. 
Key words and phrases. Lattice covering, k-fold covering, thinnest covering.
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steht. Das Gitter r  ist in normaler Darstellung, wenn die folgenden Ungleichungen 
für seine Basisvektoren A und B gelten:

(1) Ml — Ml — \B—A\, < l(d O B )S y .

Es ist offenbar, daß man eine Basis zu einem beliebigen Gitter F angeben kann, die 
die Ungleichungen (1) befriedigt. Im weiteren nehmen wir immer an, daß E mit den 
Basisvektoren A und B in normaler Darstellung ist.

Es seien \A\=a, \B\ =b, y = x ,  <(AOB)=a. Mit T(T) bezeichnen wir den

Inhalt des Grundparallelogramms von F. Mit diesen Bezeichnungen bekommen wir 
die mit (1) äquivalenten Ungleichungen

(2) 0 < r S l ,  O S c o s a s ^ . .

Auf solche Weise können wir das geordnetes Zahlenpaar (x, cos a) zu einem beliebigen 
Gitter F mit Hilfe der normalen Darstellung zuordnen. Es ist offenbar, daß wir das- 
gl eiche Zahlenpaar nur ähnlichen Gittern zu ordnen. Wir betrachten das rechtwinklige 
Koordinatensystem x, j= c o s a . Der Punkt mit den Koordinaten (x, cos a) ent
spricht dem Gitter F. Weil F in normaler Darstellung ist, liegt der Punkt (x, cos ce)
im rechtwinkligen Dreieck OPQ, wo 0(0, 0), P( 1, 0), Q ^1,-^-j (Abb. l)sind. Und
umgekehrt, wenn wir einen beliebigen von O verschiedenen Punkt des Dreiecks OPQ 
betrachten, dann entspricht ein Gitter F diesem Punkt, das abgesehen von einer 
Ähnlichkeit eindeutig ist.

Mit k[XYZ] bzw. k[XYZ ] bezeichnen wir den durch die Punkte X, Y, Z  be
stimmten Kreis bzw. die entsprechende Kreislinie. Der Radius von k [XYZ] sei r[XYZ]. 
Mit k(X,r)  bzw. k(X, r ) bezeichnen wir den Kreis vom Radius r und mit dem Mittel
punkt X  bzw. den Rand von k(X, r). Ist r= 1, dann brauchen wir kurz die Bezeich
nungen k(X) und k{X).

Ist T der Inhalt des Dreiecks XYZ  und sind x, y, z  die Seitenlängen des Dreiecks, 
dann ist der Umkreisradius

(3) r[XYZ] = xyz
~ Ä T '
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Es seien A1, A2, ...,d„, ... solche Dreiecke, deren Ecken Gitterpunkte des 
Gitters r  sind. Diese Dreiecke werden Gitterdreiecke genannt. Mit kt bezeichnen wir 
den Umkreis des Gitterdreiecks . Es sei vi der Radius von /c;. Im folgenden wenden 
wir die Bezeichnung

(4) Q i n n
oft an.

Wir betrachten einen Kreis K  vom Radius R und ein Gitter f .  Die Kreise 
K + X, X£T bilden eine gitterförmige Anordung von K. Mit L(T, R) bezeichnen 
wir diese gitterförmige Kreisanordnung. Ist R = l ,  dann sei L(T, R)=L(r) .

Die Dichte der gitterförmigen Kreisanordnung L(T, R) ist

(5) K -n

W ) '
(Die Definition der Dichte siehe z. B. in [2].) Mit Dk<r bezeichnen wir die Dichte der 
dünnsten gitterförmigen k-fachen Kreisüberdeckung mit dem Gitter r .  Es ist also

D,k,r- m m  •
R 2n wo wir das Minimum für alle gitterförmige k-fache Kreis über-
n n

deckungen betrachten.
Essei ATdie durch die Punkte X und ^bestimmte Gerade. Mit X Y \Z bezeichnen 

wir die Halbebene, die den Punkt Z  enthält und die durch die Gerade Z F  begrenzt ist. 
Am Ende der Beweise benutzen wir das Zeichen □ .
2. Das Wesen der Methode zeigen die folgenden Sätze. Auf Grund des folgenden 

Satzes können wir eine Zerlegung des Dreiecks OPQ (außer O) angeben, die ange
nehme Eigenschaften hat.

Satz 1. Es sei k>  0 eine ganze Zahl. Wir haben die Punkte des Dreiecks OPQ 
(s. in 1.2) den Gittern r  in normaler Darstellung zugeordnet. Es gibt eine Zerlegung 
des Dreiecks OPQ (außer O) in endlich vielen Bereichen H1, H2, . . . ,H S, die die 
folgenden Eigenschaften besitzt.

1.1. Beliebige zweie von den Bereichen haben keinen gemeinsamen inneren Punkt.
1.2. Ein beliebiger, von O verschiedener Punkt des Dreiecks OPQ gehört zu min

destens einem dieser Bereiche.
1.3. Ein beliebiges Bereich Iß (1 ^=iSs) besteht aus endlich vielen, einzeln zusam

menhängenden Teilbereichen.
1.4. Zu einem beliebigen Bereich H f l S i ^ s )  kann man ein nicht stumpfwinkliges 

Gitterdreieck At angeben, dessen Umkreis k, in seinem Inneren höchstens k — 1 Gitter
punkte, die abgeschlossene Kreisscheibe k t aber mindestens k-\-2 Gitter punkte ent
hält.

1.5. Der zum Bereich H, zugeordnete Kreis hat die Eigenschaft, daß L(T, r()
eine k-fache Überdeckung ist, aber L ( r , R)für keine k-fache Überdeckung bildet.

1.6. Es gilt Qi =  Qj für die gemeinsamen Punkte von Hi und H j. ( Die Definition 
von Qi siehe in (4).)

Der Beweis des Satzes gründet sich auf den folgenden Hilfssätzen, er ist ihre 
einfache Folgerung, deshalb legen wir ihn nicht ausführlich dar.
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H ilfssatz 1. Ist die Kreisanordmg L(r, R) eine k-fache Überdeckmg und enthält 
der Kreis ku der durch irgendein nicht stumpfwinkliges Gitterdreieck At bestimmt ist, in 
seinem Inneren höchstens k — 1 Gitt er punkte von F, dann gilt R ^ r , .

Beweis. Im entgegengesetzten Fall (R<rt) wäre der Mittelpunkt des Kreises k t 
höchstens (k—l)-fach überdeckt, d. h., L(F, R) könnte keine k-fache Kreisüberdek- 
kung sein. □

H ilfssatz 2. Ist L(r ,  R) eine k-fache Überdeckung und liegen höchstens k — 1 
Gitterpunkte im Inneren des Kreises kh dann ist die Dichte der Kreisüberdeckung

Y?
m in d e s te n s   -—  tt.

Die Gitterdreiecke At und Aj sind im Fall eines gegebenen Gitters F äquivalent, 
wenn eine Verschiebung oder eine Spiegelung an einem Gitterpunkt oder die Aufein
anderfolge dieser Abbildungen das eine Gitterdreieck in das andere überführt.

Hilfssatz 3. Es sei ein Gitter E gegeben. Dann gibt es höchstens

paarweise nicht äquivalente Gitterdreiecke, deren Umkreise in ihren Inneren höchstens 
k — 1 Gitterpunkte enthalten.

Beweis. Wir betrachten ein Gitterdreieck Ah bei dem der Kreis kt in seinem 
Inneren höchstens k — 1 Gitterpunkte enthält. Wir können offenbar annehmen, daß 
eine Ecke des Gitterdreiecks At der Anfangspunkt O der Basis Vektoren von F ist. 
Mit Wbzw. Y  bezeichnen wir die anderen zwei Ecken von At.

Wir sehen ein, daß X  und Y  nur in einem beschränkten Teil der Ebene um O 
liegen können. Wir zeigen nämlich, wenn z. B. X  außerhalb dieses Ebenenteiles ist, 
dann enthält k[OXY] mindestens k  Gitterpunkte in seinem Inneren für ein beliebiges 
Gitterdreieck OXY.

Wir betrachten die Ecke X, die ein Gitterpunkt ist, deshalb kann man X  in der 
Form X=mA+nB  darstellen, wo m und n ganze Zahlen sind. Wegen der Symmetrie 
an O genügtes, die Fälle m, n ísO und m^O, nsO  zu untersuchen.

Zuerst seien t n , n ^ 0. Ist X= kA  bzw. X=kB,  dann enthält der Umkreis des 
Gitterdreiecks Ai die Seite O X (Abb. 2) und damit auch die Gitterpunkte A, 2A, ..., 
(Je— 1)^ bzw. B,2B, ..., ( k —l)B, d. h. mindestens k — 1 Gitterpunkte in seinem 
Inneren. Folglich muß m ^ k  bzw. n ^ k  im Fall n —0  bzw. m=0 gelten. Es seien 
m, n > 0. Die Winkel <(V («/i)O j= (X(mA)0) sind wegen der normalen Darstel
lung von F nicht spitzwinklig. Deshalb enthält der Umkreis k, des Dreiecks 
At = OXY  das Dreieck X(nB)0  oder X(mA)0. Das bedeutet aber, daß k} mindestens 
m+n — 1 Gitterpunkte enthält. Es muß also m + n - l s f c - l  gelten. Daraus ergibt 
sich m + n ^ k , was bedeutet, daß X  nur ein zum Dreieck 0(kA)(kB) gehöriger 
Gitterpunkt sein kann.
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Wir betrachten den Fall m < 0, 0. Ist X=n(B — A), dann gilt n S k ,  weil
ki die Gitterpunkte B — A, 2(B — A), ..., (« —1 )(B — A) in diesem Fall enthält. Weil 
r  in normaler Darstellung ist, sind die Winkel y= a  +  <${OAB) und e = a +  <1 (OBA)
stumpfwinklig. Ist |m\ <  n, dann gilt <  (X (|/»| (B — A))0) = < (X((n — \m\)B)0) =  y >  y .
Deshalb enthält der Kreis kt entweder das stumpfwinklige Dreieck X{\m\{B — Aj)0 
oder 0((n — \m\)B)X, d. h. mindestens « — 1 Gitterpunkte. Es muß also «S/c gelten, 
was bedeutet, daß der Gitterpunkt X  ein Punkt des Dreiecks 0(kB)(k(B  — A)) ist.
Wenn n<|m | ist, dann gilt <  (X(n(B — A))0) = <  (X((n — \m\)Ä)Ö)=E>^. Folglich
liegen mindestens \m\ — 1 Gitterpunkte im Inneren des Kreises kt. Weil k t höchstens 
k — 1 Gitterpunkte in seinem Inneren enthält, gilt \m \^k. Deshalb kann X  nur ein 
Gitterpunkt des Dreiecks 0 (  — kA)(k(B — A)) sein.

Zusammenfassend ergibt sich also, daß X, Y  Gitterpunkte des durch kA, kB, 
k(B — Ä ),—kA, — kB, k{A —B) bestimmten zentralsymmetrischen Sechsecks sein müs
sen. Die Zahl der von O verschiedenen Gitterpunkte, die im Sechseck oder auf seinem

Rand liegen, ist 6 y ^   ̂j . Die Anzahl der die Bedingungen befriedigenden Gitter

dreiecke ist also höchstens 3 ^  2  ( ^ 2  wegen der Zentralsymmetrie und
weil O, X  und Y  verschiedene Punkte sind. □

Hilfssatz 4. Wir nehmen an, daß der Kreis k t bei einem gegebenen Gitter r  höchs
tens k — 1 Gitterpunkte in seinem Inneren enthält. Die Kreisanordnung L (r , rt) kann 
eine k-fache Überdeckung nur dann sein, wenn der abgeschlossene Kreis k, mindestens 
k + 2 Gitterpunkte, eingerechnet auch die Ecken von At, enthält.

Der Beweis geht auf indirekte Weise. Gehören höchstens k + 1 Gitterpunkte 
zum Kreis /c(, dann können höchstens k — 2 Gitterpunkte in seinem Inneren sein. 
Deshalb ist der Mittelpunkt des Kreises kt ein innerer Punkt von höchstens k — 2 
Deckkreisen. Wir betrachten das Dreieck At = OXY und die Kreise k(0 , rt), 
k{X, r;). Einer der Schnittpunkte dieser Kreislinien ist eben der Mittelpunkt von kt. 
Es gibt aber einen Punkt in der Nähe des Mittelpunktes von kt im durch k (0 , rt)
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und k(X ,ri) nicht überdeckten Teil, der höchstens (Je — l)-fach überdeckt ist. (Die 
um höchstens k — 2 innere Punkte geschlagenen Kreise und k(Y ,r ,) überdecken 
diesen Punkt.) □

H ilfssatz 5. Es sei k( der Kreis vom größten Radius oder einer von diesen Kreisen 
bei einem gegebenen Gitter F in normaler Darstellung, der höchstens k — 1 Gitter
punkte in seinem Inneren und mindestens drei Gitterpunkte auf seinem Rand enthält. 
Dann

1. kann man drei Gitterpunkte auf dem Rand von kt derart auswählen, daß das 
durch diese Punkte bestimmte Dreieck nicht stumpfwinklig sei und

2. ist L ( f, fj) eine k-fache Überdeckung, wenn wir mit ri den Radius von ki 
bezeichnet haben.

Beweis. 1. Wir nehmen indirekt an, daß beliebige drei von den Gitterpunkten, 
die auf dem Rand von Jct liegen, ein stumpfwinkliges Dreieck bestimmen. Das bedeu
tet, daß die Gitterpunkte auf dem Rand von im Inneren eines Halbkreisbogens 
liegen. Es seien C und D die Endpunkte dieses Bogens, weiterhin sei K; der Mittel
punkt des Kreises kt (Abb. 3). Dann kann man offenbar einen Gitterkreis k[CDU] 
vom größeren Radius als rt angeben, wo U£CD\Kt gilt und k[CDU] höchstens 
k — 1 Gitterpunkte in seinem Inneren enthält. Das widerspricht aber der Eigenschaft 
von kt, daß er den maximalen Radius hatte.

2. Auch in diesem Fall geht der Beweis auf indirekte Weise. Wir nehmen an, daß 
es einen Punkt P in der Ebene gibt, der durch die Kreise von höchstens
(Je — l)-fach überdeckt ist. Dann enthält der Kreis k(P, rt) höchstens k — 1 Gitter
punkte. Wir vergrößern k(P, f,) vom Punkt P ausgehend bis zu der Lage, in der 
schon ein Gitterpunkt auf seinem Rand liegt. Es sei Gx dieser Gitterpunkt. Gibt es 
keinen weiteren Gitterpunkt auf seinem Rand, dann können wir diesen Kreis derart 
vergrößern, daß Gx ein Randpunkt des Kreises bleibt und die Anzahl der inneren 
Gitterpunkte höchstens k — 1 ist. Am Ende kommt noch ein Gitterpunkt z. B. G2 
auf den Rand dieses Kreises. Liegen keine weitere Gitterpunkte auf dem Rand des 
Kreises, dann können wir seinen Radius mit Beibehaltung von Gx und G2 weiter 
vergrößern. Endlich kommt noch ein Gitterpunkt G3 auf den Rand dieses Kreises. 
Der Kreis k [Gt G., G3] enthält aber höchstens k — I Gitterpunkte in seinem Inneren 
und hat einen größeren Radius als r; . Das ist aber ein Widerspruch. □

Im folgenden reihen wir die Gitter in normaler Darstellung in Klassen ein. Die 
Gitter Fx und L2 in normaler Darstellung gehören zu derselben Klasse, wenn es
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Gitterdreiecke Aifl = OX1Y1 bzw. Aii2 = OX2Y2 inT 1 bzw. T2 gibt, für die 

X1 = mA1 + nB1 Yx — pAx + qBx

X2 = mA2 + nB2 Y2 — pA2+qB2

gelten und die Umkreise kiA und /ci>2 der Gitterdreiecke Aifl und d i>2 den größten 
Radius unter den durch Gitterdreiecke bestimmten Kreisen haben, die höchstens 
k — 1 Gitterpunkte in ihren Inneren enthalten.

Jedem Gitter können wir einen Punkt des rechtwinkligen Dreiecks OPQ im 
rechtwinkligen Koordinatensystem x, y = cosa  auf die in 1.2 beschriebene Weise 
zuordnen. Wir betrachten die Menge der Punkte im Dreieck OPQ, die zu dergleichen 
Klasse gehören. Mit Ht bezeichnen wir eine solche Menge.

Hilfssatz 6. Betrachten wir alle Gitter in normaler Darstellung, dann gibt es 
eine Zerlegung des Dreiecks OPQ in endlich viele Mengen HX,H 2, ..., Hs, wo eine 
beliebige Menge H, auch aus endlich vielen, einzeln zusammenhängenden und paarweise 
disjunkten Mengen Hi X, Hi 2, ..., Hir  bestehen kann.

Beweis. Gilt (x, cos oc)£Hh dann betrachten wir das dem Punkt (x, cos a) 
entsprechende Gitter J \ Im Gitter r  hat der Umkreis Jci eines bestimmten Gitter
dreiecks At=OXY  (Abb. 4) den maximalen Radius unter den Kreisen, die Umkreise 
von Gitterdreiecken sind und die höchstens k — 1 Gitterpunkte in ihren Inneren 
enthalten. Aus der Definition der Gitter vom gleichen Typ und aus dem Hilfssatz 3 
folgt, daß die Anzahl der Dreiecke At vom verschiedenen Typ, d. h. die Anzahl der 
Bereiche HX endlich ist.

Es seien X=mA+nB  und Y=pA+qB. Mit rf haben wir den Radius des
f?

. Auf Grund der FormelKreises k\ bezeichnet. Wir betrachten den Quotient T (lj
(3) kann man ifjnit den Seiten und mit dem Inhalt des Gitterdreiecks At ausdrücken. 
Der Inhalt von Ax ist cT(P), wo c eine positive rationale Zahl ist. Nach (3) ist

r? \X m r - \Y -X \*
{ ) ' T (r)  42c2r 3(r) '

Es ist | Y— X\2=s2A2 + t 2B 2 + 2stAB=s2a2 + t2b2 + 2stab cos a, wo s —m —p und 
t=n — q sind. Wir können auch \X\2 und \ Y\2 in ähnlicher Weise aufschreiben. Es 
gilt auch T(r)=ab sin a. Wir teilen den Zähler und den Nenner von (6) durch b'k
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Endlich bekommen wir mit den Bezeichnungen von 1.2, daß

Qi(x, a) =
(7)

ist.

(m2 x2 + n2 +  2m nx cos a) (p2x2 + q2 + 2p qx cos a) (s2x2 + i2 + 2 stx cos a)
42c2x3 sin3 a

Es ist klar, daß (7) im Fall der zu dergleichen Klasse gehörigen Gitter nur von x 
und a hängt. Aus (7) ergibt sich

( 8)

Qi(x, oe)x3 sin3a =  A;x3 cos3a + x 2 cos2«(ß;x2 + C,-) + 

+ x cos (x (Z) i x4 Ei x2 + Fi) -(- GjX6 -f- JiX^ -\~ KiX“ F L [.

Die Koeffizienten auf der rechten Seite, die wir mit dem Index i bezeichnet hatten, 
sind reelle Zahlen und für die Gitter, bei denen (x, cos a)£H, gilt, stimmen diese 
Koeffizienten nacheinander überein.

Ist /c>2, dann kann Ht nicht das ganze Dreieck OPQ sein. Deshalb gibt es 
einen Bereich HjQ'Fj), so daß /7;und Hj gemeinsame Punkte haben. Es sei 
f)H j. Dann gibt es ein nicht stumpfwinkliges Gitterdreieck Aj in dem Punkt P;j- 
entsprechenden Gitter, dessen Umkreis kj höchstens k —1 Gitterpunkte in seinem 
Inneren enthält und der größte oder einer von den größten unter den diese Eigen
schaft besitzenden Kreisen ist. Es gilt also f; = fJ- in dem Punkt P;j entsprechenden 
Gitter, folglich gilt auch

( 9 )  Q i  =  Q j .

Wir zeigen, daß die Kurven, die die Gleichheit (9) befriedigen, das Dreieck OPQ 
in endlich viele Teile zerlegen. Dazu ist es genug einzusehen, daß diese Kurven endlich 
viele gemeinsame Punkte haben oder übereinstimmen.

Es ist offenbar, daß wir auch Qj in der Form (7) aufschreiben können. Die 
entsprechenden Koeffizienten sind andere (oder nicht alle gleich). Mit Aj, Bj, ..., Lj 
bezeichnen wir diese Koeffizienten. Qi = Qj ist offenbar zur Gleichung

(10) (Qi(x, a) — Qj(x, a))x3 sin3 a — 0
äquivalent. Es sei

(11) Qij(x, a) (Q;(x, a) — Qj(x, a))x3 sin3a.
Auf Grund von (9) kann man (11) folgenderweise aufschreiben:

( 12)
Qij(x, a) =  AijX3 cos3a + x2 cos2ot(Bijx 2+CiJ) +

+ x cos a (Pij x4 + Eij x2 + Fij) + GtJ x8 +  Ji} x4 + Ku x2 + L,j,

wo Ajj, Btj, ..., Lij reelle Zahlen und nicht alle die Null sind.
Im folgenden verwenden wir die Bezeichnung j= c o s a . Aus (12) kann man 

sehen, daß die Gleichung Q;j(x, a)=0 in der Veränderlichen y höchstens dritten 
Grades ist.
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Zuerst nehmen wir an, daß 0 ist. Weil x > 0  ist, kann man die Gleichung 
Qij(x, a)=0 mit der Substitution

z =  y+  » H y + C „ )
3 AijX3

folgenderweise aufschreiben:
(13) z3 + 3pz + 2q =  0,
wo

(14)

und

(15)

_ _  2x3{BiJx2 +  Cij)3 x2(Bux2 +  Cu)x(Dijxi +EiJx2 +  Fu)
q 27 A'fjX» 3AfjXe +

GijX6 + JijXi + KiJx2 +  Lij 
Aux3

_  3AijX3x(Dijxi +EijX2 +  Fij ) —x'l(BijX2+ C ij)2 
P ~  3AfjXe

sind. Aus (14) und (15) kann man ablesen, daß q und p gebrochene Funktionen von 
xsind. Die Lösungen der Gleichung (13) sind zx=u+v, z2=e1u+e2v, z3=e2u + e1v, 
wo

3 ____________  3

(16) u =  1/ - q  + /q 2+p3 , v — ] /-q-~Yq2+p3
und el5 e2 dritte Einheitswurzeln sind.

Wir sehen ein, daß sich die Kurven zx, z2, zs höchstens injcndlich vielen Punkten 
schneiden oder gleich sind. Das bedeutet, daß die Kurven Qij(x, a)=0 das recht
winklige Dreieck OPQ in endlich viele Teile zerlegen. Gilt nämlich z. B. z2= z3, dann 
ist u{ex—e2) = v ( s 1 — e2), woraus u=v folgt. Auf Grund von (16) ist
(17) q2+p3 = 0
in diesem Fall. Wir substituieren q und p aus (14) bzw. (15) in (17). Mit äquivalenten 
Umformungen bekommen wir eine Gleichung 12-ten Grades für x. Es ist leicht zu 
zeigen, daß auch die Gleichheit zx=z2 nur dann auftreten kann, wenn (17) gilt.

Ist Ajj = 0 in (12), dann bekommen wir eine Gleichung höchstens 2-ten Grades 
in der Variablen y. Wir können auch diesen Fall ähnlich dem Fall A ^ t̂ O unter
suchen.

Weil es nur endlich viele verschiedene Quotienten Qt gibt, ist auch die Anzahl der 
Gleichungen vom Typ (9) endlich. Wir betrachten die Kurven, die die Gleichungen 
Q i  — Q j  bzw. Qr=Qs befriedigen und sehen ein, daß auch diese Kurven endlich 
viele gemeinsame Punkte haben oder übereinstimmen. In diesem Fall gelten also die 
Gleichungen

Qu (x, a) = A íj x3y3+ x2y2 (Bu x2 + Cu) + xy  (A; x4 + Eu x2+ Fu) +
+ Gij xe + Jij x l + K[j x2 Lj j — 0

Qrs(x, a) = Arsx 3y3+ x2y2(Brsx2+Crs)+xy(Drsx4 + Ersx2+Frs)+
( 1 9 )

+ Grsxe + Jrsx4 + Krsx 2 + Lrs = 0
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und wir suchen die Lösungen dieses Gleichungssystems mit zwei Unbekannten. Es ist 
bekannt, daß dieses Gleichungssystem im allgemeinen Fall endlich viele reelle und 
komplexe Lösungen hat. Es kann nur noch der Fall Vorkommen, daß die Kurven 
Q i j ( x ,  oc)=0, Q r s ( x ,  oc)=0 einen gemeinsamen Bogen höchstens 2-ten Grades und 
außerdem endlich viele Schnittpunkte haben.

Wir haben gezeigt, daß sich die endlich vielen Kurven, die die gesamten mög
lichen endlich vielen Gleichungen Qij(x, a)=0 befriedigen, in endlich vielen Punkten 
schneiden oder zusammenfallen. Das bedeutet aber, daß diese Kurven das Dreieck 
OPQ in endlich viele Teile zerlegen. Daraus folgt schon, daß jeder Bereich Ht höchs
tens aus endlich vielen Bereichen Ha, Hi%, Hir bestehen kann, die einzeln zusam
menhängend und paarweise disjunkt sind. □

Bemerkung 1. Auf Grund des Satzes 1 können wir eine Zerlegung des recht
winkligen Dreiecks OPQ machen. Aus dem Satz 1 und aus dem Hilfssatz 6 folgt, daß 
jeder Bereich Ht (vielleicht Hn, Hi2, ..., Hir) durch endlich viele Kurven begrenzt 
ist. (Diese Kurven befriedigen die Gleichungen vom Typ Qifx, a)=0.)

Wir betrachten die Gitter P, die dem Bereich Ht entsprechen. Nach dem Hilfs
satz 5 ist L(r ,  rt) eine k -fache Überdeckung und auf Grund des Hilfssatzes 2 ist die 
Dichte_mindestens Q fx, a)n. Deshalb müssen wir das absolute Minimum der Funk
tion Qi, (x, cos mit zwei Veränderlichen finden. Das ist eine unangenehme
Aufgabe. Auf die Erleichterung dieser Aufgabe bezieht sich der folgende Satz.

Satz 2. Wir betrachten die dem Bereich Ht entsprechenden gitterförmigen k- 
fachen Kreisüberdeckungen L{r,?i).  Dann ist die Dichte von L(F, r;) entweder auf 
dem Rand des Bereiches Ht oder in einem einzigen (wohlbestimmten) inneren Punkt 
von Hi minimal.

Vor dem Beweis des Satzes definieren wir eine Gittertransformation. Wir betrach
ten einen beliebigen Bereich H t . Das nicht stumpfwinklige Gitterdreieck wurde 
diesem Bereich (Hilfssatz 5) zugeordnet. At kann höchstens bei den Gittern recht
winklig sein, die den Randpunkten von Ht entsprechen. Der Umkreis kt von 2 t 
hatte den größten Radius unter den Kreisen, die Umkreise von Gitterdreiecken sind 
und die höchstens k — 1 Gitterpunkte in ihren Inneren enthalten. Die Ecken von Ät 
wurden mit O, X  und Y  (Abb. 4) bezeichnet, wo O der Anfangspunkt der Basisvek
toren des Gitters T (fx, cos ist. Wenn das Dreieck OXY nicht regulär ist, dann
hat es verschiedene Seiten. Wir nehmen an, daß z. B. |F |< |F — X\ gilt. Die Gitter
transformation gi wird für die Gitter definiert, bei denen (x, cos a)<E Ht gilt. Wir 
halten die Gitterpunkte auf der Gittergerade OX fest und wir bewegen den Gitter
punkt Y  auf einer zu OX parallelen Gerade derart, daß | Y\ wächst. Das Gitter F 
ändert sich entsprechend der Lageänderung von Y. Wir wenden die Transformation 
gi höchstens bis zu der Lage an, wo der dem Gitter entsprechende Punkt ein Rand
punkt von Ht ist oder | Y\ = | Y — X\ gilt. Mit g f1 bezeichnen wir die inverse Trans
formation von gi. Auch g f 1 wird bis zu einer der obigen zwei Lagen angewandt.

Beweis des Satzes 2. Wir betrachten die Gitter, für die (x, cos)oc£Hi gilt. Wir 
haben das nicht stumpfwinklige Gitterdreieck At — OXY  diesen Gittern zugeordnet. 
Das Dreieck At kann nur höchstens im Fall der Gitter rechtwinklig sein, die den 
bestimmten Randpunkten von Ht entsprechen. Wir nehmen ein Gitter, für das der 
entsprechende Punkt (x, cos a) ein innerer Punkt von Ht ist.
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Aus der Definition der Transformationen gt bzw. g f1 folgt, daß der Inhalt T 
des spitzwinkligen Gitterdreiecks At konstant ist. Weil Ät ein Gitterdreieck ist, gilt 
T —cT(r), wo c>0 eine rationale Zahl ist.

Ist |T |-= |T— X\, dann verwenden wir die Transformation gt. Der Umkreis
radius des Dreiecks OXY  nimmt ab, weil Y  sich in Richtung der Mittelsenkrechte 
von OX auf der zu OX parallelen Gerade bewegt. (Die Abnahme bedeutet eine streng 
monotone Abnahme auch in diesem Fall.) So nimmt r; ab und auf Grund der obigen 
Überlegung nimmt auch Qt ab. Ebenso ergibt sich die Abnahme von Q, im Fall 
| T| > | T— X\, wenn wir die Transformation g f1 anwenden.

Während der Anwendung dieser Transformationen können zwei Fälle auftreten.
1. Wir erreichen ein Gitter, bei dem der entsprechende Punkt (x, cos a) auf 

dem Rand von Ht liegt.
y ‘

2. Es gilt |F | =  |F — X\ für die Seiten des Gitterdreiecks A{. Wir untersuchen 
den letzteren Fall. Es sei <5:= ^ j b .  5). Dann gilt

( 20)
r? _  r\c_ 

T (r ) T
r^c

1 -9 • n ^ 2.Ő—  r i  sin 2 d  sin1“ — -—2 ‘  2

c
sin ö cos3 Ő ’

wo < 5 £ |0 , * st- Wir betrachten die Funktion /(d )= sin  ö cos3 ö, <5£|o, -^-j. Aus
ihrer ersten Ableitung /'((5)=cos2 <5(1 — 4 sin 2 Ő) kann man ablesen, daß /(<5) im

Fall wächst und /(d) für <5 abnimmt. Ist <(OTZ)<-^-, dann halten6 6 j
wir die Seite OX fest und bewegen Y  auf der Mittelsenkrechte von OX derart, daß 
|F | abnimmt. Die entstehenden Dreiecke werden gleichschenklig und <5 wächst 
inzwischen, d. h. (20) nimmt auf Grund des vorhergehenden ab. Folglich bekommen 
wir entweder ein Gitter während der Anwendung der vorigen Transformation, bei 
dem der diesem Gitter entsprechende Punkt (x, cos a) auf dem Rand von //< liegt,

— 71oder das Dreieck At = OXY  regulär wird. Ist < (O T Z )> — , dann bewegen wir
Y  wieder auf der Mittelsenkrechte von OX, aber in die umgekehrte Richtung, d. h. | Y\ 
wächst. <5 nimmt ab und deshalb nimmt auch (20) ab. Auch hier erreichen wir einen 
der obigen zwei Fälle. Ist das Dreieck Ax= O XY  regulär, dann entspricht ein 
wohlbestimmter Punkt (| Y\ = \Y —X\ = |A |) diesem Gitter im rechtwinkligen Koor
dinatensystem x ,y=  cos a. □

3
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Bemerkung 2. Q t kann also in einem inneren Punkt von H t nur dann minimal 
sein, wenn das Dreieck regulär ist. In diesem Punkt rechnen wir den Wert von 
aus und Q t n  gibt die Dichte der dünnsten Kreisüberdeckungen bei den Gittern an, 
die den Punkten von Ht entsprechen.

Die andere Möglichkeit ist, daß die stetige Funktion Q h  ( x ,  cos a)€f/; mit zwei 
Veränderlichen in_einem Randpunkt von H t ihr Minimum annimmt. Auf dem Rand 
von H i  ist aber Q t eine Funktion mit einer Veränderlichen. H t ist nämlich durch

Y _ _
c o sa =  — oder x = l  oder cosa= 0 oder durch die Kurven vom Typ Q i  =  Q j
begrenzt. In diesen Fällen hängt Qt von einer Veränderlichen ab, die wir in einem 
bestimmten Intervall untersuchen müssen. In den ersten drei Fällen geht das einfach. 
Im letzteren Fall (Q i  = Q j ) können aber technische Schwierigkeiten Vorkommen. 
(Z. B. es ist nicht zweckmäßig die Funktion mit einer Veränderlichen, die wir aus der 
Gleichung Qi = Qj bekommen, in expliziter Form aufzuschreiben.)

Bemerkung 3. Aus den Sätzen 1 und 2 folgt, daß wir die Bestimmung der 
dünnsten gitterförmigen /c-fachen Kreisüberdeckungen auf die Bestimmung der 
Minima von endlich vielen Funktionen in einer Veränderlichen zurückgeführt haben, 
und wir müssen das absolute Minimum unter diesen Minima auswählen. Der Hilfssatz 
5 garantiert, daß die diesem absoluten Minimum entsprechende gitterförmige Kreis
lagerung (oder Kreislagerungen) eine /c-fache Überdeckung bildet.

Als Fortsetzung dieses Artikels erörtern wir die dünnsten gitterförmigen 6-, 7- 
und 8-fachen Kreisüberdeckungen. In diesen konkreten Fällen verfolgen wir nicht 
den im vorhergehenden geschriebenen Gedankengang Schritt für Schritt. Die Ursache 
ist, daß die technische Ausführung mit einer kleinen Änderung einfacher ist. Diese 
Änderung ist sehr kurz die folgende. Wir müssen nicht entscheiden, ob der dem 
Bereich zugeordnete Kreis k ; der größte unter den Kreisen ist, die durch Gitter
dreiecke bestimmt sind und die mindestens k — 1 Gitterpunkte in ihren Inneren

RZjl V̂TZ
enthalten. Es gilt nämlich ^  für jeden Gitterkreis kt mit den obigen zwei
Eigenschaften (s. den Hilfssatz 2). Dann schätzen wir den Quotient Qt von unten. 
Das Wesen der Methode bleibt aber auch bei den Untersuchungen in den konkreten 
Fällen erhalten.
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ON TWO PROBLEMS OF KATONA CONCERNING SUMS
OF VECTORS

HA LE ANH

In [1] Katona proved certain inequalities concerning the length of the sum of 3 
random vectors. He used combinatorial and geometric tools. He proved two lemmas 
concerning sums of real numbers hoping that they are true for higher dimensional 
vectors, as well. We prove that the lemmas are true for two-dimensional spaces, but 
not for three- (or higher-) dimensional ones.

This means that some of the results of [1] can be extended for two-dimensional 
vectors, but (unfortunately) the method does not work for higher dimensions.

Let us first consider the question raised in Lemma 2.2 of [1]:
Theorem 1. Suppose ak, ..., a ffR n with |a;| s l  ( l^ /^ 5 ) .  I f  n = l or 2 then

(1) \ai + cij + ak\ ^  1
holds for at least one o f the triples different from (1,2, 3), (1, 2, 4) and
(3, 4, 5). This is not true i f  n ^3 .

The other theorem answers the question raised in Lemma 2.4 of [1]:
Theorem 2. Suppose at , a2, a:i, bk, with |a;|, k l  —1 ( l^ z á 3 ,  1 S j^ 2 ) .

I f  n — 1 or 2 then all the inequalities
(2) <  1
(3) k  + k  +  k l <  1 (1 ^  i S  3)
(4) k  +aj + bk 1 1 (1 S  i <  j  =§ 3, 1 ^  k => 2)

cannot hold simultaneously. This is not true if  «S3.
The positive parts of both theorems are particular cases of the following lemma.
Lemma. Suppose c1, c2, c3,dd  R2 with k lf e l  ( l^ z ^ 3 ). Then at least one o f the 

inequalities
(5) \ck + c2 + c3\ sr 1,

(6) \d+ck\ S  1

(7) \d + c2\ ^  1
(8) \d + c3\ S  1

holds.

1980 Mathematics Subject Classification. Primary 51M25. 
Key words and phrases. Random vectors, length of vectors.
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Proof. As rotation does not change the length, it can be supposed that the second 
component of d is zero: d=(8, 0) and its first component <5s0. Introduce the nota
tions C;=(a;, /?,) ( l s i s 3 ) .

Assume that (6) is not true. If oq^O, then the angle between c1 and d is S90° 
therefore the length of their sum is S |c. |a i .  By this contradiction we may suppose

(9) «! <  0.
On the other hand, the contrary of (6) implies that the absolute value of the second 
component of d+c1 is <1. However, this is nothing else but ßt . Hence we have

(10) i/y <  l.
Assume now that (7) is not true. By the same reasoning as above,

(11) a2< 0  
and

( 1 2 )  \ß2\ «= 1

can be supposed.
Finally, if (8) is not true then

(13) a3 <  0 
and

(14) \ß3\ <  1 
should hold.

Consider now the left-hand side of (5):
|c i +  c2 +  c3| =  (a1 +  a2 +  a3)2 +  ( / i1 +  /?2 +  /f3)2 =

— °ti +  ß i  + al + ß t  +  al +  ß t  +  2<Xi a2+ 2  oq a3 +  2a2 a3 +  2 ß 1ß 2-\-2ß1ß 3-{-2ß2ß 3. 

Using \a-ß, |u2|, |u3|^ l ,  (9), (11) and (13) we obtain that this sum is greater than

(15) 3 + 2ß1ß2+2ß1ß3 + 2ß2ß3.

If all ßs have the same sign then the latter sum and consequently \a1+a2 + az\ 
are >  1. If exactly two of the ßs are negative, multiply all second components by 
— 1, so — l< /f3<0, OsS/h, /?2<1 can be assumed by the symmetry of ßs in (15). 
Using these assumptions, the following inequalities are obtained for (15):

3+ 2ß1ß2+ ß 3(2ß1+2ß2) i s  3 + 2ß1ß2- (2 ß 1 + 2ß2) =

=  3 - ß 2( 2 - 2 ß 1) - 2 ß 1 >  3 - ( 2 - 2 ß 1) - 2 ß 1 = 1.

This proves that (5) must hold if none of (6)—(8) holds. The proof is complete.
«EL '

P r o o f  of Theorem 1. Apply the lemma with ty  =  a, , c2=a3, c3 =  a4 and d=  
=  a1+ a 5. Thus \ai+aj+ak\ S i  holds with one of the choices (i,j,k )= (2,3,4),
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(1, 2, 5), (1, 3, 5), (1, 4, 5). This is actually a stronger statement than the first part of 
Theorem 1.

The second part is proved with the following construction: 

ax = (1, 0, 0), a2 = (1, 0, 0),

03 “  ( - Y ’/ l T -4 6 ’ - 2J/e ) ’ =  [ - j ,  - j / | - - 4 e ,  — 2)/e j ,

a5 =  ( - l - £ ,  0, \re ),

where It is easy to see that |fli+fl2 +fl3|> l ,  |űíi+ a2+ űt4| >1, |a3+ a4+ a5|>
>  1 but all other triple-sums have a length <  1. The proof is complete.

Proof of Theorem 2. To prove the first part of the theorem, take c1=a1, 
c2=a2, c3=a3, d=b1+b2. By the lemma, (2) or (3) should be violated. This is a 
stronger statement than the first part of the theorem.

The second part is proved with a construction of the 3-dimensional vectors 
satisfying |flil, |fl*|, |a3|, \h\, l*al ^1, (2), (3) and (4):

L  i/1 i/ 1 £2 1, a2 — ŝ, — j'/l-*2 T/ l-e2l{ ’ \ 2 ’ 2 ) 2 ’ [' 2 J
a3 = (e, 0, ]/1 —e2) 

bx = (1,0,0), b2 =  ( - ! - £ ,  0,0).

It is easy to see that all these conditions are satisfied for £ 
complete.

4 ^ 2 - 5
7 . The proof is
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ON A CONJECTURE OF G. O. H. KATONA

Á. VARECZA

Abstract

Let H  be a finite ordered set (say, different real numbers \H\ =«), however, their ordering is 
unknown for us. In this paper we solve the following problems:

If A = { ilt  fs, . . . ,  4 } (1 S i , a n d  jc is an arbitrary element of / /  then the minimal 
number o f comparisons needed to decide whether the index o f element x is in A or not (say in decreas
ing order) is n— 1.

If x, y  are arbitrary elements o f H  then the minimal number o f comparisons needed to decide

whether the indexes o f elements x, y  are p, q or q, p  in case 1 - [ t 1 is n +  q — 3.

1. Introduction

Let H ={z1, z2, ..., 2 ,,} be a finite ordered set (say, different real numbers). 
However, their ordering is unknown for us. There are many situations where we want 
to obtain certain information concerning H  using pairwise comparisons of the ele
ments.

The simplest question of this type: Which is the largest (smallest) element in H. 
It is easy to prove that any strategy finding the largest element needs at least n — 1
comparisons. Ira Pohl ([4]) proved that at least n + [^-| — 2 (fJT| denotes the smallest
integer &r) comparisons are needed if we want to determine the largest and smallest 
elements simultaneously (see also [3], [5], [7], [9]). In a recent paper [7] it is proved
that we need n + {n s  3) comparisons if we want to decide only whether
x! and x2 are the largest and smallest elements. If we want to decide whether x 1 is the 
largest and x2 is the smallest element in H  we need at least w + — 3 (h^ 3) and
whether xx, x2 are neighbouring elements in / /  we need at least 2(n—l) (n S 3) com
parisons ([8]).

To find the two largest elements n + flogo/?] — 2 comparisons are needed ([2]) 
(for similar results see also [1], [3], [5]). Moreover it is proved [6] that it is impossible 
to find a pair of consecutive elements with a smaller number of comparisons.

1980 Mathematics Subject Classification. Primary 05A05; Secondary 05A15. 
Key words and phrases. Finite ordered set, searching, optimal strategy.
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We can easily prove that if x is an arbitrary element of H  and we want to decide 
whether x is the z-st in H  (say in decreasing order, lSz'^rc) we need at least n— 1 
comparisons. G. O. H. Katona [10] raised and proved the following: Let c1; c2, c„ 
be the elements of H  in decreasing order and let A={rx, r2, ..., rk} ( I s r ^ r ^  
<  The question is whether the index of x  is in A or not. Katona proved
that we need at least n — 1 comparisons ([10]). In this paper we give a new proof.

G. O. H. Katona raised the following problem: if x, y  are arbitrary elements of 
IT and we want to decide whether x is p-st, y  is q-st or x is q-st y  is p-st in H  how many 
comparisons are needed. He conjectures that n+q — 3 comparisons are needed at
least for this in case of 1 sip<qs±j-^-J. In this paper we prove that the conjecture of

G. O. H. Katona is true.

2. Notations, definitions

For the present purposes it will be better to use the notations x —zx, i.e. H=  
=  {x, z2, z3, ..., z„} and A = {r1,r2, . . . ,r k)  (1 The question
is the following: whether the index of x is in A or not.

The first pair to be compared is denoted by S0=(c, d). If the result of the com
parison is c > J  then the value of the variable sx is 1. In the opposite case o l ,  
s1==0. The choice of the next pair S, (cL) depends on e1. Suppose S1(e1) = 
=0(E i),/(%))•

Define s2 to be 1 if <?(£i) =*-/(si) and to be 0 otherwise. Continuing this procedure 
in the same way

(1) Si_1(s1, S2, ..., £j-i)

is defined for some 0, 1 sequences ex, s2, ..., with the restriction that if 
‘S’i-iÍH» ■■■» ß;-i) is defined then S,i_2(e1, e2, ..., e,-_2) is defined, too. The 
value of e; is 1 or 0 according to whether the first or the second member is larger. 
A set of questions given in this way will be called a strategy suitable for deciding the 
question “whether the index of x is in A or not” iff for all sequences ex, e2, ..., e( 
when

(2) e2, ..., Ej-i) is determined, but
(3) St(s1, e2, ..., 8;) is not

rthen answers e1,s2, . . . , e l (together with the questions S0, S1(s1), ...,
(4) j St e2, ..., £;_i)) give a unique reply to the problem: the index of x is in 

M or not.

We use the notation i f  {A) for such a strategy. We say that the strategy i f  (A) 
is finished for the sequence e1, e2, ..., et if the conditions (2)—(4) are satisfied. The 
maximum length of the sequence ex, e2, ...,£; finishing the strategy is called its 
length. It will be denoted by L(Sf(A)).

Denote by Ti(e1,s2, ..., £;) the inequality set up from the pair S^^Ej, e2, ... 
on the basis of the answer st. Now we can express condition (4) in a modified way: The
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inequalities
(5) 7\(£i)> T2(ex, e2), Tl(e1, e2, ..., a,)

uniquely decide whether the index of x is in A or not. Situation (ex, e2, e,) of
£A(A) is the situation after answering the question s2, , e^j). That is,
we have the inequalities 7 \ (ßj), ..., Tt(ex, e2, . . . , £ , )  and denote it by <f; .

Similarly we can define the strategy suitable for deciding if x, y  are arbitrary 
elements of H, then the indexes in H  of the elements x, y  (say in decreasing order) are
p, q 1̂ or not. Denote this strategy by £f(p,q).

3. The results

We shall prove the following theorems:

Theorem 1.

(6)

Theorem 2. 
( 7 )

mm L(S?(A)) = n - 1 (1 \A\ <  rí).

min q)) = n + q — 3

i f 1

Proof of Theorem 1. It is easy to find a strategy £A (A) satisfying (6). We com
pare all the z's with x. If the results of the comparisons are as follows : the element x 
is larger in n—is cases (1 ^ s ^ k )  then x is the rs-st otherwise not. The number of 
comparisons is n— 1. This proves that min L(£A(A))^n—\. It remains to prove

( 8) L{ST(A))^n-\
for any strategy <Ŝ (A). This will be done in the following way:

An algorithm will be given which determines a branch of the strategy, that is, 
a sequence ex, s2, ..., et finishing it. This branch will have a length of S h - 1 .  The 
algorithm determines the s's recursively. Partitions of H — {x} will be used. The parti
tions will also be defined recursively for any situation (sl5 s2, ..., s,) along the indi
cated branch. The branch and the partitions will be determined simultaneously. 
A partition has 3 classes:

H - { x } = A U K 1 U N 1.
At the beginning A° = H — {x}, K°=N°=Q. We now introduce the concept of 
graph-realization. Correspond the elements of the set H  to the vertices of a graph G. 
Let a comparison be an edge of G between the corresponding vertices. Let the answer 
be the orientation of this edge in the following way: if we compare two elements, 
say c and d in some state of G and the result of the comparison is o d  then we 
direct the edge from c to d, conversely, when c<d  we direct the edge from d to c. 
In the state (els ..., s;) let G‘ denote the graph derived in this way. By the above
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correspondence we uniquely associate an oriented graph to all states of Of (A). It 
follows from the correspondence that an arbitrary state (^ ,£ 2 , ...,£,) of .(f ( A )  
the relation e > f  is realized if and only if an oriented path leads in G‘ from e to / .  
Denote Gl the graph obtained from G‘ by cancelling the direction of edges.

In the situation (sj, s2, e;) the elements of N ‘ (K‘) are those elements, which
are greater (smaller) than x on the basis of and let A‘= H — ({x}U!ViU.Ki). We 
distinguish two cases:

C ase I. rs£A, rs=s for all /-s. Because of the condition < r2< ... < rk this is
equivalent with the fact that rk=k.

C ase II. There exists such rv (rv£ A )  for which rvA v .  Let rt be the first among 
these that is rtA t  but rs = s ,  if s < t .  Suppose that £., s2, ..., £; and N \ K \ A1 
are defined. Then the next description determines £i+1 and !Vi+1, K i+1, Ai+1. Let 
SjCfij, ..., £j)=(g, h). In the following we do not mention the cases which follow 
from the cases to be discussed by changing the roles of the elements g and h. We 
do not write the corresponding sets Ai+1, N i+1, K i+1 neither, as they follow from

g, h i A 1 £i+1 =  arbitrary, except if
(1) g, h i N 1 it is determined by the

S ,h iK \ extension of S \ .

(2) g£ N ‘, h i  A  UK e i +1 =  1

(3) g iA , h iK ' £i+i = 1
(4) g = x, h iN 'iK 1) £*+i = 0(1)

(5) g = x, h iA 1.

In Case I. £i+1=0, if |IV!’| + \A \\^ k —2, where the elements of A{ are the ele
ments from A' being greater than h on the basis of et and £i+1 = 1 otherwise.

In Case II. £i+1 =  l, if \K '\+ \A\\^n — rt—\, where the elements of A\ are 
the elements from A' being smaller than h on the basis of and £i+1 = 0 otherwise.

In this way we have defined a branch sl5 £2, ..., £, of the strategy -A"(A). It 
will be denoted by P(A). The length \P{A)\ of P(A) is l. We shall prove /=  \P(A)\ Li 
^ n  — l.

We discuss the cases I and II separately.
C ase I. We prove that \Nl\ ^ k — 1. Suppose that |iV!|> L — 1 in the contrary  

to  our assum ption.
Let (e,, e2, ..., £j) be the situation for which \N '\ s k — 1 and |iVi+1|> ^ —1 

hold. Obviously, there exists such situation. Let Si(e1, s2, ..., £;)=(«, b). It follows 
from the definition of P(A) that a= x  or b =x. Suppose that a —x  and from assump
tion \Ni\ ^ k —l it follows that b£Al and £;+J=0. But we use point (5), and then 
£i+1 =  l. From this contradiction it follows that 1.

Now we prove that \Kl\^ n  — k.
Suppose that \Kl\>n — k  in contrast with our assumption. Let (el5 e2, ..., ej) 

be the situation for which \KJ\^ n  — k, |AiJ’~1| >n — k  hold. Obviously, there exists
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such situation. Let SJ(e1, ..., £j)=(c, d). From the definition of P(A) it follows 
that c= x  or d= x  holds.

Suppose that c= x  and — as it is easy to see— d£ AJ, that is we use (5). Because 
e^+1= l  for this reason \N3\+\A{\>k and — according to our assumption — 
\K3\ +  | 4 | S h —k, that is

|A '| + I4 l s f c - 1

\KJ\ + \A(\ S  n - k

and from these inequalities it follows that

\NJ\ + \K'\ + \A{\ + \Al\ S B - 1 .
But this is impossible, because

N JUA{{J K]\JA{ g  H - { x ,  b}.

The contradiction proves our statement.
We shall prove that \Kl\= n—k.
Suppose that \Kl\^ n  — k. As \Kl\^ n  — k  holds therefore \Kl\<n — k  and 

|A:'| +  |A '|< « -1  that is A '^0 . Let a£A‘. From the definition of P(A) it follows 
that neither x > u  nor x < a  follows from Consequently if elements of A1 are 
smaller (larger) than element x  then the index of x is (is not) in A. It follows from this 
that the Sf(A) is unfinished. The contradiction proves our assertion. Consequently 
\Kl\= n -k ,

Let — say — (sj, s2, ..., e() be that situation when |A‘| y^n—k, |A,+1| —n hold. 
Suppose that

5i(ei,e2, ...,£,) =  (a,b).

We can easily see that a= x  or b —x  holds and — say — a=x  then b£.Al and we 
use(5). The ei+1 = l because I K ^ n  — k, \Ki+1\=n — k and in this way

1̂ *1 + 141 a f e - l  

I*‘| + I4 l =  n - k - 1
that is

On the other hand 

holds, therefore

\N ‘\ +  141 + 1^1 + |4 I  S / i - 2. 

1^1+141+1^1+141 s » - 2  

1^1 +  141 + 1^1 +  141 = n -2 .

We prove that the graph G‘+1 is connected.
From the definition of P(A) it follows that there are directed paths in G‘ from 

elements of N ‘ to x and there are directed paths in G‘ from element x to elements of 
K l and simultaneously there are directed paths in G‘ from elements of A\ to b and 
there are directed paths from b to elements of 4  an£l x>Z+<fi+1. That is G‘+1 is 
connected and has at least n — 1 edges. It follows from this that in tfi+1 there are at 
least M —1 inequalities and so there are at least n — \ inequalities in Sh too. With
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this we have proved, that in Case I

L(Sr{Äj)*=n- 1
holds where Sf (A) is arbitrary.

C ase  II. We proved that \Kl\ ^ n —rt. Suppose that \Kl\>n—rt in the contrary 
to our assumption.

Let (ex, e2, ...,£;) be the situation for which \K‘\ ^ n —rt, \Ki+1\ > n—rt hold. 
Let

Si(e1,£2, ...,£f) =  (a, b).

It follows from the definition of P(A) that a—x  or h = x  holds. Suppose that a —x  
and — as it is easy to see — b^A \ But we use (5) and £i+1=0, \Ki+1\ ^ n —rt. 
From this contradiction it follows that \Kl\ ^ n  — rt.

We prove that |JV*| = r(— 1. Suppose that |W |> rt — 1.
Let (fij, e2, ..., £;) be the situation for which |7V‘| =rt— 1, |Ai+1| 

and let
S’iifii, e2, ..., £;) =  (a, b).

hold

We can easily see that a= x  or b= x  and if a —x  then b£A‘. We use (5) and 
£.+1= 0  (since |iVI+1|> r (- l )  so

\K‘\ + \ A i \ > n - r t - l
that is

I^'l + Mll s n - r , .

According to our assumption |7Vi+1| >rt — 1 that is |iV'| +Mil +1 1 and
IJV*! +  MU +1 Sr,. From the inequalities |JV‘| +  Mil +1 >r„ \Kl\+ \A \\^n  — rt it 
follows that

IWI +  Mil + M'l + MlI + l s  n 

and this is a contradiction, that is JiV1! — 1 is impossible.

We prove that |A!|< r t is impossible, too.
Suppose that 1. Because \Kl\^ n  — rt for this reason |IV!| +1̂ *1«=:

< h- 1 and so AlA&. If Ui(«2) elements of /!'(«, + h2 =  M,I) are smaller (larger) 
as x  and \Nl\+n2=rt — 2 then the index of x $ A and liV'l+n2= rt—1 then the 
index of x£A. It follows from this that the £A(A) is unfinished. The contradiction 
proves our assertion and so |A ,|= /'f—1.

Let (ex, e2, ..., £;) be the situation when liV 'l^r,— 1, |Ai+1| —rt— 1. Suppose
that

S|(£i, •••, £;) =  (a, b).

It is easy to see that a= x  or b = x  and if a= x  then b£A‘ and we use (5). Because 
\N‘\ ^ r t—l, |IV‘+1[ =rt — 1 for this reason £i+1 =  0 and \Ki\-\-\A\,\>n — rt— 1 
that is \Kl\+\A2\^ n —rt . Since

IJV‘l + Mil + 1 = r , - l
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for this reason
l^ 'l + Mil + IW'l +  Mil +  l S n - 1 .

On the other hand
W 'IU JU K 'IU J g  H -{ x ,  b}

therefore
\Ki\ + \Ai2\ + \N i\ + \A [ \= n -2 .

We can easily see that the graph Gl is connected and from this

L{Sf(A)) S f l - 1
follows.

The proof of Theorem 1 is completed.
P roof of T heorem 2. It is easy to find a strategy which satisfies (7) (strategy of 

Katona). We compare x and y. Suppose that x>y. After this we compare the ele
ments H —{x,y) withy. Suppose that y < a 1; y-=a2, . . . ,y < a ; and y>~bx, y >  

...,y> b j(i+ j= n  — 2). If j= n —q then they is g-st element in if, otherwise not. 
If j =n — q then we compare element x  with elements a1, ..., af. If x  is smaller in 
p — 1 cases, the x  is p-st and y q-st element in H  otherwise not. The number of com
parisons is n+q — 3.

This proves
min L (^ (p , q)) = n + q — 3.

It remains to prove
(9) L (£ f(p ,q ))^  n + q - 3

for any strategy. This will be done in the following way.
An algorithm will be given which determines a branch of the strategy that is 

a sequence elt s2, ..., e, finishing it. This branch will have a length +q — 3. The
algorithm determines the e’s recursively.

Partitions of H — {x, y} will be used. The partitions will also be defined recur
sively for any situation (slf ..., ef) along the indicated branch. The branch and the 
partitions will be defined simultaneously. We suppose that (p, q) + ( 1, 2) because if 
(p, q)=(l, 2) then — we can easy see — (9) hold. A partition has 7 classes: Nh, 
N{2, N}, K ‘, , Ko2 , K{, A'. The heuristic meaning of the classes is:
N hU K ',: the set of elements which will be greater than both x and y ;

Ä&UA& •' the set of elements which will be greater than the elements y and smaller 
than element x;

K{ U N£: the set of elements which will be smaller than both x and y.
At the beginning A °= H - {x, y), A&, JV?„ N§, K21, A2°2, K"=9.

Let S0=(a, b). If x, y is not in S0 and — say— a>b then a=a*, b£Kl and 
incase q —p + l a*^N2l and incase q+p + l a*€N22. Suppose that some element 
b first occurs in the St(e1, e2, ..., £;).

If b is larger and |Ánl<p — 1 then b ^ N if1, if |An| =p— 1 and |A(2|<  
^ q —p — 1 then b^Nfö1, if |JVíi|=p— 1, \N[2\= q—p —\ then b£N2+1.

If b is smaller and \K[\<n—q then bdK{+1.
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If there is not a* and \K{\=n — q, { K ^ ^ ^ q —p —l then b£K2£l and if there 
is not a* and \K2f'l \= q—p —l then bdKl}1.

If there is an a* and \K[\=n — q then if a*£N{, then bdK lf1 (in this case
q = p + !)•

If \K \ \= n -q - \ ,  a*£Ni2 then a*£Ki?\ b£K[+\
If \K[\=n — q, a*£Kh and if then b ^K lf1 and if \Kiil\= q—p —\ then b^K l}1 
Let

N i + 1  =  N [?1U A^2+1 LUVj+1

K i+1 = K l ^ U K ^ U K ^ 1
From the definition of the sets it follows:

If — say — b ^ a *  and b a N ^ N ^ ,  ...) then b 6N [ x (N[2, ...)(/•>/).
If  then K ^ \ J K L = ^ ) .
If ^ 2 2 ^ 0  then jV(2U.W| =  0. 
Suppose that s1, b2, . . . , eí and N h  

sets.
Let S'ife, e2, . . . , E i )  =  ( g ,  h ) .
(1) g,h£A‘

(2) gZN^K1), h e A ‘

(3) g € N i i , h£NÍ2{JNÍ[JKi

(4) g d N ‘2, h Z N t V K 1

(5) g £ N l h£K ‘

(6) k 22, hZK^UKi

(7) 0^21^ h£K l

(8) g, hCNil? N&, N2,

K L , K2i , K{

( g , h ^ a * )

(9) g = x, h =  y
(10) g = x, h t N h U K h

( h c N l J J K ^ J K l U N i )

(11) g =  x, h e A 1

(12) g =  y, heKiUN i
(h£K21UK22 U U N[x)

(13) g  =  a*(a*^Nh), h$Nl t
(hdNi i)

... are defined. We define t;,+1 and by this

E> + 1 = 1

£i + l — 1(0 )

£i + l = 1

£i + l ~ 1

£i + l = 1

£i + l ~ 1

£i + l = 1

£i + l = arbitrary, except if it is determined

by the extension of S t

£i +1 =  1 
ei+i -  0(1)

ei+i =  1 if I K l V K l ^ n - p - l  and 
ei+i =  0 otherwise 

«« + ! =  1(0)

«1+1= 1(0)
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(14) g = a*(a*€NÍ2Ö K ‘1) st+1 =  0(1)

(hi Nh U {x} U Nh U /F)

(15) g = y, h i A1 6(+i =  0 if IÂu U N h \< q -2  and si+1= 1
otherwise.

In this way we have defined a branch el5 e2, e i of the strategy. It will be denoted
by P(p, q). The length \P(p,q)\ of P{p, q) is /. We shall prove l^ n + q —'i.

It is easy to see that for the nonempty sets there are the following possible cases:

(I) NL, Nil, KÍ, Nh

(II) Nh, Nil, N{

(III) Nii, N h , Nh,,K{

(IV) Nh, N h , NÍ

(V) Nh, N h , NÍ, Nh

We illustrate these cases in Fig 1.

The following lemma will be stated with reference to Fig. 1.
Lemma 1. An arbitrary element a ( iA ‘) cannot act as smaller (greater) 

together with an element from a subset being on a lower (upper) level than the subset 
which we have taken the element a from.

4
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Proof. Suppose that — say in the case (III) — a<b£$i and — say — a£N'{2. 
Suppose that

Sj(e1,e2, ej) = (a, b) ( j  <  i).
From a£N{2 it follows that a£AJCN{2 and a£N{£1. If a£AJ then — because of 
a<b  — and a^N[2. This is a contradiction. From this it follows a§.As.
Thus a£N{2. Because gj-+1= 0 therefore we use (3), (8), (10) or (14) and from this 
é€^iU{x}UIV(2, Z>GjV('+1U{x}UíV(2+1 and égJVÍiU (x}UIVÍ2 follow.

Suppose that a>b£<%i and a£N[2. If
Sj(s1,e 2, £j) = (a, b) (j  <  i)

then — obviously — a£AJ'U N{2.
If a£Aj then we use (1), (2) or (11). In Case 1 and 2 b£AJUKJ, b£KJ+1, b£Kl. 

In case (11) b=x. Because a;»x therefore \K)V}K{x\^n~p— 1 and a ^N if1 
follows. This is a contradiction (we supposed a£N[2). Incase a£AJ the statement is 
true.

If a£N{2, then — because eJ+1 = l — we use (2), (4), (12) or (14) and b£AJU 
UN {UK jUN{2U {>’}. But NJ2=KJ22=Q thus b iA ^ K ^ C K iC N fC  {y}, and 
öC^2i"1Uíi{+1UiV(^1U {y}, b^KlfiJKiydN^d {y}. This is the proof of the lemma 
if a£N[2.

We can prove the statement of lemma if a is taken from some other set of (III) 
or branches (I), (II), (I), and (V). The lemma is proved.

L emma 2. I f  the strategy i f  {p, q) is finished for the sequence s±, e2, ...,£; then 
the element x  isp-st and element y  is q-st in H.

Proof. From Lemma 1 and definition P(p, q) it follows that if a > x  (u>y) 
follows from <f; then a is on a level above x(y). Similarly if u<x(u<y) follows from 
<f; then a is on a level under x(y).

From the definition of P(p, q) it follows that

\K22 U iVn| ^ p  — \
\K lU N l \^ n - q

^ q - p - l
hold. The statement of the lemma follows from these inequalities. The lemma is 
proved.

Lemma 3. I f  the strategy if{p , q) is finished for the sequence %, e2, ...,£; then 
Al = 0.

Proof. From Lemma 3 it follows that element x is pst and element y is qst in H. 
Thus we can decide for all elements of H -  {x, y} whether they are smaller or larger 
than x(y). From this it follows that all elements of H — {x, y} occur in and thus 
from definition of A1 it follows that Al = 0. The lemma is proved.

L emma 4. In Cases (IV), (V) if a£N f U N[2 then there exists b f (y}UL'{ such 
that b-^aiSi. In Cases (I), (II), (III) if a£K[ then there exists b£ {x} U An UN(2 
such that a<-b£Si-
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P roof. We prove the first half of the statement. In Cases (IV), (V) A22=A!j1=0 
hold. Let the element a be an arbitrary element of N h UN[2 • Consider that pair in 
which element a occurs first time. Let Si(e1,e i , . . . , e t)=(a,b). Because ö£A][1U./V1,2 
and a£A‘ this is why ei + 1 =  l — that is a>b — and we use (1), (2), or (15) and 
Z>£Ai+1U {>•}, b£K{ U {y} hold. This proves the first half of the lemma.

We prove the other half of the lemma. InCases (I), (II), (III) jV2 = 0 and 
A21?í0 hold. Let a be an arbitrary element of ifi and suppose that a^Aj but a£Aj+1. 
From this it follows that a£A‘ and Si(e1, e2, ..., £,) — (a,b), ei+1 = 0 that is we 
use (1), (2) or (11) and be {xJU A ^U  ÍV#1, ^{xJUJV&UAÍj (iVa'=0). This 
completes the proof of the lemma.

Proof of Theorem 2. We distinguish two cases.

Cases (IV) or (V) hold. In the cases A21U A22=0. From Lemma 4 it follows 
that if a^NhlJNw  then there exists an inequality a>b in «S’, and b£K[\J {y}. 
Since |iVúUiV(2| =q — 2 therefore the number of a>b inequalities in S\ in which 
adNh(jN{2, 6£A{U{y} is at least q — 2. We can easily see that the subgraph in
duced K[ U {y}(iVÚUiVí2U {x}) is connected. Consequently there are at least 
n — q(q — 2) edges among the vertices in A ÍU{y}(fV'iUiV'2UW ). That is the number 
of inequalities in «S’, where a, b£K{0 {y)(ö, éíAíjUiVíoU {a}) is at least
n — q(q — 2). Summing up our results:

l ^  q —2+ n—q+ q—2 = n + q —4.
If there is

x>y£.S?, or and c£A2
then

l S  n+q —3
that is (9) hold.

Suppose that and there is no x > c  in «S’, where c£A(. Consider S0.
Let S0=(a,b). From our condition it follows that a, b£A°. If — say— a>b 

then a = a* and Z>£A'i, b£K[ (we have supposed that (p, q)=(l, 2), and y  does not 
occur as x). We can easily verify that a*>y£S’i . Indeed from definition of P(p, q) 
it follows that if we compared elements a*, e and e£jVuUJVi2 then a* «= e. Since 
a* >y follows from «S’, therefore a* . Thus the element a* occurs with the y
and 6 where b£K[ in 4). From this it follows that elements of Nh UN[2 occur with 
elements of A(U{y} at least in q— 1 inequalities in «S’,. Since the subgraph in
duced K[ U {jF’}(Ari1 UiVj'aU {x}) is connected the number of inequalities in «S’, is at least

q— l+ n - q + q - 2  = n + q -3 .
That is (9) in case (IV), (V) holds.

Consider the Cases (I), (II), (III).
In these cases on the basis of Lemma 4 all elements of K[ occur with elements of 

{xJUJV&UIVj, in «S’, and A21̂ 0 , JV2=0 hold. From this it follows that the number 
of inequalities in «S’, in which elements of K[ occur with elements of {xJUJVÚUiVía 
is n — q. We can easily see that the subgraph induced {x}U./VÍ1UÍV1,2UA2,2 UAJx 
((y}UAi) is connected. From this it follows that the number ol inequalities a>b 
in «S’, where a, {x}l)N{1 UA2'2UA^j UÂ Ía ({y}UAi) is at least q — 2 (n — q). Thus

4*
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the number of inequalities in is at least
n — q + q —2 + n — q = 2n — q — 2.

On the other hand and from this it follows that

1 S  2n — q — 2 & 2n —|”y j —2 =  n+  [ y j ~ 2 =

=  n + J y j —3 s  n+ q —3.

From this it follows that (9) holds in cases (I), (II), (III), too. The proof of Theorem 2 
is now complete.

R em ark . If the elements p, q are arbitrary then the problem is open. Proved 
([9]) in case p = l, q=n that

L { y (p , q)) S  n + [ ” ,, '' ] -2 .

A cknowledgement. The author would like to thank professor G. O. H. Katona 
for his valuable remarks.
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STRICTLY ^-REGULAR NEAR-RINGS

A. K. GOYAL1

Abstract

In this paper we have obtained a generalized form o f  a regular near-ring named as strictly 
re-regular near-ring. It has been proved that every semisimple near-ring in the sense o f  Blackett is 
strictly re-regular. Some fruitful results on regular near-rings have been generalized and chain 
conditions, structure theorems and radical properties have been discussed.

Introduction

In this paper we have dealt with 7t-regular near-rings in which every non-zero 
R-subgroup contains at least one non-zero element which is associated with non
zero natural idempotents. Such near-rings are named as strictly 7t-regular near-rings. 
Clearly, every regular near-ring is strictly Tt-regular but not conversely. In Section 1, 
conditions have been obtained under which a strictly 7r-regular near-ring becomes 
regular. The result of Ligh ([11], Th. 4.4) has been generalized. In Section 2, we have 
dealt with chain conditions and structure theorems. Section 3 deals with the radical 
properties of this near-ring. Almost every radical of a strictly 7r-regular near ring 
behaves in a similar manner as in the case of a regular near-ring.

Preliminaries

Throughout R will denote a zero-symmetric left near-ring.
A near-ring R is called regular if for each a£R, there exists x£R  suchthat a= 

—axa. R is called 7r-regular (semi 7r-regular) if for each a(R, there exists x£R  and 
a positive integer n such that an=a"xan (a"=anxa) [7]. If R is a semi 7r-regular near 
ring with no non-zero nilpotent elements, then R is regular [7].

We denote by Ann (a)={x6R|ax=0}, the right annihilator of an element 
adR. It is easy to see that Ann (a) is a right ideal of R.

A near-ring R is called right duo if every right ideal of R is also a left ideal 
([15], p. 278).

A near-ring R is called an S-near ring if a£aR for each a( R. Every regular 
near-ring is an S-near ring.

1 Most o f the part o f  this paper are included in author’s doctoral dissertation at Sukhadia 
University, Udaipur. The author thanks Dr. S. C. Choudhary for his guidance.

A M S (MOS)  subject classification (1970). Primary 16A56; Secondary 16A30.
Key words and phrases. Strictly re-regular, re-regular, semi re-regular, radical subgroup, quasi 

radical, the radical JCR, G-radical.
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A near-ring R is called strongly semisimple (semisimple in the sense of Blackett 
[4]), if it contains no non-zero nilpotent /^-subgroups and satisfies d.c.c. on R-sub
groups of R. A strongly semisimple near-ring satisfies a.c.c. on ^-subgroups of R 
[14]. A near-ring R is called simple if it contains no proper two-sided ideals.

Let R contain an identity 1. An element a£R is said to be right quasi-regular 
(r.q.r) if a is in the right ideal generated by the set {r — ar\r£R) [16]. The element a is 
called quasi-regular (q.r.) if there exists xf R such that (1 — a)x=  1 [3]. Clearly 
a q.r. element is r.q.r. If a is a non-zero idempotent of R, then a cannot be r.q.r 
and hence cannot be q.r. [16].

The radical subgroup A(R) of a near-ring R with identity is the intersection of all 
maximal ^-subgroups of R.A(R) is a quasi-regular f?-subgroup that contains every 
q.r. right ideals of R [3].

Corresponding to the Jacobson radical in rings, the radical J0(R), Ji/z(R) 
( = D (R)),./, (R) and /2CR) have been obtained in near-rings by Betsch(see [15], p. 136). 
If R  contains an identity, then J1(R)=J2(R) and it is denoted by J(R). In general 
we have, J0(R)QD(R)QJ1( R ) ^ J 2(R). The upper nil radical 91 (R) is the sum of all 
the nil ideals of R while G(R), the G-radical is the intersection of all modular maximal 
ideals of JR ([15], p. 160, 164). Also D(R)QG(R).

§ 1. Definitions, properties and characterizations

D efinition 1.1. Let R be a re-regular near-ring and let a be a non-zero element in 
R  such that d‘=cfxcf for some xdR  and some n. If the natural idempotents cfx 
and xan for the element a are non-zero, then a is called a strictly re-regular element.

Clearly, a non-zero idempotent in a re-regular near-ring is a strictly re-regular 
element. We are now in a position to define a special type of re-regular near-ring which 
is a generalization of a regular near-ring.

D efinition 1.2. A re-regular near-ring R in which every non-zero iR-subgroup 
contains at least one strictly re-regular element is called a strictly re-regular near-ring.

Clearly a strictly re-regular near-ring is re-regular but not conversely (see [7], 
Ex. 1.3). Also a regular near-ring is strictly re-regular but not conversely as can be seen 
from the following examples:

Example 1.3 (Clay [6]). Let R=  {0, 1, 2, 3, 4} with addition modulo 5 and 
multiplication defined as follows:

• 0 1 2 3 4
0 0 0 0 0 0
1 0 0 0 0 0
2 0 4 3 2 1
3 0 1 2 3 4
4 0 0 0 0 0

Then R is a re-regular near-ring. The only non-zero /R-subgroup of R is R  itself in 
which 3 is a strictly re-regular element. Hence R is a strictly re-regular near-ring. But 
R is not a regular near-ring.
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Example 1.4 ([10]). Let (R, +) be a group which contains an element y such 
that y + y ^ 0. Define multiplication on R as follows. For all a£R, define Ó.a=0, 
y.a= 0 and x.a=a for all x£R, x ^ y ,  x^O . Then (R, + , •) is a near-ring. The 
only /^-subgroups or right ideals of R are (0) and R. So R is the only non-zero /?-sub- 
group of itself which clearly contains idempotent elements other than y. These idem- 
potent elements are clearly strictly 71-regular elements and thus R is a strictly 71-regu- 
lar near-ring. But R is not a regular near-ring.

Lemma 1.5 ([10], Th. 4.3). Let R be a strongly semisimple near-ring and let M be 
a non-zero R-subgroup o f R. Then M  contains an idempotent e such that eR=M.

Theorem 1.6. Every strongly semisimple near-ring is strictly n-regular.
Proof. Let R be a strongly semisimple near-ring. Then R satisfies d.c.c. and 

hence a.c.c. on /^-subgroups [14], Thus R is 7r-regular by ([7], cor. 1.15& Th. 1.16). By 
Lemma 1.5, every non-zero .R-subgroup of R contains an idempotent which is clearly 
a strictly 71-regular element. Hence R is strictly 7r-regular.

Theorem 1.7. I f  R is a near-ring with no non-zero nilpotent elements, then the 
following are equivalent:

(i) R is regular;
(ii) R is strictly n-regular;

(iii) R is n-regular;
(iv) R is semi n-regular.
Proof. Clearly (i) =>(ii) =>(iii) =>(iv) while (iv)=>(i) follows from ([7]), Th. 1.8).

This theorem with the result of Heatherly ([9], cor. 3.8) immediately gives us the 
following

Corollary 1.8. I f  R is a strictly n-regular near-ring with a right distributive ele
ment and without proper divisors of zero, then R is a near-field.

We now consider the distributive case.
Lemma 1.9 (Ligh [13]). I f  R is a distributive near-ring, then R', the commutator 

subgroup of (R, + ), is an ideal of R and RR' = R 'R= (0).
Theorem 1.10. A distributive strictly n-regular near-ring is a ring.
Proof. Let R' be the commutator subgroup of (R, + ) and let i?'=^(0). Then R', 

being an ideal of R, contains a strictly 71-regular element and hence contains a non
zero idempotent. This is contrary to R'R '=(0) and so R '= (0). This implies that 
(R, + ) is commutative and thus R becomes a ring.

We now generalize Ligh’s result ([11], Th. 4.4) for strictly 7r-regular near-rings.

Lemma 1.11. I f  R' is a homomorphic image o f a n-regular near-ring R whose 
idempotents are central, then the idempolents of R! are central.

Proof. Let / :  R->-R' be the homomorphism, then R' is 71-regular. Let e' be any 
non-zero idempotent in R' and x  an arbitrary element in R'. Then there exists a£R 
and y£R  suchthat af=e' and yf= x'. Now a£R gives an=a"zan for some z£R
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and some n. Here d'z is a non-zero idempotent in R (for n"z=0=>-a"=0=>n"/=0/= 
0=><?'=0£ R \  a contradiction). Since idempotents in R  are central, we have an = 
—cfnz. Again d f  — a2nf  '= <?' and (anz ) f  = (anf ){zf) =  (ainf ){zf) = (a2"z)f= a“f= e '. 
Now e'x'={{anz)f){y f)= (fa ,,z)y)f= {y{anz))f= {yf){anz)f= x 'e '. Thus idempo
tents in R ' are central in R'.

Proposition 1.12. Let R be a subdirectly irreducible strictly n-regular near-ring 
whose idempotents are central. Then the following are true:

(a) R  has an identity element;
(b) the idempotents o f R are either the zero or the identity;
(c) R is a near-field.
Proof, (a) and (b) .Let e be a non-zero idempotent of R. Then Ann (e), the 

right annihilator of e, will be an ideal of R since e is central. If Ann (e)=(0), then e 
is an identity for e{er—r) = 0 where r is an arbitrary element of R, and so 
er — reg Ann (e) = (0), i.e. er=r=re. Now consider all those idempotents eAO 
of R for which Ann(e)^(0). Then A = Hi Ann (e)^(0) as R is subdirectly irre
ducible. Since A is a non-zero ideal of R and R is strictly 7r-regular, there exists a 
non-zero element x in A, which is a strictly 7r-regular element. Therefore xn—xnzx" 
for some zC-R and some n, where xnz and zxn are non-zero idempotents. Now 
x£ A  implies that <?x=0 for all non-zero idempotents e for which Ann (e)^(O). 
Let e '= x nz. If Ann (e')=(0), then e' is an identity as shown above. Then e=ee’= 
= e(xnz) = 0 as ex=0. This is a contradiction. Hence A.nn (e')A(O). Therefore 
e 'x= 0  as shown above and so x"=e'x"=0, again a contradiction (for xn=0=> 
=>e'=xnz —0 which is not true). We thus conclude that Ann (<?) = (0) for each non
zero idempotent e of R. Therefore the idempotents of R  are either the zero or the 
identity. Now as R is strictly 7r-regular, there exists a non-zero idempotent in R which 
is an identity. Thus R has an identity.

(c) Let x be any non-zero element of R. Then xR  is a non-zero I?-subgroup of 
R as R  has an identity. Since R  is strictly re-regular, there exists a strictly re-regular 
element and hence a non-zero idempotent in xR. This shows by (a), that xR  contains 
the identity of R and therefore xR = R . By Ligh ([12], Th. 2.3), R is a near-field.

Theorem 1.13. A strictly n-regular near-ring R is isomorphic to a subdirect sum 
o f near-fields iff every idempotent in R is central in R.

P roof. Necessity is quite clear. To prove the sufficiency, let I? be a strictly re
regular near-ring whose idempotents are central. Nowi? is isomorphic to a subdirect 
sum of subdirectly irreducible near-rings Rt ([15], p. 26). Each Rh being a homo
morphic image of R, has all idempotents central in Rt by Lemma 1.11. Thus by 
Proposition 1.12, each Rt is a near-field. Hence the theorem.

§ 2. Chain conditions and structure theorems

Lemma 2.1. A strictly n-regular near-ring contains no non-zero nilpotent R-sub- 
groups.

Proof. Let A be a non-zero nilpotent A-subgroup of a strictly re-regular near
ring R. Then Ä ’=(0) for some n. Also there exists a strictly re-regular element say a
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in A. Then am = amxam for some xZR  and some m where amx  and xam are non-zero 
idempotents. Now amx£A  and so amx=(amx)”€An=(0), a contradiction. Thus R 
contains no non-zero nilpotent /^-subgroups.

Thus we immediately have the following
T heorem  2.2. A strictly n-regular near-ring R that satisfies d.c.c. on R-subgroups 

is strongly semisimple.
Corollary 2.3. A strictly n-regular near-ring R that satisfies d.c.c. on R-sub- 

groups, satisfies a.c.c. on R-subgroups.
C o ro llary  2.4. I f  R is a strictly n-regular S-near-ring that satisfies d.c.c. on 

R-subgroups, then R is regular.
Proof. By Theorem 2.2, R is strongly semisimple and so /„(7?) =(0) (see Lemma 

3.5). The result now follows from ([10], Th. 4.5), which states that a near-ring R that 
satisfies d.c.c. on .R-subgroups of R is regular iff J2(R)=(0) and a£ R, for all a£R.

It is to be noted that in Corollary 2.4, the condition for R to be an S-near-ring 
is essential, otherwise R may not be regular. This can be seen from Ex. 1.3 and 
Ex. 1.4.

The following Lemma is due to Blackett [4].

Lemma 2.5 ([4]). Let R be a strongly semisimple near-ring. Then R is a finite direct 
sum o f ideals R f lA i ^ k )  where each R[ is a simple near-ring with d.c.c. on Rr sub- 
groups.

We thus have the following

Theorem 2.6. Let R be a strictly n-regular near-ring with d.c.c. on R-subgroups of 
R. Then R is the direct sum o f ideals R = R 1@Ri © ...®R„, where each i?;( lS /S n )  
is a simple and strictly n-regular near-ring with d.c.c. on Rr subgroups.

Proposition 2.7. Let R be a simple and right duo near-ring which is such that 
aR A1 (0) for each a ( A 0)€ R. Then R is without proper divisors o f zero.

P roof. Let a(A0)fiR and ab = 0, bZR. Then b6Ann (a), where Ann (a) 
is an ideal of R as R is right duo. Since R is simple, either Ann (a) =(0) or Ann (a) — 
= R. But Ann (a) =R is ruled out for then aR={0) which is not true by the given 
condition. Hence Ann (a)=(0) and so b=  0. Thus R has no proper divisors of zero.

C o ro llary  2.8. IfR  is simple, right duo and S-near-ring. Then R is without proper 
divisors o f zero.

L em m a 2.9. (Heatherly [8]). I f  R is a simple near-ring with no non-zero nilpotent 
elements and satisfies d.c.c. on R-subgroups, then (a) every non-zero idempotent o f R is 
a left identity and R has at least one such idempotent (b) R is regular (c) i f  R has a non
zero right distributive element, then R is a near-field and (d) if R has a non-zero right 
distributive element and is d.g., then R is a division ring.

Theorem 2.10. Let R be a strictly n-regular near-ring such that (i) R is right duo
(ii) R satisfies d.c.c. on R-subgroups and (iii) a IT A (fi) for each a'(A-0)£R' where 
R' is a homomorphic image o f R. Then the following are true:



58 A . K . G O Y A L

(a) R is the direct sum o f regular near-rings with left identities.
(b) I f  any simple homomorphic image of R has a nonzero right distributive element, 

then R is a finite direct sum of near-fields.
(c) I f  R is d.g., and i f  any simple homomorphic image of R has a non-zero right 

distributive element, then R is a finite direct sum o f division rings.
Proof. By Theorem 2.6, R=R^®R2® ...... ®R„, where each R f l ^ i ^ n )  is

a simple near-ring with d.c.c. on Rt-subgroups. Also each Rh being a homomorphic 
image of R, is right duo. Now consider one such direct summand say R1. Then by 
condition (iii) of the theorem, a R ^ ifi)  for each a(®Q)c Rx. Thus by Proposition 2.7, 
R1 is without proper divisors of zero and hence with no non-zero nilpotent ele
ments. Thus each R, satisfies all the four properties of the Lemma 2.9. Hence the 
theorem.

N ote. It is to be noted that the condition (iii) of Theorem 2.10 always hold if R 
is an 5-near-ring.

Theorem 2.11. I f  R is a strictly n-regular near-ring with d.c.c. on R-subgroups 
and every idempotent o f R is central, then R is a finite direct sum of near-fields.

Proof. By Theorem 2.6, R = R1® R2©...... ©/?„, where each Rt is a simple
and strictly re-regular near-ring with d.c.c. on 5,-subgroups. Also each Rt has central 
idempotents by Lemma 1.11. Consider one such direct summand, say R1. By Theorem 
1.13, Rx is isomorphic to a subdirect sum of near-fields and since Rx is simple, R± 
becomes a near-field. Hence the theorem.

§ 3. Radicals

We now discuss some radical properties of a strictly re-regular near-ring.

Theorem 3.1. I f  R is a strictly n-regular near-ring, then D(R) is zero.

Proof. Suppose that ? (̂0). Then since R is strictly re-regular, there exists 
a(®0)£D(R) where a is a strictly re-regular element. Then a” = a"xan for some x£R  
and some n, where a”x  is a non-zero idempontent that belongs to D(R). Therefore 
anx  is a r.q.r. element which is a contradiction to the fact that no non-zero idempo
tent can be r.q.r. [16]. Hence D(R)=(0).

Corollary 3.2. I f  R is a strictly n-regular near-ring then 

9* OR) =  J0(R) = D(R) — (0).

Corollary 3.3. I f  R is a strictly n-regular and right duo near-ring, then the G- 
radical G(R)=(0).

Proof. Since R is right duo, D(R) = G(R).

Theorem 3.4. Let R be  a strictly n-regular near-ring with identity. Then A(R), the 
radical subgroup o f R is zero.
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Proof. Let A(R) A(ff. Then since R is strictly tr-regular there exists a(V0)€ 
dA(R) which is a strictly 7r-regular element. Then an=anxa" for some x£R  and 
some n, where a"x and xcT are non-zero idempotents. Now a"x£A(R) and so a"x 
is a q.r. element and hence a r.q.r. element which is a contradiction by [16]. Hence
A ( R ) = (  0).

The following Lemma is due to Betsch ([1], Th. 4).

Lemma 3.5. Let R be a near-ring with d.c.c. on R-subgroups of R. Then R has no 
non-zero nilpotent R-subgroups iff Ji (R)={0).

Theorem 3.6. Let Rbe a near-ring that satisfies d.c.c. on R-subgroups o f R. Then 
R is strictly n-regular iff J2(R)=(0).

Proof. Let R be a strictly n-regular near-ring. Then R contains no non-zero 
nilpotent .R-subgroups by Lemma 2.1 and since R satisfies the d.c.c. on R-subgroups 
of R, we have / 2(R)=(0) by Lemma 3.5. Conversely if J.,(R)=(0), then R contains 
no non-zero nilpotent R-subgroups by Lemma 3.5 and since R satisfies the d.c.c. 
on R-subgroups, R becomes strongly semisimple. Thus R is strictly n-regular by 
Theorem 1.6.

Corollary 3.7. Let Rbe a strictly n-regular near-ring with d.c.c. on R-subgroups. 
Then R is a finite direct sum of right ideals which are R-modules of type 2.

Proof. By Theorem 3.6, /„(R)=(0) and the result thus follows by Betsch ([1,] 
Th. 3.4).

Acknowledgement. The author is highly grateful to the referee for his many 
helpful suggestions.
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SUR UNE FAMILLE DE NOMBRES HAUTEMENT 
COMPOSES SUPERIEURS

G . R O B I N

1. Introduction

Soit d(ri)= 2  1, la fonction nombre de diviseurs. On sait ([HAR], p. 262) que
d\n

l’ordre maximum de log d(n)/log 2 est log и/log log n et nous avons donné dans 
[ROB 1], [NIC 2], des majorations explicites de log d(n).

Dans cette étude la famille des nombres N  est intervenue de façon naturelle :
~ , , , . log d(rí) log nAest N о  За >  1 tel que ga(n) =  —;—  -----a -— ;------log 2 log log и

soit maximum en N.
Ces nombres constituent une famille infinie qui, excepté pour les trois premiers,
. , , . , , . . log d(ri)sont hautement composes supérieurs, c est-a-dire maximisent —---------- г log и pourA

une certaine valuer de e >0. De façon précise, si N  est Я  pour le paramètre a alors N 
est hautement composé supérieur pour le paramètre e tel que :

( 1)
log log N — 1 
(log log N )2

Les nombres hautement composés supérieurs définis par Ramanujan 
([RAM]), ont été étudiés par Alaoglu—Erdős ([ALA]), Erdős ([ERD]), Nicolas 
([NIC 1]).

Monsieur le Professeur Erdős m’a encouragé à étudier la structure des nombres 
Я  et nous présentons ici les principaux résultats obtenus.

Soit (Ck)ki N la suite des nombres hautement composés supérieurs, et f(n )  = 
log d(n) J log n 

log 2 / log log n
Proposition 1 . —  /  (Ck) >  1 pour k^A\ la fonction f  est non seulement décrois

sante sur les nombres Я mais aussi sur les nombres Ck pour 15 .

Proposition 2. — Soit Q{X) le nombre de nombres Я inférieurs à X  alors 
Q(X) ^ (log A)1-1 pour г>7/12.

Proposition 3. — Il existe une infinité de nombres Ck qui ne sont pas des nom
bres Я.

19 8 0  Mathematics Subject Classification. P rim ary 1 0 H 2 5 .
Key words and phrases. N o m b r e  de d iv iseu rs , c o m p o r te m e n t  a sy m p to tiq u e , n o m b r e s  h a u te 

m e n t  c o m p o s é s  su p érieu rs.
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La démonstration de la proposition 1 suit celle faite pour l’étude de la fonction 
со (n) ([ROB 2], Th. 10 et Th. 14). Signalons d’ailleurs que les propositions 2 et 3

к
s’appliquent aussi à co(n) en faisant les changements adéquats (Ck= JJph p t dési-

i =  l
. со (и) log log и)gnant le rème nombre premier, f(ri) = — -—  --------- .log n )

La proposition 2 se démontre par l’intermédiaire de 3 lemmes d’analyse et en 
utilisant le résultat d’Huxlev ([HUX])

(2) 6{x+xz) = 0(x) + xT + o(xT/logx) pour г >  7/12

où в est la fonction de Tchebytchef, 0 (x) =  log p.
Si Ton peut prouver que la formule (2) est vraie pour tout x>0 alors les démons

trations de ce papier montreront que :

Q(X) >  (logT’)1-" pour tout ij >  0

nombre à comparer à log X/log log X  nombre de nombres hautement composés su
périeurs, inférieurs à X.

Pour la dernière proposition on utilise :

(3) Ihn P"+1~ P" ■ 1log n

propriété due à P. Erdős, ainsi qu’un lemme technique de concavité.

2. Démonstration de la première proposition

L e m m e  1 . — Soit N  un nombre hautement composé supérieur associé à e, c'est- 
- 7- 7 log d(n) , .a -a ire  te l  que  — —-----e log n so it maximum en N , a lors:

l o g  2

i — £ l o a  N  Sr e l ° Z N  _  
log 2 ë “  log log N - 1 ’

pour N  assez grand.

P r e u v e . Il suffit de faire la démonstration pour le plus grand nombre hautement 
composé supérieur associé à e. Celui-ci est défini comme suit :

Si x  = e1/£ et v; =  log(l +  l/i)/log2
alors

log N  =  0(X>+ 2  e(xvt)
i^2

(cette somme étant en réalité finie). On a alors :

log d(N)/log 2 = n (x) + ^  V; n(x'-'i)
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oü n(x) = 2  1. Comme
p S x

il vient

n(xvt) = o f r t  + f
V.logX J

0(u) du 
u log2 u V i

log d(N) 
log 2 -£ log N -  2  v-í^l : J

6(u) du 
u log2 u

et

Par suite :

x 2x í x ) 
log2x ‘ log3x ' ( llog3xJ

e log N  
log log N — I

1
log .V log X ( l+ "( i í ír ) ) '

logd(jV) _  e log N  __x__ ( x__ \
log 2 log log TV— 1 log3x °U og3x J

expression positive pour x assez grand.

Lémmé 2. — Lafonction f(n )= -°^-d(̂  . ^ i lo-gn
w  log 2 log n

pour k assez grand.
est décroissante sur les Ck

P reuve. Sóit s et b définis par les égalités :

£ b log d (Ck + 1) 
log 2 — £ log Ck + 1 log d (Q) 

log 2 — £ log Ck

alors £ est le paramétre commun á Ck et Ck + 1. 
L’inégalité /(C *+1)< /(C t) s’écrit:

et encore:
(b + \ogCk+1) log log Ck + 1 

log Ck+1 <  (b +  log Ck) log log Ck 
log Ck

log log Ck+1+b log log Cu-! 
log Ck+1

log log Ck+b log log Ck 
log Ck

Lafonction t- ’*t + bte~t est, pour b>e2, décroissante dans 1’intervalle [2, a], a 
étant définie par 1 +  be~x (1 — a) = 0.

Comme b tend vers Finfini avec k, il reste ä prouver que log log CÄ+1< a  c’est-ä- 
dire, compte tenu que / —1+fo?_i(l —t) est croissante pour t s 2  que

14- log Ck -(1 —log log Ck+1) <  0

et cette inégalité est cel le démontrée au lémmé 1.
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Pour terminer la démonstration de la proposition 1, nous allons montrer que 
dans le lémmé 1 on peut remplacer «pour N assez grand», par iV^C15.

Posons

A = log d(N ) 
log 2 —elogiV; s log N  

log log N — 1
Nous allons montrer que:

log2x ~*”a log3x et B r ^ r - + fci - Vlog2x log3*
avec

d’abord pour x+22 016 (-oxv2 ^ 3 4 7 )5 par les formules de Rosser et Schoenfeld, 
puis ä l’ordinateur pour xS 22  016.

Étude de A. Pour j> 3 4 7  nous avons 0(y) —
aussi que 0(j )>3/4j  ([SCH], p. 359).

On a done pour x >22 016 :

dy
ló g j avec d= 5/9 et l’on sait

^  r 6(u)du , r 2 0{u)duJ  u log2 «-1 M  u log2 u

(1 +  v2) J"
0(h) du 
«log2 « /

Xv2
0(h) dw 
M log2 «

soit

u du 
u log2«

JC
du

log2 u

X

d /
du

log3 u

du
log2«

X

d f
3 4 7

du
log3 U

du
log3«

2
log2 2

+ S X -+ (2 —d) - * 2 - d  =  1,444....log2x ' v~ log3x ’
Etude de B. Nous utilisons les majorations de ([SCH], p. 357)

0 (x) <  1,001 093x 

0(x) <  x + 0,020 14x/logx 

n (x) <  1,251 2x/logx.

log N  S  0 ( x )  +  0( x ' t )  H  - 1 71 (xva)
e(log 2 )2

l o g N ^ x  +  0 ,0202 - -------+ 1,001 I x M - - - - - -  ■*
logx  v3(lo g2)-

/  0 273 ^
log TV ^  x  ĵ l pour x  ^  22 016.
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Comme la fonction t —í/(log r—1) est croissante pour l> e2 il vient

B si 1 x(l+0,273/logx)
logx logx — 1 

X ( 1 44 ^
B ^ ~ — 5— 1 + t J---- pour л:ë  22016.log2x f log x )

3. Sur la proposition 2

Lemme 3. — Soit /(x ) une fonction tendant vers Г infini avec x  telle que f  (x) = 
=o(x/log x) et supposons que :

Soit

Alors

0 ( x + / ( x ) )  = 0(x) +f(x) + o(f(x)/\ogx) lorsque x  —■

“w = tob'(1°8a(jc)+1+ i°t»w-i)'
a  ( x  + / ( x ) )  =  a  ( x )  -  (  1 +  о (  1 ) ) / ( x ) / ( x  l o g 2 x ) .

D é m o n s t r a t i o n . L ’h y p o t h è s e  d o n n e  :

l o g  0  ( x  + / ( x ) )  =  l o g O  ( x )  + / ( x ) / 0  ( x ) + о ( / ( x ) / ( x  l o g  x ) )

D’où

On a aussi

1

-  l o g  0  ( x )  + / ( x ) / x + о ( / ( x ) / ( x  l o g  x ) ) .

( x )  — 1 l  x  l o g 2 X  J

f  / 2  ( * )  )} 
l  x 2 l o g  X J  J

l o g  0  ( x  + / ( x ) )  - 1  l o g  0  ( x )

1 1
1 - / W . + O I

x l o g xl o g ( x + / ( x ) )  l o g  X

x  ( k > g * W + i  +  l o g e Ji)_ 1 + ^ + » ( 7 ^ ) )

«(*+/(*)) = аОс)--Ш -+с{-Ш -).

Lemme 4. — Sous les mêmes hypothèses qu'au lemme 3, soit une fonction A(x) 
telle que :
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(i) A(x) = 0  (x/log2 x)
(ii) A (x+ f(x)) = A (x )+ 0 (f(x ) /log2A') 

et soit
g(x) =  log (1 +А(х)/в(х))1 log x
Hx) = g (x )(lo g 0 (x )-l)-2(l + g(x)logx/(log0(x)-l))_1 
ß(x) =  a(x) + g(x)-/i(x).

alors
ß (x + f  (x)) <  ß (x) pour x  assez grand. 

D émonstration. O n a

g(x+/(x)) = 

g(x+/(x)) =

1
logx

1

d’où

De même :

logx

Ы1о8(log

( fix )  I l ( A (x) + O (/(x)/log2 x) 1
VxlogxJJ 0(x) + O(/(x)) )

/w ))(-ш

1 + 0  

log ( l +
0(x)
A(x)
0(x) M X log2 X

g(*+/M) = g f e )+ o ( -Æ y .

h ( x + m  = (g W + o ( - 0 - ) )  X ( |о еа й _ | + о ( ^ г ) )

X

x log2 x ,

( (g(x) +  Q(/(x)/xlog3x))(logx +  Q(/(x)/x)) j 1
l log 0 (x) - 1  + O (f(x)/x) )

h (x +/(x)) =  |g(x) fix )
(log 0 (x) l)2 + °  xlog'M!X J J

X

/г(х+/(х)) = й(х) + 0   ̂

La propriété sur ß(x) se déduit alors du lemme 3.

b Â T + 0 f e M '
f ix )  

x  log6 X

L e m m e  5 .  — Soient О з х т - =  1 et 1 =  1 / ( 1 — t ) .  Soient f xet g deux fonctions définies 
sur R+ a valeurs dans R, g croissante, f xpositive et C 2, satisfaisant lorsque x->-°° aux 
conditions:

(i) g (x) =  x +  x zf x (x) + о (x1/!  (x))
(ii) f i  (x) = o(/i(x)/x)

(iii) f f ix )  =  o(/i(x)/x2)
(iv) Va >  0, / i  (axf{- (x)) ~ /,(x).
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Soit x0 quelconque et posons xn+1=g(x„), alors, lorsque n-+°°, on a :

*n ~  ( " / M W .

Démonstration. Posons h(x)=f1(xx)

k(x) =
alors

h'(x)  =  A x A - 1 / i  ( * л)  =  o ( / î ( x ) / x )

h"(x) = A ( A - 1  )xx- 2f{(xx) + P x 2X- 2f{ '(xx) = o(/i(x)/x2)
d’où

k \x ) =  ( -* /.(Л) ) (/; (x) + xh' (x)) =

_  |^_ù(x)_j h(x) + o(xx~1 hx(x))

k"(x) = ( ^ L )  - ^ l l  (h (x)+ xh' (x))2+ ( ^ ~ )  (2 h'(x)+xh"(x))

=  0(xx~2hx (x)).
On peut écrire

A;(n+1) =  k(n) + k' (n) + 0(k"(n))

/с (и + 1 )=  к (n) +   ̂И j h(n) + o(nx~x h(n)x).

Soit c> 0  alors

g(ck(nj) = ck(n) + cr nĥ  j / 1(c/c(/2)) +  o(nA- 1/i(n)A- 1) /1(cfc(n)). 

L’hypothèse (iv) donne:

fi(ck(n)) = h(n)+o(h(n))

donc

g(cfc(n)) =  cfc(n) + cT  ̂П j й(и) +  o(«A_1 h(n)x).
Par suite
(4) g(k(n)) — k(n + 1) =  o(nx- x h(n)x)

(5) g(ak(n)) < а/с(и+1) si a >  11
(6) g(afc(n)) >  afc(/i + 1) si a <  IJ Pour n — "o-

5*
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Supposons avoir choisi n0 de telle sorte que sur [n0, «=[, k(x) soit fonction crois
sante. Pour a > l, 3p tel que x,4<ak(n0+p) 
par suite d’après (5)

*„„+i =  g (* J  <  g(ak(n0+p))

et par suite
■̂no + l ak(n0+ 1 +p)

V« S  n0 xn <  ak(n+p).
La suite x„ étant croissante, on a pour 1, 3q tel que xq>ak(n0) et d’après 

(6) on conclut à :
3 p' V« =  q x„ >  ak(n+p').

D’où x„~k(ri).
La proposition 2 est alors conséquence du théorème suivant en prenant /* = 1.
Théorème. — Supposons qu’il existe f  (x) telle que lorsque x-*°°
(i) f ( X) = o(X 108(3/2)7108 2)

(ii) 0 (x +/(x)) =  0 (x) +/(x) + о (/(x)/log x).
Soit C* et C*- deux nombres N  consécutifs alors:

p(Ck,)^ p (C k)+ f(p(C k))
p (fi) désignant le plus grand facteur premier de n.

Si de plus f  (x) == X хf  (x) et si f  (x) vérifie les hypothèses du lemme 5 alors le 
nombre Q(X) de nombres f e l  vérifie

6 W ( / i ( 6 W ) ) J (2+o(l))(log X)1/x
avec 2 =  1/(1—t).

Preuve. Soit a le paramètre commun aux 2 nombres N  consécutifs, Ck et C*-. 
Il existe alors x et y tels que :

logC* = 0 (x) + A (x) 
logC*- =  e(y)+A(y)

avec i ( z ) = 2  0(z'‘)' De plus C* est hautement composé supérieur pour 1/log x et 
2

C*-pour 1/log y. D’après l’égalité (1), on a

a = ß(x) = ß{y)
avec

m  =  u î r  (‘°8 108 c *+ 1 +  i o g i ° g c ~ ) ■

soit avec les notations des lemmes 3 et 4

et de même
ß(x) = rJ .(x) + g (x) — h (x) 

ß ( y )  =  * ( } ’)  + g ( y ) ~ h ( y ) .
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Les hypothèses du lemme 4 sont vérifiées : en effet

A (x) = O (xv0 =  O (x/log2 x)

0((x+f(x))v‘) = ö(xv0+ o (/(x )x v<_1logx)

= 0(xv<) + o(/(x)/log3 x)
donc

A (x +f(x)) = A (x) + о (/(x)/Iog2 x).

Par suite ß (x + f (x))~=ß(x) et donc y < x + /(x ) .
Pour étudier Q (X ), désignons par ÍV le Q (Z)ième nombre N  alors :

log iV = (1 +o(l))0(p(Ar))
donc

p(N ) =  (1 + o(l)) log N  = ( l+ o (l)) log Z.

D’après la première partie de ce théorème et le lemme 5, Q (Z) vérifie donc :

( О Т № Я У ) ‘ , ( 1+ , ( |) )10„

ce qui conduit au résultat final.

4. La troisième proposition

Commençons par démontrer un lemme.

L emme 6. —  Soit (p:[x0, +  C4, concave et vérifiant ç>(4)< 0 . Soit z > y ê 0
vérifiant (z—у)<р'(х)+у2<р"(х)<0 alors (p(x+z) + <p(x—y)<2<p(x) pour x  tel que 
x - y ^ x 0 .

D ém onstration . Par la concavité nous pouvons écrire :

<p(x+ z)-cp(x+ y) <  (Z~y)<p'(x+y) -= (z-y )cp \x ).
Comme ç>(4)< 0 on a:

ç(x+ y)  <  (p(x)+ ytp'ix)+ (y2/2)cp"(x)+(>>76) <p"Xx) 
et

<p(x~y) <  cp (x) -  ycp’ix)+ (y2/2) cp "(x) -  (y3/6) <p"'(x)

d’où par addition des trois inégalités

(p(x+z)+<p(x-y) <  2(p(x)+(z-y)(p'(x)+y2(p"(x) 1
d’où le résultat.

P roposition . —  Il existe une infinité de nombres hautement composés supérieurs 
qui ne sont pas N.
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D emonstration. Sóit N  hautement composé supérieur et sóit p son plus grand 
facteur premier; sóit P le suivant dep. N  est f f  s’il existe a tel que gx sóit maximum en 
N  ; en particulier

ga(N) =é gx(NP)

g.(N) S  g,(NIP)
ce que l’on peut écrire:

log N  log (N/p) ^  log 2 log NP______log N
log log N  log log (N/p) ^  a. log log NP log log N '

Cette double inégalité ne peut étre vérifiée que si

(7) 2(p(log N) ^  <p(log 7V+logP) + <p(log iV—logp) 

si cp désigne la fonction x —x/log x.
Or une telle inégalité n’est pas toujours possible. En effet, (p véribe les hypotheses 

du lémmé 6; par suite si
I 0 2 I 0 2  AT— 2

(8) log P logp <  (1°S^)2JoglogAr _ 1 log iVlog log N

l’inégalité (7) n’est pas vérifiée.
Or l’inégalité (8) peut s’écrire log P — log p < log P  

P
L’inégalité (3), lim Pn + 1  Pn 

log n 1, montre qu’il existe une infinité de p tels que:

P — p S c l o g p  avec c <  1.

S o il lo g
P P

L’inégalité (8) est done satisfaite pour une infinité de p; aussi les nombres N, 
hautement composés supérieurs, se terminant par de tels p, ne peuvent-ils étre des 
nombres ff.
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INTEGRAL MANIFOLDS AND DECOMPOSITION 
OF NONLINEAR DIFFERENTIAL SYSTEMS

V. A. SOBOLEV

The purpose of this paper is to study the problem of nonlinear differential sys
tems decomposition by the method of integral manifolds [1—3].

1. Throughout this paper we shall let En denote the real «-dimensional Euclidean 
space and | • | the Euclidean norm on this space. For any r> 0  we shall let B"(r) 
denote the open ball {x€ii'I||x|<r}.

Consider the differential system

where xt and/j vary in E n‘, A and B are real matrices, t£R, i= 1,2.
Henceforth we shall assume that (1.1) conforms with the following hypotheses.

(i) The eigenvalues ( i= l,  ...,« i) of A satisfy the inequality |ReA ,|<a and 
the eigenvalues ).j ( j=  1, ..., «2) of B satisfy the inequality Re —ß, where 
Oáa</?.

(ii) The functions f  are continuous, bounded and uniformly Lipschitzian in xx, x2 
on R X E niXB"*(r)

where M  and 2 are sufficiently sm all and, a lso , f  (/, 0, 0 ) = 0 .

T heorem 1.1. Let the hypotheses (i), (ii) hold, then the system (1.1) has the integral 
manifold represented in the form x2=h(t, xx) where h is a function defined and 
continuous on R xE "1- Moreover, h satisfies the inequalities

( 1. 1)
xx =  Ax^+ffit, xls x2) 

xa =  Bx2+f2(t, xx, x2)

( 1.2)

(1.3)

I f ( t ,  X1 , x2)| S  M

\f(t, xx, x2) - f ( t ,  Xi, x2)| ^  A(|x1- x1| + |x2- x2|), i = 1,2

(1.4)

(1.5)

\h(t, xx)| =  DM  
\h(t, x j - h i t ,  xx)| = lA \x1- x 1\

with positive constants D, A and, also, h{t, 0 ) = 0  [3— 6].
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The flow on this manifold is described by the rix -dimensional system
(1.6) ú = Au+ fx(t, u, h(t, u)).

It is well-known (see [3, 6]) that for any solution Xi=Xi(i)> x2=x2(t), X i ( t 0)  = 
= xf, of (1.1) with sufficiently small \x\ — h(t0, x?)| there is a solution u=u(t), 
u(t0)= u0 of (1.6) such that

(1.7) *i(0 =  w(0 +  <?h((k * 2  =  h(t, u(t)) + (p2(t)
where (pi(t) = 0(e~7<-’~,o>) as t —i0-*-<», y>0. Moreover, if the zero solution of 
(1.6) is stable (asymptotically stable, unstable), then the zero solution of (1.1) is 
stable (asymptotically stable, unstable). Later we shall obtain exact expressions 
for (pi.

Let us suppose, additionally, that

(iii) The functions f , i  = 1,2 have first and second order continuous and 
bounded derivatives with respect to t, xx, x2 for t£R, xx£ E \  x2£B"z(r).

Then the function h  has first and second order continuous and bounded deriva
tives with respect to t, for t£R, x1̂ .Eni [3, 4],

2. Let us introduce new variables u, y  and z by the formulae z= x2—h(t, x j ,  
y = x 1—u, where u satisfies (1.6) and consider the following auxiliary differential
system

( 2 . 1)

where

ú = Au+f^t, u, h(t, u)) 
y = Ay+Y{t, u,y, z) 
z =  Bz+Z(t, u, y, z)

Y = f x(t, u + y, z + h(t, u + y )) - fx(t, u, h(t, u))
Z = / 2(f, u + y, z  + h{t, u + y))- f2{t, u+ y, h(t, u+y) ) -

~ " d x ^ ’ U + y ->^ (*’ u  +  y> z +  h ( l ’ 11 +  y ) ) ~ f i ( t , u  +  y , h ( t , u +  y))].

We shall show that this last system has an integral manifold y = H(t, u, z) such 
that the function H  satisfies the inequalities
(2.2) IH(t, u, z)I ^  2n|z|

(2.3) IH (t, u, z)—H{t, u, z)I S  Ac|z—z|
(2.4) \H(t, u, z)—H(t, ü, z)\ S  b \z\\u—ü\

t£R, u,ü£Eni, z, z£B”z(q) 
with a >  0, b >  0, c >  0, q >- 0.

The flow on this manifold is governed by the (-n1 +«2)-dimensional system
ú = Au+f^t, u, h(t, u)) 
v = Bv+Z{t, u, H(t, u, v), v).

(2.5)
( 2 .6)
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Moreover, every solution of (1.1) with sufficiently small \x%—h(t0, x?)| can be 
represented as the superposition of corresponding solutions of (2.5) and (2.6) of form

Xi = u+H(t ,  u, v)
(2.7)

* 2  =  v + h(t, Xj) =  v + h(t, u + H(t, u, v)).

Our proofs of this facts are modelled on Pliss [3] and Kelley [4].

From (i) there follows the existence of a constant 1, such that
(2.8) \eA,\ S  Ke“W, <  i <  °°

(2.9) \eB‘\ -  Ke~ßt, 0 ^  t <  °°.
Next, by means of our assumptions with respect t o / i , / 2 and Theorem 1.1 it is 

easy to see that there exists a constant jV>0 such that Y  and Z  satisfy the inequalities
IY(t, u ,y , z ) I AN(|y| +  |z|)

IZ(t,  u , y , z ) I rsAN\z\

|7(t, u, y, z) — Y(t, u, y, z)| ^  AN (\y-y \  + \ z- z \ )

|Z(i, u, y, z ) - Z ( t ,  u, y, z)| S  2iV(|>’- y | + |z -z |)

I Y(t, u, y , z ) —Y (t,u,y,z)\  ==

S  NOx+|y| +  |z |) [ |z -z |+ ( l +  |y |) |y -y |+ (|y | +  |z|)|H-u|]
|Z(t, u,y, z ) - Z ( t ,  ü, y,z)\  ^  N [ n \ z - z \  + \z\ (\u-ü\  + \y-y\)]  

where t£R; u,ü£Eni; y , y £ E ni-, z, z^B"^q0); h - h(X, q0)>0, ju(A, g0)-+ 0 as

Let S  be the set of functions H : R +XE"iXB"2(q)-^E"í such that H  is continuous 
and satisfies (2.2)—(2.4). Let d be the metric on S  defined by

d(H, H) =  sup \-^T \ H ( t , u , z ) - H ( t , u , z ) \ , t e R ,u e E ni ,z£Bn‘(Q)\

and note that, with respect to d, S  is a complete metric space.
For each H£ S  we consider the differential system

(2.16) ú — Au  + /i(t, u, h(t, u))

(2.17) z =  Bz+Z( t ,  u, H(t, u, z), z)
the solutions of which we denote by u = <P(t, t0, u0), z = 'F(t, t0, u0, ze\H) with the 
understanding that <P(t0, t0, u0)=u0, L, w0, z0\H)=z0.

The functions /i(t, u, h(t, u)), Z(t, u, H{t, u, z), z) are uniformly bounded on 
their domains, hence, any solution of (2.16), (2.17) is defined for all t.

Let q>(t) = $(t, t, u), il/(t) = 'F(t, t, u, z\H) then by the variation of constants 
formula,

\ji(t) =  eB(,- ,)z +  J  em ~s)Z(s, <p(s),H(s, <p(s), i/r(s)), i//(sj)ds.

(2. 10)

( 2. 11)

(2. 12)

(2.13)

(2.14)

(2.15)
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By (2.9) and (2.11) there holds for all — °=<t s (<  °°,
t

|«K0I =S K e -W -^  \z\+ I  K e-M -snN\ilj(s)\ds.
X

Therefore, by Gronwall’s Lemma, we obtain

(2.18) l«A(OI — Ke~pi(t~T) \z\, ßx = ß-K XN , — < TS i< o o .
It is clear that f tS y x x  for sufficiently small X. Now define an operator Ton S' 

by setting

(2.19) T (H)(x, u, z) — — j  e -A^  Y(t, H(t, <p(0, <K0), <K0)*
X

<K0 = ®(U T «), iA(0 =  Y(t, r, u, z\H).

The improper integral here converges by virtue (2.8)—(2.10), (2.2) and (2.18).
It is a straightforward exercise to show that T{H) as defined in (2.19) is con

tinuous on RXE"iXB"í (q). Also, using (2.2), (2.10), (2.8) and (2.18), it is easy to 
see that

\T(H)(r, u , z ) \ ^ K  J  XN{\+Xa)\x!j(i)\dt S
(2 .20)

K 2XN , , ,S  -7,------ (1 +Xa)\z\ S  Xa\z\
P l — cc

if v = K 2N,l(ß1—oc)<l/A and aSv/(l ~ Av).
Thus T(H) satisfies the boundedness condition required by (2.2). To prove that 

T (H ) satisfies the Lipschitz conditions required by (2.3), (2.4) and that Tis a contrac
tion mapping, we reason as follows.

Let u(_Eni, z, z£B"2(q), \jj1{t) = 'F(t, x, u, z\H) .Then by (2.3), (2.8) and (2.12) 

(2.21) \T(B)(z, u, z ) - T u , z ) \  K f  XN(l+Xc) W W -rfrM d t.
Z

Now, using (2.13), (2.8) and (2.3) we find that
t

l*A(0 _>M0I =Ke~l>(f~*) \z—z\+ j  Ke~^‘~s)XN(1 + Ac) (s)| ds.
X

Therefore, by Gronwall’s Lemma, we obtain

\iß(t) — xßx ( 0 1  =  \z—z\, - » < t S í <  oo

ß2 =  ß-KXN(l+Xc).

It is clear that for sufficiently small X we can choose c such that ß2>y>a. and 
K 2N—------ (1 +Ac)Sc. From this last inequality it follows that T(H ) satisfies the Lip-

p2 — a
schitz condition required by (2.3).
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In exactly the same way by the simple inequality
|<P(i, t , « )  — 4>(t, t , ti) | |w — w|,  cq — <x +  . 0 ( l + A d ) ,  — o o < r ^ t < ° o

and (2.14), (2.15) it is easy to show that T(H) for some constant 0 and suffi
ciently small n, A, q satisfies the condition required by (2.4).

Now, let H ,H £S, \l/t (t) = W(t,z, u, z\H). Then by (2.12), (2.18) and (2.2)

(2.22) \T(H)(x, u, u, z)\ ^

S  /  Ke-*1'-»  AN [(1 + Ac) |lK 0-<M 0l + 1H{t, (pit), \l/(t))-H(t, (pit), <A(f))|] dt á
X

/  te -^ - 'U N K l-M c ) d(ií,Í7)]df.
*

Using (2.13), (2.8) and (2.3) we find that
t

l<A (0 -< A a(0 l  S  /  ^ - ^ - s ) U V [ ( l + ; x ) | ^ ( s ) - ^ 2( s ) | + i s : e - ^ - s) | z | d ( I / , f f ) ] d s .
X

Multiplying both sides of this inequality by and then applying the reason
ing of the type used to deduce Gronwall’s Lemma [7] we obtain

K 2AN —
l-KO—<M0I -  7 ^ 7 e_K,_t)lzl <*(#*0-

Substitution of this into (2.22) yields

IT(H)(t, u, z)-T(H )(r, u, z)| S  [(1 + Ac) 1] d(H, H) \z\.

From this last inequality it follows easily that T is a contraction mapping if A 
is sufficiently small.

Thus, Tis a contraction mapping of S  into itself and so, by the Banach Contrac
tion Mapping Principle, T  must have a unique fixed point S.

The function H  is the solution of the equation

H(t, u ,z ) = -  j  eA(t- °  Y(t, (p{t), H(t, <pit),\pit)), iKO) dt
X

(p(t) =  tf>(i, t, u), i]/it) = 'Pit,r,u,z\H )
and, therefore, the equation y=H{t, u, z) represents an integral manifold for (2.1). 

The flow on this manifold is governed by the equations
(2.23) ü = Au + Fit, u)
(2.24) v = Bv+Git, u, v)
where

F = f i t ,  u, hQ, «)), G = Z{t, u, Hit, u, v), v).
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3. Our next aim is to obtain the representation (2.7). Let x1=x1(t), x2—x2{t) 
be a solution of (1.1) with x i(t0)=x°i , 7=1, 2, where \x% — h(t0, „x?)| = <3- Then there 
exists a solution u=u(t), v = v(t) of (2.23), (2.24) with u(t0)=u0, v(t0)=v0 such 
that Xi ( t )= u( t )  + H(t, u(t), v(tj), x2(t)=v(t)+h[t, x 1(t)). It is sufficient to show 
that this last representation holds for t = t0. Let t = t0, then

x? =  u0 + H(t0, u0, v0)
x 2 = v0 + h(tg, xl)

and, therefore v0=x2 —h(t0, xj). For w0 we obtain the equation

(3.1) x? =  u0 + H(t0, u0, x l - h ( t0, x?)).
Consider the auxiliary equation

(3.2) u = P(u)
where u£En>, P(u)=x\—H(t0, u, x2 — h(t0, x?)).

Let q=gb< 1, then by (2.4) |P(w) — P{u)\ ^q\u — Ti\.
Thus P is a contraction mapping on E"1 and so, by the Banach Contraction 

Mapping Principle, P must have a unique fixed point u0, which is the required solu
tion of (3.1).

Now we have the exact expressions for <p, and cp2 in (1.7)
(3.3) (px = H(t, u(t), v(tj)
(3.4) cp2 = v(t) + h{t, u(t) + H(t, u(t), v(t))) — h(t, u(t)).

This and (1.5), (2.2), (2.18) allow us to write

l<Pi(OI =  ^aK e-^1- 1 o> |xE-h(t0.xS)|, t ^  t0 
\<p2(j)\ S  ( l+ 2 z ü a )  |a(f)| ^  (1 +?dAa)Ke~y<-‘~to) \x2—h(t0, xj)|- 

Therefore
jxi(OI =  \u(t )\+AaK\xl-h(t0, xS)|c_5’(,“ ,«), t S  t0

\x2( t ) \ ^ U  |u (0 l+ (l+A 2da)7s:|x§-/i(i„,x?)|e-’’(‘-V.
From these last inequalities it follows easily that the stability problem for (1.1) 

is equivalent to the stability problem for (2.23) (see Section 1).
Now we can summarize our results in the following
Theorem 3.1. Let (1.1) satisfy the hypotheses (i) through (iii). Then there exist 

numbers 20, qx such that OsA^A0, 0 <  q=̂ q1, t0£ R imply that the following assertions 
are true:

(1) There exists for (2.1) an integral manifold represented by an equation of the 
form y  = H (t,u ,z) where H  is a function defined and continuous on R + XE"iXB"^(q) 
and, moreover, H satisfies (2.2)—(2.4).

(2) Every solution x± = x 1(t), x2=x2(0  o f (1.1) with X j(f0)= X j ,  i= l ,  2, 
|x2 — h (t0, 4)\< e can be represented in the form (2.7) where u=u(t), u(t0) — u0 is 
a solution of (2.23), u0 is a solution of (3.1); v = v(t) is a solution o f (2.24) with 
v(t0)=x°2-h ( t0,xl).
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(3) I f  the zero solution of (2.23) is stable (asymptotically stable, unstable) then the 
zero solution of( 1.1) is stable (asymptotically stable, unstable).

Note that our proof of this theorem is based on the Banach Contraction Mapping 
Principle, and therefore it is easy to extend it on the system (1.1), where x lt x2 are 
elements of Banach spaces. Moreover, in this proof we do not use the boundedness of 
B. So the theorem of the type Theorem 3.1 can be proved for systems like (1.1) in 
Banach space with the unbounded operator B, if A=  0 and B is the generator of 
a strongly continuous linear semigroup SB(t) such that |SB(/)| ^K e~ßt, ISO (see, 
also, [6,8, 9]).

Now let us suppose that (2.23) can be represented as

ú1 = A1u1+ F i (t, u1, u2) 
ú2 = A2u2+F2(t, «!, u2),

where
( U1) (A ,  0 ) , (F 1 )
U J  = w’ [ o  a 2) ~ a ’ U J

and the eigenvalues of A1 and A2 have zero and positive real parts, respectively. It is 
clear that (3.5) conforms with the hypotheses (i)—(iii) with respect to the new time 
t — —t. Therefore, this system can be reduced to the system of the form

Wi =  Ai w1 + F ft, w,) 
vv2 =  ^ 2w2 +  Fi(i, Wj , w9), 

which is analogous to (2.23), (2.24).
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ON THE DECOMPOSITION OF INFINITE SERIES INTO 
MONOTONE DECREASING PARTS

MÁRIÓ SZEGEDY and GÁBOR TARDOS

Abstract

We prove that any non-negative series in !t can be broken into decreasing finite parts.

It is easy to prove if an̂ 0  (n = l,2, ...) and 2  an< then there are indices
n = 1

j,
0==/o< /!< ... such that the sequence 2  ak is monotone decreasing. We can

k=j/- i + l
ensure strict monotonicity if {a,-} has infinitely many positive terms.

The aim of our paper is to prove the conjecture of the authors of [1] that similar 
property holds for the sequences in /2.

co

Theorem. Suppose 0 for i =  l,2, ... and 2  Then there exist
i = l

J,
indices 0= j0< j \< ... such that the sequence of the sums Xt =  2  ak *s monotone

k-j ,., + 1
decreasing and

(1) Xx S 2 | / J  of.

If there are infinitely many positive elements in the series we can ensure strict monotoni
city and strict inequality in (1).

First we prove a finite version of the theorem in the next
71

Lemma. Let at SiO for i = l , 2 , . . . , n  and 2  >0. Then there exist indices
i=i

0 = j0 </j < ...< /*=« such that the sequence {YJJ is strictly monotone decreasing and

X i^ 2 \[  2 a f .  (Xi= 2  am.)
V i = 1 m = yi_1 +1

Proof of the lemma. For each sequence of indices 0=j0 < /!< ...< /*=« we 
define two weights:

W({ji)o)= 2 W  + 2 2 1 2  a2m
i= 1 i= l m =ji+ l

W '({j,}l)=  2 (n ~ ji) .i = 1
(The weight W' is introduced only to prove the strict monotonicity.)

6
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Let us choose a strictly monotone sequence {/JJ which minimizes W and such 
that among the sequences with the same minimal value W  it minimizes W  as well. 
It is easy to see that {/,}g has this property among the monotone but not necessarily 
strictly monotone sequences, too, because replacing the multiple indices with simple 
ones the weights W and W  will not increase. We prove that this choice of sequence 
{ji}o fulfils the lemma.

(a) X i> X i+1 for i =  1, — 1.
For a fixed i we define

{•US — U oiin  •••>J i - i > J i + i j  ■■■Jk)-
Since {/,}o is a strictly increasing sequence, is still monotone increasing. Here 
X'm = Xm if m ^i, m ^ i+ l ;  X[ =Xi+ajl+1; X J 1 = Xi+1- a Ji+1. It is easy to see, 
that W'({Jt}o)—W'({J,'}o) = l. Because of the minimum property of {/Jfj it follows 
that

0 -  = X [* + X iU -X f-X t+1- 2 a U i = 2aJi+1(Xi- X i+1)

and hence by aJi+1S 0 we have Xt>~Xi+1.

(b) We have to show that L i< 2  j /  2  a\ ■
n

From 2  we have There exists a unique 0<j=j\ such that
i = l

J-1 X-, j J X,£  ai <  s. ^  Let d — aL— — . Clearly, 0^d<Oj. Let us consider the
i = i  2  i = i  j = i  2
sequence {j!}l+1= U o,J j\, ---Jk)- This sequence is monote. Here X'm=Xm_x for

X  Xm = 3, . . . ,k  + 1 and X l= ~ -+ d ;  X£ — d. Using the minimum property of

{./;}o we have

0 ^ W ( { j W 1) -W ({ j t i )  = - ^ + 2 d * + 2  Í  « ?<
Z i =  j' +  l

Y 2 n y 2 n

< - ^ - + 2 a J  +  2  2
Z i = j  +  l  Z i =  i

hence <  2 1/ a\ .

For proving the infinite case we shall use König’s lemma.
Proof of the theorem. We can suppose that a„0>0 for some «0>0. We con

struct a directed tree. The vertices will be the sequences 0 —jo ^ji- '-^ jk  with the
h

property, that for the sequence Xt= 2  am O’ =  1, • • • > k) the inequalities
m=j,_1 +1

2 | / i u f  > Z 1 >Af2 > . . .> Z fc
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hold. We set an edge from {y',}J to {.//}S' iff k '= k + 1 and j [  =/j for i =  l, ...,k . 
Our lemma says that for every fixed n >n0 there is a vertex {/JJj in the digraph 
where j k=n, thus we have an infinite graph. Obviously, we have a directed path to 
any vertex from the vertex (0), since for any vertex {j\}q of our graph, also { are 
vertices for m ^ k ,  and they form a directed path. We separate two cases.

The first case is that there is a vertex {yJJ with infinite outdegree. Then Xk >
n

>  2  ű; for infinitely many n>jk. Now the statement follows from the case when
J ~ Jk+1
2i—1

In the opposite case we have a digraph such that there are directed paths from 
(0) to infinitely many vertices, but the outdegree of each vertex is finite. The König 
lemma says that there is an infinite directed path from (0) in this digraph. Denote 
the m-th vertex of this path by {yim}f”0 and let /, = //. It is obvious, that km=m and 
j r = j i  for m g / and therefore j) satisfies the statement of the theorem.
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A REMARK CONCERNING STRONG UNIQUENESS 
OF APPROXIMATION

ADAM P. BOSZNAY

Introduction

Let us recall the definition of strongly unique approximation.
Let (X, ||. II) be a real normed linear space, KczX  a non-void subset.
We say that for some x0(íX the approximation by K is strongly unique if the 

following assumptions are satisfied:
(i) the set

{/c€A; ||x0-fc|| =  inf ||x0-/i||}
n  t A.

contains exactly one element (say, k 0);
(ii) there exists a constant c>0 (depending on x0) such that for all k£K

||x0-fc|| S  ||x0 —koll+cll^o-k||-

We call a set KczX  strongly Chebyshev if conditions (i) and (ii) are satisfied for 
every x0£JL.

This property has been investigated by several authors, see for example [3], [4].
In [5] it is proved that there is no proper nontrivial strongly Chebyshev subspace 

in any smooth normed linear space.
On the contrary, in [3] it is shown that there are points for which the approxima

tion by K  is strongly unique even in Hilbert space, if K  is not a subspace.
But — as we shall show in this paper — this cannot be true for all points of the 

space.
Namely, we shall prove that there is no non-singleton non-trivial strongly Che

byshev set in any separable Banach space with Fréchet differentiable norm.

The result

T heorem. Let (X, || . ||) be a separable Banach space with Fréchet differentiable 
norm, and K c.X  a proper subset which is strongly Chebyshev. Then K is a singleton.

P roof. We proceed by contradiction.
Let us denote the nearest element to x£X  by PK(x). First, for the sake of com

pleteness, we show that the strong Chebyshev property of K implies the continuity 
of PK in the norm topology.

1980 Mathematics Subject Classification. Primary 41A65.
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Let ||x —x0||<£. Clearly,

l l * o - P x ( * o ) l l + 2 | l * - x 0 | |  = =  I I *  — j P K ( x o ) l  +  | x - * o l l  =

=  | | x - P k ( * ) | |  +  I I * - * o II S  1 * 0 — P x ( x ) | |  -

—  | | x 0— Í >k ( - í o ) I I + C o | [ - f >,'j c W - - P j c ( * o ) I I -

This — using the fact that c0 =»0 — implies the continuity of PK at x0.
Secondly, using the indirect hypothesis we prove that PK(X) is uncountable. 
Assuming the contrary, we have

Pk(20 =  {fcli k%,

Introducing the sets Xt = {x£X; PK(x) =kt}, these sets Xt are closed, pairwise dis
joint, and we have

\J X , = X.
i= 1

This — using an elementary, but ingenious lemma of Asplund [1] — implies that all 
but one Xt is void. So, PK(X) is uncountable.

Elementary reasoning shows that there exist c*>0, H c zX \K  such that H  is 
uncountable,

( 1 )  l l * - f c | |  S  [ | x - P K ( x ) | | + c * | | P K ( x ) - k [ l

for all x£H, k£K,
P  k ( x i )  ^  P K ( X i )

for any Xi^x^, x1, x2€ H, and PI has a condensation point x*f_II (because PK is 
continuous).

Let f x.e(X, || . ||)*, ||/^1| =1, be such that 

M P k(x* ) - x*) =

Choosing e>0 small enough, the differentiability of the norm implies that 

f x, ( k - X * )  +  ̂ - \ \ k - P K( x * ) \ \ ^ \ \ k - X * \ \  ^

(2)
^ f A k - x * ) - ^ - \ \ k - P K(x*)\\

for ||k—PK(x*)|| <£. (This latter follows from the fact that f x* is the supporting func
tional of the sphere at PK(x*)—x*.)

Let x ^ H  b esu ch th a t I ta —x*||<e, IIP^lX)- PxOOII <£. Then, using (1) 
and (2),

fx*{PkC*i) — + II-Pk(xi)~ P kO**)II — 1x* PrĈ i)II —

S  ||x* -P K(x*)|| +  c*||Px(x*)-Px(*1)|| = fx*{PK(**)- x*)+ c* IIPK(x*)- PK(Xl)II.
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This inequality yields

(3) / A P k(x i)) ^ /,.(/>* (**)) +  - £  {PkM - P kÍxA -  
With the same reasoning, we also have

(4) f Xl(PK(x*)) ^ f J P M )  + ̂ -  I P M - P kW I  
On the other hand, we have

( / ^ - / ^ { P M - P kO ^  s  I I / , . - A l l  IPkÍxÚ-PkÍx^ I
In case e is sufficiently small, the continuity of the derivative/ ,  implies [2, p. 30]

(5) \\fx* - f j  <

Clearly, formulas (3), (4), (5) contradict each other.
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A CHARACTERIZATION OF THE NORMAL DISTRIBUTION

WOLFGANG GLÄNZEL

In a recent paper (Glänzel and al. (1984)) a characterization theorem for non
negative random variables based on a simple connection of two truncated moments 
was given. In this letter that result will be extended for arbitrary real valued random 
variables (Proposition 1) and applied to characterize the normal distribution (Propo
sition 2).

Proposition 1. Let (Q, sé, P) be a given probability space and let H =[a, b] be an 
interval for some a<b (a — — °° and b= + °° might as well allowed). Let X: Q^-H  
be a continuous random variable with the distribution function F and let g and h be two 
real functions defined on H such that

is defined with some real function l gh. Assume that g, hd_Cy(H), and F is
a twice continuously differentiable and strictly monotone function on the set H. Finally 
assume that the equation hXgh =g has no solution on int //. Then F is uniquely deter
mined by the functions g, h and particularly

Proof. The proof is completely analogous to that of Theorem 2.1 in Glänzel 
and al. (1984).

Proposition 2. Let X: i3-«-R be a continuous random variable and let

E {g (X )\X ^x}  = E{h(X)\X^x}W h(x), x£H

H

and C is a con-

and
g (x) = x2 — mx — <72, x t  R

h(x) — x  — m, x€Rx€R

1980 Mathematics Subject Classification (1985 Revision). Primary 62E10.
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be two real functions with the parameters m£ R and o f  R .  The distribution o f the 
random variable X  is normal i f  and only if the function Xah defined in Proposition 1 has 
the form

Xeh(x) = x, x€R.

Proof. The functions F, g, h and X3h obviously satisfy the conditions of Propo
sition 1.

Assume that the distribution of the random variable is normal with expectation
X —mm and standard deviation a. Consider the transformed random variable Y —--------a

X —  YYland use the notation y= 2—.— . Note that E {/j(X)|Asv}?íO for all real x. From 

the definition we obtain that

E{g(A)|JTsx} E{aY* + mY-<r\Y S  y}
kW E {h (X )\X Sx} E { Y \Y ^ y }

f  (at2 + mt — a) exp —  j dt ay exp f_  J__j f  m exp ^—y -j

/ ' “ p ( - T ) *  “ p ( “ t )

= o y+ m = x  for all x£R.
Assume that X9h has the form X Bh ( x ) = x .  Then the equation

X'(x)h(x) _  x  — m
X(x)h(x) — g(x) <ra

follows from Proposition 1. Thus,
C (JC-m)8

f ( x )  — e 2a! ,

<5
with C =  ,,r— , i.e., the distribution is normal.\2n

R emark. Let us use th e  notations

ei1)W  =  E { W s jc } ,
and

e(i \ x ) =  E{X2\X ^ x } ,

We define the functions dx (x)=eix )(x) — x  and Dx(x)= ef>(x) — x e f f x )  for 
all real x. The statement of Proposition 2 can be reformulated as follows. The random 
variable X: Í2--R has a normal distribution if and only if

Dx = mdx + a2
holds for some real m and <t£ R +.

x£R

x£R

x£R

x£R.
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Substituting the functions Dx and dx by the corresponding sample statistics, 
normality tests for random variables with unknown parameters can readily be con
structed.
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ON HOMOMORPHISMS OF EE-SEMIGROUPS

MÁRIA B. SZENDREI

McAlister [2, 3] proved that every inverse semigroup is an idempotent separating 
homomorphic image of an E-unitary inverse semigroup, and his well-known E-theo
rem describes the structure of E-unitary inverse semigroups by means of groups, 
partially ordered sets and semilattices. The former result was generalized for orthodox 
semigroups, independently by Takizawa [10] and the author [7]. On the other hand, 
Takizawa [9] introduced the notion of a EE-semigroup and generalized McAlister’s 
E-theorem for E-unitary á?-unipotent semigroups. However, while in the E-theorem 
the structural data (i.e. the group, the partially ordered set on which the group acts 
and the semilattice) are essentially uniquely determined, in Takizawa’s structure 
theorem this is not the case.

The problem whether there exists a “simplest” EE-triple determining a given 
E-unitary á2-unipotent semigroup led to the investigation of the homomorphisms of 
EE-semigroups, in particular, to the solution of the isomorphism problem of EE- 
semigroups (Section 2). The question of the existence of a “simplest” EE-triple is 
answered, in general, in the negative (Section 3).

1. Preliminaries

For a regular semigroup S, denote by Es the set of idempotents in S. For every 
s in S, let Vs( j) be the set of inverses of s in S. We shall denote by <rs, or simply by a, 
the least group congruence on S.

A semigroup S  is called M-unipotent if each á?-class of S  contains a unique idem- 
potent. Clearly, .^-unipotent semigroups are regular, and, what is more, they are 
orthodox by a result of Venkatesan [11]. An .72-unipotent semigroup S  is termed 
E-unitary if Es is a unitary subset in S.

For the sake of completeness we define EE-semigroups and state Takizawa’s 
structure theorem [9]. However, it was observed in [8] that one of the conditions in 
the definition of a EE-triple [9] is “essentially” implied by the others. So we omit this 
condition from the definition. Note that triples obtained in this way were termed 
pre-EE-triples in [8].

By a partial idempotent semigroup X= (X; o) we mean a partial groupoid such 
that (i) for any x£X , x o x ( = x 2) is defined and equals x, (ii) if x o y  and y o z

1980 Mathematics Subject Classification (1985 Revision). Primary 20M10.
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are defined for x, y, zP_X then (xoy)oz and x o (yoz) are also defined and are 
equal.

Let X  be a partial idempotent semigroup. In the same way as in the case of bands, 
one can define Green’s equivalences PA and PE on X  and partial orders S® and ^  % 
on the set of O-classes and Jzf-classes, respectively. For xPPX and f c j ,  the P£- 
class of x  will be denoted by x!P£ and the set of ^f-classes {yPE: yP Y} by YPE.

A partial idempotent semigroup X  is called Pt-unipotent if the .^-relation is 
trivial on X. In this case S® is considered to be a partial order on X.

Consider a triple (G, SC, Pd) consisting of a group G, an Omnipotent partial 
idempotent semigroup (SC; o) and a subband Pd of SC such that

(I) Pd is an order ideal of SC under = = &,
(II) G acts on SC, on the left, by automorphism in the sense that if a ob (a, bp SC) 

is defined then gaogb is defined for any gPG and gaogb=g(aob),
(in ) gph= sc,
(IV) for all gPG, there exists apPd with (gd)££pPdPE.

Such a triple will be called a PL-triple.
For a PL-triple (G, SC, Pd), define a multiplication on

by
PL(G, SC, Pd) = {(a, g)PPdxG: (g -'a )2Q & 2)  

(a,g)(b,h) = (aogb, gh).

R esult 1.1 ([9] and [8]). Let(G, SC, Pd) be a PL-triple. Then PL(G, SC, Pd) is an 
E-unitary PA-unipotent semigroup. Moreover,

(i) the band of idempotents in PL(G, SC, Pd) is {{a, 1): apPd} which is isomorphic 
to Pd,

and, for every (a, g), (b, h)pPL(G, SC, Pd), we have
(ii) (a, g).A(b, h) i f  and only i f  a=b,

(iii) (a, g)PE(b, h) i f  and only if g~xaPEh~lh,
(iv) (a, g)a(b, h) i f  and only i f  g=h.

The L-unitary O-unipotent semigroup PL(G, SC, PH) is termed a PL-semigroup.

R esult 1.2 ([9]). Every E-unitary PA-unipotent semigroup is isomorphic to a PL- 
semigroup.

The proof of this result is based on the following construction:
Let S' be an L-unitary Omnipotent semigroup. Put Gs = S/as . Define a partial 

binary operation o  on SCs =Es X  Gs such that (a, g)o(b, h) is defined if and only if 
there exists sp S and s'P Vs(s) with ss'=a, sas =g~1h and in this case let (a, g) o  

(b, h)={sbs', g). Let Gs act on SCs so that, for any kC Gs and (a, g)pSCs , we have 
k(a, g)=(a, kg). Then (Gs , SCs , Pds) with Pds = {(e, \):ePEs} is a PL-triple which we 
shall call the Takizawa triple corresponding to S, and PL(GS, SCs , Pds) is isomorphic 
to S.

As we have mentioned, in the original definition of a PL-triple Takizawa [9] 
required that (G, SC, PH) satisfied one more condition, namely:

(0) Pd is an order ideal of SC PC under
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It was shown in [8] that if in a PL-triple (G, SC, S>J) the “unessential” products in SC 
are omitted then the PL-triple obtained satisfies (0). More precisely, the following 
holds:

Let (G, SC, <%/) be a PL-triple. Define a partial groupoid SCm=(SC; o m) by re
stricting the operation on SC in such a way that is defined if and only if

(1) there exists g£G suchthat (gx)£f£%/ SC and gy^SH in(:L; o),

and if this is the case then let xo  my= xoy. One can verify that if (1) holds for x 
and y  then x oy  is defined in SC. Let G act on SCm in the same way as on SC.

A PL-triple (G, SC, aSJ) is called reduced if, for all x,y£SC, the product xoy 
in SC is defined if and only if (1) holds in SC. For example, the Takizawa triples are 
reduced.

Result 1.3 ([8]). For any PL-triple (G, SC, aS/), the triple (G, SC„„ SJ) is a reduced 
PL-triple satisfying condition (0), and PL(G, SC, <3l)=PL(G, SCm, °H).

The following assertion, essentially due to Takizawa [9] and modified for PL- 
triples in our sense in [8], shows a connection between PL-triples determining an in
verse PL-semigroup and McAlister triples. For the definition of a McAlister triple 
the reader is referred to [4] or [5].

Result 1.4 ([9] and [8]). Let (G, SC, 0d) be a PL-triple such that °SJ is a semi- 
lattice. Put SC' =SCJ £Cm and <W'= lWSCm where is used to denote Green’s SC-rela
tion on SCm. For any g£G and xS£„f SC' we define g(xSCm)= (gx)SCm. Then
(G, (SC'; ^sc ), <&') is a McAlister triple and PL{G, SC, SJ) is isomorphic to 
P(G, SC', <&').

We shall need to think of a McAlister triple as a PL-triple. In the following propo
sition we show that McAlister triples are just the “commutative” PL-triples.

We term a partial idempotent semigroup X=(X, o) commutative if, for every 
x, y£X, x o y  is defined if and only if y ox is defined, and in this case xoy= yox . 
A PL-triple (G, SC, aD) is called commutative if SC is commutative.

Proposition 1.5. (i) Let (G, (SC; ^ ) ,2 /)  be a McAlister triple. Then(G,(SC; A g), 
with A  s the partial operation offorming the greatest lower bound in (SC; is a com
mutative PL-triple.

(ii) Let (G, (SC; o), <W) be a commutative PL-triple. Define a relation S 0 0,1 % 
by the rule that x S 0y i f  and only i f  x  oy=x. Then is a partial order and 
(G, (SC; ^o), °S/) is a McAlister triple.

(iii) For every McAlister triple (G, (SC; ^ ), the relation = a ,, is just =.
(iv) For every commutative PL-triple (G,(SC; o), <W), the partial operation o 

is a restriction of A  g0, and, consequently, ° m = ( A  g0),„.
Proof, (i) is proved in [9], (ii) immediately follows if we observe that in a com

mutative partial idempotent semigroup SC, both á? and CC are trivial. Hence and
are partial orders on SC and = (iii) and (iv) can be checked by

straightforward calculations.
For the undefined notions and notations the reader is referred to [1].
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2. Homomorphisms of PL-semigroups

In this section we describe the homomorphisms of PL-semigroups by means of 
homomorph-like mappings of PL-triples.

Let S  and S be two P-unitary á?-unipotent semigroups and ¥: S-^S  a homo
morphism. Obviously, by restricting '¥ onto Es , ¥  determines a homomorphism of 
Es into Es which is injective [surjective] provided ¥  is injective [surjective]. Since 
¥ a s is a homomorphism of S  into a group, there exists a unique group-homomor
phism i//: S/as -► S/as making the diagram below commutative:

S  W 5

°s
S/Os j  I/O s

Clearly, the surjectivity of ¥  is inherited by \j/. The fact that the same holds for 
injectivity is shown as follows. By a result due to Saitő [6], we have as =  {(.v, t)S S x S :  
s't£Es for some/for every s'£ Vs(s)} and, similarly, for as . Hence if s¥ost¥  
and j 'CFsCj ) then s '¥ £ V s(s¥ )  and (s 't)¥ = s '¥  ■ t¥£E s . If ¥  is injective then 
we obtain s't£Es which implies that sost. Thus )// is also injective.

Applying this argument for PL -semigroups, we can state the following.

P roposition 2.1. Let XF: PL(G, SC, (W)-*PL{{G, rSC,°2j) be a homomorphism of 
PL-semigroups. Then there exist uniquely determined homomorphisms <p: G-+G and 
0 :  SJ such that (a, g )¥  —{a©, gq>) for any (a, g)CPL (G, SC, ad). Moreover, <p 
and © are injective [surjective] provided ¥  is injective [surjective].

P roof. Denote the ith (7=1,2) projection of S=PL (G, SC, SJ) and S = 
= PL (G, SC, SJ) by nt and nt, respectively. Suppose the mappings <p: G — G, 0 : SJ —SJ 
have the property that (a, g)¥=(a&, gcp) for any (a,g)£S. Since, by Result 
1.1 (i), v.j\Es \Eg^-SU and fij\Es \ Es ^°d are isomorphisms, we have
(2) 0  = (n1\Es)-\'F \E s)(n1\Es).

On the other hand, by Result 1.1 (iv), the kernels of n2 and n2 are just the least group 
congruences ers and os , respectively. Therefore

(3) cp = i~1 jri

where ij/ is the homomorphism S/<ts—S/os induced by ¥  and i: Sjos-*•G, i: S/os -»G 
are the isomorphisms corresponding to n2 and n2, respectively. Conversely, it is 
clear, that the mappings 0  and cp defined by (2) and (3), respectively, are homo
morphisms. Let (a, g)£S  and (a, g)'V=(a, g). By definition, we have g=g<p. 
Moreover, Result 1.1 (ii) implies (a, g)S^{a, 1) and (a, g)¥3t(a, 1). However, the 
former relation ensures (a, g)¥S#(a, \)¥={aQ, 1) by (2) whence we obtain 
(ä, 1 )8$(aQ, 1). As S is £#-unipotent we conclude a =aO. Thus the first assertion 
is proved. The second assertion immediately follows from the argument preceding the 
proposition.
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In the case of P-semigroups and McAlister triples, each pair of homomorphisms 
(p: G —G and O'.®)-*-®/ obtained from a homomorphism P : P(G, SC, %/)-* 
—P(G, SC, SSJ) can be (uniquely) extended to a homomorphism q: SC —SC by defining 
(ga)q=gcp ■ a& for every gZG and aZ°D.

Unfortunately, this is far not the case with PL-semigroups and PL-triples. We 
shall see below “non-equivalent ” PL-triples which determine isomorphic PL-semi- 
groups and both of which have no non-equivalent “isomorphic image” . First of all, 
define the notion of a “homorphism” of PL-triples.

Let (G, (SC; o), and (G, (SC; ö), <2J) be two PL-triples. Let cp: G—G be 
a group-homomorphism and q: SC —SC a homomorphism of partial groupoids in the 
sense that xqöyq is defined whenever xo y  is defined and (x oy)q= xqöyq. The pair 
(cp, t7) will be called a PL-homomorphism of (G, SC, ’S/) into (G, SC, aD) — in notation: 
{cp, q): (G, SC, SC,SU) — provided ‘Wq^'W  and (gx)q =gcp • xq for any
gZG and xZSC. By a PL-monomorphism we shall mean a PL-homomorphism 
(cp, q): (G, SC, <2/)—(G, SC, <&) with the property that (m) both (p and q\CW: °SJ—Sy, 
the restriction of q onto aSJ, are injective. A PL-homomorphism (<p, q): (G, SC, aSJ) — 
—(G, SC, S>J) will be termed a PL-epimorphism if (e) for every gZG and dZaSJ with 
{ga)C£ZSyCC, there exist gZG and aZSd suchthat gcp=g, aq=ä and (gcí) CP Z®/£C. 
If a PL-homomorphism (cp,q): (G, !C, ^ —(G, SC, has the properties that (il) 
both cp and q\Z!J are bijective, and (i2) xqSCyq implies xSCy for every x, yZSC then 
it is called a PL-isomorphism. A PL-equivalence is defined to be a PL-homomorphism 
(cp, q)'.(G, SC, <W)—{G, SI,S!J) where both <p and q are bijective and x o y  is defined in 
SC for every x, y  in SC whenever xqßyq is defined in SC.

It is easily seen that a PL-equivalence is necessarily a PL-isomorphism. More
over, if (<p, t]):(G, as, <S/)-{G,3C,9) and (cp, fj): (G, SC, #)-(<?, f ,  W) are PL- 
equivalences then both ((pcp,qfj) and (<p~1, i?“1) are PL-equivalences. So the exist
ence of a PL-equivalence between PL-triples determines an equivalence relation on 
the class of all PL-triples. We say that two PL-triples are PL-equivalent if there exists 
a PL-equivalence of one of them into the other one.

P roposition  2.2. A PL-homomorphism is a PL-isomorphism if  and only i f  it is 
both a PL-monomorphism and a PL-epimorphism.

P roof. Let (cp,q):(G, SC, ÖÜ)—{G, SC,Sy) be a PL-homomorphism. Suppose 
it to be a PL-isomorphism. Clearly, (il) implies (m). If gZG,a,BzSH with gäJCb 
then, by (il), there exist gZG, a, bZßd with g(p =g, aq=a and bq—h. Here 
{ga)q=g(p ■ aq=gaCCh=bq which implies by (i2) that gaCCb in SC. Thus (e) also 
follows.

Conversely, suppose that (cp, q) satisfies (m) and (e). First of all, observe that (e) 
implies both cp and q\S>/ to be surjective. On the one hand, apply (e) for any gZG and 
an äZßJ with (gd)SCzSdSC which exists by (IV), and, on the other hand, apply (e) 
for I ZG and any aZSH. Hence, by (m), we deduce that (il) holds. Now assume 
that x,yZSC and xqSCyq in SC. By (III), we have x=ga and y=hb  for 
some g, hZG and a, bZßSJ. Thus g(p ■ aq =(ga)qSC (hb)q—h(p -bq whence

7
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(h-1g)(p • at]£Cbri follows where bijCW. Applying (e) we obtain k£G, c, such 
that k<p={ji~xg)cp, a]=ar\ and kcCCd in SC. Property (m) implies k —h~xg and 
c=a. Thus {h~1g)aSCd. Since rj is a homomorphism we infer that (h ~1g)<p ■ a>j = 
=((h~1g)a)ri3?dt], that is, briJPclrj. Making use of the fact that rjl'W is an injective 
homomorphism by (m), we deduce that bd£d in all . Therefore ( Ir ig)aJdb and hence 
x=gaC£hb —y. Thus (i2) also holds which completes the proof.

R e m a r k . It turned out in the previous proof that both cp and rj\& are surjective 
provided ((p, rf) is a PL-epimorphism. This clearly implies by (III) that if (cp, r\) is a 
PL-epimorphism or, in particular, a PL-isomorphism then t] is surjective.

Given a PL-homomorphism {cp, rj):(G, SC, (¥ )^{G , SC, %/) we can define a mapp
ing PL (G, 3C, SJ)^PL (G, SC, °d) of PL-semigroups in a natural way: for
each {a,g')^PL{G,3C,sy), let (a, g)<lgl,^=(ai], gcp). Here (ar],gcp) is indeed in 
PL{G,9C,cW) as (a, g)g PL (G, SC, (i!f) implies that there exists bCSC with g^aCPb 
whence it follows that {gcp)^1at]={g~1a)rt£Cbri£<S/.

P ro po sitio n  2.3. (i) For every PL-homomorphism (cp, r\): (G, SC, aJ/)-*(G, SC, t&), 
the mapping is a homomorphism of PL (G, SC, <&) into PL (G, SC, %/).
Moreover,

(ii) is injective if  and only if (cp, r\) is a PL-monomorpliism;
(iii) is surjective i f  and only if  (cp, ??) is a PL- epimorphism;
(iv) is an isomorphism if and only if {cp, tj) is a PL-isomorphism.

Proof, (i) and (iii) are immediate. The “if” part o f (ii) is also clear and its con
verse part follows from Proposition 2.1. Statement (iv) is implied by (ii), (iii) and 
Proposition 2.2.

We shall say that (P(i>tis the homomorphism induced by the PL-homomorphism 
(<P, '7 b

As we have already mentioned, not all homomorphism of PL-semigroups are 
induced by PL-homomorphisms. The following simple example shows how much 
more the case is complicated.

E x a m p l e . Let G={1, g} be a cyclic group of order 2 and Z =  {e, f } a left zero 
semigroup. Clearly, the left group S= ZXG  is an L-u nitary Omnipotent semigroup. 
Consider the PL-triples (G, Z, Z \  and (G, Z, Z ) 2 where the only difference between 
them is that in (G, Z, Z)1 the action of G on Z is defined trivially, that is, g\z—z for 
every z£Z, and in (G, Z, Z), the action is defined by g ie= f g if—e. Obviously, we 
have S  = PL (G, Z, Z \  =PL(G, Z, Z)2.

Now we verify that (G, Z, Z), and (G, Z, Z ) 2 are not PL-equivalent. Suppose 
(cp, rf): (G, Z, Z)x->-(G, Z, Z ) 2 to be a PL-equivalence. Then cp is the identity auto
morphism of G and r\ is either the identity automorphism i of Z or the automorphism 
£ interchanging the elements of Z. Since {g\e)i—ei=eXf=g\e=g(p\ei and (gfjC = 
—eC,=fXe=glf=g(pliet„ neither {cp, i) nor (cp, £) is a PL-equivalence which contra
dicts our assumption.

Finally, we notice that each PL-isomorphism of (G, Z, Z); (7=1, 2) into a PL- 
triple is trivially a PL-equivalence.
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Now we turn to describing homomorphisms of /-'/--semigroups by means of 
PL-homomorphisms of PL-triples. Let (G, SC, <W) and (G, SC, # ) be PL-triples and 
P: PL(G, SC, Cy)-*PL (G, SC, <%/) a homomorphism. If P is not induced by a PL- 
homomorphism then it is natural to try to find a PL-triple (G, SC, ®j), a PL-isomor
phism Up, rj) and a PL-homomorphism (ip, f\) of (G, SC, <¥) into (G, SC, 0)) and 
(G, SC, <3t), respectively, such that we have P = (p~j(p--.

n
A(<(>3),' MM)

sG,x,y) \
( 5 , x , y )

PL ( G , x , y )
A.X \  Ct>-

J L ___
pUG,x,y.) ^ PUGjf,y)

If this is the case then (a, g)P ={a(t]\‘̂ )~ 1(rj\‘lk:),g(p~1ip)iore\ery(a,g)^PL(G, SC,<&), 
that is, P can be obtained from (q>, iy) and (ip, rj) in a fairly simple way. The main 
result of this section states that this idea can be carried over for any homomorphisms 
of P/.-semigroups.

T heorem  2.4. Let (G, SC, aS) and (G, SC, aM) be two PL-triples. Denote by S and 
S the respective PL-semigroups PL (G, SC, C>J) and PL (G, SC, (&). Then, for every 
homomorphism P .S-+S, there exist a PL-triple (G, SC, f/), a PL-isomorphism 
Up, >y):(G, SC, 0/)-*-(G, SC, CM) and a PL-homomorphism (ip, F]):(G, SC, °j/)-+(G, SC, <&) 
such that P = 0~ \P 0iij. Moreover, P is injective [surjective, an isomorphism] i f  and 
only if (ip, rj) is a PL-monomorphism [PL-epimorphism, PL-isomorphism].

R em ark . The PL-triple (G, SC, <&) can be chosen to be the Takizawa triple cor
responding to S.

P roof. Let G=G. Define SC=(l2/XG; 5) to be the partial groupoid with the 
following partial operation: for any a, bC.^ and g, h£G, the product (a, g)ö(b, h) 
is defined if and only if ((h~1g)a)£f€‘2/SC in SC, and if this holds then (a, g)ő(b, h) = 
—{a °(g~1h)b, g). Moreover, let <$= {(a, 1):ű£<^} and define the action of G on SC 
by k(a, g)=(a, kg) for every kf_ G and (a, g)d3C. Observe that (jh~xg)a)C£ C.CUCP 
if and only if (a,g~1h)C.S where the latter is equivalent to saying that there exist 
s£S  and s'£Vs(s) with ss'=(a, 1) and sos =g~1h. Furthermore, in this case 
(a, g-1A)(£, l)s'=(ao(g~1h)b, 1) in Sfor any j'€  Vs((a, g~Vij). Therefore (G,3C,&) 
is a PL-triple and (v, e) with v the natural isomorphism of Gs onto G = G and e:SCs -̂SC 
defined by (ja, 1), g)e=(a, g) is a PL-equivalence of the Takizawa triple 
(Gs , SCs , <&s) of S onto (G, SC, <&). We have chosen to work with the latter PL-triple 
because the calculations are simpler in this way. Define r\:SC-*SC by (a,g)ij=ga 
for every g£G, â <W. Making use of the fact that, for any x ,y  in SC, the product 
xoy exists provided (1) holds, we immediately obtain that (i, rj) with i the identity 
automorphism of S=G  is a PL-homomorphism of (G,SC,4y) into (G,SC,&). 
Since <£u>£ is an isomorphism by Proposition 2.3 (iv) and 4>v e$ hn = <Pv e, is the

7*
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isomorphism of PL (Gs , SCs , SJs) onto S used by Takizawa, we infer to be an 
isomorphism. Hence, by Proposition 2.3 (iv), (i, rf) is a PL-isomorphism.

Now let us define cp: G—G and 0 : SÜ-*■<& to be the homomorphisms induced 
by P: S- 'S  (see Proposition 2.1) and to be the mapping assigning gip • a©
to (a, g) for every (a, g)£SC. We intend to verify that (cp, fj) is a PL-homomorphism. 
It is immediate by definition that ,0/rj^<W and {h(a, g))fj=hqj(a, g)fj holds for every 
he G and (a, g)ej£. Suppose (a, g), (b, h)CS such that (a,g)5(b, h) is defined. 
Then there exists c^SS v/ith (h~1g)aJPc whence it follows that (a, g~1h)£S  and 
(a, g~xK)SP(c, 1) in S  by Result 1.1 (iii). This implies \a 0 ,(g ~ 1h)ip) = 
= (ű, g~1h)P£C(c, l)P = (c0 , 1) in S. Consequently, by Result 1.1 (iii), we have 
(h~1g)(pa©ä’c© in SC. Then, again applying the fact that if (1) holds for some elements 
x, y  in a PL-triple then their product is defined, we deduce that (tji~1g)ipa0')o 
~öb0  is defined in S and therefore (gcpa©)~(hcpb&) is also defined. Moreover, we 
have
(4) ((a, g)5(b, h))fj = g(p(ao(g~1h)b)0  
and

(5) (a, g)fjö(b, h)fj = g(p(a0ö(g-1h)cpb0).
In order to prove that the right-hand sides of (4) and (5) are equal, consider the first 
component of the image of the product (a, g_1A)(Z>, 1) in S under P. We have

((ao(g“1/j)h )0 ,(g -1h)rg) =  {ao{g-i h)b, g_1/i)P  = ((a, g_1/i)(b, 1))P =

-  (a, g-ift) P • (6,1) P = (a0, {g^h )0 )(b0 , T) -

=  (a &°((g -1 h) <p ■ b0 ), (g“1 h) ip).
This completes the proof of the fact that (cp, fj) is a PL-homomorphism.

The equality of mappings P = is obvious by the definitions. The last
assertion of the theorem follows from Proposition 2.3.

An immediate consequence of Theorem 2.4 is the following solution of the iso
morphism problem of PL-semigroups.

C orollary 2.5. The PL-semigroups PL (G, S i, <&) and PL (G, S ,  <&) are 
isomorphic to each other i f  and only if there exist a PL-triple (G, SC, <&) and two 
PL-isomorphisms of (G, SC, StJ) into the PL-triples (G, SC, <¥) and (G, SC, °il), respec
tively.

3. On the class of PL-triples determining a given L-unitary 
^-nnipotent semigroup

In this section we apply the notions of a PL-homomorphism, PL-isomorphism 
and PL-equivalence to show that, in the class 3PCPS of ail reduced PL-triples determin
ing a given L-unitary ^2-unipotent semigroup S, the Takizawa triple corresponding 
to S  is the “free” PL-triple in the sense that each PL-triple in 3PCPS is its PL-isomor- 
phic image. Moreover, if S' is an inverse semigroup then the McAlister triple corre-
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sponding to S is the “simplest” element of SPC£s in the sense that it is a PL-isomorphic 
image of all PL-triples in CPC£S.

Let S  be an L-unitary .^-unipotent semigroup. Denote by SPC£s the class of all 
reduced PL-triples which determine a PL-semigroup isomorphic to S. Let us define 
a quasi-order ^  on SPC£s in such a way that (G, SC, ^ )^ (G , SC, <&) if and only if 
there exists a PL-isomorphism of (G, SC,<y) into (G, SC, <&). The equivalence rela
tion corresponding to ^  will be denoted by =  . Clearly, we have {G, 3 ^ ,^ )  = 
= (G,SC,Sy) provided (G, SC, (W) and {G,3C,<&) are PL-equivalent. However, the 
following example shows that there can exist PL-triples in which are not PL- 
equivalent but =-related, even if S is an inverse semigroup.

E xample. Denote by /  the meet-semilattice of integers and by Z the additive 
group of integers. Let S be the direct product /X  Z which is clearly an L-unitary 
inverse semigroup. One can easily check that the reduced PL-triple (Gs , SCs , <ys) is 
PL-equivalent to the PL-triple (Z, SC, <&) defined as follows. Let f = ( /X Z ;  o) 
with the following (full) multiplication: (i, s) o (j, t)=(iAj, s) for every (/, s), 
(j,t)£SC. Define the action of Z on Í  by t(i,s)=(i, t+s) for every t£ Z 
and (/, s)£3C. Let ®/={(i, 0): i£l}. Note that (/, s)SC (j, t) in SC if and only if i =j.

Define an equivalence relation g on f  such that, for any (/, s), (j, t)C_SC, we 
have (j, s)g(j, t) if and only if either i= j and s = t or /=y<0. One can immedi
ately verify that q is compatible both with the multiplication and the action. Thus we 
can define a multiplication and an action of Z on SCa=SClQ in the natural way. 
Observe that q separates the elements of aJJ. Therefore we easily see that (Z, SCe, %/“) 
with <Wa = (ap: Sy} is a PL-triple belonging to SPCPs.

Similarly, we can define an equivalence relation x on SC in such a way that, for 
any (i, s) (j,t)£SC, we have (/, s)x(j, t) if and only if either i= j= 0 and s= t 
(mod 2) or (/, s)g(j, t). Obviously, x is also compatible both with the multiplication 
and the action, and thus (Z, f ') also belongs to 3PSCs . Observe that
|{f((/, a)^): t€Z}| is equal to 1 or is infinite according to whether or not, while 
|(r((0, x)t):í£Z}|=2. Therefore (Z, SCe, <&“) and (Z, SCX, %/1) are not PL-equivalent. 
However, define rjp. S£a-+S£x by (/, s')£?>—(/, s)x and i]2- SCZ—SC° by (i, s)t— 
►-*-(/— l,$)e for every (i, s)dSC. Denote the identity automorphism of Z by i. It is 
not difficult to check that both (/, t]x) and (/, q2) are PL-isomorphisms, that is, 
(Z, SCe, <We)={Z, SCX, <WX).

T heorem 3.1. Let S be an E-unitary dl-unipotent semigroup. For any PL-triple 
(G, SC, aSJ) in SCS£s, we have (G, SC, <& )f(G s, fcs ,®/s) and, moreover, (G, SC, °J/) = 
= (GS, SCs , <2/s) i f  and only i f  they are PL-equivalent.

P roof. In the first half of the proof of Theorem 2.4 we have seen that 
(G, SC, W) ̂  (G, SC, $ )  and the latter is PL-equivalent to the Takizawa triple 
(Gs , SCs , SJf). This proves the first assertion. The second statement easily follows from 
the fact that in (Gs, 3CS, Süf) we have ga=hb for some g,h£Gs and a, bC_aJ/s if and 
only if g=h and a=b. For this property implies by (III) that in each PL-isomor
phism (<p, t]):(G, SC, <3l)-+(Gs , &s, %), the mapping rj is injective.

In the sequel let S' be an L-unitary inverse semigroup. By McAlister’s well- 
known result, if (G,(SC; S ) , sy') and (G, (SC; ■^),<y )  are McAlister triples which
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define / ’-semigroups isomorphic to S then there exists a group-isomorphism q>: G — G 
and a bijective isotone mapping r\: SC **9C such that q maps ß  onto ß  and 
(gx)q =g<p • xr\ for every gCG and xCSC. Obviously, (<p, q) is a PL-equivalence 
between the commutative PL-triples (G, (SC; A ^), ß )  and (G, (SC\ A s), ß ), and, 
in particular, between the reduced commutative PL-triples (G, (SC; (A g)m), ß )  and 
(G, (SC; (A s )m), ß). Thus we infer that, up to PL-equivalence, there exists a unique 
commutative PL-triple in SPLPs-

Let (G, SC, ß)C&&s - Denote (SCISP; (ASj?)m) by SC' and {aS£\ aCß] by ß '. 
Results 1.3, 1.4 and Proposition 1.5 ensure that (G, SC', ß'ßCPSP^. The proof of 
Result 1.4 is based on the fact which can be formulated in our terminology such that 
(i, r\) with z the identity automorphism of G and q the natural mapping of SC onto 
SC/SC is a PL-isomorphism of (G, SC, ß )  into (G, SC', ß '). Since there exists an, up to 
PL-equivalence, unique commutative PL-triple in 8PSPs — denote it by M s —, we 
have shown that Ms ß(G, SC, ß )  for any (G, SC, ß )  in SPS£s -

Finally, we note that every PL-homomorphism (ip,r\):(G, SC, ß)-*(G, SC, ß )  
into a commutative PL-triple can be (uniquely) factorized through (z, q) :(G, SC, ß )-*  
— (G, SC, ß j ._

Let (G, SC, ß )  be any commutative PL-triple and (ip, q) a PL-homomorphism of 
(G, SC, ß )  into (G,SC,ß). Define q': SC'-*SC such that (xSC)q' —xfj for any xC.SC. 
If xSCy in SC then, by commutativity, we have xrj=(xoy)fj=xq oyfj=yfj oxfj= 
= (y ox)rj=yrj. Hence q' is, indeed, a mapping. Making use of the facts that 
(G, SC', ß ')  is reduced and both (z, q) and (ip, fj) are PL-homomorphisms, it is easily 
seen that (ip, q'):(G, SC', ß')-*(G, SC, ß )  is a PL-homomorphism. Thus (ip, q) = 
=  (z, q) (ip, q'). Unicity of (ip, q') is clear.

We can sum up what we have proved as follows:

T h e o r e m  3 .2 . Let S be an E-unitary inverse semigroup and (G, SC, ß)CSPL£s . 
Define SC' =(9C/C£; (A s y,),„) and ß '  = [aCC: aC.ß}. Let G act on SC' in the way that 
g(xJP )= (gx)ß  for any g£G and xC.SC. Then (G, SC', ß ')  is the, up to equivalence, 
unique reduced commutative PL-triple in 3CC£S. Moreover, (i, q):(G, SC, ß)-*(G, SC', ß ')  
with i the identity automorphism o f G and q the natural mapping of SC onto SC' is a 
PL-isomorphism which has the property that, for any commutative PL-triple (G, SC, ß )  
and any PL-homomorphism (ip, q) :(G, SC, ß )  -*(G, SC, ß ), there exists a unique PL- 
homomorphism (<.p',q'):(G, SC',ß') -*(G, SC, ß )  suchthat (ip, rj)=(i, q)(<p' ,if) .

(o,x,y)  
(m)

(Gß’,y)

(?,?> C5,Z,y)------------

' («PVí)

C o r o l l a r y  3 .3 . Let S be an E-unitary inverse semigroup. For every PL-triple 
(G, SC, ß )  in &S£s, we have Ms f(G , SC, ß )  where Ms is used to denote the up to 
PL-equivalence unique commutative PL-triple in SPSPs .
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This corollary says that Ms which is, essentially, the McAlister triple correspond
ing to S' is the “simplest” .PL-triple in 2PL£S, that is, the least element of 3PL£S with 
respect to the quasi-order provided S is an L-unitary inverse semigroup. If S 
is an L-unitary á?-unipotent semigroup then, in general, there does not exist a least 
element in The example in Section 2 shows that the PL-triples (G, Z, Z)i
and (G, Z, Z)2 are uncomparable minimal elements in SA5£X x G with respect to the 
quasi-order -Z.
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STABLE TRANSVERSALS AND STOCHASTIC FUNCTIONS 
IN POLYOMINOES

SAMUEL W. BENT

Abstract

We show that not every polyomino has a stochastic function (a labelling of its cells by non
negative real numbers so that the labels in every maximal rectangle sum to 1). We also show that deter
mining whether a polyomino has a stochastic function can be done in polynomial time, but that 
determining whether it has a stable transversal (a stochastic function with integer labels) is NP- 
complete. This settles some open questions posed by Berge, Chen, Chvatal, and Seow.

1. Introduction

A polyomino is a finite set of cells in the infinite planar square grid. Polyominoes 
have an ancient tradition as a game or puzzle [4], but recently they have attained new 
importance in digital image processing and in circuit design. An image or a circuit 
layout can be thought of as a polyomino for some purposes, and combinatorial prop
erties of polyominoes, such as the minimum number of rectangles whose union 
equals a given polyomino, influence the efficiency with which an image or circuit can 
be represented or processed in some way.

Berge et al. surveyed many combinatorial results about polyominoes, and posed 
many more open questions [2]. This paper answers two of these questions, as well as 
a third related question that Berge et al. did not explicitly pose.

Any polyomino can be thought of as a hypergraph in a natural way. The cells 
of the polyomino correspond to the vertices of a hypergraph; its maximal rectangles 
correspond to the edges. (A maximal rectangle of a polyomino P is simply any rectan
gle contained in P that is not strictly contained in some larger rectangle within P.) 
Using the language of hypergraphs, define a transversal of a polyomino P to be a set 
of cells of P that has at least one cell in common with each maximal rectangle of P. 
The set is a stable transversal if it contains exactly one cell in common with each maxi
ma rectangle.

Equivalently, a stable transversal is a function X  of the cells of P that maps each 
cell c to {0, 1} in such a way that

2  m  = i
c t R
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for each maximal rectangle R in P. Allowing X  to take on non-integer values yields a 
stochastic function, namely a function X  mapping the cells of P to [0, 1] such that

(1) 2  X(c) = 1
cZR

for each maximal rectangle R in P. Clearly a stable transversal is a special case of a 
stochastic function.

Berge et al. give an example of a polyomino that has no stable transversal, al
though it does have a stochastic function. They pose the following open questions:

Q1 Is there a polyomino with no stochastic function?
Q2 How difficult is it to determine whether a polyomino has a stable transversal ? 

If the answer to the first question is “yes”, a third question follows naturally:

Q3 How difficult is it to determine whether a polyomino has a stochastic 
function?

We provide the answers “yes”, “NP-complete”, and “polynomial”, respectively, to 
the three questions.

2. Notation and a useful lemma

Let P be a polyomino equipped with a stochastic function X. Number the n 
cells of P with the integers {1,2, ...,«}. A top cell of P is a cell whose upper neighbor 
is not in P. Similarly, a bottom (respectively left, right) cell is a cell in P whose lower 
(respectively left, right) neighbor is not in P. A rectangle is determined by the loca
tions of two diagonally opposite corners, so let {a, b) denote the rectangle with cor
ners numbered a and b. (In most cases, we will only refer to (a, b) when it is a maxi
mal rectangle of P with a as its upper left corner.) Let xa denote the value of X  at 
cell a, and let denote

2  X(c).c£(a,b)

In Figure 1, the top cells are 1, 2, and 5; the right cells are 2, 5, and 7; and the maxi
mal rectangles are (1,4), (2,6), (3,5), and (4,7). Thus we must have X(2jG> = 
—x2+ xi + x6 = l.

1 ri
3 U 5

n . 7

Fig. 1. A  simple polyomino

The following lemma formalizes and slightly generalizes an arguments used by 
Berge et al. to exhibit a polyomino with no stable transversal.

Lemma 1 (Berge et al. [2]). Let P be a polyomino with stochastic function X. 
Suppose R1 (with corners a, b, c, and d, reading clockwise from upper left) and R<> (with 
corners e , f  g, and h) are rectangles in P such that
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(i) c£R2 and e£-Ri,

( Ü )  X ( űiC) ^ ( e , g )

(iii) X(t,h> =  x (i,f) =  1.

Then .v9=0 for all cells q in ( I f f  R f  — ilb, /i)U(c/,/)). (See Figure 2.)

Fig. 2. Overlapping rectangles

P roof. By (i), (b, h) and (d ,f)  are actually rectangles within P, so we are allowed 
to refer to them in (iii). We have

X(a, c)  b y  0 0 ,
and

X(b,h) + X(d,f) = 2 by (iii).

The first equation counts cells in R ^ R ^ ,  counting cells in A, fl R., twice; the second 
counts cells in (b, h )\J(d ,f), also counting cells in R1PiR2 twice. Subtract the sec
ond from the first and recall that xq^ 0  for all cells q to complete the proof.

We will almost always apply Lemma 1 in situations where (a, c), (e, g), (b, h), 
and (d , f ) are maximal rectangles, although in one case (b, h) and (d, f ) will be 
contained in larger maximal rectangles whose cells are known to have value 0 outside 
the region shown in Figure 2.

If ̂  is a real number, let s denote 1 — s.

3. Wires, signals, and gates

The constructions in the main theorems are best described by analogy with 
digital circuits. This section describes the building blocks of circuit design via poly- 
ominoes. Each piece of circuit is described as if it were part of a large polyomino 
P with stochastic function X.

A wire is a series of overlapping 2 x2  rectangles, as in Figure 3(a). By Lemma 1 
applied to the maximal rectangles (1,4) and (4, 7), we find that x1= x 7=0. Apply
ing Lemma 1 to each pair of overlapping 2 x 2  rectangles, we find successively that 
x4= x30=0 andx7= x13=0. It is not necessary that cell 1 be a top or left cell, or that 
cell 13 be a bottom or right cell; as long as there are at least three 2 x 2  rectangles, we 
can extend the wire as far as we like, knowing that the center cells must have value 0.

A wire propagates a signal s along one side as follows. If x3=s, then because 
x<14) =  l and x4= x4=0, we must have x2=s. This forces x6=s, because x <2,6> =  1 
and x4 =0. Similarly this forces x5 — s and xa =s, forcing x8=s and xyo =s, finally 
forcing xu =s. These values satisfy equation (1) for all the rectangles in the wire. 
Thus the wire propagates signal s down the lower left side, or, equivalently, s up the
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upper right; the signal is determined by facing in the direction of propagation and 
reading the value on the right of the wire. We symbolize a wire as in Figure 3(b).

A tab is a group of three 2 x 2  rectangles attached to a wire as in Figure 4(a). 
Its purpose is to restrict the signal on the side of the wire nearest the tab to be at least 
1/2; this restriction is symbolized as in Figure 4(b). It does this as follows. In the wire, 
Lemma 1 shows that

Ai — X4, — x 7 — x10 — As — X24 — X30 — x 33 — 0 ;

note that x13 is not included because it does not belong to a 2X2 maximal rectangle. 
In the tab, Lemma 1 shows that

X32 ~  -xn  = Au =  A  6 =  d -

Suppose x 3=s and x33 = t. Then as before we find that

But then 

so

A  = x9 =  s; x2 = x5 =  x8 =  A i = s;

As =  As — t; A s1= a" 20 =  -V1 r, =  t.

0  =  ^ < 1 0 .1 7 > — ^ ( 1 2 , 1 8 )  =  ( A o  +  A ] l )  ~ ~ ( A T T  A s )  =  s — X 1 4 , 

X l4  — X 1 9  =  X20 = X 31  —  s ] X 23  —  A"2 9  —  X 3 4  =  5 .

Thus the tab does not stop signal s from propagating. However, by looking at part of 
the rectangles (8, 22) and (15, 19), we see that

and

Adding, we find that

As + A 2 — s +  í  =  1 

A 9 +  A 5 =  s +  i  S  1. 

2 s+ 1 = 2 ,

which implies that j g  1/2, as claimed. The remaining cells (12, 13, and 17) can be as
signed values in many ways, the easiest being x12= x17=0, x13=s. This forces t=s, 
but the value of t really does not matter.

The next building block consists of a central 3 x 3  rectangle with three 2X2 rec
tangles attached to each corner, as shown in Figure 5(a). These attachments can be 
extended as wires in adjacent pairs to form a turn (Figure 5(b)), in opposite pairs to 
form an inverter (Figure 5(c)), or in threes (Figure 5(d)). If signal s enters on the upper
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a)
Fig. 4. Tab

b)

left wire, then signal s leaves on any other attached wire. To see this, use Lemma 1 
to find that

X 4 — X 3 =  X 42 “  ^1 8  =  ^ 4  =  -^9 =  ^T5 =

=  ^ 2 0  ~  X*42  =  -T 37 =  X 34 =  ^ 2 6  =  -^45  =  ^ 4 0  =  -^34 =  ^ 2 8  ~  0 *

Then if x5=.s', the signal propagates toward the center, yielding xi7=s, and 
x13=s. Now x17+ x21̂ l ,  so x21̂ l —x17=s, which forces x14 = l —x2i ^ i .  Simi
larly, x33̂ l - x 14Ss, forcing x28= i, forcing x25Ss, and finally forcing x32̂ s . 
But since x32̂ l —x13=.r, we must have x32 =s, which forces all the other inequal
ities, too. In short,

X47 — X44 — X29 — X32 — S, X43 — X24 — X33 — X25 — s.

These signals then propagate down their respective wires as claimed. The remaining 
values must be x19=x22= x24 = x27 =0 and x23 =  l.

A crossover (Figure 6(a)) allows two wires to cross each other without interfer
ence, except that the signals are inverted as they cross. It consists of two elongated

Fig. 5. Turn/Inverter
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overlapping inverters, symbolized as in Figure 6(b). As in the previous paragraph, 
a signal entering the “vertical” inverter, say xs=s, starts a chain reaction forcing 
x3—xz = xlb=x16=s and x 1= x i = X n = x l i =s.  A signal entering the “horizontal” 
inverter, say x1=t, forces x7 = x6=xu = x12 =  t and x s=xa—x13=xi0 = t. The two 
signals never need to interact, since we can set x9 =  1 to take care of the large central 
rectangles.

Fig. 6- C rossover

A NAND gate (Figure 7(a), symbolized in Figure 7(b)) takes two input signals s 
and t, and produces an output signal r. Besides the usual restriction that these signals 
must lie in [0, 1], a NAND gate enforces the restriction

(2) v + s + 1 ~  2,

but allows any values that obey this restriction. In other words, if j= t  =  l then r must 
be 0; otherwise r can be nonzero. In Section 5 we will see why the name NAND is 
appropriate. To verify its behavior, suppose xt —s, x 19 = t, and xM=r. By Lemma 1 
applied to the input and output v/ires,

hence
xz —  X3 — X u  — X i5  — X i7  •— X ig  — 0,

x4 =  s, x16 =  t, and x l2 = xs = r.

Applying Lemma 1 to <6, 11) and <11, 15) yields

Xg =  ^7 =  Xj5 =  0.

We must have x10 =  l — x1=s, and x9S l -  x19 =  i. Butsince

1 =  x^6,n) — x8 + x9+ x10 =  r + I + s,
equation (2) must hold. If r decreases from 2—(s+ t), then r increases, and x9 or x10 
must decrease. Increasing x13 or x5 compensates for this, allowing smaller values for r.

Finally, a supertab (Figure 8(a), symbolized in Figure 8 (b)) forces entering signals 
to be 1 and departing signals to be 0. Wires may be attached at any of the corners.
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To verify its behavior, apply Lemma 1 to (2, 36) and <10, 44) to find that

By symmetry,
*2 = *3 = x43 — x,4 = 0.

•*13 1 = -^19 =  -*27 =  ^*33 =  0*

Now Lemma 1 applies to (1, 10) and (8,38), even though <7, 12) is not maximal, be
cause x13=0. Thus

1 —  X 17 —  —  X%4 —  X 25 —  x 31 —  X 32 —  X 37 —  x 33 —  0 .

By symmetry, every cell has value 0 except for x4, x5, x 7, x20, x23, x26, x3a, x41, and 
xi2. This implies that 1 =x<7il3) =x7, and by symmetry that

which in turn forces
X 5  —  X 7 —  X 4 1  —  X 3 g — 1,

* 4  =  -*20 =  * 2 6  =  -*42 =  0, and x23 =  1.
Since wires run at a 45° angle from the coordinate axes of the planar grid, it 

is convenient to rotate the schematic diagrams of circuits by 45°. The remaining fig
ures are drawn with this convention.

1 2 3 4 i Í 5 6
7 8 9 10 11 12 13

14 15 16 17 18 19
20 21 22 23 2* 25 26
27 28 29 30 31 32
33 34 35 36 37 38 39
A0 41 1 42 43 44 45

o) b)

Fig. 8. Supertab
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4. A polyomino with m o  stochastic function

Berge et al. give an example of a polyomino with no stable transversal. Using 
the components of the previous section, we can view their example as a wire with 
tabs on opposite sides (Figure 9). Let s be the signal propagating to the right, the first 
tab forces i S  1/2 and the second forces 5& 1/2, so we must have s = 1/2. Astable 
transversal has only integer values, so this polyomino cannot have one.

Fig. 9. A  polyomino with no stable transversal

Similar reasoning shows that the polyomino shown schematically in Figure 10 
cannot have a stochastic function. If the wire begins by propagating signal ,v to the 
right, the first supertab inverts s to s and forces 5 =  1, then the second inverts s to s 
and forces 5 = 1. But it is impossible to have both 5 =  1 and 5 = 1.

----- 2 £ -------

Fig. 10. A  polyomino with no stochastic function

5. NP-completeness and polynomial algorithms

A polyomino may or may not have a stable transversal or a stochastic function. 
Theorems 1 and 2 below show that determining whether it has a stable transversal is 
NP-complete, whereas determining if it has a stochastic function can be done in poly
nomial time. For definitions and standard results about NP-completeness, consult the 
excellent book by Garey and Johnson [3].

Theorem 1. Determining whether a polyomino has a stochastic function can be 
done in polynomial time.

Proof. Let P be a polyomino with n cells. Since a rectangle is determined by two 
opposite corners, there are at most n2 rectangles in P. Determining whether P has a 
stochastic function is equivalent to determining whether the system of linear inequali
ties

^  xc =  1, for all maximal rectangles R in P;
C Í R

0 S  s  1, for all cells c in P

has a feasible solution (xt , ..., xn). This system has at most 2n2 + 2n inequalities,« 
variables, and integer coefficients. A feasible solution can be found, if it exists, in poly
nomial time using (for example) Khachiyan’s ellipsoid algorithm for linear programm
ing [1].

Theorem 2. Determining whether a polyomino has a stable transversal is N r  
complete.
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P roof. Clearly, the problem is in NP, since given a polyomino with n  cells we can 
guess the n values of a stable transversal X  and verify that equation (1) holds for each 
maximal rectangle. There are at most n2 such rectangles (as noted in the proof of 
Theorem 1), each of size at most n, so the verification can easily be done in time 
0(n3).

We prove the problem is NP-hard by giving a reduction from 3SAT [3]. Let F 
be a Boolean formula in 3CNF with n variables and m clauses. We construct a poly
omino P with 0{nr) cells that has a stable transversal if and only if F is  satisfiable.

For each variable v in F, form a “variable component” consisting of a short wire 
leading into a sequences of inverters, as in Figure 11. Use as many inverters as there 
are occurrences of v in F, leaving enough room between them to allow the descending 
wires to contain turns. Call the signal entering from the left v; then signal v leaves 
from the even numbered inverters, v from the odd. In a stable transversal, signal v 
must be either 0 or 1, which we interpret as false and true to obtain a truth assignment 
to the variable v.

VTTTT
V  V  V  V

Fig. 11. Variable component

For each clause (a'JbVc) in F, form a “clause component” consisting of two 
NAND gates, input wires labelled 5, h, and c, and an output wire with a tab attached, 
all connected with turns and inverters as shown in Figure 12. The tab forces the output 
signal to be at least 1/2, so it must be 1, representing true. A NAND gate with true 
output forces at least one of its inputs to be false, by equation (2). Thus the com
ponent forces at least one of the three input signals ä, h, and c to be false, which 
means at least one of a, b, and c must be true.

Fig. 12. Clause component

Finally, connect the 3m wires descending from the variable components to the 
3m wires ascending from the clause components, using turns, crossovers, and in
verters as necessary to ensure that the signal leaving a variable component arrives at a 
clause component with the correct value. Figure 13 shows a possible connection for 
the formula (xVyVz)(xVzV w). By the observations here and in Section 4, the result
ing polyomino has a stable transversal if and only if F  is satisfiable.

The strategy used in Figure 13 to connect the wires partitions the space between 
the variables and the clauses into 3m layers, each used to route one wire to the right 
until it is above its destination. There are 3m vertical strips near variables and another

8
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Fig. 13. Polyomino constructed for (xVy V z)(xVzVw)

3m near clauses. Each layer and strip has constant thickness (enough to hold a cross
over or turn), so the whole construction lies within a rectangle of area 0(m 2). Thus 
the number of cells in the resulting polyomino is 0(m 2), and the construction can be 
done easily in polynomial time.
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REAL CONFORMAL SPIN STRUCTURES ON MANIFOLDS

PIERRE ANGLES

Abstract

This paper is divided into three parts. In the first one, we study conformal orthogonal flat geom
etry, in a purely algebraic way, avoiding systematically any matricial formalism. We introduce and 
give geometrical characterizations of groups called conformal spinoriality groups. In the second part, 
real conformal spin structures on riemannian or pseudo-riemannian manifolds V are defined, in a pure
ly differential geometrical scope, without any algebraic topology machinery. We obtain necessary 
and sufficient conditions for the existence o f a real conformal spin structure on V, in which the con
formal spinoriality groups play an essential part. The third section is assigned to the investigation of 
the connections between real spin structures and real conformal spin ones.

Foreword

The notion of spin structure on a manifold V has been introduced by A. Hae- 
fliger who specified an idea from Ehresmann (Sur l’extension du groupe structural 
d’un espace fibré, C. R. A. S. Paris 243 (1956), p. 558—560). J. Milnor (Spin struc
ture on manifolds, Enseignement mathématique, Génévé, 2° série 9 (1963), p. 198—203) 
and A. Lichnerovvicz [10], [11] have taken an interest in those structures. In a self-con
tained way, A. Crumeyrolle [4], [5], ]6], [7], has developed thestudy of vector bund les as
sociated with spin structures, in any dimension and signature. He introduced the general 
defini tions of spin structures on a real paracompact «-dimensional smooth pseudo-rie
mannian (in particular riemannian) manifold and drew up necessary and sufficient con
ditions for their existences in a purely geometrical way. More precisely, he defined the 
notion of spinoriality groups such that the existence of a spin structure on V be sub
mitted to the reduction of the structure group 0(p, q) of “the bundle of orthonormal 
frames of V”, to a spinoriality group, once being got into the complexified. One of the 
main guiding principles is that the study of fields over curved spaces is nothing but 
the consideration of spin-orthogonal, or symplectic, fibrations. According to the same 
guidance, there appears the problem of the investigation of conformal spin-structures, 
in which the part previously assigned to the group 0(p, q) will be now given to the 
conformal one: Cn(p, q).

1980 Mathematics Subject Classification. Primary 53A30; Secondary 15A66, 22E70.
Key words and phrases. Real conformal group C,fp,  q) isomorphic to PO( p +  1, q + 1 )  (Möbius 

group), real conformal restricted group (C„{p, q ])r , real conformal spinoriality groups, V pseudo- 
Riemannian (or Riemannian) manifold, bundle {  o f  orthornormal frames of V, Greub-extension of <f.
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I. CONFORMAL SPINORIALITY GROUPS

1. A summary of previous results

The following works of reference [1], [3], [4, 5, 7], [12], [17] contain the facts con
cerning Clifford algebras and spinors. Thepresentpaper is selfcontained. Let En(p, q), 
(p + q= n , ?z>2), be R" with a quadratic form Q of arbitrary signature (p, q). Cl (E„) 
denotes the Clifford algebra of En with the quadratic form Q; a. is the principal auto
morphism of Cl (En), ß the principal anti-automorphism of Cl (E„). B is the funda
mental bilinear form associated with Q chosen so that for all xg R”, B(x, x) = Q(x). 
It is well-known that the group Pin Q = Pin (/;, q) constitutes the 2-fold covering of 
the orthogonal group 0(p ,q ). If g£Pin (p, q), we define i/q(g)x=gxg~1, x^R”, 
*l/i(g)ZO(p, q) and \jj{g)—a.{g)xg-1, il/(g)£0(p, q). We introduce an orthonormal 
basis of En(p,q) such that Q(el)=ef=ei(ei = l, l ^ i ^ p ,  ef=  — 1, p + l^ i ^ n ) .  In 
Ra with a quadratic form Q2 of signature (1, 1), we consider an orthonormal basis 
f a ,  en+1} such that Q fa )  =  (<?„)2 =  1, Q (e„+4) =  f a +j)2 =  - 1 .  Then f a , e „ ,  e0, en+1} 
is an orthonormal basis of R"+2=En+2(p + l, q + l)=E„(p,q)®E2(l, 1); e0 and en+1 
are chosen once and for all. C„ (p, q) stands for the conformal Lie group [1], [2], [7] of R”
isomorphic to PO(p + 1, q + = , [1] which we agree to call the Mö-
bius group of En(p, q) [2]. More precisely, we have constructed in [1] an injective map 
u  from E„{p,q) into the isotropic cone C„+2 of E„+2(p+ l, # + l) defined for all 
x£E n(p,q) by

(B) u ( x )  -  y ( x 2- l ) e u+ x  + y ( x 2+ l)e n+1.

The “projection” <p called “twistor projection” or “conformal spinor projection’’ 
from Pin (p + l, # + 1) onto Cn(p,q) is such that for almost ail x fE n(p, q) and 
for all g€Pin 0  +  1, q + \)

(A) a(g)u fa) g_1 =  V' (g) H (x) =  <rg (x) u ((p (g) x),
with tr9(x)6R [1]. Weset eN—e0en+1e1...e„: the kernel of <pis: j/  =  {1, — \,e N, — 
isomorphic to Z2X Z2 if (eJV)2 = l, or to Z4 if (eN)2 = — 1 [1],

(p (Spin (p b 1, q + 1)) is called the real conformal restricted group.

If we set x0= g°~^?fl + 1 an(j y0= e° ^ n + 1 , {x0, >’0) is then a special “real

Witt-Basis” of C2 associated with {e0,en+1). From (R): ufa)=x2x0+ x —y, we 
deduce:

u f a ) y 0 =  x 2x 0y 0+ x y 0 and y p u fa )  = x2>'0x0 + >>0x,

whence we obtain:
u f a ) y 0+ y 0u(x)  =  2 B ( u (x ), y 0) =  x 2. 

Thus, (A) is equivalent to

(A J x =  ufa)-2B(ufa),y0)x0+y0.
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It is, now, possible to construct an explicit homomorphism h from the ortho
gonal Lie group 0(p  + \, q + \) onto C„ip,q), in order to obtain a commutative 
diagramm [2, p. 46] i, respectively, j  denotes the identity map from 0(p,q) 
into Cn(p,q), respectively, 0 (p + 1, q + 1).

1

Pin (p,qf)

First, we construct h. For any co belonging to 0(p  + l ,^  + l), there exists 
gfmodulo ±1) belonging to Pin ip  + \, q + \)  suchthat co=i/i(g). As, according to 
[1] for any g ,g ' in Pin (p + 1, q + 1) such that cpig)=f£C„ip, q) and q>ig') = 
—f '€ C n(p, q), < p (g 'g )= f'° f  and for almost all x£En(p,q), oggix) =
—(Tg\f(x:))crg(x), we obtain that <7g(x) 0 when / (x) is defined and that (A) is 
equivalent to

(A*) u(f(x)) = kg(x)\l/(g)u(x) for f= cp(g)

where l ff(x)=(fr9(x))-1. So with any co£Oip + l ,  q + l) we can associate f=  
= <p(g)€C„(p,q) such that:
f ix )  =  /.g(x) {c j • u ( x ) - 2 B { oj ■ u(x), > '„ ) x o }  +  >'o with 2/.g(x)B(co ■ u(x), x 0) = - l .

One obtains a map A from O ip-\-\, q + \)  into C„(p,q).
We agree to denote Xg = X~g=Xl0 where a> = i/i(g)=i/i( —g )£ 0 (p + 1, q + 1) and we 

can easily verify that it is possible to write

fix )  = X0J ix) {co ■ u tv) - 2 B(co- u ix), y0) *„} + y0

(c>
2B(co ■ uix), x 0)

when f ix )  is defined.

One can verify that co^h{co)=f=cp(g) is a homomorphism from O ip + \ ,q  + \) 
onto C„ip,q) suchthat i= h oj, cp=h oj, cp—h 0 1 /r. Thus we obtain an isomorphism 
hi o f Lie groups from P O ip + l, q + 1) onto C„ip, q) by using quotient groups such
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that h=h1oh where h is the homomorphism associated with the classical exact sequence 
ofgroups:

l -~ Z 2 -+ 0(p + l , q + l ) ^  P O (p+ l,q+ \)-+  1.
Let k x be the inverse of hx. In the same way if C'„ stands for the complex conformal 
group and 0'(n+2) for the complex orthogonal group, P in '(«+2) is an 8-fold 
covering of C'„, with kernel sd' = {l, —l ,e N, —eN, i, —i, ieN, —ieN}. <p', respec
tively t/d, denotes the “complex conformal spinor-projection”, respectively 
the “ twisted spinor-projection”, from Pin' (n+2) onto C'„, respectively 0'(n  + 2). 
Thus, we obtain an isomorphism of Lie groups h[ from P O'(n+2) onto C'„. Its 
inverse is denoted by k[.

Let us, last, recall [2, p. 41] the following remark: if n=2r, then 
eNfr + l = ( - i y - Pfr + l ,  where f r+i=yi---yryo is an (r-t-l)-isotropic vector and 
f r+1eN= (— 1 )r+1( — iy~ pfr+i according to a result given in [3, p. 91].

2. Definitions of real conformal spinoriality groups (n is even, n=2r, r>  1)

Let f r+ 1 =>’! • • .yry0 = fy o  be an (r+l)-isotropic vector.
a) Let Hc be the set of elements y£ Spin (p +1 , q + 1) such that yf r+1 =ex f r+1 

where s1£sd = {l, — 1, eN, —eN}. We agree to call, by definition, the subgroup 
Sc =(p(Hc) of (C„(p, q))r, the real conformal group associated with f r+i=yi---yryo-

Following the result given above (according which eN f r+, =(—iy~pf r+1) such 
a definition is equivalent to this one:

Sc =cp(Hc), where Hc is the set of elements y€Spin (p + 1, q + 1) such that if 
r —p = 0 or 2 (modulo 4) yf r+1 = +fr + 1 and if r —p = l  or 3 (modulo 4) yf r+1 = 
—cf r+1 with £ = ±1 or ± i

b) Let (Hc)e be the set of elements yd Spin (p + 1, t/ +1) such that yf r+1 = 
—pf r+i,  where pd C*. We agree to call by definition the enlarged real conformal 
spinoriality group associated with f r+1 the subgroup (Sc)e = <p{(Hc)e) of {Cn(p, q))r.

We can observe that e0 and en+1 being chosen once and for all, these definitions 
are associated with the choice of an r-isotropic vector f r=yi ...yr of Ea(p, q).

c) R emark. Let us observe that these subgroups, at first sight “bigger” than 
those defined in [5, 6, 7] are subgroups of (C„(p, q))r which cannot be reduced to 
subgroups of SÖ(p, q) defined in [4] as real spinoriality-groups. More precisely, one 
can easily verify, for example, that any real conformal spinoriality group contains the 
following elements:

a) the special conformal transformation x ^ -/(x )= x (l +ax)_1 where 

/ =  < p [l+ y (e„+1-<?0)a j with a = e1+...+e„,

ß) the translation x —x + y  where y=e1 + ...+ ep — e„^p+1...—e„.
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3. Description of the enlarged real conformal spinoriality groups

The abbreviation s.t.i.m. stands for maximal totally isotropic subspace as in [3].
Proposition 1. Any enlarged real conformal group of spinoriality (Sc)e is the 

stabilizer o f the s.t.i.m. associated with the r-isotropic vector yi-..yr, for the action of 
(Cn{p, qj)r. I f  pq is even, (Sc)e is connected, if pq is odd, (Sc)e has two connected

components. For 0 di m (Sc)e=(r +1 )2+  ̂ ' (a)e’ ^ ie en ârSe^  rea^
group o f spinoriality associated with f r [7] is a normal subgroup of (Sc)e.

Proof. The demonstration can be led in two steps. Let us write fi=h(co) for 
o)(zO(p-\-1, <7 + 1).

a) First, we suppose that u (f1(yi) )= f(y i) —y0 is well determined for all i, 
1 S /S r , idest, equivalently, f  (0) and f (y;) well defined for all i, lS i^ r .

According to [7], yf r+1 = ±pfr+i, g€C* is equivalent to yf r+1 y~1=N(y)p2f r+1. 
Thus, (IIc)e is the set of element ggSpin (/7 +  1, q + \) such that gfr+ig~1= ^fr+i 
where o=N(g)p2= ± p 2.

One can easily notice that ot.(g)fr+1g~1—o-fr+1 is equivalent to

(I) a(g)Tig-1«(g).f2g“1---a(g)Trg~1a(g).yog~1 =  afr+1-

W eset Il/(g)=co, a) — SO(p + l, q+ l), so that oc(g)yig~1=co(yl), l ^ i ^ r  
and cc(g)y0g~1=co(y0). So, g belongs to (Hc)e iff \j/(g)=co belongs to <rc the real 
enlarged spinoriality group associated with f .+, =yx.. .yry0.

According to the diagram given above, we obtain (Sc)e=h(oe).
By an easy computation, taking account of the formulas (C), we obtain that (I) 

is equivalent to

O h ) 0 » ( > ’2 )  ■ • ■ 0 , ) ( - o a ( 0 ) ) u ( / i ( j j ) ) . . .  u ( f i ( > v ) ) « ( / 1  ( 0 ) )  =

= oyi • • • TrTo =  -  <™0h) • • • u(yr) u(0)

as u(y1)...u(yr)u(0 = —y1...yry0. So we have the following relation equivalent to (I):

(II) a 0J (> •,)... ( y r)  a v> (0) u ( f i  (jy )  . . . u ( f i  ( y r) u ( f  (0 )))) =  <tm0 '1) . . .  u ( y r) u ( 0 ) ,

which means, [3, 15], that the vectors u (f1(yi)), ..., u ( f1(y0)), u ( f (  0)) belong to the 
(r + 1) - s.t.i.m. associated with f r+1.

As one can notice that u operates on the set of isotropic subspaces as the transla
tion of vector m(0 )= — y0, if w(z) belongs to the (r +  l)-s.t.i.m., so z belongs to 
F' = { y i ,  •••> Jr}-

According to our assumption, a ^ iy^A 0 for all i, l ^ i ^ r  and cr^O^O. 
As, taking account of [7], co belongs to ae which stabilizes the (r +1)- s.t.i.m: 
{ji, ..., yr,y 0} for the action of SO(p + l, g + 1), the restriction of co to F' = 
— { ji, • • •, Jr} stabilizes F'. So we find that for all i, lS iS r ,  Cniyil—GcAty^O.

(I) is equivalent to

(HI) co(yi)... co0v)( - <?o>(0))/i(0)+co Oh) • ■ • co(yr)oa(0)y0 = ojh...
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as ca(y0)=  — ff,»(0)(./i(0)— y0). As aj(_y,), ...,a>(yr) are independent in F', accord
ing to the definition of co, and as A(0) belongs to F',
(III bis) ojCa ) ... ej(jr)/i(0) =  0
necessarily [15, p. 14 Th. 4.3; 3 chapter II]. Thus (III) means that

<x>(y1)...a)(yr)ya

whence we deduce [3, chapter II] that

a
_ /7vw T l-’-TrTo ff«i(0)

(IV) OJ oj(>v) =
ffm(0)

An easy computation gives the following result:

Jl-.-Tr-

(V) co 0 0 ... co (>v) = (0 ))r U  (A (y;) - A  (0 ))
i=l

as CO(yi) =  (0) (A(a ) - A (0)) for all i,
If  A(0) =  0, we obtain that

f M - f M  = jy

where a = ± p 2 belongs to C*. So f a  such that AOh) ■ • -A(Jr)= /hYi • • -3'r *s any 
element of C*.

If not, observing that

t l  (A(a ) - A ( 0 ))/'(0 ) =  -T—]irrTr öj(y1)...ßj(>r)A(0) =  o,
i=l pLAVlj

according to (III bis) and equals A  (Ji) ■ • -A Or) A  (0) we find that foe vectors 
AOi)> • • * 5AOrX A(0) are dependent in { y x ,  . . . y r , y 0} [15, Th. 4.2, p. 15]. As [see 
IV and V],

_ n (A O i)-A (0)) =  ^ y + i  h - f r  =  f a y i - - - y r

where f a d C * ,  taking account of the dependence of the vectors AOiX ••■AOr)> 
A(0), we obtain that f . ( y 1 ) . . . f . ( y r) = f a y 1 . . . y r  where f a d C * .

b) Let us prove, now, that for any A belonging to ( S c ) e ,  it is permissible to sup
pose that A (0) is well-defined and to find zl5 . . .  , z r linearly independent, belonging to 
F '  such that A ( z i )  be well-defined if some of the elements AOi)> "-AOv) are not 
defined. Let us recall that, classically, for x = x 1e 1 +  . . . + x p e p + x p + 1 e p + J. +  . . .+  
+ x n e n the x \  1 =  i  =.p are called “spatial coordinates of x  E n ( p ,  q ) ”  and those for 

p F \= i= n  the “temporal coordinates of x ”. It is well-known (see for example

[16,p. 341 ] that-  % Z ,X Z 2 where [Gl, denotes the connected compo-
I {Q(p+ l»g+l))|

nent of the Lie group G, and that \0{p + 1, ^ +  l ) |= 5 ’0 +(p-)-l, <7 +  l).

(i) Let us assume that p and q are even (n= p+q  is even).
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We know [1,2] that |Pin (/>+!, q + 1)| = G^(p + 1, q + 1), cp *(1C„(p, y)|) = 
= Spin (p + l, q + 1), Cn(p,q) has two connected components, and, at last, that 
Pin (p +  1, g+1) has four connected components. We introduce the following ele
ments + ep, ±eQ, where ep=e0e1...ep and One verify that ±  1
belong to G^(p+l ,  q + l), ± ep belong to G0(p + l, q + l) -G £ (p + l,  q + l), ±ea 
belong to <gcG0(p + l , q+l )  where C is Pin (p + l, <7 + 1) — Spin (p + l, 9 + 1). So, 
we find, again, that 0{p + l, q + l) has 4 connected components and that any ele
ment a>£0(p + l, q + l) can be written co=a>*co0, a>aq.\0(p + l,q  + l)\ and co* = 
= Id£B+J=^(± .l) or a»* =\j/(±ep) = (Sym)e (space-symmetry), or, co* =xj/(±eQ) = 
=(Sym), (time-symmetry), or co* = - I d £n+2 =  ̂ (± e JV)=(Sym)rt (space-time sym
metry).

We observe that ú ( |0 (p  +  l,<7+l)|)c |C„(/7, q) | and that any element f<EC„(p, q) 
can be written f —f * o f 0 where f*=h(co*) and fo=h(co0)e\Cn(p, q)\ and /*  = 
= 9 (±  1) = <P (± eN) - (Id)£„ or /*  = (p(±ep) = <p(± eQ) = Inv (0, 1) o(Sym)c = (Sym)t o 
olnv (0, — 1) in the space E„(p, q), where Inv (0, 1), respectively Inv (0, — 1), denotes 
the inversion of pole O and power 1, respectively of pole O and power — 1. According 
to [1,2] f 0 = Q o 3 T o ^o S  where Q belongs to SO+(p,q), T is a translation of 
vector b£E„(p, q), di? is a dilatation and S is the special conformal transformation 
a ->-a(1 -\-ax)~x where a£E„(p, q). We remark that (Sc)ea\C„(p, q)\ and that we are 
led to study the case where f 0 belongs to | C„(p, q) |, / ^ Q o J o / o S ,  with oga{x) = 
— (jQ{3~o.yfoS(a-))o>(.3f o S (a))o> S (a) gs (a) . As ogo(a) = crWo(a) = 0 is the equa- 

' 2T ’ ' Si =iv(i+ix)
tion of singular points of / 0, [1], we find that for any isotropic vector a, singular point

1o f/0 we have B(a, x)=  — —. As f 0=h(a>0) stabilizes F' [see 4], we observe lhatf0(0)
is well-defined, according to the fact that / 0(0) = í l o f o / o S (0) with 5(0) =0, 
<3f(0)=0, and that Q oSE(Q) belongs lo F'. Thus, we can assume that /[(0) is well- 
defined according to the writing off 0.

If y; , l i f á r ,  is a singular point for /„ we can find an isotropic vector
r

Ű! =  a‘y; belonging to F' such that 2 ,-=;^ + %, 1 i£ r, satisfy the conditions
i = l

B(a, z;) + — —, the vectors zf being iinearly independent. We denote that setting a, =

=}>i + ... +yr belonging to F', B(a1zi) + — for any /, 1 and these vectors
z; translated from the y t’s are iinearly independent.

(ii) Let us now assume that p and q are odd.

C„(p,q) has 4 connected components and cp~1(\C„(p, q)\) = Go(p + I, q+ 1), 
[1]. We observe that ±1, +eN, ±e„, ±eQ belong to G£(p + l, q+l )  and that 
G£(p + 1, ^ +1) = i/r—1 ( \0 {p + 1, q + 1)|), [4], Pin (p + l, # + l)  has four connected 
components as previously. One can easily see that any element co of O(p + l, q + l)
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can be written a>=co*co0, where co0 belongs to \0(p + l ,q + \  )| and

®* =  We„+2 = V ±v> =  ^(±eN) =  IH ± e P) =  ^ (±eQ)
or

or

or

m* = (Sym)0o(Sym)„+1 =  ip(e0en+1) 

a>* = (Sym)0o (Sym)„+1o (Synth =  f ( e 0en+1e1) 

co* = (Sym)0o(Sym)1o(Sym)2 =  i//(e0e1e2).

Thus, any element /belonging to C„(p,q) can be written f = f * ° f 0 when / 0 = 
—h(co0) belongs to \Cn(p,q)\ and where / * =  Id£n or /*  =  — IdEn or (—Id)£no 
o(Sym)1 or lnv(0, 1) o(Sym)1 o(Sym2) with obvious notations.

Thus, any element /belonging to (Sc)s can be written /= (± Id )£no/0, with 
f f \C„ip .  q)I as e0en+1e1 and <?0e,e2 are odd. We are so led to the previous demon
stration (i).

The results concerning the dimension come from those given in [7] for the 
spinoriality groups. As for the connected components the same method as in 
[1] leads to the determination of their number.

4. Description of the real conformal groups of spinoriality in a strict sense

As in [7] normalization conditions appear. We obtain the following statement:
Proposition 2. Sc is the subgroup of (Cn(p, q)r) o f elements f  which stabilize the 

s.t.i.m. associated with the r-isotropic vector f r—y\...yr and satisfy

= ± y i  —  y r -

In elliptic signature Sc has 2 connected components, dim Sc=r2+2r. I f  Q is a 
neutral form  (p= r), Sc has 2 connected components i f  r is even and 4 connected com
ponents i f  r is odd. Dim Sc=~ ^ '^  . In signature (/;, q), p ^ n —q, ppositive terms
r >-2, i f  pq is even Sc has 2 connected components and i f  pq is odd Sc has 4 connected 
components. Dim 5'c= ( r+ l)2—2 +  ^  .

5. Remarkable factorization of elements of (Sc)e and Sc and topological remarks if
n=2r

I f  pq is even any element / ,£  (Sc)e can be written in the form f 0 = Q oSToyfo S 
where Q£0(p,  q) and stabilizes F' =  {jy , ..., yr} and thus belongs to oe the spin
oriality group associated with f r, ^"translation, dilatation, S conformal trans
formation: x-*x(l +ax)~1.

I f  pq is odd / 0, belonging to (Sc)e can be written f 0=(+IdEn) o Q o^o j i f o  S 
with Q belonging to oe.
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|(5„).|
Thus, we obtain that __ -  is homeomorphic to R2n+1, taking account of the fact

Kl
that the group of the translations of E„ has n parameters, that R+ is homeomorphic 
to R, and last, that |C„(p, q)\ is homeomorphic to 10{p, c/)| X R2"+1 — [2, p. 35 or part

III of this paper] — and that C„(p, q) has parameters. We shall use this

remark later.
One can easily extend such factorizations to the case of the real conformal spin- 

oriality groups in a strict sense Sc.

II. REAL CONFORMAL SPIN STRUCTURE ON MANIFOLDS

1. Definitions

Vis a real paracompacta-dimensional pseudo-riemannian (inparticular, rieman- 
nian) manifold. Its fundamental tensor field is called, abusively, Q. We denote by 
£(E, V, 0(p , q), n), or simply £, the principal bundle of orthonormal frames of V.

a) Let i: 0(p,q)^-C„(p,q) be the canonical injective homomorphism. The 
group 0(p, q) acts on Cn(p, q) by: (0},f)£O(p , q)XC„(p, q)~*i(co)feCn(p, q). Let 
4i(Alt V, C„(p, q), a>!) be the principal bundle with structure group C„(p, q) over 
the same base V, obtained by /-extension of £, [9], £i(V)=i(J;(V)) =  £t(V) =  
= £1(A1, V,C„(p,q),co1), is a principal bundle with structure soup Cn(p,q ) in 
the following way: let us choose a covering ( ^ a-)a’iA of V with a system of local cross- 
sections and transition functions gx.p.. Let us define maps g'a-P' = i oga,p,. Then, 
for all x£Ua.C\Uf .n U r  the g'a.p. satisfy the relation: g'X’P(x)gPY(x)=gaY(x) 
and consequently, there is a principal bundle <J; with a system of local sections such 
that the are the corresponding transition functions, according to the general 
result of [9].

b) Let us recall that Cn(p, q) is isomorphic to PO(p + 1, q + 1).
Using, with previous notations, the classical sequence of groups:

1 - Z a -  0 (p + 1, (7+1)— PO (p+1, (7+1) -  1,

let us define l= h o j= k 1oi and let P^1(V )= X (^(V ))-^x(V) be the 1-extension of 
the principal bundle £(>). P^1(V) = ̂ x(V)=P^1(e ; , V, PO(p+l, q+ \), TCj) is a 
principal bundle with structure group PO(p + l, q + 1) over the same base V. Thus, 
e0 and en+1 being chosen once and for all, the two bundles and P^x are isomorphic. 
Subsequently, as the action of PO(p + l, (7 + 1) on the set of projective frames of 
P(E,i+2) is simply transitive, it is suitable to retain the principal bundle, 1-exten
sion of £, with structure group PO (p +1, q +1).

c) Let us introduce 9(V) the trivial bundle with typical fibre R2 with a quadratic 
form Q2 of signature (1, 1), and let us write: 0 (F )= |o©^„+1, as a Whitney sum of 
two bundles with typical fibre R and the required condition of orthogonality for Q,,.
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We define, then, T1(V) = T(V)@0(V) = U T ^xX V ), where T(V) is the tan-
xer

gent bundle of V and Tx(x)(V) = T(x)®(q0)x© (£„+,)*, with obvious notations.
We denote by Clif (V, Q) or simply Clif (V), the CliflTord bundle of V and we 

introduce another bundle Ciif, (V) in the following way. In any point x£ V, let us 
consider ®7i(x) and the Clifford algebra (Cl„+2)x obtained as a quotient 
algebra of <g) Tx(x) by the ideal generated by X1(x)<g>X1(x) — Q„+2(X,(x)), where 
X] (X)£ Tx(X) and Qn+2 is the quadratic form of signature {p + l, q + l) defined on 
R',+2. The collection of the Clifford algebras (Cln+2)x is naturally a vector bundle of 
typical fibre C/„+2(p + 1, q + l), which we denote by Clif, (V) and which is an “am
plified Clifford bundle” in the same way as T^V )  is an “amplified tangent bundle” . 
It is possible to define the action of the group C„(p, q) on such a bundle by means of 
the representation Kx so settled. For any w belonging to C/„+2(p + 1, q + l), for any 
<P(g)£Cn(P> q) we set: K1cp{g)co=oi{g)(og~1, which defines a representation of 
Cn(p, q) into C/„+2(p +  l, q+ \). Thus, P O {p + l,q + \)  isomorphic to Cn(p,q) 
operates on Clif, (V). C lif'^F) denotes its complexified and in the same way as pre
viously, we can define the action of PO'(n+2) isomorphic to C'„ on this bundle.

2. Flat conformal spin structures in even dimension

1) Let E2r be endowed with a quadratic form of signature (p, q): we suppose 
that p ^ n —p{n—2r). As in [2, p. 40], we introduce a “real” “special Witt-decom- 
position” of Cn+2=E',.+2=(En+2)c , naturally associated with the previous basis of 
E„+2 : K , ..., e„, e0, e„+J : ( W1)n+2 =  {x;, yj} with:

xx e l  +  e n _  ep +  gn-p  + l, . . . .  A- n _ . A •9 A p  +  l

y  i =
e1- e n

>yP =
__ n -p + l

y P + 1

i e p + l Jr e „ - p ..., x r = ier +  en- r+1
2 2

e a +  e „ + lx 0 = 2

+ 1 &n — p
>Y =  •

l€r Cn _  r + i

2 2

e 0 ~ e n + l
Jo =  • 2

So that for all i and j ,  B (xt, y j ) = ~  and xiy j+ yJxi = dlj=2B(xi,y J)  O s i^ r ,
Q = j = r .

We know [6, 7] that, for each Witt-decomposition of E 'n+2, E 'n+2 — F®F', we 
can find a basis of isotropic vectors { i h ,  ..., r>r ,  t ] 0 }  in F '  and a basis of isotropic 
vectors {£,,..., £„ £0} in F, such that {£,, rjj} is a “real” Witt-basis of E'n+2. 
With the same notations as in i)  1, we consider J7 =L1o<p from Pin (p +  l) onto 
PO(p + l, q+l) via the exact sequence:

1 Pin (p + l, q + l ) — .►. p o ( p + 1, ^r+1) 1

and q' —k!1 o c p ' , so that we have the corresponding exact sequence: 

1 Pin'(« + 2)-^~ PO \n + 2) -  1.
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Let Cl'„+2 be the complexified algebra of Cln+2, and let g be the classical spin- 
representation, [3], of Cl'n + 2 corresponding to the left action of Cl'n+2 on the minimal 
ideal Cl'n+2f r+i, (where f r+i=yiy2---yryo is an isotropic (r+ l)-vector), called [cf. 2 ] 
“ the space of conformal spinors’’ associated with E„ (p, q).

2) In [2] we consider the projective space P(E '„+2) and projective Witt-frames 
o f P(E'„ + 2), associated with Witt-basis of E'n+2 and in particular projective orthogonal 
Witt-frames of P(E'„+2).

Let (ß„+2)i and (Wn + ,)t be two projective orthogonal Witt-frames of P(E'„+2) 
so that (W„+2)i—t r 1(^n+2)i where i f  1dPO(p + l ,  q-\-\). As in [4], we identify the 
complexified of r, with t,. Thus, we determine the action of Pin (/> +  l, <7 +  l) on 
PO(p + 1, q + 1). Let g be one of the four elements of Pin (p + 1, g + 1) such that 
tl(g)=T:i€PO(p + l,q  + l). We observe that z1=q(g)=ti(-g)=ri(eNg )= t](-eNg); 
[2 ]-

If (Wn+2) is a projective Witt-frame of P(E'n+2) associated with an orthogonal 
projective frame of P(E ' n+E) and with a “real” orthonormal basis (dS'j)n+2 of E 'n+2 
and with a “real” orthonormal basis j) of E'n, (e0, en + 1 being chosen once and for 
all), w<? define [1, 2], “over” the orthonormal "real” basis (dfi'ln) o f E'„ the four spinor- 
frames called conformal spinor-frames or E„:

f i  1 or
{£i(.xiox tl...xihf r+1)} where ex = \ i0 < h ih

' ■ ± e N

such that if t](g) = z1̂ PO(p + l,q + l)  and if <5€{g, — g, geN, — geN} we have: 
x iox il...xihf r+1= ö-1̂ il. ..í ihSfr+1=Q(ő-1) ^ il...^ihőfr+1. This is equivalent to: 
0 (<3)txiox;i...xih f r+1]= Sxioxh..,xihf r+1 = C;0 Sfr+1. Thus, (ß„ + 2)1 = q(<5){Ú’„+,), 
is equivalent to S„+2 =0(<5)*S''„ + 2 where (^„+2)i and (&'„+2)i — [respectively 
Sn + 2 and S'n+2] are projective orthogonal frames in the projective space P(E'„+2), re
spectively “conformal spinor-frames” withS' , ,+ 2  = x io...xih / r+ 1  and Sn+2 = j i()...qihöfr+1.

D e f i n i t i o n  1. A conformal spinor of En, associated with a complex representa- 
tio n q of Pin (p +  1, q + \) in a space of spinors for the Clifford algebra Cl'n+2, is by 
definition an equivalence class ((á?n+2)i, g, x„+2), where (áÜ„+2)i is a projective 
orthogonal frame of P(E'n+1), g£Pin (p + \, g + l), y„+2€C2r+1 and where 
((ä 'n+2)1,g ' , /„ +2) is equivalent to ((^„+2)1 , S, Xn+2) if and only if we have:
i®'n+2)i=<r(&n+2)1 . <r=ri(y)€PO(p + l,q  + l) with y = g ' g ~ 1 and / n+2 = 
= tQ(y))~1Xn+2> where ,q~1 is the dual representation of q and where (ofy) ) - 1  is 
identified with an endomorphism of C2r+1.

We can also write: (äk' n+2)1 = (iM„+2)a instead of (á?,„+2)1 =o-(^„+2)1, which 
defines a right action and, in the same way, we can use the associated projective ortho
gonal Witt-frames of P(E'n+2): (ßn+2)i, (£3'„+2)i .

D efinition 2. We agree to call by definition an equivalence class ((á?„+2)i,g) 
where g is in Pin (p +  1, 9  +  1) and (Q,l + 2)1 is a projective orthogonal frame of 
P(E'n+2) a conformal spinor frame of En associated with the “real” orthonormal basis 

of E'„. {(®n+2)i,g) is equivalent to 0 r „ +2)i,g ') if and only if: (&’n+2\  = 
and <7 = 17(7 ) with g, g'€ Pin (p + 1, q + 1), and y=g'g-1.
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We remark that {(án+2fi, g )~ ((á n+2)1, - g)- {(án + 2)i, e Ng)- {(íMn+2)i, - e Ng). 
IJ we suppose g, gfiVm (n  +2) with y =g'g 16Pin (p + l, q + l), we can consider 
the action o f Pin (p + l, (7 +  1) on every spinor frame of Cl'n+2f r+i-

D efinition 3. With obvious notations, (Qn+2fi  and (Q'n+2fi being projective 
orthogonal Witt-frames of P(E'„+2fi ((fl„+2)i,g) and ( i/„+2)3, g') define the same 
flat conformal spin structure i f  and only if (Ő'„+2fi=o(Q n + 2f i ,  r j ' (y )— (r, y=g'g~1, 
g, g'd Pin' (n+ 2), ye Pin 0  +  1, q + 1).

(Thus ((ß„+2)i,g)~((fl,1 + 2)i, -g)~((ß„+2)i, eNg)^((Ű„+2fi, -eng))- In the 
same way as in [2] we define complex conformal spin flat structures, using the mapp
ing r\' from Pin' (n+2) onto PO'(n +2) with kernel sér.

3. Manifolds of even dimension admitting a real conformal spin structure
in a strict sense

Let V  be a real paracompact n-dimensional smooth pseudo-Riemannian (in par
ticular Riemannian) manifold. In this paragraph and the next three we assume that n 
is even, n=2r. As in 1, £ stands for the bundle of orthonormal frames of V; 
P£,X( E \ ,  V, PO(p+ \ , q + 1), nfi) is the principal bundle obtained as the i-extension 
of We agree to give the following definitions which generalize those given in [4], 
[10, 11] for the orthogonal case to the conformal orthogonal one.

D e f i n i t i o n  4. V admits a real conformal spin structure in a strict sense if there 
exists a principal fibre bundle S1(El , V, Pin (p + l, q+ l), q1) and a morphism of 
principal bundles rj: Sx-+Pqx, such that Sx be a 4-fold covering of Pcx with the 
following commutative diagram where the horizontal mappings correspond to right 
translations:

E, x Pin (p+1 ,

T1 XT]

^  x P0(p*1,9*1)

Sx is called the bundle of conformal spinor frames of V.

D e f i n i t i o n  5. According to this definition, we introduce the bundle o f conformal

(S (FIX C2"+1 1
Pin(p+1 q+  1)’ ^  (P + I> 9 + 1)j C r+lJ , complex vector bundle

of dimension 2r+x with typical fibre C2r+1 associated with the bundle Sj(F) of “confor
mal spinor frames”. We write: <r1=(o/1, V, Pin (p +  l, q + 1), ^i).

R e m a r k s . It is always possible to define the two fibrations Pcx and Sx by means of 
the same trivialising neighbourhoods (£/„.)X,€A and local cross-section za-, with
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transition functions, ya7,<, respectively niy^pf

z r (x)  =  z a. ( x ) y a T (x) ,  ya r ( x ) e P m ( p + l ,  q +  1) 

f j (zß.(x))  =  ä „ . ( x )  =  f í (za.(x))r i (ya.p.(x)) =

= £Ax)r}(ya-ß-(x)), tl(ya/ß’)iP O (p+ \, q+ 1)

ä#x’(x) and iMß’(x) are “projective orthogonal frames” of P(E'n+2).
Let us consider the Clifford algebra Cln+2 of En+2(p + l, q + 1) and the com

plexified algebra C/'„+2 isomorphic to Cln+2(Q') where Q' is the complexification of
Q l 2].

The sequence
0 ^  h

{xioxil...xihyjoy jr ..yih} 0 ^  i'0 <  ix <  i2... g  r 
0 Jo <  A  <  r

is a basis of C r„+2 where {xt , yj} is the special Witt-basis of C"+2.
The choice o f the above basis establishes a linear isomorphism p between Cl'„+2 

and C2"+!.

We can observe that the spinorial bundle ax associated with the bundle S\ is a 
principal bundle with typical fibre C2r+1 and structure group Pin (p +  1, <? + l), 
which operates effectively in C2’"*'1 (C2r+1 is an irreductible Cl'n+2 -representation- 
space).

It is permissible to choose any irreducible representation of Cl'n+2 in C2r+1 and 
convenient to choose the representation corresponding to the left action of Cl'n+2 in 
the minimal ideal of conformal spinors, CTn+2f r+1=CTn+2y1y2...yry0 of which the

, f  . ,  , f ±  1 or (cf. II, 1 and 2)\eixitx ll...xihf r+1) ■•</*), where Cj +

constitute “four conformal spinor frames”.

By restriction of p to Cl'„+2f r+1 we obtain a linear identification of Cl'n+2f r+i 
with C2"+1.

Over an open set of V, endowed with the cross-section z: x-+z{x) of Sj a con
formal spinor field % will be defined by a smooth application x from Ex into C2’"*'1: z — 
-Z(2) such that ([10]) if x(z) = jí(h) u£CTn+2f r+i,(u=vfr+j), then

yfzy-1) = yx(z) = p(yu), (Vy), (y€Pin(p + 1, q + 1)).
We denote xx the restriction of /  to &’lx= s{1(x) and observe that

(x*(z))v *-ihxloxtl.. ■Xihf r+1=(xx(.z))ioiv iH(yxloXil...Xih) fr+1 .(I)



1 2 8 P. ANGLÉS

4. Necessary conditions for the existence of a real conformal spin 
structure in a strict sense on manifolds of even dimension

Let x-*-zx be a local cross-section over a trivializing open set in the bundle 
S x. As in [7] weset: zx=v{x, g(x))=vx(g(x)), g (x) 6 Pi n(p-\-\, q+  1): according 
to the construction of associated bundles \zx, x to...xtkf r+1], identified to 
[zxy-1, 7 (i)^.+i], is a cross-section over % in the bundle oL which we denote by 
lzx, X(i)fr+1] or M x(x(0/ , +1). Let also ä x=fj(zx).

Let {aÛ )„:cA be a trivializing atlas for the bundle P lx. We can always suppose 
thatthere exists over °Û  a cross-section za- in £j ; we take again (x) = fj (za- (x)). 
If fVX'(x) is the projective “real” Witt-frame associated with the projective orthogonal 
frame É a-(x), we write, abusively, fj(za,,(x))=lV0,-(x).

In the projective space P(C"+2) the projective “real” frame

{n(x0), n(xr), n(y0), n(yr), n(x0+ ... + x r + y0+  ... + y r)}
(2r +  3) elements

correspond to the “real” Witt-basis {xt, O S z  = r, O ^ j^ r  of Cn+2. (n is the canon
ical map: E„+2-+P(En+2).) We agree to denote such a projective “real” frame by
lx i ■,}’]}■ As the action of PO(p + 1, q + 1) on the set of projective orthogonal frames
is simply transitive, we can write: Wa,(x) =  fj(za.(x) — 0 J({x;,y^}), where the 0 }  
admit the transition functions (7«-/? ) in P O (p+ 1, q + 1).

If there exists over V a real conformal spin structure in a strict sense, this struc
ture induces in the “amplified” tangent space Tj(x) at x  a flat real conformal spin 
structure (in a purely algebraic way (see II.2)) defined by an equivalence class of 
(Qx ,g x), gxgPin'(«+2), Qx, “projective Witt frame”, depending differentiably on 
x. Let us recall that

(Ao -g x )~ (A , eNgx)^ (Ű x, —eNgx) (see II.2).
We note that PO\n +2) operates transitively in the vector space of “real” or complex 
projective Witt frames, and that in the above class there will always be “real” pro
jective Witt frames.

With the previous notations, at x£ Ux- D Uß., we must obtain two “equivalent 
frames”, which necessarily determine the same flat real conformal spin structure in the 
“amplified” tangent space at x:7j(x),

(A t =  @${z(^-(x)){Xi,yj}A*l (x)}, ga-(x))
and

(Pß- =  &ß'M A W ) ( A , gß'(x))

áx. (x), Xß.(x), gv(x), gß’(x)ZVm'(n+2), Xa>, Xß. defined respectively over Ua> and Uß, 
and gx-, gp- over a neighbourhood of x included in Ua-f]Uß-, with (gf-g*1) ^  
€Pin (/» + l,^+ l)„and  q(gß (x))=ri(gx-ß-(x)gx.(x)), denoting »/(g^.) the transition 
functions of ß j ,  A ’ ga'r with values in Pin (p + 1, # +  1), and ij(<x(Xa-)gai'ß’Xß,i) =
=q(K-P')-

We also set 0Z(a(Xo,,(x)){xi ,yJ}X-.1(x)=flZ,({xi,y j}).
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With the notations ofll.3, if /(£& , gp '(x ))= n (fr+1), then

X{äß-,gp(xj) =  n(e ig*Mx)fr+i) where « i = { .

_ As the spinor_thus defined at x  is a well determined element in (CVn+2f r+1)x , 
g*-(x))=x(ä$., gß (x)) whence we deduce:

(!) f r+i =  B2e1f r+1g - 1(x),

where e2 =  ±  1 if /• is even and e2 =  1 if r is odd.
As matter of fact, let us recall, first, that es anticommutes with every element of 

En+o, [3], and that for all g^Pin 0  +  1, 9 +  1), ^Ng = ± g e N, and that a (g )= ± g  
for all g£ Pin (p+1; q + l). Moreover, /tj and flxß, satisfy the relation

f iH u) =  / # ( “ (&.>) (x)) ug~.}, (*)) 

for all u£Cl’n+2. Consequently,

flZ(fr + l) = ßß’(el g*ß’(x)fr+1) = fir(a(s^ß')(x)e1gx.j.(x)fr + 1g-.}.(x)) =

= / £  fci <* (g«-/»' (x) gr}' (x)fr + 1 g*-ß-(x)) =  ß l{e1f r +1g-.1ß.(x)).

Therefore, we obtain (I), denoting that via the projective space, there appears 
a quotient and, then, the factor e2 = ±  1 corresponding to the ambiguity of sign for 
homogeneous elements of the Clifford algebra. Using the principal antiautomor
phism ß of the Clifford algebra and observing that for all g  belonging to 
Pin (p + 1, q + l), ß (g )= g ~ 1N (g), [3], and that

(n + !)(«+2)
ß(eN) = ( -  1) 2 eN = ( -  l)r+ieN, (for n = 2r),

further

and

we obtain

r ( r + l )

ß ( f r +1) =  ( -  1) 2 fr+li

ß(g*ß'(x))
g*'ß(x) 

N{g*r {x)) ’

ezfr + l
g*-ß’(x)

A(gaT(*)) f r + lß (el)-

As /,+!% =(- i y +1( - i ) r~ pfr+ i  [see 1.1] we get, if Ex= e N,

^ f r+iN(gaL,ß.(x)) =  ga'ß (x) ( - i ) r- pf r+1,

or equivalently, 

and then, in any case,

(II)

g*ß'(x)fr+1 =  e2(i)r- p N(gx r (x))fr+1

(gx'ß(x)fr+i) = E2eN(gx.ß,(x))fr+1

9
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where
í°£ = ± 1  if r — p = or (modulo 4)

and
f+1 fi

e =  or if r —p =  |  or (modulo 4)

cf. [2].
Thus, gX'ß'(x) belongs to a subgroup Hc of Spin (p +1, q + 1) which is mapped by 

q onto a subgroup of PSO (p +1, #+1 )-special projective orthogonal group iso
morphic to a subgroup Sc called in [2] “the conformal spinoriality group Sc” 
in a strict sense, [see part I], associated with the r-isotropic vector f r=y1...yr. (We 
observe that (p(Hc) = Sccz(Cn(p, q))r, the restricted conformal group, [1, 2] where 
cp is the “projection” from Pin (p + 1, q + 1) onto C„(p, q), (cf. I)).

We note that <x(gX'ß’(x))=gX'ß’(x) as Hca Spin (p +1, # +1). According to 
[7, p. 158],

g « ' ß ' ( x ) f r  + l  =  £2  e ^ ( g a T  (*))/<■ + !
implies

(III) g«'ß'(x)fr+ig*ß'(x) = N(gx.ß.(x))a2f r+1, 

as (N(gx'ß'(x)))2= 1 and £§=1, where

£2 = p -p y  = (_  iy -p = (ev)2 = (_ iy+*

for n= p+  q=2r. Therefore we have, applying pxß. to / r+1, with the following 
notations:

fixß'(fr+i) = fp'(x) and fiZ(gxT(x)) = gx'fi-(x),

taking account of the fact that g is in Pin (p + 1, q + \) iff g=v1...vk, vx, ..., vk£En+2 
with Q(vi) = ± \ ,  lS i^ /c [3 ,4 ]_ [17]

(IV) f ß'(x) = £2gx.ßfx )ft(x )g ft,(x ) .

Then applying juj to the previous relation (III), and observing that N(gâ fx j)  = 
= V (£„.„.(*)), we obtain

(V) //rOO = £2 (ejv)8 V(gaT(x))/a.(x).

We observe that q(gX'ß(x)) are transition functions for cross-sections in the 
complexified bundle ( P f tc of P c,. The cocyle q(yX'p•) which defines P^x and the 
cocyle qigec'ß') are cohomologous in PO'(n+ 2). Thus, we have obtained:

P roposition 1. I f  there exists on V  a real conformal spin structure in a strict sense, 
1° there exists over V an isotropic (r+1 )-vector pseudo-field modulo a factor 

£2, £2 =  d 1 if r is even, £2 =  1 i f  r is odd pseudo-cross section in the bundle Clift (V).
2° The group of the principal bundle Pcx is reducible in PO'(n +2) to a subgroup 

isomorphic to Sc — the conformal spinoriality group in a strict sense associated with 
the r-isotropic vector f r = y x ..,yr — which is a subgroup of (C„(p, q))r, the restricted 
conformal group.
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3° The complexified bundle (P£,ß)c admits local cross-sections over trivializing 
open sets with transition functions t](ga'ß'), gX'ßfx)(:Spin (p + l, q + \) such that if  the 
mappings f : xG £/„. fl Up, —f a. (x) locally define the previous (r + l)-isotropic pseudo
field, then

//>-(*) =  (eN)2N(ga.„fx))}‘afx ), modulo e2,
and

fß (x) = g«'ß'(x)Jafx)g-f(x)  (modulo e2),

where e2 = ±  1 i f  r is even and e2 = 1 if r is odd.

5. Sufficient conditions for the existence of real conformal spin structures 
in a strict sense on manifolds of even dimension

Let us consider the bundle P .

Proposition 2. Let (Ua-, /v )«'€A be a trivializing atlas for the complexified 
bundle (Pfi)c on V, with transition functions rj(ga'ßfx))£PO{p  -(-1, <7 +1).

I f  there exists over V an isotropic (r+\)-vector pseudo-field, modulo a factor 
e2 = ±  1 if r is even and e2 = l  if r is odd, locally determined b y  means o f x(L Ua. — 
-+/*'(x) such that if  Ux. fl Uß. L- 0 we have Jß(x)=gx.ßfx)Jxfx )g - f(x ) , modulo

ß f e r W )  = //>'(*) =  (ejv)aJV(ga'i'W)/a'W. modulo e2,
then the manifold V admits a real conformal spin structure in a strict sense.

All the following algebraic calculations are made modulo e2, which we omit 
for simplicity. Shortly, we put Jß'(x)=f 'Ja.(x)=figa.ß.(x) = ő. Then

i f  = öfő-1 l
[f  = {eNy N{S)f)  =* 8f d~' = (eNf iN ( S ) f ^  S f=  (eN)2 N (0)f

whence we deduce since the intersection of any right minimal ideal with any left min
imal ideal is of dimension 1 [3, p. 71]: Sf=e(x)f, e(x)£C*. Then, (eN)2N(ő)főő~1= 
=e (x)fS~1; therefore we obtain

(eN)2 N (S)f 
3 e(x) •

Applying the principal anti-automorphism ß to fö~ x we get:

or equivalently,

as

ß iö - ' lß i f )  =  (eN)~(^ (S) ß(f)>

_ ö _  (eN) N (<5)
N (S)J E(x) J’

S
ß ( s - 1) = N(ö) ’ [3], [17]

9*
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thus
N 2(ö)ö f = e ( x ) f = ( e Ny ^ - f

which gives (e(x))2=(eN)2> as (iV(<5))2=  1, with
1 if r —p = 0 (modulo 2) 

1 if r —p — 1 (modulo 2).

Then we obtain s(x)= + l if r —p is even and e(x)= ± i if r—p is odd. So, we 

write e(x)=s and then gx-P’(x )fr+1=E2sfr+1 where £={jjjj ° f and gaT{x)£Hc 
(with the notations of II.4).

If at x£ Ua. fl Uß-,fl£ (y'i}’2-■ -y'ryh) = jX’(x), we can complete the set of vectors
—y'r, y'o} with {xi,x2, ...,x 'r,x'0j so that fä, {x],y’j) and fl^{xUy'j} 

constitute Witt-projective frames in the complexified bundle (P£j)c , with transition 
functions (This is a consequence of the extension of the Witt-Theorem to
projective orthogonal classical group and to projective orthogonal frames.) Therefore 
we shall omit the prime and suppose that ß£.( ji y2..■yryo) =/«>(x).

Let us consider over Ua, the local cross-section in Clíf\{ V):

X -  0 ( 0  fr  + d l  =  Ä O ( o / r  + l)-

As for any a '£A, if x£ Ux-f) Up., gâ '0 ) /a-(x)=£2£/a'(x) where £ =  ±1 if 
r —p  is even and s = ± i  if r —p is odd; using ß the principal antiautomorphisms 
of the Clifford algebra we obtain, modulo e2,

ß{L(x)ß(gx-p-(x))) =  £ / , ( £ ' ( * ) ) ,

or, equivalently, f a.(x)g~,}.(x)N (gx.ß.(x)) =sfx,(x) modulo e2 — as ß(g)=g~1N(g) — 
and then

Iß’(x)gä-ß'(x) = (eNy  N(ga.ß. (x))/a. (x) g~,}, (x) =

=  (ejv)2 efc' (x) (modulo s2),

and, therefore,
Jß'(x)g~,}.(x) = (ejv)2e/a'0) (modulo e2),

where (eN)2e=(— l)r~pe. We shall write

Ip'(x)gä’ß’(x) = s'L'(x) (modulo £2),

where e'= e if r —p is even and e'= —e if r —p is odd.
Then

0 ( l) / r+ l)? ' =  goc'ß' O )  (X(i)fr + l)ar (m odu lo  £a),

where e 'is determined in any case [(x(;)/ r + i)^ is known, (x(i)./j.+i)J is known and 
one can find an element of the kernel which gives such a relation].



REAL CONFORMAL SPIN STRUCTURES 133

We can associate to each x in V a 2r+1 dimensional subspace, in Tx(x) the 
amplified tangent space at x, differentiable in x, such that ß ifx (i)f r+l) = (x(ij/r+1)$ 
and the transition functions of /tj are 17 (&*-/)')• Therefore we have constructed a spin- 
orial bundle over V, with typical fibre C2r+1.

With the frame {x(i)/ r+1}J, we associate the frame p.%,{x;,Xj}. Then with
{gi-ß’(x)xwfr+i}Z is associated fil{x„yj}.

We can determine Aa.(x)6Pin' (n+2) such that with the frame {^a'x u).fr+i}
is associated the frame /2j{a(A»-){xi,^}^1}, where fi%.{a(/,,.) {x;,y f h ß ’} is 
“a real” projective Witt-frame in (P^)c • We have got a real conformal spin structure 
in a strict sense.

Remark. We can observe that the gx-p-(x) are defined modulo eu-p.(x) = j  jre^
According to previous results (see I, 1) any real conformal structure will be obtained 
from the one associated with the choice of such that £lttT determine a cocyle 
with values in Z2XZ2 if (%)2 =  1, respectively in Z4 if (e^)2 = — 1.

Therefore the set of conformal spin structures is of the same cardinality as 
H \V ,  Z2XZ2) if r —p is even, respectively as H \V ,  Z4) if r—p is odd.

Proposition 3. Let us assume that the structure group of the bundle Pqx reduces in 
PO'(n+2) to a subgroup isomorphic to a conformal spinoriality group Sc in a strict 
sense; then the manifold V admits a real conformal spin structure in a strict sense.

If we have transition functions h(gX’ß'), g^ßfx)fH c, according to

ga-p'(x)fr+i=£fr+i> with e = ± l  if /•—p = | 2  (modulo 4) and £ = j± i ° r if

r —p = |^  ° r (modulo 4); on account of previous remarks, we get

£«'Í'(*)/«'(*) = £2£L '(x)
(where £2 = ±  1 if r is even and e2 = 1 if r is odd).

Using ß the principal antiautomorphism of the Clifford algebra, as ß(g) — 
= g - W(g) for all g£Pin {p + \, q + l), we get successively,

L (x )L 'l ' W N(gx.ß.(x)) =  efx.(x) (modulo e2),

L'(x)g*’j-(x) (modulo £2).
As

we find

N(gx r W )

Ißfx) = g*’ß(x)Jxfx)gp}.(x) (modulo e2),

Iß (x) = gaß'(x) N ( i l ( x ) )  N(gx,pfx )) g*'ß'(x)L(x) =

N(ga'ß'(x)) /«-(a), (modulo e2).
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And then,
~ £2f,r(x)gä'l(x) = ^ fAx)gä-f'(x) =

=  =  s* w ' (m0d"10 í!) 

(as (/V(ga'ß'(x))2 = 1), where

rO or rl or
e3 =  e if r —p = I (modulo 4) and if r — p s L  (modulo 4),

e2 =  {± l and e3 = ± e .
Starting with this result it is possible to take up again the proof of Propo

sition 2.
R e m a r k . We observe that the auxiliary bundle 0 (V )  previously introduced does 

not occur in such a statement which is, so, self-contained as the conformal spinoria- 
lity group is only defined by elements of En(p, q) and of its complexified E 'n (see [2] 
or part I).

6. Manifolds of even dimension with a real conformal spin structure in a broad
sense

Let (Cn{p,q))r be the restricted conformal group (see I, 1). Let fr+1 
...yry 0 be an isotropic (r+l)-vector. The enlarged conformal group of spinoriality 
(Sc)e associated with the isotropic (r+l)-vector f r+1 is the subgroup <p((Hc)e) of 
(C„(p, q))r where (Hc)e is the subgroup to the elements of Spin (p + 1, q + 1) such 
that y fr+i=pfr+ i, l*£C* [see parti].

In I we proved that (Sc)e is the “stabilizer” for the action of (C„(/;, q )\  of the 
s.t.i.m. associated with the isotropic r-vectory1y2...yr .(Werecall that the abbreviation 
s.t.i.m. stands for maximal totally isotropic subspace.)

D efinition. V admits a real conformal spin structure in a broad sense if and only 
if the structural group PO(p + \, q + Y) oi the principal bundle Pc,t — the 2-extension 
o f  the principal bundle £ o f orthonormal frames o f V — is reducible to a subgroup of 
PO '(n+  2) isomorphic to (S^L, the enlarged conformal group of spinoriality associ
ated with the isotropic r-vector y^.-y,.

According to Proposition 3 such a definition is a generalization of definitions 
given in II.3.

Proposition 4. V admits a real conformal spin structure in a broad sense i f  and 
only i f  there exists over V an (r + l)-s.t.i.m.-field idest a sub-bundle of Ti ' (V) such that, 
with the same notation as in Proposition 2, we have:

?p'(x) = gx'p(x)fX'(x)gfj.(x),
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mocluloe2= ± \  i f  r is even, £2=1 i f  r is odd, g«-/j'(x)€Pin(/? + l, g+ l), Jßfx )  = 
nX'y(x)£C*.

As in the proof of Proposition 2, we obtain ga'ßf x ) f r+1=Xa.ßf x ) f r+1, A„.r (x)i 
C*. Then, taking again the method given in the proof of Proposition 2 above, we get 
the result.

Conversely, if it is possible to reduce the structure group PO(p + 1, q + 1) to 
a subgroup isomorphic to (Sc)e in PO'(n+2), the same method as in the proof of 
Proposition 3 leads to the existence of an (r+  l)-s.t.i.m.-field, locally defined by 
means of the maps .

7. Manifolds of odd dimension admitting a conformal spin special structure

Let us assume that V is an orientable manifold of dimension 2r + l. We extend 
the definitions given in II.3 replacing respectively Pin (p + 1, <7 + l), C„(p,q) and 
PO (p+l, q+ l) by Spin (p+1, ry +  1), (Cn(p ,q )\, and PSO(p + 1, q + l).

C/++ 2 is central, simple, [3]. CIf+2{Q')(n=2r+\, Q' the complexified of Q), is 
isomorphic to Cln+2(Q')(n=2r), [3]. As in [4, 7] and in [2, p. 76], we introduce the 
associated Witt basis {x(, yj, zn} and projective Witt frame and the representation of 
CV„X2 in thespace x laxh.. .xihf r+1, f r+1 = } \y2-- .yry0 • The bundles Sj and o1 are defined 
in the same way. In the study of necessary and sufficient existence conditions, only 
few details are modified: one arrives at identical statements, the g^ß\x )  belonging to 
Spin (/? +1, q + 1). (Let us now recall that eN belongs to the center of Cln+2 and that 
esfr+1 =fr+ieN= ( -  Í )r_p/ r +1 [2, P • 77].)

III. CONNECTIONS BETWEEN SPIN STRUCTURES AND 
CONFORMAL SPIN STRUCTURES

Let us assume that n=p+q—2r.
We only study here the case of real conformal spin structures in a strict sense. 

[G| stands for the identity component of the Lie group G.

1. Topological remarks

It is known [16, p. 335—341] that 0(p)xO (q) is a maximal compact subgroup 
of 0(p, q) and that every compact subgroup of 0(p , q) is conjugate to a subgroup of 
0(p)X0(q). More precisely, 0(p, q) is homeomorphic to 0(p)XO (q)XRP4.

Thus, as the Poincaré group P(p, q) is the semi-direct product of the Lorentz 
group 0{p,q) and the group of translations of E„ which has n parameters, we got 
that P(p, q) is homeomorphic to 0 (p )X 0(q )X  Rpi' +", therefore, as the conformal 
affine group CO(p, q) is the semi-direct product of P(p, q) and of the group dilata
tions, observing that R+ is homeomorphic to R, we obtain that CO(p, q) is homeo
morphic to 0 (p )X O (q)X RM+n+1.

Moreover, \0(p, q) =SO+ (p, q) the identity component of 0(p,q) contains 
the identity component SO(p)XSO(q) of the maximal compact subgroup 0(p )X
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X O (í ). Let us recall, [1], that every element in the identity component of the confor
mal group Cn(p, q) is a composition of one “orthochronous” rotation belonging to 
SO + (p, q) one translation, one dilatation and one special conformal transformation. 
Thus, via the results concerning the Lie algebra LCn(p, q) given in [1], we obtain that 
C„(p,q) is homeomorphic to SO+(p, g)XRf‘,+2"+1 and homeomorphic to SO(p)X 
X SO (q )X R pq+2n+1.

Such a homeomorphism is in agreement with a general result of Cartan—Iwa- 
sawa—Mostow [14, p. 59], according which a bundle whose structure group is a con
nected Lie group is equivalent in its group to a bundle whose group is a compact sub
group.

2. Connections between spin structures and conformal spin structures

a) In the same way as in II.l, we introduce the “Greub extension” of £ - j -  
extension of £, and z'-extension of £ and, then, Pcx=^i 1-extension of

Clif2 is the auxiliary bundle the typical fibre of which is C72( 1, 1). Clif (V, Q) is the 
Clifford bundle of (V, O). According to the classical isomorphism — (see for example
[7])— which we denote by X  from Cln(p, q)<8>CL(l, 1) onto Cln+2(p + l, q + 1), we 
still abusively denote by X the isomorphism from Clif (F)<8>Clif2 onto Clii'AF) 
and from Clif'! (F)<g>Clif'2 onto Clif'* (V).

As 0 (F )  is a trivial bundle, let us recall that then there exists a Pin (1, l)-spin 
structure on 0(F). iJ/ denotes the “twisted projection” from Pin Q onto 0 (0 ). We 
shall use the following two statements given in [7].

There exists a Pin (p, <y)-spin structure in a strict sense on Fiff:
(i) There exists on F, modulo a factor ±1, an isotropic r-vector field, pseudo

cross-section in the bundle Clif (F); the complexified pseudo-riemannian bundle £c 
admits local cross-sections, over a trivialization open set (Ua,)x.iA with transition 
functions i ? a T ^ sP' n (P* 9) suc^ tihat if Ux-C\ Uß.^0 -^ fa-(x) locally 
define the previous r-vector field, then fß’(x)=N(gx,ß.(x))f<1L.(x); / /;.(x) =
=g*'ß’(x)fAx)g*ß'(x)’ where

f a '  (X )  =  Ma- W r ) , ga 'ß ' ( x )  =  Pa- (ga'tV ( x ) ) ,

f r= yi...y2', PÍ isomorphism well defined [see 7] from Cl'n onto Cl'n(x).
(ii) The structure group of the bundle £, is reducible in O' (n) to a real spinoria- 

lity group a(p, q) in a strict sense.

b) Let us denote by a C„ (p, q) spin structure, respectively by a Pin (p, r/j-spin 
structure, a real conformal spin structure in a strict sense, respectively a real Pin (p, q) 
spin structure in a strict sense, on F.

In the same way, we agree to denote by a Pin (p +1, q +1) spin structure a real 
Pin (p + 1, # +  l)-spin structure over the bundle t j  of orthonormal frames of the 
amplified tangent bundle 7j(F). We want to prove the following statement:

Proposition. (1) I f  there exists a Pin (/;, q) spin structure on V, then there exists a 
Pin (p + 1, q + l)-spin structure on i j .
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(2) I f  there exists a Pin (p + l, q + \)-spin structure on Qj, then there exists 
a C„(p, q)-spin structure on V.

(3) I f  there exists a Cn(p, q)-spin structure on V, i f  r and p are odd, then there 
exists a Pin (p + l, q+\)-spin structure on £j.

Pro o f . (1) Let us assume that there exists a Pin (p, c/)-spin structure on V. Let 
f r=yi...yi be an isotropic r-vector. By assumption, there exists a pseudo-cross sec
tion in the bundle C lif^F); so we can naturally form a pseudo-cross section in the 
bundle Clif'iFjigiClif^, locally determined by

*  ^  l4 ( /r )® l4 * (> o )  = A ’(x)®f2(x) =/*■(*)>
where x^-f£(x)=p%.(y0) locally determines a cross-section in the bundle Clif'2, 
with obvious notations. By using 2, isomorphism form Clif' (F)<S>Clif2 onto Clifi(F), 
we obtain a pseudo-cross-section in the bundle C lif'^F) locally determined by means 
of Í7a.—/ c('(x')=2(/a'(x)) which satisfy the required conditions for the existence of 
a Pin (p, 4 )-spin structure on ^  (see [2]).

Moreover, we observe that the reduction of 0(p ,q)  to a(p,q) in 0'(n), and 
that of 0(1,1) to «7(1, 1) in 0'(2) imply the reduction of 0(p  + \,q  + \) to 
a (p + 1, q + \), associated with y1, ... yry0, in 0'(n+2).

(2) Let us assume that there is a Pin (/7+1, <7 + l)-spin structure on V. We 
observe that q=ho\jj is a projection from Pin (p + \, q + 1) onto P O (p+ \,q  + \) 
with kernel <s/={l, —l ,e N, —eN).

There exists a principal bundle Sj twofold covering of Qj and a morphism of 
principal bundle t/d; S1-+E,J. So we can set fj =h o\j/' which is a morphism of 
principal bundles from Sx onto P£j and is a fourfold covering of P£i. Thus, we 
have got the existence of a Cn(p, <?)-spin structure on V. We can also observe, ac
cording to [2], that the reduction of 0 (p  + \ ,q  + \) to a (p + \ ,  q + l) in 0'(n + 2) 
implies the reduction in PO'(n + 2) of PO (p+l,  <7 + l) to h(o(p + \,q + \))  which 
is isomorphic by hx to Sc (p, q) the real conformal spinoriality group in a strict sense 
associated with f r = }\.. ,yr.

(3) At last, let us assume that there exists a Cn(p,q)-spin structure on V and 
that r and p are odd. If r is odd, then £2 = 1. According to the previous paragraph 
5 of the second part of this paper, there exists an isotropic (/- + l)-pseudo-vector 
field (so defined modulo e2 =  l), locally determined by means of x^U x.^ f^ (x )  
such that for any x£ Ux. fl Ufr + 0 we have

/« ’(*) =  L ’ß-(x)L(x)g*‘P'(x)
and

f ß. (x) =  (eNf  N(gx.p. (x))/a- (x) modulo e2 =  1.
Thus, as r is odd, as (ejy)2= ( — \)r~p if /? is odd then (ew)2 = l. So we get the existence 
of an isotropic pseudo-vector field which satisfy the required sufficient condition [7] 
for the existence of a Pin (p + 1, q +1) spin structure on £_,•.

R em ark . Let us recall (1.5 of this paper) that
|Sc(/>,?)|-  is homeomorphic to
K /h  9)1

R&H-i an(] so js a soijj Spare according to [14, p. 54]. Following the corollary 12-6
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[14, p. 56] any bundle with structure group |Sc(p, q)\ is reducible in |5cfp, q)\ to 
a bundle with structure group |a(p, q)\. If there exists a Cn(p, #)-spin structure on V, 
according to the paragraph 5, Part II, \Cn(p,q)\ is reductible to \Sc(p, q)\ in C'n. 
Moreover, the previous reduction of \Sc(p, q)\ to |cr(p, q)\ is made in |^c(/?, q)\ and 
not in 0 '(n ) as Sc(p, q) is obviously “extended out” of 0'(n) so that it is not per
missible to use the sufficient condition given in [7] for the existence of a Pin (p, q)- 
spin structure on V.

Another paper [18] deals with real conformal symplectic geometry and con
formal symplectic spin structures on a smooth real 2r-dimensional manifold.
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LEAVES OF PRECODES ASSIGNED TO FINITE 
MOORE AUTOMATA

MASASHI KATSURA

To investigate the structure of finite Moore automata, the concepts of code, 
precode and complexity are introduced by Ádám [1] and investigated in [1—6].

The notions of code and precode give a constructive description of all (represent
atives of isomorphism classes of) initially connected Moore automata. The problem 
is to give a constructive description of all reduced initially connected Moore auto
mata. An initially connected Moore automaton is reduced if and only if it has finite 
complexity. We say that a code is of finite complexity if the corresponding Moore 
automaton is of finite complexity. Hence the above problem is equivalent to :

Basic Problem [1]. Give a constructive description of all codes C with finite 
complexity.

A precode corresponds to a step of construction of a code (hence a step of con
struction of a Moore automaton). If we can proceed to construct a code of finite 
complexity (i.e., a reduced Moore automaton), then the precode is said to be of finite 
complexity. Hence it is a problem to obtain a condition so that a given precode is of 
finite complexity. Also, it is a problem to determine when we loose the possibility to 
continue the procedure to construct a reduced Moore automaton, in other words, 
when the complexity changes from finite to infinite. We shall study about these prob- 
ems.
1

1

In this section, we provide fundamental definitions and some results due to 
Ádám [1, 2] with a little modification.

For a finite nonempty set Z, the cardinality of Z  is denoted by |Z|. Z* is the 
free monoid generated by Z. sJl is the set of all positive integers and 9t0 is the set of all 
nonnegative integers. For t, we denote [t:/c] =  {afSH^t^a^k}.

In this paper, a partial automaton means a 5-tuple 2?=([1:p], X, Y, S, A) such 
that:

(1) v is a positive integer. [1: v] is called a state set of B.
(2) X  and Y  are finite nonempty sets, called an input set and an output set of B, 

respectively.

1980 Mathematics Subject Classification. Primary 68D30; Secondary 68D40. 
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(3) <5 is a partial mapping of [1 :v\XX  into f I : r] called a state transition function 
(Ő is extended as usual to a partial mapping of [1 :v]XX* into [1

(3) A is a mapping of A onto Y called an output function.
(4) For any a£[\:v\ there exists pdX* suchthat <5(1 ,p)=a.
If <5 is defined for any element of [1 :v]XX, then B is said to be an ( initially con

nected fiiiite) Moore automaton.
Let A=([l:v], X ,Y, Ö, X) be a Moore automaton. If A(<5(ű,p))x2(S(b, p)) 

holds for a,b£[\:v\ and p£X*, then we say that p distinguishes between a and b. 
co (a, b) is the minimal length of p which distinguishes between a and b. If there is no 
word which distinguishes between a and b, then we write <o(a,b) = The com
plexity Q(A) of A is defined by Q(A)=min {co(a, b)\a, Z>£[1 :v], aX-b). If n =  l 
then Í2(A) = 0.

L em m a  1.1. Let A=([l :v\, X. Y,5,X) be a Moore automaton. For a,b£[l:v\ 
and p£X*, if to(<5 (a. p), 3 (b, p j] < °° then co (a, b) <  <=°. □

The notions of codes and precodes are introduced in [1] as tools to describe 
Moore automata constructively.

Let m£9L A 6-tuple D = (r, s, ß, y, cp, p) is said to be an «-input precode if the 
following eight postulates are fulfilled:

(A) r, s are nonnegative integers.
(B) ß and cp are mappings of [2: r+ j+ 1 ] into [1 :r +  l]. 

y is a mapping of [2:r-Fw+1] into [1:«].
p is a mapping of [1 :r +  l] into 9L

(C) ß{ä)<a for any a€[2:r+ l].
(D) For a, b£[2:r+1], if a<b then (ß(d), y(a))<(/?(Z>), y(6)) in the lexi

cographic order.
(E) For a£[r+2:r+s+\'\, (ß(a),y(a)) is the lexicographically smallest element 

in ([r.r+l]X[l:n])-{{ß(b),y(b))\bel2:a-l]}.
(F) cp(a)=a for any a€[2:r+ l].
(G) cp(a) = 1 or (ß(cp(a)),y(cp{a)))<(ß(a),y(aj) for any a£[r+ 2\r+ s+ 1].
(H) ju(ű)€{l}U{£t(&)-t-l|Z>€[l:ű—1]} for any a£[l :r + l].

We denote p(D) =max {/x(a)|a€|[l :r+ 1]}.

It follows from Postulates (D) and (E) that aXb implies (ß(a), y(d))X 
x(ß(b), y(b)). Hence we have r+ sSn(r + 1), i.e., rS n r+ n - r .  If s=nr+n — r, 
then the precode is said to be a code.

Let D=(r, s, ß, y, cp, p) and D' — (r ',s ',ß ',y ',cp ',p ')  be «-input precodes. 
If r+sS.r'+ s' and ß',y ',cp ',p ' are extensions of ß, y, cp, p then we denote D ^D '. 
(In such a situation, in what follows, we shall write ß', y', cp', p' simply by ß, y, cp, p, 
respectively. We denote D <D' if D SD ' and r+s< r'+  s'. If D<2)' and r '+ s' = 
= r + j + l  then we denote D xD '.

In what follows, we sometimes define a precode D'=(r, s', ß, y, cp, p) for a given 
precode D=(r, s, ß, y, cp, p) and s'd[s:nr-\-n — r]. In such a case, (ß(a), y(a)) for 
any a£[r-\-s-\-2:r+s' + 1] is determined uniquely by Postulate (E). Hence we need 
only determine values cp(a) for a€\r+s-\-2:r+s' + Y\ so as to satisfy Postulate (G). 
(The other postulates are obviously fulfilled.) If we define cp(a) = 1 for any 
ad[r+s+2:r+s' + 1] then Postulate (G) is satisfied. Hence we can always find at
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least one such D'. Especially, for any precode D, there exists a code C such that 
D ^C .

Let D=(r, s, ß, y, (p, p) be an 77-input precode with p(D)—m. Let X=  
=  {xl5 x2, , x„} and Y = {yk,y 2, . . . ,ym}. Define a partial mapping 8D of
[1 :r + 1]XA" into [1:/-+1] by öD(ß(a), xy(af=(p(a) for any a£[2:r+s-y 1]. 
Define a mapping of [ l : r+ l]  onto Y  by 2D(a)=yllM for any a£[l:r +  l]. 
Then it is not difficult to verify that f '(ß )= ([l :r+1], X, Y, SD, XD) is a partial 
automaton. 'F(D) is an automaton if and only if D is a code.

The complexity Q(D) of a precode D is defined by

Q(D) = min {i2(!P(C))|C is a code with D ^  C}.

Hence ß(C) = ß ( i / (C)) for a code C. It is evident that D sD ' implies Í2(£>)S 
iSQ(D').

2

In the present section, we introduce the notion of essential leaves of a precode. 
It is shown that the finiteness of complexity is closely related to the behaviour on 
essential leaves.

Let D=(r, s, ß, y, cp, p) be a precode. a£[l :r+ l]  is said to be a leaf of D if 
{ß(c)\c£ [2:r+l]}. The set of all leaves of D is denoted by . r+ 1  is always a leaf 

of D, and thus fiD is nonempty.
L e m m a  2.1. Let D = (r, s, ß, y, q>, p) be an n-input precode and let l á a < é S r + l .  

Assume that b is not a leaf. Furthermore, assume that, for any j f [  1:«], there exists 
c£[2:r+s+\] such that (ß(c), y(c))=(a,j'). Then there exists ,/£[l:n] suchthat 
öD(a, x f< ő D(b, xf) and <5D(b, x f> b .

P r o o f . There exists c£[2:/- +  l] and j'C[1 :n] such that (flic), y(c),<p(cj) = 
—(b ,j,c ). By Postulate (C), we have 5D(b,xf= c> ß(c)= b. By the assumption, 
there exists d£[2.t + j +  1] such that (ß(d),y(d))=(a,j). Assume i/6[2:r+l]. 
Since (ß(d),y(d))=(a,j)<(b,j)=[ß(c),y(c)), we have d<c by Postulate (D). 
Hence öD(a, x f= d < c= ő D(b, x f .  Assume d£_[r + 2:r-\-s + 1]. If (p(d) = l then 
őD(a, Xj) = l< c . Otherwise, by Postulate (G),

{ß(<p(df, y(<p(d))) <  (ß(d), y(d)) = (a , j ) <  (b ,j) = (ß(c), y(c)).

Hence we have őD(a, xf= (p(d)< c= öD(b, x f  by Postulate (D). □

L e m m a  2.2. Let C=(r, s, ß, y, q>, p) be an n-input code and let lS a < b S r  + \. 
Assume that b is not a leaf. Then there exists p£X* such that <5C(b, p)6 , <5c (a, p)<
<Sc (b,p) and Őc(b,p)>b.

P r o o f . By consecutive use of Lemma 2.1. □
A leaf e of a precode D — (r, .y, ß, y, (p, p) is said to be an essential leaf if A (e) — 

=A(a) for some a£ [l:e—1]. <&D is the set of all essential leaves of D. Let (£D =  
= {e1, . .. ,e k} with <?i<e2< . . .< e t . Then e, is said to be the t-th essential leaf o f  
D(i6[l :/c]). The k-Xh. essential leaf ek is also called the last essential leaf.
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The following lemma is an easy consequence of the definition:
L em m a  2.3. Let D={r, s, ß, y, cp, p) and D' =(r, s', ß, y, cp, p) be precodes 

with D ^D '. Then &D—2 D,, <SD=<&D, and p(D)=p(D'). □
P ro po sitio n  2.4. Let C=(r, s, ß,y, cp, p) be a code. Then ß (C )<°° i f  and 

only i f  the following condition is satisfied:
(‘g’) m(e, a)-=°° for any e6®c tmd aG[l: e —1].

P r o o f . Assume that (fi) holds. Let b, c<£[l: r+1] and Zxc. Then, by Lemma 
2.2, there exists p£X* such that öc(c,p)£äc and őc(b,p)<öc(c,p). If öc(c,p) 
is not essential then 2.c(Sc(b,p ^^A c fó d c ,P))- Hence a)(£, c)<°°. If öc(c,p) is 
essential then a>(öc(b,p), őc(c,p)) < «  by the assumption. Hence, by Lemma 1.1, 
co(b, c)<  °°. Thus we have Í2(C)<°°. The converse is obvious. □

P ro po sitio n  2.5. I f  a precode D=(r, s, ß, y, cp, p) has no essential leaf then
12 (D) <  oo.

P r o o f . Let C=(r, s', ß, y, cp, p) be a code with DSC. Since (£C=(SO=0 
the condition (&) is automatically satisfied. Hence we have í2(L)áfí(C )<°°. □

Let D=(r, s, R, y, cp, p) be a precode. Concerning the t-th essential leaf e, of 
D, consider the following conditions (%) and (3>t) for D:
(<£t) For any a£ [\: et—l] there exists p£X* such that one of the following holds:

(1 )  ad (<5d (u ,/> )) X1 2 D(d ß (e ( , /?)).

(2) SD(a,p) SD(e„p) and SD(a,p) >  et.
(3) SD(a,p) 7* őD(et,p) and SD(et,p) >  et.

(3>t) For any a,b(L[ 1: et] with a^b , there exists p£X* suchthat one of the follow
ing holds:

(4) ^dÍPd^P’PÍ) X1 ^dÍPdÔ íP))-
(5) őD(a,p) ^  öD(b,p) and SD(a ,p )> e t.
(6) őD(a,p) őD(b,p) and SD(b ,p )> e t.

For the sake of convenience, we assume that (&0) and (2>0) are the empty condition, 
i.e., every precode satisfies (r4’0) and (Z%0).

L emma 2.6. Let D =  (r, s, ß, y, cp, p) be an n-input precode and let et be the t-th 
essential leaf of D. IfD  satisfies the condition (%) then vSs 1 and

(^ (r+ j+ l) ,y ( r+ í+ l) )^ (e t, 1).

P roof. In the condition (‘g’,), it is evident that p = 1 satisfies neither of (1), (2) 
and (3). Hence there exists y€[l:n] suchthat SD(et,Xj) is defined. Thus there exists 
c£[2: r+x + 1] such that (ß(c), y(c))=(e„j). Since et is an essential leaf, we have 
c€[r+2: r+ j+ 1]. Hence i S l .  By Postulate (E), we have

(e,, 1) s= (e, , j ) =  (jß(c),y(c)) =§ (jß (r+ s+ 1), y(r+s + l)). □
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Let D=(r, s, ß, y, (p, p) and D'=(r, s', ß, y, (p, p) be precodes with DS.D'. 
If e, is the /-th essential leaf of D then it is also the /-th essential leaf of D'. If SD(a, xfi 
is defined then SD,(a,Xj) is also defined and őD.(a, Xj)=bD(a, xj). Hence we have:

L e m m a  2.7. Let D=(r, s, ß, y, <p, p) and D' —(r, s', ß, y, <p, p) be precodes such 
that Dr=D'. Then we have the following:

(7) I f  D satisfies then D' satisfies (fi,)-

(8) I f  D satisfies ( ß t) then D’ satisfies (£?,). □

Lemma 2.8. Let D=(r, s, ß, y, <p, fi) be an n-input precode and let ebe a leaf o f D. 
Then the following conditions are equivalent:

(9) i £ l  and (ß(r+ s+ 1), y (r+ j + l))^(é>, n).
(10) For any a£[l:c] and y£[l: «], there exists c£\2:r+s+\] such that 

(ß(c), y(c))=(a, j ) .
(11) öD(a,Xj) is defined for any a € [ l: e] and y'£[l:n].
(12) For any /6 [ l : w ] ,  there exists c<£[2: r + . r + 1] suchthat (ß(c), y(c)) = (e ,j ).

(13) őD(e,Xj) is defined for any /€ [1 : n\.

P roof. (9) implies (10) by Postulate (E). (10) implies (12) obviously. Assume that
(12) holds. Then there exists c£[2: r + x + 1] suchthat (ß(c), y(c))=(e, n). Since 
e is a leaf, we have c€[/- + 2: r+ j+1]. By Postulate (E), (/?(r+ j+ l), y(r+.y+l)) = 

ß(c), y(c))=(e, n). Thus we have (9). The equivalences (10)<=>(11) and (12)-t>(13) 
are direct from definition. □

Let D —(r,s,ß ,y,(p ,p) be a precode. Let (£D={e1, ..., ek) with c1< . . .< e t . 
Determine a nonnegative integer /(D) as follows.

If .V=0 then /(D) = 0.
If then

/(D)=max({0}U{/<E[l: k]\(ß(r+s+1), ?(/•+* +1))sr(e(,/i)}).

In other words, t(D) is the maximal integer t such that őD(e,,j)  is defined for any 
jd [ \ : n]. (If there is no such essential leaf then /(D) =0.) It is evident that D s f l ' 
implies t(D)^t(D ').

Lemma 2.9 .Let D=(r, s, ß, y, cp, p) and D’—{r, s', ß,y, cp, p) be n-input 
precodes with D;SD'. Then, for any /G[0: /(D)], we have the following:

(14) D' satisfies (%) i f  and only if D satisfies ('<$’,).

(15) D' satisfies (3>t) i f  and only if D satisfies (%).

P R O O F . l t  is evident that kD.(a)=kD(a) and SD,(a, Xj)=öD(a, xfi for any 
ad[\:et] and j £[ 1: «] where e, is the /-th essential leaf. The conclusions are imme
diate from these facts. □

10
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L e m m a  2.10. Let D=(r, s, ß, y, <p, p) be an n-input precode and let e, be the t-th 
essential leaf o f D. The following conditions are equivalent:

(16) D satisfies (%) for any z € [ 1: /].

(17) D satisfies (£?,)•
Proof. (17) implies (16) obviously. Assume that D satisfies ({%) for any z'£[ 1, t}. 

For each a, b£[\:et] with a<b, we have to show the existence of p£X* which 
satisfies (4), (5) or (6). We shall show this by induction on b. When b=et, we have 
the conclusion directly from (%?,). Let a,b£[ l : e t—l] and a<b. Assume that one of
(4), (5) and (6) holds for any a ',b f i[1: et] with b'> b  and a'<b'.

Case 1; b$2D. By Lemma 2.6, we have r S l  and (ß(r+s+l), y ( r + j+ l ) ) s  
S(e„ 1). It follows that öD(c, xfi is defined for any c£[l: et— 1] and y'£[l: ri\. 
Hence, by Lemma 2.1, there exists y€[l:n] suchthat őD(a, Xj)<őD(b, xfi and 
őD(b, Xj)>b. If <5D(b, Xj)>et then we have the conclusion. If not, by the inductive 
hypothesis, there exists q£X* such that (4), (5) or (6) holds where 8D{a,xf), 
<5D(b, Xj), q play the roles of a,b,p, respectively. Putting p=Xjq, it can easily be 
seen that (4), (5) or (6) is fulfilled.

Case 2; b£2D — &D. Obvious from the fact that XD(a)AXD(b).

Case 3; bfi&D. Assume that b is the z'-th essential leaf of D (z£[l: 1—1]). By 
(%), there exists p£X* such that one of the following holds:

(1 ) Ad(Sd(ci, p)") Ä.D(öD(b, p)).
(20 öD(a, p) ^  SD(b, p) >  b.

(30 őD(b,p) őD(a,p) =» b.
(10 implies (4) obviously. In cases (20 and (30, the proof is carried out by the same 
way as the last part of Case 1. □

P ro po sitio n  2.11. Let C = (r, s, ß, y, q>, p) be a code. Assume that C has at least 
one essential leaf. Let ek be the last essential leaf o f C. Then the following three conditions 
are equivalent:

(18) ß(C)<°°.
(19) C satisfies ( i f ,)  for any i'€[l, k].
(20) C satisfies (ßß) .

P r o o f . The equivalence of (19) and (20) is shown in Lemma 2.10.
(18) =>(20). Assume that (S>k) does not hold. Then it can easily be seen that three 

exist a ,b£[l:ek] such that a ^ b  and l c(5c(a, /?)) = Ac(5C(Z>,p)) for any p£X*. 
This means that co(a, b) = °°. Hence Q(C) = °°.

(20)=>(18). First assume ek= r+ 1. Let a, Z>€[1: r+1] and a<b. There exists 
p£X*  which satisfies one of (4), (5) and (6). However, neither (5) nor (6) takes 
place, and (4) is equivalent to eo(a, fr)<°°. Thus we have fl(C)<°°.

Next assume ekX r + 1. Let a, £>£[l:r +  l] and We show co(fl, h)«=°°.
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Case 1; b>ek. If b is a leaf then it is not essential. Hence Ac(a)^Ac(b) and thus 
co(a,b) — 0. If b is not a leaf then, by Lemma 2.2, there exists pdX* such that 
öc(b,p)£fic , Sc(b,p)>b  and <5c(a, p)<őc(b, p). Since őc(b,p)>ek, öc(b, p) is not 
essential. Hence Ac(őc(a, p))^Äc(öc(b, p)), i.e., to (a,

Case 2; b ^ e k. There exists p£X* which satisfies (4), (5) or (6). In case (4), 
we have to(a, In cases (5) and (6), we have co(öc(a, p), Sc(b, p))<°° by the
consideration in Case 1. Hence we have co(a, Z>)< °°. □

3

In the previous section, we have characterized finiteness of complexity of codes by 
using conditions (%>,) and (&,). In this section, we make similar considerations on 
precodes.

L emma 3.1. Let D=(r, s, ß, y, tp, p) be an n-input precode. Let _ /£ [ l: n\ and let 
e, be the t-th essential leaf. Assume e ,A r+ 1. Moreover, assume that (ß(c), y(c))< 
< (<?„ j ) holds for any ccf r  + 2: r+ s+ 1]. Then there exists a precode D = 
= (r, s', ß, y, tp, p) with D<D’ and 0 (r+ s ' + l), y(r+s'+ \))={e„j) which 
satisfies (#,).

P roof. The integer s' is uniquely determined by Postulate (E). For such .v', take 
a precode D"=(r, s '— 1, ß, y, tp, p) with D ^D ". Then (ß(c), y(c))<(e„j) for 
any c£[/- + 2: r+s']. Let

S = { a í[  1: e,+ l]| there exists /(a)£9l0 suchthat öD.(a, x j(a)) = e,+ 1}.
Since öDfe ,+  l, Xj)=e,+ l, S is nonempty. If őD..(a, x j ia))=öDfia, x9/ a))=e,+ l 
with f(a)Ag(a), then there exists afi[e, + \ : r + 1] such that öD..(a', x f i ^ a ' . 
Thus there exists cd[2:r+s'] suchthat (ß(c),y(c)) = (a ',j) and (p(c)^a'. Since 
a '> e„  we have c£ [2 :r+ l], By Postulates (C) and (F), c>ß(c)=a'^(p(c) = c which 
is a contradiction. Consequently, f(a )  is uniquely determined for each a£S. Let b 
be an element of S  such that/ ( b) takes the maximal value.

Define a precode D' =(r, s', ß, y, tp, p) by

(ß(r +  s’+ 1)> y(r + s '+  1), tp(r + s' +  1)) =  (e,,j, b).
By Postulate (C), ß (b )^b ä e ,+  l. Since e, is a leaf, ß(b)Aet. Hence we have

(ß(b),y(b))  <  (et, j )  = ( ß ( r + s ' + l ) , y ( r + s ' + \ )).

Hence Postulate (G) is satisfied, and thus D' is actually a precode. Now we show that 
D' satisfies the condition ( .  We have

* i(6)+1) = V(*>, * i(6)) =  e,+ i.
Let a£[\: et— 1]. If SD.(a, x jw+1)=e, + 1 then it contradicts the maximality of 
/ ( b). Consequently, we have

SDfe„  * r» +1) = e,+ \ A  SD.(a, x jw+1).
(%>,) follows easily from this fact. □

10*
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L e m m a  3.2. Let D=(r, s, ß, y, (p, u) be an n-input precode with p (D )^2. Let 
y£ [l: n\. Assume that r + 1 is the k-th (and the last) essential leaf, and (ß(c), >'(c))< 
<  (r +1 ,./) holds for any c£[r+2: r+ .y+1]. Then there exists a precode D '= 
= (r,s', ß, y, (p, (i) with D <D ’ and ( / ? ( r+ .y ' - t - l ) ,  y ( r 4 - j '  +  l ) ) = ( r + l , . / )  which 
satisfies (fik).

Proof. Take a precode D"=(r, s' — 1, ß, y, (p, p) with D s f l" . Then öDfa ,X j)  
is defined for any a£ [l:r]  and óD.,(r + \, xfi is not defined. Let p(r+ \)= z  and 
fix u<y[\ , p(D)\ suchthat uAz. Each ac\ \ : r\ satisfies exactly one of the follow
ing:

(1) For any/<E9l0, XD..(SD„(a, xfj))=yz .
(2) There exists /(u)£SI0 such that /.D,(dD„(a, Xj))=yz for any i£[0: /(a ) — 1]

and V (< V (a , Xj(“y)) = •
(3) There exists g(u)P9i0 such that /,Df d D..(a, Xj))=yz for any i£[0: g(a) — 1] 

and XD~(SD..(a, x f af )  A y: ,y u.
(4) There exists /?(u)69i0 suchthat XD..(dDfa , Xj))=yz for any i£[0: h (a) — 1] 

and öD«(a, Xj(a)) = r+1.
There exists ö£[l:r] suchthat p(a) = u. a satisfies (2) with f(a ) = 0. Hence there 
exists at least one element which satisfies (2). Take &£[ 1: r) which satisfies (2), and 
which has the maximal value / ( b). Define a precode D' by (,ß(r+s' +1), y(r+s' +1), 
<p(r+s' +  l))= (r+  l,j, b). We show that D' satisfies the condition (fik). We have

V ( V ('•+!> *})) =  >’z
for any i£[l: f(b)\, and

XD (pD (r+ 1, XW +1)) = yu A yz.

Let a€ [l:r]. If a satisfies (2) then, since f(a )^ f(b ) ,

V (V (< h xf/ af)  = yu A yz = XD.(öDfr + l ,  x j(a%
If a satisfies (3) and g(a )^f(b )  then

XD.(SD.(a, x f af )  A yz = ?.D.(S,r (r+ \, x f a))).
If a satisfies (3) and g (a ) ^ f  (b) + 1 then

XD.(SD.(a, *  yu =  XD,(SD.(r+ 1,
If a satisfies (4) and h (a )^ f  (b) + 1, or if a satisfies (1) then

V ( M « ,  4 (t)+1)) =  Tz ^  Tu =  V ( V ( r +  L f )+1)).
If a satisfies (4) and h(a)^f(b )  then

V (V (« , f )+1)) -  V ( V ( r + 1, 4 “ ,+1- ‘“ ))) = Tz *
^  yu = XD.(dD. ( r + l , x j ^ +1)). □
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P ro po sitio n  3.3. Let D=(r, s, ß, y, cp, p) be an n-input precode with p(D )^2. 
Then the following conditions are equivalent:

(5) ß(£>)< oo.

(6) D satisfies (%) for any /£ [1: t (£>)].

(7) D satisfies (S>(D)).
P r o o f . Equivalence of (6) and (7) is shown in Lemma 2.10.
(5) =>-(6). There exists a code C=(r, s', ß, y, (p, fi) such that D ^ C  and 

ß(C )<°°. By Proposition 2.11, C satisfies (#,) for any i£[l:A] where A: =  |SD|. 
By Lemma 2.9, D satisfies {%) for any ig [l: /(£>)].

(6) =>(5). If t(D) — k, take a code C = (r, s', ß, y, cp, p) such that D ^C . 
Then, by Lemma 2.9, C satisfies (%) for any z'£[l: A:]. Hence, by Proposition 
2.11, ß(Z ?)^ß(C )<  °°. Assume t(D)<k. Put D=D,(d). By Lemmas 3.1 and 3.2, 
for each i£[t(D) + 1: k\, we can construct a precode Dt=(r, st, ß, y, <p, p) suchthat

(ß(r +si + 1)> y(r+Jj +  l))=(ej( n) and O, satisfies (<iii). Take a code 
C=(r, s', ß, y, cp, fi) with Dk^ C .  Then, by Lemma 2.7, C satisfies (%) for any 
i€[l:A]. By Proposition 2.11, ß(C)<°°. Since D <C, wehave ß (D )< °°. □

Let D=(r, s, ß, y, cp, p) be an n-input precode. We can decide whether D satis
fies (%) (or (3>,j) or not by the values öD(a, X j )  for ag [l: e,], j£ [ l : n] and kD(a) 
fo ru$[l: e,]. Hence, when p(D )^2 , the above proposition shows that finiteness 
of a precode D is decided only by the following values:

(ß(c), 7(c), <p(c)) for ß(c)£[l: et(D)], 

pic) for c€[l: e,(D)].

We have an alternate proof of the following result in [2],

P ro po sitio n  3.4. Every precode D=(r, 0, ß, y, cp, p) is o f finite complexity.

P r o o f . Let D '= (r+ l,0 , ß,y, <p, p) be a precode with D<D' defined by

{ß(r + 2, y(r+2), tp(r + 2), /z(r + 2)) =  ( r + 1, 1, r + 2, p(D)+1).

Then p (£)') =  2 and t(D) = 0. Since any precode satisfies (%), it follows from Propo
sition 3.3 that ß (fl)sß (D ')< c» . □

I  When p(D) = 1, we have the following result [6].

P ro po sitio n  3.5. Let D —(r,s,ß ,y,(p ,p) be a precode with p{D) — \. Then 
Q(D) <  oo i f  and only if r — 0 or j= 0 .

P ro o f . j = 0  implies ß(D)-= °° by Proposition 3.4. The other parts can easily 
be seen. □

The assumption p(D )S2 in Proposition 3.3 is indispensable.^ Let D = 
=(r, 1, ß, y, (p, p) be an n-input precode with r ^  1, « S 2 and p(L>) = l. Then 
clearly t(D) = 0 and D satisfies (££>„)• However, Q{D) — °°.
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By using our results, we can give a simple constructive proof of Proposition 3.4. 
Namely, for a given precode D=(r, 0, [i, y, cp, p), we can give the following proce
dure to construct a code C —(r+ \, s, ß,y, (p, p) with finite complexity such that 
D <C . It seems that our procedure is much more simple than the construction in [2].

P ro po sitio n  3.6. Let D=(r, 0, ß, y, cp, p) be an n-input precode. Define a code 
C={r + \, s, ß,y, (p, p) with D<C as follows:

(8) Put 2 = [1: /•] — {/?(c)|c€[l: r + 1]}. (Notice that if  n = 1 then 2= 0J.

(9) For each eg 2, determine j e as follows:
I f  y(e+l) =  l then j e— 2. Otherwise j e = 1.

(10) (ß(r+2), y(r+2), (p(r+2), p{r+2))={r+\, \ ,r+ 2 ,  p(D) + \).

(11) I f  (ß(c),y(c))=(e,je) for c?2 then cp(c)=e + 1.
(12) Otherwise <p(c)— 1.

Then C is o f finite complexity.
P r o o f . We have 2 = 2 D—{r + 1}. By (10), r + 1 is not a leaf of C. Hence 

2 c =  2U{/' + 2}. By (10), r +  2 is not an essential leaf. Thus 6 cg 2 .  Let e, be the 
Mh essential leaf of C. Assume y(c( + l) =  l. Then it can easily be seen that 
(y(c), q>(c))=(2, e, + l) if and only if ß(c)=et . Hence öc(et, x 2) =et + \ and 
őc(a, x 2)Ae, + l for any a£[l:et— 1]. Thus we have (%). When y(et + 1)^1, by 
considering similarly with respect to xx, we have also Hence Q(C)-=°° by 
Proposition 2.11. □

4

Now consider the problem when it may take place that D<D', Í2(ű)< o= and 
£2(D') = oo, I f  D <D ' with D=(r, 0, ß, y, cp, p) and D '= (r+1, 0, ß, y, (p, p) then 
Q(D), Í2(Z)')<°° by Proposition 3.4. Hence if we have the above situation, then 
D and D' are of the following type: D=(r, s, ß, y, (p, p), D' =(r, j+ 1 , ß, y, cp, p). 
Moreover, if ßB=0 then O(D), Í2(Z)')<°° by Lemma 2.3 and Proposition 2.5. 
When p(D) = 1, we have the following:

P roposition  4.1. Let D=(r, s, ß, y, cp, p) and D' =(/•, s + 1, ß, y, cp, p) be
precodes such that D -< D' and p(D) =  1. Then the following conditions are equivalent:

(1) Q(D)<°° and Q(D') = °°.

(2) r ^  1 and j =0.
P ro o f . By Proposition 3.5. □

When /<(£>) S2 and (SD A 0, we have the following:

P ro po sitio n  4.2. Let D=(r, s, ß, y, cp, p) and D' =(r, s+1, ß, y, <p, p) be
n-input precodes such that D < D’. Assume p(D )^2  and <£D̂ 0. Let (£D = 
= {ex, ekJ and ex -= ...<  ek. Then the following conditions are equivalent:

(3) £2(D)<°° and i2(D') = oo.
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(4) (ß(r+s + 2), y(r+s+2))=(et, n) for some /£[l:k], F satisfies (ß t- x) and 
D' does not satisfy

P r o o f . (3)=>(4). Put t=t(D) + 1. By Proposition 3.3, D satisfies (S>,-x). By 
Lemma 2.7, D' satisfies (@,-x). If t{D') = t — 1 then ß(Z)')<°° by Proposition 3.3. 
Hence t(D’)A t — 1. Since D < D ',we have t(D') = t and (ß(r+s + 2), y(r+s+2)) = 
=(e„ ri). By Proposition 3.3, D' does not satisfy (Q>,).

(4)=>(3). Since t(D) = t — 1 and t(D') = t, the conclusion is immediate from 
Proposition 3.3. □

P ro po sitio n  4.3. Let Dx—{r, sx, ß, y, (p, p) be an n-input precode with finite 
complexity. Assume that p(Dx)^ 2  and (fDi 0. Let et be the t-th essential leaf o f Dx. 
Assume that =  0 or (/j(r+Ji + l), y (r+ j1 + l))< (e t, 1). Then there exist precodes 
D = {r, s — 1, ß, y, <p,p) and D '=(r,s,ß, y, (p, p) suchthat (/?(r+.y+l), y ( r+ í +  l)) = 
—(e„n),D x^D < D ', ß(Z))< <=*= and ß(Z)') =  °°.

P roof. The integer í  is uniquely determined by Postulate (E ), and we have 
sx^ s  — n. There exists a code C=(r, nr+n—r, ß, y, <p, p) such that DX<C  and 
ß(C )< °°. Let Z)2=(r, s —n, ß,y,tp,p) be a precode such that Z>2<C . Then 
Dx^ D 2 and ß(Z)2)<°=. Z>2 satisfies the following:

For any a£[ l : e t —1] and jd[\:n\, there exists c£[2: r+ 5 —n + 1] suchthat
(ß(c), y(c))=(a,j).

For any y€[l:n], there exists no c£[2: r + j  — rc + 1] suchthat (ß(c), y(c)) =

Since e, is an essential leaf of Dx, it is an essential leaf of D.z. Hence there exists 
a£[l:et— 1] suchthat p(a)=p(et). For each y€[l:n], determine c^£[2: r + j —n + 1] 
by (ß(Cj),y(cjj)=(a,j). Determine precodes D=(r, s —\,ß , y, cp, fi) and D' = 
=(r, s, ß, y, tp, p) with D ^ D < D ’ by

{ß( r + s - n + j ) ,  y ( r + s - n + j) ,  c p (r + s -n + j )) =  (e„j, cp(cj))

for any y£[l :n]. Then D and D' are well-defined as precodes, and we have t(D)= 
=  1—1, t(D')=t. It can easily be seen that 2D,(e,)=2D(a) and őD.(et, x-) = 
=dD.{a,Xj) for any /€[ 1: n], Hence D' does not satisfy (2 t), and thus —
by Proposition 3.3. Since /(£>»)=/—1 and ß(D 2)<©=, D2 satisfies (@t- x) by Propo
sition 3.3. Hence D satisfies by Lemma 2.7. Thus ß (ß )< °° by Proposition
3.3. □

By our results, when we construct a code of finite complexity or of infinite com
plexity, only a few values of the function cp should be carefully chosen, and the other 
values of (p can be taken arbitrarily.

Let D =(r,0,ß,y,cp,p) be given such that p(D )^2  and <SDA&. We can con
struct a code C=(r, s, ß, y, <p, p) with ß (C )<  °° and D<C  by the following way: 

I. For each egé D, take 7,€[l:n] arbitrarily.
II. For each c£[>+2: r+ j+ 1 ] with (ß(c),y(c))=(e,je), determine cp(c) 

suitably (e.g., according to Lemmas 3.1 and 3.2).
III. Other values <p(c) are taken arbitrarily so as to satisfy Postulate (G).

It can easily be seen that every code C=(r, s, ß, y, <p, p) with ß(C)-=°° and Z)<C, 
is obtained by the above way. (Moreover, it is enough to take j e — n for every
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e<E(fD in I.) However, in general, it seems difficult to state the procedure in the step
II. Lemmas 3.1 and 3.2 are simple example to obtain some of such codes C.

We can construct a code C =  (r, s, ß, y, cp, p) with Q(C) = °° and D < C  by 
the following way :

I. Take e£(£D arbitrarily.
II. For each c t[r+ 2 : r-t-x+1] with ß(c)—e, determine cp(c) suitably (e.g., 

according to Proposition 4.3).
III. Other values <p(c) are taken arbitrarily so as to satisfy Postulate (G).

It can easily be seen that every code C = (r,s,ß ,y ,tp ,p) with fl(C) =  °° and Z)<C, 
is obtained by the above way. (Moreover, it is enough to take e to be the last essential 
leaf of D in I.) However, in general, it seems difficult to state the procedure in the step 
II. Proposition 4.3. is a simple example to obtain some of such codes C.

Proposition 4.4. Let r, and n, m fßi such that 2 ^ m ^ r  + l and s=
S5 nr -j-7i — r. Then the following conditions are equivalent:

(5) There exists an n-input precode D=(r, s, ß, y, (p, p) such that p(D)=m  
and Q (D) = °°.

(6) There exists an n-input precode D—(r, s, /?, y, <p, p) suchthat p(D) =m and
t (D) =  1 •

(7) /«Sr, s^7i and s £ 2n — r.
Proof. (5)=>(6). By Proposition 3.3, D does not satisfy (ßt{D)). Since every 

precode satisfies (ß 0), we have t(D )S l.
(6) =>(7). If m = r+ 1 then (fD =  0 and thus t(D)=0. Hence we have m Sr. For 

any y€[l:n] there exists c€[r+2: r+ j+ 1 ] such that (ß(c),y(c)) =(et(D),j ) .  
Hence we have s^ n .  For any y‘6[!: n] there exist c, c'£[2: r+x+1] suchthat 
(ß(c), y(c)) =(1,7) and (ß(.c'),y(c'))=(em ,j ) .  Since et(D)̂ l ,  we have r+ s^2n .

(7) =>(5). See the proof of [6, Theorem 2]. □
By Propositions 3.5 and 4.4, we have the following which is one of the main 

result of [6].
Proposition 4.5. Let r, s£9l0 and n, m fß l such that m S r+ \ and i á  

nr+n — r. Then the following conditions are equivalent:
(8) Every n-input precode D=(r, s, ß, y, cp, p) with p{D)—m is o f finite com

plexity.
(9) One of the following holds: (a) r —0. (b) ,v =  0. (c) m = r+ \. (d) m S  2 and 

s<n. (e) m S 2 and s<2n — r. □
Let D=(r, s, ß, y, cp, p) be an «-input precode with p(D)^2. Let e, be the 

i-th essential leaf of D. If j = 0 or (ß(r+s+l), y(r+j+l))-«=(ef, 1) then (3>t) is not 
satisfied by Lemma 2.6.

If (e„ l)s(ß (r  T j + I), y (r+ j + l))<(et, ri) and (ß,) is satisfied then every 
precode D'=(r, s', ß, y, (p, p) with Z)<Z>' and ( ß ( r + s ' y(r+ j, + l))=(i>(, n), 
satisfies (ß )  and thus of finite complexity.
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We may expect that the following holds:
If (et, l ) ^ (ß ( r + s + \) ,  y (r+ s+ 1))-= (é*,, ri) and (2>,) is not satisfied then there 

exists a precode D' —(r, s', ß, y, (p, n) with D<D' and (ß(r+s' + \), y(r+s' +  1)) = 
=(e,,n) which does not satisfy (2,), i.e., D' is of infinite complexity.

However, this statement is not true. We shall show this by an example.

E xample 4.6. Let E —{6, 5, ß, y, cp, /j) be a 2-input precode given in the follow
ing table:

ß y (p P
1
2 1 1 2

1
2

3 2 1 3 1
4 2 2 4 1
5 3 1 5 2
6 4 1 6 2
7 5 2 7 3
8 1 2 2 —
9 3 2 2 —

10 4 2 2 —

11 5 1 1 —

12 6 1 4 —

4(f):

7 ©

6 and 7 are leaves and 6 is the only essential leaf. E  does not satisfy (S’1) because 

*e(Se(6, (*D*W)) =  *e(Sb(2, O & xd) = Ae(Se(5, ( x ^ x j )  = yx, 

Ae(őe(6, (x?)*)) = Ae(Se(2, (x if)) = ÁE(ŐB(S, (xf)*)) = y2,

<5e(6, (x iy x ^ z )  = SE(2, (xD*x1x2) = Se(5, (xfyXiXi) = 2, 

öe(6, (x?)*x2) is not defined.

Let E'=(6, 6, ß, y, <p, n) be a precode with E < E '. If (13)^7 then

^£'(^£'(6> Xo)) 5̂  =  A£/(<5£'(5, x2)),
and

2-E'(pE'(ß> x ;x2)) 9̂  J’3 =  2e, (dg, (2 , x?x2)).

If <p( 13) = 7 then

2E'(őe.(6, xfxü)) =  >’3V  > 1  =  A£,(5b.(5, x?x2)),
and

^■£'(^£'(6» x 2)) =  J s  y i ~  2.E' ( öE’(2 , x 2)).

Hence E' satisfies (ßß), and thus £2(E')<°°. □
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To end the paper, we consider the following condition on a precode D : 
(<?) Í2(C )<°° for any code C with D S C.

P roposition  4.7. Let D=(r, s, ß, y, cp, p) be a precode. We have the following:
(10) I f  ^=0 then D does not satisfy (S).
(11) Let p(D) = 1. Then D satisfies (6) if  and only i f  r= 0  and i ^ l .

(12) I f  p(D)^2, s ^ l  and<£D?±Q then D satisfies (S).
Assume p(D)^2, x £ l  and (£D^0 . Let ek be the last essential leaf o f D.

(13) IfD  satisfies (ß k) then it satisfies (<f).
(14) I f  (ß(r+s+l), y ( r+ j + l))<(et , 1) then D satisfies neither (ß k) nor (S).
(15) When (ß(r+s+ l), y (r+ j + l))s (e t , rí), D satisfies (<?) i f  and only i f  D 

satisfies ißt), i.e., D(D)< «.

P r o o f . (10) There exists a code C =(r + 1, s', ß, y, cp, fi) with D < C  which satis
fies the following:

(ß (r + 2), y (r+ 2), cp (r +  2), p (r + 2)) =  (r +1, 1, r +  2, p (r+1)).
If ß(c)=r + l then cp(c)=r+2.
If ß(c)=r+2 then cp(c)=r + 2.

We have 2c(r + l)= 2c(r + 2) and őc(r+l, Xj)=öc(r + 2, xfi=r+2  for any _/6[l: n\. 
Hence we have co (r + 1 , r +2) =  co and thus fl(C) =  co,

(11) Assume that /-=0 and x ^ l. Let C =(r', s', ß,y, cp, p) be a code such 
that D <C . Then clearly r'=r= 0. Hence C2(C)=0. Assume r 5 l .  Let C = 
=(r, s ', ß, y, cp, p) be a code such that D ^C . Then p(C) = l. Hence Q(C) = °°. 
If r= s= 0 then the conclusion follows from (10).

(12) Let C = (r',s', ß ,y , (p, p) be a code such that DSC. Then r= r' and 
®c= (£d- Hence ß (C )< °° by Proposition 2.5.

(13) Let C=(r', s', ß, y, cp, p) be a code such that DSC. Then r —r' and C 
satisfies (ßk) by Lemma 2.9. Hence Í2(C)< °° by Proposition 2.11.

(14) By Lemma 2.6, D does not satisfy (Stk). By Proposition 4.3, there exists 
a precode D' such that Q(D') = °=>.

(15) Assume that D does not satisfy (8>k). Since t(D)—k, we have Í2(D) = °° 
by Proposition 3.3. Hence D does not satisfy (S'). The converse follows from (13). □

The converse of the assertion (13) in the above proposition does not hold, i.e. 
when (ek, l)s(/?(r+x + 1), y (r+5+ l))< (efc, n), (£) does not necessarily imply (ßk). 
For the precode E in Example 4.6 does not satisfy (<3>x) but satisfies (S).
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A NOTE ON THE RADICAL THEORY 
OF INVOLUTION ALGEBRAS

N. V. LOI

In [4] we have dealt with a fundamental problem of the general radical theory of 
involution algebras over a commutative ring K  with 1. This problem concerns the 
Anderson—Divinsky—Sulinski (briefly A—D—S) property of a radical class R: 
does I*oA*  imply R(/*)o,4* ? In [4] necessary and sufficient conditions have been 
established for a radical class R to have the A—D—S property. J. Wichmann 
(private communication) asked about the A—D—S property of radical classes of 
involution algebras over a commutative ring K* with 1 and with involution *. As in 
a commutative ring the identical mapping x —* x is an involution, the case considered 
in [3] and [4] corresponds to that of involution algebras over K id.

It is the purpose of this note to answer Wichmann’s question in the case when K* 
is a field with non-identical involution *. We shall show that in this case a radical 
class is either hypernilpotent or hypoidempotent, and that every radical class of in
volution algebras over a field K* with involution * 5̂  id, has the A—D—S property.

Let K* be any field with involution *. A /v'-algebra A* is an involution K*-algebra 
if in A there is defined a unary operation * such that x**=x, (x+y)*=x*+>’*, 
(xy)* =y*x* and (kx)* =k*x* for all x,y£A  and k£K*. Without the fear of 
ambiguity we shall denote by* both the involutions defined in K  and A, respectively.

An involution A*-subalgebra I* of A* is called an ideal of A* if it is a ring-ideal 
of A*. By a homomorphism <p we mean an algebra-homomorphism such that (cp(kx))* — 
=k*cp(x*).

Let us recall that a subclass R of involution A'-algebras is called a radical class 
(in the sense of Kurosh and Amitsur) if

(i) R is homomorphically closed: if A*c R then tp(A*)£ R for every homo
morphism cp,

(ii) R is inductive: if an involution A*-algebra A* contains an ascending chain 
of ideals 1% such that

U I* = A* and 7*6 R for each a, then /t*6R,

(iii) R is closed under extensions: if I* <tA*, 7*£ R and (A/I)*£ R, then A*f R.
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It is clear that if R is a radical class, then for any involution üf*-algebra A*:

R(zi*) = 2(I*\I*-=3A*, /*(ER)€R.
This ideal is called the radical of A*.

As in [2] a radical class R will be called hypemilpotent (hypoidempotent) if R 
contains every nilpotent involution .K*-algebra (if R consists only of idempotent 
involution W*-algebras). Moreover, we say that the radical class R has the A—D—S 
property if R(/*)<izl* for any involution A"*-algebra A* and ideal I*-=sA*.

Radical classes of involution rings were studied in [5] and radical classes of invo
lution /f-algebras over a field K  (with identical involution) were investigated in [3] and 
[4]. In this note we shall work with involution algebras over a field K* such that the invo
lution * o f K* is not the identity.

One can easily check the validity of the Andrunakievich Lemma for involution 
W*-algebras.

Lemma 1. I f  K *< / ’<  A* and K* denotes the ideal o f A* generated by K*, 
then (X*)scK * holds.

Proposition 1. If R is a hypemilpotent or hypoidempotent radical class o f invo
lution K*-algebras, then R has the A—D—S property.

Proof. By Lemma 1 the standard proof carries over (e.g. [2]).
For any involution A*-algebra A*, let A% denote the additive group of A* with 

the given involution. Thus A„ can be considered as an involution A*-algebra with 
zero-multiplication. We shall use the notation:

T(A*) = {x+x*\x£A*}

for the set of trace-elements of A*. Let us notice that T(A*) = T(Aq).
Lemma 2. T(A*)A {0} for any non-zero involution K*-algebra A*.
P roof. It will suffice to show that T(Aq)A {0}. Since the involution * of K* 

is not the identity, there is a non-zero element a£K* such that a —a* A 0. Suppose 
indirectly that T(ylo) =  {0}. In this case x = —x* for every A f. We get

— (a — a*)x = ((a — a*)x)*

=  — (a— a*)x* — (a—a*)x.

This implies that 2(a—a*)x=0, hence 2x=0, that is, jc for all x£A$.
Since x = — x*, we have for all xI_A„ . Thus the involution * of Ait is the
identity. Let xfiA ^  be any non-zero element and consider the one-dimensional 
involution subalgebra H 'A =K*xti of Ao=Ai,d. By the involution rules, the involution 
of H id is not the identity, which is a contradiction. Therefore T(Aq)A  {0), that is, 
T{A*)A{ 0}.

Proposition 2. I f  A* is an involution K*-algebra with zero-multiplication, then 
A* is isomorphic to a direct sum o f copies of Kq.
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Proof. A is a vector space over the field K. It suffices to show that in A a basis 
{^Joc€ A} can be chosen such that each is invariant under the involution *, that is, 
k ll= aUcl. Let {dijad A} be a maximal linearly independent system of elements of A 
which are invariant under the involution *. Then {dijad A } spans a subspace V of A. 
Assume that kV A. By the choice of the elements dl^, the subspace V is closed under 
the involution *, hence (A/V)* — A * / V * {0} is an involution /V-algebra. Applying 
Lemma 2 we get T(A*/V*)?± {0}, therefore there exists an element xdA* such that 
x+A'*$ V*. One can check easily that the system {dijad A}U {x-t-x}* is linearly 
independent, contrary the maximality of {dijad A). Hence the case V ^ A  is not 
possible, and so V* = A*.

Theorem 1. I f  R is a radical class o f involution K*-algebras, then R is either 
hypernilpotent or hypoidempotent.

Proof. In view of Proposition 2 it is straightforward to see that if R contains an 
involution X*-algebra (VO) with zero-multiplication, then R contains also K$. 
Therefore, by the inductive property of R, every direct sum of copies of K$ belongs to 
R. Hence, by Proposition 2, in this case R contains every involution AValgebra with 
zero-multiplication. Otherwise, if R does not contain any involution AValgebra with 
zero-multiplication, then R is clearly hypoidempotent.

Corollary. In the variety o f involution K*-algebras every radical class has the 
A—D—S property.

Proof. Straightforward by Proposition 1 and Theorem 1.
In [2] Ánh and Wiegandt proved the same result as Theorem 1 for (not necessar

ily associative) algebras over an arbitrary field. In the case of K'á every hypernilpo
tent or hypoidempontent radical has the A—D—S property, but in [3] a radical class 
is constructed which does not have the A—D—S property if char KsA 2.

Now we turn to the investigation of semisimple classes. Let R be any radical class 
of involution X*-algebras. The class

Sf R =  {,4*|R(/4*) =  0}

is called the semisimple class of the radical R. In the cases of K'á semisimple classes 
were investigated in [4]. If the involution * of K* is not the identity, then by the Corol
lary we can show the following for involution Ai*-algebras.

Theorem 2. A class S of involution K*-algebras is the semisimple class o f a radical 
class if and only if

(i) S is coinductive: if an involution K*-algebra A* contains a descending chain of 
ideals /* such that fl/* = 0 and A* jlJdS for each a, then zi*£S,

(ii) S is regular: if si*dS, then every non-zero ideal o f A* has a non-zero homo
morphic image in S,

(iii) S is closed under extensions: if I*, A*/I*dS then also A*dS.

The proof is analogous to that of [3] Theorem 3 using the fact that every semi
simple class is hereditary (this follows from the Corollary).
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ON THE NUMBER OF PRIME FACTORS OF INTEGERS OF THE
FORM üi+bj

A . S Á R K Ö Z Y

1. Throughout this paper we use the following notations :
For any real number x let [x] denote the greatest integer less than or equal to x, 

and let ||x|| denote the distance from x to the nearest integer:

||x|| = min (x —[x], 1 + [x]-x).

We write e2nlx=e(x). The cardinality of the set X  is denoted by |AT|. n(n) is the 
Möbius function. co(n) denotes the number of the prime factors of n counting 
multiplicity, and A(n) denotes the Liouville 2 function:

the Legendre symbol.

A(n) = ( -  l)“« .

The purpose of this paper is to show that if are “dense”
sequences of positive integers then both equations k(ax-\-by) = + 1 and A.(au+bv) = 
=  — 1 must be solvable. (See [1], [2], [3] and [9] for other somewhat related results. 
In fact, in all these papers arithmetic properties of sums of sequences of integers are 
studied.)

We will prove the following results:

Theorem 1. For any real number y =>0, there exists a real number N0 such 
that i f  N  is a positive integer with N > N 0, stf a { —N ,—N + l, , N}, 08 a
a  {— N, — N + 1 ,..., N ) and

(1) \ j * \ m  >  ^ ( lo g A O -L

then both equations
(2) ).(ax-i~ by) — +1, ax(Lsd, by .̂08
and
(3) Á(au + bv) = -1 ,  au£sd, bv£08
are solvable.

R e se a r c h  p a r tia lly  su p p o r te d  b y  H u n g a r ia n  N a t io n a l  F o u n d a tio n  for  S c ie n t if ic  R esea rch  
G r a n t  n o . 1 8 1 1 .

it
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Setting here S = s l  and 3Ü——SÍ (where —s i  consists of the negatives of the 
elements of si), we obtain:

C orollary 1. For any real number 7 > 0 , there exists a real number N1 such that 
i f  N  is a positive integer with N > N t , j/ c {1, 2, N ) and
(4) =- JVÖogJV)-», 

then each o f the equations
X (_ax + ay) = +1,

X(au + av) = — 1,

H aq- a r) = + l,

X(as- a t) = - l
is solvable.

The lower bounds in (1) and (4) seem to be far from the best possible. In fact, it 
can be shown that if the generalized Riemann hypothesis is true, then (1) can be re
placed by
(10 \s/\ \dS\ >  c(e)N5/3+s.
On the other hand, (1) cannot be replaced by

\j*\\a\ > (l-e)IV .
(To see this, set sé = {0}, and let SB denote the set of the integers n with \n\-^N, 
X(n) = +1.) Perhaps, it is enough to assume that

\si\ \SB\ N~* — + <=°.
Unfortunately, I have not been able to prove this.

Replacing (1) by (T) in Theorem 1, we may derive Corollary 1 with
( 4 ' )  \st I >  N6'6+e
in place of (4) (underthe assumption that the generalized Riemann hypothesis is true). 
One may guess that in Corollary 1, (4) or (4') can be replaced by \sé\ -*■ +  °°. This is 
not so, as the following theorem shows:

T heorem. I f  4, then there exist sequences

(5) s / c  {1,2, M e  {1,2, ...,N }
such that

(6) M  =  =

(7) X(a—a') = + l for all a£si, a '£ s i, a 7̂  a' 
and

(8) X (b -b ’) =  -  1 for all bZ3$, bf0B, b *  V.
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The lower bound in Theorem 2 seems to be nearer to the truth than the upper 
bound in Corollary 1. In fact, perhaps, the right-hand side of (4) in Corollary 1 can be 
replaced by (log N)c but again, it seems to be hopeless to prove this.

2, The proof of Theorem 1 will be based on a result of Hajela and Smith:

L e m m a  1. (i) For any real number e>0, for x >x0(q) we have

(9) j 2  g(«)e(«a)| ■*= x(log.v)_e for all 0 ^  a ^  1.n^x

(ii) Under the generalized Riemann hypothesis, for  e>0, x> x1(f:) we have

(10) I ^ /i(u )e(«a)| <  x5/6+£ for all O S a S l .
n^x

P r o o f , (i) is the first part of Theorem 4.1 in [5], while (ii) is Corollary 4.2 in [5]. 
(In fact, for a's belonging to the “minor arcs”, (9) can be proved by using Vaughan’s 
identity, while for a’s belonging to the “major arcs”, the estimate of I 2  n(ri)e{nct)\

I n^x
can be reduced to the estimate of sums of the form 2  l1 (n)X (n) where y is a charac-

tl̂ X
ter belonging to a “small” modulus, and these last sums can be estimated by using 
standard contour integral technics.)

We shall need the following consequence of Lemma 1:
L e m m a  2. (i) For any real number q >0, for x > x2(q) we have

(11) j 2  k(ri)e(na) | <  x(log.v)_e for all O S a S l .
n^x

(ii) Under the generalized Riemann hypothesis, for  e>0, x> x3(e) we have

(12) I 2  A(n)e(«a)| <  *6/6+£ for all O ^ a ^ l .

P r o o f . Let us define the multiplicative function / (n) in the following way: let 
f{n) = 1 if n= k2 where k  is a positive integer and let /(« )=  0 if n is not a square. 
Then it is well-known (and it can be seen easily) that we have

Ári) = 2  m -
d\n

Hence, by the Möbius inversion formula,

so that 

(13)

Ko) =  2f(d)p(n/d) =  2  ll (n/d2)
d\n d2\n

I 2  k(n)e(nd)\ =  | 2 ( 2  n(o/d2))e(nct)| =
n ^ x  n^=x d2\n

= I 2  2  /i(fc)e(/cd2a)| =§ 2  I 2  n(k)e(kd2ct)\.
d2^ x  k ^ x / d 2 d * ^ x  k ^ x jd *

11*
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Thus by using (i) in Lemma 1 (with 2q in place of q) we obtain that if x is large enough 
(in terms of q) then

I 2  A(»)e(na) ==n^x
^  2  \ 2  n(k)e(kd*0L)\+ 2k^x/d2 cd^x1

[ 2  ß(k)e(kd2 a)
‘ kmx/d’-

d2( log (x/r/2))2® + i/« kM.d11

djh* d2(logx1'2)2« + 2  - j r  =x1/4-=dSx1/2 M

_  22C x y  J _

(log x)2e d̂ Ti/4 d2 +  X 2 1 -5T
1

d d5
x

(log x)c

which completes the proof of (11).
By using (13), (12) can be derived from (10) in the same way.
3. In this section, we complete the proof of Theorem 1. Let R + and R_  denote 

the number of solutions of (2) and (3), respectively, so that

(14)

and put 

Then we have

(15)

R + + R -+  2  i — 2  1
a + b=0 a£s t f ,b£38aesf,b£&

T(a) = 2  e(ax)’ G(x) = 2  e(bx).b£@

R + = 2  2  i =
— 2N^n^k2N a + b = n 

A(/i)=+l a e s f , b e @

= 2  2  f  e((a + b — n)a)dix, =
— 2 N ^ n ^ 2 N  a £ s / ,b £ 3 8  q A(n)=+1

= / (  2  e(-na))( 2  e(ax))( 2  e(fca))da =
0  — 2 N ^ n ^ 2 N  a t s #  b£38

A(n)= +1

= / (  2  ^-(l+A (n))e(-na)] F(a)G(a)da =
$ to^|„|s2X 4 /

i i
= X- /  ( 2  e(-m ))F(a)G(a)da +

z 0 - 2 N i S n S 2 N

1 }  2N
+ — j  (— 1+2 Re 2  2(n)e(na))ir(a)G(a) da.
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Clearly, we have

( 16)

/  ( 2  e(-ncc))F(ct)G(a.)doi =
0 -INSnSZN 

1
J  2  2  2  e((a + b-n)a)da =

q - 2 N ^ n i £ 2 N  b£M

2  i = 2  i = M m -
- 2 N m a + b s 2 N

Furthermore, by using Lemma 2 (with 2y in place of {?), Cauchy’s inequality and 
Parseval’s formula, we obtain that if N  is large enough in terms of y, then

1 r . 2 N
j  (— 1 + 2Re 2  ^ (n) e (««)) F(a) G (a) da

71 =  1

1 }  2N
— j  (1 +2| 2  A(n)e(na)|)|F(a)| |G(a)| da

(17)

2 /  2^(log2^V)-2>’|F(a)||G(a)|da N

N i f  lF(<x)\*da f  |G(a)|2da)1/2 =

(log N y  j 

N

f  \F(a)G(oc)\dix

~  (log N y  v  (log N y

In view of (1), (15), (16) and (17) yield for large N  that

(18) N
(log N y

so that (2) can be solved, in fact we have

( W \ m y 12
1

(log N y 12

(19)

Finally, in view of (1) we have

2  lS m in ( M , | J | ) ^ ( W W /2-
a +  b =  0 a£sf,b£&

(20)
1

( w \ m i/2
It follows from (14), (19) and (20) that also

1R_ ~ —

holds, which completes the proof of Theorem 1.
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By using (ii) in Lemma 2 in place of (i), it can be shown in the same way that (1) 
in Theorem 1 can be replaced by (1').

4 .  The proof of Theorem 2 will be based on the following Ramsey-type theorem 
of Erdős and Szekeres [4]:

Lemma 3. Let K, M  be positive integers and GK a graph o f K vertices. I f

then either GK or the complement o f GK contains a complete subgraph of M vertices.

We use this lemma with K=[N/2], Then by 4 we have

(22)

and

(23)

S  22M~2 = 2
log JV 
log 2 N_

T

N 1 N  N  N  N
2 J 2 “ 2 4  4

(21) follows from (22) and (23) so that, in fact, Lemma 3 can be applied.
Let us define the graph GK in the following way: Denoting the vertices of GK by 

P i , P 2, ..., PK, we connect the vertices Ph Pj if and only if X(i —j ) =  +1. Then by 
Lemma 3, either GK or the complement of it contains a complete subgraph of M  
vertices. Assume first that GK contains a complete subgraph of M  vertices, and denote 
the vertices of it by Ph, P,., ..., PiM. Then clearly, s /= { f,  4, ..., í'm}> ■% = 
= { I f ,  2 f2, ..., 2 iM} satisfy (5), (6), (7) and (8). Assume now that the complement of 
Gk contains a complete subgraph of M  vertices, and denote the vertices of it by Pjo 
Pj..> ■■■, Pjm- Then again, sat = {2j\,2j2, ... ,2 jM}, @ = { j i , j2, . . . , j M} satisfy (5), 
(6), (7) and (8), which completes the proof of Theorem 2.

5. Note that Erdős and Sárközy proved in [3] that for “dense” sequences sé,

p(ax + ay) =  0
is solvable. On the other hand, the equations

p(au + av) =  + 1, p(ai + ar) = - 1, 

p(as-a ,)=  + 1, p(az- a w) = - 1

need not be solvable, as the sequence s / = {4, 8, ...,4k, ...} shows.
Furthermore, Erdős and Sárközy proved in [2] that if p is a prime number greater 

than 2, s ic . {1, 2, ..., p — 1} and

\sf\ >  6p7/s (log p)1/2,
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then each of the equations

=  -1

is solvable. This result and Theorem 1 suggest the following conjecture:

C onjecture 1. If f(n )  is a multiplicative arithmetic function which 
only the values — 1 and +1,

(24) 2/00=-1p

assumes

is divergent, and s i  is an infinite sequence of positive integers with

lim sup 4 -  2! 1 >  0,

then each of the equations

f(a x + ay)=  + 1, f(a u + av) = - 1, f(a q- a r) = + \, f(a s-a ,)  = - \  
is solvable.

In fact, this would follow from
C onjecture 2. If/ (« ) is a multiplicative arithmetic function which assumes only 

the values — 1 and +1 and for which the series (24) is divergent, then we have
N

lim (max \ yf(n)e(nix)\) = 0. 
jV-~ + ~ 'o s a s l  1 „ t i  '

For a’s belonging to the “minor arcs”,

(25) ! 2 7 ( wM«3i)|n = l
can be estimated by using a quantitative version of Daboussi’s theorem proved by 
Montgomery and Vaughan in [8]. On the other hand, for a’s belonging to the “major 
arcs”, a sharper form of Halász’s mean value theorems [6], [7] (a mean value theorem 
with a good error term) would be needed for the estimate of (25).
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A REMARK ON NORMED ALMOST LINEAR SPACES

ADAM P. BOSZNAY

Abstract

G. Godini introduced a concept of normed almost linear spaces. In this paper we prove that the 
analytic dual of such a space with some additional properties is not trivial.

Introduction

In [1], the concept of a normed almost linear space (NALS) is introduced. For 
the sake of completeness, we shall repeat here the necessary definitions.

An almost linear space is a set X  together with two mappings
s : X x X - * X  and m: R x X X

with the properties L^ — Lg below. We shall denote .y(x, y) by x+y ,  and m(X,x)  
by Xx.

We write (—l) x = —x, and x  + ( —y ) = x —y.
Let x, y, z£X,  X, fx£ R.

Ly ( x+y ) +z  = x + (y+z),

U  x + y - y + x ,

L3 there exists 0£X  such that x + 0 = x for all x£X,
Z-4 lx =  x,

Lb Ox = 0,

L6 A(x+y) =  Xx+Xy,

L 7 X (fix) = (Xji)x,

Ls (X+n)x — Xx+fix  for X S  0, /i^O .
For an almost linear space X  we introduce the following sets:

Vx =  {x£A; x —x =  0}

Wx =  {x£X\ x = —x}.

1980 Mathematics Subject Classification. Primary 46B99. 
Key words and phrases. Almost linear spaces.
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A norm on X is a functional || . ||:X—R with properties Nx—Nt below. Let
x, y, z £ X  and /l€;R.

Ai \\x-z\\ ^  ||* -y || +  ||.y-z||,

n 2 Ux \\ = w \\x \\, 
n 3 PxH = o iif x =  o.
Here we remark that Nx implies

w  + w
using the substitutions — z= y  andy = 0.

So, Vx is a normed linear space. Then, denoting the weak convergence in Vx 
by —, we can take a va net in Kx such that v ^ v ,  and vd Vx-

With the above notations, we have

Ijc—o|| S  lim in f!jc—va\\ for all xdX.
We call an almost linear space X  a NALS if we have a norm on X.
Now, we introduce the concept of an almost linear functional on an almost linear 

space.
Let Abe an almost linear space. A functional / :  X— R is called almost linear if 

satisfies the following properties: (x,ydX, /.SO)

f(x+ y) = f(x)+ f(y),
f().x) = ;/(*),

- f ( - x )  = f(x).
We define the norm of an almost linear functional by

1/1 =  sup {|/(JC)|, x e x ,  |[x|l S  1}.
We say that an almost linear functional is bounded if || /II <  + °°.

In [1], the following problem is mentioned: Does there exist any nontrivial 
NALS X  such that the only bounded almost linear functional on X  is the null-func
tional?

In this paper we show that on a special class of NALS, we always have nontrivial 
bounded almost linear functionals. We give also an example for such a NALS.

We say, that in a NALS X  the system (Xa) is independent if any two different 
finite linear combinations of the vectors (Xa) are different vectors.

We say that the NALS X  is finite dimensional if we have a finite maximal inde
pendent system in X.

The result

T heorem. Let X  be a N ALS with the following properties.
(i) X=W x;

(ii) X is finite dimensional;
(iii) x+ z= y+ z implies x= y for all x ,y ,z£ X .
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Then we have a nontrivial almost linear functional on X, which is bounded. 
Proof. We shall need some lemmas.
Lemma 1. For all x,y£X ,

l * + y l  -  M l -
Proof. Using property for x —z, we have

II*-*ll =  I k - ^ l  +  l b - * ! -
Using X = W x, we get

1 2 x |3 | |x + * | |  +  |b + x l ,

thus the desired conclusion.
Now, let xlt ..., xn be a maximal independent system in X. Introducing the set

K — {AjXj-l-... +A.„x„; Ax, ..., A„ = 0} c  I ,
we can easily construct an «-dimensional normed linear space Y with basis y x, 
such that the mapping T : K — Y

T().1x1 + ... + ;,„xn) = Áj j 'j + ...+ /„  y„
is additive, positively homogeneous and norm-preserving onto a cone CczY.

Fixing an element ydC  such that

y = diyi + ---+nnyn
with all /i;> 0, the Banach—Hahn theorem guarantees the existence of a linear 
functional/on Y such that ||/ ||= 1 , and / ( y )  =  ||>i|.

Clearly, the functional f* = fo T  is an additive and positive homogeneous func
tional on K such that

\f*(k)\ ^  Ik|| for all kZK, 
and for the element x*=n1x1 + ... +y„x„,

/*(**) =  ||x*||.
In the remaining part of the proof we shall extend this functional to X, proving 

that the extension /  is almost linear and || / 1| =  1.
Lemma 2. Let y£X be arbitrary. Then there exists z£K such that

y + zdK.
Proof. Let us assume indirectly that for all z£K,

y+z$K .
We show that y, xx, ..., x„ is an independent system in X.

In the opposite case we have

AoJ+AiXj + ...+Ánxn =  Aóy + ̂ íx  x + ...+Fnxn
for some non-negative (n-t-l)-tuples (A0, Ax, ..., A„)^(AjJ, ...,A').

Now, we distinguish between two cases.
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Case 1. A0=A0- Then by (iii)

Ä1X1+  ...+?inXn — A[xx +  . . .  + K xn
which contradicts the independence of the system x i , x„.

Case 2. A.0+A'0. We can assume without loss of generality that A0< AÓ- 
Using (iii), we have

y+ z£K , which is absurd.
The following lemma is an easy consequence of Lemma 2.
Lemma 3. For all y£X  there exists A>0 and zdK  such that

y + z = lx*.
P roof. Using Lemma 2, we have a z such that

y+z£K,
s o

y + z = X1xl + ... +Anxn.
Since

** =  hi Xi +  .--+flnXn

with all /q > 0, the proof is an elementary computation, which is left to the reader. 
Lemma 4. For all y £X, there exists e>0 such that

P roof. Let us assume the contrary. Without loss of generality we have y K. We 
prove that y, xx, xn is an independent system.

In the case when this latter is not fulfilled, there exist different (n + l)-tuples

AtXi +  ...+Anx„ — ( A g — A 0) y + / + . . .+2' x„.

This implies that for
K

* 2  +  ••• ----- J ~ X n

x*+eyeK.

such that
(20, A1? ..., A„) and (A0, Als ..., A„) 

AoT+A 1X1 + ...+Anxn = A'0y  + A'1x 1 + ... + A'x„.

Similarly, we can exclude the case A0=Aq as in the proof of Lemma 3. 
Assuming now A0<AÓ, we have

AjXxA ... +A„x„ — (Aq—A0)y+Aix1 + ... +A'nxn. 

Multiplying both sides with a constant c>0 suchthat

max cA- ^  min /q,
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an easy computation shows that
(A'0-A 0)cy+ x*iK ,

which is again absurd.
Now, we shall extend /*  to X. The extension is denoted by /.
Let be y£X  arbitrary. Using Lemma 2, we have z£K  such that

y + z = u£K.
Now, we define

/GO = /* (« ) - /*  00-
First, we show that this definition is correct. Let us assume

J + Z j  =  «x

for some
y + z 2 =  w2

Z x , z2, M l, MaC-fif.
We can write y +z1+z2=u1+z2, and, on the other hand

y + Zjj + Zi =  u2 + zx.
These together imply

Wi +  z2 =  Ma + Zj.
By the additivity of/*

and finally
f* (u 1)+ f*(z2) = P ( u 2)+ f*(z1)

n u d -p iz ,)  =r(u2)-p (z2).
We have proved that the definition is correct.
The positive homogeneity of/is an easy consequence of/* , the proof is left to the 

reader.
We have the same situation with additivity.

Now we show that /  is non-negative on X.
Let y£X  be arbitrary. Using Lemma 3, there exists zZK, A>0 suchthat

y + z = Ax*.
Applying Lemma 1, 

Also we have
Ux*\\=X\\x*\\=\\y+z\\^\\z\\.

J(y)+f*(z) = p(hc*) = A||x*||,

/*(z)=§ ||z|| S  A||**||.

The two latter relations imply /(y)& 0.
Summing up, / is an almost linear functional on X.
Finally, we show that

for all y£X.
J(y) ^  Ibii
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Lemma 4 implies that we have e>0 suchthat
x* + £y = udK.

Clearly we have
/* (« )= /(« )  =5 iM.

Using Lemma 1 and the triangle inequality,

1 * * 1  —  I M I  —  1 1 * * 1 1 + e l l . v l l
so

(1) f(u)^\\x*\\+e\\y\\.
Applying

f(x*) = ]|jc* ||, x* + ey = u
we have

Using (1),

The Theorem is proved.

Il**||+e/0) =./(«)• 

f ( y )  — IIt II-

Finally, we give an example for a NALS with properties (i), (ii) and (iii).
Let K  be a convex cone in an arbitrary finite dimensional normed linear space. 

Introducing (— l)x=x, this is a NALS in the case when K is sufficiently “narrow”. 
(The latter assumption is necessary for NJ. All the necessary proofs are elementary.
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ON THE CHARACTERIZATION OF fc-DIMENSIONAL 
ADDITIVE FUNCTIONS I

K. KOVÁCS

In [2] and [3] we examined the “maximum functions” g of additive functions 
/ :  N — R, where 0S r1< r2< . . .< r m are fixed integers and

(!) gO)€C„:= {f(n + r): r ^ fa ,   ....... . rm}, |/(n  + r,)| maximal}.
The results of these papers can be generalized for the A>dimensional space.
In this paper let / :  N — Rfc denote an additive function and | / 1 its Euclidean 

norm.
We can prove the following theorem similar to the proof of Theorem 2 in [3]:
T heorem  1. For any monotonically increasing function h: N-*-R there exists a 

sequence d  =  {a1< a ,< ...} c N  such that a„>h(n) and if

(2) lim g(u„) =  c,
an £A,n-+oo

then g(m)=c for all m£ N. The same holds for all sets A = {a1, a2, ...} having upper 
density one.

T heorem  2. I f  g —c, then, with the exception o f at most [m/2] primes p, f  (p°9=0 
for all a.

R em ark  1. The definition in (1) permits the construction of different maximum 
functions gt with different cf. We have only gt =  c; and |/ (n ) |^ |c ;| =c for all 
m€N. If t t are coprime numbers with |/(h)| =c, then the angle of f  ( t j ) , f ( t s) must 

271be for all j ^ s .  This permits only one g in the case k — \ and at most three
g/s in the cases k ^2. (Let for example / ( 2x)=e, / ( 3“)=e2, /(5°t) = l with e =

1 FT= - + y i  and r j —j  for 30. Then we can choose gj—eJ ( j =  1,2,3).)

It is possible to prescribe the maximum on the multiples of a number q. In this 
case the cardinality of thegf’s depends only from the choice of the pairwise coprime 
jj’s for which I/ (.yi<y)| =c. (For example in the case r j—j  with j S m = 2’ and by 
the definition /(/?“) = 0 for p ^ l  and f(2 x)=c£x for tx^t and /(2 /')=ce' if ß>t, 
where e is a primitive r-th unit root and c>0, we have gi — ce' ( i= l, ..., /).) This

1980 Mathematics Subject Classification. Primary 11A25
Key words and phrases. Characterization of additive functions, the function c log n.
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construction does not permit another q1 with the properties (.s1;, <7i) = l and |/(<h)|=c, 
except the case of the third unit roots.

R emark 2. The proof of Theorem 1 yields the following result as well.
Theorem 1'. For any h: N —R there exists a sequence í = { ű1 < ű2 < . . . } c N  

such that a„>h(n) and if
(3) lim |g(a„)| =  c,an£ A , n - * - o o

then |g (n)|=c for all n£N.

The weaker condition (3) does not yield g=c, for example in the case / ( 2a) = 
= ( —l)a and f ( p x) = 0 for the other primes p, whenever rl5 r2, ..., rm contains 
a complete residue system mod 2.

Corollary 1. From Theorem V follows that i f  |g| is monotonic ally decreasing, 
then I g| = c. So |g| cannot be strictly monotonically decreasing. Similarly, i f  \g\ is 
monotonically increasing and bounded, then \ g| —c.

If |g| —► CO monotonically, then we have a general result only in the case that 
|g| is strictly monotonic. For the dimensions k ^ 2  we need a generalized form ([4]) 
of a well-known theorem of Erdős ([1]):
(4) I f  the function f:  N Rk is additive and its Euclidean norm is monotonic from 
a point on, then f(n)= c  log n with a constant c£Rk.

Applying this theorem, we shall prove

T heorem 3. I f
(5) \g\ -*oo is strictly increasing from a point on, then
(6) fin ) = c log n 

with a constant c£Rfc.
I f  f  is completely additive, then we can find a set A with the rarity an >h («), 

such that (5) on A implies (6 ) for all n£N.

R emark 3. The strict monotonicity is a necessary condition. Consider

_  / l°g («/2) for 2|n 
Uog n for 2-fn,

where m =  2, rx = 0, r2 =  1.
The definition (1) differs from

g *(«) = max {|/(« +  r,)|: I á i S m ,  0 S r , < . . . <  r j ,
which was examined in [5] for real-valued functions. The case k —l gives a stronger 
result than Theorem 3:

T heorem 4. Let k — 1. Then (5) on an arbitrary set having upper density one resp. 
on a suitable rare set with the rarity an>h{ri) implies (6).
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Proofs

P roof of T heorem  2. Without restricting generality, assume that

c =  (c, 0, 0), c >  0.
Let A  be the first coordinate of/. By (1)

(7 )  l / i ( « ) l  S . l / ( « ) l  S c  fo r  n s  l + r i .

(7) yields that | /  (/?a)| ><5>0 cannot hold for an infinity of powers of different primes. 
(Otherwise selecting an infinite set of/ (pa) pointing to approximately the same direc
tion, we would have |/( /7 > * ) |-~ , contradicting (7).) This yields

(8) l/i(«)l ^  l/(«)l ^  c for all n£N.
(In the opposite case there is an m€N, for which \f(m)\ >c with nz< 1 +rx and then 
\f(tnpa)\ with a suitable prime power contradicts (7).)

Let us consider the smallest m,(|N for which / ,  (n0)=c. By (8) for all (/, n0) = 1 
yields

(9) AO)  <  o or f0 )  — 0.
The minimal choice of n0 implies that for all pt‘\\no

A(Pi‘) > / i ( P i )  for all ß <  a;,
resp. (9) gives

fi(P i‘) ^A (P i)  for all ß >  af.
So if c?í0, then
(10) l/l has its maximum only on the multiples of n0.

We divide the primes p  into 3 classes:

(a) p\n0\
(b) p\n0, /i(pa) <  0 for some a;

(c) f (pa) = 0 for all a.
(9) just means that every prime p belongs to one of these classes.

The class (a) contains at most primes.

We shall prove that (b) is finite, too. First we show that rlt  r2, ..., rm contains 
a complete residue system mod w0 by the exception c=0. Otherwise there is an i 
(1 ̂ i^ n 0) suchthat r j^ i  modn0 ( j= l , . . . ,m ) .  If now x is any solution of the 
congruence

x = — i mod n0,
then no x+rj  is a multiple of n0, which contradicts (10).

As a byproduct, we obtain n0^m.  Let m{ be the number of the r/s, r j= i mod n0. 
"0

Clearly 2  mi=m> hence mt ̂  for some/.
i = l

12
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We show now that the number of primes in (b) is smaller than mt for this i, too. 
Otherwise, let q i,.. . ,q d (d= m () be primes from (b) suchthat / i ( ^ j) < 0. Let 
Rx, Rd be the r/s  that are =  i (modn0).

Let x be the solution of the system of congruences
x  = — i mod n0

x  + Rj = q^ mod q p +1.
Then fi(x+ rh)<c for all h ; namely if rhjé i m od«0, then n0\x+ rh, if rh=i 

mod n0, then rh=Rj for some /, so n0\x+RJ=ql}jyj and therefore

fi(x+ R j) = fAq^J)+fi(yj) < / iO j)  á  c,
which contradicts g=c.

We know now that the number of primes in (a) and (b) together is at most

/ =  o.
If n0 =  l or r

log»o 
log 2 + [-^Hs[f] for 2

does not contain a complete residue system mod w0, then

P roof of Theorem 3. We know

l / ( « - r m +  r,)l ^  lg («-2rm + r,)| for all n >  rm, 
so, by (5), we have

( 1 1 ) \g (n-rm)\ =  m a x { |/ ( « - r m +  r1), !/(«)!} =  !/(«)!,

i.e. 1/1 is strictly monotonic for n>rm. Thereafter (4) yields (6).
If /  is completely additive, then let
An :=  {nsn—2rm+ri, (ji + \)s"—2rm+ri\ 1 ^  i ^  m, with a suitable large j„},

oo

and A =  (J An.
tl — 1

The rarity a„>h(n) can be guaranteed with the suitable choice of the s„’s. Simi
larly to the above proof we obtain

| / ( « V ) |  ^  | / ( / i + l ) s«)l,

i.e. | / ( « ) |^ l / ( «  + l)| for all rc£N, which, by (4), gives (6).
Proof of Theorem 4. Let ( / )  be a sequence satisfying (t„, n(n + l)) = l. Let 

B„:= {t„—2rm + rf, ntn- 2 r m + rh (n+ l)t„ -2rm + rt: 1 S i ^ m }

and B =  1J Bn.
n = l

B  can be arbitrarily thin by choosing t„ sufficiently large, or, given a sequence of 
density one we can achieve that B be contained in our sequence by a suitable choice 
o f / .
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Similarly to the proof of Theorem 3 we have

(12) \f(tn) \ ^ \ f ( n tn) \ ^ \ f ( n + l ) t j ,
which for real/gives | / ( « ) |á | / ( «  + l)|. This yields f(n)= c\ogn  by (4).

R emark  4. We can prove Theorem 4 without application of (4), too. Using (12), 
it can be shown th a t/is  positive, resp ./ is negative everywhere, i.e. /  is monotonic. 
Then the original theorem of Erdős [1] implies the validity of the theorem. (If/is  addi
tive and monotonic, then / ( ri)=c log n.)

I am indebted to Imre Rúzsa for his valuable remarks.
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ON THE CHARACTERIZATION OF ^-DIMENSIONAL ADDITIVE
FUNCTIONS II

K. KOVÁCS

In this paper let / :  N —Rk denote an additive arithmetical function and | / |  its 
Euclidean norm.

In [2] we proved a generalized form of a well-known theorem of Erdős ([1]):
(1) I f \ f \  is monotonicfrom a point on, then f{ri)=c log n with a constant c£Rk.

In [3] we examined the “maximum function” of additive functions using (1). 
We can similarly define the “minimum function” v by

v(n)£V„ = {f(n-\-rt): i£{l, |/(n  + ri)| is minimal}
with some fixed 0

If Vn contains more than one element, we can take any of them. |t?(n)| is unique 
anyway.

The proofs demand other methods as for the “maximum function” and the results 
are in general much weaker than in [3].

T heorem 1. (a) I f
(2) |c| is strictly increasing, 
then

(3) f(n )  =  c log n 
with a constant c( R̂ .

(b)
(4) |r| cannot be strictly decreasing.

(c) Let k = 1 ( / real). I f (2) holds on an arbitrary set A having upper density one, 
then (3) holds. There are also arbitrarily rare sets A, in the sense that we can have 
^  =  {aj<ű2< ...} cN  and a„>h(n) with any prescribed h{ri),for which (2) on A im
plies (3).

For the property (4), similarly an arbitrary set of density 1 suffices and there are 
arbitrarily rare suitable sets.
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182 K. KOVÁCS

R emark 1. The “strict monotonicity” is a necessary condition. If |t>| is only 
“ increasing”, then

c log px 
c log p^+ö

if p 7* p0
with ö =- 0, if p = p0

gives for m=2, ^ = 0  and r2 =  1

(c log n if Po \  «
1c log (« + 1) if Pol«,

which is increasing.
We managed to prove the following theorems only for the special case that 

m = 2, rx = 0 and r2 =  l.
T heorem 2. (a) I f  m =  2, rx= 0, r2 =  l and

(5) lim v(an) = c
an£A,n—°°

(i) on a suitable set with the rarity an =~h(n), resp.,
(ii) on an arbitrary set having upper density one and c = 0, then

(6) v = 0 

and this implies
(7) / =  0 except at most at the multiples o f one prime.

(b) I f  k = 1, then lim |u(a„)|=c implies (6) and (7) on a suitable set with the
n-*-oo

rarity an ;-h(n).
(c) I f  k= 2 and f  is completely additive, then lim \v(n)\ =c yields (6) and (7).

Proofs

P roof of Theorem 1. (a) If |t?| is strictly increasing, then \v(n)\=\f(n+r^)\, 
namely if there exists an n0, such that n(n0) = / ( « 0+ ^ )  with i > l ,  then

K « o  +  « i - r i ) |  =  l / ( « o  +  r ; ) |  =  | p ( m 0 ) |

contradicts (2). So |^(«)| ==]/(«+rj)| is strictly increasing, which by (1) yields (3).
(b) We prove that |u| cannot be strictly decreasing. If there exists an n0 such that 

v(n0)= f(n 0+ri) with i<m, then

\v(n0 + rt- r m)\ S  |/(n0 +  r,)| =  |i>(/70)|

contradicts the strict monotonicity of |r|. So |n(n)| =  | / (n+rm)| is strictly decreas 
ing, which by (1) yields (3). This gives (4).
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(c) Choose a sequence (/„) such that (/„, n(w + l) )= l and let
An =  {tn+ ri—2^ , n f„ + r ,-2 r1, (n +  l)t„ +  rf- 2 r 1, 1 S  i S  m}

a set of 3m elements and let A — (J An.
n=1

For a = t„,ntn, (w-f l)in we obtain, as in (a), that
f(a) = v(a — r1) in the increasing case, resp. 
f(a) = v(a—rm) in the decreasing case.

Hence
1/(01 ^  l/(«OI = |/((n +  l)t„)| (\v\ increasing), resp.
1/(01 = \f(ntn)\ ^  |/((«+l)r„)| (\v\ decreasing).

For a real/ this implies that | / |  itself is increasing, resp. decreasing. Thus by (1) 
we are ready.

Proof of Theorem 2. We prove the theorem in three steps on N and meanwhile 
we show how the proof can be applied to the desired sets.

I. I f  lim v(n)=c, then c=0.
n—oo

Proof. Let us assume that c^O (c =  |c|). This implies
(8) | / ( n ) |S c - £ 0 for all n ^  n0(e0).

Lemma .Let Q = {m:m even, v(m) =f(m)} and
T=  {/: t even, t$Q).

I f  T  is an infinite set then lim f ( t 2)=c.

Proof. If there are infinitely elements t in T  then /  (t)Av(t) and so
lim / ( i ± l ) = c .

Using that ( /—1,/ + 1) =  1, we have
lim v ( f —\)=  lim / ( i 2) =  c, q.e.d.

Assume first that there is an infinity of primes pt such that
(9) lim f(2pi) =  c.

P i -o o
S

Then f(Pi)-»c1=c—f(2), and c ^ O  by (8). Consequently, / ( / / a ) -*00» and
1=1

s
hence [Jp t£ T for large s.

i=1

Let us choose the p- s such thatf(p f)  point to approximately the same direction.
S

So by (8) / ( 4  [ J Pt) °°> which contradicts the Lemma with the choice (/) =
i=i

=(2 77a ).
i = 1
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If (9) does not hold then /(2 p) avoides a neighbourhood of c, thus /(2 p)£ T 
for large p and by the Lemma f(4 p 2)-*c. From here we proceed taking “4p2” into 
the place of “2p” in (9).

For rare sets: The Lemma is valid for all even t, for which t— 1, t and t2 — 1 are 
in the rare set, too. Taking pairwise coprime odd numbers tt into the place of pt in (9), 
we obtain the contradiction in the same way as soon as 2rt- — 1, 2rf, 4/f — 1 further

s  s s
tt , /f, tf (to ensure (8) for these numbers) and 2 JJ ti~  1, 2 JJ 4 ]J[ if—1,

i = l  i = l  1=1
s s

* n t i  IJ  J'f — 1 (j = 1, •••) are in the rare set. The suitable choice of the fi’s 
1=1 1=1

guarantees the condition a„>h{n).

II. U
(10) lim v(ri) = 0,

n-*- oo

then u=0.
Proof. If v^O, then there exists an x£N such that / ( x ^ O  and /( . i  + l^ O . 

Consider the neighbouring numbers
= s[s(s+1)2^+  1] and asz+ 1 =  (s+ l)[s2(s+ l ) z + 1].

It is enough to find some infinite sequences (m) such that

(11) /( s 2(s +  l)m) 4» 0 and f(s(s+  l)2m) -> 0.

This namely implies for infinitely many wj£N

/(s2(s+ l)m +1) -*■ 0 and /(s (s+  l)2m +1) -*• 0,
which gives

/ ( O  -  f(s) and f(a sm + 1) -  f(s  + 1)
contradicting (10).

I f / i s  not bounded then on the set of numbers coprime to a(^ + 1), there is an 
infinite sequence (w) such that /(« ) —°=. So we have ( ll)  with (m):=(w).

I f / i s  bounded on the n’s coprime to x(j +  1) then, for any sequence (qt), where 
the q{s are coprime to ,v(.v+1) and each other, f{qi)-*0, We want to find a number 
b such that

(b, s(s+ l)) =  1, /(s2(s+ l)b) ^  0, /( s ( s + l)2fi) ^  0.

Having found this b, we can choose (m):=(bq;).
To find this b, select any two numbers d1, d2 coprime to each other and to .v(j + 1) 

such that /(</) t̂ O, / (d2) ^ 0  (if you can). Then

( 12) b:=
1,
dj,
d\ d2

if / ( s 2(s+ l)) 0 an d /(s (s+ l)2) ^  0,
if {/(s2(s+l)), /(s(s+ 1)2)} *  {0, -f(d j)}  for j  =  1 or 2,
otherwise

is a suitable choice.
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If there is only one dx (or none), consider the congruence

(13) x = sm ods2(s + l)2
(13') x = 1 mod dj

(the second is considered only if dx exists).
For any solution we have v(x)=v(s)?±0, otherwise x '= (x —í )/a2(a+  l)2 would 

provide dx, and this contradicts (10).
For an arbitrary set A having upper density one: I f /is  not bounded on the subset 

of A contains the natural numbers coprime to .v(s+1), then there exist infinitely 
many pairwise coprime Q’s in the above subset such that So there are
Qi, ÖäCN, too,suchthat

(14) l/(ß i)U /(ö 2)l and |/ ( ß iß 2)l are different and greater than
2 max { /(s2( s + 1)), / ( s ( s +  l)2)}.

For infinitely many q£ N  coprime to j (s+ 1) and each other

(15) s2(s +  l)d<7,-, s (s +  l)2d^j, s [s (s +  l)2d^;+ l]£A
with all d£{Qx, Q2, Q1Q2}. If there are infinitely many q^s such that f  fa )  — °° or 
0, then with the choice (m)=(Q1qi) — in the last case using (14) — we obtain (11). 

Otherwise we find a sequence (q{) with f (</;)~Ti> c^O , °=. Let us try
(16) (m(D) =  (Qiqi), (m(2)) =  (Qiqi), (m(8)) = (öißatfi)-
By (15) the sequences / ( # )  converge to three different limits. Hence, for one of 
7=1, 2, 3, the limits of the sequences

f(s(s+  and /( s 2(s+ l)m U))

are both nonzero. From here we proceed as at (11).
I f /is  bounded on the above set, then it is easy to show tha t/is  bounded on the 

set of all natural numbers coprime to j (j +  1) either. From here we proceed as in the 
proof for N, using that for all b in (12) there exist infinitely many pairwise coprime 

for which f(qd-*0  such that (15) is valid with d:—b, too. Thus (11) is satisfied 
with (m)=(bqi), resp. infinitely many solutions of (13) are in A.

For rare set: First we show an A with the rarity

an+1 — an >  h(ri) such that lim v(an) = 0 implies v — 0.
an € A ,n -+ °°

We take a double sequence (pnl) of primes and a triple sequence (qn2j) of positive inte
gers. We put

T\ =  {all products of different p„- s},
T l-{all numbers of the form (ypni) and (yy'pni), where y , /£ {  2, ...,i}, (y ,y r) = 1},

Tjl={n2(n + l)2zq„Zj+n  for all z such that (z, n(/i +1))= 1}.
Let 7> 7 2 U 7 JU 7 ? ,

A„ = {t; n2(«+ l)f, n(n+ l)2t, n[n(n+ 1)2/+  1] for all t£Tn)
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and

A =  U  A „ .
n = 2

The rarity an+1—a„>h(n) can be guaranteed with the suitable choice of pni and
Qznj •

If there exists an x£N suchthat / ( j)^!) and f ( s  + \)^ 0 , then let us consider 
As. If there exist infinitely many p,’s such that / (pi) — then by (m) := (psi) we 
have (11), using that

(17) s2(s+l)m, s(s + l)2m and s[s(s+ l)2m + l]£Ts.

If there exist infinitely many primes psi such that f ( p Si)-*QiA0, then
/

A I I P s ^  so with the choice (m):=(]Jpsi)c T }  we have by (17) the validity of
;=i

(11) again.

If f ( p Si)-*0, then we prove like for N, using that (11) is valid with (m):=(bpsi) 
for arbitrary dx, cl2 from (12) resp. if there exists only dx such that (dlf x(x+l)) =  l 
and then we can use that infinitely many solutions of (13) are in T® with
the choice z:=d1.

To prove that lim v(b„)=c implies t>=0, let us consider the union of thebn£B, n-*-oo
above rare set A and the rare set in I. This gives a rare set with bn>h(n).

III. We prove that v = 0  implies that f —0 except at most at the multiplies o f 
one prime.

Proof. Let q0 denote the smallest prime power for which fiq fA Q . Let qx 
be the next prime power (if there is any) qx>q0 with (qx, qa) — \ and f(q ^ )A 0. 
Choose ^€[1, q0~ 1](<5 =  ±1) so that

qxrs = <5mod q0.

For at least one of the solutions we have

because

So

Also we have

qxrö- ö  ?é Omod q20

(í,i ' - i - l )  +  (?ir_1 + l) =  q0qx jé Omod q\. 

q1rd- ö  = q0x, (x, q0) = 1.

therefore f(x )=  0.
So, using FiS^o-1,

,  ^  _  9 i ( ? o - l )  + l1 ^  x  ^ ----------------- <  q1
Qo

\v(q0x)\ = min {\f(q0x)\, 1 / ( ^ 1  rx)|} = min {|/(?0)l, I/(?j)I} ^  0 
contradicts v=0.

If S = — 1, we have the contradiction similarly by v(qox —l)A0.
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b) The unique step which demands commentary how |/(7±l)|-*-c implies 
| / ( / 2 — l)|-*-2c in the Lemma. Using tha t/is  real-valued, we obtain

|/(?2 —1)| — 2c or 0.

From there (8) gives | / ( t 2—1)| — 2c, too.
c) It is sufficient to prove that lim \v{ri)\=c implies c=0, since then II and III

n —oo

complete the proof.
Let us assume that 0. Take an afN  with / ( a ) ^ 0. This gives /( a " )— °°, 

consequently |/ ( a ,B±l)|-*-c for both t — 1 and 2. So |/ (u 2"’ —1)| = | / ( a ,n + l)-(- 
+f(a'n—1)| —c yields that the angle of f (a ,n — l ) , f ( a ,n + l) converges to 27t/3 for 
both 7 =  1 and 2. Hence the angle of f  (a2n — 1), f(a"±  1) converges to 7t/3. There
fore

/[(a 2"+ l)(an + <5)] — 0 with (5=1 or —1, 

which contradicts (8).
I am indebted to Imre Rúzsa for his valuable remarks.
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THE JOINT DISTRIBUTION OF THE BUSY AND FREE 
PERIODS OF THE MASS SERVICE SYSTEM

G. S. MOKADDIS

The joint distribution of the busy and free periods for the queueing system 
GlJM/l was obtained in [3, 3], In the present paper a G//M/2 queueing system with 
waiting time is studied. We suppose that the interarrival time between two successive 
arriving customers is a random variable having the general distribution G(x) and that 
the service intensity of each server is equal to A. Suppose that the first customer joins 
the system at time 0. We denote by v(i) the number of customers in the system at 
time t. The time interval £ from the begining (/=0) to the first time the system is free 
is called the busy period;

£ = inf {t: v(H-O) =  0, v (f-0) ^  1},
and the free period £ is the interval from the first time the system is free to the time of 
a new arrival:

£ =  inf {t: v(f + 0) S  1, v (i-0 ) =  0}-£.
The sum ?/=£+£ of the busy period and the free period is called a cycle.

To find the joint distribution Q(s, ? )= /,{£<j , £<i} of the free and busy peri
ods, we should obtain the joint distribution F1(x, y) =  P {t]<x, £<y} of the cycle 
and the busy period.

Since the busy period depends on the number of customers in the system and 
therefore the cycle, we define £„ and t]„ to be the busy period and cycle if there are n 
customers in the system, such that the joint probability distribution is

F „ ( x , y )  =  p{>1n - =  £ „  <  y } -

We write the system of equations satisfied by the function Fn(x, y) for the particular 
cases x and .v>y. First we introduce the notations:

giO) = 2A-(^  - e~2>\  e(a) = e~Xa.

I. If x>y, from the theorem of total probability it follows that:

F1(x ,y )=  I  [ l-e (r)]dG (0+  / e(t)Fí ( x - t ,y - t ) d G ( t)+  J  [l-e(y)]dG «y,
0 0 y

( i )

1980 Mathematics Subject Classification. Primary 60K25.
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for n ^ 2 .
y t

Fn(x,y) = f  J  e1(s)[l-e(t-s)]dsdG (t)+
0 0

+ /  /  e1(s)[l-e(y-s)]d sdG (t) + 
y o

(2)
y t

+ J  f  e1(s)e(t-s)F2(s - t ,  y - t)d sd G (t)  +
0 0

/  n - 2 ( 2 ) A k
+ í  e(21) 2  Fn_k+1(s — t, y -t)dG (t).

o k=o k i

II. If x S y ,  denote F*(x) =  P {tj„< .v}. Since, by definition, the busy period 
does not exceed the cycle, we have Fn(x,y) = F*(x). In this case, from the theorem 
of total probability, we obtain the following integral equations:

(3) Ft (pc) =  /  [1 —e(0] dG(t)+ j  e ( i) i? (* - t)  dG(t);
0 0

for n ^ 2
X t

F*n(s)=  J  J  e1(s)[l-e(t-s)]dsdG (t) +
0 0

X t
(4) F f f  e1(s)e(t-s)F }(x-t)d sdG (t) +

0 0
*  n - 2 ( 2 ) A k

+ /  e(2t) 2  ± T T -F :_ t+1(x-t)dG (f). 
o k=o k \

For |z| <  1, the probability generating functions F*(x, z) and F(x, y, z) are given by

F*(X, z) = 2  znF*n{x),
n = l

F(x, y, z) =  2  z"Fn(x, y).
n =  1

Multiplying the equations (1), (3) and (2), (4) by z and z", respectively, and sum
ming over all values of n, from (1) and (2) we obtain:

y y
f(x ,  y ,z) = z J  [1 — e(t)] dG(t)+z j  e(t)F2( x - t ,  y - t )  dG(t) +

0 0 
x y t

+ z J  [ \—e (y)]dG(t) + 22z2 f  J  e [2 s (l-z )][ l-e ( t-s ) \d sd G (t)  +
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x  y

(5) +2Az2 J  I  e [ 2 s ( l - z ) ] [ l - e ( y - s ) ] d s d G ( t ) +
y o  

y t
+  2A.Z2 J  J  e[2s( l—z)]e(t—s)F2(x — t , y  — t)dsdG(t) +

o o

+  /  e [ 2 t ( \ - z ) ] ^  F ( x - t ,  y , z ) - F 1( x - t , y — t ) - z F i ( x - t , y - t ^ d G ( t ) .  

From (3) and (4) we obtain:

F * (x ,y )  = z j  [1 —e(t)\ dG(t)+z j  e ( t )F Z(x - t ) d G (t )  + 
0 0

x  t

+ 2Az2 j  J  e [ 2 s ( l - z ) ] [ l - e ( t - s ) ] d s d G ( t ) +
0 0

(6)
X t

+2Az2 j  J  e[2s(l - z ) ] e ( t - s ) F Z ( x - t )  ds dG(t)+
0 0

+ /  e[2/(l —z)] [ j F * ( x - t ,  z ) - F t ( x - t ) - 2 F * ( x - t ) \ d G ( t ).

Now let:

(7)

F„(x,y),  if 
0, if 

0, if 
if

Fn (x, y)  =

Í °>

and consider the Laplace transforms
co

g(r) =  J  e~rxG(x)dx,

x
x ^ y ,  

x  >  y,  
x  ^  y,

g(r) = j  e~rx dG(r) = rg(r),
0

f* ( r ,z )=  J  d~xrF*(x, z) dx,
0

A(r, v) =  J  J  e~rx~yF1(x, y ) d x d y .  
0 0
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Related to the definition of F +(x, y, z) and F (x, y, z), we introduce the following 
notations:

81 =  g(r + v  + 2k ( l - z ) ) ,  g2 = g(r + v  + X), g3 =  g (r),

g3 =  g(r), g4 =  gO  +  v), g2 =  g(r + v + A),

gs = g{r+2X( l- z )) ,  g6 = g(r + X).

Applying the Laplace transforms of Fx(x, y) and F +(r, v, z) we obtain

(8)

(9)

f + ( r , v , z ) = f  j  e rx vyF + ( x , y , z ) d x d y  = f + ( r , v , z )  —  g1 - f í ■ ( r , v ) g 1 +  
o o 2

f 2 a z 2 ~\ z  z
+ ft  (r> v) [ 1 2 z  {g2 -gi} -  zgi+zg2J + — [ga -  gi\ —jq-jp g2 -

+

—l _ f —i
1 - z  [ r(r

2 z2 r
1—2z L

gs gi _  _gs_ , _J?4_ I ,

(r +  v) ' v +  2 /.(l —z) r(v  +  2 A (l—z)) r v L]
g3 gi gi

___g3__l_

v +  2A(l — z) r(v-j- 2A(1 — z)) r(r + v)

g2 g2
v + A r(v+A) r(r + v).

f i ( r ,  v) = f t  (r, v)g2 A- „ , Ss-gi -g2 + -(r +  v)r v
Using the Laplace transform of Ff(x) and F*(x, z), we obtain

f*  O ', z) = f* (r ,  z ) j  g5 - f t  (r) g5 + f2* (r) [ z g 6 -  z g 5] •

( 10)

2z2 
1 — 2 z [ge^gö] +T-— z g3- gs 1 _

r J 1
2za g5- g 6 , „„ 2 ~
— 2 z  r ' Ss r g 6 '

( 11) f t  O') = f t  (r) g6+ g3 -  •

By solving (10) with respect to f* (r, z), we obtain

f*(r, z) =  | q ( z - g 5)}  ({ f t  0')} {zge +  j j : 2  ~  [g6 ~  gs] ~  zg5]  ~

( 12)

-//OOg5 + T ^ [ g 3- A ] + T ^ _ . A z l L +zg3- £ g 6).

The equation 
(13) z = g(r + 2A (l-z))
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is studied in [2]. From the existence of the unique solution for equation (13) and from 
the analysis of f*(r, z) we obtain the equations for f*(r) and ft(r). Putting the denom
inator of equation (12) equal to zero at the point z=z(r), the solution of equation 
(13) follows.

Therefore, from (11), we obtain

f t (0 = [4 -  jzg6 + ~ ^ 2 z  ~ Zg5} ~ gä] X

x [(' f- ttt) {! i ‘ + f f n
7  *•]•

ge

z2 gs-gs 2z2 g6- g 6
1 —z r 1—2z 

Similarly, from (8) and (9), we obtain

- z g 3 + -

X

f t  (r, v) = [gr -  4 -  [ Y Z J f  («a -  gi) ~  zg! + zg2|]  X 

\ 1 f A g (r)-g (r  + v ) \ f  2z2 _ _ , _ \  , z ,  N
l | 7  I J F + v j f  g2----------V-------- ) 1 7 ^ 2 ? (g2 -  gl) “  zgl + zg2l + 7  -  g4) -

g3 _  gi 1  ̂
V V Jr +  v g2^  1 —z l r(v +  2A-t-(l — z)) v + 2A(l—2) r(r + v)

+
2 z 2 f

i —2z r
g3 gi gi g3

v + 2A(l—z) r(v+2A (l—z)) r(r + v) v+ A J’
Also z=z(r+v) is the solution of the equation

z =  g(r +  v + 2A(l -z)).
The joint distribution of the cycle and the busy period has the form

Fl(*, y) = F t (r, v) + F f  (r, v).
The corresponding Laplace transform is

A  0 , v) =  f t  0> v) + / r  (r, v),
where

f r ( r ,  v) =  J  f t  (r + v).

The Laplace—Stieltjes transform for the joint distribution of the cycle and the busy 
period is given by f l (/-, v)=rvf1(r, v). It remains to obtain/„(r, v) which is determined 
from (2) and (4). Thus, the Laplace—Stieltjes transform for the joint distribution 
of the busy period and the free period is given by:

g(s, 0 = /i(s , t - sí
in a similar way the joint distribution of the cycle and the busy period for the queueing 
system GI/M/n with waiting time can be obtained.

13
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THE RECOVERY QUESTION FOR LOCAL INCIDENCE RINGS

GENE D. ABRAMS

As defined by Rota [9] and Belding [4], we may associate with any locally finite 
preordered set (X, á )  and ring A the incidence ring I(X, A) o f X over A, consisting of 
all functions / :  X x X —A such that f ( x ,y )  =0 if xißy. The local finiteness con
dition on X  allows multiplication to be defined in I(X, A) via convolution; I(X, A) 
thus becomes an associative ring with multiplicative identity. Rota introduced such 
rings in order to examine the classical Möbius function in a more general setting; 
since the appearance of [9], many authors have investigated I(X, A) from a purely 
ring-theoretic point of view, eschewing the combinatorial aspects which motivated 
Rota. For instance, Belding, Stanley [10], Nachev [8], Voss [11] and Anderson [1] 
have each examined various forms of what has been called the “recovery question” 
for incidence rings: namely, if I(X, A) is isomorphic (or more generally, Morita 
equivalent) to 7(7, A), under what circumstances may we conclude that X  and Y  are 
order isomorphic?

In this article we will redefine the notion of an incidence ring in such a way as to 
render the local finiteness condition on X  unnecessary. The resulting “local incidence 
rings” (introduced in section 2) will no longer have multiplicative identities, but will 
contain sets of local units (see section 1). The problem of recovering a preordered set 
from the class of rings Morita equivalent to the local incidence ring of that set is 
examined in section 3; this yields a result quite similar in flavor to Freyd’s observation 
concerning the recovery question for amenable categories [7, page 18]. We finish with 
section 4, in which we mention how the usual incidence ring I(X, A), along with the 
classical Möbius function yt, still arise in the context of local incidence rings for all 
germane partially ordered sets.

1. Preliminaries

Throughout this article we will adhere to the standard notation and definitions 
used in the theory of ordered structures (see for example [11]). Recall that if A is a 
preordered set, then [x, y] denotes the set {z£ X \xS z^y} , called the interval between 
x  and y. If for each x, y€X  the interval [x, y] is finite we call X  locally finite. The 
equivalence relation ~  defined on X  via iff [x, x]=[y, y] induces the partially 
ordered set X = X /~  ; elements of X  will be denoted by [jcj. Note [x]á[y] in X  iff 
x S y  in X.

13*
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If A is any unital ring, we define the additive category o f (X, á )  with coefficients in 
A  (denoted A(X, á ))  to be the category whose objects are the elements of X, and for 
x ,y e X

(A if x á  .y 
Mor„ „ ,„ (* ,? )  = {„ otherw.se

with multiplication as composition. One can easily check that the canonical 
map A(X, ^)-*A(X, á )  given by x —[x] is an equivalence of additive categories.

Let A be any ring, and let F= {f\i€ j}  be a set of orthogonal idempotents in A. 
Define a relation ^  on F b y  / S / '  if there exists a sequence of idempotents / =  
= /i> /2 > •••?/ n= / / in F with /i4 /i+ i^ 0  for l á z á n  —1. A straightforward calcu
lation yields that á  is in fact a preorder on F.

Let A be an associative ring. A subset E of A is called a set o f local units for A 
(abbreviated slu) in case E  is a set of idempotents such that for each xdA  there 
exists e£E  with x£eAe (see for example [3]). Note that any ring with identity has 
slu {1}. By a left A-module M  over a ring A with slu we mean a module in the usual 
sense, with the additional unitary condition that AM =M . One can easily verify 
that if e is an idempotent in A and M  is a left ^-module, then H.omÄ(Ae, M ) is 
isomorphic to eM as abelian groups via the map/-»-(e)/.

2. The local incidence ring

In this section we redefine the usual notion of an incidence ring (see [9, §3]).
D efinition 2.1. Let X  be a preordered set, and let A be any associative ring with 

identity. Let L1(X, A) denote the set of all functions / :  X xX -» A  suchthat f ( x ,  y) = 
=0  if x $ y , and f i x ,  y) AO for at most finitely many (x, y)6XxX. For f g  in 
L I (X , A) define addition and multiplication via:

i f + g) (x, y) = fix , y )+ g  (x, y)

i f -  g)(x, y) = 2  fix , z)g (z, y)-x-mz-̂ y

Note that the latter sum is well defined due to the finiteness condition imposed on /  
and g. With addition and multiplication so defined, LliX , A) is an associative ring, 
called the local incidence ring o f X  over A.

Note that if AiX., á )  is the additive category described in section 1, then 
L liX , A) is precisely the category ring of A(X, á )  as defined by Gabriel [6, p. 346]. 
Also note that if X  is a finite set, then LliX, A) is precisely the usual incidence ring 
IiX , A).

If ffiL IiX , A) and a£A, then a f:X xX -* A  defined via (u/)(w, v)=af(u, v) 
is an element of LliX, A). Further, if x á y  in X, then the function dxy: X xX -» A  
defined via 5xyix, y) =  l, dxy{u, v) = 0 for (x, y) A iu, v) is also in LI(X, A). For any 
f f iL IiX , A) we can clearly write

(2 .2 ) / =  2  fix ,y )S Xy,
x . y i X
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with at most finitely many terms in this sum being nonzero. For ad A and x ^ y  inX 
we denote adxy by axy; also, we denote the idempotent Sxx by ex . For S  any finite 
subset of X  we define es = 2 ^ ; a  straightforward calculation demonstrates that the

x £ S
collection E={es\S ^ X , S finite} is a set of local units for LI(X, A).

If S is any finite subset of X, then S inherits a preorder via restriction. One can 
easily show that the map

0 S: esLI(X ,A )es ~ L I(S ,A )  via 0 s(esfes) = f \ SxS

is an isomorphism of rings. Specifically, if c = [x] has card (c)=nC_N, then 
ecLI(X, A)ec is isomorphic to LI([x\, A). But [x] is trivial; that is, y ^ z  and z ^ y  
for every y, zd[x\. Thus we have LI([x\, A)c^Mn(A). In particular, for each 
xdX, exLI(X, A)ex'^ A as rings. Further, a short calculation demonstrates that 
exLI(X, A)ey A 0 if and only if x ^ y ;  thus if R denotes LI(X, A), we have x S j  if 
and only if FTomR(Rex, Rey) is nonzero. This observation will play a key role in 
recovering the structure of (X, s )  from RMod.

3. The recovery question and Morita equivalence

Two rings A and B are said to be Morita equivalent in case their full left-module 
categories A Mod and B Mod are equivalent. It is well-known (see for example 
[2, Corollary 22.6]) that if ndN  then A and M„(A) are Morita equivalent for any unital 
ring A. Recall that if X  is a finite preordered set with card (A'') =n and card (X) = 
= 1, then LI(X, A )^ M n(A). With these facts in mind, Nachev [8, Theoreml] proved

T heorem . I f  the length o f the structure o f two-sided ideals o f A is finite, and the 
rings A and I(X, A) are Morita equivalent, then X  is a one-element set.

Let {x} denote a one-element set. Then we may reinterpret Nachev’s result as 
follows: if A has “enough structure”, and the rings /({x}, A) and I(X, A) are Morita 
equivalent, then X si {x} (= {x}) as partially ordered sets. That is, in this special setting 
we can recover X  from the class of incidence rings over A which are Morita equivalent to 
I(X, A). Anderson proved a similar result in [1, Corollary 2.9]: namely, if X  and Y  
are finite preordered sets and A is a field such that the rings I(X, A) and I(Y, A) are 
Morita equivalent, then X = ?. In the context of local incidence rings we will gener
alize these results to all preordered sets, while requiring much less structure on A 
than Anderson used.

As noted in section 2, LI(X, A) is precisely the category ring of A(X, ^ ) . By 
a result of Gabriel [6, Proposition II. 1.2], the category of (unitary) modules over this 
ring is equivalent to FUN(A(X, S ), Ab), the category of additive functors from 
A(X, á )  to Abelian Groups. Since A(X, ^ )  and A(X, ^ )  are equivalent categories, 
we conclude that FUN(A(X, ^ ), Ab) and FUN (A(%, ^ ), Ab) are equivalent as 
well. Thus we have shown

P roposition 3.1. Let A be any unital ring, and let X  be any preordered set. Then 
LI(X, A) is Morita equivalent to LI(%, A), g
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The above proposition can also be proved directly, using ring-tbeoretic tech
niques. Let R denote LI(X, A), and let X ' be any subset of X  consisting of exactly one 
member from each ~  equivalence class of X. Then R' = ® Rex is a compatible

xiX'
locally projective generator for R  Mod (see [3]), and its “limit endomorphism ring” 
is isomorphic to LI(X, A). Now apply [3 ,Theorem 2.5].

The unital ring A is called semiperfect if there exists a set of orthogonal idem- 
potents Gj= {gx, . . . , gn} in A such that 1 =g1 + ... +gn and each giAgt is local. 
A subset A = { fx, of G is called basic in case the set {Afi, , Afm} is an irre-
dundant collection of the isomorphism classes of finitely generated indecomposable 
projective left T-modules. The associated reduced preordered set o f A is the set A with 
the preordering described in section 1; (A, á )  is independent of the choice of 
{/ls . . . , / m}. _By [2, Theorem 7.9], A is indecomposable if and only if Ä is connected.

For f f A  and xdX  let f ix denote the idempotent/] ex in LI(X, A). If we define 
a preorder on the set LI(X , A) — (fix | x£X, l s í á m )  as described in section 1, then 
LI(X, A) is order isomorphic to X X Ä  by [11, Lemma 4.2].

Lemma 3.2. Let Abe a semiperfect ring with basic set { f ,  ... ,f„}. Let X  be any 
partially ordered set, and let Rdenote LI(X, A). Then the set C = {R fx\xzX, l ^ i ^ m }  
is a complete irredundant collection o f the isomorphism classes of finitely generated 
indecomposable projective left R-modules.

P r o o f . Since each f x is idempotent, each R fx is finitely generated and projec
tive. If Rfix^ R fjy, then both Horn« (Rex, R e f and HomR(i?ey, Lex) are nonzero 
(since R fix and Rfjy are summands of Rex and Rey, respectively); thus xS .y  and 
y S x , so that x= y  since X is partially ordered. This gives R fx^ R fJx, which upon 
multiplication by ex yields exRfix^ e xRfjx as left exRex^ A -modules. Thus 4/1 — 
=*A fj , so i==/ by the hypothesis that { f ,  is basic. We conclude that the
collection C is irredundant. Furthermore, EndR (R fx) ̂ f  ex Rexf  ̂ f A f ,  which 
is local; thus each R fx is indecomposable.

If P  is any finitely generated projective indecomposable left jR-module, then there 
exists a finite subset S=  {xi, ..., xn} of X  (possibly with repeats) and a left A-module 
P' with

n m
© © Rfjxi ~  P @ P \
■=lj=l

Now apply [2, Lemma 12.2 and Theorem 12.6] to conclude that P ^ R fjx. for some 
lS )S m  and xfiS . This completes the proof of the lemma. |

P ro po sitio n  3.3. Let X  and Y be partially ordered sets, and let A be any inde
composable semiperfect ring. I f  LI(X, A) is Morita equivalent to LI(Y, A), then X  is 
order isomorphic to Y.

P r o o f . Let E(X) = { f x\x£X, l=Si==m} and E (Y )= {fiy\y£Y, l ^ i ^ m }  de
note the sets of idempotents described above in R=LI(X, A) and S = LI(Y,A), 
respectively. Let H: R Mod S  Mod be an equivalence.

By Lemma 3.2 the sets {Rfix\ f x^E{X)} and {S fy\ f y£E(Y)} are complete 
irredundant collections of the isomorphism classes of finitely generated projective 
indecomposable left /^-modules and .S’-modules, respectively. Since II  is an equiva-
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lence it preserves categorical properties; thus the sets {H(Rfx)\fix£E(X)} and 
{S fy\fy£E(Y)} are the same^up to isomorphism. Using [11, Lemma 4.2] we may 
construct a bijection 0 : X x A -^ Y x Ä  defined via 0(x,fi)= (y ,fj)  iff H (R fx)o* 
c* Sfjy. Since H  is an equivalence, the abelian groups Hom„ R f ’X-) and 
Homs (H (R fx), H{RfVx-)) are isomorphic; along with the definition of the preorder 
on J x l ,  this allows us to conclude that both 0  and 0 ~ x are order-preserving. Hence 
X X Ä  is order isomorphic to YXÄ, so that X  is order isomorphic to Y  by a result of 
Voss ([11, Theorem 3.4]; note the local finiteness condition on X  and Y  is not used 
in the proof). |

Proposition 3.1 together with Proposition 3.3 now easily yield the main result of 
this article.

Theorem 3.4. Let X  and Y be preordered sets, and let A be any indecomposable 
semiperfect ring. Then LI(X, A) is Morita equivalent to Ll( Y, A) if and only if  X  is 
order isomorphic to Y. Thus X can be recovered from the class of local incidence rings 
over A which are Morita equivalent to LI(X, A). |

In [7, page 18] Freyd observes that if C and C  are amenable categories, such that 
FUN (C, Ab) is equivalent to FUN (C \  Ab), then C  and C'  are equivalent categories; 
the key idea involved here is that C can be realized as the finitely generated projective 
objects in FUN (C, Ab). Theorem 3.4 along with [6, Proposition II. 1.2] gives an anal
ogous result: if A(X, á )  and A(Y, are the additive categories of the preordered 
sets X  and Y  with coefficients in an indecomposable semiperfect ring A, such that 
FUN (A (V, ^ ) , Ab) is equivalent to FUN (A(Y, ^ ), Ab), then A(X, and 
A(Y, are equivalent categories. Similar to Freyd’s result, we have realized 
A(X, S ) as the indecomposable finitely generated projective objects in 
FUN(A(X, ==), Ab).

4. Möbius functions and local incidence rings

As mentioned in the introduction, incidence rings were first introduced by Rota
[9] in order to view the classical Möbius function p in a more general setting. We show 
in this section that those incidence rings which are relevant to such considerations 
arise quite naturally in the context of local incidence rings.

Let R be a ring with local units, and let End (Rr) denote the ring of endo- 
morphisms of the right regular module. Then the left multiplication map 2: /?-*- 
End (Rr) is an injective ring homomorphism. Thus we may associate with R = 
LI (X, A) a canonical ring with identity into which R  can be embedded. Note that 1 
is an isomorphism if and only if R is unital; hence if X  is infinite, A is a proper em
bedding.

For the remainder of this section R will denote LI(X, A). If X  is any preordered 
set and A is a ring, we call a function h:XxX-<-A lowerfinite in case for each 
the set Sh(x) = {y£X\h(y, xj^O} is finite. Also, we call a function h: XXX-+A  
order preserving in case h(x,y)=0  whenever x^ßy.

Lemma 4.1. Lei h:X X X -*A  be lower finite and order preserving. Then for each 
f fL I(X , A) the product h - f  is a well-defined map from X X X  to A, and h ■ f£L I(X , A).
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Proof. Using (2.2) it suffices to prove this result for functions of the form 8xy. 
Let (w, v)£XXX. Then

r h(u,x) if v = y
(ft ■ S„XU, v) =  2 ^ h(u, «OM ». v) =  { 0 othenvise>

so that the product h • 5xy is well defined. Further, we see by this equation that 
(h ■ 5xy)(u, v )^0  only if v= y  and uf Sh(x). Since this latter set is finite, h ■ őxy is 
indeed in LUX, A). g

We conclude from this lemma that left multiplication by an order preserving, 
lower finite function is an element of End (PR). For certain preordered sets, the con
verse is also true. Following [5], we call a preordered set X  lower finite in case for each 
x £ X  the set S(x) = {y(zX \y^x}  is finite. Note that any lower finite preordered set 
X  is necessarily locally finite. Also, if X  is lower finite and h: X xX -* A  is order 
preserving, then h is lower finite.

P ro po sitio n  4.2. Let X  be a lower finite preordered set, and let A be any ring. 
Then I(X, A) ̂  End ( R r ) via X: h -+Xh, where Xh denotes left multiplication by h.

P r o o f . The fact that Xh is in End (Rr) for h£l(X , A) follows directly from the 
above remark and Lemma 4.1. An easy check shows that X is an injective ring homo
morphism. For surjectivity, let t/i^End (Rr) and define f  (öxy) = fx y P. for each 
x S y  in X. Then for u, v in X  we have

f xy(u, V) =  (tK<5*y))(«, v) = (ip(ex ■ 5xy))(u, V)

=  (>A0.v) • < U ( M> °) =  ( f xx • Sxy)(«> v)
i f xx(u, x) if v = y  
Id otherwise.

Now define h(iI(X, A) via h(u, v )= fvv(u,v). Then for each x ^ y  in X,

(h • <5
fh(u, x) if v = y

x y ) ( u > v)  -  | q  o t h e r w i s e

( fxx(u, x) if v = y 
lO otherwise

= f xy(u, v) (by above) = (i]/(8xy))(u, v).

Thus h • Sxy=il/(5xy) for each x S y  in X. A straightforward calculation along with 
(2.2) now gives X h = \ j / ,  which completes the proposition. |

We conclude by demonstrating that the lower finiteness restriction imposed on X  
in Proposition 4.2 is indeed a natural one. Recall the classical Möbius Inversion For
mula (see for example [9, Proposition 2]): Let f ( x )  be a real-valued function defined 
for x ranging in a locally finite partially ordered set P. Let an element p exist with the 
property that /(x )  = 0 unless x ^ p .  Suppose that g(x)— Z f( y ) -  Then /(x )  =

y^x
= Z  s(y)h (y ,x ).
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The “zero condition” placed on the function /  is imposed solely to ensure that 
the set Supp ( f )  = {x£X \f(x)?i Q} is contained in a lower finite partially ordered set. 
Therefore, in any discussion involving the Möbius Inversion Formula, there is 
absolutely no loss of generality in assuming the underlying partially ordered set is 
lower finite. This observation along with Proposition 4.2 indicates that the standard 
incidence ring I(X, A) can be recovered explicitly from the local incidence ring 
LI(X, A) whenever I(X, A) is of computational interest.

A c k no w ledg em en t . The author is grateful to Dr. F. W. Anderson, whose timely 
encouragement and thoughtful suggestions proved pivotal during the preparation of 
this paper.

REFERENCES

[1] Anderson, F. W., Transitive square-free algebras, J. Algebra 62 (1980), 61—85. M R  81f: 16031.
[2] Anderson, F. W. and Fuller, K. R., Rings and categories o f  modules, Graduate Texts in Mathe

matics, Vol. 13, Springer-Verlag, Berlin—Heidelberg—New York, 1974. M R  54 #  
5281.

[3] Ánh, P. N. and Márki, L., Morita equivalence for rings without identity, Tsukuba J. Math.
11 (1987), 1—16.

[4] Belding, W. R., Incidence rings of pre-ordered sets, Notre Dame J. Formal Logic 14 (1973),
481—509. M R  51 #  12628.

[5] F einberg, R. B., Characterization o f incidence algebras, Discrete Math. 17 (1977), 47—70.
MR  57 #2943.

[6] Gabriel, P., Des catégories abéliennes, Bull. Soc. Math. France 90 (1962), 323-—448. M R  38
#1144.

[7] M itchell, B., Rings with several objects, Advances in Math. 8 (1972), 1— 161. M R  45 #3524.
[8] Nachev, N. A., On incidence rings, Vestnik Moskov. Vniv. Ser. I  Mat. Meh. 32 (1977), 36—42.

MR  56 #8633.
[9] R ota, G. C , On the foundations of combinatorial theory. I. Theory o f Möbius functions,

Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 2 (1964), 340—368. M R  30 #4688.
[10] Stanley, R. P., Structure of incidence algebras and their automorphism groups, Bull. Amer.

Math. Soc. 76 (1970), 1236—1239. MR  41 #8319.
[11] Voss, E. R., On the isomorphism problem for incidence rings, Illinois J. Math. 24 (1980),

624—638. M R  82f: 16020.

(Received September 27, 1985)

d e p a r t m e n t  o f  m a t h e m a t i c s
C O LLEG E O F ENGIN EERIN G  A N D  
A PPLIED  SCIENCE 
UNIVERSITY OF COLORADO 
1420 AUSTIN BLUFFS PARKW AY 
P.O. BOX 7150
CO LO RAD O  SPRINGS, CO SO 933 
U.S.A.





Studia Seien liar um Mathemalicanim Hungarica 23 (1988), 203—208

ON SYMMETRIC FUNCTIONS OF k VARIABLES

LUDGER RÜSCHENDORF

Abstract

A  fa m o u s  th e o rem  o f  E . S c h m id t  sa y s  th a t e a c h  sy m m e tr ic  square in te g r a b le  fu n c t io n  

/ ( * i ,  x 2) h as a  r ep r e se n ta tio n  o f  th e  fr o m  X hn(p„{xj)(pn{xj). w h ere  th e  tp„ are  o r th o n o r m a l s o lu -n = 1
t io n s  o f  th e  e ig en v a lu e  e q u a t io n  w ith  n o n  z ero  e ig e n v a lu e s . W e  d ea l w ith  th e  q u e s t io n  t o  w h a t  
ex te n t  th is  resu lt c a n  b e g e n e r a liz e d  to  fu n c t io n s  o f  k ^ 2  v a r ia b les .

Let (X, sé, /t) be a cr-finite measure space and let
(1) Sk:= {h: (Xk, s4k) — (R1, B1); h£L2(jtk), h symmetric}
where h symmetric means that h(nx)=h(x) for all permutations 7r^0t of the compo
nents of x. Define for tp: X-~ R1, x£X k

k k
(2) 0  <p(x):= f i  v M ,  x  = (xlt ...,xk),

i = l  ( = 1
and

(SO)k:= {li£Sk: there exists an orthonormal sequence (cpn) c L 2(/t) and
(3)

k
t It such that f —e oo nnd h — 2)X/j

i=1
where convergence holds in quadratic mean in L2(/.ik),

For k —2 a famous theorem of E. Schmidt says that S2=(SO)2. This theorem 
and some extensions by Mercer have found important applications in probability 
and statistics as well as in many other branches of mathematics; examples of applica
tions concern, e.g., asymptotic distributions and expansions of symmetric statistics 
(U-statistics, mixture of ^-distributions), definition of multiple stochastic integrals, 
and representation of stochastic processes (by first representing the covariance ker
nels). We want to discuss to what extent this and related results can be generalized to 
k ä  2.

If h£Sk, we can decide whether h lies in (SO)k by considering the following 
generalized eigenvalue equation:

(4) [h, (p] k - 1  =  2. (0 <p, (p£L2(p), A€R\ A ?£ 0, where
i = l

[h,cp]k-i(x):=  f  h(x, y)(p(y)dfi(y), x£X k- \

19 8 0  Mathematics Subject Classification. P rim ary  6 2 B 4 0 ; S e c o n d a r y  4 1 A 58.
Key words and phrases. E ig e n v a lu e  ex p a n s io n  o f  s y m m e tr ic  k ern e ls , M ercer’s th e o r e m , te n so r  

p ro d u ct.
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N k
Lemma 1. I f  h= Z  A„ 0^„€(50)*, N s° ° , An^0 , IS n ^ N , k ^ 3 ,  then

H = 1 i =  1
{cp„; 1 ^ n ^ N )  are the only normed solutions o f the eigenvalue equation (4) with A^O 

for k  odd while for k even { ±  <pn; 1 S n ^ N }  are the only normed solutions.
k - 1

Proof. Let (p£L2(/.i) satisfy [h, <p]fc_i=A  0  cp, ||<p|| = 1 , A^O. Then from (4) we
; = i

obtain
N k - 1 k - 1

(5) Z  K  <8> V n W ’ <P.> =  A ® ?«=1 i=l 1 = 1
( ,  ) denoting scalar product. Therefore,

(6) Z  K (<P> Vn)^1 <Pn =  A«?,
n = l

and
N

Z  K  (<P, (PnZ2(Pn®(pn =  A(p ® (p
n — 1

(V)

= A-1 Z  K Kn{<P, Vnf-1 <<P> «Pm)1' 1 <Pn ® <Pm•
n, m =  1

Let M:={n£N; 1-^nSN, (cp, cpn)^d}  and let n0£M. Then (7) implies that 

Ano(cp, (p„0),c- 2cpno= A-1 2  A„A„0(cp, (p^-'icp, (Pn0)k~1(Pn and> therefore, by the
n = 1

orthogonality of (cp„): M = {n0}, i.e. Acp=A„0((p, <p„0>fc_1c/v  Since ||̂ >|| =  1, we ob
tain cp — ±(p„0. For k even — c/?„o is a solution while for k  odd it is not. □

Lemma 1 implies that for k ^ 3, a symmetric function h lies in {SO)k if and only 
if all solutions of the eigenvalue equation (4) are orthogonal (up to equivalence by the 
factor — 1 for k even) and h is identical to the eigenvalue expansion. In the following 
Proposition we construct some typical examples in Sk which are not in (SO)k for 
k ^ 3; so a direct generalization of Schmidt’s orthogonal expansion valid for k= 2 
is not possible.

Proposition 2. Let cp, \j/£L2(fi) satisfy
(i) iu{(j9=0}=/x{i//=0}=0

(ii) cp, ijr are linear independent, i.e. acp+b\l/ = 0 [uj implies a=b = 0
(iii)

Then for  I g  3 the function
k k

(8) h:= 0  <p + 0  \J/£Sk but h$(SO)k.
i =1 i=l

N jlS k
Proof. Assume that h has a representation h = Z  K  0  (Pn as in Lemma 1,

An9^0, lS n ^ N .  Then from the orthogonality of <p„, we derive with an:= (<p, cpn), 
(pn)

(9) ak„~2cp ®cp + bkn- V  =  A„ <pn 0  (p„ [g2].
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Since \\cpn\\ =  1 we get that either a„ or bn is not zero and, therefore, we obtain from 
assumption 1 that cpn^0[p]. Now (9) implies

(10) - i á k , ) . «
\<P„(x i) <Pn(.X2) )  y<Pn(Xl) <Pn(Xo)J

for almost all xlt x2, y£X. (10) for xly x2 fixed implies by the linear independence 
Assumption 2 that

( H x o  _  \  =  0 r j ^ i )  _  \  =  0 for almost all
y < P n ( x  l) < P „(X 2) J  \ ( p n ( X  i) <pn ( x 2) )

If an7±0, then <p(x) = <P̂ 2\ - <pn(x) [/<], if bn^ 0, then f  (p„(x) [/(].
(P n \ X 2)  <Pn(.X2)

So for all n ^ N  we obtain either cpn=c„(p or (pn= d j). The orthogonality of (<p„) 
and Assumption 3, therefore, imply (pn=c„cp for all ii^ä.N or (pn—dni[/ for all rr^N, 
i.e. N=  1, implying in the first case

<8> cp + <g) t/( =  \ 2  ci A  <S> <p»
i=l i = l 'n = 1 z i=l

a contradiction to linear independence. □
R emark  1. In order to decide whether h£Sk lies in (SO)k one can construct 

(cp„) as solutions of the following sequence of max-problems :
1. Let cpx be a solution of

k
(11) \([h,<p]k- i ,®  <p)I =  max

1 =  1  l k l l l . * ( M ) = 1

fc-1
then Ai:=|([A, ®  <Pi)| satisfies for h£(SO)k: ^  = \\[h, (p ^ -k h n ^ -1) and <Pi

1 =  1
is an eigenfunction with eigenvalue /q, |/q| =AX.

2. If orthonormal solutions (<pl5 Ax), (<?„_!, Xn̂ x) are found, let Fn:= 
:=((p1, ..., (Pn-i)-1 be the orthogonal complement in L2(q) and solve the max- 
problem (11) under the additional restriction (p£F„ obtaining solutions pn, (pn. 
If h£(SO)k, then

(12) A„:= |<[/i, <?„]*-i, <g) (p„>| =  sup {\\[h, <p]fc_ M l  = 1> <P€̂ n}-
i = 1

The proof can be given as for the case k — 2 (cf. Riesz—Sz.-Nagy [6], p. 217). □ 

The following theorem shows that each symmetric function h£Sk has an expan-
k

sion by the ‘typical’ symmetric functions ® cp if one weakens the orthogonality
i = l

condition.

T heorem  3. L e i h£Sk ; then there exist (pn£Lr(p), 2„£R  with the following 
properties:
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1 2  ll<PJr»0,) = l, «€N
n = 1

oo k
2 h= 2  kn 0  cp„ (convergence in L~(ßkj)

n =  l  i = 1

3 (weak orthogonality) I f  m ßr, then
(m+l)(2fc- l ) - l  k (r+l)(2fc- l ) - l  k

2  K ®  (Pn and 2  K ®  <Pn
n = m(2fc—1) ;=1 n = r(2k-l) i=1

are orthogonal.
k

Proof. We use the identification of L2(p.k) with (g) L2(/i), the /c-fold topological
1 =  1

(Hilbert-) tensor product of L2(ß). For the pertaining results on tensor products we 
refer to Neveu [4]. Let (i/q);€/ be an orthonormal basis of L \ f ) .  Then 
{'Au® i f h  1 S j ^ k )  is an orthonormal basis of L-(//) and, therefore,
there exists a countable set T czlk suchthat

(13) h = 2  at St’ where g, = ... <»iA,k-
f € T

Now define for f : X k~* R1 the symmetrization S f:X k — R1 by Sf(x):= 2Z f ( nx)-
k

If f(x )= (g ) f ( x ) 9 then for R a  {1, define
i=1

(14) SRf:  X k -  R1 by SRf:=  ®  ( 2 f j )  where ( 2 f j ) ( y ) ’= 2 f M
i = l JíR JZR j i R

SRf  is a ‘typical’ symmetric function and we get the following identity:

(15) / =  0 / i  implies S f  = 2  O 1)' 2  s r/•
i=l 1 = 0 Rc{l, , Jt}

For the proof of (15) let A^R***, A={ai})  be a k X k  matrix and let per (A) =
k

= 2 2  aMi) denote the permanent of A, S k again denoting the permutations
ic£©k i = 1

of {1, ...,k} . A consequence of the inclusion exclusion principle is the following 
representation of per (A) (cf. Jacobs [3], Satz 3.13, p. 31):

(16) per (A )=  " i V l ) '  2  A  { 2 * u ) -
i = 0 R<={1 *} i = l j i R

[ R \ = k - l

Defining fly:=/i(•*;)> l ^ i , j s k ,  (15)follows from (14).
Now by symmetry of h we obtain

{k\)h -  Sh=  2  h on = 2  at Sgt,*esk ter



SYMMETRIC FUNCTIONS 2 0 7

since the series in (13) can be rearranged. Note that there exists an increasing 
sequence of finite subsets TnczT with \\h— 2  tf(g(||2=  2  flt implying that

t t T „  t t T °

2  ar\\sgtr ^ ( k \ y  Z « ? « g (ll2- o .

One can even choose the summands Sg, to be orthogonal by rearranging the g,-sum 
according to terms with identical Sgt (cf. Neveu [4], Lemma 6.13). Now (15) app
lied to f= g ,  implies that

( 1 7 )  h =  - L 2 a , 2 \ ~  D *  2  s Rgt.
K'- t i T  i= 0  R c ( I ,

|R|=*-i
SRg, is a ‘typical’ symmetric function and IÍSRgt\\2L2(ßk)^ \R \2k̂ lilk. Renorming the 
SRgt and choosing a suitable enumeration by natural numbers we get the desired 
representation of h, the weak orthogonality condition following from the orthogo
nality of (Sg,) t£ T  and the fact that the number of summands SRg, for the rep
resentation of Sg, is 2k — 1.

R e m a r k  2 .  a) We remark that relation ( 1 5 )  can be derived also from a relation 
which is stated (without proof) on p. 5 2  of Dellacherie, Meyer [1 ]  and which there 
is attributed to P. Cartier.

b) For k =2 the Mercer theorem says that the eigenvalue expansion of h£S2 = 
—{SO)2 is uniformly convergent (in the a’, s. sense) if X  is a compact space with 
Borel ff-algebra s /  and h(x,y) is continuous and positive definite. For k ̂  2, we define 
h£Sk to be k-positive (definite) if

(18) {h, 0  q>) ^  0, (p£L2(ß).
i=l

Then for k€2N-fl the only k-positive function is h= 0. Substituting in (17) —q>
k

and (p, we obtain (h, <g) (p) = 0 for all <p^L2{pi) and, therefore, using Theorem 3,
t=ioo k

{h,h)= 2  K  (k, ®  =  0. If k£2N, then a Mercer type theorem for h£(SO)k can
71 = 1 Í = 1

immediately be inferred from the case k = 2.
c) If for A£s/, Ak:—AX ---X A  denotes the k-fold product of A, define s /k:= 

:=c (Ak; A fs /)  the cr-algebra generated by the ‘typical” symmetric sets and äök the 
e-algebra of all measurable symmetric sets in {Xk, 2#k). A measure-free version of 
Theorem 3 on the level of sets is not true by results of Rao [5] and Grzegorek [2] stat
ing that

b) For k ^ 3 , \s /\s3 , s /k is a strict subset of ASk.

Define &k:={AJX ...X  Ak; A £s/, AiOAj—0 for iX j}  and let be nonatomic 
measures on {X, s/), i =  l, 2, then

(20) l A l ^ k  — lA/^k implies that nk — /i2.
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For the proof of (20) let AxX ---X A k^ ^ k; then by (15):
k k- 1 k

=  s  < g >  u  =  2  ( - 1 ) '

Since ^  ü ,  = 1 u Aj, l 4 M k = l 4 M k  implies that
j€R J6R

Now the assumption that /(,- are nonatomic implies as it is well-known that :Mk is a 
determining system for i.e. u\ = /t| or, equivalently, /q =  /t2 ■

Relation (20) shows that ‘diagonals’ make the difference between s fk and SSk. 
Relation (20) is true for all symmetric measures having @)k as a determining class.
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ON THE DISTRIBUTION OF A STOCHASTIC INTEGRAL 
ARISING IN THE THEORY OF FINANCE

THEODORE ARTIKIS

Introduction

Let {X(t), /&0} be a stochastic process with stationary independent increments 
and E[X(t))=Xt, V(X(t))=a* it where — and 0 < a 2<°°. We assume
that {Z(0> i=0} is continuous in probability and that its sample paths are right 
continuous and have left limits. The stochastic integral

exists and is finite almost surely. The distribution of Z is continuous and its charac
teristic function is

where v(u) is the characteristic function of the increment X(t-\- Y) — X(t), [3]. The 
purpose of the present paper is to establish the distribution of Z, with {Z(/), / SO} 
a compound Poisson process, as convolution of certain transformed renewal distri
butions.

Let F(x) be a distribution function on (0, °°) with finite mean /r and <p(u) its 
characteristic function. Consider an equilibrium renewal process {N(t), /SO} 
whose successive time intervals between renewals are distributed according to F(x). 
The characteristic function of the time of the nth renewal is

(see [2]). We shall use the distribution of the nth renewal in order to construct an 
infinitely divisible distribution related to the distribution of Z.

(1)
0

(2)

(3)

l

1980 Mathematics Subject Classification. Primary 60E
Key words and phrases. Stochastic integral, renewal distribution, characteristic functions.
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The transformation

A characteristic function a(u) is said to be infinitely divisible if for every positive 
integer n it is the nth power of some characteristic function. This means that there 
exists for every integer n a characteristic function an(u) such that a(u) = [an(u)]" with 
an{u) uniquely determined by a(u), an(u) = [a(u)]1/n provided that one selects for the 
nth root the principal branch. The family o of infinitely divisible characteristic 
functions includes the important class L of self-decomposable characteristic functions 
[5]. The family o also includes the class U which is an interesting extension of the 
class L  [1].

The following result on unimodal Lévy spectral functions has been established 
by Alf and O’Connor [1],

Lemma. Let a(u) be an infinitely divisible characteristic function with Lévy spectral 
function M. Then M  is unimodal if and only if there exists an infinitely divisible charac
teristic function ß(u) such that

(4) a(u) = exp-U- f  log ß (y )d y \.
I M 0 J

Below we establish certain relationships of a transformed renewal distribution 
with the classes L and U.

T heorem. Let F(x) be a distribution function on (0, °o) with finite mean p and 
<p(u) its characteristic function. Set

(p„(u) =  exp I j  2 ^ 1 —-(pn(y)dy \, n = 0, 1,2, ...
V y J

£ „ 0 )  =  "il <Pk(u)k = 0

•K(u) =  exp j-̂  /  q>n(y) dy -  1 j
ton(u) = exp {— f  J  cpn(x) dxdyl.

(u  o o x ’
Then (p„(u) is an infinitely divisible characteristic function, .9„(w) is o f class L, 

i//„ (u) and <d„ (u) are o f class U and satisfy

^ n ( M ) 9 n Í M )  =  <A„+i («)<A,(«), n  =  0, 1, 2, ... .

P roof. Let F(n){x) be the nth convolution of F(x) with itself. Consider the 
function A(x) defined by

(5) A (A) =  J  Fin)(x -y ) ( l -F (y ) )d y .



A STOCHASTIC INTEGRAL 211

The function A(x) is well-defined since
oo

f  ydF(y) <  oo 
0

if and only if

/  (1 - F ( y ) ) d y ^ ~ .  
0

Furthermore consider the function M (x) defined by

(6) M(x) = -  J (1A 0 )

The function M(x) is non-decreasing on (0, oo) and satisfies

Since

J  xdM (x) ■< oo. 

0

I f l U X

r  eiux— 1
-  f  ----- dM(x)

o l»u
from [5] Theorem 11.2.2 it follows that

'»(«) =  exp j /  —-y - 1 (p"(y) dyj

= exp j J  (e'“x-l)dA i(*)} 

is an infinitely divisible characteristic function. Set

<Pn

(7)

5n(«) = 77 <?*(«)
(8)

=  e ip { / ^ a _ L ^ } .

Then &„(m) is of the form (7) with M(x) defined by

“  i _  irWfv)
(9) M(x) = — J  --- ^-— -dy.

x y

Since xM'(x) is non-increasing on (0, oo), from [5] Theorem 5.11.2 it follows that 
9„(u) is a self-decomposable characteristic function.

14*
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Consider the infinitely divisible characteristic functions <?„(«) and 
exp {(pn(u)—1}. Using the integral representation (4) for the members of the class 
U we get that

(10) </'„(«) = expj^- /  (pn(y ) d y -  l j

(11) a n ( u )  = exp j-i- /  /  <P" (x) dxdy|

are members of the class U. Integrating by parts in the exponent of «„(«) we get that

•AnO)<PnO )  =  iA«+i ( m) ö>„(m)- □

Using the expression (8) for the characteristic function 3„(w) we have

TOO =  i 7 R ( w)}p"
n = l

oo [ n-1 ~\Pn

(12 ) = n \ n  <Pk(u)I
n=l^fc = 0 J

=  e x p { / J £ M z i „ , }

where P(z) is the probability generating function of the discrete distribution 
{pn: n = 1,2, ...} having finite mean. Since the class L  is closed under multiplication, 
raising to a positive power and passage to the limit we conclude that y(u) is a self- 
decomposable characteristic function. The characteristic function of the stochastic 
integral Z  coincides with y(u) in (12) when {X{t), ISO) is a compound Poisson proc
ess and the characteristic function of the increment X(t + 1) — X(t) is v(u) = 
=exp{[P((p(u))-l]}.

Integrating by parts in the exponent of the characteristic function

n j  /  f(»W)-l \
l« o  o x  J

which is a member of the class U, we get

(13)

= exP {7 /  i p i (pGO) -  0  dy \ exP {77 /  /  dxdy} ■
We consider a stochastic process {7(1), *=0} with stationary and independent 

increments which is independent of the stochastic process {X(t), 1^0}. We suppose 
that {7(t), ISO) is continuous in probability and that y(u) in (12) is the character
istic function of the increment 7(1+1) — 7(1).
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1
The stochastic integral J  tdY(t) exists in the sense of convergence in probabil- 

o

ity and its characteristic function is exp j- -̂ J  logy(y)</yJ, [4], Hence the decom

position (13) is equivalent to the convolution model
oo 1 1

(14) f  e-'dX (t) = J  tdX(t)+ f  tdY(t). 
0 0 0

Application

The theory of finance is concerned with the determination of the value of the 
firm as a going concern, the identification and analysis of factors with direct and 
indirect influence on this value, and with the valuation of investment opportunities. 
The economic value of the firm as a going concern is the present value of income 
that the firm will generate in the future. Assuming that the income of the firm is 
given by the stochastic process {X(l), 1^0} and since the corporate firm has an 
indefinite life, its economic value can be approximated by the stochastic integral

/  e-"dX (t),
0

where r is the rate of interest.

REFERENCES

[1] A l f , C. and O 'C o n n o r , T. A., Unimodality of the Levy spectral function, Pacific J. Math. 69
(1977), 285—290. MR 55 #11337.

[2] Cox, D. R., Renewal theory. Methuen, London; Wiley, New York, 1962. MR 27 #  3030.
[3] H a r r is o n , J. M., Ruin problems with compounding assets, Stochastic Processes Appl. 5 (1977),

67—79. M R  54 #11710.
[4] L u k a c s , E., A characterization of stable processes, J. Appl. Probability 6 (1969), 409— 418. MR

40 #6631.
[5] L u k a c s , E., Characteristic functions, Second edition, revised and enlarged, Hafner, New York,

1970. M R  49 #11595.

(Received October 16, 1985)

d e p a r t m e n t  o f  s t a t i s t i c s
PIRAEUS G RADUATE SCHOOL
O F INDUSTRIAL STUDIES
40 KARAOLI D IM ITRIOU STREET
PIRAEUS
GREECE





Studio Scientiarum Mathematicarum Hungarica 23 (1988), 215—224

ERROR ESTIMATES OF A GENERAL LACUNARY 
TRIGONOMETRIC INTERPOLATION ON EQUIDISTANT NODES

J. SZABADOS, A. K. VARMA and C. R. SELVARAJ

Dedicated to Professor A. Sharma on the occasion o f  his 65th birthday

Let q be a positive integer, l s m ^ . ..< m p be a given sequence of integers, 
Mp={m1, ..., mp}, C2„ the set of all 27r-periodic continuous functions, ST„ the set of all 
trigonometric polynomials of degree at most n. The problem of Mq -interpolation can

be stated in the following form: Let xkn—xk = ------ ,k =  0, 1, — 1 and f(x )£ C 2n-n
Construct polynomials

(1) Rn( fx K & M, M =  [ ” (g2+ 1 ) ], 
such that

(2) Rn( f ,x k) = f ( x k), R ^ ( f x k) = 0, fc =  0, 1, n —1; j  = l , . . . ,q .

We mention that the more general case when prescribing certain values (i.e. not neces
sarily 0) for the derivatives does not yield essential novelties, neither from the point 
of view of existence and uniqueness, nor for error estimates. Therefore we restrict 
ourselves to the case (2). We also remark that interesting contributions on lacunary 
trigonometric interpolation were first obtained by O. Kis [3] and A. Sharma and 
A. K. Varma [5],

The most general existence and uniqueness theorems for the MC1 -polynomials 
are given in [1], Without explicitly mentioning these necessary and sufficient condi
tions for existence and uniqueness, in what follows we shall assume that these conditions 
on the Mq and n are always satisfied.

Our primary goal is to give error estimates for the Rn -polynomials in terms of the 
best polynomial approximation

En(f)  = m f J f - T W

of f(x ) .  Here and in the sequel || . || will always mean supremum norm. J(x) will 
denote the trigonometric conjugate of / (x) (if it exists). First we give an estimate for 
trigonometric polynomials.

L emma 1. Assume that Mq and n are such that the corresponding lacunary inter
polation problem is uniquely solvable. Then there exists a ö, 0<<5< 1, depending

1980 Mathematics Subject Classification (1985 Revision). Primary 51A05; Secondary 42A15. 
Key words and phrases. Lacunary interpolation, rate o f  convergence, saturation.
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only on M q such that for any T(i3T^Sn̂ we have

|ir(*)-j?B[r,*]i =  o (n -mi){||r(rai)||+ ||f (mi)||}

where the constant involved in “O” depends only on 5.

It is interesting that the estimate is independent of m2, ...,m p (see also Theorem 1 
below).

Proof of Lemma 1. Our basic references will be recent papers by S. Riemen
schneider, A. Sharma and P. W. Smith [4] and A. Sharma and A. K. Varma [6]. 
According to [4] (1.4) — (1.5), if T£&~M then

These fundamental polynomials Qmf x )  can be represented in the following form

(the precise specification of s0 and s„ is indifferent for us). Hj)X(x) and <Pq (x) are
9 9

algebraic polynomials of degree at most 2  mk—m i and 2  mk> respectively, with
k=l Jc = l

coefficients independent of n, and

(3) T (x ) -R n(T ,x) = 2  2  T ^ ( x k)Qmix ~ x k)

where Qmj(x)^^~M are such that

Qmj Ĉ9c) v̂ĵ Ok 5 Á F 1) —> (7 5 h 0, 1, ..., n 1.

(see [4], p. 33 and (2.11), (2.12), (2.6)):

z =  e'x

y j  if q is even 

n if q is odd.

In particular, for T{x)—e'lx = z!, I s M  we have from (3) and (4)

z'-R „ (zl, x) =

- Z ~ M 2

(6)
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where zk=e,xk, k=0, 1, n — 1. Let

(7)

then for /-

l+ ( - D ?

It !
n — 1
2  z‘r +M

Thus from (6)
k = o 

-a —Af

lo
n if v = a 

otherwise.

(8) zl- R n(z‘,x )  =

Consider the functions

(9) X j  . .« ,* )  =  2

n - ( - i ) *  r«
<7

A =  0 4>,
, j = l ,  2, q

«> 2

of the complex variable £. Here, according to Lemma 4 in [4]

Since <Pq is a polynomial, there exists a c>, 0 <á <- ^ ,  such that

» , ( ' 2 if ICI ^ 2<5‘

Being HJjX also polynomials we can expand Xj.niC, z) into the Taylor series

(10) z) =  Í  a;h (2 )C‘, ICI ^  25, 7 =1 , . . . ,  9,
fc =  0

where

(1 1) l«jfcn( )̂l = 0 ((2 ^)-k), fc =  0 , 1, 7 = 1 , 2 , ... q; z = eix

Thus (8 ), (9) and (10) yield

zl- R n(z\ x) = z - M Í  f i r  Í  ajkn(z) ( i ) ‘ =  j = i \ n j  k =o \ n )

= r 'p r - ]  2 i ( i I a [ |] ,
( 12)

y = l A: = 0
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since by (7) and (1), a —M = l —n [!±i . Now if then

[in]
w(x) =  T (x) + iT(x) = 2  cie 

1=0

with certain complex coefficients c,. Thus from (12) we obtain

-n [ 9 + 11 « “
(13) w(x)-7?„(vv, x) =  z L 2 J 2  2  (in)-k- mjajkn(z)w(k+m?(x),

j = l k =0
and by the Bernstein—Szegő inequality

\\T{x)-R n(T, x)| ||w(x) —-R„(w, x)||

^  i  2  n~k~m>l ^ ( ^ ) l { l l ^ +^|[ + 1 i^ +"^||} =j = 1fc=0

= 2  2 « ' fc_mj(2á)"H á«)fc+m̂ mi{llr(mi)ll +  ll^(mi)ll} =j = 1k=0

= 0Oi-"*i) ^  <5m' “mi 2  2 -k{ ||rK )||+ ||fK )||}  =
J=1 k = 0

= o (« -m.){||r(mi)| + |[fK)[|}.

This proves Lemma 1.
Our main result, which is a generalization of Theorem 1 in [7] is as follows.

T heorem  1. Assume that Mq and n are such that the corresponding lacunary 
interpolation problem is uniquely solvable. Then there exists a d, 0 < <5 < 1, depending 
only on Mq such that

«/(x ) -* „ (/, x)|i =  AnEiSni( f)+ 0 (n -^ )  2  (k + \ r ^ E k(f) (feC 2lz)
k =0

0 i f 2  l - 2  i =  - i ,m- £ M q even mj£Mq odd

0(log n ) i f 2  i - 2  i =  o,m,6M even nij f  M q odd

O(n) if 2  i - 2  i =  i-
wijCM^even m j d M q odd

P ro o f . Let b be the number obtained from Lemma 1, and let T^.T[dn] be the best 
approximating polynomial of / (x). Then, according to Lemma 2 in [7]

IIW 1 +1 f(™»)|| =  0 ( 2  (k + Ek(f)).
k =0
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Combining this with our Lemma 1, we obtain

\\f(x )-R n(f, jc)B S  ||/(x)- T (x)|| +  |iT(x) - R n(T, x)|| + \\Rn( T - f ,  x)|| =

= (l + W ) i l « ( / ) + O M  2 { k  + \)m̂ E k{f).
k =  0

Here ||/?„|| is 0(1), O(logn) and 0(n), respectively, according to the cases listed 
in (14) (see [4] Lemmas 6, 7, 8 and [6] Lemma 7). We only have to remark that in case
i i j u = o ( i )

E u M )  = 0 (n -».) Í  (k + \r> -'Ek(f),k =  0
and thus we can take A„ =0. Q. E. D.

When the function is finitely many times differentiable, the differentiated series 
Rnr)( f, x) will converge to the corresponding derivative. This is expressed by the fol
lowing

Theorem 2. Under the conditions o f Theorem 1, i f  / ip,(A')€C2rr then 

\ \ f rK x )-R P (fx ) \\  = 0 { A nEldnf f (r)) + n~m' 2  (k + D ^ -1 £*(/<'>)}
k =  0

(r =  0, 1,
Proof. This is an easy consequence of Theorem 1, the relation Ek( f )  = 

= 0(k~ rEk( f (r))) and a result of J. Czipszerand G. Freud [2] which states that for 
/ (p)€C2jt, one has

l / w ( * ) - r w (*)I = 0(«<'>)||/(x)-r(x)|| +4£„ ( / w), r = 0, 1, ..., p. Q. E. D.

Under certain assumption on the function, we can give a better estimate than the 
one obtained from Theorem l.The next result can be considered as a generalization 
of Theorem 1 in [8] and Theorem 3 in G. Sunouchi [9], See also the contributions made 
in (11] concerning (0, m) trigonometric interpolation.

Theorem 3. I f  f{x )  and J(x) are in C2n, and

2 ^ - 2  i = - i ,
ni j £ M q even m j £ M q odd

then

\ \ f ( x ) - R n(f,  x)|| =  O |w mi ( / , - ! ) +

where wmi denotes the mk modulus o f smoothness.
Proof. It is well-known that the de la Vallée-Poussin means tk( f  x) have the 

property

(15) \ \ m - z k(f,  x)|| S  4Ek ( / )  -  O k  ( / ,  i ) J  ,
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by the generalized Jackson theorem. Also

I/O ) -  ?*(/, *)I =  O |wmi ( /  - i j  j .

Using the estimates

X)l = ° ("’-»L (T*> x)J =o{».,(a-/4) + »„(/,-Í)} =
4 4 ))

(cf. e.g. A. F. Timan [10], formula 4.8 (18)) as well as

k ~ m * ( / ,  x)\\ = O | w m i  ( / ,  y j j

we get from Lemma 1

(16) 14m  (/> x ) - i?„(T[an], x)\\ = O |wmi ( / ,  -i-] +  wmi ( / ,  - i j j .

Hence if we write

f ix )  -  Rn {f, x) =  f ix )  -  T[án] ( / ,  x) +  T[än] (/, x) -  (tWb] , x) +  i?„ ((%„] - f  x)),

and use (15), (16) and the fact that by our assumptions ||2?J = 0(1 ) we get the state
ment.

Theorem 3 helps to solve the saturation problem of our operator under the stated 
assumptions. Again, the following result can be considered as a generalization of The
orems 1 and 2 in [7].

Theorem 4. Under the condition of Theorem 3 on Mq,

(a) \ f ( x ) -R nif ,x ) \  = 0(n~mi) iff ß mt~V(x) and / (m'_1)0)cLip 1;

(b) \\fix )-R n(f, x)|) =  o(n~mf  iff f(x ) = const.

Proof, (a) If / (mi_1)(x) and / (mi_1)0)£Lip 1 then by Theorem 3 we have

(17) \ \ f ( x ) - R nif,x)\\^Kn-">> (K  >  0).

Conversely, assume that (17) holds. Let

(18) u0(x) = R f f f  x), uk(x) = R&if, x ) - R 2k- i ( f  x), k =  1 ,2 ,....

Then by (17), with an absolute constant c we get

(19) |M  sä cA2-»-«'"i, k = 0,1, ..., 

and hence by the Bernstein—Szegő inequality

maxfllH^H, ||fi£')||} ^  cK2ku - mJ +mi, j  =  1, 2, ..., mx+ 1, k = 1 ,2 ,....
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Since by (18) R2*(f9 x)= 2  UÁ X\  we obtain
fc =  0

(20) ||R%'+1\ f ,  Jc)| 3= 2  ||wími+1)ll ^  c K 2 2  2k <  c*2"i+«+1, s =  1, 2, ...
k =0 k =0

and similarly

(21) ll^2»I+1)(/, x)W ^  cW2mi+s+1, s = 1, 2......

Now let x€[0, 2rc) be arbitrary, and 0<A:S2S sucli that I* — xfci2»| Then
(2), (21) and the mean value theorem yield

*)| = \ R p )( f x ) - R p )i f , xk,2,)\ ^

^  |jc -^ fc|||M*1+1)(r, )̂ll S  cKn2m'+1, 
i.e.

(22) x)|| á  cKn2*+\ s = 1 ,2 ,.... 

Since by (17) and (18)

(23) f(x) = 2  llk(x)

and by (19) the series 2  ulmi 1>(x) uniformly converges, evidently
k = 1

f ( mi-V(x)  =  2  uk(mi-» (x ) .
k —0

With respect to (18), this means that

lim \ \ f ^ - » ( x ) - R (̂ - 1\ f  x)|| = 0.
S - +  oo

Thus if h >0 is arbitrary then by (22) we get

|/(m1- i ) ( ;c+ h )_y(m 1- i)(jc)| á  \ f ^ i - V i x  + h ) - J & l~v>( f , x  + h)\ +
(24)

+ \ R $ ' - 1)(f,  x + W - R f r - ^ i f ,  x)| + 1R p ~ n (f, x ) - ß ^ ~ » ( x ) \  ^  cK2mx+3h,

provided s is large enough. This proves that / (m»_1)(^)€Lip 1.
In order to prove the same for the conjugate function, we apply (13) for

ílogJÜLl
(25) w (x) =  Rm i f ,  x) +  iRm i f ,  x), where m =  2 L 9+1J
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(for large enough n). We obtain by (13), (25), (17), (11) and the Bernstein—Szegő 
inequality

_  9 + 1

« ~ mi | R e { z  " 2 <ii0» (z )t''(" l)h ) f  m,)l S

5= (]li?ra( / , x ) - i ? „ ( i ? m( A x ) ) | |  +  « - mi 2  n '‘ |a i ta (z ) l l |w k+mi(x ) |] +k = 1

+ 2 2  n~k~mj\ajkn(z)\\\w(k+mi)(x)\\ =
j=2k=0

= i|Rmif, * ) - / ( * ) || +  \\f(x)-R„(f, x)| + 1|Rn( f - R j f ) ,  x)|| +

+ r " . Í « - ‘ (2á)-‘ ö  ||*i,"l) (/,*)« +k=i \ q-\- L J

q co /  2 Sn  \ k+mJ - m 1
+ 2  2  n-k-^ (2S)-k I I x ) | |  =

j  =2 k—0 V q-r  1 /

i.e .

(26)

=  O (n-mi) +  O (n -m0 2 ( /c + l) -« + 0 (n - '" i )  2  (2S)mj 2 ( 7 + 1 ) “ *,
k = 1 j = 2  k = 0

( g + 1 )

|Re{z~miz " 2 a10„(z)w<md(.-v)}| =  0(1).

Here by (9) and (10) we get for z= zke n , k = 0, 1, ..., n — 1,
/  9 + 1 \  9 + 1 q

z 2 ' aWn(z) = e 2 (iJ/qiO))-1 2 h u(0)eUfl =
A = 0

(«—1)/2
-  (^(O))-1 {/-7, 2L+l(0) + 2 2  W l «+i(0) + /T _A+1±L(0)] COS 2a +

’ 2 2=1  ’ 2 ’ 2

+ 7/10 (0) cos -̂-l - a +

(9 — !)/2 ff+ l

+ i[2 2  [ ^ i A+- i± l ( 0 ) - ^ i - A+̂ ± l(° )]sm ^ -^ i ,o (0 ) s m -  a)],
2=1  2 ’ 2 Z.

where a is an arbitrary real number. Since here

IIO
; oö?

1 1 1 .  

0  1 2mt .

1

—

1 2 m! .

0  1 2 ma . . ( q -  l ) m9 1 2 m9 . ■ ( 7 - l ) m*

(cf. Lemma 1 in [4]), the real and imaginary parts on the right-hand side of (27) as
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trigonometric polynomials in a are not identically constants. Hence there exists an a0 
such that

i~miz  2 a10„(z) = n — iv, v 0, z — zke n , k = 0, 1, n — 1.

This means (see (25) and (26)) that

x ) -v R (”ú (f, x)| =  0(1) for x = xk + ̂ - ,  k = 0, 1, 1,
i.e. by (22)

(28) Rmv (f, yk) = 0 (  1) for yk = xk+ -^-, k = 0, 1, ..., n -  1.

71Now if x£[0, 27t) is arbitrary and y k is such that |jc —>’k| S  —, then by (28) and the 
mean value theorem

l*i"l) ( f  *)l s  \R(,;r> (/, x) -  R ^  (/, yk)I + 1R(mmi) (/, yk)I ^

^ I*-äI!ä<,-2+1)c/;*)I+o(1) = 0( j ) ^ r r + 0 i l )  =  0(1>’ 

l !^ mi)(/)ll = o ( i ) .

By (19), \\ük\\ =0(k2~kmi)\ hence the series 2  uk(x) uniformly converges. Thus
k = o

by (23)

Kx) = 2  ak(x)
fc =  0

exists. From this point the proof is the same as that for / (x), and we readily conclude 
that / (m_1)(x)£Lip 1.

(b) Since Rn reproduces constants, the “if” part of the statement is obvious. 
Now if

\\ f(x )-R n( f  x)|| = o(n_mi),

then from the proof of part (a) follows that (24) holds with an arbitrary K>0; hence 
/'(m1_1)(x)=COnStant, i.e. /(x)=constant. Q. E. D.
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ON COPS AND ROBBER GAME

RATKO TOSlC

Let G be a finite connected graph and c(G) the cop number of G, i.e. the mini
mum number of cops needed to catch the robber in the cops and robber game on G. 
It is shown that c(G1+G2)Sc(G1)+c(G2), where G\+ G2 is the cartesian product 
of Gi and G2. As a consequence we obtained that for each natural k there is a natural 
n such that c(Q„)=k, where Q„ is 72-cube.

1. Introduction

A finite connected graph G is given and two players, C and R, play the following 
game: C chooses some vertices and put m white pebbles (cops) on them (more than 
one cop may be placed on the same vertex). Then R chooses a vertex and put a black 
pebble (robber) on it. Then the players move alternately beginning with C. A move of 
C consists of choosing k cops, 0 < k^m , and moving each of them along an edge of 
G to an adjacent vertex. A move of R consists of moving the robber along an edge of G 
to an adjacent vertex. Each move is seen by both players. C wins if he manages to 
occupy the same vertex as R after a finite number of moves, and R wins if he avoids 
this forever.

In some variants of this game each player is allowed to omit his move, i.e. all 
pebbles may sit still in their places. In that case it is convenient to regard all graphs as 
reflexive, i.e. equipped with loops at every vertex.

Since there is complete information in this game, either C o r k  must have a win
ning strategy: in the former case G will be called an (m cops)-win graph, otherwise G 
is robber(7«)-win.

Let c(G) denote the cop number of G, i.e. the minimum number of cops needed 
to catch the robber in a given graph G after a finite number of moves. In [1] and [2], 
the graphs for which c(G) =  1 are characterized. In [1], it is proved that for each 
natural m there is a graph G for which c(G)St?j, and that for each planar graph G, 
c(G)S 3.

15
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2. On cop number of cartesian product of graphs

Let G1=(Pi,-£,1) and G2=(V2, E2) are two finite connected graphs. Denote 
by Gx +  G2 the sum of the graphs Gj and G2 (somewhere called cartesian product), 
i.e.:

G = Gj + G2 =  (V, E),
where

V = FxXK2
and

E  =  {(x1,y1) f e ,y 2)|(x1x2€£'1 and yt = >>2) or (x2 = x2 and y ^ y fi t f i ) .

Then we nave the following result, which can be naturally extended to the sum 
of more than two graphs:

T heorem 1. I f  G1 and G2 are two finite connected graphs, then 

c(,G1 + G2) =  c ( G 1)  +  c ( G 2) .

P roof. Let G1=(V1, £)), G2=(K2, E2), where V1 = {x1, x2, ..., x p} and
F2 =  { ji, J 2 » -  , y,}. Suppose that c(Gj) = m, c(G2)=n, and that the player C has 
at his disposal w +n cops. Then he can catch the robber in the graph G =  GX + G2 
in the following way.

Let the vertices x h , x Í2, . . . ,  x im (not necessarily different) make a starting posi
tion in a winning strategy of the player C on the graph Gx and the vertices yh, 
y j2,  . . . , y j n make a starting position in a winning strategy of the player C on the 
graph G2. (Of course, if a graph is (m cops)-win, then any set of at most m vertices can 
serve as a starting position in a winning strategy of the player C, but the theorem also 
holds for digraphs. The theorem holds independently of the fact whether the graph 
is reflexive or not.) Denote by GXk the copy of G2 induced by the vertices ( x k , y 1) ,  
( x k , y 2) ,  ..., ( x k , y q)  of the graph G = Gx + G2. Similarly, Gyh is the copy of G\ induced 
by the vertices (xl5 j ’*), ( x 2 , >’„), . . . ,  ( x p , y h) of the graph G.

First, the player C puts n cops in the vertices (xfl, yJX), ( x i v  y j2) ,  ( x ! v  y Jn)
of the copy Gx. of the graph G2 and begins to play applying his winning strategy for
the graph G2. This strategy enables him to cath at least the second coordinate of the
robber. If the robber is not in Gx. , then from this moment on one cop stays in this*1
copy as the “shadow” of the robber, i.e. he always goes to the vertex ( x h , >’r) when
ever the robber goes to some vertex (x,, y r).

Now, the player C repeats the procedure with the copies Gx. , Gx. , . . . ,  Gx. .1 1 3 . m
After that, the player C achieves the position in which he has m cops placed in m 
vertices ( x t l , y r) ,  ( x h , y r) ,  ) . . . ,  ( x im, y r)  while the robber is in a vertex ( x h  y r ). 
Denote these m cops by Cx, C2, ..., Cm, and the remaining n cops by C), C2, ... ,C '.

From now on, whenever the player R by his move changes the second coordinate 
of the vertex, so will do the cops Cx, C2, ..., Cm, all staying in the same copy Gyt of 
Gx with the robber. If, being in a copy Gir, the robber by his move changes the first 
coordinate (staying in the same copy of G1 and changing the copy of G2), the player 
C moves the cops C1, C2, ..., Cm, according to the winning strategy for the 
graph Gx.
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The robber must, from time to time, to change the copy of G2 by his move, i.e. 
to make a move in the game on G1. On the contrary, if the robber stays in a copy 
GXl of G2 long enough, the cops C i,C 2, ...,C'n will come into the copy GXl and either 
to catch the robber by applying a winning strategy for the graph G2 or to “push” 
him into another copy of G2, i.e. to force him to make a move in the game on Gx.

So, m+n cops are sufficient for winning in the graph G=G1 + G2. |

3. Cop number of «-cube

Let c'(Qn) denote the minimum number of cops needed to catch the robber in 
the irreflexive «-cube Qn (the players are not allowed to omit the moves). Then we have 
the following consequence of Theorem 1.

Corollary 1.

c ' ( Q n ) if n ^  2 (mod 4),

c'(Qn) [y ] + 1, if n = 2 (mod 4).

Proof. It can be checked that c'(Q1) = l, c ' ( Q . , ) = c ' ( Q 3) = c ' ( Q f ) = 2 .  Having in 
mind that Q„ = Qk + Q„~k, for k = l,  2, ..., « — 1, we consider the sequence

ax = 1 , a2 — a3 = a4 =  2; a„ = min (afc + a„_k), for n >  4.
We conclude that

| y j , if « ^  2 (mod 4)

[ y l  + 1, if n = 2 (mod 4),

hence follows the statement. £

On the other hand, for reflexive «-cube Q„ we have the following consequence of 
Theorem 1.

Corollary 2.

c ( Q n )  ^ ^ 1 ) .

Proof. It is sufficient to prove that k<c(Q2k); then k<c(Q2k+1) follows imme
diately.

Suppose that the player C put his k cops in some vertices of Q2k. All cops togeth
er cover at most k(2k + l) vertices. Since k(2k + 1)<22\  for natural k, there is an 
uncovered vertex u (neither occupied by a cop nor adjacent to an occupied vertex) 
on which the player R can put the robber. Each vertex adjacent to the vertex u can be 
attacked only by the cops which are at the distance 2 from the vertex u. Each cop

15*
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can cover at most two vertices adjacent to the vertex u. If there are not cops at all on 
the vertices adjacent to the vertex u, the player R  will omit his move when in turn. 
At the moment when at least one cop come to some vertex adjacent to u, at least one 
adjacent vertex will not be covered by any cop. Now the robber can escape to that 
uncovered vertex. Playing in this manner, the robber avoids catching forever, g

Similarly, for irreflexive «-cube Qn we obtain the following result.

C o ro lla ry  3.

Combining corollaries 1 and 3, we obtain the following theorem.

T heorem  2.

c'(ß„) =  |y ] ,  i f  2 (mod4),

\ j \  = c'(Qn) =§ [y ] + l, i f  » =  2 (mod4). |

L emma 1.

c(Qn + l )  -  C'(ßn)+1.
P ro o f. We consider a given cube Q,t+1 as the cartesian product Q„ + Q1, where 

the set of vertices of Qx is {1, 2}. Let c'(Q„)=a and suppose that the player C has at 
his disposal a+ 1 cops C0, Cl5 ..., Ca. The player C begins by applying a winning 
strategy in irreflexive cube Qnl, i.e. in a copy of Qn, playing with cops C1,C 2, ...,C 3. 
His aim is to catch the first coordinate of the robber. Each time when the player R 
omits his move in this game, the player C will also omit his move, i.e. all cops Cl5 
C2, ..., Ca will sit still in their places, but the cop C0 will move toward the robber. 
After several moves, the cop will either to catch the robber or to force him to make 
a move in the irreflexive game on Qn. In such a way the player C will catch at least the 
first coordinate of the robber. If the robber is not catched completely, then from now 
on a cop will move as a “shadow” of the robber, while the other cops will go to the 
copy Q„2 of Qn in Qn+1 and continue the game by applying a winning strategy in 
irreflexive game on Qn. Now, the player R cannot omit his moves because in that case 
the “shadow” will catch the robber immediately . gj

Combining Corollaries 1 and 2 and Lemma 1, we obtain the following statement.

T heorem  3.

c(Q„) = i f  n jzf 3 (mod 4),

i f  n = 3 (mod 4). g

From Theorem 2 (3) it follows that for each natural k there is a natural n such 
that c'(Qn)=k(c(Qn)=k).
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RADICAL CLASSES AND SEMISIMPLE CLASSES FOR HEMIRINGS

S. M. YUSUF and M. SHABIR

D. M. Olson and T. L. Jenkins [3] discussed Radical Theory for Hemirings. In 
this paper we have obtained some results on semisimple classes of hemirings. Using 
the structure of ideals in Euclidean hemirings [2] we have shown that a radical class 
P defined for hemirings either contains all Euclidean hemirings or contains only the 
Euclidean hemiring 0.

A hemiring is a semiring (5, + , • ) with two additional properties:
(1) (S, +) is a commutative semigroup with identity 0.
(2) 0 -a = a -0 = 0  for all a£S.

We shall write hemiring 5 instead of hemiring (S, + , •)•
A non-empty subset 7 of a hemiring S is called a left semi-ideal if
(i) a, b£l=>a+b£l

(ii) aZl and s£S=>sa£l.
If IA  S, it is called a proper left semi-ideal of 5.

Right semi-ideals and two-sided semi-ideals are defined in the usual manner.
The following relation ~  yields a quotient hemiring modulo any semi-ideal 7: 
For all a, b£S, a~b  (mod 7) if a+ i1=b+  ;2 for some t\, 72€7. The quotient 

hemiring is denoted by 5/7. Here 7 is not a congruence class but is contained in the 
congruence class [*], where /'£7. However, when 7 is a Tc-ideal, we have [/] =  7.

A semi-ideal 7 of a hemiring 5 is called a k-ideal of 5 if for every 5, whenever
s+i(Ll for some i£l, then sOl. Not all semi-ideals are Uideals Given a semi-ideal 
A of a hemiring 5, there exist a minimal /r-ideal of 5 containing A and is denoted by 
A*. It can be verified that

A* = {x£5 |x -fa£A for some a£A).

Definition for homomorphism from a hemiring 5 into a hemiring T  and for ker
nel of a homomorphism are analogous to those used for rings. However, we require 
additional condition that they preserve the additive identity.

The importance of fc-ideals is that they are kernels of homomorphisms and that 
S/A = S/A* for any semi-ideal A of 5.

1980 Mathematics Subject Classification. Primary 16A78; Secondary 16A21. 
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As pointed out in [3], a homomorphism with zero kernel need not be injective. 
Such homomorphisms are called semi-isomorphisms and are symbolized by , 
where the arrow is used to indicate the direction of the homorphism. Olson and Jen
kins [3] have stated without proof the following results:

(1) I f  <P: S-+T is an epimorphism with kernel K, then S/K—+ T.
(2) I f  I  and J are semi-ideals in S, then I/IO J*-^ I+J/J.
(3) I f  t]: S-+S/I is the natural homomorphism, then ker r\=I*.
(4) I f  A and B are semi-ideals o f S with AQB, then S/B=S/A/B/A.
The result (4), as stated, is not necessarily true.
E x a m p l e . Let S ' be the liemiring defined by

+ 0 e f g h
0 0 0 0 0 0
e 0 e 0 e h
f 0 0 / f 0
g 0 e / g h
h 0 h 0 h h

and by xy=g  for all x ,y £ S . A={g,e}, B={g, e, / }  are semi-ideals of S  and 
A a B .  Here

SI A = {{h}, {0,/}, {g, e}}
and

B/A = {{/}, {g, e}}

and B/A%S/A. Thus, S /A /B /A  is not meaningful.
The following form of result (4) is true:
(4) I f  A and B are semi-ideals o f S with AQB, then S/B^S/A/B*/A.

This correction has to be applied to all the results where the authors in [3] have 
used the incorrect form of the result (4).

Radical and semisimple classes

A radical class is defined in [3] as follows:
A ssum ptions. (1) All hemirings mentioned belong to a class p of hemirings with 

the following two properties:
(a) If S is a hemiring in p, then every homomorphic image of S  is in p.
(b) If S is a hemiring in p and /  is a semi-ideal of S, then I  is a hemiring in p.
(2) All homomorphisms will be considered to preserve only the two hemiring 

operations and the additive identity.
A non-empty subclass P of hemirings p is called a radical class if
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(Rl) P is homomorphically closed.
(R2) If A (J P, then A contains a proper k-ideal K such that A/K has no non-zero 

/ ’-semi-ideals (semi-ideals which as hemirings are in the class P).
Using the results of [3], the radical class P can also be characterized as follows:
P is a radical class if and only if P has properties (R 1), (R3) and (R4), where
(R3) Every hemiring S has a P-semi-ideal M  which is a A:-ideal of S  and contains 

every other / “-semi-ideal of S.
(R4) S/M  has no non-zero P-semi-ideal.
The following characterization of radical classes, though not included in [3] can 

be proved as in the theory of rings.
P is a radical class if and only if P satisfies (R1), (R3) and (R5) where
(R5) I f  I  is a semi-ideal o f S such that S/I and I  are in P, then S£P.

As usual, the semisimple class SP of a radical class P is defined as the class of all 
hemirings having zero P-radical.

In the case of hemirings one can easily prove all the standard result concerning 
radical classes, upper radicals, lower radicals, semisimple classes and semisimple 
closures. Here we recall only one of them.

T heorem  1. Every semisimple class S is hereditary: i f  /  is a semi-ideal o f an S- 
hemiring A, then also I  is an S-hemiring.

L em m a . Let A be a hemiring and J  and K be semi-ideals o f A then A/K can be 
mapped onto A/J naturally iff KQJ*.

Pr o o f . Let [x]j,[x]K be the congruence classes corresponding to semi-ideals J  
and K, respectively. Suppose A/K is mapped homomorphically onto A/J. Let xdK  
then [x]K=Äi* is mapped onto the zero-element of A/J, i.e., [x]K — J  implies x£J*  
and hence KQJ*.

Conversely, if KQJ* then

S/K/J*/K S£ S/J* ~  S/J
and consequently S/K is mapped onto S/J.

Let *3e a family of semi-ideals. Then the semi-ideal 2  f  generated by
a€  A

(J 4  has the following characteristic properties:
oc 6 A

i) Every Ix is contained in the semi-ideal 2  K-
a(lA

ii) If every /  is contained in a semi-ideal A then also

2  /„ i  A.
ad  A

Now we define the union of factor hemirings dually to be semi-ideal 2  4  as
_____  . —■ «6/1

follows:
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The union of factor hemirings A/Jx of a hemiring A is defined as the factor 
hemiring Aj f"| J*. The hemiring A/f] J* is obviously characterized by the proper-

a£ A  a
ties:

i) A/ p) /* can be mapped onto every A/Ja by natural homomorphism.
a 6 A

ii) If a factor hemiring AIK  can be mapped onto every factor hemiring A/J,* 
by natural homomorphism then it can be mapped onto A/(H /,**)•

a

We shall call a factor hemiring an if-factor hemiring if it is an S-hemiring.

T h e o r e m  2 .  A class S o f hemirings is a semi-simple class if and only if  S  satisfies 
Sí) S  is hereditary.
Si) Every hemiring A has an i f -factor hemiring {A) i f  which can be mapped onto 

every i f -factor hemiring o f A by a natural homomorphism.
Si) The kernel of the mapping A ^-(A )if has no non-zero S-fact or hemiring.

P r o o f . The Lemma enables us to follow the line of the proof of the correspond
ing result in the theory of rings (cf. [4] Theorem 8.3).

Euclidean hemirings

Let S' be a commutative hemiring with identity 1. The set Sp =  {x€S| there 
exists y i  S  suchthat x= y  + 1 }U {()} is called the principal part of S. A commutative 
hemiring S  with identity is called a principal hemiring if S = Sp. A Euclidean hemiring 
E  is a principal hemiring with a function d> : E ^ Z + satisfying the following proper
ties :

(i) for a£E, <P(a)= 0 if and only if u=0,
(ii) for all a,b£E, if a + b f  0, then <P(a+b)^d>(a),

(iii) for all a,b£E, 4>(ab) = <P(a) (b),
(iv) for all a,b£E, b^O, there exists q. r£E  suchthat a=qb + r, where r= 0 

or <P(r)<<P(b).

Let E  be a Euclidean hemiring, a£E and Ta = {x£E\$(x) = <Ka)}U {0}. It has 
been proved in [2] that each Ta is a semi-ideal and for each biE, bTa is also a semi
ideal.

T h e o r e m  3 .  No non-zero proper semi-ideal in a Euclidean hemiring is a k-ideal.

P r o o f . Let A be a non-zero proper semi-ideal in a Euclidean hemiring E. Then 
by [2, Theorem 14], we have

A — L(JdTp

where d£E and dTp is maximal in A, L= {tdA\d>{t)«P(dp)} and LDdTp = 0.
Let x^E —A. Then d>(x+dp)^<P(dp). Hence x+dp£dTp. As dp£dTpQ A 

and x$ A , A is not a /c-ideal.
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We know that if P is a radical class, then for any hemiring S, P(S) is a A:-ideal 
of S. Using this result and [2, Theorem 14], we have

Theorem 4. A radical class P defined for hemirings either contains all Euclidean 
hemirings or contains only the Euclidean hemiring 0.
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PATH PARTITIONS AND CYCLE PARTITIONS 
OF EULERIAN GRAPHS OF MAXIMUM DEGREE 4

ODILE FAVARON and MEKKIA KOUIDER

Abstract

In this article we prove Gallai’s and Hajós’ conjectures about path and cycle partitions in the 
case o f eulerian graphs with maximum degree 4; and Hajós’ conjecture in the case o f  minimally 
2-connected and minimally 2-edge-connected eulerian graphs.

Let G—(V,E) be an undirected graph of order \V\ =n, of size \E\=m, of 
maximum degree A, without loops and, except in paragraph 3, without parallel edges. 
Paths and cycles are elementary: if they are not necessarily elementary, they will be 
called trails.

We recall some conventions: Nv(x) is the set of the neighbours of x contained in 
a subset U of V(G). |P | denotes the length (number of edges) of a path or a cycle P. 
[x\ is the greatest integer less than or equal to .v and [x] the least integer greater than or 
equal to x. If A is a subgraph of G, the graph G — E(A) is obtained from G by remov
ing the edges of A and all the isolated vertices which may appear.

Let p(G) be the minimum number of paths necessary to partition the edges of 
G; pc(G) the minimum number of paths and cycles necessary to partition the edges 
of G. When all the degrees of G are even, c(G) is the minimum number of cycles 
necessary to partition the edges of G. In this case G is said to be even and when, moreo
ver, it is connected, G is said to be eulerian.

Two old conjectures are still unsettled.

Cl (Hajós). I f  G is an even graph of ordern, then c(G) = .

C2 (Gallai). I f  G is a connected graph of order n then p(G) ̂  | ^  ' j .

Donald [2] and Lovász [3] proved the following
T heorem . For every graph G of order n, with it vertices o f odd degree

1. Introduction

P d C )  S  | y  |
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Clearly, every path-cycle partidon contains at least paths. In an attempt to 
prove C l, Donald had conjectured that there exists a minimum path-cycle partition 

with exactly paths. Dom de Caen [1] gave a counterexample to this, but the follow
ing weaker conjecture implies C l.

C3 Every graph of order n has a path-cycle partition with at most — elements of 

which exactly are paths, where u is the number o f odd vertices.

Indeed, this conjecture is equivalent to the following: 

C 'l I f  G is an even graph o f order n, then c (G) S  U * .

In order to show the equivalence it is sufficient to consider connected graphs. If 
C3 is true, let x  be a vertex of the eulerian graph G and let { jj, ..., y2p} be the neigh
bours of x. The graph G — {x} has a path-cycle partition P with at most ” ' ele
ments, and exactly p paths the endpoints of which are the yt's. Then P induces a parti

tion of G into at most — cycles. Conversely one can see that C 'l implies C3 by 
joining an auxiliary vertex to all the odd vertices of G.

Conjecture C'l seems stronger than Cl. In fact N. Dean observed (private com
munication) that the assertion C' 1 for n even is equivalent to Cl for every n.

Our purpose here is to study C2 and C'l for some eulerian graphs. First let us
note

P ro po sitio n  1.1. I f  G is an eulerian graph, minimally 2-connected or mini
mally 2-edge-connected, then c(G) 2= H  ̂ .

P r o o f . An eulerian minimally 2-connected graph non isomorphic to Ks contains
no triangle and satisfies m s 2 « - 4  [4] thus c(G )^—̂ ^ —,r—.An eulerian mini-4 2
mally 2-edge-connected graph is either minimally 2-connected or separable; in this 
last case the proposition is verified by induction on n and applying the induction 
hypothesis to two eulerian subgraphs separated by a cutvertex.

We shall now prove C2 and C 'l for eulerian graphs of maximum degree at 
most 4.
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2. Path partitions of eulerian graphs of maximum degree 4

An eulerian closed trail is called an eulerian walk when it is given by its ordered 
sequence of edges. A path P of an eulerian graph belongs to an eulerian walk if and 
only if G—E(P) is connected. Furthermore a path P which belongs to an eulerian 
walk W is called maximal at its endpoint v if v+d P, where v + is the successor of v on W. 
Since G is even with maximum degree 4, we have m=n2 + 2n4^2n, wheren2 (resp. n4) 
is the number of vertices of degree 2 (resp. of degree 4). We want to get an upper

YYl
bound for p(G) of about — . The idea of the proof is to take the edges, following an 

eulerian walk, in groups of at least four, and rearrange them in order to obtain paths.
L emma 2 .1 . Let k and l be two integers with /£ {3, 4 } . Let T=u0u1...ukuk+i...

■ ■■uk+i be a trail not o f type Glt G2 or G3 (Fig. 1) such that the degree in T  of each 
vertex ut is at most 4 and that u0u4...uk is a path P maximal at uk, and assume that T 
is o f the type Gt, G2 or G3 (Fig. 1), then the edges o f T can be partitioned into 2 paths 
P' starting in u0 and Q' ending in uk+l with \P'\ =k and \Q'\=l.

Fig. 1. G, is the union o f a triangle K3 and a cycle C ,(í/ í 3) with i vertices in common

P roof. If Q=uk+1...uk+i is elementary, then Q' = Q, P'=P. Otherwise Q is 
isomorphic to C3, C4 or to the graph //(Fig. 2).

Let z be that point of NQ{uk) — {uk+l} contained in P, which is nearest to uk on the 
path P. Then z +7i  2uk. The dilferent cases which may occur are given in Figure 3 if Q 
is isomorphic to C4, and Figure 4 if Q is isomorphic to C3 or to H. In these figures, 
P is represented by an arc of a circle, Q' by dotted lines and P' by full lines.

1. 1=4 and Q isomorphic to C4 (Fig. 3).
One can take P '= (P —zz+)Uzi/t . Then | =1/^1 and \Q'\ = \Q\ =4.

2. 1=4 and Q isomorphic to H  (Fig. 4).
If the initial point uk of Q coincides with b (Fig. 4.0), then uk + l which is a point of 

P coincides with a. But a cannot be an inner point of P, otherwise its degree would be

Fig. 2
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“o

Fig. 3. The vertex v may belong to P

Fig. 4. The vertices v and uk + l may belong to P

at least 5; neither be u0, otherwise T  would be of the type Gi , G2 or G3. Thus uk=a 
and uk+i=b.

If  z +9£uk+i (Fig. 4.1), one can still take P '—(P—zz+)Uzuk. Then |P '| = 
= \P\ and 101=101=4.

If z +=uk+4 (Fig 4.2), one can take P' = (P — zz +— ukuk- k)\Jzuk'0ukz +. Then 
\P'\ = \P\ and \Q'\=\Q\ =4.

3. 1=3 and Q isomorphic to C3.
This case can be reduced to the case 2 by deleting the edge ukuk+i. Then |P '| = 

= \P\ and \Q'\=\Q\=3. □
We can now partition G.
T heorem 2.2. I f  G is an eulerian graph of size m and maximum degree at most 4,

not isomorphic to C3, C4 or C5 then

Proof. We see easily that if G is isomorphic to C6 or to a graph of kind Gl , G2
ryi -1-2

or G3 (Fig. 1), then m ^ 6  and p= 2s.

In the other cases, m s7 . By the lemma (take k=  2, /=4), there exists a path 
P of length at least 4 which can be extended into an eulerian walk W of G. By the 
following rules, we shall, recursively, define a partition of the edges of W into paths 
P ‘.

1. L°=P.
2. We extend Ú  until it becomes a path ÚM maximal at its endpoint in W.
3. If possible, we take the trail Q' formed by the 4 edges following UM in W and 

not yet taken, and we apply the lemma to the trail L'M U Ql; so we get two elementary



PATH PARTITIONS 241

paths Pl+1 and Ll+1 with Pi+1U Li+1=L‘MU Q‘, |/5Í+1|=[LÍí |s 4  and |Li+1|= |ß 'l = 
=4.

4. We return to 2 (with incremented i).
This process must stop. Then either all the edges have been taken and p(G 

or there remains a trail Q of at most 3 edges; in this last case, if Q is not ele
mentary we apply again the lemma to get one more path and thus

If m ̂  1 (mod 4) then an<d we are finished- If m =  1 (mod 4),
there exists at least a vertex a of degree 2. Its neighbours and a» can be supposed

adjacent otherwise p(G)= • When diftfl or d(a2) is equal to 2 or when the even
graph G '=G —E(aa1a2a) is not connected, since m ä9 , it is easy to construct a path 
L° of length 5 which belongs to an eulerian walk of G. When d(a1)=d(a2)= 4 and G' 
is connected, one can verify that such a path still exists. So

C o r o lla r y  2 .3 . I f  G is an eulerian graph o f order n and maximum degree at most 

4, then p(G!)=§ •

P roof. If G=C3, C4 orC5, p((7 )= 2g | j . In the other cases, Theorem 2.2 

implies p ( G ’ hecause ttnS.2n. □

The bound I —y —| of Theorem 2.2 is reached for example by any graph Hq in 

the infinite family of figure 5.

Fig. 5. The graph Hq 
is obtained from C, by joining each 

o f its vertices to a Kt .

16
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3. Cycle partitions of even graphs with maximum degree 4.

Let G be an even graph with maximum degree A ^ 4  without loops, but possibly 
with parallel edges. A cycle partition may contain cycles of length 2. We denote k 
parallel edges between x and y  by k{xy).

We say that we “lift a vertex x” of degree 2 adjacent to y and z if we delete x 
and add an edge yz.

Our purpose is to prove
T h e o r em  3 .1. I f  G is an even multigraph o f order n, of size in, with As. 4, then

c(G )s  
by G.

n + M - 1 
2 where M = m —m* and m* is the size o f the simple graph induced

P r o o f . We prove the theorem by induction on n assuming without loss of gen
erality that G is connected.

If n = 2 or 3, the result can be checked easily on each of the only six possible 
graphs (Fig. 6).

^  / X  ^
Fig ■ 6

Suppose the theorem true for every order less than n (n ^ 4) and let G be an 
eulerian multigraph of order n.

Case 0. The graph has a cutvertex a.
There exist two eulerian subgraphs L1 and L., such that V(Lj) Pi V(L2) = {a}. 

Applying the induction hypothesis to Lx and L.z, we get c(G)Sc(L1) + c(Lz)S  
n + M - 1 

2 ‘
In each of the following cases, we shall apply the induction hypothesis to a graph 

G' associated to G, and construct a cycle partition P of G from a minimum cycle 
partition P' of G'.

Case 1. There exists a point x of degree 2.
Let y and z be the neighbours of x. We take G'=(G —x)U vz obtained from G 

" {n—\)+ {M + 1)— 1 n+M — 1 ^by lifting x, and thus c(G )= ----------- -z------------ = ----- =----- . Then we see that

c(G )Sc(G ')S
n + M — 1

Henceforth we can assume that G is 2-connected and 4-regular. 
Case 2. There exists a triple edge 3 (xy).
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Since /j s 4  and q  is 2-connected, x and y  have no common neighbour. Let 
N(y) — {x} = {z} and G' =  (G —y)Uxz. Then c(G ')^  —— 1 ) + ̂ — L, We get

P from P' by dividing the edge xz of G' by a vertex y  and adding, as new element in P,
72 -I- Af — 2

the 2-cycle xyx. Thus c(G )Sc(G ')+1 = -----^----- •

Case 3. There exists a double edge 2(xy) (Fig. 7).

J ^ K Í T k f ^ / ^  t ^ l  ^
7.1 7.2

Fig. 7

We form G' by removing the 2-cycle xyx  and identifying y  with x. To get P from 
P', we choose two appropriate edges xat, i£ (1, 2}, of G', such that dividing each 
of them by a new vertex y t and identifying y1 and y2 to form y, we obtain the starting 
configuration.

(a) If N(x)DN(y) = 0 (Fig. 7.1), then c(G ')^  +  ̂  1} 1 and in every 
possible case it is easy to see that c(G)^c(G') + 1.

(b) If N(x)0N (y)7±0 (Fig. 7.2), to get P we choose the two edges xat not con

tained in a same cycle of P '\ then we can see that c(G)^c(G') = —— ' ̂  ~—~ •

Case 4. The graph is now simple, 2-connected and 4-regular.
(a) If there exists a vertex x  with two adjacent neighbours a, b and two non adja

cent neighbours c and d, then the graph G"=(G — cx — dx) U cd has a vertex of
li — /degree 2. By Case 1, we have c (G ) S —-—. Given a partition P' of G" we can suppose

that axb and cd are not in a same cycle otherwise we transform P" by exchanging axb 
and ab. Returning to G, we get a partition with the same number of cycles.

Henceforth we assume that such a vertex x does not exist.

c(G) =

(b) If there exists x  such that N(x) is complete, then G is isomorphic to Kb and 
n— 1

If there exists x such that N (x) is isomorphic to C4, then, because of (a), one can 
verify that G is the graph of Fig. 8 and that c(G) = 2 = | Ŵ   ̂ .

(c) Now for each vertex x, either N(x) is isomorphic to 2K.> or N(x) is an inde
pendent set. If there exists a vertex x such that IV(x) is an independent set, then, since 
the case (a) is solved, N(y) is also an independent set for every vertex y, and there 
exists a chordless cycle of length at least 4. If N (x) is isomorphic to 2K2 for every x,

16*
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Fig- 8

then one can verify that G contains a cycle with the same properties. In either case, let 
C be such a cycle. We remove its edges and in the remaining graph we lift the vertices 
of C. The graph G' so obtained is simple since C is chordless and since no edge joins 
two vertices not in V(C) but adjacent to the same vertex of C. By the induction hypo
thesis, c(G' ) s  ——^ —L and then, replacing the vertices of C, we see that c(G)^

rSc(G') + 1*

Now the proof is complete. □
Corollary 3.2. I f  G is an even simple graph o f order n, with I s  4, then c{G) S

_n — 1
~ ~ 2 ~ ‘'

P r o o f . Clear from Theorem 3.1 with M = 0. □
A ck no w ledg em en ts . The authors are grateful to D. Sotteau for her helpful 

advice.
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ANSWER TO A PROBLEM OF I. JOÓ

M. HORVÁTH

If we have a continuous non-negative function / :  [0, °=>) — R, it is easy to define 
a sequence xt/ ° °  suchthat

*n + l *n + !f  f  f  (« = 0,1,...).
xn *„ +1

The analogous discrete problem, found by I. Joó, is much more complicated. Namely» 
if we have a series

2 an =ca and an >  0 for n s  1,
n =  l

is there a sequence of natural numbers N0=0, Nt/  +  ~  such that

+ 1 Ni + 2
2  “i ^  . 2  aj 0  =  0 ,1 ,...)?

J  — Nt + 1 j — Ni + i  +  l

This question is partially answered in [1]. The authors showed that this problem is 
closely related to the following one:

Let for c>0 and N nk(c) be the smallest number w€ N suchthat

m

k c ^  2  aj-
i =i

What is the relation between the convergence of 2  a* and that of 2  a«k(c) for
n=l k=1

the “typical” c’s (c>0)? In [1] it is proved that if 2  al = °° then

T :=  {c > 0 :  2  ank(c) <°°}

is a set of first category. The question, can the set Y be of positive measure or not, is 
still unanswered.
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To attack this last problem, I. Joó proposed in [2] the investigation of its contin
uous version: Suppose that / :  [0, °°) —R is continuous, / > 0  and

/ / ■ = - •o

Define the number xk(c) by the equality

xkM

Then the set

f  f= k c .
0

Y {c > 0: Z f ( x k(cj) < » }

can be of positive measure?
The aim of the present paper is to give a positive answer to this question. We 

remark that Z. Magyar, independently of the author, has got the same result.
We shall prove the following

Theorem. There exists a continuous function /': [0, °°) — R such that 
0 < / ( * ) < !  (v€R),

j P and 2 7 ( * * ( c ) )  <  oo for a.e. c > 0.

The proof is based on the use of Beppo Levi’s theorem, similarly to the proof of 
Theorem 3 in [1] and on a construction of J. A. Haight [3]. We shall argue in three 
steps.

1. Let /(* ): = 1
(x + l)3/4

; then f£L 2(0, <=o)\L1(0, «=). Define further

Fit) := / /  = ( t+ 1)1/4— 1 
1/4

then F \z )  = ^  z +1 j  — 1.

Suppose that a system ß  of disjoint intervals is given in the segment [0, n\ and

l / l  =  cn

(\ß \ denotes the sum of the lengths of the intervals of / ) .  Then F ~ \ß )  is also 
a system of disjoint intervals and

|F - 4( / ) |  S  F ^ d / I )  ^  F~Hcn)
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because F 1 is monotone increasing and convex. Hence

( 1)

F-H«)f  f  f =
F F - ' M - F - H c n )

=  F (F ~1(rij)—F(F~1(n) — F~1(crij) £

£  n(l —(1 —c4)1/4) —4.

2. In this section we shall prove the following

L em m a . Let £*\0, 2  sk~=:o°- We can define for each k £  N a number nk£N and
k =  l

a system f k of disjoint intervals such that
(a) The intervals of f k are left to that o f f k + 1 for all k.

(b) A c [ 0 ,n k\, IAI £  eknk and

lim (1 — (1 — £fc)1/4)«fc = “ •

(c) 2*< i  n ' ( Ü o  i / i ) |
\ k  = kn n=l n  ) \

Co 2  £k (k0 = 1,2, ...)

(where, o f course, c0 is independent o f k0).
P r o o f . Introduce the notation ([3])

t t + e

A ( x u x 2, q,E) :=[xx,x2]n  |J  (e«, e « ) .
t i Z

We set

A  : =  nk> dk, 8£t j

where the parameters nk, qk are to be precised. If
(2) nk + 1 =*■ 2nk 
then (a) is satisfied. The condition
(3) qk >  32

implies by [3], Lemma 1 the estimate \ / k\^ e knk ; further the condition

(4)
k

( 1 - 0  -£ * )T 4
yields that (b) is also satisfied. Fix a sequence (nk) satisfying (2) and (4) and choose the 
numbers so that (c) be also assured.

Define

Ci*°> := (fc £  k0).
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The arguments used in [3] show that for large qk
|C fo)| S  c0ek (k S  k0).

t t -f- 86̂

Indeed, if xiC [kt>) then e«* % .Here nx<nk, hence n<2kmk<2knk. By
the Dirichlet theorem on simultaneous approximation there exists g*€N,

(5) qk >  (8s*)-2k»*
such that

jn n - l £ L  (n =  1, 2, .... 2% )
qk qk

is satisfied with some pk"A Z. Consequently,
S — SEk S + lQek

e qk <  x <  e qk

s 8sfc s +  24et

e «k <  e x <  e

where x is integer. This inequality means that

and hence

—  A  1
e “k

8ek 8et
■e qk , e qk , , 24efc

_if£.| ( I Sek 8ck
e qk , e «)<, gk,24sk <  Co«*

(again by Lemma 1 of [3]) and we are ready.
3. Consider the function /  given in 1. We shall modify it on each interval of 

_F-1(tf k) (&=1, 2, ...) where the systems ß k are constructed in the above Lemma. If 
I= (x ,y ) is an interval of F ~ \ f k), we define / :  [x, y\ — R such that / (x) = 
= / (x), J (y )= f(y ) ,J  is continuous,

/ / = / /  “ d / > < ! / / .
JC X X X

Such a modification is obviously possible. We shall see that the function / :  [0, °°)—R 
satisfies the conditions of the Theorem. It is obvious from (1) and the point (b) of the 
Lemma that

/ > = -
o 1

Define
1 1
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Then by the point (c) of the Lemma (J Yko covers the segment [0, 1] up to a set of
k0=l

measure 0. Hence it will be enough to prove that

(6) Z M (< 0 )< ° °  for a.e. c£Yko.k = 1
Returning to the original function/we have

f  f ( x k(cj) dc = f  f { F - \k c )) d c = ± -  f  p  
y*0 y*„

hence
F - ' ( k Y k )

2  f f ( x k( c ) ) d c =  Z t  f  f 2 =  f f 2(,Á  z *  t ) cU *= iy, o yF(»tkYkokJ

and analogously

2  /  f(xk(c)) dc = f p (  o f  2 *  I )
* =  l y ,  0J  [~ P (l)ék rk

d/

• oo
where F(t)= f  J. We see from the construction o f /th a t if F(/)$ 1J / k then / ( / )

i— i* = 1

=f(t )  and F(t) = J  f — J  f=F(t ) .  Consequently, F~1{#k) = F~1(/^). Secondly, the 
o o

definition of Yko implies that

kYtko' = 0 (n ^  /co).
Forjarge t ( /S 4 0) F(t) and  ̂F(t) do not meet / .......hence F(t)£kYkl)
(or F(t)£kYko) implies F(t) = F(t) and So we have

2 k  tt) dt = f p ( t ) {  2 k>( {^>CkYka k )  P(,HkYko k )

since

Now

'*(i/2 “o)aE(()afc

2  7 7  ^  Const • k0
k0 r̂ x &F(t)^k^2KoF(t)

2  f l ( x k(c))dc = J  I 2 if) ( 2  i ) *
W y : o' ^«)€m  k )

and (6) follows from the theorem of Beppo Levi. The theorem is proved.
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CONGRUENCES ON INVERSIVE HEMIRINGS 

B. PIOCHI

Abstract

In the present paper we study congruences on inversive hemirings. In the first part we use Pet- 
rich’s techniques to get a characterization. In the second part a special class o f congruences is dis
cussed, and a theorem is given about the quotient hemiring; in this part an interesting decomposition 
o f hemirings is also introduced. We refer to [4] for theorems on congruences and to [1] for background 
on semigroups.

1

A hemiring is a nonempty set A with two operations + and •, where (A, + ) is 
a commutative semigroup with identity 0, (A, •) is a semigroup, • distributes over 
-f from both sides and 0 -a = a -0 = 0  holds for all ad A. A hemiring A is called an 
additively inversive hemiring if (A, + ) is an inverse semigroup (i.e. for every element a 
in A there exists exactly one element ( — a) such that a + ( — a)+a=a and (—a) + 
+ a + ( — a)= —a. If, in addition, (A, •) is commutative, A is called a commutative 
additively inversive hemiring. Throughout this paper, when speaking of a (commutative) 
hemiring, we always mean for short a (commutative) additively inversive hemiring; 
we often write —a instead of ( — a) to indicate the additively inverse element of a, 
a —a instead of a + (—a) to denote the additively idempotent element generated by 
a and a — b instead of a+(—b).

As far as additively idempotent or inverse elements of a hemiring (A, + , •) are 
concerned, we have the following trivial, but extremely useful lemma:

Lemma 1.1. For every additive idempotent edA, and for every cd A, the product 
e-c is additively idempotent. I f  ad A and —a is its additive inverse, then, for every 
cd A, c • (— a) =  — (c • a) is the additive inverse of c-a.

Yusuf ([6]) has studied special subsets of a hemiring A: A subset /  of A is said to 
be an ideal of A if /  is an additive inversive subhemiring of A such that /  contains all 
additively idempotent elements of A and such that A ■ /+ / •  Aczl. The set E  of all 
additive idempotents of a hemiring A is an ideal of A (by Lemma 1.1; see also [6]) and 
is called the trivial ideal of A. In the theory of hemirings, ideals play a very important 
role, when studying congruences on hemirings. A congruence on a hemiring (A, + , •) 
is a congruence g on the additive semigroup (A, +), such that for every a, b, cd A, 
agb implies a • cgb ■ c and c • age • b.

As is well-known, the study of homomorphisms in groups is greatly simplified by 
the correspondence between homomorphisms and normal subgroups; the same holds 
for rings, where the corresponding role is played by two-sided ideals. After several

1980 Mathematics Subject Classification. Primary 16A78; Secondary 20M25. 
Key words and phrases. Hemirings, inversive hemirings, congruences.
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attempts, an elegant analogue has been found for inverse semigroups, and “normal” 
subsemigroups were associated with congruences in a very natural way. Let us re
member some definitions, which can be found in [4].

Let S  be an inverse additive semigroup and let g be a congruence on S. The 
restriction g\E = c, of n to E  (the subsemigroup of idempotents) is said to be the trace 
of q ; the subset N  of the elements of S, which are ß-congruent to some idempotent, 
is said to be the kernel of g. If we say that a congruence C on E  is normal when ecf 
implies that, V  S, ( — a)+e + a£( — a)+f+a, then every trace is normal; and if we 
say an inverse subsemigroup N  of S to be normal when it is full (i.e. it contains every 
idempotent of S) and self-conjugate (i.e. for every x£N, and for every a in S, 
( — a) + x  + a belongs to N), then every kernel o f any congruence on S is a normal 
subsemigroup. Besides, it is readily seen that the trace £ and the kernel N  of any con
gruence j o n S  fulfil the following two properties:

(c) (Va£S)(Ve£E) [if a+ e£N  and ( — a) + a£e, then a^N]
(d) (\/a£N )(-a)+ a$a + (-a ) .
Following [4], we say that a congruence pair is a pair (c, N ) where:
(a) c, is a normal congruence on E;
(b) N  is a normal subsemigroup of S;

(c) and (d) hold.

We may summarize the previous remarks by
Lemma 1.2. For every congruence q  on S, the pair ( trace q ,  kernel q )  is a congru

ence pair.
Conversely:

Theorem 1.3 ([4]). For every congruence pair (c, N) there exists exactly one 
congruence o on S, such that £ =  trace o and N=kernel o namely:

q — {(a ■ b )£SxS: a — a^b — b and a — bdN}.
Now, when S is commutative (a fortiori when S  is the additive semigroup of a 

hemiring), conditions (a) and (d) are trivially satisfied. So we can give the follow
ing definition of a congruence pair on a hemiring:

D efinition 1.4. Let (A, + , •) be a hemiring. If q is a congruence on the additive 
semilattice of idempotents E  of A, and N is an ideal of A, then (í, N) is said to be a 
congruence pair on A if the following condition holds:

(*) for every a£A, if there exists e£E: e^a—a and a + e£N, then a£N.
The importance of this definition is emphasized by the following theorem, where 

the notions of trace and kernel of a congruence on a hemiring are the immediate 
extensions of the above ones for inverse semigroups:

Theorem 1.5. For every congruence q on a hemiring A, (trace o, Ker o) is a con
gruence pair.

Conversely, for every congruence pair (c, N ) on A, there exists exactly one con
gruence q such that trace q = £ and ker q—N, namely:

q = {(a, b)£AXA: a —a^b — b and a — b£N}.
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P roof. A large part of the theorem follows from what we already observed about 
congruence pairs on commutative inverse semigroups and from Theorem 1.3. Here 
we have to prove that ker g is an ideal of A. Let a£ker g. Then there exists an addi- 
tively idempotent element e£E such that age. For every c£A, by Lemma 1.1, 
c-e is an additive idempotent; since g is a congruence on A, thus, c-agc-e, and 
c ■ a£ ker g. A similar argument can be used for the right multiplication.

Conversely, let (£, N ) be a congruence pair and let us prove that g, as defined 
above, is a congruence on A and ^=trace g, N =ker g. Again, by Theorem 1.3, the 
only thing we have to prove is that the additive congruence g on (A, + ) is preserved 
by multiplication.

Firstly, we prove that every congruence £ on the semilattice E is preserved by 
multiplication on A: let e,f£E  and ct;A. Then c — c=g is an element of Fand 
g -e ^ g -f  since £ is a congruence on E. But g • e=(c — c) ■ e=c • e—c ■ e=c ■ e, by 
Lemma 1.1; again, g - f= c - f  and therefore, if et;f, then c-e^c-f.

Now assume agb. It means that a—afb — b and a — b£N. So, for every c£A, 
c ■ a — c ■ a= c ■ (a — affc • (b — b)= c ■ b — c • b and c ■ [<3 + ( — b)\ = c ■ a+ c • ( —b) = 
= c-a +  ( — c-b) belongs to N. Then c-ag-cb. The same holds on the right side, 
completing the proof.

2

If £ = e £ , the identity relation on E, it is trivial to see that it is normal and prop
erty (*) holds. So we have the following (see also [3] for the corresponding theorem on 
semigroups):

Corollary 2.1. For every ideal N of a hemiring A, the pair (e£, N) is a congruence 
pair, which corresponds to the following congruence:

(p = {(a, a)£A xA : a —a =  b — b and a — b£N}.

In this second part of the paper we want to get more information about this spe
cial class of congruences, whose trace equals the identity, by applying to hemirings 
some results about congruences on Clifford semigroups. Recall that:

Definition  2.2. A semigroup is called a Clifford semigroup when it is inverse and 
its idempotent elements are central. A semigroup A is called a strong semilattice o f 
groups if A =  U Ah where each At is a group, Y  a semilattice and the following

i i Y
conditions hold:

(1) for each j fY ,  i ^ j ,  there exists a homomorphism cpuj\ At^ A j ,  such 
that cpiti is the identical automorphism for every A, and <pitJ • (pj,k = (Pi,k',

(2) for each i,jf_ Y, if a£At and beAj, then a+b=(a(piii+j) + (b(pJti+j), 
(here i+ j denotes the greatest lower bound of i and j  in the semilattice Y, and the 
addition of (a(pu+J) and (b(pJti+j) takes place in the subgroup A:+J).

Proposition 2.3 ([1], IV. 2.1). A semigroup A is a Clifford semigroup if  and only 
if A is a strong semilattice o f groups.

It is readily seen that the additive semigroup of a hemiring A is a Clifford semi
group, since it is commutative. The additive idempotents are the zero elements of its
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subgroups A i . In the following we always call e the zero of Ah f  the zero of Aj, g the 
zero of Ah.

The following theorem points out a connection between the product on A and 
such a semilattice structure:

T heorem  2.4.
(i) For every i,jü Y, there exists h£Y such that A,- AjQAh; we say h —

= i*j;
(ii) For every i,j, h£Y, i f i+ j indicates the greatest lower bound o f the two ele

ments, then (i+j)*h=(i*h)+(j*h);
(iii) For every i, j, h£ Y, if i ^ j ,  then i*ht=j*h and h*it=h*j;
(iv) For every i, j£ Y, then i*i^i*j= j*j and i*i^áj*i=j*j.

P ro o f . From Lemma 1.1 it follows that the product e • / (ed A ^ fd A f is an 
additive idempotent; hence it is the zero element of some subgroup, say Ah, of A and 
e-f= g . If a£Aj, then, again by Lemma 1.1, g = e - f—e ■ (a—a)= e• a — e ■ a and 
e-a= g£A h. If c is any element in At, then e ■ a=(c — c) ■ a—c ■ a — c ■ a, c-adAh 
and part (i) is true.

Part (ii) is an easy consequence of distributivity on A  and part (iv) is a corollary 
to (iii). Thus we only have to prove (iii). Let e^At and f£ A j and let c be an element of 
Ah. If i ^ j ,  then e+ f= e  and therefore e ■ c = (e • c) + ( /-  c) implies that i*h^  
=j*h.

Any ideal N  of a hemiring A is certainly a normal subsemigroup of (A, + ); 
whence, by [2] 1.3, its intersections Nt = Nf] A; are normal subgroups of At, for every 
i£ Y. Besides, for every two elements a,b£A, if a — a=b — b, then it must be true 
that a, b£ At for some i£ Y. This implies

P roposition 2.5. Every ideal N of a hemiring A is the kernel o f at least one con
gruence on A, namely N=kernel(p, where: cp= {(a, b)£AXA: for some i£Y, 
a ,b£A t and a—b£Ni}.

But we can say more. Using again a result in [2], we can describe the quotient 
image by this congruence.

T heorem 2.6. Let N  be an ideal o f a hemiring A and let cp be the congruence asso
ciated to the congruence pair (s£, N) and let T= A/q. Then T=  (J 7), where

iCY
Ti= A iINi and the homomorphisms 7) -*Tj are induced naturally by the corre
sponding Qi'j-: Ai-*Aj.

P roof. By Lemma [2] 1.7 this is true if we consider the (Clifford) semigroups 
(A, + )  and (T, +), defining the homomorphisms ditj by: tOij= N j +sQij ,  where 
t = Ni+s. To complete the proof we only have to show that this decomposition of T  
is compatible with multiplication.

Let t1=Ni+s1, t2= N j+ s2; we have that:

U * =  (TVj + Si) • (Nj + s2) = Nt • Nj + N, • + h  • NJ--\-s1 ■ s2.

Since N  is an ideal of A, then Nr Nj, Nt ■ s2, s1-NJ are included in N. But s f  5) 
and j a€ S f, hence tx-t2 — N ^j + sx■ s2.



CONGRUENCES ON 1NVERSIVE HEMIRINGS 2 5 5

By using Theorem 2.4 it is just a matter of calculation to verify the distributivity 
of multiplication.

A c k n o w le d g em en t . The author wishes to thank Prof. R. Wiegandt, for drawing 
his attention to this problem.
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SUBDIRECTLY IRREDUCIBLE LOCALLY BOOLEAN ALGEBRAS

T. WESOLOWSKI

0 . In [5] J. Plonka introduced the notion of a locally Boolean algebra as an al
gebra A=(A',\f, A, ') of the type (2, 2, 1) where (A; V, A) is a distributive lattice 
and there exists a congruence R of A such that any congruence class [a]R, a£A is a 
Boolean algebra with respect to the operations V, A and ' restricted to [a]R.

Locally Boolean algebras have an interesting application in logic and were investi
gated from this point of view in [4], In [8] a representation theorem for some algebras 
of this kind was given.

In this paper we describe all subdirectly irreducible locally Boolean algebras. 
We prove that such algebras can be constructed by means of disjunctive and codis
junctive distributive lattices. We use the notion of a disjunctive (and dually co
disjunctive) lattice utilizing the notion of a disjunctive poset (see [1], [6] and [7]) for 
lattices.

Our terminology and nomenclature is basically that of G. Grätzer [2] and [3].
1. It was proved in [5] that the class L(B) of all locally Boolean algebras is a vari

ety. More precisely (see [5]), if A=(A; V, A ,') is an algebra of the type (2, 2, 1) 
then A belongs to L (B ) iff A satisfies the following identities:

(1) identities in V and A which define distributive lattices;
(2) (*')' =  *;
(3) (x\/ x'Y = x A x ’\

(4) {x f y )A (x f y)' =  ( x A x ' ) V ( y A y ' ) ;
(5) (xAy)V(xAy)' = (xVx')A(yV/).
A suitable congruence of an algebra A satisfying (1)—(5) is the relation R defined 

as follows:
(i) a =  b(R) iff a A a '= bAb' for all a,b£A.

Moreover, the relation defined in (i) is the only one congruence of an algebra 
of type (2, 2, 1), which decomposes A into its Boolean subalgebras and consequently 
A satisfies (1)—(5) (see [5]). Following J. Plonka we shall call R the bounding congru
ence o f A.

J X

1980 Mathematics Subject Classification. Primary 06DXX; Secondary 06EXX.
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Let A=(A; V, A ,') be a locally Boolean algebra and R be the bounding con
gruence of A. The zero-element a A a' and the unit a\l a' of the Boolean algebra 
([a\R ; V, A, '), a£A we shall denote by 0a and 1„, respectively. The reduct (A; V, A) 
of A will be denoted by A. If (L; V, A) is a distributive lattice and a, b£L, a ^ b  
then 0(a, b) will denote the least congruence of (L; V, A) such that a=b(0(a, b)). 
By G. Grätzer—E. T. Schmidt theorem (see [2] p. 74) we have:

(ii) x = y(0(a ,b ))  iff aAx = aAy  and b\fx = bVy 
and
(iii) if x = y(0 (a , b)) and (x ^  y S  a á  b or a ^  b ^  x  ^  y) then x = y  
for all x,y£L .

Finally we denote by Con A and Con A the lattices of congruences of the algebra 
A and the lattice Ä, respectively. Of course we have Con A giCon Ä.

2. In [1] the notion of a poset satisfying the disjunctivity condition was studied. 
By means of such posets J. R. Buchi characterized dense subsets of Boolean algebras 
(cf. in [6]). In [7] posets satisfying the disjunctivity condition and having the least 
element have been called disjunctive. We apply this notion for lattices in the following 
way.

A lattice (L; V, A) with the least element 0 is called to be disjunctive if for any 
two elements a, b£L, a<b there exists an element c fL  such that

(C) 0 < c S i i  and a A c = 0.
Dually, a lattice (L; V, A) with the greatest element 1 we shall call codisjunctive 

if for any a,bdL, a<b there exists c£L such that
(C') a ^  c <  1 and bVc =  1.

We have
(iv) If 0  is a nontrivial congruence of a disjunctive lattice (L ; V, A) then 

there exists c£L  suchthat 0 < c  and O =  c(0).
(iv') If 0  is a nontrivial congruence of a codisjunctive lattice (L; V, A) then 

there exists c£L  suchthat c-= 1 and c = l(0 ) .
In fact, if 0  is such a congruence then there exist a, b£L such that and
a= b(0). Hence by the definition of a disjunctive lattice we get (C) for some c£L. 
Thus O =  uAc=bAc(0) and consequently O =  c(0). The proof of (C') is analogous.

Let us denote by DS and CDS the classes of all distributive disjunctive and all 
distributive codisjunctive lattices, respectively. Let 0^(1^) be the least (the greatest) 
element of a lattice L£D S (L£CDS). For lattices L1=(L1; V, A)£CDS and 
U = (L 2 ; V, A)£ DS such that Li nL 2=0 we denote by Li ©L2 the ordered sum of
X> X X  ha. .1
L, and L2 ■x 1

We recall that is the lattice (L1U L2) V, A) in which the lattice order s
is defined as follows:

a ^ b  iff aCZj and b€Z2 or a and a,b^.Ln
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1 =  1, 2, where is the lattice order in Lt, i=  1,2.
Now we can define a unary operation ' on the set LxUL2 putting a'= 0Ll if 

a = lLl, a' — l tl if a = 0 Í2 and a'=a  otherwise.
It is easy to see that the algebra L1©Z,2=(L, U L2\ V, A ,') is a locally Boolean

algebra. The bounding congruence R of L X®L2 has exactly one 2-element congru
ence class [OxJR= [ l t J R =  {0L2, 1 Ll} and other congruence classes are 1-element.

Theorem 1. I f  , A)£CDS, L2=(X2; V, A)£DS and Z,i n L 2=0
then the algebra LX@L2 is subdirect ly irreducible.

Proof. It is easy to see that the bounding congruence R of LX®L2 is an atom

in Con LX®L«. Let 0  be a nontrivial congruence of L, ©L,. Hence 0  is a nontriv- 
ial congruence of the lattice LX®L2. Therefore there exist elements a ,b£L xU L2 
suchthat a<-b and a = b(0). If a£Lx and b£L2 then 1^=0^ (0 ) since a con
gruence class of a lattice must be convex. Thus R Q 0 .

If a, bdLx then we consider a restriction 0 X of 0  to the sublattice L x of LX®L2. 
Obviously, 0 X is a nontrivial congruence of the codisjunctive lattice Lx and by (iv') 
there exists c£Lx such that c < lLl and c = lLl( 0 x). Hence c = lLl(0 ) and c = 
=c'=OLf 0 )  since 0  satisfies the substitution law fo r '. Thus 1 Li~c=OLJ 0 )  what 
proves that RQ  0. The same result we get in the case when a, b^L2. This shows that
R is the unique atom in the lattice Con LX®L2 and consequently LX®L2 is sub- 
directly irreducible (cf. [3] p. 124).

3. From now on let us assume that A=(A; V, A ,') is a fixed locally Boolean 
algebra with the bounding congruence R.

Lemma 1. I f  0(LCon Ä and 0 Q R  then 0£Con A.

Proof. Let a = b (0 ) and 0 X be the restriction of 0  to the sublattice [a]R of 
A. Since 0 t is a congruence of the Boolean lattice ([a]R; V, A) so 0 X is a congruence 
of the Boolean algebra ([a]K ; V, A , '). Hence a '= b '(0 x) because a, bd_[a\R, Thus 
a' = b'(0).

Lemma 2. I f  a, b£A, a^b  and a = b(R) then 0(a,b)£ConA.

Proof. We shall prove that 0(a, b)Q R  and apply Lemma 1. Let c=d(&(a,b)). 
By (ii) we have aAc=aAd  and £>Vc=Z>Vd. Hence [a]RA[c]R=[aAc]R=[aA J]R =  
= [a]R A [d]R and [a]R V [c]R = [A]RV[c]R =  [&V c]R =  [AV d]R = [h]R V [d]R =  [a]RV[d]R. 
Thus [c ]R = [d]R since the quotient lattice AIR is distributive.

Let us accept the following notations:
Ax = {x£A: |[x]R| =  1},

A2 = {x£A: |[jc]r | =  2},

A3 = {x£A: |[x]R| >  2}.

17*
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L emma 3. I f  the algebra A is subdirectly irreducible then A3=0.

P roof. If a£A3 then there exists bf_[a]R such that Oa< h < la. Hence by Lemma 2 
and (ii) the relations 0(Oa,Z>) and & (b,\a) are nontrivial congruences of A such 
that 0(Oa, b)C\0(b, la) is the trivial congruence of A. Thus A is subdirectly reduc
ible.

L emma A. I f  A3=0 and A2 ̂  0 then the following conditions (a) and (b) hold:
(a) A2 is a sublattice o f A,
(b) i f  x ^A i and y€A2 then x\Jy^A2 or xA y£A 2.

P roof, (a). Let x ,y£ A 2. Then xVy£A1U A 2 and xAy€A1UA2 since A3—0. 
But if then the lattice Ä is not distributive since in view of (4) and (5) it
must contain one of the following sublattices Lx, L2, L3, Lt which diagrams are 
presented in pictures (the classes of congruences of R are indicated by dash lines):

Thus x\/y€ A 2. Similarly, xA y£A 2.

(b) If x£Ax, y£A2, xV y€A x and xA y€A x then 0̂  = 1 ,̂ 0lVy = \xSy and 
0xAy =  lxA),. Hence by (5) and (4) we have ly = lyA(*vy)=l,A  lxvy =  lyA

L emma 5. Let A3=0, \A2\ > 2  and a£A2. I f  all elements xf_A2 satisfy the 
following identities

then there exists a nontrivial congruence 0(a) o f A such that 0a^  la(0(a)).

P roof. It follows from Lemma 4 that A ,  is a sublattice of A. Hence there exists“ X
b£A 2 suchthat [a]R-=[Z>]R or [6]R<[a]R since |.42|>2 . Let us put 0(a) = 0 ( l a, lj,) 
if M r< [ í ]í! and 0(a) =  0 ( l fc, la) if[h]R<[u]R. To prove that 0(a) is a required 
congruence of A we assume that 0(a) = 0 ( la, 16) for [a]R<[6]R. The proof in the 
second case is similar.

(6)

(7)

By (ii), (6) and (7) we have 0 ( la, lf,) =  0(Oa, 06) since

0a =  O60 ( l a, lj,) and 1, =  l„0(Oa, 0,).



LOCALLY BOOLEAN ALGEBRAS 261

Let c= d (0 ( la, I;,)). Hence by (ii) we have:

(8)

(9)
( 10)  

( 11)

laAc =  l flA d, 
1 tV c=  UVd, 
0aAc — 0aAd, 
0fcVc = 0„Vd,

and consequently, [aAc]R=[aAi/]R and [Wc]R=[6Vd]R.
If c,d£Ai then c =  c' and d=d' so c '= d '{0 ( la, lb)).

If c^Ax and d£A2 then c=0c= l c and the element d must satisfy (6) and (7). 
Thus d = \d since laAd=:laAc:=:laAlc= l aAc =  laA<l̂ OaA<i. Hence by (11), 06V 
VIrf^OjVc^OfcVO^OfcVc^OfcVd- Furthermore, 0a =  0aAA since [a]R = [u]RA[fc]R = 
=  [aA£]R. Now we observe that the elements by d, b, aAd£ A., also satisfy (6) and 
(7) so we have 0a 0av(aAi/)' OaVOaAd=OaAAVOaAd=0(aAA)y(aAd)=OaA(Ayd) —laA 
AOj, V(| =  IoAÍOjV ld)=(laA0(,)V(laA ld)=0aAi(V loAd=0aV laAd = 1„ v (aa<o =  la — a 
contradiction. The argument in the case when c£A2 and d~At is similar.

If c,d£A2 then c=0c and d —0d or c= lc and d= ld because of (5), (8) and 
(7). We shall prove that

In fact, the element b£A2 must satisfy (6) so laVli, =  layi> = liJ. Moreover,

fies (6). Hence 0fcVc =  lfcVc — a contradiction. Thus lfeV lc = li, vc. Similarly we prove 
that lftVld— 1/,y . The equality lt,Vc==li,Vd is obvious. The proof of (13) is anal
ogous.

Now, if c=0c and d=0d then by (5) laAc' =  laAlc =  laAc= l aAd =  laAlíl = 
= laAd' andby(12) lí,Vc' =  l /)V lc = li)Vlá =  l6Ví/'. Thus c '= d '(0 ( la, 1A)) because 
of (ii). The same result we get for c —lc and d = ld but in this case we apply (13).

We proved that 0 ( l a, 16) is a congruence of A. Finally observe that 0a^  
^ l a( 0 ( la, 16)) since otherwise we get 0a =  la because of (iii). Q. E. D.

Lemma 6 . I f  A3=0 and \A2\ =*2 then for any a£A2 there exists a nontrivial 
congruence 0(a) o f A suchthat Oa^ l a(0(u)).

Proof. Let a<EA2. Hence by (a) of Lemma 4 the set A(a) — {x£A2: [u]R<[x]R 
or [x]R<[n]R} is not empty. We consider two cases.

Case 1. There exists b£A(a) suchthat la<0fc or 1 -= 0a. Then it follows from 
Lemma 2 and (iii) that the relation 0(a) =  0(Ot , lfc) is a required congruence of A.

( 12)

and
(13)

Case 2. la-fcO* and l*4:0a for all x£A(a). We shall prove that all elements 
xeA 2 satisfy (6) and (7). We have laV0x, 0BVljc, laVlxGA2 and laA0x, 0aAlx,
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because of Lemma 4. If laV0x=0aVjc then la< l aV0;c=0aVx and aV 
Vx€A(a) — a contradiction. Hence laVOx= l aYx and also 1„V1*=1«v* since 
laV lx^ l aVOx. If OaAlJC = loAjc then l aAx<0a and aAx£A(a) — a contradiction. 
So 0aA lx =  0aAx and also OaAOx=OaAx. Finally, if 0aVl_x=0aVx then OaVlx = 
=0aV0x and 0aAlx=0aA0x what by the distributivity of Ä gives 1X=0X — a con
tradiction. Thus 0„V 1 jc —1„ v jc - The proof of the equality laA0x=0aAx is analogous.

Now we apply Lemma 5 what completes the proof.
T h eo rem  2. I f a locally Boolean algebra A is subdirectly irreducible then A is a 

\ element algebra or A is a 2-element algebra with x '—x or there exist lattices L ^C D S

and L 2£D S suchthat A = L,@ L2.X X X X

P r o o f . By Lemma 3 we have A3=0. If \A2\ >2 then by Lemma 6 we can asso
ciate with any element a£A2 a nontrivial congruence 0(a) of A such that 0a^  
^ l a(0(u)). Let us take Q> = {0(a): a£A2}[J {JR}. It is easy to see that C\S> is the 
trivial congruence of A so A is subdirectly reducible. Thus we have two possibilities: 
A2 =  0 o t \A2\=2.

If A2=0 then A = At and the bounding congruence R of A is trivial. Hence 
A ^ A /R  and A is subdirectly irreducible iff AIR is. Thus A has exactly one elementx x x  J  X X
or A has exactly two elements satisfying x —x.

Let us assume that |T2|= 2 . Then there exists a£A such that A2=[a]R — 
= {0a, l a} and other congruence classes of R are 1-element. Hence R is the only one 
atom in Con A.X

Let us denote by Li = (Oa] the principal ideal of A generated by 0a and by L2 — 
=  [la) the dual principal ideal of y?generated by la. Obviously, lattices£;= (/,,; V, A), 
i =  l , 2  are distributive and L x fiL , =  0. Toprovethat L1l)L 2 = A let us take xC_A. 
Then x€Aj or x£A2. If x£A 2 then x^.[a\K and consequently x^L ^UL2- If x^A x 
then by (b) of Lemma 4 we have xVOa£{Oa, la} or xA0a£{0a, la}. If xVOa€{Oa, la} 
then ,x=Ox^OxVOa=OxVa=Oa so x£L ,. If xAOag {0a, la} then xA la =  la. Hence 
\a= x  and xdL2.

Now we shall prove that Z^cCDS andL2€DS. If [LJ = 1 then the lattice ^  is 
codisjunctive. Let |Lj|>1, c, dfL^  and c-<d. Then the congruence B(c, d) of A 
does not belong to Con A since otherwise we have RQ 0(c, d), so Oa= l„(0 (c , d)) 
what together with (iii) gives 0a =  la — a contradiction. Thus there exist two distinct 
elements x0,y 0̂ A suchthat

(v) x0 = y0{O(c,d)) 

and

(vi) x'0 ?*y'0(O(c,d)).

By (v) and (ii) we have

( 1 4 )  c A x 0 =  c A j o
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and

(15) d\/ x  o =  dV y0.

If x0,y 0€A1 then x'0= x0 and yó=y0 what contradicts (vi). If x 0, y 0£A2 then 
{^o»>’o} = {0a, 1 a} and x'0=y0, y'0=x0 so xó=yó(&(c, d)) — a contradiction. Thus 
x0d Ax and y„€{0a, 1„} or x0€{Oa, l a} and y0lEA1. In the first case we have c< 
< d ^ y 0 what together with (14) and (15) gives cAx0=c and y0= dV x0=0d\/ 
\lOXo=Ody Xo=0yo=0a. Hence x ^ ^  and the lattice Lx is codisjunctive. The same 
result we get for x0€{Oa, l j  and y0€A ,.

The proof that L 2 is a disjunctive lattice is similar. Finally observe that A —

By Birkhoff’s theorem (see [3] p. 124) we have
C o ro llary . Any locally Boolean algebra is isomorphic to a sub direct product of 

some family of algebras being either 2-element chains with x '= x  or algebras of the
form LiQLo where L ^C D S  and L,€DS.
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CONVEXITY OF MULTIVARIATE BERNSTEIN POLYNOMIALS 
AND BOX SPLINE SURFACES

WOLFGANG DAHM EN and CHARLES A. MICCHELLI

Abstract

We give sufficient conditions on the control points for a Bernstein—Bézier representation o f  a 
multivariate polynomial which guarantees that it is a convex surface. A similar result is given for box 
spline surfaces.

1. Introduction

Expansions of the form

(1-1) S(x) = 2  ct Cj <ERm,i

where Q is some domain in Rs and the basis functions Bt satisfy

( 1.2)
-B,(x) £  0, x£Q, 

2 ,B i(x )=  1, x£Q,
i

are important both for theoretical and practical purposes. The control points ct 
contain “visible” information about the geometrical features of the surface 5(x) 
which is useful in Computer-Aided Design. Typical examples of this type of surface 
representation are based on Bernstein polynomials or various spline surfaces.

The objective of this paper is to study the relationship between properties of the 
control points c; and the convexity of the surface S. Our interest in this subject arose 
from the recent paper by Chang and Davis [2] which addressed this question for bi
variate Bernstein polynomials. In Section 2 we study the variate Bernstein polynomial 
surfaces. As we shall show the bivariate case does not exhibit all the features of the 
general multivariate situation. Our approach also provides an alternative proof of 
some of the results in [2]. Analogous questions for linear combinations of translates of 
box splines are discussed in Section 3. Finally, in Section 4, we conclude with some re
marks about interpolation of scattered data by convex functions suggested by the 
material in Sections 3 and 4.

This work was partially supported by NATO Grant No. DJ RG 639/84. »2S4
1980 Mathematics Subject Classification. Primary 41A 15; Secondary 41A63,26B25,41A05.
Key words and phrases. Bernstein polynomials, box splines, conditions for convexity o f  polyno

mial and spline surfaces, monotone convergence, conditionally positive definite matrices, convex 
interpolation o f multivariate data.
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2. Bernstein polynomials

For x= (x l5 ..., xs)r €Rs and any 5+1 affinely independent points 
i =  l, ..., 5 +1 the barycentric coordinates of x with respect to the 5-simp lex with ver
tices v1, . . . ,v s+1,

a = [ti1, t>s+1] = convex hull {r1, rs+1}

are denoted by A=A(a; x)=(A1, ..., AS+1)T. Therefore, we have
S+l s+l

(2.1) 2 h  = !•
J= 1 J - 1

We will sometimes write

x =  F„(A) =  2  }-i vJ
j = i

S +  l

so that Fmaps thestandard5-simplex ^ 5 = 1 (2 !, ..., As+1): 2  =  A;^0} onto <r.
i = 1

The Bernstein polynomial basis functions of degree S  k are given by 

Bkß(A) = jfA » , ß£Z%+\ \ß\ = k,

where \ß\ =ß1 + ...+ßs+1, Aß =A^1...Aß,M+\1 and ß\ =ß1l..ß s+1l  With any set of 
scalars <J> = {bß) ^j =fc we define the Bernstein polynomials

W ; X \ =  2  bßBkß(A).
\ß\ =*

Since
(2.2) 2  Bkß(A) = \, Bkß(A )^  0, A€4,

\ß\=k
it follows that
(2.3) Bk[$-A] c= [*], A£AS,

where as above [<P] denotes the convex hull of <P.
It is sometimes convenient to regard ^  as a function on the “discrete simplex”

(ph  = { F .W Y -  ßez%+\  \ß\ = k } ^ < 7 .

( 0 , 0 , 2)

(2,0,0) (1,1,0) (0,2,0)

Fig. 1. Triangulation: k = s  =  2

Specifically, when bß= f(F a(ß/k)) for some continuous function f  on a we use the 
shorthand notation

Bk[$\A] = Bk[f-A\.
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We wish to discuss conditions on <I> which ensure the convexity of Bk [<£; X\ over a.
To this end, recall that /£C (ß), Q a convex set, is called convex if for any points 

x 1, and any A£A,_1

(2-4) Í A y/(* )§
]=1 V/-1 '

When / i s  in C2(Q) it is well-known that the convexity o f/is  equivalent to the posi-
( P f ( x ) )' on Q.tive semidefiniteness of the Hessian , —,
f  O X j O X k J j ' k = l

In terms of barycentric coordinates this becomes 
P roposition 2.1. Suppose f£C 2(<r) and let

g(A) = f(F M )), K A ,.
Then f  is convex on a i f  and only if the (,v+ l)X (v + 1) matrix

( c\0 \S +  1

a i s ; * w L . .
is conditionally positive definite on As.

Recall that an (5+1)X (j -1-1) symmetric matrix A =(atJ) is called conditionally 
positive definite if

(c, Ac) = 2 1 2  ci CJ aU -  0;=i j =l
for all c = (cu  ..., cs+1)r  € ^ 0 = {c<ERs+1: ck + ... + cs+1 =  0}.

Proof. Straightforward application of the chain rule yields

(2.5) d2f  =  « + 1  d2g dXt dXj 
d x t d x k ]=l dX,dXj  3x ,  d x k '

Let V denote the matrix with columns, v\ i =1, ..., s 4-1 and set
v S  +  1 ,  S

= ( iV T
v dxj )ij=i

S + 1 ()?>.•
y A - =

Differentiation of (2.1) provides 

(2.6) I
Now (2.5) yields

(2-7) A A « « - i k -HwfirU
Note that in view of (2.6) the coefficients
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sum to zero. Moreover, (2 .6 )  says that Rs is mapped by A onto iAn. Hence/is convex 
if and only if

%  v  f> g2  2  a>aj-;=i j =i dkidkj
£ 0 ,

which completes the proof.

ae&o,

For Bernstein polynomials, we note that

- J - W )  =

where ei=(5i]) ) t  J denotes the z-th coordinate vector in Rs+1. Hence

(2.8)

d2
dkjdki Bk[<P; A] =  fc(fc-l) 2 b pB-<k- 2 .

ß ^ ß -  e l — e- tt)

fe(fc-i) 2  bp+ei+ej Bkß- 2(?.).
| P l = f c —2

As an immediate consequence of (2.2), (2.8) and Proposition 2.1, we state

P r o p o s i t i o n  2 . 2 .  L e t  ^  =  {&/?}|/!|=fc- Suppose that for every ß d Z Z 1, 
— k — 2, the matrix

A ( a i j ) i J  =  1 — (^ /J  + e ‘ +  eJ‘) f , j ' i l

lfl =

A conditionally positive definite. Then Bk [(I>; A] A convex over As.
Following [8] we note that any control net of the form bp=h(\\ß\\s) where

co

h'(t)=  j  etadp{a) for t^O, dp^O, and || • ||2 is any quadratic norm on Rs+1 
o

satisfies the hypothesis of Proposition 2.2. This result comes from the identity

2  2  c i c j W + e i + e J \\2 =  2 ( c , c )
i = 1 3 =  1

when c 6 ^ 0- Consequently, for t^O  the matrix (e‘ll̂ +ci+cJ|i2) is positive semi-definite 
and we obtain

C o r o l l a r y  2 .1 . I f  bp=h(\\ß\\2) whenever h'(t)= J  etn dp(o), í í= 0 ,  dp^O, and
0

|| • ||2 is any quadratic norm on Rs+1 then Bk[<P; A] is convex.
Of course, from the univariate case it is expected that under the hypothesis of 

Corollary 2.1, Bk[<P, A] has “higher order” convexity properties.
A simple sufficient condition for conditional positive definiteness for low order 

matrices is given by
T h e o r e m  2 .1 . Suppose A ={aij) f j=1 is a symmetric matrix which satisfies 

(2.9) akk + atj ^ a ik + akJ
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for all i,j, k. I f  4 then A is conditionally positive definite. For /n>4 there exist 
matrices A satisfying (2.9) which are not conditionally positive definite.

It is well-known, c.f. [8], that A is conditionally positive if and only if the “differ
ence” matrix.

(2-10) B = (fiiX ; , bij =  Í7j — aim — ajm + amm
is positive definite. Using this fact, the assertion follows easily for m=  2, 3. The case 
m — 3 was established by Chang, Davis [2]. Before proving the remaining assertions 
let us state an immediate consequence of Theorem 2.1 and Proposition 2.2 on the 
convexity of Bernstein polynomials.

C orollary  2.2. Let s S 3 and suppose <l> = {h[t} [<j| = ̂  satisfies
(2.11) bß + 2ei~\- bß+et+ej s  bp + ei+ei-\- bß+ej +ei, \ß\ = k — 2,
then Bk [d>; 2] is convex.

P roof of Theorem 2.1.

Note that A=(aiJ)^J=1 is conditionally positive definite if and only if the matrix

(2-12) D =  (dij)TJ=1, dij =  \j-(aii+ a j j ) - a ij

is conditionally negative definite. Clearly

da =  0, i =  1,

while (2.9) implies

dtj ^  0, i,j = 1, ..., m.
Furthermore, note that

^-ik^tlkj dij Uik ‘ U ( a [. - f - j)  ̂0,

i.e. D is a distance matrix. In general, distance matrices are not conditionally negative 
definite. It is easy to check that the matrix.

0 1 1 1 2  
1 0  1 2  1 
1 1 0  1 2  
1 2  1 0  1 
2 1 2  1 0

is a distance matrix which is not conditionally negative definite. On the other hand, 
it is known that a matrix is conditionally negative definite if and only if

d,j =

for some points xl in some Euclidean space where || • || is the Euclidean norm, c.f. [8]. 
In particular, by distributing four points at the endpoints of [0, 1] we see that the
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symmetric matrices
0 1 1 1' 0 1 0 o'
1 0 0 0

> Dz —
1 0 1 1

1 0 0 0 0 1 0 0
.1 0 0 0, .0 1 0 0.

0 0 1 o'1 0 0 0 1'
0 0 1 0

, #4 =
0 0 0 1

1 1 0 1 0 0 0 1
.0 0 1 0, .1 1 1 0,

'0 0 1 1' ' 0 1 0 1'
0 0 1 1

, D ,=
1 0 1 0

1 1 0 0 0 1 0 1
.1 1 0 0. J 0 1 0.

'0 1 1 o'
1 0 0 1
1 0 0 1
0 1 1 0,

are conditionally negative definite distance matrices. Let D be any distance matrix 
and define

Jl =  -L7 + -J (<*12 +  ̂  1 3- ^ 23)

> '2  — — > ’7 +  ~ 2 (d  12 +  ^24 — ^l«)

Ts =  - y 7 + y  (^ 3 4  +  ̂ 1 3- ^ 14)

J4 =  -  yi + y  (̂ 34 +  ̂ 24 -  d23)

L s  =  L 7  +  ' 2 ' ( ^ 2 3  +  ^ 1 4  — ^ 1 2  — ^ 3 4 )  

Lő =  L7 + y(^23 +  ̂ i4 — di3 — dM).

Then 

• ••> 6.

7

D = y.D; and for some choice of >’7=0 we can insure that y^O , i= l ,  
>=1 '

To see this we must show both d ^ + d ^ —d ^ —d^, d2i + du  — d23 — du ^
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S  djj+ dJk—dik, i ^ k ^ j -  For instance, we have
d24-hd13 — d23 — di4 = (d2i-\-dli)-{-d13 — d23 — d14 =  d2i-\-dl3 — d22.

The other cases follow similarly.
Next we recall a geometric interpretation of the condition (2.11) which was the 

basic approach taken in [2] in the bivariate case.
To this end, we say a collection ^ ”of simplices is called a triangulation of Q if 

Q= U {<5: b£3T) and for any b,b'^FT the intersection <5fid' is either empty or a 
common face of b and b'. Here any (lower dimensional) simplex spanned by a subset 
of the vertices of a simplex b is called a face of b.

Now observe that for s —2, (a)k induces a unique triangulation STk{a) of 0 
(see Fig. 1) with the following properties:

i) The vertices of the elements of dik{a) belong to (<r)k.
(2.13) ii) The elements of ^(cr) have all equal volume and are congruent to o.

iii) The union of any two simplices in 3~k(ß) with a common face forms a par
allelogram.

Let us denote by S(d>) the unique continuous function on a which interpolates 
<P on (cr)k and which is linear on each b^^~k(o). Then we have

L em m a. 2.1. Lei s= 2. S(<P) is convex if  and only if4> satisfies (2.11).
P roof. It was already pointed out in [2] that the convexity of S(<P) implies (2.11). 

Let us briefly recall their reasoning which will be helpful to understand our subsequent 
discussion. If S(d>) is convex on <7 , then it is convex on any paralellogram formed by 
two adjacent triangles in STk{a). The barycentric coordinates of the vertices of two 
such triangles are (ß + 2el)/k, (ß+e‘+el)/k, (ß +eJ +el)/k and (ß + el + el)/k,
(ß-\ eJ +el)/k, (ß+e' + ej)/k, respectively.

( f i .e '. e ') A  ((W .e Ó A

<P-
Fig. 2. Parallelogram

Thus
bß+2e- + bß + el+eJ = S(<P){F'(ß + 2e')/k) + S(<P)(FJß + e‘ + eJ)/k)

S  2S(0) [ y  {Fa(ß + e‘ + el)/k + FAß + eJ + e‘)/k}j

bfi + e1 + e1 T  bß + eJ + e l ,

because the restriction of S(<P) to the common edge of the two triangles is linear, 
ft Conversely, since a function is convex if and only if its restriction to any line is a 
(univariate) convex function convexity of S(<P) follows from (2.11) by using the well- 
known fact:

2 »')A ([).«'.»')/*
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L e m m a  2.2. The piecewise continuous linear interpolant to the points { ( ? ; , / ; ) } ? = i>  
with breakpoints at t1~=...<tn is convex if and only i f

(2.14) + 2 h + 1 ^ , f  +1 h /• ^  f
~t~ : + ~rJi+i = 7;+i>

l i + 2 ~ l i l i + 2 ~ l i
i = 1, ..., n —2,

t/mt is, i f  and only if the broken line connecting any three consecutive points is convex.
Therefore, as a consequence of Corollary 2.2 and Lemma 2.1 we see that for 

s = 2, Bk [<1>; X] will be convex when S(<1>) is convex. This fact appears in Theorem 3 
and Theorem 5 of [2]. In order to motivate our analysis of the general case, we will 
first give an alternative derivation of this fact which differs from the above reasoning 
used in [2]. The method below will not involve the Hessian of Bk{4>. X] at all but relies 
instead on Lemma 2.1 and a simple degree raising argument. We formulate this part 
of the argument for arbitrary s ^ 2  for later purposes.

Given the control vertices 4> = {bfi\p|=fc- we introduce new control vertices 
E4> = {b*ß}lß\=k+i by defining

(2.15) b ^ - ^ Z J j b ß - e J -

Therefore, observing that for X£AS

Bk[4>-,X\=(X1+...+Xs+1)B k[4>-,X]

we can rewrite the right-hand side and obtain

Bk[0;X] = Bk+1[E<P;X].

This process of representing the k-th Bernstein polynomial in terms of the (fc + l)-st 
Bernstein polynomials is sometimes called degree raising. Repeating this proce
dure, E l4>=El~1(E4>) leads to the useful fact

(2.16) lim •]-5 '(£ !á>)lU(<r) =  0
1-* CO

observed in [7]. Here 11/11=0(0-) denotes the maximum norm on a. To use this equation, 
we observe that the map 4>-+E4> preserves simple linear inequalities.

L em m a  2.3. Let s be arbitrary and let C) denote either one of the relations S .  
Suppose that the control net 4> = {bß]\ß\=k satisfies the linear inequalities

(, /S +  e 'i  + e J’i +  b ß  + e i2+ej 2 0  bß  + e i1 + ej 2Jr  b ß + e t2+ei l

fo r \ß \= k—2 and j\  ■<j 2, q <  in. Then

b'ß + eb + eLA - b*ß + e>2 + eh  0  bß + ei i + ei 2 +  b ß + e'2 + ej\ 

also hold for \ ß\ = k — 1 and j \  -=/>, q <  q .
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P roof. By (2.15) we get

(Ic +  l)(fc j8  +<.Ii + c7l +  bß + e‘t + ej t — + bß + e‘i + eJ,))

S ■+■1
=  2  ß j { b ß + e i i + e j i - e J ~ b b ß  + e i t  + ej 2 - e j — ( b ß  + e ‘l + e j i _ e j - { - b ß  + e >t+ e j l - e j y )

7=1
s - f l

2  {(^ » i j)bß +gii+efi —eJ~̂ ~(fiit, j~^~^Jt j)^ß + e** + ej*—eJ
j  =  1

~ ( . b i l j  +  ö j i j ) b ß + e i l + ej , - ej — ( ö i l j  +  ö j 1 j ) b ß + e ' i +e j l - e j }  =  2 ,l  +  r 2 .

Now I i  has the sign determined by 0  while

T 2 =  b ß + e ‘ i b ß  +  ej ,  -+- b ß + e  i'i — b ß  + e it  - \ - b ß  + e j t  —  b ß + e i  i +  b ß + e >1 —  b ß  + e ii  =  0

proving the assertion.
Thus for the bivariate case, the convexity of Bk[<P \ 2] when S(4>) is convex fol

lows from Lemma 2.1, Lemma 2.3 and (2.16).
Of course, the essential ingredient in this method of proof is that the convexity of 

the surface S(<I>) is preserved under “degree raising”, that is, S(E<P) is convex when 
S(<P) is convex. To extend this reasoning to the general multivariate case one is con
fronted with the difficulty that there is no unique analogue of the triangulation ^(<r), 
when 2. The following figure illustrates this for s = 3 and k= 2.

Fig. 3. Triangulation: ,s =  3, k =  2

Note that there are several possibilities for triangulating the interior polytope with 
vertices (1, 0, 1, 0), (1, 1, 0, 0), (0, 1, 0, 1), (0, 1, 1, 0), (0, 0, 1, 1), and (1, 0, 0, 1). 
For instance, either connecting (1, 0, 1, 0) to (0, 1,0, 1) or (0, 0, 1, 1) to (1, 1, 0, 0) by 
an edge produces a triangulation.

Nevertheless there is a canonical way to construct triangulations for a which will 
allow us to employ a degree raising argument even in the general s-variate case. To 
this end, let 3PS denote the group of all permutations of {1, ...,s}  and for 
define the simplex

= {m€[0, 1]s: ==...■= «,j(S)}

= [v°, . . . ,r s]

18
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where v°=0, tf= vJ 1+ en(j\  j=  1, All these simplices are congruent and there
fore have equal volume. Specifically, letting i be the identitity in we have

<5, = {«€[0, l]s: tq us} = [0, e1, e1 + e2, ..., e1+... + es].

It is well-known [1, 4] that

= {ő„+cc: a£Zs, nZ&s}

forms a triangulation of Rs. Moreover, for any non-negative integer k

c€Stk= {ő/k: Ö ZJf^öskő , =  [0 , ke1, ..., fc(e1 + ...-|-es)]}

is a triangulation of St. Thus for any affine map A: dt-*o and any k£N, the collec
tion

(2.17) V k'A(o)={A($):bi<€S'k)  

is obviously a triangulation of a.
Each mapping A is determined by a permutation of the vertices of a. Therefore 

we may expect distinct triangulations as we vary A, see Fig. 3. However, when s= 2, it 
can be verified that STk̂ A (a) is independent of A and agrees with the triangulation TTk (a) 
described by (2.13), see Fig. 1.

The relevant properties of dFkA(o) are stated in

Lemma 2.4. (i) The vertices o f the elements o f ̂ 1,a(<j) belong to (<j)k.
(ii) For any two simplices <5 = [u1, u2, ..., us+1] and 5 = [ő1, u2, ..., us+1] in d f A(p) 

there exist vertices up, uq in dC)3 such that u1, ii1, up, ifl span a planar parallelogram.
The property (i), is clear from the above construction of ^ k,A(a). Concerning (ii) 

let á ^ w 1, ..., ws+1] be any ^-simplex. To each /£{1, ..., a+ 1} assign the numbers

(7+1, for / ^  s;
 ̂ 11, for / =  s + 1;

_  r / - l ,  for / >  1; 
l s + 1, for / — 1;

and set

(2.18) űl = ul~ + ul* — ul.

The simplex S = [iA, ..., ű\ ..., iT+1] is said to be generated from pivoting 5 = 
= [m1, ..., ms+1] by reflection of ul across the edge [ if, ul+]. It was shown in [1] 
that whenever 5 is in Cfs and d is obtained from pivoting any of the vertices of d by 
reflection, then As a consequence of this result it follows that whenever ö =
=  [m1, u 2,  . . . ,  ms+1] and 5 =  [ß1, u1, . . . ,  us+1] are simplices in X s with a common 
(s— l)-dimensional face then there exist q, i2 ̂  1 such that

M1 + M1 = U'l + U't
which proves (ii).
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Specializing the construction (2.17) to the situation shown in Fig. 2 let A be de
fined by setting A ((0, 0, 0))—i?1, A((l, 0, 0))=n2, A((l, 1, 0))=t>3, A((l, 1, l))=u4. 
This corresponds to connecting (1, 0, 1, 0) and (0, 1, 0, 1) in Fig. 2 while the mappings 
given by 4 (0 , 0, 0)) =  u\ 4 (1 , 0, 0))= v \  4 (1 , 1, 0)) =  u2, 4 (1 , 1, l» = n 4 and 
4 (0 , o, 0,)) = i4, 4 (1 , °, 0)) =  ̂ , 4 0 >  !, °)) = vi, 4 (1 , 1, 1)) = ̂ 3 give rise to con
necting (1, 1, 0, 0) to (0, 0, 1, 1) and (0, 1, 1,0) to (1, 0, 0, 1), respectively.

Before turning to the general J-variate case let us briefly discuss Corollary 2.2 in 
this context. We begin noting that condition (2.9) or (2.11) for s= 3 does not imply 
the convexity of a piecewise linear continuous interpolant SktA(<P) of <P with respect 
to drkíA(ó), any A as above.

In fact, for the triangulation obtained by introducing an edge connecting (0,0,1,1) 
and (1, 1, 0, 0) in Fig. 3 the convexity of the corresponding piecewise linear inter
polant implies for aij=bet+ej,

(2.19) ŰJ3 +  U24 — a 34"b Í ? 1 2 ,  ^14d"fl23 — fl34"f U l 2 -

However, if we connect (1,0, 1,0) and (0, 1,0, 1) to form another triangulation the 
convexity of the piecewise linear interpolant implies that

(2.20) a 34 +  fl12 —  a l 3  +  a 2 4 ,  a l 4  + fl23 —  a 1 3 ^ ~ a 2 i -

Finally, connecting (1, 0, 0, 1) and (0, 1, 1, 0) yields the inequalities

(2.21) tt13+a2l = Ű14 + Ű23, ^34"f a12 — a14-l-a23'
In terms of tl\e entries dtj of the corresponding distance matrix D (cf. (2.12)) these 
inequalities read respectively

(2.22) dk3-\-d2i — din, dkA~\~ d23 — d3iA dk2,

(2.23) d3i + d12 = d13 + d2i, d14 + d23 — ^13 + d2 4,
and

(2.24) d13F d24 ~  dkA~\~d23, d3i-\-d12 S  d1A-hd23.

The matrices Dk, ..., Z>4 satisfy these conditions (indeed equality holds through
out) while for each of the remaining Dh, De, D7 at least one of the conditions 
(2.22)—(2.24) is violated. Nevertheless, it can be verified that every nonnegative com
bination of /)5, Di; and Z>7 satisfies at least one of the requirements (2.22)—(2.24). 
Thus, in this case, for every <I> satisfying (2.11) there exists an A such that the piece- 
wise linear interpolant SktA(<P) with respect to STk<A(a) is convex. In general, we 
do not know whether or not this remains valid. Nonetheless, this leads to the fol
lowing general result for arbitrary spatial dimension s.

T heorem  2.2. Suppose there exists an affine map A such that the piecewise linear 
interpolant SkiA(<P) of <£ with respect to 2Tk,Ala) is convex. Then Bk[<P; • ] is convex.

P roof. The proof of the theorem follows the pattern of the bivariate case and is 
based upon

L emma 2.5. Suppose Skt A(<P) is convex. Then Sk + 1A(E<P) is convex, too, where 
E<P is given by (2.15).

18*
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P r o o f . SktA(<P)  is convex on a if and only if for any line L the piecewise linear 
function is convex. By continuity it is sufficient to consider only lines such
that for any 0£^kiA(a), LOS  is not contained in any lower dimensional face of <5 and 
LC\(a)k=9. Therefore, by Lemma 2.2 SkiA(<P) is convex on a if and only if for any 
two simplices d=\uk, ..., id+1], 5=[m1, w2, ... «s+1] 6 ^ , a

G =
is convex on S U 8. Without loss of generality we may assume that G has the form

rcAxO, <5), x£<5,
GW = lo, x i l .

Clearly, G is convex on ö U 5 if and only if c==0 or equivalently if and only if

(2.25) G(ul) +  G(ül) S  2G [ y  (w1 + fi1) ] .

Now by Lemma 2.4 (ii) there must exist p,q£{2, ..., j  +  1} such that u \ it1, up, uq 
form a plane parallelogram. Hence there must exist some a€Zs++1, \a\=k—2, and

a + e'2+ ej2) 
k ) ’

^a+e^ + eJ-
í2 »7 2 €{1 , .... J+ l}  such that u1= F„ > “1 =  ̂ v(

( oc-\- é?*2
— I, nq =  Fa I------—----- 1. In particular, G is then linear on [wp, uq]

Furthermore, since the diagonals of a parallelogram halve each other (2.25) reads

â + eh + eA F + e*2 + e A G (ll )-fG(w1)

(2.26) ^ 2 G (y (« 1+w1)) = 2 G [ j(u ”+uq)} =  G(u”) + G(uq)

— â + e'i + c-'sF^a + e'i + e l̂'
Since &~s,A(p) is obtained by translating ^ , A(ak) where

^ (e 1), Fa (
(k — 2)e1+2e2).. 4

(k—2)e1+2es+1))
(2.26) holds for any \a.\=k — 2. Thus, SktA(<P) is convex if and only if (2.26) holds 
for all \cc\=k — 2 and certain quadruples (i\,j\ , i2, j 2) depending only on A. Since 
by Lemma 2.3 the inequalities (2.26) are preserved under degree raising the asser
tion follows.

The proof of Theorem 2.2 follows now from Lemma 2.3 and the following exten
sion of (2.16).

P roposition  2 .3.

lim I I ■ ] S k+l,A E ^ ) \\ca(a) = 0.
I-*- oo

The proof of this result follows just as in the case s = 2 (cf. [7]).
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We conclude this section with a remark on the monotonicity of the Bernstein 
polynomials as a function of their degree. This remark also extends a similar result in 
[2] for the bivariate case to arbitrary spatial dimension s.

Since the Bernstein polynomials preserve linear functions it readily follows that 

fix) = Bk[f; A(x; a)], x£a,

when/is convex. Moreover, using the degree raising relation (2.15) we get for g(A) =
= f(F .W )

Bi+1[f;  A ] - B J / ,  A l

and /  is convex it follows that

so that

(2.27) Bk[ f - X ] ^ B k + l [f \  A], A6ds.

3. Box spline surfaces

In this section, we wish to discuss similar questions for multivariate spline sur
faces based on the notion of box spline. For this purpose, we recall the requisite 
definitions. Let X = {xx, . .. ,x n} denote a set of not necessarily distinct vectors in 
Z*\{0}. We also use X  for the matrix whose columns are x1, ...,x". The box 
spline is defined by requiring that [4]

(3.1) J f(x)B(x\X)dx = J  f(Xu) du
Rs [0,1]"

holds for any continuous function/ on Rs. B (-\X ) is known to be a nonnegative 
piecewise polynomial of degree n—s supported on

Z(X) = {Xu: u£[0, l]"}.
B( • \X) is continuous if (T\{y}) = span {T\{y}} — R5 for all y£X. In general, the 
smoothness properties and regions on which B(-\X ) is a polynomial can be de
scribed in terms of properties of X. For further details the reader is referred to [4]. 
Our first problem is to determine under which circumstances the spline function

S(x\X)=  2  caB(x-<x\X)
Z*
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is convex. As with the Bernstein polynomials, it is not sufficient for ca=/(a), where 
/ i s  convex. For instance, in two dimensions we choose f(x ,y )= (x + y )+, a convex 
function and X={(1, 0), (0, 1), (1, 1)} or {(1, 0), (0, 1), (1, 0), (0, 1)}. S(x|A0 
is not convex in either case because its support has a zig-zag lower boundary. However, 
a simple consequence of the definition (3.1) is

P r o p o s i t i o n  3.1. I f  S (-  \X) is convex then S{ • |3fU V) is convex for any V.
i

P r o o f . It is sufficient to assume that V={y}, y £ Z s. Thus when z =  A ,* 1,
i = l/

^  Aj = l, we have
i =  l

i  Xj S ( ^ | I U  {>>}) =  / f i  Xj S(XJ -  0 - |3 f)j  dt
J=1 0 v= 1 '

1
^  /  S (z-ty \X )d t = S(z\XU{y}). 

0

Thus, we see that if a box spline surface is convex it remains convex with the 
introduction of new vectors. In order to derive from this fact explicit conditions on 
the control coefficients cx to ensure convexity of 5'(x|A') we introduce the special set

X0 = {e1, ..., es, e}
where ei=(SiJ)j i 1 and e=e1 + ... + es.

T h e o r e m  3.1. Suppose X0QX. Then *S(jc|A f) = 2  cyB(x—a\X)
xiZs

the control coefficients cx, agZs, satisfy

is convex if

(3.2) ca~\-ca+ej - ei —

for any a£Zs and any i ,y € { l ,  2, ..., j  + 1}, i Xj, where es+1= —e.
P r o o f . B (  • |T0) is a piecewise linear continuous function satisfying

{1 if a =  e,
0 if a€Zs\{e}.

Thus ,S(x+e|Z0) is a piecewise linear interpolant to the coefficients ca, i.e. 
S(cn+e\Xn) = cx, v_crz \  Note that Proposition 3.1 readily establishes the following 
analogue to Theorem 2.2: If S ( • |T0) is convex then so, too, is S  (• \X) whenever T() X.

Hence it remains to confirm that the conditions (3.2) imply the convexity of 
S( ■ I T0). To this end, we have to identify first the regions where S( ■ |T0) and hence 
S( ■ +e\X0) agrees with a linear function. It is well-known (see e.g. [4]) that these 
regions are bounded by but not intersected by the hyperplanes in

{<F> + a: a€Zs, V c  3f0, \V\ = s-1}.
C l a i m . The partition of Rs induced by Xf is the triangulation Xfs defined in 

Section 2.
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To see this recall that is composed of the multi-integer translates of the sim- 
plices ön, 7i€^s, defined by

<5„ =  [0, e"(1), «»< «+ **< » ,e*(1)+ ... + e ’t(s- 1), e].

The hyperplanes a + ̂ e1, ..., e‘_1, e,+1, ..., es), a£Zs, / =  1, in Jdf are
partitioned by the translates of those (s— l)-dimensional faces of <5„, n ^ ^ s, which 
are contained in the (s— l)-dimensional faces of [0, l]s. Hence we only have to con
sider those faces which contain the edge [0, e], i.e. faces of the form

[0, e1, ..., eJ~1, eJ+1, ..., e5“ 1, e]

for some y£{l, ..., s— 1}, where e’t=e”W + ... +e*(A, j= l , . . . , s .  A basis for 
the (s— l)-dimensional subspace of Rs spanned by this face is e\, ..., ejj-1, e£+1, ..., 

e%. Subtracting e'n from e 'f1 for /= l , . . . ,y —2 and i= j+ l, .. . ,s ,  we obtain 
..., e*^-1), e*(J+2), ..., e) as another basis which reveals that the subspace 

belongs to XC. Conversely, given V —(e1, . . . , e J~1,e J+1, . . . , e ‘~1,e ‘+1, . . . , e )  one 
may choose n^&>s such that for some /, j= n(l) and i=7c(/+l) which relates V to 
some face of dK. This confirms the above claim.

It was already pointed out in the proof of Lemma 2.5 that the convexity of a piece- 
wise linear interpolant with respect to the triangulation :'JTS is equivalent to inequal
ities of the type given in (3.2) (see (2.26)). To utilize this fact in the present context 
we again let a be any point in Zs. Then, for some /?£ZS, a is a vertex of ß + 
+Sn£JTs. Recalling the definition of d  ̂= [0, e\, ..., e%] and the definition of /“ , /+ 
in the proof of Lemma 2.4 the ‘neighbours’ a- , a+ of a with respect to ß + S„ have 
the form

x~ = oi — e‘, a + = <x + eJ

for some i',y'£{1, ..., 5+1}, i^ j ,  es+1= —e. Setting

S. =  a _ + a + —a = a + eJ — e‘

Lemma 2.4 states that a, a, a- , a+ span a planar parallelogram and that a- , a+ 
are contained in the common (s— l)-dimensional face of the simplex ß+Sn=ö  and 
some adjacent simplex <5£ having a as a vertex. The same argument which led to 
(2.26) therefore implies that .S(--|-e|X0) is convex on <5 U<5 if and only if 
5'(a+c|A'c) + 5'(ä-|-c|A'0)^ S (a + +c|A'0) + 5(a_ +e\X<ß which, in view of the inter
polation properties of S( • +e\X0) is (3.2). On account of Lemma 2.4 ii), this com
pletes the proof of Theorem 3.1.

1 "
Next we study the following box spline operator. Let I  (2f)= — 2  x> ar,d define2 i=i

ß (/|3 f)(x )=  ^ / ( a  + r(3r))5(x-a|JT).
<z€Z*

We also set A ',=A'\{x1} for each x ldX.
L emma 3.1. Suppose for each xJ€A 'cZs\{0}, (A',)=RS, then Q ( f \X )= f

for all linear functions f  on Rs.
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(3.3)

where

P r o o f . Using the Poisson’s summation formula we get 

Q(x,\X)(x) = 2  (a,+ (JT),)* (* -« !* ) :

=  ((-<• ~ -  + x l + Z(X),)É{ • |AT))(0)

S {-\X )(x )=  f  B(u\X)e-iuxd u =  n" 1 — e"
r * j j 1 ix ■ xJ

is the Fourier transform of B(-|Ar). Here we have used the fact that

É ( - \ X ) ( 2 n a )  =  É ( - \ X ) ( 2 n a )  =  0,  < x€Z 7{0}OXi

which follows from our hypothesis. Since we also have

(3.4) 5 ( - |X )(0 )= l

and

- ^ É ( - \ x m  = - u ( 'X ) l

the right-hand side of (3.3) reduces to xt. From (3.4), we also obtain Q(\\X) = \, 
which together with our above calculation proves the result.

This lemma easily implies

(3.5) f(x )^ Q ( f\X ){ x ) ,  x€Rs,

when /  is convex on Rs.
Next, we make a “change of scale”, and introduce for h~1 — m£N,

(3.6) Qh{f\X){x) = If 2  f(ct + I(hX))B(x-cc\hX).
a 6 h Z s

Then

(3.7) Qh(f\X )(x )=  2  m «  + Z (X )))B (? --a \x),
a£ Z *  ^ n >

so that, as before, we obtain
(3.8) f{x) = Qh(f\X){x), xdR \
when / i s  convex on Rs. Clearly, lim Qhf= f,  uniformly on compact sets when / i s/i—0
continuous on Rs. Next we will show that this convergence is monotonic for convex/.

T heorem  3.2. L et /  be convex and h r1, k~x, h~1k^N. Suppose that for all 
xleX. (X,)= Rs and {X,fi: ßeZ"~1}= Z s. Then
(3.9) Qh(f\X ) ^  Qk(f\X ).
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Proof. It is sufficient to prove this inequality when k = 1 by scaling the inde
pendent argument of /. For the proof of this case, we recall that the discrete box 
spline bh(a\X), adhZs, is defined by requiring that

(3.10) 2  m b M X )  = hn 2  AhXß)
ag/iZ* O sß - zh - '

holds for all sequences {/(a): a£/iZs} with at most a finite number of nonzero terms. 
We showed in [5] that

(3.11) B(x\X) = 2  bh(x\X)B(x-oc\hX).
x i h Z *

Therefore we can write
(3.12) 
where

(3.13) 

and so

(3.14)

Q (f\X )(x) = hs 2  X )B (x—<x\hX)
a g /iZ s

f a(h-,X) = h-* 2  f(ß+Z(X))bh(cc-ß\X)
ßez*

Q (f\X )(x )-Q h(f\X )(x) =

= h° 2  {L(h-,X)-f(x+Z(hX)))B(x-<x\hX).
a g fiZ»

To complete the proof we make use of
Lemma 3.2. Let {ca}a€;,z* be a sequence with a finite number o f nonzero terms. 

Let z£ Cs and consider the function

F(z) = 2  z*ch*-
a £ Z s

For any z f  C '\{0}, we have

hs 2  F(ze2n,hl>) = 2  zh '“c*.
O S ß ^ h - 1 a g Z 2

This lemma allows us to pass from sums over the “coarse grid”, a£Zs to the 
“fine” grid. a€/iZs. If we choose cx = bh(y—«\X), a, y£hZs above and use (3.10) 
we get

(3.15) 2  bh(y-ot\X)zh~'a = z ^ h " * *  2  G (ze-2nihp)
ag  Z* O S /S c /i-1

where

(3.16) G(z) = [J g(z~x‘),
i =  1

1 _  /l ~ 1 — 1
(3-17) g(0 =  —j— r  = 2  tk-

Since g (l)= /i_1 and g(e2nih,t) = 0 whenever y is an integer which is not a multiple 
o f /j- 1 it follows by the condition {Xß: ßdZn} = Z s that G(e~2’'ihp)=h~nö0ß for
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O s ß ^ h -1 . Thus by choosing z =  (l, ..., 1) in equation (3.15) we obtain

(3.18) h -  Z  bh(y-a\X ) = 1.
atEZ*

Therefore from the convexity of f  it follows that

(3.19) / a( h ; X ) s / ( h - s Z  ( ß + Z ( X ) ) b h( * - ß \ X ) ) .
ßez*

To evaluate the sum on the right, we will differentiate (3.15) with respect to zk, 1S  
and evaluate at z = ( l ,  ..., 1). Before doing so we observe that g'(l) = 

1)/2, so that by our hypothesis on X  we have

(3.20) vG (e -inih») = (1 - h ~ 1)h -nI(X)S(lß, 0 == ß <  h~ \

Now, after differentiating the formula (3.15) and simplifying we obtain

(3.21) h - °  2  ß b h( < x - ß \ X )  =  <x +  ( h ~ l ) Z ( X ) .
ßt z*

This equation with (3.14), (3.18) and (3.19) proves the result. When the translates of 
the box spline are linearly independent (3.21) was proved in [6] by other means; 
(3.18) appears in [5] with different hypotheses.

R emark. When
(3.22) Q ( f \ X )  = Q „ ( f \ X ) ,  

and f  is convex we obtain
Z  f { ß  +  l { X ) ) B ( x - ß \ X )

ß£Zs

= 2 f ( H ß  + I (X ) ) )B { ^ -ß \x ) .

From this equation and the Poisson summation formula conditions on the derivatives 
off  can be obtained which are equivalent to (3.22). We leave the details to the reader.

P roposition 3.2. L e t  f f C - ( W )  and  ( X \ Y ) = W  f o r  a l l  T c Z , |7|s=2. Then

lim = ±  Z D Wh — 0 i — i

u n ifo rm ly  on com pact se ts .
P roof. Let y1, y2 be any vectors in R\ Then our hypothesis gives by a lengthy 

calculation
h2 n

(3.23) Qh( m  ■ -x))(x) = j j  Z  H(x')

where H ( x ) = ( y 1, x ) ( y 2, x) .  The result now follows by expanding/about x  in a 
Taylor series with remainder and using Lemma 3.1.
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P roposition  3.3. Given any positive definite symmetric matrix A = (a:j), i, j=  
=  1 , . . . , s ,  and any /6 C 1(RS) such that

(3.24) |( (v /(x ) -  V /O 0),(*-J0)| ^  (A (x -y ) ,( x -y j)

for all x, R5, we have when (X \ Y ) =  Rs for all Y aX , \Y\ ̂ 2 ,

h2 n
\(Q hf)(x)-f(x)\ =2 2 4  (Ax‘, X 1) .

P r o o f . Using (3.24) and Taylor’s formula with remainder applied to the function 
f ( y  + t(x —y)), O ^ t^ l,  it follows that

\ f ( y ) - f (x )~ (  v / ( j ’), 0>-*))| S  y  (A(x-y) ,  (x-y)) .

Using this inequality, (3.23), Lemma 3.1 proves the proposition.

4. Interpolation of data by a convex function

The purpose of this section is to record some simple observations about inter
polating data on any given set of distinct points in Euclidean space by a convex 
function. This problem was suggested by the questions we studied in the previous 
sections. Through conversations we had with others interested in this question we have 
concluded that the facts recorded below are not common knowledge. Therefore, we 
have decided to present them here. We make no claims for originality of these results 
and, in fact expect that they are available elsewhere. In this regard, they are treated 
informally in [9] where computation of convex interpolating surfaces is discussed.

T h e  P roblem . Given any set X—{xi}"=1 of distinct points in Rs as well as asso
ciated data 3F= {/•}”= R we wish to determine under which circumstances there 
exists a convex function / :  [Z]>—R such that

/ i  = /(* ')>  i = l , . . . , n .

In this case, we say (X, S') is convex. We will show that the convexity of (X, S') is 
equivalent to the existence of a convex piecewise linear function interpolating S' at X. 
Moreover, we will give necessary and sufficient conditions on X  and S' which assure 
the convexity of (X, S') and reduce in the univariate case, 5=1, to the familiar con
dition that

(4.1) y js
* i+ i-* i- i />+1+ *■•+1 -* i 

* ,+ i-* i-i f i -X

for i=2, ..., 2V— 1 provided, of course, that Xx< ...<x„.
For x£[X], let

(4.2) /(*) = min { 2  Xtfi: 2  h  =  U f sO , 2  ^i*' = *}•w=i i=i i=i )

L emma 4 . 1 . /  is convex.
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Proof. For x,y£[X], let f= l, ...,« , be chosen such that

x =  Z  X i X 1,  y =  2  f i i  f i i ^  o ,  2 ,  X f  =  1 =  2  f i i ’i=1 i = 1 i=1 i = 1

f(x) =  2 ' - i f ’ J(y) =  2 fiif -
i  =  l  i =  1

Then for we have

/ ( ' * + ( ! -  O f )  s  2 1 ( t l f + ( i  -  t)fii)f
i =  1

=  i / ( x ) + ( l - 0 / ( F )

which confirms the convexity of /.
Proposition 4.1. I f  there exists a convex function f  such that f ( x ') = f ,  i.e., if  

iX,3F) is convex, then
(4.3) f i x 1) = f i x 1) = f ,  i = 1, ..., n.

Proof. By definition we have

(4.4) f i x 1) ts .f, i = l , . . . , n .
n n

Conversely, if A; =  l, A.j=0, j= \ ,  ..., « and x' =  2  A/XJ' then
j=i i=i

fi = f ( x i) = /( 2  = 2" fj-Vj=i / J=1
Hence

f i = f i x l)
proving Proposition 4.1.

Therefore, we see tha t/is  the upper envelope of all convex functions interpolating 
the data.

Proposition 4.2. There exists a convex function f  satisfying f  (x') = f, i=  1, ...,« , 
i.e. iX, SF) is convex i f  and only if the following condition holds:

For every JQ  {1, ...,«} , | / |= i  + l, and every j f J  with xJ£oj = [xl: i£J], one 
has

(4.5) f j  S  2  >-i f
i £ J

where
X s =  2  h x \  2  A-i =  1.

i € J  i £ J

P roof. For x€[T] let

f x =  { /  £  (1 ,  •••, n),  | / |  =  s + 1 :  x e o j  =  [x 1': i £ J ] }
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and denote the barycentric coordinates of x with respect to o = o} by A((ff,;x), 
idJ, i.e.

(4.6) x =  2  x)xi, 2  (ffj; x) = 1.
i t J  i i J

Now observe that

(4.7) f(x) = min { 2  (<V,
i £J

To see this suppose there exists M Q  {1, ..., «} such that

(4.8) 2  Qk xk = 0, 2  Qk =  0, 2  Ql =- 0,
UM k ( M

while

x = ^  **>
k £ M

2 ^ - 1  K > o>
k i M

k£M.

Then /^±£ot >0 for e sufficiently small showing that {/.k :k£M }  cannot be an 
extremum of (4.2). In view of (4.8), if A is an extremum of (4.2) then it has to be the 
barycentric coordinates of x for some simplex er,, J(zfix which proves (4.7).

Now, in view of (4.7) condition (4.5) implies f j ^ f ( x J) and because always 
J(xJ)S f j  we conclude

f j  = m .
Thus Lemma 4.1 yields that (X, S') is convex. The converse is trivial.

We observe that the upper envelope induces a triangulation of [X], To see this, 
we choose x€[Af], suppose achieves the minimum in (4.7). Then /(x) and
2  A,(<t j \ x )  fi agree at xand the vertices of / ,  i.e. at s+2 points. Since/is convex it

i i J
is easy to see that / ( x ) =  2  Af(<r,; x ) f  everywhere on Oj.

i i J
Next we prove (4.5) can be replaced by the following local condition on (X,S^). 
For every xJ£X  and every J£ßxi suchthat /(£ J  and

x \ o j =  [xk: k£J], yl$J,
one has
(4.9) f j  — 2  ;-i(^; xJ)f-UJ

Note that for 5=1, (4.9) reduces to (4.1).

Proposition 4.3. (X, S') satisfies (4.5) i f  and only i f  (X, S') satisfies (4.9).

P roof. Clearly, (4.5) implies (4.9). The proof of the converse is based on the 
following observation.

Lemma 4.2. Suppose that x‘, *= 1_, s+ 1 , x1, xs+1 are distinct points in R*
such that

x1, x5+1€[x\ ..., xs+1],
and moreover,

X^C Tj =  [ x \  . . . ,  X s, x s+ 1 ] ,  xs+1€<rs + 1 =  [x1, x2, . . . ,  xs+1].
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Moreover, suppose the data f ,  i = l ,  , s + 1, / i , / s+i satisfy

(4.10) / i S  £  Xj  ( a 1; x % - + ? .s+1 (a t ; x l )js+1

(4.11) / , +1 ^  ^ ( ^ +1; *s+1)/i+  2  ^(o '.+ i; *s+1)/,-
j  =  2

Then

(4.12) / i  ?= 2" ^(cr; x1)/}, / s+1 = 2  xs+1)fj-
j=i j=i

P r o o f  of L emma 4.2. Without loss of generality we may assume that f = 0, 
i= l ,  . . . , s  +  l. Suppose (4.12) does not hold and assume / x>-0. Then (4.10) assures

(4-13) f i  =  -̂s+1(°'ii xl)Js+1
which combined with (4.11) provides

f s + i  —  ^i(ffj+i> *s+1)/.s+1(<r1; ^1)/s+i
whence we conclude

Ai(crs+i; xs+1)As+1(<r; x1) =  1.
This in turn means 2](crs+1; xs+1) =  l =As+1(cr1; x1) and therefore xs+1 = x1, con
tradicting our hypothesis.

In order to prove now that (4.9) implies (4.5) we proceed by induction on the 
cardinality of X. For \X \^ s  + 2 there is nothing to show. For \X\ = s + 3 we observe 
that if any simplex oy, / c { l ,  ..., s + 3} contains at most one further element of X  
(different from the vertices) conditions (4.5) and (4.9) coincide. If on the other hand 
Xs+2, xs+3€[xx, ..., x*+1] say, we may assume without loss of generality that xs+s€ 
€[xs+2, x2, . . . ,xs+1],xs+2€[x1, ..., xs, xs+3]. We have to show that for ff = [x\ ..., xs+1]

(4.14) f s+2 = 2 ”1 Xj((t; x s+2)fj, f s+3^  *2]=i j=i
But setting xs+3 = xs+1, xs+2 =  x1 (4.9) agrees with the hypothesis of Lemma 4.2 
which readily implies (4.14) and hence (4.5) in this case. Now let |A"[ -b3 and
suppose that for some xJ£X, J(Lfxs, xJ$J  is arbitrary. We have to show that (4.9) 
implies
(4-15) f j  =s 2  2,((t; x>)f.

i i J

Suppose there exists some x l£ X  such that xl is an extreme point of [X] and x!$ oy. 
Clearly, (X, 3?) satisfies (4.5), (4.9) implies that (T \{x '}, ^ \{ / j} )  satisfies (4.5),
(4.9) , respectively. Thus (4.15) follows in this case by our induction hypothesis. Thus
it remains to consider the case [X] = Oj. Pick any x f X ,  l$J, Ix j. Without loss of 
generality call /= {  1, ..., s+  1} , xJ =  x1, x* = xs+1, u = oy where as in Lemma 4.2, 
x1̂ [x1, ..., Xs, xs+1] = er,, xs+1$[xx, x2, ..., xs+1] =  ers+1. Now if (X, S ')  satisfies
(4.9) then also (TXjx1}, (T \{ x s+1}, Jzr\ { / S+1}) satisfy (4.9). Thus
conditions (4.10), (4.11) follow from our induction assumption so that (4.15) follows 
by Lemma 4.2. This completes the proof of Proposition 4.3.
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The above observations may be summarized in
T h e o r e m  4.1. (X, (F) is convex, i.e. there exists a convex function f  such that

f ( x l) = f ,  i =  1, ..., n,

i f  and only i f  there exists a convex piecewise linear interpolant to the data SF at X if and 
only if (X, (F) satisfies condition (4.9).
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ON A SET OF RELATIONS ARISING FROM THE TRIANGULATION
PROBLEM

D . D O R N I N G E R  a n d  H . L Ä N G E R

1. Introduction

For a number of applications (cf. e.g. [3], [4]) the solution of the following 
problem is of importance: Given a real-valued matrix (atJ) (i,j=  1, n s l )
find a permutation n£S„ (Sn: symmetric group of degree rí) such that 2i aKUnj=

i-zj
max 2  dai.aj- This problem is called the triangulation problem for input-output

i^j
matrices. In the literature it is also referred to as acyclic subgraph problem or linear 
ordering problem. (For its solution very effective numerical methods exist though 
the problem is fVP-hard (cf. e.g. [1]).) If £  aij— 2  a«i,aj f°r all S„ then (ay)

i^j i^J
is called triangulated. Now, for any n£Sn put F(n):={(/,y)|l —*</—w; ni>nj} 
and define F := {F (n )\n £ S n}. Then the following theorem holds (cf. e.g. [2]):

(aij) is triangulated iff for all F£(F £  (a^— aj;)^0 .
This optimality criterion is the starting point for our investigations: We char

acterize the elements of SF as relations, order these relations in such a way that we 
obtain an ortholattice and study the subset of all “indecomposable” elements of 
iF  among which there are the join-irreducibles of the lattice. has the property 
that one can substitute F  by in the optimality criterion stated above. Since 
is “much smaller” than F  (e.g. for n— 5 one has |F0| = 39 and |.F|=120) the 
investigation of F0 or “small” subsets F  of F  including F0 is also of interest with 
respect to numerical solutions of the triangulation problem.

2. The ortholattice

Let n denote an arbitrarily chosen fixed positive integer. For every S„ F(n) 
is a 2-place relation on M:={1, 2, ...,«}. This relation can be considered as a 
directed graph G(F(n)) with vertex-set M  and a directed edge going from a vertex i 
to a vertex j  iff (i,j)£F(n ). If d ~ i and d + i denote the out- and indegree of the 
vertex i of G{F(n)) then we observe for the defining permutation n :

ni = i+ d ~ i — d+ i

1980  Mathematics Subject Classification. P r im a ry  0 4 A 0 5 ;  S eco n d a ry  0 6 C 1 5 .
Key words and phrases. T ria n g u la tio n  o f  in p u t -o u tp u t  m a tr ice s , se t o f  2 -p la c e  re la tio n s , 

o r th o la tt ic e .

19



2 9 0 D. DORNINGER AND H. LÄNGER

for every í£M. To see this define V :={(/, j)(LM2 |lS i< /^ n }  and for an arbitrary 
subset R a V  consider the mapping nR which adjoins to any i iM  the element 
/+  |{y'€M|(/,y)€/?}| — \{j£M \(j, i)€^}| which obviously belongs to M. Then for 
c<iSn we have Tzna)i= i+ \{jeM \(i,j)eF(a)}\-\{jeM \(j,i)£F(cr)}\= l + i - l -  
-\{j< íM \j< i-,oj>oi}\+ \{jíM \(i,j)£F(o)}\= \ + \{jíM\j<i-,<jj<oi)\ + \{j£M\j>i-, 
oy-coi}\ = \ + \{j£M \oj<oi}\=\-\-\{j£.M \j<oi}\ = oi, wherefrom the above iden
tity follows.

Now we show that the elements F(n) of SF can be characterized in a purely 
relation-theoretical manner. Using the notations introduced before and setting 
R ':= V \ R  for every RIFV we prove:

Theorem 1. F  = {RQ V\R, R' are transitive}.

Proof. Assume S Q V  and both 5  and S ' to be transitive. For (p, q)£S put

; j {k£M \k 

=  \{k£M \k 
= \{k£M\k 

= \{k£M\p ■ 
= \{k£M\p ■ 
= \{k£M\p - 
= \{k£M \k : 
= \ {k£M \k : 

= \ {k£M \k  :

: /?; (k,p )£S ; (fc, 9)65};, 
p\ (k,p)$S; (k ,q )e S }\, 

p; (k,p)$.S\ (/c, <7 )C^}|, 
k <  q\ (p, k)£S\ (k , 

k <  q\ (p, k)£S-, (k, q)$ 5}|, 

k <  q\ (p, k)$S; (k, <7 ) 6  S}|, 
q\ (p, k)(LS\ (q, fc)€S}|, 
q; (p,k)£S; (q,k)$S}\ and 

q-, (p, k)$S; {q, fc)$S}|.
Then d + e+ f= q —p — 1 whence p + \ = q—d—e~ f. From this it follows that 
ns{p) — p + d+ e+ l+ g+ h — a = q—d—e—f+ d + e+ g + h —a = q — a—f+ g+ h> q + 
+g—a—b—l — d—f —ns{q). Therefore ns(p)>ns(q) for {p,q)dS  for any SQ V 
such that S  and S ' are transitive.

Now let R Q V  with both R and R' being transitive relations and let (in, ja)£V. 
If (io,jo)£R then nR i0>nRj 0 as shown above. Conversely, if (i0, j 0)(JR then 
(z'o,/„)£/?' which yields nRd0>nR’j 0 by the above argument and hence tiRi0= 
= n + l — nRd0< n+ \ — TCR’j 0=nRj 0. This shows that nR is injective and thus nR£S„. 
It immediately follows that F(nR)=R  which implies RC,F .

Obviously F(n) and {F(n))' are both transitive for given n(zSn which con
cludes the proof.

For R Q V  let R denote the transitive hull of R.

Theorem 2. (J5-, £ , ' )  is an ortholattice and F1VF., =  FxU F2 for all F1,F 2̂ F .

Proof. Clearly {IF, £ ) is a poset. Let Flt F2̂ F  and put F := F 1 UF2- By 
definition, F is transitive. Now let (i,j), (./, k )f F'. Suppose (/, k)'x F '. Then 
{i,k)£F. Because of the construction of F there exists a chain i= /0<
(m ^ l)  from i to k such that (/0, t\), ..., (im_ls im)£ F1U F2. Since the elements of
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the chain and j  are all natural numbers there must exist an i£{l, m} such that 
Because (/,/)([ F we have /s_ i< y< is. (is_i, is)€FxUF2 means that 

there is some v£{l, 2} suchthat (i,-i, 4)€FV. Because of the transitivity of F ' 
(according to Theorem 1) we conclude that at least one of the two pairs (is~ i , j ) ,  
( j ,  /,) is in Fv. But this implies that at least one of the pairs (/,_/), (j, k ) belongs 
to F  which is a contradiction. Therefore, (;, k)£ F ' which shows that F ' is transi
tive. According to Theorem 1 F£ S ' .  Hence Q ) is a join-semilattice and 
F1VFa= F 1UF2 for all Fl5 F2fS '.  Since ' is an involutorial order-antiautomorph
ism of ( S ' , Q )  we obtain that for arbitrary Fx, 7-jA F2 always exists and
equals (FX'V F2)'. The rest of the proof is obvious.

For {1, 2, 3, 4} the Hasse-diagrams of the lattices (Srn, Q) (here the index 
n indicates the degree of the underlying symmetric group) look as follows:

Remark 1. For k ^  1 and for Fx, ..., F ^ S ' FXV...VFfc={(z,y)íK|there exists 
some (ordered) chain /= /„ < ...<  it= j ( t^  1) from i to j  such that (is_1, is)f_ /-j U ...U F t 
for all j €{1, ..., ?}}, and as one can see easily FXA...AFfc= {(/,/)€F|for any chain 
/=!„-<...< /,= / ( i^ l )  from i to j  there exists some sg{l, ..., i} such that 
<4-i , 4K F1n . . . n F j .

Remark 2. If n ^ 2  then (S', Q ,') is a Boolean algebra; if n> 2  then 
(S', Q ,') is not even orthomodular, as e.g. the following argument shows:\ c r  ,  f  i.'i v^ vv^i i  o i  l i i w i i i v ; v j u i c i i ,  k. li i v^ l u i i u w n i g ,  o m m o .

F((12))={(1, 2)}Q {(1, 2), (1, 3)}= F((132)) but F((132))A(F((12)))'g {(1, 3)} which 
implies F((132))A(F((12)))/—0 since {(1,3)}' is not transitive (cf. Theorem 1). 
Hence F(( 132)) ̂  F(( 12))V(F((l32))A(F(( 12)))').

Remark 3. ' is an antiautomorphism of (S', V, A).
Remark 4. 1^1 = «!. This follows from the fact (see above) that the mappings 

n*-*-F(n) and Ry-+ nR are mutually inverse mappings between S„ and S '.
Remark 5. If lS m i / i  then (S'm,M, A) is a sublattice of (3Fn, V, A) because 

of F(7t)=F(7rU{(/, i)\i£M}) for all n£Sm. (For the notation ,Sm, Ŝ n see the remark 
immediately before the Hasse-diagrams drawn above.)

n= 2:

19*
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3. Indecomposable elements

D efinition. Let F£ 3F. G is called a part of F  if both G6#'\{0} and GQF. 
F is called decomposable if it can be written as the disjoint union of at least two 
parts of F. If this is not the case, F is called indecomposable. Let denote the set 
of all indecomposable elements of

We observe that if is decomposable into Flt ..., F ffF  ( k ^ 3) then
in general F,UFS$ F  for r, í £{1, ..., k }, r¥ s ,  i.e. if F is decomposable into k 
parts then there need not exist a decomposition of F into a smaller number of parts 
of F. On the other hand a decomposition of an element of 8F may allow a refinement. 
If F £ tF \F r0 then it is obviously V-reducible within the lattice (.¥, V, A). There
fore any V-irreducible element of the lattice (J*7, V, A) belongs to F0. The con
verse is not true for u>3. This can be seen as follows: Because of F((1243)) = 
=  {(1, 3), (2, 3), (2, 4)}= F((123)) U F((243)) we have F((1243))=F((123))VF((243)) 
and hence F((1243)) is V-reducible. Because of Theorem 1 any part of F((1243)) 
containing (1, 3) also must contain (2, 3) and any part of F((1243)) containing
(2,4) also must contain (2,3). Hence F((1243))g

By means of the criterion mentioned in the introduction one can see imme
diately

Theorem 3. The n X n -m a tr ix  (ay) is tr ia n g u la ted  if f for a ll F£F0 (aij~ aji) —
U.J>€F

~ 0. Hence (ay) is triangulated iff ^  (atj — aj^=0 for all F(Z:F where F  is 
an arbitrary subset o f S' including t¥0.

For 2 |jg < |J * j .  (For, F((13))=F((123))Ú F((12)) and hence F(( 13)) 
e.g. for h = 3,4,5 one can calculate 1^1 =  5,13,39 whereas |# j  =  6 ,24, 120, 
respectively.) The number of V-irreducibles of (J% V, A) is a lower bound for 
\F0\. (For 71 = 3,4,5 the number of V-irreducibles of (J*7, V, A) is 5, 12 and 26, 
respectively.)

If one cannot determine a not “too big” subset J^of F  including will be 
of advantage for verifying the condition of Theorem 3.

On the other hand subsets of lead to sub-optimal solutions of the triangula
tion problem and are therefore of interest. Accordingly we will derive necessary and 
sufficient conditions for the indecomposability of F^F.

For a directed graph G let G denote the corresponding undirected graph (obtained 
from G by disregarding the directions of the edges of G).

Theorem 4. Let F £F  and assume G(F) to be disconnected. Then F ^F Ü.
Proof. It is clear because of Theorem 1 that any of the connected components 

of F  (within G(F)) belongs to F . This leads to a non-trivial decomposition of F.

Theorem 5. Let F £ F . Further assume G(F) to be connected and to contain 
no 3-circle. Then Ff_ F 0.

Proof. Since the theorem is trivial for F=0 we assume F^-0. Let 
(x, t), (m, v)£F. Then there exists a path t= t0, ..., tk=u from t to u in G(F) (k ^ l )
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such that for all z'€{l, k) either (i(_ i , tt) or (th /j_i) belongs to F. Since 
G(F) does not contain any 3-circle we have
Theorem 1 and the property that G(F) does not contain any 3-circle imply that if 

(a, b), (a, c)£F and a part of F contains (a, c) then this part also must 
contain (a, b). This means that two edges of G(F) having one endpoint in common 
always must belong to the same part of F. Going along the path from t to u one 
sees that (s, t) and (u, v) must belong to the same part of F. Hence any element 
of F must belong to the same part of F as the element (s, t ) does. This proves 
F t*

Theorem 5 suggests the conjecture that if F-_.'F does contain a 3-circle 
then F$iF0. The latter is true for all n up to n = 4 but fails for n > 4 as the following 
argument shows: Let F:=F((1452)). Then G(F) is connected and does contain 
the 3-circle 1—3—5 — 1. F£^jj because any part of F containing (1,3) must also 
contain (1, 2), any part of F containing (3, 5) has to contain (4, 5) and if a part 
of F contains (1, 5) it must also contain (1, 2) and (4, 5).

T heorem 6 . The following relations belong to FF+.
(a) F $ :=  {(i,j)\s ^  i <  / ^  j  <  u) for 1 S s < / < a á n + l .
(b) := { ( s  +  2 i ,  s  +  2 i ' +  1 ) | 0  ^  ^  f c } U  { ( s + 2 i — 2 ,  s + 2 i  + l)|l S  i S  k)

for 1  S s S / i  and 1 ^  k ^  [(« — s — 1 ) / 2 ] .

(c) F $ := {(i, t+ l)|s ^  i <  r}U {(t,j)\t <  j  == it} for 1 ^  s <  t <  u - 1 <  n.

Proof, (a) F<V =  f ((5 + * _ , ; ; ; ' i j  Any part G of F™
containing (s, u—1) must also contain all elements of the form (s,j), t ^ j< u —1, 
and with any element of the form (s, j ) ( t s j < u )  all elements of the form (i,j), 
s< i< t, have to belong to G. Hence Ff J£ .

(b) Ffjd — F((s51 —1— 2 —b4 ... 5+ 2k s4-2kT 1 s T 2k — 1 s-\-2k— 3 ... j T 1))j there
fore F$£3F. Nov/ any part of F f  containing (s', s+3) must also contain (s, s+ 1) 
and (s+2, j + 3), and with (s+2, s+5) any part of Fjjp must also contain 
(s+2, s+3) and (s+4, s+5). Hence (s, s+3) and (s+2, s+5) cannot be in 
disjoint parts of F(fK  Going on that way one finally obtains F j f ^ J v

(c) Obviously, F $  = F((s s+1 . . . t u u — 1 ... t+ 1))€^. If a part G of Fjfj 
contains (s, t + \), there must also be all the elements of the form (i, t +1), 
s < / ^ i ,  in G, and if G contains (t, u) it must also contain all elements of the 
form (t,j), t<.j<u. Hence Fffi€&r0.

T heorem 7. For the following permutations n£S„ F(n) does not belong to FF+.
(a) Let l-c i-c /i—1. ?r|{1, ...,/} and 7r| {/+1, are non-trivial permuta

tions on their respective domains.
(b) Let lS j< i< H ^ n + l  and l ^ a ^ n + s  — u+ i.

7t({s, ..., f-1}) = {a + u - t ,  ...,a + u - s -  1}, n({t, ...,« -l} )  = {a, ...,a  + u - t - 1}
and

n t
/ - I  t ... u — 1 j  

u — 1 s ... s + u — t —\) '
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P roof , (a) F(7i) =  i 7(7i|{l, i'})lj-F(7r|{/+l, »}) is a non-trivial decom posi
tion o f  F(n) into parts.

(b) F(n) = F{S}1 Ú ((F(n))\F[}l). That F (n )\F $  f  .F follows according to Theo
rem 1 and by observing that n({s, ...,u —\})={a, ...,a + u —s—\}. (The latter 
equality implies that if (i0,jo)£F(n) for some i()€_ {.?, u— 1} and some 
y0€{w, ..., n) then (i,j0)£F(n) for all i£ { s , . . . ,u -  1}.)
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CORRECTION TO MY PAPER “PERFECT SINGLE 
LEE-ERROR CORRECTING CODES”

A. RACSMÁNY

In my paper mentioned in the title (Studia Sei. Math. Hungar. 9 (1974), 73—75) 
the following theorem was announced :

Let Z” denote the set of all vectors of length n over the alphabet <7 >2. Then 
the necessary and sufficient condition for the existence of a perfect single Lee-error

correcting code C c Z q is the fulfilling of the equation n— 
and h ^ l  are integers.

j f
h where rS  1

Trying to reconstruct the proof of the sufficient condition I observed that 
the proof in the above paper was wrong. Here we present a correct proof.

Suppose that n—-----— , where /-s i,  /iS  1 are integers. We decompose

2/H-l into prime factors: 2n+ \ = p if...p\,...pl{‘, i‘i S . . . S / k. We define the 
numbers qj for j =  1, . . . , ik so that qj=PtPi+\...pu if (i0=  0). Then

(1) n  Vj =  (P1P2 ■■■PkY'iPi ■■■Pk)it~ii ••• (.P1P1+1 — Pk),,~i,- i ...p Jí--ix-t= 2 /1 + 1 .
7=1

Obviously, <y!J .̂ First we construct a perfect single Lee-error correcting code
(Ail

C *cZ J1. We consider those vectors h—

Because of the decomposition (1), the number of these vectors is 2n. From among
(Ail (Ail

these vectors we choose n vectors so that if h—

other than 0, for which hj£Zqj.

and h'= are any two

of them, then we cannot have hj + hj = 0 mod qj for all j. Without loss of generality
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„ , . ( J \ ( ? \  ( o 'we may assume that among these vectors tne vectors I . , . , ..., . occur.
V b'  V 0/ Vi/

We arrange the n vectors in the columns of a matrix H  so that the first ik columns 
of H  should form the unit matrix. We consider the set M  of those vectors 

m

m = m, for which nij = 0 mod q j. Let the code C*czZ£l consist of those

vectors c for which Hc—m ^M  mod qx. We claim that C* is a perfect single Lee- 
error correcting code.

First we show, that the Lee-distance of any two codewords of C* is at least 3. 
For assume that the distance between q£C* and c2CC* (q ^ q )  is at most 2. 
Then among the coordinates of e = q —c2 either exactly one is 1 or —1, or exactly 
one is 2 or —2, or exactly two are equal to 1 or — 1, and the rest of the coordinates 
are 0. Therefore He coincides either with the ±  1-fold of a column of H, or with 
the ±  2-fold of a column of H, or with the linear combination of two columns of 
H with the coefficients ±  1. Consequently we have, by the definition of H  and M, 
H e^M . On the other hand we have He=Hc1 — Hc2£M  which is a contradiction. 

This implies that the unit balls centred at the points of C * are disjoint, therefore
CJn|C*1 =g ^ . In order to prove the perfectness we have only to show that |C*| =

qn
= — 1 The number of the vectors c, for which He equals some fixed element 

2 n + 1
m of M , is equal to because, choosing the last n — ik coordinates of c arbitrarily

q
from Z 91, the first ik coordinates are uniquely determined. Since |M |=  [ J —  =

i =i Qj
q\

2n+ 1
therefore

|C*| =  q"~‘k\M\ = ql~h. qik
2 « + l 2n + l

Q"

After these the existence of a perfect single Lee-error correcting code C czZ£
is obvious, because writing s= —  such a code consists of the vectors c+qxx,

Qi
where c£C* and x£Z".
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PROJECTIVE GENERATION OF PRESEMINORMED SPACES 
BY LINEAR RELATIONS

ÁRPÁD SZÁZ

Introduction

In this paper, and its immediate continuation [14], the fundamentals of the 
theory of projective and inductive generations of topological vector spaces [1] will 
be generalized and simplified. More precisely, projective and inductive generations 
of preseminormed spaces by linear relations will be defined and studied.

Linear relations [10] are natural generalizations of linear functions, and are 
mainly motivated by the fact that the inverse of a linear function is a linear rela
tion. Preseminormed spaces [12] are natural generalizations of normed spaces, and 
are equivalent to topological vector spaces, but seem to be more convenient for 
several purposes.

Our main tools here, and in [14], are the notion of the infimum composition 
q * S  of a preseminorm q and a linear relation S, defined by (<7 *£)(;<:):= inf ̂ (5(.\)), 
and a useful criterion which says that a linear relation S  from a preseminormed 
space X((P) into another Y(2), with 2  being directed, is mildly uniformly con
tinuous (lower semicontinuous) iff the preseminorm q * S  is continuous for all 9 6 2.

The necessary prerequisites, such as continuous and linear relations and pre
seminormed spaces, which are possibly unfamiliar to the reader, will be laid out in 
greater detail in the next preparatory section. This and the use of the terms “genera
tion” and “coarsest” instead of “ limit” and “weakest”, respectively, have mainly 
been suggested to us by the referee whom we are therefore indebted to. Moreover, 
we are also indebted to the referee and Zsolt Páles for pointing out a serious mistake 
in the earlier version of Theorem 4.4.

0. Prerequisites

A relation from a set X  into another T is a subset S  of XX Y such that 5,(x) = 
=  {y: (x,y)€5} is not empty for all x£X. A relation S  from a topological space 
X(2~) into another Y(ir) is called lower semicontinuous [9] if 1S_1(K)= [J 5 - 1 (z)

zi y
belongs to 2T for every V^ir . In the sequel, we shall also need a localized form of 
this notion which says that S  is lower semicontinuous at a point x  of X  if for each 
V£ir with .S(.r)nFV 0  there exists with x£ t / c S '_1(F).

A relation S  from a uniform space X(2l) into another Y(ir ) will be called 
mildly uniformly continuous if S ~ 1oVoS£2l for every V^'V. Note that for func-

1980 Mathematics Subject Classification. Primary 46A99; Secondary 46M10.
Key words and phrases. Preseminormed spaces, continuities o f linear relations, projective 

generation.
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2 9 8 Á. SZÁZ

tions this notion reduces to the usual uniform continuity. But, in general, a mildly 
uniformly continuous relation need not even be lower semicontinuous. Therefore, 
we shall also say that 5  is lower semiperfectly mildly uniformly continuous if V^'V 
implies 5 -1oVo0^°U for every selection relation 0  for 5. (A relation 0  from X  
into Y  is a selection relation for 5 if 0<zS.)

A relation 5 from a vector space X  into another Y, over the same scalar field 
K = R  or C, is called linear [10] if

5(x) +  5(y) c  5(x-fy) and A5(.x) c  5(2x)
for all x ,y £ X  and 2£K, where the linear operations for subsets of Y  are to be 
understood in the usual elementwise sense. Concerning linear relations, we shall 
only need here the following assertions which were mostly proved in [10].

T heorem  0.1. I f  S  is a linear relation from X  into Y, then 5(0) is a subspace 
o f Y. Moreover, 5  is a function if and only if  5  (0) — {0}.

T heorem  0.2. I f  S  is a linear relation from X  onto Y, then 5 _1 is a linear rela
tion from Y onto X.

T heorem  0.3. I f  S  is a linear relation from X  into Y and 0  is a selection rela
tion for S, then

S(x) = <£(*) + 5(0)
for all xdX.

C o ro lla ry  0.4. I f  S  is a linear relation from X  into Y, then 5  is nonmingled- 
valued [7].

C o ro llary  0.5. I f  S  is a linear relation from X  into Y, then S ~ 1o S = S ~ 1o0  
for any selection relation 0  for 5.

C o ro llary  0.6. I f  S  is a linear relation from X  into Y, then S o S ~ 1o S —S.
T heorem  0.7. I f  S  is a linear relation from X  into Y, then there exists a linear 

selection function tp for 5.
A subadditive real function p on a vector space X  is called a preseminorm on 

X  [12] if
p(Ax) ^  p{x) and lim p(ßx) = 0li—O

for all |A |Sl and xdX . An ordered pair XfSfi) —{X, 3P) consisting of a vector 
space X  and a nonvoid family 3? of preseminorms on X  is called a preseminormed 
space.

A preseminormed space X(SP) can immediately be turned into a uniform 
space, and hence a topological space, with the help of the /--sized //-surroundings

Brp = {(a, y): p (x —y) <  r)
defined for all p33P and /->0. More precisely, according to [5, Theorems 6.3 and 
6.5], we can at once state

T heorem  0.8. I f  X(3P) is a preseminormed space, then the family o f all sur
roundings Brp, where p£ S? and r> 0, is a subbase for a uniformity ^l9 for X.
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T heorem  0.9. I f  X{SP) is a preseminormed space, then Qlg, induces a topology 
3T9 on X  such that, for each xdX, the family of all balls Brp(x), where pdSP and 

0, is a subbase for the neighbourhood system of x.
The topology 2T9 can also be easily described directly in terms of the corre

sponding balls. Namely, we obviously have

T heorem  0.10. I f  X(SP) is a preseminormed space, then the family o f all balls 
Brp(x), where pdSP, r> 0  and xd X, is a subbase for ST#.

R em ark  0.11. If the family SP is directed with respect to its usual pointwise 
partial order, then the subbases given in the above theorems are actually bases.

In view of [12, Theorems 2.6 and 2.8], now we can also state

T heorem  0.12. I f  X(SP) is a preseminormed space, then ST# is a vector topology 
on X.

T heorem  0.13. I f  X{SP) is a preseminormed space, then ST& is the coarsest trans
lation-invariant topology on X for which each pdSP is continuous.

Concerning continuities of preseminorms on preseminormed spaces, one can 
also easily prove

T heorem  0.14. I f  X{SP) is a preseminormed space and q is a preseminorm on X, 
then the following assertions are equivalent:

(i) q is uniformly continuous; (ii) q is continuous at 0; (iii) 0£i?'(0)n for all 0; 
(iv) B^ddlp for all r > 0.

R em ark  0.15. Note that if (i) holds, then q is continuous and thus each Brq is 
open-valued [7].

If X{SP) is a preseminormed space, then the family of all preseminorms on X  
which are continuous for will be denoted by SP.

The importance of this notation lies mainly in the next theorem which follows 
easily from Theorems 0.13 and 0.14.

T heorem  0.16. I f  SP and 3. are nonvoid families o f preseminorms on X, then the 
following assertions are equivalent:

(i) SP=3\ (ii) ST^dT^  (iii) ^ = < 2 ^ .

Because of this theorem, two nonvoid families SP and 3  of preseminorms on X  
may be called equivalent if SP=3.

As an immediate consequence of Theorems 0.13 and 0.14, now we can also state

T heorem  0.17. I f  X(SP) is a preseminormed space, then SP is the largest family 
o f preseminorms on X  which is still equivalent to SP.

There are cases, when some proper subfamilies of SP, containing SP, prove to 
be more suitable than SP.

l*
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If X{3P) is a preseminormed space, then ^ * (^ * )  will denote the family of all 
preseminorms q on X  for which there exists suchthat q= max pk
(?=/>)•

A nonvoid family SP of preseminorms on X, or a preseminormed space X(3P), 
will be called saturated, descending and total if SP*—SP, and SP=2P,
respectively.

On the other hand, we also say that a nonvoid family SP of preseminorms on 
X  is separating, or a preseminormed space X(SP) is separated, if for each x£X  with 
x?±0 there exists p£SP such that p ix )^ 0.

The importance of this latter notion lies mainly in the next obvious
T h e o r e m  0 . 1 8 .  I f  X{3P) is a preseminormed space, then the following assertions 

are equivalent:
(i) SP is separating; (ii) ST# is T2; (iii) 9~9 is T0.
Finally, we remark that if p is a preseminorm on X, then we simply write X(p) 

instead of X({p}). Moreover, if {/?} is separating, then p is called a prenorm.

1. The infimum composition

D e f i n i t i o n  1.1. If S' is a linear relation from X  into Y  and q is a preseminorm 
on Y, then the function q * S  defined on X  by

(q*S)(x) = inf <7 (S'(x))

will be called the infimum composition of q and S.
R e m a r k  1.2. The above definition has been motivated by that of a quotient 

seminorm [4, p. 105].
Therefore it is not surprising that we have
T h e o r e m  1.3. I f  S  is a linear relation from X  into Y  and q is a preseminorm 

(seminorm) on Y, then q * S  is a preseminorm (seminorm) on X.
Proof. If ydS(x) and £> 0 , then because of lim q(Xy)=0, there exists <5>0 

such that q(Xy)<z if |2|<<5. Hence, since Xy^XS(x)c:S(Ax), it is clear that 

(q * S) (Xx) — inf q[S (Ax)) s  q(Xy) <  e, 
whenever |1|<(5. Consequently, lim (q*S)(Xx)=0.

To prove the remaining properties of q*S , one can apply similar arguments 
as in [4, p. 105].

R e m a r k  1.4. Note that if q is a prenorm (norm), then q * S  need not be a 
prenorm (norm) even if S is a function.

The importance of the infimum composition lies mainly in the following simple 
theorem on balls.



T heorem  1.5. I f  S  is a linear relation from X  into Y, q is a preseminorm on Y 
and r=»0, then

B'qM  = S-'(B '(y))
for any xdX  and yd Y with ydS{x).

P roof. If zd.BrqjfS{x), then (q * S )(z—x)<r. Thus, there exists x)
suchthat q(w)<r. Hence, if ydS(x), it is clear that w+y€iS(z) and w +ydBq(y). 
Consequently, zd S ~ 1(Brq(y)).

Conversely, if zd S ~ 1(Brq(y)), then z65'_1(h') for some wdBq(y). Hence, 
if x ^ 5 _1(y), it is clear that y —w dS(x—z) and q(y—w)<=r. Consequently, 
(q * S )(x -z )< r , i.e., zdBrqifS(x).

From this theorem, we can at once derive two useful assertions for the cor
responding surroundings.

C o ro llary  1.6. I f  S  is a linear relation from X  into Y, q is a preseminorm on Y 
and r>  0, then

S-'oB',, o$ = BqifS 

for any selection relation <P for S.
P roof. By Theorem 1.5, we have

(S -1oB'qo4>)(x)= U (S-'oB'q)(y) = B'q, s(x)

for any xdX, namely yd ^(x )  implies ydS(x).
C o ro llary  1.7. I f  S is a linear relation from X  onto Y, q is a preseminorm on Y 

and r>  0, then
Brq, so'P= S-'oB^  

for any selection relation 'P for S ~ l.
Proof. Again by Theorem 1.5, we have

(B^soPKy) =  u B ',s(x) = (S-'oB'q)(y)
x V P ( y )

for any yd Y, namely xd P (y) implies yd S (x).
Our next theorem establishes an important, associativity-like property of the 

infimum composition.

T heorem  1.8. I f  T is a linear relation from Z  into X, S  is a linear relation from 
X into Y and q is a preseminorm on Y, then

(q * S )* T =  q*(SoT).
P roof. If xdX, then we have

a. = ((q*S)*T)(x) = inf inf inf q(z)w'i /  ytT(x)™  yerwzesoo
and

ß = (q*(SoT))(x) =  , €jnfx))q(z).

PRESEM IN ORM ED SPACES 301
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Thus, if a < ß, then there exists y0£T(x) such that inf g(z)<ß. And hence,zeso'o)
there exists z0£<S(y0) suchthat q(zü)<ß. Hence, since z0£S(T(x)J, we get

ß = inf q(z) S  q(z0) <  ß,r zes(r(jc)) v/
which is a contradiction.

The assumption /?<« also leads to a similar contradiction. Consequently, we 
have a =ß, which proves the theorem.

By an immediate application of this theorem, we shall now prove a rather 
curious, but useful theorem.

Theorem 1.9. I f  S  is a linear relation from X  into Y and q is a preseminorm 
on Y, then

(i) (q * S )* V ^ q \S (X ) ,

(ÍÜ (q*S)* 'P =  (q * S ) * S ~ \
(iii) ((q*S)* Y )* S  — q * S  

for any linear selection relation 'F for S ~ 1.
Proof. We clearly have

ŝ(X) c. SoF .

Hence, by Theorem 1.8, it is clear that

(q * S )* F  = q*(So'F) ^  q*A S(X)= q\S(X).

On the other hand, by Theorem 0.2 and Corollaries 0.5 and 0.6, it is clear that 

So V = S o S -1 and So V oS  = S.

Hence, again by Theorem 1.8, the assertions (ii) and (iii) immediately follow.
R em a rk  1.10. By defining the infimum composition of an extended real-valued 

relation with an arbitrary one, Theorem 1.8 and the first assertion of Theorem 1.9 
can be significantly extended.

In this respect, it is also worth mentioning that by using nonmingled-valued 
relations instead of the linear ones, the second and the third assertions of Theorem 1.9 
can also be significantly extended.

2. Continuities of linear relations

The following theorem greatly extends well-known standard results on con
tinuities of linear functions.

Theorem 2.1. I f  S  is a linear relation from a preseminormed space X{2?) into 
a directed one T(J), then the following assertions are equivalent:
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(i) S  is lower semiperfectly mildly uniformly continuous;
(ii) S is mildly uniformly continuous;

(iii) S  is lower semicontinuous;
(iv) S  is lower semicontinuous at 0;
( \ ) q * S  is continuous for all qd2.

Proof. The implications (i)=>(ii) and (iii)-=>(iv) are quite obvious.
To prove the implication (ii)=>(iii), assume that (ii) holds and If

x€ S _1(F), then there exists y£ V  suchthat x€S'_1(>’), i.e., y^Sf*). Moreover, 
since and 2  is directed, there exist q£2 and r> 0  such that Bq(y)czV.
Hence, by Theorem 1.5, it follows that

*Z*s(x) = S~l (B'q(y)) c  S-'CT).
On the other hand, by Corollary 1.6 and the assertion (ii), we also have

Brq*s = S~xoBrto S & m.
Consequently, S ~ L(V)£X?, and thus (iii) holds.

Next, we show that (iv) implies (v). For this, assume that (iv) is true and q£2. 
If r>  0, then again by Theorem 1.5, we have

* ;* s( 0) =  S - l (Bl(0)).

Hence, using that Brq{0) is a neighbourhood of 0 in Y(3Tä) and the assertion (iv), 
we can infer that BrqifS{0) is a neighbourhood of 0 in X{3~<,). And this already implies
(v) by Theorem 0.14.

Finally, to prove that (v) also implies (i), assume now that (v) holds, 
and <P is a selection relation for S. Then, because of F í ^ j  and the directedness 
of 2, there exist q£2 and 0 such that BqczV. Hence, by Corollary 1.6, it 
follows that

B'qtS = S - 'o B lo $  c  S - xoVo<P.
On the other hand, by the assertion (v) and Theorem 0.14, now we have B'^sZWg,. 
Consequently, S ~ 1oVo<t>£‘%#, and thus (i) holds.

Remark 2.2. If X(0>) and Y(2) are, in particular, seminormed spaces, then the 
next assertion is also equivalent to the former ones:

(vi) for each q£2, there exist p£2P* and 0 suchthat q* S ^M p .
Note that in this case by Theorem 1.3, q * S  is also a seminorm for all q£2, 

and thus a standard argument on seminorms [4, p. 98] can be applied.

Remark 2.3. If S  is, in particular, a function, then 2  need not be assumed to 
be directed in Theorem 2.1 and Remark 2.2.

Namely, in this case, we have

S - X( n  B \fy ))=  n  S - ' f ä f y ) )  and ^ ( H  B 'J o S =  f) S~'oirtloS
i=l i=l i = l ( = 1

for any {ql)nlml<z2, r> 0  and y£ Y.
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R em a rk  2.4. The directedness of 3  can also be dropped in Theorem 2.1 and 
Remark 2.2 if one writes 3* instead of 3  in (v) and (vi).

To check this, recall that 3* is always directed and is equivalent to 3, and 
thus the assertions (i)—(iv) will not change if we take 3* instead of 3.

By a simple application of Theorem 2.1 and Remark 2.4, we can now prove 
an improvement of the first part of our former Theorem 1 in [Aequationes Math. 
22 (1981), 308].

T heo rem  2.5. I f  S  is a linear relation from a preseminormed space X(3>) into 
another Y(3) such that there exists a lower semicontinuous selection relation 0  for S, 
then S  is lower semiperfectly mildly uniformly continuous.

P r o o f . By Theorem 2.1 and Remark 2.4, we need only show that S  is also 
lower semicontinuous.

According to Theorem 0.3, now we have

S(x) = 0(x) + S(O)

for all xdX. Hence, it is not hard to infer that

S-'CV) = 0~1(V+S(O)) 

for all VczY. Thus, S ~ 1(V )£^rä, whenever V^ST^.
R em a rk  2.6. Note that if 0  had been linear, then because of q* S ^ q *  0  w e  

could have applied a simpler argument.

As an immediate consequence of Theorem 2.5, we have
C o ro lla ry  2.7. I f  S  is a linear equivalence relation on a preseminormed space 

X(fP), then S is lower semiperfectly mildly uniformly continuous.
R em a r k  2.8. In the light of the above results, it does not seem to be an easy 

task to construct preseminormed spaces X{SP) and Y(3) and a linear relation S  
from X  into Y such that q * S  is continuous for all q£3, but S  is still not lower 
semicontinuous.

3. Projective generation

D efin itio n  3.1. If Sx is a linear relation from X  into a preseminormed space 
Ya(3a) for each a in a nonvoid set r  and

&  =  U  - 2 « * s a,«er
where 3 X* Sx = {q* Sx: q€3x}, then we say that the preseminormed space X{3P) 
is projectively generated from the spaces YX(3X) by the relations Sx, and write

=  pr°j gens. YX(3J.
«er

R em ark  3.2. Note that if each YX(3J is a seminormed space, then X(SP) is 
also a seminormed space.
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The appropriateness of the above definition is apparent from the next 

T heorem  3.3. I f
X(9>) = proj genSa Yx(X )

«€r
with each X  being directed, then is the coarsest uniformity (topology) on X
for which each Sa is mildly uniformly continuous (lower semicontinuous).

P roof. If <x£r and q££lx, then by Definition 3.1, q * S x£SP, and thus by 
Theorem0.13, q * S x is continuous for Hence, by Theorem2.1, Sx is mildly 
uniformly continuous (lower semicontinuous) for m&iSTf).

Suppose now that ‘’ll(ST) is a uniformity (topology) on X  for which each S a is 
mildly uniformly continuous (lower semicontinuous). If p£SP, then again by Defini
tion 3.1, p = q * S x for some a £ f  and q£X -  Thus, if r > 0, then by Corollary 1.6 
(Theorem 1.5),

B'p = S~'oB'qoSa (B'p(x) = S-HB'q(y)) if yCS.(x)).
Hence, by the mild uniform continuity (lower semicontinuity) of Sx for °U (3T), 

Brpd*U (B'p(x)<L2T if x£X).
Consequently, by Theorem 0.8 (0.10), we have ®#c f ( ^ c J ) .

From this theorem, using Theorem 0.16, we can at once derive

C o ro llary  3.4. I f
X  (SP) = proj gens. Ya (X ) and X(SP') -  proj genSo, Yx (X)

«er a€r
and X  an(l  X  are directed and equivalent for all a£T, then SP and SP' are also 
equivalent.

R emark  3.5. If each Sx is a function, then by Remark 2.3, the 2,xs need not 
be assumed to be directed in the above assertions.

Moreover, using Theorem 3.3, we can also easily prove an extension of the 
first assertion of § 11 in [4, p. 149].

T heorem  3.6. I f  Sx is a linear relation from X  into a topological vector space 
Y J X )  for each a in a nonvoid set F, then the coarsest topology ST on X  for which 
each Sx is lower semicontinuous is a vector topology.

P ro o f . For each ag r ,  denote by ßx the family of all preseminorms q on Yx 
which are continuous for X -  Note that each X  >s nonvoid and directed. More
over, define

X(SP) = proj gens  ̂Yx(X)-
«er

Then, by [15, Proposition 1.2] and Theorems 0.16 and 0.17, it is clear that X = ^a. 
for all a£F. Thus, by Theorem 3.3, ST=2T9 , whence by Theorem 0.12, the asser
tion follows.

However, as an analogue of the assertions (7.1.4) and (7.3.4) in [2], from Theo
rem 3.3, now we can only get
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Theorem 3.7. I f  T  is a relation from a topological (uniform) space 
Z(tT)(Z(fll)) into

= proj genSti YX(2X)
«er

and each 2X and & are directed, then the following assertions are equivalent:
(i) T is lower semi continuous (mildly uniformly continuous);

(ii) each SxoT is lower semicontinuous (mildly uniformly continuous).
Remark 3.8. If each Sa(T) is a function, then the (3?) need not be assumed 

to be directed in the above theorem.
If r  is not a singleton, then 3? is usually not directed even if each 2LX is directed. 

But, of course, we can state

Theorem 3.9. I f
X{0>) = proj gens Y  (2)

and 2  is directed, then 3P is also directed.
Proof. This is immediate from the simple fact that qx^ q 2 implies q1* S ^ q 2* S  

for any q1,q 2£2.

4. Separatedness for projective generation

The following theorem may be considered as an extension of the assertion 5.1 
in [8, p. 51].

Theorem 4.1. I f
X(SP) = pro jgens^C SJ, 

a  e r

then 3P is separating i f  and only if

n n n s r W 0)) = {°}-
a i T  i i S x r=»0

Proof. Clearly, 3? is separating if and only if

n n b -p(o) = {o}.
p i »  r=-0

Hence, because of

9 =  U  2a* Sx and Bq, S' ( 0) -  S-'(B'q(0)),
a 6T

the stated condition immediately follows.
Using that intersections are preserved under the inverses of functions and 

H n  Brq(0) is the closure of {0} in YX(2X), from Theorem 4.1 we can at once get

Corollary 4.2. I f
X (9 )  = proj gcnSa Ya(2 J  

a i r
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and each Sx is a function, then 2P is separating if  and only if

n  s - ({ ö } )  =  {o}.
a t  r

R e m a r k  4.3. Note that the “only if part” of the above assertion does not 
require the Sx s to be functions.

Moreover, note also that the closure {0} of {0} in Yx (2.x) is equal to {0} if and 
only if 3.x is separating.

The following striking theorem shows that there is another, quite different, 
important particular case when the difficult condition given in Theorem 4.1 can 
also be substantially simplified.

T h e o r e m  4 . 4 .  I f
X{&) =  projgens.y g( ^

a i r
such that each SLX is directed and

s .{  n  Sj'({Ö )))= Y x
fir\[a )

for all a t h e n  the following assertions are equivalent:
(i) SP is separating;

(ii) each Sx(0) is closed and f) 5 “1(0) = {0}.
a i r

P r o o f . If (i) holds, then by Theorem 4.1 or Remark 4.3, it is clear that
n  ■S,cT1(0) = {0}.

a i r  ______
To prove the remaining part of (ii), assume now that a £ f  and ydS^O). 

Then, for any q£Hx and 0, there exists £*(()) such that z£Bq(y), i.e., 
y —z£Bq(0). Moreover, because of our strange assumption on the Sx s, there exists 
x £ X  with y £ S x(x) such that for all ßzr\{c t} . Hence, since
y —z £ S x(x), i.e., 5,“1(y—z), it is clear that x £ S x 1(Brq(0)). Moreover, it is
also clear that x £ S j ' ( B sk(0)) for all ß £ r \{a } , k££ß and j > 0. Therefore, if (i) 
holds, then by Theorem 4.1, we necessarily have jc= 0. Consequently, ydSx(0) 
holds, and thus >Sa(0) is closed.

Next, we show that (ii) also implies (i). For this, assume that (ii) is true and 
ST1 (/?'(())), i.e., S’* OOf) .0 5 (0 ) 7 * 0  for all a£7", q£2.x and 0. Then, since 

each 2,x is directed, we also have OdS^x) for all a € /\ On the other hand, a simple 
application of Theorem 0.3 and 0.12 shows that now Sx(x) is closed for all a £ /\ 
Therefore, we actually have 0£Sx(x), i.e., xCST^O) for all a€F. Hence, it fol
lows now that x=0. And thus, by Theorem 4.1, (i) is also true.

R e m a r k  4 . 5 .  Note that the implication (i)=>(ii) ((ii)=>(i)) does not need the 
extra condition on 2,x s (Sx s).

Moreover, note also that if each Sx is a function, then the l xs need not also 
be directed for the implication (ii)=*(i), too.

R e m a r k  4 . 6 .  In this respect, it is also worth mentioning that if the extra con
dition on the Sx s were not assumed, then the assertion (ii) should be complicated
by writing that each S^O) is closed in Sx ( f) iŜ "1({0})).

0 e r \{«)
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Remark 4.7. Finally, we remark that Theorem 4.4 can also be proved without 
using Theorem 4.1.

However, for this nets and the definition of the infimum composition have to 
be used instead of the RJ„’s.

By a very particular case of Theorem 4.4, we can at once state the following 
analogue of Exercise 4 in [4, p. 108].

C o ro lla ry  4.8. I f  S  is a linear relation from X  onto a preseminormed (semi- 
normed) space Y(q), then the following assertions are equivalent:

(i) q * S  is a prenorm (norm);
(ii) 5(0) is closed and 5 -1(0)={0}.

Hence, using Theorems 0.3 and 0.12, and also Theorems 0.2 and 0.1, one can 
easily derive

C o ro lla ry  4.9. I f  S  is a linear relation from X  onto a preseminormed space 
Y(q) such that q * S  is a prenorm, then S  is closea-valued and 5 “ 1 is a function.

R em ark  4.10. Note if S  is not onto, then we can only state that S  is relatively 
closed-valued in the sense that S(x) is closed in 5(Z) for all x€X.

5. Reductions for projective generation

The following theorem may be considered as an extension of Proposition 1 in 
[4, p. 150],

T heorem  5.1. I f
X(SP) =  proj gens<t YX(2X) and YX(2X) = proj genr  Z xß(3txß)

a €r perx
for all «ZT, and

X(&’) = proj genTx/,.s ,Z xß( ^ xP)
( a , « €  u  rxrxnir

then &'=£?.

P r o o f . If p£S?, then p = q * S x for some u£F and q££x. Moreover, q—r* T*ß 
for some ß€.rx and r&älxß. Thus, by Theorem 1.8

p — q * S x = (r * Txß) * Sx =  r*(TxßoSx),

whence p£2P’ follows. Consequently, SPaSP'.
The converse inclusion can be proved quite similarly.
Next, we shall prove some unusual statements which do really require relations.

T heorem  5.2. Let S  be a linear relation from X  onto a preseminormed space 
T(J), and ('Yx)xir be a nonvoid family o f linear selection relations for S -1. Define

X(0>) = proj gens Y (2)
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and
Y(3') = proj geiv. X(0>) and Y(3") =  projgens-iZ (^ ) ,

air
and

X(SP') =  proj gens Y {2!).
Then 3 ' —3"a 3 *  and &'=&>. Moreover, 3 '—3 if  S  is a function.

P roof. If q'£3', then there exist a £ F  and p^S? suchthat q '—p * T r. More
over, there exists q£3 such that p = q * S . Thus, by (i) in Theorem 1.9, we have

q '  =  p *  =  ( q * S ) *  T a ^ q

whence q'£3* follows. Consequently, 3 'a 3*.
On the other hand, because of (ii) in Theorem 1.9, we may clearly write

3' = U 3P*Ta = U (J2*S)* Wx = U (3 * S )* S ~ 1 = 0>*S~1 = 3".
air air air

The assertion S?’ =0> can be proved quite similarly by using (iii) in Theo
rem 1.9.

Finally, if S  is in particular a function, then because of Theorem 1.8, we 
clearly have

3' = 3" = = (3 * S )* S ~ 1 = 3 * (S o S ~ 1) = 3 *  Ay = £o Ay = 3.
By a simple application of a particular case of this theorem, we can prove

T heorem  5.3. I f  S is a linear relation from a preseminormed space X(3P) onto 
another Y(3) such that

X(3>) = proj gens Y(3),
then each linear selection relation T for S ~ x is mildly uniformly continuous (lower 
semiconlinuous).

P roof. If V is as above, then by Theorem 0.7 , there exists a linear selection 
function tp for V. Moreover, if p£3*, then by Theorem 5.2, we necessarily have 
p*\pd3*. Hence, it is clear that p*\p is continuous. Thus, by Theorem 2.1 and 
Remark 2.3, tp is also continuous. Consequently, by Theorem 2.5, IP is lower semi- 
perfectly mildly uniformly continuous.

R emark  5.4. If in particular 3  is directed, or S  is a function, then S  is also 
mildly uniformly continuous.

In this latter particular case, we can also easily prove a certain converse to a 
useful reformulation of Theorem 5.3.

T heorem  5.5. I f  f  is a continuous linear function from a total preseminormed 
space X(2P) onto another total one Y(3) such that / -1 is lower semiconlinuous, then

Y(3)=  proj gen,-. *(<?).

P ro o f. This is also a consequence of Theorem 2.1. Namely, since /  is con
tinuous, 3 * fa & >=3P, whence

3  = 3 * Ay = 3 * ( fo f~ 1) = (3 * f)* f~ 1 c  3P*f~x.
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On the other hand, since f ~ x is lower semicontinuous, Consequently,

Combining Theorems 5.3 and 5.5, we get

Corollary 5.6. I f f  is a linear function from a total preseminormed space X(SP) 
onto another total one Y(££), then any o f the following assertions implies the sub
sequent one:

(i) T(.^)=proj gen, Y(l);
(ii) /  is continuous and each linear selection relation 'P for  / -1 is mildly uni

formly continuous;
(iii) f  is continuous and/ -1 is lower semicontinuous;
(iv) T(.2)=proj gen,-i X(^).

Moreover, if  in particular f  is injective, then (iv) also implies (i).

6. Applications of projective generation

D efinition  6.1. If Y(Q) is a preseminormed space and A is a linear subspace 
of Y, then the preseminormed space

X(0>) =  proj gcnAxY(2),
where Ax is the identity function of X, will be called the subspace of Y (l)  generated 
by X.

As an immediate consequence of Definition 6.1, Theorem 3.3 and Remark 3.5, 
we have

T heorem  6.2. I f  X(3P) is a subspace o f a preseminormed space Y(J2), then
& = 2 \X =  {q\X: q<i£l}

and
°Up - °Uf[X and ST& =  ST^X.

Several further properties of subspaces can be easily derived from the results of 
Sections 3, 4 and 5. For instance, Theorem 5.1 yields

T heorem  6.3. I f
X(SP) =  proj genSa Ya( l x) 

car
and Ya(£lx) is a subspace o f Z x(.%x) for each then

X(&) = proj genS.Z X(®X).
« e r

The next trivial theorem also offers an important application of projective 
generation.

T heorem  6.4. I f  3PX is a nonvoid family o f preseminorms on X  for each a in a 
nonvoid set F, and 3?= (J  2PX, then

X(0>) = proj genJjt X (2Pj).
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For instance, combining Theorem 6.4 with Theorem 3.3 and Remark 3.5, we 
can at once state

C o r o l l a r y  6.5. I f  is a nonvoid family o f preseminorms on X  for each a  in a 
nonvoid set F and 3P = (J &x, then

air
ŐU9 =  sup and ST# =  sup .

«er “ «er
R e m a r k  6.6. An important particular case is when each &x is a singleton.

0

However, the most important applications of projective generation are product
s p a c e s .

D e f i n i t i o n  6.7. If Yx( l x) is  a  p r e s e m i n o r m e d  s p a c e  f o r  e a c h  a  i n  a  n o n v o i d  
s e t  r  a n d  X — X  Yx, t h e n  t h e  p r e s e m i n o r m e d  s p a c e

a é r

X(0>) = projgen,.r,(5«),
d é r

where nx is the projection of X  onto Yx, will be called the Cartesian product of the 
spaces Yx(Qa) and the notation

x(&) = x W
a é r

will be used.
As an immediate consequence of Definition 6.7, Theorem 3.3 and Remark 3.5, 

we have
T h e o r e m  6 .8 .  I f

x(?) = x y.w
a é r

and nx is the projection o f X  onto Yx, then

& =  U  - 2 « ° ^ ,
«er

and moreover
& — X  and ST9 =  X  •

«er aer

Moreover, in addition to the corresponding particular case of Theorem 3.3, now 
we also have

T h e o r e m  6.9. I f
xm = x waér

then the inverse n*1 o f the projection nx o f X  onto Yx is lower semiperfectly mildly 
uniformly continuous for all a£F.

Proof. From the third assertion of Theorem 6.8, by [5, Theorem 3.2], it fol
lows that ttx is open, i.e., n“1 is lower semicontinuous. Thus, by Theorem 2.1 
and Remark 2.4, n~1 is lower semiperfectly mildly uniformly continuous, too.
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From the third assertion of Theorem 6.8, using the results of [5, pp. 92—93] 
and Theorem 0.18, one can also easily derive

T h e o r e m  6.10. I f
X(S?) =  X Y M

then SP is separating i f  and only i f  each Sla is separating.
However, this theorem can now be more naturally obtained from Theorem 4.4 

and Remark 4.5, since now we obviously have

f] rcjHO)) = Yx for all a£F and f |  ^ ( O )  =  {0}. 
i 6 / \ { « )  « e r

The importance of Cartesian products as particular projective generations lies 
mainly in the following reduction

T h e o r e m  6.11. I f

X(&) =  projgens>Yfi3.fi and T(.2) = X Yx( \ )
a€T a€ r

and S  is the relation from X  into Y defined by

six ) = X s .o oair
then

X {SP) -  proj gens Y (1).
P r o o f . A simple computation shows that S  is linear. Moreover, for a 

we clearly have Sx=nxoS, where nx is again the projection of X  onto Yx. Thus, 
Theorem 5.1 can be applied to obtain the assertion.

From this theorem, using Theorems 6.3 and 5.3 and Remark 5.4, one can 
easily derive

C o r o l l a r y  6.12. I f
X(2?) — proj gen/a Ta(^a),

where each f a is a function, and fj f ~ x (0) =  {0}, then the function f  defined on X  by
mr
f ix )  = {f«lx)X tr-

is an algebraic and uniform isomorphism o f XISP) onto a subspace o f Y(SL) — X w„).
aer

Moreover, applying Corollary 6.12 to the particular case of Theorem 6.4 men
tioned in Remark 6.6, we get

C o r o l l a r y  6.13. I f  XISP) is a preseminormed space, then the function f  defined 
on X  by

f ix )  = IX) pig,
is an algebraic and uniform isomorphism o f XISP) onto a subspace o f x n p ) .

PÉá*
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R e m a r k  6.14. This simple fact will play an important role in the completion 
of preseminormed spaces.

R e m a r k  6.15. Besides Definitions 6.1 and 6.7 and Theorem 6.4, there are seme 
further important applications of projective generation.

For instance, if X(0>) is a preseminormed space over K and
A 'W  =  proj gen, K(II),

ftx*
where X* is the usual dual space of X{2T#), then fig, is the usual weak topology 
of X ( f ,) .

The weak*-topology of X* can also be obtained in a similar way. The cor
responding facts for locally convex spaces seem to be stressed only in [8, p. 52], 

A d d e d  i n  p r o o f . In the meantime we learned that the continuity properties of 
linear relations had also been studied by L. Holá and I. Kupka [Closed graph and 
open mapping theorems for linear relations, Acta Math. Univ. Comertianae 46—47 
(1985), 157—162],
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APPLICATIONS OF THE THEORY OF DIRECTIONAL 
STRUCTURES II. AN EMBEDDING THEOREM

J. D E Á K

We aim at proving a new characterization of the class of subspaces of a Euclidean 
space. (Such characterizations can be found in [1, 7, 4, 5, 6].) This paper being a 
sequel to [5], the terminology and notations of that paper will be used without 
explanation. In particular, we call attention to [5] 1:1—1:6.

§ 0. Pseudo-directions

0:1 D efinition (E. Deák [2, 3]). Let I  be a set. A collection 3/1 of ordered 
pairs of subsets of X  is a pseudo direction on X  if it satisfies the following conditions:

(i) G c F  for each (G, F)£3t;
(ii) if (G}, Fj) and (C2, F2) are two distinct elements of 31 then F1c G 2 or 

F2c G x.

Many of the notations, definitions and theorems listed in [5] § 0 can be applied 
to, or are valid for, pseudo-directions. For the sake of completeness, we shall run 
through the whole list, although parts of it are irrelevant to the subject of this paper.

0:2 to 0:15 (E. Deák [2,3]). Read pseudo-direction(al) for direction(al), 
except that

a) a pseudo-direction may not be compact (0:5);
b) the part of 0:12 b) concerning orderability does not hold for pseudo

directions.

0:16 to 0:21 No corresponding definitions.

0:22 Theorem [6], 1/91 is a compatible pseudo-directional structure of a separable 
metrizable space X then X can be topologically embedded into R1911.

Erratum to the first part o f  this series. F o r  th e  la s t  se n te n c e  in  [5] 4 : 2  a ) , read:
“ N o w  i f  SR is  th e  n a tu ra l d irec tio n a l s tru ctu re  o f  th e  cu b e  th e n

{fTlY: F€$(SR), V*  [0, 1]"}
i s  a  co m p a ra b le  Tx -c o m p lem en ta ry  su b b a se  o f  N  su c h  th a t in c  =n."

198 0  Mathematic Subject Classification. P rim ary  54C 2 5 .
Key words and phrases. P se u d o -d ir e c tio n , p se u d o -d ir e c t io n a l s tr u c tu r e , su b b a se , c o m p a r a b le  

c o m p lem en ta ry , 7 \-c o m p le m e n ta r y , in c , se p a r a b le  m etr iz a b le  s p a c e , E u c lid e a n  sp a ce , e m b e d d in g .

2* Akadémiai Kiadó, Budapest
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§ 1. An embedding theorem

Generalizing an embedding theorem due to de Groot [7], we have proved
1 :1  Theorem ([5] 4:1). A separable metrizable space can be topologically 

embedded into R" (n=0, 1, ...) iff it has a comparable 7\-complementary subbase 
i f  with inc i f  ̂ .n.

The more interesting part of the theorem (i.e. the sufficiency of the existence 
of such an i f)  is strengthened by

1 : 2  Theorem. I f  a separable metrizable space X  has a comparable complementary 
subbase i f  with inc if'&n such that

(1) a <^b => ä c  b  (a , B e y )

then X  can be topologically embedded into R".

This is indeed a generalization of 1:1 since a) a f  -complementary system is 
evidently complementary; b) a comparable Tx-complementary system satisfies (1) 
[take pdB —A and C Z if with B ffC —X, p$C; now AyC and AdC (cf. [5] 2-.21) 
but p$AUC, so AH C=0  and A c X —CczB].

Proof. According to van Dalén and Wattéi [8] 3.3, if i f  is comparable and 
complementary then a is an equivalence relation on i f  and the a equivalence classes 
can be paired off such that Ay Bö A, A, B £ if  imply that A and B belong to com
plementary equivalence classes. Let us denote the family of the a equivalence classes 
by 51; the element of 51 containing an A i i f  by [A]; the complementary class of an 
j3/£51 by si*. Thus:
( 2 )  Ay Bö A => [A] =  [5]* (A, B^if).
Consider now the relation A ~ B  iff inc[^T|U[ß] = l on i f .  First of all, we have
(3) AoB => A ~ B  => AyB
[remember that for a system inc f  —I is equivalent to C1 yC.2 (Cu C .f'f)].

Assume A ~ B ~ C . By (3), we have AyByC. If, in addition, AoBcC then (2) 
implies [,4] =  [.B]* =  [C], thus inc [zl]U[C]=inc [A] = l, i.e. A ~ C . On the other 
hand, if AoB then [A) = [B], so inc [A]D[C] = inc [ß]U[C] =  1. The case BoC is 
analogous, so ~  is transitive. Consequently, ~  is an equivalence relation on i f .  

The family of the ~  equivalence classes will be denoted by (£. According to
(3) , each element of (S is the union of some elements of 51. In fact,

(4) <?£(£ —5 1 ^  3^£5 t, Í  =  jrfUsd* 
and
(5) <f€Gn5l=> inc<?U<f* >  1.
To prove (4), let A£<? be fixed. Then (3) gives AyB for any BdS, so (2) implies 
[B]=[A] or [B]=[Af, thus <?cz[A]U[A]*; as <f$5I, we have <?=[A]U[A]*. To

O n ly  C a se  8 fr o m  [5] 2 : 4  is  r ea lly  n e e d e d  h e r e .
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prove (5), take an s/aW  with inc s í U sí* =  1; now for any A ^si and 
we have [A\yj[B]=si \J st*, so inc [T]U[i?] =  1, i.e. A ~ B  and si$(&.

Let us pick sets Se£8  for each 8£<& such that
a) if «S’€21 then SeySg* (according to (5), there are such sets);
b) if 8 € SI then Ss is arbitrary.
It can be readily checked that if 3i, 8£<&, ^>^8 then SaySe . Thus

(6)2 |g | s i n c ^ .
We are going to construct for each 8(f& a pseudo-direction 0tg of X  such that 
8c0(3tg); then (6) and 0.22 imply that X  can be embedded into Rinĉ . 

if  <?€erm, put
= {(E, £ ) : £€<?}•

(1) guarantees that 0te is a pseudo-direction.
On the other hand, if s/U si*=8(i(£  for some j/ € 2I then the family

<8 = s iö { X - B :  B£sf*} 
in ordered by inclusion [cf. (3)]. Let

{ ( G , F ) \ G ^ , X - F ^ * ,  G c. F, (G c  s  g  F=> 5 $<8)};
= {(G, G): G 6 rf-& (X )} ;

8t* = {(int F, F): X -F £ s i* ,F i &{.&%)}
and

Stt  -
Now Pig is a pseudo-direction (the straightforward proof is left to the reader: use 
(1) and the fact that 'if is ordered by inclusion).

Clearly, 8cz0(ß e) holds in both cases, thus the proof of the theorem is 
complete.

§ 2. Remarks

2 :1  The example given in [6] between Theorems A and B shows that 1:2 is 
not only seemingly more general than 1:1.

2:2 If Theorem 1:2 could be proved without making use of 0:22, it would 
provide a new proof for Theorem 0:22:

Let {.3?!, ..., -I,,} be a compatible pseudo-directional structure of a separable 
metrizable space X, n s l .  Let Y  be the set of the functions {1, . . . ,«}— {0, 1} 
endowed with the discrete topology, and denote the topological sum of X  and Y  
by Z. Put

A, = {fíY: f i i )  = 0}, Bi = Y - A i (1 S i S  n).
Now

9> =  {GU A,: G€9(&,)U {0}, 1 S  / S  n)U {£U 5,: {0}, 1 si i «}
satisfies the conditions in 1:2, thus Z z^X  can be embedded into R".

2:3 We do not know if 1:2 holds without condition (1).

2 In  fa c t , e q u a lity  h o ld s  h ere , b u t  th e  o th e r  ( tr iv ia l)  in e q u a lity  w ill  n o t  b e  n eed ed .
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AN EXTREMAL PROBLEM FOR COMPLETE BIPARTITE GRAPHS

P. ERDŐS, R. J. FAUDREE, C. C. ROUSSEAU and R. H. SCHELP 

Dedicated to the memory o f  Paul Túrán

Abstract

Define f(n , k) to be the largest integer q such that for every graph G o f  order n and size q, 
G contains every complete bipartite graph K a<b with a + h = n —k. We obtain (i) exact values for 
f(n , 0) and /(« , 1), (ii) upper and lower bounds for /(« , k) when /cS2 is fixed and n is large, 
and (iii) an upper bound for /(« , |£«J).

1. Introduction

Extremal graph theory, which was initiated by Túrán in 1941 [4], is still the 
source of many interesting and difficult problems. The standard problem is to deter
mine f(n, G), the smallest integer q such that every graph with n vertices and q edges 
contains a subgraph isomorphic to G. It is striking that whereas Túrán completely 
determined f(n, Km), there is much which is as yet unknown concerning fin , Katb). 
In this paper, we consider a variant of the extremal problem for complete bipartite 
graphs. In this variant we ask how many edges must be deleted from K„ so that 
the resulting graph no longer contains Kaib for some pair (a, b) with a+b=m. 
Specifically, we seek to determine an extremal function f(n, k) defined as follows. 
For m > l, let Bm denote the class of all graphs G such that Gz^Ka b for every 
pair (a, b) with a+b=m. Then for n> k + l, f(n, k) is the largest integer q such

that every graph G of order n and size — <7 is a member of B„_k. In this paper
we obtain exact values for /(«, 0) and /(«, 1), upper and lower bounds for /(«, k) 
when / o  1 is fixed and n is large, and an upper bound for f(n , [enj).

2. Terminology and notation

All graphs considered in this paper will be ordinary graphs, i.e. finite, un
directed graphs, without loops or multiple edges.

A graph with vertex set V and edge set E  will be denoted G{V, E). If \V\ —p 
and |E| =q, G is said to be of order p and size q. With X, YQ V, the set of edges 
in E of the form {x, y} where and will be denoted E(X, y). The
complement of G will be denoted G.

1980 Mathematics Subject Classification. Primary 05C35; Secondary 05C05. 
Key words and phrases. Bipartite graphs, extremal graphs, trees.
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The size of G will be given by q{G). The order of the largest connected component 
will be given by p(G) and the order of the smallest connected component will be 
given by t](G). In particular, r\{G) = 1 means that G contains an isolated vertex.

Let A be a finite set. Then Ak will denote the Cartesian product A x A X -.-X A  
with k factors and [T]fc will denote the collecton of A-element subsets of A.

Where x is a real number, |xj and (xl denote the greatest integer ^ x  and the 
least integer Sx, respectively.

For any notation or terminology not explicitly mentioned in this section, we 
refer the reader to [1] or [2],

3. Calculation of /  (n, k) where k is fixed

Our starting point is the following simple observation. IfG  is of order n and 
p(G)>\n/2], then G ^.Ka<b with a=\n[2], Z>=[n/2J and so G$Bn. The opposite 
direction is described by the following useful lemma.

Lemma 1. If G(V, E) is a graph o f order n such that (i) p(G)^{nJ2}, (ii) ri(G) = 1, 
and (iii) q(G )^[2n/3)-l, then GdBn. This result is sharp.

Proof. The proof is by induction on n. If n=  2, then G is required to be empty 
and so the conclusion holds. Let p(G)=k. It is easy to see that the result holds if 
A =  1 or 2, so we may assume that As3. Let H =G —X, where X  is a component of 
order k. Then H is a graph of order n — k and q(H) = 1. Now q(H)S[2n/3\ — /cS 
ä |2(« — A)/3j — 1, the second inequality being by virtue of the fact that k ^ 3. Also, 

(A, [2/7/3] — k + 1). If 3A sn, then k-s\(n — k)/2] and if 3k ^ n + l ,  then 
[2«/3J — k+  1 =f(n — k)/2\. Hence, in all_cases H satisfies (i)—(iii) ar.d so, by the 
induction hypothesis, H£Bn_k. Since X  and H are completely joined in G, it 
follows that G£B„.

From the remark made earlier, we know that condition (i) cannot be weakened. 
To see that (ii) cannot be weakened, note that if q(G)> 1, then GJAilin_1. Finally, 
with h&7 set m =  l(«  + l)/3J + l, A = [«/3j +  l, l=n — m — k  and consider the graph 
G—Tm{JTk[JKi, where 7j„ and Tk denote arbitrary trees of orders wand k, respec
tively. In this case, we have p{G)^\n!2\, t](G) = 1 and q(G)=[2n/3\. However, 
Glf>Kiub with a=[2«/3j +1, b= \nß\~  1. This example shows that condition (iii) 
cannot be weakened. □

With the aid of Lemma 1, we can obtain the exact value of f(o, k) in case 
k —0 or 1.

Theorem 1. For all n ^ 2 ,f(n ,0 )—\n/2] — l andforall n ^3 ,f(n , l)=[(?! + l)/2].
Proof. With m = f;)/2] +1, let G =7’mUX„_m, where Tm denotes an arbitrary 

tree of order m. Thus, G is a graph of order n, q(G) = \n/21 and p(G) = [n/2.1 +1. Since 
/r(G)=-f/i/2), it follows that G$B„ and this example shows that f(n,0)S\n/2]—l. 
To prove the inequality in the other sense, consider an arbitrary graph G of order 
n and size q(G)S\n/2\— 1. Note that such a graph must satisfy (i) p(G)^\n/2],
(ii) q(G) = l, and (iii) <7(G)^|2n/3j — 1. Hence, by Lemma 1, G£Bn.

With m = f(n + l)/21 +  l, let G=C,„UKn_m, where Cm denotes the cycle of 
order m. Thus, G is a graph of order n and size q(G)=\(n + l)/2] + l. Moreover,
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if x is an arbitrary vertex of G, then p(G—x)sf(n  + l)/2]>f(n —1)/2]. It follows 
that for each x G—x ^ K atb with a—\{n — l)/2j, b=[(n — 1)/2J and so this example 
shows that /(«, l)SÍ(n + 1 )/21. To prove the inequality in the other sense, con
sider an arbitrary graph G of order n and size q(G)S\(n + 1)/2]. Let x  be a vertex 
of maximal degree in G, and let H —G—x. If x has degree S2, then q(H )S  
Sf(n + 1)/2J — 2—\{n — 1 )/2] — 1. If x has degree s i ,  then G is the union of a collec
tion of disjoint edges and so in this case as well q(H )^\(n — 1 )/2] — 1. Therefore, 
by the first part of this theorem, H£Bn_x and so G£B„_1. □

Corollary. Let t(n) denote the largest integer q such that for every graph G 
o f order n and size q, G contains every tree o f order n. For all n ̂ 2 , r(n)=fn/2j — 1.

Proof. Since each tree of order n is contained in an appropriate complete 
bipartite graph Katb with a+b=n, it follows that t{ri)^f{n,0)=\nl2\—\. On the 
other hand, the graph G=(n/2)P2 {n even) or G=((n—3)/2) P, U P3 in odd) is a 
graph of order n and size q(G)=\n/2\ suchthat (Here, m il is used to
denote the graph with m components, each isomorphic to H.) This example shows 
that t(n)Sfn/21 —1. □

At this point, one may be tempted to conjecture that for each fixed value of k, 
f(n, k)=n/2 + 0 (l) , perhaps even exactly calculable as in the case of k —0 or 
k = 1. In fact, we find that for all k ^ 2, n/2 + A i/n <f(n, k)<n/2+B ^n, where 
the positive numbers A and B depend only on k. Thus, there is a very striking dif
ference between the case of k = 1 and that of k =2. In order to establish the facts 
concerning the behavior of f(n, k) when k  s 2 ,  we shall need several preliminary 
results.

The following lemma uses the term suspended path. A path x0,x 1? ..., xk in 
a graph G will be called suspended if its interior vertices xl5 ..., xk- k are of degree 2 
in G, whereas its end vertices (x0 and xk) have degree ̂  2.

Lemma 2. Any tree having k vertices o f degree 1 is the union o f at most 2k —3 
edge-disjoint suspended paths.

Proof. The proof is left to the reader.
Lemma 3. Let T be a tree o f order n + 1 where 2. There exists a vertex x  

such that p (T —x)^\n/2]. Consequently, there is a partition o f the components o f 
T—x into two parts such that each part has at least [/j/31 vertices.

Proof. The proof is left to the reader.
Lemma 4. Let G(V,E) be a connected graph of order p and size p + l—l. 

With 2, set <5=min (|fc/2j/(4/—3), 1/4). Then, there exists X£[V]k such that
p ( G - X ) m \ - b ) p l

Proof. Delete 1 edges from G in such a way that the resulting graph H  is still 
connected, i.e. so that H  is a tree. The deleted edges determine a subtree T  in the 
following way. First, we find those vertices which were incident in G with one of the 
deleted edges and so define a set A. Then, we define T  to be the union of all paths 
in H  which join pairs of vertices from A. Let Ax denote the vertices of A which 
have degree 1 in T and set A2=A — A1. According to Lemma 2, T  is the union of
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at most 2\At\ — 3 edge-disjoint suspended paths. The vertices of A2 now subdivide 
these suspended paths into what we shall call elementary paths. The elementary 
paths may be described in the following way. The end-vertices of the elementary 
paths are precisely those vertices x such that either (i) xf_A or (ii) deg (x)>2 in T. 
Suppose that there are r elementary paths Px, P2, ..., Pt . Since \A\s2/, it follows 
that r-^2\Ax\ +\A2\ — 3 s 4 /—3.

Note the following useful property of the construction described thus far. Sup
pose that x is a vertex of G and that it is not a vertex of T. Then, there is a unique 
path in G from x to T. If there were two such paths, then one of them would have 
to use one of the edges which were deleted in going from G to H. This would put 
x on a path in //joining two vertices from A and so force x to belong to T. In light 
of this property, we note that the collection of elementary paths Pt , P2, Pr 
may be used to define a partition V=(V1, V2, ..., Vr) of the vertices of G according 
to the following scheme. If x is an end-vertex of one or more elementary paths, it 
is identified with an arbitrarily chosen one of those paths. If x is an interior vertex 
of an elementary path, it is identified with that path. Finally, if x is a vertex of G 
which is not a vertex of T, let w be the other end-vertex of the unique path from x 
to T  and identify x with the same elementary path as is w.

Now we are ready to describe and put to use the crucial properties of the ele
mentary paths. Let ut and vt be the end-vertices of the ;th elementary path, /*,. Our 
construction insures that if x is any vertex of V( other than ut or t>;, every path from 
x to a vertex in V— Vt contains either ut or i\. In other words, by deleting w; and 
V; from G, we completely disconnect the vertices of Vt from the remaining vertices 
of G. Without loss of generality, we may suppose that |F1|^ . . . ^ |F r|. Set 
m=min (\r/4], |/c/2j) and consider the graph G—X, where X  =  {w;, vh z = l, ..., m). 
Since \Vx\+...+\Vm\ ^m p/r^öp, it follows that p{G — X) satisfies the stated bound 
unless IFil>r(l — á)/f|. In case \VX\>\(1— set B = VxU {u,, t>x} and con
sider the tree T' spanned by the vertices of B. By Lemma 3, there exists a vertex x 
of this tree such that the components of T ' —x can be partitioned into two parts, 
each of cardinality at least f(| Vx\ —1)/31. Now we may delete x and either ux or vlt 
whichever is appropriate, and so disconnect from G a set of at least [p/4\ vertices. 
In this case, for X = {x, zq} or {x, dx} we obtain p{G—X)s\3p!A\. □

Now we are prepared to prove our theorem concerning f(n ,k )  with k ^ 2 .

Theorem 2. Let k>  1 befixedandset yi =  )/'[/c/2J/16 and B — ̂ 3k{k—\)l{k + l). 
Then, for all sufficiently large n,

n/2 + A}'n < /(« , k) <  n/2 + B ('«.

Proof. Let G (V,E) be a graph of order n and size q=n/2+A, where A = A fn .  
We wish to prove that there exists X£[V]k suchthat G — X  satisfies the conditions 
of Lemma 1. This will establish the lower bound for f(n ,k ). Since A=o(n), it 
follows that the number of connected components of G is at least n — q=n/2 — o(n). 
Consequently, tj(G)S  2. On the other hand, if rj(G) = 2, then p(G)=o(n) and so 
by deleting just one vertex from G we obtain a graph which satisfies the conditions 
of Lemma 1. Hence, we now assume that rj (G) =  1. Since this is the case, we may 
assume that p.(G)>[(n—k)/2], in fact p(G)>\(n+k)/2] for, otherwise, we may
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simply delete any k vertices from the largest component. Suppose that the largest 
component is of order p and size p + l—l. Hence, we have the bounds p^q=n/2+A  
and l ^ q — p + l s d .  With a view toward applying Lemma 4, note that if 
<5=|fc/2j/(4/—3) then (1 -  <5)p <  (1 -  [k/2\/4A)(n/2+ d )< u/2+ (d2 -  [k/2]u/8)/d. There
fore, in this case and with our choice of A, we have f(l —<5)/d^f(«—&)/2]. Cer
tainly if 5 =  1/4, f(l — <5)/?]S[(« —k)/2\ and so the desired result follows from 
Lemma 4.

The upper bound is established by the following simple construction. With m 
chosen to be an even integer, let H  be a graph of order m which is regular of degree 
k + 1 and (A: + l)-connected. An example of such a graph has vertices 0, 1, ..., m — 1 
with two vertices i and j  joined if i — l(/c + l)/2jS/S/+[(A: +  l)/2] (mod m) and, if 
k + 1 is odd, i is joined to i+m/2 for l^ i^ m /2 .  The fact that such a graph is, 
indeed, (/c + l)-connected was proved by Harary in [3] and the proof is also given 
in [1, pp. 48—49]. Set r=m (k +  \)/2 and let the edges of H  be e , ,  e 2 , ..., e r . For 
i= l ,  2, ..., r, insert a vertex y { subdividing et and make yt adjacent to /j—1 new 
vertices. Finally, add isolated vertices so that the resulting graph G(V, E) is of 
order n. Thus, G is of size q(G)=r+(l1 + ... +/,). Without loss of generality, we 
may assume that /XS /2S . . . s / r. Now make the following choices for the para
meters of G. Set m=2 f^5 kn ß (k2 — 1)] and /x =  ... =lk = \^5{k — l)n/Sk(k + 1)1 ^ /. 
Then choose lk + 1, ..., /r sothatm  + (/t+1 + ...+ /,) = [(« — A:)/2] + l. Let Y={y1,
It is apparent that for every X£[V]k, we have p(G — X )^ p (G — y)=[(7i — k)/2\ + l. 
Also, we have q(G) — \(n — k)/2] + 1 + kl+ (k— l)m/2-=:n/2+B (/« for every e>0. 
Since p{G — X)> {(n — k)/2) for every X£[V]k, it follows that G^5n_fc. This 
establishes the upper bound. □

4.  An upper bound for f(n , [e«])

At present, very little is known about f(n, k) when /c—°° with n. However, 
the results of the preceding section suggest that f(n, [£«])< [(l/2+<5)nl where <5(0 
with e and this much can be proved without difficulty.

Theorem 3. Let 0< e < e -4 be fixed and set á = ]/6e log (1/e). For all suffi
ciently large values o f n,

/(« , lenj) <  [(l/2 + <5)«].
Proof. Set p=[l/2(l+<5)nl, q=\(\!2+ö)ri\, k=[vn\, r —q -p ,  a=\(n-k)/2\, 

b=[(n—k)/2\, and c —a+ p—n. Using the probabilistic method, we shall prove the 
existence of a graph G of order n and size ^ q  such that G ^ K a-b. Let F={1,2, 
X = {\,2 , ... ,p) and Y=[V]2. The probability space used to prove the existence 
of G may be described as follows. Let ß  = ß jX ß 2 where Ql —X p and Q2 = Yr. 
Each point in ß  is given probability l/ |ß |. A typical point in ß  is cu=(cuj, o»2) 
where a»1= (x ,, ..., xp) and to2=(y1, ..., yr). Corresponding to a> there is a graph 
defined as follows: \ i ,j )  is an edge in the graph for each occurrence of xt=j, 
Xj=i or yk = {',]}, k —1, ..., r. It is understood that any loops and/or extra edges 
which may be generated by the random method are simply not included in the 
graph so formed. If G ^ K tttb then for some m, c ^ m ^ a ,  there are disjoint sub-
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sets of X, namely A and B with \A\=m  and \B\=p—k —m, suchthat E(A, B)=cp. 
Now for fixed A and B, consider the event E(A, B )—(p. The number of points 
of £2t in this event is (jn+k)m(p—tn)p~k~mpk and the number of points of Q2 in

this event is [(2 ) “  m (p ~  k  — w)j . Hence, we obtain the bound

, m(p — k — m )\r

ÍT T
Using Stirling’s formula and some elementary bounds, we find that each term in 
the sum is bounded by

(1 +  2k/n)n(p/k)k (1 - a ( p - k - a ) )) •

Substituting the values of a, k, p and r, we find that Prob (G ^K a b)-*0  as n-+°° 
provided that (l+2e)((l +<5)/2e)E(l — (1 — e)(c> —£)/2)á/2<  1. A simple calculation 
shows this to be the case when 0 < 8 < e - 4  and <5 = /6e log (1/e). n

5. Additional problems and results

The bound for f(n, |ew]) provides a satisfying tie with the results for f(n , k) 
where k is fixed; still, it leaves us with more questions than answers. Among other 
things, the result shows that if F(e) =  lim /(« , |e«])/w exists, then lim F(c) = 1/2.

n - * - o o  x 7 e|0
But, does lim /(« , [enj)/« exist?

n— 00 v

P roblem  1. For 0 < x <  1, does l im / ( « ,  [xnj)/n exist?
n-+ 00

By a variety of simple arguments, it is possible to prove bounds of the form 
F\(x)< f(n, [x«J)/k<  F2(x ) which hold when 0 < x <  1 is fixed and n is sufficiently 
large. Hence, it is at least plausible that lim f(n , [xn\)/n exists. As an example of
an upper bound for f(n , [xnj)/n, we give the following argument. Starting with 
the complete graph K„, we wish to remove q=[yn\ edges e1, e2, ..., eq in such 
a way that all Km m subgraphs with m — \(\ — x)k/2] are destroyed. Having found 
such a number y, we are assured that f(n , [xn\)/n<y. Let Xt denote the set of

(fj\ (yi — jfj\
II I .

At the stage of removing the edge ei+1 there are \Xt\ remaining Km_m subgraphs and 

— i remaining edges. Counting multiplicity, the remaining Km<m subgraphs con
tain \Xi\m2 edges. It follows that there is an edge whose removal destroys at least
IATf|/772 / 1 2 1 of the subgraphs in Xt. By choosing such an edge for ei+1, we obtain

l* i+ilS |jr , | Following such a procedure for i= l ,  2, ..., q, we obtain
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M g< ( ; ) ( " D (  1 — n } 2 j ■ An easy calculation using Stirling’s formula allows
us to conclude that if y  is chosen so that (1 — (1 — x)2/2))'< ((l — x)l2 f~ xxx and n 
is sufficiently large, then 1^1=0. As x->-0, the upper bound f o r /(« , [x«j)/n that 
is obtained by this argument is quite inferior to the bound given in Theorem 3. 
The advantage of this argument is that it is applicable for all x  satisfying 0 < x <  1.

The second problem is not concerned with the calculation of f(n , k), but is 
certainly related to the investigation described in this paper.

P roblem  2. For all n ^2 , determine the largest integer m —f(n ) such that for 
every tree T o f order n, T£Bm.

We have obtained upper and lower bounds for f(n) and these results may be 
published elsewhere.

Finally, we note the following generalization of the basic problem considered 
in this paper.

P roblem  3. For 2 and n ^ k + r , let f r(n,k) denote the largest integer 
q such that for every graph G of order n and size q, G ^K (a}, ..., ar) for every parti
tion (a1, ..., ar) o f n —k into r parts. Determine f r{n,k).

The proofs given in this paper extend naturally and easi!> to the study off T(n, k). 
For r s  3, the induction argument used in the proof of Lemma 1 yields the fol
lowing result.

L emma. Let r ^ 3. I f  G is a graph o f order n such that (i) p(G)^\n/r1 and
(ii) q(G)S[2n/(r+ 1)J — 1, then G^2K(a1, ..., ar) for every partition (a1, ..., ar) o f n.

Now we can state the following generalizations of Theorems 1, 2 and 3. The 
reader will find that the proofs given earlier in the paper have been so structured 
that they readily yield the results now stated.

T heorem . For all r ^ 2  and n ^ r , f r(n,0)=\n/r] — l. Except for certain excep
tional cases, f r(n, l)=[(n — 1 )/rl +1 holds for all r ^ 2  and n ^ r+ 1 . The excep
tional cases are/ 3(4, 1) =  1 , / 3(6, l ) = 2 , / 3(8, 1 )= 3  and, for r ^ 4 ,  fi(r  + 1, 1) =  1 and 
f r(r + 2, l ) —f r(r + 3, 1 )= 2 .

T heorem . Let r, &>1 be fixed and set A = \'[kjl\ßr and 5  =  /6 /c(/c — l)/((/c +  l ) r ) .  
Then, for all sufficiently large n,

n/r + A /n  < f r(n, k) <  n/r + B^n.

T heorem . Let 0 < £ < e-4 be fixed and set d = ̂ r(r+ \)e  log (1/e). For all 
sufficiently large values o f n,

/ f(n,l£»J) <[(!//■+ <5)«1-
Exactly as in the special case of r= 2, the methods used in this paper provide 

an effective means of studying f r{n, k) only when k<scn. Thus, for example, the 
generalization of Problem 1 to consider f r{n, |xwj), 0 < x <  1, is an important
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problem about which little is known at present. With n and r fixed, f r(n, k) is defined 
for 0 ^ k S n —r, and it is worth pointing out that in addition to the k = 0 and 
k = 1 cases, f r(n, k) is known exactly for lc=n—r. We know that f r(n,n — r) = 
=(n —r+ t + l)s/2— 1, where n=(r—\)s+ t, This is Turán’s theorem.

REFERENCES

[1| B o n d y , J. A. and M u r t y , U . S. R., Graph theory with applications, American Elsevier Pub
lishing Co., New York, 1976. M R  54 #  117.

[2] H a r a r y , F., Graph theory, Addison-Wesley, Reading, Mass.—London, 1969. MR  41 #1566. 
[3J H a r a r y , F., The maximum connectivity of a graph, Proc. Nat. Acad. Sei. U.S.A. 48 (1962), 

1142— 1146. M R  25 #1113.
[4] T ú r á n , P., An extremal problem in graph theory, Mat. Fiz. Lapok 48 (1941), 436—452 (Hun

garian). M R  8—284.

(Received March 9, 1983)

P. Erdős

M TA  M ATEM ATIKAI K U T A T Ó  INTÉZETE 
P.O. BOX 127 
H— 1364 BUDAPEST 
H U N G A R Y

R. J. Faudree, C. C. Rousseau and R. H. Schelp

D EPA R T M E N T OF M ATHEM ATICS 
M EM PH IS STATE UNIVERSITY 
M EM PH IS, TN 38152 
U.S.A.



Studia Scientiarum Mathematicarum Hungarica 23 (1988), 327—334

DURCH NORMEN DEFINIERTE IDEALKLASSENGRUPPEN

G. LETTL

1. Einleitung

Für einen algebraischen Zahlkörper K  sei f K die Gruppe der gebrochenen 
Ideale des Ganzheitsringes von K, und für jede Untergruppe c / *  ist 
eine „Idealklassengruppe“ von K. Ist die Gruppe der gebrochenen Hauptideale 
von K, so ist y>K= die „gewöhnliche“ Idealklassengruppe von K, eine der 
wichtigsten Invarianten der algebraischen Zahlentheorie. Ist die Gruppe der 
von totalpositiven Körperelementen erzeugten Hauptideale, so ist die
„engere“ Idealklassengruppe von K, die bereits in der Gauss-schen Theorie der 
Geschlechter eine zentrale Rolle spielt. Für einen quadratischen Zahlkörper K ist 
^ +  = {(a)|a»0} =  {( )̂|A )̂ß€Q+}, also ^  mit Hilfe der Norm N  von K/Q be
schreibbar. In der vorliegenden Arbeit werden nun ganz allgemein solche durch 
Normen definierte Idealklassengruppen untersucht. Ist L/K  eine endliche Erweite
rung algebraischer Zahlkörper und Feine (multiplikative) Untergruppe von K*, so 
sei Jf(F )  die Gruppe aller Hauptideale (a) von L mit NL/K<x£F. Die Faktorgruppe 
nach Jif (F) ergibt dann eine Idealklassengruppe F) von L. Im Gegensatz zu 
den von Kuroda [3] definierten Klassengruppen enthalten die Gruppen <6 (F) im 
allgemeinen keine Information über das Zerlegungsverhalten von Primidealen in 
Oberkörpern, da die Primidealdichten in den einzelnen Klassen in Abhängigkeit 
von F beliebig variieren können (vgl. Satz 3). Auch die Struktur und die Ordnung 
von 'ÍÍ(F) hängen im allgemeinen von F ab. Andererseits ermöglicht es diese Varia
bilität, durch geeignete Wahl von Fdie Gruppe # (F ) mit vorgegebenen Eigenschaf
ten zu versehen.

Von besonderem Interesse ist der Fall, wenn F  direkter Kofaktor der Einheiten
gruppe ist, also K* =EkXF. Dann liegen zwei Hauptideale mit gleicher relativer 
Idealnorm bezüglich K  genau dann in derselben Klasse von ^ (F ), wenn sie Erzeu
gende mit gleicher Relativnorm besitzen. Bumby [1] untersuchte, wann eine end
liche, normale Erweiterung L/K von algebraischen Zahlkörpern die folgende 
Eigenschaft besitzt, die er (N ) nannte: je zwei ganze Zahlen a, ß£L  mit NL/Ka =  
—NL/Kß sind entweder beide irreduzibel oder beide nicht. Ein vollständige Charak
terisierung aller Erweiterungen L/K  mit der Eigenschaft (N ) ist unbekannt. Ist 
G=Gal (L/K), K* =EKX F  und enthält jede Klasse von "^(F) Primideale, so zeigt 
sich, daß die Eigenschaft (IV) nur von der Struktur von und ^ (F ) als G-Moduln 
abhängt.

In dieser Arbeit wird auf den Zusammenhang von (N ) mit den Gruppen ^ (F )  
nicht näher eingegangen, sondern es werden ausschließlich Resultate über die Klas-
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sengnippen 'g’(F) hergeleitet. Für L/Q und Q x ={1, — 1}X F geben die Sätze 4 
und 5 den genauen Zusammenhang zwischen den Klassengruppen ^ (F ) und 
an. Im allgemeinen Fall bleibt die Frage offen, welche F als Kofaktoren von EK 
gewählt werden sollen, damit ^(F )  minimale Ordnung hat bzw. wann (F(F) mit 

übereinstimmt.

2. Die (F)-Idealklassengruppen

Für eine endliche Erweiterung algebraischer Zahlkörper L/K  bezeichne 
N: L * —K x die Relativnorm, -WL die Gruppe der Hauptideale von L  und = 
= S d * L .

D efinition. Es sei F  eine Untergruppe von K x. Ein Hauptideal (a)(ifL heißt 
(F)-Hauptideal, wenn Nad F ist. Bezeichnet 34? (F) die Gruppe aller (F)-Haupt- 
ideale von L, so heißt <%(F)=tfj34f(F) die (F)-Idealklassengruppe von L.

Ist s o  bezeichnen wir mit [21] bzw. [2l]f die gewöhnliche Idealklasse
bzw. die (F)-Idealklasse, welche 21 enthält. Für u£L* gilt (a.)£Ji?(E) genau dann, 
wenn Na£F-NEL ist. Setzen wir N L X)/(F ■ NEl ), so gilt 34?J34?(F)^
= <Pf^K */(F -N E l ).

L emma 1. a) Ist [K* :(F• EK)] endlich, so ist (?(F) endlich.
b) Ist K x /(F ■ EK) keine Torsionsgruppe, so ist (F) unendlich.

Bew eis, a) Da [(F- EK):(F-NEL)\^[E K:NEL]-< °° ist, erhält man
[K x : (F. NEl )] =  [Kx : (F- EK)] ■ [(F- EK) : (F- NEL)\ <

Nun ist aber K X/(F- NEL) J F J t f (F) und

(II 0 -  34?j3i?(F) -  <8(F) -  <ßL -* 0

eine exakte Sequenz, woraus sich die Endlichkeit von r?(F) ergibt.
b) Nach Voraussetzung existiert ein l? K x mit /,"({F- EK für alle n£ Z\{0}. 

Die Potenzen von X erzeugen Hauptideale in L, deren (F)-Idealklassen [(A")]f paar
weise verschieden sind, also ist C?(F) unendlich.

S a t z  1. Ist F direkter Kofaktor von EK (d. h. K x =EKx F ) und hL die Klassen
zahl von L, so gilt

(2) [(Ek O N L x):NEL]-hL ^ #  <€{F) ^  [EK: NEL] ■ hL.

B ew eis. Wegen der exakten Sequenz (1) genügt es, [(Ek(~)NLx):NEl ]S  
=  #  (F)) ̂ [Ek : NEl ] z u  zeigen. Nun ist aber

= <PF = (F- N L X)/(F- NEl) K X/(F- NEl) =

=  (Ek X F)/(NEL X F) -  EJNEL,
andererseits gilt

&F S  (F • (Ek fl NL x ))/(F- NEl ) = (FX(Ek C]NLx))/(Fx NEl ) Sí (Ek D NL x )/ NEl .
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Wir setzen nun voraus, daß L/K normal mit Galoisgruppe G ist. Da G die 
Gruppe (F) invariant läßt, operiert G auf %>(F). Wie üblich, schreiben wir Klas
sengruppen additiv und daher die Operation von G auf (ßL bzw. ^ (F ) in Präfix
notation, auf L bzw. f L jedoch in Exponentennotation. Der folgende Satz zeigt, 
daß der Stabilisator einer (F)-Idealklasse von F  unabhängig ist.

Sa tz  2. Es sei L/K eine endliche, normale Erweiterung algebraischer Zahl
körper mit Galoisgruppe G. Für a$fßL sei Ga==G der Stabilisator von a.

Dann existiert ein Homomorphismus ya: Ga — EK/NEL, sodaß für jedes F ^K *  
mit Ek D FQ NEl gilt: G'a ker (y j ist der Stabilisator fü r  jede in a enthaltene 
(F)-Idealklasse.

Beweis. Wir wählen ein Ideal 2t£a. Für o£Ga sei an£L mit 2Tr~1=(a(T). 
Dann definieren wir ya: Ga—EK/NEL durch ya(a):=Nota ■ NEL. Zunächst zeigen 
wir. daß diese Definition von der Wahl von 2t unabhängig ist. Ist ©6u, so gibt 
es zu jedem a£Ga ein ßa£L mit 23CT_1=(/?„). Weiters gibt es ein ö£L mit 
93 =21 - (<5), womit wir (ßa)=(aa • und wegen Nöa~1 = l Nßa£N<xa-NEL
erhalten.

Nun beweisen wir, daß ya ein Homomorphismus ist. Für <r, r£(70 seien aa, a f L  
mit 21"_1—(ocff) und 2lt_1=(at). Wegen 21',,t_1=(2l<r_1)t . 2lr_1 =  (aa • at) ergibt sich 
yßar) = N(ara ■ oct) • NEL = Nxa ■ Nccz ■ NEL = ya{o) ■ ya(i).

Schließlich sei F^K*  mit EKf)F Q N E L, a'£W(F) mit a 'Q a  und 2l£a'. Für 
a£Ga sei wieder 2I<T—1=(aff). Dann gilt {pa’ =a')<*([<k ,r\F = [sil]f)<>(N<xa€F ■ NEl ). 
Nun ist aber NaadEK, und die Voraussetzung über F ergibt (F -NEL)C\EK=NEL, 
also gilt (N<xadF-NEL)o(N<xa€NEL)o (o£  G'J.

3. Primidealdichten der (F)-Idealklassen

In diesem Abschnitt sei L/K  eine endliche, normale Erweiterung algebraischer 
Zahlkörper mit Galoisgruppe G. Weiters sei F ein direkter Kofaktor der Einheiten
gruppe von K. Dann ist F eine freie abelsche Gruppe mit abzählbarer Basis (siehe 
z. B. Narkiewicz [4], S. 123). Wir werden zeigen, daß durch geeignete Wahl von F 
„beliebig“ vorgegebene Primidealdichten der einzelnen (F)-Idealklassen erreicht wer
den können. Da (F)-Idealklassen, die unter G konjugiert sind, gleiche Primideal
dichte haben, muß dies bei der „beliebigen“ Vorgabe der Dichten ebenso berück
sichtigt werden wie die Tatsache, daß die Dichte der Primideale in einer gewöhnli
chen Idealklasse \/hL ist.

Nach Skolem [5] läßt sich ein direkter Kofaktor F„ zu EK folgendermaßen 
konstruieren. Die Menge aller Primideale1 von K sei {p,j/€N}, wobei die Reihen
folge so gewählt wird, daß für ein no(NU(0} die Menge {[pf]| 1 s / ^ n 0} eine 
Basis für ist. Für n£N und 1 S i ^ n 0 existieren eindeutig bestimmte Zahlen

hit„̂  Z mit OsAi>n<ord [p,], sodaß p„ H  Pi —OO ein Hauptideal ist. Dann
i = i

ist F0— f f  <71,,) eine freie Gruppe und EkXF0=K*. Ist v„ die zu p„ gehörige
n£N

1 Primideale seien stets ungleich (0).

3
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und auf 1 normierte Exponentenbewertung, so gilt für jedes l£ K x

(3)  ̂— e nnnn n <"(A).n = 1 n=«0+1
wobei e£EK und c„€ Z durch X eindeutig bestimmt sind. Das folgende Lemma zeigt, 
daß sich jeder direkte Kofaktor F zu EK in der Form F= JJ (e„7r„> mit eindeutig

n € N
bestimmten vn£EK schreiben läßt.

L e m m a  2 .  Es seien A eine multiplikative, abelsche Gruppe, B eine Untergruppe 
von A, F0 und F freie Untergruppen von A mit A= B X F 0= BXF. Ist {f\i£ I}  eine 
Basis von F0, so existieren eindeutig bestimmte b fB , sodaß {b if\ifj}  eine Basis 
von F ist.

Beweis. Ist {gj\j€.J} eine Basis von F, so existieren für i£ l , jdJ  eindeutig 
bestimmte b ^B  und e,-,y€Z mit f ^ b p 1 JJ g j ‘- J - Für F' =  JJ (b if)  gilt F ' f  F.

j i J  i € I
Ist a£F. so existieren bdB und Z mit

o =  b IJfiy‘ =  b n ( b r y‘ n  gj‘-jy‘)-
i i l  H I  j i J

Daraus ergibt sich b = JJ bj1 und a= JJ womit wir FQ F' und somit
t u  iii

F = F ' bewiesen haben.

Es sei nun L/K  normal mit Galoisgruppe G und K x = EKXF. Jede Ideal
klasse a ^ L enthält wegen (2) höchstens [EK:NEL] (E)-Idealklassen. Ga, ya und 
G'a seien wie in Satz 2 definiert und Fa:=im (ya)=EK/NEL. Auf der Menge der 
in a enthaltenen (E)-Idealklassen operiert Ga, wodurch diese in höchstens m{d) = 
=[Ek :NEL]/$ra Bahnen der Mächtigkeit i(a) = [Ga:G'a] = # Fa zerfällt. Da G'a 
und r a nur von a, nicht aber von F abhängen, gilt dies auch für i(a) und m(a). 
Mit JA: f L^ f K bzw. ^Vl/q : f L — Q bezeichnen wir die relative bzw. absolute 
Idealnorm. Ist so ist die Primidealdichte von M  durch

.. f ^ M I V P r im id e a lu n d ^ C P jS n }
1 '  -  Ji!2 # m / L\y  Primideal u n d ^ /Q(i)ß) ^  n}

definiert, falls dieser Grenzwert existiert. Bekanntlich hängt ö(M ) nur von den Prim
idealen mit Restklassengrad 1, also auch nur von den Primidealen mit Relativgrad 
f L/K= 1 ab. Jede zu M  unter G konjugierte Menge hat dieselbe Primidealdichte, also 
können nur solche (E)-Idealklassen verschiedene Dichten haben, die unter G nicht 
konjugiert sind.

Satz 3. Es sei L/K  eine normale Erweiterung algebraischer Zahlkörper mit 
Galoisgruppe G. Für 1 = j= l seien a j ^ L Repräsentanten für die verschiedenen 
Bahnen, in die (€L unter G zerfällt. Weiters seien m fb i mit mj ̂  m (aß und R

mj
mit 0 ^ j ^  1 und 2  eUj — !• Dann existieren eine Gruppe F  mit K x —EKX F

i = l
und für I s j s l ,  l á íS m j  paarweise verschiedene (F)-Idealklassen bi:J mit bit j Q üj 
und Primidealdichten ö (biwj)=eitj/(hL ■ i(aß).
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B e w e i s . Wir gehen von einer Zerlegung K x =EKX F 0 aus, wie sie zu Beginn 
des Kapitels beschrieben wurde, d. h. F0= J] (n„), {[p„]| 1 ist eine Basis von

Hfc N
und für jedes X£K* gilt (3). Für 1 s=/sf/ sei 21 fest gewählt. Die end

liche Menge S Q / L enthalte genau die Primideale von L, welche über den Idealen 
p„ mit lg n ^ n 0 oder mit für y € { l,...,/}  liegen. Mit geeigneten e„£Ek
werden wir F= ]J (e„n„) bilden und damit alle Behauptungen des Satzes veri-

ntN

fizieren.
Es sei nun j£ { \,  ..., /}. Wir wählen r\mfiE K so, daß r\iNEL, ..., t]mjNEL

nij verschiedene Nebenklassen von (EK/NEL)/raj repräsentieren.
n: N — (1,2, ..., rrtj} sei eine Funktion mit n(k)= k  für \^ k s .m j  und 

lim # {k\fi(k)=i und k^n)/n= eltJ für m}.
7j-*-oo

{©(|/£N} sei eine maximale Menge von unverzweigten Primidealen aus üj mit 
Relativgrad f L/K = U die nicht in S enthalten sind und paarweise nicht konjugiert 
unter G sind. Außerdem sei ihre Reihenfolge so gewählt, daß ^ l/q^ í^ ^ l/q^ í+i 
gilt. Für /£N ist dann 1/k'<ipi=p„( mit «,•>/?„ und ltßj2lj~1=(ai) mit vni(Nu,) =  1. 
Wir erhalten daher N<Xi=E7tni JJ nc„n mit b£Ek , c„£Z und setzen £„i:=tj~{})s.

n€N\{n,}

In dieser Darstellung ist 0 nur möglich, wenn oder n ^ n v. Auf
diese Weise konstruieren wir eBi für alle i£N und analog für jede Klasse ak (1 ^ k ^ l ) .  
Für die von dieser Konstruktion nicht erfaßten Indizes (das sind genau die,
wo über p„ Ideale aus S, Primideale mit Relativgrad f LlKp - 1 oder verzweigte 
Primideale liegen) definieren wir e„ := 1 und setzen

F:= U
ntN

Wir kehren nun zu der oben betrachteten Idealklasse aj zurück und behaupten, 
daß für 1 S/Smy, bitJ = {tBdajWiíJ1 =(ß) mit Nß£.r\iNELx F )  alle Behauptungen 
des Satzes erfüllt.

Man prüft leicht nach, daß bit] eine (F)-Idealklasse ist, die genau dann 
enthält, wenn n(k)= i ist. Insbesondere ist bitj wegen nicht leer. Aus der
Wahl der ru folgt, daß die (F)-Idealklassen bltJ paarweise nicht konjugiert unter G 
sind. Für die Primidealdichte von bltJ erhalten wir:

Mh \ ft {^P€h).y\5,|© prim, / l/k(©) = 1 ,> Í/Q© g  »}
K iti) hL$ W Z a j \ S W  Prim , f L/Km  =  1, © S  n)

J_ rm ft -  n' = ’) = _L 9{k\k g n,n(k) = i}9G'aj =
“  hL -  # m \ k  s  n, ff€C0j} hL —  n *Gaj

= eiJ{hLi(aj)).

B em erk ung . Durch geeignete Wahl der Funktion n  im Beweis kann erreicht 
werden, daß für einige oder für alle (F)-Idealklassen die Primidealdichten nicht 
existieren. Es kann auch (F)-Idealklassen geben, die keine_ Primideale enthalten, 
wie das folgende Beispiel zeigt: Für K =Q  und L = Q((/34) ist AFL={1}, aber

3*
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EKn N L x = { l , -1}, da JV((3 + /34)/5) =  - l  ist. Nach Satz 1 gilt # <j?(F)=2AL=4 
für jedes F mit Q* =  {1, -  l} x f .  Wählt man nun F so, daß die Normen aller 
Primelemente von L  in F liegen, so enthält die (F)-Idealklasse {(a)|7Va£( — F)} 
kein Primideal.

4. (F)-Idealklassengruppen von Erweiterungen über Q

In diesem Kapitel betrachten wir algebraische Zahlkörper L  über K=Q  und 
untersuchen, für welche F sQ *  mit Q X={1, — 1}XF, <$(F )= <gL gelten kann. 
Außerdem werden wir zeigen, daß die exakte Sequenz (1) unabhängig von der 
Wahl von Fals Kofaktor zu {1, —1} spaltet bzw. nicht spaltet. Lemma 2 zeigt, 
daß für jedes solche F  die mit geeigneten Vorzeichen versehenen Primzahlen eine 
Basis bilden. Ist NEL — { 1, —1} (z. B. wenn [L : Q] ungerade ist), so ist (ß{F)=(€L 
für jedes Fm it Q X =  {1, — 1}XF.

Satz 4. Ist L/Q ein algebraischer Zahlkörper und NEL—{ 1}, so sind folgende 
Aussagen äquivalent:
(i) Es existiert ein F0 mit Q x =  {1, — 1}XF0 und tß(F0)= ‘&L.

(ii) Es gibt kein o£Lx mit No.— — r2, r£Q.
Zum Beweis dieses Satzes benötigen wir das folgende Lemma.
Lemma 3. Für n£N  sei V„= F" der n-dimensionale Vektorraum über F2 =  {0, 1}. 

Es seien M „={(a1, ..., a„)€ F „ | V  1S / S «: cq= 0  oder % {'jai = 0 } =  if {/|a;=  1}} und 
nt: Vn — Fs die Projektion auf die i-te Komponente (1 ^ iS n ) . Ist A eine Unter
gruppe von V„ mit A Q M n, so existiert ein i f  {1, mit nio(A)= {0}.

Beweis. Ist n ungerade oder A trivial, ergibt sich die Behauptung unmittelbar. 
Es sei nun m£N und n=2m. Nehmen wir an, es gäbe eine Untergruppe 
A = {et , ..., e2d}Q Mn mit d ^  1 und für alle i sei jti(A)A0. Ist e(A) die Anzahl 
der „1“, die als Komponenten in den Elementen von A auftreten, so erhält man 
e(A)=(2d— \)m. Ist aber 7tt(A)V {0}, so ist n,(eJ) = l für genau 2d~1 Indizes 
j£ {  1,2, 2dj, womit sich s(A)=2d~1n=2dm ergibt, was wegen ra&l einen 
Widerspruch darstellt.

Beweis von Satz 4. (i)=>-(ii) ist klar, denn <6(Fjj)=(ßL und NEL= {1} ergeben 
Nol£F0 für alle a£Lx, und es ist F0D {— r2\r£Qx} — 0.

(ii)=>(i). P bezeichne die Menge aller rationalen Primzahlen. Für p£P  sei 
vp: Q x-*-Z die p-adische Exponentenbewertung und

m(p) = min {vp(Nx)\a£Lx und vp(Na) >  0}.
m(p) ist der größte gemeinsame Teiler der Restklassengrade aller Primideale von L, die 
über p liegen, und m(p)\vp(Nß) für alle ß £ L x. Es sei Px = {p£P\m(p)=Q mod (2)} 
und P \ P i  =  {/?i,p2> •••}• Wir beweisen zunächst folgende Behauptung:

Ist n£ N und

L„=  { a 6 ix|Aa€{l, -1 } X  U  (p )X  f l  <Pi>}>
pept i=i(4)
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so existieren elt . . . , e„£{1 , —1}, sodaß

NLn g  U  {p)X  f l  <ei Pt) gilt-
pí Pj (=i

n
Für 1 ^ 2 "  sei Fj— ]]  (p)x TI (eiP t\ wobei (el5 s j  die Menge

p t p , i=l
{1, —1}" durchläuft. Wir definieren die Abbildung cp: L„~*Fl" durch tp(a) = 

rO, wenn Na£Fj
=(e,, e2n) und <?,•=-!  ̂ . Man prüft leicht nach, daß cp einJ U, wenn Noc$Fj

n
Gruppenhomomorphismus ist. Für a ist iVa=± [[ pa(p> ]J Pi‘- Aus der Defi-

p £ P ,  i=l
nitionvon P] folgt, daß für alle pGPi a(p)=0 mod (2) ist. Sind alle at gerade, so gilt 
wegen (ii) das positive Vorzeichen für Na, und es ist <p(a)=(0, ..., 0). Ist hingegen 
ßio ungerade und sind e(€{ 1 , — 1} für alle iytin gewählt, so ist je nach der Wahl 
von £,„€{1, —1} Na in der zu (ex, ...,£„) gehörigen Menge Fj enthalten oder 
nicht. Es folgt, daß in diesem Fall Na in genau 2"-1 der Mengen Fj enthalten ist 
und cp(a) gleich viele „0“ wie „1“ als Komponenten besitzt. (p(L„) erfüllt somit die 
Voraussetzungen von Lemma 3. Es existieren daher ein _/£ {1, ..., 2"}, sodaß für 
(p(L„) diey-te Komponente 0 ist. Das heißt aber NL„Q Fj, womit (4) bewiesen ist.

Wollen wir mit (4) durch Induktion eine Vorzeichenfolge (fij)i€N konstruieren, 
sodaß NLQ F0= JJ (p)X JJ {ztPi) gilt, müssen wir noch zeigen, daß für ein n0£N

P t P ,  U N
und für alle ic£N mit k ^ n 0 gilt:

Sind 8j, ...,£*£{1, —1} und

NLk Q I I  (p)X  I I  (BiPi)’
P t  P, i=l

(5) so existiert ein cfe+1€{l, — 1} mit
*+i

NLk+1 g  I I  ( p ) x n  ( e i Pi)- 
p t  p, í=i

Wählen wir dazu w0£N so, daß die Idealklassen der über P] U {p}, ..., p„0} liegen
den Primideale von L  die Klassengruppe VL erzeugen, und k ^ n 0. Nach (4) existie-

k
ren ek, ..., et€{l, — 1} mit NLkQ I I  (p)X IJ (eiPi)- Wegen der Wahl von n0

p t  p ,  > = i
existiert ein a£Lk+1 mit vPk+1(Na)=m(pk+1)= l mod (2), also

Na =  £ P Ä +I) n P°(p) n (£/ Pi)a‘
P t  P ,  i = l

mit £6 {1,-1}. Wir behaupten, daß e4+1:= £  die gewünschte Eigenschaft besitzt. 
Gäbe es nämlich ein ßdLk+1 mit

Nß = -  n PHp) II (ZiPi)b‘(£k+iPk+i)bm(p" ' )
P t  P ,  1=1
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mit bd Z, so ist

N(ßa~b) = -  1J J O i - W  n ( e lpi)b- ba‘.
Pi p, i = l

Wegen ßa~bdLk ist dies aber ein Widerspruch zur Voraussetzung von (5). Mit 
dem Beweis von (5) ist aber auch der Beweis von Satz 4 abgeschlossen.

Abschließend bringen wir noch ein Resultat über die exakte Sequenz (1).

Satz 5. Ist L ein algebraischer Zahlkörper und NEL— {1}, so sind folgende Aus
sagen äquivalent:
(a) Es existiert ein F0 mit Q * = {1, —1}X Fn, sodaß die Sequenz (1) spaltet.
(b) Für jedes F mit Q X =  {1, — \} x F  spaltet die Sequenz (1).
(c) Es existiert kein Hauptideal (o jd ft mit Nu——r 2,rdQ ,

B e w e i s . Eine exakte Sequenz von abelschen Gruppen 0-+A^-B-»C—0 spaltet 
genau dann, wenn A eine reine Untergruppe von B ist. (1) spaltet in unserem Fall 
daher genau dann, wenn für alle a 'd ^(F )  gilt: ist 2a'd-Afj3üf(F), so ist 2a' =  
= J t? (F ) .

(a) =>(c). Esspalte (E0) — <̂’(F0)->‘g’L-^0. Es seien A d / L und a£L
mit 3t2=(a) und Noc=±r2, r£Q. Weiters sei a'=[2l]Fo€i?(.F0). Dann ist aber
(a)£2a'=Jti?(F0) und somit Nct=r2.

(c)=>(b). Essei Q X = {1, - 1 }x F  und a 'd^(F )  mit 2a’dlA’JjA’(F). Wählen 
wir ‘Ada', so ist 2l2=(a) ein Hauptideal, (c) ergibt N<x—r2dF, also 2a'=A?(F). 
Daher spaltet die Sequenz (1).

(b) =>(a). Klar.

Ich möchte Herrn Professor F. Halter-Koch für viele anregende Diskussionen 
und für seine Ratschläge beim Verfassen des Manuskripts an dieser Stelle herzlichst 
danken.
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LACUNARY INTERPOLATION BY SPLINES (0, 2, 3) CASE

TH. FAWZY

1. Introduction

R. S. Mishra and K. K. Mathur[l] and Gyó'rváry [2] continued the study of 
lacunary interpolation by splines. They used spline methods for solving the (0, 2, 3) 
and (0, 2, 4)-interpolation problems for functions /£C 5. In both methods, the end 
conditions S'(x0)=y'0 and 5'(A-n)= y ' are imposed.

We first mention, two alternatives for the spline interpolant of J. Győrvári [2] 
in the intervals [x0,x!] and [xm_1, xm] such that the end conditions are not needed 
and the convergence is faster.

For the case (0, 2, 3) in [2], the spline interpolants S0(x) and Sm_1(x) are 
replaced by:

(1.1) Sj(x) = yj + ajil(x -X j)  + jy j ( x - X j f+ - ^ - y '; ' ( x - X j ) 3 +

+ 4! 5! aj,d x —X jf

where X j ^ x S x j+1 and j = 0 , m — l .
The coefficients ajtk are obtained from the condition

(1.2) S (jq)(xj+1) = y ^ h , q = 0, 2, 3 and j = 0 , m - l .
The convergence of (1.1)—(1.2) is given by
T heorem  1.1. Let y —f(x ) where /€ C 5[0, 1] and let S  be the spline interpolant 

given in (1.1)—(1.2). Then for all q =0, 1, ..., 5 we have
\ m s ~ f ) \ \ L_lXj'Xj+0 Cj,qh6- “co(£fif; h)

where j= 0 ,m —l and cj:q’s are given constants.
For the (0, 2, 4) case in [2], the spline interpolants G0(x) and Gm_1(x) are 

replaced by

Gk(x) = yk + akil( x - x k) + j y k( x - x k)2 + -^-akt3( x - x k)3 +

( 1.6)

+ j f  yl” (x -  xkY + ^pakt5( x -  xkf

where xk^ x ^ x k+1 and k —0, m — \.

1980 Mathematics Subject Classification. Primary 65D07. 
Key words and phrases. Lacunary interpolation, splines.
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The coefficients aKtP are obtained from the conditions

(1.7) G ^(x k+i) =  j ’̂ i ,  q =  0 ,2 ,4  and k = 0 , m - i .

This construction leads easily to the following convergence theorem:
T heorem 1.2. le t  y= f(x) where /£C®[0, 1] and let G be the spline interpolant 

given in (1.6)—(1.10). Then for all q=  0, 1, ..., 5 we have

\ m f - G ) \ \ L„lXk.Xk+1, ^  < 4ä5- M £ 5/ ;  h)

where k = 0, m —l and ckq’s are given constants.
In this paper we study the following (0, 2, 3)-interpolation problem:

P roblem 1. Given A: {xt—ih}"=0 and real numbers j"=0 where q —0, 2, 3. 
Find S  such that

(1.11) Sw (xi) = f (q), q = 0, 2, 3 and i =  0, 1, ..., n.

The purpose of this paper is to construct a spline for solving Problem 1 using 
piecewise polynomials of degree 6, such that for all functions /€C 6, the order of 
approximation is the same as the best approximation with splines of degree 6.

2. Construction of the spline interpolant

We shall construct a solution S  of Problem 1 in the form:
6 s u)

(2.1) SA(x) =  Sk(x) = Z - r r - ( x - x ky , xk ^ x ^ x k+1, k = 0, 1, ..., n - 1.
j =o J-

We shall define each of the SJP explicitly in terms of the data. In particular 
we choose

(2.2) Sp' = f w (xk) =  /*<«>, q = 0 ,2 ,2  and k = 0, 1, ..., n -  1.

For k — 1, 2, n — 2 we take

(2.3) ^  W +i ~  3 /Ä  + 3/k<3) - f k(l\},

(2.4) Si« = 3)- ^ -  Sf>) -  { m \ - f k̂ - h f k̂ - ~

(2.5) S P  = j { f £ { Sf>} 
and

1 f h2 / i3 /i4 / i5 /i6 1(2.6) s«> = j{/t+1-/*-y/4'-jrA(3)-ir^4)-ir^5)-|rsn-
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For k =  0 we take
(2.7) ST = s i9)(*i),

(2.8) j  ( /i(3) ~/o(3) -  Si#)) -  [ft* -fo  ~ hfo(3) ~ ~  Si6))}

(2.9) s p  =  J  {/i(3)-fo(3) ~  ̂  s p - ~  SJ«}
and

(2.10) s "> “  T
i f  f  h2 h3 m h* (4)__g w \
[7i Jo— Y Ju .J F 0 U  0 5! 0 6! 0 r

Finally, for k =  n— 1 we take

(2.11) Síül =  SÍÜ.to.-i).

(2 .1 2 ) 5 ® ,  =  § -  { |  ( / n<3> ^ i )  -  { / :  ~ f n - x  -  ^ n - i ) }  >

(2.13) 
and

(2.14) 5 « ! h\J* Jn-1 2 ^ n~1 4! 5! °"_1 6!

Clearly, the function S defined in (2.1)—(2.14) solves the (0, 2, 3)-interpola- 
tion Problem 1. Moreover, by the construction, it is clear that S is a piecewise 
polynomial of degree 6.

3. Error bounds

Theorem 3.1. Let /$C6[x0, x„] and let SA be the lacunary-spline constructed 
in (2.1)—(2.14). Then for all 0 S /S6 and all l^ k ^ n — 2, we have

\\DJ( f - S A)\\L„[Xk,Xk+ú S  Cjikh?-Jca(D*f; h) 

where the constants c]\k are given by

,* _ 13 _£!£ c* __LL c* _ J1 c* _ 6 c* _ 7
co,fc ”* 4Q 5 — 720 5 2̂,k 2 9 C * t k  ~ ~  6 ’ C4,k Cs*k ""

and c$'k =  2.

Theorem 3.2. Let /€C6[x„, x„] and let SA be the lacunary-spline constructed 
in (2.1)—(2.14). Then for all 0 S /S6 ant/ k —Q,n—\, we have

Ŵ i f - SM^ x̂  s  V i * f  I h)
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where the constants c**k are given by

r** _
c 0,k  — C1 ,k

397 
480 :

and

9 35* *  _  _** _  **  
c 2,k —  > c i , k  — c 3 ,k I I

2  > c & ,k  2

c Z  = 3.
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ARCHIMEDEAN DECOMPOSITION OF COMMUTATIVE 
SEMIGROUPS WITH OPERATORS

FRANCISCO POYATOS

§ 1. Introduction

Let A=(A; +) be a commutative semigroup and F be a domain of opera
tions on the carrier A of A that may or may not be empty. We write A=(A; + , F) 
and call it an F-commulative semigroup. This F-commutative semigroup is, by defini
tion, an F-semilattice iff (A; + ) is a semilattice (see [1]). We say that the F-com
mutative semigroup A is F-distributive iff

for all s£N  (being N  the set of the natural numbers excluding the zero), for all 
if_N, i^ s ,  for all f s£ Fs (where Fs is the subclass of F  formed by all the operations 
of F  of arity s) (see [2]), and for all at- u  ah bt, ai+1, ..., a, elements
of A. A =(A; + , F) will be called F-idempotent iff

As it is well-known, a congruence C on A is an equivalence relation C on A 
compatible with all the operations defined on A. C will be named additive idempotent
iff (a+a)Ca, for all a£A; F-idempotent iff f m(a, .r., a)Ca, for all m dN ,fm£Fm, 
a€ A ; idempotent iff it is both additive idempotent and F-idempotent.

P roposition  1 (The Tamura—Kimura congruence). Let A= (A; + , F) be an 
F-distributive commutative semigroup. The binary relation T on A:

a lb  iff m, n£N; x ,y£ A  exist so that a + x —mb and b + y —na;
(where mb= =b + .r. +b) is the smallest additive idempotent congruence on 

A. It will be named the Tamura—Kimura congruence on A.

Proof. In [1] and [3] was demonstrated T  is the smallest idempotent con
gruence on (A ; +). We must now show that T  is compatible with all f,£F , for 
all s£N.

1980 Mathematics Subject Classification. Primary 20M14; Secondary 16A78, 08B99.
Key words and phrases. F-distributive commutative semigroup, species E  o f an algebraic 

variety o f V, F-congruence on an algebra, F-maximal homomorphic image, Archimedean decom
position.

( 1)

(2) f s(a, .r., a) =  a, for all s£N ,fs£F, and for all a of A.
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Assume afTbi, for i'= l, 2, s. Then

Being

S o

a{ +  x t = rriibi and bt +yt =  at, i =  1, 2, s. 

X i,y ^A ; mi,nj£N, for all i = l , 2 , . . . , s .

(3) f j f l i  + x i ,  . . . , a ,+ x s) = f ,(a 1,a 2t as) +W j = / s(m1&1, ...,m s,b s) =

= m;mj ... msf s(bi, ..., bs)
for some w fA .

Similarly,

f s(bi, . . . ,b,)  +  w2 =  7 1 ^ 2  ••• « 5 / 5 ( ö i ,  w 2 £ , 4 .

This means f s(alt a5) Tfs(bu  bj .  □

A commutative semigroup (A; + ) is called archimedean [1] iff the Tamura— 
Kimura congruence on it coincides with the universal congruence.

§ 2. Species E  of an algebraic variety V

We introduce here a new concept of “species” E  of an algebraic variety V of 
the similarity class K (t) of non-void type t (see [2]). In [2] species means also variety, 
but not here. In this paper all subvarieties of V are species of V, but there are species 
of V which are not subvarieties of V. Let £  be a non empty subclass of V; the con
gruence C on the algebra B£V  will be named E-congruence on B iff B/CdE. We 
say that B£V  has an E-maximal homomorphic (or epimorphic) image if and only 
if an L-congruence D on B exists such that every epimorphic image of B that belongs 
to E  is epimorphic image of B/D. Then B/D is called the E-maximal homomorphic 
(or epimorphic) image o f B and it is unique, up to isomorphisms.

D e f i n i t i o n  1. A non-void subclass E  of the algebraic variety V will be called 
in this paper “species” of V iff
(1) Every isomorphic copy of any member of E belongs to E.
(2) An É-congruence on B, at least, exists for all B£ V.
(3) The intersection of all E-congruences on B is also an E-congruence on B for all 

Be V. We note it C(B , E, V).
The proof given by Clifford and Preston [1] of the Proposition 1.7, called by 

them “The Principle of the Maximal Homomorphic Image of given Type” (where 
by them type means a different concept of what it means in [2]), can be easily gen
eralized to every species E  of V in this form:

P r o p o s i t i o n  2. I f  E  is a species o f the algebraic variety VQK(t), then every 
member B of V has a unique E-maximal homomorphic image: B/C (B, E, V), up to 
isomorphisms.
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§ 3. Archimedean decompositions

Let F  be a fixed operator domain, so that VF denotes the variety of all the 
F-distributive commutative semigroups and EF the subclass of VF formed by all 
the F-distributive semilattices. Obviously, Ff ?í0, and every isomorphic copy of 
every member of EF belongs to EF. Thanks Definition 1 and Proposition 1, EF 
is a species of VF. For every AEVF the Tamura—Kimura congruence T  is just 
C(A, Ef , Vf ).

We generalize here the Tamura—Kimura—Thierrin decomposition theorem 
(see [3], [4] and Theorem 4.13 of [1]) for commutative semigroups and the (archi- 
medean) decomposition Theorems 1 and 2 of [5] for left or right semimodules over 
semirings and for semirings, respectively, to F-distributive commutative semigroups.

T heorem . Every F-distributive commutative semigroup A=(A; + , F) is ex
pressible as an F-distributive semilattice X=(X; + , F) of disjoint components Sx, 
a£A, A=  U Sa-

a i X
Each Sx, endowed with the restricted addition of A, SX=(SX; + ) is an archi- 

medean commutative semigroup and X=A/T=A/C(A, EF, VF) is the maximal 
F-distributive semilattice homomorphic image o f A, unique up to isomorphisms; being 
Sx also a class o f A modulo the Tamura—Kimura congruence T  on A, for every txdX.

P roof. This theorem follows from the foregoing definitions, from Propositions 1 
and 2 and the previous observations. □

R em ark . In the Tamura—Kimura—Thierrin Theorem (in Theorem 1 of [5]; 
in Theorem 2 of [5]) X  is the maximal semilattice (additive idempotent left semi
module over the semirings; additive idempotent semirings, respectively) homo
morphic image of A. For this reason we prefer to call A=  (J Sx the archimedean

* ( X
decomposition of A, in all cases, rather the F-distributive semilattice decomposi
tion of A.

C o ro lla ry . The necessary and sufficient condition in order to be every com
ponent Sx, a£X o f the archimedean decomposition of an F-distributive commutative 
semigroup A =(A ; + , F) an archimedean F-sub semigroup Sx=(Sa', + ;  F) of A is 
that the Tamura—Kimura congruence T on A is idempotent.

In this case, X —(X; + , F) = A/T=A/C(A, EF, VF) is the unique maximaI 
F-distributive F-idempotent semilattice epimorphic image of A.

P roof. Obvious □
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Preface

It is known in measure theory that the most extensive class of functions, on 
which all Radon measures can be extended, consists of the universally measurable 
functions (in the terminology of Bourbaki). We shall call them Lebesgue functions. 
Lebesgue functions constitute one of the most remarkable classes of discontinuous 
functions.

In spite of the fact that the class of measurable functions is extensively in
vestigated, the natural question, what properties distinguish the Lebesgue extension 
L*(T) among all the other extensions of the set C*(T) of all bounded continuous 
functions on a space T, had no answer.

The paper consists of three paragraphs on three different topics, which are 
connected by the fact that the proofs of the consequent results are based on the 
previous ones.

The first paragraph is devoted to the Lebesguean cover K  of a completely regular 
space T. Briefly it can be defined as such a “good” preimage of the space T  that 
discontinuous Lebesgue functions, lifted on K, become “almost” continuous on K. 
This cover was considered by Gordon [1], Sentilles [2], [3], Graves [3], [4] and others, 
however no characterization of it was known. The first characterization of the 
Lebesguean cover was given by the author in the paper [5] with the help of the notion 
of perfect preimages lifting Kelley covering.
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Key words and phrases. Universally measurable functions, Kelley ideal, inheritance of Kelley 

covering o f completely regular space, inheritance of Lebesgue decomposition of vector lattice or 
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On this base the notion of extensions o f C*{T) inheriting Lebesgue decomposi
tion was introduced. With the help of this notion in the second and the third para
graphs characterization of the Lebesguean extension L*(T) are presented.

In the paper we shall adhere to the terminology accepted in the books [6]—[11].
The author expresses his profound gratitude to Á. Császár and E. Makai for 

their help during fulfilling this work at the time of the author’s staying in the Buda
pest University in 1983—84.

1. Kelley ideals

Let r b e  a completely regular space and 2P(T) be the field of all subsets of T.

1.1. A subset E of T will be called a K„-set if E = \JF k for some sequence 
of compact subsets Fk. The set of all the /^-subsets of T  will be denoted by c^a{T).

A <7-ideaI N  in 2P(T) will be called regular (or more exactly compactly regular) 
if the following conditions are fulfilled:

(a) for any P£N  there exists a sequence of open sets Gk such that P a  C\Gk(LN‘,
(b) for any open set G in T  there exists a K^-set E cG  such that G \E £ N ;
(c) for any Aff-set E there exists a dis joint Ka-set E' such that T\(E {JE ')£N .

1.2. Let be some subset of 3P(T) and {Bp\p^m }  be a finite sequence of ele
ments of SS. The number iN {£,,} = max j - ^ |31 ^ p x< p ^ m  C\BPl$ A)J
will be called the intersection number o f the sequence {Bp} with respect to the ideal N. 
We shall say that 3d has a nonzero intersection number with respect to N  if
iN {Bp) ^ ~  for some natural number r and any finite sequence {5P} in 3d.

A regular <r-ideal N  will be called a Kelley ideal if X'„{T)\N  is the union of a 
sequence of subsets X~k, which satisfy the following conditions:

(a) if EZX^ and EfX~a{T) is equivalent to £  with respect to A, then E fX "k;
(b) every X~k has a nonzero intersection number with respect to N;
(c) if {Ek\k< + is an increasing sequence in and UE ^ X ^  then

EkfX ~m for some k0.

The set of all the Kelley ideals in 3P(T) will be denoted by X~(T).

1.3. Let Sd{T) be the c-field of all Borel subsets of T. Let v be a Radon measure 
on T, i.e. a bounded countably additive real-valued function v on the field 88{T) 
such that v-8=sup {vK\KczB & K is compact} for any Borel set B. The set of all 
Radon measures on T  will be denoted by M(T). Let n= {n£M(T)\p.<s:v<^n} be 
the class of all measures coabsolutely continuous with the measure v and let J((T )  
be the set of all such classes.

L e m m a . For any Kelley ideal N  there exists a measure v£M(T) such that 
N={P£(P(T)\3B£dd(T) (PczB & vß=0)}. The mapping £: N>-*n is a bijection 
between jV{T) and Jt{T).
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Proof. Let v be a measure, N0= {B£3S(T)\vB=0) be the corresponding ideal and 
v be the corresponding strictly positive u-additive measure on the Boolean algebra 
ä&N(T)=i&(T)/N0. According to the Kelley’s criterion (see [12] or [9], § 42)á?JV(7 ') \0  
is a union of some sequence of subsets Sk satisfying the Kelley conditions:

a) any Sk has a nonzero intersection number, i.e.

i{B„} =  max { ^ - | b 1  s  m ( S P l A . . .  ABPl ^  0)J s  j

for some natural number r=r(k) and any finite sequence {Bn\p^m }  in<ft ;
b) if {Bp|/?<+°°} is an increasing sequence in 38N(T) and sup Bp̂ Sk then 

BPa££k for some p0.
Consider the cr-ideal N= {P£3P(T)\3B£N0{Pc:B)}. It is clear that it is regular. 

Let {E£Ji?a(T)\E££k}. Then ^C(7’) \A =  UX k and every Jfk satisfies the 
conditions from the definition of Kelley ideals. Hence A is a Kelley ideal.

Conversely, let A be a Kelley ideal. Then ^fa(T ) \N  = \Jsfk and Ctf~k satisfy the 
conditions from the definition of Kelley ideals. Let

@k =  {B^3S{T)\^E^^Tk{E c  B & B \E £N )}.
Consider the set Ji(T , N )=  {PUE\P£N & E ^ a{T)}. Then J?(T ,N ) is a <r-field. 
In fact for E there is a disjoint Ä^-set E' such that P' = T \(E \JE ')£  N. Let 
E'={JFk and P c  C\Gk€N. Consider the sets Fki = Fk\G i,

Q s  (P '\P ){J ((n G k\P )C \E )
and B' = U U  Fki{JQ. Then B'\JB = T  and B ’C\B=$, i.e. B' is the complement

k i
to the set B = EUP. Besides is closed under countable unions. Since
J l(T , N) contains all open sets and is a u-field we conclude that 0&{T)czJt(T, N). 
Therefore for any B£3S{T) there exists a K„ -set EczB suchthat B \E £ N . Con
sequently \J3Sk = & (T ) \N  andá?k contains together with any of its elements all its 
class of //-equivalence. Let N0=NOi%(T), äS^(T) = ̂ S(T)/Nu and &k={B\B£30k} = 
= {E\Ek.rfk}. Then 3$N(T )\0 =  U<?k. Let {Ep} be a finite sequence in Sk. Then
{EP) as("k and i {Ep}=iN {Ep} ^ — . Consequently, Sk has a nonzero intersection
number. Let {£„} be an increasing sequence in 3SN(T) and sup EpdSk. Then we 
can choose Ep such that they are increasing. As UEp£gk then UEp€JTk. Hence 
EP0̂ k and therefore EPoZSk. Thus <$k satisfy the above mentioned Kelley con
ditions (a) and (b). By virtue of the Kelley’s criterion there exists a finite strictly 
positive (j-additive measure v on the Boolean algebra 39N(T). Extend this measure 
on 3S{T) by setting vB=vB. Then N0= {B£@(T)\vB=0} and consequently N  
has the form given in the lemma. As for any B£í%(T) there exists a K„-sct 
E= U  Fka B  such that B \E £ N 0 thus vP=vU /]t=sup vFk, i.e. the measure v 
is compactly regular. The lemma is proved.

4
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2. Perfect preimages lifting Kelley covering

Let T  and K  be completely regular spaces and x : K-+T a surjective perfect 
mapping.

2.1. The family of all cozero-sets in K  will be denoted by c€(K). Consider 
some base in K consisting of a subset ré'f)(K) of %>(K) and containing K  and the 
empty set. Let 3f0(K) denote the set of all complements to the elements of (<SfK) 
and A0(K) denote the set of all open-closed elements of

The base ^ 0(K) will be called completely normal if:
1) &0(.K) is closed under countable unions and finite intersections;
2) any two disjoint zero-sets from .2f„ (K) are contained in two disjoint cozero- 

sets from ^ 0(K);
3) any cozero-set in i?0(K) is a countable union of zero-sets from ££(I(K).

Note that if ^ 0{K) is a completely normal base then {K, (K)) is a com
pletely normal Alexandrov space ([13]). Further we shall assume that %~1C£&0(K) 
for any C ^ ( T ) .

2.2. Let K  be a perfect preimage of T  with a completely normal base ré0(K). 
The preimage K will be called lower extremally disconnected if cl y.~' G£AU(K) for 
any open set G in T.

2.3. Let Tn denote the support of the Kelley ideal N, i.e. the complement to the 
union of all open elements from N. The covering {Tn\N£jV{T)} will be called the 
Kelley covering o f the space T.

The preimage K  will be called lifting Kelley covering if K has a family of closed 
subsets {KN\N£^V(Tj) such that UKN is dense in K, xKN = TN and jV,c jV2 
implies KNlc KN]. The mapping TN̂ ->~KN will be called the lifting o f the Kelley 
covering.

Let {K,x: K-+T, TN̂ K N} and {fc, £, K-^T, TN>-+ßN} be preimages lifting 
Kelley covering. The preimage K will be called larger than the preimage K if there 
exists a surjective perfect mapping y: K-+K such that x = £oy and yKN=KN. 
The preimage K will be called isomorphic to the preimage K if there exist mutually 
inverse homeomorphisms y: K ^ K  and <5: K-*K such that K is larger than K  
relative to y and fi is larger than K relative to <5.

2.4. Let K  be a perfect preimage of T  lifting Kelley covering.
The preimage K  will be called saturated if for any KN and any open set G inter

secting Kn there exists a KM such that 0 ̂  KM c  Kv Pl G and MzoN.
The preimage K  will be called filled if is dense in KN for any sequence

of ideals Nk such that DNk=N. Any saturated preimage is filled.
The preimageK  will be called lower disjoinedii x~1GC)KN = d implies cl x~l GC\ 

f]KN—Q for an open set G in T.

2.5. Let K  be a perfect preimage of T  lifting Kelley covering and having a 
completely normal base (éü{K).
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The preimage K  will be called collectively o-separated if for any family 
{CN,Z N\N iJ f(T )}  from («’„(*), Z 0(K)), suchthat \JCNa r ) Z N and ZN\ C NfiK M 
for any MzoN, there exists an open-closed set UdAa(K) suchthat U C ^ c i/c
a n z N.

3. Vector-lattice extensions inheriting Lebesgue decomposition

We shall suppose that all considered vector lattices are Archimedean, have 
fixed strong units and are uniformly complete with respect to their units and that all 
considered vector-lattice homomorphisms preserve these units. Also we shall suppose 
that all considered vector-lattice ideals are uniformly closed.

Let T be a completely regular space and C * (T) be the vector lattice of all b minded 
continuous functions on T. Let A be a vector lattice and u: C*(T)-»X be an 
injective vector-lattice homomorphism. We shall say that X  is an extension of C*(T) 
and shall identify C*(T) with its image in X.

3.1. The extension X  will be called lower Dedekind complete if for any set 
from C*(T), which is bounded above, there exists the supremum of this set in X.

Let Y be an ideal in X. The ideal Y  is called a component o f X  if Y, xd X  
and x = su p ji imply xdY. The ideal Y  will be called a lower component o f X  
if yidC*(T)[\ Y, xdX  and jc=supyi imply xd Y.

Let Y and Z be ideals in X. The ideal {xdX\3yd Y3zdZ  ( |x |s |j j  -Í |z|)} which 
is the supremum of Y  and Z in the lattice of all ideals of X, will be denoted by TV Z.

3.2. For any Kelley ideal Nd^Y(T) consider the ideal

C*„(T) = {fdC *(T )\f(T N) =  0}

in C*(T). The family {C*{T)\NdJT{T)) will be called the Lebesgue decomposition 
o f the vector lattice C*{T).

The extension X  of C*(T) will be called inheriting Lebesgue decomposition if 
A has a family of ideals {XN\NduY(T)} suchthat C\XN = {0}, ufdXN iff fdC*N(T) 
and N1czNi implies XN%czXNi. The mapping C%(T)<-+ XN will be called the 
inheritance of Lebesgue decomposition.

Let { A , m: C * ( T ) - A ,  C £ ( T ) ~ A w} and { £ ,  Ü: C * ( T ) - ~ X ,  C U T ) ~ X n } be 
extensions inheriting Lebesgue decomposition. The extension A will be called larger 
than the extension £  if there exists an injective vector-lattice homomorphism v: Á— A 
such that voű=u and vXNc XN. The extension A will be called isomorphic to the 
extensionX  if there exist mutually inverse vector-lattice homomorphisms v: Á—A 
and w: A—£  such that A is larger than £  relative to v and £  is larger than A 
relative to w.

3.3. Let A be an extension of C*(T) inheriting Lebesgue decomposition.
The extension A will be called saturated if for any XN and any proper component 

T such that Ya= {xd X \fyd Y  (|zvr|0 1>>| =0)}c f f t h e r e  exists an XM such that 
XN U Yc.Xm and M zdN.

The extension A will be called filled if f)XNk = XN for any sequence of ideals 
Nk such that C\Nk = N.

4*
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The extension X  will be called lower component if every ideal XN is a lower 
component of X.

The extension X  will be called collectively o-complete if for any family 
{.Fn, Z kN\N£J/~{T), from X, such that yJM^ z kN for any indexes and
—zN ~yJN f°r a** j> k  implies u£XN, there exists an x£X  such that yjM^ x ^ z kN.

L em m a . Any saturated extension X  is filled.
P r o o f . On the strength of Yosida’s theorem ([14]) there is a compact K  such 

that the vector lattice X  is isomorphic to the vector lattice C{K). Consider the non
empty closed subsets KN={s£K\yx£XN (x(.r) = 0)}. Let f]Nk=N. Then UKNk 
is dense in KN. In fact assume that there exists an open set G such that 
Gr\(KN\ [ J  KNk)^ 0 .  Take a regular closed set FczG such that (int F)C\KN^0. 
Consider the proper component 7 =  {y£Y|y(F)=0}. Then there exists an Mz>N 
suchthat XNM YaX M^ X .  So KMczG.

Assume that for any k  there exists a set P f M  such that T \P , fN k. Then 
P = \jP kZM  and T \P £ N  imply 1 £Cm (T). But this is impossible because XM 
is a proper ideal. Therefore there exists a number k such that T \P $  Nk for any 
P<iM.

Consider the bijection £: N>-*n from 1.3. Let nk=CNk and m = f \ I .  Then 
mk = nkA m ^0. Take the proper ideal M k = C~1mk. Then 0 ^ K Mk<̂ KNkriKM =0. 
From this contradiction we conclude that such a set G does not exist.

Now take an O ^xd  C\XNk. Then x(KN)=0. Consider the functions

From the property Afjy Del coz xp= 0  we conclude that x pdXN. As this ideal 
is uniformly closed we get xdXN. The lemma is proved.

4 . Lattice-ring extensions inheriting Lebesgue decomposition

We shall suppose that all considered /-rings are commutative, Archimedean, 
have the strong units1 and are uniformly complete with respect to their units and 
that all considered /-ring homomorphisms are unitary. Also we shall suppose that 
all considered/-ring ideals are uniformly closed.

Let T  be a completely regular space and C *(T) be the /-ring of all bounded 
continuous functions on T. Let X  be an /-ring and u: C*(T)—X  be an injective 
/-ring homomorphism. We shall say that X  is an f-ring extension of C*(T) and 
shall identify C*(T) with its image in X.

4.1. If Y  and Z are modules over the /-ring X  then the set of all module homo
morphisms from Y  into Z  is denoted by Homx (7, Z). Let 7  and Z be ring ideals 
in the /-ring X. A homomorphism g(_ Homx (7, Z) will be called bounded if there 
is a natural number n such that \gy\S r  | y |  for any y £  7. The subset of Horn* (7, Z) 
consisting of all bounded homomorphisms will be denoted by Hom£ (7, Z).

1 The unit 1 o f an /-ring X  is called the strong unit, i f  for any x Z X  there exists a natural num
ber n=n(x) suchthat |x|Snl.
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The second annihilator of a subset F  of F  will be denoted as usual by F**.
The extension X  will be called lower continuing if for any ring ideal Y  of the 

ring C*(T) and for any homomorphism g£Hom£«(r) (F, C*(T)C) F**) there exists 
a homomorphism ha. HomJ (X, Y**) extending g.

An /-ring ideal Z in X  will be called a lower segment o f X  if for any ring ideal F  of 
the ring C*{T) and for any pair of homomorphisms g€Homc»(X) (F, C*(T)C\T**) 
and /i£Hom*(F, F**) such that h extends g the condition g Y c Z  implies hXczZ.

4.2. For any Kelley ideal NdJ^CT) consider the /-ring ideal

C U T )  =  { / < E C * ( D | / ( r w )  =  0 }

in the /-ring C*(T). The family {CN(T)\NdJf{T)}  will be called the Lebesgue
decomposition o f the f-ring C*{T).

The extension X  of C*(T) will be called inheriting Lebesgue decomposition i f  
X  has a family of/-ring ideals {Xn\N£^Y{T)} such that D = { 0 } ,  uf£XN i f f  
/€C jJ(r) and JV|CJV2 implies XNia X Nl. The mapping C%(T)>—-XN will be called 
the inheritance o f Lebesgue decomposition.

Let {X,u: C*(T)-~X, C*N(T )~ X N) and { X ,  Ü :  C *(T)~X , C*(7)—X N )  be 
/-ring extensions inheriting Lebesgue decomposition. The extension X  will be called 
larger than the extension X  if there exists an injective /-ring homomorphisms v: X - + X  

suchthat voű =u and vXNa X N. The extension X  will be called isomorphic to the 
extension X  if there exist mutually inverse /-ring homomorphisms v: X — X  and 
w: X - * X  such that X  is larger than X  relative to v and X  is larger than X  rela
tive to w.

4.3. Let X  be an /-ring extension of C*(T) inheriting Lebesgue decompo
sition.

An /-ring ideal F  in X  is called an annihilator f-ring ideal if F coincides with 
its own second annihilator Y**. If F and Z are /-ring ideals in X  then the /-ring 
ideal generated by F and Z will be denoted by FVZ.

The annihilator of a subset F of X  is denoted as usual by Y*.
The extension X  will be called saturated if for any XN and any proper annihi

lator /-ring ideal F such that Y*c£XN there exists an XM such that XN\I YczXM 
and Mz>N.

The extension X  will be called filled if C\XNk=XN for any sequence of ideals 
Nk such that f)N k=N. Any saturated extension is filled.

The extension X  will be called lower segment if any XN is a lower segment of X.
If F  and Z  are ring ideals in X  then the homomorphisms g€Hom£ (F, X) 

and hd HomJ (Z, X) will be called consistent if g and h coincide on the intersec
tion FflZ. If {FJ is a family of ring ideals in X  then a family of homomorphisms 
{ha0. Horn* (Fa, F)} will be called uniformly bounded, if there is a natural number 
n such that \hxy\ ^n \y \ for any y£ Yx and any a. The extension X  will be called 
collectively o-continuing if for any family {YN\NaJY{T)) of countably generated 
ring ideals of X  and for any uniformly bounded family of consistent homomor
phisms {hNaHom£ (Yn, F)} such that ^ c F „  there exists a homomorphism 
/ifHomJ (F, F ) extending all hN.
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§ 1. Lebesguean cover

Let T  be a completely regular space. An open subset G of T  will be called co
compact if the complement of G is compact. A subset H of T will be called a co Ka- 
set i f  H=C\Gk for some sequence of cocompact subsets Gk. The set of all the 
co K„-subsets of T  will be denoted by co Jf^(F).

A subset L of T  will be called a Lebesgue subset (or universally measurable [6]) 
if for every Kelley ideal N  there exist a F ff-set E  and co Ka-set H  (depending on N) 
such that EczLczH  and H \E £ N . The set of all Lebesgue subsets of T  will be 
denoted by £C(T). This set is a u-field containing the Borel field 3S{T).

Consider the Stone compact K0 of all ultrafilters in i f  (F). For any point s£K0 
let Ps denote the set D (cl L|L6 0 V} where s corresponds to the ultrafilter 0 S. Con
sider the subspace K =  {stUC^P^W} and define the surjective continuous mapping 
x: K-*T  such that x s = Ps. The space K  with the mapping x  will be called the 
Lebesguean cover o f T.

Let /„ be the Stone isomorphism between S£(T) and the Boolean algebra A (A"0) 
of all open-closed subsets of K0. Let i : i f  (T)-*A(K) be the corresponding homo
morphism of Boolean algebras such that iL=KC\i0L.

It can be checked that the subspace K  is dense in K0, the homomorphism i 
is injective and the mapping x is perfect.

Associate with a Kelley idea! N  the closed subspace KN of all ultrafilters from 
K  not containing elements of N. If A is a point ideal Nt={P£.3P{T)\t$P} for some 
point t then KNt = it. Then KNt is an isolated point in K for every t£T, U 7’}
is dense in K and there are no other isolated points in K.

Let Jzfjv(T) denote the Boolean algebra of all classes of A-equivalence L of 
elements L from J§f(F). Let L a L'ZN. Let s€iL(~)KN and s correspond to an 
ultrafilter 0 S. Assume L f  0 S. Then L  A L' 3 L \L '£ 0 , but this is impossible. 
Hence s£ iL' 0  KN. Thus iLCl KN =iL' D KN. So we can define correctly the homo
morphism of Boolean algebras iN\ ^fw(T) — A(Kn) suchthat iNL=iLC\KN.

Lemma 1. The space KN is extremally disconnected, iN is an isomorphism and 
x K n  = Tn .

Proof. Let QN denote the Stone compact of all ultrafilters of the Boolean 
algebra St°N(T). As this Boolean algebra is complete the space QN is extremally 
disconnected. Denote by K 0n  the subspace of K0 consisting of all ultrafilters 
not containing elements of N. Consider the Boolean homomorphism hN: J?(T)-+ 
—JPn(T) such that hNL = L. Let 0 '  be an ultrafilter in SfN(T). Then 0 = h y 10 '  is 
an ultrafilter in Sd(T), 0 6 K0n and the mapping yN: 0 ' — 0  is an injective con
tinuous mapping from QN onto K 0 n . This implies that the space K0y is extremally 
disconnected.

The homomorphism iN is injective. In fact let iNL=Q and assume L$N. Con
sider a compact set F a L  such that F$N. Consider the proper filter base 0 O in 
S f(T )  consisting of the set Fand all open sets G containing F. Then 0'o={L\L£0 o} 
is a proper filter base in SdN(T). Imbed 0'o in some ultrafilter 0 ' and consider the 
ultrafilter 0 = h ^10 f K ON. If L f 0  then F D clL '^ fi. Otherwise c lL 'n C  = 0 
for some G £0uc:0 . It implies F'lTG£0._Hence Q=L'HG$N. Thus fljF fl 
c lL '\L f0 } ^ 0 .  Therefore 0dK N. Besides F £ 0 ' implies 0£ iNL —0. Thus L = 0.
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Define the homomorphism i0N: £CN(T) — A(K0n) by setting i„NL= inLC)K0n. 
Let U be an arbitrary open-closed subset of K0n._ Consider V=y^1 U. Then 
V= {0'£Q N\L£0'} for some 0. Take &Zí0nL and 0 ' =hN0£V . Since 
0£hü1O' we have 0£U . On the other hand let 0£U _and 0'=yJi10 . Then 
L 60 ' implies 0 £ íOnL. Thus U=í0nL. So Ur\KN=iNL?i Q. It means that KN 
is dense in K0n . Therefore the space KN is extremally disconnected.

Let U be an open-closed subset of the space KN, V be its complement, U' and 
V  be the closures of U and Fin the space K0n. A s  K0s=ßKN we have U 'D V' =0 
and K0n=U'U V'. So U' is open-closed. It follows from above that U'=i0riL. 
Hence U=iNL. Thus the homomorphism iN is surjective.

Let t£TN. Consider the proper filter base 0 O consisting of all open sets G 
containing t. Imbed hN0 o in some ultrafilter 0 '  and consider the ultrafilter 
0 = /iü10 '£K On. A s  Pi {cl L|L£0} we have 0£K N and x 0 = t. Further choose 
a 0£K n and G be a neighborhood of x0 . As for any L £ 0  we obtain
G60. So GOT/i^Q. It means x.0£TN. Thus xKN = TN. The lemma is proved.

Corollary. The space KN satisfies the Souslin condition, i.e. there are at most 
countably many disjoint open subsets in KN.

Lemma 2. In KN any meager subset is nowhere dense.

Proof. Let Fk be a sequence of closed nowhere dense subsets in KN. Assume 
that cl U Fk is not nowhere dense, i.e. there is an open-closed set U in KN such 
that Ucicl U Fk. We can suppose that Fkd U  and so U=cl U Fk. According 
to the previous corollary for every k there exists in U a sequence {VkJ} of decreasing 
open-closed subsets with nowhere dense intersection, containing the set Fk. Let 
VkJ=iNLkj and U=iNL. We can suppose that L z)LkJZDLkJ+1. Take v££N. 
Then inf vLkJ = v(f]LkJ)—0 for every k. Take some j k such that \L kJkSvL/2k+1. 
Consider L0= U L kJkc:L. We have vLad ^  vLkjk<vL. Denote L1 = L \ L 0. Then 
V=ÍhL 17í &. So we get UFt fl Fez U O ^ f]  F)=0 and F cG , but this is im
possible.

Corollary. The space KN is Baire.

Denote by xN the restriction of x to KN.

Lemma 3; For every Lebesgue set L the set ínL a x ^ L  is nowhere dense in the 
space Kn .

Proof. Let G be an open set. Then iNG=c\ x^1G. In fact assume that there 
exists an i’6x^1G n/Jv(T\G). Then x_jys £ T \G  but this is false. On the other 
hand assume that there exists 0F U=iN L such that UcziNG \p\ x ^ G  and L a G . 
Consider a compact set FczL suchthat F$ N  and let V=iNF. Then 0 F x N F c F . 
But VczUc:xü1( T \G ) that is impossible.

If F is a closed set then iNF= int x^1 F.
Let L be a Lebesgue set. Then E=  U F jc L c  nG k = / /  and H \E £ N .  Con

sider the open-closed sets U=c\ U iNFj and F=int n /NGk. Then U=iNE and 
V=iNH. Therefore xü1E ~U = iNL=  F ~ x î 1/ /  with respect to the ideal of meager 
subsets.
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Corollary 1. Let L££f(T). Then L£N  iff xjjrL is nowhere dense in KN.
Corollary 2. Let L be a Lebesgue set. Then íL a x ^1 Lip KN for any N.
Lemma 4. For every KN and every open-closed set U in K there exists a Kelley 

ideal Mz>N such that KNG\U—KM.
Proof. Consider 0 ^V = K Nr\U. Then V—iNL for some L. Consider the 

Kelley ideal M = {Pi3P{T)\PftL<iN}. Then KMc.KN. Let 0£ V. Then L£Q. 
If Z /£0 then LC\L'$N  implies L '$M . Hence 0£K M. Conversely, let 0£K M. 
For any Z /£0 we have L'f)L$N . This implies that L £0  and so 0 £ K

Lemma 5. I f  N1czN2 then KNl is an open-closed subset in the space KNl.
Proof. Consider the bijection f: N>-+n from 1.3. As nx^ n 2 there exists an 

n such that n1=n\In2 and nAn2=0. Then there exists a Borel set B£N  suchthat 
T \B £ N 2. Assume that there exists an ultrafilter 0£K NC\KNl. Then B^ 0  im
plies T \B £ 0  but this is false. Hence KNC\K^2=0. Further KNUKNi<zKNl. 
Assume E=KNj\ ( K NUKNi)?±&. Then by the previous lemma there exists an ideal 
M d JVj such that KMczE. Assume m}= m A n^0. Then 0 ^ K Mld K Mf)KN = 0. 
This means mAn=0. Similarly mAn2=0. Therefore mAn1=0. But this fact 
contradicts the inequality m Snx. Thus KNUKN,, =KNl. The lemma is proved.

Consider in the space K the completely normal base ^ 0(K) consisting of all 
cozero sets C which can be represented in the form C =  U Uk for some sequence of 
open-closed subsets Uk£i£d(T). Then Au(K) = iJL(T).

Lemma 6. Let G be an open subset o f T. Then cl x~1G=iG.
Proof. Assume that there exists a point s^x~1GC\i(T\G). Then xs£GC\ 

C \(T \G ) but this is impossible. On the other hand assume that there exists a 
non-empty set U=iL  such that UcziG\c\ x~1G. We can suppose that LczG. 
Take tdL  and F = /f^ 0 . Then the inclusion 0^xV = l£G  contradicts the in
clusion V cx ~ 1(T \G ).

Corollary 1. The preimage K is lower extremally disconnected.

Corollary 2. The preimage K is lower disjoined.

Proof. Let x~1GC\KN—&. By the corollary to Lemma 3 G£N. This implies 
iGHKN=0.

Lemma 7. The preimage K is collectively o-separated.

Proof. Consider a family {CN,Z N} from the definition of the ^-separation. 
As Cw =  U iLjN we can consider the set L'N = \JL{,. Similarly as Z N — C\iLkN we 
can consider the set L"N = C]LkN. For L'N there exists a K„-set EN<zL'N such that 
L'n\ E n(zN  and for L'j there exists a co K„-set I1N 3  L'ú such that Hn\L „ £N .

Consider the sets L '= D E N and L"=C\HN. Assume that there exists a point 
t£ L " \L '.  Take the point ideal N= {P^SP(T)\P$/}. Then E ^ N  and Hn^ N  
imply L'n£N  and L"N$ N. Therefore CNP\KN = Q. By Lemma 1 iL'jr\KN^0 . As 
Kn consists of only one point we have KNa Z N\ C N but this is impossible. Thus 
we can consider the set L = L '—I f.
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Assume that HN\ E N$ TV. Then there exists a closed set Fez L'Ú\L'N such 
that F$ TV. Consider the Kelley ideal M= {P£&(T)\Pr\F£N}z>N. Then CNC\KM=V>. 
As the preimage K is lower disjoined and lower extremally disconnected we have 
Km c in t x~lTu <ziFaiL'ú(zZN. Thus KMc Z N\ C N but this is impossible.

This has as a consequence that the set L  is Lebesgue. Consider the set U=iL. 
From CMc Z N we get L'Mc L"n for any M  and TV. This implies L=L'czUL'Mcz 
<z C lL^aL"—L. Therefore UL'M=L=  C\L'Ú. From this equality we get CNcz 
ciXJfCC/c/LjJcZjv. The lemma is proved.

Let K be an arbitrary perfect preimage of T  lifting Kelley covering and having 
a completely normal base (K). The preimage K will be called Lebesgue determined 
if for any cozero-set C ^ 0(K) and for any Kelley ideal N£jV(T) there exist a 
K„-set En and a co A^-set HN such that

U £ n c  f ) H N, Hn\ E nZN, x ~1En\ C  £  KM and C \ x ~ ' H N *  K u  

for any M n  TV.
Lemma 8. Let K be the Lebesguean cover o f T. Then the preimage K is Lebesgue 

determined.
Proof. Let C —\JiLk. Consider the sets L= {JLk and U=iL. It is clear 

that U—cl C. For the set L there exist a Ka-set En and a co A!,-set HN such that 
Enc.L czHn and Hn\ E n£N. Assume that x~1En\ C ^ iKm for some A/3 TV. 
Then according to Lemma 1 we get LdM. On the other hand the inclusion L z>Tm 
means that L^M . It follows from this contradiction that x 1En\C$>K m for 
any M. Now assume that C \x~* HNZ) KM for some Mzz>N. Then iLk Pi Ku  ̂  0 
for some k implies by Lemma 1 that Lk$M. So L$M. On the other hand 
HnOTm=$ means that L a H N£M. Thus C \y ~ 1HNj)K l{, for any M~:N. The 
lemma is proved.

Further uniqueness is understood up to isomorphism.
Theorem 1. Let K be the Lebesguean cover o f T. Then
(1) K is the unique largest o f all the perfect saturated Lebesgue determined pre

images o f T lifting Kelley covering;
(2) K is the unique smallest o f all the perfect filled lower extremally disconnected 

lower disjoined collectively o-separated preimages o f T lifting Kelley covering and 
moreover K is the unique universal (in the sense of Bourbaki) among all such pre
images;

(3) K is the unique perfect saturated Lebesgue determined lower extremally dis
connected lower disjoined collectively o-separated preimage o f T.

Proof. Let {R, £: £-»T, TN>—R.N, %„(.fc)} be a preimage of T having the 
properties from (1). Then for any C there are EN and HN such that L = U EN c  C\HN, 
Hn\ E n£N, k~1EN\C Z p fiM and C \A ~ 1Hn^ iRm for any M id TV. The set L is 
Lebesgue. Assume that ^ c C A Ä -1!  for some TV. If ^ f l ( C \ ^ _1 L) ^ 0 then 
there exists RMczR.NP\C for some M zdN. So RMczC \A ~1L c : C \k - 1EN. This 
implies TmczT \ E n . Therefore T \ H N$M. Consider a closed set F a T \ H N, 
such that F$M, and the Kelley ideal M1 = {P£&>(T)\Pr\F£M }z) M. Then 
TCMic (TC\ä_1//^)DTCmc C \ ä- 1//^ but this is false. It means that £ Nc fl~ 1L \C .  
So Tnc.L implies En$N. That is why there exists an ideal M zzN  such that
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Tm czEn . So we have ÉMc k ~ 1ENC\RNcik~1EN\ C  but this is false. Thus 
for any TV. Now assume that there exists another Lebesgue set 

Lj having this property. Assume that there exists a point t£L \L j and consider 
the point ideal TV,= {P£3?(T)\t$P}. Then £ Ntczk~1LC)(É\P.~1L1). By the given 
property KritD C ^0 . Therefore KMczÉNtnC c:C \ £ “ 1 Li for some ideal M, but 
this is false. That is why L = L }. So we can define correctly the mapping k: %\(K)-^ 
-+&(T) suchthat kC = L.

Verify that A: is a lattice homomorphism. Let kC1=L1 and kC2—L2. Assume 
that c(CiUCa) A UL2). If ifw(T((C1UC2)\Ä -1(LiUL2))?i 0 "then there
exists a <z £ nC\(C1UC2). Let KMI1C2^0 . Then there exists í Mlc í Mn C : c
czCjX ä- 1!-! but this is impossible. Hence £ Nczk~1(L1UL2)\(C 1UC2). Then the 
inclusion TN d L 1(JL2 means that L ^  TV for example. From this fact we con
clude that there exists an ideal Mz>N such that Q ^TMczL1. Therefore 4 C 
cA -1I i nJtwc:Ä-1L1\ C 1 but this is false. As a result we get &(C1UC2)= L 1U.L2.

Assume that £„c(C , DCS) A ß - ^ D L g ) .  If KNH(Ct DC2\ £ - 1 (L, flL2))* 0  
then there exists a KMczÉNn(Cxf]C2). This implies Ru [T£_1Lj^0. Assume 
L,€M. Then there exists an ideal suchthat 0 ̂  TMl a  T \ L 1. So ÉMlc:
cil{Mr \(K \k ~ 1L1)(^C1\ f l ~ 1L1 but this is false. Hence L ^ M . But then simi
larly 0 ^ T MlciLx ior some M? z> M. So &Mtc g Mr\ As £ MM l-1(Li r\L!i)=Q
we get c  C2\ x  ~1L2. It follows from this contradiction that

£ n  c  £  - 1 (Li 0  L.,)\(C1 HI Co).

Then R.nC\CXt̂ 0. So there exists a KMc ftNflCx. But then TfMc £ _1L2\ C 2. 
As this is impossible we get as a result that k (C\ fl C2)= Lj H L2. It is clear that k  
preserves the unit.

Let C ^0. Then C (1^!V̂ 0  for some ideal TV. So there exists a RM<^RNDC. 
This implies kC ^0 . Conversely, let kC ^0 . Take a point t£kC  and the point 
ideal TV,. Then £ Ntc:ii~1kC implies C=^0.

Check that cl P.C =cl kC. Denote the left-hand set by P and the right-hand 
set by Q. Let s£C and t = ks^Q. Then there exists a cozero-set G such that t£G c  
c zT \Q .  Denote C, =  £_1G. We have 0 =kCC\G=k(CPiC^)t±0. From this con
tradiction we get tiC cQ . Now assume that there exists a cozero-set G such that 
G D P= 0 and GClQ^0. Denote C1= k~1G. We get c n C ! ^ 0  because of 
k(Cxn C )= G i)kC ^0 . But this is false.

Now let {K, x: K —T, TN>—KN, %>0{K)} be a preimage of T  with the prop
erties from (2). Let L be a Lebesgue set. Then there exist L^-sets EN = \J Fj a  L 
and coLfff-sets HN= r\G kziL  such that Hn\ E n£N. Consider the cozero-sets 
CN= Uint x ^ F j^ o iK )  and the zero-sets Z N= fiel x~1Gk££!f0(K). It is evident 
that U C jvcnz* . Assume that Kmc x ~1En\ C n for some M. Then TMc  U Fj 
means that Ffi M  for some j.  So there exists 0 ^ T MiczFj for some Mx A M. 
Therefore KMl<zx~x F j\in t x~xFj but this contradicts to the lower disjointness 
of K. Thus Km<X. x ~1En\ C n for any M. Similarly KM<tZN\ x ~ 1HN for any M.

Assume that KMa Z N\ C N for some MzoN. If EN$M  then there exists 
an ideal M p M  such that TMic EN. So KM<^x~1EN\ C N but this is false. 
Thus En£M. Since HN\ E N£M  we get T \ H N$M. Then there exists an ideal 

suchthat TMia T \ H N. So KM.(zZ N\ x ~ 1HN but this is false. Thus we 
get KM<£ZN\ C N for any M o  TV.
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By the property of the collectively cr-separation there exists a set U£A0(K)  
suchthat UCnC C/c nZjy. For a given ideal N  consider the Kelley ideals M j = 
= {PZ9{T)\PC\Fj£N} and Mk = {P e^(T )\P D (T \G kKN}. By virtue of the lower 
disjointness of the preimage K we get Kj '=KM <zm\.x~1Fj and Kk=KMkcz 
c zK \c \x ~ 1Gk. Consequently, UKjCzU<zK\UKk.

Assume that for L there exist another A^-set E^= UFpczL and co Ka-sct 
H'N = C\Gqz>L such that H'n\E 'n£N. Let Mp, Mq, Kp, Kq and U' be the corre
sponding sets. Consider the ideals Mjp= {P£^,(r) |P n (F J fl.Fp)€Ar} and Mkq = 
= {PCé?(T)\Pr\((T\Gk)r \(T \G q))íN}. Denote the sets KMr. by Krs. Then Kr,cz 
czKrC\Ks. Therefore Kjpz U c K \U K kq and similarly KjpczU' z K \ ( J K hq. Hence 
U A U’cz K \ ( (  U Kjp) U ( U Kk„)). As ( n  MJp) f | ( fl Mkq) — N  and the preimage K  is 
filled the set (U FJP)U(UF,J) is dense in KN. That is why (U A  U')C)Kn=Q. As 
this condition is fulfilled for any N  we get U =  U'.

Thus we can define correctly the mapping i: JF(T)-~A(K) by setting iL = U. 
Check that this mapping is a homomorphism of Boolean algebras. Let iLl = U1, 
iL2—U. and i(L1{JL.) = U. Take some representations FjCzL.cz f lGk and 
UFpCLjC flG ,. Consider the sets Fjp s FjCFp, F]q = Fj D ( T \G q), Fkp=( T \G k) D 
f)Fp and Fkq= (T \G k)r \(T \G q). Consider the ideals M „= {P£éP(T)\PPlFrs£N} 
for r, s£ { j,k , p, q). Denote the sets KMr% by Krs and the set (U A ^JL^U A ^U  
U(UA^fcp)U ( U ^ s) by Qn . Then by the definition of the mapping i we have

(U ^ .p) U ( U ^ )  czU .cz K \((U K kp){J(UKkq)),

and

This implies 

As

(U A 'jp) u ( u a : J  czu. cz a : \ ( ( u a 'j. , ) U ( u a '^ ))

{{JKJP)U{(JKJq)\J({JKkp) cz U c zK \U K kq.

P =  Ua (U.UU2) czK \Q n .

( n  m , . p )  n  ( n  MJq) n  ( n  Mkp) n  ( n  Mkq) = n

the set Qn is dense in KN. Then PC\KN=9 and as a result P=0. Hence i 
preserves the supremum.

Let U=iT. Then UA'Jc  U czK czK \U K k implies that UDKN=KN for any 
N. So U=K. Hence i preserves the unit. It is evident that i preserves the com
plement.

If L?í0 then for some point t£L we consider the point ideal N= {P£^(T)\t^P}. 
In this case M}=N  implies that Kj^Q. So 17=̂ 0. Thus i is injective.

Consider the unit preserving lattice homomorphism a: A0{K) such
that <x = iok. Let t£K. Consider the sets T =  {C^oC^jU^aC} and P = k~ xxt. 
Assume that PPlcl C = 0 forsome C£F. Then xt£G = T \c l  ÄC implies t£x~1GcziG. 
As GlTd kC =0 we have /G(TaC=0 but this is false. Hence PPlclC^Q  for 
any CZT. Let C1,C 2€F- Then CjfTC2€ r  implies Pflcl C, Del C2?i 0. There
fore p ,= n  {ci c  n p | c e r } ^ 0  because of the compactness of P. Assume that there 
exist points sk, s.dPt . As the base ^ ( i t )  is completely normal we can deduce 
that there exist cozero-sets C. and C2 from this base such that , j2€C2, cl C2, 
ijj^clCj and Ci UC2 =  £. Then K=ocl^—(xC1 UaC2. Assume that tdaC.. Then 
j2€c1Cx but this is false. This means that the set P, consists of only one point. 
So we can define correctly the mapping y: K->-£ by means of the equality yt= Pt .
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This mapping is continuous. In fact let G be a neighbourhood of the point s=yt. 
Consider a cozero-set C from our base such that iCCccl C aG . We can deduce 
that there exists a cozero-set C] from the base such that xfjcl C, and CUC, =K. 
This implies K=txCUaC1. The assumption t£aCi implies j^cl Cx but this is 
false. Hence t£aC. Let t^aC . Then ytx(Lc\ CaG . As the set aC is open we 
obtain the continuity of y.

This mapping is surjective. In fact consider a point s<EK, the set

r  =  {Cdcß0(R.)\sdC}
and the set P = x~ 1As. Assume that aCH P =  0 for some C£E. Then there exists 
a cozero-set G such that As£GczT\x<xC. So s£&~1G=Ct  On the other hand 
* - 1GCaC = 0 implies a(C1PlC) = ikC, ilaC  = /GOaC=0. This has as a con
sequence C1flC = 0  but this is false. It follows from this contradiction that 
aC H P 9^0 for any C€F- Therefore there exists a point t£ fl {aCFP\C^r}. Con
sequently, yt£ fl {cl C IC£T}=j.

From the definition of the mapping y we conclude that Aoy = x. This has as 
a consequence that this mapping is perfect ([81, VI, § 2, 56).

Prove that yKN=KN. Assume that there exists a cozero-set C ^ 0(R) such 
that CC\RN7±0 and cl CClyKN=Q. Assume that there exists a point t£aCC\KN. 
Then ytfcl CC\yKN=0 but this is impossible. Therefore a C n ^ ;V = 0. Consider 
the set L=kC. Consider for L the corresponding sets FJN and Kj(z Kn defined 
above. Then UKjCziL implies Kj=Q. So TMj=0 means Fjn£N. Therefore L£N. 
On the other hand there exists an ideal M^>N such that RMc  C HKN. As L£M  
there exists an ideal M xzdM  suchthat TMl( z T \L .  That is why ^ Mlc ( ^ \ Ä -1L )n  
C\KMc:C \A ~1L but this is impossible. We conclude from this contradiction that 
£ jv c  y ^ N  ■

Conversely assume that there exists a cozero-set C such that and
C n /e jv=0. Consider the set L=kC. Assume that L^N. Then there exists an 
ideal M z)N  such that TM<^L. This implies RMaA~1LC\RNczA~'iL \C  but 
this is impossible. So L£N. Consider for L  the corresponding sets EN, CN and Z N 
defined above. We can suppose that En—0. Then CN=& means that Z N(~)KN 
is nowhere dense in KN. Therefore iL f)K N=Q. Let / be a point of y~lC. Then 
there exists a cozero-set C1 from the base such that yt$c\C1 and CUC, =K. Then 
aCUaC, =K shows that td<xC. That is why y-1CcocC. So we get CC]yKN=Q 
but this contradicts to our assumption.

Thus K  is larger than ft. Now let K  denote the Lebesguean cover of T. As 
the Lebesguean cover has the properties from (1) and (2) simultaneously we get 
as a result that the Lebesguean cover is the largest of all the preimages with the 
properties from (1) and the smallest of all the preimages with the properties 
from (2).

Let R  be some other largest preimage of T. Then there are mappings y : K-+K 
and S : R-+K such that K is larger than K  relative to y and K is larger than K relative 
to <5. Let t£KN. Then t=C\{KM}. This implies ytkC\{RM) and őyt£ fl {KM} = t. 
As U/vv is dense we conclude that <5oy=id. It means that y and S are mutually 
inverse homeomorphisms and so the preimages K  and R  are isomorphic.

The uniqueness of the smallest preimage and assertion (3) are checked in a 
similar manner. The theorem is proved.
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This Theorem will be used for the proof of the following Theorems 2 and 3.
Now with the help of this Theorem we shall give a functional characterization 

of the Lebesguean cover.
Let {K,x: K —T, T n >-+Kh , %(K)} be a perfect saturated preimage of T 

lifting Kelley covering and having a completely normal base.
Let P and Q be subsets of K. If P\Q3>KN for any N  we shall say that P is 

almost contained in Q and write P dQ .

Let {Ck} d ^ 0(K) be a finite covering of the space K and {Lk}d £ f(T )  be a 
finite covering of the space T. The family {C,(, x~1Lk) will be called a cohesive 
covering o f the space K if x~1Lk c  Ck for any k. Note that for any cohesive covering 
{Ck, x~1Lk} the set iJ(x~1Lkr\Ck) is dense in K.

L emma 9. Let {Cj ,x ~ 1L j} and {Ck,x ~ 1Lk} be cohesive coverings. Then the 
family {CjC\Ck, x~1(Ljf]Lk)} is a cohesive covering, too.

P r o o f . Assume that there exists an ideal A such that KNd x ~ \L j  C\Lk) \( C  jC]Ck). 
As KhCiCj ^O there exists an ideal Md>N suchthat KMd K NC\Cj. This implies 
KMd x ~ 1Lk\ C k but this is impossible. It follows from this contradiction that 
x - \L jC \L k)d C j^ C k.

Further for a natural number n the number — will be denoted by un.n
Let /  and g be functions on K. The functions /  and g will be called equivalent 

if for any n there exists a cohesive covering {Ck, x~1Lk) of K such that | / ( j)—g(^)|< 
■cu„ for any U(x~1Lk\ C k). In this case we shall write f~ g .  It follows from 
the previous lemma that this relation is indeed an equivalence relation.

Consider on K the set Cq(K) of all functions f£C*{K) such that
f- 'Q a , b[)W 0(K)

for any open interval ]a,b[. It follows from the theorem of Alexandrov ([13]) 
that Co(K) is a uniformly complete vector lattice and ^ 0(K) = (coz /|/€CJ(K )}.

A function x on T  will be called a Lebesgue function (or universally measurable
[6]) if x _1(]a, b\)d£P(T) for any open interval ]a,b[. The set of all bounded 
Lebesgue functions on T  will be denoted by L*(T).

There holds the following functional description of the Lebesgue deter
minedness.

L emma 10. The following assertions are equivalent.
(a) K is Lebesgue determined;
(b) for any function /£C q(K) there is a (unique) Lebesgue function x£L*(T) 

such that f~ x o x .
P ro o f. Denote L*(T) by X  and C„(K) by d>. Let K be Lebesgue determined. 

Consider a function 0 Divide an interval, containing the range of the func
tion/, by points amJ so that amJ+1- a mJ=um/6. Then for any C ^ f ^ Q a ^ ^ ,  amj+1[) 
there exists a Lebesgue set L'mj such that x~1LmJ ACmJf>KN for any N. Assume 
that there exists a point t$\JL'mJ. As KNtC\Cmj7i(i,t for some /  and for the point 
ideal N, we have K,=KNtd C mj. So Ktd C mJ\ x ~ 1L'mj but this is impossible. 
This means that {L'mJ} is a covering of T  for any m. Consider the sets LmJ= L'mJ\  U
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U {L'mi\i^j}. Then {Cmj, x~1Lmj} is a cohesive covering. Consider the Lebesgue 
step function xm = %  amjX(LmJ). Let xn= 2  ankx(Lnk). Take a point t£T. Then 
t(LLmjC\Lnk for some,/and k. So Ktczx~1Lmj implies K ,dC mj. Similarly K,dC„k. 
Take a point s£Kt . Then we have \xm( t ) - x n(t)\ =  \amJ- a nk\^ \a m]- f ( s ) \  +  
+  1 /(•*) — ank\<u„J3 for nSm . That is why there exists a Lebesgue function jc 
suchthat |x(t) — x„(/)[-<2w„/3. Let Pn= lJ (x ~ 1 L„k\ C nk). Then | / ( j ) —j c o x ( j ) | <
<w„. Thus / ~ x ox.

Assume that there exists another function x f X  having this property. Then for 
any n there exists a cohesive covering {Ct, Z>’,} such that |/(x )—x' ox(s)\<.un for 
any U(x_1Z.,\Cj). Take a point t£ T. Then t^LnkT\Ll for some indices.
Therefore Ktd x ~ 1(LnkC\Ll). By virtue of Lemma 9 there exists a point s^K,f] 
r>c~1(Lnkr\Ll)r\(Cnkn C l). So xs = t. Besides s$_P„[JQn. Hence we get |x(t) — x'(?)| <  
< 2 u„. Consequently, x = x '.

Now let C be a cozero-set from the base. Then C —c o z f  for some function 
0=f(z <P. Consider the function /  the corresponding Lebesgue function xgO such 
that f~ x o x .  Consider the Lebesgue set L=coz x. Assume that Knc x ~1L a C = Q. 
If K ^ r\(C \x ~ 1L )^ 0  there exists an ideal Md>N such that KMc :C \x ~ 1L. 
Consider the sets C„= {s£K \f(s)> un). For some n there exists an idea! M xd>M 
such that KMl c  C„ Pi KM a  C„\x  ̂ 1L. But for this n there exists a cohesive covering 
{(Ck,x ~ 1Lk} such that \ f ( s )—xox(s)\< un for any s$Pn=. D(x~1Lk\ C k). It is 
clear that KMlczPn. As Lk$M k for some k  there exists an ideal M2 Z) M l such 
that TMid L k. So KM2a x ~ 1Lk\ C k but this is impossible. Consequently KNa  
d x ~ 1L \C .  Consider the sets L„= {/£ T\x(t)> un}. Then L„$N for some n. Hence 
there exists an ideal Md>N such that Tu d L n. Therefore KMd x ~ 1Ln\ C .  This 
implies KMd P n. But as it was shown above this is impossible. From this con
tradiction we get that j t 'L a C í Kn for any N. So K is Lebesgue determined. 
The lemma is proved.

P roposition  1. Let K be the Lebesguean cover o f T. Then
(a) {K,x: K —T, TN̂ K N, rif0(K)j is a perfect saturated preimage o f T  lifting 

Kelley covering and having a completely normal base;
(b) there is a bijection r: x>-»f between the family L*(T) and the family Ct(K) 

such that f~ x o x ;
(c) K as a preimage o f T lifting Kelley covering is completely determined (up to 

isomorphism) by the properties (a)—(b).
P roof. Denote L*(T) by X  and C,t(K ) by <P. Let O^xpT. Then there exist 

step functions xn£X  such that \x(t)—x„(t)\<u„ for any t and x„=2! akX(Lk) for 
some Lebesgue partitions {Lk} of T. Denote the set iLk by Uk. Consider the func
tions f n= 2  akX(Uk)£&- Let 0S /6 #  be a uniform limit of the sequence /„. By 
virtue of Corollary 2 of Lemma 3 the family {Uk, x~1Lk} is a cohesive covering. 
Let s$P„=\J(x~1Lk\ U k). Then | / ( j ) —xox(s)\<3un. Hence / ~ x ox.

Assume that there is another function / '€  (h satisfying this condition, i.e. for 
any n there exists a cohesive covering {Ct , x~1Ll} such that \f '(s )  — xox(s)\<un 
for any s$Qn= U(x~1Ll\C ,) . We can suppose that {L,} is a partition. Take a point 
J ^ u i x - ^ n i ^ n i c ^ n c , ) ) ^ .  Then s$PnUQn implies that \ f { s ) - f \ s ) \^ 4 u n. 
By virtue of Lemma 9 and the density of the set R„ we conclude that this inequality 
is valid for any s£K. As a result we get / = / ' .



LEBESGUEAN COVER AN D  LEBESGUEAN EXTENSION 3 5 9

Thus the mapping r: x —/  is defined correctly. By virtue of Lemma 10 we get 
that this mapping is bijective.

Now let {R, £: /£— T, TN>-+RN, #„(.£)} be a preimage of T  with the proper
ties from (a) and (b). Denote the vector lattice C „ ( R )  by <P. It is easy to check that 
the mapping r : X-+<P is an isomorphism of vector lattices. By virtue of Lemma 10 
R  is Lebesgue determined.

Let G be an open set from T  and x=/(G ). Then x=sup {/r€C*(7’) |/ rSx} 
in X. Consider the function /= rx . Then /= su p  {f/J=sup { fro&}=x(U), where 
{7=clÄ_1G. Hence UdA0{K). This means that R  is lower extremally discon
nected. Let Ä - 1 G H ^  =  0 .  Assume UC\Rnt±9. By virtue of the saturatedness 
there exists an ideal Mz>N such that RMcz UC)KNcz t / \ £ -1G. But it follows 
from the proof of Lemma 10 that U Aii~1Gt>RM for any M. From this contradic
tion we conclude that the preimage R  is lower disjoined.

Take a Cd(ßü(K). Then C = c o z / for some function f= fx .  Consider the 
sets L =  cozx, U=c\C  and the functions y ssu p  {nxAl|/?}, g = ry. Then y=x(L), 
g=sup {nf Al}=j((i/) and UdA0(R). It follows from the proof of Lemma 10 that 
Ua &~1L^>Rm for any M.

Take a Zd&0(R). It follows from above that F=int ZdA0(R) and there 
are some Lebesgue set L' and some functions h, z such that z -x (L ') , h=x(V), 
h=rz and Va &~1L'3>Rm for any M.

Now let {CN, Z N} be a family of cozero and zero-sets such that U C^c HZ^ 
and Z N\ C Ni> RM for any Mz>N. Consider the open-closed sets UN=c\CN 
and Fw=int Z N. As it was shown above there are some sets LN, L'N and some 
functions gN, hN, y N, zN such that yN=x(LN), zN = X(L'N) ,g N=x(UN), hN=x(VN), 
gN=ryN, hN—rzN, UNA Ä '1 LN3>RM and VNAÜ*1 RM for any M. Assume
that P = L'n\ L n$ N. Then there exists an ideal M zdN  such that Tm<a P. S o 
Rmc(% -1L'N\ f t - 1LN)r)Rf!-. Therefore RMOVN7i 0 and RM<tUN. By virtue of 
the saturatedness there exists an ideal M xzdM  suchthat RMx<a Vn\ U nc:Z n\ C n 
but this is impossible. From this contradiction we conclude P£N. So (iL'N\ i L N)f] 
C\Kn=0. This implies iL'N\ i L NJ>KM for any M a N. As UiLNczC\iL'N, by 
virtue of Lemma 7 and the remark before Lemma 6 there is a set iLdAu(K) which 
is situated between these sets. Consider the functions x s / (L )  and f= rx. As 
the homomorphism i is injective we get gM^ f ^ h N for any M  and N. It is evident 
that U=cozfdA0(R). Therefore U Uu ez G c fl . Thus the preimage R is col
lectively ff-separated.

On the strength of Theorem 1 we conclude that the preimages K  and R  are 
isomorphic. The proposition is proved.

This proposition also will be used in the sequel.

§ 2. Vector lattice of Lebesgue functions

Let T  be a completely regular space and L*(T) be the vector lattice of all 
bounded Lebesgue functions on T  introduced in § 1. Let u: C*(T)-»L*(T) be the 
canonical imbedding.

For a Kelley ideal N  consider the ideal L„(T)=  {x£L*(T)\coz x€V}. Then 
{L*(T),u : C*(T)-*L*(T), C*N(T)~L*N(T)} is an extension of C*(T) inheriting
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Lebesgue decomposition. This extension will be called the Lebesguean extension 
o f C*(T).

Let K be the Lebesguean cover of T  and x: K-*T  be the canonical mapping. 
Let <h=Co(K) be the vector lattice of functions on K defined in § 1. Consider the 
injective vector-lattice homomorphism q>: C*{T)~*<P such that cpf=fox. For a 
Kelley ideal N  consider the ideal <PN = {/£ $ |/(K N)=0}. Then

{<P,cp: C * ( T ) -  <Z>, C*n( T ) ~ $ n}

is an extension of C*(T ) inheriting Lebesgue decomposition.
Now let {X, u\ C*(T)-*X, Cn (T)>->-Xn} be a vector-lattice extension of 

C*(T) inheriting Lebesgue decomposition. Identify C*(T) with its image in X.
Let x£X and { . t j e i .  The element x will be called the d-supremum o f the set 

{x̂ } if x ^ x ? and for any XN we have x=sup x. in X/XN. In this case we shall 
write x —d—sup x%. The element x will be called the dN-supremum o f the set {xj 
if x ^ x ? and x = su p x i in X/XM for any M zdN. In this case we shall write 
x= d N — sup x^. In a similar way the d-infimum and the dN-infimum o f the set {x̂ } is 
defined.

Consider the sets S,(C*(T), X )=  {xaX \3 faC * (T) {x= d—sup/^} and 
SU{C*(T), X )= {xeX \3 f£ C * (T ) ( x = d - in f f i)}.

The extension X  will be called Lebesgue generated if for any x£X  and 
for any Kelley ideal N£^X(T) there exist sequences ykN0.SU(C*(T), X) and 
z%aSt(C*(T), X) such that yJMSx^z%  for any indices and x= dN—sup ykN = 
=dN- i n f z kN.

For the extensions L*{T) and <P consider the mapping r: 2 /(7 ’)-* 4> from 
Proposition 1 of the previous paragraph.

Proposition 2. With respect to the mapping r the extensions L*(T) and d> are 
isomorphic saturated Lebesgue generated lower Dedekind complete lower component 
collectively a-complete extensions o f C*(T ) inheriting Lebesgue decomposition.

Proof. Denote L*(T) by X  and L%(T) by XN. It can be verified that rou = (p 
and r is a vector-lattice isomorphism. Let x£X  and /  = rx. Consider the sets 
L = co zx  and C =coz/. As it was established in the proof of Lemma 10 C a x _1LJ> 
f>KM for any M. Let x£X N and assume that /ft i>,v. By virtue of the saturated
ness there exists an ideal M z)N  suchthat KMcC O K N. As T \L ({ M  there exists 
a Kelley ideal such that TMlc : T \L .  Then KMlc K MC \(K \x~1 L)cz
c :C \x ~ 1L  but this is impossible. Thus our assumption is false. Conversely let 
fd  <PN and assume that x(j XN. Take an ideal M^>N such that TMczL. Then 
Kmczx~1L \C  but this is impossible, too. Consequently, x£X N. So the extensions 
X  and <P are isomorphic.

Let 7  be a proper component of X  such that Y J <$XN. Consider the non
empty set P={ta 7jVy€ 7(> (t)=0)}. Then 7 =  {x€A'|x(/>)=0}. Consequently 
P$N. Therefore there exists a proper ideal M z)N  suchthat TMczP. This implies 
XnM YczXm. This means that X  is saturated.

Now verify that X  is Lebesgue generated. Let S*(T) and S*(T) denote the 
sets of all bounded lower semicontinuous and upper semicontinuous functions on 
T, respectively. Let xO.Sf(T). Then x(/)=sup { /(/)}  for some family f t£C*(T). 
Prove that x —d —sup/^. Consider the functions g=rx and g$=rfi =fi ox. Let
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and J^g^  for any index. Then /(j)s(xox)(.r) for any s£KN. Assume 
that there exists a point s£KN suchthat a= g(s)—f(s)>  0. Take a natural number A: 
such that a> \/k= uk. Consider the open set G= {r£K\g{r)~ /(/•)>«*}. Then 
s£GF\KN?±Q. By virtue of Proposition 1 there exists a cohesive covering {CJ,x ~ 1LJ) 
of K such that |g ( j)—(xox)(j)|<ut for any s^P={J(x~1Lj\C j) .  We can sup
pose that {Lj) is a partition. Then Gf]KNc.P. By virtue of the saturatedness of 
K there exists an ideal Mz>N suchthat / imc GÍ1 ^ .  As L fi M for some./'there 
exists an ideal Mxz>M such that ZMlc L , .  Then KMld x ~ l Lj C\P=x~i LJ\C j. 
But this contradicts to the definition of a cohesive covering. Thus f(s )^g (s )  for 
any s£KN means that J^g . So g=supgi implies x ^ su p /j in X/XN.

As a result we get Si(T)<zSt(C*(T), X). The similar inclusion is valid if we 
substitute / by u.

Now let 0^x£ X . Divide an interval, containing the range of x, by points 
=  mj \ f e J m}  so that a mj + l  — a mj = u m . Fix an ideal N .  Then for any set L mJ=  
{ a x  1{[amJ, a mj+1[) there exist an increasing sequence of compact sets F mJk and 
a decreasing sequence of cocompact sets GmJk such that Emj =  Q Fmjk^Lmj, HmJ =

k
= n GmJkz>LmJ and PmJ = Hmj \ E mJ£N. Consider the functions ym,k= l{Fmjk\  
zmJk = X(GmJk). ymk=sup {amjymjk\j€Jm} S x  and zmt=sup {amj+lzmJk\.feJm}^ x .  Con
sider the set Pm= U  Pmj- Take a point t$Pm. Then t£Lmj for some j. Therefore 
t$H mi for any ijtj. Hence /(J Gmikl for some kt . Take the number /c=sup {A,|/£./m}. 
Then s$Gmik for any i ^ j  and for the given A. Therefore zmk(t)=amJ+l. That is 
why 0 Szmk(/_)-x(/)S«m.

Let y S z mk in X/XM for Mz>N. Then y (i)= zmk(0  for any t$Qmk, where 
QmkdM. Consider the set / ,= (U />m)U (U 0mt)€M. Take a point t$P. As it was 
shown above for any m there is a function zmk such that 0 S z mk( t ) - x ( t ) ^ u m. 
Therefore y(t) — x ( /) ^ u m implies y ( t)^ x { t) .  So y ^ x  means that x = inf z mk. 
It is clear that x= supymk. Thus x=dN—sup ymk—dN — inf zwk. This means that 
X  is Lebesgue generated.

Now check that X  is collectively ix-complete. Let {y ,̂, zkN) be a corresponding 
family in X. We can suppose that the sequence {>*,} increases and the sequence 
{zkN} decreases. Define the function x by setting x(/)=sup {>*(/)}• Fix an interval 
]a, b[ and an ideal N. Consider the set L = x -1(]a, 6[). Consider the Lebesgue 
functions y ssu p  {yjy|A} and z = inf {z^\k}. Then P =coz (z— y)£ N. Consider 
the Lebesgue sets L '= y~1(\a, + °°[)nz-1(] — i[)c L  and L"=y-1(] — i[)fl 
Oz-1(]íz, +  °°[)3L. It is clear that (L \L ')L)(L"\L)czP . Take some K„-set E a L ' 
and some co K„-set Hz>L" suchthat P' = L '\E £ N  and P" = H \L "£ N . Then 
fl\E < zP \jP 'U P "£N . This means that L is a Lebesgue set and consequently x  
is a Lebesgue function. As the rest of the properties of X  are well-known the proposi
tion is proved.

Further uniqueness is understood up to isomorphism.

Theorem 2. (1) L* (T) is the unique largest o f all the saturated Lebesgue generated 
extensions o f C*(T) inheriting Lebesgue decomposition;

(2) L*{T) is the unique smallest o f all the filled lower Dedekind complete lower 
component collectively o-complete extensions o f C*(T) inheriting Lebesgue decomposi
tion and moreover L*(T) is the unique universal among all such extensions;

(3) L*(T) is the unique saturated Lebesgue generated lower Dedekind complete

5
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lower component collectively a-complete extension o f C*(T) inheriting Lebesgue decom
position.

P r o o f . Let {X, u: C*(T)—X, C*N{T)>-+XN} be an extension having the prop
erties from (1). On the strength of Yosida’s theorem ([14]) there is a unique com
pact Ku such that the vector lattice X  is isomorphic to the vector lattice C(K0) rela
tive to an isomorphism r0. Then the mapping u generates a unique surjective con
tinuous mapping x0: K0—ßT  suchthat r0U f= f'ox0, w here/' denotes the extension 
of a function f£C *(T )  on ßT.

Consider the space K = x^1T  and the perfect mapping x: K —T  which is 
the restriction of x0. Consider the vector lattice <P, consisting of the restrictions 
on K  of all functions from C(K0), the homomorphism r: X —<P, suchthat r x ^ r 0x\K, 
and the homomorphism cp: C*(T)—<P suchthat cpf=f ox.

For a Kelley ideal N  consider the ideals <PON=roXN and <PN=rXN and the 
closed subsets / / N =  {.sTA0|V/ £ <i’o^(/(')=O)}?i 0 and K^=KünC\K. Then UAT0jf 
is dense in K0 and x0K0n=c\ TN. It is clear that Ntc N 2 implies KNlz>KNt. Take 
for the ideal N  a proper ideal M zoN  such that TM is compact. Then Km=K0m. 
It follows from this fact that KN^i>.

Let / s 0 be a function from C(K0) and /(Af0w)=0. Consider the functions 
f k = ( f —uk 1)V0. From the property AI0n(Tc1 coz/t =  0 we conclude that f f  4>0w. 
This implies that /  belongs to this set also. Thus <P0n = {/£C(A10)|/(A10n) = 0}.

Let C be the cozero-set of a function f£C(K0) such that CDK0n?í Q. Take 
a sequence of compact sets Fk such that Fk$ N  and T \  U Fk(zN. Consider the 
proper ideals Nk= {P ^^iT ^P C iF ^N }. Then C\Nk=N. As X  is filled we have 
/ (J <Pqn for some k. Therefore C C\Kn zdC C)KoN. ^0 . This means that KN is dense 
in K0n. A s  a consequence we get <PN = {/£ $ |/(A /)= 0}  and xKN = TN.

Besides we established that K  is dense in K0. Hence the triplet

C*(T)  -  <p , c*(T)  ~  <PN}

is an extension isomorphic to the initial one.
In addition we get that UKN is dense in K. Consequently, K is the preimage of T 

lifting Kelley covering and having the completely normal base &0(K)=  (coz /|/£  <Z>}.
Let G be an open set in K and GC\KN7±W. Take a proper regular closed set 

Fez G such that (int F)C\KN̂ 9 .  Consider the proper component F={/£4>|/(F)=0}. 
As Y d <t (PN we get by virtue of the saturatedness that there exists an ideal <PM 
containing the set <PNV Y. This means that KMezKN Pl G. So AT is a saturated 
preimage.

Now let 0 ^ /6  <J> and C = coz/. Then there are sequences gkN£Su(C*(T), <P) 
and hkN£St(C*(T), <P) such that 0 ^ g kN^ f ^ h kN and / =  dN—supgkN =dN—infhkN.
Also there are some families of continuous functions such that gkN=d—inf { /^oz}  
and hkN=d—sup { f^ o x } .  Consider the semicontinuous functions y% and zkN such 
that yjy(/) = inf { /v /O }  and z£,(i)=sup {/{,(i)}- Fix indexes M, N, ./' and k. 
Assume that there exists a point t such that a=yJM(t)—zkN(t)>0. Then / ^ ( r )  — 
—ffjn(t)S a  for all Greek indices. Take for the point t the point ideal Nt= 
=  {^€^(7)1/^P}. Then / ^ o x —/$ ,ojc£ ű1 implies gjM — hkN^ a \  in <P/<P̂c. But 
this inequality contradicts to the initial one. Consequently y}M^ z kN for any indices.
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Consider the Lebesgue functions yAi=sup y h  and zN = i n f z kN. Take K„-sets 
<zcozyM= Y M and co K„-sets / /Nz)coz zN= Z N suchthat Ym\ F m£ M  and 

Hn\ Z n£N. Then EMczHN. Assume that HN\ E N$ N. Then there exists an ideal 
M 3  TV such that Tm a Z N\ Y N. Assume that gkN<l<I>M for some k.  Then there 
exist a number 0 and a point s£KM suchthat gkN(s)>a.  Therefore //?{(/)>« 
for all £ where t = xs£ t m. But this is false because of J n ( 0 - 0. Thus gkN6 <PM 
for any k. On the other hand there exists a number a> 0  such that

A =  {t£T\zH{t) >  a)iM .

That is why there exists a proper ideal such that TMla A .  Therefore for
any k and for any point /£ there exists an index >7 such that This
means that hkN(s)>a for any s£KMl, i.e. /i^S a l in <P/(PMl. At the same time 
gjy =0. But this is impossible. Thus our assumption is false and in fact Hn\ E n£N.

Further assume that KMa x ~ 1EN\ C  for some M 3 TV. Then YN$M  implies 
that c o z f o r  some k. Therefore there exist a number a > 0  and a proper 
ideal Ml z)M  suchthat TMla  r|y^(/)> n} . This implies that /^ o x & a l in 

Consequently, ĝNi<PMl. But this is impossible because of KA/incozgkN =  0. 
So such an M does not exist.

Now assume that KM<^C\y<~1HN for some A/3  TV. Then flcoz — Q 
for any k. Hence inf {(/^4ox)(j )|£}=0 for any s£KM implies There
fore fd  <PM . But this contradicts to the inclusion KMczC. Thus such an M  does 
not exist.

As a result we obtain that the preimage K  is Lebesgue determined.
Now let {R, ü: C*(T) — R, C*N{T)<—-RN} be an extension having the prop

erties from (2). Consider as it was done above the isomorphic extension 
{$, 0: C*(T)-~ő, Ch(T)'-+<Pn} for the corresponding preimage

{R, Ä :  R  -  T, Tn -  RN, %{£)).

Let ONk=N.  Then <PN = C)$Nk implies that URNk is dense in RN. This 
means that the preimage R  is filled. Let G be an open set from T. Consider the 
family {ŷ } consisting of all continuous functions which are smaller than the char
acteristic function of G. Consider the function /=sup{<%}6 $■ Then /( j )  = l for 
any sa&~1G and f ( s ) = 0 for any s$U=c\  k~ 1G. From the continuity of /  we 
conclude that f=x(U) .  So UaAu(R). Thus the preimage R  is lower extremally 
disconnected.

Let Ä-1G D /^= 0 . T h e n /^ C ^ T )  implies that f a $ N. Therefore UC\RN—Q. 
This means that R is lower disjoined.

Let L be a Lebesgue set. Then there exist TV„-sets EN= U FfcczL and c o r 
sets HN=f]G kNZDL suchthat Hn\ E n£N. Consider the sets f^  = int ft-1 Ffi€A0(R), 
W t^ d f i - 'G ^ A ^ R ) ,  CN=UVNk and Z N= C\W$. It is evident that UC^cr 
cflZ jy . Consider the functions g s ^ x W )  and ^n = X(Wn ) from $. Then gJM^ h kN 
for any indices. Let 0^ u S h kN—gJN for all /, k. Consider the Kelley ideals Mj=  
=  {PO.!? (T)\P C) FA £ N} and Mk= {P £0(T )\P r)(T \G kN)£N}. By virtue of the lower 
disjointness of the preimage R  we get Rj= R m a V f  and Rk = RMka R \W £ . Con
sequently u(s)= 0 for any ^6(11/^)11(11^1) =  /?^. As (flA /y)n(nA/*)=TV and 
the preimage R  is filled the set RN is dense in RN. Therefore u k $ N.

5*
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By the property of the collectively er-completeness there is a function fd  $  
such that gJM^ f ^ h kN. Since f(R N)c. {0, 1} the function /  takes only these two 
values on the whole set RN. Hence / = / ( [ / )  for some set UdA0(R).

So for the set L  we have found the set U such that UCKc i / c n z N. The 
fact now established gives the possibility to repeat further the arguments from the 
proof of Theorem 1. In this way we get a mapping y: K-+K such that K is larger 
than K  relative to y.

Let C be a cozero-set from the base on K. Check that cl y~1C=aC where 
a: V0(K)-~A0(R) is the lattice homomorphism from the proof of Theorem 1. 
Take an j6y-1C. Take a set Cx from the base such that y.yfj ci Cx and CUC1=A'. 
Then R=aCUaCj. If we assume that sd<xC1 then we get y.sTcl C1. As this is 
false we have sdaC. Thus y_1C caC . Further consider cozero-sets C,„ from the 
base such that C = U C m and cl CmaC . Consider the Lebesgue sets Lm=kCm and 
the set L= U Lm. Assume that C a x ~1L ẑ K n for some N. If A ^nCCvi-1/,)^  0 
then there exists an ideal Mz>N such that KMc C m\ x ~ 1L  for some m, but this 
is impossible. Therefore KNa x ~ 1L \C .  This implies that there exists an ideal 
M z iN  such that I'm c Lm for some m. Then KMa x  1Lm\ C ,  but this is im
possible also. From this contradiction we conclude that such a set N  does not exist. 
Hence L=kC. Let U„, = iLm and U=iL. Fix an ideal N. Take some A^-sets 
Eft={jF[Hj c:Lm suchthat Lm\EH,dN  and a A^-set £ N=  U F ^ c T \A  such that 
( T \ L ) \ E NdN. Also take Ka -sets D jJsU  F„k a  L \ L m suchthat (L \L m)\D%dN. 
Then EZ<zLmc ( T \ E N){J(T\D%) impliesdiat U ^ c  [/mc 7 e \( (U ^ r)U (U ^ m))c  
c X r \U Rr. Therefore U UK f c U U m( z K \ UKr. On the other hand U UK™a 
czU czR \{JÉ r. A s^(U  UÁ'J")U(U^r) is dense in KN we get that ( UC/„,)f 1 
is contained in UC\KN and moreover the first set is dense in the second one. Hence 
C/=cl U Um. As a result we get aC=cl UaCm. If sd<xCm then yr£clCmc:C. 
So aC =cly-1C.

Now let /S O  be a function from <P. Divide an interval, containing the range off,  
by points a,- so that aJ+1—aj=um/2. Consider the sets CJ= f~ 1(]aJ- j ,  aj+1[) and 
Uj=c\ y~1Cj =aCj. It was established above that there exist functions gjd.0 
which are the characteristic functions of the sets aCj. Consider the step function 
gm=sup gj}. It is clear that 0 s /o y ( j ) —gm(s)^u m for any s. Therefore 
fo y d  $.

This means that we can define correctly the injective vector-lattice homomor
phism v : $ ^ 0  by setting u/=/oy. Then Q=voq>. Let fd .0 N- Then (vf)(RN)—0 
implies vfd$N. Thus the extension $  is larger than the extension <P. This fact is 
valid for the initial extensions £  and X, too.

Now let <P be the extension from Proposition 2 isomorphic to the Lebesguean 
extension L*(T). As 0  has the properties from (1) and (2) simultaneously we get 
as a result that 0  is the largest of all the extensions with the properties from (1) 
and the smallest of all the extensions with the properties from (2).

Let £  be some other largest extension of C*{T). Consider as it was done 
above the isomorphic extension {$ ,$ :  C*{T)—$, Cf, '-+<PN} for the preimage 
{R, it: R>-+T, Tn ^ 0(R)}. Take some mapping w: 0 —0  such that 0  is 
larger than 0  relative to w. Define the surjective perfect mapping 5: R-+K by 
setting <5j = D {cl coz/n% _1Äj|i€coz wf). Then xoö=&. Check that wf=fod for 
any function 0^ fd 0 .  Assume that there exists a point .vsuch that (wf )(s)^( foS)(s). 
If  (w f)(s)>(foő)(s) then we shall consider the function g = /  otherwise g = —/.
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Denote the number ((wg)(i)+(go<5)(i))/2 by a. Consider the function h= (g—al)V0. 
Take a neighbourhood G ot s such that (wg)(t)>a for any t£G. Also take a neigh
bourhood U of the point 5s such that g (r)< a  for any r£U. Then U a K \co z  h 
and Gfl<5_1 U ccoz wh. Therefore (5j $ cl coz/z and <5.sCcl coz h but this is im
possible. From this contradiction we conclude that such a point s does not exist.

Check that ößNc:KN. Assume that there exists a point s£5ßN\ K N. Take 
a function f £ $ N suchthat sdco zf Then for some point t(ißN suchthat s=5t 
we get (w/)(/)?í0. But on the other hand wf£<PN implies (wf)(t)=0. It follows 
from this contradiction that this inclusion is valid.

Now take the mapping v: $  -~<P defined above. Let s£KN. By virtue of the 
saturatedness of the Lebesguean cover we have j =  D {KM}. Then 5ys£ (T {KM}=.y. 
From this fact we conclude that 5ys=s for any point s£K. Therefore (wvf)(s) =  
—f(s). Thus v and w are mutually inverse isomorphisms of vector lattices. So the 
extensions <P and $  are isomorphic.

The uniqueness of the smallest extension and assertion (3) are checked in a 
similar way. The theorem is proved.

§ 3. Lattice ring of Lebesgue functions

Let T  be a completely regular space and L*(T) be the /-ring of all bounded 
Lebesgue functions on Tintroduced in § 1. Let u: C*(T)-+L*(T) be the canonical 
imbedding.

For a Kelley ideal N  consider the /-ring ideal L*N(T)= {x£L*(T)\coz x€ A}. 
Then {L*(T), u: C*(T)-+L*(T), C*N(T)~L*N(T)} is an extension of C*(T) in
heriting Lebesgue decomposition. This extension will be called the Lebesguean 
extension o f C*(T).

Let K be the Lebesguean cover of T and x: K— T be the canonical mapping. 
Let $=Co(K) be the /-ring of functions on K  defined in § 1. Consider the 
injective /-ring homomorphism cp: C*(T)-+<P such that <p/=/ox. For a Kelley 
ideal N  consider the /-ring ideal {/£ 0 |/(A 'JV)=O}. Then {<P, <p: C*(T)~* d>, 
C £ ( T ) i s  an extension of C*(T) inheriting Lebesgue decomposition.

Now let {X, u: C*(T)—X, C%(T)>-+XN} be an /-ring extension of C*(T) 
inheriting Lebesgue decomposition. Identify C*(T) with its image in X. The notion 
for X  to be Lebesgue generated is defined as in § 2.

For the extensions L*(T) and <P consider the mapping r: L*(T)-*$  from 
Proposition 1 of § 1.

Proposition 3. Relative to the mapping r the extensions L*(T) and $  are iso
morphic saturated Lebesgue generated lower continuing lower segment collectively 
o-conlinuing extensions o f C*(T) inheriting Lebesgue decomposition.

P roof. Denote L*(T) by X  and L*N(T) by XN. It can be verified that rou — q> 
and r is an isomorphism of /-rings. It has been checked in the proof of Proposi
tion 2 that x £Xn iff rx€ <PN. Therefore the extensions X  and d> are isomorphic.

In just the same way as in the proof of Proposition 2 it is checked that X  is 
saturated and Lebesgue generated.

Let Y  be a ring ideal in the ring C*(T) and g6Hom£,(r)( r ,  C*(T)H Y**). 
Let y i ,y z ^ y  and /<Ecozj^flcozy,. Then (gy1)(t)/y1(t)=(gy2)(t)/y2(t). Con-



366 V. K . ZAHAROV

sequently, we can define correctly the Lebesgue function z£X  by setting z(t) = 
=(gy)(t)/y(t) for any y£ Y  and any /£cozy and z ( t) = 0 for any t^G = U  
U {coz y|y£ Y).

As z£ Y** we can define correctly the homomorphism AcTIorrvJ/T, Y**) by 
setting hx=xz. Let y€ Y  and tf_G. Then there exists a yx£ T suchthat t^cozy\. 
Therefore y i(0(A y)(0=.v(0(gyi)(0=yi(0(sy)(0 implies (hy)(t)=(gy)(0- Since 
hy and gy belong to Y** we have (hy)( /)= 0 = (gy)(t) for any t$G. This means 
that hy=gy. Thus X  is lower continuing.

Now let g and h be the homomorphisms from the definition of the lower seg
ment and g Y a X N. Let x£X  and TNDG. Then t£cozy for some y€ Y  im
plies y(/)(/zx)(í)=;r(/)(gy)(í)=0 and hence (hx)(t)=0. If t£TN\ G  then (hx)(t)—0 
because of hx£Y**. Consequently, hx£XN. This means that XN is a lower seg
ment of X.

Now we check that X  is collectively u-continuing. Let {}/} and {hN} be the 
families from the definition of this property in 4.3. Let YN be generated by a countable 
set {j 5v}. Consider the Lebesgue sets LkN =  cozykN, LN= U L kN and PN = T \ L N. 
Define the Lebesgue function zN£X  by setting zN(t) = (hNykN)(t)/yk,(t) for any 
k  and any t£LkN and z„(i) = 0 for any t$LN. Let t£LMC)LN. Then t£LJM(~)LkN 
for some j,  k implies zM(t)=zN(t). This means that we can define correctly the 
function z by setting z(t) = zN(t) for any t£LN and any A and z(?) = 0 for any 

ULlV. Consider the Lebesgue functions uN=x(PN). Since an arbitrary element 
of the ideal yN has a form xkl krny^1 ■■■yÍT we conclude that uNf  Yfj. Therefore 
un£Xn implies Pn£N. Fix an interval ]a, b[ and an ideal N. Consider the set 
^4=z_1(]a, Z>[) and the Lebesgue set D = z^1(]a, if). Take some Ka-set E c B \ P N 
and some coA^-set H^>B(JPN such that (B \P n) \E £ N  and H \(B (JP n)£N. 
Then H \E £ N . Besides AC\LN=BC\LN implies EczAczH. This means that A 
is a Lebesgue set and consequently z is a Lebesgue function. As the family {hN} is 
uniformly bounded we conclude that zdX. That is why we can define correctly 
the homomorphism A€Hom£ (X, X) by setting hx=xz. Let y£YN and t£LN. 
Then t£LkN for some k. Hence ( /)(hy)(t)=y(t)(hNy^)(/) (/) (AN y) (i) im
plies (hy)(t)=(hN y)(t). Further uNhy=uNhNy  implies that the functions Ay and 
hN y  coincide. As a result we get that h extends hN. The proposition is proved.

T heorem 3. 1) L*(T) is the unique largest o f all the saturated Lebesgue gen
erated extensions o f C*(T) inheriting Lebesgue decomposition.

2) L*(T) is the unique smallest o f all the filled lower continuing lower segment 
collectively o-continuing extensions o f C*(T) inheriting Lebesgue decomposition and 
moreover L*(T) is the unique universal among all such extensions.

3) L*(T) is the unique saturated Lebesgue generated lower continuing lower seg
ment collectively o-continuing extension o f C*(T) inheriting Lebesgue decomposition.

P roof. Let {X,u: C*(T)—X, C%(T)<-^XN} be an extension having the prop
erties from 1). On the strength of Johnson’s theorem ([15]) there is a unique compact 
K0 such that the/-ring X  is isomorphic to the /-ring C(K0) relative to an isomorphism 
r0. Further by completely the same arguments as in the proof of Theorem 2 we 
obtain the preimage {K,x\ K-»T, TN>-+KN, rd0(K)} of T  and the corresponding 
extension {$, cp: C*(T)—<£, CJ](7’)>—/ v} isomorphic to the initial one.

In just the same way as in the proof of Theorem 2 it is established that the 
preimage K  is saturated and Lebesgue determined.
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Now let {R,ű: C*(T)-+i, Ch(T)>-*Rn} be an̂  extension having the proper
ties from (2). Consider the isomorphic extension {</>, 0: C*(T)-+<P, Cn(T)-*4>n} 
for the corresponding preimage {R, ft: R-+T, TN>-*RN, %>0(Rj). Then the preimage 
R  is filled.

Let G be an open set from T. Denote the set P.~1G by V. Consider 
the ring R = 0C*(T) and the ring ideal Y={ydR\coz y d  V} of the ring R. 
Define the homomorphism g(|Hom£ (Y, RC\ Y**) by setting gy=y. Then 
there exists a bounded «/»-module homomorphism h: $-~Y** extending g. 
Consider the function u= h ld$  and the set £/= cl V. It is clear that 
u (R \U )= 0. Let sd V. Then sdcoz y for some yd Y. Therefore y(j)u(i) =  
=(gy)(j)=y(j) implies m( í ) =  1. Since the function u is continuous we conclude 
that u=x(U) and UdAfj(R). So the preimage R  is lower extremally disconnected.

Let FDX!y=0. Then g Y d $ N implies ud$N. Therefore UC\RN=Q. Thus 
the preimage R  is lower disjoined.

Let L  be a Lebesgue set. Then there exist A^-sets EN= U FfidL  and co Ka-
the sets Vfi =  int Ff,dA0{R),

It is evident that UC^cHZ^ .  
%k) from $. Consider the ring 

ideal Y'n generated by the family {g^}, the ring ideal Y^ generated by the family 
{hkN} and the ring ideal YN={y'+y"\y'dY^, y"dY^}. Let udYfi. Considerthe Kel
ley ideals Mj={Pe&>(T)\PnFddN} and Mk= {Pd& (T)\Pr)(T\G kN)dN}. By vir
tue of the lower disjointness of the preimage R  we get Rj =  RMjd VÁ and RK = 
= RMkd R \W l} . Consequently, u(s)= 0 for any ( U U ( UÄfc) = . As
(n A f,)n (rW t)=JV and the preimage R  is filled the set RN is dense in RN. There
fore ud$N. Define the bounded 0-module homomorphism hN: YN-»$ b e s e t 
ting hN(y'+y")=y'. Then there is a bounded 0-module homomorphism h: <i>—0  
extending all hN. Consider the function m= M £ 0  and the set U=cozu. Let sdCN. 
Then sdcozy for some y d Y implies y(j)u(5')=y(j), i.e. m(j) =  1. Let s d R \Z N. 
Then sdcoz y  for some ydY£ implies y(s)u(s) — 0, i.e. u(s) = 0. Since u(RN)d  
c{0, 1} the function u takes only these two values on the whole set RN. Hence 
u=x(U) and UdA0(K).

So for the set L we have found the set U such that UCNd U d  flZ N. Further 
the proof is led in exactly the same way as the proof of Theorem 2.
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ON LINEAR /»-GROUPS OF DEGREE p

L. HÉTHELYI

In this paper we shall investigate the properties of finite /»-groups having a 
faithful irreducible representation of degree p over an arbitrary field. The class 
of these /»-groups will be denoted by 0>. We shall give some equivalent characteriza
tions of the class 3P. We show that the maximal abelian subgroups of these groups 
have index p in their normalizers. /»-groups containing such subgroups have been 
investigated in [2] where these abelian subgroups were called soft subgroups.

We shall see that groups belonging to SP are closely related to /»-groups of 
maximal class, in fact their nonabelian factors over normal subgroups containing 
the centre are all of maximal class. Special attention will be given to the regular 
/»-groups in the class SP.

Finally, we shall generalize some properties of SP to a wider class of /»-groups.

We shall need two simple lemmas.

L emma 1. Let P be a finite p-group such that Z(P) is cyclic. Let N ^ Z (P )  
be a normal subgroup o f P with \N:Z(P)\=p. Then \P'.CP(N)\=p.

P roof. Fix an element x£ N \Z (P ).  If gdP is an arbitrary element then 
g~xxg=xz for some z£Z(P). Now xp£Z(P), hence xp=g~1xpg=(xz)p= xpzp, 
so zd Q fZ iP)). Since Z(P) is cyclic it follows that the group of automorphisms 
of N  induced by P has order /». Hence |/, :CJ>(JV)I —p.

L emma 2. Let P be a finite nonabelian p-group containing an abelian maximal 
subgroup A. Then \A\=\P'\\Z(P)\.

P ro o f. See [4], p . 204.

T heorem  1. For a nonabelian finite p-group P the following are equivalent:
(i) P has a faithful irreducible representation o f degree p over some field.

(ii) P has a faithful irreducible representation o f degree p over the complex 
numbers.

(iii) Z(P) is cyclic and there exists an abelian maximal subgroup A in P.
(iv) Z(P) is cyclic and CP(x) is abelian for any x d P \Z (P ) .
(v) P is isomorphic to a finite nonabelian subgroup o f the wreath product Zp~wrZp.
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Key words and phrases. Representation, linear group, /»-group, regular /»-group, /»-groups o f  

maximal class.
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Proof. (i)=>(iii) Let (p be a representation of P guaranteed by (i). Because 
of page 199 in [1] we can suppose that P has a noncyclic abelian normal subgroup 
N  such that |A| =p2. By page 64 in [1] Z (P ) is cyclic. Then there exists an M s P  
maximal subgroup such that Z(M) is noncyclic.

By page 70 in [1] cp\M is not irreducible and thus its constituents are linear. But 
then M  is abelian.

(iii)=>(ii) See [4], p. 29 and p. 84.
(ii)=Ki) Obvious.

(iii)=>(iv) If A \Z (P )  then CP(x)=A. If x$A  then CP(x) =  (x, Cr (x)flA) 
is abelian since xf_Z(CP(x)).

fiv)=>(iii) Choose N  so that Z (P )^ A < iP  and \N:Z(P)\=p. Fix an ele
ment x £ N \Z (P ).  Then by Lemma 1 it follows that CP(N )—CP(x) is a maximal 
subgroup of P.

(ii)o(v) See [5], p. 277.
In the following statements P will always belong to 8P.
Statement 1. P/Z(P) is o f maximal class, generated by two elements o f order p.
Proof. As for every x £ P \A  x pfZ (P ),  the second part of the statement is 

obvious. Now we prove that P/Z(P) is of maximal class by induction on cl (P) 
and on |P|. Let us suppose first that cl (P )—2. It is easy to see that exp (P')=p. 
And hence, as P '^ Z (P )  is cyclic, |P'\=p. Now by \A\—\P'\\Z(P)\ we have 
|P /Z (P )|= p2. So we can suppose that cl (P)=-2.

If Z (P )^ $ (P )  then there exists a maximal subgroup M ^ P  such that 
Z (P )^ M . Then P /Z (P ) =  M/Z(M ) is of maximal class by the induction hypoth
esis. So we may assume that Z(P)^<P(P). Take a maximal subgroup M ^P , 
M A A . If Z (M )£ Z (P )  then Z (M )^ A  and so M=(AC\M) ■ Z (M ) is abelian. 
It implies that cl (P )= 2, and we are done in this case.

So we may assume that for each maximal subgroup M ^ P , M a A we have 
Z (M J —Z(P). Consider the factor group P=P/Z(P). If Z(P) ^ Ä then 
P = Ä  - Z(P) is abelian, cl (P)=2, so we may suppose that Z(P)SÄ .

If Ä is the only maximal subgroup of P containing Z(P), then P/Z(P) is cyclic 
and we have again cl(P )= 2 . So there is a maximal subgroup M ^ P , M a ä  such 
that Z (P )sM . By induction M  is of maximal class^

If M  is abelian then \P \^p3 and hence either P is abelian and cl (P)=2 or 
P is of maximal class. If M  is nonabelian then |Z(P)| = |Z(M)| =p. Hence P is 
nonabelian, contains an abelian maximal subgroup A and Z(P) is cyclic. Hence 
by induction P/Z(P) and also P/Z(P) is of maximal class.

Statement 2. |yf(P)/yf+i(P)| =/? for i=2, 3 ,..., cl (P).
Proof. As

cl (P)
n  \yi(P)/yi+i(P)\ = |y.(P)l =  \p '\ = \A:Z(P)\ =

i= 2

=  IP: Z iP ^ p -1 = pcHP/zip» _  pcHp) - i 
since P/Z(P) is of maximal class by Statement 1.
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Statement 3. I f  B fSC (P), B x A  then for any x £ B \Z (P )  we have 
B= (x) -Z(P) where xp£Z(P). I f  B is cyclic then B=(x), otherwise there is an 
x £ B \Z (P ) such that B ~ (x)X Z (P ).

Proof. Take an x £ B \A  then we have B=(x)(Bf)A) and xpf.BC\A. Ob
viously, BC\A=Z(P).

Statement 4. I f  B£SC (P) then \NP(B):B\=p.
Proof. It obviously holds for B=A. Otherwise apply Lemma 1 for Z (P )S  

t£B<iNP(B), then it follows that \NP(B):B\ = \NP(B):CNp(B)(B)\ =p.
Statement 5. I f  B£SC(P), BX A, \P:B\=pk then cl(P)=A: +  l, \P'\=pk.
Proof. \B\=p- \Z(P)\ =p\A:P'\ = \P:P'\.
Statement 6. I f  B£SC(P) then there is a unique maximal subgroup o f P 

which contains B.
Proof. See [2].
Statement 7. I f  N<iP and Nip A then cl (iV)^cl (P) — 1.

Proof. P = N -A  hence cl (P)Scl (Ar)+cl (A).
Corollary 1. I f  cl (P )^  4 then just like in groups of maximal class the critical 

subgroup o f P is the unique maxima! abelian normal subgroup o f P.
Proof. Let C denote the critical subgroup of P. Since cl (C )S 2 if cl (P )s4  

then Statement 7 implies that C sA .  Since CP(C)=Z(C)=C  it follows that 
C — A.

Corollary 2. I f  c l(P )^4 , oc£Aut(P), p\o(a) and x\£21(A)=l\Q1(A) then 
a =  l P.

Theorem 2. P satisfies exactly one o f the following:
(i) P = T ■ Z(P) where T is o f maximal class generated by two elements o f 

orderpand \Z(P)\>p.
(ii) P is o f maximal class.

(iii) There exists a cyclic BdSC(P), BXA, |5 [ Sp3.

Proof. If |Z (P)|=p then we have (ii) by Statement 1. So let |Z(P)|>/?. If 
there exists a cyclic B£SC(P), B X A  then |P| =p • |Z(P)| ^ p 3 by Statement 3, 
and we have (iii). Suppose now that no B£SC(P), B x  A is cyclic. Since P/Z(P) is 
of maximal class, there are x ,y £ P \A  such that (x-Z(P), y  ■ Z (P ))—P/Z(P). By 
our assumption we can even choose x, y  of order p.

Now let T=(x, y), then T /T '= (x T \ yT'), hence \T/T'\=p2. Moreover 
P = T ■ Z(P) and so yfT)^=yfP) for i s 2. Now it follows from Statement2 
that T  is of maximal class. Notice also that in case (i) Z(P)^ß <P(P), hence no 
B£SC(P) is cyclic.

Remark 1. It is clear from the proof that in case (iii) there is at most one maxi
mal subgroup of P different from A which may contain elements of order p 
from P \A .
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Statement 8. ß x0P) /'.« either elementary abelian or belongs to SP.
P roof. It is easy to see that nonabelian subgroups of P are members of SP.
Statement 9. I f  Q1(P)=P then P is o f maximal class or o f type (i) in Theorem 2 

with \Z{P)\=p2.
P roof. If Z(P)Pß <P(P) then P is of type (i) and since |Z (r) |= p  and P/T  

is cyclic |Z (P)|=p2 obviously follows.
If Z(P)^<P(P), \P/<P(P)\=p2 by Statement 1 hence Q1(P)=P  implies that 

P  is generated by two elements of order p, therefore \P/P\=p2 and P is of maxi
mal class.

Statement 10. We have \Q1(A )\^pp. I f  \Ql (A)\Spp~2 then P is a regular 
p-group.

Proof. The first claim follows from the fact that P has a faithful representa
tion of degree p in which A is represented by diagonal matrices (see [5] p. 277). 
A s for the second claim we make use of the following sufficient condition for reg
ularity: if P has no normal subgroup N  with exp (N)=p , |yV| ^ p p_1 then P is reg
ular (see [31, p. 332).

Suppose that P contains such a normal subgroup N. Then |JV|=pp_1 and 
NC\A = QfA) has order pp~2. Hence P/Q1(A)=N/Q1(A)XA/Q-i(A) is abelian, 
P'£l2j(A), \P '\^pp~2 whence cl (P)Sp — 1 and P is regular, see [3], p. 332.

Theorem 3. I f  P is regular then we have
(a) cl ( P ) ^ p - l ;
(b) \P/Z(P)\ ^ p » -1 and exp (P/Z(P))=p;
(c) P' is elementary abelian;
(d) Q fP) is either elementary abelian or o f maximal class.
P roof, (a) See [3], p. 330.
(b) Since P/Z{P) is regular and of maximal class generated by two elements 

of order p by Statement 1, it follows that |P /Z(P)l=p1+CI(i7Z(J,))=pc|(i’) ^ p - i  and 
exp (P/Z(P))=p.

(c) Now let then P' = ([x, a\\a£A) and [x, a]p=[x, ap] = 1 since
apeZ(P).

(d) As P is regular exp (Ql (P))=p. Let us suppose that Q.fT) is not abelian. 
Then fl1(/>)^z l and A l^Q fP )  is maximal in Q fP ). Choose an x£ Q fP y \A . 
Then (A,x)=P  and Cni(A)(x)^Z(P ). As Z(P) is cyclic \Cni(A){x)\=p and 
\CS}i(P){x)\=p2. Now (d) follows, see [3], p. 375.

It is easy to see that if a p-group P belongs to SP then all of its nonlinear irre
ducible representations have degree p. As it is well-known (see [4], p. 203) a non
abelian p-group P has this property if and only if either it has an abelian maximal 
subgroup or |P :Z (P )|= p 3.

We shall generalize some of our observations on linear p-groups of degree p 
for such groups. As the following results are trivial when |P: Z(P)\ =p3 we shall 
formulate them in the case when P has an abelian maximal subgroup.
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We introduce the following notation: let SCi(P)=SC(P) and SCk(P) de
notes the set of subgroups of P which are maximal with the property that their 
class is k.

Statement 11. Let P be a finite nonabelian p-group. Let us suppose that there 
exists an abelian maximal subgroup A o f P. Then for every x £ P \Z (P )  CP(x) is 
abelian. Each B£SC(P), B ^ A  has the same order and B=CP(x) for some 
x £ P \Z (P )  and cl (Nr(B))=2. Np(B)£SC2(P) and every H £SC fP ) is the 
normalizer o f some B£SC(P). Generally, i f  K£SCk(P), (k=2, ..., cl (P)— l) then 
NP(K)£SCk+1P and every H£SCk + 1(P) is the normalizer o f some K£SCk(P). 
All members o f SCk{P) (k=  2, cl (P)— 1) have the same order.

P roof. If cl (P)=2  then the claims are trivially true. So we can suppose that 
cl (P)>2. Let B £SC (P ),B a A. Let JV=NP(B). It is easy to see that cl(7V)=2 
and Z (N )—Z(P). Hence N IZ{P )^T£SC (P ) where P=P/Z(P). It is easy to 
see that B/Z(P)~^T  and thus N/Z(P) = T. If N ^ K  and c\{K)=2  then Z(K ) = 
= Z(N ) = Z (P ) and so B<sK which is not the case.

Conversely, let KtSCfiP). Let B£SC(K), B ^K D A . As cl (K)=2, B ^ K .  
It is enough to prove that B£SC(P). Let Bk£SC(P) be such that B ^ B k. As 
K ^ N P(B), K ^ N P(CP(B)). Since for every x £ P \A  CP(x) is abelian, we have 
CP(B)=B1 thus K ^ N P(Bi). We know that Aíi.(ß1)65C2(/,) so K=NP(Bl) and 
thus B = By.

If HdSC2(P) it follows similarly as above that H C \A= ZfP), hence |/ / | =  
= p\Z fP )\, so all subgroups in SC»(P) have equal orders. Now all claims follow 
by induction as if H£SCk+1(P) then H/Z(P)£SCk(P/Z(P)).

REFERENCES

[1] Gorenstein, D., Finite groups, Harper and Row, New York—-London, 1968. MR 38 #229 .
[2] Héthelyi, L., Soft subgroups of p-groups, Ann. Univ. Sei. Budapest. Eötvös Sect. Math. 27

(1984), 81—85. MR  87c: 20044.
[3] H uppert, B., Endliche Gruppen I, Die Grundlehren der mathematischen Wissenschaften, Bd.

134, Springer, Berlin—New York, 1967. MR  37 #302.
[4] Isaacs, I. M., Character theory o f  finite groups. Pure and applied mathematics, no. 69, Academic

Press, New York—London, 1976. MR  57 #417.
[5] Suprunenko, D. A., Gruppii matric, Nauka, Moscow, 1972 (in Russian). M R  51 #13001.

(Received M ay 8, 1985)

FÁ TRA  TÉR 10 
H— 1124 BUDAPEST 
H U N G A R Y





Stadia Scientlarum Mathematicarum Hungarica 23 (1988), 375—380

AN EQUICONVERGENCE THEOREM WITH EXACT ORDER 
FOR FUNCTIONS FROM THE CLASS W?{0, 1)

A. BOGMÉR

1. Let G be an arbitrary open interval on the real line, qdL\oc{G) an arbitrary 
complex function and consider the formal Schrödinger operator Lu= —u"+qu. 
Given a complex number A, the function u: G—C, u = 0  is called an eigenfunction 
of order —1 of the operator L with the eigenvalue A. A function u: G-*-C, w^O 
is called an eigenfunction of order m (m= 0, 1,...) of the operator L with the 
eigenvalue A if u and u' are locally absolutely continuous on G and Lu=u—u* 
almost everywhere on G, where u* is an eigenfunction of order m — 1 of the operator 
L with the same eigenvalue A.

Let q,q£L}(G) arbitrary complex functions. Let (uk) (resp. (űkj) be a Riesz 
basis in L2(G) consisting of eigenfunctions of the operator Lu= — u"+qu (resp. 
Lu= -u"+ 4u) and having the following properties
(1) supofc<°°, (resp. sup ők <  °°),

(2) in case ok >  0 (resp. 6k >  0),
Xkuk- L u k =  uk- k (resp. l kük- L ű k =  ük-j),

where At and ok (resp. l k and ők) denotes the eigenvalue and the order of uk (resp. ük). 
Introduce for any /€ L X(G) the notations

2  </> vk)uk.
I ej-:/»

According to (20) below <?„(/, x) has sense.

^ (/>  x) '■= 2  </. ök)ük,
IW

( x e G ,  n  >  0, Qk : =  Re ^ k k , Qk :=  Re/Ak),

where (vk) (resp. (0t)) is the dual system of (uk) (resp. («*)), i.e., (vk), (i)k)czL2(G) 
and (vk,uj)=(í)k,ű j)= ökij.

Assume (vk) (resp. (Cj) consists of the eigenfunctions of the operator L*v:= 
— v " + q v  (resp. L * v : — — v " + q v )  with eigenvalues ( I j  (resp. (I*)). Denote lk (resp. 
tk) the lenghts of the chain containing uk (resp. uk). Assume vk (resp. i k) has the 
order lk— o k (resp. ík — ök). (For concrete situations this is the case.)

The aim of the present paper is to prove the
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Theorem. Given any compact interval KczG, q, q£D(G), for any f£W k {G) 
we have

(3) sup * ) -* „ ( / .  *)| =5 C(K)\\f\\wxJ~, (p s  1),
x í K  P

i f  q, q£ Lfoc (G) fo r  some / » 1.
Remark 1. It is easy to see that (3) is not refinable.
Remark 2. The proof of (3) is based on the ideas and results of the papers

[3]—[6].
Remark 3. For f£ L \0C(G) I. Joó [6] proved: for any q ,qZ L loc(G) and almost 

every x£G
O f f / ,  X ) - & t l ( f  X )  =  0,(1), (p - ° ° )

holds and hence a generalization of Kolmogorov’s divergence theorem follows, e.g., 
for the classical orthogonal expansions (Jacobi, Laguerre, Hermite, Bessel, etc. 
expansions).

R em ark  4. N. H. Loi [7] generalized I. Joó’s theorem for Riesz summation, 
giving the estimate ö(p~s) in place of 5(1) (it denotes the order of the Riesz summa
tion). (He used the additional assumption |lm |//l„| ^ | — s.)

Remark 5. Our theorem for i=  0, Xn s  0 reduces to that of Theorem 1 of [8].
2. P roof of the Theorem. For brevity, let us denote by pk a square root of 

Xk, and put £>fc:= |Re /zfc|, v&:=|Im pk\. Let K=[a,b]aG, 0 such that 
K r '.= [a—R, b +  R] a  G

w(x, t) :=
sin pt

nt
0

if \t\ <  R 

otherwise,

S « ( f x ) : =
x + R

/
x - R

sin p ( x —y) 
n ( x - y ) ■f(y)dy,

In [6] the equality:

(4)

SKo[g (R )]:= ^- f°g (R )d R .
K ° RJ 2

\ K ( / , x ) - a f (/,z )] =

/ / o o j y  2  « t W  vk(y) + 2  Q O K O ) j  dy

has been proved, further

ck(x) = 2  S Ro [ f  f ( n ,  t)dt^uk_ f x )  +

+ 2 s Ro [ f  ^ f ~ S i { t t k- i ,  Pk,x,  t )d t \+ A kuk(x),

(5)
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and also the estimates

(6) \A\ S  C(/?0)-r r i± 4 rH c h v t /?0,

c?)
x i + î d- w .

(8)

+ l/*-e*l2 

|s j,.[ /  / v  *, o]| -

“  Ct(/?0’ °4)min{^ cT T lw jF + ^ ’ ( i + L l ) 2} X

/ R° \g (01 In— V ^ l  (1 + l^ l ) - 'eVk*° llw*-illtr „
x - R a \ X - S \  I ( . x -R o , x  + R q)

(i = 0, 1, ..., ok; n s  1; /iteC; 0 <  e <  1).

We need the following

L em m a . Let G—(a, b), b—a< q^L1(G), k£C. Then there exists a constant 
c > 0  such that for any eigenfunction ut o f order i o f the operator Lu= —u"+qu 
with eigenvalue k the following estimate holds:

(9) f  u,(t)dt = - ( l  + |lm/X|), ||«<|U, ( a ^ x s b )
l + \]/k\

where ||. \\p:= ||. ||Lp(C) also in below.

P r o o f . Use induction on i. We may suppose for brevity that G = (0 , 1). Use 
the Titchmarsh formula for u in the form

(T)

u fx  + /) + ui(x —0 — 2ut(x) cos JIkt =

= T  i« i(o g « )-» i- i« ) i  dt.
*+t V k

(xdbfgG; — if t >■ 0, + if t <  0). 

Integrating for t from — x  to x  we get ^suppose OäxS-^-j,

+ 2  f  uf t )  dt =
n  0J

= { /  +  / ) i ( g ) ] - l} d id t,
- x  0 M

6
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hence

I f  Ui(t)dt\s  2\Ui(x)\ sin y
+

( 10)
1 0  X

4 ( / + / )-x 0
«M M ®

n

sin f l ( t± \x - £ , \ )
n

d£dt +

1
+ 2

( / +  d l
- Í  0 '  U

— A/j + M 2 +  M 3.
We need 

( 11)
sin z

— 1, (z€C),e | lm z |

(12) |sinz|, |cosz| s  2 |z|, (|Imz| á  1),

(13) | H , ( * ) | e l i “ f f i  ' M s C , ( G ,  11̂ 110(1+  |lm /I|)'-||«i|L, 

(if(x):=min {x, 1 —x}; cf. V. Komornik [4]),

(14) II«,-ill-  ^  C;(G, IMKXH-|yi|)(l +  |Im/X|)||«,B-, 

(»= 1 ,2 , cf. I. Joó [3]).

Obviously,

(15) 0 <  t — |x — £1 ä  d(£) if t£(0,x),

(16) \t + \ x - t \ \ s d ( 0  if f€ (-x ,0 ).

Using (11), (12), and (13) we get

ATj ä  const M - ( l  +  |lm l/I |y - 1
1 1 +  ljOll

Taking into account (11), (12), (13), (15) and (16) we have

M, s  const ii «iii- iml ( i + [im y  - 1 .
1 1 1 + |)/A|

If i= 0 , then ui_1=w_1= 0  and the Lemma is proved for i —0. Now suppose 
it is true for 0, 1, ..., i— 1 and prove it for z, i.e. suppose we know (9) for z —1
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in place of i, and estimate M 3. Integrating by parts we get:

„  _  I f  cos f i t  Xf \ .  /  c o s / I  - ^ |  J C V  = X ,

71/3- | l  7 T ~ J t Mi- l ( 0 ------- 71— * J , ~ , +

4- f  —-y — [n.-xCx + 1) cos /I t  — Kj-tCx — t) cos )/I/] dt —
—x

T û ( q  +
L jU l/A J« -*

+ J  S'n^— [m(-!(x + /)  sin /Äf — Ui-X(x— t) sin ^If] dt
—  X

i 2* _
S  T  /  «I_1(O cosI/A(x +  k - ^ l ) ^

A o'

+ J  /  Mí-iíOcOS^ICx-lx-íl)^

379

+

+
1 X 1 X

—  f  Ui-^x + Odt + —  f  Ut-iix-Odt

= M l + M i + M t + M l

Using (13) and (14) we get

Mi = s i  +  ( 1  +  | l m  f l  I ) '  U « « l - ,  ( 7  =  1 ,  2 ,  3 ,  4 ) .

The Lemma is proved.
Now return to the proof of the Theorem. Applying the Lemma for the func

tions (vk), it is enough to prove the estimates:

(i7) v  y  1 d + v j c i + i ^ i r v - ^2  Z Tk=l i=1 1+  M  i  +  l h - e * l 2
■ l k - i I U W U  =  o ( l ) ,

(18)

X

J  M Cc(R°’ °k) min ( h ( i +w + ’ a + i/hi )2 ) x

*+R° 1 1 M l
/  lííO IIn r-T i^  (l + l/iJ)-'ev̂ »||wt - i|U I|t>J--jj^ j(l +  vlk)i =  o [ - J ,

X — Äq

.1  ch ,*R" w - T + k r 0 + = 0 ( i )  •

6*
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Using (14) and the estimate

(20) sup 2 (M l.
J IM »

<  oo

(cf. I. Joó [6]) the estimates (17), (18), (19) follow by the method of [6]. 
The Theorem is proved.
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SPECIAL CLASSES OF PROJECTIVE 
FINSLER CONNECTION TRANSFORMATIONS

PETRE STAVRE and FRANCISC C. KLEPP

Dedicated to Professor Radu Miron on his 60th birthday

Summary

The parallelism o f  the curves relative to a Finsler connection F r —(N, F, C) and the notion 
o f coparallel Finsler connections are defined by R. Miron [3]. In this paper the notions o f  H-auto
parallel and of K-autoparallel curves relative to a Finsler connection are defined and some classes 
of transformations which preserve the parallelism o f the tangent directions are given. For any of 
these classes o f transformations also the characteristic invariants are established. Finally, the notion 
of the enveloping directions of a curve is given and the transformation group, which preserves 
the enveloping directions is established. The notions and notations of M. Matsumoto [1], [2] and 
R. Miron [3] are used.

§ 1. Preliminaries

Let M  be an «-dimensional differentiable manifold of class C“ and let (x‘, y‘) 
be the canonical coordinates of a point yd T(M). The tangent bundle T(M) is 
a vector bundle having the base M, the canonical projection n, the fibre type R", 
and the structural group GL(n, R). The natural basis of T{M) with respect to

canonical coordinates is and the mapping N: ydT(M )-*Nya T (M )y
is a regular distribution on T(M ) such that

Let
T(M ), = Ny®T(M)y.

Ő
őx '

_d_ Kk d
dx‘ Ni dyk

be a local basis of the «-dimensional local distribution N, where N'k(x, y) are called 
the coefficients of non-linear connection defined by N.

Let Fr=(N, F, C) be a Finsler connection with the coefficients (/V j, Fjk, C ‘Jk), 
we denote by the group of Finsler connection transformations t: (N, F, C )— 
—(ÍV, F, C) and _by_ 3TN the group of Finsler connection transformations 
t: (N, F, C )—(N, F, C), which preserves the non-linear connection N. The trans
formations from 3Tn have the form
( 1. 1) N j  =  Ny, Fjk =  Fjk—Bjk] € ‘Jk = C‘k- D ‘Jk
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where B, D£Z\(M ) are arbitrary Finsler tensor fields. In the following we denote 
this set by Srs — {t\t$_ST\ t = t(0, B, D)} and by |, | and n, || the h- and u-covariant 
derivatives relative to F T = (N , F, C ) and to F t  = (N , F, € ) ,  respectively.

Let C(x'(t)) be a curve on M  and let C(xl(t), y ‘(t)) be a curve on T(M) such 
that n(C)=C. In general, for a Finsler vector u‘(x, y)A0  on n~1(Ua) and for 
an arbitrary Finsler function f(x , y ) ^ 0 we have the Finsler direction fu ‘ defined by 
u‘. The Finsler direction fu ‘ is displaced by parallelism along the curve C relative 
to the curve C, n(C )= C  and relative to the Finsler connection FT=(N, F, C) 
if and only if

( 1.2) V / ¥■ o or
Du{
dt

where co=txkdxk + ßkSyk is an 1-form a>£ A1(T(M)).
This definition given by R. Miron [3] is a direct generalization of the parallel 

displacement from the linear connection theory. If the first relations (1.2) are verified 
for any /^ O  and for any C and £  with n(C)=C, we obtain the Finsler connec
tion transformations, which preserve this condition called by R. Miron [3] coparallel 
connection transformations and given by

(1.3) N j  =  N ‘ ; F jk = F jk + S jQ k ’, C ‘-k = C j k +  S j ( r k

where Qk and crk are arbitrary Finsler covectors.
An extension of this transformations for a changed non-linear connection N  

is given in [10]. We consider

X = X t -?-T + X i- £ T , where X l = ^ ~  and X 1 =  ~  őx‘ dy' dt dt
are Finsler vectors and consider also the direction f X  (v/^O) tangent to the curve
C; n ( € ) —C.

§ 2. //-projective Finsler connection transformations ( t€ ^ { p))

• • dx*
D efinition 2.1. If the Finsler direction f X ‘ with X ' = — ^ 0  and with andt

arbitrary function f(x , y ) ^ 0 is displaced by parallelism along the curve C relative 
to C, where n(C)=C  and relative to the Finsler connection F r—(N ,F ,C ), 
for any tangent direction cpX ((p^O being an arbitrary Finsler function), then C is 
called an //-autoparallel curve relative to the Finsler connection Fr.

This definition is equivalent to the following:
The field of Finsler direction fX ' is parallel on C with respect to £(n(C)=C), 

and relative to the Finsler connection F i =(N, F, C ) if and only if the covariant 
differential of the vector field X ‘ on C satisfies the condition

(2. 1)
D Xl _  co , t _  dxl _
dt dt ’ d t '

where co=xkdxk+cokSyk is an 1-form, co^A1(T(M)).

\/<pX



FINSLER CO NN ECTIO N  TRANSFORM ATIONS 383

D efinition 2.2. If the curve C is an //-autoparallel curve relative to the Finsler 
connection FT=(N, F,C)  and:

(2.2) *  hXl (VA *  0)

then the curve C is called an l//-autoparallel curve relative to the Finsler connec
tion Fr.

Definition 2.3. The Finsler connection transformations td3FN which preserve 
the //-autoparallel curves are called //-projective Finsler connection transformations. 
The set of these transformations will be denoted by ■

Definition 2.4. The Finsler connection transformations t£.TN which preserve 
the 1//-autoparallel curves are called 1 //-projective Finsler connection transforma
tions. The set of these transformations will be denoted by dt~N\'p) ■

Lemma 2.1. The Finsler connection transformation t is a H-projective Finsler 
connection transformation {t^3~Nf p)) i f  and only if  from the relation (2.1) it follows 
the relation

(2.3) -  = f j f x t  f ° r  any v x

and reciprocally from  (2.3) it follows (2.1). 

Lemma 2.2. I f  we denote

(2.4)
then we have

(2.5)

( D X l D X 1'|1 r ‘( D x J
D X ] \

{ dt d t  \1 * 1  dt dt  )

X Ji = (<5|, B[k -  0‘ ß{k)X° X k X" + (3Jh D[k -  ói Dik) X hX ^ .

Lemma 2.3. The Finsler connection transformation t is a FI-projective Finsler 
connection transformation (t£3rNH(pj) i f  and only i f  X Jl=0, \j(pX and t is an 1 H-pro
jective Finsler connection transformation (t£tTNl''p)) i f  and only if: X Ji=0 and

(jtpX; h*0).

Theorem 2.1. The Finsler connection transformations t(0, B, 0)6 o f the form
(1.1), with

(2.6) — B‘sk =  + + D)k — 0,

where ok is an arbitrary Finsler covector, and QlJk is an arbitrary Finsler tensor of 
type (1.2) such that Q)k= — Qlk}, are H-projective Finsler connection transforma
tions (t£-iTN"(p)) and simultaneously 1 H-projective Finsler connection transformations 
(t£^y1»)) and reciprocally.
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P r o o f . If í(0, B, 0) is of the form (1.1) with the conditions (2.6), since D‘jk=0, 
Q'sk +  Q‘ks=0 and T& + Tß = 0, where:

(2.7) T£ = S i-5(51 ,

substituting (2.6) in (2.5) we obtain X]i—Q. If ^ h X \  then we haveat at
c i

— - r - ^ h X 1-, \jmX. Using the Lemma 2.3 it follows that the Finsler connection at
transformations t{0, B, 0) given by (1.1) with (2.6) are //-projective and simulta
neously 1//-projective.

Reciprocally, from the condition t(0, B, 0 )£ ^ ^ p) or /(0, B, 0 ) f ^ ^ p) we 
obtain:

(2.8) (SiBisk- ö ieBík)X °X kX e = 0; \KpX.
We can write:

(2.9)
B‘sk = j  (BU + BL) +  j  (BU -  B[s) =  U^  +  Fj ;

VÁ =  ~ ( B lk - B ‘k,y, U‘k =  Uks\ Ki = - v ki.

From (2.8) and (2.9) we have:
(2.10) (SÍ U‘k -  Si, U/k)X*Xk X h = 0; V<pX.
From Uik— Uks it follows:

(2.11) t/4 =  - f e + < 5 ie , ) ;  ^  =  ( u i =  ^ ^ - ( 1» + i n 

putting Qjk= — Vjk, from (2.9) and (2.11) we have (2.6). It follows that
t(0, B, 0)£3TNH(p) or t(0, 5, 0)€á^v(p) has the form (1.1) with (2.6).

Theorem 2.2. The Finsler connection transformations /(0, 0, £))£ .TNF o f the 
form  (1.1), with
(2.12) B‘k =  0; - D ‘Jk = SiJok
where <rk is an arbitrary Finsler covector, are H-projective Finsler connection trans
formations (t€^jv(p)) and reciprocally. These transformations are simultaneously 
1 H-projective Finsler connection transformations (t£dTffp)). The transformations

r(0, 0, D)6^v1(p) with are o f the form (1.1) with (2.12). The transformations
Sy‘t(0, 0, D) with arbitrary D)k are 1 H-projective, i f  — =0 and reciprocally.

P r o o f . Using the relations (2.12) from XJi given by (2.4) we have

X Ji =  (-S iS l+ S thS{)X*XhCTk^  =  0 ; V<pX.(2.13)
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It follows that the Finsler connection transformations 7(0, 0, D) given by (1.1) 
with (2.12) are //-projective and simultaneously 1//-projective.

Reciprocally, if 7(0, 0, Z ) ) £ w e  have:

( 2 . 1 4 )  X »  =  (S1D‘sk- 5'hD>k) X ' X h =  0 ;  Vq>X.

Consequently,

( 2 . 1 5 )  (5lDisk- 0 i„D{k)X ’X h =  0 ;

It follows immediately the relation (2.12).
The second part of the Theorem is obvious.
Since is an abelian group relative to the composition of the trans

formations, from 1(0, ß, 0)Ĉ jv(P) and 7(0, 0, D)£lTNHip) it follows 7(0,/?,/>) = 
= t(0, 0, D)ot(0,B, 0)€^y%. We have

T h e o r e m  2 . 3 .  The Finsler connection transformations t(0, B, D)£lTN o f the form

( 2 . 1 6 )  Nj = N j )  Fjk — Fjk +  S jQ k +  ö k Q j +  Q j k ', C ‘Jk =  C ‘jk  +  dj o k

where Qk, ok and Q‘Jk are given as above, are IH-projective Finsler connection trans
formations and reciprocally.

It follows that the most general Finsler connection transformations 
7(0, B, £>)€^jv(i) are of the form (2.16) and it coincide with the most general Finsler

Sŷconnection transformations t(0, B, D)£yNH(p) with -^-7*0.
T h e o r e m  2 . 4 .  The Finsler connection transformations (7 , 0 ,  B, D)^iTN o f the form

( 2 . 1 7 )  Nlj = N j-, F jk =  F jk +  S jQ k + 6ikQj +  Q ij k ; € ‘Jk =  C ‘J k - D ‘kJ

Sy‘
where D^dT^(M), are H-projective Finsler connection transformations i f  -^ -= 0 , 

and reciprocally.

Particularly, for Qjk = — bikQJ+öiJQk, we obtain the coparallel Finsler connec
tion transformations [3]:

(2.18) N j =  W j; Fjk =  Fjk + 8 jQ k", C ‘jk =  C ‘k +  ö ‘jO k .

For - ^ - = 0 we obtain: X ^X '-^ -r  (^ ' = -^-1 . But from M=(V{ we have: 
dt d x ' K d t )  1 J■jf ( c i £ ^

~ = ~ x — and -=-t=-7 - j  • Therefore the most general transformations t(0, B, D), 
dt dt ox1 ox'

öy‘
which preserve the //-autoparallel curves C with — =0; 7t(C)=C, are charac

terized by (2.17).
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Let Mx-+Ny(n(y)=x) be an isomorphism, with the property:

(2.19) HyOly 1 Aix

(2.20)

where X H is the horizontal lift of X.
One integral curve of X H is given by:

(2.21)

N ‘ = N l(x(t)y(t))

and it is called on TV-intrinsic curve [3]. His orthogonal projection is called the
autoparallel curve and is given by: =0. If the Finsler direction f X ‘ orf Y ‘
is parallel, then the most general Finsler connection transformations, which preserve 
this property, are given by (2.17).

liT^O (2.22), then C is called an 2//-autoparallel curve, relative to the connection 
F r= (N ,F ,C ).

D efinition 2.6. The Finsler connection transformations t£&~N, which preserve 
the 2//-autoparallel curves are called 2//-projective Finsler connection transforma
tions (te ['„))■

Theorem 2.5. A necessary and sufficient condition for a Finsler connection trans
formation /(0, B, 0)d,FN to be a 2H-projective transformation is that this transforma
tion be o f the form

Proof. From the relations (2.22), (2.5) and (2.23), where — Bijk=öijQk+őikgj + 
+ £2jk; ok is an arbitrary Finsler covector and Q‘jk = — Qkj is an arbitrary Finsler 
tensor, we obtain X Ji=0 for any <p t6 0 from cpX. Therefore t(0, B, 0) is an//-pro
jective Finsler connection transformation {t^^~N(P)) and simultaneously a 2H- 
projective Finsler connection transformation since 5yk=Syk. The proof
of the reciprocal parts is analogously to the proof from Theorem 2.1.

Theorem 2.6. A necessary and sufficient condition for a Finsler connection trans
formation i(0, 0, D)C,Tn to be a 2H-projective transformation is that this transforma
tion be o f the form

where ak is an arbitrary Finsler covector and 9jk= —6kj is an arbitrary Finsler tensor.

dy'
D efinition 2.5. If the curve C is an //-autoparallel curve with: ~ ^ -—h X \

(2.23)

(2.24)
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Proof. Putting
(2.25) — D‘Jk =  őj(Tk + őtki7j + 0jk; B‘jk = 0

in (2.5) we obtain X lj=0 for any cp^O from cpX. Having also 5yk=őyk, from 
Sv^(2.22) it follows — =hX,\ h^O, therefore the transformation (2.24) is 2//-projec- 

tive. Reciprocally, from (2.22), (2.5) and (2.24) we obtain

(2.26) h(SiD,sk- 6 ,eD{k)X ’X 'X k = 0  \/<pX (\/tpXk), h *  0.

We denote
(2.27) D‘sk =  U ‘k +  V slk ,

where Ulsk= ^-(D isk+Dlks) = U'ks-, Fs- =1 (D‘sk-D is)=  -F*‘ . It follows VJkX °X k= 0 
and from (2.26), (2.27) we obtain (2.25).

Since /(0, B, D)—t{0, B, 0)ot(0, 0, D), it follows

Theorem 2.7. A necessary and sufficient condition for a Finsler connection 
transformation t£tTN to be a 2H-projective transformation is that this transforma
tion be o f the form
(2.28) Nj = Nj; Fjk = Fjk + Sj gk + őkg j + Q'Jk; C)k = ClJk + SljGk + ök<Tj + 0jk
where gk, ak are arbitrary Finsler covectors and 0jk= —0kJ; S2iJk= — QkJ are arbitrary 
Finsler tensors.

Consequently, the //-projective Finsler connection transformations, i.e. the 
Finsler connection transformations t£lFN which preserve both the 1//-projective 
curves and the 2//-projective curves, are obtained from (2.28) for
(2.29) 0‘jk = — ök <jj + Sj(jk.

Theorem 2.8. The ^j(p) group o f the H-projective Finsler connection transforma
tions is a subgroup o f the 2H-projective Finsler connection transformations group 
q-2 H

We have in this way also a geometrical interpretation of the Finsler connec
tion transformations considered algebraical in [7]. In [7] are introduced the in
variants :

(2.30) Ijk = Ijk = S‘Sj)

with: Tk = T\k; Sk= S‘ik, where Tjk and S‘Jk are the h- and the u-torsion tensor, re
spectively.

Theorem 2.9 [7]. The most general Finsler connection transformations t^ST^, 
which have the invariants Ijk and Ijk, are given by

(2.31) Nj =  /Vj; F}k =Fjk+5tktxJ- 5 tj0tk- U } k; C‘Jk =  Cj. + ö l ß j - ö j ß . - V j i
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where txk, ßk are arbitrary Finsler covectors and Ujk = Ujj; Vjk — Vkj are arbitrary 
Finsler tensors.

Imposing the condition that the Finsler connection transformations (2.31) pre
serve the 2//-autoparallel curves, it follows

T heorem  2.10. A necessary and sufficient condition for the Finsler connection trans
formations t£ tf/ which preserve the 2H-autoparallel curves to have the invariants 
I  and I  is that t be o f the form

where gk, ok, Uk, Vk are arbitrary Finsler covectors, or that t be of the form

where £k, r\k, cpk, 0k are arbitrary Finsler covectors.
T heorem  2.11. The most general Finsler connection transformations tZ which

where £k, rjk and (pk are arbitrary Finsler covectors.
T heorem  2.12. I f  FT=(N, F ,C ) is a fixed, semi-symmetric Finsler connec

tion transformation (1=0; 1=0), then the transformations (2.33) are the most general
semi-symmetric Finsler connection transformations, which preserve the 2H-auto- 
parallel curves.

T h eorem  2.13. I f  FT=(N, F,C) is a fixed, semi-symmetric Finsler connec
tion transformation ( f  =0, /2=  0), then the transformations (2.34) are the most gen
eral semi-symmetric Finsler connection transformations (1=0, 1=0), which preserve
the H-autoparallel curves.

If we consider in (2.33) ^k=tik, Vk=0k and 1=0, 1=0, it follows 

T h eo rem  2.14. The Finsler connection transformations t<z2TN of the form

with gk, ak arbitrary Finsler covectors and 1=0, 1=0, are the semi-symmetric Finsler
connection transformations, which preserve the 2H-autoparallel curves, and have the 
general invariants of Weyl type [6]:

(2.32)

(2.36)
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where

(2.37)

(2.38)

(2.39)

with
(2.40)

(2.41)

(2.42)

? =  Kljk"+ 7TTT 8>J B n k+ ö‘k ( Ä + Ä -) “  ö‘h f ö + Ä ~ )

f kh = s ‘Jkh+n T T  ö‘jShk + 6k ( Ä  “  F = f )  ~  ö‘h f e + Ä -)

i3J‘kh =  ^ w ,+n + T ^ 7r'": +  <5* ( ^  +  7í^ ) " ,5,,( ^ I  +  ^ Í t )

Kjkh — R‘jkh ~ Cljr R'kh; — K'ikh

^ H  =  {p}kH - c ) r ^ r ) - [ p j hk- c ) r ^ r \ ,  &jk =  t?}kt-, nkh =  &\kh 

Sjk — ‘S’jAi> Skh = S‘ikh ■
R ) kh, S j kh , P ‘jkh are the curvature tensors of the Finsler connection F T =  

= ( N j ,  F jk , C ‘jk ) and R kh are the torsion tensor of the non-linear connection N .  
From [5] we have

T heorem  2.15. The most general Finsler connection transformations t£TTN, which 
have the invariants Jjk, J)k where

(2.43)

(2.44)

íí* =  f J * - ^ r L - ^ - r‘ + f ‘) á5 + íT T  { f r i T’ - F¥

f *  —  c '*~ i í í T  G = T  s ‘ + c * )á' + ÍTP7 Gi=T s ' _ c ' ) s i
are o f the form (2.32) or (2.33).

We have the following geometrical interpretation:

Theorem 2.16. The most general Finsler connection transformations /€ FTN, which 
have the invariants J and J, are the Finsler connection transformations which have the
invariants I  and I and preserve the 2H-autoparallel curves.

A generalization of these Finsler connection transformations for a changed 
non-linear connection N j^ N j^ N j  is given in [9], presented by the Romanian— 
Japanese Colloquium on Finsler Geometry, Ia§i—Brajov, 1984; here is given a 
geometrical interpretation of these transformations.

Since
{jk—{kj = [jk\ { jk -{k j = Pjk

we have
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T heorem  2.17. The most general semi-symmetric Finsler connection transforma
tions which preserve the 2H-autoparallel curves and have the invariants J  and J  are
given by (2.33) with J}k=J£j; Jjk=Jlj-

The invariants Jjk are generalization of the projective connection coefficients 
of Thomas from the theory of symmetric linear connections [11], [12].

§ 3. F-projective Finsler connection transformations (t t^f fp))

ISD efinition 3.1. If the Finsler direction determined by X
displaced by parallelism along the curve C relative to C, n(C)=C, and relative 
to the Finsler connection FT=(N, F ,C ), for any tangent direction q>X (V<pF0), 
then C is called F-autoparallel curve relative to the Finsler connection FT.

From this definition it follows, that a field of Finsler directions f X * is parallel 
on C with respect to C, n(C)=C, and relative to the Finsler connection FT = 
=(N, F, C ) if and only if the covariant differential of the vector field X ‘ on C sat
isfies the condition:

(3.1)
D X ’
dt V < p ;  \ ( p x  (X ‘ jí 0)

where <x=<xkdd‘+ßköyk is a Finsler 1-form on T(M ).
D efinition 3.2. If the curve C is a F-autoparallel curve relative to the Finsler 

connection F T= (N ,F ,C ) and

. dx*
(3.2) ^  hX{; X l = ^ ~ ,  \ / h * Q

then the curve C is called an 1 F-autoparallel curve relative to the Finsler connec
tion Fr.

D efinition 3.3. The Finsler connection transformations t( STN, which preserve 
the F-autoparallel curves are called F-projective Finsler connection transformations. 
The set of these transformations will be denoted by .

D efinition 3.4. The Finsler connection transformations t£lTN which preserve 
the 1 F-autoparallel curves are called 1 F-projective Finsler connection transforma
tions. The set of these transformations will be denoted by ^ n[p) ■

_It follows, that a Finsler connection transformation t: FT=(N, F, C) — FT = 
= (N = N ,F ,C )  is F-projective if we have

DXIrt
dt

DX1
~ d f = ^ X ‘; VtpX(3.3)

since Syk=5yk.
dt
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Lemma 3.1. I f  we denote

(3.4)

then we have

ViJ
D XJ DXJ)
dt dt )

(3.5) VIJ = (8{ Bjk -  8‘ 54) Xs* hX k + (.H* 4  ~  D{k) X ’X*X*.

L emma 3.2. The Finsler connection transformation t is a V-projective Finster 
connection transformation (t(itT fpj) i f  and only i f  V ‘J=0, \/(pX and t is an l V-pro
jective Finsler connection transformation (t^2Fj^pj) i f  and only if ViJ = 0  and 
X ^ h X 1, Mh.

T heorem 3.1. A necessary and sufficient condition that the Finsler connection 
transformation t(0, 0, D )€^n to t>e an 1V-projective Finsler connection transforma
tion is that this transformation to be of the form:

(3.6) Nj =  N j; Fjk = Fjk; C‘jk = C ^  +  f a  + f o j  + f y

where ak is an arbitrary Finsler covector and 0‘jk = — 0kJ is and arbitrary Finsler 
tensor (Q£2Tj(Mj).

Evidently, t(0, 0, D) given by (3.6) is also a F-projective Finsler connection 
transformation. The proof is analogous with the proof for the //-projective Finsler 
connection transformations in § 2.

T heorem 3.2. A necessary and sufficient condition for a Finsler connection trans
formation i(0, 5, 0)£&~N to be an 1 V-projective Finsler connection transformation 
is that this transformation be o f the form

(3.7) N j =  N j; Fjk = F}k + 8iJgk; £ ijk = C ‘Jk

where gk is an arbitrary Finsler covector.
It follows easily that t(0, B, 0) given by (3.7) is also a F-projective Finsler 

connection transformation.
Since is an abelian group relative to the composition of the transformations, 

it follows:

(3.8) /(0, B, D) = t(0, B, 0) • f (0, 0, D) 
and we have

Theorem 3.3. A necessary and sufficient condition for a Finsler connection trans
formation /(0, B, D)ddTN to be an 1 V-projective Finsler connection transformation is 
that this transformation be of the form

(3.9) Nj = N j; Fjk = Fj‘k + 8jQk; C‘Jk =  C ^  +  ̂  + Sloj + e ^

where gk, ok are arbitrary Finsler covectors and 0 ij k = — 9 ikj  is an arbitrary Finsler 
tensor.
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Theorem 3.4. A necessary and sufficient condition for a Finsler connection trans
formation t(0, B, D)£3Tn to be an 1 V-projective Finsler connection transformation if 
X ‘=Q, is that this transformation be of the form
(3.10) N) = N)\ F)k — Fjk — Bjk; C‘Jk =  C‘k + 8‘ok + Siaj + 0‘k
where ok is an arbitrary Finsler covector, and B)k, 0‘jk are arbitrary Finsler tensors, 
with Öijk = -Ö ‘kj.

For X ‘=0 we have: X '= ^ - - ^ - ;  X ‘—^ -  and the transformation (3.10)
dt dy‘ dt ’

preserve this property.
Let lv: Mx^ T ( M f-  n (y)= x  be the canonical isomorphism. It follows that 

the vertical lift of Y= y‘ is of the form

(3.11) X ” =  lv(Y) = y ‘ J)_
dy‘

One integral curve of X v is given by [3]:

i =  1, n.

(3.12)
Consequently

(3.13)

dyl
~dt =  y ‘

X 1 =  0; dy'
~df *  0.

If n(C)=C  is a F-autoparallel curve, it follows easily that the transformation 
(3.10) preserve this curve.

D ef in it io n  3.5. A F-autoparallel curve C with

(3.14) X t = hXi (h j i  0)
is called a 2 F-autoparallel curve, relative to the connection F r =(N, F, C ).

D e fin itio n  3.6. The Finsler connection transformations t£$~N, which preserve 
the 2 F-autoparallel curves are called 2 F-projective Finsler connection transforma
tions. The set of these transformations will be denoted by

It follows

Theorem 3.5. The Finsler connection transformations t{0, 0, D) given by (3.6) 
are 2V-projective Finsler connection transformations and reciprocally.

Theorem 3.6. The Finsler connection transformations t{0, B, 0) given by (3.7) 
are 2V-projective Finsler connection transformations and reciprocally.

We have also

Theorem 3.7. A necessary and sufficient condition for a Finsler connection trans
formation 1(0, B, 0) to be a 2 V-projective Finsler connection transformation is that 
this transformation be o f the form  (2.28).
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T heorem  3 .8 . The Finster connection transformations t^2TN which preserve the 
1 V-autoparallel curves, preserve also the 2 V-autoparallel curves.

The set is a subgroup of ^ ° p), any is obtained from
considering the particular case

(3.15) +

§4. 1-projective (t^£TN\ p)) and 2-projcctive (t£ ̂ 2(p))
Finsler connection transformations

D efin itio n  4 .1 . The Finsler connection transformations t£&~N which preserve 
both the 1//-autoparallel curves and the 1 F-autoparallel curves are called 1-projec- 
tive Finsler connection transformations. We denote the set of these transformations 
with srN\ p).

It follows immediately
T heorem  4 .1 . The coparallel Finster connection transformations are the most gát

ér al l-projective Finsler connection transformations.
T heorem  4.2. The Finsler connection transformations

(4.1) N j= N j- Fjk = F jk + SjQk + ö‘kQj‘, C ‘j k = C ij k +  őlJek + őik<Tj

are \-projective Finster connection transformations i f  the Finsler covectors Qk and ok 
have the properties
(4.2) QkX k = 0; okX k =  0.

D efinition  4.2. The tangent direction cpX (V^^O) is displaced by parallelism 
along the curve C relative to C, n(C )—C, and relative to the Finsler connection 
FT=(N, F, C), if the Finsler directions determined by X ‘ and X 1 have this property. 
In this case, the curve C is called proper 1-autoparallel curve relative to the con
nection FT.

D efin itio n  4.3. The Finsler connection transformations t£ ST̂  which preserve 
the proper 1-autoparallel curves are called proper l-projective Finsler connection 
transformations.

T heorem  4.3. The l-projective Finsler connection transformations are proper 
l-projective Finsler connection transformations.

D efin itio n  4.4. A proper 1-autoparallel curve with X ^ h X ^ h ^ O )  is called 
a proper 2-autoparallel curve.

D efin itio n  4.5. The Finsler connection transformations t^2TN which preserve 
the proper 2-autoparallel curves are called proper 2-projective Finsler connection 
transformations. This set will be denoted by ^ y (p).

It follows easily

7
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T h e o r e m  4 .4 . The 2H-autoparaIlel curves and the 2V-autoparallel curves are 
proper 2-autoparallel curves.

T h e o r e m  4 .5 . The most general proper 2-projective Finsler connection transforma
tions have the form:
( 4 .3 ) N )  —  N j ’,  F jk —  F j k +  S ljQ k +  ö lk Q j +  Q jk ', C j k —  C j k +  Sj<Tk +  Őlk O j +  Qjk .

T h e o r e m  4 .6 . The most general proper 2-projective Finsler connection transforma
tions (i€^v(P)) which have the invariants /, /, are the most general Finsler connec
tion transformations t£tFN, which have the invariants J, J. Their set is given by (2 .3 3 ) .

§ 5. Enveloping directions

Let Z = (fU ‘) a set of Finsler directions determined by the Finsler vector set 
U‘(t) along the curve C relative to C with n(C)=C.

D e f in it io n  5.1. The set of Finsler directions X is an //-enveloping Finsler
dx' DU‘direction set if between X l= -^ - , U' exists a linear dependence relation.

From the Definition 5.1 we have equivalently:

(5.1) DUVUJdxki = 0.
D e f in it io n  5.2. A Finsler connection transformation t£SFN which preserve 

the //-enveloping Finsler directions is called //-enveloping Finsler connection trans
formation. The set of these transformations will be denoted by STNH.

By the Definition 5.2, the relation (5.1) is equivalent to

(5.2) DUl'U}dxki = 0; ^t^STmi 
and it follows easily

Lemma 5.1. For a Finsler connection transformation tf.TN we have
(5.3) DUl‘UJdxk̂  = DUiiUj dxki-B\!sUJdxkiUrdxs-D\!sUJdxkW ry*
(5.4) BUl'U}dxki = DU^U1 dxki -  B%5{<5*] Ur Uhdxsdxp-  Dlj5{Skp] Ur Uhdxp őys.

T heo rem  5.1. A necessary and sufficient condition for a Finsler connection trans
formation t(0, 0, Djddff o f the form
(5.5) N) = N f  Fjk = Fjk; C)„ = C‘Jk+ D)k, D)k^ \ M )
to be an H-enveloping Finsler transformation is that this transformation be o f the form
(5.6) Nj = N}; Fjk = Fjk; Cjk = C)k +VjOk 
where ok is an arbitrary Finsler covector.

Proof. From (5.1) and (5.6) it follows:
DUliUJdxkl = S W f U '  Uh dxp cr5 6ys = 0.(5 .7 )



FINSLER CONNECTION TRANSFORMATIONS 39 5

Consequently, (5.6) is an //-enveloping Finsler transformation. Reciprocally: Tf 
/(0, 0, D) is an //-enveloping Finsler transformation, then from (5.1), (5.2), (5.3) 
and (5.5) it follows
(5.8) D\Í Si <5*1 U' Uh dxp Sys = 0.
Writing detailed and contracting for j= h  and k=p, we obtain (5.6).

T heorem  5.2. A necessary and sufficient condition for a Finsler connection trans
formation t( 0,B ,0)£.yN o f the form
(5.9) Nj = Nj; Fjk =  Fjk + Bjk; Cjk = Cjk; BjkZZ\{M)
to be an H-enveloping Finsler transformation is that this transformation be o f the form

(5.10) Nj =  Nj; Fjk = Fjk + SiJotk + S,kßJ; C‘k = Cjk 
where a.k, ßk are arbitrary Finsler covectors.

Proof. From (5.1), (5.3) and (5.10) it follows:
(5.11) DUl'UJ dxk̂  = asSiri8iSk̂U rUhdxpdxs+ ßrS[iSJhSkpW rU"dxpdxs.
Cancelling, we obtain (5.2), consequently (5.10) is an //-enveloping Finsler connec
tion transformation. Reciprocally: from (5.1), (5.2), (5.3) and (5.8) it follows

(5.12) BlrsH&kp UrUhdxpdxs =  0.
Making equal to zero the coefficients of this relations, we obtain

(5.13) B[[ SI <5*1 + BgSi <5*1 + B" S{ <5*1 +  B\}p S{<5*1 =  0 
and contracting for j —h, k=p  we obtain (5.10).

Using the relation (3.8) we have

T heorem  5.3. A necessary and sufficient condition for a Finsler connection trans
formation t£&~N to be an H-enveloping Finsler connection transformation (t£&~NH) is 
that t be o f the form
(5.14) Nj =  Nj; Fjk =  Fjk + Sj ak + Sk ß j ; Cjk =  Cjk +  S‘jOk

where ak, ßk, ok are arbitrary Finsler covectors.
T heorem  5.4. The set 3FNH is a subgroup o f the IH-projective Finsler connection 

transformation group ~̂n(P) which is obtained for
(5.15) Qjk =  SjU.-SjVj
and characterized by the invariance o f I, I (and o f J, J), respectively.

D efinition  5.3. The set I  of Finsler directions is a set of F-envelcping Finsler 
.. DU‘direction if among X !, , U‘ exists a linear dependence relation.

From the Definition 5.3, we have equivalently
(5.16) DUliUJ SykJ = 0.

7*
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D e f i n i t i o n  5.4. AFinsler connection transformation tf_.TN which preserve the 
set of F-enveloping Finsler directions is called F-enveloping Finsler connection 
transformation. The set of these transformations will be denoted by 3FNV.

From (5.16) it follows equivalently:

(5.17) BUi!UJ2yki = 0 f t ^ NV.
But for td£TN we have 5yk=5yk. It follows easily

L e m m a  5.2. For a Finsler connection transformation t£ .TN we have
(5.18) BU iW őjP  = DUL‘UJ Syk] -  Bg 5Jh 5kJ  V  Uh dx*dxp -  0{ 8^ Ur Uh ö y  by”.

T h e o r e m  5.5. A necessary and sufficient condition for a Finsler connection trans
formation /(0, B, 0)£.9~n to be a V-enveloping Finsler connection transformation 
(tddfw ) Is that t be o f the form
(5.19) N) =  Nj; Fjk = Fjk + őjQk; C]k = C)k 
where Qk is an arbitrary Finsler covector.

P r o o f . From (5.16), (5.17), and (5.19) it follows

(5.20) DUliUJ Uhdx*Syp = 0.
Reciprocally, from (5.16), (5.17), (5.18) and t{0, B,  0) given by (5.9) it follows:

(5.21) B$‘5JhSk] Ur Uh dxsöyp = 0.
Contracting for j= h, k —p  the calculus lead to (5.19).

Theorem 5.6. Any Finsler connection transformation t(0, 0, D)£iFN is a V-en
veloping Finsler connection transformation {t^S~NV) i f  and only i f  it has the form

Ü) = N f  F)k =  Fjk,
(5.22)

C'jk +  b‘j Uk + Sk Vj
where Uk, Vk are arbitrary Finsler covectors.

P r o o f . From (5.16), (5.18) and (5.22) it follows:

(5.23) DUHVSQ = - ő íriőJhőkJ U rUhőy’’Usöys- ő íriöí5kl?UhUrVröysöyp = 0.
consequently the transformation t(0, 0, D) given by (5.22) is a F-enveloping Finsler 
connection transformation. Reciprocally, from (5.16), (5.17), (5.18) and (5.5) it 
follows:
(5.24) D lrisö iö fU rUhSysSy’’ = 0.
Making equal to zero the coefficients of this relation, we obtain:
(5.25) 0 K W  +  D ß W  +  D i W + 2 > i ‘ W  =  0.

Contracting for j= h, k= p, the calculus lead to (5.22).
Since is an abelian group relative to the composition of the transformations, 

it follows t(0, B, D)—t(0, B, 0)oi(0, 0, D)£3FN and we have
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T heorem 5.7. A necessary and sufficient condition for a Finsler connection trans
formation t^9~N to be a V-enveloping Finsler connection transformation (t$.9’NV') 
is that t be o f the form

(5.26) Wj =  N lj\ T)k = F)k + 5ljQk - C‘Jk =  C ^ + ő'jU. + ölVj

where ok, Uk, Vk are arbitrary Finsler covectors.
Theorem 5.8. The set 2TNV is a subgroup o f the 1 V-projective Finsler connection 

transformation group 9~Nf p), characterized by the invariance of I, I and J, J, respec
tively.

D efinition 5.5. A set I  o f Finsler directions which is both H-enveloping and 
V-enveloping is called a I-enveloping Finsler directions set.

Definition 5.6. A Finsler connection transformation t£9~N, which preserve 
the set of I-envelopi.ig Finsler directions is called a ^-enveloping Finsler connec
tion transformation. The group of these transformations is denoted by 3TNl.

From Definition 5.5 it follows:

(5.27) dxk + bDUk + cUk =  0 (c =  k d t, b 0, c F* 0)

(5.28) öyk + b 'D U k + c 'U k =  0 (c =  k 'd t ,  V  *  0, c' #  0)

or

(5.29) b' dxk —bdyk + (b 'c--b c ')U k -- 0

(5.30) U ^ d x ^ y ^  ■= 0.

Since c and c' are arbitrary and, in general, b' dxk—böyk A 0 it follows

(5.31) Q =  b 'c - b c '*  0.

From (5.27) and (5.28) we have

(5.32) c'dx* — cőyk + (be' — b' c)DUk = 0 ,  q 0, c' 0, c 0. 

Consequently,

(5.33) DlAl dxJöyki = 0.

We observe that the pair of relations (5.27)—(5.28), (5.31)—(5.33) and (5.30)—
(5.33) are equivalent. Consequently, the set I  is a set of T-enveloping Finsler direc
tions, if I  is defined by U‘ which satisfies the relations (5.30) and (5.33). This can 
be proved by calculus of DUli UJdxk]—0, DUl‘UJ SykJ=0  using also (5.29).

Since dyk= Syk, the condition (5.30) is invariant by a transformation t^9~N, 
the conditions (5.33) are necessary and

(5.34) DIA1 dx1 őyki =  0.
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Lemma 5.3. For a Finsler connection transformation t£.9h and a set o f Finster 
directions I  determined by U‘ which satisfies (5.29) we have

DUl‘dxJ5yki =  DUVUJöyki-(p B lisöíőkJdxrdxsdJ,őyp-

(5'35) -tD£<Pksp s? r6?Sypdx*
where cp^O and are arbitrary Finsler functions.

Theorem 5.9. A necessary and sufficient condition for a Finsler connection trans
formation t£.TN to be a I-enveloping Finsler connection transformation (/£3FNf) 
is that t be o f the form

N lj  =  N j

(5.36) F‘Jk = F‘jk + 5) y.k + 5[ ßj

Cjk — Cjk + ój(Tk + ő'k6j

where ock, ßk, ak, 0k are arbitrary Finsler covectors.
Proof. Let t f ^ N be a Finsler connection transformation of the form (5.36). 

From (5.30), (5.35) and (5.36) it follows (5.34), consequently tf,STN1. Reciprocally, 
from (5.30), (5.34), and (5.35) we obtain for cp^O, if/AO the relation (5.36).

The set SFNH and the set ,TNV are evidently subgroups of the set 3TU1.

Theorem 5.10. The I-enveloping Finsler connection transformations td3FNl are 
the most general Finsler connection transformations t£tFN, which have the invariants 
J  and J  or are the most general Finsler connection transformations tddf,, which
have the invariants /, I  and are also 2-projective transformations.

. dx' . DU1In the Definition 5.1 is imposed the condition that among X '= ——, Ul, —-—dt dt
be a linear dependence relation for any curves C and C with n(C)=C. If we 
consider this condition only for the curves C, C, n(C)=C for which we have 
X '= h X \ hA-0, X ‘A 0, then these curves will be called I-curves. It follows

Theorem 5.11. The most general Finsler connection transformations which pre
serve the H-enveloping directions to a X-curve, are given by (5.36), and reciprocally.

Proof. From (5.1), (5.4), (5.36) and (5.35) it follows
D £/[i UJ dxkl =  ökJ Ur Uh dxp dxs +  ßr <51‘ ö{ ökJ  Ur U" dxp dxs +

(5.38)
+ 0^51 <5p] Ur Uh dxp (7S <5ys + höY őJh őkJ  Ur Uh 0S dxs dxp = 0.

The proof of the reciprocal part is analogous to the proofs used in the above 
paragraphes.

We observe that these transformations are also F-enveloping Finsler connec
tion transformations for a T-curve and have the invariants /, /, J, J.1 2  1 2
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TORUSFLÄCHEN DES GALILEISCHEN RAUMES G3

OTTO RÖSCHEL

1. Einleitung

Werden im reellen dreidimensionalen projektiven Raum P^R )1 — in dem wir 
Punkte wie üblich durch reelle projektive Koordinaten xo:x1:x2:^3?i 0:0:0:0 be
schreiben — eine reelle Ebene c a ( x 0 = 0 )  und eine reelle Gerade f{x 0= xl =0) als 
absolute Ebene beziehungsweise absolute Gerade angesprochen, so bilden alle a> und 
/  einzeln festlassenden Projektivitäten des P3(R), die mit der auf /  operierenden 
elliptischen Involution
(1) J: (0:0:x2:x3) — (0:0:x3:—x2)
kommutieren, eine achtgliedrige Gruppe

(a, b, c, d, e, q>, q£ R, a ^ O ) , die gemäß [9] Ähnlichkeitsgruppe eines galileischen 
Raumes G3 genannt wird. Die Geometrie dieser Ähnlichkeitsgruppe war Gegen
stand der Untersuchungen von P. T. Eyxapaeß [1] und A. H. CnpoTa [2]. Die in
(2) durch cc= q  = 1 ausgezeichnete sechsgliedrige Untergruppe, die in den üblichen 
affinen Koordinaten 1 :x:y:z= x0:x1:x2:x3 (x0^ 0) durch

beschrieben wird, wurde in [9] vom Autor als Bewegungsgruppe B6 des galileischen 
Raumes G3 bezeichnet und liegt den Untersuchungen in [9] zugrunde.

1 Fallweise werden wir auch die komplexe Erweiterung P 3(C) benützen.

1980 Mathematics Subject Classification (1985 Revision). Primary 53A35. 
Key words and phrases. Torus in 3-dimensional Cayley—Klein spaces.

(2)

x'o = x0 
x[ — ax0 + axj

x2 =  bx0 + cXi + q cos rpx2 +  Q sin (px3 

x's — dx0 +  <?Xi — q sin cpx2 +  Q cos <px3

(3)
x' =  a+ x

y’ =  b + cx+ y  cos cp +  z  sin <p 

z’ =  d + ex—y sin (p + z cos (p

Akadémiai Kiadó, Budapest
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2. Kreise und Drehungen des galileischen Raumes G3

In [9] wurden Kreise des G3 ausführlich untersucht: Es existieren zwei ver
schiedene Typen von Kreisen. Die einen liegen in Ebenen, die die absolute Gerade/  
enthalten, die anderen nicht. Im ersten Fall schneiden die Kreise die absolute Gerade 
/ i n  den konjugiert komplexen Doppelpunkten (0:0: l :± i )  der elliptischen Involu
tion / ( l ) ,  im zweiten Fall handelt es sich um Parabeln, deren Fernpunkt im Schnitt
punkt der Trägerebene mit der absoluten Geraden /  liegt. Kreise des ersten Typs 
wurden in [9] als euklidische Kreise, solche des zweiten Typs als isotrope Kreise 
bezeichnet. Analog existieren im G3 nach [9, S. 15f.] zwei verschiedene Klassen von 
Drehungen.

(A) Euklidische Drehungen: Sie werden in der Normalform durch
x(t) =  x„

(4) y(t) — Jo cos * -l-̂ o sin t i£[0,2n]
z(t) =  —y0 sin t +z0 cos t

beschrieben und besitzen die x-Achse als Fixpunktgerade, die wir im folgenden als 
Drehachse a bezeichnen; die Bahnkurven sind euklidische Kreise in Ebenen des 
Büschels um die absolute Gerade / .  Diese Drehungen können auch als Drehungen 
in einem geeignet gewählten euklidischen Raum aufgefaßt werden.

(B) Isotrope Drehungen: Sie werden in der Normalform durch
x(i) = x0 + bt

(5) y { t )  — y o  + x ^ t  + b-y- (b£R/{0}, t£RU{°°}) 

z(t) =  z0
beschrieben. Die Bahnkurven sind isotrope Kreise mit dem isotropen Radius b2\ 
die absolute Gerade /  bleibt punktweise fest. Als Meridianschnitte von Drehflächen 
des Typs B sind damit die Schnitte mit Ebenen des Büschels um/  anzusehen. Diese 
isotropen Drehungen lassen sich als Drehungen in einem geeignet gewählten Flaggen
raum 73(2) auffassen und wurden in diesem Zusammenhang bereits von H. Sachs [10] 
angegeben. Die entstehenden Drehflächen lassen sich nach [10] auch durch Schie
bung der Meridiankurven längs der kongruenten isotropen Drehkreise erzeugen.

3. Normaiformen der Torusflächen des G3

Analog einer möglichen euklidischen Definition wollen wir jene Drehflächen 
des G3 als Torusflächen ansprechen, deren Meridiankurven Kreise sind. Wir werden 
dabei die beiden Drehungstypen getrennt untersuchen und gelangen so zu zwei 
verschiedenen Klassen von Torusflächen:

2 Dieser Radius ist im Sinne der ebenen isotropen Geometrie (vgl. K. Strubecker [11]) zu 
verstehen. D ie Bewegungsgruppe ß„ (3) induziert nämlich in jeder /  nicht enthaltenden Ebene eine 
ebene isotrope Geometrie mit der Ferngeraden und dem Schnittpunkt der Ebene mit /  als Absolut- 
gebüde.
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(A) Die Meridiankurve m ist ein isotroper Kreis, der oBdA durch (v, 2pv2 — A, 0) 
(»CRU {°°}, p£ R/{0}, A £ R) beschrieben wird. Bei der Drehung (4) überstreicht m 
die Torusfläche vom Typ A <PA

lautet. Die Dreh- und Meridiankreise bilden nach [9] die isotropen Flächenkurven 
und die Krümmungslinien der Fläche <I>A. <PA ist eine algebraische Fläche vierter 
Ordnung, deren Doppelkurve aus der doppelt zu zählenden absoluten Geraden /  
besteht. Die absoluten Punkte (0 :0 :1 :+ /) sind uniplanare Knoten von <PA\ die 
entsprechenden Tangentialebenen werden durch y2+z2=0 beschrieben. Je nach 
dem Schnitt der Meridiankurve m mit der Drehachse a stellen sich drei Typen von 
Torusflächen $ A ein:

(Al) — >0:«?^ werde als Spindeltorus bezeichnet; es existieren zwei reelle 

konische Knoten auf der Drehachse.
(A2) A=0:<Pa werde als Dorntorus bezeichnet; die beiden konischen Knoten 

sind zusammengefallen.
A

(A3) — =0: <I>A werde als Ringtorus bezeichnet; es existieren zwei konjugiert 
P

komplexe konische Knoten.
Keine Fläche dieser drei Typen besitzt Plattkegelschnitte; die einzigen auf <PÄ 

gelegenen Geraden sind neben f  die Schnittgeraden von <PA mit den beiden kon
jugiert komplexen Ebenen x2+y2=0. Diese Geraden verbinden die absoluten 
Punkte (0:0:1: + /) mit den konischen Knoten (2p :± f A:0:0) auf der Dreh
achse a. Wir fassen zusammen in

S a t z  1. Wird ein isotroper Kreis m des galileischen Raumes G3 einer euklidischen 
Drehung des G3 unterworfen, deren Drehachse a in derselben Ebene wie m liegt, so 
entsteht eine algebraische Fläche vierter Ordnung <PA, die als Torusfläche vom Typ A 
im G3 anzusprechen ist. <PA trägt im algebraischen Sinn zwei konische Knoten auf 
der Drehachse und zwei konjugiert komplexe uniplanare Knoten in den absoluten 
Punkten (0:0:1:+ /). Neben der absoluten Geraden f  sind die einzigen auf <PA gelegenen 
Geraden die paarweise konjugiert komplexen Verbindungsgeraden der konischen Kno
ten mit den absoluten Punkten (0:0:1: +  /).

(B) Die Meridiankurve m ist ein euklidischer Kreis, der oBdA durch 
(0, Rcos u, R sinn) (z/€[0,2n], /?£R/{0}) beschrieben werden kann, m beschreibt 
bei der isotropen Drehung (5) die Fläche <PB

(6)

deren Gleichung

(7)

(t>, (2pv2 — A)cost, —(2pv2 — A)sint),

y2 + z2 =  {2 p x2 — Ä f

cos u + b -y , iisinu(8)
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die durch die algebraische Gleichung

(9) ( H t )’ - * - 2*

erfaßt wird. Es handelt sich dabei wegen R^O  um eine Fläche vierter Ordnung, 
deren Doppelkurve aus der doppelt zu zählenden absoluten Geraden /  besteht. 
Die absoluten Punkte (0 :0 :1 :± /) sind konische Knoten der Fläche, während der 
Fernpunkt ^(0:0:1:0) der isotropen Drehkreise als Zwickpunkt aufzufassen ist. 
<PB ist nach obigem auch durch Schiebung von m längs der isotropen Drehkreise 
erzeugbar und besitzt daher zwei isotrope Plattkreisepx und p2 in den Ebenen z= ± R ,  
die in Abbildung 1 eingetragen sind. Die Abbildung 1 zeigt <PB in einem galileischen 
Normalriß in die Ebene x= 0 . Wieder sind die isotropen Drehkreise und die Meri
diankreise Krümmungslinien bzw. isotrope Flächenkurven von <PB (vgl. [9]).

Abb. 1

Wir notieren den
Sa t z  2. Wird ein euklidischer Kreis m des galileischen Raumes G3 einer isotro

pen Drehung des G3 unterworfen, so entsteht eine algebraische Fläche vierter Ordnung 
<PB, die als Torusfläche vom Typ B des G3 anzusprechen ist. <PB (9) besitzt konische 
Knoten in den absoluten Punkten (0 :0 :l:± i)  und einen Zwickpunkt in (0:0:1:0) 
sowie zwei isotrope Platt kreise und läßt sich auch als Schieb fläche erzeugen.
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4. Villarceau-Kreise auf dem Ringtorus des G3

Analog zu den auf dem euklidischen Ringtorus existierenden Villarceau-Kreisen 
(vgl. [14, S. 154]) gibt es auch auf den Ringtorusflächen <PA (pA< 0) im G3 eine 
solche reelle Kreisschar: Die Ebenen

(10) y  — ± B x  mit B = }/—8 Ap

sind wegen Ap< 0 reelle Doppeltangentialebenen des Ringtorus (7). Sie schneiden 
den Torus nach

(11) y  = ± B x, z = ± [ - % j - A) ’

der Schnitt zerfällt damit in je ein Paar isotroper Kreise, die wir als Villarceau- 
Kreise des galileischen Ringtorus <PA bezeichnen.3 Durch Drehung um die Achse 
a entsteht daraus eine stetige Schar solcher Kreise. Wir fassen zusammen im

Sa t z  3. Ringtorusflächen des galileischen Raumes G3 werden von ihren Doppel
tangentialebenen nach isotropen Kreispaaren geschnitten; diese Ebenen umhüllen einen 
Drehkegel mit der Torusachse als Achse.

Einer der in (11) angegebenen Villarceau-Kreise k  kann in (6) durch cos t —

=  ■■■ —-  bzw. sin t=^r-T——r  erfaßt werden; wir erhalten damit als Para-2pv2 — A 2pvl — A
meterdarstellung dieses isotropen Kreises

(12) (v, B v ,-2 p v2- A )  (p£ R U H ) .

Die Villarceau-Kreise des euklidischen Ringtorus schneiden die Meridiankreise unter 
festem Winkel (vgl. [14, S. 155]). Wir zeigen, daß dies auch auf dem galileischen 
Ringtorus gilt — die galileischen Villarceau-Kreise sind somit galileische Loxodro- 
menkreise der isotropen Meridiankreise: In den Punkten des Villarceau-Kreises (12)
besitzen die Meridiankreise dieTangentenvektoren ^l,4pu^ ^ t>— , —4pv 1

die Tangenten an den isotropen Kreis k  (12) haben die Richtungsvektoren 
(1,5, —4pv). Der Winkel zwischen diesen Vektoren kann im galileischen Raum 
G3 nach [9] als Abstand der zugehörigen Fernpunkte gemessen werden. Dieser Ab
stand ist ein euklidischer Abstand, da von der Bewegungsgruppe Be in der Fernebene 
genau jene ebene euklidische Metrik induziert wird, für die /  die Ferngerade und 
7(1) die Rechtwinkelinvolution ist. Mit [9, S. 9] erhalten wir für unseren Winkel

(13) A = B = konst (Vf6RU{°°}).

Wir haben damit den

3 Für den Spindeltorus fallen diese Doppeltangentialebenen und auch die Villarceau-Kreise 
komplex aus; für den Dorntorus werden die Ebenen zu den Meridianebenen, die Kreise zu den 
Meridiankreisen. Es sei auch bemerkt, daß Torusflächen vom Typ B (9) keine derartige reelle stetige 
Kreisschar tragen.
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Sa t z  4. Die isotropen Villarceau-Kreise der Ringtorusflächen des galileischen 
Raumes G3 schneiden die isotropen Meridiankreise unter konstantem galileischen 
Winkel und sind damit als Loxodromenkreise des galileischen Ringtorus anzusprechen.

Längs k (12) besitzt der Ringtorus Flächennormalen (vgl. [9, S. 97]) mit dem 
Richtungsvektor
(14) n =  (0, Bv, -(2pv* + A)); 
die Flächennormalen erfüllen die Regelfläche T
(15) (v, Bv(l + X), ~{2pv2 + A)(\ + Xj) (A€RU{oo}) 
mit der algebraischen Gleichung

(16) Bxz+y(2px2 + A) = 0.

T  ist eine Regelfläche dritten Grades mit der absoluten Geraden /  als Doppelgerade 
und der Torusachse a (x-Achse) als einfache Leitgerade; das konjugiert komplexe 
Ebenenpaar

(17) y2 + z2 — 0
bildet die beiden W berührenden Torsalebenen. *P ist daher nach [4, S. 176] eine 
Regelfläche dritten Grades II. Typs. Im G3 liegt ein gerades Konoid vor, das nach 
[9, S. 72] dem Typ C zuzuordnen ist. Wir haben damit den4

4 Längs eines Villarceau’schen Kreises eines euklidischen Torus stellt sich bekanntlich eine 
Regelfläche 4. Grades VII. Sturmscher Art als Normalenfläche ein (vgl. [4, S. 283 f.]).
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Satz 5. Die von den Flächennormalen in den Punkten eines Villarceausehen 
Kreises des galileischen Ringtorus gebildete Regelfläche ¥  ist von drittem Grad und II. 
Typ; im galileischen Raum G3 liegt ein gerades Konoid vor, das dem Typ C zuzuordnen 
ist. '/' besitzt die absolute Gerade f  als Doppelgerade und die Drehachse des Torus 
als einfache Leitgerade.

In Abbildung 2 ist ein Ringtorus mit einem Villarceau’schen Kreis in einer 
galileischen normalen Axonometrie mit der Bildebene x=0  dargestellt.

5. Loxodromen auf den Torusflächen vom Typ A

Jene Flächenkurven v=v{t) (y^C^O, 2n]) der Torusflächen (6), die sämtliche 
Meridiankreise (v= konst.) unter konstantem galileischen Winkel a schneiden, bezeich
nen wir als Loxodromen.5 * Sie sind mit [9, S. 9] durch

(18) dv 2pv2 — A
dt a a€R —{0}

gekennzeichnet. Je nach Typ der Torusfläche ergeben sich die folgenden Lösungs
kurven der Differentialgleichung (18):

(19)

v(t) = -
i - w ' anh

a
2p(t + K)

»(0 =  ]/ 2p ,a" (

für den Dorntorus und

K  stellt dabei eine reelle Integrationskonstante dar. Für a = ^—%Ap erhalten wir 
auf dem Ringtorus die in Abschnitt 4 untersuchten Loxodromenkreise.8

Die Tangenten aller zu einem festen Winkel a£R — {0} gehörenden Torus- 
loxodromen erfüllen die Geradenkongruenz S  mit der Parameterdarstellung

(20) x(t,u, v) = (v + u, \2pv2 — A] cos t + u[4pv cos t —a sin i],

— [2pv2 — A] sin / — u [4pv sin t + a cos i]).

Diese Kongruenz kann in eine einparametrige Schar kongruenter Regelscharen 
zweiten Grades zerlegt werden, die von den längs den Meridianen auftretenden 
Loxodromentangenten erfüllt werden. Ihre Trägerflächen sind hyperbolische Para- 
boloide; so stellt sich für t=  0 das hyperbolische Paraboloid mit der Gleichung

(21) F:= 2p (a2x2 -  z2) - a 2(y + A) = 0

5 Für den euklidischen Raum gibt W. Wunderlich in [13, S. 313 f.] die analogen Resultate an.
“ Für K = —n stellt sich der Loxodromenkreis (12) ein.
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ein. Das Brennflächenpaar der Kongruenz S  ist somit das Hüllflächenpaar jener durch 
Drehung um die Torusachse aus (21) hervorgehenden Schar von Paraboloiden. 
Dabei ist die Charakteristik von (21) durch

(22) dF dF , . 
~dy'~dz = aA pZ y:z

gekennzeichnet. Sie besteht damit aus dem Torusmeridian m (z=0 in (21) bzw.
t —u = 0 in (20)) und der in der Ebene y=-^— gelegenen Hyperbel mit der Para-4p
meterdarstellung

(23)

(x, y, z) = ^  cosh s, , C sinh [0, 2a], C2 =  [a  + •

Durch euklidische Drehung der beiden Teile dieser Charakteristik entsteht einer
seits der Ausgangstorus und andererseits das Hyperboloid mit der Parameterdar
stellung

(24) — cosh s, cos t + C sinh s sin t, — sin t + C sinh s cos t . a 4p 4p

und der algebraischen Gleichung

(25)

Genau für die Loxodromenkreise (a = '/— 8Ap) wird dieses Hyperboloid zu einem 
Drehkegel. Wir haben damit den

S a t z  6 . Auf den galileischen Torusflächen <PA vom Typ A erfüllen die Tangenten 
der zu einem festen Kurswinkel a£ R/{0} gehörenden Torusloxodromen die in (20) 
beschriebene Strahlkongruenz S, deren Brennflächen vom Torus <PA selbst und im 
allgemeinen von einem zum Torus koaxialen Drehhyperboloid gebildet werden.

6 . Loxodromen auf den Torusflächen vom Typ B

Da die Meridiankreise auf der Torusfläche $ B (9) in euklidischen Ebenen lie
gen, werden wir zur Definition der Loxodromen die in der Parameterdarstellung
(8) durch u = konst, erfaßten Drehkreise heranziehen und jene Flächenkurven 
t = t(u) (tCC^O, 2a]) als Loxodromen bezeichnen, die sämtliche Drehkreise unter 
konstantem galileischen Winkel a^O schneiden. Sie sind durch

dt R
du ba(26)
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gekennzeichnet und werden daher durch

(27) t(u) = ~ ( u  + K) (K = konstCR)

erfaßt. Als Parameterdarstellung der Loxodromen erhalten wir somit

(28) ^  (u + K), (« + K)2 + R cos u, R sin n j .

Werden diese Loxodromen aus dem Zwickpunkt F(0:0:1:0) der Fläche in die 
[x, z]-Ebene projiziert, so entstehen Sinuslinien.7 Wir haben damit den

Satz 7. Die Loxodromen der Torusflächen vom Typ B erscheinen bei Normal
projektion aus dem absoluten Punkt der Drehkreise auf eine dazu galileisch orthogonale 
Ebene als Sinuslinien.

Die Tangenten aller zu einem festen Kurswinkel a£R — {0} gehörenden To- 
rusloxodromen erfüllen hier die Geradenkongruenz T  mit der Parameterdarstellung

bt2t(t, u, v) = {bt, RCOSU + -LL-, R sin
M) +

(29)
+  r(l, —asinw +  t, acosw) (u£RU{°°}).

Längs dem Meridiankreis m (t= 0) bilden die Loxodromentangenten den Regulus

(30) x(u, v) =  (0, Rcosu, Rsin u) + v(l, —asinu, acosu) 

auf dem galileischen Drehhyperboloid H  mit der Gleichung

(31) a2x2 + R* 2 * = y 2 + z2.

Bei der den Torus erzeugenden isotropen Drehung (5) besitzt dieses Drehhyperbo
loid H  die Brennflächen der Geradenkongruenz T  als Hüllflächen. Die Punkte der 
Charakteristik c von H  sind dabei in (30) durch

(32) det t] = 0 mit t =  (b, v, 0)

gekennzeichnet.8 Nach kurzer Rechnung erkennen wir, daß c aus dem Torusmeri
diankreis m (e = 0 in (30)) und einer Hyperbel h in der Ebene y — a2b besteht, 
wobei letztere bei der isotropen Drehung (5) das hyperbolische Paraboloid

(33) a2 (2by -  x2) + z2 =  a*b2 + R2
überstreicht.

Wir haben damit den

7 Das euklidische Analogon hat W. Wunderlich in [14, S. 321] bewiesen.
6 t stellt den Tangentenvektor der Punkte x(u, v) (30) bei der isotropen Drehung (5) zum

Zeitpunkt t= 0  dar.

8
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S a t z  8 . Auf den galileischen Torusflächen <PB vom Typ B erfüllen die Tangenten 
der zu einem festen Kurswinkel a fR  — {0} gehörenden Torusloxodromen die in (29) 
beschriebene Strahlkongruenz T. Die Brennflächen dieser Kongruenz sind der Aus
gangstorus und ein hyperbolisches Paraboloid, das die den Torus erzeugende isotrope 
Drehung gestattet.
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HEREDITARY CONDITIONS ON CLASSES OF NEAR-RINGS

STEFAN VELDSMAN

Betsch and Kaarli [2] have shown that any radical class of near-rings (in 
the sense of Kurosh—Amitsur) with hereditary semisimple class must be super- 
nilpotent, i.e. it must contain all the zero near-rings. The converse need not be true. 
This result gives rise to a few questions. We will mainly be concerned with the next 
two problems:

(1) Can the hereditariness of the semisimple class be replaced with a weaker 
type of hereditariness with the same end result?

(2) Can the supernilpotent radicals be characterized by some hereditariness 
condition on the corresponding semisimple class?

Concerning the first question, we show that a condition dual to “weakly homo- 
morphically closed”, namely weakly hereditary, has the desired property. Con
cerning the second, we only have a partial answer. Introducing the condition “hered
itary on annihilating ideals” on a semisimple class, we show that this condition is 
necessary and sufficient to ensure that the radical is either supernilpotent or sub- 
idempotent. Both the above results relies on a construction due to Betsch and 
Kaarli [2], We might also mention that it has been proved elsewhere [5] that a radical 
is supernilpotent if and only if the corresponding semisimple class is weakly homo- 
morphically closed.

1. Preliminaries

All considerations below will be in the class of all, not necessarily O-symmetric, 
(right) near-rings. We refer to Pilz [3] for more information and notation on near
rings. For the near-ring A, /<JV will mean /  is an ideal in A, A + will denote 
the underlying group of A and A0 will be the zero near-ring on A (i.e. all products 
are zero). 2C will denote the class of all zero near-rings. Furthermore, A (c) will be 
the O-symmetric near-ring on A + with multiplication given by: ab=a and a0=0 
for all a ,b ^ N ,b ^ 0. If BQ N, then (B)N (or just (B)) will denote the ideal in A 
generated by B and B z is the set {ab\a, b£B). A class of near-rings á? is a radical 
class (in the sense of Kurosh—Amitsur) if:

(1) is homomorphically closed;
(2) For all A, ^ (A ):=  2 (/oA|/eá2)£á2;
(3) For all A, ^ (A /^ (A ))= 0 .

1980 Mathematics Subject Classification (1985 Revision!. Primary 16A76; Secondary 16A21. 
Key words and phrases. Radical class, semisimple class, weakly hereditary, hereditary on 

annihilating ideals.

8* Akadémiai Kiadó, Budapest
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The semisimple class of 01, denoted by «5̂ 2 is given by — {N\.0(N) = O}. 
More details on radical and semisimple classes can be found in [4]. A fact which is 
often used, is: If 8/1 is a radical class and A c  A such that N/K£Sf0l, then 
0(N )< ^0(K ).

If J t  is a regular class (i.e. if then /has a non-zero homomorphic
image in J t)  then the class

is a radical class, the upper radical determined by J t. A radical class 01 is super- 
nilpotent if (note that we do not require 0  to be hereditary as is sometimes
the case) and subidempotent if . Because is a regular class, UU J  is a
radical class and °U2£ = {A|(A2)=A}.

For our main results, we need two constructions due to Betsch and Kaarli [2]: 
(1) Let A and M  be near-rings. Define a near-ring Z (Z = Z(N, M j) by:

(2) Let A be a O-symmetric near-ring. Define a near-ring q> ((p=cp(N, A*) 
where *  is some multiplication on A + such that A*=(A, + , *) is a near-ring) by:

cp+ = A + © A + © A+

with multiplication given by

c,11 J l {A|if /<JV  such that N /l£Jt, then A =  1}

Z+ — N  + @N + @M + with multiplication given by

Then Z is a O-symmetric near-ring. If
K  =  {(a, 0, m)\a£N, mC-M\ and 

L  =  {(0, 0, m)\m£M}, then
L < i < I  (but L  is not necessarily an ideal in Z), 

Z/K sí A 0, K/L ss N° and L M°.

(a, b, c)(x, y, z) =  (a*x, czx, 0). 

Then cp is a near-ring and if
K =  {(a,b,0)\a,b£N} and 

L  =  {(a, 0, 0)|a£ A} we have
L c  K c  cp (but L  is not necessarily an ideal in cp), 

K  sí A* 0  A0, cp/K sí A0 and L  s* A*.
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2. Weakly hereditary classes

The condition “weakly homomorphically closed class” has been introduced 
by Anderson and Wiegandt [1] to investigate semisimple classes of supernilpotent 
radicals of associative rings. For near-rings it has been considered in [5]. In this 
section we will be concerned with the dual condition namely weakly hereditary.

Let J Í  be a class of near-rings. J Í  is said to be:
(1) weakly homomorphically closed if I<sN£Jf, P =  0 implies N/l£ J ( ;
(2) weakly hereditary if N 2Q I  implies l£ J l]
(3) hereditary if 7 c  A£ J t  implies KzJL
Clearly, if a class is hereditary, then it is also weakly hereditary. The con

verse is not true, not even for radical classes. In fact, every subidempotent radical is 
weakly hereditary but it need not be hereditary. I do not know if every weakly hered
itary semisimple class must be hereditary or not.

The usual conditions for hereditariness of radical and semisimple classes holds 
for weakly hereditary with respect to certain ideals. Indeed, for a radical class 
3k we have:

(1) 3k is weakly hereditary iff 3k(N)C\IQ3k{I) for all I<iN  with N 2QI.
(2) 0’0t is weakly hereditary iff &(I)Q0t(N)C\I for all 7<aA with N 2QI. 

Furthermore, if J Í  is weakly hereditary, then N3_Ji implies Nk^ J (  for all 
k — 1, 2, 3, ... where Nk= (N2), the ideal generated by N 2 in N  and if N„ has been 
defined for all n<k, then Nk is the ideal in Nk_k generated by Nk_t .

Proposition 2.1. Let 3k be a radical class.
(1) 0t is supernilpotent i f  and only i f  N 2Q3k(N) implies N£3k.
(2) I f  01 is supernilpotent, then the following are equivalent:

(i) 3k is weakly hereditary
(ii) m  3k iff (A2)€áL

Proof. (1) Suppose 3k is supernilpotent and let A be a near-ring such that
N 2<g0t(N). Because NI3k(N)Z&(Mf®Q®ftSS’3k=0, we have N=@ (N)i3t. 
Conversely, if the condition is satisfied, let N^2£. Then A 2=0gá?(A ), hence 
N£3k.

(2) Let 01 be supernilpotent and firstly, suppose 3k is weakly hereditary. Clearly, 
if N£3i, then (N2)£3$. On the other hand, if A is a near-ring such that (A2)€^, 
we have N£3k from (1) above. Conversely, suppose (ii) is satisfied. Let IcNf_3k 
with N 2QI. Then, also (N 2)£3k by (ii) and I/(N2)££?^3k. By the extension 
property which is satisfied by any radical class, /£ 3k follows.

We now turn our attention to weakly hereditary semisimple classes.

T heorem  2.2. Let 3k ̂  0 he a radical class such that I f  01 is weakly hereditary. 
Then 2Z Q3k.

Proof. The proof corresponds to the proof given by Betsch and Kaarli [2] 
for the case when 3f3k is hereditary; the ideals in the constructions Z and cp have 
the right properties. For completeness we provide the proof which will be divided 
into three sections:
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(1) if  Zf2ftf& *(p, then á r g sem.
(2) If O ^N  is a O-symmetric near-ring with N*£2ft and N 3$.Zf2ft, then N 3—0 

where N* is any near-ring on N +.
(3) Z Q3t.

(1) Let OiiN£&0tr\ar and let M € £ . Then N=N° and M=M°. Con
struct Z = Z(N,M ). Then L ^K ^ a Z  with Z/K^N£Zft2ft and K /L ^ N ^ S t ,  
hence 0l(Z)Q®(K)Q®(L)<gL. Now 2ft{Z) = 0, for if 2ft(Z)^0, let o ^m ^M  
with (o, o, m)d2ft(Z). Because 0, let 0 fn £ N .  Since Z is O-symmetric, we have

(n, o, u) = (o, n, o)(o, o, tri) =  {(o, o, z)|z£M).
Hence n=0, a contradiction.

From K^sZ^Zf2ft and Z2Q K  we have K£Zf2ft because Zf2ft is weakly 
hereditary. Using this again with and K 2QL, we have M^tL€If2ft.
Hence 2  Q$f®.

(2) Let O ^N  be a O-symmetric near-ring with N*£2ft and N°€Zf2ft. By (1), 
we have ZZQZf2ft. Construct (p=cp(N,N*). Then 2ft(K)=2ft(N*®N°)=2l(N*)= 
= JV * sL  From tp/KssN0̂ » ,  we have 2ft((p)Q2ft(K)^L. But (p2QK<i(p, 
hence L^2ft{K)Q2ft{(p) as Zf 2ft. is weakly hereditary. We conclude that L^2ft((p)-<i(p. 
Let x ,y ,z£ N . Then (z, o, o)£L, hence

(o, xyz, o) = (o, o, x)((o, o, y) + (z, o, o)) -  (o, o, x)(o, o, y)
is in L =  {(a, o, o)\ad N).

Hence A-yz=0 and iV3= 0 follows.
(3) Suppose Then there is an Md£Z, M$2ft. Then

0 s* M /3l(M )£Z  f lZf2ft
and from (1) we have SS^ZfM . Because 2ftf 0, choose 0 fN *£2 t. Let N —N (c). 
Then N  is a O-symmetric near-ring with N*Z2ft and N°£Zf2ft. From (2) above, we 
have (7V(c))3= tV3=0. This, however, is only possible if N = 0, i.e. N*=  0 which 
contradicts our choice of N*.

Corollary 2.3. I f  O f 2ft is not a supernilpotent radical, then Zf 2ft is not weakly 
hereditary. Hence any subidempotent radical (^0 ) cannot have a weakly hereditary 
semisimple class.

It is not known whether the converse of Theorem 2.2 is true or not.

3. Semisimple classes hereditary on annihilating ideals

Motivated by: a radical class 2ft is supernilpotent if and only if I-aN£Zf2ft, 
I 2—0 implies / = 0 ;  we introduce the following notions: Let J t  be a class of near- 
rings. J l  is called:

(1) hereditary on zero ideals (or just zero-hereditary) if 
1<sN2lJ(, I 2 — 0 implies
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(2) hereditary on annihilating ideals (or just annihilating-hereditary) if 

I<sN£Jl, IN  = 0 implies l£J l.
Clearly, zero-hereditary implies annihilating-hereditary. If 3k is a radical class 

such that 2TQ® or S k ^ fy if,  then i f  3k is zero-hereditary. Hence, if i f  3k is weakly 
hereditary, then if®  is zero-hereditary from Theorem 2.2.

Theorem 3.1. Let 3k be a radical class such that i f  3k is annihilating-hereditary. 
I f  i f  (Mf 3k fQ , then 2f<^if®.

Proof. Let O fN Z if O if®  and let M ^if. Using the construction I = I ( N ,  M ) 
again, we have as in Theorem 2.2 that ®(Z) =0. By our condition on i f  3k and 
K < il with K l —0 and L<iK  with LK=0, we have

M  s  L i if®.
Hence i f  c  i f  3k.

Corollary 3.2. Let 3k be a radical class. Then i f  3k is annihilating-hereditary if 
and only i f  3k is supernilpotent or subidempotent.

From the above and [5], we also have
Corollary 3.3. Let 3k be a radical class such that 3kC\if fO. Then the fol

lowing are equivalent:
(1) 3k is supernilpotent;
(2) i f  3k is weakly homomorphically closed;
(3) i f  3k is zero-hereditary;
(4) i f  3k is annihilating-hereditary.

R E F E R E N C E S

[11 Anderson, T . a n d  Wiegandt, R ., W ea k ly  h o m o m o r p h ic a lly  c lo s e d  sem is im p le  c la s s e s ,  Acta  
Math. Acad. Sei. Hungar. 34 (1979), 329— 3 3 6 . M R  81c: 17007.

[2] Betsch, G . and Kaarli, K.., Supernilpotent radicals and hereditariness of semisimple classes,
C o ll. S o c . J. B o ly a i ,  38 , Theory o f  Radicals. E g e r , 1982, N o r th  H o lla n d , 1985 , 4 7 — 58.

[3] Pilz, G ., Near-rings. The theory and its applications. N o r th -H o lla n d  M a th em a tics S tu d ie s ,  no.
2 3 , N o r th -H o lla n d  P u b l. C o .,  A m sterd a m , 1977 . M R  5 7  # 9 7 6 1 .

[4] Leeuwen, L . C . A . van a n d  Wiegandt, R .,  R a d ica ls , s e m is im p le  c la sses  an d  torsion theories,
Acta Math. Acad. Sei. Hungar. 3 6  (1980), 37 — 4 7 . M R  82j: 17004.

[5] Veldsman, S ., S u p e r n ilp o te n t  ra d ica ls  o f  n ear-rings, Comm. Algebra 15 (1 9 8 7 ), 2 4 9 7 — 2 5 0 9 .

(Received November 25, 1985)

d epa r tm en t  o f  m ath em atics
UNIVERSITY OF PORT ELIZABETH 
ZA—6000 PORT ELIZABETH 
REPUBLIC OF SOUTH AFRICA

J





Sludia Scleniiarum Mathemallcarum Hungarica 23 (1988), 417—433

UNIVALENCY AS TAUBERIAN CONDITION

A L B E R T  B O R B É L Y

1. Introduction

Let

(1.1) f ( z )  = Z a nz"
n—1

be univalent in |z |< l, and suppose that the series is “fast” Abel summable at 
z = l ,  i.e.
(1.2) f ( r )  — A = O ((1 — r)a) for some 0 <  a s  2.
We also include the case of ordinary Abel summability

(1.3) f ( r ) - A  = o( 1) if a =  0.

In this paper we investigate under what conditions the power series (1.1) is 
“fast” convergent at z = l ,  i.e.

(1.4) 2  üi — A = 0(n~ß) for some ß >- 0.
i=0

Our condition will be geometric and it will mean that the length of the longest 
arc in the intersection of \z—A\=R  with the image of |z |< l under the mapping 
/(z) is smaller than Rn( \ —ß), for many values of R.

G. Halász [1] and W. K. Hayman [2] investigated under what conditions the 
power series (1.1) is convergent at z = l ,  if we only know the existence of the Abel 
limit. In this case our condition also will imply the convergence.

G. Freud [8] and J. Korevaar [9] investigated under what conditions 2! an 
is summable by the first Cesäro means, if we know the existence of the “last” 
Abel limit.

Based on the above-mentioned results P. L. Duren [10] managed to obtain an 
estimation of coefficients of univalent functions.

I would like to thank Gábor Halász for his advice while working on these 
questions.

1 9 8 0  Mathematics Subject Classification. P r im ary  3 0 C 5 0 ;  S eco n d a ry  4 0 E 0 5 .
Key words and phrases. U n iv a le n t  fu n c t io n s , T a u b e r ia n  th e o rem s, in tegra l m ea n s.

Akadémiai Kiadó, Budapest
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2. Definitions and results

Suppose that f(z) is univalent in |z|< 1 and f ( r ) —A as r— 1—0. We set 
D\—f{\z\<. 1) and £>':=/((|z |<  l}fl {|z-l|<<5}) if <5>0. Let ß be any number 

1, and let B be any fixed point of D'. We define S  to be the set of all 0 
such that there is an arc in the intersection of \w — A \—R with D' which does not 
separate A and B in D' and is longer than Rn(\ —/?), or, if R>  1, there is an arc 
in the intersection of \w—A\= R  with D which is longer than Rn{\ —/?).

If for some positive <5 the logarithmic length of 5  is finite, we will say that 
/(z) is /J-admissible. We define the logarithmic length by

(2.1) L =  f \ d \ o g r =  f  1.
S  S  lo g s

We note that if f(z)  is /^-admissible, then it is /^'-admissible for all 
ß '^ ß ,  too.

It is convenient to define GX(N) and sN as follows:

(2.2) Ga(N) =

0(1) if ix — 0

N~x if

if 1 ,
2 < a < 1

N~ +oW if 1
a =  T ’

(2.3)
N

SN — 2  a n n—0

Theorem 1. Let f(z) be given by (1.1) and suppose that it is "fast" Abel summable 
at z — 1 with 0 < a < l and ß-admissible, ß>0. Then we have for /. =min {a, />}

( 2 . 4 )  Isjv- ^ I  = 0{Gx{N)\ogN), 

where A means the Abel limit o f f(z) at z = l.
If /?>a, then we can dispose of the log factor.

Theorem 2. I f  0 s a < ^  and /?>a in Theorem 1, then we have

( 2 . 5 )  \s„-A \ =  0 ( G a W ) .

If a s i ,  we cannot prove anything better than what follows from Theorem 1.
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3. Auxiliary results

We note, following G. Halász [1], that (1.4) implies

(3.1) \ m - A \  =

as \ z \ 1—0 uniformly.
First we prove at least this necessary condition. We will need the next four 

lemmas.

L e m m a  1. I f f(z) is given by (1.1) and 0, then we have for |1— z \< K ( \  — |z|) 

(3-2) \ f ( z ) - A \^ C ( K ) \ f ( \ z \ ) - A \ ,
where C (K ) depends only on K.

P r o o f . We repeat the argument of [1, p. 424]. Let 0 < r< l  be fixed and {z„} 
be a sequence, such that z0=r, |z„|=r, and \zn — zn_1\ ^ { \ —r)l2. Of course, 
A$f(\z 1*= 1), so we can apply the “ 1/4 theorem of Koebe” to the circle \z—z0|<  1 — r 
and we get

(3-3) \f{z0) - A \  s  j  |/ '( z 0) |( l - r ) .

Koebe’s inequality for this circle gives

|zi-2ol

(3.4) |/(z ü) - / ( z 1)| S  |/ '( z 0) | ( l - r )------ } ~ r 3 = 2 | / ( z 0) |( l - r ) ,
11 lzi ~ zol I
l 1 —r J

and we have from (3.3) and (3.4)

(3.5) \ f ( z1) - A \  ^  l/(z j)—/(z 0)| + |/(z 0) —y4| 9|/(z„) —yf|.
Next, we can apply the same argument to the circles \zt—z|«=l — r, i= 1 ,2 ,... 
and we get

\f{zn) - A \  ss 9n\f(z0) — A\,
which proves the Lemma.

We will apply the length-area principle [3, Th. 2.1]. Let /(z) be regular in an 
open set A and let n{w) be the number of roots in A of the equation f(z)= w . We 
write, following Hayman,

(3.6) P(R) := 2^  /  n(Rei,p) d<p

If/(z) is a univalent function, then the length of the intersection of |w| = R  with 
the image equals
(3.7) 27xRp(R) S  271R.
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The length-area principle asserts

(3-8) / w ?
2nRp(R) dR ^  Area (d),

where l(R) is the total length of the curves in A, on which | /(z)| =R, and Area (A) 
is the area of A.

Let /(z) be univalent in |z |< l, 0S/?<1 and 31
4 1, and let 0<(pS2n

be fixed. Let y be the image of the segment [pei<p, reiq>] under the mapping f(z). 
Suppose that \ f{rei,p)\> \/(p e^ l and define S, similarly to S', to be the set of all 
R, |/(/>e‘v)|<  such that the length of the longest arc in the intersec
tion of Iw| —R with / ( |z |< l )  which intersects y is bigger than R n (l—ß). If L 
denotes the logarithmic length of S defined by (2.1) then we can state:

L emma 2. I f  we use the above notations we have

l / (  re*)]
\ f (pe iv)\

where C (L) depends only on L.
P roof. We assume, as we may, that (p= 0. Let Dy be the union of all arcs 

of the circles |w|=i?, | / ( p ) |< i?<\ f{r)\, which intersects y and are in /( |z |<  1). 
It is clear from the regularity ot y that

(3.9) int Dy 0  {|z| =  *} pi 0, |/(/>)| <  R <  |/(r)|.

(It would be enough to have (3.9) for a.e.)
We set, following Hayman [3],

(3 .10) r  ̂ l 1+z s(z) := log-r—- 11 —z and g (z ) := /o j-1(z).

Now, g{z) maps the strip 

We write

|Im (z)|<-^- onto / ( |z |< l) .

Q -= \z -  - y  +  log <  Re(z) <  ~J +  1° g ~ |r ~ -  and lI m 0 0 l < ^ } -

It is a rectangle. Now, let us restrict g(z) to ^ := ö r ig _1(int Dy), and let us apply 
the length-area principle to g |g. With the above-mentioned notations, we set 
T — Wf(p)\, | / ( f)|] — S, and suppose that R£T. We will show that

(3 .1 1 )
l(R f _  2n2 
p(R) ~  l - ß  ■

Let i be a component of the intersection of |w|=I? with int Dy. It is clear 
from the definition of Dy that i intersects y, so g~x(i) intersects the segment
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[ log I l i i  j o g i i g  and the end points of g ~ 1( i )  lie on the straight lines Im(z) = 
1 —p 1 — r J
71 . . .=  ±  — . Denote by ix, i2, ... the components of the intersection of |u>|=/? with

g ( @ )  which are in i. Since g_1(/„) is a component of the intersection of g ~ 1(i)  with 
Q, rt=l ,  2, ... , the end points of g_1(/„) lie on the edge of Q, and there is an im
that g ~ 1(im) intersects the segment ^log-| log |  j . It shows that the

total length of g-1(ix), g_1(/2), ... is not smaller than n. On the other hand the 
total length of i \ ,  i2, ... is not greater than the length of i  which is smaller than 
R n (l-ß ) , (R€T).

Suppose that the intersection of |w| = 7? with Dy consists of k  components. 
Using the above-mentioned notations for the g|g we have

l(R) §  kn and R2np{R) kR n (l-ß ),

and this yields (3.11).
Thus, by the length-area principle

and so

Then we have

n f' ClR -s 7 K R f
l - ß  J R ' S 2nRp(R)

S  Area (Q) = n | 108 1 —r
i 1 + r )+'oe I+J,+ « J .

l/WI dR (1  - p Y~■t „ r dR
/ ( l - r  j + c + / i r -

log f(r)
fiP ) s l o g ( - j z 7 J  fi + C(L)

and the proof is completed.
R e m a r k  1 . From the proof it is clear that it would be enough to define S to 

be the set of all R, \ R<-\ f{ré*)\,  such that the longest arc in the inter
section of |w |=R with

/({ \Z\ <  1} Pl (|z -  e‘*\ <  10(1—p)})

which intersects y is bigger than R n (l-ß ) .
Now, we investigate the case of separating arcs.

3We write  ̂=per<r and r\—re,,p, and suppose that —< p < r< l ,  |1— £|, |1—1;|<

and that f and tj lie outside a Stolz angle, i.e. |1 —<̂ |=-2(1 —1̂ |) and |1— f/|=-
>2(1 —1>;|). Let /(z) be given by (1.1) and denote by y the image of the segment 
[£, rj] and by T the image of the segment [0, 1] under /(z).



4 2 2 A. BORBÉLY

Supposethat \f( ti)-A \ and for every R, \f(0 ~ A \< R < \f(r \) -A \,
there is a component of the intersection of \w—A \= R  with /( |z |<  1) which inter
sects both y and T. Now, we get

Lemma 3. By the above-mentioned assumptions, we have

(3.12) f ( r i ) -Ano-a
P roof. We assume that A —0. Let s(z), g(z) be given by (3.10). It is easy 

to see that

log 1 +  Í - lo g
1 -É

We define Q to be the rectangle

1 + 1
\-Yl 2  log 2  <  2 .

(3.13) 1 1 1
1 - Í

- 3 Re (z) <  log l + rj
l - r , +  3, |Im (z)|

It is clear that Area (<2 ) < 7i8 .
Suppose that | /(ij) |< i?<  | then, by the assumptions of Lemma 3, there 

is a component i of the intersection of \w\=R with /( |z |< l)  which intersects 
both y and T. Thus, g~1(i) intersects the real axis and its endpoints lie on the straight

7Tlines Im (z )= ± —• So it is clear that the total length of g~1(i)CiQ is greater 
than 1 .

Now, let us apply the length-area principle to g\Q with its notations, then 
we have I(R )^  1 if |/(<!;)|<R<|/to)|, and since (3.7) implies that p (R )^ l, 
we obtain

1 lf(l l dR
2 ^  /  - j - S  Area (Q) <  *8 ,

and this yields Lemma 3.
Now, we can prove the necessary condition.
Lemma 4. By the assumptions o f Theorem 1, we have

(3.14)

OII^T1's?<

- ■ " ■ o n i f a >  0,

(3.15) | / t o ) - ^ |  = 0(1) (.1 - 1 ,1 )  fo ra ll i f a = 0,

as to l - 1 — 0 uniformly.

P roof. We assume, as we may, that A — 0, < 5 < -i. If J1 — »7! =-<5/2, then we
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apply Lemma 2 with r\—rei,p and p = — ■ This yields (3.14), and (3.15) follows from

f  n - i i  y - '  ir i - M  )> -'(  Vi1 U i - t i l ) y l - M )
Suppose now that |1 — >j|<(5/2, and let AT be large enough and fixed. If t] belongs 

to the Stolz angle, i.e. |1 — r \\^ K { \~ |/j|), then we apply Lemma 1 and this implies
(3.14) and (3.15).

If t] lies outside the Stolz angle, then we write rj=rei,p and £ =pei<p where 
|1 —£|=Ar(l —1<!;|). We will estimate the growth of |/(z)| in the segment [i, q]. 
By notation of Theorem 1, it is clear that for sufficiently small or large R, an arc i 
in the intersection of |vv| =R  with D' separates O and B, if and only if it separates O 
and / ( l —<5). Hence we may assume that B = f( 1—<5).

If \f(j])\ s|/(c^)| then in the sense of previous notation it implies (3.14) and
(3.15) , so we may assume that |/({)|-= |/0/)|. Denote by y the map of the segment 
[£, q] and by r  the map of the segment [1— ö, 1] under f(z). We define U to be 
the set of all R, |/(i)|< /?< |/(>?)i, such that there exists an arc i in the intersec
tion of Iw| =R with D' which intersects both y and T.

We will show that U is an interval. In fact, suppose that R1,R 2£U and RX< R 2. 
Denote the arcs by /x and i2 which belong to Rx and R,, respectively, then 
imc{|w |=J?m}ni>', m =  l ,2  and they connect y and T. Denote by y' (and r ')  a 
minimal subarc of y (T resp.) that connects i1 and i2, and denote by i[ (and i2) a 
minimal subarc of i\ (i2 resp.) that connects y' and A .  By the univalency of f(z), 
y does not intersect T, so i[, y', i2, r '  form a simple closed curve Q in D'. Since D' 
is simply connected, the interior of Q is also contained in D' and for all R ^ R ^ R 2 
there is an arc in |w| =R  which belongs to int Q and connects y' and T', i.e. U 
as stated. The empty set is also considered to be an “ interval” .

We remark that if for some R, \.f(£ )\< R < \f(q )\, there is an arc in the inter
section of Iw| —7? with D' which separates O and B —f ( \ —d) and intersects y 
then R£ U.

Let R1^ R 2 be the endpoints of U (if t/^0 ) and because \ f(£ )\^R 1^.R2^  
S | / 0 j)| it is easy to see that there are two points ji, =ql ei,p, n2—q2ei,p on the seg
ment [£,q] suchthat |/(/ii) |= /? i, \f(p2)\=R2 and q ^ q 2.

It is clear that if K>2  we can apply Lemma 3 to the segment [/ix, [i2] and 
we have

(3.16) /Ofj)
A pi)

< e200

Moreover, if K  is large enough then the set {|z—eiv\< 10(1 — p)}fl {|z|< 1} is 
contained in the set {|1 — z|-=<5}fl {|z|< 1} and if for some R, | /(£)!< /?<  |/(>j)| 
and R$ U, we take an arc in the intersection of Jw| =R with

/({ |z| <  l } n { |z - ^ |<  10(1 —p)»

which is longer than R n (l—ß) and intersects y then this arc also belongs to the 
intersection of |iv|=i? with D' and does not separate O and B in D', i.e. RdS, 
where S’ is defined in the second section.
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Now, it is clear that Sc. S, where S is defined in Remark 1, and by Remark 1 
we can apply Lemma 2 to the segments [£, jux], [p2, h] and we have

(3.17) and m
y(h2)

where L  means the logarithmic length of S.
If U=0 then we can immediately apply Lemma 2 to the segment [£, rj]. 
Thus it follows from (3.16) and (3.17) that

Since £ belongs to the Stolz angle, Lemma 1 yields 
(3.19) 1/(01 -  C(K) | / ( 0 | .
On the other hand 1 —1<̂|-= 11 — »7I (if K > 2) and thus if a>0, (3.18) and (3.19) 
imply (3.14).

If a= 0 , then we write by (3.18) and (3.19)

(3.18) m
f(£)

{  l -M  ) ' - ' ' (l l-fl l  Y
1 \ l ~ r i \  ) y  i - w )

Now, if rj—l then /( |£ |)—0, otherwise —^j-j —0
and also Lemma 4.

and this yields (3.15)

4. Proof of Theorem 1 and 2

We remark that if a= 0 , /?=~0, then Lemma 4 and a result of Hayman [2, 
Theorem 1] also imply the convergence but for the sake of completeness we will 
investigate this case, too.

In this section we will refer to a result of G. Halász which has not been publis
hed yet. With his permission, we will give his proof at the end of the paper.

Lemma 5. Let f(z) be univalent in |z |<  1 and suppose that f ( z ) ^ 0  everywhere. 
Let e, <5>0 then we have

11 — re" d(f> °  ( ( l - r ) 1+£+<s) as r 1- 0 .

In the remaining part of the article we shall denote by C(X) a constant which 
only depends on X.

We assume that ß ^ a  in Theorem 1 since, otherwise, we can put ß instead of 
a in ( 1 .2 ).

n
Let f(z) be given by (1.1) and write sn = ai then we have

i=0

z 2( 2  (*n -  ̂ )<r = i  n(s„ -  A)zn.v 1—Z /  n=0 n = 0
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Thus, by Cauchy’s formula,

,  1 r 1 (  f \ z )  , f ( z ) - A )  J
" ( ‘* A) ~  2iti , /  zn 1 1 — z  ~r (1 -z)2 J * ’1*1=*-

Let us choose r = l -----and so ( z —rei'f )

(4.1) + j

We apply Holder’s inequality +  - i - = l ,  z —rei,p, O^ e^ ß — a j

2 it
(4-2) / f ( z ) d« -  [ n  m ~ A dcp f r ? H z )  1" dcp

1 —z 9  -  [ j  1 ( i -^ ) i- £ [J / ( z ) - * 4  1 \ l - z \ "  .

To prove the cases of oc=0 and a> 0  together, we set

( 1 if a >  0
<43) ö - (r )  =  { „ ( l ,  if  «  =  0 as r ~ 1' 0 '

To estimate the above integrals, we use a differential inequality method which has 
been applied by G. Halász [1]. Let F(z) be a regular and non-zero function in |z[< 1. 
We write

U(r) :=  J  \F(re‘*)\d<p,

and so

We define

and

2k
U '(r) = f  —  \F{re">)\ dcp == /  \F (re ’*)\dcp.

{
I F' Ő 1(p: —pr (re!<l>) > ———j  for some <5 >  0,

V(r):= f  \F(re'*)\dcp.
f l( r )

If we denote by Q(r) the complement of Q(r), we have

thus

Hence

f\F(re>*)\d<p = f \F ( r e ‘*)\
ß(r) ß(r)

F'
-y - ire “*) dcp S 1 —r H r ) ,

(C/(r)(l-r)>y  =5 (1 - ryV (r) .

9
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Let 0 < a < l  be fixed. Integrating from a to r 1) we have
1 It .  I ! I II ■ ■ ■   II. ̂

(4.4) U{r) S  j — yr f ( l - x Y V ( x ) d x +  ■

Now, to estimate the second integral on the right-hand side of (4.1) we set

F(z)= f [ Z) A~ .  We have
(1 -2 )

n r ) =  /
fi(r)

F
—p~ (re'9) \F(rei,p)\ dtp,

so, by the definition of Q(r), we get (s>2, z —rel,p) 
(4.5)

FF ( r ) s  f
fl(r)

■(2)
F  1 — r

y w - r
1 f 1 — r V“1
|F(z)| =£ [—g—J /

F
7 «

|F (z)|

Using Lemma 4 we know (z=rei,p) 

m - A
|F(2)| = ( l - z ) 2 °[0.Ar) | i _ zii+i-«)»( l- /- )1-« | l - z |1+"-

where if a = 0 then ß means ß' in Lemma 4, but we will see that it does not cause any 
difficulty. It yields (z=reUp)

2 Tt I 1
7  d(P-

We know

and 

(4.6)

V(r) s c ( / ) e .M  (■V-)'"ödpr / | - f  w Tl̂ rr

r w  , 2  I ' , (| r w  ■, 2  1-1
II f ( z ) - A  + l - z  I J ’

F
- F ® f(z )  — A  1—z 

dcp
I  I I - r ß i v l l  + e

if E >  0° ((n b r)
o ( ios_ L _ )  if £ — 0

is well-known [6, Lemma 2] as well. Hence it follows from Lemma 5 that 

V{r) Q (l)g .(r)(l-ry-»+ /»  r^ - -  =  0(1) ß “W

Using (4.4) we have (z=reiv, <5< 1 — a).

/
(4.7)

( l - z ) 2 dV = O W T r ¥ w í( l - r y j  ( l - x )

S  0(1) e«(fl) , 0 (a ) ( l-a )a
( 1 - r ) 1 ■ +

(1 — r)<5
^  0 (1 )-

(1—r f~ a ‘

Q ( n ) ( l - ^
( l - t f

QJa)
(1 ~ r f

if r is sufficiently near 1.



UNIVALENCY 4 2 7

To estimate the first integral on the right-hand side of (4.2), we use the same 
method. We choose e and q in such a way that e= 0  if ß —<x. and otherwise 0< e<  
-=ß —a and <?(1— a —£)=-l and set

( f ( z ) - A Y  
f ( z )  =  '

Using Lemma 4, we know (z=reiv)

|F(z)| g C ( / ) [ g g( r ) (1_ /l)1_

where if a= 0  then ß means ß' in Lemma 4. It follows from (4.5) that ( j > 2, z —reiv)

^ ) S C ( / ) ( Y ) '  1 Q.(rY
2n I F'

( I - r )« 1-^  /  I F  ^
dcp

It is easy to show that

f i t ) ■ + ? ( l - e )
f( z )  — A 1 —z 

and so if ß>ot, then Lemma 5 and (4.6) imply

QM)"(4.8) K(r)=s 0(1)- _ r wU-«-u(!-/•)'

But if ß=tx and so e=0, then we have to apply the well-known result of Bier- 
nacki [4] (see also [5]), (z=rel,p)

f ( z )
m - A

(4.9) /
0

instead of Lemma 5, hence (with s= 2)

(4.10)

d<p “ °(T^7logT^7)

V(r) g  0 ( l ) - QÁ-J —  log- 1(1 —f)«u-«) l _ r

Using (4.4), if /?>a, we have [z—re'^, <5 <<7 ( 1  — a —e) — 1)

2it
/0

(4.11)

/ ( z ) - ^
( 1 -z )1 (1 - r f  J

dx+ U(a)(l-oY

^  0 (1 )____ ^ ____+ j m « Z * L  ^  0 (1 )— ( l —r ) T n_ r \ a  —

( 1 - r /  -

Q M q
(!-»■/

9*
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if r is sufficiently near 1. In the same way if a=ß, we get ( z < 5 < < / ( l  —a)— l)

(4.12)
2jt

I
m - A
( l - z ) dcp s  0(1) , n r  1

( l _ r)9(l-«)-l 10g 1_

if r is sufficiently near 1.
Now, suppose that a<-^- .  Then we can choose <5>0, esO, l<<jr<2, such

that 0<<5<<7(1 — a — e) — 1 and set p=q/(q—1)>2. If /?=»a then (4.7), (4.11) and 
Lemma 5 imply by (4.1) and (4.2)

n\sn-A \ ^  0(1) Q M
( l - r ) 1 ■ + QAd) l

1 —a —£—— 1 + c——
( l - r )  « ( l - r )  r ,

and regarding the choice of r we have

n\s„-A\ =£ 0 ( l ) ß a(a)w1- a,

if n is large enough. This implies immediately Theorem 2 when ooO, and if a=0, 
then we know from (4.3) that Qx{a)-*0 as a-»l, and this yields Theorem 2.

If ß —a, then by choosing q=p=2, (4.7), (4.12) and (4.9) imply by (4.1) 
and (4.2)

n\sn-A \ = 0 ( l ) ß a(ü) 1 (IOg l - r ) 4 (,08 l - r )
" 1( l - r ) 1- Í«1rV"NV

.1

1
T (1 —rjp

=  o ( i ) Q M  l o g ~ ^ ~ ~ 7

and regarding the choice of r  we have

n\s„ — A\ — 0 ( l)n 1-“ log n.

This implies Theorem 1 when 0< a< l/2 .
It remains to prove the case of a s  1/2. To apply the above method, we have 

to estimate the integral

when l< p< 2 .
Let 5” be the set of all univalent functions g(z), such that g(0)=0 and g'(0) =  l- 

Following Pommerenke [7], we prove a Lemma which generalizes [7, Theorem 5.2].
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Lemma 6. I f  g(z)£S and l S / ? < 2 ,  then (z=re'v)

V o' p c
I  j - ( r e ^ )  dcps -------
0 ö P  2 - P

(1 — r)2 321

I f  we set p — 1, we get Pommerenke s Theorem.
For the proof we have to argue in exactly the same way as Pommerenke, so 

we leave it to the reader.
It is easy to see that Lemma 6 remains true when g(z)«f S  but cg(z)£S.
In our case we would like to apply the estimate of Lemma 6 to a non-zero 

univalent function. A short calculation shows that Lemma 6 remains true for every 
non-zero univalent functions.

In fact, let g(z) be a non-zero univalent function in |z|<  1; then h(z):=- f -
S\z)

has the same property, too. We write {z=rei,p)
2n /
I OO dtp = j  

l»lsi
dcp+ [ 

l*l»i
h'

T (z) d(p.

Dealing only with the first integral, we write (D=g(0))

\g(z)-D \ s  \g(z)\ + \D\ =§ | |0 | + l||* (z)| if |g(z)| s  1
and so

/  | f  wlilel s
1 p f g'(z)
1 Jlilsl g(z) — D dcp á  ||0 | + l | '  /

2 it
| P  f g’(z)
1 J0 g(z)~ D

dcp.

h'Now, we can apply Lemma 6 to g(z)—D. We estimate the integral of —  in the
same way and this proves the statement.

Returning to the proof of Theorem 1, we choose e, q, S, p such that e=0,

0<<5<<7(1 —a.) — 1, and -Í-+ —=1. Since aS l/2 , </=»2 and l</><2. Now, by
Lemma 6, we can estimate the second integral on the right-hand side of (4.2) even 
if l</?<2. Thus (4.7), (4.12) and Lemma 6 imply by (4.1) and (4.2)

n\sn-A \  =  0 (l)Q x(a)
, loc * 1

T ,  ]r g 1 - r J
(1 -r )1“« 1

(1 -r )1"“"
1 1 2-p
i (1—r)2 321p

Noting that a s  1/2, for q sufficiently near 1/(1 —a), and so p sufficiently near 1/a. 
we obtain

n\sn- A \  = 0(1)- 1
2—i-

•f 1i t  a. =» —2

(1 - r y 322
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and

n\sm- A \  =  0 (1 )------ -------  if « =  4-
--h 11 ^

(1 - r y
for arbitrarily small /i>0.

Regarding the choice of r this completes the proof of Theorem 1.

5. Proof of Lemma 5

In the remaining part of this paper, we will prove Lemma 5. I learned this 
proof from G. Halász at a seminar in complex analysis at the Eötvös Loránd Uni
versity, in 1981.

The function j(z):=log (/(z)) is also analytic and univalent in |z |< l.  The 
image of |z |< l under the mapping s(z) is strip-like which is not wider than 2n.

Let 0 < r < l  be fixed. We set

and let, f/=-0,
A : —  { c p :  ( p 0 <  cp <  <p„ +  5} c: [0, 2 n ]

<V = Ire ,>: cp£A,

Our aim is to estimate the measure of Qn. We write

a := min Re (s (re"p)) ,  b := max Re ( s ( r e l,p) ) ,

and let (pa and <pb be the values in A where

a = Re ( s ^ r e 1"1“) )  and h =  Re ( s ( r e ' 'Pb) ) .

We may assume that <pa<<pb.
1 — VLet us draw around each point of £3, a disc of radius —-—. Now, we choose

a maximal number of disjoint discs from among these and denote by N  the number 
of the chosen discs. Now, if we put a disc of radius 1— r  instead of each chosen 
disc with the same center, it is easy to see that these new discs cover the whole £2„, so

|ß„| S  2N(l — r)

where |ß ,| means the measure of Qn.
On the other hand, by the “ 1/4 theorem of Koebe”, we know that each image

flof a chosen disc under the mapping s(z), contains a disc of radius —, so by theO
definition of a and b we have
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and thus if L:=b—a,

( 5 . 1 ) 0 , s C ( l - r ) A .

To estimate L, we choose r ^ r ,  so y = C \  log - i—y ,  where Cx is defined
below.

Denote by yp the arcs {pe'9: (p£\q>a, It is clear that we can apply the 
Koebe distortion theorem to a non-zero univalent function, i.e.

where Cr depends on f(z). Now, we can estimate the length of the image of the seg
ments [pe***, re**«], [pei9», re'9*] under the mapping s(z), where r ^ p S .r ,  and it 
is equal:

where «A € , <Pb\- Since the distance of the endpoints of the image of yr under the
mapping s(z) is L, the length of the image of yp, rbS p ^ r ,  under the mapping j(z)

is bigger than — .
Let us apply the length-area principle to the domain

E := {ue‘v : rx <  u <  r and cpa <  <p < cpb} 

and the mapping s~1(z). If we use the introduced notations, we have (rt -<R<r)

2np(R) s  Ml

where Ml means the measure of A, and

where l(R) means the length of the image of yR under the mapping j(z). Now, we 
know from (3.9)

Knowing from (5.2) that the length of the image of [Ueiv: r ^ U ^ r ] ,  (p€[(pa, (pb] 
is smaller than L/3 we get that

(5.2) /  | - y  (ue» ) I du s  / du = Ci lo g - j - J -  S  y ,
p J p

dR s. Area (s(E)).

s(E)d[co: a — L/3 <  Re(co) <  b + L/3},
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and so

Thus
Area (i(.E)) s  2n-^~-

( r - r j ) L s C t \A\.

Regarding the choice of rx we obtain

C ML  s  C3log- 1 - r  ’
and it yields from (5.1) 

Now, we estimate

I

1 .. . .  ,  C.MI

2 +  e

Ifi,I =sC6^ ( l - r ) l o g 1 —r ‘

dcp.

Let

and so
f i ,

f 2 - ' ri := : C j-J—— =3
/

(5.3)

/ • '  . |2+ e  ~  r | / • '  . |2 + c  co r  2 ~ l +1  l 2 + e

/  Z l^ il k i 4 ------  si f  1 1 = 1  a,  I /  J ( = 1  L 1 - r  J

_  ^  “  1 - r  f 2 - '+1 )*+«, QMI
S C 6 , | - p r l — J l0 g ^ ^  =

___------- lo g -^ iM - 7 2 - ' ^ ________ iog_£iléL
(1-/-)1+£lOS 1 —r Ä  - ( l _ r)i+Elog 1 - r  ’

where C(e) depends only on s and, of course, on /(z).

Now we can complete the proof. It is clear that |1 - r e i,p\ and we set

:=  [2*(1—r), 2,+1( l —r)], /  =  0, 1........*

where AT— ĵ log - - -—j +1, and so

'-■/If^n-irSsF-/ if ̂
K r f '  l2+t f 4 y+,ä /fH  Iŵ öJ

dcp
( \ - ry •+
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Thus, from (5.3) we have 

CI  s
(1 ~ r )

C(6)
( l - o ,I +  £ +  <5 Z C , l 2 - li =

1=1

C(e, Ő) 
( 1 - 0 1+E+Ä ’

where C ( g, <5) depends on e, S and/(z). In the same way we can estimate the integral 
from 0 to —7T, and so this completes Lemma 5.

The fact that C(e, S) also depends on /(z) follows from /(z)$ S, so the con
stant of the Koebe distortion theorem depends on /(z).
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ON SUPER LUCAS AND SUPER LEHMER PSEUDOPRIMES

BUI MINH PHONG

1. Introduction and results

Let P and Q be non-zero integers such that D = P 2—4Qt±0. A Lucas sequence 
JR =  {i?„}"=0 is defined by the initial terms R0=0, R} = 1 and by the recursion

R „  =  P R n- i  — Q R n- 2

for n=-l. We shall write R(P, Q) for R when it is necessary to show the depend
ence on P and Q. It is well-known that

(1) Rn = ( a"-/?")/(«-/?),
for any » 3 0, where or and ß are the distinct roots of the equation x2—P x+ Q = 0. 
In the following we say that R(P, Q) is a non-degenerate sequence if (P, 0  = 1 
and ot/ß is not a root of unity.

For odd primes n with (n, QD) = 1, as it is well-known, we have

(2) Rn—(u/n) =  0 (mod n),

where (D/n) is the Jacobi symbol. If n is composite, but (2) still holds, then n is 
called a Lucas pseudoprime with parameters P, Q (or lpsp (P. Qj). We say n is a 
super Lucas pseudoprime with parameters P, Q (or sulpsp (P, Q)) if n is a lpsp (P, Q) 
and each divisor of it is a prime or a lpsp (P, Q).

Lucas and super Lucas pseudoprimes are generalizations of pseudoprimes and 
super pseudoprimes to base an integer o l ,  respectively, namely a composite 
n is called a pseudoprime to base c (or psp (c)) if («, c) =  1 and

c”-1 = l(mod ri),

and we say n is a super pseudoprime to base c (or supsp (c)) if each divisor of it 
is a prime or a psp (c). In case c = 2 we only say n is a pseudoprime or a super 
pseudoprime.

The properties of pseudoprimes and their generalizations have been studied 
intensively, since they can be used for primality tests (e.g. see [1], [6]). We list some 
results which are in connection with ours. K. Szymiczek [11] showed that FnF„+1 
is a supsp (2) for any «>1, where

Fn =  22" +1

1980 Mathematics Subject Classification. Primary 10A35; Secondary 10A10.
Key words and phrases. Pseudoprime, Lehmer sequence, Jacobi symbol, primitive divisor.

Akadémiai Kiadó, Budapest
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is the n-th Fermat number. In [12] K. Szymiczek proved that there exist infinitely 
many supsp (2)’s which are products of exactly three primes. This result was extended 
by J. Fehér and P. Kiss [3] for supsp (c), where c>  1 is an integer with 4f c. In
[7] A. Rotkiewicz has obtained another generalization of Szymiczek’s result, he 
proved that for infinitely many primes p of the form ax+b, where (a,b) = 1, there 
exist primes q and r such that pqr is a supsp (2). In [2] we extended the result of 
Rotkiewicz and the result of Fehér and Kiss mentioned above proving that for 
every integers 1 and o  1 there are infinitely many triplets of distinct primes 
p, q and r of the form ax + 1 such that pqr is a supsp (c). We also showed that 
if the square-free kernel of the base c is congruent to ±  1 modulo 4, then the series

2 — —^  log«

is divergent, where n runs through all supsp (c)’s which are products of exactly 
three distinct primes.

P. Kiss [4] studied the sulpsp (P, Q)'s for non-degenerate Lucas sequences 
R(P, Q) and proved that RipfP  is a sulpsp (P, Q) for every large prime p, further
more he showed that the series

2
1

log« ’

where n runs through all sulpsp (P, Q)'s, is divergent.
The Lehmer sequences are much more general sequences than Lucas sequences. 
Let L  and M  be non-zero integers such that —4MV0. A Lehmer se

quence U—{U„}°10 is defined by initial terms U0=0, Ux — \ and by recursion

jLUn—i — MUn̂ 2 for n odd 
j U„-x — MUn- 2 for n even.

We also shall use the notation U(L, M ) for the sequence U when it is necessary to 
show the dependence on L  and M. For n^o , we have

_  f(«” — /?")/(« — /?) for n odd 
^  " pa" — /?")/(a2 — ß2) for n even,

where a and ß are the distinct roots of the equation z 2 — } ' L z  + M = 0 .  We note that 
in case L = P 2 and M =Q  by (1) and (3) we have

(4) n r p o i - l  u - (p2’ 0  if " odd~  \PUJF‘. Q) if n even,

which is a connection between the Lucas and Lehmer sequences. In the case of 
Lehmer sequences we can assume, without any essential loss of generality, that 
(L , M ) — \ (see [5]). It is not true for Lucas sequences. In the following we also 
say that Lehmer sequence U(L, M) is a non-degenerate one if a/ß is not a root 
of unity.



PSEUDOPRIMES 437

A. Rotkiewicz [8] gave a proper generalization of pseudoprimes for Lehmer 
sequences. A composite number « is called a Lehmer pseudoprime with parameters 
L, A/if («, LMK) — \ and

Un-(LK/n) =  0  (m od  «),

where (LK/n) is the Jacobi symbol and K —L —4M. A number « is called super 
Lehmer pseudoprime with parameters L, M  if each divisor of it is a prime or a 
Lehmer pseudoprime with parameters L, M.

A. Rotkiewicz [8] proved that if U(L,M ) is a non-degenerate Lehmer se
quence with L > 0 and K = L —4A/>0, then every arithmetic progression ax+b, 
where a and b are relatively prime positive integers, contains an infinite number 
of odd Lehmer pseudoprimes with parameters L, M.

The aim of this paper is to extend the results mentioned above for the super 
Lehmer pseudoprimes. We shall prove the following three theorems.

Theorem 1. Let U(L, M ) be a non-degenerate Lehmer sequence. Then there 
exists a positive integer vv„ such that for infinitely many primes p o f the form ax+b, 
where (a, b) = 1 and b=  1 (mod (a, w0)), there are primes q and r such that pqr is a 
super Lehmer pseudoprime with parameters L, M. The constant w0 is effectively com
putable in terms o f L and M.

Theorem 2. Let U{L, M ) be a non-degenerate Lehmer sequence with condi
tion LK=L(L — 4M)>0 and let 1 be an integer. Then there are infinitely many 
triplets o f distinct primes p, q and r o f the form a x+ 1 such that pqr is a super Lehmer 
pseudoprime with parameters L, M.

Theorem 3. Let S l and S2 denote the set o f all super Lehmer pseudoprimes 
with parameters L, M which are determined in Theorem 1 and Theorem 2, respectively. 
Then the series

2  ~i—“— and 2  “I—■—„es, log« „ts, log«
are divergent.

We note that the conditions of Theorem 1 are satisfied for any integer «>1 
if b = 1 and for every pairs a, b if (a,bw„)=1. Furthermore by (4) our results 
remain valid if we replace the super Lehmer pseudoprimes with super Lucas pseudo- 
primes. For example, from Theorem 3 we get

Corollary. For every integers a, o  1 the series

where n runs through all supsp (c)’s which are products o f three distinct primes o f 
the form ax+ 1, is divergent.
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2. Known results and lemmas

First we recall some results on Lehmer sequences and prove two lemmas which 
will be used at the proofs of our theorems.

Let U(L, M) be a non-degenerate Lehmer sequence defined by integers L 
and M  for which LM t±Q, (L ,M )— 1, K =L —4A/V0 and a//J is not a root of 
unity, where a, ß are roots of z2—yLz  + M =0. It is known that for any non
zero integer n with (n, M) = 1 there are terms in U(L,M ) divisible by n. The 
least positive integer u, for which n\Uu is called the rank of apparation of n in 
the sequence U(L, M) and we shall denote it by u(n). If a prime p is a divisor of 
Un but p]MLKU1...Un_i then p is called a primitive prime divisor of U„. It is 
well-known that there is an absolute constant n0 such that U„ has at least one primi
tive prime divisor for every (see A. Schinzel [9] or C. L. Stewart [10]).

Let m and n be positive integers with (mn, MK) =  1 and let p be a prime for 
which (p, 2LMK) = 1. Using the notations defined above, we have

(i) n\Um if and only if u(n)\m,
(ii) u(p)\(p-(LK/p)),
(iii) u(p)\(p—(LK/p))/2 if and only if (LM/p) = 1,
(iv) u([m, n]) = [w(m), n(w)],

where [x, y] denotes the least common multiple of integers x, y  and (LK/p), 
(LM/p) are Jacobi symbols. For these properties of Lehmer sequences we refer to 
D. H. Lehmer [5],

Let a and ß be the roots of the polynomial z2—/ Lz + M  and let K = L —4M.
J. Wójcik [13] showed that there exists a maximal positive integer T such that

(5) j  =  C ’o ^ T ,

where co is the number of the roots of unity in F=Q(]/LK), S£F, 3  is quotient 
of two conjugate integers of F if F is quadratic, is an co-th root of unity and t is 
an integer. In [14] Wójcik proved that for T  in (5) there exists a positive integer e 
such that

(6) M  = ± e T.

Let k v(ri) be the r-th power-free kernel of n, /c2(«)=/c(n), n* be the product of all 
distinct prime factors of n. With these notations J. Wójcik [13, 14] proved the fol
lowing result:

(v) Let U(L,M)  be a non-degenerate Lehmer sequence and let 0 be 
an arbitrary common multiple of the numbers co2T  and 8k(LK)k*(e).  
For any positive integers a and b, where (a, b) =  1 and b =  1 (mod (a, w)), 
there exist infinitely many primes p satisfying the conditions

p = b (moda), p = 1 (mod w) and p|U,p_1)/w.

(vi) The Dirichlet density of this set of primes is equal to <x>Tlw(p([w, a]), 
where co, T, e are given by (5) and (6) and <p denotes the Euler function.

We prove the following property of Lehmer sequences.
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L e m m a  1. Let U(L, M ) be a non-degenerate Lehmer sequence and let p  be a 
prime number with (p ,2LM K) = \. I f  4k(L)k(K)k(M)\u(p) then (LM/p) = 1 and 
u(p)\(p — (LK/p))/2; furthermore (LK/p) = 1 i f  L K > 0.

Proof. First we note that k(mn)=k(m)k(n)  if (m, n) =  l and so k(LK)\k(L)k(K),  
k (L M )= k(L )k (M ),  because (L, M ) = 1 and K —L —4M.

Since L M K ^ 0 we can write k(LK) = ± 2 at and k ( L M ) = ± 2 bh, where 
O^a, b ^ l  and t, h are odd positive integers. It can be easily shown that if a = 1 
or b = 1 then 2\k(L)k(K)k(M ). If 4k(L)k(K)k(M)\u(p)  for a prime p  with 
(p, 2LMK) = \, then by (ii) p  is of the form

(7) p = 4k(L)k(K)k(M )x + (LK/p),

where x is an integer and so (2a/p)=(2b/p)=  1 and (—1 /p) = (LK/p).

Let first LK>  0. In this case
I - i  p - i

(LK/p) = (k(LK)lp') = (2at/p) = (t/p) =  ( -  1) 2 2 (pit) =

= ( -  1 /p)1^  ((LK/p)/1) = ( L K / p ) ~ ( L K / p ) ~  =  1.

Thus p  has the form 4y + 1, where h\y, and so

(8) (LM/p) = (h/p) = (p/h) = (1 /h) = 1.

Now let LK < 0, then L K = L 2—4LM <0  and LM >-U/4>0. Similarly as 
above, by (7) we have

(LM/p) = (A:(LM)/p) =  (2bh/p) = (h/p) = ( -  (p/h) =

(9)
=  ( - \ / p ) ~  {(LK/p)/h) =  ( L K / p ) ~  ( L K / p ) ~  = 1.

Thus, by (8) and (9), (LM/p) = l for any LK^O. So (iii) implies that

u(p)\(p-(LK/p))/2,

furthermore, as we have seen above, (LK/p) = 1 incase LK>  0.
L e m m a  2 .  Let U(L, M ) be a non-degenerate Lehmer sequence and let p, q and 

r be distinct primes. I f

(10) u(pqr)\(p-(LK/p),q-(LK/q), r-(LK /r)),

where (x,y ,  ...) denotes the greatest common divisor of integers x ,y ,  ... then the 
number pqr is a super Lehmer pseudoprime with parameters L and M.

Proof. It can be easily shown by (iv) that if p , q, r are distinct primes, then 

u(pqr) = [u(p), u(q), u(r)].
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Suppose that (10) holds. Let m be a divisor of the number pqr. Since m\pqr 
and pqr\Uu(vv>, by (i) we have u(m)\u(pqr). Thus by (10) we get

P =  (LK/p), q =  (LK/q), r =  (LK/r) (mod
and so

Hence
m =  (LK/m)( mod u(m)).

m \Uu(,m)\ U m - ( L K / m ) >

thus m is really a Lehmer pseudoprime with parameters L, M, which proves Lemma 2.

3. Proofs of the results

Proof of Theorem 1. Let U (L ,M ) be a non-degenerate Lehmer sequence. 
We put
(11) w0 = [co2T, 8k(L)k(K)k(M )kl(e)] ,

where co, T, e are given by (5) and (6); k(L), k(K), k (M ), (e) are the notations
defined in Section 2.

Let a and b be positive integers for which (a, b) = 1 and b =  1 (mod (a, vv0)). 
By the result of J. Wójcik (v), it follows that there exist infinitely many primes p 
of the form ax+b such that

(12) p = 1 (mod iPo) and p|C/(p_1)/wo,
because vv0 is a common multiple of the numbers co2T  and 8k{LK)k^{e).

Let p be a prime of the form ax+b satisfying the condition (12) and (p —1)/2> 
> \LM K \na (??„ is the constant defined in Section 2). As we have seen above, there 
exist distinct primes q and r for which u(q)=(p — l)/2 and u(r)= p— 1. By (ii) 
we have
(13) u(q) = ( p - l ) /2 \q - ( L K /q )  and u(r) =  ( p - l ) \ r - ( L K /r ) .
On the other hand, by (11) and (12), we have

(14) 4k(L)k(K)k(M )\w0/2 and w J2 \(p -\)j2  = u(q).
By Lemma 1, using (14), we get
(15) u(q)= (p - l ) /2 \ (q - (L K /q )) l2  and ( p - l ) \q - (L K /q ) .

Since h’0>2, it can be easily seen that p, q and r are distinct primes, and so by (12), 
(13) and (15) we have

u(pqr)= [u(p), u(q), u(r)\ = 0>-l)|(p-l, q-(L K /q ) ,  r-(LK /rj) ,
and so by Lemma 2 Theorem 1 is proved.

Proof of Theorem 2. Let U (L ,M ) be a non-degenerate Lehmer sequence 
with condition L K = L (L —4M )> 0.  Let a s 2  be an integer. Let w0 be as in (11). 

By (v) there exist infinitely many primes p  of the form ax +1 such that
p  =  1 (mod aw0) and p\Ulp. 1)laVo.(16)
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Let p be a prime of the form ax + 1 satisfying the condition (16) and ( p — l)/2> 
>\LMK\n0. Then there exist primes q and r such that u(q)=(p— l)/2 and u(r) = 
= p — 1. By (ii), as we have seen in the proof of Theorem 1, we get

u(q) = (p - \) /2 \(q - (L K /q )) /2

and since L K > 0, by Lemma 1 we have (LK/q) = l, (LK/r) = 1. Thus 

(17) ( p - \ ) \ q - l  and ( p - l ) \ r - l .

Since p = l(mod a), by (17) it follows that q and r are primes of the form av+1. 
Hence

u(pqr) = ( p - \ ) \ ( p - \ , q - \ , r - \ )

and so by Lemma 2, pqr is a super Lehmer pseudoprime with parameters L, M\ 
where p, q and r are primes of the form ax +  1. It completes the proof of the Theo
rem 2.

Proof of Theorem 3. Let 5, and S2 denote the set of all super Lehmer pseudo
primes with parameters L, M  which are determined in Theorem 1 and Theorem 2, 
respectively.

As we have seen in the proofs of Theorem 1 and Theorem 2, for each prime p 
satisfying the condition (12) or (16), respectively, there are primes q and r such that 
pqr is a super Lehmer pseudoprime and u(pqr)=p — 1. It is well-known that for 
any integer n^O we have

m  -= Mcn,

where C is a positive number which is effectively computable in terms of L  and M. 
Thus we get

pqr \UP̂ \  <  |a|C(p-1) <  |a |"
and so

1 1 1
log {pqr) C log |a| p '

Hence

^  n^s, log« = ^  log (pqr) ^  C log |a| ^  p ’

where i= l  or i = 2  and p runs through all primes satisfying (12) or (16), respec
tively. By (vi) and (18) Theorem 3 is proved.
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ON THE LINEAR DIOPHANTINE PROBLEM OF FROBENIUS

KAI-MAN TSANG

1. Introduction

Throughout this paper, we use lower case letters to denote integers and we use 
[a] to denote the integral part of any real number a.

In §2, we consider the minimization problem:

( 1 )  i ! S  ( * * - ’ [ ■ £ ] ) •

where a, ß, y and <5 are positive integers and £ is any integer. We are able to express 
(1) in terms of the negative continued fraction of ß/ot. This is then applied in § 3 
to prove some theorems concerning a problem of Frobenius.

Given relatively prime positive integers a,, a2, ..., a,„, we say that an integer 
N  is dependent on these a?s if there exist non-negative integers x x, x 2, ..., xm 
such that

N  =  axx  j + a2x2 + ... + amxm.

The problem of Frobenius consists in determining the largest integer gm = 
=g{a,, a2, ..., am) which is not dependent on al5 a2, ..., am. An interesting ques
tion related to this is the determination of the number nm=n(a1, a2, of
positive integers which are not dependent on a,, a2, ..., am.

When m —2, we have the classical result that

g(a, b) = (a— l)(b— 1) — 1
and

n(a, b) = y ( n - l ) ( h - 1).

For m s 3, the problem is much more difficult. Although there have been 
some individual results concerning gm and nm in which the a?s satisfy extra con
ditions (see Selmer [4] for a survey of the problem), the first formulas for g3 and 
n3 were obtained in 1978 by Selmer and Beyer at Bergen [5] and, almost simul
taneously, by Rödseth [2] at Stavanger. The formulas of Rödseth, however, are 
much simpler.

Let L be a complete residue system modulo ax and let t, be the smallest integers 
s /  (mod a j  which is dependent on ax, a2, am. Rödseth derived his results

1980 Mathematics Subject Classification. Primary 10B05; Secondary 10B35. 
Key words and phrases. Linear diophantine equations, Frobenius problem.
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from the formulas:
gm = —öi + max r,

t i L

of Brauer and Shockley [1], and

— —^ (ai — 1) +  — ^  h ^ ai liL
of Selmer [4], His proof was short and elegant and was built on a counting argu
ment. About a year later, he managed to extend his idea to g(a1, ..., am) and 
n(ax, am) when ax, a2, ..., am is an almost arithmetic sequence, that is, when 
m — 1 of the a,-’s form an arithmetic sequence.

Our solution to (1) enables us to prove all the theorems of Rödseth [2, 3] via 
a different route. Unlike his proofs, we actually obtain explicit formulas for each i, 
and we do not employ the type of combinatorial argument he used. We shall illus
trate the ideas and the techniques by proving his formula for g(a, a+d, ..., a+kd, c).

2. A minimization problem

The solution to the minimization in (1) is given by

T heorem  1. Let , vu, Q_x and Q0 be positive integers satisfying
(2) s0 <2_i >  j _i Q0.
We define the sequences qx, q2, ... and sx, s2, ... by the following Euclidean algo
rithm:

s—i ii-^o — ̂ i» 0 -*= Ji -c s0,

Sq =  q2^1 ^2s 0  <  ^ i ,

(3) :
s r —1 =  Qr + l s r ~ Jr + 1> 0 ^  ^r + l  ^  s r>

s p — i  —  i p + i ^ p i  0  —  ■ S 'p + i  ■ <  s p -

Let Z0=Z0(^) = ̂  be some integer and, for r s 0, define

z r+1 = z r+1(0  = - [ - ^ - z r(o]
and

(4) Q r + l  — <7r + l Q r ~  Q r - 1 -  

Then there exists a unique integer v^O such that

(5) öo > Qi > Ő2 =*■ ••• > öv > o s  G»+1 > ••• >  Gp+i-
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Moreover, i f

we have
iif =  z v+1( O ß v - z v« ) ß v+1.

Remark. In case that (2) is not satisfied, we have

M  _  JO, when J0ß - x ß 0, 
l-o o , when J0ö - i  <  J-iöo-

Proof. First of all, we notice that for — l s r s p  we have, by (2),

s r + l Q r ~  s r Q r  + l  =  s r Q r - 1  ~  s r - l  Q r  =  ••• =  s o Q - l  — ̂ - lß o  >  0. 

Therefore,

ß r + l ^ ^ ß r ,  - I S r S p - l
s r

and

ßp+i *= ~ ~  Qp = 0- 

So, there exists a unique vgO such that

ßo >  ß l  ••• ßv  ^  0 S  ßv + l» ßv + 2) •••» ß p  + 1-

For r s v + 1, since <7r+1s 2 and ß rSO, we have

ß r  + 1 =  (?r+l - l ) ß ,  +  ( ß , - ß r - l )  S  ß r +  ( ß r -  ß , - i ) .

This gives, inductively,
ßv+ i ß » + a ^  ••• ^  ßp+i>

and (5) then follows.
Now, using (3) and (4), we can write

M — min
xst

=  min *sz0(4)

( ß - i“ 9 iß o ) * - ß o [ ~ * ] )

If v=0, then ß x̂ 0  and

M  = - ßxZ0 ( { ) -  ß0 [ - ^ Z 0(0 ]  = Zx ß o - Z0 ßx-

If v s l  so that ßx>0, we let
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The condition is translated into [— s1£/s^\=Z1 and, for each y = Z 1,
we have

S1 S1
Since —ßi< 0, the minimum occurs at the upper end, that is

*=BH-
Notice that for each y = Z , , this choice of x satisfies x ^ £ . Thus

M  = min (öo^-Ö !y^zi LJi J)
This reduction procedure can be repeated until

Now, — £2v+i=0- Therefore, the minimum is attained at the lower limit of x, 
that is

M  = — Qv+i Z v <2v I ~ Z vj =  Z v+iQ v — Z vßv+i.

This proves our theorem.

3. Formula for g(a, a + d, ..., a + kd, c)

Our Theorem 1 enables us to give an alternate proof of Rödseth’s formulas in 
[2, 3]. For the purpose of illustration, we shall prove his formula for g(ax, a2, ..., am) 
when {at} is an almost arithmetic sequence.

Let a, d, c, k be given positive integers such that (a, d) = 1. Let

Suppose
ak = a + kd.

0a, c) = h s  1.
There exist positive integers u, v, m and n such that

and
au — cv — h

(6) am — dn — 1.
Writing a—ha' and c=hc', we have

(7) a'u — c'v = 1.
We shall use these equations from time to time, but sometimes without explicit 
references.
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Let
(8) =  nc, s0 = a

and define the sequences sx, s2, ... and qí ,q 2, . . .  according to (3). Similarly, 
we put
(9) Q -i =  c(n + km), Q0 = ak 
and define Qk,Q 2, ... by (4).

We shall encounter in the sequel several sequences generated by the recurrence 
relation (4). It is easy to see that for any two such sequences {ar}, {ßr}, that is, ar+1 = 
= ir+ ia r-a r- i and ßr+i=qr+ iß ,-ßr-i for e g 0, we have

<xr + l ß r ~ ccrßr+l =  a0 ^ - l ~ a -1^0-

Following Rödseth, we use the formula:

(10) g(a, a + d, ...,a  + kd, c) =  — a +  max r,.I €*»
For each l£L, /, is the smallest integer = /(mod a) such that

tx =  ax0 + (a + d)xi + ... +(a + kd)xk + cz
for some non-negative integers xu, xx, ..., xk and z. Using Lemma 1 of Rödseth [3], 
this is equivalent to

i, =  ax + dy + cz, dy + cz =  /(mod a),

with 0SyS tkx  and z^O. By the minimality of tt , x  must be the smallest integer 
subject to the constraint y ^ k x ,  that is x=  —[—>’//<]. Thus

( 11)

\ - L \ + dy + cz

y dy + cz —l
k a

where r, is the smallest integer with a representation

(12) T/ =  aky + kcz, dy + cz = /(mod a), y, z ^  0.
Suppose zsO  is given. Equations (12) and (6) imply that y=n(cz—/)(mod a). 

The smallest such non-negative y is given by

9
y  =  n(cz — /) “  ß [ ~  (cz — /)] • 

t/ =  min |c(/c -f nak) z -  aak ^  \nc z -  -^-jjJ -  ak nl.

Thus,

(13)
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Let

' - [ - i ' l
It follows easily from (6) and (7) that

c(k + nak) =  ac(n + km ) =  aQ-i

nc'dv—a'(vcm — u) =  1.
and

Therefore,

- ! ( „ * - £ ( ) ]  =  [ T (» c 'z + n ]

=  (z + — (vent — «)/'

and from (13), (9) we have

t, = min IaQ -xz — aQ0 j ^ - ( z  + cft;/')jj + aak(vcm — u)l' — aknl

=  ami n  | ö _ i Z — Qf] | - ^ r - z j j  +  a { a fc( i ; c / n - M ) -  Q_1dv}l' — aknl

= a min ]Q -1z —Q0 \ z\ \ — a(h + kud)l' — aknl. 
zm dvi l l  I|| Jj

We now have a minimization problem to which Theorem 1 applies. Thus, if 
Z 0(Z) = Z and, for rssO,

(14) z r+1( 0 = - [ - ^ - z r(o ] ,
we have

t, =  a(Zv+1(dvl')Qv — Z v(dvl')Qv+1) — a(h + kud)l' — ak nl,

where v s  0 is defined by Qv >  0 ^  ß v+1. Substituting this into (11), we obtain

ti =  l —a {(k + nak)l+ a(h  + kud)l' +  aZv(dvl')gv+1 -  aZv+1(dvl')ß v}]

(15) =  l -  {(n + km )l+ (h + kud)l' + Z v(dvl')Qv+1-  Z v+1(dvl’)Qv}^

= -n d l- a u d l '- a [ j{ n l+ h l ' + Z v(dvl')Qv+1- Z v+1(dvr)Qv}\ .

Let A be a complete residue system modulo a'. The set {— cx+dy\x£A, O ^y ^ h )  
contains a elements which are pairwise incongruent modulo a. Therefore,

L — {— cx + dy\x£A, O s ^ i ) .
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When / is replaced by —cx+dy^L, T becomes 

and dvl' becomes
dv(nc'x—mcY y) = (am — 1 )(a'u — \)x  — a' dvmy

=  x  — amx +  a' u(am — l ) x —a' dvmy. 

It is easy to see that for any rsO  and any integers e, f  we have
Z r(e+ fd )  = Z r(e)+fs'r 

where s' =sjh.  Thus, Z r(dvl') becomes
Z T(x) — srmx + s' {u(am — l)x  — dvmy}. 

Substituting all these into (15) and utilizing the fact that

■Sv+i Q v ~ s v Q v + i  =  s o Q  - i ~ s - i Q o  — ° k

and
»̂ + 1 Qv~ sv 0» + i =  c k,

we have

t-cx+dy = - c x + d y - a ^ ( r y  + Qv+ iZ v(x)~  ö vZv+1(x))] •

Thus
m a x /.=  max t-cx+dvl£L yO^ych

(16)

=  d ( h —  1) + max
A

| — cx — a [j ( l  —h + Qv+1Z v(x)—Qv Zv+1(jf))j

Lemma. Let P_x= -

oII and, for rsO ,

^r + 1 =  ir + lPr—Pr-1-
Define the functions

K(z) = Pr+1Z + Pr[ - s7 zl  ' - ° ’ h 2 .......
Then, for any given integer y, the set o f integers x  such that Z r(x)=y consists o f all 
those integers in the interval ( lr(y— 1), Ar(y)].

Proof. We use induction on r. For r=0, the lemma is true because A„(z)=z 
and Z 0(x ) -x .  Suppose r S 0, then, by (14), Z r+i(x)=y if and only if

s r + l  s r + l
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By the induction assumption, the largest such x is equal to Ar([j,y/jr+11]) and the 
smallest such x is equal to Ár([ír(y—l)/jr+1]) +  l. Hence, it suffices to show that

Using the induction assumption again,

- p' n  [‘‘■n , ~ i f ^ >\ + F i{ ~ y + i l i r e \ '

where 9 is the fractional part of sry!sr+1. Since 5r+10/jr€[O, 1),

= Pr + 2y  + Pr+1L ^ - y \
L *>r + l J

=  K +i(y)-
This proves the lemma.

Applying this lemma to (16), we have

m axi, =  if (A -l)  +  m axj-c(A v( y - l ) + l ) - a [ - i ( l - A + y ß v+1 +  Öv[ - Ĵ > ' ] )  }

(17) =  d ( h - l) + c(Pv+1-  1) +  max E(y),
y e  A

say, where

£ 0 ) = - CPv+1y - c P v[ - ^ ± l ( > - l ) ] - ü [ l ( l - / I+ ^ ö v +i +  ß v[ - ^ - j ] ) ] .

It is easy to see that E (y±s'v) = E(y), that is, E(y) is a function of the residue 
classes modulo j'-

Let Q ^ —mh—ndu, q0— — dv and, for r s 0,

6 r  +1 =  < ]r+ lQ r~  Q r -1 -

It follows from (6), (7) and (8) that

(18) Q v s v + i ~ 6 v + i s v  — 6 - iso~ 6os'-i = !•
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Thus, (0 v, j ') = 1 and so,
rnax/TO») — max .EX— q v x )  y x

= max jcgv Pv+lx  — cP, | — 1 +  ̂ Sv~—~ j

- fl[ i ( i - h - x 0ve v+1+<2v

By (18), this is equal to

max ■

= max

{c(gv Pv + 1-  Qv + 1Pv)x -c P v [ * ]

-  a [ |-  ( 1 -  A -  (ev őv+i -  Qv+i Q J x + öv [-p- 

| -  cdvx -  cPv y,+^/+X j -  a  ̂1 -  h -  (udk + h)x+ Q v

since Q-iPf, — e0P_! = —dv and q~i Q0 — QoQ -i — h + udk. Thus

max.y

= max;
O S J < j '

= max <

- h - h x
1

[dh(s'v -  s'y+1 -  1) -  a [ 1  (1 -  h -  h (s : - s ’v+1 -  1))], 

dh(s'v -  1) -  cPv -  a [ 1  (1 -  h -  h(s'v -  1))] J

= dh(s'v -  1) — min | c//jj(+1 + a [ - - -  ^  + 1 ] ,  cPv + a [  ̂~̂  ? ] |  •

Substituting this into (17), we get

max í, =  d(h— l) + c(/>v+1— 1 ) + d(sv — h)I € Li

- m i n |^ v+1 +  f l | Jv+1- fcy,+ 1 j, cPv+a  •

In view of (10), we have proved
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T heorem  2. I f  (a ,d )=  1 and k, c>0, then

g{a,a + d,  . . . ,a  + kd ,c ) = - a  + c(Pv+1-  1) + í/(j v-  1)

-m in  {* „+1 +  a [ ' y il~ / v + 1 ] , cPv + 4 ^ ] } •

The other results of Rödseth contained in [2, 3] can be proved along similar lines.
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SPECTRAL THEOREM FOR NORMAL ELEMENTS 
OF GH^-ALGEBRAS

JÁNOS KRISTÓF

1. Introduction

First of all we give the broad outlines of the spectral problem for normal ele
ments of C*-algebras, however, we will not enter into the details of the extended 
historical background of the spectral theorem. The evolution of the classical spectral 
problem is detailed e.g. in [5].

If L  and U  are both cr-complete orthomodular lattices then a mapping u : L-+L' 
is called a a-orthohomomorphism between L and L' if it satisfies

(i) w(ex) =  u(e)x for all e£L,

(ii) u( V e„)= V «(<?„) for every sequence (<?„)„ cn in L.
n£N n£N

Then the axioms of ortholattices imply that u is an order and unit preserving map, 
such that u( A en)=  A u(en) for every sequence (e„)n6N in L.

ni N n€N

If 38 is a cr-algebra of subsets of the set T  then 38, equipped with the inclusion 
relation is a cr-complete Boolean lattice admitting a unique orthocomplementa
tion, thus 38 is a cr-complete Boolean ortholattice. In the sequel every cr-algebra 
will be treated as a cr-complete Boolean ortholattice, whose structure is that of 
described above.

Let A be a unital C*-algebra and suppose that the orthocomplemented partially 
ordered set L(A) of self-adjoint idempotents (i.e., projections) of A is a cr-complete 
lattice. By a projection valued measure in A we mean a cr-orthohomomorphism 
defined on a cr-algebra taking values in the cr-complete orthomodular lattice L(A). 
As it will be clarified in Section III (in a more general context), given a cr-algebra 
38 of subsets of the set T and an arbitrary projection valued measure u: 38-*L(A) 
in A, the mapping u can be lifted uniquely to a unit preserving »-algebra morphism 
ü between the unital C*-algebra of measurable bounded complex functions on T 
and A. The morphism ű will be referred to as the integral defined by u.

Then the general spectral problem for normal elements of C*-algebras can be 
formulated as follows. Given a unital C*-algebra A such that L(A) is a cr-complete 
lattice and a normal element jc in is there a uniquely determined projection 
valued measure u: 38(SpA(xj)-*L(A) defined on the o-algebra of Borel subsets 
of the spectrum Spx (jc), suchthat w(idSp̂ (i))=.v?

1980 Mathematics Subject Classification. Primary 46L05, 46H30; Secondary 46G12. 
Key words and phrases. Spectral resolution, vector integral.

Akadémiai Kiadó, Budapest
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It is obvious that the answer is negative, in general. For instance, if A is the 
unital C*-algebra of continuous complex functions defined on a connected com
pact Hausdorff space then L(A) is a complete ortholattice since it contains exactly 
two elements. Consequently, every element of A lying in the range of the integral 
defined by a projection valued measure in A is necessarily equal to a constant multiple 
of the unit of A, though A can have other normal elements.

This example shows that the unital C*-algebra examined must contain a suffi
ciently large number of projections in order that we might give an affirmative answer 
to the spectral problem for its normal elements.

In this paper the spectral theorem will be proved for the normal elements of 
GW *-algebras (see [7]). It is worth mentioning that our proof will not (and cannot) 
follow the well-known classical way of reasoning, i.e. the solution of the problem 
will not (and cannot) be reduced to the commutative case, although we also have 
an independent spectral theorem for commutative G IF*-algebras (see [7] Th. 4). 
Moreover, our result, applied to the normal elements of the complete GW*-algebra 
of the continuous linear operators in a Hilbert space furnishes a new proof of the 
classical spectral theorem.

2. Some results concerning GlF*-algebras

The notion of weak GIF*-algebras was introduced in [7], however, for the 
sake of completeness and to fix the terminology, here we repeat the basic notions 
and give a short summary of the most important results concerning weak GW*- 
algebras.

If A is a * -algebra then A* denotes the vector space of linear forms on A and 
the weak a (A, A*) and a (A*, A) topologies relate to the canonical duality between 
A and A*. Further, if A has a unit (denoted by 1 throughout this paper) and P is 
a set of positive linear forms on A then P (l) stands for the set { /€ F |/( l)S l} . 
Besides, if P (l) is non-void and a (A*, H)-bounded then || • ||P denotes the map 
from A into R + defined by

M p := sup if{x*x) 
f t  p(. i)

for all x£A. It is easy to see that || • [|P is a seminorm on A; the dual semnormi 
is denoted by || • ||p.

Given a unital * -algebra A and a subset S  of A*, the linear subspace of A* 
spanned by S  and the convex hull of S  is denoted by sp(<S) and co(S), respec
tively, while the a (A*, A)-closed linear subspace of A* spanned by S  and the 
a (A*, A)-closed convex hull of S  is denoted by sp(G) and £0 (5 ), respectively. 
If P is a set of positive linear forms on A such that F (l)  is non-void and a(A*, A)- 
bounded, then the || • ||p-closed linear subspace of A* spanned by S  and the || • Up- 
closed convex hull of G will be denoted by sp(S) and cö(.S’), respectively, provided 
no confusion arises as for P.

I f / i s  a linear form on the * -algebra A then for every x£A  we define the linear 
forms x • /  and f - x  on A as the mappings y>-*f{xy) and y*-+f{yx), respectively. 
If f£A *  and x ,y£A  then x - f - y  stands for (x - f) -y .
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The pair (A, P) is called a weak GW*-algebra if A is a unital * -algebra and 
P is a separating set of positive linear forms on A satisfying

(I) P (l) is non-void and a (A*, /l)-bounded.
(IIW) A/£P and x* - f  • x£co{P) for every A£R + , /€ P  and x£A.

(III) * -/£sp (P ) for every x€A  and /£P .
(IV) A is sequentially complete with respect to the uniform structure defined by 

the cr(A, sp (P)) topology.
The weak G IT*-aIgebra (A, P) is referred to as a G W*-algebra if it satisfies

(II) A/£P and x*-f-x£cö  (P) for every A£R + , /£ P  and x£A.
If besides (A, P) satisfies

(IV.) A is quasi complete with respect to the uniform structure defined by the 
o{A, sp(P)) topology,

then (A, P) is called a complete GW*-algebra (see [7]).

The spectrum of an element * in the unital algebra A will be denoted by Spx (x), 
or if no danger of confusion as for A, the letter A will be omitted.

If T  is a compact Hausdorff space then <£’c (7’) denotes the commutative unital 
C*-algebra of complex continuous functions defined on T. Further, 38{T) and 380(T) 
denotes the u-algebra of Borel and Baire subsets of T, respectively.

Given a tr-algebra 38 of subsets of the set X, we choose to write #c(A r, 38) for 
the commutative unital C*-algebra of complex bounded measurable functions 
defined on X. Here the C*-norm of #c(T , 38) equals the sup-norm ||| • |||x on X.

If (A, P) is a weak GB^-algebra then
— A is a C*-algebra whose C*-norm equals || • ||P (cf. [6] Th. 2 and [7] Prop. 1),

— the <r(A, sp(P)) and a (A, sp (P)) topologies in every C*-norm bounded sub
set of A (cf. [6] Lemma 1),

— the multiplication in A is left and right continuous on C*-norm bounded subsets 
of A with respect to the a(A, sp(P)) topology (cf. [6] Lemma 2) and the involu
tion of A is continuous in the same topology,

— the order in A defined as xS.y  iff f { y —x)£R+ for all /£P , coincides with 
the algebraic order of the * -algebra A (cf. [7] Prop. 1),

— the orthocomplemented partially ordered set L(A) of projections of A is a <7-com- 
plete orthomodular lattice admitting a separating set of cr-additive states (cf. 
[7] Th. 1), moreover, if (A, P) is a complete weak GlT*-algebra then L(A) is 
a complete orthomodular lattice admitting a separating set of completely additive 
states (cf. [7] Th. 2),

— the partial isometries are countably summable in A and, consequently, the equiv
alence of projections is countably additive (cf. [7] Prop. 2).

If (A, P) is a commutative (7 JF*-algebra then

— the »-algebra A is a Rickart »-algebra and the set L(A) is total in A with respect 
to the C*-norm topology (cf. [8] Th. 2),



4 5 6 J. KRISTÓF

— if x£A  and 9X denotes the unique unit preserving »-homomorphism from 
%?c (Sp (x)) into A such that Ox(\dSp(x))~ x  then 0X has a unique extension 
0X: #"c(Sp(x), 8ft (Sp(x))) — /t which is a unit preserving »-homomorphism with 
the property

f { ? PA < p ) ) =  f  < p d { f o O x )
Sp(x)

for every f£P  and <p€^c(Sp(x), 8ft(Sp(x))) (cf. [8] Th. 4).

3. Vector integrals

In order to give a concise formulation of the general spectral problem for 
normal elements of unital C*-algebras, we have to define the integral generated 
by a projection valued measure. In this section such a definition will be done in a 
very general context.

If á? is a ring of subsets of the set T then Sc (T, 8%) denotes the »-algebra of 
complex ,^-step functions defined on T. We write <SC{T, 8ft) for the closure of 
gc (T, 8ft) in the sup-norm topology. Obviously, dc (T, 8ft) is a commutative C ̂ alge
bra the C*-norm of which coincides with the sup-norm ||| • |||r  on T. It can be 
shown easily that a subset E  of T  belongs to 8ft if and only if Xe£$c(T, 8ft). More
over, if 8ft is a e-algebra of subsets of the set T  then <$C(T, 8t)=&c(T, 8$).

It is well-known that given a ring 8ft, of subsets of the set T and a vector space 
F  over the field of complex numbers, there is a canonical linear isomorphism be
tween the vector space of additive set functions 8ft-*F and that of the linear oper
ators £c {T, 3ft)—F. Consequently, we may write the same symbol for an additive 
set function 3ft--F and for the associated linear operator. If u: 8ft-*F is an addi
tive set function then the corresponding linear operator will be called the simple 
integral generated by u.

P roposition  1. Let 3ft be a ring of subsets o f the set T, F a sequentially complete 
locally convex Hausdorff space over the field o f complex numbers and u: 8ft-*F is 
an additive set function. Then the following statements are equivalent:

(i) There is a unique sup-norm continuous linear operator ü : SC{T, 8ft)-*F 
with the property that ü (yE) = u(F) for every E88ft.

(ii) The simple integral generated by u is sup-norm continuous.
(iii) The range o f u is a bounded set in the topological vector space F.
P r o o f . If m is a linear operator satisfying the conditions of (i) then the restric

tion of ü to $c (T, 8ft) coincides with the simple integral generated by u, thus (i) 
implies (ii). On the other hand, since F is a sequentially complete Hausdorff 
topological vector space, if the simple integral generated by u is continuous then 
it can be extended uniquely to SC{T, 8ft) as a continuous linear operator, thus (ii) 
implies (i).

It is evident that (iii) is an immediate consequence of (ii). It remained to show 
that the implication (iii)=>(ii) holds. Let F' denote the complex vector space of 
continuous linear forms on F. If/) is a continuous seminorm on F then the Hahn—
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Banach theorem yields p(z)=sup |/(z)| for all z£ F, where
K A ' r

Ap := {f€F'\\/z€F: |/(z)| ^  p(z)).

Given an element f£ F ', the mapping / o h : 01—Q is a bounded additive set func
tion and the simple integral generated by / o h  coincides with the composition of/  
and the simple integral generated by u. In the subsequent inequalities we shall use 
the well-known fact, that if p: 31—C is a bounded additive set function then the 
total variation \p\ of p satisfies the inequalities |ju(<p)|s|/x|(l9 |) for (p££c (T, 3%) 
and |ju|(£)^4 sup |/x(£,')| for E£3fc.

E ' i »
E ' t z E

Let p be an arbitrary continuous seminorm on F and <p a fixed element of 
<?c (r, 31). Then we have

p(u((p)) = sup |/(«(q»))| S  sup | / oh|(|<p|) si |||<p|||r sup|/°w|([<p ^  0])
f í A ' p  f í A ' p  f í A ' p

S  4 |||? |||r sup sup |( /oh)(£}| =  4(fupp(H(£)))|||<p|||r
f Z A ’p E t a  E i »

and the number sup p(u(E)) is finite, since the range of u is bounded in F. This
E i »

means that the simple integral generated by u is continuous in the sup-norm topology, 
thus (iii) implies (ii).

There are two widely used corollaries of this proposition.

Corollary 1. Let {ft be a ring of subsets o f the set T, Abe a Banach algebra and 
u: 3t-+A is an additive and multiplicative set function (i.e. u(EC]E') = u(E)u(E') 
for every E, E'£8t). Then the following statements are equivalent:

(i) There is a unique continuous morphism u between the Banach algebras &C{T, 0Í) 
and A such that ü (Xe ) — u(E) for every EZ3t.

(ii) The range o f u is a bounded subset o f A.
Proof. The multiplicativity of u assures that the simple integral generated by 

h be a morphism between the algebras ßc (T, 3/1) and A. Then our proposition is 
a simple consequence of Proposition 1.

Corollary 2. Let 3/1 be a ring of subsets o f  the set T, A a C*-algebra and 
u: 31 —A is an additive and multiplicative set function. Then the following statements 
are equivalent:

(i) There is a unique morphism u between the * -algebras ^c ( T, 3t) and A such 
that ü(xb) = h(£) for all E£3t.

(ii) The range o f u consists o f self-adjoint idempotents (i.e. projections) o f A.
Proof. It is easy to see that the simple integral generated by u is a morphism 

between the »-algebras Sc (T, 3t) and A if and only if u is multiplicative and u(E)* = 
—u(E) for all E£3t. Since the projections of a C*-algebra are in the unit ball and a 
morphism between C"-algebras is necessarily continuous, our assertion is an im
mediate consequence of Proposition 1.

i t
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D efinition 1. If M is a ring of subsets of the set T, F a sequentially complete 
complex locally convex Hausdorif space and u : M-~F is an additive set function 
the range of which is bounded in F, then the linear operator ü defined in Proposi
tion 1 (i) will be referred to as the F-integral generated by u.

R emark 1. The existence of the F-integral generated by an additive set func
tion taking values in F depends merely on the duality between F and F', since the 
bounded sets in F coincide with the weakly bounded sets.

R emark 2. If G is another sequentially complete complex locally convex Haus- 
dorff space and L: F-+G is a continuous linear operator and the F-integral gen
erated by the additive set function u: M — F exists then the G-integral generated 
by the additive set function Lou: M—G also exists and Lou=LoU.

R emark 3. Let MF(T,M) denote the vector space of the additive set func
tions M-~ F with bounded range and let d£{ßc {T, M)\ F) be the vector space of 
the sup-norm continuous linear operators from £C(T, M) into F. By virtue of 
Proposition 1, the map

M y(F M) -  Se{£c (F, M)\ F ); « — u
is a linear isomorphism, provided the complex locally convex Hausdorif space F is 
sequentially complete. The inverse isomorphism is the mapping

Se(fc {T, M); F) -  M bF(T, M)\ 6 ~  ue,

where uä{E):—0{yE) for all EZM and 0£JF(<fc (F, M); F).

Now we are going to select and characterize an important subspace of 
JF(Sc(F, My F).

P roposition 2. Let M be a ring of subsets in the set T, F a complex locally con
vex Hausdorff space and {Sq{T, M); F). Then the following statements are 
equivalent:

(i) For every uniformly bounded sequence (<pJn€N in S"c(T, M), i f  <p„-*-0 
pointwise in T then 0(q>n)-+0 in the weak o (F, F')-topology.

(ii) For every uniformly bounded sequence (cp,,),,eN in <?C(F, M), i f  q>„-*0 
pointwise in T then 0((pn)—0 in the weak a(F, F')-topology.

(iii) For every sequence (F„)„€N of pairwise disjoint sets in M, i f  (J En£M
n£  N

then the series 2  Ms (F„) is summable in the o(F, F')-topology and its sum equals
ntfi

«*(U  K )■
n  6 N

(iv) For every f ^ F ', the function foue: M-+G iso-additive.
P roof. Obviously we have (i)-=*-(ii)=>(iii)--=>-(iv).
In order to prove that (iv) implies (i), assume that (<?„)„ eN is a uniformly 

bounded sequence in Sc (F  M) such that <p„->-0 pointwise in T. Let /  be a fixed 
element of F'. We have to show that f(0(cp„j)-~0. Since by (iv) the map fo u e: M—C 
is a bounded u-additive set function and the elements of <?C(F  M) are bounded, we
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have (pn££PX{T, St,foug) for n£N. Further, the set E:— (J [<£„^0] is a coun-
«€N

table union of the elements of Si, thus the function ip:=(sup |||<p„|||r )X£ is integ-
n€ N

rable with respect to the bounded complex measure fo u e. Then the theorem 
of Lebesgue applied to fo u g gives that J  <p„ d (/ou0)—0. Since the C-integral

T
generated by the additive set function fou0 coincides with the Lebesgue extension of 
fo u g restricted to FC(T, Si), we finally obtain that/(0(<p„)) =  /  <Pn d(/OMfl)-*-0.

T

D efinition . Given a ring Si of subsets of the set T and a locally convex Hausdorff 
space F over the field of complex numbers, the linear operator 9£JF(S’c (T,St); F) 
is called of Lebesgue type if 9 satisfies the conditions (i)—(iv) in Proposition 2. 
Further, an additive set function M£(T, Si) is called weakly a-additive if u — in 
lieu of Ug — satisfies (iv) in Proposition 2.

We shall denote by SFl(Fc(T, Si); F) and 93Jf (T, Si) the vector space of 
Lebesgue type operators in S£{ßc (T, Si); F) and the vector space of weakly a-addi- 
tive set functions in M£(T, Si), respectively. In fact, Proposition 2 combined with 
Proposition 1 yields that the mapping

&l(*c(T, Si); F) — m bF(T, Si); 9 ~ u e

is a linear isomorphism, provided F is sequentially complete.
To end this section we prove an alternative form of Proposition 6 in [3] Ch. VI, 

§ 2, n° 3. In order to do this we need some notions and notations.
Let T be a compact Hausdorff space and F a complex locally convex Haus

dorff space. Then a sup-norm continuous linear operator from %>c(T) into F is 
called an F-valued Radon integral on T. The vector space of F-valued Radon integrals 
on T  is denoted by SF(<éc (T); F). If 9^.SF(^C{T); F) then

^c(T , 9) := fl ^c(T ,fo9)
f€F'

where F' stands for the topological dual of F. Then the weak integral generated 
by 9 is the linear operator 9'* from F£}dT, 9) into the algebraic dual F'* of F' 
defined as

0'*o? )( /) :=  fcpd (fo9 )
T

for every (pd£Fc(T, 9) and /€ F '.  With regard to the Hahn—Banach theorem, 
the complex vector space F is embedded into F'* algebraically by the map z>—z, 
where z (/):= /(z ) for all /€  F '. That is why we identify F with the corresponding 
linear subspace of F'*.

If T is a compact Hausdorff space then for every ordinal number okcOí we 
define by ^-induction the function space (€q{T) over T  as follows

li*
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(i) V°(T):=VC(T).
(ii) If 0<a<co1 and for every ordinal number /?<a the function space ^ ( T )  

is defined then (p ^ ^ iT ) if and only if cp is a function T-+C and there is a sequence 
(9«)nen  of functions in 1J (€$,(T) which is uniformly bounded and converges to <p

/?<a
pointwise in T.

Then we define IJ *&£(T). Simple topological considerations lead
a<co1

to the result that ^ ( T )  coincides with the set 3$0(T)) of complex bounded
Baire functions on T. The sequence of function spaces (<8’£(7’))a<a)x wdl be referred 
to as the standard graduation of (ß f  (T).

Finally, if T is a compact HausdorfF space then T ) will denote the vector
space of complex universally integrable functions defined on T. It is easy to show 
that ^ ( T )  consists precisely of the complex bounded universally measurable func
tions defined on T. Applying the theorem of Lebesgue, by cox-induction, we obtain 
that ^ ( r ) c ^ ( T )  for every ordinal number a<a)j, thus (ßc (T)<^<ß f‘(T)czJß^(T).

A detailed study of the theory of integration with respect to vector valued 
Radon integrals can be found in [3] Ch. VI.

P ro po sitio n  3. Let T be a compact Hausdorjf space, F a complex locally con
vex Hausdorff space and 0 an F-valued Radon integral on T.

(i) Jf F is sequentially complete in the a(F, F')-topology then O'* f ß f  (T ))c  F.
(ii) I f  F is quasi complete in the o(F, F')-topology then 0'*(SFq(T, 0))c F.
P r o o f . In order to prove (i), by coj-induction, we show that 0'*(rß^{Tj)ciF  

for every ordinal number a-^aq. Since the restriction of O'* to ^ ( T )  coincides 
with 0, the assertion holds for a=0, obviously.

Assume that 0<a-=co1 and 0 '* ( ^ ( r ) ) c F  for every /?-=oe. Let cp be an 
element of %>q(T) and choose a sequence (<p„)„eN in (J *ßf{T) such that (pn-*q>

ß-CtX
pointwise in T and sup |||<p„|||r < + °° . If f£ F ' then the theorem of Lebesgue

n t  N
applied to the sequence (<?„)„en and to the complex Radon integral foQ provides that 

0'* (<?„)(/) -  f  (Pnd(foO) -  f  cpd(foO)= O'*
T  T

so 0'*((p„)^-6'*((p) in F'* in the a(F'*, F')-topology. Consequently, (0'*(<p„))„€N 
is a Cauchy sequence in F'* with respect to a(F'*, F'). Since, by the induction 
hypothesis, we have 0/*(<p„)€-F(«£N) and the restriction of a(F'*, F') to F equals 
0 (F, F')\ we deduce that (O'*((p„))niN is a Cauchy sequence in F with respect to 
the o(F, F')-topology. Then the sequentially completeness of F with respect to 
the o(F, F')-topology implies the existence of an element z in F such that 0,*(<p„)-*-z 
in F  in the o(F, F')-topology. Then 0'*((p„)—z in F'* in the o(F'*, F')-topology 
also holds, thus 0'*((p)=z£F.

In order to prove (ii), first we denote by £Fq(T, 0) the vector space of com
plex bounded 0-integrable functions defined on T  and show that 0'*(£Fq(T, Oj) c  F. 

For every f£F ' define the mapping || • from Ld£(T,6) into R + as follows

\\<P\\o,f-= jW \d \f°0 \
T
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for every (p £ ^ (T , 0). Then (II • lla,/)/cr is a family of seminorms on Ff£(T, 0) 
determining thus a locally convex topology ST on £Fq{T, 0) (which is not a Haus- 
dorff topology, in general).

Since |(/o0)(<p)| s\\<p\\o'f for c p ^ c (T) and/£F ', the linear operator 0: (T) — F
is continuous in the and <r(F, F')-topologies in # c ( r )  and F, respec
tively.

Let B denote the closed unit ball of the C*-algebra ^ ( F ) .  Clearly, if c€R + 
then cB is a bounded set in i?c(F, 0) in the topology SP. Indeed, sup \\(p\\e_f S
z*c\foO\(T)< +°° for every f£ F '.

Next we show that each element (p of £Pq{T, 0) belongs to the closure in the 
topology ST of the set ]/2 |||<p|||r F. Indeed, let (pZ&^iT, 0) be a fixed function 
and V an arbitrary neighbourhood in the topology ST of 0. Then there are finite 
sequences (sk)lsks„ and ( f k)Lsks„ in R* and F', respectively, such that

n
[ini gj k^ e k]. The function (p is measurable with respect to the complex

*=i
Radon integral f ko9 for A:€ (1, ...,«}. Since T  is a compact Hausdorff space, to 
every e>0 and {1, ..., «} there is a compact subset Tk(e) of T with the property 
that (p\TkWW c (Tk(sj) and \ f koO \(T \Tk(E))äe (cf. [3] Ch. IV, § 5, n° 1, Prop. 1).

n
For every e> 0 take T(e):= (J Tk(e). Then by virtue of simple topological con-

k = l

siderations we obtain that for every e>0, tpIroo^cNOO) thus by the theorem of 
Tietze there is a function (pt^ c {T) such that <pJr(E)= i, lr(e) and |<pjsj/2 |||(p|||r  
(cf. [I] Ch. IX, §4, n° 2, cor. de Th. 2). Consequently, (p£ \ 2 |||<p|||TZ? for every 
e>0. We claim that for sufficiently small e>0; cp^cp+V. Indeed, we have for 
&€{1, .... n}

\\<Pt — <p\\e,fk ’= f\(p '~< p\d \fko0\=  f\(P '-< p \d \fkoO\ +
T  T( t)

+  f  \<Pt-(p\d\fk°0\ = f  \(pc — <p\ d \fko0\ ^
T \T ( e )  T \T (e )

S  ( H W I l T + l l l 9 » l l l T ) l / 4 o f l | ( r \ r ( c ) )  S  (1  +  v/ 2 ) | | | < p | | | r l / * o 0 | ( r \ r t (E ))  s
s  (l + j/2)|||<p|||re,

thus for 0-ce-s min £*./( 1 +(1 + |/2)||l<p|||x) we obtain that ||<p,—<p||e,/fcS£ for
every k£ {1, . . . ,«}, i.e. <p£(p + V. Summing up the above considerations; the 
complex vector space £?$.{T, 0), equipped with the topology FT is a locally convex 
space and ^ ( F )  >s a linear subspace of F£q(T, 0) with the property that every 
element of <Fq(T,Q) belongs to the ^-closure of a ^"-bounded subset of <6.C(F ). 
Furthermore; the linear operator 0: %C(T)—F is continuous in the 3F\^C(T) 
and <r(F, F')-topologies in ^c(F) and F, respectively.

Then, assuming that F is quasi complete in the a(F, F'Mopology, by [2], 
Ch. Ill, § 2, n° 5, Prop. 8, we conclude that there is a unique linear operator 
0: Ffc(T,9)-~F which is 3F -a{F ,F ')-continuous and satisfies 0|*>c(t) =  0- We 
intend to show that 0 = 0 '* | * . In fact, both the linear operators 0and 0'* |,j,,_Q\Tt0)



4 6 2 J. KRISTÓF

take values in F'* and they are ST—ofF’*, F') continuous (by the definition of 2T). 
Since they coincide in Cfic (F) and ^ ( F )  is a dense subspace of 0) in the
topology 2T\ we infer that they coincide in £Fq(T, 9), as well.

This proves that 0'*(„S?<5(F, 0))czF, provided F is quasi complete in the er(F, F')- 
topology.

Finally, we show that 9'*(JF£(T, 0))czF, if the presumption of (ii) is sat
isfied.

Let (p be an element of SFq{T, 9) and define a sequence (E„)niN of subsets of 
T  as follows

En:= { t e T \ M t ) \ ^ n}.
Take 9>„:=Xe„<P («GN); then, of course, q>„(p pointwise in T  and k/>„| = M 

and <p„ZJFq(T, 9) (n€N). Then the above considerations include that 0'* (<?,,)€ F(«€N) 
and for every f fF ' ,  applying the theorem of Lebesgue to the sequence (</>„)» gN 
and to the complex Radon integral fo9, we obtain

f  < P n d ( f o O ) ^  f  (p d ( f o 9 )  = 6'*((p)(f),
T  T

i.e. 9'*((pn)->-9'*((p) in F'* in the o(F'*, F')-topology. From this it follows that 
(0'*(<pn))„eN is a Cauchy sequence in Fwith respect to c(F, F') thus it converges 
to an element z of F  in the same topology. Since 9'*((pn)-»9'*((p) and 9'*((pn)-+z 
in F'* in the <r(F'*, F')-topology, we finally obtain that 9'*(<p)=z£F.

R e m a r k  4 .  If T  is a compact Hausdorff space and F a complex locally con
vex Hausdorif space then, according to our former definition, 9^F£l{̂ 6q {T)\ F) 
means that 0 is a sup-norm continuous linear operator from (F) into F  and it 
has all the following properties

(i) For every uniformly bounded sequence (<p„)„gN in (?), if <P„~+ 0 point- 
wise in T  then 9{(pn)—0 in the cr(F, F')-topology.

(ii) For every uniformly bounded sequence (<p„)„ gN *n W  380(T)), if cpn-+ 0 
pointwise in T  then 0(<p„) —0 in the <r(F, F')-topology.

(iii) The mapping ug: á?0(F)--F; E>-~9(yE) is a c-additive set function with 
respect to the <r(F, F')-topoIogy.

(iv) For every /G F ', the function fo u B: d80(T)-+C is a complex cr-additive 
Baire measure on T.

The equivalence of these properties is a simple consequence of Proposition 2 
and the fact that (T )= $C(T,

L e m m a  1 .  Let T  be a compact Hausdorff space, F a complex locally convex 
Hausdorff space and 9^SFl(^ q {T)\ F). Then 9=0 if and only i f  0= 0  in (dc{T).

P r o o f . Assume that 0= 0  in rdc {T). By co,-induction we show that 0=0 
in (F) for every ordinal number accoj. According to our hypothesis, the asser
tion is true for a=0. If 0 < a <co1 and for every /]<« we have 0= 0  in 
then take a function cp in ^£(F) and choose a sequence (<p„)„eN in (J (F) which
is uniformly bounded and pointwise convergent to <p in F. Since 0 is a Lebesgue 
type operator 0(<p„)—0(<p) in the a (F, F')-topology and our induction hypothesis 
yields that 0(<p) = 0.
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P ro po sitio n  4 . I f  T is a compact Hausdorff space and F a complex locally con
vex Hausdorff space then the map

CD X & c C n - , F) ~  <?(Vc (Ty, F); 0 ~ 0 |* c(T)

is a one-to-one linear operator. If besides F is sequentially complete in the er(F, F')- 
topology then this mapping is a linear isomorphism the inverse o f which is

(2) (T); F) -  F); 0 ~  O'*|
further, the map

(3) &L{*c<T)l f ) -  W£{T, @0(T)); 0 -  ue 
is also a linear isomorphism.

P ro o f . The fact that the mapping defined by (1 ) is one-to-one, is a simple 
reformulation of Lemma 1. Assume now that F is sequentially complete in the 
a (F, F')-topoIogy. First we show that for every F-valued Radon integral 0 on T, the 
weak integral O'* generated by 0 is continuous with respect to the sup-norm topology 
in (T) and the initial topology in F. Indeed, if p is a continuous seminorm on F 
then by the Hahn—Banach theorem, the set Á'p:= {/€F'|\/z(: F: |/(z)| S/?(z)} has 
the property that p (z) =  sup |/(z)| for all z£F. Then, given a function <p€^c (F)>

f l A ' p

we have
p(0,*(cp)) = sup |/(0 /*(<p))j = sup I /  <p d(foO)\ s

f t A ' p f t A ' p  T

S  sup f\<p\d\foO\ ^  M il-sup  \foO\(T) =
f ( .A 'p  T  f i A ' p

= IIHIIr sup sup |(/o0)G/O| = HMIIr sup sup |/(0(<A))| =
f t  A '  < l > ^ Ö r > f ( . A '

1II*IIIT S 1  l l W I I r S l
= ( sup p(0WO))HMI|r 

III^IIIt —1
and here the multiplier of |||<p!||T is independent of (p and finite since the image 
of the unit ball of ̂ ( T )  established by 0 is bounded in F with respect to the initial 
topology and p is a continuous seminorm on F. Consequently, for every 
Q£_3?(y>c {T)\ F) we obtain 0'*\ ~ CJFfáciT); F). (Note that the range of the

latter operator is in F, by Proposition 3.) Next we show that 0'*\ _ is a Lebesgue
*c'T)

type operator for OZUPfädT); F). Indeed, if ((pn)niN is a uniformly bounded 
sequence in (T) such that <p„—0 pointwise in T  then for every /€  F the theo
rem of Lebesgue applied to the complex Radon integral foO provides that

/(0'*(<A,)) =  0'*(cpn)( f)  = f  cpn d(foO) -  0,

i.e. 0'*((pn)-»0 in F with respect to the a(F, F')-topology. This shows that the 
map defined by (2), in fact, takes its values in (F); F).
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Since (0 '\oo (r))k c(D =0'*kc(r)=0 for Q €& ($c(T)‘, F)\ the mapping defined
by (2) is the right inverse of the map defined by (1).

Conversely, if 99_£PL(j#Q (T)', F) then 9 and (0|«’c(n)/*l,?~(7.) are both Le-
besgue type operators (as we have seen before) and the coincide in rdc{T). Con
sequently, by Lemma 1, they are equal, thus the map defined by (2) is the left inverse 
of that defined by (1).

Finally, our last assertion is a simple consequence of Proposition 2 and of 
the well-known fact that the sequentially completeness of a locally convex Haus- 
dorff space in its weak topology implies that in the initial topology, as well (cf. [2] 
Ch. I., § 1, n° 5, Proposition 8).

4. Spectral theorem for normal elements of GiF^-algebras

Let (A, P) be a GW*-algebra and S3 a cr-algebra of subsets of the set T. If u 
is a projection valued measure in A defined on S3 then, by Corollary 2 of Proposi
tion, there is a unique morphism between the »-algebras SC{T, S3) = &'£(T, S3) 
and A which sends the characteristic function / E to u(£), for all E£_Ú3. Since u(T) — l, 
this morphism is unit preserving automatically. It will be called the integral gen
erated by the projection valued measure u and we will denote it by the symbol ü. 
Sometimes we write J  <p du instead of ú(q>) for (p£,1F£(T, S3). Properly speaking,

T
ű is the ^-integral generated by u (cf. Corollary 2 of Proposition 1).

If F is a complex locally convex Hausdorif space the underlying vector space 
of which is that of A and whose topology is less fine than the C*-norm topology 
of A then the F-integral generated by u also exists (namely, every C*-norm bounded 
subset of A, including the range of u, is bounded in F) and Remark 2 in § 3 provides 
that it is equal to ü.

Now we are in position to prove the main theorem of this paper.
T heo rem  1. Let (A, P) be a GW*-algebra and x  a normal element in A. Then 

there exists a unique projection valued measure u in A defined on the Borel o-algebra 
o f the spectrum Sp(x) o f x, such that x=  J  idSp(x) du.

Sp(x)
P r o o f . Existence.
Let F denote the complex vector space A, equipped with the o(A, sp(P))- 

topology. Since a(F, F ')= a(A , sp(P)), F is a locally convex Hausdorff space 
which is sequentially complete with respect to the <r(F, F j  topology. (By our 
choice, here the initial topology of F coincides with the weak topology.) Then there 
exists a unique unit preserving morphism 9X between the »-algebras ^c(Sp(x)) 
and A such that x=0.c(idSp(,c)) (cf. [4] Ch. I, §6, n° 6, Proposition 5). Since 9X 
is an A-valued Radon integral on the compact space Sp (x) and the C*-norm to
pology of A is finer than o(A, sp (P)), we obtain that 9X£L£(‘g’cíSpíx)); F). 
Consequently, by Proposition 4, there is a unique operator 9X€ f d f  (Sp (x)); F)
extending 9X. As it can be read out of the proof of Proposition 4, 9X satisfies
(4) f(Ox(<p)) = f  cpd(fo9x) (fdsp(P))

Sp(jc)
for every (p£Tfi(Sp(x)).
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According to Proposition 2, the map u: 380(Sp(x))-*F; E<-+Bx(xe) is a weakly 
cr-additive set function. We claim that u is the projection valued measure looked for.

First we show that (4) holds for every /CspfP) and (pZ^c (Sp(x)). Indeed, 
if /€sp(P) then there is a sequence (/„)„€N in sp(P) such that \\f„—/|l'-*-0 
(where || - I' denotes the dual norm associated with the C*-norm of A). Then we 
have for n€N||/„o0x- / o 0 J s | | / B_ / | | ' | ! 0 J s | | /B_ / | | '  thus the sequence (/„o0x)„€N 
of complex Radon integrals on Sp(x) converges to foOx in the measure norm 
topology. Consequently, for every (Sp(x)) we have

I f  <pd(f„0 0 , ) -  /  cpd(foOx)\ -  ||MHspoo!!/,-/ir
Sp(x) Sp(x)

so the equality (4) yields

/n (0*0/0) = f  <pd{Jnodx) -  f  (pd(foOx).
Sp(x) Sp(x)

On the other h a n d a l s o  in the <r(sp(P), A) topology, thus f,{Bx(cp))—f(Ox(tp)). 
After all we arrive at the equality

(5) /(0,fo>))= f<pd(foOx) (/€sp(P))
Sp(x)

for all <p£^c(Sp(jr)).
Next we show that Dx is a morphism between the * -algebras (Sp(x)) and F.

(Note that F is a unital »-algebra and a locally convex Hausdorff space at the 
same time, however, F is not a locally convex »-algebra since the multiplication 
of F is not continuous even separately or sequentially.) By coj-induction we show 
that given a function <p€^c(Sp(;c)), for every ordinal number a<co1 and 
t//£<£q(SpM) we have Bx((p\p) = Bx((p)Bx(\l/). Since the restriction of 0, to ^ (S p W ) 
coincides with Ox, our assertion is true for a=0.

Suppose that O^a-ccuj and for every /?<« and \p ^ l(S p (x ))  we have 
öx(<p\l/)=öx(<p)üx(il/). Let ^£#£(Sp(;t)) and choose a sequence (i/On£N in 
U ^ (S p (x )) such that i/^ —xjt pointwise in Sp(xr) and sup |||^ J ||Sp(x)-=+°°.
Since (<pi/i„)„€N is a uniformly bounded sequence in '̂ ’£>(Sp(x)j converging to (pi]/ 
pointwise in Sp(x), we obtain that Bx((p\j/„)-̂ Bx((pi]/) in the a(F, F')=a(A, sp(/*))- 
topology (namely Bx is a Lebesgue type operator). If fdsp(P) then Bx(<p) ■ /£sp(P ) 
thus by (5) we deduce

f (9 x(<p)9x('Pn)) =  (0*(<P) •/)(0*0/0) =  /  Ih d ( (9 x(<p)-fioOx) -*
Sp(x)

-  /  <A d((Bx(cp) -f)oQx) = (0x(<p)-f)(Oxm  =  f(0 x(<p)0x(ipj)
Sp(x)

where we have applied the theorem of Lebesgue to the complex Radon integral 
(0x((p)-f)o8x and to the sequence («A„)„€N. This means that Öx((p)Bx(il/„)-~öx(<p)dx(il/) 
in the cr(A, sp(/*)) = a(F, F')-topoIogy. According to our induction hypothesis 
Bx{(p\l/̂ )—Bxi,<p)Bx(\jj„) for n€N, showing that Bx(<p\l/)=Bx(<p)Bx(\l/). Now we 
prove that given a function (Sp(x)), for every a^(ox and (p£<tf£(Sp(x))
we have Bx((pil/)=Bx((p)Bx(ij/). Our previous result shows that the assertion is true
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for a= 0 . If 0<a<a)j and ^ ^ (S p C * )) then there is a uniformly bounded 
sequence (q5„)„€N in (J (Sp(x)) such that cp„-*(p pointwise in Sp(.x). Since

(tPnll/ )nCN >s a uniformly bounded sequence in (Sp(x)) converging to (pxjj point-
wise in Sp(x), we obtain that Bx((p„il/)—Bx((pil/) in the o(F, FO-topology (namely 
Bx is a Lebesgue type operator). Further, if fdsp(P ) then / •  Ox(\p)£&p(P) thus 
by (5) we deduce

f ( B x (q>n)Bx (\I/)) =  ( / •  Bx (<j/))(Ox (cpn) )  =  f  (Pn d ( ( f - B x m o O x)  ■*
SpU )

-  f  ( P d ( ( f -  Bx m o O x)  =  ( / •  Bx W ) ) ( B x (c p j)  =  f { B x (cp)Bx M )
Sp(x)

where we have applied the theorem of Lebesgue to the complex Radon integral 
( / •  Bx(\I/))o9x and to the sequence (<p„)„eN. This means that Bx (cpn)Bx (\jj)—Bx (<p) Bx (ij/) 
in the a (A, sp (xj) = a(F, F')'topology. With regard to our induction hypothesis 
Bx^(Pnxl/ ) —Bx{(Pn)Bx <̂/0 (n£N) showing that 9x ( ( p i / / ) = B x ((p )B x (ip) . Summarizing, we 
have proved the multiplicativity of the linear operator Bx .

In order to prove that Bx is an involution preserving map, we show by (üĵ - 
induction that Bx (0) = ( B x (q>)')* for all a<cuj and p(x)).

The assertion is true for oe=0, obviously. If O-^okcü! and (p ^^ (S p (x )) 
then choose a uniformly bounded sequence (^„)„€N in |J  ^ (S p (x )) such that

/?<a
(p„—(p pointwise in Sp(x). Then (<p„)neN is also a uniformly bounded sequence in 
Wq (Sp(jt)) converging to <p pointwise in Sp(x). Consequently, Bx((p„)^Bx(<p) 
and Bx((p„)—Bx((p) in the a(F, F')=o(A, sp (/’))-topology. Then we have 
{Bx (<Pn))*-*(B x ((p))* also in the a(A, sp(x))-topology, since the involution of A 
is continuous with respect to the a(A, sp(P))-topology. By our induction hypoth
esis Bx(v„)=(Bx(</>„))* (n€N), so Bx(0)=(Bx(<p))*.

After all we arrive at the result that Bx is a unit preserving morphism between 
the * -algebras ^  (Sp (x)) and A satisfying (5).

As a simple consequence of the above fact we obtain that the map 
u :  á?„(Sp(x))-~A; E ^ - B x ( y E) is an additive and multiplicative set function taking 
values in the u-complete lattice L (A) of projections of A. Moreover, since the 
operator Bx is in (Sp(x)); F), by Proposition 2 we deduce that the function
f o u :  á?„(Sp(x))—C is cr-additive for all f£F '= sp  ( P ) .  Combining this result with 
Theorem 1 in [7], we obtain that u  is a projection valued measure in A defined on 
the Baire c-algebra of Sp(x). With regard to Proposition 4, the F-integral gen
erated by u  coincides with Bx . On the other hand, the remark preceding the present 
theorem tells us that the F-integral generated by u  equals the integral (i.e. the 
/1-integral) generated by u .  Consequently, the integral ű  generated by u  restricted 
to ^c(SpCv)) coincides with Qx thus x = 0 x(idSpW)=0JC(idSpW)=ú(idSpW)=  
=  j  idSp(JC) d u .  Since Sp (x) is a metrizable compact topological space, we have

Sp(x)
á?0(Sp(x))=á?(Sp(x)), so we see that the projection valued measure u  complies 
with our requirement.
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U niqueness.
Let F  denote the same locally convex Hausdorff space introduced above and 

suppose that u, u' are both projection valued measures in A defined on á?(Sp(x)) 
satisfying the equality

f  idSp(x)du = x  = f  idSpMdu.
Sp(x) Sp(x)

Then by Theorem 1 in [7] we conclude that u, ufiHJlhF(Sp(x), á?u(Sp(.v))) thus 
Proposition 4 implies that the F-integrals u and ü' generated by u and u', respec
tively, belong to (Sp (x)); F).

On the other hand, our remark preceding the theorem results in the fact that 
the integrals generated by u and u' coincide with the F-integrals generated by them, 
respectively. Then Corollary 2 of Proposition 1 provides that the F-integrals ü and u' 
are both unit preserving morphisms between the «-algebras <?c (Sp(x), ^(Sp(x))) = 

(Sp(x)) and A. Consequently, the uniqueness of the operator 0X involves 
that ü and ü' coincide in ^(SpCr)). Then Lemma 1 yields ü=ü' and, ‘a fortiori’, 
u= u\

D e f i n i t i o n . If (A, P) is a GW*-algebra and x  is a normal element in A 
then the projection valued measure u defined on the Borel cr-algebra of Sp(x) 
taking values in L{A) and satisfying x =  f  idSp(x) du will be referred to as the

Sp(jc)
spectral resolution of x.

Our next theorem is a direct generalization of Theorem 4 proved in [8] for 
the case of commutative CH/ *-algebras. Note that our spectral theorem for the 
elements of commutative GH/ *-algebras had been obtained in a perfectly different 
way compared to that presented here.

T h e o r e m  2. Let (A, P) be a GW*-algebra and x  a normal element in A. Then 
there exists a unique unit preserving * -homomorphism 9X: #j5(Sp(x), á?(Sp(x)))-*-ví 
which is an extension o f 0X and satisfies for every bounded complex valued Borel 
function cp defined on Sp(x)

(6) M ( v ) ) =  f  <Pd(fo9x) (/€/»)
Sp(x)

where 9X is the unique unit preserving morphism between the * -algebras ^c(Sp(x)) 
and A satisfying x=Ox(idSp(x)).

P r o o f . Applying the notions and notations introduced in the proof of Theo
rem 1, we see that the map 9PX:—BX complies with all our requirements. If 9' is 
another map satisfying our conditions then substituting 9' instead of 9X, we infer 
that the equality (6) holds for every /£ sp (F )= F '. Then the theorem of Lebesgue 
results in 9'€JZ,L(egg(S  p(x)); F) and we have already seen that (x));F)
and we have already seen that BX££PL(%c(Sp(x)); F). Since the maps 9' and Bx 
coincide with 9X in ^c(Sp(x)), by virtue of Lemma 1, we obtain that 9'=BX.

Now we are going to justify our terminology “spectral resolution” showing 
that the spectral resolution of a normal element in a GW*-algebra possesses all 
the properties of a spectral resolution in the sense of [5].
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P r o p o s i t i o n  5 .  Let ( A, P) be a GW*-algebra and x  a normal element in A. 
I f  u: ^ (S p a (x))-*L(A) is the spectral resolution o f x  then u(E)x=xu(E) and 
SpHE)Au(E)(xu(E))c: E for every E£i%(SpA(x)), where E denotes the closure of E.

P r o o f . It is obvious that x commutes with the projections taken from the 
range of u.

Let £  be a Borel subset of Sp^ (x) and A £C\E. Let e be a positive real num
ber such that |A—A'|>e if Xf E.  Then we define the function (pe: Sp^ (x)—C 
as follows

rl/(A '-A ) if X fE
" l O  if X fS p A(x)\E .

It is clear that (p f^ci^P A  W , á?(SpA (x))), hence the element ye:= J  (pedu is
S p A(x)

well defined. Since the range of the integral generated by u is a commutative sub
algebra of A, and (pexE=(pc, we have ytu(E)=ye=u(E)yt . Thus yt€u(E)Au(E) 
and the equality / £ =  <p£(idSP/l(x)-A) j;£ yields that u (E ) -y fx -X l)u (E )  = 
—ye(xu(E) — Xu(E)). Since u(E) is the unit element of the algebra u(E)Au(E),
this means that ye is the inverse of xu(E) — Au(E) in u(E)Au(E), i.e.
A<j S p U( E ) A u ( E )  ( X U ( E ) ) •

Our last assertion shows that the spectral resolution of a normal element x in a 
GIF*-algebra lives on Sp(x).

P r o p o s i t i o n  6 . Let (A, P )  be a GW*-algebra and x a normal element in A. 
I f  u: á?(Sp(x))—L(A) is the spectral resolution o f x  and Q is a non-void subset of 
Sp(x) which is open with respect to the relative topology then u(Q)9i 0.

P r o o f . Since the topological space Sp(x) is compact, hence completely reg
ular, given a non-void open subset Q of Sp(x) there is a function c(Sp(x)) 
suchthat O^cp^Xn and (p^O. Then we have

f [  f t p  du) = f  (pd(fou) S. j  Xnd(fou) = f(u (ß j)
Sp(x) Sp(x) Sp(x)

for every f£P. Since, by Theorem 2, the integral defined by u is isometric on 
^c(Sp(x:)), we have || J  cp i/w|| = |||^>|||sP(a:)> 0, thus j  cp du ̂ 0. The set P

Sp(x) Sp(x)
separates the points of A thus there is a positive linear form /  in P such that 
/ (  J  (p du )^0. Then our former inequality yields /(u(fíj)^O , i.e. u(I2)A0.

S p ( x )

To finish the paper I give expression to the conviction that the abstract spectral 
theorem established above throws new light upon the classical spectral problem 
revealing the proper reasons why it can have an affirmative solution.
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A NOTE ON r-NEAR-RINGS

G. L. BOOTH

Abstract

In this note, we define the left and right operator near-rings, L  and R, respectively, o f  a F-near- 
ring M . These provide a generalization o f the equivalent concepts for /'-rings. It is shown that if 
the addition operation on M  is commutative, then R is a ring. Finally, we show that if  M  has a 
strong left unity and a right unity, then the lattices o f right (resp. two-sided) ideals o f L  and M  are 
isomorphic.

1. Preliminaries

We recall that a (right) near-ring is a triple (N , + , •) where
(i) (N , +) is a (not necessarily abelian) group;

(ii) (N , •) is a semigroup;
(iii) ( x + y ) z —x z + y z  for all x , y , z £ N .

If (iii) is replaced with
(iii') x ( y + z ) = x y + x z  for all x , y , z £ N ,

then N  is called a left near-ring. For all concepts relative to near-rings, we refer 
to [3],

A T-near-ring is a triple (M, + , F) where
(iv) (M, +) is a group;
(v) F is a nonempty set of binary operators on M  such that for each y£F, 

(M, + , y) is a (right) near-ring.
(vi) For all x,y,z£M, y, fi£T, xy(ynz)=(xyy)nz.

This definition is due to Satyanarayana [4]. A subset A of M  is called a left (right) 
ideal of M  if:

(a) A is a normal divisor of (M, +);
(b) For all x£A, u,v£M,y£r

uy(x+v)—uyv£A (xyu£A).
I  is called a (two-sided) ideal of M  if 7 is both a left and a right ideal.

2, The operator near-rings

For all details concerning F-rings and their operator rings, we refer to [2], 
Throughout this paper, let M  be a F-near-ring. Let be the set of all mappings 
of M  into itself which act on the left. Then i f  is a (right) near-ring with the opera
tions pointwise addition and composition of mappings. Let and y€F. We

1980 Mathematics Subject Classification. Primary 16A76; Secondary 16A78. 
Key words and phrases. F- ring, F-near-ring, operator near-rings (left and right).

Akadémiai Kiadó, Budapest



472 G. L. BOOTH

define the mapping [x, y] by [x,y]y=xyy (y£M ). Let L be the sub-near-ring 
of ££ generated by the set {[a:, y]: x£M, ydF}. L  is called the left operator near
ring of M. This is a generalization of the concept for /"-rings, but L does not, in 
general, consist exclusively of elements of the form 2 [ x^yi]> y^F , as is

i
the case for /"-rings.

The right operator near-ring R of M  is similarly defined. Let 01 be the left 
near-ring of mappings of M  into itself which act on the right. Then R  is defined 
to be the sub-near-ring of 01 generated by the set {[y, x]: y£7", x^M }, where 
y[y, x \= yyx  for all ydM . We will now provide a characterization for the ele
ments of R.

Proposition 1. R is the set o f all elements o f the form

2  *;] («i€Z, y £ r ,  x&M).i

Proof. It is sufficient to show that the set S  of all elements of the stated form 
is a sub-near-ring of M. Clearly, S  is a subgroup of the additive group of 01. Hence, 
we need only show that S  is closed under multiplication. Firstly, it is easily verified 
that, if m£Z, y^T x,y£M , then

(1) m(xyy) = (mx)yy.

Now let Z P d ai’ ail 2  9j\Pj* b j\iS . Then, if x£M ,
‘ j

x {2 P i[«.-.aJ) ( 2  <lj[ßj,bj]) = 2  Pi(xaiai) ( 2  Qj\ßj>bj]) =* J i j

= 2  (Pix ) * M 2  <lj\ßj>bj]) = by (1)
* j

=  2  <iA{2 (Pix)<xiai)ßjbj) =
j i

— 2  (<lj{2 (Pix)aiOißjb])) = by (v) of the definition of M  

=  2  (?y 2  Pi (xaiai ß jbj))-j i
It follows that

(2) ( 2  Pi ta;» fl;l) ( 2  <lj Ißj > bj\) = 2  Vj ( 2  Pi [«.'. th ßj bj])i j j i

which can be written in the form Z  niVhi X;1 as required.
i

Proposition 2. I f  (M , -f) is an abelian group, then R is an associative ring.
Proof. In this case, it is easily seen that the addition defined on R  is commuta

tive. Hence it remains only to show that the right distributive law holds for R. Let
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Then

(2 Pi fa . a,]+2 <h \ßi - b‘]) 2 nj [vj ’xj] = 2 nj (2 Pi fa > aiyjxj]+2 ?i[&> bi yjxA)
i i j  j  i i

by (2) in Proposition 1. By the commutativity of addition in R, this last expression 
may be written in the form:

2  n j ( 2 P i [ <xt ’ a i y ] x j \ )  +  2  n j { 2  b i 7 j x j ] )  =
j  i J I

=  2  Pi f a . a ]  2  fh  h j  >x j] + 2  <h [ß i  > b ii 2  nj  [ y j . x jI
i J i j

by (2), as required.

3. Unities of r -near-rings

Throughout this section, let R  and L  denote, respectively, the right and left 
operator near-rings of M.

Msaid to have a right (left) unity if there exist dt , ..., dn£M  and ..., <5„£r 
such that, for all x£Af, 2  xSidt=x ( 2  di Stx= x). M  is said to have a strong right

>
(left) unity if there exist d£M, 0£T such that xöd=x (d5x—x) for all x€M. 
Suppose that A ^ M .  Then we define

A*' = {riR-.M rQ A}
and

A+' = {KL-.IM QA}.
Furthermore, if BQ R  and CQ L, then

B* = {xdM:[y,x]<LB for all y£F}
and

C+ =  {x£ll/:[x, y]€C for all yGT}.

Proposition 3. Suppose that M  has a right unity and a strong left unity. Then 
the mapping I—I +' defines an isomorphism of the lattice of right ideals o f M  onto 
the lattice o f right ideals o f L.

Proof. Suppose that /  is a right ideal of M. Let i , j£ I+'. If x£M , (i—j)x =  
= ix—jx£I. Furthermore, if /£L, then ( /+ /—/)x = /x + /x —/x£/, since ix £ l  and 
I  is a normal divisor of M. Hence / +' is a normal divisor of L. Moreover, (il)x  = 
=i(lx)£l since /£J+/. Hence, /+ ' is a right ideal of L. Now it is easily verified that

(7+,)+ =  {x£M :xyy£I for all y£M, y£T}.
Since /  is a right ideal of M, it is clear that IQ ( I+')+. Now suppose that d ^ T  
and dt£M  are such that 2  xbidi=x  for all x€M. Then, if x € (/+') +, 2  xStd^I,
i.e. x€/. Hence, /= ( /+ ')+.

Now suppose that J  is a right ideal of L. Let x ,y £ J +, y€T. Then if z£M, 
[ x -y ,  y]z=(x—y)yz = x y z -y y z= ([x, y ]-[y , y])z. Hence [x -y , y]=[x, y ]-[y , y]€/, 
whence x —y £ J +. Now suppose u£M  and x(LJ+. Then [u+x—u, y]=[u, y] +

12
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+[*, y] — [«, y]£/, since J  is a normal divisor of M. Hence J + is a normal divisor 
of M. For x £ J +, z£M , y, pdT, [xyz, g]=[;c, y][z, p\dJ. It follows that J + is a right 
ideal of M. It is easily verified that (J+)+' = {ldL: l[x, y]dJ fcr all xdM , ydT). 
Since /  is a right ideal of L, it is clear that J ^ { J +)+'. Now let edM  and edT 
besuchthat eex=x for all xdM . Then if ld (J+)+/, l[e, e]dJ- But if zd M, l[e, b]z = 
=l(eez)=Iz. Hence, l=l[e, e]d(J+)+'. Thus, J = (J +)+', and the proof is complete.

Lemma 4. I f  I is a left ideal o f M, IdL ana x, y£M  are such that x+ I= y+ I, 
then Ix+ I—ly+I.

P r o o f . Let zdM, ydT. Then

Since L  is the near-ring generated by elements of the form [z, y], it follows that 
l x + I = l y + J  for all IdL.

Proposition 5. Suppose that M has a right unity and a strong left unity. Then 
the mapping A --A +' defines an isomorphism between the lattices o f two-sided ideals 
o f  M  and L.

Proof. Let A be an ideal of M. Then by Proposition 3, A +/ is a right ideal of 
L and (A+')+=A. Let 1 , / d L  and adA+'. If *<=M, ( a + l ' ) x = a x + l ' x = T x + A ,  
since axdA.  By Lemma 4, l (a+T)x+A = IT x + A ,  i.e. ( l (a+T)-U')xdA.  Hence 
l ( a + T ) —H'dA +', so A +' is a two-sided ideal of L.

Suppose that B  is a two-sided ideal of L. Then, by Proposition 3, B  + is a left 
ideal of M,  and ( B +) +' =B.  Let b dB +, x , y £ M ,  y, pdT.

[ x y ( b + y ) - x y y ,  p] = [xy(b+y) ,  p]-[xyy, p] = [x, y]([b, p] + [y, p])-[x,y][y,  p]dB,

since B  is a left ideal of L  and [b, p]dB. Hence, xy(b+y)—xyydB+, so B+ is a 
two-sided ideal of M. This completes the proof.

R emark. Clearly, Proposition 3 and 5 extend Theorems 1 and 2, respectively, 
of [1] to L-near-rings. The proofs of both Propositions make use of the identity 
[x+y,  y]— [x, y]+[y, y], which is a consequence of the right distributivity of M. 
Because of the lack of left distributivity of M,  relationships between M  and R cor
responding to Propositions 3 and 5 are unlikely to hold without imposing additional 
conditions on M.

[z,y]x-[z, y]y = zyx-zyy  = zy { (x -y )+ y )-zy y d L  
since /  is a left ideal of M  and x —ydL Hence

[z,y\x + I  = [z, y\y + I.

MTA •Xösjy’ftóra 
Parl*ßhta 13Í-Ü-
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