
CL&CL
• • • • •• • • • «• •••••• • • •• • #•• •• • • • •• • « • •••••••• «

c o m p u t e r
a n d

automation
institute
liung’arian
a c a d e m y

oî sciences

HELYBEN
OLVASHAWÓ

SZTE Egyetemi Könyvtár
E gyetem i Gyűjtem ény

2

CO M PU TER A N D A U T O M A T IO N IN ST IT U T E

H U N G A R IA N A C A D E M Y O F SCIE N C E S

COMPUTATIONAL LINGUISTICS

AND

COMPUTER LANGUAGES

XV.

ISSN 0324-2048

Budapest, 1982.

J0
00

81
73

69

Editorial board:

Bálint DÖMÖLKI (chairman)

Gábor DÁVID

Ernő FARKAS (editor)

Tamás GERGELY
Tamás LEGENDI (editor)

Árpád MAKAI

Imre RÚZSA
György SZÉPE

Dénes VARGA

Theoretical Laboratory, Institute for Co-ordination of
Computer Techniques
Computer and Automation Institute, Hungarian Academy
of Sciences
Computer and Automation Institute, Hungarian Academy
of Sciences
Research Institute for Applied Computer Sciences
Research Group on Mathematical Logic and Theory of
Automata, Hungarian Academy of Sciences
Research Group on Mathematical Logic and Theory of
Automata, Hungarian Academy of Sciences
University Eötvös, Budapest
Research Institute of Linguistics, Hungarian Academy
of Sciences
Hungarian Central Technical Library and Documentation
Centre

Secretary to the b o ard : Erzsébet CSUHAJ VARJÚ
Computer and Automation Institute, Hungarian Academy of Sciences

D istribu tor for: Albania, Bulgaria, China, Cuba, Czechoslovakia, German Democratic Republic,
Korean People s Republic, Mongolia, Poland, Romania, U.S.S.R., Socialist Republic
of Vietnam, Yugoslavia

K U L T Ú R A
Hungarian Trading Co. for Books and Newpapers
1389. Budapest,
P.O.B. 149, Hungary

F o r all o ther coun tries:

JOHN BENJAMINS B.V.
Periodical Trade
Amsteldijk 44
Amsterdam, Holland

Responsible Publisher: Prof. Dr. TIBOR VÁMOS
Director of the Computer and Automation
Institute, Hungarian Academy of Sciences

CL & CL

COMPUTATIONAL LINGUISTICS AND COMPUTER LANGUAGES

A scientific periodical published in English under the auspices of the
COMPUTER AND AUTOMATION INSTITUTE, HUNGARIAN ACADEMY OF SCIENCES,

Topics o f the periodical:

The editorial board intends to include papers dealing with the syntactic and semantic
characteristics of languages relating to mathematics and computer science, primarily those
of summarizing, surveying, and evaluating, i.e. novel applications of new results and develop­
ed methods.

Papers under the heading of "Computational Linguistics” should contribute to the
solution of theoretical problems on formal handling and structural relations of natural lan­
guages and to the researches on formalization of semantics problems, inspired by computer
science.

Papers under the heading of ’’Computer Languages” should analyse problems of
computer science primarily from the point of view of means of man-machine communica­
tion. For example it includes methods of mathematical logic, examining problems on
formal contents and model theory of languages.

The periodical is published twice a year in December and June. Deadlines are 28
February and 31 August.

All corresponsence should be addressed to:

COMPUTER AND AUTOMATION INSTITUTE
HUNGARIAN ACADEMY OF SCIENCES
Scientific Secretariat
1502 Budapest
P.O.B. 63.

Subscription information:

Available from: JOHN BENJAMINS BV.
Periodical Trade
Amsteldijk 44 Amsterdam (Z)

HOLLAND

NOTES FOR AUTHORS

Original papers only will be considered. Manuscripts are accepted for review with the
understanding that all persons listed as authors have given their approval for the submission
of the paper; further, that any person cited as a source of personal communications has
approved such citation.

Manuscripts should be typed in double spacing on one side of A4 (210 x 297 mm)
paper, and authors are urged to aim at absolute clarity of meaning and an attractive
presentation of their texts. Each paper should be preceded by a brief abstract in a form suitable
for reproduction in abstracting journals.

The abstract should consist of short, direct, and complete sentences. Typically, its lenght might
be 150 to 200 words. It should be informative enough to serve in some cases as a substitute
for reading the paper itself. For this reason, the abstract should state the objectives of the
works, summarize the results, and give the principal conclusions and recommendations. It
should state clearly whether the focus is on theoretical developements or on practical questions,
and whether subject matter or method is emphasized. The title need not be repeated. Work planned
but not done should not be described in the abstract. Because abstracts are extracted from a paper
and used separately, do not use the first person, do not display mathematics, and do not use
citation reference numbers.

Number each page. Page 1 should contain the article title, author and coauthor names,
and complete affiliation(s) (name of institution city, state, and zip code). At the bottom of page
1 place any footnotes to the title (indicated by superscript + ’ + ’)• Page 2 should contain
a proposed running head (abbreviated form of the title) of less than 35 characters. References
should be listed at the end in alphabetical order of authors and should be cited in the text in
forms of author’s name and date.

Diagrams should be in Indian ink on white card or on cloth. Lettering should conform
to the best draughtsmanship standards, otherwise it should be in soft pencil. Captions should
be typed on a separate sheet. Particular care should be taken in preparing drawings; delay in
publication results if these have to be redrawn in a form suitable for reproduction.
Photographs for half- tone reproduction should be in the form of highly glazed prints.

List of Symbols,Attach to the manuscripts a complete typewritten list of symbols,
identified typographically, not mathematically. This list will not appear in print but is essential
in order to avoid costly author’,s corrections in proof (If equations are handwritten in the
text then fhe list of symbols should also be handwritten.) Distinguisg between ”oh.” ’’zero”
”e l” ”on” : ’’kappa.” ”kay” : upper and lowe case ”kay”; etc. Indicate also when special type
is required (German, Greek, vector, scalar, script, etc.); all other letters will be set in italic.

Authors are themselves responsible for obtaining the necessary permission to reproduce
copyright material from other sources.

C O N T E N T

Page

F. BERMAN: Compactness in Models of Propositional Dynamic Logic . . . 7

L. BÖSZÖRMÉNYI: MODULA-2 Used in the Implementation of a Virtual
Terminal Model .. 21

S. D. COMER: Inductive Domains and Algebraic Semantics of CF Languages 43

E. CSUHAJ VARJÚ: Some Basic Properties of k—bounded Internations of
Grammar Forms ...

G. DÁVID: On the Basic Concepts of SDS (System Development System)
Part II... 75

" Z. ESIK: On Generalized Iterative Algebraic Theories 95

I. FUTÖ and J. SZEREDI: A Very High Level Discrete Simulation System
T—Prolog ... 111

L. GEREVICH: A Parsing Method Based on Van Wijngaarden Grammars . . . 133

T. GERGELY and L. ÚRY: Representation and Verification of Communicating
Sequential Processes ...

T. GYIMÓTHY and J. DOMBI: Syntactic Pattern Recognition with Modified
Fuzzy Automata .. J75

G. PRÓSZÉKY, Z. KISS and L. TÓTH: Morphological and Morphonological
Analysis of Hungarian Word—Forms by C om puter.................. 195

E. SIMON: Languages Design Objectives and the Change System 229

M. A. SUCHENEK: Effective Logic of Programming Languages 249

- 5 -

Computational Linguistics and Computer Languages Vol. XV. 1982.

COMPACTNESS IN MODELS OF PROPOSITIONAL DYNAMIC LOGIC*

Francine Berman
Purdue University

West Lafayette
U S A

Section 1: INTRODUCTION AND PREREQUISITES

Propositional Dynamic Logic (PDL) is a formal language
for reasoning about programs. It was first developed by Fischer
and Ladner CF&LD as a simple yet elegant programming logic for
which the satisfiability problem was decidable. In this paper,
we discuss compactness for several classes of models of PDL.
We show that the broader interpretation of looping programs in
nonstandard models of PDL admits compactness whereas the
stricter interpretation of loops in Standard models does not.
In Section 3, we use these results to explore compactness in
Dynamic Algebra.

Elements of Propositional Dynamic Logic are programs and
formulas. Programs are regular expressions with tests. Formulas
are boolean combinations of simpler formulas and programs
combined with modal operators. For a detailed explanation of
the language, we refer the reader to CF&L3 or [Be].

Definition : A model of PDL is a triple (W,n,p) in which

W is a set of states,
П is a formula valuation function, and
p is a program valuation function.

П is constrained so that
n(-p)=W-n(p)
Л (pvq)=П (p) LUI (q)
П(<a>p) = {w f 3v ((w,v) is in p(a) and v is in n(p))}
П([а]р)=П(-<a>-p)

* This research was supported by NSF Grants M C S77-02474 and M CS80-05387.

8

p is constrained so that
p(p?)={(w,w)Iw is in П(р)}.
We say that a formula p is satisfiable in model M iff

there is a state w in M such that w is in Пм (р). Formula p is
satisfiable in a class of models К iff there is some model
M in К such that p is satisfiable in M. We say that p is
valid in M (or a class of models К) iff -p is not satisfiable
in M (or К).

Definition : An S-sound model is a model in which a set of
schemas S is valid.

Definition : A Loop Invariant model is a model in which p is
constrained so tha^

p (a ;b) = p(a) • P(b)
p (aUb)= p(ai)UP(b)
p(a) contains p(true?)UP(a) an is transitive.

Definition : A Standard model is a Loop Invariant model in
which p(a*)=Up(an).

Def inition ; Let D denote the proof system with rules of
inference

Modus Ponens: A and A— >B implies B,
Necessitation: A implies [b]A,

and axiom schemas
all propositional tautologies
[a] (p— >q)— >'([a]p— >[a]q)
[a] (pAq) = [a]рл[a]q
<a;b>p=<a>p
<aUb>p=<a>pvp
<p?>q=pAq

*p— ><a >p
<a>p— ><a*î>p

9

<a*Xa*>p— ><a*>p
<a*>p— >(-pv<a*>(-pA<a>p))
Following the classical definitions, a formula p is

provable (l-p) if there is a finite proof in which each line
either is an axiom or follows from the preceding lines by the
rules of inference. A finite set of formulas {p^} is consistent
if the negation of their conjunction is not provable (№-(Ap^)) .
A set of formulas is consistent if every finite subset is
consistent. Sets which are not consistent are inconsistent.

Let Pr(S) be the set of provable formulas of a deductive
system with axiom schemas S and rules of inference Necessita-
tion and Modus Ponens. For a class of models M, let Th(M) be
the set of formulas valid in every model of M. A class of
models M is comp Iete with respect to a proof system with axiom
schemas S if Th(M)=Pr(S). A set of models M is compact if for
every set of formulas T, T is simultaneously satisfiable in M
iff every finite subset of T is simultaneously satisfiable in
M.

The classes of models defined in this section are closely
related. For S=D, the classes of D-sound models, Loop Invariant
models and Standard models are indistinguishable by PDL
expressions [Be]. Consequently, completeness for any one of
these classes of models with respect to D implies completeness
for the other classes. Although, all three classes of models
can be shown to be complete directly, we show in Section 2 that
the proof of completeness for D-sound models provides a tech­
nique which can be used to show that the classes of Loop
Invariant and D-sound models are compact.

Section 2: COMPACTNESS

First, we show the class of D-sound models to be complete
with respect to the proof system D. As a consequence of
techniques in the completeness proof, we will be able to show
the classes of D-sound and Loop Invariant models to be compact

10

with respect to D. The proof of completeness is a Henkin ar­
gument in which a canonical model Mq is defined whose states
are maximal consistent sets of formulas. Consistency is
equivalent to satisfiability within this model. The proof is
similar to that given by Segerberg for classical modal systems
[Seg].

Theorem 1

The class of D-sound models is complete with respect to
the proof system with axiom schemas D.

Prooi ' Theorem 1

Let MQ be the model in which
W={w! 1) w is a consistent set of formulas,

2) for each formula p, p is in w or -p is in w,
3/ if p and p— >q are in w then q is in w,
4) Pr(D) is a subset of w.}

n(p)={w' p is in w} for all basic formulas p
p(a)={(w,v)l for all formulas p, [a]p is in w implies p is in

v} for any program a.
Extend П and p in the usual way so that Mq is a model. We show
that a formula is satisfiable in the class of D-sound models
iff it is satisfiable in MQ . Then we show that the set of
valid formulas of is Pr(D). Completeness follows.

Lemma 1

For all formulas p and for all states w in Mq ,
w is in П (p) iff p is in w.

M0

Proof of Lemma 1

For notational convenience, we will drop the subscript
on П. Proceed by induction on the length of p as a sequence
of symbols.

If p is a basic formula then by definition, w is in П(р)
iff p is in w.

For the induction step, assume the result is true for all
formulas p with lpl<n. Consider lpl=n.

If p is of the form qvr or -q then the result follows by
induction and conditions 2) and 3) of the definition of W.

The nontrivial case is when p=[a]q. For one direction,
assume towards a contradiction that w is in Jl([a]q) and -[a]q
is in w.

Consider the set S={rl [a]r is in w}i We wish to show
that S is consistent. Assume not. Then there exist formulas
rl7...,rn such that

hr A...Ar — >false but then 1 n
[- [a] (r A . . .Arn— >false) and
I- [a] r_A...A[a]r -->[a] false.1 n
h [a]false— >[a]q so
I- [a] r jA . . .A [a] rn— >[a]q and [a] г А. . ,A[a] rn— >[a]q is
in w.

This provides a contradiction since the [a]г A ...A[a]rn and
-[a]q are in w.

Now consider a sligthly larger set T=SU{-q}. We have just
shown S to be consistent. We would like to show that the
addition of -q preserves consistency. The proof of this is
similar to the preceding argument and left to the reader.

That T is consistent with respect to D implies that TUPr(D)
is consistent. As a consequence of Lindenbaum's theorem we can
extend TUPr(D) to a maximal consistent set of formulas v. By

construction, V is in W and also (w,v) is in p(a). Recall
that by hypothesis, w is in n([a]q), hence v is in n(q_). But
by construction, -q is in v and by induction, v is in n(-q).
This is a contradiction.

We have shown that w in n([a]q) implies that [a]q is in w.
The other direction is a straightforward proof by contradiction
using the definitions.И

Corollary

Let p be a formula. Then p is satisfiable in the class of
D-sound models iff p is satisfiable in MQ.

Proof of Corollary

Let p be a formula. Assume that p is satifiable at a
state w in a D-sound model M. Let S be the set of formulasw
satisfiable at w in M. By definition, S is a maximal con-w
sistent set of formulas. Hence S is a state in Mn. By Lemma 1,w и
p in Sw implies that Sw is in n(p) in Mg. Hence, p is
satisfiable in MQ.

Conversely, assume that p is satisfiable in Mg. By Lemma
1 and construction, MQ is a D-sound model since D is contained
in Pr(D) and Pr(D) is contained in every state. Hence p is
satisfiable in some D-sound model.0

Lemma 2
Th (MQ) =Pr (D)

Proof of Lemma 2
For one direction, it suffices to notice that since Pr(D)

is contained in each state in Mg, Pr(D) must be contained in
Th(Mg).

For the other direction, let p be a formula in Th(Mg) but
not in Pr(D). Then p is not provable in D. By definition, -p

13

is consistent with D. In particular, the set Pr(D)U{-p} can be
extended to a maximal consistent set w. By construction, w is
a state in . This provides a contradiction since then both
p and -p are satisfiable at w. Й

Proof of Theorem 1 continued

By Lemma 1, Th(MQ)=Th(D-sound models). By Lemma 2,
Th(M^)=Pr(D). Hence the class of D-sound models is complete
with respect to D.Й

With this construction, it is now simple to show that the
class of D-sound models is compact.

Theorem 2

The class of D-sound models is compact.

Proof of Theorem 2

Let S be a set of formulas. Clearly, if S is satisfiable
in a D-sound model then every finite subset of S is satisfiable
in a D-sound model.

»
Conversely, suppose that every finite subset of S is

satisfiable in some D-sound model. In particular, this implies
that every finite subset of S is consistent. Hence S is a con­
sistent set of formulas. By Lindenbaum's theorem we can extend
S to a maximal consistent set of formulas w containing Pr(D).
By construction, w is a state in MQ. By Lemma 1, S is satis­
fiable at w in Mq . Hence S is simultaneously satisfiable in
the class of D-sound models. 0

To show that the class of Loop Invariant models are also
compact, we can use this technique in conjunction with a theo­
rem from [Be]. The theorem states

14

1) Every Loop Invariant model is a D-sound model.
and

2) Every D-sound model M can be extended to a Loop
Invariant model M' such that for all formulas p and

о
all states w in M,
w is in IL„(p) iff w is in IL.,(p).M M

Theorem 3

The class of Loop Invariant models is compact.

Proof of Theorem 3

Let S be a set of formulas. As before, if S is simul­
taneously satisfiable in the class of Loop Invariant models
then every finite svfcset of S is satisfiable in the class of
Loop Invariant models.

Conversely, assume that every finite subset of S is
satisfiable in the class of Loop Invariant models. As in the
proof of Theorem 2, this implies that S is consistent. In
addition, S is simultaneously satisfiable at some state w in
the D-sound model M~ . By part 2) of the theorem described above

о
MQ can be extended to a Loop Invariant model Mq ' in which
every formula satisfiable at w in MQ is satisfiable at w in
Mq ' . In particular, this is true for each of the formulas in
S. Hence S is simultaneously satisfiable in the Loop Invariant
raodel MQ ' .0

Unfortunately this technique does not work for the class
of Standard models. The set of formulas A={ [a11] p I n>0 }U{ <a*>-p}
is finitely satisfiable but not simultaneously satisfiable in
the class of Standard models. The reason for this discrepancy
is that although loops are expressed equivalently in the
classes of Standard, Loop Invariant and D-sound models, their
termination is interpreted differently in each of these classes
In Standard models, all loops are assumed to terminate success-

15

fully, i.e. upon fulfillment of their exit conditions and after
a finite number of iterations of the loop. In Loop Invariant and
D-sound models, loops may terminate unsuccessfully as well,
i.e. through the exceeding of time or space limitations.

Section 3: COMPACTNESS IN DYNAMIC ALGEBRA

Dynamic Algebras were developed by Kozen [К] and Pratt
[Р]. The interpretation of PDL within the algebraic setting
has the advantage of a clean exposition and simple, yet ele­
gant proofs. For simplicity, we will consider only test-free
(without ?) models of PDL in this section. The addition of ?
complicates the proofs somewhat but does not changé the
results. For completeness, we will give the basic definitions
from Dynamic Algebra. For a fuller treatment see [P] or [K],
additional material can be found in [N],

Definition (Kozen); A (-continuous) d y n a mi c a l g e b r a is a two-
sorted algebra (K,B,<>) where К is a regular algebra (with
a*=sup a11), В is a boolean algebra, and <>:KxB-->B is a scalar
multiplication satisfying the equations

<a>0=0
<a>(pvq)=<a>pv<a>q
<aUb>p=<a>pvp
<ab>p=<a>p
<1>X=X
sup<an>X=<a*>X.

Definition : A dynamic algebra is s e p a r a b l e if for each a=£b in
K, there exists some X in В with <a>X^X.

Def inition : Let (S,K,B) be a structure where

S is a set of states,
К is a regular algebra of binary relations on S (under the

usual set theoretic operations),

16

<a>X={sI3v((s,v) is in a and v is in X)}is in В
for every a in К and X in B.

Then (K,B,<>) is a dynamic algebra called a Kr i p k e mo d e l .

Definition ; A s t a n d a r d Kripke model is a Kripke model in which
a*=Uan for every a in К (i.e. for every a in K, sup an=Uan is
in K).

Every Loop Invariant model M=(W,n,p) can be identified
with a dynamic algebra (K,B,<>) in which К is a regular al­
gebra with domain K={p(a)l a is a program} and В is a boolean
algebra with domain B={n(p)l p is a PDL formula}. Note that
p(a*)=sup p(an) but that this may only properly contain Up(an).

Conversely, every Kripke model can be identified with a
Loop Invariant model by letting each element of К represent
the interpretation of some program and letting each element
of В represent the interpretation of some formula.

There is a one-to-one correspondence between the class
of standard Kripke models and the class of Standard models
defined in Section 2. Note that there are separable
continuous dynamic algebras which are not represented by any
standard Kripke model [К]. This parallels the fact that there
are Loop Invariant models which are not Standard [Be].

In [K], Kozen showed that every separable dynamic alge­
bra is isomorphic to a Kripke model. We can use this result
in defining compactness for sets of separable dynamic algebras.

Definition : A set of separable dynamic algebras is compact iff
the set of Loop Invariant models associated with its set of
isomorphic Kripke models is compact.

Theorem 4

The class of all Kripke models is compact.

Proof of Theorem 4

By the preceding remarks, there is a one-to-one corres­
pondence between the class of Loop Invariant models and the
class of Kripke models. Hence the compactness of the class of
Loop Invariant models implies the compactness of the class of
Kripke models. Î3

Corollary

The class of separable dynamic algebras is compact.

Proof of Corollary

By Kozen's results, every separable dynamic algebra is
isomorphic to a Kripke model. Compactness follows by Theorem
4 . ta

Theorem 5

Let C be a class of standard Kripke models. If there exists
a program a and a formula p such that the set of formulas
{[a]pln>0JU{<a >-p} is finitely satisfiable then C is not
compact.

Proof of Theorem 5

It is straightforward to see that the set of formulas
n *x*{[a]pln>0}U{<a >-p} is not simultaneously satisfiable in any

Standard model for any program a and formula p. Hence this
set is not simultaneously satisfiable in any standard Kripke
model for any a and p. If C is compact then any set of

18
«

formulas is simultaneously satisfiable iff it is finitely
satisfiable. Consequently if a set of formulas
{[an]pln>0}U{<a*>-p} is finitely satisfiable in C then C
cannot be compact. Ê3

Note that a consequence of Theorem 5 is that the class
of standard Kripke models is not compact.

Section 3: SUMMARY

In this paper, we have explored compactness for several
classes of models of Propositional Dynamic Logic. We showed
that the nonstandard classes of D-sound and Loop Invariant
models are compact using a classical Henkin technique. In
contrast, the class of Standard models is not compact.

In Section 3, we extended compactness to Dynamic Algebra
and characterized compactness for the class of Kripke models.
We also gave a sufficient condition for the noncompactness
of standard Kripke models.

ACKNOWLEDGEMENTS

We would like to thank Mike Fischer and Miriam Lucian
for several helpful discussions on this material. We would
also like to thank Jan Cuny for her careful reading of this
paper.

BIBLIOGRAPHY

[Be] Berman, F., "Semantics of Looping Programs in Propo­
sitional Dynamic Logic," submitted to Mathematical
Systems Theory.
Fischer, M. and R. Ladner, "Propositional Dynamic
Logic of Programs," JCSS 18:2, April 1979.

[F&L]

19

[К]

[N]

[P]

[Seg]

Közén, D . , "A Representation Theorem for Models of
*-Free PDL," Proc. 7th Inti. Colloq. on Automata,
Languages and Programming, Lecture Notes in Computer
Science 85, Springer-Verlag, Berlin 1980.
Németi, I., "Dynamic Algebras of Programs,"
Fundamentals of Computation Theory 1981, Lecture
Notes in Computer Science 117, Springer-Verlag,
Berlin 1981, pp.281-290.
Pratt, V., "Dynamic Algebras and the Nature of Induc­
tion," Proc. 12th ACM Symposium on the Theory of Com­
puting, May 1980.
Segerberg, K., "An Essay in Classical Modal Logic,"
(Volume 1), Ph.D. Dissertation, Uppsala Universitet,
1971.

Computational Linguistics and Computer Languages Vol. XV. 1982.

MODULA-2 USED IN THE IMPLEMENTATION OF A
VIRTUAL TERMINAL MODEL

László Böszörményi

Computer and Automation Institute
Hungarian Academy of Sciences

Budapest, Hungary

SUMMARY

This paper is meant to report on the experiences gained by
using the language Modula-2 for implementing a Virtual Ter­
minal Model. It touches some questions of the virtual
terminal technique, but its main concern is the use of
Modula-2 in a real application. We show, how Modula-2 has
supported and influenced our choices in questions like
decomposition, handling of parallelities etc. The paper
contains parts of the listings of the model. The entire
listing is available at the author.

KEY WORDS : Programming-language Module Decomposition
Computer-network Virtual-Terminal Formal-specification.

INTRODUCTION

The main goal of this paper is to report on the experiences,
gained with Modula-2 at the implementation of a Virtual
Terminal Model. The Virtual Terminal Model serves as a tool
for experimenting with the virtual terminal functions of a
computer network, and also a formal specification for
different groups of implementors.
A computer network may be regarded as a complex of
communication media and of several users being connected to
it. The users may be both programs or humans. Networks are
generally built up as hierarchical systems of layers. Each
layer may be regarded as a communication media again, to
wich users may be connected.

22

A layer communicates with the neighbouring layers via
interfaces /also called local protocols/. Each layer uses
the services of the underlying layer, and offers a new level
of services to its users.
Components of a layer are called to be remote, if they
communicate with each other, using the services of the
underlying layer. The set of rules of this kind of
communication is called protocol /or remote protocol/.

In the definition of a layer it is necessary to give both
the remote and the local protocol definitions. In many
cases solely one of these is given, sometimes they are
confused. It is important to distinguigh between the external
/interface/ and the internal /protocol/ operation of a layer.
The implementation of a layer usually happens on different
systems by different groups of people. This fact raises an
extremely strict demand on the definition. This is, what
influenced us to develop a model in a high-level language,
which has the expressive power necessary for a formal
specification. In an ideal case, we would have had the
appropriate compilers for all participant systems of the
network. It was, however, not our case, and it seemed to be
a too great effort to implement Modula-2 compilers for all
participants.
A similar project has been made by A. Dunki and P.Schicker
/9/. They gave a formal implementation of a virtual termi­
nal in Pascal. Wa have learned a lot from the works of G.
Bochmann and T. Joachim as well /10,11/. They developed a
real implementation of the X.25 layers in Concurrent Pascal.
They also worked out several principles of decomposition of
a protocol, which method has influenced us in a considerable
degree.
We have used the Modula-2 compiler written in Zurich at the
Institut für Informatik,. ETH. The Compiler was running on a
PDP 11/34.

23

Modula-2's aid for decomposition.
Modula-2 offers the module concept to assist the programmer
in decomposing his problem. The Modula language has already
had this feature /2/, /4/. The module is a syntactical unit,
that hides the module's inner objetcs, except the explicitly
exported ones, and lets the module's environment unknown
except the explicitly imported objects. The module is a
convenient tool for expressing abstract data structures, it
has a "forcing power" for a higher degree of modularity and
hence for a higher reliability as well.
Modula-2 extendes the module concept with a very important
new feature. This is the ability to divide a module into two
parts, into the definition part, that describes the exported
objects only, and the implementation part /1/. The definition
module may contain constant, type and varible declarations,
and the head of the procedures to be exported. The body of
these procedures are implemented in the implementation module.
Several different implementations may be written for the same
definition. With the definition/implementation module concept
Modula-2 has also created a conceptual perfect way for the
separate /but not independent/ compilation of modules /5/.
Modula-2 /like Modula or Mesa/ regards the module concept
preferably as a general information hiding tool, in contrast
with languages like Simula or Concurrent Pascal, that regard
it as a data abstraction mechanism /4/. As a consequence,
Modula-2 does not support the multiplication of modules.
Wirth states, that usually only one instance of modules
exists/3/. Unfortunately, this statement does not stand for
us, but rather the opposite of it. In the networking area
there is nothing more typical, than having several instances
of realtively large modules. The possibility to start
processes in several incarnations does not cover this demand.
Several instances of virtual circuits or virtual terminals
etc. could have been expressed as instances of modules most
conveniently. In Modula-2, the existence of several
instances must be reflected in the data structure of the

24

module. Actually: the variables local to a module /but not
to a procedure/, that should have several instances, must be
declared as arrays of their original type. If we use Modula-
2 also as a specification language, it seems to be rather
disturbing to have, at all variables local to a module, one
dimension more. To avoid it, we have written all modules
supposing only one instance in the first step, and we have
replaced the mentioned variables in a second step. It was a
rather long and dull editing-job.

Parallel activities in Modula-2

Modula-2 does not contain an integrated process-scheduler,
like many similar languages do /Modula /2/, Concurrent Pascal
/6/ etc./. Instead, it offers a few, low-level primitives,
whereby it encourages the programmer to design his scheduler
of his own. The concept of Modula-2 is, that the high-level
language should not support a given scheduling strategy, but
should rather support the programmer in developing any kind
of scheduler. If the programmer does not want to design a
scheduler of his own, ha may use any other schedulers written
by others. Examples for schedulers are given by J.Hoppe /7/,
where a message-oriented-solution is presented, and by Wirth
/1/, where a Modula-2 implementation of the original Modula
scheduler /2/ is shown.

Modula-2 does not support processes as sequential activities
competing for some common resources in a true parallel way,
it supports rather coroutines /nevertheless, also called
processes/ running on a single processor that never loose the
processor once obtained, except explicitly required. Normal
processes run on the lowest hardware priority level. Device
processes run on the level of the appropriate device. They
must never call a procedure declared in a module of lower
level. This rule quarantees, that processes work as corouti­
nes .

25

For our virtual terminal model we have applied the Modula-2
implementation of the original Modula scheduler /1/ with
some slight changes. The scheduler defines and exports the
type signal /implemented as a pointer/ and a related set of
operations:

WAIT/S/: Causes the running process to enter the waiting
condition and lets run the next ready process;

SENDDOWN/S/: Causes the first process waiting for S enter
the ready condition. It is ineffective, if there is no such
process ;

SEND/S/: Similar to SENDDOWN, but it also starts
immediately the process which has just been made ready;

AWAITED/S/: A Boolean function, returns true, if one or
more processes are waiting for S.

The scheduler also exports the procedure PAUSE for delaying
a process, the procedure DOIO for awaiting the completion of
an I/O operation, and the procedure STARTPROCESS to start
any global, parameterless procedure as a coroutine,
posessing an own data space and concurring with the other
coroutines.
Interrupts are handled in a nonpreemetive way, i.e. after an
interrupt has ocurred, the interrupted process is marked, to
be resumed as soon as possible. It implies, that the user
should avoid the use of SEND in a device process, as it may
cause to start a chain of processes until the interrupted
process may be resumed. Instead, we use SENDDOWN in device
processes.

The Virtual Terminal Layer
The task of the Virtual Terminal Layer of a computer network
is to offer a homogenous terminal image throughout the
network, independent of the physical terminal devices.

26

The underlying layer is often called Transport Service or
Transport Layer. We assume, that it is able to transport
blocks of information /often called letters/ in a proper
sequence, free of error, with a finite speed. We also assume,
that it is able to transport short /one byte/ blocks /often
called telegrams or interrupts/, independent of the flow of
other blocks. The Transport Layer will also offer tools for

/opening and closing connections /often called liaisons/
between two remote users of it. Our model, however, does not
contain elements dealing with connecting and disconnecting.
We consider these tasks belonging to a separate unit. Thus,
the Virtual Terminal Model expresses a connected state.

The users of the Virtual Terminal Layer may be both programs
and humans. Our model defines a user interface, that
satisfies this requirement. The implementation of the user
interface, however, is in accordance with a human user
operating a physical device. The implementation of the user
interface to application programs will be dependent on the
application itself. Such interface modules may easily be
integrated into our model.
The place of the Virtual Terminal Layer is shown on figure
1.

The Virtual Terminal Model.
The most important step of the design has been the
decomposition of the model. The flexibility of the model is
of primary importance. In the decomposition we have relied
on the principles worked out by Bochmann and Joachim /11/.
We have also transformed our components into an implementa­
tion in terms of processes, monitors and classes.
Nevertheless, there is no syntactical difference between
monitors and classes, they are both expressed in the form of
modules. The componets were chosen so, that they should
build functionally separate /although not independent/ units.
State variables are always owned by different modules and

27

application 1.

О

FIGURE 1 .

28
aoDlication

FIGURE 2

29

hidden from external influences. "Active" events are
represented by processes. All processes are gathered into
one single module and the other modules of the model are all
"passive". The processes work on a producer/consumer basis.

Our Virtual Terminal Model has three main components:

The User Interface /USERIF/ module;
The Transport Interface /TSIF/ module;
The Virtual Terminal Protocol /VT/ module.

The structure of the Virtual Terminal Model is shown on
figure 2.

The main components may be well characterised by their
definition module, i.e. by their interface with the
environment.

The objects offered by the user interface to the virtual
terminal is defined in the USERIF module:

30

DEFINITION MODULF USERIF»
FROM BUFFER IMPORT BUF HEAD»
EXPORT QUALIFIED
MSG IN » MSGOUT »MSGKIND » HL » STRTL » BRF AK »KILL INE »

CONST NL = 1ÓC » (*CNTRL N*> STRTL = 23C» (*CNTRI. S*)
BREAK = 33C» («ESC*) KILLINE = 13C» (SCNTRL K*>

TYPE MSGKIND « (PART 1AL »WITHEOM»WITHEOMYRT»KILLEDLINE)Î

PROCEDURE MSGIN(VAR HJ BUFHFAD» VAR MSGKÎ MSGKIND)»
(♦READS A MESSAGE FROM THE USER*)

PROCEDURE MSGOUT(OAR MJ BUF HEADv MSGKÎ MSGKIND)»
(*GIUCS A MESSSAGE TO THE USER*)

END USERIF.

The user interface and the virtual terminal modules exchange
information in messages. The message is a character stream
that may contain any character. Some of them /those that
are exported here, like NL, STRL/ have a special meaning.
Messages may be terminated in four ways:

partial: continuation follows;
with eom: normal termination;
with eom and yourturn: gives the turn to the partner if
alternating;
killed line: the line is erroneous. This structure is

reflected in the type MSGKIND. The module still exports two
procedures: MSGIN for taking a message from the user and
MSGOUT for giving a message to him.

The objects offered by the transport service to the virtual
terminal are defined in the TSIF module:

31

DEFINITION MODULE TSIFÍ

FROM BUFFER- IMPORT BUFHEAD»
EXPORT QUALIFIED
LETTERIN » LETTEROUT » I TIN » I f OUT » MAXBLOCKI. i

CONST MAXBLOCKI = 255Î

PROCEDURE LETTERIN < OAR Lî BUFHEAD > ?
(♦READS A LETTER FROM fHE TS*>

PROCEDURE LETTEROUT(VAR Lî BUFHEAD) r
(♦GIVES A LETTER TO THE TS^>

PROCEDURE ITIN(VAR I'M BUFHEAD)î
(♦READS AN INTERRUPT FROM THE TS^>
PROCEDURE ITOUT(VAR ITJ BUFHEAD)Î
(♦GIVES AN INTERRUPT TO THE TS^)
END TSIF.

The transport service and the virtual terminal modules
exchange information in blocks /or letters/. Their formats
are described in the Virtual Terminal Definition /12/. The
TSIF module exports the maximum block length it is able to
accept. It exports also procedures for information exchange.
The model has two different implementations of these
procedures. The first one replaces the transporting functions
with procedures for displaying the outgoing and reading the
incoming blocks and interrupts. It is a tool for experimen­
ting with the virtual terminal, it enables us to look into
the internal operation of the virtual terminal machine. We
may follow the internal structure of information on the
transport interface, and we also may simulate the incoming
information. We may easily test the system's reaction on any
kind of erroneous input. The second implementation module of
the transport service is actually empty. It serves to connect
two partners directly, through a dummy network. In both cases
we have used two physical display units. In the first case
one of them served the virtual terminal operator and the

32

other the test operator. In the second case both displays
served virtual terminal operators. The structure allows us
to exchange the implementation module for a true transport
service module, thus turning our model into a true implemen­
tation.

The realisation of the Virtual Terminal Protocol is done in
the VT module:

DEF INITION MODULE VT »

FROM DUFFER IMPORT BUFHEADÎ
FROM USERIF IMPORT MSOKIND»
EXPORT QUALIFIED F’ARTYF'ES » ACTF'AR » PARTOSÉT »

CODEPURGE » CODERESUMF » CODEPLEASE » XSIZEDEFAULT »•
CODEFRFE » CODEMYTURK' » CODE YOURTURN »
NOTICE: КIN D Г S D N ОТ » SE N TJ N U TI CE » SEND IT » SE N D S E T » S110 W P ARS »
FRUMUSEK»TÜUSERr
ITTOTS»TOTS »ITFROMTS»FROMTSî

CONST CODEPLEASE = 360EU CODERFSUKF. - 361D î
CO DEP URGE - 351 Br
CODEMYTURN = 2F CODEYOURTURN = 3»
CODEFREE = 0 » XS1ZEDEFAULT = Or

TYPE
PARTYPES =(CLASS»AUXDEV » MODE » OVERPRINT » X SIZ E)»
F PARAMETERS -• ARRAY PARTYPES OF INTEGER ?
NOTICE КIN Ti « (NORMALTEXT » TE XT TURN »

С M D N Ü T F 0 U N D » С M D U N D E R S P E 0 r G 0 0 D О И D f
I TPR0CESSIN6 »SETPROCESSING »
I TRFC » AÜRFEREC » DISAGREERF.C »
A G T< E E SENT » DI SAOR E F. S L N T г
АС ГPARAMS ? MYLIMIT S » PARTNERSLIMITS)î

VAR ACTPAR»PARTOSÉT: PARAMETERS»

PROCEDURE SDNOTÍNQTICEÍ NOTICES-MD)»
<«SENDS A NOTICE TO THF. USER#)

PROCEDURE SENDNOTICE(NOTICE: NÖTIGEMND » PARAM î CHAR)»
(«SENDS A NOTICE AND A PARAMETER TO THE USER#)

PROCEDURE SHOWPARS < VAR Pî PARAMETERS» VAR ЕС Ы Л : HEAD) »
(♦PUTS P-S COMPONENTS INTO D IN A READABLE FORM#)

PROCEDURE SENDIT(ITCODE: INTEGER)»
(♦SENDS AN INTERRUPT TO THE TS*)

PROCEDURE SENDSET»
(♦SENDS A SET-ITEM IN A SINGLE DIOCK«)

PROCEDURE FROMUSF.R (VAR MJ BUFHEADÎ MSGKÎ MSCKIND) »
(♦READS A MESSAGE FRÜH THE USER*)

33

PROCEDURE TOUSER (OAR MJ BUFHEAD » MSC-iKJ MSGKIK'D) î
(*GIVES A MESSAGE TO THE USER*)

PROCEDURE ITTOTS(VAR ITJ BUT HEAD)»
(*GIVES AN INTERRUPT F OR THE TS*)
PROCEDURE TOTS (VAR LETTER: BUT HEAD)r
(»GIVES A LETTER TO THE TS*)

PROCEDURE ITFROMTS(VAR ITÎ BUEHEAD)»
(»READS A INTERRUPT FROM THE TS*)

PROCEDURE PROMTS(VAR LETTER Î BUEHEAD)»
(»RFADS A LFTTER FROM THE TS*)

END VT.

The VT module exports constants, types, variables and
procedures. Principally, it would be enough to export solely
procedures, partly for the information exchange between the
interfaces and partly for offering some services to the
command interpreter. Nevertheless, the VT module also makes
visible some parts of its data structure. These are used
mainly by the command interpreter, and beside that, by the
USERIF and TSIF in a strict read-only way.

The VT implementation module is divided into modules as
well, according to the separate functions of the virtual
terminal protocol /negotiation handling, interrupt handling,
normal text handling/.

The interconnections and the data flows are represented by
processes. There are two independent data flows between the

VT and the USERIF modules /msgin and msgout/. There are four
independent data flows between the VT and the TSIF modules
/letterin, letterout, itin, itout/, The processes are kept
as simple as possible. They connect two modules. They read a
unit of information through an output procedure of the one
module and they give it to the appropriate input procedure
of the other module. We show the VTPRCS module, that dontains
all processes of the Virtual Terminal Model:

34

MODULE VTF'RCS »
(»VIRTUAL TERMINA!. PROCESSES*)

FROM SYSTEM IMPORT WORD»
FROM F’ROC ESS SCHEDULE R IMPORT ST ARTPRÜCESS î
IMPORT VT»
IMPORT USERIF »
import t s i f ;

TYPE WSP = ARRAY CO . ♦2503 OF WORD»

VAR WSP1 » WSF'2 » WSP3 » WSF'4 » WSF'5 J WSP»

PROCEDURE USERTQVT»
(»DATA FLOW FROM THE USER TO THE VIRTUAL TERMINAL*)
OAR m : BUFHEAD > MSOKJ USERIF.MSGKIND»
BEGIN

LOOP
USERIE♦ MSGIN(M » MSGK)»
VT « FROMUSER(M » MSGK)»

END» (*LOOP*>
END USERTÜVT »

PROCEDURE VT70USER»
(»DATA FLOW FROM THE VIRTUAL TERMINAL TO THE USER*)
VAR MJ BUFHEAD» MSGK: USERIF♦MSGKIND »
BEGIN

LOOP
VT.TOUSER(M » MSGK)»
USER IF .MSGOUT(M > MSGK)»

END» (»LOOP»)
END VTTOUSER»

PROCEDURE TSIT »
<»INTERRUPT FROM THE TRANSPORT SERVICE TO THE VIRTUAL
TERMINAL*)

VAR IT: BUT HEAD»
BEGIN

LOOP
TSIF » ITIN(IT) »
VT,ITFROMTS(IT)»

END» (»LOOP*)
END TSIT »
PROCEDURE TSTÜVT »
(»DATA FLOW FROM THE TRANSPORT SERVICE TO THE VIRTUAL
TERMINAL*)

VAR L: BUFHEAD»
BEGIN

LOOP
TSIF.LETTERIN(L)»
VT.FROMTS(L)»

35

e n d; <*loop*)
end t s t o v t;
PROCEDURE ÚTIT;
(* INTERRUPT FROH THE VIRTU AS. TERMINA!. TO THE TRANSPORT
SERVICE*)

var i t: bufhead;
BEGIN

LOOP
vT.ITTOTS(i t) ;
TsiF.Ito u t(it >;

e n d; <*loop*)
end v t i t;
PROCEDURE VTTOTS;
(»DATA FLOW FROM THE VIRTUAL TERMINAL TO THE TRANSPORT
SERVICE*)

var l : buf hfad;
BEGIN
LOOP

VT,t o t s(L);
TSIF.LETTEROUT(L);

e n d; (*loop*)
END VTTOTS;
BEGIN

STARTPROCESS(USERTOVT f ADR(WSP1)»TSIZE(WSP));
STARTPROCESS(VTTOUSER> ADR (WSP2)»TSIZE(WSP))Î
ST ARTPROCESS(TSIT tADR(WSP3).TSTZE(WSP));
ST ARTPROCESS(TSTOVT» ADR(WSP4)»TSIZL(WSP));
STARTPROCESS(VT 1Ï mADR(WSPS)»TSIZE(WSP)) ;
v t t o t s;

END VTPRCS

36

We have allocated the storage for the procedures to be
started as processes statically /WSPi/, but we could have
done it also dinamically, with the help of the NEW
statement. The last process /VTTOTS/ is called like a
procedure, because the Modula-2 starting system should be
regarded as a process as well.

Beside the main components there are still several others,
like:

Command Interpreter;
Storage Management;
Buffer management;
Queueing;
Process scheduling.

All these components have been realized as definition/
implementation module pairs. If we are successful in writing
the definition module, we may undertake later any kind of
changes in the implementation modules, without changing
anything else. During our development we had to change
sometimes some definition modules as well, then we had to
recompile several modules. It is somewhat unpleasent, but it
forces the programmer to be as careful as possible with the
definition of his interfaces. This is a great advantage
indeed !

Queueing and synchronising in the Virtual Terminal Model.
Modula-2 does not contain an integrated process-scheduler
/as mentioned already/, consequently, it cannot check the
proper use of the synchronising primitives. /That is the
price for the freedom in writing own process-schedulers./
Thus, the Modula-2 programmer must be careful with process
synchronising and must keep himself to strict rules, if he
wants to have a reliable system.

37

Our basic tool for process synchronisation is the interface
module, as described in /1/. Its concept is based on the
monitor concept of Brinch-Hansen and Hoare /8/. The inter­
face module assures the mutual exclusion on its procedures.
As Modula-2 regards processes as coroutines, the
implementation of an interface module is trivial, i.e. it
stands for every module, that if one process enters it, no
other process may enter it, until the first process leaves
it /the WAIT and SEND operations imply also leaving/. The
synchronisation primitives used, are offered by the process-
scheduler /WAIT, SEND etc./. A strong discipline must be
followed in using them. Corresponding WAIT-SEND/DOWN/ pairs
must stay in the same module.

The synchronisation of the processes of the Virtual Terminal
Model are concentrated into one single module, namely into
the VTQ module. The VTQ module contains all queues of the VT
module, i.e. they contain data, that are already processed
by the VT procedures, and are to leave the VT module in the
direction of the user or the network. Incoming data will not
be queued, but will be processed immediately. We show the
entire VTQ module /in a little simpelif ied form, as the real
model handles also priorities in VTQ/.:

DEF INITION MODULE VTQ »

FROM SYSTEM IMPORT WORD;
FROM FI FOG IMPORT QUEUE »

EXPORT QUALIFIED END » DEC»QKIND,}

TYPE QKIND = <MSGG»U3FRQ,TSJTG»T3C’> î

PROCEDURE ENQ(Q: QKIND » THIS: WORD)?
<*ENQUES THIS IF POSSIBLE. IF N07» IT WAITS*)

PROSE D U PE D EQ(Q : G К I N U ; V A R T HIS: U 0Rn);
<*DEQUEUES THE NEXT ELEM IF POSSIBLE. IF NOT» IT
WAITS*)

END VTQ.

38

The definition module imports two types; the type WORD from
the module SYSTEM /the queue elements may be words/ and the
type QUEUE from the module FIFOQ, that realizes a first-in/
first-out based queue handling. The VTQ module exports the
type QKIND, that describes the kind of queues available in
the model, and two operations on it: ENQ for enqueueing and
DEQ for dequeueing. The way of operation of these procedures
is unknown at this point, the only thing we must know that
they will be completed in a finite time.

The implementation module of VTQ shows the realization of the
above operations:

IMF'LEMF NTATION MODULE VT0 î

FROM SYSTEM IMPORT WORD*,
FROM PROCESSSCHEDULER IMPORT
IN IT S IG U A L , S I G N A L * W A I T » SC К П }

Г R 0 h FIF 0 a IM R 0 R T C R E A T E C: » F LILE G » E M F T Y G ? CETQ ? FIJI Q . QU L U E î
CONST 0LENGTH = ALI., ûULULE HAVE THE SAME L E N G T H * >
OAR NONFULL.NONEMPTY : ARRAY

отou l u e s : a r r a y era n o or
i: OKiNMî

G R I N D or
q u e u e ;

SI CNR

PRO CE DUR F ENQ' Qi GRIND; THIS: HORD)»
U ENDUES THIS IF POSSIBLE. IF NOT > IT WAITS*)
BEGIN

IF F U L L Q < V TQULU E S E G 3 > T H E N W AI T •: N 0 N F ULI. ГСМ) END;
PUT Q (T G U E U L S Г G J :■ T F : I S) ;
s e n d (n o n e m p t y : g :j '• ;

END ENQ;

39

- t ■ о с et Li и I-; f: il e: ü < q : о ' VI г! ; I ? у л r? th i s: w u r »
1 + DE QUEUE t THE NI XT LIEN IГ FOSS IDEE .
WAITS*)

ELGIN
IF EM F ' T Y Q F U T Q 'JL U E 31 G 3) T II E N W AIT (N G N
GETQ(UTQUEUESCG3» TRIS)t
SEND (NONFULL C QI ■ î

END d e c ;

F NOT f IT

MOTYLCD) END *

DEGIN
FON Iî= MSGQ TU TSC DD

INITSIG N A !.. Í N 0 N F U LELI 3) î INITSIGNAL (NÜNEMF'T Y C 11) ?
C R F A T E P (V T R UE UL SC I 3 * CLE N Ci T H > î

END? (*FOE*)
END UTG.

The implementation module imports from the module
PROCESSSCHEDULER the type SIGNAL and the necessary operations
on it, that have been described earlier. It imports from
FIFOQ the type QUEUE and the corresponding operations:
CREATQ /creates a queue with given length/, FULLQ, EMPTYQ,
/Boolean functions, give true if the queue is full,
resptectively empty/, PUTQ /enqueues an element into the
queue/ GETQ /dequeues an element from the queue/.
The implementation module contains the array variable
VTQUEUES; one queue type element for each kind of queue. It
is an essential point, that VTQUEUES is hidden from the
environment /as it is not exported/.

Thus, the queues of the model are protected from any kind
of use, except via ENQ and DEQ. The array variables NONFULL
and NONEMPTY serve for the synchronisation of the processes.
If a request arrives for taking out an element from an empty
queue, respectively to put in an element into a full queue,
then the requesting process starts to wait on the
corresponding element of the signal array NONEMPTY,
resptecively NONFULL. The appropriate signal element will
be activated /by SEND/ whenever an action has been taken on
the queue.

40

CONCLUSIONS

We have used the Modula-2 language to develop a Virtual
Terminal Model. We have built also a stand-alone system to
assist the model. This system contains facilities like
process-scheduling, queueing, buffering etc. The work has
been done surprisingly quickly /three man-months/, and with
few errors. Most bugs could be found simply by inspecting the
source listings. After having corrected some bugs in the
process-scheduler, we had not one single error because of
scheduling.

Modula-2 has not only supported the task of decomposing, but
it also influenced the design in choosing good structures.
The definition/implementation module concept is extremely
attractive and convenient for thinking in modules. The only
drawback, that we have encountered, is the fact, that
modules may not be multiplicated. We understand, that it is
not their purpose either, as they are just syntactical
"walls" for information hiding. As a matter of fact, we had
rather much trouble for the lack of any possibility to
express several instances of abstract data types in an easy
manner.

Modula-2 has also encouraged us to choose a scheduler of our
own taste, and to invite concurrency into the structure
without difficulty.

Modula-2 has proved to be an excellent tool for the
implementation of a complex task, and also to be a good
specification language. It was pleasant to work with it, and
we think, it is the greatest advantage of the project, that
we can trust our own program, much more than generally.

ACKNOWLEDGEMENTS

I express my thanks to prof. N.Wirth, L.Geissmann and Cru
Jacobi for making me the Modula-2 compiler available and for
giving many helpful ideas.
I thank Ann Dunki for many excellent ideas.
I also thank my colleagaues L.Almási, L.Csaba, M.Papp, I.
Tétényi and M.Szabó for many valuable helps and remarks.

My most sincere thanks to A.Ercsényi, who has actually been
a co-author in the entire project, and who gave the better
part of the ideas.

REFERENCES * •

1. N.Wirth, "Modula-2", ETH-Berichte 36, 1980.
2. N.Wirth,"Modula: A language for modular multiprogramming"

SOFTWARE - Practice and Experience 7, No.1.3-35 /1977/
• 3. N.Wirth, "Design and Implementation of Modula" SOFTWARE-

Practice and Experience, 7, No.1.67-84 /1977/
4. K.V.Le, "The module: a tool for structured programming"

ETH - Diss: 6153, 1978
5. L.Geissman, "Modulkonzept und separate Compilation in der

Programmiersprache Modula-2" In W.Remmele, H.Schecher,
Eds., "Mikrocomputing", 98-114, Stuttgart, 1979.

6. P.Brinch Hansen "The architecture of concurrent programs"
Prentice-Hall, Inc. Englewood Cliffs, New Jersey, 1977.

7. J.Hoppe "A simple nucleus written in Modula-2" ETH -
Berichte 35, 1980.

8. C.A.R. Hoare "Monitors: an operating system structuring
concept" STAN-CS-73-401, November 1973.

42

9. A.DÜnki, P.Schicker "Page Virtual Terminal Formai
Implementation in Pascal" EIN/ZHR/77/024 1977.

10. T.Joachim, "Implementation du protocole standard X.25
a partir d'un modele de formalisation et de mécanismes
abstraits de programmation" Document de travail 103,
Université de Montreal, 1977.

11. G.Bochmann and T.Joachim "Development and structure
of an X.25 implementation" Université de Montreal,
April 1978.

12. "Proposal for a standard Virtual Terminal Protocol" INWG
PROTOCOL, February 1978.

/

Computational Linguistics and Computer Languages Vol. XV. 1982.

INDUCTIVE DOMAINS AND ALGEBRAIC SEMANTICS OF CF LANGUAGES*

S teph en D. C o m er*

Mathematical Institute, Oxford
Great — Britain

1'. Introduction

This note contains two simple observations on the effect of allowing a CF language to
admit inductive definitions. Such languages can be generated by an unambiguous grammar and
they allow the construction of an ’’adequate” algebraic semantics in the sense of Andreka — Nemeti
— Sain [2] (henceforth referred to as ANS).

The development of an algebraic semantics for a well presented language L = <S,M,k>
in [2] depends on using a grammar G that satisfies a n ’’adequateness criterion ”. Section 3
of [2] presents examples of grammars that are adequate and those that are not. A careful analysis
of these examples reveals a common thread. In all cases the ’’meaning function” к for L was
defined by induction on the complexity of the words in S. This, of course, is the most
common way of defining a function on S. In most cases where G was not adequate for L
it happens that G is an ambiguous grammar and it is precisely the ambiguity that leads
to the inadequacy.In a nutshell, the rewrite rules of G conflict with the inductive clauses
used to define k. The point is that the ability to make inductive definitions on the syntax
S of a language implicitly gives a ’’parse” of S. We formalize this below (Proposition 1) and
show that, in the situation where the meaning function is defined by induction, the induced
unambiguous grammar is always adequate (Proposition 2).

2. Preliminaries

We briefly review terminology used in ANS [2].

A w ell p re se n ted language is a triple L = <S,M,k> where S is a nonempty set
(the sy n ta x of L) defined by a generative grammar G, M is a nonempty set-theoretically
defined class (the m o d e ls of L), and к is a function on S X M (the m ean ing fu n c tio n of
L) that is also assumed to be set-theoretically defined.

We assume throughout that the grammar G generating S is context-free (CF).
Formally, G = < N,X, <R. : iel> > with nonterminals N, terminal symbols

* This work was supported by National Science Foundation Grant MCS-8003896.
Author’s address after July 1981: The Citadel, Charleston, S.C. 29409, USA.

44

X(N n X = 0), and rewrite rules (or productions) R., iel. Each Rj has the form
A h u for some AeN and ue(N U X)*. For each AeN the sy n ta c tic ca teg o ry o f A
is the set

SA = {ueX* : A I— * u}.

The syntax L(G) generated by G is defined as L(G) = U (SA I AeN}, which we assume
equals S.

The first task in developing an algebraic semantics for L is to turn S into a
’’syntactic algebra” , actually an N-sorted algebra or operator domain: S (see ADJ[1] or
ANS[2]). The universe assigned to the sort AeN is SA. The operations on S are derived
from the production rules in the following way. If R4 is the rule

A0 h uqA 1 Uj . . . Anun

where u.eX* and A^eN for j < n + 1, the associated operation Fj has type
S. X . . . X S . -► S . and is defined as

Ai A n A о

Fjiap • • • > an) = u0alU l. . . anun

for each n-tuple (ax, . . . , an)eSA X . . . X SA .1 П
For each tft»eM, k (- , t/t) = Xu.k(u, V O is a function on S, hence a function on the

algebra S . A grammar G is called a d eq u a te for L (see ANS[2]) if k (- , VC) is a
homomorphism on S for each ^ e M .

We also use the following terminology about sequences. Suppose а,те S с X*. We say
a is a part of r, in symbols о C r, if т = p о v for some p , v e X*. a is a p ro p e r

p a r t of r if о с T and а Ф т. о is a m axim al p a r t of т if r covers a in the poset
<S, ÇI >. reS is called a basic w o rd (or a to m) of S if it is a minimal element in the
poset <S, £ > .

3. Inductive domains

What is going on when a function к is defined on a syntax S = L(G) by induction on
the ’’complexity” of words? To begin with, the value of к is specified on ’’atoms” of L(G).
Then, for every aeL(G), not an ’’atom ”, the value k(o) is given by a function applied to
values klc^), . . . , k(on) where o 1, . . . , an are ’’less complex” parts of a. If к is
really a function, that is, well-defined, the parts a x , . . . , о must be uniquely determined
from a. Thus, for inductive definitions to be possible, a ’’structuring” of S must be
present. This motivates the following notion of an inductive domain.

Definition 1. An in d u c tive dom ain is a triple <S,<C . : jeJ> , j0> where S is a CF
syntax, {Cj :je J} is a partition of S, and jQeJ such that the following hold:

45

(i) aeC. iff a is a basic word of S;
Jo

(ii) for every jeJ — (jQ } there is a sort AQeN with C. Ç SA and there exist a
unique sequence < A j, . . . , Ak> of sorts and unique ß{eX* (for i < k) such

that every oeCj has the form

(t) a= Mô iMi • • • ткМк

where т;е8А for i = 1, . . . , к and T j, . . . , rk are maximal parts of a . Conversely,
for every choice т;е8А for i = 1, . . . , k, the о with description (t) is an element
of Cr 1

The subsets C. are called clauses. Each clause has a type. C- has type 0. A clause C ,J J * Jo v j’
j Ф jQ has type к where к is the lenght of the sequence < A j, . . . , Ak> associated
with it. We say that a syntax S admits inductive definitions if there exist <C. : jeJ> and
j0eJ such that <S, <C. : je J> , j0> is an inductive domain. □

Definition 2. Suppose <S,<C. : jeJ>, j0> is an inductive domain.

(i) An inductive definition over S is a system of functions <Oj : jeJ> such that
domain О. = C. and O. has type к whenever C. has type к for all Jo Jo J J
jeJ - {j0 }■

(ii) A function h on S is defined by induction by the inductive definition
<O j : jeJ > if

(a) h(a) = O. (a) for all oeC. ;
Jo Jo

(b) for all aeCj, j Ф jQ, h(a) = 0 .(h(t^ , . . . , h(rk)) where

a has the form (t) in Definition 1. □

Our first goal is to characterize when a CF syntax admits inductive definitions.

Proposition 1. A context-free syntax S admits inductive definitions iff S = L(G') for some
unambiguous grammar G' (that is, no word possesses two distinct G ’-derivation trees, cf.,
Clark — Cowell [3]).

Proof. Suppose <S, <Cj : je J > , jQ> is an inductive domain where S = L(G) for some CF
grammar G. Let K = C ^ U (J — {jQ J). We define G '= <N,X, < F : j e K » where N
and X are the nonterminals and terminals, respectively, of G. The rewrite rules
PjJeK, of G ’ are as follows:

- 4 6 -

for aeC. n S. , let P be A (- a;Jo A CT g‘
for each clause Cj5 j Ф jQ let be AQ f- ß Q Ax . . . Ak ц к

where AQ, A : , . . . , Ak are the unique sorts and ju0 . • • • > Mk the unique sequences in
(ii) of Definition 1.

An easy induction shows that G generates S. We show that G is unambiguous by
induction on word lenght. Clearly each basic word of S has exactly one derivation tree.
Now consider a word о in C. where о has the form (t) in (ii) of Definition 1 and
each maximal part t . of о has exactly one derivation tree. Any derivation tree for a has
root labled A„ (recall C. C S.) and the lables, left-to-right, of the sons of An areU J Aq u
exactly the symbols in the sequence A1 . . . Ak дк and the subtree rooted at each
A; is exactly the derivation tree for r . By the uniqueness in (ii) of Definition 1 and the
induction hypothesis, a has exactly one derivation tree.

For the converse, suppose, S = L(G) where G is an unambiguous CF grammar
<N,X,<R. : i e l » . Let Г = { iel : R. has the fonr A h о for some Ae N and
a e X * }!. I’# 0 (we disallow A f- A as a production) so fix iQ e I' and define clause

С. = { aeX * :A |- о for some A e N } . For each iel — Г, the rewrite rule R. contains>o g 1
nonterminals on the right-hand side. Suppose R4 has the form

A0 '“G ^0Al • • • • Ak̂ k
for some ju^X* and A.eN (i< k). Define the clause C as

C. = (aeX*: a= M0r 1p 1 . . . rkMk for some ^ e S ^ , . . . , rk e }.

Using the fact G is unambiguous, it is easily checked that
<S, <Cj : je(I — I ') и {i0 }, i0 > is an inductive domain, g

For a CF syntax S which admits inductive definitions we call the grammar G ' for S
constructed in Proposition 1 the g ram m ar in du ced b y th e in du ctive stru c tu re . It is easy to
give examples of CF languages that can be generated by different unambiguous grammars;
see ANS, Example 3(i).

We now consider the relationship between having an inductively defined meaning func­
tion and an adequate grammar.

Proposition 2. Suppose L = <S,M,k> is a well presented language. Then the existence of an
inductive definition for k(— , tJC), for each eM, is equivalent to the existence of
an adequate grammar for L.

47

Proof. First, suppose S admits inductive definitions and, for each fe^eM, k(- , V£) is
defined by induction. We claim the grammar for S induced by the inductive structure is
adequate for L. It needs to be shown, for «tfeM, that the equivalence relation =«* on
S, defined by a r iff k(a, *H>) = k(r, V C), is a congruence relation on S. Towards
this end, suppose F. is a k-ary operation of the type S. X . . . X S . -»• SA associatedj Ai Ak Ao
with a clause C y j Ф jQ, and suppose o { = v i Ti for all i = 1, . . . , k, a = Fj(a1(. . . , ak)
and T = FjÍTp . . . , тк). Then, by Definition 2(ii),

k(a, V b) = O .ik ia j, V C), . . . , k(afc, V C))

= O j(k (rj, 'c/G к(тк> t/G))

= к(т, t*>),

hence a r as desired.

Conversely, if G is adequate for L, the homomorphism property for k(—, V C) on
S gives an inductive definition of the function k(—, VC) on S.°

4. Example

We illustrate the remarks in the preceeding section for the implication language
L = <S,M,k> treated in ANS[2], Example 3(iii), Section 3. S is generated by the grammar
G6 = <N ,X,< R : iel > > where N= {F}, X = {p. : iecu}u {-*■ }, I = со U {-*• }
and the productions are:

R ^ : F (- F ^ F

Rj : F 1- pj (for iecu).

The class of models is M = w 2. The meaning function к is defined, for V C e ^ 2 , by
induction as

k(P;, fcfc) = MKi)

0 if tf(,(i) = 1 and к(0, Vb) = О

k (P i - 0 , V C)

i
otherwise

for each ieco. The grammar G6 is not adequate for L. An adequate grammar can be
obtained from G6 in either of two ways, depending upon what we desire to preserve.

48

Method 1. Keep the meaning function.

We must change the grammar. The inductive definition of к implicitly gives S the
structure of an inductive domain. The induced grammar has rewrite rules, for icu>,

F Ь Pj -> F

F I- рг

This is exactly the grammar Gy considered in ANS[2] and is adequate by the proof of
Proposition 2.

Method 2. Keep the grammar (but make unambiguous by parsing). In the case of G6 , extend
X to X '= X и {(,) } and let

RJ> : F I - (F -*■ F)

R.' : F I— Pj (for ie<u).

Then G '= <N, X < R / : iel6 > > is an unambiguous grammar which will admit inductive
definitions. In particular, we can define a new meaning function к '(— ,*H>) for , by

k'(Pi, « *) = «*(i), for each ieco, and

{0 if k'(0 , = 1 and k'(\[/, <6&) = 0

1 otherwise.

G' is the grammar induced by the inductive structure, so by Proposition 2, G' is adequate
for the language <S',M,k'>. Of course, S' = L(G') is slightly different from S due to the
added punctuation.

The other examples of inadequate grammars in ANS[2] can be modified in the same way.

5. Concluding remarks

Semantics (or meaning functions) used in the vast majority of languages are defined by
induction. Thus, for all practical purposes, in dealing with context-free languages, we may as
well assume we have such a language. The content of Proposition 2 shows that, under this
assumption, an adequate algebraic semantics can always be constructed.

The content of Proposition 1 may be viewed as a justification for assuming from the
beginning the syntax is ’’parsed” (as in, for example, ADJ[1]). The inductive structure
induces a natural unambiguous grammar that generates the syntax anyway. On this point we
quote Clark and Cowell [3], page 159.

49

’’When a context-free grammar is used to specify the syntax of a programming language it is
clearly important that the grammar be unambiguous. For, since the productions used in the
generation of the program indicate the way the program should be parsed’ and its meaning
derived, the existence of two distinct parses for the same program might lead to an interpreta­
tion of the program by the compiler different from the interpretation intended by the program-

>>mer.

The author is grateful to H. Andréka and I. Németi for their encouragement and correspond­
ence concerning the ideas presented in this paper.

R e f e r e n c e s

[1] ADJ. Gougen, J.A., Thatcher, J.W., Wagner, E.G., and Wright, J.B., Initial Algebra
Semantics and Continuous Algebras. JACM 24(1977), 68-95.

[2] ANS. Andréka, H., Németi, I., and Sain, I., Connections between Algebraic Logic and
Initial Algebra Semantics of CF languages Part I and Part II. Preprint, Math. Inst. Hung.
Acad. Sei. October 1978. Appeared in: Mathematical Logic in Computer Science (Proc.
Coll, held in Salgótaiján 1978), Dömölki, В., Gergely, T. (Eds), Colloq. Math. Soc. J.
Bolyai Vol. 26, North—Holland, 1981. Part I: pp. 25-83, Part II: pp. 561-606.

[3] Clark, K.L. and Cowell, D.F., Programs, Machines, and Computation, McGraw-Hill,
1976.

■

■

Computational Linguistics and Computer Languages Vol. XV. 1982.

SOME BASIC PROPERTIES OF k-BOUNDED INTERPRETATIONS
OF GRAMMAR FORMS

Erzsébet Csuhaj Varjú

Computer and Automation Institute
Hungarian Academy of Sciences

Budapest, Hungary

1.
INTRODUCTION

The notion of a grammar form has been introduced to
formalize the idea of a master grammar defining a family
G(F) of structurally related grammars. The grammars in the
associated family are obtained by an interpretation
mechanism, which involves a substitution of the nonterminals
and terminals by disjoint sets of nonterminals and sets of
terminal words, respectively. Therefore G may be regarded as
an operator which when applied to a grammar yields a set of
grammars.

From the mathematical point of view it is very natural
to ask what happens when some restrictions are made on the
interpretation mechanism. In this paper a variant G^ of G,
called the /с-bounded interpretation operator, is investigated
which also yields a set of grammars when applied to a given
grammar form.

The grammar F 3 - {Vi S 3 P 3 er») is said to be a k-bounded
interpretation grammar of a grammar form F=[v3S 3P 3o) , if F 3
is an element of its grammar family and the minimal number
of new nonterminals which are necessary to create F 3 from F
is at least к for each nonterminal Ç of F occuring in P.
The set of all к-bounded interpretation grammars, for all
j < k 3 of a grammar form is called its к-bounded grammar
family. These notions came from S.Ginsburg and G.Révész [4̂ .

52

Organizationally, there are four sections in the paper.
In section 2 some preliminary notions are reviewed.

In section 3 the notion of a к-bounded interpretation
and that of a к-bounded interpretation grammar of a grammar
form are defined. We define the к-bounded interpretation
operator, too. We introduce two new notions, namely the
notion of a k-th inflation and that of a k-th inflation
grammar of a grammar form, which serve as useful tools in
the characterization of к-bounded grammar families. These
notions express maximum properties. Then some properties of
the к-bounded interpretation operator are proved.
Particularly, we show that set of k-th inflation operators
/k=l,2 ,3,.../ is a monoid and the set of k-bounded
interpretation operators /k=0,l,2,../ is a semiring. It is
shown that the k-bounded grammar family of a grammar form is
equal to the union of 2-bounded grammar families of its
k-th inflation grammars.

In section 4 the notion of pseudo-isomorphism is
reviewed. We introduce the notion of the skeleton grammar of
a grammar form which is a simple modification of the notion
of an interpretation grammar completed with respect to
terminals of a grammar form. We define the corresponding
operators, too. After this we characterize the relation of
the к-bounded interpretation operator, the k-th inflation
operator and these two operators. We show that the pseudo­
isomorphism operator commute with each other. Then it is
presented that the k - t h inflation operator and the
skeleton operator commute with each other, too.

53

2.

PRELIMINARIES

We first recall some elementary ideas of grammar forms.
A grammar G= [V3 S3P3 a) is a quadruple, where V is a finite
nonempty set of symbols, S is a nonempty set of terminals,
V-S is a nonempty set of nonterminals, о in V-S is the
startsymbol, and Pc{a+ß|aeV+-S+3 ßes'} is a finite
nonempty set of rules.

A symbol occurring in at least one production of a
grammar is called an inner symbol of it. A symbol of a
grammar, which is not an inner symbol of it, is said to be
an outcast symbol of it. We use the term of an inner terminal
/nonterminal/ and that of an outcast terminal /nonterminal/
in the respective way.

Those grammars which have not at least one inner terminal
are said to be t-empty.

A t-empty grammar is said to be symbol-tight if its each
nonterminal which is different from the startsymbol is an
inner symbol of it. A grammar which is not t-empty is said
to be symbol-tight if each symbol of it which is different
from the startsymbol is an inner symbol of it.

In the following let V be a fixed infinite set of
abstract symbols and £ a subset of V such that £ and V-£
are both infinite.

DEFINITION 2.1
A quadruple F=(V3S3P3o) is called a grammar form if
(V3S3P3a) is a grammar and V-ScV - £, ScL hold.
The set of all grammar forms is denoted by
The notions, which are defined previously, are applied to
grammar forms in the stated way.
A grammar form F3 = {V3, S3, P‘, a) is called a subform of a
grammar form F=(V3S3P3o) if P3̂ P3S3C S 3 V3-S3£V-S hold.

54

NOTATION-------- ?The mapping SYM from $ into 2 is defined as follows:
For each grammar form F let SYM\F)-{F3 }, where F 3 is the
maximal symbol-tight subform of F. For each set 3̂ of grammar
forms let S Y M (& i)=VJ SYM(F) and let SYM{0)=0.

F£ii
The way a grammar form specifies that a grammar form is
"structurally close" to it is accomplished by the next
fundamental notion:

DEFINITION 2.2
The 5-tuple I - (S’, P33a3) is said to be an interpretation
of the grammar form F= (V3 S 3 P 3 a) , if (V\ S’, P33o3) -denoted by

л
F 3 -is a grammar form and y is a finite substitution on V
such that the following conditions hold:

-I-
/i/ y (a)CE" for each terminal a of F;
/ ii / y(Ç)£V-E for each nonterminal Ç of F ;
/iii/ y(Ç)ny(n)=0 for all different nonterminals Çand л of F ;
/iv/ each nonterminal of F 3 is an element of y(y-5) and

each terminal of F 3 occurs in at least one element of
У (5);

/v/ PJcy(P), where y(P)-{u->u | wey (а) л uey (ß) anda^-ßeP};
/vi/ aJey(a).
The grammar form F 3is called an interpretation grammar of
F and y is called an interpretation substitution of it.
Next we present the notion of the interpretation operator.

DEFINITION 2.3-------------- #The mapping G from $ into 2 is said to be the interpretation
operator if for each grammar form F :
G {F)={F3 IF 3 is an interpretation grammar of F } .
We extend the definition of this mapping to,the subsets of
У in the following way: for each nonempty subset of У let
5(3',)= U G(F) and let G(0)= 0.

FeTi

55

The next theorem asserts that this operator is an idempotent
mapping. Since the proof is a simple modification of the
proof of lemma 1.1 of [l], therefore is omitted.

THEOREM 2.1
9For each grammar form F G (F)- G(F) .

3.
^-BOUNDED INTERPRETATION OPERATORS

In this section the notion of a k-bounded interpretation
and that of a k-th inflation of a grammar form are
introduced. The corresponding interpretation grammars and
operators are defined, too. Some theorems are presented
concerning algebraic properties of these operators.
The next concept represents the minimal number of new non­
terminals per an old nonterminal which are necessary to
create a given interpretation grammar from a given grammar
form.

DEFINITION 3.1
Let F 3 = (V3 S 3Pja3) be an interpretation grammar of the
grammar form F=(V3S 3P 3 o). Let H be the set of interpreta­
tion substitutions of F. The grammar form F 3 is said to be a
^-bounded interpretation grammar of F if the following hold:

/i/ min max
цен £is an inner non­

terminal of F

card (n I П£М(Ç)»П is an inner
symbol of F 3 }=k;

and there is an element u of H satisfying this minimum
property such that:

tt ft ft
/ii/ card (er’luia |a £у(сг)ла is an inner symbol of F 3 }<k.

56

An interpretation 1= (у, V3 S3 P3o3) of a grammar form
F = (7jS3P 3a) is said to be a к-bounded interpretation of it
if (V3S33P 3o3) - denoted by F 3- is a к-bounded interpretation
grammar of F and y satisfies the conditions /i/ and /ii/.
The set of all j-bounded interpretation grammars of a
grammar form, where j is at most k, is said to be the
к-bounded grammar family of it.
The next concept expresses maximality.

DEFINITION 3.2
Let F 3 = {V33 S 3P33o3) given by the interpretation 1= (у л V3 S 3 P33o3)
be an interpretation grammar of the grammar form F = (V3S 3P 3 o).
F 3 is called a k-th inflation grammar of F and I is called
a k-th inflation of it if the following conditions hold:

/i/ card (n|ney(£),n is an inner nonterminal of F 3 }=k
for each inner nonterminal Ç of F;

/ii/ y(a)-{a} for each terminal a of F;
/iii/ if a is an inner symbol of F then is an inner

symbol of F 3 ;
/iv/ PJ=p'(P) where ÿ is a substitution defined on V *

such as follows: for each inner nonterminal Ç of F
y(Ç) is the maximal subset of y(£) consisting of
inner nonterminals of FJ and for each other element
X of F y {x)-y(æ) .

Remark 3.1
It comes with simple considerations that if F 3 - (V33 S,P3,o3) is
a k-th inflation grammar of a grammar form F = (V 3S 3P,o) then
F 3 is a к-bounded interpretation grammar of it. Otherwise,
if F 3 is given by the /с-th inflation 1= (y 3 V3 S 3 P33o 3) then
there is not an element of (y(P)-PJ) such that each element
of V-E occurring in it is an inner nonterminal of F 3 . That
is, P 3 has a maximum property.
Now we are sufficiently prepared to give our definition of
the corresponding mappings.

57

DEFINITION 3.3
The mappings G^ and INF ̂ Ik is a positive integer/ from £'Vinto are said to be the /с-bounded interpretation operator
and the fe-th inflation operator, respectively, if for each
grammar form FI
G k iF)={F'\F* is an element of the ^-bounded grammar family
of F } ; and INF j^(F) = {F3 \ F 3 is a fe-th inflation grammar of
F } ,
We extend this definition to the subsets of ¥ as follows:
for each nonvoid subset of cT let [̂ _J G b (F) , let

Fe<Fl
INF (3̂)- INF^{F) and for the empty set let G^{0)=0 and

FÇ.3

INFk (0)= 0.

We next consider a theorem concerned with the commutativity
of the inflation operators.

THEOREM 3.1
For each grammar form F and for all positive integers к and l

INFk t (F)= INFk (INF Z (F)) .

Proof
Let F-ÍFjSjP,о) be a grammar form. We first show that
INF k l {F)QINF fe(INFZ (F)) • Let F 3 = (V*Ss P,3a3) given by a kl-th
inflation 1= (ул VfSj Pjo*) be a kl-th inflation grammar of F.
We construct an Z-th inflation grammar F "= (V ", S s P "3 a3) of F
such that F 3 is a fc-th inflation grammar of F" . Let us
define a substitution ц" on V in the following way:
/i/ let y"(a)-{a} for each terminal a of F ;
/ii/ for each inner nonterminal Ç of F let y"(£) be the

union of the following two sets:
/1/ that maximal subset of y(Ç) which does not contain

inner nonterminal of F 3

/2/ and a subset of y(Ç) consisting of Z inner non­
terminals of F 3 ;

58

/iii/ if F has at least one outcast nonterminal, then for
each outcast nonterminal Ç of F let y"(Ç)-y(£) / and,
finally,

/iv/ if °3 is an inner symbol of F then let а-’ey" (a) •
Let us denote V"=S L J y(Ç). Let P" be the maximal subset of

ÇeF-S
y"(P) such that each element of V"-S which occurs in at least
one element of P" is an inner nonterminal of F* . Clearly,
I"={ii"JV"JSiP " 3oJ) is an interpretation of F. It is obvious,
that the conditions /i-iii/ of definition 3.1 are satisfied.
By virtue of remark 3.1 the condition /iv/ of definition 3.1
holds, too. Consequently, F" is an Z-th inflation grammar of
F and I" is an Z-th inflation of it. We have to prove that
F*is a k-th inflation grammar of F". Let us define a
substitution y* on V"' in the following way:
/ i/ for each terminal a of F" let yJ (a) - {a:},*
/ii/ for each inner nonterminal Ç of F" let y(£) be a

"— 1subset of y(y (Ç)) consisting of к inner non­
terminals of F 3 such of that for all different inner
nonterminals E, and ç of F" y* (£) D y* (n) - 0;

/iii/ if a3 is an inner symbol of F " then let а-’ey* (aJ)J
else let y’ (a*) ={a* }j

/iv/ if F" is not a symbol-tight grammar form, then for
each outcast nonterminal Ç/а of F" let y*(Ç)={Ç}.

Note that yJ (V"-S) =V3 -S. Let us denote P=y’(P"). Let
F= (V33 S,P3a3) . By the above construction F is an interpreta­
tion grammar of F". It comes with simple considerations that
conditions /i-iv/ of definition 3.2 hold, thus F is a k-th
inflation grammar of F". We show that F-F*. In order to prove
this, it is enough to show that P = P 3 . We first show that
P'SP.Let where
K^GV3 -Я/0<г<п/3 XjeS*/0<j<ltn+2/J n>.0, 0<k<n, be an arbitrary
production in P 3 . Then there exists a production
«=æoT]oX V T'kX k+l*x k + 2T]k ’ ’ ’ ̂ nX n+2 in P ' Where П '^V-S/0<i<n/,
such that Ç -ey (n,*) holds for each г/0<,г<п/.Is Is

59

This means that pe\i{q) . / By the definition of y" and that
of y' there exists a production r=xo tQx 1. . . ̂ j<x i< + 2'*’x k + 2 ̂ k+l ' * '
. . . ç , 9 of F " 3 where ç.€V"-S /0<,ъ<п/ and Ç.çy* (ç.) for each
г /0<г<п/ such that rey"iq) holds. Thus, peP. The arbitrary
choice of p in P 3 implies that P 3Q P . Consider the reverse
inclusion. Let Р - - > А * ! - !А (Л * г £Ы - !Л « ' ”here
£.€.V3-S /0<,г<п/3 X .eS* /0üj<n+2/j n > 0 3 0<k<n3 be an arbitrary
ъ ~ 3production in P. Then there exists a production

* = * o * o x r * • Sk * k + i + * k + 2 S k + r •• ^nx n + 2 i n F " 3 W here
Ç • €V"-S /0<г$п/ such that pe\i3 (r) , that is,E .çyJ (ç .) holdsЬ' Ъ 1s
for each г /0<г<п/. Then there exists a production
q=x o % x r ’^ k x k + l'x k + 2 X]k+ r - ^ n x n + 2 in P > Where 4 * V~S
/0<г<п/3 such that rey"(<?) , that is, ç.ey"(n-) holds for
each г /0<,г<п/. , By the definitions of y"iyJand у this
implies that рбу(<?). Consequently, pePJ . Thus P 3~^P. Hence
F = F 3 . Since grammar forms F and F 3 were arbitrary, we
proved that for each grammar form F INF^^{F)CINF^{INF^(F)).
We complete the proof by showing that the reverse inclusion
holds. Let F 3 = (V3 S ,P3o3) be an l-th inflation grammar of a
grammar form F = (V 3S 3P 3 a) , and let F "= (V " 3 S 3P" 3 о ") be a fe-th
inflation grammar of F 3 . Let I 3 = (у 3 V3 S 3 P 3 o3) be the
corresponding Z--th inflation of F and let
I"= (y "3 V"3 S 3 P " 3 a ") be the corresponding ft-th inflation of
F*. We show that 1= (y uo\x3 3 V"3 $ УР " 3 a ") is a kl-th inflation
of P, that is, F" is a kl-th inflation grammar of F .
Clearly, the conditions /i-iii/ of definition 3.2 hold. In
order to prove that the condition /iv/ of definition 3.2
holds, too, we have to show that P" is the maximal subset of
((y"oyJ)(P)) such that each element of V-E which occurs in
at least one of P" is an inner nonterminal of F ". Let us
assume the contrary. Let P=*0E0*3• • • ikx k*l*x k * s h * l • • • W i
where ç .G.V"-S /0<г<п/3 x .€S* /0<c<n+2/3 n>03 0<k<n3 be an

г Jelement of ((y"oyJ)(P))-P" such that each Ç., where 0<i<n,г
is an inner nonterminal of F". Then there exists a
production r = x 0 4gx 1 ...ikx k + í *xk+í4k + v ..Knxn+i in P, where
ç.€7-5 /0$i<n/3 such that pe((y"oyJ)(r)) holds. Since eachIs

60

Ç -j 0<i<n3 is an inner nonterminal of F " , therefore there
"Ъ'

exist inner nonterminals r\.3 0<г<п} of F 3 , such.| that Ç.ey"(n>)
Is j 1s ”Z -

hold for all i, where 0<,гйп. Since F 3 is an Z--th inflation
grammar of F , then q=x0 ^0Xj. . . ̂ k+1^ k+2^k + r • • *nx n+2
is a production of F 3 . Since F " is a fe-th inflation grammar
of F 3 , then P = x 0 l0* v --lk* k+1+ * k+2Zk + 1 ---ln* n + i is a
production of F". This is a contradiction to our assumption.
Hence 1= (y "oy3 , V"3 S 3 P "3 a ") is a kl-t-h. inflation of F. Since
grammar forms F 3 and F" were arbitrary, therefore we proved
that for each grammar form F INF (INF^[F) C I N F holds.
Hence the result.
As an immediate consequence, we get the next corollary.

COROLLARY 3.1
The elements of C[= { I N F ^ I N F ^ is a k-th inflation operator,
H s a positive integer} form, with respect to composition,

yon 2 a monoid which is isomorphic to the multiplicative
monoid of the natural numbers.
Next we present a characterization result concerning the set
of k-th inflation grammars of a grammar form.

THEOREM 3.2
Let F 3 = (V3S 3P 3o3) be a k-th inflation grammar of a grammar
form F= (V3 S 3P 3o) . Then

INFk (f) = INF {F3) .

Proof
Applying definition 3.2 and theorem 3.1 we obtain that
INF^{F3)CINFk (F). We show that the reverse inclusion holds.
Let F"= (V" 3 S 3P" 3o ") given by a k-th inflation
I"= (y "3 V"3 S 3 P " 3a ") be an arbitrary k-th inflation grammar
of F. Assume that F 3 is given by a k-th inflation
I3 = (\i3 V/S3 P 3ú3) of F. We show that F" is a 1-st inflation

J-
grammar of F 3 . Let us define a substitution y on V3 as
follows :

/i/ for each terminal a of F 3 let y(a)={a};
/ü / let у (ал)= { a "},*
/iii/ for each inner nonterminal Ç of FJ let y(£)-{nb

where ney"(y ̂ (Ç)) and л is an inner nonterminal
of F" such that for all different inner nonterminals

and t>2 °f FJ У Л̂У holds;
/iv/ if F 3 is not a symbol-tight grammar form and F" is a

symbol-tight one, then for each outcast nonterminal
K0o3 of F 3 let y(£)-(n} / where n €(V-Z) - (V"-S-{ a "})
such that for all different nonterminals and
of F \i(Z1)r>\iU2)=0 ;

/v/ if F3and F" are not symbol-tight grammar forms, then
for a fixed outcast nonterminal K0o3of F 3 let y(£)
be the set of outcast nonterminals of F " different
from a" and for each outcast nonterminal r\/Ç
- it it exists - let y(£)={ç}, where çe (V-£) - (V"-S)
such that for all different nonterminals and
of F 3 y a p O v(K2)=0S

/vi/ if F 3 is a symbol-tight grammar form and F" is not it,
then let y(oJ)be the union of {a"} and the set of out­
cast nonterminals of F".

Let P be the maximal subset of y(P3) such that each element
of V-£ which occurs in at least one element of P is an inner
nonterminal of F". Let F = (V",S 3P 3 a ") . We show that F is a
1-st inflation grammar of F 3 and F = F ". By the definition of y
we obtain that y is an interpretation substitution of F 3 and
y statisfies the conditions /i-iii/ of definition 3.2..By
virtue of remark 3.1. P satisfies the condition /iv/ of
definition 3.2. This implies, that F is a 1-st inflation
grammar of F 3. We show that F " = F , that is P-P". For each
production p in P there exist a production q in P 3 and a
production r in P such that peyiq) and gey* (r). By the
definition of y" we obtain that pey (y9 (r))C((y " oy_í) (yJ (r))),=
=y"(r), therefore peP" . Thus PSP".
Now let us assume the reverse inclusion.

62

Let P~X 0 ^0X 2 ' ’’^кх к+1^х к+ 2 ^ к + 1 ‘'’^nx n + 2 J where S
/0<гйп/3 X .€S* /<?<Lj<n+2/3 n>03 0<k<n3 be an arbitrary Jproduction in P". Then there exists a production
V=XJ> охГ " Х"кХк+1*Хк+21>к + Г - ̂ n xn+2 in P' Where
/0<г<п/, such that p€y"(r) holds. By the definition of у
for each nonterminal Ç. /0<^г<п/ which occurs in p , holdsъ
that there exists an inner nonterminal of P 3such that

and \i'r l (Z;)=V ~ 2 (Л Then by virtue of
definition 3.2 q=x 0 r\0x r • .т\кх к+1+ х к+ 2 цк + 1 . . .ъпх п+2 ^is a
production of F 3 and p€y(<?) . This implies that P"CP.
That is, F = F ".
Hence the result.
The following theorem illustrates that inflation operators
have a maximum property in a sense.

THEOREM 3.3
For each grammar form F and for each positive integer к

G 2 {INF k (F))=Gk (F) .

Proof
By virtue of definitions 3.1, 3.2 and by remark 3.1 we obtain
that for each grammar form F G j {INF ̂ {F))CG-j<{F) holds. We
show that the reverse inclusion is true, too. Let j be a
positive integer, where j<k. Let F3 = {V>3S’3P>3 o3) given by a
j-bounded interpretation Г (y,FjS* P’.a-’)be a j-bounded
interpretation grammar of an arbitrary grammar form
F= { V 3S3P 3 o) , We shall construct a fe-th inflation grammar
F"={V "3S3P"3 o") of F such that F* is a 1 -bounded
interpretation grammar of F". Let us define a substitutionJUy* on V as follows:
/i/ for each terminal a of F let y* (a)-{a};
/ii/ for each inner nonterminal Ç of F let ул(£) be the

union of the following two sets:
/1/ a subset of V-E consisting of к elements(such

that it contains each element of of y(£) which is

63

an inner nonterminal of FJand it does not contain
any other element of y(£) and, second,

/2 / the maximal subset of y(£) consisting of not
inner nonterminals of F 3 ;

/iii/ for a let y*(a) be the union of the following two
sets :
/1 / a subset of v_E consisting of к elements such

that it contains each element of у (a) which is an
inner nonterminal of F 3 , and if a is an inner
symbol of F , then it contains a3 and it does not
contain other element of y (a) and, second,

/2 / the maximal subset of y(a) consisting of not
inner nonterminals of F 3 ;

/iv/ if F3is not a symbol-tight grammar form then for each
outcast nonterminal of F let yJ(Ç)-y(Ç).

Let us denote V"-S= yJ(£). Let P" be the maximal subset
ZdV-S

of yJ(P) sucn that each element of V-I which occurs in at
least one element of P"is an inner nonterminal of F 3or is o3
or is not a symbol of F 3 . Clearly, I "=(у3V" 3S 3P " 3o3) is an
interpretation of f \ By virtue of the definition of yJ and
that of remark 3.1 we obtain that I" satisfies the
conditions of definition 3.2.•Thus F " =(V",S3P "3&3) is a k-th
inflation grammar of F. We have to prove that F 3 is a
1-bounded interpretation grammar of F". Let us define a
substitution y" on V"* such as follows:
/i/ for each terminal a of F"let y"(a) -y(a);
/ii/ for each nonterminal Ç of F "let y"(£)-{£}.
It is clear, that V3-S 3Q L J y"(£). We have to prove that

PJCy"(P") . Let p = x o Zox 1 . . . ^ + 1 ^ + 2 £k+1 *•* n̂ Xn+23 ^ еге
Z-eV3- S 3 /0<,г<п/ 3 X .eS3 * /0<Q<n+2/y n>03 0<k<n3 be an г «7arbitrary element of P\ Then there exists a production
Ч = У о по У 1 " - \ У к * 1 * У к * 2 пМ - - - \ У п +2 in p. Where »fCr-S

64

/О <.г< п/ у у -Ç.S* /0<с<п + 2 / у such that pey(q) holds. By the
3definition of we obtain that

{yoV3 U, 0)yr ..V3 (n k)yk + 1+ y k+ 2Vi (Ifc+j) . . . yJ (\ ^ n+2 }Sp"'
and by the definition of y"

p e { \ i " (y 0) v 3 (x)o) v " { y 2). . . yJ (nfe)y)-Щ"(yjt+2)УЛ (nfe+j Í • ' *
. . . yJ (Пп)у"(г/п + 2)]Су"(Р") .
This implies that PJSy"(P")- Since the other conditions of
definition 2 . 2 hold, therefore 1= (\i" yVi Б*уР*о3) is an
interpretation of F ". Moreover, it comes with simple
considerations that I satisfies the conditions of definition
3.1 for k = l. Thus F 3 is I-bounded interpretation grammar of
F ". Since F 3 was arbitrary, we proved that for each grammar
form F G ^ {F)ÇG2 (INF^ (F)). Consequently, G ̂{INF^(F))= G ^ (F).
Hence the result.
The next theorem comes from theorems 3.1, 3.3 and definition
3.1 with simple applications.

THEOREM 3.4
For each grammar form F and for each positive integer к
and l

G k i iP)= a k iei iF))

Before the next theorem we need an extension of the notion
of the fe-bounded interpretation operator.

yThe mapping G q from $ into 2 is called a tf-bounded inter­
pretation operator and is defined as follows: for each
grammar form F GQ (F)=ÿ.Vle extend this definition to the
subsets of У in the following way: for each subset 3^ of
let Gq {&1)=0.

LEMMA 3.1
The elements of G={G^\G-j< is a /с-bounded interpretation
operator, к is a nonnegative integer } form, with respect to

3:
operation ^ defined by /1 / on 2 a commutative monoid.

65

/1/ For each subset 3̂ of S and for all positive integers к
and l < 6 ^ X 3 !3)=йи а х { ^ 3 <*!>

The proof is evident, therefore is omitted.
We obtained a theorem expressing an important algebraic
property of the bounded inpterpretation operators.

THEOREM 3.5
The elements of G = {G^\ G^ is a fc-bounded interpretation
operator, к is a nonnegative integer} form, with respect toJrcomposition and with respect to operation U , on 2 a
commutative semiring.

Proof
By lemma 3.1 G is with respect to operation У a commutative
monoid with unit element GQ . By theorem 3.4 and by the fact
that G^ (G0 (3̂)) =G q (C?£ (3̂)) =0 for each subset in У and
for each positive integer к we obtain that G is with respect
to composition a commutative monoid with unit element G j.
We have to prove that the distribution laws hold. For each

and Gm in G, where k,l,m are arbitrary nonnegative
integers and for each subset 3^ in ï hold that

<Wfcm,lm}(3rJ)l((lV G m) V { e l ° Slnce for each
subset 3^ in SF and for each G^ in G, where к is an arbitrary
nonnegative integer GQ {Ĝ (3̂)) =G q (3̂) =0 and
G k (Go ^ =Go (̂1)= ^ ' therefore the result is proved.
Next we state a lemma concerning the commutativity of the
fe-bounded interpretation operator with the interpretation
operator and the fc-th inflation operator and that of the
fe-th inflation operator with the interpretation operator.

66

LEMMA 3.2
For each grammar form F and for each positive integer к
/i/ G(Gk (F))=Gk (G(F))=G(F)j

/ii/ IN F k (G-£ (F))$G^ (lNFk (F)); where l is an arbitrary
positive integer;

/ü i / INF k(G(F))£G(lNFk (F)) .

The proofs are simple consequences of the preceeding
definitions and theorems, therefore they are omitted.

4.
COMMUTATIVITY OF FSE, SKEL>

AND INFk

We first present the notion of the pseudo-isomorphism
operator and that of the skeleton operator. We state some
simple relationships concerning these operators. After this
we characterize the connection of the pseudo-isomorphism
operator with the ^-bounded interpretation operator and the
k-th inflation operator. Finally, we present statements
concerning the connection of the skeleton operator with the
к-bounded interpretation operator and the k-th inflation
operator.

DEFINITION 4.1
A grammar form F j = (3P ^,a ^) is said to be pseudo­
isomorphic to a grammar form F 2= (V2 j S 2, P 2*a 2 ̂ there
exists a pair of mappings (v,v) such that the following
conditions hold:
/i/ V is a one-to-one mapping from Vj-Sj onto V 2~ S 2 such

that V (cr 2)=° 2;

67

/ii/ V is a one-to-one mapping from Pj onto P^ such that
for all production P = * 0 K0* 1 ...Kkx k + 1~ x k+2tk t V ■ ■
•••Knx n + 2 in Pj, where V2~s г / 0$г$п/, x̂ -eS*
/ 0$j<n+2/3 ntOj 0<к<пл the following holds ;
{р)=У0П0У1 • • • \Vk+l»k+2nk+l-■ -4 Л + 2 ’ where
П{_&V2~S 2 y j &S2 /°-J~n + 2/i is a production in
P2 such that /0<г<п/ and У if and only if
X -=e for each j , where 0<j<n+2 .
0

DEFINITION 4.2
Let F=(V,SjPj ct) be a grammar form. A binary relation
on P is defined as follows:
a production p = x 0 K0x 1 ... Ккх к+1^ к+гКк + 1 ...Кпхп+2, where
Ç .€7-S /0<г<п/л X.Ç.S* /0<j<n+2/, п>0л 0$кй.пл is said toг «7
be t-stronger than a production Ч=У0 ^0У 1 .•.^ky k+l^y k + 2^ k + l '''
••'Zny n+ 2J where ^j£S / 0<j<>n+2/ у - symbolically p>t q -,
if lenght [x .) > lenght {y .) for each j , where 0<j<n+2 .«7 0
A production p of a grammar form P is said to be maximal
with respect to the relation on P if there is not a
production in P which is t-stronger than p or if for each
production V in P which is t-stronger than p and it is
different from p holds that p is t-stronger than r.
The next concept is a simple modification of the concept
of a grammar form completed with respect to terminals.

DEFINITION 4.3
Let a be a fixed element of E. Let 1 = (у//* {а}лР",а) be an
interpretation of the grammar form Р-(У,5,Р, о) such that the
following conditions hold:

/1/ y(M^{a,e} for each terminal b of F ;
/ii/ y(Ç)^(£} for each nonterminal £ of F;
/iii/ Y*-{a}= { J uU)s

Çe V-S

68

/i,v/ P" consists of those elements of y(P) which have the
form x o Zox1 . . . ̂i<æ]<+1-yxj<+2^k+l' * ' ̂ nxn+2' where
£.£V3-{a} /0<г<п/3 x. £ { a 3 c} /0<j<n+2/3 n>03 0<k£n.
1 <7

The grammar form F 3= (V3 {a}3P3a)3 where P3 is the set of
those productions of P" which are maximal with respect to the
relation >£ on P", is said to be the skeleton grammar of P
and the interpretation I3 = (ул V3 {a}3P3a3) is said to be the
skeleton interpretation of it.

DEFINITION
A grammar form is said to be a skeleton grammar if it is the
skeleton grammar of itself.
Next we present the corresponding operators.

DEFINITION 4.4
The mapping PSE and SKEL from à- into 2 are said to be the
pseudo-isomorphism operator and the skeleton operator,
respectively, if for each grammar form F
PSE[F)={F3 \F 3 is pseudo-isomorphic to P};
SKEL(Р)-{РЛ IF 3 is the skeleton grammar of P}.
We extend the definition of these mappings to the subsets of
& in the following way: for each nonvoid subset 3^ of 3 let
P S E { y) = (J PSE (P) 3SKEL)= U SKEL(F) and let PSE{0)=03

FÇJ-j Ре У
SKEL(0)=0.
These operators are idempotent mappings, too.

THEOREM 4.1
For each grammar form P
/ i / PS E 2 {F)= PSE{F);

/ii/ SK E L 2 (F)=SKEL (F) .

The proofs are direct consequences of the corresponding
definitions, therefore are omitted.

69

We continue by giving some simple relationships. Since the
proofs need only simple considerations and some technical
details, therefore are omitted.

THEOREM 4.2
For each grammar form F

/i/ SKEL{PSE(F))CPSE{SKEL(F));

/ii/ s k e l (g (f))Çg (s k e l (f));

/iii/ G(PSe (F))=PSe (G(F)).

Next we characterize the connection of the pseudo­
isomorphism operator with the fc-bounded interpretation
operator and the fe-th inflation operator.

THEOREM 4.3
For each grammar form F and for each positive integer к
/i/ INFk (psE(F))ÇPSE(INFk (F)) and
/ii/ G k (PSE(F))=PSE{Gk (F))=G^F).

Proof of lx/

Let F-ÍFjSjPjo) and F ̂ = (V ̂ , P i) be pseudo-isomorphic
grammar forms. Let (v,v) be a pair of mappings defining
pseudo-isomorphism between F and F ^. Suppose that
F\ = ̂ V^3SjyP3j3 o3) given by а к-th inflation
1 1= (ŷ , Vj 3 Sj, P* *i, oJi) is an arbitrary к-th inflation grammar
of F 1. We show that there exists a fe-th inflation grammar of
F which is pseudo-isomorphic to F 3 . Let us define a

* 1substitution y on V such as follows:
/i/ for each terminal a of F let y(a)={a};
/ii/ for each nonterminal Ç of F let y(Ç)=y^(v(£)).
Let V 3=S I--) y(Ç). Let P 3 be the maximal subset of y(P) such
that еасйеelement of y -Z which occurs in at least one element
of P 3 is an inner nonterminal of F * . It is evident that
grammar form F 3= (V3 S sP\ a*) is an interpretation grammar of

70

F and 1= (y,V*S,P\a 3̂) is an interpretation of that.
Otherwise, it seems that y and F 3 satisfy the conditions of
definition 3.2. Thus F 3 is a k-th inflation grammar of F
and 1= (ул V 33S 3 P33) is a k-th inflation of it. In order to
complete the proof we have to show that F * and F 3 are pseudo­
isomorphic grammar forms. We present a pair of mappings
(vJ,v*) between F ̂ and F 3 which satisfies the conditions of
definition 2.3..Let v’ be a mapping from onto V*-S
such that for each nonterminal Ç of Fj v-*(£) = {£}. It is
obvious , that vJ satisfies the condition /i/ of definition
2.3.« Since Pj and P have the same cardinality, therefore by
the definition of v,y and v we get that Pj and P 3 have the
same cardinality, too. Let v J be a mapping from P* onto P 3
such as follows:
for each production P= x Q K0x 1h ^ k + 1^ k+2^ k + l •••^ n+2±n
where /Ойг<п/ 3 Xj£S'j / 0<j<n+2/3 n > 0 3 0S.k<n3

let V 3 (p)=q=yo E,0y r ..Zky k + 1-+yk + 2Kk + 1 ...iny n+2 be an element
of P 3 , where у -€S* /0<q <yi+2/ 3 such that y“7 {q)-v (у~̂ (p))<7 *
holds. It is easy to verify that v is a one-to-one mapping.
Since v satisfies the condition /ii/ of definition 2.3,
therefore x>3 satisfies it, too. Hence, the pair of mappings
(vJ,V’’) defines pseudo-isomorphism between F 3̂ and F 3 . This
means that for each grammar form F
INFk {PSE(F))QPSE(lNFk (P)) .
Hence the result.

The proof of /ii/ comes from theorems 3.1, 3.4 and
definitions 2.3, 3.1 with simple considerations.
Next we establish two statements concerning the relation
of the operator of completion with respect to terminals to
the к-bounded interpretation operator and the k-th inflation
operator.

71

THEOREM 4.4
For each grammar form F and for each positive integer к

/i/ SKEL(lNFk (F))=INFk (SKEL(F));

/ Ü / SKEL(Gk (F))CGk (SKEL(F)) .

Proof of /i/
Let F ^ i V j ,S3 F 13 a2) given by а к-th inflation
1 2= (UjjVjjSjPji°2) ke an arbitrary к-th inflation grammar
of a grammar form F= (V3 S 3P 3 o). Let F j = { V ^3 {a}3P j 3 a^)
and = (V*3 {a} 3P 3 a) be the skeleton grammars of F ̂ and F 3
respectively. Let _Г̂-= (y*p Vj3 {a}3P ^ 3 aj) and
I* = (y*, V3 {a}3P 3 a) be the skeleton interpretations of F j and
F, respectively. We show that F j3 is a k-th inflation
grammar of F 3. Let us define a substitution)? on V3 * as
follows :
/i/ let yJ (a)-{<z}; and, /ii/ let ÿJ (Z) =V j (Ç) for each
nonterminal £ of FJ. It is clear that v\-{a}C -̂-J yT-» {Ç} .

1 KbV±{a}
Let "P3 be the maximal subset of y*(P) such that each element
of V-E which occurs in at least one element of IP is an
inner nonterminal of F^. It comes with simple considerations
that J* = (y*, Vj3 {a}3 P* a2) is an interpretation of Pi therefore
F*= (Vj3 {a}3P33 Oj) is an interpretation grammar of it. By
virtue of remark 3.1 and that of the definitions of у ̂and y*
we obtain fiat F 3 is a k-th inflation grammar of F 3 and T3 is
a k-th inflation of it. We show that F 3= F ^ 3 . It is enough
to prove that P 3 =P 2 . Let p=xo^Qx 1...^кх к + 1^х к+2^к+1*'*
’’ '^пХ п+ 2л where ^ i ^ Vl /0£гйп/ 3 XjÇ.{a3z) / 0<j<n+2/3

п Ъ О 3 0<к<м3 be an arbitrary production in Pj. Then there
exists a production 4=Vo r\0V r ■- \ У к+ 1+ У к+2 П к + Г ■ ■ цпУ п+2
in P 3 where n -QV-S* /0 < i < n / 3 y .€S* /0<j<n+2/ such that

•> г «7
p€.VLj (ŷ {q)) . By virtue of the definitions of ŷ and ŷ

ŷ ŷ 1 } ' ' ’ yI ̂ nk^yJ ̂y k+l ̂ ŷ k +è)v l k + 1 ̂* * *
(Лп)у̂ (z/n+2) . Since by the definitions of y-» and y-» and that

of V’ and P3 pcv(i/)ÿ(n)li>(ï,)...î-(ùiJp'(ÿk Л+рЧу.)ÿ(n-)..
. . М П п)\Луп + 2), that is, peiKp-(î)).

72

By the definition of P 3 this implies that p e P3. Since p
was an arbitrary element of P 3 , therefore P 3C P 3 . Let us
assume the reverse inclusion. Let P= x 0 %0X j ' ' • ̂ i<:pk + 2'*x k+2^k+l'‘
. ..£ X , where / 0<г<п/ 3 x.Ç{a3 e} / 0<j<n+2/3 n>0 3

0<k<n3 be an arbitrary element of P 3 . Then there exists a
production Ч = У 0 Ъ0У г --ЪкУ к + 1+Ук+ 2Ч + Г - ' Ч пу п + 2 _ in Рз where
n .Ç.V-S /0<i<n/ 3 у -eS* / 0<j<ri+2/ such that pey* (yKq)). By ̂ tJ —virtue of the definition of yJ and that of y* this means that
Р€УЛ (y o)iï (Т|0)ул (y 2) . . . p J (Ц к)]13 (y k + 1 ^ k + l] - "

...у'* (i])ул, ($/ ,o)- By the definitions of \i3j and yj and that
of yJ and y* it follows that pey^ (y0)Уj (no)hj (j/j) • • •
...yji (nfe)y:z(i/fe+;z)^y;z(2/fe + 2)y:z(nfe+-z)---u;z(nn)y:z (i/n+ 2) • Thus
P€yJj (yj (<7)) • By the definition of P^ this implies that peP^.
Since p was an arbitrary element of P*, therefore P^2Pa. Thus
P 2= P 3 • That is, F^-P* . So we proved that SKEL (INF k {F))

CINF.(SKEL (f)). In order to complete the proof we have to show
that the reverse inclusion holds. Let F 3 = (V33 {a}3P33a) given by
the skeleton interpretation I - (yJ/' { a} л P33 a) be the skeleton
grammar of an arbitrary grammar form F=(V3S 3P 3o). Let
F 3 = (Y33 {a} 3P3 a) given by a k-th inflation I-{\F3V33 {a } , P33 a)
be а k-th inflation grammar of F3. We show that there exits
a k-th inflation grammar F 2 = [V 13S 3P ̂) of F such that F3̂
is the skeleton grammar of it. Let us define a substitution
\ij on I? 4 such as follows:
/i/ let \ij (a)={a} for each terminal a of F and
/ii/ let y^ (£) = у^(£) for each nonterminal £ of F.

It is clear that 7J-{a}C.V_У y. (Ç) . Let us denote

Vj=S\j[V3j-{a}) . Let Pj be the maximal subset of ŷ (P) such
that each element of У-E which occurs in at least one
element of P 1 is an inner nonterminal of F 3 . It comes
immediately that F j= (7 j3 S 3P ̂ o1) is an interpretation grammar
of F and Ij = (\ij 3V j3 S 3 Pj , a3) is an interpretation of it.
Since F J and satisfy the conditions of definition 3.2,

73

therefore F j is a k-th inflation grammar of F and I^ is
a k-th inflation of it. We have to show that F* is the
skeleton grammar of F ̂ . Let ia] be the
skeleton interpretation of F^ . It is obvious, that V ^ =V3 .
We prove that P 2= P 3 . Let P =x0 Z0X j' • ’ ̂ kx k+l'*x k + 2^ k + l ’ "

• ' • ̂ nx n + 23 where / ° ^ ^ п/ x j-eia3è / 0<c <п+2/3

n> 0j 0<k<n3 be an arbitrary production in P^. Then there
exists a production Ч=У0поУ 1 . ■ . W к + Р * k+z'k+i • • • V n « -
where x\ *€V-S /0<гйп/ 3 у -e«?* /0<j<n+2/ in P such that_ _ ̂ J _ _
реу*(у (<?)) . Then by the definition of у and that of yJ we get
that pe{y (y0)u*(n0)y(î/:z) • • • y^nfe)У к+2 ^ ^ ц к+1) ' * *
. . . y*(?n)y (yn + 2) } • Then by the definitions of ŷ and ŷ and
that of у and yJ
p € { y J2 (г/0)у2 (п0)у^(1/2) . . .y^ (nfe)yj(2/fe+2)-*'Uj(yfe+2)Mi (nfe + :z) - - •
• . . y J (nn) У J (pn + 2) . This implies that pie У \ (y_j (q)) . By virtue
of the definition of P^ we obtain that p 6 P . Since p was
arbitrary element of P, therefore P 3cp^. Consequently, P 3= P ^3 ,
that is PJ is the skeleton grammar of F ^.
Hence the result.

The proof of /ii/ is an immediate consequence of the
corresponding definitions.

R E F E R E N C E S
Cll A. CREMERS, S. GINSBURG: Context-free grammar forms, Journal of

Computer and System Sciences, 11, 86-117 (1975).
C21 E. CSUHAJ VARJÚ: Generativ grammatika formák k-korlátos interpretá­

cióiról (On к-bounded interpretations of generative grammar forms)
in Hungarian, Dissertation, 1978.

C31 S. GINSBURG, H.A. MAURER : On strongly equivalent context-free
grammar forms. Computing 16, 281-290 (1976).

Ctl G. RÉVÉSZ: Private communication

Computational Linguistics and Computer Languages Vol. XV. 1982.

ON THE BASIC CONCEPTS OF SDS
(SYSTEM DEVELOPMENT SYSTEM)

Part II.

Gábor Dávid
Computer and Automation Institute

Hungarian Academy of Scienees
Budapest, Hungary

2, FRAMES

According to the previous introduction, a frame is written in
the following form:

frame frame-name (formal parameters)
parameter-structure-specification

specification-part :

declarations
frame-specification

implementation-part :

algorithm
control-structure

endframe ;

The frame, specification 3 implementation and endframe are
common basic symbols in the specification languages in SDS. The
syntactical form of parameter-specification, declaration, frame-
-specification depends on the specification language used. The
form of the algorithm, written in an implementation language,
depends on the language but their control-structure and frame-
-calling form is common in every implementation language.

76

To every frame the
- processor of the specification-language
- processor of the implementation-language
- knowledge-base
- the frame belonging the system under design

are associated. They vary in time and in the nature of the
development systems. When a frame is under preparation, these
associated components form a system-process, hence the designer
should describe these.

Here we shall discuss these parts. Syntactically this is not an
exact definition.

2.1. INTERFACEZPART

The interface-part :

frame frame-name (formal input parameters; formal output
parameters)

parameter-structure-specification;

declares the symbol "frame-name" as a frame, belonging to the
system under design. The name should be unique in this system,
otherwise it rewrites the original one. The formal parameters
are written as a list, (separated by commas).

The parameter-structure-specification is a list of declarations
of the structures in the form

structure structure-name <{selector : structure-value)>
reference (structure-name) list of names;

Elementary structure-names are bit, bitn (n arbitrary). The
names, declared have are represented by the structures asso­
ciated. Their data-types (like integer, real) are deblared in
the specification-part.

77

Both of the formal parameters and parameter-specification may
be empty. Although the parameter-specification is a part of
specification, syntactically and semantically, but it is closer
to the identification of frames, i.e. of the interface.

2.2. SPECIFICATION-PART

The specification-part consists of two parts:
- declaration
- frame-specification

Deolaration-part is a list of syntactical entities in the form
"declavation-name" declaration-body;

where declaration-name is a symbol, identifying the group of
declarations written in declaration-body. This group is placed
into the knowledge base, and it can be used by other frames.

If the "declaration-name" part is empty, then the declarations
in the declaration-body will not be reuseable. If the declara­
tion-body is empty, SDS searches it by name in the knowledge-
-base and copies it into this frame. If "declaration-name" is
not unique, then this description rewrites the original one in
this frame.

The group of declarations is a list of declarations

"type-symbol" is a list of symbols,

where type-symbol is one of the acceptable types in the specifi­
cation-language. (This is also a requirement to the specifica­
tion-languages: the new, composed types should be constructed
at this point together with the operation defined on them.)

78

In Structure Logic Language SL being a logic-language, the
basic set of type-symbols is arbitrary (predicate-symbols) and
the user may define arbitrary new types with

- structure type-name declaration;
- reference (type) object-declaration;
- type function function-name declaration;
- formulae list of formulae;

where the function and formulae describe the symbolical and
semantical contents of those operations which can be applied on
objects, declared by structure and reference (type).

In Architecture Language AL the concepts of class in SIMULA'67
are realized by module. AL is one of the data-flow languages,
hence the description of the components is concentrated on the
procedure and on the input and output data and is realized by
the component. Basic data-types are arbitrary (but at the end
of system-design it should be specified by appropriate combina­
tion of bit and time).

In the specification-part the user declares only those symbols
which are used in the frame-specification. Frame-specifica­
tion states what the frame will do. This is written as a state-
-transf ormát ion, I -*■ 0, i.e., from which input I, which out­
put 0 will be produced by the execution of the implementation-
-part of the frame. In SL this is written in the form of

S . -*■ S г о

where S. and S are logical formulas, -> means "implies".
ъ о

S. describes the input-state, i.e. the relation between the
objects at the beginning of the execution and S Q describes
that after the execution.

79

In AL the "set of assignments" is used. The assignments are
in the form of v : = e, where v - variable name, declared as
input or output, e - expression. In the declarations, the
symbols treated as input and output, respectively, should be
declared. Expressions are logical and/or arithmetical expres­
sions, using the function-symbols implemented in AL. Every
object declared (for example u) has a time component, which
can be specified (ás v.time) and the value of this component,
expressed by an assignment relative to the time of the entry.
In the input-output-part, the "set of assignments" may be empty.
The declarations and frame-specifications in the specification-
-languages should describe the frame completely. In SL this
means that logically the validity of the statement S_. -*■ Sq
can be proved and in the case of AL, the specification-processor
can interpret the assignments.

The specification-part should not be empty: at least the decla­
rations should be given.

2.3. IMPLEMENTATION

In the implementation-part the problem to be solved by the frame
is formulated in an implementation language. It consists of a
set of algorithms and a control-structure definition. The
algorithms are treated as generalized transitions of Petri
nets, and in the implementation-part the control-structure
describes the actual Petri-net, i.e. the sequence of the
execution of the algorithm.

A I g o g i t h m s . Each algorithm has a label and a condition,

label^: condition^ algorithm^

where label^ should be unique within the frame, condition
describes the assertion, if it is fulfilled, then the algorithm^

80

may be executed. The condition.^ may be the logical constant
(true T). In other words, one can describe an elementary
Petri-net in the form:

(controlled later by the control-structure). The elementary
Petri-net has

- two head-places label^ and condition^, where labeli
is activated by the control-structure, and the head-place
condition^ generates a token if the condition is true;

- it has a transition, namely algorithm-^ activated if each
of its head places has at least one token and whose
execution results a token in the tail-place.

The transition algorithm^ may be a compound one with its control-
-structure hence structured Petri-nets can be described.

Algorithms are written in the implementation-language. The
implementation-languages used allow us to declare and activate
two new types: tne frame and control; and symbols, declared as
control can be activated on the object, qualified by declara­
tion as set. The control-type will be discussed later.

The frames which are declared in the implementation-part, are
treated as local or external ones.

Local frame is described in the implementation-part as a self-
-contained frame-definition, i.e. just in the form, discussed
in this section; it has its own parameters, specification
- and implementation-part, ended by an endframe.

со n d i t i o n ■

Ы Ь г Л ■

81

External frames are those symbols, which are declared as

frame list of frame-names;

and SDS search for them in the knowledge-base. It should be
noted that although the form of the declaration of parameters
and external frames is the name, their use and meaning are
different: frame, declared as formal parameter is a "variable",
having its value (i.e. a frame) at the entry of the frame, but
in the implementation-part it is a "literal", identifying the
frame.

In the algorithm both local and external frames can be called;
the form of

frame-name (actual parameters)

where actual parameters should meet the formal ones (in number
and type) in the frame-definition. But this is mainly a syntac­
tical requirement, semantically it will be described later in
the architecture of SDS, but here the conditions of the call of

* *the frame with specification I -*■ 0 in algorithm conditioned
by aond . can be expressed by the validity of

1s

*
cond • => I ъ

where represents "implies" (in SL is the same as -- >),
Жand in I the formal parameters are substituted by actual

ones.

To explain this, three comments should be made:
*- both cond . and I may refer to objects which are

manipulated by the algorithm^ just before the call of
the frame . Cond-£ may state something on these
objects and this statement is not necessarily invariant.
When the algorithm is initiated, the condi should be
true, but executing the algorithm its logical value1s

82

may be changed to false, this does not mean the end of the
execution, but if it is false, the algorithm cannot be
used as a reentrant program, for example,

■ft- the expression o o n d — ■■■■--> J should be valid (in the
sense of logic), i.e. only those cases are of special
interest in which oond^ is true, because if oond^ is*false, then oondi I is necessarily true,

- although the a l g o r i t h m ^ may have its own control-structure,
we assume that it is a sequential program. Consequently,#the validity of oondv - ~ > I can be proved by the analy-*sis of the algorithm before the frame y would be acti­
vated .

Control-structure

The control-structure of a frame can be manipulated object like
data objects. In system development in some phases of the
design, the control structure is unknown: i.e. how the algorithms
will be called in the final version. Control structures can be
described in a programming languageC6 ,8 i based on the language
of Petri-nets designed by Kotov ill. Here we shall concentrate
on the programming language form suitable for frames.

The implementation-part of a frame looks like

: oondj ^ a j

z oond2 a 2

Si : oond cin n n

control-algorithm
control-execution

83

In declaration those symbols should be declared which are local
ones. They generally represent data objects. New types: frame3
control and set. The frame had been previously described.
Symbols, declared as control3 represent control-structure.
Control-structure is a well-formed formula defined on the labels
&23 ̂ 2* • • • •> ̂ or on appropriate sets of the labels in the
implementation-part with the following operations:

superposition:; - defines parallel execution, for example

join:; - defines the sequential execution (£ ̂ ^)

exclusion: D - defines the exclusive execution (£̂ a l

84

iteration: * - defines a loop (* SLj)

marking: n-*- places n tokens into headplace, n+lLj

Closure: do_ . . . od closes -he Petri-net do od_

Under control-expression we mean a well-formed formula. Control
functions can be defined by control-assir its

о ;=oontrol-expression

and
control function-name (parameters);

begin function-body end;

85

where the body,consists of an algorithm, composed by control-
-assignments, control-instructions for . ..; if ... then ... else
and go to and arithmetic, logical expressions, written in the
specification-language.

Control functions may have sets as parameters. They are speci­
fied by the declaration set3 and the members of the set should
be chosen from the labels j •■• » •••j • Set-expression is
formed by U (union), A (intersection), ъ (not) and set-
-assignment is written as s :=s e t - e x p r e s s i o n where s had
been declared by a set. A label forms a set if bracketed by
{ }.

In the implementation-part the control-algorithm computes the
sets and the control-structures, but this does not mean the
execution of the frame. The control-execution is a well-formed
formula defined on labels, on the generated sets and on control-
-functions. This control-execution will be interpreted by SDS:
the system will execute the algorithms in the predescribed
order of the control-execution.

In the case of homogeneous algorithms, one may use indices in
labels, for example:

Xtij jl : i _> j -> у i : =ZZil*yZjl

which should be described only once and defines a set of
algorithms, and the indices can be specified in the control-
-algorithm. Indices are parameters of the algorithms, too.

8 6

3, ARCHITECTURE OF SDS

In this chapter the realisation of concepts illustrated above
will be discussed.

The architecture consists of a set of specification-languages,
a set of implementation-languages and system-processors and
system-processes written as frames.

Two specification-languages are given:
- SL: Structure Logic Language, designed to describe abstract
processors, i.e. abstract data types and transformations
defined on them. This is really a family of languages,
because in SL programming languages can be described (of
course, the assembly languages are included, too);

- AL: Architecture Language С6П, a language, orthogonal to
SL, because it is a data-flow language, in which the trans­
formation, performed by architectural components play the
most important role and data are used for communication.

The set of implementation-languages covers:
- the assembly-like programming languages
- systems programming languages.

The AL and some of the implementation-languages are in ex­
perimental or in design phases.

The relation between specification- and implementation-languages
is orthogonal also: the semantics of implementation-languages
are given in specification-languages. The Structure Logic
Language plays the most important role in this respect; being a
logic-based language, it has correct (and adequate) semantics.

In this section this correspondence will be discussed between
the processors/processes and specification/implementation. First
we want to describe the static and later the dynamic behaviour
of frames.

87

From the users' point of view, the frame is divided by an
interface point IP into two parts: the specification-part S
and implementation-part I

IP

From the other side, system SDS also contains a set of proces­
sors, a set of frames and an interface, IF between them. IF is
controlled by the processor SP of specification-language.

Allocating a processor to this frame means that the algorithms
of implementation-part will be allocated to the processors.
SP interprets the control-algorithm, ’.computes the control—
-structure and executes that.

The actual "computed" control-structure is kept in the SP and
if I is represented by this control structure & and algorithms
A, for example:

then the system copies the algorithms into the processors (for
example P and P^) .

8 8

(Rj

IF

and form the process R, by PqJ P^ and & . During the execu­
tion of control-structure & , the process R. is always checked
with SP that the specification S of the frame Ф should be
valid during the life of this process. In order to supply a tool
for this verification, the user-defined IP will be copied into
the system-interface I F 3 where the relevant information can be
recognized and compared by SP.

Dynamically two cases should be analysed:
- during the development of %

rrp- during the development of a system, using J~

First, if only the frame ¥ were designed, its implementation-
-parts and the processes, formed by its implementation-parts
would be different during its development. It means that the
frame Tr has not only one implementation-part, but a sequence
of those:

89

Each of them is intended to fulfill the requirement, described
by S 3 but they may differ in the implementation tools and
languages, they may be

- empty
- different in languages
- realised on different control-structures
- realised hardwarewise

The architecture above makes possible to treat the frame 9̂
with different implementation-parts, as if it were a unique
one, because the specification S should be invariant against
the changes in the implementation-part.

Secondly, during the development of the system, using the frame
9*, we have a structure of frames, calling each other as pre-
-described in the implementation-parts. If 9-jj calls 9̂ , ,
first the conditions of the activation will be checked by SP.
If the conditions are satisfied, then the implementation-part
l 2 of ^ will be interpreted (with its control-structure) and
allocated on the processor level

я,

The processes and formed by the appropriate
processors and implementation-parts Iji I 23 together should
satisfy the requirements not only of Sj_ and Sg , but the
activating-relation between them (described in the previous
chapter). Due to the fact that the implementation-part may be
different, but the specification is invariant, the change in
the implementation-part hasn't any effect on the caller: if

90

calls , and 3£ is changed to have implementation-
-part Jg, but S 2 is the same, then the process Ъ ъ will be
the same.

Processes based on frames

Until now we discussed the frames as they will be executed.
But in SDS one may have the following processes formed by frames

- execution
- change the specification
- change the implementation
- verification
- simulation
- automatic synthesis.

The first one - the execution of a frame - has been described
previously. The change of the specification and implementation
is not only an editing facility, but in SDS they should be
combined with those processes which had been performed on the
frame to be changed. This means that if a frame has been already
verified, SDS forces the verification of the new version.

The processes of verification, simulation and automatic syn­
thesis are based on the description of the implementation-
-language.

The knowledge-base contains
- the description of the implementation-language
- the specification-parts of frames
- the history of frames, i.e. the former versions of the

frame and the processes performed on them.

The description of the implementation-language is given in the
specification-language of the frame. This description in the
case of Structure Logic SL is a logical one, provided with a

mechanical theorem proving technique, by which properties of
the frames can be proved. In the process of verification : the
implementation- and the specification-part can be compared or
the specifications of interconnected frames can be proved
(regardless of their implementation-part). In the case of AL,
verification is based on topological analysis of the frames
used.

Automatic synthesis is based on this calculi for theorem
proving; if given a frame but with empty implementation-part,
then SDS tries to synthétisé the algorithm representing the
implementation-part. This means that the designer should con­
centrate on the description of the frames, i.e. on the specifi­
cations, and if a hierarchy of frames has been designed, the
SDS either may verify or prove the description and may synthétisé
the necessary algorithm implementing the frames.

The process of simulation is based on the description of the
implementation-language also, but in Architecture Language AL
the implementation-part may be simulated directly. In the case
of SL the specification-part supplies the information for
simulation.

4 . SUMMARY

In this working paper, the concept of a new operating system has
been formally introduced. This operating system SDS is special­
ly designed for system-development, where the system to be
designed may be a programming and/or computing system (includ­
ing hardware). SDS is under design, hence further features and
languages will be added.

92

REFERENCES

СШ G. David: Structured Automatized Design of Microprograms,
in Large Scale Integration, H.W. Lawson et al. (eds.),
North-Holland (1978).

121 G. David, S. Keresztély and A. Sárközy: Microprogram
Synthesis by Theorem Proving. Proceedings of the
II. Hungarian Comp. Sei. Conf. (1977), Part, 292-310.

C39 G. Dávid, S. Keresztély, I. Losonczi and A. Sárközy:
Logic-Based Description of Microcomputers (1978)
MTA SZTAKI Közlemények, Budapest (Hungary).

ikl G. Dávid, S. Keresztély, I. Losonczi and A. Sárközy:
Microprogram Synthesis (1978) MTA SZTAKI Közlemények,
Budapest (Hungary)

[5 : G. Dávid: Proving Correctness and Automatic Synthesis of
Parallel programs. 1979. VEDA, Bratislava. (In Russian
Nauka, Novosibirsk (in print)).

L61 G. Dávid: Architecture Language. MTA SZTAKI Közlemények,
Budapest, 1979. (in print).

C73 V.E. Kotov: Concurrent Programming with Control Types.
In: Constructing Quality Software, North-Holland, 1978

C8H G. Dávid: Description of Dynamic Control Structures,
Algorithms'79. Proceedings.

C9: D. Warren and L. Pereira: PROLOG - The Language and its
Implementation Compared with LISP. Proc. of ACM
SIGART-SIGPLAN Conf. on "AI and Programming Languages"
Rochester, N.Y. August, 1977.

C102 R. Kowalski: Predicate Logic as Programming Language,
Proc. IFIP Congress, 1974, North-Holland.

93

CUD R.M. Burstall and J.A. Gougen: Putting Tehories together
to make Specifications. Proc. of the 5th IJCAI,
Cambridge, Mass. 1977.

C12D K. Nahijama, M. Honda and H. Nakahara: Describing and
Verifying Programs with Abstract Data Types. Proc. of
"Formal Description of Programming Concepts",
E.J. Heuhold (ed.) North-Holland, 1973.

C13 D W.A. Wulf, R.L. London and M. Shaw: Abstraction and
Verification in Alphard: Introduction to Language
and Methodology. Techn. Rep. Carnegie-Mellon University,
Pittsburgh, Penn. 1976.

C l U] G. Dávid, I. Losonczi, S.D. Papp: Language Support for
Designing Multilevel Computer Systems. CONPAR'81,
Springer Verlag. LNCS 111, pp. 85-100.

C15D G. Dávid: Problemsolving = Knowledge + Strategy,»
Int. Conf. on Artificial Intelligence and Information-
-Control System of Robots, (in print).

Computational Linguistics and Computer Languages Vol. XIV. 1982.

ON GENERALIZED ITERATIVE ALGEBRAIC THEORIES

Z o ltá n Ê sik

University of Szeged
Szeged, Hungary

ABSTRACT
A basis of identities of generalized iterative was given

in [2]. Here we present a simplified version of this basis and
prove two theorems regarding the connection between iterative
and generalized iterative theories.

1. INTRODUCTION
This paper is a supplement to [2]. Therefore all notions

and notations will be used in accordance with [2].
The main result in [2] was a presentation of a basis of

identities of generalized iterative theories. Namely, it was
shown that identities from (A) to (E) below, together with
those defining algebraic theories, are satisfactory to
characterize generalized iterative theories.
(A) f<ft 1 > = f+ if f : n-*n+p,
(B) <f,g>+ = <h+ , (g p) + <h+ , 1 >> if f:n-*-n+m+p,P

g : m-^n+m+p , h-f<l +0 ,(gp)+, 0 +1 >n p n p
and p=<0 +1 ,1+0 >+l ,m n m n p

(C) (0n + f)+=f if f:n-*p,
(D) (f+0)+ = f++0 if f:n-n+p,<1 q.
(E) <%Pg(p1 + 1p)»---%Pg(Pm+1p)>+ = P(g(p + lp)) +

if g:n-*-m+p, p:m-*n, p̂ :m-*-m (i€[m])
are base such that p is surjective, p^p = p (ie[m]).
In [2] some consequences of the preceding basis were

established. Further on, these consequences will be referred

96

in accordance with [2].
In Section 2 a somewhat simplified basis will appear.

Namely, we show that identities from (A^) to (F^) give an
alternative basis of identities of generalized iterative
theories.
(Aj) f+ = f<f+, 1 > if f : 1 -► 1 +p ,

if(В) <f,g>+ = <h+,(gp)+<h+,l »* ir
g:l-*-n+l+p, h = f<l +0 ,(gp) + ,0 +1 >& n p n p
p = <0,+ 1 , 1 . +0 >+1 ,1 n * I n p

(Cj) (01+f)+=f if f:l-p,

f : n-*-n+ 1 +p ,
and

(Dj) (f(l1+P))+ = f+p
base

if f : 1 ■» 1 +p , p : p-*q is

<E1> \,<V ’S(< V 1p>... V >«(pm+1p)> + = ,n(g(p+lp)) +
if g:n->-m+p, p:m->n is monotone and surjective,
and p . : m-*-m are base with p . p = p (i6[m]),l l

(Fj) (pf(p_1 + lp))+ = pf+ if f:2-2+p, p = <0j + l j , l]+0]>.
In Section 3 we present two theorems, regarding the

connection between iterative and generalized iterative theories.
All results were already noticed in [2].

2. A SIMPLIFICATION OF THE BASIS

Lemma 1 (Aj),(B,) h= (A).
Proof. This lemma was already discovered in paper [l].

Indeed, the first part of the proof of the main result of [l]
can be translated with the exception that (B), rather than
the dual of it, is utilizable here.

Lemma 2 (Cj),(Bj) (C).
Proof. Let f:n->p be an arbitrary element in an algebraic

theory with iteration satisfying (C^) and (B). We shall show
by induction on n that (0 +f) =f. The case n=0 is obvious.n
Assume now that n>0 and the proof is done for n-1.

97

Define f,=0 +(1 .H-O.if, g=0 + 7inf.1 n n-1 1 ’ 0 n n
It is obvious that <f^,g>=On+f. Let us introduce the following
notations :

p-<0I+1 , 1,+0 , > +1 }1 n-1’ 1 n-1 p5
h=f <1 ,+0 ,(gp)+,0 ,+l >.1 n-1 p’ D ’ n-1 p

An easy computation shows that gp=g and h=0 ,+(l ,+0,)f.n-1 n-1 1
Hence, by the induction hypothesis, h+=(1 ,+0,)f. On the othern-1 1
hand, by (Bj) and (C^), we obtain (0n+f)+=<f^,g>+=
«<h+,(gp)+<h+, lp» = <(̂ .,+Oj)f, (0n_]+iJJf)<h+,lp» -

= < (l n - l +t V f ’

Lemma 2 (D j),(В j) h (D).
Proof » First observe that (D̂) contains identity (f+0^)+=

= f++0 (f:l-*-l+p) as a special case. Indeed, (f+0)+ =
ч q.

= (f(l,+l +0))+ (2l} f+(i +0)=f++0 . With this observation1 p q P q q
in mind, the proof can be carried out by a simple induction on
n.

In order to simplify the formalization of the proof of
the next lemma, let us introduce the following notations. Let
n1,...,nk > 0 (к 2> l) be arbitrary integers, and let ij,...,ik
be a permutation of [k] and iQ=0.|Then we shall use, ambiguously,
n j ,...,

9 to denote the base morphism, corresponding to then. • ,n.
1 к к

mapping a :[E n .]-*-[E n.] defined by ia = j if and only
i=l i = l 1

if there exist integers t ,s£{0,...,k-1} and jo>l such that
t s

V * ' 5oe[nt+ l b 1 = tE=]nl +io’ and j - Ê'aii +jo- Thus'

for example, en,m’p stands for base morphism, corresponding m,n ,p
to the mapping indicated below:

98

+ P

Lemma 4 (B j),(Dj) \ = - (В).
Proof. Let frn-^n+m+p and g:m-*-n+m+p be arbitrary

morphisms in an algebraic theory with iteration which satis­
fies (B) and (Dj), We shall prove by induction on m that

n + m

<f,g>+ <h+ ,(gp)+<h+ ,1p>>

where

h = г<1п+ор ,(ёр)+ ,оп + 1р>,

p = en,m,p.m,n,p

(1)

(2)

(3)

The case m=0 is trivial and for m=l our statement coin­
cides with (В j) . Now let m> 1 , 'in ̂ =m- 1 , m2 = 1 , g ̂ = (1 m +0 ̂) g ,
g„ = itmg, and define the morphisms h and p by (2) and (3),

l m
respectively. By (В) we have

<f,g>+ = (a+ ,(g2a)+ < a + >1p>> (4)

where
a = < f , g , X l +0 ,(g0a) ,0 +1 >,

n+m^ p * &2 ’ n +n i j p ’

a = 0
П ,m1, 9 P
m 2 ,n,m1,p‘

(5)

(6)

By the induction hypothesis we get

l+ * <‘t ',íl<l, « 1'0p'(*!“)*'0. « |tlp>P),<l* - V >>' (7)

b = f<1n + m 1+0p >(s2<,) + "0— + 1->‘n+m j p

<1 +0.(g,<l ^ +0 , (g oa)+ , 0 + l > ß) + , 0 + l > , (8)n p ö 1 n+m p n+m, p, n p

99

3 = 9
n.mj,p
mj ,n,p‘

Again, by (В)

(gp)+ = <c+ ,(g2P^)+<c+»1n+p>>

where

= elp<1m |+0n+p>(e2‘>T, + '°ii] + ln+p>’
m , >m 2 ,n ,p
m2’m1»n»PT = ex

It is easy to check that

рт = a©

Now we show that

m 2 ,n,mj,p
m2 » ® ^ » P

®'<1— +0-.<g,cl) + , 0п+Ш| + 1р>Э = C.1 n+m p * 2

Indeed,

g,<l , +0 ,(gocc) + ,0 +1 >ß =1 n+m j p ’ ° 2 n+nij p

+ n .m , j P= g,<l , +0 , (g « cx) ,0 +1 >01 n+mj p 2 n+m^ p mj,n,p

n ,m, + n » m. 1 ,p
= g <0 +0 ,,(g a) 9 ,0 +11 nij ,n p 2 m]5n,p n+m^ p> =

n,mj m 2 ,n,m],p +
= g , <9 +0 ,(g СС0) ,0 +11 m ,n p* 2 m 2 ,m1,n,p n+ m] p> =

n ,m j
= g,<0 +0 ,(g~PT) ,0 +1ь 1 m j ,n p 5 62p ' ' * n+m ̂ p> =

n,mj,m2 ,p
= e iem |,.2 ,a,p<l. / V > î Pï) '°m|+ln+p>=c

(Î

(10)

(1 1)

(1 2)

(13)

(14)

/by (9)/

/by (Dj)/

/by (13)/

/by (3),
(1 1) /

100

Substituting (14) in (7) and (8), results

a + = <Ъ+ , с + <Ъ+ ,1 > > ,P

b = f < l ^ +0 , (g a) + , 0 +1 X I +0 , c + , 0 +1 >n+Dij p* b 2 n+nij p n p ’ n p

Next, we show that h=b.

h =

= f<1n+V <i!p)+' W =

° f < l n + 0 p - c + - (e 2 P T) + < o + - ' n +p > ’ 0 n + 1 p >=

\
I +0n p

n+mj p , v &2

(1 5)

(1 6)

(1 7)

/ b y (2) /

/ b y (1 0) /

/ b y (13) , (Dj) /

>m 1 >p
< c

+
, 1 > , 0 + 1 > =

J . n , p n +p n P

+ 0 , c + , o + 1 > , 0 + 1 > =
n p* * n P n P

+ 1 X I + 0 , c \ o + 1 >=b
n+m j p n p n p

/ b y (1 6) /

Observe that in the course of proving (17) we have actually
shown that

+ + + n ’m 1 »P +
(g p) = <c > (g , t t) 9 <c ,1 >>,’ &2 m } , n , p n+p (1 8)

Thus,

< f , g > =

+ . N + +
= <a , (g 2 a) <a , 1p >> =

/ b y (4) /

/ b y (15) , (1 7) /

= < h + , c + < h + , l > , (g „ a) +< h + , c + < h + , 1 > , 1 >> = * ’ p 2 P P

n , m , p
= <h , c <h ,1 > , (g , a) 0 <c ,1 ><h ,1 >> =p 2 nij , n , p n+p p

101

+ + + n ’ ml ’ P + += <h ,<c ,(g a) 9 <c ,1 >><h ,1 >> = /by (18)/’ ’ b 2 m , n , p ’ n + p ’ p ' 1 '

= < h + , (g p) + < h + , l p » ,

i.e. what was to be proved.

Lemma 5 (F{),(В,),(D,) f= (F)T
Proof. Instead of it we shall prove (F]) , (B) , (D]) f= (F) .

Observe that if p,x:n->-n are bijective base morphisms, moreover
both (pf(p ' + 1))+ = pf+ and (гf(T ' + 1))+ = xf+ are identities inP Pan algebraic theory with iteration, then also
(pxf((px) 1+1))+=pxf+ is an identity in this theory. This
observation enables us to prove our statement for bijective
base morphisms of type 1 +<0,,+1,,1,+0,>+1 where n,m>0 aren 1 ’ 1 1 1 m —
arbitrary integers.

Consider now an arbitrary algebraic theory with iteration
T, and let p : n-*-n be bijective, f £ T (n , n + p) where n>_2, p > 0 . We
have to prove that (p f (p 1 + 1))+ = p f+ .

The case n = 2 is trivial. We proceed by induction on n .

Assume that n > 2 . Let us distinguish two cases.
First suppose that р=1щ+а where m = n - 2 , a = <0j + 1 , 1 , +0 > .

Note that а 1=а and p 1=p.
Let a=(1 +0o)f, b=(0 +l0)f, ß=<0o+1 ,lo+0 >+l . An easym 2 xn 2 2 m 2 m p

computation produces (p+1)ß = ß(a+l). Define h,k:m->-m+p byp m + p
h = a < 1 +0 , (b ß) + ,0 +1 > and k = a (p + l)<1 +0 , (c x b (p + l) ß) + ,0 +1 >m p m p p m p P m p
We show that h=k. Indeed, by (p+1)ß=ß(a+l) and (F) , wep m + p 1
obtain (ab(p + 1)ß)+ = a(bß) + . Thus, k=a(1 +a+l)tP m p
•<1 +0 ,a(bß)+,0 +1 >=a<l +0 ,(bß)+,0 +1 > = h can be derived, m p ’ m p m p ’ * m p

We have seen that h=k. Therefore, also (bß) <h ,1 > =
+ 4*а(ab(p+1)ß) <k ,1 >. From this the result follows byP Papplying (B) twice:

Regarding identity (F) cf. [2].

102

(pf(p+l))+=<a(p+1),ab(p+l)> =P P P

= <k+ ,(ab (p+l^)ß)+<k+ ,lp>> =

=<h+,a(bß)+<h+ ,lp>> =

= p<h+ , (bß)+<h+ , 1 » = pf+ .

Secondly, assume that р=а+1^, where а=1m+<0j+1j,1j+0^>+1^ :
:n-l-*n-l for some integers We have again а=а 1 and p = p 1

In this case let ß=<0,+l ,1,+0 ,>+1 , h=a<l .+0 ,(bß)1 n-1’ 1 n-1 p n-1 p
0 , + 1 >, k=aa(p +1)<1 .+0 ,(ъ(р+1)ß)+ ,0 . + 1 > wheren-1 p ’ P n-1 p* p ’ n — 1 p
a=(1 , +0,) f , b = itnf. We are going to show that k=ah(a+l).n-1 I n p
Indeed, by (p+1)ß=ß(l.+a+l) and (D.) it follows thatp i p l
(b (p+1)ß)+=(bß)+(a+l), hence,P P

к = aa(p+l)<1 ,+0 , (b(p+l)ß)+ , 0 +1 > =p n-1 p ’ p ’ n-1 p

= aa<a+0 , (bß)+(a+l), 0 ,+1 > =P P n-1 p

= aa<l ,+0 , (bß)+ , 0 +1 >(а+1)=ah(a+l).n-1 p ’ n-1 p p p

Thus, k=ah(a+lp) and by the induction hypothezis, k+=ah+ .
Applying (B) twice, this yields

<pf(p+l))+=<aa(p+1), b (p +1)>+ =P P P

= <k+ , (b (p +1) ß)+<k+ ,1 >> =P P

= <ah+ , (bß)+(a+l)<ah+ ,l >> =P P

= <ah+ , (b ß)+<h+,1^>> =

= (a + 1]) < h + , (b ß) + < h + , 1 p > > = p f + .

103

This ends the proof of Lemma 5.

Lemma _6 (Ej) » (B,) , (D,). (F,) h= (E)
Proof. By virtue of the previous lemma, it is enough to

show that (E,) ,(F) f==-(E). Therefore, take an arbitrary theory
with iteration T which satisfies (E) and (F).

First we shall prove that the restriction of (E) to mono­
tone surjections is valid in T. For this purpose consider an
optional morphism g : n-*-m+p (n,in>l,p>0) as well as base morphisms
p:m-*n, p j , . . . , pm : m-m with p^p = p (i£[m]), and assume that p is a
monotone surjection. Let i£[m] be an arbitrary fixed integer.
It is obvious that there exist bijective base morphisms a:m-m
and ß:n-n with the following properties:
(i) apß is monotone, (ii) la=i.

Define x = ap ß, x.=ap.a 1 (j£[m]). By a short computation weJ J
get t .t = t (j£[m]) and ß_1g(a '+1)(т+1)=ß 'g(pß+l). Thus,J P P P

ï ï ’ < ï ï ' t 3 1 g (a 1 + 1) (t + 1 it̂ Tß 1 g (a ’ + 1)(t +1)>+ =m m P ‘ P m P m P

= J t(ß 1 g(p ß+ 1)) +

follows by (E). However, xß !g(a '+1)(x.+l) = ̂ P J P
= a p g (p . + 1)(a 1 + 1) (j £[m]) and ß ' g (p ß + l)=ß 1g (P +1)(ß+1) .J P P P P P
Hence, two applications of (F) will yield

V <V 8(pitlpl’' - ' > V e (V Ip)>*=,IT|i",(e(pt' p)) + -

By 1a=i and xß 1=ap, this means

% <ïïmpg(pl + 1p)’- - ,tmpg(pII1+1p)>+=% P ^ P + 1p)) + -

As i was arbitrary, we obtain that (E) is valid in T for any
monotone surjective p.

Now let p be an arbitrary surjective base morphism and
suppose that g and p̂ (i£[m]) are given as previously. There
exists a bijective base morphism a:m-m such that x=ap is

104

monotone. Define т. by т.=ар.а 1 (iG[m]). It is easy to checkl i l
to t^t=t (i£[m]). As T is monotone and g(a 1+1)(t+1p)=g(p+1p)
we get

< l t4 g (a " , + l p) (T 1 + l p) s . . . , ^ T g (a _1 + l p) (T m + l p) > + = T (g (p + l p)) + .

But Tg(a 1 + 1p)(t ̂+ 1p)=apg(p̂ + 1p) (a ' + lp) (i£[m])» thus we
obtain

a<it̂ pg(p] + 1 p %Pg(Pm+ 1 p)> + = T (g(p + 1 p ̂m
- 1by an application of (F). Composing by a on the left will

produce the result.
Summarizing the previous results we obtain:

Theorem 1 An algebraic theory with iteration T is a gen­
eralized iterative theory if and only if each of the iden­
tities (A),(Bj)»•••»(Fj) is valid in T.

Proof. Sufficiency follows by the preceding lemmas. In
order to prove necessity, we have to verify that (D) and (F̂)
are valid in generalized iterative theories. But this is an
immediate consequence of lemmas 2.5 and 2.3 in [2].

Next we introduce generalized scalar iterative theories.
By scalar iteration we mean iteration restricted to scalar
morphisms. That is, an albegraic theory with scalar iteration
is an algebraic theory T, equipped with an operation + which
associates a morphism f+:l-*-p with each scalar morphism f:l-*l+p.
Generalized scalar iterative theories constitute an equational
class of algebraic theories with scalar iteration. Namely, a
generalized scalar iterative theory is an algebraic theory
with scalar iteration which satisfies identities (A ̂),(C),(D)
as well as the following (Ej) and (FJ):

105

(EJ) (p('<n̂ pg(p j + lp) , . . . ,ii“pg(pm+lp)>)=cp(g(p + l̂))
where g:n-*-m+p (n,m >̂ 1, p^O) , p:m-*-n is a monotone base
morphism, p̂ :m-*-m are base morphisms with p^p = p (ie[m])
Furthermore, the term cp(f) where f is a variable of
sort (n,p), i.e. f:n-p, is inductively defined as
follows :

(FI1

cp(f) =f+ if n= 1 ,
<p(f*) = ф((1 +0)f<l +0 ,(Ttnfp) + ,0 +1n-1 1 n-1 p n ’ n-1

for n>l, where р=<0,+1 ,,1,+0 ,>+1 .1 n—1 1 n-1 p

(f<l1+0p,(gp)+,0]+lp>)+=f+<(g<f+,l1+p>)+,1
where f,g:l-2+p, p=<0,+i l +0,>+1 .l l l l p

P >)

>P

Theorem 2 Every generalized iterative theory results in a
generalized scalar iterative theory by restricting iteration
to scalar morphisms. Conversely, every generalized, scalar
iterative theory can be extended in a unique way to a genera­
lized iterative theory.

Proof. The proof of the first sentence follows by obser­
ving that (EJ) is just the combination of (E,) with (B^),
furthermore, (FJ) can be deduced fron identity (B̂) and its
dual being also valid in every generalized iterative theory
(cf. Lemma 2.4 in [2]).

Conversely, by identity (B) it is obvious, that there
exists at most one appropriate extension for any generalized
scalar iterative theory. Thus, we have only to show the exis­
tence of an extension. But this can be done immediately. Let
T be an arbitrary generalized scalar iterative theory and
extend operation + by induction as follows:
0 + = 0 (p>0), f+ = <h+ , (теn f* p) +<h+ , 1 >> if f:n-*-n+p, n>l, p>0, wherep p n p —
p =<0 +1 , ,1 +0 ,>+1 , h=(1 .+0.)f <1 ,+0 » (nnfp)+, 0 +1 >1 n-1* 1 n-1 p* n-1 1 n—1 p n n — 1 p

106

It can be seen that this definition of + coincides with the
original one on scalar morphisms, furthermore, in the theory
obtained, (B^) is obviously valid. By virtue of Theorem 1 and
the fact (В) , (Ej) f= (E]) , it is enough to verify that (Fj) is
satisfied in T.

Let f , g : l - 2 + p , h = f < 1 1 + 0 ^ , (g p) + , 0] + 1 p > , k = g < f + , 1] + p > where
p = a + l ^ , a = < 0 j + 1 j , 1 j+ 0 j>. Observe that p 1= p, a ' = a . Define f = f p ,
g = g p , h = g < 1 j + 0 ^ , (f p) + , 0 j + l p > , k = f < g + , l p > . We know that
h + = f + < k + , l p > and h + = g + < k + , 1 . However, h = g p < 1 } + 0 ^ , f + , 0] + 1p> =
= g<f+,1j+p>=k , and similarly, k=h. Thus, k + =(gp)+<h+, 1 and
we can compute in the following way:

(a<f,g>(a 1+1p))+ = <é,t>+ = <h+,(fp)+<h+,lp>> =

= <k+ , f+<k+ , 1 >> = <(gp) +<h+,1 >, h + > =P P

= a<h+, (gp)+<h+,1p>> = a<f,g>+.

3. TWO THEOREMS REGARDING THE CONNECTION BETWEEN ITERATIVE
AND GENERALIZED ITERATIVE THEORIES * I

By a congruence relation of an iterative algebraic theory
I, we mean an arbitrary congruence relation Q of I (being
considered as an algebraic theory) and such that the quotient
theory I/Q is an iterative theory. A congruence relation Q is
called ideal if fQp implies f=p for any fel, pG9. A congruence
relation of a generalized iterative theory I is just a congru­
ence relation of I, being considered as a many-sorted universal
algebra. The congruence relations of a generalized iterative
theory form a complete lattice. As it was pointed out in [2],
I , i.e. the free iterative algebraic theory generated by a
ranked alphabet E can be viewed as a weak subalgebra of R^, the
free generalized iterative theory generated by E. Thus, for any
congruence relation Q of I there exists a smallest congruence

107

relation of R̂, containing Q. This congruence relation is called
the congruence relation generated by Q. The next lemma will
give a simple description of this relation, provided Q is deal.

Although, first we introduce a notation. For any congruence
Q of 1^ we shall denote by Q the relation obtained by the fol­
lowing definition:

(i) for f,g€R (l,p), fQg if and only if there exist
f,g £ I (1 , p+1) such that f=f(1 +1), g = g(1 +1) and fQg,r. P P

(ii) if f,g£R (n,p), n^l, then fQg if and only if Tt1fÇfii1gn n
holds for any ie[n].

Lemma 7 Let Q be an arbitrary ideal congruence relation of
the iterative theory I . Then Q is the congruence relation
generated by Q in R . Furthermore, Q”IT =Q.

Proof. By the properties of trees follows that f =f is
valid provided f (l +l)=f (1 +i) and f,,f„6I_(1,p+1). As a1 p I p 1 2 E
consequence of this fact, one can easily verify that Q” is an
equivalence relation. Also, using the tree concept, it can be
seen that f<I, , . . . ,0^+ 1] >(1 q+l) = f<g] ,. . . ,gp> if feR^d.p),
f£lE(l,p+l), giGRE(l,q), g^el^í1,q+l) (ie[p]), furthermore,
f(lp+X)=f and gi(l^+i)=g^ (ie[p]). Thus, if we have fQf1, S^Qg^
(i£[p]) as well as f'(lp+b)=f' and g^(l^+l)=g^ (ie[p]), then
f<g.>•••»g>Qf'< ё \ ,о••,g'> follows by f<g,,...,g ,0 +1 > Q
Qf'<gJ,...,g^,0^+1j>. This, together with the second condition
defining Q, yields that Q has the substitution property with
respect to composition. The proof that Q" has the substitution
property with respect to iteration is similar, only observe
that f+(l +i)=f+ if f(l + M = f for f £R (1 ,1 +p) , fel„(1 ,1+p+i) ,p 1+p E E
and use that f+Qg+ if fQg and f is ideal, furthermore, f=g if
fQg and f is base.

108

Now we show that ф |j =Q. Assume that fQg is valid for
f,geIE(l,p). Let f=f+0 j, E g = g+0]. As Q is a congruence, we get
fQg. On the other hand we have f(l^ + l)=f and g(l̂ +J_) = g. This
proves Q • Conversely, supposing fQg for f, gGl^í 1 ,p) , we
obtain f+O.Qg+O, since these are the only elements in I (l,p+l)
with the properties (f+0)(l +l) = f and (g+0)(l + _L)=g. However1 1 P j 1 Pwe have f=(f+0,)<l , it > and g = (g+0)<1 , n > if p>0, and1 p p i p p
f=(f+0 j)g and g=(g + 0])g if p=0. In both cases f+OjQg + Oj implies
fQg-

Finally, we prove that if Q c Q' holds for a congruence
relation Q' of R , then also Q" c. Q ' . Indeed, let f,gSR (l,p)Zj ̂ ̂ ^satisfy fQg. Then fQg holds as well, where f,g€l (l,p+l) are
determined by f=f (1 +J-) and g = g(1 +-L) . As fQg and Q c Q' we get ~ ~ P Pf Q ' g which in turn implies the required fQ'g.

In what follows, we shall prove that for every iterative
theory I there exists a generalized iterative theory R together
with an injective homomorphism (of partial albegraic theories
with iteration), and such that for any homomorphism F:I-*-T into
a generalized iterative theory there is a unique homomorphism
F:R-T with F=nT, i.e.

Theorem 3 Every iterative theory has a free extension in
the class of all generalized iterative theories. Furthermore,
this free extension is an iterative theory.

Proof. As each iterative theory is a homomorphic image of
a free iterative algebraic under an ideal theory map, we may
assume that 1=1^^, that is, I is the factor theory of the free
theory I under an ideal congruence relation. As I has a free

Zj 2—«
extension in the class of generalized iterative theories, namely,
R£, thus the correspondence n : I^/q^R^/q- 9iven by Q(f)-*Q(f)
(f6l) has the universal property. We have to show that л is2_i
injective. But this follows by Q|T =Q.

109

It remains to prove that R^q- is iterative. By Q | ̂ =Q it
is nondegenerate. Now let feR (l,p), ie[p], p>l . Assume that
fQit1, and let fGl (l,p+l) be the morphism determined by f(1 +J_)=f.p i P
Then fQn1 , follows by n1 ,(l +X)=n1. As Q is ideal, this p+1 p+1 P p
provides f=i:1 Therefore, f=u1. We have seen that Q" is ideal.p+1 p
As both and Q are ideal, we get that R^/q- is also ideal. In
order to verify the uniqueness of the iteration in R^q, by the
main result in [1], it is enough to show that if f<g,l > Qg
holds for some ideal f eR (1 , 1+p) , g£R (l,p), then gQf+. This
property of Q can be justified as follows. Let fel (l,l+p+l) and
g£I (l,p+l) be those uniquely determined elements for which
f=f(lj+ +L) and g = g(1 +J.) hold. Then also f<g,l +J>*(1 +L) =
= f<g,l > and f (l +.L)=f are valid. Hence, f<g,l +]>Qg which
by the uniqueness of the iteration in implies that gQf .
Therefore, g = g(1 + 1)(У?+(1 + .l) = f+.P P

Theorem 4 Let I be an iterative theory and QGl(l,0). There
exists a unique way to extend the operation + such that I be­
comes a generalized iterative theory with q = Tt1 + .

Proof. Again, we may assume that 1=1E/Q for a ranked
alphabet E and ideal congruence Q. Denote by Q the congruence
relation of R generated by {(L,q)}. By Theorem 3, we know
that the mapping F:Q(f)-(Q V Q)(f) is a homomoprhism of
into R vq-. Here Q ч/ Q denotes the l.u.b. of and Q" in the
congruence lattice of R^. As E generates R£ and Í2Q i., we obtain
that F is surjective. We shall prove taht F is even injective.

Assume that fQ^VQg holds for f,g£l (l,p). Then there exist
morphisms fq , f} , ...,f2neRE(1,P) (n>0) with f=f Qjf ...

* ’ " ^ п - ^ г п “8, Let ?0’̂ 1 5 * * * ’̂ 2neIÊ 1 ,P+ 1 ̂ Ье unic3uelY
determined by f. (1 +-L)=f. (ie {0,...,2n}). Define f! by1 p 1 l
f!=f.(l +П). Of course, we have f =fT and f„ =f' . By thei i p о о 2n 2n
definition of (J, holds for every, provided i is odd. On

110

the other hand f!Qjf^+] holds for every even i. Thus,

f=f j f jQ̂ f 2 • • • f 2 n- 2n = g * However' Q j I j is the equality
relation and "Ql =Q. Therefore, fQg can be derived.

We have shown that F is a bijective homomorphism. This
results that the definition f+ = F '(F(f) +) (fGl^,^) gives a
satisfactory extension to a generalized iterative theory. The
uniqueness of the extension is obvious.

REFERENCES

[1] Bloom, S.L, S. Ginaly and J.D. Rutledge, Scalar and
vector iteration, JCSS 14(1977), 251-256.

[2] Ésik, Z., Identities in iterative and rational algebraic
theories, CL and CL (Computational Linguistics and
Computer Languages XIV. 1980.)

Coumputational Linguistics and Computer Languages Vol. XV. 1982.

A VERY HIGH LEVEL DISCRETE SIMULATION SYSTEM

T-PROLQG

Iván F u tó and János S zered i

Institute for Coordination of
Computer Techniques

Budapest, Hungary

ABSTRACT

T-PROLOG a very high level simulation language is
presented. It has the following properties.

- the system takes over part of the problem solving
effort from the user,

- a built-in backtrack mechanism permits backtracking
in time in case of a deadlock.

- it changes automatically and dynamically the simulation
model on the basis of logical consequences.

- a more advanced process communication mechanism is
presented for the user.

The processes are synchronized by a built-in scheduler.

1. INT RODUCTION

Solving problems using computerised models of real sys­
tems is one of the purposes of AI and simulation research.
The developed programming tools, AI [l], [3], [4], [5], [7],
and simulation [2], [8], [9], [10] languages differ in many
features. We found it useful to construct a modelling system
which takes the time handling concepts from the simulation
languages and the non-algorithmic programming concept, pattern
matching and backtracking from the AI languages.

Our system is implemented in PROLOG [1], [6], [7], a logic
based AI language with simple syntax (Horn clauses)and great
expressive power due to its logical basis. It has a mechanical
theorem-prover with depth-first strategy. Some features of the
experimental simulation system called T-PROLOG is presented in
the following paragraphs.

2. INTRODUCTION TO V ER Y H I G H - L E V E L C O M P U T E R SIM ULATION

2.1 SIMULATION USING DIGITAL COMPUTERS

By simulation we mean discrete event simulation, when
changes occur in discrete time moments.

Simulation is a problem solving procedure. We prepare a
computerised model (a program) of real life system which ref­
lects the interesting characteristics to examine the behaviour
of the original system, (i.e. by running the program).

The purpose of the simulation can be
1. The examination of the reaction of the observed sys­

tem when its structure or parameters are changed.
2. To examine the final state the system reaches from a

given initial one and how its structure or parameters
have to be changed to obtain a predefined final state.
We will call this kind of simulation goal oriented.

The shema which corresponds to the goal-oriented simula­
tion is the following:

In the above schema the meaning of intervention is an
action of the modeller on the real system to achieve the
wanted results. Evalution and modification of the model is a
human activity which follows each running of the program.

2.2 VERY HIGH LEVEL COMPUTER SIMULATION

We call the simulation procedure very-high level simula­
tion if the behaviour of the model is tested on different points
during the running of the program by control conditions and
when the conditions or the prescribed goals cannot be fulfilled,
back-track occurs. In this case the structure of the original
model can be changed automatically according to different
predefined rules depending on the actual state of the system.
Then the original schema of the simulation procedure can be
modified in the following way:

[Model definition

■---------------- ------------I Input data definition
I

Definition of goals criteria
and rules for structure modification

2.3 CRITERIA FOR VERY-HIGH LEVEL DISCRETE SIMULATION LANGUAGES

1. Changes in the examined systems can be described by
explicit time dependent predicates

2. Parallel proccesses may communicate with each other.
3. Each subsystem and their corresponding goal, may be

described and examined including the hierarchy of goals
determined by the relations between the subsystems.

From the system simulation's point of view, the role of
time is essential. As real systems work in time, the condi­
tions for synchronising their processes are time dependent.

ways :
1. By using a logic-based very high-level language which

is suitable for the simultaneous description of the
processes and goals of the systems, and is interactive,
easy to modify and modular.

2. During the simulation run, the program system assigns
to each process a theorem prover whose task is to prove
the goal of the process by means of the logical state­
ments defining that process.

3. To solve the conflicts which arise from the possibi­
lity of data base modifications, or resource alloca­
tion sophisticated rules of preferences can be given.

4. Back-tracking is provided to some previous state from
which an alternate path can be choosen to try to go
forward again toward the goal. This is important in
dead-lock situations, from which goals cannot be
reached.

5. The set of formulas, defining the simulation model can
be altered dynamically during the running of the prog­
ram. This means that the original structure of the
simulation model can be modified automatically using
predefined state dependent rules.

6. During program execution new processes with new goals
can be created and old ones can be deleted from the
simulation model. In the case of deletion the success­
ful proof of the corresponding goal is not considered.

T-PROLOG is the first experimental realisation of such a
simulation system.

For traditional simulation problems T-PROLOG works as a
process oriented simulation system.

We want to satisfy the above conditions in the following

з . BASIC ELEMENTS OF T-PROLOG

The first basic feature of the language is the process.
Termination of a T-PROLOG program means the sucessful termi­
nation of some processes. The processes can be created at the
initial phase of the simulation as well as during runtime.
Processes conceptually run parallel in time. A goal to be
achieved corresponds to each process.

The second basic notion of T-PROLOG is the resource.
Resources are model elements that can be used only by one
process at time. The use of a resource can take time. Depen­
ding on the type of the resource after of its use it becomes
available or not for other processes. Resources may be created
at program initialisation or dynamically during program exe­
cution .

The third basic feature in T-PROLOG is the notion of the
internal time which is maintained by an internal clock. To
every process which is not waiting for the fulfilment of
a condition, a time moment is assigned, when its execution
will continue. The execution of a process can be suspended
for a time interval "T", in this case its reactivation time
will be the actual time (told by the internal clock) + "T".

To syncrohise processes, and to control time, different
built-in predicates are used. With the help of these pre­
dicates the processes can communicate with each other in
three ways :

1. By using common logical variables.
A process is suspended until another process assigns
an appropriate value to their common variable.

2. By using the common shared database.
The execution of a process is suspended until another
process adds the needed assertion to the database.

3. By sending messages.
The execution of a process is suspended until another
process sends the message it is waiting for.

4- PROGRAM EXECUTION

4.1 PRELIMINARY NOTIONS

To understand the execution of a T-PROLOG program we need
the definition of the following process classes.

1. The currently executed process is the active process.
(In a one processor implementation only one process
can be active).

2. Those processes, which are suspended because of time
consideration or which are not yet started, are wai­
ting processes. To each such process a time "t" is
assigned, which indicates when the process execution
has to continue. These are the processes which form
the waiting list. This list is ordered according to
"t".

3. Processes which are waiting for some message are the
"demon" processes, they form the demon list. If a
process on this list receives the wanted message, then
with the actual system time told by the internal clock
as reactivation time, it is put to the head of the
waiting list.

4. Those processes which are suspended because of a non­
time dependent condition, are the blocked processes,
which are placed on the blocked list.

We need also the definition of the activable process. At
time "t" the following processes are activable:

1. - Those processes on the waiting list whose activation
(reactivation) time is "t" and

- Those processes on the blocked list whose blocking
conditions are fulfilled in this time moment.

2. If there is no such process and the activation (reac­
tivation) time of the first process on the waiting list
is "tl" (t<tl), then those elements on the waiting list
are activable whose activation time is "tl".

If the current active process is suspended then an ac­
tivable process gets control. If there is no such process then
back-track begins.
In case 2. The internal clock moves from "t" to "tl".

4.2 BUILT-IN CONTROL PREDICATES

The control predicates are those built-in predicates which
modify the spelling of the original PROLOG interpreter.

1. Wait (g)

Syntactical restrictions: "g" atom
This predicate suspends processes depending on logical con­
ditions. "g" is the condition for suspension.

2. Wait for (a), Send (a)

Syntactical restricitons: "a" term
Predicates to send and wait for messages.

3. New (gl,x), New(gl,x,st), New(gl,x,st,et)

Syntactical restrictions: "gl" list of atoms (goals), "x"
is a term "st" and "et" are integers.
These predicates create processes, "gl" is the goal-sequence
of the process, "x" is its identifier "st" is the starting
time and "et" is the prescribed time to achiere the goal-
sequence. The default values are:
"st"=system time, "et"=100000.

120

4. Hold(t), During(t)

Syntactical restrictions: t integer
Unconditionally suspends processes for "t" time units.

5. Delete(p)

Syntactical restriction: p term
Those processes whose identifier match "p" will be deleted
from the system.

6. Seize (r), Release(r)

Syntactical restricitions: "r" term
These predicates seize and release resource of processes.

7. Addresource(r,n)

Syntactical restricitons: "r", term "n" pos. integer. This
predicate adds dynamically "n" instances of type "r" of
resources to the model.

4.3 PREDICATES FOR DATABASE/PROGRAM MODIFICATION

1. Add(c1,n)

Syntactical restrictions: cl list of literals, n is an
integer. This predicate serves to insert into the database
a clause, whose literals are the members of cl, to the n-th
position of the corresponding partition.

2. Del(id,n)

Syntactical restrictions: id is an identifier, n is an
integer. The predicate serves to delete from the i-th
partition the n-th clause.

4.4 THE ALGORITHM OF THE PROGRAM EXECUTION

- 121 -

We shall use the following abbreviations:

Active process AP
Waiting list WL
Blocked list BL
"Demon" list DL
System time T
Seize List SL is formed from pairs (p:r)

where p is the identifier of a
process

waiting for the resource r.
Resource list RL

RL is the list composed from the
pairs (r:n), "r" being
a resource type, "n" the number of
available resources of type "r".

AP is always a member of WL or BL.

1. Program initialisation

The goal-sequence of the simulation model consists of "k"
process initialisations:

:New(gl,nl,tsl,tel),...,New(gk,nk,tsk,tek)•

"default values for "tsi" and "tei" are
0 and 1Q0000.
Now we define the waiting list, blocked list,
"demon" list, active process and the system time.
WLl:=(nl^tsl).(nl:ts2)...... (nk:tsk). Nil
WL: = WL1 ordered by "ts" in monoton increasing

way
BL: = empty, DL:=empty
if the first element of W1 is n:ts. then
AP:=n and T:=ts

122

On the WL list the goal-sequence of process "ni" is "gi"
"tsi" is the prescribed activation time and "tei" is the ter­
mination time.

2. The execution of the active process

The goal-sequence of process AP is executed as in PROLOG
until the goal-sequence becomes empty or the first goal of the
sequence is a control built-in predicate.

3. Interruption of process execution

There are two possibilities:

(1) The goal-sequence of the process is Nil. Then AP is dele­
ted from WL or BL and the program execution continues at
4.

(2) The first goal of the goal-sequence of AP is the control
predicate "C".

a. C=Wait(g),
if "g" can be proved then the execution of "C" succeeds
by proving "g" and the execution of AP continues at 2.
Otherwise (if "g" could not be proved AP) is deleted
from WL or BL (it depends on which list contains AP).
We put AP at the end of BL, the condition of suspension
is "g".

b. C=Wait_for(m)
AP is deleted from BL or WL. DL:=DL appended AP to the
end. The "demon" condition of AP is "m". Program exe­
cution continues at 4.

c. C=Send(m)
Those elements of DL, whose "demon" condition can be

123

unified with "m" are inserted into the head of list WL.
Program execution continues at 4. If there is not such
process on the "demon" list then back-track begins.

d. C=New(gl,x), C=New(gl,x,st), C=New(gl,x,st,et)
The default value of "st" is st:=T the actual system
time, and of "et" is et:=100000.
If st<t then back-track occurs. Otherwise WL:=WL, with
insertion "x" activation time "st". If in WL there are
already processes with activation (reactivation) time
"st" then "x" is inserted as the latest one. The goal-
sequence of "x" is "g", (The time to terminate is "et".
The program execution continues at 2. The execution of
the active process continues.)

e. C=Hold(h), C=During(h)
If h<0 then back-track begins. If ts=T+h is greater then
the prescribed time for completion of AP then back-track
occurs too. Otherwise AP is deleted from WL or BL and is
inserted into WL with a reactivation time of ts=T+h. The
program execution continues at 4.

f. C=Delete(p)
Those processes whose identifier can be matched with
"p" are deleted from WL, BL, and DL except AP.
(so, if "p" is a variable then all processes are deleted
except AP.) The program execution continues at 2. with
AP.

g. C=Seize(r)
There are two possibilities: for some n, (r:n) is in RL
or not. If (r:n) is not an element of RL, then the sys­
tem sends an error message and the program execution
terminates. If (r:n) is a member of RL. Then AP is dele­
ted from VL or BL. AP:r Appended to the end of SL,
program execution continues at 4.

124

h. C=Release(r)
There are two cases too. If AP does not have a resource
of type r (it has not seized or has already released
the resource) then the system sends an error message
and the program execution is terminated. If AP seized
r then in RL (r:n) is changed to (r:n+l) and AP con­
tinues its run at 2.

i. C=Addresource (r,n)
If (r:m) is an element of RL then it is changed to
(r:m+n), if it is not the case then (r:n) is appended
to the end of RL.

(1) If WL=DL=BL=empty then the program execution has terminated
successfully.
Otherwise :

(2) If the activation time of the first element of WL is equal
to T.s (the actual system time) then this process will be
the new AP and program execution continues at 2.
Otherwise :

(3) If there is a process in the BL, whose suspension condition
is fulfilled then AP will be the first from these pro­
cesses. The program execution continues at 2.
Otherwise :

(4) Defininition: homogenous process class.
Two processes are homogenous from the point of view of a
resource, if at the moment when they want to seize the
resource all their parameters, except the process iden­
tifier, are the same. Homogenous processes form a homo­
genous process class. In case of back-track, permutation
of processes to receive a resource is executed only for

125

the elements of different homogenous process classes. No
processes belonging to the same class are permuted.
More formally:
If in SL, there is no such (p:r) for which (r:n) in RL, n>0,
then the control omits this point.
Otherwise :
Let rl,r2,...rk be resources for which ri:ni is an
element of RL, and ni>0, and for ri there is such pi that
pi:ri is an element of SL.
If pil,...piil are those process identifiers for which
pij:ri are members of SL (the order of these depends from
the order of RL and SL).
Let us rename pij-s as follows:
ql,q2,q3,...,qn
pl 1,...,plil,p21,..,p2i2.p3l,... pkl,...pkik
(ql=pll and qn=pkik) and execute the following loop:

m: = i
a. AP:=qm, AP is appended to VL with start time t, qm is

the new name of pij. Therefore on RL we change (ri:mi)
to (ri:mi-l). And program execution continues at 2. If
during backtrack control reaches a., then execution
continues at b.

b. If m=n then backtrack continues.
If m<n and qs, s>m is the identifier of the first
process which does not belong to the same homogenous
process class as qm then m:=s and execute a.
If there is no such qs, then backtarck continues.

(5) If WL is not empty, its first element is "n:ts" and the
termination time of all processes is less than or equal to
"ts". Then AP=n and t:=ts and program execution continues
at 2.
Otherwise :

126

(6) Back-track
That means that back-track occurs when there is no element
of BL whose suspension condition is fulfilled and WL is
empty or the activation time of its first element is
greater than the prescribed termination time of another
process.

5. Simple T-PROLOG example for resource distribution

The problem is a variant of the well-known five-philosopher
problem of Brinch Hansen.

Five philosophere sit at a round table. There are five
forks on the table. Every philosopher needs 2 forks for eating
but they may use only the forks at their right side and left
side. We have to have them finish their meal in a non trivial
way, that is we prescribe their lunch time short enought not
to allow the trivial solution - the philosophers can't have
their meal simply one after another.

Let the lunch time be 30 minutes and let's suppose that
every philosopher is able to finish his own portion within 10
minutes. The corresponding T-PROLOG program is the following.

127

Resource(Fork(A),1).
Resource(Fork(В),2).
Resource(Fork(C),1).
Resource(Fork(D),1).
Resource(Fork(E),1).

Resource declarations.
Satiated(n):
Good-fork(n,fl,f2),
Seize(Fork(f1)),
Seize(Fork(f2)),
Eat,
Release(fork(f1)).
Release(fork(f2)).
Eat:

During(10).
Good-fork(1,A,В).
Good-fork(2,В,C).
Good-fork(3,C,D).
Good-fork(4,D,E).
Good.- fork (5 , E, A) .
End.

:New(Satiated(1).Nil, FI,0,30), New(Satiated(2). Nil, F2,0,30),
New(Satiated(3).Nil, F3,0,30), New(Satiated(4). Nil, F4,0,30),
New(Satiated(5).Nil, F5,0,30).

The main steps of the program execution are :

1. 1-st Philopsher enters in the waiting queque of the
resource representing fork A. The 2-Nd philosopher enters
in the queue of fork B. Similarly the other philosophers
enter in queues of forks C, D, E respectively.

2. 1-st philosopher receives fork A leaves the queue of fork A
and enters in the queue of fork B. He is the second member
of the queue, philosopher 2 stays before him. Then 2-nd

128

philosopher receives fork В, leaves queue of fork В and
enters in the queue of fork C. He will be the second
member of this queue philosopher 3 is staying before him. So
do philosophers 3, 4 and 5.

3. Then every philosopher has one fork and waits for the other
one but these forks are in the possession of an other
philosopher. This is a typical deadlock situation.

4. Backtrack begins. There was a previous system state when in
the queue of fork E there were philosophers 5 and 4, in this
order, philosopher 4 having the fork D. The two philosophers
belong to different homogenous process class respecting fork
E. So they can be permuted during backtrack and now
philosopher 4 receives fork E, (Previously philosopher 5
received it.) Philosopher 4 now has his two forks D and E
while philosopher 5 has no fork at all and remains in the
queue of fork E.

5. In the system at this moment only philosopher 4 can eat.
System time becomes 10 which means that philosopher 4
finished the eating, he releases forks E and D.

6. Philosophers 3 and 5, who wait for these forks now can seize
them. Now philosophers 1 and 2 have to wait for their missing
forks (B and C), While philosopher 5 waits for fork A. Then
system time is set to 20. Philosopher 3 finishes his meal
and releases fork C and D. This means that now philosopher
2 who waited for fork C can eat, but the other philosophers
(1 and 5) can not.

7. System time is set to 30 philosopher 2 releases forks В and
C. Philosopher 1 immediately seizes fork В but the T-PROLOG
scheduler finds that he can finish his meal only for 40 and
the permitted limit is 30 so a new backtrack begins.

129

8. Backtrack continues until such a resource (fork) distribution
is not found that at time moment о 2-nd philosopher receives
forks В and C, philosopher 4 receives forks D and E. Then
for time 10 they can finish eating and philosopher 1 and 3
can receive their missing forks. They finish eating at 20
and release the forks and finally philosopher 5 can eat too,
end he finishes for 30.

9. The above solution is the first one that the system can
find.

6. Conclusion

T-PROLOG, a very high level simulation language has the
following advantages compared to the traditional simulation
languages :

1. The system assumes over some of the problem solving effort
from the user who then is free to concentrate on defining
the task rather than solving it;

2. The system changes the model automatically and dinami-
cally on the base of logical consequences derived from
sophisticated preconditions;

3. A built in back-track mechanism permits backtracking in
time in case of deadlock or hopeless intermediate
situation (a logical condition which is necessary for
the continuation of the execution is missing, or the
current time condition has become contradictory);

4..T-PROLOG has a process communication mechanism which
includes interprocess communication through variables
which are evaluate by pattern matching or by modification
of the model description. (We preserve the traditional
way of communication too: the processes are able to send
and receive messages.).

130

7. Plans for the future

Our hope is to transform the current version of T-PR0L0G
to a simulation system that for traditional discrete simulation
problems runs as effectively as the traditional simulation
languages. [2], [9], [10]

An other task to solve is to find more "intelligent"
backtracking strategies, automatic or user controlled.

An interactive program development and debugging subsystem
is in its planning phase. Other facilities to help interactive
simulation, giving the possibility to interrupt program execu­
tion, modify the model from user terminals, froce the system
to back-track to a given state are under planning.

The experimental version of T-PROLOG is used to model re­
gional developments.

REFERENCES

1/ G.Battani.H.Meloni
Interpreter du Language de Programation PROLOG
Université D'Ais Marseille sept. 1973

2/ GPSS/360 User's Manual
IBM 420-03261

3/ C.Hewitt
PLANNER: A language for Manipulating Models and Proving
Theorem in a Robot
Int. Joint. Conf. Artificial Intelligence 1969.
Washington DC.

4/ C.Hewitt
Viewing Control Structures as Patterns of Passing Messages
Artificial Intelligence Vol 8. No.3. june 1977

1 3 1

5/ MC Dermott, G.J.Sussman
The CONIVER Reference Manual
MIT AT Laboratory Memo no. 259, Cambridge may 1972

6/ R. Kowalski
Logic for Problem solving
North-Holland 1980

7/ MC. Cabe
Programmer's Guide to IC-PROLOG
Imperial College London 1978

8/ J.F. Rulifson, J.A. Derksen, R.J. Waldinger
QA4 A Procedural Calculus for Reasoning
AT Center Technical Note SRT Project 8721, 1972

9/ P.J. Kiviat
Simulation Using Simscript II.
Rand Corporation 1968

10/ Simula Reference Manual
Control Data 6400/6500/6600 Computer Systems

11/ S.Wendt
BORIS a Block Oriented Interactive Simulation System
University of Kaiserslautern W.Germany 1978

12/ I.Futó, J.Szeredi
T-PROLOG General Information Manual
Institute for Coordination of Computer Techniques
1981.

#

C o m p u ta tio n a l L in g u is tic s a n d C o m p u te r L angu ages Vol. X V . 1982.

A PARSING METHOD BASED ON VAN WIJNGAARDEN GRAMMARS

László Gerevich
C o m p u te r C e n tr e o f th e N a t io n a l P la n n in g O ff ic e

B u d a p e s t , H u n g a r y

Abstract

T h e f o l lo w in g is t o d e m o n s tr a te a t o p - d o w n p a rsin g m e t h o d b a sed o n v a n W ijn gaard en

g ra m m a rs (” W -g ra m m a rs” fo r sh o r t; a lso c a lle d t w o - le v e l g ra m m a r s) , th e a p p l ic a t io n o f w h ic h

d o e s n o t r e q u ir e a n y r a d ic a l c h a n g e in t h e g iv e n W -gram m ar, o r i f c e r ta in s t ip u la t io n s are ta k e n

in to c o n s id e r a t io n in th e d e f in in g p r o c e s s , n o n e a t a ll.

T h e p a rsin g m e t h o d is a p p lic a b le

— t o c h e c k t h e W -gram m ar, d e sc r ib in g th e c o n t e x t - f r e e s y n ta x and c o n t e x t c o n d it io n s

o f th e la n g u a g e in q u e s t io n , in th e s ta g e o f d e v e lo p m e n t ;

— t o a c o m p ile r o f th e la n g u a g e , in i t s o r ig in a l g e n e r a l fo r m , u se d in t h e c h e c k in g

p r o c e s s , a n d a lso in a n o p t im iz e d v e r s io n .

1. Introduction

O u r m e t h o d is d e sc r ib e d in th r e e s te p s . First, a m o d if ie d d e f in it io n o f th e d e r iv a t io n

a c c o r d in g to W -gram m ars is g iv e n ,w h ic h h o w e v e r r e ta in s t h e g e n e r a te d la n g u a g e . T h e m o d i­

f ic a t io n re n d e r s th e W -gram m ars m o r e s u ita b le fo r p a rsin g p u r p o s e s , in d e p e n d e n t o f th e a c tu a l

p a rsin g p u r p o s e s , a n d in d e p e n d e n t o f th e a c tu a l p a rsin g m e t h o d e m p lo y e d . T h e second s te p is

th e d e s c r ip t io n o f a n e x t e n s io n o f th e c h o s e n m e t h o d , th a t o f r e c u r s iv e d e s c e n t . T h e n e w e le ­

m e n ts in tr o d u c e d a re th e g r a m m a r -ty p e p a r a m e te r s a n d t h e se a r c h fo r ru le s w h ic h m a k e th e

m e th o d o f r e c u r s iv e d e s c e n t s u ita b le fo r d e s ig n in g p a rsers o p e r a t in g o n th e b a s is o f W -gram m ars.

Third c o m e s th e d e s c r ip t io n o f th e im p le m e n te d m e t h o d , b e in g an e x te n d e d v e r s io n o f K n u th ’s

p a rsin g m a c h in e [1 2] , th e in s tr u c t io n s o f w h ic h are e x e c u t e d th r o u g h m a c r o c o m m a n d s .

D .A . W a tt in [2 0] w a s th e fir st t o a p p ly W -gram m ars in p a rser s , b y in tr o d u c in g th e gram m ar-

- t y p e v a r ia b le s in to a ff ix -g r a m m a r s [13] , in a d d it io n t o a f f ix e s (E A G). T h is E A G w a s r e a liz e d ,

as w e l l a s fu r th e r d e v e lo p e d (E C D L) b y B . K ra m er a n d H .W . S c h m id t [15] , [1 6].

T h e p r e se n t m e t h o d , u n lik e E C D L , d o e s n o t r e q u ir e e s s e n t ia l ch a n g es in W -gram m ars,

s in c e it a llo w s

— th e a p p l ic a t io n o f g e n e r a l h y p e r r u le s , a s e .g . p r e d ic a te s ;

— a m o r e f le x ib le u se o f g r a m m a r -ty p e p a r a m e te r s .

In th is p a p e r w e g iv e a d e s c r ip t io n o f t h e f ir s t s te p a n d , b r ie f ly , o f th e s e c o n d s te p t o o .

In fo r th c o m in g p a p e r s w e in te n d to d e sc r ib e th e r e s tr ic t io n s o n W -gram m ars in a m o r e

134

d e ta ile d m a n n er , e n s u r in g th a t p a rsers m a d e b y th e s e g r a m m a r s w o r k a n d r e c o g n iz e th e

la n g u a g es g e n e r a te d b y th e m ; fu r th e r m o r e w e a lso w is h t o d e m o n s tr a te t h e u s e o f th is m e th o d

in p ra c tice .

2. Van Wijngaarden Grammars

T h e fo rm a l d e f in i t i o n o f W -gram m ars in tr o d u c e d b y J .L . B ak er [1] a n d d e v e lo p e d b y

P .A . D eu ssen [5] is r e c a lle d a n d d e m o n s tr a te d o n a s im p le e x a m p le . I t is f o l lo w e d b y th e

in fo r m a l d e s c r ip t io n o f th e m o d if ie d d e r iv a t io n a c c o r d in g t o th e W -gram m ar a n d it s fo r m a l

d e f in it io n . T h e e q u iv a le n c y o f t h e s e t w o d e f in it io n s is p r o v e d .

2.1. Formal definition of W-grammars

Definition 1. A W -g ra m m a r is an o r d e r e d se p tu p le

W G = (М ,т ,П ,2 ,Ф ,Г ,< 5>) ,

w h e r e

M — a f in it e s e t o f m e ta n o t io n s ,

T — a f in ite se t o f m e ta te r m in a ls (M n r = ф)

П с M X (M и r)*— a finite set o f context-free metaproductions (metarules), the
q u a d r u p le (M , т , П , A) is a c o n te x t - f r e e g ra m m a r fo r e a c h m e ta ­

n o t io n A e M , th e se ts M , r an d П are s o m e t im e s ca lle d

m e ta s y s te m o r m e ta le v e l;

2 — a f in it e s e t o f te r m in a ls o f t h e la n g u a g e ,

ф с { <u> : u e (M и r) + } — a f in i t e se t o f h y p e r n o t io n s ,

Г с Ф X (Ф U 2) * — a f in it e s e t o f h y p e r r u le s th a t serve as s c h e m a ta fo r p r o d u c t io n s ,

< 5 > е Ф — a d is t in g u is h e d h y p e r n o t io n c a lle d sta r tin g s y m b o l .

T h e se ts 2 , Ф a n d Г are c a lle d la n g u a g e lev e l.

Definition 2 . T h e s e m ig r o u p h o m o m o r p h is m Ф

Ф : (М и т и 2 и { < , > - })+ -+ (r U 2 U {< , > , -* }) *

is ca lled consistent replacement (u n iv e r sa l a s s ig n m e n t o r u n ifo r m r e p la c e m e n t r u le) , i f an d

o n ly i f (i f f) t h e f o l lo w in g c o n d it io n is sa tis f ie d

Ф Ш =

ueLx , i f X e M (Lx = { ver*, X ^ v })

'
X, if Хе(т U 2 U { < , > , -*• })

135

T h e p o s s ib ly in f in it e se t Г o f p r o d u c t io n s fo r t h e la n g u a g e o b ta in e d b y c o n s is te n t

r e p la c e m e n ts fr o m th e h y p e r r u le s is Г = { 7 : 7 6 Г , у = Ф (т) } .

T h e it e m s o f th e s e t are ca lled n o t io n s Ф = { <u> : иет* a n d th e r e a re a h y p e r r u le

7 : <w> -*■ f e T an d c o n s is t e n t r e p la c e m e n t Ф fo r w h ic h ' l ' (w) = u)

T h e str in g o f n o t io n s an d te r m in a ls o f th e la n g u a g e d e r iv e d fr o m th e s ta r t in g s y m b o l b y

th e p r o d u c t io n s o f Г is ca lled sentential form LWG = { p : <s> д } . T h e lan gu age

g e n e r a te d a c c o r d in g t o t h e W -gram m ar is th e se t o f s e n te n t ia l fo r m s c o n ta in in g o n ly te r m in a ls

o f th e la n g u a g e

L w g = L w e n 2 * = { a e £ * : < i > ~ 0 }

Example 1. The grammar generating the language a kß k a k is

W G X= (Mj, т-j, Пр Фр rit<i>)
w h e r e

Mj = { N \ r 1 = {a ,n \ ríj = { N -> nN, N -*• X (empty string) \ S j = { a,ß},

Ф 1 = { < s > , < a N > , < b N > , < a n N > , < b n N > , < a > , < b > },

Tj = { 7 j : <s> -* < a N > < b N > < a N >

72 : < a n N > -* a < a N >

7 3 : < b n N > -*• ß < b N >

74 : <a> -* X

75 : < b > -*• X}

The word aßa is generated by the context-free grammar G l derived from the hyperrules
Cj = ({< a n > , < b n > , < a > , < b > , <s> }, { a , ß \

{ r : < s > -* < a n > < b n X a n > , r 2 : < a r i> -> a < a > , : < b n > -> ß < b > , r4 : < a > - > \ ,

rs : < b > - X \ < s >) ; Ф ^) = r 1 (Ф^ЛО = n), Ф2(72) = r 2 (Ф2(Л0 = X)
Ф 2(Т3) = 73 =/-3

The hyperrules y 4 and 75 are productions of the language as they have no metations.
The derivation of the word aßa by G 2 is:

< s > — < a n > < b n X a n > -* a < a X b n X a n > -*• a < b n > < a n > - + a ß < b X a n > -*• a ß < a n > ->

a ß < a > -*■ aßa

136

N o t e : t w o n o t io n s are e q u a l i f f th e ir m e ta te r m in a l r e p r e s e n ta t io n s , (m e ta te r m in a l str in g s) are

e q u a l.

T h e (in f in it e) la n g u a g e is g e n e r a te d b y (p o s s ib ly in f in i t e) c o n t e x t - f r e e g r a m m a r s o b ta in e d

f r o m t h e f in it e set o f h y p e r r u le s b y c o n s i s t e n t r e p la c e m e n t , d e f in e d b y m e ta p r o d u c t io n s . In

t h e c a se o f gram m ar WG j , th e a p p l ic a t io n o f a c o n s is te n t r e p la c e m e n t (Ф j in th e d e r iv a t io n

in E x a m p le 1) to o b ta in t h e p r o d u c t io n q o f th e la n g u a g e , f r o m th e h y p e r r u le 7 j , w a s

d e te r m in a n t fro m th e a s p e c t o f th e g e n e r a te d w o rd aßa a s t h e n u m b e r k (1) o f th e s y m b o ls

a , ft a n d a again e q u a ls t h e n u m b e r o f t h e m e ta te r m in a l s y m b o ls n (l) in th e s tr in g , rep la c in g

m e t a n o t io n N in th e h y p e r r u le . T h e a c tu a l r e la t io n sh ip b e t w e e n th e g e n e r a te d w o r d aßa
a n d t h e d e te r m in a n t c o n s is t e n t r e p la c e m e n t T 'j (N) = n d e p e n d s o n th e o th e r h y p e r r u le s (la n g u a g e

le v e l) . I f th e h y p e r r u le 7 2 w e r e < a n n N > -*■ a < a N > , th e r e la t io n s h ip w o u ld b e d if fe r e n t .

2.2. Modified definition of the derivation according to the W-grammar

T h e sep a ra tio n o f t h e t w o le v e ls p r e s e n t s a p r o b le m w h ic h w e p r o p o s e t o s o lv e b y m o d if y in g

th e d e f in i t io n o f th e d e r iv a t io n a c c o r d in g t o th e W -gram m ar. T h e e s s e n c e o f th is m o d if ic a t io n

c o n s is t s in p reserv in g t h e m e t a n o t io n s in t h e s te p s o f d e r iv a t io n u n t i l th e a p p lic a t io n o f a

h y p e r r u le -p r o d u c t io n d o e s n o t ca ll fo r th e ir r e p la c e m e n t (p o s t p o n e d m e ta d e r iv a t io n) . T h e n o t io n

o f c o n s is t e n t r e p la c e m e n t is e x te n d e d in su c h a w a y th a t t h e m e t a n o t io n s are r e p la c e d b y

s tr in g s o f m e ta s y m b o ls (n o t o n ly m e ta te r m in a ls) in e a c h o f th e ir o c c u r r e n c e s . T h is r e p la c e m e n t

is c a lle d extended consistent replacement.

T h e a p p lic a t io n o f a d e r iv e d h y p e r r u le -p r o d u c t io n b y s o m e e x te n d e d c o n s is t e n t r e p la c e m e n t

as a p r o d u c t io n o f th e la n g u a g e c o n s is t s o f th ree step s:

1 .) a p p ly so m e e x t e n d e d c o n s is t e n t r e p la c e m e n t to th e s e n te n t ia l fo r m rj;

2 .) a p p ly a n o th e r e x t e n d e d c o n s is t e n t r e p la c e m e n t t o a h y p e r r u le 7 , and

3 .) r ep la ce in th e s e n te n t ia l fo r m a h y p e r n o t io n < u > , w h ic h as a s tr in g o f m e ta s y m b o ls

e q u a ls th e le f t h a n d s id e o f t h e d e r iv ed h y p e r r u le 7 (^ (7) = 7) , b y th e righ t h a n d s id e

o f th a t d er iv ed h y p e r r u le 7 .

C o n s id e r th e m o d if ie d d e r iv a t io n in th e case o f th e g e n e r a t io n o f th e w o r d aßa, a c c o r d in g

to th e gram m ar W G r T a k e t h e f ir s t h y p e r r u le y x a s a p r o d u c t io n o f th e la n g u a g e (in

w h ic h ca se w e sh a ll c a ll it h y p e r r u le -p r o d u c t io n) , and a p p ly it t o th e s ta r tin g s y m b o l < s > .

T h e n , th e first s te p o f t h e d e r iv a t io n is: < s > => < a N X b N X a N > =>

In th e o b ta in e d s e n te n t ia l fo r m r e p la c e t h e m e ta n o t io n N b y n N in e a c h o f its o c c u r r e n c e s ,

e .g . b y a p p ly in g th e e x t e n d e d c o n s is t e n t r e p la c e m e n t ^ (^ (N) = n N) to i t . T h u s , w e g e t

я < a n N X b n N X a n N > .

A p p ly h y p e r r u le -p r o d u c t io n 7 2 t o h y p e r n o t io n < a n N > o f th e s e n te n t ia l fo r m in it s fir st

o c c u r e n c e . R e p la c e it b y t h e r ig h t h a n d s id e o f h y p e r r u le -p r o d u c t io n . y 2- T h e re su lt w il l b e

t h e s e n te n t ia l fo r m : =>, a < a N X b n N X a n N >
г

137

A p p ly th e e x t e n d e d c o n s is t e n t r e p la c e m e n t ^ 3 (^ 3 (N) = X) w h ic h is a c o n s is t e n t r e p la c e ­

m e n t . W e g e t f a < a > < b n X a n > .

Replace the notion <a> by X, applying hyperrule-production 74 .W eget p a<bn><an>p*.
Apply the consistent replacement Ф5 to the hyperrule 73 . Using this production to re­
place notion <bn> by the right hand side of the derived production, we get p: aj3<an>p; .
Replace notion by X according to production 75 ; we get ^„a^ar^p* , . Similarly,
by replacing notion <an> '"by a<a>, according to the production obtained from 72, and
<a> by X according to the production 74 , we get p; a/3a.
A m o d if ie d d e r iv a t io n s te p is:

< s > => < a N > < b N > < a N > => < a n N > -> a < a N >

' í ' i (N) = n N ÿ m e ta le v e l ^

< a n N > < b n N > < a n N > < a n N > -> a < a N >

th e a p p l ic a t io n o f an h y p erru la -ru le

=*■ a < a N > < b n N > < a n N > =>

T h e e x a m p le w a s s im p le r th a n t h e rea l s itu a t io n : h e r e w e d id n o t n e e d th e s u b s c r ip t io n

o f m e t a n o t io n s , w h ic h w e are g o in g t o d e f in e in th e f o l lo w in g .

T h e r igh t h a n d s id e o f t h e h y p e r r u le -p r o d u c t io n , d e r iv e d fr o m a g iv e n h y p e r r u le b y a p p ­

ly in g a n e x te n d e d c o n s is t e n t r e p la c e m e n t , m a y c o n ta in a c e r ta in m e ta n o t io n w h ic h a lso o c ­

cu rred in th e s e n te n t ia l fo r m . R e p la c in g th is m e t a n o t io n b y a s tr in g o b ta in e d fr o m it , a c c o r d ­

in g to t h e m e ta p r o d u c t io n s in e a c h o f i t s o c c u r r e n c e s w o u ld r e su lt o n ly in a su b la n g u a g e in

th e le f t d e r iv a t io n . In o r d e r t o a v o id th is , w e su p p ly t h e m e t a n o t io n s w ith su b s c r ip ts th e

m e ta n o t io n s . O u r s u b s c r ip t io n is s im ila r t o th e s u b s c r ip t io n in tr o d u c e d an d u s e d in th e o r ig ­

in a l d e f in i t io n o f th e W -gram m ar [2 1] , [2 2] , b u t th e r e , o n ly a f in it e n u m b e r o f su b s c r ip t io n s

(n a m e ly 1 0) is a l lo w e d .

W e sh a ll d e m o n s tr a te b y a n e x a m p le w h e n s u b s c r ip t io n is n e c e ssa r y . T h e g ra m m a r W G 2

g e n e r a t in g th e la n g u a g e a jß k is

W G 2 = (M j .Tj , TTj, Z j , Ф 2 , T 2 , < s >) ,
where

Ф 2 = { < s > , < a a > , < b N > , < a N > , < a n N > , < b n N > , < a > , < b > },

and
Г 2 = {h j : < s > ->■ < a a > < b N > , h 2 : < a a > -+ < a N > , T 2 > T3 . 7 4 > T5)

A p p ly h j to th e sta r tin g s y m b o l < s > an d h 2 to th e h y p e r n o t io n < a a > ; w e g e t th e s e n ­

t e n t ia l fo r m < a N X b N > . S im ila r ly to th e a b o v e m e n t io n e d m e th o d , w e w il l g e n e r a te w o r d s

akßk fr o m th is s e n te n t ia l fo r m and n o t th e w o r d s o f th e la n g u a g e , g e n e r a te d a c c o r d in g to W G 2 .

A fte r s u p p ly in g m e t a n o t io n s w ith su b s c r ip ts , th e gra m m a r W G 9 w ill h a v e th e h y p e r r u le s

h j : < s > -> < a a > < b N j > , h 2 : < a a > -> < a N 2 > e t c .

T h e m o d if ie d d e r iv a t io n , w it h su b sc r ib e d m e ta n o t io n s , is

< s > => < a a > < b N j > => < a N 2 > < b N j > => . . .

138

D e f in i t io n 3 . A m o d i f i e d W -gram m ar is a n o r d e r e d s e p tu p le

WG' = (M , T, 1Г, 2 , Ф ', f < s >)

w h e r e

M , t, 2 and < s > a re a s b e fo r e , f in i t e s e t s o f m e t a n o t io n s , m e ta te r m in a ls , te r m in a ls o f th e

la n g u a g e and th e d is t in g u is h e d sta r tin g s y m b o l , ir C M X (M и r) * — a f in i t e s e t o f s c h e m a ta

o f c o n te x t - f r e e m e t a p r o d u c t io n s , an d b e f o r e d e f in in g th e s e t s Ф ' and Г ' , w e in tr o d u c e th e

se t o f su b scr ib ed m e t a n o t io n s . D e n o te b y I t h e se t o f t h e u n s ig n e d in te g e r , a n d b y M ' th e

se t o f su b scr ib ed m e t a n o t io n s (m e t a n o t io n s fr o m se t M a n d su b sc r ip t f r o m s e t I) .

Ml' = (A j : f o r e a c h A e M a n d i e l }

F u r th e r m o r e , Ф '- a f i n i t e se t o f h y p e r n o t io n s , Ф' c { < u > : u e (M ' и т) * } = Ф '

Г 'еФ ' X (Ф ' U E) * — a f in i t e se t o f h y p e r r u le s .

D e n o t e b y [u] k t h e k -th s y m b o l o f t h e str in g u /u e (M и t)*I. L e t u = at a2 . . . ak

th e n [u] k = ak . D e n o t e b y u' th e s tr in g o b ta in e d fr o m u , b y su b sc r ib in g a ll m e ta n o t io n s

in it

[«'lie =

[U]k i f [u]k 6T

A i i f [u]k = A , A e M , fo r s o m e ie l

w h e r e 0 < к < lui. D e n o t e b y uj t h e s e t o f u .

T h e set o f m e t a p r o d u c t io n s 7r' is o b t a in e d fr o m th e s c h e m a ta n b y su b sc r ib in g a ll

m e t a n o t io n s in it a n d a d d in g m e ta p r o d u c t io n s in o r d e r t o b e a b le t o c h a n g e t h e su b scr ip ts :

7г '= (A ; -»■ A j i fo r i j e l , i Ф j a n d A e M } и (А ; -*• u ’ i f f A -* u e 7r an d i e l }

F o r m e ta n o t io n В (В e M *) le t u s d e f in e t h e se t

L' = {ue(M' и т)* : В ^ u}
° 7Г

D e f in i t io n 4 . A s e m ig r o u p h o m o m o r p h is m Ф ' (Ф ' : (M *U r U S U { < , > , -*■ f -> (M V2 и { < , > , - > })+

is c a lle d extended consistent replacement i f f t h e f o l lo w in g c o n d it io n is s a t is f ie d :

u a L ^ i f xeM,'

Ф '(х) =*

X f o r a ll o th e r s y m b o ls (a s t ,E an d { < ,> - > • })

139

T h e h y p e r r u le -p r o d u c t io n s are o b ta in e d fr o m g iv e n h y p e r r u le s , b y a p p ly in g e x t e n d e d

c o n s is t e n t r e p la c e m e n ts Т ' Ч т = 'l' (т)>)•

D e f i n i t i o n s . L e t r? a n d ? b e s tr in g s o v e r (Ф ' U 2) . W e s a y th a t ? is d ir e c t ly d e r iv e d fr o m

77 (b y a p p ly in g o n e p r o d u c t io n o f th e la n g u a g e) , i f f th e r e are:

1.) T jj, T)2 an d V (r j j , т?2 е(Ф ' и Б) * a n d v e (M ' u rj*") fo r w h ic h 77 = T}̂ < v> t)2

2 .) Ф 'р Ф '2 e x t e n d e d c o n s is t e n t r e p la c e m e n ts a n d a g iv e n h y p e r r u le < w > -*• £ еГ ' fo r

w h ic h ^ j (v) = ^ 2 (w) and

3.) Г = (r i j (r | 2).

D e n o t e th is r e la t io n b y =*• a n d it s r e f le x iv e an d tr a n s it iv e c lo su r e b y => # .

A d ir e c t d e r iv a t io n is a d ir e c t le f t d e r iv a t io n i f f 7 7 ^ 2 * ; w e d e n o t e it b y

К and its reflexive and transitive closure by * . The sentential forms are called the items
г J г

o f t h e f o l lo w in g se t

L w e = {т?е (ф ' u * : < s > p X 7?}

a n d t h e la n g u a g e g e n e r a te d b y t h e m o d if ie d W -gram m ar W G is th e se t

L (W G) = L ^ G П 2 * = {oeZ* : < s > *a }

D e f in i t io n 6 . A n e x t e n d e d c o n s is t e n t r e p la c e m e n t Ф ' is r e s t r ic t e d (n o n r e s tr ic te d) r e la t iv e t o

s tr in g £ b y m e t a n o t io n C, i f f th e r e are (a re n o t) tw o d i f f e r e n t m e t a n o t io n s A ,B (A ,B e M '

a n d А Ф B) c o n ta in e d in s tr in g £ (1£ 1Д Ф 0) , th e im a g e s o f w h ic h u n d e r Ф ' (w o u ld)

c o n t a in th e sa m e m e t a n o t io n s w it h e q u a l su b sc r ip ts . I .e . th e r e i s (is n o t) s o m e m e t a n o t io n

C , fo r w h ic h th e s y s te m s o f in e q u a l i ty h L 'iA)^ Ф 0 a n d 1Ф ' (В) 1С Ф 0 are s a t is f ie e d .

D e f in i t io n 7 . T w o e x t e n d e d c o n s is t e n t r e p la c e m e n ts ^ a n d Ф 2 are c a lle d r e s tr ic te d , r e la t iv e

t o t h e s tr in g s £ : a n d £ 2 b y m e t a n o t io n C, i f f th e f o l lo w in g c o n d it io n s are sa tis f ie d :

1.) I f 'L 'j is r e s t r ic t e d , r e la t iv e t o £ x b y s o m e C , t h e n Ф 2 is n o n r e s tr ic te d , r e la t iv e

t o £2 b y C , a n d v ic e v ersa .

2 .) T h e str in g s £ t a n d £2 c o n ta in s u c h m e t a n o t io n s A a n d B , th e im a g e s o f w h ic h u n d e r

a n d Ф'2 (Ф Х(А) , Ф'2 (В) c o n ta in th e sa m e m e t a n o t io n C; i .e .

1*1 (A) ̂ Ф 0 and 1Ф'2(В)1С Ф 0

140

L e t u s a ssu m e w i t h o u t lo s s o f g e n e r a l i t y th a t t h e e x te n d e d c o n s is t e n t r e p la c e m e n ts 'I'j

an d Ф 2 in a n y d ir e c t d e r iv a tio n (o f t h e s e n te n t ia l fo r m) are r e s tr ic te d , r e la t iv e to 77 an d

f b y cer ta in m e t a n o t io n C , i f f th e r e p la c e d h y p e r n o t io n c o n ta in s C ,

1*1 M t Ф 0.

L e t th e p a ir o f e x t e n d e d c o n s is t e n t r e p la c e m e n ts j and 2 , alk> sa t is fy th e c o n d it io n s

o f d ir e c t d e r iv a tio n :

7? = 77j < v > т?2 , Ф'и (у) = ^ !12(w) a n d ? = 'L '11 (r7) ^ ' 1 2 (5) ' L j 1f 772)

Definition 8. T h e p a ir o f e x te n d e d c o n s i s t e n t r e p la c e m e n ts an d Ф 2 , r e la tiv e to th e str in g

V a n d w , i f f th e r e is an e x te n d e d c o n s is t e n t r e p la c e m e n t Ф ’, fo r w h ic h

* ' (* i (v » = ^ ' ц (и) and Ф ' (* ' г М) = * ' \ p t)

/
Definition 9 . T w o p a ir s o f e x te n d e d c o n s is t e n t r e p la c e m e n ts Ф 2 a n d Ф 'п , Ф 12 are

c a lle d independent, i f f n o n e o f th e m is a p a ir o f su b r e p la c e m e n ts o f th e o th e r o n e r e la t iv e to

V a n d w .

F o r e x a m p le , w h e n th e h y p e r r u le -p r o d u c t io n w a s a p p lie d to th e s e n te n t ia l fo rm

< a N X b N X a N > , i .e . w h e n th e e x t e n d e d c o n s is t e n t r e p la c e m e n ts 'I'j a n d w e r e u sed

fo r w h ic h S P j(N) = n N and Ф '2 (Ы) = N , th e n w e c o u ld ta k e a n o t h e r pa ir o f e x te n d e d

c o n s is te n t r e p la c e m e n ts T'' j , 'L 'p d e f in e d b y th e e q u a t io n s Ф'п (N) = n n N . B u t th is

pair d e p e n d s o n t h e p a ir \P 'j, \P'2 a s th e r e is an e x te n d e d c o n s is t e n t r e p la c e m e n t fo r w h ic h

'L '(N) = nN a n d so

'Р'(лк 1 (v)) = 'F ’i 'L 'j ia N)) = 'F '(a n N) = a n n N (a N)

an d

= ^ ' (^ ' 2 (a n N)) = 'L '(a n N)a n n N = Ф 12 (a n N)

2.3. Equivalency of two definitions of the derivation by the W-grammar

Theorem 1. T h e la n g u a g e s g e n e r a te d b y W G a n d W G ’ are th e s a m e , a n d th e h y p e r r u le s , fr o m

w h ic h th e p r o d u c t io n s o f th e la n g u a g e a n d m e ta d e r iv e d h y p e r r u le -p r o d u c t io n s are d e r iv e d an d

a p p lie d in th e d e r iv a t io n s o f a w o r d o f t h e la n g u a g e , are th e sa m e.

Proof: B y o u r a s s u m p t io n , a m e t a n o t io n w il l b e c o n ta in e d in th e s e n t e n t ia l fo r m at lea st

t w ic e w ith th e s a m e su b sc r ip t , i f f it w a s c o n ta in e d a t lea st tw ic e w it h t h e sa m e su b sc r ip t b y

th e r igh t h a n d s id e o f a h y p e r r u le -p r o d u c t io n , a p p lie d in so m e s te p o f t h e d e r iv a tio n ; o r it w a s

c o n ta in e d in a m e ta s tr in g , w h ic h r e p la c e d a m e t a n o t io n (c o n ta in e d a t le a s t tw ic e b y th e

s e n te n t ia l fo r m w i t h th e sam e s u b s c r ip t) , w h e n an e x te n d e d c o n s is t e n t r e p la c e m e n t w a s a p p lie d

according to the modified derivation by W-grammar, because only those metanotions have to
be replaced by the same metastring, which were contained in the right hand side of some
applied hyperrule-production and which were equal and had the same subscript, i.e. which
are replaced by the same metastring to the original definition of W-grammar.

On the other hand, if some metanotion was contained at least twice in the right hand
side of a hyperrule of WG, then it will be contained in the sentential form at least twice
with the same subscript, and metanotions contained in the string which replaced the metanotion,
will have the same subscript standing in the same place of the string, and so they have to
be replaced by the same metastrings.

The modified definition of the derivation by the W-grammar is more general, as each
derivation according to the original definition, is a derivation according to the modified
definition of the derivation with the addition of subscripts.

L v c Lv ç L fo r s o m e su b sc r ip t i d .
л. Л. X j

T h e rev erse a s s e r t io n , i .e . e a c h d e r iv a t io n o f a te r m in a l s tr in g o f t h e la n g u a g e a c c o r d in g

to th e m o d if ie d d e r iv a t io n , b e in g in c o r r e s p o n d e n c e w ith th e d e r iv a t io n o f th e sa m e te r m in a l

str in g in t h e o r ig in a l s e n se , is p r o v e d b y in d u c t io n o n th e s te p s o f d e r iv a t io n . T h e f ir s t s te p is

tr iv ia l, a s e a c h h y p e r r u le fo r th e s ta r t in g s y m b o l o f th e la n g u a g e is in c o r r e s p o n d e n c e w ith

a p r o d u c t io n d er iv ed fr o m it.

A s s u m e th a t th is is tr u e u n t i l t h e t - th s te p , a fte r w h ic h w e h a v e th e s e n te n t ia l fo r m 77.

A n y s tr in g d er iv ed fr o m 17 b y c o n s is t e n t r e p la c e m e n t , ca n b e d e r iv e d fr o m th e sta r tin g s y m b o l ,

a c c o r d in g to th e o r ig in a l d e f in it io n o f t h e d e r iv a tio n ; an d a n y d e r iv a t io n , a c c o r d in g to th e

o r ig in a l d e f in i t io n o f th e d e r iv a t io n b y W -gram m ar is in c o r r e s p o n d e n c e w ith a m o d if ie d

d e f in i t io n . W e sh a ll p r o v e th a t th is w i l l b e tr u e fo r th e str in g d ir e c t ly d e r iv e d fr o m th e s e n te n ­

tia l fo r m rj b y a p p lic a t io n o f a h y p e r r u le -p r o d u c t io n , m e ta d e r iv e d fr o m th e g iv e n h y p e r r u le

< w > -+ f e T ' .

A p p ly in g a h y p e r r u le -p r o d u c t io n , m e ta d e r iv e d fr o m < w > -*■ £ m e a n s th a t th e r e are

г)1,т12е(Ф' U 2) * , v e (M ’u t) * an d th e p a ir o f th e e x te n d e d c o n s is t e n t r e p la c e m e n ts

T ' j ' , Ф'2 fo r w h ic h th e fo l lo w in g e q u a t io n s are sa tis f ie d :

t? = t?1< v> 772 , * i (v) = * ' 2 (w) , f = * ' 1 (т?1) Ф '($) '1' ; (т ?2)

A s s u m e th a t s o m e str in g p o f t h e n o t io n s can b e d e r iv e d fr o m th e s e n te n t ia l fo rm

17 b y a c o n s is t e n t r e p la c e m e n t ^ ' (p = ^ ' (r j)) , w h ic h str in g c a n n o t b e d e r iv e d fr o m th e

sta r tin g s y m b o l a c c o r d in g to W G . T h e a p p lic a b il i ty o f th e h y p e r r u le -p r o d u c t io n

< 'T '2 (w) > -*• 'T'2 (£) to a s e n te n t ia l f o r m , m e a n s th a t a ll h y p e r r u le -p r o d u c t io n s m e ta d e r iv e d

fr o m < * ' 2 (w) > -*• Ф2(0 are a lso a p p lic a b le to 77; i .e . h y p e r r u le -p r o d u c t io n

C 'T 'f 'I 'jC w)) -*• Ф '(Ф '2 (£)) is a p p lic a b le , t o o .

142

A sentential form containing only notions, is obtained by the sequential application of the
extended consistent replacements Ф', . This sentential form ц can be derived from the
starting symbol, according to WG, by the assumption of induction. For that string p, let us
apply production <^'('T'2(w))> -*■ 'F'O^ (£))> and we Set p . It contradicts our last assumption,
that there is a sentential form of modified derivation, which is not a sentential form according
to the original definition.

3. Extended Recursive Descent and Its Use

Let us describe the extension of the well-known parsing method called recursive descent
and demonstrate its work on the example grammar W G j introduced in Section 2.1.

In Section 3.2. the conditions of well-formed W-grammars will be described. Finally
we modify W-grammar L3, describing the language ASPLE, given in [4].

3.1. Extensions of recursive descent

Consider a C F grammar G, productions of which are given in the B N F form.
A parser for G, produced by the method of recursive descent, is a program made up of

a family of procedures, calling each other recursively; the program itself is one of these pro­
cedures. Each procedure attempts to find an occurrence of a particular syntactic type in the
input, a substring derived from a nonterminal to which the procedure corresponds. The
called procedure returns with the value ’’true” or ’’false”, depending on whether it has
been successful or not.

In the method of extended recursive descent the hypernotions defined by hyperrules having
BNF-like form, are made up (as in the case of C F grammars) of procedures, calling each
other recursively. They have parameters which actually are expressions of so-called grammar-type
variables and constants.

A grammar-type constant is such a constant which corresponds to a metaterminal of the
W-grammar (in a one-to-one correspondence).

Grammar-type variables are variables the set of values of which is defined by the
metanotions of the W-grammar. W e say a variable is related to a metanotion A
(the type of the variable is the grammar-type A), iff the set of values of the variable is a
set of expressions of grammar-type variables and constants, whose related strings (the sym­
bols of which correspond or relate to the operands of expressions in order of their appear­
ance) can be derived, by applying metarules, from A.

A n expression is called a grammatical expression if its operands are grammar-type variables
and constants joined to the operation concatenation. The formal and actual parameters of pro­
cedures are grammatical expressions. T w o grammatical expressions are transformable into a c o m m o n
expression, iff there are such assignations of variables of expressions, after the execution of

143

which they turn into identical expressions.

Param eter passing is allowed, iff actual and formal parameters which are grammatical
expressions, can be transformed into a c o m m o n expression. Parameter passing means this
transformation i.e. execution of assignations resulting in identical expressions.

In the case of recursive descent, the corresponding between nonterminals and procedures
is one-to-one. In our case, however, a hypernotion corresponds to every procedure which
can be called with the actual parameter (being a grammatical expression), related to the
hypernotion. To call a procedure in the extended recursive descent, means to call all procedures
and check the parameter passes. It is sufficient to call only those procedures, the formal
paraméteres of which are transformable with the actual grammatical expression into a c o m m o n
expression.

Consider the analyser constructed by W G j in the above described way:

7 . : < s > -► <aN. X b N . X a N . > PI: declare N. ;x i i iN
form the tree of expression aNj an d

call procedures P2, P4 recursively until
the first true result an d i f the result of
call is fa lse (none of them was true) then

exit;

form the tree of bN. a n d i f n o t
‘n(P3 o r P5) then exit;

form the tree aN. a n d i f n o t (P2 o rSiP4) then exit;

iN = iN + 1 and return with result tru e ;
exit: return with the value false.

7 2 : < a n N 2> -* a < a N 2> P2: declare N.^ ;

make the tree of the formal parameter-
- expression anN.

‘n

an d pass grammar-type parameter
(call ANAL);
i f the next character s. f a then exit
else j = j + 1; form the tree aN. an d

‘n
i f n o t (P2 or P4) then exit;
iN = iN + 1 and return with true;

exit: return with false.

144

73 : < b n N 3> -*■ |3<bN3> P3: declare N } ;

form bnN. and i f n o t A N A L then exit;
*N

i f Sj Ф ß then exit else j = j + 1;

i f n o t (P3 or P5) bN. then exit;
*N

iN = iN + 1 and return with true',

exit: return with false ,

7 4 : < a > -► X P4: i f n o t ANAL(a) then exit;
return with true;

exit: return with false.

75 :< b> -> X P5: i f ANAL(b) then return with true

else return with false.

Consider, ho w the word aßa generated by W G 3 can be parsed by this analyser. Mark
the current character of aßa by dot:, aßa . The first called procedure is PI, corresponding
to 7 j, defining the starting symbol of W G j

(1 - 1 where the first number is the level of the procedure calls; the second number
separated from the first one by a hyphen, is the sequence of subscripts n of Pn of the
called procedures)
Call PI with the input string .aßa,

1. The first step is the declaration of the grammar-type variable Nj (the subscript marks
the place, where the metanotion appears in the derivation) related to metanotion N.

2. Next, call procedures recursively with the actual parameter-expression — hypernotion
aNj (grammar-type variables and constants will be marked by the same letter as the
metasymbols related to them). It is sufficient to call only those ones applicable in principle
(when we speak in the following of applicable hyperrules or procedures, related to the same
hyperrules, they are to be understood as hyperrules applicable in principle, too).

P2, P4.(2 — 12) Call P2(aN3) with aßa.

1. In the procedure which is the implementation of hyperrule y 2, the variable to be
declared is N 2.

2. The formal parameter of procedure P2 is expression anN2. The assignation routine
named A N A L called after the declaration of N 2, with parameters a N 3 and anN2 will
find that

— metaterminals ’a’ are equal;

-string-expression n N 2 can be derived from metanotion N 3;

— parameter passing is completed; the value of variable N 1 after assignation is shown
in Fig. 1(a).

3. The terminal of the language a is compared with the current character of the input
string. As they are equal a is read.

4. The next expression is aN2 and applicable procedures are
P2 and P4. (3-122) call P2 with а Да.

1. Declare N 3 (The used metaproduction is N 2 -*• N 3 apphed to change subscription).

2. Call A N A L with a N 2 and aN3 which will assign value nNj to N 2 . The value
Nj is shown in Fig. 1(b).

3. Compare a and current symbol ß. They are not equal and as there is no next
alternative, exit from the procedure; unmake assignation nNj to N 2 and return with value
’’false”.

The next procedure to be tried is:

P4. (3 - 124) Call P4 with a.ßa.

1. Nothing to declare (since the corresponding hyperrule does not contain metanotions).

2. Call A N A L (aN2, a) which will assign value X to N 2.

3. Return with the value ’’true” from P4 -

As in P2 the call with expression < a N 2> was the last one, P2 will return with the
value ’’true”.

The variable NjWill have value n, the tree structure of which is demonstrated in Fig. 1 .(C).

146

The next hypernotion of 7 3 is < b N 3>, the implementation of which is expression
<bNj>, in which the operand N 3 obtained value n and so the actual parameter is <bn>.
Applicable hyperrules are:

7 3, 7 S . 2-1243 Call 7 3 with a.ßa— I .

1. Declare N..

2. Call A N A L (bn, bnN4), which will assign value X to N 4 .

3. Compare ß with the ctirrent character of the input string; as they are equal, the
current character must be skipped.

4. The value of expression < b N 4> is < b > and applicable hyperrules are:

7 3, 7 3 . 2 - 12433 Call7 3 with a.ßa — I- .

1. Declare N s .

2. Call A N A L (b, bnN5).

— the first metaterminal symbols are equal

- the end of the expression and the metaterminal n are not equal and there is no
assignation making them equal. It returns with the value ’’false”.

Procedure 7 3 cannot be called with the actual parameter .

The next applicable hyperrule is:

7 j. (3-12435) Call 7 5 with aß.a 4.

1. Nothing to declare.

2. Call A N A L (b,b).

3. It returns with the value ’’true”.

The next expression of P 3 is expression < a N x> which has actually the value <an>.
The parse of the string (namely a) derived from notion <an> is similar to the parse of ß
from <bn>.

The parsing ends: when the end symbol — I is reached.

Algorithm: A n algorithm, which can be used in A N A L .

Input: the expressions v and w, the actual items of which are marked with point
symbols, v_ = . v — I and w = . w — I .

method: Step 1. Skip equal metaterminals. There are metastrings >

147

vi ’ v2> w i ’ w 2 e^ ' u r)* ar>d C6T’ f°r which Yj= Vj. cv2 — I and = Wj . cw2 — I
where 1 < i < I v I + 1 and 1 < j < Iwl + 1. Skip metaterminal c in both strings
Vj, Vf., the result strings are vj+1 = VjC . v2 H and Wj+1 = Wj c . w 2 4 .

Step 2. Metaderivation. There are Vj, v2, v3 , w i, w 2 e (M' и T)*, BeM'for
which ^ = Vj . v2 v3 — I, Wj = Wj . B w 2 — I and В ^>-v2, then jf. + |y | = vx v2 * v3 — *
and Wj+1 = W j B . w 2 — 1 , assign the value v2 to B, and save the reference to the assigna
tion.

Step 3. Metaderivation. There are v3 ,v2 ,Wj ,w2 ,w3e(Mur) * A e M ', for
which Wj = Vj-Av2 -I w. = Wj-w2w3 -) and A w 2, then v i4=v1A-v2 -| and
~j*|w,| = wi w2'w 3 — assißn the value w2 to A and save the reference to the assigna­
tion.

Step 4. Stop with value ’’true”, when vy+1 = v . 4 and w w+1 = w . — I

Step 5. Stop with value ’’false”.

3.2. Well-formed (considering algorithm ANAL) W-grammar

The problem of finding a hyperrule from which such a production of the language can be
derived which is applicable to a notion derived from a hypernotion, is undecidable in general,
as it is equivalent to the problem of finding the intersection of languages generated by two
context-free grammars, which is in turn undecidable. W e will deal only with cases where this
problem is decidable, because in the definitions used in practice this problem must be
decidable.

W e are now going to study three groups of intuitively necessary conditions on
W-grammars which must be satisfied so that the parser made by W-grammar should work
and stop with the value ’’true” only for input strings derived by the W-grammar.
The proof of the conditions, as stated in the introduction will be detailed in a forthcoming paper.

Group 1. Restrictions if the infinite loops.

Definition 10. A hypernotion < v > is called n times cyclic, iff there is a string
f/fe(2 и Ф')*/, in the left derivation (from <v>) of which n hyperrule-rules derived from
some given hyperrule < w > ->• £еГ ' were applied to the left symbol-hypernotion of the derived
strings; there are ^ ,..., rjn , Mj , • • •, Mn, and Uj ,. .. , un for which

g g g g — g g g -
< V > =** < U j > T ? j =* MjT?! = * * < U 2 > T? 2 =* M2 ^ 2 ***• • ~ * < U n >T?n % = ?

and the applied hyperrule-rules were derived from the given hyperrule < w > -*■ £ (i.e. there
are Ф'и , Ф'12, for which Ф'.^и.) = ^'i2(w), = Ф ;2(£) rjj = ^(т?;). 1 < i< n).

148

Hypernotion <v> is not n + 1 times cyclic.

Condition 1. For every string there is a number к which is the maximum value of the
degree of cycled hypornotions in the left derivation of these strings.

Group 2. The algorithm ANAL will find the necessary assignations, if every direct
left derivation of any ? from any r? satisfies the following conditions 2 — 6.

Recall the definition of the direct left derivation ? from rj:

1. There are ^ e S f r } e(2 U Ф ') * and ve(M'U r) * for which rj = t?j < v> t?2

2. There are , Ф2 and <w> -*• £еГ ' for which 'Lj (v) = ^ w)

3. f = í f'1(i71)Tf2(^)T,'1(rj2). All conditions will relate to this apphcation.

Condition 2. There is a metastring ue(M 'U r)* , for which L ' L = L
vn w u

Condition 3. There is only one independent pair T 'j , Ф'2 for the apphcation of a
hyper-production derived from < w > -* £.

Condition 4. There is only one grouping v and w: v = Xj . . . Xn, w = Yj . . . Yn

(Xj, Y.e(M1 и т) for 1 < i <n), for which

1. if XjCr and YjCT (1 < i< n), then X; = Y., or

2. X jeiM 'U r)*, YjtM' and then ^ Y .) = Xj (or ^ 2 (Y.) = ^ jfX .) but then T'j for
all metanotions from substring X; changes only the subscripts).

3. XjeM', YjeCM'- U т)*, and then ^ (X .) = ¥ . (or = Ф 2(Y.) but then Ф2
changes only subscripts for all metanotions drom Y.).

Condition 5. There is no such subscript i(l < i < n), for which, if X; = T^fY.)
(or 'I'jiXj) = Yj) there are Vj, v2e(M' и т)* and Ф', for which Xj+1 = VjV2(or

Yi+l = Vj v2) and X. Vj = Ф ' (Yj) (or Ф '(X.) = Y.Vj).

Condition 6. There is no i(l< i < n + 1), for which ^ (X j) = Y; and XeLx ,

XeLy at the same time.

Group 3. The conditions which must be satisfied when the no-backup method works.
Let us define the set:

WG

vA,f = (u : <v> = £
2 £ £
=> £ • • =»

0 WG 1 WG ‘ WG
(...('T ' (A))...) = u, AeM ', lui t 0 }

>l l l A

Condition 7. The set L contains only one item for any derivation, i.e.
WG

v,A,f

1

Let us define the sets

FIRSTw g (v) = {aeS : <v> af, £е(Ф' и S)*}

FOLLOWwg(v) = {aeZ :< s> rj <v>af,T/,fe(<ï>' U S ')*}

Let the hyperrules of W-grammar have one of the following forms (see [5] for the idea
how it can be done):

1. <v> -*■ Л « V 1 <u>

2. <v> - ЛsV Л c V

3. t£V Л5tV

4. <v> -* a

5. <v> - X

When the no-backup method works (described in [12]) then the following conditions
have to be satisfied:

Condition 8. For every hyperrule of type 1, FIRST(w) n FIRST(u) = 0

Condition 9. For every hyperrule of type 1, where u can produce the empty string,
FIRST(w) n FOLLOW(v) = 0

Condition 10. For every hyperrule of type 1, <w> is not such a hypernotion from
which the empty string can be derived.

3.4. Example: Modified ASPLE.

First, we recall the definition of ASPLE, as described and defined by definition 3 in
[4], in which the syntax and the context-conditions were defined by W-grammar L3.

ILW 9 Iv,A ,p

150

Mctaproductions

(L3.A) ALPHA :: a; b; с; d; е; f; g; h; i; j; к; 1; m; n; o;
p; q; r; s; t; ù; v; w; x; y; z.

П-3.В)
(L3.C)
(1-3. D)
(L3.K)
0-3. F)
(L3.G)
(L3.H)
(1-3.1)
(1-3.J)
(1-3.К)
(1.3.1.)
(1-3.М)
(L3.N)

NOTION :: ALPHA; NOTION ALPHA.
EMPTY .
NOTETY :: NOTION; EMPTY.
LETTER :: letter ALPHA.
TAG :: LETTER; TAG LETTER.
DEF :: an d TAG has MODE.
DEFS :: DEF; DEFS DEF.
DEFSETY :: DEFS; EMPTY.
TABLE :: DEFS.
MODE REFSETY INTBOOL.
DELIMITER :: go on; comma; plus; times.
REFS :: ref; REFS ref.
REFSETY REFS; EMPTY.

(L3.0)
(L3.P)

INTBOOL :: int; bool.
ALPHABET :: abcdefghijklmnopqrstuvwxyz.

Ilypcr-rules

(L3.I)
(L3.2)
(1.3.3)

true : EMPTY.
w here NOTETY is NOTETY : true.
w here NOTETY1 NOTION NOTETY2 contains NOTION :

true.
(L3.4) w here NOTETY1 ALPHA1 differs from NOTETY2 ALPHA2 :

(L3.5)

w here NOTETY1 differs from NOTETY2;
w h ere ALPHA1 p reced es ALPHA2 in ALPHABET;
w h ere ALPHA2 p reced es ALPHA1 in ALPHABET,

w here ALPHA1 precedes ALPHA2 in NOTETY1 ALPHA1
NOTETY2 ALPHA2 NOTETY 3 : true.

(1-3.6)
(1-3.7)
(1.3.8)

w here NOTION differs from EMPTY : true,
w here EMPTY differs from NOTION ; true.
NOTION s e q u e n c e :

NOTION;
NOTION sequence , NOTION.

(L3.9) NOTION list separa ted by DELIMITER :
NOTION;
NOTION list s ep a ra ted by DELIMITER,

DELIMITER symbol, NOTION.
(L3.I0) NOTION pack :

left p aren symbol,
NOTION,
right paren symbol.

(1-3.11) program :
begin symbol,
d ec la re of TABLE,
TABLE statement train,
en d symbol,
TABLE restriction.

(L3.I2) dec la re of DEFS DEFSETY :
MODE declarer,

ref MODE definitions of DEFS,
go on symbol, d ec la re of DEFSETY;

w h ere DEFSETY is EMPTY, MODE declarer,
ref MODE definitions of DEFS, go on symbol.

(L3.13)
(L3.I4)
(L3.I5)

(L3.I6)

(L3.17)

(L3.18)

(L3.I9)

(L3.20)

(L3.2I)

(L3.22)

(L3.23)

(L3.24)

(L3.25)

(L3.26)

(L3.27)

(L3.28)

(L3.29)

ref MODE declarer : ref symbol, MODE declarer.
INTBOOL declarer : INTBOOL symbol.
MODE definitions of and TAG has MODE DEFSETY :

TAG identifier, comma symbol,
MODE definitions of DEFSETY;

where DEFSETY is EMPTY,
TAG identifier.

DEFSETY and TAG has MODE restriction:
where TAG is not in DEFSETY,

DEFSETY restriction;
where DEFSETY is EMPTY,

where TAG1 is not in and TAG2 has MODE DEFSETY
where TAG1 differs from TAG2,

where TAG1 is not in DEFSETY;
where DEFSETY is EMPTY,

where TAG1 differs from TAG2.
TABLE statement train :

TABLE statement list separated by go on.
TABLE statement :

TABLE assignment;
TABLE conditional;
TABLE loop;
TABLE transput.

TABLE assignment :
TABLE ref MODE identifier,
becomes symbol,
TABLE MODE value.
TABLE conditional :

if symbol,
TABLE bool value,
then symbol,
TABLE statement train,
TABLE elsend.

TABLE elsend :
fi symbol;
else symbol,
TABLE statement train,
fi symbol.

TABLE loop :
while symbol,
TABLE bool value,
do symbol,
TABLE statement train,
od symbol.

TABLE transput:
in symbol,

strong TABLE ref INTBOOL identifier;
out symbol,

TABLE INTBOOL value.
TABLE ref MODE value :

strong TABLE ref MODE identifier.
TABLE INTBOOL value :

TABLE INTBOOL factor list separated by plus.
TABLE INTBOOL factor :

TABLE INTBOOL primary list separated by times
TABLE INTBOOL primary :

INTBOOL denotation;
strong TABLE INTBOOL identifier;
TABLE INTBOOL value pack;
where INTBOOL is bool ,
TABLE compare pack.

TABLE compare :
TABLE int value,
relation,
TABLE int value.

152

(L3.30)
(L3.3I)
(L3.32)
(L3.33)

(L3.34)

(1.3.35)

(L3.36)
(L3.37)

relation : equals symbol; not equals symbol,
int denotation : digit sequence,
bool denotation : true symbol; false symbol,
digit : zero symbol; one symbol; two symbol;

three symbol; four symbol; five symbol;
six symbol; seven symbol; eight symbol;
nine symbol.

strong TABLE MODE identifier :
strong TABLE ref MODE identifier;
TABLE MODE identifier.

TABLE MODE identifier :
TAG identifier,
where TABLE contains and TAG has MODE.

LETTER TAG identifier : LETTER symbol, TAG identifier.
LETTER identifier : LETTER symbol.

153

We wül not deal with the modification of metarules in detail, because it depends on the
parser used for the metasystem, but it will differ from the usual parsers made for CF
grammars, in that it recognizes defining items for grammar-type variables as well. We will
give only metarules that cause the recognition of certain conbinations of grammar-type
variables.

The hyperrule LM.l is the unchanged hyperrule L3.1.

The use of the hyperrule L3.2 does not satisfy Condition 5, the metaterminal i is
contained in the language derived from NOTION (iet.N 0 T,0 N), the derivation (Step 2) will
not stop when the current character is i. This problem can be avoided by separating
metaterminal i from NOTION by brackets. The modified hyperrule is:

LM.2 where (NOTION) is (NOTION): true. , and
the hyperrules 12, 16, 17, and 28 must be modified accordingly.

The use of L3.3 does not satisfy the same Condition (5), but its modification will
differ from the previous one, because the end of the metastring derived from NOTETY1
depends on the value of the NOTION dynamically. In the modified grammar the hyperrule
L3.3 is replaced by the following two hyperrules:

LM.3.1 where (NOTION) is contained in NOTION NOTETY: true.

LM.3.1 where (NOTION) is contained in ALPHA NOTION 1 : where (NOTION)
is contained in NOTION 1., and the hyperrules containing hypernotions
which can be derived from the hypernotion <where NOTION contains
NOTION 1> are also modified accordingly.

The hyperrule L3.4 must be modified for the same reason as L3.2 and L3.3, in the
following way:

LM.4 where (ALPHA 1 NOTETY 1) differs from ALPHA2 NOTETY2:
where (NOTETY 1) differs from NOTETY2;
where ALPHA 1 precedes ALPHA2 in ALPHABET;
where ALPHA2 precedes ALPHA 1 in ALPHABET.

LM.5

LM.6

LM. 7

LM.8

LM.9

LM.10

LM.15

LM.16

LM.17

LM.18

LM.26

LM.27

LM.28

LM.35

where ALPHA 1 precedes ALPHA2 in ALPHA NOTION:
where (ALPHA 1) is (ALPHA), where (ALPHA2) is contained
in NOTION:
where ALPHAI precedes ALPHA2 in NOTION.

where NOTION differs from EMPTY : true.

where EMPTY differs from NOTION: true.

NOTION sequence: NOTION, NOTION sequence.

NOTION list separated by DELIMITER: NOTION;
NOTION, DELIMITER symbol, NOTION list separated by DELIMITER.

packed NOTION: left paren symbol, NOTION, right paren symbol.
The hyperrules LM.11-LM.14 are the unchanged hyperrules L3.ll-L3.14,
but the metaproduction:

DEFS -* DEFS DEFSETY

must be added to Condition 2.

MODE definitions of and TAG has MODE DEFSETY : TAG identifier,
comma symbol, MODE definitions of DEFSETY;
where DEFSETY is EMPTY, TAG identifier.

and TAG has MODE DEFSETY restriction: where DEFSETY is
EMPTY; where TAG is not in DEFSETY, DEFSETY, restriction.

where TAGI is not in TAG2 has MODE DEFSETY:
where TAGI differs from TAG2, where TAGI is not in DEFSETY;
where DEFSETY is EMPTY, where TAGI differs from TAG2.

TABLE statement train: TABLE statement list separated by go on.
The hyperrules LM.19-LM.25 and the hyperrules L3.19-L3.25 are the
same.

TABLE INTBOOL value: TABLE INTBOOL factor list separated by plus.

TABLE INTBOOL factor: TABLE INTBOOL primary list separated by times.

TABLE INTBOOL primary: INTBOOL denotation; strong TABLE INTBOOL
identifier; packed TABLE INTBOOL is bool, packed TABLE compare.

The hyperrules L3.29-L3.34 need not be modified.

TABLE MODE identifier: TAG identifier, where and TAG has MODE are
contained in TABLE.

155

The hyperrules L3.36 and L3.37 can go to the new set without changes, and the
metaproductions

TAG - LETTER TAG

must be added.

The modification of grammar L3 is not significant from the view-point of definition, but
it is very important for parsing.

R e f e r e n c e s

[1] Baker,J.L.: Grammars with Structured Vocabulary: A Model for the ALGOL 68
Definition. Information and Control, 20 (1972), 351-395.

[2] Brattchikov, I.I.: Syntax of Programming Languages. In Russian. Nauka, 1975.

[3] Cejtin, G.S.: ALGOL 68. Methods of Implementation. In Russian. State University
Leningrad (LGU), 1976.

[4] Cleveland, J.C., Uzgalis, R.C.: Grammar for Programming Languages. Elsevier
North-Holland. 1977.

[5] Deussen, P.A.: Decidability Criterion for van Wijngaarden Grammars. Acta Informatica 5
(1975), 353-375.

[6] Deussen, P.A., Mehlhorn, K.: Van Wijngaarden Grammars and Space Complexity
Class EXPACE. Acta Informatica 8 (1978), 193-199.

[7] Farkas, E.: Comparison of some Methods for the Definition of Static Semantics.
Computational Linguistics and Computer Languages XIII. (1970), 7-18.

[8] Gerevich, L.: A Parser for van Wijngaarden Grammars. In Russian. Proceedings of
Computer and Automation Institute, Hungarian Academy of Sciences
MTA SzTAKI, Közlemények 21/1978, 7-20.

[9] Gerevich, L.: An Analysis-Oriented-Definition of van Wijgaarden Grammars. In
Hungarian, Papers of Research Institute for Applied Computer Sciences, SzTAKI
Tanulmányok 4/1979, 31-39.

[10] Greibach, S.A.: Some Restrictions on W-Grammars.
ACM Proceedings of the 6th Symposium on the Theory of Computing, Seattle (1974).

[11] Hesse, W.: A Correspondence between W-Grammars and Formal Systems of Logic
and its Application to Formal Language Description.
Computational Linguistics and Computer Languages XIII (1979), 19-30.

156

[12] Knuth, D.E.: Top-Down Syntax Analysis. Acta Informatica, 1, (1971), 79-110.

[13] Koster, C.H.A.: Affix grammars. Algol 68 Implementation, ed. J.E.L. Peck,
North-Holland (1971), 95-109.

[14] Koster, C.H.A.: Two-level grammars. Lecture notes in computer sciences 21,
Compiler Construction, Springer Verlag, Berlin (1974), 140-150.

[15] Kramer, B., Hein, W., Schmidt, H.W.: On the Implementation of van Wijngaarden
Grammars. IST-Internal Report 3/77, MBH Bonn, (1977).

[16] Kramer, B., Schmidt, W.: Locally Nondeterministic and Hybrid Syntax Analyzers
from Partition Two-Level Grammars. (1979).

[17] Marcotty, M., Ledgard, H.F., Rochman, G.V.: A Sampler of Formal Definitions.
Computing Surveys, 8, 2, 1976, 191-270.

[18] Maslov, A.N.: Indexed Grammars and van Wijngaarden Grammars. In Russian.
Problem of Information Transfer, 3/XI (1975), 81-89.

[19] McKeeman, W.M.: Compiler Construction. Lecture notes in computer sciences 21,
Compiler Construction, Springer Verlag, Berlin (1974), 1-36.

[20] Watt, D.A.: Analysis Oriented Two Level Grammars. Technical University, Berlin,
Dep. of Cybernetics Research Group, P2 (1975).

[21] Wijngaarden, A. van, (ed.): Report on the Algorithmic Language ALGOL — 68.
Offprint from Numerische Mathematik, Vol. 14, Springer-Verlag (1969), 79-218.

[22] Wijngaarden, A. van, et al. (eds.): Revised Report on the Algorithmic Language
ALGOL-68. Springer-Verlag (1976).

Received 20. June 1980

Computational Linguistics and Computer Languages Vol. XV. 1982.

REPRESENTATION AND VERIFICATION OF COMMUNICATING
SEQUENTIAL PROCESSES

Tamás Gergely

Research Institute of Applied Computer Science
Budapest, Hungary

László Ury

Hungarian Central Statistical Office
Budapest, Hungary

1. INTRODUCTION

We aim to develop a verification method for the programming
language CSP introduced by Hoare cm. We propose to build this
method on the basis of classical first order logic as to get a

, *)tool easy to handle. '
At the same time we provide Petri net representation of CSP's
texts. This representation gives operational semantics on the
one hand while, on the other hand, it makes the program execu­
tions visible.

The reader is supposed to be familiar with CSP the notations
of which are used without any explanation.

2. MAIN FEATURE OF THE PROPOSED METHOD
As it is known CSP program P is of the form

C . . . I ; : V 1, where l ■'s are the labels and p.'si m n • г c г
are the constituent processes. A process may contain both I/O
commands and I/O guards that, further on, are referred to as
I/O constructions. Execution of a process is influenced by that
of another one only through the communication prescribed by the
I/O constructions. Hence any traditional method can be used to

Having had finished this work we learned of Cousot - Cousot C2I and of
Hoare C3H, who also develop a calculus for CSP programs Ъу the use
of ideas slightly similar to ours.

158

describe the execution of a process p . between two communica-“Is
tion points. By receiving a message the execution of a process
p . depends also on the execution of the process sending the
message.

Thus it is quite natural to consider the execution of p
such that it is decomposed to parts of the following properties

(i) the last element of a part corresponds to the execution
of an I/O construction;

(ii) there is no communication within a part.

As to get this decomposition all I/O constructions and all
start and stop points of the processes of p should be named
somehow. A vector a = (а ^ , . . . , а ^) refers to such a state of
the program execution in which any process p^ is going to
execute an I/O construction named by Oti (so a is called
state-vector of p) . If among these I/O constructions there are
pairs (say in p p .) referring to one another then the cor-

ъ 3
responding communication takes place between p . and p . and

Is J
then both p . and p . are executed up to the next communication

'Ь 3
point. And that new situation is described by a new-vector 8.
This fact can be written as а, (г -»■ j) h- ß. Let us see a simple
example where a process labeled by N calls an adding-routine
labeled by M:

Example. 1

P =

start stop

159

M : : N ? X ; N ? y ; Y =■ x - + y ; N ! Y 1

1 2 3
start stop

The possible transitions are:

(start, start) н- (1,1)
(1 ,1) (N м) ** (2 ,2)
(2*2) (N - M) ^ (3,3)
(3,3) (M ■> N) и- (stop, stop)

Of course, the transition (1,2) (N -*■ M) и- (2,3) seems to
be allowed, but we will prove that the program never reaches
the state-vector (1,2).
□

The proof of the partial correctness of a CSP program w.r.t.
an input condition cp and an output condition ф can be done as
follows.

(i) For any state-vector a a formula Фа should be given
to describe the properties of thé local program variables
in the state corresponding to a and for any transition
say а, (г j) -+ ß formulas 6a . ̂ should be given;

(ii) Then we have to prove that these formulas are invariant
under the possible transitions.

In more detail to any transition a, (t -> j) и- 3 well
defined parts of programs p . and p . correspond. By using
classical methods the results of the execution of these parts
can be described with the help of the formulas 0 . 0 and^ а,г,3
0 . These formulas describe the properties of the change
& * «7 3 p
of the values of program variables under the execution of the
corresponding part of processes p. and p. respectively. TheJ

160

realization of (ii) supposes the two parts below

a) It should be proved by the use of any appropriate clas­
sical method that the formulas 6 . 0 and 6 . 0
are valid.

b) If the appropriate I/O commands are г / т and j ? x* * *then we have to check: (Ф a 9 . R A 6> . * x*= ■?)a a, i, p ' oijJjP "
=> local variables of different processes are sup­
posed to be different. The asterix refers to the situa­
tion before execution.

For illustration let us see the above program p.

Ехатр£г 7 (continuation):

We prove that the program is
condition z - a + b.

Indeed let

Ф {start,start)
d

Ф(1 ,D
d

d

Ф(2,2)

Ф(3,3)
d

á Ф
{stop,stop)

d*=-■

correct w.r.t. the output

true

true

a = x

a = x A b - у л E - x + у

z - a + b

For other state vectors a le-t Фа - false. It means that
the program never reaches the state corresponding to(these
a's, and 9(2 2) M (3 3) ~ 1 “ X + y 3 the other e's are

Here V denotes the value of the variable v at the start
of the execution of the corresponding part of the program.
0 says that "nothing has happened".

Now it should be proved that the formulas and 0's are indeed
invariant assertions. For this we only check that

(Ф(2,2) A ° (2,2) ,M, (3,3)Л6) _> Ф(3 3)

Namely

(a* - х*Л 0AZ - X + уЛЬ* - у*) -+(£-х + у Л а = х Д Ъ = у)

This is obviously true. Verification of the other analogical
statement is left to the reader.
□

In order to provide transparent semantics for CSP programs
Petri nets are used. A Petri net is an oriented graph with two
types of nodes called place and transition respectively.

The construction of the net representation for a CSP program
should be carried out in two steps. First the net representation
of each constituent process should be constructed such that the
transition nodes are labeled by one of the followings:

(i) by a guard-formula
(ii) by an assignment
(iii) by a pair of process labels connected with the

sign -*■ and by a message-expression
(iv) by end signal (ES) indexed by a pair of process

labels connected with the sign

The transitions of the process p • labeled as in (iii) cor-ъ
respond to communication, namely a transition node of label
(i -*■ ,/jT) in the net corresponding to a process p. means that'Ъ

162

the process P- sends the message т to process p.. Those
labeled as in (iv) beyond those labeled as in (iii) corre­
spond to the I/O constructions occuring within a repetitive
command (signed by #). Namely ES^_. means that process p̂
will not send messages to process P n- since the loop of the mes-d
sagesending process p. has already terminated.Is

The place nodes represent at which point the execution is.
Thus the places being right before the transitions labeled
èither as in (iii) or as in (iv) represent state-vector com­
ponents. However we label only the places corresponding to start
and stop points of the execution.

According to aboves the net representation for the process
A and В in Ехатр&г 7 look as shown in Fig. 1.

The second step of the net construction of a CSP program is
the assembly of the net representation of the constituent process
i.e. constructing the resultative net which is called the bound
one. During this we should remember that a communication takes
place between two processes. Thus the construction of the bound
net should be done pairwisely by binding those transition nodes
that correspond to each other in the communicating pair of
processes under consideration. Namely» considering say the
processes p. and p- each transition of label (г-+д3т) of the
process Р,- should be bound with each transition of label
(i+j3 x) of the process p . 3 such that to each possible pair of

d

transition nodes a new transition is rendered. The label of this
new node is an assignment which corresponds to the message-
-expression, i.e. in our case it is x :=t.

Place nodes labeled by start of the constituent processes
should be replaced by a single place labeled by a vector with
start components. In a particular case when the CSP program
consists only of two processes communicating with each other
and in both processes the first command prescribes a communica­
tion then the individual start place nodes should be bound

163

м N

О start

t I N-M. ж

0

□ N—M, у

Ó
t = P 2=X*y4

Ô
3 N-м. I

Ó stop

Fig. 1.

О start

I I N-M, aô
C=X=I N-M. b

Ô
3 N—M, z

Ô stop

164

through an auxiliary transition labeled by true while elimina­
ting the start labels and taking a new place node of (start,
start) label.

The place nodes labeled by stop should be bound through
an auxiliary transition labeled by true as follows. From the
individual stop nodes the arrow goes to the new transition
from where an arrow goes to a single place node labeled by a
vector with stop components. During this construction the
stop label of the individual processes should be omitted.

In a particular case when the CSP program consists of two
processes and in both of them the last command prescribes a
communication then the individual stop nodes should be replaced
by a single place of label {stop, st o p).

All the subnets consisting of nodes not mentioned so far from
the net representation of the constituent processes should be
hanged onto the bound transition nodes without any change.

The place node right before a bound transition represent a
state-vector. However following the method of binding described
above we get a far too redundant Petri net since many of the
states cannot be reached because of the non realizability of
the corresponding state-transition. As to get a handable net
representation we introduce the following reduction rule: the
subnets beginning with the states, which cannot be reached dur­
ing the execution i.e. to which the corresponding inductive
assertion is false, should be omitted.

By using this rule for the program of Example 1 we have the
bound net shown in Fig. 2.

165
м I N

Fig. 2.

166

3, FURTHER EXAMPLES

First we give a program with two processes one of which
copies the contents of a stack in reverse order.

Example. 2

Copy =

start i stop
LA :z s:=x; ? EOF -> B!Top(x);x: = Tail(x)l ||

start 2 stop
LB :: y: EOF; *LA?z -*■ y = Push (y,z)ll

The net representation of the constituent processes A and В
is shown on Fig. 3. The bound net of the program Copy is given
on Fig. 4.

The above program is correct w.r.t. the output condition

The possible transitions are:

(i) (start , start), (a - В) и- (stop,

(ii) (start , start) , (■A + B) «• (1,1)

(iii) u , n , (A B) ** (1,1)

(iv) U , D , (A B) » (stop , 1)

(v) (stop, D , U * В) h- (stop, stop)

The invariant assertions are:

d

®(start, start)
true

ж d
Ф 0,1) x.y ■

d Ф ,
(pФ (stop,1) stop)

d X . a s Л X = EOF

167

Fig. 3.

168

Fig. U.

1 69

0 (start, start) >A ,(stop,l) = s - X Л X - EOF

0
(start, start) ,A, (1,1) S = X

0 (start, start) ,B,(1,1) y = EOF

^(start, start) ,B,(stop,l) У

Q (l,l), A, (1,1) = 8 = 8 A x = Таг l (x)

(1,1), 3, (1,1) = z = z A у - P u s h (у ,z*)

Q (l,l), A, (stop,1) ~ S = S * A X = Tail (x*)Л y = E O F A x = EOF

®(1,1), B,(stop,l) ~ z - z A у = Push(y ,z)

ô — Ç)
(stop, 1), A', (stop, stop) ~ ü (stop, 1) ,B, (stop, stop)

* * *
s = s A x = x A y = y

Now we prove that the above formulas are invariant assertions
w.r.t. the possible transitions (i) - (v).

(i) For the transition
(start, start) , (A -*■ B) ♦*- (stóp,l) we have to prove
that (s - x A x = EOF A y = EOF) -+■ (x. y = s A x = EOF)
which is trivial.

(ii) For the transition
(start, start) и- (1,1) we have to prove that
(s = x A y - EOF) => x.y - s which is immediate.

- 170-

(iii) For the transition

(1,1) , W ■> B) » (I , 1) :

о ld$ program A
* * * * *

(X . y = s)A (s - s A ж - Tail (ж))A
program В communication new$

This is also trivial,

(iv) For the transition

(2 j 1) (A -*■ B) (stop, 1) we have to prove that
old$__ A_ program A

------------------ -A----

* * * * #
(x . y - s) A (s - s А ж - Tail(x) A x - EOF) A

program В
___________A________

communicat ion
—/A_

* # # # *
z - z A y - Push (y j a) A a - Top (ж) =>

new$__________>\
> x . y = s Л x = EOF

This is trivial too.

(V) For the transition

(stopul), (A -*■ B) » (stop, stop) we have that:

* * * * #
x . у - а Д а - а Д ж - Tail(x)A x - EOF A

A у = Push (y , s)A

TV TP
А з - Top (ж) => a; . y = s А ж - FOF.

□
This is also trivial.

Our proof method is powerful enough to prove the correctnes
of programs with array processes. To show it we give a more
complex example, namely a program for printing the prime num­
bers up to 10 000. Note that here the program is a slight modi
fication of that of Hoare's (see 6.1 of HID).

Example. 3

Prim

1
start ✓ --------------- *— N

A ZPRINT:: * Zi:0...101 j SIEVE(i) ? m -*■ A(m) = true 1

1

stop

2
- Л -

B \\SIEVE(0) : : PRINT ! 2; n: = 3; * Zn<10000+SIEVE (2) / n ;
sto

1 2
_ л _

n : = n + 21'
stop

C \\SIEVE (101) : : * Z SIEVE (100) ? n -*• PRINT ! nl

D .
г

2
—

IISIEVE г: 1. . .100 : :SIEVE(i-l) ? p ; PRINT ! p; mp : =p ;

3
_ л .

*ZSIEVE i-1 ? m; *Zmp < m mp:=mp+pl;

4
Zmp > m + SIEVE (i+l) ! m::stop

All possible state-transitions - in a general form - are
given in Table 13 where to each transition a row is corre­
sponded. Recall that in the state-vector a to each process
only one component refers. The value of this component refers

Table 1

to the name number of the I/O construction to be considered.
Moreover in the formula 3>a to each element a variable symbol
is rendered.

We give only the most interesting assertions, namely:

Ф1 2 1 ... 4 1 1 ... 1 - (Vj < i) prim(j) m
i- 1 i

One can construct the proof of the correctness of program
prim without any difficulty.

REFERENCES

CID C.A.R. Hoare., Communicating Sequential Processes,
Comm. ACM, Vol. 21 (1978), pp. 666-677

C2] P. Cousot and R. Cousot., Semantic analysis of
communicating sequential processes,
Automata, Languages and Programming, Springer-
-Verlag, LNCS. vol. 85, 1980. pp. 119-133.

C3□ C.A.R. Hoare., A calculus of total correctness for
communicating processes, Technical Monograph
PRG-23, Oxford University, 1981.

Computational Linguistics and Computer Languages Vol. XV. 1982.

SYNTACTIC PATTERN RECOGNITION WITH MODIFIED FUZZY AUTOMATA

T ibor G y im ó th y and J ó z s e f D o m b i
Research Group on the Theory of Automata

Szeged, Hungary

Abstract

This paper deals with a syntactic pattern recognition system. Recognition is made by
fuzzy automata, input symbols are defined in a fuzzy way. Input symbols are generated by a
fuzzy automaton, controlled by aid of a corrective errortable.

1. Introduction

In this decade with respect to the general use of computer evaluating systems the
problem of pattern recognition became more important.

To identify and classify symbols there are two totally different procedures, one based
on statistic methods, the other the syntactic pattern recognition.

The main purpose of statistic pattern recognition is to reduce the probability of wrong
classifying to a minimum. The method can be applied on condition that every attribute is
given by a vector of the length n (n is fixed). In the recognition algorithm each component
of the vector has the same significance.

The classes to be recognized during syntactic rezognition are defined by grammars. Pattern
representation is given by a sentence-like form. Recognition is made by the parsers of the
above mentioned grammars and classification is given by the class belonging to the grammar
accepting the sentence.
Another condition of this application method is that the grammars should be selective as far as
the possible patterns are concerned.

Both procedures can be applied in certain cases well and in other cases not. E.g. the
statistic method can be used successfully for analysing EEG curves [1] whereas syntactic pattern
recognition is used for classifying chromosomes [2].
Generally, the following statement can be made.

’’When patterns are very rich in structural information and the recognition problem
requires classification and description, then syntactic approach seems necessary” [3].

Handwritten letters have not been recognized successfully, by neither of both methods.
The systems used at present are the recognition of handwritten letters based upon heuristic
processes. The trouble in recognizing these letters is that their type may change when their

structure, size or direction of certain elements is somewhat modified. We can say that the type
of letters remains unchanged by certain transformations, whereas other tarnsformations change
it in spite of the fact according to which the modification of the original pattern caused by the
two transformations is of the same degree.

I.e. the different parts of the letters are not of equal significance (see Figure 1). These
different significances can be treated efficiently by the fuzzy syntactic pattern recognition
systems.

Our purpose was to construct a system working on fuzzy data yielding fuzzy results by the
aid of classes, defined by fuzzy grammar. The fuzzy results show the pertaining magnitude of
the classes for figure recognition.

The reason why we have chosen the examination of handwritten letters was:

(i) No special knowledge is needed for evaluation of the results (as e.g. in the case of
EC G curvers).

(ii) The letters’ structure, their inner proportions, the direction of the different

elements is not unambiguously determined. (The fuzzy writing of handwritten letters
is the normal writing process, since the learning of letter-writing is nothing else than executing
fuzzy commands.)

(iii) The problem is not solved satisfactorily.

We tried to construct the system for genereal purpose, as much as possible, i.e. by changing
the fuzzy grammars, the system will be able to solve other pattern recognition problems too.

2. Formal Description of the System

In this part we give the formal description of system. The sets and mappings mentioned
here will be fully expounded in Chapter 3. It is necessary to note that we do not give any
precise mathematical description, we formalize only for the sake of uniform treatment.

Let us take a pattern (see e.g. Figure 2) denote it by M. and divide it into pieces. (E.g. in
a way that there should be no intersection of the resultant parts, see: Figure 3) Let us call the
resultant parts: segments.

The set of the segments will be denoted by

177

(1) A = f a j , . ,

Let

(2) P = Í P j . . . ••PkJ
be the set of those attributes which characterize the segments(see e.g. Figure 4).

Let

о) s= (v;>k

where V* denotes the non-negative real numbers.
Let us introduce a mapping 5

5 : A -► S
(4)

5(a) = <s. , . . . , s. >1 'l *k

where s; shows to what extent a. has the p -th attribute.1 1 r m

We denote by

the set of structural symbols, i.e. the set of those elements with the use of which the struc­
tural connections between the segments can be described.

Let

(6) T = (У +0У

and 7 a correspondence of D and T.

(7) 7 : D - T

where r. shows for <r. , . . . , r. >eT with what certainty the sturctural symbol d
can be applied. (1 < m < t) у is a correspondence, because the same structural

symbol can be applied at different places with different certainty.

178

Let

В = A и D and S’ = S X T, and a correspondence: of В and S’,
that is

V : В -*> S’

Where

*(a) = <5(a),

and

<?(a) = <0,0, . .
-̂-"V

к

Let B' = i (̂B) and let F(B') denote the free monoid generated by В'. A C element of
this yields the fuzzy description of pattern M. That is, C consists of ordered
<C. , . . . , C > tuples, in which if 1 < m < к then C. shows to what extent the

*l ‘k+t 1m
p -th attribute is realized; if к < m < к + t then C. shows the applicability of them
(m — k)-th structural symbol.

We define the A = {E,H,Y,EQ,со,/3} fuzzy automation where E is the set of states,
H is the set of input symbols, Y is the set of output symbols, EQ the initial state, со the
transition function, ß the output function.

Let

where

0,0, . . . , 0> if aeA

, 0, 7(a)>
J

if aeD

Ej is of the following form:

(9)

'k+t

f.
‘k+t

This means, that the elements of E are matrices of dimension 2x(k + t), where e. is a
‘m

weight showing the applicability of the m-th input in the i-th state (e. > 0), and f.
‘m ‘m

denotes the new state after the arrival of the m-th input symbol.

179

(О < f. < 1 , Д < m < к + t)'m
Let

H = (V q)k + t

If precision and magnitude of real numbers are limited, then H is finite. The transition
function со maps ExH into E.

Let us suppose that automaton A is in state E; (9) and the input sygnal
H. = <h. , . . . , h; > arrives.

J Ji Jk+t

Let

m ax
(10) b = (min(e , h.))

m = 1, . . . , (k+t) 1m

and let m' be the value of m at this maximum. If the value of b can be obtained to be
more than one m, then let us choose the first m in succession for m'.

Now the transition function со can be defined as:

со(Ер H) = f. .
m

Let Y = and F(Y) is the free monoid, generated by Y. The output function
ß : ExH -*■ Y can be defined as

ÄE,, H.) = b

Let us extend the domain of со and ß to ExF(H), where F(H) is the free monoid,
generated by H.
Let GeF(H) be an optional word and IeF(Y) the image of G at the mapping, induced
by automaton A .

In this case we can say that automaton A recognizes the word G with a certainty
i//(I), where

Ф : F(Y) -*• [0,1].

The function ф can be defined as follows:

Let Y. = < У;1> • • • , y; >eF(Y) optional, then

m in

. . (У;)•
m = Дj ш

(̂Y.) =

1 80

3. Description of the System

The system gets a matrix of dimension 20 x 20 as an input. Let us denote it by M.
1 means a ’dark’ cell, 0 the empty one. We work with ’noisy’ figures (see Figure 2), so
a preliminary filtering is required. As a first step we make chains from the elements of the
pattern. With few modification we make it in a way suggested by Freeman [5]. We differ­
entiate eight directions (see Figure 5) and we always start in the direction being nearest to
the previous one. In Figure 6/a we can see how Figure 2 looks after making a chain. The
identical elements belong to one chain, the coding of the chains is shown in Figure 6/b.
according to their direction. Now we make one-Jayer chains, i.e. we obliterate the part-ch ains

which increase the thickness of only one chain. We make chains from the residual elements
again (see Figure 6/c).

We note that we reduce the neighbouring nodes into one, in order to make our system
more effective.

The nodes yield a natural segmentation of chains. These segments will be the elements
of set A. It should be noted here,that set A can be extended, because if a segment of. A
cannot be characterized properly, this segment will be divided into two parts at its greatest
fracture, there we take there as members of A instead of the original one. It is easy to find
the gratest fracture by the aid of the direction-coded form of the chains.

Set P(2) consists of 10 elements in our system. The description of the elements of P
is contained in Figure 4. The 5 mapping is realized by a fuzzy automaton, controlled by a
corrective error-table. Error-table and description of the ’’lower curve” automaton is shown
in Figure 7. The input symbols of the automaton are the direction-coded forms of the segments.

If the symbol arriving at the automation is able to tip i t over, we do not count an error.
If the automaton is in state Sj and the arriving Cj(Cj = 1, . . . ,9) symbol switches it
o ve r in to an error s ta te , we have to carry out the following:

Let ET denote the error table, and Cj ^, . . . , Cj the input symbols by whose help
we can step further from state Sj. Let us form the expression

min

s= t= ,,k ET<cj'V

Let t’ denote the value of t where this minimum is given. In this case the automaton
is tipped over from state Sj according to symbol Cj , and the product s • fj is added to
the error of the deduction, where fj is the fuzzy weight ordered to Sj. (We note that
to pertains to one fj).

181

Let be the segments which we want to characterize, and let em denote the deduc­
tion error of the m-th automaton, at the analysis of a^.

Applying mapping 5 to aq, we get:

5(а„) <Sj , . . . , S:I к
where

s; = g(em/l(aa)) (1 < m < k).
m 4

l(aa) denotes the length of the segment а , g(x) is a properly chosen function. To increase
effectiveness of our system we introduce a cu ttin g p o in t. If the deduction error in the m-th
automaton is greater than rj, automaton finishes parsing and Sj = 0. Figure 8 we can see
a segment, its direction-coding and the images of the segments at the mapping 5.

The structural description of the pattern is given by a PDL-like expression [6].
The set D(5) consists of structural symbols necessary for the PDL expression

D = £+, X, 5, (,)}

Note that we do not use operation " — " suggested by Shaw [6].

In our system uncertainty of structural symbols is not allowed, i.e. if

0 1 < j,m < t
j Ф m

T; > 0,m

for every i in T(6)

Thus (7) is a very simple mapping in our case and might become much more
sophisticated in other systems.

In Figure 9 the PDL-like formulation of Figure 3. can be seen a form corresponding to
C in our formal description.

This form yields the input of fuzzy recognizing automata.

4. Description of the Recognizing Automaton

Up to now we have examined the recognizing system in general. Further on we construct
special automata which recognize block letters. In order to achieve more effective generalized
performance further comparison is made with the formal description.

182

For the choice of the letter-types we have used the patterns of the papaer written by S. H. LU
and K.S. FU [7]“ and have applied the recognizing algorithm to their letter, too. We have
examined nine types of letters altogether.
These symbols cannot be separated easily. If their structure, size and direction of their elements
are somewhat changed their type may change, too. (see Figure 10).
Since the type of the letters does not change when the letters are lengthened or shortened
horizontally or vertically, it seemed to be practical to supplement the fuzzy input of our automaton
with those horizontal and vertical proportions which compare the total size of the letters with the
size of the letter-segments.
Further on the type of letters will be invariable to turning by a small angle, since the writing
patterns show that the slanting way of writing is rather common. We have modified the automatons
performance so that it recognizes slanting letters as well as straight ones.

Now, let us describe the automaton recognizing a given letter and the way how it works.
Let us see the possible forms of a letter (see Figure 11) and the PDL-like expressions
belonging to them.

1.) ajx(C|xa2 + â) + a4
2 .) ajx(c2xa2 + a^)xa4 + d j

3.) ajx(cjxa2xd2+a3)xa4 + dj

4.) ajx(cjxa2xd2 + аз)ха4 + dj

The possible values of segment types are:

aj = \ I /
Cj = \ — /

dj = \ - / G

where G denotes those elements which cannot belong to any segment type because of the
shortness of the segment. To each segment identifying symbol of the PDL descriptions (1 - 4)
we order the horizontal and vertical proportions (h,v) of the segment.

For the acceptance of the segment identifying symbols by our automaton it is necessary
that the corresponding (h,v) values be the elements of a certain fuzzy subset of the [0,1]
interval.

This corresponds to the fuzzy description according to which the element C| of H is in
the middle.
During the description of the letters we use 10 fuzzy subsets altogether, (see Figure 12).
Now, let the automaton in the j-th state, and suppose that i-th input symbol arrives. Then

183

the automaton orders the value

max
Ri= k min

to this symbol, where C: and ej are defined in Section 2. Fy and are the
appropriate vertical and horizontal functions, and (hj, v) the horizontal and vertical proportions
of the symbol. If the maximum is k’ the automaton switches into state F , (see Section 2).

Jk
If Rj < a (a a cuttingpoint) then the letter is not accepted by the automaton. In the
other case the letter is recognized with certainty

min

The fuzzy automaton constructed in this way can be easily adapted to a given letter-type by
modification of the fuzzy function system.

Conclusions and Notes

Our system was implemented on a CDC-3300 computer. The average time of recognition
of a pattern is 2 sec. We note that this time can be considerably reduced if we give* the cutting
-point a fairly large value.

Our system recognized 93 percents of the patterns properly, 2 percents with a mistake and
5 percents of the patterns were not classified. Our experiences show that the main source of the
mistakes is that the same pattern can be written in several ways in PDL.

The process of learning can be interpreted as the optimal setting of the fuzzy weights of
the automaton. We continue developing our system in this direction.

References

[1] T. Young and T.W. Calwert, Classification and Estimation Pattern Recognition (Elsevier)

[2] E.T. Lee, Shape-Oriented Chromosome Classification, IEEE Transaction on System, Man
r and Cybernetics Nov. 1975.

[3] K.S. Fu, Syntactic Methods in Pattern Recognition, Academic Press, New York (1974)

[4] K. Tanaka and M. Mizumoto, Fuzzy Programs and their Execution, Fuzzy Sets and
their Applications to Cogniture and Decision Processes, Editer by L. A. Zadeh,
K.S. Fu, K. Tanaka: Academic Press.

184

C f e о - c p

F ig u r e 1

Figure 2

185

Figure 3

Figu re 5

1. v e r t i c a l s t r a ig h t l i n e

2. s t r a i g h t l i n e s l a n t i n g to the right

3. hor izonta l s t r a i g h t l i n e

U. s t r a i g h t l ine s l a n t i n g to the l e f t

5. right curve

6. lower curve

7. l e f t curve

8. upper curve

9. loop

10. garbage

TV
'o'
'G'

Figure U

186

Figure б/а

187

Figure б/С

188

where "9" is the terminal symbol
and "Sjq" the final state.

Fig. 7

189

Chains

2 .) 333333332217887877777

3.) -

4.) -
5.) -

6.) 35555311

7.) 355

8.) -

Figure 6/b

190

Figure 8

Figure 9

-19 1-

Figure 10

Figure 11

192

1

1

Figure 12

193

[5] H. Freeman, IEE Trans EC-10, 260 (1961)

[6] A.C. Shaw, Parsing of Graph Representable Pictures, JACM Vol , 7. No 3. July , 1970
pp 453-481

[7] S.H. LU and K. S. Fu, A Sentence-to-Sentence Clustering Procedure for Pattern
Analysis, IEEE Transactions on Systems, Man and Cybernetics, Vol. SMC-8,
No 5. May 1978.

C o m p u ta tio n a l L in g u is tic s a n d C o m p u te r L angu ages Vol. X V . 1982.

MORPHOLOGICAL AND MORPHONOLOGICAL ANALYSIS OF

HUNGARIAN WORD-FORMS BY COMPUTER

G ábor P ró szék y — Z oltán K iss — L ajos Tóth

ELTE University
Budapest, Hungary

1. INTRODUCTION

The computational syntactical analysis of Hungarian
sentences with any purpose, is impossible without accurate
examination of the words (word-forms) occurring in the
sentence, since only the connections between the stem and the
affixes can define the surface structure of the sentence. Of
course there is another, and perhaps more significant component
from the point of view of the recognition of new information:
word-order, but it is not influenced by the description of
the surface structure of the sentence. we shall have an
independent task which follows the task of the syntactical
analysis and this task deals with word-order.

Therefore, if we want to describe the surface structure by
a tree, it is necessary to define the syntactical functions of
several words and word-groups and to detach the affixes carrying
this information from the word that makes one word-form
with this affix according to the rules of the Hungarian
language.

This step is a real morphological analysis (in the first
approximation). The problem is caused by the rule of affix­
connecting, based on phonological junctions of the Hungarian
language. It is a complex system of rules which is so evident
for people whose mother tongue is Hungarian that they must
spend almost no time on watching it functioning when a sentence
is heard or read. But that is not the case if we "understand"
the syntactical structure of an ambiguous or a rather compli­
cated sentence; and even the recognition of errors originating
from the incorrect use of the rule system is carried out more

196

intuitively than the recognition of errors of sentence-construc­
ting. It seems that "linguistic sensitivity" of common
people whose mother tongue is Hungarian is finer than their
"musical sensitivity".

There are two fundamental problems connected with the
"false" note:

(1) Can we suppose that the "text generator" does not send
out "false notes"?

(2) If the "text generator" does, can we determine the
behaviour of the perceptor in this case?

If we answer "yes" to question (l), then we defined an
automaton, called strong automaton. It contains a system of
rules which can be used by the automaton without errors.

Consider case (2). The answer "yes" to this question
means the following: the automaton defined in this way
recognizes the "correct notes", but its behaviour is undeter­
mined in the case of the "false note". We call it weak automa­
ton. The answer "no" to case (2) includes the fact that this
behaviöur is not the direct continuation of the analysis but
the generation of the question for the sake of correcting the
"false note". The, automaton received will be called: correcting
a u tomaton.

WEAK AUT.

Fig. 1.1

197

We are going to deal with the strong automaton, namely we
suppose to analyse only proper Hungarian texts. (Thus our model
does not serve the purpose of exercising Hungarian language).

Later, we shall augment our recognizing model; of course,
not only dealing with the "false note" can cause us great
anxiety, but the next problem, too. We can briefly summarize
the functioning of our automaton in the following manner: the
automaton must verify whether the sequences of the elements
it knows are edited according to the rules it knows, or not.
Incompatibility with the rules can then be realized on
the level of mo rp honology and on the level of morphology
(this is the "false note" problem).

Augmentation of the automaton will be necessary if the
input contains elements not known by the original automaton.
In these cases the augmented automaton will construct particu­
lar alternatives by consistent application of the rules. Then
it will generate a question and will complete the analysis
with the help of the answer it has got. We call this automaton
an Inferential automaton. (Properly speaking it is a "learning"
automaton, because it takes reference to the new recognized
element, and it treats this element as the originally known
one . But we did not want to use the expression "learning
automaton", since it is reserved for another concept.) The
subclasses of the inferential automaton are:strong inferential
automaton, weak inferential automaton and correcting infer­
ential automaton. The automaton we review here is a strong
inferential automaton.

2. BASIC CONCEPTS OF AUTOMATICAL ANALYSIS

Since we deal with automatical language processing, we
cannot forget that all components of the system which we want
to realize in practice, are finite ones, i.e.: there are
bounds which are debatable from the point
of view of linguistics, but for realizing the system the
problem needs a concrete attitude.

198

The problematic finite components are:

(a) the vocabulary of stems which is finite, but can
increase during the analysis (in the case of an in­
ferential automaton).

Questions: - How many elements it will have?
- What do we consider a stem?

(b) the vocabulary of the affixes which is a simple set
of affixes. There are no operations defined on this set, thus
the concatenations of affixes can be in the input strings only.
In the vocabulary of affixes there are only the atomic elements
of this string. Seemingly the complex verbal affixes contradict
this. These complex affixes are real compositions and not
simple affixes from the linguistic point of view, but we can
treat them as simple elements of the vocabulary of affixes.
There are practical considerations forcing us to use these
complex affixes, namely the diacronic change left ripples
principally here in the Hungarian language, which can be said
an agglutinating one in the cases of nominals.

We note also that the set of affixes has no subclasses,
that is,the variants too are equal elements of the set of
affixes.

Question: - Which affixes do we conclude as old-
fashioned or unproductive, excluding
them from further examinations?

As we can consider further, the vocabulary of stems and
affixes is finite,and by the set of the morphological and
morphonological rules we try to outline the task more exactly
with the help of the initiation of some new notions. These
notions denote abstract grammatical elements and they will
occur in many places of the following chapters. We will treat
the definitions and the properties of the concrete morphological
and morphonological rules in Chapter 5.3.

199

3. EXPLANATION OF THE DESIGNATIONS

3.1 Stems
**

VERB verb
SUBS substantive
ADJ adjective V 1 NOM nominal
NUM numeral
PRON pronoun
ADV adverb
MOD modifying word
VPR verbal prefix
ART article (D: definite, I: indefinite)
PPS postposition
INT interjection
CON conjuction

3.2 Verbal affixes

(a) - Having a form of 5-tuple
(The points denote the other four positions)

S. . .
0. . .
.D. .
C. .
S. .

subjective(indefinite)
objective(definite)
declarative (indicative j
conditional
subjunctive

}
}
type of conjugation

mood

Pr. . present 1
Pa. . past J tense
. 1. singular)
.2. plural J number
. . 1 first J
. .2 second)> person
. .3 third j

200

Their possible compositions:
SDPr.. ODPr.. SDPa.. ODPa..
SCPr. . OCPr. .
SSPr. . OSPr..
(To the places of the points: 11, 12, 13, 21, 22, 23)

(Note : Hungarian has no affixes for the future tense. It is
replaced by the present form plus an adverb, or a composition
of a verb the auxiliary verb fog.)

(b) - Gerund with a personal suffix (properly speaking it
is the conjugation of the infinitive)

GER.. gerund with a personal suffix
(To the places of the points: 11, 12, 13, 21, 22, 23)

(c) - Other verbal affixes (without any number and person)

abbr. tvpe of the affix morphemes
INF infinitive ni,ani,eni
VN verbal noun ás ,és
CPT continuous participle ó,ő

PPT perfect participle t,tt,att,ett,
ott,ött

FPT future participle andó,endo
APS adverbial participle(simult.) va, ve
APA adverbial participle(anteced.) ván,vén

Nominal affixes

abbr. tvpe of the affix morphemes
ABL ablative tói,tői
ACC accusative t,at,et,ot,öt
ADE adessive nál,nél
ALL allative hoz,hez,höz
CAU causative ért
COMP
DAT

comparative
„ . /# V\

datlve l $
V|. ß jV/v, ❖ //

bb,abb,ebb,óbb
nak,nek

201

abbr. type of the affix morphemes
DAY day(used in expressing the date)

adikán,edikén,
odikán,ödikén

DEL delative ró!,roi
DIS distributive nként,anként,énként

ónként,önként
DIS-ТЕМ distributive-temporalis nta,nte,anta,ente,

onta,önte
ELA elative ból,bol
ESS essive ul ,Ü1
FAC factivitive „ X * „ * ̂va,ve, a, e
FOR formális ként
FOR2 formális képp,képpen
FRA fraction numeral d,od,ed,öd
I —i (derivative ending) i
IK -ik (formative syllable) ik
ILL illative ba ,be
I NE inessive ban,ben
INS instrumentális val,vei,*al,*el
LOC locative t,ott,ett,ott
MOD-ESS modalis-essive ul,ül,an,en
MOD-ESS modalis-essive lag,leg
MUL multiplicative szór,szer,szőr
NOM nominative Ф

ORD ordinal numeral dik,adik,edik,odik
ödik

ORD-MUL ordinal-multiplicative adszor,edszer,
odszor,ödször

PERS personal ending (see Table 3.3.1)
PL plural к tak,ek,ok,ok
PLT plurale tantum ék
S -s (derivative ending) s-, as , es ,os, ös
SOC sociative stul,stül,astul,

estül,óstul
SUB sublative ra,re

202

abbr. tvoe of the affix morphemes

SUP superessive n, on,en,ön
ТЕМ temporalis kor
TER terminative Î2
U -ű (derivative ending) ú,u,jú,jű
(WQ) (other forms, see Fig.6.5)

Table 3.3.1

PERS := PERS SG / PERS PL
PERS SG := PERS-1SG / PERS-2SG / PERS-3SG

PERS-1SG := PERS 1SG / PERS lSGi
PERS-2SG := PERS 2SG / PERS 2SGi
PERS-3SG := PERS 3SG / PERS 3SGi

PERS PL := PERS-1PL / PERS-2PL / PERS-3PL
PERS-1PL := PERS 1PL / PERS lPLi
PERS-2PL := PERS 2PL / PERS 2PLi
PERS-3PL := PERS 3PL / PERS 3PLi

PERS 1SG := am / era / om / öm / m
PERS lSGi :=' aim / eim / im / jaim / jeim
PERS 2SG := ad / ed / od / öd / d
PERS 2SGi := aid / eid / id / jaid / jeid
PERS 3SG := a / e / ja / je / á / é / já / jé
PERS 3SGi := ai / ei / i / jai / jei
PERS 1PL := unk / ünk / nk
PERS lPLi := aink / eink / ink / jaink / jeink
PERS 2PL := átok / etek / otok / ötök / tok / tek / tök
PERS 2PLi := aitok / eitek / itek / jaitok / jeitek
PERS 3PL := uk / ük / juk / jük / к
PERS 3PLi := aik / eik / ik / jaik / jeik

203

4. ELEMENTS OF THE FORMAL MORPHOLOGICAL AND MORPHONOLOGICAL
ANALYSIS

Let us now describe some expressions which occur
in the description (more exactly:let us describe what they mean
in our use) and let us speak about the essence of the program
and of the task realized by this program.

The important expressions which we used are the following:

4.1 Stem : (l) stem in the sense of the conventional grammar,
and

(2) forms of declension which we are not interested
in, so we can regard them as stems from the
view-point of our analysis.

4.2 Affix : elements of a subset of affixes of conventional
grammar which we want to separate from the word-
form (these are: endings of number, person,
possession, of cases; and the word forming suffixes
which are considered productive).

4.3 Morpheme : stem or affix.

4.4 Word-form : concatenation of a stem and 0,l,2,...,n
affixes (n is bound by the rules of Hungarian
morphology).

4.5 Sentence : a sequence of word-forms separated by the
signs {, : - and finished by one of the
sentence ending signs {. ! ? ; }.

4.6 Input data required for the morphological analysis :
an arbitrary sequence of Hungarian word-forms. Since this
phase makes no syntactical and semantical parsing, it is
indifferent whether the word-forms create "real" sentences.

204

4.7 Task of the morphological analysis is to decide one by one
whether the word-forms of the input sentences are con­
structed according to the rules of the Hungarian language.
That is, we are looking for an answer to the question
whether the affixes succeed in an adequate order.

4.8 Task of the morphonological analysis is to establish,
whether the adequate allomorph of the recognized affixes
is in the word-form and the sequence of morphemes matches
the adequate allomorph of the stem.

Example 1.

The very morphological analysis will find the word-form
hazakomban

(ház+ak+om+ban=house + PL + PERS 1SG + INE [~house+s+my+in])
inaccurate because the (sign of the plural) and the posses­
sive affixes can not occur in the same word-form, but it will
find the next two word-forms accurate,:

hazambi
*házamb|s|n}= SUBS + PERS 1SG + INE

The analysis taking the phonological rules into con­
sideration, will be performed by the morphonological analyser.
It will show also such distinctions as the next example does
(Different allomorphs of the same affix stand there, when e.g.
the affix PL occurs between the affix and the same stem.):

főnők + höz (SUBS + ADE [
főnök + öt (SUBS + ACC [

to the boss])
the boss + ACC])

fonok + ok + höz (SUBS + PL + ADE [~ to the bosses])
(SUBS + PL + ACC [•fonok + ok + et the bosses + ACC])

4.9 Functioning of the program made by us : all of the word-
forms of the given sentences will be analyzed morphologi­
cally. If the form is correct, we will produce its de­
composition in accordance with all of the possible parsings;
if there are no corect forms, we will announce an error.

205

The error-sign does not consist of the message of the error
only, but the supposed affixes will be disjoined in all
possible manners(see the next example) and the program
constructs the stems obtained in such a manner. The user
chooses the correct one of these stems and answers the
necessary questions for inclusion into the vocabulary, so *
from now on - the stems unknown till now will be known by
the program.

Example 2.

Let us assume that our program has to analyze the next
sentence :

[the][boatl [the][bankl [lie]
SUP SDPal3

[~ The boat lay on the bank.]
If all the stems of the sentence can be found in the

vocabulary, the analysis gives the next result:
DART SUBS DART SUBS+SUP VERB+SDPal3

But if the word csónak[-boat] for example is not an
element of the vocabulary, the program will try to define the
unknown stem in the following manner:

(1) csónak STEM

vowel at the end of the stem before the affix -k
ought to be long.

(2) c5 ón+ak STEM+PL
(3) csó+nak STEM+DAT
(4) csó+nak S ТЕМ (verb) +SDPr2 3

csóna+k STEM+PL can not be correct, since the

But: when our sentence is

206

A csónakjot vízire telttük.
1

[the][beat] [waiter] [take]
ACC SUB ODPa21

[~ We set the boat on the water.]
the disintegrations of csónakot are the following:

(1) csónakot STEM
*csónako+ t STEM+ACC can not be correct, because
the vowel of the stem before the affix Ht ought to
be long

(2) csónak+ot STEM+ACC
There are no further decompositions, because the apparent

plural affix -ak cannot stand before -ot (ACC), only -at ; and
the affix -nak cannot stand before the ACC because -nak €
DAT^CAS, -ote ACCe CAS and no CAS can occur directly after the
other one in the same word-form.

4.10 Final result of the analysis is a set of codes of
morphemes defined in the following way:
Let the sentence containing n word-forms have the follow­

ing form:
X- ! X- !.. . X II 1 2 n

where x^: an arbitrary word-form,
I : an arbitrary word-form separating sign,
II : an arbitrary sentence ending sign.

In the first step the analyser E replaces all of the
word-forms x^ with the following form:

E1(x.) = X1 +...+x*1 1 11 k.l
where x1 is the name of the type of the stem or affix
according to the j-th morpheme of the i-th word-form containing
k.̂ morphemes (l<i<n, l^j^k^). The analysis can yield>another
correct result:

E (x±),...,E 1(x.),

207

•£*where E (x^) is the r-th succeeded parsing of the morpheme
of our sentence (l<r<irn, where iru is the number of possible
correct parsings of the i-th morpheme).

Thus, the set of the sequencies of the codes of morphemes
which must be transferred to the syntactical analyser, come
into being in the following manner:

n
M = X E (хл-) i=l

1 miwhere Е(х^ = {E (xi E (xi)}.

Example 3.

If the program knows all the stems of the sentences all the stems of the :
Sűrűn fejjtjek rejtvény^.

[frequently] [puzzle+ACC]l

[solv^+SDPall]
or : [milk+SEjPr22]
or : [тИк^+БОРаг 3]

(Possible and "impossible" meanings:
I solve puzzles frequently.

(*)
(*),

You milk puzzles frequently.
'They milked puzzles frequently.)

The special properties of the word sűrűn :
. [frequently] = [frequent+ADV]
[dense+SUP]sűrűn = sűrű+n

Parsing of the sample-sentence:
[n=3]

X : sűrű + n ■» ADJ + ADV = x| + xj = E 1(x)
11 12 1

X : sűrű +■ n - ADJ + SUP = X 2 + x 2 = E2(x)
11 12 1

x : fejt + ek - VERB + SDPrll = x* + xi = E1(x„)
г 2 г

x„ : fej + tek - VERB + SDPr22 = x 2 + x? = E2(x„)
21 22 2

208

x 3 : + - VERB + SDPa23

: rej t vény + t SUBS + ACC

= E 3 (x 2)

= e 1(x 3>

Thus :
E(xx) = (E1(x 1),E2(x 1)}

n 1 2 3
M =]><[E(xi)/ where < E(x2) = X̂2^,E X̂2^,E ̂x2 ̂

E(x3) = {E1(x3)}
M = {[E1(xl),E1(x2)/E1(x3)],

[E1(xl),E2(x2),E1(x3)],
[E1(x 1),E3(x2)/E1(x 3)]/
[E2(x 1),E1(x2),E1(x3)],
[E2(x 1),E2(x2),E1(x3)],
[E2(x1),E3(x2),E1(x3)]} =

{ [ADJ + ADV, VERB + SDPrll, SUBS + ACC] ,
[ADJ + ADV, VERB + SDPr22, SUBS + ACC] ,
[ADJ + ADV, VERB + SDPa2 3, SUBS + ACC] ,
[ADJ + SUP, VERB + SDPrll, SUBS + ACC] ,
[ADJ + SUP, VERB + SDPr22, SUBS + ACC] ,
[ADJ + SUP, VERB + SDPa2 3, SUBS + ACC]}.

Further on the elements of M will arrive to the entry
of the syntactical analyser, i.e. the input data of the next
states have arisen as a result of the morphonological analysis.

5. LINGUISTIC LAWS ENABLING THE EXAMINATION OF HUNGARIAN
WORD-FORMS

5.1 Types of nominal stems and ranging of the lexemes made
of them

The word "entry" means in our use the first form of a
substantive or of a nominal word in the dictionary, which
is equal to the nominative in form,

209

E * g* : LIBA(entry) 1-1— ■ (NOM) ' -~1-b-a ((NOM v FOR v ТЕМ))’
The entries can be classed according to Papp [8]

into groups according to some clear and unstable types of
stems. In practice it is worthwhile to distinguish only the entries
occurring relatively frequently only from the exceptions which we
can enumerate also one by one. In the work of Papp there are
12 clear types. The types in which two different stem-lexemes
of the same entry can stand are the unstable types.

Opposite to this stem-classification, which was made for an
automatical synthesis, we must produce another division of the
set of stems: i.e. classifying by the analytical types
which can be used better for automatical analysis.

The essence of it is the following: an analytical type
consists of all the stems which can make a word-form only by
the same particular set of the types of affixes. Thus, the
lexemes of the same entry which can be declined in different
ways, will get in different declinational types. (Thus, the
analysis does not need the synthetical basis which was
indispensable for the synthesis).

5.2 Analytical declinational types

If we have a lexeme in the stem-vocabulary, we have to give
its declensional type and its vowel-harmony. These two properties
give the adequate allomorph which can stand there (after
this stem), or they give an answer to whether an allcmorph can't
occur here at all and vice versa: the conjunction of the
concrete affixes gives the declinational type and the vowel-
harmony of the stem which they can connect with.

The table of the analytical declinational types can be
seen in Table 5.2.1.

The automaton sensible to morphonological rules can be
obtained from the automaton making the morphological analysis
by dividing the states to more states, according to the number
of morphonological realizations.

Table 5.2.1

NOM ACC CAS PL PERS
3 SG Example (low) Example (high)

1 3. ale 3 a/e - ház térd
2 3. a/e 3 a/e 1 vég(anyag)

3 3 o/ö 3 o/ö - piac porc
4 3. o/ö 3 o/ö 2 kard gömb
5 3. - 3 a/e - báj rész
6 3 - 3 a/e 2 ár(víz)
7 3 - 3 o/ö - hús bőr
8 3 - 3 o/ö 2 kar 9örl
9 3 - 3 - j(1) haj ó
10 3 - 3 - 2 kocsi bébi
11 .3 - 3 - $ idő
12 .3 - 3 ? $ ész
13 .3 t 3 t 2 kazal szemét
14 3 t 3(2) î î ló fu

15 .3 Î Î t î apa epe
16 % - 3 - 1 almá- elmé-
17 Í - .3 - t apá- néné-
18 Î o/ö Î o/ö - baj sz-
19 Î a/e Î a/e - nyár- lev-
2.0 Î a/e Î a/e Í ut-
.2.1 Î. Í . t t - fi-
22 t Í t î i (3) ap- ide-
2.3 1 1 Î Í 2 szá-

Note: (l) But PERS 3PL without j.
(2) Except SUP.
(3) Only in the PERS 3SG and PERS 3PL, in the other

cases $.

5.3 Morphonoloqical rules

Properly, when we made the deciinational types, we
spoke about the morphonological rules but in a hidden form.
Now let us examine this question in outlines:

Fitting by the vowel harmony:
stem with low vowel harmony -*■ affix with low vowel harmony

stem with high vowel harmony - affix with high vowel harmony
stem with mixed vowel harmony -*■ affix with low vowel harmony

(usually, but foreign words have special properties).
(i) These rules in themselves are valid when the fitting

morpheme has two alternants (a low and a high one). Of course,
if there is only one variant, it will connect to the stem
independently of the fitting rules.

But in the case of more affixes there exist one-form
variants which are able to change the vowel harmony:

ház + PL = ház|Jc
[house] [houses]

but ;
ház + beli + PL = házbelil

[house] [ones belonging to the house]
[belonging to]

(ii) It is worth observing the affixes having one
variant only:

ê(POSS), ei(POSS PL), ért(CAU), ic[(TER) , ként (FOR) , kor (ТЕМ)
They can stand either after a stem ending in a conso­

nant,or after a stem ending with a or e, or after PERS 3SG
CAU and TER can connect to the stem-alternants of the given
entry which terminates in á or é; in the case of the other
vowels it can be normally concatenated with the stem according
to the entry. FOR and ТЕМ can stand after the lexeme according
to the entry, or after PERS 3SG's a/e/ja_/jê , making no change
in the stem.

2 1 2

(iii) Affíx-morphemes having three kinds of allomorph
realization distinguish the high affixes according te
labiality/illabiality and not only according to vowel
harmony.

Fitting according to I abia I ity (only in the case of high
vowel harmony) :

- the case of labiality: if the vowel of the last
syllable before the affix is ö,ő,ü or Ü, then
e.g.: ALL = höz .

- the case of illabiality: if the vowel of the last
syllable before the affix is e,e,i or i, then
e.g.: ALL - hez.

The last syllable before the affix is not sure to be the
last syllable of the word at the same time, that is another
affix can stay between them e.g.: PL or POSS. The possible
affixes with ö,ő,ü,u are the following:

e.g.

but :

PL = ők
PERS = öm/öd/ötöd/íink./ük/ jük
főnök + ök + höz“1 НГ T"[boss] PL ADE [~ to the bosses]
fonok + hoz
[boss] ADE [~ to the boss]
főnök + é + hez
— Г" т “ Г
[boss] POSS ADE [~ to the something of the

boss]
főnök + éi + hez
[boss] POSS PL ADE [-to the things of the boss]

and : főnök + eT T[boss] P^RS 3SG [~ his/her boss]
főnök + é + hez“T ~ 1 — \[boss] PERS 3SG ADE [to his/her boss]

(iv) Morpheme SUP having four several reá I izations:three
forms behave as we saw in the case when the part of the word-form

213

without the allomorphs of SUP terminated in a consonant (e.g.
STEM, STEM + PL or STEM + PERS). If the stem ended in a vowel
and it stands in NOM or after it there stays PERS 3SG, POSS^ PL/
PERS + POSS after the stem, the adequate form of SUP is n.

e.g.: (a) főnők + e— Г 1[boss] PERS 3SG [~ his/her boss]
fonok + é + nT[boss] PERS 3SG SUP [~ on her/his boss]

(b) főnök +
I[boss]

/■Э-. + n
- \ \POSS\ \

POSS PL SUP [~ on the something(s) of
the boss]

(c) főnök + ök + -г-. + n— Г Г f- T[boss] PL POSS SUP [~on the something(s)
of the bosses]

(v) The five several forms of ACC are: at/et/ot/öt/t.
The rule system playing here is fairly complicated. Since it
is enough for us to receive the occurrence of the given affix
and we do not need to offer the motives, we shall survey the
morphonological properties of the accusative only in brief.

The variant t can stand in word-forms ending in a
vowel (in some words ending in h, 1, 1^, n, n^, r, s,
sz, z, zs)

e.g.: gőz + 0
[steam] NOM

but: ház + ф
T ~ T

[house] NOM

gőz + t
[steam] ACC

ház + at,
T ~ T[house] ACC

because it is an
ancient affix
formed by history

In the case of the word-form ending in a consonant -if
the stem occurring in this word-form has a high or mixed vowel
-harmony — at or ot stands after it in the case of ACC, as the
next part will show :

at can stand there if the stem has only one syllable the
vowel of which is a or á and there is no other affix between

the stem and the ACC; e.g.: vár + at (castle + ACC); or:- if
the stem having no high vowel-harmony and an affix ending in
a consonant stays after it (this affix can be only PL, PERS
1SG, PERS2SG, PERS PL), e.g.: kutyá + tok + at (~ your dog +
ACC); or: it can standi after an arbitrary adjective-noun
or numeral-noun having no high vowel-harmony, e.g.: vékony + at
(~thin +ÍACC), nyolc + at (-eight +|ACC).

ot can stand there if there is a vowel o,ó,u or u in the
last syllable of the stem and there is no other affix between
the stem and the ACC.

et behaves as at_ but in the case of high vowel-harmony
(e,é,i,l).

öt behaves as ot but in the case of high vowel-harmony
(e,é,i,í).

Since the rules can be drafted exactly, except for the cases
of the stem having already an affix, the vocabulary contains
also the declension type of the stem which results the
adequate choice of the morphemes to be realized in more than
three ways.

(vi) In the following we must deal with the problem of
assimilation of the consonants. For the formal handling of full
assimilation it is very obvious to induce the following fictive
affixes :

INS2 = *al /*el
FAC2 = *á /*é

beside the given affixes
INS = Wal / Wei
FAC = Wá / Wé

where :
f

W -<
if there is a consonant at the end of the word-form
to be conjugated : this consonant,
if there is nothing, then: v.

Thus, INS = val / vel , FAC = vá / vé.

215

If the word-form ends in a vowel, according to CAS2 the
fitting is the following: after the stem of type 15 and
16, after POSS or PERS 3 SG there stands INS1 or FAC1 behind
them.

2 2In all other cases if INS or FAC stands at the end of
the word-form, the last consonant of the given word-form is
double. After its formal control we continue the analysis
leaving one of these consonants at the end of the word and we
change the morphemes ad/el^/á/é to the morphemes val/vei/vá/vé.

But now we must reckon with another problem: the Hungarian
language does not allow the three identical consonants next to
each other. This case can occur in the conjugation of the
lexemes ending in a consonant in the cases of the morphemes
INS or FAC. Thus it seems formal the allomorphs al/el/á/é to^
come after the stem; e.g. tollal = toll + INS = toll +

H 1 + al1= *tollal.toll +
val

If we can't find the adequate stem among the lexical
entries ending with a simple consonant, then we have to, we
suppose that our stem ends with a double consonant.

(vii) The allomorph realization of PL comes into being
by the vowels as in the case of ACC: ak / ek / ok / ők / k.
But the rules of fitting become in another manner:

Some remarks connected with this :
k: only after vowels,
ak: usually when the stem (or the last component of the

compound) has one syllable and its vowel is a or á, or: the
no-entry-lexeme ends in v, e.g. lov + ak(-horses); or: after
adjectives which are made by the derivative affix i from nouns
e.g. ház + i + ak(~people belonging to the house); or: after
original adjective, e.g. okos + ak (-clever ones; but in the
form okosok the stem okos is a noun and not an adjective);
or: after numerals formed by formative syllables, e.g. hat +
szoros + ak(~things which are six times bigger than the other
ones).

ok : usually the other cases with low vowel harmony (but

2 16

the lexeme kar belongs to this category and this fact shows,
the rules are not general. This problem has a historical-
phonological reason which we do not employ here.

ek is similar to ak, but in the case of high -vowel har­
mony.

ök is similar to ek, but in the case of high vowel har­
mony.

(viii) The rules of the realization of PERS are similar
to PL in the respects of vowel harmony, in the cases of
singular possession, 1st and 2nd person. If the possession is
in plural and the stem has a low vowel harmony: aim / aid /
aink/aitok;and if the possession is in plural but the stem has
a high vowel harmony: eim / eid / eink / eitek.

PERS 3SG and the possession is in singular : a / ja.
(low), e / jei (high); or a POSS or CAS comes after them their
variants: á / jj. (low), é / (high).

PERS 3 SG, but the possession is in plural: if the stem
terminates in a vowel (but not :L) : i ; if the stem terminates
in î or usually if the affix PERS 3SG is ^a / j_e : jai / jei;
if the stem terminates in a consonant: ai (low or mixed) / ei
(high).

PERS 3PL and the possession are in singular: uk / ük, or
juk / jük.

PERS 3PL and the possession are in plural: ik, aik /
eik, jaik / jeik, similar as in the case of PERS 3 SG.

If the stem terminates in i, the following morphemes can
connect to it, in the case of singular possession: m, d, ja /
je, nk, bok / tek, juk / jük; in the case of plural possession:
jaim / jeim, jaid / jeid, jai / jei, jaink/jeink, jaitok/jeitek,
jaik/jeik.

217

5.4 The Hungarian conjugation from the point of view of
morphology

In contradiction to the nominal forms it is not practical
to begin to examine the automatical morphological analysis of
the Hungarian verbal forms with separating the morphemes
following each other, only if the final aim is the full
morphological analysis of the verbs' itself.

Our present purpose is a syntactical analysis and our
nearest aim is to choose the arrays being relevant to the
building of the syntax tree.

5.5 Syntactical relevant verbal affixes

There are five subsets:
(i) personal suffixes of the verb,
(ii) personal suffixes of the gerund,
(iii) derivational affixes of the infinitive,
(iv) derivational affixes of the adverbial participle,
(v) the derivational affixes of the verbal noun and

the continuous, perfect and future participles.
The verbs derivated by other affixes can be found in the

vocabulary as "basic" verbs.
The affixes mentioned above content the next informations :
(i) Personal suffixes of the verb:

(1) type of conjugation: - subjective (indirect)
- objective with an object

in 2nd person (direct2)
- objective with an object
in 3rd person (Idirect^)

(2) mood: - declarative (indicative)
- conditional
- subjunctive

(3) tense: - present
- past

2 1 8

(4) number: - singular <1>
- plural <2>

(5) person: - 1st
- 2nd
- 3rd

(1), (2) , (3), (4) and (5) make a complex array.
(ii) Personal suffixes of the gerund;

(1) number: - singular <1>
- plural <2>

(2) person: - 1st
- 2nd
- 3rd

(The other informations are in the auxiliary verb of the
same given sentence.)

(iii) Derivational affixes of the infinitive:

verbal stem + 0ni, where ф

(iv) Derivational affixes of the adverbial participles
Ml

Simultaneous presented mood:
verbal stem + vA, where A

Antecedent presented mood:

(v)
verbal stem + vÁn, where Á =

Derivational affixes of the verbal noun:

■ f t

f t

verbal stem + Ás, where Á =
" f t

(vi) Derivational affixes of the participles:
Continuous participle:

verbal stem + 6, where Ó
Perfect participle:

verbal stem + 0Tt, where 0T

219

Future participle:
verbal stem + AndÓ, where A..6 ó

О

5.6 The problem of assimilation of consonants in the case of
verbs

One of the main problems is the assimilation.
In the case of nominal forms we had a usable principle, but
now we have also another problems. Therefore we will use - when
it is needed — affixes and stems ending in a long consonant.
This method cannot be said elegant from a linguistic point
of view, but it was impossible to find a formal solution
which can be treated easier;

e.g. lássalak = láss + alak
lát + jalak = verbal stem + O^SPrll
1[see] [~ that I see you]

5.7 Conjugational basis needed at the building of the
morphological automaton

As it was already shown, the automaton recognizing the
verbal forms separates the stem and the affix at the first
step and then it controls, whether the verbal stem belongs to
the class determined by the affix-array. We have established
to all states of the automaton the set of the stem-types needed
to the step to the final state.

We formed the following view-points :
(i) Vowel harmony :

1 : о e.g.: kap + ok
2 : e néz + ek
3 : ö ül + ök

220

(ii) 2nd person singular:
1 : ol e.g.: biz + ol̂
2: el tesz + el
3: öl köröz + öl
4 : sz_ ir + sz
5 : as z uqr + asz
6 : esz költ + esz
. in PERS 3SG:
1 : ik e.g.: tör + ik
9: 0 lép + 0
it :
1 : a e.g.: köp + tam
2 : e emel + tem
3 : о .a hall + ottam
4 : e.e sinyl + ettem
5 : ö. e dönt + öttem
:, 3rd person singular:
1 : ott e.g.: hagy + ott
2 : ett szeret + ett
3 : ött győz + ött
4 : tt 15 + tt
5 : t kér + t

(Vi) Conditional mood / Infinitive / Gerund:
1 : a
2 : e

3 : a.a
4 : e.e
5 : nne

о e.g.: vár + na , + 0ni, + nom
e/ö kérdez , , л . nem

koszon --' — nom
а а.о játsz + ana, + ani, + anom
e e.e kérd + ene, + eni, + enem
nn nne te + nne, + nni, + nnem

(vii) Categories (table of affixes which can be
connected with the given stem)

5.8 Algorithm of the examination of verbal forms

With the help of the tables (and on the basis of the first
six viewpoints) we can make the "feature-sixtuple" of the verb
wanted to be examined by writing the adequate numbers after
each other.

Functioning of the algorithm: if the distinction of an
affix from the end of the word-form is succeeded, the affix
will define one of the feature-sixtuples mentioned above and
it will be tried to match with the feature-sixtuples of the
verbs. If it succeeds, we must revise whether the affix
connects to the adequate form of the verbal stem.

6. DESCRIPTION OF THE AUTOMATON PERFORMING THE
MORPHOLOGICAL ANALYSIS

The setting up of the automaton being used to realize
the analysis can be followed closely in more steps.

It is obvious that the automaton which analyzes
the nominal forms will be more complicated than the automaton
analyzing the verbal forms, i.e. we can separate the verbal
affixes as complex arrays from the stem. Consequently we can
consider all verbal forms as a connection of a stem and an
affix (this affix can be also 0-morpheme, e.g. the SDPrl3).
For this reason we can store the form of all verbal affix-
arrays and the 5-tuple of information belonging to these
affixes (type of conjugation, tense, mood, number, person) in
the vocabulary of affixes.

The participles come into being by the affixes connected
to the verbal stems, thus their parsing begins in this
automaton, but it does not terminate there after the
examination of certain participles, (for example: the
continous participles will behave as substantives from the
point of view of the possible affixes which can be obtained
by these participles). We shall come back to the solution of
this problem later.

222

We begin the examination of nominal forms with the
examination of the substantives. (Nominal forms: forms of
substantives, adjectives, pronouns, numerals.) The schematic
diagram of a nominal form is shown by the Fig. 6.1.

Fig. 6.1

Comment of Fig.6.1. and next similar figures:
Let us try to pass from the left edge (1-) along the lines

to the right terminal sign (4). The direction of the
progression can be up, down and right; the only stipulation
is : no progressing to left. An arbitrary representative of the
affix-types being written in the rectangles having touched
along the way can appear on the given place. So we can produce
all of the Hungarian nominal forms which can be made of the
constituents occurring in the figure by the all possible
ranging over of the diagram. It is obvious that we can make
further enlargements because the figure does not contain word­
forming affixes and other special affixes. We change the box
denoted with STEM to a more complicated one. We can build in,
not only the affixes not classified up to now but the
special adjectival, numeral and postpositional affixes, even
the entries coming from the verb.

Thus, instead of the verb's form we have made (Fig.6.2.)

223

Fig. 6 .2

we shall get the next modified form (Fig.6.3.).
And instead of the present form of the substantives

(Fig.6.1) it was worth developing the form of Fig.6.4.

Fig. 6 .3

224

WO

Fig. 6 .4

One of the new units appearing after the stem obtained
collective designation WQ, the other got the name PLT/ESS
because the affixes plurale tantum and essivemodalis will
be analysed here.

Of course these affixes of nouns, adjectives, articles etc. are
the affixes only we thought practical to distinguish on the
momentary level of parsing.

If we pass along on the figures before, from right to
left we get the building of the automaton performing the
morphological analysis.

Naturally the morphonological analysis comes next yet by
working out the interior of sucha rectangle. Its basic prin­
ciple the affix recognized already, determines what kinds of
phonological properties the preceding affixes can have,and the
program culls from the set of affixes which is restricted in
this manner when the program enters a given "box".

Thus, the diagram of the automaton performing the morpho­
logical analysis (Fig.6.7.).

225

Fig. 6. 7

Note :

Fig. 6.8

That is, the verbal automaton treated independently up to
now, is built into the nominal automaton.

The algorithm performing the morphological analysis is
shown by the next table.

The morpheme on the left of —-- ► can be preceded by the
morphemes standing on the right of --- ► only.

The classification of the table is suitable for Fig.6.4.,
that is, the next combinations are possible:

7a
l
ST
tF

226

CASS -► POSS
PLT/ESS
PERS

-> PL
- WQ
-► STEM

POSS ->■ PLT/ESS
-> PERS
-► PL
-> WQ
-> STEM

’/ESS -> PERS
WQ

- STEM
PERS -> WQ

-* STEM
PL - WQ

STEM
WQ - WQ

STEM
STEM

7. CONCLUSION

We realized the automaton performing the morphological
and morphonological analysis of Hungarian word-forms in PROLOG.
The solution principle of the problem did not contain de­
tails not indifferent from the point of view of the practical
realization. Such detail is necessary in the organization of a great
vocabulary of steins in the making of the tree-form. If this is not done, the
program can be very slow. The acceleration of the algorithm,
however, is possible in more ways, but our fundamental task
was to try out a method which is able to solve this task and
to verify the adequate functioning of this method.

The input data of our next program - the syntactical analyzer -
will be the output data of the morphological analyzer which we
have been just made.

227

8. BIBLIOGRAPHY

[1] ANTAL L. A magyar esetrendszer (The Hungarian Case
System). Akadémiai, Bp. 1961.

[2] ANTAL L. Egy új magyar nyelvtan felé (Towards a New
Hungarian Grammar). Magvető, Bp. 1978.

[3] HELL GY. Mechanical Analysis of Hungarian Word Forms.
Computational Linguistics & Computer Languages
X. p.125-134.

[4] JÁNOSKA S. A magyar ige automatikus toldalékolásának
egy modellje (A Model of the Automatical
Affixation of Hungarian verbs). Nyelvtud.
Közi.58. Akadémiai, Bp. 1967.

[5] LUGOSI PAP M. One Model of the Hungarian Verb Synthesis
Computational Linguistics and Computer Languages
X. p.39-98.

[6] MÁTHÉ J, KOVÁCS BÖLÖNYI E., SCHWEIGER P., SZÉKELY E.
A magyar igeragozás független analízisének egy
modelljéről (About a Model of the Independent
Analysis of Hungarian Conjugation). Nyelvtud.
Közi. 58. Akadémiai, Bp. 1967.

[7] MELCSUK, I. A magyar főnévragozás egy modellje (A Model
of Hungarian Declination). Nyelvtud. Közi. 58.
Akadémiái, Bp. 1967.

[8] PAPP F. A magyar főnév paradigmatikus rendszere (The
Paradigmatic System of the Hungarian Substan­
tive) . Akadémiai, Bp. 1975.

[9] PAPP F. Machines in the Service of the Hungarian
Substantive as a Machine. Computational
Linguistics and Computer Languages XIII.

[Ю] PRÓSZÉKY G., TÓTH L. Magyar nyelvű mondatok számítógépes
szintaktikai vizsgálata (A Computational
Syntactical Analysis of Hungarian Sentences).
ELTE Dissertation, 1979.

228

[11] STEIN M. A magyar főnév szintézise elektronikus számító­
géppel (The Synthesis of the Hungarian Substan­
tive by Computer). Nyelvtud.Közi.58. Akadémiai,
Bp. 1967.

[12] Tanulmányok a magyar nyelv szófajtana és alaktana köré­
ből (Studies of the Lexicology and Morphology
of the Hungarian Language). (Ed. by Rácz E.,
Szatmári I.). Tankönyvkiadó, 1974.

Computational Linguistics and Computer Languages Vol. XV. 1982.

LANGUAGE DESIGN OBJECTIVES AND THE CHANGE SYSTEM

Endre Simon

Research Group on the Theory of Automata
Szeged, Hungary

Abstract
It is the intent of this paper to describe the main

characteristics of programming language design, and to give a
short presentation of the CHANGE system. The CHANGE programming
system was developed for adequate solution of various kinds of
problems by multiprocessing and language extension. The paper
consists of two parts to emphasize some existing language as­
pects and to characterize the CHANGE system in comparison with
them.

1. Introduction
The 30 years development of programming languages may be

characterized by three phases corresponding roughly to the
descovery and description of programming language concepts, the
elaboration and analysis of concepts developed earlier, and the
further development of the 70's influenced by the development
of an effective software technology. This duscussion of pro­
gramming language development is far of course from complete.
There are both practical developments such as special purpose
languages and theoretical topics. Computer programming today is
in the state of creative ferment. There is a growing recogni­
tion that the available programming languages are not stimulat­
ing for designing computer and multiprocessor systems. When we
look at the integrated multiprocessor systems that will soon
dominate computing, the situation is even worse. In order to
develop such systems, we need to shift our attention away from
the detailed specification of algorithms, towards the descrip­

230

tion of the properties of packages and objects with which we
build.

There is another conception dividing the history of com­
puter languages into four periods. The first period was that of
machine languages with uncomfortable coding conventions for
directing the machine through a long sequence of elementary
actions. The second period was the time of symbolic machine
(assembly) languages 3 which made the algorithm's coding task
simpler, but not less machine-dependent. The third period was
the time of high-level languages3 that added a significant
level of economy in writing, machine independence, and read­
ability of programs. The fourth period appears to be that of
very high-level languages3 which enable the writer to express
"what" is to be done, in a language more familiar to his dis­
cipline, rather than "how" it is to be done.

One of the more interesting facts that emerge from a study
of programming language development is the remarkable stability
of early programming languages like FORTRAN, COBOL and so on.
These languages have satisfied the claims of a wide-ranging
class of users to solve their problems. But programmers should
never be satisfied with languages which permit them to program
everything. There is a need for languages which help the pro­
grammer to find the most natural representation for the data
structures he uses and operations he wants to perform on them
is clearly illustrated by the current trends in the evolution
of programming languages.

The programming language CHANGE ([Leg 73] , [Leg 80]) as a
universal base language is not qualified to satisfy every
criterion motivated by the users, but takes the evolution of
languages into consideration. The main purpose of CHANGE is to
give an adequate possibility to the user to specify his problem
on different levels of abstraction by dynamic language exten­

sibility. Furthermore there is another language feature which
assures multiprocessing orientation and maximal access to the
CHANGE interpreter on different levels of CHANGE programs. In
other words we can consider each CHANGE program as a multi­
processor which has a finite number of active and passive

231

processors in every instant. During the execution of a CHANGE
program there exists a language tool to generate new processors
which have private data. Processors can build a processor struc­
ture for the dynamic description of control structure. A yery
important language feature is that the user is able to operate
on the CHANGE statements during program execution.

In the next paragraph of this paper we attempt to giye a
brief summary on the design of programming languages. We would
like to make it perfectly clear that we refer to language fea­
tures which have connections to the pecularities of the pro­
gramming system CHANGE.

2. Standpoints to language design
Designing a high-level programming language is at best a

difficult task. The designer must keep the entire design in
mind at the top level in order to decide what the various com­
ponents of the language should be, what they should look like,
and what effect they have one upon the other. And if he would
settle on a design, and then change some aspect of it, he must
be concerned with the effect this change would have on the rest
of the language. These problems are made more difficult if any
of the features of the language is new or has never been used
in combination with the others [Bas 75].

It is easy to see that there exists a set of semantic
features which are common to many languages. These include such
elements as assignement, block structure, functions and
procedures, transfer of control, parameter passing, data struc­
tures and input /output which can be used as an aid to the under­
standing of languages in general. Nevertheless, programming
language definitions are intended to serve at least the follow­
ing two purposes. As a specification of "correctness" for the
language implementer, and as information for the user who
wishes to determinde whether a program performs its intended
task. The formal definition of the CHANGE language based on VDL
(Vienna Definition Language) will be described in a following
paper.

232

The design of a programming language is based on the
selection of the basic set of primitives which define the pr o b ­
lem area addressed by the language. These primitives form the
basic data types and operations of the language. Once discovered
and chosen, they are embedded in a set of control and data
structures appropriate for expressing algorithms in the problem
area. The role of this phase is to specify informally these
basic language concepts and to define a full component of lan­
guage features necessary to develop a viable programming lan­
guage design.

The second phase of the language design consists of formal­
izing the discussion stage by representing the design in an
interpretive semantic model. Ideally, the design should be
representable on many levels so that the designer can get the
whole picture at whatever level of detail is needed and minor
changes in the design can be represented by minor changes in
the model at the right level. The problem in this phase is that
a complete interpretive semantic model usually requires too
much details to be of much information at this level. The solu­
tion proposed in [Bas 75] is to initially model the language at
a very high level using a model which allows a hierarchical and
modular specification of the design. Then in successive passes
a remodelling of different aspects of the design can take
place, specifying the structures at lower and lower levels.
This is similar to the approach taken in writing a structured
program. This refining process involves the introduction of
more structuring into the features of the language [Tue 75].

It should be noted that the CHANGE language which has
features such as operation (to be executed) on statements was
implemented in a natural way on the basis of this phase (c.f.
Appendix F in [Leg 80]).

Phase 3 of the design process is the design of the imple­
mentation of the language. This has been the traditional use of
interpretive semantic models. Implementation of a programming
language can be done by writing a compiler or parser-interpre­
ter system. In the second case, the parser transforms a source

233

text into an intermediate code which is a data structure to be
selected on the base of effective interpretation. The model for
the compiler/parser design in phase 3 follows naturally from
the model of the language design in phase 2 continuing the re­
fining process towards the level of implementation. A formal
model for the design of the compiler enchances the clarity of
the design and provides a vehicle for proving the correctness
of the compiler.

In the following we give some basic language features in
order to make a comparison between existing programming lan­
guages and the CHANGE system.

2.1. Some language features from the point of view of the
CHANGE
As P. Wegner said, we have learned that in order to achieve

flexibility and power of expression in programming languages we
must pay the price of greater complexity [Weg 7 6] . In the 70's
there was a tendency to retrench towards simpler languages like
Concurrent Pascal, even at the price of restricted flexibility
and power of expression. At the same time there was another
tendency which emphasized extensible languages 3 as an alterna­
tive approach to the design of general-purpose languages. An
extensible language starts off with only a few features, but
it can be extended by the user who can define additional
features as he needs them.

The objective aimed at in the design of an extensible
language is the provision of a variable and flexible means for
the description of data structures and operations on them, to­
gether with the provision of a sufficiently flexible syntax and
semantics so that algorithms could be expressed in natural
manner. In general, a program in an extensible language will
consist of a combination of a base text (in the base language)
and an augment text expressed in terms of constructs which are
not part of the base language but which have been suitably de­
fined. The vehicle for the introduction of new constructs into
the base language is provided by the implementation of a defi­
nition language y statements in which the definitions of

234

constructs which are in an augment languagej are formed. The
combination of the augment text and the base text forms a text
in an extended language. If the definition language is a subset
of the base language then the base language may be called as a
self-extending language [Sol 71]. In any case, the definition
language and the corresponding extension mechanism should be
powerful enough for the introduction of

(i) new data types
(ii) new data transformations
(iii) new modes of sequencing of both the primitive

and defined data transformations
(iv) new statement types or new syntactic forms.

We introduce the term derived language to denote the lan­
guage into which the statements of the augment text are con­
verted by the extension mechanism. The distinction between the
derived and extended languages and texts is important because
the translation from source text to target text in general
consists of several passes of compilation.

From the implementation's point of view of an extensible
programming language we can distinguish compiler and parser-
interpreter systems too. In the first case the compiler of such
a language have built-in open-endedness which allows the user
to tailor the language to his specific needs. Then, the exten­
sion mechanism which is a part of the compiler is called
static extension mechanism. If the extension mechanism is a
part of the language interpreter we call it dynamic extension
mechanism.

The classification of static extension mechanisms can thus
be made on the basis of the stage of the translation process
during which the definition of an extension is processed and
the augment text is converted into a text in the derived lan­
guage which is then merged with the translation of the base
text into the derived language. In this case an advantage of an
extensible language is that language features which are never
used at a given installation never need to be implemented, so
that hopefully the size of a compiler can be kept under control.

235

In the case of dynamic extension, statements are converted
into the intermediate text in a unified manner. Only syntactical
properties of the augment statements are checked by the compila:
on the base of definitions written in the definition language.
As we are going to see in the next chapter the CHANGE system is
a typical example for dynamic extension. The dynamic extension
gives an effective means for the user to make a flexible imple­
mentation of various kinds of problems. In the CHANGE system
the extension of data types is static, i.e. it is performed at
compile time.

In the following we give a short presentation of a system
called ECL [Wgb 71] developed at Harvard University which has
some features which are similar to the main characteristics of
the CHANGE system. The most important goals of the ECL system
are:

(i) to allow problem oriented description of
algorithms, data and control over wide range
of application areas

(ii) to facilitate program construction and debugg­
ing

(iii) to allow and assist in the development of highly
efficient programs

(iv) to facilitate smooth progression between initial
program construction and the final realization
of an efficient software product.

To aid program construction and debugging, the ECL system has
been designed for use in an interactive, on-line fashion.

The ECL system reads and parses each command, interprètes
it and turns to the next command. Since commands include calls
on procedures which may be programmer-defined, the interpreta­
tion portion of the cycle may set of the running of a compiled
program. At the heart of the ECL is the command handler, the
routine which controls the above command loop. It has two main
components: the parser and the i n t e rpreter. The parser calls
on a lexical analyzer to decompose the input stream into tokens.
Both the input source and the parse tables may be changed by
commands, so that the source of commands and the language in

236

which commands are expressed are subject to change by pr o ­

grammer. This mechanism may be called static extension. The
output of the parser is a representation of the commands as
linked lists called intermediary lists. The list structured
representation has two uses. On the one hand, it can be execut
ed directly by the interpreter, on the other, it is a con­
venient form of input to the compiler. This achieves several
economies. A program needs to be parsed only once, on input.
Hence the interpreter does not reparse a line each time it is
encountered during execution, e.g., in a loop. Also, the
compiler is considerably simplified since it is not at all
concerned with parsing.

Most commands will be function calls, i.e., the applica­
tion of a routine, for example:

(i) a routine for defining new procedures and
operators

(ii) the compiler
(iii) routines to define new data types
(iv) routines to change the parse tables, thereby

changing the syntax of the language.
It should be clear that ECL is an eclectic system, which
provides definition mechanisms for extension algong three axes
syntax, data types and control structures. The idea is to
construct a small initial system consisting mostly of powerful
definition mechanism for self-extension. Only the initial sys­
tem needs to be implemented and maintained by the system
creators.

In order to give a short comparison between ECL and the
CHANGE systems from the point of view of language extension,
too, let us examine now the ECL system. The language may be
extended by

(i) adding to the syntax specification new syntax
rules with augments

(ii) defining the function names used as prefix
operators in the new intermediary list form,
thereby defining the semantic specification

237

(iii) adding the parse table generator based on the
new syntax specification

(iv) switching the parser to be driven by the result­
ing new parse tables.

Compiling the program and the semantic specification functions
will yield an acceptable although not specially optimized code
for the new construct.

The main differences between ECL and the CHANGE system
are the following.

(i) The ECL system has been designed for use in an
interactive j on-line way, not neglegting batch
processing [Wgb 71] , while the CHANGE system
can be used only in batch manner.

(ii) In the ECL system, during interpretation there
is no extension, namely the extension mechanism
is a so called static extension. In the CHANGE
system those extensions which refer to data
types are completed by the parser in a static
manner. The definitions of statement extensions
and the augment statements are processed by the
CHANGE interpreter. Hence, the extension
mechanism, which is a part of the interpreter
is called d y n a m i c.

(iii) From some points of view the ECL system is con­
sidered more intelligent as the CHANGE system,
but it should be noted that the size of ECL is
about 20 times greater as the size of the CHANGE
system.

There are two essential aspects of forming view of the
two systems on the basis of extension mechanisms. From the
user's point of view the extension mechanism of the CHANGE
system is more efficient because the user can control statement
extension under the execution of it's program to introduce
various kinds of syntactic and semantic constructs. The cost
of this powerful tool is that the efficiency of the implementa­
tion will be decreased by the execution speed of the inter­
preter. In our opinion, separating data type and statement (or

238

control) extension in the CHANGE system gives a sensible
compromise from both points of view.

When an extensible language will be implemented by a
compiler it can be implemented by an extensible compiler-com­

piler system3 too [Nap 80] . There is another example of the
implementation of extensible languages by a compiler-compiler
system. The Helsinki Language Processor (called HLP) is a
compiler-compiler system which has been developed at the Uni­
versity of Helsinki [Rai 78] . The system consists of modules
for the lexical3 syntactic and semantic processing of computer
languages. Semantic processing is carried out on the basis of
attribute g r a m m a r s. The lexical and syntactic metalanguages
of the original system where increased by us so that the user
could define the compiler of a self-extending language, too.
In our system the derived language may be the base language
and an attributed tree language, too [Sim 81]. Our implementa­
tion - the first one in Hungary - will be completed at the end
of this year. After that the parser of the CHANGE system which
is now running on the CDC 3300 computer will be rewritten in
the HLP system.

In our opinion the CHANGE system has another basic feature
too which is called multiprocessor-orientation [Leg 73] . In
order to give some new comparative points of view in connection
with the CHANGE system we introduce some high-level language
constructs on the basis of Concurrent Pascal which are used to
describe concurrent p r o c e s s e s. A process is a sequence of
"operations" carried out one at a time. Processes are concurrent
if their executions overlap in time. The language notation

cobegin Ŝ ; . . .; coend

is treated by the compiler so that the statements S^,...,S can
be executed concurrently. Concurrent statements can be arbit­
rarily nested thus determining a process hierarchy. It is this
hierarchy which determines the processor hierarchy.

In the CHANGE system it was developed by another concept.
The processor hierarchy is programmable, that is it can dinami-
cally be formed during program execution by the statements

239

COPROCESSOR and SUBPROCESSOR. Every CHANGE processor has a
private library to define the semantics of the statements. In
any step the next statement of the active processors is carried
out by the CHANGE interpreter. The augment statements typed
CLOSE EXTEND are processed in one step too.

In high-level languages for concurrent processes which
have access to common data there are some synchronizing
tools such as conditional critical region, semaphore, monitor
and event queues. Because the CHANGE language has common data
with the except of closed extend's data, there is a need to
introduce some kind of synchronizing primitive. For the CHANGE
processors the language contains statements called WAIT and
NOWAIT to control the working of those. It should be noted
that the semaphore as a synchronizing primitive is able to
solve all synchronizing problems connected with concurrent
processes. Variables of the type semaphore can be introduced to
the CHANGE language by data type extension. The semaphore
operations called P and V by Dijkstra are considered as the
results of statement extension. The classical Readers and
Writers problem solved with semaphores can be found in the next
chapter.

3. The CHANGE programming system
As we have seen the CHANGE programming system consists of

two main components. The CHANGE parser maps the source text
into an intermediate text after carrying out the static exten­
sion and the syntax analyzis of the base and augment statements.
The intermediate text will be executed by the CHANGE interpre­
ter. During interpretation the dynamic extension of interme­
diate augment statements is executed and the processor
architecture is formed. In the present chapter the basic con­
cept of the CHANGE system will be presented first. A short
presentation of the CHANGE statements will follow. Finally some
typical applications are given in order to demonstrate the
usefulness of the CHANGE language.

240

3.1. The concept of the CHANGE system
The hardware and software conditions which led to the

development of the CHANGE are outlined by the designer of the
language [Leg 73] , [Leg 80] . As it appears to the author the
problem area for which the use of the system is adequate depends
on the choosing of the base language. The basic data types and
statements of the CHANGE are FOETRAN-like. Statements for
e x t e n s i o n p r o c e s s o r management and for program modification
have FORTRAN-like syntactic properties too. Because the CHANGE
system was developed as a parser-interpreter system, the
FORTRAN-like declarations are treated as statements. It is easy
to see that the semantics of the CHANGE statements has many
dynamic properties to inspire the user writing effective but
unstructured programs.

In our opinion the development of the language has the
following three motivations:

(i) It must give some kind of possibility to the
users to introduce some new language constructs
to specify their problems at different levels
of abstraction, supposing that enough primitive
operations can be expressed on the base lan­
guage.

(ii) The base language must contain tools for creat­
ing concurrent processes and expressing diffe­
rent types of synchronization between them.
Processors assigned to the processes form a
processor hierarchy which can be reconfigurat­
ed during the execution of a program. Every
processor can assign various kinds of semantics
to the statements.

(iii) It should assure the language maximal access
to the state's components of the interpreter.

The main power of the CHANGE system - distinguished from
other systems - is the facility of the open and closed state­
ment extensions. In the case of open extension after the pa­
rameter passing the augment statement is replaced by the body
as an open routine which can contain some other augment state-

ments. The closed augment statement is interpreted as a closed
routine. After parameter passing the statement body is carried
out as a single statement in a new processor level with private
data.

The introduction of the motivation (iii) is considered un­
necessary, for it gives possibility to the user to develop so
called unstructured CHANGE p r ograms. Therefore the CHANGE sys­
tem has different levels of the trace facilities for debugging.

There is a special statement called CHANGE statement which
can modify several parts of the program during it's execution.
In case of application of the CHANGE statement in a statement body
the forming of the semantics of an augment statement can be
constrolled by the actual parameters. Let us assume that in a
state of the interpretation of a CHANGE program some open aug­
ment and CHANGE statement is executed. Consequently, the origi­
nal program has been modified. We can reproduce now several
parts of the program on FORTRAN and CHANGE level too, by the
execution of the TRANSLATE and LIST statements.

An interesting programming method using the extension
facility, the TRANSLATE and LIST statements will be given next.
If we wish to solve some computational task by the method of
step by step refinement of the abstraction levels then we can
do the following. At the first abstraction level we formulate
our task by forming extended data types and control structure.
At the subsequent levels we give the definitons of augments
until the statements of the base language are reached. At the
optional level of the implementation the modified CHANGE pro­
gram can be reproduced by using LIST statement to control the
generated program. If the program generated at the last level
does not contain some special statements such as processor
management statements etc. then the user can apply the state­
ment TRANSLATE which generates the equivalent debugged FORTRAN
program in order to optimize run time.

242

3.2. On the statements of the language
In order to give a short presentation on the statements of

the language let us consider as an example the following pro­
gram. The classical Reader and Writer problem is solved by a
eyolio message buffer.

The program consists of two parts (see Program 1. and Pro­
gram 2.). The first part is to specify

- the extension of an integer basic data type in a static
manner to introduce a new data type called SEMAPHORE
(see line labeled 20)

- the declaration and assignement of the initial value for
the text variables 0 and P (see lines labeled 21-23)

- the open statement extension (in the line labeled 24)
which is introduced for the specification of the initial
assignement to variables typed SEMAPHORE

- the open statement extensions in order to introduce the
semaphore operations P and V (see lines labeled 25-26)

- the open statement extension for incrementing the
pointers of the message buffer (see line 27)

At compile time after the processing of extensions the syntax
of the augments is transferred to the syntax library (identified
49). During the execution of Program 1. the semantics of augmmts
is copied into the semantics library (identified 50) and the
files which contain the libraries are rewound (see line la­
beled 28-30). The specification of the parameter passing can
be seen, for example, in the line labeled 4, 9, and 13. The
description of a statement body can be found in the lines 2-3.

C THE READER AND WRITER PROBLEM
C SOLVING WITH SEMAPHORES

20 EXTEND TYPE SEMAPHORE,INT
21 TEXT 0,P
2 2 $ O P E N $ T O 0
2 3 $ P E R M $ T O P
24 EXTEND 0,P,SEMANTICS AT 7, $SEMAPHORE:V=INT:E$
25 EXTEND 0,P,SEMANTICS AT 1, $P(SEMAPHORE:V)$
26 EXTEND 0,P,SEMANTICS AT 5, $V(SEMAPHORE:V)$

243

27 EXTEND О, P , SEMANTICS AT 10, $ INCREMENT INT: V MOD INT:E$
28 LIBRARY TO FILE 50
29 REWIND 49
30 REWIND 50

STOP
1 SEMANTICS BODY 2-3, PARAMETERS 4-4
4 I==SEMAPHORE (1),INT(1)
9 J==INT(1)
13 K==INT(2)
2 IF(I.LE.O) 2,3
3 1=1-1
5 SEMANTICS BODY 6-6, PARAMETERS 4-4
6 1= 1+1
7 SEMANTICS BODY 8-8, PARAMETERS 4-9
8 I=J *

10 SEMANTICS BODY 11-12, PARAMETERS 9-13
11 IF(J.LT.K) 12,13
14 J=0
12 J=J+1

Program 1.
In the Program 2. four variables are declared as extended type
called SEMAPHORE on the basis of the extended syntax library.
After the initialization of the pointers and semaphore vari­
ables two processors are initiated and a P operation is execut­
ed to await the termination of two subprocessors. The first
processor labeled 2 is treated as the Writer and the second
labeled 3 as the Reader. The access of the message buffer is
synchronized by semaphore SI. The read and write operations
are synchronized using semaphore operations on the variables
S3 and S2.

LIBRARY FROM FILE 50
INT В,C,BUFFER(10),I,J,К,L
SEMAPHORE SO,SI,S2,S3
B=1
C=1
S0=—1

- 244 -

Sl=l
S2=10
S3=0
SUBPROCESSOR 2,2
SUBPROCESSOR 3,3
P (SO)
STOP

C PROGRAM FOR PROCESSOR 2
2 LIBRARY FROM PROCESSOR 1

DO 4 1=1,30,1
READ(60,(14)) К

P (S2)
P (SI)
BUFFER(B)=K
INCREMENT В MOD 10
V(S1)
V(S3)

4 REPEAT
V(SO)
STOP

C PROGRAM FOR PROCESSOR 3
3 LIBRARY FROM PROCESSOR 1

DO 5 J=l,30,l
P(S3)
P(S1)
L=BUFFER(C)
INCREMENT C MOD 10
V(S1)
V (S2)
WRITE(61,$(IX,14)$)L

5 REPEAT
V(SO)
STOP

Program 2.

245

3.3. Application examples
The CHANGE programming system is now running on some com­

puters such as CDC 3300, R-40 and IBM 3031. In all cases the
language of the implementation is the FORTRAN language. At
present about 20 000 lines of CHANGE programs are tested and
integrated in a source library. In the present chapter some
typical applications of the CHANGE will be briefly presented on
the basis of the CHANGE library.

The first example is an application of the CHANGE
processor hierarchy to sort various types of data elements
refered to [Tho 77] . As the second example a system for educa­
tion is presented. On the first level the system called CAI*
(Computer Aided Instruction) defines a large number of elemen­
tary exercises as augment statements. The statement body of
augments determines the algorithm.to solve the exercise. Using
multi-level extension complex exercises can be composed from
the elementary ones. Extension can be used to give different
formulation to exercises with identical solutions described by
a statement body.

There exists an application of CHANGE to produce programs
for NC (NUMERICAL CONTROL) machines. As a first step basic
operations of the machine are defined as augment statements. As
a second step technological instructions are reduced to the
first level in the form of statement body.

As a next example we mention the implementation of the
assembly language called SLAGH. The purpose of the implementa­
tion is twofold. Defining the statements of the SLAGH language
as augment statements it becomes possible to simulate SLAGH
programs in the CHANGE system. On the other hand appropriately
changing the target language of the TRANSLATE statement one can
generate microprograms from SLAGH programs.

The last example mentioned is an application of CHANGE
related to the input-output analyzis of the general linear
system models. Such a probelem occurs, for example, during the
design of the general linear electrical network. The problem is
reduced to the combinatorial problem of finding a spanning
forest in a graph with к roots fixed. The solution is based on

246

the mapping of the given graph to an equivalent configuration
of processors [Kov 81] .

References
[Bas 75] Basile, V.R.: A Structured Approach to Language

Design, Computer languages, Vol. 1. 255-273.
[Kov 81] Kovács, I. and Pávó I.: The Implementation of a к-tree

Generation in a Paralel Computing System, to be pub­
lished in Acta Cybernetica

[Leg 73] Legendi, T.: The CHANGE Language/Multiprocessor,
Computer and Automation Institute, HAS, 7/1973,
Budapest (in Hungarian)

[Leg 80] Legendi, T.î CHANGE User's Manual, Computer and Auto­
mation Institute, HAS, CDC 3300 User's Manuals,
15/1980, Budapest (in Hungarian)

[Nap 76] Napper, R.B.E. and Fisher, R.N.: ALEC - A User
Extensible Scientific Programming Language, Computer
Journal, Vol. 19. 25-31.

[Nap 80] Napper, R.B.E. and Fisher, R.N.: RCC - A User
Extensible Systems Implementation Language, Computer
Journal Vol. 23. 212-223.

[Rai 78] Raiha, K., Saarinen, M., Soisalo-Soininen, E. and
Tienari, M.: The Compiler Writing System HLP (Helsin­
ki Language Processor), Department of Computer Science,
University of Helsinki, Report A-1978-2.

[Sim 81] Simon, E., Zachar, Z., Gyimóthy, T. and Túrán Gy.:
A Self-extending Compiler Generator Based on
Attribute Grammars, to be published in the Proceedings
of the Programming Systems'81 Conference, J. von
Neumann Society, Budapest (in Hungarian)

[Sol 71] Solntseff, N. and Yezerski, A.: A Survey of Extensible
Programming Language, McMaster University Hamilton,
Technical Report, No. 71/7.

[Tho 77] Thompson, C.D. and Kung, H.T.: Sorting on a Mesh-
connected Paralel Computer, CACM, Vol. 20. 263-271.

247

t Tue 75]

[Weg 76]

[Wgb 71]

[Win 79]

Tucker, A.: Very High-level Language design: A
Viewpoint, Computer Languages, Vol. 1. 3-16.
Wegner, P.: Programming Languages. The First 25 Years
IEEE Transactions on Computers, Vol. C-25. 1207-1225.
Wegbreit, B.: The ECL Programming System, U.S. Air
Force Technical report, F-19628-68-C-0101.
Winograd, T.: Beyond Programming Languages, CACM, Vol
22. 391-401.

Computational Linguistics and Computer Languages Vol. XV. 1982,

EFFECTIVE LOGIC OF PROGRAMMING LANGUAGES

Abstract

M arek A . S u ch en ek

Institute of Computer Science Warsaw Technical University
Warsaw, Poland

A n effective logic (i.e. with decidable notion of proof from decidable set of premises,
and with the completeness property) for programming languages including conditional-assigne-
ment-with-goto instructions and first order declarations of data structure is presented in this
paper. Usefulness of the logic in proving the total correctness and the stop properties of
programs is demonstrated here.

Introduction

A programmer, who has lost long hours in hunting subtle bugs in his o w n program, could
really appreciate an ease, that seeming evidence, deceives our intuition with . In fact, common
sense alone does not matter a lot against a finesse of traps, that the programming practice
lays. So it is no surpise for m e that as long as programmable computers exist (may be even
a bit longer) one feverishly searches efficient weapons against errors.

Besides all various preventive measures taken in order to secure a functional correctness
for programs, methods of post factum reliancei enlargement, known by the name of verification,
deserve the special mention. Most natural of them, testing, is based on the principle: ’’the proof
of the pudding is in the eating”. Though in many cases such á procedure seems quite sufficient,
what more it even m a y be sometimes the only possible way of verification, the effective ade­
quacy of the method nevertheless arose some doubts. ’’Testing may reveal only the presence
but never the absence of errors” is the thesis, which for all its over-categorical form reflects
fairly well a scepticism, the practice af experimental inspection of the correctness of programs
meets with.

The mentioned distrust has given rise to efforts towards making use of deductive methods
where experience did not yield the expected results. Since — as being claimed — an experiment
ascertains by no means functional features of a non-trivial program, maybe it would be possible
to prove them to be valid beyond a doubt. With such purposes in mind, the trend towards
mathematized theory of programs — which the work of McCarthy [12] is an example of — was
nothing unusual. But in spite of the fact, that Turing’s machine is numbered among basic
notions of mathematical logic since a long time, the phrase ’’beyond a doubt” with reference
to the proof of the correctness of the program, turned out to be difficult to formalize.

Оле has relatively easily succeeded in specifying — as Hoare [6] did — a set of axioms
and rules of inference, that were commonlv admitted to be evidently valid. However, the set
(see Andréka, Németi,Sain [18]) leaves much to be desired in respect of its completeness: there
are undoubtly correct programs, the correctness of which cannot be proved applying

250

exclusively Hoare’s rules and axioms. As conclusions concerning features of programs, drawn from
a finite number of tests successfully executed, would be sometimes over-hasty, in so far the
abridgement of the meaning of ’’beyond a doubt” to ’’being formalizable within Hoare’s
system” has appeared to be too far prudence.

O n the other hand, attempts to reduce the proof of the correctness of a program to a proof
in the sense of classical logic by appropriate axiomatization of the notion of ’’program” (e.g.
in Burstall [2]) did not meet with wide approbation, because of doubts about its exact consis­
tency with general comprehension of that term. It can be found in [16] (foot-note 1) that
the above question is not baseless, at least as it concerns [2].

The requirement of completeness of the searched formal system has born a necessity of the
rigorous definition of program’s semantics, which escaped the attention of even such recognized
authorities, as Dijkstra [3], Hoare and Wirth [7] or Manna [11]. This problem has been
resolved on the base of the so-called transition relation (due to Mazurkiewicz and Pawlak),
which is usually interpreted as abstract processor of the program, that is realized by (hence
Pawlak s machine). Properties of programs, including the correctness, have been consequently
described as c o m m o n features of corresponding transition relations. With such determined se­
mantics, the completeness of the programming logic L is defined as follows: if a program
P has a property expressed by a formula q(P), then there is a formal proof of q(P) within
L, and vice versa.

Till now, one succeeded in constructing a few complete deduction systems concerning
programs.

The Algorithmic Logic of Salwicki [15] and the Dynamic Logic of Harel [5], Meyer
and Pratt are the best known ones. However, these systems have some unpleasant features
that restrict slightly their scope of applicability: they involve infinitely long proofs (e.g.
Algorithmic Logic) or undecidable sets of axioms (e.g. Dynamic Logic). For this reason they
do not yield the effective definition of the notion of ’’beyond a doubt” with reference to
the proof of the program’s correctness: the first one through the necessity of inspection of
infinitely long proofs, and the second one through the lack for a way of deciding whether
or not a sentence is an axiom. The reason of the above imperfection lies in an a priori assump­
tion that data structure, which a program refers to, includes the standard model for arithmetics

the object by virtue of Gödel’s theorem [4] unknowlable, if Churchrs thesis (Barwise [1],
chap Al) is believed. Therefore is no surprise that modes of inference about so
comprehended programs have successfully resisted automation.

Do we indeed require a perfect computer to contain an implementation of all naturals
with usual arithmetical operations? It is difficult to imagine, how the requirement could be
formally stated, to say nothing about its unfeasibility. What is more, the whole arithmetics need
not to be necessary in the set of operations of a given program. It is verisimilar instead, that
quite different data structures will turn out to be useful in concrete applications, what is always
connected with the necessity of identification of such structures. Furthermore, it seems not to

be a reason to distinguish some of them, as for example arithmetics, by release from such an
obligation.

They are declarations that play the role of identifiers of the so-called abstract data struc­
ture. As they need not to be (and usually are not) unambiguous, there exist various realiza­
tions of data structures of the very same program. In this case the verification problem redu­
ces to the ascertainment that the verified program acts accordingly to the author’s expectations
in all possible realizations of its data structure (cf [18]). It is easily seen, that testing has
still less to do with efficiency here.

The notion of portable programming is related to this point of view, and is taken as
principle in e.g. F O R T R A N standard definition [14]. It arouse as a side effect of the
standardization process of high level languages: it turned out that it is sensible to demand a
program to be constructed in a way, providing its correct behaviour under each of various
compilers that meet all the e x p l i c i t requirements of a standard language definition.

So comprehended program’s properties preserved under a class of data structure, were
investigated in Kfoury [8]. A more radical standpoint can be found in Manna [10], where
uninterpreted flow schemata with no explicit assumptions as to the data structure are
considered. However, as far as I know, the methods of reasoning about such partially inter­
preted programs have been nowhere yet effectively formalized but in [16].

The present paper concerns the Computational Logic of [16]. This is a deduction system
with finitary rules of inference (infinite proofs are no longer needed), decidable set of axioms •
(there exists an effective decision procedure of being an axiom) with completeness property,
which means that the notion of ’’beyond a doubt” in respect to the proof of a property,
expressible in the language of Computational Logic (here called Programming Language) has
been eventually defined. O n the other hand, it is shown in the sequel, that interesting properties
of programs are possible to be expressed in that language, and then Computational Logic
proves useful in the process of program verification.

The paper is organized as follows:

Section 1 is a description of the Programming Language. It is expressive enough to com­
pilers of arbitrary real programming language be written in.

Section 2 is devoted to semantics — the notion of realization of program is introduced
there. Alike in practice, where there may exist many essentially different realizations of a
given program, or there may be no such realization at all, in The paper - unlike in the most
of known theoretic solutions — the principle of the unique determination of semantics by
the program itself is not assumed.

252

Section 3 contains examples of program’s properties. They concern the total correctness
and halting problems.

Section 4 contains results that show that these properties are expressible in Programming
Language with satisfactory accuracy.

Section 5 contains the definition of Computational Logic and the completeness theorem.
The proof of the theorem, considering its size, is not presented here - it was published in [16].

Section 6 contains the definition <of the instruction of the Programming Language. The
instructions are defined to be formulae of that language, similarly as in Kroger [9]. But un­
like ours, the logic of [9] (Logic for Algorithmical Reasoning) is infinitary one.

Section 7 consists of notes on restricted semantics. It is pointed out, that the rejection
of some classes of realizations, e.g. the ones having too large computational power, has no
influence on the completeness property of Computational Logic.

1. Programming Language

A program is a set of instructions and declarations. In stru ction s are conditional-assign-
ment-with-goto instructions of the form

1 .1 . a : if p then Xj, . . . , xn : = Ц , . . . , tn and go to ß
where

- a and (3 are of naturals (labels): a. labels 1.1 and ß points the instructions,
that may be executed after the assignement of 1.1,

— p is a formula (a logical expression) being the necessary condition for the
assignement of 1.1.

— Xj, . . . , xn are variables: x { is nonidentical with x ., whenever i Ф j,

— t i , . . . , t are terms (arithmetical expressions).

Declarations are first-order sentences, i.e. formulae without' variables being not in the scope
of a quantifier. E.g.:

V x 3 y(x < y)

is the declaration, while 3y(x < y) is not. It has the meaning: ’’for each x there is y,
that x < y”.

Instructions describe actions, that have to be executed, whereas declarations define a

253

class of data structure, which the actions refer to. In the sequel, programs will be usually
denoted by P, P', etc, sets of instructions — by O-, (X, , and sets of declarations - by
R, R', and so on. From the definition of program we shall assume that

P = a u R, P' = Q ' и R', . . . etc.

2. Semantics of Programs

Let us assume the set of variables to be potentially infinite (virtual memory). A state of
memory is uniquely determined by an infinite sequence. Elements of the sequence are the
values of consecutive variables. The sequences will be denoted by <p, Ф, etc. W e shall call them
valuations.

A state of program’s execution is uniquely determined by an instruction counter and a
state of memory. Pairs <a, ip>, where a is a label and <p is a valuation, encode this infor­
mation, and will be called situations.

In order to execute the process described by a program, it suffices to construct an auto­
maton, performing all the transitions between situations, according to that program. Such an
automaton is called a transition relation (denoted by C, C, etc.) and is a binary and tran­
sitive ^ relation in the set of all situations. Being of two situations sj and S2 in the
transition relation is interpreted as existence of path (i.e. a sequence of consecutive transitions)
from Sj to S2 - The transitiveness of the relation means: if there are paths from sj to s->
and from S2 to S3 , then there is a path from Sj to S3 .

A computational system is a triple

2.1. <A, C, F >

usually denoted as c, where

— A is the set of all values (of variables) available in the system ,

— C is a transition relation; valuations embedded in C must be sequences of elements
of A,

— F is a sequence of relations-and-functions which are standard ones in e.g. in
F may appear: zeroing, incrementation, comparison with zero, etc.; the elements of
F are the only ones, whose names (symbols) may appear in programs. 1

1) C is a binary transitive relation if < Sj,s2>eC and C.s^s^;» eC implies <Sp Sj>eC.

254

If q is an instruction of the form 1.1, then Vtc satisfies (may be among others) q iff
for each valuation with values in A the condition:

if p is true when evaluated in fc/6 c by \p (denotation <£*(p) = true) then the
transition (<a, ф >, < ß , ф >) is in C denotation: « a ,< p > , < ß , ф >)еС)

holds, whem ф is defined by equation

^ (x) if x</ { Xj , . . • , x n)

i f X is id en tica l w ith x ;

and ip^t) denotes the value of term t evaluated by ip. It is easily seen, that the
notion of satisfaction of instruction is an explicitness of its intuitively comprehended execu­
tion. In the sequel, the denotation c'6c 1= q will be applied instead of: satisfies q.

If r is a declaration, then satisfies r if r is true in the structure <A, F > (cf.
Barwise [1], chap. Al). In that case we shall write c 1= r.

if P is a program, then t/Ь. is a realization of P (denotation: O C c 1= P) if for 4
all peP, O b 1= p holds. It means that c/(>c 1= P if C realizes (at least) the
executions of instructions of Ou, nad <A, F > is a sturcture described by declarations of
R. A program P and a structure <A,F> 1= R need not uniquely determine the realization
<A,C,F>, since, as it follows from the definition of realization, the condition:

if <A,C,F> 1= P and C ç C ' is a transition relation in A, then

<A,C',F> 1= P

holds.

If P is a program then a computational system <A,C,F> is an implementation of
P iff <A,C,F> 1= P and C ç C ' whenever <A,C', F > 1= P. In other words, an
implementation'of a program is its minimal (in the sense of inclusion of transition relations)
realization. So the transition of an implementation encodes e x a c t l y the actions specified
by a program.

A program P and a structure <A,F> 1= R uniquely determine P!s implementation,
which is a computational system <A,C,F> where C is the transitive closure 2) of the
so-called direct transition relation of P in <A,F>. However, it does not mean, thaj: a
program itself uniquely determines its implementation.

2) the least transitive relation which includes a relation in question

255

The defined syntax and semantics enable to deal with concurrent programs. If each
instruction is thought to be an atomic and instantaneous one, what is widely accepted
— cf. Pnueli [13], then the processor of the program may be considered as a set of independent
atomic processors. Each of them corresponds to one and only one instruction and acts as follows:

(1) At the very beginning all the processors corresponding to instructions labelled by the
entry label are active, while the rest of them are passive ones.

(2) The processor corresponding to 1.1 performs the specified assignement only if p is true,
and the processor is active, and no other processor is acting at the moment.

(3) If the label a is different from the label ß, then the processor corresponding to 1.1.
turns all the processors corresponding to instructions labelled by ß active, and all corresres-
ponding to ones labelled by a passive — simultaneously with the performed assignment.

(4) The execution of the program is finished iff there are no active processors.

Such an approach to concurrency is known by the name of subjective semantics, and is based
on expressing the concurrency in the terms of non-determinism (see e.g. Winkowski [19] for
details).

Example The program (11 is always true formula)

{ ~1(0 = l);
a : if 11 then1 X], x2 : = 0,0 and ß;

ß : if Xj = 0 then Xj, У] : = i , / (y j) and ß;

ß: if x2 = 0 then x2, y2 : = 1 ,Л у 2) and /3;

ß : if (Xj = 1) & (x2 == 1) then z : = g(yj, y2)

’ computes” a value of the term gC/lyx), /(y 2)) with values of Д у ^ and /(y 2) being
computed concurrently. ■

If P and P' are programs, then P sem antically im p lie s P' iff each realization of P
is a realization of P' too (i.e. for all ■еД>с, 1= P' whenever <e*6 1= P).
This fact is denoted by P 1= P' and means that P ’’performs” at least actions, which P'
’’performs”.

Exam ple If P' ç P, then — by virtue of the definition of realization — P 1= P'. ■

256

Example.

{ a : if “l(x = 0) then x : = /(x) and or,

a : if x = 0 then x := g(x) and ß } 1=

a : if 1 (x = 0) & f i x) = 0 then x : = gi f ix)) and)3

The opposite implication does not hold. ■

3. Properties of Programs

Let a be the entry label and ß the exit one. We shall deal with the following
properties of realizations of the program P:

3.1. Property For the values of ’’input’’variables X j x , which the condition
p(xj , . . . , xn) holds for, each realization of P computes the values of ’’output”
variables : y x = f x (X j, , xn), . . . , Ут = / т U x, • • • • , xn), and halts.

3.2. Property There is a path from a to ß in some implementation 1e/Gc of P, for
some initial valuation p and some terminal valuation ф in .

3.3. Property For all implementations 'c/6c of P and for all initial valuations p in ^ C c ,

there is a path from a to ß.

Let rou te in <A,C,F> denote a sequence of situations <sx s , . . . > , such
that <sj; sj+1> eC for i = 1, . . . , n — 1, . . . , and s is the last situation of a route only
if for no s,'<s, s '> eC holds.

3.4. Property Each route in arbitrary implementation of program P ends at ß,

whenever starts at a.

The property 3.1. is a weak version of total correctness. The properties 3.2 — 3.4. are
different versions of stop property, with 3.4 being the strongest one.

4. The Expressiveness of the Properties.

The property 3.1. is immediately expressible in Programming Language.

4.1. Theorem A program P is of the property 3.1. iff

P 1= a : if p(Xj, . . . , xn) then Ух , ■ ■ ■ , У т ■ = /^ X j, . . . , xn), . . . ,

/ m(Xj, . . . , xn) and ß.

257

P r o o f (instant) from the definition of realization. ■

In order to express rigorously the properties 3.2 — 3.4, one need a language, which is a
proper extension of our Programming Language 3). However, one can ’’interpolate” the
properties with satisfactory accuracy in Programming Language.

4.2. T h eorem If P is of the property 3.2, then there is an instruction q of the form
1.1, that

О» 1= q

<£*(p) = true (p is satisfied by in

ф is defined by 2.2.

Proof in [17]. ■

By other words, if there is a path from a to ß in some implementation of P, then Q>
semantically implies an instruction, that forces that path existence.

4.3. Theorem If P is of the property 3.3, then there is a set P' of instructions

P' = { a : if pj then and ß; . . . ; a : if Pj then and ß }

that

P 1= P'

R 1= Pj V . . . V pj (the pj ’s exhaust all possible cases)

R 1= 1 (Pj & pk) for each i Ф к (the Pj's are disjoint).

P r o o f in [17]. ■

If one has to deal with programs including infinite sets of instructions then the property
3.4. is beyond an effective investigation. Indeed, each of instructions of the program may be
responsible for lack of the property, so in order to ascertain that it holds, one need to
consider all of the infinite sets of instructions.

4.4 Theorem If P is of the prope* 3.4. and О» is finite, then there is a set P' of the form
as in the 4.3. theorem, that

P 1= P'

R 1= pj V --- V pj

if (<a, у > , < ß , ф >) e C then for some instruction qeP ' of the form 1.1, y?1p) = true
and ф is given by 2.2 (i.e. if there is a path from a to ß in an implementation of P

3) The needed language must not have a partially decidable set of tautologies.

258

then some element of P ' forces the existence of that

Proof in [17]. ■

From the above theorem it follows, that if a finite program P is of the property 3.4
then there is a finite loopless program P', that is equivalent to P in respect to inputoutput
characteristics.

5. Computational Logic

One may pose the question, whether the semantical implication is syntactically
characterizable or not; i.e. whether there is a set of axioms and rules of inference, that
P 1= q is equivalent to existence of proof of q from P treated as set of premises
(denotation: P I— q).

The answer is ”yes”, if one does not impose any extra requirements. It sufficies to take
the set

{ p i p is an instruction or declaration and 0 1= p }

as set of axioms, and the set

p
{ ^ ÍP is a program, p is an instruction or declaration and P 1= p }

as set of rules of inference. However, the logic defined this way, need not be effective. For
the effectiveness of the logic, the set of proofs should be decidable, unless the set of premises
is umiecidable. In other words, having a sequence of formulae and a decidable set of premises
we should be able to decide by inspection, whether it is a proof ot not. The Computational Logic
satisfies this extra requirement.

Let L be a first-order language and let T denote the set of all terms of L. By
substitu tion (in L) we mean each function

a : T - T

satisfying:

— if f is n-ary function symbol and t j , . . . , tn
are in T, then a[/tj . . . tn] is identical with
M tj] ■ • • ff[tn],

— if c is a constant symbol then a[c] is identical with c, and

— there are only finitely many variables x in L that o[x] is non-identical with x,
where a[t] denotes the value of a on t.

259

The languages M we shall concentrate on, are those of first-order — with the equality
symbol- which meet the conditions:

(1) the set of all terms of M is decidable, and

(2) the set of all realation symbols of M includes a decidable subset S, that for each
number n there are infinitely many n-ary symbols in S.

By the conditions (1) and (2) there is such a 1 — 1 recursive mapping from the set
of all sequences of the form

(3) < a ,y j , . . . , yn , a ß >

(where a is a substitution, y j y n are variables, n , a ß are naturals) onto S, that the
arity of a symbol corresponding to (3) is n. For example of such a mapping see [16]
(foot-note 2).

Further on, we shall fix the language and the mapping, denoting the s y m b o l

correspomding to (3) by

sub(o, y1 y n ,a, ß)

Now we state the set of axiom s of Computational Logic. First, these are all formulae
of forms listed below. (The parenthesisless notation is applied in ralation to function-and-relation
symbols).

(A l) p Э (q D p)

(A2) (p Э (q э г)] Э [(p d p) Э (p Э r)]

(A3) [p э 0) э 0) э p

(A4) Vx(p Э q) Э (p Э V X q) provided x is not free in p

(A5) V x p Э p'

where p, q, r denote a formulae of M, 0 is the falsehhod symbol, x is a variable and
p' is a formula obtained from p by putting a term t instead of each free occurence of
x, provided no occurrence of t so introduced contains the bound occurrences of a variable in

/
P •

(11) t = t for every term t of M

(12) t.= Sj э / t j . . . t„ = / t j . . . t _ j Sj tjM . . . t f°r every n— ary function

symbol of M and i = 1, . . . , n

260

(13) tj = Sj э (rt . . . t n Э r tj . . . t i _ l Sjt.+J tn) for every n-ary ralation
symbol of M and i = 1, . . . , n.

Second, these are all universal closures of formulae of forms listed below.

(Tl) s u b (o , yj, • • • , yn, (X, ß) Xj . . . xn D

D s u b (a,У1г(1), . . . , yn(n), aß)xn(1) . . . хя(п)

where тг denotes a permutation on { 1, . . . , n }

(T2) Vy s u b (o , yt , • ■ ■ , yn , yn+1, a ß) x„ . . . xny =
= s u b (a , y l , . . . , yn , a ß) Xj. . . xn

for yn+1 M Yj, . . . , yn } and y H Xj, . . . , Xn }

(T3) s u b (o , yj, . . . , yn, yn, a , ß) Xj ... xny =
= (xn = у Э s u b (o , Yj, • • • , yn, a , ß) Xj . . . Xn)

(T4) (ct[z,] = r[Zj] & . . . & a[zk] = r[zk] &

& s u b (a,yj, . . . , yn,a, /3) Xj . . . xn) D

D s u b i r , yj , . . - , yn ,a, ß) Xj. . . xn

where a and r are substitutions identical on variables other than z, , . . . ,z. , and
Xj , . . . , xn are the all variables of the terms a[z.], r[z.] (i = 1 k)

(T5) (sub(a, Yj, • • • , yn , a ß) Xj. . . xn<£

à s u b (г , y r . . . , y n , ß, т) o [x t]. . . a [x n]) э

3 subior, yj , . . . , y n , a , 7) Xj . . . x n

provided the set of all variables of the therms cr[xn] is included in { Xj, . . . , xn)
o r is the composition of a and r : ar[t] = a[r[t]].

The orily ru l e s o f in f e r e n c e are

D ^ (modus ponens)

У рЧ - (generalization)

where p and q denote formulae of M, and p> denotes the formula obtained from p by
putting the variable y instead of each free occurrence of x, provided no occurrence of y so
introduced is bound in p

The notion of p r o o f is defined as usual (Barwise [1], chap. Al). We write 2 I—p if
only if there is a proof of p from a subset of 2.

It is quite abvious that the set of axioms of the Computational Logic is decidable unless the
set of these realtion symbols of M which are not S is undecidable.

In order to define the semantics of the language M, we take advantage of the computationa'
structure 2.1.

We let the terms and formulae of M \ S maintain in their ordinary first-order
semantics (for details see Barwise [1], chap. A l), writing

< tHc ,v> 1= P

for <A, F> 1= p[<£], where denotes an interpretation of M \ S in < A ,F > . For the
atomic formulae of S we define

< '0\j c ,V> 1= sub (a , y}, . . . , yn , a j3) t j -----tn

to be valid if and only if the following implication holds : for every interpretation ф in c

satisfying <//(y1) = '^(t1) and . . . and ^(yn) = ^(tn) the pair (< а ,ф > , < ß , ф, o >) isin С
where фо denotes such an interpretation in «JL that for each term t of M there is
iM t) = ф(а[t]).

Finally, by the usual induction we extend the (4) over the set of all formulae of M.

We shall write 't ^ c 1= p whenever < <e/& c , \p> 1= p holds for every <p in

Note that given the formula s u b (o ,y l , ■ ■ ■ , Уп, a > ß) *1 • • • *п ^as ехас^У

meaning of the instruction: if the value of yj equals to ip(t) for i = 1, . . . , n,

perform the substitution о and go to ß.

The following theorem is essential for our Computational Logic:

262

5.1. The Completeness Theorem For every formula p and every set 2 of sentences of

M, the conditions,

2 1= p and 2 I— p

are equivalent.

Proof in [16]. ■

The Computational Logic satisfies the Lőwenhein-Skolem-Tarski and the Conpactness
Theorem, hence by virtue of the Lindström Theorem (see Barwise [1], chap. A l) it is of
the first-order character.

6 . Instructions

Let p(y], . . . , yn) denote such a formula of M that all free variables of p are in
(y j , . . . , yn } , and no symbol of S occurs in p. Let a be a substitution being the

identity outside of { X j , , xk } We apply

a : if p(y j , . . . , yn) then Xj, . . . , xk : = a[xj], . . . , fffx j and ß

or simply

a.: if p then a and ß

as abbrevation of

Vy) • • • Vyn(p(y j, . . . , yn) D sub(a, у j , . . . yn,a, ß) у ,. . . . yn)

and call it an in s tru c tion . It is easily seen that

<A, C, F> 1= a : if p then о and ß

if and only if for arbitrary interpretation ^ in A, , У’(р) = true implies
(<a,i£>, < ß , <po>)eC, thus the defined above insturctions have their ordinary meaning.
Hence the defined language M is our Programming Language of Section 1.

7. Restricted semantics

In the class of computational systems previously defined, there are ones, that perform
acions being inaccessible for any program. Let К denote the class of all implementations
having finite or countable universe:

263

K = { <A,C,F> I card (А) < р0 and <A,C,F> is an implementation of some
program }

We define the relation l=Q of semantical im plica tion in re s tr ic ted sense as follows:
P l=0 q iff for each eK, 1= P implies 1= q. However, these measures have
no influence on the completeness theorem of our logic.

7.1. Theorem. For the arbitrary countable program P and formula q, the conditions
P i= q and P l=0 q are equivalent.

Proof in the English version of [16]. ■

Acknowledgement. I am greatly indebted to professor Andrzej Salwicki for reading an earlier
version of the. manuscript and making many helpful comments.

Reference

[1] Barwise,. J. (editor): ’’Handbook of Mathematical Logic” , North-Holland, Amsterdam 1978.

[2] Burstall, R.M.: Formal Description of Program Structure and Semantics in First Order
Logic”, Machine Intelligence 5(1969), pp. 79-98.

[3] Dijkstra, E.W.:’’Guarded Commands, Nondeterminancy and Formal Derivation o f'
Programs”, Comm A. С. M. 18(1975), pp 453-457.

[4] Gödel, K.: ”Uber formal unentscheidbare Satze der Principia Mathematica und verwandter
Systeme”, Monatsh. Math. Phys. 38 (1931), pp. 173-198.

[5] Harel, D.: ’’Arithmetical Completeness in Logics of Programs” in ’’Automata,
Languages and Programming. Proc. of 5-th Coll.” , Lecture Notes in Computer Science 62
(1978), pp 268-288.

[6] Hoare, C.A.R.: ”An Axiomatic Basis for Computer Programming” Comm. ACM 12 (1969),
pp. 576-580.

[7] Hoare, C.A.R., Wirth, N.: ”An Axiomatic Definition of the Programming Language Pascal” ,
Acta Informatica 2(1973), pp. 335-355.

[8] Kfoury, A.J.: ’’Comparing Algebraic Structures up to Algorithmic Equivalence” in
Nivát, M. (editor): ’’Automata, Languages and Programming, Proc. IRIA” ,
North-Holland, Amsterdam 1973.

С_ Ч2-ЛГ2- 264

[9] Kroger, F.: ”LAR: A Logic of Algorithmic Reasoning”, Acta Informatica 8 (1977),
pp. 243-266.

[10] Manna, Z.: ’’Mathematical Theory of Computation” , Mc Graw-Hill, New-York 1974.

[11] Manna, Z., Pnueli, A.: ’’Axiomatic Approach to Total Correctness of Programs” , Acta
Informatica 3 (1974), pp 243-263.

[12] McCarthy, J.: ”A Basis for a Mathematical Theory of Computation”, in ’’Computer Program­
ming and Formal Systems”, North-Holland, Amsterdam 1963.

[13] Pnueli, A.: ’’The Temporal Semantics of Concurrent Programs” in ’’Semantics of

Concurrent Comnutation”, Lecture Notes in Computer Science 70 (1979) pp 1-20.

[14] Programming Language FORTRAN, ISO Recommendation R1539, 1972.

[15] Salwicki, A.: ’’Formalized Algorithmic Languages” , Bull. Acad. Polon. Sei. Ser. Sei. Math.
Astronom. Phys. 18 (1970), рр/ 227-232.

[16] Suchenek, M.: ’’Notes on Computational Logic” , Thesis, Warsaw Technical University,
1978, in Polish. (Slightly shortend English version appeared as Research Report No 11, Inst,
of Comp. Sc., Warsaw Technical University 1980).

[17] Suchenek, M.: ”Is First Order Logic Really Useless in Proofs of Interesting Properties of
Programs?’ (to appear).

(>H8] H. Andréka, I. Németi, I. Sain: ’’Completeness problems in verification of programs and
program schemes” in MFCS’79, Lecture Notes in Computer Science vol. 74.,
Springer-Verlag 1979. pp. 208-219

[19] Winkowski, J.: ”A formalism for describing non-sequential processes” Fundamenta
Informaticae 2 (1978) pp. 129-139.

C 27196
Foprint nyomda 82095

	F. Berman: Compactness in models of Propositional Dynamic Logic
	L. Böszörményi: MODULA-2 used in the implementation of a Virtual Terminal Model
	S. D. Comer: Inductive domains and algebraic semantics of CF languages
	E. Csuhaj Varjú: Some basic properties of k-bounded internations of grammar forms��
	G. Dávid: On the basic concepts of SDS (System Development System) Part II.
	Z. Esik: On generalized iterative algebraic theories���
	I. Futó–J. Szeredi: A very high level discrete simulation system T-Prolog��
	L. Gerevich: A parsing method based on van Wijngaarden grammars
	T. Gergely–L. Úry: Representation and verification of communicating sequential processes���
	T. Gyimóthy–J. Dombi: Syntactic pattern recognition with modified fuzzy automata���
	G. Prószéky–Z. Kiss–L. Tóth: Morphological and morphonological analysis of Hungarian word-forms by computer
	E. Simon: Languages design objectives and the change system
	M. A. Suchenek: Effective logic of programming languages���
	Oldalszámok������������������
	_1���������
	_2���������
	1��������
	2��������
	3��������
	4��������
	5��������
	6��������
	7��������
	8��������
	9��������
	10���������
	11���������
	12���������
	13���������
	14���������
	15���������
	16���������
	17���������
	18���������
	19���������
	20���������
	21���������
	22���������
	23���������
	24���������
	25���������
	26���������
	27���������
	28���������
	29���������
	30���������
	31���������
	32���������
	33���������
	34���������
	35���������
	36���������
	37���������
	38���������
	39���������
	40���������
	41���������
	42���������
	43���������
	44���������
	45���������
	46���������
	47���������
	48���������
	49���������
	50���������
	51���������
	52���������
	53���������
	54���������
	55���������
	56���������
	57���������
	58���������
	59���������
	60���������
	61���������
	62���������
	63���������
	64���������
	65���������
	66���������
	67���������
	68���������
	69���������
	70���������
	71���������
	72���������
	73���������
	74���������
	75���������
	76���������
	77���������
	78���������
	79���������
	80���������
	81���������
	82���������
	83���������
	84���������
	85���������
	86���������
	87���������
	88���������
	89���������
	90���������
	91���������
	92���������
	93���������
	94���������
	95���������
	96���������
	97���������
	98���������
	99���������
	100����������
	101����������
	102����������
	103����������
	104����������
	105����������
	106����������
	107����������
	108����������
	109����������
	110����������
	111����������
	112����������
	113����������
	114����������
	115����������
	116����������
	117����������
	118����������
	119����������
	120����������
	121����������
	122����������
	123����������
	124����������
	125����������
	126����������
	127����������
	128����������
	129����������
	130����������
	131����������
	132����������
	133����������
	134����������
	135����������
	136����������
	137����������
	138����������
	139����������
	140����������
	141����������
	142����������
	143����������
	144����������
	145����������
	146����������
	147����������
	148����������
	149����������
	150����������
	151����������
	152����������
	153����������
	154����������
	155����������
	156����������
	157����������
	158����������
	159����������
	160����������
	161����������
	162����������
	163����������
	164����������
	165����������
	166����������
	167����������
	168����������
	169����������
	170����������
	171����������
	172����������
	173����������
	174����������
	175����������
	176����������
	177����������
	178����������
	179����������
	180����������
	181����������
	182����������
	183����������
	184����������
	185����������
	186����������
	187����������
	188����������
	189����������
	190����������
	191����������
	192����������
	193����������
	194����������
	195����������
	196����������
	197����������
	198����������
	199����������
	200����������
	201����������
	202����������
	203����������
	204����������
	205����������
	206����������
	207����������
	208����������
	209����������
	210����������
	211����������
	212����������
	213����������
	214����������
	215����������
	216����������
	217����������
	218����������
	219����������
	220����������
	221����������
	222����������
	223����������
	224����������
	225����������
	226����������
	227����������
	228����������
	229����������
	230����������
	231����������
	232����������
	233����������
	234����������
	235����������
	236����������
	237����������
	238����������
	239����������
	240����������
	241����������
	242����������
	243����������
	244����������
	245����������
	246����������
	247����������
	248����������
	249����������
	250����������
	251����������
	252����������
	253����������
	254����������
	255����������
	256����������
	257����������
	258����������
	259����������
	260����������
	261����������
	262����������
	263����������
	264����������
	265����������
	266����������

