
CL&CL
computer

and
automation

institute
Hungarian
academy

oî sciences
i

С 1 2 ЦЗГ

Computer and Automation Institute,
Hungarian Academy of Sciences

COMPUTATIONAL LINGUISTICS

AND

COMPUTER LANGUAGES

XII.

Budapest, 1978.

- 2 -

Editorial board:

t Tamás FREY(chairman)
Gábor DÁVID

Bálint DÖMÖLKI

Ernő FARKAS (editor)

Tamás LEGENDI (editor)

Árpád MAKAI

György SZÉPÉ

Dénes VARGA

Technical University, Budapest
Computer and Automation Institute, Hungarian Academy
of Sciences
Theoretical Laboratory, Institute for Coordination of
Computer Techniques
Computer and Automation Institute, Hungarian Academy
of Sciences
Research Group on Mathematical Logic and Theory of
Automata, Hungarian Academy of Sciences
Research Group on Mathematical Logic and Theory of
Automata, Hungarian Academy of Sciences
Research Institute of Linguistics, Hungarian Academy of
Sciences
National Planning Office

Secretary to the board: Ákos RADÓ
Dep. Head of Scientific Secretariat
Computer and Automation Institute, Hungarian Academy of Sciences

Distributor for: Albania, Bulgaria, China, Cuba, Czechoslovakia, German Democratic Republic,
Korean People’s Republic, Mongolia, Poland, Roumania, U.S.S.R., People’s
Republic of Viet-Nam, Yugoslavia

K U L T Ú R A

Hungarian Trading Co. for Books and Newpapers
1389 Budapest,
P.O.B. 149, Hungary

For all other countries:

JOHN BENJAMINS B.V.
Periodical Trade
Amsteldijk 44
Amsterdam, Holland

SZTE Egyetemi Könyvtár

J000907314

Responsible Publisher:

Prof.Dr. T. Vámos
Director of the Computer and Automation
Institute, Hungarian Academy of Sciences

- 3 -

CL & CL

COMPUTATIONAL LINGUISTICS AND COMPUTER LANGUAGES

A scientific periodical published in English under the auspices of the

COMPUTER AND AUTOMATION INSTITUTE, HUNGARIAN ACADEMY OF SCIENCES.

Topics o f the periodical:

The editorial board intends to include articles dealing with the syntactic and semantic
characteristics of languages relating to mathematics and computer science, primarily those of
summarizing, surveying, and evaluating, i.e. novel applications of new results and developed
methods.

Articles under the heading of ’’Computational Linguistics” should contribute to the
solution of theoretical problems on formal handling and structural relations of natural lan­
guages and to the researches on formalization of semantics problems, inspired by computer
science.

Articles under the heading of ’’Computer Languages” should analyse problems of computer
science primarily from the point of view of means of man-machine communication. For example
it includes methods o f mathematical logic, examining problems on formal contents and model
theory of languages.

The periodical is published twice a year in December and June. Deadlines are 28 Febru­
ary and 31 August.

All correspondence should be addressed to:

COMPUTER AND A UTOMA TION INSTITUTE
HUNGARIAN ACADEMY OE SCIENCES
Scientific Secretariat
1502 Budapest
P.O.B. 63.

Subscription information:

Available from: JOHN BENJAMINS BV.
Periodical Trade
Amsteldijk 44 Amsterdam (Z)

HOLLAND

- 4 -

TAMÁS FREY
(1927 - 1978)

The world of science as well as our journal has suffered a distressing loss: Tamás Frey
died on the 9th April 1978. Bot his life and his activités were closely connected with Hungarian
history and science.

Ha was bom 1927 in Pécs, and completed his grammar school studies there. In March
1944 he was arrested by the Gestapo, he was liberated in Mauthausen. He matriculated at the
Faculty of Mechanical Engineering of the Technical University of Budapest in 1946, and in
1948 continued his studies at the Weak Current Section of the Faculty of Electrical Engineering.
He took his degree in 1950 and began his scientific career at the Mathematical Department.

His intense mathematical interest lead him to the study of numerical and graphic methods,
he defended his candidate’s dissertation with the title ”On some local theorems of the con­
structive function theory” in 1956. Since 1960 he worked as assistant professor, and from the
early sixties he was active in the basic issues of computer science. His principal field of research
covered automata theory, the theory of approximation, numerical algorithms and the theory
of optimal processes, but he was involved in all important trends of international scientific
life, so that he achieved results in mathematical statistics information theory, pattern recog­
nition methods, ergodic theory and completion theory.

From 1962 he was caretaker director, from 1964 permanent director of the Computing
Centre of the Hungarian Academy of Sciences (one of the predecessors of the Computer and
Automation Institute of the Hungarian Academy of Sciences). His ability to obtain a compre­
hensive view, his acquaintance with his field of activity and his universal knowledge enabled
him to develop this young institute to become a centre of applied mathematical research,
promoting thereby the efficient application of the results of computer science.

In 1970 he was awarded the title of Doctor of Sciences for his dissertation ’’Automata,
algorithms, their optimization and approximation”, a synthesis of the outstanding achievements
of his work.

He did not become divorced from educational work, and he actively participated to the
very end in the teaching of mathematics and in the preparation and implementing of the edu­
cational reform. From 1968 he was Professor and Head of the Mathematical Department of the
Faculty of Electrical Engineerig of the Technical University of Budapest. He was a member of
several Hungarian and international scientific societies where he promoted the progress of
science with the some generous activity as in his principal posts. Generations of mathematicians
and engineers into full stature under his guidance, having been given careful and attentive assis­
tance in their first attempts in personal interviews with him. His conception and his scientific
imagination opened new vistas in the immense areas of sciences which more unexplored until
then, and he surveyed them together with us.

- 5 -

A leading figure of our journal, as the Chairman of the Editorial Board he gave a definite
shape to this scientific forum, yet as a true scientist not to be the very image of him, but of
the state of the art. His oeuvre should be a model for all of us.

His brilliant personality and his power of scientific imagination carried everybody with
him; however, during all his lifetime, he was fully aware of his responsibility for mathematics,
both as teacher and scientist. Although his death cut off his numerous activities, considering
his career in retrospect we find that it is not characterized by unrealized promises but by
thoughts, the conceiving of which has clarified new prospects. This endowed his work with

completion but not with finish, for nothing is finished in science. An activity to be continued
and a scientist able to be regenerated is Tamás Frey.

- 7 -

C o n t e n t s

1. I. Rúzsa: A NEW APPROACH TO MODAL LOGIC .. 9

2. P. Ecsedi - Tóth: INTENSIONAL LOGIC OL ACTIONS 31

3. P. Kümmel: ASPECTS TO CLASSILY CONTENT OF NATURAL LANGUAGES. 45

4. T. Legendi: TRANSCELL - A CELLULAR AUTOMATA TRANSITION FUNCTION
DEFINITION AND MINIMIZATION LANGUAGE FOR CELLULAR
MICROPROGRAMMING.. 55

5. H. Heiskanen: SEMANTIC ANALYSIS OF SYNATCTIC METHODS...................... 63

6. C. Anzaldi - L. Passerini: THE STRUCTURE OF THE SNEL SYSTEM FOR
AUTOMATIC DOCUMENTATION: .. 79

7. 1. Fidrich: A BN F SYNTAX FOR THE 0UERY LANGUAGE FORAL WITH
A DISCUSSION OF POSSIBLE MODIFICATIONS .. 105

8. T. Legendi: CELLPROCESSORS IN COMPUTER ARCHITECTURE...................... 153

9. G. Fay: CELLULAR DESIGN PRINCIPLES:
A Case Study of Maximum Selection in CODD-ICRA Cellular Space
Part Two, Detailed Design:.. 165

I

- 9 -

A NEW APPROACH TO MODAL LOGIC

Imre Rúzsa

§1. The pioneering work of A.N. Prior

The investigations described in the present paper were initiated and motivated by some
ideas of the late logician A.N. Prior. In Chapter V of his 1957 book [5] , he introduced a new
modal propositional logic called System This system permitstruthvalue-gaps, and hence,
’’true in all possible worlds” and ’’false in no possible world” fail to be synonymous therein.
Using Kripke-style model structures (cf., e.g., in [3]), we can reformulate System Q as follows.

The language of _§ contains the propositional connectives э (negation, material
conditional), two modal connectives _M and _L (possibility and strong necessity), parentheses,
and a denumerable set P of sentence parameters. A pair <W,V> is said to be an interpreta-
tion for P if W is a nonempty set (called the set of situations or possible worlds), and V
is a two-place function from P * W into the set }0,1,2) . i.e., for peP, weW, the possible
values of V{p,w) are the numbers 0,1, and 2, where ’0’ and ’Г stand for the usual truth
values ’false’ and ’true’, respectively, whereas ’2’ stands for ’unstatable’, i.e., ’2’ represents
the truth-value-gap. According to Prior, Vip.w) = 2 means that the sentence represented by
'p' speaks of individuals which are absent or non-existent in the world w. Thus,Prior
accepts here the primary view of Frege according to which sentences involving individual names
without denotation are without truth value (c.f., e.g., [2]).

For compound formulas fg, the valuation rules are defined inductively as follows:

(a) V(J,w) = 2 iff (if and only if) for some parameters p of / , V(p,w) = 2.

(b) If V(fw) Ф 2, and V(g,w) Ф 2, then:
V(~f,w) = 1 - V(f,w);
V(f D g,w) = 0 if V(J,w) = 1 and V\g,w) = 0, in other cases, V(f D g,w) = 1;
V(Mf,w) = 1 , if for some veW, V(f,v) = 1; in other cases, V(Mf,w) - 0;
V(Lf,w) = 0 if for some veW, V(f,v) Ф 1, in other cases, V(Lfw) = 1.

A set a of formulas is said to be satisfiable iff there exists an interpretation <W, V> such
that for some vvelV, V(J',w) = 1 holds for all fea. The other semantical notions (unsatis­
fiability, consequence) are defined in the canonical way. Let us note that the unsatisfiability
of the unit set | ~ / j does not mean that / is ’’always true”, i.e. that for all <W,V>,
and for all weW, V(f,w) = 1 holds, for the case F(/,w) = 2 is not excluded. Rather, the
unsatisfiability of { ~ / j only means that / i s ’’never false”, i.e., that the case V(f,w) = 0
is excluded. Thus, it is better to use the formulation ”/ is irrefutable” (instead of ”/ is
valid”) for the case j ~ / } is unstatisfable.

One sees immediately that Q is an 55-like modal system in which the relation R
of accessibility is universal in the sense that R = W ^ W = W2. Obviously, the notion of

- 10 -

interpretation may be re-defined as follows: An interpretation (for a set P of parameters) is
a triple <R>,R,V> where IP and V are as earlier, and R is an equivalence relation on W
(i.e., R ç IV2 is reflexive, symmetric, and transitive). Of course, in the valuation rules for
Mf and Lf, the clause ’’for some veW” is to be replaced by ’’for some veW such that
<w,v>eR”. By varying the conditions on R, one gets (^-variants of other well-known modal
systems (54, B, T, etc.).

Let us emphasize that in System Q , - M ~ p and Lp may have different truth values in
certain worlds. This means that the impossibility of ~p is not identified with the (strong)
necessity of p. We shall use ”Np” as abbreviation for without confusing it
with ’;Lp”.

A sentence of the form ”_L(p D р)” expresses that ”p D p ” is ’’always true”, i.e.,
that p is never unstatable. Prior used the abbreviation "Sp” for ”Ljip D р)” with the
intuitive meaning "p is universally statable” . Now, ”Lp” can be expressed by means of M
and _5 as follows:

"Lp” = ”~(Sp D M - p)" = ”Sp & Np”.

Thus, _5 can be used as a primitive (instead of _L).

One might hope that a quantified extension of System Q provides a first-order modal
logic in which the problem of individual names in modal contexts gets a satisfactory solution:
and this is the very philosophical significance of System jQ. (As it is known, Kripke’s modal
semantics does not solve this problem since free occurrences of individual terms are excluded
therein. See, e.g., [4].) In some of his papers, Prior mentioned the possibility of such an
extension, but he never gave complete semantics for a first-order extension of However,
some informal principles of Prior are worthy of mention.

If a formalized sentence involves an individual term which is without denotation in a
certain world w, then this sentence must be unstatable (without classical truth value) in w.
Then, the formal semantics must contain rules to this effect.

In checking informal reasonings, we follow Quine’s advice according to which one has
only to exhibit structures which are relevant in the inference. Thus it may happen that we
use ” px” for ”x is taller than Jones” , i.e., we may use one-place predicate parameter for
representing dyadic predicate whenever one of its arguments is fixed throughout. Now, if
our Jones is absent in the world w, then every sentence involving p must be unstatable in
w. Hence, the formal semantics must contain rules which permit some predicate parameters
to be ’’degenerate” in certain worlds, and prescribe that a sentence involving a predicate
parameter degenerate in the world w must be unstatable in w. — We note here that one
can assume other grounds which make a predicate degenerate in a world. E.g., one can assume
that the predicate ’red’ is degenerate on the universe of integers — although ’red’ involves

no induvidual terms.

Furthermore, in Prior’s view, the firstorder extension of Q must be a ’’free logic” in
which ” 3 r (x = x)” is refutable, i.e., the domain of some worlds may be empty. (See. e.g.
[6], pp. 157-159.)

Having axiomatized versions of the (propositional) ф (see e.g. in [1] and [7]),
Prior proposed in 1968 an axiomatized-deductive calculus a's a quantified extension of Q_
(cf. [6]cited above). As was shown by the present author, this attempt of Prior was unsuccess­
ful (see [8], §0, pp. 53-54) inasmuch as ” 3 x(x = jc)” is deducible from his axioms.

My own investigations in this field led me to the conclusion that the quantified extension
of System Q — satisfying Prior’s intention as far as possible — must obey the following two
principles:

(i) ’’Not for all X is false that” and ’’for some x is true that” must be distinguished
analogously as ” ~ L_ ~ p ” and "Mp" are distinguished. This means that one has to intro­
duce a truly existential quantifier ” 3 x ” which is stronger than ” ~ Vx

(ii) Rigid and non-rigid individual terms are strongly distinguished.

In my earlier paper [8], four ’’Prior type” first-order modal systems (analogous to S 5,
54, the ’’Brouwerian system” R, and the Feys-von Wright system T) were introduced. These
systems are primarily defined as semantical ones. Their primitive logical signs are ~ , D, =
(identity), V, 3 ,M, and S_. Empty universes are not excluded, and hence, ” 3x(x = x)” is
refutable (but ” K x (x = x)” and ”~ Vx ~ (x = x)” are irrefutable) in these systems. In general
all the logical truths of classical first—order logic (with identity) remained irrefutable (provided

Vx ~ ” is not replaced by the strong existential quantifier ”3 x ”). On empty universes, the
logical truths are neither true nor false but unstatable.

In my cited paper, rigid individual terms are represented by individual parameters, and non-
-rigid ones by (free) individual variables. And here we find the main insufficiency of that approach.
For, generally speaking, non-rigid individual names are descriptions, and the descriptions of a lan­
guage depend on the predicates of that language. Representing them by independent signs, this
dependence remains hidden. Hence, my paper [8] provides only a provisional solution of the prob­
lem of the behaviour of individual names in modal contexts. In the final solution of this problem,
descriptions must be permitted in the object language.

The present paper is a short report on my new approach to the solution of the outlined
problem.In the next section a formal semantics for six first-order modal systems will be introduced.
These systems are (?-like versions of the classical modal calculi _S5, 54,5, T, D (the deontic
weakening of T), and JC (Kripke’s minimal system). Their common language is based on the
same primitives as in [8] plus the descriptor (/). Descriptions are permitted without any
restriction. E.g., modal connectives and descriptions may occour inside descriptions, free
variables occurring in a description may be quantified from outside etc. The object language

does not contain a ’’zero entity” .

§3 is devoted to some problems of the descriptions. §4 treats the so-called relevance
relations which are important with respect to the axiomatizations of the systems. Finally, §5
contains the syntactico-axio mat ized versions of our systems.

As a short report, this paper contains no proofs. The omitted proofs and other details
may be found in [9] (to appear).

§2. The Q systems: Semantics

[Throughout in this paper, we assume a normal set theory (in particular, we assume that
UeU does not hold for any set (J), and we use the standard set-theoretical notation. The
set of the natural numbers will be denoted by ’со’. A natural number n may be assumed
as the set of natural numbers less than n. Thus, ’0’ denotes both the empty set and the
number nought. For all sets U, U° = [0 j = 1, and (7”+1 = Un x U. Empty sequences
will be identified by 0. We use ” \U,u\ ” as abbreviation for ”Û > J//J ” .]

2.1. Q-modal languages

2.1.1. Definition. By a Q-modal language we mean a quintuple <C,X,P,T,F> where
С. X, P, T, and F are sets satisfying the following conditions (/') to (v).

(i) C is the set of the logical constants of the language. It contains ten distinct symbols;
namely: Left and right parentheses, the connectives ~ , D ,M, and _S (negation, conditional,
possibility, and necessary statability, respectively), the quantifiers V and 3 , the sign of
identity (=) and the descriptor (/). I.e.,

c = { (,) , ~ , Э , V, 3 , = M, S, J .

(ii) A is a denumerably infinite set of symbols called (individual) variables; C n X = 0.

(iii) P is an at most denumerably infinite set of symbols called parameters. More specifi­
cally:

P= | K i u A ^ (u „ _ F) ;

Р п C = { V I ; РГ\Х = 0; for all n, A r \P n = 0; and for all m,n if m Ф n, then
Pm F Pn = 0. — The set A is at most denumerably infinite, its members are called
individual parameters (briefly; in-parameters). For all ne со, Pn is at most denumerably infinite,
its members are called //-place predicate parameters (briefly: pred);-parameters: in the case

/ 7 =0 , sentence parameters).

(iv) Finite and nonempty sequences formed from the fnembers of C u f u f will be called
expressions of the language. Certain expressions will be called terms, others will be called
formulae. T and F are the sets of the terms and the formulae, respectively, of the language.
The simultaneous inductive definition of terms and formulae is given below in 2.1.2.

- 13 -

(v) Certain occurrences of a variable xeX in a terni or a formula will be called free
occurrences of л:. The definition of T and F in 2.1.2 contains also the inductive definition
of the free occurrences of variables in terms and formulae.

Comment. The case P = j V } is not excluded. We include V in P for convenience;
the advantages of this device will be seen in 2.2.

2.1.2 The definition of terms and formulas. In what follows, double inverted commas
will be used as quasi-quotation signs (instead of Quine’s corners). If ' / ’ and g’ represent
expressions (of a language), then

fg

represents the concatenation of the expressions represented by and ’g’ (in this order).
However, double inverted commas will be omitted frequently (if no misunderstanding can
arise by their omission).

The sets T and F are the smallest subsets of the set of the expressions of a (/language
satisfying the following conditions (i) to (vii).

(i) XuA ç T. Any occurrence of a variable x in a variable or in an in-parameter is a
free one. (Of course, if yeX, then x occurs in y iff x = y, and if aeA, then x does
not occur in a.)

(ii) If t x,t^eT, then ”/j = t2"eF. An occurrence of xeX in ’V, = Q ” is a free one
iff it is a free one in t { or in гл.

(iii) For all ne to: If pePn , and / , . . . , tn are in T, then "ptx . . . t "eF. (In the
case n = 0, peF simply). An occurrence of xeX in ”p t x . . . t ” is a free one iff it is a
free one in t , , or . . . or in t .

(iv) If xeX, feF, and / involves some free occurrences of x, then ’7xf"eT. No
occurrence of x in ’7x / ” is a free one. If у Ф x. yeX, then an occurrence of y in
’7x f " is a free one iff it is a free one in /.

(v) If xeX, and feF, then ” Kx/” and ” Э х /” are in F. No occurrence of x in
these formulas is a free one. If у Ф x, yeX then the free occurrences of у in ” F x /” and
in ” Э х / ’ are exactly the same as those in /.

(vi) If feF , then ”~ / ”, "M f" and "S f" are in F . An occourrence of a variable x
in these formulas is a free one iff it is a free one in /.

(vii) It f g are in /-, then (f э g)"eF. The free occurrences of a variable x in
”(/ э g)” are the same as those in / and in g.

Formulae defined by (ii) and (iii) will be called atomic formulae. Terms defined by
(iv) will be called desriptions.

- 1 4 -

Comment. ’’Vacuous” descriptions are excluded by (iv); i.e., if / involves no free
occurrences of x, then ’7x / ” is not a term.

2.1.3. Further definitions and conventions. In what follows, we shall use (in most cases,
without particular reference) the following letters (with or without subscripts) as metavariables:
’x ’, ’y ’, and ’z’ for (individual) variables, V , ’b ’ and ”c” for in-parameters, ’p ’ for
(arbitrary) parameters, 7 ’ for (arbitrary) terms, ’/ ’, ’g ’, and 7 ’ for formulae.

(i) A formula / (a term t) is said to be open if it involves some free occurrences of
some variables; in the contrary case, it is said to be closed. Closed formulae are called
sentences. — Subformulae of a formula are defined as usually, by adding that if ’7xg”
occurs in / then the subformulae of g are subformulae of /.

(ii) An occurrence of the quantifier F in a formula / is said to be effective iff is
followed by ”xg” where g is a subformula of / , xeX, and g involves some free occurren­
ces of X.

(iii) By the parameters of a formula / we mean the parameters involved in / with the
restriction that К is a parameter of / iff / involves some effective occurences of V.
By the parameters of a description ’7xg”we mean the parameters of g.

(iv) Convections for omitting parentheses. Outermost parentheses will be omitted. As a
further convention, we write ”/ э g D h ” instead of ”/ э (g D h) ” . — We use dots (as
spacemarkers) to help the reading of schemata where the formation rules do not prescribe
parantheses. E.g., we shall write ’7x . f ”, ” 3x.x = /у . / ” , and ”M.a = b .D / ” instead
of ’7 x /” , ” 3 XX = J y f ”, and ”Ma = b Э / ” , respectively.

(v) We shall use the signs &, and _L as abbreviations, accordirg to the
following contextual definitions.
For all formulae f ,g :

”f & g

”Nf ээ

=df (/ Э ~ g)” , ”/ V g” =df ” ~ / Э g ” ,

”/ ^ . g ” = d/ ”(f D g) & (g э f) ”,

df ”L f ” =df ”N f & _Sf”,

Furthermore, we use the abbreviation

7f0’ for ” 3x .x = x ”

As this abbrevation suggest, we ’’identify” / and g whenever g is obtained from / by
a correct re-namig of its bound variables.

(vi) Substitution of terms. If f is any formula, then the expression ’’/ (t j /C) ” will
denote the formula obtained from / by substituting t j for every free occurrence of t2
in f. If t { is a variable, then we assume — in order to avoid difficulties — that it does not
occur in f.

- 15 -

2.2. Interpretations

2.2.1. Definition. By an interpretation of a (^-language <C,X,P,T,F> we mean a
quadruple / = <W,R,U,q> where IV and U are nonempty sets, R c W 2, and <p is a
function with domain P satisfying the following conditions (i) to (iii).

(i) q(V)e (P(U))W, i.e., ç(F) is a function from IV into £(U) (the set of all subsets
of U). The value of <p(K) at weW will be denoted by ф(К)и, •

(ii) If aeP is an in-parameter, then q(a)eU.

(iii) If peP is a predn-parameter (neсо), then q(p) e (P(Un и { U i))H\ The value of
q(p) for welV will be denoted by q(p)w ■

Comments. W may be called the set of indices labelling possible situations or ’’worlds” .
(A convenient assumption: IV is a set of ordinals.) R may be conceived as representing the
accessebility relation between the possible worlds. U may be called the universe or the domain
of individuals. Finally, q is said to be the reference function which determines the reference
(the denotation) of all parameters in all possible worlds. As it will be shown, if p is a predicate
parameter, then the presence of U in ç(p)w will mean that p is ’’degenerate” in the world
labelled by w in the sense that any sentence containing p is without truth value at w.

2.2.2. Given an interpretation / = <W,R,U,Q> of a (^-language, we say that a parameter
peP is degenerate at welV (according to q) iff

(i) p = V, and <?(К)и, = 0, or

(ii) p = a is an in-parameter, and q(a) 4 q(V)w , or

(iii) p is a predicate parameter, and Ueq(p)w .

We say that q pre-degenerates a formula f (a term t) at w iff a parameter of f (of t)
is degenerate at vv (according to q).

2.2.3. Given an interpretation / of a (^-language, by an assignment we mean a func­
tion V from X into U. i.e., VeUx. — For ueU, xeX, and VeUx, V* denotes the
assignment which is the same as V except (at most) that F*(x) = u.

We say that V pre-degenerates a formula / (a term t) at welV, iff either for some
.V occurring free in / (in t), V(x)f q(V)w , or else q pre-degenerates/ (t) at w (in the
sense of 2.2.2).

2.3. Valuation rules

Let / be an interpretation of a (^-language, and let V be an assignment. We define
(inductively) for all feF. and for all teT, the value of / (of t) at w according to V,
denoted by K(/)m, (by V(t)w). As we shall see, V(t)weU u j U i , and
V(f)we (0,1,2 ! = 3. The definitions run from ’’(Val.Var.)” to ”(V a l.3)” below.

- 1 6 -

(Val.Var.) For xeX, F(.v) = F(.v).______ U
(Val.In) If a is an in-parameter, then V(a)w = <p(ű).

(Val.I) If there is exactly one ueU such that

vu (f)w = 1, then V(lx.f)w = uQ, where { J = \ueU: Vxu(f)w = 1 ! .

In other cases, V(Ix.f) = U. (Here / must involve some free occurrences of x.)

(Val.=) If V(tt)w = V(t2)weq(V)w , then V(tx = t2)w = 1. If
i F (íj)w, V(t2)w * £<?(V)w , then V(tx = t2)w = 2. In other cases, = t2)w = 0.

(Val.Pr) If p is a predn-parameter (neeu), U £ q(p)w, У(tt)w = u{ (1 < / < «) ,
<UX, . . . , Wn> e q(p)w , and \ ux, . . . , u n \ C (f(V)w , then V(ptx . . . tn)w = 1. If
Ueq(p)w, or if {mj , . . . , «n{ ^ then V(pt{ . . . tn)w , = 2. In other cases,
n p t j • • • r„)w = 0. (In the case n = 0: V(p)w = 1 iff 9(p)w = [0 j = 1 ; V(p)w = 2
iff Ueq(p)w ; otherwise V(p)w = 0.)

(Val.~) V(~f)w = 2 if V(f)w= 2. In other cases, V(~f)w - 1 - V(f)w .

(Val.M) If y(f)w ^ 2, and for some velV, both <w,v>eR and V(f)w = 1
hold, then V(Mf)w = 1 . If V(f)w = 2, then V(Mf)w = 2. In other cases, V(Mf)w = 0.

(Val.S) If V(f)w 2, and for some veW, both <w,v>eR and V(f)w= 2 hold,
then V(Sf)w = 0. If V(f)w= 2, then V(Sf)w = 2. In other cases, V(Sf)w = 1.

(VaI D) If V(f)w = 2, or if V(g)w= 2, then V(fD g)w = 2. If V(J\. = 1,
and V(g)w = 0, then V(f D g)w = 0. In other cases, V(f Dg) w = 1.

(Val.V) If for all ueU, V*(f)w = 2, then V(Vx.f)w = 2. If for some ueU,
Vxu(f)w = 0, then V(Vx:.f)w = 0. In other cases, V(Vx.f)w = 1.

(Val.3) If V(Vx.f)w = 2, then V(3 x.f)w= 2 except when the following condi­
tions hold: 3 x.f involves no descriptions, and V does not pre-degenerate it at w(cf. 2.2.3).
— If for some ueU, V*(f)w= 1, then V(3 x.f)w = 1. In the remaining cases,
V(3 x.f)w = 0.

Comments.

(i) The numbers 0, 1, and 2 as values of formulae represent the falsity, tue truth, and
the truth-valuelessness, respectively; and U as a possible value of a description expresses the
failure of the denotation.

(ii) If V pre-degenerates a formula / (a description Jx.f) at vv, then V(J) = 2
(V(Jx.f) = U). If / involves no descriptions, then V(f) = 2 iff V pre-degenerates /
at w.

- 17 -

(iii) It is easy to see that V(3 x.f) and V{~~Vx-f) ’’almost” coincide. Particularly,
if =£ 0, then they coincide for all /. But if <?(F)H, = 0, then they may differ for
some f , e.g., for f = ”x = * ”• For, in this case> F(~Kx~.x = x)w = V(Vx.x = x)w = 2,
but F(£°)w = V{ 3 i x = х)и> = 0. Thus, ” 3 x ” is somewhat stronger than ”~K x~” .
If X has no free occurrences in / , then V(Vx.f)w = V(3 x.f)w = V(f)w -

(iv) As (Val.Pr) shows, if for some i (1 < i < n), V(t.)w / <?(K)w, then V(pty . . . tn)w
even in the case <V(t])w , . . . , V(tn , This is in contrast to Kripke’s modal seman­
tics, and causes some difference concerning the so-called Barcan formulas. (See (18) and (19)
in 2.5.2, and (8) . . . (11) in 2.5.8.)

One can see easily that if V{(x) = V2(x) for all x occurring free in a formula / ,
then Vx(f)w = F2(/)w; and similarly for terms instead of formulae. Hence, if / is a
sentence (a closed formula), then V(f)w does not depend on V. Thus, we write qif)
as the value of / at w (according to <?). Similarly, if t is a closed term, we write
q(t) as the value of t at w (according to q).

2.4. Satisfiability, consequence, irrefutability

2.4.1. An interpretation I = <W,R,U,Q> is said to be

a (^ - interpretation iff R is an equivalence relation (on IV),
a ffl4-interpretatipn iff R is reflexive and transitive,
a (^-interpretation iff R is reflexive and symmetric,
a (^-interpretation iff R is reflexive,
a (^-interpretation iff for all weW, there is a veW such that <w,v>eR holds.

Finally, any interpretation is said to be a (^-interpretation.

2.4.2. Let <C,X,P,T,F> be a ^-language, and let a be a set of sentences of this language
We say that the interpretation I = <W,R,U,q> of this language satisfies the set a iff for
some weW, q(f)w = 1 holds for all fea.

For _У = K,D,T,B,4,5, we say that a is (УУ-sat isfiab le iff there is a (̂ У-interpretation
which satisfies a, and we say that the sentence / is фУ-satisfiable iff the unit set { / }
is (?y-satisfiable. A sentence / is said to be a ^У-consequence of the set (of sentence) a
iff { a, ~ / } is ffy-unstatisfiable (i.e., is not фУ-statisfiable), and / is said to be
^У-refutable iff ~ / is фУ-satisfiable. We say that / is фУ-irrefutable iff ~ / is QJ-un-
satisfiable (i.e., if / is a (̂ У-consequence of the empty set of sentences). — We may
say that a sentence / is QJ-\alid iff whenever <W,R,U,Q> is a (^/-interpretation of a
(^-language containing all parameters of / , then for all weW, q(f)w = 1 holds. It is
obvious that / is фУ-valid iff / is (̂ У-irrefutable, and / involves neither parameters nor
descriptions. The sentences "E° D E ^” and ”SE° ” are examples of фУ-valid sentences
(for all _У).

- 18 -

By the previous definitions, we may speak of the sementical ({//-systems. The following
diagram shows the interrelations between these systems:

If the system QJ, precedes QJ2 in this diagram, then:

if a set a of sentences is QJ-, satisfiabfe, then a is QJ_X satisfiable, and

if the sentence / is a QJ x -consequence of a, then / is a QJ2-consequence of
a (and if f is QJ, -irrefutable, then / is QJ2 -irrefutable).

Let us note that ({//(-irrefutability implies (//-irrefutability, for all J.

2.5. Some laws of the Q systems

(We shall use the variable 7 ’ exclusively as refering to our system codes K,D,T,B,4,5 .)

2.5.1. General laws.

(i) If the sentence / is ({//-irrefutable, then so are _Nf, Vx.fixlc), and ~ 3 х-Дх/с).
(The law of generalization.)

(ii) Assume that / э g is (//-irrefutable. Then: (a) If c is an in-parameter not occurring
in / , then / D Vx.gix/c) is (//-irrefutable. — (b) If g does not involve c, then

3 x.fixlc) э g is (^/-irrefutable.

(iii) If a ^-sentence is a substitution instance of a tautology of the classical propositional
calculus (PC), then it is Q/(-irrefutable.

(iv) If / is a valid sentence of first-order logic, then / is ({//(-irrefutable. However,
(^-instantiations of valid first-order schemata may be ({//(-refutable. E.g., if / involves modal
connectives, _a occurs in the scope of a modal connective in /, and t is a (closed) descrip­
tion, then ” Vx.fixla) D f(t/a)” may be ({//(-refutable. We formulate a condition on which
the cited schema is (^ -irrefutable.

Definition. A closed term t is said to be substitutable for a in f iff either t is an
in-parameter, or else no occurrence of a in / stands in the scope of a modal connective _M_
or _S.

(v) If / and t are closed, and t is substitutable for a in / , then

Vx.fixla) D f i t la) and f i t /а) э 3 x.fix la)

are ({//(-irrefutable.

- 19 -

2.5.2. Some irrefutable sentences of QK. In the following schemata, / and g are
sentences, and t is any closed term. All instances of these schemata are irrefutable in QK
(and, hence, in all Q systems).

t
(1) Vx.f{xlc)=_~ i * ~ Axle)

(2) Vx.flx/c) D lx .Axle)

(3) t = t

(4)N.a = a

(5) _M.a = b D a = b

(6) a — b DN. a = b

(7) a = b Э _M.a = a Э Ma = b

(8) M(f & g) 3 Mf

(9) M(f V g) 3 Ш/v Mg)
(\ 0) Nf D Ng D N (f & g)

(11) L (f D g) D L f D L g

(12) L (f & g) ^ { L f & L g)

(13) l f ? S g D L (f v g)

(14) S(f& g) => (L /v L g) D L (f v g)

(15) ~ _S.a = а D L f D Mf

(16) ^ / provided / involves neither parameters nor descriptions

(17) SVx.x = X э NEA

(18) 3 x.Mf(xlc) D M lx.f ixlc)

(19) NVx.Axle) D Vx.NAxle)

2.5.3. Sentences irrefutable in QD (but refutable in QK):

(1) La = b D a = b

(2) a = b D La = a D M.a = b

(3) La = b Э M.a = b

(4) L f D Mf

(5) Sf э Mi f э f)

- 20 -

2.5.4. Sentences irrefutable in QT (but refutable in QD):

(1) M.a = a

(2) N_.a = b D a = b

(3) a = b Э M.a = b

(4) Lf D f

(5) N f D f

(6) / э Mf

(7) jV / э Mf

(8 Щ / Э f)

2.5.5. Sentences irrefutable in QB (but refutable both in QT and ff4).

(1) / э NMf

(2) Ж У /э f

(3) MNf D NMf

(4) _M 3 x(f(x/a) &JS.X = x) = 3 x.JW(f(xla) & B x = x)

(5) M 3 x .5 x = x_= 3 x.MS.x = x

2.5.6. Sentences irrefutable in Q4 (but refutable both in QT and QB).

(1) УУ/= NNf

(2

(3) M f= MMf

(4) ~ S f = M ~ S f

(5) L f = L L f

2.5.7. Sentences irrefutable in Q5 (but refutable in the other ^ systems).

(1) MNf = N f

(2) M S f ^ S f

(3) NMf = Mf

(4) ML f =. L f

(5) W f ^ m f & S f)

(6) J£ 3 x .5 .x = x ^ . 3x .5x = x

(7) _M 3 x.Mf(xlc) = _M 3 x.f(xlc)

- 21 -

(1) 3 x.x = X (i.e. £°)

(2) Ш/ v Mg) э Ш V g)

(3) N (f & g) ^ M
(4) JV(/D g) D N f D Ng

(5) N(f D g) D M f D M g

(6) J j D L (f s s g)

(7) (T /v Tg) ^ L i f s y g)

(8) M 3 x.ftxjc) э 3 x.Mflx/c)

(9) Vx.Nflx/c) Э NVx.fixIc)

(10) Vx.MxIc) DLVx.fixIc)

(11) L Vx.fixlc) э Vx.Lf{xlc)

Remark. (18) and (19) in 2.5.2, and (8) . . .(11) in 2.5.8, show the logical status of the
so-called Barcan formulas in the systems. - Other laws of the Q_ systems will be mentioned
later.

§3. Descriptions

(Throughout this section, we assume that I = <W,R,U,<?> is an interpretation of a
^-language, and w is any member of W.)

3.1. Basic laws of the descriptions

3.1.1. The laws of the descriptions in the Q_ systems are based on the following:

Lemma. For all assignments V, VQpc.f) = U iff

V(3 x{f & Vy(J{yjx) э y = x)))w Ф 1.

(Here X occurs free in / , and y does not occur in /.)

The formula ” 3 x (f & Vy(f(y/x) D y = x))” may be called the existence formula
of the description ’Ух./” ; in what follows we shall abbreviate it to ”(/x./)° ” . Note that
it cannot be replaced generally by ” 3 x. Vy(f(y/x)^. у = x), for the latter may be true
and the former false in cases when / itself involves some descriptions.

3.1.2. Definitions. An occurrence of a description in a formula / is said to be
outermost if it does not belong to the scope of a descriptor 1_ in / . — By the descriptions
of a formula / we mean those descriptions occurring in / which have some outermost

2.5.8. Sentences refutable in Q5 (and, hence, in all ff-systems).

occurrences in /.

- 22 -

For all formulae / , we define the first description derivative of / - denoted by
Y l) ” — by induction as follows:

(i) If / is atomic, and no descriptions occur, in / , then = S E ° .
(Note that S E 0 is QK-valid.)

(ii) If / is atomic, and t j , . . . , tn are all the descriptions of f[n > 1), then
f l) = r° & . . . & i°(cf. 3.1.1).

(in) (~ /)* (1) = (5/)(1) = (M/)(1) = / П -

(iv) (J o g)(1) = if g(1) = S E° . In other cases:

' g(l) if / 1) = 5£°,

f l ̂ & g(1) otherwise.
4

(v) (Kx./)(1) = (3 x / } (1) = if / !) involves no free occurrences of x. In the
contrary case, (Кх./)(1) = (З х ./) (1) = З х / 11

Obviously, if / involves no descriptions, then / (1) = SE 0 .

For all ne со, we define / (и) as follows:

f (0) = f i n + О = (/ (л))0)

Note that if for some п , / (л) = 5 £ ° , then for all m > n, / (w) = S E ° .

(f Э g)(l)

By the description degree of a formula / — denoted by ”dgr(f)'’ — we mean the smallest
ne со suchthat / (”+1) = 5 F ° . Noting that if / involves descriptions then the number of
occurrences of J_ in / (1) is smaller than in /, we conclude that dgr(f) is finite, and
uniquely defined. If / involves no descriptions, then, obviously, dgrif) = 0.

3.1.3. Theorems.

(i) If V (f^)w ¥ = 1, then V(f)w = 2.

(ii) (Corollary of (i).) For all sentences / , ”/ э / (1)” is (^-irrefutable.

(iii) If 3 x . f is closed but / i s open, then

Vx((f & Vy(J{y/x) D у = *))_=. . X = lx.f)

is (^ -irrefutable.

3.2 Statability atoms

For all parameters p, we define a formula denoted by ”ps” as follows:

V s = Vx.x = x,

if a is an in-parameter, then as = ”a = a”,

if p is a pred^-parameter, then:

- 23 -

ps = ” Hx.pxn D 3 x.pxnn if n > 0

where

x 1 = X, and x” + 1 = x”x, and

ps = ”p D p ” if и = 0.

These formulae will be called statability atoms, briefly: 5-atoms.

Lemmas, (i) For all parameters p: Q(ps)w ^ 0; and <?(ps)w = 2 iff p is degenerate
at w. - (ii) V(J)w = 2 iff either Ф 1, or V pre-degenerates / at w. — (iii)
For all closed formulae /: <?(f) = 2 iff either <?(/(1))w Ф 1, or for some parameter p
of / , Q(ps)w = 2.

The last result is the motivation for the expression ’statability atom’. The statability of a
sentence at w depends on the truth of its first description derivative, and on the truth of the
statability atoms associated with its parameters. If a sentence involves no descriptions, then
its statability depends exclusively on its statability atoms.

Theorem. For all sentences / , the following sentences are (^ -irrefutable:

S f э _Sps provided p is a parameter of /;

SfD N f (k)

S f Э L f (k)
provided к > 0.

4. § Relevance

(For the remainder part of this paper, f g, and h stand for sentences.)

4.0 Preliminaris

The sentences V s and ” К* э E ° ” are ^^-irrefutable, but E_° is /(-refutable.
Similarly, "t = t” and ”t = t D (t = r)(1)” are ^ / (-irrefutable, but if
t = ’7.y. ~ .y = y ' \ then

it = /)(1) = ” 3y(~ .y = у & Kx(~.x = x э x = y))”

is ^ /(-refutable (and ff/(-unstatisfiable). — These examples show that datachment is not
irrefutability-preserving in the Q_ systems (although it is truth-preser/ing). In this section
we shall show (among others) that there is a restricted form of detachment which is irrefutabi­
lity-preserving.

We saw in 2.5.8, (4) that ”Л/(/ э g) D _Nf D _Ng” is not irrefutable in the Q systems
E.g., the sentence ’W(Vs D °) & M ~ £ ° ” is ffJ-satisfiable (for all J). But if / and
g satisfy certain ’’relevance condition”, then the quoted schema is (j?/(-irrefutable. To
formulate this condition is another aim of this section.

- 2 4 -

4.1. Primary relevance

Definition. The relation ”f and g are trivially equivalent sentences” is the smallest
reflexive, symmetric, and transitive relation statisfying the conditions (i) and (ii):

(i) The members of the following pairs are trivially equivalent: / and ~
/ and f D / ”; ”/=> ~ g” and ”g D ~ / ” ; ”/D g Э h ” and "g э f Э h
f and ” Э х./” ; f and ”Vx.f"; ” 3 x (f & gix/c))” and ”/ & 3 x.gixjc)”.

(ii) If / and g are trivially equivalent, and hx is the same as h except at most that
an occurrence of / in h is replaced by g, then h and h x are trivially equivalent.

Definition. The relation ”/ trivially implies g” is the smallest transitive relation
including the relation of the trivial equivalence and satisfying the conditions (i) to (iii):

(i) ”/ & g” trivially implies /.

(ii) f trivially implies / * (1) and ” 3 x./(x /.c)” .

(iii) If / trivially implies g, then ” 3 х.Дх/с)” trivially implies ” 3 x.g(x/c)”.

Definition. We say that f is primarily relevant to g iff g(1) trivially implies / < n .

Lemma. Assume that / is primarily relevant to g, and / = <W,R,U,<?> is an interpreta­
tion of ”/ & g”. Then: For all weW, if q does not pre-degenerate / at w, and
4<S)W = 2, then q(£)w = 2.

4.2. Secondary relevance

We define the relation ”/ is secondarily relevant to g” by the stipulations (i) to
(vii) as follows.

(i) / is secondarily relevant to f, f (1 ^, ”a = b & f(b /a)’\ and ”c = _fx./(x/c)”
(where c occurs in f).

(ii) If / is secondarily relevantto g, t is a closed description, and t is substitutable for
c in / , then f(t/c) is secondarily relevant to ”t° & g” .

(iii) If f and g are secondarily relevant to h, then so are / ” and ”/ & g” .

(iv) If / is secondarily relevant to g, then, for all h , f is secondarily relevant to
”g á h ”.

(v) If / is secondarily relevant to g, f x is one of Vx.f(xfc), 3 x./(x/c), and gj
is one of Vx.g(x/c), ~ Vx ~ g(x/c), 3x.g(x/c), ~ 3 x ~ g (x /c) , then f x is secondarily
relevant to g j .

(vi) If / is secondarily relevant to g, and h is secondarily relevant to ”/ & g” , then
3 x.hix/c) is secondarily relevant to ” 3 x.g(x/c) á ” where f x is one of Кх.Дх/с),

~ 3 X ~ /(x/c).

- 25 -

(vii) If / is primarily or secondarily relevant to g, f and f l are trivially equivalent,
and g and g] are trivially equivalent, then f x is secondarily relevant to g t .

Lemma. Assume that / is secondarily relevant to g. For all interpretations
<W,R,U,q>, and for weW\ If q does not pre-degenerate / at w, and q(f)w = 2, then

<?(g)w ф L

4.3. Weak and strong relevance

Definitions.

(i) A sentence / is said to be universe dependent (briefly: K-dependent) iff either it
involves some descriptions and/or some in-parameters, or else F is a parameter of /.

It follows that if / is К-dependent, and <?(K)w = 0, then q(f)w = 2. As an example
let us mention that if 3 x ./(i/c) is К-dependent, then ’~Эх.Дх/с)1> Эх ~ /(х /с)” is
(^-irrefutable (in the contrary case, it may be (^-refutable).

(ii) The sentence / is said to be weakly relevant to the sentence g iff / is primarily
or secondarily relevant to g, and, in addition, if / is К-dependent, then so is g.

An important corollary of the lemmas in 4.1. and 4.2. and the present definition:
If / is weakly relevant to g, and <? does not pre-degenerate / at w, then q(f)w = 2
implies <?(g)w Ф 1.

(iii) / is said to be parameter relevant (briefly: p-relevant) to g iff all parameters of /
except perhaps К are parameters of g, and, in addition, if / is К-dependent, so is g.

(iv) / is said to be strongly relevant to g iff / is both weakly relevant.and p-relevant
to g.

(v) A sentence / is said to be weakly (strongly) relevant to a set a of sentences iff /
is weakly (strongly) relevant to a conjunction of some members of a.

(vi) We say that f i x /с) is weakly relevant to g(x/c) iff one of the following two
conditions is fulfilled:

(a) c occurs in g, and / is weakly relevant to g.

(b) c does not occur in g (i.e., g(x/c) = g), and Кх.Дх/с) is weakly relevant to g.

Lemma. Assume that / = <W,R,U,q> is an interpretation satisfying a set a of sentences,
i.e., for an weW, Qih) = 1 holds for all hea. Then: If / is weakly relevant to a, then
there is an / ' = <W,R,U,q'> such that /' is an interpretation of J a,f] , for all hea,
and for all veW, q'\h)v = q(h)v, and <?’(/)и, Ф 2. — (The proof exploits the fact that if f is
К-dependent, then so are some members of a.)

Theorems, (i) If / and ”/ э g” are ff/-irrefutable sentences, and / is weakly relevant
to g”, then g is ff/-irrefutable. — (ii) If / is strongly relevant to g”,

- 26 -

then N(f D g) D N f О Ng

is ^/^-irrefutable. — (iii) If g is strongly relevant to /,

then _N(f э g) D M f э Mg

is QK-irrefutable.

§5 The Q calculi

Using the definitions of §3 and §4, we are able to formulate the syntactical
(’’axiomatized”) versions of the semantical systems QJjJ = K.D,T,BA,5) introduced in §2.
We shall define the notions ”/ is a ^7-axiom”, ”/ is <p7-deducible” , and ”/ is ^7-dedu-
cible from the set a of sentences”.

5.1. Axioms

The set of (j)/-axioms will be defined by means of (j)7-axiom schemata and the notion
of generalization.

5.1.1. By the set of the generalizations of the sentence / we mean the smallest set
G(f) suchthat (i) feG(f), and (ii) if geG{f), then Vx.g(x/c) eG(J), ~ 3 x~g(x/c)eG(J),
and NgeGjf).

5.1.2. Axiom schemata for all calculi:

(Al) f D g D f

(A2) (f D g D h) D (f D g) D f D h

(A3) (~ f D ~ g) D g D f

(A4.1) Vx.fíx/c) D f(t/c)

(A4.2) f i t / c)D 3 x.fix/c)

Proviso for (A4.1) and (A4.2): t is a closed term substitutable for
c in /.

(A5.1) Vx(Jixjc) э g(x/c)) э Vx.flx/c) э Vx.g(x/c)

(A5.2) ~ 3 x ~ (f{x/c) Э g(x/c)) D 3 x ~ gixjc) э 3x ~ fix/c)

Proviso for (A5.1) and (A5.2): f(x/c) is weakly relevant to ~ g(x/c).

(A6.1) Vx(f Э g(x /с)) D f D Vx.g(x/c)

(A6.2) ~ 3 X ~ (g{x/c) D f) D 3 x.g{x/c) D f

(A7) с = c

(A8) a = b D f(a/c) э JXb/c)

(A9) (f & Vx(f(x/c) D X = c))_=.. c = ±x.f{xIc)

(provided c occurs in f)

- 27 -

(AlO) _Nf э M_ ~ g D_Sh D_M ~ (f D g)

provided / is strongly relevant to g & (h D /г)” .

(Al l) jV(/D £ °) D M f D M(f & Vs)

(A 12) SE °

(A 13) ~_SVS Э (~_S.c = с <£ Л/ ~_£°)

(A 14)

(A15) jS / э _Sps provided p is a parameter of /

(A 16) _X/(1) ?.Sp\ Э . . . D ip* D _i/ where P j , . . .

are all the parameters of / (i f any); n > 0

5.1.3. Additional axiom schemata for the single Q calculi.

For QK:

(A 17) Jd.a = b э a = b

(A18.K) ~ Svs D MSE0

For QD\ (A 17) above, and

(A18.D) MSE0

For QT\ (A 17) above, and

(A 18) f D M f

For _^ß:(A18) above, and

(A19.B) / Э _NMf

For Ç4: (A17) and (A18) above, and

(A 19.4) _Zf э NZf where Z_ is _N or S.

For Q5: either (A18), (A19.B), and (A19.4), or else (A 18), and (A 19.5) below.

(A 19.5) MZf D Z f where _Z is N_ or S_

5.L4. A sentence / is said to be a (^/-axiom, iff / is a generalization of an instance
of a (yf/-axiom schema.

5.2. Deductions

5.2.1. A sequence (0 < ne со) of sentences is said to be a (^/-deduction
iff for all i < n, either f. is a (//-axiom, or f. is obtained from a preceding member by
7V-generalization in the sense that for some j < i, f. = Nf., or else f. is obtained from
preceding members by relevant datachment in the sense that for some j,k < i,
f k = ”/. э f . ” where f. is weakly relevant to f . ”.

A sentence / is said to be Ç7-deducible iff there exists a (//-deduction terminated by
/. (By this, any (//-axiom is 0/-deducible.)

2 8 -

5.2.2. Let a be a (possible empty) set of sentences. A sequence </,■>, < n
(0 < neco)is said to be a (^/-deduction from a iff for all i < n, either f^ea, or f. is
(^/-deducible (in the sense of 5.2.1), or else f. is obtained from preceding members by
q-relevant detachment in the sense that for some j,k < i, f k = "f. D f . ” where f. is weakly
relevant to j a, ~ f i J . — Let us note that any (?7-deduction (in the sense of 5.2.1) is a
^/-deduction from the empty set.

A sentence f is said to be ffV-deducible from a iff there is a (^/-deduction from a
terminated by /.

5.3. Soundness and completeness

The following theorems are provable (for all 7):

If / is ffl/-deducible from a, then / is a ^7-consequence of a. (The case a = 0
is included.)

If / is a 07-consequence of a, then / is Q7-deducible from a (including the case
q = 0).

The sentence h is (?7-deducible from the set f a , f } iff ”f D h ” is Q7-deducible from
a. (Deduction theorem and its converse.)

R E F E R E N C E S

[1] Bull, R.A., An axiomatization of Prior’s modal calculus Q. Notre Dame Journal of
Formal Logic 5 (1964), 211-214.

[2] Frege, G., On sense and reference. In: Geach, P., and Black, M. (eds.),
Translatios from the Philosophical Writings of Gottlob Frege. Oxford, (1960). 56-78.

[3] Kripke, S.A., Semantical analysis of modal logic, I. Normal modal propositional
calculi. Zeitschrift für math. Logik und Grundlagen der Math. 9 (1963), 67-96. 4 5 6 7

[4] Kripke, S.A., Semantical considerations on modal logic. Acta Philosophica
Fennica 16 (1963). 83-94.

[5] Prior, A N., Time and Modality. Oxford, 1957.

[6] Prior, A.N., Papers on Time and Tense. Oxford, (1968).

[7] Prior, A.N., Axiomatizations of the modal calculus ф. Notre Dame Journal of
Formai Logic 5 (1964), 215-217.

Rúzsa, I., Prior-type modal logic, I-II. Periodica Mathematica Hungarica 4 (1973),
51-69, 183-201.

Rúzsa, I., Modal logic with descriptions. (To appear.)

- 31 -

INTENSIONAL LOGIC OF ACTIONS

P. Ecsedi — Tóth
Research Group on Mathematical Logic and Automata Theory,

The Hungarian Academy of Sciences, 6720 Szeged, Somogyi u. 7.

0. Introduction

The problem of defining the exact semantics for a given programming language Lp
(called the main problem in this paper) can be formalized in the following way: find a suitable
language L, the semantics of which are completely understood, and translate each of the
formulae (i.e. instructions of programs) of L into L in a ’’meaning preserving” way, that
is give a function r with some nice properties from L into L. The known semantics of
L will define the semantics of Lp along the line of the translation function r. We observe
that this formalization does not mean any loss of generality; i.e. every known method for
defining semantics can be compiled in this form.

The problem of finding a language L, appropriate for the purposes mentioned above, plays
a central role in any trial to cope with the main problem. Usually three types of languages
are chosen: spoken languages, computer languages and mathematical ones. The use of natural
languages for L was entailed by the lack of adequate tools in the heroic age of computer
science- Also, concrete programing languages, recognized as well-known ones, cannot be
suitable for our aims. Even the more advanced computer languages over ’’abstract machines”
(such as VDL) give rise to an almost insurmountable difficulty by defining the semantics of
Lp in a completely implicit way. Both these types of languages have no well-understood
semantics so that, on the one hand spoken languages and computer languages are inadequate
from a semantical point of view.

The reason for solving the main problem is not in merely knowing the meaning of the
programs, but it is also in knowing their properties. To this end, we want to derive certain
properties of programs from other ones; in one word we want to develop a proof-theory for
L. It is obvious that there is no hope of giving a precise definition of deduction in a non-
-mathematical language, so on the other hand these languages are not adequate from a proof-
-theoretical point of view.

Consequently, we can conclude that the only adequate way is to choose a mathematical
language for L . This approach has a further advantage, namely that it can utilise existing
results from mathematics (e.g. from mathematical logic, universal algebra, category theory,
graph-theory, topology, lattice theory, model theory, topos-theory etc.).

Some particular cases of this approach have already been investigated ([12, 13, 14, 15]),
while others have not been considered at all.

In this paper we shall present a mathematical logical system called the Intensional Logic
of Actions (ILA, for short) which seems to be an appropriate frame within which to attack

- 32 -

the main problem.

The use of ILA was motivated by several things, amongst them the desire for a simple
translation function from L into L. The basic idea of the logic of actions (due to
J. McCarthy and P.J. Hayes [8]) is as follows: consider a set of classical algebraic structures
each of which is a variant of the ’’world” to be described (for example, one can imagine that
this world is the memory of a computer). These structures are called ’’states” or ’’situations”
(cf. [5, 17]). Programs (i.e. plans for actions) are treated as partial (in the original work of
P.J. Hayes [5] as total) functions among states. Then, construct the language L in such a
way that programs would be terms in it and models of this language are the same as the ones
described above. Therefore, programs can be named in the logic obtained, and one can answer
such questions as:

— Is the program a equivalent to program Ы

- Does a program a exist such that the following conditions hold . . . ?

— For every program a such that the following conditions are satisfied . . . we can
conclude that . . .

However, as experiences of applications to concrete programming languages show in
’’classical” logic of actions we need an additional auxiliary function VALUE (cf. [2]).
(The use of the function VALUE was suggested to me in 1974 by B. Dömölki in personal
communications).

After a detailed investigation it turns out that the function VALUE plays a vital role
in any cases when the logic of actions is applied to attack the main problem. Then, I try
to find an answer to the question of what the function VALUE means from a mathematical
logical (model theoretic) point of view. After reading the significant papers of R. Montague
[9, 10, 11] dealing with the semantics of logic of intensions and its applications in linguistics,
I made the discovery that the function VALUE is nothing but a special case of the so called
intension function, i.e. it defines intensions of expressions.

The fact that programming languages are essentially intensional in character can be
justified by other observations, as well. For example I only mention two of them:

i.) In almost every programming language the use of different names (identifiers) for the
same expression is allowed. For example let us consider the following BASIC program:

- 33 -

10 LET X = 5
20 LET Y = 2
30 LET Z = X *
40 LET U= X *

100 LET X = Y +
110 GOTO 40

Y + X
Y + X

1

It is not clear from a mathematical logical point of view whether Z = U or not. They
are literally equal, but their values are different in different states of computation!

ii) Also, we can write in almost every programming language that

LET X = X + 1

If one wants to understand properly the meaning of the ’’equation” X = X + 1, then
one needs to refer to the value of x both in the previous and in the actual states (of the
’’world”).

The main difference between the classical logical approach and the intensional one is in
the way of interpreting constants. In the classical approach constants are associated with
elements of an appropriate domain as indicated by Fig 1;

S Y N T A C T I C S Y M B O L S D O M A I N S O F M O D E L S

S T A T E S

Fig. 1.

- 34 -

In intersional logic constants are interpreted as functions from states into domains

(Fig. 2.).

STATES

Fig. 2.

F
U

N
C

T
IO

N
S

- 35 -

In Sections 1 and 2 we develop the syntax of ILA. Semantics are given in Section 3.
Some aspects of model-theoretical investigation of ILA and a proof for the Generalized Com­
pleteness Theorem will appear in a subsequent paper [3].

Time and space does not allow me to insert a detailed explanation of concrete applications;
however, a future paper is planned to deal with these problems.

Acknowledgement: I am indebted to H. Andréka, В. Dömölki, T. Gergely, I. Németi and many
other collègues for their encouragement in my work on any form of logic of actions.

After finishing this paper I discovered' that Janssen and van Emde Boas developed a
theory [6,7] very closely related to ours. However, their system differs in some relevant
aspects from the material presented in this article:

i.) One of the advantages of ILA is that states, and therefore programs, can have names.
Janssen and van Emde Boas do not insert such names into their system.

ii.) Technical presentation of ILA is much more simpler than that of the system of
Janssen and van Emde Boas, thanks partially to the presence of names for states, and partially
to the formalization used.

1. Types

Keeping in view that our main problem is to define semantics of programming languages,
we introduce the notion of types as syntactical counterparts of data-types. Types are intended
to show the ’’sort” of things: i.e. if they are digits, integers, lists, trees,sets, classes, variables,
operators, expressions, Boolean-expressions, etc. Note that data-types are partially ordered
[15]: e.g. digits are integers, sets are classes, lists are trees, etc. .

Definition 1.

Let <sQ, < 0> be a finite, non-void, partially ordered set, and let s be an arbitrary
symbol which is not an ordered «-tuple for any ne со. The set of types <T, О is the
least set defined by:

Remark

i.) SQ с T, seT;

ii.) If i0 ,fj, . . . , tneT, then <tQ, . . . , tn>eT\O’ l > ‘ '

ív.) If tQ = < t(OO’^Ol > ■ • . ч >еГ and
t, = <t lO’̂ l 1 ’ • • ■ ,fln/ . >eT, then

- 36 -

Objects of type in SQ will be different sorts of individuals, objects of type s will be
states, objects of type < r Q, . . . , tn> will be predicates, the first argument of which is of
type tQ, . . . , the (n + l)-th argument o f which is of type tn , respectively.

Note

Predicates and relations are distinguished! in this context: relations are among things,
predicates (relations-in-intension) are on the names of things (or more precisely on functions
from names into things that is, predicates are among ’’intensions” of things). Note also that
functions are treated as special binary relations.

2. Syntax

First we have to fix the set of primitive symbols. We shall use the logical symbols:
equality (=), negation (П), conjunction (A) disjunction (V), implication (-»•),
equivalence («■), universal- (V) and existential quantifications (3). We use = , 1 , A , V
as primitives, while V, ** and 3 will be introduced as abbreviations. As an additional
symbol we use a symbol for abstraction ({ I }). For motivation see the point 5.

Definition 2

The set of primitive symbols PS is defined by

i.) For every teT,

{ . . . , . . . , y'Q, . . . ,y‘n, . . . } = V* c PS

We refer to x\ as a function-variable of type t, and to yf as a predicate-variable
of type t.

ii.) For every teT,

{c'0, . . . , < , . . . , = ' C PS

We refer to c\ as a function-constant (symbol) and to d'. as a predicate-constant
symbol of type t.

iii.) { s , - l , Л, V, { ! } , [,] } C PS.

Definition 3 Formulae F, terms TR, free and bound variables

are defined in a parallel way by:

i.) If a is a function-variable or a function-constant of type , t l , . . . ,tn>, t>

and a. is a term of type < t . for i < n , then [aa^ a^ . . . an] is a term of type t;

and each occurence of a variable is free or bound as it was in a n , a л .о ’ 1 ’ ’ л

ii.) If both aQ<al are terms of type < t (for an arbitrary teT), then [űQ = a j is a
formula, and each occurence of a variable is free or bound as it was in a Qp j .

- 37 -

iii.) If a is a predicate-variable or a predicate constant of type , . . . , t >, and

a. is a term of type < /. for i < n, then [aaQax . . . an] is a formula, and each
occurence of a variable is free or bound just as in aQ ,ax, . . . , an . If a. is a
predicate variable, then its occurence is free in the formula [aaQ. . . an \.

iv.) If if and ф are formulae, then ["1 and [ip Д 1̂] are also formulae, and each
occurence of a variable is free or bound as it was free or boound in ip or ф.

V.) If V is a variable and ip is a formula, then [V v y] is also a formula in which each
occurence of v is bound, other variables are free or bound as they were in <p.

vi.) If v is a variable of type t and is a formula then { v[p } is a term of type
t and every occurence of v is bound, other variables are tree or bound just as in <,p.

As ILA is intended to serve as a frame for definitions of semantics of programming
languages, we shall need some distinguishable constant symbols as well. These are a symbol
for dependence-relation of objects (3) and a symbol for naming states (S) [5,2]. The
intended meaning of [3 a,b,c] is that object a depends on b in the state c (c.f.
Definitions 4,5,13), and by [5 b a] we mean the state obtained from the state b if action

a is executed (c.f. Definitions 6,7,13).

Definition 4

Let t = < tQ,tx,s> where tQ eSQ ^ е 5 ои { <s,s>) . Then is a new predicate-
constant (é U (f> f) and has the type t where t is an element of the set

t e T

{ <t0 , t x ,£> : tQ eSQ, fj eS0 и | <s,s> }} .

Definition 5

If a. is of type < t . / = 0 . 1 and a is of type 5, then [4 a a a] is a formula, and
each occurence of a variable is just as it was in fl-

Definition 6

Let / = <s,<s,s>,s>. Then ő is a function-constant of type t, other then

L0 ’ 1’ • • • ,Ln ’ • • •

Definition 7

If aQ is a term of type s, and a x is a term of type <s,s>, then [óUqűj] is a term
of type 5. Every occurence of a variable is just as it was in ciQ,ax-

Definition 8

ip is a sentence if no free variables occur in ip.

- 3 8 -

3. Semantics

Definition 9

For every teSQ, let D‘ be a non-empty set, and let Ds be non-void as well. By a
Г-frame we shall mean an indexed family of sets < ^ t>teT such that:

i.) Mt = D‘ if teS0 or t = s.

ii.) For each t = < tQ, . . . ,tn>eT,

M, c Ds{ (M X . . . xMt)) and Ф 0 . Where
1 f0 'и f

A B is the set of partial functions from A into B, J 3 is the symbol of
powerset-construction.

Definition 10

A Г-model is an indexed family of sets

ЯИ T = „ whereГ’ t t e T

i)< M t>teT is a Г-frame,

ii.) mte «» Mt

An example of a Г-model is shown in Fig.3.

STATES

F i g . 3

A L I T T L E P I E C E O F A T-MODEL.

- 4 0 -

Definition 11

The set of assignments on a fixed T-model ЯМ T is:

As (® l r) = { < ^ > (еТ : g 'eV ^ ' for each te T)

Definition 12

Let a T-model 9Л f and on assignement g = < g t>te T be given. The interpretation
on defined by g is a partial function fg such that

fe : TR -*• и M, and
s t e T 1

fg 2. mr fg 2 8* f o r everY teT -

(We call that the set theoretic meaning of / э g* is that / coincides with gl on the6 о
domain of g*.) On the rest of the elements of TR fg is the standard extension * of the
function defined so for (i.e. of the function и (glUm)). Note that / is partial on TR.

t e T 1 8

Definition 13

Let a T-model 991 T and an assignment g be given. We define the forcing relation

I I— f c Ds X F by:
Jg

i.) d I I— f \ r aQ . . . an] iff
g

<f/a0)(d) , fg(an)(d)>efg(r)(d)

ii.) d l l - / \ax = a2] iff fg(ax)(d) = fg(a2)(d).

iii.) d II—r П<р] iff d | |— , \p
g g

iv.) d II— , [<p Л ф] iff d II— , if and d ||— ф.
g 8 fg

v.) d | | — , [Via/?] iff for every g' which are defined
;g

by g'(z) = g(z) if z Ф V we have d ||— f ,ip.
1 g

vi.) If a is the term {и,1^} and there exists a unique member m of M{ such
that d ||—у 4> iff fg(vt) = g(vt)= m , then a is called interpretable in d and

* The { I } step o f this extension is defined in Def. 13 vi. The [oűq . . . a^]
constant or variable is really standard. The [6 a^a ̂ J step is not defined since sSfe .

part, where a is a function

- 4 1 -

fg(a) = m. If there are more such elements meMf or there is no one, then f g
is undefined on the argument, a; i.e. fg(a) is undefined. (Recall that fg is
partial.)

As this definition shows, it may happen that some terms have no interpretation! in an
element of Ds.

In an analogous way, one can define the meaning of 3 and 5. We leave this to the reader.

Definition 14.

Let a 7-model 9JÍ T and an interpretation f g be fixed. We define for ipeF

T ¥=f f iff for every deDs , d\\— f f .

We say that f holds in SW 7 under interpretation / iff 9M 7 f = , f . 9W f= f iff for
о J g

every geAss(9W) we have 9И f=. S- Note that if f has no free variables then f
holds in 3M 7 under any interpretation iff it holds under every interpretations.

Definition 15.

Let f be a sentence, f is valid iff for each 7-model 9W T, we have 9RT¥=f-

Definition 16.

Let ЯЛ T be a 7-model and let an interpretation f be fixed. For 2 C F, we
define

9M T {= , 2 iff ЯИ T (= f for every fe 'L .
8 f g

Definition 17

Let feF (SCF). f (2) is 7-satisfiable if there exists a 7-model 9JÍ T such that

W r | = ^ (а « г И=2).

Definition 18.

We can use the following abbreviations:

i.) [f Vi//] for n i n ^ l A P ^]]]

ii.) [f -> Ф] for [A[f A [I <//]]]

iii.) [f ** Ф] for

<t

[Ф ^ *]]

iv.) [a Vf] for P f V u P y ?]]] .

To increase readability one can omit brackets if no confusion occurs.

- 4 2 -

References

[1] Chang, C.C., H.J. Keisler. Model Theory, North-Holland Publishing Company,
Amsterdam (1973).

[2] Ecsedi-Tóth, P., A mathematical logical approach to definition of semantics for
programming languages, Master Thesis, Rolando Eötvös University, Budapest,
(1974) (in Hungarian).

[3] Ecsedi-Tóth, P., Model theory for intensional logic of actions (in preparation).

[4] Gallin, D., Intersional and higherorder model logic, North-Holland Mathematics
Studies, Vol. 19., North-Holland Publishing Co., Amsterdam (1975).

[5] Hayes, P.J., A logic of actions, Machine Intelligence 6 (eds. B. Meitzer and D. Michie),
Edingburgh University Press (1971) pp. 495-520.

[6] Janssen, T.M.V., van Emda Boas, On the proper treatment of referencing, dereferencing
and assignment, Proc. 4-th ICALP Conf. Lëcture Notes in Comp. Sei. Vol. 52
(eds. A. Salomaa and M. Steinby), Springer Verlag, Berlin (1977) pp. 282-300.

[7] Janssen, T.M.V., van Emde Boas, The expressive power of intensional logic in the semantics
of programming languages, Proc. 6-th MFCS Symp. Lecture Notes in Comp. Sei.

Vol. 53. (ed. J. Gruska), Springer Verlag, Berlin (1977) pp. 303-311.

[8] McCarthy, J., Hayes, P. J., Some Philosophical Problems from the Standpoint of Arti­
ficial Intelligence, Machine Intelligence 4. (eds. B. Meitzer and D. Michie), Edinburgh

Univ. Press. (1969) pp. 463-502.

[9] Montague, R., Pragmatics and intensional logic. Synthese, 22 (1970) pp. 68-94.

[10] Montague, R., Universal grammar, Theoria. 36 (1970) pp. 373- 398.

[11] Montague, R., The proper treatment of quantification in ordinary English. Approaches
to natural language, (eds. K.J.J. Hintikka et al.), Dordrecht, (1973) pp. 221-242.

[12] Plotkin, G., A prowerdomain construction, D.A.I Research Report No. 3., Univ. of
Edinburgh (1975).

[13] Rasiowa, H., co+-valued algorithmic logic as a tool to investigate procedures, Proc.
3-d MFCS Symp. Lecture Notes in Comp. Sei. Vol. 28. (ed. A. Blikle), Springer
Verlag, Berlin (1975).

[14] Salwicki, A. Procedures, formal computations and models, ibid. pp. 464-484.

[15] Scott, D., Strachey, C. Towards a mathematical semantics for computer languages,
Proc. Symp. on Computers and Automata, (ed. J. Fox), Polytechnic Institute of Brooklyn
(1971), pp. 19-46.

- 4 3 -

[16] Scott, D., Data types as lattices, Proc. Logic Conf. Kiel 1974, (eds. G.H. Müller, A.
Oberschelp, K. Potthof), Lecture Notes in Math. Vol. 499. Springer Verlag, Berlin
(1975) pp. 579-651.

[17] ^tepánková, O., Havel, I. M., A logical theory of robot problem solving.
Artifical Intelligence 7(1976) pp. 129-161.

- 4 5 -

ASPECTS TO CLASSIFY CONTENT OF NATURAL LANGUAGES

P. Kürhmel

Institut für Informatik, Universität Stuttgart,
7000 Stuttgart 1, Azenbergstr. 12, Budesrepublik Deutschland

Key words and phrases:

Agglutinated morphologies, auditive/phonographic, content-related, content thesaurus:
human- , HCT, individual- , ICT, partial content thesaurus^ PCT; deuter-criterion, deuter-disc,
deuter-sphere, ideography, isolated morphologies, pictography, self-explanatory.

CR categories: 3.70, 3.71, 3.74, 3.75

Abstract

To bring the function of computer languages closer to that of Natural Languages, more
should be known about the phenomena of Natural Language content. One recent approach
is to include isolated expression morphologies in the scope of the investigation. Conventional
studies have only considered agglutinated morphologies. In fully isolated morphologies syntax
is easier to separate from morphology.The whole content treasure of human knowledge to
be expressed by Natural Languages can be divided into meanings and syntagms. While
syntagms are subdivided into syntax rules and syntax particles, a content analysis primarily
centers on the array of single meanings within a thesaurus. Their treedimensional positioning
and attachment to vertices of a directed graph substantializes the need to evaluate six deuter-
-criteria of each meaning and vice-versa. The formalization of a meaning’s six deuter-criteria
leads the way to classifying content.

Introduction

An increasing number of reasons shows that content of Natural Language deserves more
attention than if has been paid the past. (Natural Language is, in the following text, briefly
expressed by Ln). Primarily, theoretical evaluations and software aspects in computer science
reveal information to be equal with Ln content. They also indicate that bit-evaluations of
information are insufficient, if the related content is carried by improper expressions.
Consequently, there is a growing interest in the intensification of corresponding research. In
common linguistics all evaluations concerning semantics are based on coded expressions in the
form of auditive/phonographic utterances. This fact invites a separation between semantics
and language content. Newer and more rewarding ways of enlightening content phenomena of
Ln are done by taking self-explanatory and content-related expressions into account. These
expressions are characterized by analog features. Content-related utterances are often expressed
in an isolated way, free from syntagms, while autitive/phonographic expressions are mostly
agglutinated. Some ideographic, many pictographic, and several gesture expression units help
to offer insight into deeper layers of content phenomena. Fully content-related expression

- 4 6 -

units can almost be considered equal to their content, as far as structure and function are
concerned. From this angle more solid classification aspects of content phenomena were seen,
which helped to classify Ln content. Analyses for formalization purposes achieved results
by which meanings in the form of content units are attached to vertices of a graph. The size
of such a graph represents simultaneously the dimension of a content thesaurus, which acts as
an array in which associations take place. Such a dimension is related to the measurement of
the human- , HCT, an individual- , ICT, or a particular content thesaurus, PCT. Operational
models deal usually with PCTs, which in a way can be considered as restricted ICTs or HCTs.
An HCT represent the sum of all ICTs minus redundancy. Association procedures and thinking
operations are to be considered as movements or navigations along the edges from node to node
or meaning to meaning. These dynamic phenomena or movements, four—dimensional in char­
acter, are based on three-dimensional conditions. In order to classify these three-dimensional
conditions in more subtle ways, six deuter— criteria were substantialized: identity, age, association,
frequency, significance, and truth. Each of them is to be formalized according to procedures,
in which one deuter—criterion corresponds to three— and four—dimensional facts.

Information is identical with natural language content

A recent survey on activities in computer science which deal with database abstractions and
speech recognition sysfe/m shows a growing necessity to understand more about the field of
Ln content. While former so called information retrieval systems gave way to database general­
izations, speech recognition systems were neglected for longer periods, due to difficulties in­
volved. These difficulties turned out to be deeply related to misunderstandings of Ln content
structures.

Some research on database concepts and generalized databases deals with two kinds of abstrac­
tions: 1. aggregations and 2. generalizations. Aggregation is an abstraction which turns a rela­
tionship between objects into an aggregate object. Generalization is an abstraction which turns
a class of objects into a generic object. Both abstractions depend heavily on directed graph
systems with meanings attached to their vertices ((14,15) , p. 109 f) and consequently point
into the direction of Ln content phenomena.

Another way to understand the significance of Ln content for information arrays in information
systems is represented by research on automatic speech recognition. To many of the researchers
involved, the final outcome of their developments turned out to be the learning that so called
knowledge sources and their mutual associations are represented by fundamental central databases
in a system ((4,12,) , p. 2ff). Also experiences with the Hearsay I and the Hearsay II projects
at the Computer Science Department of the Carnegie-Mellon University in Pittsburgh, Pa., showed
that central attention has to be paid to a so called conceptual level and a global database, both
closely related to Ln content phenomena ((1,2,9,13) , p. 14-M2 and 15-M2). Within these
systems a focus o f attention movement corresponds to association navigations ((3,11), p. 3 ff).

- 4 7 -

A four year old project by IBM to conceive an automatic dictation system is still on an
experimental level and unfinished. Charecterized as a speech recognition system with continu­
ously spoken utterances, the vocabulary is restricted to patent filing matters and among them
to the field of laser inventions. This enterprise is aimed at the substitution of a secretary by a
form of typewriter which perceives input in auditive shape and delivers it in the form of typed
phonographical output. Another IBM project is concerned-with the input of discretely uttered
words. A device is to serve traveling customers with luggage in their hands. The uttered and

separately spoken command words to the system are automatically interpreted to give correspond­
ing advice in Ln to the user, concerning the handling of his luggage. This project is only two
years old. Earlier attempts by Bolt Beranek & Newman in Boston Mass, as well as all these
projects of automatic speech recognition by the CMU and IBM have one thing in common: The
recognition of physical/phonetic data exclusively does not encounter too many difficulties, due
to technical improvements of corresponding hardware devices. But, real and grave obstacles
appear, if the meaning of those spoken expressions is to recognized automatically.

All these concepts, to recognize the carried content of Ln auditive expressions contain a
second serious problem: the automatic search of suitable answers to a recognized content of the
input question. This search procedure has to cope with a realtime speed of 4 to 6 syllables/sec­
ond speech velocity and a 0.5 to 1.5 second response time. Both, the content recognition as
well as the search procedure for a suitable and adequate answer require a basic dependence
from Ln content phenomena, organized in graph shape. Content recognition and answer search
procedure are also mutually dependent.

Highly optimized expression systems and cleverly coded information is always reducible
to content of Ln, no matter whetter coded by auditive/phonographic, numerical or digital
expression sequences.

Finally, in addition, information carried by artificial language expression (artificial lan­
guage is abbreviated to La), including all varieties of lowest to highest level programming
languages, must be explainable by Ln utterances. Consequently information and content of
La is reducible to Ln content. La systems can be regarded as subset systems of Ln.

Unreliability of coded expression

Though auditive/phonographic and especially auditive expression represents the most
inexpensively and most easily produced utterance by human beings, it is characterized by no,
or almost no, self-explanatory features and no content-relation. This led to unsurmountable
difficulties in separating syntax from morphology. Consequently all linguistic research into the
field of semantics centered on sequences of utterances considering phrases and even whole
sentences in connection. Agglutinations in form of syntax particles gave no chance to look through
the expression layer into deeper regions of content. The investigation of content structures of a
single meaning has been widely neglected. Computer scientists working on the semantics of
programming languages and semantics of databases were eager to adopt these practices all too

- 4 8 -

rapidly. Their results were correspondingly modest. In order to achieve powerful and highly
effective expression analyses for the evaluation of content, the tool of self-explanatory and
content—related utterances becomes obligatory. In a way the expression function self—expia—
batory or content—related can also be considered analog in character. This means expression
functions of Chinese characters, Hieroglyphs, and pictographic signs or sign sequences
for road— and pedestrian traffic must be taken into consideration ((5), p. 31 ff). If acute
visual utterances of some deaf-mute gestures or American Indian gestures are included in the
investigations, but not permanent visual and consequently graphic expressions, identical self—
—explanatory expression functions can be recognized ((5), p. 84 ff).

Following these findings, extensive analyses of ideo— and pictogenetic expression func­
tions led to results which deliver handier tools for classifying content of Ln on the one hand
and give a clear distinction between syntax and morphology of Ln on the other.

Analyses of content-related utterances

Expectations of extracting more knowledge of Ln content from self-explanatory
expression morphologies, lead the way to the analysis of the structure and function of ideo—
and pictographic carrier systems. Among Chinese characters, Hieroglyphs and traffic signs
particular carrier properties were recognized, which appear clearer if fully content-related units
are observed. A significant proof of these phenomena could be substantiated, when permanent
expression morphologies for the visual perception were compared with acute ones ((5), p. 103).
In other words, highly self-explanatory ideographic signs, in the shape of Chinese characters,
Hieroglyphs, and traffic signs turned out to be structure—identical with those of content—re­
lated expression units among deaf-m ute and American Indian gestures ((5) , p. 103 f). The
next step was to realize that the morphology of fully content—related and self-explanatory
expression units is equal to the structure phenomena of their transported content. This means
expression is identical to its carried content if self-explanatory morphologies and functions of
that expression are guaranteed. A recognition of this fact led to a development by which mean­
ings could be carried and arranged into proper hierarchies. The structure of these hierarchies
became particularly clear after root—signs, also designated radicals or deuter—signs, were taken
into account. The phenomenon of deuter—signs among Chinese characters could also be proved
among Hieroglyphs and traffic signs. With the help of deuter-signs the expression quotient of
sign content has been established ((6), p. 19 ff).

Besides better understanding of one meaning’s particular properties, sequences of fully
content—related expression units also indicated that conventional morpho—syntactic hurdles
were easy to overcome when analyzing isolated morphologies. Isolated morphologies, usually
present in sequences of ideographic expression units like ancient Chinese texts, sequences of
Hieroglyphs, or gesture units, are seldomly found in expressions for the auditive perception.
Expections are air traffic control language, children’s language within a restricted development
phase and adult expression habits among foreign tourists and guest workers. Among these
particular language systems the first one, air traffic control language, serves experimental

- 4 9 -

purposes best. Better material for morpho—syntactic analyses in connection with content
analyses is rendered by genuine ideographic expressions. Morphology, or the structure of lan­
guage expression, can be classified to a high level in sequences of isolated ideographic and
fully content—related expression units. This concatenation of morphological phenomena per-1-
mits a distinction between solid morphological components and syntax particles. E. g. in
ancient Chinese texts one character or expression unit carrying the meaning past tense puts a
whole sentence into the past tense. Syntactic constituents of Ln expressions, the syntagms,
are divided into syntax rules, e.g. word order rules like subject/predicate/object, and syntax
particles, like the past tense particle, expressed by one unit. All syntagms are now easy to
locate and to analyze.This clear destinction between morphology and syntax within. Ln
expressions additionally cleared the way to more thorough investigations of one meaning’s
particular phenomena.

The appearance of the deuter—sign among Chinese characters supplied results which made
the following classifications of a meaning possible:

1. Sets of meanings can vary in size, due to the configuration of a thesaurus as a PCT,
ICT, or HCT.

2. With an elapse of time the number of meanings in a thesaurus usually increases and
only seldom decreases. The thesaurus grows by adding new and younger meanings to
the stockpile of older ones. It grows like a plant or sponge ((6) , p. 64).

3. A meaning is to be incorporated into a hierarchy in which different meanings posses
differentiated vertical and horizontal concatenation values or grades like condisions in
a directed graph.

The preceding three classification aspects, derived from the function of the Chinese
deuter—sign, resulted in the deduction of the first three sub—criteria of a meaning: 1. Identity
2. Age, and 3. Association. The remaining three criteria: 4. Frequency, 5. Significance, and
6. Truth, are logically based on the first three. One meaning, split into six sub/criteria, has
been designated deuter and the six suberiteria deuter—ciretiria.

The deuter—sphere, a three-dimensional array of content

Concerning the third criterion, association, it very soon became clear that associations
in a thesaurus do not only take place along vertical concatenations or edges in a hierarchy,
but also may occur along horizontal edges. As well as all edges in a directed graph, designated
vertical edges, the remainder of potential concatenations, which fill up a directed graph to
produe a complete graph, are designated horizontal edges. Graph theory shows, however, that
a directed graph with more than five nodes loses its planarity if all nodes are concatenated to
all nodes. A fully functioning thesaurus of meanings, in which all potential horizontal associa­
tions could be established consequently gains three-dimensional structural features if its volume
exceeds five meanings. Trees as used in conventional linguistics do not serve the purpose as they
are two-dimensional in structure and function. To improve conditions originally a three—
-dimensional

- 50 -

deuter— sponge was introduced ((6), p. 64 ff). However very soon formalization requirements
indicated the development from a deuter—sponge to a deuter—sphere by the following method.
In order not to harm the vertical hierarchy, a branch with leaves is observed. As nature provides
suitable models, a branch with leaves can easily be compared with the structure of an agave<
tree. In a similar way to an agave tree, the whole body of branch ramifications is adapted
appropriately to form a structure in which all leaves are positioned flatly behind one another.
If each leaf is considered as a disc, several discs or deuter—discs can shape a sphere. Naturally
the diameters of the discs have to be different, which is normally possible as all discs possess
different implementations. The whole purpose of this arrangement is to achieve an optimized
formalization effect for horizontal associations. These horizontal associations take place along
horizontal edges spanning between the leaves in disc-shapes. Thus the model of a deuter—
—sphere provides valuable possibilities for deriving algorithms for associative functions as in
the memory of a human brain ((8), p. 619 f)- The deuter—sphere concept also helped to offer
new possibilities for updating procedures in database systems ((7) , p. 558).

The six sub—criteria of one meaning

1. Identity Value:

One content unit of Ln or one meaning is identified by Arabic numerals according to
the internationally known decimal classification system, DC. This permits unlimited hierarc­
hical growth of vertical associations by time. Newly generated meanings to be added to a
thesaurus are equipped with a decimal fraction.

2. Age Value:

The age value is separated into two different data:
2a) the absolute age value and 2b) the relative age value. The absolute age value of a meaning
is measured by a continuous count and implementation count into a thesaurus: 1 to n from
old to new. The absolute age value of the latest or youngest meaning added indicates simulta­
neously the size of a thesaurus. The relative age value stands in relation to existing calendar
and time measurement systems. The newest meaning in a thesaurus usually touches the periph­
ery or the sphere—skin of a thesaurus.

3. Association Value:

The association value is separated into two different data: 3a) the vertical association

value Ay and 3b) the horizontal association value A^. The Ay value features logic concatenations
between meanings naturally grown in a time continuum like the hierarchical structure of a plant.
Vertical associations compare with edges in a directed graph. The vertical association value of a
node measured by the number of edges leading from this node, or, more exactly, the number

- 5 1 -

of strings in the node-ring ((8), p. 615). Horizontal associations between meanings and meaning
nodes represent edges in a complete graph minus the edged belonging to vertical hierarcies in
that same graph. Potential connections between all nodes in a graph or thesaurus are possible.
Horizontal associations compare with free thinking and undogmatic association procedures,
while vertical associations take place in strict hierarchies.

4. Frequency Value:

Frequency values of a deuter are separated into 4a) absolute frequency and 4b) relative
frequency values. Both frequency values refer to active expression procedures or passive per­
ceiving processes. This way of explaining content with expression sequences is related to
expression habits concerning active and passive vocabulary treasures. The absolute frequency
count of a meaning measures the actual event in which that meaning ismsed in an HCT, ICT,
or a PCT. A relative frequency count considers all absolute frequency data of all investigated
meanings and assigns the value 1 to the meaning with the highest absolute frequency value.
The meaning with the second largest absolute frequency value receives the relative frequency
value 1/2 and so on. In an ICT frequencies are measures by the number of attention proce­
dures concerning a meaning. This attention procedure stands in relation to a) thinking, b)
moving, c) working, d) expressing, and e) perceiving processes of an individual. High frequency

meanings with a high usage frequency are characterized by closer proximities to the center of a
thesaurus or the focus of attention. Their connection facilities are characterized by better
conductivity, while meanings of lower usage frequency are demond to die out, if no minimum
frequency occurences are guaranteed.

Frequency values, separated into absolute and relative frequencies, refer to occurences
of attention processes in ICTs, HCTs, or PCTs.

5. Significance Value:

The significance of a content unit or meaning is closely related to the meanings of the
expressions priority and relevance. This kind of relevance or urgency has been substantialized
three-dimensionally by priority zones, realized by a deuter-sponge, the forerunner of a deu ter-
-sphere ((6), p. 68 0- Unnaturally retarded areas in the homogeneous growth of the deuter-
-sponge reveal higher distance-values to the common periphery zones. With the deuter-
—sphere another method to indicate the significance value three-dimensionally has been
introduced ((7), p. 558). By this new method meanings attached to their nodes and their

vertical association values Ay are compared. Besides the vertical associations Ay horizontal
association values A^ play a role in determining significance values of a meaning. Content units or
research topics of low significance value may be new and 100% true, but are lacking extreme
urgency and relevance, which also can be the case with inventions. Content units or meanings
feature high significance values, if they affect and modify the lives of many/people.The significance
value of a meaning affects human life in general. For example the meaning gravitation represents
a higher significance value than the meaning weight. Or the meaning bread a higher one than the
meaning spice.

- 5 2 -

Significance values o f a meaning or a content unit are subject to the vertical association
values Ay of neighbouring nodes in a deuter-sphere. In particular the Ay values of the
next upper to the root nodes play a role in determining the significance value of a content
unit. In addition A^ values of the same node and its neighbouring vertices have to be taken
into consideration when determining the significance value.

6. Truth Value:

Particularly relevant in individual content thesauri, ICTs, the truth value can range from
О % to 100 %. Only a 100 % truth value represents a fact. In particular content thesauri,
PCTs or the human content thesaurus, the HCT, only facts should be stored. Consequently
all questions about the percentage of a truth value are related to association procedures and
thinking operations in ICTs. That means that highly valuable thinking, conceiving and original
creating functions, are accompanied by differentiated degrees of truth values. In other words,
fiction is closely related to original thinking, the conception of new ideas and the bearing of
new information. A theory of truth represents a theory of knowledge. Ouestions about the
truth value are always related to new information. New information or content units are
positioned directly at the periphery of a deuter—disc, and thus of a deuter-sphere if the model
of a deuter-sphere is concerned.

The truth value of a newly born content unit or meaning is substantialized particularly by,
and rests on, a logic geometry of horizontal as well as vertical associations. The new content
unit may not exist without proper and sufficient connections to the exprerienced substance
of knowledge. All fictional association processes in the human mind, which can accomplish
highly valuable association results and masterpieces of art, carr the risk of untrue or
partially true results. Thus an association procedure and projection into the transcendental
and areas outside the skin of a deuter-sphere will lead to true results, only if a sucfficient number
of horizontal associations A^ to the infrastructure of knowledge is guaranteed. Geometric
infrastructures, especially of the A^ values, are necessary to substantialize the truth of a
newly originated content unit. Only if all possible association angles and connections or a
sufficient number of associations is substantialized does the truth value amount to 100%.
This means, that if only one among the necessary potential associations is not realized, then no
100% truth value is obtained. If conceptions of new meanings or content units in the from of
mventions or scientific discoveries are concerned a sufficient number of infra associations of
all related areas has to exist. In other words, related areas which are positioned in border
regions, must be penetrated very thoroughly in order to achieve an expansion of the outer
sphere-skin and enlarge the volume of the content thesaurus in a deuter-sphere. This means
that in an ICT the individual is only capable of penetrating the peripheral outer skin of a
deuter-sphere if fundamental knowledge and an exhaustive comprehension of all regions
underneath that portion of the peripheral skin exists. Otherwise empty assumptions may
lead to results which lack the necessary 100% truth value. Even an increasing frequency value
along horizontal associations may not yet assure the truth of the new content unit aimed at.

- 53 -

Horizontal associations can point in the direction of a newly born vertex of the ICT in the
form of a deuter-sphere, but the vertex cannot yet be vertically concatenated to an already
existing meaning. Only after a proper connection by means of a vertical association in an
ICT is a new meaning achieved and a 100% truth value established. A corresponding lower
percentage of truth is in proportion to existing association within the amount of sufficient asso­
ciations. Sufficient associations are equal to 100% of a truth value. The logic procedure of a final
vertical concatenation runs parallel with an empirical proof by experiments in the case of an
invertion.

Conclusion

Computer Science as a scientific discipline is not restricted to the application of conventi­
onal and all purpose digital hardware. In order to cultivate conventional digital equipment
from calculating machines to a more user-friedly language- robot, all potential hardware means
should be used to adapt machinery to Natural Language requirements. How Natural Language
requirements really are conditioned only a thorough analysis of Natural Language content
phenomena will show. Such an enterprise postulates more investigations of isolated morphologies
for restricted thesauri as well as increased efforts to evaluate self-explanatory and content-related
expression structures. A sub-division of one meaning into six deuter-criteria and their three-
-dimensional array indicates the way for better navigation procedures to simulate natural
asociations.

References

[1] Erman L., Organization of the HEARSAY II Speech Understanding System, in:
Working Papers in Speech Recognition III, Carnegie-Mellon University, Computer Science
Speech Group, Pittsburgh, Pa, (1974)

[2] Fennel R., co-author, see No. 1

[3] Hayes—Roth F., Focus of Attention in a Distributed Logic Speech Understanding
System, Working Papers of the Department of Computer Science, Carnegie-Mellon
University (1976).

[4] Hayes-Roth F., Syntax and Semantics in a Distributed Speech Understanding System,
Working Papers of the Department of Computer Sciences, CMU, (1976).

[5] Kümmel P., Struktur und Funktion sichtbarer Zeichen, 223 pp. Verlag-Schnelle GmbH,
Quikborn bei Hamburg, (1969)

[6] Kümmel P., Wertbestimmung von Information, (zur qualitativen Analyse des Inhalts
natülicher Sprachen), 90 pp., Max Niemayer-Vlg., Tübingen, (1972).

[7] Kümmel P., Improved Updating in Relational Data Base Systems by Deuter-Sphere
Algorithms, in: Proc. of the 2nd Int. Conf. on Software Engineering, IEEE and ACM,
pp. 556-561, Oktober 1976. San Francisco, (1976).

- 5 4 -

[8] Kümmel P., Deuter-Criteria’s Impact on the Computation of Natural Languages, in:
Proc. of the 2nd Hungarian Computer Science Conference, pp. 609-623, Budapest,
(1977).

[9] Lesser V., co-author, see No.l, (1974).

[10] Lesser V., co-author, see No. 4, (1976).

[11] Lesser V., co-authbr, see No. 3, (1976).

[12] Mostov D., co-author, see No. 4, (1976).

[13] Reddy D., co-author, see No. 1, (1974).

[14] Smith J., Data Base Abstractions; Aggregation and Generalization, in: ACM Transactions
on Database Systems, Vol. 2, No. 2, June 77, pp. 105-133, (1977).

[15] Smith D., co-author, see No. 14, (1977).

- 55 -

TRANSCELL - A CELLULAR AUTOMATA TRANSITION FUNCTION
DEFINITION AND MINIMIZATION LANGUAGE FOR CELLULAR

MICROPROGRAMMING

T. Legendi

Research Group on Mathematical Logic and Automata Theory of,
Hungarian Academy of Sciences

1 gives proposals for the construction of cellular automata emulators with variable
transition function. This idea has been developed and concretized in 2 for the construction of
cellular processors. In this paper the proposal of 2 for transition function minimization is
treated in details. A semi — automatic solution is proposed — the user may (and should)
control (to program in a very simple way) the minimization process.

The basic idea of 1 is the following: variable transition function makes cellular spaces
more flexible. Variable transition functions may be implemented by RAM-s in each cell or
by one RAM in a CCPU (cellular CPU) driving quasi cells by sending terms sequentially to
them. The later solution looses the totally parallel operation. However, it drastically reduces
the size of cells and (as explained in detail in 2) in this way by increassing the number of cells
price/performance is improving. It is reasonable for the loss of speed does not depend on the
number of cells connected to a CCPU — it will be proportional to the number of terms of
the transition function. However this number may be yet large, slowing down the operation
to an unacceptable level. Therefore the loss of speed should be (at least partially) balanced
by transition function minimization, this is of vital inportance for this construction.

It would be fine to find a general automatic minimization algorithm applicable to any
transition function.

As such an algorithm has not yet been found, a set of minimizing operators had been
worked out. They can be called through directives and the user (knowing the specialties of
his actual transition function) should determine the sequence of minimizing operators.

Usually (traditionally) a transition function is defined by a set of terms. A term
consists from the old state of a cell, the states of its neighbours and the corresponding new
state. For example: 0 1234 5

During execution a cell in state 0 having neighbours in states 1, 2, 3, 4 will assume
state 5.

In 10 some transition function definition and representation forms were examined.
It is very important to choose an appropriate form of transition function evaluation. Examining
among others software 5 , 6 , 7 and hardware 8 ,9 approaches and having some experience
in simulation 10, 11 and model building 12 the following way was chosen:

- 56

Here a term is given in the following form:

0 + 1 - 2 — 5 * 4

old state condition part new state

condition + i means: there exists in the neighbourhood minimum
one cell in state i

condition - i means: there exists no cell in state i in the neighbourhood

and a term will be executed by cells in ’’old state” that meet all the conditions (e.g. they
will assume the ’’new state”).

A transition function is an ordered set of terms where later terms override the earlier
ones if there is a contradiction, (for example 0+1 3

0 +2 4

might contradict if in the actual neighborhood of a cell there are state(s) 1 and state(s) 2)

As a starting point the definition form of 3 has been accepted:

This definition is well-suited for a relatively simple hardware implementation; it is easy
to find very fast and memory saving computing methods for simulation purposes and finally
it is naturally applicable for sequential transition function execution (for quasi cells), too.

However transition functions defined in the above way are not direction sensitive, (e.g. for
example they cannot distinct between neighborhoods 1121 and 1222 — both are classified as
+1 +2) so this type of definition is weaker than the usual one.

For many purposes this fact may be not disturbing. In 13 it was shown that cellular
spaces consisiting of apolar cells may show a polar behaviour (e.g. symmetric local transition
functions may induce asymmetric global transitions), the main result in 3 was the construc­
tion of a concrete transition function and a set of building blocks allowing universal compu­
tation — using the above definition form exclusively. As the TRANSCELL run N^l in the
Appendix shows in the well-known Codd function 14 the direction sensitivity is hardly
utilized (although generally supposed that it is; e.g. the function is defined in a stronger
definition form than it would be necessary as it will be shown in the following).

For proving this the Codd function had been coded in the following way:
the condition part a j a - ^ a ^ (4 neighbours) had been changed for containing all the neighbours,
with plus sign if they had appeared in the original condition part (one or more times) and
with minus sign if they had not appeared at all.

- 57

For example:

0 1221 2 — ■ >■ 0 - 0+ 1+ 2— 3— 4 — 5— 6—7 * 2

It is clear that a new rule contains the old one from which it was generated, but there
is no one to one correspondence. However this extension of the function consisting of the
generated rules has a very low number of contradictions showing that direction sensitivity
is not a very important property for the Codd function. Moreover it can be detected that it
is not needed at all — the contradictory rules might be classified by the number (or partity)
of some distinguished states.

However for effective cellular programming in style of 4 direction sensitivity is very
important. Therefore a natural generalization is applied:
±i in the condition part will refer to the i-th property of the neighbourhood rather than to
the occurence of state i in the neighbourhood. Typical examples of the properties of the
neighbourhood might be: the existence of some state(s), the partity of some state(s), the
number of some state(s) and combined versions of these and similar elementary properties.
The property definition and minimization part of the language is yet under development, it
will not be treated in detail in this paper; only one characteristic result will be shown in the
Appendix: TRANSCELL run 2 uses 12 properties for an obvious one to one transforma­
tion of the Codd function — the bits of neighbours are chosen for properties. For example :

0 1234 5 <+ 0-0-1+2-3+4-5-6+7+8+9-10-11 * 5.

This is a mechanical transformation, showing not very much from the characteristics of
a transition function. However a simple, short TRANSCELL program was able to find a
solution, equivalent to the result in 15. (For the subfunction from terms for old state 6, 7;
that says: the new state will be 0 or 1 depending on the only property: does there exist
odd state in the neighborhood or does not.)

The language TRANSCELL is very simple. It consists of the above term definition
rules (transition function definition) and directives (property definition not included here)
for minimization and housekeeping. They may form a program in a sequential order.
The directives may be grouped:

1 .applicable at any time
2. applicable only before the rules
3. applicable only after the rules

For the easier formulation of the functions of the directives the following definitions
are needed. They are valid for pairs of rules where the old states are identical.

Two rules are independent if at least one property is prescribed in a contradictory way
in them.

- 58 -

for example: 3 - 1 +4 * 4

3 +1 - 6 *5

or:
1 +0+1 - 2 * 3

1 +1 +2 - 4 * 3

Two rules are contradictory if they are not independent and the prescribed new states
are different.

for example: 0 + 0 + 3 * 4
0 +1 - 4 =*=5

Two rules are intersecting if they are not independent and the prescribed new states are
identical.

for example: 0 + 0 +3 * 4

0 +1 — 4 * 4

The rule A contains rule В if

either 1. each property required in A is required in the same way (with the same sign) as in
В and the new states are identical

for example: A 2 —0 +2 * 2

В 2 - 0 +2 +3 —4*2

or 2. each property required in A is required in the same way (with the same sign) as in В
and the states are different but rule A is stronger (see directives FIRST, LAST)

for example: A 2 —0 +2 *3

В 2 - 0 +2 +3 -4*2

Two rules are contractable if the new state is the same, the required properties are identical
except one.

for example: 3 —1 +4 +5 *3

3 -1 - 4 + 5 * 3

Two properties are 2-equivalent if in any rule they occur together with the same sign

- 5 9 -

for example: (properties 0 and 2)

3 +0 -1 +2 -3 * 0

3 - 0 -1 - 2 +3 * 1

3 +1 - 4 * 0

3 +0 +2 +3 +4 *3

3 +0 +1 +2 -3 +4 * 4

Only the most important directives will be shortly characterized, a lot of utilities and
directives of secondary importance will be omitted here.

The group directives that are valid in any part of a TRANSCELL program is used for
the control of printing trace information. There are pairs of directives prescribing or prohibiting
to print information on contradictory, intersecting, containing and contractable rules.

Only before finishing the group of rules (by an END directive) can be used the FIRST
and LAST directives ordering the rules. FIRST means that earlier rules are stronger, LAST
means that later rules override earlier ones. (As all the directives, they may be issued more
times in any order).

The minimization directives may be used only after having closed (by an END directive)
the group of rules.

It is possible to CONTRACT rules:

for example: 1. 1 +2 - 4 +6 -7 * 7

2. 1 +2 +4 +6 -7 * 7

the result is 1 +2 +6 -7 * 7

(contractable rules may be changed for one rule)

CONTAIN ed rules may be cleared

for example: A +3 -5 4

В 0 _2 +3 -5 4

В may be cleared here

or

A 0 _2 +3 -5 6

В 0 - 2 +3 -5 7

В may be cleared only if A was stronger

- 60 -

2-EQUIVALENCE clears one of the equivalent properties.

The MINIMUM directive clears all such (unnecessary) property definitions in the condition
part that might be cleared without causing contradiction with weaker rules (i.e.
with stronger rules a contradiction would not change the transition function).

However a weaker form, MINIMUM * is applicable, too, where no contradiction may
arise during the clearing process. The need for it is based on the following considerations:
there are operations that work (at all or effectively) only on groups of independent rules,
so in some cases to preserve independence is important.

For this purpose serve the directives SMOOTHC and SMOOTHI: generating equivalent
independent rules from any group of contradicting or intersecting rules.

The use of these rules is especially important in connection with property minimization.
Here is some virtual contradiction: minimizing the number of rules and minimizing the number
of properties are contradictory conditions in general. However in practice taking into account
a given hardware construction the task is modified: give the minimum number of rules with a
limited number of properties.

This means that both types of minimizations should be built in and used in a flexible
way.

Examples: LAST

0 +1 +2 +3 * 1

0 +1 +2 -2 * 2

0 -1 -2 -3 * 3

MINIMUM gives the result: MINIMUM * gives the result:

0 * 1 0 +2 +3 * 1

0 +2 - 3 * 2 0 +2 -3 *2

0 -2 * 3 0 -2 *3

For the simulation system, from transition functions tables should be generated. As
minimized functions may differ each from other, differently minimized tables may be
generated and for achieving fastest execution specialized FORTRAN rutinus are also generated
by TRANSCELL, (for the search from the minimized (tables).

It is possible to print the rules, etc.
All minimization directives are limited only for some specified old state groups.

- 6 1 -

Using the above simple directives very effective optimizations may take place as the
examples in the following Appendix show.

R e f e r e n c e s

[1] T. Toffoli, On the Large-Scale Implementation of Cellular Spaces by means of
Integrated Circuit Arrays. Consiglio Nazionale Delle Ricerche Roma, (1972)

[2] T. Legendi, Cellprocessors in Computer architecture. Computational Linguistics and
Computer Languages XI (1976) pp. 147-168.

[3] A. Domán, A three-dimensional cellular space (A challenge to Codd-Icra) Acta
Cybernetica, Tom. 2, Fasc. 4, Szeged, (1975) pp. 345-360.

[4] T. Legendi, Programming of cellular processors. Procedings of the Braunschweig
Cellular Meeting, June 2-3, (1977).

[5] W.H. Liu CELIA (A Cellular Linear Interative Array Simulator) State University of New
New York at Buffalo (1972).

[6] R.F. Brender, A Programming System for the Simulation of Cellular Spaces. Ph. D.
Thesis University of Michigan. Computer and Communications Sciences Dep. (1970).

[7] R. Vollmar Uber einen Interpretierer zur Simulation zellularen Automaten Angewandte
Informatik (6/1973).

[8] К. Preston Jr., Use of the Golay Logic Processor in Pattern-Recognition Studies
Using Hexagonal Neigborhood Logic. Symposium on Computers and Automata.

Polytechnic Institute of Brooklyn, (1971).

[9] M. J. B. Duff, The cellular logic array image processor
D.M. Watson, Computer Journal Vol. 20 N. 1. (1977)'.'

[10] T. Legendi, INTERCELLAS-an interactive cellular space simulation language. Acta
Cybernetica Tom. 3. Fasc. 3 (1978)

[11] F. Siimeghy, A group of instructions for transition function definition and minimization
using treeform representation. Diploma-work (in Hungarian) JATE, university,
Szeged, (1977).

[12] G. Balázs — I. Orovecz, Design and Implementation of microprogrammable cellular
processors. Diploma work(s) (in Hungarian) Institute GAMF, Kecskemét, (1977).

[13] G.T. Herman, Polar organisms with apolar individual cells. Proc. of the IV.
International Congress for Logic, Methodology and Philosophy of Sciences, (1971)
pp. 665-675.

- 62 -

[14] E.F. Codd, Cellular automata, ACM Monograph Series, Academic Press (1968).

[15] M. Szőke Codd-Icra: Regularization of Codd’s transition function (in Hungarian)
KGM ISZSZI Reports. Budapest, (1974).

- 63 -

SEMANTIC ANALYSIS OF SYNTACTIC METHODS

Heikki Heiskanen
University of Helsinki Department of Social Policy

Two branches of general linguistics are relevant to this paper: syntactics and semantics.

Syntactics has two different meanings. According to its narrower, linguistic meaning it is
that branch of linguistics that deals with the syntax of natural languages, i.e. with the grammatical
rules describing how sentences and clauses are made up of words and phrases. Syntactics in its
wider sense deals with the formal relations of signs and expressions, not only in the linguistic
meaning. Here syntactics is used in this broader sense.

Thus syntactic theories give recognition to the constituent structure, i.e. the way in
which words and phrases form sentences and clauses. Conversely, a syntactic theory gives
a method by which verbal expressions can be divided into parts and by which these parts
can be connected to each other. Thus a syntactic theory has opposite functions: synthetic
and analytic. Here syntactics will be examined from the viewpoint of its analytic function.

A good number of syntactic theories have been introduced not only into general
linguistics, but also other branches of the behavioral sciences. Syntactic theories have been
introduced especially in areas where content analysis is relevant in one form or another. Here
brief reference will be made to the syntactic methods with either a linguistic or other back­
ground and also to a new method called linguistic-mathematical systems theory. These methods
represent general linguistics, political science, psychology, jurisprudence and management
science.

The selection of syntactic theories is not meant to be exhaustive, far from it. It is
intended simply as an example of the different approaches on which such theories are based.

The methods introduced here have been chosen on the following grounds:

1.) The method introduces an idea according to which verbal expression is divided into
linguistic, logical or other kinds of units and is then expressed in terms of these.

2.) It gives an idea of how to compile the analysis results of individual sentences into a
summary in the form of a network presentation.

The methods introduced here are subjected to a semantic analysis, i.e. the meanings of the
concepts used in these methods are analyzed and compared using the new linguistic-mathemati­
cal systems theory as a frame of reference.

- 6 4 -

The linguistic-mathematical systems theory, or in short, the LM-theory (Heiskanen 1972
and 1975), used here as a frame of reference, will first be introduced. It was developed for
the analysis of wage decisions, i.e. for the purpose of content analysis. Its principal function
is to transform verbal text into a form in which the content is expressed by means of logico —
-mathematical concepts.

The logico-mathematical concepts have been chosen for use as basic concepts in order
to work up the analyzed text into a form in which it can be processed further by mathema­
tical methods or data machines: both of these operate by means of a set logico-mathematical
concepts. Therefore, if the content analysis also operates using these concepts, the content is
ready after analysis for mathematical or data machine processing.

There are two kinds of basic concepts in the LM-theory : terms and relations. The terms
are either

1.) values of variables such as ’’dirty” or ’’high”, or

2.) variables defined to be combinations of mutually alternative and exclusive values
such as ’’dirtiness” or ’’height” , or

3.) entities defined to be things to which values and variables belong such as ’’job
conditions” or ’’salary” .

The relations are different kinds of connections such as influence, measurement, definition
or membership connections between the terms. However, in this article interest is confined to
influence relations of which there are three kinds:

4.) relations between values such as ”if” or ’’because”,

5.) relations between variables such as ’’depends on”, and

6.) relations between entities such as ”is influenced by” .

The analytical idea

In the analysis the individual sentences are divided into parts corresponding to the
concept categories mentioned above. Then the content of each sentence is expressed by means
of these concepts. In the last phase the contents of individual sentences are combined into
compilations called models.

There are three kinds of models depending on the category to which the terms by
which the model is expressed belong. Thus there are

a.) value models expressing values and relations between them as illustrated in example A,

b.) variable models expressing variables and relations between them (example B), and

c.) entity models expressing entities and relations between them (example C).

- 65 -

Examples

The examination of syntactic methods and their comparison with LM-theory later in
this article will be done using the following sentences as examples. These will be analyzed, at
least in part, by the methods to be referred to.

One of them is a value sentence expressing two values of which one is cause and the
other is effect. It is analyzed and expressed according to the LM-theory in the following way:

Example A

’’Smith’s wage is high, because his job is dirty”.

Concepts
5?

high = value of the variable ’’level of wage
dirty = value of variable ’’dirtiness of job conditions”
because = cause-effect-relation = = ^

Content

’’dirty = = high” or
” ’job conditions are dirty’ is the cause and ’high wage’ is the effect.”

The corresponding value model could be as follows:

Bonus for dirtiness

Description of job conditions Bonus

clean no bonus

dirty = = >• small bonus

very dirty = = =► high bonus

dirtiness -------- ► level of
wage

Thus the value model is a combination of two or more value sentences.

The other sentence is a variable sentence which comprises two variables and the influenpe
relation between them. It contains information that there is an influence relation between
these two variables.

- 66 -

Example В

’The level of wage depends on the dirtiness of job conditions”.

Concepts

level of wage = variable
dirtiness = variable
depends on = influence-relation---------

Content

’’d irtiness---------- ► level of wage”.

The variable model is a combination of two or more variable sentences. Thus a variable
model corresponding to the above example could be the following:

The content of this model reads:

’’The level of wage depends on

1.) the dirtiness of job conditions,

2.) the level of skill required in the job and

3.) the sex of wage earner.”

The third sentence is an entity sentence describing the influence relation between two
entities.

Example C

”Wage is influenced by job conditions” .

Concepts

wage = entity
job conditions = entity
is influenced by = influence re la tio n ------- ►

- 6 7 -

Content

’’Job conditions----- ► Wage”

The corresponding entity model could be the following one, which is based on the variable
model in example B:

’’Job condit;—°

Wage earner

This model reads:

”Wage depends on the

a.) job conditions in which the wage earner works,

b.) job performed by the wage earner and

c.) wage earner.”

Connection between different levels of terms

The presence of three parallel ’’languages” , each of them representing of the three categories
of terms is essential to the LM way of thinking. Hence, for each sentence, disregarding the
concept level on which it is expressed, one can imagine one parallel sentence on the other two
levels. The three examples are just such parallel sentences corresponding to one and the same
piece of information. This means that from each value sentence юле variable and one entity
sentence can be derived and that all data should be specified by the value, the variable and the
entity to which value belongs.

Introduction of other syntactic methods

Other syntactic methods will now be introduced and compared with the LM-theory. Here
attention will be paid only to the following characteristics in the methods:

1.) What categories of terms are represented in the method at hand: does it operate by
values or entities?

2.) What kind of compilations can be expressed by the method:
are they value, variable or entity models?

3.) What connection exists between different term categories: does the method explicitly
give the connection between values, variables and entities?

Job

- 68 -

Conventional linguistic theories

The conventional syntactic theories in linguistics usually assume that any sentence of a
natural language may be presented as a particular arrangement of elements which are words or
parts of words and which are called by name expressing their grammatical function. According
to this (Lyons 1970)

1.) the text to be analyzed is first divided into sentences,

2.) these sentences are divided into main and subordinate clauses,

3.) these clauses are divided into noun and predicate phrases,

4.) the noun phrases are divided into nouns and determiners, and

5.) the predicate phrases are divided into verbs and auxiliaries.

After sentences are divided into elements in this way, they are expressed by means of tree
diagrams as illustrated in figure 1.

Because his Job is dirty, his wage is high

(sentence)

(conjunc- (deter- (noun) (verb) (adjec- (deter- (noun) (verb) (adjec-
tlon) miner) tive) miner) tive)

Figure 1

- 69 -

A. Comparison with the logico-mathematical concepts. In the method it is essential that
the sentences be divided into parts corresponding to different grammatical categories. The
correspondence to the logico-mathematical concepts is as follows:

1.) values of variables (dirty, high) = adjectives,

2.) variables (dirtiness, level) = nouns

3.) entities (wage, job conditions) = nouns

4.) relations between values (because) = conjunctions

5.) relations between variables (depends on) = verbs

6.) relations between enties (is influenced by) = verbs.

B. The method of compilation is not given.

C. The connection between different term categories is not given.

Syntactic graphs

Another less known linguistic syntactic theory is the syntactic graphs technique, which
was developed in Czechoslovakia and which has been introduced e.g. in Klir (1967).

According to this theory a sentence is conceived to be made up of so called sentence
elements or phrases. These elements are interpreted to form syntactic pairs. In every pair one
element is always the main and the other is the dependent element. The syntactic pairs are
indicated by graphs, i.e. by arrows. The relations between the elements are expressed by
interrogative words such as ’’what kind of” ”how is it” or ’’where”.

The first example sentence takes the from illustrated in figure 2.

A. Comparison with the logico-mathematical concepts. All the logico-mathematical
concepts are simply conceived as elements

his
▲

оr~ wage is high because

Figure 2

his
▲

job
> i s

dirty

- 71 -

B. The method of compilation is given. The compilation is a ’kind of combination of value,
variable and entity models.

C. The connection between different term categories is not given simply because there is
only one concept category.

Discoursive content analysis

There are different approaches in content analysis as understood in political science. One
of them is the discoursive content analysis method or discourse model which considers contents
as linguistic referents and expresses them in denotations and connotations (Harris 1952, Pietila
1975).

The text is divided into elements, which usually represent different kinds of linguistic
concepts which might be syntactic categories such as sentences, clauses, phrases and the
like or lexical categories such as nouns,adjectives, verbs, conjunctions and the like. Then the
content is presented by means of these elements by expressing what kind of combinations of
these elements have been found in the text and the way, in which they are linked to each
other. The concepts presented by a language are conceived as 1) things or entities, 2) properties
of things, 3) relations of things to other things and 4) propositions about things, properties and
relations. The propositions are built up by means of concepts and the sentences by means
of propositions. The sentences are either

a.) propositions of simple classification, i.e. P(a) meaning ’’the entity ’a’ has a property
P”

b.) propositions of relations, i.e. R(a,b) which is read ’’between entities ’a’ and V
there is a relation R”

c.) combinations of a and b, e.g. R(Pj(a), Pj (b)) and

d.) inferences such as implications, i.e. a = =► b meaning ”if a then b”.

The first of our examples takes the following form according to the discoursive
analisys method:

”His wage is high, because his job is dirty”.

Concepts

wage = entity a
high = property P j
job = entity b

dirty = property P->
because = = = ^

- 72

Content

”P ! (a) ◄== P2(b)” or
’’dirty (job) = =► high (wage)

The other examples take the following form:

’’Level of wage depends on the dirtiness of job conditions”

Concepts

level of wage = entity a
dirtiness of job conditions = entity b
depends on = relation R

Content

”R(a,b)” or ’’dependence (level, dirtiness)”

”Wage is influenced by job conditions”.

Concepts

wage = entity a
job conditions = entity b
influenced by = relation R

Content

”R(a,b)” or ’’influence (job conditions, wage)” .

The summaries in the content analysis are mostly in the form of tables. They describe the
content either qualitatively by enumerating what kinds of combinations have been found or
the position taken towards different topics, or quantitatively by describing how many compound
or simple sentences or how many different sorts of verbs have been found.

A Comparison with the logic-mathematical concepts. Even if the discoursive content
analysis method employs logical concepts, its concepts differ from the LM-concepts:

1.) values of variables (dirty, high) = properties,

2.) variables (dirtiness, level) = entities

3.) entities (job conditions, wage) = entities

4.) relations between values (because) = relation ()

5.) relations between variables (depends on) = relations R

6.) relations between entities (influenced by) = relations R.

- 7 3 -

В The method for compiling results is given, but it is in tabular form, which does not
give correspondence of terms in the sense the LM-theory means. Some of the tables resemble
the value models, but most of them do not.

C The connection between different term categories is not given and the same terms can
be in different categories.

Signed digraphs

Roberts (1971) among others has used a method based on theory of graphs for the
analysis of complex structures of interconnections. The basic elements in this method, called
the signed digraph technique, are variables and the cause-effect-relations between them.
The sentences to be analyzed are thus divided into variables and cause-effect-relations. The
content is then compiled into a network where points stand for variables and the arrows
connecting these points stand for the cause-effect-relations. This network is called a signed
digraph. The presentation is exactly the same as in the LM-theory for the variable sentences
in example B.

A Comparison with the logico-mathematical concepts

1.) variables (dirtiness, level) = variables

2.) values of variables (dirty, high) = there is no special concept for values, but they are
also interpreted as standing for variables,

3.) relations between variables (depends on)
= cause effect

4.) relations between values (because) relations

Entities and relations between entities are not included in the concepts.

В The method for compiling results is given and it is identical to the variable model
of the LM-theory.

C The connection between different term categories is not given.

Cognitive mapping

Cognitive mapping is a method for the content analysis developed by political scientists.
It has been applied by many scientists in different variations, but here it will be introduced
mainly in the form in which Axelrod (1975) has developed and used it, because he has
greatly improved and systematized this method and also successfully used it to research.

The basic elements are the concepts and the causal links between these concepts. The
former are something like ’’the amount of security in Persia” , i.e. concepts that can take
different values such as ”a great amount of security”, or ” a small amount of security”.

- 7 4 -

The causal links or beliefs are regenerated as expressions relating concepts to each other.

The content of the text to be analyzed is compiled into a network where the concepts
are represented by points and the causal links by arrows between these points. The network
is called a cognitive map.

Both the value and variable sentence of our examples are interpreted in the same way
according to the cognitive mapping method:

”His wage is high, because his job is dirty.”

’’The level of wage depends on the dirtiness of job conditions.”

Concepts

level of wage = concept variable A
dirtiness = concept variable В
depends on, because = causal belief --------

Content

”A 1---- B”

A. Comparison with the logico-mathematical concepts

1.) values of variables

2.) variables

3.) relations between values

4.) relations between variables

= concept variables

= causal beliefs

Entities and entity relations are ignored.

B. The method for compiling results is introduced and is identical with the variables
model of the LM-theory.

C. The connection between different concept categories is not given explicitly, even if
the fact that both values and variables are interpreted to be concept variables implicitly
involves the idea that one variable can be derived from every value.

Normalized sentence-index matrix

Allen (1965) has developed a content analysis method for jurisprudence called the
normalized sentence-index matrix (N-SIM). Its purpose is to draft complicated statutes in an
accurate way to be used both manually and in an automatic data processing system.
According to this system the sentences to be analyzed will be regarded as ”if and only
if”-sentences. The text to be analyzed is divided into sentences such as ”his wage is high”

- 7 5 -

and ”his job is dirty” and into syntax words such as ”if . . . then”, ”or” and ”if and only
if . . . then”. Thus the first of our example sentences is analyzed and expressed as follows:

Concepts:

”his wage is high” = sentence SI
”his job is dirty” = sentence S2
’’because” = syntax w o r d --------- ►

Content

”S1 --------- S2”

When the sentences analyzed in this way are compiled into a network, the normalized
sentence-index matrix is formed.

A. Comparison with the logico-mathematical concepts.

1.) values of variables = sentences
2.) relations between values = syntax words

The variables and entities are ignored in the method.

B. The method for compiling results is involved in the method, i.e. the normalized
sentence-index matrix. It is to some extent analogical with the value model of the LM-theory.

C. The connection between the different concept categories is not given, obviously
because the system operates only by means of the values and their relations.

Psycho-logic

Abelson and Rosenberg (1958) have developed a method for the description of human
cognitive processes. The method is called psycho-logic. The essential concepts are on the one
hand ”thing-like” concepts that for a given person are relevant to a given object and on the
other hand the desirableness-relations between these concepts. Thus the verbal presentation is
divided into these concepts and these relations. The compilation of the analysis results is
presented in the form of a network where the points represent concepts and the arrows the
relations: a positive arrow refers to usefulness or desirableness and a negative one to
harmfulness or undesirableness.

This method can not be applied directly to our examples because they do not express
such desirableness-relations as required by psyho-logic. However, indirectly thé description
could be as follows:

”W ag e ------— ** wage earner” , i.e.

’’wage is desirable for the wage earner”.

- 7 6 -

A. Comparison with logico-mathematical concepts. The ’’thinglike” concepts are
obviously the same as entities in the LM-theory, i.e. things towhichthe values and variables
belong. The relation concept of psycho-logic is narrower than the influence-relation of the
LM-theory. It corresponds to those influence-relations that can be interpreted as desirableness
or usefulness. Thus:

1.) entities (wage, job conditions) = concepts,
2.) relations between entities (is useful for) = relation

Other categories of terms are ignored.

B. The method for compiling results is involved in the system, i.e. the network. It is
analogical with the entity-model of the LM-theory.

C. The connection between the different concept categories is not given, again for the

obvious reason that the method operates only with one kind of concepts, i.e. with entities.

Discussion

The syntactic methods introduced above can be classified into five categories:

1.) linguistic syntactic methods, which include the conventional and graph methods,
2.) discoursive content analysis method,
3.) cognitive mapping which also includes signed digraphs,
4.) normalized sentence-index matrix,
5.) psycho-logic.

These are compared in table 1 with the LM-concepts. This comparison gives the following
results:

a.) the linguistic method operates with the same concepts as the LM-theory but includes
variables and entities in the same category; there is no suggestion of compilations.

b.) the discoursive analysis method also operates with all concepts and includes variables
and entities the same category. The concept names have been taken from logics, whereas the
linguistic methods use grammatical concept names. Summaries are given in tabular forms.

c.) cognitive mapping operates with variables and compilations are analogical with the
variable-models.

d.) normalized sentence-index matrix operates with values and the compilation is analogical
to the value-model.

e.) psycho-logic operates with entities and the compilation is analogical to the entity-
-models.

L I N G U I S T I C D I S C O U R S I V E C O G N I T I V E N - S I M P S Y C H O - L O G I C

SYNTACTIC ANALYSIS

METHODS

VALUE adjective property

VALUE-RELATION conjuction implication

VARIABLE noun entity

VARIABLE-RELATION verb relation

ENTITY noun entity

ENTITY-RELATIONS verb relation

VALUE-MODEL tables

VARIABLE-MODEL

ENTITY-MODEL

CONNECTION BETWEEN -

DIFFERENT CATEGORIES

OF TERMS

MAPPING

concept

variable

causal

belief

concept

variable

causal

belief

sentence —

syntax

words

concept

desirableness-

relation

normalized

sentence-

index matrix

cognitive —

map

— — network

TABLE 1

- 7 8 -

f.) no methods give any description of the connection between various term categories.

The LM-method can be conceived as a summary of the methods introduced here: it
operates on all three levels of terms, has three kinds of model, one for each level, and the
relations between various terms are thoroughly defined. The methods referred to are more
one-sided: either they operate by means of one language (N-SIM by values, cognitive mapping
by variables and psychologic by entities) or else variable and entity languages are identical as
in linguistic and discoursive methods and in each of them there is at most only one type of
model.

Further the terminology of the LM-theory means one step toward a standardization of
terms. It operates with three logico-mathematical terms instead of the 20 or so in the
methods introduced in this paper.

R e f e r e n c e s

[1] Axelord, R. (ed.) Stricture of Decisions. Princeton University Press, Princeton, (1976)

[2] Axelrod, R. Decision for Neoimperialism: The Deliberations of the British Eastern
Committee in 1918. In Axelrod (1976) pp. 77-95

[3] Bach, E. and Harms, R.T.: Universals in Language. Holt, Rinehart and Winston,
New York (1968)

[4] Bach, E. Nous and Phrases. In Bach and Hammon (1968)

[5] Harris, Z. Discourse Analysis. Language 1952, pp. 1-30 and 474-494

[6] Heiskanen, H. Palkan muodostumisen teoriaa ja käytäntöä. Helsinki University of
Technology, Research Papers No. 38, Otaniemi, (1972)

[7] Heiskanen, H, A Systems Theoretical Approach to the Analysis of Social Action
and Decisions. Annales Academiae Scientiarum Fennicae, Ser. В 191, Helsinki 1975.

[8] Klir, J and Valach, M Cybernetic Modelling. Iliffe Books, London (1967)

[9] Lyons, J. (ed.) New Horizons in Linguistics. Penguin, Harmondsworth, (1970)

[10] Lyons, J. Generative Syntax. In Lyons (ed.) (1970), pp. 115-139

[11] Pietilä, K. A Study in the Methodology of Consciousness Research. Research
Institute for Social Sciences, University of Tampere В Report No 24/1975

[12] Roberts, F.S. Signed Digraphs and the Growing Demand for Energy. Environment
and Planning 3, 1971, 395-410

[13] Roberts, S.F. Strategy for Energy Crisis: the Case of Commuter Transportation Policy.
In Axelrod (ed.) (1976) pp. 142-179.

- 79

THE STRUCTURE OF THE SNEL SYSTEM FOR AUTOMATIC DOCUMENTATION

C. Anzaldi — L. Mirri Passerini

Summary

In this paper the Authors present the SNEL system for automatic documentation.

Sinces this a system is modularly structured, it has been described by pointing out the
function carried out by each module and showing the logic and information flows which link the
different modules.

This system, planned to be run on a minicomputer, was implemented according to
criteria chosen to ease its portability.

The paper includes a complete example.

Introduction

The SNEL system has been planned for the management, on minicomputers, of collecti­
ons of papers concerning a very specialized field: such an implementation is meaningful because,
generally, the number of papers is relatively small.

To improve such a system the use of indexing and retrieval techiques based on a
thesaurus is required. On the other hand we do not know of any techniques for the automa­
tic construction of thesauri to implement on minicomputers.

The SNEL system constructs a semiautomatic thesaurus, i.e. an automatic base thesaurus
to be manually modified using prefixed rules (in such a way it is possible to avoid some traps
of the automatic ones.) Moreover, SNEL indexes documents automatically, manages the file
of indexed documents and is supplied with a retrieval module.

This system has been tested at IAC to construct a thesaurus for a collection of papers
on Computational Mathematics.

For this purpose about 300 papers have been selected from various journals and manually
indexed in the simplest way i.e. either by keeping the key words when they are already present
or by choosing meaningful sentences from the summary.

About 1500 descriptors have been obtained (not all different) and used as input data for
the construction of the thesaurus. These descriptors have been divided according to the date
of issue of the paper, and then processed in order to see how the thesaurus develops.

- 80 -

In this way we have obtained a thesaurus of about 300 words; it has been used to test
the system from the point of view of its performance in indexing and retrieval.

For indexing purposes it is enough to supply the system with the summaries of the chosen
papers and, eventually, bibliographical information.

For the construction of the thesaurus, on the contrary, the presence of a qualified person,
is required for choosing papers and descriptions in the text, and for judging when the thesa­
urus is ready for use.

From the journals

Journal of Computer and System Science
International Journal of Computer Mathematic
Mathematic of Computation
Journal of the ACM
Communications of the ACM

of the years from 1972 to 1975; all the relevant papers have been chosep; their summaries
have been punched for processing by the indexing module and most of the papers have been
significantly indexed.

By considering the incompleteness o f the collection used for the thesaurus construction,
this result may be considered satisfying.

The following example shows how the system operates. Let us suppose we want to
add the following paper to the collection:

- 8 1 -

MATHEMATICS OF COMPUTATION, VOLUME 25, NUMBER 114, APRIL, 1971.

Stable Difference Schemes with Uneven Mesh Spacings

By Melvyn Ciment

We consider a finite-difference approximation to the Cauchy problem for a first-order
hyperbolic differential equation using different mesh spacings in different portions of the domain.
By reformulating our problem as a difference approximation to an initial-boundary value problem,
we are able use the theory of H.O. Kreiss and S. Osher to analyze the L-> stability of our scheme.

Its summary punched as follows is input without any other information to the indexing
module which will index and store it.

1291 MATH COMP
1291 WE CONSIDER A FINITE-DIFFERENCE APPROXIMATION TO THE CAUCHY

1291 PROBLEM FOR A FIRST-ORDER HEPERBOLIC PARTIAL DIFFERENTIAL EÓUATION U
1291 SING DIFFERENT MESH SPACINGS IN DIFFERENT PORTIOS OF THE DOMAIN. BY

1291 REFORMULATING OUR PROBLEM AS A DIFFERENCE APPROXIMATION TO AN INITI
1291AL-BOUNDARY VALUE PROBLEM, WE ARE ABLE TO USE THE THEORY OF H. O. KR

1291EISS AND S.OSHER THE L2 STABILITY OF OUR SCHEME.

- 82

When we wish to know which are the papers of the collection which deal with the
solution of finete diference methods, we use the retrieval module.

1 IAC-RESEARCH REQUEST IAC 1 A

SEEK ALL ARTIC MEETING FOLLOWING REQ.

* CONTAINING ALL KEYWORDS

BOUNDARY VALUE PROBLEM
DIFFERENTIAL EQUATIONS

RETRIEVED ARTICLES

5028 CACM 05 3821973
5167 CACM 05 3471972
5227 JACM 01 631971
5065 CACM 04 6081970
4580 MATH COMP 25 6751971

^ 1291 MATH COMP 25 2191971
4100 MATH COMP 26 8591972
4160 MATH COMP 26 6051972

980 INTERN J COMPUT MATH 3 751971

As can be seen, the paper is indicated as relevant to the query.

The SNEL system has been implemented on a PDP 11/40 32K with 2 disk and 1 tape
units and an IBM ИЗО, 16K with 1 disk unit.

The latter is the smallest configuration that allows the storage of a useful number of
documents.

1. The System Structure

The system consist of portable independent elements, whose only connection is, as
we shall see, the information pattern.

The elements can be grouped according to their functions in there modules: one for
construction of the thesaurus, one to obtain the file of indexed papers and another for
retrieval.

The first module constructs the thesaurus using descriptors freely allocated to the
papers selected from the set of collected papers.

- 8 3 -

The second module indexes the papers by comparing each paper, or its summary, with
a thesaurus which may be either the one obtained from the first module or another supplied
by the user. It also manages the updating of the indexed papers file.

The retrieval module extracts those papers concerning topics described by terms from the
thesaurus.

Such a structure implies a great flexibility i.e. it makes possible man-system interaction
and permits the substitution of each system function.

Each module is divided into submodules, each one subdivided into blocks consisting of
one or more units.

Each unit performs a complete function less and less complex with the decreasing of
the level of the units, and which is independent from the others as the only vehicle of
conection between the different units is given by the data structures which are external to
the units. Each block can take out of such structures all the information it needs.

Thus it is easy to direct the system flow according to the results obtained.

Such an organization is also important from the point of view of portability since it allows
the reformulation of the system according to the configutation requirements of different
users.

For portability the choice of language is important; it must as widespread as possible
and standardized.

We chose Basic Fortran Language with some facilities of Fortran IV which are generally
implemented on minicomputers.

2. The thesaurus construction module

The module selects from the descriptors, used for the chosen papers a set of words named
terms. Such a set is sufficient to index each paper of the considered subset. If the subset is
representative of the field, the set of terms is sufficient to index any paper of the field.

The representativity of the chosen subset can be evaluated by means of the following
heuristic method: we choose a narrow subset and construct the appropriate thesaurus and
then we increase the subset and update the thesaurus.

We repeat this operation until the difference between two successively obtained thesauri
can be judged to be irrelevant.

This method can be easily applied thanks to the system structure which, as we have said
is composed of independent and interactive bloks and gives the possibility of iterating the
main blocks.

- 84 -

The module is divided in three submodules; the first obtains a provisional set whose
elements will be named simple terms, the second allows their modification and the third
forms the final set or thesaurus.

The connections between the submodules are shown in Diagram 1.

Note that to evaluate the representativity of the chosen subset it is sufficient to iterate
the execution of the first submodule because the submodules and modules are suppiled only
with information deducihle from those present in the system.

2.1. The submodule for construction of simple terms

The submodele codifies the descriptors and subdivides them into simple words arranging
them in a normalized list. Finally it processes this list to obtain the thesaurus of simple terms.

The submodule is divided in four blocks.

1.) Acquiring data

2.) Codifying the descriptors and updating the data base

3.) Sentence scanning

4.) Formation of simple terms.

Diagram 2 shows the flow of information and the possibility of iteration between the
various blocks.

2.1.1 Data acquisition

The input to this block consists of the descriptors and any other information concerning
the paper (for instance data of issue) which is to be stored.

The user gives a code to each type of information and to a numeric identifier to each
paper; this piust always appear together with the relevant information.

We assume that each completed set of information is puched on a card. The
block reads the cards and subdivides the information according to their code, updating the
relevant files.

Descriptors are checked for formal correctness and the file of correct descriptors is the
input for the next block.

2.1.2. Codifying the descriptors and updating the data base

The input is the file which associates the descriptors with the identifèr of the paper
in wich they appear. The block codifies each descriptor that does not yet appear in the data
base and updates the data base. Moreover it updates a file named file of occurences, in which

each descriptor’s code is associated with all the identifiers of the papers in wich the descriptor
appeard. The codifying of the descriptors is obtained as a function of the input order of the
descriptor in the system. See fig.l.

- 8 5 -

2.1.3 Descriptor scanning

The input to this block consists of that part of the data base not yet processed and of
a negative thesaurus, i.e. a list of words which must not belong to the thesaurus.

The block decomposes descriptors into simple normalized words, rejects all the words which
appear in the negative thesaurus and associates the code of the descriptor to which the word
belonged to each of those remaining.

The list thus obtained is alphabetically ordered.

We suppose that the user, according to his requirements, fixes the negative thesaurus
taking into account above all the importance of rejecting those words which could bring noise
or hide information.

An example is the preposition ’’for” , which if not included in the negative thesaurus could
form a term including words like ’’formal” or ’’formula”.

The negative thesaurus would be omitted in the case where the user a priori establishes which
words to rejet. On the other hand, as we have already seen and will illustrate in the following, the
system to modify the thesaurus includes an interactive module which, among its functions, can
show the different words grouped under the same term.

2.1.4 Formation of simple terms

The block removes from the list obtained in the previous block a sublist by use of
which it updates the thesaurus of simple terms and, with the remaining words, updates
a file called the remainder file.

For a better understanding of how the block operates; let us suppose that it only works
out a list consisting of the input list, of the exisitng thesaurus and of the remainder file.

From this list we take off the simple terms i.e.: words either with a prefixed occurrency
in the list or stems of others in the list, or words having both qualificationsifig. 2.).The
remaining words of the list form the remainder list (fig.2.1.).

The simple terms thesaurus file and the remainder file are obviously input and output
files for the block and are the output of the whole submodule.

We must note that the information contained in the thesaurus simple terms file allows
it to trace back to the descriptors of the term itself. The file is ordered alpabetically and
terms are codified according to the order of their appearance in the file.

- 8 6 - ,

2.2. Correction submodule

The set of simple terms obtained from the previous process may be considered a sufficient
thesaurus even if the operations performed for its construction are exclusively morphological
ones with no other linguistic or semantic considerations.

We have already explained why we did not attempt a fully automatic procedure,
choosing only the formation of a basic thesaurus and leaving to the user the possibility of
improving it. For such a purpose the submodule examines all the information of the system,
supplying easy lists from which the user deduces all the changes to bring in the thesaurus of
simple terms.

The submodule is divided into two blocks:

1.) Proposals of possible changes

2.) Modifying the simple terms.

2.2.1. Proposals of possible changes

This block has to show the logical consistence of the produced terms and to suggest
how to produce new terms or modify those already existing.

This information is contained in three lists.

The first list consists for each term of all its derivations in the data base and it is obtained
from the examination of the data base and of the thesaurus (fig.3a).

The second list, obtained by examining the thesaurus of simple terms and the remainder
filej shows how to match the components of the two files. It is formed by groups of words
having a common stem with an user defined length (fig.3b).

For the third list the user must supply an a occurrences cut off value.

The following sublists are produced:

a.) All the descriptors not occurring in any term and whose occurrences in the data
base exceed the cut off value are listed.

b.) The remainder whose occurences exceed the cut off value and do not appear in the
preceding sublist.

2.2.2. Modifying the simple terms

The foreseen modifications are the following

1.). To reduce the meanings of a term

2.) To create a new term for each meaning of a term

3.) To erase a term

87 -

4.) To add meanings to a term

5.) To gather two or more terms into one term

6.) To add a new term to the thesaurus

7.) To substitute a term for another one.

The block is asked for each one of these modifications through a code and a detailed
indication of the terms and words concerred (fig.4.).

These requests are checked in the thesaurus and remainder files and in the data base
and accepted if correct. On the contrary, the user has the possibility of correcting his data.

Original files are left unalterated to allow the user to test different variation of the
thesaurus and to resume if necessary, the automatic procedure from where it left off.

The module , besides creating terms and remainder files modified according the user’s
choices stores some inferred information which is of interest to the next indexing module,
such as the synonyms file.

2.3. The submodule for thesaurus construction

The thesaurus thus obtained consists of a list of simple words. By combining them it
is possible to represent any concept, which is already expressed by the descriptors introduced
in the system.

The aim of this submodule is to show those concepts in the theasurus which have
appeared more frequently in the input descriptors and which cannot be described by only a
term. The sequences of words thus obtained are called compound terms.

The process of formation of compound terms affects the set of simple terms in that if
there are simple terms which are meaningful only when combined with other terms, they are
erased after the formation of the relevant compound terms.

The input to the submodule consists of the simple terms file, the data base and the
synonyms file; the output consists of the final thesaurus and the re-elaborated synonyms file.

Moreover, the submodules prepares, according to the indexing module , the thesaurus,
synonyms (see 3.2) and negative thesaurus files.

3. The indexing module

This module indexes the collected documents, according to the system’s thesaurus. It
assigns to each document the terms that appear in the document text, either just they are or
as stems. The relevant file is updated with the indexed documents.

Moreover, the module produces lists of words that may suggest modifications for the
thesaurus.

- 88 -

This module, unlike the previous one, is fully automatic and the indexing is carried out
strictly with the same criteria used in the thesaurus construction, taking into account all
variations manually made.

The strong connection with the thesaurus construction module eases indexing and ret­
rieval but does not affect their mutual independence; so it is possible to use the indexing
module in a different environment.

Moreover, a procedure has been implemented that makes it possible to use whatever
satisfying thesaurus the user may have acquired.

The module is divided into blocks which are linked by a directory file.

The first block codifies and normalises documents; the second one indexes each document
and updates the file of document references; the third is optional and provides suggestions for
thesaurus modifications.

3.1 Codifying and normalisiting texts

The document texts or their summaries, together with a negative thesaurus, are the input.

The negative thesaurus may either result from the correction module or it my be chosen
by the user, or both.

The user assigns to each document a numerical identifier. The document texts are punched
on cards, each card bearing the identifier of the relevant document.

Each text is supplied with a bibliographic reference card. The block codifies and stores
each text; moreover it prepares for the updating of the file of indexed documents.

Then it takes every sentence from each text, i.e. every sequence of words between two
punctuation marks, and decomposes each sentence into simple normalized words.

It associates with each word a code that is a function of

a) the document code
b) the relative position of the sentence
c) the relative position of the word in the sentence.

The words are then arranged in alphabetic order; those which appear in the ’negative
thesaurus are rejected and the remainder are stored.

The block, by using the directory file, iterates the whole procedure in order to permit
the processing of any number of documents.

- 8 9 -

Document indexing

The input is the file produced by processing the previous block and the following files:

1) Vocabulary — all the words that constitute the thesaurus are arranged in alphabetical
order each word is associated with a numerical code.

2) Specifications — it is indicated whether a word of the vocabulary is a term or a
component of a term, or both.

3) Phrases — The codes of the compound terms of the thesaurus are recorded.

4) Synonyms — The synonyms of the vocabulary words are alphabetically recorded.

This is not a one to one relation because a word may have more than one synonym or
none.

A term of the thesaurus is considered to be a descriptor of a document when it satisfies
at least one of the following quantifications.

1) It is a simple term which appears in the document
2) It is a simple term which has a synonym in the document
3) It is a stem of a word which appears in the document
4) It is a compound term and its components appear, themselves or their synonyms, in

the same phrase of the document. Moreover, the sequence of component words must
be the same in the document as in the term.

Fig. 7. shows an abstract and the assigned terms.

The block updates the file of indexed documents using those documents having a number
of descriptors greater than a prefixed one and rejects the others.

The rejected documents are shown to the user, who decides whether they are relevant
and, in this case, he may add them within the file.

3.3 Candidate terms

The block may be optionally processed: its purpose is to show those words of documents
which are not terms but have the qualifications to be examined by the user who decides on

their inclusion in the thesaurus.

The displayed words are those whose occurences are in a suitable range, and those which
are stems of some thesaurus term (fig.8.).

If these words are either real stems or, according to the user’s opinion, relevant for the
considered field, they may be inserted to modify or to increase the previous thesaurus j(fig.9.)i'

Moreover, the negative thesaurus may be updated for decreasing the list in fig. 9.

Acknowledgements

We are grateful to Mrs. Robusti and Mrs. Di Sarra for their kind and useful assistance.

1/5
О

SC НЕМА :

"Е” indicates that the block is repretitive

SCIII'MA I

Submoilulus 1

0 Submoilulus _ is opt ionul

S u b m o i l u l u s 2

Submoilulus 3

- 9 3

FREE DESCRIPTORS

ALGORITHMIC SOLUTION
ALGORITHMS
ALL INTEGER ALGORITHM
APPROXIMATION
APPROXIMATIONS
BOOLEAN EQUATIONS
BRANC AND BOUND
CHANGE MAKING
CHANGE MAKING PROBLEM
COMPLEMENTARY PROBLEM
COMPUTATIONAL RESULTS
CONCURRENT PROBLEM
CONSTRAINTS
DATA FITTING
DISCRETE OPTIMIZATION PROBLEM
DISCRETE PROBLEMS
DISTRIBUTION
DYNAMIC PROGRAMMING
FEASIBLE SOLUTION
FUNCTIONAL APPROXIMATION
GOMORY CUT
HEURISTIC SEARCH
IMPLICIT ENUMERATION
INEOALITY
INEQUALITY CONSTRAINTS
INTEGER NONLINEAR PROGRAMMING
INTEGER PROGRAMMING
INTERACTIVE GRAPHICAL DISPLAY
ITERATION
LEAST SOARES
LEMKE S ALGORITHM
LINEAR PROGRAM

LINEAR PROGRAMMING
MANAGEMENT SCIENCE
MATHEMATICAL PROGRAMMING
MINIMAX APPROXIMATION
MOMENTS
MONTECARLO
MULTIVARIATE NORMAL DISTRIBUTION
MULTIVARIATE NORMAL GENERATOR

- 9 4 -

FREE DESCRIPTORS

NONLINEAR EQATIONS
NONLINEAR PROGRAMMING
NONLINEAR REGRESSION
NORMAL DISTRIBUTION
OPERATIONS RESEARCH
OPTIMAL SOLUTION
OPTIMIZATION
PARTIAL SEARCH
PROBABILITY
PSEUDU BOOLEAN FUNCTION S
QUADRATIC PROGRAM
QUADRATIC PROGRAMMING

QUADRATIC PROGRAMMING METHODS
RANDOM NUMBER GENERATOR
RANDOM NUMBERS
RANDOM SEARCH
RANDOM VARIABLES
REVISED SIMPLEX ALGORITHM
SCHDULING MODELS
SET COVERING PROBLEM
SIMPLEX METHOD
SIMULATION
SPLINE FUNCTIONS
STATISTICS
ZERO ONE PROGRAMMING
ZERO ONE VARIABLES

Fig.l.

- 9 5

SIMPLE TERMS

ALGORITHM
APPROXIMATION
BOOLEAN
CHANGE
CONSTRAINTS
DISCRETE
DISTRIBUTION
EQUATIONS
FUNCTIONS
GENERATOR
INEQUALITY
INTEGER
LINEAR
MAKING
METHOD
MULTIVARIATE
NONLINEAR
NORMAL
NUMBER
ONE
OPTIMIZATION
PROBLEM
PROGRAM
QUADRATIC
RANDOM
SEARCH
SIMPLEX
SOLUTION
VARIABLES
ZERO

Fig. 2.

REMAINDERS

AND
BOUND
BRANCH
COMPLEMENTARY
COMPUTATIONAL
CONCURRENT
COVERING
CUT
DATA
DISPLAY
DYNAMIC
ENUMERATION
FEASIBLE

FITTING
FUNCTIONAL
GOMORY
GRAPHICAL
HEURISTIC
IMPLICIT
INTERACTIVE
ITERATION
LEAST
LEMKE
MANAGEMENT
MATHEMATICAL
MINIMAX
MODELS
MOMENTS
MONTECARLO
OPERATIONS
OPTIMAL
PARTIAL
PROBABILITY
PSEUDO
REGRESSION
RESEARCH
RESULTS
REVISED
SCHEDULING
SCIENCE

- 97 -

SET
SIMULATION
SPLINE
SQUARES
STATISTICS

Fig.2.1.

a) POSSIBLE FUSIONS
FUNCT

FUNCTIONAL
FUNCITONS

OPTIM
OPTIMAL
OPTIMIZATION

b) DERIVATIONS
ALGORITHM

ALGORITHMIC
ALGORITHMS

APPROXIMATION
APPROXIMATIONS

METHOD
METHODS

NUMBER
NUMBERS

PROBLEM
PROBLEMS

PROGRAM
PROGRAMMING

c) KEY-WORDS WHOSE FREGUENCY ALLOWS THEM TO BE INSERTED IN THE
THESAURUS

13 BRANC AND BOUND
57 INTERATION
59 LEAST SQUARES
89 OPERATIONS RESEARCH
85 REGRESSION

Fig. 3.

- 98 -

0P4
420PTIMIZATION
91 OPTIMAL SOLUTION
91 OPTIMAL

OP6
100B RANCH

13BRANCH AND BOUND
OP6

100 AND
13BRANCH AND BOUND

OP6
100BOUND

13BRANCH AND BOUND
OP6

100LEAST
59LEAST SQUARES

OP6
100SQUARES

59LEAST SQUARES
OP6

1 COOPERATIONS
890PERATIONS RESEARCH

OPI
46PROGRAM
63LINEAR PROGRAM

101 QUADRATIC PROGRAM
63LINEAR

OP8

Fig. 4.

NEGATIV THEASURUS
AUTOMATICALLY PRODUCED

PROGRAM

Fig. 5.

- 9 9 -

THESAURUS

ALGORITHM
APPROXIMATION
BOOLEAN
BRANCH AND BOUND
CHANGE MAKING
CONSTRAINTS
DISCRETE PROBLEM
DISTRIBUTION
EQUATIONS
FUNCTIONS
GENERATOR
INEQUALITY
INTEGER
INTEGER PROGRAMMING
LEAST SQUARES
LINEAR
METHOD
MULTIVARIATE NORMAL
NONLINEAR
NONLINEAR PROGRAMMING
NORMAL
NORMAL DISTRIBUTION
OPERATIONS RESEARCH
OPTIMIZATION

OPTIMAL
PROBLEM
PROGRAMMING
QUADRATIC
QUADRATIC PROGRAMMING
RANDOM
RANDOM NUMBER
SEARCH
SIMPLEX
SOLUTION
VARIABLES
ZERO ONE

Fig. 6. — Theasurus and synonyms

ART N.1002 READING REFERENCES'
A QUADRATIC PROGRAMMING ALGORITHM IS DESCRIBED FOR USE WITH THE MA

G DIAGONAL METHOD OF NONLINEAR REGRESSION WITH LINEAR CONSTRAINTS:

ALGORITHM .CONSTRAINTS .LINEAR .METHOD,NONLINEAR,PROGRAMMING'iQUADRATIC PROGRAMMING.

ART N.200 IINDICAZIONI BIBILIOGRAFICHE
CERTAIN NONLINEAR MINIMAX APPROXIMATION PROBLEM ARE CHARACTERIZED

BY PROPERTIES WHICH PERMIT THE APPLICATION OF SPECIAL ALGORITHMS! MAINLY BASED ON THE EXCH
ANGE ALGORITHMS OF REMES(1934,1935), FOR THEIR SOLUTION. IN THIS PAPER THE APPLICATION TO
PROBLEMS OF THIS TYPE OF A GENERAL NONLINEAR ALGORITHM DUE TO OSBORNE AND WATSON (1969) IS
CONSIDERED. EXAMPLES ARE GIVEN TO ILLUSTRATE THAT THIS ALGORITH CAN GIVE SATISFACTORY RE

SULTS AND, IN PARTICULAR, CAN SUCCESSFULLY SOLVE PROBLEMS WHICH LEAD TO DIFFICULTIES WITH THE
MORE CONVETIONAL SPECIALIST METHOD.

ALGORITHM,APPROXIMATION .METHOD, NONLINEAR, PROBLEM .SOLUTION.

Fig. 7.

100

- 101 -

WORDS FROM DOCUMENTS, KEY-WORD STEMS

1 FUNCTION
1 NORM

WORDS WHICH APPEAR MORE OF THAN
2 APPLICATION
2 BASED
2 DESCRIBED
2 RESULTS
2 SATISFACTORY
2 SOLVE
2 USE

”n” TIMES IN THE DOCUMENTS

Fig. 8.

- 102 -

THESAURUS

LAGO RUHM
APPROXIMATION
BOOLEAN
BRANCH AND BOUND
CHANGE MAKING
CONSTRAINTS
DISCRETE PROBLEM
DISTRIBUTION
EQUATIONS
FUNCTION
GENERATOR
INEQUALITY
INTEGER
INTEGER PROGRAMMING
INTERACTIVE
LEAST SOUARES
LINEAR
METHOD
MULTIVARIATE NORMAL
NONLINEAR
NONLINEAR PROGRAMMING
NORMAL
NORMAL DISTRIBUTION
OPERATIONS RESEARCH
OPTIMIZATION

OPTIMAL
PROBLEM
PROGRAMMING
QUADRATIC
QUADRATIC PROGRAMMING
RANDOM
RANDOM NUMBER
SEARCH
SIMPLEX
SOLUTION
VARIABLES
ZERO ONE

Fig. 9. — Modified thesaurus

- 103 -

BIBLIOGRAPHY

[1] Anzaldi, C. — Anzelotti, P. — Mirri Passerini, L. — Testi V.:
Un package di subroutines Fortran per standardizzare l’uso degli accessi random
alfunita disco.
Rapp. IAC (1976).

[2] Anzaldi, C. — Mirri Passerini, L.: Un sistema di documentaione per minicalcolatori.
Applicazioni del Calcolo — Galligani, I. Ed. (1975).

[3] Anzaldi, C. —Mirri Passerini, L.: Panoramica de linguaggi indice.
Rapp. IAC. (1092).

[4] Fangmeyer, H. — Lustig, G.: Experiments with the Cetis Automatic Indexing System.
Intern. Atomic Energy Agency,
Vienna (1970).

[5] Gilchrist, A.: The Thesaurus in Retrieval. Aslib, Londra (1971).

[6] Koymen, K. — Tos: A text organizing System. Information Processing & Management
(1975).

[7] Palazzi, A.: Il sistema RDS per il reperimento automatico della documentazione in
siderurgia.
Rivista AIRO (1968).

[8] Salton, G.: Automatic Information Organization and Retrieval,
McGraw-Hill, New York (1968).

[9] Samuelson, K. Ed.: Mechanized Information Storage, Retrieval and Dissemination.
North Holland, Amsterdam (1968).

[10] Unesco: Guidelines for the Establishment and Development of Monolingual Thesaurus .
Parigi (1973).

«

- 105 -

A BNF SYNTAX FOR THE QUERY LANGUAGE FORAL WITH
A DISCUSSION OF POSSIBLE MODIFICATIONS

Ilona Fidrich*

Theoretical Laboratory, Institute for Co-ordination of Computer Techniques

Budapest Hungary

FORAL was introduced as a representation independent accessing language for the Data
Independent Accessing Model (DIAM) first published in [5].

DIAM has multiple self-sufficient levels of abstraction for describing and solving problems
concerned with information systems. At the interface between real-world information and the
overall descriptive model the entity set model is specified as a structured model of the real-
world information. The entity set model together with an accompanying representation
independent accessing language for describing the accessing of the entity set descriptions are
tailored to be a selt-sufficient level where the end-user can discuss, specify and solve the
problems of information structuring independently of extraneous details of implementation.

A new version of DIAM, DIAM II was introduced in [6]. It utilizes a modified binary
relationship between names of things as its basic user-system interface form, and a new binary
relationship language, FORAL for both data description and data access.

In DIAM II a new level, the end-user level was added on top of the four original levels of
DIAM. It provides for many user views of data including declaration of different synonyms,
reports and other structures for use by different users. The entity set model was replaced by
an infological level which is the consistent, relatively non-redundant central model of the
user’s real world.

The DIAM II infological level is constructed using two basic types of building blocks:

— entity sets which are sets of entities of the real world and
— fact sets which provide a means for describing entities.

Since most entities cannot be stored in an information system, storable entities are used to
stand for them. They are called identifier values and their collections are called identifiers.

Fact sets are sets of associations that allow us to state desciptive facts about entities. As
with entities, actual facts cannot be stored in the system; we can only store things that can stand
for them. They are called basic facts. A basic fact is represented by an association of names of
two entities. They show how to drive attribute values from facts. If our point of attention is on
one entity of a basic fact then we can get an attribute value of this entity by following the

* This work was mainly carried out while the author was visiting the University of Stockholm Research Group CADIS.

- 106 —

association to the value at its other end. This is expressed by the concept ’’context” used in
FORAL.

The original FORAL was reviewed and a new version, FORAL II was developed for
DIÁM II. Its output statement is described in [1].

In the first part of this report the output statement defined in [1] is summarized and
its syntax is specified using BNF. Some remarks concerning the output statement are given
in the second part. The third part contains some modifications to the output statement
described in the first part.

The figures referred to in any part o f this report are given at the end of it.

I. The FORAL output statement according to [1]

In this part of the report the FORAL output statement is briefly described essentially
as it defined in [1]. The features which increase the similarity between FORAL and
English are not taken into account. Similarly, some convenience features, given in section IV.
of [1], are left out of consideration.

The syntax is given in Backus-Naur form. A syntactical entity identical with one of [1]
is usually referred to by the same name as that of [1]. Each syntactic rule is provided with
a number for reference to the rules from the textual parts of the report. A group of logically
connected rules is followed by some explanations, mostly of a semantic nature.

The main point of the semantics is given by a rough description of an algorithm performing
the transfer of the information specified by the output statement.

1. Coutput statem ents : = <file specification > : <format specification>.

An output statement describes the transfer of one ’’dose” of information. The first part
of the output statement specifies the destination and the sources of the transfer. The infor­
mation to be transferred is specified by the second part of the statement.

2. <file specification> : : = d estin a tio n specification> I
<file specificationXsource specification>

3. destination specification> : : = d estin a tio n indicator> <output file name>

4. destination indicator> : : = output I temporary

5. <source specification> : : - from <internal file name>

The destination of the transfer should be specified explicitly in the output statement. In
an unsophisticated interpretation the оц£щ£ destination indicator indicates an actual output
under the title specified by the output file name, while the tem ^ora^ one indicates a transfer
to the file that can be used as an internal one and has the name shown in the destination
specification.

- 107 -

If no source specification is given in the file specification, then implicitly the central
data base is assumed as the source.

6. <format specification> : : = <forprint specificaton> I <forprint specification>
<where overlay specification>

The mandatory part of the format specification specifies the headline (in some columns
possibly specifying a secondary one) in the case of an actual output, and the information to
be transferred in both cases.

7. <forprint specification> : : = <entity set print clause> I <forprint specification>
<for attribute print clause>

8. <entity set print clause> : : = <initial context indicator> I <initial context indicator>
< print clause>

9. < initial context indicator> : : = < initial entity set specification> I
<initial entity set specification>(<where qualifier>)

10. Cinitial entity set specification> : : = <entity set name> Isystem

11. <where qualifier> : : = where <condition>

12. < print clause> : : = £rint < field specification> I
<print clause>,<field specification>

13. <field specification> : : = <attribute expression> I <attribute expression><renamer>

14. <renemer> : : = called < fie Id name>

15. <for attribute print clause> : : = <removed context indicator>l
<removed context indicatorX print clause>

16. <removed context indicator> : : =
<additional entity set specification> I
<additional entity set specification>(<where qualifier>)

17. <additional entity set specification> : : = for <context remover>

18. <context remover> : : = <attribute name> I < attribute nam eXcalled phrase>

19. < called phrase> : : = called <new name>

The forprint specification should contain one and only one entity set print clause, the
only mandatory part of which is the initial entity set specification. Considering the system
as the name of the entity set, the only entity of which is an identifier value — the name of the
system — it can be stated that an initial entity set specification specifies an entity set, which
serves as the basis of the transfer.

- 108 -

If an initial, or additional, entity set specification is not followed by a where
qualifier in the output statement, then the whole entity set is specified for the transfer.
Otherwise, the subset having the same name as the whole entity set is asumed to be specified for
the transfer. This subset consists of those and only those entities of the originally specified
set which satisfy the condition given by the where qualifier.

Once an entity set is specified for the transfer, in the case of an actual output, its name
becomes part of the headline and (if the entity set is not an identifier) the names of its
identifiers become parts of the secondary one over the columns corresponding to the
specified entity set.

A specified entity set can obviously be considered as the indicator of its context,
which consists of those and only those entity sets which are connected to it by fact sets.
Having a context indicator and the name of a fact set about it, one of its (direct) attributes
is specified: it is the entity set in the context, which is connected to the context indicator by
the named fact set and has the same name as the fact set. An indirect attribute of a context
indicator is an entity set, which is connected to it by a sequence of more than one fact sets.

In Figure 1 some entity sets are presented showing the relations between them. If the
specification of the entity set El is followed by a where qualifier in the output statement
then its subset called E l becomes the context indicator. The entity sets called A l, E2
(which is in fact a subset of the entity set called by the same name) and A2 are in the context
of the entity set El — they are (direct) attributes of it. If the context indicator is the entity
set called A l, then the entity subset El (called in this case AA1) is in the context, but neither
the complementer set of AA1 nor the entity set A3 is in it. The entity set A3 is one of the
indirect attributes both of the entity set A l and the subset E2 of the entity set E2.

All field specifications of a print clause are related to the initial, or removed, context
indicator preceding the given print clause. A field specification specifies a (possibly empty) set
of values for the transfer by an attribute expression over the values of the direct and/or
indirect attributes of the given context indicator. The field specification also specifies the
names of the specified set of values, explicitly by a renamer or implicitly by the given attribute
expression, and possibly a set of its secondary names. In the case of an actual output, the
names of the set of values become parts of the headline and the secondary names become
those of the secondary one over the columns corresponding to the specified set of values.

Having a context indicator on hand, an entity set, in the context of which it is contained,
can be specified for a context indicator by an additional entity set specification.

If the context remover of an additional entity set specification appoints an attribute,
the name of which differs from that of the context indicator preceding the one on hand,
or, though it shows the name of the preceding context indicator, renames it by a called
phrase, then the additional entity set specification specifies the attribute of the context
indicator on hand which has the specified name. A context remover of this type is called a

- 109 -

context remover forward throughout this report. In this case the explanation of the output
statement can be continued at the second paragraph of the text following rule 19.

If the context remover appoints an attribute, the name of which is the same as that of
the context indicator preceding the one on hand, and no called phrase is contained in it, then
the context indicator preceding the one on hand is the entity set, specified by the given
additional entity set specification. In this case the explanation of the output statement can
be continued at the fourth paragraph of the text following rule 19.

In Figure 2 the entity set СИ is the first context indicator. The additional entity set
specification

for A1

specifies the entity set A 1, which is restricted by a where qualifier to the entity subset called
Al. Having the subset A1 as the context indicator on hand, the additional entity set specifi­
cation

for CI1 called A2

specifies the entity set A2 (or perhaps a subset of it restricted by a where qualifier) that is
specified for the transfer. In the case of having the additional entity set specification

for СИ

instead of the previous one, the entity set CI1 is the specified one — but not for the transfer.
This means that, though the entity set CI1 becomes the context indicator, no information will
be transferred about its entities (but information can be transferred, of course, about its
attributes as the effect of a print clause following the given additional entity set specification).

The information specified by a forprint specification for the transfer consists, in fact, of
the identifier values of some entities of the entity sets shown in the given forprint specification.
The entities, the identifier values of which should be transferred, and the sequence of taking
them, are specified by the forprint specification as well and can be defined in the following
way.

It is quite clear that the above explanations describe a method for creating a directed
ordered graph on the basis of a given forprint specification. This grahp, called the schema of
the forprint specification throughout this report, is a tree, nodes of which are of two types. The
basic nodes of the tree represent the context indicators specified in the given forprint speci­
fication, representing a context indicator as many times as context removers forward are
shown in the forprint specification concerning it. The branches of the schema of a forprint
specification represent the fact sets, specified by the context removers forward, in the order
specified by the given forprint specification. Some additional nodes can be connected to a
basic node in the following way. If the entity set represented by a basic node is not an
identifier, then the additional nodes representing the identifiers of the entity set are connected!
to the basic node. If a specification of the entity set represented by a basic node is followed
by a print clause in the forprint specification, then the additional nodes representing the sets

- 110 -

of values specified by the field specifications of the print clause are connected to the basic
node. These additional nodes are connected to the basic node by the branches representing
the fact sets also specified by the field specifications.

In Figure 3.1 the schema of the forprint specification
A (where . . .) jmint D,E for F for G (where . . .)
print H for F called I print J for G for F
grint К for L for G print M

is shown supposing that all context indicators are identifiers except the initial one, which is
identified by the entity sets В and C. (The basic nodes of the graph are marked by double
circles in Figure 3.1.)

The schema of a forprint specification is represented in the headlines of the output file
in the case of an actual output in a linearized form. This linearized form of the schema deter­
mines the sequence in which the entity sets should be taken into account during transfer, so
that it is defined by the semantics of the forprint specification.

The parenthesized expression

(A (B,C,D,E,F(G(H,I(J)),K,L(G(M))))

is the form of the tree shown in Figure 3.1, linearized in the way prescribed by the semantics
of the forprint specification.

Now the situation is as follows:

— on the syntactic basis of the forprint specification its schema is defined;

— on the semantic basis of it a linearized form of the schema is known.

Having a tree and a linearized form of it, a traversal algorithm is defined which takes the
nodes of the tree in the sequence, prescribed by the linearized form of the tree. The nodes of
the schema of a forprint specification are taken in the sequence prescribed by the semantics
of the forprint specification by one of the well-known algorithms of [2] for the preorder
traversal of trees.

The algorithm for the traversal of trees defines the ’’macro structure” of the transfer
algorithm only, since it is defined on the level of the entity sets. The information to be
transferred is in fact the one concerning the entities, so the transfer algorithm should be
defined on their level. The information specified by a forprint specification can be transfer­
red by applying the same traversal algorithm to a set of trees of entities determined on the
basis of the schema of the given forprint specification.

For each entity of the entity set, represented by the root of the schema of the forprint
specification, a tree should be traversed, the root of which is the given entity. If an entity
is taken as a root of a traversal tree, then its traversal forest is specified in the following way.

- I l i ­

it consists of those and only those traversal trees the roots of which are the entities connected
to the given root by the fact sets represented by the branches of the schema of the forprint
specification.

In Figure 3.2 two trees are shown that can be specified as traversal ones on the basis
of the schema shown in Figure 3.1. It should be mentioned that entities represented by nodes
having the same name are identical.

The information specified by a given forprint specification is transferred by traversing the
entity trees specified above, and performing the operation

”if the entity on hand is an
identifier value, then transfer it”

for each entity traversed.

Datails about the attribute expressions are given by the syntactical rules and in the expla­
nations below.

20. <attribute expression> : : = <one-value expression> |
< multivalue expression> к set-value expression>

An attribute expression generally contains some entity sets as its variables that are direct
or indirect attributes of the context indicator for the moment. An attribute expression specifies
a (perhaps empty) set of values for each entity of the context indicator.

If an attribute expression specifies not more than one value for one given entity of the
context indicator, then it is called a one-value expression. If for one entity of the context
indicator the attribute expression may specify more than one value of the same type that
can be considered as the entities of one entity set, then it is called a multivalue expression.
A set-value expression specifies a set of values of more than one subset for one entity of the
context indicator. The subsets may differ regarding the number and the type of elements, but
the elements of one subset are of the same type.

In the case of the sets shown in Figure 4, A and 2+B are one-value expressions, C is a
multivalue one, and the attribute expression having the value o f the set consisting of A, В and C
is a set-value one.

21. <one-value expression> : : = <one-value numeric expression> |
< one-value string expression> I

<one-value expression of abstract type>

The type of a one-value expression (as that of a multivalue one) is determined by the
type of the values specified by it for the entities of the context indicator. The values of a
numeric or a string expression can be considered as the entities of an identifier, the identifier
values of which are of numeric or string type respectively. The values of an expression of
abstract type are the entities of an entity set which is not an identifier.

— 112 —

22. <one-value numeric expression>: : = <one-value numeric term> I
<sign symbolXone-value numeric term> I
<one-value numeric expression>
<additive operation symbol>
< one-value numeric term>

23. <one-value numeric term>: : =
<unsigned numeric constant> I
<one-value numeric attribute specification> I
<one-value numeric term>
<multiplicative operation symbol>
<one-value numeric term> I
<one-value numeric function specification> I
(<one-value numeric expression>)

24. <unsigned numeric constant>: : =
< unsigned integer number> I
< unsigned real number>

25. <one-value numeric attribute specification> : : =
<(direct) one-value numeric attribute specification> 1
<indirect one-value numeric attribute specification>

26. <(direct) one-value numeric attribute specification> : : =
<one-value numeric attribute name>

27., < indirect one-value numeric attribute specification> : : =
< numeric end attribute specification>
<one-value attribute chain specification>

28. < numeric end attribute specification> : : =
< numeric entity set name> I
(<one-value numeric expression>)

29. <one-value attribute chain specification> : : =
<one-value attribute connector> I
<one-value of phrase>
<one-value attribute chain specification>

30. <one-value attribute connector>: : =
<one-value of phrase> of
< inverse o f a one-value attribute>

31. <one-value of phrase>: : =
of < inverse of a one-value attribute> I
of < inverse of a one-value attributed
(<where qualifier>)

32. Cinverse of a one-value attribute>: : = Cattribute name>

33. Cone-value numeric function specification> : : =
Cname of a one-value numeric function on a multivalue term>Cmultivalue term> I
Cname of a one-value numeric function on a multivalue numeric term>
Cmultivalue numeric term>

34. Cname of a one-value numeric function on a multivalue term>: : = count

35. Cmultivalue term> : : =
Cmultivalue numeric term> I
Cmultivalue string term> I
Cmultivalue expression of abstract type>

36. Cname of a one-value numeric function on a multivalue
numeric term>: : = sum Imaximum Iminimum laverage

37. Cmultiplicative operation symbol>: : = x I/

38. Csign symbol> : : = + 1—

39. Cadditive operation symbol>: : = + I —

The structure of a one-value numeric expression determined by rules (22)—(39) seems to
be similar to that of the arithmetic expression determined in the usual way. However, a great
difference is hidden in the variables of the expressions of the two types. While the values of
the variables are considered as given in an arithmetic expression, the method of retrieving them
is specified in a one-value numeric attribute expression itself.

The values of the variables of a one-value numeric expression (as those of the expressions
of other types) are specified by the attribute specifications. An attribute specification specifies
a direct or an indirect attribute of the context indicator. A direct attribute is specified by its
name. An indirect attribute specification consists of the specification of the end attribute and
that of an attribute chain leading from the end attribute to the context indicator.

The value, specified by a (direct) one-value numeric attribute specification for an entity
of the context indicator, is the numeric identifier value connected to the given entity by the
fact showing a 1-1 or a many-1 relation, the name of which is specified by the given attribute
specification.

The value specified by an indirect one-value numeric attribute specification for an entity
of the context indicator can be determined in the following way.

If an indirect one-value numeric attribute specification contains a numeric end attribute
specification that shows more than one numeric entity set, then it can be reduced to an
expression over the indirect one-value numeric attributes, specifications of which contain the
numeric end attribute specifications that show one numeric entity set only. This reduction

— 114 —

can be achieved by the successive application of the following rule.

If a given

<indirect one-value numeric attribute specification> : : =
(<one-value numeric expression>)
<one-value attribute chain specification>

and the

Cone-value numeric expressions : =
Cone-value numeric expression 1>
Coperation symbol>
Cone-value numeric expression 2>

where the

Cone-value numeric expression 2>
shows one entity set only, then the given
Cindirect one-value numeric attribute specification> : : =

Cindirect one-value numeric attribute specification 1>
Coperation symbol>
Cindirect one-value numeric attribute specification 2>

where the

Cindirect one-value numeric attribute specification 1>: : =
(Cone-value numeric expression 1>)
Cone-value attribute chain specification>

and the

Cindirect one-value numeric attribute specification 2> : : =
(;Cone-value numeric expression 2>)
Cone-value attribute chain specification>

Consequently, it is sufficient to determine the value specified by an indirect one-value
numeric attribute specification, the numeric end attribute specification of which shows one
entity set only. This value can be determined by the help of the same traversal algorithm as
used in the case of the interpretation of the whole forprint specification.

The shema of an indirect one-value numeric attribute specification is a linear path
leading from the node representing the entity set specified by the numeric end attribute
specification to the node representing the context indicator. The branches of the path represent
the fact sets, the names of which are specified by the given indirect one-value attribute
specification. The branches of the shema of an indirect one-value numeric attribute specification
represent the fact sets that show the inverses of the 1-1 or many-1 relations.

— 115 —

Though the schema of an indirect one-value numeric attribute specification is a linear
path only, a traversal tree of entities is specified on its basis for each entity of the entity set
specified by the numeric end attribute specification. The values of an indirect one-value numeric
attribute for an entity of the context indicator are the roots of those and only those traversal
trees of entities that have a path leading to the given entity of the context indicator.

Taking into account the type of the fact sets represented by the branches of the schema
of an indirect one-value numeric attribute specification it can be stated that not more than
one traversal tree of entities exists, the root of which is the value of the specified indirect
one-value numeric attribute.

In Figure 5.1 the schema of the indirect one-value attribute specification

E of D of C of В of A

is shown while Figure 5.2 shows the traversing trees of entities specified on its basis in the
case shown in Figure 5.3. The value of the specified indirect one-value attribute for the entity
a3 is marked with a double circle in Figure 5.2.

The value of an indirect one-value numeric attribute defined in the above way is a numeric
one, since the entities of the entity set specified by the numeric end attribute specification
are numeric identifier values.

The value of a one-value numeric expression can be determined also in case some of its
variables have no value. For this it is sufficient to take 1 as the default value of the variables
for the multiplicative operations and 0 as that for the additive ones.

40. <one-value string expression> : : = <string constant> I
Cone-value string attribute specification>

41. Cstring constant>: : = '<sequence of characters>'

42. Cone-value string attribute specification> : : =
C(direct) one-value string attribute specification> I
Cindirect one-value string attribute specification>

43. C(direct) one-value string attribute specification> : : =
Cone-value string attribute name>

44. Cindirect one-value string attribute specification> : : =
Cstring end attribute specification>
Cone-value attribute chain specification>

45. Cstring end attribute specification> : : =
Cstring entity set name>

— 116 —

A one-value string expression deffined by rules (40)—(45) consists of either a string
constant or a single string variable.The value of the variable of a one-value string expression
is specified by a one-value string attribute specification in a way analogous to that of the one-
-value numeric expression. However, while the end attribute specification of an indirect
numeric attribute specification may be a complex expression, that of the string one is a
string entity set name only because of the primitive stucture of the one-value string expression.

46. <one-value expression of abstract type> : : =
Specification of a one-value attribute of abstract type>

47. < specification of a one-value attribute of abstract type> : : =
< specification of a (direct) one-value attribute of abstract type>|< specification
of an indirect one-value attribute of abstract type>

48. Specification of a (direct) one-value attribute of abstract type> : : = <name of a one-value
attribute of abstract type>

49. < specification of an indirect one-value attribute of abstract type>: : = < specification of an
end attribute of abstract typeXone-value attribute chain specification>

50. < specification of an end attribute of abstract type>: : = <name of an entity set of
abstract type>

A one-value expression of abstract type defined by rules (45)—(50) consists of a single
variable of abstract type. The value of the variable of a one-value expression of abstract type
is specified by a specification of a one-value attribute of abstract type in a way analogous to
that of the one-value string expression.

Since the value of a one-value expression of abstract type for an entity of the context
indicator is the entity of an entity set that is not an identifier, its identifier values are trans­
ferred instead of it.

51. <multivalue expressions : =
<multivalue numeric expression> I
<multivalue string expression> I
<multivalue expression of abstract type>

The type of a multivalue expression is determined by the type of the values specified
by it for the entities of the context indicator in the same manner as that of a one-value
expression.

52. <multivalue numeric expressions. : =
< multivalue numeric term> I
<sign symbolXmultivalue numeric term>|
Cone-value numeric expression>
Cadditive operation sym bolX multivalue numeric term>|
Cmultivalue numeric termXadditive operation symbol>
Cone-value numeric expression>

— 117 —

53. < multivalue numeric term>: : =
<multivalue numeric attribute specification> I
<one-value numeric term>
< multiplicative operation symbol> < multivalue numeric term> I
<multivalue numeric termXmultiplicative operation symbol>
<one-value numeric term> I
(< multivalue numeric expression>)

54. <multivalue numeric attribute specification> : : =
<(direct) multivalue numeric attribute specification> I
<indirect multivalue numeric attribute specification

55. <(direct) multivalue numeric attribute specification> : : =
< multivalue numeric attribute name>

56. <indirect multivalue numeric attribute specification>: : =
<numeric end attribute specification>
<multivalue attribute chain specification>

57. <multivalue attribute chain specification> : : =
< multivalue attribute connector> I
< of phraseXmultivalue attribute chain specification> I
< multivalue of phraseX attribute chain specification>

58. <multivalue attribute connector>: : =
<multivalue of phrase>of <inverse of an attribu ted
< of phraseX inverse of a multivalue attribute>

59. <multivalue of phrased : = of <inverse of a multivalue attribute> I
of<inverse of a multivalue attribute>(<where qualifier>)

60. <inverse of a multivalue a ttributed : = <attribute name>

61. <of phrase>: : = <one-value of phrae>K multivalue of phrase>

62. <attribute chain specification> : : =
< one-value attribute chain specification> I
< multivalue attribute chain specification>

The structure of a multivalue numeric expression determined by rules (51)—(62) seems
to be similar to that of the expressions constructed from one linear vector and some scalars by
the additive and/or multiplicative operations. However, the difference between the two types
of expressions is the same as that between the arithmetic and the one-value numeric
expressions. Moreover, the method of retrieval of the values of a variable specified by a
multivalue attribute specification (of any type) is more complicated than that of those
specified by a one-value one.

— 118 —

The values specified by a (direct) multivalue numeric attribute specification for an entity
of the context indicator are the numeric identifier values, connected to the given entity by the
fact set showing a 1-many or a many-many relation, the name of which is specified by the
given attribute specification.

The values specified by an indirect multivalue numeric attribute specification for an entity
of the context indicator can be determined with the help of the schema of the indirect
multivalue attribute specification.

This schema can be defined in a way analogous to that of an indirect one-value attribute
specification. The only difference is that the branches of the schema of an indirect multivalue
attribute specification represent the fact sets, among which there is at least one showing the
inverse of a 1-many or a many-many relation. Therefore more than one traversal tree of
entities may exist, the root of which is the value of the specified indirect multivalue attribute
for one entity of the context indicator.

In Figure 6.1 some traversal trees of entities are shown specified by the indirect multivalue
attribute specification, the schema of which is shown in Figure 5.1. These trees are specified
for the case shown in Figure 6.2. The values of the specified indirect multivalue attribute for
the entity a3 of the context indicator are marked with the double circles in Figure 6.1.

63. < multivalue string expressions : = <multivalue string term>

64. <multivalue string term>: : = <multivalue string attribute specification>

65. <multivalue string attribute specification> : : = <(direct) multivalue string attribute
specification> I
<indirect multivalue string attribute specification>

66. <(indirect) multivalue string attribute specificaton> : : =
<multivalue string attribute name>

67. <indirect multivalue string attribute specification> : : =
< string end attribute specification>
< multivalue attribute chain specification>

The difference between the multivalue string expressions and the numeric ones is
similar to that in the one-value case.

68. <multivalue expression of abstract type> : : =
Specification of a multivalue attribute of abstract type>

69. Specification of a multivalue attribute of abstract type> : : =
< specification of a (direct) multivalue attribute of abstract type>|

Specification of an indirect multivalue attribute of abstract type>

— 119 —

70. < specification of a (direct) multivalue attribute of abstract type > : : =<name of a
multivalue attribute of abstract type>

71. < specification of an indirect multivalue attribute of abstract type>: : = < specification
of an end attribute of abstract typeXm ultivalue attribute chain specification>

The difference between the multivalue expressions of abstract type and the numeric and
string is similar to that in the one-value case.

72. <set-value expressions» : : = all I
all-except < sequence of attribute names>

73. < sequence of attribute names>: : = < attribute name>l
<sequence of attribute names>,<attribute name>

74. <attribute name>: : = Cone-value attribute name> I
Cmultivalue attribute name>

75. Cone-value attribute name>: : = Cone-value numeric attribute name> I
Cone-value string attribute name>|
Cname of a one-value attribute of abstract type>

76. Cmultivalue attribute name>: : =
Cmultivalue numeric attribute name>l
Cmultivalue string attribute name>l
Cname of a multivalue attribute of abstract type>

The value of the set-value expression all for an entity of the context indicator is a set
consisting of the subsets of the (direct) attributes of the context indicator that are connected
to the given entity. The value of the set-value expression all^xcegt for an entity of the context
indicator is the same, excluding those subsets which are contained in the entity sets specified
by the sequence of attribute names of the expression.

In the case shown in Figure 7 the value of the set-expression all for the entity e is the
set of the marked subsets of A 1, A3 and A4, while that of the set-expression all-except A3
is the set of the marked subsets of A1 and A4.

Details about the conditions are given by the syntactical rules and in the explanations
below.

77. Ccondition>: : = Ccondition on the context indicator>l
Ccondition on the attributes> I
C conditionX logical operation symbol>
Clogical term>

78. Clogical term>: : = Ccondition on the attributes>|
Clogical termXlogical operation symbol>
Ccondition on the attributes> I
(Clogical term>)

- 120 —

Considering the conditions on the context indicator and those on the attributes as
logical variables, a condition can be considered as a logical expression constructed from some
logical variables by the logical operation symbols in the general case. This logical expression
specifies a logical value for each entity of the entity set, the specification of which is followed
by the where qualifier containing the given condition. A condition is considered satisfied by an
entity if and only if the value specified by the logical expression for it is true.

79. <condition on the context indicator>: : =
«incomplete numeric relation> I
Cincomplete string relation> I
<incomplete element relation> «incomplete set relation>

80. «incomplete numeric relation> : : =
«numeric relation symbol><numeric expression>

81. «numericrelation symbol>: := eq lnellt |le |g t|ge

82. «numeric expression> : : = «one-value numeric expression>|
«multivalue numeric expression>

83. «incomplete string relation>: : =<string relation symbol>
«string expression>

84. «string relation symbol> : : eq Ine

85. «string expression> : : =<one-value string expression> I
«multivalue string expression>

86. «incopmlete element relation>: : =<element relation symbol>
«set specification>-

87. «element relation symbol> : : = bit I nbt

88. «set specification> : : «set specification by name> I
«set specification by set affix>

89. «set specification by name> : : = «multivalue attribute name>

90. «set specification by set affix>: : =
set («specification of elements>)

91. «specification of elements> : : =
«indirect multivalue attribute specification> I
«sequence of elements^

92. «indirect multivalue attribute specification> : : =
«indirect multivalue numeric attribute specification> 1
«indirect multivalue string attribute specification> I
«specification of an indirect multivalue attribute of abstract type>

- 121 -

93. <sequence of elements> : : =<element specification I
< sequence of elements>,< element specification>

94. <element specification> : : = <one-value attribute name> Kconstant>

95. <constant>: : = < numeric constant> к string constant>

96. Cincomplete set relation>: : =<set relation symbol> к set specification>

97. < set relation symbol> : := inc Inie Isus Isas Inas

A condition has its own scope indicated by an entity set, entities and attributes of which are
to be tested for the condition. Initially the scope indicator is the entity set, the specification of
which is followed by the where qualifier containing the given condition.

A condition on the context indicator is a condition on the entities of the initial scope indicator.
Conseqently, the initial scope indicator of the condition is implicitly assumed as the left side of
an incomplete relation.

The logical value specified by an incomplete relation for an entity of the initial scope indicator
is true if and only if the entity is in the given relation to the values specified by the right side
of the incomplete relation.

The relation ”is equal ” , ”is not equal” , ”is less than” , ”is less or equal” , ”is greater than”
and ”is greater or equal” are meant in their usual sense for the numeric values under the symbols
given in rule (81) respectively.

The string relations ”is equal” and ”is not equal” are meant under the symbols given in rule
(84).

If an incomplete numeric or string relation has a multivalue expression as its right side,
then it is assumed to be the conjuction of the relations having the single values of the multivalue
expression as their right sides.

The relations ’’belongs to ” and ’’doesn’t belong to” between an element and a set are
denoted by the symbols given in rule (87).

The relations ’’includes”,’’doesn’t include”, ”is a subset of”, ”is same as” and ”is not same
as” between two sets are meant under the symbols given in rule (97). A set having a single element
is assumed for an entity of the initial scope indicator in an incomplete set relation.

98. < condition on the attributes>: : =
< condition on the attributes in scope> I
<removed scope indicator>,
< condition on the attributes in scope>

99. <condition on the attributes in scope> : : =
< numeric relation> к string relation> I
kelement relation> к set relation> I
kset quantification>

- 122 -

100. Cnumeric relation> : : = Cnumeric expression>
<incomplete numeric relation>

101. < string relation> : : = < string expression>
<incomplete string relation>

102. <element relation> : : =
<one-value expressionX incomplete element relation>|
<multivalue expressionX incomplete element relation>

103. <set relation>: : =<set specificationXincomplete set relation>

104. <set quantification^: : = <set specification> exists I

all <set specification>

105. <removed scope indicator>: : = <removed context indicator>

The scope of a condition can be removed in the same way as removing the context in the
forprint specification.

A condition on the attributes in scope is a condition on the direct or indirect attributes of
the scope indicator for the moment. Since a removed scope indicator is connected, perhaps
through some other removed scope indicators, to the initial one, all conditions on the attributes
are in fact related to the entities of the initial scope indicator.

The logical value specified by the relations defined by rules (100) - (103) for an entity of
the initial scope indicator is true if and only if the values specified by the left side are in the given
relation to the values specified by the right one.

If a numeric or a string relation has a multivalue expression either as its left side or its right
one or both, then it is assumed to be the conjunction of the relations having the single values of
the multivalue expressions on the corresponding sides. If an element relation has a multivatue
expression as its left side, then it is assumed to be the conjunction of the ralations having the
single values of the multivalue expression as their left sides.

In rule (104) the symbol exists means the existential quantifier, while the symbol all means
the universal one in the sense of mathematical logic.

106. <logical operation symbol> : : = , land lor

The , as a logical operation symbol has the same meaning as and. The logical operation
symbols and iand or mean the conjunction and the disjunction in the sense of mathematical logic.

The syntactic entities left undefined throughout this description should be defined on the level
of implementation.

- 123 -

II. Remarks concerning the FORAL output statement

This section contains some remarks concerning the output statement described in the first
part of the report. The remarks are given in the sequence of the syhtactic rules and the explanations
of the first part that they refer to.

Remarks contained in this report are of the following types. Remarks o f type (a) concern
only the terminology used in [1] (consequently used in the first part of this report). Some
redundancies and/or inconsistencies in the syntax are pointed out by remarks of type (b). The
semantics are treated in remarks of type (c): they either show an interpretation different from
that of the first part of the report for some syntactic rules or they suggest an interpretation where
none is given in the first part. Rules of type (d) show some possibilities of restrictions without
decreasing the power of the output statement in its essential respects, and some of extensions
that seem to be necessary for many applications and can be implemented without any additional
complications. The type of the remark is shown at its beginning giving the possibility of reading
only the remarks of interest.

Concerning rule (1):

(a) — It is not necessary for the user to know anything about the files as they are mostly
connected with the internal representation of information. Consequently, it would be better to
refer to the first part of the output statement by another term, for example, ’’transfer specification”
or — according to [3] — ’’record set specification”.

The second part of the output statement specifies not only the format of the information,
but — and it is not less important — the information itself. So it would be better to refer to
the second part of the output statement by another term, for example, ’’information
specification”, ’’data specification”, etc.

Concerning rules (2) — (6):

(c,d) - The possibility of an indication of more than one source specification in one file
specification seems to be superfluous in an output statement without any where overlay
specifications on the basis of the following considerations.

The entity sets, information about the entities of which is to be delivered while transferring
on the basis of one output statement without any where overlay specifications, should be connec­
ted directly, or indirectly, to that indicated as the basis of the transfer at the beginning of the
format specification. If the internal representation allows the storing of some entity sets,
connected with each other, on different files then the information necessary for the switching
from one file to another is represented interally. In this case the output statement need not
specify any source files in addition to that containing the entity set identicated as the basis of the
transfer. In the case of a less poweful internal representation it is impossible to switch from one
source file to another without showing the switching points in the output statement itself.

- 124 —

The problem of switching from one source file to another having only one output statement
can be solved with the help of the where overlay specifications - if they are intended to serve this
purpose. If the where overlay specification has no effect in addition to the switching from one
source file to another, then it seems to be superfluous since the same effect can be achieved by
two output statements without a where overlay specification but having different source
specifications. If the where overlay specification is intended to serve other purposes too (for
example, for connecting on the temporary file, the entity set specified in it as an initial context
indicator to the entity set indicated as the basis of the transfer) then it is very reasonable to allow
the use of more than one where overlay specification in one format specification.

On the basis of the considerations above it seems to be reasonable

— either to restrict the output statement replacing rule (2) by the rule:
<file specification> : : = d estin a tio n specification> I

d estin a tio n specification>
< source specification> ;

— or to extend it replacing rule (6) by the rule:
<format specification> : : = <forprint specification> I

< format specification>
< where overlay specification>

However, even with the above extension it is impossible to begin the transfer from the
central data base and to continue it from other internal files. The modification of the output
statement described in the third part of this report permits transfer from the central data base
and from other internal files in any sequence , supposing that one of the effects of the syntactic
entity, called a where overlay specification in the first part o f this report, is the switching from
one file to another.

Concerning rules (3) — (4):

(c) — It is reasonable to treat the output statements with different destination indicators
together since the syntax is common for the output statements of either type. The only difference
in the syntax is that the set of the output file names allowed by an implementation in the case
of the out£ut destination indicator may be wider than that in the case of the temgorai^one.

The main difference between the output statements with different destination indicators
is on the level of semantics covered by the interpretation of the term ’’transfer” . It is quite
clear that in the case of an actual output the information to be transferred has to be placed in
different rows and columns of the output file, so that it cannot be transferred from this file to
an other one by a similar output statement. However, in the case of an output statement with
the temporary destination indicator the term ’’transfer” has to have a meaning different from
that in the case of an actual output. This is left out of consideration in [1] and, consequently,
in the first part of this report. It is quite reasonable to suppose that an auxiliary data base is
created in the internal form as the effect of an output statement with the temporary destination

125 -

indicator. The schema of this data base is that of the forprint specification given in the output state­
ment.

Concerning rules (6) — (9) and (18):

(a) — The description of a language is easily understandable if the names of the syntactic
entities show their semantic content rather than their form. Therefore it would be better to call
the ’’forprint specification”, for example, ’’information specification”.

Analogous remarks can be given to the names of the following syntactic entities.

The meanings of the syntactic entities

— entity set print clause

— for attribute print clause

— print clause

introduced in rules (7) and (8) are not very obvious, particularly in the case of a tem£orar^ output
statement.

Similarly, it would be better to use the term ’’condition” instead of the ’’where qualifier”
introduced in rule (9). Perhaps s better names can also be found for the ’’field specification”
introduced in rule (12) and for the ’’called phrase” introduced in rule (18).

Concerning rules (9) and (11):

(b) — These two rules show a redundancy in syntax, since it is not necessary to signal the
beginning of a condition with a pair of ’’open brackets” in the form

(where . . .

This redundancy can be eliminated in the way of using an appropriate symbol as the
’’close bracket” for the ’’open bracket” where, though the end of a condition seems to be
syntactically recognisable in all cases of its use. For example, an asterisk* can be chosen as the
’’close bracket” for the ’’open bracket” where resulting in the form

where . . . *

* The form

where . . . wend

was proposed by Prof. J. Bubenko (University of Stockholm).

- 126 -

Using only a pair of brackets is another way of eliminating the redundancy — in this case
the word where can be used as a readability aid.

Remark on the ’’schema of the forprint specification” :

(c) — The schema of a forprint specification can be defined in another way that seems to be
more natural than the one defined in the first part of this report.

The schema of a forprint specification is a directed ordered graph for which a one-to-one
correspondence exists between the set of its basic nodes and that of the context indicators
specified in the given forprint specification. The branches of the graph represent the fact sets
specified by the context removers forward in the same order as they are shown in the given
forprint specification. Additional nodes are connected to the basic ones in the same way as it is
described in the first part of the report.

The schema of the forprint specification

A (where . . .) print D,E for F for G (where . . .)
print H for F called I grint J for G for F
print К for L for G print M

corresponding to the definition above is the one shown in Figure 8 instead of that shown in
Figure 3.1.

It is quite obvious that the simple traversal algorithm specifying the traversal trees of entities
correspondingly to the schema defined above does not give a correct result. For example, in the
case shown in Figure 8 the traversal trees of the entities of the context indicator G contain the
subtrees corresponding to the whole subschema marked in Figure 8, regardless of the branch
leading to the given entity. The reason is the branches leaving a node of the schema, to which
more than one branch leads, are all traversed each time the node is traversed.

This problem can be solved by giving some additional information in the schema of the
forprint specification. One possible solution seems to be the labelling of the critical branches by
the numbers of traversal of the node they leave, after which they are ’’valid” . In Figure 8 the
critical branches are marked in this sense.

In the general case the schema of a forprint specification, defined in the above way, can be a
very complicated one. As an example the schema of the forprint specification

A print В for C for D for E print F
for C grint G for FI print G for E grint I

is shown in Figure 9.

- 127 -

The traversal trees of entities corresponding to the schema of a forprint specification having
some marked branches can also be specified by the traversal of the schema. However, at a
traversed node of the schema a distinction should be made between the branches leaving the
node. The proper traversal trees of entities can be specified in when the number of traversals of
entities is known. The traversal subtrees are specified for a traversed entity following those and
only those branches of the schema that have the label equal to the current number of traversals
of the given entity. Naturally, the traversal algorithm specified above is more complicated than
that referred to in the first part of this report.

Concerning rules (29) — (32) and (57) — (62):

(b,c) — It seems to be superfluous (not only from a syntactic point of view, but also from
a semantic one) to connect an indirect attribute to the context indicator showing the context
indicator itself. If it is possible to reach a direct attribute from the context indicator by the
name of the attribute (without showing the name of the context indicator) — and it is possible —
why should a secondary attribute be specified by 3 names? The reason is of a semantic nature.
A direct attribute value is defined from the context indicator to the attribute, while an indirect
attribute value is searched from the end attribute to the context indicator. Consequently, the in
direct attribute specification can be relieved of the superfluous name by having a uniform semantic
approach to the attributes of the two types. This uniformity can be achieved on the basis of the
following definitions.

— An attribute of rank 1 of the context indicator is an entity set connected to the context
indicator by a fact set.

— An attribute of rank n (> 1) of the context indicator is an entity set connected to an
attribute of rank n—1 of the context indicator by a fact set.

The attributes of rank 1 as defined above correspond to the (direct) attributes in the first
part of this report, and those of rank greater than 1 correspond to the indirect ones.

On the basis of the definitions above an attribute of rank n can also be specified by n names
in the case of n > 1. It should be mentioned that fact sets named in the specification of an
attribute of rank n > 1 are the opposite ones to those shown in the indirect attribute specification
defined in the first part. However, this shortened specification does not seem to be less adequate
than the original one from the point of view of the English language.

Corresponding to the definitions above, the schema of the shortened specification of an
attribute of rank n (> 1) is a linear path consisting of n nodes. The nodes of the schema
represent the entity sets determined by the fact sets, the names of which are shown in the
shortened specification of the attribute. The branches of the schema represent the named fact sets
themselves. The schema of a shortened attribute specification defined in this way is called the
opposite schema of the attribute.

- 128 -

The values of an attribute for an entity of the context indicator can be retrieved by the
traversal of a directed graph of entities specified on the basis of the opposite schema of the
attribute defined above.

The graph of entities to be traversed for one entity of the context indicator is a linear
path only in the one-value case. A directed graph of a more complex structure having the
given entity of the context indicator as the source node is specified on the basis of the opposite
schema of an attribute in a multivalue case.

In Figure 10.1 a situation is shown for the multivalue case shown in Figure 6.2. This
situation has to be taken account while determining the values of the attribute specified by
the shortened attribute specification

E or D of C of В

for the entity a3 of the context indicator A. In the case shown in Figure 10.1 the traversal
tree of entities shown in Figure 10.2 is specified by the simple traversal algorithm on the
basis of the opposite schema. This traversal tree of entities shows that an attribute value is
retrieved more than once by the simple traversal algorithm.

In the general case an attribute value for an entity of the context indicator is retrieved by
the simple traversal algorithm as many times as paths lead to it from the given entity, on the
basis of the opposite schema of the attribute. Consequently, on the basis of the opposite
schema of an attribute, the simple traversal algorithm results in an interpretation of the indirect
multivalue attributes different from that of the first part.

In a discussion of this problem with Prof. J. Bubenko (University of Stockholm) it
appeared that from the user’s point of view it might also be better (in a ’’standard interpretation”)
to transfer a value of an indirect multivalue attribute only once in the case where more than one
path leads to it. This purpose can, however, be achieved by applying an algorithm for
traversing the graphs that traverses a node of a graph of any structure only once. Such traversal
algorithms are used in the data base management sytem LIDI, described in [4].

The traversal tree of entities shown in Figure 10.3 is specified by the algorithm for the
traversal of the graphs of any structure mentioned above instead of that shown in Figure
10.2 in the case shown in Figure 10.1.

Concerning rules (40)445) and (63)—(67):

(d) — For some applications it seems to be necessary to have a set of operations over
strings, such as concatenation, insertion, etc., so the referred set of rules should be extended.

Concerning rule (72):

(d) — Having the relations defined for sets it seems to be reasonable to have some
operations over them, such as union, intersection, etc., so the rule should be completed.

- 129 -

Concerning rules (72) — (73) and (90):

(b) — There is no essential difference betweeen the operands of the all^xcept operator
and those of the set type, so it would be more consistent to specify the operands of both
operators either in parentheses or without them. The first version is better from the point of
view of an implementation, since in the print clauses similar to

£Tint albexcegt A, B+2

the scope of aU-excej^operator becomes clear after one additional attribute name only.

Another consistent solution might be to find the proper ’’close brackets” for the
’’open brackets” aU-excej^and set.

Concerning rule (75):

(d) — Following this rule it is impossible to give more than one condition concerning the
entities of the context indicator, though’ it might be needed in many cases.

Concerning rule (84):

(d) — In consequence of the remark conseming rules (40)—(45) and (63) — (67) it is
reasonable to widen the set of relations over strings.

Concerning rules (89) — (91):

(b) — There is no difference between the direct and indirect attributes from the point
of view of the interpretation of sets, so it would be more consistent to show both of them
either with a set affix or without it. The first version would be nicer from the syntactic
point of view.

- 130 —

III. Modifications to the FORAL output statement

This section contains suggestions for some modifications of the FORAL output statement
described in the first part of this report, based on the remarks given in the second part. Some
remarks are not considered, mainly those of type (d) since they require considerable further,
detailed study.

It is mainly the syntax which is described in this part of the report, since the semantics
can be regarded as defined by the previous parts of the report and by the names of the syntactic
entities used in this part.

Some (groups of) syntactic rules that correspond to those of the first part of this report
are provided by a reference to their numbers.

Instead of rules (1) — (3):

<output statement^»: : = <destination specification>
< information specification>.

<destination specification> : : = <destination indicator>
< destination name>

Rule (4) is not modified.

Instead of rules (5) — (9):

Cinformation specification> : : =
<initial information specification> i
< information specification>
< additional information specification>

Cinitial information specification> : : =
<initial source specification> :
< information specification from one source>

<initial source specification^ : = I
<additional source specification>

<additional source specification> : : = from < source name>
<source name>: : = I central К auxiliary source names
<additional information specification> : : =

<additional source specifications» :
< information specification from one source>

<information specification from on source> : : =
<information specification about the initial entity sets» I
< information specification from one source>
<information specification about an additional entity set >

- 131 -

Cinformation specification about the initial entity set> : : =
< initial context indicator> I
< initial context indicator>
Cinformation specification about the attributes>

Cinitial context indicator> : : =
< initial entity set specification> I
Cinitial entity set specifications condition>

Ccondition>: : = Ccondition open bracket>Clogical expression>)l
where Clogical expression>C condition end>

Ccondition open bracket>: : = (l(where
Ccondition end> : : * Iwend

Rule (10) is not modified.

The above set of rules specifies an output statement that makes possible the transfer of
information from different sources in any sequence. The rules forbid the use of the source
name central as an auxiliary one. However, this name can be considered as a reading aid.

The specification and the use of the syntactic entity called the where qualifier in the
first part of this report is modified according to the remarks of the second part.

Some remarks concerning the names of the syntactic entities are taken into account in
the above rules and in the following ones.

Instead of rules (11) — (16):

Cinformation specification about the attributes>
transfer C field specification> I
Cinformation specification about the attributes>,
Cfield specification>

Cfield specification>:: = Cattribute expression>|
Cattribute expression>Cfield renamer>

Cfield renamer> : : = called Cfield name>
Cinformation specification about an additional entity set> : : =

Cremoved context indicator> |
C removed context indicator>
Cinformation specification about the attributes>

Cremoved context indicator> : : =
Cadditional entity set specification> I
Cadditional entity set specifications condition>

- 132 -

Instead of rules (18) — (19) :

<context repiover> : : = <attribute name>|
<attribute nam eX attribute renamer>

<attribute renamer> : : = called <new attribute name>

The following rules are concerned with the details of the attribute expressions.

Rules (20) - (22) are not modified.

Instread of rule (23):

<one-value numeric term>: : = < unsigned numeric constant>i
<one-value numeric attribute specification> |
<one-value numeric termXmultiplicative operation symbol>
<one-value numeric term> I
<one-value numeric function specification>

Rule (24) is not modified.

Instead of rules (25) — (32):

<one-value numeric attribute specification> : : =
<one-value numeric attribute name>|
(<one-value numeric expression>)|
<one-value numeric attribute specification>
<one-value attribute mediator>

<one-value attribute mediator>::=
of <one-value attribute name> |
of <one-value attribute nam eXcondition>

<one-value attribute name> : : =
Cone-value numeric attribute name>|
Cone-value string attribute name>|
Cname of a one-value attribute of abstract type>

Rules (33) - (39) are not modified.

The above rules determine the one-value numeric expression of the same structure as
rules (22) — (39) of the first part. The only difference is in the one-value numeric attribute
specification. The rules above specify the direct and the indirect one-value numeric attributes
in a uniform way corresponding to the remarks of the second part.

The following rules reflect the analogous modifications cuncerning the one-value string
expression, the one-value expression of abstract type and the multivalue expressions of all
types.

Rule (17) is not modified.

- 133 -

Rules (40) — (41) are not modified.

Instead of rules (42) — (45):

<one-value string attribute specification> : : =
<one-value string attribute name> I
<one-value string attribute specification>
<one-value attribute mediator>

Rule (46) is not modified.

Instead of rules (47) — (50):

< specification of a one-value attribute of abstract type>: : =
Cname of a one-value attribute of abstract type>|
< specification of a one-value attribute of abstract type>
Cone-value attribute mediator>

Rules (51) — (52) are not modified.

Instead of rules (53) — (62):

< multivalue numeric term>: : =
Cmultivalue numeric attribute specification> |
Cone-value numeric term>Cmultiplicative operation symbol>
Cmultivalue numeric term>|
Cmultivalue numeric term>Cmultiplicative operation symbol>
Cone-value numeric term>

Cmultivalue numeric attribute specification> : : =
Cmultivalue numeric attribute name>|
(Cmultivalue numeric expression>)|
Cmultivalue numeric attribute specification>
Cattribute mediator>|
Cone-value numeric attribute specification>
Cmultivalue attribute media to r>

Cattribute mediator> : : = Cone-value attribute mediator>|
Cmultivalue attribute mediator>

Cmultivalue attribute mediator>: : =
of Cmultivalue attribute name>|
of Cmultivalue attribute name>Ccondition>

Cmultivalue attribute name> : : =
Cmultivalue numeric attribute name> I
Cmultivalue string attribute name>|
Cname of a multivalue attribute of abstract type>

- 134 —

Rules (63) — (64) are not modified.

Instead of rules (65) — (67):

<multivalue string attribute specification> : : =
<multivalue string attribute name>|
<multivalue string attribute specification>
<attribute mediator>|<one-value string attribute specification>
<multivalue attribute mediator>

Rule (68) is not modified.

Instead of rules (69) — (71):

< specification of a multivalue attribute of abstract type>: : =
Cname of a multivalue attribute of abstract type>|
< specification of a multivalue attribute of abstract type>
<attribute mediator>|
< specification of a one-value attribute of abstract type>
<multivalue attribute mediator>

The following modification concerning the set-value expression unifies the specification
of the operands of the all-except operator and those of set.

Instead of rule (72):

<set-value expressions. : = all I all-except <set of attributes^
<set of attributes> : : = (< sequence of attribute names>)|

< sequence o f attribute names> xend

Rules (73) — (74) are not modified.

Rules (75) - (76) are excluded.

The following rules concern the details of the logical expressions.

Instead of rules (77) — (79):

Clogical expression> : : = <logical term> I
Clogical expressionX logical operation symbolXlogical term>

<logical term> : : = <incomplete relation>|
<complete relation>|<set quantification> |
< scope remover> , < logical term> I (< logical expression>)

The above rules define a more complex structure of the logical expression than that
defined in the first part of this report.

- 135 -

<incomplete relation> : : = Cincomplete numeric relation>|
<incomplete string relation>|<incomplete element relation>|
<incomplete set relation>

The scope indicator for the moment is assumed as the left side of an incomplete relation
in the case where no complete relations precede it following the specification of the scope
indicator for the moment. Otherwise, the left side of the last preceding complete relation is
assumed to be that of the incomplete relation.

Rules (80) — (88) are not modified.

Instead of rules (89) — (94):

<set specification by name> : : =
<multivalue attribute name>|
<set specification by nam eX attribute mediator>|
< element specification by name>
Cmultivalue attribute mediator>

<element specificaton by name>: : =
<one-value attribute name>|
< element specification by name>
<one-value attribute mediator>

<set specification by set affix> : : = set <set of elements>
<set of elements> : : = (< sequence of elements>)|

< sequence of elements> send
< sequence of elements> : : = < element specification> |

<sequence of elements> , <element specification>
<element specification> : : =

< element specification by name> | <constant>

Rules (95) — (97) are not modified.

The above rules define sets either by a set affix or without it. A multivalue attribute can
also be specified as a set without a set affix in the case of an indirect attribute. A one-value
attribute can also specify an element of a set in the case of an indirect attribute.

Instead of rules (98) — (99):

<complete relation> : : = <numeric relation>|
< string relation> | < element relation> | <set relation>

Rules (100) - (106) are not modified.

- 136 -

Conclusions

Further studies are necessary concerning some parts of the FORAL output statement
described in this report. Concerning the attribute expressions, the complex structure of string
expressions is an object for further study both in the one-value and in the multivalue cases.
The operations over sets can be introduced. Concerning conditions, string relations are objects
for further elaboration.

All the discussions in this report suggest an implementation of the output statement by an
algorithm consisting of two phases.

In the first phase the schema of the output statement is constructed. From the point of
view of the implementation it seems to be better to construct the schema of a forprint
specification in the form of a tree as introduced in the first part of this report. The opposite
schemas of the indirect attributes, introduced in the second part, can be used. The schemas
of the whole attribute expressions and the conditions should be specified. The method of
connecting the schemas of the attribute expressions and the conditions to the schema of the
whole forprint specification should be determined.

The syntactic analysis of a given output statement can also be performed in the first
phase of the algorithm. It should be mentioned that a full syntactic analysis corresponding
to the syntax described in this report can be performed only in the case where information
not shown explicitly in [1] is represented in the data base. The types of the fact sets and
those of the entity sets have to be retrievable for a full syntactic analysis. For each fact set
it should be known whether it shows a 1-1, many-1, 1-many or a many-many relation. Similarly,
for each entity set it is necessary to recognize whether it consists of numerical or string
identifier values or of entities of abstract type.

The second phase of the algorithm for the interpretation of the output statement
performs the traversal of the entities of the data base on the basis of the schema of a given
output statement. The simple traversal algorithm can be applied for traversal on the basis
of the schema of the forprint specification. The algorithm for traversal of the graphs of any
structure mentioned in the second part can be used for traversal on the basis of the schemas of
indirect attributes.

Acknowledgement

The author wishes to express her gratitude to Janis Bubenko, Professor at the
University of Stockholm, for the initiation of this work and for his valuable suggestions.

— 137 —

References

[1] M.E. Senko: FORAL II for DIÁM II: Information Structures and Query-Maintenance
Language, IBM Research, Yorktown Heights, (1976) (Submitted for publication)

[2] D.E. Knuth: The Art of Computer Programming Vol. 1, Addison Wesley, 1968.

[3] ANSI/X3/ SPARC Study Group on Data Base Management Systems Interim Report, 1975.

[4] Fidrich I.: The Data Base Management System LIDI,Proceedings of the CAD
Seminar, Budapest, Hungary, 1976.

[5] M.E. Senko, E.B. Altman, M.M. Astrahan, P.L. Fehden Data Structures and
Accessing in Data Base Systems
IBM System Journal, Vol. 12, N^-l, 1973.

[6] M.E. Senko: Data Description Language in the Context of a Multilevel Structured
Description: DIÁM II with FORAL, Data Base Description, Processings of the
IFIP TC-2 Special Working Conference on Data Description, Ed. B. C. M. Douque,
G.M. Nijssen, Nort-Holland, 1975.

Figure 1

!3x

f a c t s e t a b o u t A 1 c a l l e d C l 1

f igure 2

Figure 3.1

<D

O ----------- - O

141 -

Figure 3.2

Figure 4

1 4 4

l i
gu

re
 5

- 1 4 5 -

Figure 6.1

I
•fc.
O '
I

Figure 6.2

Figure 7

147

l igure S

14X

Figure 9

149

I
о«л
I

Figure 10.1

- 1 5 1 -

Figure 10.3

- 153 —

CELLPROCESSORS IN COMPUTER ARCHITECTURE

T. Legendi

Research Group on Mathematical Logic and Theory of Automata,
Hungarian Academy of Sciences

The real effectivity o f digital computers — characterized by the working/waiting ratio of
basic elements, gates and bits —is very low. There are also speed limits for the basically
sequentially organized computers.

Cellular automata organization offers in principle a solution to these problems. However
the traditional approach — stand alone cellular computer consisting of a high number of cells
with a fixed relatively large transition function - gives results of only theoretical importance
at the present state of technology — which demands at the same time the development of a
homogeneous basic element.

This paper gives proposals for the structure and programming of very effective medium
speed cellprocessors based on existing technology.

— Cellprocessors are treated as an organic part o f computer architecture for solving
tasks of a wide but limited class of algorithms.

— The flexibility of cells is increased by variable transition function which reduces the
size o f cells and the number of cells for solving a given task.

— Reorganization of processing in a cellular space — centralized sequential transition
function processing — drastically reduces the size o f cells thus making it possible to
integrate 10 2 — 10s cells on one chip. With the growing number of cells executing the
same transition function price /performance is improved, since the loss of speed depends
only on the size of the transition function. (This advantage againts supposed parallel
spaces is also independent of the development of technology.)

— A 16 state cell for general computations and a 2 state cell for specific applications
have been designed and models have been built.

— Cellular automata cross-software — simulation languages and a transition function
minimization language — have been implemented.

— General principles of cellular space programming — mapping algorithms on sets of
interrelated processing elements connected and working in pipe—line — have been
introduced. The conception of a cellular macroassembly language and directions towards
higher level cellular languages are shown.

- 154 —

1. The actuality of the topic and the goals of research

The objective is justified by the low level of effectivity of computers in common use;
10"^ — 1СГ6 part of the hardware components work usefully at the same time — although in
principle all of them could work in parallel. Speed limits for sequential processing also involve
other organization principles.

Cellular automata could satisfy in principle these requirements.

The implementation o f cellular automata for practical purposes first became realistic
with the advent of the LSI technology. The heterogeneity o f LSI circuits (because of their
complexity) means at the same time a demand for a homogeneous basic element suitable for
mass production.

According to estimations [13] further development of technology and detailed research
will make general the commercial use of homogeneous computers, but not before the mid
80’-s.

This paper reports our research in order to speed up this process. The main goal is to
design a smaller new basic element built on the basis of existing technology and to ensure
more effective and/or faster processing.

2. The role of cellular automata in computer architecture

Theoretical [1,2] and practical [13, 3, 4] works concentrate mainly on the idea of a
stand alone cellular automata-computer based on cells with fixed transition function.

The main advantage of this approach is the total homogeneity (of neighbourhood and
transition functions) which simplifies theory, hardware design and programming of the
cellular space.

The relatively small programmable basic element (cell) guarantees deep simulation level;
gates and hardware constructions may be embedded into cellular spaces by software means.

However there are arguments against a stand alone cellular automata—computer. The most
important of them states that cellular automata (especially taking into consideration the
existing technology) cannot be applied in an economical way for the execution o f arbitrary
tasks. The main reason for this is that in general it is very hard to utilize the level of paralel-
ism of cellular spaces.

Among other problems the initialization of the space and I/O in the traditional way
— only through dummy cells — are quite inconvenient and slow.

The connection of a cellular computer to mass storage is also unsolved.

It is natural to use digital computers to solve the above problems. For example a com­
puter can load the initial configuration (program) into the cellular space and can handle the

- 155 -

I/O as well. In this way there is no need for large and slow configurations (the own software
of the cellular automata), since computers may also assemble cellular programs.

Special purpose applications may be satisfied by a system consisting of only one digital
processor and one cellular processor, where the cellular automata may be interpreted as a
peripheral firmware which is able to execute an extra instruction of the digital computer
(see.e.g. [6] where picfure preprocessing is executed, speeding up the computation with a
factor of 10)̂.

Another possible construction would be to apply a computer as a front-end processor
to a larger cellular space.

For general computations it is reasonable to use cellular automata as processors in an
architecture where they execute algorithms effectively computable in a parallel way at cell
level. Examples are indicated in the chapter on cellular programming. Extending the class of
effectively computable (in cellular spaces) algorithms is an important research ta|k. Algorithms
outside of this class should be executed by other processors in the architecture.

3. The transition function problem

A fixed transition function is not flexible enough and as a consequence it must be rela­
tively large to be universal. In this way the use of variable transition functions also helps
considerably to decrease the cell size. A fixed transition function may be interpreted as a
union of partly defined functions (subfunctions) [1,2,5], since practically, in different groups
of cells different subfunctions are used during longer periods, rather than the whole transition
function. In this way a space consisting of groups o f cells with independently variable func
tions can replace a space o f cells with a larger fixed transition function.

There is another obvious advantage — the possible use of arbitrary functions, i.e. not
only a fixed set of subfunctions may be accessed.

The definition of transition functions for different computations is a cell microprogram­
ming task which is carried out now by hand (in the future this work should be automated by
cellular programming languages, at first partly and then totally).

Cell microprogramming means a big economy in configuration (program) size and
thus in execution speed as well; using special microprograms small groups of cells or even
individual cells may replace larger configurations of a space with a fixed transition function.

Cell microprogramming does not exclude production homogeneity.

Assembling and loading of microprograms for cellprocessors is the task of other pro­
cessors in the task of other processors in the architecture.

4. Coprocessors

The size and therefore the economy and programmability of cellprocessors is determined
mainly by the size of the basic cell. A fixed set of states and neighbours always reflects a
compromise: in a space of smaller cells more cells are needed for a given task (space, speed);
in the case of larger cells less cells are needed, speed increases, but the cells are less utilized

15).
Theoretical and simulation results, as well as the existing technology, suggest choosing

for the basic element a maximum 16 state cell with a (static) neighbourhood of 4 to 8 cells.
For special classes of algorithms 2 state cells may offer special advantages.

In the previous chapter the necessity and advantages of the variable transition function
were explained. Here we emphasize that its use reduces the size of the basic cell and the
number of cells needed for a given task.

The technical solution does not involve any serious problem. Existing design methods
and technology determine the use of RAM memory for storing transition functions.

In this case the next state of a cell is defined by mapping the state word composed of
the neighbour cells — including the cell itself - onto a contiguous address interval of the RAM
where the result points to the value of the next state. This is a totally homogeneous construc­
tion from the production point of view.

However a cell containing a RAM represented transition function, even with relatively
few states and neighbours, and some limitations for possible transition functions, is quite
expensive as compared with the computational power of a single cell.

A relatively obvious method may be suggested to improve the price/performance ratio.
It is based on the contradiction between the sizes of the memory and the processor part of
a cell. A cell, as a basic element of a special distributed computing system, has a memory
component (its own state, 1-4 bits) and an information processing component (finite automata
with 4-20 bits of input and 1-4 bits of output). It is natural to centralize the automata part
of cells having the same transition function. In this case, a cell does not include any processor
component. It has only a memory component plus a small additional circuit which interacts
with theneighbour cells and with the centralized transition function and stores the resulting
new state in the memory component.

This organization results in slower speed and cheaper, modular construction. Such a
quasi-space may be interpreted as a cellular space emulator taking into consideration the usual
dSfinition. This quasi — space emulator works as an ordinary space — only at a lower speed.

This centralization is naturally modular in the case of RAM stored transition functions
and eliminates a specific problem: namely, that loading the transition function into each cell
may cause problems. v

- 157 -

The main advantage of the method is that the size o f a cell is drastically reduced, giving
chances for implementation of 10^—10^ cells on one chip which is the preliminary design

c 7
condition o f an acceptable cellprocessor, containing 10 —10 cells.

But how has price/performance been improved? The loss of speed seems to compensate
for the decrease in price. Although the loss of speed is necessary, the solution proposed by
T. Toffoli [7] for experimental cellular space emulators makes the loss o f speed proportional
to the length o f the microprogram (proportional to the number of terms of the transition
function) rather than to the number o f cells connected to a RAM stored microprogram. This
means that by increasing the number of cells belonging to the same RAM, price/performance
is improved. This argument shows not only that in this way are there chances for implemen­
tation based on existing technologies, but (it should also be pointed out), that having better
technologies in the future, which will enable the integration of a minimal sufficient number
of (non quasi) cells on one chip, will not make the above organization unecessary. Of course,
the number of quasi-cells on one chip increases too, and therefore the advantage in price/per­
formance remains. When extra speed is necessary, however, a genuinely parallel space should
be used.

Returning to the actual situation, the loss of speed (relative to a completely parallel
space) does not effect the priority in speed against sequential or mainly sequential computers
(estimated order of 2 magnitudes) and the advantage in more frequent use of components
(estimated order of 3 magnitudes). The legitimacy of these estimations depends on the con­
crete parameters of the cellprocessors to be implemented, and on the cellular programming
and microprogramming.

Two types of quasi—cells with fixed 5 neighbours (including the cell itself) have been
designed: a 2 state one (about 10 gates and in average 8 substeps e.g. 8 microinstructions)
and a 16 state one (about 100 gates, the number of substeps largely depends on the transition
function; it may vary from 40 to 1000).

These results ensure minimum precondition for producing cellprocessors. Details
of the system design may be found in L7.

According to L7 a basic logical module is a group o f cells with a common variable transi­
tion function which may be realized as a set o f physical modules — cell microprocessors
(CMP) consisting o f an internal array o f quasi-cells, driven by a common external RAM
stored microprogram.

L7 contains further optimization techniques to reduce the number and time of substeps
while preserving the relative simplicity of the quasi—cells. Minimization is also supported by
software tools (L6).

According to L7 a cellprocessor consists of a set of CMP-s and RAM-s, and a micropro­
cessor which controls the CMP-s and RAM-s including the I/O among them (internal I/O)
and the external I/O with the other processors in the architecture.

- 158 -

The programs of a cellprocessor (the programs for the microprocessor, the cellular
programs and microprograms) should usually be computed (in the optimal case by a compiler of
a cellular language) and transformed by other processors in the architecture.

5. Software tools

In order to maintain design and later use of the described cellprocessor system, software
tools (running on digital computers) are required for microprogramming, machine code and
higher level cellular programming.

Three implemented subsystems of a future cross-software package and further design
principles are explained in the next paragraphs.

5.a. The CELLÁS cellular space simulation language

In the abundant literature on cellular automata there are relatively few simulation
languages [2, 9, 10, 11, 12] and their structures are not suitable for our purposes. For this
reason it was necessary to define a relatively simple language with the consideration
that a limited inhomogeneity is needed and that simulation should be as effective as possible.
The CELLÁS language may be used for more general tasks than the explicit goals of the
author but is far from being a general cellular space simulation language.

For special purpose simulations we have adapted other simulators: the interpreter of the
SICELA language [9] (with some improvement; a higher level input language was implemented)
and the CELIA [11, 12] processor.

CELLÁS is a command-type language, implemented in form of interpreters.

The basic group of instructions in CELLÁS ensures the direct simulation of the space
(input vectors to dummy cells on the boundary of the space may be specified if desired).

The interpreter.computes the transition function only on open cells that may change their
states; on closed cells (that certainly will not change their states) it does not perform any
operations. A one step look ahead algorithm continously classifies the cells as being open or
closed. On permanently (more than 1 step) closed cells the look ahead does not require
any computation. This look ahead algorithm ensures the significant increase of speed which
is especially needed, since the characteristics of the task demand ineffective simulation (on a
relatively large sequential digital computer) of many relatively small elements working in
parallel.

The group of instructions for functional simulation helps in speeding up simulation
as well. These instructions ensure direct simulation of groups of cells (not cell by cell) and
the connections among groups and cells. The main advantage of this group of instructions is
given mainly by the possibility of top-down programming rather than by economy. The whole
configuration (program) should be decomposed; the decomposition can be tested by functional

- 159 -

simulation and afterwards the parts may be decomposed again or changed to real cell
configurations continuosly and independently. At each level the space may be simulated,
giving a very strong debugging tool at the same time.

Transition function definition instructions enable a simple function decription including
the inhomogeneous case.

From the users’ point of view the simple, flexible group of instructions for control o f
printing the space is very important. It is possible to define independently which parts of the
space should be printed (or sent to a file) and in what form and at which steps.

The space may be continuosly monitored by ON instructions — when a condition of a
previously executed ON instruction is met, the prescribed action (a CELLÁS program) of the
same ON instruction is executed. There are in the language assignment, very simple arithmetic,
ItO and library handling instructions for the basic data types (integers, vectors, configurations,
transitions functions and CELLÁS programs). Branching is performed by simple skip instructions.

More detailed descriptions of the language may be found in L4, L2, L3. Different versions
have been implemented in FORTRAN IV on CDC 3300, IBM 360/40 and Honeywell 6060
computers.

5b The INTERCELLAS interactive cellular space simulation language

The language is a subset of CELLÁS, except for a few added instructions for handling
interrupts and for dialogue [L5, L9],

A typical simplification is shown by the changed ON instruction group: here the conditions
cannot be complex and the action is to pass control to the main input peripheral (console,
in general), i.e. the interpreter prints the condition that was met and waits for the next instruc­
tion from the main peripheral. Different versions of the language have been implemented on
CII-10010, PDP-8 and MITRA 15 minicomputers.

5c The TRANSCELL cellular microprogramming language (for definition and minimization
of the transition function)

The size of a microprogram effects RAM costs, but this is not too serious taking into
consideration the relatively great number of quasi-cells belonging to the same RAM.

However, the size of microprograms is critical, since the speed is proportional to the
length of the microprogram as it is executed sequentially.

Therefore microprogram minimization is of prime importance.

A semi-automatic solution is given by TRANSCELL. Special transition function definition
instructions may describe transition functions, and minimization directives control the
minimization process. Detailed descriptions of the language and its practical application may be
found in [L6, L7, L8],

- 160 -

The TRANSCELL interpreter may produce a minimized microprogram for the hardware
and/or may produce a transformed minimized transition function table and a FORTRAN
search program fitting the specialities (caused ty minimization) of the generated table. The
search program maps any given combination of a cell’s state and those of its neighbours onto
the contiguous address interval of the table containing the values of the next states.

Thus TRANSCELL is a medium level cell microprogramming language; its processor will
be built in the simulator in the near future, and it may serve as a subsystem in a cellular prog­
ramming language as well.

6. Cellular programming

The first cellular programs appeared in the form of proofs in constructive mathematics
(simulation of the universal Turing machine and self-reproductive automata). The traditional
way was to embed hardware-like components into the cellular space. This approach to the
problem involved construction of modular, hierarchically structured configurations.

Here elementary subtasks are realized by small basically static configurations interconnected
for solving subtasks; there is an explicit analogy with subfunctions, subroutines, modules.
Higher levels may be built up hiererchically by interconnections.

For special purpose applications (such as wave- and simulation-spread out, simple self
reproduction and picture preprocessing) free structured (non-hierarchical, non-modular) cellular
programs may be used that do not directly control the flow of information in the space.
Such programs may be characterized as direct mapping o f the problems (embedding of systems)
into the cellular space. Their application is basically limited for modelling discrete systems,
or problems equivalent to them where homogeneous local changes dominate the behaviour of
the system.

For general purpose computations the embedding and hierarchical interconnections of
hardware components give the possibility of emulating digital processors. However the emulation
of sequentially working hardware (devices like general purpose computers with CPU, memory,
etc.) seems to be justified only for theoretical and simulation purposes. Such emulation needs
a high number of cells and for general purpose computations it is very ineffective since the
emulation factor effects further decreases in the low price/performance of the sequential
machine. Essentially a cellular space type distributed computing system is very different from
a sequential machine consisting of relatively large interacting modules with long data paths. A
more effective way would be to emulate systems with more parallelism and short data paths.

The distributed computing nature of the cellular spaces justifies our proposal for effective,
modular/parallel cellprogramming by means of embedding into the cellular space processing
elements working in parallel on moving data. Different algorithms are to be mapped onto
different sets and interconnections o f processing elements.

-161 -

The principle of modular cellprogramming is preserved. For elementary configurations
software configurations (processing elements, open coroutines) are selected.

The cellular spece is used in fact as a distibuted computing system by mapping the
algorithms directly into the cellular space in the form of static, modular, hierarchical
subconfigurations connencted in pipe-line, e.g. data are moved and transformed along the pipe-
-line continously. All the subconfigurations work at the same time ensuring high productivity.
The sub configurât ions should be of medium or small size and may be interpreted as open
coroutines (e.g. their function may be A = B + C of A = A + 1, search form a symbol-table;
in general the instruction set of a cellprogramming language).

In this way cellular processors are suitable for executing a wide class of parallel algorithms
(including array processing). Direct (machine code level) programming and microprogramming
are enabled by the use of cellular simulation languages (ensuring many extra utilities but not
generating configurations). One type of utility shows possible development to increase the level
of programming, namely the library handling routines. It is possible to write subconfigurations
by hand, to store them in a library and to call them afterwards.

An assembly type cellprogramming language may consist of an instruction set to call
implicitly the members of a set of basic sub configurations. There exists a difference not only
in form but also in that being more than the original utility (in addition to the basic
subconfigurations at our disposal) the call may specify parameters which effect the called
sub configurât ions so that the process seems to be a simple configuration generation rather
then making a copy from a library.

In a cell macro assembly language the user will have the possibility to add his own
subconfigurations to the assembler’s basic set.

The trend of development points to more sophisticated semi-automatic and automatic
subconfiguration generations. In higher level cell-languages the algorithmic description of
subfunctions and their relations will be compiled to subconfigurations and their interconnections.

- 162 -

7. Summary

This paper treats cellprocessors (cellular automata type processors) as organic parts in
computer architecture and gives proposals for the structure of very effective medium speed
cellprocessors based on existing technology.

The task of cellprocessors in the architecture should be to execute procedures effectively
computable in parallel at cell level.

The proposed cellprocessor emulates a finite cellular space where different groups of
cells (represented by cell microprocessors) may have independently variable transition func­
tions (represented by RAM memories).

A cell microprocessor consists of an array of (quasi) cells that may execute the same
microinstruction simultaneously. A microprogram (equivalent to a complete transition function,
represented by RAM contents) is executed sequentially. Therefore microprogram minimization
is of prime importance.

A cell may interpret instructions of two types: during the first phase of a transition step
the execution of feature extraction instructions results in storing the characteristic information
about the neighbourhood (in each cell), and during the second phase the execution of state
assignment instructions defines the next state (separately in each cell, using the stored
neighbourhood description).

For general computations a 76 state cell I ~ 100 gates/ and for specific purpose applications
a 2 state cell /~10 gates/ have been constructed.

Programs (initial configurations) and microprograms should be computed and loaded by
other processors of the architecture. The information to be processed (input to cellprocessor)
and the results (output from cellprocessor) are handled in the same way.

General procedures should be programmed by embedding software configurations (open
coroutines) connected in pipe-line. Data are moved and transformed parallel along the pipe-line
continuosly.

Software support of the above system consists of simulation languages and a microprogram
definition and minimization language. Higher level cellular languages are under design.

- 163 -

Literature

[1] Neumann, J.: Theory of Automata: Construction, Reproduction, Homogeneity, Part II
of ’’The Theory of Self-Reproducing Automata” ed. A.W. Burks.
University of Illinois, 1966.

[2] Codd, E.F.: Cellular Automata Academic Press. Inc. New York, London 1968.

[3] Fáy, Gy.: Circuitry Realization of Codd’s Cellular Automaton’s Cell. Technical Report
KGM ISZSZI, 1973.

[4] Takács, D.V. (Mrs): A Bootstrap for Codd’s Cellular Space, I. Hungarian Conference
on Computer Science, Székesfehérvár, 1973.

[5] Nourai, Farhad — Sohrab Kasef, R.: A Universal Four-State Cellular Computer
IEEE Transactions on Computers Vol. C-24. No. 8. August 1975.

[6] Preston, Jr. K.: Use of the Golay Logic Processor in Pattern-Recognition Studies Using
Hexagonal Neighborhood Logic
Symposium on Computer and Automata
Polytechnic Institute of Brooklyn, April, 13-15. 1971.

[7] Toffoli, T.: On the Large-Scale Implementation of Cellular Spaces by Means of Integrated-
-Circuit Arrays. CNR, Istituto per le Applicazioni del Calcolo, 1972.

[8] Domán, A.: A Model of Parallel Processing. Információ Elektronika 1975.2. -in Hungarian-

[9] Vollmar, R.: Uber einen Interpretierer zur Simulation Zelluraren Automaten.
Angewandte Informatik 6/1973.

[10] Brender, R.F. : A Programming System for the Simulation of Cellular Spaces
The University of Michigan, Ann Arbor 1970. (Ph. D. Thesis)

[11] Baker, R. — B.T. Herman: CELLA — A Cellular Linear Iterative Array Simulator.
Proceedings of the Fourth Conference on Applications of Simulation, pp. 64-73 (1970).

[12] Wu-Hung-Liu: CELIA Users Manual
Dept, of Computer Science, State University of New York at Buffalo, October 1972.

[13] Cellular Spaces, Homogeneous Structures -in Russian - Institute of Mathematical
Machines, Warsaw, 1973.

[14] Cellular Automata. Bibliography, KGM ISZSZI Budapest, 1973.

[15] Bibliography on Cellular Automata Papers in Internal Series of KGM ISZSZI 1971-1974.

[16] Vollmar, R. (manuscript; the bibliography from A.R. Smith III. Introduction and
Survey on Poly automata Theory with supplement)

- 164 —

[17] Rozenberg, G. — Wood,D.: Generative Models for Parallel Processes. The Computer Journal
Volume 17 Number 4 pp. 344-348.

[18] Toffoli, T.: Cellular Spaces — An Extensive Bibliography.Dept, of Computer and
Communications Sciences. The University of Michigan. 1976.
Publications and internal reports.

LI Legendi, T.: Simulation and Synthesis of Cellular Automata. Conference on ’’Programming
Systems’75” .
Szeged, (in Hungarian).

L2 Legendi, T.: Simulation of Cellular Automata, the Simulation Language CELLÁS.
Conference o n ’Simulation in Medical, Technical and Economy Sciences”.

Pécs 1975 (in Hungarian).

L3 Legendi, T.: The CELLÁS Cellular Space Simulation Language, (Manuscript in Hungarian
1974.)
Martoni, V. — Legendi, T.: CELLÁS 0.9 User’s Manual, 1974 (in Hungarian)

L4 Czibik, I. - Legendi, T.: User’s Manual CELLÁS 1.0, 1976. (in Hungarian)

L5 Merényi, E.: The INTERCELLAS Interactive Cellular Simulation Language.
Diploma work. University JATE, Szeged 1975. (in Hungarian).

L6 Zsíros, P.: The TRANSCELL Cellular Automata Transition Function Definition and
Minimization Language.
Diploma work, JATE (in Hungarian). (1975.)

L7 Legendi, T. — Kacsuk, P.: Hardware Design of a 16 state Celiprocessor.
Manuscript in Hungarian, Szeged, 1976.

L8 Legendi, T.: INTERCELLAS an Interactive Cellular Spece Simulation Language.
Acta Cybernetica, Hungarian Academy of Sciences. (1977.) Tom. 3, Fasc. 3
pp. 261-267.

L10 Legendi, T.: Programming of cellular processors.
’’Cellular meeting” Braunschweig, 2-3 June 1977. Informatik — Berichte Nr. 7703
Technische Universität Btaunschweig pp. 53-56.

LI 1 Legendi. T.: TRANSCELL — a cellular automata transition function and minimizátior
language for cellular microprogramming.
Computational Linguistic and Computer Languages XII.

- 165 -

CELLULAR DESIGN PRINCIPLES:
A Case Study of Maximum Selection in CODD-ICRA Cellular Space

PART TWO
DETAILED DESIGN

G. Fay

Chapter 6

DATA, SIGNALS AND STAKING

6.1. Peripherals and capacities

The" input data to the cellular maximum selector automaton MAXEL are the numbers
given in the form of a system of / numbers of к bits each:

„/• = J ; 2 * - 1*/: for / = 1 , 2 , . . . , /
i'=l

here

= 0 or = 1 for i = 1, . . . , k;
/ = 1 Л

The least significant bit of л/ is x/k , and the most significant bit of rí is x\. Data
are supposed to be stored in a peripheral device like a disc or drum having parallel access for
all the ri-s simultaneously.

As the necessary time lag between the consecutive bits is 26 shots, (see Ch. 10), one shot
being around 1 microsecond, the throughput of the storage device (dumping speed) will be:

lx 1 bit
26 microsec ~ Mbyte /sec. « 5/ Kbyte/sec.

О z o

Owing to the organization the throughput is independent of k.

The output data rim are available roughly in

к X 300 microseconds

from which the first к x 150 microseconds are for setting the MAXEL (first stage), and the
remaining к x 50 microseconds are for the actual selection (second stage). In the case where
к = 50 it is 0,1 msec. (= 10 ^ sec). With

2.10^ cells/space,
1 mm^/cell,
1 microsec/shot
40 x 50 cells/module • — -
k x / modules/device

cellular space of CODD-JCRA type having .

%. . .

- 1 6 6 —

one can process (select maximal) data at a speed of / numbers (к x 200 microsec = 5000 x

numbers /sec = 5000 rec/sec = / byte/sec .

In the case of (к = 50), l = 250 this speed amounts to 160 Kbyte/sec = 5000 records/sec
I Jç I

= 25000 numbers/sec being l number = kbites = g- byte and l bits = 1 record = ^ number.

6.2. Signals

As elementary signals we use; [06], [07] and [-----]; the lack of any signal. For
[06],[07] see Codd, (1968). The seven basic and elementary signal (types) can be found in
table 6.2 — 1. Cellnames in the fourth and fifth columns refer to figure 5 .2 — 1 and tables
7.1 - 1,2.

6.3. Staking

The 0-1 configuration (staking) of a MAXEL-module can be seen on figure 6.3—1. One
can check that all the warnings have been taken into consideration, viz.:

— there are no jogs (in Codd’s sense);

— parallel paths are not sharing sheaths;

— no corners or junctions are placed opposite gates or locks;

— generally different parts are placed distant enough from each other;

— no possibility occurs for ’’lonely 2” configuration.

Staking can be carried out, theoretically, in a number of different ways.
Firstly the whole automaton MAXEL can be staked step by step by using a subroutine for
moving the writing head. (c.f. Fazekas’s RETINA in Fazekas, 1975.)

Secondly, using the RETINA, one presents the information about the staking, i.e. the
0-1 configuration row by row, at the edge of the cellspace;

TABLE 6 . 2 - 1 S i g n a l s

SYMBOL SIGNALNAME D

a A c t i v a t i o n : s i g n a l a

c l .i C o l l e c t o r s i g n a l c l

c l
c r . i C o l l e c t o r s i g n a l c r

X?1

c r
D a t a b i t s i g n a l x fi

x j

XJx h

i
H e a d in g i n f о r ma­
t t o n s i g n a l

x JXh
x dh

XJ
Xt T r a i l i n g i n f o r m a ­

t i o n s i g n a l
XJ’x t

x jx t
r R e s e t s i g n a l r

F I N I T I O N ENTERING LEAVING SOJOURNING
u ? AT

1
u? ATX SHOTS

[0 7] , S ee f i g . 9 . 1 - 1
a n d C h . 9 .1 V Í / s i 4 73

[—] , i f t h e r e i s a H?
w i t h j s u c h t h a t 1 V i v i 4 l

/ g 9/ ± i s o n 3

[0 7 З o t h e r w i s e
[—] i f t h e r e i s a IP?
w i t h j ^ l s u c h t h a t 1 'Vi /s A 33

/ 'Gg /± i s on
[0 7] o t h e r w i s e

V ± v i[0 7] i f i t s b i t i s 0 48

[0 6] i f i t s b i t i s 1

[0 7] i f i t s b i t i s 0 v i Vi 5 1

[о б] i f i t s b i t i s 1 h = i

[0 7] i f i t s b i t i s 0 V i Vi 73

[0 6] i f i t s b i t i s 1 i < t i < t

[0 6] s e e f i g . 1 0 . 2 - 1

a n d c h . 1 0 . 2
V i VÍ 33

1 ()X

Figure 6.3-1
Tho staking o f thm MAX EL modulok

- 169 -

Thirdly, using the shift procedure, (again invented by Fazekas, 1975), and

Fourthly, by the modular retina technique when only one module’s program is supposed
to be stored, 1 = 2 ^ modules can be staked simultaneously using a writing arm-tree. Of course
the MAXEL’s perimeter structures (see figure 3.2-2) are tackled separately.

Roughly, an elementary staking step takes a hundred shots, a module consists of
(approximately) 40 x 50 = 2000 cells and so, at 1 microsecond / shot the cycle time to stake
к rows of a module (say 256 modulesiper row) is:

/ ÍAO cells / x 100 shots 10~^sec ^modules
x ̂ x l modules X l cells x shot x MAXEL’s core

= к x 200 milliseconds/MAXEL’s core

к = 50, a staking takes 10 seconds.

CHAPTER 7

ELEMENTARY STRUCTURES AND THEIR FUNCTIONS

7.1 Entries and sorties

In the frame of relational data processing (DSL ALPHA invented by Codd in 1970 and
1971) ’’ENTRY” can be considered as a relation of three attributes

ENTRY: (ENTRYSYMBOL, ENTRYNAME, ENTRYSIGNALS)

similarly:

SORTIE: (SORTIESYMBOL, SORTIENAME, SORTIESIGNALS)

Tables 7.1 — 1 and 7.1 — 2 are set up in this fashion. For signalnames see table 6.2 —1.

TABLE 7 . 1 - 1 E n t r i e s

ENTRY
s y m b o l ENTRYNAME S i g n a l e n t e r i n g UV

E 1 I n f o r m a t i o n e n t r y a = [0 7] . = [0 7 , О б] , h ^ i

E 2 D a ta e n t r y = [0 7 , Об] h — 1

E 3
R e s e t e n t r y г = [0 6]

E ^ C o l l e c t o r e n t r y c l ± = [0 7 , —]

E5
C o r r e c t o r e n t r y o r . = [0 7 , ~]

- 170 -

TABLE 7 . 1 - 2 S o r t i e s

SORTIE
s y m b o l SORTIENAME S i g n a l / s / l e a v i n g u9

S 1 I n f o r m a t i o n s o r t i e a = = Г ° 7 , 06] , h ^ i + 1

S 2 D a ta s o r t i e X J
n = [0 7 , о б] , h ^ 1

S 3
R e s e t s o r t i e r - M

S 4 C o l l e c t o r s o r t i e c l .
X = [° 7 > -]

S 5
C o r r e c t o r s o r t i e c r .

X = [0 7 , -]

7.2 Crossovers and forks

Crossovers are characterized, from the designer’s point of view, by the paths crossing
(stuctural characteristic) and by the signals involved (functional characteristic). It is natural,
therefore, to handle the set of all crossovers (of a MAXEL module) as a relation with three
attributes (in Codd’s sense of DSL ALPHA relational data calculus, Codd 1970 and 1971).

CROSSOVER-. (CROSSYMBOL, CROSSPATHS, CROSSIGNALS)

On the other hand, forks serve to separate an inferior path from a superior path. With
regard to forks, structural characterization seems to be enough (in our case), so for the sake
of simplicity we omit the fourth attribute: involved signals (functional characterisitc). Thus,
viewed as a relation, the set of all the forks of a MAXEL module is,

FORK: (FORKSYMBOL, SUPPATH, SUBPATH)

Tables 7 . 2— 1 and 7.2 — 2 show the details, (for signal names see 6.2 — 1.)

- 171 -

TABLE 7 . 2 - 1 C r o s s o v e r s / f o r p a t h t e r m s s e e t a b l e 8 . 1 - 2 /

SYMBOL CROSSING PATHS AFFECTED SIGNALS IN u9__ ______________________ l

C 1
RST+INF r . = On

1__

1

a= '[07] , x £ = [0 7 , 0 6] , h ^ i

C 2
DTP+RST = 0 7 , 0 6] ; r = |_0 6 j , h ^ 1

° 3 RST+SLR r = [0 6 J ; * h = [07» ° 6] , h — i , a = [0 7]

% ■ FBC+INF a = M . Xh = [0 7 j 0 6] , h ^ i

S CLR+INF a = C w l c l ± = [0 7 , - 3

c 6
CLR+CRR с ! . = [0 7 , —] ; c r . = _07,

C7 CLR+DTP c l ± = [0 7 , 0 7 , Об] , h — 1

C 8
CRR+INF c r i= 0 7 , 0 7 , Об] , t i

'C9 CRR+DTP с г ± = 0 7 , — 1 -, *£= [° 7 > 0 6] , h — 1

TABLE 7 .2 - 2 F o r k s a n d t h e i r m a in f u n c t i o n s .

FORK SUPERIOR INFERIOR
SYMBOL PATH PATH

F 1
RST RST

F 2
RST RST

F„ IN F SLR •
3 •>

F^ SLR FBC
F 5 DTP PG

FBC P 03

Г7 SLR
/

RST

F8 SLR CCL

F 9 FBC

F FBC • FBCl o
F 1 1 FBC SCL
F 12 SLR PG K

5
F 13 CCL PG6
f i 4 CLR

,
• p g 9

f 15 CRR CRR 1

- 172 -

7.3. Gates and locks

Structurally, a gate is characterised by its two related paths; the control path and the
subordinate path. Functionally, on the other hand, the effected signals are relevant. In terms
of the relational data processing technique (Codd, 1970, 1971) we define the set of all the gates
(of a MAXEL module) as a relation of four attributes:

GATE: (GATESYMBOL, CONTROLPATH, SUBPATH, SIGNALS)

Locks are permanent gates in the on state without control paths. Their function is to
direct paths and they are structurally determined by the paths they direct. Thus, relationally,
we define the set of all the locks (including lockpairs, where signal transformation replaces
signal annihilation) as a relation of three attributes:

LOCK: (LOCKSYMBOL, DIRECTED PATH, AFFECTED SIGNALS)

Gates are listed in table 7.3 — 1 and in 7.3 —2, while locks are in 7.3 — 3 (Pathnames can be
found in table 8.1 — 2 and signalnames in table 6.2 — 1)
Symbols (in drawings) for gates are as usual:

S u b o r d i n a t e p a t h S u b o r d i n a t e p a t h
G

c o n t r o l
p a t h

c o n t r o l
p a t h

d r a w in g s t a l c i n g

- 173 -

TABLE 7 - 3 - 1 G a t e s / f o r p a t h te r m s s e e t a b l e 8 . 1 - 2 /

GATE
SYMBOL

CONTROL
PATH

SUB­
ORDINATE

PATH
A f f e c t e d s i g n a l / s / i n u 9

G1 DTP RST r = [06]

G 2
SCL SLR x JX t = [0 7 3 06] J * > i

G3
FBC RST a

l
7

jII

g 4
FBC FBC x Jt = [0 7 , 06] J t > ±

G 5
SLR DTP x 9

X = [0 7 3 06]

G 6
CCL CCR a

l2
j

II

G7
FBC IN F x 9

X = [0 7 3 06]

G 8
CCL CLR X ?

X
= [0 7 3 06

]

G 9
CLR CLR c l .

X - [p 7 }]

TABLE 7 . 3 - 2 P a th d e p e n d e n c ie s b y g a t e s

S u b o rd

CCR CLR DTP FBC IN F RST SLR
C o n t r o l

CCL G6 G8 • •

CLR • ° 9 • • • • •

DTP • • • • • G1 •

FBC • • • g 4 g 7
G3 •

SCL • • • • • • G2
SLR • •

° 5 • • « •

— 174 —

TABLE 7 . 3 - 3 L o c k s / f o r p a t h t e r m s s e e t a b l e 8 . 1 - 2 /

LOCK
SYMBOL

DIRECTED
PATH

AFFECTED .
S IG N A L /S / i n U?

L 1 SLR r = с » « : '

L 2L3 FBC x Jx h = [Ö7, Об] h ^ i

4
RST X ?

1
= (о73 Об]

LS RST X ?
1

= {o71 об]

L 6 FBC r

L^JII

L7 SLR c r . X = [0 7 , -]

00 CRR X ?
X

= [о 7 , об]

L9L1 o
FBC r = [о б] 3 = [0 7 , 06}

- 175 -

Chapter 8

PATH AND EVENTS

8.1 Pathnames, functions and graphs

Structurally, a cellular automaton is usually a system of related paths. Functionally, only
the events taking place along the paths are characteristic. A path is structurally determined by
the elementary structures contained by it. This is actually the ’’meaning” (or content) of a path
(name). As for the pathfunctions, they are too numerous to be described other than verbally.
Thus, relationally, the set of all the paths (of a MAXEL module) is defined as a four-attribute
relation:

PATH: (PATHTERM, PATHNAME, MEANING, FUNCTION)

Table 8 . 1 —2 containes the paths. A structural dependency occurs between the paths by
the crossovers (table 8.1 — 1). Graphical characterization of the (more complex) pathsystems
can be found in figures 8.1 — 1,2,3.

TABLE 8.1 — 1 Pat dependencies by crossovers

< CLR CRR DTP FBC IN F RST SLR
CLR • C6 °7 • S •
CRR C6 •

0
9 « C8 •

DTP C_ Cn Co7 9 2
FBC • • • • •
IN F

C5 C8 • C1
RST • • C2 • C1 • C3
SLR « • • • • C3 •

TABLE 8.1-2 Paths

PATH
TERM PATHNAME MEANING

ACT A c t i v a t i o n p a t h S e e f i g u r e 8 . 1 - 1

CCL C o l l e c t o r
p a t h

c o n t r o l F7 - F 8 “ F1 3 “ G8

CLR C o l l e c t o r p a t h
e 4 - C7 - C6 - F1 ^ - C5 - S^

CRR C o r r e c t o r p a t h E5 - C 8 - F 1 5 - C 6 - F 1 2 _C9 - S 5

DTP D a ta p a t h E2 " C2 " F5 “ C7 “ C9 " S 2

FBC F i r s t b i t F, - F , , - F , -C , -L,,L_, -G_
c h o p p e r p a t h 4 1 1 l o 4 9 l o 7

IN F I n f o r m a t i o n p a t h
e i “ c i “ F3 -C 4 “ C5 " g8 “ s i

F U N C T I O N

S e e C h a p t e r 9 .

E n a b l i n g s i g n a l x t o r e a c h Gg

C o l l e c t i n g t h e e f f e c t s o f t h e z e r o
i n d i c a t i n g g a t e

P r o v i d i n g s i g n a l f o r g a t e G^ i n c a s e
i 5

a l l t h e i - t h b i t s o f t h e n - s

/ j - l j , . , , 1 / a r e z e r o . I n t h i s c a s e

G„ w i l l b e t u r n e d o f f . / A l l n o u g h t
5

c a s e /
1 2A l o n g t h i s p a t h n u m b e r s n } n 3 . . . ,

i fn j . . . j n ь p r o p a g a t e i n a d e q u a t e

s i g n a l r e p r e s e n t a t i o n .

O p e r a t i n g g a t e G^ t o t u r n i t o f f

p e r m a n e n t l y ^ o n c e t h e f i r s t b i t h a s

b e e n a n n i h i l a t e d .
1 2A l o n g t h i s p a t h b i t s e r i e s n . , n . , . .

n 9 , . . . , n ^ p r o p a g a t e r e p r e s e n t i n g

t h e i n f o r m a t i o n a b o u t t h e d a t a n ^ .

176

TABLE 8.1-2 / c o n d ’t/ Baths

PATH
ТЕРМ

OPR

PG.i
RST

SCL

SLR

PATHNAME MEANING

O p e r a t i o n p a t h

P a t h o f G.i
R e s e t p a t h

S e l e c t o r c o n t r o l
p a t h

S e l e c t o r p a t h

S e e f i g u r e 8 . 1 - 2

F / G . / *- G .l ' X
S e e f i g u r e 8 . J - 3

11 G.

F3 _C3 FI(~X/ / L l / ’- X2 / ’(;2 / “

- F 7 - F8 - X^ / L7/ -
- F

1 2 '
G

F U N C T I O N

S e e C h a p t e r 1 0 . 1

S e e t a b l e 8 . 2 - 1

S e e C h a p t e r 1 0 . 2

To c o n t r o l s e l e c t o r g a t e G^

-j
■vj

To s e l e c t t h e f i r s t b i t o u t o f |

t h e c h o p p e d s t r i n g n^ t o p r o v i d e

s i g n a l f o r t h e D a ta C o n t r o l

G a te G„
5

- 178 -

F i g u r e 8 . 1 - 1

A c t i v a t i o n P a t h g r a p h

- 179 -

F i g u r e 8 . 1 - 2

O p e r a t i o n P a t h g r a p h

- 180 -

F i g u r e 8 . 1 - 3

R e s e t P a t h g r a p h

- 181 -

Events are given in two forms depending on the context in which they are used. First is the
quadruple form:

e = (t, C, h, s) = (e()

where

t stands for the time when the event e occurs

C stands for the name of the cell where the event e takes place. For the possible
elementary cellnames see table 8 . 2 — 1

h is an element of the set H of all the possible elementary event types (’’happenings”)

he(x, T, p, e, s, Lp L^Lp,)
where table 8.2 — 2 gives the meaning of these elementary event type symbols.

s is a signalname (for details see 6.2)

Starting from the elementary cellnames one can construct combined cellnames which are
mainly gatenames, see table 8.2 — 3.

If one wants to stress that a lock Li is closed (as it always is) then one writes L..

Of course, state symbols for gates (v, —, ~) can be combined with the neighbour symbols
X 2,X3,X4 ,X$. For instance, X2(G7) means the right (eastern) neighbour of gatecell G7
which has been previously on but is turned on again (by a signal 07) so it is, by the event
in question, turned off. See table 8.2 — 3.

8.2 Events and event types

- 182 -

8 . 2

TABLE 8 . 2 - -1 ELEMENTARY CELLNAMES

SYMBOL MEANING

C.x C r o s s o v e r c e n t r e

E.
X

E n t r y c e l l o f a u n i t

F.
X

F o r k c e l l

F /G ±/ The n e a r e s t f o r k c e l l t o g a t e G^

G.
X

G a t e c e l l

L.
X

L o c k c e l l

L A The c e l l b e t w e e n l o c k s L^ a n d L^

S .
X

S o r t i e c e l l / o u t p u t / o f a u n i t

X j / C / C e l l C i t s e l f

X2 / C / R ig h t / e a s t e r n / n e i g h b o u r o f c e l l C.

x 3/ c /

x 4 / c /

B o t to m / s o u t h e r n / n e i g h b o u r o f c e l l C.

L e f t / w e s t e r n / n e i g h b o u r o f c e l l o .

x 5 / c / U pp er / n o r t h e r n / n e i g h b o u r o f c e l l C.

TABLE 8 . 2 - 2 ELEMENTARY EVENT TYPES

SYMBOL MEANING

3E S i g n a l b i r t h / d u p l i c a t i o n /

+ S i g n a l d e a t h / a n n i h i l a t i o n /

C S i g n a l c o l l i s i o n

e E n t e r i n g t h e u n i t i n q u e s t i o n

L ,
J

L . L,
X к

P

A c t i v a t i n g t h e l o c k L . .
J

A c t i v a t i n g t h e l o c k p a i r L^L^.

P a s s i n g a c e l l

s S i g n a l s i s b o r n

t S i g n a l t r a n s f o r m a t i o n

- 183 -

TABLE 8 . 2 - 3 C om bin ed g a t e n a m e s

GATE SYMBOL MEANING

G. :
X

G a te G.
X

i n s t a t e o f f

G. :
X

G a te G.
X

i n s t a t e on

G .
X

= 5 . :
X

G a te G.
X

w h i c h h a s b e e n t u r n e d o f f i s o n

G.
X

•H
IIÜII G a te G.

X
w h i c h h a s b e e n t u r n e d on i s

G. : 1

V

G. :i

t u r n e d o n a g a i n s o i t i s i n o f f s t a t e

G a te G^ i s i n a n a r b i t r a r y s t a t e on oi

o f f / " G a t e i n c h a n g e d s t a t e " /

G a te G_̂ p r e v i o u s l y i n o n e o f t h e s t a t e s

on o r o f f b u t i t i s now c e r t a i n l y i n
z

o f f s t a t e : G. = G.
X X

Some o b v i o u s r e l a t i o n s :

V

G.
X

V

G.
X

V

Gi ’
V
G.

X

и Q<
! V

G .
X

•H
í>oII V

G.
X

= G.
X

V
g ;

V
G.

X

/ Ч - / Äi
G.

X = Gl ’ G.
X

/■V/
= G.

X

- 184 —

If we introduce £,jue { —, v,~ } and define algebraic operation ”0” between the
symbols —, V, ~ by

e eo(U

Gi = Gt

then we get the following operation table (table 8.2 — 4)

It is very important that

X ~ X* v
G. = G. whereas G. = G.I l l l

This is because we have a ’’gate opener signal” (06) but do not have a ’’gate closer signal” ,
since signal (07) is only a ’’gate changer signal” .

The second form is the bracketed from of the events:

e = (time, cellname)event type

For instance (31, X 2(G.) ' f means that a signal (it does not matter which) passes at
t = 31 an open gate G4 , placed on the left side of propagation.

This way of coding events is useful in the event consecutions (’’event fates”) when
everything is described about a certain signal from birth to death or from entry to sortie,
etc. As in the case of the cellnames elementary events can also be combined. The combined

event types playing essential roles in our design are shown in table 8.2 — 5.

TABLE 8.2 — 4 The algebra of gatestate symbols

S o // — V ГКУ

— V V
V — V

V 'V/

TABLE 8.2-5 Combined event types

EVENT TYPE MEANING
TEItto_____________________________

ALL A c t i v a t i n g a 3_ef t
l o c k

ALP A c t i v a t i n g a
l - o c k p a i r

EXAMPLE

ARL A c t i v a t i n g a r i g h t / 4 6 ,
l o c k

B IF B i r t h i n a f o r k

EXPLANATION

a s i g n a l / a V1:L/ i s a c t i v a t i n g l o c k

L^ a t t = 4 4 /a n d t h e l o c k i s

p l a c e d o n t h e l e f t s i d e o f

s i g n a l p r o p a g a t i o n /

a s i g n a l / а / i s a c t i v a t i n g

l o c k p a i r L^L^o a t / t i m e / t = 55

/ VÎ /a s i g n a l / a / i s a c t i v a t i n g l o c k

L^ a t t = 4 6 / a n d t h e l o c k i s p l a c e d
5

o n t h e l e f t s i d e o f s i g n a l p r o p a g a t i o n /

a s i g n a l / x " / w as b o r n i n / f o r k /

c e l l a t / t i m e / t = 16

TABLE 8 . 2 - 5 / c o n t ’ d / C o m b in ed e v e n t t y p e s
... ■ - - ' - - ■ - -

EVENT TYPE MEANING EXAMPLE
TERM__

ÍJCDAG D e a t h b y a l t e r i n g / 5 1 , + , x /
a g a t e s t a t e“ o r

/ 5 1 , g5/ +

DBC D e a t h b y ^ c o l l i s i o n / 3 9 , C3 , +Cj x /

o r

/ 3 9 , c 3/ c

DCG D e a t h b y c l o s i n g
a g a t e

x 3^ - / 5 ^ j g 2 j
o r

/ 5 k , ê 2/ +

+ , x

DOG D e a t h b y o p e n i n g / 5 8 , G , + , x " /
a g a t e

o r

/ 5 8 , G7/ +

EXPLANATION

a s i g n a l / х 1Х/ c h a n g e s t h e s t a t e

o f g a t e G„ / d e p e n d i n g o n t h e
5

s i g n a l c o n t e n t a n d t h e g a t e

s t ä t e

a s i g n a l / х / c o l l i d e s / w i t h a n

o t h e r / i n / t h e c e n t e r o f / c r o s s o v e r

a t / t i m e / t = 3 9 a n d d i e s

/ a s i g n a l / x V/ a r r i v e s a t t h e

g a t e c e l l cT̂ a t t = 5 ^ , t u r n s i t

o n a n d i s a n n i h i l a t e d

a s i g n a l / x " / t u r n s g a t e G^ o f f

a n d d i e s a t t = 58

186

TABLE 8.2-5 / c o n t ’d/ Combined event types
EVENT TYPE

TERM MEANING EXAMPLE

DUG D e a t h u n d e r a
g a t e e . g . :

/ 5 7 , X2/ G 4 / , + , y " /

o r

/ 5 7 , X2 / G 4 / / +

DUL D e a t h u n d e r a / 4 0 , X . / L , - / , + , r 1 V /
l o c k 4 0

o r
/+/4 o , x k/ b 6/ f

E n t e r i n g a u n i t / О , E /

o r

/ 0 , E , e , a /

ENT

EXPLANATION

a s i g n a l / у " / i s a n n i h i l a t e d a t

t = 5 7 w h en p a s s i n g t h e c l o s e d

g a t e G^ p l a c e d on i t s l e f t h a n d

s i d e • / i t r e a c h e d t h e r i g h t

n e i g h b o u r o f G. a n d d i e d a t t h e
/ 4 1 sam e t i m e / —

00

I
a s i g n a l / r / i s a n n i h i l a t e d

a t t : 4 0 b y t h e / a l r e a d y a c t i v a t e d /

l o c k Lg w h i c h i s p l a c e d o n t h e

r i g h t h a n d s i d e o f t h e s i g n a l ’ s

p r o p a g a t i o n

a t t = О i n c e l l E ^ , a s i g n a l / а /

e n t e r s a u n i t

TABLE 8.2-5 / c o n t ’d/ Combined even types

EVENT TYPE
TERM MEANING EXAMPLE
LEA Leaving a unit / 7 3 , S_ , s, a’/l 3

o r

/ 0 , S±/

PAC Passing a
crossover / З б , C ^, P j x /

or
/ 3 6 , C4 /

PLG

PLL

PRG

Passing a _Left
gate

Passing a left
lock

P a s s i n g a r i g h t
g a t e

/ 2 9 , Xu/ G ±/ , p 3 r " /

o r

/ 2 9 , XZ|/ G 1/ / P

/5^3 X4/L7/3 p, rVii/
o r

/ 5 4 , x ^ / l 7/ / p

/ 7 5 , X2/G?/3 p3 у/
or

/ 7 5 , x 2/g ?//p

EXPLANATION
a t t = 73 i n c e l l a s i g n a l

/ a * / l e a v e s a u n i t

a s i g n a l / х / i s p a s s i n g t h e

c r o s s o v e r C^ a t t = 3 6

a s i g n a l / r " / i s p a s s i n g t h e g a t e

G^ p l a c e d o n t h e l e f t s i d e o f

p r o p a g a t i o n

a s i g n a l / r " / i s p a s s i n g t h e l o c k

L7 p l a c e d o n t h e l e f t s i d e o f

p r o p a g a t i o n

a s i g n a l / у / i s p a s s i n g t h e / o p e n /

g a t e &7 p l a c e d o n t h e r i g h t s i d e

o f p r o p a g a t i o n a t t = 75

188

TABLE 8.2-5 / c o n t Jd / Combined event types
EVENT TYPE

TERM MEANING EXAMPLE

PRL " P a s s i n g a r i g h t
/ a c t i v a t e d / - l o c k "

R IF R e p l i c a t i o n i n a
f o r k

/ 1 6 , x
o r

" , x V

/ 1 6 , F(, /^

see S i g n a l c o l l i s i o n
i n a c o r n e r

/ 2 1 , C, c ,

o r
x V

/ 2 1 , e / c

SCP S o ig n a i c o l l i s i o n
o n a p a t h

/3 5 , c , c ,

o r

у /

/3 5 , c / °

EXPLANATION
i s this is i m p o s s i b l e ^ i f i t o c c u r s i n

a n e v e n t t a b l e t h e n i t i s a n e r r o r

a s i g n a l / x * / i s g i v e n b i r t h t o

s i g n a l x" a t t = 16 i n f o r k c e l l

a s i g n a l / x ’ / c o l l i d e s / w i t h a n o t h e r /

a t a / c o r n e r / c e l l C a t / t i m e / t = 2 1

a s i g n a l / у / c o l l i d e s / w i t h a n o t h e r /

i n a p a t h i n a c e l l C a t / t i m e /

t = 35

189

TABLE 8.2-5 / c o n t ’d/ Combined event types

EVENT TYPE
TERM MEANING EXAMPLE

TBC T r a n s f o r m a t i o n b y
c o l l i s i o n

/ 4 1 , C, t c , s /

o r

/ h i , c / to

TBL T r a n s f o r m a t i o n
b e t w e e n l o c k s

/ 2 1 , L2 L3 , t , X " /

o r

/ 2 1 , L2 L3/

EXPLANATION

a s i g n a l / s / a t t i m e t = 4 l ,

c o l l i d e s / w i t h a n o t h e r w i t h

t h e sam e c o n t e n t / a n d is

t r a n s f o r m e d a c c o r d i n g t o

M X [o4j = [0 5] ; [0 5] X [0 5] = [0 6] ;
Q0 6] X [0 6 j = [0 6] ; [0 7] X [0 7] = [o4J

a s i g n a l / x " / i s t r a n s f o r m e d

/ i n t o [07^] / b e t w e e n l o c k s Lg a n d

190

- 191 -

Needless to say, a great number of other event types can occur within a cellular automaton,
(eg. ’’transformation between gates” or ’’collision with an echo signal” etc.). Their relations
to the above and to each other is to be elaborated by later studies.

As for the exact formulation of the event types, it can be done almost automatically.
E.g.: passing a right gate (PRG) means that at the previoqs shot the signal is in the position
of figure 8.2 - 1. It is easy to see that PRG occurs at t if at time t - 1 the signal is in
the cell X^/Gj/

Signal
time t
Central

Signal s at
time t-1

Figure 8.2-1

Approaching a right side gate southern neighbour of the cell under the gate, in the
case of the upright position of figure 8.2 — 1. The three other positios can be obtained by
rotation. See table 8.2 — 6.

- 192 -

TABLE 8 . 2 - 6 C a se s f o r a p p r o a c h in g a r i g h t s i d e g a t e

D i r e c t i o n o f t h e W h ich n e ig h b o u r i s
s u b o r d i n a t e p a t h G. o f t h e c e n t r a l

1 c e l l C

S i g n a l i s i n
t im e t - 1 i s

i n c e l l

UPRIGHT
/ f i g . 8 . 2 - 1 /

(k=l)

EASTERN:

C= W

G± = x 2 / c / .

x 3 / c / =

х 3 / х 4 / с ± / /

LEFT TO RIGHT SOUTHERN:

(k=2) c = x 5 / g ± /
v ° / =

G±=X 3 / C / Xk / X 5 / G ± / /

DOWNWARD WESTERN:

(k=3) С = /Х 2/С ± / x 5 / c / =

а±=хи/ с / x 5 A 2 / g± / /

RIGHT TO LEFT NORTHERN :

(k=4) с = х 3/ о ± / X2 / c / =

g í =x 5 / c/ x 2 / x 3 / g . / /

So, generally, the definition of the PRG at t is the event

(t—1 » x k®2/x k®3^Gi^>P’s^

where the addition ”©” is meant in the cyclic fashion i.e. :

4 ®2 = 3, 4 ® 3 = 2.

The use of the event types can be experienced along with the discussion of activation,
operation and resetting in Chapters 9 and 10.

There remain some additional concepts and notations to be introduced.

The time of an event e = (/, C, h, s) is denoted by

t(t, C, h, s) = tie)

for example:

Г(46, C4 , p, a) = 46.

- 193 -

If

t(ex) = t(e2)

then ex and e2 are called simultaneous events. Similarly, by definition, the place of an
event e is:

P(e) = P(t, C, h, s,) = C.

If

P{ex) = P(e2)

then e1 and e2 are called collocal events.

Events which are both simultaneous and collocal are called coincident events (or
coincidences).

Chapter 9

ACTIVATION

9.1 Activation signal

The aim of activation is to set all the locks L j, . . . , L 1Q. See figures 8.1 — 1 and
9.1 — 1. Beginning at cell E { with a signal a = [07], after a number of replications all
the locks will be set and all the gates (except G j and G9 which have been handled by
outside sources) will be in the on state. By means of two signals p x = [06], p 2 = [06]
(presetting) applied at Е ъ all the important gates will be set i.e.:

G j immaterial

G2 in of state (open)

G3 immaterial

G4 in off state (open)

Gs in off state (open)

Gb in off state (open, although immaterial)

G? in off state (closed)

G g in off state (open)

G9 by outside source through CLR.

The exact history of the signals a \ . . . , ax can be followed on table 9.1 — 1. As
for the single signal fates these are as follows:

- 194 -

9 . 1

a : /О , E j /® ; / 3 , Cj_/P ; / 7 , F / S / 1 2 , С / Р ; / 1 6 , F ^ /® " ;

/ 2 2 , L2L3/ 2 3 ; / 2 4 , F6/ a ” / 2 9 , L g / 6 ; / 3 1 , Х2/& 2/ / Р

V v i
/ 3 4 , F1 1 / a ; / 3 8 , Fl o / a ; / 4 6 , C4/ P ;

/ 5 5 , L9L1o/ 9 l 0 ; / 5 8 , G?/ + .

7 : / 7 , F y * ; / 3 6 , C4/ P ; / 4 9 , X2/G 7/ / P ; / 6 6 , C5/ P ;

/ 7 1 , C g /P ; / 7 3 , Sj/®

_ L- i v
3 3 : A 6 , F 4 / * ; / 2 8 , Ьх / 1 . / 3 0 , X2/G 2/ / P ; / 3 2 , F? / a ;

V Ü X

/ 3 6 , F g /0- ; / 4 9 , F13/ a ; / 5 8 , Gg/ \

aJ J í :

iv a :

Va :

via

avi X

viiia

/ 2 4 , F6/ * ; / 2 7 , G3/ \

- L,
/ 3 2 , F7/ 7 / 4 2 , L4/ 4 ; / 4 5 , X4/G 1/ / + .

/ 3 4 , P l l >? / 5 3 , G2/ + .

/ E viii L
; / 4 1 , F 9/ a ; / 4 6 , L5 / 5 ;

/ 4 8 , x 4/ g3/ / + .

/ 3 6 , F g /; / 4 4 , L7/ 7 ; / 4 7 , F12/ a ; / 5 1 , L g / 8 ;

/ 5 4 , x2/ g6/ / + .

/ 4 1 , f 9/ * ; / 4 4 , g4 A

- 195 -

9 . 1

а ±Х : / 4 7 , F1 2 / * ; / 5 1 , &5 / + .

aX : / 4 9 , F1 3 / * ; / 5 3 , G6/ + .

TABLE 9 . 1 - 1 A c t i v a t i o n b y s i g n a l / 1 o f 3 /

time place happening SIGNAL event type

0

3

7

12

1 6

22
24

29

31

34

38

46

55

58

7

36

49

66

E l

L 2 L3

^ 6

W

F n

Flo

L L9 l o

7

F 3

c 4

x 2/g7/

'8

e a ENT
•

P a РАС
a 3 a RIF

P a РАС
a J i a RIF

L2 L3 a ALP
a 13 3 a RIF

L6 a ALL

P a PRG
Va a RIF
i va a RIF

P a РАС

L nL i9 lo a ALP
+ a DCG
3E а г BIF

P a J РАС

P a* PRG

P a J РАС

P a* РАС71

- 196 -

TABLE 9 . 1 - 1 /contid/ Activation b y signal / 2 of 3 /

t im e p l a c e h a p p e n in g SIGNAL e v e n t ty p e

73 S 1 s a 3 LEA

16 f 4 X a 3 3 B IF

28
l i L1 a 33 ALL

3 0 w P a 33 PRG

32 F 7
i va a 33 R IF

3 6 F 8
v i ia a 3 3 R IF

49 F 1 3
Xa a 3 3 R IF

58 G8 + a 33 DCG

2 4 F 6 X a 333 B IF

27 G3
+ a 333 DCG

32 F 7
X i va B IF

42 L 4 4
i va ARL

45 x (*/ g i / + i va DUG

34 F l l X Va B IF

53 G2 + Va DCG

38 оHp4 X v ia B IF

4 i F 9
v i i ia v ia R IF

46
L5 L5

v ia ARL

48 X i , / G3/ + v ia DUG

36 F 8 X v i ia B IF

44
L 7 L7

v i ia ALL

47 F 1 2
i xa v i ia R IF

- 197 -

TABLE 9 . 1 - 1 / c o n t , d / A c t i v a t i o n b y s i g n a l / 3 o f 3 /

t im e p l a c e h a p p e n in g SIGNAL e v e n t t y p e

51 L8

00

v i ia ARL
5k W + v i ia DUG
k l F9

X v i i ia BIF
k k g 4 + v i i ia DCG
k l F1 2 JE i xa BIF

5 1 G5
+ i xa DCG

k 9 F
1 3

Ж Xa BIF

53 G6 + Xa DCG

Using the signal table (Table 9.1 — 1) one can check the following statements. It
should be noted that all the statements can be proved mechanically using the relational data
processing technique invented by Codd (1970)1

STATEMENT 9 , 1 - 1

All signals begin with begin with one of the event types ENT or BIF, and are termi­
nated by one of the event types

LEA, DCG, DUG

It follows that

STATEMENT 9 , 1 - 2

a.) All the gates are closed
(for there is no event of type DOG or DAG)

b.) No signal remains within the MAXEL module.

Then, again, it is easy to see that,

STATEMENT 9,1 -3

After t = 73 all the locks are set.

However, the last two statements are more directly obtained from the PLACE-table .
(Table 9.3 - 1)

198 -

9.2 Activation by time

Rearranging the signal table (Table 9.1 — 1) one gets the activation timetable, table 9.2 - 1.
One can mechanically check the following

STATEMENT 9 , 2 - 1

If two or more events occur at the same time (i.e. they are simultaneous events) then
either two of them take place at the same place (i.e. collocal events) in form of a RIF-BIF
event type pairs or the events are mutually distant (i.e. they do not disturb each other)

TABLE 9 . 2 - 1 A c t i v a t i o n b y t im e / l o f 3 /

TIME p l a c e h a p p e n in g s i g n a l e v e n t

0 E 1 e a ENT
3 C1 P a РАС

7 F
3

a 3 a R IF

7 F 3
ж a 3 В I F

1 2
C3 P a РАС

16 f 4 a» 3 a R IF

16 F ^ ж a 33 B IF

22 l 2 l 3 L2 L 3 a ALP

- 199 -

TABLE 9 . 2 - 1 / c o n t 3d / A c t i v a t i o n b y t im e / 2 o f 3 /

TIME p l a c e h a p p e n in g s i g n a l e v e n t

2 k F6 a 33 3 a R IF

2 k F6 X a 3 3 3 B IF

27 5 3
+ a 3 3 3 DCG

28 F 1 L1 a 3 3 ALL

29 F 6 L 6 a ALL

3 0 W P a 3 3 PRO

3 1 w P a P RG

32 F 7
i va a 33 R IF

32 F
7

X i va B IF

3 k F1 1
Va a RIF

3 k F11 X Va B IF

3 6 Ck P a 3 PAC

3 6 F8
v i ia a 3 3 RIF

3 6 F8 X v i ia B IF

38 F il o
v ia a RIF

38 Fl o X v ia B IF

k l
Г9

v i i ia v ia R IF

k l
Г9

X v i i ia B IF

k 2 4 4
i va ARL

k k
b L7

v i ia ALL

k k d k + v i i ia DCG

k 5 V 5 : / + i va DUG

k 6 c 4 P a PAC

- 2 0 0 -

TABLE 9 . 2 - 1 / c o n t 3d / A c t i v a t i o n b y t im e / 3 o f 3 /

TIME p l a c e h a p p e n in g s i g n a l e v e n t

4 6
s s v ia AEL

4 7 F12
i xa v ia R IF

4 7 F 12 X i xa B IF

4 8 x - k / ë j / + v ia DUG

4 9 X2/G?/ P a* PRG

4 9 F
13

Xa a 3 3 R IF

4 9 F1 3
X Xa B IF

5 1 l 8 L8
v i ia ARL

5 1 G5
+ i xa DCG

5 3 5 2 + Va DCG

5 3 G6 + Xa DCG

5 4 w + v i ia DUG

55 V l o L T ,9 l o a ALP
5 8

5 7
+ a DCG

58 5 8 + a 3 3 DCG

66
S P a 3 РАС

7 1 C8 P a 3 РАС

7 3 S 1 s a 3 LEA

- 2 0 1 -

9.3 Activation by place

A newer rearrangement of the signal table (Table 9.1 — 1 9 . 2 — 1) produces the place-
-table, i.e. the list of events ordered by place. By this we get the following (See Table 9.3 — 1)

STATEMENT 9 , 3 - 1

a.) Collocal events are either of birth-replacation type or distant enough (in time)

b.) Simultaneous events are either of brithreplication type or distant enough (in space)

c.) Coincident events and only the coincident events are of brith-replication type.

Example:

t(46, C4 , p, a) - t(36, C4 , p, a’) = 46 - 36 = 10 > 6

(6 is the smallest possible distance between consecutive signals passing a crossover)
Briefly: Both collocal and simulataneous events are legitimate.

Now it is very easy to see by the place-table that

STATEMENT 9.3 - 2

By the end of activation (t = 73)

a.) All the gates are turned on

b.) All the locks are set in.

TABLE 9 . 3 - 1 A c t i v a t i o n b y p l a c e / l o f 3 /

Tim e PLACE h a p p e n in g s i g n a l
Vi >

e v e n t ty p e

3 C1 P a PAC

12
°3 P a PAC

46 c 4 P a PAC

- 2 0 2 -

TABLE 9 . 3 - 1 / с o n t * d / A c t i v a t i o n b y p l a c e / 2 o f 3 /

Tim e PLACE h a p p e n i n g s i g n a l e v e n t ty p e

36 C4 P a* PAC

66
C 5

P a 3 PAC

71 C8 P a 3 PAC

0 E 1 e a ENT

7 F 3
a 3 a R IF

7 F 3
X a 3 B IF

1б a J J a R IF

1б f 4 X a 3 B IF

2 k F 6 a R IF

2ч F 6 X a 333 B IF

32 F
7

i va a 3 3 R IF

32 F 7 X i va B IF

36 F 8
v i ia a 3 3 R IF

36 F 8 X v i ia B IF

k l F 9
v i ia v ia R IF

k l F
9

X v i i ia B IF

38 F-,l o
v ia a R IF

38 F il o X v ia B IF

3 k F 1 1
Va a R IF

3k F 1 1 X Va B IF

k 7 F 12
i xa v i ia R IF

k 7 F 12 X i xa B IF

k 9 F 13
Xa a 3 3 R IF

- 203 -

TABLE 9 . 3 - 1 / c o n t ’ d / A c t i v a t i o n b y p l a c e / 3 oT У

t im e PLACE h a p p e n in g s i g n a l e v e n t

4 9 F
1 3

3E Xa B IF

45 v v + i va DUG

53 + Va DGG

30 w P • a 11 PRG

2 7 B3
+ a 33 3 DCG

48 Х (,/П 3/ + i va DUG

44 + v i i ia DCG

3 1 W P a PRG

5 1 s
+ i xa DCG

53 5 6 + Xa DCG

54 X2 / S 6/ + v i ia DUG

58
° 7

+ a DCG

49 x 2 / g ? / P a 1 PRG

58 5 8 + a 33 DCG

28 L L1 a 3 *' ALL

22 Lb L2 L3 a ALP

42 L l 4
i va . ARL

46 у L5
v ia ARL

29 L L6 a ALL

44 L L7
v i ia ALL

5 1 ES . Lg v i ia ARL

55 V l o L n L T9 l o a ALP

LEA

:o4

Figure 9.1-1
The a c t iv a t io n o f th e MAX EL m odule

205 -

Chapter 10

OPERATION .

10.1 Operation signal by time and place

During the operation the first member of the signal pair x, y .where y follows x .
with a time lag T = 26, is separated, x goes to control gate G j j (and, in fact all the rest)
leaves the MAXEL module [j to enter its southern neighbour, From figure 10.1 — 1
one can easily describe the signal fates as follows:

»

x : / 0 , E . , /6 ; / 3 , C j / 1* ; / 7 j F y * ’ ; / 3 6 , С ^ /Р ;

Л 9 , X / В 7 / / + .

/ 7 . * 3Л / 1 2 , C y A / l « , F , , / 1” ; / 2 6 , X j / L ^ / P ;
V _ . _ i v v i

/ 3 0 , X2 /G 2/ / p ; / 3 2 , F?A ,• / 3 5 , F g A ;

/ 4 9 , F y / 1 ; / 5 8 , g8A

x > " : / 1 6 , F , / " ; / 2 1 , Ь2 Ь3/ * ; / 2 4 , ;

/ 2 8 . V l6/ / p : / 31> x 2/ ° i (/ / P i /3 4 , F1/ Ti 1
v i i

/ 3 8 , F1oA ; / 4 6 , С / , / 5 5 , Ц , ^ / * ;

/ 5 8 , B y /* .

/ 2 4 , F g /* ; / 2 7 , B., A .

x ■ / 3 2 , F y / * ; / 4 i , х ^ / Ъ ц/.

x v : . / 3 4 , Fx l / * ; / 5 4 , C2 A .

- 2 0 6 -

v±-
X' s / 3 5 ,

/ 5 1 ,

x v l l i / 3 8 ,

x v i l l l / 4 1 ,

x l x l A 7 ,

x x : A 9 ,

У* / 2 6 ,

• / 7 5 ,

У* : / 3 3 ,

/ 5 6 ,

у» » 1 / 4 2 ,

/ 5 4 ,

y* *J : / 5 0 ,

F g A /4 4 , х4Л 7/ / р; / 4 7 , f 12/ * ;

x 2 A 8 / / •
viii

Fl o / * ; / 4 1 , F g /* I / 4 5 , Xk/ l 5/ r ■

V " ; / 44,С, / * .

F1 2 / * ; /5 1 , B j /* .

f 13A / 5 3 , e 6/ .

E.,/®; /2 9 , Сх/ Р ; / 3 3 , F3/ y ’ i / 6 2 , 04/ p ;

X3/ 5 7/ / p ; / 9 2 , C5/ p ; / 9 7 , O g/j / 9 9 , S . / 1.

F3/ * i / 3 8 , C3/ p ; / 4 2 , Г , / у ” ; / 5 2 , V V ' ® '

x 2/ c 2 / / .

V * ! / 4 7 , E g E j / i / 5 0 , F6/ y ’ ” ;

x4/i-6/ / p: / 5 7 , X g ^ V A

F g /* ! /5 3 , S j / *

From this we can construct the signal table (Table 10.1 - 1) of operation and check the
validity of the following

STATEMENT 1 0 . 1 - 1

All the signals begin with one of the event types and are terminated by one the event
types

DAG, DCG, DOG, DUG, or LEA.

Signal y, and only signal у leaves the unit having begun with ENT and been
terminated by LEA.

- 207 —

TABLE 10.1-1 Operation by signal /1 Of 3 /
time place happening • SIGNAL event type

0 E1 e X ENT
3 * C1 P X PAC
7 F3 X» X RIF
36 C4 P X PAC
49 W + X DUG
7 F3 X X 1 BIF
12 C3 P X» PAC
1б f4 x ' J X J RIF
26 X z / V P X * PLG
30 W - P X* PRG
32 F7

ivX X J RIF
35 V * 8

ivX -‘•s* RIF
49 F13

XX X 3 RIF
58 G8 + X 3 DAG
16 • F4 X X 3 3 BIF
21 L2L3 t X ” TBL
24 F6 X , J ’ X 3 3 RIF
28 Xi*/L6/ P X 3 3 PLL

- 2 0 8 -

TABLE 1 0 . 1 - 1 / c o n t 3 d / O p e r a t io n b y s i g n a l / 2 o f з /

t im e p l a c e h a p p e n in g SIGNAL e v e n t

31 W P X 3 3 PRG

3 4 HHÉ4 VX X3 3 R IF

38 4 H о x v i i X 3 3 R IF

4 6 C4 P X33 PAC

55 L 9 Ll o t X 33 TBL

58
g 7

+ X 33 DOG

24 F 6 X X333 B IF

27 G3
+ X 333 DCG

32 F
7

X i vX B IF

4 l + i vX DÚL

3 4 F1 1 X VX B IF

54 G2 + i. VX DCG

35 • F8 X v iX B IF

44 P
v iX PLL

47 F 12
i xX v iX R IF

5 1 W . + v iX DÚL

00 4 И о X v i iX B IF

4 l F
9

v i i iX V i iX R IF

45 х ^ А 5 / + v i iX DUG

4 l F
9

X v i i iX B IF

44 G„ + v i i iX DCG

47 F1 2 X i xX B IF

5 1 G5

V
+ i xX DAG

•'•ч

- 209 -

TABLE 1 0 . 1 - 1 / c o n t 1 d / O p e r a t io n b y s i g n a l / 3 Of 3 /

t im e p l a c e h a p p e n in g SIGNAL e v e n t

4 9 F1 3 X XX B IF

5 3 G6 + XX DAG

2 6 E1 e y ENT

2 9 C1 P У PAC

3 3 F3 y* У PAC

62 c 4 P У PAC

75 x 2/ ^ 7 / P У PRG

92
C5 P У PAC

97 C8 P У PAC

99 S 1 s У LEA

3 3 F3
X y* B IF

38
c 3 P y ’ PAC

4 2 f 4
y l 3 y ’ R IF

5 2 w P y» PLL

5 6 x 2/G 2 / + У* DUG

4 2 f 4 X y* * B IF

4 7 L2 L3 t y ” TBL

5 0 F 6 y ” y ” R IF

5 4 W P y ,J PLL

5 7 W + y> J DUG

5 0 F 6
y î 3 i B IF

5 3 S 3
+ y) j J DOG

— 2 1 0 —

A rearreangement o f the signal table (Table 12.1 — 1) produces the timetable (Table
10.1 — 2), from which one can easily deduce the following

STATEMENT 1 0 . 1 - 2

Simultaneous events are either collocal or distant enough.

STATEMENT 10.1 - 4

Coincident events are always of birth-replacation (BIF-RIF) type pairs.

STATEMENT 10.1 - 5

The duration of the whole operation in the unit IP. is

Щ) = 73 + (k - 026

TABLE 1 0 . 1 - 2 O p e r a t i o n b y t im e / l o f к /

TIME p l a c e h a p p e n in g s i g n a l e v e n t t y p e

0 E 1 e X ENT

3 C1 P X РАС

7 F 3
X 5 X R IF

7 F 3
3E X J B IF

12
C3 P X* РАС

1 6 F4 X» 1 X* R IF

1 6 f 4 X X JJ B IF

2 1
L2 L3 t X» J TBL

2k F 6
X J í J X J , R IF

24

26

26

27

28

29

30

31

32

32

33

33

34

34

35

35

36

38

38

38

- 2 1 1 -

1 - 2 / c o n t ’ d / O p e r a t io n b y t im e / 2 o f 4 /

p l a c e h a p p e n in g s i g n a l e v e n t

F 6 X X 3 3 3 B IF

W P X* PLL

E1 e y ENT

5 3
+ X 3 3 3 DCG

W W P X 3 3 PLL

C1 P y PAC

VV P X 3 PRG

v V P X 3 3 PRG

F7
i vX X 3 R IF

F
7

X i vX B IF

F
3 y* y R IF

F
3

X У , B IF

F11
VX X 3 3 R IF

F11 X VX B IF

F8
v iX X 1 R IF

F8 X v iX B IF

C4 P X PAC

0HÉ4 v i lX X 3 3 R IF

Fl o X v i iX B IF

C3 P y* PAC

W + i vX DHL

F
9

v i l iX v i iX R IF

F
9

X v i i iX B IF

- 2 1 2 -

TABLE 1 0 . 1 - 2 / c o n t ’ d / O p e r a t io n b y t im e / 3 Of 4 /

TIME p l a c e h a p p e n in g s i g n a l e v e n t t y p e

4 2 F4 y * 3 y* R IF

4 2 F4 X y * » B IF

4 4 х,,Л7/ P
v iX PLL

k k + v i i iX DCG

45 х4Л 5/ + v i iX DUG

4 6 C6 P X* 3 PAC

4 7 L9 Ll o t X* 5 TBL

4 7 F 1 2
i xX v iX R IF

4 7 F1 2 X
i xX B IF

4 9 x 2 / n / + X DUG

49 F
13

XX X J R IF

4 9 F1 3
X XX B IF

5 0 F 6
y » n y n R IF

5 0 F 6 X y U i B IF

5 1 x2A 8/ + v iX DUL

5 1 + i xX DCG

52 Xi, A i , / P y* DUL
ru

53 G6 + XX DAG

5 3 S 3
+ y i J J DOG

5 4 G2 + VX DCG

5 4 W P y* * PLL

55 L 9 Ll o t X 3Î TBL

5 6 W + y* DUG

- 213 -

TABLE 1 0 . 1 - 2 / c o n t J d / O p e r a t i o n b y t im e / k o f h /

TIME p l a c e h a p p e n in g s i g n a l e v e n t

57 W + t yJ Î DUG

58 G8 + X 5 DAG

58
5 7 + X 3 3 DOG

62 C4 P У РАС

75 x2/̂7/ P У PRG

92
C5 P У РАС

97 C8 P У РАС

99 S1 s У LEA

Consider table 10.1 — 3 which is a reordering of the signal table (Table 10.1 — 1). One
can discern, quite easily, the following facts.

STATEMENT 10.1 - 6

a.) Collocal events are either simultaneous or distant enough;

b.) all the coincident events are of brith-replication type.

STATEMENT 10.1 - 7

There is a ’’beheading” process by gate G? :

At t = 0 gate G? is on, then

(49, X 2(G7),+ , X) DUG

(58, G7, + , x”) DOG

(75, X 2(G7), p, 1) PRG

occurs. In other words

at t = 49 л: dies by gate G? , then

at t = 58 x ” turns off gate G? , and then

at t = 75 у passes gate G? .

— 214 —

STATEMENT ЮЛ - 8

There is a ” headletting” process by gate G2.

Proof:

At the beginning G, is off. Then,

at t

form of
= 30 X passes it, xv
y ’.

closes it at t = 54, finally у dies by it at

TABLE 1 0 . 1 - 3 O p e r a t i o n b y p l a c e / l o f k /

t im e PLACE h a p p e n i n g s i g n a l e v e n t

3 C1 P X РАС

29 C1 P У РАС

12
C3 P X 3 РАС

38
C3 P У3 РАС

36 c 4 P X РАС

46 c 4 P X 3 3 РАС

62 c 4 P У33 РАС

92
C5 P У РАС

97 C8 P У РАС

0 E 1 e X ENT

26 E 1 e У ENT

7 F 3
X 3 X RTF

t i

7

33

33

1 6

1 6

42

42

24

24

5 0

50

3 2

32

35

35

4 i

4 i

38

38

34

34

47

47

- 2 1 5 -

1 0 . L-3 / c o n t J d / O p e r a t i o n b y p l a c e / 2 o f 4 /

PLACE h a p p e n in g s i g n a l e v e n t -

F3 JE X 3 B IF

F
3 y 3 У R IF

F
3

JE y* B IF

f 4 X * * X 3 R IF

f 4 X X 3 3 B IF

F4
y J 1 y 3 R IF

f 4 X y 3 3 B IF

F 6 X 3 3 3 X 3 3 R IF

F 6 X X 3 3 3 B IF

F 6
y î î Í y* 3 R IF

F 6 X y J J J B IF

Г7
i v

X X 3 R IF

Г7 X
i v

X B IF

F8
v i

X X » R IF

F8 X
v i

X B IF
v i i i v i i

F
9 X X R IF

F
9 X

v i i i
X B IF

F l o
v i i

X X 3 3 R IF

F il o X
v i i

X B IF

F
1 1

V
X X 3 3 R IF

F
1 1

X
V

X B IF
i x v iF 12 X X R IF

F12 X
i x

X B IF

- 216 -

TABLE 1 0 . 1 - 3 / c o n t * d / O p e r a t io n b y p l a c e / 3 Of 4 /

t im e PLACE h a p p e n in g s i g n a l e v e n t

4 9 F
13

XX X* R IF

4 9 F1 3
X X

X B IF

5 4 5 2 + VX DCG

3 0 v V P X* PRG

5 6 v v + У* DUG

27
V
G3

+ X J ’ > DCG

53 g 3
+ ■y Í J Í DOG

4 4 5 4 + v i i iX DCG

3 1 v V P X* 3 PRG

5 7 X2/ V + У 3 3 PRG

5 1 G5
+ i xX DAG

53 G6 + XX DAG

58
S 7

+ X 3 3 DOG

4 9 W
+ X DUG

75 V V P У PRG

58 G8 + X* DAG

2 1 L2L 3 t X» J TBL

4 7 L2L 3 t y ” TBL

26 V l i / P X 1 PLL

52 W P У* PLL

4 l x 4 / V + i v
X DUL

45 V S 7 + v i i
X DUL

- 217 -

1 0 .1

TABLE 1 0 . 1 - 3 / c o n t 3 d / O p e r a t io n b y p l a c e / 4 o f 4 /

t im e PLACE h a p p e n in g s i g n a l e v e n t t y p e

28 VV P X* 3 PLL

54 W P У 3 3 PLL

44 VV P
v iX PLL

5 1 w + v iX DUL

55 L9 L l o t X 33 TBL

99 S1 s У LEA

M ore f o r m a l l y , t h e p r o o f i s s i m p l y t h e f o l l o w i n g :

/ 3 0 , Х2/ 0 2 /^ p , x / PRG

/ 5 4 , G2 , + , x V/ DCG

/ 5 6 , X2 /G 2/ , + , y ’ / DUG

And o f c o u r s e , i t i s t r u e t h a t

STATEMENT 1 0 . 1 - 9
V

X i s a d e s c e n d a n t o f x «

P r o o f j

/ 3 4 , F± 1 , X , x V/ B IF

/ 3 4 , F1 ± , x V , x 33 / R IF

/ 1 6 , F ^ , X , x 3 3 / B IF

/ 1 6 , F ^ , x 3 3 , x V R IF

/ 7 , F3 , X , X 1 / B IF

/ 7 , F 3 , X » , x / R IF

Th* opération o f thé MAY EL modulé

- 219

These kinds of proofs, which can be produced very easily by the relational data processing
technique invented by Codd (1970), can as well be utilized in constructing the paths graphs
(c. f. figures 8.1 — 1,2,3,) and carried out quite mechanically once the tables (signaltime and
placetables) are given.
In a similar fashion to the above, we can show that

STATEMENT 10.1 - 10

y ’ is a descendant of y.

In this fashion each detail of MAXEL’s operation can be understood, cleared up and
eventually debugged.

10.2 Resetting

The purpose of the reset operation is to produce all gates in the off state, except G?
which is to be closed, and, of course, except Gx, G9 which are outside gates. In effect, gates
Gj Gj and G6 are used only during activation so their states are immaterial. Still, G6
can also be turned off during the reset procedure.

The reset signal r = [06] enters the MAXEL module at E3, duplicates throughout the
unit to yield altogether eight descendants and leaves at S 3 to enter the eastern neighbour

(X+1 of iß. 33 shots later.

The signal-, time-, and place-tables can be constructed, in a similar fashion to that of described
for the activation and operation stages see tables 10.2 — 1.2 and 3. Based on figure 10.2 — 1
one can automatically set up the fates of signals r, r, . . . , rix as follows.

- 2 2 0 -

г : /О , Е у ^ ; / 3 , С±/ Р ;/ 8 , F ±/ Г ; / 1 2 , Су/Р ;

/ 2 0 , Х4/ а з / / Р ; / 2 3 , X4/L 5/ / P ; / 2 7 , F ^ ’ ’ ’ ;

i v ,
/ 3 0 , Fl o / r ; / 3 8 , C4/ P ; / 4 7 , ; / 5 0 , G?/ .

г » : / 8 , F х/ * ; / 2 5 , F2/ r ’ ’ ; / 3 0 , C2/ P ; / 3 3 , S^ / 3 .

r ” : / 2 5 , F g /* ; / 2 9 , Х4/ 0 ^ / / Р ; / 3 3 ,

v i v i l XX
Л 2 , F?/ r ; / 4 5 , F g /r ; / 5 9 , F13/ r ;

/ 6 8 , Gg/ \

r , , J : / 2 7 , F9/ * ; / 3 0 , nk/ + .

r iV : / 3 0 , Fl o / * ; / 3 4 , F11/ r ; / 3 7 , X2/ 6 ^ / / P ;

/ 4 o , x 4/ l6/ / + .

rv : / 3 4 , F11/ e ; / 5 3 , ë 2/ + .

r V± : / 4 2 , F7/ * ; / 4 7 , X ^ /L ^ , / * .

v i l i
rV11: / 4 5 , F g /* ; / 5 4 , X4/L 7/ / P ; / 5 7 , F12/ r ;

/ 6 1 , X2/ L g / / + .

rv i i i : / 5 7 , F12/* ; / 6 1 , G5/ + .

r i x : / 5 9 , F13/* ; / 6 3 , G6/ + .

1 0 .2

2 2 1 -

With these signals table Ю.2 — 1 is constructed, containing the events in
order of signal names.

TABLE 1 0 . 2 - 1 R e s e t t i n g b y s i g n a l / 1 o f 2 /

t im e p l a c e h a p p e n in g SIGNAL e v e n t t y p e

0
E3

e r ENT

3 C1 P r PAC

8 F 1 r 3 r R IF

12
c 3 P r PAC

20 х 4/ 5 3 / P r PLG

23 X l P r PLL

28
F9

r J ! J r R IF

3 0 F l o
i vr r R IF

38 c 4 p r PAC

47 L9L i o t r TBL

5 0 Ol + r DCG

8 F1 JE r 3 B IF

25 F2 r 3 3 r 3 R IF

3 0 C2 P Г* PAC

33 S 3
s r 3 LEA

25 F 2 Ï r n B IF

29 x 4 / g i / p r 3 3 PLG

33 v v p r 33 PLL

42 F
7

V ir r J 3 R IF

45 4 00

v i ir r 3 3 R IF

- 2 2 2 -

TABLE 1 0 . 2 - 1 / c o n t 3d / R e s e t t i n g b y s i g n a 1 / 2 o f 2 /

t im e p la c e h a p p e n in g SIGNAL e v e n t

59 F13
i x

r r 3 J R IF

58
V

G8 + r 3 3 DOG

27 F9 JE r n j B IF

30
V

<4 + r J J ! DOG

30 F l o JE
i v

r B IF

34 F 11
Vr i v

r R IF

37 VV p
i v

r PLG

4o W + i v
r DUL

3b F 11 JE
V

r B IF

53 g 2 + V
r DOG

42 F
7

JE
v i

r B IF

47 VV + v i
r DUL

45 F8
v i i

r B IF

54 VV P
v i i

r PLL

57 F 12
v i l i

r
v i i

r R IF

61 W + v i i
r DUL

57 F12 JE
v i i i

r B IF

61
V

G5
+ v i i i

r DOG

59 F13 JE
i x

r B IF

63
V

G6
+ i x

r DOG

From t h e s i g n a l t a b l e o n e c a n g e t t h e f o l l o w i n g

- 223 -

STATEMENT 10.2 - 1

signal r resets gate G 7 by turning it on

signal r ” resets gate G8 by turning it off

signal resets gate G 4 by turning it off

signal rv resets gate C 2 by turning it off

signal rviii resets gate G 5 by turning it off

signal /X resets gate G 6 by turning it off

As for resetting by time we have:

STATEMENT 1 0 , 2 - 2

All the simultaneous events are either coincident or distant enough.

STATEMENT 1 0 . 2 - 3

All the coincident events are of brith-replication type pairs.

STATEMENT 1 0 . 2 - 4

Reset process takes 68 shots.

Proof: from the timetable (Table 10.2 - 2)

TABLE 10.2-2 Resetting by time /1 of 3 /

TIME place happening signal event type

0 E3 e г ENT
3 C1 P r РАС
8 F1 rJ r RIF

8

12
2 0

23

25

25

27

27

29

3 0

3 0

30

3 0

33

33

34

34

37

38

4 0

42

42

- 2 2 4 -

2-2 /cont3d/ Resetting by time /2 of 3/
place happening signal event type

F 1 ï r 3 BIF

S P r PAC

Х (, / 5 3 / P r PLG

W P r PLL
F2 r 3 j г RIF
F2 1C r ” BIF
F

9
r i n r RIF

F
9

3C r J J 3 BIF

x 2 , / < v P r 3 1 PLG
F-,lo

ivr r RIF

Flo ж ivr BIF

C2 P r* PAC
V
G4 + r J) 3 DOG

S 3
s r ’ LEA

Xt , / V P r* 3 PLL
F1 1

Vr ivr RIF

F 1 1 ЭЕ Vr BIF

W P ivr PLG

c 4 P r PAC

W + ivr PRL

^7 + r DOG
F7

vir r 3 3 RIF

- 225 -

TABLE 10.2-2 / c o n t Jd / Resetting b y t i m e / 3 o f 3 /

TIME plaoe h a p p e n in g s i g n a l event

45 F 8
v i iг л r * 3 • RIF

45 F 8 X • v i i г B IF

4 7 L 9L 1 o t r TBL

4 7 W + V iг DHL

5 0
° 7

+ г DOG

5 3 + Vг DOG

5 4 x 4 / l ? / p v i ir PLL

5 7 F 12
v i i ir v i ir RIF

57 F 12 X v i i iг BIF

5 9 F
13

v i i iг T i 3 RIF

5 9 F1 3
X i xг BIF

6i W + v i iг DHL
6l

V
G5

+ v i i iг DOG

63
V
G 6 + i xг DOG

68 V
. G 8 + r Ji DOG

From the place-table (Table 10.2 — 3) we get

STATEMENT 10.2 -5

All the collocal events are coincident.

STATEMENT 1 0 . 2 - 6

All the coincident events are birth-replication type pairs.

TADLE 1 0 . 2 - 3 R e s e t t i n g b y p l a c e / l o f 2 /

t i m e PLACE h a p p e n i n g s i g n a l event

3 C1 P r PAC

3 0 C2
\

P r» PAC

12
C3 P r PAC

38 c 4
•

P г PAC

0
E3 ■

e r ENT

8 . F 1 r» r R IF
Y

8
F 1 3E r» B IF

25 F 2 r 3 3 T 3 R IF

25 F 2 3E r 3 3 B IF

42 F
7

v ir r.3 3 R IF

42
F7 X v ir B IF

^5 F 8 ,
v i ir r 3 3 RIF

45 F 8 X
v i ir B IF

27 F
9

r J 1 7 r R IF

27 F
9 ,

X r M J B IF

30 Fl o
i vr r R IF

30 F Tl o X
i vr B IF

34 F11
Vr i vr R IF

34 F11 * Vr B IF

57 F12
viiir v i ir R IF

57 F12
v i i iI' i j lF

59 F
13

ixr r 3 3 RIF

- 227 -

TABLE 1 0 . 2 - 3 R e s e t t i n g b y p l a c e / c o n t , d / / 2 o f y

t i m e PLACE h a p p e n i n g s i g n a l e v e n t

59 F
13

JE i xr B I F

29 V Gi / P r J » PLG

53 S 2 + Vr DOG

20 v v P re PLG

3 0 ° * + r > n DOG

37 X2/ V P
i vr PLG

6 l
V
G5

+ v i i ir DOG

63
V
G6 + i xr DOG

5 0 S + r DCG

68 00
>«o + r» * DOG

47 v v + v ir DÚL

33 W P r } * PLL

23 ' v t 5/ P r PLL

4o v v + i vr DUL

54 V L/ P
v i ir PLL

61 W
v i ir DUL

47 L9 Ll o t r TBL

33 S 3
S . r i LEA

-

Figure 10-2-1
Tho re se ttin g o f th e MAXEL m o d u le

- 229 -

R E F E R E N C E S

[1] Aladyev, V.: Survey of Research in the Theory of Homogenous Structures and their
Applications
Mathematical Biosciences, 22 121-154. (1974).

[2] Bagyinszki, J.: Residue Number System (Decimal) Arithmetic In Parallel Systems
Such As Cellular Automata and Magnetic Bubble Memories
KFKI report No. 75-15. Hungary (1975).

[3] Burks, A. W.: Essays in Cellular Automata University of Illinois Press, Urbana, 111.
(1968).

[4] Codd, E. F.: Cellular Automata Academic Press, New York and London. (1968).

[5] Codd, E.F.: A Relational Model of Data for Large Shared Data Banks
Comm. ACM 13, 377-387. (1970)

[6] Codd, E. F.: A Data Base Sublanguage Founded On the Relational Calculus
IBM RJ. June (1971).

[7] Conway, J.: Mathematicel Games (M. Gardner ed.) Sei. Amer. October (1970)

[8] Dettai, I. : Effectivity Problems and Suggestions Concerning CODD-ICRA Cellular
Space
KGM ISZSZI technical report, Hungary (1974).

[9] Dettai, L: A Version of von Neumann’s Cell KGM ISZSZI technical report, Hungary
(1975)

[10] Domán, A.: A Three-dimensional Cellular Space (A challenge to CODD-ICRA)
KGM ISZSZI technical report, Hungary (1974).

[11] Domán, A.: A Flexible Three-dimensional Cellular Space International Congress of
Cybernetics and Systems, Bucharest, Rumania, Aug 25-29 (1975).

[12] Domán, A.: Parallel Computing Systems Doctoral thesis at the Technical University of
Budapest, Hungary (in Hungaian)

[13] Fáy, G.: Circuitry Realization of Codd’s Automation’s Cell First International Conference
on Computer Science,
Székesfehérvár, Hungary, May 21-26. (1973).

[14] Fáy, G.: DPL ALPHA and Codd’s Cellular Space Second European Meeting on
Cybernetics and Systems Research, Vienna, Austria April 16-19. (1974).

- 230 -

[15] Fáy, G.: A Basic Course on Cellular Automata University lecture notes, Budapest,
Eötvös Lóránd University (In Hungarian) (1975).

[16] Fáy, G., D.V. Takács: Survey of de CODD-ICRA In: LINDENMAYER (1975).

[17] Fazekas, В.: Some New Components and Phenomena in CODD-ICRA Space.
Graduate thesis in mathematics, Budapest Eötvös Lóránd University (In Hungaian)
(1975).

[18] Golze, U.: Destructioi of a Universal Computer-Constructor in Codd’s Cellular Space
Report. Dept, of Comp, and Comm. Sei. Univ. of Michigan, Ann Arbor, Michigan
48104(1972).

[19] Herman, G.T.: (org) Conference on Bibliogically Motivated Automata Theory
MITRE Corporation, Me.Lean, Virginia, USA June 19-22 (1974).

[20] Herman, G.T. and Rozenberg, G.: Developmental Systems and Language North
Holland Publ. Co. Amsterdam. (1975).

[21] Hoare, C. A. R.: An Axiomatic Basic for Computer Programming Comm. ACM. 12,
576-583. (1969)

[22] Huszár A.: Testing equipment for Automaton Cells Graduate thesis in electrical
engineering. Technical University of Budapest (In Hungarian) (1974).

[23] ICRA TEAM : Studies in Cellular Automata(”Sejtautomaták”)
To be publisehed by Gondolat, Budapest, first in Hungarian later in English. (1978.)

[24] Ippolito, J.C.: Contribution a Limplantation de functions logiques sur des réseaux
cellulaires
These, Grade de Docteur es Sciences Physiques, Université Paul Sabatier de Toulouse.
(1972).

[25] Kaszás, О.: Character Generation in CODD-ICRA Space Graduate thesis in electical
engineering. Kandó Kálmán Technical Highschool, Budapest (In Hungarian) (1975).

[26] Legendi, T.: Simulation of Cellular Automata
Inner report, Szeged, József Attila University, MTA group of Mathematical logic and
automata theory. (In Hungarian) (1975).

[27] LINDENMAYER, A. (org): Conference On Formal Languages, Automata and
Development
Noordwijkerhout, The Netherlands 31 March - 6 april. (1975).

[28] Martoni, V.: Investigations in Lindenmayer space. Inner report, KGM ISZSZI
Budapest, (In Hungarian) (1975).

- 231 -

[29] Riguet, J. (org): Conference on Automata and Related Topics Université René
Descartes Sorbonne, Paris, May 16-19. (1974).

[30] Riguet, J.: Automates Cellulaires a Bord et Automates CODD-ICRA I.-II.
Computers redus de L’Academie les Sciences de Paris SIRIE A t. 282. (19. Janvier 76.)
pp. 167-170, 239-242. (1976).

[31] Smith, III. A.R. : Cellular Automata Theory
Technical report, Sztanford Electronic Laboratories No. SU-SEL 70-016. (1969)

[32] Szőke, M. (Mrs): Destruction in CODD-ICRA Graduate thesis in mathematics. Budapest
Eötvös Lóránd University (In Hungarian) (1975).

[33] Takács, D.V. (Mrs): A Bootstrap for Codd’s Cellular Space
First International Conference on Computer Science,
Székesfehérvár, Hungary, May 21-26. (1973).

[33] Takács, D.V. (Mrs); Galois Connections and DPL ALPHA System Second European
Meeting on Cybernetics and Systems Research Vienna, Austria (1974)

[34] Takács, D.V. (Mrs): Cellular Automaton as a new tool for computer science
KGM ISZSZI report, Budapest. Hungary (In Hungarin) (1974)

[35] Takács, D.V. (Mrs): Un Automate Cellulaire CODD-ICRA Pour la Recherche de
Numbers
These Présenté a Université René Descartes de Paris Sorbonne Doctorat d’Université
(1975).

[36] Toffoli, T.: Backward steps in cellular spaces
In: Lindenmayer (1975).

[37] Von Neumann, J.: The General and Logical Theory of Automata, pp. 1-41 of
Cerebral Machanismus in Behavior. The Hixon Symposium, (1948) ed by L.A.
Jeffress, published by John Wiley, New York, 1951. (1948)

[38] Von Neumann, J.: Theory of Self-reproducing Automata
University of Illinois Press, Urbana edited and completed by A. W. Burks.
(1966).

- 232 -

ISBN 963 311 067 X

Q 2 2 4 9 5

7220-8256 SZÁMOK Repró

ХС Ц£Ч(о

\

I

	I. Ruzsa: A new approach to modal logic��
	P. Ecsedi–Tóth: Intensional logic of actions���
	P. Kümmel: Aspects to classify content of natural languages��
	T. Legendi: Transcell – A cellular automata transition function definition and minimization language for cellular microprogramming���
	H. Heiskanen: Semantic analysis of syntactic methods���
	C. Anzaldi–L. Passerini: The structure of the SNEL system for automatic documentation
	I. Fidrich: A BNF syntax for the query language foral with a discussion of possible modifications��
	T. Legendi: Cellprocessors in computer architecture��
	G. Fay: Cellular design principles: A case study of maximum selection in CODD-ICRA cellular space. Part two, detailed design
	Oldalszámok������������������
	_1���������
	_2���������
	1��������
	2��������
	3��������
	4��������
	5��������
	6��������
	7��������
	8��������
	9��������
	10���������
	11���������
	12���������
	13���������
	14���������
	15���������
	16���������
	17���������
	18���������
	19���������
	20���������
	21���������
	22���������
	23���������
	24���������
	25���������
	26���������
	27���������
	28���������
	29���������
	30���������
	31���������
	32���������
	33���������
	34���������
	35���������
	36���������
	37���������
	38���������
	39���������
	40���������
	41���������
	42���������
	43���������
	44���������
	45���������
	46���������
	47���������
	48���������
	49���������
	50���������
	51���������
	52���������
	53���������
	54���������
	55���������
	56���������
	57���������
	58���������
	59���������
	60���������
	61���������
	62���������
	63���������
	64���������
	65���������
	66���������
	67���������
	68���������
	69���������
	70���������
	71���������
	72���������
	73���������
	74���������
	75���������
	76���������
	77���������
	78���������
	79���������
	80���������
	81���������
	82���������
	83���������
	84���������
	85���������
	86���������
	87���������
	88���������
	89���������
	90���������
	91���������
	92���������
	93���������
	94���������
	95���������
	96���������
	97���������
	98���������
	99���������
	100����������
	101����������
	102����������
	103����������
	104����������
	105����������
	106����������
	107����������
	108����������
	109����������
	110����������
	111����������
	112����������
	113����������
	114����������
	115����������
	116����������
	117����������
	118����������
	119����������
	120����������
	121����������
	122����������
	123����������
	124����������
	125����������
	126����������
	127����������
	128����������
	129����������
	130����������
	131����������
	132����������
	133����������
	134����������
	135����������
	136����������
	137����������
	138����������
	139����������
	140����������
	141����������
	142����������
	143����������
	144����������
	145����������
	146����������
	147����������
	148����������
	149����������
	150����������
	151����������
	152����������
	153����������
	154����������
	155����������
	156����������
	157����������
	158����������
	159����������
	160����������
	161����������
	162����������
	163����������
	164����������
	165����������
	166����������
	167����������
	168����������
	169����������
	170����������
	171����������
	172����������
	173����������
	174����������
	175����������
	176����������
	177����������
	178����������
	179����������
	180����������
	181����������
	182����������
	183����������
	184����������
	185����������
	186����������
	187����������
	188����������
	189����������
	190����������
	191����������
	192����������
	193����������
	194����������
	195����������
	196����������
	197����������
	198����������
	199����������
	200����������
	201����������
	202����������
	203����������
	204����������
	205����������
	206����������
	207����������
	208����������
	209����������
	210����������
	211����������
	212����������
	213����������
	214����������
	215����������
	216����������
	217����������
	218����������
	219����������
	220����������
	221����������
	222����������
	223����������
	224����������
	225����������
	226����������
	227����������
	228����������
	229����������
	230����������
	231����������
	232����������
	233����������
	234����������
	235����������
	236����������

