
Computer and Automation Institute
Hungarian Academy of Sciences

COMPUTATIONAL LINGUISTICS
AND

COMPUTER LANGUAGES

Editorial board: Prof .Dr .T. FREY (chairman)

SZTE Eavetemi Könyvtár

В .DÖMÖLKI
E. FARKAS
F. KIEFER
T.LEGENDI
A. MAKAI
F.PAPP

J000907305 GY. RÉ VÉSZ
GY.SZÉPE
D.VARGA

2 4 1 6 4

Distributor for: Albania, Bulgaria, China, Cuba, Czechoslovakia, German
Democratic Republic, Korean People’s Republic, Mongolia,
Poland, Roumania, U.S.S.R., People’s Republic of Viet-Nam
Yugoslavia

К U L T U R A
Hungarian Trading Co. for Books and Newspapers
1389 Budapest,
P.O.B. 149, Hungary

For all other countries:
JOHN BENJAMINS B.V.
Periodical Trade
Amsteldijk 44
Amsterdam, Holland

Responsible Publisher:

Prof .Dr. T. VÁMOS
Director of the Computer and Automation
Institute, Hungarian Academy of Sciences

ISBN 963 311 039 4

Országos Műszaki Könyvtár és Dokumentációs Központ
házi sokszorositója
F.v.:Janoch Gyula

3

C o n t e n t s

1- I.Németi: ON A PROPERTY OF THE CATEGORY OF PARTIAL
ALGEBRAS 5

2. Gy.Révész: A NOTE ON THE RELATION OF TURING MACHINES
TO PHRASE STRUCTURE GRAMMARS 11

3. P.B.Schneck: A NEW PROGRAM OPTIMIZATION 17
4. B.Dömölki, E.sánta-Tóth: FORMAL DESCRIPTION OF

SOFTWARE COMPONENTS BY STRUCTURED ABSTRACT MODELS .. 31
5. G.Fay : CELLULAR DESIGN PRINCIPLES A CASE STUDY OF

MAXIMUM SELECTION IN CODD-ICRA CELLULAR SPACE /I/... 73
6. H.Heiskanen: SEMANTIC THEORY FROM A SYSTEMATICAL

VIEWPOINT ; 125
7. T.Legendi: CALLPROCESSORS IN COMPUTER ARCHITECTURE.. 147
8. Gy.Hell: MECHANICAL ANALYSIS OF HUNGARIAN SENTENCES. 169

5

ON A PROPERTY OF THE CATEGORY OF PARTIAL
ALGEBRAS
I .Németi

Mathematical Institute of the
Hungarian Academy of Sciences

Budapest, Hungary

In the study of semantics of programming- and other lan­
guages universal algebra and model theory has been playing an
increasingly important role.

This seems to be natural, since generalised model theory
is nothing but the mathematical representation of the so-cal­
led "possible worlds"-semantics which is the thorough approach
to the problem of taking into account the existence of an
external world and an internal mind, the sentences formulated
in which they do have a meaning in /or refer to/ the external
world. However, in this study, only those chapters have
reached real maturity, which deal with models or algebras
having total funcitons.

In the same time it has turned out that in computer
science we cannot live without partial funcitons. Also in the
semantics of natural languages "logic of actions" c.f. Hayes
C1D would provide a better understanding and more adequate
model theory than classical first order logic. But then again
partial functions emerge. By now, many results have been
reached by using total-function-model-theory, and therefore
time is ripe to refine our tools. Many researchers have tried
to "totalise" their partial functions c.f. Hayes' version of
logic of actions or that of the Prague school. But as we know
it only too well from the theory of algorithms, actions cannot
be defined everywhere /at least if they are not severely re­
stricted/. In program-language-semantics Burstall tried to use

6

total algebra by introducing a new element called "undefined"
These attempts have been really fruitful but they do have

their limitations because algebras are just basically differ­
ent. The category of partial algebras has many characteristic
features which simply do not exist in any quasi-variety of
total algebras. E.g. the class of strong epimorphisms coin­
cides with the class of onto homomorphisms in any quasi­
variety of total algebras; or there are the closed morphisms.
They, however, do sometimes have something in parallel.

This paper is about a specific kind of morphisms of par­
tial algebras the so-called closed morphisms c.f. Höft C3□,
and investigates this purely category theoretical concept c.f
Pásztor [Hu in the variety of distributive lattices.

From now on (S is an arbitrary category.

DEFINITION

A morphism f£Mor € is called closed if for any gh = f, if
g is a bimorphism, then it is an isomorphism.

THEOREM

A morphism of partial algebras is closed in the above
category theoretical sense iff it is a closed homomorphism
/in the sense of e.g.Höft/.
A proof of this can be found in Pásztor CU3.

Now, we give a characterisation of closed morphisms in the
category <£) of distributive lattices. We use the terminology
of Grätzer C53.

7

THE OREM

Let dk be distributive lattices and ̂ ----— -~#be a
homomorphism. Now, f is a closed morphism of <£) iff the follow­
ing are satisfied.

For any a,x,b в A such that x6[a,b] if f(x) has a rela­
tive complement in the interval Cf(a),f(b)7 ind® , then also
X has a relative complement in the interval Ca,b3 in Фс .

PROOF:

1/ Suppose, the above condition is satisfied and

commutes while g is a bimorphism. Since £) is a variety, g
is one-one. According to Grätzer's characterisation of
epimorphisms /see Theorem 4, of chapter 13 in C53, pp.141/
the range of g /Rg g/ generates C by relative complemen­
tation, meet and join. Roman capitals stand for universes
of the algebras denoted by the corresponding gothic capi­
tals. Suppose X 6Г C a, b] in ^ . Then g(x) £ Cg(a),g(b)] in <£ .
Now, suppose g(x) has a relative complement in Cg(a),g(b)D
incC . Then h(g(x))=f x again has a complement in Cf(a),f(b)D
and therefore by hypothesis x has a complement in Ca,bD
in 4!A. This proves that Rg g is closed w.r.t. relative
complementation and therefore Rg g = C i .e . g is an
isomorphism.

8

2/ Suppose that the "lattice-theoretical" conditions are not
satisfied by f. We prove that f is not closed in the
category theoretical sense.

Let ̂ , and while x€ Ca,bl does not have a com­
plement in C a ,b] let f(x) have a complement in Cf(a) , f (b)U.
Let y£A. 'Let H be the set of all mappings AU{y} — g —■ Ng
such that tfr £$), g is a homomorphism f r o m ^ into "tL and ê 8
g (y) is the relative complement of g(x) in C g (a) , g (b) : in
ft . Form the product P Th. /not minding set theory by

g gGH g
co-well-poweredness/. Let c£ be the sublattice generated
by the diagonal map d = <H* {x}>x6-Ay{ } of AU{y} into
P ft . Clearly oT is a distributive lattice since oDis
g6H g
closed w.r.t. products and subalgebras. Obviously, d is a
homomorphism of ^ into o C .

We show that d is an epimorphism. Clearly d (x)*d(y)=d(a)
and d(x)+d(y)=d(b) because this holds in every projection
of the direct product /if e is the g-th projection, theng
d°eg=g/.

Now, by Grätzer's characterisation of epimorphisms, d is
one.

Now, we show that d is a monomorphism, i.e. that d is one-
one on A. Let w ,z £ A be arbitrary. It is well known that
there is a homomorphism of ^ into the two-element lattice
such that h(w)^h(z). Extend h to AU{y} by requiring that
h(y) be the relative complement of h(x) in Ch(a),h(b)D in
the two-element lattice. By this, d is one-one on A.

9

Thus d is a bimorphism of into оC but it is not an iso­
morphism, since X has no relative complement i n ^ while
d(x) has in at .

Since fe H, we have f=d.e for some projection e of the
direct product. Thus f is not closed.
Q.E.D.

THEOREM

Every morphism of the category £> has a bimorphism-closed
morphism factorisation.

PROOF;

The idea of the proof is to iterate w times the above
construction. In a single step we construct relative comple­
ments to every such a<x<b for which f(x) has a relative com­
plement in Cf (a),f(Ъ)]. The increased number of relative
complements causes no trouble.
Q.E.D.

Keeping in mind the characterisation of closed and epi-
morphisms of partial algebras, it is interesting for com­
parison that:

PROPOSITION

Consider the (H S P) variety of partial algebras /seeZ21/ s s
defined by the (H S P) identities:s s

î c(y,x,z) --- > c(y,x,z)-y=x
3 c(y,x,z) --- > c(y,x,z)+y=z
c(y,x.y,x+y)=x

together with the identities defining the variety of lattices.
/ #/гС?

' \\>

10

The class of distributive lattices coincides with the
-reduct of this variety.

References

С Ш Hayes,P.: Logic of action, Machine Intelligence

1121 Andreka,H., Nemeti,I.: Generalisation of variety and
quasivariety-concept to partial algebras through category
theory, Preprint of the Math. Inst. Hung. A.S. 5/1976.

C31 Hpft,H.: Operators on classes of partial algebras,
Algebra Universalis 1972/2.

CUl Pásztor,A.: Closed morphisms in the category of partial
algebras, Preprint 1976.

C51 Grätzer,G.: Lattice theory, Freemann and со. 1971.

11

A NOTE ON THE RELATION OF TURING MACHINES
IQ.PHRASE STRUCTURE GRAMMARS

Gy. Révész
Computer and Automation Institute,

Hungarian Academy of Sciences
Budapest 3 Hungary

The aim of this note is to provide a possibly self-
explanatory formal proof to the classical theorem of the equi­
valence of Turing acceptors and phrase structure grammars
where the case of linear-bounded acceptors and context-sensi­
tive grammars forms a trivial subcase.

For this purpose we will use a specific model of abstract
automata, namely the two-pushdown machine /see Fig.l/. It is
easy to show that this model is equivalent to the standard
model of the single-tape Turing machine. Actually the two-way
infinite tape of a single-tape Turing machine can be cut up at
the read-write head and the nonblank portions of the two parts
can be stored in two pushdown stores. A right or left scan of
the original tape would correspond to th~; symbol by symbol
copying of the contents of one pushdown store into the other.
The expansion of the nonblank portion of the original tape cor­
responds to the insertion of a new symbol into an empty push­
down store.

TURING MACHINE TWO-PUS HDOWN MACHINE

Fig.l

12

Now we give the formal definition of the two-pushdown machine.

DEFINITION
A nondeterministic two-pushdown machine is a sixtuple

where
M = (Z, E, K, zQ, qQ, F)

Z is a finite set of tape symbols,
E C Z is a finite set of input symbols,

К is a finite set of internal states,
z £. Z-E is the left endmarker, о

qQ €. К is the initial state
F is a mapping called transition function

which can be given as a finite set of rewriting rules. Each of
these rewriting rules may have one of the forms

where x,

1. xqy -> xzp
2 . xqy pzy
3. xqy -> xpz
4. xqy -> pz
5 . xqy -> xp zy

q£K and z z .о
These rewriting rules define the moves which change the con­
figuration of M,

DEFINITION
A configuration of M is a word of the form XqY where X, Y£Z*
and q£K./Here X and Y represent the contents of the two push­
down stores, q is the actual internal state and the two read-
write heads are scanning the last symbol of X and the first
symbol of Y, respectively./ Similar models were already used
in many papers, e.g., in C13, C23 and C33.

The relation — -> between two configurations is defined on the
M

13

basis of the rewriting rules in the usual way, i.e.,
X 1 ql Y 1 X2 q2 Y2 if and оп1У if there is a rewriting rule
in F whose application yields X^ q2 Y2 from q̂ in one
step. The transitive and reflexive closure of == » will be de- * M noted by . /А more detailed definition can be found for
example on page 6 in thl./

DEFINITION
The language accepted by M with empty store is

L(M)={P£E*|z q P *> pz, for some p£K, z£Z}

This means that the two-pushdown machine M accepts the word P
if there is a finite sequence of moves that change the initial
configuration z q qQ P into a configuration containing only two
symbols. There may exist, however, several other sequences of
possible moves starting with the same initial configuration,
since we are dealing with nondeterministic models, i.e. more
than one rewriting rules may occur in F with the same left-hand
side.

THE OREM 1. To every two-pushdown machine M there is a phrase
structure grammar G such that L(G)=L(M) and if M is linearly
bounded then G is context-sensitive.

PROOF, For a given two-pushdown machine M=(ZfEfK , z tq,F) we
construct the phrase structure grammar G=(, S,R) as follows

Let
vM={s} U (Z-Z) U {Z X К X z}, vT=i

and the set of rules R correspond to the "inverse" of F, namely
1. xCzpuü + CxqylluÊR for all u € Z , iff xqy + xzp£F
2. CupzDy -* uCxqyDGR for all u £ Z , iff xqy -> pzy£F
3. CxpzD + lIxqy 3£R, iff xqy ->■ x p z € F ,
4. CupzH+uCxqyllER for all u£Z, iff xqy -> p z £ F ,

14

5. txpzly -* CxqyD£R, iff xqy xpzy£F.
In addition to these we include

6. [z q x] x£R for all x££о о
7. S -* Cz q q yD, iff z q q y + pz£F for some рек and z£Z.

As can be seen from the construction S ■_ >P . iff z q P-V,>Pz,G о о M
therefore L(G)=L(M).
/А derivation in the grammar G corresponds to a reverse se­
quence of moves of M./

Moreover, it can be observed that if M has no type 5 rules,
i.e. M is linearly bounded, then G is context-sensitive,Q.e.d.

In order to establish the converse theorem we need a normal
form theorem for phrase structure grammars. In the sequel A,B,C
and D denote nonterminals, a_ denotes an arbitrary terminal
symbol, while P and Q denote arbitrary words in (V^UV^*.

THEOREM 2 1 Every X-free phrase structure language can be gene­
rated by some grammar whose rules are all of the form A^a, A+B,
A->-BC, AB+AC, AB+CB or AB+B.

PROOF I Suppose we have a phrase structure grammar generating
the given X-free language. We can eliminate all X-rules from
this grammar by replacing each rule of the form P-*X by the
rules Px+x and xP->x where x ranges over the set of all non­
terminal and terminal symbols. Only the empty word X would*cause a trouble since a derivation of the form S- y-?X cannot be
obtained without X-rules. Thus, we can get a grammar where
each rule is of the form P-*Q with Q^X .

Now, if a rule P+Q is length-increasing (more precisely non­
decreasing, or in symbols I P I <_| Q I) then, according to a normal
form theorem due to Kuroda it can be replaced by a set of
rules of the form A->-a, A-*-B, A->BC, AB-+AC, and AB+CB.

15

So we have to deal only with length-decreasing rules. It is
clear that terminal symbols can be eliminated from these rules
by introducing for each terminal symbol a a new nonterminal
and including the rule A ^ a . On the other hand, a length-
decreasing rule of the form

A, . . .A -+ B. . . ,B (m>n>0) 1 m 1 n
can be replaced by the set of rules

A . A m - 1 m C D , m m C D m m m
A -D m-2 m C ,D , , m - 1 m - 1 C .D 1 m - 1 m-1 m- 1

A D _ ■+ C n n+2 n+1 C , D , ■+ D В n+1 n+1 n n
A ,D + D ,B , n-1 n n-1 n-1

A1D2 -> D 1B 1
D 1B 1 B 1
C and m D r ...,Dm are newly introduced nonterwhere C , , , . . n+1

minai symbols. These rules are either of the form AB->-B or
length-nondecreasing which completes the proof.

THEOREM 3, To every А-free phrase structure grammar G there is
a two-pushdown machine M such that L(M)=L(G) and if G is
context-sensitive then M is linearly bounded.

PROOF I We may assume that the grammar G=(VN ,VT,S,R) generating
the given language is in the normal form established in
Theorem 2. The corresponding two-pushdown machine M=(Z,E,K,zo ,
q ,F) will be defined such that Z={z }UV„UV_ (with z áv„UV_), о о N i от N T
£=VT, K={qQ} and F is as follows.

1. xqQy ■+ xqQz€F for ail xGZ, if z ■+ y€R,

16

2. xqoy
3. xqoy
4 . xq уо
5' xqoy

In addition

6. xq уо
7. xqoy

q z€TF, iff z -> xySR, о
xq z£F, if xz •> xy6R, о

■> q zy£F, if zy -* xy£R,
xqQzy€F for all x€Z, iff zy •> y£R.

to these we include

xyqo£F x,yeZ,
-*■ q xy£F x£Z-{z } and y€Z,о о
S + q SGF. о

Again it follows directly from the construction that L(M)=L(G).
Further, if G is context-sensitive then M has no type 5 rules
so it is linearly bounded. Q.e.d.

References
111 Minsky, M.L.: Recursive unsolvability of Post’s problem

of ’Tag’ and other topics in the theory of Turing machines,
Annals of Math. 7_U (1961), U 3T-U 5 5 -

C2I Walters,D.A .rDeterministic context-sensitive languages,
Part II.
Information and Control 1_7 (1970), 4l-6l.

133 Loeckx, J.: The parsing of general phrase-structure gram­
mars .
Information and Control 1_6 (1970), ^НЗ-^б!*.

C41 Salomaa, A.: Formal Languages.
Academic Press, 1973.

[5З Kuroda, S.Y.: Classes of languages and linear-bounded
automata.
Information and Control J_ (196U), 207-223.

17

A NEW PROGRAM OPTIMIZATION

P .В. Schneck

Institute for Space Studies
Goddard Space Flight Center, NASA

New York, USA

Abstract

The forward dominator relation is a mirror image /dual/ of
the ubiquitous back dominator relation of compiler optimiza­
tions /Allen and Cocke, 1972; Lowry and Medlock, 1969; Schneck
and Angel, 1973/. The forward dominator relation is used to
identify a new set of common subexpressions, not found by tra­
ditional techniques.

I ntroduction

Classical techniques for the discovery of common subexpres­
sions in program units have been confined to the case where
the evaluation of a subexpression is checked against previous
evaluations which are currently available • Two criteria are
used to decide whether a value is currently available.

1/ Does a previously calculated expression represent the
current expression?

2/ Is the expression on a path which is certain to occur
prior to the duplicate appearance?

The first criterion assures that the expressions in ques­
tion are common. The second criterion tests the "back domi­
nator" relation to assure that the result of the first ap­
pearance of the common subexpression calculation is always

18

available when the later expression is reached.
The approach described in this paper handles common sub­

expressions occurring in circumstances which violate the second
criterion. If a potential common subexpression must be evalu­
ated* it will be moved to a point which satisfies the second
criterion and common subexpression analysis can then be per­
formed by standard techniques.

Common subexpression e l i m i n a t i o n : the classical approach

In this section of the paper, the path of evaluation of
common subexpression elimination is examined. Early efforts
were limited to a single statement, extended to a basic block,
and further extended to entire programs. The back dominator
relation is essential to the inter-statement optimizations.
Limitations of this approach are shown.

Analysis Within a Statement

The simplest context for discovery and elimination of
common subexpressions is a single statement. When formally
identical subexpressions are found to exist, only the first
evaluation needs to be performed. This approach was used in
the Fortran I compiler /Sheridan, 1959/. An obvious limitation
of the restriction to a single statement is the much smaller
scope available for optimization. This scope can be expanded
without disturbing the simplifying assumption of straight line
program flow.

* If the expression is not evaluated along certain paths, then
forcing its evaluation could lead to an error condition
which would not otherwise occur. This is termed a violation
of safety /Schaefer, 1973/.

19

Analysis in Regions with Straight Line Flow

A sequence of statements exhibiting straight line program
flow with only one entry /at the beginning of the sequence/
and only one exit /at the end of the sequence/ is called a
basic block. Recognition and elimination of common subexpres­
sions within a basic block is similar to the processing within
a single statement except that testing for formally identical
common subexpressions is replaced by testing to determine that
the same values participate within an expression. The "value
numbering" scheme /Cocke and Schwartz, 1969/ is preferred be­
cause :

1/ Common subexpressions are not limited to formal
identities

2/ Common subexpressions are known not to occur if
a participating variable is modified between two
formally identical subexpressions.

Figure 1 shows two common subexpressions occurring within
a basic block. Definition of either "A" or "P" between the
formally identical subexpressions ("A*P") would result in their
treatment by the value number scheme as separate expressions.
Additionally, the formally distinct subexpressions
"C*D") are found to be common.

Because of the straight line flow within a basic block the
first appearance of a common subexpression results in its
availability at all subsequent statements.w When later appear­
ances of a common subexpression are encountered the first
evaluation must already have occurred. It is always possible
to replace later evaluations of a common subexpression by the
result of the first evaluation.

Each statement is said to hack dominate all successor sta­
tements in the basic block because it must be executed
before they can be reached.

20

9876 A = B +(C*D
P = Q - R/S
B = D
X = (a * p V Q*B J
A = C/D W
У = (С * В Ы А

Z = D*S - У
E = (~Â»P) + D*R + O S
IF(E-GT-0)GO TO 5A32

Each statement back dominates all of its successors within
the basic block.

Fig.1 Common subexpression recognition
within a basic block

21

Analysis in the Presence of Program Flow

The availability of a prior computation, which is taken
for granted within a basic block, needs to be established when
potentially common subexpressions do not occur in a single
basic block. Figure 2 illustrates a simple example of "non­
linear" program flow and its effect upon potential common sub­
expressions. Block n back dominates both block n+1 and block
n +2 because it is necessary to traverse block n to reach either
of those blocks. Block n + 1 does not back dominate block n +2
because it is possible to reach block n +2 without traversing
block n+1 /directly from block n /.

The back dominator relation assures that computations per­
formed in block n are available for use in block n+1 and block
n+2. Therefore the subexpressions A*P appearing both block n
and block n+1 are common. Similarly the subexpressions C*R
appearing in block n and block n+2 are also common. In each
case the second appearance of the common subexpression may be
replaced by the result of the calculation which appeared in
the back dominator block.

Block n +1 does not back dominate block n +2, and so compu­
tations in block n+1 may not be available for use in block
n+2. The path from block n to block n+2 makes it possible to
skip block n+2 and any calculations it contains. The appear­
ances of the subexpressions D*S in block n +1 and block n +2
cannot guarantee a common subexpression /in this classical
back dominator framework/ because the first appearance of D*S
may be skipped and therefore no result is available to replace
the second appearance.

22

T3=A*P■ •*T3*•■T l = O R
» » «j|« « I

' *тз
■D*S'

FLOWD I A G R A M ORIGINALPROGRAM OPTIMIZEDPROGRAM

Block n back dominates block n+1 and block n+2.
Common subexpressions are found when they occur
both in one of those blocks (n+1, n+2) and its
back dominator (n).

Fig.2 Classical "back dominator"
common subexpression recognition

23

Common subexpression e l i m i n a t i o n : a new approach

The back dominator relation is the foundation of the clas­
sical techniques for recognition of common subexpressions. In
this section the dual relation, forward dominator, will be
shown to be useful for the recognition of many additional com­
mon subexpressions.

The back dominator relation is true when a particular block,
the back dominator, must be entered before a given block can
be reached. The forward dominator relation is true when a par­
ticular block, the forward dominator, must be entered after a
given block has been reached.

Overview

If a potential common subexpression occurs in some block
and also in a forward dominator of the block then it may be
possible to introduce a computation of the subexpression at a
point which back dominates both the block and its forward do­
minator. /This point always exists because the entry block do­
minates all other blocks of a program./ If there are no defi­
nitions of the common subexpression's variables between its
point of insertion and the first of the original subexpressions
then the inserted subexpression calculates a value which can
be used in lieu of the original common subexpressions.

Figure 3 illustrates the general approach as just discussed.
Block n +2 forward dominates both block n and block n +1. The ap­
pearance of C*R in block n and block n +2 means that C*R can be
treated as a common subexpression. /Because block n back domi­
nates block n +2 this common subexpression is also found by the
classical method./ Similarly the appearance of D*S in block
n +1 and block n +2 permits it to be treated as a common sub­
expression. The subexpression, D*S, is moved to block n , the
common back dominator of block n+1 and block n +2 . The two ori­
ginal appearances of D*S are then replaced by the newly

24

FLOWDIA GRAM ORIGINALPROGRAM OPTIMIZEDPROGRAM

Block n+2 forward dominates block n and block n+1.
Common subexpressions are found when they occur
both in one of those blocks (n, n+1) and its
forward dominator (n+2). The evaluation of the
common subexpression is moved to block n, the back
dominator of block n+2 (and therefore the back do­
minator of block n+1).

Fig.3 "Forward dominator" common
subexpression recognition

»
о

- 25 -

available value.
When forward and back dominator processing are performed

consecutively all potential common subexpressions are discov­
ered. Figure 4 illustrates the example program after it has
been processed by both techniques.

The Algorithm

The blocks of a program are examined pairwise, until a pair
is found where the second block forward dominates the first. If
at the same time the first block back dominates the second, the
pair is skipped because the classical /back dominator/ analysis
will expose common subexpressions within the pair. Once a pair
of blocks is selected a search is made to determine whether or
not /based upon the hypothesis that the first block back domi­
nates the second block/ there are any common subexpressions.
When the following pair of conditions is met, any subexpres­
sions which are found will be moved to a block which back do­
minates both blocks. First, no definition of the variables in­
volved may occur between the desired point of insertion and
the earlier* appearance of the common subexpression. This con­
dition assures that the newly inserted definition is computed
using the same values of the variables as in the original ex­
pressions. Figure 5 shows why the back dominator of the forward
dominator must be used. Second, because of considerations of
safety, the point chosen for insertion of the calculation of
the common subexpression must be forward dominated by the
forward dominator block of the pair. This second condition
assures that the new evaluation will be performed only when the
original common subexpression would have been evaluated. Figure
6 illustrates a violation of the requirement for safety and the
consequent inability to perform the common subexpression eli-
y ç ■ — —

A topological order, such as is obtained by interval analy­
sis, defines "earlier". This definition also avoids movement
of expressions into inner loops, which would otherwise
increase program time.

é

- 26 -

DIAGRAM PROGRAM

...a *P••.T1=C*R...ц . . -T2=D*S

••TI
* *T2

FORWARDDOMINATOROPTIMIZEDPROGRAM

T3=A*P• * *T3••• T1=C*R
T2=D*S*• • • 1*2 ■ • •

FORWARD AND BACK DOMINAT OR OPTIMIZ ED PROGRAM

Fig. 4 Forward dominator recognition3
followed by back dominator
recognition

27

THE PAIR OF BLOCKS CON TAINING THE COMMON SUBEXPRESSIONS

B A C K DOMINATES 2,З А , 5

B A C K DOMINATES 3,4

FORWARD DOMINATES 4

The calculation point must back dominate both blocks
of the pair containing the common subexpressions
(A,5). The back dominator of block 4 is not a back
dominator of the forward dominator of the pair. Block
1, back dominates both blocks of the pair.

Fig.5 Selection of the point for
calculation of the common
subexpression value

28

Fig.6 Common subexpression elimination
inhibited by safety considerations

Blocks 2 and 3 comprise the pair containing the
candidates for common subexpression elimination.
The back dominator of block 3 is block 1. Movement
to block 1 would result in the evaluation of A/B
even when the branch to block 4 is taken, resulting
in a division by zero that would not otherwise
occur. Therefore common subexpression elimination
is not performed.

29

mination.
After the calculation of the common subexpression is moved

to the back dominator block the later appearances are replaced
by the value obtained.

Effectiveness of the Forward
Dominator Technique

As indicated earlier, the forward dominator and back domi­
nator relations are dual. This is easily seen in the following
definition :

Block i is said to back /forward/ dominate block j if all
paths between the unique program entry /exit/ block and block
j must contain block i .

Inverting the direction of flow reverses the roles of
entry/exit and back/forward dominators. From a graph theoretic
point of view the two methods are equally powerful. The forward
dominator technique has an additional requirement - moving the
calculation of the common subexpression to a back dominating
block - which can inhibit its effectiveness. In order to move
the common subexpression, the two requirements of 1/ no modifi­
cations to variables between the three blocks involved and 2/
safety, must be satisfied.

Common subexpressions may be categorized as belonging to
one of three general classes:

1/ Satisfying both back and forward dominator relations.
2/ Satisfying a back dominator relation.
3/ Satisfying a forward dominator relation.

The first class is handled by either the back dominator or
forward dominator technique. Preliminary investigation reveals
that similar numbers of common subexpressions may be elimi­
nated in the remaining two classes. Thus, introduction of this
new class of common subexpression optimizations significantly
increases the range of optimizations occurring.

30

Conclusion

A new technique is described for discovering and elimi­
nating a new class of common subexpressions. It is shown to be
as powerful as existing techniques for current classes of com­
mon subexpressions. An algorithm for the technique is discussed,
and has been implemented within an operational compiler.

Acknowledgement

The author wishes to acknowledge the work of Nádim Habra,
who implemented the forward dominator algorithm on the basis
of a preliminary description.

References

Ci: F.E.Allen and J.Cocke, Graph Theoretic Constructs for
Program Control Flow Analysis, IBM Research Report.

C 2 i J.Cocke and J .T .Schwartz , Programming Languages and
Their Compilers, New York University, 1969*

ИЗ: E.S.Lowry and C.W.Medlock, Object Code Optimization,
Communications of the ACM, Vol.12, Number 1, 1969-

CL: M.Schaefer, A Mathematical Theory of Global Program
Optimization, Prentice-Hall, 1973.

C 5□ P.B.Schneck and E.Angel, A Fortran to Fortran Optimising
Compiler, The Computer Journal, Vol.l6, Number L, 1973.

C 6 3 P.B.Sheridan, The Arithmetic Translator Compiler of the
IBM Fortran Automatic Coding System, Communications of '
the ACM, Vol.2, 1959.

31

FÓRNÁL DESCRIPTION OF SOFTWARE COMPONENTS BY STRUCTURED ABSTRACT MODELS
B.Dömölki, E.Sànta-Tôth /Mrs/

SZÁMKI Research Institute for
Applied Computer Sciences

/formerly INFELOR Systems Engineering Institute/
Budapest} Hungary

Abstract

Structured Abstract Model /SAM/ is a description of some
object in the form of a sequence of levels structured
according to the hierarchy of design decisions. Description
/or design/ of the object is given as an ordered set of "SAM-
forms", each describing in a well-defined structure one - or
several strongly connected - decisions, together with all their
consequences. Decisions appear in the form of the definition
of some of the concepts necessary to describe the object. This
definition is given in terms of primitive concepts, not to be
defined further on that level. Such a model can be verified
by giving on each SAM-form our assumptions about the primitive
concepts and proving the necessary properties of the concept/s/
to be defined on that level /provided that each assumption
will be proved on the level, where the concept will be
defined/.

Software components offer a class of objects very much
suitable for such type of formal descriptions. In the paper
the results of our three year research are reported, covering

- the investigation of methodological problems connected
with SAM-like descriptions, including the application of these
principles to develop a system to support program design and
implementation;

- descriptions of abstract models for real software

32

objects /like assemblers, editors etc./, aimed as a first step
towards creating a library of such models /"Software Encyclo­
pedia" /.

I ntroduction

In recent years there has been a great increase in the
number of application areas, methods and facilities in the
computer field and at the same time in the number of non­
professional programmers. This requires the development of a
new /user-/ software environment in which communication with
the computer is done not by programming in the traditional
sense only, but partly or wholly by giving the specifications
of the problem to be solved. The complexity of the specifi­
cations can be decreased by structuring them of our design
decisions, allowing the stepwise refinement of concepts. A
software system should be developed which allows its user to

- employ terms and concepts native to his own speciality,
- give non-procedural problem definitions by specifying

relations among these terms,
- use hierarchical problem specifications,
- verify his decisions on all levels.
Theoretical computer science has produced several important

results towards this goal in the fields of Mathematical Theory
of Computation, Artificial Intelligence, Programming Methodo­
logy etc. On the other hand, modern practical methods of
program design and implementation are beginning to be used
successfully at some software development enterprises. The gap
between theoretical research and practical results is a fact,
widely recognized in the literature.

The research outlined in this paper is aimed to take an
intermediate position between theory and practice, by studying
/describing, verifying, classifying, etc./ concrete software
objects with theoretically based abstract methods.

As a first step towards this goal we are interested in

33

finding methods for the formal description and verification of
abstract models of programs.These methods can be used to
develop a means of design and implementation which may help
achieve a more exact and efficient form of traditional program­
ming and which may also be a step in the transition toward the
kind of new problem specification and programming mentioned
above. With these methods it would be possible to describe and
discuss in a uniform manner the software elements occuring in
programming practice /assemblers, loaders, operating systems/.
The lack of such descriptions has been realized by the
designer and customer of the software product as well as by
the educator of programmers.

The purpose of this paper is to give an overview of the
research activity in this direction, initiated in our
institute* in 1973 and materialized in the internal research
reports and diploma thesises /written mostly in Hungarian/
listed in the Appendix.

In subsequent sections we shall give the definition of the
subject /section 1/, examine the questions of methodology
/section 2/ and give the results we have achieved so far in
the description of software elements /section 3/. Then we
shall summarize the application possibilities of the research
of abstract models /section 4/.

References to published papers will be given by author
and year of publication /e.g. CDijkstra, 723/, while internal
papers listed in the Appendix will be referred by number /e.g.
СЗЗ/.

* Research Institute for Applied Computer Sciences /formerly
INFELOR Systems Engineering Institute/, Budapest, Hungary

34

!• D e f i n i t i o n o f t h e s u b j e c t

The basic problem of the "Software Crisis" /CBoehm, 733/
is the difference between the order of magnitude of the
complexity level of the problems to be solved and that of
objects directly comprehensible to machines used in their
solution /see Fig.la./. The "complexity problems" stemming
from this difference can only be solved concurrently with the
development of programming methodology. This gap can be
bridged by introducing intermediate levels /see Fig.lb./. Here
- using Dijkstra's analogy of a "necklace, strung from
individual pearls" /CDijkstra, 723/ - each level /"pearl"/ in
effect defines an abstract machine in virtue of the primitive
concepts /i.e. operations and data structures/ used on that
level. Concepts occuring as primitives on higher levels can be
defined in terms of "programs" for this machine. The
"distance" between these levels - given that the definition of
the levels is good - ought to be as small as to preclude the
appearance of the complexity problems, Furthermore, exactly
specifying the primitives at all levels the correctness of the
link between the various levels can be ensured.

This actually means the following /see e.g. CDijkstra,
723/. If at any level you "cut" the necklace you can state: if
there is an abstract machine whose machine objects are the
primitive concepts unresolved above the cut, then the necklace
portion above the cut can be viewed as a program for this
machine /Fig.2, left side/.

Or looking at it in a little different, subsequently more
useful manner: let P denote the set of those primitives that
are referred to at levels above the cut, but are not defined
there. We can then say that the portion above the cut consists
of descriptions making use of the elements of P as primitive
concepts, while the part below the cut contains the elements
of p I see Fig.2 right side/. *

* D.Varga has pointed out the similarity of.these ideas to the
natural language description methods proposed by P.Sgall.

35

О <-... . ProblemY
gap

HI

Di j k s t r a ’s
"necklace,
strung from
individual
pearls"

objects directly-
comprehensible to
machines used in
above problem
solving

Fig.la The "complexity Fig.lb Dijkstra3 s dis-
problem solution of

complexity
problem

Fig.2 Possible interpretations
of Dijkstra* s pearls

descriptions
using a set of
primitives , P_

program for
an abstract
machine

definition of
this abstract
machine

descriptions
defining the
set of
primitives, P

36

In the top-down, structured view the problem solver starts
from the definition of the problem and continues by stepwise
refinement until the remaining primitive concepts are either

- known to some machine, in other words, these primitives
are implemented on the given machine, or

- the machine can synthesize them from the specifications
of the primitive concepts /i.e. from the requirements they are
expected to fulfil/.

In traditional programming systems the "intelligence" of
the machine materializes in the implementation of the concepts
of some programming language; in future machines a formal
description /which is "good" in the same /computer environments/
intelligence will manifest itself in the capability to
synthetize concepts from their specifications /thus programming
languages - as we understand them today - will become super­
fluous/ .

Our research aims at the development of the formal methods
of such a top-down, structured, verifying program design
description. Our first application of this method EDömölki,733
gives the description of an abstract assembler model. This
paper saws a possible solution of the problem, in linking three
known methods :

- starting from the descriptional method of VDL developed
by the Vienna Laboratories of IBM /[Lucas, 683, [Neuhold, 713
CLee, 72b3, [Wegner, 723/;

j- following the principles of Dijkstra's Structured Prog­
ramming /[Dijkstra, 70, 723, [Mills, 723/;

- applying the axiomatic program correctness verification
method proposed by Hoare /[Hoare, 69, 71a, 72a-b-c3/ to the
programming language defined by the two previous points; we
get a descriptional method which can be used to formally
describe the Structured Abstract Models ISAM-s/ of hierarchi­
cally ordered problem families in as much implementation and
machine independent manner as possible.

37

2. M e t h o d o l o g y

In the previous section the main ideas of SAM-research were
summarized. This research enables the development of an - in
some sense "good" - design and implementation method, and at
the same time allows us to give a formal description /which is
"good" in the same sense/ of software products. This section
deals with the methods that can be used to make such
descriptions.

The methodological goal of SAM-research is to establish a
means of problem elaboration that is top-down, abstract,
directed by a well-structured hierarchical order of decisions
and is verifiable.

We started with VDL which turned out to be a good abstract
description /design/ mechanism for compilers /see 3.3/.
Algorithm descriptions given in VDL were expanded with textual
and verification parts. The applicability of the method to the
description of problem families was tested on practical
problems /see C16 И/.

We shall now examine the questions of methodology of
description and verification of these models as well as the
basic features of a Software Support System for SAM-like
program design and some problems of the implementation of
programs designed in VDL.

2.1 Description of models

The design and implementation of complex objects /e.g.
computer programs/ is realized through a sequence of decisions.
Determining the correct order of these decisions and describing
their /immediate/ effects independent of one another can
greatly enhance the efficiency and lucidity of the design.

By a Structured Abstract Model /SAM/ we mean a description
of some object. This description has distinct levels according
to the decisions made during design; at each level one
/exceptionally more than one/ decision and all its immediate

38

consequences are described. Each decision means the definition
of a concept used in describing the object /e.g. in the case
of programs a procedure- or data-structure/. The definition is
made in terms of primitive concepts not defined further at the
given level. Thus at every SAM-level we must give

- a problem definition, which defines the task of this
level,

- a decision3 which is usually the de finition/s/ of a
concepts/s/ occuring as primitive at one of the previous
levels,

- a list of new concepts used as primitives in this
decision /definition/,

- the specification of the primitives /i.e. our hypotheses
about them/, and
if we are also interested in verification,

- an assertion giving the properties of the concept defined
on this level,

- some sort of proof /formal or not/ of the assertion as a
theorem. This may require the statement of further hypotheses
describing inter-statement relations: lemmas.

Thus the question, whether an object has a certain required
property /in case of programs their verification I can be
reduced to

- the proving of the assertions about the properties of
the concepts, to be performed independently for each level
/using the hypotheses about the primitives of that level/, and

- the examination of whether the various levels have been
properly combined that is to ensure that every specification
and lemma is proved as a corresponding assertion at a
subsequent level.

The concepts that are not defined at any level are called
primitives with respect to the whole model and hypotheses
applied to them are treated as axioms. /In case of programs
these primitives, which form the bottom-level, can be the
statements and standard procedures of the programming language
used./ There is no limitation, however, to how deep we go in a

39

given model in refining the concepts we view as primitives.
Thus models that are left "unfinished" at higher levels, in
virtue of leaving open a number of design or implementation
questions, determine a larger set, a family of concrete objects.
In this way it is possible to describe sets of concrete objects
ordered by design decisions.

While the above considerations define a rather strict
structure of the description, we do not want to impose any
limitation on the formalization of our language: any language
can be used which allows unambiguous determination of the
primitive concepts from the definitions.

Thus currently we give the description of our models in two
parallel languages. On each level we give

1. a textual, natural language description, and
2. a formal description /at present in VDL^/jSee Table 1.

Ad 1. The textual description discusses the question/s/
raised by the problem, using the textual definition of the
problem as a basis. Each question is followed by a list of
possible solutions, alternatives. This is followed by a
decision which constitutes the factor determining the role of
the SAM-level in the model. There may be several decisions
applicable to a question; in this case models with different
properties may be originated from the different decisions.
I Such model-families can be represented by a tree - an example
of this can be found in 11163. The nodes of this "tree-model"
are the questions /or problems/, its branches the selected
solutions based on the decisions. The latter generates the
model corresponding to the subgraph defined by them./

A decision is followed by its justification, perhaps an
explanation, and a list of consequences.

The correspondence between levels and decisions can be
either.
’ТГ ” — " "— ■ ' ■ — " ■--------The possibility to use some other abstract program

specification language instead of VDL is also considered,
including the new Vienna technique for the description of
semantics /see CBekic, 7^3 and С183/.

40

level

textual /informal/ part formal part /VDL/

eо•ri+i
Cl,VСиÇ)и<»45

- problem definition
(which concept/s/ will be
defined in this level)

- possibilities or
alternatives

- decisions and
consequences

- list of new (primitive)
concepts

- list of primitives
(which will be defined
in this level)

- (family of definitions)

- data- and procedure-
definitions

- list of new primitives

КО•ri+i<3о•ri'К•riС,О)

- specification:
hypotheses about the
primitive concepts

- assertions about concepts
defined on this level

- specification:
pre- and post-conditions
for the primitive
procedures

- theorems: pre- and
post-conditions for the
procedures defined on
this level

- informal considerations
about the validity of
the assertions (as
consequences of the
hypo the ses)

- formal proof of the
theorems

Table 1. SAM-"form"

41

a/ such that each level contains one decision /or several
decisions if they are strongly connected/, together with
all their consequences; or

b/ such that each level contains the definements of all
primitive concepts occuring on the immediately
preceeding level /e.g. as in THE operating system, see
CDijkstra, 6811.

There are no significant differences between these two
approaches, since each b-type level can be substituted by a
set of related а-type levels. For reasons of simplicity in the
following we will use levels in the sense of a/.

There may be several questions raised on a given level and
correspondingly several decisions, if these are connected in
some way.

In the specification section of the textual description
the primitive concepts occuring in the definitions /determined
by the decisions/ must be listed, together with hypotheses
about them /enumerating all the assumptions made about the
concept in the definitions/, and if we are verifying we must
prove the hypothesized properties of the concepts defined.

It is obvious that even if we examine only the above
mentioned textual, informal sections of the SAM-forms we shall
see a clear well-structured text; its reader can review the
steps of the problem solution - essentially - without mis­
understanding. That means, that if we organize the description
according to the structure and principles described above, the
"readability" and "structuredness" of our design can be
improved even without introducing any formal language. The
importance of this kind of description when several people are
working on a program design is equally obvious.

Ad 2 . On every level we also give a formal description in
VDL /using the extensions proposed by CLee, 12Ы/. This formal
description contains a VDL definition of the direct con­
sequences of the decisions made in the textual part in the

42

form of definitions /or refinements/ of some of the data
structures and procedures that occured as primitives at higher
levels. The formal description consists of data and procedure
definitions followed by a list of primitives used in these. An
important factor is that if we refine a data-structure on this
level then all of its accessing procedures should be refined
accordingly on the same level.

An important requirement of the two /formal and textual/
language variants of the description - both covering all
sections of the SAM-form - is that they should be related to
each other in the following sense: there should be a one-to-one
correspondance between the decisions of the textual section
and the data and procedure definitions; the list of primitives
should be comparable to the ones used in the textual description.

In the formal variant of the specification section we may
list the hypotheses about the primitives, i.e. the requirements
that the procedure primitives on this level are expected to
fulfil /pre- and post-conditions/. Again, there are no limi­
tations on the language of these requirements except those
already made for the text of this level i.e. the primitives
used in them should be comparable /or identical/ with the list
of primitives for this level.

2.2 Verification methods

If in the formal description of the SAM-form we gave the
specifications, then in the verification section these are
treated as hypotheses and the proofs of the assertions
/theorems/ about the properties of the procedures defined on
this level, are reduced to the proof of the hypotheses on
subsequent levels.

It is easy to see that in the general case in order to
prove theorem from the hypotheses some additional assumptions
might be needed about the interrelations of the primitive
concepts. These will be called verification conditions and
they will be treated as lemmas for the given level. In this

way in order to carry out the verification of all levels it is
necessary to generate /and prove/ the - preferably minimal -
verification conditions for each level and to handle the
"inter-level" references of the primitives with the help of a
cross-references list of primitives defined and used on the
various levels. Verification by hand is hard; the program
VERGEN /see C153, C22D and C 23□/ is the first step toward
automatising this.

In VERGEN procedure definitions are given in VDL, but the
language of the specifications, /i.e. pre- and post-conditions
for the procedures/ is not restricted. These can be arbitrary
texts /in accordance with the requirements of interactive
program design/; the important thing is that they describe the
requirements of the primitives /Ыаск-boxes/ with a precision
that corresponds to the given SAM-level. In order to generate
the verification conditions we must give together with the VDL
algorithms an appropriate system of axioms and rules of
inferences /see C73 and C223 / . The VERGEN program accepts a
two-component /algorithm description and requirement description
or specification/ language. During the processing of the
algorithmic definitions and the corresponding specifications
the system generates verification conditions for the procedures
/using a simple parameter correspondence scheme, see CGood,
703/. Assuming the trivial conditions proven, it prints the
others in a nice format "courteously" leaving room on the paper
for the proof /to be done - at present - by hand/.

In later versions of VERGEN, taking into account the user
requirements the following problems must be solved;

- definition of an algorithm description language more
suitable for design purposes,

- more aspects /e.g. typechecking of parameters in the
case of procedure-calls/ should be considered during
verification condition generation,

- development of a theorem-prover mechanism, which the
system can use to prove the non-trivial verification
conditions genrated by the system itself.

44

2.3 Program design

We described the process of SAM-preparation, showing that
the SAM-like problem elaboration oan be a method of the con-
oonstruotion /in a structured manner/ of provably correct,
well-structured program designs. Thus we have a method of
program design; a description prepared by using this method
can be easily and unambiguously read and understood.

A Software Support System can be developed to assist
program design by this method. The core of such a system can be
the above mentioned VERGEN program. Some other important
features of the system might be the following:

1. the above mentioned verification facility of the system
should be modifiable ; the user should be able to give
a "knowledge" base /in the form of axioms and deduction
rules/ which can be used by the system to prove more
complex verification conditions;

2. implementation of a query subsystem /described in C16□/
using as a data-base a SAM-description that is tree-
structured according to the members of some program
family /Software Encyclopedia, see section 3.1/. Using
this and the answers given by the designer for its
questions the system can traverse an appropriate path
in the tree while generating in a well-documented manner
the program family member requested by the user;

3. provision of an environment which can be used to examine
the behaviour, usefulness, optimality /in a given sense/,
etc. of a SAM-description of- any level using an
appropriate /abstract / test-bed generated from the
specifications.

In the definition of the features of a possible SAM Support
System we must keep in mind the basic requirement that a system
like this /i.e. one that is to be used as an aid in top-down,
structured, verifying program elaboration/ should communicate
with the user - at "design time" - at several levels.

A system like this - in view of the above - is envisaged
as being built around some /abstract/ language or machine at
the bottom level; assuming that its "abstract operations" have
already been proven correct.

Thus the task of the designer/implementor may now be
defined as one having to refine the problem definition /the

45

primary or original version/ using the above described means
until the bottom level of the refinement process is the bottom
level defined above, or a higher level which is algorithmically
known to the system and is proven correct. /Note that this
base-language can be viewed as the "Machine Oriented Language"
/MOL/ of an abstract machine./ This Support System will be
based on some sort of deduction mechanism to be used during
generating conditions. This system can be built in such a way
that it asks the user /who is in interactive communication
with it/ to prove the verification conditions generated by it
at the various levels of the description under examination. On
the other hand from the automated aspect of such a system we
would expect that it uses a theorem-proving subsystem to prove
the verification conditions, and it should only turn to the
user when it is in trouble.

2.4 Model implementation questions

So far we have shown the advantages of SAM-aided program
design. The previously mentioned Support System will help in
the implementation problems as well, and may perform such
additional tasks as the generation of test-beds for given run­
time environments.

The implementation of the abstract algorithms described
/currently/ in VDL would belong to the tasks of this Support
System. Using VDL as the language providing the abstract
description formalism there are the usual two ways to imple­
mentation: interpretation, and translation to an implemented
object language. In the former case we have immediate storage
bounds problems. Translation of VDL is not an easy task
either, since it is difficult, to find a usable /abstract/
object language that is implemented. Bridging the gap between
the abstract description and concrete data representation is
also problematic. We experimented with using CDL* for imple­
mentation purposes; CDL has a control structure that is
* Compiler Description Language CKoster, 713

46

similar to that of VDL. CDL versions of VDL algorithms can be
given relatively easily. Separate pre- and post-processors had
to be used to resolve the differences between the abstract and
concrete syntax. The following method has been successfully
used in writing compilers /VERGEN was also designed using this
method/;

- the abstract compiler written in VDL was translated
- almost mechanically - to CDL by hand, the required interface
was provided; in parallel with this

- the difference in the abstract and concrete levels was
resolved by doing the parsing and code-generation of the
compiler in CDL /omitting VDL completely/. The papers CIO:,
С ПИ and [12: give the VDL design of PASCAL and BCPL compilers;
the latter summarizes the experiences of implementing the VDL
design in CDL; .CDL output listings are provided.

Up to now we seperated design and implementation. The final
goal of both activities is the definition in some programming
language of the /proven correct/ algorithm of the solution of
the problem. The final solution of this problem would be the
expansion of the research into the area of automated problem
solving.

To summarize, the long-range goal of SAM-research is the
creation of such an automatic problem solving system in which
programming is done by problem specification. In the current
phase of the research we concentrate our efforts to develop
methods for giving "good" descriptions of SAM-s - and imple­
menting them - keeping in mind the requirements of further
development towards the direction of automated problem solving.

47

3. D e s c r i p t i o n o f s o f t w a r e e l e m e n t s

In the previous section we discussed the methodological
aspects of SAM-research; we shall now give an account of our
results in the application area, in the formal description of
software components.

First we shall outline our ideas about a "Sofware Encyclo­
pedia"; we shall then examine the SAM-description of an
abstract program production environment /this can be considered
as a chapter of the Encyclopedia/. Results concerning
description, design and implementation of compilers and other
applications will also be given.

3.1 Software Encyclopedia

The purpose of SAM-research is to develop a design and
implementation methodology which allows us to prepare hier­
archically ordered, general, abstract, verified models of
problem families. The Software Encyclopedia can be viewed as a
tree-structured graph of descriptions that correspond to forms
filled in as described in section 2; the nodes are these
descriptions and the branches are the possible solutions of
the problems described in the node they originate from. Thus
the Encyclopedia describing a problem family can be viewed as
an actual "family-tree", which is

- a description in which by choosing /by appropriate
decisions/ among the alternatives at the various levels a path
can be traversed in the tree; in other words the Encyclopedia
contains its own directions for use,

- starting from the first level, if during the above steps
we stop on some level, then the level-descriptions on the
traversed path give the description of an element of the
program family. This is a description /or program/ that uses
primitives which have remained undefined down to this level.
Now if there is an abstract machine which "understands" these

48

primitives, then we have an implemented version of the chosen
family member.

It should be emphasized that these are only ideas. It is
obvious that the use of a contemplated Encyclopedia - as a
handbook - has many advantages; in the construction of well-
documented, well-structured and proven correct program designs
as well as in evaluating the finished software product and in
teaching about software elements. This may make the Encyclo­
pedia useful for the designer and customer of the software
product, as well as for the educator teaching computer science.
For a detailed discussion of these application possibilities
see C 5 D.

The development of the descriptional tools of SAM-s will
happen in parallel with that of our long-range goal, the
Problem Solving System. Using the current set of tools /e.g.
VDL/ the experimental realization of chapters of the Software
Encyclopedia is currently in process at our institute. Results
to date are described in CDömölki, 73D, C7H, C8U, C9H, Cl6D,
С1 7], C 20 D and 1213. These give SAM-descriptions of elements
of the program production environment /e.g. assemblers/ and
other software elements; they will be summarized later in this
section.

3.2 Description of the elements of the
program-production environment

An /imaginary/ Software Encyclopedia describing a small-
computer environment used for traditional functions might be,
for the purposes of this paper, divided into three "volumes":

a/ the components interpreting or compiling higher-level
languages,

Ы the elements of a so-called program production
environment responsible for the conversion of some
programs written on a /macro/ assembly level language
to other programs that can be run by the operating
system,

с/ other software elements /the operating system, its
components such as a file management system, etc./.

The relation to machine-dependence of the above volumes is
not the same. The high-level languages - in volume a / - are
usually designed with machine-independence in mind. The
application of the SAM-method is more interesting in the case
of the other two volumes since presenting the common, general,

'implementation and machine-independent features of the elements
of these volumes may help to solve many problems /e.g. por­
tability/ .

With respect to volume b/ a survey of assemblers macro
assemblers and editors has been made in C23, together with a
VDL description of the corresponding software components of
some concrete machines (including IBM 360/370). The following
general - structured - models have been prepared so far: the
macro assembler /macro processing and assembly treated
separately/, the linkage editor, the loader and a tracing
system.

The first paper to be mentioned in this connection and
quoted already, CDömölki, 73U gives an Abstract Assembly Model.
This is a SAM-description of a general assembler /i.e. the
compiler semantics of a general assembler language/. Of
special interest is that this model shows the machine- and
implementation-independent aspects of /otherwise very machine-
dependent/ assemblers, thus elucidating the essence of these
programs /see also CVarga, 7ба1/.

The paper 19] gives a parallel description of a one- and
a two-pass assembler. This paper gives a more implementation-
dependent version of the Abstract Assembler Model introduced
in the previous paper /that is it can be used in an'actual
program design/. It also shows that it is possible to give SAM
that describes the various phases of assembler-level program
production at once /i.e. assembly, editing, loading/; that is
description of a program family can be given introducing the
phases as alternatives defined by appropriate possibilities.

50

Table 2. gives the description of several levels of the
assembler-SAM discussed in CDömölki, 73D and C9D, together
with an exposition of the problem to be solved and the cor­
responding decision made at each level.

The Macro Assembler Model described in C83 gives the macro
additions required for the two previous assembler models. This
paper, besides emphasizing the general and common character­
istics of small-computer macro assemblers, contains a good
description of all the features of the IBM 360/370 macro
assemblers in a suitably generalized form.

While the previous SAM is the description of a single,
general macro processor, Cl6 3 contains a description of a whole
family of /small-computer/ macro-assemblers, a tree-structured
SAM. The members of the family are not introduced with the
method of parallel levels seen in C9 3. As the alternatives
appear due to the design decisions, they live their independent
existence as branches of the decision tree. A common feature
they have - apart from the common ancestry - is that the prob­
lems /determining the characteristics of the levels which
appear/ obviously some will appear only with some alternatives.
There are four libraries, in the tree-structured macro
assembler SAM-description /the problems and possible solutions,
the VDL-instructions, the syntactic rules and the primitives/.
The designer references these libraries like a macro-call in
the various sections of the SAM-form; this saves a lot of re­
petition. The specifications of the procedure-primitives are
written in a form acceptable to the VERGEN program /see 2.2/.
This "chapter" of the Software Encyclopedia /dealing with macro
assemblers/ shows five levels of the family-tree describing
about 64 alternatives. Thus an interesting experiment is
described in this paper containing important lessons for the
future editors of the Software Encyclopedia in connection with
the enjoyable, readable /that is with computer supported/ SAM-
descriptions to be contained therein. Table 3. illustrates the
first pages of the "problems and possible solutions" library
of Cl63.

51

Table 2. First few levels of a SAM for
assemblers (problem, decision)

LEVEL PROBLEM

Basic structure of the A assembly module and
the assembler

DECISION

Assembly module consists of declarations an
program part. Program is processed first,
declarations - containing information about
external and entry names only - afterwards.

В Processing of
program part

the Program-part is a list of statements* to be
processed in a serial order.

c Three types of statements are used, in all
three an expression is computed and the
obtained value is either (1) assigned to a
name (assignment), or (2) given to the
location-counter (lc modification), or (3)
used to fill machine-words of the output
(<content-definition). In the last case the
value is adjusted to the previously given
length_, the result is inserted to the
output component BODY.

D Initialization of
expression evaluation

Before the actual computation of an expres­
sion takes place, it should be checked
whether all information needed for the com­
putation is available or not. This check
means a pre-processing of the expression
and its result is used both by the actual
calculation of the expression or by the
composition of an undefined-indication,
containing all information for the post­
poned computation of the expression, when
it becomes defined.

E-H Handling of - possibly
postdefined - names

Values assigned to names are stored in an
dictionary. A name may occur is in expres­
sion before a value is assigned to that
name and this can be the reason of the ex­
pression being undefined. In such cases the
undefined-indications, obtained as the
result of the computation of the expression,
are stored instead of the corresponding
values and references are set up in the
dictionary to point from the undefined
names to the corresponding undefined-indi­
cations. When a value is assigned to a name,
these references are resolved.

Types of statement and
their processing

52

LEVEL PROBLEM DECISION

I Calculation of the
value of expressions

Expressions are constructed from names,
constants and location-counter values by
infix operators. Calculation of the expres­
sion is defined recursively.

N Structure of the
dictionary

Dictionary is a set of dictionary-items
selected by names. Each item has value and
reference components.

0 Structure of the
output component
(BODY)

BODY is a list of body-values; i.e. values
(addresses, consisting of a base and
displacement, or numerical values), lc-di-
rectives or undefined-contents.

53

Tobte 3. First pages of the "problem and
possible solutions" library of
SAM-tree for macro assembler

NUMB. PROBLEM
— ----1

POSSIBILITIES

1. In which phases of
program production
is it useful to
apply the textual
substitution pro­
vided by macro
facilites?

1. Before lexical analysis
2. During syntax analysis
3. During object code generation
4. During linking
5. At load time

2. What is the (assembly
level) syntactic unit
which will be
produced after the
text substitution?

1. One or more assembly lines which represent
a higher level syntactic unit (e.g. decla­
ration part)

2. A block which can be empty or can contain
one or more assembly lines; in the latter
case these form a syntactic unit

3. A component of a single assembly line (e.g.
label)

3. Determination of the
relationship of
macrogenerator and
assembler

1. The macrogenerator knows the history of the
assembly to this point; during substitution
it can use knowledge about the low level
syntactic units of the assembler language
(e.g. attributes of identifiers), it has
access to the assembler’s tables

2. The macrogenerator has only limited
knowledge about the syntax of the assembler
language i.e. that it consists of lines and
so the expander itself has to generate
lines. The macro operations and the
assembly are separable both logically and
in time

4. Definition of the
basic syntactic cha­
racter of the source
text

1. The source text is a list of records
2. The source text is a list of characters

5. Besides explicit
macro-calls are
implicit macro-calls
to be allowed?

1. Yes; macro-calls are generated during the
processing of the source text based on the
built in knowledge of the macroassembler

2. Only explicit and positionally fixed macro­
calls are allowed

3. Explicit but positionally independent (i.e.
condition dependent) macro-calls are
allowed

54

NUMB. PROBLEM POSSIBILITIES

4. A combination of 1. and 3.: some (e.g.
standard) macros are expanded according to
general rules, others are positional

6, The syntax of macro­
calls is fixed or it
can change

1 . Fixed
2. It can change (see extensible languages)

7. The character of the
syntax of macro­
calls

1 . Explicit
2. Implicit
3. Combination of 1. and 2.

8. Does the assembler
or the macrogenerator
have priority in the
analysis of the
higher level syntac­
tic units of the
source text?

1. Assembler has priority
2. Macrogenerator has priority
3. Strategies I., and 2. can be switched ac­

cording to text context or special
directives

55

The paper C17D contains the SAM-description that is so far
the most "readable"? it is the detailed elaboration of a
single alternative of a general program-tracing system, such
that the textual and the VDL-based algorithm descriptions are
readable and understandable on a standalone basis; as well as
being nicely complementary and explanatory of each other when
read together.

Table 4. is a brief summary of the problem and decision
sections of the informal part of the first levels of [173. In
the model levels D-J introduce the /user/ commands used to
initiate the required trace; we only give the refinement of
the "trap handling" commands introduced on level E.

There are several other papers in preparation in this area.
We refer here to [213 /under publication/ which describes a
general structured abstract model of the program production
environment.

3.3 Description, design and implementation
of compilers

This section reports on our results concerning the formal
description of higher-level languages and their compilers. As
mentioned before, our starting point in the formal description
of SAM-s was VDL, which was originally designed for the formal
description of semantics programming languages. The first
practical applications for the definition of the abstract
semantics of PL/I, ALGOL 60 and BASIC are well known. At our
institute we first used VDL to give the interpretive semantics
of APL, see [13. Of special interest in this paper is the fact
that it emphasizes the interactive features of an APL system,
our first effort of this kind of application.

The paper С 6□ in the description of the compiler of a very
simple language3 based on [McCarthy, 6 7 3 , where the design is
proven correct. The notation of the abstract compiler is de­
fined; it is a VDL abstract machine which translates the
objects satisfying the abstract syntax of the source language

56

Fig. 4 First few levels of a SAM for tracing
system (problem, decision)

LEVEL PROBLEM DECISION

A Definition of the
basic structure of
the program to be
traced; definition
of the main steps
of tracing.

The two input components of tracing are: the
program to be traced and the commands speci­
fying the (kind of) trace. The trace consists
of an initialization activity and the execu­
tion of the program one instruction at a time.
Some of the instructions of the program are so
called trap instructions; the execution of one
of these is interpreted as the insertion of a
tracing step. Other instructions are left un­
defined for the purposes of this model.

В Definition of the
format of user
commands.

The commands form command-gropus. Both the
initialization activity and the tracing step
mean the execution of given command-groups.

C What is the struc­
ture of a command-
group?
How should a com­
mand-group be
interpreted?

A command-group is a list of commands; one of
these must be a special "return" command. The
execution of a command-group means the execu­
tion of the individual commands in sequence
until a return command is reached. The in­
terpretation of an individual command should
consist of the execution of some sort of
tracing activity and the selection of the next
command to be interpreted.

D What kinds of com­
mands do we need?
How should these be
interpreted?

A command requesting information about the
current status of the running program, trap­
handling commands, control-sequencing commands
which allow the modification of the order of
execution of the commands, an inquiry command
which allows the examination of the current
program status, an end command specifying
program termination, a newcommand command
which allows modification of commands "on the
fly" are allowed in the model.

E Definition of the
interpretation of
the traphandling
commands.

The trap-handler commands can be trap-estab­
lishment or trap-removal commands; these will
specify a program address (using some sort of
address definition) and a command-group. The
trap-establishment command is interpreted as
placing a trap at the given address and
establishing a correspondence between the
address and the command-group; the trap-

57

LEVEL PROBLEM DECISION

removal command is interpreted as the
destruction of the above correspondence and the
removal of the trap (if necessary).

F-J ••• •

К What do we mean by
trap-establishment
and trap-removal?

Trap-establishment means that the instruction
at the given program address is exchanged for a
trap instruction, provided that a trap was not
previously placed here, and the original in­
struction at the address is recorded. A trap is
removed if all command-group correspondences
with this address are desolved; in this case
the original instruction is replaced at the
given address.

L How is a corres­
pondence established
between an address
and a command-group
and how is such a
correspondence
desolved?

When a correspondence is established between
a command-group and a given address the com­
mand-group is recorded with respect to the
given address in such a way that a given com­
mand-group’s correspondence to a given address
be maintained uniquely even after several
requests for the establishment of the same cor­
respondence. Now the removal of the corres­
pondence can be achieved by the removal of the
single record of the given relation.

M What is meant by
the address defi­
nition mentioned
on level E?

The address definition given in trap-handling
commands can be an address or an address re­
ference which in a given state of tracing de­
fines an address; of these the model allows for
the use of the address of the next instruction
to be executed, the current address, the start
address of the program and in case of sub­
routine calls the return address.

58

into objects satisfying that of the target language. We can say
it is the plan of the concrete compiler and it can deal with
the semantics of the source language without taking into account
details of syntax. Assuming that the interpretive /abstract/
semantics of the source and object language are given, the
correctness of the compiler written in VDL can be proved by
showing the equivalence of the interpretive and compiler se­
mantics of the two languages. This is illustrated in Fig.3.

object satisfying
the abstract syntax■
of source language

abstract
compiler

object satisfying
the abstract syntax
of target language

abstract interpreter
for the source

languageTresult result
A

abstract interpreter
for the target

language

the equivalence /in some
sense/ of these results

must be proven

Fig.3: Equivalence of the interpretive-
and compiler-*semantics of languages

The abstract compiler mentioned above constitutes the core
of a compiler construction method. According to this method
the production process consists of two phases. The first phase
separates into three independent activities :

i/ implementation of the lexical analyzer
/scanner/

ii/ implementation of syntax analyzer /parser/
iii/ definition of the abstract compiler.

59

Since these activities are essentially independent they
can be carried out and verified in parallel. You can verify
formally (e.g. in the case of iii/ as described earlier), in­
formally or by testing (e.g. in the case of i/ or ii/ if you
have no better tools).

In the second phase of the construction process the "only"
task is to put together the scanner and the parser and to
"decorate" it with semantic actions which are a concrete rea­
lization of the abstract compiler. The places of the insertions
are presented by the abstract compiler as well. It was found
that using VDL as a definition language for the abstract com­
piler and CDL as an implementation language makes this process
quite mechanical. Since the elements to be linked together are
already proved to be correct, it is much easier to verify the
whole concrete compiler.

The method described above has been used in several proj­
ects. A two-pass BCPL compiler was written. The experiments of
this method in this project are analysed in [1211. The abstract
compiler for PASCAL in shown in CIOD and CUD. A BASIC inter­
preter is under development using CLee, 72aD ’ definition of
BASIC in VDL. In Cl8D we shall try to construct a new descrip­

tion for BASIC using the new definition method proposed by
the Vienna Laboratories in 1974 /see CBekic, 72D/. In all these
projects the design is in VDL, the implementation in CDL.

3.4 Description of other programs

Of other applications we mention a description of the FIND
program, introduced in CHoare, 71tD. In С7Э a structured VDL
version of this program is used to illustrate the axioms and
inference rules introduced for VDL in the same paper. A summary
of the definitions and specifications of the VDL procedures for
FIND is given in Table 5. /where □ stands for PASS, ~ stands
for "is a permutation of" and the variables p and q are always
bounded by a universal quantifier. Some procedures have two

I
0V£>
1

, \

0

Ó
-Ю
о

-о
о

->ö

PRE DEF POST
l<f<length(A) find(A,f)=reduce(A,f,1,length(A)) (l<p<f<q<length(A)Da^<pf<_П)AD~A

P(A,f,m,n) =
(l<p<m<r<n<q <length(A)̂ >Â <Ar<Â)
Am<f<n

reduce(A,f,m,n)=
m<n ■+ reduce(vec(x) ,f, lb(x) ,

ub(x));
x:order(A,f,m,n)

T -> PASS:A

P(D,f,f,f)AQ.A

P(A,f,m,n) order(A,f,m,n)=ord(A,f,m,m,n,n,A^) P(vec(n) , f ,1b (a) ,ub(a))Avec(a)'~'A
R(A,f,m,g,h,n,s) =

(m£p<gOA^<s)
A (h<q<nos <Â)
A P(A,f ,m,n)

ord(A,f,m,g,h,n,s)=
continue(B,f,m,i,j,n,s);
В : change(A,i,j);
i:up(A,g,s),
j:down(A,h,s)

P (vec (□) , f, lb (□) , ub (P))Avec (Q) '"A

(i_̂j r)R(B,f ,m,i+l,j-1,n,s))
A(j<i=3R(B,f ,m,i, j ,n,s))

continue(B,f,m,i,j,n,s)=
i<j "+ ord(B,f,m,i+1,j-1,n,s)
i<f -+ PASS:y0(<vec:B>,<lb:i>,

<ub:n>)
f<j •+ PASS:y (<vec:B>,<lb:m>,

°<ub:j>)
T ■+ PASS:У (<vec:B>,<lb:f>,

°<ub:f>)

P(vec(□),f,lb(o),ub(n))Avec(D)^B

■t(A,f,m, i,j,n,s)A Aj<_s<Â change(A,i,j)=
PASS: y(A;<elem(i):elem(j,A)>,

<elem(j):elem(i,A)>)
(i<j=>R(D,f ,m, i+1, j-1 ,n, s)) A
(j<i=>R(a,f ,m,i,j,n,s))

1 <.i, j <Llength (A) 0.=A.Ad .=A. A (p^iAp^jDOp=A)i j j i r r J r p
R(A,f,m,g,h,n,s) up(A,g,s)=

A <s -> up(A,g+l,s)
g T ■> PASS:g

R(A,f,m,D,h,n,s)As<An
m<p<groÂ <_s (m<p<DDA^s) A s<AQ
R(A,f,m,g,h,n,s) down(A,h,s)=

s<A, -*■ down(A,h-l,s)
T h PASS:h

R(A,f ,m,g,0,n,s) A AQ<s
h<p<n Z D s<A - - p (□<p<n Z D s<Ap) A Aj-ĵ s

Table 5. VDL definitions and procedure specifications for FIND

61

pairs of PRE- and POST-conditions as specification, in such
cases the upper one is the assumption used at the place where
the procedure is called, while the lower one is a theorem,
which can be proved from the definition, and implies the
assumption/.

The verification conditions for this description generated
by VERGEN can be found in Е1 5]. This paper describes a few
levels of VERGEN itself illustrated by the listing generated by
VERGEN for these levels.

The [20] paper gives a possible SAM-desoription of a general
small-eomputer file management system. A brief summary of the
problems and definitions section of the first levels of this
model is given is Table 6 .

We are also planning the preparation of the SAM-s of
several other operating system components. This is partly to
satisfy the experimental requirements of the methodology
research, partly to continue with the development of the
Software Encyclopedia itself.

62

Table 6. First few levels of a SAM for
file-management system (problem,
decision)

LEVEL PROBLEM DECISION

cC The definition of the
basic structure of
the system executing
the user programs and
the definition of the
basic structure of
the program to be
executed.

Some of the program’s instructions are spe­
cial file-handling instructions. The system
executes the program instruction by in­
struction until a stop instruction is
reached. The model will only consider the
file-handling instructions.

A Definition of the es­
sential structure of
files; the main steps
of grouping and in­
terpreting file­
handling commands.

A file consists of two parts: the header
which contains information about the file
as an organized unit of data, and the body
which Contains the user data proper. The
file-handling instructions are of two kinds:
preparation /administration/ instructions
and data-handling instructions which oper­
ate on the header and the body respectively,
The interpretation of the file-handling
commands consists of a /security/
validation and depending on the result of
this execution of the required action or
the generation of an error report.

В What is the vali­
dation condition
required for the in­
terpretation of
file-handling in­
structions?

Every file has a corresponding file de­
scription table which the system uses to
record the current status of the file
during processing. The table contains an
opening flag which indicates that a given
file at a given time is ready or not for
processing. Examination of this flag is the
validation step. Data-handling instruction
may only be executed when the file is open;
the preparation instructions OPEN only when
the file is closed, the instruction CLOSE
only when the file is open.

C Definition of the
structure of the body
of the file and of
the unit of data
accessible by the
data-handling in­
structions .

The file consists of records /logically
connected units which are moved together/.
The data-handling instructions manipulating
records. These consist of a secondary va­
lidation, the required manipulation or the
generation of an error report. There are
four types of data-handling instructions
/READ, WRITE, REWRITE, DELETE/. The

63

LEVEL PROBLEM DECISION

secondary validation checks whether the
required operation can be performed at the
given time.

D The main stops of
performing the indi­
vidual record ope­
rations .

The record operations are performed by the
system in three main steps: It determines
the position of the required record it checks
the record, and depending on the result of
the check it performs the required transput
or transfers control to a predetermined con­
tinuation address. The condition of the
transput in the case of the WRITE instruc­
tion is that the required record be not in
the file, in the other cases that it should
be there.

E How is the transput
of the record
actually performed?

Within the file the records form blocks,
these are the units of physical data trans­
mission. During the transput of a record the
block containing the record is transmitted
first, if required /this is performed by
physical file-handling routines/, the actual
operation is then performed on the record as
it resides within the block.

F
1
■I

How is the file cons­
tructed from records,
how are the records
handled?

The model provides for three types of file
organization; sequential, relative and
indexed-sequential. Two types of file-access
are treated: sequential and random. In the
several different combinations the record
position is determined in a different manner
and some of the administrative actions are
performed differently.

J Determination of the
main tasks of the
preparation instruc­
tions .

The OPEN instruction provides permission to
process the file in the manner supplied by
the opening mode /input, output or update/.
During the interpretation of the instruction
the system checks whether the opening mode
is compatible with the information in the
file description table and the file header;
if so the opening flag is set "FALSE", thus
no other processing can be performed on the
file until the next OPEN instruction.

К What are the secondary
validation conditions
of the interpretation
of the data-handling
instructions?

The secondary validation applies to whether
the operation type of the instruction and
the access mode is compatible with the
opening mode and the file organization

64

Ц. A p p l i c a t i o n p o s s i b i l i t i e s

The paper has presented a set of formal tools for specifi­
cation, design and implementation of software objects.

The method of Structured Abstract Models enables the pro­
grammer to describe the general and abstract features of pro­
grams and to develop a whole family of programs in a top-down
and verified manner. The data structures and algorithms are to
be presented in an abstract program specification language.

Using the method of Structured Abstract Models - restric­
ting our objects to programs, software elements - it is pos­
sible

- to work out a design and implementation methodology
which in compliance with the rules of top-down, structured
problem solving, is based on the determination of the hier­
archical order of decisions, and allows verification, to be
carried out in parallel with this;

- to give a formal description of software products which
can show the appropriate concrete /or perhaps only hypothet­
ical, unimplemented/ software products ordered by the decision
hierarchy defined by the user's order of priorities.

Finally let us review in which phases of software produc­
tion we may use our models of software components :

- in the evaluation of a given product /to help customers
to choose from several alternatives/;

- in the specifications /problem definition/ of a new
product;

- in the preparation of a verifiably correct design plan,
and

- during the implementation of a well-documented, error-
free product.

We should also mention the advantages of a clear, well-

65

structured description /i.e. SAM/ of the functions of the
computer operator as an example of a non-software product
application of SAM-s.

The educational importance of the method must also be
noted; the possibilities to use models of problem families
/"Software Encyclopedia"/ in teaching should be exploited. We
should also note that our universities in recent years have in
fact started to utilize this possibility; CVarga, 7ба-Ъ1] are
good examples of this.

Acknowledgement

The research reported in this paper was supported by the
Hungarian National Bureau for Computer Applications. The
authors gratefully acknowledge the help they received from
Zs.Farkas and T.Langer in writing some parts of the paper.
They, together with J.Aszalós and I.Siklósi formed the core of
the team engaged in this research. Valuable help was received
from P.Köves in preparing the English text.

66

References.

CBekic, 7^3

CBoehm, 733

CChang, 733

CDijkstra, 683

CDijkstra, 703

CDijkstra, 723

CDömölki, 733

C G o o d , 703

H.Bekic, D.Bjorner, W.Henhapl,
C.B.Jones, P.Lucas:
A Formal Definition of a PL/I Subset
IBM Lab. Vienna, 197U. T R . 25-139.

В .W .Boehm :
Software and Its Impact:
a Quantitative Assessment
Datamation, May, 1973- p p . U8-59-

Chin-Liang Chang, Richard Char-Ting Lee:
Symbolic Logic and Mechanical Theorem
Proving
Academic Press, 1973- New-York

E .W .Di j kst ra :
The Structure of T.H.E. Multiprogramming
System
Comm.ACM. Vol.ll, No . 5 » May, 1968. p p .
3U I - 3U6 .

E .W .Di j k s t r a :
Structured Programming
Software engineering techniques,
J.N.Buxton and Randell /Eds/.
NATO Scientific Affairs Division,
Brussels, Belgium 1970, p p .8H-8 8 .
E *W.Dij k s t r a :
Notes on Structured Programming
APIC Studies in Data Processing N0 .8 ,
Academic Press, 1972. p p . 1-82.

В .D ö m ö l k i :
On the Formal Definition of Assembly
Languages
Symposium and Summer School on the
Mathematical Foundations of Computer
Science
High T a t r a s , Czechoslovakia,
Sept, 1973. pp. 27-39.

D .Good :
Toward a Man-Machine System for Proving
Program Correctness
The Univ. of Wisconsin, Philadelphia,
I97O. 7О-7 2 , 05З. /P h .D . thesis/

67

C Hoare , 69 3 C . A .R .H o a r e :
An Axiomatic Basis of Cpmputer
Programming
ACM Vol.12, No.10, October, 1969•
pp.576- 583.

CHoare, 71a] C .A .R .H o a r e :
Procedures and Parameters: an Axiomatic
Approach
Symposium on the Semantics of Algorithmic
Languages
Bérlin-Heidelberg-New-York
Springer, 1971» p p . 101-117•

C H o a r e , 71b] C .A .R .H o a r e :
Proof of a Program: FIND
ACM, V0I. I5 , No.l, January, 1971-
p p .39-^5•

CHoare, 72a] C.A.R.Hoare, M.Clint:
Program Proving: Jumps and Functions
Acta Informatica, 1972.1, p p . 2 l h - 2 2 b .

CHoare, 72b] C . A .R .H o a r e :
Proof of Correctness of Data Represen­
tation
Acta Informatica, 1972.1, pp.271-281.

CHoare, 72c] C .A .R .H o a r e :
Prospects for a Better Programming
Language
INFOTECH State of the Art Lectures on
Programming Languages,
1972. London, p p . 327-3^3.

CKoster, 71] C .H .A .Koster:
A Compiler Compiler
MR 127/71, Mathematics Centrum,
Amsterdam.

C L u c a s , 68] Lucas P., Laure P., Stigleitner H.:
Method and Notation for the Formal
Definition of Programming Languages
IBM Lab.Vienna, 1 9 6 8 . TR 25087.

CLee, 72a] J ohn A .N. Lee :
The Formal Definition of the BASIC
Language
The Computer Journal, Vol.15* No.l,
pp. 3 7 - b l .

C L e e , 72b] J ohn A .N. Lee :
Computer Semantics
Van Nostrand Reinhold Co., 1972.

68

CMcCarthy, 67 З McCarthy J., Painter J.A.:
Correctness of a Compiler for Arithmetic
Expressions
Proceedings of a Symposium in Applied
Mathematics, 19» Mathematical Aspects of
Computer Science, p p . 33-*+l.
/ed.Schwartz J.T.-. Providence,
Rhode Island: American Mathematical
Society

[Mills, 723 Harlan, D.Mills:
Mathematical Foundations for Structured
Programming
International Business Machines
Corporation, Gaithersburg, Maryland, 1972

[Neuhold, 713 E .J .Ne u h o l d :
The Formal Description of Programming
Languages
IBM System Journal 1971» 2. pp.86-112.

[Varga, 76a] L .Varga :
The Abstractions of Machine Dependent
Program Forms
KFKI-76-II, Budapest, 1976.

[Varga, 7бЪЗ L.Varga:
The VDL Graph
KFKI-76-28 , Budapest, 1976.

[Wegner, 723 P.Wegner :
The Vienna Definition Language
ACM. Computing Surveys, Vol.U, No.l,
1972 .March, p p . 5-6З.

69

APPENDIX/ LIST OF INTERNAL PAPERS/ 1975~76
/in Hungarian/

Ell T .Langer :
The Formal Description of APL by Using Vienna
Definition Language
Budapest, 1973. Inf. 1080/72.

C 21 E .Sánta :
Assembly Languages and Assemblers /Survey/
Budapest, 1973.Inf. 1101/73.

C31 В .D ömölki:
Structured Abstract Models /in English/
Budapest , 1973.

E *(1 B.Dömölki, E.Sánta:
Some Aspects of the Foundation of Computer
Science
SAM-I. Introduction
Budapest, 197*+. Inf. 1368/7*+

dől B.Dömölki, E.Sánta:
Structured Abstract Models -SAM- and their Use
SAM-I. Chapter 1.
Budapest, 197*+. Inf. 1368/7*+-

E 61 T .Langer :
Structured Abstract Compiler as a Tool for
Verified Compiler Planning
SAM-I. Chapter 2.
Budapest, 197*+. Inf. 1368/7*+.

' C 71 I.Siklósi:
Verification of VDL Programs
SAM-I. Chapter 3.
Budapest, 197*+. Inf. 1368/7*+.

E 81 J.Aszalós:
Structured Abstract Macroassembler Model
SAM-II. Chapter 1.
Budapest, 197*+. Inf. 1 *+ 3 3 / 7 *+.

E 9 3 E .Sánta :
Structured Abstract Assembler Model
SAM-II. Chapter 2.
Budapest, 197*+. Inf. l*+33/7*+.

C101 S . Bárány :
Compilation of PASCAL Statements
Diploma Thesis, Budapest, 1975-Inf. l*+77/75.

70

mi:

m2:

[13]

m U:

C1 5 :

ci6:

C17:

ci8:

C1 9 :

его:

Ë .J a n n i :
The Universal Compiler-Compilation of PASCAL
Express ion
Diploma Thesis, Budapest, 1975- Inf. 1^76/75-

T .Langer :
Lessons of a Methodological Experiment /А BCPL
Compiler Planning in VDL and Implementing in CDL/
Budapest, 1975-
Inf. 1U98/1975.
J .Bankf a l v i :
Symbolic Logic and Automatic Theorem Proving
SAM-III. Volume 1. Chapter 1.
Budapest, 1975- Inf. 1525/75-

I .Sain :
Model Theory and Automatic Theorem Proving
SAM-III.Volume 1. Chapter 2.
Budapest, 1975- Inf. 1525/75-

I . Siklósi :
Description of Program Verification Condition
Generator, VERGEN
SAM-III. Volume 2.
Budapest, 1975- Inf. 156U/75-

J. As zalos:
Family of Structured Abstract Models for
Macroassemblers
SAM-III. Volume 3-
Budapest, 1976. Inf. 1555/75-

Z s .Farkas :
Structured Abstract Model for Trace System
SAM-III. Volume U .
Budapest, 1975- Inf. 1557/75-

L .Verbovs z k i :
A New Method for the Description the Semantics
of Programming Languages and its Application in the
Case of BASIC
Diploma Thesis, Budapest, 1976. SZÄMKI 1592/76.

J .As zalos:
An Overview of Structured Programming
Techniques
S A M - I V . Volume 2.
Budapest, 1976. /forthcoming/

G .S z e n d i :
Structured Abstract Model for File Management
System
SAM-IV. Volume 1., Budapest, 1976. SZÂMKI 1635/76.

71

Г 213

С 22 D

С233

B.Dömölki, Zs.Farkas, E.Sánta:
Structured Abstract Models for Program
Production Environment
SAM-IV. Volume 3. /forthcoming/

I .Siklósi :
Proving of Structured Abstract Programs /SAM-s/
Diploma Thesis, Budapest, 1976.SZÂMKI 1589/76 .
К .Krasnyánsz k i :
Methods of Program Proving
Verification of VDL Programs.
Diploma Thesis, Szeged, 1976.

73

Ш Ж М Л Е Ш Ш ! NC I PIES A CASE STUDY OF Ш 1 Г О SELECTION IN CODD-ICRA CELLULAR SPACE
Part One:

T o o l s P r e p a r a t i o n s

G. Fay

CSM HTG

Budapest3 Hungary

C h a p t e r 0.

SUMMARY

A cellular automaton has been designed in CODD-ICRA space
for the selection of the maximal number out of a given set of
positive integers. The maximum selecting cellular automaton
is called MAXEL. It consists of кx£ modules arranged by к rows
and £ columns, where к is the number of bits of the £ numbers
out of which the maximal one is to be selected.

A MAXEL module takes roughly 40x50 cells /strictly 34x49/,
the whole MAXEL takes somewhat more than 40£x50k cells for a
frame, of about 10 cells in width, necessary for the integra­
tion of the modules. So the size of MAXEL is approximately
/depending on some eventual newer minor design tricks/:

(40£+20) X (50k+20) cells.

74

MAXEL's operation is two-staged. At the first stage the
machine is set by the data to become a filter /a selective
absorber/ permitting only the maximal number to go, at the
second stage. At the end of the first stage MAXEL sends a
signal that can trigger the peripherials to dump the data on
the MAXEL.

The throughput is:

£ number _ £ record _ _____£ byte
200k shot 200 shot 8x200 shot

£ bit = -i- byte = £ record and к record = £ number
О

The mode of operation of MAXEL is parallel.
Data are loaded parallelwise into the device, £ numbers

simultaneously. Both stages take /about/ look shots. By way
of illustration we take the following /today already feasible/
data : -
size of a cell: 1 mm2
Cycle time of a cell: 1 microsecond /= 1 Shot/
number of numbers: £ = 256
number of bits : к = 50

Then :
- The construction time of the device, i.e. the time

during which the complete device can be written into
the cellular space, is: less than 15 seconds.

- MAXEL's throughput selection speed/:
160 Kbyte/sec = 5000 records/sec = 25000 number/sec

- The size of the necessary cellular space is 20 m2

The design could have been augmented both in space and
time by a few percents. Such a tight design, however, would
paralyse the studies aimed at developing newer transition
functions.

In the paper some new concepts have been introduced that
seem to be suitable for relational data processing. There are

75

35 references, 27 tables and 25 figures.

A C K N OWL EDGEM ENT

This work has been motivated by D.V.Takács's doctoral
thesis CTAKÁCS, 1 9 7 5 З done during her fellowship in UER de
Mathématiques, Logique Formelle et Informatique Sorbonne V. ,
Université René Descartes, under the leadership to Professeur
J.RIGUET. I am greately indebted to her and to Prof.RIGUET
for his drawing my attention to the problem and to her help­
fulness and kindness. Also, my thanks are due to the whole
ICRA TEAM whose members are too numerous to be listed here.
I am grateful to my ex-institute KGM ISzSzI where all the
tehnical aids have been ensured concerning preparation of
the manuscript.

Chapter L

INTRODUCTION

The relation between constructing and designing automata
by automata is somewhat similar to that of a chisel and the
sculptor. If we want to take seriously the term "constructing
automata by automata" in the era of artificial intelligence
then we have to carry out researches in design aids, acces­
sories, equipments and techniques that can be acquired by
automata themselves.

No doubt, self-reproducing automata can be constructed
since von Neumann /1966/ and Codd /1968/ but their design is,
of course, outside their range.

If we study the designs of cellular automata /the only
candidates for self-designing automata/ we can easily realize
that a considerable part of the associated treadmill work
offers itself to be computerized. Tracing the signals along
paths /we mean Codd's automata/, checking their escaping the

76

latches, avoiding collisions, unduly replications etc. are
quite mechanical activities. However, they are not to be con­
fused with computer simulation of cellular automata. Perhaps
it is "computerized cellular automata design" what we are
talking about. Of course, to design cellular automata by tra­
ditional computer is tolerable only at the beginning. At a
later stage, one hopes, cellular automata can be taught not
only to be constructed /i.e. to make a copy of/ but also to
be designed by each other.

In this report I would like to display some of the mecha­
nizable design aids that can be performed by cellular automata
of the CODD-ICRA type. Design work takes quite a lot of data
processing. Now it turned out, that the data - mostly con­
cerned with the events taking place within the device to be
designed - are arranging themselves into a relational form.
Relational data processing technique has been invented by
Codd /1970/ and /1971/. Readers familiar with this just have
a look at the tables in our report /in chapters 9 and 10/
listing all the data crucial to judge the operation of a
cellular device. It will be quite obvious then, that those
data cry for the data processing language DSL ALPHA.

After all, cellular automata design is, in essence, the
inference from given functions to structures to be constructed
And these inferences can get a great deal of help from a lan­
guage so effective as DSL ALPHA.

This is the idea behind our report that is supposed to be
a bit more than a mere design manual for a manual design. A
number of new concepts have been introduced, concerning de­
sign, suggested for further refinements, and checked by the
case study of a particular device design, a maximum selector.

In addition to this endeauvor for "automating cellular
automata design" we believe that the concepts suitable for
relational data processing will help the study of design cor­
rectness. In traditional computer science new theories are
developing concerning program correctness proof. /See eg.Hoare
1969/. There is - to my knowledge - no technique, whatever,

77

concerning design correctness proof of cellular machines. Simu­
lation is, of course, no proof for correctness /or incor­
rectness/ because it does not tell reasons for phenomena.

Fortunately, there is already a bridge between Codd's
cellular automata and Codd's relational data processing tech­
nique, due to Fay /1974/.

The paper is divided into two parts. The present first
part is devoted to preparatory purposes so, here in the intro­
duction, they can be avoided. The second part demonstrates the
application of some recently introduced design concepts along
the case study of the detailed design of a maximum selector.
This whole paper intends to be quite technical, thus, at the
outset we start with the problem and progressing from func­
tions to structures and introduce the necessary concepts step
by step. That's why cellular backgrounds are talked over as
late as in chapter 4.

Ideas on design philosophy can be found again at the end
of chapter 5.

The motivation of the present paper comes from D.V.Takacs's
/1975/ doctoral thesis, dealing with the design of a cellular
automaton CODD-ICRA cellular space for the first time.

C h a p t e r 2

FORMULATION OF THE TASK

2.1 The problem

Let us be given a set of t numbers
„ , 1 2 jN = (n , n , . . . , n , . .• • • »

each of which be given in a binary form of к bits :

к *

78

The problem is to construct a cellular automaton in CODD-
ICRA space which selects the maximal number/s/ out of the set.
An algorithm, hopefully adaptable in CODD-ICRA, is as follows.

The basic idea behind the algorithm, to show below and
which seems to be conveniently adaptable in CODD-ICRA space,
is just the obvious fact that the maximal number is charac­
terised by the most significant /leftmost/ bit except when
the most significant bits of the numbers are all equal. In
this case the next bit is relevant.

So it is at hand, as a first step, to resolute the set N
into two /disjoint/ sets № and N1 containing all the numbers
beginning with О and 1, respectively.

Let
1/ N = N°U N1

where
2/ № = {n*̂ J Cx| = 0: A [n^EN]}

3/ N 1 = (№1 Cx| = 13 Л с № Е ю }

Of course, one of № and N1 is non-empty. If N1 is non­
empty proceed the resolution with it, if empty take № . Thus
one gets a tree where the leaf received by this way being a
singleton contains the maximal number. Before elaborating the
procedure, let's see an example.

Let
к = 5, 1 = 8 and N

be given by the table below. /Table 2.1-1/
In this case

N — {n^, n 3 j n , n у , ng}>

N1 {i*2 » ^4’ ^6^*

79

Table 2.1-1 Example for maximum selection

with

N

and

N

j n .J xjX1 xjX2 xjX3 xjX4 xj5

1 4 0 0 1 0 0
2 25 1 1 0 0 1
3 13 0 1 1 0 1
4 27 1 1 0 1 1
5 2 0 0 0 1 0
6 18 1 0 0 1 0
7 14 0 1 1 1 0
8 6 0 0 1 1 0

j nj xjX1 xjX2 xjX3 XJX4 xjX5

1 4 0 0 1 0 0
3 13 0 1 1 0 1
5 2 0 0 0 1 0
7 14 0 1 1 1 0
8 6 0 0 1 1 0

„ j j j j j jj n X1 X2 x3 x4 X5

2 25 1 1 0 0 1
4 27 1 1 0 1 1
6 18 1 0 0 1 0

80

As N1 happens to be non-empty: we proceed with its
resolution

„1 „10 ,, „11 , 6, . , r 2 4,N = N U N = {n } U {n , n }

This time N 11 is non-empty, so we can proceed with its
resolution

„11 „110, .„111 , 2 4,.., -,

This time is empty, so we have to proceed with the
other set, N110, i.e.:

„110 „1100, ,„1101 , 2 » j- 4,N = N U N = { n } U { n }

Here we received the set N1101 = {n^} being a singleton,4containing the only element n , so

n = 27
is the maximal member of set N.

This procedure is somewhat similar to that of the edge-
notched card technique and although edge-notched card type
selectors can be implemented in CODD ICRA, CCf. FAY, 197*+3» we
will see that our maximum selector differs radically from, and
is much simpler than his edge-notched card selector.

On the other hand, the resolution technigue applied above
is practically the same as the one frequently used in connec­
tion with Boolean funcitons, known as Shanon's expansion
theorem.

In figure 2.1-1 we can see the associated tree of the
procedure.

More formally, the procedure is, essentially, based on
the formation of the sets of the form recursively defined by:

№ = N,

N
e e 1 2 r + 1 ■N(1 2 3... r) r+l_= {nJ I [xj + 1= er + 13ACnJ N,ç Ie* 2 Я

for 0, 1; s - 0, 1, 2, • • •

81

and producing the resolution,

N
е е e 1 2 . . . r + 1 E . O ,e , e , e >1 1 2... r) yjj (1 2... r)

The maximal nJ will be contained in the first singleton whose
last index is 1.
/In the example

N (£1 e Ч1■ r) N (e l e2e3) 1 N (110)1 N1101 { n 4 }./

N .

Figure 2.1-1

Binary tree associated with the maximum
selection procedure

82

2.2 Reformulation of the problem

To get nearer to cellular aspects we give some reformulation
of the problem approaching cellular term. To get hold of the
maximal n’s we have to examine all the bits xj, for i = 1 ... к. l .
and j = 1 to state whether x^ = 0 or xi = 1 is thej > > у x г
case.

If x| ■ 1, then n-1 is to be kept or included for, other­
wise excluded from the next bit's examination. However, an0
essential exception is to be born in mind. We have to be con­
vinced that no "allnought" case occurs. By an "allnought case",
with respect to the i-th bit, it is meant that

In the allnought case one has to make a correction re­
garding the decision that n-1 is to be excluded. In the all­
nought case nJ is still to be kept in spite of its leading bit
x| being zero.

Now these two queer operations "KEEP" and "EXCLUDE"
however vague they seem to be, are very convenient to be
implemented in CODD-ICRA cellular space. At this stage we
refer to the block diagram in figure 2.2-1

83

Figure 2.2-1

Block diagram for the
reformulated algorithm

84

C h a r a p t e r 5.

BLACKBOX A P P ROAC H

3.1 Basic operation principles of the device

Without any detailed knowledge of CODD-ICRA cellular space
one can make some steps along system design. The only relevant
knowledge is that is CODD-ICRA space Cancellation /"Exclusion
from the examination"/ and Keeping a /representative of a/
number nJ is possible. In addition, of course, in CODD-ICRA
the data can actually be transferred along paths. So, by figure
3.1-1 one can get the roughest idea about the principal func­
tions of the device. Let the device to be designed, be called
MAXELL /Maximum Selector I.

It is intuitively at hand to operate it by a two-stage
mode of operation.

In the first stage one sets the inner gating mechanism
performing the KEEP and EXCLUDE operations, then, in the
second stage, one sends the data nJ through the paths con­
trolled by the gates set during the first stage. As a result,
all the nJ-s are killed /annihilited, cancelled, excluded/
except the maximal one/s/.

As it can be seen from figure 3.1-1, there are two systems
of channels /paths in cellular terms/. The first is called the
information bus, containing the paths labelled by

the setting signals, conveying the information /in the sense
to be fixed later/ about the data

1 2 3 j l
П у П y n y • • • у П у • • • у п

labelling the paths is the data bus in figure 3.1-1.

85

INFORMATION
BUS

DATA BUS

THE M AXIM UM

SELECTOR

MAXEL

maximum

Figure 2.1-1

The basic principle of MAXEL’S
two-staged operation

86

Having been properly set, MAXEL will, during the second
stage, act as a filter /one should actually better say:
"absorber"/ permitting only the maximum to cross it.

3.2 "Bread-dealing algorithm" and modularily

The logic of the "include" and "exclude" /see the block
diagram on figure 2.2-1/, or "keep" and "exclude" /nJ/ shows
a strong resemblance to that of the procedure practised in
some college refractories when dealing out bread among the
students using only one plate for the slices of bread. The
plate travels /is passed/ from student to student with the
instruction :

"Take one and pass the rest".

Replaced the breadplate by nJ / for a fixed j/ and the
slices of bread by x'i /for i = 1,2.... к/ we can similarly
deal out the task of examining the bits, regarding whether
x| = 0 or x| = 1, among copies of a cellular automaton module
called, from now on, MAXEL module. See figure 3.2-1, and
figure 3.2-1.

Data arriving - in a suitably represented form of signals
to E0, flow along the DATA PATH /DTP/ to be controlled /kept
or annihilated/ by the i-th information n| about nJ. Data
leave the unit at to enter the next MAXEL module

• •
The definition of the "information about the data nJ" is,
recursively,

nji + 1
2k-(i+l)

+ 1
with

0, i = 0,1,2, к .

87

nj nJ
INFORMA TtOM PA TH DATAPATH

Figure 3.2-1

The i,j-th MAXEL module UÍТу

88

Figure 3.2-2

Modular implementation of the
Bread-Dealing Algorithm

89

and, when implemented, the i leading zeros are suppressed /i.e.
replaced by the cellular representative of the blank/.

Entering the module at E^, travels along the information
path /INF/ to be "beheaded", somewhere in the inside of MAXEL
and to leave it, in the form of

j 0k-i , „к-1-ln. = 2 x,x1 + 2 x . . » +l l+l 1+2 + 2°xk ’
with the i leading zeros suppressed. Thus, while n| repre­
sented by a k-i signal string, has only (k-i)-l = k-(i+l)
signals to represent the information about the original data.
This is the information being the rest passed by the module
while the "topmost slice of bread" i.e. the signal for bit
x̂ is taken out to be examined and used for control.l

Next, the "allnought case" is to be somehow represented
structurally. Unlike the cases that a bit x| takes the value
of 0 or 1 the allnought case depends not only on one bit, but
rather on the whole system of bits.

So, unlike bitcases or bitevents /x̂ ! = 0 or x-? = 1/ all-i l
nought cases or allnought events are not local events any
longer, but rather, global events. It structurally implies
that a new path is to be introduced connecting all the MAXEL
modules , with fixed i, to collect, bit by bit, the infor­
mation about the bits x^ + 1 in a row. Let this path be called,
for short, the Collector Path /CLR/. After having collected
all the relevant information about the bitcases, travelling
from right to left /see figure 3.2-2/ it makes a U-turn at
the extreme left of MAXEL /after leaving 1C/ and, in the
possession of the information about the allnought case, it is
ready to provide correction for those modules which have been
going to cancel an nJ because of its x^ = 0. From the entry
point E^ let the path be called Corrector Path /CRR/. The
most convenient way for it to provide the correction signals
for the modules is, that if allnought case has occurred there
is a signal propagating along it and, if not, there is no
signal at all.

90

Up to now, we dealt with all the four crucial paths DTP,
INF, CLR and CRR. Theoretically, however, there remains an
additional one to structurally represent the reset function.
After having the maximum selection performed MAXEL's have to
be reset to their initial states in which the modules are
ready to accept the next task to accomplish. Thus a Reset_
signal /RST/ is necessary. Its only function is to reset the
units one by one providing signals, conveniently, in a serial
fashion. See figure 3.2-2. Starting from point Rq the reset
signal duplicates at each point R., i = 1,2,...,к and enters

1 \the first module-column at points /E^/^, i = l,2,...,k, re­
spectively. Then, with a delay, the reset signal descendants
travel quasi-simultaneously along paths

' V i - * ' V i * ' V i — ' V i * •* ' V Í - * ' V Í
for i = 1,2, . ..,k.

Finally, after leaving the last module, passing /S3/,
they are annihilated at the ends of the paths. At point M the
reset signal enters to reset the collector's gating mechanism.
Its detailed function will be clear later, automatically.

Now we can get an overview about the whole operation of
the system. In the first stage one loads the information ,
onto the information paths. As a result, a structural change
takes place inside the device closing all the data paths
except the one/s / belonging to the maximal number/s/. This
first stage consists of two substages. During the first
substage the bit-dealing process is carried out i.e. all the • •
kx bits xl reach their modules U-3 to be examined. After having

1 1 i .the modules in the last row, i.e. modules with j =1,2,...£,
been passed, information signals are annihilated at the
ends of the information paths, /in fact prior to this, inside
the by the last "beheading"/ the last path, containing nk_^,
excepted. It consists of only one single signal and triggers,
through N— > T — > /E^/k , the collector signals in the order
of Tk, Тк-1, Tk_2, ..., T^. T is a signal transformer to

91

produce an adequate form for the collector signal. Thereby the
second substage of stage one is started. After having zig-zag­
ged through the modules the corrector signals will be collected
again through Zfc, Zk_ 2 »#,,»zi to produce a signal FSO at
point A indicating that the First Stage is Over. Gate G ensures
that only the first signal reaches point A the rest being
annihilated by G. The varying number of the surviving corrector
signals, owing to the variable allnought cases, could cause
trouble that's why it is uniformed by G.After a certain delay
signal FSO can be made to reach a peripherial device where
data nJ are stored. FSO can trigger it to be loaded in through
the information paths to commence the second stage of operation.

Having finished with the second stage, the surviving nJ-/s/
/eventually identical copies of the maximal nJ/ will reach the
Join Path at the MAXEL's bottom. Owing
to the delays inserted between JJ and JJ xthe surviving bit-
strings won't collide and, one by one, will proceed to M to
leave MAXEL.

After this the user only has to do is to reset MAXEL. This,
if necessary, can be automated but it is more economical to
refer to the user as regards providing a single reset signal
at Rq. Incidentally, the reset signal opens the locking mecha­
nism at G through В .

Chapter 4,

CELLULAR BAKGROUNDS

4.1 Historical overview

Cellular automata studies began with von Neumann's classic
lecture at the Hixon Symposium in 1948. /von Neumann, 1966/
Sixteen years later, J. von Neumann's posthumus book, edited
by A.W.Burks, with a fairly detailed system of ideas con­
cerning cellular automata had been published. Von Neumann

92

himself has designed a self-reproducing cellular automaton and
many useful special automata /organs such as pulsers, decoders,
crossovers etc. / .

Von Nemumann's cellular space was characterized by the
following features. /This consize description of von Neumann's
space is due to E.F.Codd, 1968; p2./ Our italics show the es­
sential points where new developments started.

1/ An infinite plane is divided up into squares.
2/ Each square contains a copy of the same finite automaton.

The square together with this automaton is called a
cell.

3/ Associated with each cell is its neighbourhood con­
sisting of itself together with its four immediate,
nondiagonal neighbours.

4/ The state of a cell at time t+1 is uniquely determined
by its neighbourhood state at time t, together with the
transition function f of the finite automaton.

5/ The finite automaton associated with each cell pos­
sesses a distinquished state Vq called the quiescent
state, such that

f/Vo’V V / = V . о о
б / At each time step all but a finite number of cells are

in the quiescent state.
7/ The number of distinct states for the finite automaton

associated with each cell is 29.
8/ A particular transition function f is specified and

shown to yield certain computational and construction
properties.

Let our overview be centered around these eight points by
indicating the major changes and developments achieved in the
recent ten-some years.

Along effecitivity oriented studies: Dettai /1974/, Doman
/1974/, Doman /1975/, Fay /1974/, Fazekas /1975/, Golze
/1972, Szőke /1975/, Takács /1973/, Toffoli /1975/ in­
finity postulate is dropped. The edge of the cellular space
plays a very important interfacing role.Fazekas /1975/ has
designed a cellular automaton called RETINA, in a cellular
space CODD-ICRA, which can read the information from the
edge of the space and transfer it to the inside to con­
struct automata. Takács /1973/ has designed a bootstrap

93

for cellular automata which is to be attached to the edge
of a /CODD-ICRA/ cellular space in order to develope the
most primitive components of cellular automata. Even
RETINE's parts are to be first bootstrapped into the space.
Of course, simulation studies are most strongly concerned
with finite spaces: See, also for a survey of cell space
simulations, Legendi /1975/. As for the plane, it is super­
seded at Doman /1974/, and /1975/ by a three dimensional
cellular space where squares are replaced by cubes.

Strictly speaking the edge-cells are not the same as the
inside cells.

ad 3. :
The number of neighbours /as well as of the states/ are
widely varying. A summary can be found in SMITH, III /1969/.
Conway /1970/ invented the "game life", being a wide class
of cellular studies, where 8 neighbours are favourized.

ad 4 . :
Needless to say, cellular space is a clocked system. If
we drop the property of being clocked we get the idea of
cellular array a branch again grown out from cellular
studies. A fresh and nice treatise on cellular arrays can
be found in Ippolito /1972/.
In cellular arrays where cells are possessing only combi­
natorial rather than sequential logic, it is not true any
longer that the state of a cell at time t is uniquely
determined by its and its negihbours' last states.
As for the transition function f, there are several ways
of defining it. One extreme case is when it is defined
completely logically i.e. by rules. Von Neumann has defined
his transition funciton this way. /Von Neumann, 1966/. The
other extremity is if the transition function is defined
completely by its truth-table. Codd /1968/ has defined his
transition function nearly that way but his table, for the
partial transition function, has been completed by some
rules. Codd's truth-table /found by an interactive com­
puter trial-and-error technique/ was then superseded, step
by new rules. /Fazekas, 1975, Szőke 1975/. By this
"regularization" new features have been introduced re­
garding Codd's automata.

ad 5~6.;
A "second quiescent state" was invented by Fazekas /1975/
when elaborating this "blueprint shift technique". One
brings the cellular space /CODD-ICRA/ into the all-one
state i.e. each cell is in state 1 /the second quiescent
state/ then the blueprint of an automaton /in staked form,

94

i.e.its 0-1 configuration/, put row by row to the edge of
the space, can be rolled in, or shifted in on this all-one
carpet.

ad 7 . ;
The number of the cellstates of a von Neumann's cell has
been supplemented by a new "crossover state" by Dettai
/1975/. Codd /1968/ used eight states, Lindenmayer has
initiated a cellular space with two cellstates, see
Herman-Rosenberg /1975/. The four-/+l/ neighbour two-
state /0,1/ space with the transition function,

f(x1,x2 ,x3,x4,x5) = x1+x2+x3+x4+x5
(0 + 0 = 1+1 = 0 , 0 + 1 = 1+0 = 1)

is called Lindenmayer space by us, the ICRA TEAM and in­
tensively studied by Martoni /1975/. Doman /1975/ works
with a cell having more than five thousand states. Codd's
cells, as well as Lindenmayer's cells are automata without
output, while Doman's, like von Neumann's, are automata
with output i.e. it sends different signals to different
cells /neihgbours in different directions/.

ad 8 . :
Up to Codd /1968/ all the designs have only been aimed at
theoretical elucidations of certain cellular automata
properties rather than at more practical engineer minded
constructions.
Codd was the first who put in action the way of viewing
cellular automata from users' aspects. He invented /by an
interactive computer technique/ a considerable number of
elementary cellular automata, called components, such as
the sheathed paths. A sheated path is a row of cells in
state one with layers on their right and left sides like
this :

222222222222
111111111111
2 2 2 2 2 2 2 2 2 2 2 2 .

Along the paths, signals can be sent in the form of a pair
of adjacent cells in states 0 and S, respectively, for
S =4,5,6 and 7. By adequate manipulation of the signals
[041, [051, [Об! and C071 one can

- move the head of the paths in four directions /right,
left, backward, forward/

- readj, write and eavse cellstates 0 or 1.
This way several more complex structures can be built up
/see the next paragraph/ but the destruction of these
automata was yet to be solved. Golze /1972/ dealt with
destruction and Szőke /1975/ made a step forward as far
as the effectivity of and the compatibility with C0DD-ICRA

95

is concerned.
In the next paragraph a brief account is given for Codd's
space. As for the cellular researches carried out till
1968 A.W.Burks /1968/ is referred to. For the later story
ICRA TEAM is going to give a fairly detailed account. At
present Aladyev's /1974/ survey can be considered as the
best.

4.2 C o d d ’s space

By Codd /1963/ a cellular space has been elaborated with
the aim of understanding the transition function. The principal
and crystal clear presentation, the introduction of new basic
cellular automata concepts, the clarification of new design
philosophies and techniques have been, naturally, preferred
to design economics and effectivity. This cellular space has
the features below. /Our account is centered around the points
where some expansion was made to yield CODD-ICRA space/.

1/ An infinite plane is divided into squares.
2/ Each square contains a copy of the same outputless

automaton clocked simultaneously.
3/ Associated with each cell is its neighbourhood con­

sisting of itself together with its four immediate,
nondiagonal neighbours.

4/ The state of a cell at time t+1 is uniquely determined
by its and its neighbours' last states specified by the
transition function f.

5/ The cell /short for "the finite automaton associated
with each square"/ possesses a class P of states p.
called passive states such that 1

f(p^>P2*P3»P4»P5^ = P £

for P^£{0,1}£. P — ^Р^»Р2 »Рз 5Р4 »Р5 ̂»

i = 1, 2, 3, 4, 5.
6/ At each time step all but a finite number of cells are

in state 0, the quiescent state, for which
f(0, 0, 0, 0, 0) = 0.

7/ The number of the cellstates is 8.

96

8/ A particular partial transition function f is specified
by two truth tables and two rules. By this, several
phenomena can be brought about and a number of cellular
automata components can be produced.

9/ An interactive simulation technique has been developed
for establishing the desired transition function by
strengthening and augmenting designer's heuristic.

10/ A self-reproducing computational universal cellular
automaton has been constructed.

From our design's point of view mainly paragraph 8 is the
more interesting. Codd's transition function is defined by his
"long table" pp. 67-68 in his book. There were two rules at­
tached to it.
The first rule is the "rule of small terms" i.e.:
The center cell remains unchanged in any neighbourhood where
the cells are in "small states" i.e. state 0, 1, 2 or 3. There
are a few /nine/ exceptions to this rule. They are contained
in the "short table" Ip. 66./.

The second rule is the rule of rotationsymmetry. It means
that the next state of a cell is the same if its neighbourhood
is rotated around it clockwise by a right angle. Thus the long
table worths nearly four truth tables. Not exactly, since
there are neighbourhoods whose three rotations /by 90 degress/
yield less than three new neighbourhoods. For instance the
rotation of a neighbourhood consisting of cells all in the
same state is immaterial. Thus out of the possible 8 5 = 32768
term there remains not 8 /4 = 8192 but 8352 rotationsymmetric
/different/ cases.

By this rule it is enough to put only the "cyclominimal"
term into the truth table, i.e. those having the minimal
numeric value among the four ones received by clockwise right
angle rotations.

Codd's transition function is a partial function i.e. it
is not defined everywhere. Out of the 835 2 possible /rotation
symmetric/ cases only 512 terms are tabularly defined. The rule
for small terms takes care for 280-9 /rotation symmetric/ terms,
therefore, altogether in

512 + (280-9) 783

97

cases is the transition function defined. It seems, that this
function is quite unspoiled for it is exploited only up to a
degree of

783
8352 « 9 %

The most important/regarding our design at least/ cellular
automata component invented by Codd are

- The sheated path along which signals can propagate.
- Branching and looping paths where signals can be repro­

duced, transformed and annihilated.
- Gates by which signal propagation can be controlled.
- Path-ends by which one can read, write and erase

cellstates 0 and 1.
Codd has introduced three phases of Construction: staking

/i.e. establishing the 0-1 configuration for the paths/,
sheating i.e. providing two layers of cells all in state 2
along both sides of the path's core, and activating i.e.
bringing the gates /cells in the sheaths of paths/ into active
state /state 3/ where necessary.

The elementary components above can be combined to con­
struct components of higher level of organization.

These are eg. the one-way locks, 07-transformers, signal
sources, echo discriminators, crossovers, decoders, etc.

In the recent years, now that hardware implementation is
very close to reality, the interest in cellular automata
studies is rapidly growing. Just to mention some outstanding
events we refer to three recent conferences. See Riguet /1974/
Herman /1974/ and Lindenmayer /1975/.

4.3 CODD-ICRA space

Three years later after Codd's book a team was formed in
Hungary /see ICRA TEAM, 1976/ venturing upon the implemen­
tation and effectivization of Codd's space. This team had
realized that in the near future a cell in a form of an LSI
chip would become a reality. Nowadays, at the end of 1975,

98

no doubt, it is indeed the case. An INTEL 8080 microprocessor
/"computer on a chip"/ is fare more complex than a CODD-ICRA
cell would be.

Of course, the implementation of the cellular space in a
convenient form of hardware, is by no means the crucial ques­
tion anyway. We think that, rather, design effectivity is the
keyword. The counterpair of programming in cellular space, is:
designing some machine. Or, with Codd's words: "reorganizing
the computer in a problem oriented way".

Now, as for programming, we have lots and lots of fine
techniques, ample experiences, sophisticated procedures,
textbooks, manuals, institutions and a hundred and one other
things to serve traditional computer science. Even the most
exact mathematical tool, axiomatization, is entering the
computer science. /For this, see Hoare's /1969/ very inter­
esting paper/.

With these underlying ideas we have embarked upon the work
of putting cellular automata into practical use. Codd's space
has been chosen for many reasons. The most important ones are:

- its didactic clarity in its presentations;
- its unique technique of interactive computer usage to

invent and test new cellular automata;
- its being very engineer-minded.
The work has begun with the crossover problems. To cross

two paths took above 3000 cells. Having introduced tensome
new terms, without having conflicted with the previous con­
structions of Codd, Dettai /1974/ invented a crossover /for
signals 06 and 07/ with as few cells as 25. At the same time
looks /taking hundreds of cells previously/ have become con­
structible with two cells; signal source with four cells
/rather than thousands of cells/ and other minor /but useful/
things have been constructed.

To avoid misunderstandings we stress here that Codd him­
self has not dealt with effectivization at all, rather, at-
temped to lay down the new principles in a possible simple
form. Had be tried to design cellular automata more effectively

99

the principal values of his work would have had certainly suf­
fered .

Then Fazekas came /1975/ and exploiting Dettai's results
to the last he constructed a great deal of new components and
discovered a few new phenomena.

Just to list, by names, his main parts:
- growing trees', treelike paths without any previous

sheathing, to solve the problem of parallel readwrite
erase ;

- monostable gates',
- reading from head /an opposite path's end/;
- discriminators',
- selectors;
- storing by "bubbles"', a bubble being a cell in state 0

in the core of a path;
- phase converter to produce signals following each other

both with even and odd lag;
- new phenomena of signal collisions, etc.
Making use of Dettai's parts, as well as his own, he was

able to construct a device, called RETINA, by which one can
transfer any information from the edge of the cell space to
the inside. Also, a "blueprint shifting technique" was in­
vented by which, in a true parallel fashion one can roll
stakings /on the "carpet of ones"/ into the inside of the
space.

A two semester lecture was given at Budapest Eötvös Loránd
University by Fáy (the author) /1975/ where a fraction of
these results had been systematized. Takács has designed a
bootstrap for the cell space [Takács , 19733.

Szőke /1975/ discovered some rules in Codd's transition
function eg.

7 --- > 0 if there is an odd state in the
neighbourhood,

7 --- > 1 if there is no odd state in the
neighbourhood.

Also, she elaborated destruction in the modified Codd'
space called CODD-ICRA /Iterative Cellular Realization of
Automata/

100

Fay /1974/ implemented an edge-notched card selecting
system in CODD-ICRA realizing that a data base management
technique DSL ALPHA, /invented by Codd incidentally/, can be
simulated this way Takács /1974/ has written a program in DSL
ALPHA to get a step further in conceptual data processing by
cellular automata. Legendi /1975/ has developed a simulation
language called CELLÁS by which all the newly introduced
components can be tested. Huszár /1975/ has designed a quite
universal equipment for testing implemented cells electroni­
cally. Bagyinszki /1975/ suggested an original way of parallel
computation in cellular media through a residue number system.
CODD-ICRA has enjoyed twofold challenges. Dettai /1975/ worked
out the implementation of the von Neumann cell, added the 30-th
state and after this it turned out that the cell is far more
simple to implement than Codd's eight-state cell even after
its transition function has radically been regularized by
Szőke /1975/. On the other hand, Doman /1974/ invented a
three-dimensional cellular space with cells more than five
thousand states. See also Doman /1975/. A Doman's cell seems
to be easier to implement electronically even than the von
Neumann's cell. True, self-reproduction is not aimed at,
rather, practical effectivity is preferred to it.

As for the more formal definition of CODD-ICRA its tran­
sition function's truth table can be seen in Table 4.3-1. In
addition to this, there are the following rules and postulates.

1/ CODD-ICRA transition function F (X^, , . . . ,) is a
mapping from to S][where S1 = 0,1,...,7
the set of the center cell's state = 0,1,...,7 the
set of the center cell's neighbours' states, i = 2,3,4
and 5 refers to the right /eastern/, bottom /southern/,
left /western/ and upper /northern/ neighbour,
respectively.

101

2/ F is rotationsymmetric, i.e.:
f (x 1,x 2,x 3,x4,x5) = f (x 1,x 5 ,x 2,x3,x 4)

= f (x 1,x 4 ,x 5,x 2,x 3)
= f (x 1,x 3,x 4,x5,x 2)

3/ F satisfies the "rule of high terms" i.e.:
6.7 0 iff there is an odd state in the neighbourhood
6.7 1 iff there is no odd state in the neighbourhood
4.5 0 iff there is a cell in state 1 in the

neighbourhood
4.5 1 iff there is no cell in state 1 in the

neighbourhood
4/ F satisfies the "rule of passive neighbourhood" i.e.:

f (x 1,x 2,x 3,x 4,x 5) = xx
Unless otherwise stated by the rule of high terms or
by the following truth table: /it differs from the
usual CODD-ICRA table by the term 016761 needed for
reverse lockpair activation, cf. Ch 9./

102

Table 4.3-1. Truth table for CODD-ICRA
transition function

000062 012141 016221 102535 112255 122366 201071
000073 012151 016261 102616 112266 122377 201171
000153 012161 016621 102626 112277 122434 201423
000162 012171 016661 102636 112424 122444 201711
000252 012227 016761 102727 112434 122535 202060
000262 012231 017171 102737 112445 122555 202073
000422 012241 017221 103424 112525 122636 202513
000513 012251 017271 103434 112535 122666 202063
000612 012261 017721 103525 112556 122737 203073
000622 012271 017771 103535 112626 122773 207111
000662 012326 022262 103626 112636 123244 211171
001062 012351 022662 103636 112666 123255 212323
001073 012421 100040 103727 112727 123266 223243
001162 012441 100066 103737 112737 123277 223253
001262 012521 100073 104110 112774 123344 223263
001612 012531 100140 106066 113437 123355 223273
001622 012551 100166 106116 113537 123366 300022
001662 012621 100244 106166 113637 123377 300061
002062 012661 100266 106216 113737 123434 300251
002073 012721 100366 106226 114224 123535 300260
002131 012731 100410 106266 114245 123636 300270
002262 012771 100525 106616 114425 123737 300421
002612 013131 100616 111140 115225 124244 300620
002622 013221 100626 111156 115256 124334 300720
002721 013241 100636 111166 115526 125255 301022
003631 013421 100666 111167 116166 125335 301030
006112 013521 101040 111244 116226 126266 301064
006212 013621 101055 111255 116266 126336 301077
006222 013631 101066 111266 116626 127277 301111
006262 013721 101072 111277 116663 127337 301620
006612 013731 101140 111424 117177 133344 301720
011162 014221 101166 111525 117277 133355 302610
011241 014241 101266 111626 117274 133366 302710
011251 014321 101410 111663 117724 133377 311111
011261 014421 101616 111727 117773 200060 312322
011271 015221 101626 111773 122244 200071 323242
011421 015231 101666 112144 122255 200171 323252
011521 015251 102266 112155 122266 200253 323262
011621 015351 102424 112166 122277 200423 323272
011662 015521 102434 112177 122344 200711
012121 016161 102525 112244 122355 201060

example : 117724 means F (1, 1,7,7,2) = 4

103

Out the components characteristic to ICRA only two are
extensively used along our design. These are the crossover
/for signals C063 and C073 only/ and the locks. Figures
4.3-1,2,3 and 4-3.4 explain their working.

1 1 1 1 1 1 6
1 1 1 1 1 6 2 0 2■--
1 1 1 1 1 1 1 1 6 1 2 0 6 2 1 1
1 1 1 1 1 1 6 1 2 0 _6_ 2 1 _0_ 2 2 1
1 1 6 2 0 2 2 1 2 2 1 2 2 1 2
1 6 2 0 2 2 1 2 2 1 2 2 1 2 2 1 2

2 6 2 * 2 0 2 * 2 1 2 * 2 1 2 ” 2 1 2 ~ ~ * 2 1 2 * 2 1 2

Figure 4.3-1.

The staking and sheathing of a
look

Symbol :

a/ 2 2
2 7 1 2
1 0 7 1
2 2 2 2

■ > 2 2

2 0 3 2
1 1 0 7
2 2 2 2

2 2

2 1 3 2
1 1 1 0
2 2 2 2

■» 2 2
2 1 3 2
1 1 1 1
2 2 2 2

b / 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
1 0 7 1 1 1 0 7 1 1 1 0 1 1 1 1
2 7 1 2 2 0 3 2 2 1 3 2 2 1 3 2

2 2 -** 2 2 --»■ 2 2 — 2 2

Figure 4.3-2.
The activation of a look /two
possible version a. and b./

104

a / 2 2 - 2 2 --*№• 2 2 --- 2 2
2 1 3 2 2 S 3 2 2 0 3 2 2 1 3 2
0 S 1 1 1 0 S 1 1 1 0 S 1 1 1 0
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

b / 2 2 2 2 -— ^ 2 2 2 2 -— > 2 2 2 2 -- у 2 2 2 2
0 S 1 1 1 0 1 1 1 1 1 1 1 1 1 1
2 1 3 2. 2 S 3 9 2 0 3 2 2 1 3 2

2 2 2 2 2 2 2 2

Fi g иге 4.3-3.

The operation of loeke for
S - 6 or 7

I
symbol:

1 1 1 1 1 1

1 1 1

1

staking

1 --» 1 -9» 1 2 1 —
2 1 1 1 2 2 1 1 1 2 2 6 1 1 2 2 0 3 1
0 6 1 1 1 1 1 0 6 1 1 1 1 1 0 6 1 1 1 1 1 0 6 1

2 1 1 1 2 2 1 1 1 2 2 6 1 1 2 2 0 3 1
1 1 1 2 1

-> 2 1 2 1 2 > 2 1 2
2 2 1 3 6 2 2 1 3 0 2 2 2 1 1 1 2
1 1 1 1 0 6 1 1 1 1 1 0 1 1 1 1 1 1
2 2 1 3 6 2 2 1 3 0 2 2 2 1 1 _1_ 2

2 1 2 1 2 2 1 2

Figure 4.3-4.

The staking and sheathing of a
crossover

105

2 1 2 --- > 2 1 2
1 1 1 2 2 1 1 1
1 1 1 1 0 S 1 1
1 1 1 2 2 1 1 1
2 1 2 2 1 2

2 1 2 --- > 2 1 2
S 1 1 2 2 0 3 1
0 S 1 1 1 1 0 S

1. 2 2 -031.
2 1 2 2 1 2

2 1 2 2 1 2 -- > 2 1 2
2 1 3 S 2 2 1 3 0 2 2 1 1 1
1 1 1 0 S 1 1 1 1 0 1 1 1 1
2 1 3 S 2 2 1 3 0 2 2 1 1 1

2 1 2 2 1 2 2 1 2

2

1
2

Figure 4.3-5.

The operation of Dettai's
crossover S - 6,7.

Chae.tefl5.i-

CELLULAR ASPECTS OF THE PROBLEM

5.1 An i n t u i t i v e way to approach
the M A X E L module

In Ch.3. a phenomenological /or functional system design
has been carried out. We didn't care about the structural
elements implementing the functions to be performed. In fact
we have considered as few characteristic features of CODD-ICRA
space as possible. Essentially we made use of the possibilities
to construct,

- paths, along which signals, representing data can
propagate;

- gates by which signals can be annihilated;
- pathforke where signals duplicate

106

- signal transformers to convert siqnals into each other;
- locks for implementing directed paths;
- crossovers providing means for crossing paths.
Now that we are aware of the exact mechanism of the ele­

mentary structures above we can make an attempt to combine
them in order to implement the functions talked over in Ch.3.

Let us start with a black box and try to unwrap it suc­
cessively. In figure 3.2.-2 one can see the MAXEL module's
outside features with the stress placed on its paths. Let us
try first to peel out the gates controlling the paths.

For the sake of brevity let the signal, representing the
first bit of the information input of /see figure 3.1-1/,
be denoted by x and any of the rest by y.It is clear that the
data flowing along the data path can be controlled by a gate
G-? , placed on the righthand side of the DTP directed downwards.
/See figure 5.1-1/. This gate g| has to be closed if x = x| = 0
has been the case except when all the other bits with the same

1 2local value /i.e.: i/ are also zero, i.e. x. = x. = ... x.. Ini l l
this "allnought case" a correction is to be made which is very
easily implemented by a branching off from the CRR /corrector
path/. This is managed by forkpoints F ̂ and F2. On the other
hand, in order to provide information about the allnought case
one has to place a gate /G^/ on the right hand side of the
collector path /CLR/ directed from right to left. This gate G2
must be open /OFF/ whenever x = x^ = 0. If /and only if/ all

• 1 2the gates G0 of the U^-s in a row /i.e. U., U., ... U./ are off2 l l i l
can "allnought" be the case. This way there will be no obstacle
in front of the collector signal entering the unit at to
travel on and, making a U-turn after leaving the leftmost unit
ul of MAXEL, produce the correction signal for turning all the
gates G2 off.

Incidentally, we can see that the following data - signal
correspondence will suit the task:

107

Figure 5.1.1

Unwrapping the MAXEL module U ̂
first step

108

X = C 0 7 D if
X = C 0 6 D if

collector signal = C07: •
Moreover, G^ is on iff l

í

except
IAj=i

G„ is off iff = 0 2 1
One can also see that altogether 10 elementary structures

/cellular automaton components/
These are:

6 Crossovers: C^,
2 Forkpoints: F ̂ ,
2 Gates: G^,

10 elementary structures

have been to be introduced.

altogether.

As a second step, in unwrapping the black box of U^, let
us concentrate on the yet unwrapped core v| of u|. See figure

Unwrapping the MAXEL module, second step

109

It seems to be useful to specialize the tasks. Box 1 kills
the first bit /'s representative x of/ x^, Box 2 kills the
rest while Box 3 inverts x. Five new parts have been intro­
duced at this step:

2 Crossovers: C^, C2
3 Forkpoints: F^, F2, F3
5 new parts altogether.

As for the boxes they are easily unwrapped one by one. See
figures 5.1-3,4,5.

Unwrapping the MAXEL module, third step

110

In essence, the network in figure 5.1-3, performs the func­
tion set before. Gate G2, being on at the beginning, is turned
off then after signal x arrives to G2 along path F^— *-C2
is turned on then, provided part F^— *-C2— »-G2 is shorter than
path F1-C1-G1-F3-C2~G2, permitting the rest y to go but killing
signal x. So, gate G2 must be normally on.

Meanwhile G^ acts as a resettable lock inhibiting the
second signal /у/ to pass. Of course, the first signal in the
control path of G^ must be C073 to turn it on.

There remain four things to be cared for,
First: G2 is to be normally on;
Second: to provide for G^ only signal C073 ;
Third: to prohibit that signals trespass the reset

path;
Four: to prohibit that reset signals trespass

anywhere.
By placing some locks, all these minor gaps are filled. See

figure 5.1-4. Inevitably, these newly placed locks L^....
give rise to a new trouble, namely, to activating problems.
During activation won't stop the unforeseeable perhaps
unrepairable troubles, /signal collisions, crossover blockings
etc./. To prevent this, a newer gate is to be placed proviso-
rily between and branching off at F^.

Seemingly, lockpair L5> L& is redundant, for signal x is
transformed into C073 at L^,L2 anyway so G2 just like G^ re­
ceives a signal C07 3 without making use of lockpair Lg, L^q .
However, when resetting the module by a reset signal r = C063 ,
while G1 is turned off, G? won't be turned on unless r = C06 3
is transformed into r = CO73.

That's why L5, is put there.
By this the unwrapping process for BOX 1 is finished since

no black spot remained to clear up. Our result is that BOX 1
contains altogether 13 cellular parts such as

Ill

Unwrapping BOX 1 of the MAXEL module
/of. fig. 5.1-2/

112

2 Crossovers : V C 2
4 Forkpoints: F!’ F 2’ F3 * F4
3 Gates : Gl* G2’ G3
2 Locks : L3 ’ L4
2 Lockpairs : L1L2’ L5L6
13 parts altogether •
is quite typical and remarkable, in cellular design,

that very useful byproducts are yielded to be utilized
somewhere else in the main design. Here, first of all, we
have gained a "single x" or "locked x" by which it is very
easy to control again the information path to produce the
"only x" signal for the SLR path in figure 5.1-2.'In other
words a resettable locking mechanism /like G^-F3-F2-G^, in
figures 5.1-3,4/ in BOX 2.

Taking this advantage into consideration let us drain
path C ̂ -F^-G ̂ —F g at a point between G^ and F3 on figure
5.1-4. Introducing this path into BOX 2 one can unwrap BOX 2
in one step. See figure 5.1-5.

Gate G^, fed from BOX 1, is normally off. After allowing
x to pass, it is turned on by the locked and delayed signal x.
Thus y /i.e. everything following x/ is annihilated. At point
F3 reset signal enters to reset BOX 3 and the gate placed on
the end of path SLR /Selector path/. At F2 SLR branches off.
Of course, again, some minor design questions have to be cared
for. Thus it is to be prohibited that the reset signal tres­
pass the information path and, conversely that information
enters the reset path. To this end lock L ̂ and lock L2 are to
be placed. Also, as in the case of BOX 1, to annihilate the
activation signal, gate G2 is to be provided controlled con­
veniently from the data path. Similarily, lock L3 prevents
the corrector signal to enter BOX 2.

Now there remains only to unwrap BOX 3, the inverting unit.
/See figures 5.1-2 and 5.1-6/. As it is wellknown, inversion
is most conveniently performed by the aid of a clock signal.

113

R ST

Unwrapping BOX 2 of the MAXEL module

114

Fortunately a clocksignal is automatically provided in the
form of the corrector signal propagating along the corrector
path. Thus the unwrapping of BOX 3 becomes very simple.

After integrating BOX 1, 2 and 3, bearing in mind that x
must not enter the corrector path, and that the lock /lock Lg
on figure 5.2-1/ ensuring this is to be replaced provisionally
by a gate to kill the activation signal /gate Gg on figure
5.2-1/, with new legend one finally gets the principal diagram
of the MAXEL module on figure 5.2-1.

Figure 5.1-6

Unwrapping BOX 3 of the MAXEL module
/Cf. fig. 6.1-2/

115

5.2 Verbal description of the
MAXEL m o d u l e ’s operation

Let us consider the final drawing on figure 5.2-1. It
refers to the MAXEL module U^, c.f. figure 3.2-1. Suppose,
now, that at t = 0 a number nJ, represented by a series of
signals C073 or СОбЗ according to = 0, or 1 respectively,
is produced at point E^.

The only essential property of the signals, representing
the information n|, is that the symbol here for the first
bit n| is X /instead of the lengthy x| + ̂/ and for the second
one у /instead of x;?^/, following x by a delay of 26. By a
more careful design this delay could have certainly been
reduced but some didactical advantages and simplicity would
suffer.

At t = 0, as can be seen from figure 5.2-1, each gate is
in off state except which is normally on. Now if at t = 0
x is in cell E^, then it passes the crossover and dupli­
cates at . One of the signals goes along path — »C,.— *
— ^ C0 leaving the unit at point S1 . The second signal /born
in F ̂/ will propagate along path F3— — * F^ — » F ^ *'Fii— *

— > F10— * C 4 * C 7 * Durin9 this, several duplications occur
/at F^-F^-F^^ and F1Q/ but after having transformed into C07 3
between F ̂ and F^ it reaches G7 being in on state. It turns
it off before signal x reaches the subordinated path, so it
is annihilated. Actually a second transformation C073— *C073
takes place owing to the lockpair LgL1Q between and G^ but
this lockpair has its role only during resetting.

This way the "beheading" of string has taken place and
all the signals following x, including y, can pass G7 for it
is now in a permanent of state owing to the locking mechanism
F10 > Fg— > G 4 * The signal, namely, born in Fg, turnes G^ on
and no other ordinary /information/ signal is able to open it
again. Only by the reset signal can it be turned off. See
Chapter 10. The pair of the signals, born in Fg, travels along
F g-->C3 but dies at lock L5 between F g and C^. An other

116

Figure 5.2-1.

Final drawing of the MAXEL module U'j.
Is

117

duplication takes place at F^Q resulting the signals talked
over just now. At F ^ a signal is born again going to turn
off. This turning off, however, occurs after the signal x,
coming from F ̂ to F7 passes G^. When the second bit, y, arrives
it finds G 2 already on and is annihilated. So are all the
signals following y for gate G2 is now permanently on owing
to the lock formed by G^.

As a result, all but the first bit leave the unit at
and the first bit, but only the first bit, reaches gate G,.
controlling the data path. If x^ + 1 = 0, i.e. x = C07II, then
G5 is on permanently annihilating nJ . If x|+1 = 1, then
x = C067 , G,, is off permanently thereby permitting all the

• J I • •
bits of nJ to enter the next unit U^ + 1 at / S 2 / ̂ = 1^2^i+1'

Meanwhile, signal x is to be inverted to indicate zero.
In fact Gn is on if x*? = 0 i.e. x = C07D for x = C071 turns
Gg on, thus inhibiting the collector signal, arriving from

-> C. C. F ^, to turn Gg on. So Gg remains neutral4 ' "7 ' “6
permitting finally the collector signal to go to C
/S, /-? = /E./j“1 .4 l 4 l

-> S

On the other hand, in case х-í , = 1, i.e. x = C06D, G„
will not be turned on, thus the collector signal, coming from

7— >C6, will turn Gg on, therefore it will be annihilated.
This way the operation is finished and after resetting, the
unit is ready for the next operation.

There is a number of components which haven't been spoken
of. For instance G.,G,,L.,L,,C_ and so on. These are needed

1 О 4 D Z
only either during activation or resetting but never during
normal operation.

Let us stress, here again, that the description above is
by no means to be considered as any kind of a proof for the
correct operation. It is, rather, to help understanding the
main processes telling that such and such event triggers such
and such events but one does not know, by the description,
for sure that there are no other events prohibiting certain
processes. Among others, timing is not dealt with in the

118

necessary detailed way so one cannot state, with certainty
that all the propositions mentioned in the verbal description
are true.

By Codd and by others computer simulation provided the
guarantee for the design correctness. Mathematically, however
a simulation can not be accepted for proof just as the running
of a program is not the proof of its correctness. For proof
correctness there is a promising way of axiomatic approach.
Something similar can be done for proving cellular automata
design correctness. See Chapters 9 and 10.

Beside operation, activation and resetting are to be cared
for.

After staking /i.e. establishing the 0-1 configuration as
it is shown in fig.6.3-1/ locks ,...,L1Q are to be set
in, i.e. to bring them in state 3. This can be done by an
activating signal a = C071 applied at E^. It spreads out
within the unit setting in all the locks. Each descendant
dies, except the one leaving the machine at owing to gates
G1’G3’V

As a result, all the gates, apart from now on from the
irrelevant gates G^G^ and Gg, as well as gate Gg to be man­
aged later, but including G7, will be turned on. By a
resetting signal = СОбИ, however, all the gates will be
turned off, finally, by a second resetting signal r2 = C061
all gates remain off except G7 which, owing to lockpair LgL1Q,
receiving the transformed signal r!j = C07D, will again be
turned, and this time, on. Of course, resetting signal should
not be sent through the activation path starting with E^ but
rather, through the proper reset path starting with Eg,
avoiding the inconvenient t^-transformer L2Lg between and
V

After a normal operation G7 must be in off state and G2
must be in on state, owing to the t7 transformer L2Lg. The
other relevant gates such as G,., Gg and Gg can be equally
well in one state out of ON and OFF. Thus a single resetting
signal r = C061 applied at Eg will turn gates G^ and Gg

119

certainly off while gate G^, By the lockpair LgL1Q, will be
turnded to bring the gates into the necessary initial state.

As for gate Gg it can be reset from E^ by a single C06]
after having Gg been reset.

120

References

ALADYEV, V.Y

BAGYINSZKI,

B U R K S ,A .W .:

CODD ,E.F . :

CODD , E .F . :

CODD,E.F. :

CONWAY,J.:

DE T T A I ,I .:

DE T T A I ,I .:

DOMÄN,A.:

D O M Ä N ,A .:

D O M À N ,A .:

FAY , G .:

Survey of Research in the Theory of Homogenous
Structures adn their Applications Mathematical
Biosciences, 22, 121-15*+, /197*+/.

J . :
Residue Number System /Decimal/ Arithmetic In
Parallel Systems Such As Cellular Automata and
Magnetic Bubble Memories
KFKI report No.75-15- Hungary /1975/.

Essays in Cellular Automata University of
Illinois Press, Urbana, 111. /1968/.

Cellular Automata
Academic Press, New York and London, /1968/.

A Relational Model of Data for Large Shared Data
Banks
Comm. ACM 13, 377-387- /1970/.

A Data Base Sublanguage Founded On the Relational
Calculus
IBM RJ. June /1971/-

Mathematical Games /М.Garder ed./
Sei. Amer. October /1970/.

Effectivity Problems and Suggestions Concerning
CODD-ICRA Cellular Space
KGM ISzSzI technical report, Hungary /197*+/.

A Version of von Neumann’s Cell
KGM ISzSzI technical report, Hungary /1975/.

A Three-dimensional Cellular Space
/А challenge to CODD-ICRA/
KGM ISzSzI technical report^ Hungary /197*+/.

A Flexible Three-dimensional Cellular Space
International Congress of Cybernetics and
Systems, Bucharest, Rumania, Aug.25-29, /1975/.

Parallel Computing Systems
Doctoral thesis at the Technical University of
Budapest, Hungary /in Hungarian/ /1976/.

Circuitry Realization of Codd’s Automaton’s Cell
First International Conference on Computer
Science ,
Szëkesfehervar, Hungary, May 21-26..

121

FAY,G.:

FAY,G .:

FAY,G., D.

FAZEKAS,B.

GOLZE,U.:

HERMAN,G.T

HERMAN,G.T

HOARE,C.A.

HUSZAR,A.:

ICRA TEAM.

IPPOLITO,J

DPL ALPHA and Co d d ’s Cellular Space
Second European Meeting on Cybernetics and
Systems Research,. Vienna, Austria April 19-19.
/197П/.

A Basic Course on Cellular Automata
University lecture notes, Budapest Eptvos Lorând
University /In Hungarian/. /1975/.

.TAKACS.:
Survey of de CODD-ICRA
In: LINDENMAYER /1975/.

Some New Components and Phenomena in CODD-ICRA
Space.
Graduate thesis in mathematics, Budapest
Eötvös Lorand University /In Hungarian/ /1975/.

Destruction of a Universal Computer-Constructor
in Codd’s Cellular Space
Report.Dept, of Comp, and Comm. Sci.Univ. of
Michigan, Ann Arbor, Michigan U8 1 0 U /1972/.

- /org/ :
Conference on Biologically Motivated Automata
Theory
MITRE Corporation, Me.Lean, Virginia, USA June
19-22. / 1 9 7 V .

and ROZENBERG,G .:
Developmental Systems and Language
North Holland P u b l . C o .Amsterdam. /1975/.

. : An Axiomatic Basic for Computer Programming
Comm.ACM. 12, 576-583. /1969/.
Testing equipment for Automaton Cells
Graduate thesis in electrical enigeering.
Technical University of Budapest /In Hungarian/
/197U/
Studies in Cellular Automata
To be published by Gondolat, Budapest , first
in Hungarian later in English. /1976/

C
Contribution a 1
logiques sur des
These, Grade de
Université Paul

''implantation de functions
reseaux cellulaires

Docteur es Sciences Physiques
Sabatier de Toulouse. /1972/

9

122

KASZAS,0, Character Generation in CODD-ICRA Space
Graduate thesis in electrical engineering.
Kandó Kalman Technical Highschool, Budapest
/In Hungarian/ /197^/.

LEGENDI,T,

LINDENMAYER,A

Simulation of Cellular Automata
Inner report, Szeged, József Attila University
MTA group of Mathematical logic and automata
theory. /In Hungarian/ /1975/.

/ o r g / :
Conference on Formal Languages, Automata and
Development
Noordwijkerhout, The Netherlands 31 March - 6
April. /1975/.

MARTONI ,V. : Investigations in Lindenmayer space.
Inner report KGM ISzSzI Budapest , /In Hungarian/
/1975/.

RIGUET , J ./org/
Conference on Automata and Related Topics
Université Rene Descartes Sorbonne, Paris
May 16-19. /1971*/.

RIGUET,J . : Automates Cellulaires a Bord et Automates
CODD-ICRA I-II.
Comptes rendus de L^Academie les Sciences de
Paris SIRIE A t.282. /19-Janvier 76./ pp.167-170,
239-21+2. /1976/.

SMITH, III. A .R . :
Cellular Automata Theory
Technical report, Stanford Electronic Laboratories
No. SU-SEL 7O-OI6 . /1969/.

SZŐKE,M./Mrs/
Destruction in CODD-ICRA
Graduate thesis in mathematics. Budapest Eötvös
Lorand University /in Hungarian/ /1975/.

TAKACS,D.V./Mrs/:
A Bootstrap for Codd’s Cellular Space
First International Conference on Computer
S c i enc e ,
Szekesfehervar , Hungary, May 21-26. /1973/.

TAKACS,D.V./Mrs/ :
Galois Connections and DPL ALPHA System Second
European Meeting on Cybernetics and Systems
Research Vienna, Austria /197^/.

123

TAKACS,D.V./Mrs/ :
Cellular Automaton as a new tool for computer
science
KGM ISzSzI report, Budapest, Hungary / In
Hungarian/, /197*+/

TAKACS,D,V./Mrs/:
Un Automate Cellulaira CODD-ICRA Pour la
Recherche de Numbers
These Presente a Université Rene Descartes de
Paris Sorbonne Doctorat d^Universite /1975/.

T OFFOLI, T.: Backward steps in cellular spaces
In: Lindenmayer /1975/.

VON NEUMANN,J.:
The General and Logical Theory of Automata,
pp. 1-1*1 of Cerebal Mechanismus in Behavior,
The Hixon Symposium, /191*8/ ed by L . A . Jef fress ,
published by John Wiley, New York, 1951. /191+8/

VON NEUMANN,J.:
Theory of Self-reproducing Automata
Universtiy of Illionis Press, Urbana edited and
completed by A.W. Burks.

125

SEMANTIC THEORY FROH A SYSTEMATICAL VIEWPOI NT
i

H . Heiskanen
Helsinki. University of Technology

Otaniemi3 Finland

A semantic theory based on a m a t h e matical linguistic systems
theory is introduced. This theory has been dev e l o p e d for the
purpos es of content analysis. It presents the prin ciples a c ­
co rdi ng to which the m e a n i n g of lexical elements can be expre-
sed by means of m a t h e matical concepts such as variables, values
of variables, entities, and relations. This semantic theory
can also be used for the analysis and comp a r i s o n of meanings
of various lexical elements, and for the d e s c r i p t i o n of a
v o c a b u l a r y .

A semantic analysis of a given natural language poses dif­
ficulties because of the complexity and apparent vagueness of
relevant phenomena. For this reason a precise theory of meaning,
i.e. a semantic theory, has not yet been formulated, although
several attempts have been made"''. Similarly, in this article
a thought construct will be presented which, with some justi­
fication, can be conceived of as a semantic theory.

Much of the work published by semanticists is based on the
componential approach. They attempt to describe the structure
of vocabulary in terms of the various possible combinations of
a relatively small set of very general elements, such as com­
ponents, markers, or sememes, in a particular language. The
linguistic mathematical approach introduced here has the same
basis, but a slightly different approach. The principal idea
is that the meaning of lexical elements, i.e. the definitions
of concepts, can be conceived as formed of values of variables.
This means that semantic components are replaced by values of

fl

- 126 -

variables. The other difference from the conventional compo-
nential analysis is that the number of semantic components,
i.e. values of variables, is not limited; rather it varies
with the subject area of the vocabulary and with the famili­
arity of the audience with this area.

The semantic theory introduced in this article is based
on a linguistic mathematical systems theory, or LM-theory. It
describes the way in which linguistic concepts can be trans­
formed into mathematical concepts such as values of variables,

3 4 5variables, entities, and relations ' ' . LM-theory was devel­
oped for the purposes of analyzing pay claims and pay deci­
sions: a content analysis method based on this LM-theory has
been applied for the analysis and design of pay schemes.

The systems theoretical background

The basic overall purpose of semantic analysis is general­
ly seen to be the explanation of how the sentences of a natu­
ral language are understood, interpreted, and related to
states, processes, and objects in the universe1. LM-theory
the principles according to which the real world, or alterna­
tively the information given about it through natural language,
can be divided into these states, processes, and objects, but
LM-theory applies different terms:

. states are interpreted to be values of variables,

. objects to be entities, and

. processes to be either relations, or events.
Variables and their values, entities and relations are the
most essential basic concepts of LM-theory.

127

States. Variables

A variable is formed of two or more mutually exclusive
states (or values). These values are, for instance, adjectives
such as "high" and its antonym "low". Together they form a
variable "height".

LM-theory also includes a symbolic language. By convention
the symbol used for a variable is a lower case letter, usually
P-

Its superindex refers to the quality of variable, and the
subscript to the value of variable.

Example 1
Adjective
long
high
wide
heavy

Example 2

Its antonym Variable Symbol
short length 1P
low height 2P
narrow width 3P
light weight 4P

p1 = length (a variable)
p^ = short (a value)
p^ = standard of comparison, which

neither is short or long (an­
other value)

p* = long (third value)

Objects. Entities

An entity is defined to be the thing to which the value
of the variable belongs, or which is described by means of
this value. For instance, the "cigarette" (which is long) is
an entity, because the value "long" describes its state.

128

The symbol for an entity is a capital letter, or a combina
tion of letters beginning with a capital letter, usually En.
Again the superscript refers to the aualitv. Thus, for example
En* could be "tower", En^ "cigarette", and En "square". The
subscript is used to express the identity of the entity: for
instance, En*, En^, and En* could be three individual towers.
This identity signifies which particular object is under exam­
ination .

Example 3

En* = tower (an entity-category)
En* = this tower (an entity-individual)
En* = that tower (another entity-

individual) .

Processes. Relations

When values, variables, or entities are examined in pairs
a coexistence pair is formed. Its members are called partners,
and the connection between partners is a relation. These part­
ner-relations may differ from pair to pair with respect to
their quality. A relation can be, for instance,

. a definition-relation, when one partner is specified by
means of the other,

. an influence-relation, when one partner influences the
other, or

► a measurement-relation, when the value of one partner is
determined by means of the other.

Example 4

a/ "Pressure depends on temperature".
Here

"depends" refers to an influence-relation, and
"pressure" and
"temperature" are variables.

129

Thus the content of this sentence is
"variable 'temperature' influences variable
’pressure ’".

This sentence describes an influence-relation between two
variables.

b/ "The pressure is high, because the temperature is high".
Here

"high pressure" is a value of variable "pressure",
"high temperature" is a value of variable "temper­
ature" , and
"because" is a cause-effect-relation.

Thus the content is
"value 'high' of variable 'temperature’ is the cause
and the value *high' of variable *pressure' is the
effect", or
"value ’high temperature* coexists with value 'high
pressure’".

This sentence is a description of a value-pair, i.e. of
two coexisting values.

The relations are symbolized by various strokes and
dashes. Thus, for instance, a dash with an explanatory sign

elő f"def" (-) refers to a definition-relation, while a stroke
with an arrow head (------ ►) to an influence-relation.

Descriptive Sentence. Message

The sentences of a natural language are divided into two
categories: descriptive and defining sentences.

The descriptive sentences, which can also be called mes­
sages, describe real world states by means of concepts, i.e.
lexical elements. The defining sentences or definitions tell
what is meant by these concepts. They specify the lexical ele­
ments by means of other elements, which this time can be called
semantic elements.

130

Each descriptive sentence can be interpreted to be formed
of values, variables, entities, and relations. The analysis of
messages is based on this idea, so that the message content is
divided into parts corresponding to any of these categories,
and then described by means of these parts.

Example 5

"Concept A is a synonym of concept B".
Here

"concept A " can be interpreted to be an entity (En)
"synonym" is a value of a variable (p^
"connection of concept A with concept B" is this vari­
able (p), and
"is" is an equality-relation (=)

Thus the content of this sentence is
concept A ' has in the variable 'connection with con­

cept В ' the value 'synonym'", or
"entity En in variable p has the value p^'.

The variable ’connection with concept В ’ iá formed, for
instance, of the following values:
p = connection with concept В

p ̂ = synonym
P2 = antonym
p^ = homonym
P4 = hyponym

The kind of sentence introduced in example 5, i.e. a sen­
tence which presents the value of one variable of one entity,
is an element-message, because it is the smallest possible
sentence. Although more complicated sentences can be formed or
deduced from these element-sentences, the way in which this
takes place is not relevant to the subject of this article.

131

Defining Sentence. Definition

In componential analysis of meaning, it is customary to
define the meaning of a lexical element in term of semantic

6components and logical constants . In LM-theory, the same
holds, but only the terms are different:

. the lexical element is considered to be a concept,

. the semantic components are considered to be values of
variables, and

. the logical constants are considered to be connectors.

In somewhat more detail, this means that each definition
can be divided into the following parts:

. the defined concept which is the concept specified in
the definition,

. the definition-concepts, which are the concepts by means
of which the defined concept is described. They are
.. the defining concept, meaning the concept category to

which the defined concept belongs according to the
definition, and

.. the defining variables, which describe the way in
which the defined concept differs from other concepts
included within the category of the defining concept,
and

. the definition-relation, which connects the defined con­
cept with the definition concepts.

Example 6

"Concept A is a synonym of concept В if it is defined by
means of all and the same semantical components and of all
and the same logical constants as B".
Here

"synonym" is interpreted to be the defined concept, i.e
it is specified in this definition,

"concept" is the defining concept, i.e. "synonym" be­
longs to the category of "concepts",

"number of semantical components used in the definition
is the defining variable, and

"all" is its value;
"quality" of the "semantical components" is another
defining variable, and

132

"same" is its value;
"number of logical constants" is the third defining
variable, and
"all" is its value;
"quality of logical constants" is the fourth defining
variable, and
"same" is its value; and
"if" refers to the definition-relation.

Thus the content of this definition is;
"'Synonym' belongs to

the category of 'concepts' and differs from other
concepts in being defined by
'all' (= variable 1) and
' the same semantical components as another concept'
(= variable 2), and by

'all' (= variable 3), and
'the same logical constants as this other concept'
(= variable 4)".

Method.
The LM-concept analysis method is based on the idea about

the structure of definitons presented above. This means that
when this method is employed the definition is divided into
parts corresponding to the defined and definition concepts, and
definition-relation, and then presented by means of these.

Example 7

"Concept A is a hyponym of concept B, if its definition
contains all the same components and logical constants as
those occurring in the definition of В in addition to at
least one other component with the necessary logical con­
stants" .
Interpretation :

Concepts :
"hyponym" = defined concept Co°
"concept" = defining concept Co1
"number of semantical components compared with those
in the definition of B" = defining variable p1
"all+at least one" = value pj

133

"quality of the components compared with those in2
the definition of B" = variable p

2
"same" - value

"number of logical constants compared with those in3
the definition of В" = variable p3
"all+at least one" = value p^

"quality of the constants compared with those in the4
definition of В" = variable p4
"same" = value p

dp fbf" = definition-relation -
Content :

"Co° belongs to the category of Co1 and has in vari-
1 1 2 2 able p value p^, in variable p value p^, etc."

Comparison of Definitions

When each individual definition has been analyzed as de­
scribed above they can be compared with each other. This is
accomplished in the form of a "substraction". The analyzed
definitions are written one above the other and then compared
with each other with respect to each definition concept.

Example 8

Table I presents the comparison process schematically. On
the left are the definitions to be analyzed and compared.
They are the "synonym" from example 6, the "hyponym" from
example 7, and the "antonym". Each definition concept is
allotted a column and the results of the analysis of these
definitions are entered in the appropriate columns.

The notations in each column are then compared with each
other. Thus the three example concepts are similar with
respect to the defining concept, i.e. all of them are
"concepts", and to the fourth defining variable, i.e. they
are defined by means of the "same" logical constants than

134

another concept. But they are nonsimilar with regard to
the first, second, and third defining variable, in which
they have different values.

Description of a vocabulary

Every vocabulary can be conceived to be a set of concepts
in which the concepts are tied together by means of defini­
tions. This means that some of its concepts are defined by
means of the other.

According to the LM-way of thinking, the structure of such
a set, i.e. the interdependencies of its lexical elements, can
be described in a two-dimensional scheme.

In the horizontal direction the description takes the form
of a network where the concepts are joined by means of defini­
tions. Thus in this network the lexical elements are the knots
or nodes, and the definitions the meshes (figure 1).

In the vertical direction the concepts are described by
means of the concept hierarchies.

The Horizontal Description

The horizontal description of a vocabulary begirs by
analyzing some of its central concepts in the way illustrated
in example 7. This means that the central lexical element will
be spread out into defined and definition concepts connected
by the definition-relation.

Example 9

"Sentence is an order of words or phrases expressing a
7complete thought" .

135

Interpretation :
Concepts :

- defined concept = " sentence"
- definiton concepts = 1 / "order", 2/ "word",

3/ "phrase", 4/ "express", 5/ "complete" and
6/ "thought"

- definition-relation = "is"
Content :

Sentence

In the next step which is presented in example 10, the
definitions of the definition-concepts of the original sen­
tence are analyzed in a similar way. This time they are in
the role of the defined concept.

Example 10

"Phrase is a construction of words having fragmentary
meaning".7
Interpretation :

Concepts :
- defined concept = "phrase"
- definition-concepts = 1/ "construction", 2/ "word",

3/ "fragmentary", and 4/ "meaning"
Content :

Phrase

136

So this procedure goes on: the definitions of the defini­
tion-concepts of the former step will be analyzed and spread out
into above described networks. This is continued until the
basic or unde finable concepts have been found. This takes place
when two concepts have been found to be defined by means of
each other.

Example 11
7"Expression is utterance".
7"Utterance is expression".

Here
"expression" the defined concept in the first defini­
tion, and the definition concept in the latter, and
"utterance" is the definition concept in the former
and the defined concept in the latter.

Thus the content is :

The "expression" and "utterance" are specified by means
of each other. This means that they are undefinable con­
cepts which the definer thinks to be comprehensible to
the audience without definitions.

When all the definition chains have ended at undefinable
concepts, the whole vocabulary can be presented in the form of
a summary, in which the formal descriptions of the analyzed
definitions have been combined into one and the same network.

Expression

Utterance

137

In figure 1 a network of a vocabulary is introduced, it7describes the vocabulary used in Webster's dictionary in
defining the word "sentence".

This network starts from the definition of "sentence"
analyzed in example 9. This definition is denoted by
"def 1.1". - The numeral to the left of the decimal refers
to the level of analysis, and the numeral on the right to
the order of the definitions on this level. Thus, for in­
stance, 2.3 means that it is the third definition of the
second level.

On the second level are the definitions of those concepts
by means of which "sentence" has been defined. So, for in­
stance, the definition of "phrase" analyzed in example 10
is the definition 2.2, and the definition of "expression"
is 2.3.

On the third level the definition concepts of the second
level are analyzed. Here are, for instance, the defini­
tions of "neat" (3.1) and "arrangement" (3.2). - On this
level some undefinable concepts have been emerged, such
as "utterance" (3.6) and "entire" (3.7). These undefinable
concepts are in the network underlined and provided with
an ordinal number.

Figure 1 expresses six levels of analysis. However, at
the sixth level some concepts remain which are not un-
definables. These include concepts such as "assortment",
"miscellaneous", and "ingredient" (6.9). But their defi­
nitions will be left out the network due to the space
restrictions.

Example 12

138

The network description of a vocabulary encompasses two
kinds of lists. The first is comprised of the definitions of
the terms, and the other of the undefinable concepts used in
these definitions.

Example 13

Here is the list of the undefinable concepts of the net­
work in figure 1.

1 utterance (expression)
2 entire (complete, not fragmentary)
3 idea (thought)
4 proper (fit,neat)
5 put (to place)
6 union (combination)
7 fraction (part)
8 take (receive)

The Vertical Description of a Vocabulary

Each concept in the horizontal a network is an element of
a concept hierarchy. The description of these hierarchies is
the vertical description.

A concept hierarchy is formed when a concept is divided in­
to two or more mutually exclusive subconcepts, and these again
further into new subconcepts. At the top of such a hierarchy
are the most abstract concepts, and at the foot the most con­
crete ones. - Essential in this division into subconcepts is
that it takes place by means of definitions. Each concept
which will be divided, is provided with one or more defining
variables by means of which the subconcepts are then spe­
cified. Thus

. the original concept is in the role of the defining
concept, and

. its subconcepts in the role of defined concepts.

139

In figure 1 the term "word" is included in definitions 1.1,
2.2, and 3.4. The conceptual hierarchy of this term will be
derived in the following way:
"*Words' are divided into nouns, adjectives, pronouns,
verbs, etc."
A noun' is the name of an entity".

"'An adjective' belongs to the quality of the subject".

Example 14

In these definitions
"word" is the superconcept,
"nouns", "adjectives", "pronouns", "verbs" etc.
are its subconcepts
"type of concept to which the words belongs" is the
defining variable, and
"name of an entity" and
"quality of an entity" are its values.

Thus the content is :

In example 14 it has been shown in what way concepts are
divided into subconcepts. The basic idea is that is is accom­
plished by means of definitions and that the defining vari­
ables serve as the criteria of the division.

The subconcepts will be divided into further subconcepts
by means of new defining variables. When these definitions
will be combined into one and the same network a hierarchy
will be formed. A detailed description of such an hierarchy
comprises on the other hand of a description in what way the
concepts are organized into super- and subconcepts, and on
the other hand of the defining variables used as criteria of
division.

IIEtc" .

Word

(quality of (name of
an entity) an entity)

140

In figure 2 such a concept hierarchy is presented. On the
left are the concepts, organized into a hierarchy; on the
right are the defining variables used in this organization,
and their values. Thus for instance, the nouns or "entity-
names" can be divided into nouns describing "abstract" and
"concrete" entities. Here the defining variable is the
"concreteness" and its values are "abstract" and "concrete"
- The concrete entities can be divided into "immaterial"
and "material" entities. The defining variable is "materi­
ality" having the value "immaterial" and "material".

Typical for the hierarchies of real vocabularies is that
there are words, or names for each concept in the hierarchy
Normally, those concepts which are used seldom do not have
a name, but must be described by means of one or more ad­
jectives and another noun. In figure 2, for "instance"
"other animals than men" or "not living objects" do not
have a noun of their own, and they must be described by
means of adjectives.

Characteristics of a Vocabulary

The hierarchic structure of a vocabulary is one essential
dimension which describes various vocabularies. A vocabulary
which has very high hierarchies, and which has also a special
name for each of the concepts in these hierarhies is a noun-
dominated vocabulary, where as a vocabulary with low hier­
arhies is an adjective-dominated one. In the former there is
an enumerous amount of nouns and few adjectives, where as the
latter has few nouns, but many adjectives. The extreme cases
of these are on the one hand a vocabulary with only nouns and
with no adjectives, and on the other hand a vocabulary with
many adjectives and one noun (which is entity).

Example 15

141

The term "widower" in figure 2 is an expression of a noun-
domihated vocabulary. It could be expressed by means of a
extreme adjective-vocabulary in the following way:
"A 'widower' is an

. entity, which is

. concrete,

. material,

. living,

. able to move,

. two legged,

. male,

. married, and

. has lost his wife through death."

A noun-vocabulary has an advantage of enabling the formu­
lation of short sentences, but its drawback is the width of
its vocabulary. An adjective vocabulary is just the opposite:
it has much smaller vocabulary, because by a rather small
amount of adjectives can be replaced a much larger amount of
nouns, but the sentences formulated by it are very long,
because every noun may be described by means of several ad­
jectives. Thus either the vocabulary will widen out, or the
sentences will lengthen depending whether the number of nouns
is increased or decreased. Normally the practical vocabularies
are approximately in the middle: they consist of a rather
large number of nouns and adjectives: those terms used often
are provided with nouns and the rare concepts are described
by means of adjectives and other nouns.

Applicatio ns

The LM-theory, and the content analysis method based on
it, can be used for the purposes of semantic studies as in
the analysis of meanings and descripition of vocabulary as
discussed above. It can also be applied in other scientific
areas to analyze concept definitions and to describe concept
sets used in theoretical schemes. So, for instance, it has

Example 16

142

been used for the analysis of wage theories and theories of
action in order to compare and combine them into comprehensive
theory.

Discussion

In the introduction of this article, the linguistic mathe­
matical approach or LM-theory has been said to be a semantic
theory. This assertation is based on the definition of semantic
theory presented by Bierwisch"*". According to him it must

. make reference to the syntactic structure in a precise
way,

. systematically represent the meaning of lexical elements,
and

. show how the structure of the meaning of words and the
syntactic relations interact in order to constitute the
interpretation of sentences.

In this article I have tried to prove that these conditions
are fulfilled by the LM-theory at least to some extent.

The LM-theory includes a syntactic theory, though it has
not been discussed per se in detail in this article. However,
examples 4 and 5 suggest on the one hand, how this syntactic
theory is involved, and on the other, that a precise connec­
tion exists between the semantic and syntactic structures.
Thus the first requirement should be met.

This entire article has been directed at introducing LM-
theory as a systematic method for presenting the meaning of
words, or concepts. Thus also the second condition should be
fulfilled.

The LM-analysis method shows the way in which the sentences
can be systematically interpreted, i.e. first, divided into
concepts, and then, presented by means of these concepts as
introduced in examples 4 and 5. The concept definitions are

143

then analyzed in a similar way: first, divided into concepts,
then, presented by means of these. This should show the way
in which the meanings of words and the syntactic relations in
teract. Thus also the third condition has been met.

Based on this reasoning I feel justified to some extent in
asserting that LM-theory is a semantic theory. One could also
add the adjecitve "practicable", because it has been applied
to such practical and conrete problems as the analysis of pay
decisions in day-to-day working situations.

References

CID Bierwisch,M.:"Semantics" in New Horizons in Linguistics
(e d .J .Ly o n s), Penquin Books, Middlesex, 1972.

C23 Carnap,R.: Meaning and Necessity, University of Chicago
Press, Chicago, 1956.

C3U Heiskanen,H.: "Palkan muodostumisen teoriaa ja käytäntoä"
("Theory and practice of wage formation) Helsinki
University of Technology, Research Papers N o . 38.,
Otaniemi, Finland, 1972.

Heiskanen,H.: "A Mathematical Linguistic Theory",
Helsinki University of Technology - Laboratories of
Industrial Economics, Report 5/197^, Otaniemi, Finland

C53 Heiskanen,H.: "A Systems Theoretical Approach to the
Analysis of Social Action and Decisions", Annales
Academiae Scientiarum Fennicae, Series В No 191,
Helsinki 1975.

C6i Katz,J. and Fodor,J.: "The Structure of a Semantic Theory",
Language 39:1963:170-210.

C73 The Grosset Webster Dictionary, New York, 197^.

Sentence

Figure 1. Vocabulary as a network
of definitions'

144

e x p r e s s i n g
Horde

Etc. A d j e c t i v e s
(quality)

I mmaterial
entities

Men
(full legal
age)I
Husbands
(married)

Pr e s e n t l y
m a r r i e d man
(wife is
living)

Not living
entities

Plants
(not able)

O t h e r animals
(not erect)

W o m e n
(female)

Boys
(under age)

^Bachelors
(not married)

„Hidower
(lost his wife
through death

D e f i n i t i o n : " Word is an
an idea"

a r t i c u l a t e sound e x p r e s s i n g

Defining variables
Variable Value Value

Ty p e of idea for
w h i c h the word
is symbol

S u bject or
ent i t y

Q u a l i t y of the
subject

C o n r e t e n e s s of
the ent i t y

C o n c r e t e A b s t r a c t

M a t e r i a l i t y of
the entity

M a t e r i a l Immaterial

L i v i n g n e s s L i v i n g Not living

A b i l i t y to move Ab l e to move Not able

P o s i t i o n Erect Hot erect

Sec Male Female

Age U n d e r age Full legal age

M a r i t a l status M a r r i e d Hot m a r r i e d

L i v i n g n e s s of L i v i n g Hot living
his wife

I

I

Figure 2. Concept hierarchy

145

Defining variables

Analyzed concepts end
their definitions

Co°

Defining concept
Co1

Number of se­
mantical com­
ponents com­
pared with
those of an­
other concept

P1

{ Quality of se­
mantical compo­
nents compared
with those of
another concept

2P

Quality *of
logical con-
stans com­
pared with
those of an­
other concept

3 P

Quality of
! logic’al con- •
stans com­
pared with
those of an­
other concept

4 P

Type of differ­
ence of thç dif­
fering semanti­
cal components

5P

Concept ▲ is &
synonym of concept
B, if it is defined
by Beans of all and
the same semantical
components and of
all and the same
logical constants q
than B. ■

concept CoJ 1same p^ 2same p^ same 4same p^ (not relevant)

Concept A is a
hyponym of concept
B, if its definition
contains all the same
components and lo­
gical constants in
connection with these
as occurring in the
defintion of В an in
addition at least one
other component with
necessary logical
constants. » Co°

concept Co* same+at least
1one p2

2same p^ same-fat least 3one p2
41 same p^ (not relevant)

Concept A is a
antonym of concept B,
if its meaning is
identical with the
meaning of В, except
that its meaning has
a component Cl that
of В had C2* and Cl
and C2 belong to
particular subset of
mutually exclusive
components ■ Co°

concept Co* 1same p^ same except one
2

p2

3same Pj 4same p2 mutually
exclusive p^

Comparison - * * * - *

Tab le 1. Comparison of concept definitions

146

147

CALLPRQCESSQRS IN COMPUTER ARCHITECTURE

T.Legendi
Attila József University

Szeged, Hungary

The real effeotivity of digital computers - characterized
by the working/waiting ratio of basic elements, gates and
bits - is very low. There are speed limits for the basically
sequentially organized computers too.

Cellular automata organization offers in principle solution
to these problems. However traditional approach - stand alone
cellular computers consisting of a high number of cells with a
fixed relatively big transition function - give results of
only theoretical importance at the present state of technology -
which demands at the same time the development of a homogeneous
basic element.

This paper gives proposals for the structure and program­
ming of very effective medium speed cellprocessors based on
existing technology :

- Callprocessors are trested as an organic part of computer
architecture for solving tasks of a wide but limited
class of algorithms.

- The flexibility of cells is increased by variable transi­
tion functions which reduce the size of cells and the
number of cells for solving a given task.

- Reorganization of processing in a cellular space
- centralized sequential transition function processing -

148

drastically reduces the size of cells thus making pos­
sible to integrate 102-102 cells on one chip. With the
growing number of cells executing the same transition
function price/performance is improving3 since the loss
of speed depends only on the size of the transition
function. /This advantage against supposed parallel
spaces is independent of the development of technology,
too. /

A 16 state cell for general computations and a 2 state
cell for specific applications have been designed and
their models have been built.

Cellular automata cross-software - simulation languages
and a transition function minimization language - have
been implemented.

General principles of cellular space programming - map­
ping algorithms on sets of interrelated processing
elements connected and working in pipe-lines - have
been introduced. The conception of a cellular macro­
assembly language and directions towards higher level
cellular languages are shown.

149

1 . IüE -A C IllA JJ T Y OF THE TOPIC AND fHE

GQÄLS_.QE,..RESEARCH

The object is justified by the low level of effectivity of
-4 -6computers in common use; 10 -10 part of the hardware com­

ponents work useful at the same time /although principally all
of them could work in parallel/. Speed limit for sequential
processing also involves other organization principles.

Cellular automata could satisfy in principle these require­
ments .

The -implementation of cellular automata for practical pur­
poses first become realistic with the advent of the LSI
technology. The heterogeneity of LSI circuits /because of
their complexity/ means at the same time demand for a homo­
geneous basic element suitable for mass production.

According to estimations [13] further development of
technology and detailed research will generalize the commercial
use of homogeneous computers, but not before the mid 80'-s.

This paper reports our research in order to speed up
this process. The main goal is to design a smaller new basic
element built on the basis of existing technology and to
ensure more effective and/or faster processing.

150

2. T h e role of cellular automata in
COMPUTER ARCHITECTURE

Theoretical Cl, 21 and practical C13,3,*+: works concentrate
mainly on the idea of a stand alone cellular automata-computer
based on cells with fixed transition function.

The main advantage of this approach is the total homo­
geneity /of neighbourhood and transition functions/ which
simplifies theory, hardware design and programming of the cel­
lular space.

The relatively small programmable basic element /cell/
guarantees deep simulation level /gates, hardware constructions
may be embedded into cellular spaces by software means/.

However there are arguments against a stand alone cellular
automata-computer. The most important of them states that
cellular automata /especially taking into consideration the
existing technology/ cannot be applied in an economical way
for the execution of arbitrary tasks. The main reason for this
is that in general it is very hard to utilize the level of
parallelism of cellular spaces.

Among other problems the initialization of the space and
I/O in the traditional way /only through dummy cells/ are
quite inconvenient and slow.

The connection of a cellular computer to mass storage is
also unsolved.

It is obvious to use digital computers to solve the above
problems. For example a computer can load the initial configu­
ration /program/ into the cellular space and can handle the
I/O too. In this way there is no need for large and slow con­
figurations /the own software of the cellular automata/, since
computers may assemble cellular programs too.

Special purpose applications may be satisfied by a system
consisting of one digital processor and one cellular proces­
sor only where the cellular automata may be interpreted as a
peripherial firmware which is able to execute an extra
instruction of the digital computer /see.e.g. C6l where picture
preprocessing is executed speeding up the computation with a

151

factor of 10 / .
Another possible construction would be to apply a computer

as a front-end processor to a larger cellular space.
For general computations it is reasonable to use cellular

automata as processors in an architecture where they execute
algorithms effectively computable in parallel way at cell
level. Examples are indicated in the chapter on cellular prog­
ramming. Extending the class of effectively computable /in
cellular spaces/ algorithms is an important research task.
Algorithms outside of this class should be executed by other
processors in the architecture.

4

152

3. T h e t r a n s i t i o n f u n c t i o n p r o b l e m

A fixed transition function is not flexible enough and as a
consequence it must be relatively large to be universal. In
this way the use of variable transition functions also helps
considerably to decrease the cell size. A fixed transition
function may be interpreted as a union of partly defined
functions /subfunctions/ Cl ,2,5 Hr since practically, in diffe­
rent groups of cells /only/ different subfunctions are used
/rather than the whole transition function/ during longer
periods. In this way a space consisting of groups of cells with
independently variable functions can replace a space of cells
with a larger fixed transition function.

There is another obvious advantage - the possible use of
arbitrary functions /not only a fixed set of subfunctions may
be accessed/.

The definition of transition functions for different com­
putations is a cell microprogramming task which is to be made
now by hand /in the future this work should be automated by
cellular programming languages first partly, then totally/.

Cell microprogramming means a big economy in configuration
/program/ size, thus in execution speed too; using special
microprograms small groups of cells or even individual cells
may replace larger configurations of a space with a fixed
transition function.

Cell microprogramming does not exclude production homo­
geneity .

Assembling and loading of microprograms for cellprocessors
is the task of other processors in the architecture.

153

4, C e l l p r o c e s s o r s

The size /and therefore the economy and programmability/ of
cellprocessors is determined mainly by the size of the basic
cell. A fixed set of states and neighbours always reflects a
compromise: in a space of smaller cells more cells are needed
for a given task /space, speed/; in case of bigger cells less
cells are needed, speed is growing, but the cells are less
utilized C5H•

Theoretical and simulation results as well as the existing
technology suggest to choose for basic element a maximum 16
state cell with a /static/ neighbourhood of 4 to 8 cells. For
special classes of algorithms 2 state cells may offer special
advantages.

In the previous chapter the necessity and advantages of the
variable transition function were explained. Here we empha­
size that its use reduces the size of the basic cell and the
number of cells needed for a given task.

The technical solution does not involve any serious prob­
lem. Existing design methods and technology determine the use
of RAM memory for storing transition functions.

In this case the next state of a cell is defined by map­
ping the state word composed of the neighbour cells - including
the cell itself - onto a contiguous address interval of the RAM
where the result points to the value of the next state. This is
a totally homogeneous construction from the production point of
view.

However a cell containing a RAM represented transition
function /even with relatively few states and neighbours and
some limitations for possible transition functions/ is quite
expensive as compared to the computational power of a single
cell.

A relatively obvious method may be suggested to improve
the price/performance ratio. It is based on the contradiction
between the sizes of the memory and the processor part of a
cell. A cell, as a basic element of a typical distributed
computing system, has a memory component /its own state, 1-4

154

bits/ and an information processing component /finite automata
with 4-20 bits of input and 1-4 bits of output/. It is very
natural to centralize the automata part of cells having the
same transition function. In this case, a cell does not
include any processor component. It has only a memory component
plus a small additional circuit which interacts with the
neighbour cells and with the centralized transition function
and stores the resulting new state in the memory component.

This organization results in slower speed, cheaper, modu­
lar construction. Such a quasi-space may be interpreted as a
cellular space emulator taking into consideration the usual
definition. This quasi-space emulator works as an ordinary
space emulator - only at a lower speed.

This centralization is naturally modular in the case of RAM
stored transition functions and eliminates a specific problem
here: namely loading the transition function into each cell
may cause problems.

The main advantage of the method is that the size of a cell
is drastically reduced, giving chances for implementation of

2 410 -10 cells on one chip which is the preliminary design con-
5 7dition of an acceptable cellprocessor3 containing 10 -10

cells.
But how price/performance may be improved? The loss of

speed seems to compensate the decrease in price. Although the
loss of speed is necessary but the solution proposed by
T.Toffoli [7 1 for experimental cellular space emulators makes
proportional the loss of speed to the length of the micro­

program /proportional to the number of terms of the transition
function/ rather than to the number of cells connected to a
RAM stored microprogram. This means that increasing the number
of cells belonging to the same RAM, price/performance is
improved. This argumentation shows not only that in this way
there are chances for implementation based on existing techno­
logies at present, but it also should be pointed out, that
although having better technologies in the future, which will
enable to integrate a minimal sufficient number of /non quasi/
cells on one chip they will not make the above organization

155

unnecessary. Of course, the number of quasi-cells on one chip
increases too, and therefore the advantage in price/performance
remains. When extra speed is necessary, however, a really pa­
rallel space should be used.

Returning to the actual situation the loss of speed /rela­
tive to a completely parallel space/ does not effect the prio­
rity in speed against sequential or mainly sequential computers
/estimated order of 2 magnitudes/ and the advantage in more
frequent use of components /estimated order of 3 magnitudes/.
The legitimacy of these estimations depends on the concrete
parameters of the cellprocessors to be implemented and on the
cellular programming and microprogramming.

Two types of quasi-cells with fixed 5 neighbours /includ­
ing the cell itself/ have been designed: a 2 state one /about
10 gates and in average 8 substeps e.g. 8 microinstructions/
and a 16 state one /about 100 gates, the number of substeps
largely depends on the transition function; it may vary from
40 to 1000/.

These results ensure minimum preconditions for producing
cellprocessors. Details of the system design may be found in
L7.

According to L7 a basic logical modul is a group of cells
with a common variable transition function which may be rea­
lized as a set of physical moduls - cell microprocessors /СМР/
consisting of an internal array of quasi-cells, driven by a
common external RAM stored microprogram.

LI contains further optimization techniques to reduce the
number and time of substeps preserving the relative simplicity
of quasi-cells at the same time. Minimization is also supported
by software tools /L6/.

According to L7 a cellprocessor consists of a set of CMP-s
and RAM-s, and a /usual/ microprocessor /with a special in-

Vstruction set/ which controls the CMP-s and RAM-s including
the I/O among them (internal I/O) and the external I/O with
the other processors in the architecture.

The programs of a cellprocessor /the programs for the

156

microprocessor, the cellular programs and microprograms/ should
usually be computed /in the optimal case by a compiler of a
cellular language/ and transformed by other processors in the
architecture.

157

5, S o f t w a r e t o o l s

In order to maintain design and later use of the described
cellprocessor system, software tools /running on digital com­
puters/ are requested,for microprogramming, machine code and
higher level cellular programming.

Three implemented subsystems of a future cross-software
package and further design principles are explained in the next
paragraphs.

5a The CELLÁS cellular space
simulation language

In rich literature on cellular automata there are relati­
vely from simulation languages C2,9,10,11,12D and their struc­
tures are not suitable for our purposes. In this way it was
necessary to define a relatively simple language, considering
that a limited inhomogeneity is needed and simulation should
be as much effective as only possible. The CELLÁS language may
be used for more general tasks /then the explicit goals of the
author/ but it is far from being a general cellular space si­
mulation language.

For special purpose simulations we have adapted other si­
mulators as the interpreter of the SICELA language 193 /with
some improvement,a higher level input language was imple­
mented/ and the CELIA 111,123 processor.

CELLÁS is a command-type language implemented in form of
interpreters.

The basic group of instructions in CELLÁS ensures the
direct simulation of the space /input vectors to dummy cells
on the boundary of the space may be specified if desired/. The
interpreter computes the transition function only on open
cells that may change their states; on closed cells /that cer­
tainly will not change their states/ it does not perform any
operations. A one step look ahead algorithm classifies conti-

158

nuously the cells open or closed. On permanently /more than
1 step/ closed cells the look ahead does not require any com­
putation. This look ahead algorithm ensures significant increase
of speed which is especially needed, since the characteristics
of the task demand uneffective simulation /on a relatively big
sequential digital computer/ of many relatively small elements
working in parallel way.

The group of instructions for functional simulation helps
in speeding up simulation too. These instructions ensure direct
simulation of groups of cells /not cell by cell/ and the con­
nections among groups and cells. The main advantage of this
group of instructions is given mainly by the possibility of
top-down programming rather than by economy. The whole confi­
guration /program/ should be decomposed; the decomposition can
be tested by functional simulation and afterwards the parts
may be decomposed again or changed to real cell configurations
continuously and independently. At each level the space may be
simulated, giving a very strong debugging tool at the same
time.

Transition function definition instructions enable simple
function description including the inhomoqeneous case.

From the users' point of view the simple, flexible group
of instructions for control of printing the space is very im­
portant. It is possible to define independently, which parts
of the space, in what form and at which steps should be printed
/or sent to a file/.

The space may be continuously monitored by ON instructions
- when a condition of a previously executed ON instruction is
met, the prescribed action /a CELLÁS program/ of the same ON
instruction is executed. There are in the language assignment3
very simple arithmetic. I/O and library handling instructions
for the basic date types /integers, vectors, configurations,
transitions functions and CELLÁS programs/. Branching is per­
formed by simple skip instructions.

More detailed descriptions of the language may be found in
L4, L2, L3. Different versions have been implemented in

FORTRAN IV on computers CDC 3300, IBM 360/40, Honeywell 6060.

- 159 -

5b The INTERCELLAS, an interactive
cellular space simulation language

The language is a subset of CELLÁS, except a few added in­
structions for handling interrupts and for dialogue L5, L94

A typical simplification is shown by the changed ON in­
struction group: here the conditions cannot be complex, the
action is to pass control to the main input periphery /consol,
in general/, i.e. the interpreter prints the condition that
was met and waits for the next instruction from the main
periphery. Different versions of the language have been imple­
mented on minicomputers CII-10010, PDP-8 and MITRA 15.

5c The TRANSCELL cellular microprogramming
language (for definition and minimization
of the transition function)

The size of a microprogram effects RAM costs, but this is
not too serious taking into consideration the relatively great
number of quasi-cells belonging to the same RAM.

However, the size of microprograms is critical, since the
speed is proportional to the length of the microprogram as it
is executed sequentally.

Therefore microprogram minimization is of prime importance.
A half automatic solution is given by TRANSCELL. Special

transition function definition instructions may describe
transition functions, and minimization directives control the
minimization process. Detailed description of the language and
its practical application may be found in /L6,L7,L8/.

The TRANSCELL interpreter may produce a minimized micro­
program for the hardware and/or may produce a transformed mini­
mized transition function table and a FORTRAN search program

160

fitting the specialities /caused by minimization/ of the gene­
rated table. The search program maps any given combination of
cell's and its neighbours' states onto the continuous address
interval of the table containing the values of the next states

Thus TRANSCELL is a medium level cell microprogramming
language, its processor will be built in the simulator in the
near future and it may serve as a subsystem in a cellular prog
ramming language too.

161

6. C e l l u l a r p r o g r a m m i n g

The first cellular programs appeared in form of proofs in
constructive mathematics /simulation of the universal Turing
machine and self-reproductive automata/. The traditional way
was to embed hardware-like components into the cellular space.
This approach to the problem involved construction of modular,
hierarchically structured configurations.

Here elementary subtasks are realized by less, basically
static configurations interconnected for solving subtasks
/there is an explicit analogy with subfunctions, subroutines,
modules/. Higher levels may be built up hierarchically by in­
terconnections .

For special purpose applications as wave-, simulation-
spread out, simple self reproduction and picture preprocessing
free structured /поп-hierarchical, non-modular/ cellular pro­
grams may be used that directly do not control the flow of in­
formation in the space. Such programs may be characterized as
direct mapping of the problems /embedding of systems/ into the
cellular space. Their application is basically limited for
modelling discrete systems /or problems equivalent to them/
where homogeneous local changes dominate the behaviour of the
system.

For general purpose computations the embedding and hier­
archical interconnections of hardware components give pos­
sibility to emulate digital processors. However the emulation
of sequentially working hardware /devices like general purpose
computers with CPU, memory, etc./ seems to be justified only
for theoretic and simulation purposes. Such emulation needs a
high number of cells and for general purpose computations it
is very uneffective since the emulation factor effects further
decreases in the wrong price/performance of the sequential
machine. Essentially a cellular space type distributed
computing system is very different from a sequential machine
consisting of relatively big interacting modules with long
data paths. A more effective way would be to emulate systems
with more parallelism and short data paths.

162

The /distributed computing/ nature of the cellular spaces
presumes our proposal for effective, modular/parallel cell­
programming by means of embedding into the cellular space
processing elements working in parallel on moving data. Dif­

ferent algorithms are to be mapped onto different sets and
interconnections of processing elements.

The principle of modular cellprogramming is preserved. For
elementary configurations software configurations /processing
elements, open subroutines/ are selected.

The cellular space is used in fact as a distributed comput­
ing system by mapping directly the algorithms into the cellular
space in form of static, modular, hierarchical subconfigurations
connected in pipe-line3 e.g. data are moved and transformed
along the pipe-line continuously. All the subconfiguration
work at the same time ensuring high productivity. The sub­
configurations should be of medium or small size, they may be
interpreted as open subroutines /e.g. their function may be
A=B+C of A=A+L, search from a symbol-table ; in general the
instruction set of a cellprogramming language/.

In this way cellular processors are suitable to execute a
wide class of parallel algorithms /including array processing/.
Direct /machine code level/ programming and microprogramming
are enabled by the use of cellular simulation languages
/ensuring many extra utilities but not generating configu­
rations/. One type of utilities shows possible development to
increase the level of programming, namely the library handling
routines. It is possible to write subconfigurations by hand, to
store them in a library and to call them afterwards.

An assembly type cellprogramming language may consist of
an instruction set to call implicitly the members of a set of
basic subconfigurations. There exists a difference not only in
form but being more than original utility, in addition to the
ready subconfigurations at disposal, the call may specify pa­
rameters which effect on the called subconfigurations so that
the process seems to be a simple configuration generation
rather than making a copy from a library.

163

In a cell macro assembly language the user will have the
possibility to add his own subconfigurations to the assembler's
basic set.

The trend of development points to more sophisticated help
automatic and automatic subconfiguration generations. In higher
level cell-languages the algorithmic description of subfunctions
and their relations will be compiled to subconfigurations and
their interconnections.

164

7. Summary

This paper deals with cellprocessors /cellular automata
type processors/ being organic parts -in computer architecture
and gives proposals for the structure of very effective medium
speed cellprocessors based on existing technology.

The task of cellprocessors in the architecture should be
to execute procedures effectively computable in parallel at
cell level.

The proposed cellprocessor emulates a finite cellular
space where different groups of cells /represented by cell
microprocessors/ may have independently variable transition
functions /represented by RAM memories/.

A cell microprocessor consists of an array of /quasi/ cells
that may execute the same microinstruction simultaneously. A
microprogram /equivalent to a complete transition function,
represented by RAM contents/ is executed sequentially. /There­
fore microprogram minimization is of prime importance./

A cell may interprète instructions of two types : during
the first phase of a transition step the execution of feature
extraction instructions results in storing the characteristic
information about the neighbourhood /in each cell/ and during
the second phase the execution of state assignment instructions
defines the next state /separately in each cell, using the
stored neighbourhood description/.

For general computations a 16 state cell /-100 gates/, for
specific purpose applications a 2 state cell / - 1 0 gates/ have
been constructed.

Programs /initial configurations/ and microprograms should
be computed and loaded by other processors of the architecture.
The information to be processed /input to cellprocessor/ and
the results /output from cellprocessor/ are handled in the
same way.

General procedures should be programmed by embedding soft­
ware configurations /open subroutines/ connected in pipe-line.
Data are moved and transformed parallel along the pipe-line

165

continuously.
Software support of the above system consists of simulation

languages and a microprogram definition and minimization
language. Higher level cellular languages are under design.

LITERATURE

[1] Neumann, J.: Theory of Automata: Construction, Reproduction,
Homogeneity, Part II of "The Theory of Self-Reproducing
Automata" ed. A.W.Burks.
University of Illinois, 1966.

C2I Codd, E.F.: Cellular Automata
Academic Press. Inc. New York, London 1 9 6 8 .

C33 Fáy, Gy.: Circuitry Realization of Codd’s Cellular
Automaton’s Cell. Technical Report KGM ISZSZI, 1973.

CUi Takács, D.V.(Mrs): A Bootstrap for Codd’s Cellular Space,
I.Conference on Computer Science, Székesfehérvár, 1973.

C53 Nourai, Farhad - Sohrah Kasef,R.: IEEE Transactions on
Computers V 0 I.C- 2 U. N0 .8 . August 1975*

C6 l Preston, Jr.K.: Use of the Golay Logic Processor in
Pattern-Recognition Studies Using Hexagonal Neighbor­
hood Logic
Symposium on Computer and Automata
Polytechnic Institute of Brooklyn, April, 13-15* 1971.

II7] Toffoli , T.: On the Large-Scale Implementation of Cellular
Spaces by Means of Integrated-Circuit Arrays.
CNR, Istituto per le Applicazion’del Calcolo, 1972.

C8 l Domán, A.: A Model of Parallel Processing.
Információ Elektronika 1975-2. -in Hungarian-

1193 Vollmar, R.: Uber einen Interpretierer zur Simulation
Zellurarer Automaten.
Angewandte Informatik 6/73.

C103 Brender, R.F.: A Programming System for the Simulation of
Cellular Spaces
The University of Michigan, Ann Arbor 1970. /Ph.D.Thesis/

C113 Baker, R. - B.T.Herman: CELIA - A Cellular Linear
Iterative Array Simulator.
Proceedings of the Fourth Conference on Applications of
Simulation, pp. 6b-J3 /1970/.

166

C12I Wu-Hung-Liu: CELIA Users Manual
Dept.of Computer Science, State University of New York
at Buffalo, October 1972.

C13U Cellular Spaces, Homogeneous Structures -in Russian -
Institute of Mathematical Machines, Warsaw, 1973.

Cll+I Cellular Automata, Bibliography, KGM ISZSZI Budapest,
1973.

C153 Bibliography on Cellular Automata Papers in Internal
Series of KGM ISZSZI 1971-1971* •

Cl6l Vollmar,R.: /manuscript ; the bibliography from A.R. Smith
III. Introduction and Survey on Polyautomata Theory with
supplement/

CI7] Rozenberg, G.: Generative Models for Parallel Processes.
Cl8l Toffoli, T.: Cellular Spaces - An Extensive Bibliography

Dept.of Computer and Communication Sciences. The
University of Michigan. 1976.
Publications and internal reports.

LI Legendi, T.: Simulation and Synthesis of Cellular Auto­
mata. Conference "Programming Systems’75".
Szeged, /in Hungarian/.

L2 Legendi, T.: Simulation of Cellular Automata, the
Simulation Language CELLÁS.
Conference "Simulation in Medical, Technical and Economy
Sei enc es".
Pécs 1 9 7 5 /in Hungarian/.

L3 Legendi, T.: The CELLÁS Cellular Space Simulation
Language, /Manuscript in Hungarian 197^-/
Martoni,V. - Legendi, T.: CELLÁS 0.9 User’s Manual, 197^
/in Hungarian/

LU Czibik, I. - Legendi, T.: User’s Manual. CELLÁS 1.0, 1976.
/in Hungarian/

L5 Merényi, E.: The INTERCELLAS Interactive Cellular Simu­
lation Language.
Diploma work. University JATE, Szeged 1975-/in Hungarian/.

L6 Zsiros, P.: The TRANSCELL Cellular Automata Transition
Function Definition and Minimization Language.
Diploma work, JATE 1975 /in Hungarian/.

167

L7 Sára, A. - Legendi, T. - Kacsuk, P.: Hardware Design on
a l6 state Cellprocessor.
Manuscript in Hungarian, Szeged, 1976.

L8 Legendi, T.: INTERCELLAS an Interactive Cellular Space
Simulation Language.
To appear in Acta Cybernetica, Hungarian Academy of
Sciences .

L9 Legendi, T. - Hegedűs, Gy. - Pálvglgyi ,L .: INTERCELLAS
/PDP-8/User’s Manual, 1976. /in Hungarian/.

169

MECHANICAL ANALYSIS OF HUNGARIAN SENTENCES*
Gy. Hell

Technical University of Budapest,
Institute of Languages

Budapest, Hungary

1. G e n e r a t i o n a n d a n a l y s i s o f s e n t e n c e s

1.1 Inapplicability of finite
state grammars

In the generation process of Hungarian word forms a finite
state grammar has been used. On its basis all the Hungarian
word forms could be produced and analysed. The finite state
diagram gives good representation of how a word form is
produced and makes it considerably easy to write a program
according to it.

The finite state diagram produces elements in successive
order /from left to right/ so that the production of an ele­
ment is the result of the preceding item and is dependent on
it. This means that such a generation process is very helpful
when we have to describe the relation between two successive
elements but it cannot be used /or only in a very complicated
way/ if we want to express the relation between not succesive-
ly ordered elements. E.g.:

* The first part of this paper /Mechanical Analysis of
Hungarian Word Forms/ has been published in issue X. of
CL & CL, pp, 125-13U.

1/ Végre megvan a megoldás.
(At last we have the solution.)

2/ Végre meg van oldva a feladat.
(At last the problem has been solved.)

3/ Nemcsak megoldotta a feladatot, hanem meg is indokolta
a megoldást.
(He not only solved the problem but he explained the
solution too.)

In sentence No.l the morphemes meg and van not only follow
each other but they are also connected into one word unit. In
sentence No. 2 the morpheme meg forms a word not with the im­
mediately following van but with oldva (this fact is expressed
by orthography too). In sentence No.3 the conjunction hanem is
is in close relation with the first word of the sentence nem­
csak and depends on it entirely. As such constructions very
often occur in (Hungarian) sentences, a phrase structure
grammar (PS) will be used instead of a finite state grammar
for describing the structure of the sentences.

1.2 Phrase structure grammar
for Hungarian syntactical
cons true t ions

PS rules describe sentences by giving the immediate con­
stituents for different levels of analysis. A sentence may
have the following constituents:

4/ A művész uj képet festett.
(The artist a new picture painted.)

levels constituents
I. A művész + új képet festett.

NP + VP
II. A + művész új képet + festett

D + N NP + V
III. uj + képet

Adj + N
The PS rules expressing the structure of the

- 171 -

S
VP
NP
V
N

Adj
D

■*> NP + VP
-*■ NP + V

/D/ + /Adj/+N
-> fest

művész
kép
új
a

(Symbols in parentheses denote facultative use.)
In Hungarian sentences we have three different main

stituent structures :
a/ verbal structures (VER)
b/ nominal sturctures (NOM)
с/ adverbial structures (AD)

They can be described by the following PS rules:
Aux Inf

I. VER Aux

II/а. NOM

b. PN

c. DNO

d. DET

V
V
1

~’v
PN
DNO
SN
Pna
Pnb

Pn

n

m

(DET) NON

p NuPn

e. NON
N0

DNOBS
(N0B)
(DET)

N0
N0BK

con­

's

172

AD Jn
f. NO ---> (ADJ) (PA) ADJ , N
g- ADJ ---> (NON) (AD) Adj
h . AD Jn --- > (ADJ) An
i. PA ---> (NOM1, NOM

2 » * • *,NOM) (AD) P n
III/а.

ADV

b. AD

GER
AD
NOM.A
SA J

(ADVB) ADVA

(Two or more symbols placed under each other in parentheses
denote the obligatory use of one of them.)

The PS rules contain two different kinds of symbols. One
of them appears only on the right side of the rules while
the other can be seen on both sides.

On the right side we have the following symbols: D, Pn ,cL
Pnb ,...,Pnm , Pn^, Nu, N, Adj, An, Adv, P, Aux, Inf, V, V^, Vn .
These symbols stand for only one word in the sentence and
represent word categories. The other symbols signify categories
composed mostly of two or more words as larger constituents
of the sentence. Their relations in the rules express the
relations which the represented word groups have in the sen­
tence .

1.3 Dependency grammar of the
sentence structure

If we apply the PS rules to sentence No.4 we obtain the
categories characterising smaller and larger units, e.g.:

4/a. ///A/D /m!TvéS2/N /D N 0 /N0M////új/A d ./kepet/N /1J0/N0M

Ä e s t e t t / V /Vp /S

173

On the one hand this form of description gives a good
picture of the hierarchical structure in the sentence but on
the other hand it places the units of a larger category on the
same level as if they had the same role in constructing a
constituent of higher order. Our intuitive knowledge about the
sentence and also a more detailed grammatical description says
that e.g. the units ftj and képet (new and picture resp.) have
different roles in building the NO phrase. From among the two
words the first one (iij) is obviously less important (in
constituency) than the N, since it is possible to have an NOM
construction without it, e.g.: ///A/„/muv^sz/„/„n„. This fact
can relatively simply be expressed by the help of a dependency
description. As dependency grammars give dependency relations
between the words of a sentence, we can start with the phrase
structure grammar and take the rules which contain word cate­
gory symbols. Our dependency rules will differ from the PS
rules only in that they make explicit which of the two (or more)
constituents is the main element and where it is placed in the
construction.

Taking the PS rules with word category symbols we make the
following changes ® :

NO -* N //ADJ/,/PA/,/ADJ/,+_/
ADJ -»■ Ad j //NOM/, / AD/,
ADJn -* An //ADJ/,+_/
PA -V P //NOM1f N0Mo , . . . , NOM / ,/AD/,+ /
AD -у ADv//Adv^/,+ /

Rule II/b in the PS rules has only one element and rule II/d
has two elements with equal status. The corresponding dependency
rules are :

DNO + NON / , / Nu/,+ /

i.e. the categories D, Pn^, Nu have one of the possible NON
categories as main structure element.

174 -

All these rules express dependency relations within dif­
ferent NOM, ADJ and AD structures. Since a sentence is a unit
consisting of different such structures we have to add a new
rule to the previous ones expressing the subordination of all
obtained structures to the verb (predicate).

S + VE R
NOM1,
ADV L ,

n o m 2 ,

a d v 2,
. . , NOMn
..,ADVm

Now we can give the representation of sentence no.4 in a depen­
dency tree according to the rules of dependency grammar:

In this representation the words of the sentence correspond to
nodes in the tree, and the verb is on the root. The fact that
a word belongs to a special kind of construction is expressed
differently in different languages. In most of the inflected
languages the agreement in case, gender and number, and special
"governing rules" refer to the connection between the elements
in the same construction. In Hungarian the situation is
somewhat different. Hungarian has no grammatical category of
gender and there is no agreement of case and number between
adjectives and nouns. The most important feature of Hungarian
NOM, ADJ and ADJn constructions is expressed by the fact that
the main element follows the dependent members. Beside
semantical restricitions there is a strict ordering rule for
word categories in the constructions and a NOM construction
usually begins with the determiner of the main element. This
fact is expressed in our PS and dependency rules; thus when the
mechanical analysis of a word sequence is to be performed, we

175

have to decide whether the given word as main element forms a
construction with the/a previous one or it is dependent on the
next item, or it is independent of them.

2. T h e p r o c e s s o f a n a l y s i s

In the morphological analysis word forms are reduced to
stems and endings. On this level there is no necessity to
define what categories the word stem and the ending belong to.
From the point of view of analysis e.g. it is not necessary to
know that in the homographie form várnak (they await me - to
the castle) the stem vár (to wait - castle) is simultaneously
a noun and a verb and the suffix -nak can be a verb ending and
a noun ending too. The recognition of stem and ending is ne­
vertheless correct. If morphological analysis is taken as first
step to syntactical analysis, then we have to do more. As the
recognition of syntactical units requires information about
word categories, the vocabulary for morphological analysis
must contain information of this kind too.

2.1 Organization of the mechanical
dictionary

The organization of the machine dictionary is closely
connected with the process of analysis. It is desirable to
arrange the dictionary entries in a way which reduces the time
required for looking up. This was aimed at by a double orga­
nisation of data.

1. Dictionary entries /word stems, endings, formatives/
are arranged according to their length,

2 . within a given length, entries are located in alpha­
betic order.

176

The dictionary of word stems contains the following items of
information :

1 . category of word class,
2 . subcategory of word class,
3. information about selectional restrictions.

Beside traditional word classes as:VERB/l/, NOUN/2/, ADJECTIVE
/3/, NUMERAL/ 4 / , PR0N0UN/5/, ARTICLE/6 /, POSTPOSITION/?/,
ADVERB/10/, VERBAL PARTICLE/22/ PARTICIPLE/23/, CONJUNCTION/11/
the dictionary contains the class

An = a noun stem with the adjectival formative -Ú/-Ű, or
a noun and its postposition with the adjectival formative
-i.

(3)The homographie categories of the dictionary are as follows v-y:

VERB/NOUN /13/
NOUN/ADJECTIVE /14/
NOUN/PRESENT PARTICIPLE /15/
ADJECTIVE/PRESENT PARTICIPLE /16/
VERB/PAST PARTICIPLE /20/
VERB/ADVERB /21/
VERBAL PARTICIPLE/ADVERB /24/
VERB/NOUN/PAST PARTICIPLE /25/

The dictionary of endings has the following information stored:

1 . word class of the respective stem,
2 . grammatical features of the ending.

Verb endings may contain grammatical information as follows:

1 . person of the finite form,
2 . number of the finite form,
3. tenses,
4. definiteness or indefiniteness,
5. modality,
6 . person of the definite object,
7. number of the definite object.

177

Noun endings give information about:
1. case ending /27 possible cases/,
2 . number,
3. number and person of possessor,
4. indication about being a possessor,
5. indication about having a postposition.

The dictionary look-up procedure consists in identifying the
word stem and not the ending. This strategy is necessary in
Hungarian because most of the words in a sentence have letters
and letter combinations at their end which can be mistaken for
endings. /Out of the 38 letters in the Hungarian alphabet only
12 do not correspond to any ending./ In the searching procedure
the longest indentified part is taken for a stem, the remaining
part is supposed to be and ending in the first round but if it
does not correspond to an item in the list of endings, the
program starts again looking for a possible stem. /See block
diagram, Fig.l /

As stems and/or endings may be homographie, it is necessary
to correct the information given to them from the dictionary.
This correction is carried out according to a matrix where the
possible combinations of stems and endings are listed. /See
Table I/

2.2 Identification of syntactical units

The syntactical analysis of a simple sentence begins with
the identification of the predicate. It is not too difficult
to find the predicate when it is a finite verb form and there
is no other word in the sentence which, by its form, could be
mistaken for a verb. /In Hungarian the past participle has the
same form as the 3rd person singular of the past tense./

In principle a syntactical analysis does not necessarily
begin with looking for the predicate, but some practical con­
siderations make it reasonable to use such a strategy: by
identification of the predicate a division of the sentence is
given what provides valuable information for the later phases

178

of the analysis.
If the sentence under analysis has no coordinate con­

structions, then all its elements are connected by dependency
relations. Difficulties may arise, nevertheless, in cases of
separated units, discontinuously arranged or analytic forms.
What sufficient motivation do we have to say that the verb stem
is dominated by its prefix, or, the prefix is dependent on the
verb? Instead, it is more reasonable to consider such discon­
nected elements as units represented by a single node in the
dependency tree, but extended in the sentence into two or more
words. In this way we have all the necessary information in one
node what allows us to establish the relations upward and

O)downward of the tree /The correct morphological analysis
requires anyway the unification of the two items./

Nevertheless, extensions in themselves can also be con­
sidered as elements with dependency relations between them. So,
e.g. the analytic verb form of state or condition in sentence
No.2 gives the following dependency structure:

Végre meg van oldva a feladat.

The machine representation of the dependency relation of a
sentence corresponds to a matrix where the rows contain the

(5)dependent elements and the columns the superordinate nodes .
For sentence No. 4 the dependency matrix has the following form:

A művész új képet festett.
1 2 3 4 5

5 2 4
2 1 0 0

1 0 1 0

4 1 0 0

3 0 0 1

179

The dependency matrix and extension matrix resp. for sentence
No.2 have the forms:

3+ 6 С И 3 2

1 1 0 2 1 0

6 1 0 4 0 1

5 0 1

In the matrices a special marking is given to the element rep­
resenting the comprehending node.

The corresponding dependency tree :

Words reduced to one node are indexed by the main word in the
extension.

Beside disconnected and analytic word forms also other
constructions are regarded as extensions: nouns and their post­
positions /this way they have the status equal to that of the
suffixed nouns/, negative and modifying particles with the
modified element, finite verb forms with infinitive.

In an extension the members do not necessarily have a strict
dependency relation. So coordinate constructions, too, are
handled as extensions with the conjunction as main element.

The matrix for the sentence No. 5:

Az utcában régi és új házak állnak.
1 2 3, 4 5, 6 74 4

(In the street hew and old houses stay.)

180

have the following form:

7 6 2

6 1 0 0

2 1 0 0

4 + 0 1 0

l 0 0 1

Dependency matrix

© 4
3 1

5 1

Extension matrix

From among the syntagmatic /constituent/ structures the
noun construction is evidently the most complicated. It has the
most numerous possibilities of realization and involves great
difficulties for the analysis. The difficulties arise from the
fact, that in a noun construction the number of different par­
ticipating categories is fairly large. So, beside Adj, An, D,
Nu, P and Pn still other (major) construction categories can
be found in the PS rules Il/a - Il/i:

NO/NON NBS/N0BS + NBK/N0BK in II /e
NO/NON •* NB/N0B + NA/N0A in II /e
DNO in II/c
PA in H / f
AD in il /g

Considering that in a NOM construction some N or NO belong to
an Adj or P which are dependent members of an N, we must add to
the above list still such categories as :

n o a /non
NOp/NON
NO
NO

BK
A
BK
P

A
P

where the subscripts indicate dependency relations.

181

Now, it is possible to construct matrices for the possible
arrangement of a nominal construction too, in a similar way as
it has been done for the correction of stem and ending infor­
mation. The only difference will be that in this case we have
to take the different work and construction categories instead
of the stem and ending categories and to check which of them
has been realized. A section of this possibility matrix is
shown in Table II.

In the sentence No.6 :

A kielégítő gépi szövegfeldolgozás nem kívánja
a formális és tartalmi elemzés közötti különbségek
megszüntetését.
/The satisfactory mechanical text processing does
not require the abolition of the differences
between the formal and the content analysis./

the analysis of the enlarged object construction /a formális
és tartalmi elemzés közötti különbségek megszüntetését/ is
carried out in following steps:

analyzed item
/ =i /

categ.
of i

input state out out state
N0 N0BK An N0 N0BK An

megszüntetését N*K 0 0 0 0 1 0

különbségek NBS 0 1 0 1 0 0

elemzés közötti An 1 0 0 1 0 1

formális és
tartalmi

Adj 1 0 1 1 0 1

a D 1 0 1 1 0 0

As a result of this analysis we have got the major constituents
of the sentence /its syntagmatic units/ and the dependency re­
lations within them:

VER=
nem

Jcívánj a is an extended
construction

182

NOM
1

szövegelemzés
a

NOM 2 megszüntetése
a kü1önbs égek

tartalmi és formális

2.3 Syntactical analysis

At the end of the syntagmatic /constituent/ analysis we
have one or more noun constructions and/or adverbial construc­
tions beside a verbal construction. Major noun syntagmas are
described /in the PS rules/ in a way that the head of the
construction always directly depends on the verb in the sen­
tence ®. Now, in the syntactical analysis we have to define
what different relations the nominal and adverbial constructions
have to the verb. According to traditional grammars we
distinguish the following syntactic categories:

a/ subject, /S/
b / direct object, /0 /
с/ dative object, /D /
d/ indirect object, /1 0 /
e/ instrumental. /I/
f/ adverbial of direction, /+el,-el,+on/
g/ adverbial of state,
h/ time adverbial,
i/ place adverbial,
j/ adverbial of manner.

The Hungarian language is fairly explicit in expressing various
syntactical relations by different endings: subject and direct
object, dative and indirect object, different adverbials are
usually clearly distinguished by different endings.

183

Nevertheless in spite of the numerous case endings in Hungarian
/27 endings/, suffixes are homonymous and the same ending may
express different syntactical functions. E.g.:

Sentence No.6:

Hibás alkatrészt_ javított a munkahely é n .
/А defected machine part he repaired in his working
place./

Sentence No. 7:

Tíz másodpercet javított az eredményé n .
/By 1 0 seconds he improved his result./

In both sentences Nos. 6 and 7 we have two complements to the
same verb (javított): one complement with the ending -t and
another complement with the ending -dn/-én. It is clear fromIthe content of the sentence that in No.7 the complement másod­
percet is not a direct object as alkatrészt in No. 6 but a time
adverbial, while eredményén is not a real location as munka­
helyén in No.6,

It can be stated that the different syntactical meanings
of the complements derive from the fact that the two nouns
express two different semantic categories: alkatrész is a real
object, másodpercet is a time category, munkahely is a place
category and eredmény is an abstract noun not capable of
expressing a real place. As lexical meaning is really important
in the decision process of what syntactical function a word
may have in the sentence, stems must possess information about
what semantical categories and subcategories they belong to.

The difference in the syntactical meanings of the words
with the same ending becomes clear by the fact that sentence
No.7 can be transformed into

184

Sentence No.7/а

Tíz másodperccel javította az eredményét.

In this sentence the case endings of the noun phrases have
changed: másodpercéél has an instrumental ending and eredményét
has the ending ~t and is a direct object. The meaning of the
sentence has not changed. No similar transformation of sentence
No. 6 is possible.

Now, if we don't ask whether the two sentences express
exactly the same meaning it is true that -t vs. -vel and
-ánl-én vs. -t are free variants and so they must belong to
the same category. Moreover, the correctness of such a classi­
fication can be proved by the following: sentence No. 7 allows
the transformation into sentence No.7/b:
Sentence No.7/b

Tíz másodperccel javított az eredményén.

After that we have the combinations:

"time" "object"

-t

-vel
-dn/-én
-Ь/-én

Enlarging the sentence with a new complement we can say:

Sentence No.8 /a
Tíz másodpercejt javított az eredményén az új pályán.
/By 1 0 seconds he improved his result on the new
track. /

Sentence No.S/b
TÍz másodperccel javította az eredményét az új pályán.

185

Sentence No. 8 /с
TÍz másodperccel javított az eredményen az új pályá n .

While "time" and "object" relations may vary freely in the
sentence, the ending -án/-én on the word pálya remains
unchanged: it expresses a category definitely different from
- t / - é n .

In the syntactic analysis we distinguish two types of case
endings :

a/ simple case endings,
b/ allographic case endings as free variants.

For the characterization of syntactic relations we use not only
the semantic categorization of verbs and their object nouns,
but the property of the verb to have complements with simple
and allographic case endings as well. We suppose that al­
lographic endings express the same deep structure meaning which(7)finds its realization in different surface case forms .

The property of a verb to have complements with different
case endings is stored in the machine dictionary as its
selectional restriction. /In Table III the selectional
restrictions of a few words are given./ On the basis of this
information the noun constructions around the verbal predicate
can be identified as complements with different syntactical
meanings. It may happen that selectional restrictions to the
predicate are not complete and they have to be corrected or
completed in the analysis. This is the case in sentences with
an accusative and infinitive construction.

Sentence No.9

Hallottam a barátomat énekelni az operában.
/I heard my friend to sing in the opera./

The reduction of the extension hallottam énekelni is carried
out in the presyntactic phase of the analysis. At this point

186

a computation of the selectional restrictions to the two verbs
is also necessary. The selectional restrictions to the two
verbs are:

P D S/0 S/D • • • 0 • • • 0/-el D I • • • Inf
ha l lani (hear) + • • • + • • • + + • • • +
énekelni (sing) + + о • • + + • • • +

After the computation process the predicate of the sentence has
in its selectional restrictions an actor/object:

P D S/0 S/D • • • 0 ■ • • 0/-el D I • • • Inf
hallottam

enekelni + + • • • + • • • + + + • • •

3. S t r a t e g y o f s e n t e n c e a n a l y s i s

The mechanical syntactical analysis described in the
previous pages works only on simple sentences with no coor­
dinated structures and ellypses. An extension of the system, to
make it capable to analyse complex sentences implies serious
problems /even if coordination and ellypsis are excluded/. It

4

seems reasonable that in a complex sentence the analysis of
constituent structures should not immediately follow after
morphological procedures. As a first step it is obviously
necessary to decide what structure the whole sentence possesses.
Is it a compound sentence with coordinated members or is it a
complex with clauses subordinated according to different
functions and order? In deciding it, it is necessary to analyse
the whole sentence for its coordinated members and clauses.

Arrangement of sentence connectives, that of punctuation
marks and predicate words can give valuable information in this
process. /In Hungarian orthography clauses and constituent
sentences have to be separated by commatas./ Only if this

187

procedure gives reliable clues about the arrangement of clauses
and constituent sentences, the analysis of syntagmatic
constituents can be initiated.

The analysis was carried out on a RAZDAN-3 computer of the
Computing Center of the Universities. The program was written
in ASTRA 2, a compiler language with special macros for natural
text processing. The output form is given in Fig.2*

> Ы S

188

t(W^)::=z e-- 1 i + 1 = i~
___ Ф —
z : : =wI
R : : = j « w___ i. r w-1 : : =w e

pY=i

a(W£): :=k 1
j + q : = m

j +k:=m

' X -7 %m ̂+ 1-1'
{ w=z)

m + 1 := m --- W~

{ 7 Z) (d(Wi)>d(Vm)')

INF (V)+W. m î

d (W .) -d(V): :=WÎ
1 m î

INF,CORRt
INF (Ej)->WÎ

j+lï-j

< S 5 >

E : = j é-w J

z : : =w
---*--

INF(V)+W. m î -Ц t(W!) : : =z

= vocabulary of stems
= vocabulary of endings
= word processed

b(W£) = number of characters in
R = register of V-blocks according to &(W£)
a(Wi) = coded numerical value of the first letter in W£
Pw = alphabetic register of word stems with the length w
d(W-[) = numerical value of the coded word form
q = constant

Fig. 1 Block diagram of morphological
analysis

189

Table I. Possibility matrix of homographie
stems and endings

190

Tab Ъе JJ. Po s sibiZity matrix of
NON OtOnstructions

191

OPERATIONS IN THE NON POSSIBILITY MATRIX

1. delete input state; output : n o /n o a /n o b k

2. d/i/ as NOA ; output : N0

3 . d/i/ = N0A /AnA ; output : N0+N0p /An

4. d/i/ as N0B K ; output : N0

5 . d/i/ = N0B K ; output : N0+N0p

6. d/i/ = output : N0+N0.A
7 . d/i/ = Л BKAn ; output : N O + N O / N O . + A n P A
8. d/i/ = NO; output : RKNO+An/An

9. d/i/ = N0B K ; output : N0+AnA /AnBK

10. d/i/ 2= N0p ; outpu t : N0+N0p+An/AnBK

11. d/i/ = N0B K ; output : N0+N0pK +An/AnBK

12. d/i/ = № a ; output : BKNO+NO.+An/AnA
13 . d/i/ = N 0 B K ; output : N0+N0BK+An/AnBK
14. d/i/ = NO; output : NO+Aj/Р

15. d/i/ = N 0 B K ; output : N0BK+Aj/Р

16. d/i/ = N0p ; output : N0+N0p+Aj/Р

17. d/i/ = N0B K ; output : N0+N0pK+Aj/Р
18. d/i/ = № a ; output : N0+N0A +Aj/Р

d/i/ main element of i

p D S/0 S/D S/I S/+el 0 0/D 0/1 0/+el 0/-el 0/on D D/I I +el -el on Inf

leáll (to stop) + + + + +

közlekedik
(run,, communicate) + + + +

beállit
(set in) + + + +

gyülekezik
(gather) +

kitelepit
(displace) + + +

megy
(go) + + + + + +

kérdez
(ask) + + + +

elmond
(tell) + + + +

olt
(put out)

Table IIIV Selectional restrictions to verbs

192

*QPp«LДРДури ГЧ5 S7tUHriL0M kp7QTT IFTVU П VPSUyTj FPppPLOW
KQPn «L ДрДу f»W/ E»S/ iZffHri Г M / '-rrZQTT/ - I F 4 V I L / Д/ V^SUUTI/ ГРРПД LPf*/

Ду| L»*TMÄVf'V; L t- у L L
OOrOflOPOP4^3(,ttU1 I
П 0 0 0 3 ? P 0 n 4 * ? p и и 0

а * г ч т KPZSFWC "n?ulT Kp-l.FKFnpv ГГ»'НТ1ГН 5 7 F P FI VF v F* v T H E Д У l LfyTjfly* p 1/*РДУГ'и1 и p v L У Д и и '* Д Р » Г

3 / К F w T / KOZ-»Fyb/ Кр7птТ/ KP7LFKFOPy/ F Г У F Tl Ен/ S 7p PÉ I VF У F* У/Т BP/*vLLl*T/
JflUf Д/ 1ДРД*Ну*/ P/j4l \i/»UPV/»P/г г

Ди1 L * УТ**Думу ; Öt pyLL 1̂1 JpyK'M*3POro?lojpUÜ1 n 0 P О 5 О I P < 4 ** 4 p и ö O

rntPFKEK F ̂ S «SS^^NyOK Cv* |»*1 E K F 7 Nf K

~ / FWFRFK/FK Fua/ /trS7pF*V/OK СУ Г| E K F Z/Г F K . „ .

ДМ1 L • УТ*«Ду ИУ : CsWLfĉ tthFK
fl0"0 3 0P0P4«>3puüîРО̂ ОЗОППРОипроиО

1 4 M . « m ^ ^ P T P N ^ T p M L^FpifTT K T T F L r P * W T » K ,

Д/ ï ' pr .y / мду«трм/ цтСГ/ I Д K P *’ / 1 т к î TFLFP I UT/I K .

fluLL»VT»»flyMV; K*TpLtP|VT|j*
f*H3ooppibJipüüiР0Р040г(!Пи«РриУО

-<ОРреилрдуГУ ГУ* S7tUH,}LP». K P 7 Q T T I F Г V LI ▼ P УД SllvTT FppGÂLOM #
KOPO*L ДРДуМи/ £>S/ 57frMrtPM/ кГ*ПтТ/ 1ГДУ|1/7 Д/ v*Sl'VTl/ rCPGPir*/

« « Ц »TMflvrV: LtíyLLT
я0Р0001П-в4и^рОО 1
n0P03?P0P4C7pül-0 F 'Î'Q 2

KQRQSLADAYNY EYS SZEGHALOM KQZQTT LEAYLL A VASUYTX FORGALOM .
KQRQSLADAYNY / EYS/ SZEGHALOM/ KQZQTT LEAYLL/ А/ VASUYTX/ FORGALOM/ .
AYLLI YTMAYNYI LEAYLL

0000000004230001
0000320004220000

A KEYT KQZSEYG KQZQTT KQZLEKEDQY EGYETLEN SZERELVE YNYT BEAYLLIYTJAYK A LADAYNYI PAYLYAUDVARRA
А/ KEYT/ KQZSEYG/ KQZQTT/ KQZLEKEDQY/ EGYETLEN/ SZERELVEYNY/T BEAYLLIYT/

JAYK А/ LADAYNYI/ PAYLYAUDVAR/RA
AYLLIYTMAYNY ! BEAYLLIYTJAYK

0143000021330001
0000504044440000

GYEREKEK EYS ASSZONYOK GYWLEKEZNEK
А/ GYEREK/EK EYS/ ASSZONY/OK GYWLEKEZ/NEK .
AYLLIYTMAYNY1 GYWLEKEZNEK

0000300004330001
0000500000000000

A NAGY MAYRTON UTCA LAKOYIT KITELEP IYTIK
А/ NAGY/ MAYRTON/ UTCA/ LAKOY/IT KITELEP IYT / IK
AYLLIYTMAYNY! KITELEPIYTIK

0143000016330001
0000404000000000

KQRQSLADAYNY EYS SZEGHALOM KQZQTT LEAYLLT A VASUYTI FORGALOM
KQRQSLADAYNY/ EYS/ SZEGHALOM/ KQZQTT/ LEAYLL/T А/ VASUYTI/ FORGALOM/

AYLLIYTMAYNY: LEAYLLT
0000001044030001
0000320004220000

Сотру of original Fig. 2; reproduced by type-writer

195

NOTES:

ф The concept of main constituents given in this paper
differs from the "standard" description /Chomsky, N.
1965/ where NP and VP are the two main constituents.
The reason for this lies in the fact that in Hungarian
sentences subject and predicate parts are usually
mixed up and a fixed order of NP and VP is not cha­
racteristic. A similar position is taken by Deme, L.
/1971/.

© The notation is taken from Hays, D. /1964/.
(3) Number in parentheses are code numbers used in the

program.
(D The reduction of extended parts turns non-projective

branches into projective ones.
ф See Zierer, E. /1970/.
© Noun constructions complementing not the verbal

redicate but the preceding noun, are not characteristic
tor the Hungarian language.

(2) This system of selectional restrictions remembers the
valence theory /see: Helbig, G. 1969/ and Fillmore's
case grammar. The case categories here are surface
structure cases and the "deep structure cases" are
closely connected with surface forms. "Deep cases"
appear only by verbs which can be used with the
same noun in two different surface case forms,
expressing the same meaning.

У
196

REFERENCES

Cl] Chomsky, N: Aspects of the Theory of Syntax; The MIT
Press, Cambridge, Massachusetts, 1 9 6 5 »

C2] Deme, L.: Mondatszerkezeti sajátosságok gyakorisági
vizsgálata (Magyar szövegek alapján);
Akadémiai Kiadó, Budapest, 1971.

C3] Fillmore, J.: The Case for Case, in: Bach and Harms
(e d s .), Universals in Linguistic Theory,
New York 1968.

CU] Hays, G.: Dependency Theory: A Formalism and Some
Observations; Language XL, 511-525 » 1961+.

E5] Helbig, G.: Einführung in die Valenztheorie, in:
G.Helbig and W.Schenkel (eds.), Wörterbuch
zur Valenz und Distribution deutscher
Verben; Leipzig, 1 9 6 9 .

C6l Jávorszky, Gergely: ASTRA - A RAZDAN-3 gepikodu prog­
ramozásának programnyelve, in: Tájékoztató
9. (1972), Egyetemi S zámitoköz p o n t , Buda­
pest.

C7] Zierer, E.: The Theory of Graphs in Linguistics,
Mouton the Hague, 1970.

	I. Németi: On a property of the category of partial algebras���
	Gy. Révész: A note on the relation of turing machines to phrase structure grammars���
	P. B. Schneck: A new program optimization��
	B. Dömölki–E. Sánta-Tóth: Formal description of software components by structured abstract models��
	G. Fay: Cellular design principles a case study of maximum selection in CODD-ICRA cellular space (I)
	H. Heiskanen: Semantic theory from a systematical viewpoint��
	T. Legendi: Callprocessors in computer architecture��
	Gy. Hell: Mechanical analysis of Hungarian sentences���
	Oldalszámok������������������
	1��������
	2��������
	3��������
	4��������
	5��������
	6��������
	7��������
	8��������
	9��������
	10���������
	11���������
	12���������
	13���������
	14���������
	15���������
	16���������
	17���������
	18���������
	19���������
	20���������
	21���������
	22���������
	23���������
	24���������
	25���������
	26���������
	27���������
	28���������
	29���������
	30���������
	31���������
	32���������
	33���������
	34���������
	35���������
	36���������
	37���������
	38���������
	39���������
	40���������
	41���������
	42���������
	43���������
	44���������
	45���������
	46���������
	47���������
	48���������
	49���������
	50���������
	51���������
	52���������
	53���������
	54���������
	55���������
	56���������
	57���������
	58���������
	59���������
	60���������
	61���������
	62���������
	63���������
	64���������
	65���������
	66���������
	67���������
	68���������
	69���������
	70���������
	71���������
	72���������
	73���������
	74���������
	75���������
	76���������
	77���������
	78���������
	79���������
	80���������
	81���������
	82���������
	83���������
	84���������
	85���������
	86���������
	87���������
	88���������
	89���������
	90���������
	91���������
	92���������
	93���������
	94���������
	95���������
	96���������
	97���������
	98���������
	99���������
	100����������
	101����������
	102����������
	103����������
	104����������
	105����������
	106����������
	107����������
	108����������
	109����������
	110����������
	111����������
	112����������
	113����������
	114����������
	115����������
	116����������
	117����������
	118����������
	119����������
	120����������
	121����������
	122����������
	123����������
	124����������
	125����������
	126����������
	127����������
	128����������
	129����������
	130����������
	131����������
	132����������
	133����������
	134����������
	135����������
	136����������
	137����������
	138����������
	139����������
	140����������
	141����������
	142����������
	143����������
	144����������
	145����������
	146����������
	147����������
	148����������
	149����������
	150����������
	151����������
	152����������
	153����������
	154����������
	155����������
	156����������
	157����������
	158����������
	159����������
	160����������
	161����������
	162����������
	163����������
	164����������
	165����������
	166����������
	167����������
	168����������
	169����������
	170����������
	171����������
	172����������
	173����������
	174����������
	175����������
	176����������
	177����������
	178����������
	179����������
	180����������
	181����������
	182����������
	183����������
	184����������
	185����������
	186����������
	187����������
	188����������
	189����������
	190����������
	191����������
	192����������
	193����������
	194����������
	195����������
	196����������

