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quasi to illustrate and prove his role in painting of the panorama of the Structural Mechanics in

the recent 40 years.
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GEOMETRICAL MODELLING OF GRANULAR ASSEMBLIES

BAGI, K’

(Received 20 October 1996)

The aim of this paper is to establish the geometrical background of the correct definition
of continuum-mechanical state variables for granular assemblies. Two complementary cell systems
are introduced here; they provide the suitable equivalent continua to replace the granular assembly
in continuum-mechanical analysis.

1. Introduction

This paper concentrates on the geometrical analysis of granular assemblies. Its aim
is to provide the background for the application of continuum-mechanical state variables in
case of this non-continuous, ‘discrete’ material.

The term ‘granular assembly’ is used here for a material consisting of randomly
packed grains not fixed to each other (in contrast to the other type of granular materials
referred to as ‘cemented’). The grains in it are able to slip or roll along each other, contacts
can be deleted or new contacts created etc., so even the whole internal structure can be
rearranged under the external mechanical loading effects. This phenomena makes the
behaviour of granular assemblies so interesting both from theoretical and from practical
engineering point of view.

The final goal of the mechanics of granular materials is to provide relationships
between the external loads acting on the material and the resulting displacements.
Traditionally, the effect of external loads is expressed by the continuum-mechanical state
variable stress (relation between loads and the stress field is given by the equilibrium
equations of continuum mechanics, for example the Cauchy-equations in the simplest case);
deformations are reflected by the other continuum-mechanical state variable strain
(geometrical equations set the link between displacements and the strain field). Stress and
strain are related to each other through the constitutive equations (which are expected to
contain all the necessary information about the mechanical characteristics of the material).
The geometrical and equilibrium equations are clear in continuum-mechanics; but to find the
proper constitutive equations for granular assemblies is not as simple at all: for many years, a
large number of theoretical and experimental studies have been concerned with the problem,
and the results seem to be rather limited.
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Recently there are two approaches that most of the researchers follow in order to
solve this problem. Let us call the first one the continuum-mechanical, and the second one
the microstructural approach.

The idea of continuum-mechanical approach is to consider the assembly as a
continuous domain, accept the concept of an infinitesimally small representative volume
element, and apply stress and strain as the fundamental variables that uniquely determine the
state of the material in any point. Constitutive relations are searched for in such a way that
they would not violate the fundamental laws of physics; and the parameters in the equations,
expressing the specific properties of the material, are measured experimentally. This
empirical method is the one used today for practical engineering problems.

The problem with this is the limited validity of the results. Experimentally determined
relations easily become unreliable if the circumstances for which we want to apply them
differ even slightly from those that existed during the experiments. (To improve the
constitutive equations, either the mathematical form of the equations must be made more
complicated by increasing the number of parameters; or additional state variables are
introduced beside the traditional stress and strain.)

The microstructural approach is a relatively new method, and - in the long run - it
may be an advantageous alternative to the previous one. The aim of the microstructural
approach is to find macro-level state variables that are based on micro-variables such as
contact forces, grain displacements, and local geometrical characteristics. Since it would
reflect those characteristics of the material that are most significant in determining the
macro-behaviour, and the relationships between its state variables would be strongly
connected to the phenomena taking place in the microstructure, a microstructural theory is
expected to be far more reliable and general than the existing continuum-mechanical models.

(It has to be mentioned that there exists a ‘microstructuraP approach within
continuum-mechanics too (see [10] for instance): the representative volume in it has a finite
size and can have deformations independently from the macro-level distortions. However, it
was found by Fizy et al. [11] that the phenomena remain of boundary nature.)

Researchers generally accept today that - from practical reasons - even in the
microstructural approach the continuum-mechanical state variables should be re-interpreted
for the discrete material in a suitable and theoretically correct way; and they should be the
state variables of the granular assemblies too. (This concept is, in fact, not self-evident at all.
There are several doubts about the applicability of stress and strain that were originally
defined for a domain without any internal structure, so they might be strongly insufficient for
the description of the state-changes of this material whose most important characteristic is
just its internal structure. Pioneering efforts can already be found in the literature to apply
new methods as graph theory, fractal geometry, percolation theory etc. instead of
continuum-mechanics.)

Our own researches [1], [2] in the last few years focused on the microstructural
analysis of granular assemblies. The survey of international literature showed that even the
fundamental questions ofthis area were still unsolved: the microstructural definition of stress
and strain, and the interpretation of their meaning from the point of view of micro-level
variables were still missing. In other words: the transition between the discrete internal
structure (micro-level analysis) and the continuum (macro-level analysis) was not
established. Though there were good ideas for the definition of stress tensor [3], [4], their
theoretical background was insufficient; and the problem of strain tensor was completely
unsolved - mainly because ofthe lack of proper geometrical fundaments.
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The solution of the above problems was strongly inspired by the works of E. Tonti,
an Italian mathematician who was searching for the reason of the common experience that
physical theories having very different meaning show close analogies in the mathematical
built-up oftheir basic equations [5]. He pointed out that the differential operators used in the
mathematical equations correspond to a so-called coboundary process executed on two
complementary cell systems and this fact leads to conclusions that give the explanation for
the existence of the analogies. The two systems can be introduced as follows. To define the
primal cell system, consider the analysed continuous region Q of the n-dimensional
Euclidean space (for simplicity, this summary will be restricted to n=3 only, though the
considerations are valid for smaller or larger n too). Subdivide fi into small three-
dimensional cells whose faces are formed by the co-ordinate surfaces of a co-ordinate
system X1, x 2, x 3; these will be called as 3-cells. Every 3-cell is composed of faces, edges
and nodes that will be considered as 2-cells, 1-cells and O-cells. To construct the dual cell
system, consider the centres of the 3-cells; they become the nodes (O-cells) in the dual cell
system that is built upon the dual nodes in the same way as seen above. Obviously, for every
p-cell of the primal system there corresponds a (n-p)-cell of the dual system and vice versa
(see Figure 1). In general, in a physical theory if the geometrical and kinematical variables
are referred to the p-cells of the primary system, the corresponding statical and dynamical
variables are referred to the p-cells of the dual system.

(n) AGrnnulnr Assembly
( Dulled line indicales dual parlicles)

(b) (‘article- and Void-Graphs

Fig, 2

This concept is obviously well-suited for continuum mechanics. Here the cell size can
be infinitesimally small, and the two cell systems - in a limit sense - slip onto each other. The
granular material, however, does not make this transition possible: first, the grains have a
finite size so an infinitesimally small cell size cannot be applied; second, a cell system defined
according to the above way (faces and edges parallel to the co-ordinate surfaces and axes) is



4 BAGI, K.

completely meaningless in case of the random internal structure of granular assemblies. So
the concept of Tonti cannot directly be applied for the granular case.

However, the idea of applying two complementary systems already arose in the
micromechanics of granular assemblies, though in a very different way. In the graph-
theoretical approach of Satake [6], [7] two complementary graphs (particle- and void-graph)
are applied for the topological characterization of 2D random assemblies. As shown in
Figure 2., the nodes in the particle graph correspond to loops in the void graph (representing
the grains); branches of the two graphs correspond to each other (they represent the
contacts); loops in the particle-graph correspond to nodes in the void-graph (voids). The
topological structure of the graphs is expressed by two topological matrices. The
equilibrium and compatibility equations of the system are compiled with the help of these
matrices; and it was found by Satake that the topological matrices here have the same role as
the Schaefer-operators in generalized continuum-mechanics [8]. (The correspondence
between the topological matrices and Schaefer-operators can be understood with the help of
Tonti’s results Tonti’s concept includes that the differential operators of continuum-
mechanics show an analogy with the coboundary processes. Indeed, the topological matrices
of Satake could be considered as operators prescribing some kind of ‘coboundary
processes’ in random granular assemblies.)

These preliminaries inspired our theoretical work whose geometrical background will
be introduced in this paper.

The aim was to establish the transition between the discrete and continuous analysis:
to define suitable equivalent continua for the replacement of the assemblies. Before
introducing them in Chapters 2. and 3., let us shortly summarize those existing methods that
can often be found in the literature for the representation ofthe internal structure.

Fig, 3

The widely-used Voronoi-tesselation can be applied in several ways. In the simplest
case it is defined for a set of discrete points given in the 2D or 3D Euclidean space. In the
2D problem (see Figure 3.) the plane is subdivided into polygonal domains each of them
containing exactly one point. The edges of the domains are the bisecting lines of those
straight segments that connect the neighbouring points. (In 3D the system is similar: faces of
polyhedral domains are given by the bisecting planes between neighbouring points.)
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Its generalized version can be applied for monosize assemblies of circular or
spherical grains. For 2D assemblies of equal circles (Figure 4.) the plane can be divided into
polygons whose edges are the bisecting lines of straight segments joining the centres of
neighbouring grains. (The same can be done for 3D too.) A cell system (‘Voronoi-cells’)
results in such a way that there is exactly one grain in each cell. This system is especially
suitable for the analysis of regular assemblies.

Dirichlel-tesselation, the next system we shall introduce here, has the main
advantage to the Voronoi-tesselation that the grains do not necessarily have the same size.
Consider a set of non-intersecting circular grains in 2D, or non-intersecting spherical grains
in 3D. A domain can be assigned to each grain, consisting of those points which have a
shorter or equal tangent to that grain than to any other grain (Figure 5). The common faces
of the domains are the power lines (power planes in 3D) of neighbouring grains. (It may be
worthwhile to mention that in case of monosize assemblies the Dirichlet- and Voronoi-
tesselations are equivalent.) Similar tesselation was suggested by Gellatly and Finney [9] for
the characterization of assemblies having circular grains with different sizes.
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The Dirichlet-tesselation, in principle, could be generalized for particles with
arbitrary smooth convex shape, but as far as we know the problem was solved and
construction algorithms were found only for grains and assemblies having very special
regular geometry.

The Delaunay-network can also be a useful tool in characterizing granular systems
Consider an assembly of circular or spherical grains; if the Dirichlet-cells of two grains have
a common side, connect the two grain centres by a straight line. These connecting lines form
the Delaunay-network of the assembly (Figure 6 ).

The definition can be modified to give a more physical meaning to the network if the
centres of grains being in contact are connected (Figure 7). In this version the branches in
the network correspond to the internal supports in the microstructure. However, the duality
with the Dirichlet-tesselation does not necessarily holds in this case.

In Chapter 2. and 3. of the present paper two complementary geometrical systems
will be introduced, as an alternative to the previous descriptions. They will be defined for
assemblies of grains having arbitrary convex shape; and there will be a clear duality between
them. Our opinion is that these advantages make the suggested cell systems more powerful
for the modelling of granular assemblies than the presently applied Voronoi-, Dirichlet- and
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Delaunay-systems. The two complementary systems, namely the material cell system and the
space cell system, served as equivalent continua for granular assemblies in our previous
works [1], [2] in which continuum-mechanical derivations led to the physically and
theoretically based microstructural definitions of stress and strain tensors. The derivations
will not be repeated in the present paper since its aim is to give the geometrical background
to the mechanical analysis; but the results will shortly be summarised in Chapter 4.

2. The material cell system
2.1. The material cells

Consider an assembly consisting of grains with convex but otherwise arbitrary shape
in the 2D or 3D Euclidean space where the distance between two points is understood in the

usual sense; and the PG distance between a point P and a grain G is the following:

1 If P is outside G or on its boundary, PGis the distance between P and that point of G
which has the smallest distance from P. (This includes that for a Q boundary point of G
the distance is zero: QG =0.)

2. By definition, if P is inside G then PG is negative and its absolute value is the smallest
distance between P and the boundary points of G.

Consider now a grain GO and collect all those P points whose distance from GO is
less or equal than from any other grain:

PGASPG~A (k*0)

These P points form a domain around the GO grain. The domain has the following important
characteristics:

-+ The internal and boundary points of GO all belong to it.

-» If PGO< PGk for all k* 0, then P is an internal point ofthe domain; if there exists a G(
for which PG0O=PG; <PGt forall K* 0 and k * i , then P is a boundary point of the
domains of GO and G;.

Constructing these domains for all the grains the space is subdivided as illustrated in
2D inFigure 8. below. Notice the following properties:

—>There is exactly one grain in each domain.

—» The domains are contiguous.

—» Grains on the boundary of the assembly have infinite domains while the domains are finite
in the inside of the assembly.

—>Common face of neighbouring domains (belonging to the grains G, and G?2) is the set of
P points for which PG, = PG3< PGk forall k * 1and kK * 2.

-* If two grains have a contact point, the corresponding domains must have a common face
that contains the contact point itself.
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Fie. 8

These domains will be referred to as material cells, and the total system given by
them as the material cell system. The following terminology will be used in their
characterisation:

a) in 3D: The common points of neighbouring cells form faces; faces join each other on
edges (note that if the face PG, = PG2< PGk and the face PG2=PG3<PGk have a
common edge, then the face PG, = PG3< PGk also joins this edge); edges intersect with
each other on nodes.

b) in 2D: The common points of neighbouring cells will also be referred to as faces
(however, they are one-dimensional lines in this case); they intersect with each other on
nodes.

Fig. 2,
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Any set of grains having finite material cells will be called as afinite sub-assembly
(the cells are not required to form a contiguous domain). The boundary of the finite sub-
assembly consists of finite faces, forming one or more closed surfaces (curves in 2D). Figure
9. illustrates a possibility in 2D.

2.2. Modify the topology: Triangularisation

It may happen in case of special geometry that there are multiple nodes or edges in
the system: in 3D, more than 4 edges joining a node or more than 3 faces joining an edge; in
2D, more than 3 faces joining a node. In this case a small disturbance has to be added to the
system to destroy the speciality of the geometry. The original topology (number of
nodes/edges/faces, which node joins which edges, which grains are neighbouring etc.) has to
be replaced by the topological data of this new assembly with disturbed geometry, and from
now on, the new topology is considered in any further analysis. The multiple edges and nodes
are split up this way.

Figure 10. illustrates an assembly where there is a node belonging to 4 edges (in the
middle), and an other node belonging to 5 edges (left down). Figure 11. shows the effect of
small disturbance.

Fig 11
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2.3. Add an imaginary grain in the infinity

This imaginary grain will be the neighbour of all those grains that have an infinite
material cell (i.e. the grains on the boundary). So a boundary grain has a common face (in
the infinity) with the imaginary grain; edges and nodes belonging to it are also formed (in the
infinity) in the usual way.

This could be visualized for a 2D system in the following way: imagine the in-plane
assembly as occupying a small portion of the surface of a sphere with infinitely large radius,
and the imaginary grain is on the opposite side of the sphere; then the cell system is formed
on the surface of the sphere. (Unfortunately, this is much more difficult to imagine for a 3D
assembly, but the concept isjust the same.)

The geometry and topology of the material cell system is now defined. It has to be
noted that every point of the space - apartfrom the set of nodes, edges andfaces, a zero-
measure set - is covered exactly once by the material cell system. This fact makes the
system suitable for the role of equivalent continuum of a granular assembly.

3. The space cell system
3.1, Definition

The construction of space cell system is directly based on the above definitions and
characteristics. Starting from an assembly and its material cell system, the space cell system
is defined by the following algorithm in 3D:

1 Nodes ofthe system are the grain centres (they correspond to the material cells).

2 If two material cells have a common face, the corresponding grain centres are connected
with a straight line that will serve as an edge in the space cell system.

3. Consider now an edge in the material system. Three faces intersect on this edge. The
three faces define three edges in the space cell system in such a way that they form a
closed triangle; this triangle will be aface in the space cell system.

4 Similarly, consider next a node in the material cell system; and consider the edges joining
this node. As shown before, the edges in the material system correspond to faces in the
space system; if the material-edges belong to the same node, the space-faces form a
closed cell in the space system corresponding to the material-node

The definition is of course shorter in the 2D case:

1 Nodes of the space cell system are the grain centres (they correspond to the material
cells).

2. Where two material cells have a common face, the corresponding grain centres should be
connected by a straight line, similarly to the 3D case; these lines will be the edges in the
space cell system.

3. A node in the material system is the common point of three joining faces; the three
corresponding edges in the space system form a closed cell.
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Note that in 2D the cells are triangles, and in 3D the cells are tetrahedrons so the space cell
system consists of Simplexes in any case. Figure 12. shows the space cell system of a 2D
assembly.

Fig-13.
3.2. Positive and negative space cells

The definition of positive and negative space cells is illustrated in 2D in Figure 13. First,
consider the JIr, material-node, and the corresponding space cell that is given by the
(n,,/2,«3) space-nodes:
—>going clockwise around material node : the material

cells are found in the order C, - C2—C,

—>going clockwise in the corresponding space cell the space
nodes are found in the order u, - n2- nr. This is the

same as the order of the corresponding material cells:
this is apositive space cell

Now consider the N 2 material-node, and the corresponding

space cell that is also given by the (n,,w2,n3) space-nodes:

—»going clockwise around material node N 2: the material
cells are found in the order C, - C3- C2

—»going clockwise in the corresponding space cell the space
nodes are found in the order n, —2- n3. This is the
opposite of the order of the corresponding material cells:

this is a negative space cell .
Ei& 13
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The definition is more complicated in the 3D case:

Consider a material node in the material cell system ofa 3D assembly, which belongs
to the (G,,G2,G3,G4) grains. There are four material-edges joining this node: £j that
belongs to the (G2,G3,G4) grains; E2 that belongs to the (G,,G3,G4) grains; £ 3 that
belongs to the (G,,G2,G4) grains; and Et that belongs to the (G,,G2,G3) grains.
Arbitrarily select one of the edges: E 4 for example. As the first step, from the direction of
the analysed material-node look along the selected edge on an infinitesimally short distance.
Three faces join this edge, separating the cells of the (G,,G2,G3) grains. Now (looking still
from the direction of the node) go clockwise around the edge, and remember the order of
the material cells. Second, consider the space cell corresponding to the analysed material-
node. Find the face corresponding to the previously selected material-edge (in our case this
is the space-face determined by the centres of (G,,G2,G3) grains). From the fourth node,
look towards this face, and go clockwise around its nodes. Remember the order of space-
nodes (grain centres).

Now compare the two orders. If they are the same, the space cell is positive by
definition; ifthey are the opposite, the space cell is said to be negative.

Usually most of the space cells in an assembly are positive. But if the grains have a
very elongated shape or the difference between the minimum and maximum size of the
grains is very large, there may be several negative cells in the structure and they may even be
embedded into each other several times. However, the following characteristic of the space
cell system can be recognised:

Every point of the space - apartfrom the set ofnodes, edges andfaces - is covered
exactly once by the space cell system, in the sense that every point is covered by one more
positive than negative cell. This property makes the space cell system suitable for playing
the role of an equivalent continuum of granular assemblies.

4. Continuum-mechanical state variables

This chapter summarises the definition of stress and strain tensors: these macro-
variables will be expressed with the help of micro-variables, namely, the branch vector, the
complementary area vector, the contactforce transmitted between neighbouring grains, and
the relative translation of neighbouring grains (see [1] or [2] for details) First let us
introduce the two geometrical micro-variables.

Fie. 14
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Consider a finite sub-assembly, and a material cell in it around a grain. Some of the
faces of the cell belong to ‘real' grain-grain contacts; a face like this contains the contact
point itself. The rest of the faces are considered to belong to ‘virtual’ contacts (there is no
contact between the grain and its neighbour, but their material cells have a common face); in
these cases an arbitrary internal point of the face has to be chosen as virtual contact point.
The vector showing from the centre of grain into the grain’s c-th (real or virtual) contact
point will be denoted as v,°.

Assume that the G, and G2 grains have a (real or virtual) contact, c. The vectors
v,'cand v(Z show from the corresponding grain centres to the contact point. The branch

vector assigned to the contact is defined as

| c Ic 2c

I, =v, -vw.
as illustrated in Figure 14. for 2D. In the special case when c is on the boundary of the sub-
assembly (so it is a contact between a grain and the neighbourhood of the sub-assembly), the
branch vector is defined to be equal to v,.° (see Figure 14. again).

Now consider a space cell and number its nodes as 1, 2, ..., (D+l). (The cell is a
simplex so it has (D+l) nodes.) Denote the faces of the cell by the number of that node
which is not contained by the face (i.e. the k-th face contains all the nodes except the k-th

node). Assign a vector b, to each face in the following way:
-> The magnitude of b* is equal to the area ofthe face (or length in 2D).

-+ The direction of is normal to the face, pointing outwards.
D+l

(It can easily be proved that 6,k =0 for any cell, for 2D and 3D too.)
it

The next vector, a.k, is defined as

These vectors are illustrated in Figure 15. in 2D.

The a,k vector is the basis of the definition of the most important geometrical micro-

variable of space cell system: the so-called complementary area vector. To construct it,
consider a pair of grains, G, and G2, that have a (real or virtual) contact, so the two grain
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centres, 1 and 2, are connected in the space cell system. Collect now all those space cells
that contain this edge. Assume that altogether T cells were found; denote them as cell(l),
cell(2), ...cell(t), .. cell(T). In the next step calculate the difference a 'm-a ,20 separately in
each cell from t=I to T; after summing up for all space cells containing the 1-2 edge, the
complementary area vector

dn=— Ylar-a™)

D +1 f*p |
is given. (Its dimension is area in 3D assemblies and length in 2D.) This vector characterize
the local geometry ofthe neighbourhood of 1-2 edge.

Figure 16. is an illustration in 2D where the 1-2 edge belongs to two cells shown by solid
lines. The direction of d'2 is as shown, and its magnitude is equal to the one-third of the

dotted length. Similar - though more difficult to visualize - meaning can be found for d'2 in
3D too.

The two geometrical micro-variables are of complementary nature in the sense that
considering any finite sub-assembly, the sum of their scalar product for all edges of the space
cell system is equal to the total volume of the space cells:

1T/IX =v
©

Now the state variables can already be defined. The stress tensor, the volume-
weighted average of the stresses of material cells, can be expressed in terms of the branch
vectors and the contact forces:

o= E Y VAN
V(L) v
L: index of material cells
c¢: index of the faces of material cell system
Ft : contact force between neighbouring grains
/ : branch vector
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Note that the summation with index V runs above all faces of the material cells of the
considered finite sub-assembly (above the boundary faces too).

The average displacement gradient tensor of the space cells is, in terms of the
complementary area vector and the relative translations:

évK X\A<<;

Vo
K: index of space cells
c¢: index ofthe edges of space cell system
[Oa, : relative translation of neighbouring grains
d{: complementary area vector
Note that the summation with index V runs above all space edges of the considered finite
sub-assemblies (all those edges whose both ends are within the sub-assembly).

The antimetric part of the average displacement gradient tensor expresses the
average rigid-body rotation of the system. The symmetric part is related to the deformations
ofthe material: by definition, this is the strain tensor of the assembly.

The two forms show a strong duality. Summation with index c runs through the
same contacts in both cases (except from the boundary, see below); contact forces belong to
the same pairs of grains as the relative displacements; and the two geometrical parameters
are also dual to each other.  But the duality is not complete since the two expressions can
not belong to the same domain. The strain tensor is the average of the strains in the space
cells; so the boundary of a domain where strain is meaningful has to go through the centres
of the particles. On the other hand, the stress tensor is the average of stresses in the material
cells so any domain where stress is defined is built up of material cells. As considering more
and more grains and increasing the two domains further and further, the deviation between
them, compared to the domain size, decreases. In the limit to infinity the difference tends to
zero as the granular assembly tends to the continuum.

The fact that the two types of domains differ from each other seems to be a
fundamental characteristic of granular assemblies in contrast to continua. Its physical
meaning is that while the deformations of the material are carried on principally by the voids
between the grains, the loads and stresses are transmitted by the grains themselves.

5. Summary

Two complementary cell systems, the material- and space-cell system, were
introduced in this paper for the geometrical representation of granular assemblies. Both of
them cover nearly-all points of the space exactly once; this property enables them to serve as
equivalent continua to the material. The material cell system is the basis of stress definition
while the strain is defined with the help of the space cell system. This is in good agreement
with the theoretical expectations, and also with the physical experience that while the forces
acting on an assembly are resisted by the grains (represented by the material cells), the
deformations are carried on by the internal structure and the voids (reflected by the
distortions ofthe space cells).
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Beside their theoretical significance, the two systems can be applied for the
modelling of any material having particulate internal structure. Their advantage to the
recently used models (Voronoi etc.) is their much more general applicability.
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OF CEMENTED GRANULAR MATERIALS WITH MICROSTRUCTURE
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Elastic properties in the constitutive equations have a key role in the description of granular
materials. This paper attempts to give an estimation for the value of elastic shear modulus (G) and
Young-modulus (E) through the numerical analysis of microstructure in case of regular internal
arrangements. The numerical method applied in the experiments, the geometrical structural models,
and finally the results on the calculation of E and G will be introduced.

1. Introduction

Classical fenomenological (elastic, plastic, viscoplastic, fracture etc.) models of
cemented granular materials require the knowledge of strength parameters that reflect the
answer of the material to the external mechanical effects. Among these parameters the
Young modulus (E) and the shear modulus (G) are generally considered to be the most
important ones

Physicists and engineers working in the field of material science usually accept that
these macro-level parameters - as well as the other ones - are some kind of "averaged"
characteristics of the behaviour of the microstmcture, and they are determined by the micro-
level strength parameters and the internal geometry. From that point of view of material
science the trouble is that the problem of setting the exact link” between the internal
microstructure, and the macro-level behaviour known by experience and considered in the
practical engineering work has not been solved yet. The recently existing methods contain
very strong estimations and are rather questionable. This is basically due to the complexity
of the microstructure: even in the case of a theoretically "regular" single-crystal there are
several dislocations that influence the behaviour and modify, distort macro-level elastic
parameters to deviate from the theoretically predicted values. The situation is, of course,
even much more difficult in the case of a random irregular granular material: While for
crystals at least an upper limit can be estimated assuming perfect geometrical order and
considering the physical characteristics of the atoms, since not even an upper estimation can
be given for the macro-level parameters.

Several authors have been dealing with the above problems. Among them, let us first
mention the works of Bonzel whose monography [5] analysed different strength parameters
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of cemented granular materials, though without paying special attention on the internal
granular structure. Carpinteri [6] concentrated on the effect of size on the strength
parameters; Bagi [3] calculated the effect of the ratio of internal parameters of granular
assemblies. Experiments and publications of Fuzy [4] aimed to estimate the size of
“representative volume” and to analyse the Cosserat-type behaviour of granular materials.

This paper concentrates on a special problem of this area. We would like to find a
simple method to give an estimation for the macro-level strength parameter of a cemented
granular material in terms of the micro-level geometrical data and the elastic characteristics
of the contacts between the individual grains. The macro-level parameter gained this way
could already be applied in phenomenological constitutive equations. Our analysis here will
deal with the two parameters mentioned above: the Young-modulus (E) and the shear
modulus (G).

This problem has an aspect even more important from theoretical point of view. A
fundamental question of micromechanics of granular materials is to find the AV
representative volume (see for example Bazant, Oh [7]) that has a finite size in contrast to
the infinitesimally small volume element of continuum-mechanics, since in the granular case
an estimation is needed on how many grains should be considered in the analysis to reliably
reflect the main characteristics of the material If the size of domain necessary to predict the
macro-level strength were found, this AV could be estimated and then be applied as a
material characteristic in the further engineering calculations.

Our researches were supported by numerical experiments executed by the algorithm
PFC 2P (see chapter 2. for details). As a first try, different regular structures were simulated.
The results verified the expectations: macro-level parameters could really be estimated on
the basis of microstructural characteristics.

2. The numerical model

There were several possibilities for the numerical analysis of this problem. Two- or
three-dimensional versions of either a quasi-static model developed by ourselves, or a
commercial dynamic model made by P. Cundall [1], [2] were at our disposal.

Since our aim was to decide whether an estimation of macro-parameters is possible at
all or not, the simplest and fastest version was chosen: the two-dimensional dynamic model.
Its main advantage is its high executional speed: assemblies of thousands of grains can be
analysed with about an order of magnitude faster than by the quasistatic model. It has to be
emphasized that the 2D model was selected only for the sake of simplicity and higher speed.
In the future we are planning to run 3D tests too that would probably make our results more
exact.

The material is modelled as an assembly of discs. Its behaviour is analysed with the
help of Newton's M. law; motion of each grain is followed in subsequent time-steps,
according to the equations of dynamics. The micro-level strength and elastic parameters
describing the materials of individual grains are considered as stiffness characteristics of the
contacts between the grains. Tensional-compressional, shear and bending strength were
assumed in our experiments. Walls may be defined to give boundaries of the assembly; they
also have strength parameters, similarly to the grains.

The loads acting on the assembly cause contact forces between the grains according to
the laws of Newtonian mechanics. Their calculation requires several (sometimes thousands
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of) iterating time-steps, but the compilation and frequent modification of stiffness matrices
of the quasistatic algorithms is avoided this way.

Larticle + wall positions and set Ofrn

Law of Motion Force-Displacement Law
(applied to each particle) (applied to each contact)
e resultant force + moment « relative motion

« constitutive law

Constitutive behaviour for contact occuring at a point:

(a) normal component of contact force (b) shear component of contact force

Fig... 1,
The numerical model

Figure 1 illustrates the above principles (definition of grain-grain and grain-wall
contacts, basic equations of the model, micro-level constitutive equations characterising the
contacts etc ), bending stiffness of the contacts represent the effect of relative rotation of
neighbouring grains.

Note that the contacts are, naturally, broken if the contact forces exceed the
corresponding strength limit; in this case the cemented material can fall into smaller parts
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having only congressional and frictional resistance between them. But this type of failure
had no significance in our case: the analysis remained under the strength limit and
concentrated on the behaviour of the intact material.

3. Numerical experiments
The 2D numerical simulations focused on the analyses of shear elastic modulus (G)

and tensional elastic modulus (E): so shear and tensional tests were run. The shear model is
shown in Figure 2.:

Shear analysis

and the tensional model in Figure 3.:

Tensional analysis

As shown by the above sketches, the resultant of the external forces (R) is equal to 1
in both cases. The boundary conditions: free edges, rigid fixed walls, and simple supported
hinges, as denoted in the figures Stiffness characteristics of the contacts are the same in all
examples:
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K, =1010; Ks = 109; = 108.

Length of the samples were taken in such a way that - to provide “sufficiently long”
samples - the ratio //A would always be higher than 10. Different thickness of sample (A) and
different radius of grains (r) were applied in the different tests. This enabled us to analyse
nearly continuous transition from the very thin-layered sample to the material consisting of
huge number of grains. The uniform diameter (2r) of the monosize assemblies took the
values 0.1, 0.2, 0.3 and 0.4 in the different tests; the sample thickness (A) was chosen in such
a way that there would be at least two layers of grains in the material. The effect of internal
geometry was also analysed: two different regular structures were applied. Figure 4/a
illustrate the quadratic, 4/b the hexagonal packing.

Fig. 4/b

During all tests, the iterations to find the equilibrated state were continued until the
equilibrium error of contact forces (the magnitude of unbalanced forces acting on the

individual grains) decreased under a pre-defined value (IO™ in our cases). Figure 5/a shows
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a typical example on it. In one of the tensional tests 1342 iteration steps were necessary to
approach the equilibrated state with the required exactness. The lower curve illustrates the
decreasing of unbalanced forces (norm of equilibrium error) while the upper curve shows the
evolution of average normal force (the stable state is reached when the norm of equilibrium
error becomes smaller than the acceptable error norm magnitude). Figure 5/b belongs to the
same test: displacement of a chosen grain is shown, and as the error norm decreases, the
displacement becomes more and more stabilized near its final value. Horisontal axes show
the number of iteration steps.

Next, examples will be introduced on how the internal forces change during the
loading process. Results of a shear test on a hexagonal sample can be seen in Figure 6/a.
Contact forces on the left part of the material are shown with their direction and magnitude;
positive or negative sign of normal forces also distinct. Figure 6/b belongs to the same
sample under tension; at both examples the middle of the sample was given.

Fig. 6/a Fig. 6/b
Contact force distribution

The evaluation of the results will start with the elastic shear modulus, G. Figure 7.
belongs to the hexagonal arrangements:

Value of G was calculated from the horizontal displacement of the upper layer, due to
unit horizontal shearing force. In case of minimal thickness (two layers) the value of G was
orders of magnitudes higher than in all other cases (see the arrows in the graph); then, after a
"wave", as increasing the number of layers the value of G tended to the same limit,
independently of the diameter of grains.
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Hexagonal arrangement; shear test

The experiences in case of quadratic arrangement are shown in Figure 8.:

Quadratic arrangement; shear test

23
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The changes are smoother here and all values are about the same order of magnitude.
The limit value of macro-level shear modulus is the same for all diameters. However,
magnitude of GO is smaller now than at the hexagonal arrangements.

Hexagonal arrangement, tension test

The next figures, Figure 9. and 10. introduce the results of the analysis of E, the
tensional elastic modulus. The speciality of the hexagonal structure is that EO was constant,
independently ofthe layer thickness and diameter.

Quadratic arrangement; tension test

The behaviour of rectangular structure (Figure 10.) is different: it was similar to that in
Figure 8., and EO was smaller here than at the hexagonal system, similarly to what was
experienced about the shear modulus. It has to be emphasized that the results in Figure 10.
do not follow from the Cosserat theory, and cannot derive from the relative rotations of
neighbouring grains in diagonal directions. The explanation of this behaviour needs further
analysis.
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4. Concluding remarks

The above numerical simulations led us to the following conclusions:

->» The main macro-level material strength parameters can be estimated on the basis of
internal geometrical and strength characteristics of the microstructure.

-» In case of regular packings a definite/ (d, h, KN, K4 KM) function can be found for
the calculation of E and G (KN> KT, KM are the local stiffness characteristics of the grain-
grain contacts).

->m The hexagonal microstructure has a more rigid macro-level behaviour than the
rectangular arrangement

-> The hyperbolical-type functions found at the rectangular structures are very similar
to the functions of parameter estimation of Cosserat continua. A detailed theoretical analysis
may be found for this type of behaviour in the paper of Fiizy [4]. The limit-layer parameter
of Cosserat, a basic variable in that theory, is unambiguously provided by our results.

-* Our experiments were restricted for the simplest cases only. Detailed analyses of the
effect of micro-level strength parameters (KN, KT, KM) is indispensable in the further work.
Even more important and complicated is the analysis of randomly packed irregular
assemblies with the evaluation of the effect of grain-size distribution is not sufficient to
consider; the internal geometry should probably be characterised with some kind of special
geometrical variable like, for instance, the fabric tensor.

-> A different question - leading already towards the analysis of the behaviour of non-
elastic characteristics - is to see how the above experiences change if the contacts may break
when reaching the strength limit, making microcracks in the material
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Tent structures are an interesting field of civil engineering, There exist special methods for
their computation. There are only a few companies which arc specialized in the design and
constructing of tent structures in Europe. This paper compares the basic ideas of two working groups,
each of which developed its own methods of calculation from the idea of the architect until the final
cutting patterns. One example demonstrates the results of the two methods. The F 96 program between
the French and Hungarian government helped the authors of this paper.

1. Calculation of tent structures in Hungary

At the Technical University of Budapest there exists a small group which developed
algorithms and computer programs applying the following theory.

Textile is not able to keep pressure therefore the tent structures need to be designed in
such a way that they can carry every possible load without pressure. In practice the meteoro-
logical and other possible loads are definitely more than the dead load, so the initial form is
designed considering the unloaded structure. Under different loads, in some parts of the
structure the normal stress may be reduced. Wrinkles can be avoided if the unloaded structure
has a state of self-stress. This is possible in the case of statically indeterminate (and kinema-
tically overdeterminate) structures. (The kinematic overdeterminacy is released by the self
stress field's secondary stiffening effect.)

Tent structures are membranes which are not able to carry bending moments, hence
they are generally kinematically indeterminate (statically overdeterminate) structures and self-
stresses exist only in the case of a special geometry. The architect has a preliminary idea about
the form of the tent which can satisfy the different functional, aesthetical and other require-
ments. The first step is to find a form which is nearest to the desire of the architect and has its
own satisfactory stress field.

The question is, which stress distributions are satisfactory? The answer is that those
which can avoid pressure in every part of the textile under all possible load combinations and
the maximum stress is less than the limit. During the previous step (form finding) only static
equilibrium was considered; in this step, involving the computation of the state-change of the
structure, already requires the consideration of constitutive and geometrical equations. The
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form finding generally results in a linear equation system, however, the computation of the
state-change produces a non-linear system and requires information about the materials, as
well.

The engineering practice suggests initial values for these parameters. After determining
the values of the state variables in the first step results are checked and if modification of the
input data is necessary then the calculation starts from the beginning.

If the above process yields a satisfactory form and corresponding self-stress state,
starting from which all new configurations (corresponding to various loads ) are satisfactory, it
still remains an open question, how to produce the initial form. By cutting and gluing pieces of
planar textile, the prescribed initial form can not be reached. By applying suitable changes to
the locations of boundary points, stresses can be reduced to zero, however, the resulting
surface is not developable. (The shape of the stress-free textile is not uniquely determined
because of the kinematic indeterminacy, however, the admissible displacements do not change
the developability.) The only realistic goal can be to find a cutting pattern resulting in a shape
close to the previously determined initial shape.

During the last decades the research group at the TUB developed a program system for
the solution of the above problems. This package contains computation and visualization
modules. Computation modules can be divided into the following three groups:

a) the initial form
b) state change due to loads
c) cutting pattern and shape.

Let us review the models applied for the different goals, computation methods, their
advantages and disadvantages.

1.1 Calculation ofthe initial form

We applied a developed version of the method suitable for the determination of
equilibrium of a cable net, the projection of which is an orthogonal grid. (This method
characterizes the shape of the surface by the coordinates of the cable nodes, other points are
computed by interpolation.)

In the first version [18,6] we applied the cable net model as well, with a relatively large
choice of boundary conditions (rigid boundary with arbitrary shape, masts with prescribed
locations, boundary cables). In those times the small memory capacity and low speed of
computers represented a serious handicap, so the algorithm was based on the before mentioned
assumption of the orthogonal projection. In this special case the horizontal equilibrium of the
nodes yielded immediately the result that the horizontal components of the cable forces are
constant. Fixing this two components the vertical equilibrium can be expressed by the
following linear equations system

AX+XB=Q
where the matrices A and B depend on the distances between the cables and the prescribed

horizontal force components. Matrix X describes the unknown heights of the nodes and Q is
the load matrix. The size of this four matrices is n*m where n and m are the number of the
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cables in the two horizontal directions x and y. The spectral separation of the matrix A and B
produces n*m simple equations for the components of X.

If the fix boundary is not rectangular and/or we apply masts as well, then the problem
can be reduced to the previously described one by the repeated application of the method of
singular loads. In the case of edge cables before the solution of the above mentioned process
the horizontal coordinates of the edge cables can be computed from the horizontal equilibrium
of the network and the magnitude of the horizontal components of the cables. Knowing the x
and y coordinates of the edge cables the singular loads method produces the height at the
surface as well.

Our present method relies on the higher speed and memory capacity of the computers.
It abandons the singular load method and the uses one big linear equation system, which
originates from the vertical equilibrium of every point (including the points of the edge cable),
and provides the heights of the nodes. This program permits a large variety of different
boundary conditions.

The results (the calculated points of the surface) are visualized with AUTOCAD
program system giving good possibility to the architect and the structural engineer for spotting
the weak parts of the structures and for the modification of it until the satisfactory shape is
reached. Several independent ways of modification exist: The fix point coordinates (where the
rigid boundary or/and the ring around the mast intersect a cable of the rectangular network);
The coordinates of the endpoints of the edge cables; ordinates of the endpoints; The angle
between the straight line connecting the endpoints of the edge cable and the initial tangent of
the cable; The magnitude of the horizontal (stretching) forces. The last possibility, which
allows different magnitude of each cable in the x or/and y direction, is useful in the case of
valley cable(s). The program can handle two symmetry axes, reducing the computer time.

A mast means a singularity point of the tent surface, because the concentrated force
there can be equalized very near to this point only with infinite stresses. Therefore in practice
the textile is carried by a ring which hangs on the top of the mast. In the case of our cable
network model every cable which intersects this ring, provides a boundary point with the given
height of the mast. In a typical (usual) case four points describe the top area well but often
more points are applied. A usual joint point division can not produce enough smooth surface if
the cutting patter calculation program requires the interpolation between the internal points.

To reduce this effect an other program was developed which calculates the initial form
in the vicinity of the mast more precisely. Instead of the rectangular cable network a polar
system is applied. The inner points are the coordinates of the rigid ring with their fixed
(previously defined) points, and the farest are interpolated points of the first shape. In this
model the magnitude of the projected cable forces are prescribed as well (the forces of the
rings and one radial direction are mathematically independent). From this input data every
other force magnitude is computable by using the horizontal equilibrium of the structure. The
vertical equilibrium of this polar system produces the height of the points at the intersection
points of the radial and annual cables. This method results better form near to the mast but
sometime produce a compatibility error at the end of the polar coordinate system. Sometime
the increasing of the number of points in the rectangular system provides sufficient precision
without applying this second program. At the same time this program offers the possibility of
the calculation of the exact position of the mast. Because the points of the top ring are
prescribed from the directions and magnitudes of the radial cables, the coordinates of the
resultant are computable, and this is the theoretical position of the mast.

Nowadays an other program is being developed for the shape finding .applying tri-
angulation ofthe membrane surface. This model uses the dynamic relaxation as the method [2].
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1.2 Computation ofthe state-change

The initial form is generally calculated without external loads, in spite of the fact that
the algorithm allows the effect of arbitrary vertical force. This does not mean that it is
sufficient to run the shape finding program twice (firstly on the unloaded structure, secondly
the actual loads are calculated), because the two results describe two different problems.
Therefore an other program is necessary to calculate the stresses and displacements of a tent
structure.

Our model is the same as in the previous step: it is a cable network, furthermore this
program allows fully general geometry from different materials. In the case of a real cable
network the shear forces between the cables are supposed to be small, consequently, instead of
the orthogonal arrangement the principal curvature [9] or geodesic line [17] applications are
advisable. When modeling textile structures with cable nets the shear stresses are not very
important, thus the simplest way is to keep the rectangular cable network of the form finding,
because the same data structure offers big advantage.

What are the drawbacks of the cable net model? In this model one member of a cable
has constant cross section, although the width of a textile strip is not constant. Theoretically it
does not result an error because in the whole model the total elongation of the member is
counted and the average width describes it in this respect well. In practice the width is
calculated from the top projection plan, in spite of the fact that the real cross section area
depends on the vertical angle too, however, this effect is neglected.

The stress-strain diagram of a textile is generally nonlinear. A short part of this diagram
is nearly linear, so a polygon is applied in stead of the real diagram.

The material of the textile is anisotropic but in the stage of the calculation the fiber
directions are unknown. The angle between this two main directions of the material and the
direction of the member are neglected. The perpendicular cables cover the surface twice: the
same material works in x and y directions as well and the behavior of the material in this two
directions is not independent: the Poisson number gives the connection.

A rectangular part of the network may deform into rhomboids under load and shear
stiffness of the textile influences this deformation, while in the applied model only the cable
forces secondary stiffening effect limits this deformation. (The model allows diagonal members
to model the shear effect but in practice they are not used because the most common textile in
Hungary has low shear modulus. [20])

A part ofthe problems mentioned above originate from the model itself, therefore these
problem can not be eliminated. Until recently we did not pay much attention to the applied
width of the strip because the uncertainty of the materials and the loads are high. In the textile
only a few member types have been considered, but the different steel cables (edge cables or
anchorage) have been described more precisely.

An other interesting question is the modeling of the connection of the steel edge cable
and the textile. The cable is placed at the pouch of the textile. The textile is fixed at two ends
and only the friction between the textile and the cable prevents the relative displacement.
Hoping that the stresses from the textile are almost perpendicular to the cable, the friction has
been neglected.

The program allows concentrated force with arbitrary spatial directions at the joints.
The two most important loading cases are the wind and the snow. The program automatically
calculates the effect of the wind from arbitrary directions with an approximate form coefficient.

The actual status of the structure is computed by a modified Newton-Raphson iteration
method [18]. Every step of the iteration calculates the unbalanced force from the equilibrium
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equations and the incompatibility of the members. The iteration is finished when both of the
two errors of the calculation are less than a small given number. If the errors exceed the limits
then the incompatibility lengths are converted into unbalanced forces at the node and the
tangent stiffness matrix of the structure is recalculated from the actual nodal coordinates and
internal forces. (During the iteration process some cable forces may be negative - pressure -
which decrease the stiffness of the member and may produce numerical problem. Therefore
only the tension forces are taken into account in the tangent stiffness matrix. This neglegation
does not influence the final result because the error vectors are computed from the exact
formulas.)

The tangent stiffness matrix and the summarized vector of the unbalanced forces
produce a linear equation system. The solution of this system results new coordinates of the
nodes. A useful improvement of the program is the limitation of the nodal displacement. If the
equation system produces bigger displacement than the given limit then every displacement is
reduced with same factor, which is computed from the ratio the maximum and the given limit.
This simple modification speeds up the iteration.

The new internal forces of the cables are calculated from the new coordinates of the
nodes with a linear formula. It produces definitely better convergence as if the cable forces
were computed from the exact elongation.

1.3 Calculation of the cutting patterns

In our opinion the calculation of the cutting patterns is reasonable only if the shape is
suitable for the architect and the structural engineer as well, namely the tent satisfies every
functional and static requirement.

The textiles, which are produced by factories, have a given width and the next goal is to
find the most economic 2D cutting patterns of the 3D shape. In practice developable surfaces
are rarely applied when the flattening is simple. A typical surface with double curvature is
undevelopable and the goal is the best approximation. In Hungary the triangle method is the
most widespread [7]. The essential idea of this method supposes that the space length between
two points of the real surface is the same than the distance measured on the strip of the textile
in the plane.

The method requires two zigzag lines on the surface which define a sequence of
triangles. If the space line requires internal points, then they are interpolated by using linear
approximation. The flattening is based on the common nodes of these triangles.

Two main tent groups exist from the viewpoint of the cutting pattern. Generally it is a
more simple case when the textile is stretched between fix boundaries. It is a typical application
of this structures when the loads are carried by parallel arches. In this case the direction of the
cutting patterns may be parallel or perpendicular to the plane of the arches. (It depends on the
ratio ofthe spans.) In that case the rectangular cable network model describes the real behavior
very well and the calculated points provide directly the strips of the cutting patterns.

The other frequently used tent structure applies mast(s) to support the textile. In this
case a polar coordinate system is used around the mast and the radial lines give the edges of a
strip, meanwhile the zigzag connects them. Around the center (mast) generally one central
angel is applied, which sometime results very different width at the other and of the strip. We
prefer this solution against the other one, which tries to optimize the maximum width at the
wider end or uses the length at the edge. Especially the second solution can produce big
difference in the angle ofthe center, which is not very attractive.
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The flattened cutting patterns often has big curvatures producing wider cutting pattern
than the width of the material. In this case an other (smaller) central angel is necessary and the
whole process starts again. Very small cutting patterns are not economic because of the lot of
welding between the neighboring strips. This simple final step often requires much effort while
the final form is developed.

2. Design and mechanical analysis of tent structures in France

Due to the multiple actors involved in the design process of a textile structure i.e.: the
customer, the architect who designs the structure, following the requirements of the customer,
the textiles manufacturers who must satisfy the architect's aesthetic criteria and minimize the
fabric wasted, the engineering office which has to control the whole process from mechanical
and structured point of view, an integrated approach has been set up to carry out efficient
dialogues between all these persons. This dialogues is centered on the tasks of the engineering
office and try to use the information exchanges with partners. It has been proposed to divide
the design process in three main steps: the first one related to the definition of three
dimensional shape of the textile structure, the second one focuses on the definition of its
manufacturing features and the third is centered on the structural analysis of the textile and the
metallic parts. The main idea is to build in next future a software package which makes
possible the generation of a real design loop where the different users can interfere at each
stage to modify their interior data and choices even if they are located at different geographic
places.

2.1 Three-dimensional shape finding

At first a topological model of the textile structure is defined both from its fixed parts:
anchorage points, masts, bars, arches which contribute to maintain the membrane, and from the
panels created from the previous fixed parts. Then this pure geometric support, node
coordinates and connected nodes are the basic data of a topological mesh on which the force
density method [16] is applied. This means that the equilibrium position of a cable net, which
has the same topological definition than the geometric support, is obtained giving force
densities in the cables, and constraining boundary points to be fixed or to move along the
giving boundary. Afterwards, this cable net shape may be modified by the architect by changing
the force densities values, until a convenient final shape is reached. Finally this polyhedral
model is automatically converted into a Cl continuous surface model approximation containing
Bezier patches. The surface decomposition into patches is related to the topological meshes
initially created as each of the patches is computed to provide the best approximation of its bar
network subset counterpart. Thus this surface model is defined as the basis of the subsequent
phases.

2.2. Cutting Patterns

The second phase focuses on the creation of the manufacturing features of the textiles
structure. The surface model of the textile structure previously defined allows the results of the
flattening technique to be independent from the parameter used during the first phase (for
example the discretization used to build the polyhedral model). Thus the 3D cutting patterns
boundaries are directly defined over the surface model according to the requirement of the
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architect, the designer and the manufacturer choices. Then an automatic flattening process
produces 2D contours that will be cut in the fabric rolls. The user can choose one among
several methods ranging from fast to robust ones in accordance with the quality desired [1,7,
19]. Improvements of the quality of the cutting patterns obtained may be required when 2D
shapes have global curvatures that are not acceptable from a manufacturing point of view,
because they would generate large wastes of textiles or reduce the load capacity of the
structure. A direct and interactive correction process applied to the boundaries of 3D cutting
pattern helps the user to modify the flattened 2D cutting patterns in the area of interest. Finally
the engineering drawings are made after a length adjustment of the different pieces has taken
place. Because the flattening process is carried out on an independent basis for each cutting
pattern, the 2D boundaries obtained for two adjacent cutting patterns usually have different
lengths. This justifies the length adjustment process previously mentioned. The two sets of 3D
and 2D cutting pattern boundaries constitute the manufacturing model of the textile structure.
Like in the first phase, the second one also makes it possible to go back to any of the previous
slates and to modify various parameters. The interactive and real time improvement of the 2D
cutting patterns is an important process to obtain the validation of the cutting patterns by
different actors.

2.3. Mechanical behavior of the tent structure

Here again the surface model of the textile is used as an important parameter in order
to ensure the independence of the data structures generated during the first phase with respect
to the mesh used for the finite element computations. The latter is a subset of mechanical
models of the membrane part of the textile structure. The first step consists of checking the
equilibrium position of the textile stressed by different climatic loading, taking into account the
initial stresses produced when wejoin all 2D cutting patterns and build 3D shapes. To this end,
a finite element (F.E.) mesh is created from the surface model and the stress state computation
helps to verify the textile structure which should be everywhere under an adequate level of
tension. Then the boundary forces obtained from the previous computations are used for the
dimensioning process of the metallic structure and civil engineering parts. This step can be
made can be precise in the sense the F.E. calculations take into account the large membrane
displacement theory, the initial stresses and the anisotropy ofthe constitutive fabric material.

2.4. Software architecture

Seeking compromises of agreements between the actors at various stages of the design
process through meetings and discussions requires a specific environment which include
computer supported collaborative work tools [10] capable of exploiting computer objects to
achieve collaborative work between actors [6]. The various sites are interconnected through a
computer network. These collaborations are carried out with a multimedia software tool, that
allows the users to simultaneously share a 3D graphic scene displayed on their respective
workstations. The collaborations between actors that have different working themes require
the use of dialogue objects which must be as realistic as possible and incorporate the data
placed at the center of the mediation.
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2.5. Conclusion and perspectives

The design methodology and the data architecture elaborated fit into the design process
of textile structures and incorporate the actors involved in this process as well as their know-
how. The coupling between the geometry ofthe structure and the mechanical stress state of its
fabric has been treated through the decomposition of the knowledge of each actor. This
decomposition has been worked out with the use of appropriate approximation methods and
automatic conversions of the data between successive models. The identification and
adaptation of the specific models (or views) of the structure to each of its definition levels and
to each of the actors using it, is a key point of the methodology introduced. The collaborative
environment developed participates in the convergence of the design process and improves the
efficiency of the dialogues between the actors by the use of shared graphic objects and
annotation tools. However, further progress can be made in this area through the use of true
design objects to ease the modifications specified during a dialogue. Future work will aim at
developing an effective mechanical analysis view of the overall structure and an integrated
view ofthe whole design environment.

3. Example

The following example, so called "Chinese Hat", was calculated by the two program
systems. Fig. 1 shows that the boundary conditions are simple: the lengths of the fix edges are
4 meter and the height ofthe hoop is 2 meter. The diameter of this top ring is 50 cm.

The Hungarian program requires the magnitude of the horizontal components of the
stretching forces. They are the same value: 1 kN in X and Y direction. The form was calculated
by rectangular mesh while the Fig. 1 shows the interpolated points in polar system.

The model of the French program consisted initially 9 circles and 16 radial lines. The
force density of the element at circles was always 1 and at the other elements is denoted by d.
Fig. 2. shows a few variations. d=0.5 force density produced almost the same cross section at
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the diagonal ofthe tent as the Hungarian method. It may be an interesting new research area to
compare the form finding methods. The d=0.5 form was taken into account at the calculation
of the cutting patterns.

The cutting patterns are shown in Fig. 3. Their forms are significantly different at the
middle line. The reason originated from the different technics of the two calculation methods.
The Hungarian method divided the surface into two elements with a straight line in the top plan
while the French program has a curve. It would be an other interesting topic of our future
common research to compare and develop together the calculation methods. Interesting
aspects are the area and perimeter of the current cutting patters which are shown in the next
tabulation.
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0
0 500 1000 1500 2000
Fig. 2
Hungarian French
Pattern 1 Pattern 2 Total Pattem 1 Pattem 2 Total
Area [ml1l 1.209 1.313 2.522 1.313 1.212 2.525

Perimeter 7.543 6.803 7.514 6.772
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APPLICATION OF GROBNER BASIS THEORY TO FIND GLOBAL EQUILIBRIUM
PATHS OF THE SIMPLE ARCH

GASPAR, Z5* - KAROLYI, GY.** - POPPER, GY.***
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Application of the Grébner basis theory is presented for finding the global equilibrium paths of
the model of a simple arch. Grébner basis calculations (with respect to pure lexicographic term
ordering) make the solution of polynomial equation systems easier and may provide us with analytical
results This makes possible the determination of the global equilibrium paths as explicit functions, and
the examination of their exact parameter dependence. Even for this simple model unexpected solutions
were found with symmetry breaking property or with negative bar length. The physical meaning of the
latter is explained by means of non-homogenous bars with a certain internal structure.

1. Introduction

Structural engineers tend to consider the loads of a certain structure to be one-
parametered. Starting from a known, stable equilibrium state, they try to determine the
properties of the equilibrium states as a function of the unique load parameter. Generally they
are satisfied by following the equilibrium path of the starting state up to thefirst critical (limit or
bifurcation) point. For the characterization of the sensibility to the imperfectness, the
determination of the type of the critical point and of the starting branches of the postcritical
equilibrium paths may provide useful information.

Several recent papers [1,2] are devoted to the determination of the global equilibrium
paths, when not only the starting branches of the postcritical paths are aimed by the calculations,
but also their further segments together with the possible new limit or bifurcation points.
Besides, it may be chosen as a goal to find, for a certain range of the state variables, the
equilibrium paths not connected to the original one.

To this end we may apply eg. the simplex method [1,2], or the Grdbner basis
calculations presented in this paper. While the simplex method is a numerical method applicable
for a wide range of problems, the method based on the Grobner basis theory is useful only for
some special problems, but with the advantage of exact, analytical results, thus the examination
ofthe parameter dependence also becomes possible.

Searching for the global equilibrium paths we must often cope with polynomial equation
systems of several unknowns. Since we are interested in all the solutions of these equations, and
we want to examine the dependence of the solutions on several parameters characterizing the
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system, we have to find the results using symbolical computations. The well-known traditional
methods [3] can not give these results, since they can not handle undetermined parameters.
However, application of the theory of Grébner basis can provide us with all the solutions of the
polynomial equations and also allows us to carry out the computations without prescribing the
parameter values in advance [4-7].

Elimination methods based on iterative exclusion of the variables from a set of
polynomial equations has the property that “false roots” can occur in the final univariate
equation which are not solutions of the original system. Grdbner basis calculations, based on
recent results of modern algebra, assure that the transformed system and the original one are
equivalent in the sense that they have only common solutions. Applying a special ordering of the
terms of the polynomials, the so-called pure lexicographic term ordering, the Grébner basis of
the original set will consist of equations that can be solved one by one, since all of them contains
only one new unknown. The theory of the Grobner basis is not explained here in detail, it can be
found e.g. in [7].

For finding equilibrium paths of structures described by polynomial equations the
Grobner basis calculation can be a good candidate. With its application one can obtain
analytical results for the global equilibrium paths of structures, which enables us to examine
their behaviour's parameter dependence. To demonstrate it we show the calculation of the
global equilibrium paths of a model of the simple arch [8,9]. For this structure only some of the
symmetric equilibrium layouts have been known so far. With the application of the Grobner
basis we show that for a range of the parameter values we can have loaded shapes with
symmetry breaking. We also show that allowing the concept of negative bar length these
solutions always exist and more symmetric solutions can be found. We also explaine the physical
meaning of the negative bar length by means of non-homogenous bars with a certain internal
structure.

In Section 2 we introduce the model of the simple arch together with the mathematical
equations describing its equilibrium states, and compute the corresponding Grébner basis. Then
we interpret the solutions in Section 3. Section 4 deals with the parameter dependence of the
global equilibrium paths, while in Section 5we draw our conclusions.

2. The model of a simple arch

Consider the structural system shown in Fig. 1 consisting of two elastic bars with equal
initial length / and equal stiffness k, being pinned to each other and to rigid supports by ideal
hinges. The distance between the abutments is taken as a. We want to find all the possible
positions of the central hinge subjected to a vertical dead load of arbitrary magnitude F . Denote
the horizontal position of the hinge by x and the vertical position by y .

Due to the reflection symmetry of the structure and of the load with respect to the
vertical axis x -a Il we may expect solutions, i.e. equilibrium states of the structure, provided
with the same symmetry property. However, it is not straigthforward that other solutions with
symmetry breaking do not exist, and even the number of symmetric solutions is not apparent.

Denoting the new lengths of the beams after loading by L, and |2, the geometrical
equations, expressing that the bars will connect the abutments to the central hinge also after
loading, are

x2+y2= L, (1a)
(a-x)2+y2=L1. (Ib)
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Fig. 1 Layout of the model ofthe simple arch before loading. The bar lengths are /, the distance between the
abutments is a.

By the material equations we express that Hooke's law holds for arbitrarily large deflections. In
this case it means a linear dependence between the elongation and the internal force of the bars
in the following form:

k(L, =) =5, (2a)

k(L2-1) =Ss2. (2b)
Here S] and S2 are the internal forces of the bars. The fact that the deflections are not restricted

in Hooke's law will lead to very interesting results, in fact it will increase the number of
solutions, as we shall see later. The equilibrium equations

F+fs,+ fs 2=0,
L\ »n

X
\V4 -0

express the equilibria of the vertical and the horizontal force components at the central hinge,
respectively These equations can be rewritten in the form of polynomial equations as

FLIL1+yS,L2+yS2Ai=0, (3a)
xS AM-atrll +xS1Ll=0. (3b)

We note that these equations are equivalent with the former ones, except for L, =0 or
17=0. For convenience from now on we allow these values also by using Egs. (3), although at
this stage the meaning of such solutions, if there are any, is not apparent.

To prepare this system of six algebraic equations of six unknowns for solving, the
Grobner basis of the six polynomials was calculated with respect to the pure lexicographic term
ordering. This provides us with six univariate equations each with only one unknown [7]. By
means of the Grobner basis theory, it is expected that the solutions obtained from the Grébner
basis are exactly the same as those ofthe original polynomial equation system. This enables us to
look for the roots of the Grdbner basis which is a significantly easier problem
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The Grobner basis of this polynomial equation system was calculated by the computer
algebra system MAPLE V [10]. The application of the command “GSOLVE” of MAPLE V
leads us to the following collection of reduced lexicographic Grébner basis:

[(41KV +4ak2F2)L2+ (2KkV +4FX22+ 2F4)x - KV - 2FXV - 4a3X4- aF\
(2KV +4KV F2+ 2kF4)y - KVF +4kVFI2- 2FXV - F\
(k22+ F2)s, + (k32+ F2)12- KVI +KIF2, S2-kL2+kI, (40
(kV +F2L +(kV +F2)L2- 2KV I,

-8adkdL2+ (4KV +4KF2L2- KV +4a2Xk4- 2FW - F4]

Flere six subsystems between brackets are given. Each of them represents a system of six
equations, in which the given polynomials are supposed to be equal to 0.

The first subsystem gives imaginary result for y, thus it is physically irrelevant.
Subsystems (4c), (4d) and (4e) are included in (40 for special F values. Thus we must examine
only subsystems (4b) and (40 to find the global equilibrium paths of the model of Fig. 1

The remaining two subsystems can be solved more easily than the original equation
system This is the consequence of the application of the pure lexicographic term ordering in
the calculation of the Grdbner basis. In the last equation of the subsystems there is L2 as the
only unknown, thus it can be easily determined. Since these equations are of degree 4 and 2 in
the unknown L, in (4b) and (40, respectively, explicit algebraic solutions can be obtained. This
provides us with the opportunity of the examination of the parameter dependence of the global
equilibrium paths. After determining L2 from the last equation of the subsystems, and
substituting it into the preceding equation we again find an univariate equation for the only
unknown L,. Carrying on this procedure finally we can obtain the solution for all the unknowns
X,Y,S1,S2,L],L2 as explicit functions of the parameters F,a,k,l. The formulas determined this
way are collected in the Appendix.

3. Global equilibrium paths of the simple arch

The new shape of the model of the simple arch after loading may be described by the
coordinates (x,y) ofthe central hinge. From the Grébner basis we have calculated in the former
section, one could determine them as explicit functions of the parameters (see Appendix). For a
detailed examination of the equilibrium paths we set these parameter values as 1=5, a =6 and
K =1 in arbitrary units. Thus we can follow the changing of the position (x,_p) of the central
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Fie. 2a. Global equilibrium paths of the simple arch for / =5, a = 6 and k = 1, together with the corresponding
layouts. Bars with negative length are painted black.

Fie. 2b Dependence of the vertical coordinate of the central hinge on the load parameter for / = 5, a2 = 6 and
k - 1, together with the corresponding layouts. Bars with negative length are painted black
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Fig. 2c. Dependence of the horizontal coordinate of the central hinge on the load parameter for / =5. 2 = 6 and
K = 1, together with the corresponding layouts. Bars with negative length are painted black.

hinge by varying the value ofthe load F . As the load varies between minus and plus infinity, the
central hinge moves along one of its equilibrium paths. This is illustrated in Fig 2a. Here the
possible equilibrium positions of the central hinge are shown as a function of F together with
the corresponding structural layouts. It is obvious that there are solutions breaking the reflection
symmetry of the original structure with respect to the x =a /2 line.

In fact the solutions shown in Fig. 2a are projections of the six solutions of the Grébner
basis to the (x,y) plane; recall that the two equations for L2 were of order two and four, thus
they can have six different real solutions. The equations do have six real solutions for certain
values of F , and have four real solutions for other load values. This is illustrated in Figs. 2b and
¢, where the equilibrium coordinates of the central hinge are shown as a function ofthe load F .

Bars coloured black in the small layout figures indicate a special property of the
corresponding solutions obtained from the Grobner basis: for some load values these bars have
large enough compression to decrease their length below zero: L, <0 (see Fig. 3). This property
is included in the original equations describing the model, this is the result of the fact that the
deflections were not restricted. The question arises whether these solutions may have physical
meaning. In fact they can have, if the bars are not homogeneous, but have a certain internal
structure illustrated in Fig. 4a. Here the supporting fixed hinge is connected to a tube
somewhere along it, while an elastic spring connects the central hinge via the open end of the
tube to its other end. Thus, applying large compressing load to the “end of the bar”, i.e. to the
free end of the spring, it can move inside the tube further than the supporting hinge as is
illustrated in Fig. 4b. If we define the new length of the bar as the original length / plus the
deflection Al <-/, we clearly get a bar with negative length in accordance with the equations
(1-3) describing the equilibrium state of the system.
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Fie. 3. Dependence of the bar lengths on the load parameter for / =5, a = 6 and k = 1 Obviously for some parts
of the global equilibrium paths the length of the bars may be negative

Fie. 4. Possible layout of the internal structure of a bar, which can have “negative length”, a) The initial layout of
the structure set together from such bars, b) The length of the bar with substantial compression may decrease
below zero.

4. Parameter dependence of the global equilibrium paths

Recall that executing the solution procedure of Sec. 2 finally we were provided with all
the unknows as explicit functions of the parameters. Changing the value of the parameter a
denoting the distance between the supports, we only set the length scale of the structure.
Choosing different values for the stiffness k only the unit of force is adjusted. Thus any change
of a and k can be turned into a similarity transformation only by the appropriate choise of the
values for / and F . Thus the system is uniquely described by the two parameters / and F .
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Varying F for fixed value of / we scan the global equilibrium paths of the structure the
way as we did it in Sec 3. This section is devoted to the changing of the equilibrium states as /
varies.

For 1>al2 the arch can be in equilibria in its original position for F =0 without any
internal force. For /<a/2 it is not possible, since without stretching the bars starting from the
supports they can not reach each other. At the crossover value |-a 12 the global equilibrium
paths of the simple arch also change dramatically. This value is the borderline between two
different states, where the number of the solutions is different. As we have already seen in Sec. 3
for 1>a /2 we could find six or four different real solutions, depending on the value of F .
However, for / <a/2 we definitely have only four different real solutions for any value of the
load F . This isillustrated in Fig. 5 for the parameter values / = 2.5, a =6 and Kk =1 Comparing
Figs. 2b and 5b it can be understood that those curves of Fig. 2b which have intersection with
the axis outside the origin will be tangent to the same axis at the origin at the crossover value
I=a/2.

The four different lines of Fig. 5 illustrate all the possible positions of the central hinge in
equilibrium state. Three ofthe lines now correspond to layouts where at least one of the bars has
negative length. Note, that the loop of Fig. 2a according to the non-symmetric shapes now
disappeared; for all the non-symmetric solutions now one of the bars must be of negative length
after loading The border between the existence and non-existence of the loop at the non-
symmetric solutions is again 1 =a!2 where the zero length is approached for F —» 0, for other
F values one of the bars must be of negative length.

Fie. 5a. Global equilibrium paths of the simple arch for / =2.5, a =6 and k = 1, together with the
corresponding layouts. Bars with negative length are painted black.
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Fig. 5b. Dependence of the vertical coordinate of the central hinge on the load parameter for / = 2.5, a = 6 and
k = 1, together with the corresponding layouts. Bars with negative length are painted black.

Fig. 5c, Dependence of the horizontal coordinate ofthe central hinge on the load parameter for / = 2.5,a = 6
and k = 1, together with the corresponding layouts. Bars with negative length are painted black.
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S. Conclusions

Application of Grdbner basis theory for determining global equilibrium paths was
presented through a simple example. Due to the analytical results provided by the Grébner basis
calculations considerable insight was possible into the behaviour ofthe model ofthe simple arch.
Even for this very simple example quite unexpected results were found such as equilibrium states
with symmetry breaking property or with negative bar length. The explicit knowledge of the
analytical solution thus could lead to deeper understanding of the behaviour of this kind of bar
structures.

However, it must be noted, that the results of the Grobner basis calculations often lead to
equations with degree higher than four. These equations can not be solved analytically, thus we
loose one great advantage of this solution technique. But even in such cases the numerical
solution is considerably easier due to the fact that the equations to be solved are univariate, and
a drawback of other elimination methods is excluded, namely that we do not get any false
solutions, i.e. the roots of the original polynomial system and of the Grdbner basis are the same.

General theorems guarantee that the Grobner basis always exist for any polynomial
equation system. However, it does not mean that it is easy to calculate, since the necessary
computer time increases exponentially with the number of the variables [4-7].

In spite of these difficulties, the application of the Grdbner basis calculations can be
suggested for examples where the number of variables is not too high, and analytical results are
required.
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Appendix: Solutions of the univariate equations of the Grébner basis

The sixth of Eqgs. (4f) is of second degree for the unknown 1*. Solving it we get two
solutions:

_ 2kW 1 = y[k@a6+F6+3KWF* +3kW F 2- 4kWF 22
A 2kW+2kF2

These two L, values are quite complicated, but explicit functions of the parameters. Substituting
this expression into the fifth of Eqs. (4f) we can obtain the corresponding L, values as

2kV1+ VKV +F6+3k¥F443kVF2- 4kVF;I2
2kV +2kF2
From the third and fourth of Eqgs. (4f) the corresponding S\ and S2 values may be derived,
respectively, while from the second equation the value ofy for both Z, values is
Fi+ 2Flka2- 4AFPKW + Hcfct*
Yy~ 2kBA AkWF2+ 2kFi
Finally, from the first of Egs. (4f) x can be expressed as

yo KV +2FKV +aF4T 2alkVKV +F6+ 3k2ZF4 + 3kdadr2- akaFa2
- 2kV +4FXV +2F
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These solutions correspond to the equilibrium states of the system with symmetry breaking.

For the Egs. (4b) the same procedure could be followed. However, it is more

advantageous to express the variables x,LI,L2,St,S2 and F with y as the main parameter. The
reason for this is that we always have two F values for any y value, but we may get two or four
(real) y values for some F, and the latter is quite difficult to handle during plotting the graphs
of the resulting functions.

The results obtained from Egs. (4b) in this manner are as follows:
x =al 2,
4kly

F=-2kyzx
w2 +4y2

L, =L2=+ "a 2+4y2

From the first ofthese equations it is obvious that these are the symmetric solutions

10.
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USE OF FINITE ELEMENT METHOD FOR TESTING STRUCTURES FOR
DYNAMICAL EFFECTS CAUSED BY MOVING VEHICLES

GYORGYI, J *

(Received: 11 July 1996)

In tests of bridge behaviour under influence of moving load, a quasi-harmonic vibration task
should be solved if we want to take into consideration also the mass of the moving body. Use of finite
element method requires analysis of systems of several degrees of freedom and this calls for
appropriate numerical techniques. Both the effect of the external damping proportional to the velocity
should be computed and the procedure must be able to consider also the structural damping. The
method to be outlined in this paper allows the analysis of simultaneous effect of both the mass and
stiffness matrix changing with time, and the external damping proportional to velocity and frequency-
independent structural damping. The computation algorithm refers to a general case, however, the
effect of moving mass regarded as a material point, the two-axle road vehicle and multiaxle railway
vehicle is separately discussed.

1 Introduction

Among engineering vibration tasks, test of bridges under the effect of a moving load is
an old problem. If we want to take into consideration also the mass of the moving body during
tests, a quasi-harmonic vibration task should be solved. Before the appearance of computers,
this problem could be analysed only by essential simplifications. One of the possible
simplifications is neglect of the structure's mass. In another case a harmonic vibration task will
be solved neglecting the mass of the moving body. The starting point for this test was the
differential equation of the vibrating bar, and the solution of this equation was sought. The
structural model could not be changed until the appearance of computers with sufficient
capacity, however, already Fryba [1] analysed the simultaneous effect of load and mass. In these
tests, the bridge was simulated by a beam of constant stiffness and tested as continuum. Later, as
an advance, the vehicle was simulated not only as a moving mass but as a dynamical system of
several degrees of freedom - like Green and Cebon [2] did it for road vehicles.

Application of the finite element method requires test of dynamical systems of several
degrees of freedom and this calls for appropriate numerical methods For computing matrix
differential equations of constant coefficient for given starting conditions, several
methods have been developed, among others the Wilson-0 method described by Bathe
and Wilson [3]. In their original forms these methods are - as to be illustrated below - for matrix
differential equations with time-dependent coefficients rather computation-intensive, and fit only
for solving very simple tasks. Inbanathan and Wieland [4] modelled the vehicle as asingle
moving mass, and the effect of damping was neglected both for structure and vehicle. However,
it is well known that the dynamical overload is greatly influenced by damping, too. The known
methods - reported e g. by Olsson [5] - are able to compute the effect ofthe external damping

* Gyorgyi, Jozsef, H-1221 Budapest, Arany Janos Gt 96/b, Hungary
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proportional to the velocity, however, are not fit to take the structural damping into
consideration. Gyorgyi [6] suggested a method for computing the structural damping as an
external damping for which, as preparation, the eigenvalue problem belonging to the undamped
dynamical system of several degrees of freedom must be solved. It is necessary because - as
proved by Gyorgyi [7] - the appropriate size of the integration step can be determined only this
way. All this makes the computations rather sophisticated and unfit for testing large-size systems.
The problems mentioned necessitated the preparation of the method to be described below. The
technique published in this paper allows the simultaneous analysis of both the mass and stiffness
matrix changing with time and the external damping proportional to velocity and the frequency-
independent structural damping.

2. Mechanical models of the task
2.1 Effect of a moving mass regarded as a material point

The simplest case of the task under test can be seen in Fig. 1 where the vehicle is
modelled by a material point. Furthermore, in tests we assume that when moving, the vehicle is
continuously supported by the system, thus, the mass point does not separate from the structure

Fig. 1 Mechanical model ofa moving material point

In this case, the mass matrix of the structure will be extended according to the vehicle
mass. Considering that the mass point moves, the supplementary mass will act on different
elements in time. If the mass point is within one element, the relevant mass forces should be
reduced to the neighbouring nodes. If we comprise in matrix Nf the values belonging to the
given state of the mass point of the displacement functions describing the relation between the
displacement of the element's internal points and the displacement of the element’s different
nodes, we can write the time-dependent supplementary elementary mass matrix in the following
form:

Me,=N,rMON,.

Here Mo is the diagonal matrix in a size corresponding to the number of components of the
internal point displacement, the value of elements belonging to displacements is m, while the
others are zero. It often occurs when the mass moves on a horizontal surface in the direction of
the axis of the bridge to be modelled as a straight beam. In this case, we can analyse a planar
task. If the test aims at analysing bending in vertical plane, only one displacement component in
each node should be reckoned with, thus, only one element of MO matrix will be other than

Zero.



DYNAMICAL EFFECTS CAUSED BY MOVING VEHICLES 51

The weight force corresponding to the moving mass will appear at those nodes of the element
where the mass point is. This is the elementary vector of force:

re/=NJV

In vector r0, components of displacement's direction of the weight force corresponding to the

given mass m are not zero. For a mass moving on a horizontal surface, the force will be
perpendicular to the structure. Then, the differential equation of the task shown in Fig 1 will be
as follows:

(MB+M,(0)i +Kbu=r,(/) @)

In this expression M B is the mass matrix of the structure, K B is the stiffiless matrix of the
structure and \ is the vector of node displacements, The moving mass did not change the task's
sizes, its effect is express by mass matrix M /) and vector of force '[(7). Only those elements

of them differ from zero in which the components of matrix Me/ and re, are displaced

depending on the mass state. We can see that the mass matrix consists of two parts. If we
introduce in the complete dynamical test the notation without index and the following

expression:
M(/) =MB+M, (0
for the matrices and vectors of load, equation (1) appears in the following form:
M) + Ku=r(/). &)
2.2 Dynamical equation for a two-axle road vehicle
The vehicle model will be arranged after Green and Cebon [2] as depicted in Fig. 2.

The vehicle is supported by the structure in points a and b, the vertical displacements of these
points are identical with vertical displacements of a given point of the structure.

Fig, 2. Mechanical model of a road vehicle

We assume that points a and b do not displace and write the dynamical equations of the vehicle
vibrating around the equilibrium state.
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Mviv +Cviv +Kviiv =0 3)

Here M v is the mass matrix of the vehicle, Cv the damping matrix corresponding to hydraulic
dampers, and Kv the stiffness matrix of the vehicle. In this case, the displacement vector uv

includes only the displacement components of the mass points, the rows and columns
corresponding to supports can be deleted from the matrices. We obtain the following dynamical
equations for the structure:

MB“B + K BUB =rl(0 (4)

In the matrix equation the whole weight of the vehicle in the nodes of elements
containing points a and b will be given by the help of the elementary force vectors re/ = N fr0
as load in vector rj.When arranging the complete dynamical system, the displacements of the

structure come in the first block of the displacement vector, and in the second one the
displacement vector of the vehicle. Analysing the whole system, points a and b in the vehicle
model will displace, and this displacement will be identical to the displacement of the given point
of the finite element corresponding to the vehicle state. Accordingly, both matrix differential
equations placed next to each other will join and the matrices and vectors will have the following
structure:

M B KB
_ , UB  n(0
Ci(/) | k|0

In matrices Ci(t) and Kj(/) place of elements will change with time according to the
vehicle's movement. These matrices can be obtained by compilation from the elementary

matrices C , CN and K , K~ | respectively, belonging to the individual nodes. For

computation of the elementary matrices, matrix N, already described above can be used, its
elements are, of course, different in points a and b. For point a, eg.:

fai-
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Here ka and ca mean the stiffness of the spring joining in point a, and damping coefficient
of the damper, respectively. Thus, the matrix differential equation of the task demonstrated in
Fig. 2. is as follows:

Mii +(Cc +C1/))u+(Kc +KL/))u=n(/). (5)

In this relationship, subscript C designates the matrices with constant elements. We note

that in this model the mass matrix does not change with time. Writing the equation by the help
of summed up matrices, we obtain

Mii + C()u + K(rju =r(/). (6)

2.3 Analysis of the effect of multi-axle railway vehicles

Fig, 3, Mechanical model of the case of a railway vehicle

In this task, there are mass points of the vehicle also in contact points of the structure. If
we want to apply again the procedure described before, in the matrix equation of the vehicle
these masses do not appear in the case of unmoving contact points. Nevertheless, as shown in
point 1.1, the effect of these mass points will be expressed in the mass matrix of the structure as
a time-dependent component. Consequently, the dynamical equation system of the coupled
system is the following:

(Mc+MjQu +(Cc +CL0)0 +(Kc+ KA/H)u=ri(0 )

M ¢ is the time-independent mass matrix shown in 2.2:

mb
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.Mj6) and TI](/) are matnx and load vectors of equation (1), respectively, containing, of
course, several components Me/ and ref because there are several mass points. If we write the
equation by summed up matrices as shown above, we obtain

M(OU +C(/)u+K(fu=r(0. ®)

The last one out of the three models introduced is the general model. In this case, all the
interacting matrices and the load vector are time-dependent.

3. Solution of the matrix differential equation by direct integration

The dynamical analysis aims at solution of the matrix differential equation under initial
conditions u0,u0 belonging to a given time /0. and at computation of dynamical stresses

knowing displacements Inbanathan and Wieland [4] and Olsson [5] successfully applied the
Newmark procedure for computing displacements in simpler tasks, while Gyoérgyi [8] showed
that it was expedient to use the Wilson-B procedure for solution. Wilson [3] assumes linear
acceleration change between moments t and t+6At - the procedure's convergence can be
assured if #=1.4. In this case:

From the above we can deduce

Assuming linear change of r(t) for the given time period, we get
rt+6'At =rt +e{rt+At - rt )

and at the moment t +6 bl displacements can be obtained from the following relationship:
N r
K 6 -M +-BLI-C ut+eAt = rt+e'At +M 2U +Bbl U 2ii,
(Bbl)2 y (<

14
(@72 in w1 14

Afterwards, displacements, velocities and accelerations belonging to the moment t + At can be
calculated.
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For constant M, C, K, the coefficient matrix

f \

- 3
A= K+-"-rM+ C
| bl 9At

should be decomposed only once after having taken the time step At, while the right-side vector
is time-dependent.

We have seen that in the tasks analysed, at least one matrix was time-dependent, thus,
matrix A will be time-dependent, and the time-consuming decomposition should be carried out
at every time step. Inbanathan and Wieland [4](who tested the model shown in 2.1 for a simply
supported structure and one single mass point) took this way. If we want prevent time-
dependence of matrix A, time-dependent components in equation (7) should be taken to the
right-hand side of the equation. Further on, neglecting subscript C in the constant element
matrices, we can write the dynamical task in the following form

MiO+Cl+Ku=r,

where
r=r- Mjii- Cju- KJU .

In this case, displacements can be obtained from the relation

f \ f \
K+- 6, M+ UHOA - *t40KE + M + 8 g vour +
| {OAtf v
+C(17U 20"+~ O (15)
where
7400/ - rt+0At M lt+au (u+/-u,)-~0,-210,
A<y
-c 1THu - u>)-20°- S2'0') - Ki,+Ai"/+a/ (16)
It can be seen that on the right-hand side of the equation, vector appears and its

computation calls for an iteration procedure. The solution is now faster than decomposing
matrix A in every time step, however, Gyorgyi [8] experienced that convergence of the method

could only be assured if the supplementary mass was not too large as compared to the structure's
mass.
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4. Use of the modal analysis
4 1 Effect of a moving mass regarded as material point and that of internal damping

Gyorgyi [8] showed that the differential equation of motion was proportional to internal
damping (when the damping constant of all the structural elements is the same):

Mii+| v MvVv|-"--wKn=r- Mlii. a7)
Here 4 "= 4-y2 7 j£',
4+y2 h

In this relation, 9 isthe logarithmic decrement of damping, a rcan be computed from the r-th

eigenvalue of the eigenvalue problem Kv = anMv belonging to the undamped case, while V is
the matrix containing M-normed eigenvectors. Apparently, in the case of internal damping the
direct integration must be preceded by the solution of an eigenvalue problem. Knowing the
structure and the loading force, on the basis of Gyorgyi's paper [7] the number of eigenvectors
needed for appropriately correct solution and the integration steps can be determined. All this
supplies grounds for considering it when selecting the solution method for the dynamical task,
and for trying to apply the modal analysis. In knowledge of the M-normed eigenvectors of the

eigenvalue problem Kv =a2Myv, the solution can be sought in the form of u = Vx. After
substitution and multiplying by transported matrix VV from the left, we obtain

VrMVx + vWrM v\g!-gv TKVX +IVTKVX =q , (18)
ru

where g=Vrr-VrM,Vx =f-Bx (19)

Due to orthogonality, we may analyse n pieces of equations with one unknown. The r-th
equation is:

*r +T®NA + i, T*r =4t- (20)

hi T s 21

In this case Qit+ebt = A+0[)/  M+QIP+Y> (21)

N+60/ =fr, +& 6 +4 “N1 )>

b+ =b I +6{br/+Ai -b u)
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According to the considerations before, we get

MUJ+NQK‘5 +W yoox MHOA A g A 2 A 4K TAH2N 4
HO0rh K i 47 + 2%7 +~2 7% )- (22)

In equation (21) it can be seen that 4ft+OAt contains the vector \t+eAi’ thus, an iteration

procedure must be used. According to Gyorgyi’s experience [8] the iteration method does not
converge always, therefore, it would be expedient to apply the direct solution of the following
m-order equation system:

D+- Bl+OAt xt+0At = ft+0At + (B ,+04/ + E iyt 2X,
M + X t+ + + (B ,+04/ + )\(Olff) X +AiX

o 1+ *2i. (23)

Here, D and G are diagonal matrices with the r-th element of cu? H—( &)—x-+-£-yV|>m and ya>,,
0AY)2 LW

respectively.
4.2 Solution in the case of combined external and internal damping

Out of the tasks analysed, the one in 2.3 is the most general. There are several problems
in analysis. One of this is that the damping matrix is not proportional to the mass or stiffness
matrix, thus, it cannot be diagonalized. Neither the coefficient of internal damping can be
considered constant. Of course, its typical value is not identical for the structure and the vehicle
Determination of the number of eigenvectors necessary for analysing the structure's displacement
with proper accuracy is sophisticated by the appearance of the dynamical factors of the vehicle
in the system. However, all these problems can be controlled if the matrix differential equation is
generated in the way described in 2.3. Let us rewrite the relationship (7) in the following form:

MAU +Kqu=-Cgl +ri(/)-M 1(/)a-Ci(/)u-Ki(/)u (24)

The matrices on the right-hand side are hyperdiagonals. Accordingly, also the

eigenvalue problem Kcv= @ MAY splits in two parts. If we generate some smallest
eigenvectors both for the structure and the vehicle (mu for the structure and mv for the vehicle).

Collect the eigenvectors in matrix V, also matrix V becomes a hyperdiagonal (its blocks
will be quadratic only in that case when all the eigenvectors both for the structure and the
vehicle were computed).

If we seek the solution again in the form of u = Vx, the task becomes again
diagonizable. Nothing will hamper the consideration of the proportional internal damping -
different for the bridge structure and the vehicle.
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VB 0

As the individual blocks of the stiffness and mass matrices will be only multiplied by
the V matrix blocks belonging to them due to the structure of K¢ and M¢ and V, the internal

friction may be different for the blocks. The relationship for calculation of vector x is the
following:

D+ Birgat + ab (B C+ H/+Bir) + Pt+oAt [H-0/ -

(o)
- ft+OAt + (B 46>Af + E) X'+ GET*'+2%" (25)
2

(A
(g +Hc +HEOA)|-"-x/ +2x, +-"-X,j .

Here vector x has the size of mB+ mv and E is a unit matrix. Matrices D and G are

hyperdiagonal matrices, in their first element mBwith the characteristics of the structure, then
those of the vehicle:

Ay +17rB®ru.-.®s +
oay fem) .
"I'BAni >me> YV/su

Effect of masses in the supports of the vehicle is contained in  B(r) It is clear that only block ii

generated by the eigenvectors of the structure ofthe size m B x m B is not zero.

i j

Vb4 (') vb 0
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The damping system of the vehicle proportional to the velocity appears, on the one hand, in
matrix He containing constant elements, on the other hand, in matrix H(/) expressing effect

of dampers joined to vehicle supports. Only block jj of matrix Hq differs from zero, and this
block can be computed from the following relationship:

Hgj=Wrccvyv.
The block jj of matrix H(/) is zero, but this can be computed from the
H() =\ TCi(t)\

relationship. Matrix P(r) expressing the effect ofthe vehicle springsjoined to vehicle supports

is similar to matrix H(/) :
P(i)= VTK,(/)V.

Also vector f(/) can be partitioned in two parts. The i-th block is time-dependent, while j-th
block will be zero:

The road vehicle demonstrated in 2.2 will be simpler than this general model highlighted. In that
case, matrix B(/) will be zero.

5. Numerical experience

5 1 Data ofthe structure and vehicle tested

During numerical tests, computations were carried out on a reality-like structure. Data
ofthe bridge spanning 30 m are shown in Fig. 4 The internal damping factor y was 0.1.

A=3.12m2

[ 1=2.13 ms4

LZ30m p=25um5
E=20000000 kN/m2

Fig, 4. Data ofthe structure tested

On the bridge, a railway vehicle was moving. Its internal friction factor was chosen 0.05,
its stiffness, mass and damping data are contained in Fig. 5. Vehicle velocities were taken
between 0 and 50 m/s in the different cases.
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m3>03

mi=25t,mz2=10t,m3=50t, o02=8 tm2,03= 1500 tm2
ki= 3000 kN/m, k2= 2100 kN/m, ci= 20 kNs/m , c2= 150 kNs/m

Fig. 5. Data of the railway vehicle

5 2 Eigenvectors of the structure needed for the modal analysis

The dynamical task was solved by modal analysis. For determination of the number of
eigenvectors needed for properly correct solution, a numerical experiment was performed.
Displacement of the central point of the structure was examined reckoning with increasing
numbers of eigenvectors. Due to the nature of loading, role of components belonging to even
number (antimetric) vibration forms in solution is not considerable, the size of overload changes
essentially with the appearance of the new odd one. Table 1 shows the percentages of excess
displacements generated by the dynamical effect at different velocities.

Table 1 Additional displacement due to dynamical effect

number of eigenvectors —» 1 3 5 7
velocitiesim/sl 1
10 2.1 1.0 0.8 0.9
20 2.3 13 1.2 1.2
35 55 4.6 4.4 4.4
50 20.2 18.8 18.7 18.7

The data above reveal that for the structure consideration of already five eigenvectors
provides the additional dynamical displacements with sufficient accuracy, nevertheless, we
calculated with 7 structural eigenvectors. As the vehicle model had six degrees of freedom, in
this case we had to solve a system of equations with 13 unknowns in the individual steps, what
did not require considerable computation time. The time step applied when solving the task was

} T
reckoned with by a value of At = |§ on the basis of the smallest vibration time belonging to

the eigenvectors considered in the solution and in accordance with literature's recommendation.
In the case tested, the vibration time belonging to the highest number eigenvector considered in
the test was smaller than the smallest vibration time of the vehicle, thus, it was the structure that
determined the time step size.
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5.3 Influence of damping on additional dynamical displacements

During tests, it was analysed how the change of the vehicle's damping system influences
the dynamical excess displacements. The first row of Table 2 contains the additional
displacements computed with the initial damping value in the percentage of the static
displacement. The second row shows the case when the coefficient of the vehicle's damping
system decreased to the tenth of the original value. In the next row, the coefficient of the
damping structure is given with tenfold value. Finally, the last row underlines the importance of
considering the internal friction of the structure. Without it, essentially higher additional
displacements would be found than in reality. Values of the table relate to two velocities. It can
be seen that the damping effect is much stronger with a higher vehicle velocity than at an
average speed. Tests revealed that the internal friction of the vehicle in cases tested did not
influence the movements of the structure.

Table 2. Effect of the dampers of the moving vehicle and the structure's internal friction

velocity of the vehicle —» v=20 m/s v=50 m/s

damping!
Yo, W, ¢ 12 18.7

Yo, W, 0.1c 0.6 16.2

Yo, W, 10c 13 19.2

Yo =0,yv,cC

24 ™ 1
6. Summary

The paper discusses the test of bridges under moving vehicle applying the finite element
method, and shows a procedure able to compute the influence of the external damping
proportional to velocity and, at the same time, is fit for considering structural damping, too. The
computation algorithm relates to a general case, however, the effect of moving mass regarded as
a material point, effect of two-axle road vehicle and multi-axle railway vehicle is extra dealt
with. Application of modal analysis essentially reduced the computation time. The numerical
results cited proved the efficiency of the algorithm for joint test of moving vehicle and the
structure as well as the importance of taking the influence of the internal friction of the bridge
structure into consideration. As per the numerical results, the possible most correct analysis of
the interaction of the vehicle's damping structure and the bridge structure is necessary mainly in
the case of high-speed vehicles.
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IMPERFECTION SENSITIVITY OF THE CLASSICAL STABLE-SYMMETRIC
BIFURCATION PROBLEM MODIFIED BY BILINEAR MATERIAL

KURUTZ, M *

(Received: 15 July 1996)

In this paper, the effect of different cases of imperfections applied to the modified classical stable
symmetric bifurcation problem is analysed. The classical bifurcation example is modified by bilinear
elastic material behaviour, by taking Hencky-type elastic-plastic behaviour into consideration. Beside the
classical geometric imperfections, certain material and some loading imperfections will also be
considered. Perturbations in the elastic and plastic material characteristics, moreover, in the loading
device is considered. Namely, it may happen in the practice that the nature of loading process is not
perfectly "dead" being perfectly independent of the occurring deflections. The deviation from the dead
loading program can as loading imperfection be considered.

The present analysis is based on the papers (3.4.5) of the author where the nonsmooth stability
analysis have been introduced for those dead loaded structures which have polygonal material,
consequently nonsmooth internal potential. In [6.7] these results have been extended to the cases of
configuration-dependent conservative loading, by introducing polygonal loading functions yielding
nonsmooth external potential.

The aim of this paper is to obtain the geometric, material and loading imperfection-sensitivity
functions of the classical stable-symmetrical bifurcation problem modified by bilinear elastic material.

1 Introduction

The three classical examples of bifurcation, the stable and unstable symmetric and the

asymmetric bifurcation classified by Koiter in 1945 are detailed in Thompson & Hunt and
Bazant & Cedolin in [1, p. 5-20] and in [2, p. 238-256], respectively. These type of dead loaded
simple structures seen in Fig. l.a., b. and c., respectively, are assumed to be composed by a
perfectly rigid element of length / pinned to a rigid foundation and connected to the support by
linear elastic springs in which the material behaviour is concentrated.

The model of stable-symmetric bifurcation in Fig l.a., named “hinged cantilever” is

supported by a rotational spring, while the model of unstable-symmetric bifurcation in Fig. 1b.,
the “propped cantilever” is supported by a horizontal extensional spring. Finally, the model of
asymmetric bifurcation in Fig. |.c. is supported by a skew extensional spring. Fig. 1 shows the
three classical curves of bifurcation, respectively, namely, the associated postbifurcation
equilibrium paths X(q) of the structures, respectively, by applying one parameter dead load
F=F(X)=XFOwhere FO=1, and Xis the load parameter.

In this paper we deal with the first classical problem only, seen in Fig. | .a.

* Kurutz. Méarta. H-1118 Budapest. Serleg u. 8. Hungary
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The functional finitization needs to introduce the generalised coordinates, namely,
displacement parameters In these simple cases, the single generalised coordinate is the angle of
rotation &=q at the support hinge, thus, the function u=/(l-cos q) ofthe vertical displacement of
the top of the cantilever is used as compatibility condition. To analyse imperfection-sensitivity,
perturbation or imperfection parameters e are introduced. The system corresponding to e=0 is
perfect. Thus, for the potential energy function, we obtain k-%(qfk,z) having displacement,
load and imperfection parameters as variables.

Three type of imperfection will be analysed: geometric, material and loading type one.
Here we assume that the system is geometrically perfect in the sense that the springs are
unstrained when the link is vertical. Geometric imperfection eg means an initial rotation at the
support hinge

Fig. 1 The three classical bifurcation models

In the classical cases [1,2] the springs are linear and have a spring constant c. The spring
moment represents the stress variable, while the deformation of the spring represents the strain
variable. The classical cases assume that the elastic system is perfect if the stress-strain relation
is M=c3. In [3] the equilibrium paths of linear elastic perfectly plastic, moreover, for perfectly
rigid-plastic structures are detailed by using nonsmooth analysis. Thus, in this paper, the linear
elastic-plastic or rigid-plastic system is assumed to be perfect, and in Fig 2.a. and b. the cases of
material imperfections can be seen. The material imperfection can occur in two form:
imperfection ee in the elastic modulus ¢, and imperfection sp in the plastic yield limit Mp. The
material imperfections are specified by the functions (Fig.2.a. and b.)

f(c- £,)P inelastic state
M{9) =\

@)

*
Mp+e inplastic state

where feand ep can be positive and negative, as well. Taking the geometric imperfection & into
account, the stresses in the elastic state form (Fig.2.c.)

M (9) =c(9-Eg) (2)
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elastic plastic geometric
a b. c

Fie. 2. Material and geometric imperfections

Consider now the loading imperfection, where F is the given external force load acting
vertically on the top of the cantilevers in Fig. 1 If the force load F is independent of the
occurring displacement //, it is a dead load, while if it is in interaction with the displacement u, it
is a configuration-dependent load. Some loading devices, for example the hydraulic loading,
show certain deformation-sensitive characteristics leading to changes in the classical
postbifurcation behaviour of structures. Here we assume that the load is perfect in sense of
dead load, and, it is imperfect if the load shows some deformation-sensitive characteristics.

Fundamental aspects and classification of loading types is detailed in [2, p. 207 and p
224]. Dead type conservative loading device supposes the applied load to be independent of the
occurring deflections. This kind of loading process can be characterised by a constant load-
deflection function F(X)=XFO0, where X is the load parameter and FO is the initial value of the
load (Fig.3.a). Variable or configuration-dependent conservative loading process assumes the
applied load to be dependent on the occurring deflections, but independent of the properties of
the structure. This kind of loading device can be specified by a variable load-deflection function
F(X,u)=XFr+f{u). In this case, the load is divided into two parts: the controllable (dead) part X
FO governed by the load parameter X, and the deformation-sensitive part f[u) specified as a
linear or nonlinear function. In this paper, we consider linear loading functions F(X,u)=XFO0-+fii
only, by assuming the loading modulusf=et to be the imperfection of the loading device, thus
(Fig-3 b):

F(X,u)=XF'0+s pi ?3)

In [6] it has been shown that the deformation-sensitive part of the loading characterised
by given load-deflection functions shows similarity to the material behaviour characterised by
given stress-strain functions. Consequently, the variable loading can be handled in a similar way
to that of the material. Obviously, in the tangent stiffness of the structure, beside the langem
modulus o f the material, the tangent modulus ofthe load appears

It has been proved by the author in [3,4,5] that by approximating the nonlinear material
functions by polygonal, and by using nonsmooth analysis, the equilibrium paths can be obtained
as the envelope of the individual equilibrium paths related to each segment of the material
polygon. In [6,7] the results of nonlinear material have been extended to the case of nonlinear
loading programs.
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imperfect
b.

Fig. 3. Perfect and imperfect loading devices

Let us consider now the different cases of imperfection-sensitivity, namely, the
modifications of the classical stable-symmetric postbifurcation equilibrium paths and the
associated imperfection-sensitivity functions.

2. Geometric imperfection-sensitivity

The linear elastic material behaviour of the hinged cantilever seen in Fig.4.a. can be
characterised by the stress-strain relation M=c9 where c is the spring constant, M is the moment
in the spring and 3-q is the angle of rotation of the cantilever.

In the case of fully perfect structure, the postbiflircation equilibrium path is given by the
classical expression

q

sin< )

which latter represents the stable symmetric point of bifurcation at the critical equilibrium state
at q=0. For the associated function K(q) of the tangent stiffness we obtain

kA0 =o{1-32) ©)

In the case of perfectly elastic-plastic structure, the modified postbifurcation equilibrium paths
form a set consisting of the following nonsmooth function [3]

for plastic loading ifd
Isin< P g Do

4q) = K ' ngi;]qu) for elastic loading-unloading (6)
M pl

for plastic loading if d
/sing or plastic loading ifdq(o
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seen in Fig 4 b. by applying c=I, Mpl=\, Mp2=-2, /= 1 and FO=1 Here qQrepresents the actual
residual plastic rotation associated with the unloading/reloading material paths. In Fig.4,b the
interval -1 .0 is illustrated only, by the steps Jic/o=0 1 Since infinite number of unloading-
reloading paths can occur in -K<ga<K, the equilibrium paths form a set, bounded by the four
curves associated with the plastic limits Mpl and Mp2.

The functions seen in Fig. 4.a. and b. represent the modified stable symmetric bifurcation
problem, due to perfectly elastic-plastic material, detailed in [3]. However, in this analysis, the
unloading is excluded, thus, a Hencky-type bilinearly elastic material is considered where the
stress-strain diagram is similar to that of the elastic-plastic material, but here the unloading uses
the paths ofthe loading, thus, no plastic strain occurs, as seen in Fig 5 a.

Fig. 4. Equilibrium paths of the perfect elastic-plastic stable symmetric bifurcation problem
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By considering a geometric imperfection eg, the equilibrium paths are modified to

Mg : -
. for plastic states if dg)o
/sinq
c{a-£9) i
N(YEx)= 1T Jsing for elastic states (7
Mpl for plastic states ifd
Jsing or plastic states ifdg{o

seen in Fig 5b for different values of -1 < £ < +1 , by the steps 0.1 and by applying c=lI,
Mpl=\, I 1and Fa=1. By comparing the geometric imperfection seen in Fig.2.c. and
the elastic-plastic unloading seen in Fig.4.a., moreover, the expressions () and (7), the
conclusion can be drawn that the two cases seem to be similar. Thus, the equilibrium paths of a
geometrically imperfect Hencky-type structure can be obtained in the same way that of the
elastic-plastic unloading/reloading paths.

In Fig.5b. the function of the classical elastic critical states are indicated by dotted lines,
while the elastic-plastic critical states, namely, the intersection of the geometric imperfection
paths and the plastic loading paths are indicated by heavy lines. Thus, the imperfection-
sensitivity function consists of the classical and the plastic parts. By applying Taylor expansion
for determining the critical states in term of the geometric imperfection, from the condition of

the vanishing tangent stiffness, we obtain qcr =% —3eg , thus the function of the geometric
imperfection-sensitivity reads

M p\ .
for plastic states
Isin(eg +Mp]/c) P
c(fr-eq)
(x> for elastic states (8)

Po Ism(\I~3Eg)

for plastic states
Is\n(eg +Mp2/c)

seen in Fig.5.c distinguished by heavy line. These functions are certain segments of (8), limited
by the values

=2 ¢ c ©)

and by &J and ey which represent the tangent points of the classical elastic and the plastic
geometric imperfection-sensitivity functions. It can be concluded that the elastic and plastic
imperfection-sensitivity functions are tangential to each other.

This fact can be observed in a more attractive way by applying different plastic moment
values. Thus, consider now the material imperfections.
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Fie. 5. Geometric imperfection-sensitivity
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b

PLASTIC IMPERFECTION SENSITIUITY

Fig. 6. Plastic material imperfection-sensitivity



IMPERFECTION SENSITIVITY OF BIFURCATION BY BILINEAR MATERIAL 71

3. Material imperfection-sensitivity

Consider first the case of plastic material imperfections with perfect geometry, for an
elastic-plastic system seen in Fig.6 a. In this case, the equilibrium paths (7) are modified to

Mpi+
p! °p for plastic states if dg)o
I sine/
€9 for elastic states 1
4<lp) Fn [/sing (10
M p2+
p_ £ for plastic states if dq(0
/ siny

seen in Fig.e b for -3 < tp <+3 , by the steps 0.5, and by applying c- 1, Mp,=1, M2 ~2, | \
and FO-1, as previously. The plastic imperfection-sensitivityfunction then reads

Mp]+ep
Isin((Mp, +£p)l c)

Mp2 +£p
Isin((Mp2+£p)/c)

for -Mpl <£P

(1
cn .
for -— -Mp2 <ip <-Mp.

seen in Fig.s .c. where the fact can be seen that the imperfection-sensitivity functions are limited
again, due to the possible critical states in the interval -n/2 <q < n/2 seen in Fig 6 .b.

Let us consider now the plastic material imperfection with a simultaneous geometric
imperfection seen in Fig.7. By increasing the yield limits, the possible imperfection-sensitive
domain - between the line A of classical limit points of geometric imperfection and the line B of
limit points of plastic imperfection - changes, as seen in Fig.7.a.. Consequently, the actual
segment of the imperfection-sensitivity function changes, too. This can be seen in Fig.7.b where
imperfection-sensitivity functions belonging to different plastic moment values are illustrated.
All the plastic curves are tangent to the classical elastic imperfection-sensitivity curve, or better,
the elastic curve is the envelope of the plastic curves. Thus, the domain of valid imperfection
sensitivity functions forms a set. The correspondence between the domain of possible critical
states and that of the associated imperfection-sensitivity set, bordered both by lines A and B can
clearly be seen inFig.7.a and b.

Consider now the imperfection of the elastic modulus of an elastic-plastic structure
seen in Fig.s.a. In this case the equilibrium path forms

Mpl . .
. for plastic states if dg)o
/sinq
Maq,£e) ( +_£e)q for elastic states (12
Fo /sin<

for plastic states if d
1sing or plastic states if dg(o
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EQUILIBRIUM PftTHS

Fig,7. Geometric and plastic imperfection-sensitivity
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Fig. 8. Elastic material imperfection-sensitivity
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seen in Fig.s.b. for -1 <ee <+3 , by the steps 0.25 and by applyingc |, Mpl 1, Mp}=-2, I- 1
and Fo—1, as previously. The associated elastic imperfection-sensitivity functions then reads

M i 2M
] p for Ple < g, <+00
lan(MpX (c +ee)) 1
ME) = (13)
) ¥n MP2 2Mm2
for -- —Cc < £ < +00
Is\n(M 2I(c+ ee)) n

seen in Fig s ¢ Note that in this case the imperfection-sensitivity functions have a lower limit,
due to the possible critical states in the interval -u/2 <q < n/2 again, seen in Fig s .b.

Consider now a Hencky-type perfectly rigid-plastic structure specified by the yield
moments Mpi and Mp:, by assuming some hardening or softening imperfections seen in Fig.9 a.
The hardening (softening) phenomenon is indicated by the positive (negative) sign of the
hardening imperfection eh The functions of equilibrium paths are as follows

E(q+~y )
o for hardening/ softening states if dg)o
MU,E,) = (-oc, +00) forq=o0,dg=o0 (14)
Mpi,
<@+
. i for hardening/ softening states if dq(0
/sinqg

seen in Fig.9.b. where the perfect structure is represented by the two curves belonging to
Mpl=1, and Mpy -2, and the illustrated imperfections are -1 < eh<+1 , by the steps 0.2 and by
applying the previously used constants. The limit points in Fig 9.b. determine thefunctions of
hardening imperfection-sensitivity

P Mp\
£).(\ ——+—p)
th

M .
sh for Pl < eh <-k»

. 3M
/ sin (3/— -)
th
1) =
£n(

 Mpi (15)

h th )

for < f), <+00

Isin (3,3 7))
th

seen in Fig.9.c. These functions are limited by the value of imperfections where the limit points
vanish. Fig. 10.a. illustrates the case of the hardening/softening imperfections if having an elastic-
plastic material. In this case the equilibrium paths are modified to
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for hardening/ softening states ifd
/sinq g g Mo

for elastic state (16)

. for hardening/ softening states ifdg{o
/sing

seen in Fig. 10.b. for the case of Mpl=1, Mp2=-2 with the softening/hardening imperfections as
-1 <gh<+1, by the steps 0.2 and by applying other constants as used previously.

The function of the limit points associated with the imperfections seen in Fig. 10 b. limits
the domain of the possible critical points occurring as intersection points of the elastic and
plastic behaviour. Thus, we can see again that the imperfection-sensitivity functions are limited
in the tangent points ahl and ah: with the hardening/softening imperfection-sensitivity functions
(15) of the rigid-plastic case, seen in Fig. 10 c. The hardening softening imperfection-sensitivity
functions are as follows

for -0<f), <eh

(17

for -co<B<:..

In Fig. 10.c. the hardening imperfection-sensitivity functions are illustrated. Obviously, the
system is sensible for the softening material behaviour, namely, for the damaging material
behaviour with decreasing stress-strain diagram. That is why the imperfection-sensitivity
functions are located mainly in the negative region of the imperfections.

4. Loading imperfection-sensitivity

It happens in the practice that the loading device is not perfectly dead, namely it shows
certain deformation-sensitive feature which may cause considerable change in the equilibrium
paths of the structural system. In this paper, we take the variable characteristics as loading
imperfection into consideration.

In the case of load imperfection seen in Fig. 11 a., the material is assumed to be perfectly
elastic Thus, the equilibrium paths are smooth functions being written in the form [6,7]

(18)
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Fig. 9. Hardening/softening material imperfection-sensitivity of rigid-plastic structure

.14
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EQUILIBRIUM PATHS

Fie. 10.a-c. Hardcning/softening material imperfection-sensitivity of elastic-plastic structure
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Fie. 10.d. Hardening/softening material imperfection-sensitivity of elastic-plastic structure

with the same symmetric but not always stable point of bifurcation at the same critical point
=0, seen in Fig. 11.b. for different values of imperfection-1 < e,<3 as load modulus, since e, =
f. From the graphs of the functions, the destabilising effect of the positive load modulus can be
seen. Namely, from the vanishing associated tangent stiffness

KAQ) :C(\-~ta3rﬁ) - as2sinz<=0 (19)

the fact can be observed that at a certain positive value £,=c/3P of the load imperfection (load
tangent modulus), the classical stable bifurcation becomes unstable. This fact is illustrated in
Fig. 11.b. where the important fact can evidently be observed that by increasing the load
imperfection (load modulus) step by step by As, =0.2, the classical stable characteristic of the
symmetric bifurcation tends to be lost, and the bifurcation becomes unstable by the value e,
=c/3P of the loading modulus. Thus, the value et =c/3P, by which the bifurcation mode
changes, can as critical load modulus be considered. By connecting the critical (limit) points at
cftO, belonging to the different values of load moduli, the obtained function represents the
loading imperfection-sensitivityfunction seen in Fig. 11 c.
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— -i,/(1-cO0S(4 12---- r) (20)
E_4 vV el

As a conclusion, we can state that the positive loading imperfection has a destabilising
effect, while on the contrary, the negative loading perturbation has a stabilising effect. While
the stable characteristic of the bifurcation mode changes due to the loading imperfection.
Fig. 11 b demonstrates that the symmetric characteristic of the bifurcation type does not change
in any perturbation of the loading process. The effect of loading variability is analysed in details
in other papers of the author [6,7].

However, the symmetric characteristic of the bifurcation mode rapidly changes in the
presence of any small geometric perturbation. Let us compare Fig. 11 b. with Fig. 12.a where a
geometric imperfection is assumed. The illustrated equilibrium paths are as follows

21

where eg=0.2. There is no critical state at (f=0 any more, and the single imperfection-sensitivity
function in Fig. 11c. is separated to different branches

(22)

seen in Fig. 12.b. Thus, we can say that a structure with loading imperfection is very sensitive for
any geometric perturbation.

5. Conclusion

Geometric, material and loading type imperfection-sensitivities are in the focus of the
paper. The classical stable symmetric bifurcation problem modified by bilinear, Hencky-type
elastic-plastic material is considered Global equilibrium paths and the associated imperfection-
sensitivity functions are analysed. The presented method is based on the concept of nonsmooth
tangent modulus developed by the author for nonlinear materials and loading devices.

In contrast to the classical geometric imperfection-sensitivity function of the elastic
structure, the elastic-plastic structure has an imperfection-sensitivity set bordered by the
imperfection-sensitivity functions of the individual perfectly elastic and perfectly plastic
structure.
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Fig. 11. Loading imperfection-sensitivity
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Fig. 12. Loading imperfection-sensitivity with geometric imperfection
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Moreover, for imperfections in pair, the domain of possible critical states can be
determined which leads to an imperfection-sensitivity set again.

As an important conclusion, evidently, a material softening or a loading hardening have
a destabilising effect. On the contrary, material hardening or loading softening has a stabilising
effect This question is analysed in a generally way in [6] based on the modification of the
structural tangent stiffness matrix.
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MECHANICAL MODELS OF THE HUMAN SKULL-BRAIN SYSTEM

LOVAS, A *

(Received 25 September 1995)

The paper describes the development of a three-dimensional mechanical model of the human
head presenting the modeling technique of a living structure from mechanical point of view. Finite
Element Method (FEM) is probably the most powerful method for determining the stress patterns
within the skull bone Boundary Element Method (BEM) is a newer technique that can simulate the
behavior of the brain. This paper suggests that probably one of the best way to reduce the number of
degree of freedom of the complex skull-brain structure required to solve the problem is to use mixed
finite element - boundary element solution.

The presented numerical study illustrates the 3D static-dynamic FEM solution of the empty
skull and 2D static BEM solution of the linked skull and brain system, in this moment separately. A
parametric study was subsequently conducted to identify the model response where material properties
of the cranical bone, and stiffness coefficients of the springs, as well as the impact site and the
distribution of load were varied.

1 Introduction

Biomechanics is the study of the motion and effect forces on mechanical and functional
behaviors of biological bodies in order to help the medical physicians diagnose diseases and
make remedial decisions. In practical point of view we have to use approximate numerical
solutions to get the response of complex biological systems due to static-dynamic loads. Finite
Element Method and Boundary Element Method are good tools to take into account the
complicated geometric shape and material properties of the living systems.

The human head is an extremely complex living biological system, that has attracted
enormous attention because of its susceptibility to injury. Head injury constitutes approximately
50% of all injuries sustained in automobile collisions, in pilot ejections, in sport accidents and
other human activities. When the load is a direct impact, energy is transferred to the brain from
the skull, a pressure gradient is formed in the brain with positive pressure at the impact site and
negative pressure at the contre-coup site. The brain tissues can be lacerated by the compressive
or tensile stresses resulting cerebral contusions or intracranial haematoma [3].

Experimental head injury models include those using subhuman primates, human
cadavers, manikins and other physical models.

Following the early mathematical models, simple 2D plane strain and layered
axisymmetric models (spherical and oval), simulating skull and brain were developed. Ward and
Thompson's model [9] was one of the first finite element models that approximated the three
dimensional anatomy of the brain, however, the skull was assumed to be rigid. Shugar's model
[8] closely simulated the human head geometry, but the model was bilaterally symmetric. Hosey

* Lovas, Antal, H-1029 Budapest, Bercsényi u. 5, Hungary
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and Liu's model [4] was a very comprehensive one because it included many elements of the
skull-brain-cervical-spine complex including dura folds and cord. Since it has only 922 nodes, it
was not feasible to perform a detailed parametric study at that time. The model was run for only
ems, on the other hand the impact duration was 4ms. Ruan, Khalil and King's finite element
model [7] represented the skull, the facial bones and the brain as well, but the spinal cord and
neck were not represented.

All models were linear, using mainly elastic homogeneous and isotropic materials.
Mechanical properties of cranial-bone have been identified with a reasonable degree of
confidence, but by contrast, properties of the living brain are not well known [5]. Usually, the
brain was assumed to be nearly incompressible with a bulk modulus. Large discrepancies in
skull strains and brain pressures of the different models were not surprising because of the many
approximations and assumptions made.

The modeling procedure and selection of material constants our model are described in
following.

2. Mechanical models of the skull-brain system

Application of closed-form theories is limited to structures of relatively simple
geometrical and material properties. FEM is probably the most powerful method for
determining the stress patterns within the skull. A FEM model describes the four relevant
aspects of the a structure (loading conditions, geometry, material properties, boundary/interface
conditions) in discrete, numerical form [10]. From an engineering mechanics point of view, the
human skull is a nearly closed shell structure. Therefore, during the finite element discretisation
process, it is mathematically divided into a set of layered (represent the outer table, diploe and
inner table) or simply nonlayered thin shell elements.

We obtain a final system of equations of the skull model that can be expressed in matrix
form:

Ksus =ts )

where s superscript marks the skull system, Ks is the stiffness matrix, us, ts are the nodal
displacements, the total given consistent nodal forces vectors, respectively.

FEM needs the discretization of the whole brain into a series of block-like elements.
Using twenty-node or minimum eight-node hexahedron elements, the finite element model of
the brain has some thousands new points in addition ofthe skull nodes.

The basic idea underlying the BEM is that the governing differential equation of the
domain of interest is transformed into an integral equation on the boundary of the domain [1].
Reduction of the dimension of the problem is one of the main features of the BEM. This
reduction means that only the boundary and not the whole domain needs to be discretized. The
boundary element models are simple to create even in 3D cases, as the mesh is defined only on
the external surfaces.

Modeling the skull by FEM means that the geometry data of the connected surface are
ready, because neglecting the half thickness of the cranial bone, the finite element nodes of the
thin shell problem are covering the closed brain. In this case there are advantages in combining
finite and boundary element solution.

Let us treate the boundary element region as one finite element. Consider the two
regions of the head where the brain region expressed in terms of boundary solutions (where
b superscript marks the brain system), and the skull region Rs discretized into finite elements.
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Let us suppose that Sj and Sz are the external boundaries of Rb and Rs, respectively. The two
regions are joined together at the interface S;, where i subscript marks the interface boundary.
The boundary element matrices for Rb can be written as

Hbub = Gbpb + bb @

where Hb and Gb are the so-called influence matrices, ub and pb are the displacements and
surface tractions vector, respectively and bb is the term due to the body forces of the brain.

There are known functions, called fundamental solutions, which describe the
displacement and traction fields (u* and t*). The integrals of the fundamental solutions u* and
t*, multiplied by the interpolation functions give the series of coefficients gby and hbijj,
respectively, which will be the elements of Gb and Hb square matrices. The element in the main
diagonal of Hb have been increasing by a constant, which is 0.5 on a smooth boundary.

Notice that the values of the tractions pb in Eq. (2) are their actual values at the nodes.
In finite elements these values are weighted and concentrated at the nodes. These values are
represented by the vector ts of Eq. (1).

Hence we can always find a distribution matrix Nb such that tb generally can be written

tb = Nbpb ()

In order to combine (1) and (2) one can deduce a matrix that can be easily implemented
in the finite element codes. We start by transforming Eq. (2) by inverting Gb, i.e.

Gb' IHbub = pb + Gb"1bb. (4)

Next one can convert the values of tractions at the nodes into an equivalent nodal force

vector of the type used in finite elements. So premultiply both sides by the distribution matrix
Nb equation (4) can now be written as

NbGb"1Hbub = Nbpb + NbGb"1bb , (5)

where the right-hand side vectors have the same forms as in finite elements.
One can now define

KANbGAHb, ()
thb = NbGb' 1bb . )

Hence Eqg. (5) has the following finite element form
K'ub = th + tbb = th1 + thj + thb, (8)

where tbj, tbj, tbb are the possible external forces, interface forces and nodal body forces
vectors of the brain, respectively and K' is a stiffness matrix obtained from the boundary
element formulation.

The main disadvantage is the fact that K' is generally asymmetric due to the
approximations involved in the discretization process and the choice of the assumed solution.
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This matrix can be made symmetric by calculating the average of the non symmetric off-
diagonal terms, as the asymmetry is usually small especially in this case where there are not
corner nodes and extra conditions on the interface as well.

This gives the final matrix of the brain whose coefficients defined by

Kb =05 *(K1+ K'T), 9)
where K'T is the transpose matrix of K' and Eq. (8) can be expressed as
Kbub =tbi+ thj + thb . (10)
Equation (1) can now be rewritten to the analogue form as
Ksus=ts2 +tsj + , (n)
where ts2, tsj, tsh are the external forces, interface forces and nodal body forces vectors of the

skull, respectively.
In order to join the two regions compatibility and equlibrium on Sj need to be satisfied,

ie
ub[=usj on S;, (12)
thj+tsj=0 onS;j. (13)
One can finally write the global equilibrium equation in matrix form

Ku =t (14)

where
K = Ks+ Kb, (15)
u=us=ub, (16)
t=te+tlu+thb, 17)
te=1ts2 +th!, (18)

where te is the vector of the external nodal forces loaded the head, tbj is usually a zero vector.

Notices that the total number of degree of freedom of the skull-brain system remains the
degree of freedom of the skull, although this method requires the inversion of the nonbanded
Gb matrix and K is nonbanded too. The accuracy of the boundary element solution using
quadratic elements is excellent even for the coarse discretisation. Using coarse mesh for the
brain, i.e. neglecting the odd nodes of the skull model one can reduce the dimension of Gb.

In the case of the head injury the role of the impact load is more important than the
statical one, so the main goal is to expand the above method.

Similar matrices obtained for dynamic problem. The dynamic matrix equation of the
skull

Msiis + Ksus = ts (19)

where Ms is the mass matrix of the skull, iis is the acceleration vector.
In the case ofthe brain using boundary element approximation

Bbiib + Hbub = Gbpb (20)
Bb = pb [ Gbgb - Hbvb ] Fb-> , (21)
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where pb is the density of the brain, iib is the acceleration vector, vb and gb are hipermatrices
contain the values of the displacements and tractions due to the body forces field, the element of
pb matrix are the values of the body forces functions at the boundary nodes giving the
relationships between the accelerations and the body surface functions [2].

Eg. (20) has the same aspect as the finite element equilibrium equation.

Taking into account Eq. (3) - Eqg. (9), can also be written similar as K'

M' = NbGb-IBb, (22)
Mb=05*(M1+ M'T), (23)

and Eq. (10) can be expressed as
Mbiib + Kbub = thi + tbj . (24)

Taking into account Eq. (11) - Eq. (18), the global dynamic matrix equation combining
Eqg. (19) and Eq. (24) in matrix form

Mii + Ku = te, (25)

where
M =Ms+ Mb, (26)
0 =iis=iin 27

Finally, if Rayleigh damping is include Eq. (27) will become
Mii + (aK + BM)u + Ku = te , (28)
where a and B are the Rayleigh damping coefficients.
3. Numerical results
A case study is now presented to illustrate the FEM and BEM solution separately.
Example No. 1

In the FEM solution the eight-node thin shell nonlayered elements represent the skull
neglecting the facial bones. Data for the coordinates and the thicknesses of the anatomical
points were based on 21 CT pictures created in the OTKA project. The empty skull finite
element model consists 264 elements and 722 nodes with 229 given thickness data (Fig. 1).

The cranial bone was assumed to be linear elastic, homogeneous and isotrop. The
elastic moduli was chosen E=4460MPa, Poisson ratio v=0.21 [5].

The head-neck junction was presented by 3 translational and 3 rotational spring
elements. The stiffness data for the springs were more difficult to obtain [6]. The chosen
translational  coefficients are ptx=750N/cm, pty=750N/cm and ptz=5000N/cm, the chosen
rotational coefficients are prx=40000Nrad/cm, Pry=35000Nrad/cm and prz=60000Nrad/cm.

The mass of the skull was calculated using the geometry and the bone density
(1,41g/mm3). The mass of the brain was added to the nodal skull masses.
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A parametric study was conducted the material properties of the cranical bone, and the
stiffness coefficients of the springs to identify the model response where the impact site (frontal,
side, occipital), the distribution of load (concentrated, distributed on 4 elements, distributed on
8 elements) were varied

Fig. 1 Skull finite element model

The Young's modulus of the skull bone was varied 1/10 and 10 times of its assumed
values (briefly 0.1E, E, 10E). The spring coefficients were varied 10 times and 100 times of
there assumed values (briefly r, FOr, 100r). The load-displacement responses were determined.
The load was applied on the frontal bone in the mid saggital plane. Fig. 2 shows the
effectiveness of these parameters in the resultant displacement [cm] of the node 122 where the
load was distributed on 4 elements. We note that the latter is more important because the
restraining effect of the neck can vary in a wide range. By keeping the Young's modulus and
raising r by a factor of 10 the above displacement will be more than five times smaller.

Spring coefficients: r, 10r, 100r

Fig. 2. Resultant displacement of the node 122
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Fig 3a and 3b show the displacement fields at the environment of the node 122 (7 and 5
nodes in the directions X and Z, respectively) reduced by the rigid body movements when the
load was concentrated and distributed on 4 elements. When the load was concentrated the peak
value ofthe displacement is 30% bigger than the case of the distibuted load.
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«g. 0.045 " 0.045-0.05
£ 0.04 B 0.04-0 045
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b 0.035 0 0.035-0.04
« 003 LB 0.03-0.035
/\9-] 0.025 0 0.025-0.03
ES
3 0.02 B 0.02-0.025
£ 0015 MMo.015-0.02
0.01 0 0.01-0.015
Nodes in Z
direction
Nodes in Xdirection
Fig. 3a. Displacements due to the concentrated load
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El0.03-0.035
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B 0.02-0.025
0.02
m 0.015-0.02
0.015 o 0.01-0.015
0.01 S5
1 sS4
s3
Nodes in Z
direction

Nodes in Xdirection

Fig. 3b. Displacements due to the distributed load
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In this study the resonant frequencies from the 1st to the 15th mode were extracted.
There were calculated 9 different supposed structures by varying the Young's modulus (0.1E, E
and 10E) and the spring coefficients (r, FOr, 10Qr). Fig. 4 shows the influence of the material
properties and spring coefficients on the frequencies where SI: OIE, r; S2: ONIE, KOr; S3: 0.1E,
I00r; S4: E, r; S5 E, KOr; Se: E, 100r; S7: 10E, r; Ss: 10E, KOr; S9: 10E, 10Cr. The
frequencies from 1to 6 belong on the rigid body movements, therefore there is a significant gap
between the sth and 7th frequencies. The higher frequencies were not responsive to the spring
coefficients. They were varied considerable as Young's modulus varied, but the Young's
modulus of the cranial bone is quite well defined.

O Seriesl
350 6 Series2
300 m Series3
250 G Series4

O Seriesb

D Series6
100

Wl series7
50
0 m Series8

Wl series9

g § 10

Frequencies

Fig. 4. Frequencies of the FEM model
Example No. 2

In the first BEM solution 2D plane strain skull model was used on the basis of the
material and spring's data of the FEM solution. The BEM model consists 97 nodes and 106
quadratic boundary elements. Fig. 5 shows the BEM model with the supporting and loading
systems.

Fig. 6 shows the Mises stress contours at the environment of the applied distributed
load.

Example No. 3

The 2D plane strain BEM model of the brain consists 50 nodes and 49 quadratic
elements. The elastic moduli was chosen E=0.0667 MPa. The brain is slightly compressible
with a Poisson's ratio ranging from v=0.48 to v=0.499 [4], [9]. The kinematic load was
calculated from the previous solution of the 2D skull model (Fig. 7).

Fig. 8 shows the Mises stress contours in the brain.

The contours of the minimum principal stresses are shown Fig. 9a and Fig. 9b where the
Poisson's ratios were 0.49 and 0.48, respectively. The figures show that a quite small difference
of the Poisson's ratio affected the brain pressure ranges and the peak value of the stresses more
significantly.



“ Fig. 5. Skull 2D boundary element model



Fig, 6, Mises stress contours
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Fig. 7. Brain 2D boundary element model with the initial deformation of the brain



Fie. 8. Mises stress contours in the brain
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Fig, 9a. Minimum principal stresses due to v=0.48
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Fig. 9b. Minimum principal stresses due to v=0.49
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Fig. 10 shows SI: maximum principal stresses, S2: minimum principal stresses, S3:
Mises effective stresses variation in the internal points along the axis of the load approaching to
the place ofthe load.

Mises

Maximum

Minimum

Internal points from left to right

Fie. 10. Brain stresses along the horizontal axis
4. Conclusion

Finally, we note that the results reported here are preliminary and restricted by the
assumptions of empty skull using non layered thin shell elements in the case of the FEM
solutions and 2D plane strain model was used in the BEM solutions, but we are planning to
remove each of these restrictions in the future.

Results of the first example pointed that the spring coefficients are the critical
parameters of the input data, especially in the case of dynamical problems. The 2nd and the
linked 3rd examples justified the efficiency of the BEM in the biomechanical problems. Due to
the 2D plane strain solution the results are limited, but we can expand the analysis by removing
this restriction, in particular in the case of the brain model.
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ELASTIC-PLASTIC ANALYSIS OF FRAMES IN CASE GEOMETRICAL
NONLINEARITY

NEDLI, P. *
(Received: 29 August 1996)

The one parameter load history analysis of elastic-plastic frames is studied taking into account
geometrical nonlinearity. It is shown that using a discrete structural model, this analysis can be
formulated as a series of nonlinear programming problems where each problem corresponds to the
determination of the next active yield location(s). By using as objective function the work of the base
load on the displacements, not only the limit point of the load displacement diagram can be
determined but also the postcritical path can be followed. The solution of each nonlinear
programming problem is used as the initial feasible solution of the next one. The problems were
solved by the MINOS computer code.

1. Introduction

Rigid plastic limit analysis usually gives an optimistic estimate of the loadbearing
capacity of a frame. Especially in case of sway frames, the displacements which develop
during the load history influence unfavorably the loadbearing capacity of the structure. It is
also frequent that the limit point of the equilibrium path is reached before a yield mechanism
is formed. Therefore it is necessary to take into account the influence of geometrical
nonlinearity to obtain a more realistic estimate of the loadbearing capacity of the structure.

In the sequel, the one parameter load history of elastic plastic frames will be studied.
A discrete structural model is used for the analysis. The state of the structure is described by
the following finite dimensional vectors: q (nodal loads), t (generalized initial strains), v
(nodal displacements), s (generalized stresses), < (plastic potentials) and X (plastic
multipliers). Plastic flow is restricted to critical sections which are taken at extremities of the
members. For yield condition the classical plastic hinge approach is used (Fig. 1).

N
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For a general K-th critical section, the yield condition can be written in the following
condensed form: K= NKsK-kK <0, where NKdenotes the matrix in Figure 1; sKis the vector
of internal forces N,T,M; kKis the vector of plastic limit moments and index K refers to the
section. Similarly, the yield condition can be written for a member and also for the whole
structure in an analogous form: p= Ns-k s 0, where matrix N has a bloc diagonal structure.
The form of the flow rules associated with the given yield condition considering the whole
structure is the following:

*Nédli, Péter, H-1 118 Budapest, Homordéd utca 20, Hungary

0864-8085/95-96/$ 5.00 © 1995-96 Akadémiai Kiadd, Budapest



100 NEDU, P-

I = {ild; =0}p=NX, X >0, ¢"X, =0, ¢] <0. Here | designates the set of the

indices of those elements of vector which value is O (these are the active yield locations).
“I” used as index refers to the appropriate subvector or submatrix. Vector p stands for the
generalized plastic strain rates.

In first order theory i.e. in a geometrically linear elastic-plastic problem, the one
parameter load history analysis can be formulated as a parametric linear complementarity
problem.

2. First order elastic-plastic analysis

Several important algorithmic elements of the geometrically linear elastic-plastic
analysis can be used in the geometrically nonlinear case as well, so it seems useful to make a
briefreview of first order governing relations.

Due to the nature of the elastic-plastic constitutive law at a given state of the load
history, the governing relations are formulated for the rate (or increments) of the variables
(2.1):

—0, ®| 50, Aj >0, ®| Xj —0 (2.1

The first equation is the equilibrium equation, the second one is the compatibility equation
and the third one concerns the change of the plastic potential. G is the equilibrium matrix, F
is the flexibility matrix of the structure and E, is an appropriate unit matrix. From the
mathematical point of view (2.1) is a linear complementarity problem which can be solved
by an algorithm based on the simplex method. Due to the discrete structural model and the
linearized yield condition, as far as no new yielding happens and the load rate (q,t) is
constant which is the case in one parameter loading, relation (2.1) is unchanged and the
solution is constant as well. This fact makes possible another equivalent formulation in which
instead of the rate of the variables, the values of the variables belonging to the next yield
location are used. This formulation has advantages and disadvantages as well. Its main
advantage is that it can be extended more easily to the geometrically nonlinear case than the
rate formulation as the rates are not constant if geometrical nonlinearity is involved. Its
disadvantage is that the size of the governing relations is increased. This formulation can be
summarized as follows.

Let us consider a known state where the equilibrium, compatibility and yield
conditions are satisfied. The values of the variables belonging to this state are indexed by ‘O\
Assuming a one parameter loading, the goal is to determine the values of the variables at the
next yield location. This problem is described by the following relations:

(2.2
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Here gb, tbdenote the so-called base load, so the actual load on the structure is the base load
multiplied by ‘m’ which is the load parameter System (2.2) can be solved also by an
algorithm based on the simplex method. From the new state, the analysis can be continued. If
the load parameter does not increase anymore, the limit state is reached.

3. Higher order elastic-plastic analysis

Considering large displacements but only small strains, when geometrical nonlinearity
is taken into account in full precision, we speak about third order theory in case of frames.
The discrete nature of the problem can be kept in this case, too and the state of the structure
can be characterized by vectors of the same size as in the first order theory. For the third
order analysis, the approach elaborated in [2] for elastic frames is used in this study. Its main
features can be summarized as follows. The local coordinate system of a member is fixed to
its start node and moves with it. At the initial configuration, the direction of each local
coordinate system coincides with the global coordinate system. The generalized stresses and
strains are defined in the local coordinate systems of the members. The generalized stresses
are the internal forces at the starting cross-section of the member, the generalized strains are
the relative displacements between the end cross-section and the end node of the member.
The reason for this definition is that in this case the determination of the deformed shape of a
member can be obtained by solving a system of nonlinear first order differential equations, a
so called initial value problem. In the general case, this initial value problem can be solved
only numerically, for example by a Runge-Kutta type method suitable for systems of
differential equations.

The governing relations describing the determination of the next yielding starting
from a known state differ from (2.2) in the following. The system of linear equations in 2.2/a
is replaced by a system of nonlinear equations. In order to be able to follow the load history
on the postcritical path, the objective function is changed from the load parameter to the
work of the nodal base load on the nodal displacements:

b) lo:{il«poi=0}, I,{il<Pd <o};

o A >AJ, X =X,
a) c(v,s,X,m) =0, : ' . 6d
h<0, <p‘(X.-A.0)=0;

e(v,s,m) =o,

f(V,S,X-,(p) = k:
d) gbv = max!

Here e, ¢, f mean nonlinear vector-vector functions which determine the lefthand side
of the equations. The equlibrium equation and the yield conditon can be written in a closed
form at a given value of the variables (v, s, X {9 m), but the compatibility equation cannot.
It can be evaluated only by solving numerically the initial value problem for each member.
The complete system gives a nonlinear programming problem.

It should be mentioned that this formulation has of course its limitations. The
possibility of unloading in the plastic hinges is excluded on the path between two consecutive
yield configurations. Bifurcation of the equilibrium path cannot be detected by this
formulation. Relation 3.1 d) is a heuristic one which can be considered as kind of
displacement control as it expresses the experience that the work of the base load on the
displacements is monotonically increasing during the load history. It needs further study to
determine that in which class of problems can these limitations be justified.

The use of the third order theory is very expensive computationally, because the
evaluation of the compatibility equation demands the numerical solution of an initial value
problem for each member. When whithin one member the displacements are small, a good
approximation can be obtained by the second order theory. This condition can be satisfied by



102 NEDLI, P.

subdividing the structural elements into an appropriate number of members. Amongst the
different second order approximations, the one used in this study is described in [3] (pp. 95-
116) and based on the solution of the boundary value differential equation of a beam loaded
axially, too. By using the so-called stability functions which are derived from the solution of
the differential equation, the stiffness and the flexibility matrix of a member can be
assembled. This way, the equilibrium and compatibility equations as well as the yield
condition can be written in the form of matrix equations. The matrices in these equations are
not constant as in the case of the first order theory but depend on the unknown variables. The
mathematical programming problem to determine the next yield location is given by the
following relations:

. - >" : 1 1 <O
o GW) o °o @ s b) 10;{ilpa - o> i0:{i|9i <°b
_ 0 Ao - Moi « - *
a) GT(v) F() NT(v) o tb X =0 (3.2)
<p<o, Pr(k-ko)=o;
0 N(v) 0 -E 0. o k
d) gbv = max!

3

Summarizing, it can be seen that the determination of the next yield location leads to a fully
nonlinear programming problem in the case of geometrical nonlinearity while in the case of
the first order theory, it leads to a linear complementarity type problem. This difference does
not influence the fact, that in both cases the determination of the load history can be broken
down into a series of mathematical programming problems. The solution of each of these
problems gives the state belonging to the next yield location(s). These solutions can be called
as basic solutions of the load history. In the case of the first order theory, the linear
interpolation between these states gives the exact value of the variables while in the
geometrically nonlinear case, it is only an approximation.

4. Numerical solution and sample problem

It happens sometimes that an engineering issue leads to a mathematical problem for
which there is not yet an available mathematical solution algorithm. An example for this is
the finite element method where the engineering solution algorithm preceeded the
mathematical one. The contrary is true, too. There are fields of the mathematics which are
well elaborated including solution algorithms as well but they are not widely used in
engineering. One of them is mathematical programming which was initiated to solve
economical problems and presently it has reached such a developed state that commercial
mathematical programming packages are available which can handle several thousand
unknowns and constraints. In the present study, the MINOS (Modular In Core Optimization
System) [4] was used to solve the mathematical programming problems described in points 2
and 3.

This package uses Wolfe’s reduced gradient method to solve the nonlinear
programming problem. It demands the user to write two FORTRAN subroutines. One for the
description of the vector-vector function of the lefthand side of the constraints and its
Jacobian, the other one is for the description of the objective function and its gradient. The
Jacobian and the gradient need not be given. In this case, MINOS calculates them by
numerical differentiation. In this study, this facility has been used.

For illustration, the solution of a problem is shown which was already studied by
other authors [5]. The structure is shown in Fig. 2. The frame contains 14 nodes and 16
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members. The size of the unknown vector [v,s,A,<pm]T is: 14*3+16*(3+4+4)+l = 219. The
number of constrains is: 14*3 (equilibrium) + 16*3 (compatibility) + 16*4 (yield condition)
+ 1(normality) = 155.

Figs 3-5 show the comparison of the load-displacement diagrams and load-rotation
diagrams in the plastic hinges obtained by the different theories. Fig. 6. shows the
displacement and bending moment diagrams belonging to the end of the load history. In the
case of the first order theory, the load history ends at the plastic limit state. In the case of the
geometrically nonlinear theories, the postcritical part (descending branch) of the equilibrium
path can be studied, too. The deformation capacity of the plastic hinges limits the validity of
the analysis. This was not examined in this study but the analysis was stopped after a certain
number of steps. This means that in the geometrical nonlinear case, the endstate of the
history does not have a special meaning for the given example.

WOOD’S FRAME P3-41.88kN

4*144 in.
4*3.6576

E = 13548 t/in2 = 21000 kN/cm2

MEMBER DATA:

Member A | M,
in2 cmz MA' cm4 tin. kNm
1,2 53 34.19 55.63 2315 244.0 61.98
3-8 7.35 47.42 122.34 5092 428.0 108.71
9,13 5.89 38.00 34.71 1445 205.3 52.15
10,14 7.37 47.55 43.69 1819 259.3 65.86
11,15 8.28 53.42 86.69 3608 3935 99.95

12,16 10.32 66.58 115.06 4789 502.3 127.58
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LOAD-DISPLACEMENT DIAGRAM

'oacParameter

ROTATIONS IN THE PLASTIC HINGES

load parameter

Fig. 3. Islorder theory results
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ELASTIC-PLASTIC ANALYSIS OF FRAMES

LOAD-DISPLACEMENT DIAGRAM

ROTATIONS IN THE PLASTIC HINGES

Fig. 4. 2rdorder theory results
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LOAD-DISPLACEMENT DIAGRAM

load parameter

ROTATIONS IN THE PLASTIC HINGES

load parameter

Fig. 5. 3dorder theory results
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GROBNER BASIS CALCULATIONS WITH APPLICATIONS TO MECHANICS

POPPER, GY * - KAROLYI, GY.**

(Received: 12 August 1996)

Grobner basis calculations provide a transformation of systems of polynomial equations to a
more suitable form which enables exact statements on the solutions and helps finding them with
arbitrary precision. Here most important features of the method are summarized, and its application is
presented for a simple engineering mechanical problem, for the stability of the propped cantilever. The
resulting global equilibrium paths of the structure together with the bifurcations are shown as results of
the analytical calculations.

1. Introduction

In mechanics there are problems which can be formulated as to solve systems of
multivariate polynomial equations [1]. Consider the system of polynomial equations in n
variables

4 ( x , =0...=0. (1)
Ifyou add to this set of equations a further equation
A+U ,-,*J =0,
where pM] is a linear combination of the polynomials g(x,......x,,),/ = with polynomial

coefficients then you get an equivalent set of equations, i.e., one with all of the

original common solutions. Similarly, you can omit one equation of them if it is a linear
combination of the others.
Consequently, every calculation of solutions must take place in the set

which is called ideal generated by the set of polynomials g,...,4 ;theset {a,...,44} is said to
form a basis for this ideal.
The set {4,...,44} is not the only basis for the ideal (p,...,pk). One can always

perform a transformation {g,...,.a } {&.e=*>&} into an equivalent, so-called Grébner basis
for the ideal (& ,...,pk). In other words, the original set of equations (1) can be reduced into a

* Popper, Gyorgy, H-1016 Budapest, Szirtes u. 28/a, Hungary
** Kaérolyi, Gyodrgy, H-1126 Budapest, Ugocsa u. 11, Hungary
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set of equations
g(x%...,xj =0,...,g(x%...,xj =0 ?3)

with all ofthe original common zeros [2-5].

Such basis always exists, and it has the important property, that it allows exact
conclusions on the solutions of sets of polynomial equations, such as
- to decide whether the given set is solvable,

- whether the set has (at most) finitely many solutions,
- to determine the exact number of solutions in case there are finitely many, and
- make easier their actual computation with arbitrary precision.

The concept of Grébner bases were introduced by Buchberger about 1965. Buchberger
also presented an algorithm to compute a Grébner basis. Today, most modem algebra systems
(e.g. Maple or Mathematica) include a “Grobner basis package™ based on the implementation
of variants of Buchberger's algorithm [6].

2. Term orderings

Every (non-zero) polynomial in variables x],...,xn can be written as a sum of terms of
the form x'1...Xn" multiplied by numbers (coefficients), where inare non-negative integers.
Definition 1. An admissible term ordering < for the set of terms {x1_x,"} is one which

satisfies the following two conditions:
m 1<t forall t e{x 1...x “'}, where 1=x,°...x°,
(1 s<t implies <tvforalls,t,v g{xx...x,1}

Each of the following is an admissible term ordering on {x,|,...,xr1"}. Consider the

polynomial
(x+yf +X+y +1

and suppose that y <x, that is, x is more “principial” than y .
In the (pure) lexicographical term ordering this polynomial is written as

X2+2Xy+X+ yw+y+l
because
X2 >Lxy>Lx>Ly2>Ly >L1

are the terms in decreasing ordering, where the >L notation is used for the lexicographical term
ordering.

If the total degree of the term (i.e., the sum of the powers of the variables) is the most
important property and if we use the lexicographical method to distinguish between terms of the
same total degree, then the above polynomial is written as

X2+2Xy+ y2+x +y+1
because
*2>dXy>0Yy2>Dx>Dy>D1

are the terms in decreasing ordering. Here the >D notation was used for the total degree, then

lexicographical ordering.
The total degree, then inverse lexicographical ordering is also often used. In this system
our polynom is written as
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yr+2xy +x2+V+ X+1
because

Yl<oxY<ox2> y<Dx>
so that the terms in decreasing ordering are:

*2>DX >Dy2>DX>DY>D1
3. Solution of systems of polynomial equations

Suppose, that every (non-zero) polynomial is written in decreasing ordering of its terms
(according to a fixed term ordering <) as c(f, with ¢ * 0 and t, >tM for every i . We call

¢,/, the leading monomial, and t, the leading term of the polynomial.
Theorem 1 Let G ={g,,...,0,} be a Grobner basis for the ideal Then the system of
algebraic equations (1)
=0...... pt(x],....X,,) =0
is unsolvable (has no solutions) ifand only if G ={g,,..., g,} contains a constant (polynomial).

Theorem 2. A system of polynomial equations has (at most) finitely many solutions over the
complex numbers, if and only if each variable xt appears alone (such as xf) in one of the
leading terms of the corresponding Grobner basis .

Therefore, having once obtained the Grdbner basis of a polynomial equation system, the
rigorous statements can be made concerning its solvability. If this basis is computed with respect
to a lexicographic ordering, you can determine all the solutions by the method illustrated by the
following simple example.

4. Stability of the propped cantilever

Consider the propped cantilever shown in Fig. 1, comprising a rigid link of length
/= 1(w) pinned to a rigid foundation and supported by a linear extensional spring of stiffness
c¢= \(N/m). The spnng is assumed to be capable of resisting both tension and compression and
retains its horizontal orientation as the system deflects. Assume that the system is perfect in the
sense that the spring is unstrained when the link is vertical.

The goal is to find the equilibrium paths of the structure loaded by a dead vertical force
of magnitude F .

Fie. 1 Layout of the propped cantilever



112 POPPER, GY.-KAROLYI, GY.

The geometrical equation x2+y2 =1 and the equilibrium equation (moments around the
origin) Sy =Fx, with spring force S =cx, together implies a set of algebraic equations

Xxy-Fx- 0, x2+y2-1=0, 4

where x,y are the indeterminates (unknown coordinates of the free end-point of cantilever) and
F is aparameter (the magnitude of the vertical force).
To compute the reduced Grdbner basis of this set of polynomials, you can apply e g. the
command
grobner[gbasis]({x *y - F *x,xn2+yn2- 1}, [g,y],plex)

in the “Grébner Basis Package" of the symbolic system Maple V, where [x,y] is the list of

indeterminates (not including parameters) which induces the ordering x>y, and plex means
that the pure lexicographic term ordering is used The resulting reduced Grébner basis is

[x2+y2—1 xy-Fx, y2- Fy2-y +F] (5)

First of all you see that the Grébner basis does not contain a constant (polynomial) and
hence (by Theorem 1) the corresponding set of algebraic equations is solvable

If F is considered to be a parameter (only x and y are indeterminates) then x2 and y 2
are the leading terms of the Grdbner basis (with respect not only to plex, but to any admissible
term ordering) which contain the variables x and y alone. Consequently (by Theorem 2) the
corresponding system of polynomial equations has afinite number of solutions, i.e., for any
prescribed load there are finitely many equilibrium positions.

The algorithm for solving the Grdbner basis system (5) starts by that polynomial which
contains only one indeterminate, the y . There are three solutions: y =F and y =+1. For each
ofthem you must solve the other equations.

1 For y =F, the other equations become x2+F2-1 and 0, thus the two solutions for x are
X=1V1- F2.

2. For y = +1 the other equations become x2 and (F £1)x, and now there is only one solution
for x :x=o.

The basic idea of the solving algorithm says that, for each variable xk, it is both
necessary and sufficient to consider the polynomial of lowest degree m that variable, such that
its leading coefficient does not vanish for the values of xt+,...,x n being considered.

In our example, when y =F , the leading coefficient of (y - F)x vanishes, and you have

to take x2+y2-l1. However, for y =+1, the leading coefficient does not vanish, and it is
sufficient to take this polynomial, and to ignore x2 +y2- 1.

If F is considered to be indeterminate, too, then the variable F does not appear alone in
one of the leading terms of the corresponding Grébner basis, hence (by Theorem 2) there are
infinitely many solutions.

To prepare the given system of algebraic equations for solving it is more advantageous
to use the following command in the "Grébner Basis Package"-.

grobner[gsolve]({x *y - F *x,xn2+yn2- 1},[x,y,F]).

The result is the following list of reduced subsystems whose roots are those of the original
system, but whose variables have been successively eliminated and separated as far as possible:

[[x2+F2-1,y-F]1,[x,y-1],[x,y +1]].
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Fig. 2 illustrates the solution (in the interval -2 <F <2), and its bifurcations at
(x,y,F) =(0,I,1) and at (x,y,F)=(0——1). The x=0 solutions correspond to the

equilibrium states of the structure with vertical bar for any values of F . However, for -1 <F <1
non-vertical layouts can also occur as equilibrium states.

Fig. 2. Equilibrium paths of the propped cantilever

S. Conclusions

Main features of Grdbner basis calculations were summarized together with an
application for a simple example. Compared to other traditional, known methods based on
successive elimination of variables [7], this method is advantageous for three reasons: the
resulting new set of equations after the transformation has exactly the same solutions as the
original set, this new set is very easy to solve and the unknown parameters of the polynomials
do not have to be substituted by numbers before the calculations. The latter feature allows us to
earn the results of the original equation system depending on several parameters. As in many
other problems in mechanics, it was important in the example, where the goal of the
investigation was to find the equilibrium state of a simple structure depending on a load
parameter Knowing the explicit solutions of the corresponding equations expressed in terms of
the parameter allowed the easy calculation of the global equilibrium paths. This very important
property makes Grobner basis calculations very useful in such problems.

We must note, however, that the number of steps in calculating the Grobner basis is
increasing exponentially with the number of unknowns. This can be a strong limit in its
applications. However, for simpler problems one may expect interesting exact results due to the
achieved analytical solutions.
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ON THE QUASI-INVERSE OF THE MATRIX OF A SYSTEM OF LINEAR
EQUATIONS

SZABO, J.*-TARNAI, T.**

(Received: 26 June 1996)

In this paper we will define the term quasi-inverse of the coefficient matrix of a system of
linear equations, and will show that by its use any ill-conditioned system of linear equations can be
handled easily. Its basic properties will be illustrated by a numerical example.

1. Introduction

In the analysis of the theoretical bases of determination of the erection shape of cable
nets by means of the equilibrium and compatibility equations of bar structures in a general form
[3, 4], a need has arisen for a generally valid solution to the equilibrium equation formulated by
a partial change in role of the usual independent and dependent variables [2]. Investigating
stability problems Tamai [6] established that, in the neighbourhood of a critical state and then in
the subsequent post-critical state, a finite mechanism-like behaviour of a bar structure becomes
important. Therefore, it became necessary to formulate also a generalised solution of the
compatibility differential equation similar to that ofthe equilibrium equation [5].

In this paper we will define the quasi-inverse of the coefficient matrix of a system of
linear equations, and show how to obtain the above-mentioned generalised solution of a system
of linear equations by the quasi-inverse and what advantages the use of the quasi-inverse has
(mainly for equations like the equilibrium and compatibility equations of simultaneously
statically and kinematically indeterminate bar structures).

2. Meaning and use of the quasi-inverse
According to the elementary rules of the matrix arithmetic, by the linear expression
As X+y=0 1)
due to an arbitrary r x ¢ non-zero matrix A,toa cx| non-zero matrix x (vector x) there
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uniquely corresponds a r x 1 matrix y (vector y) so that the sum of vectors A+ x and y is
equal to zero. Expression (1) requires that strict rules for the sizes of matrices A, x and y - with
respect to multiplication and addition - should be fulfilled. Otherwise, to an arbitrary vector x
there uniquely corresponds a vector y by Eq.(1).

At the applications of the theory of sets of linear equations, with respect to the possible

solutions of equation (1), very often two questions arise:
(a) How many elements of vector y can (and must) be prescribed arbitrarily?

(b) In the case of smooth change of matrix A - at the change ofthe rank of A, and also
in a neighbourhood of change of rank - how can we make the relationship between
the independent and dependent variables smooth?

By introducing the term quasi-inverse we can answer these two questions so that to equation
(1) we associate the equation

Q»v+u=0

where matrix Q, which we call quasi-inverse, apart from rearrangement of rows and columns,
is uniquely associated to matrix A ; the rank of Q, defined in accordance with computational
interests, determines the number of the elements of vector y whose values should be prescribed,
and these elements of y appear in vector v (the rest of elements of v comes from x). In the
case of a smooth change of matrix A, the matrix Q changes smoothly, and so the relationship
between the independent v and the dependent u is smooth as well. These statements will be
proved in the course of producing the quasi-inverse.

The first part of the procedure is the well-known dyadic decomposition of matrix A
working with complete pivoting with the following addition: if after the separation of the /th
dyad the absolute value of the selected (;+I)st pivot is less than a prescribed value e Q, then the
dyadic decomposition is considered finished, and the rank of matrix A will be p - p{A) =1i.
The elements akk (h =p%\, p£2, ..., 1, k=pv1] p+2, ..., c) of the non-decomposed submatrix
of A will be the elements of a matrix denoted by A. If the matrix A is normed [1] - as in
general the equilibrium matrix of bar-and-joint structures - then, to avoid the loss of digits in the
computation, it is worth prescribing the value eQ=10“3. (If A is not normed, then it can be

normed.) It should be emphasized that the value of eQ is determined exclusively by

computational aspects, and this fact does not influence the validity of the relationships.

In course of the dyadic decomposition based on pivoting, the order of columns and/or
rows of matrix A in general changes, and at the same time the order of the elements of vectors
x and y also changes. If on a copy of the original matrix A, the rearrangements of rows and

columns are executed step by step, and the rearrangements of elements in the vectors x and y

are also done, then amatrix C instead of A , avector s instead of X, and a vector t instead of
y is obtained. The equation

C»S+1 =0 2

replacing equation (1), considering its content, is identical to (1). The elements of vectors s and
t are:

sT = [*,.. - o*«]. 2= YA Yu e Yfir]-
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The dyadic decomposition of matrix C is

"0 0

C= Ug+ ®

[o al
where L, and U, are lower and upper non-singular triangular matrices of rank p, and A is a

not decomposed submatrix of C such that the absolute value of each element of A is less than
e Q. It is obvious that expression (3) produces the submatrices

C,=L-U,, Cp2=L, U2,
Cj,=LjeU,, Cz=L2eU2+A

of matrix C :

C,,is a non-singular submatrix of rank p whose inverse, in the forthcoming investigations, will
be denoted by Qn:

Qn =cr,) =U “**L;L
In the secondpari ofthe procedure, taking the partitioned form of equation (2)

C, »s, +Ciz*s2+t, =0 (4a)
Ca*s, +C2*s2+t2=0 (4b)

with simple transformation we obtain the expression of the quasi-inverse Q . We will execute a
transformation of the system of equations (4a, b) in the following two steps. First, we multiply
(4a) from the left by Qn and we obtain:

Q.,.t|+Q,,.Cla«s2+s, =0, (5a)
second, we multiply (5a) from the left by C2 and then subtract it from (4b) that yields:

-C2,.Q,, »t, +(C2-C a»Q,, »Cl2)»S2 +t2 =0. (5b)

Equations (5a) and (5b) can be written in the form:

(6)

or
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Q»v+u=0 ©)

where

(It should be noted that for exact dyadic decomposition we have Q 2= J1 =0.) The elements of
the vectors in equation (6) are:

According to our statement, the values of vectors sp t. corresponding to arbitrary
vectors t,, s2 are uniquely determined by equation (6):

«,=-Q,,*t,-Q,. ™| U= _Q.V
2=-Q2+'1-@2*Y

and vectors

composed of the given vectors {,, s2 and of the calculated vectors s,, t. satisfy equation (2),
that is, equations (4a, b). One can be convinced about this by substitution:

3. Numerical example

To exemplify the results that can be obtained when a set of equations with an ill-
conditioned matrix is being dealt with, Rézsa [1] has shown the set of equations originated from
Ralston:
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2X, + 6X2+Y, =0
2X, +6.0000lx2+y2=0

whose solution for x, =1, x2=11is y, =-8, y2=-8.00001. Then he has shown the set of
equations
2X, + 6X2+Y, =0

2X, +5.99999x2+y2=0

whose solution for x, = 10, x2=-2 isyl=-8,y2=-8.00002.

Now let us investigate how the relationship between the independent and the dependent
variables can be described with the quasi-inverse in the case of a little change in a single element
of the coefficient matrix. Let us write the above-mentioned sets of equations uniformly in the
form Aex+y=0:

a, ak ., N _4

Lid  o2j U j
that in scalar form is

2X, + 6X2+Y, =0
2X, + (6 +»wW)x2+y2=0 .

With respect to the simplicity of this example, we do not apply pivoting, and we accept a,, as a
non-singular submatrix. Accordingly we have

Qn =an =°-5 Q2=0Qll ,ai. =3
Qj, =-ad«Q, =-I Q22=w
that is,
3
w
Let
-8’ 1 Y -8
V= and so u=-Q» V= , X=
1 -(8 +W) 1 -(8+w)J "’
Obviously
6 -8

A»Xx +y -0
2 6+ -(8 +1V)
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If in accordance with the first set of equations of Ralston w =0.00001, yt=-8, x2 =1, then
X, =1, y2=-8.00001, in agreement with the results of Ralston. Similarly, for the second set of
equations of Ralston with arbitrarily selected values w = -0.00001, yt=-8, x2 = -2, we have
X =10, y2=-8.00002, and the agreement is complete.

This simple example presented here demonstrates that, with a smooth change of the

elements of matrix A (or C), the quasi-inverse Q changes smoothly, and so does the relationship
between the independent and dependent vectors.

4, Discussion

1 It is known from the theory of systems of linear equations that if the system of
equations

a, X, tarxz2+ ... +alxc=y,
az,x,+tazx2+ .. +axxc=y2

a,i*i +arXx2+ ... +arxc=y,

has a coefficient matrix A :

au «12
«1 <2
Al ar2

of r rows, ¢ columns and rank p such that per and p <c, then the system of equations is

indeterminate and overdeterminate at the same time. Let us suppose that, after suitable
rearrangements, the pxp submatrix AM determined by the first p rows and the first p
columns of matrix A is not singular. In this case, for the usual solution, the following is hold.

(a) Variables xpH, xp+2, ... , xc and yny2..... yp are considered as free parameters, and
unknowns X,, X2, ... , Xp can be calculated.

(b) Variables ypt,y........... yr cannot be selected arbitrarily because their values are
determined by the known variables x,, x2, ... , xc and by the (p +I)st, (p+2)nd, .. , rth
equations.

It is easy to see that in this respect the quasi-inverse associated with A does not show
anything new.

The most important role of the quasi-inverse is (although it makes also the general
handling of systems of linear equations possible) that it makes the handling of a system of
equations "smooth" even in the neighbourhood of change of rank. This was shown by the
presented very simple example.

2. We remark that for investigation of a set of linear differential equations
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Bedu+dv =0, (8)

the corresponding quasi-inverse provides possibilities similar to that for sets of linear equations.
About our investigations in this respect we will report elsewhere [7].

3. If (1) is the equilibrium equation of a bar structure and (8) is the compatibility
equation of the same bar structure, then

B=AT,

and the quasi-inverses of A and B can be determined from each other.

4. With respect to conditioning of sets of equations we have concluded that conditioning
of a set of linear equations, that is, its numerical handling, worsens to a greater extent if its
coefficient matrix is "close"” to a change of rank. "Closeness" is in part a subjective factor, but in
part a measure determined by computing. It is not worth increasing the degree of accuracy of
the residual term in the decomposition, as in forming the inverse of the coefficient matrix A, it
worsens the inverse of the non-singular submatrix A,, having ordinarily normal properties. The
quasi-inverse introduced in this paper can be a suitable means for numerical handling of ill-
conditioned sets of linear equations.

5. In our current research we want to make clear what advantages the quasi-inverse
provides for the investigation of stability and change of post-critical state of spatial bar
structures.
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PACKING OF EQUAL CIRCLES IN A SQUARE

TARNAI, T* - GASPAR, ZS.**

(Received: 5 June 1996)

The problem of the densest packing of n equal non-overlapping circles in a square is
investigated. An improved packing for n = 19 is presented, and the proven and conjectured packings
known so far are summarized up ton = 20. Heuristic upper bounds of the maximum packing density
are given, and their numerical values are listed up ton = 40.

1. Introduction

A classical problem of discrete geometry is: To determine the greatest possible minimum
distance dn between u points which can be distributed in the unit square; or what is the same, to
determine the largest diameter dn of n equal circles which can be packed in a square of side
1+ dn without overlapping.

Exact solution of this problem is known only for 2< n<,9 and n = 14, 16, 25 and 36
[2]. In 1970, Goldberg [5] published conjectured solutions for n <27 and some sporadic results
for n>27. Since then many of his results have been improved: for n = 10 by Schliter [12], for
n = 11 and 13 by Mollard and Payan [8], for n = 14 by Wengerodt [15], and recently for
n = 17 by Melissen and Schuur [7].

Density of packing, denoted by Dn, is defined as the ratio of the total area of the circles

to the area of the square: D,, = nd\n I [4(1 + rf,)!].

The aim of this paper is twofold: firstly, to show that for u = 19 Goldberg's packing
configuration is not optimal, and to present a new configuration resulting in an improved lower
bound on the maximum diameter of the circles, and so an improved lower bound on the
maximum density of packing; secondly, to present an upper bound on the maximum packing
density.
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2. Improvement of Goldberg's packing

We consider the circle packing version of the problem. The idea of improvement is
based on the theory of rigidity of graphs as developed by the authors [13] for packing of circles
on a sphere and applied by Connelly [1] for packing of circles in a plane container. To an
arrangement of equal non-overlapping circles there corresponds a graph. In the case of a
general container, the graph of a circle packing defined by Connelly [1] has two different edge
lengths. In the case of a square container, however, we can apply a simplification; and we define
the graph in the following way: The vertices of the graph are the centres of the circles, and the
edges of the graph are straight line segments joining the centres of the touching circles. Thus, all
edges of the graph are of equal length, and all edges and vertices of the graph are contained in
the closed unit square.

In the case of spherical circle packing Danzer [3] has considered the graph so that the
edges can rotate freely around the vertices and the edge lengths can vary freely but
simultaneously and in the same proportion. He has defined the graph to be rigid if the edge
system with the mentioned properties cannot admit motions other than isometries. Danzer's idea
is: I1f the graph is not rigid then it can, in general, be improved.

As shown by Pélya [9], mechanical analogues can be useful in solving mathematical
problems. We follow this way, and in our investigation the graph is modelled as a structure
consisting of straight bars and frictionless pin joints. Analogously to [13], the bar-and-joint
structure is characterized by its geometric or compatibility matrix G containing b rows and
2j - ¢ columns where b is the number of bars (number of edges of the graph),j is the number

ofjoints (number of vertices, that is,y = ri), and c is the number of supporting forces or reactions
(number of kissing points of circles and sides of the square). A reaction force is passing through
the point of a circle at which the side of the square is tangent to the circle and through the
centre of that circle, so its line of action is perpendicular to the side of the square. (In the case of
spherical circle packing c is constant: ¢ = 3.) With the help of the geometric matrix of this
structure, it is ascertained whether the bar lengths can simultaneously be increased in the same
proportion without inner forces. If it is so then it can be done, e.g. due to a uniform increase in
the temperature of the bars, until the distance between some of the vertices not connected by an
edge will be equal to the increased edge length of the graph where new edges should be
introduced. By appearing additional bars the further motions of the structure will be prevented,
i.e. the graph will be made rigid in Danzerian sense. If further increase in the temperature would
cause a stable state of self-stress where all bars are in compression, then a local optimum is
arrived at. The circle packing is, in general, improvable if one ofthe three properties holds:

b=r=2j-c,
b=r<2j-c,
b>r, r<2j-c

in which r denotes the rank of G. The details of this "heating technique” can be found in [13].
Let us consider the arrangement constructed by Goldberg for 19 circles and apply the
above-mentioned improving technique. Goldberg's packing and its graph is shown in Fig. la.
The diameter of the circles in this packing, with seven-digit accuracy, is 0.2895365. The graph
contains two isolated points. Ifwe reckon that two edges are needed in order to fix an isolated
point, thenj =19, ¢ = 11 and b = 27. Thus, 2j - ¢ = b holds; that is, matrix G is quadratic. Due
to the symmetry, the graph can have a state of self-stress of one parameter, and so the third
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a) b)

Fig. 1. Packing of 19 circles in a square: (a) circle system and its graph due to Goldberg, (b) the improved
configuration and its graph. (The figure composed of dashed lines is the unit square.)

property of the above three holds. In a state of self-stress, all bars can be in compression (or
inactive), but the equilibrium is not stable, so the arrangement can be improved.

The graph can be deformed with a simultaneous increase in the edge length, without
causing stresses in the edges, until the graph is supplemented by three edges which make the
graph rigid. With a further increase in the temperature, the graph will have no edges in tension.
Therefore, we have obtained a new packing in which the diameter of the circles is

=0.2895419

which is a local optimum. The packing and its graph is presented in Fig. Ib.

3. Upper bounds on packing density

Let D denote the maximum density of packing ofn equal circles in a square. Fejes T6th
[4] has shown that the density of packing of at least two equal circles in a convex domain in the

plane is always less than n / -J12 . Therefore,

C< X (l)

Groemer [6] has sharpened Fejes Toth's inequality, and his formula has resulted in the following
upper estimate better than (1):

nK
D < (2)

AN2-y[3+7-K +yi3(2n-6 + K)~

In what follows, we give a heuristic reasoning for further sharpening of Groemer's inequality
(2), using the special properties of a square.
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Fig. 2. The Dirichlet cell ofa circle (a) in the densest packing in the plane, (b) at the boundary of the square

Consider equal circles of diameter d packed in a square of side length 1 + d. In this
square the Dirichlet cell is defined as a domain which consists of all points of the square which
are nearer to the centre of a particular circle of the packing than to any other centre. In the
densest packing of equal circles in the plane, the circles form a hexagonal arrangement in which

the Dirichlet cells are regular hexagons of side length d1-Ji (Fig. 2a). The area (V3/2)d2 of

such a hexagon can be considered as space claim of a circle. If circles touching a side of the
square are in a close arrangement then the Dirichlet cell of such a circle is a pentagon (Fig. 2b)
whose area is larger than the space claim of the circle by d2(2- §3) /4, and this difference
appears as the area of an extra interstice corresponding in fact to a semicircle laying in the
domain of width dI2 around the unit square. The largest density occurs, if as many circles as
possible are touching the boundary of the square, that is, the centres of circles are situated along
the sides ofthe unit square with separation d between them, and each vertex of the unit square is
the centre of a circle (Fig. 3). Along a side of the unit square we cannot put more than int(l Id)
semicircles, and at a vertex we can put additionally at most a quarter of a circle (a half of a
semicircle). [Here the symbol int(x) denotes the integer part of the real number x.] If we add the
areae of the extra interstices determined above along the boundary of the square, we obtain a
lower bound on the real extra interstice area. This bound is even smaller if along the fractional
distance 1- int(lld)d, the average extra interstice area is taken into account instead ofthe actual
one. Therefore, a lower bound Ae ofthe area ofthe sum of extra interstices is

Let Ac be the space claim ofn circles:

Ac +Ae cannot be greater than the area of the square of side length 1+ d. Thus, we have the
inequality



PACKING OF EQUAL CIRCLES IN A SQUARE 127

Fig. S. Arrangement of circles along a side of the square. A gap is at each of the sides

NN +Jrf+y”N-VajsO+rf)2

From here d can be expressed, and as D = nd'n ![4(1 + d)2], we obtain an upper bound on the
density D:

D< nn ©)

2- n/3 +~3+2-Jb(n- 1)j

which is exact for n = 1, and which is better than (2) for every n.

Let us make the upper bound of packing density (3) sharper by calculating the area of
the extra gaps along the boundary exactly. Doing so we have to consider also two additional
dense arrangements of circles. Therefore, we have three different possibilities for dense packing
ofthe circles along the boundary.

(a) The above-mentioned arrangement, that is, a circle is packed at each vertex of the
square, the other circles are closely packed along the sides and a gap ofwidth a - | - int(1/d)d
appears at each side. Consider the arrowhead-like domain composed of the rectangle ABCD
and the triangle EFG (Fig. 4). Let its area be denoted by Aa. Then
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Fig. 4. The gap at the side of the square

The area of the extra gap Ag is obtained if the space claim of a semicircle (the area of the half
of a hexagon) is subtracted from the area of the arrowhead-like domain: Ag =Aa-Jbd2/4,

that is, as a function ofa

N(«) (4)

Since on each side of the square there is a gap, the area inequality is obtained for n equal circles
as

n~d2+ mt[Aj+7jd2{2-2+ 4Aga)<(l +d)\ n>5. ©)

(b) The gaps appear at two opposite vertices and two adjacent sides such that the gap
arrangement is (can be) symmetrical with respect to a diagonal of the square. Let us introduce
the circle numbers n,, n2 along the sides and distances a,, a2 c in Fig. 5:

n =1- n{d,

c= n
Vrf2- Gl 97
w4

«Q = int
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Fig. 5. Arrangement ofcircles along the sides of the square. Gaps are at two opposite vertices and
at two adjacent sides

Fig. 6. The gap at a vertex of the square

The extra interstice area corresponding to a semicircle at the boundary, as previously obtained,
is

So, the area of the extra interstices corresponding to the shaded area in Fig. 5 is
(n, + +1/2)Al. The area of the polygon ABCDEFG in Fig. 6, at the vertex of the square, is
(a, +c)d/ 2+(c+d/ 2)a, 12. Subtracting the space claim of a quarter of a circle from that area
we obtain the extra gap area Ay at a vertex ofthe square:
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(6)

The extra gap area corresponding to the gap of width a2, obtained from the arrowhead-like
domain by taking a=a2in (4), is Ag(a? . The sum of the space claim ofn equal circles and the
extra gap areae cannot be larger than the area ofthe square of side 1+ d.

n— d2+2 -NAJ+A (atc)+At (@) <(1+d)\  n> 2. @

(c) There are gaps at three vertices and at one of the sides of the square (Fig. 7). Here
n,, Up c, n2, a2 Ap At(at,c) denote the same quantities as in Subsection (b). Let us introduce
the circle number n3 and distances c2, (3 in Fig. 7:

.. 1-c-c
=int

«3

fj ‘1-c-Cj-na.

Consider the area of the extra gap at a side obtained by substituting a} for a in (4), and that at a
vertex obtained by substituting a2 for a, and c2 for cin (6): Ag(a}) and Av(a2c2) . The places
of these extra gaps are indicated in Fig. 7. Then the area inequality takes the form

Fig. 7. Arrangement of circles along the sides of the square. Gaps are at three vertices and at a side of the square
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S

d2+/°2n, +n2+nr+ A, +2At(altc) +Arar) +AN.Ci) <(1+d)2, n£3. (g

For given value of n, from (5), (7), (8) we can determine numerically an upper bound
da, db, dc, respectively, on the diameter of the circles, whose maximum dm is an upper bound

on the maximum diameter d\
d,, =max(da,db,dc)>d.
and we obtain an upper bound of the maximum density D\

ndirt
DS 9
4(1 +dm)2

which is better than (3). (The upper bound (9) is always less than the upper bound (3) as if
circles can be packed along a side without gaps, then the centres of the circles lie on the side of
the unit square, but if the other circles are packed in a regular triangular lattice packing then
circle centres can never lie on the opposite side of the unit square, because the ratio of the side
to the altitude of a regular triangle is an irrational number.) This upper bound is exact forn =2
(obtained from (7)), for n = 3 (obtained from (8)), and forn =5 (obtained from (5)).

It remained to be shown that, if the gap on a side is not concentrated at one point on the
side of the square but it is divided into two parts at two different points of the side, the upper
bound of density cannot decrease, that is, for the function Ag(a) in (4), the inequality

N K +ai)*A, M +Ai(ai)

is valid if ak +a, <d . For this it is enough to show that Ag(a) k 0 and the second derivative of
Ag{a) is not positive in the interval 0< a< d. Positivity of Ag(a) is obvious. The second

derivative of Ag(a) is

d2Ag 3
da2 4

<0

since both terms in it are < 0. Therefore, the function Ag(a) is concave from below in the
interval 0 <a <,d, that is, we obtain greater density if the gaps at a side are united into a single
a

o In the cases (b) and (c), there are gaps at vertices of the square, and also at some side
there is a gap between circles touching the side. If at such a side, the circles are arranged so that
the gap here joins the gap at the vertex, then the area of the extra gap calculated from the united
gaps is larger than the sum of the area of the two separate extra gaps. This is so, because in the
new position, the circle at the apex of the "arrowhead" corresponding to the gap at the side is at
a larger distance from the side in question, since the other circle forming a part of the boundary
ofthe gap at the vertex does not touch the side in question. Therefore, we obtain greater density
ifthe gaps at a side and at the vertex are separated.
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4, Conclusions

1. The improving technique applied in this paper for n = 19 can be applied also for some
further packings of Goldberg [5]: for instance, for n = 22 and 26 (in the case n = 22 the graph
can be decomposed into a set of isolated points, in the case n = 26 the graph is not rigid), and
probably for n = 21 (in this case the graph cannot be reconstructed with absolute certainty).

2. A survey of the results of packings of circles in a square last time was given in [2].
Since the list presented there contained minor mistakes and since recently some new results
were published it is worth summarizing the results and giving an up-to-date list. The data of the
proven and conjectured best packings known so far are collected in Table 1 The graphs of
packings are presented in Fig. 8. The survey is given only up to n = 20 since, as mentioned,
many o f the packings known for n > 20 are not even locally optimal.

3. The upper bounds on the maximum packing density calculated by the formulae (2)
and (3) as well as by (9), based on the maxima of the results obtained from (5), (7), (8), are
given for up to n =40 in Table 2. Contrary to the upper bound given by (3) the upper bound
given by (9) is not monotonous with n. As to (9), for most values of n, from the three
inequalities (5), (7), (8), inequality (5) provides an upper bound on the maximum packing
density.

Table 1. Proven and conjectured densest packing ofs equal circles in a square of side 1+ dn (spreading
ofn points in the unit square with the greatest minimum separation dn possible between them)

n  Diameter dn Density £, Reference

2 14142136  0.5390121*

3 1.0352762  0.6096448*

4 1 0.7853981*

5 0.7071067  0.6737651*

6 0.6009252  0.6639569* Graham, cf [10]

7 0.5358983  0.6693108*  Schaer, cf[10]

8 05176380  0.7309638*  Schaer and Meir [11]
9 05 0.7853981*  Schaer [10]

10 0.4212795  0.6900357  Schliiter [12]

1 0.3982073 0.7007415  Mollard and Payan [8]
12 03887301 0.7384682  Goldberg [5]

13 03660960 0.7332646  Mollard and Payan [8]
14 0.3489152  0.7356792* Wengerodt [15]

15 0.3410813  0.7620560  Goldberg [5]

16 0.3333333  0.7853981* Wengerodt [14]

17 0.3061539  0.7335502 Melissen and Schuur [7]
18 0.3004626  0.7546533  Goldberg [5]

19 0.2895419  0.7523079 this work

20 0.2866116  0.7794936  Goldberg [51

* It is proved that the density is a maximum
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I 11 I (64 10—
1 2 3 4
13 14 15 16

Fig. 8. The graph of the proven and conjectured densest packing of n equal circles in a square (arrangement ofn
points in the unit square such that the minimum distance apart is as great as possible)
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Table 2. Upper bounds on the maximum density D of packing ofn equal circles in a square

With Groemer’s  With average With exact extra

n formula (2) extra interstice  gap area, formulae
area, formula (3) (5), (7), (8

2 0.8724125 0.7955012 0.5390121*
3 0.8563422 0.8063246 0.6096448**
4 0.8519408 0.8146624 0.7854052*
5 0.8509826 0.8211847 0.6737651
6 0.8513033 0.8264434 0.6701081
7 0.8521455 0.8307966 0.7123433*
8 0.8531989 0.8344782 0.7375840
9 0.8543237 0.8376460 0.7930670
10 0.8554535 0.8404109 0.8131862
n 0.8565563 0.8428525 0.7767688
12 0.8576172 0.8450303 0.7641682
13 0.8586298 0.8469892 0.7639387
14 0.8595926 0.8487642 0.7903124*
15 0.8605062 0.8503828 0.7858901
16 0.8613728 0.8518670 0.8066345
17 0.8621948 0.8532347 0.8369299
18 0.8629750 0.8545007 0.8393169
19 0.8637163 0.8556772 0.8229551
20 0.8644212 0.8567744 0.8132350
21 0.8650924 0.8578009 0.8083586
22 0.8657323 0.8587642 0.8072574
23 0.8663430 0.8596706 0.8172430*
24 0.8669266 0.8605255 0.8185761*
25 0.8674850 0.8613338 0.8221864
26 0.8680198 0.8620995 0.8336828
27 0.8685326 0.8628264 0.8508564
28 0.8690249 0.8635176 0.8571610
29 0.8694979 0.8641761 0.8479190
30 0.8699529 0.8648043 0.8411183
31 0.8703910 0.8654046 0.8363717
32 0.8708132 0.8659790 0.8333982
33 0.8712203 0.8665293 0.8320005
34 0.8716134 0.8670572 0.8320529
35 0.8719932 0.8675642 0.8439693*
36 0.8723604 0.8680516 0.8389198*
37 0.8727157 0.8685207 0.8407982
38 0.8730597 0.8689727 0.8471696
39 0.8733930 0.8694085 0.8564647
40 0.8737162 0.8698291 0.8689143

* Density is due to (7),
** Density is due to (8).
All other densities not marked in the last column are due to (5).
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5. Remark

The main body of this paper was prepared for the Constructive Geometry Conference
held in Balatonfoldvar, in September 1993. Soon after this conference there appeared a nice
paper by Peikert [16], in which, for « = 19, exactly the same solution was presented as we found
independently. That time we thought that in that situation this paper is not worth publishing as it
would be only a confirmation of Peikert's result. The reason why eventually we present it here is
that in the meantime it became a problem to provide a sharp upper bound on the maximum
density of packing of equal circles in particular containers in the plane (square, circle) and on a
hemisphere, and in this paper, after revising the 1993 manuscript, we give upper heuristic
estimates on the packing density in a square, which can be of interest.
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DYNAMIC ELASTO-PLASTIC ANALYSIS OF STRUCTURES BY
MATHEMATICAL PROGRAMMING

VASARHELYI, A*- LOGO , J.**

(Received 26 July 1996)

There are a number of methods for the plastic analysis of structures, but not all of them are
suitable for the calculation with time dependent loading. Here a new method is presented which is
based on nonlinear mathematical programming in the function space iA The dissipative energy and
the inertia forces are taken into consideration and the "dissipative forces" are characterized as internal
variables. The original model which was created in function space A is transformed into the vector-
space during the calculation procedure and the results are transformed back after the computation. The
theoretical results are illustrated by numerical example.

1. Introduction

Usually the mechanical models are given by different type of differential equations
Their direct solution are obtained after a very difficult calculation or these problems have to
solve on approximated way. During the 70-s the mathematical programming as a tool became
primary importance in structural plasticity [3]. Dynamic problems usually are solved as an
eigenvalue problem of the discretized structures [13]. Mathematically it leads to some type of
direct time integration methods and most of them are related to so-called "tangent stiffness"
method in which the stiffness matrix of system is modified at every loading step [7,9].

Plasticity as a technical term is defined in mechanics as a certain determination of
irreversible deformation of the structures caused by external actions. Due to the plastic
deformation some kind of energy is always dissipated Generally, the theories used in structural
mechanics for describing elasto-plastic change with time independent material flow are
formulated on the basis of macroscopic observation of the material behaviour [4,8] The plastic
problems are handled mostly as a rate independent one and the time parameter t measures the
order of the events, rather than real time [6]. Dynamical and plastic problems are calculated
together not very often and we have not found any method to take the dissipation into
consideration
In this paper a new method is presented which based on nonlinear mathematical programming
in the function space L. The dissipative energy and the inertia forces are taken into
consideration and the "dissipative forces" are characterized as internal variables. In that work
the effect of damping is not considered. The original model which was created in function space
L2 is transformed into the vector-space during the calculation procedure and the results are
transformed back after the computation. The theoretical results are illustrated by numerical
example.

* Vasarhelyi, Anna, H-1126 Budapest, Kiss J.alt. u. 34, Hungary
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2. Formulation of the structural problem

Ordinarily the variational interpretation of a problem is created according to the type of
differential equations that occur (including the initial boundary conditions), and then the
approximation functions to be used have an appropriate order which follows from the type of
each equation. In the approach presented here the unconstrained optimization problem that
derives from the boundary problem is decomposed into a pair of constrained optimization
problems. The individual material properties are included as functions of the state characteristics
and this fact connects into a system the parts coming from the original equations.
Decomposition of the unconstrained optimization problem into a constrained optimization
problem is not unambiguous, but the different decompositions all must satisfy the same Euler-
Lagrange equations. It is executed in such a way that the primal-dual problems have physical
meanings. From the mathematical point of view, the primal and the dual variables are intensive
and extensive mechanically and the objective function contains different types of energies.

The state variables (e g. stresses, strains, etc.) are given in vector space by vector-scalar
functions in the case of equilibrium state. For a discretized structure that vector space is
supposed to be an 3 dimensional space in a global coordinate system. Every node of the element
is defined by a position vector. To each position vector a state vector described in the local
coordinate system is attached. The number of the independent components depends on the
freedom of the nodes and it equals n times the dimension of the state vector.

In case of time-dependent problems the state functions are given in both local and
global coordinate systems and are vector-vector functions which depend on the time Within the
context of a small displacement theory, the position vectors are time independent.

In this paper the presented models include the theoretical results of the earlier studies
[10,11,12]. It is supposed that the Euler and Lagrange descriptions of the structure correspond,
that is the position vector does not depend on time. It means that the state characteristics can be
given using function subspaces based on the local coordinate axes, and can be expressed via a
linear combination ofthe (unknown) coefficients of basis-functions of these spaces.

In other words, the state variables (e.g.a(x,t)) are approximated by:

Cj(x,t)*%X(t)-N(C) (1)
1=l

where N(C) notes the shape functions depend on the position vector (£) and the
coefficients x(t) depend on time.

The state variables are given in both local and global co-ordinate systems as vector-
vector functions which elements depend on time. This elements are described in a function
space which is determined on the local co-ordinate axes. It means that the state variables can be
given as a vector with function elements on the local co-ordinate axes in a function subspace
The state variables (x(t)) can be expressed by the generalized Fourier series according to the
basis of the function subspace:

No=2Z ey. aj eSR, /](/) GA2, te[/,,t2] )
/-1
where €' (j=I,...,8): j-th unit vector of the local coordinate system ordered to the t -th node,

s: number of degrees of freedom at the nodes, Pj(t): i-th element of basis of the
function subspace (orthonormal polynomial system on [r, ,/2]),.
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The state variables are described on every node in the following space:
F=L X X..XLj and on the whole structure

F" = (-2 Xi-3 X...xLj )n (3)
where n is the number of the nodes s is the number of freedoms.

To describe the elasto-plastic process a nonlinear mathematical programming problem
is created in space Fn where the variables are the Fourier coefficients ay. It has been proved

elsewhere that the Kuhn-Tucker theorem and Wolfe's duality [1,2] are valid in space Fn

Then the nonlinear mathematical programming problem exists in space Fn in terms of
elements (x(t)). The general description of the mathematical model and the verification of the
theory can be found in [2].

The solution of the nonlinear programming problem is a stationer curve. The limitation
of the presented model is: at least one continuous component has to be assumed, the small
displacement theory is valid, stability problems are neglected. For the numerical solution it is
necessary to transform the problem into the (2 space where the Kuhn-Tucker theorem is valid
[2] and the results are mapped back to the space Fn.

2.1 Nonholonom system of the elasto-plastic state

To facilitate an interpretation for a problem it is necessary to describe what type of the
energies are taken into consideration. In that type of computational model the strain energy and
the dissipative energy are taken into account. The state variables are defined on the Gaussian
points of the finite elements.

The constraints of the primal problem - concerning to the intensive state vanables -
contains the equilibrium equations, the boundary conditions, the plastic yield conditions, the
yield conditions of the dissipation capacity and switch equations which are described later. The
objective function contains the sum of the complementary and the dissipative energies using
theiradditive property.

The dual problem is formed by Wolfe's procedure. The results are: the compatibility
equations which are expressed in terms of the extensive variables, the inequalities express the
direction of the process, the boundary conditions and the sum of the different types of energies
is obtained in the objective function.

In this way there is a possibility to check the primal model. The dual problem has to be
clear from a physical point of view.

During the process the plastic nodes are in non-equilibrium state [5] in space Fn. The

state space Fnis extended by the internal variables acting on the Gaussian points. The course of
the dissipation is described by the help of internal variables in the extended space. In extended
space using internal variables the non-equilibrium state becomes equilibrium one.

The primal problem is:

[BI'o(t)(p) +[BI'r(t) +p(t) =0, (4/a)
Boundary conditions, (4/b)

f,(ctk(t).k =1...2)£0, i=],...G (4/c)
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F(rk(t), k=1,...,2)<,0, /= , (4/d)
f,(crk(t), k = ¥Y,...,0)ri(t) =0, i= k=I,...,z, (4/e)
+ W, te[t,,t2], @

where nis number of the nodes, s is the freedom of nodal displacements, G is total number of
the Gaussian points defined on the elements, z is the freedom of the stresses defined on
the Gaussian points, [B]* is the transfer matrix of the structure ( dimension is n.s.G.z),
r(t) is the force type internal variable (dimension is n.s), <p> is the diagonal matrix of
the Gaussian weights (dimension is G.z,G.z), o(t) is the vector of the stresses
(dimension is G.z), p(t) is the vector of the external loads acting on the nodes
(dimension is n.s), [F] is the flexibility matrix (dimension is G.z,G.z), [A] is the matrix
of the dissipative property of the phenomena (dimension is G.z,G.z).

The mechanical interpretations of the problem (4.a-f) are: (4.a) is the equilibrium
equations concern to time-functions of stresses and force type internal variables and external
forces in the extended space (the number of the equation is n.s). The boundary conditions (4 b)
are expressed by equality and/or inequality constraints. The plastic yield conditions on the
Gaussian points of the structure are the inequalities (4.c). The inequalities (4.d) yield the size of
the force type internal variables on the Gaussian points. The equalities (4.e) take a switch role.
The objective function (4.f) is the sum of the complementary strain energy and the
complementary dissipation energy.

The model (4 a-f) is "working" on the following way: A point is in elastic state, if the
plastic yield condition holds the inequality in a given point. The value of the force type internal
variables are zero owing to the switch conditions (4.e). In the equality equations the equal sign
is valid in the space Fn. If the plastic yield condition becomes an equality in a given point the
force type internal variable can be appeared in equations (4.a). This comes from the equations
(4.e) for every Gaussian point and every stress freedom. The force type internal variables are
not zero that is the equations (4.a) become inequalities in the space Fn (there are no force type
internal variables among the usual state variables in mechanics). This expresses the fact that the
point being in plastic state is in non-equilibrium state. If the constraint (4.d) is an equality the
energy dissipation capacity of the material reaches its maximum in a given Gaussian point. Ifthe
constraint (4,d) is an inequality the given Gaussian point of the structure is in either elastic state
or plastic state and the material is able to dissipate.

The matrix [A] contains material constants which characterize the energy dissipation
ability of the phenomena. Handling this type of energy is rather complicate because the lack of
the material constants.

The Wolfe’s dual problem of (4.a-f) is formed as follows (the dual variables u(t), A(t), T'(t)
and x(t) belong to equalities (4.a), inequalities (4.c), (4.d) and equalities (4.e), respectively,
and the dual vectors have function elements ):

[Blu®)+[F Jc(t)(p)U (t)e +i(t)’r (t )~ =0, (5/a)
[B]u(t)+M/(t)-a<%rr(g)) +x (t)*f(o(t)) +r(t)*[A] =0 , (5/b)

Boundary conditions, (5/c)
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X (1),f,(ak(t),& = 1...1) =0, / = 7.....G, (5/d)
V(>0 ,  V(),<P(rt@),A:=/....2)=0,i=] G, (Sle)

~(p)o(t)'[FJo(t) +7r(t)' [A]r(t) +u(t) [Bla(t)(p) +u(t)' r(t) +

+u(t)'p(t) +Mt)'f(o(t)) +vp(t)cp(r(t)) +x(t)'r(t)f(o(t)) -» max.
Vi, te[t, t2], (5/0

where u(t) is the vector of the displacements, \(t) and 4/\(t) are the plastic and dissipative
multipliers, respectively.

The mechanical interpretations of the problem (5.a-f) are: (5.a) expresses the
compatibility between the displacements and the strains (the number of the equations is G.z).
(5.b) equations express the compatibility due to the dissipation (the number of the equations is
G.z). The boundary conditions are saved in original form (5.c). The inequalities (5.d) and (5 e)
give the sign constrain of the plastic and the dissipation multiplier, respectively. They show the
direction ofthe process. (5.f) is the objective function.

Let's see the dual problem in details: Taking out the gradient vector ffom (5.a) the
following equation system is obtained:

[BJu(t) +[Flo(®){p) +U (1) +x(t)*r() 7 M 1)-Q
aaf{t)

The 1st member means the nodal displacements of the element, the 2nd. member is the
displacements due to the elastic stresses, the 3rd. member gives the displacements due to the
plastic strains in the direction of the gradient of the plastic yield conditions. The measure of
these displacements origins from two parts: one is the plastic multiplier and the other is the
dissipation in the plastic zone.

In elastic state the equation system (5.b) does not exist since the force type internal
variables are zero In plastic state the equation system (5,b) consists of the following parts: 1st
member means the nodal displacements of the element, 2nd member contains the displacements
on the direction of the gradients of the dissipation conditions, 3rd member is zero in plastic
state since the function value of the plastic yield conditions become zero, 4th. member express
the displacement type internal variables.

The interpretation of the objective function can be obtained after the following rearranging:
multiplying the equations (5.a) and (5.b) by their dual vanables and substituting into the
objective function and rewriting the maximum problem into a minimum the following function

is obtained: AN (L), [Ur]o(t) +- r(1)’[N1rO)- u(t)"/>(t)-
-A(D)-f(o(1))- KK (1)) -x()V (1)/(o(t)) +x(t)7(t)/(o(t)) +
+A(t)
The 1st. member expresses the strain energy, the 2nd. member is the dissipative energy
and the 3rd. member gives the energy due to the external loads. The 4th. and 5th. members are
zero, if the inequalities (4.c) less then zero the correspondent dual variables are zero due to the

constraints (5.d) and (5.e), if they become equalities the value of the yield functions are zero
The sum of the 6th. and 7th. member is zero. The 8th., 9th. and the 10th. member are zero if
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functions/ and (p are the homogeneous functions of the stresses and the force type internal
variables [21]. The dual of the problem (4.a-f) is after the above-mentioned modifications:

[Blu(t) + [Fract)(p) + (A®* +xw* r(t))~"~"y~=0. (6/a)
[Blu(t)+v/(t)"~ Ogl'(t,)\ +i(t)*f(o(t)) +r(t)*[A]=0 , (6/b)
Boundary conditions, (6/c)

X(t)>0, A()ifi(okt),A=1..2)=0,/= G, (6/d)
vjl(t)>0, \)/@®)ii(ryt),fc=7,....z2) =0, / =J,...,G, (6/e)
-A(p) Q) TR ICIE) “ “r () TA]r(t) +u(t)'p (1) —min. (6/f)

The objective function in problem (6) expresses the principle of energy conservation.

2.2. Computational model of the dynamic problem without damping

It is supposed that the mass and the flexibility of the structures are time independent
and the structure has no motion at the time /, =0. The external loads are decomposed into two

parts: the first one (pt(t)) makes the deformations and the second one (pD(t)) moves the
structure. The rate of pe(t) and pD(t) is unknown and it is changed in time. The internal forces

are divided in a similar way. The dissipative forces as internal variables are handled as it
happened in previous models.

The primal problem ofthe dynamic analysis can be written on the following way:

P,(O +PD(t)-p(t) =0, (7/3)

[B14(t)(p) +[BIV(t) +pe(t) =0, (71b)
[yl4(t)(p} +pXt) =0, (7lc)

Boundary conditions, (7/d)

=7.. 2)<0, /=1/,...,G (7/e)

F(rk(t), k=1...z7)<0, /=1/,..,G, (7/%)
fi(okt(t). k =1...2)rlt(t) =0, i=1....G, k=1,...,z, (7/9)

lcri(t)[Fler,(t)(p) +ir(t), [Alr(t)+]la<t)Vi[M ]"|a{i)dI(p) -> min., Vi, te[t,,t2],

(7/h)

where n is number of the nodes, s is the freedom of nodal displacements, G is total number of
the Gaussian points defined on the elements, z is the freedom of the stresses defined on
the Gaussian points, [B]* is the transfer matrix of the structure (dimension is n.s, G.z),

r(t) is the force type internal variable (dimension is n.s), [SP] is the transfer matrix of
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the structure for dynamic effect( dimension is n.s,G.z),<p> is the diagonal matrix of the
Gaussian weights (dimension is G.z,G.z), <T,(t)) is the vector of the stresses which are
related with the deformations (dimension is G z), <X(t)) is the vector of the stresses
which are related with the motions (dimension is G.z), p(t) is the vector of the external
loads acting on the nodes (dimension is n.s), [F] is the flexibility matrix (dimension is
G.z,G.z), [A] is the matrix of the dissipative property of the phenomena (dimension is
G.z2,G.z), [m ] ' isthe inverse ofthe mass matrix (dimension is G.z,G.z).

The unknowns are: pc(t), crAt), eO(t) and r(t).

The mechanical interpretations of the problem (7.a-h) are: (7.a) is the decomposition of
the external forces, (7.b) and (7.c) are the equilibrium equations concern to time-functions of
stresses and force type internal variables and external forces in the extended space, respectively
(the number of the equation is n.s). The boundary conditions (7.d) are expressed by equality
and/or inequality constraints. The plastic yield conditions on the Gaussian points of the structure
are the inequalities (7.e). The inequalities (7.f) yield the size of the force type internal variables
on the Gaussian points The equalities (7.g) take a switch role. The objective function (7 h) is
the sum of the complementary strain energy, the complementary dissipation energy and the
kinetic energy due to the motion. The above mentioned form of the kinetic energy can be
obtained in the following way: According to the Newton Il.law it is known that

pdo) =M «(0 (8)
r
Integrating both side of eg. (8) one can obtain j*pd(t)dt = M «u(t). The kinetic energy can be
0
1 R \’ 1
expressed as M eit) == Jpdtydt +M~] Jpd(1)dl. ©)
2 20 0

Using internal forces in eq. (9) the kinetic energy can be written in the following way:

UoAt)dt M (10)
"0 0

3. Numerical example

As an illustration of the proposed computational methods, consider a three-supported
beam with time dependent loading. The data of the structure can be seen in Fig. 1. The loads act
on the nodes. The loads act on the nodes. The functions of the external loads are given by

F(t) =8+ 7t +612+ 5r3.

The loads are approximated by the Legendre polynomial system up to four members. The
structure is divided into 6 members with 7 nodes. The unknowns are the moments and the shear
forces at the Gaussian points of the members.

On the basis of the general form, the statically admissible internal forces are determined
by the equilibrium equations and force boundary conditions. The objective function contains the
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complementary potential energy, dissipative energy and kinetic energy. The displacement
boundary conditions are taken into consideration in the objective function.

6 x3.00m

Fig. 1

The total and the decomposed (elastic and dynamic parts) loads are seen in Fig. 2. in

totaly elastic case.

Load -time

time

Ftotal — ®--—-Flela — m— F2ela — ®— Fldyn ------ =— F2dyn

Fig. 2.

To solve this problem we used a nonlinear mathematical programming system. The
results can be seen in Figs 3-4. The bending moments (elastic and dynamic parts) above of the
middle support can be seen in Fig. 3. and the elastic energy and the dynamic energy of the
structure are shown in Fig. 4 One can see that this method and the traditional algorithms give

the same result.
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Bending moment - Time

Time

Mdela — m— Mddyn

Fig. 3

If there are some restrictions for the internal forces they give inequalities in the
mathematical programming problem. In our example, the Huber-Mises-Hencky yield condition
is used. In Figs 5-7 one can follow the results of the case when the plastic hinges during the
process make dissipative energy as well.
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Bending moment - Time

Mdela ---a-- Mddyn -—m— Mddis
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Fig. 7

4. Conclusion

The elastic, dynamic and dissipative energies are taken into consideration. According to
our numerical experiments first the static after the dynamic energies are developed in the
structures and finally the material is changed causing dissipation. The rates of the energies
depend on the material constants and the mass of the structure.

The theorem mentioned above and algorithms of the nonlinear mathematical
programming were used for the numerical solution.
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UNBOUNDED PLATE WITH TWO CIRCULAR-ARC
CRACKS WITH COALESCED PLASTIC ZONES CLOSED
BY VARIABLE PRESSURE

Bhargava, R. R.*and Tyagi, N. K.**
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**Govt College, Roorkee-247 667, India

(Received: 15 October, 1997)

The problem of an infinite plate cut along two circular-arc cracks is investigated in this paper. The
two circular cracks are situated along the circumference of a circle. The cracks open in Mode I deforma-
tions on account of remotely applied biaxial tension at infinity. The plastic zones are formed ahead of
the tips of the cracks and the plastic zones formed at interior tips of the two cracks get coalesced. These
plastic zones are closed by normal variable stress distribution acting perpendicular to the rims of the
plastic zones. Problem is solved using complex variable technique. Analytical expressions are derived
for the load required to close the plastic zones and for crack face opening displacements. A qualitative
analysis is carried out to study the behaviour of load required for closure of cracks and crack opening
displacement with respect to affecting parameters crack length, plastic zone length and crack radius.

1. Introduction

General formulation of two-dimensional circular-arc crack problem is given by
Milne-Thomson 111 Muskhelishvili |2] and others. The problem of a circular crack ly-
ing along the interface of a circular inclusion embedded in an infinite solid has been in-
vestigated by Toya [3] using complex variable formulation. Zhang [4] making use of
the basic theorem of the pole point and residue gave the general solution to a circular-
arc crack problem in opening, sliding and tearing modes in an infinite plane. The plane
problem of two arc cracks placed along the circumference of a circle in an infinite elas-
tic plate is studied theoretically by Gdoutos et al. [5]. Complex potentials are used to
solve the curved circular crack problem in two-bonded half-planes made of dissimilar
materials by Chen and Hasebe |6|. Dugdale model solution is obtained for a circular-arc
crack in an infinite plate by Bhargava and Kumar [7]. Crack opening displacement and
stress-intensity factors caused by a concentrated load outside a circular crack have been
evaluated by Karapetian and Hanson [8] in terms of elementary functions. Chen [9]
obtained the solution of circular-cracked plate problem by using Bueckner’s weight
function formulation. A circular disk containing a concentric arc crack is studied by Xu
[10] using dislocation pile-ups and singular integral equation techniques. Related algo-
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rithms for computing Mode | and Mode Il stress-intensity factors of the curvilinear
crack are obtained in this paper. The interaction between the crack tips of a circular-arc
crack is studied by Shiah and Tsai | 11] devising a new conformal mapping. The stress

concentration around a circular interface crack between two dissimilar elastic planes are
analysed by Murase et al. [12].

2. Fundamental equations

As is well-known the components of stresses Py/j,j = r,6) and displacements u,(i =
r,0) may be written in terms of two complex potentials ® (r) and Q{z) as

pn +iPe = D2)+ Q(r 21 .) +2Z[(Z/r 2) - (L] )KQ) "

2P~ {(«, + W Y B}Y=HA[*dD(r)-n(R2/z)- z[(z /R2)- (1/2)Jf0 (2)

where

42)=K-n(z)- W -—o'(4 €]

and z = X + iy = re". Bar over the function denotes its complex conjugation. Shear
modulus is denoted by /;, K= (3—4 V') for plane strain case and K = (3—v)/(I+v) for gener-
alized plane strain. Poisson’ ratio is denoted by v.

Consider an infinite two-dimensional elastic plate cut along n arcs L, (i —1,2
with end points a,, hi (i = These arcs lie along the circumference of a circle of
n
radius R. The union of these arcs is denoted by L =[J Lj.
=i

Let the rims of L be subjected to the stress distribution P*, P%and Pge= 0. The in-

finite boundary of the plate is subjected to no loads. Using conditions at the rims of the
crack and equation (1) following two Hilbert problems are obtained.

[p(0-i(0]+[d(O-a(@ =2«(4

[(0+a(] Hd(O+n(0r =214 @

Under the assumption ;. je-'0  / R2)- (171/9)t,(2)d = 0. (5)
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Any point on the rims of the crack is denoted by t = ReOand

a{t)y="-p-y"{p;e-pre\

p{t) =\ (K +1I'm)+*(Ke + Pre\ (6)

The superscript + denotes the value of the function at any point t on L when ap-
proached from inner (r < R) region and superscript - denotes the value of the function
when point tis approached from outer (/o> R) region.

In absence of the body forces and no stresses at infinity the solution of equation (4)
may be written as

o(r) -« r)=1 |~ , 0 +[4, (7)
A (o
CKF)QI). I +Tb{ +T"+D’
where
(9)
and
INz)=c@"+c,z"-4c2%"-2 (10)

The constants D, (/ = 0, 1,2) and C, J= 0, I, 2,...,n) are determined using boundary
conditions of the problem.

Stress-intensity factor at a tip z = a, of a crack L, (/ = 0,1,2,..., /1) may be computed
using formula

K\ - iK2 = 2y[btz {(z- a,) 12 (r)}. (11)

Introducing
V(z) = e'9{z/,.(z) + i<0(z)}, (12)

and substituting the value of ®(r) and 12(z) from equations (7) and (8) into equation (2)
one obtains

MO =~ {< ) -pd Y] (13)

Integrating which V{t) is obtained. Consequently the crack face opening displace-
ment Uris obtained.
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3. Statement of problem

An infinite homogeneous, isotropic elastic-perfectly plastic plate is bounded by X0y
plane. The plate is cut along two circular-arc cracks lying along the circumfence of a
circle of radius R with centre (0,0). These cracks are denoted by L\ and L2 and occupy
the arcular interval cp (R,y) to at:(R,R) and b|:(/?,25-4) to d[\(R,2K-y), respectively.
Uniform biaxial tension applied at infinite boundary of the plate causes the opening of
faces of the crack in Mode | type deformations. The plastic zones develop, on account
of this opening of faces of the crack, ahead of the tips of the crack. The two plastic
zones developed at two adjacent interior tips of the two cracks get coalesced. Thus, the
entire arcular region of inter-crack distance forms a plastic zone denoted by /j: lying
from (/?,27r-y) to (R,y). Other two plastic zones developed at the tips a\ is denoted by "2
and occupies the region {R,B) to (R,a) and the third plastic zone /3 at the tip b\ occupies
the interval (R, 2n-a) to [R,2n-R).

To arrest the crack from further opening each rim of the plastic zone /’ (/ - 1,2,3) is
subjected to variable normal stress distribution Pn = <wtsin0, P,e = Pee = 0. Thus, the
crack is arrested from further opening. The yield point stress is denoted by an.and B is
the angle varing along arcular length of the crack. The entire configuration is depicted
in Fig. 1.

Fig. I.The configuration
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4. Solution of the problem

The solution of above-stated problem is obtained by superposing the solutions of
two-component problems contributing toward the stress singularity. These problems are
appropriately derived from the above problem and are termed as Problem | and Prob-
lem Il. These two problems are discussed below.

Problem |

An infinite stress-free plate is bounded by X0y plane. The plate is cut along a circu-
lar-arc crack S lying along the circumference of a circle of radius R and centre (0,0).
The crack S occupies the arcular interval from (/?,—) to (R,a). The crack S is formed
by the union off, (/= 1,2,3) and L,(j = 1,2) i.e. S = I'ULiUl \UL\IJ1'2- The boundary
conditions of the problem are:

(i) Rims of the crack S are acted upon by the uniform stresses Pn = <& and

P,e= Pee- 0.
(ii) No stresses acting at infinity.
(iii) Displacements are single valued at the rims of crack.
Solution of above problem is written directly using Muskhelishvili [2] as

(z- Rcosa)
d>,(z) = (14)
(3-cosa)

(z- Rcosa)
Q.(z) = M2 - cosa) (15)
(3- cosa) X(z)

where
X (z) = (z2 -2RCOSCC + R 2)'12. (16)
The opening mode stress-intensity factor at (K/ j for Problem / at the tip z = a -
Reais obtained substituting <2>i(z) for @ (r) in equation (11). This may be written as

(K/'),, = crr~(2n/?sina) /(3-cosa). a7)

Problem 11
An infinite elastic-perfectly plastic plate is bounded by X0y plane. The plate is cut

along a single arc S (defined above in Problem I) along the circle of radius R with cen-
tre (0,0) and S = NUL2II1"\UL\(Jr2 The boundary conditions of the problem are:
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(i) Each rim of I, (i = 12,3) is subjected to normal stress distribution Prr= cntsino,
Prs—Pee- 0.
(ii) Each rim of L, (1-1,2) are stress free.
(iii) No stresses are prescribed at infinity.
(iv) Displacements are single valued at the rims of the crack S.

Using boundary conditions (i) and (ii) and equation (1) following two Hilbert prob-
lems are obtained:

[®/00-n"X¢/00-N/NOT=0’ 08)

[d,,(0+m,,(")I Hd//(o+n//(0r=2ay sino (19)
3
on = (J I, and tis any point on I. The subscript Il denotes that the function refers to
i=i
Problem II.
The solution of equations (18) and (19) may be written using equations (7) and
(8) as

(20
where X(z) is the same as defined in equation (16) and
po=-it, N (21)
2R

D, =0, (22)
D2=o, (23)
co=c7 (24)

'g5-G 3G7
(25)
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The constants G, (/=0,1,2,...,9) and /7, ("= 1,2) denote

GO=2/-|/1.-' r * i K ' +W> ., -F+«-"
b(a-b\) \b(a—c) 2 yb(a-dt) ~b(a-a,)
G, =4Ri H"sini- 1y, si'nE
A - -ft n i - N ¢ A
G, = —2; tan1 /1ﬂi -tan I1 %ql —+tan ' K -b '
n —b, lif —c, ya- c, ya </,
G3=(G, + G27?cosa),
C4 = — - cosor + - — (Il +cos2a)- /?7G()cosa + G,
2 VA y
. N ft, 77G, G,
Gh= AGQ+ + 11— - cosor (I +cos" aH(+> +1 — G:cosa G.
17
+ —=-j(ft, + 37?cosa)G, + 77"(3cos™ a - i)g 2}].
217
Ci+g,) tca+cs
Go - 2/7 77G-,
G, (IYcTelh - G,Gf) - 2/2G2G2)
G7=

(/72G2G2 -K oje), -72G2G, + G,G3)-4/? 2G2G 2

(I1-cosae V+2HIle B 2)(I- cosae'7+ IH 2e,y2)(l- cosae')e'l( 7
~8 ='o0g, . .
‘ |I cosatT'7 F2H2e ,y')JI- cosae'r T2H»A ")JI- cosae )

(er 2 +2/7,)i-cosajje'y/2|efr/2 + 2//2)- cosa]j
G9=log( (26)
je-'>/2+ " 2+ 2nh 2y(-cosaj{e™2(" /2 + 277,)|-cosa]
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‘a+ iR K + yAN .
I/, =sin 2 Jsin1/2| - n H1=sinl/: y\]srnllrr-q--i--y-l. (27)
2 | 2 J 2 J

The opening mode stress-intensity factor (k ;*j for this problem substituting ®u(r)

from equation (20) for <P(z) into equation (11) attip z=a = Reaas

<l f\-/N RG-,
(") =- " Re - cosa (1 + cos2a)
(uR sin a) V2
(28)
1G, G 2 R G
+2C| +

- G, cosa +2C, a+-"a~ -t
R a
5. Plastic zone length and crack opening displacement

Plastic zone length for the original problem is obtained by superposing appropriately
the stress-intensity factors obtained at the tip z = a = Re'a, using the condition

(29)
. "I -/n G,
,232\nR sina) - a v (3 - cosa) Re cosa

\V? R

(30)
RG7t. , oy (G G, R-Gn
-(1 +cos2aj + 2C\ + 5 G, cosa +2Cn ah— —Cr - =m - 0
R

Determining a from above equation, the plastic zone’s arcular length is then calcu-
lated evaluating \R(a-R)\.

The Dugdale model crack opening displacement WUl at the crack face is calculated by
using

UR(z)=".u(z)~ 4 (4 (€D)

UR CcOD for Problem /, obtained using equation (13) substituting value of ®P\(r) for

<P(z) from equation (14)

UR=Re R (z-a)'/2(z-b)'2/{z(3-cosa)}]j. (32)
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Similarly UR coD for Problem IlI, substituting ®u(:) for ®{:) from equation (20)

into equation (13) and integrating one obtains

” . r (2R2- 2zRcosa + 2AV (z2)
u« = Re - A ’]{CB@ |Og, 1°
n_

RG
+<—4 —-cosa - q(I+c032a)+2C,IIogt{2.V(z)+22-2/(cosa}+
2 \R

G9cosa +2C0jj.Y(z)+ [?cosalogc{2.Y(z)+2z-2a cosa}|+ ~3)
R

G 3/i
£ 88 (zx3licosa v 3c0sia - ljlogt{2.V (z)-2 -
R

. R
- 2licosa

m

Now calculating crack tip opening displacement at the actual crack tips z = ci\= Re”
and z = C| = Re'yis trivially and obtained substituting UR and UR into equation (31) for

prescribed ajaye B, R and V.

6. Results

The behaviour of load required to close the plastic zones with respect to the increase
in crack angle and crack radius is plotted in Figs 2 and 3, respectively. It may be ob-
served from Fig. 2 as the crack length is increased, keeping the plastic zone size Fixed
than less load is required for arresting the crack. Also it is seen that further less load is
required if the distance between the two cracks is increased keeping crack and plastic
zone lengths fixed. Figure 3 shows the variation of load ratio (load applied at infin-
ity/yield point stress) with respect to crack radius. As the radius of the circle on which
the cracks lie is increased the effect of the crack on each other diminishes.

The variation of crack opening displacement (COD) at the interior tip of the crack
versus the interior plastic zone is shown in Fig. 4. The crack opens more if the plastic
zone size is increased, as expected. Figure 5 shows the variation of COD at the exterior
tip of the crack versus length of the exterior plastic zone. Here can also be that for big-
ger plastic zone size the crack opens more.

In Fig. 6 COD at interior tip is plotted against increasing crack length. It is interest-
ing to note that if the cracks are moved apart increasing the crack radius, the crack
opening variations smoothens out.
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Crack Angle (in degrees)

Fit;. 2. Variation of load ratio at the exterior tip of the crack versus crack radius

Radius

Fig. 3- Variation of load ratio at the exterior tip of the crack versus crack radius
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Fij;. 4. Variation of crack opening displacement at the interior tip of the crack
versus interior plastic zone length

Exterior Plastic Zone

Fig. 5. Variation of crack opening displacement at the exterior tip of the crack
versus exterior plastic zone length
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Crack Angle (in degrees)

Fig. 6. Variation of crack opening displacement at the interior tip of the crack versus crack angle

Fig. 7. Variation of crack opening displacement at the exterior tip of the crack versus crack angle
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8. Variation of crack opening displacement at the interior tip of the crack versus crack radius

9. Variation of crack opening displacement at the exterior tip of the crack versus crack radius
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The effect of increasing crack length on COD at the exterior tip is plotted in Fig. 7.
It may be observed that at the exterior tip, since the effect of the existing crack in
neighbourhood is less, the COD variation is not as turbulent as in case of interior tip of
the crack.

Figures 8 and 9 show the behaviour of COD at interior and exterior tips as the crack
radius (the radius of the circle on circumference of which the cracks lie) is increased. In
Fig. 8 the COD pattern is such that the COD at two interior tips of the two cracks tend
to coalesce. The different plastic zone ratio, for which the graphs are drawn, is the ratio
between exterior plastic zone to interior plastic zone. Figure 9 shows the same variation
at exterior tip of the crack. The COD at the exterior tip increases as the size of crack ra-
dius is increased.
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The determination of rock fracture toughness is one of the most significant problems in fracture me-
chanics. This paper suggests a method for determining the stress intensity factor (Kic) of limestone beams
under three point bending.

This method is based on a model with new geometry. The regulations valid at present oblige us to use
rectangular specimens, though these specimens are not always easy to be produced at rocks because of
the material structure, and the number of failured beams is relatively high during creating. It seems to be
more advantageous to choose an experimental form which is anyway available in the course of the boring
sampling: the half-cylindrical specimen, simply made from cylindrical boring core with cutting it into two
and with an artificial notch, is easier to be produced and has less loss than the rectangular one, and the
three point bending subjection can be practicable in the same way.

This paper presents the laboratory and finite element investigations for the rectangular and half-
cylindrical specimens, and finally suggests analytical formula for the calculation of the stress intensity
factor based on the new geometry.

1. Introduction

A significant field of rock mechanics’ researches is the determination of material
properties, which is necessary for the study of discipline. The results of considerations
connected with laboratory investigations and research-technology will appear in everyday
practice in a short time helping in measuring and structure planning and supporting the
assessmental and qualification work respectively. More and more laboratory researches
turn their attention to examinations connected with fracture and failure. The determina-
tion of stress intensity factor, which is the most useful for qualification inquiry among the
fracture mechanical characteristics, and its technological problems arise as research ex-
ercise.

It’s very important that what kind of specimens we use or can use for laboratory ex-
periments beside the questions: what, with what and how. The available sample is deter-
minant from the point of research-technology. That’s why one can only apply such char-
acteristics for the assessment of material properties that contain the correction factors
coming from shape and size effects.

0864-8085/1995-96/% 5.00 © 1995-96 Akadémiai Kiado, Budapest
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The most frequent sample of the laboratory rock mechanics’ investigations is the core
originating from borings. The deepening borings provide high-level knowledge of rock
environment of engineering constructions. Large number of rock variations has to be as-
sessed and qualified with the available core material.

The boring core material provides the economical application of the standard cylindri-
cal specimens in research-technological respect. Therefore - and not only from theoreti-
cal considerations - in rock mechanical testing works we use so-called standard cylindri-
cal specimens, which can be made simply from the boring core with cutting into two. If
necessary cylindrical specimens can be produced from different samples got in other
ways (e.g. from rock mass) with using laboratory boring machine.

For determining the stress intensity factor a research has been standardized, that
makes the inclusion of the Klc possible with bending of the notched boring core
(Ouchterlony, 1989). We also have possibility to produce so-called “modified disc
specimens” with notched disks cut from the boring core and to take down this significant
material property with the help of these samples. Czoboly and his co-authors (Czoboly,
1986) gave suggestion for using these boring cores.

At geological research-borings for determining the petrographic and settlemental
properties the cores often have to be cut into two along their longitudinal axis. These
properties can be more easy to analyze at the cut surface, and one of the core’s half can
be applied for testing and the other for retaining. The notched sample half applied for
testing is suitable for the determination of the critical stress intensity factor.

Naturally, the new shape of specimen —contrary to the traditional bending model -
raises a large number of technical questions. This paper will give answers for them with
demonstrating the results of the theoretical and experimental research. The purpose of our
research work was to make the new specimens - which are available in large quantities
and can be produced easily - suitable for determining fracture mechanical properties and
thus they can be fitted into the system of the rock mechanics’ laboratory research.

2. Laboratory experiments

Three point bending tests were done on different cross-sectional specimens in the
laboratory at the Department of Engineering Geology at Technical University of Buda-
pest. The specimens were made from sandstone, dense and coarse limestone. At each
stone first rectangular, then half-cylindrical specimens were broken. For examination
series such rocks were chosen, that was suitable for the homogeneous and isotropic con-
ditions in examination respect. The examinated rocks were:

- dense limestone (I) (Budapest, Pesthidegkut, Hungary) with carbonate tissue and
containing calcite- and clay-veins in some places,

- coarse limestone (Vraca, Bulgaria), fine-grained, carbonatic rock with beet pot-
ashed bonding,

- sandstone (Maulbronn, Germany), auburn, fine-grained rock with glued tissue and
silicate bonding,
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-dense limestone (Il) (Vac, Hungary) fine-grained, compact rock with micro-crystal
tissue and containing calcite-knots.

The artificial notch causing crack and “collecting” tensile stress concentration was the
same at all types of material and geometrical forms. The measurements were done on
laboratory air-dried rock physical specimens.

The geometrical characteristics, data and the type of loading can be seen in Fig. 1 at
rectangular and Fig. 2 at half-cylindrical specimens. It is important to mention that rec-
tangular specimens were made from the same cylindrical cores as we used for the pro-
duction of the half-cylindrical samples with cutting them into two along their longitudinal
axis, therefore the geometrical relationship between the two different cross-sectional
models can be directly and simply established. In every case the examination apparatus
was a universal compress machine type SZF1 (Anyagvizsgaléo Késziulékek Gyéara, Buda-
pest).

The basic strength properties (Young’s modulus, Poisson’s ratio) were also gained
from the laboratory experiments of applied rocks. Table I shows these values for the four
materials.

In the course of laboratory measurements we determined the critical load needed for
bending failure. To ensure the quasi-static nature of the loading procedure, load-increase
was done in such a way that stress-increase speed remained below 1 Mpa/sec, a fixed
value in the standard concerning bending. The gained critical loads of rectangular and
half-cylindrical specimens can be seen in Table 2.

Sample Lo w B a

Imm 1 Imm| Immj| Imm|
PI-1 100 335 36.7 4.36
P1-2 100 39.6 45.4 6.61
P1-3 100 38.7 39.4 3.63
P1-4 100 39.6 38.9 4.12
P1-5 100 39.8 39.2 4.90
P1-6 100 39.9 39.2 1.54

Fig. . The geometrical characteristics of the rectangular specimen and the type of loading
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Sample n|
Imm|
Cl-l 100
Cl-2 100
CiI-3 100
Cl-4 100
Cl-5 100
Cl-6 100
Cl-7 100
Cll-1 100
CllI-2 100
C11-3 100
Cll-4 100
Cll-5 100
Cll-6 100
ci-7 100
Cll1-8 100
Cll-9 100
Cll-10 100

Cll-11 100

Fig. 2. The geometrical characteristics of the half-cylindrical specimen and the type of loading

Table 1
Strength properties

Young’s modulus (E)

Sample Material
IN/mm2|
PI-1, PI-2; CI-1 - CI-3  Dense limestone (1) 26340
PI1-3, PI-4; Cl-4, CI-5 Coarse limestone 8430
PI-5, PI-6; CI-6, CI-7 Sandstone 7830
Cll-1 -CllI-11 Dense limestone (1) 35870

3. Numerical solutions

Rnoin
[mm|
43.3

37.8
38.0
27.3
25.3
26.9
29.9
375
30.8
31.8
32.0
30.0
30.9

34.3
21.3
26.1

21.6
26.5

Poisson’s ratio (v)

[-1
0.20
0.25

0.25
0.24

B
[mm]
83.8
83.3
83.2
55.1
54.6
58.9
59.3
63.4
63.0
63.3
63.5
63.3
62.6
71.5
53.9
55.1
54.2
55.1

a

[mm]
2.42

1.48
2.79

1.87
2.06

1.64
2.24
3.80
2.53

3.58

3.06
3.78
2.93
4.69
4.96

3.99

5.63
4.01

The regulations based on fracture mechanics’ theoretical methods give possibil-

ity for the determination of stress intensity factor limit with the help of critical load de-

termined by laboratory measurements. These relations are based on the Irwin’s theory,
that modified the Koloszov-Muszhelisvili-W estergaard’s disc-solving executed with

complex stress functions. These discs had an artificial sharp crack and supposed infinite

size. Originally Irwin restricted the solution valid for the whole disc to the immediate sur-

roundings of the crack tip. The stress intensity factor introduced in the course of this re-
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duction is used for mathematical description of singularity and physical description of
stress concentration (see the general works listed at References, e.g.: Broek, Hahn or
Anderson), and its limit can be considered as a material constant at a given geometrical
crack face.

The situation at real structures is much more complicated than as mentioned above:
boundary conditions provided by finite size and complicated geometrical form is basi-
cally different from the assumptions of the original solution. In practical cases this diffi-
culty is absolved in such a way that size- and shape-dependent correction factors are ini-
tiated to modify the results derived from theoretical assumptions. This leads to the conse-
guence that new geometrical correction factors have to be determined for each new case
(excellent summary can be found from the stress intensity factors of the different real
sized elements and from the geometrical correction functions detailed the factors’ solu-
tions in e.g. the volumes of “Stress Intensity Factors Handbook” published in Japan and
the U.S.A.).

Table 2
Critical load values

Critical load (Pc)

Sample Material

[N]
PI-1 Dense limestone (1) 2450
P1-2 Dense limestone (1) 5000
P1-3 Coarse limestone 410
PI1-4 Coarse limestone 3X0
P1-5 Sandstone 1150
P1-6 Sandstone 1460
CM Dense limestone (I) 7650
Cl-2 Dense limestone (I) 7400
ClI-3 Dense limestone (I) 6X50
Cl-4 Coarse limestone 190
ClI-5 Coarse limestone 140
Cl-6 Sandstone 760
Cl-7 Sandstone X90
Cll-I Dense limestone (I1) 2920
Cll-2 Dense limestone (I1) 3400
CllI-3 Dense limestone (I1) 22X0
Cll-4 Dense limestone (l1) 3060
CIl-5 Dense limestone (I1) 2630
Cll-6 Dense limestone (I1) 39(H)
Cll-7 Dense limestone (I1) 4000
CI1-X Dense limestone (I1) 900
ClI-9 Dense limestone (1) 1720
ClI-10 Dense limestone (1) X50
Cll-l Dense limestone (1) 1750
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Table 1
Stress intensity factors of rectangular specimens

Stress intensity factor (Kic)

Sample Material
[N/mm32]

PI-1 Dense limestone (1) 58.12
PI-2 Dense limestone (1) 83.86
PI-3 Coarse limestone 6.31
Pl-4 Coarse limestone 5.99
PI-5 Sandstone 19.23
PI-6 Sandstone 14.56

These effects issued from the geometry of specimens are the reasons for the necessity
of the numerical examinations connected to the experiments performed by us, as the pres-
ent regulations give the geometrical correction factors’ value only for the rectangular

specimens’ three point bending case, so these factors have to be determined separately at

4-node tetrahedron

L./2 IV B/2
7!

Fig. .1. 3D finite element mesh of rectangular specimens
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N[0)

Fig. 4. 3D finite element mesh of half-cylindrical specimens

half-cylindrical specimens. The control of identification is expediently executed with the
help of another numerical model for the sake of more unambiguous control. At the present
examinations we used fracture mechanical applications provided by three dimensional
(3D) finite element analysis.

First we examined what kind of stress intensity factors the analytic formula (in the
case of standard rectangular specimens) defined by the present current competent norms
gave for result. Table 3 contains these values showing the applied formula [9].

Next we examined the results of 3D finite element analysis (excellent summary can
be found on the fracture mechanical applications of finite element technology in the

compression zone

neutral line

tensile zone

Fig. 5. The contour line picture of stress distribution in axis of rotation direction
for half-cylindrical specimen
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works of Fiizy, Owen, Fawkes etc.). Figure 3 shows the finite element mesh for rectan-
gular and Fig. 4 for half-cylindrical specimens.

Beside the finite element mesh a typical stress distribution of the vertical segment un-
der the load can be seen for half-cylindrical specimens in Fig. 5.

During fracture mechanical solutions the finite element examinations give estimation
for the stress intensity factors with the application of displacement field (with the help of
formulas got for displacements from Koloszov-Muszhelisvili’s complex functional solu-
tion) at the surroundings of crack tip (in the present case artificial notch). The connection
of K|Cvalues with displacements can be described with the following simple equation [3]:

where \f is the displacement component in the direction of notch, r, is a polar coordinate
whose origin is at the crack tip, E is the Young’s modulus, v is the Poisson’s ratio. Natu-
rally this relation is valid only far from the crack tip, so at the tip, at the singularity place
we got the Kic value from the extrapolation of the other Kid values. Table 4 and Fig. 6
show a sample for this extrapolation based on data of C1-1 specimen.

The stress intensity factors got from the results of 3D finite element solutions can be
seen in Table 4 and Table 5.

200 +- r,-Kld
175

150

125

100 - 78.84

Ja

D>

50 4-

0 5 10 15 20 26 31 36 41
r, (mm)

Fig. 6. A sample for the extrapolation of stress intensity factor (CI-1specimen)
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Sample

PI-1
P1-2
Cl-1
Cl-2
CI-3

PI-3
Pl1-4
Cl-4
Cl-5

PI1-5
P1-6
Cl-6
Cl-7

Cll-1
Cll-2
CllI-3
Cll-4
ClI-5
Cll-6
Cl1-7
Cll-8
ClI-9
ClI-10
Cll-11

221
208
195
182
169
156
143
130

Table 4

Numerical values of an
extrapolation example (see Fig. 6)

rfi [mm] Kld [N/mmv:l

5.11
10.22
15.33

20.44
25.55
30.66
35.77
40.88

Table 5
The extrapolated

Material

139.19

100.58
84.31
76.44
74.49
80.11
99.76

186.36

value

It= 78.84 [N/mm32]

Kk [N/mmK]

Dense limestone (1)

Coarse limestone

Sandstone

Dense limestone (1)

65.43
80.09
78.84
101.25
95.75

7.53
6.77
8.18
7.56

20.33
24.38
31.98
28.60

52.47
96.86
61.84
80.01
84.10
112.36
84.57
94.96
91.58
88.64
88.85
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4. Proposed connection for the solution of stress intensity factor

From the laboratory experiments presented above, or rather from the critical loads
given as the results of the experiments, the stress intensity factors could be determined
with the help of analytical formulas and finite element calculations. Our next task was to
determine a new analytic formula at the half-cylindrical specimen to give the same result
for stress intensity factor as the rectangular specimen applied as a good method until
nowadays, but being difficult to produce.

After the assessment and analysis of the results we suggest the following relation for
the new formula:

K,c= ¢, “ «-V4mKk ma mY(a) , where a=—
A nom Rnom

Y(a) =152- 2.20+a +7.71ma2- 1355ma 3 + 14.25+a 4

Rnom is the height of the half-cylindrical specimen, LO is the distance between the sup-
ports, a is the crack length (see Fig. 2) and Pc is the critical load. The stress intensity
factors soluted from this new formula were compared with the results of the other meth-
ods (see Table 6).

Table 6
The comparison of the numerical and analytical values

sample New Klc K]t from num. solution Difference

(N/mm*) (N/mmJC) %
Cl 1 73.73 78.84 6.48
Cl-2 85.37 101.25 15.68
CI-3 103.12 95.75 7.15
Cl-4 6.34 8.18 22.49
Cl-5 6.09 7.56 19.44
Cl-6 25.02 31.98 21.76
CI-7 24.61 28.60 13.95
Cll-1 52.18 52.47 0.55
Cll-2 90.84 96.86 6.22
CII-3 64.34 61.84 3.89
Cll-4 79.30 80.01 0.89
Cll-5 90.07 84.10 6.63
ClI-6 109.91 112.36 2.18
Cl17 101.49 84.57 16.67
Cll-8 95.33 94.96 0.39
Cll-9 90.64 91.58 1.03
CllI-10 91.96 88.64 3.61
Cl-I1'1 88.39 88.85 0.52
Mean difference: 8.31%
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0.05 0.1 0.15 0.2 0.25

a/Rno

Fig. 7. The effect of the crack length to the stress intensity factor

The low error-percentage difference is shown in Table 6 refers to the serviceability of the
formula.

In the last step, besides checking the correction of the new formula, we examined the
effect of crack length to the connection suggested by us at half-cylindrical dense lime-
stone specimens (signed CIM-i, i = 1-11). The results of this examination can be seen in
Fig. 7. The value of the stress intensity factor stabilizes with the increase of the relative
crack length at 0.15. We did not check this statement above 0.27.

5. Conclusions

This paper suggests a new analytic formula for the solution of stress intensity factor at
a new and more easy to produce formability specimens of rocks. First critical loads were
measured from three point bending tests of sandstone, dense and coarse limestone sam-
ples, then stress intensity parameters were determined with the help of presently valid
analytic formulas at rectangular specimens, and the results of all examinations were
checked with Finite element method. The results of the new formula constructed with the
help of data assessment and analysis proved its serviceability.
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ACCOUNT REALISTIC BOUNDARY CONDITIONS

Bo6di. I, Fuzy, J. and Klopka, Z.

Technical University of Budapest, Department of Reinforced Concrete Structures,
Bertalan Lajos u. 2, H-152J Budapest, Hungary

(Received: 10 April 1998)

When determining the state of stress and deformation of a shell, it is always a basic assumption that
the boundaries behave exactly according to the assumed theoretical ones (“rigid" or “semi-rigid” edge
beams, tie rods without elongation, etc.). It can be easily seen, however, that this is not strictly correct, not
least because of the finite dimensions of the cross-section of the edge beam or tie rod. As a consequence,
the deformations of the boundary points will have values other than theoretically assumed. It is this de-
formational incompatibility that we examine in this work.

The problem was approached numerically, where a large number of problems were analysed using a
finite element program. Some design parameters were varied in order to analyse their respective influence
on the state of stress and deformation. The dimensions of the edge beam, the connection of adjacent edge
beams, the cross-section of the tie rod and the direction of the load were the parameters which were var-
ied. The model whose results matched closest the theoretical solution was chosen as the basic model. The
results obtained by changing the design parameters were compared to the basic model and the differences
were plotted graphically. Based upon the analysis we have concluded that the deviation from the mem-
brane stress state is caused rather by the displacement of the supports or elongation of the tie rod than by
the finite dimensions and the nature of the connection of the edge beams.

1. Introduction

The general goal of research was to examine the deformational incompatibility that
exists between edge beams and the shells in the membrane stress state. As the method of
research we have chosen the finite element examination of a large number of suitably de-
fined particular cases and we have derived theoretical conclusions from them. As this
method cannot yield general results, we have chosen several specific problems; in this
paper we will present the conclusions obtained for the case of hyperbolic paraboloid
shells (Fig. 1).

0864-8085/95-96/$ 5,(X) ©1995-96 Akadémiai Kiadd, Budapest
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2. Review of the results of analysis

The data were varied in such way, that the effects of changes in the geometry of edge
beams and in the support conditions (the tie rod is treated as part of the edge beam sys-
tem, too) can be traced. Based upon this the following statements could be made.

The most important statement is that the membrane solution can be reached approxi-
mately only. With respect to the importance of the above statement, we will describe in
detail those assumptions upon which were used in the model.

A's the sign of the membrane deformation is opposite to that of the supporting struc-
ture (e.g. tie rod), active, external forces having the appropriate signs were employed at
the four corners of the structure acting in the direction of the diagonal, replacing the re-
actions of the horizontal support (tie rod). The tensile stiffness of the edge beam was cho-
sen as infinitely large (infinitely large in the numerical analysis means a very large num-
ber) which prevents the compressive deformations of the edge beam on the one hand, and
ensure that the longitudinal internal forces of the adjacent shell parts approach zero on
the other. The vertical bending stiffness of the edge beam is chosen to be infinitely large,
which is to simulate the continuous support; the horizontal bending stiffness (in the plane
ofthe shell) is also set to infinity to preserve the straightness of the

-42%

Fig. 2
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edge beam. The connections between the edge beams are hinged, enabling the shear de-
formations in the corners of the shell. In order to minimise the deviation of results due to
the approximate assumptions of shallow shells, the load is set to be acting perpendicular
to the surface instead of in the vertical direction. The shear stresses Nxycalculated for the
above system show a deviation from the nominal stresses (according to the membrane
solution) from +24% to -42% , respectively (Fig. 2).

The internal forces Nx and Ny, which act along the straight generatrices, can not
counterbalance any external load, so the deviation of the calculated stresses N xy from the
nominal ones yields that portion of the load which has to be carried by bending moments
(plate action).

If a diagonal tie rod is applied instead of the reaction forces acting as external loads,
the nature of the N xy stress distribution does not change essentially, only the magnitude of
the deviations from the membrane stresses increase (Fig. 3). The deviations of the
stresses Nxy became smooth again, if the edge beam corner connections are rigidly con-
nected (instead of the hinged connection, see Fig. 4).

In this latter case the rigidly connected edge beams, having a significant bending stiff-
ness, form a closed frame, which eliminates the necessity of the tie rod. In this case a
negligible horizontal force arises in the tie rod of the model indeed. The nature of the
distribution of shear stresses differ significantly from the previous ones in these cases,
and the portion of the load producing plate moments increases (see the dashed line in the
figure).

Figure 4 depicts the case where the infinitely rigid bending stiffness of the edge beams
is reduced to zero (but the tensile stiffness remains finite). Naturally, in this case the tie
rod is necessary but even now the axial force arising in the tie rod approaches 82% to
90% of the theoretical value from depending on whether the connection between the ad-
jacent edge beams are hinged or rigid. This phenomenon refers to that even in this case a
frame-like action develops in the edge beams due to the co-operation between the shell
and the edge beam.
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Fig. 4

+105%

Fig. 5
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Furthermore, the distribution of the axial force (normal force - Nboumtoy) arising in the
edge beam and the parallel, normal force of the adjoining shell (Nx) will be analyzed. The
results are summarized in Fig. 6.

In Fig. 6/a the distribution of the normal force is shown in the case when two
horizontal reaction forces are acting in the diagonal direction. Figure 6/b depicts the same
case with the difference that there are four reaction forces at the corners. The case when
the horizontal bending stiffness of the edge beams is quite large, the tensile stiffness is fi-
nite and the connection between the edge beams is rigid, is shown in Fig. 6/c. Obviously,
this coincides with the case when four reaction forces are applied, a closed frame action
develops and the axial force in the tie rod is practically nil. The adjoining
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parallel, normal (membrane) shell force is also shown, which follows the compression of
the edge beam having a finite tensile stiffness.

Figure 6/d shows the case, when the horizontal bending stiffness of the edge beam is
set to zero. Due to this, the frame effect has to be taken over by the shell. Distortion of
this nature can be seen both in distribution of the axial normal force of the edge beam and
in the distribution of the adjoining parallel normal shell force. The axial force of the tie
rod equals 85% ofthat of the membrane solution, what means that 15% is taken over by
the in-plane frame-like action of the shell.

Finally, Fig. 6/e depicts the case when the dimensions of the edge beam are within the
limits of the realisable technical solutions. It can be seen that the distribution of the axial
force deviates from the membrane solution to such an extent that it even changes sign
several times.

The distribution of the shearing stresses for this case can be seen in Fig. 7.

3. Summary
The numerical analysis has shown that the membrane solution in the case of hyper-
bolic paraboloid shells cannot be achieved even with idealised assumptions. Furthermore,

within the limits of realisable technical solutions the results obtained are significantly
different from the ones yielded by the membrane solution.
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SEMI EMPIRICAL THEORY OF MASONRY STRENGTH

Ding Dajun
Nanjing Institute of Technology, NIT, China

(Received: 5 September 1997)

Basing on a large number of experimental studies conducted in China and referring to Russian mate-
rials, author tries to summarize up preliminarily a more complete theory of masonry strength (1st draft)

for discussion. He hopes to have the kind help from the vast members of colleagues at home and abroad

so as to revise continuously for striving to achieve more complete and more perfect one. Because the

studies on brick masonry were the most, hence in this article it will be taken as a dominant to be illus-

trated.

1. Compressive strength of unreinforced masonry

1.1. Failure mechanism ofmasonry under compression

Because of the nonuniformity of mortar, the units is masonry will bear flexural and
shearing stresses beside nonuniform compressive stress. Figure 1 shows the sketch of
the complicated stress and deformation (exaggerated into 200-folds) states of bricks in

masonry given in Russian material [1].

b) a=2. IOMPa §= 3-14MPa

Fig. I.In masonry, bricks bear nonuniform compressive (a), flexural and shearing stresses,
and their deformations (b)
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Fii;. 2. Failure of brick masonry under compression (experimental photo of NIT)

Owing to bearing nonuniform compressive stress and flexural as well as shearing
stresses (the flexural and shearing stresses are caused due to nonuniform compressive
stress), masonry strength will be much lower than unit strength. Brick masonry fails un-
der compression is due to the instability of small columns with thickness of Yr brick,
separated by continuous vertical cracks through several courses of brick under flexural
and shearing stresses (Fig. 2). [2], i.e. the brick strength has not been fully utilized. The
strength of stone masonry with small stone packing pieces in mortar joints is lower than
that without these packing pieces [3]. But tests showed the masonry strength still de-
pends on those of its matrices (unit and mortar), because the higher the unit strength is,
the higher the strength of units against flexure and shear is also; as the mortar strength
is higher, the flexural and shearing stresses caused in unit will be smaller.

Based on a large number of test results obtained in China, to summarizes up these
has obtained that the average compressive strength of masonry is a combination of
those of units and mortar and will be adjusted with the changes of mortar strength, the
general formula [4];

L, = +0.07f 2)k2 (1)

where

fufz - strengths of unit and mortar, respectively, in MPa;

kKl - factor, varying with the kinds of unit in masonry and laying methods, see Table
1, where the kinds of unit mean whether there are holes in units or not, for row-
lock cavity wall, the void ratio attains 80%, so K\ is very low and equal to 0.13;
for rubble masonry, because the lap of rubble in masonry is not good, so Kt is
also low and equal to 0.22; as for the masonry of hollow brick with void ratio of
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25% or so, but it is considered as that of a solid brick due to neglecting the fa-
vourable influence of its larger thickness on masonry strength;

k2 - further adjustment factor of masonry strength due to the change of mortar
strength (see Table 1and below);

a - utilization factor, being related to the thickness of units, in rowlock cavity wall,
the thickness of a course in masonry is increased as it is built on edge, soa= 1.

Table |

Average values of axially compressive strength (MPa)

I,=% 0r (1 +0-07/:)%,

Sequence Kinds of masonry

a k2
1 clay brick, hollow brick, nonclay silicate brick 0.78 0.5 as/>m 1, /t2= 0.6+ 0.4/2
2 1-brick thick row-lock cavity wall 0.13 1.0 asf2=0, »2=0.8
3 small hollow concrete block 0.46 0.9 as/i2 =0, *2= ().8
4 medium block 0.47 1.0 asf2>5, *2=1.15-0.03/2
5 crude-worked stone 0.79 05 asf2< 1, 2=10.6 +0.412
6 rubble 0.22 0.5 as;2<25, »2=0.4 +0.24f2
Remark: I. all K2excluded the conditions in Table | are equal to I.
2. /| - average value of compressive strength of units (brick, stone, block), f2- average value of

mortar, both in MPa.

From Table 1, it can be seen that for the masonry built with thicker units, a will be
greater as (0.9-1.0), for the others, a= 0.5.

(I-0.07/2)A2 in Table 1shows the influence of mortar strength on masonry strength,
i.e. masonry strength increases linearly with the increase of mortar strength, but asf2<a
definite value, masonry strength will decrease further, it is due to that as units are
stressed integrally with mortar in masonry, the lateral deformations of units and mortar
should be consistent; the lateral deformation of low-strength mortar is so larger as to
cause a lateral deformation in units larger than that they are stressed in compression
separately, it results in transversely tensile stress in units, so leads to decrease masonry
strength further [5], i.e. in this case, *2< 1; but the mortar is constrained by units in ma-
sonry to cause transversely compressive stress resulting in a 3-dimensional compressive
state so its compressive strength is increased very greatly, thus, the masonry strength
with low-strength mortar is greater than mortar strength, so the masonry with mM =0
(in newly built masonry or the mortar strength in freeze-thow stage as making check
calculation for the masonry built with winter construction) has a definite values of
strength and elasticity modulus (capacity against deformation).

For medium block masonry, asf2>5 MPa, k2> 1, i.e. masonry strength should be
increased, it is suggested from analyzing test results. Writing the formula offmwith k2
and finding dfjdf= 0 gives (f2) = 12.024 MPa to obtain the maximum calculated/,,, =
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1.453 k\f\ taking (f2) = 12 MPa; asf2> 12 MPa, the calculated/;,, will be contrarily de-
creased. Hence, author proposed to take/,, = 1.45 k\f\ [6] asf2> 12 MPa.

For the masonries of all kind, as f2are not over than the about boundary values, the
influence of mortar is the same as (1 + 0.07 f2), if/2 = 2.5-10 MPa, the masonry
strength will be increased equally to 1.45-folds. But following Russian theory, the in-
fluences of mortar strength are, respectively, in the order: rubble masonry, brick ma-
sonry, concrete block masonry and large block masonry (with thickness of a course be-
ing equal to and thicker than 600 mm), if/, = 10 MPa (in Chinese Code, the influence
of mortar strength is independent with relation to unit strength, but in Russian theory,
the influence is dependent on unit strength), as mortar strength is in the above field, the
increases of masonry strength are, respectively, 1.55, 1.42, 1.25 and 1.0, i.e. mortar
strength has no influence on the strength of large block masonry.

For two batches of bricks with the same compressive strength, but one with higher
flexural strength, of which the masonry has also high compressive strength than that of
masonry of bricks with lower flexural strength. Hence for standard bricks, beside com -
pressive strength, a corresponding requirement of flexural strength should be pre-
scribed, i.e. the flexural strength is also an important mechanical index of standard
bricks. For thicker hollow bricks and blocks, it is unnecessary to suggest the require-
ment of flexural strength.

1.2. Otherfactors influencing compressive strength of masonry

The factors influencing masonry strength are very many, some mains are given in
the following.

1.2.1. Regularity of units, density and uniformity of mortar joints

These factors are mutually relative. Because the regularity of units influences the
uniformity of built mortar joints. Both the density and uniformity of mortar joint will in-
fluence the uniform degree of compressive stress in units built in masonry, i.e. will re-
late to the flexural and shearing stresses caused in units being larger or smaller, so fi-
nally will decide masonry strength.

For an example, if taking the strength of crude-worked stone masonry as 1.0, the
strengths of fine-finished stone masonry, semifinished stone masonry, rough-finished
stone masonry and the masonry of stone with closed cracks around edges will be, re-
spectively, 1.5, 1.3, 1.2 and 0.8 [7].

The density and uniformity of mortar joints will be improved under long-term com -
pression (mainly in earlier stage), so the masonry strength will be increased [8]. Beside
the quality of masonry built by high-level brick-layers being higher, one of the reasons
of increasing strength is also because the newly built masonry is compressed in earlier
stage [9] due to quickened masonry pace.
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Fig-3— fn 1fmk - /- curve

1.2.2. Fullness of mortar joints

The fullness of mortar joints directly influences the uniformity of compression in
units and the quantities of flexural and shearing stresses caused in them, so finally in-
fluences masonry strength.

Based on test results, the Buildings Research Institute of Sichuan Province gave [10L

frit ~ (0-2+ 08F+ 04F2)/"t, (2)

where

F - fullness of mortar in horizontal joints, in decimal;
f~AK- characteristic value of masonry strength in Design Code GBJ3-88, determined
following unit and mortar strengths.

From Eq. (2), it can be seen that as F = 0.73,/,,, will be equal to the value given in
Code. Chinese Technical Code of Work and Acceptance for Masonry Engineering [11]
prescribes the fullness of mortar joints should be not smaller than 0.8, it allows for un-
foreseen circumstances.

The change curve of Tm/f't- F isshown in Fig. 3.
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1.2.3. Thickness of mortar joints

The thicker the joint thickness is, the greater the flexural and shearing stresses
caused by the effect of beams on elastic foundation will become, then the masonry
strength will decrease more greatly. Basing on the statistics of test results, Hunan Uni-
versity proposed preliminary influence factor as follows 18j:

14

®)

W= 1+ 0.041

where t —joint thickness, in mm.

The curve of y/,-t is shown in Fig. 4.

It can be seen that the thinner the thickness t is, the higher the masonry strength will
be. The strength of masonry of bricks with two built surfaces to be polished is much
greater than the ordinary brick masonry with mortar joints thickness of 10 mm (attain-
ing 60-90% ) [8].

But it should not overestimate the favourable influence of very thin mortar joint, be-
cause this influence depends on the regularity of built surfaces of units. If the built sur-
faces of units are not regular, as the mortar joints are too thin, the nonuniformity of them
will be increased, the very small stones in sand mixed in mortar will play a role of stiff
points in joints to cause additional flexural and shearing stresses resulting in a compres-
sive strength decrease of masonry. The standard joint thicknesses are 8-12 mm [8].
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1.2.4. Water content ratio of bricks

The water content ratio will also influence the compressive strength of masonry. As
the water content ratio is low, the water retentivity of mortar is influenced, it will influ-
ence built quality of masonry and lead to a decrase of the compressive strength of ma-
sonry.

In ref. [8], based on tests an influence factor of water content ratio on the compres-
sive strength of masonry was proposed as follows:

(4)

where —water content ratio of bricks as being built, in 19%.

Figure 5 shows yr,, - curve, as is larger, the compressive strength of masonry
will be higher. It is because the wetter the bricks are, even there is a flowing phenome-
non of mortar on brick surfaces, but owing to so good mobility of mortar as to be able
to pave thin uniform joints, then improve the complicated stress state in masonry, then
the more compressive strength of masonry increases |8].

1.2.5. Pattern of lapped joints
The pattern of lapped joints of units is also to influence the compressive strength of

masonry. As the height of unlapped joints is not over 3 times of half-brick length, the
influence is not great, otherwise the compressive strength will have a greater decrease

112,

1.0

0.8

5w (%)

0 D B D

Fig. 5 - curve
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For a square brick column with side of 2-brick length, it is not allowable to build it
into a 1-brick core and a Vi-brick out sleeve without any lapping along entire column
height, which is called “ghost pushing millstones” (“Gui-tui-mo”).

1.2.6. Pure cement mortar

Both the workability and water-retentivity of pure cement mortar are not good as
those of com po mortar (cement-lime mortar), using this mortar to build masonry is dif-
ficult to pave, so it cannot build more uniform and dense joints, then the compressive
strength of masonry will be decreased, generally by 15% [8].

1.2.7. Skillfulness of brick-layers

The skillfulness of brick-layers will directly influence masonry quality, including all
factors mentioned in the above, such as the fullness of mortar joints, the regularity and
leveling, density and uniformity of mortar, as well as the thickness of joint, etc. The
masonry members subjected to compression built by unskilled brick-layers may be with
a larger initial bending, i.e. with a larger eccentricity, may also be with inconsistent
quality in two sides resulting in a greater deviation of physical center axis of gravity,
etc. will all decrease masonry strength.

1.2.8. Masonry in engineering

The brick masonry specimens taken from existent building showed under equal built
conditions, the compressive strength of masonry in engineering is higher than that built
in laboratory conditions. It is because with the progression of building work, on the
newly built masonry, the compression from dead load is continuously applied so as to
improve the uniformity and density of mortar, then to increase the masonry strength.
The tests in laboratory under compression at early stage indicated also this |9|. Gener-
ally the increase is about 15%.

1.3. Compressive elasticity modulus ofmasonry

A large number of tests conducted in China showed [13], the elasticity moduli of
brick and block masonries are in relation to their compressive strength and reduce with
the decrease of mortar strength. However, for stone masonry, because the elasticity
modulus of stone is much higher than that of mortar, the deformations in stone masonry
are mainly caused by mortar joints, so the elasticity modulus of stone masonry is only
in relation to mortar strength and reduces with the decrease of mortar strength, the elas-
ticity moduli of fine-finished and semifinished stone masonry are in 3-folds of those of
rough-finished stone, crude-worked stone and rubble masonries.
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2. Strength of local compression

The increase of local compression strength is both due to the confined effect and the
spread of compressive stress [14-16]. The failure of masonry under local compression
does not occur directly at the place of local compression, because the strength of this
place has been greatly increased due to the strong constraint of cushion plate (in prac-
tice, the constraint of the above column or beam), but it begins at the crack(s) occurring
generally in the second or third course of masonry. The uniform compressive stress o,,
on beams discharges due to the effect of “discharging arch” 116]. As <J,/fm < 0.4, a,, can
be not considered, because this arch discharges the a,, applying on beams to both sides
of their supports and to increase the confined effect to the masonry on both sides.

3. Tensile and shearing strength of masonry

As the masonry built up with units and mortar is stressed under axial tension, the
force may be normal to horizontal joints (Fig. 6a) or parallel to them (Fig. 6b, c). In the
former case, failure occurs in horizontal joint, the tension will be taken by the normal
adhesion strength of mortar and bricks, but the deviation of this strength is too large so
as to be unreliable, so it is not allowable to design members bearing axial tension in en-
gineering. As the strength of bricks is not too low, following Fig. 6b, failure will occur
along toothed joint and the tension will be borne by the tangential adhesion strength of
joints, so it is in relation to mortar strength.

a) b) c)

Fig. 6. Masonry under axial tension normal to horizontal joints

Based on a large number of the results of tests (amount of specimens attained 1378)
conducted in China, a series of statistical formulas for determining average tensile and
shearing strengths are given as follows |4]:

- average axial tensile strength of masonry:

fom =39 tim @
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- average flexural tensile strength of masonry:

ftmm —k4eJfim (6)

- average shearing strength of masonry:

mfvnl — V/2 5 @

where KN-Ks are listed in Table 2.

From Table 2, it can be seen that: (i) the average axial tensile strength of brick ma-
sonry is higher than its shearing strength; (ii) for the other masonries, both of these
strengths are the same, but for rubble masonry, the shearing failure cannot occur along a
horizontal straight joint, so its average shearing strength is much higher than its average
axial tensile strength.

Table 2
Average values of axial tensile strength f uil, flexural tensile strengthand shearing strength

fmm=k3J) A = A-VTT f,,=hJK
Se- Kinds of G
quence masonry along along
toothed  straight £
joint joint
1 clay brick,
hoﬁow brick 0.141 0.250  0.125 0.125
2 small hollow
concrete block 0.069 0.081 0.056 0.069
3 medium hollow
concrete block 0.053 0.063 0.044 0.053
4 medium solid
ash-fly block 0.034 0.041 0.028 0.034
5 rubble 0.075 0.113 - 0.188

Besides, before a shearing failure, the shearing deformation has been large, so fric-
tion has taken a part of shear, so in the calculation of shearing along a horizontal joint,
the influence of friction can be considered.

The influences of cleanliness of unit surfaces, wetness of units and consistency of
mortar on tangential adhesion strength are greater. The optimum water content ratio for
adhesion strength is equal to 8% or so. In dry and saturated masonry, the adhesion
strengths will decrease, respectively, by 20% and 60% '[8].
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Fig. 7. Stressed in horizontal direction of reinforced masonry with fabrics

As the strength of bricks is lower, the failure under tension may occur along bricks
and vertical joints as shown in Fig. 6¢c, in this case, the average axial tensile strength
[18] depends on brick strength without consideration of vertical joints [2].

The average tensile strength along units:

fn = 0.212V7T ®)

Flexural tensile strength is taken as 1.5f m:

fttmm - 0.3 1 9)

4. Reinforced masonry with steel fabrics

The strength increase of reinforced masonry with steel fabrics is not due to creating
3-dimensional compression state, but is because an instability of the small */2-brick col-
umns separated by vertical cracks but tied by the steel fabrics are prevented from occur-
ring in earlier time. Before cracking, it is certain that there occurs a 3-dimensional com -
pression state, i.e. in this time for equilibrium, steel stress asXr can cause horizontal
compressive stress crvon masonry sections (Fig. 7a), hence it increases the cracking ca-
pacity. But after the vertical cracks occur, on cracked surfaces, it is impossible to pro-
duce (Tv, so there does not occur again a 3-dimensional compression state [14-16, 20].

The tensile stress a, of fabric in small corner column is anchored in joints by bond
force (there is compressive stress applying on joints to increase this force much more);
(Tvon both sides of small middle column will be balanced by itself 114-16, 20].

In reinforced masonry with fabric, the vertical cracks occur often in partial height of
masonry (Fig. 8), it is favourable to strength increase.

Under eccentrical compression and as slender ratio of member is greater, the effect
of fabric reinforcements decreases, so it is necessary to limit both the eccentricity and
slender ratio, i.e. to prescribe the eccentricity on safe side does not beyond the core of
section (in rectangular section € < /?/6), the slender ratio not over 16.

'in vertical joints, the mortar is not fully filled, and owing to shrinkage influence, they are not consid-
ered in calculation, but as taking care of filling fully, tests showed they can bear tension or shear 119|.
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F)> tf. Failure of reinforced masonry with fabric (test photo of NIT)

5. Masonry with longitudinal reinforcements

The stressed mechanism of longitudinally reinforced masonry (composite masonry)
is similar to reinforced concrete member, tests indicated also this [21]. As the surface
layers are made of mortar, considering when these layers attain failure moment, the
yielding strain of compressive bars has not reached, so a utilization factor rjs= 0.9 of
steel strength should be introduced.

The stability factor (pof axially compressive masonry with longitudinal reinforce-
ments is determined with slender ratio B and reinforcement ratio p. It is evident that the
greater p is, the greater the owill be. The tests of reinforced concrete columns showed
also this [22], but for simplification, in Chinese Design Code of Concrete Structures
(GBJ 10-89) the influence of p on (is not considered.

For eccentrical compression members the longitudinal flexure is considered by
means of additional eccentricity e, [21].

e/h =R2(1- 0.022/3)/2200. (10)

Equation (10) can be derived as follows [21]: according to the plane section hy-
pothesis at ultimate state (corresponding to N —»max.), taking £v=fyEs = 0.0016 (ap-
proximately corresponding to bars of steel grade Il), £mMM= 0.003 and distribution factor
of curvatures along member height HOto be 11, then 12 1]
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where - X 1CI4 is equivalent to the modification factor £ to consider slender ratio in-
fluence in Chinese Design Code of Reinforced Concrete Structures (GBJ10-89).

ejh - B curve is shown in Fig. 9.

From the above, it can be seen that there are two points worthy to be discussed, (i)
taking e,,,, and evin calculation is assuming to be in the case of balanced design, gener-
ally, p is not great, the steel bars have undergone a definite flow deformation before at-
taining ultimate state, to take e, for calculating €, is on small side, this problem exists
also in the calculation of p (magnification factor of eccentricity of axial compression
for considering the longitudinal flexure in eccentrical reinforced concrete compression
members); (ii) the calculation of longitudinal flexure of eccentrical members without
considering p may not conform to the actual [22, 23] and is also inconsistent with the
determination of the stability factor (pof axial compression members. But in concrete

columns, a factor ~  e— s introduced to modify the magnification factor p ofec-

centricity due to longitudinal flexure, as r is higher, the axial compression will be
greater, Q\ then p will be smaller, i.e. using £) to consider the influence of p on addi-
tional eccentricity.

At the end of this article, author should say that owing to the limitation of his levels
on theory and practice, this paper is still superficial even revised many times, it can be
only to consider as the first draft. Author does heartily hope the colleagues in this field

/*n;. 9. ejh - B curve
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at home and abroad would provide kind help to mail the author relevant materials and

revising opinions, then author will make revision further, so as that it can become more

complete and perfect.
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MODELING THE INFLUENCE OF ENVIRONMENTAL
PARAMETERS AND RESIDENCE TIME ON MICROBIAL
DRINKING WATER QUALITY IN DISTRIBUTION
SYSTEMS

Dombay, G.-Piriou, Ph.-Dukan, S.-Kiene, L.

Lyonnaise des Eaux CIRSEE. 38 rue du Président-Wilson, 78230 Le Pecq, France

1. Introduction

During its distribution drinking water undergoes several quality changes which is
accounted to the activity of the distribution system as a complex physicochemical and
biological reactor. These phenomena can be classified as deterioration of organoleptic
parameters, bacteriological water quality deterioration, nitrification, corrosion, post-
precipitation, and deposit formation. Consequently the design and operation of drinking
water distribution systems cannot be considered only from the hydraulic view, but reactor
theory and process engineering measures are to be integrated.

O f the various causes of quality deterioration in distribution systems, microbiological
parameters are the most closely studied and monitored, because of the short-term risks
regarding to public health. Even if high heterotrophic plate counts (HPC) do not
necessarily give rise to a health risk, they are the signature of a network in which
undesirable microbial water quality changes may occur (Dukan el a/., 1996).

In the distribution system bulk water phase represents only a small fragment of the
bacterial activity (Herson et al., 1991). In the network bacteria colonizes surfaces, this
attached biomass is often referred as biofilm (Characklis and Marshall, 1990). In bio-
films bacteria is embedded in an extracellular polymer (EPS) matrix, forming an in-
homogenius layer on the substratum. Bacteriological water quality deterioration is mainly
accounted to the biofilm activity in the distribution system. The presence of biofilm can
protect indicator and/or pathogenic microorganisms (LeChevallier, 1990), it can generate
biocorrosion (LeChevallier et al,, 1993), cause taste and odor problems (Burlingame and
Anselme, 1995). Substantial biofilm activity in the network might promote the presence
of higher organisms (fungi, yeast, protozoa, microzooplankton, invertebrates) in the
network, resulting further water quality deterioration (Levy et al., 1986; Fass et al.,
1996). Public health risk cannot only be characterized by accidental coliform occurrence,
but there is a growing belief that some heterotrophic bacteria are opportunistic pathogens,
and their growth should be controlled (Payment et al., 1994). These research results
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indicate the importance of understanding bacterial regrowth phenomena in the drinking
water network.

To understand and describe bacterial regrowth phenomena in drinking water distri-
bution systems, deterministic modeling is one of the most appropriate tools available to
researchers to test hypotheses, and to engineers to implement water quality management
in the network.

The objective of this article is to present the major concepts of bacterial regrowth
modeling for distribution systems and to show a particular model application. In the first
part the article describes the processes which were taken into account by the bacterial
regrowth model developed by the CIRSEE research center of the Lyonnaise des Eaux
group, and points out the aspects which are to be integrated in the forthcoming model
development. In the second part the article shows how modeling can contribute to the
understanding of the relationship between environmental parameters (temperature,
substrate concentration, inlet bacteria concentration) and bacterial dynamics in the
drinking water distribution system.

2. Modeling bacterial regrowth phenomena in the network
2.1. The influence ofwater quality parameters on bacterial dynamics

From the reactor engineering view, bacterial dynamics in the network is influenced by

— water quality characteristics, determined by environmental parameters and treat-
ment technology, and

— hydraulic conditions, determined by properties and operation of the distribution
system.

The behavior of a biofilm reactor is primarily influenced by the actual water quality
parameters. These parameters determine the environment for the bacterial proliferation,
the activity of the biofilm, hence the bacterial regrowth phenomena which is responsible
for the microbial drinking water quality deterioration in the distribution system. Drinking
water quality parameters are set by the resource of the water, modified by the treatment
processes, and changing spatially and in time during the distribution.

To model bacterial regrowth phenomena in distribution systems, hydrodynamic
modeling has to be coupled with biofilm kinetics, to describe the propagation and reaction
of the water quality parameters.

The model was developed for an ideal plug-flow reactor. The applied transport
equation for the bulk phase is the one-dimensional axial-dispersion model, where only
convective transport is considered:

dct _ dcC) .
------- tV-----= reaction,, (1)
dt dy
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where Q [kg/m3] is the concentration of a particular water quality parameter, v [m/s) is
the mean flow velocity, y |m| is the distance in the axial direction, reaction] [kg/m 3] is
the rate of reaction for parameter i.

In the biofilm constituent transport occur due to molecular diffusion:

i d2c,
<EL = reaction,, (2)

'I)lblul

dt dx2

where Dbiot [m2s] is the effective diffusivity coefficient in the biofilm, x [m] is the
distance in the radial direction from the biofilm surface.

Major processes in a biofilm reactor include growth, death, adhesion and detachment,
which represents a high grade of interactions between suspended and attached biomass.
These processes are taken into account by the model according to Fig. 1 (Dukan et al,,
1996). Fixed biomass is modeled as a layer uniformly distributed over the pipe surface,
expressed as an equivalent thickness of a carbon layer. By this way, it is possible to
distinguish between phenomena depending on their locations: reactions in the bulk water
phase, reaction at the water-biofilm surface interface and within the biofilm. Mass
balance equations are set for substrate, suspended biomass (total |X | and active |[XH)
fraction), and fixed biomass (total [B| and active [Bib] fraction).

Mass balance equations in the bulk phase [applying Equation (1)]:

Substrate balance:

reactions = - S diffusion into the biofilm + release by XH - consumption by XH (3)

Free bacteria balance:

reactionx = + growth of XH + detachment of B - deposition of X (4)

Free active bacteria balance:

reactionXH= + growth of XH + detachment of Bib - deposition of XH —
-death of XH (5)

Mass balance equations in the biofilm [applying Equation (2)]:

Substrate balance:

reactions = - consumption by Bib + release by Bib (6)

Fixed bacteria balance:

reactionB= + growth of Bib - detachment of B + deposition of X (7)

Fixed active bacteria balance:

reactionBib= + growth of Bib - detachment of Bib - death of Bib +
+ deposition of XH (8)
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flow velocity
C IZ => residence time

Fig. I. Processes of the model

Modeling bacterial growth

For heterotropliic (HPC) bacteria substrate is available in the drinking water as the
biodegradable fraction of organic carbon compounds. The biodegradable dissolved or-
ganic carbon (BDOC) is generally considered the limiting factor of bacterial growth in
drinking water (LeChevallier, 1990). Based on the assumption that the concentration of
one single growth limiting nutrient determines the growth rate of bacterial proliferation,
the model of Monod is most widely used:

Consumption = Vmax(T)— —  mactive bacteria . (9)
B+ K

Numerous studies showed correlation between BDOC and HPC values in distribution
systems (Laurent et al., 1993; van der Kooij et al., 1995). Pilot scale experiments (Clark
et al., 1994; Piriou et al., 1997) and modeling results (Dukan et al., 1996; Bois et al.,
1997; Laurent et al., 1997) indicate that biofilm evolution is mainly due to its growth,
related to BDOC concentration. Peyton (1996) showed, that steady-state biofilm thick-
ness is dependent on substrate loading rate. In most of his experiments the substrate
utilization rate was nearly equal to the substrate loading rate. Based on literature data,
the author emphasizes that over a certain level of substrate loading rate further increases
do not effect steady-state biofilm thickness.
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Bacterial growth is influenced by temperature. Temperature changes in the distribu-
tion system occur due to seasonal variations. Based on full scale experiments, bacterial
regrowth problems are frequently associated with high temperature periods (Donlan et
al., 1994; Mathieu etal., 1995; Amblard et al., 1996). Contrary, HPC peaks in the net-
work observed by Kerneis et al. (1995) did not occur in the warmest periods. According
to the authors, high suspended HPC counts could not only be related to water tem-
perature, but other factors, such as BDOC and inlet HPC, as well. Based on in situ bio-
film examinations Holden et ai (1995) found that the increase in temperature amplified
biofilm growth. It was noted that measured substrate concentrations decreased with
increasing temperature, due to the increased bacterial substrate uptake.

The effect of temperature can be taken into account in Eqg. (9) on the maximum
growth rate (Vmax) of bacteria with a sigmoidal relationship (see Appendix, Al). As
Fig. 1shows that the model takes into account BDO C consumption by attached and fixed
bacteria, and also BDOC release during lysis. Equations (3)-(8) are based on (9) in
terms of biomass growth and substrate consumption.

Mortality

Natural mortality can be accounted to senescence and grazing by microzooplanktons.
It can be modeled first order in relation to the quantity of active bacteria.

Chlorine induced mortality. To mitigate public health risk, during its distribution
drinking water should contain biocide agents in an adequate concentration. Chlorine is
the most widely used disinfectant in drinking water. Since the thorough chemical kinetics
of chlorine decay is not known, chlorine decay models are generally based on pseudo-
first order Kkinetics, assuming, that the concentration of the species reacting with the
chlorine are much grater than that of chlorine (Chambers et al., 1995). The model takes
into account chlorine decay kinetics under the influence of pH, temperature, hydraulics
and pipe materials (A 18). The chlorine induced mortality of free bacteria is expressed by
the inhibiting action of free chlorine as the “suicide inhibitor” (Dukan et al., 1996). The
mortality rate takes into account the different forms of chlorine in water (HCIO/CIO )
depending on pH (A20).

In order to explain the greater resistance to chlorine of fixed bacteria compared with
free bacteria (LeChevallier et al.,, 1988), the hypothesis was made that chlorine diffusion
within the biofilm takes place over a very low thickness of equivalent carbon. Hence the
low diffusivity of free chlorine into the biofilm enables the identification of 2 biofilm
layers: a chlorinated layer and a layer not attained by chlorine. This latter layer is
accounted to the stronger resistance of fixed bacteria in relation to free bacteria against
chlorine.

Consequently the mass balance equations (6) and (8) for the biofilm exist in two
forms, for the chlorinated layer, (A5) and (A16), and the non-chlorinated layer, (A6) and
(A 14). The mortality is expressed by (A 19).
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Detachment, deposition

Detachment is the key factor which

- balances attached microbial growth hence governs the steady-state biofilm condi-
tion, and
- responsible for the increase of suspended bacteria in the network.

For the chlorinated biofilm layer detachment rate was considered proportional to the
number of fixed bacteria. For the non-chlorinated layer detachment rate is proportional to
the number of fixed bacteria and their growth rate. (Detailed explication is given by
Stewart, 1993; Dukan etal., 1996.)

Deposition is the initial process of biofilm formation. Under dynamic conditions inlet
total and active bacteria concentration has an effect on bacterial colonization of surfaces,
hence biofilm formation. Transport could be a rate limiting step in bacterial colonization
(Wolfaardt and Cloete, 1992; Mueller, 1996). Piriou et al. (1997) examined the influence
of inlet bacteria concentration on biofilm behavior using a pipe loop pilot. The results
indicate that the inlet total bacteria has a positive influence on biofilm evolution, but the
inlet active bacteria has no impact on biotllm activity. They conclude that bacteria
deposition has little effect on biofilm evolution under steady-state condition.

According to Characklis and Marshall (1990) bacterial deposition can be described
by first-order kinetics in relation to bacteria concentration. Based on the aforementioned
results it is to be mentioned that under dynamic conditions the first-order assumption
might not describe the deposition process adequately. Deposition modeling under dy-
namic conditions has to be investigated.

M odel equations are given in Appendix, based on (3)-(8) mass balance equations,
and the described kinetic considerations. (More thorough details of each process are
given by Dukan etal., 1996.)

2.2. The influence ofhydraulic parameters on bacteria! dynamics

Presently the described bacterial regrowth model is solved for a tubular reactor, in
which plug-flow conditions prevail. For the application of this model to drinking water
distribution systems certain developments might be necessary which take into account the
effect of network hydrodynamics

—on transport processes (axial and radial diffusion, mixing), and
—on biofilm kinetics.

Biofilms are influenced by hydraulic conditions, and in turn, biofilms may influence
the hydrodynamic conditions close to the surface of and within biofilms (Wilderer et al.,
1995). During the operation of a drinking water network various hydraulic conditions
occur in the system, determined by the actual water consumption and the status of
operation (e.g. pumping). From the biofilm reactor’s point of view, the magnitude and
dynamic range of hydraulic parameters can be unique and significantly different from any
biofilm reactors used for treatment processes or applied in laboratory examinations.
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Flow velocity

In tubular reactors increasing water velocity leads to

- an increase of the convective transport of bacteria, substrate, chlorine and other
constituents in the reactor,

- an increase in turbulent diffusion,

- a decrease of the thickness of the boundary layer causing a reduction in the mass
transfer resistance towards the biofilm,

- an increase of shear stress at the pipe wall.

Transport processes in the bulk are controlled by convection and turbulent diffusion,
in the biofilm by molecular diffusion. Under turbulent conditions in the bulk virtually
there is no concentration gradient in radial direction. The concentration gradient evolves
in the concentration boundary layer (CBL) and reaches its maximum at the biofilm
surface (Lewandowski et al., 1994). In the CBL diffusion is the predominant mass
transfer mechanism. The velocity profile in the hydrodynamic boundary layer (HBL),
where the flow becomes unidirectional, is uncertain.

Bishop etat. (1997) showed, that there is a significant difference between the hydro-
dynamic boundary layer and the concentration boundary layer above a biofilm. CBL
varied between 200-400 pm depending on the water velocity in the bulk. HBL and flow
velocity had only minimal relationship, the thickness is around 4000-5500 pm. Increas-
ing fluid velocity decreases the thickness of the CBL, causing a decrease in the mass
transfer resistance (Characklis and Marshall, 1990).

In drinking water distribution systems the biofilm thickness is low (around 10-30 pm,
L ’Hostis, 1996) and likely there is no transport limitation in the biofilm. Consequently it
might be assumed, that variation in substrate transport due to different flow velocities
does not have a significant effect on biofilm behavior. Under these conditions it would
not be necessary to modelise the effect of hydrodynamics on substrate transport.

Biofilm detachment and hydrodynamics

Despite its significance and the number of regarding studies, so far is very little has
been understood about the mechanism of detachment (Peyton et al., 1993; Ohashi et al.,
1996). Presently the effects of hydrodynamics on biofilm detachment are not clarified.
Currently available analytical techniques provide a rather static picture, and the dynamic
nature of biofilm systems is not adequately resolved (Wilderer et ai, 1995). For transient
hydrodynamic conditions Peyton and Characklis (1993) proposed a detachment model,
based on the results of Bakke (1986). Bakke showed that the variation of shear stress
causes increased detachment, and after the transitory period detachment returns to its
former value. Hence in the model not the magnitude of the shear stress (x), but its
derivative is included:

Ad - Rje + » (10)
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e

R, KT (in)

0. N< 0
di

where Rd is overall detachment rate [s’1], Rde is detachment due to erosion [s’1], RdAt is
detachment due to transitory shear stress [s’1], kd is coefficient [dimensionless],

Ohashi et al. (1996) examined the adhesion strength of biofilms. Adhesion strength is
the resistance of the biofilm versus detachment when an external force is induced.
Biofilms in conduits might be exposed to tensile stress (o) by lift force by fluid dynamics
due to hydrodynamic vibrations or pressure fluctuations. The authors determined biofilm
shear strength by collision force, and biofilm tensile strength by centrifugation force. The
results indicate that shear strength was all the time much larger than tensile strength by a
magnitude of two orders (2 log). Hence it is suggested that biofilm detachment is mainly
caused by the decline of adhesion strength by tensile force rather than by shear force.
Due to the applied methods, these result are rather applicable to transitory phenomena.

Based on this research result we propose the following modification of the (10)
transitory biofilm detachment model:

Rj —Rde + RjAt + RjAa" (12
& ijac<ol
. Kdo g+ gy
RjA0 — da (13)
0, — >0
dt

where RdAO is detachment due to transitory tensile stress [s’1], kdo is coefficient [dimen-
sionless].

The model expresses that increasing tensile stress toward the substratum cannot cause
detachment, but a decreasing tensile stress (e.g. pressure drop or relaxation) can.

Presently the validation of the model is problematical due to the lack of adequate on-
line biofilm monitors. In addition, the examination of the applicability of the model to
distribution systems, and the description of the relationship between tensile and shear
stresses on biofilm detachment are future research tasks.

Residence time

W ater quality in the distribution system changes spatially and changes in time. Hyd-
raulic conditions determine residence time and residence time distribution in the net-
work. In bacterial regrowth phenomena residence time certainly influences bacterial
dynamics, since these processes are time dependent. In drinking water networks numer-
ous studies examined the effect of residence time on water quality, and its correlation to
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various parameters such as substrate concentration, HPC, and chlorine decay (e.g.
Heraud etal., 1997; Kerneis etal., 1995; van der Kooij, 1992; Prévost et al., 1997).

Considering the complexity of the phenomena influencing bacterial regrowth in the
network (and taken into account by the model) it has to be noted that residence time
cannot correlate directly with microbial water quality parameters. Consequently it is an
excessive simplification to consider residence time as a single decisive parameter in
microbial water quality changes, regardless to actual environmental parameters.

In Chapter 2 the effect of residence time on the relative influence of environmental
parameters is examined, by the application of the bacterial regrowth model.

3. Model application; quantifying the influence of environmental parameters
and residence time on bacterial regrowth phenomena

The study focuses on four water quality parameters which thought to be the most in-
fluentious, such as inlet total and active bacteria concentration, substrate concentration,
and temperature. Due to their nature these parameters are referred as environmental pa-
rameters. As described in Chapter 1.1, the literature indicates that there might be sig-
nificant interactions between these parameters. Despite their presumed importance, so far
no effort has been made to quantify their relative influence in a comparable way.

The goal of the study was to quantify the influence of the aforementioned environ-
mental parameters and residence time, as the most considerable hydraulic parameter, on
bacterial dynamics in the distribution system, using the described bacterial regrowth
model under steady-state conditions.

3.1. The applied method

In order to quantify influences (effects) of these environmental parameters on
response variables, a complete experimental design at two levels was applied (Sado and
Sado, 1991). For the application the following criteria had to be taken into account;

1. Four environmental parameters were to be investigated, namely X, XH, S, and T.
Due to the expected high level of interactions between these parameters, fractional
experimental designs were not applicable. (With fractional designs interactions are
confounded with effects which would result in a non-quantifiable result.) Consequently a
complete experimental design was carried out.

2. The experimental design was implemented at two levels. It made possible the
quantification of the effects of parameters in a given range hypothesizing a linearity
between the parameters and response variables. By this approach the 24 experimental
design was realized as shown in Table 1.

The experimental range was defined by common values characterizing the drinking
water. Temperature range was defined in a way to work with a closely linear section of
the sigmoid curve (being T = 18 °C the sigmoid temperature). The range for each par-
ameters is given by Table 1.
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Table |
The applied 24experimental design

Experiment X XH s T
1 - - -
2 +
3 - + - -
4 + + - -
5 - - + R
6 + - + .
7 - + + .
8 + + + -
9 - - - +
10 + - _ +
n - + _ +
12 + + _ +
13 - - + +
14 + _ + +
15 - + + +
16 + + + +
Level - 10+ K)1 0.25 16
Level + 106 103 1.00 20

bacteria/ml  bacteria/ml  mg C/I °C

Residence time was taken into account up to 30 days
with a 3-hour time step. Modeling was carried out with
the absence of chlorine residual, for steady-state
conditions.

3. Influences (effects) were examined for four response variables of the model, na-
mely free and fixed bacteria, both total and active fraction (X, XH, B, Bib).

The matrix of the experimental design is the Hadamard matrix (H), based in Table 1
The additional 11 columns of the matrix are composed by the 6 first order, 4 second
order, and 1 third order interactions of the four environmental parameters, and the 12th
column is the unity vector for the calculation of the mean value ().

For each response variable a result matrix (Yx, Y XH, Y B, Y Bb) is composed. The rows
of the response matrices include the values of the response variable of the actual
experiment («), calculated by the model. Each column corresponds to a particular
residence time (rst). (E.g. the vector v xn(7,rst) represents the evolution of free active
bacteria for the 7th experiment, where the environmental parameters were X=104*
bacteria/ml, XH=103bacteria/ml, S=1.00 mg C/I, and T=16°C.)

A matrix of effects is calculated for each response variable:
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(14)

att- TTH Yw , (15)
1o

Eg - 16 V1 1vg. (16)

wBib = T7 Ei YRIh , (17)
10

where H1lis the transposed Hadamard matrix. (Each row of a matrix of effects cor-
responds to the effects, interactions, and the mean value, determined by the transposed
Hadamard matrix.)

The relative effects of the environmental parameters are expressed in percentage
in relation to the mean value [I(/\v/)=Ej(16,/'.?/)) for each residence time step. For the i
response variable:

RE;X(rst) = E'(Irsl) , % (18)
E, (16,rst)

RE™ (rst) = £<(2°" ° % 19

(rst Ei (16,rst) ’ e

REf (rsl) =F'arS|) (20)
E> (16, rst)

REj(rst) = *,(4,r5/) , %, (21)
E, (16,rst)

where I = {X, XH, B, Bib).
W ith this method effects can be studied independently to the magnitude of the
response variable.

3.2. Results and discussion
Effects on attached bacteria

The effects on active attached biomass can be seen in Fig. 2. The effect of substrate
concentration is superior, its almost 100% influence is slightly decreasing in the course of
residence time. Inlet active suspended bacteria has virtually no influence for the tested
data range. These indicate that biofilm activity in the network is growth driven, the
deposition of active bacteria plays no part under steady-state condition.
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100%
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60%
40%
20%

0%
-20%
-40%
-60%

-80%
residence time, day

Fig. 2. Relative effects on active attached bacteria

W hile bacterial growth is influenced by temperature, the positive and substantial ini-
tial effect of temperature is evident. As can be seen in Fig. 2, this influence is charac-
teristically decreasing with residence time, after 2 days alternates to negative, and sta-
bilizing after about 3 weeks. It indicates that higher water temperature results in a less
significant biofilm activity. This virtual paradox can be explained by Fig. 3. In this figure
the results of experiment 8 and 16 are shown. All parameters are identical but tem-
perature. In Fig. 3a the decrease in BDOC concentration is plotted. As expected, higher
water temperature hence higher bacterial activity causes a more rapid substrate con-
sumption. As biofilm growth is very strongly substrate dependent (as shown in Fig. 2), it
is very responsive to changes in substrate concentration. Figure 3b shows that although
higher temperature results in a more significant biofilm activity at low residence time,
due to the rapid BDOC consumption, biofilm activity is constantly less after a certain
period of time. This phenomena explains the negative effect of temperature on active
attached bacteria.

Inlet total suspended bacteria obviously does not effect biofilm activity.

Total attached bacteria incorporates active and dead biofilm bacteria. Figure 4 shows
that its amount is mainly determined by substrate concentration hence growth. For higher
residence times deposition increases total attached biomass, this effect can be entitled to
the less significant biofilm growth at higher residence times due to the diminution of
BDOC. Consequently inlet total suspended bacteria has an effect on total biofilm mass. It
is to be emphasized that total attached biomass does not impose a public health risk, and
in distribution systems its amount does not cause substantial friction losses.

The effect of temperature has similar characteristics as for active attached biom ass,
although the amount of total biomass is not constantly inferior in case of higher tem-
perature after a certain residence time, as in the experiment after 12 days its effect
alternates to positive again. Inlet active suspended bacteria has no effect.
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a. Substrate concentration

b. Active attached bacteria

c. Active suspended bacteria

Fig. t
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Fig. 4. Effects on total attached bacteria

Effects on suspended bacteria

Active suspended bacteria is the primary response variable of the model, since bac-
teriological problems are imposed by this fraction.

Figure 5a shows the period of the initial 6 hours residence time. At the inlet, the
amount of the suspended active bacteria is determined by its inlet concentration. Its effect
is rapidly decreasing in an exponential way in residence time, substituted by the effect of
substrate concentration. It indicates that active bacteria concentration in the bulk is
determined by biofilm activity, namely the detachment of active bacteria from the bio-
film. As can be seen in Fig. 5b, in the long run the effect of initial active suspended bac-
teria is zero, hence inlet active bacteria has an influence only in the initial few hours,
depending on its range. For the calculation low inlet HPC counts were used, between 1
log and 3 log, obviously for a concentration of 6 log HPC/mIl its effect could not be
neglected. (Although in practice, with disinfection, this concentration does not occur.)

These results show that biological stability of the drinking water is not only a relative
concept in terms of inlet HPC concentration but depends on residence time as well.

Temperature has a positive effect which is decreasing with residence time. Figure 3c
shows the influence of temperature on active suspended bacteria based on experiment 8
and 16. Due to the initially higher biofilm activity HPC counts reach their maximum
earlier in case of higher temperature. The impact of the more rapid BDOC decrease
results in a slight decrease of HPC in the course of residence time. The graph shows that
active suspended bacteria concentration is practically stabilizing after a few days of
residence time. It indicates that longer residence times do not necesserily result in a worse
bacteriological water quality. (Theoretically, for long enough residence times, after the
consumption of BDOC hence the lack of bacterial growth, bacteriological water quality
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improves. This decrease in active suspended bacteria can be seen in case of 20 °C in Fig.

3c.)
The effects on total suspended bacteria can be seen in Fig. 6. Due to the high total
inlet bacteria concentrations (4 and 6 log/ml), the total suspended bacteria concentration

100%
80%
60%
40%
20%
0%

o) T- ™ co oSt Lo co

residence time, h

5a. For the initial period of 6 hours residence time

XH

residence time, day

5b. For the period of 30 days residence time

[7,1. 5. Effects on active suspended bacteria
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Fig. 6. Effects on total suspended bacteria

is determined by not only biofilm activity, but this inlet concentration as well. Due to
mortality and biofilm detachment, the initially decisive influence of inlet total bacteria is
decreasing in residence time. In this experiment after 12 days of residence time the
influence of the biofilm becomes superior, but still very close to the influence of the inlet

concentration.

Fig. 7. Interactions between substrate concentration and temperature
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Interactions between parameters

Simulations showed a significant interaction between substrate concentration and
temperature. These factors influence mainly the bacterial growth, hence biofilm activity,
which is the major phenomena in bacterial dynamics in distribution systems.

Figure 6 shows the interactions for the response variables of total suspended bacteria,
active suspended bacteria, total attached bacteria, and active attached bacteria. These
interactions change according to residence time. Interactions are more significant for the
active fractions. For suspended bacteria the interactions are positive. In case of the active
attached biomass after a few days of residence time there is a substantial negative
interaction between BDOC and temperature, which can be also explained by Fig. 3a, b.

Based on these results it can be seen that the application of complete experimental
designs is necessary due to the high level of interactions. This might impose a problem in
case of a sensitivity analysis, where due to the high number of constants a complete plan
is not a feasible solution.

4. Summary and conclusions

Increasing levels of consumer expectations and new standards of regulation neces-
sitate to consider drinking water supply system as a homogeneous system, including the
water resource, treatment technologies and distribution conditions. To overcome unac-
ceptable microbial water quality degradation, system opeartors should provide drinking
water with the least possible amount of BDOC, and maintaining an adequate chlorine
residual level in the network. Post-chlorination strategies can only be carried out with
chlorine decay modeling in the network. The influence of inlet drinking water charac-
teristics, post-chlorination, and network characteristics on the bacterial dynamics of the
distribution systems can only be analysed by modeling approach.

Bacterial regrowth modeling is an indispensable tool to study and analyses scenarios
of water quality changes. The model developed by the Cirsee research center incorporates
the major phenomena that govern bacterial regrowth phenomena in the network. The
development of the model to include the necessary infuences of hydrodynamics on biofilm
behaviour, furthermore the model application under dynamic conditions are future
research tasks.

Associating the modeling approach with experimental design theory, the quantifica-
tion of the relative influence of environmental parameters was carried out, in the course
of residence time. Simulations showed that

- The relative influence of environmental parameters changes in residence time.

- Biofilm activity is primarily influenced by substrate concentration and temperature.

- Higher water temperature results in less significant biofilm activity for longer re-
sidence times, due to the rapid decrease of substrate consumption, induced by increased
bacterial activity.
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— Under steady-state condition, inlet active bacteria has an influence on bacterial
water quality only in a relative way, which depends on its magnitude, residence time and
biofilm activity in the network. Steady-state biofilm behavior is virtually not effected by
active suspended bacteria.

—The simulations showed strong interaction between temperature and BDO C for each
response variable. Based on these result it is to be indicated that sensitivity ana-lyses of
the bacterial regrowth model has to be done in the course of residence time, with an
adequate experimental design to prevent the confounding of effects with significant
interactions.

— Drinking water can be considered biologically stable when bacterial regrowth
phenomena is insignificant in the network. This concept does not only refers to a strictly
nutrient limited milieu, but implies a relative measure. Bacterial regrowth can be
considered insignificant in relation to inlet HPC counts. This indicates an indirect influ-
ence of inlet active bacteria.
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Appendix
Bacterial regrowth model equations
The effect of temperature
f 2n
N (g —
Krax(7) = ~taxr/;,,,)-exp 7];] (Al)
\ qu -

M ass balance equation in the bulk

- Organic biodegradable substance (BDOC)

- Y N
dS(y’t)~+' \I/Ydsr(y’t)—_—Z L)S(S(y,t)S(_:h(y,t)) he.[Amort+r (V,t)d.x (y,t). H (yo1)

dt dy /int.R
(A2)
Wi, S(y, t). H(y,t). X(y,t)
S(y,t) + K*
—Free bacteria concentration
OX(Pd)” ,VldX{y,t) rvmax.s(V,/) H(y.1).X(y.t) +
(A3)

Active free bacteria concentration

dX(y,t).H(y,t)+ y dX(y,I).H(y,t): eraxS(yﬂ r%y til Ay t)4 .
dt ' dy S(v,y+ics T

* o AT B(y,t).1b(y,t) + Fdetz.  t)./ch(V./)]. Z —Fdep . X (jf, t) H(y,t) — (A4)
- [/G,ort+F(y,0]. H(y,t) . X(y,t)

BDOC balance equation in biofilm

- Mass balance equation in chlorinated biofilm

dSC\I(X’y’t)-—Dbiof.d ZScn(xiy,t) _ Vimxi.Sele (X, y,t). Ic\2(v,t).Z L
dt dx2 Scl2(x,y,t) + Ks
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+ b. (Kmnn+(j{y, ). /lcixVv,1). Z (A5)

M ass balance equation in non-chlorinated biofilm

+bKm .Hy,,)Z (A6>

dt dx2 Sb(x,y,t) + Ks
With:
1dSch(x,y,t) 1dSh(x.yJ)
dx /x:B(y.I) \ dx x:B(y.t)
fbint dscli(x,y,t) - b, Scl:«f.Q, v.Q - ,S'(c(v./)m>"m/) o
dx . Nint (AT)
x=e(y.l)
"dSh(x.y,t)
and v 9%
(A8)
Fixed bacteria balance equation
S,(z.y,i) R X(y,t
Vi(x.y./l)y= {]j v Fmax."N - j - iz .yt kaexn CU + (y ) (A9)
Si(z.v.t) + K,
Wi ith:
Cl2(y,t
hy. ) =w. (f ! w0 = B0 +h(yY (A 10)
1+ L.
\Y4 M+
Kiet{z,y,t) = Afdtl , L(Z,y,t) = Ib(y,t) if z E[0. B{v, /)] (A1)
and Ki<A\(z,y.)= kn<nz, L(z,y.t) = 1ei2¢y,v) if z€AB(y,t),e(y,tj\
(A 12)
d .
U0 e (A13)

Active fixed bacteria balance equation

- in non-chlorinated biofilm

Acta Technica 107, 1995-96



216

Ch

DOMBAY, G. et al.
3/ ,0 Q[1>(x, v,0./b N N
b0 3R YD Ay 0. 0b(y )
di X
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A(x, v,t) = f'. IV Si (x.y.l)------ Arje(i _ Kmnn
Sb(x,y,t) + Ks

—in chlorinated biofilm

a2y, Jv(x,V,0-/cr2(y?)l
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it x (x.y.1) (¥
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M ortality of fixed bacteria
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Mortality of free bacteria
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Nomenclature of the model

Constants:

R = pipe radius (m)

Zmt. = boundary layer (m)

/A = effective diffusivity of substrate in the interface (nf.sl)
a = percentage of BDOC released / cell

b = percentage of BDOC released / cell

Kmon = bacterial mortality rate (s ')

Fmax = maximum growth rate at temperature (s'1)

Ks = Monod half saturation coefficient (mg C .nr3)

Dbiof = effective diffusivity of substrate in the biofilm (nf.s1)
I = yield coefficient of free bacteria

r'= yield coefficient of fixed bacteria

/Oet = detachment rate coefficient (s'J)

A = constant

B = constant

K\ = chlorine bacterial mortality of free bacteria (s'J)

Kr - chlorine bacterial mortality of fixed bacteria (s ')

Kn = dissociation constant HOCI/CIO’

cl2im = chlorine limiting concentration for bactericidal action (pH =7 and T = 20 °C)
Z = biofilm mass density (mg C .nr3)

V = fluid velocity (m s1)

C = coefficient

(X =hydraulic constant

Topt = optimum temperature (°C)

T> = coefficient (°C)

W = chlorine diffusion transfert constant (m)

khc\o = reactivity constant of hypochlorous acid (s'1)

Acio = reactivity constant of hypochlorite (s 1)
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K w = first order kinetic constant for chlorine consumption due to water
Kr = first order kinetic constant for chlorine consumption due to pipes

C = carbon
Functions:

S(y,t) = concentration of BDOC (mg C-nr3)

Sb(x,y,t) = concentration of BDOC in non-chlorinated biofilm (mg C-nrr3)
5b' (y,t) = average concentration of BDOC in non-chlorinated biofilm (mg C-nr3)
5cl2(x,Y,t) = concentration of BDOC in chlorinated biofilm (mg C-nr3)

Sen (y,t) = average concentration of BDOC in chlorinated biofilm (mg C-nr3)
X(y,t) = free bacteria concentration (mg C-nr3)

X(y,t).H (y,t) =active free bacteria concentration (mg C-nr3)

ch(y,t) = chlorine concentration (mg.l ")

h(y,t) = chlorine diffusion depth (m)

B(y,t) = non-chlorinated biofilm thickness (m)

G(y,t) = Mortality rate for fixed bacteria caused by chlorine (')

F(y,t) = Mortality rate for free bacteria caused by chlorine (s_i)
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THE EFFECT OF DUCTILITY IN COMBINATION
WITH THE P-A EFFECT, TO BE TAKEN
INTO CONSIDERATION IN THE SEISMIC DESIGN
OF COMPRESSED STRUCTURES

Dulacska, E.

Budapesti M(iszaki Egyetem, Szilardsagtani és Tart6szerkezeti Tanszék,
M(egyetem rkp. 3, H-1521 Budapest, Hungary

(Received: 10 December 1995)

Investigating the earthquake stability of buildings, the effect of ductility, supposed to be favourable, is
considered throughout the world: the force F substituting the horizontal earthquake impulse acting on the
elastic system is devided by the p = A ductility factor. This ductility factor varies between 2 and 12,
e.g. in the US for reinforced concrete structures p = K. As a result, buildings are analysed on a low load
level in elastic state, where displacements are small. Thus the unfavourable effect of the vertical load is
either neglected or considered only approximately (as a linear effect). In fact, plasticity and buckling are
both nonlinear and they must not be superposed. According to correct analysis, this is a serious mistake at
the expense of safety. Due to this usual method, throughout the world many earthquake-engineered
buildings fall or collapse, burying thousands of people under themselves. For more detailed analysis, we
conducted different investigations considering the moment-increasing effect of the vertical load, applying
a factual elasto-plastic model with a ductility factor p = 12. Calculations were made by the energy method
and also by solving the differential equation of motion with step-by-step method. Results were checked by
experiments. It can be seen from the results that the impulsive force has a critical value, thereafter the dis-
placement is going to infinity, whereas the velocity is not decreasing to zero, thus vibration will not stop.
The plastic spectrum curve (dynamic factor) is bending to infinity, whereas the elastic spectrum is de-
creasing with the vibration period. Our investigations indicate that the earthquake design applied
throughout the world is false. Certain formulas were derived for correct design. Design is proper if the fa-
vourable effect of ductility that sometimes occurs is considered as a reserve and not taken into account.
This paper prepared under OTKA project in the RC. Reseach Group of MTA.

1. Introduction

The fundamental problem in seismic design is to determine the loads due to the hori-

zontal mass forces resulting from earthquake. As long as the structure remains elastic, the
usual dynamic methods can be used and the necessary calculations can be made, although
quite lengthy calculations (usually by computer) are required.

Some decades ago it was found that considerable energy could be absorbed in certain

cases by elastic deformation and this effect was introduced to the seismic design [1,2, 3].
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a) b)

Fiji. 1mModel of the usual seismic design method taking ductility into consideration

The plastic behaviour of the structural materials has been called ductility and the so-
called ductility factor p, the quotient of limit plastic deformation Auand limit elastic de-
formation Ae, that is

P=A,/IAQ (1)

has been introduced.

The phenomenon discussed is illustrated in Fig. 1, where Feis the replacement static
force calculated on the bar of elastic material, which results in static deformation of a
magnitude identical with that caused by the dynamic effect, in the case of on impulse ex-
citation of constant value during the time 0. We know that, = R-m-a,, being the con-
centrated mass at the end of the bar, a&the exciting acceleration which, multiplied by the
mass, gives the force causing the impulse, while § is the dynamic factor. In the case of an
elastic structure, B =2 iftJT >1/2, and B = 2-sin n mtJT if tolT < 1/2, T being the period
of the structure. Furthermore, FUis the limit plastic force, Ae the limit elastic deformation
of the ideally elastic-plastic bar and Authe limit plastic deformation. Note that also for a
bar of continuous mass distribution, a replacement mass located at the end of the rod can
be determined, which helps to simplify the dynamic calculations. The structure shown in
Fig. 1 is the simplest model of one single mass and one degree of freedom, still suited,
however, to describe the dynamic behaviour of the building.

The effect P - A represents the fact that if a bar of elastic material is acted upon by a
force P, then, due to the deformation A, an incremental bending moment M - P A also
arises (see Fig. 2/a), causing further, additional deformation. If the force P approaches
the Euler critical force Pa, then A tends towards infinity (Fig. 2/b). As the deformation
increases and the stress in the bar reaches the ultimate stress, the bar fails.

Assume that the axial force in the bar is P = 0 and that the horizontal static force F
causes a static displacement A( of the bar end. As a rule, in seismic investigations, the
force F is the product of the exciting acceleration ap replacing the dynamic effects, and
the mass m. Note that, if instead of mass m, it is the clamping cross-section of the bar
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which is excited by acceleration, then the force which excites the mass m as a result of
acceleration will be F = </,,./» before displacement A<[e is reached, while it will be /*u
beyond this value of displacement, however, with a sign opposite to that valid in the case
of a direct acceleration of mass m.

Should also a vertical axial force P act upon the bar, then deformation AGwill in-
crease to the value

where for the structure investigated, that is, for a cantilever structure clamped at the bot-
tom, the critical force Paris

Pcr - k EI/(2L)2. 3)

Here E is the modulus of elasticity and  is the moment of inertia of the cross- section
of the bar. This increase of Jo is called P - A effect. (Displacement [ will be denoted by
n as is customary in analytical investigations.)

If, for the sake of simplification again, a rigid bar clamped by a spring at the bottom is
used to replace the bar in question, then the spring constant of the bar has to be chosen in
such a way as to describe the behaviour of the elasto-plastic bar. In this simplified case,
the displacement caused by the force F is Jo= F ik, and the critical force is P,, =k L.

As shown by theoretical studies so far, the behaviour of the structure differs in some
cases from what has been described in the literature [3, 12, 13). The point in this behav-
iour is that not only the vertical force but also the horizontal force has a critical

Te
T--m~aT7 -+
7Y +m
n
H-PA

Fiji. 2. Displacement of the model under compression
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Tfj - ocFe ZX-f0'F

H-

1 2. 3 4 yu

Fig. .1 Use of load reduction factor a to take the effect of ductility factor /r
into consideration in the usual way

value. Either force above this critical value will certainly cause the collapse of the struc-
ture. This two-sided effect is due to the vertical force P, and this influence has not been
properly taken into consideration in research so far. Since this phenomenon had not been
mentioned in the literature available for us, we deemed it advisable to investigate this
phenomenon by calculation and also experimentally, taking into consideration both the
effect of force P and the plastic behaviour. This investigation is dealt with in the chapters
to follow.

2. The usual ductile design procedure

The seismic analysis of buildings takes the expectedly favourable effect of ductility
into consideration. In so doing, force FC determined for the elastic structure is multiplied
with a reducing factor a. This reducing multiplier is specified in the regulations [4, 5] for
the different materials. The reducing multiplier a has been obtained by equalizing the
work Ee\ (elastic work) performed by force FC and the work Ep\ (plastic work) performed
by force Fu. In this way the reducing factor

(4)

has been obtained [1,2, 3]. If the deformations are equalized, then the relationship

will be arrived at. A comparison of the two factors is shown in Fig. 3. The US seismic
design regulations use the factor abwith /j = 8 [4].
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The effect P —A has been either neglected while limiting the deformation, or it has
been taken into consideration as a multiplier y/ of elastic buckling |4|. Accordingly, the
seismic force is calculated by means of the formula

F=/va-yl (6)

Note that different vibration patterns are possible in the case of multimass structures
and this necessitates a combined calculation. However, from the point of view of our in-
vestigation, it is enough to study the single-mass system.

The usual calculation method described above is erroneous in that it super-imposes
the results obtained for nonlinear systems, although a superposition can be used in the
case of linear systems only. The erroneous calculation results in an approximation to the
detriment of safety, in some cases quite considerably. Another problem of the usual
method is that, instead of using the effect of ductility to increase the resistance of the
structure, it reduces the load, and thus the calculation results in small deformations where
the nonlinear effects are insignificant and thus the problem remains concealed in general.

3. The correct ductile design

As is well known, the critical state of an elasto-plastic structure can also be as-sessed
by looking for the critical transverse force Fcr which causes the structure to go from the
indifferent state to the instable state with continually increasing deformation (see e.g. in
(6.

This phenomenon had been demonstrated by computer simulation studies of elasto-
plastic systems in compliance with the methods of the probability theory [7] and it has
been proved experimentally by shaking table tests [8].

Here the point is that, if a system undergoes plastic deformation (it yields) in one di-
rection as a result of the seismic shock, then the next yield would eventually take place as
a result of a smaller seismic shock but in the direction of the original plastic deformation.

In this work, a single-mass system excited by a finitely small portion of the shock, by
the impulse F to, will be investigated, taking into consideration the work P s of the force
P performed will in the course of vertical displacement n caused by horizontal displace-
ment A. Here to is the finitely short time and s is the displacement of the bar end in the di-
rection of force P.

3.1. Investigation hy means ofthe energy method
Let us consider the weightless, rigid cantilever bar shown in Fig. 4, stabilized by an

elasto-plastic spring of the rigidity (spring constant) k at the lower end and having a mass
m at the upper end.
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*
S=A2/2L

K Sping constant

Fii;. 4. Simplified model of the verification test

On the basis of the energy conservation law, the following equation system can be
written [9L

n - MNe M, —Fhn ©)

Here M is the total potential energy, Mexis the potential energy of external forces, n in
is the potential energy of internal forces, while £ kin is the kinetic energy. Note that Mex =
Lexi (work of external forces) and Muw= Lm(work of internal forces). The values of ener-
gies are

Mex —Tex| 4 Lex2, (8)

where Lexi is the work of horizontal force F = m-a6, that is, Le] = mn /A, as being
e}

the exciting acceleration, m the mass, and A the path length. If agand m are constant, then

Texl = as-m-A . (9/a)

If to is the time for which the constant force F =m at is acting, then the impulse will
be

I, = cig-m-to. 10y
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In the case of a short impulse time to {to - 775), the velocity will be v = 1Jm (with the
small work performed by the spring force during this time neglected) and thus, the work
of the force causing the impulse can be expressed as [K), I11], where T is the period.

7-vi "a. m tc (9/b)
Vo> 2 mm

The second part Lex2 of the external work can be described as the work performed by
force P on the subsidence (vertical) path S, that is,

Pg\2 —P'S » (1D

where P = m g is the gravitational force with g as the gravity acceleration.
The mass m moves along a circular arc and the value s can be expressed from the
equation . + (L-s ) = U of the circle. Ifwe confine us to values ] < L /2, then

s~ A2 2L. (12)

Taking this into consideration, the external work will be

tor ™ Lo K liom Tt R A g (13)
(Jex ex\ ljex2 Im 7 {Ili
In the case of a short-time impulse of constant value - a™.m.to, while
=as m A+P"j. (14)

in the case of a shock of constant intensity and longer time.
Expression

N, - Pin,cl T Pin,pi "FPclump (15)

can be used to describe the internal potential energy which the structure exerts against the
movement. Here

Pin.el ~7w ‘0, (16)

is the internal elastic energy stored over the elastic section A < Ae. Force F,, can be ex-
pressed by the spring constant K, thus Fm= KA .
The internal plastic energy stored over the plastic section A > Ae is

r
(17)
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where FU= K-Ae is the plastic limit force. In the course of the movement of the structure,
the internal plastic energy LjnF is converted into heat and thus it does not results either in
elastic energy accumulation or in a restoring force.

fdarnp is the energy absorbed by the internal damping of the system which is neglected
in this investigation because of its negligibly small value.

Thus, over the elasto-plastic section, the internal potential energy is

M,n - Lin- Linl+ 2- —FmAe + Fu (18)
while the kinetic energy is
1
b in Em-V , (19)

where r’ is the first derivative of [ with respect of time.

The investigation of the state of movement of the structure leads to the following con-
clusions: Taken the condition of equilibrium into consideration, the structure will move as
long as

nso, (20)
because there is kinetic energy present in the system. If
n=o, (21)

the structure willstop moving and thestate of equilibrium willset in. We havenow to
determinewhether the state of equilibrium is stableor indifferent.If dnex= d nin, that is,
if in the course of a small displacement dA, the external work is equal to the internal en-
ergy stored, the system will be in an indifferent state. This state is called critical state or
critical position, and the displacement Acr associated with this state is called critical dis-
placement. If M = 0 exists and dIl = dnex- dITn< 0, then the system investigated is in
equilibrium and it will be stable because after a small displacement it assumes its original
position again. However, if M>0 or if in case of M = 0, dFl = dnex- dIT,, > 0, the system
is instable and it will keep on moving. Hence, to find the critical position, conditions N =
0 and did = 0 have to be met. To investigate values of did, the derivative can be used in
general.

W hat has been said above is illustrated as a function of displacement in Fig. 5. The
external work Lex can be seen in Fig. 5/a. IfP - 0, then Lex remains constant after dis-
placement [ (to). However, if there exists a vertical force P, then Lex will also increase as
A increases. The internal energy Lmcan be seen in Fig. 5/b. If the value of the spring con-
stant K is high, then the internal energy L,,, will also be larger, while if a value of K is low,
then the internal energy Lmwill be smaller for the same value of A. Figure 5/c shows the
difference between Lexand Lmwhich is the kinetic energy £ Kn. The movement will not
stop before this value becomes zero.
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Muy. 5. Investigation by means of the energy method

In Fig. 5/d, a larger spring constant is associated with a smaller force P. Thus the two
curves intersect and the structure stops moving. This case will always take place in the
case of P=0 whenever the value of t0 is low. In the case of a larger force P or a reduced
rigidity k of the spring, the case shown in Fig. 5/e occurs where, as seen, the two lines
meet at the critical displacement JiclZ If P increases further or k decreases further, then the
two values will not intersect, so that some part of the kinetic energy £ kj, still exists, that
is, M > 0. Accordingly, the structure keeps on moving and thus it gets destroyed. Note
that if P > P, the structure will buckle even without any horizontal force. Here Pa =k m
L, the Euler force.

Investigated below are the effects of a short-time impulse and those of a longer shock
lasting at least until Acris reached, separately for the elastic and the elasto-plastic case.
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Since we are interested in the state when the structure stops moving, the velocity is v = 0
and the kinetic energy need not be dealt with. Thus the energy equation is Lex = Tin-
Letfirst the cases P = 0 investigated (T being the period).

E, 0, s (elastic bar, P =0, short-time impulse).
Assume that to< T/5.

r /,

[y

The works are:
Lin= 'F A =tkA2
.2 2

W ith the two values made equal and after simplification we obtain

l, fm
(22)
E, 0,t (elastic bar, P =0, longer shock).
Lex = ag mm,
The works are:
Lm=-k-A-.
From the two values,
2inmn
(23)

PI, 0, s (plastic bar, P - 0, short-time impulse). Assume that /) < T /5, where T is the
period of the free vibration and Fu= k-Ae (the plastic force).

<
= -+ -Zmaa
2m 2 g
The works are:
Lin = A= -

=

W ith the values of Lexand Lmmade equal and after simplification we obtain

| mlztO 15
A max = ' A, + (24)
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Pl, 0, i (plastic bar, P =0, longer shock)

Lex =ag m-A,

The works are:

From the two values:

IfaGm <FJ2, we will have an elastic case, while ifasm > FJ2, we will have a plas-
tic case.
If > Fu, the structure will not stop moving because N > 0 and thus A —» °°.

Let now the cases P *0 he investigated.

E, P, s (elastic bar, force P, short-time impulse)

The works are:

With the two values made equal

(26)
is obtained.
If the denominator becomes zero, then A — °°. This case will occur if P = k-L.
Therefore, dIl = 0 in this case and thus P = Pa, the critical force.

E, P,t (elastic bar, force P, long-time shock)

Lex =ag 1T A+ 21
The works are: :
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From the two values,

max (27)

As can be seen, relationship (23) will be obtained if P - 0, while in the critical case P
= Pa,A — ifagm ®0. The dynamic factor is B = 2.

PI, P, s (plastic bar, force P, short-time impulse)

, 1 2 12 P A2

Lx=-mag to
The works are:
. ( A\
im=Fu A--T - .
\ 2y

Setting equal the two values we obtain a second degree equation which yields

(28)-
. . . 9 8
This remains valid as long as m mag m0 < Fu mAe —1 Lotherwise A—» °0. This
may occur if Fu< P AC/L or P/Pa > 1,0.
Pl, P, t (plastic bar force P, long-time shock)
Lex=ag nvA+Pm
The works are:
Setting equal the two equations, and solving the second degree equation,
(29)
is obtained, where
(30)
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As long as i7v In < —- -, the structure deforms elastically only. However, if

the value of a&m is higher, plastic deformation will take place as well, and if

ag m> Fu 1- (31)

the structure will not stop moving, A > B and thus A — In the case of P > Par= k-L, the
structure buckles as well, because A —>°° also in this case.

On the basis of the above analyses, the behaviour of the structure depends obviously
not on whether the material of the structure can endure a relatively large plastic deforma-
tion or not, but it depends on the rigidities of the structure, on the magnitude and duration
of the shock, and furthermore, on the value of quotient P/Pa, that is, on the magnitude of
the safety against buckling. The plastic deformation capacity of the material sets a limit
only in the sense that if A,,<Acr, then the structure will collapses earlier, but the condition
A,, > Acrwill not increase the destructive effect at all.

W ith the energy equation written in the case of Pl, P, t we obtain

(32)

Assuming an arbitrary value of A < Auwe can determine from the equation the per-
taining value of Fuwhich stops the structure moving:

(33)

The structure is properly designed if the value of Fubecomes a minimum. This mini-
mum value of Fucan be calculated by means of extremum calculation or it can be chosen
from among values of Fucalculated for different values of A < A,,. This solution complies
with the solutions M = 0 and dn = 0.

3.2. Investigation by means ofequilibrium differential equation

W hen writing the equilibrium-deformation differential equation, displacement will be
denoted by W as is usual in analytical calculations. Accordingly, A = U. In the equation,
the term expressing the effect of force P is P u/{L —.v). Assuming a parabolic movement S
= m2 2L for s instead of the accurate movement along a circular arc, then the error will be
less than 1% provided that M < 0.5 L. Moreover, because of its small value, also the in-
ternal damping arising in the elastic domain can be neglected. Thus in the elastic domain,
the equilibrium differential equation becomes
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N P
mmg - Ml - K u+L n=20. (34/a)
-S

In the plastic domain, the difference lies in that after reaching the elastic limit ue, the
force in the bar stops increasing, and the value kK ue = Fuenters the equation instead of the
term Ku. Thus the differential equation of the plastic domain will be

m ., WMm-F,+- wm =0 (34/b)

O fcourse, the two equations must join each other at U = ue. Should the s be neglected
as compared with L, then the error resulting from this will increase quadra-tically with ”
and it will reach 10% in the term expressing the effect of the force if M < 0.5 L. Taking
this into consideration, the S as compared with L will be neglected.

The analytical solution of equations (34) is unknown. Different numerical “step-by-
step” methods have therefore been developed to solve equations of this type, among them
e.g. the average acceleration method of NEWMARK, which uses an acceleration of con-
stant value over the differentially small section investigated [12], or the method of linear
acceleration where the change in acceleration is considered to be linear over the differen-
tially small section in question [13]. These methods have been developed for manual cal-
culation using 0.1 to 0.05 sec as a step of time. However, a computer is capable of han-
dling much smaller steps at a fast rate and thus the method can be re-garded sufficiently
accurate. Therefore, in our example, the solution has been produced by rewriting the dif-
ferential equation so as to obtain a difference equation which has then been solved using
the step-by-step method. Thus, essentially, the solution is similar to the NEWMARK
method. Care should be taken to use a step of time not verging on the sensitivity limit of
the computer because in this case the accuracy might be affected unfavourably. Use of a
step of 1/ 500 to 1/1000 sec results in a sufficient accuracy, as a rule. Considering that
the calculation of P/ {L-S) with value Min S in the denominator would have been meas-
urements, we used an L - s ~ L approximation, taking into consideration what has been
said earlier. This approximation would result in an error of max. 5-6 % within the limits
of the experimental measurements. Thus the following difference equations have been
obtained:

Difference equation of the elastic domain:

] it: , - 2u, - U,., ., . P
mci (1)-m — k, it, + —u,=0. (35/a)
At L

Difference equation of the plastic domain:

lu,

(35/b)
Ar ¢ L’
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Problems would arise in the solution if every value were zero at time t = 0 because, in
this case, the computation would not start and some trick is necessary for starting. Such a
problem has not been encountered in our case because the acceleration has been con-
stant.

W ith difference equations (35), the computation can be started because nu_i= 0, U, =
0; and u,.\ can be calculated. In the next step, that is at time At, only Mji = 0 can be cal-
culated, while from the third step on, neither of the values is computable. This introduces
an error in the computation at the beginning, but this error is very small because the val-
ues of At are very small as well.

The computation will change if instead of the mass it is the support which is excited.
Over the elastic domain, the effect of the support acceleration is the same as if the mass
were accelerated at the same rate in the opposite direction [14]. In the plastic domain,
limits are set to excitation by the value of Fuin the case of ani- Fu.

4. Experiments

The theoretical investigations discussed so far have shown that, in certain cases, the
behaviour of the structure differs from what has been described in the literature [3, 12,
13]. Here the point is that not only the vertical force but also the horizontal force has a
critical value, causing the structural to collapse. This “two-sided” effect results from ver-
tical force P which has not been correctly taken into consideration so far. Considering
that this phenomenon had not been mentioned in the literature known to us, we found it
necessary to investigate the phenomenon experimentally to check whether our calcula-
tions were correct. We thought sufficient in the first step to include in the experiment the
model investigated theoretically.

4.L Planning of the experiments

Originally, we wanted to use the shaking table of the Department of Strength of Mate-
rials and Load-bearing Structures of the Technical University Budapest. How-ever, in the
course of detailed planning, the actuator of the shaking table proved tobe incapable of
producing the required impulses. Therefore, a shock transfer device was developed,
where the impulse resulted from the energy of a mass falling from adefinite height h and
converted intoa horizontal shock by meansofa rocker system.

This device is shown in Fig. 6. The cantilever structure investigated was built onto the
fixed shaking table. The frame structure had also a leg hinged above and below parallel
to the bar clamped at the bottom, in order to provide room for mass ni\ to be placed on the
beam of the frame and to eliminate the rotational inertia of the mass. Steel disks fastened
by bolts on the beam were used to build up the mass. The measuring device was mounted
on an independent stand (not shown in Fig. 6).

The mass m2giving the impulse was fastened on the left arm of the cross-shaped
rocker fastened to the base on the right side (see Fig. 7). This mass consisted of disc-
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. Bar falling after scock
12 Steel weights

A=u of 18 kg/pcs o _
-f~c-7sm -¢ - joint pin
0.50m
L=1,06m
Tying up
Underplate
_Concrete weights of
about 30 kg/pcs
Fig. 6. Schematic illustration of the experimental device
Fig. 7. Concrete weights resulting in mass m2 Fig. 8. Tying up of the aim of the rocker
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Fig. 9. The experiment as adjusted together with the steel weight resulting in the bulk of mass

shaped concrete weights weighing 30 kg each. The impulse strength was increased by in-
creasing the number of the concrete discs, while the duration of the impulse (/) was
regulated by changing the height of fall (/?). Five and 9 pieces of concrete weight were
used in the experiments and the height of fall was 0.10 m and 0.15 m, respectively. The
mass of the bar and rocker arms, properly transformed (into reduced m ass), was included
in the mass (Mi) on the horizontal bar and thus a mass of m\ = 235 kg resulted. The right
arm of the rocker was tied up (Fig. 8), then untied for impulse production. The intercon-
necting bar was designed so as to disengage after the shock to permit the system investi-
gated to move freely. The experiment set-up is shown in Fig. 9.

In the experiments, the height of fall and the acceleration were measured while the
velocity was determined by differentiation of the height and integration of the accelera-
tion (properly coordinating the two calculations).

4.2. Calculation ofacceleration transferred to the test bar
The rocker system used is similar to the ATW OOD free-fall apparatus but it is more

sophisticated as far as kinetics is concerned. The model shown in Fig. 10 was used to cal-
culate the acceleration transferred to mass m\ on the test bar.
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Fia. H-
a) Schematic model of the experimental setup
b) Calculation model of the test impulse
c) Calculation of the values and averages of the test impulse and internal force, and determination of the (av-
erage) accelerating excitation ne for the time
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The geometry of the model being shown in Fig. 10/a, while the forces acting upon the
masses as well as the dynamic model are given in Fig. 10/b. The effect of the rocker was
determined by means of the impulse moment equilibrium equation written for the centre
of rotation C. As seen in Fig. 10/c, the acceleration of mass nt\ decreases first over the
elastic domain U < ue and becomes constant over the plastic domain U > ue. The average
value of acceleration can be calculated by means of the expressions presented. The force
F acting upon the bar increases first over the elastic domain until Fuis reached. Thereaf-

ter its value remains constant, the average being F. By setting equal the work of the av-
erage force F to that of the trapezoidal diagram, the value of F can be calculated. The

value of the accelerating force ,S| can be obtained as the sum of F and of d’Alembert’s
force produced by multiplying the acceleration a with the mass mi, and thus the average
exciting acceleration and excitation time tocan be calculated. For details of the calcu-
lation see Fig. 10/c.

A cold rolled 30 x 30 mm square tube of a wall thickness of 2 mm was used for the
experiment. Over the section where plastic deformation was to be expected, the steel tube
was heated by flame to become soft and thus comparable with the ideally elasto-plastic
material. The force-displacement diagram of the bar obtained experimentally shown in
Fig. 11. This is, of course, not ideally elasto-plastic because of the gradual plasticization
of the cross-section. At a certain value of displacement, the wall of the tube buckled and,
as a result, the rigidity decreased and thus the curved section of the

Fig. 11. Force-displacement diagram of the specimen, obtained in static experiment
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Fig. /2. Specimen permanently curved after the experiment

diagram started to bend downwards. In the calculations, the idealized elasto-plastic bi-
linear line (see the broken line in Fig. 11) has been taken into consideration with a plastic
force of Fu= 706.5 N. Thus ue = 0.045 m has been obtained for the limit of plastic de-
formation.

A limit deformation of mte = 0.54 m has been assumed, resulting in a ductility factor of
p = 0.54/0.045 = 12. The yield point of the softened material of the bar has been deter-
mined by a tensile test which resulted inoy= 36 N/mm".

4.3. The experiments carried out

Originally, 15 experiments have been planned so that the critical phenomenon could
be included in a range of parameters adjusted. Unfortunately, 4 experiments proved to be
unsuccessful due to different problems (collision of parts, loss of data by the controlling
computer). Thus 11 tests results could be evaluated. The increment of the test impulse
magnitude were determined by the size of the concrete weights available. To increase the
fineness of the stepping, mass M2 was dropped from two different heights h, 0,10 and
0.15 m.

The data of the experiments which could be evaluated are compiled in Table 1,
showing masses M2 used, height h, excitation path u&of mass mtwhen dropped from
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Table |
Initial accelerations ae and excitation times In

Sign h “9 m?2 e to
m]| Im]| kgl Im/sec" 1 |sec|

D, 0.10 0.0667 184 5.443 0.1565
D; 0.10 0.0667 215 5.743 0.1524
D, 0.10 0.0667 249 6.011 0.1489
d4 0.15 0.10 249 6.249 0.1789
d5 0.15 0.10 249 6.249 0.1789
D,, 0.15 0.10 215 5.970 0.1830
d7 0.15 0.10 215 5.970 0.1830
Dk 0.15 0.10 215 5.970 0.1830
0.15 0.10 215 5.970 0.1830

D,, 0.10 0.0667 280 6.214 0.1465
Du 0.15 0.10 152 5.257 0.1950

m, = 235 kg, k = 15,700 N/m, t(c=0.045 m,f/e = 15

dt. edtrgacsadion aandrigio St A2 vdl s edtstion
L

Feeominatl alisveerendoh/ttenas ngchued Q2 scrends
I-?:rﬂe%gkcakﬂgfnsauﬂgb&t a%sﬁad‘d%kmtm(&
ae[aacac;lmzlﬁr erdckt?&jemlzmﬁly efaingt kdfoe, ad

h ae ar
de epainat di; teaiic <ep) ado |'|) repringy) ae ildradedn
Ag ¥Yad b ndcadnteAgesaetre inplaveeatirgacdadionas vl &

tredwodac fion. \daiyvaddglbaaet. dtenas..
Thdiresvae teeminad EiSviaetinbdares o tedat

Fig. 13. The basis of the specimen, permanently yielded and buckled after the experiment
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Table 2
Displacements u in experiments D |-D |3

Data; sec

Sign m/s2 ! 0.2 0.4 0.6 0.X 1.0 1.2 1.4 max.

D kg —>[secl
m
= 0.1565

1 ae = 5.443 we 0 0.090 0.177 0.209 0.201 0.178 0.1X4 0.207 0.21
Q = 1X4 "exp 0 0.093 0.1X6 0.219 0.214 0.197 0.198 0.214 0.22
h=0.10
f0=0.1524

2 «g= 5.743 " 0 0.094 0.1X6 0.226 0.231 0.212 0.206 0.224  0.23
Q = 215 wep 0 0.072 0.175 0.207 0.1X8 0.157 0.1X6 0.204 0.21
h=0.10
to= 0.14X9

3 «c= 6.011 ", 0 0.09X 0.192 0.237 0.252 0.243 0.231 023X 0.25
Q = 249 "exp 0 0.076 0.179 0211 0.199 0.171 0.161 0.193 0.21
h =0.10
t, = 0.17X9

4 ag= 6.249 n. 0 0.I0X 0251 0.370 0.509 - - - 00
Q = 249 rexp 0 0.0X2 0231 02IX 0.193 0.253 0.217 0.213 0.26
h=0.15
to= 0.1X30

5 «g= 6.249 "e 0 0.108 0.251 0.370 0.509 - - - 0
Q = 249 wep 0 0.101  0.24X 0.340 - - . _
h=0.15
to = 0.1X30

6 tts = 5.970 Ue 0 0.103 0.242 0.351 0.474 - - - 00
Q = 215 exp 0 0.106 0.246 0.343 - - - . 00
h=0.15
t0= 0.1X30

7 «5=15.970 ue 0 0.103 0.242 0.351 0.474 - - - 00
Q = 215 exp 0 0.106 0.246 0.343 - - - - 00
h=0.15
t, = 0.1X30

X «g=5.970 Uc 0 0.103 0.242 0351 0.474 - - - 00
Q = 215 exp 0 0.101 0.256 0.375 . : . : 00
h =0.15
t0=0.1X30

9 «5=5.970 He 0 0.103 0.242 0351 0.474 - - - 00
Q = 215 nexp 0 0.085 0.243 0.364 . . . . 00
h=0.15
to= 0.1465

1 «5= 6.214 Ue 0 0.101 0.202 0.259 0.293 0.318 0.344 0.3X0 00
Q = 2X0 nexp 0 0.099 0.203 0.262 0.297 0.324 0.353 . 00
h=0.10
to= 0.1950

13 «g= 5.257 uc 0 0.090 0.216 0.303 0.385  0.495 - - 00
Q = 152 nexp 0 0072 0211 0.312 . . : ; 00
h=0.15

P =2350 N.P¢, = 16,4X0O N.m = 235 kg. L = 1.05 m. t/e=0.045 m. uT=0.54 m
k = 15.700 N/m. P /P, = 0.1426; c = computed, exp = experimental
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Fig. 14. Acceleration, velocity and path (displacement) diagrams of mass m\
of specimen D1 as functions of time excited by an impulse smaller than the critical impulse
(experimental results: thick line, calculated results: thin broken line)

It can be seen in the Figures that, on the one hand, there is a satisfactory agreement
between the calculation and the experiment and, on the other hand, that the critical phe-
nomenon does exist. In experiment D I, the velocity decreased to zero at about 0.7 sec as
a result of an impulse /, = 200 mkg/sec and the displacement stopped. Hence, the phe-
nomenon is stable. However, in experiment D1 1, the velocity due to the impulse /, = 214
did not decrease to zero and the displacement increased beyond any limit boundlessly.
That means that the phenomenon is instable.

The critical state lies between the two values. According to relationship (28) and to

condition m a\ t@Q = FumAe(Pcr/P - 1), the critical impulse is /, = 212 mkg/sec. These

values show that the theoretical calculation is reliable.
For the sake of interest, the values of displacement have been calculated for an exci-
tation time of /= 0.15 and for different values of agi and illustrated in a diagram in
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011 analysis
experiment
m=235kg, L=1.05m,
k=15700N/m,
t (sec)
P=2350N,
Pcr=16480N,

P/Pcr=0.1426,
t(sec) ue= [e=0.045T,

uu= On=0.54T.
t (sec)
D11 ag = 6.21 m/sec2,
Q= 0.147 sec
t (sec)

Fig. /5. Acceleration, velocity and path (displacement) diagrams of mass
of specimen DI 1as functions of time excited by an impulse larger than the critical impulse
(experimental results: thick line, calculated result: thin broken line)

Fig. 16. Maximum displacement of the elements investigated
as a function of the exciting acceleration
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Fig. 16. Below the elastic limit, displacement mweax is proportional to ap while beyond the
elastic limit, it increases rapidly until the critical exciting acceleration = 6.22 m/sec is
reached where, theoretically, the moving increases infinitely. O f course, the infinite value
is a result of an approximation since, in fact, the end of the bar moves along a circular arc
(and not parabolically). and thus ummcould be not higher than L.

5. Conclusions

As clearly follows from what has been said so far, the usual calculation method of
load reduction with the effect of ductility taken into consideration is erroneous and it re-
sults in some cases in a considerable underdimensioning. The error is a result of several
factors described below:

- Instead of using the effect of ductility to increase the resistance of the structure, it is
used to reduce the load in the usual seismic design method. As a result, the displacements
of the structure under reduced load, calculated by elastic dynamics, are small enough to
make the designer to believe that the effect P —A can be taken into consideration on the
basis of the elastic principles. In fact, much larger displacements take place than those
calculated in this way, and in the case of these larger displacements, the effect of P - A is
significant and cannot be described on the basis of the linear theory. Thus the use of a
more accurate plastic dynamic method, taking the effect of force P as well as the effect of
plasticity into consideration, seems to be justified.

- In the usual design method, the calculation is based on the elastic response spec-
trum, and the internal forces (and from these the deformations) are calculated in general
from the acceleration spectrum. The elasto-plastic response spectrum differs considerably
from the elastic one and it increases instead of decreasing as the period increases. The
displacement answer spectrum calculated for the experimental setup is shown in Fig. 17.
The decreasing elastic answer spectrum has led the designer to believe that with the dam-
age experienced by the structure (degradation in strength and rigidity), also the internal
forces decrease. On the contrary, a certain reduction in the plastic system is followed by
increase again as a result of which the structure under increased forces collapses. The ac-
celeration spectrum cannot be taken as a basis for design in the plastic state for the very
reason that there is no definite relation between acceleration and displacement in a plastic
structure and therefore seismic design on the basis of the acceleration spectrum may be
considerably misleading.

- In the case of a plastic system, the behaviour of the structure depends on several
factors, among them e.g. on the rate of ductility, the ratio between load P and critical load
Per, the relationship between the critical load and the plastic horizontal limit force, the du-
ration of the shock impulses etc. These data become known only at the end of the design
procedure and thus the calculation must be repeated again and again to make sure that the
structure in question is suited for the actual internal forces and complies with the defor-
mation limits.
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3 —Adyn ! Astat to —0.1sec
p=o350N 29 =6.22 m/sec2

elastic -plastic

P=0

-1-
0.5 1.0 1.5 T (sec)

Fig. 17. Displacement spectra of elements T of different vibration periods
(different spring constants) each in the elastic and elasto-plastic case, with and without compressive
force P (with an excitation of an acceleration ofag = 6.22 m/sec2 for a time oft0 = 0.1 sec)

—1In the case of reinforced concrete structures, repeatedly arising internal forces cause
a degradation in strength and rigidity and thus a considerable reduction in the resistance
of the structure. Hence the behaviour of the reinforced concrete structure is more disad-
vantageous than that of the theoretically elasto-plastic structure.

— In the case of steel structures, the elements of the cross-section always undergo
buckling under plastic (ductile) load. Although this buckling does not necessarily result in
a reduction in strength, it always results in a reduction in rigidity. This affects the be-
haviour of the structure unfavourably and thus the question arises whether it is allowed to
take into consideration the effect of ductility in the case of steel structures at all?

—W hile the elastic system responds to short-time and long-time shocks identically, the
response of the elasto-plastic system to shocks of different duration is different and, as
compared with the short-time shock: a long-time shock of a much lower value may be
enough to destroy the structure.

—1In ductility based designm, investigation of the velocity of movement of the struc-
ture is indispensable because the stability of the structure depends on whether the velocity
of movement will be come zero or not. Therefore, should ductility be taken into consid-
eration, determination of the value of critical displacement Acrcan hardly be avoided. The
limit ductile deformation plays a role in the problem only in that its value must be higher
than the value of the critical deformation, that is. Au> Acris required.

On the basis of what has been said above, the widely used ductility based method of

seismic design seems to need a revision. Described below briefly is a method of seis-mic
design which is, in our opinion, much more correct than the method used today.
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6. Recommended method of seismic design

First of ail, it is reasonable to consider whether it is economically justified to make
use of the load bearing capacity reserve resulting from ductility. Also, we must re-
member that a quake of an intensity of / = 5-6 exerts a load to the structure of buildings
which is approximately equal to the load caused by wind. Since the buildings must be de-
signed at any rate for windload, we need not deal with earthquakes below an intensity of
/ = 5. With a rather strong earthquake of a magnitude of M = 7.5. an intensity of /= 11is
associated in the epicentre according to the 12-division scale. For an earthquake more
intensive than that, an appropriate load bearing structure cannot be designed at all. As
compared with an intensity / = 5-6, seismic design for an earthquake of an intensity / -
11 means design for a load 40 to 50 times as much, however, the increase in costs is only
20 to 25% in the total costs of the building. Considering that the load increases quadrati-
cally with the intensity, the increase in costs can be estimated at 5-6% in case of an in-
tensity /= 8-9.

A correct design making use of the ductility would result in saving half of the addi-
tional costs of max. 20-25% . Thus in highly seismic regions, investments costs about 10-
11% could be saved if a correct seismic design of ductility, were applied.

The structure of the building forced to undergo ductile deformation suffers a per-
manent strain after which a restoration of the building is usually impossible. The time of
recurrence of large earthquakes complies with the lifetime of the buildings and thus the
earthquake is expected to result in serious damages to at least 20 to 50% of the buildings.
And if the building must be demolished, this will affect 100% of the value of the building.
Thus 20 to 50% of the value of the buildings can be opposed as a loss to savings of 10-
12% .

At the same time, the deformations will be small if the building keeps its elastic state
in the case of an earthquake. The damages can be repaired simply since the load bearing
structure is not damaged. The situation is different in a region where the recurrence time
of earthquakes is much shorter than the lifetime of the buildings, In such regions, the
ductility might possibly be taken into consideration since the cost ratios might be differ-
ent.

Taking all what has been said above into consideration, it can be recommended that
the buildings be not permitted to get into plastic (ductile) state under standard earthquake
conditions. The effect of ductility, which might be favourable, shall remain a reserve for
saving human life. Although the construction costs of the buildings may increase some-
what, but the damages due to earthquake will decrease considerably for the same period,
and certainly much less human lives will fall victim to earthquake, Note that on the basis
of an erroneous analysis, the effects of ductility have been overestimated and utilized for
the existing buildings all over the world at present, and thus the benefits of what has been
said would appear not before decades.

Remember that ductility has been introduced to seismic design because of its energy
absorbing and vibration damping effect. An examination of the differential equation
shows that this effect is similar to the Coulomb (frictional) damping effect. Best use can
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be made of the favourable consequences without unfavourable side-effects if the damping
system is separated from the load bearing structures. By so doing we do not endanger the
stability of the building. Optimum damping can be achieved in this way, and in the case
of a possible damage, the friction brakes can be replaced in a relatively simple way and
at reasonable costs. This system is similar to a motor vehicle where the brake system s
built in independently. W hoever would think of reducing the production costs of a motor
vehicle by building no brake in, relying on the vehicle to stop anyway when it runs into a
tree.

Nor should we forget that so far based isolation systems of quite a number have been
developed which are capable of eliminating 70 to 80% of the load exerted to the building
by earthquake.

By using the different methods in combination, damages due to earthquake can be al-
most entirely avoided.

7. Notation
a = acceleration 4 = acceleration of impulse excitation
g = gravitational acceleration h = height of fall
K = spring constant m - mass
S = vertical displacement t = time
to = time of impulse excitation U= A = horizontal displacement
v = velocity E = elastic (Young) modulus
£ (i) = energy tkin = kinetical energy
F = horizontal force Fe = replacement static force
Fu = plactic force 1 = intensity of earthquake
/, = impulse L = length of bar
Fex = work of external force Bn = work of internal forces
M = bending moments P = gravitation force
Per = critical force T = vibration period
a = reducing factor R = dynamic factor
n = ducility factor oy = yield strenght
J1=u = horizontal displacement 4 = limit of elastic deformation
At = deformation without P force du = limit of plastic deformation
M = potential energy Mex = potential energy of external forces
Y’ = factor of buckling deformation n in = potential energy of internal forces

du/ dt = n*= differential quotient of it displacement by t time
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ON THE DIVISION OF THE KINETIC ENERGY
(POWER) CONTENT IN TURBULENT FLOW
(An Approximate Analytical Review)
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The kinetic energy (power) content in turbulent flow can be divided between the turbulent fluctua-
tion and the main (mean) flow. In spite of that the former one is a few per cent only of the total one its
role is significant in e.g. sediment carrying or pollutant dispersal (generally speaking: transport) capacity
of the flow. The approximate analytical review enlightens on the mutual interaction of the turbulent
fluctuation and the main (mean) flow. The most important result of this review is the clear picture of the
composition of the kinetic power. This shows that the kinetic power of the turbulent fluctuation consists
not only of the generally known local and convective components but also of a second convective term
which indicates a kinetic energy convection of the turbulent fluctuation by the main (mean) flow veloc-
ity. And depending on the signs of the space derivatives it can indicate energy transport in both direc-
tions leither from the main (mean) flow to the turbulent fluctuation or vice versa|.

Notation

—_ - material (total) derivative

- subscript, refers to ergodic state
f - /-th component of body force of elementary water body of unit
mass
ij= 1,2,3 - subscripts refer to components parallel to Cartesian coordinate
axes in Eulerian description
- number of experiments (tends to infinity)

N

P — instantaneous hydrostatic pressure

P - main (time-mean) part of hydrostatic pressure
P

instantaneous part of the hydrostatic pressure by turbulent fluc-
tuation

P — normal part of Reynolds stresses

t — running time coordinate
to - definite time point
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T time limit of time span (tends to infinity)

Tj time limit (finite, in order of magnitude of minutes) for cal-
culating time-mean characteristics in turbulent water flow

T,..f kinetic power of elementary body of unit mass of main (mean)
turbulent water flow

T, period time of natural or man-made periodicity in instationary
water flow

Tr relative transport capacity of turbulent water flow

T, period time(s) of turbulent fluctuation

Tf kinetic power of elementary body of unit mass of (mean) tur-

bulent fluctuation of water flow

U; U\=ux, U2=U\v, . ) . .
instantaneous vel0<:|ty; com ponents accordlng to co-ordinate axes

Uj=Uz, u, Uj

U main velocity (time-mean over finite time span: 7/)

i », 0 Tij main (mean) part of instantaneous velocity; and /-th andy-th com-
components of it

II; »; u. - instantaneous part of velocity by turbulent fluctuation; and /-th and
y-th components of it

X, ¥,z - limits of space spans (tend to infinite) of space coordinates

Ay, z - running space coordinates

Xos Yorr - space coordinates of a definite point

Xi, Xj - /-th,y-th space coordinates

fm - apparent, turbulent, eddy viscosity

E» n, ¢ - space-spans according to nyy, z space coordinates

d - symbol of parcial derivative

SJ - Kronecker delta (ifj @i then 8, = 0 and ify = ithen 8,, = 1)

" - constant molecular dynamic viscosity of water

\Y - constant molecular kinematic viscosity of water

b B - constant density of water

ay=-p u U - Reynolds stresses

VA - sum up symbol

t - time span according to / time coordinate

1. Introduction

It is well known that in hydraulic engineering practice both the supercriti-
cal/subcritical state of flow (in open channel flow) and the laminar/turbulent behaviour
of flow have their significance in the relevant cases.

W hen constructing a chute during training a creek the state of the flow in the head-
water race may be subcritical while running down the chute its state may be supercriti-
cal. Again following the energy dissipator the state of flow may be also subcritical in
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the tailwater race of the trained creek. Along the path described above the behaviour of
flow is turbulent. Generally “open surface" flow in hydraulic engineering is turbulent.
Probably the only exception is the “vail-like” waterflow if the order of magnitude of the
vail depth is not more than millimeter and the order of magnitude of its velocity is not
more than millimetres per second.

The state of water flow in closed conduits is generally turbulent. An important ex-
ception is seepage flow of water in a system of closed conduits which has a range
(seepage flow of Darcy) the state of flow of which is laminar.

Thus it can be stated that in point of view of hydraulic engineering the state of tur-
bulence in the water flow is essential.

2. Definitions and statements

In formulating a general definition regarding turbulent flow the best starting point
can be Hinze’s (1959) definition. Following his row of thoughts it can be stated:
“Turbulentfluid motion is an irregular condition offlow in which the various quantities
ofthe fluid and that of the flow show a random variation with time and space coordi-
nates hut so that statistically distinct mean values can he discerned."”

Comparing the hydraulic engineering aspects with the definition of the turbulent
flow above and neglecting the exceptions it can be stated that water flow may be treated
as an incompressible fluid flow with viscosity constant. Thus only the statistical means
of the flow characteristics have any relevance.

Three different statistical means can be defined e.g. regarding flow velocity (Korn-
Korn, 1968).

(a) The time-mean of velocity in a definite point of the space in a stationary turbu-
lent flow is depending only of the space coordinates:

(Va)

in which U refers to the instantaneous velocity, X,,, V.., Z,,- space coordinates of a defi-
nite point, t —the running time coordinate, r —time span over which the statistical mean
will be calculated, T - limitofr.
(b) The space-mean of velocity in a definite time point in a homogeneous turbulent
flow is depending only of the time coordinate:*

*Qverbar indicates statistical mean, and the symbol above it refers to the quantity over which the statisti-
cal mean is calculated.
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lim —Ju{x + £,y + Lz + C;t0)dCchjdC,
X —»°° X

(1/b)

in which G, '|]and Crefer to the space-span of the running space coordinates: X, Y, z over

which the statistical means are calculated, X, Y, Z - limit of n, G respectively, and t,
- time coordinate of a definite time point.
(c) If the turbulent flow is neither stationary nor homogeneous then the average-

mean can be defined as the mean of N experiments (performed amongst identical cir-
cumstances), e.g.

(Ve)

(d) According to the definition of the ergodic hypothesis of random phenomena if
the flow is both stationary and homogeneous then the time-mean and the space-mean to
be equal with the average-mean. That means

r _ C.nC _ a
Ue(X0’Y0°Z0, Ueifo) Uewc 1o )

(2)

where subscript “e” refers to the ergodic state.

3. Basic assumptions in interpreting the disorder of turbulence analytically
in hydraulic engineering

The real turbulent flow is never stationary in the strict sense of the word but it can
often be supposed as quasi-stationary (during short-time spans) because of the slow
variance of the flow in time. Simultaneously the homogeneity of turbulence cannot also
be supposed because at least along the boundaries (in the laminar and turbulent shear
layers) the statistical means of flow characteristics perpendicular to the boundary have
significant gradients showing anisotropy based on (gradual) inhomogeneity. Further-
more, the statistical means over infinite spans cannot be interpreted in practical applica-
tions.

For analysing turbulence it seems to be the most relevant fact that the time-mean
values serve the most valuable information. First of all, it is important to mention that
according to the results gained from experimental evidence the period of turbulent fluc-
tuation (T,) varies between two distinct limits, namely

Kr4<7) [sec] < 1. 3)
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This range of time exceeds e.g. with many orders of magnitude the period of collision
due to the Brown motion in gaseous fluids which can be characterized as 10 9 -r 10 10
[sec]. At the same time, the period (T,,) of natural or man-made instationarity of water
flow is with many orders of magnitude longer because its characteristic value may be
hour.

Thus, it is possible to find a time span which is much longer than the longest period
of turbulent fluctuation and much shorter than the natural or man-made period of insta-
tionarity of water flow:

Tan« T« T, (4)

This finite Tftime-span (in order of magnitude of minutes) can be the basis in calculat-
ing time-mean and this can be accepted as characteristic mean in analysing turbulent
flow in hydraulic engineering, thus (exem plifying by velocity):

(5)

Here and in the following overbar (without any superscript) indicates a time-mean
value calculated over afinite T/time span defined previously.

In the following the instantaneous value (exemplified by velocity) will be indicated
by U which is the sum of the characteristic mean defined by Eq. (5) and indicated by "
plus the instantaneous value of turbulent fluctuation designed by U’ thus

U-n+mu (6/a)
and by definition

U—n andso ¥ =04 (6/b, c)

4. Equilibrium of forces acting on an elementary water body of unit mass

There are two relationships describing the interrelation between the motion charac-
teristics of water flow (incompressible fluid with viscosity constant): Equation of conti-
nuity and Navier—Stokes equation (interrelating the acting forces on a water body of
unit mass). Applying the Cartesian coordinate system and the Eulerian description form
the equation of continuity says (if there is no sink or source in the flow field) (Hughes-
Gaylord, 1964):

~ 39U
(7/a)

4+ A X

and the r-th component of the Navier-Stokes equation:
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du, dU, . 1 dP 4p d2U,
— un, - 1=f + V> f (7/b)

", ! u ~
Dt dt j=1 dx p dx, jf: dx

where (/,, Uj [m/sec] - /-th and j-th components of the instantaneous U velocity vector; t
[sec] —independent time coordinate; x,, Xj [m] —/-th and /-th components of independent
space coordinates; P [IN/m2= kg/m sec2]- instantaneous hydrostatic pressure; p [kg/m3]
- constant water density; v=p/p [nT/sec] - constant kinematic viscosity of water; f
[m/sec‘J- /-th component of body force vector: f (acting on a water body of unit mass).
In this relationship /= 1,2,3 andj = 1,2,3 where 1= x (flow direction, horizontal,
forward); 2 =y perpendicular to 1 = jc, horizontal and left directed; 3 3 z perpendicular
tox, y plan, vertical, upward direction.

In this equation system consisting of 1+ 3 = 4 equations there are four unknown
quantitities: U\ = Ux, Un= Uy, Ui = Uzand P, and if the boundary and initial conditions
are known then the equation system can be solved. Because any general solution does
not exist, therefore numerical evaluation prevail first of all in one- or two-dimentional
approximations.

This equation system is valid both for subcriticallsupercritical flow and for larni-
narlturbulent state offlow. Taking into account Eqgs (5) and (6/a-c) it can be sen that
this system of equations at turbulent state of flow has to be valid also for statistical
mean values. This means that

Uj=wn+un,; 4—U+U- P=p+p (8/a-c)

and in calculating means Eqs (6/a-c) are to be applied.
The equation of continuity for mean values reads as follows

3 i 3 a\m +u, 1 3
y d]u, .y iV 7 % du, (9/2)
bax, =z i) 9%,
As the consequence of Eq. (9/a) it can be stated that
< Ay
Q_y du, _y < y duj (9/b-d)

£1 dxi h dxi Ttdx,

which means that equation of continuity is valid simultaneously both for instantaneous
velocity components and for time-mean values of velocity components and for the in-
stantaneous values of turbulent velocity fluctuation components.

Similar to the equation of continuity the time-mean form of the Navier—Stokes
equation can also be evaluated
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DU, D(u,_l_u\) d(u,"//,’) dfu, +u,)
X(M+2) gy
=1 (10/a)

Q>+ 1>) A
p VA -
ax, dx;

DI Dt d

=/< -
P

Taking into account Eqs (6/a-c) and rearranging Eq. (10/a) it reads

Du, da, _ d} ’ 1. p
L- —L+yY T7T—~—L=/ +
DI @ FER D S TR I O )
\ (10/b)
g
| V----o- .-t —-
/1 dx) 1 dXj
Adding the following terms
- to the second term, left side:
dit.
O==>._ (H/a)
1=1\ d x J
- to the last but one term on the right side:
N 0
0=y v-4%, (11/b)
71 dx,dxj
- and to the last term on the right side:
o dll
O:?— - o1- (M/c)
n dx

i=\ uoj

which (all the three) are special forms of continuity the following formula will be got

u _ du, ly3 <?»-»;)_ f 1 dp i

D I/ £|| l/\:l );(-j ' p dxt

(1) (iM) @iii) ~ (iv) v)
(12/a)

fda, da~n )

e v, LT

(vi) (vii)
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where (i) denotes the z'-th, total time-mean component of acceleration due to the acting
forces on a water body of unit mass which equals the sum of (ii) the local and (iii) plus
the convective acceleration. The right-hand side of the equation consists of (iv) z-th
component of the body forces acting on a water body of unit mass and (v) acceleration
due to hydrostatic pressure. The last two term on the right-hand side of the equation
represent the effect of resistance. The term (vi) indicates acceleration due to body de-
formation by viscous forces and (vii) acceleration by turbulent velocity fluctuations.
Equation (12/a) clearly indicates the effect of turbulent fluctuation on the main
(mean) flow. This form has been introduced first by Osborn Reynolds therefore its

characteristic term is often called as Reynolds stresses: or. = —pii/Uj. J. Boussinesq has

been the first one who supposed that resistive forces caused by the Reynolds stresses
can be explained by the acceleration due to the deformation of the main (mean) flow
(similar to the viscous stresses), only instead of the molecular viscosity coefficient (v =
pip, material characteristic) an “apparent”, “turbulent” or “eddy” viscosity coefficient
has to be introduced (designed by €&, \m/sec] and it is “motion characteristic” because
it is effective only then if motion exists). Taking into account that Reynolds stresses in-
clude normal components, too, and these can be characterized by spherical symmetry,
thus, they can be expressed as

1~ dOjj \V; d du du.

dxi o D, (12/b)
p M dxJ 1=y dx ;-1 9x) @I_\ & P

in which - besides the foregoing explained ones - <&/ is the Kronecker delta (&>= 0 if

j ®iand s,; = 1ifj =i)and p, [N/m2= kg/m sec2]- normal part of Reynolds stresses.
In a significant group of turbulent water flows (wide, shallow, open channel flow

pt = constant and £, = constant supposition yields a reasonable agreement between

theoretical and experimental results. But there are other situations at which higher- (e.g.
fourth-) order tensor is needed instead of £,, = constant, scalar for acceptable agreement
in spite of that its correct physical meaning is not fully understood as yet.

Substituting Eq. (12/b) into Eq. (12/a) and rearranging it reads

Du, _du, |y <?(»/»>)_ ld(p +p,)

] 12/c)
D, dt  j*  dxj " p dx,

As it is to be seen p, and £,, are completing the relevant original terms with physi-
cal meaning as p and V. In wide, shallow, open channel flow pt = constant, scalar has
the same order of magnitude as p , at the same time in closed conduit under high over-

pressure p, will probably be negligible. The eddy viscosity (£,,,) compared to the mo-
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lecular viscosity (v) may be of order(s) of magnitude higher in water flow. Using any
experimental measurement(s) for recalculating the numerical value of eddy viscosity
and if it results in a negative value (supposing reasonable numerical range of p, ) then
it proves that £,,=constant, scalar supposition is not a solid one.

5. Kinetic energy (power) in turbulent water flow'

Starting with Eq. (12/a) expressing time-mean equilibrium of forces acting on an
elementary water body of unit mass it is easy to reach an equation which is the time-
mean equilibrium of kinetic energy, exactly speaking, equilibrium of kinetic power.
Namely, it is well known that force multiplied by velocity with identical direction: re-

sults in kinetic power. Thus, multiplying Eq. (12/a) with U, velocity the result will be

the i-th component ofkinetic power oftime-mean equation of mainflow. Therefore after
rearranging

Lo Lo
R ¢
» J d
U J I/J+y1 e 1 dp
2 Dt 2 dt b 2 d P dx,
(0 i) ww
V it dil |J dn
) S (13/a)
+:7I'=1 ax’j [de dx, >['de
(vi) (vii)
( « ' A duA
+—  W\- ten,
dxjL v JJj 3%1]
(viti) (ix)

In this relationship related to the elementary water body of unit mass and time-mean
value of the i-th component (i) refers to the total kinetic power which is the sum of (ii)
local and (iii) convective kinetic power. This sum is in equilibrium with the sum of ki-
netic power terms of (iv) body forces, (v) hydrostatic pressure (convective diffusion)
and the sum of resistive forces, respectively. The sum of kinetic power of the resistive
forces consists of (vi) the kinetic power due to viscous deformation and (vii) viscous
dissipation furthermore with (viii) the convective transport of the Reynolds stresses by
the main (mean) flow velocity and (ix) the kinetic power due to the Reynolds stresses
exerted on deformation of the main (mean) flow.

Similarly, Eq. (7/b) force-equilibrium regarding the instantaneous values can be
transformed to instantaneous kinetic power equilibrium; and forming its time-mean
value for the zZ-th component it reads as follows
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- - : B — + », + =V ----:-(j', +n) (» +<<'-j:
2~DI 2dt{u, )y 28 dxj >
(13/b)
o Titu dlp +p) Vv /- AAN2(M + ui)
="ifi = dx. +VX p  +«.m)- de

After rearranging Eq. (13/a) may be subtracted, and then the residuum shows the time-
mean equation ofkinetic power o fthe i-th component ofturbulentfluctuation as follows

1Du, ldu, 1 d 2, u, dp
-------- St e > oW, = — --f—
2 Dt 2 d 2“ dx} 1 p dx,
(0 00 > ) (iv)
a Tdiy dil o diyam/ oam
ax. g we e 13/c)
= dx, (Axg ey dx, dxg . (
(v) (vi)
1d
. NIRY
2 dxj
(Vii) (viii)

This relationship summarizes the i-th time-mean component of kinetic power exerted by
the turbulent fluctuation. Term (i) expresses the total kinetic power of elementary water
body of unit mass which is the sum of (ii) the local and (iii) the convective terms, re-
spectively. And this is in equilibrium with the sum of (iv) the kinetic power of turbulent
fluctuation of hydrostatic pressure (convective diffusion) and the sum of kinetic power
resulted in by resistance; furthermore the extraordinary convective term of Kkinetic
power. Among the resistance terms (v) expresses the viscous deformation and (vi) vis-
cous dissipation caused by turbulent fluctuation and (viii) kinetic power exerted on the
deformation of the main flow by the turbulent fluctuation. And, last but not least, the
(vii) extraordinary convective term: convection of turbulent energy by the main (mean)
flow velocity.

Equation (13/c) clearly shows how much the kinetic power of turbulent fluctuation
is affected by the main (mean) flow. First, the extraordinary convective term [term (vii)
in Eq. (13/c)] may have a double role. Depending on the signs of the space derivatives

)]

of the kinetic energy of the turbulent fluctuation 5 and the sign of the convective

main (mean) flow velocity j it can indicate power transport both from main flow

into the fluctuation or vice versa. Second, the kinetic power exerted on the viscous de-
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formation of the turbulent fluctuation [term (v) in Eq. (13/c)) is completed by the Ki-
netic power exerted on the deformation of the main flow by the Reynolds stresses [term
(viii) in Eq. (13/c)]. This later one is the clear explanation of the transition from laminar
to turbulent flow. If main flow gradient in the flow direction is positive the Reynolds
number increases and at a certain variation the laminar state of flow will go over turbu-
lent state (simultaneously the extraordinary convective term of kinetic power [term (vii)
of Eq. (13/c)] must also increase for maintaining equilibrium).

Equation (13/c) expresses - as stated above - the /-th component of the time-mean
kinetic power owing to turbulent fluctuation. But this relationship can be rearranged in
a more conservative form (Rodi, 1984 and Ratky, 1995) as

Equation (13/d) corresponds to Prandtl’s (1945) time-mean Kkinetic energy transport
eauation owing to turbulent fluctuation. According to his explanation (cited by Rodi,
1984) term (i) corresponds to the total kinetic power of elementary body of unit mass
owing to turbulent fluctuation which is the sum of term (ii) the local and term (iii) the
convective constituents. And this is in equilibrium with the sum of term (iv): the so-
called diffusive transport, plus term (v): production by shear and term (vi): viscous dis-
sipation if the present /-th component is summed up according to the Cartesian coordi-

nate axes as \
t-4=\
This rearrangement does not cause any modification in the physical content, it alters

the denomination of the terms only. In Eq. (13/d) - according to the k-epsilon model -

3
* _ S (13/e)
/=1
and
(13/d
j=1 j=1

and both terms (iv) plus (v) and term (vi) can only be approximated by semiempirical
formulas and, thus, the k-epsilon model of the time-mean kinetic energy transport ow-
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ing to turbulent fluctuation can numerically be solved as exemplified by a recent EDF
study (1996/97), too, which compared the results of various empirical approximations.

A comparison of terms (i) = (ii) + (iii) in equation (13/c and d) deserve a little more
attention. The difference can be found at tern (iii). In Eq. (13/c) the factors of the cross-
correlation between the various components belong to the same domain of the velocity
constituents: turbulent fluctuation, while in Eq. (13/d) the cross-correlation is a mixed
up one because the convection of the turbulent fluctuation is generated by the main
(mean) flow and, therefore, the equation (i) = (ii) + (iii) is not true (it is invalid). By
changing term (iii) with the second part of term (iv) in Eq. (13/d) the equilibrium is re-
established and - in this case - the diffusive transport |[term (iv) in Eq. (13/d)] is mixed
up term. And we arrived to the same consequences which are explained regarding Egq.
(13/c) by deriving, the transition from laminar to turbulent flow and vice versa.

6. Transport capacity of turbulent water flow
Dividing the kinetic power of the turbulent flow between the constituents of the

flow, namely between the main (mean) flow and the turbulent fluctuation a relative
transport capacity term may be defined as

T = (14/a)
Imf + Ttf
where T, - (dimensionless) relative transport capacity of turbulent flow, T,,f
[kg m2sec3] - kinetic power of main (mean) flow in turbulent water flow and I,/
[kg m2sec3] - kinetic power of turbulent fluctuation (mean) in turbulent water flow.
Summing up the i = 1,2, 3 equations the total kinetic energy of an elementary water

body of unit mass can be got. Denoting

and (14/b, c)

7 7
where ek [m /sec ] represents the kinetic energy of elementary water body of unit mass

in the main (mean) water flow while ek [m2sec2] is the same for turbulent fluctuation

(time-mean value, too). The kinetic power of the same constituents can be defined as
follows:

P
Imf —  —REK (14/d)

Dt dt j=1 dx,
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and

(14/e)

Thus, the relative transport capacity of the flow reads

(1470

And the kinetic power of the constituents can be expressed also with the right-hand
terms of the relevant relationships as follows:

(14/9)

and

(147h)

Both Eq. (14/e) and Eq. (14/h) prove that the kinetic power of elementary water
body of unit mass of the time-mean of turbulent fluctuation is not only depending on the
guantities of fluctuation but also that of the main (mean) flow. In contrary, the relevant
relationships of the main (mean) flow |Eq. (14/d) and Eq. (14/g)] depend (formally)

only on the quantities of the main (mean) flow. But it must not be forgotten that pt and

e,, refer to the Reynolds stresses which express the effect of turbulent fluctuation ex-
erted on the main (mean) flow.

7. Conclusions

Applying a relevant, approximate analytical review on the equation system (equa-
tion of continuity and Navier-Stokes equation) of turbulent water flow the following
conclusions may be summarized:

(i) The turbulent water flow may be divided into two imaginary constituents: time-
mean equation of main flow and time-mean equation of turbulent fluctuation.
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(ii) The time-mean equations of the constituents clearly indicate that a mutual inter-
action exists between the two imaginary parts of the turbulent water flow.

(iii) The /-th component of the Navier—Stokes equation (expressed in Cartesian co-
ordinates with Eulerian description form) multiplied by the relevant /-th component of
the velocity vector results in the /-th component of the kinetic power equation. Sum-
ming up these equations according to the coordinate axes it results in the kinetic power
of elementary water body of unit mass. The kinetic power of the main (mean) flow con-
sists of the well-known local and convective terms [Eq. (14/d)] while that of the mean
flow of turbulent fluctuation has an extraordinary convective term, too, which expresses
a kinetic energy (of turbulent fluctuation) convection by the main (mean) flow velocity
[Eq. (14/e)].

(iv) The kinetic power of the constituents can be expressed by the relevant fluid and
flow characteristics [Tnf, Eq. (14/g) for main (mean) flow; T,f, Eq. (14/h) for turbulent
(mean) fluctuation]. The relationship for main flow consists of terms by characteristics
of the fluid (constants) and that of the main flow, except the quantities which refer to
the Reynolds stresses ( pt and The relationship referring to the turbulent fluctuation
is similarly constructed (characteristics by the fluid and that of the turbulent fluctuation)
except that kinetic power by the Reynolds stresses is expressed as deformation of the
main flow. Thus, the mutual interaction between the constituents is formally demon-
strated, too.

(v) Interesting to note that while the kinetic power of turbulent (mean) fluctuation
shows a direct dependence on the main (mean) flow such a direct interaction from tur-
bulent (mean) fluctuation to the main (mean) flow does not exist. This is to demonstrate
the primary importance of the main flow (e.g. in laminar flow a main flow does exist
but any turbulent fluctuations do not; by increasing main flow - after transition - also
turbulent fluctuation comes into existence and this is created - later on maintained -
by the main flow itself; the counter-effect is the increase in resistive forces in the
main flow).

8. Closing remarks and future outlooks

Bernoulli, D. published the results of his research on mathematics and physics in
1738, among others on the dynamic equation system of an inviscid fluid jet bounded by
streamlines. This relationship - called later as Bernoulli equation - expressed the con-
stancy of energy of elementary fluid volume of unit weight viz. along its path its energy
content did not change only the ratio(s) of the energy constituents (potential-, pressure-
and kinetic energy) was (were) varying.

Euler, L. published the three-dimensional equation system of inviscid fluid flow in
1755. The dependent variables (the three components of the velocity vector and the
pressure) are functions of the independent space and time coordinates. The equation
system was closed because the fourth equation was the equation of continuity.
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These theoretical results were for the practice of no use because of the unacceptable
difference between the theoretical forecasts and the practical measurements; which was
the consequence of the supposition of inviscidity. The researchers were misled by the
coincidence between theoretical forecasts and practical measurements regarding hydro-
statics; but molecular structure of the fluid resulted in internal and wall friction at mo-
tion and the turbulent behaviour of the flow produced further resistance; and without
considering these resistive forces theory could not meet the real processes.

The first - semiempirical - result was already born in 1775. Chézy published
namely his relationship between flow velocity and the hydraulic and geometrical char-
acteristics of open channel flow. The effect of all resistive forces was taken into account
by the empirical - so-called - Chézy coefficient. Nobody could overpass this achieve-
ment till today.

Navier, C. (1826) and Stokes, G. (1847) - similarly but independently to each other
- completed Euler’s equation system with terms expressing internal friction caused by
molecular viscosity. This extended equation system was applicable in laminar flow and
very far from any rigid (solid) boundary, therefore - in practical point of view - it has a
very narrow band of usefulness (in hydraulic engineering).

Reynolds, O. was who recognized that the turbulent behaviour of flow evoked addi-
tional resistance in form of stresses; and Boussinesq, J. was who proposed to take into
account the effect of this Reynolds stresses in a similar way as the effect of viscous
stresses were taken into account (1877). The result of this way of thought was the intro-
ducing of additional terms of apparent viscosity and pressure (¢ and P, ), respectively.
These terms were the consequences of a hypothesis with not any physical meaning or
content.

For more than the next one hundred years the basic research in physics of fluid flow
or the fundamental research in applied fluid dynamics tried to solve the remaining
problems, e.g.

- regarding wall friction (as one of the body forces) along the rigid (solid) boundary
and

- to find any relevant and reliable calculation method for the Boussinesq’s additional
terms.

Neglecting some special attempts not too many publications could be found on wall
friction which did not based on Chézy’s theorem. It seemed that research could not ex-
ceed so-far Chézy’s creative genius.

Many attempts could be found in the literature which proposed various solutions for
calculating the Boussinesq’s additional terms; but neither of them brought closer this
hypothesis to practical appliations (Rodi, 1984 and Ratky, 1995).

Thus - according to the author’s opinion - this way of thoughts led to a deadlock
and a fundamentally new research attempt must be found. Thus - in the author’s modest
view - the foregoing study (from Introduction to Conclusions) is a summary of the pre-
sent knowledge which shows the hole in which science has dug itself and from which a
fundamentally new way of thinking could lead to further development. The new way of
thinking must probably taken into account the molecular structure of the fluids instead
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of the Eulerian continuum or Lagrangian substantial particle (but this later one can
probably lead in many cases farther than the Eulerian continuum concept). And this
needs a new and young master mind in theoretical physics of fluid flow and experi-
mentalists who are able to prove (or disprove) the theoretical results.
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A new general optimization technique to obtain the maximum linearity range in the head-discharge
characteristics subject to a maximum permissible error, for flows through weirs which exhibit an ex-
tended S curve type theoretical head-discharge relationship is presented. It is shown that with this tech-
nique it is possible to fix the terminal points of linearity range exactly and thus obtain the maximum
linearity range. This method incidentally is superior to the earlier methods used such as range of points
or tangent point or graphical methods. The technique presented can be successfully used for the analysis
of inverted V-notch or bell-mouth weir, etc. This procedure is adopted here for the analysis of the semi-
circular weir (with the diameter as its crest). It is shown that for all flows through the weir in the range
0f 0.38/? < It 1.19/?, the discharges are proportional to the heads reckoned from a reference plane situ-
ated at 0.16/? above the crest. The usefulness of this weir with a simple profile and linear characteristics
in minor irrigation and open drainage is highlighted. Experiments with two weirs are in good compli-
ance with the theory by giving a constant average coefficient of discharge of 0.620-0623.

1. Introduction

Of recent, there have been several studies on geometrically simple weirs exhibiting a
near linear characteristics: a practical proportional weir 18], quadrant plate weirs [6], in-
verted V-notch, chimney weir, bell-mouth weir 11-3], constant accuracy practical linear
weir, constant accuracy chimney weir [4, 5] are among the important ones which have
been analysed. It has been shown that these weirs exhibit a near linear head-discharge
relationships within certain ranges of head and within a prefixed permissible percentage
of error. These weirs have their discharge-head relationship in the form of an extended
S curve with a point of inflection. The near linear characteristics in the middle portion
has been analysed by three procedures previously, viz. range of points, tangent points
[1-3] and graphical method [4-5]. Although these procedures are adequate, they are ba-
sically search methods or trial and error methods, which not only give slightly varying
results, but also, invariably consume a lot of CPU (computer processing unit) time on
computers, which is highly uneconomical. Hence there was a necessity to evolve an ex-
act procedure which would economise on CPU time and give better results. In what fol-
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X
A

Fii;. /. Typical inverted semicircular weir

lows is given an algebraic procedure which has been applied to one of the examples —
viz. flow through semicircular weir with diameter as its crest.

2. Discharge through the semicircular weir

Let us consider the discharge through the semicircular weir with a diameter ‘2R’ as

its crest, shown in Fig. 1given by,

q-= 2Cdyf|g3\lRl - X2y/h - xcfx 0 <h<R (1)
0

where ( = total discharge, h = head above the crest, g = acceleration due to gravity, Ci-=
coefficient of discharge.

For sharp crested weirs and streamed lined flows, the coefficient of discharge, Cj
can be assumed to be a constant (which will be confirmed by experiments).

For convenience Eq. 1can be expressed in nondimensional forms as

n
y=Iv77-Xyll-X2<H 0<H«<\ (2)
0
where
0 =-~-; K —2CdJlg', X =- and // =-.
2’ R R
KR2

The above integral has been evaluated by using standard IMSL routines, in CD4360
unix system. The theoretical head-discharge curve is shown in Fig. 2. It is seen from
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Fie. 2. Theoretical H Q relationship showing near linear-relation in a certain range

Fig. 2 that the discharge-head relationship is near linear in a certain ranges of head be-
yond a certain minimum value. This property of the weir is exploited to evolve a linear
relationship between Q and H in a certain range of head, such that the relative percent-
age deviation between theoretical discharge and the one given by linear relation dies not
exceed a prefixed maximum permissible error.

3. Procedure
Let
QI=mH+C (3)

be the proposed optimal linear head-discharge relationship (where m is the constant of
proportionality and C is the discharge intercept) to substitute the theoretical head-
discharge relationship

Q =i\H) ()

in a certain range. Letting Ku= (1+ —Eo') and K, = 1 --—- where E is the pre-
| 100

fixed maximum permissible relative deviation of the proposed linear function and the
theoretical head-discharge function. These define two explicit curves f\(H) and/r(H)
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Fig. i. Optimisation procedure

forming the lower and upper bounds for the linear function as shows in Fig. 3. Mathe-
matically,

fi(H) = K,,fIH) (5a)
f2(H) = Kj JiH) (5b)

Step 1: Find the point of inflection of the curve Q =f(H) given by Eq. 4 i.e.

Qu=f (Il) = ¢

w H=H, (6)

This procedure is valid only when there is one point of inflection and the function is
continuously increasing in 0 < // < °° which is always true for any discharge-head func-
tion.

Step 2: Consider the straight line given by Eq. 3 to be tangential to the two binding
curves f\(H) and/r(s) at the points T\ and Ti, respectively. Let it cut the curves/2(fl)
and f\(H) at the points A and B as shown in Fig. 3. Let us assume that with a slight
variation of ‘m’, we get a straight line longer than the one given by Eq. 3 (AB), with in
the binding limits.

Q.= (mzamH+ C (7)
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But (M + Am) shifts the line beyond the boundary f\(H) at T\and (M - Am) for/2(W) at
T2. Hence the values of m is the optimum value which yields the straight line of maxi-
mum length.

Now let us consider a small variation in ‘C as (C + AC) with which we get a longer
straight line than the one given by Eq. 3.

Q1 =mH+(C £AC) 8)

But (C+[C) shifts the line beyond the boundary/))//) at I? and T2 and (C AC) for f\(H)
at T\. Hence the value of C is the optimum value along with M which yields the straight
line of maximum length. Thus, the Eq. 3, gives us the straight line of maximum length
and hence the maximum linearity range.

Step 3: The equation of the straight line passing through T\and T2is

'Qr-aWw ~fz2{H2) - f W
H-H X A2-4,
woquz 2RI gy w110 (10

or

2. (112)-1.(" )"y fz {~2)—/1{H\)

= /1, +vy, (/. (rn
Q H - H, H2-H. v-(r)

Comparing Eqs 3 and 11,

fz y-1.(11))
H2

and

C-f\ (H\)- #, H2-H,

or

c =/,(/1)- U4, (12)

Equation 4 can be written in the implicit forms as

f\Q, H) = Q-J{H) (13)
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Fig. 4. Experimental setup

For any point on the curve/(H)

AQ,H)=0
Similarly,
or
f2ZAH2MH2)| =0
mee/|[A,./,(,)] =152,/ AA2)]
further

1711, 11(EfD)] =/27]A2,1 AA2)]

(14)

(15)

(16)

(17)

(18)

From Eqgs 17 and 18, we can solve for H\ and Hi and then from Eq. 12 we get m and C.
The fact that the Eqs 15 and 16 have the real roots, proves that there exists a common

tangent between f\(H) and/2(A) curves.
Step 4: now considering the extreme points, A and B.
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(Q,)a=mHa+ C = Kd AHn) (19)
and
(Q)b= mHB + C = K< f[HB) (20)
From Eqgs 19 and 20 we get Ha and Hb and
LR=Ha-Hb (21)

where HA is the baseflow depth or the minimum depth above which discharge has a
near linear relationship with head and Hb is the terminal point of the linearity range
(LR).

Expressing f(H) as

Q =f(H) =K\ +K2H + K2H2+ AW/3 (22)

a third degree polynomial, K\, K2, K2 and K4 are evaluated by regression analysis as
Kt=-0.0032833886, K2=0.1831059819, K} = 0.726040637 and K4= -0.3301597981.
The point of inflection //, = 0.733 and with E - 1.5, T\ - 0.50428, T2= 0.91168, HA=
0.376, HB= 1.190, m =0.673437, and C = -0.104785.

Hence the proposed linear discharge-head relationship to replace the theoretical one
given by Eq. 20 is

Qi =(0.6734//-0.1048) 0.376 <H< 1.190 (23a)
QI=0.67(A -0.16) 0.38 <H< 1.19 (23b)
or dimensionally
3
g, =0.67KR* (h- 016«) 0.38« < H < 1.19« (23c)
4. Experiments
The weirs chosen for the experiment have the radii « = cm and « = 30 cm. The

weirs were cut from 6.5 mm M.S. plate accurately using a nibbling machine and edges
were chamfered to 45% . The weir was placed at the end of the channel as shown in the
experimental setup (Fig. 5). An electronic point gauge with a least count of 0.01 mm
was used at 4 m upstream of the weir section to measure the flow depth. The time re-
quired to collect a fixed volume of water in the measuring tank (4.52 m x 4.52 mx 1.5 m)
was computed from an electronic timer triggered automatically by signals from an
electronic switch attached to the level indicators. Figure 6 shows the nappe of the dis-
charging weir.
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Fig. 5

Analysis of results

Figure 7 shows the plot of Qactual vs head measured from the datum situated at
0.1556 R above the crest. The straight line portion of the plot beyond a certain head,
confirms the theory. It is also seen that the coefficient of discharge Cj, for any head
within the fixed range does not vary by more than + 1% of the average coefficient of
discharge (0.620-0.623) which supports the assumption of constant C,i in our analysis.

5. Concluding remarks

A new general rational algebraic optimization procedure is presented to obtain the
maximum linearity range for flow through weirs exhibiting an extended S curve type of
head-discharge relationship, subject to a maximum permissible error. It is shown that
with this technique it is possible to fix the extreme points of linearity range exactly and
thus obtain the maximum linearity range. It is further shown that this procedure is supe-
rior to the earlier methods used such as range of points or tangent point or graphical
method, which are essentially search methods or a trial and error procedures, which not
only give varying results but also consume large CPU time on computers and hence are
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Head (in m)— »

Fig. 6. Discharge-head variation (experimental)

uneconomical. As an example the technique is applied to analyse the flow through a
semicircular weir to show its effectiveness. It is shown that the discharge through the
semicircular weir with a diameter of ‘2 R" as its crest, is proportional to the linear power
of head measured from a reference plane located at 0.156 R above the crest for all flows
in the range 0f 0.376 R < h < 1.190 R within a prefixed maximum permissible deviation
of + 1.5% from the theoretical discharge. The ratio Bmax/@min which is the measure of
discharging capacity of the weir is 4.7. Experiments with two weirs show a constant av-
erage coefficient of discharge varying from 0.620-0.623. The presented technigque can
also be successfully used for the analysis of inverted V-notch or bell-mouth weir, etc. It
is hoped that the weir presented here of conventional geometrical shape with simple lin-
ear head-discharge characteristics would be practically useful as a simple flow recorder
in minor irrigation, hydraulic engineering and open drainage.
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0.05 0.10 0.15 0.20 0.25 0.30 0.35
Head (inm)------- >

Fig. 7. Variation of coefficient of discharge with head

Acknowledgements

The authors are grateful to the authorities of the Indian Institute of Science, for providing the necessary
facilities for conducting this work. M N. Shesha Prakash, Asst. Prof, J. N. N. College of Engineering, is in-
debted to the authorities of the National Education Society, Shimoga for granting permission to work on
deputation at 1.1.Sc., Bangalore.

References

1. Keshava Murthy, K.-Giridhar, D. P.: Inverted V-notch: A practical proportional weir. J. Irri. and Drain.
Engrg. Div., ASCE, 115 (1989), 1035-1050

2. Keshava Murthy, K.-Giridhar, D. P.: Improved inverted V-notch or chimney weir. J. Irri. and Drain.
Engr. Div., ASCE, 116 (1990), 374-386

3. Keshava Murthy, K.-Giridhar, D. P.: Geometrically simple linear weirs using circular quadrants: bell
mouth weirs. J. Hydr. Res., IAHR 29 (1991), 497-508

Acta Technica 107, 1995-96



APPLICATION OF A PROPORTIONAL WEIR 275

. Keshava Murthy, K.-Shesha Prakash, M. N.: Practical constant accuracy linear weir. J. Irri. and Dra.
Engrg. Div., ASCA, 120 (1994), 526-538

. Keshava Murthy, K.-Shesha Prakash, M. N.: Constant accuracy chimney weir. Accepted for presentation
at IX. Congress of Asian Pacific Division of IAHR to be held at Singapore during Aug. 24-26, 1994

. Ramamurthy, A. S.-Subramanya, K.-Pani, B. S.: Quadrant-Plate weirs. J. Hydr. Div., Proc., ASCE, 103
(1977), 1431-1441

. Troskolanski, A. T.: Hydrometry: Theory and practice of hydraulic measurements. Pergamon Press, New
York (1960), 301-302

. Venkataraman, P.-Subramanya, K.: A practical proportional weir. Water Power 25 (1973), 189-190

Acta Technica 107, 1995-96






Acta Technica Acad. Sei. Hung. 107 (3—4), pp. 277-301 (1995-96)

NUMERICAL EXAMINATION OF THE STIFFENING
SYSTEM OF TALL BUILDINGS
BY USING OBJECT-ORIENTED PROGRAMMING

Klopka, Z.*-Ladi, N ...

*Technical University of Budapest, Department ofReinforced Concrete Structures,
Bertalan Lajos u. 2, H-1521 Budapest, Hungary
**Zepter International Ungarn, Asztalos S. u. 9/12, H-1087 Budapest, Hungary

(Received: 17 April 1996)

In order to design efficiently the shear walls of tall buildings their influences are to be determined
accurately. This paper shows a numerical method of shear wall analysis written in an object-oriented en-
vironment. Numerical examinations have been carried out to emphasize the importance of the own
warping rigidity of wall-groups.

1. Introduction

Architectural solutions and modern construction methods presently used with tall
buildings require slimmer, more efficient structures, therefore various elements of the
structure are more sharply differentiated by their roles; their dimensions are also ap-
proaching the minimal sizes required by the laws of force. We must define loads and in-
fluences more precisely when designing these structural elements, therefore more accu-
rate, computerized procedures involving a greater amount of calculations are replacing
traditional, manual methods.

The load bearing structure of tall buildings has a twofold role: the task of slabs is to
take and pass over vertical loads to the vertical load-bearing structures, while shear
walls take over and pass horizontal influences and vertical loads to the foundation.
Forces distributed to certain shear walls and groups of shear walls (“cores”) may be
hard to determine by intuition. The traditional calculation method does not derive the
accurate result due to complex shear-wall arrangements on one side and because of
some neglected rigidities on the other.

In this study we will present a modern computer application in which horizontal
loads acting on the building are distributed over shear walls; the method is not only in-
creasing the accuracy of the calculation model but also provides a user-friendly, graph-
ics-oriented programming environment for the planning engineer.

0864-8085/95-96/$ 5.00 © 1995-96 Akadémiai Kiadd, Budapest
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2. Problem description

The stiffening model oftall buildings has been an interesting topic of many studies,
the principle solution of the problem can be found in works listed in the bibliography
section under numbers [2, 3] and [5J. The procedure presented here is also based on
concentrating the shear walls of a building into an equivalent stiffening core. The
strength of the core is calculated from the appropriate rigidities of walls and groups of
walls (hereinafter also “wall-groups”). Horizontal forces acting on the building are af-
fecting the cantilever restrained in foundation at bottom level - the stiffening core. By
calculating the deformation of the cantilever we can define forces acting on individual
walls —as a function of the rigidities of these walls.

W ithin the model we have to account for the shear, flexural and torsional rigidity of
walls based on the flexibility theory of thin-walled, open-sectioned beams. Closed sec-
tions cannot be used in calculations and the model is limited to stable walls which do
not change their longitudinal cross-section (Fig. 2.1).

The basic assumption of the method used in the model is that slabs - as infinitely
rigid in their plane, and infinitely flexible plates perpendicular to their middle surfaces -
are able to secure the structure’s geometrical properties concerning its height.

Fig. 2.1. The view of the model
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Fig. 2.2. Examples of groups of shear walls

We have differentiated between walls and wall-groups in the developed computer
program. Walls are wall segments with a straight axis, of constant width, and having
two characteristic joints (start and end joints). All walls which do not deform independ-
ently of each other due to their connection compose a group of walls (Fig. 2.2).

3. Differential equations of thin-walled, open-sectioned beams

The characteristic of thin-walled, open-sectioned beams is that one dimension of
their cross-section - width —is significantly smaller than the other dimension. At the
same time, the dimensions of the cross-section are small when compared to beam
length. The joints of a general beam in 3-D space have a degree of freedom of seven, as
compared to solid beams with a degree of freedom of six. With solid beams the
“missing” degree of freedom is actually describing the warping effect. The warping ef-
fect means that due to the influence of a given torsional moment, particles of the beam’s
cross-section do not suffer torsion only (simple, free or St. Venant type torsion) but they
also deplane, i.e. displace in the direction of the beam’s axis. To formulate differently,
thin-walled sections are resisting the torsion not only with their torsional rigidity but
also with flexural rigidity. As a result of torsion, stress in the direction of the axis (nor-
mal stress) is generated.

Thin-walled sections may be open or closed. Closed sections are “rigid to torsion”,
i.e. only influences of simple torsion are dominant. The simple torsional rigidity of open
sections is so small that it may be neglected when compared to warping rigidity.

The differential equations of a thin-walled, open-sectioned cantilever fixed on one
end with loads uniformly distributed along and perpendicular to its z axis are as follows
14]:

EFw" =0 (3.1)

Elyu""= py (3.2)
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EIY "™ = py (3.3)
EInnC"" ~GI,(p" = nip (3.4)

where X,y are the principal axes,
E is the flexibility modulus,
G is the shear flexibility modulus,
F is the area of the beam’s cross-section,
/, Iyare moments of inertia about the wvand y axis of the section, respectively
hin , lnare warping and free torsional moments of inertia of the beam, respec-
tively,
u,v,w are displacements of the section’s cross-section area in directions X, Yy and
Zrespectively,
G is the rotation of the cross-section about axis Zthe positive direction is clock-
wise in a left-handed coordinate system,
pX, py are distributed forces acting on the section in directions X and Yy, respec-
tively,
nio is the distributed moment of torsion acting on the section, and
()™, ()" indicate the second and fourth derivatives with respect to Z

Differential equation (3.1) describes influences in the direction of the axis, equations
(3.2) and (3.3) describe inclined bending and equation (3.4) describes torsion. The axial
compression/tension and inclined bending have been discussed in numerous studies,
several computerized procedures are available, therefore we did not want to work out
these two cases in more detail (for further data see [3, 4]).

Equation (3.4) is known as the differential equation of warping torsion. Boundary
conditions of the equation are the following:

Z-0 e=0,p'=0 (rotation and warping are restrained for Z= 0),

z—I T=0,W=0 (moment of torsion and bimoment are zero on the
nonfixed end of the cantilever)

We solve equation (3.4) by taking into consideration boundary conditions according

toll]:
(b
7). % e : d{)+—dr—
‘O BI%hmor k2« - ) ] K )
(3.5)
where K is the Timoshenko parameter and

[ is the length of the beam.
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The layout of shear walls in tall buildings usually follows open sections. The simple
torsional rigidity of open wall-groups may be neglected when compared to warping ri-
gidity, therefore K ~ 0. Substituting this and analyzing the cross-section at the level of
restraint (Z = 0), the fourth derivative of the rotation can be obtained:

(3.6)

By using equations (3.2), (3.3) and (3.6) we can determine forces acting on wall-
groups.

4. Examining the equivalent core

In chapter 4 we will briefly survey the more important interdependencies of the tor-
sion of thin-walled open sections.

4.1. Shear center of the group ofwalls

After having defined the center of the group of walls, we calculate the moment of
inertia with respect to axes .v,y (/> /v) and the centrifugal moment of inertia (/w). Dur-
ing the next step we have to define the sectorial coordinates of the walls’ endpoints by
choosing any point P for the pole and any point as the zero point. Sectorial coordinate
tOp is the characteristic of points in the cross-section, similarly to the coordinates. We
calculate it by using the following formula:

(4.1)
where Sis the mid-line of the cross-section,
hp is the perpendicular distance of the section from the pole, and
index P indicates the pole.
Since we have calculated the sectorial coordinates for all characteristic points (joints),

we define the sectorial centrifugal moment of the cross-section from the following for-
mulae:

(4.2)

(4.3)
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W e obtain the shear center of the cross-section from the formulae given below:

\(0f)
XC — Xp (4.4)
T ~

and

ye=Yp-- P (4.5)
ly

By taking the shear center of the group of walls as the pole we calculate the sectorial
coordinates of the characteristic points - we indicated these as at.

W hen deriving differential equations (3.1) and (3.4) (see 12, 4]) we have assumed
that the sectorial static moment of the cross-section is equal to zero:

Sn =\]QdF=0, (4.6)

E

where 12 are sectorial coordinates for the shear center —their integral value with respect
to the surface is zero.

This condition is still not satisfied in our case since the zero point - from which we
started measuring our sectorial coordinates - has been arbitrarily chosen. Therefore, we
have to find a new zero point for which equation (4.6) holds true, i.e. sectorial coordi-
nates have to be standardized:

c+0>0, (4.7)
where
S*
CO,, = -
F (4.8)
and
IcocclF . (4.9)

Afterwards only the group’s sectorial moment of inertia should be calculated.

(4.10)

4.2. Shear center ofthe equivalent core
Inertia of wall-groups (/,, /v, IXy) as well as their distance from each other influences

the position of the level’s shear center. Derivation can be found in [5] - we will only
print the formulae here:
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[ 11 -Z lvIXCiji)y~ Tafr bt e o~ sk (411)
[0, -1,.2
hfoyjyCJd -nyjXcijj-~fi~rjycj -11/1,/Fj
ur = 1) (4.12)
[.vIv-"w 2

where xc.,, .Vc/ is the distance of the shear center of the i'h group of walls from the ori-
gin (see Fig. 4.1), £ issumming up with respect to / (by wall-groups).

4.3. Rigidity ofthe equivalent core

The flexural or centrifugal inertia of the core equals the sum of inertia of wall-

groups:

l.u=1/u
/,, = Xlv,, (4.13)

Lovo= o 2lv v

The torsional inertia of the core is equal to zero since the simple torsional rigidity of
wall-groups has been neglected. We calculate the sectorial inertia of the core (warping

rigidity) by using the following formula:

Fig. 4.1. The graphical interpretation of distances between origin
and the wall-group’s shear center
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7w =zhi, +ZI§{xci~-z Ly y,, +Zy{GiY (4n4)

where XC e, vr, isthe distance between the equivalent core and the shear centers of the

i'hgroup of walls (see Fig. 4.2), Z is summing up with respect to i (by wall-groups).

The first element of formula (4.14) is the sum of sectorial inertia and the other com -
ponents have their origin in the impact of flexural rigidity used for warping the group of
walls (compare to the Steiner’s component of flexural inertia). Thus we have calculated
figures necessary for solving the differential equation of the thin-walled, open-sectioned
beams.

4.4. Forces distributed over wall-groups

Let us place the coordinate system into the shear center. Since the x and y are no
longer principal axes, equations (3.1) and (3.2) are modified in the following way:

ElyyuUc"" + El,yvc = pv
(4.15)

ElxxVc"" + ElxyUc"" = Py .

where Uc and \>C are displacement components of the equivalent core’s shear center.

Fig. 4.2. The interpretation of distances between the equivalent core’s
and the wall-group’s shear center
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Fig. 43. The interpretation of the shear wall-group's displacement

W e can express the fourth derivatives of displacements from the two equations shown

above:
Euen VYR TPy (4.16)
and
E\e l.u Py - lL.xyPx (@.17)
W e can obtain the fourth derivative of the core’s rotation from equation (3.6):
E ( p " " = (4.18)

In formulating the problem we assumed that horizontal forces acting on the building
are constant, i.e. their intensity does not change along the height of the building. Based
on this we can conclude that the fourth derivative of the equivalent core’s displacement
or rotation also remains unchanged along the height.

The following are translatoric displacements of the wall-groups indicated by i (see
Fig. 4.3):

n, =uc - (fyQ

V, =vec - (pxCi (4.19)
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By substituting the fourth derivatives of the above given statements into equations
(4.16) and (4.17) we can determine the forces in the shear centers of wall-groups (for
more details see [2]):

p\i- Elyyiuc"" —(p'™"ya) + ElLn (vc"" + """ X¢j), (4.20)

Pyj = Ely(uc"" - (p s0) + EDX(vc™ + g xCJ), (4.21)

In equations (4.20) and (4.21) we can differentiate between forces acting on the group
of walls: forces which appear due to the flexural rigidity of the group of walls and
forces which result from the warping rigidity of the group of walls. We transform equa-
tions (4.20) and (4.21):

Elyyuc™ + Elyyvc™ - Elyytp"~Jc/+ Elxytp' XCJ), (4.22)

Pu

pyj = Ebxyuc”™ + EDXve™ —EIX tp™ 30 + Elyxtp’ XCJ), (4.23)
In the above shown formulae the first two elements result from flexure and the second
two elements represent components resulting from warping.

5. Object-oriented programming applied in the calculation
of influences of shear walls [7]

5.1. Object-oriented approach

Object-oriented programs represent the leading software methodology of the '90s.
They provide a higher level of abstraction, which allows us to write programs that are
much easier to read, debug, correct and maintain. Data types built in such programs are
called classes with objects as class instances.

Our guideline was to build the shear wall program in an object-oriented manner. Enti-
ties arising in the engineering calculation were formulated as classes. As a result, we have
developed the following classes: Joint class, which describes a joint (X, y, sectorial coor-
dinate), W all class describes straight wall sections (starting, ending joint, thickness, cen-
troid, area), WallGroup class describes walls built together (centroid, shear center).

As input data for the calculation we have a list of walls, where each wall is related to
the coordinates of its ends and the thickness. Walls are grouped in a function where the
Joint and WallGroup arrays are established. This function determines which walls are
connected and also extends to those special cases in which two walls intersect (a new
joint and two more walls are created) or in which two walls lay on the same line and
have a mutual joint (they are merged); the function also labels internally the wall-
groups. This function is called whenever a change to a wall occurs such as wall transla-
tion, deletion, etc.
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The main part of the program is the part with the actual engineering calculation.
Common functions for different classes are defined within each class independently, but
in the main program their call is the same, only arguments are different. For instance,
functions that calculate the coordinates of the centroid are defined both in the W all and
W allGroup classes having the same name, and in the main program, only the function
name is called. The entity characteristics related to a specific class are being calculated
within that specific class, and what is even more important, they can be accessed only
through the functions of this class. Building the code in this manner, the source is not a
single procedure including a lot of lines in which every variable has to be calculated one
after the other, but a union of independent procedures.

Classes also include functions that handle the mouse and control the graphical out-
put. The Joint, Wall and WallGroup classes contain the Draw and DrawPr functions,
which draw to the screen or to the printer joints, walls, wall-groups including their la-
bels, centroids, shear centers, etc. in a chosen enlargement and color. The MouseNear
function returns the entity characteristics if the cursor nears a joint or wall, and if one of
the entities (joint or wall) is double-clicked, it will be selected.

The fact that classes can be accessed only through functions ensures that class vari-
ables can be reached in a controlled and foreseen way. As a result, classes already con-
structed and procedures already tested become a closed structure, and in a further pro-
gram development their behavior can not be interfered with by chance (unlike the clas-
sical programming technique, where public variables and arrays can be accessed from
anywhere within the program).

5.2. The Microsoft Windows™ as program environment

When we started the development of the program, we had the intention of creating a
user-friendly environment as well as facilitating engineering calculations. A nowadays
commonly used operating system, the Microsoft Windows, offers us a wide variety of
tools such as graphical windows, menus, mouse handling, graphic printout, standard
dialogues, etc. Programs written under Windows may run independently from the
amount of RAM and hardware available (various kinds of monitors, printers); precisely,
the operating system and not the programmer should take care of compatibility prob-
lems.

Our program is written in Borland C++™ | using the zApp™ 2.2 as graphical inter-
face. The program is multilingual, enables the zoom control, setting the colors of enti-
ties, and printing of numerical and graphical outputs.

The Windows has introduced to PC users a graphical environment, which tends to
become a standard. The written program follows this guideline: the program window
contains the menu, the toolbar and the central window.

*Microsoft, Microsoft Windows, Microsoft Word are registered trademarks of the Microsoft Corpora-
tion, Borland C++ is a registered trademark of Borland International, Inc., zApp is a registered trademark of
Inmark Development Corporation.
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Besides using hot-keys, commands can be accessed through menus and/or through
toolbars. The menu commands are organized into groups: main - connected to file and
printing functions, project - functions associated with calculations, options - related to
the screen display, and the usual help group. Commonly used functions, like file open-
ing, saving, printing functions are identical to other Windows applications (like Note-
pad or even Word™), so the user is not burdened with additional help information con-
cerning these commands.

The central window contains the floor plan, on top and on the left are rulers which
give us an impression of the zoom magnitude. Since the real drawing can be much
larger than the virtual one drawn on the screen, scrollbars define the portion of the real
drawing depicted in the central window. The status bar is placed at the lower part of the
window. This line contains some useful information, like on-line help, the joint or wall
nearest to the mouse, the current grid and the actual mouse coordinates.

It is interesting to mention that at the time the program is being developed, the dis-
play area (screen resolution, window size, printing size) is not known. This means that
general functions, which determine display parameters at every run, are to be used. For
every entity we have to determine whether the entity is within the display size —in
which case it really has to be drawn - or whether it is placed somewhere outside.

The program is multilingual, i.e. menus, messages, data and results can be written
out in four languages. The language, entity colors chosen and other settings are written
in a start-up file, which is read at every program start.

The Windows operational system operates in preemptive multitasking, which means
that there has to be a co-operation between the programs in order for them to run si-
multaneously without error. The running time of every function is of crucial impor-
tance, because all other tasks have to be paused for that time. While the program runs, it
receives and sends information via the operating system, and upon receiving informa-
tion it decides about further steps. Such messages are, for instance, pressing of a key,
moving or clicking of the mouse, closing or pulling a window “to back” or changing of
a field content in a dialogue box. Thanks to this information exchange system, the pro-
gram gains clarity, since it contains event handling functions rather than one endless
loop. Every object such as the menu, the toolbar or the main window utilizes its own
message-analyzing function. The mouse click message is always transferred by the op-
eration system to the actual object under the mouse cursor.

An example of message-sending or message-receiving is the way in which screens
are rendered. When screen repainting is wanted (after data input or calculations), the
program sends a message to the operational system stating that some of the main win-
dow’s area is dirty, i.e., some particular window area should be redrawn. Windows then
calls the drawing functions of objects currently placed on the affected area and these
objects are redrawn.

Summarizing, our experience is that the programming of an object-orientated W in-
dow application is paying off - after the difficult first steps have been made —in easy
readability and maintenance of the program code on one side, and user-friendliness on
the other.

Acta Technica 107, 1995-96



STIFFENING SYSTEM OFTALL BUILDINGS 289

6. Sample problems for examining the effect of warping rigidity

Problem 6.1

In this problem we will present steps applied in the program for determining forces

affecting wall-groups.

Determine the forces arising in each shear wall shown in Fig. 6.1.

The detailed calculations of warping characteristics for group of walls No. 2 is

shown below.

Let us assume that we have calculated the centroid of the group, flexural inertias,

principal axes and the angle between axis (1) and axis .v.

X = 1265m

ys = 138m

[, = 25491 nf

/, = 2.5598 nf

Ixy= -0.0876 nf

a =-43.252°

h = 2.642nf4

h = 2467 nf4

A — 228m2
0.24 2.00

5.04 3.08 5.00 0.24

3.00

3.76 px= 50 kN/m

0.24

Fiji. 6 /. Arrangement of the shear walls
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Fig. 6.2. Geometry of the wall-group and the joint numbering

6.1.1. Transforming coordinates

Since formulae used for determining sectorial coordinates are valid in the coordinate
system of the principal axes, coordinates have to be transformed in the following way:

X =Xcosa +y sin«- f.

y —-Xsin« +y cos« - ysS.

Original and transformed coordinates are summarised in the following table:

X |m| Vim1l Vim| Vim|
Group 1 0 2.34 -1.57 0.002
Group 2 @ 2.88 -1.94 0.39
Group 3 0 0 0.03 -1.70
Group 4 2.84 0 21 0.24
Group 5 2.84 0.32 1.88 0.47
Group 6 2.84 2.34 0.49 1.95
Group 7 2.84 172 0.92 1.50

6.1.2. Calculating sectorial coordinates

We randomly chose the position of the pole and the position of the zero point. Let
that be point 1.
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(4.1) ft* = oh= ft* = ot = 0,
ft* = -2.84%2.34 = -6.65 m2,
ft* = -6.65-2.84*0.32 = -7.55 m2

ft* = 2.84*0.62 = 1.76 m2

Sectorial centrifugal moment:

(4.2) 1w = (0.24*2.84)/6*[-6.65(2%2.10+0.03)]+(0.24%0.32)/6*[-6.65(2*2.1+1.88)-
-7.55(2* 1.88+2.1)]+(0.24%0.62)/6*[ 1.72(1.76(2%0.92+0.49)] = —4.177 ms

(4.3)  1y(0= (0.24*2.84)/6%1-6.65(2*%0.24-1,7)]+(0.24*0.32)/6*[-6.65(2*0.24+0.47)-
-7.55(2%0.47+0.24)]+(0.24%0.62)/6*[ 1.76(2*1.5+1.95)] = 0.943 m5

The above shown integration have been calculated by using commonly known formulae
of numeric integration.

6.1.3. Shear center of the group of walls
In the coordinate system of the principal axes:

(4.4) jcc= -0.943/2.467 = -0.3822 m

(4.5) yc=-4.177/2.642 = -1.581 m

in the I, ycoordinate system that we assumed:

ac= -0.3822 cosM3.252°) - (-1.581) sin(-~3.252°) +0 =-1.36 m
yc = -0.3822 sin(-43.252°) + (-1.581 ) cosM3.252°) + 2.34= 145 m

-7.55

1.76

Fig. 6.3. Sectorial coordinates a)/ |m’|
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Fig. 6.4. The principal axes and the shear center

6.1.4. Standardizing sectorial coordinates

W e have to recalculate sectorial coordinates by taking the shear center as the new
pole:

(4.1)  f/=0
ft* = 0-0.54%1.36 = -0.734 m2
ft* = 0+2.34*1.36 = 3.18 m?2
ft* = 3.18-2.84*1.45 = -0.938 m2
ft* = -0.938-0.32%4.2 = -2.28 m2
ft* = 0+2.84%0.89 = 2.53 m?2
ft* = 2.53+42.84%0.89+0.62%4.2 = 5.13 m2

(4.9) 5L (2.34%0.24)/2*3.18 + (0.54%0.24)/2%(-0.734) + (2.84%0.24)/2*2.53 +
+ (0.62%0.24)/2*(2.53+5.13) + (2.84%0.24)/2*(3.18-0.938) +
+(0.32%0.24)/2%(-2.28-0.938)= 2.918 m4

(4.8)  ftr=-2.918/2.28 =-1.279 m2

(4.7)  f)y) —0-1.279 = -1.279 m?2
ft* — -0.734-1.279 = -2.013 m?2
ft* = 3.18-1.279 = 1.9 m2
ft* = -0.938-1.279 = -2.217 m?2
ft* = -2.28-1.279 =-3.559 m2
ftx, - 2.53-1.279 = 1.251 m2
ft* = 5.13-1.279 = 3.85 m?2
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(4.10)

Calculating sectorial moment of inertia
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INN=(2.84%0.24)/6*| 1,9%(2* 1.9-2.217)-2.217(2*-2.217+1.9)] +

(2.84%0.24)/6*|-1.279(2*%-1.279+1.251 )+1.251(2*1.251-1.279)] +

(2.88%0.24)/6*| 1.9(2*1.9-2.013)-2.013(2*-2.103+1.9)] +

(0.32%0.24)/6*|-2.217(2%-2.217-3.559)-3.559*(2*-3.559-2.217)| +

)
)
)
)

(0.62%0.24)/6*[ 1.251(2*1.251 +3.85)+3.85(2%3.85+1.251)| = 3.93 mf

Thus, we have defined the warping characteristics of group No. 2.
Let us assume that we have already calculated the geometrical characteristics of the

other wall-groups and we summarise those in the following table:

Group 1
Group 2
Group 3
Group 4

A m|
0.43
8.53
7.86
14.58

vsim| N |nr /, ImJ|
1.94 1.74 5.104
3.39 2.28 2.55
6.88 12 0
1.50 0.72 0.54
8.194

Calculate the following values:

By.i*yc.i= 0.072+9.1392+17.2+0 = 26.41 m \
Bx.i*xc.i=0.612+15.4+0+8.36 = 24.37 m \

Ily.i*xci=-0.1176-0.5436+0+0 = -0.6612 m\

/, |mJ|
0.602
2.56
25
0
5.662

B,y.,*yc.,= -0.1176-0.3213+0+0 = -0.4389 nr.

/,vim]|
-0.978
-0.09
0
0
-1.065

Fig. 6.5. Sectorial coordinates £2 [m5|

xe (m] Ye |m|
0.12 0.12
6.04 3.57
7.86 6.88
15.48 15
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6.1.6. Shear center of the equivalent core:

- 1.065(26.41 - (—0.6612)]-5.662[- 0.4389 - 24.37]
(4.11) Xc =- 2.47 m,
8.194 5.662-1.0652

8.194(26.41 - (-0.6612)]-(-1.065)[- 0.4389 -24.37]

(4.12) ye =432 m.

8.194*5.662 -1.065

6.1.7. Rigidities of the equivalent core:

(4.13) 1,,= 8.194 m4,
lyy= 5.662 m4,
Iw=-1.065 m4.

W e use the following table for calculating sectorial inertia (warping rigidity):

xeiilml volml yyfyef Imfil Lcvr Yo, *veilr "1 /o xctIml v of m )
Group 1 -2.35 -4.2 10.62 -9.673 28.19 0
Group 2 3.57 -0.75 1.44 0.24 32.50 3.93
Group 3 5.39 2.56 16.384 0 0 0
Group 4 13.01 -2.82 0 0 914 0
28.44 -9.433 152.09 3.93

(4.14) Inn=3.93 + 28.44 - 2*(-9.433) + 152.09 = 203.33 m6.
Loads affecting the building:

pX- 50 kN/m
Py- 60 kN/m
mD- -60 *5.33-50 *0.82 = -360.8 kKNm/m

6.1.8. Displacement of the equivalent core:

(4.16) Eu™ = — =8.682 kN/m5
8.194*5.662- 1.065-
s 8.194*50-(-1.065) *60 _ nnnrn. KKK 5
(4.17) Bv'™= —  =10.464 kN/m5
8.194*5.662-1.0652
360.8
(4.18) E™ = :-1.774 kN/rn*m .
203.33
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6.1.9. Distribution of forces acting on the wall-groups

Load of the first group:

(4.20) p,.i=0.602%|10.464+M .2)*(-1.774)] + (-0.98)*[8.682-(-2.35)*H .774)]

362 kN/rn

(4.21) PV= (-0.98)*[ 10.464+(—4.2)*(—1.774)] + 5.104*[8.6824-2.35)*(-1.774)]

5.478 kN/rn

In a similar way for the other wall-groups:

px2=28.61kN/m
Pv,2= 37.3 kN/m

pv,3= 15.3 kN/m
Pv,3= 0 kN/m

Pxa= 0 kN/m
pvd= 17.22 kN/m

Problem 6.2

In this example we analyze the importance ofthe group’s own warping rigidity and

the ways in which rigidity influences results.

6.2.1. Letusannualise the problem shown in |6]:

2.00 2.00 2.00 2.00 2.00 2.00 10.00

U 11 11 \A--mmmmmmmm-

@o xu n
© ©

_4zo©

1 6.00 1 4.00 i2.00 12.00

Py=364 kN
f

Fig. 6.6

>»
2.00
2.00
2.00
P,=-192 kN
2.00
4.00
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W e have calculated forces acting on wall-groups by taking into account their own
warping rigidity or by neglecting that; results are summarised in the following table:

Table 6.1

Warping rigidity of wall groups Maximum

Neglected Taken into account difference
PXJIKN1  Fy.i [kN] F\i [kN] Pf) kN1 Al%|
Group 1 -3.1 12.6 -2.9 12.1 6.4
Group 2 18.3 93.0 19.1 92.6 4.4
Group 3 18.3 163.0 19.1 163.4 4.4
Group 4 26.7 115.4 26.8 115.9 0.4
Group 5 -252.2 0 -254.1 0 0.7

-192.0 384.0 -192.0 384.0
6.2.2. Let us analyse the example given above with the difference that we reduce the

width of walls No. 1,4, 5to 10 cm and increase the width of walls No. 2, 3 to 30 cm.

Fig. 6.7. Differences between forces acting on shear walls (in |A| %)
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6.00 1 4,00 p.00 | 12.00

A Py=364 kN
\FY
Fig. 6.H

We have calculated forces acting on wall-groups by taking
warping rigidity or by neglecting that; results are summarized in

Table 6.2
Warping rigidity of wall groups
Neglected Taken into account
PxjIkN1 PyjlkN1 Pxj kN1 Pyj kNl
Group 1 2.9 -15 3.2 -16
Group 2 10.1 75.9 121 73.8
Group 3 10.1 253.2 121 255.3
Group 4 15.7 69.8 15.9 70.9
Group5  -230.8 0 -235.4 @
-192.0 384.0 -192.0 384.0

297

2.00
2.00

2.00
P*=-192 kN

4.00

into account their own
the following table:

Maximum
difference
41%|
10.3
19.8
19.8
1.6
2
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Fit;. 6.9. Differences between forces acting on shear walls (in 1A | %)

6.2.3. Let us analyse the example given above with the difference that we reduce the
length of group 5 to half of the original length.

W e have calculated forces acting on wall-groups by taking into account their own
warping rigidity or by neglecting that; results are summarized in the following table:

Table 63

Warping rigidity of wall groups Maximum

Neglected Taken into account difference
PLi |KN]| Pyj [kN1 L, kN1 Pyj kN1 A %]
Group 1 12.7 -64.9 13.7 -69.6 7.9
Group 2 -79.6 -33.6 -79 -43.5 29.5
Group 3 -79.6 362.7 -79 372.6 4.3
Group 4 25.4 119.8 26.5 124.5 16
Group 5 -70.9 0 -74.1 0 4.5

-192.0 384.0 -192.0 384.0
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— X
2.00
2.00
2.00
Px= -192 kN
2.00
4.00

7.00 12.00 I 3.00| 12.00

A P,=364 kN

Fig. 6.10

8.(X)

Fiig. 6 .4 . Differences between forces acting on shear walls (in |A| %)
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6.3. Evaluation of numerical examinations

By comparing tables 6.1,6.2 and 6.3 we can make the following conclusions:

- neglecting the warping rigidity of wall-groups does not cause a significant change
(A<10% ) in the results in case of a geometrically “balanced” system of shear walls
with the necessary number of walls and with proper dimensions;

- if the geometrical layout (shear walls concentrated around the shear center, see ex-
ample 6.2.3), and dimensions of walls are such that the magnitude of warping rigidity
approaches the flexural rigidity of the group of walls (short, thick walls, see wall-
groups No. 2 and 3 in example 6.2.2, 6.2.3), than neglecting the wall-groups’ own
warping rigidity might cause significant errors ([ even 30%);

- due to a complex geometric layout neither the magnitude of the error nor its position
can be determined (in example 6.2.2 the greatest difference occurred in force pX with
wall-groups No. 2 and 3 and in example 6.2.3 the greatest difference was spotted in
Pyof the group of walls No. 2).

Results shown above can be explained by formula (4.14). The condition under
which the wall-groups’ own warping rigidity may be neglected is when the second,
third and fourth component of the formula is several orders of magnitudes larger than
the first component (compare the magnitude of warping rigidity noted with the group of
walls in example 6.1 with the rigidity of the equivalent core). We can achieve this by
evenly distributing walls, placing them as far from each other as possible within the
plan (in the formula we are using the squared value of the distance between the wall-
groups’ and the level’s shear center) and leaving the inertia of the walls at a maximum
level (the length of the wall is raised to the third power).

7. Conclusion

In the study we have presented a numerical analysis of influences acting on the shear
walls of tall buildings. By using the presented method we can calculate shear wall loads
in tall buildings with greater accuracy than by using the manual method, thus wall di-
mensions and loads acting on foundations are more reliable. During our numeric ex-
aminations we have emphasised the importance of the wall-groups’ own rigidity and er-
rors due to neglecting them. We have also presented the use of applied object-oriented
programming.
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(Summary and Comparison of Solid and Fluid Mechanics)
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The first part of the paper has a qualitative character, it emphasises the main features (according to
the description methods, the strain and strain rate, the system of internal forces anti the influence of the
environment) of three typical mechanical models such as rigid body, solid body and fluid. The second
part has a quantitative character, it summarises the kinematics, the general laws and the constitutive
equations of continua. Particular attention is devoted to the comparison of solid and fluid mechanics.

1 Introduction

At the meeting held on November 17th, 1994, the Hungarian National Committee of
the International Union of Theoretical and Applied Mechanics (IUTAM) has entrusted
the author with delivering a lecture about continuum mechanics at the opening plenary
session of the 7th Hungarian Conference of Mechanics. According to the requirements,
the lecture was presented for scientists of both fields (solid and fluid mechanics), demon-
strating generality and validity of mechanics of continua both for solid bodies and for
fluids.

Preparing for the lecture, the first guess of the author was about the theory of consti-
tutive equations, later on he considered to give a historical view of the development of
continuum mechanics, but he had to realise that these topics would exceed the limits of a
one hour lecture. In the end he delivered his lecture, according to his knowledge based on
his previous activity in mechanics of solid bodies and gave an overview of the subject, in
some cases presenting special features and underlining similarities and differences be-
tween the models of solids and fluids.

After the lecture the author was asked by some of his colleagues to publish his lecture.
The present paper is an attempt to meet these demands. The author has tried to overcome
the formal difficulties caused by the technical differences between an oral lecture with
projected transparencies and a published paper. This circumstance has to be emphasised,
because the author has not attempted to write a detailed paper on the subject. Instead he
intended, after an appropriate rearrangement, to supplement the projected materials with
additional explanations.

0864-8085/95-96/$% 5.00 © 1995-96 Akadémiai Kiado, Budapest



304 KOZAK, 1.

In accordance with the lecture the paper is organised into two parts. The first part is
an qualitative overview of the basic models such as rigid body, solid body and fluid, and
of the structure of continuum mechanics. The second part has a quantitative character and
it summarises those results of the main chapters of continuum mechanics which are re-
garded by the author as most important and are also in accordance with the aims of the
lecture. In view of the aim and character of the paper proofs and references are omitted.

2. Properties of three characteristic models of mechanics

Rigid body, solid body and fluids are the three main models of mechanics. Under
loading a solid body resists shear and volume deformation in all case. On the contrary
fluids do not resist, in a static state, those effects enforcing them on shear deformation
(for instance they follow the shape of a container). For rigid bodies the deformation
(shear and volume) are neglected.

Solid bodies (for which the deformations are not omitted) and fluids are called con-
tinua. Rigid bodies, solid bodies and the fluids are the three fundamental models of me-
chanics discussed here (of course there exist same other basic models such as material
points, gases, composites, grained materials, bodies with microstructure, etc.).

In addition to illustrating the foregoing Fig. 1also shows the structure of mechanics of
rigid bodies and pays a special attention to the differences of mathematical quantities and
equations applied to the description of the mechanical behaviour of rigid bodies and con-
tinua.

RIGID BODIES CONTINUA
(MECHANICS OF RIGID BODIES) (CONTINUUM MECHANICS)
KINEMATICS DINAMICS SOLID BODIES FLUIDS

STATICS KINETICS
Point-valued time functions Tensor fields

depending on the position vector and
time
Global equations Local equations

(For the whole body) (For the continuum elements)

Fig. 1. Basic models of mechanics
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RIGID BODIES SOLID BODIES FLUIDS

SYSTEM OF FORCES SURFACE FORCE

NO DEFORMATION DETERMINED
BY THE ENVIRONMENT

Fig. 2. Characteristic forms of motion in comparison with environment
(in static state)

In Fig. 2 the heavy lines represent the environment. In the first two cases, it is as-
sumed that the points on the bottom of each body are not able to move with respect to the
environment.

Figures 3 and 4 demonstrate (a) how to identify the points of a body and (b) the re-
lated description methods. It is worth mentioning that for rigid bodies and fluids, the pre-
sent configuration is preferred. For rigid bodies, however, the material description, for
fluids the spatial description are used.

For solid bodies in the initial configuration the Lagrangian description, in the present
configuration the spatial or the material description are employed. It can also be men-
tioned that for the solution of some problems of fluids, the spatial-Lagrangian method is
useful. In this case, for a short period of time, the velocity of material points is defined by
the spatial velocity field.

In Fig. 5 and Fig. 6 the displacement and the velocity field in Fig. 7 and Fig. 8 the
strain and strain rate fields are compared for the three basic models.

RIGID BODIES SOLID BODIES FLUIDS

At all times No

Fig. 3. Possibility of the identification of material points during the motion
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RIGID BODIES SOLID BODIES

R SR

FLUIDS

Present Reference Present Present

configuration configuration configuration configuration

Material Lagrangian Material Spatial
Spatial
| | | |
description,

tensors and tensor fields

Fig. 4. Description methods

Figure 9 emphasises the Cauchy assumption and shows the structures of the Cauchy
stress tensor T defined in the present configuration. Tj denotes the stress deviator, p is the
hydrodynamic pressure, TX is the viscous stress tensor, T'™" is the turbulent stress tensor.
Figure 9 also illustrates the dependency of T (without the heat effect) and the character-
istic stress tensors.

In Fig. 10 the method of calculation of stress power is presented (including that that
for rigid bodies there is not stress power at all) with an emphasis on the connection of the
stress power to the strain rates.

RIGID BODIES SOLID BODIES FLUIDS
Point-valued time Tensor fields of finite ?

functions of finite

number

Acta Technica 107, 1995-96
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RIGID BODIES SOLID BODIES FLUIDS
Point-valued time functions Tensor fields of finite number
of finite number depending on the position vector and time
| I
Spatial description Spatial description
Material description Material description

Fig. 6. Velocities

RIGID BODIES SOLID BODIES FLUIDS

Cannot be defined Volume change Distorsion Volume change

Stretch Stretch  Angle change

Lagrangian Spatial
stretch and strain tensors stretch and strain tensors

Fig. 7. Deformation

RIGID BODIES SOLID BODIES FLUIDS
Cannot be Rate of volume change Rate of distorsion
defined
Stretching Stretching Rate of distorsion |
Lagrangian tensors Spatial tensors Spatial tensors

Fig. /i. Rates of deformation
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RIGID BODIES SOLID BODIES FLUIDS
T,
T=—1+T T=-pl +Tv+ (T"7)
3 i
) ) I
Undeterminable Determinable Determinable
Depends Depends
on deformations on rates on volume change on rates
of deformation of deformation
1l. Piola-Kirchhoff- Cauchy Cauchy
stress tensor stress tensor stress tensor
(Reference config.) (Present config.) (Present config.)

Cauchy’s hypothesis: p,, = p,,(r,n;f) =7°(r;f)-n

T is the Chauchy stress tensor

Fig. 9. Internal forces. Stress tensors

RIGID BODIES SOLID BODIES FLUIDS
DM + T(f-Dt, dm=-PD\+TV -D
1
/
Cannot be Rate of volume change Rate of distorsion Rate Rate
defined Elastic deformation of volume change  of distorsion
Elastic deformation Plastic deformation Viscous fluid
Elastic fluid Viscous fluid
déM=T D

T is the Cauchy stress tensor, D is the strain rate tensor

Fig. 10. Stress power per unit volume
(Negative value of internal force)
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RIGID BODIES SOLID BODIES FLUIDS
r
Cannot be defined Possible Cannot be Cavitation
defined
Fig. I1. Fracture. Plastic state

Figure 11 represents the possibility of fracture and elastic-plastic deformation. From
this point of view cavitation can be called the fracture of fluids.

Figure 12 shows the effect of environment for the three basic models.

In Fig. 13 the structure of continuum mechanics (mechanics of solid bodies and fluids)
is described without detailing the special theories of continuum mechanics (for example:
elasticity, shell theory, etc.) The underlined expressions are valid equally for solid bodies
and fluids. It follows from the nature of the matter that the kinematics of continua and the
laws of classical physics are related to all continua, however, depending on the what the
material properties are the constitutive equations differ from each other (for example:
elastic body, thermoviscous fluid).

3. Kinematics of continua
3.1. Nonlinear theory ofdeformation

Let the co-ordinates of the spatial points P° and P be

jcox, J02, JT0 in the reference configuration
and
X , X ,X in the present configuration.
RIGID BODIES SOLID BODIES FLUIDS
Force and couple Constraints Force Heat Given Force Heat Given
resultants displacement velocity
and velocity direction
on the surface on the surface
the Volume On the surface

Fig. 12. Influence of environment
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CONTINUUM MECHANICS

KINEMATICS CONSTITUTIVE

EQUATIONS
LAW OF CLASSICAL PHYSIC’S

Deformation Velocity Rates Elastic body Plastic body Fluid
field of deformation
J
Nonlinear Linearized Ideal fluid Elastic fluid Viscous fluid
theory theory
Cobservation of mass Momentum principles The first law The second law

ofthermodynamics of thermodynamics

Principle of virtual power Principle of complementary virtual power
Principle of virtual work Principle of complementary virtual work

Principle of virtual work
in incremental formulation

Fig. 13. The Continuum Mechanics

Cﬁ-ordénates of the point P of continuum (convective co-ordinates) are denoted by X1,
J

X , X both in the reference and present configurations.
If the position vectors of P are r° and r in the reference and present configuration

then the motion ofcontinua is given by

R dx-
r=r(r;r); xp=Afvvv);, .= >0.
dx®

The points of continua are identified by the position co-ordinates in the reference con-
figuration:x

X0k = K°K(X'X 2V ) .
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The motion of the solid body can also be given by the displacementfield:
r=r°+u° or re = r+ (-1,
in which
- the displacement field u® = u°(x°® ,a°%v°® ;r) is related to the reference configuration,

—the displacement field (-u) = —u(xIpc2pc3:t) is related to the present configuration

and it holds that us = u.
Geometrical measures of deformation are understood as relations between the geo-

metrical characteristics of continuum elements. These are
i/r°, ds°,a 0,dA°, dA° and dV°

in the reference configuration and

dr, ds, a, dA, dA and dV
in the present configuration, where

dr° and dr are material line element vectors,
ds® and ds are scalar material line elements,

a° and a 1 ["the angles formed | by two material
dA° and dA >-and-s surface element vectors determined ? line
dA° and dA J scalar surface elements determined J element vectors,

dve and dV are the volume elements determined by three material line element vec-
tors.

Two material line element vectors are related to each other by

dr = F dr°: ./=det[F])O0; dr°e=F~xdr.

The deformation gradient F and the inverse deformation gradient F~" can be given
in terms of the displacement gradient both in the reference and in the present configura-

tions (V° and V are the Hamilton operators):
F =/ +u°°Ve; F~"=/ + (-u)°V,
F~I- F = (- u»Vv)-(/ + u°°ve) = /.
The polar decomposition of the deformation gradient is of the form

F=R U°=V R,
in which

R1=/TL (detlFl =1) is the rotation tensor,
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ue\ {{u°Yy = U°) is the right stretch tensor,
W (V =V) is the left stretch tensor.
The tensors U° and V are positive definite.
Introducing
the right Cauchy-Green strain tensor °o=FleF = (U°)2 and

the left Cauchy-Green strain tensor B=F F1=V 2
for the material line element vectors we can write:

dr =R m(C°)l/2mdr°: dr°=R~" mB Wmudr.
Ifdrg=eQs, dr =eds and |e°| =|el =1, then the stretch is

ds

The extension assumes the form

Assume that a =a0- y12;, a°=y and e°-e? =¢, e2= 0- Then the angle change is

7\2 ~
K 1"s2

The change of a material surface element is given by

dA = J wd\0=J -*-R.(C) mA,
1] go
dA°=— — R ' BI2 dA
8

where gBand g are the determinant of the metric tensor in the reference and the present
configuration, respectively.
If dA° = n°eéM°; dA =ndA and |n°l=|n/ = 1, then for the ratio of scalar surface

elements we obtain

A,:—dA=J — Jn® -iCY' n"=- p_. 7 ..
dA \g° J\g sin B n
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The ratio of volume elements is

The volume change is defined by

_dv - dly dv

£, \=K - 1
dv dv
It is also customary to use
the Green-Lagrange strain tensor
E=—(c®- /)= —[uoVe® +V u +(V~”ou )(u oV'j]
and the Almansi-Euler strain tensor
E = -B 1)=i[u°V+Vou- (Vou)su-°V)l

It holds that
woVv)=JuroveV F,

E=(F)r -E nmF; E =FT E F

It can be pointed out that the scalar measures of deformation (A, €S, /[r, Aa, Ar, £V)
can be calculated with the strain tensors (in the reference configuration using the tensor
C° and in the present configuration using the tensor 11), but for the computation of vecto-
rial measure of deformation (dr°® <=>dr, d A0<>d A ) both the rotation tensor and strain
tensors are necessary. In the corresponding formulae the tensors C° and 11 can be re-
placed by another strain tensors.

3.2. linearized theory ofdeformation

(In the reference configuration)

In the linearized theory of deformation we neglect the squares and products of the

components of u® oV"™ and u 'V when they are compared with their first power. In this
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case all quantities are regarded in the points of the reference configuration and the ex-
pressions of the nonlinear theory are |linearized. The displacement field

u = u“(xol,x°2,x3,/) is sufficient for the description of the motion of continuum.

The additive decomposition of the displacement gradient takes the form

u" oVe =e° +4/\

(U oV +ou®); er =1(,m 0oV -V ou*I
\Y; r '
in which

is the infinitesimal and symmetric strain tensor

/ + T j isthe infinitesimal and skew symmetric rotation

tensor.

The geometrical measure of deformation for a material line element is
dr = dr° + du #/MW:\H _|_é>- +4/° mdr” = R dr" -I_e" mdr .

It is worth comparing the underlined expression above and the underlined expression
of Section 3.1. According to the above formulae the rotation and the deformation of a
continuum element are added up in the linearized theory of deformation. On the contrary
the deformed continuum element takes part in the rotation in the nonlinear theory.

In the linearized theory of deformation the other geometrical measures can be calcu-
lated as follows:

the stretch is As=1+¢ge"e e?,
the extension is es =€ T -é),
the change of angle is y12=12e] e =2, when ej 2 =0,

the ratio of volume elements is Xv = 1+ €Y’,

the change of volume is Ev =£° = u°- Vv°.
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3.3. Velocityfield. Rates ofdeformation

(In the present configuration)
The spatial velocityfield and its gradient are
r =v(x,v,r,/); L=v°V; (<r) =d\=Ldr.

The additive decomposition for the velocity gradient is of the form

L=\oV =D +W,

D:2—(>/0V+Vov)5; W=2—$/voV—V°v)=/XCO,
where
D. (d1=D) is the symmetric strain rate tensor,
Iv; (ff' =-Wj is the skew sym metric spin tensor,
Ww=—VXxV is the spin vector.

For the various strain rates we may write

(dr) -d\=Ledr=w dr+1) dr=coxdr+ 1) dr,

«A)=ed)xd\ - (D- 11f ) md\,

(hiAj = =eeD eg; (e)=@+e,)e D c,

Cls

(y12) =2c, D m2, if e, s€2=0,

, v LIJ)
@ida) =1T/-=DI-n D n,
dA
(InA/) :I'(Sj\-/:[],:V-V, (ev) = (1+ev)DX
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Comparing the underlined expression written above and the underlined expression of
Section 3.2, we can conclude that, from mathematical point of view, the linearized theory
of deformation is similar to the theory of rates of deformation.

It is also obvious that the scalar rates of deformation (InAJ,(e,)", (712) ,(1nAn),

(LiAF) , (e,,) can be calculated using the strain rate tensor D, while for the computa-

tion of vectorial strain rates the vector is also needed.

3.4. Compatibility conditions

In the nonlinear theory of deformation the metric tensor, that has changed due to the
deformation, is the right Cauchy-Green strain tensor

/| +u oV®° + V° cu" +(v° ou®°) (u®°oVe°)=C\

It is easy to recognise that tensor equation above is overdetermined for the three com-
ponents of u® since it is equivalent to six scalar equations which are, therefore, not inde-
pendent.

For the uniqueness of the displacement field calculated from the tensor field C°, up to
the rigid body movement, the strain tensor field has to satisfy the compatibility condition.

In the nonlinear theory of deformation this condition means that the Riemann—
Christoffel curvature tensor, based on the tensor field C° as the deformed metric tensor,
has to be zero, i.e., the space of continua remains Euclidean space during the deforma-
tioni/i the linearized theory ofdeformation the system of partial differential equations

u° oV*“+Vveou° = 2e°
is also overdeterminated for the three components of u°. In this case the Saint-Venant
compatibility condition is

Ve xe x V" =0

For the strain rates
VoV+Voy=1ip

is the overdeterminated system of partial differential equations for the three components
of the velocity v. The corresponding compatibility condition assumes the form

Vxvx V-2D.
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The underlined expressions clearly show the mathematical analogy between the line-
arized theory of deformation and the theory of strain rates.

The problem of independent compatibility conditions originates from the fact that the
six equations of the above-mentioned compatibility condition are not independent of each
other. It can be shown that three compatibility field equations and the compatibility
boundary conditions are necessary and sufficient conditions for the compatibility of strain
(strain rate) field. The three independent compatibility field equations can be chosen in
various ways according to a mathematical rule, i.e., they are not arbitrary.

3.5. Time derivatives oftensors

In accordance with the three remarkable description methods the Lagrangian tensor

B\ the Eulerian tensor H and the material tensor G are all functions of the correspond-

ing co-ordinates and the time:

y FORTESSTU— ~T~ 1
Lagrangian tensor Eulerian tensor M aterial tensor
B%xB'Y \x°-\{) H (.xfx\x\t) 0 (x\x\xr-

Partial derivatives with respect to time are denoted by

1 1
dB° dH dG
dt dt dt -

Materia! time derivatives are denoted and given by

o >
—

M - H =— +£H°V)'.v .(C),

dt

Some remarkable material time derivatives are:
r=v; (dr)'=L-dr,
F=LF. (F~) = -F~"-L,
E=D EL-LTE=1) ED-DE-(Exw- mx E),

(E°) =FTDF.
Physically (or materially) objective time derivatives (in the present configuration)
are classified as follows:
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A. The basic system of physically objective time derivatives, which is invariant un-
der arbitrary time dependent transformations, is given below for second order tensors
and for various index positions being marked by asterisks in the right hand side:

I. ([**)v=H+LT+H +H -L (Cotter-Rivlin rate),
In. (// *y=H+L H+H L,
1. (H**f=H+LT H-H LT,

IV. (// )v=H-L H-H LT (Oldroyd rate).

B. The physically objective time derivatives, which are invariant under time depend-
ent orthogonal transformations only, are also given for second order tensors in symbolic
notations; this results is independent of the index positions:

v = Il — (cd X I Il co0) (Jaumann rate).

For it holds that

(E»)V=E +LT E +E L =D = (F~) m(E°)' wF~x

For E it holds that
Ev=D-E D-D E.

3.6. Material time derivatives of integrals oftensorfields

Let the integral of the tensor field H (x',x2x3;t) be

J = \]HdV.

For the time derivative of the above integral we have

N |

Let the integral of the tensor field G {xXXpcwy) be
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J \]dez \]GpdV.

V) )

The material time derivative of this integral is as follows

o dansd
Gdm c dm = Vo pdv.
V)

(V) J )

3.7. Relative motion ofcontinua

The co-ordinate systems and the co-ordinates used to describe the relative motion of a
continuum are

thefixed co-ordinate system X) (x)-(x*,je2,x3),
the grid co-ordinate system (a («)-(8+,82.i3)and
the material co-ordinate system X) (x)=(x",X2.x7).

It is assumed that the grid co-ordinate system (a moves with respect to the fixed co-
ordinate system (x) and the continuum itself moves with respect both to the grid co-
ordinate system (C) and to the fixed co-ordinate system (n). The material co-ordinate
system (X) moves together with the continuum.

The corresponding motions are called and denoted as follows:

—motion of (B in (n), i.e., the motion ofgrid

X' =Xr -A J)o,

—motion of (X) in (), i.e., the relative or apparent motion ofcontinuum

? = :
7 gK(/x \ X 2,X3:t) .R/)(),
—motion of (X) in (x), i.e., the absolute motion o fcontinuum

Xp=xp(x\X2,X3,t)=xpU p(x',X2,X3;t)42(...),$>(...);/": J=.1.1>0

If the positions of a material point P are denoted by P°, P', and P in the reference,
intermediate and present configurations, respectively (see Fig. 14), then

Acta Technica 107, 1995-96



320 KOZAK, 1.

- in the reference configuration,
N= A (x\X 2,X31); x°p =xp(C\C2,C3;t0),
- in the intermediate configuration
CK="K; X'p=xp(t;°\£,°2,"- 1),
- and in the present configuration

? =M (x\X 2,X3;t\ xp=xp(?,C2,C3;t).

For the corresponding position vectors and displacements we write

r=r°+u=r°+u+u=r'+u; r=re+u: u=u+u,
C G R
where
U is the absolute displacement of the material point,
c
U is the displacement of the corresponding grid point and
G
U is the relative displacement of the material point.
R
If
F is the deformation gradient for the motion of the grid and
G
F is the deformation gradient for the relative motion of continuum, then
R

the geometrical measure ofdeformation for a materia/ line element vector is

dr =F-dr° =F F-dr°- F=F F.
R G R G

Velocity fields in the present configuration are (the index put in parentheses on the
left side denotes the co-ordinate system in which the quantity is defined)

(W= +v; WL ML+(SL
G
In the neighbourhood of P it holds that

d(X)x=@Lpmr=>>LPmdr+(" LPmr=(X) DPmir+(coPx dr + d I&v.
G G G G
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The accelerationfield in the present configuration is

w a=w a+(i)a+2(l)L(i)w

In the neighbourhood of P, if 1 1D,, =0 , it holds that

dxa- Do Xilr+(MOX (vV)o)X drj +2(x)coxdA'x +d < a,

Gijp

The mathematical form ofthose equations relating the material time derivatives to
each other depends on the position of indices:

L [GA.] HOAHXL /L,
1. [GY/’:] =[®/[ (X)L H + H ,X,L ,
M 710 o v o

Iv. [()/**] =[(MH |-()L //-H "WLr.

If (x11) =0 then it holds independently of the position of indices that

_%H+HX(X)@

G
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4. General principles of continuum mechanics.
Laws of classical physics

4.1. Internalforces. Stress tensors

The followings are based on the Cauchy hypothesis (see in Fig. 9).
Stress tensors'.

T is the Cauchy stress tensor in the present configuration,
K=XVT is the Kirchhojf(or weighted Cauchy) stress tensor in the present configu-

ration,
T® is the Il. Piola-Kirchhojfstress tensor in the reference configuration and
& is the stress tensor in the linearized theory of deformation (in the refer-

ence configuration).

For T, T° and K it holds that

T d\=T mi\°; °=XvFa t =Fa K-(fa)T.
Physically objective time derivatives:
(/T*)V=K -L K- KmwuT is the Oldroyd time rate,

t j =A.)T +[k j is the Truesdell time rate.

4.2. Boundary conditions

In the nonlinear theory of deformation in the present configuration and in the line-
arized theory of deformation in the reference configuration

V=V n'e (/4,9,

Ve —ve Ae (A°v), are the velocity boundary conditions,

U= i xe (A),

u°=u®° Xe (AX), are the displacement boundary conditions and
n=p AB (A),

oen°= p?2 Xe (A2), are the stress boundary conditions.

In the present configuration the general forms of the above mechanical boundary con-
ditions are

(v-v)(r n-p) Xe (A) (u-u)-(r-n-p) xe (A)
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For the strain rate tensor D (in an arbitrary case) and for the strain tensor £° (in the
linearized theory of deformation) the boundary conditions may be expressed as

the compatibility boundary condition: (VxDx V)-n=0;Xe (A),
(Ve XE® XV°)-ne =0; Ve (A°),
the strain rate boundary conditionfor tensor D on (A,.),
the strain boundary condition for tensor £° on (A°,),
the connecting boundary condition on the common curve of (A,), and (A,) and
on the common curve of (A°,) and (A°,,).

For the heat conduction problem the following boundary conditions can be prescribed:

boundary condition for the temperature: 0-0 xe(A0)and

boundary condition for the temperature gradient: (0v) n=0 Xxe (A,)

Here 0 is the temperature field.

4.3. Conservation of mass. Continuity equation

In the present configuration:

s

| pch =0
v)
(F) is arbitrary
\fdV +j dA) =i
o j(pvdA) =i

") n
(V) is arbitran

N+ (pv) mV = 0.

@m) =0, = pdv® = pdv; PV
p ~dv°

For incompressible continua:

p'— —- VeV=D,=0; Ay =1.

4.4, Momentum balance laws

According to the basic principles of dynamics, the kinetic vector system [of contin-
uum] [of an arbitrary part of continuum) is equivalent to the system of external forces
acting [on continuum] (on the part considered), i.e.,
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jgdV xe(F)I . .
apdV Xe (V)™ (F) is arbitrary,
\T mdA xe(A)J

in which a p is the density of the kinetic vector system.
The conditions ofequivalence and the equations ofmotion that follow from them are

\]apdV = ‘Jqu + ‘JT WA => pa=T V+q Xe (F),
r (") 4

/. Cauchy equation ofmotion,

J"rXapde\]rquV+\]rleiA = T7=T Xe (F),

0] () H
Il. Cauchy equation ofmotion.

The balance of mechanical energy can be obtained by transforming 1. Cauchy equa-
tion of motion and then integrating the equation resulted

pv ey =ve.v.T V+q [p(v2) =-®na/ +v-T-V+v-q =>
I =PB +PK,
where
dM=T D=%-T mnmE") is the stress power per unit volume,
Av
_ r- + Td~D, is the stress power in terms of the stress and strain rate
3
deviator,
T= -2 \] v~pdV is the kinetic energy of continuum,
(n
I'ob = - J 0s,dV is the power ofthe internalforces and
(r
- jvgdC+ij, is the power input (the power of the tractions and body
forces).
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4.5. Thefirst law of thermodynamics. The energy equation

Here and in the sequel we write

elsp for the internal energy per unit volume,

EB _‘JedeV for the internal energy ofcontinuum

for the density of heatflow,
®,, = pr- hv

for the heat power per unit volume and

Pqg - \]rpdA - \] h iIA = \]d)yc/U is the heat input.
) (4 V)

Thefirst law ofthermodynamics and the energy equation are read
(T+ EB) =/\- + Pg => p(eB) = g + dm ,

p(eB)=T-D +pr-h-V.

4.6. The second law ofthermodynamics. The entropy inequality

Let
0 the temperature field,
ps be the entropy per unit volume and
S = ‘JspdV the entropy of continuum,
n

respectively. Further let
®o=cdu-p(B) -0 -T D-p(@p)-0s >0

be the dissipation power per unit volume.
The Clausius-Duhem inequality and their local form are as follows

> 0)
h (0V) h m(0V)

Os r- h-v+ =
p p 0 Pg + o
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In another form

PO i---—->=T D -p (eB) -0s 0.

h +(0V) hl(OV) §
(0]

It holds that ®n >0and h (0V) < 0.

The energy equation can also be written asp0s - ®0 +dn -

4.7. The energy equation and the entropy inequality in the reference configuration
P n ) 7o E() +pV-h'V

b ¥ "'F’.[[‘(”)v -OSI >0.

fl-
in which m defined by

hec/A= A, hs(f j' m\° =h° «c/A°.

Cop
(O]

4.8. The principle ofvirtual power
In the present configuration the principle takes the form

JT mspDe/v = \](q-p a) edsclV + \]p 6\ c/A .
n <r) (n)

The corresponding side conditions are as follows: Sv=0 Xe (Av),

sp  ™(<BvoV + V°<5v) x€(l/)and

T7 =1 x€(F).
Consequently rev/+qg- pa=ft xe(F),
T n=p Xe (,).
In total Lagrangianformulation

J I eo(e°jdve = J Av(g- pa)+8\dV° + j A,p B5\dA°
(K) (F) a;

is the form of the principle in the reference configuration.
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4.9. The principle ofcomplementary virtual power
In the present configuration the principle takes the form
ju STdv= |y < r/A

on K )

The corresponding side conditions are as follows: ST n=0 xe (A,
ary =o xe (V) and
G1=57 xe (A).
From the principle it follows 3 compatibility equations on (VO,
the compatibility boundary conditions on (A)),
the strain rate boundary conditions on (A,.) and
the connecting boundary condition on the common curve
of (A,) and (Ar).

4.10. The principle of virtual work

In the present configuration the principle has the form
T SEI1SV f(q - pa)-+SadV + fp <5u<A
in *) ()
The corresponding side conditions are: <su=0 Xe (Au),
SE1-y (4ii°V+Vos<ssu xe (F)and
TT=T xe(V).

The equations that follows from the principle are the those following from the princi-
ple of virtual power.

In total Lagrangian formulation
‘JT°-8EdV p»)SudV® +‘JAAudA°

n (k)

is the form of the principle in the reference configuration.
In the linearized theory ofdeformation we have

Jcr 5edV® = j(g -p a ) du dV +\]p Su dA
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for which 6u0=0 Xg (a ‘i
Se°=j (6uloVitVo ) Xe(V°)and
€tT=a xg/(f°).
are the side conditions and from which it follows
CreV° +q° - p°a® =0 xe(rj,
(T° n° =ji" Xe (n°\
4.11. The priciple of complementary virtual work in the linearized theory of deforma-
tion
In the reference configuration the principle is of the form
J e° mSo dV° =JY -Sa* -d\°.
n
The corresponding side conditions are K7 n =0 xg(,4°),
K7 -v =0 Xg(F'Yand

K7 T=8a xg(f°Y

From the principle it follows 3 compatibility equations on (FOY
the compatibility boundary conditions on (n,°j,

the strain boundary conditions on (/1 and

the connecting boundary condition on the common curve
of (n;) and (n,;).

4.12. The principle ofvirtual work in incremental total Lagrangianformulation
in the reference configuration

In accordance with Fig. 5 we shall assume that from the A-th state of continuum char-
acterised by the displacement field *Alu’, we can achieve the next state, for which there

is no a separate sign, using the increment ofthe displacementfield A A,u°.
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It holds
for the displacement field that

= (K)u O, K‘(K)u £

for the Green-Lagrange strain field that

E = RE" +ARE" = - VUV <V +(4<HV)

329

ljviop~u™ +(a(™u™) J-1 *V +(4@u)]°v"I= {KE° +A[KRE°L+A{KE"N,

A(k)E°L=-2Lp "V ’joV'+V'ojl'u-j +
+ij (v °o(<u A(u"loV J+[v o (~u"™)].((-'u”oV°)j,

AKE®" =- V"°(zI(Au™) « j/'u joV'

and for the Il. Piola-Kirchhoff stress field that
7" = poTte + 4 ()T
It is assumed that the virtual displacement field is

U =6(4(wu°),
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i.e., we do not change the displacement field A'u . If this is the case for the virtual strain
field we can write

6E°=6(N{kE °)=5 (zfhE"L) + B(4 WE"N),

where
St@ M =1 <5izlWul0)oVo+ Ve onizl~u0) +
Vi 2LV ! \Y; 13
+ - jveo(t)uj. i j [/ ’ujoVvV™ + Ve°°<5(z\(<nNu0) <((*)U°0V™)
014 "ejv)=1 V"ol4(t)u <B4V [°V o+ VEeBUWDIT 4WIiT|°V

The form for the principle of virtual work we have sought is
\] Kk'>T°+A{KT SE°dV° =

r

\] [KIXV + 4 ()AC1qOuUV/F° + J (KIXA + A KIXA p +8a°dA°.

Since the product AT wmSM"AME® j is not linear in AMT | jz*Aulj°V  we

neglect it. We also neglect the terms A KV q and AK'AAp . In this way we obtain

J A{KT® +mO(AKE®°LyV® +J ®T" -6(aAE°nJGP:

f {KT° mmS[AKE"L\cIV*

+ %’Qllr +‘J (A)A,p-<s(zl(Aiu °)<£4d°.

Due to the neglections we have made the latter form of the principle of virtual work
applies to an unbalanced state of the body and for this reason the solution (the equilib-
rium state of the body) can be sought, starting from a given state, by a series of subse-
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quent iteration steps. We assume that the JI-th state precedes the A-th iteration step. For
the iteration solution an error limit should be defined and an appropriate form of the con-
stitutive equations should also be chosen for the body under consideration.

In the first step, the field 11u°, and 1*7° are given, the geometrical measures

of deformation are units ((I'AdA,, = = 1) and the displacement increment A ()u° is
the unknown.
In the Acth step of the iteration the displacement increment A (<lu is the unknown

while the increment of the stress tensor A" *7° is calculated from the increment of the

strain tensor A~ E
After the A-th iteration step we have

using a linear approximation .

CH 0 = B e x By
k+hygo — (F)E" + A E° = (DE + ®E°1 + A ()E oN ),
=1
Atlyrp - oy o LM (M)

In the last expression the total increment A (< (not only the linear part of it) has to

be calculated. The geometrical measures of deformation A I'A- and (<+1 J1 have to be

determined from ~ 1 u°.

5. Constitutive equations

Constitutive equations relate to each other the variables describing the macroscopic
behaviour of a continuum. These are the so-called phenomenological variables which de-
pend on the material.

In the sequel we are concerned with thermomechanical models of materials.

At the point of continuum, identified by the position vector r in the reference con-
figuration, the independent variables of the constitutive equations are the motion

r=r”"r’;t), the temperature field 0 =0~r and those quantities being calculated

from these variables (for instance the strain tensors, the strain rate tensor, and the gradi-
ent of the temperature field).

ActaTechnica 107, 1995-96



332 KOZAK, 1.

The dependent variables of the constitutive equations are the stress tensor T “or T°j,

the heat flow per unit area h, the free energy/and the entropy s (or the internal energy
eB and the entropy s5).

Thefree energy per unit volume related to eB and s: f =eB- 0 s.
It also holds that

%:q)p'/_p(eB) -O0s ]=M -p (f +s0 )=T -D-p(f +50 ),

h w0 V)
d>,q/-p(f +se )- o >0.
5.1. Thermoelastic body
The dissipative power is zero, i.e.,
dDo= <
T D-p(/ +50 )=0 [ es(£") -p° (/ +50 )=0.

The free energy depends on E and O (or E and 0 ) only:
f =f(E\e) or f =f(E,e).

The constitutive equations (11 scalar equations) assume the form:

TR IR Fpes  Q ds N or }r_ pd—f _pfdeB Q dsn
dE® ¢)E dE . dE dE dEy
f =f(E\e), 5= ---g--t-and ‘ the law of heat conduction for h.
e

The equation of heat conduction is

d\f
h V-po0 N0 =o0.
dede "WV ge2

In the linearized theory ofdeformation the constitutive equations may be expressed
as
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0=0 df,

de

§=~—

aoB

1

333

h=-k(0V).
v

The constitutive equations for a geometrically and physically linear, anisotropic and

thermoelastic body are of the form

p" f(e°,0) ="e° m{dhx" - B

a = @4ce°«E°-B(e-0°), p s=R

h=-jc-(0V).

@ -

Only 21 components of the fourth order tensor

-e“(B-e

)--c(B-B Yy,

E°+c(0-0 )

can be independent.

For geometrically and physically linear, isotropic and thermoelastic body the con-

stitutive equations become simplified:

pef(e\0) =pe°-E°+U(£°1)2-Be\(0-0

<s"=2pe +ae;i-B(e-e°)/;

h=-fc(OV).

£ = cT, !
2P 2p + 3A

) - 1£(0-0 )2,

p°s=RE°l+c(e-e°),

After being rewritten in terms of G and v the Hooke's law takes the form

er =2G
£ = al]! ]+a(0-0,)/,
2G I+ v "] ( )
in which
o\=2Ke\-3/3(0 -0 O, e\ +3a(0-0,).
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5.2. Elastic body

For an elastic body the entropy s is constant, v 0 =0 and h=0.
If eB =eB(E°n ,E\2,mm E ;3), or eB=eB(Eu,E 12,«++, £ 33), then the constitu-

tive equations (6 scalar equations) may be expressed as

d
Te=plAEs or T=p en
AE-° dE

In the general case

T =a°J+a\E° +al\[e"] or T=aJ+a]E +a?2E?2,

where a°, alJ,a2 and aa, a,, a2 depend on the scalar invariants.
For an isotropie elastic body es = eBIE\,E\l,E wj, or e —€B [e ,. E n, E wij.

For the constitutive equations for a geometrically and physically linear elastic body

we can write
CP = (4)C° --e0; (AR

ifthe body is anisotropic and

a =2pe° +N1ell1=2G\e + ut] |
\-2v
s
E == & - alrk 3/
2p 2p + 39 2G 1+

ifthe body is isotropic (Hooke’s law).

5.3. Thermoviscousfluids

The stresstensoris T =—p | + Tv.
The constitutive equations (12 scalar equations) are

p =p{B,p~R Tv=Tv(0,vV0,D,p-"), (Tv=0, if D=0),
r) f
f =1 (0.p ]) § = —en — and the law of heat conduction for h.
om de

The dissipative power is ®O0-TvmD.
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The equation of heat conduction is

h v+pGILI?D,-iU-e 1 1 D-rp=o.
pas do 2

The Stokesian linear thermoviscousfluids:
In anisotropic case:

pP=p(e.P-<). 'v={cy n.
dj_
f =f(e,p-"), and h=-tc(VO0),
de
where =~AC* (6.p 'j and K-K~3D.p 1j.
In isotropic case:
p=p(s,p-), TI =2p " >+ A1), 1,
df .
f =f(e.p-"). and t=-if(Ve),
de

where p‘“ =p' (<9,p A" -X'" (ftp ') and K =K(<3.p

5.4. Isotherm viscousfluids

Constitutive equations for viscous, isotherm, nonlinear model offluids may be ex-
pressed as

P-p(p - 71 =a[\+a\ D+a2l)2,

where a\ =a\{p,Dx,Dn,Dmy
Constitutive equation for viscous, isotherm, linear (Newton type) model offluids are

[ =-pl +XvI)+2pr ) 3Ar +2pr >0, pv >0.

5.5. ldealfluids. Elasticfluids

For idealfluids T1 =0,

T—p 1\ p = constant.
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For elasticfluids Tv =0 and p* constant,

T=-pi, p=p(p ~X).

5.6. Elastic, plastic body. Flow theory with isotropic kinematic hardening

It can be assumed that the deformation can be decomposed to a plastic and an elastic
part (see Fig. 16).

F = Fel-Fpl- D=Del+Dpl=(Ddel+Diel) + Dpl- Dipl=0.

The yield condition is of the form (see Fig. 17)

Q-K~"-s Q{=Kdl —\=0,

I(BR)Y=7% »VcFRB=,/8*(0),

where s is the shift of the centre of the yield surface, k is a material constant (yield
stress), U is the work ofplastic deformation (per unit volume) defined by:

t
iT=jQ-Dpldt.
0
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Prandtl-Reuss type elastic equations of plasticity are as follows:

- the elastic part of the strain rate tensor:
pie, =A =~ (A™)V, DM =Dj - dp,=—2L(_(/r;*)v,
i

- the plastic part of the strain tensor:

Wl o~ tdpi ~ Y :77’\---'-yLLb
1(C)
the velocity of the centre of the yield surface:
and the consistency condition:
1df(Q)
i == Mr; 1= —At?)— ~
H do 3 v 7 oth?

Constitutive equation for the Kirchhoffstress tensor in the present configuration:

(AT)V= {4Cep w(tm,, )V= {ACep 1),

in which

337
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26 fq , Q)
7 1AR) w )

JY =(g'V “+*'Vr)(é,”é,°g,"g,).

and in the reference configuration:

VI(V- (VGD"(E')'
in which
Ve -
Mp:

Observe that the latter constitutive equations were determined using the approach of
objective time derivatives.
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Nonsmooth characteristics of the tangent modulus resulted both from irreversible behaviour of mate-
rials and from polygonal approximation of nonlinear material behaviour will be analysed.

Stability analyses of inelastic irreversible systems are based on the concept of tangent modulus. The
switch from loading to unloading in the material behaviour results nonsmooth material functions. On the
other hand, for a load history analysis instantaneous tangent modulus is needed. Thus, by applying po-
lygonal approximation, we obtain nonsmooth material behaviour again. Naturally, originally polygonal
material behaviour can also be happened. Consequently, for global stability analyses related to the total
domain of possible deflections, nonsmooth tangent modulus is needed.

In this paper, the concept of the tangent modulus is extended to materials having nonsmooth charac-
teristics due to both inelastic loading-unloading and polygonal form.

1. Introduction

The classical elastic stability analyses are based on the convex and smooth elastic
potential. The nearly also classical elastic-plastic stability analyses need also smooth and
convex potential by using the concept of the linear comparison solid by reducing the
problem to a quasi-elastic analysis. The modern inelastic stability analyses including
strain softening and damage are extended to nonconvex potentials by the generalization
of the tangent modulus. However, the condition of smoothness is further on required by
using the concept of linear comparison solid.

The nonsmooth characteristics of strain energy functionals can be derived from two
facts. On the one hand, it can be caused by the change of material phases: the switch over
of loading-unloading is an original nonsmooth characteristics of any inelastic behaviour.
Even to avoid nonsmoothness, the concept of linear comparison solid has been introduced
by Hill [10]. On the other hand, the nonsmooth properties of strain energy can be resulted
by nonsmooth functions of material laws directly, due to original or approximate polygo-
nal constitutive laws.

By using the tools of nonsmooth analysis, we can get over the difficulties of
nonsmoothness of both type. In this paper an extension, the so-called nonsmooth tangent
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modulus is introduced. By the help of it, global stability analyses of nonlinearly inelastic
structures can be investigated. Equilibrium paths of structures having arbitrary nonlinear
irreversible materials can be analysed by applying polygonal approximation.

2. Short history of the tangent modulus

Since the tangent modulus plays a key role in dissipative stability analyses, it seems to
be obvious to run through the development of it. Thus we can see how the tangent
modulus changed during about a century long time period how it became from a simple
material constant to an indicator tensor of dissipative systems.

2.1. Appearance ofthe tangent modulus

The concept of tangent modulus is resulted by the development of plasticity, namely,
the plastic bifurcation problems. In the history of the tangent modulus we follow the state
of art given by Bruhns in [6]. Plastic column buckling, the possible bifurcation of the
structure was in the focus of interest in the past, however, the progress in the subject was
not smooth.

The problem to calculate the critical value of the load on the top of the column, when
the straight configuration becomes unstable, was first solved by Euler in 1744, by as-
suming linear elastic material. However if the stress in the column exceeds the yield
limit, plastic flow will occur, and the original elastic modulus is not valid any more.

A typical stress-strain curve @ = a(e) can be seen in Fig. la where the slope

E, - da Ide (1)

of the curve beyond the elastic limit a0 is the tangent modulus. The tangent modulus is
still the function of strains, since E,(e) = da(e) /de, thus for the stress-strain function,

a bilinear idealization seen in Fig. Ib is often used. This model seems to be advantageous
since Et = const, however, the nonsmoothness in < (e), namely, the jump in the slope

passing through the yield limit, causes difficulties.
The first revised formula for the critical load was suggested by Engesser in 1889 by
using the tangent modulus E, in the formula of Euler. A bit later, in 1891 by Considére

and in 1894 by Jasinski, an important observation was made by pointing out that in a
buckling mode, in one part of the section a purely elastic strain reversal will occur, while
in the remaining part, plastic loading will continue. Considére introduced the so-called
reduced modulus Er for which E > Er > E,. Some examples were performed later by
Karméan in 1910.

Then, for a long period, the reduced modulus theory was accepted as the exact solu-
tion of the problem, while the tangent modulus theory was considered as an approximate
approach. Until 1946-47 [39, 40] there was no considerable progress in the subject.
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£

£
a) b)

Fig. |. The tangent modulus and the bilinear idealization

Then, Shanley in [40], by the help of a simple model demonstrated the important dis-
tinction between uniqueness and stability. He recognised that the tangent modulus load is
the lowest possible bifurcation load. At this load, the straight configuration loses its
uniqueness but not its stability. Moreover, Shanley has written the tangent modulus in the
form in which it is used in our time too

E Se for elastic loading or elastic-plastic unloading

(2)
E, 5e for plastic loading

By an other important observation of Shanley that at the instant of bifurcation there is
no change in the load, Shanley quasi-made an advance of the grounds of the concept of
linear comparison solid of Hill. However, it took another decade until the continuum the-
ory of bifurcation was laid down by the fundamental paper of Hill in 1958.

2.2. The tangent modulus in the continuum theory

Until the famous paper of Hill in 110], the tangent modulus was considered as the
property of a material point only. Hill was who extended the concept of the tangent
modulus to the whole body or structure by characterising the “resistance” of the body by
the tangent modulus 111-13].

By following Bruhns [6], here we refer only to those results of Hill which are in
closed connection with the tangent modulus. Hill suggested for the rate constitutive rela-
tions of bodies with elastic-plastic material and finite deformations as follows

a=Ee- h—(Aé)A = a(e) @)

in the case of smooth yield surface and associated plastic deformations. Here a is the
tensor of the so-called objective stress increments and E is the tensor of the instantaneous
elastic moduli while X represents the normals to the yield hypersurface interfaces sepa-
rating the domains of elastic and plastic behaviour. Here a is a positive function of hard-

ening as follows
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il if Ae>0
[0 if Ae {O

as an indicator of the regimes of plastic loading and unloading. When the stress lies
within the yield surface, the material is purely elastic thus a = 0.
On the basis of Hill’s tangent modulus, a strain rate potential

W(s):-zéEé--z-r(]xte)z We(e) + fp(e) (5)

can be introduced as the potential function of the stress rates

dW (£)

EE--LWI 6
dé h ©)

However, this function is nonsmooth with respect to the strain rates. It has continuous
first derivative and sectionally continuous second derivative. The jump in the second de-
rivative is due to the jump in the indicator a. Without using the tools of nonsmooth analy-
sis the nonsmooth potential function (5) cannot be handled.

Here we recall the observation of Shanley according to which in column buckling at
the instant of bifurcation unloading is absent. In this sense Hill introduces a special mate-
rial called linear comparison solid of the nonlinearly inelastic material with the property
that unloading is excluded through a = 1. Thus, he could avoid the nonsmoothness by
obtaining a smooth potential

W(8) = —Ef£ - — (An2= We{£) + W (&) )
2 2

Hill’s results have a great importance. Any solution of the rate boundary value prob-
lem for the elastic-plastic solid is unique when the uniqueness of the analogous boundary
value problem for the comparison solid is assured.

Hill’s results are related to elastic-plastic behaviour. However, in modern stability
analyses the strain softening and damage, moreover, the strain localization became even
more important. Thus, the results of Hill have recently been extended to these cases, on
the basis of the thermodynamics and by using the tools of functional analysis.

2.3. Thermodynamic generalization ofthe tangent modulus

The thermodynamic extension of the tangent modulus is the merit of Nguyen [28, 29],
Halphen and Nguyen [9] by introducing the generalized time-independent standard
material. This concept is the basis of the modern bifurcation theories. The most general
constitutive relations of strain softening materials is given by the authors Rice, Raniecki,
Rudnicki and Bruhns in [34, 35, 36, 371 The newest modern mathematical description is
given by Benallal, Bilidrdon, Geymonat and Doghri [3, 4, 5].
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Assuming small isothermal strains according to [3, 4], the behaviour of the general-
ized standard materials can be characterised by the free energy and the domain of re-
versibility and the consistency condition.

Generally the free energy is a function of the strains £, the internal variables a, and

the temperature T

y/ = yl(e,a,T) €S)

where function Y/ is the potential function of the thermodynamic state variables, the

stresses a, the thermodynamic forces A, and the entropy s as follows
a (9)
The irreversible behaviour is characterised by the domain of reversibility
C(a)={A |/(n ,a,T)<0} (10)

and the potential ofdissipation IfA.a. T) in connection with the normality law
a=A— =N (A) (ID
dA c

where NC(A) is the outer normal vector of the convex set C(a) atA.

The nonnegative multiplier A > 0 results from the consistency condition f —o.

(12
where
= o @ (13)
da dA
and
d:yr (14)
P dotde dada

Here the symbol ° denotes the scalar product while ® denotes the tensorial product
between tensors. Symbol denotes the double tensor contraction, and <v> = max
<X,0> ensures the nonnegativity.

Considering an isothermal process of the elastic-plastic damaging strain softening
material, the temperature and the entropy can be eliminated, thus, the thermodynamic
state laws (9) read
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y =yl(e,a) 0=p— A=-p~— (15
ae Aa

In this way, the isothermal mechanical behaviour of the time-independent standard dissi-

pative material can be characterised by three thermodynamic potential functions

y/(E,a), f(A.a) and F(A,a). By the help of these functions the most general ther-

modynamic form of the tangent modulus can be obtained. Taking the time derivative

0 = do /dt as quasi-static velocity into account, the rate constitutive relation can be
written in the form

a-L(e.a) e (16)

where the operator L is the tangent modulus as follows

E if /(A,a) =0 and b:E:e <0
L= E :a)® (b :E (17)
E-( )h( ) if f(A,a) =0 and b:E:e >0
in which
\
E=p"” (18)
dEdE
is the tensor of elastic moduli and the tensors
a=E"LNT o— b=— on :E-1 (19)

oA

are related to the domain of reversibility.

The most general form (15) of the tangent modulus contains equally any nonlinear
inelastic and even strain softening or damaging behaviour of materials. Let us consider
now the special cases.

In the case of elastic-plastic materials, function t/ is the Helmholtz free energy. Ac-
cording to [3], for elastic-plastic materials, tensors J1 - Il = E , and functions f= F, so
a = b, consequently, the tangent modulus (17) is simplified to

E if f(A,a) =0 and a:E:é<0

< . :
E_(E.a)®(a.E) if f(A,a) =0 and a:E:é>0 20)

Moreover, in the case of linearly elastic and perfectly plastic materials, a = b = 1
and df /da =0, consequently, the tangent modulus reads

~ |E for elastic loading, elastic-plastic unloading

}0 for plastic loading
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In the case of damaging materials, a scalar damage coefficient D is introduced among
the internal variables. According to [4] for elastic-damaging materials, let D be
0 < D <Dcr <+°°, fulfilling the basic condition that for D = 0, the material is perfectly
elastic, and for D - Dcr, the material is perfectly damaged. The stiffness of the material

is characterised by the function g(D)E where E is the initial elastic modulus. Thus the

rate constitutive law can be written in the form

e(D) Ee if O (a(D)

g(D)E& + :((E; (eEe) Ee if 0 =a(D) (22)

where Q, 0 < Q <a{D) is the damage internal force, and a{D) >0, a (D) >0 is a
given function. Moreover, k(D) = -a(D) /g (D).

For a very simple model of the elastic-damaging material, [31 suggest for D to be

0<D<1, and for the free energy py/(e.l)) =y(l-D)e E.e, moreover,

k(D) = Qn+ MD where Qo0and M are material constants. Thus they suggest the tangent
modulus as

L:(l_D) E - M » (23)
M

for the elastic-damaging material.
Other tangent moduli are obtained for continuum damage material on the basis of
fracture mechanics by Janson and Huit 114] and Del Piero and Sampaio [8].

2.4. Application ofthe tangent modulus to discrete systems

The discrete version of the tangent modulus is analysed in the monograph of Bazant
and Cedolin [2]. By applying the concept of the tangentially equivalent elastic structure
and an incremental quasi-elastic analysis, they can use the basic principles of thermody-
namics.

According to the kinematic degree of freedom of the discrete structure, by introducing

the generalized coordinates ¢ = {q,}, 1i- 12,...,n, the tangentially equivalent elastic

version of the original inelastic structure can be defined by [2, p. 635]:

c/f7 = Kr(i>) 4:] and dfs = K x(n) \.q (24)

in which f7 and fs are the internal forces being work-compatible with the kinematic

parameters . Moreover K r and K vare the matrices of the tangent moduli, the so-

called structural tangent modulus for isothermal and isentropic conditions, respectively,
related to the direction v of the dg.
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Thus the concept of the potential energy can be extended to the inelastic problems for
isothermal and isentropic cases as follows

KT=F-W and ns=U-W (25)

where F is the Helmholtz free energy, U is the total energy and W is the energy of the
external forces [2, p. 638].

According to the concept of tangentially equivalent elastic structure the internal forces
f/ and fs can be derived from the potential functions F and U, respectively

dU
foo= and fv (26)
dq, dqg,

In mechanical equilibrium, the first variation of the potential energies NT and 7iS must

vanish
gkt =<5F=f76q- P7clq and gns = <5t/=fJ<5q- Pil/q 27)
in which P is the external load in work-compatibility with . For stability qualification of

equilibrium, the second order increment of the potential energies ay and 715 are needed.
The equilibrium state at q is stable if

S2nT=-8q, d mg 4 . =-(<5fr -<5PrwWqg= -i/grK T(uwWg>0
58 ﬁv Waz -ilq (uUwWq

(28)
82ns = U qt™ ™ -8 qgj =~(<5fJ -<5P7)c/g=yi/qrK s(u)c/q>0
where the matrices
KT(V) ——T_  and K s(v) d-ns (29)
dg.dq]j dqldgd

represent the structural tangential stiffness. These matrices are the Hessians of the poten-
tial functions NT and ns for isothermal and isentropic conditions, respectively. If the

external load P is independent of Q, then matrices Kr and KsS are equal to

Kr and K S, respectively.

3. The nonsmooth tangent modulus

After the short review of the tangent modulus, we focus ourselves to the nonsmooth
characteristics of it. Uniaxial material behaviour will be analysed. Before detailing the
consequences of the polygonal material behaviour, the short history of the nonsmooth
potential theory is considered.
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3.1. Development ofthe nonsmooth potential theory

For conservative mechanical systems the stability conclusions can be drawn simply
from the properties of the total potential energy functional, by the Lagrange—Dirichlet
theorem [42, 43]. The fundamental stability statements are based on the classical poten-
tial law

oey " (30)
de

where a = {ct"} and € = JeMare the stress and strain tensors, respectively. Functional

W(e) is the smooth and convex strain energy density.

If functional W(e) is nonsmooth but the material is reversible, the classical potential
law (30) can be extended to polygonal elastic cases. Panagiotopoulos pointed out in [33,
p. 85] that while the “Smooth Mechanics” is based on the notion of the classical poten-
tial, the “Nonsmooth Mechanics” is concerned with the nonsmooth and/or nonfinite con-
vex or nonconvex superpotentials.

The generalization of the classical potential law to nonsmooth but convex potentials
named superpotential was introduced by Moreau [25, 26] by using the tools of the convex
analysis. The convexity of an energy function implies the monotonicity of the concerning
stress-strain relation. Variational principles related to such kind of problems have the
form of variational inequalities. In order to overcome the constraint of monotonicity, the
notion of nonconvex superpotential was introduced by Panagiotopoulos [30] by using the
generalized gradient of Clarke [7] and the results of Rockafellar [381 leading to the
hemivariational inequalities in mechanical applications. In his important book Panagioto-
poulos laid down the foundations of the “Nonsmooth Mechanics” and established the
substationarity laws of mechanics [32]. So he obtained the generalized substationarity
principles for nonconvex potentials [32, pp. 61 —160; 33, pp. 107-153]. Further applica-
tions are given in [27].

The term of nonsmoothness in sense of the definitions of Panagiotopoulos [32, pp. 3—
67, 33, pp. 85-95] is based on the Lipschitzian property of functions. Simply saying, for
a break type discontinuity of a function f(X) at x, the Lipschitzian condition at x fulfils,
while for a jump type discontinuity it does not. The existence of both the subdifferential

df(x) and the generalized gradient df(X) requires the Lipschitzian property of the
function at X. A point X0 is called a substationarity point off(X) if it is a solution of the
multivalued equation

(>e <2?/(¥) (31)

where the generalized gradient df(X) of Clarke is a set being never empty iff(X) is Lip-

schitzian at n\ If fix) is convex then df(x) coincides with the subdifferential:
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dfV(e) = o(e) de (34)

thus, the strain energy VT(E) at £ can as the potential function of the stresses o(e) be
considered, that is, the classical potential law

G(£) = “'fjee) (35)

can be applied. Since for small loading step, the material behaviour is supposed to be lin-
ear elastic, the increment of the stresses consists of first order term only, namely, in this
case

do(e.de) = 6o(e.8e) = ~"a”» Se="~2p-8e =k, (e) 8e (36)
de de-

in which
_doje) _ d2W(e)

(37
de de2

is the tangent modulus related to the linear comparison solid introduced by Hill [10].
The tangent modulus K,(€) in Fig. 2a is the actual tangent of the stress-strain function
o(e)ate.

The tangent modulus (37) of the linear comparison solid is related to a smooth stress-
strain functions 0(e), as the actual tangent of the material function. The introduction of
the linear comparison solid aimed to avoid the nonsmoothness due to the switch from
loading to unloading. Indeed, the classical tangent modulus aims to give a relation be-
tween the stress and strain increments, similar to the Hooke’s law of the elastic materials

kO forde<0 (unloading)
do = K,(e)de where K,(e) = (38)
K, forde>0 (loading)

where K,, is the initial elastic modulus. The point de =0, at which the material changes
from loading to unloading, is excluded from this expression, since at de = 0 the function
K,(e) has a jump. Even for avoiding this discontinuity, Hill has introduced the linear com-
parison solid, consequently, the unloading has been left out from the analyses.

If we want to extend the tangent modulus to the unloading too, the following
stress function including the case de= 0 is to be applied

JoOE) if de<()

. (39)
| <7, (e) if de>()

in which the function 0,,(€) concerns both the elastic-plastic or elastic-plastic-damage
unloading, while the function 0,(€) belongs to loading only, seen in Fig. 2a. Note that
function 0,(€) represents the linear comparison solid of the original nonlinear material.
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Fig. 2. The nonsmooth multivalued tangent modulus

Considering Fig. 2a, function (39) can be written in the form of

i>o(e)[e-e0(e)] if de< O

P (610 - el [E)] it de > 1

(40)

in which «k,(e) and ko{e) are the loading and unloading moduli related to the straight lines
<7,(e) and &,(f) at £, respectively. Strain values cr,(£) and cr,(£) are the intersections of
the straight lines o,(e) and co(e) with the axis £, respectively. As we can see in Fig. 2a,
all these values are point by point changing, but at the strain value £, they are constant
thus

k0 -£,, if «d 0
[ {e ) e < (41)

Ik, (E-£)) if de> 0
However, this function containing both loading and unloading is a nonsmooth func-

tion. Consequently, for obtaining the tangent modulus from it, instead of the relation in
(37), subdifferentiation has to be applied
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dale)

if de <o
de
K'{e):a(e):<daJe) dalde) i de =0 (42)
de * de
da,(e) if de>o0
de

resulting a multivalued function forming an interval at the condition de =0

if de <0
Kle)=-M J if de =0 (43)

A if de >0

yielding the nonsmooth tangent modulus seen in Fig. 2b with an interval of [K,, K,\ at de =
0. Here K, is the initial elastic modulus and k, - Kk,(e) is the actual tangent of function
ofe).

Thus the actual occurring stiffness K, (e) is the element of the set K, (£) as follows
K, (e) e K, (e) (44)

However, the set of the nonsmooth tangent modulus K, (e) is changing with changing
£ . If the material function cr(£) is nonlinear then the solution is mathematically very

difficult. That is why the idea of polygonal approximation seems to be highly reasonable.
However, it leads to nonsmoothness again.

Figure 3a shows a polygonal approximation of a nonlinear material function. Natu-
rally, the polygonal function can represent an originally polygonal material behaviour,
too. For example, the composite materials or the locking behaviour or the saw-tooth type
behaviour can be characterised by a polygonal constitutive law. In this case, the solution
gives the correct results not an approximation, of course.

First we consider break type functions without jumps seen in Fig. 3. Later we return to
the jumps, too. As we will see, to handle the polygonal behaviour seems to be the same as
that of the loading-unloading, since the latter case has a simple polygonal characteristic,
too.

Consider first the loading phase only. Let each segment ; of the polygonal material

law in Fig. 3a be specified by the relating modulus k\ as the constant slope of the seg-

ment i and by the strain constant €\ as the intersection of the segment / and the axis €.

Thus, at the break point € = ¢+, the material function a(e) can be written in the form of
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Fig. 4. The nonsmooth tangent modulus of polygonal material

i*/-L(E-£/*) if de< 0 (45)
\k “(E-£) if de> 0

which is equal to the function (40) if the segment preceding the break point £ = £\ can as
unloading path be considered. Consequently, any path can as unloading path be handled
if the sign of the strain increment d£ indicates the loading or unloading characteristics of
the material phases.

The nonsmooth tangent modulus Kt{e)' belonging to the point £ = £ and seen in

Fig. 3b can be obtained by subdifferentiating the function <r(£)' at £ = £,

Ki'l if df <0
K,(E)‘=d(G{£)‘)=<ﬂplr1 if dE=0 (46)
K if dE >0
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relating to both loading and unloading when taking the preceding segment /-1 as unload-
ing path into consideration. The loading and unloading paths are indicated clearly by the
sign ofde> 0 and de < 0, respectively.

Alternatively according to (37) the nonsmooth tangent modulus can be obtained by the
second subdifferential at £ = £| of the nonsmooth superpotential W(e), too

K, (e)' = a(alle)) = a(aley) (47)

Thus, the concept of the nonsmooth tangent modulus of polygonal material behaviour can
be extended to the strain softening, namely, to damage problems. In contrast to the elas-
tic-plastic unloading, in damaging cases, the unloading and reloading moduli are to be
given individually. Consider a polygonal function of an elastic-plastic-damaging material
seen in Fig. 4a. Also in the case of damaging materials, the unloading paths are linear,
but in contrast to the plastic unloading, with different elastic moduli. Thus, the unloading

moduli K" are changing depending on the actual strains. As a typical damage property, in

the case of active damage loading, the loading moduli k\ are negative.

Moreover the concept of the nonsmooth tangent modulus can be related to the so-
called locking materials, too [411 The initial stiffness of this materials during a loading
process increases and finally, the material can become even perfectly rigid seen in Fig.
4b. In Fig. 4c the perfectly locking behaviour is illustrated. In spite of the fact that this
type of materials are reversible, they can be handled similarly to the irreversible prob-
lems. The locking behaviour belongs to the family of the so-called conditional joints de-
scribed first by Kaliszky in [15]. Further generalization of the conditional joints as sub-
differential material property, and as the dual version of the reversible plastic character-
istics were given by Kurutz 117, 181. The stability conclusions due to nonsmooth behav-
iour is analysed also by Kurutz in [19-24].

Fig. 4. Polygonal damaging and locking materials
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3.3 The nonsmooth tangent modulus in the case ofjumps in the materia!functions

There are materials applied recently, the stress-strain or force-displacement functions
of which show jump type characteristics. This tendency can occur in both strain softening
or strain hardening phases. The composite materials belong to the former, and the locking
materials belong to the latter.

Consider the example of the perfect jump in Fig. 5a, the diagram of the perfectly rigid
perfectly plastic material. In this case, the unloading and reloading take place in a per-
fectly rigid manner by the condition de - 0, manifested in a jump.

The material behaviour is characterised by the inclusion

(72 if de <0
<7(£)e (7(e) - < [cr2,CT,] if de —0 (48)
ler! if de > 1

according which, independently of e, the actual stresses are the elements of the set of
stresses related equally to loading, unloading and reloading.

According to (37), for the nonsmooth tangent modulus, this function needs to be sub-
differentiated. However, since this function has jumps at any de = 0, the Lipschitz condi-
tion does not fulfil, so nor the subdifferential of Moreau, nor the generalized gradient of
Clarke exists. Still, if we want to obtain the tangent modulus in such kind of Heaviside
type material functions, a distributional derivative has to be applied. Thus the generalized
nonsmooth tangent modulus is as follows

if de o U

10
K.(e) = d((7(e)) =] . (49)
to(tr, - 1, )s(de) if de: O

where b(de) is the Dirac impulse 116]. For the condition de - 0, the tangent modulus
forms an interval of indefinite length, namely, in the case of loading (unloading) it tends
to the positive (negative) infinite.

CTnA
dE>0 ' Oi dE<0
\1
d&0 d£=0 d£=0
0 £
£ £
\d&0 'd&O , <dE=0

di0 @, dEo
)

Fig. 5. Jump like materials
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Naturally, an arbitrary jump [<7,_i<7, in the material function can equally happen for
a reversible or an irreversible material at any strain value. Consider now an elastic mate-
rial with a jump [cr,_i,<T/], both preceded and followed by elastic behaviour seen in Fig.
5b. The nonsmooth tangent modulus at f then reads

~! if de <
K(e) =d(o{e)) =<t(<7, -a )8 (de) if ae-o0 (50)
k\ if ae >0

since the unloading paths are equal to the loading ones.
Construct now the nonsmooth tangent modulus related to a discrete structural model.

4. The nonsmooth structural tangent modulus

Let the bent structure be composed by perfectly rigid elements connected to each other
(and to the support) by special springs in which the material behaviour is concentrated.
The behaviour of each of the springs is characterised by a one-dimensional stress-strain
function being arbitrarily nonlinear or nonconvex. We assume this functions to be ap-
proximated with polygonal form.

Let a = {er,} and £={£,},/ = 1,2,...,a be the vectors of stresses and strains, re-
spectively, where the length a of the vectors represents the number of all the stress and

strain components over the structure. In our discrete model, the variables < and £- are
forces and deformations of the springs being work-compatible with each other. Vector

<= </(e) = <, {e, } contains the one-dimensional but arbitrary functions of the material

behaviour.
Assume that the cinematic state of the structure can be characterised by n number of
independent kinematic parameters. Then the kinematic parameters q = [qi}, i=1,2,....«

are the so-called generalized coordinates of the given numerical solution.

It is well known that the potential energy functional 7T(£,u) requires the compatibil-
ity conditions as subsidiary conditions. By introducing the generalized kinematic coordi-
nates q, the compatibility conditions form

u=u(q), thus e=e(u)=-e(u(q)) =e(q) (51)

consequently, the functional 7r(£,u) can be reduced to a scalar function 7r(q) which is

kinematically admissible at the same time. However, the variables € and u of the poten-
tial energy function are no more scalar, consequently, the function
?r(q) = 7r(£(u(q)), u(q)) is a compound function.

Acta Technica 107, 1995-96



356 KURUTZ, M.

We assume the compatibility transformations u=u(q), e =e(u) or e = e(q) tobe
smooth functions, while the constitutive laws a =o(e) are allowed to be nonsmooth,
consequently, the functions @ = cr(£(u(q))) = cr(g) can be nonsmooth. Thus, the internal

potential can be nonsmooth while the external potential is always smooth.

In any case, by introducing any type of generalized coordinates, it is necessary to
transform the concerning state variables to be work-compatible with the chosen general-
ized coordinates. So we obtain the reduced version of the stresses and external forces
being work-compatible with the kinematic parameters g. In order to obtain the structural
tangent modulus, we need the reduction of the stresses only. Thus, here we do not deal
with the external load and external potential.

Consider now the first- and second-order increments of the internal potential.

The first variation of the compound smooth function 5, (q) = TTh(e(u(q))) reads

d d de, duld
gn,,, = ("MW gg, o AnME) e W AW@ ey ce=tarm 62)
Ay, de, dit. dq,

while for the nonsmooth internal potential, we obtain

8n,n =d, 7r,(q) Sq, =d, n,n(e) A’/Il('ﬂ>dd 8{i =g(e)7Se =f(q)T&y (53)
allj

where the functions

dn,n(e) de,(u) diij(q) de,(u) ditjjq)
fla)t ={ft(q)}r - de. du, da, =<J,(e) du, da, (54)
and
de,(u) du (a) de,(u)du (q)
f(a)7 ={/,(q)}7 =d,nm(e) db dg, =a,(e) dij  da, (55)

are the smooth and nonsmooth versions of the reduced stresses to be work-compatible
with the chosen kinematic parameters gq. Vector f(q) consists of interval elements due to
the set of stresses <7(e) obtained by the subdifferentiating of the nonsmooth strain en-
ergy k,n(e).

Functions f(q)and f(q)are the smooth and nonsmooth version of the smooth and
nonsmooth stresses a(e) and <7(e) , respectively, being work-compatible with the cho-
sen displacement parameters q. Functions f(gq)and f(q) are the constitutive laws of the
structure, the so-called structural material functions, since these functions unite the ma-
terial behaviour of all the material points of the structure. The nonsmooth function f(q)

inherits the polygonal characteristics of the material laws of each point of the structure,
due to any break orjump in the material polygonal.
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The structural functions f(gq)and f(q) can be expressed in matrix form, so, for the

smooth and nonsmooth reduced stresses we have

f(a)7 = o(e) A(u) B(Q) = a(e)1 M(q) = cr(e(u(q)))7M(q) (56)
and

f(q)7s a(e) A(u) B(@) = a (£)7M(q) = <7(E(u(a)))' M(q) (57)

in which the matrices A(u), B(g) and M(Q) are the derivatives of the smooth functions
£(u) and u(q) as follows

A(u) = iy () = [NH) (58)
and
B(@)= 1oy (q)} = |~ (@) (59)
\
moreover
_ _ _de, (U) dttj (q)
M(q) = {mk(a)} = A(u) B(q) = ) . (60)
u q

For qualifying the stability, we need the second-order increment of the internal poten-
tial too, as follows for smooth cases

1- d2kin(qQ) _ 1 (q) den(u) d2n,,(e) de,(u) duk(q)

2 dg,dg 2 dgm du,, de,de, duk dgq}
(61)

du.{q)fdnm(e) 2£,(u) duk(q) dnm{e) de, (U) g \ Cb
Sq

audn de, dumdukj dq, de, d uk dq,dg

3 -2<5f(q-éq) S

which can be expressed in matrix form, as well

<&, =16 g, {\M(q)/ K,(E(u(q)))M(q) + B(q)7(crE(u(q))) X(u(q))) B(a) +
(62)

(cr(E(u(@))) - A(u(q))i Y(@)}<5q = "<5f'(q.6q)6q

while for nonsmooth cases, by applying repeated subdifferentiation or distributional de-
rivatives, we have
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1 \du, ?£,,(u) 5 5 ,Nde, duk
S2nm = —06q, d{d#tm(qg))sq = - 8q, u{as () e.(u) duk(a)
i dgn du,, duk dq]
(63)
du,(a) . <£,(u) duk{a) * dauk(q) :
diK n(e) § —m' (W 8j =8 i(q,60)Te g
dgn AW AY,- dqj \V/ du, ydg,dqg.

which in matrix form shows
S 2Kin=~-6q7{M (q)7K ,(e(u(a)))M (q) + B(q)7(a(£(u(a)))7 X(u(a))) B(q) +

(64)

(cr(£(u(q)))7A(u(q))) Y (q)J6qsi-6fr(q.6q)dq

Here the matrices X and Y are three dimensional, namely, the second derivatives of the
smooth functions £(u) interm of u and u(q) in term of g, respectively, as follows

Thus, finally the matrix K,(£) in (60) is the smooth structural tangent modulus

while the interval matrix K, (e) in (64) is the nonsmooth structural tangent modulus
K.(£) = (Kjj(e)) = (dj{d]KhI(£))J = (diiéjie))) (68)

which are both diagonal matrices since we assumed uniaxial behaviour for each material
point of the structure. The nonsmooth structural tangent modulus K f(£) contains the
nonsmooth tangent moduli of each material points related to both loading and unloading.
Note that the structural tangent moduli K,(£) and Kr(£) are included in the
stresses cr(£(u(q))) and Z (£(u(q))), respectively, for even strain softening or damage.

However, for a global analysis related to the total domain of possible deflections, the in-
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stantaneously changing tangent moduli are needed. That is why polygonal approximation
is used in the material functions resulting break or jump points in the structural material
function.

To extend the analysis to the instantaneously changing tangent modulus, we assumed
polygonal material and consequently polygonal structural behaviour with breaks or jumps

at points g, or q of the function f(gq) of the structural material behaviour. Thus, func-

tion (57)

fr(a)y =ff(£(u(q)))'IM(q) (69)

related to the segment of F(q) between the points g, and g(are smooth, since the material
properties are constants and so the stresses (T ~u”)))¥ are smooth between g, and q..

But the function f(q)-7 is multivalued for a jump in the cr(£(u(qg)))v at g, or g,. So the

stresses can be expressed in term of the tangent modulus, by separating them into smooth

parts

G7(6(U(q)))y =(E£(u(qg))-ef)7Kf for geint{qg,.qyj (70)
and by using logical product “o0” for the intervals, into nonsmooth parts

ar(Eu(g))* s (e(u(g))-£* )ToK f for qe front{q,,qy} (71)

where K1 isthe smooth while Kj is the nonsmooth structural tangent modulus. Vectors

ef and £k are the smooth and nonsmooth strain sections detailed in sections 3.2. and
3.3. The notations int{.} and front).) are the internal and the frontier of the set {.), re-
spectively.

In this way the reduced stresses F(q)can be expressed in term of the structural tan-

gent modulus

fr@'>=(E£E(u(qg))-£f)rKf M(q) for q 6 int{q, ,q;-J (72)

I
c
1
o
n
2

for g e frontjq,.q ,} (73)

The reduced stresses represent the structural material behaviour which determine the
characteristics of the equilibrium paths of the structure.
Consider now the numerical applications.
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5. Application of the nonsmooth tangent modulus

Examples by using the nonsmooth tangent modulus are detailed in the papers of Ku-
rutz [19-24] dealing with stability analysis of structures of nonsmooth energy function-
als. Equilibrium paths and their stability qualifications are presented in the mentioned
papers. Global stability analysis related to the total domain of the possible deflections is
investigated, the nonsmooth functions of the structural tangent stiffness is analysed. Re-
versible and irreversible problems are equally detailed, loading-unloading and polygonal
approximation of highly nonlinear problems are also dealt with. Strain softening, damage
and localization, or certain combinations of material behaviour are investigated, too.

Thus, a short illustration of the advantage of the nonsmooth tangent modulus is pre-
sented here.

It is frequently applied in stability analyses that the structure is divided into perfectly
rigid parts, and the material properties are concentrated to certain springs at the connect-
ing points, the joints of the structure [1]. By using this kind of illustrative examples the
advantage of the nonsmooth tangent modulus can be made evident.

Figure 6a shows the structure of total length / consisting of two rigid elements of
length // 2, by assuming the middle joint to be in the half of the structural height. The
system has one degree of kinematic freedom, since the geometrical state of the structure
can be characterized by a single parameter Q. Let this parameter be the angle of rotation
GA at the supportjoint A, so q = 72,.

Consider now the vector u(q) of the kinematically admissible displacement functions

1fix Isinqg 12 HIu)
us= g = /- cosq) 12 = ,5(q) = u(¥) (74)
" Dy _ - Cosq) _»3(<?)

and the vector of the strains £(u(q))

4
e = = 4 £(4) (75)
_&B_ }d_
As we can see the displacement functions u(q) are nonlinear, while the strain functions
e(q) are linear in the chosen parameter . We will see that due to the strain linearity, the

function of the reduced stresses f((Q) is segment by segment linear.
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Fif;. (i. The example for illustrating the nonsmooth tangent stiffness

The external potential of the dead load AFj = A[) 0 Fo] is nex{fl)=-A Fju(q),

in the case of a single vertical load AF,, on the top of the structure. Thus, we have
na (q) = -A FJ(1- cost/) (76)

The internal potential depends on the material behaviour which is concentrated to the
springs applied at the joints A, B and D of the structure. The springs are characterized
equally by the same polygonal moment-rotation function M (t?) seen in Fig. 6b. A gen-
eral polygonal stress-strain diagram is considered. Each linear part i of it, included the
horizontal and vertical parts as well, can be characterized by two data: the modulus of
elasticity c, and the related rotation d] as the rotation at the intersection of the segments
of the polygon with the coordinate axis . General elastic-plastic-damaging behaviour is
modelled. The spring constant C is variable, it changes stepwise linearly within the inter-
val of 0 <c( < °° inany segment / of the material polygon representing the actual elastic,
rigid, or even locking or damaging character of the material phase.

Consider first an elastic nonsmooth problem.
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Fig. 7. Stability analysis of structures with nonlinear material by applying polygonal approximation

5.7. Nonsmooth reversible problems

Figure 7a shows the diagram M (() of a linearly hardening elastic material applied
uniformly to each spring of the structure. The concerning reduced stressesf(q) are seen in
Fig. 7b. The concerning equilibrium paths A,(g) of the structure are seen in Fi. 7c. For the
sake of simplicity this time we follow the behaviour of the structure in the right-hand side
interval 0 < g < 7fonly.

We have shown in papers Kurutz 119-24] that the equilibrium path of the structure
having nonsmooth material can be obtained as the envelope of the component equilib-
rium paths related to each segments of the reduced stresses, namely, the structural mate-
rial behaviourf(q).
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Fig. K. Stability analysis of structures with originally polygonal material

In the one dimensional case, the stability of equilibrium at the points of the equilib-
rium paths can be qualified by a simple sign control of the related functions of the tangent
stiffness. For qualifying the equilibrium paths, we need the second subdifferential of the
total nonsmooth superpotential. The nonsmooth functions of the structural tangent stiff-
ness K(q) are seen in Fig. 8d. For regular points the tangent stiffness is a single value,
while for singular points it is an interval. In order to find the critical load, we consider the
inclusion

Oedct/f(<y) (77)

knowing that the determinant of an interval matrix forms an interval, too. In this one-
dimensional case, this matrix has a single element, and, even if it is an interval, it is equal
to its determinant in itself. We can conclude that for material hardening (softening) the
upper (lower) envelope of the component paths results in the nonsmooth equilibrium path
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of the structure. This statement coincides with the fact that in the case of the material
softening (hardening), the load bearing capacity of the structure decreases (increases).

Figure 8 show the example of a general reversible polygonal behaviour: a gradually
hardening material law with vertical and horizontal jumps. Here, to obtain the nonsmooth
tangent modulus and the functions of the structural tangent stiffness, distributional de-
rivatives were applied. In Fig. 8d the intervals of indefinite length are seen related to the
jumps in the material behaviour M((i) of each joint, and, consequently, the jumps in the
structural material behaviour/)<d).

W e can conclude that by applying polygonal approximation for nonlinear constitutive
laws and by using the concept of nonsmooth tangent modulus, considerable good solu-
tions can be obtained for nonlinear problems.

5.2. Nonsmooth irreversible problems

In contrast to the plastic limit analysis where the plastic hinges exhibit no softening, in
many important cases, however, the absence of softening cannot be guaranteed. For ex-
ample, in pre-stressed reinforcement concrete beams, the softening of the hinge is caused
by strain softening of concrete due to micro-fracturing.

Let the elastic-plastic-damaging behaviour of the joints be represented by the material
function M(0Q) seen in Fig. 9a. In contrast to the plastic unloading, in the damage zone the
unloading moduli are specified individually. Here we do not detail unloading and local-
ization, these questions are analysed in Kurutz [23, 24].

Figure 9b shows the nonsmooth function f(q) of the structural material behaviour re-
sulted by the simultaneously different material phases of each joints A, B and D. The si-
multaneity of the different material phases depends on the actual strains at the joints con-
trolled by the actual rotations £(</), namely, the compatibility transformations (75). Thus
while the joints A and D have a rotation  with the modulus G, the middle joint B suffers
a rotation twice larger using the modulus g . Thus by applying overall unloading, the un-
loading moduli can be different if the joint B reaches the damage phase. In Fig. 9¢ and d
the nonsmooth functions of the equilibrium paths A(q) and the concerning structural tan-
gential stiffness functions K(q) are illustrated. Due to the gradual strain softening, the
tangential stiffness tends to be indicating instabilities.

As a conclusion of the presented one-dimensional examples, we can state that by us-
ing polygonal approximation and the nonsmooth tangent modulus, any uniaxial nonlinear
and irreversible material behaviour can be handled. However, in the case of higher di-
mension, the mathematical difficulties increase.
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Fig. 9. Stability analysis of structures with damaging material by applying polygonal approximation

6. Conclusions

In this paper the material and the structural tangent moduli are in focus. After a short
historical review, where the century long development of the tangent modulus was de-
tailed, we introduced the nonsmooth version of it.

For global stability analysis of structures with nonlinear materials, the instantaneously
changing tangent modulus is required. This leads to mathematical difficulties. By apply-
ing polygonal approximation, nonsmooth problems are obtained. The nonsmooth tangent
modulus of the polygonal behaviour can be considered as the nonsmooth tangent modulus
of loading-unloading of irreversible materials.

As a conclusion, the tangent modulus containing both material loading and unloading
is always multivalued. The nonsmooth tangent modulus related to the break points of a
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material polygon forms intervals of finite length, while related to the jump points of a
material polygon forms intervals of infinite length concerning to the Dirac-impulse. The
nonsmooth tangent modulus of polygonal material behaviour can be applied to the cases
of strain softening and damage, too.

The concept of nonsmooth tangent modulus of the material point containing equally
loading and unloading or polygonal approximation of nonlinear materials, can be ex-
tended to the whole structure, yielding to the nonsmooth structural tangent modulus. The
generalized nonsmooth structural tangent modulus is multivalued. In the case of uniaxial
material behaviour, it forms a diagonal interval matrix. For a break (jump) type material
discontinuity, the intervals are finite (infinite).

For stability analyses of inelastic systems, the concept of tangentially equivalent elas-
tic structure is needed and a quasi-elastic analysis is investigated.

One-dimensional illustrations for simple discrete structures with uniaxial material
laws helped to prove the advantage of the nonsmooth material and structural tangent
modulus.
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This work is designed to find a method permitting microgeometrical imperfections occurring in the
course of construction and operation of structures to be taken into consideration in structural analysis.
We will show that possibilistic solutions can be found by solving linear programming problems. Since
good program packages are available for solving this problem by computer, the estimates are obtained
quite simply.

1 Introduction

In the course of preparation for construction, manufacture of operation of any
structure, made of steel or being of mixed construction, imperfections occur which can
be included in five groups arbitrarily:

- macrogeometrical imperfections (deviation from the straight of a straight rod, length
of a rod element other than its nominal value, etc.);

- microgeometrical imperfections (random changes in wall thickness, changes in cross-
section, etc.);

- imperfections resulting from deviation of the magnitude, position and direction of
load from the prescribed values;

- errors in boundary conditions;

- material defects.

Distinction shall be made between two cases according to the occurrence and detec-
tion of imperfections.

- In the first case, the imperfections are detected by high-accuracy measurements in the
course of construction of the structure, and then the structure so defined is analyzed.
The structure defined anew by improving the deviations - except material defects -
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can be recalculated, it does not mean a new problem. Such deterministic procedure
can take place in the case of high-value individual structures.

- In the second case, the imperfections cannot be detected accurately because either the
costs are too high or the imperfections results from a material defect. An accurate
definition of any imperfection will be especially difficult if products of series pro-
duction are investigated, where imperfections occur randomly.

Discussed in this work are random imperfections occurring in products produced in
series because both the reliability and the service life of these products depend on these
random phenomena.

Different imperfections in the structure may have different consequences.

The effects of macrogeometrical imperfections occur in statistically indetermined
structures only (no kinematic load results from macrogeometrical imperfections in stati-
cally determined structures). This random kinematic load resulting from imperfections
of this kind has been studied by more authors assuming either the distribution function
of the imperfections or certain statistical informations (moments) [1-3].

For certain problems, e.g. for determination of the stresses of ring-shaped beams un-
der internal or external pressure or any other load, there are well-known analytical
methods available. However, the geometry of the cross-section may change as a result
of some macrogeometrical error and at this instant, also the solution to the problem will
be completely different, the rotational-symmetric solution being no longer valid in the
case in question.

In [4] the changes in the critical load of tubes of elliptic cross-section under external
pressure were investigated. It was shown here that the value of the critical load de-
creases extremely rapidly if the deviation of the small-axis-to-large-axis ratio increases.

Microgeometrical imperfections affect the stresses of the structure in case of both
statically determined and indetermined structures. Obviously, we will obtain stresses
other than the calculated ones if the cross-sectional data differ from the calculated val-
ues. The case of indetermined structures is more complicated because here the micro-
geometrical imperfection may be combined with the kinem atic load.

The effects of random microgeometrical imperfections on rod structures are dis-
cussed in [5—7].

The effects of random microgeometrical imperfections on the stability and super-
critical behaviour (buckling, plastic hinge, etc.) have not been investigated yet. This
question is especially significant in the description of the behaviour of structures in ac-
cidents (overturning, collision of vehicles). Local deviations may considerably affect
the behaviour of structures in accidents.

The effects of random deviations of the position, magnitude and direction of load
acting upon the structure have not been investigated yet at all.

Interestingly, as a result of random load imperfections that is, deviation of the posi-
tion and direction of load from the prescribed value, strength problems may face us in
certain cases instead of bifurcation stability problem. For example the description of the
behaviour of a straight rod under central compression is a stability problem while the
investigation of a rod under eccentric pressure is a strength problem. Hence, a signifi-
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cant random deviation of the position of load from centric position changes the nature
of the problem as well. A similar problem may result from random deviations of the
line of action of load; e.g. if the direction of the axial compressive load of a clamped
rod is other than axial.

Load imperfections may closely bear upon part of the macrogeometrical imperfec-
tions: e.g. if the axis of a straight road differs from the straightness, then the problem
facing us is rather a strength problem then a stability problem.

The solution to the problem is fundamentally affected by the boundary conditions.
“Pure” boundary conditions are usually defined for the mathematical solutions: no an-
gular displacement is permitted by the bracing or no sinking is permitted by the support,
etc. In practice, completely different boundary conditions are usually present in combi-
nation, the bracing being, in fact, a partial bracing (elastic bracing, elastic support or
elastically embedded hinge, etc.) only. In case of the actual structures made on he basis
of a prescribed documentation, variations may occur and the different realized struc-
tures operate under different boundary conditions with a different solution series associ-
ated with each.

As arule, the imperfections listed contribute to the damage of the structures. The re-
alized structures in which the imperfections mentioned above may occur incidentally
become more sensitive with their load capacity and reliability decreasing in general and
the extent of reduction in load capacity and reliability can, and shall, be determined by
means of some mathematical method (e.g. probability theory).

The material characteristics used in the calculations are used to take the material de-
fects into consideration. The tensile strength or the yield point and/or the modulus of
elasticity are practically characteristic of the material possessing some material defect
and thus the real structural characteristics are taken into account in the calculations.
Hence, material defects are not dealt with specifically in this work and they are not in-
cluded among the imperfections investigated in this work although their influence is
considerable.

Affected by the imperfections described is not only the static but also the dynamic
behaviour of the structure, moreover, certain imperfections may result in nonlinearities
in the system.

The properties of the structure also change as a function of time. What we are talk-
ing about is not the stabilization of the state adjusted initially (with the analysis per-
formed for these conditions) but the occurrence of any imperfection (wear, loosening,
local cracks, etc.) in the course of operation.

The literature is reach in exact or approximate solutions to technical problems of
quite a number. Also methods to investigate the effects of different specific imperfec-
tions or dimensional imperfections falling within the scope of this study are known [8].
However, the stochastic implications of this that is, the fact that the different imperfec-
tions occur randomly and each product shows different properties, have been investi-
gated occasionally and not in full.
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2. Methods to treat microgeometrical imperfections

This work is designed to find a method permitting microgeometrical imperfections
occurring in the course of construction and operation of structures to be taken into con-
sideration in structural analysis.

M ethods offering themselves for use in structural analysis are

- probability calculation,
- interval arithmetic,
- fuzzy methods and among these, so-called possibilistic methods.

The conditions and/or the advantages of the use of any of these methods can be
specified.

To use methods based on probability theory, the distribution or density functions or
at least some moments of the probability variables must be known. Data of a large
number about the phenomena associated with these imperfections should be available to
obtain these informations, however, such data are seldom available. Thus what we en-
counter in case of the probability models are rather expert opinions than reliable statisti-
cal characteristics. Another considerable disadvantage of the probability calculation
methods is the extraordinary complexity of the calculations (calculation of multiple in-
tegrals, solution of nonlinear systems even in case of linear problems, etc.). In practical
problems, only finite perturbations in the data are possible and thus so-called limited
density functions must be used for the actual calculations, this is also a problem con-
tributing to the complexity of the calculations. Another problem is that the coefficients
of the stochastic equations to be solved are not independent random variables even in
case the parameters of the different imperfections can be considered to be independent.

The advantage of the interval arithmetic is that it is enough to know expert opinion
only on the extreme bounds of the occurring imperfections. The calculation method is
relatively simple although separation of cases of quite a number is required depending
on the sign of the variables. A disadvantage is, however, that no information can be
obtained about the rate of the error-propagation.

In fuzzy methods (e.g. [9-10]), the expert’s estimate identifies not only the interval
where the imperfections can be move but also the expectable reliability of this interval
(the higher the value of the membership function, the more the given point can be ex-
pected to fall within the perturbance interval). Similarly, changes in the set of possible
solutions can be investigated in accordance with the level of acceptance (value of the
membership function). In this paper we will show that possibilistic solutions can be
found by solving linear programming problems. Since good program packages are
available for solving this problem by computer, the estimates are obtained quite simply.
The problems solved under conditions acceptable on different acceptability levels sup-
ply information on the propagation rate of the imperfections. Moreover, these methods
do no ret require the independence of the variables.
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3. Mathematical background of possihilistic estimates

3.1. The concept offuzzy numbers

Let X be a real variable. If £ is a real realization of a, the indicator function of vari-
able X will be
[1 = £
[0, ifa=

If the realization of X is uncertain, then a fuzzy number m -5 —>[1, 11 can be used
to give the possibility ofany point of the real line
We say thatp :5 0, 1] is afuzzy number offinite support if

1 ) p(x) is continuous on § ,
2) there exists a triad - oo<b<a<c<oo0 such that

- p() =1
~p(xX)=0 Vxe (-co, b)u (c, <)
~ p(x) is strictly increasing on \b, a] and strictly decreasing on |a, c].

Due to the above conditions, the subset C,(m) = {a 6 § :p(X) > r) of the real line

containing the points for which the realization level is at least r forms a Unite interval

for any given 0 < /» < 1. [b, c] is the support of the fuzzy number for which [b, r] =
{a e &8 :p(X)>/1 (here the overlineing indicates the topological closure of the set).
Hereafter we use only fuzzy numbers of finite support, therefore the attribute “of fi-

nite support” will be omitted for the most part.
Intervals C,(p) uniquely determine the side functions

t(r) = inflve § :n6 C,(p)\
u(r) = supjve 5 :xe C,(p))
of the fuzzy number p which have the following properties:
1.t{r) is continuous and strictly increasing on [0, 1];
2.€0)=b,T(l) = a;
3. u(r) continuous and strictly decreasing on |0, 1];

4.1n(0)=c, u(1) = a.
Conversely, any pair of functions i,(r), U(r), having the four properties given above,

uniquely determines a fuzzy number:

Acta Technica 107, 1995-96



374 NANDORI, E.-KOVACS, M.

1 if X=a,

0, if X<b or X>c¢,
supjre [0, D:/'(/)<x}. if Ve [N,c],
sup{/-e[0, N:u(r) >x|, if Xe [/>a].

Let FN denote the set of fuzzy numbers.

Let a special subset of fuzzy numbers be defined in the following way:

Let g(r) be a monoton decreasing continuous function on [0, 1| with the boundary
properties g(0) = go < °°, g(l) = 0. The fuzzy numbers defined by side functions
[(I") =~s8g(r) + a, u(r) - 8g(r) + a will be called g-induced symmetric fuzzy numbers.
(In this case a =a,b=a - 8,c = a + 8. The set of the g-induced symmetrical fuzzy
number will be denoted by FNg.)

W ith a fixed g the g-induced symmetrical fuzzy number is uniquely determined by
(a, S), where a is the center and Ois the spread of the fuzzy number. It is quite easy to
see that for the fuzzy number /n= (@, S) e FNgthe membership function is given by

1 ifx = a.

0, otherwise

1f §=0, then /|(n) = X\a) fv)>where Xa > the characteristic function of the set A (Fig.
la).
M ost frequently, generator function g is choosen as follows:
a) g(r)y=1-r.
In this case go = 1 and

~ In= (a, 0) is the characteristic function of the single point set ja] i.e. it is the
description of the exact of a (see Fig. la).
~ F - (6t, 8) is the description of a triangular fuzzy number with the center a
and support set fa - 8, a + 5] (see Fig. Ib).

05 otherwise
by g(r) = a/l -r (Fig. Ic).
In this case g(0) = 1and
\x-a\
Fix) =\1 92 ifa-8<X<a+8.
0 otherwise
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c)g(/y =@ -ff(Fig. 1d).
Here g(0) = 1 and

U ifa-8<X<a+8.
3 otherwise

d)g(r) = JI—In((I —=)r + A) (Fig. le).

In this case go= V - In4d and

JuCY) !

1-4

This function is obtained from the normal density function

- a|~

282

shifting it by —4 and normalizing the obtained function such that its maximum to be 1.

Therefore this fuzzy number can be considered as an analogy of the normal density

function cut on the significance level A.
A fuzzy set B e FN" on § "will be considered an a fuzzy vector if it is obtained as

a Cartesian product of fuzzy numbers (Fig. le), i.e.

3.2.

Let f

B(x) = B(X\,...n) = min(*(*0,...,B(X..)).

Fuzzifiedfunctions and relations

. fF\F" —F is a possibilistic fuzzy extension of/ for the fuzzy

vectors B e FNI'if the possibilistic function value f {B)(v) = f (B\,...,Bm) is calculated

by the Zadeh’s extension principle [9]:
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Poss(y=f(fi)) =/ (m)(.v)=/{Pu-, 1 T)(y)

I supfi-(n)y if A(y)* O

=\ 0eA(y)
[0, otherwise
sup ifr(y)*0
U«i...ame’\(.v)
[0, otherwise
~sup TTLW an M 0™) if A(y)*0,
\(«i AL)MY) (1)
[0, otherwise
where A(Y) = (a = (a\,...,a,,,) € IV=fIR)}-
1
Particularly, if/ is a linear function, i.e. /(a,x) =V and assume that the pos-
=i

sibilistic values of the parameters a, are given by g-induced symmetrical fuzzy number,
i.e. jU = (cc, dj), then it was proved in [111that the possibilistic function value / (p,
x)(y) at the point x e § belongs also to FNX(Fig. 2), namely:

Fig- 2
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(" n N
@ X)= x ax>
V1=l =1 /
otherwise
Poss y = na x, =1 (&, X)(v) =
vV i=i J
n
if y =y Jcexa
=i}
n \
-1 H

if~ i/;|x71™ 0 and
/=i

Y-*a.x, "go»i> N

i=1
otherwise

Let the possibilistic value of the equality of two fuzzy number be defined by the
following formula

Poss (/n = v) = sup min (B(x),v(x)).
1=V

It is easy to see ((111) that
POSS (jU = V) = POSS (jU-V, *|0)),

where the membership function of 8 = v is computed by (1). Moreover, it is also obvi-
ous that

Poss (B =xm) =R(0).
If8 - (a, 8 e FNgand *|0| = (0, 0), then

if a=0
a"op
Poss (/t - *{0}) 5 if |a] <5 and <570
v«b ;
0, otherwise
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3.3. Error estimationfor linear equation systems using possibilistic methods

Let the linear system
n
Y javxJ~a'o=()- ,=1..(2
') 0 &)

be given, where the error tolerance of the coefficients is modelled by possibilistic meth-
ods, i.e. fuzzy numbers dje FNg, i- 1 ay - («,, d,j) are considered
given instead of ane § . In that case the possibilistic value of the solution of the system
is a fuzzy set on 5 " with the membership function

ofx) = min <j/(x)
where
\
a, (x) = Poss x1m)
W Y
1, if YjadX] ~a'0=0
7=1
I a,jxJ - «0
=il
5>,b N T
721 3
if dif|x;j+2z/,0”~ 0 and
y=il
I - a4,0 M<>)
j1 v 7=1
0, otherwise

is the possibilistic value of the satisfaction of the /-th equation.
If x* is the solution of the exact system (2), then o(x*) = 1forevery/e (I,...,w).
The conditions of the first and second rows in cr,(x) determine a neighbourhood of
the solution of the exact system such that all interior points from this neighbourhood
have positive possibility. For this reason, the solution set of the inequality system
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4. Calculation of rod systems

The fundamental equation of the road system by matrix force method is

B7RBx + B7Ra =0, (6)
where
B - matrix of § it describes the displacements of the statically determin-
ed basic system under unit loads on the points of the virtual intersection;
R - blockdiagonal flexibility matrix of
a - vector of 8 it describes the displacements of the basic system under ex-
ternal loads;
X —vector of 8 " for the statically indetermined internal forces (moments)

acting on the points of virtual intersections;
L = Bx +a - internal forces of the indetermined structure;
m - number of rod (beam sections xk, where

for constant
for linear (bending moments)

K for piecewise second degree
internal force (moment) function
n - degree of redundancies.

The uncertain informations are given in the flexibility matrix R. The structure of this
matrix is

R =diag (r[M|,....,/-[M (),
where

— /o =—O— tor the bending moments under concentrated load, while r =_! B tor
'6 IE 301E

bending moments under distributed load of constant intensity per section, where

~ is the i-th section length;
~ |E is the stiffness for bending;

K
- M, /= are symmetric positive definite matrices and y dim M, = m. For
1=1
example,
~ M, = | (unit matrix) for constant internal forces,
/12 1 ) L
M ,= 1o tor linearly varying internal forces,
4 2-1
M,= 2 16 2 for piecewise second order internal forces.
-1 2 4
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Every M/ can be decomposed in the form M, = CfC,-. For example, if M, =
[VITT nl3"T
2 2
then C, =
3T T3TI

Consequently
R = diag diag<n)C|,...,C[ diag (r*>Ct.)

Let the matrix B and the vector a be partitioned according to the block structure of R:
bt=[b[,...b;]. a =a,,..aA.

W ith this partition we obtain

Cc,B,
B RB= B;CI[,....B[C( diag (diag diag (;-*))
C,BA
and
C,a,
B'Ra=I[B[Cf,..,B[CI] diag (diag (n) .. diag </**)>
CtaA
Introducing the notations
c,B, m Clhal
B , a-= ., R = diag (diag diag (/-t)>
Ho U:H HC S —
the fundamental equation will be obtained in the form
B' Rilx+ b 'Ra =0, (7)

where R is now a diagonal matrix consisting of the values r, of uncertain information
about the flexibility matrix only. Thus upon investigation of the error propagation, no
distinctions need be made between the cases with diagonal and blockdiagonal flexibility
matrix as the propagation is structurally similar. (Hereinafter we use no overlining for
notation by which we understand either the original or the transformed B and a de-
pending on the flexibility matrix.)
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Let
b,7 =[bji...... bjl and a' =[a[.... a[]

be denote the partitioned form of the /-th row vector of matrix B and the vector a , re-
spectively. With this notation the system of equations (6) has the following form:

(k > K
% E (b b71™ &+ X|(bLay 0 i=\..n 8
V-l 5=

where (¢,*) denotes the scalar product of two vectors.
Assume that the wuncertain values /y are given by the fuzzy numbers

7 =(/,,E,/*)€ FNg, i.e. it is assumed that the possible perturbation of the values /7 is

direct proportion to the nominal values. Since the coefficients of (6) are linearly de-
pendent on 77, these coefficients are also fuzzy numbers in FNKgiven by

(t
ol =
VoA
and
/lo ~ X (bLav):v.X|(bL av) 7= 1l...».
\VA

Using the formula (3) one can calculate the possibilistic value of that the i-th equa-
tion is being satisfied.
The conditions according to (4) can be obtained by substitutions

K

U = ~(bJs,bJS)rs, ij= 1
K

«D= X (b™a'b "’ [=1...
51

4/=1T1](bL b,) ce. ij=1
v

K
dm= A I(bL>apg) /= 1,.

Acta Technica 107, 1995-96



384 NANDORI, E.-KOVACS, M.

Essentially, the perturbation interval of the solution can be defined without intro-
ducing new variables if the solution associated with the nominal value of I, or at least
the sign of the coordinates of the solution is known. This latter is often immediately
obtained on the basis of technical considerations with regard to the forces acting on the
points of virtual intersection. In such cases, the coordinates need to be optimized only in
that ortant in which the nominal solution is present. This permits the symbols for abso-
lute value to be removed from (4). Should 0 be obtained for one of the perturbation
limits of any coordinate, it must be examined separately whether there is a solution in
the ortant providing an opposite sign for this coordinate. If so, the system cannot neces-
sary be considered stable.

The final stress of the redundant structure can also be estimated by means of the
above method.

Let Bi denote the z-th row vector of the matrix B. Then the z-th coordinate of
L=Bx+aisT,(x)= (B x)+ a,. The interval of the possible perturbation of the different
force coordinates is given by [min T,(X), max /,(x)], where the minimum and maximum
should be taken subject to the constraints given by (4). Upon stability considerations,
here we investigate the domain without sign reversal only.

Note that the perturbation interval obtained by the above method for the final inter-
nal force vector is in general narrower than it would be obtained if the extreme values
of the forces associated with the points of the virtual intersections were used to deter-
mine the extreme values of the coordinates of L because the feasible domain of the lat-
ter problem is an zz-dimensional interval containing the actual possible range.

5. Examples
Example 1
Let us consider the structure illustrated in Fig. 3.

The parameters of the structure are given by the matrices B, R and the vector a as
follows

o 21 T o
1 2 0

1 2 1 0
2 1 2 8

, R= . » =

2 4 2 0
2 4 16

2 75 0
2 15 8
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Here the nominal value of the uncertain flexibility matrix parameters
rM=1 1/2=1 r13=2, 14—7.5, [5—15.
The system to be solved, depending on parameters of the flexibility matrix, is
(8/-] + HF2+ 24n + 4/*4 + 4/'s)n + (32/*2 + 96/3 + 16/y) = 0,
that is the nominal solution is
jex=-3.013,
and the final internal force vector belonging to the nominal solution is

L7 =|(), -6.026, 0, 1.1974, 6.026, 3.948,26.026, T974|.
1 2 3 4 5

Here the numbers under the braces indicate the section numbers.
Let the fuzzy elements of the flexibility matrix be triangular fuzzy numbers (i.e.
generated by the side function g(l) - 1- 1given by

=(1Ee), 2 =(1£), r3 = (2, 2e), = (7.5, 7.57), I, = (15, 1571),
where T< 1. Then the fuzzy equation to be solved is
(334, 334t)v+ (704, 70471) = 0.

From this we obtain the membership function of the fuzzy set of possible solutions

I—JIM a+464] , if |[L54y+ 464|<(154]|.v]+ 464)t .
cr(.v) = (154|.y]+ 464)t 1 [IA VA B )

0, otherwise
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The perturbation interval obtained by optimization is

1 . .1-e
ey oIl n*.

1-e 1+ e

For the vector of final internal forces we obtain that

Here the numbers after the brackets refer to the corresponding section.

Markedly, the domain of imperfection obtained for the internal forces (bending mo-
ments or torsion) will not be symmetric for the nominal values even in this relatively
simple case.

Example 2

Let the examined structure be given in Fig. 4.
Here
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Tx~ns rs—7n re=ri

Fig. 4

The equation system depending on the uncertain parameter of the flexibility matrix is
2(4 +>2) X 2000r2 0’
12 X2 4000/4 0
For the nominal values of the parameters we have
n=1 /2=1, /3=2.
Then the nominal solution will be

* =-347.826, x\ = -608.697,

furthermore, for the stress vector belonging to the nominal forces we obtain

L* =1[0, -347.826,-347.826, 1391.303,-608.697,0]

number of sections

If the triangular fuzzy numbers
6 =0', 0'), r2=(r2er2), r3=

are used to model the imperfect flexibility matrix elements, the membership function of
the fuzzy solution set will be determined by the minima of the fuzzy sets

|4.v, + ;r2 + 2000)
(vi,*2) =
c(4|.yil+].v2]|+ 2000)
and

v, + 1(ic2 + 4000|
cr2(.v,,.v2) =
efljv,! + 4|j2| + 4000)
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Consequently, the constraints set can be described by the inequality system
AX1+ v2- 4dv,l- fk2l < —2000(1 - €)
-4n-1- n2- A&x\l- £ly2l < 2000(1 + €)
X\ + 6X2—£tvil- 104y2l < -4 O00O(1- €)
—A, - 62- elv,! - 10&v2l < 4000(1- e)

(see Fig. 5 with e = 0.1).
Thus if £= 0.1, then the intervals

Me [-501.340,-198.340], x2e [-844.360, -439.085]

will be obtained for the possibilistic perturbation intervals of the solution vector.
From hence the possibilistic intervals of the final load can be given by the inclusion

sections
[«]
[-501.340, -198.340]
[-501.340, -198.340]
[1156.640,1560.915]
[-844.360, -439.085]
[0,0]

Bx +

-844.360

-501.340

U=-0.1811-880 13=—0.15X1-514.286

Fig. 5
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Example 3

The structure investigated in this example is given in Fig. 6. Data matrices associ-
ated with this structure are

V bending moments

Y normal forces

2 42 21 2V "2
R= diag - r " 60, 120, 60, 120. 60, 60, 60, 60, 60
\V} 2 4y’ 1 02,70 2y J 2y

Let the nominal values of the flexibility matrix elements be
M =1 R=2 /7=1 rd=1rj=1/7=60,ri= 120,
/s =60,n>= 120, no = MIl=i"2=rB =60.

Then the system corresponding to (6) is formulated as follows:
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From this system we obtain the nominal solution
joi = 0.054, a2=3.157, n3=-1.256,
and the corresponding final internal force vector

L7=10,-0.713,-0.6.314, -6.314, 1.776,0,-5.601,0, 8.090, 0,-0.356,-3.157,
0.888, 3.157, 0.581, -0.356, 0.888, -1.256].

Ifthe imperfect flexibility matrix element are modeled by triangular fuzzy number with
the center of their nominal values and spreads equal to 10% of the nominal values, i.e.
N='3="4="5=(1. °1), r2 =(2, 0.2),
6 =w=JI0=nl=r2- =(AO, 6), [7=/9= (120, 12),

then we have to solve the possibilistic system of equation

(128, 12.8).vi + (-5.657, 0.566).v2+ (0, 0)x3+ (-56.568, 5.657) = (0, 0)
(-5.657, 0.566).V| + (304, 30.4).v2+ (-2.828, 0.283).v3 + (-960, 96) = (0, 0)
(0, O)*, + (-2.828, 0.283)x2+ (128, 12.8)x3+ (169.704, 16.97) = (0, 0)

Each equation determines a fuzzy set of the own possible solutions with the member-
ship functions

128x, -5.656x2 -56.56]

12.8|x, I+ 0.566|x, 14 5.656
|—5.657X, + 304x2 - 2.828x3 —960|

0.566|x, 1+ 30.4[x21+ 0.283[x31+ 96
|- 2.828x2 + 128X3+ 169.704|

0.283[x2| + 12.8/x3| + 16.97

(92 "3) —

<y2(x],x2,xi) =1

<73(x]1.X2,X3)=
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From here, taking into consideration the signs of the nominal solution, the inequality

system

128( 1€)X\ - 5.656(1 +€)x2 <56.57(1 + €)
-128( 1+ @M +5.656( 1 - €)Xx2 < 56.57(1- €)
-5.65711 +e)X\+ 304( 1- ¢)x2 +2.828(1 - e)y3 <960( 1+ €)
5.567(1 -e).i|- 304(1- e)x2- 2.828(1 - e)y3 < -960( 1- €)
- 2.828(1+e)x2-128(1+ €)ys< -169.704(1 - €)
2.828( 1+ e)x2+ 128(1 - e)y3 < 169.704( 1+ €)

determine the perturbation range, whereys3 = -v3and £=0.1. Performing the optimiza-
tion for the coordinates of the internal forces and final internal forces, respectively, we

obtain

X, e 10.456,0.749], X2e [2.581,3.867], x3e 1-1.564,-1.0278],

and

[0

[18.94,
112.27.

1-52.27,

161.45,
1».

[-7.01,

[0,
[6.62,
10,

[-0.48,
[-3.87,

[0.73,
[2.58.
[0.45,

[-0.48.

10.73.

[-1.56,

0]
19.36]
14.85]

-54.85]

62.211
((l

- 4.20]
0]
9.90]
0]

- 0.321
-2.58]
1.11]
3.87]
0.75]
-0.321
1.11]
-1.03]

y bending moments

n

\' normal forces
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Example 4

Also the stability problem can be studied on the structure illustrated in Fig. 7.
Here the structural data are, as follows:

1

T ml
1 30

7T
1 1

7T 30

The elements in the diagonal of the flexibility matrix mean at the same time the
nominal values of the flexibility matrix parameters. Thus the nominal solution of the
equation (6) is

_ M
31+30\2 '

*

and the vector of the corresponding final internal forces is

L 30+60¥2 30+60\2 30+60Y2 3R2+e60\V2 VI Vi
3Si+eoVI'3i+eoVI'3i+eoVI' 31+60\2 531 +60M 31 +60VI

Should the flexibility matrix be treated parametrically, the parametric equation to be
solved will be
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1 1 1 1 1
~mM\+TC +“r\+Tra+,5+16
2 2 2 2 g S - S

Let the fuzzy parameters of the flexibility matrix be
(m/, 6v), /= 1,...,5.

Then the fuzzy equation corresponding to (6) will be

_ ( 1V3 f vy 31vi
— +iS .S IH— X+ = (0, 0).
30 30 30 ' 30

The possibilitistic fuzzy solution set of this equation is defined by the membership

function
(31 +60VI)* - L
er(x) = , ., if xeC
= G 1+60V2 x| +3IWj
otherwise
where
1-31e N1+ 3le

is the perturbation interval of the solution. Obvious, if

31

then the point 0 will be contained in the perturbation interval, which means that as a re-
sult of the imperfections, the force may act in the opposite direction and this may upset
the stability of the system. Similarly, a reversal may take place in the last two co-
ordinates of the final stress for which the following interval vector is obtained:
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THE UNDERGROUND WATERPROOFING
OF THE UNIVERSITY SPORT CENTRE OF BUDAPEST

Széli, M.

Technical University of Budapest. Department of Building Construction,
Megyetem rkp. 3, H-1521 Budapest, Hungary

(Received: 23 July 1997)

The article focuses on the waterproofing of the underground structural elements of the University
Sports Centre which was designed to serve the purposes of the EXPO as well. The construction, which
was stopped in 1997, will be completed in time to serve the millennium celebrations.

Due to the high groundwater level of the plot (LAgyméanyos) and the architectural concept that solved
the contradiction between the strict building regulations and the design program by underground build-
ings, the engineers designing the foundations and the waterproofing faced a difficult task. The ground
water level (+101.60 maB) equals the parapet height of the windows on the ground floor. If the water ta-
ble risen above this level the building would have to be flooded, which would result in extraordinary
stresses on the waterproofing. The curving contour of the sports hall and the effects of precipitation on the
roof surfaces covered with soil, at the ramps and slot presented further difficulties. On the slurry walls of
the dressing and training facilities block active waterproofing was constructed.

The design of the waterproofing, due to the difficulty of the task and the high risk factor, was a result
of the work of a group of design specialists. This indicates that in the future, according to the increasing
complexity of design tasks, the architect’s team will have a new member: the building construction design
specialist.

1. The design phases

The University Sport Centre —which was supposed to be used for the purposes of the
EXPO first - is being constructed in the 11th district of Budapest, in Lagymanyos. The
project was developed in the A & D Studio that is led by the two winner architects of the
competition held in 1993, Profs Antal Lazar and Péter Magyar.

The Architect Studio asked for the cooperation of subdesigners Sandor Horvath, Dr
Laszl6 Nagy, Rita Pataky and the author for the elaboration of the design of the water-
proofing.

The article would like to describe the underground waterproofing.

The three main components of the centre are:

—the sports hall,
—the dressing and trainings rooms,
—the swimming pool,
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which are connected directly and by a passage called “the slot” that is sunk into the
ground but open on the top. These buildings all have their own transformer buildings that
supply the electricity.

W e prepared the plans of the waterproofing between May 1994 and September 1996
in several stages, continuously. The construction of the waterproofing began in August
1995.

In the summer of 1997, the task was the temporary sealing of the sports hall and the
dressing and training buildings already constructed, until further development.

2. The factors influencing the waterproofing: the building
and hydrological conditions

The group of buildings contains both hall- and cell-like spaces. The masses - due to
the site conception plan - are all situated mainly underground. Only the coverings of the
swimming pool and the sports hall will rise above the ground level.

Every building is different from the points of view of architectural design, structure
and foundation. The sports hall of elliptical floor plan, which is covered by a reticulated
dome, has a reinforced concrete raft foundation, while the spaces around it and the grand-
stand rest on pile foundations. The elliptic side wings have mat foundations. The engi-
neers designed piles for the swimming pool (which is shaped similarly to the sports hall)
and the adjoining spaces and grandstands, and reinforced concrete raft foundations for the
side wings (Fig. 1).

Fig. I. Connection of air duct to the hall (vertical section)
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Under the western wing of the dressing and training rooms, as a result of the modifi-
cation carried out in the spring of 1995, a ca. 5500 nr three storey underground garage
was constructed with a shifted schedule. In the first phase only one level was executed,
the remaining two will be done by means of mining. This block is supported by slurry
walls that extend into the watertight clay base material. The transformer building has a
raft foundation.

Constructing the ramp and the “slot” was the most important aspect of the static de-
sign, while the waterproofing (against ground and rain water) was the most crucial con-
structional problem to solve.

The blocks with different foundation types are separated by expansion joints, for
making the movement differences possible. According to calculations, the subsidence
difference between the units with pile and raft foundations, and slurry wall and raft foun-
dations does not exceed 20 mm, even in case of saturated soil. However, if the object has
to be flooded and the water reaches the +102.00 maB level, the subsidence difference
may be greater than the indicated value. The predicted movements of the building are in
close relation with the changes of the hydrological conditions.

In the winter of 1993/94, when the architectural design defining the conception of the
building begun, the maximum water level was +101.00 maB, equal to the existing sports
ground level. The geotechnical expert’s opinion prepared in the spring of 1994, however,
predicted a higher possible water level. The maximum water level predicted for 100 years
frequency is 103.00 maB, which, on the other hand, means a design value of +103.50
maB together with the 50 cm safety margin. The client - after considering the lifetime of
the building, the cycles of renewal and the financial aspects of the different solutions -
decided to have the level of protection against ground water on +101.60 maB. This corre-
sponds to the parapet heights of the windows of the training rooms, so in case of a higher
water level the building has to be flooded. The ground water is moderately agressive.

3. General design principles

In the tender documentation we defined the requirements the waterproofings have to
fulfill, and made a suggestion to apply a certain type of waterproofing. Protection against
water pressure had to be used, in the case of the building concerned, up to the level of
+101.60 maB, above which DPC was also sufficient. On the joining roof surfaces cov-

@

ered with soil, on the ramps and in the “slot”, the effect of rain water had also to be con-
sidered.

The waterproofing has to fulfill the following requirements:

- it is waterproof up to the given pressure,

- it resists the chemical impact of the ground water,
- it is root-proof,

- can be executed also during winter,

- quick construction, easy assembly into sheets,
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—minimal need for auxilary equipments, e.g. in case of high walls,

- the buildings that are constructed one after the other are able to join each other in a
waterproof way by penetrating shield or joints,

- the joints that are subject to severe loading may be solved in a safe way,

- the fine details resulting from the geometry of the waterproofing may be executed
easily,

—the material is certified by “EM 1” as usable for the given purpose,

—the suggested material was applied against pressure water on a more than 3000 nr
reference surface in Hungary.

4. Materials of the waterproofing

Considering the requirements listed above we suggested the use of softened, weldable
plastic membrane (PVC) waterproofing, together with the necessary protective and
deviding layers. The purpose is well served by the Hungarian-made HUNGISOL-B
membrane. We prescribed the following material thicknesses:

—in case of pressure water min. 1.5 mm
—in case of water vapour min. 1.0 mm
—at the connecting horizontal sections min. 1.5 mm

“HUNGISOL FLEECE” (min 320 g/m:) was applied as a levelling layer below the
isolation. The ready-made waterproofing is protected by HUNGISOL MV sheets on the
horizontal and vertical surfaces.

Theoretically, other materials would have also been suitable for these conditions and
place. However, we had to take into account other factors besides their individual per-
formance data: the materials of the joined building structures, the possible reactions that
may occurre at the touching surfaces, and the entire system of layers. It is a well-known
fact that at nonchangeable places, e.g. under raft foundations, only such a material is
suitable which has a lifetime as long as the protected structure, or even longer. On the
slurry wall foundations of the underground garages of the block that contains the dressing
and training rooms, due to the requirements different from those of other places, we sug-
gested active waterproofing. On these sections a plastic drain layer was applied
(DORKEN MS). In between the head-beam and the slurry wall foundation, in order to
achieve a load-transmitting connection, we designed a sheet steel waterproofing (Fig. 2).

The standard referring to the dimensioning of thermal technology - MSZ 04-140-
2/1991 —deals with the energetics of a building as a unit, so the exact thicknesses of the
thermal insulations are determined by the subdesigner of energetics. At special details,
besides the general energetical calculations, the individual requirements also have to be
satisfied in order to minimalize the cold-bridge effect.
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MA'. 2. The expansion joint connection of the one storey high and deep basement blocks
of the dressing and training unit

5. Requirements concerning dryness and protection against rainlall

Inside the sports hall and the swimming pool, total dryness is required, which called
for a waterproofing. In the block of the dressing and training rooms there are different
prescriptions for the dryness of the different rooms:

- in case of the gyms and the connected storage rooms, total dryness is reasonable,
while

- in case of the tunnel of the public works, at the ramp and in the garage, relative dry-
ness is sufficient.

Both the ramps and the slot are open structures, subject to the effects of the rainwater
and the rising groundwater, but going around with the waterproofing from above and be-
low is unreasonable. The protection of the structures against floatation is solved accord-
ing to the statical plans, the moisture protection is provided by the watertight concrete.
The problems here were the making of a sufficient space for work and the expansion
joints.

The draining of the rainwater is done by liftover, according to the sanitary-engineer-
ing plans.

In the transformer houses the requirement of total dryness has to be fulfilled because
of the cells' sensitivity to water. The rainwater entering the circular inner courtyard might
cause the corrosion of the raft foundation and the floor duct inside it. Eventually it might
fill the structure, waterproofed tank-like from below, with water, so prevention necessary.
W e suggested that the structural concrete should slope toward the gully in the courtyard.
The collected water is carried away by lifting over into a connecting pit. We applied ce-
ment mortar upgraded with synthetic resin against the rainwater. The covering consits of
compressed concrete blocks laid in sand.
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6. Waterproofing geometry and solutions

The sheet waterproofing of the buildings is often on different levels, even within one
unit. The floor levels connected to the expansion joints are often different or changing.
The waterproofing of the structures against pressure was made on the supporting walls,
the DPC was provided with a protective structure subsequently. Between the vertical wall
surfaces with DPC there are horizontal sections that may be viewed as intensive green
roofs, so they have to be equipped with filtering and drain layers, and their drainage has
to be solved (Fig. 3). Due to the geometry, 15-20 cm thick supporting walls had to be
built up to the +102.89 maB level at some places, so the thicker, 1.5 mm PVC sheets
were applied there.

Joining to the waterproof plastic sheet of the one-storey high block of dresssing and
training rooms, at the section surrounded by the slurry wall foundation, we applied an ac-
tive waterproofing method. There is a shift in the horizontal floor waterproofing of the
+100.08 maB level, after the expansion joint. As a force transmitting connection is re-
quired between the headbeam and the slurry wall foundation, which necessitates the re-
inforcing bars to be lead through, the waterproofing above the slurry wall foundation is
made of sheet steel. The protection of the wall and the floor against moisting is executed
by high capacity surface drainages, which is supplemented on the walls of the rooms on
the training rooms, requiring total dryness, by further wall DPC and a lining wall built in
front of it. In case of the public works” tunnel at the level of the dressing rooms and the
ramps there is no need for complete dryness, therefore at these places the surface drain-
age and the 15 cm thick reinforced concrete lining wall in front of it pro-

Fig. j. Joint of wall and roof waterproofing covered with earth
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Fig. 4. Expansion joint of hall and side wing

vides sufficient protection. The plastic surface drainage runs down on the entire wall
surface except for the beam pockets that serve as supports for the slabs, guiding the occa-
sionally penetrating water below the floor. From the drain layer under the floor, the water
is driven away by a total of 6 wells (2 in every section).

7. Expansion joints

At the expansion joints (dilatation gaps), connections of waterproofings different in
material and in solution had to be provided. The predicted movement of the connected
blocks relative to each other caused further difficulties. At sections with moisture proof-
ing a thicker sheet of the DPC material was used to develop a so-called shielded dilata-
tion (Fig. 4). At the section subjected to water pressure, the solution is a dilatation sup-
port strip (TROCAL-AF) clamped into the reinforced concrete structure, made of high
capacity 5 mm thick PVC, and a pressure reduction profile (Fig. 5).

The dilatation profiles of the sheet waterproofing is driven into the mass concrete. The
watertightness is solved according to the labyrinth principle: the sheets are edged by steel
profiles.
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Fig. .5 Expansion joint subjected to the pressure of groundwater

Fig. 6. Layout of electric cables between the dressing and training unit and the transformer block
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8. Penetration through the waterproofing

The pile foundations and the piers are connected by reinforcement in many places.
The waterproofing there is sheet steel compressing edges. At the connection of PVC
sheets, the compression force determined by calculation was arrived at by the prescribed
tightening of the fixing nuts. The waterproofing is penetrated by sanitary-engineering
ducts at different levels. They are installed with compressing edges and packing boxes at
sections of waterpressure, and by collars and shields made of their own material above
the +101.60 maR level, according to the requirement of moisture proofing.

In between the transformer building and the block of dressing rooms, in the zone of
ground moisture, a stock of cables had to be driven throught the DPC. As the penetration
crosses the expansion joint, two separate sheet metal protective boxes had to be built in.
Their internal sheeting and protective piping make deformations and the subsequent re-
placement of cables possible (Fig. 6).

9. The protection of the waterproofing in case of a staged construction
process or flooding

The waterproofing of the underground building parts, accordig to the original building
concept (sports hall used for EXPO purposes first) was based on the plan that every
building - the sports hall, the training rooms and the swimming pool - would be built in
more or less one, continuous process. After the calling off of the EXPO project it became
obvious that staging may be expected. If a longer pause elapses between the construction
of units, the danger of the flooding of any existing building from the direction of a not yet
built one (in case of a possible rise of the level of the ground water) must not be ne-
glected. This must be prevented by sealing the waterproofing of the already built units,
providing the possibility of adequate subsequent connections to it at the same time.

The waterproofing may be subjected to an extremely high pressure in case it has to be
flooded, which becomes necessary if the water level is high. This must be avoided by all
means, as long as possible. The protection of the building from the ground water, above
the level of the door openings (+101.00 mafR) up to the level of floatation, must be pro-
vided by temporary solutions (sandbags, etc.). After flooding, the dewatering of the
building units must be carried out in such a way that the subsidence difference of the
separate units should be as little as possible.

10. Summary
Besides the three volumes of the tender documentation, the four volumes of working
drawings, including 70 pages of text, 75 M =1:25 sections and about 110 M =1:5 details,

presented the following information about the underground waterproofing of the Univer-
sity Sports Centre:
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- system of requirements,
- isolation geometry,

- layers,

- junction details and

- material quantities.

The dimensions and complexity of the buildings, the unfavourable soil and ground
water conditions and the accelerated design process ment a great challenge for every de-
signer involved in the project, including us.

The creators of the waterproofing all teach building construction, and their design
practice is of the same type, as well. Their everyday practice justifies the recognition that,
as the design tasks become more and more complex, the team of designers must include a
new member: the subdesigner of building construction. The architect is busy with the
problems of form and function, the structural engineer is responsible for the loadbearing
and stability, while the sanitary engineer is responsible for the services of the building.
The new member of the team may contribute successfully in two ways:

- designing the individual constructions and substructures of the building as in the
case presented in this article,

- achieving the suitable unity of solutions, materials and technologies of building con-
struction, with adjusting the performances to the requirements. In this case the building
construction specialist cooperates with the architect from the concept phase until the de-
tail drawings continuously, helping the birth of suitable, healthy or even intelligent
buildings with his/her special knowledge.
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HOOK REVIEW

Amalia Ivanyi: Hysteresis models in electromagnetic computation
Akadémiai Kiad6, Budapest, 1997, ISBN 963 7416 0
In English, 229 pages, 17 x 25 cm, Hardbound

Hysteresis in ferromagnetic materials is a very interesting from both practical and
theoretical point of view. Its practical importance in electrical engineering (especially in
power engineering is well known in electrical machines, iron cores, shielding layers,
etc. From a theoretical point of view hysteresis is a nonlinear process with memory
which, as a consequence, cannot be characterised with a function but more sophisticated
approaches are required. In most cases hysteresis is accompanied by anisotropy of the
material, too.

The physical backgrounds of hysteresis are dealt in the literature from a physicist
point of view. The computational methods to be used in electrical engineering calcula-
tions appear scatered in various books and papers. This book aims to give a survey of
the different models giving a very short introduction on the physical backgrounds and a
very detailed treatise of the applied calculation method. We get not only a description of
the known models and their applications but a critical description of their advantages
and possible shortages, too. These are based not only on the different publications but
on the author’s board experiences at the calculation of electromagnetic problems in-
volving ferromagnetic materials.

The book is divided in two parts, about 180 pages net. It is accomplished with a very
detailed list of references, authors and subject index.

The first part gives the critical description of the different models of hysteresis, in
particular the “analytical”, the “dynamic”, the Langevin type, the Preisach type (a very
detail description), the Stoner-Wohlfahrt type and the Chua type model. As already
mentioned we get not only the descriptions of the different models but their properties
with emphasis on their applications at numerical electromagnetic field calculation.

The second part covers the author’s own scientific researches. They provide the ap-
plications of the most important hysteresis models dealt previously. The discussed top-
ics are energy in oriented lamination, a magnetic shielding, anisotropic material in rota-
tional field. We get here an introduction in different methods for the calculation of spe-
cial electromagnetic problems (field quantities, scalar potential and vector potential ap-
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proach). In this part we find also some comparison of the results calculated by the
author and the results calculated or measured by other experts. More such comparison
would be useful because it is not easy to estimate the errors caused by the necessary
simplifications and neglections applied during the various calculations.

Summarising: the book is an excellent reference of its topic. It can be recommended
for electrical and software engineers interested in electromagnetic field calculations in-
volving ferromagnetic materials with hysteresis and anisotropy.

G. Fodor
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