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STABILITY OF PLANAR REINFORCED CONCRETE COLUMN SYSTEMS
BOGMAR L.*
(Received: 30 September 1986)

A process is presented in this work, permitting the stability of a system of
planar reinforced concrete columns to be investigated simply and accurately without
the use of a computer. Instead of assuming a single-parameter load usually used in
stability studies, the process considers the magnitude of vertical loads to be
constant and determines the value of horizontal deflecting force, taking into con-
sideration the effect of displacement on internal forces of the indeterminate beam,
restraint due to ultimate cross sectional curvature as well as the creep of concrete.

1. Introduction

A supporting structure consisting of restrained columns and two-sup-
port beams interconnecting them (Fig. 1), essentially a special framework,
is often used in the construction of industrial buildings. Different
methods are known to calculate for supporting structure of this type /4/,
/51, Iel, [I7/, /8, [9/, /10/, having, however, a common feature in that
they use neglects which make impossible to determine the behaviour of the
structure accurately or they are rather sophisticated methods requiring
the use of a high-capacity computer. Even accurate methods are applicable
to structures of elastic-plastic material only /2/, /5/, /8/, /9/, the in-
vestigation of reinforced concrete systems being a field still unexplored.

Rigidity of cross
section B-A

IﬂSogne’ir, L&szl6, H-2400 Dunauljvaros, Zalka M u. 1, Hungary

Akadémiai Kiadd, Budapest
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Fig. 2. Frame under compression and bending

A method has been presented in /19/ to investigate planar column
systems under pressure and bending, mede of elastic-plastic material (Fig.
2). Based on this method, a process applicable to reinforced concrete
columns has been developed. The process is capable of describing the actual
behaviour of the structure and it can be directly used by design engineers.
The process is described below.

2. The problem posed

Methods suited for calculation of column systems are briefly sumed
up in /19/. Outlined in the present work are the most significant deficien-
cies of these methods, elimination of these deficiencies being the most
important objective of this study.

In the methods used so far,

a) the forces acting upon indeterminate supporting structures have been de-
termined on the basis of the theory of elasticity of the first order ano
in stability studies, the internal forces have been assumed to increase
proportionately with an increasing load intensity,

b) a gradual reduction in rigidity of the support is usually left out of
consideration,

c) the effect of normal forces on the moment load capacity of the cross
sections can not be taken into consideration or if indeed at all, only
by means of some iteration process /2/,

d) no limits are set to angular displacement of the different cross sec-
tions of the supporting structure, the angular displacement beiny
assumed to be infinite in general,

e) the effect of slow deformation is not taken into consideration.

This work deals with column systems where the load and/or rigidity
conditions are such as to exclude three-dimensional twist buckling so that
the columns will act as a planar supporting structure.
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A theory of the second order has been taken as a basis for investi-
gation. An elastic-plastic material model is used to describe the stress-
strain (6 -£ ) diagram of concrete and reinforcement. The supporting struc-
ture includes columns of rectangular cross section with a symmetric rein-
forcement.

3. Description of the principle of the calculation method

The first step is to produce the moment-curvature (M - -*) function
of the reinforced concrete cross section (see later in Chapter 4), a rather
complicated job requiring usually the use of a computer but for a sym
metrically reinforced rectangular cross section, it can be found in the
literature. To simplify the job, analytical functions are used to approxi-
mate numerical functions. The rigidity of the cross section is determined
on the basis of this analytical relationship, the value of rigidity depend-
ing on the cross sectional and material characteristics as well as on the
value of instantaneous load acting upon the cross section.

This rigidity function is used then to write the compatibility and
equilibrium equations of the structure.

As has been outlined in detail in /19/, significant difficulties are
encountered in assumption of a single-parameter load in stability calcula-
tions. Therefore, the vertical loads are assumed to be constant in this
method and what we determine is the critical horizontal load associated
with the vertical load of given magnitude.

To be on the safe side, the rigidity of the columns has been assumed
to be the sane as the rigidity of the restraint cross section along full
length of the column. As a final result of the investigation, the function
between displacement U> of the top point of given column system and hori-
zontal force T is obtained (Fig. 3), the maximum value of this function,
Tmax’ being the critical horizontal load of the column system. It is
checked whether Tnpgx and displacement ui associated with it can actually
take place in case of a structure including reinforced concrete columns.
Namely, the curvature of any column cross section ney reach the value of
ultimate curvature before Tmax takes place loses its load bearing capacity
because of lost strength of a cross section. Without a curtailment of
generality, the procedure of plotting of curve T -uJ is illustrated for the
case of a two-column system, the results obtained being applicable to
multicolumn systems accordingly.
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1 >ua

Fig. 3. Determination of critical horizontal load (Trmx) on the basis of T -00 function

4. Moment-curvature function of a symmetrically reinforced rectangular

cross section

The procedure of calculation of the moment-curvature function for
elastic-plastic cross sections has been described in detail in /19/. In
case of a reinforced concrete cross section, a difference lies only in the
internal forces of the reinforced concrete cross section when identifying
the equilibrium state associated with the different extreme fibre compres-
sions.

The shape of the function depends on the stress-strain diagram of
concrete or reinforcement. There is a difference between functions given
as a <t diagram for concrete and steel by the different authors or
standards of the different countries.

|=constant

-A-(ultimate
Vn curvature)

Fig. 4, Moment (M) - curvature (i) function of a symmetrically reinforced rectangular cross
section with constant normal force acting upon it
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For low values of curvature where the stress-strain relations are
usually described on the basis of a linearly elastic relationship for both
concrete and steel, the moment-curvature function of a symmetrically rein-
forced rectangular cross section under constant normal load increases rela-
tively steeply (Fig. 4). Cracks take place in the cross section as the
value of curvature increases and the neutral axis gets inside the cross
section with the rigidity of the cross section reducing as a result. The
moment-curvature function keeps flattening as the rigidity reduces. Depend-
ing on the magnitude of normal force as well as on the conditions of con-
crete and/or steel, this process will either discontinue due to destruction
of the cross section resulting from breaking compression in the extreme
fibre of the concrete or the reinforcement will yield before destruction
with the curve, still more flattened, continuing until breaking compression
takes place.

The flatness of function M- " depends first of all on the concrete
curve and within this, on the ratio of elastic and plastic sections. Authors
of the international literature assume a relatively high value, usually
£ = 3.5%, for ultimate compression of concrete and thus the moment-
curvature function runs nearly horizontally over a relatively wide range of
curvature after the first steep section until the value of ultimate curva-

ture depending on ultimate compression of the concrete 4.y is reached.
JU
Examples of analysis of moment-curvature relations of reinforced

concrete cross sections under constant normal load are given by authors of
the international literature /20/, /21/, /22/. They use an elastic-plastic
material model to describe the stress-strains relations for concrete. Sone
authors replace the elastic section with a linear curve or curve of the
second order (Fig. 5). The tf- £ diagram of steel is a linearly elastic-
plastic model (Fig. 6).

% &
Parabola of the
/ r second degree

/ 7 1 OCU
/ Ec =Ig°c f Ec=fg<*
AR > PR 11 mi
£c.e £c,u c.e £c,u

Fig. 5. Stress (<& - strain (£) diagrams of concrete according to different authors
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Fin. 6. Stress (M) - strain (j) diagram of reinforcement

Fom among Hungarian authors, Szalai /23/ investigated the moment-
curvature relations for reinforced concrete cross sections. However, the
results of these investigations can not be used in the present case direct-
ly because here the investigation is based rather on constancy of the
initial eccentricity of forces acting upon the different reinforced concrete
bars investigated than on constancy of normal force, acting upon the cross
section, during increase of the curvature. In investigation of column sys-
tems, the eccentricity of forces acting upon the different columns (as an
initial eccentricity) changes in the course of the loading process in-
dependently of whether single-parameter load or multiparameter load is
assumed (depending on the rigidity or load conditions of the different
columns). Moreover, as has been pointed out in /19/, different moment-
curvature functions should be used as the intensity of load is increased
unless vertical compressive forces for other than constant values were as-
sumed. Szalai's investigations apply to a reinforced concrete cross section
reinforced on one side and to linearly elastic-plastic concrete material
model. For ultimate compression of concrete, a relatively low value, only
£c u = 25% has been assumed by the author in agreement with the Hungarian
standard for reinforced concrete.

Almasi /24/ investigated the stability of prestressed concrete
columns. The equilibrium equations of internal cross sectional forces in
the moment-curvature relationship include also the effect of the pre-
stressing wire, which is estimated to be insignificant but a more accurate
investigation would be required to verify this insignificance. The moment-
curvature functions have been written for constant normal force as a
tensile force. A value of £c,u =2% has been assumed by the author for
ultimate compression of the concrete based on earlier experiments and thus
the moment-curvature function is restricted to a narrow range of curvature.
Otherwise what has been said earlier applies to the shape of the function.
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According to problem posed, the numerically determined function of
moment-curvature described above is approximated analytically to facilitate
computation. The following functions result in a relatively good approxima-
tion (see dash-line in Fig. 4):

for a cross section under poor bending,

1 M 1

Rl L NP

in case of eccentric pressure,
where Ec  initial modulus of elasticity of concrete

I0 inertial moment of uncracked concrete cross section

NM normal force and/or bending moment acting upon the cross section

M1 ultimate moment of cross section under pure bending

Nu e magnitude of ultimate force associated with eccentricity e
(by ultimate force or ultimate noment we understand the force or moment
resulting in destruction).

The accuracy of approximation depends on the geometry and load. The
accuracy will be tested later in another work.

Ultimate noment in case of a rectangular cross section with symmetric
reinforcement under pure bending (Fig. 7).

Fig. 7. Synmetrically reinforced rectangular concrete cross
section

M =5 N @
where
NS=2P_'[|.b.h.OS,u 4)
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Fig. 8. Load capacity line of a reinforced
concrete cross section

Fin. 9, Determination of ultimate “jprce N Fig. 10, Low-high eccentricity pressure
associated with eccentricity e =—on the* transition
basis of the simplified load capacity line

F
p being the extent of reinforcement (u = gs p , where Fs is the area

of reinforcement while F* the area of the (Concrete cross section),

b width of cross section,
h height of cross section, and
G u is the ultimate stress of steel.

For a reinforced concrete cross section, N in equation (2) that
is the ultimate force associated with given eccentricity can be determined
on the basis of the load bearing capacity line as in case of a reinforced
concrete cross section, the boundary condition of the load bearing capacity
for the cross section is determined by the load bearing capacity line
(Fig. 8).

The value of N is calculated as a co-ordinate of intersection of
straight e =M and thé" foad bearing capacity line. The usual simplification
is used here according to which a function set up of two straights is used
to approximate the load bearing capacity line (Fig. 9). Determination of
the ultimate force associated with given eccentricity is a still more dif-
ficult job than in case of a homogeneous cross section in spite of this
approximation because in this case the investigation shall be divided in
two as a function of the values of eccentricity. A different relationship
is obtained for determination of N in either case depending on whether
straight e =~ intersects straight 1-2 or straight 2-3 (Fig. 9). In other
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Fig. 11, Position of neutral axis at low-high eccentri-
city transition

words, a different relationship serves to calculate Nu e in the range of
pressure of minor eccentricity and again a different relationship in the
range of pressure of major eccentricity as two functions have been used
instead of one function (like e.g. in case of steel cross sections) to
obtain the load bearing capacity line expressing the boundary condition of
load bearing capacity of the cross section. First thing to do is to deter-
mine eccentricity (straight e® in Fig. 10) associated with the state in-
dicating the transition between minor and major eccentricity (2 in Fig.10).
This is necessary because for finding the value of Nu g of the ultimate
force for given eccentricity e, one has to know if eccentricity e lies
below or above eccentricity e as the relationship to be used to determine
the ultimate force depends on this relation.

For a rectangular cross section with symmetric reinforcement, values
M2 and N2 associated with eccentricity e2 (Fig. 10) can be written, as fol-
lows (Fig. 11):

where —NC =b . h. cyC,M (C§,|/| being the ultimate stress of concrete),

(6)

Now the value of e2:
Ns . h l\% .
2 . N\ 8

h
+8 . N Q)

With the relationship of N2 according to (5) as well as the values
of Ng and Nt substituted into equation (6) and with the equation reduced,
the following relationship is obtained:



Fin. 12, Determination of ultimate force N associated with eccentricity e = —in the range
of pressure of minér and major eccentricity

Having the value of e”, now we can return to the original problem
that is to calculation of ultimate force Nu e associated with given eccen-
tricity e.

If e < e® then co-ordinate Nu e of the intersection of straight e
and straight 1-2 shall be found according to Fig. 12/a. If e>e 2, then the
co-ordinate of the intersection of straight e and straight 2-3 will be re-
quired according to Fig. 12/b. These intersections can be simply determined
by means of analytical geometry. Therefore, only the results are presented
here with the derivations neglected.

Value Nu of ultimate force associated with eccentricity e:

—for e< e2

Nie ©)

1+t<§-,1

where A is a factor depending on strength of reinforcementjj 4 M /12/,
its value described by expression e

Az ——ou (10
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—for e> e2

I\{J,e (11)

Summing up: The moment-curvature curve of a symmetrically reinforced
rectangular reinforced concrete cross section has been approximated by
means of analytical function (1) or (2).

The value of ultimate force N e associated with eccentricity e can
be calculated on the basis of the load bearing capacity line of the cross
section, the way of calculation being given by relationship (9) or (11)
depending on whether the pressure is of minor or major eccentricity. To
decide this, the transition between minor and major eccentricity has been
determined (7).

On the basis of equation (1) or (2), the moment-curvature ratio of a
reinforced concrete cross section can be written by means of a substitution
rigidity, a quantity given in the form of a function comprising the effect
of changes during load on rigidity.

Value of substitution rigidity in the course of load:

— For a cross section under bending only:

B:ECI :EC (12

For a cross section under eccentric compression:
NU A-) | 6 >
+ A
B=EIl =E, | <1 (13)

Ns + N

C

in case of an eccentricity within the range of minor eccentricity while
-, 61

N (4-]-1)

3 (I) 1- N (14)

in case of an eccentricity within the range of major eccentricity.
Explanation for the symbols used in the expressions has been given
earlier.
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5. Principle of determination of the critical load of a column system

As has been outlined above, what we shall do is essentially to plot
the function between displacement of the top point of the column system and
the horizontal load (Fig. 3), the critical horizontal load of the column
system being given by value Tnex of this function. The method used to de-
termine the critical load has been described in detail in /19/. According
to this method, equations are written for the displacement of the top point
of the different columns. In these equations, the internal contact forces
and/or the rigidity of the different columns are given in the form of func-
tions. Assuming that the different columns are equally displaced, the
internal contact forces and/or the horizontal displacement force can be
calculated for given displacement. Assuming a different displacement for
each column and with force T determined for each displacement, function
T -co can be plotted.

To facilitate computation, a displacement-horizontal displacement
force function has been plotted for each column and these functional values
have been summed up to plot function T - W . This method has been preferred
to direct solution of the equations.

Coumns directly affected by normal force and unloaded columns have
been dealt with in isolation. For unloaded columns, the displacement force
relation can be written directly while for columns effected by normal
force, the function between eccentricity e of forces acting upon the column
and displacement co has been determined first to write then the displace-
ment-displacement force function on the basis of eccentricities associated
with the different values of displacement.

The equations and function have been written usually in a dimension-
less form. For this purpose, the following dimensionless quantities have
been introduced, using the symbols of Figs 12 and 14:

(13)
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= A HL
hi NI
o Niit -
| ~ ni ND
Elo.i Elo,l X

LR VPR A

From among symbols not defined earlier,
H — internal contact force
l\{_,,1 — ultimate force of i-th column for concentric pressure (in the
present case, ultimate force of concrete cross section without
reinforcement)

— resultant of horizontal forces acting upon column 1 (or, depend-

ing on the static framework, =Hor = T-H)
E — Ec in the present case.

Numbering of the columns in the static framework (Fig. 13) is not
arbitrary. A column upon which normal forces are not directly acting is
denoted by 1. Should normal forces act upon both columns, then the number-
ing is arbitrary. This stipulation has been necessary to write the equa-
tions.

Fig. 13, Static framework of the column system

After introduction of the dimensionless quantities, the critical
horizontal load of the column system is supplied by the extreme value of
function ot - »

Function wn. -~ takes the following shape:

16
vt oy (16)
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where
(17)
and
1,0 v (18)
For an unloaded column 1,
01= ?2 P* _ £} (19)

HI 4N2

Fig. 14, Main girder of column system

,N,# 0

b..

Fig. 15. Column system under different loads

where the value of p9 is determined by means of equation (17) but it means
dimensionless quantities ——(see Fig. 15/a) or — (see Fig. 15/b), de-
pending on the load.

The value of can be determined by means of equation
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(20)

where the value of Bis supplied by relationship (12).

After these equations have been written, the job can be essentially
formulated, as follows:

In case of columns upon which normal forces are directly acting, it
is the displacement (w) — eccentricity (e) function or, in a dimensionless

form, function ~ N while in case of unloaded columns, the displace-
ment (w ) - displacement force (H") function or, in a dimensionless form,
function that shall be produced. This is described in Chapter 6.

After these functions have been produced, the critical load of the column
system is supplied in general by the extreme value of functions a - C that
can be plotted on the basis of equation (16) or (19). An additional test is
required after function ac- £ has been plotted in case of a system of
reinforced concrete columns. Namely, in case of reinforced concrete cross
section, the curvature of some restraining cross section ney reach the
value of ultimate curvature before function <*-¢ -reaches a maximum and
the load capacity of the column system is fully exhausted as a result of
destruction of this cross section (Fig. 16). Thus, in investigation of re-
inforced concrete columns, it is not enough to plot merely function T -
or ot-t but it shall also be tested whether the obtained value of T__
can actually take place under given conditions without destruction of the
cross sections due to lost strength. Practicably, this is mede by determin-
ing first the value of displacement co( ) where the curvature of the cross
section reaches the value of ultimate curvature (see value { in Fig.
16). It is then enough to test function °t-~ below this value of | cr.
Should function °L- have no extreme value in range (0; “cr)> Then
the critical horizontal load of the column system will be supplied by ®cr
associated with the displacement as compared with “cr.

ac

Fig. 16. Destruction of colunn system due to
destruction of the restrained cross section
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The necessity of this additional test comes from the fact that while
the domain of definition of the analytical function used to approximate the
moment-curvature relation lies between zero and infinite, actually the
domain of definition can be imagined as lying between zero and 1 -(where
—ti— means ultimate curvature, Fig. 4). Of course, the value oftiltimate
curvature depends also on the magnitude of normal force acting upon the
cross section. Theoretically, breaking compression taking place in the
extreme fibre of the reinforced concrete cross section should not neces-
sarily be considered to be at the sane time a lim it of the load capacity of
the entire structure. A local meximum of function T -to will not necessarily
take place as a result of breaking compression in sore parts of the cross
section of one of the columns with these parts contributing no longer to
the force system. Assume that the moment-curvature line of a symmetrically
reinforced rectangular cross section is continued after ultimate compres-
sion has taken place in the extreme fibres, using a descending function. In
compliance with the specifications of the standard, breaking compression is
considered to be the limit of destruction due to lost strength because,
were a destruction of the different extreme fibres due to lost strength
permissible, also a new definition of safety specified in the standard
would be necessary. Namely, a case where some of the extreme fibres are de-
stroyed while the structure as a whole is still stable might also occur.

6. Determination of the critical load of reinforced concrete column

systems

As has been outlined above, essentially two cases are considered in
the problem that is the case of columns upon which normal forces are di-
rectly acting and the case of unloaded columns for which a displacement-
eccentricity function and a displacement-displacement force function shall
be written, respectively.

6.1 Reinforced concrete columns under normal force

Assuming a deflection that can be described by asine-wave function,
the displacement (co) — eccentricity (e) function for columns under normal
force is described by equation
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w (21)

/19/. Rigidities written in the form of functions for reinforced concrete
cross sections in Chapter 4 shall be written in place of rigidities EI* in
the equation, the value of rigidity being described by a different equation
in the range of pressures of minor eccentricity and by again a different
equation in the range of pressures of major eccentricity (see Chapter 4):

a) Value of rigidity EL in the range of pressure of minor eccentri-
city (e < e2):

(13)

With the value of A1, Ns i and NC i substituted into equation (13)

p.
and with a quantity 0. :—i—"é*SII{IJ for reinforcement strength intro-
'@, U
duced, equation (13) takes the following shape:
f 1+ 40. e 6"
N 1 025 +20i h
El, =E, - lgp L- (22)
1 0,1
I\{J,l(l + 20.1)
With rigidity reducing factor
1+40. €
N 1+ 0.25+20i * hi 23)
Zi =1 -
NU,l(l + 2©1)
introduced rigidity EI* is described by simplified relationship
El, =B lgg - 4 (24)

Now, with the functions obtained written in a dimensionless form,
function » will be on the basis of equation (21)
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- (25)
3 e «ioe «i ezi 1-
nl 1
where, in a dimensionless form,
/ 1+ 40i ~16
£i ~ +025 + 20.
Z1 =1- ) (26)
1+20.
b) Value of rigidity in the range of pressure of major eccentrici-
ty (e > e2): / r / o b
4 4,
Eli =B fo.i - . (14)
S, 1

4
In a dimensionless form, the value of rigidity reducing factor with-
in the highly eccentric pressure range can by described by means of func-

tion
6

Li @A -1
zi -1 - (27)
4 0.

Value of eccentricity e2 expressing the transition between minor and
major eccentricity:
2ju. S 1
- % -SM™W~- -+ ].h (8)
c,u

62,i =

or, in a dimensionless form,
Aul h (28)

Thus, relation £~ - O~ for reinforced concrete columns under
normal force has been determined. As seen, the shape of the function varies
depending on parameters and 6
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6.2 Reinforced concrete columns with no normal force acting upon them

Displacement-displacement force function for

columns upon which
normal forces are not directly acting:

3EI
\V/ . w, (29)
Here rigidity E 1 is determined by expression
2 .M
El, =B ly; 1- (12)
Ns,l < hl

according to Chapter 4. Bending moment to be taken into consideration (M%)

(29)

Thus expression (20) takes the following shape:

3E, I
HL = (30)

Since the value of H*is implicitly given in equation (30), displace-
ment w shall reasonably be expressed from the equation. With the~equation
reduced, the following equation is obtained for a dimensionless * C*:

f = |
>1 F ~ X

T i

(31)
397

Relation 9. - Jl,

has been determined for columns under normal
N N D

force in par 6.2. Then, for unloaded columns, relation g
determined in par 6.2.

* “

4% has been
In the knowledge of these relationships,

function
can be plotted by means of equations written in Chapter 5.

21
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7. Ultimate strain of symnetrically reinforced concrete columns of

rectangular cross section

Next thing to do is to write for a reinforced concrete cross section
under normal force of given magnitude ultimate curvature -resulting in
ultimate compression £c in the concrete. Should the curvature reach this
value in the restrained cross section of one of the columns during loading
of a column system, this will mean at the same time that the load capacity
of the entire column system is exhausted. Under given geometrical, strength
and load conditions, a definite value of displacement of the column system
is associated with this ultimate value. Since the stability of the column
system is investigated on the basis of the displacement-force function, it
is reasonable to reduce also the stipulation concerning ultimate angular
displacement of the cross section to limits set to strain. In doing so,
first the value of ultimate curvature shall be determined for a reinforced
concrete cross section under normal force. In the knowledge of ultimate
curvature and with the strain line of the column assumed to be sinusoid,
displacement wcr shall be determined for the upper end point of the column
where ultimate curvature is just taking place in the restrained cross
section.

In investigation of the column system as a whole, value wcr or £cr
is one of the possible limits set to the maximum horizontal load when func-
tion T- wor ot- is plotted, respectively (see Chapter 5).

The internal force system of the reinforced concrete cross section
and the strains have been plotted in Fig. 17 for writing of the ultimate
curvature-. The 0o'- £ diagrams for steel and for concrete are given in Fig.
18. According to the notation used in Fig. 17,

denotes utilization of the angular displacement of the cross section,
where ic meximum elastic compression of the concrete (Fig. 18) and
£c instantaneous compression of concrete in the extreme fibre of
the cross section.
Distinctions can be nede between two basic cases in respect of
stress and strain state, such as
a) when the neutral axis lies outside the cross section (Fig. 17/a) that is
X=" _.h>h and
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4 x=gh x=*h |
13-4-h

a., b..

Fig. 17. Internal force system of reinforced concrete cross section

Fig. IB. Stress (.6) - strain (6) diagram for concrete and steel

b) when the neutral axis lies inside the cross section (Fig. 17/b) that is

x = £ . h<h
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In both basic cases, what we need from among the equations ex-

pressing the equilibrium of external-internal forces are projective equa-

(Ilhe magnitude of bending moment acting upon the cross section when

the ultimate curvature occurs in case of given normal force is indifferent

in respect of the investigation.)

In case a), the projective equation

(32)

where N - external force acting upon the column as a compressive force

acting upon the cross section

resultant of compressive forces arising in the concrete

Ns - force arising in the reinforcement on that side of the cross
section where compression is higher

H - force arising in the reinforcement on that side of the cross
section where compression is lower.

In case b), the projective equation

2

N=N+Ns - K5 , (33)

where the notation complies with that used in equation (32).

With the projective equations written in detail using the notation

of Fig. 17, the following relationships are obtained:

For case a):

N=b.h. Oy G-IM +05(@-4+M )(1+ AT

) 4/\ . £-1 f£c,e (34)
Uc,u a u ' T X 5
for case b):
N=b .h X- 05 . (b. $ - bce E |
cu ( deuv s
+p Ec.e (35)

With the equations written in a general form, the following relation-

ship is obtained:
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N
?2— = ' - -
b .h. ’cu 6\7,Tbr a@a-5 2+b-5 +c¢) , (36)

After arrangement of equation (36), the following bigrade equation is
obtained for | :

(38)

When this bigrade equation is solved, the stipulation that no higher

stresses than ultimate stress dS g can arise in the reinforcement shall, of
course, be taken into consideration.
Hence:
GS,I = I‘c.e ) Es ?-1 s,u (39)
and
rfs,2 @i S S,u (40)

Should condition 6b)1 dbjU; £>bj% = ds,u exist, equations (37/a)
whill change, as follows:
for %> 1 for C<1

(37/b)
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if 63,1 = 63,2 = ds,u’ then equation (37/a) will change, as fol
lows:
for ~>1 for 1<1
a=6 - 3(b2-3 a=63 -302
b=3+2u aJ b=0 (37/c)
oc,u
c=0 c=0

Using equation (38), the ultimate curvature of areinforced concrete
cross section under normal force of given magnitude can be determined by
writing in place of (b, utilization of angular displacement, a value > =
= ——1 that is the extreme value of jb. The value of B can then be de-
termirfealfrom equation (38).

Having the value of the value of ultimate curvature can be
calculated on the basis of equation

1 ~c,e

2 . BU ws- n (41)

In the knowledge of the value of ultimate curvature, it is possible
to determine displacement w of the top point of the restrained column
where ultimate curvature S takes place in the restrained cross section.
Using the notation of Fig. O and assuming function

sin (42)
for the strain line of the column, the usual approximation, ~y'2 + 1 =i (
results in a function

1 .
w . sin X (43)

(2£)2 2 A
for the curvature.

Value of curvature at x =l :
W Tt2 (44)

4 4 A2
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y= 0 jSII’Vf-IHI-X

Figm 19- Line of deformation of restrained column

With the value of ultimate curvature according to (41) substituted
into (44), the critical displacement is given by the following equation:

1 4 12 _ Ecee 4 .12 (45)
cr m2' Au-GC- h* 42
In a dimensionless form:
0.405 . |f
c.e
. (46)
Au ?

8. Effect of creep of concrete on the critical load of a reinforced

concrete column system

In investigation of the effect of creep of concrete, vertical loads
and horizontal loads are assumed to be applied to the column system at
times independent of each other in compliance with earlier calculation. The
system experiences first vertical loads (dead load, useful load etc.)
acting as a permanent load. Horizontal loads are considered to be an in-
stantaneous load (wind load) and accordingly, the effect of creep on
horizontal loads is neglected.

As a result of vertical loads, the concrete in the reinforced
concrete columns experiences creep. This creep can be attributed to the
viscoelastic behaviour of the concrete. The stability of the column system
is affected in two ways by creep of the concrete.

— The internal forces are rearranged in the reinforced concrete
cross section because the concrete evades the load. The stress reduces in
the concrete while it increases in the reinforcement. The rearrangement of
stresses affects also the strain of the concrete as stresses arising in the
concrete, affecting the extent of creep, reduce gradually in the course of
creep.
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— The range of curvature where no breaking compression is taking
place in the concrete reduces because, as compared with the instant at
which vertical loads are applied to the column, the original compression of
the extreme fibre in the concrete increases because of creep (Fig. 20).

Ultimate angular displacement of cross
section when instantaneous load is

applied to it
Unloaded cross

section r™"E ¢ m QorTPression afler slow
eformation

f£cminstantaneous compression

o > 02

Ultimate angular displacement of cross
section after slow deformation

Fig. 20, Reduction of the value of ultimate curvature due to slow deformation

The first effect is not dealt with in this work. At a later date, it
will be investigated in detail. The effect of reduction of the range of
curvature can be taken into consideration by reducing the value of ultimate
compression of the concrete, £c y by the extent of creep when the value of
ultimate curvature derived in Chapter 7 is determined. This is possible on
consideration that the compression of the extreme fibre due to load must be
less than (or equal to) ultimate compression. Compression is set up of two
components that is compression due to instantaneous load on the one hand
while additional compression as a result of creep on the other hand. Hence,
failure condition for the extreme fibre of the cross section:

fem ™ &ec T %.u

It follows that, at the instant the load is applied, permissible compres-

sion £cm must be less than the ultimate strain minus creep strain:

f£em =tcu- Ccc

Value of instantaneous strain £c m resulting from normal force N
which acts upon the cross section (with the effect of reinforcement ne-
glected:
(47)

N
&c,m - ‘b—h—EC
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Fig. 21, Slow deformation of concrete due
to sustained load

Creep (Fig. 21):

£ (48)

c,Cc 4>C o £c,m = 4>
where (pc is the creep factor.

To determine ultimate curvature, ultimate compression £ of the
concrete shall be reduced by £c c- Hence, on the basis of (41),

1 (49)

?u,c ~u,c' 5c
where Cu ¢ —ultimate curvature comprising also the effect of creep
—utilization of angular displacement of the cross section,
taking into consideration also the effect of creep
—value obtained by substitution for @= RBu on the basis
of (38).
Hence, the value of R can be determined on the basis of re-
lationship

c,e (50)
B UC ‘c,u c.c

In investigation of the stability of a column system, the effect of
creep can be taken into consideration by including the value of Ru in
the relationship for calculation of ultimate strain of the column system.
Hence, on the basis of (45), ultimate strain wcr  comprising also the ef-

fect of creep is

|2 6ce 412
cr,6 Q "~ 2 h (51)
3UC n Pu.c I, - t2
or in a dimensionless form
0.405 mft2 .t £
(52)

Scr,C $u.c m Ac
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9. Numerical examples

9.1 Example

Consider the reinforced concrete frame consisting of two columns
illustrated schematically in Fig. 22. The columns are symmetrically rein-
forced and normal force is acting only upon column 2 from among both.

Calculate critical horizontal load (T ) for the column system, taking into
consideration the effect of creep.

Cross section of columns
« B=2x2<t>20=12.56cm2

b1=b2=0.30m
h.=h,=0.30m

Fig. 22, Column system consisting of reinforced concrete columns with normal force
acting upon column 2

Data:
a) geometrical and cross sectional characteristics:

="2 =6.00 m
h = h2= A-30m
bi = b2 0.30m
F =1256 crme
c _ 6.28
AL Taz 3030 00897
30.30° _
lo,l 10,2 ) = 67500 an
b) strength characteristics:
Grade CX5 concrete
cu 1.9 kN/cm2
2050 kN/cm2
cu 25 %
£ce ECC»- = 0.623 %
cc”N =0.249
Pu £c,u

Grade B 60.40 steel
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tfg = 35 kN/ciri

E ' = 2100 kN/cm2
S tig n
iSe=-T" = 1-66

c) creep factor of concrete: ip =2
d) load: N2 = 500 kN

2 -2 J- Calculation of jauxiliary 9yaDUlifs

Nu,l mNu,2"' bl «hl ««CU =b2 mh2 «iic,, m50 m30- «m’ >

= 1710 kN
(On the basis of relationships (13):

£1=0
h - ira =°-292
=f_= 6:°° =20

*1 *2 0.3

q = 3090._. 67500 _ 4 443
500 . 6002
0.30

Vi =030 "1
1710

, 3.42

d = 1710 . 6002

0.00697 . 35
= 0.128
1.9

21| 2 Produgtign_of functiory | 2—22 _Y2iflIFL2.18s a colY™2/1 EPN1JYhich_
riormal_forees_ans directly ac_tinf)_
In the range of pressure of minor eccentricity, function ~ 2 - A”
can be determined on the basis of equation (25):

0.292 . Ay

AD = Y-
3.1.143 . 0.292 z0 (1 ) + 0.292
"2 . 1143 . z,
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where 1+4 . 0128
; =1 0.25+2 . 0.128
1+2.0128
Function 0.292
e m],
0 - 546y 0.292

is then obtained after operations where

, [10.292 +0.872 . Al
z2"1 ~ 1.256

Function 72 - 4 2 can determined on the basis of equation (25)
also within the pressure range of major eccentricity but here the value of
rigidity reducing factor will be

02924 . f2-1 °©

z2 =1 -
4 . 0.128

After operations:
/1.168 . 02 - 0.292\ 6
2 \ 0.512 /

Transition between low and high eccentricity pressures is given by
equation (28):

,EI,U’Q =2. 0128 + 0.25 0.506

Function ~2 - /12 has 1331 Plowed in Fi9- 23, the value of ultimate
strain £2 cr being calculated on the basis of equation (46),

0405 . 20 . 0.000623 _ 0.405
2,cr 0.249 . £

and the value of ”~ on the basis of equation (36).

Since ts,e =166% <t cu 25% , ultimate stress Q? = O*s,u’
arises in the reinforcement on that side of the cross section where the
compression is higher. Accordingly, coefficients a, b, c in equation (38)
shall be calculated according to equations (37/b) or (37/c). Determination

of the applicable coefficient is a matter of trial and error. Let first
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b2

Fig. 23. ~s2 ~2 “unc® on 2

case i, <m1l from equations (37/c) be tested. Now equation (38) will take
the following shape:

a=6.0249 - 3 0249 =1.307

=0
c=0
6.7079. -*2 . °-292 0

From here, " = 0.333 is obtained. Check on the basis of equation
(40) if the value of ol actually reaches <& u for this E£.

1 - 0.333
s | = 0.000623 . 21000 . = 105.2 kNcm
' 0.249 . 0.333
d d suggests that ultimate stress <§jl, = dsjU arises in

5j1 Sju
the reinforcement also on the side where the compression (tension in this

example) is lower. This is in agreement with equations (37/c) and according-
ly, £ =0.333 complies with the actual value of £.

Now return to determination of "2 cr It has been written earlier
on the basis of (46) that
r 0.405 0.405
1.216 .

*2.cr =~T~ = 0.333
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_This means that the function plotted in Fig. 23 comes to an end at

‘Ler T 1.216.

If also creep of the concrete has to be taken into consideration,

the ultimate strain shall be determined according to equation (52). The

value of jiuc £c in the equation shall be determined, as follows:
— (n the basis of (47):

value

500

cm‘ 30 .30 . 3msp 0000182
On the basis of (48):
£. . =2 . 0.000182 = 0.000364
— (n the basis of (50):
0.000623 = 0.291

Au,c = 0.0025 - 0.000364
— (n the basis of 37/c):
. 0291 - 3.0291 =1491

O T
I

6
0
0
— n the basis of (38):

5.0201 Cc - Bf%2 - K =0

— n the basis of (39):

=0.34
1- 0341 _
s 0.000623 . 21000 0.291.0 341 = 86.88 kN/crn
Since 65‘1 > éSjQ, the value of £C shall be determined actually

]
on the basis of (37/c).
— n the basis of (52):

I = 0.405 . 202 . 0.000623 =x Q
'2,cr,c 0.291 . 0.341
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9 _I*3 ~E(“ctd.on_of fjunct_ion t, N of jiouymn_|_(las_a column_upon “hich
no_nomel force_Js directly_acting)

According to relationship (31):

After operations we obtain a function

The function has been plotted in Fig. 24.

rJ
Fig. 24. £ - g* function of colurm 1

2ilirMEEIPIN3Hi2n_°l P £.iiip3.\_(9LiS.°Di3iJload £PIAEDIL ~XEISIIL
The functional values for plotting function ¢ - §{

termined in Table 1 while the tabulated values are plotted
ot

have been de-

in Fig. 25.
or = 0.0373 has been obtained as an extreme value of function bl-

71
Thus, the magnitude of critical horizontal load:

Ter = OiCr - N, =0.0373 . 500 = 18.65 kN

35
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Table 1 Determination of critical horizontal load (oi. ) of the column system according to

example 9.1
Serial Column 1 Column 2 Frame
No. "
A2 ~ n2" N2 04= g2 ¢
(see Fig. 24) "2V (see Fig. 23) f
9 9 ! < m%
1 0.1 0.0043 0.1 0.32 0.011 0.0257
2 0.189 0.0056 0.189 0.506 0.0158 0.0346
3 0.25 0.0058 0.25 0.6 0.175 0.0373
4 0.3 0.006 0.3 0.61 0.0155 0.0360
5 0.5 0.006 0.5 0.62 0.006 0.0265
6 0.6 0.006 0.6 0.62 0.001 0.0215

Displacement of the column system as a result of force T

. 025 . 30 =75 an

Fig. 25. Determination of critical horizontal load of the column system on the basis of
function o.- £1

Comments :
As seen from the result, the column system has lost its stability to
arrive at ultimate load capacity. At a value of = 0.25 indicating the
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limit of lost stability resulting in destruction, the lost strength of the
different columns has not contributed yet as this would take place only at
much greater displacements that is at > 1. The situation will not
change even if creep is taken into consideration. This can be attributed to
the fact that a structure of relatively high slenderness has been selected
as an example. Should only the behaviour of column 2 be investigated
(values 72 iR Table 1), it will be seen also column 2 will lose its stabil-
ity only at ~2 = 0-25. An additional load bearing capacity of the column
system would require more contribution to the overall supporting effort by
column 1.

Let the results obtained be compared with the results obtainable by
means of Hungarian Standard M 15022. Consider first column 2 alone. A
value of [OeM = 0.04 (yipf~r-h isspecified for increasein eccentricityof
reinforced concrete columns under eccentric compression due to secondary
effect (io =2 J1) which amounts to Aet = Q.64 . 30 =19.2 anin our case.
For given loads of I\QZ: 500 kNand T cr?; o, . N ; 0.011275 . 500 :8%Z5]5 b)K

er Z A
e = - *§or------- = - 5QQ— =

= 0.105 m = 10.5 oam increases to an effective eccentricity of e =AeQ +
e =105 + 19.2 = 29.7 cm For a vertical load of N2 = 500 kN, a re-
straint moment of M, - N, . [ley, =500 . 0297 = 1485 K\nis associated
with this eccentricity. At the same time, the numerical example presented
here resulted in a restraint noment of M = N2 cr.2 + Tcr,g' i%
500 . 0.075 + 8.75 . 6 = 90 kNm (Displacement w 9 = 7.5 ancan be calcu-
lated on the basis of ~ = 0.25.) The difference between the value of re-
straint moment calculated on the basis of the standard and the value of
actual restraint moment is more than 6 in favour of safety.

In investigation of the column system as a whole, the ratio of
horizontal load per column is determined by the standard on the basis of
the theory of elasticity of the first order, assuming an average value for
increase in eccentricity due to the secondary effect. However, this average
value depends only on the geometry of the different columns while it is in-
dependent of load.

In the present case, the geometry and initial rigidity of the two
columns are identical and thus half of the horizontal displacement force
is acting upon each column, the value of increase in secondary eccentricity
being Ae” = 19.2 an also in this case. According to the standard, the
value of restraint moment acting upon the different columns can be calcu-
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latedas earlier in investigation of column 2. As a result of Tcr = 18.65 kN
(that is horizontal load acting upon the column system) and vertical load
N2 = 500 kN, restraint moment = 55,95 kNm arises in column 1 while
M2 = 151.96 KN\m in column 2. Using the results of the numerical example,
M = 59.50 KNmand M = 90.0 K\m are obtained for the restrained cross sec-
tion of coumn 1 and column 2, respectively. It can be seen that a lower
value is obtained for the restraint moment of the unloaded column by the
standard because the mutual supporting effort of the columns is not taken
into consideration while at the sare time there is a difference of 7% in
moment in the restrained cross section because of the exaggerated value of
increase in eccentricity for the loaded column. Should the rigidity of
column 1 be further increased, the supporting effect of this column upon
column 2 will be increasingly appreciable with the results increasingly
differing from the values according

9.2 Example

Consider the two-column frame illustrated in Fig. 26. The columns
are symmetrically reinforced and normal force is acting upon column 2. Let
the critical horizontal load of the column system be calculated, taking
into consideration also the effect of creep of the concrete.

Cross section of columns 1

©- -b2 ©" -b. b1=030T
A

Cross section of columns 2

b2=0.30m
K-

Fig. 26. Two-colunn frame with normal force acting upon column 2
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Specifications:

(a) geometrical and cross sectional characteristics:

I g» 6m

l, —=3m

h1 _030 m

h2 -~ 030 m

Fs,l = FS,Z: 12.56 e
6.28 _

Al =3030 0.00697
6.28 _

P2- 3050 - 0.00411 |

0P 67 8560 et

30398 - 310599 entt

(b) strength characteristics:

sare as in example 9.1.
(c) creep factor of concrete: =2
(d) loads: N2 = 2000 kN

N2/1_Calxul_a tion_glL &ixjJjary;juany_tites
0,1 =bl, hl « ~c,u
= b2

=30.30 . 1.9

.2 mh2 m *c.u =3050 . 1.9

On the basis of equations (13):
=0

2000

T 0.701

20
300
i2' 050 "
" 3050 . 312 500 g 05
2000
0.30
Vi 50
1710
2000
X 3050 - 67 500

1710 . 6002

= 0.855

0.334

1710 kN
2850 kN

39
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a HA1 e« ~s.wu °-00697 « 3H

0.128
1_ 59 [V 1.9
@ "2 - <*su °-00411 ' 3B 0.0757
N ang rEActd.on_gf_fAncjtion_ G2t —240 4 Ay TN "oljmn_i*on_whJ*ch

normal_fErce_s_arf directly actinf)_

In the range of eccentric pressure, function £2 ~ ~ 2 ~ described
by equation (25):

0.701
205 . 0701 - 271 - g ).o. 701
i~ " onl . 5205,
where 1+4.00757 n 6

0.25 + 2-0.0757 * a 2
1+2+0. 0757

0701 (1 +
z2 =1 - Il
After operations, function

0.701
11.13 - z. + 0.701

is obtained where
'0.701 + 2.275 A2 6
z2 = -
1.151
Value of z2 within the range of highly eccentric pressure:
'0.701(4 . A2 - 1p 6

4 . 0.0757

After operations:
2804 . A2 - 0.701

0.3028
Minor and major eccentricity pressure transition according to (28):

Ay =2 .00757 + 025 =041
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As seen, the value of rigidity reducing factor z2 is
0.1978 = A2 in the range of minor eccentricity. Since this 02

this means that the entire stability test takes place
pressure of low eccentricity.

zero for
Au 2>
in the range of

Fig. 27.s2 1 z&unction of column 2

Function 722 “ ~2 has been PIlOiied in FiS- 27. The value of ~ 2 cr
can be calculated on the basis of equation (46):

0.405 0.000523  0.0354

2.cr 0249 . G K

The value of \ is supplied by equation (38) where the coefficients

can be calculated on the basis of equation (37/b). Since we face the case

of low-eccentricity pressure, equations associated with | >1 apply:

a=6.0249 - 3. 0.2492 - 3 =- 1592
b=6+12 . 0.00411 . 0.249 . = 6.226
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c=-3+6.000411 . 0249 . ;% =- 3113
1.692 y2 | 622 3113
6 . 0.249 U . 0249 6. 0249

- 1132~ 2+ 3466 £ - 2083 =0

£= 224

Value of stress in reinforcement on the side under minor compression:
1 =0.000623 . 21000 . o 224 2X24 = 29.08 kN/cm2

Hence, equations 0s * & and thus equations (37/b) have been
rightly used.
Accordingly, the value of critical strain:

0.0364
$ o 224 001625

N Jhat means that function #* Pitted iR FiS- 27 discontinues at

N2 = n2.crt
Taking into consideration the creep of concrete, the ultimate strain

can be calculated, as follows:
— n the basis of (47):

2000

ecm' 30 . 50 . 3050 0000437

— n the basis of (48):
£c c =2 . 0.000437 = 0.000874
— (n the basis of (50):

0.00623
Buc 0.383

0.0025 - 0.000874

— n the basis of (37/b):
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a=6.0383 - 3.0.3832-3=- 1142

b=6+12 . 000411 . 0383 . > =6.347

O
I

A3 +6 . 000411 . 0.383 .y~ f)= - 3.173

O the basis of (38):

Stress arising in reinforcement on the side under minor compression:

<% 1 = 0.00063 . 21000 g 3B332 3 32 = 2413 kNcm2 -

Since 6S 1 < 6S " equations (37/b) have been rightly used.
Value of ultimate strain with creep of the concrete taken into con-
sideration:

0.405 . 62 . 0.000623
\ 2crc 0.383 . 3.32 0.00714

on the basis of (52).

9.2.3 Production of function ¢ " of column 1 (as a column upon which
normal forces are not directly acting)

The function is identical with that determined in example 9.1
(Fig. 24).

9.2.4 Determination of critical horizontal load of the column system

The functional values for plotting of function «oc- g," have been
tabulated in Table 2 while plotted in Fig. 28. = 0.0209 has been ob-
tained as a value determining the magnitude of critical horizontal load an
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thus

Tor = @gp - N, =0.0209 . 2000 = 41.8 KN.

Displacement of the column system as a result of critical load:

wer * Aloer hl = 0.027 . 30 = 0.81 an

With the effect of creep taken into consideration:

Terc 0" crc - Np = 00133 . 2000 =255 KN
Were T %1-01’,0 . hy =00119 . 30 =0.357 an
(O

Fin. 28. Determination of critical horizontal load of the column system on the basis of
function ot - Ij~

Table 2 Determination of critical horizontal load (0C ) of the column system according to

example 9.2
Serial Column 1 Column 2 Frame
No. A2 0 N2 o,
. . - =
(see Fig. 24) o' - "N (€& Fig. 2D 5.
1 0.005 0 0.003 0.036 0.0055 0.0055
2 0.0119 0.0005 0.00714 0.084 0.0128 0.0133

3 0.0270 0.0012 0.01625 0.136 0.0199 0.0209
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Comments:

The column system has arrived at ultimate load capacity when column
2 has been destroyed due to lost strength. Breaking compression takes place
at a low value of displacement in the extreme fibre of the cross section of
the relatively stubby column under significant load. The effect of column 1
upon the force system is minimal. Creep results in a significant reduction
in load capacity when taken into consideration.

In comparison of the results obtained with the values that can be
calculated for the reinforced concrete structure according to the standard,
let first only column 2 be investigated as if it were an independent column.
Should a vertical load of N2 = 2000 kN and a horizontal load of TQ,c’r,c =
= 8§2c¢c " M2 = -0128 . 2000 = 25.6 kN act upon the column, a value of

eM= 6.72 an will be obtained for effective eccentricity in the restrained
cross section according to the standard. (Values of T and p9 taking
into consideration also the effect of creep are used because creep of the
concrete is taken into consideration also by the values according to the

standard.) This results in a restraint moment of M2 = A = 2000
. 0.0672 = 134.4 KN\m while in the numerical example, a restraint moment of
M = T9 K +N9 . wo =256 . 3 + 2000 . 0.00357 = 83.94 kNm

has been obtained, the difference being about 60%.

According to the standard, the ratio of horizontal load per column
can be determined on the basis of the theory of elasticity of the first
order in investigating the column system as a whole. Thus a load of "2 cr c=
= 25.8 kN that is 9®6 of the overall load of Tcr = 26.6 kN is applied to
column 2 while ™ = 0.8 KN that is only 3% of the overall load to
column 1. Increase in eccentricity is determined by the standard on the
basis of average length of deflection of both columns. For column 2, an
increase in eccentricity of Ae. 9 = 13.52 an is obtained in this way, the
effective eccentricity being Jle® » - 17.22 on for which a restraint moment
of M =N . OeM2 = 2000 . 01722 = 344.4 KNm arises as a result of
compressive force N2 = 2000 kN. The difference between this value and the
value determined in the numerical example, M = 83.94 kNm amounts to more
than 300% due to the fact that, although the effect of column 1 upon the
force system is minimum, the average slenderness of the columns is taken as
a basis for determining the increase in eccentricity by the standard.
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WRINKLING OF FACES OF COMPRESSED AND BENT SANDWICH BARS AND
ITS INTERACTION WITH OVERALL INSTABILITY

HEGEDOS, |.* - KOLLAR, L.P.**
(Received: 15 June 1988)

The paper deals with the stability analysis of triple-layer sandwich bars (or
cylindrical buckling of sandwich plates) taking the compression of the core also into
account. It shows that in the case of an antiplane core the effect of wrinkling on
the overall buckling load can be taken into consideration analogously to the Fbppl-

Papkovich formula.
The case of not equally loaded faces (e.g. flexural wrinkling) is also treated.

1. Introduction

In Allen's book /1/ the problem of wrinkling of faces of triple-
layer sandwiches is presented on the basis of the studies of Gough, Elam
and Bruyne /3/, Hoff and Mautner /5/, Williams, Leggett and Hopkins /8/,
Goodier and Neou /2/. Chapter 8 deals in detail with three principal types
of wrinkling instability as shown in Fig. 1.

Case | represents a sandwich beam in which wrinkling is likely to
occur only in the compression face, while the tensile face, is assumed to
remain perfectly flat.

Cases Il and IIl represent antisymmetrical and symmetrical wrinkling
respectively in a sandwich strut in which the two faces carry equal axial
thrusts. It also deals with the interaction of wrinkling (Case Il) and
overall instability. The results presented in the book are valid for sand-
wiches with isotropic core, their use may cause significant errors in the

Case | Case |l Case I Fig. 1.

AHeged(s, Istvan H-2083 Solymar, Véaci M. u. 10, Hungary
**Kollar, Laszlé P., H-1122 Budapest, Karap u. 9, Hungary

Akadémiai Kiad6, Budapest
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analysis of sandwiches with anisotropic core. The excellent work of Benson
and Mayers /9/ deals with the buckling of compressed sandwich plates and
bars with ideally orthotropic (honeycomb) cores.

Pomézi presents in /11, 12/ a detailed stability analysis of non-
symmetrically loaded orthotropic sandwich panels. Avong the basic assump-
tions he postulates that the transverse stresses and deformations are con-
stant along the thickness of the core. This common assumption is widely
used in the technical sandwich theory, however, the comparison of the
results of /9/ with those of /11, 12/ shows that this assumption may a
priori exclude any interaction between wrinkling and "globall buckling
modes.

The aim of our paper is to extend the previous results /9/ for not
equally loaded faces. W also show, that in the case of sinusoidal buckling
shape the effect of the compressibility of the core can be taken into ac-
count in a very simple way analogously to the Foppl-PapkovLch formula /6, 7/.

We generalized our results for sandwich plates in /13/.

Let us consider a sandwich bar with ideally orthotropic /9/ or —with
another word —"antiplane" core /1/. The relationships between the stresses
and strains are as follows:

d 0
6, = 0 (1.1)
T 0

i.e. the core is perfectly soft in the x direction. Between the strains and
the displacements the well-known relations

5u
& IC)¢
3w
— (1.2 a-c)
£z = 97
| fA o 3w = n+w
hold. 3z

As usual in the technical theory of sandwiches, we shall suppose (Fig. 2)
that c*>t and, consequently, the displacements of the surfaces of the core
are equal to those of the middle planes of the faces.

Let us introduce the notations of Fig. 2. Furthermore, let the
"local" and "global" bending rigidities be denoted by Bf and Bg, resp.:
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B4 =2 By = (1.3)

(Ej is the modulus of elasticity of the faces.) The shearing rigidity is
S=Gbe (1.4)

(G is the shear modulus). W also introduce the critical loads belonging to
the local and global bending rigidities

B0 712
4. _ (1.5)
| 2 ~ Ir

respectively (~ is the half wavelength of a sinusoidal buckling shape) ;
and another critical load

Rz EDb (1.6)

which characterizes the transversal compressibility of the core. The fic-
titious critical loads %i , Pg and Rwill be used in the formulas for the
actual critical forces analyzed in the next section.

2. Governing equations

Let us write the equilibrium equations of the buckled sandwich bar
shown in Fig. 2 on the basis of the stationarity condition for the total
potential energy. We neglect the pre-buckling deformations, that is, the
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axis of the bar is considered to be a straight line also in the case of
bent bars before buckling. Furthermore, we assume negligible the effect of
stresses which arise in the core before buckling.

The total potential energy ft consists of three parts:

™= MNc +ftf- fte (2.1)
where
Te=yb J | [ga+wn2+E W37 d o« (2.2
x) (2)

is the strain energy of the core,

=2~1 i [(wp 2+ (W2)2] dx +\ Ef bt J [(up2+ ()3 dx (2.3)
(x) (x)

is the strain energy of the faces, and

ve Oh L w2 +djwy o (2.4)
(x)
is the work done by the external load. The integrals are extended to the
total length of the beam in the x direction and from -c/2 to c¢/2 in the z
direction.

In Bs (2.3) and (2.4) 1 and 2 refer to the upper and lower faces,
for example Up u?, u?, and w" are equal to u, u', 0 and, wrespectively, sub-
stituting - y into the latter ones.

We have to find the displacement functions u, and w which meet the
boundary conditions at the ends of the bar, and the condition

Ti = stationary !
For that purpose, let us replace u,and w by functions

u(x,z) + £u rju (x,z)

(2.5)

w(x,z) + Ew nw (x,z)
respectively, in the expression (2.1). Variations du = £u nj , and
& w = Ew r]w are arbitrary smooth functions, £u and are multipliers

of small absolute value.
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If functions u,and w meet the stationarity condition for It (i.e.
they are extremal functions of the variational problem) then the partial
derivatives 32a/3rmn,and 39/ 3Ewmust vanish at £u = £w=0:

)Sﬂ =b _\]_\h(l:HW) T]U dzdx + Efbt \]Uj l]'mm/\ziea/\
L w ve K& (x)

I =b J I [g(a+w)w+ Ec w v, dzdx +

9f£
LY-v0 0@

(™ [ wi VIwl+W2 r]w2] - H r[wirlwl+/JW fim[dx=0* <2‘6b)
After integrating (2.6a,b) by parts, we obtain

11 G(ii+w")* Vu dzdx +
(x)(2)

| [bGO"*W“) ©f bt u"2] %2 dx
(x)

(/)[_ b G (lintwp - B bt I/I"J V (2.6c)
X

B bt J u24u2 +<'lluj '(x) =0

- (2.6d)
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4 P T
2 Iwl % 2 2 "I *lwl W2 *v (x)
=0,
where 'the lower (x) refer to the boundaries in the x direction.
Since T|u,and Yw are supposed to be arbitrary smooth functions,
these equations hold only if their terms separately vanish, that is, the
respective multipliers of tju>and Y w vanish in the integrals of (2.6c)

and (2.6d). Hence, the following differential equations must hold:

bG (u+w?)" =0 (2.7)

- bG (Gj+wp - Ej bt up 0 , (2.8a)

bG (L"+wp - Ej bt =0 , (2.8b)

P
- bEcwi + + Wit +'Y'w =0 > (2.10a)
P

% " 2.10b)

bEcw2 + 2 W' +M~T-w2 =0 - (2.

In the case of yj = 1 egs (2.7) to (2.10) are in agreement with (8),
and (9) of /9/ if there the difference between c,and d is neglected.

3. Buckling of symmetrically loaded sandwich bars

Letja - 1, i.e. the bar is subjected to a symmetrical load. W
assume the functions which satisfy the equations (2.7) to (2.10) in the
form

u(x,z) =u(x) u@ , (3.1)

w(x,z) =wX) wz) , (3.2)
where

u(x) =cos ,

w(x) = sin ,

and | is the half wavelength of the buckling shape not known yet.
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These functions meet equations (2.7),and (2.9) only if

u@z) =--J- f(z) +6f3 GAIT Z (3.3)

w(z) = f(z) (3.4)
where f(z) is a polynomial of the third order:

f(z) =fjz3 + f2z2 + f*z +fQ . (3.5)

Displacement functions (3.3), and (3.4) contain four unknown coef-
ficients, which can be determined using (2.8a,b), and (2.10a,b). Fom
(2.8a,b) we obtain: 2

o4 +f0=0 (3.6)
6Ecf3 =B XU2 [“f-(f3 8 +fl 25 33004 0 . 3.7
and from (2.10a,b)
\ (Per - P{) (f f3c2+2fj) =6 Rc2 3 (3.8)
7 (Pcr - 2f2c=4Rcf2 "’ 0-9)

(3.6) to (3.9) constitute a system of homogeneous linear algebraic equa-
tions in the unknown constants fg, f., f2,and f*. Anontrivial solution is
possible only if the determinant of the equation system vanishes.

Using this condition we obtain two different values for the
critical load; the first value belongs to a symmetrical buckling shape:

ft2 Bj
! +2R=°F  2EDb | (3.10)
122
and the second value belongs to an antisymmetrical one:
= (3.11)

cr

Eq. (3.10) is formally identical with the formula of the critical
load of a bar on elastic (Winkler type) foundation, where the bending
rigidity of the bar is Bh_ and the stiffness of the foundation is
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In the case of an incompressible core E —* 00 and, therefore,
R ------- *- cd, consequently, (3.10) becomes infinite, which means, that sym
metrical buckling cannot develop. Under the same conditions (3.11) turns
into 1

L0
P+ S +P (3.12)

which is the formula known as that for the critical load of a sandwich bar
with thick faces /1, (3.13); 4, (9)/. Equation (3.11) can be considered a
refinement of (3.12) because it takes into account the interaction of the
wrinkling and the overall behaviour.

The structure of (3.11) is surprisingly simple. It takes into ac-
count the transverse compressibility of the core in the sare way as if we
used the Foppl-Papkovich theorem for calculating an approximate critical
load of the sandwich bar /6, 7/.

Our results can be used not only in the case of an antiplane core
but, as a good approximation, in the case of isotropic cores as well. The
antiplane core (see (1.1)) is "softer" than the isotropic one, hence —ac-
cording to the Foppl-Papkovich theorem —the approximate critical load is
not greater than the exact one. (See also the numerical example.)

3.1 Wrinkling of faces without interaction of overall instability

In the case of "pure wrinkling" we have to take into consideration
the conditions

u =u2=uU (3.13a,b)
instead of (2.8a,b). Hence, we obtain the equations
c2
fo 24 ° (3.14)
fl =f3¢c (6 9g-1i) , (3.15)

where (3.14) is identical with (3.6) but (3.15) differs from (3.7).

Fom the homogeneous linear equation system consists of equations
(3.14), (3.15), (3.8) and (3.9) we can determine two different critical
loads:

Case Ill. (Fig. 1): In the case of a symmetrical buckling shape:

u - N2 (2 cos £
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w=9fj zsh Ix
we obtain the critical load
which is identical with (3.10). The stresses in the core are:

T= 0, tfz =2 f2 k¢ sin »

Case Il. In the case of an antisymmetrical buckling shape:

The stresses in the core are

m 6f3Ec—( cos-rlycx ,

- 6 k& f3z sin — .

If PQ--—-—-- *» 00, then (3.17) is identical with (3.11).

57

@9

(3.17)

Case |. This is —in the case of an antiplane core —physically not

possible.

As we have shown, the overall instability combines only with the

antisymmetrical wrinkling.

3.2 Numerical example

Let us consider the example of Goodier and Neou /2/, presented also

in /1, Fig. 8, 14/.
The data of the analysed sandwich plate are:

1 =002 ;

Poisson's ratios of the core and of the faces are
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vc .0 vt =i

respectively, and there are three different investigated ratios of the
moduli of elasticity of the faces and of the core:

= 1000 = 10 000

The full lines in Fig. 3 show the results of Goodier and Neou in the case
of an isotropic core.

Let us consider a sandwich bar with an antiplane core. The data
agree with those of the previously treated sandwich plate with an isotropic
core, provided the modulus of elasticity of the faces is divided by
@ -v\):
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500 1000 10 000
or

The shear modulus is G=—
and {, = 0.02.

Using the expressions (1.3) to (1.6) and (2.23) we obtain the results
very easily:

-1
2(1-V?) i2 4E.t H tc2 J2
b2t E. © 2 Ec bEoO L
rc2 t2
12(1 -V 2) f

The chain lines in Fig. 3 show that these approximate results give
a very good upper limit for the critical force. In the case of

Ef
g— = 10 000 the chain and full lines practically coincide.

4. Buckling of not symnetrically loaded sandwich bars

Let us consider a sandwich bar with an antiplane core presented in
Chapter 2, and let the forces acting in the faces be different (Fig. 2a).

In determining the critical load we can use the same method as in
Chapter 3.

After a lengthy but straightforward procedure we obtain the fol-
lowing simple quadratic equation for the critical load:

ps
cr cr f FBCI’ F%I? cr r

] ' (4.1)
2 M- > 2 \(2 211 2 2

where ng and Pér are defined by formulas (3.10) and (3.11) respectively.
a) In the case of /j = 1 (i.e. pure expression) Equation (4.1)
yields the sare results as we have obtained in, Chapter 3:

X f Ps
cr
P~ 1,1l & * (A-2)
’ cr

N2



60 HEGEDUS, |. - KOLLAR, L.P.

In the case of ju = 0 we obtain from (4.1)

(4.3)
In the case of p = -1 (pure "global" bending) Eq. (4.1) yields

(4.4)
and in the case of p. - - o0 (so that the tensile face remains perfectly
flat; see Fig. 1, Case 1.), we obtain from (4.1):

(4.5)

The results are presented in Fig. 4.

Fig, 4,



Fig. 5,

Fig. 6.
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As can be seen, we obtained for the different cases the harmonic
(4.3), the geometric (4.4) and the arithmetic (4.5) nesn values of

In the analysis of flexural wrinkling of sandwich panels /10/
assumes that the tensile face is perfectly flat. This assumption can be
used only if the wrinkling of the faces can be considered independent, but
in the case of "antiplane" core the validity of this assumption requires an
infinite large tensile stress in the tensile face.

4.1 Analogy with other symmetric quadratic eigenvalue problems

W have obtained analogous results investigating some symmetrical
structures which have two independent displacements (e.g. that in Fig. 5).
As an example, let us consider the structure showmn in Fig. 5a. The coef-
ficients of the springs are and Q-

The analysis for the stability of this structure yields the buckling
condition in the form of Eg. (4.1) where

Ucl+c2)

The results are presented in Fig. 6.

The mathematical analysis of this peculiar behaviour of symmetrical
structures is the subject of /14/, which will be published in the near
future.
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SOME PHYSICAL PROBLEMS ASSOCIATEO WITH THE SKIN BEARING CAPACITY OF

AXTALLY LOADED PILES**

IMRE, E.*
(Received: 1B August 1988)

Reasons for the failure of the plastic limit equilibrium method to predict the
ultimate side resistance of axially loaded piles has been discussed. The following two
comments have been mede on the basis of some theoretical considerations.

1) Soil does not behave as a rigid body in the vicinity of the slip surface
around the shaft because time dependent vertical consolidation settlements take place
under newly applied load. It has been shown that a time dependent pile-soil interac-
tion process is triggered and controlled by these settlements resulting in a relaxa-
tion type stress change and plane strain condition in vertical direction.

2) Well-known pile-soil interaction models generally do not deal with arching
which takes place at the beginning of the point load transfer. The hypothesis has been
investigated that this kind of arching influences the shaft load transfer in such a
way that side resistance mobilized before the beginning of the point load transfer
cannot be further increased.

Introduction

The ultimate load capacity of a single pile is generally accepted to

be equal to the sum of the ultimate shaft and base resistance. It is an
implicit assumption that shaft and base resistance are not interdependent.

According to the generally accepted plasticity approach the ultimate

shaft resistance equals the integral of the unit skin resistance along a
surface being parallel or coinciding with the pile surface, where the above

mentioned integral is minimum.

tions

The unit skin resistance #'(j(z) :

Tu(z) =c;i(z) +d’(z) tg f(z) (€]

*Miss Imre, Emdke, H-1024 Budapest, Kaplar u. 4, Hungary

**Section 1 of this paper wes presented on the 1st Geotechnical Seminar of Deep Founda-
on Bored and Auger Piles, June 10, 1988, Ghent Belgium, as an oral contribution

Akadémiai Kiadd, Budapest
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where cé = adhesion or cohesion in terms of the effective stress, <J = ef-
fective normal stress acting on the slip surface, ' = maximum angle of
friction along the slip surface in terms of the effective stress.

On the other hand, several evidences indicate that the unit skin
resistance depends on the pile geometry and, weak layers or local decompac-
tion of soil around piles may have detrimental effect on it /2/, /3/, /10/,
[12/, [21/.

These experiences show that Eg. (1) does not give a realistic esti-
mate for the unit skin resistance of piles. "The design of limiting skin
friction is based on empirical methods (e.g. the ot, (b and jf methods),
which can easily differ by a factor of two in estimating the unit skin
resistance" /1.

In the following discussion, an attempt is nede to reveal some
physical reasons for the failure of the theoretical approach.

1. The load redistribution process of piles

It is well knomn that as the soil around the pile shaft compresses
and creeps under newly applied stresses, downward movement of the soil with
respect to pile causes load redistribution.

The load redistribution process of semi-rigid or intermediate piles
is presented through the results of the step by step loading test of a
diaphragm wall (0.5 x 1.5 x 24.4 m soil: overconsolidated clay). The fol-
lowing characteristics were observed /14/. During the load redistribution
process side load decrement and point load increment occurred, and the
process waes complete after 60 min (Fig. 1).

In the case of long compressible piles the load redistribution takes
place similarly. The only difference that some load initially taken by the
upper part of the pile is transferred not only to the point but also to
the lower part of the shaft (Fig. 2).

Despite of the fact that the soil settlements nmay essentially change
the load distribution of piles, this process has not been analysed in the
literature.
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Fig. 1, Stress redistribution of characteristic load steps /14/

1.1 The physical equation of the side load transfer

In this paper it is viewed, that the physical equation of the side
load transfer can be expressed in the function of the relative displacement
between the shaft and the adjacent soil.*

KThere have been two fundamental approaches to predict the shaft load transfer. The
first considers the distortion of the whole soil body around the pile with zero relative
displacement at the pile-soil interface and the second considers the relative displacement at
the pile-soil interface generally assuming that soil behaves as a rigid body. Typical first
approaches: the integration of the Mindlin's equation /13/, the method of Randolph and Wroth
115/ ; typical second approach are the transfer function methods of Seed and Reese /17/ or
Kézdi /8/, and models of Scott /18/ and Trochanis /19/. An attempt is known to compile these
two approaches /9/.
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Fig. 2. Load transfer from a steel pile driven through compressible silt to rock /5/

The following model is suggested for the description of the side load
transfer:

X (z) =d (2) tgf>(2) (2)
tg -f (z) =F (s(2)) (3)
s(z) =w(2) - w(2) (39)

where 6'= effective normal stress acting on the pile surface, » =the fric-
tion angle at the pile soil interface which is dependent on the relative
displacement (s) between pile and soil as can be seen on Fig. 3, Wp,Ws:
vertical pile and soil displacement at the pile-soil interface.

1.2 Sare consequences of the vertical force equilibrium condition

The equilibrium condition of the pile-soil system is considered. The
horizontal force and the noment equilibrium conditions are satisfied
because of the axial symmetry. The vertical equilibrium condition of the
pile-soil system is analysed in the following.

It is assumed, that a finite radius does exist around the deep foun-
dation at which the stresses originated from shaft load transfer become
negligible. This assumption is widely accepted and used in load transfer
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Fig. 3. The friction on the pile-soil interface versus the relative displacement

theories (i.e. /15/. This assumption is considered to be valid until the
depth of z =1, where the length of the deep foundation.

A pile-soil body is separated from the infinite half space along
this zero stress cylinder boundary, and bounded by a horizontal plane at
an arbitrary depth of z (Fig. 4). This pile-soil body can be further
separated into a hollow soil cylinder and into a piece of pile (Fig. 5).
The vertical forces acting upon these elements (neglecting the self-weight
forces) are as follows: Ppo = pile load, Pp(z) = normal force in pile at
depth of z, T(z) =total skin friction force at depth of z, Pg(z) = vertical
normal soil force at depth of z.

The skin friction force (T') transferred between depths of z* and z2
can be computed as follows:
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Fin. 4, Separation of the zero pressure cylinder from the infinite half space

T z1z2 = J U~(z) dz 4)
21

where %= unit skin friction, U = periphery of the deep foundation, 1,2
arbitrary depths. The total skin friction force transferred between depths
of 0 and z:

T(z) = \] UX(z) dz (4.a)
e
The vertical normal soil force:

@ omvdrz) dr )

ro
where d(r,z) = vertical total soil stress acting upon the horizontal plane
at depth of z,r = radial distance, rQ = radius of the deep foundation,
r* = radius of the zero stress boundary.
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5 Vertical forces on the a) zero pressure cylinder with depth of z; b) pile element
with depth of z; c¢) hollow soil cylinder with depth of z
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Three vertical equilibrium equations can be written for the three
bodies and three unknown forces, only two of them are independent. For the
soil-pile system:

P (z) + Pg(z) =- Ppo = const. (6)

For the pile element:

Pp(z) + T(z) =- Ppo = const. 7

For the hollow soil cylinder:

Ps(z) - T(2) =0 (8)

It can be mentioned that Egs (6) — (8) are still valid, if the
radius of the zero stress boundary is increased to the infinity.

The corollaries of Egs (6) —(8) —are as follows. (1) The total
skin friction force and the vertical normal soil force equal. If one of
them has a physical limiting value, so does the other. (2) The vertical
normal soil force is steadily increasing with depth if the unit skin fric-
tion is positive. (3) All the vertical forces can be visualized on a simple
diagram with constant abscissa of Ppo, as it can be schematically seen on

Normal force in pile,Pp

Total skin friction force, T
Vertical normal soil force,

Fig, 6, Schematical representation of the vertical force diagram
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Fig. 6. Note the discontinuity of the vertical normal soil force diagram at
the pile tip.

1.3 The limiting nature of the long term vertical normal soil force

The load distribution process is analysed by means of an experiment
of thought. The object of this analysis is to prove that the long term
vertical normal soil force may have a limiting value and in this case the
total skin friction force is also limited.

The following model is established (Fig. 7). The stratification
around the pile can be characterized by three layers, between two stiff
layers a weak, thin layer is found. It is assumed, the soil is with low
permeability and the load application entails undrained condition. Due to
load application the total vertical stress in the weak layer exceeds the
yield stress of the soil adjacent to the pile, within a radius or r-*. The
immediate force distribution is schematically shomn on Fig. 7. It is
assumed, that the side load transfer can be described by Egs (2) and (3);
the pile can be considered as motionless; there is a direct relationship be-
tween the total vertical normal soil stress and the total vertical normal
soil force at a given depth, only the primary consolidation deformation is
time dependent; the yield limit of soil does not vary during the process.

Stiff

layer

9

a

_C

a

&z,

Weak layer

0z2
Stiff r?‘
layer é

Fig. 7. Schematical representation of the load redistribution process
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The load redistribution process of the above defined model is described by
the following statements.

a) It can be stated that primary consolidation settlement in the
intermediate layer is steadily increasing if the total vertical normal soil
stress is greater than the yield stress of the soil.

b) Total skin friction force decrement is caused by the downward
consolidation settlement in the intermediate layer.

c) Thecontinuity of the soil mass results in a downward movement
and ina total skin friction force decrement in the upper layer.

d) The negative skin friction force increment changes the immediate
force distribution as it is schematically shown on Fig. 7. The total skin
friction force decreases in depths Zp z~- According to Egs (5), (6); the
vertical normal soil force decreases and the normal force in pile increases
by the same amount. This amount of load will be transferred to the soil in
a greater depth.

e) The decrement of the vertical normal soil force in the soft layer
resultsin the reduction of the total normal stress. The rate of the primary
consolidation settlement decreases not only because of the very nature of
the consolidation, but also because of the decreasing value of the vertical
normal total soil stress.

f) Once the decreasing vertical total soil stress becomes less than
the yield stress at the depth of the weak layer, the process ceases.

Oe can conclude that the long term vertical soil stress has a
limiting value in the weak layer. Consequently the long term vertical
normal soil and skin friction forces have a conmon limiting value in the
weak layer. If the unit skin friction is positive (and the vertical normal
soil force is steadily increasing with depth), this statement is valid for
every depth of z above the weak layer.

1.4 Design of shaft capacity above weak layers

The long term shaft resistance can be defined as a limit value as
follows (1) shaft resistance if the loading is with infinitely low rate (2)
shaft resistance at infinite elapsed time after a loading with finite rate.

The yield point of the shaft load-settlement curve can be character-
ized by a marked decrease in stiffness as it is visualized on Fig. 8.

If the loading rate is finite, the shaft yield load is less than
the meximum shaft load capacity. It is a well-known assumption that the
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(mm)
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Fig. 8. Dimensionless side load - settlement relationship /11/ with the indication of the
yield lim it

yield load of the load-settlement curve does not depend on the rate of
loading, and its value equals the ultimate long term shaft resistance (see
for example the design of "creep piles"). This assumption is used hereafter
in this paper.

In earlier papers /6, 7/ a heuristic method was suggested to compute
the ultimate long term skin resistance of axially loaded piles for layered
soil condition. Its basic idea is that the unit skin resistance of the
upper stiff layer is reduced to the value of the lower weak layer.

Earlier results supporting the reliability of this approximate
method are recapitulated as follows. The long term shaft resistance of five
deep foundations (listed in Table 1) was estimated on the basis of cone
penetrometer test local side friction data. Both "continuous" and "relaxa-
tion" type cone penetrometer data were taken into consideration.

The long term shaft resistance was approximately determined from pile
load tests, the pile load at shaft yield condition by a new method 111.

The ultimate shaft resistance was calculated in two different ways.
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No.

Type of
foundation

diaphragm
diaphragm
diaphragm

Franki

diaphragm

Cross
section

(m.m)

0.6.2.6
0.6.1.7
0.7.1.6

0 0.6

0.5.1.4

Peri-
phery

an

6.40
4.60
4.60

1.88

3.80

IMRE, E.

Table |

Cross

section area

)

1.56
1.02
1.13

0.28

0.7

Equivalent
radius

(m)

0.70
0.57
0.60

0.30

0.47

CPT skin friction

Fig. 9. Reduction in CPT data

Length

(m)
15.0

14.0
10.0

10.5

8.0

Soil
type

soft
soft

soft
soft

soft
soft

silty

clay
clay

silt
clay

silt
clay

sand
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Firstly slip surface was assumed on the pile surface and —according to the
plasticity approach — the ultimate shaft resistance was considered as the
integral of the measured CPT local side friction data on the pile surface.
Secondly the ultimate shaft resistance was calculated as the integral of the
reduced CPT local side friction data on the pile surface. Reduction was
mede if the local side friction measured at depth of z was greater than
the minimum value measured below the depth of z and above the depth of
f+ 1.0 m (depth one meter below the pile tip) in such a way that the local
side friction at depth of z wes set to be equal to the above mentioned
minimum value (Fig. 9). Data and results are shown in Tables 2, 3 where
the computed ultimate shaft resistance values are expressed in the percent-
age of the measured pile load associated with the shaft yield condition
/6/. As it can be seen, the conventional method gave highly overestimated
results. The suggested method resulted in more realistic estimations.

Table 2
Conventional method Suggested method
using using
Continuous Relaxation Continuous Relaxation
No. CPT data CPT data CPT data CPT data
(4) (3) (4) (4)
1 234 139 110 93
2 193 120 105 9%
3 244 148 152 104
4 233 220 167 120
5 268 220 R 116
Table 3
1 2 3
N b 100(4 b 100(4 i 100(4 Si
0. Wrr . (4) W_JI__ . (4) T (4) ign
S S Ts
1 51 59 43 131
2 86 110 66 130
3 4 46 33 7511406
4 80 114 72 79/664
5 55 72 53 751870
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2. A hypothesis with regard to the effect of the starting of the point load

transfer on the shaft load transfer

It is knomn that the settlement of piles can be split up into an
elastic compression and a base component as follows

Wl =W +WwE 9)

where W = top settlement, w* = base settlement, w* = elastic compression
settlement arising from the elastic compression of the pile material.

2.1 Critical base settlement for deep foundations

It is well known that the ultimate skin resistance of piles is
mobilized mnuch sooner than the point resistance /23/. According to the
Mindlin's solution, the point load transfer induces significant tensile
stresses beyond the point. Most soils can take little stress if any, in
tension. It is a general opinion that unless these tensile stresses are
compensated by compressive stresses coming from loads applied above the
pile point, they are not transmitted by the soil /23/. However the applica-
tion of the principle of superposition is legitimate only in the case of
linearly elastic soil. It is viewed that once point load transfer begins,
arching (discontinuity in the stress and strain field) will be caused
around the shaft, if soil takes no stress in tension.

It is hypothesized, that the long term shaft load transfer termi-
nates at the beginning of the point load transfer. It is assumed that the
base settlement needed for the starting of the point load transfer is small
and independent of the geometry of the pile. lhis base settlement will be
called as critical base settlement.

These hypothesis and assumption are attempted to be verified as
follows.

2.2 Evaluation of the critical base settlement for five deep foundations

Shaft yield load and long term shaft resistance equal, therefore the
above mentioned hypothesis has the following corollary: yielding appears in
shaft load transfer at the critical base settlement.

The assumption that the critical base settlement is small and in-
dependent of pile geometry was investigated in such a way that settlement
at shaft yield load for the aforementioned five foundations was determined.
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Table 4
Back calculated Transfer Measured total Calculated Calculated Calculated point
transfer func- function  settlement at elastic base settle- load at skin
No. tion constant constant  skin yield settlement at ment at skin yield /
(Randolph, skin yield yield Measured total
Wroth,1979) load at skin
yield ratio
" be M V\Zg
® W's VBs
(mm) (mm) (mm) (V)
1 0.0618 3.62 0.83 0.36 0.47 2.12
2 0.0367 3.76 0.65 0.43 0.22 0.61
3 0.0498 3.37 0.49 0.19 0.29 2.21
4 0.0837 411 0.70 0.51 0.18 1.03
5 0.0334 3.39 0.47 0.25 0.22 1.30

Total settlement at shaft yield load was determined by a new method
/6/. The measured total settlement at shaft yield load was as little as
0.47-0.83 nm (Table 4) which is in accordance with the result of O'Neill
and Reese (Fig. 8). The total settlement was split up into elastic and base
settlement components in such a way, that the elastic compression settle-
ment was evaluated at first, then the calculated elastic component was sub-
tracted from the measured total settlement according to Eq. /9/. Three
methods were used for the calculation of the elastic settlement component.
Methods 1 and 2 were used to check the result of Method 3.

Method 1: It was assumed, that the total load associated with the
shaft yield condition is equally distributed along the shaft, and the point
load is equal to zero.

N A | (10)

2 Ep mF ‘1

Es

Wher% P = total load associated with the skin yield condition, EH = 20 000
MNm , F = cross section area, Jl= length of deep foundation.

Method 2: It waes assumed that the side friction distribution is
identical to the modified skin friction diagram determined from relaxation
CPT data, and the point load is equal to zero.

0

Pp(z) dz (ID
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Ppz) =T'( Z,1) = 3 U-"CZ) dz (12)

z
where P (z) = vertical force of deep foundation, U = periphery, Tr(z)
reduced skin friction determined on the basis of relaxation type CPT test.

Method 3: The Randolph and Wroth (1978) method* wes used as follows.
The shear modulus of the soil (Gs) and the Young's modulus of the pile (Ep)
were estimated beforehand, and transfer function constant was back calcu-
lated on the basis of the measured load-settlement data at the skin yield
point using Eq. (30) in the paper of Randolph and Wroth /15/. Then the com
pression settlement was calculated as follows:
! (13)

cosh

where mbc = back calculated transfer function constant, G = 2 MNn2,
rQ = equivalent radius, Wys = measured total settlement at skin yield load.
(The ~ load transfer constant wes also calculated by using the pile load-
transfer model, suggested by Randolp and Wroth /15/. The back calculated
and the estimated values differ by two orders from each other, as can be
seen on Table 4.)

As can be seen in Table 4, the elastic compression component wes
greater than the base settlement component in the case of three foundations.

The calculated base settlement was as little as 0.18-0.47 nmm the
calculated point load was less than 36 of total load at shaft yield condi-
tion indicating that shaft yield load was reached at an early stage of the
point load transfer.

2.3 Dimension dependence of shaft capacity

It is well known that the ultimate unit skin resistance of piles
depends on the pile geometry and the pile-soil stiffness ratio /2/. This

This method applies the following side load transfer model. The settlement of the
pile shaft equals the settlement of the soil adjacent to the pile. The settlement of the pile
shaft can be written: w(z) = X (z)/ot where et= G/(Srn); K =In(r /tr ) ; rm=25 -£(1-V);
i = length; =radius of pile. This model can be substituted by the'fo'llowinl) - mathematical-
ly equivalent - relative displacement type side load transfer equation. It is assumed that
relative displacement between soil and pile is arising only from pile settlement. The oc term:
d{=tgp_Js. .. if w(z)as, and <*=tg.P  /w(z) if w(z) <s. where notations are in
accordanc%itf& e model presented in Part I!ff* n
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D(m)

Diameter,

Elastic compression wE
Base settlement wB
Fig. 10. a) Diameter and soil dependence of unit skin resistance (result from field tests,

/21)j b) Diameter and stiffness ratio dependence of elastic/base settlement ratio
(result of the parametric study)
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0 20 AO 60 80 _.100
Point load . Qp ,4 %
Total load ' Q 1

10 20
Elastic compression W

Base settlement

Fig. 11. a) Relationship between skin/total load ratio (Q /Q) and L/D ratio (after /2/);
b) Relationship among Q /Q ratio, stiffness ratio ant?L/D ratio (result of the
parametric study)
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fact can be explained as a corollary of the model, the hypothesis and
assumption described in Sections 1.1, 2.1 as follows.

The relative displacement between soil and pile can be increased
only by pile settlement (soil does not move upwards). If the critical base
settlement is constant and independent of the pile geometry, dimension and
stiffness ratio dependence of the unit skin resistance can be attributed
exclusively to the dimension and stiffness ratio dependence of the elastic
compression settlement incident to the critical base settlement.

The load transfer theory of Randolp and Wroth /15/ makes it possible
to compute the elastic compression settlement for a given value of base
settlement, in the function of the dimension of the pile and the stiffness
ratio. The settlement of the pile top may be expressed in terms of the
settlement of the pile base by /15/.

Equations (13) and (1A) can be compiled:

WES
WBs

+ 1.0 (15)

Eg. (15) wes used to compute the variation of the elastic compression
settlement;base settlement ratio in the function of pile dimension and stiff-
ness ratio and results were compared with the experimental results of Brandi
on Figs 10 and 11. The similitude between the measured and calculated curves
is remarkable.

3. Conclusions

The aim of the discussion presented herein wes to reveal the pos-
sible reasons of the inability of the plasticity approach to determine the
ultimate shaft bearing capacity of piles. These reasons are as follows:

3.1 The physical equation of the side load transfer can be expressed
in the function of the relative displacement between the shaft and the
adjacent soil.
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3.2 The ultimate side resistance is time dependent and the long term
value can be approximated by the yield value. Its time dependent nature is
caused partly by the time dependent soil parameters partly by the fact that
the relative displacement between pile and soil is time dependent.

3.3 Soil deformations under newly applied load results in skin fric-
tion variation because deep foundations are statically undetermined struc-
tures. According to Section 1.3 an interrelationship exists among the skin
friction, soil deformation and the vertical normal stress of soil. The final
value of the skin friction is limited by the vertical yield stress of the
soil around pile.

3.4 The hypothesis that the yield of skin resistance coincides with a
small and dimension independent base settlement was supported in the case
of five statically loaded piles. Point settlements associated with the yield
of skin resistance were back-calculated from load test results. They has
been found as negligibly small.

3.5 Dimension and property dependence of the elastic settlement-
base settlement ratio determined by a parametric analysis has been found as
very similar to the well known dimension and property dependence of the unit
skin resistance experienced in loading tests. This similitude is the
corollary of the above mentioned hypothesis.
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EXPERT SYSTEM FOR GEOTECHNICAL TESTING OF DAMAGED BUILDINGS
REDEY, G.* - PAAL, T.**

(Received: 5 November 1987)

A new software type, expert systems (ES), is swamping the world quickly nowa-
days, that is proved to be useful for meny application instances of several fields
in  Hungary, too. As for the applications to the field of engineering, or more
precisely that of architectural engineering, they have been increasing in number and
varying unboundedly in subject in the recent few years. Only in the Hungarian Insti-
tute of Building Science there are two systems which we started to develop last year.
One of them is an ES based on the knowledge of the Hungarian Building Regulations and
supporting decision making in the building authorization process; the other one,
discussed below, is a rule based prototype system written in MPROLOG trying to cover
the knowledge of an experienced human expert who deals with finding out possible
reasons of building failures.

1. The expert knowledge of the system

When a building is damaged, it may be useful to find out the
possible reasons of the damage for later restorations. Usually the owner of
the building asks an expert to perform this job. The expert makes his ex-
aminations on the spot, collects building, soil mechanical, environmental
etc. data, and he also makes interviews with people living there if it is
necessary.

This kind of work requires great experience, caution and expertness,
many standpoints are supposed to be weighed simultaneously. So some details
which seem to be unessential at first sight can escape huren attention and
early prejudice can surpass certain routine analyses. This is the reason
why human expert's working style based on 'soft' memory and 'associative’
reasoning method is to be supported by the ‘'hard’ memory and 'deductive’
reasoning method of ESs.

*Rédey, G., SzKl Intelligens Software Rt., H-1015 Budapest, Donati u. 35-45,
Hungary

**Paal, T.,'Municipal Institute for Civil Engineering Design, H-1014 Budapest, Uri u.
64-66, Hungary

Akadémiai Kiadd, Budapest
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W present here some parts of the expert knowledge from the
engineer's point of view which is systematized on the base of the following
principles/1/ :

1) To start with, we evaluate the environmental data including e.g.
the ground conditions, the position of the building related to its sur-
roundings, the neighbouring mining activities or waterflows if there are
any eftc.

2) It is followed by the building data, partly the bearing capacity
of the structure, partly the data of the foundation concerning mostly the
case under discussion (the uniformity of the foundation etc.).

3) The next step is to take into consideration the external effects
on the building: dynamic effects (earthquake, damage caused by war, pile
driving etc.), external objects or events having effect on the ground below
the foundation (neighbouring building activities, ground water drain etc.),
previous changes on the building (adding a new storey to it, change of
ceiling etc.).

4) Then it is followed by the description of the damage: the number
and position of the damaged buildings, the classification of the cracks, the
dynamics of the damage process, water conduit defects, foundation
damage etc.

5) Finally these data are completed by the classification, qualifi-
cation and conditional characterization of the soil according to soil
mechanical standards.

Now we present some representative part of the expert knowledge,
namely the connection between the data associated with the environment, the
building etc., and the types or the phenomena of the damage.

During the analysis the so-called primary characteristics have al-
ways particular importance with respect to the determination of the damage.
Because of its complexity, the reason of the damage is not always clear, so
we have to take into consideration the so-called necessary but alternative
and the possible characteristics, too. Besides, we have to sort out the
cases when damege can be definitely or almost definitely excluded.

The above-mentioned relations can be characterized by the following
categories:

0 primary sign,

1 necessary but alternative sign,

I possible,

s almost excluded,

x excluded.
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The damage types are the following:

i water gets to the foundation,

i ground water level changes,

Pii heat effects on the ground,

iv soil compression,

\Y; ground movements,

Vi the damage is not in connection with soil data.
The damage phenomena related to the damege types are as follows:

i/l  compaction,

i/2  subsidence,

i/3 erosion,

il4 swelling,

i/5 loss of consistency,

i/6 chemical effects,

ii/l-i6 the same as above, because of ground water conditions,

iii/1 freezing,

iii/2 shrinking,

iii/3 burning out,

iv/l compaction,

iv/2 subsidence,

v/l sliding,

v/2 earthquake,

v/3  underground hollow/cellar,

v/4  underground mining/metro building,

Vi the damege can not be traced back to soil characteristics.

Sore representative parts of the expert knowledge are shown in
Tables 1-3. The detailed description of the expert knowledge can be found
in /3/.

2. The formalization of the expert knowledge

In this paragraph we try to demonstrate the formalization process
of the previously presented expert knowledge parts. However, considering
the size of the knowledge base and the difficulties arising as soon as more
than informal information is to be given about this process, we can only
try to illustrate it with an example having rules from almost every level
of the knowledge base.
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Table 1 Environmental data

the ground under the building
is»nearly horizontal

inclined

'steep

the building stands
(epartly x in cutting |
ItotallyJ |

exposed to erosion
sliding area

mining activities/underneath
Inearby

old beds/dead stream beds

munderneath 0
Inearby

water/flows to the building 0

gathers in\
depressions]
near to J

Table 2 Building data

the storey number is/one
Ltwo

a cellar is madel...........
I partly under
'the building

no cellar underneath

the load bearing structure is
IPier

‘'mixed

o

Vi
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Table 3 External effects on the building

dynamic effects/earthquake
damage caused by war
explosion
pile driving/sheet
piling
traffic diversion
-something else

special heat effects cold-storage plant

boiler
Afoundry

ocpo

Table 4 The description of the damagefr

the damage is individual

some buildings

standing separately, are included |
in agroup J

the damage occurrence varies !
depending on direction

there were

myutter and drainpipe, preceding 0
defects the
wall dampening damage |

ecellar watering J | 0

Vi

Vi

91
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Table 5 The classification, qualification and conditional characterization of the

soil under the buildingl

i i iii iv v

classification according to
the grain size distribution'™'

gravel (G) over 2mm X X X X X X X X X X X X X 1 1 1
sand (S) O.U2mm 1 J 0 x X 1 ! 0 X X x x 1 T ox 101 1
m (M) 0.024Olmm L 10 X 110 X Lx g D11
silt  (Si)0.002*0.omm T S T S T,
clay  (C) under 0.002mm ' 101 ; 11 [ X 1 11 1
uniformity coefficient (U)2
gravel well X X X X X X X X X X X X X X X X 11 1
medium sorted X X X X X X X X X X X X X 1 1 1
badly T x o x x x I x x x x X X X & ox x 101 1
sand well 1 X X X X X X X 1 11
medium sorted 1 % X X 1 1 x x X X 1 X 1 11
badly - 1 1 Y x x R X X 1 3 X 1 11
no well 1 T X 101 X 1 X 101 111
medium sorted 1 1 1 X 1 1 1 X 1 X 11 101 i
badly =z 11 1 X 110X 1 X 11 111

1CIassification according to the name of the component having the greatest share. If
(Si + C) ¥ 10 and the soil is not cohesive then its adjective is 'silty'. If the adjective
can not be determined in accordance with the previous rule, then the most distant component
plays this role.

2
Uu> 10 well h

3<U 710 medium sorted
U< 3 badly
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Table 5 (continued) The classification, qualification and conditional characterization of

degree of saturation (Sr)

danp under 0.3
wet 0.3*0.8
nearly saturated 0.8*0.99
saturated 1.00
plasticity index (1 )
no under 3%
silty mo 5*10%
silt 10*15%
lean clay 15*20%
medium clay 20*30%
fat clay over 3%

consistency index (I )
very soft under 0.25
soft 0.25*0.50

close to
plastic 0.50*0.75

plastic 0.75*1.00
hard 1.00*1.50
very hard over 1.50

compactness
natural granular soil
void ratio (e)
very dense under 0.6
medium dense 0.6*0.7

loose over 0.7

the soil under the building

i i iv \

123456123456 1231212334

Mol M I M 1111 M
Moil 11111 1111 M I M

1 1 1 1 1 [ [
x 1 x 1 11 [ [
M 1 x [ 1 x 1 x [ [
M 1 x [ 1 1 x 0 x [ [ 1]
i x 1 M i x 1 0 x i1
L1 A Lo

x 1 1 x 11 1 11
x x 0 1 x x 0 1 01 x 1M 1
x 1 x 1 o x I x 1 1x X o x 0o 1M
x 1 x 1 o x 1 x 1 1x x o x 0 111
1yx o1 11 i x 1 1 1+ 01111
1 1 1 1 1: ! & 1 11 11
1 x 1 1 I x 11 111 1 111 1
1 x 1 1 x M il 111 x 1 ™M il
X x 1 1 X X x 11 11 1x x 111 1
i Lomoio 1111011 11
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Table 5 (continued) The classification, qualification and conditional characterization of

the soil under the building
i i iii iv \Y,

natural cohesive soil
1P=5% 6 4

very dense X x x 1 1 X x x 1t 1 11x x 1111

= . 0.67
e=05 05 dense X X X 1 1 X x x 11 1 1 1x x 1111

0.62 0.62 0.78 1

medium dense 1 i 2 1 11 1! 1 111! 1

0.69 0.75 0.98
loose 00 1 1 00 1 | 111001111

0.78 0.92 1.22
verv loose 00 1 1 00 1 1 111001 111

fill
degree of compaction (T )

r
verv loose under O.QS 0

o1 1 00 1 1 1 10 0111 1
loose 0.80*0.85 0 0 1 1 00 1 1 1110011 1
medium dense  0.85%0.90 L T A tt1r 11
dense 0.90%0.95 X X x 1 1 x X x 1 1 111x x 1i 11
very dense over 0.95 X x x 1 1 X X X f 1 111x x 111\

The expert knowledge can roughly be divided into two parts: one of
them processes verbal input data (Tables 1-4), and the other one converts
numerical input data into non-numerical information (Table 5). The ES asks
for these data and passes them to the knowledge base for further processing.

The system is prepared for dealing with the knowledge associated with
the primary characteristics having signed by 0 in the tables of the 2nd
paragraph. Dealing with uncertain knowledge requires further preparations
which exceeds the limits of this preliminary research, however, we are
planning to extend the system in this way at the next stage.

An example set of rules which can be extracted from the tables above,
namely from the lines underlined, is the following:

'‘Compaction’ is the reason of the damege
if (water gets to the foundation
or ground water level changes in a dangerous degree
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or soil compression arises)
and (the consistency of the soil (I ) is less than or equal to
'soft’
or the compactness of the soil is less than or equal to
'loose’).

Water gets to the foundation

if

water flows to the building

or gutter/drainpipe defects preceeded the darege
or ...

Ground water level changes in a dangerous degree

if

cellar watering preceeded the damage

or ...

Soil compression arises

if

old beds/dead stream beds are underneath
or ...

The consistency of the soil is 'very soft'

iL

Leis_less _than 0.25..

The consistency of the soil is 'soft’

if

Le is_between_ 0.25 _and_0.50.

The compactness of the soil is 'loose’

if

its type is ‘'natural’,
and its character is 'granular'
and its void ratio (e) is over 0.7.

The compactness of the soil is ‘'very loose'

if

A(its type is 'natural’
and
p.ts character is 'cohesive')
and (its plasticity (Ip) is between 5 and 2%
and its void ratio (e) is greater than or

or (its plasticity (Ip) is between 25 and 4%

and its void ratio (e) is greater than or
r~ (1.22-0.92)1
esn :- --45-25 P + 0-92)]}
or its type is 'fill’

and its degree of compaction (T ) is below O.B.

95
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consistency(X) consistency (very_soft)

—consistency(soft)

ic (X)
X <0.25

ic(X)

0.25 E X <0.50

compactness(X) compactness(very_dense) —

compactness (dense)

compactness (medium_dense

compactness (loose) —

— compactness(very_loose) —

compactness(very_loose) Drr-D r

4}

Up

soildype(T)

soil character(Ch)
ip(X)

e(Y)

=natural
Ch=cohesive
5<X<25

0.92-0.76
25-5

X*0.78<Y

25 <X <65

1.22-0.92
X+0.92<Y
65-25

-soil type(T)

t.r.rho(X)

-X <0.8
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Fig. 1. The 'and-or' tree of the set of example roles

The list of rules above is certainly not complete, sore definitions
like ‘'something is less than something' etc. are missing, and it is also
obvious that the formalized description may not miss a lot of similar
definitions of other evident concepts which can not be discussed here in
detail.

We present now a part of the 'and-or' tree (Fig. 1) corresponding
to the rules of the same example, which is a useful device for representing
the logic structure of this knowledge part. (Here—} |-|—+ corresponds to an
'and' node,- O r - to an 'or' one.) A propositon appearing at any non-
terminal node of the tree represents a consequence reasoned by its ante-
cedents which are to be at the successor nodes of the former one. The leaf
nodes represent data input or sore other basic procedure which do not have
any particular importance. The rules are represented in MPROLO5 a modular
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implementation of the logic programming language Prolog, developed by the
Computer Research and Innovation Center (SzKI), Hungary /2/, [/5/, /#6l.

3. The shell of the system

An ES shell is a kind of programming tool that helps the expert
develop his own knowledge base. It is a "domain independent" framework for
constructing and running consultation programs with the facilities for
defining data types and rules according to some set of conventions, which
the user is supposed to keep when codifying the knowledge of his domain /4/.

W have used an experimental ES shell developed by Zsuzsa FARKAS
(SzKIl) having the following features.

It is an APES like shell, or more precisely it performs two of its
functions:

—explanation trace (reasons for the achieved conclusion),

—user query (to collect missing information).

The main advantage of this system is that it performs only one level
interpretation of the rules making optimum use of the MRAGG interpreter.
It talks in English to the user and the system has sore useful devices to
make the conversation more fluent. It puts the questions either in menu
lists or one by one, in this latter case the valid answers are also avail-
able. The explanation trace starts if needed and follows the rule activa-
tions level by level.

4. A simple example session

The dialogue of a simple example session showing how our system
actually gets to conclusion and gives its explanations is presented below,
"x", marking the user's answers, is the prompt of the shell. Our comments
are emphasized in the text.).

For which object X is it true that water gets_to_the_foundation (X)?

1 water_flows_to_the_building

2 cracks_of_the_walls_are_at_the_water_block

3 cracks_of_the_walls_are_ at the_drainpipe

4 cracks_of_the_walls_are_at3he_j3rain_gutter_defects

5 cracks_of _the_walls_are_at_the_gutter_or_water_conduit_leading_
through_the_wall

6 known_gutter_or_water_conduit_defects
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7 water_consumption_raise

8 gutter_and_drainpipe_defects

9 corrosion_of_the_foundation

10 water_delivery_pressure_pipe_defect_discovered_at_the_foundation
11 gutter_break_discovered_at_the_foundation

12 drainpipe_break_discovered_at_the_foundation

13 water_of_unknown_orlgin_discovered_at_the_foundation

(We have chosen the first option.)

Xl

For which object X is it true that ic(X)?
x0O.l

(Let1 =0.1)

damage_type(compaction) can be deduced

Do you need explanation?
xyes

(Here starts the explanation trace that describes how the conclusion could be or has been mede
using the facts and rules in the knowledge base.)

damage_type(compaction) 4= is deduced using the rule:

damage_type(compaction) if
(water_gets_to_the foundation or ground_water_level_changes or soil_
compression) and
(consistency(X) and_greater_than_or_equal_to(soft, X) or compactness
(Y) and_greater_than_or_equal_to(loose, yT).

showing the following conditions
(1) water_gets_to_the_foundation(water_flows_to_the_building)
and

(2) consistency(very_soft)
d

an
(3) greater_than_or_equal_to(soft, very_soft)

(The rule printed in prolog format above is the same as the first mentier of the example set of
rules presented in the 2nd section. The menu list following it contains the fulfilled condi-
tions and the corresponding variable assignments of the rule that were sufficient to draw the

conclusion.)
Continue?
x|

water_gets_to_the_foundation(water_flows_to_the_building) 4= wes tols by
the user

(The previous answer of the system referring to a fact given by the user indicates the end of
this branch of the deduction tree (see Fig. 1), so we continue on our explanation trace by
backtracking to the preceeding level.)

Continue?
Xparent

damage _type(compaction) = is deduced using the rule:
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damage_type(compaction) if
(water_gets to_the_foundation or ground_water_level_changes or soil
compressionT and
(consistency(X) and greater_than_or_equal_to(soft, X)
or compactness(Y) and greater_than_or_equal_to(loose,Y)).

showing the following conditions
(1) wati‘{ﬂ gets_to_the_foundation(water_flows_to_the_building)

(2) consistency(very_soft)
and

(3) greater_than_or_equal_to(soft, very_soft)
Continue?

*2

consistency(very_soft) 4= is deduced using the rule:

consistency(very_soft) if
ic(X) and X< 0.25.

(See example set of rules.)

showing the following conditions
(1) ic(0.D)

Continue?

x|

ic(O.l) 4= wes told by the user

Continue?
xparent

consistency(very_soft) 4= is deduced using the rule:

consistency(very_soft) if
ic(X) and X < 0.25.

showing the following conditions

(1) ic(0.l)

Continue?

*parent

damage_type(compaction) <= is deduced using the rule:
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damage_type(compaction) if
(water_gets to_the_foundation or ground_water_level_changes or soil
compressionT and
(consistency(X) and greater_than_or_equal_to(sofi, X)
or compactness(Y) and greater_than_or_equal_to(loose,Y)).

showing the following conditions

(1) water_gets_to_the_foundation(water_flows_to_the_building)
and

(2) consistency(very_soft)
an

(3) greater_than_or_equal_to(soft, very_soft)

Continue?
X3

greater_than_or_equal_to(soft, very_soft) is deduced using the rule:

greatsr_than_or_equal_to(X,Y) if
X»Z and greater_than_or_equal_to (Z,Y).

(This is the definition of 'something is greater than or equal to something' to compare non-
numerical objects.)

showing the following conditions

(1) soft» very_soft
and
(2) greater_than_or_equal_to(very_soft, very_soft)

Continue?
x|

soft » very_soft 4= is a fact

Continue?
xparent

greater_than_or_equal_to(soft, very_soft) 4= is deduced using the rule:

greater_than_or_equal_to(X,Y) if
X» Z and greater_than_or_equal_to(Z,Y).

showing the following conditions
(1) soft» very_soft

an
(2) greater_than_or_equal_to(very_soft, very_soft)

Continue?
X2

greater_than_or_equal_to(very_soft, very_soft) 4= is a fact

Continue?
Xparent
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greater_than_or_equal_to(soft, very_soft) 4= is deduced using the rule:

greater_than_or_equal_to(X,Y) if
X Z and greater_than_or_equal_to (Z,Y).

showing the following conditions
(1) soft p>very_soft
and

(2) greater_than_or_equal_to(very_soft, very_soft)

Continue?
xparent

damage_type(compaction) 4= is deduced using the rule:

damage_type(compaction) if
(water_gets to_the_foundation or ground_water_level_changes or soil
compressionT and
(consistency(X) and greater_than_or_equal_to(soft, X)
or compactness(Y) and greater_than_or_equal_to(loose, Y)).

showing the following conditions
(1) watgrrﬂ gets_to_the_foundation(water_flows_to_the_building)

(2) consistency(very_soft)
and
(3) greater_than_or_equal_to(soft, very_soft)

Continue?
xend

X = compaction
Continue (y/n)? n
X
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CALCULATION CF HYPERBOLIC PARABOLOD SEQVENTAL SHELL WITH PROTRUDING
UNSUPRCRTED BEDCGE

SAJTCS, |.*
(Received: 5 November 1987)

Membrane forces of a hyperbolic paraboloid segmental shell with protruding un-
supported edge are given in a closed form in this work. Calculations have been nede
on the basis of Pucher's equilibrium differential equation defined in oblique co-
ordinate system. A numerical example is given to compare the result of calculations
with the solution resulting from the difference method.

Introduction

Arong easthetically attractive segmental shells (Fig. la), the most
daring design is a shell with protruding unsupported edge and segments bent
in two directions (Fig. Ib).

The membrane forces of such shells have been dealt with, among
other authors, by Csonka /1/ who has found two solutions, one where the
surface is determined for given load and given stress function and another
where the solution applies to a shell segment designed as given translation
surface (e.g. hyperbolic paraboloid shell) the force system being determined

by use of the difference method.
Based on solution of the equilibrium differential equation system,

a segmental shell with hyperbolic paraboloid mid surface has been built by
Candela /7/. He used successive approximation to meet the boundary condi-

tions.

This work deals with determination of the mentrane forces of a
hyperbolic paraboloid segmental shell with protruding unsupported edge.
Calculations are mede on the basis of Pucher's equilibrium differential
equation defined in obligue co-ordinate system. A numerical example is used
to compare the result obtained and the solution obtainable by means of the
difference method.

*Sa)tos, Istvan, H-1035 Budapest, Vorosvari u. 27. X. 29.

Akadémiai Kiadd, Budapest
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b.,

Fig. 1. a) Segmental shells; b) Segmental shell with segments bent in two directions and
with a protruding unsupported edge

Assumptions, conditions

The basic assumptions of the membrane theory have been adopted in
calculations /1/, /2/, /3/.

The mid surface of the shell is a hyperbolic paraboloid described in
Cartesian co-ordinate system xyz by equation (Fig. 2)

zZ= A2 - Bp ()

where n N
A=-i , B=-a- . (2a,b)

a b

The geometry of the projection of a shell segment is determined by
two radial straights and a parabolic arc at the unsupported edge (Fig. 2).

The segment is supported rigidly along the straight edges while un-
supported along the parabolic arc. Equation of the projection of the unsup-
ported edge:

y =D- BR 3)
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Unsupported edge

Fig. 2. Geometrical specifications of a stell

n b t segment

where
D=b+c , E= °2 (4a,b)

Only vertical loads (in the direction of axis z) have been taken in-
to consideration in calculations.

Possible solutions

The sectional forces can be obtained by solution of Pucher's equi-
librium differential equation.

Shape of the equilibrium differential equation in the Cartesian co-
ordinate system:

=-9 (5)

where z = z(X,y) equation of the mid surface
F= F(x,y) stress function
9 = g(x,y) intensity of vertical loads relative to the baseplane.
Simple integration can be used to resolve the differential equation
provided (5) can be transformed into

O2F

=- Zlu,v/ (6)
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by co-ordinate trnsformation,
where u and v are new variables while

Z(u,v) is the load function obtained after transformation.
Transformation is possible in two ways.

1) As is well known, it is possible to assign to a two-variable
guasi-linear partial differential equation of the second order according to
(5) an ordinary differential equation /8/, /9/

92z H2 . 92z dxdy + -0 @)

the solutions of which giving the characteristics of the equation.

In case of a hyperbolic differential equation, there exist two real
groups of characteristics. (In case of a hyperbolic parabolid mid surface,
partial differential equation (5) is hyperbolic.)

By means of the characteristics, it is possible to write the dif-
ferential equation (5) in a canonical form. In the hyperbolic case this
will be e.g.

92F - z@u,v) (8)

obtained by introduction of new variable u and v.
2) Another possible method is to define the mid surface of the shell
in an oblique co-ordinate system uvz resulting in

(9a,b)

Now also the Pucher equilibrium differential equation shall be
defined in this oblique co-ordinate system. The equation will then be /5/,
/el, 17/ (Fig. 3):

92z 92F , 92z O92F 02z 92f

- (10)
9u2 9v2 9u9v 9u9v 9v2 u2

where z = z(u,v) equation of the mid surface in co-ordinate system uvz
@ angle included by axes u and v

F = F(u,v) unknown stress function
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Fig. 3. Definition of sectional forces in
oblique co-ordinate system uvz

g =g(u,v) vertical load intensity function parallel to axis z in
co-ordinate system uvz, relative to the baseplane.
Because of conditions (9a,b), equation (10) will take the following
shape:

2 32z Qe -g sinco . (1D

The second way is adopted in this work.

Transformation of the mid surface of the shell

Transformation includes rotation of axes x, y in their own plane
around the origin through angle if and change of the angle included by them
(90°) into angle co(co W 90°) (Fig. 4).

The relationship between co-ordinate systems uv and xy is described
by the following equations:

X=uoswy -V sinip |, (12a)
=u'sinift + v cosip (12b)

where
'=u+vVvcosco |, (13a)

v' =Vsin co . (13b)
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Fig. 4. Relationship between co-ordinate
systems uv and xy

Substituting this into (1) by use of conditions (9a,b),

and

are obtained (only one of the possible values of angle has been taken into
consideration).

Then, with (12), (13), (14), (13) substituted into (1), the equation
of the mid surface of the shell will be obtained in the new co-ordinate sys-
tem uvz as

Z=T . Ww (16)
where
r =- 2(A cos2y> + Bsin2”*) . a7

In the new co-ordinate system, the equation of the unsupported edge
is obtained by substitution of (12), (13), (14), (15) into (3):

(18b)

2 E cos

It is only the positive (+) sign that has a meaning in the above ex-
pressions if w > oc (Fig. 5).
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Fig. 5

In this case, only one value v is associated with each value u
because straights v = const, and the parabole have one intersection along
arc B if the value of v varies between vg and Vg. The sare applies also to
variable u.

Condition shall be satisfied so that the membrane state of
the shell segment will be existing and unanimous /4/, /8.

The unsupported edge shall be such as to intersect each character-
istic at only one point as otherwise no membrane state of the shell could
exist (Fig. 6).

Unsupported edge

Rigid

Fig. 6. Rule of plotting of the geometry of the unsupported edge

Relation between sectional forces in oblique and Cartesian co-ordinate

system

The relationships between sectional forces in obligue and Cartesian
co-ordinate system are well knomn /2/, /6/, [7/ and the sanmerelationships
are applied to reduced sectional forces in the present case (Fig. 7).

The following results are obtained:

n 1 (192)

*  2tgf
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Fig. 7, Relation between sectional forces in oblique and Cartesian co-ordinate system

r&/ =5 (nu +tn, + 2 nuv) , (19b)

LVRRLY
Xy (19¢c)

Determination of sectional forces

Taking into consideration (11) and (16), Pucher's differential equa-
tion can be written, as follows:

-2r 3F . g(u,v) sin w (20)
amndV

Of this equation, the stress function can be obtained by integration:

F=-"2r sin tO\]\] (- g(u,v))dudv + CL(y) + Q(v) (21)

The reduced sectional forces can be calculated in the knowledge of
the stress function /1/, /2/, /3], IS5/, /6/:

d2F
----- (- g(u,v))sin oo (22a)
w M Dy 2r
3 2F (22b)
u 3v2 ’
92f

.o (22¢)
v' 2u2
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Boundary conditions can be stipulated along the unsupported edge
/1/. After their transformation, conditions

3F
o it V=\bu) > (23a)
n 9
T
it U=y - (23b)

are obtained.
Required for calculation are also the derivatives of functions
(18a), (18b) describing the unsupported edge:
2 sin
0\/:1-.“ 2 2 2 2_ 2 (242)
" (sin \)) - 2vEcos - 4Ecos” (vsin  + V' Ecos"lj) D)
2 sin 1
(24b)
b (sin 1> - 2uE<3032\4'>)2 - 4Ecos2 (usin ¢>+ m2E0032 L>m D)

The actual sectional forces can be calculated in the known way after
both obligue and, as a result of transformation, Cartesian co-ordinate
system /1/, /21, 13/, IS5/, I6l.

To produce stress function (21) directly would be a rather tiresome
job while the reduced sectional forces can be relatively simply calculated.

Stress function (21) takes the following shape:

FoPg )+ Gy + 20 (25)

Quantities 3¢/ 3m and 32/ 3v can be calculated from conditions
(23),

SR,y acim)
an an

=0 (26a)

3Teuhy) Lo

=0 (26b)
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and by neans of these quantities, also expressions 32C,/ 3wn2 and
can be obtained. In the knowledge of the derivatives of integra-

3 u2/ 3v
tion constants, the reduced sectional forces can be calculated on the basis
of (22):
ANMCu.v) ,32c2(v) (27a)
3v2
32c,,
AKuU L) KU? (27b)
an2 3u2

nuv being obtainable on the basis of (22a).

Sectional forces

In case of uniformly distributed load

Load function:
g(x,y) =g(u,v) =p = const. (28a)

Using (21), (22), (27), the reduced sectional forces are obtained as

1 .
nu = -"2F pSIn 2, (28b)
1 sin 2 (28c)
nu =--2Fp Y ©ub
(28d)

T .
n, = SsRsin 2 L

2. In case of arbitrary load

is used to approximate the load function. In the

A polynomial
the polynomial takes the following shape:

Cartesian co-ordinate system,
g(x,y) =p + Plx + p2y + p3x2 + pdxy + pby2 + p6x3 + p?x2y + pOXy2 +

+P9)'3+P10x4+pu x3}’+ p12>(2y2+p13xy3+p1p>/1+,,, (29)
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Transformation of the load function is carried out term by term, the
sectional forces associated with the different terms of the load function
being obtained in the following way, making use of (21), (22), (27):

gr(x,y) = PX ghu.v) =  cost> (u-v) , (30a)
Puv =" ~2r P1 003f sin 2f (u-v) > (30b)
"u =4 f Pl sin2f [-*-4/"~ -Avy-V] . (30c)
nv= " pl cosy sin 2y [v-(vb+uv' - v~)] . (30d)
g2(x.y) =p2y g2(u,v) =p2siny (u+v) , (319)
nuv =" ~27 p2 stnif sMn 2f(u +v) , (31b)
nu=~b P2 Sinf Sin 2f [U-(ub”*+ v +V ] (31c)
R/ =~2t P2 Sinlf sin 2f [v' (vb +Wb +V b5] - (31d)
g-j(x,y) = PiX g’Cu.v) =p? cos y(u - 2uv +v ) (32a)
nuv =- —%‘r—pszcos *psin Zq)(m2 - 2uv + v2) , (32b)

NI SEE@PReED Eiviy- b (2
NPReS I |- 4REK + (R @

2 2
04(X,y) = P4xy , g4(u,v) = P4 sinfcosyiu - v ) , (33a)
nuv =" ™2r P4 sini{?cos” sin 22 (u “ v ) » (33b)
) ) (33c)
nu =“2? P4 SinT sin 2T [- 2uv - (uk ' ubv2 “ 2ubv)J

nv =17 p4 sinf cost sin 2y [2uv - (2uvb + u2v”® - v2vh) ] . (33d)
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B(x,y) = PsY g5(u,v) =p5 sin2’\Cu2 + 2uv + y2) , (34a)
1 2 2 2
nuv="17 P5Sin f sin 2" u +2w +v ) (34b)
nu=17 5 Sip2T Sin 2f P+2uv - (3ubub + 2V b V+lb + W2 + 2ubv) ] -+ (340)
P
ny =71 p523in ij) sin 2vPrj"vZ+ 2uv - (2uvfa + u2 42- via+ 2uvbv* + 3y N) Jl . (34d)
9 (x,y) = P& g6 (u,v) = pé cos3i>(u-v)3 (35a)
Pé cos3y) sin 2ij>u - v)3 (35b)
= FB(IB&‘SinZA u3 + 3u2v - 3uv2 - - By + 1m3) +
W2 2 .3
3(ub%v + ubv) - (ubv + 3Ub.ﬂ 1} (35¢)

= p éoxdf sin 2" "Su - 3w2+y3 - A3”2"b * "‘3"6 - E(U"tz) * ”va"t'uj *

+v3 +3uv%v' - v3'
b b b (35d)
2 . 2
Oiixy) =pady . mam~ = p sinircos” b uv?uf e (362)
1 2 3 2 2 \/3’
nu =”ir P7sin( cos 4>sin 2vAu - w - u V+ ) (36b)
1 L2 0 o2 u3 7 I3 ? 2
M =17 P7 SInlf cos *fsin 2ifl.uv-— +3uw -LVb -VbV “v -
m ~3~ (3ububv + ub} + Wov3 + 3nby2] } (36c)
v= ! p7 sin foos?~ sin 2d) {3“2\/ - \){3 - uv2 ro2 s
- [3uvb+uvb-
1 (UV3+3UV2 y 2 2, 3,1
3 Wy bb b wbbBYl m . (36d)
2 2 3 2 2
9g(xy) = Py g0(u,v) = po sin I>cosijku” -uv +uv-v§' , (37a)
nw = - -y PgSin2® aoglj)sin 2 (U3 - W2 + WV -V 3) (37b)
1 2 ( 2 v o, 2 f3, , 2 2
nu =17 P8sin ‘f coslf sin 28> Vv+— - 3u - |ubub - vl ‘v
(37¢c)

~T (3V bv + ub} ' uby3 ' 3V 4} )
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n" = ! Pg sinz/\cos/\sin 2in {Suzv - —\)//3 + uv2 - LSUZVD+ ugvé-

S A(u%/b + 3uv% vkljy + uv% + uzvbvb - ngb'ﬁul . (37d)
99(x.y) = P9y3 . 99(u,v) = p9 sin3*(u+v)3 (3Ba)
nuv = _ _2r P9 sin3” sin 2"»(u+v)3 (38b)

1 , 3., . 3 2 2 3, , , 3.
m = p9 sin iPsin 2iPiu +3uv+ 3uv - i + N u%LbV +ub" +
+ 3(u]ijv2 + qu) +(Lb>3 + 3ubv2)':]] 1, (3Bc)

1 3 2 2 317 2 3 2 2
n" = p9 sin i>sin 2Y \3uv +3uw +v - Yuvb +u”™ + 3(uvb + u vbvb" +

3,2 . 3,
v F 3uvbvb + Vb\'ib]-} . (38d)
910Cx,y) = P1OX . 910(u,v) = pl0 cos Vj>(u-v) (39a)
1 4
2i P10 cos sin 2">(u.v)4 (39b)
I
T e 3 22 .3, 4
= SIS cos4i|)sin 2ij>.~-u4 + 4u v - 6u v + 4uv oAbV - ub +
bure’ s 524 23 14
w2(3ububy? T 2UBY) - 2(2ubutviw sutv) +utve 4y, 1) » (39¢)
= o] ccs4<|)sin 2ij> 54u3v - é& \2/ + 4uv v4 + UV
= © - K b
-232v2 ' +322‘V c4+4 nyy o+ 39d
(BuVy + 2wy + 2(2uvg * Suvpv) - G Y T ws i} = (39
gu (x,y) =pnX3y = 9U (u’v) " P11 sin~cos34>(u-v)3(u+v) (402)
nuv = Pn cos¥ sin 2> (u-v)3(u+v) t (40b)
ny = p” sintj) cos3>sin 2y -J- u4 + 3u2v2 - 4uv3 - |udu” -

- ~2% (4ubUbV + +V b A 43V 2% (ut/ +V 3)]} -+ (40¢)
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§7 pu sinvAcos Il) sin 27 J4u3v - 3%8 +-§7 vt rZlusvb+ u4 b -

-(3u2v% + 2u3vb\6') + - 5 (vé + 4uvg\{)‘) -V \b 33 . (40d)
22
912(x,y) = PI2x y > 912(u,v) = %ﬁ sin |pcos |p(u V) (u+v) (41a)
1 .2 2. .
nuv = --— p"2 sin wcos ipsin 2Y(u-v) 2(ut+v)2 , (41b)
wo oo P2 sin20>COSZIF" sin 27 -[ " uwdv + 4vdu - ‘Eugut; -
2 (3u2u"v2 + 2u3v) + 4u v (41c)
3 By B ARV ]_}
1 .2
= o P2siny Coszvl> sin 2v Mudv - 7;71, uv3 E4u3vb +u Vt;
e 3uz 2
S(UVB+ qub5+vb]1 ° (“41d)
913(x,y) =p~xy3 g13(u,v) = p13 sin3p> cosi|>(u-v)(u+v)3 , (42a)
1 .3 .
, o P13 sin Y cosiP : -v)(u+v)d (42b)
sin’y cosy sin U 437 -4&)\’/ ra. 1 3 - 4n
2r P13 Lubub +1 " (4Vbv +V -
3 2 2 .4
R QUbUt;\I - &Jbv Suvom fl} - (42¢c)
h = )} p13 sin?‘\scos(llsin 2'rFr’§l41u3v +397 - L. 5403%4 u4\l't') ¥ Sa %’b +
3
+ W, v é (v + 4uv b—) - Vb\{)-ill' (42d)
914(x,y) =pu yd |, 914(u,v) = pl4 sindy (u+v)4 (43a)
(43b)

"uv ="27 Pl4 Sin4f sin 2If (u+v)4
=3, RI4S'n \,Psm gvpf +4uv+6uv2+21uv - Ej{éu’l;+4%3ul;v+£ +

== I} WA RYZS AL
+ Z(SU%VZ + 2ubv) + 2(2ubtbv + 3ugv2) UV o+ 4ubv_ |IJr , (43c)
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n =— sin\? sin 2ic ~4u3v + 6u2v2 + 4uv3 + V4 - Mus + U4V

. . . oyt
+2(3uV 20V y) + 2(2uvg + 3uVvp 4UV%Vb + vabljl

Numerical example

Let the equation of the surface be (Fig. 8)

while the equation of the projection of the unsupported edge
y = 33.716 - 0.0435 x2
the load being uniformly distributed:
p =10 kNm2 .

Quantities required for calculation:

A =0.1015

B = 4.3984 10—%3

D=233716 m

E = 0.0455 mL15
= 1.3655 rad,

r =-0.01686

The reduced sectional forces can be seen in Figs 9a, b

, C.
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(43d)
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Let the calculated sectional forces be compared with sectional
forces determined on the basis of the difference method according to /1/.

Agreement between the difference method and the analytical method
can be clearly seen in Figs 9a, b, c.

A deviation between both methods becomes appreciable towards the
centre of the shell. This can be attributed to the fact that, in the dif-
ference method, the values calculated previously have been taken as a basis
for determination of the sectional forces at the different points from the
edge towards the centre and thus the inaccuracy of calculation is cumu-
lative.

Inaccuracy may result also from interpolation to be used to deter-
mine the values of the stress function along the edge in case of the dif-
ference method as the points of division and the edge are not always co-
incident.

Let a point of the edge be investigated to see whether or not the
boundary condition is satisfied.

Let the co-ordinates of the selected point of the edge be x =5.74 m
and y = 32217 m At this point, the reduced sectional forces are nx =
= -499 kNm, n_ = -1.37 kN/m, nxy:2.6 kN/m, the reduced principal sec-
tional forces and their.direction being

n2 = - 6.34 kN/m,
u . 499 + 1.37
= 62.422°
Angle of inclination of the tangent of the edge:

y' = - 0.0910 x = - 0.0910 . 5.74 = - 0.52234
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fi= -27.578°
= 0iQ - 90° = 62.422° - 90° = -27.578°

The boundary conditions are satisfied because n* is normal to the

tangent of the edge and =0, n® =0.
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KINEMATICAL [INDETERMINACY OF A PAIR OF TETRAHEDRAL FRAMES
TARNAI, T.* - MXA , E.**

(Received: 12 January 1909)

In this paper the lack of structural rigidity, that is, the free infinitesimal
movability of a both statically and kinematically indeterminate structure consisting
of two equal regular tetrahedral frames is investigated. The structure is, in fact,
a finite mechanism and its behaviour depends on the relative positions of the tetra-
hedra. Degrees of kinematic indeterminacy are determined and it is obtained that
their value is changing during motion. A change in the degrees of kinematic indeter-
minacy refers to the existence of a bifurcation phenomenon in compatibility.

1. Introduction

To equilibrate given forces in space by six forces of given line of
action, or what is the same, to determine reactions of a rigid body sup-
ported by six pin-ended bars, subjected to forces in space is one of the
basic problems of elementary statics /1/. As is well-known it is, in
general, uniquely soluble but there are "pathological" cases where this
problem has no solution or has an infinity of solutions. In such a case the
constraint (the structure) is both statically and kinematically indetermi-
nate.

This paper presents a structure defining such a "pathological" case
which, in spite of its simplicity, shows some additional properties which
are not at all elementary.

The structure in question wes invented by L. Tonpos Jr, a second
year undergraduate of the Hungarian Academy of Craft and Design in 1982.
Its physical model consists of two equal regular tetrahedral frames which
are fitted together in such a way that the bars of one of the frames touch
from the outside those of the other. The six contacts constitute six bar-

*Tamai, Tibor, Hungarian Institute for Building Science, H-1113 Budapest, David F.
u. 6, Hungary

I\"ﬂ/lakai, Endre, Mathematical Institute of the Hungarian Academy of Sciences, H-1364
Pf. 127 Budapest, Reéltanoda u. 13/15, Hungary

Akadémiai Kiad6, Budapest
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like constraints of degree one which are usually sufficient for preventing
relative motions between two rigid bodies in space. Therefore, we would
expect the pair of tetrahedral frames to be rigid. However, holding the
physical model in our hands we mey easily move one tetrahedron relative to
the other, with the crossing bars sliding over each other. But we also find
that during this motion the bars bend a little , because the cross sections
of the bars have a finite diameter.

In order to avoid the effect of the thickness of the bars we con-
sider an ideal structure whose bars have no thickness and draw all the
diagonals of all the faces of a cube. In this way the edges of two regular
tetrahedra are obtained (Fig. 1). This position of the tetrahedra is called

Fig, 1. Tompos' pair of tetrahedra

basic position. One of these tetrahedra is kept fixed and allow the other

one to move. The only restriction is that

(x) each pair of edges of both tetrahedra which were originally diagonals
of the same face of the cube should s till remain coplanar (i.e., inter-
sect, are parallel or coincide).

The question is whether such motions are possible.

The motions admitted by the physical model - that is, where all the
points of intersection of the corresponding edges of the tetrahedra are
internal points of the edges - are called physically admissible motions.
The motions not admitted by the physical model - that is, where some or all
of the points of intersection of the straight lines of the corresponding
edges of the tetrahedra are not internal points of the edges - are called
physically inadmissible motions.

The aim of this paper is to describe the physically admissible in-
finitesimal motions of the pair of tetrahedra and to show what specific
features they have in different positions. The physically inadmissible in-
finitesimal motions of the tetrahedra are investigated in a separate paper
/2/, but the finite motions (both physically admissible and inadmissible)
of the pair of tetrahedra are discussed in /3/. In this study the kinematic
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analysis is executed in a statical way, but in Section 4 a direct kine-
matical investigation concerning infinitesimal motions is also presented.
The primary am is to determine the infinitesimal degrees of freedom, or
with other words, degrees of kinematic indeterminacy.

2. Principle of the statical method

In order to distinguish the two tetrahedra let one of them be de-
noted by P and the other by Q The edges of tetrahedra P and Q are drawn in
the figures by double thin lines and single heavy lines, respectively. If
tetrahedron P is rigidly attached to a foundation then tetrahedron P consti-
tutes a constraint for tetrahedron Q The constraint is such that the edges
of P support the corresponding edges of Q and the direction of any as-
sociated force (reaction) is perpendicular to the corresponding inter-
secting edges. Since a tetrahedron has six edges, the statical problem that
can be formulated for the tetrahedron Q is one that is mentioned in the
Introduction: to equilibrate given forces in space by six forces of given
line of action.

Equilibrium of tetrahedron Q can be written by a system of linear
equations whose coefficient matrix (which is denoted by gl) is a square
matrix of order 6. (G is the geometric or compatibility matrix and is
known as the equilibrium matrix where superscript T is the symbol of trans-
position.) It is knowm /4,5/ that if G is a square matrix then the degree
of kinematic indeterminacy, i.e., the infinitesimal degree of freedom
(which is denoted by f) is equal to the degree of static indeterminacy,
i.e., the number of independent states of self-stress; and

F=v(@ = V@

where > denotes the nullity of the matrix. (Nullity is defined as the dif-
ference between the order and the rank of the matrix.)

In this way the existence of kinematic indeterminacy and the in-
finitesimal degree of freedom itself can be established by means of a
statical analysis.
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3. Infinitesimal motions in different positions

In this section the infinitesimal movability will be investigated in
a statical way, and in special positions the infinitesimal degrees of
freedom of Tompos' pair of tetrahedra will be determined. Without re-
stricting generality we suppose the edge length of the tetrahedra to be
equal to 2V2

3.1 The basic position

Let s* be the vector of the reaction arising at the i-th support of
tetrahedron Q.,e, the corresponding unit vector parallel to the axis of the
i-th support and s the algebraic magnitude of the i-th reaction (i=1,2,...,
6). Then, s* =s.e”.

Fin. 2. Directions of the forces in the
basic position

In the basic position, let the direction of unit vectors e* be con-
sidered in accordance with Fig. 2. Then, the equilibrium equations con-
cerning the projections of the forces on the coordinate axes x, y, z and
moments of the forces with respect to the coordinate axes x, y, z take the
form
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1 -1 +

s1 2 ﬂ n
1 1 <2 IE y
1 -1 33 . s

s4 XMX
s5 | My

XM

S6 z

where FA, F , Fz and Mk, M*, M are the projections and moments of a single
external force F with respect to axes x, y, z, respectively, and the non-
printed elements of the coefficient matrix are zeros. It is apparent that
in this case

f=V(@©) =3

The fact, that the last three rows of the equilibrium matrix in (1) are
zeros, means that the structure is not able to equilibrate the moments of
external forces about axes x, y, z, so infinitesimal rotations about axes
X, Y, z can freely develop. Let us denote the vectors of the respective
rotations by ipp y>2> fj- By linear combinations of these three rotation
vectors we can define three linearly independent free infinitesimal rota-
tions about the axes passing through the opposite face midpoints (Fig. 3/a),
the opposite edge midpoints (Fig. 3/b) and the opposite vertices (Fig. 3/c)
of the cube, which are called motions of the first kind, of the second kind
and of the third kind, respectively. In /3/ it has been proved that these
three infinitesimal motions are actually the derivatives of three finite
motions, also called of the first, second and third kind, respectively. In
the case of motions of the first kind, also the finite motion has only a
rotation part, however in the case of motions of the second and third kinds,
the finite motion has a non-zero translation part, as well.
Let ~0 >"20" *30 denote ihe positive unit vectors of 2,
,, and let Y denote the vector of rotations of different kinds. The unit
vector of 'f , denoted by tpqg, represents the direction of the axis of rota-
tion; and the algebraic "magnitude of ¢p , denoted by ~ , represents the
value of the angle of rotation.
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Fig, 3. Different kinds of motion of the pair of tetrahedra: (a) motion of the first kind,
(b) motion of the second kind, (c) motion of the third kind

In the positions obtained by different kinds of motion the pair of
tetrahedra has got certain symmetries. Taking these symmetries into con-
sideration we choose new coordinate systems advantageous for further action.
In Fig. 3 these new coordinate systems for positions of the first, second,
third kind are marked by single, double, triple prime, respectively. The
coordinate systems of single and double prime are cartesian but in that of
axis, and

triple prime the axes x"' and y"' are both orthogonal to the z
they are inclined at 120° to each other.
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3.2 Positions obtained by motion of the first kind

In a position produced by a motion of the first kind, and with the
force directions according to Fig. 4, the equilibrium equations obtained by
resolving along and taking moments of the forces about the x', y', z' axes
result in the following coefficient matrix:

0 0 B 0 O (2)
0 B 0O 0-B 0
A A 1 A A -1
0 kKB 0O 0 kB 0
KB 0 0 kB 0 O
0 0 0 0 0 O

where A =sin (b, B=cos 3.

Fig. 4. Directions of the forces in a position obtained by motion of the first kind
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Symbols (band k are defined in Fig. 4. Both R and k are functions of the
angle a. (We remark that angle of rotation 3in Fig. 3/a is given, in the
present notation, by 43= 90° -2 a .) It can be seen that the first and
fifth rows as well as the second and fourth rows of matrix G is (2) are
proportional, and the sixth row of £T is identically zero; 6\ut the first,
second and third rows are linearly independent. Therefore, the nullity of
G , and thus the infinitesimal degree of freedom of the structure, is equal
to three:

The fact that the elements of the last row of Q' are zeros means that the
structure is not able to equilibrate the moment of external forces about
axis z'. Therefore, infinitesimal rotation about axis z' can develop freely,
and its angle mey be regarded as an increment of angle alsince the sides of
angle a are perpendicular to this axis. This property is valid for any
value of d; in accordance with the fact that really there exists a free
finite rotation about axis z'.

The above statement concerning the infinitesimal degree of freedom
is valid for general positions in the motion of the first kind. However,
the question arises whether there are any particular positions of the pair
of tetrahedra in this kind of motion for which the infinitesimal degree of
freedom is greater than 3. It ney be shown that the infinitesimal degree of
freedom would increase from 3 (to 5) only if \B\=90°. Now Qis the angle
between the axis z' and a tangent plane of the hyperboloid of revolution
generated by rotation of the edges of the tetrahedron which are not perpen-
dicular to axis z'. Since this angle cannot be greater than the angle be-
tween axis z' and the asymptotes of the generating hyperbola of the hyper-
boloid of revolution (which is 45°), it follows that |(j| cannot be equal to
90°. Consequently, the infinitesimal degree of freedom cannot be greater
than 3, unless some corresponding edges are parallel or coincident (i.e.,
for vj?/ + 90°, 180°).
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3.3 Positions obtained by motion of the second kind

In a position produced by motion of the second kind, and with the
force directions according to Fig. 5, the equilibrium equations obtained by
resolving along and taking moments of the forces about the x", y", z" axes
result in the following coefficient matrix:

Fig. 5, Directions of the forces in a position obtained by motion of the second kind

G= rF -D A F D A (3)
E C 0 -E C 0
0 0 B 0 0 B
0 0 0 0 0 0
0 0 dA 0 0 -dA
G H 0 -G -H 0
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where

Angles vy, rj, and distances d, e, f, | , mare defined in Fig. 5. All of
these angles and distances are functions of the angle ~. (We remark that
the angle of rotation in Fig. 3/b is given, in the present notation, by

4? = 2jj".) It can be seen that the third and fifth rows of matrix gJ in (3)
are linearly dependent, and that the fourth row of G‘is identically zero;
but the other rows of are, in general, linearly independent. Therefore,
the nullity of G* and thus the infinitesimal degree of freedom of the
structure, is, in general, equal to two:

The linear dependence of the third and fifth rows of means that the
structure is not able to equilibrate external forces whose moment about axis
y" and projection on axis z" are linearly independent. So infinitesimal
rotation about axis y" and a coupled infinitesimal translation parallel to
axis z" can freely develop. The angle of infinitesimal rotation may be con-
sidered as an increment of angle y since the sides of angle y are perpen-
dicular to axis y". This property holds for arbitrary values of y( + 90°);
in accordance with the fact that really there exists a free finite motion
depending on .

The question also arises here whether there are any particular posi-
tions of the pair of tetrahedra in this kind of motion for which the infini-
tesimal degree of freedom is greater than 2. In order to answer this ques-
tion let us transform matrix GI in (3) by standard manipulations of rows and
columns to a band matrix (block-diagonal matrix) which contains the fol-
lowing 2x2 submatrices in its principal diagonal:

B 0 i E C 5 Q 0
0 F G H 0 0

Let the determinant of the second submatrix be denoted by L: L = EHCG. The
nullity of @ is equal to the sum of nullities of these three submatrices.
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Since B and F are not equal to zero at any points of the domain under con-
sideration, the nullity of the matirx (3) (and hence the infinitesimal
degree of freedom) increases (by 1); and so it will be equal to 3, when

L=EHOG =0 . (4)

W have computed the values of function L for different valuesof f
in the domain of the physically admissible motions of the second kind, and
we give them in Table 1. The results in Table 1 show that L is an even
function and the only value of Wamong the listed ones), for which equali-
ty (4) is satisfied, is zero; which corresponds to the basic position of
the pair of tetrahedra. These considerations intuitively convince us that,
apart from the basic position, no other positions exist among the physical-
ly admissible positions in this kind of motion, in which the infinitesimal
degree of freedom is greater than 2.

Table T Values of function L

IT 10 -
arctan

L 0 T.796699XT0-4 3.021204xT0'3 1,65994IxI0~3 5.872989x10'2 1.656306xT0_1

3.4 Positions intermediate between those obtained by motions of
the first and second kinds

In any position produced by motion of the second kind, every element
of the fourth row of equilibrium matrix (3) of the structure is identically
zero. This means that there exists free infinitesimal rotation about the x"
axis for an arbitrary value of 'C. However, as has been shown in /3/, not
only free infinitesimal but also finite rotation may take place about this
axis. In the case of rotation about the x" axis, just as in the case of a
rotation about the y" axis, translations are coupled with the rotation. Fom
a position of the second kind obtained by rotation of a given magnitude
about the y" axis, the pair of tetrahedra can be taken into a position of
the first kind by a definite rotation about the x" axis. Thus, this motion
constitutes a transition between the motions of the first and second kinds.

In a position produced by motion intermediate between the first and
the second kinds, we choose a new Cartesian coordinate system x", y", z"
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Fin. 6. Directions of the forces in a position intermediate between those obtained by
motions of the first and second kinds

(Fig. 6). In this coordinate system, and with the force directions according
to Fig. 6, the equilibrium equations obtained by resolving along and taking
moments of the forces about the x", y", z" axes result in the following co-
efficient matrix:

F -D X T -R (5)
E c Y -S -P

0 0 0 0 -Z

0 0 -dY 0 0 dy

0 0 dX 0 0 -dX

G H 0 u \Y 0
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where
C=sin m& D=—cos =&,
E=sin W, F=cos 1],
G =mFeE H=ID-fC ,
P =sin a, R=cos N ,
S =sin 4, T=cos Tt,
U= nT-gS , V = -pR+hP

and X, Y, Z are the direction cosines of the unit vector e®. Angles ® V]

, K and distances d, e, f, g, h, i , m n, p are defined in Fig. 6. All of
these angles and distances as well as direction cosines of e* are functions
of the angles y and ~ . W find that the third and fourth as well as the

third and fifth rows of the equilibrium matrix in (5) are linearly de-
pendent; but the other rows, in general, are linearly independent. There-
fore, the nullity of and thus the infinitesimal degree of freedom of the

structure is, in general, equal to two:

f=V(@G) =2

This indicates that infinitesimal rotations about the x" and y" axes and a
coupled infinitesimal translation parallel to the z" axis can develop free-
ly. The angles of infinitesimal rotations mey be considered as increments of
the angles “and y . This property holds for an arbitrary intermediate posi-
tion (i.e., for arbitrary admissible values of the angles “and y ) in ac-
cordance with the fact that really there exists a free finite motion in-
volving the rotations about axes x" and y".

Although we have not mede a detailed analysis, it seems that arong
the physically admissible positions the infinitesimal degree of freedom in-
creases from 2 (to 3) only if the intermediate position is identical to a
position of the first kind.

3.5 Positions obtained by motion of the third kind

In a position produced by motion of the third kind, with the force
directions according to Fig. 7, the equilibrium equations obtained by re-
solving along and taking moments of the forces about the x', y"', z™ axes
result in the following coefficient matrix:
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Fin. 7. Directions of the forces in a position obtained by motion of the third kind

3] BH -BD BF BH -BD BF
BF BH -BD -BD BF BH
A A -A -A -A
T2 "T3 Tl T2 -T3
"3 Tl T2 T2 -b Tl
Bl Bl BI -BI -BI -BI
where
A =sin £ , B=cos L,
C=sin & , D=cosb,
E = sin(60°+ b), F = cos(60°+ D),
G = sin(60°-b), H = cos(60°- D),
| = sin(60°-2 b), Tf = t"A-rBG,

T3 = tjA-rBE.

A =
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Angles S, and distances r, t*, t2, t? are defined in Fig. 7 where t
denotes the angle between vector e, (i=1,2,...,6) and the x" y"' plane.
All of the distances r, t,, t2, t* and the angle £ are functions of the
angle a. (We remark that angle of rotation ~ in Fig. 3/c is given, in the
present notation, by if>= 60°-2S.) It can be seen that the third and sixth
rows of matrix in (6) are linearly dependent for any value of the angle
& ; but the other rows of GI are, in general, linearly independent. Thus,
the nullity of G, and hence the infinitesimal degree of freedom of the
structure is, in general, equal to one:

f=vG) =1

The fact that the third and sixth rows of GI are linearly dependent means
that the structure is not able to equilibrate external forces whose projec-
tion and moments with respect to the z"' axis are linearly independent. So
infinitesimal rotation about axis z"' and a coupled infinitesimal transla-

tion parallel to the axis z"' can develop freely. The angle of infinitesimal
rotation may be considered as an increment of the angle <5 since the sides
of angle 5 are perpendicular to the z"' axis. This property holds for arbi-
trary values of S(/ -15°, 75°), in accordance with the fact that really
there exists a free finite rotation about the z"' axis, together with a
coupled translation parallel to the sare axis z"': a helical, or screw
motion.

A question also arises here: are there particular positions of the
pair of tetrahedra in this kind of motion, for which the infinitesimal
degree of freedom is greater than 1? In order to answer this question we
shall apply a process similar to that used in Section 3.3. Let us transform
the matrix @ in (6) by standard manipulations of rows and columns to a
band matrix (block-diagonal matrix) which contains the following 2x2 sub-
matrices in its principal diagonal:

DH F-H 1 D F B 0
vV T3 T +T3 T2 T3

Let the determinant of the first submatrix be denoted by M M=(D+F)(T"+T3)-
-(F-H)(T2+T3), and let the determinant of the second submatrix be denoted
by N: NDI3-FT2- The nullity of GI is equal to the sum of nullities of
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these three submatrices. Since B is not equal to zero in any points of the
domain under consideration, the nullity of matrix (6) increases by 1 if
either

M= (D+F) (T1 + T3 )-(F-H)(T2 +13) =0 )
or
N=DI3 FI2=0 (8)

But the nullity of matrix (6) increases by 2 if both equalities (7)
and (8) hold simultaneously. W have computed the values of functions Mand
N for different values of 6 in the domain of the physically admissible no-
tions of the third kind and we give them in Table 2. (Values of & are in
degrees.) The results in Table 2 suggest that both Mand N are even func-
tions with respect to the variable &-30°. Further, for b=30° Mand N
simultaneously fulfil equalities (7) and (8), respectively, and it seens
that neither Mnor N has other zeros in the domain of interest apart from
a= 30°, which corresponds to the basic position of the pair of tetrahedra.
These considerations intuitively convince us that, apart from the basic
position, no other positions exist in this kind of motion, in the physically
admissible domain, in which the infinitesimal degree of freedom is greater
than 1.

Table 2 Values of functions Mand N

M 0 6.022794x107~ 1.030882x1072 5.870108x1072 2.218331X10"1 7.071068x10-1

N o] 2.007597x10"" 3.436274x10"3 1.956703x1072 7.394436x1072 2.357023X10"1
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4. Characterization of infinitesimal motions by means of direct kinematic

relationships using the theory of small displacements

In this section we present another approach to the results obtained
above in a statical way, independent of the above one and of course con-
firming the above results, namely a direct kinematic analysis using the
theory of small displacements. Here the applied technique will be outlined
briefly, and some examples of its application will be presented.

Rigid motions of the three-dimensional space are of the form
®(x) = Ax + b where A is an orthogonal matrix with determinant +1 rep-
resenting a rotation, and b is a vector representing a translation. Motions
of the tetrahedron Q are rigid motions under the constraint (x). (Notation
(x) is explained in the Introduction.) Note that the different kinds of no-
tions investigated above, apart from those of the third kind with |vp[>90°,
can be obtained from the basic position by continuous deformation, always
satisfying (x). Also the different kinds of motions depend analytically on
some parameters. (They constitute analytic submanifolds of the manifold of
all motions P(X).)

Let Qp P (i,k=1,2,3,4) denote the vertices of the tetrahedra ac-
cording to Fig. 2. With their coordinates we can write them in the form
Q (xQi’ yQi' zQp’' Pk"xPk’ yPk zPu) (1>k=1>2.3>)- Condition (x) nmeans
that the volume of the tetrahedra spanned by the end points of the original-
ly intersecting edges Q'Q", PkR has to be equal to zero, that is

XQi yQi zQi !
. . . 1 =0 jijk 1-1234
XQj yQ) Qi ) o
1 ktl ; k 1.]
xPK yPk zPk Ui j
9
XPE yPI 1 1

which define six constraints.

Let tetrahedron P be fixed with vertices P*I, -1,-1), P2(-I,I,-1),
P3(-1,-1,1), Pp(1,1,1). We consider the different kinds of motions, and for
each of them we investigate the following. We take some particular position,
say, @ of the moving tetrahedron Q obtained by a motion of the respective
kind, and then consider all positions of Q satisfying (x), near this fixed
position Q°. W wiill use the fact that the variable position of Q satis-
fying (x), can be obtained from the fixed position @ of Q by a motion,
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i.e., a transformation ¢ (x) = Ax + b, with A an orthogonal matrix with de-

terminant +1, where A = is near the identity matrix I, and b = jb%
is near 0.

Let A=1 + The orthogonality of A means that the scalar
product of the vectors in the i-th and j-th column is = 1 for

i=j but =0 otherwise); that means £p =0, £~. + £~ =0 (up to quanti-
ties of second degree). Thus we will write f‘zf_d'i‘]' + £i.I J’ where L£|'J'} ,
as described above, is skew-symmetric and has small elements. (We note that
detA = -1 cannot occur for A near |.)

VW will substitute the coordinates of the vertices of the moving
tetrahedron Q (these vertices are obtained from the vertices of the fixed
position @ of Qby the application of the transformation ®(x) = Ax +’pl) in
equations (9), thereby obtaining six equations for the unknowns £72, 23>
£ 1» b-p b2, bj. Omitting the quantities of second degree in these vari-
ables we will obtain a system of six homogeneous linear equations for the
six variables £7 and bp W will determine in each case (i.e., for each
kind of motion and for a suitable @ obtained by that kind of motion) the
nullity of the matrix of this system of equations, i.e., the dimension of
the linear manifold of the solutions. Thus we will find how many parameters
are required to describe the small motions in a neighbourhood of the fixed
position Q°, up to quantities of second degree, in our above sense.

This determination of the nullity will be performed only for a
single position @@ for each kind of motion. In general the nullity will not
be greater than the value, say k, obtained in this way. Moreover, the nulli-
ty can be greater than k only for a small set of special values of the
(analytic) parameters determining the position in the motion of the re-
spective kind. In fact, in the fixed position @ we have a non-vanishing
minor of rank 6-k, which also is an analytic function of the parameters,
which vanishes on the set of zeros of an analytic function of one variable
(in the case of motions of first, second and third kinds), or of two vari-
ables (for the intermediate kind).

W note here that we will determine the nullity of the matrix by
performing operations on the columns and rows (as with determinants), in
order to obtain a diagonal matrix in which the number of the zero elements
in the diagonal is equal to the nullity. Details of the calculations will
not be given. Dur results will be in agreement with the results of Sec-
tion 3.
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4.1 Motion of the first kind

We consider the position @ with angle of rotation f = 90° about the
axis ifjg (orientation on the orthogonal plane seen by looking backwards
from the vector of rotation). Then the matrix of the system of equations in
guestion is

0 0 0 0 0 0
0 2 -2 1 1 1
0 2 -2 1 1 1
0 2 -2 1 1 1
0 2 2 1 1 1
0 0 0 0 0 0

which has nullity 3.

4.2 Motion of the second and intermediate kind

Weé consider the position @ in the motion of the second kind  with
angle of rotation f = arctan O about the axis (ifg + (with the
associated translation). Then we obtain the corresponding matrix

0 1 1 -1 1 1

30-i 20-4 -0+5 3+2 O -2-r3  2+0

20 -2 -2420 -i+ O +0 1- O
20 22 0 2 +0 -1+0 -1+r3
30-i 0-5 420 -T32 20+3 -0-2
0 1-0 1-0 0 0 -1

which has nullity 2. Since a position obtained by a motion of the second
kind is also an intermediate position between positions obtained by motions
of the first and second kinds, we see that also for the intermediate posi-
tions, in general, the nqllity is not greater than 2.

4.3 Motion of the third kind

Observe that in this case we have two manifolds: one for Is» k 90°,
the other for |[<f] > 90°. In the first case we consider the position Q° with
angle of rotation = 60° about the axis ( tfjg + If2g + )/ \[3 (with
the associated translation). N N "
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Then the corresponding matrix is

2 2 0 -1 1 1
0 2 2 1 1 1
2 0 2 1 1 -1
4 2 6 5 -1 -1
6 4 2 -1 5 -1
2 6 4 -1 1 5

which has nullity 1. In the second case we consider the position Q° with

angle of rotation cp= 180° about the axis ( 'fig + 'Pro + BjqV V3 (with
the associated translation). Then the corresponding matrix is

°© 2 2 0 0 1
2 0 -2 1 0 0
2 2 0 0 1 0
2 0 2 -1 2 2
2 2 0 2 1 2
0 2 2 2 2 1

which also has nullity 1.

5. Conclusions

5.1 Tompos' pair of tetrahedra is a true sliding mechanism. In /3/
it has been shown that the physically admissible finite motions of the pair
of tetrahedra constitute one- and two-dimensional manifolds in the six-
dimensional space of rigid motions and these manifolds ney be given unique-
ly by their projections on the three-dimensional space of rotations (i.e.,
the translation parts of the motions are uniquely determined by the rota-
tion parts), as visualized in Fig. 8. The circles in the figure represent
the two-dimensional manifolds of the motions intermediate between the o
tions of the first and the second kinds, and the diagonal straight lines
represent the one-dimensional manifolds of motions of the third kind. This
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Fig. 8. Manifolds of the physically admissible motions of the pair of tetrahedra in a
projection on the three-dimensional space of rotations

figure, however, does not characterize the manifolds of motions metrically
but only topologically.
5.2. As follows from the proof of Theorem 1 of /2/, for any rotation

A near the identity, equations (9) are satisfied up to quantities of fifth
degree of smallness, for a suitable translation b (depending on A) which is
unique up to quantities of fifth degree of smallness. That means that near
the basic position we have a three-parameter set of solutions, up to quanti-
ties of fifth degree of smallness. This is also supported by the calcula-
tions mede in this paper. Tables 1 and 2 show that the functions character-
izing the motions of the corresponding kind tend to zero approximately in
the fourth order. Thus the nullity of the matrices in Sections 3.3 and 3.5
becomes three if we neglect terms of order A 4. These explain our apparent
feeling, when we hold the physical model in our hands, that the pair of
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tetrahedra has a 3-parameter finite motion in a neighbourhood of the basic
position although, as proved in /3/, such a finite motion does not exist.

5.3. In Section 3 kinematic indeterminacy has been shown via static
indeterminacy. This latter can also be explained directly by the geometry of
the lines of action of the six reactive forces. In the basic position these
lines of action are concurrent in space, so the constraint is 3 times
statically indeterminate. In a position of the first kind two lines of ac-
tion are coincident and constitute the axis of rotation, the four other
lines of action intersect this axis. Considering the resultants of the
reactive forces symmetrical to this axis we have four collinear forces,
which form a 3 times statically indeterminate system. In a position of the
intermediate kind (the second kind included) the pair of tetrahedra and the
reactions have a plane of symmetry. Four of the lines of action of the re-
active forces are lying in this plane. Considering the resultant of the two
reactive forces symmetrical to this plane we have five coplanar forces,
which form a 2 times statically indeterminate system. In a position of the
third kind the configuration has an axis of rotation. Considering the
resultant of each of the reactive force triplets rotationally symmetrical
to this axis we have two collinear wrenches (whose force part and couple
part are dependent), which form a 1 times statically indeterminate system.

5.4. Movability with free finite motion itself is an unexpected
property of the pair of tetrahedra, but its most surprising property is that
the infinitesimal degree of freedom (i.e., degree of kinematic indetermina-
cy) changes during motion. For instance, in Fig. 8, at general points on the
circular discs the inifinitesimal degree of freedom is 2; but along the line
of their intersection corresponding to motion of the first kind the infini-

tesimal degree of freedom is 3. Along the diagonal straight lines the
infinitesimal degree of freedom is, in general, 1; but at the point of in-
tersection of these lines and the circular discs the infinitesimal degree of
freedom is 3.

The lines and points of intersection of the manifolds of motions are
places of singularity, since there the infinitesimal degree of freedom
increases. The manifolds of motions can be considered as compatibility sur-
faces, since they consist of all the points corresponding to positions in
which the structure is compatible. Their intersection is in fact a bifurca-
tion. Thus, an explanation of the change of infinitesimal degree of freedom
can be given in terms of bifurcation of the compatibility surfaces. This
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phenomenon is analogous to the bifurcation of equilibrium surfaces of
structures subjected to multiparameter loads.
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ACCURACY TEST GF SIMPLIFIED CONTINUUM CALCULATIONS OF
TWO-LAYER SPACE GRIDS
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In the recent twenty years, three-dimensional lattice structures have found
worldwide use.

Accurate computer calculations for three-dimensional lattices is today a
routine job. However, a disadvantage of such calculations is that they are not
demonstrative enough and not suited to be taken as a basis for preliminary strength
calculations of the structure, moreover, the designer has to meke sure that the data
set obtained as a result of computer calculation is correct.

The so-called ‘'continuum method'" of space grid calculation is a help to the
designer in coping with the problem.

This work is designed to test the accuracy of simplified continuum calculation
as compared with the accurate values obtained by computer calculation for two-layer
space grids using numerical calculation and to draw the necessary conclusions for
applicability of the continuum method in practical design.

The internal forces of two-layer space grids can be determined simply and with-
in a relatively short time by means of the simplified continuum method to an accura-
cy shown in the tables, and according to experience, the accuracy of the method is
sufficient for preliminary design or for the accuracy test of data obtained in
computer calculation.

1. Introduction

Static calculations of engineering structures include essentially
investigation by means of a model containing the characteristics of the
structures to be designed. Depending on the model to be used, the struc-
tures can be divided in two major groups, such as
- structures to be designed on the basis of a finite model like lattices

and frames,
- structures to be designed on the basis of a continuum model like plates,
discs and shells.

A special group is that of so-called lattice-surface structures
(space grids). Both models can be used for calculation for these structures.

Accurate calculation of space grids is based on the finite model.

*Turkéssy, Attila H-6722 Szeged, Londoni krt. 18, Hungary

Akadémiai Kiadd, Budapest
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With the structure consisting of discrete elements itself considered
to be the model, the equilibrium and displacement equations are written for
each bar and node.

The number of unknown static quantities in the calculations is very
large because of the large number of discrete elements constituting the
structure. Therefore, the required calculation is practically impossible
without the use of a computer.

Today the computer calculation is a routine job but it is not de-
monstrative enough for a prompt evaluation of the force action and for
selection, or possibly necessary modification, of the structure on the
basis of consideration of the advantages and disadvantages.

Data acquisition for the computer calculation is difficult (es-
pecially for the cross section of bars). Moreover, the static designer
using the data set obtained in computer calculation needs an independent
calculation process to meke sure at random that the data to be used are
correct. This demand is met by approximate calculation based on the con-
tinuum model.

2. Description of the continuum method

Essentially, the continuum method uses the elastic continuum of an
anisotropic or in certain cases isotropic or orthotropic plate to substi-
tute for the space lattice consisting of discrete elements with hinged
joint between them, equivalent to the space grid from a statical point of
view but mainly in respect of rigidity. The stresses of this continuum are
calculated making use of the known, tabulated results of the theory of
plates and, finally, the stresses are converted into bar forces of the
lattice structure.

2.1 The case of chord layers of identical rigidity

The space grid can be substituted for with an isotropic or ortho-
tropic plate if the rigidity characteristics of its top and bottom chord
layers are identical or proportional, the static behaviour of the plate
being described by one single partial differential equation of the fourth
order with a bend deflection function win it.
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2.2 The case of chord layers of different rigidity

Should the two chord layers of the space grid investigated differ
from each other in rigidity characteristics qualitatively, then a plate
with one side ribbed in both directions can be assumed as a substituting
continuum / 1/.

The static behaviour of this ribbed plate as a plate under bending
and forces within the plane of the plate is described by a partial non-
linear differential equation system of the fourth order the unknowns of
which being bend deflection function w and the stress function describing
the membrane stresses arising in the top plate /2/.

Complex as it is, the equation system can not be solved explicitly
while a numerical solution is unnecessary as in this case, it would be more
reasonable to take into consideration the space lattice itself, consisting
of discrete elements, as a computation model.

3. Calculation of the simplified continuum

An additional approach, the so-called simplified continuum calcula-
tion, can be used in such cases /1/.

Taking the ribbed plate as an example, this approach neglects the
shearing rigidity existing in the plane of the top plate and thus stress
function ¢ is omitted with only one partial differential equation of the
fourth order remaining for bend deflection w, which complies withthe Huber
differential equation of a normal orthotropic plate /3/:

Bx . w" + By.w: + 2HwW"™ =-p 3)
Thisapproach is applied to two-layer grids by neglecting the excess

rigidity of the 'more rigid' chord layer containing different types of
rigidity as compared with the rigidity of the other ('softer') chord layer.
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It is usually the shearing rigidity existing in one of the chord
layers which appears as an excess rigidity. With this excess rigidity
neglected, also the accessory stress and strain state of the space grid
falls away together with stress function ¢ describing it. A pure bending
force and strain state are brought about in this way, which can be de-
scribed by bend deflection function w and accordingly, a single partial
differential equation of the fourth order is left as a result for bend de-
flection walso in case of the space grid.

In accordance with its function, stress function ® can be eliminated
in two different ways such as

—by the simplified equilibrium method and

—by the simplified compatibility method.

Another approximation, e.g. adaptation of Giencke's theory to two-layer
grids /4/ is also possible.

3.1 Use of the simplified equilibrium method to investigate
two-layer grids

If the rigidities of two chord layers of the space lattice are of
different magnitude, the neutral planes of bending or torsional moments
w ill not coincide. There will be no coincidence either if the rigidity of
the entire system is ensured by so-called 'closed lattice-type tubes'. The
case where one of the chord layers contains a certain kind of stiffness
while the other one doesn't contains it at all is a special case of non-
proportional rigidities with the neutral plane falling within the chord
layer containing the rigidity in question.

Under the circumstances, the stress function is designed to ensure
compatibility of the strains by developing one single coomon neutral plane
for every bending and torsional effect. Hence, compatibility of the strains
can not be satisfied if the stress function is eliminated from the calcula-
tion but the equilibrium condition is satisfied. Since only rigidities
existing in the 'softer' chord layer are taken into consideration, the
entire structure is being 'softened' with every rigidity having a counter-
part in the other chord layer.
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3.2 Use of the simplified compatibility method to investigate
two-layer lattices

The stress function can be eliminated also by determining of a
comon neutral plane for all the bending and torsional effects to ensure
compatibility of the strains without, however, satisfying the equilibrium
condition.

Namely, the neutral plane defined will not coincide with the centre
of gravity of some pairs of rigidities and therefore the forces arising in
the chord layers will not be equal in magnitude. Hence, not only paired
forces will arise but horizontal forces are acting as well.

Under the circumstances, the stress function ought to have provided
for equilibrium by means of the accessory stress state. If it is neglected,
the mentioned resultant horizontal forces shall be left out of considera-
tion as well.

The common neutral plane shall be determined within the actual
common neutral plane of more rigidities or in case the space grid includes
‘closed lattice-type tubes’, in the torisonal neutral axis of the ‘'tubes’.

Then the rigidities of the more rigid chord layer shall be divided
in two parts. The rigidity of part | shall be assumed to be 'k' times as
much as the rigidities of the softer chord layer which is taken as a basis.

Factor 'k' shall be assumed in such a way that the neutral plane de-
termined w ill coincide with the centre of gravity of the total or partial
rigidities of both chord layers.

Part Il of the rigidity of the more rigid chord layer contains the
excess rigidities supplying those resultant horizontal forces which have no
counterpart in the softer chord layer. The structure is 'stiffened' by this
procedure.

3.3 Adaptation of Giencke's theory /4/ to investigate two-layer lattices

Giencke's theory can be adapted to space grids where the rigidity
of one of the chord layers complies with that of the top plate of the
ribbed plate, while the 'closed lattice-type tubes' of the space grid
comply with the ribs of the ribbed plate.

Essentially, the theory is adapted by superimposing the rigidity of
the 'ribs' upon the ‘'top plate' by calculating a substitutional torsional
rigidity H* in place of torsional rigidity H included in differential
equation (3).
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4. Objective of the study

This study is designed to investigate the accuracy that can be
achieved in simplified continuum calculation in case of two-layer space
grids. It examines whether or not the use of the simplified equilibrium
model and compatibility model results in values approximating the lower or
upper limit of accurate values calculated by computer on the basis of the
finite model in case of space grid of different geometry and with chord
layers of different rigidity /8/.

Efforts are mede to draw conclusions for use of the simplified
continuum model in practical design work.

By accuracy of simplified continuum calculation we understand the
extent of compliance of the values determined for bar forces by means of
continuum calculation with the values obtained by computer calculation on
the basis of the finite computation model, considered to be accurate.

5. Possible uses of the continuum method in case of two-layer space grids

Bars constituting the different chord layers can be arranged in dif-
ferent ways. They may run in three directions or parallel with more than
three directions or parallel with less than three directions.

The geometry determines on the one hand the isotropic or ortho-
tropic or, possibly, aeolotropic character of the substitutional continuum
and on the other hand, it decides whether the bar forces are statically de-
terminate or statically indeterminate.

5.1 Continuum equations of space grids with chord layers
of identical or proportional rigidity

The substitutional continuum of such structures is an isotropic or
orthotropic plate with stress function 4 non-included in its accurate dif-
ferential equation. Thus this equation can be considered to be at the sanme
time the differential equation of the simplified method /1/.
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5.2 Continuum equations of space grids with chord layers
of different rigidity

The substitutional continuum of such structures is a ribbed plate.
Hence, to write the simplified differential equations of the structures, it
is necessary that stress function 4* be eliminated.

The accuracy of simplified continuum calculation has been tested for
space grids falling within this group, the chord layers of which being flat
surfaces parallel to each other:

Fig. 1, 'Square with diagonals on square offset' /1/

Fig. 2, 'Square with diagonals on square' /1/
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Fig. 3, 'Diagonal on square' /1/

Fig. 4. 'Hexagonal on triangularl/1/
52 J1 113e of the simplified equilibrium method to write continuum equations

5.2.1.1 'Square with diagonals on square offset' /1/, /9/

As seen in Fig. 1, the top chord of this grid constitutes together
with the connecting bracing 'closed tubes of triangular cross section’
which are suited to take up shear forces and as a result of the geometric
arrangement, a lattice type 'set of tubes' is obtained.

Transversal elongation rigidity T"2 in the top chord plane has no
counterpart in the bottom chord plane. Moreover, the neutral planes of
bending and torsion are found at different places for each stress.

T2 is neglected but the shearing rigidity of the top chord plane
is kept because it is present in the entire system due to the ‘closed
lattice-type tubes'.
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Value of bending rigidity:

A
(4)
+ A

Value of torsional rigidity

®)

In the knowledge of the above rigidity factors, the differential
equation of the substitutional orthotropic plate can be written, as follows:

B.w™ + Bw"* + 2HwW"' = -p (6)

5.2.1.2 'Square with diagonals on square' /1/

As seen in Fig. 2, this grid has no actual torsional rigidity
because of the vertical strut bracing but only swelling rigidity due to the
shearing rigidity of the top chord plane. Statically, its behaviour complies
with that of the ribbed plate.

Let shearing rigidity fit

and transversal elongation rigidity

of the top chord plane be neglected. A 'torsionless' substitutional ortho-
tropic plate is obtained in this way, where H = 0 and the bending rigidity
in the direction of the x and y axis complies with (4).

Differential equation of the plate:

B(W"™™ + w:z:) = —-p (©)
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5.2.1.3 ‘'diagonal square over square' /1/

A particular feature of the structure illustrated in Fig. 3 is that
it undergoes strain £x = - £y without any resistance:

Fig- 5.

Accordingly, the top chord plane is capable of taking up only waist forces
of identical magnitude in the direction of the x and y axes:

N=nx . /2 .a=ny . Y2 .a

The elongation rigidity of the top chord plane can be determined only for a
force system of this type:

Fig- 6-

(10

The top chord plane has also shearing rigidity as it resists the following
shearing force system:

Fig- 7.
This shearing rigidity shall be neglected because the bottom chord
plane has only elongation rigidity in the direction of the x and y axis:

TIL=T2 =E g/ ~-a a
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Elongation rigidity matrix of the two chord planes:

_ ot 1 1 0
-hydrost. 1 1 0 (12)
0 0 12
2 172 O
E. A
—hydrost.  \o* 172 12 0 (23)
0 0 ro"
Hence, with neglected, the remaining rigidities can be rendered propor-

tional to each other.

The top chord plane is capable of taking up only waist forces of
identical magnitude in the direction of the x and y axis. That means that a
hydrostatic stress state is prevailing. Therefore, also the bending moments
and the section waist forces must be identical in these two directions and
accordingly, the same applies also to the bottom chord plane.

Any stress state can be divided in a hydrostatic part and a devia-
toric part and similarly, the strain state associated with a stress state
can be divided in two parts, the principal elongation of one part being
equal to the average principal elongation, or to the octahedral specific
elongation, while the other part being of deviatoric character.

Matrix (13) satisfies the above conditions. Hydrostatic rigidities
can be defined as the hydrostatic part of strain state £x, £y:

hydr. _  hydr. &y + Sy
tx Ly " o] (14)

The bending rigidity of the space lattice is given by the moment of
inertia of the rigidities of both flange planes for the common axis of
gravity:

rid E . h
Bl = m2 B (15)

The space lattice has no torsional rigidity and thus the load is
carried by bending in the direction of the x and y axes /3/:

n’;(+n'§/=-r? (16)
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Waist forces nx = ny are equal to the waist forces determined by the
actual rigidities of the flange planes.

Since the upper flange plane undergoes strain Ex = - £y without
resistance, curvatures

h

result from it without bending moments. Therefore, the relationship between
the average of the curvatures and the bending moments can be written, as
follows:

X y= . e 2.___=«B V mw (17)

The simplified differential equation of the space is obtained by
substituting equation (17) into (15):

Bgrid .grid

Byrid
) -

+ Bgrid 2 2 W - (18)

Hence, the equivalent continuum is an isotropic plate the bending
rigidity of which being half of the bending rigidities of the original grid.
'Hexagonal on triangular

5.2.1.4 ‘'Hexagon over triangle' /1/, /10/

The bottom chord plane of the grid illustrated in Fig. 4 has a de-
finite substitutional elongation and shearing rigidity:

19)

(20)

(21)
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Elongation rigidity matrix of the bottom chord plane:

(22)

The entire structure contains the shearing rigidity of the bottom
chord plane owing to three sets of 'closed lattice-type tubes' intersecting
at angles of 120°.

The top chord is unstable, moving in the way illustrated below with-
out resistance:

The strain according to Fig. 9/a corresponds to angular distortion
mxylabil resulting from pure shear. Hence, the top chord is incapable of
taking up shear forces.

The strain according to Fig. 9/b is described by relationship

labil labil
£X Y

Accordingly, the top chord is capable oftaking up tension or pres-
sure equivalent to hydrostatic tension or pressure only. However, it has a
definite rigidity to resist such tensions and pressures:

Fig. 10.
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Hydrostatic tension gives rise to forces in the hexagon acting in
the way illustrated in Fig. 10. That means that a force of a magnitude
identical with force F acting upon the joints arises in every bar.

In the x-x section, a force F acts upon a section of a length of
a . I3. Thus the appropriate tensile force, nx = ny, will be

nx = ny (24)

Elongation of the bars is essentially a dilatation:

d bar

(25)
resulting in a dilatation = £y~ = £bar in every bar. Therefore,
the substitutional dilatation-type tensile rigidity will be

Tt nx _ ny _E.
dib - dil T dil “an (26)

Elongation rigidity matrix of the top chord plane for the overall
strain vector,

_t t
& =_japil +-Am @7
will be dil dil
2 2 O
Tt T EA (28)
=dil ; ; i
dil dil 0 2a I3
2 2
0 0 0
where requirement
t t
nxt = nyt = f(EIiI ( £x ;£y) nXy =0

is satisfied.

Statically, the behaviour of this grid is similar to that described
in par 5.2.1.3. Adifference is, however, that it shows a torsional rigidi-
ty owing to the stable bottom chord and to the 'closed lattice-type tubes'.

There is no relationship between the strain according to Fig. 9/c
and section forces of any type and it sets no direct limits to the forces.
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Since stress function ® is neglected, waist forces of identical
magnitude arise in the direction of the x and y axis also in the bottom
chord plane (hydrostatic stress state). Therefore, although the rigidities
of the chord planes are not proportional (elongation and transversal elon-
gation) , the hydrostatic elongation rigidities of the bottom chord plane
can be determined which are proportional to the similar rigidities of the
top chord plane!

Hydrostatic rigidity matrix of the bottom chord plane:

1
Tb E.Ab
=hydr. - 2a 8 (29)

From the matrix, the coefficient of shearing rigidity is omitted because it
is included in 'closed lattice-type tubes'.

The bending rigidity and transversal bending rigidity can be calcu-
lated on the basis of elongation rigidity matrices T~ and |[b”™ , re-
spectively.

The simplified differential equation of the space grid can be
written on the basis of the general equilibrium equation of plates/3/:

nj + n§/"+ n;(y =R (30)

Since the top chord plane undergoes strain £,X =- £y without resistance
that is

nx = ny,

curvatures
(31)

result from it without bending moments. Therefore, a relationship between
the average of the curvatures and the bending froments shall be written:

m=m =N W W __Bgd G2y (32)
where
. . 2 - )ﬁ - Ab
Ogrid _ Ryrid _ E.h n .
M1 "2 T ooa e A . 111; 19/ (33)
A ¢ A

and
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Thus the hydrostatic bending rigidity matrix of the space grid,
which means the bending rigidity of the chord planes, will be
mghydr. ghydr. Q@
RBhydr. _  ghydr.  hydr. (35)
0
Torsional rigidity of the structure:

Shear force n)~(y arising in the bottom chord plane has no counterpart
in the top chord plane as the top chord plane has no torsional rigidity
(see Fig. 9/c).

The overall torsional rigidity of the entire structure can be attri-
buted to 'closed lattice-type tubes', the torsional rigidity of a 'tube’
being /10/

21fT . E. h2
G3, (36)
& 3 2a? + 3jfT
At + pbrac.+ [b
Plate-type torsional rigidity of the entire structure /9/:
(37)
B 2a Y3A* ] & L9
ohl Brae

In addition to torsional rigidity, bending rigidity B* and trans-
versal bending rigidity - B, are ensured in the direction of the x and y
axis by the three 'tubes' intersecting at angles of 120°.

Bending rigidity matrix of the 'tubes' /10/:

tube  gtube
33 33
- Ctub
tube -Btglébe EK% e (38)
Jtube
a 0 3

Both matrix (35) and matrix (38) are isotropic and therefore also
their sum that is the overall bending rigidity of the space grid will be
isotropic:
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gisotr _ ghydr + ptube

the differential equation of which being

gisotr + gisotr. W'+ 23isotr Wt (40)
where

(41)

2i2722_IMEN|_jthe_sirrd;y jI_cNiTpLy.yjyrjTirtjlod_to_wy:E”onjtrjjLim _e_gua”®
tions_/I/

5.2.2.1 'Square with diagonals on square offset' (Fig. 1)

Let the neutral plane of torsional rigidities of 'closed Ilattice-
type tubes' be selected as the place of the neutral plane.

(42)
The top chord plane is more rigid. Part | of the rigidity:
f11 7 220 Tk (43)
Part Il of the rigidity includes 'excess' rigidities:
?.1,11 :-');2,11 I I:rltl,l (44)
(43)

(Tjj is included in the bending rigidity matrix)
Elongation rigidity matrices of the top and bottom chord planes:
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(46)

Iincluded
in tubes!

ib=j @7)

The matrix of bending rigidities will be obtained if the framed ele-
ments in matrices (46), (47) are omitted:

(48)

110
I

The 'excess' bending rigidity factors are supplied by the following
relationships:

(49)
(50)
B12C = T12 (ht)
Matrix of 'excess' bending rigidities:
*1) @K
Bexc =8<hV -2 (51)
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where
ht = . h (52)
A +|A-t, + —
Vi w

Matrix of bending rigidities supplied by 'closed' lattice-type ‘'tubes'

‘0 0 0
~/\
gube _e-"t o5 o g (53)
2a 1
0 0 > 3
where
G.Jt = -é‘hz (54)
. 'h2 A 3/2
T+4
,brac ka2 2/

The bending rigidity matrix for writing the simplified differential equation
of the continuum is supplied by the sum of matrices (48), (51), (53):

B =gt [Bxc + [tube (55)
"BRXC + >U) Bl “ 0
q6XC O
= - W B m O (56)
Lube
-0 0 B3 J

Simplified differential equation of the substitutional continuum:

(Bexc + B) w" + (Bexc + B) w.: + 2(BRXC + Brube) w = -p (57)

The above equation complies with equation of orthotropic plates.

Bw" + Bw: + BHwW"' = -p
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5.2.2.2 'Square with diagonals on square' /1/ (Fig. 2)

Let the centre of gravity of elongation rigidities of the chord
planes be selected as the place of the neutral plane.

The elongation rigidity matrix of the top chord bottom plane com
plies with (46) while that of the chord plane with (47).

Since there are no 'closed lattice-type tubes' in this space
grid

are obtained as excess rigidity and these rigidities can be used to calcu-
late for the elements of the excess rigidity matrix:

B12C = T12 (ht)2 (58)
BRxc = 2B{C = 2Tj3 (h1)2 (59)

where H* is identical with (52).
Matrix of bending rigidities:

0
0 (60)
0
0
0 (61)
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The bending rigidity matrix for writing of the simplified differen-
tial equation of the continuum is supplied by the sum of matrices (60),

(61): 18 =B + 8exC (62)
Dexc 0
Bl1 BL2
By m O (63)
0 0 g8

where B = B2 = B
The equivalent continuum is an orthotropic plate. Simplified dif-
ferential equation of the structure:

B.wW" +B.w: +2B®C+Bfc)w" -p (64)

5.2.2.3 'Diagonal on square' (Fig. 3)

Let the centre of gravity of elongation rigidities of the chord
planes be selected as the place of the neutral plane.

Considering rigidity matrices (12), (13) of the chord planes, is
obtained as an additional rigidity. With this, the ‘'excess' bending rigidi-
ty will be

E. M .2
BRC e (ht) (65)
where 2a
ht = VL (66)
A LAk
vr

Using the bending rigidity matrix (14):

1+ W — 1+ V2 ”

(67)
i+ i+v? 4

0J
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The 'excess' bending rigidity matrix:

0
2
exc = § (ht) (68)
where
Dexc  QExc A 69
S LAL (h7)2 (69)

For writing the simplified continuum equation of the continuum, the
bending rigidity matrix is supplied by the sum of matrices (67), (68):

] A
i+ V?4- i+

IB =B+ Bexc = |<ht) (70)
1+

A
2

The equivalent continuum is an orthotropic plate. Simplified dif-
ferential equation of the structure:

B.w™ + B.w:: + 2B + B&xc) w* =-p (71)
where Ogrid
B=J-— see (18) (72)

Here the statically equivalent orthotropic plate has a torsional
rigidity (B + Bexc), rather unusually in the theory of orthotropic plates.

5.2.2.4 'Hexagon over triangle' (Fig. 4)

Let the place of the neutral plane be selected in the neutral plane
of torsional rigidities of 'closed lattice-type tubes'.

It is the top chord plane that shall be considered to be the basis
in this case while the rigidity of the bottom chord plane shall be divided
in part | and part Il using a proportionality factor k*:
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1 A Q3 (73)

2y5 T t+ V3 aeract 2

“Ab' ! (74)
+1

Matrix of rigidity part I: p

where

0
t
. EA™ o (73)
' 2 V3]
0J

The matrix of bending rigidities can be calculated on the basis of
the above matrix:

1 1 0
2 K EA 1 1 0 (76)
1+k 2yj.i
0 0

With the shearing rigidity neglected, the matrix of the remaining
'‘excess' elongation rigidities of the lower flange plane will be

-:n?lydr,ll = -:nﬂydr i 11?1ydr,| 77
rs 1 0+ "1 o
E.Ab -y
—hydrll * 4a [ 3 0 - k«gérla 1 1 o0 (78)
o 0 0 0 0

included in tubes!
Coefficients of elongation rigidity required to determine the ‘ex-
cess' bending rigidity matrix:

g = 2ak3Ab -k — (79)

Tb E / X Ab
TL2,11 =T i "k (80)

Coefficients of 'excess' bending rigidity:

m 2
n6XC fub\ (81)

T
Bh - Tn,ii 3
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BI2C m T?22,M ~ (82)

(83)
h.E.A

cC=G. shall be calculated according to (36).
Matrix of bending rigidities supplied by the ‘tubes"

Otube |, tube 0

B "B
Jtube ~Etube gube 0 84)

Eiube

Matrix of 'excess' bending rigidities:

@b-K'|) (fmkK'4) °

m

,exc

: . X f‘f
: * 3A 85
2a |'2_ oK ?\/lfgy ‘ r ( )

The bending rigidity matrix required for writing of the simplified
differential equation of the equivalent continuum is supplied by the sue
of matrices (76), (84), (85): JB =B + Btubes + Bexc (86)

li gtubes + gexc” -
(8 t 119 (B2 - BUbeS + B{C) o

7b = . Jfubes ,exc\ /, . ,ubes ,excd n 87)
Bl " B +B1 ) \22 + B +&2)0b
JLube

The continuum of the space grid is an orthotropic plate, the simpli-
fied differential equation of the structure being

B0 4 B o NP L ) Wi 2Bz - BUPC 4 A PCBRG) W = (88)
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A3 Majtatjonj*_GJ:end™s_theqryNtQ_twolaye£ _sgace_£rids_/4/

According to Giencke, the differential equation of smooth ortho-
tropic plates (3) will apply to ribbed plates if the longitudinal and
transversal reinforcing ribs are arranged symmetrically in two directions
normal to each other (Fig. 11).

An asymmetry of longitudinal and transversal ribs will result in
torsional noments and shear forces in the eccentric top plate in case of a
twist of the ribbed plate (Fig. 12).

O an equilibrium basis, normal forces are also associated with the
shear forces. That means that normal forces arise in the midplane.

Based on the usual assumptions of the plate theory and neglecting
the effect of elongations of the centroid axes upon deflection of the

plate, the equation of eccentrically ribbed plates has been derived by
Giencke:

BX.W'" + By.w:: +2H . w" = -p (89)

This equation is essentially identical with equation (3), a dif-
ference lying only in the torsional rigidity.
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H*:C+v.ex.eyD+(e)K+ey)2(l’A‘f ° QLQO)
where the definition of ey and ey is given in Fig. 12,
B +B
C=8B+-I*—- *x
2

(bending rigidity of the ribbed plate, taking into consideration the tor-
sional rigidity of the ribs),

(membrane part of the rigidity of the ribbed plate), V= transversal con-
traction factor.
According to Kollar's calculations which have not been published so
far, 2
H = (ht) . (€J2 + T*3) (91)

in case of space lattices of 'cross-brace type square shifted over square'
and 'cross-brace type square over square' type, where, according to H* in
(562), T2 can be calculated only on the basis of the top chord plane.

An important result of Giencke's theory is the substitutional rigid-
ity according to (90) the use of which permits the theory to be applied to
two-layer lattices provided the bending part and membrane part of the
rigidity of the space lattice is similar to the rigidities of the ribbed
plate.

6. Practical application of the simplified continuum method

The internal forces of the space grid are determined on the basis of
the internal forces of the equivalent continuum by converting the section
forces into bar forces.

Using the simplified continuum method, differential equations of
isotropic plates or orthotropic plates where the bending rigidities in the
direction of the x and y axis are identical can be written in case of a
geometrically homogenenous network of bars or bars of identical section
within a group of bars. Hence, the statically equivalent continua of space
grids of this type differ from each other only in the ratio of torsional
rigidity Hand bending rigidity B /1/.
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Table 1 Simplified differential equations based on the simplified equilibrium method

grid type Reference
symbol
(6)
(9)
(18)
(aby

As seen in the Tables,
HB =0
HB =1

O<H/B <1 or

HB > 1

Differential equation

B.w"+B.w::+2H.w" = -p
given HB ratio

BWw"+w::) = -p
H=0, H/B=0

¥B fA i+ Bgrid_ w,.. =
2 2

H=B, H/B=l

.é'sotr w %sotr w _Fzésotr W= p

for 'torsionless plates’,
for isotropic plates,

for orthotropic plates.

Equivalent continuum

orthotropic

orthotropic

isotropic

isotropic
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Table 2 Simplified differential equations based on the simplified compatibility method

grid type Reference Differential equation Equivalent continuum
symbol

(B+BeXC)w"'+(B+BeXC)w: : +
(57) orthotropic
¢ 2(BMXCHBjUbeS)w™” = -p

given HB ratio

(64) Bw"'+Bw" +2(BEXCHBRXOW" = -p orthotropic
given HB ratio
(71) Bw"+Bw '+2(B+B"XCOw' = -p orthotropic
H>B, given HB ratio
1) (B+Bexc+BJubes)W‘|,+(B+Bexc+éubes)v\w::+
orthotropic
+ 2(B12+B12C -BbubeS+2BbubeS)w" =-P

given HB ratio

Table 3 Simplified differential equation based on adaptation of Giencke's theory

grid type Reference Differential equation Equivalent continuum
symbol

(89) B w"+B_ W'"+2H w' = -p orthotropic
Ne X y

given HB ratio

(89) BX WTHB WUH2H W = -p orthotropic
y

given HB ratio
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Simplified differential equations are advantageous not only in that
they can be solved in a simpler way as compared with the coupled differen-
tial equations of the fourth order but also because for some bending and
torsional moments, values ready for use are found in the literature /3/,
/51, 16/, I7].

Also, diagrams supplying the mentioned values between ratios HB=0
and H/B=l are found in /1/ and /9/ for meximum bending and torsional
moments of rectangular plates of different ratio between the sides in case
of different supports.

The use of available solutions permits the calculation of moment by
solution of the plate equation with respect to wto be avoided:

nyrid =- BW' - B2 w" I3/ (92)
3”" " . BW - BL2W /31 (93)

- BW 13/ (94)

r'r%;id
6.1 Decomposition of moments in accordance with the types of rigidity

To be stressed are some important points. Symbols 'H and '8' in the
equation of the orthotropic plate may contain three types of rigidity such
as
—rigidity of the chord planes,

— additional rigidities in the simplified compatibility method (see super-
script 'exc."),
—rigidity of 'closed lattice-type tubes'(see superscript 'tubes’).

Hence, moments rrl rri, m_ shall be decomposed in accordance with
the types of rigidity occurring in the following way:

If there are no ‘'tube-type' rigidities /1/, the moments shall be
simply decomposed in accordance with the ratio between rigidity of the
chord plane and ‘'excess' rigidity as both rigidities are of identical
character:

nchord planes _ ghg + gexc--1 ngrid (95)

flexc = gexc(g + aBxC)-" figrid (96)
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Formula rTﬁ:hord planes

n h 97)

shall be used to calculate membrane forces resulting from the part of
moment associated with the bending rigidity of the chord planes

Formulae . exc
exc (pressure) (98)
: -
and . e
P " (tension) (99)

shall be used to calculate membrane forces resulting from part ufxc* of the
moment in relation with ‘excess' rigidities, depending on whether the
‘excess' membrane force .has arisen in the upper chord plane or in the lower
chord plane.

The bar forces of the chord planes can be calculated on the basis of
membrane forces according to (97), (98), (99).

If also 'tube-type' rigidities are present /1/, torsional moments
m.A occurring in ‘closed lattice-type tubes' shall be determined as well.

In case of a 'Square with diagonals on square offset' space grid,
the bending moments are borne by the chord planes while the torsional
moments by the 'closed lattice-type tubes'.

In case of a 'hexagonal on triangular' space grid, torsional moments
m.A can not be calculated on the basis of part g of the decomposed
plate moments but only on the basis of overall plate moments w Namely,
matrix | is of the same character as matrix § and the sum of both
matrices can be considered to be bending rigidity matrix | of the flange
planes.

Therefore, the following formula shall be used to calculate moments
arising in the chord planes, associated with bending rigidity matrix B

nchord planes _ g’g + gexc + gtube-j norid (100)

Formula for calculation of torsional moments arising in ‘'closed
lattice-type tubes"

® =-1b (E P»1 -t + lexc + !tube) _1 mb5srid doi)
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where C=G . I®,
b = width of the 'tube’,

ft a)'l m (102)

1s (103)

In case of the simplified equilibrium method, the following formulae
can be used to decompose the moments:
—in the centre of the space grid:

rid rid
r&hords - r;@hords X * r& (104)
WO o (105)

—in the corner of the space grid

rT(I:hords n@hords -0 (106)

The torsional moment shall be decomposed into components resulting
in twist of the three pipes running in three directions,
m

In case of the simplified compatibility method, equations (100) and
(101) shall most reasonably be calculated numerically.

6.2 Sone problems in relation to the use of solutions available in the
literature on plate theory /6/_

Although a solution ready for use as mentioned in par 6 nmay be found
for the plate of a HB ratio corresponding to the space grid investigated,
it is still possible that the B12 to Bt ratio in torsional rigidity Hof the
equivalent plate differs from the Bl2, B ratio in torsional rigidity H of
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the investigated space lattice that is Poisson number

ve

of the equivalent continuum differs from that of the space grid in question.
(Note that all types of bending rigidity shall be taken into consideration
when calculating for V“e.)

The solutions of statically equivalent isotropic or orthotropic
plates with a different ve as compared with the space grid are identical
for bending deflection (w) that is the Poisson number is not ranging among
the boundary conditions. This applies to the case of

—clamped edges and

—edges bearing up freely
but it does not apply to the case of free edges because the expressions of
bending force and shear force disappearing there contain 0.

Let Vgrid be the Poisson number of the space grid investigated
while Ve that of the equivalent plate.

Equations (92), (93), (94) can be rewritten, as follows:

k= -B (W' +w ) (110
1 =B (W +w (1112)
;y =-B, . wim (112

With the partial derivatives of bending deflection function 'w'
determined and expressed as the moments (me) of the equivalent plate, using
relationships (110), (111), (112) we obtain

(113)
B=[l - <v e)2

V . nx

Be[l-(Ve)]_

(114)

(115)
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Values (113), (114), (115), shall than be substituted again into
(92), (93), (94), respectively to obtain the moments of the space grid on
the basis of the moments of the equivalent plate:

arid
(116)
(117)
(118)
In case of v6 =0 (that is = 0), equations (116), (117), (118)

will reduce themselves to

respectively.
In-case of a 'diagonal on square' type space grid:

(122)

(123)



180 TURKOSSY, A.

6.3 Calculation of Internal forces of the space grids investigated -
Comparison of the results of approximate calculation with accurate results
calculated by computer

Approximate calculations using solutions according to /1/, /3/, 19/
apply to square space grids with different length of the sides from among
which
— 'square with diagonals on square' type space grids (see Figs 14 and 15

and Table 5) and
— 'diagonal on square' type space grids (see Figs 16, 17 and Table 6) have
top and bottom chord planes with different rigidity while
— 'hexagonal on triangular' type space grids (see Figs 20, 21 and Table 8)
are reinforced against twist by so-called ‘closed lattice-type' tube.

Table 4 Recommended computation models

grid type top chord bottom chord

symbol equilibrium compatibility equilibrium  compatibility

X X

+214 +

+ 64 + 14

+ 10% - 14

+ P



Table 5 Bar forces of 'cross-brace type square over square' type space

In centre
top
chord

bottom
chord

bracing

middle of
the edge
top chord

bottom
chord

bracing

comer

top

chord

bottom chord

bracing

53-65
53-66
54-65
65-66

59-71
71-72

53-59
53-71
65-71
65-72
66-72

49-50
49-61
49-62
50-61
61-62

55-56
55-67
67-68

49-55
59-65
49-67
61-67
61-68

1-13
1-14
2-13
7-19

1-7
1-19
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EQU
KN

-4.65
-3.23
-3.23
-4.61

+9.17
+9.17

-1.70
+0.44
-1.22
+0.48
-1.00

-0.88
-0.88
-0.62
-0.62
-0.88

0.00
0.00
0.00

0.00
+4.43
+0.28

0.00
+4.87

-0.17
-0.12
-0.12

0.00

0.00
0.00

0.0056

BT
%

+48
+48
+41
+41

+7
+3

+12
+10

-2
+20

-8

-14

SZG.
KN

-3.11
-2.18
-2.29
-3.26

+8.61
+8.94

-1.52
+0.40
-1.25
+0.39
-1.00

-1.75
-1.54
-0.92
-1.42
-2.07

0.00
-2.47
0.00

+0.53
+4.69
-0.60
-0.76
+5.31

+0.06
+0.65
-1.11

0.00

0.00
-0.68

0.0065

aw
KN

-3.28
-2.31
-2.28
-3.28

+6.52
+6.52

-1.45
+0.48
-0.75
+0.41
-1.00

-0.63
-0.63
-0.27
-0.61
-0.63

0.00
0.00
0.00

+0.53
+4.24
+0.20
+0.44
+4.10

-0.12
-1.41
-1.41

0.00

0.00
0.00

Deflection in the centre (m)

0.0035

BT
4

+27

-45

GIENCKE

-3.34
-2.19
-2.48
-3.34

+6.64
+6.64

-0.75
+0.41
-1.00

ELT

+7

+8
+3

-23
-26

-40
+3
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Table 6 Bar forces of 'diagonal on squareltype space

In centre
top chord

bottom
chord

bracing

middle of the
edge top chord

bottom chord
bracing corner
top chord

bottom chord

bracing

BAR

65-70

24-28
21-24

24-65
24-70

31-39
33-39

12-13

13-39

37-43

4-7
4-17

4-43

TURKUSSY, A.

EQU
kN

-10.06

+14.20
+14.20

- 0.62
+ 0.62

- 214
- 214

+ 3.02
- 5.52
- 0.85

+1.20
+ 1.20

- 220

0.043

ELT
H

+42

+17
+19

-17

-13

-12

Deflection in the centre

-4

G
kN

-7.07

+15.27
+14.66

- 0.53
+ 0.52

+0.0002
+ 0.82

+ 3.65
- 6.34
+ 1.45

- 0.99
+ 1.45

- 251

(m)

0.045

-7.78

+11.00
+11.00

0.56
0.56

- 1.65
- 1.65

+

+2.33

- 5.02

- 0.66

+ 0.93
+ 0.93

- 246

0.035
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Table 7 Bar forces of 'square with diagonals on square offset' type space grid

In centre
top chord

bottom chord

bracing

middle of the
edge
top chord

bottom chord

bracing

corner

top chord

bottom chord

bracing

BAR

53-69
53-71
54-69
69-71

58-59
59-70

53-59
59-69
59-71

49-50
49-61
49-63
50-61
61-63

43-55
55-62

49-55
50-55
55-61
55-63

1-13
1-14
2-14

1-7
7-13
7-14

EQU
kN

-4.20
-2.93
-2.94
-4.20

+8.35
+8.35

+0.16
+0.02
-0.20

-0.80
-0.80
-0.51
-0.61
-0.80

+1.60
+1.60

+0.68
-0.64
+0.96
-1.00

-0.15
-0.34
-0.15
+0.31
-1.08

+1.40
-1.72

0.00513

BT
4

+27
+27
+22
+21

+15

-23
-17
-13

Deflection in the centre (m)

-9

S/G
kN

-3.30
-2.31
-2.41
-3.46

+8.56
+8.85

+0.31
+0.01
-0.33

-0.54
-1.64
-0.58
-1.00
-0.56

-0.22
-0.29

+1.74
-1.82
+2.15
-2.08

-0.02
+0.93
-1.17
+0.27
-1.40

+1.69
-1.98

0.00560

aawe
kN

-4.44
-3.11
-3.11
-4.44

+8.83
+8.83

+0.20
0.00
-0.20

-0.85
-0.85
-0.58
-0.61
-0.85

+1.69
+1.69

+0.85
-0.81
+0.89
-0.93

-0.16
-0.06
-0.15
+0.32
-0.18

+0.52
-0.86

0.00229

ELT
%

+35
+35
+29
+28

-39

+18

-61

GIENCKE
kN

-3.15
-2.19
-2.23
-3.16

+6.28
+6.28

+0.07
+0.07
-0.21

183
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Table 8 Bar forces of 'hexagonal on

In centre
top chord

bottom chord

bracing

middle of the
one side
top chord

bottom chord

bracing

middle of the
other side
top chord

bottom chord

bracing

Corner
top chord

bottom
chord

89-94
94-103

82-104
102-104

89-104
94-103

67-72
67-73
72-84
84-90

62-78

67-78
72-78
73-78
78-84
78-83
78-90

5-10
5-11
10-22
11-23
22-28
23-28

15-16
16-17
16-32
16-33

5-16
10-16
11-16
16-22
16-23
16-28

1-6
1-7
6-18
7-19
18-24
19-24

12-19
12-29

TURKOSSY, A

triangular' type space

EQUI
KN

-17.37
-17.37

+10.04
+10.04

0.00
0.00

- 3.48
- 2.86
- 3.17
- 2.86

+ 2.36

+ 0.15
+ 4.02
- 3.88
+ 272
- 2.86
- 0.15

- 381
- 381
- 3.85
- 3.77
- 3.66
3.96

2.14
2.26
2.45
1.95

+ o+ o+ o+

8.13
0.09
- 0.09
- 212
- 1.90
- 4.03

+ o+

- 0.73
- 0.73
- 0.73
- 0.73
- 0.73

+ 0.42
- 2.26

BT
(0}
0

0

+ 8
+9

-14

-21
-29

-19
-19
-12
-16
-38
-38

-17
-17
-17

-17
+10

G
kN

-17.29
-17.41

+ 9.28
+ 9.18

- 0.03

- 4.05
- 4.65
- 4.04
- 4.05

+ 6.94

2.77
9.03
6.51
9.03
- 544
- 3.32

[T

+

- 473
- 471
- 4.36
- 448
5.90
6.39

6.06
6.33
5.08
4.18

+ o+ + o+

+10.57
- 0.16
- 0.48

- 545

- 0.88
- 0.88
- 0.88
- 1.49
- 0.88

1.03
2.39

+ +

Colf
kN

-18.26
-18.26

+10.55
+10.50

0.00
0.00

- 223
- 334
- 334
- 334

+ 2.03

+ 0.02
+ 3.51
- 348
+ 3.57
- 3.60
- 0.02

- 4.00
- 4.00
- 4.00
- 4.00
- 3.99
- 401

+2.30
+2.32
+ 2.33
+2.29

+ 8.55
+ 0.01

- 4.24

- 0.76
- 0.76
- 0.76
- 0.76
- 0.76
- 1.03

+ 0.97
- 0.09

BT

+6
+5

+14
+15

-17
-28
-17
-17

-15
-15
-8
-11
-32
-37

-19

+22
-22

-14
-14
-14

-14

-6
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Table 8 (continued)

BR BEQU BT G aw ELT
kN % kN KN \

bracing 1-12 + 1.02 -48 + 1.98 + 1.77 -11

6-12 + 1.73 -12 + 1.97 + 0.69

7-12 - 097 - 2.34 - 043

12-18 + 1.00 + 1.97 + 0.88

12-19 + 0.64 +18 + 0.54 - 1.83

12-24 + 0.39 - 411 - 0.26

Deflection in the centre Qm)

0.0024 0 0.0024 0.0016 -33

Uniformly distributed vertical load p = 1.0 kN/m2 is acting upon any
of the four space grid types and each space grid is supported by bearing up
freely along the periphery of the top chord plane (the supports being il -
lustrated by circles in the layout plane of the space grid). Thus the
boundary conditions along the supported edges /1/:

y = constant

w = 0 (zero deflection)

ny= 0 (zero bending momert at right angles to the edge)

<$' = 0 (zero supplementary horizontal menbrane force at right

angles to the edge in the upper plane)

<' ‘= 0 (zero supplementary shearing membrane force in the top chord

plane).

Dark areas in the top plan of the space grid are bar groups for
which the bar forces arising have been calculated. Fom anong these bar
groups, three important groups have been selected for each space grid, one
in the centre of the space grid, a second in the centre of the supported
edge while a third in the corner of the space grid that is at point where
the value of bending moment, shear force and torisonal moment is maximum.

The bar forces arising in the selected bar groups have been tabu-
lated and compared with the accurate values of bar forces obtained by
computer calculation (Department of Engineering Computation, SZAVGEP,
EGSZI). Abbreviations 'equil and 'COMP in the Tables indicate the results
obtained in kN by the simplified equilibrium and simplified compatibility
method, respectively.

'SG' indicates the accurate result in kN obtained by computer
calculation while 'HET' is used in any case for the difference in load
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(+ or -) in %as compared with the accurate result. Deviations above 50% or
those meaningless because of the low values of bar force have not been
indicated.

The values of deflection in the centre of the space grid, including
also deflection due to transversal shear, have been tabulated.

The values obtained for chord bar forces by approximate calculation
as well as the accurate values are illustrated also diagrammatically in the
axes if symmetry parallel to axis x of the space grid, at the boundary and
along the boundary.

7. Summary and evaluation of the results of the accuracy test

Two curves are obtained in illustrating the values obtained for bar
forces using the two different approximate methods, these curves lying in
some cases below or above the curve of accurate values of bar forces they
flank the curve of accurate values in other cases.

In case of chord bars lying in the axis of symmetry parallel to
axis x, the curve of accurate values lies actually between the curves of
approximate values along some sections while in case of bars lying at, or
near, the boundary, the accurate values lie usually beyond the curves of
approximate values because the supports and the introduction of forces
(e.g. introduction of maximum torsional force arising in the corner to the
'lattice-type tube' which has not been a geometrically 'fully closed tube’
yet result in effects that can not be taken into consideration in the ap-
proximate continuum method.

7.1 Effect of approach used in calculation of bending moments on accuracy

Solutions ready for use in the literature give the meximum bending
moment arising in the centre of the plate and the mexinum torsional moment
arising in the corner of the plate.

To calculate the value of bending moments arising at different
points of the substituting continuum on the basis of meximum bending
moments, a parabol of the second degree was used as an approximation while
double linear reduction was used to calculate the torisonal moment on the
basis of maximum torsional moment.

The effect of approximation used in calculating for bending moments
on the accuracy of the values of moment is illustrated below:
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The accuracy of calculation of moments can be improved by taking
into consideration the error committed. This is a better approximation of
the accurate solution of the computation model. The effect of correction in
case of the ‘'hexagonal on triangular' type space grid is illustrated dia-
grammatically for the chord bar forces of the top chord plane.

7.2 Problems of applicability of the simplified continuum methods

Concerning applicability of the simplified continuum method, a sig-
nificant amount of deviation from accurate bar force values (error) wes
found to result from the neglect of supplementary plane stress and strain
state arising in the 'more rigid' chord plane containing more types of
rigidities. Namely, bar forces that can not be neglected are brought about
by the supplementary plane stress and strain state in this chord plane, in
particular

tension in the centre and compression near the edges of the space

grid in the top chord plane in case of 'square with diagonals on

square offset', 'square with diagonals on square', and 'diagonal on
square' type space grids
while

compression in the centre of the space grid and tension in the

vicinity of the edges in the bottom chord plane of a 'hexagonal on

triangular' type space grid
with, however, little effect on the values of bar borce of the other chord
plane.

It follows from what has been said that acceptable bar forces are
usually supplied by the simplified equilibrium model in the chord plane



188 TURKGSSY, A.

Fin, 14. 'Square with diagonals on square'
a) Top view; b) Cross section
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cL
Chord bar forces at the Chord bar forces near the
boundary boundary

Fig. 15. 'Square with diagonals on square' grid

109
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Fig. 16, 'Diagonal on square'
a) Top view; b) Cross section
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Q,

Chord bar forces at the boundary

Values obtained by
computer

By compatibility method
By equilibrium method

RO 17.

191



192

Ab=20cm2

Ab=20cm2

Fig, 18. 'Square with diagonals on square offset'
a) Top view; b) Cross section
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Fig. 19. 'Square with diagonals on square offset' space grid

193
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Fig. 20. 'Hexagonal on triangular’
a) Top view; b) Cross section
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------ Values obtained by computer
------By compatibility method

------ By equilibrium method

....... Improved valued

Fig. 21. 'Hexagonal on triangular'

195
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containing less types of rigidity (‘'softer chord plane') and thus no rigid-
ity need be neglected. At the sare time, in the chord plane where a rigid-
ity is neglected (e.g. in case of a 'hexagonal on triangular' type space
grid), the error in the values of bar force supplied by the method is con-
siderable.

Calculation on the basis of the simplified compatibility model sup-
plies values for bar forces to a good approximation in the chord plane
containing nore types of rigidity (‘more rigid' chord plane). This can be
attributed to the fact that all types of rigidity present in the chord
plane are taken into consideration by this model and thus the calculation
comprises the disturbance of the accessory plane stress and strain state
over the entire chord plane although it is not calculated nuemerically.

Significant deviations may result from the difference between actual
and assumed support at, and near, the boundaries, first of all in case of
minor bar forces which are, however, insignificant in design.

Bar forces neglected along with the plane stress and strain state
may also result in a significant error in some cases because chord bar
forces resulting from bending in the vicinity of the boundaries are ex-
tremely small as compared with the neglected bar forces.

In case of a 'cross-brace type square over square' type space grid,
the neglected swelling rigidity of the structure is similar to torsional
rigidity. With the swelling rigidity neglected, the bending stress in-
creases and as a result, also the chord bar forces calculated on the basis
of the bending stress increase. Major deviations from the accurate values
result presumably from the asymmetry of the grid of columns. Nodes of the
lower and upper chord planes for which the moments are written for calcula-
tion of the bar force arising in the bars in the other chord plane are sig-
nificantly shifted as compared with the mid cross section of the bars in
guestion.

Deflections calculated using the equilibrium model lie significantly
closer to the accurate values than those based on the compatibility model.
An explanation is that the deflection of the structure is practically un-
affected by the accessory plane stress and strain state and thus neglect
w ill not result in an appreciable error either.

Although including the accessory plane stress and strain state, the
compatibility model converts all the relevant rigidities into an imaginary
inertial noment and reduces thus the calculated deflection without reason.

Bar forces lying closer to the accurate values are supplied by
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adaptation of Giencke's theory to the 'more rigid' chord plane containing
more types of rigidity and, owing to superposition of the ribs on the
‘cover plate' (cf. 4.3), also the rigidity of the ribs where the accessory
plane stress and strain state takes place.

Giencke calculated bending on the basis of actual bending and tor-
sional rigidities but he assumed swelling rigidity to take place where the
average of bending centres of gravity was found. Giencke's method reminds
us therefore of the simplified equilibrium method as far as bending while
of the simplified compatibility method as far as torsion is concerned but
it is not identical with either method but rather a hybrid computation
process.

7.3 Summary

To the accuracy of calculated bar forces, the internal forces of
two-layer grids can be calculated simply and demonstratively within a
relatively short time on the basis of stresses of orthotropic plates of
different torsional rigidity wusing the simplified continuum method.

The process is sufficiently accurate for use in preliminary design,
in determination of the cross section of the bars or in testing a data set
obtained by machine computation.

Values best approximating the accurate values of bar forces are
expectable in the centre of the space grid, in case of chord bars.

A simplified computation model to be reasonably used for determina-
tion of values best approximating the accurate values of bar forces arising
in the top or bottom chord plane in the centre of the space grid in case of
the different types of space grids is illustrated below.

In the Table, the values of nmeximum deviation from the accurate
values of bar force are given in per cents.

A reasonable method to calculate the expectable deflections is the
simplified equilibrium model. In this case, there is a deviation of
+ 0% - 14% between the calculated and accurate values of deflection.

1. Kollar, L. - Hegedils, |.: Analysis and Design of Space Frames by the Continuum Method.
Akadémiai Kiadd, Budapest 1985.
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BOK REVIEAS

Ivanyi, M ed.: Stability of steel structures, volumes | and II.
Akadémiai Kiad6, Budapest 1988. 1106 pages.

This work of two books contains the contributions to a conference on
Stability of Steel Structures held in Tihany (Hungary), September 25-26,
1986 as one of a series of international meetings from anmong which meetings
in Hungary had been suggested and organized by the late Ott6 Halasz, Pro-
fessor and Corresponding Member of the Hungarian Acadenmy of Science, Head
of Department of Steel Structures of the Technical University Budapest,
until he died in 1986. Therefore this conference, the second one held in
Hungary, has been dedicated to the memory of Ott6 Halasz by Professor Miklos
Ivanyi, his successor.

In this work, first you can read a biography of Ott6 Halasz and a de-
scription of his scientific achievements, including a list of his publi-
cations. Then 125 papers submitted by 146 authors from four continents of
the world are presented.

As an introduction, you find a 'state-of-the art' type general report
at first place in each chapter to give an overview of the recent results of
research in given field and to act as a bridge between the different papers.
Comments on the papers and discussion are given at the end of each chapter.
Included anong the extremely valuable contributions of quite a number are
papers presenting new dimensioning processes or inventive experimental test
methods or recommendations concerning development and increasing of the ac-
curacy of standards and the like.

The two books contain nine chapters to present papers from nine
fields within the science of stability of steel structures:

| Design concepts and codes

Here you can read papers giving a valuable summary of standards and
recommendations used in the field of stability of steel structures like
LRD (Load and Resistance Factor Design) for U.S.A. or BROOXTE and DIN for
Europe.
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Il Columns and beam columns

This chapter deals with the dimensioning problems and strength cal-
culation for columns under centric and eccentric axial load. The methods of
statistical mechanics are often used to support theoretical and practical
considerations. Recommendations of quite a number can be read for buckling
curves.

Il Lateral buckling

Most of the papers deal with methods to study the lateral buckling
of multispan continuous steel beans and with the stability of beam columns
on the basis of a non-elastic or even elastoplastic model. A comprehensive
international picture of the results of research into the stability test of
Bars is (?iven, distinctions being mede between problems solved and those to
e solved.

IV Frames

The new trends lay increasing emphasis on the effect of joints upon
the behaviour of the entire structure. In general, semi-rigid joints in
combination with imperfect models are considered to be the key to improve-
ment of the design methods.

V Trusses

The stability test and optimum design of trusses of differenttypes
are discussed in the papers of this chapter.

VI Plate and box girders

You can read about the stability problems of plated structures, load
capacity tests of girders under static and dynamic load, economic dimen-
sioning of longitudinally stiffened steel plates, elastoplastic behaviour
of box girders and their optimum design etc. in this chapter.

VIl Shells

Discussed in this chapter are the design and stability problems of
the most important and widely used types of shells (cylindric, conic,
spherical and toroidal ones) as well as thin-walled cylindric steel silos
etc.

VIIl Thin-walled structures

Treated by the papers here are the stability analysis of thin-walled
structures, methods to test beans resisting shear, bending and torsion as
well as problems in relation to sandwich structures.
IX Special problems

Presented in this chapter are special unique problems in relation to

elements of different structures as well as methods of calculation and
measurement in this special field.
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Although the official language of the conference has been English and
Russian, the language of the book is English and thus even papers written
originally in Russian are presented in English language in the book. An
authors' register including name and address of the participants of the
conference is given in the book to facilitate communication with the authors
and a subject index contributes to orientation in the text.

The book has been intended first of all for scientists of the field
to add to their knowledge but it may be a valuable aid also for engineers
of the practical world who can find ideas to be realized in practice or
relationships they seldom encounter with in everyday work.

Gy. Czeglédi

Kezdi, A - Réthati, L.: Soil mechanics of earthworks, foundations and high-
way engineering. Akadémiai Kiadd, Budapest 1988, 361 pages.

The book is the third volume of a serial Handbook of Soil Mechanics.
It presents the conventional and advanced models used in engineering prac-
tice. Six chapters cover

- soil mechanics of earthwork,

- load-bearing capacity and settlement of shallow foundations,

- bearing capacity and settlement of pile foundations,

- soil mechanics in road construction,

- improvement of the physical properties of soils,

- soil dynamics
comprehensively.

The merit of the book lies first of all in the clear presentation of
practical problems, both conventional and new ones (like reinforced earth
or dynamic behaviour of road pavements). Outlining the procedures used in
conservative engineering practice, the authors draw attention to the numer-
ous effects, circumstances and approximations influencing the validity and
adequacy of mechanical models. This carefulness is of vital importance in
geotechnics - the book combines practical and theoretical considerations
proportionately.

computational models are fitted to the assumption of linear
elastic or ideally plastic material behaviour. The untimely death of the
senior author, Professor Kézdi, resulted in some predominance of conserva-
tive calculational approaches. Tables of influence factors and nomograms
help to solve numerical problems but no reference is mede to the results
brought by age of computers. From this point of view, the book is a syn-
thesis of classic knowledge and its value is not only scientific but also
historical.

Sone non-linear models or computational approaches are missing but
important contributions (not very common in this kind of textbooks) are
found in the book to probabilistic treatment of problems. The second author,
Professor Réthati, added his achievements without interfering with the
original material. Ttwrefore, the book is a valuable aid of civil engineers
working in a practical field.

P. Scharle
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Réthati, L.: Probabilistic solutions in geotechnics. Akadémiai Kiad6 Buda-
pest, 1988, 451 pages.

The author of this volume, 46th in the series of "Developments in
Geotechnical Engineering" (Elsevier - Akadémiai Kiadd, joint edition, 1988),
Professor L. Réthati is a well-known scientist and, what is more, acknowl-
edged expert of practical geotechnical problems. The book reflects these
capabilities: it covers all those fields where the practical use of old (or
younger) thumbrules, relationships and models can be improved by introducing
statistic and probabilistic considerations and methods.

The author starts with three very transparent introductory chapters,
presenting the fundamental concepts and theorems relevant to practical use
in  mathematical statistics and theory of probability. Clear and simple
examples convince the reader that the effort needed for mastering the less
known concepts and approaches pays well. The precise mathematical treatment
and the clear comments stimulate the reader to use the presented methods for
his particular problems. The reviewer ventures the remgrk this was the pri-
mary ambition of the author.

The particular domains of geotechnics are set forth in self-contained
Chapters as follows:

- determination of the site and the number of soil tests,

- determination of the qualifying characteristics of the soil,

- comparison of tests performed with the sanme soil,

- evaluation of the test data before planning,

- determination of the bearing capacity of the soil,

- settlement forecasting,

- stability of free standing and supported slopes,

- quality control of earthworks.

The practising engineer finds his keywords mostly in the contents,
while the subject index lists mainly the terms of statistics. The rferences
(some 250) are taken mostly from literature written in English, nevertheless
the treatment reflects properly the results of outstanding Russian Schools
and those of the author himself, too. Therefore, the book serves as a refer-
ence as well: the explanation of the essential knowledge is followed by
reliable references for further study.

The attentive reader may find a special pleasure in the 8th Chapter,
where the basic principles of planning based on the theory of probability
are analyzed in detail. Beyond the uncertainty involved in the computational
models, the consideration of the lifetime and the safety margin, the author
pays attention to strategic decision making, dealing simultaneously both
with the technical and economic factors.

A sarcastic dictum (referred to by M Tribus) says that "research is
reading more than one book". In the age of publication boom this statement
may incline anybody to meditate about the research problem of finding those
books definitely worthy of reading. The reviewer thinks Professor Réthati's
work must be classified as one of those few to be studied and kept handy in
the years to come.

P. Scharle
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MICROMECHANICAL MODEL FOR NUMERICAL ANALYSIS OF GRANULAR MATERIALS
BOJTAR, |.* - BAGI, K.**
(Received: 27 November 1989)

A numerical method has been developed for the analysis of the internal behaviour
of granular materials. State-changing processes of microstructure can be followed;
the final aim is to find state variables that can reliably describe these processes.

Introduction

The constitutive equations generally used to describe granular
materials are based on the traditional continuum-mechanical variables like
stress and strain. Since the material is replaced with a continuous model,
these variables cannot properly describe the fundamental behaviour of
granular materials i.e. the internal structure and its changing.

The usual way oi taking into account this effect is to define the
'material properties' as functions of the state variables (with new par-
ameters introduced, of course). To improve the constitutive equations, more
and more parameters are introduced until the equations become ‘overcrowded'
- especially those parts containing the material properties.

It seems to be a much better approach to find totally new variables
beside, or instead of, the traditional ones. These new variables should
reflect the fact that the material has a characteristic internal structure
changing as a result of external effects.

There are several theoretical proposals concerning these variables
but the difficulty is to prove that they are really efficient.

A numerical model is presented in this paper by which the efficiency
of the suggested variables can be analysed by numerical experiments. The
model is able to follow the state-changing process of the material under
external load while the values of the analysed variables are continuously
calculated.

"Bojtar, Imre, H-1221 Budapest, Arany 3. u. 96/A, Hungary
Bagi, Katalin, H-1052 Budapest, V&ci u. 7, Hungary

Akadémiai Kiadd, Budapest
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The first chapter in cludes the best known approaches to more ef-
ficient description of granular assemblies.

In the second chapter, the numerical model proposed for their analy-
sis is presented.

The third chapter gives two numerical examples.

1. Suggested variables for the description of internal

behaviour of granular assemblies

Given state of a granular assembly could exactly be described only
if all geometrical characteristics like shape, position, material pro-
perties of the grains and of the contacts between them, and the contact
forces and relative displacements at all contacts were known. The response
of the assembly to changes in external effects could exactly be predicted
in this case (‘average' deformation, change of porosity, loss of stability
etc.). This ‘'response' is derived from three basic effects: first, the
change in shape and size of grains (usually negligibly small); second, the
relative motion of adjoining grains at the contacts without loosing con-
nections; third, the rearrangement of the internal structure, change of
topology (joining and disjoining).

It is impossible to follow these effects by means of traditional
continuum-mechanical state variables. - Therefore, as early as in the
1960s, more and more ideas were born about how to define more efficient
state variables, how to find new ways of description of the behaviour of
granular materials.

The most evident attempt wes to re-define the stress and strain
tensors so that they will be able to describe a granular assembly with
discrete nature instead of a continuous material (good summary is given by
Nemat-Nasser in /1/).

Besides this traditional approach, totally new ideas were also born.
Pioneering work was done by Takeo Mogam in 1965 (see /2/, /3/) who was the
first to use statistical entropy for finding the most probable state of
granular assembly. This route wes followed by many others (Moroto, /4/;
Brown, /5/; etc.). They suggested that the effort to find the least biased
state of the assembly be treated as a constrained optimization problem:
maximization of entropy with given constraining conditions satisfied (aver-
age porosity or coordination number specified, equilibrium equations satis-
fied etc.).
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Another approach was born in the 1970s: geometrical analysis of the
microstructure (angular distribution of contact normals or of long axes of
grains; effect of initial anisotropy; role of sliding and rolling of grains
in deformation etc.; see for instance /6/ and /7/). The basic variable
called fabric tensor shall be introduced here; its well knonmn definition is

1 M

H'lJ' " ng (1.1)
where nc=(n?) is the unit vector normal to the surfaces of touching grains
at contact 'c'; Mis the total number of contacts of the analysed assembly.
This variable was suggested for characterisation of anisotropy of the
internal structure. (In the recent few years, it has already been suspected
that at least a fourth-rank fabric tensor is required for proper descrip-
tion; see /8/).

The most promising ideas were born in the early 1980s. The first one
was developed by M Satake (see /9/ and /10/) who introduced a graph re-
presentation of granular assemblies and defined several variables based on
the micro-level analysis of geometrical structures.The second one comes
from P.A. Cundall (see /11/) who separated the different physical effects
upon the material by dividing the stress tensor in four partitions, each
expressing a different aspect of behaviour. Let's have a closer look at
these suggestions.

1.1. The Satake-variables

In a two-dimensional assembly of discs ('grains') let's define two
graphs. The first one called replaced graph is obtained by connecting the
central points of discs in contact with each other; the second one called
dual graph is derived from the cormon tangents of adjoining grains (see
Fig. 1.1).

Using this graph representation, the variable fabric tensor can be
defined as N m

=R ja-— (19

|~
P=1
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replaced graph dual graph

Here N is the number of grains in the analysed domain; mis the
number of contacts of particle p; n" is the unit normal vector at contact
c of particle p.

The ©C term can be weighted by the replaced graph branch lengths of
the contacts (‘branch tensor' gained); or by the dual graph branch lengths
(‘contact tensor' given); by the elastic energy stored in the contacts
(‘energy tensor' defined in this way). Other physical quantities can also
be used for weighting.

1.2, Cundall's stress analysis

Cundall proposed to separate physical effects upon the material in
the following way:

From the original two-dimensional domain R, an area A can be separ-
ated, which is not disturbed by boundary conditions (external loads acting
directly on a grain, kinematical constraints etc.). For area A, the average
stress tensor (t?”) can be defined for circular grains as

1.3
s (N7 "% (1:3)

Here rP is the radius of particle p, mthe number of contact points
of particle p, Fis the total contact force vector and n“the unit vector
normal to the grain surface at contact c.

Cundall separated this stress tensor in four partitions:
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or = j (s) + (fy +ff., (v) +OL (i) (1.4)

where the four partitions are:
6T(s) shear stress tensor
oTCV) normal variation stress tensor
rj(f) fabric stress tensor

(57(0 isotropic stress tensor

First, the total contact force acting upon given contact point of a
grain is split into normal and tangential components. The shear stress is
calculated from the tangential forces:

(1.5)

The Einstein summation rule is applied. This partition corresponds to the
mobilised shear forces; it is related to the tendency of the contacts to
slide and thus to the dissipation of energy during the state-changing
process.

In the second step, the average normal force associated with the
grain is separated from each normal force acting on the grain. From the
remaining part, the normal variation stress component is calculated:

® N m 1 m
.CC -l
i - Fkk> Vi3 (L6
p:| c=I m C1

This partition corresponds to variation in the magnitude of normal
forces with angular changes, reflects the eccentricity of forces acting
on the grains, similarly to the classic buckling problems.

The remaining part of the stress tensor may be split into the iso-
tropic component:
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N m

a.n
kk p=l ca

and into the fabric component:

(1.8)

that corresponds to the angular distribution over contact points related
thus to the anisotropy of the microstructure. In this expression a.. is
the Kronecker symbol and OCa) the average of normal forces actirjf& on
particle p.

We want to find a method to analyse these - or perhaps other - sug-
gested variables during loading processes.

2. The numerical model

Our analysis is restricted to 2D only. Displacements of each grain of
the assembly are followed; relative displacements and contact forces be-
tween the grains are calculated under external loads. The suggested vari-
ables can then be calculated from these data.

Since the deformation of individual grains is negligibly small, the
material is modelled as a random assembly of perfectly rigid circular discs
with deformable contacts between them.

The initial data of the assembly are the position and radius of each
grain and the properties of the contacts (the so-called micro-material-law,
stiffnesses, strength etc.).

Loads are acting directly on the grains or on the 'walls' confirming
the assembly. The loading process is a series of load steps; an equilibrium
state shall be found for each load step until the assembly is totally de-
stroyed. - Hence, the state-changing process is assumed to be a series of
equilibrium states. Calculations for finding the equilibrium states are
based on the displacement method. The values of the suggested variables are
calculated in the equilibrium states and thus their change can be followed
during the entire state-changing process.
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2.1. Geometrical model

The geometry of the assembly is modelled by means of random number
generator. Input data are the size of the rectangular domain under con-
sideration and the minimum and meximum grain radius. The program generates
grains with a radius changing at random between given minimum and maximum
values.

The random number generator applied to the present program is capable
of following any probability density function, hence any sieve curve can be
simulated. It can be indispensable when the grain radius varies in a wide
range.

Starting at the bottom, the domain is filled upwards by dropping the
grains (see Fig. 2.1). Every grain must be supported by the others or by
the edges of the domain so that this process will lead to a stable struc-
ture.

y* yi

Pia- hi-
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2.2. Connections between the grains

Qe of the fundamental problems in the analysis is to define the
properties of the connections. Ou knowledge of the micro-material-law of
the contacts is based on assumptions only; two types of connections are
used experimentally in the model at present but other types can be used as
well.

In the first case, the contacts are assumed to be rigid; they resist
tension or compression, shear force and bending moment (see Fig. 2.2). The
shearing stiffness depends on the average normal stress acting between the
grains.

The relationship between contact forces JlI (see figure 2.2 for exact
meaning) and relative displacement vector WV is given by equation Q =Tl
where k is the contact stiffnes matrix

Es 0 0
0 G O

Es3
0 0 12

the shear stiffness depending on the normal stress acting upon the contact:

G-= (2.2)

Here E is the normal elastic modulus, Gg the initial shear modulus,
s the symmetric section of the dual graph edge belonging to the contact,
and Uis a 'frictional' factor.
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The micro-material-law of this contact type is illustrated in Fig.
2.3 where the fracture criteria are also shown.

In the second case, the contacts resist only compression and
'frictional' shear force (see Fig. 2.A)

so K has a simpler form:

where

Q& is assumed to be much smaller than G used in the first case. Fig. 2.5
illustrates the micro-material-law.
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2.3. The equilibrium equations

Our unknowns are the displacements of all grains as shown in Fig.
2.6; the equilibrium equations of the assembly are set up to find them.

gram displacements

Fig. 2
The relative displacements at contact 'c' of grains 'i' and 'j' can
be written as
c =Tc () u(j) _ Te (i) u(i) 2.5)
where the displacement vector of grain 'i' is

il
41) (29
4 "
Lto(i).
and the transformation matrices are

Te(j)

Te (i)

(see Fig. 2.7).
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The resultant force of the contact forces acting on grain 'i'
i (i) c() @
p(i) $ - Zf (2.9)
: c=
(1)
Yy

(i)
M

With this calculation mede for every grain, the global system of
equilibrium equations can be set up where the boundary conditions are also
considered:

F = Kgioh Y (2 20)

2.4. Effect of geometrical non-linearity

It can be rightly assumed that 'rigid' contacts break even in the
range of small displacements. Therefore, assemblies with frictional con-
tacts are considered only in the analysis of the effect of geometrical
non-linearity.

Let's consider two adjoining grains as shown in Fig. 2.8:
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Here ot belongs to the state before relative displacement and acnAn,
belongs to the state after deformation. Using the notation of finite ele-
ment descriptions the relation between the local and global variables:

xg=T1 =1 (2.11)

3g = 1191

Here 1 indicates that the effects are described in the local coordinate
system and g refers to the global basis; g is the displacement of given
'node' (grain center); ™ the stiffness matrix of given ‘'finite element
(given contact); g forces acting on the 'node' and | the transformation
matrix :

OOSoc -sind O cos bl sinoc O
sin @ -cos bl ry -sin & cos a. i (2.12)
0 0 -1 0 0 1

Geometrical non-linearity means that | depends on ga:
I =1(u) (2.13)

The last equation of (2.11) can be written in incremental form neglecting
the second order term:

g + /b =TT+ ATT) (gx + Agx) (2.14)
and arranged as
Agg =1TAQi + A i\ =bg AW + A iTai (2.15)

The last term can be expressed as

3 3 314 or] a1
Al\ =Y_an all =Z aii ) - y
i=1 i=I ugl 9 ug2 a3
Ly 42.16)

9
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Matrix b™ on the right side of the equation is called geometrical stiffness
matrix. Using this form in eq. (2.15):

(b +bG AUg = A" (2.17)

Matrix bG can be easily produced from
3
G =H % i 8i <2-18>
i=I
where matrix consists of the partial derivatives of columns of with
respect to displacement increments. Since

%i = (2.19)

only matrices and G2 have to be constructed. On the basis of expres-
sions (2.19), all values are known for construction of matrix bg. However,
eq. (2.17) satisfies only the equilibrium equations while the compatibility
conditions remain unsatisfied. Therefore, let the increments of internal
forces derived from AgG on the basis of the geometry of the 'previous’
state be evaluated first. By 'previous state' we understand the geometry
given by the previous load step (k-I, if k denotes the load step index) or
by the previous iteration step.
Increments of internal forces:

As. =Q Au.. - As"
IR T A T (2.20)
Here i is the iteration step index in given load step; is the matrix of

micro-constitutive-law (also a variable); A s"*q " denotes the kinematic
load increment calculated in the previous iteration step. Its value is zero
at the beginning of each load step.
The total internal load is simply obtained from the increments of
internal forces
k-1
(2.2
i=1
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Here is the internal force vector of the previous load steps. On the
basis of the value of 5 we can determine nodal equilibrium error vector

Internal normal forces are calculated from the new position of grain
centers in the following way:
1 (r~r)) (EBA)

N= T (2.22)
ri+r.

Global kinematic load vector Aci"g" is determined from this force by means
of the transformation matrix. The new displacement increment vector is
calculated by using the sum ( Ag®V + Acjlh) as a I°ad vector. The above
procedure shall be repeated in an internal iteration cycle until the error
vectors decrease below the specified lim it.

2.5. State-changing analysis

If the geometry of the assembly and the contact properties are
uniquely defined, the equilibrium state associated with given load step can
be determined using the displacement method. First the program calculates
the contact stiffness matrices for every contact in the assembly. The value
of shear stiffness at given contact is estimated on the basis °f the value
of relative normal displacement after the previous load step. In the first
load step, the initial Gg value is used.

The contact stiffness matrices are transformed into global basis and
the unknown displacements of the grains are calculated by the frontal
solver technique. Then the contact forces are determined. A state obtained
in this way will be possible only if the stresses do not exceed the cor-
responding strengths at any contact.

If there are broken contacts, the geometrical structure shall be
modified: broken contacts are omitted and grains which lost stability are
moved in the direction of the external forces directly acting on them (or
downwards in lack of directly acting forces) until they find a new stable
position for themselves where they are supported by stable grains. Grains
which cannot find a stable position are omitted. Now this modified struc-
ture has to carry the total load; and the calculations shall be repeated
for total load until a stable state is found.

In the stable state, the shear stiffnesses are checked; and the geo-
metrical non-linearity is taken into consideration by modifying the po-
sitions of grains.
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Finally, if a stable and compatible equilibrium state is found, the

values of the suggested variables shall be calculated.

3. Numerical examples

Our first example illustrates the behaviour of an assembly with rigid

contacts. The initial configuration, the loads and the strength character-
istics are showmn in Fig. 3.1:

Rn@=020, Q =5.0, 6U=800-0; Tu'=100;
Fig. 3.1.

With the load factor increased, the contacts break one after the
other; the change of the replaced graph can be seen in Fig. 3.2.

a.
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Fig. 3.2b.

Fig. 3.2d.

Finally, the Cundall-tensors are tabulated for the first,
mediate and the last load step in Table 1.

an inter-
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Table 1

CUNDALL - stresses

Our second example shows an assembly with frictional contacts only.
The initial state can be seen in Fig. 3.3:

F,=-10000; E=10B; G =K)* AJ=0.1;
C=10. <£=10; "C' =100; EI =00

Fig. 3.3.

The internal structure is strongly changing during the loading pro-
cess as illustrated in Fig. 3.4 until stability is lost.
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The fabric tensor describing the anisotropy of the replaced graph
shows a significant change; the initial and final state being shown in
Table 2

Table 2
Load factor
%
1.00 0 292 -8x10”
0708
0625 - 27x101f
36
0375
Conclusions

The present paper described a possible method for numerical modelling
of granular assemblies. Efforts were nmede to find variables that can be
used also in macro-level constitutive equations. The examples illustrated
the efficiency of the numerical model. A detailed analysis of the selected
variables becare possible in this way.
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GLOBAL INVESTIGATION OF DISCRETE MODELS OF THE EULER BUCKLING
PROBLEM

ZS. GASPAR* - G. DOMOKOS*
(Received: 15 December 1989)

Mathematical tools for the global description of discretized line continua are
presented. These tools are applied to the analysis of the planar buckling of elastic
bars under static loading. The results of the computer experiments display an es-
sential difference between discrete models consisting of even and odd number of rigid
bars. Propositions are presented referring to the mathematical background of the
aforementioned paradoxes.

1. Introduction

Our aim is to investigate discrete models of the well-known buckling
problem of the perfect, simply supported planar rod, described first by
Euler (1744). In his work Euler demonstrates several qualitatively dif-
ferent equilibrium shapes of the "linea elastica". The first thorough
numerical treatment of the problem is delivered by Saalschutz (1880). The
complete mathematical classification of the solution curves (including
"looping" solutions) is due to Love (1927). Reference to these last men
tioned solutions can be found in Timoshenko & Gere (1961), as well. The
present paper is devoted partly to the problem, whether the solutions of
the discretized model can be classified in a similar way, or there is a
gualitative difference. The continuous structure has unstressed length L,
bending stiffness EJ and axial stiffnes EA = oo. The discrete model, con-
sisting of n rigid bars connected by n-1 linear rotational springs is il-
lustrated in Fig. 1. The spring constants s* of the discrete model are
derived from the bending stiffness of the continuous beam s'= 2El/(L L")
(i =1, 2, ..., n-1), where L is the length of the ith rigid bar (ZL"L).
The structure is assumed to be straight at zero loading.

*Gaspér, Zsolt, H-1025 Budapest, Kapy u. 40/b, Hungary
**Domokos, Géabor, H-1056 Budapest, Vaci u. 44, Hungary

Akadémiai Kiadd, Budapest
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The shape of the discrete model can be described by the configuration
vector Cwith components G = (i= 1, 2, , N). At the initial point
there is no spring, i.e. only oge I, I =(- I,M1] will be discussed. By
considering this restriction, the shape of the structure supported only
at initial point can be mutually uniquely identified by an element of
G =1 x R mm The configurations with yn = 0 (two supports) form a proper
subset 6y @ G. If xn = yn =0 is required, then we arrive at 6gc 0g. Ac-
cording to our assumptions, the structure is loaded only at the endpoints,
i.e. by fixing the reaction forces =J1 and R the elements ot* of the
configuration vector can be derived from &g by the following recursion

formula:
% + Lg o8 ‘i
i +1d " x1a (1)
od R i i
*i=V cemmee — (yi-i+L sin X) + - (Xg x + Li cos i)
Si Si
(i=1,2, ..., nl; j=1,2, mn)

since Xg = ¥g = 0 are constants. The e.Lements of the equilibrium set can be
identified by a configuration vector C and the corresponding load parameters
R1 ang R9. The equilibrium set of the struct&re supported only at the
initial point will be denoted by E (Ec G x R). The equilibrium posi-
tions satisfying yn = 0 as well form the set Eg (EJc=0g x R). If x ~ 0,
then the global equilibrium for the structure yields R = 0, i.e. the
equilibrium positions satisfying xnt 0, yn = 0 can be identified by the
elements of Eg & (Gg—Gg) X R. Our am is to reduce the dimension of the
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equilibrium set, i.e. to find the space with minimal dimension, onto a sud-
set of which Eg or Eg can be mapped in a mutually one to one way.

Definition: Er is called unique in R*iff there exists a mapping M ER
>R that M gives aQ*nutuaIIy one to one mapping between Eg and M(EQ) * R’
(Similar formulation holds for Eg.)

Dimension Reduction Lemma: In the case of the investigated discrete
structure (Fig. 1) Eg is unique in R3 Eg is unique in R2
Remark, that ME.Q) a1 x R2, M(Eg) C 1 x R

Proof of Lemma

The equilibrium positions can be mutually uniquely identified by the
corresponding number triple (°Ln, R., R,)e R? since, on the one hand, any
element of | x is mapped onto one an%:l only one element of Gx R? by eq.
(1) and, on the other hand, the numbers «.g, and R2 are coordinates of
the elements of Eg, i.e. to each element of EJ one and only one number
triple corresponds. By similar argumentation the equilibrium positions
satisfying xp * 0 (R2 = 0) are uniquely identified by ( &g, R"). Q.e.d.

This Lema implies, that the equilibrium paths plotted in | x R
(I x RY) can only intersect, if there is a bifurcation point. Similar
lemmas for other types of discretized line continuums can be derived in an
analogous way. It mey be of interest, that dimension reduction of the
equilibrium path is possible for continuous structures, as well. Theorems
on this problem are demonstrated by Donokos (1989).

2. Computer experiments

Based on the dimension reduction lemma and recursion formula (1) a
computer program has been developed to detect all possible equilibrium
positions. To meke visualization easier the case xn = 0 has been excluded
from the computation, i.e. all equilibrium paths could be plotted in the
(a&g, X) plane. At xn = 0 a bifurcation occurs, which can be interpreted as
a rigid body rotation around P(0, 0). This phenomenon wes first discussed
by Domokos (1989) for the continuous beam. Stability analysis is delivered
by Gaspar & Domokos (1990) for the discrete model n = 2 with finite axial
stiffness. The equilibrium paths corresponding to this bifurcation can not
be plotted in the ( 0ig,X) plane without intersecting other paths, there-
fore the bifurcation points are marked by small circles. These bifurcation
points have been extra computed, but only for paths where n/k is integer,
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n denoting the number of bars, k denoting the serial number of buckling
mode. In the computer experiments only models with equal elements (LL= L/n)
have been investigated. The equilibrium path P can be subdivided into a
connected (Pg) and a disconnected (Pg) part. Pg contains all equilibrium
positions which can be reached on a continuous path from the trivial one.
In Fig. 2.a-k the connected parts (Pg) for n =2 to 12 are plotted in the
interval dye (0, it). The numerical and qualitative data gained from the
computer experiments is partly summarized in the forthcoming Tables.

Fig. 2,a-h,
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Fig. 2,i-k.
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Table 1
n m n
n roi F/Fm FyFg * 02
2 0.811 1.266 0.579 1571
3 0.912 2.205 1.011 2.102
4 0.949 1.960 0.895 2.092
5 0.967 2.089 0.957 2171
6 0.977 2.107 0.965 2.204
7 0.983 2.131 0.976 2.223
8 0.987 2.142 0.981 2.242
9 0.989 2.144 0.982 2.251
10 0.990 2.153 0.986 2.262
n 0.991 2.162 0.990 2.266
12 0.992 2.165 0.992 2.271
[00) 1.000 2.183 1.000 2.289

FJ  denotes the first buckling load of the discrete structure with n equal bars;

denotes the load parameter at x* = 0 in the first buckling node of the n-bar
structure;

etn denotes the value of otg corresponding to F™
Index m refers to the continuous structure. If no analytical results were available,

then the approximation n = 200 has been accepted for this case.

The integer a™n in the jth row of Table 2 gives the number of secondary
bifurcations in the jth buckling node of the discrete structure. The vari-
able an” is only interpreted if j is a divisor of n.

Table 2

n 2 3 4 5 6 7 8 9 10 11 12 o
1st rode 2 1 2 1 2 1 2 1 2 1 2 ?
2nd rode 3 - 1 - 3 - 1 - 3
3rd node 4 - - 1 - - 4
4th node 5 - - - "
5th nmode 6 - -
6th node 7

Based on the data contained in Table 2 we formulate the following
Conjecture 1: In the case of LI = L/n

I 1 if n/j nod 2=1
Lji+i if n/j nod 2=0
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Conjecture 1 is a simple extrapolation of Table 2 to an arbitrary finite
model, but it does not give explanation to the basic difference between the
behaviour of "even" and "odd" models. In the forthcoming sections we wiill
attempt to give at least particular explanation.

3. Mechanical explanation

The aim of this section is to give a plausible mechanical explanation
to the j+1 secondary bifurcation observed in even models (n/j mod 2=0). The
3rd buckling nmode (j=3) of the model consisting of 12 elements (n=12) is
illustrated in Fig. 3/a. The buckled chain can now be substituted by a
straight virtual chain with finite axial stiffness. A single element of the
virtual chain consists of 12/3=4 elements of the original chain. The vir-
tual chain is illustrated in Fig. 3/b. In general, the virtual chain sub-
stituting the jth buckling mode of a chain of n elements will be denoted by
WVh. . Vh. consists of j virtual elements, i.e. Vhj has j-1 buckling modes
explaining j-1 out of the observed and predicted j+1 bifurcations. The
buckling modes of occur in the reverse order, i.e. the lowest load
corresponds to the highest mode. Remark, that the kth node of Vnj can be
expected to be a symmetric bifurcation if Jn/Cj.kjQ nod 2=0 otherwise it is
an asymmetric one.

Ore of the still not explained bifurcations is the already discussed
rotation around xn=0, marked with small circles on the equilibrium path.
The last bifurcation to be explained corresponds to the individual, simul-

Fio- 3.
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Fig. 4.
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taneous buckling of the virtual elements in ~. These elements are arches
consisting of n/j bars. The virtual chain remains straight at this buckling,
only the individual arches have a bifurcation point. This buckling can be
expected to be symmetric, if j is even. Let us denote the kth buckling of
an by Brin. (The first buckling corresponds to the lowest load parameter.)
The secondary bucklings B2 3 p 632 33 and ®12 3 4 are iH ustratecl in
Fig. 4. The theory just described explains only the behaviour of the even
models to some extent. Up to now no reasonable mechanical clue has been
found to explain, why do not "odd" models behave like this. The basic dif-
ference between the two sets of models will be discussed in the next sec-

tion from the mathematical point of view.

4. Mathematical explanation

Let us return from the special discrete models treated in the com
puter experiments to the more general ones, consisting (typically) of non-
equal bars (Fig. 1). Even this model will be further generalized, however
only in a mathematical sense. Let us introduce the symbol denoting the
set of models consisting of n bars out of which exactly j bars have non-
zero length (1 ®&j ik n), and let us introduce the set

n
Mn = U Mj ©))

J=1
The set is a subset of the (n-1) dimensional hyperplane H defined

by ZL" = L in R. The distance of two modelsis defined by the Euclidean
norm, and is interpreted only for elements of sets with identical super-
scripts.

W are going to give a simple illustration for sore s in the
hyperplane H and to make some propositions about them. These propositions
are mainly based on geometrical intuition, no exact proof is delivered in
this paper.

Let us begin with containing the single subset m|, which contains
again a single element (Bar with unit length). This set is zero-dimensional
(point). Such sets will be illustrated by circles, containing the number of
non-zero bars (Fig. 5/a). M2 (Fig. 5/b) contains the subsets and M2.
has two zero-dimensional elements, since either the first, or the second
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bar can have zero length. These points are the missing end-points of
which is an open interval. This latter type of set will be illustrated by
an interval interrupted by a square, containing j. Fig. 5/c and Fig. 5/d,
illustrating IV? and I\/f' respectively, are constructed in a similar way, and
are (hopefully) self-explanatory. Regarding Fig. 5 the following propos-
itions seem to be plausible.
Proposition 1. Mh is an open set iff n>~I.

2. M is a closed set.

3. Mh is a simplex.

4. The clausure of My is M.

3. NT'is not empty. (n asl, lajan).

6. dim (vh) = n-1.
(Definitions of unknown terms see in Bourbaki, 1966.)

Propositions 1.-6. give sore interesting mathematical hints, but do
not disclose any difference between the behaviour of "even" and "odd"
models. Neither does the examination of the models EnC M in which the
lengths of the non-zero bars are equal EV consists of . zero di-
mensional elements. The set é is illustrated by dots asa(sbjbget of Nf' in
Fig. 6.

Fig. 6.
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Let us now turn our attention to sets c. M?, consisting of models
with symmetry axis y = xn/2 (Fig. 1). The notation Sn is introduced as an
analogue of M (see (2)). It seems to be remarkable, that propositions
1-4 are true for the symmetrical models, as well ("substitution” M=S).
However, this similarity is very deceiving. There exist principal differ-
ences between sets S, depending on whether n is odd or even. These dif-
ferences will be summarized in the next propositions:

Proposition 5" is empty, iff nis even and j is odd. (n stl, 1 & ji n).
(n/2-1 if nis even

6'. dim (Sn) =<
Un-)/2 if nis odd.

The difference can be formulated in mechanical terms, as well. It is
always possible by small perturbation of the model (i.e. by adding small
bars or changing slightly existing bar lengths in a symmetrical way) to
transform an "even" model into an "odd" one, but not vice versa. The sets
S (n =1, 2, ..., 8) are illustrated in Fig. 7 with the convention intro-
duced in Fig. 5. The detected mathematical differences between "odd" and
"even" models might be partly the clue to the difference of their mechan-
ical behaviour.
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PRODUCTION OF DYNAMIC STIFFNESS MATRIX IN CASE OF OTHER THAN RIGID JOINTS
AND RIGID ELEMENTS

GYORGYI, J.*
(Received: 27 December 1989)

In calculating for real structures, the structure may contain elements connected
to each other in a special way depending on the layout of the structure. Such cases
are e.g. structures mede of prefabricated elements. Again due to the layout, struc-
tural parts that can be considered rigid are often used between flexible elements. In
order to avoid numerical problems, it is necessary that this fact be taken into con-
sideration when the stiffness matrix of the structure is produced. This paper presents
the way to cope with the above problems.

Introduction

For the elementary dynamic stiffness matrix according to the method
of finite elements, it is usually assumed that the ends of the elements
are connected in a rigid way to the nodes while at the same time the dif-
ferent nodes are interconnected by flexible elements. This paper shows how
the elementary dynamic stiffness matrices can be produced in case of other
than rigid joints and how the effect of rigid elements can be taken into
consideration without any change in the layout of the stiffness matrix of
a structure.

1. Stiffness matrix of elements with other than rigid joint between them

In calculating for structures, the elementary stiffness matrix de-
scribes the relationship between displacements and forces of the ends of
the elements. The elementary matrices in combination are the stiffness
matrix of the set of elements (“h)j a diagonal hypermatrix with the s tiff-
ness matrices of the different elements arranged along the diagonal. In
case of a structure, the ends of the elements are interconnected with
certain displacements of the ends corresponding to each other, the number
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of independent displacements (n?) being less than the number of end-of-

element displacements (ng). The relationship between the two displacement

vectors can be described by means of combination matrix P /1/. Element kC

of matrix g will be unit if end-of-element displacement k corresponds to

independent displacement ; otherwise matrix element k|l will be zero.
Thus the stiffness matrix of the interconnected elements is

f=B*Khe - (1)

Matrix is produced in accordance with expression /1/ but in a way
other than matrix multiplication. To produce element ki of the matrix, it
shall be tested which of the end-of-element displacements corresponds to
independent component displacement <« and the element containing the force
component of direction k shall be taken from given elementary stiffness
matrix accordingly.

It is a rather complicated job to produce matrix £p element by ele-
ment in the way described above. In a simpler case, the ends of the struc-
tural elements are connected in a rigid way to the so-called structural
nodes. In this case, the independent displacements can be treated in com
bination in nodal displacement vectors and matrix P gives the relationship
between end-of-element displacement vectors and nodal displacement vectors.
Matrix 0 can be defined as a hypermatrix with a unit matrix in its block
kE if the end of element associated with the displacement vector in block
kK in case of end-of-element displacements is connected to node t.

In this case, matrix can be produced block by block in the know-
ledge of the block of the different elementary stiffness matrices.

Hw can this definitely more favourable process be applied to the
case of elements of other than rigid joint between them where for given
nodes, the number of independent displacements is larger than the number of
nodal displacement components?

The fact that given end of element can displace freely in direction
s as compared with the node nmeans at the same time that no end-of-element
force is acting in given direction that is

o
N

o
WO



PRODUCTION OF DYNAMIC STIFFNESS MATRIX 241

o (3

+ b* y2n 4)

That means that, in the knowledge of the other end-of-element displacement
components, given end-of-element displacement component can be calculated.
This also means that the number of nodal displacement components need not
be exceeded by the number of displacement unknowns either.

With (4) substituted into (2), a modified stiffness matrix is ob-
tained, containing only and » while column and row s corresponding to
us consists of zero elements only:

K ks & ®)

Here £ is the original while the modified elementary stiffness matrix,
modified by the dyadic product (1).

In the general case, the dynamic stiffness matrix of one single ele-
ment can be written as

K = K- w M (6)

where Mis the so-called mass matrix,

Y-yadv (7)
V)

N being density while the elements of matrix ~ are displacement functions
describing the relationship between unit end-of-element displacements and
displacements within the element, in the general case approximate func-
tions (used e.g. in statical calculations) that can be calculated from the
differential equation of the oscillating bar in case of bars of invariable

cross section.
If relationship (5) is used to modify the dynamic stiffness matrix,
the modified dynamic stiffness matrix can not be written in a form similar
to (6) where the frequency independent static stiffness matrix and a mass
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matrix multiplied by Wo but containing constants appear independently). As
a solution, production of the mess matrix according to (7) shall be re-
peated using displacement functions that take into consideration that no
end-of-element forces can arise in given direction. The success of the
method in static calculations lies in that stiffness matrices complying with
different boundary conditions need not be produced each independently but
they are obtained simply by dyad subtraction from the stiffness matrix of
the element of rigid joint. As shown below, this is possible also in cal-
culation of the mass matrix.

Let the displacement function associated with end-of-element dis-
placement in direction | be denoted by v| and let s be the direction of un-
constrained displacement. In case of unit end-of-element displacement in
direction i, force of a magnitude of ks will act upon the element of
rigid joint in direction s. Assume that a displacement of magnitude ks”/kss
is taking place there in a direction opposite to the direction of the force
so that this force will be zero. The displacement functions associated with
the two end-of-element displacements result in a sunto which unit end-of-
element displacement belongs in direction | while no force is arising in
direction s. This is the modified displacement function to be used for re-
calculation of given element of the mass matrix.

Element kI of the modified mass matrix:

Now the modified mass matrix is:

Y=l G TR K) F 88 kg ©

SS ss

that is the modified mass matrix can be calculated from the rigid-joint
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element mass matrix by means of dyads obtained from the vectors of rigidity
and mess matrices.

Note that in dynamic studies, additional elements are added to the
dynamic stiffness matrix due to consideration of the dynamic effects. E.g.
if also the effect of rotational inertia is taken into consideration, the
maess matrix shall be written in a form

O=Yy+ , (10)

where, e.g. for a bar, Mp can be obtained from relationship

yn:unzj\rr'dx (1D
0
(yj being specific mass, i the radius of inertia of the cross section).

Here y is the matrix containing the derivatives of the displacement
functions. It can be proved that derivation of the modified displacement
functions in (8) results in a modified Mif matrix according to (9).

In calculations of bar structures, the static normal force Q can be
taken into consideration by means of geometry stiffness matrix Kg. In this
case, the end-of-element forces are

:dyn ==+=G~ “2

where
y*' N dx

The geometry stiffness matrix can be modified by analogy with the
modification of matrix Mf .

2. Structure calculations in case of infinitely rigid element

In case of a complex system, the rigidity of the different elements
mey differ considerably. E.g. in case of a machine base calculatable as a
bar structure, certain points of the structure are interconnected by a
machine frame that can be considered infinitely rigid. This means that dis-
placements of the different nodes of the structure are not independent of
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each other. In this case, numerical difficulties will arise in solution of
the equation system or eigenvalue problem if the infinitely rigid element
is treated in the same way as the other elements.

Theoretically, the problem becomes manageable by means of the process
described in (1) where the rigidity matrix of the structure is produced by
use of coupling matrices 0 in the knowledge of the rigidity matrix of the
set of elements. In the coupling matrix, the number of independent dis-
placements will be less than the number of nodal displacement components.
The displacements of some node j can be calculated partly or entirely
(depending on the nature of connection) from the displacement of node i.

SRS IS

(12)

(matrix Rj will be zero if every displacement component of j can be cal-
culated from the displacements of node i).

In the course of investigation of the structure, it seems reasonable
to keep the structure associated with the nodes so that certain columns of
the coupling matrix will be zero columns. Block R* R will also appear in
the coupling matrix in addition the unit matrices in such a way that in a
row of blocks, matrices R* and R replace the unit matrix in block columns
j and i, respectively.

As has been mentioned, matrix R shall not be produced in the course
of practical calculations but, instead, selected blocks of the elementary
stiffness matrices shall be collected in the different blocks of the rigid-
ity matrix (selection being controlled by the necessity of multiplication
by unit matrices). Forces resulting from displacements of given nodes at
given ends of the element have thus been included in the blocks of the
rigidity matrix.

In the present case, if block column j is produced, block R of the
rigidity matrices, associated with given block row r, shall be put partly
or entirely into block column i. Forces at the end of given element, ob-
tainable from the displacements of node j are

g =K Ui =K [By Y1 [=ri =r1j] yi - (13

3 g
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At the node interconnected with the rigid element, the end-of-ele-
ment forces are not independent because also the rigid element shall be
balanced.

Relationship between the forces acting upon both ends of the rigid
element:

(14)

Accordingly, block Kr of the stiffness matrix, associated with given
block column r, shall be put into block row i partly or entirely when block
row j is set up.

RS = A KU (15)

“1
=r =r fir oy

9j. A L %55

Of course, the appropriate rows and columns of the mass matrix and/or
given elements of nocal loads shall be rearranged accordingly.

After rearrangement of the stiffness matrix, zero elements will get
into the principal diagonal and therefore numbers other than zero shall be
put into these places.

The vector elements of u* can be produced in the knowledge of u® and,
in part, aj.

The process described above can be used also if the nodes are congru-
ent but in this case, only the elements of a certain displacement agree
(e.g. crossing bars interconnected by pin or slabs joining each other along
the edge).

In this case, matrix R has zero and unit elements only.
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FAILURE TESTS WITH STEEL FRAAWORKS
IVANYI, M.*
(Received: 5 January 1990)

According to practical needs, approximate models in stability analysis of steel
structures are widely used as information given by bifurcation theory is limited.
Thus the role of experimental research is of increasing importance.

Between 1974-1989, extended research was carried out in the Department of Steel
Structures (TU Budapest) regarding the ultimate load of frames and buildings. The
results of experimental and theoretical analysis are summarized in this work.

Experimental and theoretical investigations are shown, permitting the plastic
deformation capacity of frames with due regard to interaction of strength and stabil-
ity phenomena to be analyzed, including the effect of local buckling of plate ele-
ments of sections on the response of the vhole structure.

1. Introduction

The structural response in the vicinity of peak load may be ex-
tremely complex. The early and very simple methods of plastic limit analy-
sis (based on the concept of rigid-plastic materials which are in principle
completely insensitive to any form of initial imperfections) are confined
to a very limited class of structures, built of bulky elements. As soon as
global and even more as local instability plays role in failure,

- the effect of initial geometric imperfections is enhanced,

- the residual stresses (remaining regularly latent at lower loads,
interacting with growing active stresses) result in premature plastic
zones, and (last but not least)

- the usual and widely accepted tools of analysis - as beam theory
(based on Bernoulli-Navier hypothesis), small deflection theory of plates
and so on - cannot describe exactly enough the structure's response to
failure.

The simplified model is not elaborate enough to reflect real struc-
tural behaviour, so that a secondary, more detailed local model is intro-
duced to depict the most critical part of the structures, by which more
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realistic quality parameters can be deduced from the already known primary
parameters.

Because of the interaction of local and global behaviour, this pat-
tern cannot be followed in the case of hyperstatic structures, as the ad-
ditional information gained by the secondary, local model is to be fed
back to the calculation of primary parameters as well. For this purpose,
if - as very often - the secondary model can be analysed by numerical
methods or only experimentally, the results have either to be re-inter-
preted to obtain mathematically treatable, simple enough rules, or the sec-
ondary model has to be simplified to get well-usable results. In both cases
the validity or accuracy has to be proved by (usually very expensive)
failure tests on the whole structures.

To sum up, it seems that because of frequent uncertainties in pre-
dicting failure load, the double check of structures - at different load
levels - not only reflects different aspects of structural behaviour, but
contributes to a safer design procedure as well.

2. Test program

The experimental research project was carried out in the Laboratory
of the Department of Steel Structures, Technical University, Budapest.

Fig.
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© Proportional

loading
© Variable
repeated
loading
Fig. 2.
The °f the program: Fig. 1 gives a brief summary of the

additional tests on stub columns, frame corners, plates elements, simple
beams (Halasz, lvanyi, 1979).

The secondjpart of the program: Fig. 2 gives a brief summary of the
full-scale tests and dimensions of the specimens, indicating the loads and
the characteristics of the loading process.

Test frame C-3 had rafters with a slope of 3 (16.7°), welded
column sections | 300-130-37 (Fig. 3.a).

Rafter-to-column and mid-span connections consisted of high-strength
prestressed bolts (Fig. 3.b).

Different types of supports were applied (Fig. 4).

Vertical loads at the joining points of purlins were applied to the
upper flange of rafter, so web and bottom flange were not restricted lat-
erally. To meke horizontal displacement (sidesway) unrestricted, jacks were
fastened not directly to the floor-slab (Fig. 5.a), but through a so-called
gravity load simulator (Fig. 5.b). This latter consisted of three elements:
two bars, and arigid triangle. The two bars had pin-joints at both ends, re-
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Fig- 7
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Type @ Type (b)
Leo ,»Supporting rod Diagonal tie back
uoo
Hinge
Column

Outer flange Inner flange Outer flange Inner flange Outer flange Inner flange
Type (d)
U120 U120 _uaso

Hinge

suiting in a one-degree-of-freedom mechanism. Hydraulic jacks joined the
rigid triangle. This mechanism produced a vertical load acting upon the
intersection of the two bar axes. Characteristics of the simulator are given
in Fig. 5.C.

The third_part of the program was a representative part of a multi-
purpose, pinned, pitched roof industrial hall: a building section consisting
of 3 frames, bracings with pinned elements, light gage purlins and wall
beams with corrugated steel sheeting (Fig. 6) (lvanyi, Kallo, Tomka, 1986).

Structural details of the building sections are shown on Fig. 7. The
scope of investigations wes threefold:

- the effect of restraint system on elastic behaviour,

- residual deformation and load bearing capacity due to cyclically
repeated load,

- ultimate load of the frames.

Elastic tests were nmade at six different stages of erection (Fig. 6).

Non-elastic tests (cyclically repeated load, incremental collapse)
were carried out on the building section corresponding to stage 6 using load
combination composed from dead load and meteorological loads.
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a, frames and bracings

d.. ¢roof sheeting

Fig. 5,

b, +purlins

e.,+ sheeting walls

Fig. 6.
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3. Computational model

The traditional concept of plastic design of steel structures is
based on the assumption that, under gradually increasing static loads,
plastic zones develop and grow in size and number, and eventually cause un-
restricted, increasing deflections; thus loading unlil the onset of ultimate
limit state gf the structure. The concept was first introduced by Kazinczy
(1914) by establishing the concept of the "plastic hinge". Sore basic ques-
tions are still discussed. Arong them are the effects of the difference be-
tween ideal-plastic constitutive law and actual behaviour of steel material
and the consequence of local instability (plate buckling; lateral buckling).
Joining in the international research in this field we tried to introduce
the concept of "interactive plastic hinge", which can substitute the classic
concept of plastic hinge in the traditional methods of limit design, but can
reflect the effect of phenomena like strain-hardening, residual stresses,
plate buckling and lateral buckling (Ilvanyi, 1983).

The element of the bar is considered to be built up of plate ele-
ments (following the pattern of steel structures) instead of a compact
section. Then the behaviour of the "plastic hinge" can be characterized by
tests with simply supported beams. Based on these tests a yield-mechanism
for the bar-element can be introduced (Fig. 8), giving foundations for a
mechanism curve: defining thus the descending branch of the moment-rotation
diagram (Fig. 9). Similar results can be obtained for the case of different
loading conditions (lvanyi, 1979/a, 1979/b).

This information can be used to extend the model of "equivalent
cantilever" suggested by Horne (1960) including the effect of residual
stresses and strain-hardening (Fig. 10), with the descending branch re-
presenting the effect of plate buckling, arriving thus to the concept of
"interactive plastic hinge" (lvanyi, 1983, 1985/a). In addition to the above
model, a suitable yield mechanism was considered for cyclic bending, such
as to correspond to the geometrical conditions and the assumed vyield
criterion (Fig. 11) (Gioncu, etc. 1989).

The cyclic load-deflection curve of S-3 beam is shown in Fig. 12
The interactive plastic hinge model is suitable for computer computations
(Ivanyi, 1985/b; Baksai, etc., 1985).
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Purlins Z200
frame
HT
frame
HT
frame
HT

d.. Applied loads

Fin. 1.

4. Results of theoretical and experimental investigations

4.1 Frame Structures under proportional loading

Concerning the experimental frame C-3/2, the relation of load-de-
flection curve develops according to Fig. 13. On the side of horizontal
load, the first inelastic hinge develops due to the residual stresses and
deformations in the cross section beneath the frame structure wedging up
and this hinge develops at 5% of the maximal frame load. At 96 of the
maximal load, zone L describing the effect of plate buckling develops also
in this cross section, i.e. in the frame cross section an "unstable" state
- a descending characteristic curve - develops.
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Fig, il.

Fig. 12.
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Figure 13. introduces the characteristic load-displacement curve of
the frame structure in the case, too, when the basis of the computations is
the traditional plastic hinge.

The results well show that the presence of residual stresses influ-
ence in a major way the range of limited plastic deformation, however,
mainly because of the cross section geometry of experimental beam, the
maximal load bearing values computed with the traditional (elastic-ideally
plastic) hinge as well as those obtained by the interactive hinge coincide
with the experimental results.
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Fig. H.

Fig. 15,

4.11 Effect of fabrication and erection

Effect of incorrect geometry wes investigated by introducing dif-
ferent initial lateral displacements. The consequences are illustrated in
Fig. 14.

The effect of the different values of residual stresses is shown
in Fig. 15. The medium curve was in coincidence with test results.

The presented method for the complex analysis of frameworks takes
several effects into consideration (Fig. 16).
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Fig. 16.

Measured and calculated bending moments

Fig. 17.

4.12 Effect of structural details

It seems worthwhile to draw attention to the occasional decisive ef-
fect of minor differences in structural details on failure as well. Sore of
the results are reproduced below.
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U)_CMumn_bases_

Coumn bases were fixed or hinged. The hinges were not ideal:
columns could have been supported by larger base-plates. Figure 17 compares
the measured bending moment due to vertical and horizontal load with the
calculated ones assuming pinned (dashed line) and fixed (solid line) frame.
The corresponding moment-rotation diagram of column base waes checked ex-
perimentally, its adaption to an interactive plastic hinge indicating the
load-deflection diagrams obtained by different end conditions (Fig. 18).

IU ii§i£ dLsypEqrts_

Spacing and efficiency of lateral supports proved to be of basic
importance. Their effect is illustrated in Fig. 19.

The importance of adequate spacing of lateral supports and their
efficiency in preventing the rotation of cross-section around the bar-axis
has to be emphasized as purlins and rails connected to tension flanges often
cannot regarded fully effective in case of thin webs. Not only the load
carrying capacity can thus be substantially reduced (as by elastic lateral
buckling in case of frame C-3/1 in Fig. 19), but the yield plateau in the
load-deflection diagram can be too short (as in the case of frame C-l in
Fig. 19), rendering the structure sensitive against initial imperfections.

4.2 Frame Structure under variable repeated load

By repeated cycles of variable loads - for instance by those in-
volving the subsequent application of a light crane-load D and uniformly
distributed vertical load Pl as indicated in Fig. 20, incremental collapse
can be produced by a load-factor surpassing slightly the shake-down load
predicted by a first-order ideally elastic-plastic analysis. The difference
between test and analytical values wes similar to that observed in pro-
portional loading (due probably to strain hardening), so the gap between
limit loads in proportional and cyclic loading (about 10% in the case in-
dicated in Fig. 20) is the sare in test and computation for both loading
cases.

Surprising was the quick progression of residual deflections after
just a few load cycles (see Fig. 20)

- to be attributed possibly to the effect of axial loads connected
with remarkable changes in geometry;

- to gradual increase of imperfections (both lateral deflections of
beams and curvature of plates); thus to work-softening effects overcoming
the work-hardening ones.
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F=*F Loading cycle
F=pl
. 1 Unloaded
H=oiF 2 Horizontal load H
3 He vertical load F
D=RF 4 H+F ecrane load D
5 He F
6 H+ F+additional vertical load F,
7 H
H 8 Unloaded
Ae 4 Vertical deflection e [mm] Number of
cycle

Vertical deflection e [mm]

Fig. 20.

4.3 Building under proportional loading
4.31 Cross bracing of the end-frame

Measured deflections from uniform horizontal loads are shown in
Fig. 21, representing the effect of both semi-rigid cross bracings of the
end frame.
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lehl I eh2 i eh3
— rigid bracing
- -—---semi-rigid bracing
- ----n0 bracing
eh [mm]
Fig. 21.

4.32 Horizontal and vertical bracing system

Load-displacement diagrams of incremental collapse tests are shown
in Fig. 22. Ultimate loads are influenced by local loss of stability, pre-
vious loadings and the layout of frame-horizontal and vertical bracing con-
nections.

4.4 Building under cyclically repeated meteorological loads

Schematic diagram of a cycle of repeated meteorological loads can be
found on Fig. 23.

Analysing the results of the experiments in the different phases of
construction and in the fully completed state, the following conclusions can
be drawn:

The actual behaviour of hall structures is more favourable than that
generally taken into consideration in design practice. In strength analysis,
and in stability analysis in plane of the frame we generally neglect the ef-
fects of semi-rigid column bases, roofing sheeting, end walls.
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Frames land 3.

Our measurement results showed the limit to which these effects
advantageously affect both internal forces and the rigidity (mostly that of
the horizontal displacement) of the structure.

The actual rigidity of the hall structures, the semi-rigid connec-
tion of the structural elements advantageously affect the value of load
intensity belonging to the loss of stability perpendicular to the plane of
the frame.

It also should be mentioned that, beside advantageous effects, also
effects disadvantageously affecting the load-bearing capacity of the struc-
ture are occurring. These are the residual stresses due to welding, imper-
fections due to manufacturing and assembling, eccentricity.

No doubt these effects must be taken into consideration according to
their significance. The method and the values of factors (such as fictious
eccentricity) applied in calculations are mostly contained in our present
specifications. In cases not regulated or not adequately known, the decision
of the designer governs. W would like to mention that economic design can
not- be imagined such as taking the disadvantageous circumstances, practical-
ly in full, into consideration, and totally neglecting the advantageous
ones, or taking effects into consideration, considerably underestimated.
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5. Conclusion

Experimental and theoretical investigations have been carried out in
connection with the elastic and the plastic load-bearing study of frame and
hall structures, with the steel material strain hardening, the residual
stresses and plate buckling taken into account.

A method has been presented for the investigation of frame struc-
tures applying the steps of known, traditional methods so that the structure
behaviour can be analyzed during the entire process of loading. Certain ef-
fects determining the structure behaviour (e.g. residual deformation, steel
material strain hardening and plate buckling) have been taken into consider-
ation with the aid of the interactive plastic hinges. The interactive hinge
was incorporated into an investigation method operating with the structure
matrix-calculation method. The results of the elaborated method has been
compared with the experimental investigation of full-scale structures.
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OPTIMAL DESIGN OF DYNAMICALLY LOADED REINFORCED CONCRETE FRAMES
UNDER SINGLE DISPLACEMENT CONSTRAINT

KALISZKY, S.* - LOGO, J.**
(Received: 27 November 1989Y

Paper deals with reinforced concrete beams and frames subjected to short-time
high intensity dynamic pressure. The shape and geometry of the structure and the lay-
out of the longitudinal reinforcement are given and the areas of reinforcement are
design variables.

The determination of the plastic displacements caused by the pressure is based
on the plastic hinge theory and on the assumption that during the dynamic response
the structure undergoes stationary displacements. In the analysis several yield
mechanisms can be taken into consideration. The problem is to minimize the total
amount of reinforcement such that the plastic displacement at a given point of the
structure does not exceed the allowable displacement.

The variational formulation of the problem is presented and the solution is based
on the optimality criteria method which requires an iterative procedure.

1. Introduction

There are several engineering problems when in the design of a struc-
ture abnormal loading conditions as explosion, impact, earthquake etc. have
to be taken into consideration. In these extreme cases the structure is
usually allowed to undergo plastic deformations but must be strong enough
to carry the load without excessive plastic deformations, local failure or
collapse.

In the following reinforced concrete beams and frames subjected to
short-time, high intensity dynamic pressure w ill be considered. The shape
and geometry of the structure and the layout of the longitudinal reinforce-
ments are given while the areas of the reinforcement are the design vari-
ables. The problem is to find the minimum of the total amount of longi-
tudinal reinforcement subject to a displacement constraint determined by
structural or technological consideration.

The plastic permanent displacements of the structure caused by the
dynamic pressure can be determined by the use of the kinematical approxi-

*Kaliszky, Séandor, H-1089 Budapest, Delej u. 25, Hungary
Miégé, Janos, H-1118 Budapest, Regds u. 7, Hungary
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mation /5, 6/ based on the plastic hinge theory and on the assumption that
during the dynamic response the structure undergoes only stationary dis-
placements. This leads to closed form solution for the plastic displace-
ments.

The relationship between the area of longitudinal reinforcements and
the fully plastic moments of cross-sections will be approximated by a
guadratic expression. This allows to take into consideration the minimum
amount of reinforcement to be applied because of technological reasons. In
the dynamic analysis, in addition to the mass of the concrete of the beam
or frame, the masses attached to and moving with the structure will also be
taken into account.

In the following the variational formulation of the problem will be
presented and the solution is based on the optimality criteria method sug-
gested by Berke and Khot /1, 2/. Except simple cases this requires the ap-
plication of an iterative procedure well understood by structural engineers.

2. Assumptions and basic relationships

2.1. Geometry of the structure

In the following reinforced concrete beams and frames with given
shape and geometry will be considered. We assume that the structure is
composed of prismatic concrete members with given lengths dg and cross-
sectional dimensions bs and hs, as shown in Fig. I/a. The layout of the
longitudinal reinforcement is also assigned such that in given parts with
fixed lengths | m (i = 1, 2, ..., n) the cross sectional areas A of the
longitudinal reinforcement to be applied at the lower and/or upper surface
of the cross-section are constant (Fig. 1/b). The areas A®, (i =1,2,...,n)
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collected in the vector A are the design variables and the volume of the
total longitudinal reinforcement is expressed by the objective function

V=I1A . (1)
Here the vector & collects the lengths

2.2. Loading and mass distribution

The structure is subjected to a high intensity short-time dynamic
pressure F(x,t) defined in a separated variable form:

£ (xt) =p(t) Fa(x) . 2

Here X and t denote the coordinate measured along the axis of the struc-
ture and the time, respectively, Fg(x) defines the distribution of the
dynamic pressure and p(t) describes the time variation of the intensity of
the pressure (Fig. 2/a-b).

Fg- 3.
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The scalar function m(x) defines the mass distribution along the
axis of the structure (Fig. 3/a). It contains the mess of the structure
and also all the other masses (dead weights) which are attached to and nove
together with the structure during the dynamic response. The mass of rein-
forcement compared to other masses is very small therefore will be
neglected in our further investigations.

2.3. Yield mechanisms and plastic moments

W assume, that the flexural behaviour of the reinforced cross-sec-
tions is rigid-plastic and apply the concept of plastic hinges. Considering
the critical cross-sections where plastic hinges can develop, several yield
mechanisms can be constructed at which the structure might collapse. The
displacements of the "k"-th yield mechanism shown in Fig. 3/b are described
by the function w”(x) while the relative rotations ‘fk ' *fk2’ ' 'Ykt
occurring in the plastic hinges are collected in the vektor

The fully plastic moments Mp M. M M acting at the plastic
hinges of the yield mechanisms can be expressed in terms of the areas of
the longitudinal reinforcement. This nonlinear relationship is usually ap-
proximated by a linear function (Fig. 4/a)

INE ®)

where the constant oi* can be assumed for » p—2w here o' s the
yield stress of steel. 1 sy

In practical design, however, a minimum amount of longitudinal rein-
forcement always has to be applied. This might be taken into account by
using a quadratic function proposed in /8/ and shown in Fig. 4/b

ATAS« ai M Q)

Here A0 denotes the minimum amount of reinforcement to be applied and a*
is a certain constant given in /8/.
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Fig. 4.

2.4. Plastic displacements

The displacements of an elasto-plastic structure subjected to dynamic
pressure can be determined only by a time history analysis. To avoid the
lengthy numerical calculations in the following we will apply the kinemat-
ical approximation described elsewhere /5, 6/. In this approach we assume
that the structure undergoes stationary motion during the dynamic response
and impose on the structure a kinematically admissible plastic displacement
field expressed in a separated-variable form

NGi/x.t) = WQ(t) N (5)

Here w*Cx) denotes any postulated kinematically admissible plastic dis-
placement field (yield mechanism) and W~g(t) is an unknown displacement
parameter function. If the function p(t) describing the time variation of
the dynamic pressure in eq. (2) fulfils certain conditions to be given
below, then WACt) is a monotonically increasing function and reaches its
maximum value wlgX when the structure comes to standstill. Omitting the
details "™ can be expressed in the following form /6, 7/

e B ©
Here
sg=J t P dt pe = 25 m/ P dt @)

are defined by the function p(t) (see Fig. 2/b) and pk denotes the kin-
ematically admissible load multiplier associated with the assumed displace-
ment field w”x) and the quasi-static loading Fg(x)
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(8)

Pl,

or introducing the notation

¥k
9)
Pk = M ~ . (10)
Finally, Kk is a constant:
Kk = (11)

It is to be noted that the validity of eq. (6) is restricted to the loading
cases when the following conditions are fulfilled /7/:

(12)

Substituting eq. (10) in eqg. (6) and considering eq. (5) the plastic dis-
placements caused by the dynamic pressure at the point j of the structure
can be approximated by the expression:

™ KO *kj =*Kkj Kk so 13)

Here ﬂ(‘j denotes the displacement at the point j of the k-th yield mechan-
ism (see Fig. 3/b).

W note that in expression (13) Sg and pg depend only on the shape
of function p(t) and for a particular yield mechanism w”, vpk”, Kk and c®
are constants. Hence, in egs (13) the plastic displacements are expressed
in terms of the plastic moments M
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Assuming several (k =1, 2, r) yield mechanisms several approxi-
mate values can be obtained for the plastic displacements and then their
meximum values are competent in the optimal design.

2.5. Constraints

A structure subjected to high intensity dynamic pressure must have
sufficient strength and stiffness for carrying the load without excessive
deformations, local failure or collapse. This design criterion can be
formulated such, that at a given point j of the structure the plastic dis-
placement should not exceed the limit (allowable) displacement, i.e.

"le S WQ (=1, 2, r (14)

Here is defined by eq. (13) and the limit (allowable) displacement

can be assigned by appropriate considerations upon the limited ductility
behaviour of the reinforced concrete structure. In a particular problem
W? and also w . in eqg. (13) denote either vertical or horizontal displace-
ments at the point j therefore in the following they will be considered as
scalars.

Using the design criteria described above, next we will derive the
basic relationships of the optimal design problem. For convenience, instead
of the areas A* we will introduce the plastic moments FT; (i =1, 2, ...,n)
as new design variables. Then, using the relationship (4) the total volume
of the longitudinal reinforcement is expressed in the form

v =Ata = | ti + ai . (15>

3. Formulation of optimal design

3.1. Solution based on a single yield mechanism

First, we will consider the simplest case whena displacement con-
straint is prescribed at a single point j of the structure and for the
calculation of the plastic displacements only one yield mechanism is taken
into consideration. Then the subscript k can be omitted in the above equa-
tions and using egs (13), (14) and (15) the optimal design problem can be
formulated as follows:
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minimize
o | (16)
i=
subject to
ME C -1 Jo
or
*0 a7
Ml c .
KSo lwl J
To derive the optimality criteria equations we form the Lagrangian
n
0 : P,
L(Mi ,X) = Y_ ti (A0 +aMr + A 14 (18)
i= HT ¢ K SO Iwj I3

and require the derivatives relative to L vanish

Here X denotes a Lagrangian multiplier.
To obtain a closed form solution we express from this equation

M = Ao A (20)
1 21fi (m'c)2
and substitute in eq. (17). Then we get
2 (MT c)2
A=-=
(21)
Kso hij

which together with eq. (20) yields to the following result
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(22)
or

(23)
Here

(24)

denotes a constant and the ratio {—— can be considered as the "relative
efficiency" of the i-th plastic hifHge.

According to eqg. (9) this is proportional to the square of the relative
rotation at the plastic hinge i and is in inverse ratio with the length
I~ and the specific cost a* of the corresponding longitudinal reinforcement
Hence, the plastic moments which fulfil both the displacement constraint
(17) and the optimality criterion (19) are determined as follows:

relative efficiency of the i-th plastic hinge

M ci sum of relative efficiencies of plastic hinges

Here the summation is extended to the plastic hjnges of the assumed yield
mechanism. The carrying capacity p = M = M.c* of the structure
necessary to fu lfil the displacement constraint”iian be calculated from eq.
(17). Considering the above statement to obtain the optimal solution this
capacity has to be distributed in the proportion of the relative ef-
ficiencies among the plastic hinges.

3.2. Solution based on several yield mechanisms

Next, we will consider the case when in order to obtain a more ac-
curate solution k =1, 2, ..., r yield mechanisms are taken into consider-
ation for the determination of the plastic displacements. Then, the dis-
placement constraint at the point j of the structure can be written in the
form:
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Fe 1+~ bo O ; (k=12 1) (25)
MT ¢ Kkso hkj
or
&j =& o ok =1, 2, ...r) (26)
where
Cg = ur
- Nk
_aoL (28)

Cko 1 K& [ij|
is the "target value" of k.

To derive the optimality criteria equations we form the Lagrangian:

1] A

LMi, v) X <, (A10* stf) »Z \

i=| k=I M Ck
(29)
1+ - A
KkSO Wk
and require the derivatives with respect to kL to vanish:
=2i 3aM- v Ip T k2 o ; (i=1,2,...,n). (30)

M. é1

In addition, the Lagrangian multipliers J1k have to satisfy the equations:
>k&j =0 } \ >0 ; (k=1,2 ..., . (31

From eqg. (30) we can express kL in terms of the Lagrangian multipliers

— XKi :
_———,-— \ (l = 1, 2. n) (32)
L2l ke * i)

These equations express the optimality criterion. Substituting this expres-
sion into egs (25) now we can not obtain a closed form solution for | k
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therefore we follow the optimality criteria method proposed by Berke and

Khot /1-4/. First, we multiply by both sides of eqs (30)

Micli Micki o
P mem2 4T TR TIF CF = 2 <faf

a=1, 2 n)

and accomplish the sum of these equations

T CA +..+4-TA- >K+.—+ -T"- \ - 2y _ "jaiMi = (33)

Substituting eq. (27) we get

Cl fe +...+ kK Xk+...+ O =2 NialM o * (34)

The right hand side of this equation (disregarding the constant term
due to the minimum reinforcement) stands for the total volume of the rein-
forcement while the terms in the left hand side express the contributions
of the [Ak multipliers to the volume.

In the proposed iterative solution eqs (32) are used to fulfil the
optimality criterion while the constraints (26) can be satisfied by the
successive change of 7~ k. To obtain the most efficient way of this pro-
cedure we have to consider eq. (34).

If we find during the iteration that the k-th constraint is over-
satisfied i.e. Ck is less than the target value C”qg then we can decrease
the participation of the k-th term in eq. (34) as the most effective com-
ponent to decrease the total volume of reinforcement. This can be achieved
by decreasing Ak which at the same time, improves constraint satisfaction.
On the other hand, if the k-th constraint is not satisfied i.e. Ck is
greater than the target value C..n one has to increase the participation of
the k-th term. This can be achieved by increasing I/:I\ which, at the same
time, also improves constraint satisfaction.

For the appropriate updating of the Lagrangian multipliers Berke and
Khot suggested several techniques /1-4/. For example the following formula

can be used:
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( Ak)new (35)

where g is a parameter to control convergence and possibly to change as
q(j 0.

Deriving the above results the iterative procedure which leads to the
satisfaction of the displacement constraint has the following steps:

a) select the yield mechanisms k = (1, 2, __, r) and calculate C”g

from eq. (28);
b) assume initial values for M and A, (e.g. M = const and

= const);

c) calculate &k and ( AK)row from egs (27) and (35);

d) using the new values of Ak and the old (initial) values of kh
determine the new values of kb from eq. (32);

e) repeat steps c¢) and d) until the differences between k and C”g
are sufficiently small.

4. Conclusion

The optimal design procedure described above can be extended to
problems where multiple displacement constraints or at the plastic hinges
plastic deformation constraints are taken into consideration. The descrip-
tion of these solutions and the numerical applications will be published
elsewhere.
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SPACE STRUCTURES: STATIC RELATIONSHIPS, STRUCTURAL FORMS
KOLLAR, L.*
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Space structures are mostly formed according to curved surfaces. Their overall
static behaviour can be described by adequate continua, which also show the relation-
ships between seemingly entirely different structures.

In this paper first these relationships will be presented. Second, some remarks
w ill be mede on structural forms, i.e. on shapes according to which space structures
with incomplete rigidities can be built.

1. Introduction

Space structures, formed according to curved surfaces, constitute, at
first sight, a great variety of different structures which have very little
in common. In fact, shells, space frames, lattice shells, cable and mem
brane structures, folded plates are different not only with respect to
their building materials and forms, but necessitate independent static
theories as well.

However, if we have a closer look at their static behaviour, we can
discover some basic relationships between these structures. In this paper
we first try to describe these relationships.

Second, after defining structures with incomplete rigidities, we wiill
meke some remarks on structural forms, i.e. on shapes according to which
these structures can be built.

2. Static relationships

When trying to establish the relationships between the various kinds
of space structures, we have to start from the notion of overall static
behaviour, which means the behaviour of the structure as a whole, as con-
trasted to local behaviour, as e.g. buckling of individual bars of space
frames.

~Kollar, Lajos, H-1122 Budapest, Rath Gyorgy u. 64-66, Hungary

Akadémiai Kiad6, Budapest



282 KOLLAR, L.

The overall behaviour of space structures can be adequately described
by appropriate continua, on the basis of which we can establish the static
relationships sought for between the various structures. To this purpose
it seems appropriate to choose shell structures as a starting point.

Shell structures are, strictly speaking, continua themselves, and can
be classified into two groups: bent shells and membrane shells.

Membrane shells have only "in-plane" rigidities, i.e. rigidities
against tension and shear in the tangential plane of the shell surface,
while bent shells have, in addition, bending and torsional rigidities, and
also transverse shear stiffnesses.

There are several kinds of space structures which are related to bent
shells.

Let us begin with space frames, which can be single- or double-layer.
As it has been established in /Kollar and Hegedls, 1985/, the equivalent
continua of single-layer space frames with rigid joints, and of double-
layer ones either with hinged or with rigid joints are bent shells. Figurel
shows a single-layer space frame with rigid joints, and Fig. 2 a double-
layer space frame (which, for simplicity, is formed according to a plane
surface).

Lattice shells (Fig. 3) can be considered a special kind of single-
layer space frames, in which the lattices, running in two directions, are
continuous.

Let us first suppose that the lattices are connected to each other by
loose bolts, i.e. these connections form hinges in the tangential plane of
the surface. Comparing this lattice shell with the single-layer space frame
with rigid joints (Fig. 1) we find that, on the one hand, the third row of

Fig. 1.
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fig- 2.

fia- 3

bars is missing, so that the lattice shell has no shear rigidity in its
tangential plane. However, on the other hand, the lattices can take bending
moments in the tangential plane, thus providing an additional stiffness to
the structure.

The static behaviour of the lattice shell can also be described by a
continuous bent shell, but this has to be a generalized (micro-polar) one:
a Cosserat-surface /Flzy, 1986/, /Fiizy and Heged(s, 1989/.

If, on the other hand, the lattices are rigidly connected to each
other, then the lattice shell has an in-plane shear rigidity, but, due to
the aforementioned bending moments arising in the tangential plane, the
equivalent continuum has s till to be a Cosserat-type surface.

Investigating the static behaviour of folded plates, we can state the
following.

We can distinguish two basic types of folded plates: those with long
elements (Fig. 4), and those with short elements (Fig. 5). The first type
is characterized by the fact that the individual plate elements are long
enough to assume a linear stress distribution in their cross sections. Con-
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sequently, we have to set up the so-called three edge force equations in
order to assure equal strains in the neighbouring plates along their comon
edges. In the following we will not deal with this kind of structure.

The plate elements of the second type are so short that a force
acting along one edge does not cause any appreciable strain on the opposite
edge. Hence there are no three edge force equations necessary. The indi-
vidual (mostly triangular) plate elements transmit the loads onto their
corner points, and the structure as a whole acts like a space frame, the
"bars" of which are formed by the edges of the folded plate. Since these
structures are mostly mede of reinforced concrete, the connections of their
"bars" can be considered rigid. Thus, folded plates with short elements are
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closely related to single-layer space frames with rigid joints and through
them to bent shells.

W can find another group of structures, the members of which are
related to membrane shells. Such is the single-layer space grid with hinged
joints (Fig. 6), whose static behaviour essentially corresponds to that of
membrane shells, with some differences, explained in /Kollar and Hegedds,
1985/.

Membrane structures, mede of coated fabric consisting of threads
running in two perpendicular directions, also belong to this type, whether
pneumatic or stressed (Figs 7 and 8). They deviate only in one respect from
membrane shells: their shear rigidity is very low as compared with their
tensile stiffness. Consequently, they exhibit a much larger shear defor-
mation than ordinary membrane shells, which causes that, if the loads would
give rise to high shearing stresses, these cannot develop,viz. the membrane
deforms by shear to such an extent that it is no longer permissible to de-
termine the internal forces on the basis of its original (undeformed) shape
The membrane thus behaves like the next structure: the cable net, which we
intend now to investigate.
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Cable nets differ from menmbrane shells in that respect that they have
no in-plane shear rigidity at all. (Strictly speaking, wecan give them a
small but finite transverse rigidity by prestressing /Kollar, 1989/, but,
in order to ensure a clearer treatment, we shall neglect this in the fol-
lowing.)

Consequently, in their original shape they cannot equilibrate loads
which would cause shearing forces in them. The cable net must thus deform
as long as it takes a new shape in which it can equilibrate the load with-
out shearing forces. This new shape is called the funicular surface of the
load. It also follows from this phenomenon that the cable net has to be
analyzed by the large-deflection theory.

In Fig. 9 we sketched the relationships found so far between the
various space structures.

Shells
membrane shells
membrane (fabric) single layer
structures space frames
double layer  single layer with hinged joints
V‘{ith rigid cable nets
joints

lattice shells  folded plates
with short
elements

3. Structures with incomplete rigidity systems

Before we treat the problems of structural form, we have to investi-
gate the consequences of missing rigidities.

Since space structures dealt with in this paper are formed according
to a curved surface, it is possible to define on them tensile, bending,
etc. rigidities referred to a cross section of unit width. We call the
rigidity system of a space structure complete if it contains three membrane
and three bending rigidities: tensile stiffnesses in both directions and
shear stiffness; bending rigidities in both directions and torsional rigid-
ity , and in addition, transverse shear rigidities in two directions. In
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other words, all the elements in the main diagonal of the stiffness matrix
have to be different from zero. (In order to be precise we also have to
stipulate that the stiffness matrix be regular.)

The rigidity system of a bent shell is complete. Oh the other hand,
the rigidity system of a membrane shell is incomplete because the three
bending rigidities are missing.

The consequence of missing rigidities is that the structure needs
special support arrangement to be kinematically determinate (stable). Hence
membrane shells cannot be supported in an arbitrary way if we require that
they remain kinematically determinate, i.e. that they should be able to
carry any load by membrane forces. Necessary conditions for the fulfilment
of this requirement have been given by Tarnai /1980-83/.

This problem does not arise with bent shells: they can be supported
in an arbitrary way, provided equilibrium is ensured, they always remain
kinematically determinate.

Single-layer space grids with hinged joints need support conditions
similar to those of membrane shells.

There are structures which have not even all three membrane rigidi-
ties. Such are cable nets which have no in-plane shear rigidity. Moreover,
the cables cannot take compression, so that they must be prestressed. From
the latter fact it follows that cable nets can be built only according to
surfaces with a negative Gaussian curvature, and even anong them only those
surfaces are suitable which correspond at every point to the equilibrium
condition of the prestressed membrane (cable net).

The number of suitable surfaces is thus rather limited /Szabé and
Kollar, 1984/.

The absence of shear rigidity causes that - even if the supports cor-
respond to the static requirements of the prestressed form - the structure
will not be kinematically determinate, but "movable"; it changes its form
under various loads.

Membrane (fabric) structures show a similar behaviour, with the only
difference that their material does have a shear rigidity, however small.
Their behaviour thus represents a transition between those of membrane
shells and cable nets. An interesting feature of fabric structures is that
they can also be prestressed by air pressure, which adds a group of sur-
faces with zero or positive Gaussian curvature, suitable for building them,
to those of negative Gaussian curvature of the cable nets.
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4- Same renarks on structural forms

The basic meaning of structural form is "a form which is advantageous
for a certain type of structure". This also means a certain degree of
economy.

Such is, e.g. the form of the mushroom construction, as contrasted to
flat slabs (without mushroom heads). However, related to structures with
incomplete rigidities, structural form has a more restrictive sense: "a
form which is necessary to build a certain type of structure".

In the case of membrane shells (and of single-layer space frames with
hinged joints) the restriction extends only to the supports, but otherwise
we are quite free to choose the form of the shell, provided the general
rules of constructing membrane shells are observed (there should be no
plane points or inflexions in the surface, no infinitely large forces arise
in the shell, etc.).

W can formulate this restriction concerning the supports also the
other way round: if the support conditions are given, the shape of the
shell has to comply with the aforementioned static requirements in order
to obtain a shell capable of carrying any load by menbrane forces. As an
example let us consider the temple shoann in Fig. 10 /Kawaguchi, 1988/. Its
side walls consist of cylindrical surfaces, which are supported along the
bottom straight edge and along the two curved edges, but along the top
straight edge it is acted upon by the load of the roof and is only sup-
ported in the horizontal plane. However, according to Tarnai's findings
/Tarnai, 1980-83/, in order to obtain a shell capable of carrying any load
by memorane forces alone, we would need a support in the tangential plane
of the shell along the top edge. Consequently, this is not a structural
form of the cylindrical membrane shells, thus for carrying the loads they
have to develop bending moments. It was, in fact, necessary to provide
beams with a considerable bending rigidity along their lines of fall. It
follows from the foregoing that if we deviate from the structural forms of
membrane shells, bending (and/or twisting) moments will develop, which has
to be taken by appropriate structural elements.

With cable nets there are even more severe restrictions concerning
the shape according to which such nets can be built.

Let us consider Fig. 11, which shows the Volley-ball Gymnasium in
Beijing /Shen et al., 1989/.
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Fig. 10.

Fig. 12,

The shape of the two halves of the roof is the cable nets' structural
form, so that this roof can be built as a cable net.

O the other hand, the Tokyo Olympic Swimming Hall (Fig. 12) con-
siderably deviates from the structural form of cable nets /Tsuboi and
Kawaguchi, 1966/. Consequently, this roof could be built only by using
girders in one direction which can take bending.

Finally, fabric structures can be built only according to structural
forms, because it is practically impossible to stiffen the fabric even in
one direction against bending.
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STABILITY OF SDELE STRUCTURES WITH NON-SMOOTH ENERGY FUNCTIONALS
IN THE ONE-DIMENSIONAL CASE

KURUTZ, M.*
(Received: 27 December 1989)

This paper introduces the stability analysis of problems whose strain energy func-
tional is not everywhere differentiable due to material irregularities or structural
imperfections. Using the term of subdifferential and the convex analysis, the wide
range of the stability problems of non-smooth functionals can be described math-
ematically in a perfect manner. All the problems having a so-called polygonal material
law, like the plastic or locking behaviour, have a potential energy functional of not
everywhere differentiable type. Since these phenomena can happen often in the practice,
causing a considerably dangerous stability situation, or since this polygonal character
can also be used for modelling some problems, it is necessary to clear them math-
ematically in a correct way.

In this paper the stability analysis of elastic-plastic, perfectly rigid-plastic,
bi-, tri- or multilinearly elastic structures with lockings and imperfections will be
presented by a very simple example. The general theory will be published elsewhere.

1. Introduction

In the general theory of the elastic stability it is well known that
a stationary value of the total potential energy with respect to the
generalized coordinates (the displacement parameters) is the necessary and
sufficient condition for the equilibrium of the system. Furthermore, a
complete relative minimum of the total potential energy with respect to the
generalized coordinates is necessary and sufficient for the stability of an
equilibrium state of the system /1/.

From the first condition we obtain one or more relations between the
load and the displacement parameters. The diagrams of these functions are
the equilibrium paths, and the intersections of them are the points of
bifurcation separating the fundamental and the post-buckling or several
further post-buckling equilibrium paths.

From the second condition we obtain the stability coefficients which
are the elements of the Hessian matrix of the potential at the points of

*Kuruitz, Méarta, H-1118 Budapest, Serleg u. 8, Hungary
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stationary. The stability coefficients help us to qualify not only the
stability of the equilibrium states but also the stability of the equi-
librium paths. Since the stability coefficients depend both on the load
and the displacement parameters, they vary continuously along the equilib-
rium paths. Thus, the function of the stability coefficients in term of the
displacement parameters as the function of the Hessian matrix can be
spoken of.

All the basic axioms and terms mentioned above are related to the
stability of elastic systems, on the basis of the general phenomenological
law of the hyperelastic materials:

6(£)=_MiJ. or £(<f) = . (a)
Qe oe
Here 6 - is the stress tensor and £ = is the strain tensor.

Functionals W(£) and W(6) are the strain and complementary strain energy
densities, respectively, satisfying the variational inequalities

WEL)-W (£)2! < *(~-0
and
W(6'1) - W(<5)2= £ (6 1-tf)

as the conditions of the convexity of the functionals or, equivalently, the
Drucker-stable character of the material.

If the functionals Wt ) or W( 6) are continuously differentiable,
the relations (a) correspond to a linear or non-linear hyperelastic me
terial. If the material behaviour contains a polygonial-jump character in
its stress-strain diagram (which can naturally be generalized to the non-
uniaxial cases as well) then the relating energy density functionals,
the so-called superpotentials, are non-smooth functions being not every-
where differentiable. Applying the term of subdifferential and the extremum
terminology of the convex analysis, the classical derivation of the hyper-
elastic materials (a) can be extended to the non-elastic but stable (rigid,
plastic, locking and their combinations type) materials in the form de-
tailed in /3/ and /4/:

AEYS OW(E) or £(6)6C)Wc(6) . (b)

Here aw( £ ) and 3A\J<5) are the subdifferentials (the sets of the sub-
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gradients) of the superpotentials W £ ) and wc(tfF) at the points £ and tf,
respectively. So the actual 6( £) and £.(<5) is among the elements of the
set of subgradients. In this way, the non-elastic but stable materials can
be handled in a quasi-hyperelastic manner, consequently, the stability
problems of structures having materials like this can be analysed in a
quasi-classical way.

In this paper the effect of several structural and material imper-
fections or irregularities leading to polygonal stress-strain diagrams and
relating non-smooth energy functionals will be analysed. The analysis con-
cerning all the mentioned cases will be introduced through the same one-
dimensional example of the well-known hinged cantilever.

2. Stability of a rigid-plastic perfect structure

Figure 1.a shows a rigid cantilever with a support modelling the perfectly
rigid-plastic behaviour of the structure by a friction like connection as
the usual mechanical model of the rigid-plastic behaviour. (Note that the
analysis relates to plastic and not to frictional problems.) Both the
strain energy function and the relating constitutive law in Fig. |.b and c
are non-smooth functions being non-differentiable at its jump or break
points. The plastic behaviour is characterized by the plastic moment limits
Mpi and Mp2.

The total potential energy consists of the external and internal
parts:

ttGi,-") = TfACu) + 4Tin("&) (1)

Expressing the potential energy, kinematically admissible strain-displace-
ment fields are needed. Using the correct displacement function

u= 4(1—cos\t) (2)
as compatibility condition, the total potential energy of the perfect
system, relating to the load increasing period of the loading process can

be written as a non-smooth function, namely a superpotential /3/:

1r(nK) =-Ft (1 - cos'd’) ) 3)

fw »
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where the first term is the potential of the external load and the second
one is the internal energy of the plastic strains.

The condition of the equilibrium of the system relates to the first
subdifferential of the total potential energy (3):

if -£50
AUTC'®) = -FE.sin™+ if «$=0 (4)
if "~<0
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where the subdifferential at the point $= 0 consists of an interval

awl ' Mz3 as a set of subgradients. Furthermore, the stability of the
equilibrium depends on the second subdifferential of the potential energy

(3):
if -PtO

I7MUP) = -Fi cos$+ ()
l+0o if =0
In the case of non-smooth functions the condition of the equilibrium reads
oe3i(™) (6a)
and the condition of the existence of critical forces is

oed?2fro&) , (6b)

namely, the zero has to be among the elements of the set of the first and
the second subgradients. From the condition (6a) the functions of the equi-
librium paths relating to the loading period can be obtained which also
take the form of sets and intervals as elements

M
£L if md>0
isin”®
F(0*) (+ 00, - oo if &= 0 7)
M
EL if ~<0
,Esin

From the condition (6b) the critical forces can be obtained:

f
" it & %
Fyy = + 0 it = o0 (8)
Mo if v
I 2

The stability of the equilibrium paths can be qualified by the stability
coefficients S( & ) obtained by substituting (7) for the second subdif-
ferential (5)
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M.
_tgP]’\ if n>>0
S(<i>) [0, + o0) if Jb=o (9)
'ié-fr if TA<0
signed in Fig. I.d by full lines. This function contains the Hessian matrix

relating to each of the stationary points of the loading phase. In this
one-dimensional case, the Hessian matrix has only a single element for each
value of oK This element for regular points is a function value but for
singular points it is an interval, like at '9- 0. Thus, in this one-di-
mensional case, the analysis of the definiteness of the Hessian matrix is
simplified to a sign control only. Consequently, the sign of the several
parts of the function of the stability coefficients S(i?>) in Fig. l.d indi-
cate directly*the stable, unstable or critical character of the several
parts of the equilibrium paths in Fig. l.e. The full lines indicate the
stable and the broken lines show the unstable parts of the equilibrium
paths. Thus, in the loading period, the equilibrium state is unstable if

— ~ < '0'<4p-, while having || . the equilibrium state is stable,
since the load F > 0 causes tension in the rod. Consequently, by any small
disturbance, reaching the unstable equilibrium state at — <0 or
at 0< "i- < ~Y~> structure will snap dynamically as it can be seen in

Fig. l.e. Reaching the stable equilibrium state, the load can be increased
again, or an unloading can be executed.

Till now the unloading of the structure has not been mentioned. This
case is indicated in Fig. l.e in the material behaviour in both directions,
with the dissipated energy bounded by the loops. In Fig. l.e also the equi-
librium paths of some possible unloadings are illustrated.

Relating to an unloading period, starting the load decreasing at the

value of plastic strain the total potential energy has the form
i * ; if “Sp=S0
) [ "pi M2 (i,p '
TT(") =Fi (1 - cos*?) + . (32)
* "pi <* x> if frPS 0
From the equilibrium condition
) if rGP> 0
0 € 3m@>) = Fi sin B+ if Bp =& (4a)
[-V nor]
if \>P< 0

y_ML
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the equilibrium paths of the unloading process can be obtained

(7a)
«sin-"
the second subdifferential of (3a)
0 if O /n»
(5a)
22" ) = FRcos +
I+o0 if "O0=0'

leads to the stability coefficients of the unloading phase

signed by broken lines in Fig. l.d. In this way, the vertical equilibrium
paths of unloading in Fig. |.e are always stable, consequently, all the bi-
furcation points which are intersections of a vertical unloading path and
an unstable path (the starting points of the snaps) are critical points.
Then the possible critical forces can be given in the form of a function

X . if — [ O<0 and —
lisin & 2 2
which function is, at the same time, the imperfection sensitivity function

of the structure (broken line parts in Fig. l.e).
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In the case of some of the following problems, the case of the un-
loading will not be detailed. In spite of this fact, the possibility of the
phenomenon will not be excluded. The problem will be fully analysed else-
where.

3. Stability of a rigid-plastic imperfect structure
Figure 2a shows a rigid-plastic cantilever structure with a small

strain imperfection fe. In Fig. 2.b and c the non-smooth functions of the
strain energy and the material law can be seen.

Fig. 2.
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In this case the total potential energy of the loading period reads

if > £

I(O) =-FI (1 - cost?) + (10)
(m$-£) if O<t

According to the condition of the equilibrium of the structure in the

case of non-smooth functions, the zero has to be among the elements of the
set of the subgradients which built the subdifferential of the superpoten-

tial (10)

oe (") = -f<sin O

from which the equilibrium paths of the loading phase can be obtained:

F(O) (12)

Further we show that

22Tr(0) = -Ft cos O (13)

thus, by substituting (12) for (13), the elements of the Hessian matrix namely
the stability coefficients can be formed:
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o

Note that the Hessian matrix has interval elements at the point
*p= £ . FHom the signs of the stability coefficients in Fig. 2.d, the
stability circumstances of the equilibrium paths in Fig. 2.e can be de-
termined.

Thus the critical forces are

cr

Obviously, if £ = 0, then the perfect case of (8) is spoken of.
Similarly to the perfect case, the function of the possible critical forces,

depending on the snaps and the starting points of the unloadings, can be
given as

X
(sin
Fcr(tf)
JL.
isin”

if Eis positive. Note that if the imperfection £ is negative, the detailed

procedure is naturally valid but can be reflected with respect to the
vertical axis.
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4. Stability of a rigid-plastic locking structure

Fig. 3.a illustrates the rigid-plastic cantilever with a small lock-

ing type imperfection. It means that if >m£2 the cantilever can
rotate without any restriction or resistance. This phenomenon yields a
highly non-smooth behaviour in the relating functions. Fig. 3.b and ¢ show
the strain energy function and the constitutive law /4/.

i-ia-T-J-
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The total superpotential of the loading period has the form of

so the condition of the equilibrium relates to its first subdifferential

The qualification of the equilibrium depends on the second subdif-
ferential of (16)

0 if $t £y and >= &2
IATTCP) = -Fi cos«d' + (1B)
+00 if = or Y= £2

Fom (17) we obtain the equilibrium paths of the loading phase

f ™

K - (19)
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Substituting (19) for (18), the stability

JEL if
tg'?"
(+0, +0-— Ei—) if
tg *
S((($) = < |f
(+ 0o, +00-------E-—) if
tg £o
__x_ if
tg

for the qualification of the equilibrium paths
can see in Fig. 3.d and e.
Thus the set of the critical forces is

lP.L if
Mx
_el if
Isin £/

FOr 0 if

MP.2_ if

[ sin £2
. if
i

303

coeffficients are obtained

<f=

r2an><&1 (20)

3=12

> <£?2

of the loading phase as we

e T
®= £7 and ir
£1< 2
nb 0 (21)
£2 and = T
JL
tb . 77

with a rather dangerous critical force among its elements: the zero force

relating to the initial position!

Dealing with the unloading process, taking the potential energy

f mpi b £X) + Mp2(mi>p -*) if and

TT(\V)y =f4 (i - cos&) +m O if e27n-0>=6£1
(16a)
"t2) +V AP '~ if "pSE2 and
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JLw
into account and considering the dynamical snaps, the function of the pos-
sible critical Tforces as the imperfection sensitivity function of the
structure reads
f M,
A _pl— if ¢ = £1 or - 1f < S2
ISIN &
Ferw 0 if '5=0 (21a)
_l\/_b2 if m$= £2 or XT-
ISIN &

Fig. 4,
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It is important to observe that between the values of and £2,
except for 3=0, the structure has no load bearing capacity. Here it can
not be in equilibrium, consequently, subjected to any non-zero force the
structure will move without any resistance. Moreover, in the initial posi-
tion, if =0, the equilibrium state is always unstable if the structure
is subjected to any arbitrary positive force. It is very dangerous since
the neighbouring states of the unstable initial state are the states of the
free moving.

Figure 4shows two variations of the locking effect. Fig. 4.a and b re-
late to the special case of the detailed problem if 62 = 0. Fig. 4.c and
d show the case of an internal locking if both and are positive.

5. Stability of an elastic-plastic perfect structure

Figure 5.a,b and ¢ show the cantilever with an elasto-plastic support,
the strain energy and the material behaviour characterized by the modulus
of elasticity as the spring constant ¢ and by the plastic moment limits M~
and MpQ.

The total potential energy of the loading period reads

(™) = -H (1-cosi®) +

are the elastic strain limits. The condition

0S 21 (") =-Ft sin™ +

from which the equilibrium paths of the loading phase seen in Fig. 5.e are
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I sin*

with the relating critical forces

KURUTZ, M.

IF

Fia.

e2a ~ ~ el

e2
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(25)

knowing that the critical forces belonging to \*\ = I-y-[ will never be
reached because of the snaps. In Fig. 5.e also an unloading path is il-
lustrated.

It is worth to be mentioned here that the equilibrium paths (24) and
the critical forces (25) in Fig. 5.e depend on the ratio existing among the
material constants c, and The relative position of the three
curves and the intersection of them are determined by the ratio of

M, M,
we =%~ ad g =

If, for example, the elastic modulus ¢ would be decreased by constant

plastic limits, causing the increase of and Then the plastic
paths could be covered by the elastic one, resulting no critical forces
within the interval —y- < . Similar behaviour could be observed

by increasing the plastic moment limits M” and M2 compared with the
elastic modulus c.
To qualify the equilibrium paths we need

f o if *e2>"*>'&el
A2 (fr) = -FU cos [O . q if d=& el °r (26)
&= N -
V. ¢ if Je2N « -> el

and substituting (24) for it, the stability coefficients seen in Fig. 5.d
are obtained:
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¢ . Stability of an elastic-plastic imperfect structure

Figure 6.a, b and ¢ show the behaviour of the previously analysed struc-
ture with a small imperfection of strain type, which means an initial unsym-
metry fc.

In this case the total potential energy in the loading phase is as
follows

Thus, the condition of the equilibrium is

My

cOM- £) (29)

M

p2

from which we obtain both the fundamental and the post-buckling equilibrium
paths :
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)

thus, the critical forces depending on the ratio of M*, M”, ¢ and £ also
in Fig. 6.e are
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GD

Since only the last condition is fulfilled, in Fig. 6.e only a single
critical force can be spoken of. Furthermore

so that the stability coefficients in Fig. 6.d are

Y

(33)

The unloading process is similar to that of the perfect version of
the problem seen in Fig. 5.c and e.
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7. Stability of an elastic-plastic locking structure

Concerning to the Fig. 7.a, b and c,the total superpotential of the
loading period reads

(34)

FiH
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from the first subdifferential of which the equilibrium conditions

Os = - f£ sin® (35)

and the equilibrium paths can be obtained

36)

with the referring critical forces:

cr (37)
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Figure 7.d and e represents the results of the analysis. Note, that
also in this case, similarly to the case of Fig. 3, the most dangerous
critical force relates to the initial state with the value of Fer =0

8. Stability of a polygonally linear elastic-plastic structure

In Fig. 8 there is given a stress-strain diagram being in tension
tri-linearly elastic and in compression simple elastic-plastic. All the
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multi-linear cases can be taken as elastic material with strain imperfec-
tions into account. To the first modulus of elasticity ¢ no imperfection

belongs, namely = 0. The second linear part characterized by C has an
imperfection of t 2 indicating by the section point of its line with the
coordinate axis . Similarly, the third part also has an imperfection £j.

In this way we can analyse the problem similarly to the case of Fig. 6. The
boundary line of all the curves forms an equilibrium path with section
points referring to the changes of the type of the materials. The unloading
process, along the multilinearly elastic parts, uses the sare stress-strain
diagram as the loading process has, since elastic materials have no energy
dissipation. After plastification, the unloading takes place elastically,
so it can be handled as an imperfection. The full analysis of the unloading
w ill be detailed elsewhere.

Conclusion

On the basis of the presented method the stability analysis of struc-
tures with monotone increasing polygonal material law and relating non-
smooth strain energy functionals can be investigated. The quasi-elastic
exact analysis has been introduced through a simple one-dimensional example.
Obviously, the method can be extended to more-dimensional problems. In this
case the analysis of the definiteness of the Hessian matrix at the singu-
lar points needs the use of the interval arithmetics. Otherwise, since the
exact analysis in multi-dimensional case, even for classical elastic
problems, is mathematically rather complicated, for the non-smooth stabil-
ity problems an approximate analysis is suggested.
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A BANDWIDTH REDUCTION PROCESS FOR SUBSTRUCTURAL FINITE ELEMENT ATHOD
PACZELT, |.* - SZABU, T.**
(Received: 27 November 1989)

Bandwidth reduction of the stiffness matrix of a substructure is obtained by
solution of a steady-state heat transfer problem. The problem can be solved under the
following conditions: zero temperature at the interface nodal points, rest of the
surface of the body isolated from the environment, and uniform internal heat gene-
ration throughout the volume of the substructure.

Bandwidth reduction is obtained by renumbering of nodal points according to de-
creasing nodal temperatures. In this paper, the properties of the heat transfer
problem are discussed and the efficiency of the proposed process is illustrated by a
few examples.

T. Introduction

As is well known, banded matrices are produced in application of the
finite element method /1/.

A possible advantage of bandwidth reduction is that the solution
might require a smaller number of arithmetic operations and main or back
storage locations.

In the program system FEM3D /2/, the installed equation solver /3/
requires that the interface nodal point unknowns be placed at the end of
total unknowns NEQ of the substructure.

The number of slave nodal point unknowns are denoted by LEQ. ND
denotes the number of interface nodal point unknowns that is the size of
interface stiffness matrix ND = NEQ - LEQ.

To the authors' best knowledge, no bandwidth reduction process under
the above conditions has been published yet. The classic Cuthill, McKee
/4] and Cuthill /5/ algorithms are based on graph theory.

In this work, thermal transfer analogy is used for bandwidth re-
duction. Topologically, the same finite element mesh that has been gener-
ated for static and dynamic analysis of the structure is applied to the

*Paczelt, Istvan, H-3529 Miskolc, Perczel Mér u. 30, Hungary
**Szab6, Tibor, H-3529 Miskolc, Aulich u. 26, Hungary
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heat transfer problem. It is assumed that the temperature is zero at the
interface nodal points, uniform internal heat is generated in all elements
and the boundary of the structure is isolated.

The theoretical background of application of the finite element
method to thermal transfer problems is presented e.g. in /7/.

The two-dimensional structure in Fig. l.a is divided in 3 substruc-
tures for static analysis. In Fig. I.l.c, the boundary conditions of the
thermal transfer problem are shown.

2. Heat transfer equation

The heat flow equilibrium in the interior of the body is described by
Fourier's differential equation:

V. (K .VT) +gB=c-8£ (2.1)
where V ~ Hamilton's differential operator
T - temperature field
IKD - diagonal matrix of the thermal conductivities
g - rate of heat, generated per unit volume

t - time.
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The following boundary conditions are stipulated:

- given temperature over surface S,,

- heat-flow boundary condition q :1qFL for surface 2,
- heat-convection boundary condition

q mh(Tee- T)

for surface Sg where h is the convection coefficient, TOO is the ambient
temperature.
Thus conditions

T= T(IJ xeS1 (2.2)

kn(VT.n) =0 xaS2, (S3) (2.3)

must be satisfied, where g denotes the direction of the normal to the sur-
face, kn is the thermal conductivity of the body (k =n.K.e, =Q Il ).

If field T satisfies the boundary conditions along and the equa-
tions belonging to the stationary condition of the functional are

mif [»' s ’VT'Zp_C_IIJld\/
W)U (2.4)

J grLTdS +1 /  h (T -Too)2dS
(s2) (S3)

then T will be the exact solution. For the steady-state condition, the
underlined term is zero.

3. Bandwidth reduction finite elements

A simplified functional can be derived, taking into consideration the
conditions mentioned earlier:
1

|:2/Vi.Q.Vtov- \]qBTd\/ (3.1)

v) (V)

that is neither heat flow nor heat convection is present. At the interface
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nodal points on surface S”, temperature T = = 0 shall have priority.
One, two and three dimensional finite elements are presented in the next
sections.

3.1 One-dimensional line element

Assure that the temperature changes linearly along a line element
T= TI X (3.2)

where 11, are nodal point temperatures. The cross-section, length and
thermal conductivity of the prismatic line element are denoted by A, L and
k, respectively. (3.1) can be written as

(3.3)

Important in respect of bandwidth reduction is only the topology of
the finite element mesh. For this reason we take

A=k =L=1 and gB=2 (3.4)

Thus the heat conductivity matrix and internal heat generation vector
f* can be written as

respectively.

3.2 Two-dimensional plane element

Taking into consideration the bandwidth reduction aspect, we derive
the two-dimensional element according to /1/ but the actual x,z coordinates
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shall be replaced by x, z varying in the range of
-1s xS , -liz s ,

respectively.

In this case, the Jacobian matrix is an identity matrix since the
derivatives with respect to x,z are equal to the derivatives with respect
to local coordinates r, s.

To derive matrix S and vector f, we use 2x2 Gauss integration orders.
On the basis of (3.1) and taking

the following integrals can be written:

where W), are Gauss numerical integration weights at sampling points r*,
Sj, respectively,
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- idervtitiy matrix of the second order.

3.3 Three-dimensional element

Similarly to the two-dimensional isoparametric element, actual co-
ordinates X,y, z are replaced by naturalcoordinates. Using 3x3 Gauss
integration order for (3.1), the conductivity matrix can be written as

iL, 3 3
§ = Y(ri SV = i(ri’sy>V WiWjwk 0.8)
iH KIT
3 3 3
L H BT (ri-ej'V wWwA °-9)
i=l j=1 k=l

where qQ: 1, K = E identity matrix of the third order.

Y - [n?, 0N § = [Bp ees> Bp oo » 2203 »

Ni =Np,s,t) shape function,

r , t. sampling points of Gauss integration,

W,

S.
37K
W, W integration weights.

4. Renumbering of nodes

By solution of the linear equation system produced on the basis of
(3.1) for a substructure, the nodal point temperatures can be obtained.
Bandwidth reduction can be obtained by renumbering of nodal points or
nodal point unknowms only if they are ordered according to decreasing
temperatures.
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Note that this process can be used for profile (frontwidth) re-
duction. In this case, element renumbering takes place in accordance with
decreasing medium temperatures of the elements.

5. Effect of the original boundary and fitting conditions on the thermal

model

Soe points are constrained. In case the support is a single beam or
truss or spring with one end clamped, assembly of these elements is not
necessary for the thermal solution. Otherwise, the temperature of the point
connecting these single elements would be higher than desirable. That is
why matrix § and vector f_are zero for these elements.

In special modelling cases like excentric connections, periodicity
and initial gaps, the slave nodal numbers are replaced by master ones for
the thermal transfer solution.

6. Examples

To test the efficiency of the proposed reduction process, we take
examples of /8/ to compare the results. Since no example has been found for
substructure bandwidth reduction, we choose an arbitrary node as an inter-
face in the example of beam structure used for comparison. In the examples
of /8/, one node is selected to start renumbering based on the graph
theory. The bandwidth depends on the first node selection.

6.1 First example

The beam structure according to /8 is shown in Fig. 6.1.1.
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Starting renumbering with different nodal points, the compared re-
sults are tabulated in Table 6.1.

Table 6.1

S t;:i':tg Orginal 1 2 3 4 5 6 7 8 9 10 11  Bandwidth
5 themal 2 3 9 6 1 1 7 10 4 5 8 4
/8/*/ 9 11 3 8 1 10 5 2 7 6 4 4
1 themal 11 6 2 5 1 10 3 4 8 9 4
/8/./4/ 1 6 9 10 1 2 8 7 4 3 4
/8l je/ 1 5 8 6 10 2 7 1 4 3 9 6
8 themal 2 3 10 4 9 1 7 11 5 6 8 4
/8/,i6/ 9 6 3 5 2 8 4 1 7 10 1 10

The original numbering scheme can be found in the head of the Table
6.1. The renumbered schemes and bandwidths of methods /4/, /6/ and /8/ and
the proposed 'thermal' procedure are shown for different starting points.
The bandwidths are defined by the meximum of the difference between the
nodal numbers. In the above examples the thermal method resulted in nar-
rowest bandwidth.

6.2 Second example

A simple strain model, a C shaped machine tool frame is shown in Fig.
6.2.1. It is supported at two points, one of them fully constrained. The
structure is loaded by two forces F = 250 kN in opposite directions.

Frame "C' consists of three substructures shown in Fig. 6.2.2. The
linear static problem was solved by the application of eight nodal iso-
parametric elements of the program system FEM-3D. The FEM3D consists of
four modules (FEM1-4).

Parameters of the mesh and computation are listed in Table 6.2
where .uwne _ number of nodal points

NUVEL - number of elements

NEQ - number of equations

LEQ - number of slave degrees of freedom

MBAND - bandwidth

NBLK - number of blocks of the stiffness matrix
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2855 F=250kN

Fig. 6.2.1.

NBLL - number of blocks of the load vector

MAXT - meximum number of real constans of a block.

Data in brackets refer to the case of bandwidth reduction.

By applying the proposed bandwidth reduction process, the total
computation time could be decreased by 33 minutes and the required back
storage by 90 blocks.

Figure 6.2.3 shows the temperature distribution along the lines of the
first substructure. It can be seen that the temperature is zero at the
interface points but it is increasing in the direction towards the le ft.
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+ Fig. 6.2.3.
Table 6.2
Parameters Substructures Main structure
1. 2. 3.
NM\P 593 517 331 46
NUNd 170 154 92 0
NEQ 1186 1033 660 R
LEQ 1136 991 568 -
MBAND 610 987 250 2
(114) (106) (192) (92)
NBLK 72 76 40 3
(33) (27) (38) (3)
NBLL 1 1 1 1
Computation time FEML: 4 min FEM3 1 min
(13 min 36 sec) (1 min)
IBM FC AT FEM2: 70 min FEMA 6 min
(27 min 4 sec) (6 min)

Total computation time: 81 min
(48 min)

VAXT = 2000
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IDENTIFICATION OF DAMPING PARAMETERS IN LINEAR VIBRATING SYSTEMS WITH
"FOLLOWER™ LOAD

POPPER, GY.4
(Received: 12 July 1988)

A very effective non-derivative minimization method has been used for identifi-
cation. The measured values of the stationary solution are simulated. The instabil-
izing effect of the "follower" force upon the process of identification of damping
parameters on the basis of amplitudes has been shown.

1. Formulation of the problem

Consider the damped linear vibrating system with n degrees of freedom
in Fig. 1 to be a chain of n rigid members in plane. Each bar is of length

£and mass m, i = 1. n. In the cylindric hinges, there are springs
supplying a return moment proportional to the relative rotation of the
members. Spring constants of the hinges are c¢*, i =1,...,n. The hinges

also contain a device (not illustrated) supplying a damping moment propor-
tional to the relative angular velocity of the members, the moment damping
coefficient in the hinge i being d®, i = 1........ n. Force Ph applied to the
free chain end is constant during motion and it acts in the same direction
as the last member. Hence, it is a so-called "follower" force.*

*Popper, Gyorgy, H-1016 Budapest, Szirtes u. 28/A, Hungary

Akadémiai Kiadd, Budapest



328 POPPER, GY.

With the intermediate nodes of the chain disturbed by forces n
sin cut, i =2,...,n, we want to find damping coefficients d = (dp__,dn)
minimizing the integral (2) over given interval dg =tu =Ul where
v(uj;d) is the stationary solution and v(cu) contains its values in points
g <* UM< ...<c ik (determined e.g. by measurements).

Details are explained in the next section. The above assumption wes
made first by Bosznay /2/.

2. Some prerequisites of identification

The parametric identification of some dynamic problems can be math-
ematically formulated as follows. Assure a vector function v(uj ;d)wrthf
real elements. UJis a real independent variable e.g. circular frequency (or
time) and d = (dp__,dn) is a real vector of unknown parameters. Function
v(u> ;d) that is v: £cL>Q,u>N]x R n-* R* , is generally given as a com
puter subroutine (a rather time-consuming calculation) and the derivatives
of v are not available in practice or if indeed at all, not in the required
form.

Function v(w ;d) represents a class of models (their responses) for
identification of a real mechanical structure. Its actual response (known
e.g. from measurements) is given by a real vector function u> —  v(uj)
with | elements.

W are looking for the "best" model of the structure within the men
tioned class of models. That is we want to find a vector d* = (d*,...,d*),
minimizing over R the norm of error function

v(Gj:d) - v(o>) (1)
given over interval opg = uj = U)

Since the error (1) is a vector with | real elements, we may use the
Euclidean norm

Il v(cu;d) - V(W) (12 = ((v(wjd) - V(M>))T (v(W;d) - V(w))1/2

and, assuming that this real function is square-integrable over D *v
the integral nom
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can be used.
Hence the mentioned identification problem is equivalent to the de-

termination of a minimizer d* = (d*,...,d*) of the integral

Jd) = f (v(u»;d) - v(c*T))T (v(cu ;d) - v(w)) dco (2)
Wq
In practice, the analytical form of v(w ;d) is not available and
response v(ui) of the actual structure is known only for fixed values of
00 , say <CUn. Therefore, integration can be carried

out only by means of numerical methods. It e.g. the trapezoidal rule for
non-equally spaced abscissa is used, we will have

J(d) *»fT(d) S f(d) 3)
where

V(0 Qd) - v(co Q
v(co pd) - v(co )
f(d) = (4)

_v(@ N;d) - V(co N)_

is a vector with m=i(N+l) function-elements and

S=HE x SN+ n

is the direct product of the identity matrix of order -t and diagonal matrix

N =1 G@jl "~0’ ~r2 " bl3 "' WI> " WN' WN-22 WN*“ WN -[) *

(6)

Since uijj < ujj < ... < S is a symmetric positive definite

matrix and thus the right-hand side of (3) means the square of the so-
called elliptic norm of vector f.
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Thus minimization of integral 3(d) and, consequently, identification
of vector d = (dp__,dn) can be reduced to minimization of the elliptic

norm of a function
f.Rn— Rn , m?n ,
that is to minimization of functional
F(d) = H() 12 = fT(d) Sf(d) )

where Sis a real symmetric positive definite (weighting) matrix of order m

3. Equations of motion

The equations of motion of the system assume a slight in-plane motion
and use the transversal displacement of bar element end points yg = 0, y*;
i =1,...,n as co-ordinates (see Fig. 2).

Motion energy of the bar chain is

T=\ v

where the elements of vector y are velocities yp i =1,...,n and
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(8)

is the so-called mess matrix, always positive definite.

Potential energy of return moments supplied by hinge springs, pro-

portional to the relative rotation of bar elements, is given by relation-
ship

1T
v=Jy & ,

where the elements of vector y are coordinates y»; i =1,...,n and

©)

is the so-called spring matrix, always positive definite, with elements
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and cTj = 0 otherwise.
Effect of damping moments supplied by the device, proportional to
the relative angular velocity of the bar elements, can be expressed by

means of dissipation function
F :\ yT ,

where the so-called damping matrix D has the same five-diagonal form as
the spring matrix (9) and it is positive definite because of the viscous

damping force. Elements of matrix D are given by formulae
i =1,...,n-2
and = 0 otherwise, where d®, i =1,...,n, is the damping coefficient in
hinge i.
The effect of disturbing forces sin  cot applied to nodes

i =1,...,n-1 of the chain and the effect of "follower" force PR applied to
the free chain end (see Fig. 1) are expressed by the vector of generalized

forces,
Q=Psin cot + Ry
where . . T
P=Lp... Vi- °J
and
2 4
2. -1,

is a tri-diagonal non-symmetric matrix of order n.



IDENTIFICATION OF DAMPING PARAATERS 333

Substituting into the Lagrange motion equation,

we obtain

Rearranging:
(10)
where

with the elements

g,i+2 G+2,i = {2 ci+2

M-lI,n-1 =T2 (cn-l +4cn} ' 1~ Pn’ Qn 12 n

g-l,n a 2‘2 & TT Ghon-l T 2‘2‘ &n

and = 0 otherwise.
Like matrices C and D, matrix Cis also a five-diagonal band matrix
i i - 1 N
of order n but it is non-symmetric because Cn-l,n Cn,n-l'
If we are looking for the particular solution of the differential
equation (10), expressing stationary vibration, in a form

y (t) =a sin cut + b cos Wt (o

then, substituting it into the equation (10), we will obtain the system of
linear algebraic equations of order 2n

(12)
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Solution of this system of equations is vector

a(u>;d)
v(u>;d) = (13)
b(u>;d)
occurring in the integral (2), that is v: X R -—"=a R2n.

The j-th element of vector function (11),
y* =a* sin uut + bj cos uit

describes the vibration of the j-th bar element end point with amplitude

2 bf*. Hence the j-th and (n+j)-th element of solution v(u>;d) of
equation (12) mean components a* and b* of this amplitude.
The elements of vector
a(u>)
tf(w) = (14)
b(w)

are values specified for the corresponding elements of vector v(u>;d).

The measured values of the stationary solution i.e. the elements of
the vector (14) were simulated as follows: The stationary solution of
system v(uj ;d°) i.e. the values of amplitude-components a”*(n>), b”(00),
i =1I,...,n in points wn, w1, _, €>.. were computed with given
damping coefficients d0 = %éop...,ﬁﬂ) and thenAsubjected to small pertur-
bations according to formula

V fA) = (@ + 10k oC?) vi(Wj;d°), i =1, ,2n;
] =0,...,N,
where e [~-I,lj are pseudorandom numbers generated according to normal

distribution and k is a negative integer expressing the "magnitude" of
perturbation.

With these simulated amplitude-components used as input data, the
corresponding damping coefficients, df = (dK‘,_,dHS, were calculated again
using the minimization method, recommended.
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Sensitivity of the identification process i.e. variation of the norm
of error d* - d0 as a function of kK is shown in Fig. 3.

Fifl- 3.

The disturbing forces and the follower force have been specified.
Substituting (13) and (14) into (4), we obtain a function

f:R-—* Rm m=2nN+1) |,

and identification of the damping coefficients has been reduced to minimiz-
ation of the elliptic norm (7) of f.
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4. Minimization method

To minimize the elliptic norm of function Rn—> Rn m- n, a
numerically very efficient non-derivative method suggested in /1 has been
used. A variant of the Gauss-secant method has been combined with singular
value decomposition of matrices.

A comparison of the secant method with a few non-derivative minimiz-
ation methods shows that, as compared with any other method included in the
comparison, the secant method needs much less functional values to be cal-
culated for production of the minimizing vector to the sare accuracy in
case of the test functions used, the difference being an order of magnitude.

Each step of the Gauss-secant iteration includes the solution of a
system of linear equations of number n. In the vicinity of minimizer d* of
functional (7), the linear independence of the columns of their matrices is
gradually reducing, resulting in instability of the method.

This instability can be avoided by decomposition of the matrices into
singular values as a method to solve the mentioned system of linear equa-
tions. In this way, the coefficient matrix of rank r and of spectral con-
dition number 67/ <&" is deflated to a matrix of spectral condition number
d O where 0" and 6 R are the largest and the smallest singular value,
respectively, while 6r is the smallest positive singular value.

This procedure is functionable until the coefficient matrix becomes
equal to zero matrix. However, a zero matrix means that the solution has
been obtained.

For details see /1/.

5. Conclusions

The results of numerical computation shown in Fig. 4 and 5 can be
summarized as follows: In case of conservative load, a small change in the
amplitude-elements results in small changes in the damping coefficients
(see Fig. 4). This result applies also to small values of the follower
force but above a certain value, the conditions of the problem are gradually
destroyed (see Fig. 5). This limit of the follower force depends on the
actual frequency range.

In case of simulation of the measured values without perturbations,
the damping coefficients assumed can be accurately identified. Mathemati-
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cally this corresponds to the special case when the minimum value of
functional (7) is equal to zero.
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THE GENERAL STATE CHANGE EQUATION OF BAR STRUCTURES
ROLLER, B.*
(Received: 10 January 1990)

The role of time in the general analysis of the state change of bar structures
is considered. The concept of influence arrays and some new variants of the super-
position integral for linear elastoviscous materials are introduced. These new
variants can be used to describe any sort of loading distribution. A sample problem
is shown based on the 2nd principle of Colonetti. The state change integral transfor-
mation can be used in the matrix integral equation of trusses published formerly by
the author.

1. Introduction

The state change equation of the 1st order theory of bar structures
provides a concise synthesis of the classical theory of structures /19/ and
contains the following assumptions: the structure is completely linear
elastic; displacements in loading are infinitesimally small compared with
the size of the structure; the equilibrium condition for the initial shape
of the structure assumes no loading.

In the case of loads of unlimited measure that create small defor-
mation, the state equation may be solved by conventional computation
methods. The computational results confirm the required assumptions about
the displacements and the constitutive equations. In fact, this method
doesn't require a real state change analysis. By omitting the assumption of
complete elasticity and, instead, introducing either elastoplastic /8/ or
elastoviscous /2/ materials, a kind of state change analysis can be devel-
oped. In the treatment of elastoplastic materials, the concept of time has
no role in the analysis, but the quality of the material (and consequently
the state of the structure) changes.

Elastoviscous materials introduce a time element into the analysis
and change the quality and state of the structure as well.

The introduction of plasticity makes the original linear problem non-
linear. The introduction of viscosity, on the other hand, results in either

"Roller, Béla, H-1027 Budapest, Martirok Gtja 54, Hungary

Akadémiai Kiad6, Budapest
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a linear or non-linear problem depending the form of the constitutive law
/1/. Amplification of the basic equations can be performed in both direc-
tions. The first direction results in a problem that requires mathematical
programming for a computer solution /28/. The second direction, considered
by the author, can be solved by a linear matrix integral equation /17/.
Proper mathemathical tools of the solution can be found in /3/.

Structures with conditional constraints /10/, /12/ also undergo a
kind of state change. Linearity ceases in case of structures containing
joints caulking or locking during the loading process /9/, /13/.

Each of the previously mentioned references deals only with linear
geometry. This supposition is unacceptable in the analysis of cabel nets.
Hungarian researchers are active in the analysis of large displacements of
suspended roofs over a long period of time /21/; thus, a 1st order analysis
is unacceptable.

With fully linear elastic materials, the shape of the structure alters
as a consequence of the loading process. Secondary shape effects in the
equilibrium equations result in a kind of altering state even in case of
small displacements. The analysis of this altering state is known as the
2nd order theory of the state equations. This theory treats the altering
state as a hypermatrix equation and contains a matrix]] that registers the
effects of the geometry in the equilibrium equations. Thus, displacements
are involved in the equations.

An exact analysis of the altering state can be performed only by
making use of a 3rd order theory that takes into account large displace-
ments as well /22/, /25/. The 3rd order theory considers the equations of
the 2nd order theory plus a hypervector of generalized forces. This hyper-
vector contains the displacements and the generalized stresses as differ-
entials. The concept is based upon an initial value problem belonging to
an initial state that provides an equilibrium path. The resulting equations
are published in /22/ and the numerical treatment of the equilibrium path
is detailed in /4/. The 3rd order theory has been used in stability analy-
sis /5/ and in the field of post-critical behavior /20/. The eigenvalue
problem contained in /23/ has been generalized to the case of an eigen-
value problem with several parameters /18/. Mathematical solution tools are
available in /15/.

An obvious extension of the state equation /19/ dealing with struc-
tural dynamics /7/ should be mentioned here. Processes of vibration can be
analysed by a classic method which is numerically well treated. This treat-
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ment can include viscous and hysteretical effects. Making use of a geo-
metrical stiffness matrix to be found in /18/, a geometrical stiffness
matrix dependent on frequency has been developed that includes the effects
of shear stress and is suitable for the vibration analysis of bar struc-
tures /6/. Plates, folded shells, box girders, etc., can be constructed
analytically by using the concept of bar structures having a pattern of
stripes that meke up the more complicated structures. Sore analytical com
plications are introduced that are not present in simple bar structures
but - on the other hand - the degrees of freedom are reduced. Problems due
to inhomogeneous boundary conditions have been mastered and efficient
methods of calculating continuous beams, boxes and curved bridges have been
compiled. Thus, many detailed problems in bridgebuilding construction have
been solved /26/, /27/. The reference publications take into account in-
itial strains that are most important in the analysis of bridges and other
structures.

In summary, the aforementioned papers provide a basis for develop-
ment of a quite general altering state equation of bar structures that con-
siders large displacements, branches of the equilibrium path, any kind of
constitutive law, general materials of rheonomic behavior with the con-
nection between structural joints and the loading distribution as a func-
tion of time for the real parameter of the state change being time itself.
This problem remains to be treated by scientists.

2. Influence arrays

The loading effects of a bar can be included in the theory of struc-
tures most simply as a quantity depending on two independent variables. If
the quantity changes continuously, we will deal with an influence or
loading function. If changes occur in a discrete manner, an influence
matrix maey be used (influence lines and influence surfaces are not con-
sidered) .

An influence function can be generalized as follows. Let C be a
function of eight independent variables. Considering continua, we have

C=C(xy,z,t; £ ,M,C,T) (1)

where Xx,y,z characterize a selected point of the continuum analyzed at the
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moment t. C,ij , £ define (generally) another point of the continuum in-
fluenced by e.g. an impulsive force at the moment T at.

C is denoted as the Generalized Influence Function. In case of bar
structures, the influence maey be analyzed for each bar

C=Cuy (x,t, C.T) i,j e (1,2....r)
(2
xe(0,Li) 8§«(0,Lj) te(o,i) Tate(o.T)

T ==$ o0, but we can consider just a set of data containing finite number
of elements.

(Instead of the usual concentrated forces, we neke use of a unit
impulse or stationary load.)

We ney discretize the four continuous variables and denote the
adequate values interpreted in a local frame as

o= Li *k =

n + 1 = number of intervals on L?, O/p = relative time interval.
Influence C may now be represented by an array of four dimensions:

°=S, i ®
This array is defined as an influence array.

Since each bar of a structure maey be divided into several parts con-
taining a different cross-section each and a different load may act upon
each part, we can form more arrays of type (3) for the same structure.
Other definitions differing from (3) may be presented as well - for in-
stance, by enumerating nodes rather than bars.

As an example, consider the bar structure of Fig. 1. Part a) of the
figure shows the arrangement and the load of the structure. Part b) shows
a movable unit load chosen as an impulse. Next to the loading profile
shown by graph r(t), the time dependence function of the output resulting
from an input Oirac-delta impulse load /11/ is presented. Part c) has a
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Fig. 1.

similar content showing the results from a stationary load. Note the
ordinates of the function Bars are divided in K = 10 parts. The
figure illustrates the physical meaning of element C/5,7,3,4/ of the influ-
ence array; e.g., the influence from a twisting moment at cross-section

= O.SL* due to a force acting upon cross-section 82 = 0-312* Force
P(t) is variable in time. Awy t time interval nmay be selected by the

analyst. The impulse is described by Dirac distribution defined by
0]
tTAt 4(t-T) =0 J S(t--r) dr =1 (4)
-00
(see /111/).

The process function describing a permanent load is the Heaviside
function:

0>t A(t-r) =0 0St A(t-nr) =1 (5)
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The computational method used in obtaining the elements contained in
the influence array depends on certain circumstances of the loading that is
on whether the space and time depending part of the altering state are
separate or not; and on the choice of the constitutive law. Referring to a
truss on three supports mede of homogeneous material and selecting a quite
simple example of a linear elastic time invariant material, we obtain a
problem which is separable. Consider, also, a stationary load and make use
of the "Second Particular Correspondency Principle” due to Colonetti /14/.
Using Young's modulus as E = IN aon L and instants t =X = 0, the influence
array can be determined so as to compile the influence matrix (e.g., that
of the stress elements). The elements of this matrix shall be multiplied
by the values of the creep-function calculated at appropriate periods
1141.%

3. Several variants of the creep and relaxation integral

The behavior of linear elastoviscous time invariant materials, which
are consequently in a uniaxial state of stress, is described by the super-
position integral of Boltzmann and Volterra /2/. \W demonstrate the use of
this formula in the case described in Fig. 2. The loading distribution
r(t), is at least piece-wise continuous. The response function, H(t), re-
sulting from the input Heaviside function @ (t), is the beginning of the
deduction. Making use of this, horizontal strips on r(t) are performed. The
results can be written as:

(6)
0
In the case of creep, we have
t
Re(t) =r(t)J(0) ()
0
In the case of relaxation, we have
t

*/14/ refers to the last two sentences of the introduction as well.
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where J(t) is the creep compliance function and Y (t) is the stress relax-
ation function. Furthermore, kc = Ic(t) are the creep kernel and relaxation
kernel respectively. The first part of (B) is an instantaneous response,
the second part is the after-effect.
An alternate form of (6) rmey be derived by making use of integration
by parts. Let t
r(t) =s(t), thus s(t) =£ r(T) dr

then t t J
f r(T) H(t-r) dr =s(X)H(t-t)J - J s(r) d* ~T) dr
0 0 o0

the first term is s(t) H(0) - s(0) H(t), while the second is
t
J s(t ) H(t-T ) dr
0
where ( )' denotes a derivative with respect to (t- T ), furthermore
t t
f s(r)y Ht-r) dr =J H@E s(t-r) dr
0 0
The integral on the left side is a convolution. Also

5(0) :JO r(r) dr =o
0

holds, thus
0
R(t) =r(t) HO) +s(t) HO) +J H(t) s(t-Tr) dr ©
t
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Instantaneous effects are represented by two members of this formula.
Repeating this algorithm, we get

R(t) =r(t) H@O) + s(t) H@O) + u(t) HO) + J H(t) u(t-'r) d (10)
0

7

where s(t) = u(t). lhus

u(t):js(t)dr and u(0) =0 .
0
Besides

s(T) :gjro‘])drl

where r'l is an intrinsic variable. lhus

u(t) = j s(te) d-f :J j rCTT1) d t1 dt

0 00
Making use of notations

t ot
a) ‘(t)h‘(O)-ﬂ\/] o rirH Id . L .d.V .i!»
00

b) T. denotes the i-th intrinsic variable

) ' v(t) :j j o d r[r(hZS dT(n“2)...d’Cldr

0 0 0
we obtain finally
n t
R(t) = ri(t) H(0) + j" Hn+1)(t)v(t-T )dT (11)
i=0 0

Ihe instantaneous load effect is shown in (11) by a sum while the
aftereffect is shown by a multiple integral. With (11) we can determine the
response (8) choosing an arbitrary n, being selected from the point of view
of the computing machinery used for the computations.

Formula (6) is applied in the general form by systems theory. Visco-
elasticity also makes use of (6); but with respect to Fig. 2, we know
either the creep function (which is the strain due 'to unit stationary
stress) or the stress relaxation (the stress due to unit stationary strain).
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Both main characteristics of the material were determined in such a
way that the base of the constitutive law had been stated via spring and
piston models (Maxwell, Kelvin-Voigt, Poynting-Thomson, Burgers, etc.) and
afterwards the differential equation of the model was integrated. Results
were compared by experiments. The selected system of springs and pistons
were used for calculations and compared to experimental results for slow
deformation.

In the field of Civil Engineering, material tests are most suitably
(or easily) mede by applying a stationary dead load or a stationary initial
strain. In electrical engineering, we can readily produce impulse loads of
circuits by use of a momentary short circuit and such loads are frequently
used for testing. It can be shown that (6) is valid for test functions like
impulse as well, by starting the analysis with an integral concept of
Lebesgue rather than that of Riemann. Considering the development of lab-
oratory techniques, it is quite probable that Civil Engineering will change
over to impulse loading or impulsive initial strain in the future. Thus
time consuming tests wiill be replaced by more efficient and thrifty methods.

Formula (6) is called Boltzmann-Volterra superposition principle
(integral) in Civil Engineering and Duhamel integral in Electrical Engineer-
ing. These equations can be derived from a stationary load (input) in such
a manner that the conventional integral concept of Riemann can be used.
Consider Fig. 3 input b) is the superposition of inputs ¢) and d). Let the
response of  (t) be H(t).

rit) b,

r(t,)

r(t) d.
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The response of input c) is

F(t)H (6-0)-r(t)H (t-ti)

while that of input d) is

Cr(ti H(t-0) + r(ti)H (t-ti 1)

The response of input b) is

ARa = rCt* [H(t-ti 1) - Kt-tp] (12)

Sunming up the effects of n inputs gives
n n
S > V- E r(ti) [H(t-ti_1) - H(t-ti) (13)
1=1 i=I

Interpretation of the expression after the summation symbol is shown
by the example sketched in Fig. 4 where i =5 and n = 8. After a limiting
process and some transformations well known from /2/, we obtain equation
(6) once again.

Formula (13) can be evaluated by numerical integration. The inte-
gration step is not necessarily unique and integrability does not presume
continuity; i.e., the loading distribution may contain practically any kind
of function or distribution. Thus, impulse loads can be approximated as
well.

The superposition integral can also be approximated by using a step
function as a test function. This function is defined by

t t > ti Vit-tp =0, else VO:-*) =1
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r(b)i

an

Fia- s.

Suppose that a material in an axial state of stress has a response
due to a step function as shown in Fig. 5. It is shown by experiment that
this response is time invariant. So (Fig. 6)

M (£)=M (t,0)=M (t-0) and M (t,ti_1)= M(t-ti_1)

By definition input r(t) V(t) has a response r(t)M(t) and input
r~tn o (t-tnj) is followed by r(ti)M(t-ti_1). Thus, any loading pattern
can be approximated by a staircase of step loads as shown in Fig. 7a. A
part of the input induces the response 1C = r(t")M (t-tp and the sum of
the inputs has an output

n n

. A=
AT i=1
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Fig. 8.
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If the physical meaning of the relationships is concordant, (13)
and (14) represent the same result. The latter is suitable for computations
but more cumbersome to obtain laboratory results. Nevertheless it is pos-
sible to obtain procedures controlling each other.

In case of a quite general loading distribution, numerical inte-
gration can be performed (Fig. 7). The effect of loading distribution of
Fig. 7 may be obtained by superposition of loads given by 7b and 7c.

Similar ideas may be used in foundation engineering where tests are
mede on sample soils and where the load may vary seriously; e.g., a con-
tainment foundation.

4. A sample problem

A test problem has been solved by analytical and numerical methods.
A simpler variant of the problem is contained in /2/. The analytical method
of solution resulted in definite integrals discussed in /11/. The load of
a simply supported beam is g(x,t) = g.r(t) /see Fig. 8/. The constitutive
law of the material is that of Kelvin-Voigt, the creep compliance function
is given by

The loading distribution contains three linear parts:
0 <t<tl r(t) =t/tx
th< t £ t2 r(t) =1
t2« ti tj r(t) = 3-t/t1

else r(t) =0
The deflection function is

v(x,t) =v(x) tpc(t)

with 4
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1
R & Bt lente Ui [LU, ti= 1[cad
Furttion valLes at points =t (S, 1,15.225,335)

Fig, 9.
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1statl»d« )" -~ (™~ -~[1 - exp(-9)]}

y ~ ~-t24 "YcLV + il' exp[~'""t'V I}

t2< t £tj <cl(l) has to be transposed.
The deflection function, ”>c(t), has been calculated for several

numerical cases. Some results are presented in Fig. 9, 10 and 11, the cal-
culations were checked with formula (13).

o g b~ WN
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ATTRACTIONS AND RISKS OF THE ANALOGIES
SCHARLE, P.*

(Received: 27 December 1989)

Analogous formulations taken from geodesy and mechanics mey prove to be fruitful
in developing, interpreting, even extending the well-known models. A detailed verifi-
cation of the analogies, however, irey lead to auxiliary conditions or limitations even
in the conventional cases.

Introduction

Theories are not developing in the different fields of science
simultaneously. Matching of the physical ideas, mathematical principles
and analytical techniques or delay in the possible discoveries depend on
the level of information, trends of mode, authority of the scientific
schools, etc. Therefore, acomparative analysis of the scientific fields may
result in very interesting lessons.

The mathematical ideas and tools, applied in physical sciences are
cormon. W are using the same concepts and procedures to describe and
formulate the most different problems. Even the geometry itself may be
interpreted as a branch of physical sciences, and from the Noether-theorem
it follows that the "conservation principles"” are nothing but different
interpretations of the same mathematical thesis. Therefore,

- one can establish analogies between different physical phenomena
or processes, and may chose the same mathematical model to describe them -
then the deeper understanding of the analogy inspires elaboration of less
developed theories;

- identical mathematical models may be chosen by chance or deliber-
ately, aware of their power to solve different physical problems not neces-
sarily knom to be analogous - in this case, the range of validity of the
models shall be investigated and real analogies can be either discovered or
rejected. Both aspects mentioned ney be illustrated by analogies (either
true or false) in relation to the concept of entropy. Starting from the

"Scharle, Péter, H-1112 Budapest, Meredek u. 60, Hungary

Akadémiai Kiadd, Budapest
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phenomenological theory of heat, the entropy differential can be postulated
as

(1

where &Q stands for the increment of heat and T denotes the temperature.
Analogous concepts of geotechnical entropy (Moroto, 1976), economic entropy
(Szabo, 1981, Brédy et al., 1986) etc. were defined then. Many interesting
results have been obtained in this way. Nevertheless, the interpretation of
dual intensive fields (corresponding to temperature) and that of the maxi-
mum entropy principle have remained ambiguous, even impossible in  most
cases and, as a rule, these analogies seem to be vulnerable. On the other
side, starting with the entropy as it is defined in mathematical statistics,

(2)
(1
different entropies can be defined (even within the framework of the same
particular theory) without conflicting with duality problems (Brown, 1978,
Lérincz, 1986). However, in these cases the phenomena involved differ from
the classic interaction problems, and no field theories have been posed
(Scharle, 1989).

Closer and more fruitful analogies had been established in cases,
where the ideas were connected with powerful, widely used mathematical con-
cepts, theses and proofs relating to quadratic forms. The mathematical
theory of quadratic surfaces, the Legendre-transformation, the classic
interpretations and applications elaborated in the mechanical problems
offer an appropriate basis for constructive analogies. Nevertheless, even
in these cases, one has to be cautious in establishing correspondences. An
interesting example presented in the next section shows that the most con-
vincing analogies may have weak points and this shall be taken into account
when we wish to exploit them.

Analogous extremum principles in geodesy and mechanics

The mechanical models - particularly the classic ones formulated many
decades ago - serve as a good basis for establishing analogies. We could
refer to the well known correspondence between the Kirchhoff-theory of
electric networks and the theory of bar structures. However, passing by
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this precisely elaborated example we shall draw the attention to a recent
development, connecting some problems of geodesy and mechanics.

Starting with mechanical description, we assume that the reader is
familiar with the theory of bar structures as it wes formulated some two
decades ago in the simple form of

o wa u q Y
+ = (3)
F .0. .0.

(Szabd, Roller, 1971), comprising both equilibrium and compatibility equa-
tions. The classic variational principles (formulated as the extrema of the
potential and complementary energies) were derived as well (Roller, Szent-
ivanyi, 1974), and a more general stationarity condition of the Hellinger-
Reissner functional, derived in the form of

-1 sTFs - qTu-rT (u-v) - sT Qu = extr! 4)

proved to be equivalent to (3)* (Scharle, Szab6, 1974).

Turning to geodetic description and following a recent paper of
Moritz (1988) we shall start with the most common procedure of "adjustment
by parameters". Comprising the unknown scalar parameters (distances or
angles, for example) in the vector x, design matrix A which informs about
the arrangement and combination of the parameters shall be set up. Instead
of direct determination, the transformed data of Ax can be observed. In
general, number n of the measured quantities exceeds number m of the un-
knoamn parameters (therefore, the column vectors of A set out the m-dimen-
sional subspace of the n-dimensional vector space - Fig. 1). The obser-
vation equations are given then in the form of

1+v=A )

*In the equations of (3) and (4) the following notations were used
u - vector of the unknown nodal displacements
V - vector of the prescribed nodal displacements
s - vector of the unknown nodal forces
g - vector of the given active nodal forces
r - vector of the unknovn reaction forces
G - matrix of the geometric data
F - matrix of the flexibility coefficients
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where 1 denotes the measured data and v stands for the unknown corrections.
Because the reliability of the measurements may differ from each other, it
is natural to prescribe.the condition

i vl Pv = min! (6)

for the vector v. Here P denotes the weight matrix, not necessarily iden-

tical with the unit matrix | = e This is well-known least squares
principle.

In the dual approach one can consider the linear equations relating
the corrected observations

BT +v) =0 (7)

(we assume that no additive constants occur in these equations). Because
the number r of these equations is determined as r = n-m, the column vec-
tors of Bcan be identified as the base vectors of r-dimensional space Zr,
orthogonal to subspace £2 in the n-dimensional space, in the sense of
B" =0 (Fig. 1). The unknown vector of 'corrections can be expressed now as

= QX ®)

where k stands for another set of r parameters (complementary to x) and
Q = P denotes the covariance matrix. Using notation w= B”"l for the "re-
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siduals" we obtain the normal equation from (7) as

BIGBK +w=0 . (9)

The adjoint extremum principle can be obtained (using Kk as a vector
of the Lagrangian multipliers) from (6) and (7) in the form of

y kM BT QB + kM w = extr! (20)

Starting with these preliminaries Moritz shows that, by defining the
distance between two points in the n-dimensional space (Fig. 2) by

d(p,q) =dT Ad (11)

the adjoint formulations (6) and (10) can be obtained as
i(Ax - )T P (Ax - 1) = extr! (12a)
and

m<l + QBKT P (1 + QBK) = extr!, respectively. (12b)

According to the well-known projection theorem, the orthogonality
condition can be obtained as

ATP(AX - 1) =0 . (13)

This means that the column vectors of A are normal to vector v in the
sense of the inner product weighted by the metric matrix P.
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Extensions and remarks

Note that the more general variational principles (referred to in
continuum mechanics as the Hellinger-Reissner and the Hu-Washizu principles)
can be easily interpreted in the Moritz-presentation. Consider vector
Ax-l-QBk as shown in Fig. 1. The bilinear form of

y(Ax - 1- QBKT P(Ax - 1- QBK (14)

can be resolved and simplified. In this way we obtain the generalized ex-
tremum principle

i(x TATPAX + KTBTQBK) - | TPTAX - | TBk = extr! (12¢c)

which corresponds to the Hu-Washizu principle and can be considered as a
slight generalization oi the Hellinger-Reissner principle. The stationarity
conditions with respect to x and k are equations (13) and (9), respec-
tively. Note that metric matrix P can be interpreted as an analogy to the
constitutive matrices occurring in the mechanical models.

These coincidences could be considered as another argument for the
perfect analogy between the mechanical and geodetical treatment. Neverthe-
less, this correspondence can be accepted with a delicate distinction only.
In the mechanical models, namely, the extremum conditions can be formulated
as error principles in an energy space defined with a single metric of a
unique bilinear form (Scharle, 1976). In the geodetic models presented by
Moritz, two different metrics are used simultaneously:

a) the orthogtonality of the subspaces P and Zr is established
with unit matrix I,

BTA=0 and AB=0 ;

b) the distances between the points of space LJ Er are measured
with weighted metric matrix P.

We would not say that either of these metrics should be abandoned or
could be eliminated. Even the difference disappears in the trivial case of
P = 1. Further analyses may clear up other interesting lessons, too. Never-
theless, this example shows that discovering and exploiting an analogy nay
have attractions and risky points, as well.
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HIGHER-ORDER INFINITESIMAL MECHANISMS
TARNAI, T.*
(Received: 28 December 1989)

In this paper importance of the term “"higher-order infinitesimal mechanism" is
explained and different definitions of it are surveyed. Difficulties in the determi-
nation of the order of infinitesimal mechanisms are pointed out and it is shown how
to overcome them. To help the understanding examples are also presented.

1. Introduction

In a paper on structural rigidity, among others the following two
guestions have been listed by Tarnai (1980) for future research:

(A) What criterion determines whether self-stress stiffens an assembly
which is both statically and kinematically indeterminate?

(B) How can matrix methods be used to decide whether kinematical in-
determinacy takes the form of an infinitesimal or a finite mechanism?

Koiter (1984) in his note on a preliminary version of the paper by
Pellegrino and Calladine (1986) dealing with these two questions pointed
out that a distinction only between infinitesimal and finite mechanisms is
inadequate to deal with all possible cases of both statically and kinemati-
cally indeterminate structures; and since the second question cannot be
answered directly, he suggested replacing it by the following question:

(B*) How can matrix methods be used to decide whether kinematical
indeterminacy takes the form of an infinitesimal mechanism of the first
order or of a higher order?

In both questions (A) and (B*) and also in their answers the term
"higher-order infinitesimal mechanism" plays a crucial role.

The aim of this paper is to show the different approaches in defining
infinitesimal mechanisms of higher order and to call attention to the
special importance of higher-order infinitesimal mechanisms in the answer
to question (A) given by Pellegrino and Calladine (1986) and generalized by
Kuznetsov (1988).

K
Tarnai, Tibor, H-1037 Budapest, Kolostor u. 17, Hungary

Akadémiai Kiadd, Budapest
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2. The notion of higher-order infinitesimal mechanism

2.1 Koiter's definition

Koiter(1984) has introduced a classification of infinitesimal mech-
anisms, which makes possible a nore correct treatment of both statically
and kinematically indeterminate structures. This classification consists of
infinitesimal mechanisms of the first order (identical to infinitesimal
mechanisms in the linear theory of structures) and infinitesimal mechanisms
of the second and higher orders. Finite mechanisms are called of infinite
order, and they are considered as exceptions.

Koiter (1984) has defined "an infinitesimal mechanism of the first
order by its property that any infinitesimal displacement of the mechanism
is accompanied by second order elongations of at least sone of the bars. An
infinitesimal mechanism is called of second (or higher) order, if there
exists an infinitesimal motion such that no bar undergoes an elongation of
lower than the third (or higher) order".

Tarnai (1984a) has tried to formulate Koiter's definition mathema-
tically in the following way. Consider a bar-and-joint assembly which con-
tains b bars and consider a system of infinitesimal displacements of the
joints. Let us denote an infinitesimal displacement component of a charac-
teristic joint by O arid the elongation of the bar k due to & by ek> Produce
the power-series expansion of in b:

ek = Sfk» + a2kb +ajk”™ +... k - 1,2,...,b) . 1)
The structure is called infinitesimal mechanism if there exists a

system of infinitesimal displacements of joints such that in (1) a*k =0
for k =1,2,...,b.

Definition_I_ (Tarnai, 1984a): An infinitesimal mechanism is of order
n (n - 1) if there exists a system of infinitesimal displacements of joints
such that in (1) ay. = a*. - ... =an, =0 for Kk =1,2...... b, but there

exists no system of infinitesimal displacements of joints such that in (1)
2ol ks 0 for k = 1,2,...b,, that is, there exists at least one bar m_m

g IV .-vib} , such that an+l
A structure is an infinitesimal mechanism of infinite order if there

exists a system of infinitesimal displacements of joints such that in (1)
a’k =0fori =1,2,  andk =1,2,...,b.
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Finite mechanism may be defined as a structure in which there exists
a finite motion such that the elongation of every bar is zero.

Since every finite mechanism locally is an infinitesimal mechanism,
it follows from the above definitions that every finite mechanism neces-
sarily is an infinitesimal mechanism of infinite order. Its reverse, how
ever, in general, is not valid.

Consider an infinitesimal mechanism with elongation in the bars:

1

(k =1,2....b) (2)

where e on the right-hand side is the base of the natural logarithms and
& (k =1,2,...,b) are constants. Forming its power-series expansion ina
(at point 520) we obtain a* =0 for i =1,2,... adk =1,2,...,b. The
structure with bar elongation (2) is an infinitesimal mechanism of infinite
order, but is not a finite mechanism since if 8t 0 then et O.

Thus, we suggest making a distinction between infinitesimal mechan-
isms of infinite order and finite mechanisms.

So we have two classes of mechanisms: (@) infinitesimal and (b)
finite mechanisms. And class (a) contains subclasses of infinitesimal
mechanisms of the first, second, third, __, infinite order.

Example 1 (Tarnai, 1984b). We show a simple example of both stati-
cally and kinematically indeterminate structures in which the kinematic in-
determinacy can take the form of an infinitesimal mechanism of arbitrary
order and also a finite mechanism. The structure in Fig. 1 consists only of
one bar whose lower end is fixed against translations but free to rotate
and upper end can slide in arigid-walled plane slot. Let us apply a polar
coordinate system r, (Fig. 2).

F ifirU
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Fig. 2.

Let the equation of the slot curve be

1

?2
r R+Q'fml +Q@ ®)
where C* and @ are constants and n is an integer. If C*”~ 0 and n = 0 then
the structure is not an infinitesimal mechanism at \)=0. If N0 and

n = 1 then the structure is an infinitesimal mechanism of the n-th order
at tp=0. If C =0 and Qi 0 then the structure is an infinitesimal
mechanism of infinite order at =0. If G = Q@ = 0 then the structure
is a finite mechanism.

2.2 Connelly's definition

In mathematics the term nth-order infinitesimal mechanism is not
known but nth-order flex is knoan instead, and it means practically the
same.

Connelly (1980) has defined nth-order flex in the following way. Let

, P2, ..., p* be j points in the 3-space. Let E be a collection of b un-
ordered pairs of these points. W call E the bars and p = (pp...,p") the
joints of a framework F. A bar is denoted by the indices of the two joints
connected by the bar: £i , mJ. W say a flex of a framework F is a con-
tinuous path for 0 =t =1, p(t) = (p”(t),...,Pj(t)) such that the length
of any bar |p~(t) - pm(t) | ,{I, mj&E, is constant in t, and p(0) = p.
Consider a vector R of b elements: R(p,q) =(— , (p| - P . (@€ - gm,

..), where p=(pp-...,Pj), 9=(9”,...,q") and the dot denotes the scalar
product.

Definj.yon_2_ (Connelly, 1980): An nth-order flex of a vector p of
a framework is a sequence of n vectors, p', p",__,p"n" such that

Y('rAF(P(i>» Rh_ ) =0 @=1,2,..."n - (4)
Eo
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These are derivatives of R(p,p) = constant n times, where p = p(t) is
regarded as a function of the parameter t and p » is the ~th derivative
of p(t).

Let us suppose that joints | and mare joined by bar k. So, Jp~(t) -
- Pr(t) J= ty + e" where ly is the length of bar k in rest position and
eM is its elongation. In (4), in fact, derivatives of (p» - pf)2 =
=(ly +e”)2 are formed. It is easy to show that

ly + ek)2 | =0 (i =1,2,...,n)
| t=0
if and only if

t=0
If t =& then the derivatives ek”(0) multiplied by (i!) ~ are the
coefficients a™k in MaclLaurin's series of e®, so we have arrived at Tarnai's
(1984a) formulation of Koiter's definition. Thus, it seems that Definitions
1 and 2 are equivalent, but these definitions seem to characterize the
motion rather than the assembly.

2.3 Gaspar's definition

Géaspar (1989) pointed out that neither Definition 1 nor 2 stresses
that the maximum of the first non-vanishing coefficients in (1) should be
considered for all the possible systems of displacements of joints such
that at least one displacement component is a linear function of S, but
this is an immanent feature of Koiter's definition.

Géspar suggested an improvement of Definition 1 (and 2) and suggested
defining the order of an infinitesimal mechanism in the following way. Con
sider a system of infinitesimal displacements of joints of the mechanism
and consider the elongations of bars as functions of a displacement com
ponent of one of the joints. Consider the lowest order elongation in each
bar, and take the minimum of these lowest orders decreased by one. Then
produce systems of infinitesimal displacements of joints in all the pos-
sible ways and take the maximum of these minima as the order of the in-
finitesimal mechanism.

Tarnai (1989) has formulated Géspar's definition mathematically in
the following way.
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Consider a bar-and-joint assembly, constituting and infinitesimal
mechanism, in which b bars elongate and j joints translate when the in-
finitesimal mechanism is excited. Let one of the components of the dis-
placement vector of the joint characterizing the infinitesimal mechanism be
denoted by é . Consider S as a scalar parameter of the system of motions,
so displacement vector of every joint is a function of b, that is, the
displacement vector 8£ of the £th joint is

h = > ie(i,2,...,j}
but we can define such a function arbitrarily in several ways:
(5)

where [ is a set of subscripts of all the possible functions. Let joints
| and mbe connected by bar k, then the elongation e of bar k is a func-
tion of displacement vectors and 57 of the joints mand | :

ek f = ekl } o

However, because of (5), e™. is a function of b, and we can pro-
duce its MaclLaurin's series expansion at point zero:
00
(6)
1=1

M Lnli€ n i (Tarnai, 1989): An assembly is an nth-order infini-
tesimal mechanism if for the coefficients a”~ ”~ in (6)

T mn akri=okU = e = akfh=0  akT(h#) * °f
(77

KE (1,2,...,bj , y6T

If there is a bar k which does not elongate, that is, e®£ =0 and so
aKTf.l =0 for i =1,2,... then, for that k, h should be considered infinite.

To illustrate this definition we present the following Example 2.
Let the length of all the bars in Fig. 3 be equal to the unity. Here x is
the horizontal displacement of joint A, 2y is the vertical displacement of

joint B. Because of symmetry we consider the elongations of bars 1 and 2 to
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B

Ha-.3
equal (they are denoted by e”), and the elongations of bars 3 and 4 to
equal (they are denoted by e"):

88

= N1 -y)2+x2 - 1=7 (&Y +y2+x2) -i (=y+y +x2)2 + ...
e3="1 + (2y)2 - 1 =2y2 - 2y4 + ...

(It should be noted that if generalizing the deformation we would break the
symmetry, e.g. e* * e, than the first non-vanishing coefficient in (6)
could increase for one of the bars but would decrease for the other, final-
ly the minimum of them would decrease. But the aim is to increase the mini-
num as much as possible.)

If y =0 then en
» mnh=1
e3=0
If y = then el=7 j2x + (C2 + Nx2A - ...

e3 = 2(‘,2x2 -

I
o

r mnh

If y=0C2 then el =j £(-2C + )x2 + @2x4J -

e3:2C2x4-

» mn h

1
'_\

in particular, C:jl el =%
> min h=3 ,

e3 =
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>mn h =1

*min h =3

min h = 3,

In general, if we want to eliminate the second-order term in e, it is
necessary that y contains the term x2/2. In this case, however, eﬁ w ill
always contain a fourth-order term. Thus, the minimum exponent will never
exceed 4. Consequently

n =max(mn h) =3

that is, the assembly in Fig. 3 is a third-order infinitesimal mechanism.
It is interesting to mention that practically the same assembly was pub-
lished by Connelly (1980) and Kuznetsov (1988), and those authors said the
assembly to be a second-order infinitesimal mechanism. However, we believe
that our result here obtained by Definition 3 is correct.

The method applied here seens to be awfully laborious. However, this
is only for the sake of illustrating the concept of the definition, that
is, producing a set of minima and taking its maximum. In fact, the pro-
cedure can be mede systematic and simple.
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1

Example 3. In a similar way, it can be shomn that the assembly in
Fig. 4 is a 7th-order infinitesimal mechanism. In the general case, where
the assembly is composed of M three-hinged arches (Fig. 5), it is a 2”-Ist-
order infinitesimal mechanism. If M —> 00 we obtain an infinitesimal
mechanism of infinite order.

Sore other examples of higher-order infinitesimal mechanisms can be
seen in (Pellegrino, 1986).

3. Difficulties in the determination of the order of an

infinitesimal mechanism

Connelly (1989) has called attention to problems which the different
definitions, especially Definition 3, can have.

(@) Parametrization of a system of displacements of joints
portant but difficult, as without a precisely defined proper parametri-

zation the order of any mechanism seems to be infinite. Namely, if 41( &)
is the displacement vector for any joint [ , we can define a new displace-
ment vector SMN& ) = When we compute the first minimum in Defini-
tion 3, it is twice as large for the second function and so can be nede
arbitrarily large. This is the reason why Connelly (1980) did not mention
the parametrization explicitly /c.f. (Connelly and Whitely, 1988)/. How
ever, we think that this problem is eliminated by the fact that in the
parametrization we supposed one displacement component to be a linear func-
tion of the parameter (the displacement component itself is considered as
the parameter). So, a reparametrization mentioned by Connelly is not poss-
ible.

is

im-
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(b) In Example 2, due to Definition 3, it is assumed that the dis-
placement X is linear in & . Connelly thinks that it is not always pos-
sible directly to choose a displacement component in the first-order for
some joint. He has mentioned that this would happen, for instance, for the
case X =y, near the point (0,0). Connelly has concluded that he is not
at all sure that there is a good definition of higher-order infinitesimal
mechanism. W think that we can always parametrize the system of dis-
placements, such that a displacement component of one joint is a linear
function of the parameter (in such a way that after parametrization the
term of the lowest power should be linear). With this, however, some dif-
ficulties can occur, for instance: multi-valuedness of functions, loss of
analyticity, lack of differentiability. These problems are discussed in the
subsequent subsections.

(c) In Definition 3 (and also in Definition 1) it is supposed that
there exists MaclLaurin's series (6), that is, the elongation functions are
analytic at 5=0. The lack of analyticity causes problem in Example 1 if
the slot curve is defined as

"R+ 53 if f =0

R+ if V>* 0 .

It is an infinitesimal mechanism at ©=0 because g'# 0-0 =0 . but

we cannot define the order of the mechanism due to Definitions 1, 2, 3.
However, we can produce the one-sided MaclLaurin's series. With this modi-
fication Definition 3 constitutes the infinitesimal mechanism to be of

order 2.
(d) In certain cases it can occur that even one-sided Maclaurin's

series does not exist. A good example for gat i% Example 1 if the slot
curve is defined as r = R +f such that = Mentioned by Connelly.
At the point (R,0) the function r(ip ) has one-sided derivatives of arbi-
trary order: r*(0) =0 but r* (0) =+ o (- g for i =2,3,... . Defi-
nition 3 with one-sided derivatives does not work, but Definition 2 with
one-sided derivatives does and results in a first-order infinitesimal
mechanism, because it does not need the first non-vanishing derivative to
be bounded. So Definition 3 can be modified for more general cases with
one-sided derivatives in the following way:
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£efinition_4_; An assembly is an n-th-order infinitesimal mechanism if
n=mx minl hl efj?+(0) =0 for i =1,— ,h; efh**(0) ™ ©

K S ~1,2,...,bj , y€ P , where (0) denotes the i-th one-sided
derivative of ¢ r (5 ) at point 5= 0. In this definition, if there exists
a for which ek (07) =0 and so eKn|-+(0) =0 for i =1,2,... then, for
that k, h should be considered infinite.

However, elongations in bars of engineering bar-and-joint structures
are, in general, analytic functions so definitions in Section 2 can be
used. The minimax property in Definition 3 is an important feature, but the
definition itself does-not seem to be very convenient for practical appli-
cation. Although the notion "higher-order infinitesimal mechanism" is a
purely geometrical term, to simplify the analysis Koiter (1989) suggested
the introduction of elasticity in the bars, that is, the use of the elastic
energy function of the assembly and interpretation of the infinitesimal
mechanism as the buckling node of the truss under zero loading. Koiter
noted: "The stability of equilibrium in this critical case of neutral
equilibrium ney be investigated by the nonlinear theory of elastic stab-
ility (Koiter, 1945). The outcome of the analysis is stability of an even
order 2(n+l) indicating an infinitesimal mechanism of order n." Here not
the actual elastic properties of the bars are required but only fictive
ones which can be different for the different bars.

Koiter's idea overcomes the difficulties mentioned by Connelly, since
the form of the excited mechanism is considered as the buckling mode and
so it gives the way how to parametrize the motion. It reduces the calcu-
lation work necessary due to Definition 3 and using the elastic energy it
automatically satisfies the extremum properties (7).

Turning back to Example 2 Koiter pointed out that if one introduces
a Lagrange type strain:

£l =- Y+7<x2 +y2), £3=22 |,
then obtains the elastic energy for equal bars as

C £[- y+i(x2+y2)] + 4y4 |
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He remarked: "The 'buckling mode' is y = U, x = a (arbitrary), the sta-
bility investigation requires minimization of energy with respectoto y for
fixed (infinitesimal). Result is for energy proportional to a + h.o.,
confirming infinitesimal mechanism of 3rd order."

Proposition of Koiter can be easily understood if we take the first
derivative of the energy with respect to y equal to zero. Then we obtain

32 +21"2+’lx2y+1l):} =0

By keeping the lowest-order terms in y and x and neglecting the higher-

order terms we have y = 212, Substituting x =a and y = %12 in the energy
expression we arrive at Koiter's conclusion. The great advantage of Koiter's
idea is that it directly gives the required y = y(x) function.

4. Stiffening effect of prestress

Let us turn back to question (A) and consider the structure in Fig. 1
with slot curve equation r =r( ). This structure is both statically and
kinematically indeterminate at w =0 if

dr |
dif 1if =0

(8)

Suppose that the basic position of the bar is at ip=0 and (8) is satis-
fied. Let us now investigate whether prestress in the bar can stiffen this
structure (self-stress may impart a first-order stiffness to the structure).

Let the upper end of the bar be subjected to a horizontal force P.
Describe the equilibrium of the structure in a displaced position. The load
P and reactions S and N acting in the joint in the slot have to be in equi-
librium. Here S is the force in the bar and N is a force whose line of ac-
tion is perpendicular to the slot curve. The relationship between P and S
in accordance with Fig. 6 is

P = S(sin p + tan « coscp )

Since due to Fig. 6

X r sin q

y rcos,
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and
we have
and so
dr
P=s dp | ©)
up +r cosip
dip

Forming its first derivative we obtain

dr

(10

In the forthcoming we suppose that

(11)
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and
/dS dr\
Vdip d<p/

=0 (12)

=0

which mean that the force Sin bar is finite at ip =0, and the derivative
dS/dip at w= 0 is finite or if it is infinite then - as ip approaches
zero - dr/dvp tends to zero in order higher than dS/dip tends to infinity.

Let us analyse the P -y diagram at ip = 0. It is easy to see due to

(8) and (9) that PJ =0 for arbitrary finite value of S
| =
Consider now the case in which the structure has no prestress, that
is, = 0. By introducing 0 into (10) and considering (8) and
<f= 0

(12) we obtain

that is, the structure has no first-order stiffness at w=0.
Consider now the case in which the structure has prestress, that is,

oo t 0. By introducing ip =0 into (10) and considering (8) and (12)
(0]

we' obtain
(o & -. s d2r (13)
dip R 0 d!
=0 >=0
(13) vanishes if (d2r/d vp2)I =0, that is, in the cases of the in-

finitesimal mechanisms of second 8r higher order and finite mechanisms.

Thus, this example well illustrates Pellegrino's and Calladine's
(1986) statement modified by Koiter (1984): Self-stress may impart first-
order stiffness to a both statically and kinematically indeterminate struc-
ture if the kinematical indeterminacy takes the form of an infinitesimal
mechanism of the first order. Second- and higher-order infinitesimal
mechanisms and finite mechanisms cannot be linearly stiffened by self-
stress. This statement has a great importance in structural engineering
practice (Kollar, 1988).



HIGHER-ORDER INFINITESIMAL MECHANISMS 377

5. Conclusions

(1) Koiter's (1989) definition of an infinitesimal mechanism of nth
order is: "An infinitesimal mechanism is of the nth-order (n = 1,2,...) if
it involves no elongation of any bar up to and including the nth order but
exhibits an elongation of order (n+l) in at least one bar." W presented
and compared different mathematical formulations of this definition and we
discussed the problems arising when we want to formulate mathematically
this definition. If a displacement component of one joint is a linear
function of the parameter of motion and one-sided derivatives are used then
(Definition 4 seems to be the most general formulation of the discussed ones

(2) Using Koiter's (1989) idea one can avoid the mathematical prob-
lems and can determine the order of an infinitesimal mechanism if considers
the form of the excited mechanism as a buckling node and applies nonlinear
theory of elastic stability.

(3) To illustrate Pellegrino and Calladine's (1986) statement modi-
fied by Koiter (1984) we presented an example of a both statically and
kinematically indeterminate structure and showed that prestress cannot im-
part first order stiffness to it if it is a second- or higher-order in-
finitesimal mechanism.

(4) This paper gave a brief account of what happened in the research
on higher-order infinitesimal mechanisms during the last few years. Several
problems remained to solve, so further research is needed in this field.
An interesting question is, for instance: Does the order of an infinitesi-
mal mechanism change under a projective transformation?
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ANALYSIS (F THE STRUCTURES FCR DYNAMC EFFECTS WTH MATHEVATICAL
PROGRAMING

VASARHELYI, A.* - LOGO, J.*
(Received: 27 Oecember 1989)

In case of dynamical analysis, the state variables depend on time. In the primal
case, the equilibrium equations and the limits of the complementary elastic and
kinetic energies are constraints and the sum of complementary energies is found in
the objective function. The Stieltjes dérivates are used to form the dual problem. It
is bounded by the compability equations and energy-limits and the sumof elastic and
kinetic energies can be found in the objective.

1. Introduction

Dynamic problems usually are solved as an eigenvalue problem of dis-
cretized structures /11, 13/. The mathematical background is sore types of
direct time integration methods where the number of unknowns and equations
is identical. Most of them are related to the so-called "tangent stiffness"
method /5, 7, 8/ in which the stiffness matrix of the system is adjusted at
every loading step.

In the Seventies a new direction developed on the basis of math-
ematical programming procedures. However, the problem is solved as a linear
complementarity problem /6/.

The aim of this paper is to present an other type of solution of
dynamic problems by mathematical programming.

2. Basic idea

The differential equations concerning structures are transformed into
an unconstrained minimization problem by the help of variational methods
and they are decomposed into a pair of constrained minimization problem.

Véasarhelyi, Anna, H-1126 Budapest, Kiss J. alt. u. 34, Hungary
696, Janos, H-1118 Budapest, Regds u. 7, Hungary
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Decomposition has not a unigue solution, it is executed in such a
way that the primal-dual problems have a physical meaning. The primal and
dual variables are intensive and extensive from a mechanical point of view,
respectively. The objective functions contain the different types of
energies.

The state variables (e.g. stresses, strains, etc.) are given in the
vector space by vector-scalar functions in case of equilibrium state. The
structures are discretized that is the vector space is supposed to be an n
dimensional space in the global coordinate system. A state vector is
ordered to each vector which point at the direction of a discretized point
with meximum 6 independent components given in the local coordinate system.

The time dependent state variables are given in both local and global
coordinate systems, but they are vector-vector-function quantities. In the
following, the small displacement theory is supposed to be valid that is
the position vectors are time independent.

local coordinate system

global coordinate system

Fig. 1.

3. Mathematical Background

The time dependent state variables are approximated by an orthogonal
polynomial system /10/:
(o)
Pi(t) e L2 (1)
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In the local coordinate system, we have to determine:
6 (0]
(=1 L =ipiqy @)
=l =l
where e" is the unit vector in the local system.
The th unknown in the global system can be written as:

At) =, 4> 4> 4 (1)> 4 (t)> eee’ 4 (1)) 0)

The dual problem is formed on the basis of Kuhn-Tucker conditions /1,
2/ by the help of a Stieltjes derivate which is the inverse operation of the
Stieltjes integral /3, 14/.

The Stieltjes derivate:

df(x(t)) _ dIf(x()dx(t) _ f(x(1)) m
dx(®) T " dx(t) )

*(t) 1 0

because f(x) If(x(t)dt+c = [f(x (1)) dt+c =

Jf dx(t) +c x(t) /1 0

Statement: The following primal and the deduced dual problems have
the same Euler-Lagrange equation and it expresses Newton's second law.

Primal: min { 0.5 dt m'1 \ldt|¢* \det+/fdt - o} (5)

The dual is formed according to the Wolfeprocedure whichisbased on the
Kuhn-Tucker theorem. The Stieltjes dérivates:

Mf(/tfdt ML/tidt) =A-m'1/Cfdt  \if(ea) =® -  (O=L>--->6n)

The dual problem:
mex | fAa6tm~Jdot + (e*/ tfdt +/Fdt)x|

rfj / 0
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min { 0.5/tfdtiB ~Jtfdt - xj fdt | x ® + m 1/ tfdt = o} (6)
The variational problem of the primal case:

/(0.53ddt® ~/odt +y(d*/ ddt +/frjt))dt (7)
The variation of the basic function according to d:

&g-.j [J (tf + £Tj )dt m1l/ (tf +£tpdt + (d +tij ) +x/l.dt)dt (8)

The extremal value according to £:

-g|- ;/ (/ qdtofl/ (d +£5)dt +y ~/ijdt)dt (9)
-91-] o/ ( [IFY tidt +X f)/ >dd dt =0  y»|dt » O
It follows:
mAtfdt + =0 (10)

Let be the Lagrangian multiplier
The variation of the function (7) according to

6y :/(0.5y"rfdt m1/tf dt + (y_+£~) (®~ ffdt +/fdt))dt

the extremal value according to ftfor fi= 0 :

[(«P/tfdt +/f_dt) ij_dt =0 (11)
That is:
¢ /ddt +/ fdt =0 (12)

Taking into consideration the meaning of Lagrangian multipliers and combin-
ing (10) and (12) in one system:

Mi+f =0 (13)



ANALYSIS OF THE STRUCTURES 383

where :
M=-dmlo

this is the Euler-Lagrange equation originated form the primal problem.

The variational problem concerning dual case:

/{o.5/6dtm _1/rfdt - ofidt + x*(® + m rfdt) J dt min (14)
on: [{N-5 ] (@ +E»} ) dtnT1J"(tf +ftj_)dt - jj*f fdt + +
+mlY (<) +£rj)dt) J dt (15)

the extremal value according to £ for £= 0:

[ (jYj_*dtm *Jtfdt + xm Jij_dt)dt =0 (16)
taking out Jtjdt we get the following equation, for 0:
/rfdt = -x

The Lagrangian multiplier is substituted into (14):

a7 { 05F (d +£rj)*dt m1J'id +£rj_ )dt -u*/ fdt -

7
- Jd*dt(u*N + m (tf +£g_)dt)J dt
i (f(~fiL*dt m - J Tid u*<£)dt =0 (18)
If dti 0:
m'Vtfdt + u* P=10 (19)

The variation of (14) according to u:
Su :f (-(ij +tg)J fdt -Jtidt (j +84) P - 053 fidt MYJtf_dt)dt

AEIE=0 A(* G /1dt ~/Edtif)dt =0 if [I] tO:



384 VASARHELYI, A. - LOGU, J.

fiat +/s*dtf =0 (20)

The Euler-Lagrange equation concerning the dual problem consists of  (19)
and (20):

MU+f =0

The statement is right.

4. Model of the dynamic problems without dumping

Suppose that:

- the material of the structures is linear elastic,

- the mess and fle xibility of the structures are time independent,

- the small displacement theory is valid,

- the external loads are given by time functions.

The external loads are decomposed into two parts: the first causes
elastic deformations, while the second moves the structures /4/. The inner
forces are divided in a similar way.

The primal problem of the dynamic analysis can be written by the help
of the primal problem of Newton's law (5) merging with the primal associ-
ated with the elastic problems /12/.

The material of the structure has an attitude which shows how much
energy can be taken on elastic and dynamic way during a time interval
respectively. From this fact the inequalities derive in the mathematical
programming model. According to the second assumption these inequalities
became limits for the stresses.

The integrals of the energy functions concerning the domain of the
structure are approximated by the Gaussian numerical method.

(@)
(21)
(b)
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L* #2

® / 6dt+Jd f(t)dt =0 (c.)
xe * 0 (21) (d)
6d - DL ©)

é - * G Q tu

. — dtdt min (f)

i=1 i=I tl tl

where: B is the transfer matrix for elastic part /9/,
® is transfer matrix for dynamic part,
£e’'ld are *he decomposed external load, respectively,
6”1, are the elastic and the dynamic lim it stresses, respectively
0”, | are elastic and dynamic stresses, respectively,
iK are the Gaussian weights,
G is the number of the Gaussian points,
unknowns: tfe, d'd, fe, fd

The Stieltjes dérivates of 2l.a - 21.f:

number *
6f eq. Vfe V fd V*e ~d
2l.a fo fq 0 0
Pe T}
21.b ie 0 5 % 0
U.I
IDe e
21.c 0 id 0
*3 m*d
21.d 0 0 1 0
21.e 0 0 0 1
21.f
0 0 ne. - o)
| i=I d
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Assigning the dual variables (X, Y, Z2) in the order of the equations
and taking into consideration inequalities (d) and (e) as constraints:

G
h 4=0 (j = 1>wes.6n) OF X =Y (22)
l.lLI i
= I 1
G
A3 Sj = (j =1,....6n) =>»X =Z=Y (23)
i=l  fd
Using these conditions
4 G .
*L —n (J = |,...,6n) (a)
e =l
G
s A N
X <P[1 + 1oond/rddt _ g =1, 6n) (b)
- =tff] E » '
d 1=l d
N6
tfe B (c)(24)
«d N~ DL (d)
BV € o » ro ., =
P Qf{log + sija  oddt o+ x o vET f{hdt
i=I i=l tl tl tl t
X *2 *2 2
N
o £ BJ Adt+J fedt +X (e)
tl tl tl tl
*2
+J ~(Ddt

tl
It follows that from equations (a) and (b):
G
- S+L |E<4 Si =0
1=
G

+Y. =1Si/ 3jdt =
i=|
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Substituting the equalities into the objective function, it can be re-
written in the following form:

G G G N2 N2
Y fEBse Nal@ss a+Yo o1 /v o~
i=1 *e 1=1 ne 1=1 4 h
JL t2 *2 t2
- ) r 2/ & dt / enrdt +Xm J fdt mex
i=1 [ [ tj

It follows from (23/a) and (23/b) that X = u, which satisfies (e).
That means that the dual variable of the time integral of the inner force
is the displacement velocity.

In case no feasible solution is obtained over the domain bounded by
limit stresses on the surface determined by the equilibrium equations, the
structure has a resonance.

Control:

Both the primal and the dual conditions have to be satisfied at the ex-
tremal point.

t2
-
*1 4 *]

fe(t)dt - ¥ fA()dt + T _f()dt =0

/\2 PAS
2 coqr + T fg(hdt = 0
4 ,

to
f/2«dt ¥ fddt =0

4 4

G G
: B "2
u<B 2E =0 l2udt) girl5_," <adt

i=| i= .

G G (25)
" 1
ur @ ., B < rfdt =0— -u«i_r B f -}2ijdt

i= =

4 tl

Using the last equations we get:



388 VASARHELY!, A. - LOGO, 3.

W2 o..n 0
SJ ydt DELgr +/ fA()dt =0 @8

r woA

uf mfij +J fCtdt =0

Introducing £ and ¥ the following equation is obtained:

© ©
S J udtC-anr+d £()dt =0 @7)
tl tl

After derivation of this expression with respect to time we obtained
the wellknown differential equation of the dynamic analysis.

Y a(t) +Ku() +_f(t) =0 (28)

5. Numerical example

Consider a simple bar structure of homogenous, isotropic material.
The dimensions can be seen on Fig. 2. The mass of the structure is 214 kg ,
the cross-sectional dimensions (EA) = 0.25 |kN|, the flexibility (El) =
= 0.12E-3 |KNm2| *

Pi9-..2-
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The external load acts in three time periods and increses linearly
with time. For the calculation the external force wes reduced to nodes 2
and 3.

The unknowns are bending moment (M, M2) and shear force (T2), taken
into consideration as lagged variables in three steps in the time. The
problem was solved as a dynamic programming problem by the help of the
program package OONCPT.

The result can be seen in Table 1.

The diagrams of bending moments:

Fi3i-3-
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10.

11.

12.

13.
14.

VASARHELYI, A. - LUGU, 0.
Table 1
Time period
1 2 3
™ 79.29 119.25 268.30
M. 150.00 225.00 506.50
-145.71 -218.50 -492.80
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INVESTIGATION OF NONLINEAR BEHAVIOUR OF BUILDING STRUCTURES
UNDER DYNAMIC LOAD

VERTES, GY.*
(Received: 11 January 1990)

A method has been presented for the analysis of composite building structures
under earthquake and other dynamic load, assuming an elasto-plastic material model.
In final account, the problem can in any case be reduced to the solution of a
secondorder differential equation with nonlinear coefficients to be expressed by
continuous functions.

1. Introduction

In investigation of the effect of external dynamic loads (earth-
quake, blast of wind, explosion etc.) upon the structure of buildings, it
is often necessary that stresses beyond the limit of elasticity or in other
words, plastic deformations be permitted considering that loads of this
type are an extraordinary case. In case of a simple structure, the diagram
of the so-called elasto-plastic material model can be used to describe the
process of load transfer. However, if the structure consists of structural
elements for which the yield load is different because of their different
size or location, this simple diagram w ill not apply to the structure as a
whole because the different elements become plastic in case of different
deformations. The situation is still more complicated in case of dynamic
loads because of the significant contribution of the time factor: the dif-
ferent structural elements ey arrive at the elastic limit at a different
time each. In case of a structure where the centre of rotation and the
centre of maess are not coincident, the 'coupled motion' (that is displace-
ment and rotation taking place simultaneously) results in additional com
plications in predicting the place and time of elastic and plastic defor-
mations.

It follows from what has been said that investigation of the dynamic
effects is a rather complicated problem especially if also a potential

"vértes, Gyorgy, H-1075 Budapest, Madéch tér 6, Hungary

Akadémiai Kiad6, Budapest
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plastic deformation is taken into consideration and the problem is con-
siderably simplified also in the international literature /3/, /4/. This
work is intended to provide a practicable method for investigation of the
effect of dynamic loads which, based on acceptable approximations, supplies
results of sufficient accuracy for practice. In the method, the response of
the structural elements of the building to forces acting upon them is taken
into consideration as realistically as possible.

The method described below assumes a linearly elastic - perfectly
plastic behaviour of the different structural elements of the building in
response to horizontal forces acting upon them and only horizontal dis-
placement of the slabs of the building as a result of horizontal dynamic
loads (such as earthquake, impact load etc.). According to the method,
first the multilinear force-displacement diagrams are determined in ac-
cordance with the elastoplastic material model and then these curves are
replaced with curves that can be characterized by polynomials. In this way,
the problem has been reduced to the solution of a system of differential
equations of the second order and of variable coefficient.

2. The model taken as a basis for calculations

For buildings with framework or wall system, a model has been selec-
ted for calculations, where the structure to be investigated is a system
consisting of masses of a number equal to the number of floors of the
building and the masses interconnected elastically are represented by rigid
disks in the plane of the different roofs (in the horizontal plane). Since
the force is acting in horizontal direction, the different masses are as-
sumed to move only in their oan plane. There is a constrained elastic con-
nection between the lowest mess and the soil as well as between the other
masses and those above or below them. In accordance with the general system
of planar displacements, the constraints are capable of bringing about
forces and moments. In addition to these constraints, also a damping con-
straint directly proportional to the rate of velocity of displacement and
rotation has been taken into consideration as schematically illustrated for
two adjacent masses (mass Kk and mess k+1) in Fig. 1.
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floor k*1

floor «k

3. System of equations used for dynamic calculations

On the basis of the detail drawing of the model given in Fig. 1, the
equation of motion for the i-th floor of a multistoreyed building can be
written in a co-ordinate system where the origin is arbitrary but vertical-
ly coincident for each floor (0) and the direction of the x-y axes is
identical for each floor (global co-ordinate system), taking into consider-
ation an exciting force of horizontal direction, in the following form (for

derivation see /1/ while calculation of the coefficients is described later
in this work):
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.,n)

Accordingly, the matrix form of the system of equations for the
entire building can be written, as follows (the co-ordinates in the equa-
tions as well as the typical points associated with the roof being illus-
trated in Fig. 2):

(angular displacement during movement)

Fig. 2.
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Ad+Cd™* d_=£(t) (5.27)
A= M YoM
0 M és M (hypermatrix)
LM AM

M= his M2» eee MY (mass diagonal matrix)
3= Ajor 402, ..o Jon) (mass inertia diagonal

matrix)

Jg being the nmoment of inertia of the mass concentrated on the roof
with respect to origin of the co-ordinate system,

(diagonal matrix of x-
co-ordinates in the
centre of mass)
(diagonal matrix of y-
co-ordinates in the
centre of mass)

(stiffness hypermatrix)

(damping hypermatrix)

- r.1 :
d= x (hypervector contain-
ing displacement co-

ordinates)

EM = i
fit (load hypervector)

JToA
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4. Stiffness matrix of the system of equations

In addition to the solution of the system of equations in general,
difficulties arise in determination of the elements of the stiffness
matrices. Determination of these elements will therefore be discussed in
detail below. First the centre of rotation of the building cross sections
(0), their principal directions of stiffness (u, v, ), forces acting in
these directions, resulting in unit displacement (pu, pv) and the force
couple resulting in unit rotation in the centre of rotation (Fh) shall be
determined from the relationships given below /1/ (for definitions see
Fig. 3).

tg206 =1g r (5.28)
A+B A” B\ mc2
w2 T At (5.29)
m

o Xi'Yi%xy +L X??y (5.30)

i=1 i
Co-ordinates of the centre of rotation (0):

m m
, B .. L.
o N Y \»i» - YI Xy
i=

i=t
m m
'Y| prx_ 'Y| pr (5.31)
i= i=
"m m

, _A y

67N Y XgymY yip
m m

c1 ) Y P T [ XPixy (5.32)
J=1 i=T

In the relationships
m m

A= ) y X y N=AB-C
Y, B B Rylc Mo

(Note that, because of nonlinearity, the above relationships vary as a func-
tion of time.)
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First, as usually, the flexibility matrix shall be determined instead
of the stiffness matrix, the elements of which contain the displacements
(rotations) resulting from unit forces (force couples). Illustrated in
Fig. 3 are the centre of rotation and principal directions of stiffness in
the co-ordinate system for the i-th floor, determined in the way described
above.

Let force F = 1 be plotted in the direction of axis x. The displace-
ments resulting from this force can be determined in the following way:

In the general case, the floor is displaced in directionsx and y due
to combined motion and, in addition to this displacement, the floor may
experience also angular displacement (rotation). Let these displacements be
denoted by a , a , a i. With the force reduced to the origin of the co-
ordinate system, a force F = 1 and a moment M = lyg are obtained. Further-
more, with force F decomposed into components of direction u and direction
V, Fu =1 cos OQand Fv = 1 . sin otg, respectively. Displacements py, py
associated with unit forces have been written above. Fom these, the nu-
merical value of force resulting in unit displacement (spring constant):
kn = —- kv =-i—- respectively. The numerical value of force couple re-
sulting?® unit rotation can similarly be obtained: —r Accordingly,
displacements of the centre resulting from force F* are

u=-cos og ku
sin <xQ ky

®=Y0 kO

\Y,
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and, from these, the effect of force F = 1 that is displacement in the
direction of axis x and y (exx> exy, respectively) and rotation of the
centre of the co-ordinate system (“x) can be obtained:

2 2
exx =cos O ku + sin * kV+yOk4>
exy =sin d. cos oC (ku - ky) - Xg k>
q)y =

Quite similarly, the following displacements are obtained for force

F = lacting upon the y axis:

) -
eyy sin“oc K + cos2 o Ky T Xb K¢
eyx sin & cosoC (K, - k) - ¥h ki

Py =xO Kp -

O the basis of what has been written above, the fle xibility matrix
(ip of the system can be calculated. With this inverted, the stiffness
matrix (E =y-1) can be obtained as well.

5. Stiffness in case of a complex structure, taken into consideration on

the basis of the elasto-plastic material model

In Fig. 4, a simple system consisting of one single mass is illus-
trated, indicating the elastic-plastic force-displacement relations.

Fid. 4.
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In case of more springs connected in parallel, with a different force
resulting in yield for each, a polygonal diagram is obtained for force-
displacement as shown for two springs of different characteristic in Fig.
5. The polygonal diagram can be replaced with a general polynomial (of the
n-th degree) properly osculating the polygon (the accuracy being increased
by increasing the degree of the curve) to produce a continuous function in
this way, representing the relation between the resultant of forces acting
upon the mass and displacement.

The same principle can be applied to the case of bent beams. Fig. 6
shows the cross section of a bent beam indicating the principal directions
of inertia. According to the Figure, forces F* and F2 shall be acting upon
the shear centre of another cross section denoted by k, parallel to the

appropriate displacements, in order to displace cross section i of a
Hookean homogeneous prismatic rod parallel to principal directions 1 and 2
to an extent of and [, 2, respectively. The magnitude of the forces is

given by relationships
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=H2 . ik

F2 =HJ) . 02 ik

based on the theory of the strength of materials.
(In the relationships, H is a factor depending on the material, conditions
of support and location of cross sections of the rod.)

Let then, again in cross section i, an arbitrary co-ordinate system
Xy be plotted to determine what an external force resulting in unit dis-
placement of the shear centre of the cross section in the direction of axis
x shall be acting upon cross section k. If axis x is not coincident with
the principal direction, the force resulting in displacement will not be
parallel to axis x but it can be characterized by components pxx and px" of
direction x and y, respectively. The magnitude of the component in direc-
tion 1 or 2 of the mentioned unit displacement in the direction of axis x,
including an angle ac with principal direction 1, is 1 cosod or -1 sinoc as
suggested by Fig. 5, 9. To bring about these displacements, forces

= H'2 cos ac

@ =-HJ| sinod ,

acting in the direction of axis 1 or 2, are required. Force components pxx
and pXy to be found are given by the sum of projections of these forces in
direction x and y, respectively, that is

Rxx -a s - Q@ sin @ = HEN sinzaj + J2 coszoc )

ny -a sinck - @ cosdC =- cosod sinod H@AN - J2)

Forces p  and P, shall act in direction y and X, respectively to
result in unit displacement of the investigated cross section in direction

y. These forces can be determined in a way similar to the above determi-
nation to obtain

Pyy = H" coszoC + J2 si-n2 )

%’X =- cosocsinoE(J1 - j,Q H:ny
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Values p_ , p
factors.

In case of more interconnected beams, the stiffness factor can be
produced as the sum of the different stiffness factors. Consider a case
where the force-displacement diagram complies with the elasto-plastic
material model. Now, in accordance with diagram F* - or 2 - N2>re_
lationships p_ , P, and p,, are equal to the sum of angular coefficients
of the diagrams. A staggered diagram is obtained as an illustration as seen
for pxx in Fig. 7. In case of a complex cross section (more independent
elements), the sum of displacements associated with unit force is used in
the relationships serving to determine the centre of rotation, principal
directions of stiffness etc., the illustration resulting in a multistep
diagram (Fig. 7). Now we have to write relationships ZPiyx: Z Pl\yy and

vy and Py =Py SO determined are also called stiffness

Z Pfx\gu m the f°rm of approximate continuous functions. Thus, considering
the values associated with the different steps to be tangents of the sides
of a polygonal diagram, the integral of the staggered diagram that is a
polygonal diagram can be obtained (Fig. 0), which can be replaced with a
suitably selected polynomial of the n-th degree. With this polynomial de-
termined, the continuous functions of the stiffness factors can be obtained
as derivatives of this polynomial.

The result of this effort is that the relationships that have been
used to determine the coefficients of the kinetic equation can be expressed
as a continuous instead of a constant function of x, y, ¢ . In the system
of equations, this means that the elements of stiffness matrix K are not
constant and in case of earthquake, the load vector will not be constant
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either because the components of the force and moment depend on the centre
of rotation of the first storey.
Introduction of notation

b ixx = AfjOn); Ip iyy = Bf2(Vi); Ip ixy = Cf3(x., y.)
results in modification of the above relationships as follows:

Forces acting in the principal directions, resulting in unit dis-
placement:

AfCX) + Bf2(y) Afjix) - Bf2(y) 12
_ + Qf9(xy)2
Pu =
AACx) + Bf2(y) Af,(x) - BfOy) « 9 9
- 1 2 1 + Qf2(xy)2

pv

Inclination angle of principal directions:
Cf-iCxy)
Afl(x) - Bf2(y)

0tQ = arctg

With notation

N = AfA\Cx) Bf2(y) + Cf3(x,y)2

introduced, co-ordinates of the centre of rotation:

Bfo(y) I + Ef3(xy)" , S0 [Ff20y) - Ef3(xy)]
vooN = ’ N
Af.(x) Cfj(xy)

g FE rESe 7 s0ie) - )
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6. Plotting Of the resistive force - displacement diagram

Determination of the F - diagram in different cases occurring in
practice has been discussed in detail in par 5, taking into consideration
that in case of complex structures, part of the structure is elastic while
the other part plastic. The initial section of the F - [  diagram can be
determined in this way and the relationship can be applied to determination
of meximum displacement (load) resulting from a single shock wave (blast
of wind, explosion). However, in case of dynamic loads or variable direc-
tion (e.g. earthquake), a hysteretic curve is obtained for F -[] as shown
in Fig. 9.

Fia-

This considerably more general diagram had been determined analyti-
cally by Jennings /2/ and practical calculations and experiments proved
that it could be successfully used to simulate the response of actual
building structures to forces acting upon them. Let the function describing
relation F -[1 , determinable on the basis of par 5, be denoted by F = Fu'
in the first phase of loading. Then, according to Jennings, the following
relationship will exist in case of load of opposite direction of if the
load discontinues:

where FQ and Ap are the displacement and force, respectively taking place
before the loading process reversed (Structures and materials that meet
these requirements are called Masing-type structures and materials because
Masing was the first to define the curve). Applicability of the curve to
cases where damping effect is prevailing was proved also by Herrera (1965),
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Lazan (1968) and Marsai (1967) /2/. Thus the hysteretic diagram or a de-
graded type of it can be used also to investigate the effects of earthquake
and it yields acceptable values for the functions included in the theoreti-
cal relationships. At the same time, the practical applicability of the
method as a whole seems to be proved.
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BOOK REVIEW

Sandor Kaliszky: Plasticity. Akadémiai Kiad6, Budapest, 1989 (pp. 505)

The recent book of Sandor Kaliszky on plasticity in English language
is a modernized and amplified version of the 1975 edition written in Hun-
garian language, including now the recent results of research. The book has
been intended first of all for engineers and research people but it can be
used as a text-book by anybody familiar with the fundamentals of the theory
of strength.

The first three chapters introduce the reader in the fundamentals of
elasticity and plasticity, giving, in particular, definitions, field equa-
tions and extremum principles where the author restricts himself to small
deformations and linearly elastic and ideally plastic bodies. Presented in
the fourth chapter are the basic problems of plasticity (ultimate plas-
ticity of a rod under tension, onset of this state, twisted rod, thick-
walled spherical bodies and tubes under internal pressure) while in the
fifth chapter, the reader becomes familiar with the equation system for
two-dimensional problems (two-dimensional plastic flow, state of plane
stress), the theory of field of slip lines and the method of solution based
on this theory where the solution of problems presented contributes con-
siderably to better understanding of the theory.

Discussed in the sixth chapter are the plastic behaviour of bent rods
and rod type structures under complex load and the ultimate load capacity
while the seventh chapter deals with the same problem for shells and plates.
The author deals with determination of the lower (statically permissible)
and upper (kinematically permissible) limits of load in detail, discussing
also the fundamental principles of design on the basis of these limits that
is design of the structure for minimum load. Written in this chapter are
the basic equations of mathematical programming for load capacity and
stability of rod type structures and optimum weight.

The eight chapter gives a brief description of the models of other
than ideally plastic, non-elastic bodies for plastic (isotropic, kinematic
and generalized) hardening, granular materials and viscous materials.

The nineth chapter which is the last chapter in the book deals with
the dynamic problems of plastic structures. It gives a summary of the funda-
mental principles adopted for the description of non-elastic behaviour of
structures under impact pressure essentially on the basis of the model of
rigid-plastic bodies but it also shows how other effects (rate of defor-
mation, large displacements, elastic deformation) can be taken into con-
sideration. Two approaches, together with the process of solution, are
presented for treatment of the problems and examples are given to illus-
trate the application of the process.

The style of the book is simple and comprehensible, easy to under-
stand even for beginners in the field of mechanics and ample examples and
illustrations contribute to better understanding. The work of research
people is facilitated by references of a number of more than 400. The book
Is outstanding in that it represents an engineers' philosophy, offering
thus a valuable help for the solution of practical engineering problems.

Mrs. P. Elter

Akadémiai Kiad6, Budapest
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