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Abstract. Due to sensor failures and other issues, real-world time series may
contain missing values, often in consecutive segments. Classification of such
time series is an important task with prominent applications in various do-
mains such as medicine, manufacturing, social networks and environmental
sciences. In this paper, we consider various approaches that have been de-
signed for this task, in particular, fully-convolutional neural networks (FCNs)
with sparsity-invariant convolution and dynamic time warping convolution.
We compare their performance to that of a standard transformer, TARNet,
which has not been tailored to the classification of time series with missing
values. Our results indicate that even this simple transformer may outper-
form the aforementioned models that were designed to deal with missing val-
ues. As this observation is consistent for many datasets from various domains
and various distributions of missing values, we conclude that transformers
are an exceptionally strong baseline for the classification of time series with
missing values. In order to support the reproduction of our results as well
as follow-up works, we performed the aforementioned experiments on pub-
licly available time series datasets using a publicly available implementation
of TARNet.

Key words and phrases: time series classification, missing values, trans-
formers, TARNet
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1 Introduction

Time series classification is the common denominator of countless recognition tasks
in numerous domains, including biology, medicine, healthcare, astronomy, geology,
social networks, industry and finance. These tasks include biometric person iden-
tification, signature verification, speech recognition, earthquake prediction, the di-
agnosis of various diseases, intrusion detection and the detection of physical activ-
ity [1]–[6]. Due to the aforementioned applications, and many others, time series
classification has been considered as one of the most prominent tasks in machine
learning, for which various approaches have been introduced, including methods
based on neural networks, Bayesian networks, hidden Markov models, genetic al-
gorithms, support vector machines, decision trees, frequent patterns (also known as
motifs or shapelets) and hubness-aware classifiers [7]–[15]. Related surveys provide
more information on the topic [16], [17].
While the nearest neighbour with dynamic time warping (DTW) was considered

“an exceptionally competitive classifier” [18] in the early 2000s, subsequent solu-
tions were based on deep learning [14], [19]–[21]. Out of the many excellent works,
we point out the study of Wang et al. [22], who found that a “fully convolutional
network” (FCN) is a “strong baseline.”
Most of the research, including the aforementioned studies, has been performed

in the context of regularly sampled time series with constant time between subse-
quent observations. In contrast, as pointed out by Lim and Zohren [23], the analysis
of time series containing missing values is rather understudied, despite its promi-
nent applications in medicine [24], manufacturing [25], social networks [26], envi-
ronmental sciences [27] and other domains. Nevertheless, as pointed out by Weer-
akody et al. [28], there is an increasing interest in methods to handle irregular time
series due to “the growth of multi-sensor systems as well as the continued use of
unstructured manual data recording mechanisms.” Considering the classification
of time series containing missing values, various approaches have been introduced,
including methods based on convolutional networks [24], kernel methods [29] and
end-to-end learning [30].
Inline with the advent of attention-based models [31], the most recent time series

classifiers are based on the transformer architecture [32], a prominent representa-
tive of them is TARNet [33]. When training TARNet, time series reconstruction was
considered as a surrogate task that allowed the model to learn an appropriate rep-
resentation, therefore TARNet is especially promising for the classification of time
series containing missing values.
In this paper, we focus on neural approaches for the classification of time series

containing missing values. We point out that some neural networks were designed
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to deal with missing values, such as FCNwith sparsity-invariant convolution [34] or
dynamic time warping convolution [35]. At the same time, attention-based models
may potentially learn to ignore missing values on their own as they aim at identify-
ing the most informative segments of time series. Therefore, transformers are very
promising in the case of time series with missing values. To the best of our knowl-
edge, our work is the first to explore the ability of transformers for the classification
of time series with missing values. In particular, we compare the aforementioned
time series transformer, TARNet, with various fully convolutional networks, includ-
ing the variants designed to deal with missing values. We perform experiments on
30 publicly available time series datasets both in cases when values are missing uni-
formly at random and in cases when long continuous segments are missing. Our
results show that vanilla TARNet outperforms the aforementioned networks de-
signed to handle missing values which indicates that transformers are indeed very
promising for the classification of time series with missing values.

2 Classification of Time Series with Missing Values

In this section, we describe the models used throughout our work. We begin with
the formal definition of the problem, followed by neural networks designed for the
classification of time series with missing values and TARNet.

2.1 Problem Formulation and Basic Definitions

Given a set C of class labels, and a setD of observed time series together with their
class labels

D =
{(
G (8) , H (8)

)}=
8=1

,∀H (8) ∈ C (1)

where G (8) is an observed time series, G (8) = (G (8)1 , . . . , G
(8)
;

), we aim at finding a
mathematical model M that is able to determine the class label H′ ∈ C of a new
(test) time series G′ = (G′1, . . . , G′;). The process of determining the values of the
parameters of M is called training, while D is called training data, because D is
used to find the appropriate values of the parameters.
Missing values are allowed in the aforementioned time series, i.e., each G8 within

G = (G1, . . . , G;) is either a real number or a symbol indicating that the value is
missing. In real-world applications, the ratio of missing values may be as high as
90% or even more [36].
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2.2 SiConv: Sparsity-invariant Convolution

Considering convolutional neural networks working with data containing missing
values, it is useful to encode the missing values by zeros because, in this case, the
multiplication of a missing value (i.e., a zero) by the corresponding weight results in
zero and, therefore the missing values are ignored in the weighted sum calculated
by the convolutional layer, which is an intuitive behaviour. Furthermore, treating
missing values as zeros is also inline with dropout, a widely-used regularisation for
deep neural networks [37]. For these reasons, we follow thewide-spread convention
of denoting missing values by zeros1 [38], [39].
The intuition behind sparsity-invariant convolution [39] is to normalize the out-

put of the convolutional layer according to the number of its non-missing inputs. As
we focus on time series classification, we describe sparsity-invariant convolution in
the context of time series. The input of SiConv is denoted as G8= = (G8=1 , . . . , G8=

;
), the

size of the convolutional filter is B, the output is denoted as G>DC = (G>DC1 , . . . , G>DC
;−B+1).

Let I8 be the number of non-zero (i.e., non-missing) values within the 8-th convolu-
tional window:

I8 =

B∑
9=0

I(G8=8+ 9 ≠ 0), (2)

where I is an indicator function that returns 1 if its argument is true, otherwise
it returns zero. Furthermore, let 1 and F 9 denote the bias and weights of the con-
volutional filter. With these notations, the output of SiConv can be calculated as
follows:

G>DC8 =
1

I8

(
1 +

B∑
9=0

F 9G
8=
8+ 9

)
, (3)

if I8 ≠ 0; otherwise: G>DC
8

= 0. SiConv is illustrated in Fig. 1.
We note that in case there are no missing values in the input of SiConv, SiConv is

equivalent to “usual” convolution up to the scaling factor I8 = B. On the other hand,
for those segments of the time series where all the inputs of SiConv are missing
values (zeros) within the convolutional window, the output of SiConv is zero, which
denotes a missing value according to our conventions. For these reasons, we may
use SiConv not only in the first convolutional layer but in subsequent convolutional
layers as well, especially in the case of highly sparse input. In such cases, each
convolutional layer with SiConv decreases the ratio of missing values in the hidden
representation.

1As the actual observations are made on a continuous scale, the probability of an observation being
exactly zero is very low, therefore, denoting missing values by zeros does not cause confusion in case
of the datasets we considered.
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Figure 1: Illustration of sparsity-invariant convolution (SiConv). The input and out-
put time series of SiConv are shown at the top and bottom, respectively. The con-
volutional filter in the center is expected to detect a decreasing trend. Compared
to “usual” convolution, the difference is that the output values are divided by the
number of non-missing input values.

2.3 DConv: Dynamic Time Warping Convolution

In a DConv block [35], dynamic time warping distances are calculated between the
non-missing values of the time series segments and the convolutional kernel (i.e.,
the local pattern to be detected).
By design, DTW is able to compare time series of different lengths by matching

the same value in the input time series to several values of the convolutional ker-
nel. Thus, when comparing the convolutional kernel with a segment of the input
containing missing values, we propose to simply keep the given (i.e., non-missing)
values of the input segment and use that sequence in DTW calculations.
In the current study, we use dynamic time warping convolution together with

“usual” convolution: our DConv block has two output channels, one for the val-
ues calculated by “usual” convolution and another one for the values calculated by
dynamic time warping convolution. This is shown in Fig. 2.
Higher similarity between the time series segment and the convolutional kernel

corresponds to higher values in the “usual” convolution. However, the opposite
is true for DTW distances: in the case of DTW, the high similarity between the
time series segment and the convolutional kernel is reflected by a distance close to
zero. Therefore, to ensure that the activations on both channels are consistent, the
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Figure 2: Our DConv block. We use dynamic time warping convolution together
with “usual” convolution, thus our DConv block has two output channels, one for
the values calculated by “usual” convolution and another one for the values calcu-
lated by dynamic time warping convolution. As dynamic time warping allows for
comparing sequences of different length, missing values are simply omitted when
we calculate the dynamic time warping distances.

activations of the DTW channel of our DConv block are calculated as follows:

>DC�), (C) = 1

1 + �), (8=[C : C + B], F) , (4)

where >DC�), denotes the activation of the DTW channel of the DConv block,
8=[C : C + B] is the segment of the block’s input between the C-th and (C + B)-th
position2, B is the size of the filter, F are the weights of the filter representing a local
pattern and �), (., .) is a function that calculates the �), distance between two
time series segments.
Training neural networks with DConv may be challenging because of the back-

propagation of the gradients through theDTWcalculations. Therefore, inlinewith [35],
we propose to use DConv only in the first hidden layer of an FCN, and we train the
FCN in a two-stage approach as follows: in the first stage, we train an analogous

2In Eq. (4) we use a Python-like syntax: the lower index, C is inclusive, the upper index, C + B in
exclusive in 8=[C : C + B].
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network with “usual” convolution instead of DConv. After this first stage, we freeze
the weights of the DConv layer. In the subsequent stage, we calculate the activa-
tions of the DConv layer using those frozen weights, and we only train the rest of
the network.

2.4 TARNet

Task-Aware Reconstruction for Time-Series Transformer, TARNet [33], is a transformer-
based model tailored for solving a broad range of time-series-related tasks. Figure 3
depicts themodel’s architecture. Tomake sure that ourmanuscript is self-contained,
we offer a brief overview of the model.

ỹ

FC Layer

x1 x2 ··· xS

Masking Layer guided by M

x1 x2 ··· xS

Transformer EncoderN

x1̂ x2̂ ··· xŜ

FC Layer

x1 [MASK] ··· xS

Masking Layer guided by M

x1 x2 ··· xS

Transformer Encoder N
aggregate 

attention maps

σ

select ⌊0.5S⌋ timestamps 
with highest σ values

sum &

normalize

σ’

randomly 
sample ⌊0.15S⌋ 

timestamps 
from σ’

0 1 0 ··· 0

m

(a) Task of Interest / End Task, TEND (b) Data-Driven Masking Strategy, M (c) Task-aware Reconstruction, TTAR

Figure 3: The TARNet architecture, as presented in the original paper [33].

2.4.1 Base model

The TARNet model consists of Transformer Encoders [31] and task-specific layers.
Initially, the input time series are first mean-standardized per variable dimension.
Next, it is linearly projected into a 3-dimensional vector space, where 3 represents
the dimension of the Transformer model’s sequence element representations. Since
the Transformer architecture is indifferent to the ordering of the input, positional
encoding is added to the input vectors, enabling the model to recognize the se-
quential nature of the input time series. The data then traverses multiple layers
of Transformer Encoder blocks. Finally, the output values are passed through the
task-specific layers to produce the final output values. The following paragraphs
describe how the base model is modified to solve specific tasks.
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2.4.2 End task

The end task, denoted as )�#� , is the main task the model aims to solve. As we
focus on time series classification, in our case, the end task is time series classifica-
tion. In order to solve this task, we used task-specific layers of the base model as
follows: the values produced by the final transformer encoder block are fed through
two fully connected layers and ReLU activation functions. The predictions are then
passed through the softmax operation to give the probability distribution over the
predefined set of classes. As we consider a classification task as the loss of the end
task, L�#� , we utilized cross-entropy loss.

2.4.3 Task-aware reconstruction

The goal of the task-aware reconstruction ())�') is to enhance the performance of
the end task )�#� by learning the data representations through reconstructing the
input time series.
The reconstruction task is performed as follows: the original input time-series

data undergoes a data-driven masking strategy, where specific timestamps being
crucial for accurately solving the end task )�#� are masked (hidden). Next, the
masked time-series data traverses the sequence of Transformer Encoders shared
with )�#� , and finally, through two fully connected layers and the RELU activa-
tion functions. The label for this task is the raw input time-series data. To ensure
an accurate reconstruction, the ))�' loss function is the Mean Square Error (MSE)
between the raw input data and the predicted values. The average MSE loss is com-
puted separately for masked (L<0B:43) and unmasked (LD=<0B:43) time-series val-
ues. The final ))�' loss is expressed as the linear combination of the masked and
unmasked loss values:

L)�' = _L<0B:43 + (1 − _)LD=<0B:43 ,

where _ is a hyper-parameter controlling the relative weights between the losses.
It is advisable to set _ > 0.5 since masked timestamps are more crucial for the end
task than unmasked ones.
The total TARNet model loss function is given by

LC>C0; = `L)�' + (1 − `)L�#� ,

with ` as a hyper-parameter dictating the relative weights between the two task
losses.
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Figure 4: Missing value distributions considered in our work: a) missing uniformly
at random, and b) missing in batches.

3 Distribution of Missing Values

In order to be able to study the performance of the considered models under various
distributions of missing values, we considered time series datasets in which all the
observations are given and we introduced missing values by setting 20%, 40%, 60%
or 80% of the given values to zero which denotes missing value according to our con-
ventions (see Section 2.2). In particular, we considered the following distributions
of missing values.

• Missing uniformly at random: each value has the same probability of being a
missing value; the given observations are distributed uniformly throughout
the time series. In practice, this happens when different sensors make obser-
vations with different frequencies, but the data is represented at the highest
sampling frequency.

• Missing in batches: in this setting, for each time series, we select a random po-
sition and beginning from that position, a continuous sequence of values is set
to missing values. The length of this continuous sequence corresponds to 20%,
40%, 60% or 80% of the length of the original time series. Such a distribution
of missing values is observed in practice when sensor failures occur.

These distributions are illustrated in Fig. 4. In the time series exemplified in the
figure, 50% of all the values are missing, nevertheless, in our experiments, we set
the ratio of missing values to 20%, 40%, 60% or 80%.

4 Experimental Evaluation

The goal of our experiments is to examine the ability of TARNet to classify time
series with missing values.
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4.1 Datasets

We performed experiments on 30 publicly available time series datasets from The
UEA & UCR Time Series Classification Repository.3 The datasets used in our experi-
ments are listed4 in the first column on Tab. 1 and Tab. 2.
As the time series of the aforementioned datasets do not contain missing values,

we randomly selected 20%, 40%, 60% or 80% of the values of each time series and
replaced them with missing values according to the distributions described in Sec-
tion 3.

4.2 Compared Models

In both cases mentioned in Section 3 (that is, missing uniformly at random and
missing in batches), we compared the following models:

1. FCN: fully convolutional neural network. When implementing FCN [22], we
replaced the final “global average pooling” (GAP) layer with a fully connected
layer with 128 units because we observed systematically better performance
in the case of the fully connected layer.

2. FCN-Si: FCN with sparsity-invariant convolution.

3. FCN-DConv: FCN with dynamic time warping convolution (see Section 2.3)
in the first convolutional layer, and “usual” convolution in the other convolu-
tional layers.5

4. TARNet: the time-series transformer described in Section 2.4. Our experi-
ments are based on the publicly available implementation of TARNet.6

4.3 Experimental Settings

We performed experiments according to the 10-fold cross-validation protocol. That
is, we partition the data into 10 splits. Out of them, 9 splits are used as training data,

3https://www.timeseriesclassification.com
4Please note that some of the names are abbreviated, in particular: Chlorine = ChlorineConcentra-

tion, Diatom = DiatomSizeReduction, Italy = ItalyPowerDemand, Melbourne = MelbournePedestrian,
SonyAIBO1 = SonyAIBORobotSurface1, SonyAIBO2 = SonyAIBORobotSurface2

5We implemented both FCN, FCN-Si and FCN-DConv in PyTorch. We trained all of them for 100
epochs. While doing so, we used cross-entropy loss and the Adam optimizer [40] with a learning rate
of 10−5 and batch size of 16.

6We set the learning rate to 0.001, the batch size to 64 and the number of training epochs to 100.
As for the other hyperparameters, we used their default values according to the TARNet repository:
https://github.com/ranakroychowdhury/TARNet.

https://github.com/ranakroychowdhury/TARNet
https://www.timeseriesclassification.com
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Table 1: Classification accuracy (averaged over 10 folds) and its standard deviation
(after the ± symbol) in the case when 80% of the observations are missing uniformly
at random. For each dataset, the best approach is underlined. We provide three
symbols • or ◦which denotes whether the differences between TARNet and (a) FCN,
(b) FCN-Si and (c) FCN-DConv are statistically significant (•) or not (◦) according
to paired t-test at a significance level of ? = 0.01.

Dataset FCN FCN-Si FCN-DConv TARNet
Adiac 0.102 ± 0.022 0.113 ± 0.021 0.115 ± 0.030 0.307 ± 0.042 •/•/•
ArrowHead 0.635 ± 0.075 0.678 ± 0.095 0.659 ± 0.097 0.625 ± 0.122 ◦/◦/◦
Chinatown 0.670 ± 0.050 0.714 ± 0.011 0.761 ± 0.026 0.868 ± 0.034 •/•/•
Chlorine 0.438 ± 0.021 0.468 ± 0.018 0.440 ± 0.025 0.561 ± 0.022 •/•/•
Diatom 0.764 ± 0.066 0.839 ± 0.048 0.944 ± 0.039 0.978 ± 0.020 •/•/◦
Earthquakes 0.798 ± 0.009 0.759 ± 0.037 0.796 ± 0.010 0.774 ± 0.070 ◦/◦/◦
ECG200 0.755 ± 0.108 0.750 ± 0.077 0.730 ± 0.093 0.670 ± 0.068 ◦/◦/◦
ECG5000 0.921 ± 0.005 0.925 ± 0.004 0.932 ± 0.010 0.928 ± 0.010 ◦/◦/◦
ECGFiveDays 0.851 ± 0.027 0.837 ± 0.056 0.904 ± 0.024 0.884 ± 0.033 ◦/◦/◦
FaceAll 0.636 ± 0.047 0.521 ± 0.058 0.667 ± 0.042 0.697 ± 0.028 •/•/◦
FiftyWords 0.496 ± 0.033 0.398 ± 0.021 0.549 ± 0.034 0.595 ± 0.049 •/•/◦
FordA 0.498 ± 0.029 0.504 ± 0.016 0.490 ± 0.025 0.632 ± 0.033 •/•/•
FordB 0.508 ± 0.019 0.545 ± 0.026 0.503 ± 0.017 0.583 ± 0.053 •/◦/•
Haptics 0.367 ± 0.069 0.365 ± 0.054 0.393 ± 0.043 0.385 ± 0.063 ◦/◦/◦
Italy 0.701 ± 0.039 0.698 ± 0.024 0.758 ± 0.030 0.845 ± 0.021 •/•/•
Mallat 0.908 ± 0.046 0.921 ± 0.038 0.917 ± 0.040 0.971 ± 0.015 •/•/•
Melbourne 0.188 ± 0.018 0.150 ± 0.012 0.224 ± 0.018 0.629 ± 0.033 •/•/•
MoteStrain 0.856 ± 0.031 0.884 ± 0.014 0.893 ± 0.026 0.901 ± 0.032 ◦/◦/◦
OSULeaf 0.396 ± 0.086 0.392 ± 0.085 0.426 ± 0.070 0.414 ± 0.057 ◦/◦/◦
Phoneme 0.113 ± 0.022 0.130 ± 0.015 0.117 ± 0.023 0.205 ± 0.020 •/•/•
Plane 0.814 ± 0.045 0.881 ± 0.061 0.895 ± 0.067 0.819 ± 0.073 ◦/◦/◦
PowerCons 0.794 ± 0.052 0.811 ± 0.063 0.819 ± 0.060 0.911 ± 0.043 •/•/•
SonyAIBO1 0.759 ± 0.054 0.763 ± 0.046 0.800 ± 0.046 0.844 ± 0.054 •/•/◦
SonyAIBO2 0.813 ± 0.032 0.799 ± 0.038 0.797 ± 0.029 0.788 ± 0.040 ◦/◦/◦
Strawberry 0.688 ± 0.030 0.713 ± 0.031 0.806 ± 0.045 0.824 ± 0.038 •/•/◦
SwedishLeaf 0.466 ± 0.035 0.495 ± 0.041 0.584 ± 0.051 0.644 ± 0.046 •/•/◦
Symbols 0.879 ± 0.033 0.925 ± 0.022 0.939 ± 0.014 0.925 ± 0.055 ◦/◦/◦
TwoLeadECG 0.694 ± 0.043 0.721 ± 0.056 0.802 ± 0.028 0.860 ± 0.058 •/•/◦
Wafer 0.894 ± 0.001 0.906 ± 0.024 0.948 ± 0.028 0.990 ± 0.004 •/•/•
Yoga 0.656 ± 0.036 0.724 ± 0.034 0.766 ± 0.030 0.866 ± 0.025 •/•/•
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Table 2: Classification accuracy (averaged over 10 folds) and its standard deviation
(after the ± symbol) in the case when 80% of the observations are missing in batches.
For each dataset, the best approach is underlined. We provide three symbols • or
◦ which denotes whether the differences between TARNet and (a) FCN, (b) FCN-Si
and (c) FCN-DConv are statistically significant (•) or not (◦) according to paired t-
test at a significance level of ? = 0.01.

Dataset FCN FCN-Si FCN-DConv TARNet
Adiac 0.122 ± 0.034 0.091 ± 0.019 0.146 ± 0.031 0.337 ± 0.061 •/•/•
ArrowHead 0.407 ± 0.092 0.407 ± 0.091 0.378 ± 0.108 0.564 ± 0.094 •/•/•
Chinatown 0.653 ± 0.091 0.608 ± 0.077 0.812 ± 0.073 0.934 ± 0.022 •/•/•
Chlorine 0.560 ± 0.020 0.542 ± 0.017 0.548 ± 0.018 0.588 ± 0.019 ◦/•/•
Diatom 0.609 ± 0.077 0.416 ± 0.090 0.693 ± 0.070 0.758 ± 0.082 •/•/◦
Earthquakes 0.798 ± 0.009 0.798 ± 0.009 0.774 ± 0.030 0.807 ± 0.027 ◦/◦/◦
ECG200 0.695 ± 0.061 0.695 ± 0.088 0.685 ± 0.092 0.755 ± 0.057 •/◦/◦
ECG5000 0.928 ± 0.007 0.920 ± 0.004 0.923 ± 0.006 0.936 ± 0.012 ◦/•/◦
ECGFiveDays 0.894 ± 0.046 0.776 ± 0.049 0.882 ± 0.037 0.898 ± 0.024 ◦/•/◦
FaceAll 0.603 ± 0.024 0.392 ± 0.041 0.540 ± 0.031 0.720 ± 0.028 •/•/•
FiftyWords 0.232 ± 0.031 0.179 ± 0.032 0.223 ± 0.016 0.328 ± 0.043 •/•/•
FordA 0.590 ± 0.020 0.708 ± 0.024 0.583 ± 0.023 0.686 ± 0.026 •/◦/•
FordB 0.580 ± 0.020 0.702 ± 0.016 0.578 ± 0.017 0.679 ± 0.016 •/•/•
Haptics 0.337 ± 0.048 0.330 ± 0.058 0.294 ± 0.069 0.428 ± 0.087 ◦/•/•
Italy 0.735 ± 0.039 0.762 ± 0.042 0.723 ± 0.039 0.786 ± 0.036 •/◦/•
Mallat 0.513 ± 0.039 0.361 ± 0.031 0.542 ± 0.013 0.767 ± 0.058 •/•/•
Melbourne 0.154 ± 0.025 0.106 ± 0.013 0.157 ± 0.024 0.431 ± 0.040 •/•/•
MoteStrain 0.819 ± 0.028 0.787 ± 0.049 0.796 ± 0.036 0.865 ± 0.044 •/•/•
OSULeaf 0.342 ± 0.056 0.339 ± 0.066 0.312 ± 0.050 0.496 ± 0.058 •/•/•
Phoneme 0.124 ± 0.018 0.143 ± 0.017 0.109 ± 0.015 0.161 ± 0.035 ◦/◦/•
Plane 0.619 ± 0.077 0.367 ± 0.088 0.519 ± 0.075 0.681 ± 0.109 ◦/•/•
PowerCons 0.619 ± 0.103 0.686 ± 0.092 0.622 ± 0.074 0.647 ± 0.061 ◦/◦/◦
SonyAIBO1 0.828 ± 0.040 0.841 ± 0.042 0.865 ± 0.044 0.905 ± 0.028 •/•/◦
SonyAIBO2 0.843 ± 0.031 0.804 ± 0.036 0.837 ± 0.027 0.846 ± 0.025 ◦/•/◦
Strawberry 0.715 ± 0.025 0.657 ± 0.035 0.735 ± 0.046 0.825 ± 0.033 •/•/•
SwedishLeaf 0.400 ± 0.049 0.230 ± 0.035 0.380 ± 0.045 0.657 ± 0.051 •/•/•
Symbols 0.625 ± 0.054 0.707 ± 0.040 0.487 ± 0.033 0.808 ± 0.032 •/•/•
TwoLeadECG 0.676 ± 0.048 0.648 ± 0.024 0.639 ± 0.043 0.793 ± 0.050 •/•/•
Wafer 0.894 ± 0.001 0.894 ± 0.001 0.894 ± 0.001 0.987 ± 0.008 •/•/•
Yoga 0.696 ± 0.031 0.617 ± 0.022 0.675 ± 0.017 0.801 ± 0.024 •/•/•
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while the remaining one is used as test data. The process is repeated 10-times, in
each round of the cross-validation, a different split plays the role of the test set.
We evaluated the predicted time series in terms of classification accuracy, i.e., the

ratio of correctly classified time series. We used paired t-test at a significance level
(?-value) of 0.01 in order to assess whether the observed differences between our
approach and its competitors are statistically significant or not.7

4.4 Results

Tab. 1 and Tab. 2 summarize our results in case when observations are missing uni-
formly at random and in case when observations are missing in a batch (entire sub-
sequences are missing), respectively. Additionally, Fig. 5 and Fig. 6 show the clas-
sification accuracy as a function of the ratio of missing observations for selected
datasets.
As one can see, in the vast majority of the datasets, TARNet outperforms all vari-

ants of FCN, including the ones that were designed to perform well in case of input
with missing values. In most cases, the difference is statistically significant, see
Tab. 1 and Tab. 2. In those few cases when TARNet performs worse than any of
the examined models, the difference is not significant statistically. The only excep-
tion is the FordB dataset in the case if the observations are missing in batches, see
Tab. 2. In this case, FCN with sparsity-invariant convolution performs significantly
better than TARNet. Taking all the results into account, we conclude that TARNet
is an extremely competitive baseline for the classification of time series with miss-
ing values. Most likely, this can be attributed to the powerful attention mechanism
that allows the transformer to focus on the given part of the time series and to the
fact that time series reconstruction is considered a surrogate task when TARNet is
trained so that the model is encouraged to learn an appropriate representation even
in the absence of a relatively large fraction of the observations.

7For each test time series C 9 , let us consider an indicator variable IM
9

which denotes whether
the prediction of model M is correct (’1’) or not (’0’) for that instance. The difference between the
accuracy of two modelsM1 andM2 may be written as

∑
9
IM1

9
−IM2

9
. Considering IM1

9
and IM2

9

as random variables, their difference is a random variable as well, and the difference between the two
models in terms of their accuracy can be seen as a sum of these random variables. According to the
central limit theorem, the aforementioned sumwill approximately follow a normal distribution in case
of sufficiently large test data.
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Figure 5: Classification accuracy as function of the ratio of missing observations
(averaged over 10 folds) in case when the observations are missing uniformly at
randoms.

4.4.1 Model parameters

According to our observations, FCN and its variants have approximately 4M pa-
rameters, whereas TARNet has only about 0.47M parameters. This indicates that
the advantage of TARNet can indeed be attributed to the transformer architecture
(including the attention mechanism) and not to the size of the model and that rel-
atively simple transformers should be considered as alternatives to convolutional
networks in case of time series classification with missing values.
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Figure 6: Classification accuracy as function of the ratio of missing observations
(averaged over 10 folds) in case when the observations are missing in batches.

5 Conclusions

In this paper, we focused on the classification of time series with missing values,
which is an understudied problem, despite its prominent applications in medicine,
industry and science. We compared the performance of a recent time series trans-
former, TARNet, with models that were designed to work with sparse and irregu-
larly sampled time series. To the best of our knowledge, ours is the first work that
studied the ability of transformers to classify time series with missing observations.
Our results show that TARNet is an exceptionally competitive baseline.
Due to the increasing use of multi-sensor systems, as well as the continued use of

unstructured manual data recording mechanisms, we expect more and more appli-
cations with time series containing missing values. Our results show that TARNet
is a reasonable default choice in such cases.
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Data Availability: The datasets used in this study are available from The UEA & UCR
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1 Introduction

A typical disjoint bilinear programming (DBLP) intends to minimize a non-convex
quadratic function over disjoint constraint sets defined by two bounded and non-
empty polytopes. Mathematically, it can be formulated as below,

min 5 (x, y) = cCx + dC y + xCWy,

s.t. x ∈ ^ = {x ∈ R=1 : Gx ≤ a, x ≥ 0}, G ∈ R<1×=1 , a ∈ R<1 ,

y ∈ _ = {y ∈ R=2 : Hy ≤ b, y ≥ 0}, H ∈ R<2×=2 , b ∈ R<2 .

(1)

As a subset of bilinear programming, DBLP is a mathematical optimization frame-
work that has gained significant attention due to its extensive applications in various
fields including game theory, facility location, numerical linear algebra and stochas-
tic processes; see [1]. More recent applications also cover DBLP related issues in
supply chainmanagement [2], [3], chemical engineering [4], two-dimensional pack-
ing [5], Markov decision process [6], [7], operations research [8], [9], etc. This paper
focuses on the field of imprecise decision analysis, in which a typical decision model
intends to solve many disjoint bilinear programs; see for example [10]–[15]. Each
program in general possesses no more than 100 dimensions, but may encounter
various degrees of degeneracy ranging from 1 to 5.
The unique challenge in solving DBLP lies in its bilinear objective function and

disjoint constraints. Based on the structural properties, various solution techniques
have been developed, amongwhich, twomajor deterministic approaches are cutting
plane methods and branch and bound methods.
In cutting plane methods, great effort has been devoted to the establishment of

deep cuts like concavity cuts [16], polar cuts [17], decomposition cuts [18], etc. Nev-
ertheless, the computational issue of degeneracy arising at a local solution can be
frequently confronted in real-world applications. The development of an effective
cut at a degenerate vertex has been long-standing with few computational results
[17], [19]–[21]. Recently, the concept of conservative cuts was first introduced in
[22]. From theoretical and computational viewpoints, a conservative cut neither
sacrifices the local optimum by pivoting to a non-degenerate neighboring vertex
[19], nor imposes too much computational load by generating a disjunctive cut [19],
[23]. Accompanying the concept, a distance-following algorithm was proposed in
search of a conservative cut, in which considerable computational effort is spent in
the projection operation for each qualified adjacent vertex with respect to an estab-
lished hyperplane. Additionally, the investigations of both a candidate’s neighbor-
hood and the distance between the degenerate vertex and an established hyperplane
appear time-consuming. In [21], several heuristic algorithms aiming to further im-
prove the computational performance for the location of a conservative hyperplane
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were proposed, among which, Algorithm 1 and 5 (will be referred to as Random
throughout the rest of this paper; seeAppendix), appeared quite promising in terms
of computing time. By utilizing the property of non-uniqueness of a conservative
hyperplane,Random is able to solve the bilinear models with low degrees of degen-
eracy arising in imprecise decision analysis, but may suffer from memory problems
when the degree of degeneracy rises.
Since confronting heavy storage load of memory can severely restrict its appli-

cation to a cutting plane method on PCs, we try to improve Random from the
perspective of memory by utilizing Pascal’s Triangle. With a static Pascal’s Trian-
gle table, we develop the inverse function of =2ℎ>>B4:_4=D<(=, :, 8) to derive the
serial number of a combination. It spares the need to save all combinations dur-
ing the search in order to keep away from the memory problem. The improvement
comes at a cost of computing time, and well illustrates the algorithmic space-time
continuum in data structure.
In what follows, Section 2 briefly describes the issue of degeneracy arising in the

local optimization phase of a cutting plane method for DBLP. Section 3 develops
the memory-efficient algorithm for the location a conservative hyperplane. Section
4 discusses the generation of required test instances, following which Section 5 re-
ports their computational performance based on the programs in imprecise decision
analysis. Section 6 concludes our paper.

2 Degeneracy

The essential solution property of DBLP exploited in the local optimization phase of
almost all cutting plane methods is that even though 5 (x, y) is not quasi-concave,
the global optimizer, (x∗, y∗), is attained at a vertex of ^ × _ , which means that x
and y are vertices of ^ and _ , respectively [24].
To facilitate our presentation, denote by ^8 the original feasible region ^ when

8 = 0, or its subset obtained after 8 cuts have been introduced.

Definition 2.1. A local minimizer of 6(·) over ^8 is a vertex, xℓ<, such that 6(xℓ<) ≤
6(x) for each x ∈ BX (xℓ<) ∩ ^8 , where BX (xℓ<) is a X-neighborhood around xℓ< in
^8 , and 6(xℓ<) is the corresponding local minimum.

Definition 2.2. A local star minimizer of 6(·) over ^8 is a vertex, xℓB<, such that
6(xℓB<) ≤ 6(x) for each x ∈ N (xℓB<), where N(xℓB<) denotes the vertices adjacent
to xℓB< in ^8 , and 6(xℓB<) is the corresponding local star minimum.

Since 5 (x, y) is not quasi-concave, a local star minimum is not necessarily a local
minimum, and thus the development of a cut from a local star minimizer cannot take



A memory-efficient algorithm for conservative cuts in DBLP 23

effect as usual for thosewith quasi-concave objective functions. Moreover, for DBLP
(1), cuts involving variables associated with both ^8 and_ may destroy their special
structure, and thereby fail the existing efficient algorithms to solve sub-problems.
As a result, to develop a cut that involves only the x-variables and yet is convergent
from a local minimizer, a concept more than Definition 2.1, 2.2 is necessary [25].

Definition 2.3. A vertex (x8 , y) in DBLP is a Pseudo-Global Minimizer (PGM) if
5 (x8 , y) ≤ 5 (x, y) for each x ∈ BX (x8) ∩ ^8 and for each y ∈ _ .

For DBLP (1), a vertex is adjacent to (x8 , y) if and only if it is either of the form
(x: , y) or (x8 , y:) where x: ∈ N^ 8 (x8) and y: ∈ N_ (y). For a PGM, further im-
provement may be achieved by an idea analogous to that suggested by Definition
2.2, i.e., we can examine those vertices adjacent to x8 for a better solution. A so
derived PGM can have the advantages from both a local minimum and a local star
minimum. Algorithm 1, originated from [24] to identify a PGM, (x8 , y), is cur-
rently acting as a building block in the local optimization phase of a cutting plane
method.

Algorithm 1: Augmented Mountain Climbing Method
Input: W, c, d, ^8 , _ , ỹ ∈ _ .
Output: (x8 , y).

1 repeat
2 x̃ = argminx∈^ 8 5 (x, ỹ); ỹ = argminy∈_ 5 (x̃, y);
3 until x̃ converges;
4 construct N^ 8 (x̃);
5 if ∃x̌ ∈ N^ 8 (x̃) such that 5 (x̌, y∗) = miny∈_ 5 (x̌, y) < 5 (x̃, ỹ) then
6 go to line 2 with ỹ = y∗;

7 terminate with (x8 , y) = (x̃, ỹ) as a PGM.

In Algorithm 1, it turns out that x8 in a PGM, (x8 , y), derived in line 7, can be
degenerate. This will result in the inevitable computational difficulty in the estab-
lishment of a valid cut in the global optimization phase since wewill have more than
=1 cutting points along the edges emanating from x8 , not tomention its effectiveness
and efficiency.
Degeneracy can be further classified into weak degeneracy and strong degener-

acy. In a two-dimensional (2D) program, as has always been done in the literature,
it is only possible to introduce weak degeneracy by bringing in some redundant
constraints; see Example 1.
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Example 1. As shown in the left sub-figure of Figure 1, suppose that the reduced
feasible region is defined by P ∩ Q as

P =
{
(G1, G2)C : 0 ≤ G1, G2 ≤ 1

}
,

Q =

{
(G1, G2)C : 4G1 + G2 ≥ 1,

4

3
G1 + G2 ≤ 1

}
,

where P and Q can be regarded as the constraints to define the original feasible
region and introduced cuts, respectively.

A B

CO

x2

x1

M N

A

B

E D
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O

Figure 1: Weak Degeneracy versus Strong Degeneracy.

The feasible region in Example 1 is bounded by three bold lines. Apparently,
the degeneracy at vertex G can be resolved by removing two redundant linear con-
straints, G1 ≥ 0 and G2 ≤ 1.
Intuitively, weak degeneracy occurs simply because of redundant constraints, and

can be avoided by carrying out some pre-processing procedure [26], [27]. For any
2D program, barring the extreme case where the feasible region consists of a single
point, only weak degeneracy exists, i.e., more than two linear constraints intersect
at a single point.
In Figure 1, a three-dimensional (3D) instance in the right sub-figure illustrates

strong degeneracy, in which GIJ acts as an introduced cut to remove a portion of
the feasible regionUGIJ. As a result, there are four edges emanating from G in the
reduced feasible region. Having derived their respective maximal step-sizes, we can
hardly expect four cutting points to be coplanar, thus leading to the computational
difficulty in the generation of a valid cut from G in R3. Note that the removal of
any constraint cannot take effect in the resolution of strong degeneracy because it
changes the feasible region.
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3 Conservative Cuts

3.1 Basic Knowledge

According to our experience, strong degeneracy is frequently confronted in DBLP
(1) with multi-global minima. With one of the global minima derived as the cur-
rent best objective value, a cut can at most reach another global minimum and may
induce degeneracy therein. Consequently, it is essential to develop an efficient and
effective approach for establishing a valid cut from a degenerate vertex. A promising
technique specially designed for this purpose is conservative cuts.
In what follows, we will omit the superscript 8 in x8 and ^8 given a clear context.

That is, in the 8Cℎ iteration, we simply take x as x8 in a PGM, (x8 , y), provided by
Algorithm 1, and ^ as ^8 , the reduced feasible region. Besides, the procedure in
search of a conservative hyperplane is formulated in R= rather than R=1 as in (1).
Geometrically, for a polytope defined by ^ in R=, a degenerate vertex x has more

than = incident edges. During the development of a cut, say, a polar cut, given the
appropriate step-sizes along their positive or negative extensions, the probability
that all cutting points are coplanar is fairly low. We thus have more than = points
in R= to establish a cut that should not exclude any potential optimal solution [22].
Denote by Δ = N^0 (x) = {x1, x2, . . . , x=, x=+1, x=+2, . . . , x=+f} the set of all

vertices adjacent to x, by f (f ≥ 1) the degree of degeneracy, by Ω (Ω ⊂ Δ) the
set containing = vertices selected from Δ to establish a hyperplane Π, and by Ω the
set of adjacent vertices that lie to the same side of Π as x does.

Definition 3.1. In R=, given a degenerate vertex, x, of a polytope, a conservative
hyperplane, Π∗, is defined as the hyperplane generated by = vertices neighboring to x
such that Ω = ∅.

Definition 3.2. In R=, at a degenerate vertex, x, of a polytope, a conservative cut used
to cut off x is the inequality generated by a conservative hyperplane.

3.2 Pascal’s Triangle

Random, by utilizing implicit enumeration, acts as a promising procedure in search
of a conservative cut. AlthoughRandom selects a candidate randomly in exchange
for one of the vertices establishing the current hyperplane, it remains inevitable to
keep a record on those already visited combinations. Otherwise, we may sacrifice
the computing time for visiting the same combination and even step into infinite
loops. In MATLAB, the function =2ℎ>>B4: (\,  ) suits well for this purpose. It
returns a matrix containing all possible combinations of the elements of vector \
taken  at a time.
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Supposewe confine an instance to the dimension of 125, which is sufficiently high
for programs in imprecise decision analysis. To figure out a conservative cut, a PC
equipped with 8G memory will throw an error such as “Requested 234531275G5
(8.7GB) array exceeds maximum array size preference (8.0GB)” when Random
carries out =2ℎ>>B4: (\, 5) where \ = [1, 2, . . . , 125]C . Though we can partially
resolve this issue by configuring “MATLAB array size limit” in “Workspace”, the
generation process will run extremely slow and cause MATLAB to become unre-
sponsive. This is reasonable because =2ℎ>>B4: (\, 5) intends to enumerate a total
of 234531275 combinations. They will then serve as the indices to locate corre-
sponding adjacent vertices in Δ to establish Ω. The number of combinations of
=2ℎ>>B4: (\,  ) increases particularly fast as  rises. We can hardly expect each
PC is equipped with 8G memory so that the aforementioned memory problem can
severely hinder Random’s application.
To circumvent this issue, we introduce a critical technique that is able to take

effect throughout the implementation of our memory-efficient approach. To avoid
building the full combination array in memory like what =2ℎ>>B4: (\,  ) does,
we take advantage of the function =2ℎ>>B4:_4=D<(=, :, 8) with an enumerating
selection of the 8Cℎ combination.
Consider an example for all six combinations of�2

4 , i.e., (1, 1, 2), (2, 1, 3), (3, 1, 4),
(4, 2, 3), (5, 2, 4), and (6, 3, 4), with the first entry as the corresponding serial num-
ber. The 3A3 combination of�2

4 derived by =2ℎ>>B4:_4=D<(4, 2, 3) is (1, 4), the 5Cℎ
combination by =2ℎ>>B4:_4=D<(4, 2, 5) is (2, 4), etc. By referring to the Pascal’s
Triangle table, we need to develop its inverse, 8=E4AB4_=2ℎ>>B4:_4=D<(=, :, c),
such that, given an appropriate combination c, we can derive its serial number.
By “appropriate”, we mean herein that all elements in c are organized in accor-
dance with their natural order. Still with the previous example, the output for
8=E4AB4_=2ℎ>>B4:_4=D<(4, 2, [3, 4]) is 6. The rationale can be found in Exam-
ple 1 with detailed explanations.

Example 1. Here comes an example with a detailed workflow for illustration. We
list only the necessary rows of %0B20; (9) provided by MATLAB for our purpose;
see Table 1.
We take the following procedures to figure out the serial number corresponding to

the combination, c = [3, 5, 6, 8, 9], among all combinations of choosing 5 elements
out of \ = [1, 2, . . . , 9]C . For the first element 3, two preceding elements are 1 and
2. First, for 1, there are eight elements, i.e., 2, 3, . . . , 9, left for the rest four positions,
and therefore it possesses�4

8 = 70 combinations in total. Once the four elements are
selected, their order is fixed in consistence with the natural order. Next, for 2, there
are seven elements, i.e., 3, 4, . . . , 9, left for the rest four positions, and therefore it
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Table 1: Pascal(9)

1 1 1 1 1 1 1 1 1
1 2 3© 4 5 6 7 8 9
1 3 6 10© 15 21 28 36 45
1 4 10 20 35© 56 84 120 165
1 5 15 35 70© 126 210 330 495

possesses �4
7 = 35 combinations in total. When it comes to 5, we need to count

the number of combinations starting with [3, 4, . . .]. By an analogous logic, it is
�3
5 = 10 in total. Finally, we come to 6, which has �2

3 combinations with [8, 9] as
the last one. As a result, the output of 8=E4AB4_=2ℎ>>B4:_4=D<(9, 5, [3, 5, 6, 8, 9])
is �4

8 +�4
7 +�3

5 +�2
3 = 70 + 35 + 10 + 3 = 118, as indicated by the circled numbers.

Note that it is unnecessary to handle [5, 6] and [8, 9] in [3, 5, 6, 8, 9] because they
are two pairs of consecutive natural numbers.

Example 1 illustrates that by choosing appropriate numbers from a static Pas-
cal’s Triangle table, we can readily derive the serial number of an appropriate com-
bination. Generally speaking, it is unnecessary to save a complete Pascal’s Triangle
table in memory because on the one hand, we could rarely expect such an ugly de-
generate problem with f > 5. On the other hand, since a Pascal’s Triangle table is
symmetric, the storage is so cheap that it can serve as a very efficient and effective
means of deriving the serial number of some combination of choosing  out of #
elements.

3.3 Implementation

With 8=E4AB4_=2ℎ>>B4:_4=D<(), denote by# the serial number of an appropriate
combination of choosing  out of # elements, by v the normal vector of Π∗, by
G and b the parameters in the constraint set, Gx ≤ b, by & a structure to save
the serial numbers of those Ωs whose candidates for exchange have already been
exhausted; and by & a structure array to save those Ωs with the same |Ω|, where
| · | is the cardinality of a set. The so constructed structure array Ω indexed by |Ω|
is used to accelerate the search among candidates. Moreover, there exists another
structure, 01=>A<0;, which saves thoseΩs constituting (close to) singular matrices.
Such Ωs are considered inappropriate to establish hyperplanes.
Algorithm 2 realizes the memory-efficient randomized algorithm with details.

Notice that it is the essential property of non-uniqueness of a conservative hyper-



28 X. Ding, C. Liu, J. Ma, X. Chen, and Q. Sun.

plane that enables Random to surpass its other counterparts in [21], [22] and be
competitive with Algorithm 2 in terms of different fs.

Algorithm 2: Conservative Hyperplane (Improved Randomized)
Input: Δ, x
Output: v, Ω

1 set v = ∅;
2 while v = ∅ do
3 randomly extract# from &ℓ where ℓ = argminℓ′{ℓ′ |&ℓ′ ≠ ∅};
4 if ℓ = −1 then
5 randomly collect = vertices from Δ into Ω to set up a Π;
6 if |Ω| = 0 then return v of Π∗ and Ω;
7 if# ∉ & ∪& ∪ 01=>A<0; then
8 insert# of Ω, and all x: ∈ Ω into & |Ω | ;

9 else
10 recover Ω corresponding to the extracted #;
11 randomly select x 9 ∈ Ω, and set Ω = Ω\{x 9 };
12 if |Ω| = 0 then move# of Ω from &ℓ to &;
13 foreach x: ∈ Ω do
14 exchange x 9 with x: to set up Ω′ and Π′;
15 if |Ω′ | = 0 then return v of Π∗ and Ω′;
16 if# ∉ & ∪& ∪ 01=>A<0; then
17 insert # of Ω′, and all x: ∈ Ω′ into & |Ω′ | ;

In Algorithm 2, in order to validate the availability of one Ω, it is necessary to
check&,&, and 01=>A<0; first; see line 7, 16. We can save in&,& and 01=>A<0;
only the serial number associated with each Ω rather than specific elements. This
can greatly alleviate the usage of memory since it is unnecessary to visit all combi-
nations in search of a conservative hyperplane. Otherwise, it would become quite
unclear on the memory size we need to allocate in advance, or an arbitrary alloca-
tion may simply lead to “out of memory”; see line 3, 7, 12 and 16. Additionally,
the utilization of actual combinations will compel the program to compare a sorted
candidate with each entry, e.g., 8B<4<14A () in MATLAB.The comparison of vectors
may also slow down the computations.
Several other aspects need to be further clarified. Firstly, a normal vector, v, exists
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provided thatΩ is well-defined to establish a hyperplane, i.e.,Ω is not in 01=>A<0;,
otherwise v is kept empty. As a result, the only stopping criterion is either |Ω| = 0
or |Ω′ | = 0 regardless of v; see line 6, 15. One exception is that, in line 12, |Ω| = 0
indicates that all candidates for exchange regarding some Ω have been exhausted
so that we should move it from& to &. Secondly, although it is suggested that Ω or
Ω in Algorithm 2 contain qualified adjacent vertices, we actually take advantage
of their row indices in Δ to indicate their positions and then extract them. By doing
so, we intend to relieve the storage load of memory. Thirdly, in line 4, ℓ = −1
means that no Ω exists for search, which may arise provided that all available Ωs
have been exhausted or when initializing the entire algorithm. Finally, in line 7, 16,
each operation inserts into& one serial number and appends to it a set containing all
qualified vertices. The algorithm extracts these candidates one by one for exchange
until the set becomes empty (line 11, and line 13 through 17).

4 Test Instances

Algorithm 3 is used to generate a test instance with = + f vertices adjacent to a
f-degenerate vertex x in R=.

Algorithm 3: Test Instances
Input: =, f
Output: Δ

1 generate a polytope with = + 1 points {x1, x2, . . . , x=, x=+1} in R=;
2 fix one point, say, x=+1 as x, and collect the remaining into Δ;
3 while |Δ| ≤ = + f do
4 select x8 ∈ Δ;
5 foreach x 9 , 9 ≠ 8, adjacent to x8 do
6 generate a new point x |Δ |+ 9 and set Δ = Δ ∪ {x |Δ |+ 9}

x |Δ |+ 9 =
∑
:≠ 9

U 9:x: , U 9: ∈ (0, 1), : ≠ 9 ,
∑
:≠ 9

U 9: = 1;

7 set Δ = Δ\{x8}, and re-order so that Δ = {x1, x2, . . . , x |Δ |};
8 randomly select = + f points from Δ so that Δ = {x1, x2, . . . , x=+f};
9 foreach x8 ∈ Δ do randomly extend or shorten xx8 ;

In Algorithm 3, between line 3 and 7, the while loop will not stop until the
number of elements in Δ exceeds = + f, the required number of adjacent vertices.
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This provides us with great flexibility in the generation of a degenerate instance,
despite the cost of some excessive computational effort. In line 6, the operation
is in fact the convex combination of x8 with all the remaining x:s except x 9 for
each 9 ≠ 8. Therefore, we generate = − 1 new points in total. Together with x, a
hyperplane can be generated to remove x8 , and the number of vertices adjacent to
x becomes |Δ| + = − 2. In line 9, by randomly extending or shortening xx8 , there
may still exist more than = points on some hyperplane. However, a test instance
is considered inappropriate only if all adjacent vertices lie on the same hyperplane.
By carrying out the critical operation in line 9, this could seldom happen.

x
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Figure 2: Illustration of Algorithm 3.

Algorithm 3 can be illustrated by a 3D example in Figure 2, where = = 3 and
f = 1. By Figure 2, each construction of a cut to remove some x8 will generate one
more point adjacent to x. As a result, we are able to generate any number of points
adjacent to x, regardless of how high the degree of degeneracy is.

5 Numerical Results

In order to evaluate the performance of two randomized algorithms, especially Al-
gorithm 2, we take advantage of Algorithm 3 to generate the required test in-
stances and carry out the experiments on a PC equipped with Intel(R) Core(TM)
i5-6267U CPU @ 2.90GHz and 4G memory. We deliberately impose a limit of 60
seconds over the total computing time for each instance, which appears reason-
able for an interactive decision analysis software package. For each combination of
dimension (=) and degree of degeneracy (f), we generate 24 test instances and av-
erage their corresponding results with respect to total computing time, the number
of performing =2ℎ>>B4:_4=D<(=, :, 8), etc. In the following, we intend to evaluate
the performance of two algorithms for test instances with low f and =, high f and
low =, and low f and high =, respectively. The exception is for test instances with
high f and = due to the memory issue raised by =2ℎ>>B4: (=, :). With the current
environment, we can only try to increase either = or f, but not both, as will be
demonstrated by the experiments.
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5.1 Low Degree of Degeneracy and Dimension

Figure 3 illustrates the performance for test instances with low f (f = 1, 2, 3) and
n (= = 30, 35, . . . , 100). Three sub-figures on the first row of Figure 3 illustrate
the performance of two algorithms regarding f = 1, 2, 3, respectively. It can be ob-
served that Random runs faster thanAlgorithm 2most of the time. Nevertheless,
the gaps in terms of computing time are rather small, say, within only around 1.5
seconds. Two sub-figures on the second row of Figure 3 illustrate their individ-
ual performance with respect to f = 1, 2, 3. For both algorithms, the computing
time increases exponentially as = rises given f = 2, 3, whereas the performance of
Random keeps relatively steady when f = 1, as apposed to that of Algorithm 2.
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Figure 3: Performance of Algorithm 2 and Random (Low f and =).

The fact that Random runs faster than Algorithm 2 in the current setting ap-
pears reasonable due to the sufficient memory. Random can take advantage of
=2ℎ>>B4: (\,  ), which generates all possible combinations and save them in mem-
ory. However, as = or f increases, the memory problem will emerge.
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5.2 High Degree of Degeneracy and Low Dimension

Figure 4 illustrates their results for instances with high f (f = 4, 5) when = goes
from 30 to 100. Two sub-figures on the first row of Figure 4 demonstrate their
performance. Provided f = 4, Random can run up to around = = 100 before
its computing time exceeds the pre-specified time limit, or the test instance incurs
“out of memory”, whereas provided f = 5, similar situations take place around
= = 75. To some extent, this demonstrates that each increase in f can dramatically
impact the computational performance of Random. Meanwhile, the computing
time of Algorithm 2 is acceptable. By two sub-figures on the first row of Fig-
ure 4, the performance of Algorithm 2 dominates that of Random for f = 4, 5.
Two sub-figures on the second row of Figure 4 illustrate the number of performing
nchoosek_enum(n,k,i) and the number of solving linear equations, respectively, re-
garding Algorithm 2 when f = 4, 5. In the bottom-left sub-figure, the numbers of
performing nchoosek_enum(n,k,i) are competitive when = ≤ 70. However, when
= ≥ 75, a clear increase in the number for f = 5 can be observed, as compared with
that for f = 4. Besides, a higher f, in general, corresponds to a larger number of
solving linear equations; see the bottom-right sub-figure of Figure 4.
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Most computing time ofAlgorithm 2 is spent in =2ℎ>>B4:_4=D<(=, :, 8) to gen-
erate serial numbers in exchange for memory. By contrast, solving linear equations
only accounts for a very small portion of total computing time. As f rises, the com-
puting time rises sharply. Nonetheless, the impact from the rise in = on the total
computing time seems much less when f is not that high. Additionally, the higher
the f, the more number of =2ℎ>>B4:_4=D<(=, :, 8) Algorithm 2 performs. The
trend becomes much clearer as = rises. This is reasonable since the number of can-
didates in search of a conservative hyperplane increases exponentially. By contrast,
8=E4AB4_=2ℎ>>B4:_4=D<(=, :, c) costs almost nothing since the Pascal’s Triangle
table is static.

5.3 Low Degree of Degeneracy and High Dimension

Figure 5 illustrates their performance for instances with low f (f = 1, 2, 3) and
high = (= = 100, 105, . . . , 250). For the purpose of comparison, it is impossible
to perform Random with respect to these dimensions when f = 4, 5 due to the
pre-specified time limit or “out of memory” issue; see also the previous illustration
when = ≤ 100. It can be observed that for f = 1, their performance overlaps most
of the time. Nevertheless, for f = 2, 3, Algorithm 2 outperforms Random across
all most dimensions, which demonstrates its ability and qualification in handling
problems with higher dimensions. Note also that the gaps in computing time for
f = 1, 2 are relatively small, showing two algorithms are very competitive.

6 Conclusions

This paper investigates an improved randomized algorithm, i.e., Algorithm 2, in
addressing the memory challenge associated with the previously developed search-
ing process, Random, for a conservative cut. By leveraging the inherent structure
of Pascal’s Triangle, the memory-efficient Algorithm 2 well illustrates the algo-
rithmic space-time continuum in data structure.
Computational experiments demonstrate that Algorithm 2 is particularly bene-

ficial to programs characterized by high = or f, whereas Random is more suitable
for programs with low f. However, once the memory problem appears, Random
will become less preferred so that Algorithm 2 should come into play. By refin-
ing Random, we anticipate its application to a cutting plane method in imprecise
decision analysis where DBLP plays a pivotal role.
What should be noted is that the Matlab environment utilized herein is an inter-

preter compiler, which slows down the test significantly unless a special-purpose
command line was used in the compilation. To accelerate, an even better approach
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Figure 5: Performance of Algorithm 2 and Random (Low f and High =).

is to develop the entire cutting plane method using C/C++.
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Appendix

In R=, suppose that in a polytope, a degenerate vertex, x, has been located with
= + < adjacent vertices, Δ = {�1, �2, . . . , �=, �=+1, �=+2, . . . , �=+<}. By randomly
selecting = points, we can obtainRΘ to establish a hyperplaneΩ andS

Θ̂
with |S

Θ̂
| =

: where | · | is the number of elements in a set. For each possible : , we set up a queue,
&: , to save all RΘs with |S

Θ̂
| = : that have been found but not yet utilized as the

starting set of points for the branching process. Similarly, we establish another
queue, &: , to save all RΘs with |S

Θ̂
| = : that have already been utilized for the

branching process.

Algorithm 4: General Algorithm
Input: Δ, x
Output: RΘ

1 randomly choose = points from Δ as RΘ and establish Ω with RΘ;
2 update with ℓ = |S

Θ̂
| = : , and save RΘ in &ℓ ;

3 while ℓ ≠ 0 do
4 extract one RΘ from &ℓ ;
5 update with &ℓ = &ℓ/{RΘ}, &ℓ = &ℓ ∪ {RΘ};
6 ℓ = Algorithm 5(RΘ);

7 return RΘ.

Algorithm 5: Branching Algorithm (Randomized)
Input: RΘ

Output: ℓ
1 randomly choose one '8 in RΘ and one ( 9 in S

Θ̂
;

2 set RΘ′ = {RΘ/{'8}} ∪ {( 9};
3 if RΘ′ ∉ &:′ ∪&:′ ,

(
|S

Θ̂′ | = : ′
)
then save RΘ′ in &:′ , and set ℓ = : ′;

4 else ℓ = argmin<{< |&< ≠ ∅};
5 return ℓ.
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Abstract. We consider words over fixed alphabet. A word D is said to be
primitive if it cannot be expressed as a nontrivial power of another word. For
a positive real U > 1 the U-power of a word E is defined by EU = E bUc ? where
? is a prefix of E of length

⌊
(U−bUc) |E |

⌋
. We prove that for any primitive word

D and for any U > 1 the number of distinct U-powers in D: is asymptotically
equal to 1

U
|D: | for : → ∞.

Key words and phrases: repetitions, combinatorics on words

1 Introduction

We recall the basic definitions and notations; see, e.g., [1] Let Σ denote a finite
alphabet. The elements of Σ are called letters. We denote by Σ∗ the set of finite
words over Σ and by Y the empty word. The set Σ∗ is a monoid with concatenation.
A factor (subword) of a word is its fragment consisting of a number of consecutive
letters. More precisely, a word F is a factor of a word D if D = GFH for some words
G, H. We say that F is a prefix (resp. suffix) of D if G = Y (resp. H = Y). The length of
a word F, that is, the number of letters of F, is denoted by |F |.

For a word F and a non-negative integer = the =th power of F is defined induc-
tively as F= = FF=−1, where F0 = Y. Words of the form F2 = FF are called
squares. The maximum number of different square factors were studied by many
authors, see [2]–[4].

A word D is said to be primitive if it cannot be expressed as a nontrivial power of
another word. Patawar and Kapoor [5] studied the density of distinct squares in a
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repetition of a primitive word. They proved that for a primitive word D the density
of distinct squares in a repetition D: converges to 1

2 for : → ∞. The aim of this note
is to investigate the asymptotic behaviour of the number of distinct U-powers in a
repetition for any U > 1.

For a positive real U > 1 the U-power of a word E is defined by EU = E bUc ? where
? is a prefix of E of length

⌊
(U − bUc) |E |

⌋
. We note that |EU | = bU |E |c. For example,

the 4-power of the word 012 is 01201201 (4 is the Euler’s number).
We prove that for any primitive word D and for any U > 1 the number of distinct

U-powers in D: is asymptotically equal to 1
U
|D: | for : → ∞.

2 Results

The main result of this note is the following.

Theorem 1. Let D be a primitive word and : be a positive integer. Let �U (D:) denote
the number of distinct U-powers in the word D: . Let dU (D:) be the density of distinct
U-powers in the word D: . Then we have

lim
:→∞

dU (D:) = lim
:→∞

�U (D:)
|D: |

=
1

U
. (1)

The following lemma shows that arbitrary sufficiently long subword of D: has a
unique representation.

Lemma 2. Let D be a primitive word and let F = 01 · · · 0= be a subword of D: . Fur-
thermore, let D be a subword of F. Then, there are unique words G, H, and a positive
integer 8 ≥ 1 satisfying F = GD8H where |G |, |H | < |D |.

Proof. To contrary, let us suppose that the word

F = GD8H = G′D 9 H′ (8 ≠ 9 or G ≠ G′ or H ≠ H′)

is a counterexample for the statement of the lemma of minimal length. Then we
have G = Y or G′ = Y, otherwise the word 02 · · · 0= is shorter counterexample. So,
let us suppose that G′ = Y and let us consider the counterexample

F = GD8H = D 9 H′ (G ≠ Y).

In this case D appears in the ”middle” of DD which yields to a contradiction, see, e.g.
[4] or Lemma 2.1 in [5].
In the remaining case, when the counterexample is F = D8H = D 9 H′, we clearly have
8 = 9 and H = H′, which is a contradiction, too. �
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As a consequence of the previous lemma, we have the following observation. Let
D be a nonprimitive word of length C and let D: = 11 · · · 1C · · · 1C : . Then all the
subwords F of D: whose first term is 18 , 1 ≤ 8 ≤ C, and whose length satisfies
|F | ≥ 2|D | − 1, are distinct. The proof follows from the fact that the conditions
above imply that D is a subword of F.

Definition 1. We call a subword F of D: ”long” if it is an U-power of a word I for
which we have bU |I |c − |I | ≥ |D | and |I | ≥ |D |, otherwise we call it ”short”.

We note that for a given nonprimitive word D and a real number U > 1 there
exists a constant =0 such that for any = ≥ =0 we have bU=c − = ≥ |D | and = ≥ |D |.
Let us denote by 5 (D, U) the minimal value of =0 satisfying the conditions above
and which is concurrently divisible by |D |.

We estimate the number of short and long subwords of D: . For a nonprimitive
word D = 11 · · · 1C let %U,;>=6 (D: , 8) (resp. %U,Bℎ>AC (D: , 8)) denote the set of long
(resp. short) prefixes of the word 1818+1 · · · 1CD:−1.

If we consider all short prefixes of 1818+1 · · · 1CD:−1 we get the upper bound��%U,Bℎ>AC (D: , 8)
�� ≤ 5 (D, U). (2)

In what follows we show that long subwords of D: are U-powers of some word,
which length is a multiple of |D |.

Lemma 3. Let D = 11 · · · 1C be a primitive word and G = 11 · · · 18−1, H = 18 · · · 1C .
Let F be an U-power of a word I = HG? (? ∈ Σ∗). If F is a long subword of D: then |I |
is divisible by |D |.

Proof. From the conditions of the lemma, we find that HG?HG is a subword of D: .
As D = GH, using the Lemma 2, we get that ? = (HG)< for some positive integer <.
Then I = (HG)<+1 and the assertion follows. �

Proof of Theorem 1. Consider the longest word F of the set %U,;>=6 (D: , 8). It means
that F is an U-power of a word I for that

|I | ≥ 5 (D, U), |I | is divisible by |D | and (8 − 1) + b|IU |c ≤ : |D |.

By Lemma 3, we have that |I | = ; |D | for a positive integer ;. Therefore,

(8 − 1) + bU; |D |c ≤ : |D |. (3)

As ; is the largest positive integer satisfying (3), there hold the following inequalities

:

U
− 2 < ; <

:

U
+ 1. (4)
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For the cardinality of the set %U,;>=6 (D: , 8) we have the upper bound ; and the lower
bound ; − 5 (D, U)/|D | which together with the inequalities (4) produce the estima-
tions

:

U
− 2 − 5 (D, U)

|D | <
��%U,;>=6 (D: , 8)

�� < :

U
+ 1. (5)

Taking into account that

|D |∑
8=1

|%U,;>=6 (D: , 8) | < �U (D:) ≤
|D |∑
8=1

(
|%U,;>=6 (D: , 8) | + |%U,Bℎ>AC (D: , 8) |

)
by (2) and (5) we get that

|D |
(
:

U
− 2 − 5 (D, U)

|D |

)
< �U (D:) < |D |

(
:

U
+ 1 + 5 (D, U)

)
and the limit (1) follows by squeeze theorem. �

We remark that Theorem 1 is also valid for nonprimitive D, as such D is EB for an
integer B and a primitive E, and D: = EB: .

3 Concluding remark

Throughout of this section, we assume that D is a primitive word. We have proved
that the density of distinct U-powers in the word D: is 1/U. It is worth to mention
that if we extend our study to the case U = 1, we get that the density of distinct U-
powers in the word D: (which is a function of variable U) is discontinuous in U = 1
under the assumption that |D | ≥ 2. The proof of the fact that the density of distinct
subwords in the word D: is |D | is left to the reader as an exercise.
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Abstract. Programmers can benefit from static source code analysis tech-
niques in various ways: they can understand their code better, test it more
effectively, debug it more efficiently, and so on. However, they often face the
challenge of discovering how to reproduce faulty executions that cause run-
time errors. The term symbolic execution refers to a static source code analysis
method that can help with this challenge. In this paper, we are showing a sym-
bolic execution-based analysis method to find the source of a runtime error.
The method uses a control-flow graph to select the execution paths reaching
the targeted runtime error. The algorithm is implemented as part of the Refac-
torErl static program analysis and transformation framework.

Key words and phrases: static analysis, fault localization, symbolic execu-
tion, Erlang

1 Introduction

Localising the reason for faulty behaviours is a crucial activity in software develop-
ment and maintenance that aims to identify the exact locations of program faults
that cause failures. Faults are defects or errors in the source code that may produce
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incorrect or unexpected behaviour when executed. Fault localization is often very
tedious, costly and time-consuming, as it requires developers to examine a large
amount of code and test cases to find the root cause of failures. Fault localization
also depends on developers’ skills, knowledge, experience and intuition. To reduce
manual effort and improve the efficiency of fault localization, various automated
techniques have been proposed that leverage different sources of information.
Symbolic execution [1], [2] is a technique that can be used for fault detection

by exploring different execution paths of a program with symbolic values instead of
concrete values. Symbolic values represent a range of possible values that can satisfy
certain constraints. Symbolic execution can find errors that are hard to detect with
conventional testing methods, such as buffer overflows, division by zero errors, etc.
Symbolic execution works by maintaining a symbolic state and a path condition

for each execution path. The symbolic state contains the symbolic values of vari-
ables. The path condition contains the constraints on the symbolic values that are
derived from branch conditions along the path. Symbolic execution uses a con-
straint solver to check the feasibility of each path and to generate concrete inputs
that can trigger faults.
The aim of our work is to help Erlang developers in debugging processes to re-

produce a runtime error. We would like to use and extend the static analyser frame-
work of RefactorErl with new algorithms to support this fault localisation process.
We build our algorithm on the top of the intermediate source code representation of
the tool, the so-called Semantic Program Graph [3] and heavily use its control flow
analysis [4] backend. Besides RefactorErl we use the Z3 [5] SMT solver and build a
direct symbolic execution engine for Erlang programs.
The paper is structured as follows: In Section 2, we define the problem we want

to solve through examples. In Sections 3 and 4 we present our algorithm and a
few examples to demonstrate how it works. In Section 5 we briefly introduce the
tool RefactorErl and the built prototype implementation. Finally, Sections 6 and 7
introduce some related work and concludes the paper.

2 Problem definition

In general, the line-reachability problem in static analysis is a variant of the more
general problem of control flow analysis, which aims to determine the flow of con-
trol in a program. Control flow analysis is essential for many program analysis
tasks, including optimization, program verification, and testing.
To solve the line-reachability problem with static analysis, we need to construct

a control flow graph (CFG) of the program, which represents the program’s control
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flow structure. Once we have the CFG, we can use standard algorithms, such as
depth-first search or data-flow analysis, to determine whether a given line of code
is reachable or not.
This problem can be generalized to finding a specific path in a program that causes

it to enter a particular state. This can be useful for debugging or regression testing.
For example, if we know that a line in the code can cause an error, finding the path
- and the conditions and input values that lead to it - can make it easier to fix.
Let us use a division by zero as a simple example of the bug we want to find in

the next examples.
The analysis begins from the user-specified target line that may cause an error.

On the function level, we use forward symbolic execution to find a possible path
from the start of the function to the target line. Based on the function’s control-flow
graph, we use depth-first traversal to find a path to the target expression. When we
see a conditional branch, we update a set of conditions for the current path. We can
use an SMT solver to check if the path we explored is feasible.

1 -module(example1).
2 -export([eg1/2]).
3 eg1(X, Y) ->
4 if
5 X * Y > 0 ->
6 X / Y;
7 true ->
8 Z = X * Y,
9 X / Z
10 end.

Figure 1: An example that may lead to runtime error

Let us consider the Erlang code in Figure 1. Suppose that a division by zero error
has occurred during the execution in line 9. Our goal is to find out what set of
inputs can trigger the line with the error. First, we build the control-flow graph
of the function. Exploring it from the start node we can observe that the graph
splits at the branch of the if expression. In order to find an execution path to the
target line, the first guard of the if expression has to be evaluated as false and the
second guard has to be evaluated as true. In our example, the second guard of the
if expression is the default “true”, which means otherwise. Therefore our constraint



Supporting the debugging of Erlang programs by symbolic execution 47

set contains in this case the negation of the first condition (¬(- ∗ . > 0)) and the
“true”, which can be omitted. From our first condition, we can see that the error
can occur only if the product of the variables - and. is non-positive. However, the
conditions generated from the branches of the if expression do not provide enough
information to calculate proper input values to reproduce the runtime error. The
error occurs only if the value of the variable / is equal to zero. Therefore, we need
to add the condition / = 0 to our set of constraints.

¬(- ∗ . > 0)
/ = 0

Although / is not an input of the function, thus considering only this constraint
does not help us to find the proper set of inputs. We need to add further conditions
about the possible values of / that connect the inputs and / . The first assignment of
the selected branch provides some context for the value of the variable / : / = - ∗. .
Examined with the previous conditions, we can see that the value of / can only be
zero if either - or . is zero. This establishes the following set of conditions:

¬(- ∗ . > 0)
/ = 0

/ = - ∗ .

We can see that these conditions provide constraints for both input parameters
- and . . Using an SMT solver we can generate input values that can lead us to the
discovered runtime error.

3 Overview of the algorithm

Our symbolic execution algorithm is designed to find a path from the programs
start to the target expression that has been selected. The algorithm is presented in
detail in the following section. The function takes four arguments. The first one is
the control flow graph (�). The second one is a node that represents where the path
search starts ((). The third one is a node that contains the target expression we want
to know the path to () ). The last one is a list of nodes that we have visited so far (%).
This algorithm can help us to find out what input values canmake us reach the target
line and what conditions they have to meet. The algorithm uses a kind of symbolic
backward execution called call-chain backward symbolic execution [6]. This is a
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type of symbolic execution that mixes forward and backward symbolic execution.
Inside each function, it explores the execution paths forward, but it follows the call
chain backwards from the target point to the program’s entry point.
We start at the target expression. First, we find the path from the entry point of

the function containing the target expression itself. This intraprocedural part of the
algorithm (see Algorithm 1) uses the control-flow graph of the function to look for
a possible path to the target node.
A depth-first traversal of the function’s control-flow graph returns the first path

found ( 5 8=3_?0Cℎ), which yields a set of expression nodes in the graph representing
the analysed code. This set can be used to determine the initial set of conditions.
Upon completion of the path, we check the set of conditions for satisfiability to
ensure the path’s validity. If the conditions are not satisfiable, we discard the path
and search for another one. We step back (BC4?_102:) on the path until we reach
the last non dead end node that generated a condition and resume the traversal of
the graph. Dead ends on the graph are marked accordingly.

Algorithm 1: Selecting the path
Data: Control flow graph G, starting node S, target node T, current path P
Result: Path to target node

1 Cand← find_path(G, S, T);
2 if no candidate found then
3 NewPath← step_back(P);
4 backtrack(G, end_of(NewPath), T, NewPath);
5 else
6 FullPath← concat(Cand, P);
7 if sat(FullPath) then
8 return Cand ;
9 else
10 NewPath← step_back(FullPath);
11 if no path found then
12 return T is unreachable;
13 end
14 backtrack(G, end_of(NewPath), T, NewPath);
15 end
16 end

We collect the initial set of conditions from the guards of the targeted expression.
The condition set is extended with further conditions we found on the execution



Supporting the debugging of Erlang programs by symbolic execution 49

path to the target point. These include not just the current guard of a branching
expression, but also the negated conditions of the previously evaluated guards as
well. This is needed because in Erlang, the branches of an if expression are scanned
sequentially until a guard sequence that evaluates to true is found. As variable
assignments on the execution path can also contribute to the path constraint set (as
it was demonstrated in our previous example in Section 2) we add this as a condition
as well.
In order to construct the set of conditions, it is necessary to keep track of the

variables in the conditions: an execution path may contain variables with the same
names from different scopes, thus we need to handle these cases. We map the vari-
ables we found during the exploration of the control-flow graph to a scope-sensitive
semantic variable node. This node is saved in a map data structure with its original
name. If a different semantic variable node with the same name is later encountered,
the new variable is renamed in the constraint set.
Each candidate is part of a possible execution path of the program and will consist

of a path from the function entry point to the current target node. We find the initial
candidate by traversing the tree in a depth-first order. If no such path is found,
the target node is unreachable. While traversing the graph we keep track of the
visited nodes. When a node is reached from where the target is unreachable, it is
marked as a dead end. Examples of such nodes are the leaves or nodes having all
children already marked as dead ends. If the conditions of the selected path cannot
be satisfied, a new path has to be searched for. In order to find a new path we use
backtracking, which is a basic strategy to solve constraint satisfaction problems.
After a candidate path has been selected, we produce the set of conditions defined
by the route. We then determine the function’s callers and recursively repeat this
process along the backward call chains. The path search stops when we reach the
predefined entry point of the program.

4 Working examples

In this section, wewill showcase the workings of our algorithm through some exam-
ple code snippets. The first example will dissect a straightforward scenario where
we detect a path of a runtime error. The second instance demonstrated in Subsec-
tion 4.2 shows a case where the first found path is unjustifiable and we have to
use backtracking to uncover the correct path. Lastly, the third example provide an
overview of how our intraprocedural algorithm operates. These working examples
will showcase our algorithm’s functionality in distinct scenarios.
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4.1 Simple intraprocedural example

Consider this simple example in Figure 2. Similarly to the previous example, this
code snippet contains divisions, and if the denominator � is zero, an error occurs
(Figure 3). Suppose that the error occurred in line 10. We can use the algorithm to
find a realizable path to the target expression from the entry point of the program,
and also determine a set of input values that may trigger the error.

1 -module(example1).
2 -export([foo/2]).
3 foo(A, B) ->
4 C = A + B,
5 if
6 C < A -> 0;
7 C == A ->1;
8 C > A ->
9 if
10 B > C -> A / C;
11 true -> B / C
12 end
13 end.

Figure 2: Another example that may lead to runtime error

Figure 3: Runtime error

The algorithm starts by determining a path in the CFG from the function contain-
ing the target expression to the entry point of the function. In this case, the path
found will be the one demonstrated in Figure 4.
First, we need to collect the conditions along the path to building our initial set

of constraints. Since the error occurred due to a division by zero, our first condition
will be determined from the expression containing the division �/�. This error can
only occur if the denominator� is zero, so the first condition for the execution path
will be � = 0. The next step is to examine the selected execution path. As we can
see, the path contains two if expressions. At the first one, the first two conditions
will not be met, but the third will evaluate to true. This means we need to add the
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foo

� = � + �

��

� < �

� = �

� > �

��

� > � CAD4

�/�

Figure 4: Possible execution path of example presented on Figure 2

conditions derived from the guard expressions ¬(� < �),¬(� = �), � > � to the
set of constraints.
After we evaluated all necessary conditions of the first if expression, we can con-

tinue to walk the selected path. When we get to the second if expression, we can
see, that this time the first guard will evaluate to true. This time, we only need to
add the first condition to our set.

� = 0

¬(� < �)
¬(� = �)
� > �

� > �

This will be our initial set of constraints determined from the if expressions on the
selected path. However as we could see in Section 2, these constraints are neither
enough to determine with which inputs we reach the expression where the error
occurred nor to provide valuable information on the cause of the error.
The next step is to determine the constraints for the variables used in the set

of conditions: �, � and �. For this, we need to find any assignment expression
containing any of these variables on the left side of the path. Using these we can
build extra constraints for our set of conditions. In this example, the only such
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expression is � = � + � on line 4. Since in the example the second, third and fourth
conditions can be simplified to � > �, our set of path conditions will be as follows:

� = 0

� > �

� > �

� = � + �

From this, we get a set of path conditions that when satisfied the program will
run into the division by zero error at line 10. Using a constraint solver on this set of
conditions will provide us with a set of input parameters that will guarantee that the
error will occur. If the set of conditions would be unsatisfiable, a new path would
be determined by backtracking on the CFG of the function.

4.2 Execution path selection

1 -module(example1).
2 -export([foo/2]).
3 foo(A, B) ->
4 if
5 A == B -> B;
6 A == -B -> A;
7 true -> 1
8 end,
9 if
10 A == 0 -> A;
11 A rem 2 == 1 -> C = A + B, A / C;
12 true -> C = A - B, A / C
13 end.

Figure 5: An example of a path selection

The example in Figure 5 shows why it is important to check the set of conditions
for satisfiability during path selection. In this example code, a division by zero error
may occur on lines 11 and 12, if the value of � equals zero. Let us assume, that
during execution we found the error on line 11. We can see, that since the value of
� is calculated as the sum of � and �, this error may only occur if � = −�.
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foo

��

� = �
� = −�

CAD4

��

� = 0
� mod 2 = 1

CAD4

� = � + �

� = 0

��

� = 0
� mod 2 = 1

CAD4

� = � + �

� = 0

Figure 6: Possible execution path of example presented on Figure 5

During the analysis if we determine a path in the CFG from the functions entry
point to the target expression, we get the following set of conditions:

� = �

¬(� = 0)
� mod 2 = 1

� = � + �
� = 0

If we examine these conditions, we can see that we have a contradiction between
our original assumption (that the error may occur on that line only in the case when
� = −�) and the condition � = �, since � = � = 0 is not possible, because then
the first guard � == 0 would evaluate to true. This means that this execution path
could not occur during actual execution, so we need to find another path in the
CFG. Using backtracking we continue to traverse the graph to find a different path
to the target. When the first if expression is reached again, this time the algorithm
will choose the next branch. Similarly to the previously examined path, we need to
determine the constraints. On this newly selected path we will have the following
conditions:
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¬(� = �)
� = −�
¬(� = 0)
� mod 2 = 1

� = � + �
� = 0

Using a constraint solver on this set of conditions we can ascertain that the new
path is feasible, and we can find a set of values for parameters that will trigger the
error found at the target expression.
Figure 6 illustrates how the algorithm works on the provided example traversing

the CFG. The first found path is illustrated with red nodes where a contradiction
is found between the conditions. At that point we step back on the tree to the last
condition generating node (the upper if expression) from where a possible path is
found to the target expression. When the new path is checked, this time the set
of conditions is satisfiable. This correct path marked with green is returned by our
analysis.

4.3 Interprocedural example

The previous examples showed how the algorithm determines the execution path in
a function. Our next example, presented in Figure 7, will demonstrate how we can
use the call chain to find the full execution path. For the sake of simplicity, instead of
an actual error, the target will be the atom ”fail” on line 17. Similarly to the previous
example, a path from the function entry point to the target will be determined. The
constraints will only consist of the constraints built from the guards of the only if
expression of the function 5 2: ¬(� < 2) and CAD4. Examining our set of conditions,
it only contains the variable �, we save it in our variable map. Since in this example
function, there is only one if expression and no other expressions, we do not have
to add further constraints on the variables to the constraint set. By checking the set
of conditions with a constraint solver we can verify that the path is so far feasible.
The next step is to determine the callers of the function 5 2. Using RefactorErl

we can collect all expressions that contain such a function call. In this example,
we only get one result, the expression in line 7. This expression will be our next
target, and the new starting point will be the function containing the expression:
5 . Similarly to the previous function, we find a path to the target node on the CFG
and collect the path conditions. For the sake of simplicity of the example, we only
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1 -module(multi_fun_example).
2 -export([f/1]).
3

4 f(A) ->
5 if
6 1 < A ->
7 f2(3);
8 true ->
9 ok
10 end.
11

12 f2(A) ->
13 if
14 A < 2 ->
15 ok;
16 true ->
17 fail
18 end.

Figure 7: Example of following the execution path through multiple functions

get one such condition: 1 < �. Again, the variables used in the conditions have to
be saved in the variable map. However since the map already contains a variable
with the name � which refers to a different variable, it will be renamed in the map
to �2. After checking the path for feasibility the following set of conditions were
established: ¬(� < 2), CAD4, 1 < �2. As the analysis reached the main entry point
of the function, that means we found a full execution path. The constraint solver
with this set of conditions will provide us with a set of input parameters so the
original target expression can be reached.

5 Realisation in RefactorErl

RefactorErl [7] is a source code analysis and transformation tool for Erlang. It pro-
vides a wide variety of functionalities to support code comprehension, dependency
analysis, source code checks, refactorings, etc. The tool uses a rich intermediate
source code representation, the so-called Semantic Program Graph (SPG). The SPG
stores lexical, syntactic and semantic information about the source code, calculated
by various static semantic analysers.
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RefactorErl also has control-flow and control dependence analyses [4]. Thus we
can build our direct symbolic execution engine on top of the available control-flow
information and the syntactic and semantic information available in the SPG.
The prototype implementation of the algorithm uses multiple program represen-

tations provided by the RefactorErl tool. The Control-Flow Graph (CFG) represents
all the possible execution paths of the program that can be chosen for every possible
input. We traverse the CFG in order to search for possible execution paths to the
target node. Each candidate path consists of a series of expressions leading to the
target expression itself. While traversing the graph, we keep track of the variables
on the path and also which vertices we visited and which vertices lead only to a
dead end. This is necessary because if the constraints for the candidate path turn
out to be unsatisfiable, we will have to look for a different path.
If a candidate path is selected, we have to determine the set of constraints on the

path. To do this, we use the Semantic Program Graph (SPG). The SPG is a rooted,
directed, labelled and indexed graph that stores lexical, syntactic and semantic in-
formation about the source code, calculated by various static semantic analysers.
Since the SPG uses the same identifiers for the vertices in the CFG, we can use this
to extract more information from the expressions on the candidate path. Using this
we can determine the set of conditions as previously described in Section 3.
Once we have found a possible route in the tree from the starting point to the

target expression node, we use Z3 to check the constraints found on the path for
satisfiability. The Google protocol buffer (protobuf) [8] is used to serialize the set of
constraints. The possible forms of the conditions were predefined in a proto file and
we use the gpb tool [9] to compile the definitions. Z3 takes as input simple-sorted
formulas that are built from atomic variables and logical connectives. By adding the
conditions defined by the candidate path to a Z3 model and using the solver to try
to find a solution, it either produces the verdict unsat or sat and in the case of the
latter we also get a solution to the possible values of the variables. The complete
solution is serialized again and the results are processed on the Erlang side. If the
case that the constraints on the candidate path are unsatisfiable, it is necessary to
find an alternative path.

6 Related Work

Symbolic execution is a technique used by many program analysis and transforma-
tion techniques, such as partial evaluation, test-case generation or model checking.
While symbolic execution is not a new topic in the Erlang ecosystem, previously
published papers mostly focus on formal [10], [11] and informal [12] definitions
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with the aim of program verification. In this paper, we present a symbolic execu-
tion technique for Erlang that can support debugging processes of Erlang developers
through the RefactorErl framework. Our goal is not to verify Erlang programs, but
to support their debugging processes through the RefactorErl framework. Previ-
ous work on symbolic execution in Erlang focused on verification [10], [11] or used
informal definitions [12].
Symbolic execution can be used for testing purposes as well. CutEr [13], [14] is

a concolic testing [15] tool for Erlang. It can automatically generate test cases that
cover different execution paths of an Erlang program by combining concrete and
symbolic execution. CutEr can also detect runtime errors such as arithmetic ex-
ceptions, bad arguments, or pattern-matching failures. We can find similarities and
differences in our and CutEr’s approaches. Both tools are using the Z3 SMT solver to
evaluate the collected symbolic constraints, but the evaluated execution path selec-
tion is different. We use a static control-flow path and traverse it backwards. CutEr
takes a real/dynamic execution path and traverses it forward.
In [16] a symbolic execution-based runtime error detection algorithm is presented.

The presentedmethod transforms Erlang programs into Prolog facts, evaluates those
on symbolic input data and reports input patterns that lead to runtime errors within
a given bound. In contrast, themethod presented in this paper is looking at the prob-
lem from the other direction. It takes the known runtime error as input and searches
for execution paths that may lead to faulty behaviour.
In [6], a generic algorithm for call-chain backward executionwas presented, which

in combinationwith any forward search strategy resulted in an efficient way to solve
the line-reachability problem. In this algorithm, the main difference to the tradi-
tional symbolic backward execution is that, while it follows the call chain backwards
from the target point, inside each function the exploration is based on a traditional
forward symbolic execution. The algorithm starts by determining a valid path in
the function containing the target line, then it moves to one of the callers of the
function. This process is recursively repeated until the full path from the program’s
main entry point to the target is determined. The authors implemented these strate-
gies in Otter [17], a C source code symbolic executor, and studied their performance
and compared the results with a range of state-of-the-art forward search strategies
like KLEE [18], SAGE [19].
KLEE uses two main search strategies: Random Path Selection and State-Based

Search. Random Path Selection maintains a binary tree recording the program path
followed for all active states, where the internal nodes are the ones where the exe-
cution has forked and the leaves represent the current states. The states are selected
by traversing this tree from the root and randomly selecting the path to follow at
branch points. During the symbolic execution when an internal node is reached, all
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child nodes of the given node have an equal probability to be selected by the algo-
rithm regardless of the size of the subtrees. The biggest advantage of this strategy
is that it avoids starvation occurring in loops containing symbolic conditions and
resulting quick new state creation.
SAGE uses the generational search, which is an algorithm designed for dynamic

test generation that tolerates divergences. This strategy maximises the number of
generated new input tests during the symbolic execution, it can generate thousands
of new tests by a single symbolic execution. For a given path constraint, SAGE
negates all the constraints in that path, conjuncts them with the initial constraint
and use a constraint solver to solve it.
Both call-chain backward execution combined with KLEE and the shortest dis-

tance symbolic execution (the other technique presented in the paper) outperformed
other strategies. One mentioned disadvantage was the difficulty of the construction
of the inter-procedural control-flow graph for call-chain backward execution. How-
ever, RefactorErl is already able to build this, thus this option suited us the most.

7 Conclusion and Future Work

The identification of the sources of a runtime error is a common task for Erlang
developers. Dynamic and static tools can assist in this task. Dynamic tools are used
to analyze the behaviour of a program during execution, while static tools are used
to analyze the program’s source code without executing it.
In this paper, we propose a method based on static analysis of Erlang programs

to identify execution paths that may lead to a given runtime error. The proposed
method uses the control-flow graph of RefactorErl, which is a static code analysis
tool that can be used to analyze and refactor existing Erlang code bases.
The presented algorithm uses the control-flow graph of RefactorErl and applies

dynamic backward symbolic execution to gather the constraints of the execution.
Dynamic backward symbolic execution is a technique that starts from the error lo-
cation and works backwards to the input parameters of the function. The technique
generates a set of constraints that must be satisfied by the input parameters to reach
the error location.
We use the Z3 SMT solver to decide the reachability of a path and calculate pos-

sible input values for real execution. The Z3 SMT solver is a tool for solving logical
formulas. The proposed method can be used to identify execution paths that may
lead to a runtime error.
We have implemented the presented algorithm for a reasonable subset of the Er-

lang language. Our main goal in the future is to improve language coverage. We
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also would like to improve the execution path selection algorithm.

Funding: The research was (partially) supported by the ÚNKP-22-3 New National Ex-
cellence Program of the Ministry for Innovation and Technology from the source of the
National Research, Development and Innovation Fund.

Data Availability: The study did not generate new data.

References

[1] J. C. King, “Symbolic execution and program testing,” vol. 19, no. 7, pp. 385–
394, Jul. 1976, issn: 0001-0782. doi: 10.1145/360248.360252. [Online].
Available: https://doi.org/10.1145/360248.360252 (⇒ 45).

[2] R. Baldoni, E. Coppa, D. C. D’elia, C. Demetrescu, and I. Finocchi, “A survey
of symbolic execution techniques,” ACM Comput. Surv., vol. 51, no. 3, May
2018, issn: 0360-0300. doi: 10.1145/3182657. [Online]. Available: https:
//doi.org/10.1145/3182657 (⇒ 45).

[3] Z. Horváth, L. Lövei, T. Kozsik, et al., “Modeling semantic knowledge in Er-
lang for refactoring,” inKnowledge Engineering: Principles and Techniques, Pro-
ceedings of the International Conference on Knowledge Engineering, Principles
and Techniques, KEPT 2009, ser. Studia Universitatis Babeş-Bolyai, Series In-
formatica, vol. 54(2009) Sp. Issue, Cluj-Napoca, Romania, Jul. 2009, pp. 7–16
(⇒ 45).

[4] M. Tóth and I. Bozó, Static analysis of complex software systems implemented in
erlang, Central European Functional Programming Summer School – Fourth
Summer School, CEFP 2011, Revisited Selected Lectures, Lecture Notes in
Computer Science (LNCS), Vol. 7241, pp. 451-514, Springer-Verlag, ISSN: 0302-
9743, 2012 (⇒ 45, 56).

[5] L. de Moura and N. Bjørner, “Z3: An efficient smt solver,” in Tools and Algo-
rithms for the Construction and Analysis of Systems, C. R. Ramakrishnan and
J. Rehof, Eds., Berlin, Heidelberg: Springer Berlin Heidelberg, 2008, pp. 337–
340, isbn: 978-3-540-78800-3 (⇒ 45).

[6] K.-K. Ma, K. Yit Phang, J. S. Foster, and M. Hicks, “Directed symbolic exe-
cution,” in Static Analysis, E. Yahav, Ed., Berlin, Heidelberg: Springer Berlin
Heidelberg, 2011, pp. 95–111, isbn: 978-3-642-23702-7 (⇒ 47, 57).

https://doi.org/10.1145/3182657
https://doi.org/10.1145/360248.360252
https://doi.org/10.1145/360248.360252
https://doi.org/10.1145/3182657
https://doi.org/10.1145/3182657


60 Zs. ERDEI, M. TÓTH, I. BOZÓ

[7] I. Bozó, D. Horpácsi, Z. Horváth, et al., “Refactorerl - source code analysis and
refactoring in erlang,” in Proceedings of the 12th Symposium on Programming
Languages and Software Tools, ISBN 978-9949-23-178-2, Tallin, Estonia, Oct.
2011, pp. 138–148 (⇒ 55).

[8] protocolbuffers, Protocol buffers documentation, [Accessed: Feb, 2023]. [On-
line]. Available: https://protobuf.dev/ (⇒ 56).

[9] Tomas Abrahamsson,Gpb, [Accessed: Feb, 2023]. [Online]. Available: https:
//protobuf.dev/ (⇒ 56).

[10] G. Vidal, “Towards symbolic execution in erlang,” in Perspectives of System
Informatics, A. Voronkov and I. Virbitskaite, Eds., Berlin, Heidelberg: Springer
Berlin Heidelberg, 2015, pp. 351–360, isbn: 978-3-662-46823-4 (⇒ 56, 57).

[11] G. Vidal, “Towards erlang verification by term rewriting,” in Logic-Based Pro-
gram Synthesis and Transformation, G. Gupta and R. Peña, Eds., Cham: Springer
International Publishing, 2014, pp. 109–126, isbn: 978-3-319-14125-1 (⇒ 56,
57).

[12] C. B. Earle, “Symbolic program execution using the erlang verification tool,” in
9th International Workshop on Functional and Logic Programming, WFLP’2000,
Benicassim, Spain, September 28-30, 2000, M. Alpuente, Ed., 2000, pp. 42–55
(⇒ 56, 57).

[13] K. Sagonas, A cuter tool. talk at erlang factory 2016, [Accessed: Feb, 2023],
2016. [Online]. Available: http://www.erlang-factory.com/static/
upload/media/1457739488660923kostissagonasacutertool.pdf (⇒ 57).

[14] CutEr, Cuter github page, [Accessed: Feb, 2023]. [Online]. Available: https:
//github.com/cuter-testing/cuter (⇒ 57).

[15] K. Sen, D. Marinov, and G. Agha, “Cute: A concolic unit testing engine for c,”
SIGSOFT Softw. Eng. Notes, vol. 30, no. 5, pp. 263–272, Sep. 2005, issn: 0163-
5948. doi: 10.1145/1095430.1081750. [Online]. Available: https://doi.
org/10.1145/1095430.1081750 (⇒ 57).

[16] E. DeAngelis, F. Fioravanti, A. Palacios, A. Pettorossi, andM. Proietti, “Bounded
symbolic execution for runtime error detection of erlang programs,” in Pro-
ceedings 5th Workshop on Horn Clauses for Verification and Synthesis, HCVS
2018, Oxford, UK, 13th July 2018, T. Kahsai and G. Vidal, Eds., ser. EPTCS,
vol. 278, 2018, pp. 19–26. doi: 10.4204/EPTCS.278.4. [Online]. Available:
https://doi.org/10.4204/EPTCS.278.4 (⇒ 57).

https://protobuf.dev/
https://github.com/cuter-testing/cuter
https://protobuf.dev/
https://doi.org/10.1145/1095430.1081750
http://www.erlang-factory.com/static/upload/media/1457739488660923kostissagonasacutertool.pdf
https://protobuf.dev/
https://doi.org/10.4204/EPTCS.278.4
http://www.erlang-factory.com/static/upload/media/1457739488660923kostissagonasacutertool.pdf
https://doi.org/10.1145/1095430.1081750
https://doi.org/10.1145/1095430.1081750
https://github.com/cuter-testing/cuter
https://doi.org/10.4204/EPTCS.278.4


Supporting the debugging of Erlang programs by symbolic execution 61

[17] R. Majumdar and K. Sen, “Hybrid concolic testing,” in Proceedings of the 29th
International Conference on Software Engineering, ser. ICSE ’07, USA: IEEE
Computer Society, 2007, pp. 416–426, isbn: 0769528287. doi: 10.1109/ICSE.
2007.41. [Online]. Available: https://doi.org/10.1109/ICSE.2007.41
(⇒ 57).

[18] C. Cadar, D. Dunbar, and D. Engler, “Klee: Unassisted and automatic genera-
tion of high-coverage tests for complex systems programs,” in Proceedings of
the 8th USENIX Conference on Operating Systems Design and Implementation,
ser. OSDI’08, San Diego, California: USENIX Association, 2008, pp. 209–224
(⇒ 57).

[19] P. Godefroid, M. Y. Levin, and D. Molnar, “Automated whitebox fuzz test-
ing,” in Proceedings of the Network and Distributed System Security Sympo-
sium (NDSS’08)., vol. 8, Nov. 2008, pp. 151–166. [Online]. Available: https:
//www.microsoft.com/en-us/research/publication/automated-
whitebox-fuzz-testing/ (⇒ 57).

Received: 30.01.2024; Accepted: 04.03.2024

https://doi.org/10.1109/ICSE.2007.41
https://doi.org/10.1109/ICSE.2007.41
https://www.microsoft.com/en-us/research/publication/automated-whitebox-fuzz-testing/
https://www.microsoft.com/en-us/research/publication/automated-whitebox-fuzz-testing/
https://doi.org/10.1109/ICSE.2007.41
https://www.microsoft.com/en-us/research/publication/automated-whitebox-fuzz-testing/


Acta Univ. Sapientiae, Informatica, 16, 1 (2024) 62–77

DOI: 10.47745/ausi-2024-0005

Integrating Optical Flow into Deep Learning
based Distortion Correction

Szabolcs-Botond
LŐRINCZ-MOLNÁR

Independent Researcher
Envelope

lorincz.szabolcs.botond@gmail.com
� 0000-0002-2202-9491

Szabolcs PÁVEL
Babeş-Bolyai University

Envelope szabolcs.pavel@ubbcluj.ro
� 0000-0002-8825-2768

Abstract. One crucial task in 3D computer vision is the correction of geomet-
ric distortions, since most algorithms rely on the assumption that the image
formation process can be described by a specific cameramodel, e.g. the pinhole
camera model. In an autonomous driving scenario, however, the front-facing
camera is most commonly placed behind the windshield, causing complex,
nonlinear distortions.

Previous attempts have been made to undistort such images using deep
learning based methods. The input of these deep networks usually consists
of one or more images, and they optionally include additional tasks such as
semantic segmentation to improve the results.

We hypothesize that the well-constrained nature of optical flow in rigid,
static scenes provides useful cues for the process of image undistortion. By
using optical flow as an additional input, we present a multi-view distortion
correction method achieving superior results on both synthetic and real-world
images compared to previous works, demonstrating the usability of optical
flow for correcting highly complex distortions.

Keywords andphrases: camera calibration, distortion correction, deep learn-
ing

1 Introduction

Front-facing cameras in autonomous driving systems aremost commonly placed be-
hind the vehicles’ windshields, therefore the captured image sequences suffer from
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Figure 1: In the case of a calibrated camera and pure forward motion (left) all optical
flow vectors emerge from the focus of expansion (white cross), situated at the prin-
cipal point. In the case of geometric distortions (right), aberrations are induced in
both the magnitude and direction of the vectors. The irregularity of distorted optical
flow vectors provides useful cues for distortion correction.

complex geometric distortions caused by light refraction. This anomaly impacts the
performance of various computer vision pipelines, inducing errors for instance in
scene reconstruction, depth estimation and in camera based driver assistance sys-
tems in general. Such kind of errors are not admissible in critical systems, thus,
these distortions must be corrected.

Several attempts have been made to correct distortions caused by different refrac-
tive surfaces, e.g. radial distortions caused by the camera lens [1] or tangential dis-
tortions, the root of which lies at the nonparallelism of the lens and the image plane.
Distortions caused bywide angle (fisheye) lenses typically used in autonomous driv-
ing systems have also been succesfully corrected [2].

Recent experiments show that the correction of more complex distortions, such as
the ones caused by windshields is also feasible, by employing deep neural networks
and using additional tasks to guide the process of undistortion, such as semantic
segmentation [3].

In this work, we extend previously proposed methods for correcting complex dis-
tortions caused by car windshields and achieve superior performance on both syn-
thetic and real-world data sets. We also show experimentally that using optical
flow as an additional input to a deep learning based distortion correction method
improves the performance of the system by exploiting the predictability and regu-
larity of optical flow vector directions and magnitudes. The proposed method can
be trained without the need of conducting rigorous measurements to obtain ground
truth distortion fields, by leveraging differentiable image sampling, enabling us to
produce the undistorted image jointly with estimating the distortion parameters.
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2 Related Work

CalibrationThe task of predicting distortion parameters and correcting distortions
has been studied for a few years by now. Early methods tried to correct simpler
distortions such as radial or tangential distortions, the former being caused by the
camera lens, the later by the lens being non parallel relative to the image plane.
These methods can be categorized into two major groups: self-calibration meth-
ods exploiting geometric constraints based on multiple view image sequences [4]–
[6], and static calibration approaches using a calibration object or pattern [7]–[11]
where relative positions of specific keypoints are known, but their perceived posi-
tions are distorted during projection.
DeepLearning basedDistortionCorrectionRecent distortion correctionmeth-

ods started to employ deep learning, specifically convolutional neural networks
(CNNs) to predict radial distortion parameters based on arbitrary single view in-
put images [1], without the need of having a calibration pattern. Later, CNNs have
been used to estimate the parameters of more complex distortions, such as fisheye
distortions caused by wide angle cameras [2] or distortions caused by windshields
[3], using semantic segmentation as an additional task to guide the correction pro-
cess.
Distortion Model Each distortion estimation or correction algorithm employs

a specific distortion model, ranging from simple models e.g. Brown’s polynomial
model [12] for radial and tangential distortions to the more complex methods intro-
duced in [13]–[15], explicitly modeling the refractive surface. In this work, we use
thin plate spline (TPS) interpolation [16] to model the two dimensional geometric
distortions caused by windshields.
Optical Flow based Image Reconstruction Studies of using optical flow in the

distortion correction process have also been conducted. Non-rigid geometric dis-
tortions caused by atmospheric turbulences were corrected in [17] using an optical
flow scheme and a non local total variation (TV) regularization, while in [18] distor-
tions of the same kind are corrected using a non-rigid image registration algorithm
based on B-splines, embedded in a Bayesian framework with bilateral TV regular-
ization. Both methods focus on restoring images using video sequences having no
camera motion, assuming a constant scene. In an autonomous driving scenario this
assumption does not hold, therefore a different approach must be taken.
Supervision through View Synthesis Several methods rely on direct supervi-

sion from ground truth distortion parameters [1], [19]. In the case of simple forms of
distortions it is possible to obtain these parameters for specific settings separately.
However, the diversity of windshields and the complexity of the distortion caused
by them makes the collection of large data sets a tedious task. The introduction
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of differentiable inverse warping by [20] led to the emergence of several methods
employing novel view synthesis [21] as supervision to solve the problem of layered
3D scene representation [22], unsupervised learning of depth, ego-motion [23] and
optical flow [24].

In this work we employ a reconstruction loss as supervision based on Multi Scale
Structural Similarity [25]. In contrast with novel view synthesis based methods,
instead of synthesizing a new image from a different view given a single image,
we generate corrected images given three distorted images and two corresponding
optical flow maps. This enables the method to be trained even in the case of real-
world, complex and highly variable distortions, when the estimation of ground truth
parameters is not feasible, but distorted and correct image pairs can be obtained.

3 Motion Field Constraints

Our main hypothesis is that using optical flow as an additional input to a distortion
correction network provides important information about the distortion field, and
as a result can improve the performance of the deep learning system. In an ideal
scenario the optical flow corresponds to the motion field – the projection of 3D
velocity vectors to the image plane [26], [27]. Assuming a static, rigid scene the 3D
velocity vectors are only influenced by the ego-motion of the camera. In a front-
facing camera used in autonomous driving scenarios further assumptions can be
made, such that the dominant motion component is the forward translation, and in
some cases the yaw rotation. These assumptions cause the optical flow to become
well predictable, and deviations from the predicted optical flow field are in part
caused by the geometric distortions of the imaging system.

Let V = (-,., /) be a 3D point in the scene, with a corresponding velocity vector
(time derivative of V)\ = (+G , +H , +I). The perspective projection of V to the image
plane is denoted by p = (G, H), and is given by the first two components of the vector
5 V
/
, where 5 denotes the focal distance of the camera. Then the 2D velocity vectors

v = (EG , EH) of the motion field can be computed as a function of the 3D position V
and velocity \ by differentiating the 2D pose p w.r.t. the time, resulting in:

EG =
5 +G − G+I

/
EH =

5 +H − H+I

/
. (1)

The 3D velocity vector can be written as \ = Z +
× V, where Z = ()G , )H , )I) is
a linear velocity (translation), and
 is the angular velocity. Assuming zero angular
velocity, the velocity vector is equal to the translation Z of the 3D points, and it is
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independent of the 3D position of the point. As a result, Eq. (1) is reduced to:

EG =
5 )G − G)I

/
EH =

5 )H − H)I

/
. (2)

In this case we can observe, that the motion field is composed of radial vectors
emerging from a common point on the image called the focus of expansion (in the
case of forward motion). The focus of expansion is influenced by the )G and )H
components of the translation. If both G and H components are zero (Z = (0, 0, )I)),
i.e. we have pure forward motion, the focus of expansion corresponds to the princi-
pal point of the image. One more desirable property is that the scene structure (the
depth / of the 3D points) only influences the magnitude, but not the direction of the
velocity vectors. As a consequence the direction of these vectors by themselves can
provide useful constraints, while the large changes in magnitude can signal object
boundaries or occlusions. An example of the motion field with pure forward motion
can be seen in Fig. 1, both in the case of a calibrated camera and in the presence of
complex distortions caused by a windshield.

One important limitation of optical flow based distortion estimation in forward
motion scenarios is that optical flow provides no information about the distortions
in the radial direction [19]. An ambiguity exists where scene depth and radial distor-
tions both influence only the magnitude of the motion field vectors, and an infinite
number of depth - distortion pairs can result in the same motion field. In fact, this is
a major factor in making optical flow based distortion estimation using classic com-
puter vision challenging. A learning-based system however, despite this ambiguity,
is still able to filter out the information relevant for the given task, therefore optical
flow remains a useful input for distortion estimation.

4 Methods

4.1 Distortion Model

The distortion model in this work is identical to the one proposed in [3] to provide a
fair comparison between the two methods and to allow us to properly quantify the
effects of integrating optical flow into the distortion correction process.

The model relies on a pair of thin plate splines (TPS) forming a two dimensional
linear map. The TPS transformation fC ?B consists of two parts, the first being an
affine transformation, while the second corresponding to the superposition of geo-
metrically independent affine-free deformations [16], and is given by

fC ?B (�8) = �

[
�8

1

]
+

=∑
:=1

i(


 p′: − �8




2
) · w: , (3)
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Table 1: Mean and Standard Deviation of
Original Distortion Vector Norms

Data Set Mean (px) SD (px)

DC Test 8.46 3.92
DK 00 8.59 3.32

where�8 = [G8 , H8]> represents the image coordinates on the undistorted target im-
age and = corresponds to the number of control points, in our case = = 16. The TPS
kernel is denoted by i(A) = A2;>6(A), where A represents the !2 distance between
two points, with %′ = [ p′1, p′2, . . . , p′=] ∈ R2×= being the coordinates of target con-
trol points. In our case points %′ are evenly distributed and fixed on a 4 × 4 grid,
whereas the coordinates of source control points % = [ p1, p2, . . . , p=] ∈ R2×= have
to be estimated based on the distorted images and optical flows. The sampling grid
is obtained by interpolating the displacements between point correspondences in
%′ and %. The transformation can be efficiently implemented by matrix operations
as detailed in [3].

The properties of themap enables it tomodel various types of complex two dimen-
sional deformations such as skeletal shape abnormalities caused by Apert syndrome
[16], or even geometric distortions caused by refractive surfaces [3].

In this work, we applied the same parametric distortions sampled from a distri-
bution derived from real-world measurements in the presence of windshields as in
[3]. The mean and standard deviation of distortion norms reported in Table 1 is
expressed in pixels in the distorted images.

4.2 Proposed Solution

In order to solve the problem of geometric distortion correction, we propose an
end-to-end architecture similar to the architecture presented in [3] with some mod-
ifications.

First, the inputs of the network are three consequent RGB images, making our
approach a member of multi-view distortion correction methods. As a direct con-
sequence, the outputs of the network are also three consequent, corrected images,
in addition to the estimated distortion parameters.

Furthermore, we feed two optical flows corresponding to the three images for
guiding the process of distortion correction instead of employing an additional task
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Figure 2: The proposed architecture consists of three keymodules: the core network
(green), the optical flow network (red) and a Spatial Transformer module (blue). The
input of the network is formed of three consequent distorted images, based onwhich
it produces two optical flows. The optical flow maps are concatenated to the input
images and the upsampled features generated by the core network and they are
jointly used for estimating the parameters of the TPS transformation to correct the
images.
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Figure 3: Using three consequent image frames (top), we calculate the optical flow
between the second- and the first, and between the second- and the third image
(bottom) using FlowNet 2.0, which we later use for distortion correction.

such as semantic segmentation as in [3].
The model corrects images in two steps: a feature extraction step, and a distor-

tion correction step. For feature extraction we use ResNet-18 [28] pre-trained on
ImageNet [29] as the core network. To obtain optical flow based on the three con-
sequent input images, we use the pre-trained PyTorch [30] implementation [31] of
FlowNet 2.0 [32].

For distortion correction we utilize the Spatial Transformer module [20], a dif-
ferentiable image warping mechanism, also integrating the TPS interpolation based
distortion model into the framework.

The Spatial Transformer module first estimates the parameters of the TPS trans-
formation, being the coordinates of the source control points. Then, a sampling grid
is generated based on the source and target control point coordinates, in our case
this corresponds to the inverse of the distortion field. Lastly, the sampling grid is
used to sample the distorted images, then the pixel values in the corrected images
are calculated by bilinear interpolation. Since all three steps are differentiable, end-
to-end learning is achievable. The detailed architecture is presented in Fig. 2.

In our experiments we explore the possibility of minimizing multiple loss func-
tions separately and in a joint fashion. In order to enforce the reconstruction of the
corrected images in terms of luminance, contrast and structure, the reconstruction
loss LA proposed in [3] given by Eq. (4) is used which is based on Multiscale Struc-
tural Similarity (MS-SSIM) [25] between a ground truth correct image (�) and the
predicted corrected image (�̂).

LA = −MS-SSIM(�, �̂) + 1

2
(4)
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By minimizing the reconstruction loss, the network is trainable even on data sets
containing real-world distortions, when the ground truth sampling grid is hard or
even impossible to obtain accurately, but distorted and correct image pairs are avail-
able.

In our experiments synthetic distortions are applied, thus, the ground truth sam-
pling grid can be determined. For this reason, we experiment with direct mini-
mization of the mean squared error (MSE) between the ground truth sampling grid
and the predicted sampling grid, namely the grid loss L6 proposed in [3]. We also
quantify its effect on model performance.

The joint loss is a linear combination of the two losses given by the following
equation:

L = LA + _1L6, (5)

where _1 is a weighting coefficient balancing the two loss functions set to _1 = 100
experimentally.

4.3 Experimental Setup

With the purpose of being able to correct not only synthetic but distorted real-world
images also, we followed the experimental setups of Lőrincz et al. [3] and con-
structed two data sets, which we name Distorted Carla (DC) and Distorted KITTI
(DK).

To construct the DC data set, 10000 images are generated using Carla driving
simulator [33] with the same settings as in [3]. DK data set contains images from
KITTI odometry data set [34] consisting of real-world sequences captured in Karl-
sruhe, Germany. In our experiments the first seven sequences of KITTI odometry
data set are utilized (ranging from 00 to 06), specifically images captured by the left
camera, which means a total of 15223 images.

Since we use optical flow merely as an additional input rather than as an addi-
tional task for guiding distortion correction, for both data sets we generate in ad-
vance two optical flows with FlowNet 2.0 based on every three consequent images.
The first optical flow corresponds to the optical flow between the second and first
frames, while the second optical flow is generated based on the second and the third
frame of a sequence, as demonstrated in Fig. 3, resulting in 9998 optical flow pairs
in the case of DC data set and 15221 pairs in the case of DK data set.

We follow the same data set splitting and model training procedure as in [3].
The training of the networks is conducted on DC Train (8,000 images) for a total
of 10 epochs, testing is conducted on both DC Test (2,000 images) and on sequence
00 of DK data set (4,539 images). The trained networks are further fine-tuned on
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Table 2: Mean and Standard Deviation of
Residual Distortion Vector Norms

Method Fine-Tune Test LA L6 Sem. Seg. Opt. Flow Mean (px) SD (px)

Lőrincz et al. [3] 7 DC Test 3 2.26 1.49
3 2.25 1.59

3 3 2.15 1.47
3 3 1.98 1.40

3 3 2.15 1.53
3 3 3 2.06 1.45

Ours 3 3 1.72 1.07
3 3 1.52 0.62

3 3 3 1.43 0.71

Lőrincz et al. [3] 7 DK 00 3 1.75 1.10
3 2.28 1.52

3 3 1.99 1.35
3 3 1.65 1.09

3 3 1.37 0.88
3 3 3 2.53 1.31

Ours 3 3 4.99 1.75
3 3 2.65 1.09

3 3 3 3.47 1.18

Lőrincz et al. [3] DK 01-06 DK 00 3 1.24 0.72
3 1.33 0.67

3 3 1.30 0.70
3 3 1.30 0.69

3 3 1.22 0.72
3 3 3 1.24 0.70

Ours 3 3 1.16 0.75
3 3 1.06 0.71

3 3 3 1.06 0.68
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sequences ranging from 01 to 06 of DK data set (10,684 images) for another 10 epochs
and are also evaluated on sequence 00.

In our experiments we compared the performance of the proposed distortion cor-
rection network with the method presented in [3]. We also performed an ablation
study to quantify the individual effects of integrating optical flow into the distortion
correction process. Additionally, we examined the shortcomings of the proposed
method and discussed further directions worth discovering to improve the current
results.

5 Results

In Table 1 we present the mean and standard deviation of distortion vector norms in
the two data sets providing a basis of comparison for estimating the performance of
the variants of the proposed distortion correction method. The performance com-
parison of our solution and the method proposed by [3] is presented in Table 2 in
terms of mean and standard deviation of residual distortion vector norms measured
in pixels.

The effect of integrating optical flow into the distortion correction process is also
quantified in Table 2 in all different settings: with- and without fine-tuning on DK
data set and by minimizing separately or jointly the reconstruction and grid loss
functions. Overall, one can see that our proposed distortion correction method us-
ing optical flow as an additional input performs the best in almost all cases. The best
performing optical flow based model on DC Test reduces distortion vector norms to
1.43 ± 0.71 pixels, while on DK 00 this value is equal to 2.65 ± 1.09 pixels without
fine-tuning and 1.06 ± 0.68 pixels with fine-tuning.

Similarly to the segmentation based system proposed by [3], we investigated the
performance of the model in the case in which only the distorted and correct im-
ages are known, and we do not make use of the ground truth sampling grid during
training, which is considered to be unknown (similar to the case of real-world dis-
tortions). In this case, the optical flow based model achieves 1.72 ± 1.07 pixels on
DC Test, 4.99±1.75 pixels on DK 00without fine-tuning, and 1.16±0.75 pixels with
fine-tuning. One can see, that the model achieves comparable results without direct
supervision from ground truth sampling grids, demonstrating the applicability of
the network in the case of real-world distortions.
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6 Discussion

The only exceptions where the optical flow based model does not outperform the
method proposed in [3] are the tests conducted on real world images (DK 00) with-
out fine-tuning the network on real-world images (sequences 01–06 of DK).

This phenomena is explained by the optical flow network used in our experiments
producing substantially different optical flows based on synthetic images compared
to the real-world images. Thus, our method needs to refine its distortion parameter
estimations by fine-tuning it on the real-world images and corresponding optical
flows.

Our experiments do not address certain possibilities, therefore further potential
extensions need to be mentioned. First, the optical flow based distortion correction
method processes image sequences, which have to be captured frommultiple views,
consequently, the camera has to be in motion in order to have optical flow vectors
suitable for distortion correction.

In this case, it is possible to exploit the constant nature of the distortion caused by
refractive surfaces by estimating the distortion parameters using images captured
in adequate scenes, when optical flow vector norms are above a certain threshold,
then calculating the mean sampling grid. Based on the calculated sampling grid,
each new image can be sampled to correct the geometric distortions, even if the
camera is not in motion.

Further experiments are also needed to achieve robustness regarding the method
used for generating optical flow. Our results show that currently the proposed
method is sensitive to the quality of the produced optical flow to a certain degree,
without fine-tuning on real-world images its performance is inferior to the method
proposed in [3]. This could be avoided by training with various optical flow meth-
ods, injecting variety in the data set. This was out of scope of our current experi-
ments, however.

Another potential improvement would be achieved by extending the scope of this
paper to real-world distortions by collecting real-world distorted and undistorted
image pairs, enabling us to train and test the system in the presence of real-world
distortions, in contrast to the data sets used in this work, which only contain images
on which synthetic distortions were applied.

7 Conclusion

In this work we presented a deep learning based distortion correctionmethodwhich
is capable of correcting a wider range of geometric distortions compared to existing
methods, based on three consequent RGB images using two corresponding optical
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flows as additional inputs for guiding the process of distortion correction.
We also showed that the predictability and regularity of optical flow vector direc-

tions typical to autonomous driving scenarios can be exploited to assist the distor-
tion correction method.

Our experimental results proved the hypothesis, that using optical flow as an
additional input enhances the distortion correction method compared to employing
an additional task such as semantic segmentation introduced in [3].

We detailed the disadvantages and constraints of the proposed system as well,
and proposed solutions for each potential failure case. Addressing the mentioned
problems would be the most important direction of development.

Data Availability: This work uses data sets derived from the public KITTI odometry
dataset [34] and a data set generated using the open-source CARLA simulator [33]. To gen-
erate the distorted images, proprietary windshield distortion measurement data was used,
and as a consequence the final derived data set can not be published.
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Abstract. Let � = (+, �) be a graph. Topological indices are numerical de-
scriptors that provide information about the molecular structure based on the
structural properties of the corresponding molecular graph. Among the var-
ious topological indices available for graphs, eccentricity-based indices such
as vertex eccentric and modified vertex eccentric connectivity indices are par-
ticularly significant for QSAR/QSPR studies. In this paper, these indices are
computed for self-centered graphs, regular graphs, and graphs obtained by
graph operations such as join and Cartesian product. Further, we examine
these indices for a molecular graph of (U)bis(pyridine)-cobalt(III)chloride.

Key words and phrases: Vertex eccentric connectivity index, Modified ver-
tex eccentric connectivity index, Topological indices, Chemical graphs, Graph
operations.

1 Introduction

Graph theory is a branch of mathematics that focuses on the analysis of networks.
It is a highly significant discipline with several applications in computer science,
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chemistry, and social sciences. Chemical graph theory, in particular, is essential
in analysing molecules, topological indices, isomerism, and their practical conse-
quences in quantum chemistry and stereochemistry [1]. The effect of stereocenters
on topological values has been studied in [2].
A chemical structure can be visualised as a graph, with the atoms in a molecule

represented as vertices and the bonds connecting them as edges [3]. In QSAR
(Quantitative Structure-Activity Relationships) and QSPR (Quantitative Structure-
Property Relationship), topological indices of chemical structures are used to create
connections between chemical structures and compare their characteristics or reac-
tivity. Topological indices serve as molecular descriptors to predict various physic-
ochemical parameters such as boiling point, enthalpy of vaporisation, and stabil-
ity [4]. A QSPR model is developed using linear regression to predict properties
such as molecular weight, molar volume, flash point and boiling point [5]. Addi-
tionally, QSPR analysis of nonsteroidal anti-inflammatory drugs using topological
indices demonstrates a strong correlation between these indices and the physical
properties of the chemical compound [6]. In [7], the atom bond connectivity index
and geometric arithmetic index of oxide and chain silicate are computed. Ashrafi
et al. have investigated the eccentric connectivity index for nanotubes and nan-
otorus in [8]. The super-augmented eccentric connectivity index was computed for
6-arylbenzonitriles and models were developed for anti-HIV-1 activity prediction
in [9]. Topological indices are also used to investigate the chemical structure of
anti-heart attack drugs [10].

2 Literature Review

After the Wiener index was introduced by Harry Wiener in 1947 [11], several other
topological indices were developed. While indices are based on vertex or edge de-
grees, others focus on distances between vertices or edges. Here, we investigate
topological indices called the vertex eccentric connectivity indices. The vertex ec-
centric connectivity index was introduced by Sharma et al. in 1997 [12], and sev-
eral authors have conducted further research to explore and investigate this index.
In [13], the relationship of pyrazole carboxylic acid hydrazide analogues with the
Wiener index and eccentric connectivity index is investigated. Anti-HIV activity
of 2, 3-diaryl-1, 3-thiazolidin-4-one derivative was investigated using this index in
[14]. Later, M.J. Morgan et al. gave bounds for this index [15]. Vertex eccentric
connectivity index was also computed for the diamond graph, and Dutch windmill
graph in [16] and [17], respectively.
The eccentric connectivity index was studied for composite graphs by Tomislav
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et al. [18]. In recent studies, vertex eccentric connectivity index was calculated
for k-uniform hyper-cacti [19], benzenoid hourglass network [20], and benzenoid
structure [21]. In this article, we present the vertex and modified vertex eccentric
connectivity index of (U)bis(pyridine)-cobalt(III)chloride.

3 Terminologies

Let � = (+, �) be a graph of order = and size <. For any vertex E ∈ + (�), the open
neighbourhood of E is defined as # (E) = {D ∈ + (�) |DE ∈ � (�)}. The degree of
E is the cardinality of # (E) and is denoted by 346(E) or specifically 346� (E) is the
degree of E in �. The distance 3 (D, E) is the shortest distance between vertices D
and E. The eccentricity of a vertex E is the largest distance between E and any other
vertex of �, and it is denoted by n (E) or specifically n� (E) is the eccentricity of E in
G.The join of two graphs,�1 and�2, is a graph obtained by adding edges from each
vertex of �1 to every vertex of �2, and it is denoted by �1 ∨�2. Cartesian product
of two graphs �1 and �2, denoted by �1��2, with vertex set + (�1) ×+ (�2) and
two vertices, (D1, E1) and (D2, E2), of �1��2 are adjacent if and only if D1 = D2
and E1E2 ∈ � (�2) or E1 = E2 and D1D2 ∈ � (�1), where D1, D2 ∈ + (�1) and
E1, E2 ∈ + (�2).
The vertex eccentric connectivity index of graph �, denoted by b2 (�), is defined

as
b2 (�) =

∑
E∈+ (�)

n (E)346(E).

The modified vertex eccentric connectivity index, denoted by Λ2 (�), was defined
by Ashrafi et al. in 2011 [22] and is given as

Λ2 (�) =
∑

E∈+ (�)
n (E)X(E), where X(E) =

∑
D∈# (E)

346(D).

4 Results

4.1 Vertex eccentric connectivity index of certain graphs

Theorem 4.1. Let � be a k-regular self-centered graph. Then, b2 (�) = =:` and
Λ2 (�) = =:2`, where ` is the diameter of � .

Proof. Consider a k-regular self-centered graph� of order = and eccentricity ` ∀E ∈
+ (�). Then, the vertex eccentric connectivity index of � is given as

b2 (�) =
∑

E∈+ (�)
n (E)346(E) =

∑
E∈+ (�)

`: = =:`.
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We have X(E) = ∑
D∈# (E) 346(D) =

∑
D∈# (E) : = :2. The modified vertex eccentric

connectivity index of a graph � is given as

Λ2 (�) =
∑

E∈+ (�)
n (E)X(E) =

∑
E∈+ (�)

`:2 = =:2`.

�

Theorem 4.2. The vertex eccentric connectivity index and modified vertex eccentric
connectivity index of a k-regular graph� of order = satisfy b2 (�) ≥ =: and Λ2 (�) ≥
=:2, respectively.

Proof. Consider a k-regular graph �. Then 346(E) = :∀E ∈ + (�) and n (E) ≥ 1.
Then, the vertex eccentric connectivity index of � satisfies

b2 (�) =
∑

E∈+ (�)
n (E)346(E) ≥

∑
E∈+ (�)

: ≥ =:.

We have X(E) =
∑

D∈# (E) 346(D) =
∑

D∈# (E) : = :2. Further, the modified vertex
eccentric connectivity index of a graph � satisfies

Λ2 (�) =
∑

E∈+ (�)
n (E)X(E) ≥

∑
E∈+ (�)

:2 ≥ =:2.

�

4.2 Vertex eccentric connectivity index for graphs obtained by cer-
tain graph operations

Theorem 4.3. Let �1 and �2 be two graphs of orders =1 and =2, respectively, and
sizes <1 and <2, respectively. Let :1 and :2 be the number of universal vertices in �1

and �2, respectively. Then,

b2 (�1 ∨ �2) = (:1 + :2) (1 − =1 − =2) + 4=1=2 + 4(<1 + <2).

Proof. Consider �1 and �2 to be two connected graphs with |+ (�1) | = =1,
|+ (�2) | = =2, |� (�1) | = <1 and |� (�2) | = <2. Let :1 and :2 be the number
of universal vertices in �1 and �2, respectively. For every vertex E ∈ + (�1),
346�1∨�2 (E) = 346�1 (E) + =2 in �1 ∨ �2 and for every vertex E ∈ + (�2),
346�1∨�2 (E) = 346�2 (F) + =1 in �1 ∨ �2. Further, we note that the eccentric-
ity of every vertex in �1 ∨ �2 is at most 2. If a vertex is a universal vertex in �1

or �2, then its eccentricity is 1, and all other vertices will have eccentricity 2 in
�1 ∨ �2.
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By the handshaking lemma, we have

2<1 =
∑

E∈+ (�1 )
346�1 (E)

=
∑

E∈+ (�1 )
346�1

(E)==1−1

346�1 (E) +
∑

E∈+ (�1 )
346�1

(E)<=1−1

346�1 (E)

= :1(=1 − 1) +
∑

E∈+ (�1 )
346�1

(E)<=1−1

346�1 (E).

Hence we have ∑
E∈+ (�1 )

346�1
(E)<=1−1

346�1 (E) = 2<1 − :1=1 + :1.

Similarly, ∑
E∈+ (�2 )

346�2
(E)<=2−1

346�2 (E) = 2<2 − :2=2 + :2.

Therefore, the vertex eccentric connectivity index is given as

b2 (�1 ∨ �2) =
∑

E∈+ (�1∨�2 )
n�1∨�2 (E)346�1∨�2 (E)

=
∑

E∈+ (�1 )
n�1∨�2 (E)346�1∨�2 (E) +

∑
E∈+ (�2 )

n�1∨�2 (E)346�1∨�2 (E)

=
∑

E∈+ (�1 )
346�1

(E)==1−1

n�1∨�2 (E)346�1∨�2 (E)

+
∑

E∈+ (�1 )
346�1

(E)<=1−1

n�1∨�2 (E)346�1∨�2 (E)

+
∑

E∈+ (�2 )
346�2

(E)==2−1

n�1∨�2 (E)346�1∨�2 (E)

+
∑

E∈+ (�2 )
346�2

(E)<=2−1

n�1∨�2 (E)346�1∨�2 (E)

=
∑

E∈+ (�1 )
346�1

(E)==1−1

(346�1 (E) + =2)
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+
∑

E∈+ (�1 )
346�1

(E)<=1−1

2(346�1 (E) + =2) +
∑

E∈+ (�2 )
346�2

(E)==2−1

(346�2 (E) + =1)

+
∑

E∈+ (�2 )
346�2

(E)<=2−1

(346�2 (E) + =1)

=
∑

E∈+ (�1 )
346�1

(E)==1−1

(=1 − 1 + =2) +
∑

E∈+ (�1 )
346�1

(E)<=1−1

2346�1 (E)

+
∑

E∈+ (�1 )
346�1

(E)<=1−1

=2 +
∑

E∈+ (�2 )
346�2

(E)==2−1

(=2 − 1 + =1)

+
∑

E∈+ (�2 )
346�2

(E)<=2−1

346�2 (E) +
∑

E∈+ (�2 )
346�2

(E)<=2−1

=1

= :1(=1 − 1 + =2) + 2(2<1 − :1=1 + :1) + 2(=1 − :1)=2
+ :2(=2 − 1 + =1) + 2(2<2 − :2=2 + :2) + 2(=2 − :2)=1

= (:1 + :2) (1 − =1 − =2) + 4=1=2 + 4(<1 + <2).

Hence b2 (�1 ∨ �2) = (:1 + :2) (1 − =1 − =2) + 4=1=2 + 4(<1 + <2). �

We partition the vertex set of a graph into sets of vertices. All the vertices with
the same eccentricity and degree belong to the same set.

Theorem 4.4. The modified vertex eccentric connectivity index of %=��<, where
=, < ≥ 3 is given by

Λ2 (%=��<) =


<(−30= − 7< + 12=2 + 8<= + 23), if = is even and < is odd,
<(−22= − 7< + 12=2 + 8<= + 12), if = is odd and < is even,
<(−22= − 7< + 12=2 + 8<= + 16), if = and < are even,
<(−30= − 7< + 12=2 + 8<= + 19), if = and < are odd.

Proof. Let � = %=��<. These are the four cases depending on = and <.
Case 1: Consider = to be even and < to be odd.
As seen in Table 1, we have =

2 sets of vertices in � based on the degrees and eccen-
tricities of vertices. The modified vertex eccentric connectivity index of a graph �

is given as

Λ2 (�) =
∑

E∈+ (�)
n (E)X(E)
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= 20<

(
2= + < − 3

2

)
+ 30<

(
2= + < − 3

2
− 1

)
+ 32<

[(
2= + < − 3

2
− 2

)
+
(
2= + < − 3

2
− 3

)
+ . . . +

(
2= + < − 3

2
− = − 2

2

)]
= 10<(2= + < − 3) + 15<(2= + < − 5) + 32<

=−4
2∑

:=1

2= + < − 3

2
− : − 1

= −30<= − 7<2 + 23< + 12<=2 + 8<2.

Table 1: Sets of vertices of %=��< when = is even and < is odd.

S. No of sets of vertices Frequency n (E) 346(E) X(E)

1 2m 2=+<−3
2 3 10

2 2m 2=+<−3
2 − 1 4 15

3 2m 2=+<−3
2 − 2 4 16

...
...

...
...

...
=
2 2m 2=+<−3

2 − =
2 + 1 4 16

Case 2 : Consider = to be odd and < to be even.
As seen in Table 2, we have =+1

2 sets of vertices in � based on the degrees and ec-
centricities of vertices. The modified vertex eccentric connectivity index of a graph
� is given as

Λ2 (�) =
∑

E∈+ (�)
n (E)X(E),

= 20<

(
2= + < − 2

2

)
+ 30<

(
2= + < − 2

2
− 1

)
+ 32<

[ (
2= + < − 2

2
− 2

)
+
(
2= + < − 2

2
− 3

)
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+ . . . +
(
2= + < − 2

2
− = − 3

2

) ]
+ 16<

(
2= + < − 2

2
− = − 1

2

)
= 10<(2= + < − 2) + 15<(2= + < − 4) + 8<(= + < − 1)

+ 32<

=−5
2∑

:=1

2= + < − 3

2
− : − 1

= −22<= − 7<2 + 12< + 12<=2 + 8<2=.

Table 2: Sets of vertices of %=��< when = is odd and < is even.

S. No of sets of vertices Frequency n (E) 346(E) X(E)

1 2< 2=+<−2
2 3 10

2 2< 2=+<−2
2 − 1 4 15

3 2< 2=+<−2
2 − 2 4 16

...
...

...
...

...

=−1
2 2< 2=+<−2

2 − =−3
2 4 16

=+1
2 < 2=+<−2

2 − =−1
2 4 16

Case 3: Consider = and < both to be even.
As seen in Table 3, we have =

2 sets of vertices in � based on the degrees and eccen-
tricities of vertices. The modified vertex eccentric connectivity index of a graph �

is given as

Λ2 (�) =
∑

E∈+ (�)
n (E)X(E),

= 20<

(
2= + < − 2

2

)
+ 30<

(
2= + < − 2

2
− 1

)
+ 32<

[(
2= + < − 2

2
− 2

)
+
(
2= + < − 2

2
− 3

)
+ . . . +

(
2= + < − 2

2
− = − 2

2

)]
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= 10<(2= + < − 2) + 15<(2= + < − 4) + 32<

=−4
2∑

:=1

2= + < − 2

2
− : − 1

= −22<= − 7<2 + 16< + 12=2< + 8<2=.

Table 3: Sets of vertices of %=��< when = and < are even.

S. No of sets of vertices Frequency n (E) 346(E) X(E)

1 2< 2=+<−2
2 3 10

2 2< 2=+<−2
2 − 1 4 15

3 2< 2=+<−2
2 − 2 4 16

...
...

...
...

...

=
2 2< 2=+<−2

2 − =−2
2 4 16

Case 4: Consider both = and < to be odd.
As seen in Table 4, we have =+1

2 sets of vertices in � based on the degrees and
eccentricity of vertices. The modified vertex eccentric connectivity index of a graph
� is given as

Λ2 (�) =
∑

E∈+ (�)
n (E)X(E)

= 20<

(
2= + < − 3

2

)
+ 30<

(
2= + < − 3

2
− 1

)
+ 32<

[ (
2= + < − 3

2
− 2

)
+
(
2= + < − 3

2
− 3

)
+ . . . +

(
2= + < − 3

2
− = − 3

2

) ]
+ 16<

(
2= + < − 3

2
− = − 1

2

)
= 10<(2= + < − 3) + 15<(2= + < − 5) + 8<(= + < − 2)
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+ 32<

=−5
2∑

:=1

2= + < − 3

2
− : − 1,

Λ2 (�) = −30=< − 7<2 + 19< + 12=2< + 8<2=.

Table 4: Sets of vertices of %=��< when = and < both are odd.

S. No of sets of vertices Frequency n (E) 346(E) X(E)

1 2< 2=+<−3
2 3 10

2 2< 2=+<−3
2 − 1 4 15

3 2< 2=+<−3
2 − 2 4 16

...
...

...
...

...
=−1
2 2< 2=+<−3

2 − =−3
2 4 16

=+1
2 < 2=+<−3

2 − =−1
2 4 16

�

Corollary 4.4.1. Themodified vertex eccentric connectivity index of %=��< is given
by

Λ2 (%=��=) =
{
20=3 − 29=2 + 16=, if = is even,
20=3 − 37=2 + 19=, if = is odd.

Theorem 4.5. Themodified vertex eccentric connectivity index of�=��< is given by

Λ2 (�=��<) =


8<=(< + =), if = and < are even,
8<=(< + = − 2), if = and < are odd,
8<=(< + = − 1), either one of = and < are even.

Proof. These are the three cases depending on the values of < and =.
Case 1: Consider both = and < to be even.
All vertices of �=��< has the same eccentricity <+=

2 , and are of same degree 4.
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Since a vertex of the graph has four neighbours of degree 4, X(E) = 16 ∀E ∈ + (�).
The modified vertex eccentric connectivity index of a graph � is given as

Λ2 (�) =
∑

E∈+ (�)
n (E)X(E) =

∑
E∈+ (�)

16
(< + =

2

)
.

Since the order of � is <=, we have

Λ2 (�) = 16<=

(< + =

2

)
= 8<=(< + =).

Hence,
Λ2 (�) = 8<=(< + =).

Case 2 : Consider both = and < to be odd.
All vertices of �=��< have the same eccentricity =+<−2

2 and are of same degree 4.
Since a vertex of the graph has four neighbours of degree 4, X(E) = 16 ∀E ∈ + (�).
The modified vertex eccentric connectivity index of a graph � is given as

Λ2 (�) =
∑

E∈+ (�)
n (E)X(E) =

∑
E∈+ (�)

16

(
= + < − 2

2

)
.

Since the order of � is <=, we have

Λ2 (�) = 16<=

(
= + < − 2

2

)
= 8<=(= + < − 2).

Hence,
Λ2 (�) = 8<=(= + < − 2).

Case 3: Consider either = or < to be even. Without loss of generality, let = be even
and < be odd.
All vertices of �=��< have the same eccentricity =+<−1

2 and are of same degree 4.
Since a vertex of the graph has four neighbours of degree 4, X(E) = 16 ∀E ∈ + (�).
The modified vertex eccentric connectivity index of a graph � is given as

Λ2 (�) =
∑

E∈+ (�)
n (E)X(E) =

∑
E∈+ (�)

16

(
= + < − 1

2

)
.

Since the order of � is <=, we have

Λ2 (�) = 16<=

(
= + < − 1

2

)
= 8<=(= + < − 2).

�
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Corollary 4.5.1. The modified vertex eccentric connectivity index of �=��= is given
by

Λ2 (�=��=) =
{
16=3, if = and < are even,
16=2(= − 1), if = and < are odd.

4.3 Vertex eccentric connectivity index of chemical graph of
(U)bis(pyridine)-cobalt(III)chloride

We consider the compound bis(pyridine)-cobalt(III)chloride with the chemical for-
mula Co(py)2Cl2, which exists in two forms: U form, which is pink in color and a
blue-colored V form[23]. In this paper, we are focusing on the U form. As shown in
Figure 1, it has a polymeric chain-like structure. It is stable because chlorine atoms
and pyridine rings are packed within a single chain[24]. Due to the repetitive nature
of the U form, we can construct a graph that represents this compound. The graph
obtained is a multigraph. We denote this family of graphs as ��C , where t is the
number of units. The simplest recorded structure of U Co(py)2Cl2 has C = 3 as seen
in Figure 2.

Figure 1: (U)bis(pyridine)-cobalt(III)chloride [Co(py)2Cl2].
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Figure 2: Graph representing �>(?H)2�;2.

Theorem 4.6. The vertex eccentric connectivity index of ��C is given by

b2 (��C ) =
{
72C2 + 236C, if C is even,
72C2 + 236C − 20, otherwise.

Proof. We categorise the vertices based on their degrees. Then, we partition them
into sets of vertices depending on their eccentricities. That is, the vertices in one
particular set have the same eccentricities. We have two cases depending on C.
Case 1: Consider C to be even.
As seen in Tables 5, 7, 9, 11, and 13, there are C

2 sets of vertices of degree 6, C
2 sets

of vertices of degree 4, C + 1 sets of vertices of degree 3, C
2 sets of vertices of degree

2, and one set of vertices of degree 1. The vertex eccentric connectivity index of a
graph ��C is given by

b2 (��C ) =
∑

E∈+ (��C )
n (E)346(E)

=
∑

E∈+ (��C )
346 (E)=1

n (E) +
∑

E∈+ (��C )
346 (E)=2

2n (E) +
∑

E∈+ (��C )
346 (E)=3

3n (E)
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+
∑

E∈+ (��C )
346 (E)=4

4n (E) +
∑

E∈+ (��C )
346 (E)=6

6n (E).

From Table 7, we have∑
E∈+ (��C )
346 (E)=1

n (E) =
∑

E∈+ (��C )
346 (E)=1

(2C + 3) = 4(2C + 3) = 8C + 12.

From Table 11, we have∑
E∈+ (��C )
346 (E)=2

2n (E) = 8 [(2C + 6 − 5) + (2C + 6 − 7) + . . . + (2C + 6 − C − 1)]

+ 4(2C + 6 − C − 3)

= 4C + 12 +
C−2
2∑

:=1

2C + 6 − 2: − 3 = 6C2 + 4C − 12.

From Table 5, we have∑
E∈+ (��C )
346 (E)=3

3n = 12(2C + 6) + 24 [(2C + 6 − 1) + (2C + 6 − 3) + . . . + 2C + 6 − (C − 1)]

+ 36 [(2C + 6 − 2) + (2C + 6 − 4) + . . . + (2C + 6 − (C − 2))]
+ 24(2C + 6 − C)

= 24C + 72 + 24(2C + 6 − 1) + 24(C + 6) + 24

C−2
2∑

:=1

2C + 6 − (2: + 1)

+ 36

C−2
2∑

:=1

2C + 6 − 2:

= 45C2 + 174C.

From Table 9, we have∑
E∈+ (��C )
346 (E)=4

4n (E) = 16 [(2C + 6 − 3) + (2C + 6 − 5) + . . . + (2C + 6 − (C + 1))]
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= 16

C
2∑

:=1

2C + 6 − 2: − 1 = 12C2 + 32C.

From Table 13, we have∑
E∈+ (��C )
346 (E)=6

6n (E) = 12 [(2C + 6 − 4) + (2C + 6 − 6) + . . . + (2C + 6 − (C + 2))]

= 12

C
2∑

:=1

2C + 6 − 2: − 2 = 9C2 + 18C.

Substituting the above equations in equation (1), we get

b2 (��C ) = 72C2 + 236C, when C is even.

Case 2 : Consider C to be odd.
As seen in Tables 6, 8, 10, 12, and 14, there are C−1

2 sets of vertices of degree 6, C+1
2

sets of vertices of degree 4, C + 2 sets of vertices of degree 3, C−1
2 sets of vertices of

degree 2, and one set of vertices of degree 1. The vertex eccentric connectivity index
of a graph ��C is given by

b2 (��C ) =
∑

E∈+ (��C )
n (E)346(E)

=
∑

E∈+ (��C )
346 (E)=1

n (E) +
∑

E∈+ (��C )
346 (E)=2

2n (E) +
∑

E∈+ (��C )
346 (E)=3

3n (E) +
∑

E∈+ (��C )
346 (E)=4

4n (E)

+
∑

E∈+ (��C )
346 (E)=6

6n (E).

From Table 8, we have∑
E∈+ (��C )
346 (E)=1

n (E) =
∑

E∈+ (��C )
346 (E)=1

(2C + 3) = 4(2C + 3) = 8C + 12.

From Table 12, we have∑
E∈+ (��C )
346 (E)=2

2n (E) = 8 [(2C + 6 − 5) + (2C + 6 − 7) + . . . + (2C + 6 − C − 2)]
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=

C−1
2∑

:=1

2C + 6 − 2: − 3 = 6C2 + 4C − 10.

From Table 6, we have∑
E∈+ (��C )
346 (E)=3

3n (E) = 12(2C + 6) + 24 [(2C + 6 − 1) + (2C + 6 − 3) + . . . + 2C + 6 − (C − 2)]

+ 36 [(2C + 6 − 2) + (2C + 6 − 4) + . . . + (2C + 6 − (C − 3))]
+ 30(C + 7) + 12(2C + 11)

= 24C + 72 + 24(2C + 6 − 1) + 30(C + 7) + 12(2C + 11)

+ 24

C−3
2∑

:=1

2C + 6 − (2: + 1) + 36

C−3
2∑

:=1

2C + 6 − 2:

= 45C2 + 174C − 15.

From Table 10, we have∑
E∈+ (��C )
346 (E)=4

4n (E) = 16 [(2C + 6 − 3) + (2C + 6 − 5) + . . . + (2C + 6 − C))]

+ 8(2C + 6 − C − 2)

=

C−1
2∑

:=1

2C + 6 − 2: − 1 + 8(2C + 6 − C − 2) = 12C2 + 32C − 4.

From Table 14, we have∑
E∈+ (��C )
346 (E)=6

6n (E) = 12 [(2C + 6 − 4) + (2C + 6 − 6) + . . . + (2C + 6 − (C + 1))]

+ 6(2C + 6 − C − 3)

= 6(C + 3) + 12

C−1
2∑

:=1

2C + 6 − 2: − 2 = 9C2 + 18C − 3.

Substituting the above equations in equation (2), we get

b2 (��C ) = 72C2 + 236C − 20, when C is odd.

�
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Theorem 4.7. The modified vertex eccentric connectivity of ��C is given by

b2 (��C ) =
{
192C2 + 576C − 8, if C is even,
192C2 + 576C − 48, otherwise.

Proof. We categorise the vertices based on their degrees. Then, we partition them
into sets of vertices depending on their eccentricities. That is, the vertices in one
particular set have the same eccentricities. We have two cases depending on C.
Case 1: Consider C to be even.
As seen in Tables 5, 7, 9, 11, and 13, there are C

2 sets of vertices of degree 6, C
2 sets

of vertices of degree 4, C + 1 sets of vertices of degree 3, C
2 sets of vertices of degree

2, and one set of vertices of degree 1. The vertex eccentric connectivity index of a
graph ��C is given by

Λ2 (��C ) =
∑

E∈+ (��C )
n (E)X(E).

From Table 7, we have∑
E∈+ (��C )
346 (E)=1

n (E)X(E) =
∑

E∈+ (��C )
346 (E)=1

(2C + 3) = 24(2C + 3) = 48C + 72.

From Table 11, we have∑
E∈+ (��C )
346 (E)=2

n (E)X(E) = 48 [(2C + 6 − 5) + (2C + 6 − 7) + . . . + (2C + 6 − C − 1)]

+ 24(2C + 6 − C − 3)

= 24C + 72 +
C−2
2∑

:=1

2C + 6 − 2: − 3 = 36C2 + 24C − 72.

From Table 5, we have∑
E∈+ (��C )
346 (E)=3

n (E)X(E) = 48 [(2C + 6 − 1) + (2C + 6 − 3) + . . . + 2C + 6 − (C − 1)]

+ 24 [(2C + 6 − 2) + (2C + 6 − 4) + . . . + (2C + 6 − (C − 2))]
+ 56 [(2C + 6 − 2) + (2C + 6 − 4) + . . . + (2C + 6 − (C − 2))]
+ 56(2C + 6 − C) + 24(2C + 6)
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= 48C + 144 + 48(2C + 6 − 1) + 56(C + 6)

+ 48

C−2
2∑

:=1

2C + 6 − (2: + 1) + 80

C−2
2∑

:=1

2C + 6 − 2:

= 96C2 + 368C.

From Table 9, we have∑
E∈+ (��C )
346 (E)=4

n (E)X(E) = 48 [(2C + 6 − 3) + (2C + 6 − 5) + . . . + (2C + 6 − (C + 1))]

= 48

C
2∑

:=1

2C + 6 − 2: − 3 = 36C2 + 96C.

From Table 13, we have∑
E∈+ (��C )
346 (E)=6

n (E)X(E) = 28(2C + 6 − 4)

+ 32 [(2C + 664) + (2C + 6 − 8) + . . . + (2C + 6 − (C + 2))]

= 28(2C + 2) + 32

C−2
2∑

:=1

2C + 6 − 2: − 4 = 24C2 + 40C − 8.

Substituting the above equations in equation (3), we get

Λ2 (��C ) = 192C2 + 576C − 8, when C is even.

Case 2 : Consider C to be odd.
As seen in Tables 6, 8, 10, 12, and 14, there are C−1

2 sets of vertices of degree 6, C+1
2

sets of vertices of degree 4, C + 2 sets of vertices of degree 3, C−1
2 sets of vertices of

degree 2, and one set of vertices of degree 1. The vertex eccentric connectivity index
of a graph ��C is given by

Λ2 (��C ) =
∑

E∈+ (��C )
n (E)X(E).

From Table 8, we have∑
E∈+ (��C )
346 (E)=1

n (E)X(E) =
∑

E∈+ (��C )
346 (E)=1

(2C + 3) = 24(2C + 3) = 48C + 72.
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From Table 12, we have∑
E∈+ (��C )
346 (E)=2

n (E)X(E) = 48 [(2C + 6 − 5) + (2C + 6 − 7) + . . . + (2C + 6 − C − 2)]

= 48

C−1
2∑

:=1

2C + 6 − 2: − 3 = 36C2 + 24C − 60.

From Table 6, we have∑
E∈+ (��C )
346 (E)=3

n (E)X(E) = 24(2C + 6)

+ 48 [(2C + 6 − 1) + (2C + 6 − 3) + . . . + 2C + 6 − (C − 2)]
+ 24 [(2C + 6 − 2) + (2C + 6 − 4) + . . . + (2C + 6 − (C − 3))]
+ 56 [(2C + 6 − 2) + (2C + 6 − 4) + . . . + (2C + 6 − (C − 3))]
+ 12(C + 7) + 56(C + 7) + 24(C + 6) + 28(C + 5)

= 24(2C + 6) + 48(2C + 6 − 1) + 12(C + 7) + 56(C + 7)

+ 24(C + 6) + 28(C + 5) + 48

C−3
2∑

:=1

2C + 6 − (2: + 1)

+ 24

C−3
2∑

:=1

2C + 6 − 2: + 56

C−3
2∑

:=1

2C + 6 − 2:

= 96C2 + 368C − 32.

From Table 10, we have∑
E∈+ (��C )
346 (E)=4

n (E)X(E) = 48 [(2C + 6 − 3) + (2C + 6 − 5) + . . . + (2C + 6 − C)]

+ 24(2C + 6 − C − 2)

=

C−1
2∑

:=1

2C + 6 − 2: − 1 + 24(2C + 6 − C − 2) = 36C2 + 96C − 12.

From Table 14, we have∑
E∈+ (��C )
346 (E)=6

n (E)X(E) = 28(2C + 6 − 4) + 16(2C + 6 − C − 3)
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+ 32 [(2C + 6 − 6) + (2C + 6 − 8) + . . . + (2C + 6 − (C + 1))]

= 28(2C + 2) + 16(C + 3) + 32

C−3
2∑

:=1

2C + 6 − 2: − 4

= 24C2 + 40C − 16.

Λ2 (��C ) = 192C2 + 576C − 48, when C is odd.

�

Table 5: Sets of vertices with degree 3 in ��C for even C.

S. No of sets
of vertices Frequency n (E) X(E)

1 4 2C + 6 6

2 8 2C + 6 − 1 6

3 4 2C + 6 − 2 6
8 2C + 6 − 2 7

4 8 2C + 6 − 3 6

5 4 2C + 6 − 4 6
8 2C + 6 − 4 7

...
...

...
...

C − 1 4 2C + 6 − (C − 2) 6
8 2C + 6 − (C − 2) 7

C 8 2C + 6 − (C − 1) 6

C + 1 8 2C + 6 − C 7
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Table 6: Sets of vertices with degree 3 in ��C for odd C.

S. No of sets
of vertices Frequency n (E) X(E)

1 4 2C + 6 6

2 8 2C + 6 − 1 6

3 4 2C + 6 − 2 6
8 2C + 6 − 2 7

...
...

...
...

C − 2 4 2C + 6 − (C − 3) 6
8 2C + 6 − (C − 3) 7

C − 1 8 2C + 6 − (C − 2) 6

C 2 2C + 6 − (C − 1) 6
8 2C + 6 − (C − 1) 7

C + 1 4 2C + 6 − C 6

C + 2 4 2C + 6 − C − 1 7

Table 7: Sets of vertices with degree 1 in ��C for even C.

S. No of sets
of vertices Frequency n (E) X(E)

1 4 2C + 6 − 3 6



Vertex eccentric connectivity index of chemical graphs 99

Table 8: Sets of vertices with degree 1 in ��C for odd C.
S. No of sets
of vertices Frequency n (E) X(E)

1 4 2C + 6 − 3 6

Table 9: Sets of vertices with degree 4 in ��C for even C.

S. No of sets
of vertices Frequency n (E) X(E)

1 4 2C + 6 − 3 12

2 4 2C + 6 − 5 12

3 4 2C + 6 − 7 12
...

...
...

...

C
2 4 2C + 6 − (C + 1) 12

Table 10: Sets of vertices with degree 4 in ��C for odd C.

S. No of sets
of vertices Frequency n (E) X(E)

1 4 2C + 6 − 3 12

2 4 2C + 6 − 5 12
...

...
...

...

C−1
2 4 2C + 6 − C 12

C+1
2 2 2C + 6 − (C + 2) 12
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Table 11: Sets of vertices with degree 2 in ��C for even C.

S. No of sets
of vertices Frequency n (E) X(E)

1 4 2C + 6 − 5 12

2 4 2C + 6 − 7 12

...
...

...
...

C
2 − 1 4 2C + 6 − (C + 1) 12

C
2 2 2C + 6 − (C + 3) 12

Table 12: Sets of vertices with degree 2 in ��C for odd C.

S. No of sets
of vertices Frequency n (E) X(E)

1 4 2C + 6 − 5 12

2 4 2C + 6 − 7 12

3 4 2C + 6 − 9 12
...

...
...

...

C−1
2 4 2C + 6 − (C + 2) 12
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Table 13: Sets of vertices with degree 6 in ��C for even C.

S. No of sets
of vertices Frequency n (E) X(E)

1 2 2C + 6 − 4 14

2 2 2C + 6 − 6 16

3 2 2C + 6 − 8 16
...

...
...

...
C
2 2 2C + 6 − (C + 2) 16

Table 14: Sets of vertices with degree 6 in ��C for odd C.

S. No of sets
of vertices Frequency n (E) X(E)

1 2 2C + 6 − 4 14

2 2 2C + 6 − 6 16

3 2 2C + 6 − 8 16
...

...
...

...
C−1
2 2 2C + 6 − (C + 1) 16

C+1
2 1 2C + 6 − (C + 3) 16

5 Conclusion

In this article, vertex eccentricity connectivity indices are computed for graphs
obtained by operations of graphs and for the chemical graph of (U)bis(pyridine)-
cobalt(III)chloride with the chemical formula Co(py)2Cl2. These indices are con-
nected to a substance’s core physical and chemical characteristics, and the results
can be very useful in QSAR (Quantitative Structure-Activity Relationships) and
QSPR (Quantitative Structure-Property Relationship) research. The work can be
extended to find other topological indices for the chemical graph of (U)bis(pyri-
dine)-cobalt(III)chloride.
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Abstract. The growing demand for interpretable models in machine learn-
ing underscores the importance of transparency in decision-making processes
for building trust and ensuring accountability in AI systems. Unlike complex
black-box models, interpretable models shed light on the reasoning behind
predictions or classifications. In image processing, convolutional networks of-
ten serve as backbone models that – obviously, but not entirely transparently
– highly influence overall performance. This research focuses on assessing
and comparing the performance of explainable neural network-based image
classification models using various backbone architectures. The evaluation
includes various performance metrics, such as prediction accuracy and spe-
cialized measurements tailored to assess interpretability, providing insights
into the effectiveness of interpretable models in image classification tasks.
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1 Introduction

Interpretability of the outputs of machine learning systems has always been a ques-
tion of central interest, nevertheless, providing explanations for the predictions of
low-complexity, e.g. linear models can be done in a rather simplistic manner. Lin-
ear or generalized linear models, however, are not the only ones considered highly
interpretable, but here we can also mention decision trees, decision rules, or the k-
nearest neighbor classifier [1]. However, when a more complex predictor is applied,
giving explanations ceases to be simple anymore. Black-box predictions cannot fa-
cilitate root cause analysis, an important component of process improvement in
high-risk systems, for example, driver-assistance systems. Besides accuracy and ro-
bustness, transparency of decisions is also prescribed by the Artificial Intelligence
Act when working with high-risk scenarios.1 Explainability can also alleviate social
acceptance: if we know how something works, we trust it more. And last but not
least, explainability might also facilitate performance improvement. However, in-
terpretability can also lead to easier manipulation of the system; therefore, it must
be handled with care [4].

In computer vision, explainable models focus mostly on image classification, with
only a few tackling other tasks like semantic segmentation. A significant part of
these methods are prototype-based models: the explanation is formulated by speci-
fying the most important image parts that are similar to some prototypes extracted
from training images [5]–[8]. From an architectural perspective, these neural net-
works first extract the features from the input image usually by employing a neural
network (backbone), mostly a convolutional neural network (CNN), based on which
the prototypes are determined and subsequently compared to the encoded image
regions (see Figure 2). The results of the comparisons between the encoded image
parts and prototypes are then fed into an interpretable, i.e. linear classifier layer.
Although any convolutional backbone can be substituted in these models, the back-
bone has a major impact on the accuracy and explainability of the prediction. In this
paper, we study the influence of the backbone model on the prediction accuracy and
interpretability in interpretable image classificationmodels, by using various convo-
lutional nets to extract the features, comparing the results obtained and attempting
to give explanations for the outcomes.

The present paper is structured as follows. Section 2 provides an introduction to
explainable and self-explainable models in computer vision, used in image classifi-
cation and semantic segmentation. In Section 3 evaluation metrics applied in the
literature are presented to measure interpretability, some of which will also appear

1The AI Act proposed by the European Commission in 2021 enters into force in June–July 2024,
but will become fully applicable 36 months after [2], [3].
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Figure 1: Example explanation given by the PIP-Net self-explainingmodel [7]: high-
lighted image patches are compared to the learned prototypes, fromwhich similarity
scores are obtained, finally, the similarity scores are weighted by explainable classi-
fication weights.

in our experiments. Section 4 presents the circumstances under which the main
idea for the present paper was formulated and describes the backbone architectures
used in our experiments. The experiments carried out and the results obtained are
presented in Section 5, while Section 6 concludes the paper by discussing the results
and possible future directions.

2 Explainable models in image classification

Although explainable models can be discussed independently of the application do-
main, in this section, we briefly describe the models used in computer vision; [9]
gives a detailed introduction as well as a categorization of interpretable models in
machine learning. Here we focus only on deep neural – mostly convolutional – net-
work architectures for image classification and semantic segmentation, biased to-
wards prototype-based approaches, mentioning only some of the other types of ex-
isting interpretable models. Although other categorizations exist as well, when con-
sidering explainable models, we differentiate here between (i) post-hoc approaches,
i.e. methods where explanations are given using an ex-post procedure, and (ii) self-
interpretable models, where explainability is an intrinsic property. The work [10] is
a recent comprehensive survey on explainable approaches in artificial intelligence
that covers the last few years of research in this field.

2.1 Post-hoc methods

Themost notable explainable post-hoc methods are probably Grad-CAM (Gradient-
weighted Class Activation Mapping) [11] and LIME (Local Interpretable Model-
agnostic Explanations) [12]. Grad-CAM for CNNs calculates class-specific gradi-
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ents and propagates them back to a given convolutional layer to assign importance
to feature maps, while LIME is a generic method providing explanations by build-
ing an interpretable, e.g., linear model locally around the prediction. While LIME is
model-agnostic, Grad-CAM is model-specific, since it can only be applied to (convo-
lutional) neural networks. Grad-CAM is a generalization of CAM (Class Activation
Maps) [13], capable of producing an activation heatmap of an arbitrary convolu-
tional layer by the following formula

!2
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where �: denotes the :-th feature map of the selected layer and H2 is the class score
before softmax. Unlike CAM, this method is applicable regardless of the neural net-
work structure. The variants of Grad-CAM proposed over the years (Grad-CAM++
[14], Eigen-CAM [15], XGrad-CAM [16], etc.) try to correct the shortcomings of the
base algorithm and thus create a more accurate heatmap for saliency visualization.
Grad-CAM and its variants can also be used to provide high-resolution localization
maps [17].

2.2 Self-explainable models

Attention-based models [18], [19], dominating natural language processing applica-
tions in the present, are becoming more and more popular and successful in solving
computer vision tasks as well – in these cases, visualization can be performed, for
example, using the attention maps obtained directly [20], [21].

Prototype-based models explain their decisions using an aggregated comparison
of image regions to prototypes obtained from the training images. In the case of
image classification, these models can explain the predictions by pinpointing the
prototypes activated for a given image and their corresponding similarities and
classification weights. Figure 2 shows the general architecture of prototype-based
self-explainable image classification models. One of the first prototype-based such
models, PrototypeDL [5] uses an autoencoder to obtain the features, the prototypes
here having the same size as the input image. Its successor model, ProtoPNet [6],
replaces the auto-encoder with a CNN and uses prototypes corresponding to smaller
regions in the input space of the images. PIP-Net [7] no longer stores prototypes
explicitly, but only the similarities of image patches to prototypes. It tries to cor-
rect the shortcomings of the earlier self-explainable models, in which a semantic
gap between the input and latent space has been observed, originating from the
possibly erroneous assumption that images from the same class have the same pro-
totypes, thus resulting in a sometimes meaningless mixture of different concepts.
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Figure 2: The general architecture of prototype-based self-explainable image classi-
fication models using a CNN backbone to extract the features: the feature vectors
provided by the backbone neural network are compared to the prototypes, the pre-
dictions being based on the similarity scores obtained from this.

Its loss function has three parts, L = _�L� + _�L� + _)L) ,, where L� denotes
the negative log-likelihood classification loss, L� is the aligment loss, while L) is
responsible for maintaining diversity. The alignment loss introduces robustness into
the model by restraining that two views of the same image patch to belong to the
same prototype,

L� = − 1
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where z denote the latent patches of the � ×, feature map. When training, the
network is fed with pairs instead of one image, generated using geometric augmen-
tation. The tanh loss regularizer L) was introduced to prevent the naive solution
for the L� term, forcing every prototype to be at least once present in a mini-batch,

L) = − 1

�

∑
3

log

[
tanh

(∑
1∈�

p1

)
+ n

]
,

where p1 is the prototype similarity vector, � denotes the number of prototypes
and � represents a mini-batch. It uses scoring sheet reasoning, applying a ReLU acti-
vation function on the classification weights, thus producing a sparse classification
layer with positive and hence interpretable weights. The model can also abstain
itself from prediction if low similarity scores are obtained for every prototype. By
allowing only positive weights in the classification layer, the model will output only
positive predictions for every class; therefore, the reasoning process will rely only
on concepts that are present in the input image and not on missing concepts. This
way themodel can predict out-of-distribution data when all the classes get near-zero
scores, i.e. none of the learned concepts were found in the input image.
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3 Metrics of interpretability

By evaluating supervised learning methods, we usually understand measuring the
accuracy of the prediction with respect to some ground-truth data, different cases
requiring different such metrics (e.g. accuracy versus �1-score [22]). However, in
our situation, explainability should also be measured to be able to compare different
approaches from this perspective as well. In what follows, we enumerate some of
the interpretability metrics used in the computer vision literature.

3.1 Intersection over union

The intersection of union metrics (IoU) are used to evaluate the object detection
and semantic segmentation methods in computer vision [23] – in both problems, a
specific part of the image is sought, and the better the overlap between ground truth
and output, the better the prediction should be. IoU can also be used to measure
interpretability by calculating the overlap between the ground truth object or the
object part and the thresholded activation map [24], [25].

3.2 Location instability

Location instability was introduced in [26] and was further applied to evaluate ex-
plainability in [25]. The underlying idea is to measure the variance of the inference
positions relative to some landmark points. As stated in [25], “if 5 represented the
shoulder, then the distance between the shoulder and the head should remain stable
through different objects”, hence the metric computes the mean of the variances of
these distances.2

3.3 Prototype purity

The purity of the prototype was introduced in [7] to measure interpretability in clas-
sification scenarios. This metric measures the extent to which prototypes represent
the same object part by selecting the most similar images to a given prototype and
returning the maximum such ratio. A prototype is said to represent a specific part if
the center of the object part lies in the image patch corresponding to the prototype.
The most similar images based on which this measure is calculated are determined

2Because one cannot guarantee the same ratio between the size of the object and the of the image,
normalization should be done for example by the average distance between landmark points, assuming
the presence of at least two landmarks, instead of the width and height of the image, as it appears in
the proposed formula.
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in two ways in [7]: (i) selecting the top-: most similar images versus (ii) selecting
all images where similarity exceeds an Y threshold.

3.4 The “FunnyBirds” metrics

In [27] the synthetic dataset FunnyBirds is introduced together with a set of metrics
that measure the interpretability from three perspectives: completeness, correctness,
and contrastivity. In our experiments, we used thesemetrics (and the dataset as well)
in order to be able to put the results side by side. We also mention that while these
measures offer a versatile evaluation of interpretability, their disadvantage is that a
significant subset of these can only be used for synthetically generated datasets.

1. Completeness:

• Controlled synthetic data check (CSDC) – overlap between the parts es-
timated to be important and the sufficient parts to correctly categorize
the image, normalized by the size of the sufficient parts set.

• Preservation check (PC) – how often the prediction remains unchanged
if parts estimated to be unimportant are deleted from the image.

• Deletion check (DC) – how often the prediction changes if the parts es-
timated to be important are removed from the image.3

• Distractibility (D) – how many actually unimportant parts are correctly
estimated to be unimportant by the explanation; the opposite of CSDC
(overcompleteness).

2. Correctness:

• Single deletion (SD) – Spearman’s rank correlation coefficient between
the explanation’s importance score of each part and the change in the
logit of the target class when removing that part.

3. Contrastivity:

• Target sensitivity (TS) – benchmarks how sensitive an explanation is
to the target class; to measure this, the relative frequency of events is
considered when the relation between the returned importance scores
between two classes with nonoverlapping parts is correct.

3Deletion check requires that the prediction to be different than the ground-truth when important
parts are removed from the image, however, all that can really be said is that the prediction might
change in this case. Although we do not agree with this metric, we left it in the set of evaluation
measures used throughout the experiments.
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Ametric that falls outside of the above mentioned three categories is background
independence (BI), measuring the level of independence between the prediction and
the image background by calculating the ratio of background objects whose removal
causes the target logit to drop by less than 5%. However, following the definition
of correctness for interpretable models from [27], in our opinion, BI could also be
placed alongside SD.

4 Changing the backbone architecture

As described in Section 2.2, ProtoPNet [6] and PIP-Net [7] use CNNs to extract the
features from the input images. In this section, we briefly describe three success-
ful and popular CNN architectures that can be used as the backbone providing the
features in self-explaining models. ProtoPNet was chosen because of its model’s
clarity, while PIP-Net is considered to be an extension of ProtoPNet, claiming its
superiority in terms of explainability – see Section 3.3 for the prototype purity met-
ric. The authors of [7] obtained exceptional results using ConvNeXt as the model
backbone; therefore, in addition to VGG and ResNet, ConvNeXt will also be part of
the architectures used as backbones in our experiments.

4.1 VGG

VGG [28] is architecturally the simplest of the three CNNs included in the current
study. The network is built of (3 × 3) convolutional filters and max-pooling layers
to reduce feature dimensions. Simonyan and Zisserman [28] introduced the archi-
tecture in multiple configurations, four of which were subsequently named VGG11,
VGG13, VGG16, and VGG19, denoting the number of weighted layers used in the
configuration.

The architecture of VGG networks, which are designed for image classification
tasks, consists of five convolutional layers, followed by three fully connected layers
and a softmax layer. In a self-explaining model, only the convolutional layers serve
as the backbone, the fully connected and softmax layers are excluded. The total
number of convolutional filters in the five layers ranges from 8 to 16 in the different
configurations.

4.2 ResNet

ResNet [29] marked a paradigm shift by addressing the problem of vanishing gradi-
ents that plagued deeper neural networks. The ResNet architecture is primarly built
on the VGG architecture, both featuring five convolutional layers in the feature ex-
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Figure 3: Building blocks of ResNet and ConvNeXt architectures.

traction segment. Its innovative use of skip connections, or residual connections,
allows gradients to flow through the network more effectively, enabling the training
of much deeper networks without a degradation in performance. This design allows
the network to use identity functions between layers as needed, which means that
layers can be skipped if they do not contribute to the overall performance, leading
to more efficient learning processes.

Compared to the architecture of VGG, ResNet also has five convolutional layers
that can serve as the backbone of self-explaining models. Unlike VGG, the first
layer features a single 7 × 7 convolution with a stride of 2 followed by a max-pool
for downsampling. Moreover, max-pooling layers are omitted after the next layers,
and downsampling is performed by the first block of each layer, having a stride of
2 on the 3 × 3 convolution.

The residual connections in ResNet address the issue of vanishing gradients. Con-
nections are introduced through every group of two consecutive convolutional lay-
ers in the VGG architecture, allowing the network to bypass these layers, forming a
basic block, as illustrated in Figure 3a.

By overcoming the problem of vanishing gradients, it became possible to con-
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struct networks with more layers. To maintain computational efficiency, bottleneck
blocks are utilized in place of basic blocks Figure 3b. In a bottleneck block, the fea-
ture map is reduced in depth dimension before the 3 × 3 convolution and restored
after, using 1 × 1 convolutions.

Having the ability to build neural networks with greater depth, [28] introduces
two smaller ResNet configurations built of basic blocks (see Figure 3a) and three
larger ones built of bottleneck blocks (see Figure 3b), the total number of convolu-
tional filters in the five layers ranging from 17 to 151.

4.3 ConvNeXt

ConvNeXt [30] represents a contemporary architecture that modernizes the ResNet
design. The authors begin by applying advanced training techniques to enhance
the performance of the original ResNet architecture, which serves as a baseline.
Subsequently, theymethodically develop a new convolutional network architecture,
integrating insights from transformer models and ResNeXt [31].

As a first step, the block number ratio between convolutional layers is aligned
with the ratios used in vision transformer models. Then the initial 7×7 convolution
with stride 2 and max-pool is replaced by a single 4 × 4 convolution to migrate the
patchify strategy of the vision transformers.

Based on the main principle of ResNeXt, ConvNeXt employs grouped convolu-
tions and broadens the network width. Depthwise convolutions serve to diminish
the FLOPs. Another benefit of depth-wise convolution is their ability to separate
spatial and channel mixing, similarly to vision transformers, where each operation
mixes information across spatial or channel dimension, but not both.

In ConvNeXt, inspired by vision transformers, bottleneck blocks have been re-
placed with inverted bottleneck blocks. Moving beyond the foundation of the VGG
architecture, the developers of ConvNeXt investigated the use of spatial convolu-
tions larger than 3 × 3. This required swapping the first 1 × 1 convolution and
depthwise convolution within the bottleneck blocks. Their experiments indicated
that optimal performance was achieved with 7 × 7 convolutions.

Finally, someminor vision transformer-inspired adjustments have been applied to
the network architecture, including (i) the interchanging rectified linear unit (ReLU)
[32] activations to Gaussian error linear unit (GELU) [33]; (ii) the reduction of activa-
tion functions and normalization layers; (iii) the replacement of batch normalization
with layer normalization and (iv) the implementation of a separate downsampling
layer instead of using 3 × 3 convolution with stride 2 at the start of each layer. The
final structure of the ConvNeXt architecture building blocks is depicted in Figure 3c.
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5 Experimental results

In the current study, we compared different self-explainable and interpretable post-
hoc networks by measuring their explainability. The goal is to obtain empirical
evidence that supports the importance of the backbone network in the architectures
studied. In the following sections, we describe the dataset used, the setup of the
experiments, and present the obtained results.

5.1 Dataset

In the current experiments, images from the FunnyBirds dataset [27] were used4,
a synthetic dataset generated to quantitatively analyze XAI models. In [27], the
following five human-interpretable “concepts” were considered in the development
of the dataset: (1) beak, (2) wings, (3) feet, (4) eyes and (5) tail. Each class in the
dataset consists of a unique combination of these concepts, the dataset imitating
real-word data/scenarios by adding random background objects and changing the
illumination and view point when generating the images.

The FunnyBirds dataset consists of 50 500 images (50 000 train and 500 test sam-
ples) of 50 species of synthetic birds. In addition to the images, the dataset also
contains a pixel-wise annotation of each object and concept to facilitate realistic
image modifications (e.g. removing parts).

5.2 Setup

In the case of the ProtoPNet experiments, we used Adam optimizer, a learning rate
of 0.003 for the warm-up and joint training phases, and 0.0001 for the fine-tuning
step. A batch size of 128 was used for all three backbone families.

For the PIP-Net model, the Adam optimizer with a learning rate of 0.0005 was
used. During the pre-training phase, a batch size of 64 and 32 was used during
joint training, respectively, except when ConvNeXt-Tiny was used as the backbone,
where the pre-training and joint batch size were set to 32 and 16, respectively.

Grad-CAM and Grad-CAM++ experiments were performed using the pytorch-
grad-cam5 library. For every architecture, the feature map considered was the last
layer preceding the classification layer. For ResNet, Adam optimizer was used with
a learning rate of 0.001, while for the rest of the models, the SGD optimizer was
used with the same learning rate and 0 momentum. The batch sizes selected were
128 for ResNet and 32 for the larger VGG and ConvNeXt models. Each model was

4https://github.com/visinf/funnybirds-framework
5https://github.com/jacobgil/pytorch-grad-cam

https://github.com/jacobgil/pytorch-grad-cam
https://github.com/visinf/funnybirds-framework
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Metric \ Backbone ResNet-18 ResNet-34 VGG-11 VGG-16 ConvNeXt-T
ACC 0.76 0.86 0.94 0.95 0.96
BI 0.99 0.99 1.00 1.00 0.97

CSDC 0.94 0.94 0.96 0.97 1.00
PC 0.95 0.93 0.98 0.99 0.97
DC 0.97 0.97 0.98 0.98 0.21
D 0.33 0.29 0.46 0.43 0.99
SD 0.28 0.53 0.23 0.36 0.80
TS 0.57 0.56 0.64 0.72 0.50

Table 1: ProtoPNet results using various backbone architectures, measured by the
eight evaluation metrics.

Metric \ Backbone ResNet-18 ResNet-34 VGG-11 VGG-16 ConvNeXt-T
ACC 0.98 0.97 0.97 0.81 0.98
BI 0.98 0.99 0.98 0.98 0.99

CSDC 0.95 0.95 0.87 0.74 0.97
PC 0.96 0.97 0.80 0.61 1.00
DC 0.95 0.94 0.81 0.78 0.97
D 0.38 0.46 0.78 0.75 0.20
SD 0.59 0.57 0.55 0.61 0.63
TS 0.23 0.48 0.44 0.06 0.51

Table 2: PIP-Net results using various backbone architectures, measured by the eight
evaluation metrics.

trained for 60 epochs.
The experiments were performed using NVIDIA GeForce RTX 3050, 3060 and

3070 GPUs having 8 to 12GB memory, depending on availability.

5.3 Results

We conducted experiments on the FunnyBirds synthetic dataset using self-
explainable models (ProtoPNet and PIP-Net) and post-hoc approaches (Grad-CAM
and Grad-CAM++). We used ResNet [28], VGG [29], and ConvNeXt [30] serving as
backbones of the interpretable models. From the available ResNet and VGG con-
figurations, ResNet-18, ResNet-34, VGG-11, and VGG-16 were used, respectively,
supplemented by the ConvNeXt-Tiny model. All these backbones were initialized
with weights obtained by pre-training on ImageNet.

The results obtained are shown in Tables 1 to 4: the columns represent the differ-
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Metric \ Backbone ResNet-18 ResNet-34 VGG-11 VGG-16 ConvNeXt-T
ACC 0.95 0.97 0.96 0.96 0.97
BI 0.89 0.92 0.99 0.98 1.00

CSDC 0.61 0.57 0.73 0.73 0.32
PC 0.45 0.43 0.60 0.65 0.16
DC 0.54 0.45 0.70 0.70 0.21
D 0.91 0.90 0.94 0.93 0.89
SD 0.75 0.69 0.84 0.76 0.78
TS 0.29 0.29 0.68 0.64 0.77

Table 3: Grad-CAM results using various backbone architectures, measured by the
eight evaluation metrics.

Metric \ Backbone ResNet-18 ResNet-34 VGG-11 VGG-16 ConvNeXt-T
ACC 0.95 0.97 0.96 0.96 0.97
BI 0.89 0.92 0.99 0.98 1.00

CSDC 0.55 0.54 0.78 0.74 0.20
PC 0.38 0.36 0.67 0.63 0.07
DC 0.48 0.40 0.77 0.70 0.12
D 0.90 0.89 0.93 0.91 0.90
SD 0.73 0.68 0.83 0.75 0.75
TS 0.68 0.64 0.62 0.63 0.74

Table 4: Grad-CAM++ results using various backbone architectures, measured by
the eight evaluation metrics.

ent backbone networks in increasing order of their complexity, i.e. number of train-
able parameters, while the rows are the metrics computed in the experiments (see
Section 3.4 and [27]). There is an observable general tendency that more complex
models provide better scores; however, there are a few exceptions. These exceptions
are probably due to the small number of learning epochs relative to the complex-
ity of some of the models employed – compare, for example, the Grad-CAM results
with the VGG-11 and VGG-16 models in Table 3, or the PIP-Net results obtained
with the same two models in Table 2. Some of the outstandingly low scores ob-
tained, e.g. DC of ProtoPNet + ConvNeXt, D of PIP-Net + ConvNeXt, TS of PIP-Net
+ VGG-16, or PC of both Grad-CAM and Grad-CAM++ with ConvNeXt; however,
are not straightforward to explain, therefore these cases require a comprehensive
investigation.

Background independence was the most consistent metric across all methods and
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Backbone XAI method Com. Cor. Con. mX mX
ResNet-18 ProtoPNet 0.64 0.28 0.57 0.50

0.57
ResNet-18 PIP-Net 0.67 0.59 0.23 0.50
ResNet-18 Grad-CAM 0.72 0.75 0.29 0.59
ResNet-18 Grad-CAM++ 0.69 0.73 0.68 0.70
ResNet-34 ProtoPNet 0.62 0.53 0.56 0.57

0.60
ResNet-34 PIP-Net 0.71 0.57 0.48 0.59
ResNet-34 Grad-CAM 0.69 0.69 0.29 0.56
ResNet-34 Grad-CAM++ 0.66 0.68 0.64 0.66
VGG-11 ProtoPNet 0.72 0.23 0.64 0.53

0.67
VGG-11 PIP-Net 0.80 0.55 0.44 0.60
VGG-11 Grad-CAM 0.81 0.84 0.68 0.78
VGG-11 Grad-CAM++ 0.84 0.83 0.62 0.76
VGG-16 ProtoPNet 0.71 0.36 0.72 0.60

0.64
VGG-16 PIP-Net 0.73 0.61 0.06 0.47
VGG-16 Grad-CAM 0.81 0.76 0.64 0.74
VGG-16 Grad-CAM++ 0.80 0.75 0.63 0.73

ConvNeXt-T ProtoPNet 0.86 0.80 0.50 0.72

0.67
ConvNeXt-T PIP-Net 0.59 0.63 0.51 0.58
ConvNeXt-T Grad-CAM 0.56 0.78 0.77 0.70
ConvNeXt-T Grad-CAM++ 0.52 0.75 0.74 0.67

Table 5: Results obtained averaged into the three explainability dimensions of com-
pleteness, correctness and contrastivity from [27]. mX denotes the mean explainabil-
ity score obtained as the average of these, and the last column mX averages these
scores over different backbones.

backbones, reaching almost its maximum value in every case. The self-explainable
models achieved considerably higher completeness scores (CSDC, PC, DC) than the
post-hoc approaches tested; however, self-explainable models tend to provide over-
complete explanations (D) in contrast to post-hocmethods. Overall, correctness and
contrastivity metrics did not perform well in the case of self-explainable models,
with a slight improvement observed for the post-hoc methods, meaning that the
importances are not always estimated correctly, and the explanations given are not
always constrastive.

Table 5 summarizes the results obtained into the three explainability dimensions,
simplifying the comparison between the results of [27] and our scores.
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6 Conclusion

The experiments performed show that the choice of backbone architecture is in fact
important when building a prototype-based self-explaining model. As models built
on more complex backbones produced slightly higher accuracies, the models did
not achieve higher scores on every interpretability metric. In general, based on the
experiments, we can say that by increasing the complexity of the backbone CNN
an increasing tendency was observed for most of the protocols, but there were ex-
ceptions, probably due to insufficient learning in most cases – Table 5 supports this
claim too. An early stopping condition with the right parameters would probably
be a unifying solution here, but due to lack of resources, this has not been achieved
so far. Background independence was accomplished for every method tested, while
the self-interpretable models produced better completeness scores but lower over-
completeness results, compared to Grad-CAM and Grad-CAM++.

Using PIP-Net, slightly better scores have been observed, again with some ex-
ceptions, namely the contrastivity dimension, for which almost consistently worse
results were obtained; however, PIP-Net with ConvNeXt produced unexpectedly
low explainability scores overall.

Although the authors of [27] claim the 500 test images to be sufficient to produce
stable results, we somewhat disagree with their statement considering the ease of
achieving a test accuracy of 95% after only a few epochs, training accuracy being
able to catch up only after quite a few iterations – the rapid convergence of accuracy
and loss on the test set might suggest a non-representative data sample. However,
evaluation is very costly for even a small dataset of this size. We plan to generate a
larger dataset with better properties or using other datasets to evaluate interpretabil-
ity. We recommend using semantic segmentation datasets such as PASCAL VOC6

or PASCAL-Part7 for classification, where the segmentation masks could be used to
compute some of the metrics proposed in [27] (e.g., background independence or
preservation check).

Regarding the hyperparameters used during the training, we observed that the
self-explaining models were really sensitive even to slight modifications of these.
Parameters such as learning rate, batch size, and weights of different loss function
parts should be set carefully for both ProtoPNet and PIP-Net. Incorrectly set hyper-
parameters could cause the learned prototypes to be useless for classification.

Normalizing the FunnyBirds images is also expected to provide better results,
however, normalization is not discussed in [27] or its supplement8, nor could it be

6http://host.robots.ox.ac.uk/pascal/VOC/
7https://roozbehm.info/pascal-parts/pascal-parts.html
8https://openaccess.thecvf.com/content/ICCV2023/html/Hesse_FunnyBirds_A_

https://openaccess.thecvf.com/content/ICCV2023/html/Hesse_FunnyBirds_A_Synthetic_Vision_Dataset_for_a_Part-Based_Analysis_of_ICCV_2023_paper.html
http://host.robots.ox.ac.uk/pascal/VOC/
https://roozbehm.info/pascal-parts/pascal-parts.html
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found in the code provided by the authors (see Footnote 4); therefore, we decided
to perform the experiments without it as well.

Since no clear correlation between accuracy or loss and the scores provided by
the interpretable metrics could be obtained, we propose that interpretability should
be considered during the training phase as well (e.g. by incorporating some of these
metrics into the loss function), allowing the adjustment of the training process to
achieve the desired level of interpretability alongside prediction accuracy.

Funding: This research was funded by the Babeş–Bolyai University through the Spe-
cial Scholarships for Scientific Activity (SSSA) for the 2023–2024 academic year no.
36260/24.11.2023, and the Hungarian Academy of Sciences through the Domus Scholarship
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Data Availability: The code of the experiments performed can be accessed at https:
//github.com/PortikAbel/XAI-Interpretability. In order to successfully set up
we recommend consulting the https://github.com/visinf/funnybirds-framework
repository prior to running our code.
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Abstract. Let� be a simple connected graph of size<. Let � be the adjacency
matrix of � and let d(�) be the spectral radius of � . A graph is said to be �-
free if it does not contain a subgraph isomorphic to �. Let � (ℓ, 3) be the
graph formed by taking a cycle of length ℓ and a triangle on a common vertex.
Recently, Li, Lu and Peng [Y. Li, L. Lu, Y. Peng, Spectral extremal graphs for the
bowtie, Discrete Math. 346(12) (2023) 113680.] showed that the unique<-edge
� (3, 3)-free spectral extremal graph is the join of  2 with an independent set
of <−1

2 vertices if < ≥ 8 and the condition < ≥ 8 is tight. In particular,
if � does not contain � (3, 3) as induced subgraph, they proved that d(�) ≤
1+

√
4<−3
2 and equality holds when� is isomorphic to ( <+3

2
,2. Note that Li et al.

denoted � (3, 3) by �2. In this paper, we find the maximum spectral radius and
identify the graphwith the largest spectral radius among all {� (3, 3), � (4, 3)}-
free graphs of size odd<, where< ≥ 259. Coincidently, we show that d(�) ≤
1+

√
4<−3
2 when � forbids both � (3, 3) and � (4, 3). In our case, the equality

holds when � is isomorphic to the same graph.

Key words and phrases: �-free graph, adjacency matrix, spectral radius,
induced subgraph, forbidden subgraph

1 Introduction

Let � be a simple graph with order = and size < and let + (�) be the vertex set of
�. The adjacency matrix of � is defined as �(�) = (08 9), where

08 9 =

{
1 if there is an edge between vertices 8 and 9 ,
0 otherwise.

124

mailto:pirzadasd@kashmiruniversity.ac.in
http://dx.doi.org/10.47745/ausi-2024-0008
mailto:pirzadasd@kashmiruniversity.ac.in
mailto:aamirnajar786@gmail.com


On maximum spectral radius of {� (3, 3), � (4, 3)}-free graphs 125

The largest eigenvalue of �(�), denoted by d, is called the spectral radius of � .
In case of a connected graph � , the Perron-Frobenius theorem asserts the existence
of a unique positive eigenvector associated with d(�), termed as the Perron vector
of � . Additional definitions and notations can be found in [1], [2].

For a subset ( ⊆ + (�), � [(] represents the subgraph of� induced by (. Further
4((, )) denotes the number of edges with one end in ( and the other in ) , where
( and ) are subsets of + (�). Also, we use 4(() to denote 4((, (). We write # : (E)
for the set of vertices at a distance of : from vertex E, with #1(E) being denoted by
# (E). We define # [E] as # (E) ∪ {E}. For ( ⊆ + (�), let #( (E) represent the set of
neighbors of E in ( and 3( (E) be the cardinality of #( (E).

For 1 ≤ : ≤ =, the graph (=,: of order = is obtained by joining each vertex of
the complete graph  : to = − : isolated vertices. Let �= represent the cycle on =
vertices. Let � (ℓ, 3) be the graph formed by a cycle of length ℓ and a triangle on a
common vertex. For example, the graphs � (3, 3) and � (4, 3) are shown in Figure 1.
Define � (<, C) to be the graph of size < obtained by joining a vertex of maximum
degree in (<−C+3

2 ,2 to C isolated vertices (see Fig. 2(a)). For C = 0, the graph (<+3
2 ,2 is

called the book graph. Let  <
4 be the graph of size < obtained by joining a vertex

from  4 to < − 6 isolated vertices (see Fig. 2(b)).
For a family of graphs H , a graph � is said to be H -free if it does not contain

a subgraph isomorphic to any graph in H . In particular, if H = {�}, we simply
say that � is �-free. A classical problem in the extremal graph theory is the Turán
problem which asks for the maximum size of an �-free graph of order =, where
the maximum size is known as the Turán number of �. Nikiforov [3], proposed a
spectral analogue of the Turán problemwhich asks for the maximum spectral radius
of an �-free graph of size < or order =. In [4], Nosal proved that d(�) ≤

√
< for

every graph of size <, when � is a triangle. Nikiforov [5] showed that d(�) ≤
√
<

for all �4-free graphs of size <. Zhai, Lin, Shu [6] showed that d(�) ≤ 1+
√
4<−3
2

for any �5-free graph of size < ≥ 8 or �6-free graph of size < ≥ 22, with equality
if and only if � � (<+3

2 ,2. In [7], Li and Peng determined the maximum spectral
radius of graphs with no intersecting odd cycles. Let �: be the graph obtained from
: triangles sharing a common vertex. Then �2 is the graph � (3, 3). In 2023, Li, Lu
and Peng [8] characterized �2-free graphs with given number of edges. They proved
that the unique <-edge � (3, 3)-free spectral extremal graph is the join of  2 with
an independent set of <−1

2 vertices (that is, (<+3
2 ,2 ) if < ≥ 8, and the condition

< ≥ 8 is tight. The problem has been investigated for various graphs �, as can be
seen in [5], [9]–[16].
The objective of this paper is to determine the maximum spectral radius of the

graphs when H = {� (3, 3), � (3, 4)}. This is stated in the following theorem.
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(a) (b)

Figure 1: Graphs (a) H(3,3) and (b) H(4,3)

Theorem 1.1. If � is an {� (3, 3), � (3, 4)}-free connected graph with odd size < ≥
259, and � contains no isolated vertices, then d(�) ≤ 1+

√
4<−3
2 , unless � � (<+3

2 ,2.

Coincidentally, the above bound is same as obtained by Li et al. [8] for � (3, 3)-
free graphs.

In this paper, we use�∗ to represent the connected graph with maximum spectral
radius among all graphs of size < that are free of induced subgraphs � (3, 3) and
� (4, 3). Let d∗ = d(�∗), and consider -∗ as the Perron vector of �∗ with coordi-
nates GD corresponding to the vertex D ∈ + (�∗). Let GD∗ = max{GD : D ∈ + (�∗)},
representing the coordinate associated with the vertex D∗ in �∗. We term �∗ as the
extremal graph and D∗ as the extremal vertex of �∗.
Define �(�∗) = �, and let #0(D∗) = {E : E ∈ # (D∗), 3# (D∗ ) (E) = 0}, and #1(D∗) =
# (D∗) \ #0(D∗). Additionally, define #2

9
(D∗) = {F ∈ #2(D∗) : 3# 9 (D∗ ) (F) ≥ 1} for

9 = 0, 1 and let, = + (�) \ # [D∗]. By utilizing the eigenequations of � on D∗, the
following equation is obtained

d∗GD∗ = (�-∗)D∗ =
∑

D∈#0 (D∗ )
GD +

∑
E∈# (D∗ )\#0 (D∗ )

GE . (1)

As d∗2 represents the spectral radius of �2, the eigenequations of �2 on D∗ lead to

d∗2GD∗ = 3 (D∗)GD∗ +
∑

D∈# (D∗ )\#0 (D∗ )
3# (D∗ ) (D)GD +

∑
F∈#2 (D∗ )

3# (D∗ ) (F)GF . (2)

The rest of the paper is organised as follows. In Section 2, we present lemmas
which will be required to prove Theorem 1.1 in Section 3.
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Figure 2: Graphs (a) � (<, C) and (b)  <
4

2 Lemmas

In this section, we present several lemmas that will be required to prove the main
theorem.

Lemma 2.1. [5] Let � and �′ be the adjacency matrices of two graphs � and �′ on
the same vertex set. Suppose that #� (D) ( #�′ (D) for some vertex D. If some positive
eigenvector to d(�) satisfies - ′�′- ≥ - ′�- , then d(�′) > d(�).

Lemma 2.2. [1] Let � be a connected graph and let � be a proper subgraph of � .
Then d(�) < d(�).

Definition 2.1. [1]Given a graph� , the vertex partition % : + (�) = +1∪+2∪· · ·∪+:
is said to be an equitable partition if, for each E ∈ +8 , |+ 9 ∩ # (E) | = 28 9 is a constant
depending only on 8, 9 (1 ≤ 8, 9 ≤ :). The matrix �% = (28 9) is called the quotient
matrix of � with respect %.

Lemma 2.3. [1] Let % : + (�) = +1∪+2∪· · ·∪+: be an equitable partition of� with
quotient matrix �% . Then det(G� − �%) | det(G� − �(�)). Furthermore, the largest
eigenvalue of �% is just the spectral radius of � .

Lemma 2.4. [4] Let � be a graph of size < without isolated vertices. If � is triangle
free, then d(�) ≤

√
<, with equality if and only if � is a complete bipartite graph.

The following lemma shows that the spectral radius of the book graph (<+3
2 ,2 is

greater than or equal to the spectral radius of � (<, C).

Lemma 2.5. Let� (<, C) be the graph as shown in Figure 2(a) with < > C +2. If C ≥ 0
is even, then d(� (<, C)) ≤ d((<+3

2 ,2), and equality holds when C = 0.
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Proof. Thequotientmatrix of� (<, C) corresponding to the partition %3 : + (� (<, C))
= {D∗} ∪ {D} ∪ ) ∪ � , where |� | = C and |) | = <−C−1

2 , is

�%3 =

©­­­«
{D∗} {D} ) �

{D∗} 0 1 <−C−1
2 C

{D} 1 0 <−C−1
2 0

) 1 1 0 0
� 1 0 0 0

ª®®®¬.
Let 5 (G) = det(G�4 − �%3) = G4 − <G2 − (< − C − 1)G + C

2 (< − C − 1). The largest
root of (<+3

2 ,2 satisfies 6(G) = G3 − <G − (< − 1). Then ℎ(G) = 5 (G) − G6(G) =

CG + C
2 (< − C − 1) ≥ 0 for G > 0 and C ≥ 0. This demonstrates that the largest root

of 6(G) is greater than or equal to the largest root of 5 (G). Hence the result follows
by Lemma 2.3. �

Now, we show that the spectral radius of the book graph is strictly greater than
the spectral radius of  <

4 .

Lemma 2.6. Let  <
4 be the graph of size <, where < ≥ 8, shown in Figure 2(b). Then

d( <
4 ) < d((<+3

2 ,2).

Proof. The vertex set of  <
4 has equitable partition %4 : + ( <

4 ) = {D∗} ∪ ' ∪ � ,
where ' = {D, E, F} and the quotient matrix with respect to %4 is

�%3 =
©­«
{D∗} ' �

{D∗} 0 3 < − 6
' 1 2 0
� 1 0 0

ª®¬.
Then 5 (G) = det(G�3 − �%3) = G3 − 2G2 − (< − 3)G + 2(< − 6). If d1 = d((<+3

2 ,2),
then d21 = d1 + (< − 1). Therefore, we have

5 (d1) = d21 + (< − 1)d1 − 2(d1 + < − 1) − (< − 3)d1 + 2(< − 6)
= d1 + < − 11.

Given that < ≥ 8, it follows that 5 (d1) > 0. Additionally, the derivative 5 ′(G) =

3G2 − 4G − (< − 3) > 0 holds for G ≥ d1. Consequently, by Lemma 2.3, it can be
inferred that d( <

4 ) < d((<+3
2 ,2). �

In the following lemma, we prove that any vertex of degree one in �∗ is joined
to the extremal vertex D∗. In particular this shows that 3 (E) ≥ 2 for any E ∈ , .
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Lemma 2.7. Let �∗ be a graph forbidding the subgraphs � (3, 3) and � (4, 3), and
D∗ be an extremal vertex in �∗. Then every pendent vertex in �∗ is joined to D∗.

Proof. Suppose there exists a vertex F ∈ + (�∗) \ # (D∗) with 3 (F) = 1. Let
# (F) = {E}. Consider the graph�′ obtained by removing the edge FE from�∗ and
adding the edge FD∗. The resulting graph�′ has< edges and is free of induced sub-
graphs � (3, 3) and � (4, 3). Furthermore, #�∗ (D∗) $ #�′ (D∗), and the following
inequality holds.

∑
DI∈� (�′ )

GDGI =
∑

DI∈� (�∗ )
GDGI + GF (G∗D − GE)

≥
∑

DI∈� (�∗ )
GDGI .

According to Lemma 2.1, this implies that d(�′) > d(�∗). However, this contra-
dicts the definition of �∗. �

In the following lemma we give an upper bound of 4(,).

Lemma 2.8. Let � be a graph of size < and , = + (�) \ # [D∗]. If d ≥ 1+
√
4<−3
2 ,

then

4(,) ≤ 4(# (D∗)) − |# (D∗) \ #0(D∗) | + 1.

Proof. From Eqs. 1 and 2, we can deduce the following expression

(d2 − d)G∗D = 3 (D∗)GD∗ +
∑

D∈# (D∗ )\#0 (D∗ )
(3# (D∗ ) (D) − 1)GD +

∑
F∈,

3# (D∗ ) (F)GF

−
∑

D∈#0 (D∗ )
GD.
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Given d2 − d ≥ < − 1, it implies that

(< − 1)G∗D ≤ 3 (D∗)GD∗ +
∑

D∈# (D∗ )\#0 (D∗ )
(3# (D∗ ) (D) − 1)GD +

∑
F∈,

3# (D∗ ) (F)GF

−
∑

D∈#0 (D∗ )
GD

≤
{
3 (D∗) + 4(# (D∗),,) +

∑
D∈# (D∗ )\#0 (D∗ )

(3# (D∗ ) (D) − 1)

−
∑

D∈#0 (D∗ )

GD

G∗D

}
G∗D

=

{
< − 4(,) +4(# (D∗)) − |# (D∗)\ #0(D∗) | −

∑
D∈#0 (D∗ )

GD

G∗D

}
G∗D.

This yields

4(,) ≤ 4(# (D∗)) − |# (D∗) \ #0(D∗) | + 1 −
∑

D∈#0 (D∗ )

GD

G∗D

≤ 4(# (D∗)) − |# (D∗) \ #0(D∗) | + 1. (3)

This concludes the proof. �

3 Proof of the main theorem

Since�∗ does not contain a subgraph isomorphic to� (3, 3), it implies that�∗ [# (D∗)]
cannot have two or more independent edges. As a result, �∗ [# (D∗)] can be catego-
rized into one of the following (1) it either consists solely of isolated vertices, or (2)
it includes isolated vertices along with a copy of a star (: , where : ≤ <+1

2 , or (3) it
comprises isolated vertices and a triangle.

The following lemma shows that the only non trivial component of �∗ [# (D∗)] is
a star.

Lemma 3.1. Let�∗ be the graph with maximum spectral radius among all {� (3, 3),
� (4, 3)}-free graphs with odd size < ≥ 259 and let -∗ = (G1, G2, · · · , G=)) be the
Perron vector of �∗, and GD∗ = <0G{G8 : 8 ∈ + (�∗)}. If d(�∗) ≥ 1+

√
4<−3
2 , then

�∗ [# (D∗)] has exactly one non trivial component (: , where : ≤ <+1
2 .

Proof. First, we suppose that�∗ [# (D∗)] consists of isolated vertices only. Since the
star (<+1 with < edges does not include � (3, 3) and � (4, 3) as subgraphs, conse-
quently, due to the extremality of�∗, it follows that d(�∗) ≥ d((<+1) =

√
<. Then,
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from Eq. 2, we derive the following inequality

(< − 3 (D∗))GD∗ =
∑

D∈# (D∗ )\#0 (D∗ )
3# (D∗ ) (D)GD +

∑
F∈#2 (D∗ )

3# (D∗ ) (F)GF

≤ (24(# (D∗)) + 4((# (D∗), #2(D∗)))GD∗ .

This leads to the conclusion that 4(,) ≤ 4(# (D∗)). In other words, 4(,) = 0.
According to Lemma 2.7, there are no pendent vertices in , . Consequently, �∗ is
a triangle-free graph. Therefore, by Lemma 2.4, �∗ is a complete bipartite graph.
Thus, d(�∗) =

√
< < 1+

√
4<−3
2 for < ≥ 2, which is a contradiction.

Next, suppose that �∗ [# (D∗)] contains a copy of  3. In this case, we observe
that 3# (D∗ ) (F) ≤ 1. It is clear that  <

4 does not include � (3, 3) and � (4, 3) as
subgraphs. As (<−2 is a proper subgraph of  <

4 , according to Lemma 2.2, we must
have d( <

4 ) > d((<−2) =
√
< − 3. Moreover, the definition of �∗ implies that

d(�∗) > d( <
4 ) >

√
< − 3. Then, based on Eq. 2 and using G∗D ≥ GD for any

vertex D, it can be deduced that

(< − 3 (D∗) − 3)GD∗ < (d∗2 − 3 (D∗)GD∗
≤ (24(# (D∗)) + 4((# (D∗), #2(D∗)))GD∗ .

This implies that 4(,) ≤ 5. We claim that 4(,) = 0. To prove the claim, we
consider the following possibilities.
Case 1. 2 ≤ e(W) ≤ 5.

Given that 4(,) ≤ 5, it follows that 3 (F) ≤ 6 for any F ∈ , and 3 (D) ≤ 8 for
any vertex D ∈ #1(D∗). Additionally, as G∗D ≥ GD for any vertex D, we obtain the
following inequalities for any vertex F ∈ , and any vertex D ∈ #1(D∗).

GF ≤ 6

d∗
G∗D and GD ≤ 8

d∗
G∗D. (4)

From Eq. 2 and inequalities 4, we have

d∗2GD∗ = 3 (D∗)GD∗ +
∑

D∈# (D∗ )\#0 (D∗ )
3# (D∗ ) (D)GD +

∑
F∈#2 (D∗ )

3# (D∗ ) (F)GF

≤
{
3 (D∗) + 8

d∗

∑
D∈# (D∗ )\#0 (D∗ )

3# (D∗ ) (D) +
6

d∗

∑
F∈#2 (D∗ )

3# (D∗ ) (F)
}
GD∗

=

{
3 (D∗) + 16

d∗
4(#1(D∗) +

6

d∗
(4(,, # (D∗)))

}
GD∗ .
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Since d∗ >
√
< − 3 ≥ 16, from above, we have

d∗2GD∗ <

{
3 (D∗) + 4(#1(D∗) +

6

16
(4(,, # (D∗)))

}
GD∗

=

{
< − 4(,) − 10

16
(4(,, # (D∗)))

}
GD∗ . (5)

Recall that 3 (F) ≥ 2 for any F ∈ , . Therefore

4(,, # (D∗)) ≥
{
2 4(,) = 2,

1 4(,) ≥ 3.

Using this in 5, we conclude that d∗ <
√
< − 3, leading to a contradiction.

Case 2. e(W) = 1.
In this situation, we observe that GF ≤ 2

d∗ G
∗
D for any F ∈ , and GD ≤ 4

d∗ G
∗
D for any

D ∈ #1(D∗). Following the steps outlined in case 1, we conclude that d∗ <
√
< − 3,

contradicting the hypothesis.
Considering both cases 1 and 2, we can deduce that 4(,) = 0. Consequently, the

observation that all pendent vertices are joined to D∗ and 3# (D∗ ) (F) = 1 for any
F ∈ #2(D∗) implies that, = ∅. Hence, �∗ is isomorphic to  <

4 when �∗ [# (D∗)]
contains a copy of  3. By Lemma 2.6, we have d( <

4 ) < d((<+3
2 ,2) = 1+

√
4<−3
2 ,

which is again a contradiction. This completes the proof of the lemma. �

Proof. (Theorem 1.1.) As �∗ [# (D∗)] is a tree, by Lemma 2.8, we have 4(# (D∗)) −
|# (D∗)\#0(D∗) | = −1. Considering that (<+3

2 ,2 does not contain� (3, 3) and� (4, 3)
as subgraphs, and by the definition of �∗, it follows that d(�∗) ≥ d((<+3

2 ,2) =

1+
√
4<−3
2 . According to Lemma 2.8, this implies that

4(,) = 0 (6)

and, = #2(D∗). In view of Lemma 3.1, �∗ [# (D∗)] includes isolated vertices along
with a copy of a star (: , where : ≤ <+1

2 . Now, we consider the following cases.

Case 1. G∗ [N(u∗)] contains a copy of K2.
Consider the unique edge E1E2 in �∗ [#1(D∗)]. In view of Lemma 2.7, there are

no pendent vertices in, . Also �∗ is restricted from containing the graphs � (3, 3)
and � (4, 3), no vertex in, can have two distinct neighbors in #0(D∗). Therefore,
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3# (D∗ ) (F) ≤ 3 for any F ∈ , .
Assume that F ∈ , and 3# (D∗ ) (F) = 3. This implies that, = {F} and F is adja-

cent to E1, E2 and some vertex D1 in #0(D∗). Let�1 be the graph obtained from�∗ by
deleting the edge FD1 and adding the edge FD∗. The graph�1 is {� (3, 3), � (4, 3)}-
free, and #�∗ (D∗) ( #�1 (D∗). Also, GD∗ ≥ GD1 . According to Lemma 2.1, this implies
that d(�1) > d(�∗). However, this contradicts the definition of �∗. Therefore,
3# (D∗ ) (F) ≤ 2.

Suppose that 3# (D∗ ) (F) = 2 for some F ∈ , . If F is adjacent to both E1 and E2,
then #2

0 (D∗) ∩ #2
1 (D∗) = ∅. Consequently, #2(D∗) = #2

1 (D∗). Let F1, F2, ..., FB

be the vertices in #2
1 (D∗) that are adjacent to both E1 and E2. Consider �2 =

�∗ − {F8E1 : F8 ∈ ,} + {F8D
∗ : F8 ∈ ,}. As previously established by Lemma 2.1,

we derive that d(�2) > d(�∗), which is not feasible.
Now, let each F ∈ , be adjacent to one vertex in #0(D∗) and one vertex in

#1(D∗). Let F1, F2 ∈ , such that ## (D∗ ) (F1) = {E1, D1 : D1 ∈ #0(D∗)} and
## (D∗ ) (F2) = {E2, D2 : D2 ∈ #0(D∗)}. Without loss of generality, assume that
GE1 ≥ GE2 . Consider �3 = �∗ − F2E2 + F2E1. The graph �3 is {� (3, 3), � (4, 3)}-
free, and #�∗ (E1) ( #�3 (E1). Therefore, by Lemma 2.1, we have d(�3) > d(�∗),
contradicting the definition of �∗. Thus, every F ∈ , is adjacent to either E1 or
E2 and some vertex D ∈ #0(D∗). Assume that every F ∈ , is adjacent to E1. Since
3 (F) = 2, so F is adjacent to E1 and some vertex D1 in #0(D∗). Applying the same
procedure as before, we obtain the graph �4 from �∗ by deleting the edge FD1 and
adding the edge FD∗. Clearly, the hypothesis of Lemma 2.1 holds, and it follows
that d(�4) > d(�∗). Thus, we conclude that, = ∅, and hence �∗ is isomorphic to
� (<, C), where C = < − 3. By Lemma 2.5, we have d(� (<, < − 3)) < d((<+3

2 ,2)
and thus contradicting the definition of �∗.
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Figure 3: Graphs (a) � and (b) �1
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Case 2. G∗ [N(u∗)] contains a copy of star S3.
Let D, E and F be the vertices of the star component, with D as its center. The

following observations apply to any vertex F ∈ ,
8. F cannot be adjacent to any two vertices in #0(D∗).
88. F cannot be adjacent to both D and E, or both D and F.
888. F cannot be adjacent to E (or F) and a vertex in #0(D∗).

Consider I ∈ , such that ## (D∗ ) (I) = {E, F}, and let) = {F1, · · · , FB} represent
the set of vertices in, , and ' = {E1, · · · , EB} represent the set of vertices in # (D∗),
satisfying ## (D∗ ) (F8) = {D, E8} for 8 = 1, · · · , B. Denote this graph by�, as depicted
in Figure 3(a). We aim to demonstrate that d(�) < d(�1), where �1 is a graph
with < edges and |) | = 1 as illustrated in Figure 3(b). To facilitate the analysis, we
partition the vertex set of � as % : {D∗} ∪ {D} ∪ {E, F} ∪ ' ∪ � ∪ ) ∪ {I}, where
|) | = |' | = C, |� | = < − 3C − 7. The quotient matrix of � concerning the partition %
is given by

�% =

©­­­­­­­­­«

{D∗} {D} {E, F} ' � ) {I}
{D∗} 0 1 2 C < − 3C − 7 0 0
{D} 1 0 2 0 0 C 0
{E, F} 1 1 0 0 0 0 1
' 1 0 0 0 0 1 0
� 1 0 0 0 0 0 0
) 0 1 0 1 0 0 0
{I} 0 0 2 0 0 0 0

ª®®®®®®®®®¬
.

Consider the polynomial qC (G) = det(G�7−�%) = G7+ (−<+C−1)G5−4G4+ (<C−
2C2 + 5< − 16C − 26)G3 + (−4C + 4)G2 + (−2<C + 4C2 − 4< + 30C + 26)G. Consequently,
q1(G) = G7 − <G5 − 4G4 + (6< − 44)G3 + (−6< + 60)G, and the difference 5 (G) =

qC (G) − q1(G) = G(C − 1)6(G), where 6(G) = G4 + (< − 2C − 18)G2 − 4G − 2< + 4C + 34.
To establish 5 (G) > 0, it suffices to show that 6(G) > 0. Given that 2 ≤ C ≤ <−7

3 ,
we have

6(G) ≥ G4 + (< − 2(< − 7

3
) − 18)G2 − 4G − 2< + 42

=
1

3
(3G4 + (< − 40)G2 − 12G − 6< + 126).

Furthermore, considering that < ≥ 259, it follows that

6

(√
<

2

)
=

5

16
<2 − 16< − 6

√
< + 126 > 0.
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Now, for G >
√
<

2 , the derivative of 6 is 6′(G) = 4G3 + 2
3 (< − 40)G − 12 > 0, and

√
<

2 < 1+
√
4<−3
2 . Consequently, it follows that 5 (G) > 0 for G > 1+

√
4<−3
2 , leading

to the conclusion that d(�1) > d(�). We have the following claim.

Claim. d(�1) < d(� (<, C), where C = < − 5.
Proof of the claim. The quotient matrix of the graph � (<, < − 5), as depicted in
Figure 4(b), concerning the partition %1 : {D∗} ∪ {D} ∪ ' ∪ � is given by

�%1 =

©­­­«
{D∗} {D} ' �

{D∗} 0 1 2 < − 5
{D} 1 0 2 0
' 1 1 0 0
� 1 0 0 0

ª®®®¬.
Consider q2(G) = det(G�4 − �%1) = G4 − <G2 − 4G + 2< − 10. Define

k1(G) =
1

G
q1(G) − G2q2(G)

= G6 − <G4 − 4G3 + (6< − 44)G2 + (−6< + 60)
− (G6 − <G4 − 4G3 + (2< − 10)G2)

= (4< − 34)G2 − 6< + 60.

Observe that k′
1(G) = 2(4< − 34)G > 0 and k1(G) > 0, for G > 1+

√
4<+3
2 . So it is

evident that d(� (<, < − 5)) > d(�1). This completes the proof of the claim.
Consider the case where |) | = 1, and let F1 ∈ ) be adjacent to both D and E1.

In the event that F and E lack a common neighbor in , , form the graph �1 =

�∗ − E1F1 + D∗F1. Applying Lemma 2.1 leads to a contradiction.
Alternatively, if ) = ∅ and E and F share a common neighbor in, , as illustrated

by graph �2 in Figure 4(a). The quotient matrix of the graph �2 concerning the
partition %2 : {D∗} ∪ {D} ∪ {E, F} ∪ {I} ∪ � is given as

�%2 =

©­­­­­«

{D∗} {D} {E, F} {I} �

{D∗} 0 1 2 0 < − 7
{D} 1 0 2 0 0
{E, F} 1 1 0 1 0
{I} 0 0 2 0 0
� 1 0 0 0 0

ª®®®®®¬
.

The characteristic polynomial of �%2 is q3(G) = G5 − <G3 − 4G2 + (4< − 26)G.
Define k2(G) = q3(G) − Gq2(G) = (2< − 16)G > 0 for G > 0. This implies that
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Figure 4: Graphs (a) �2 and (b) � (<, < − 5)

d(� (<, < − 5)) > d(�2).
In light of the preceeding discussion, it follows that �∗ is isomorphic to � (<, C),

where C = < − 5. By Lemma 2.5, we have d(� (<, < − 5)) < d((<+3
2 ,2), which

contradicts the definition of �∗.

Case 3. G∗ [N(u∗)] contains a copy of star Sk, k ≥ 4.
Consider D as the central vertex of the star (: . With d(�∗) ≥ 1+

√
4<−3
2 , it follows

that 4(,) = 0. Furthermore, as�∗ is free of induced subgraphs� (3, 3) and� (4, 3),
it ensures that no two vertices in #0(D∗) or #1(D∗) share a common neighbor in, .
If F ∈ #2

0 (D∗) ∩ #2
1 (D∗), then |## (D∗ ) (F) | = 2 and F must be adjacent to D. Let

## (D∗ ) (F) = {D, E : E ∈ #0(D∗)}. Define�1 = �
∗−EF+D∗F. Applying Lemma 2.1

in this context leads to a contradiction. Consequently,, = ∅ and by Lemma 2.5, it
follows that�∗ is isomorphic to (<+3

2 ,2. This completes the proof of the theorem. �

4 Conclusion

In this paper, we have established that the graph denoted by (<+3
2 ,2 has the maxi-

mum spectral radius within the class of {� (3, 3), � (4, 3)}-free graphs with odd size
greater than or equal to 259. For cases where < is less than 259, we identify Lemma
3.1 as a crucial technical obstacle. To investigate and to overcome this obstacle,
extending our proof to the case where < < 259 would be an interesting problem
for further research. Moreover, it’s important to highlight that Theorem 1.1 estab-
lishes the proof for the case of odd <. This naturally raises the question: What is
the maximum spectral radius among {� (3, 3), � (4, 3)}-free graphs when the size is
even? This question invites further investigation andwe leave it as an open problem.
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