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Evaluation of Embedding Models for Hungarian Question-Answer

Retrieval on Domain-Specific and Public Benchmarks
Margit Antal

Abstract—Embedding models have become a fundamental
component of modern natural language processing, yet their
performance in morphologically rich, low-resource languages
such as Hungarian remains underexplored. In this paper, we
present a systematic evaluation of state-of-the-art embedding
models for Hungarian question–answer retrieval. We construct
two complementary evaluation datasets: (i) a domain-specific
corpus collected from company documentation, preprocessed into
topical chunks with human-verified question–answer pairs and
(ii) the publicly available HuRTE benchmark. Using Chroma
as the vector database, we compare eight multilingual and
cross-lingual embedding models alongside keyword-based search
baseline.

Performance is measured using Mean Reciprocal Rank (MRR)
and Recall@k. Results show substantial variation across mod-
els and datasets, with notable differences between domain-
specific and general-purpose retrieval tasks. BGE-M3 and XLM-
ROBERTA achieved the highest accuracy (MRR: 0.90) on
the Clearservice dataset, while GEMINI demonstrated supe-
rior performance on HuRTE (MRR: 0.99). We complement
the evaluation with comprehensive error analysis, highlighting
challenges posed by Hungarian domain-specific terminology,
synonyms, and overlapping topics, and discuss trade-offs in
efficiency through index build time and query latency measure-
ments. Our findings provide a comparative study of embedding-
based retrieval in Hungarian, offering practical guidance for
downstream applications and setting a foundation for future
research in Hungarian representation learning. The dataset and
the corresponding evaluation code are publicly accessible at
https://github.com/margitantal68/hungarian-embeddings.

Index Terms—Hungarian language, embedding models,
question-answer retrieval, vector similarity search.

I. INTRODUCTION

Embedding models have become fundamental to modern
natural language processing (NLP), providing dense vector
representations that encode semantic relationships between
words, phrases, and documents. The evolution of embedding
techniques has progressed from early feedforward neural net-
works to static models like Word2Vec [1] and FastText [2], and
subsequently to dynamic, contextualized embeddings derived
from Transformer-based architectures including BERT [3],
GPT [4], and T5 [5]. These advances have significantly im-
proved performance across numerous NLP tasks, particularly
in high-resource languages such as English.

However, the effectiveness of modern embedding models
in morphologically rich, low-resource languages remains in-
sufficiently explored. Hungarian exemplifies these challenges
due to its agglutinative morphology, where words can con-
tain multiple morphemes that substantially alter meaning and
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grammatical function. This morphological complexity often
results in performance degradation compared to English [6].

The importance of robust embeddings extends beyond tra-
ditional NLP tasks to modern applications such as Retrieval-
Augmented Generation (RAG) systems, where embeddings
enable efficient knowledge retrieval from large databases by
capturing semantic similarity beyond surface-level keyword
matching. In these systems, embedding quality directly im-
pacts retrieval accuracy and, consequently, the overall system
performance. Despite this critical role, systematic evaluation
of state-of-the-art embedding models for Hungarian remains
limited.

Previous work on Hungarian embeddings has been sparse
and focused primarily on static representations. Gedeon [7]
presented the most comprehensive evaluation to date, but
concentrated exclusively on static word embeddings, leaving
modern contextualized models largely unexplored. To the
best of our knowledge, only a single study [8] to date has
systematically evaluated embedding models for Hungarian
texts, focusing exclusively on the legal domain. However, no
comprehensive assessment has yet been conducted for other
types of Hungarian texts.

This paper addresses these research gaps by presenting the
first comprehensive evaluation of state-of-the-art embedding
models for Hungarian question-answer retrieval. Our primary
contributions are threefold: (1) we provide a systematic com-
parison of modern embedding models on Hungarian retrieval
tasks, (2) we establish evaluation benchmarks using both
domain-specific and general-purpose datasets, and (3) we
offer practical guidance for selecting appropriate models for
Hungarian NLP applications.

To achieve these objectives, we construct two comple-
mentary evaluation datasets. The first comprises domain-
specific data extracted from technical documentation, pre-
processed into semantically coherent chunks with human-
annotated question-answer pairs. The second utilizes the pub-
licly available HuRTE benchmark [9], providing standardized
evaluation conditions. We employ Chorma [10] for efficient
vector storage and similarity search.

Our evaluation examines eight diverse embedding mod-
els, including multilingual transformers (BGE-M3, E5-BASE,
XLMROBERTA, NOMIC), language-specific models (HU-
BERT), and commercial API solutions (OpenAI, Google).
Performance is assessed using established information retrieval
metrics: Mean Reciprocal Rank (MRR) and Recall@k. Be-
yond quantitative analysis, we conduct detailed error analysis
to identify failure patterns related to Hungarian morphology,
compound word processing, and domain-specific terminol-
ogy. Additionally, we analyze practical considerations includ-
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of Transylvania, Târgu-Mures, , (e-mail: manyi@ms.sapientia.ro)

grammatical function. This morphological complexity often
results in performance degradation compared to English [6].

The importance of robust embeddings extends beyond tra-
ditional NLP tasks to modern applications such as Retrieval-
Augmented Generation (RAG) systems, where embeddings
enable efficient knowledge retrieval from large databases by
capturing semantic similarity beyond surface-level keyword
matching. In these systems, embedding quality directly im-
pacts retrieval accuracy and, consequently, the overall system
performance. Despite this critical role, systematic evaluation
of state-of-the-art embedding models for Hungarian remains
limited.

Previous work on Hungarian embeddings has been sparse
and focused primarily on static representations. Gedeon [7]
presented the most comprehensive evaluation to date, but
concentrated exclusively on static word embeddings, leaving
modern contextualized models largely unexplored. To the
best of our knowledge, only a single study [8] to date has
systematically evaluated embedding models for Hungarian
texts, focusing exclusively on the legal domain. However, no
comprehensive assessment has yet been conducted for other
types of Hungarian texts.

This paper addresses these research gaps by presenting the
first comprehensive evaluation of state-of-the-art embedding
models for Hungarian question-answer retrieval. Our primary
contributions are threefold: (1) we provide a systematic com-
parison of modern embedding models on Hungarian retrieval
tasks, (2) we establish evaluation benchmarks using both
domain-specific and general-purpose datasets, and (3) we
offer practical guidance for selecting appropriate models for
Hungarian NLP applications.

To achieve these objectives, we construct two comple-
mentary evaluation datasets. The first comprises domain-
specific data extracted from technical documentation, pre-
processed into semantically coherent chunks with human-
annotated question-answer pairs. The second utilizes the pub-
licly available HuRTE benchmark [9], providing standardized
evaluation conditions. We employ Chorma [10] for efficient
vector storage and similarity search.

Our evaluation examines eight diverse embedding mod-
els, including multilingual transformers (BGE-M3, E5-BASE,
XLMROBERTA, NOMIC), language-specific models (HU-
BERT), and commercial API solutions (OpenAI, Google).
Performance is assessed using established information retrieval
metrics: Mean Reciprocal Rank (MRR) and Recall@k. Be-
yond quantitative analysis, we conduct detailed error analysis
to identify failure patterns related to Hungarian morphology,
compound word processing, and domain-specific terminol-
ogy. Additionally, we analyze practical considerations includ-

Abstract—Embedding models have become a fundamental 
component of modern natural language processing, yet their 
performance in morphologically rich, low-resource languages 
such as Hungarian remains underexplored. In this paper, we 
present a systematic evaluation of state-of-the-art embedding 
models for Hungarian question–answer retrieval. We construct 
two complementary evaluation datasets: (i) a domain-specific 
corpus collected from company documentation, preprocessed 
into topical chunks with human-verified question–answer 
pairs and (ii) the publicly available HuRTE benchmark. Using 
Chroma as the vector database, we compare eight multilingual 
and cross-lingual embedding models alongside keyword-based 
search baseline.

Performance is measured using Mean Reciprocal Rank 
(MRR) and Recall@k. Results show substantial variation across 
mod- els and datasets, with notable differences between domain- 
specific and general-purpose retrieval tasks. BGE-M3 and 
XLM-ROBERTA achieved the highest accuracy (MRR: 0.90) 
on the Clearservice dataset, while GEMINI demonstrated supe- 
rior performance on HuRTE (MRR: 0.99). We complement 
the evaluation with comprehensive error analysis, highlighting 
challenges posed by Hungarian domain-specific terminology, 
synonyms, and overlapping topics, and discuss trade-offs in 
efficiency through index build time and query latency measure- 
ments. Our findings provide a comparative study of embedding- 
based retrieval in Hungarian, offering practical guidance for 
downstream applications and setting a foundation for future 
research in Hungarian representation learning. The dataset and 
the corresponding evaluation code are publicly accessible at 
https://github.com/margitantal68/hungarian-embeddings.

Index Terms—Hungarian language, embedding models, ques-
tion-answer retrieval, vector similarity search.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 1

Evaluation of Embedding Models for Hungarian Question-Answer

Retrieval on Domain-Specific and Public Benchmarks
Margit Antal

Abstract—Embedding models have become a fundamental
component of modern natural language processing, yet their
performance in morphologically rich, low-resource languages
such as Hungarian remains underexplored. In this paper, we
present a systematic evaluation of state-of-the-art embedding
models for Hungarian question–answer retrieval. We construct
two complementary evaluation datasets: (i) a domain-specific
corpus collected from company documentation, preprocessed into
topical chunks with human-verified question–answer pairs and
(ii) the publicly available HuRTE benchmark. Using Chroma
as the vector database, we compare eight multilingual and
cross-lingual embedding models alongside keyword-based search
baseline.

Performance is measured using Mean Reciprocal Rank (MRR)
and Recall@k. Results show substantial variation across mod-
els and datasets, with notable differences between domain-
specific and general-purpose retrieval tasks. BGE-M3 and XLM-
ROBERTA achieved the highest accuracy (MRR: 0.90) on
the Clearservice dataset, while GEMINI demonstrated supe-
rior performance on HuRTE (MRR: 0.99). We complement
the evaluation with comprehensive error analysis, highlighting
challenges posed by Hungarian domain-specific terminology,
synonyms, and overlapping topics, and discuss trade-offs in
efficiency through index build time and query latency measure-
ments. Our findings provide a comparative study of embedding-
based retrieval in Hungarian, offering practical guidance for
downstream applications and setting a foundation for future
research in Hungarian representation learning. The dataset and
the corresponding evaluation code are publicly accessible at
https://github.com/margitantal68/hungarian-embeddings.

Index Terms—Hungarian language, embedding models,
question-answer retrieval, vector similarity search.

I. INTRODUCTION

Embedding models have become fundamental to modern
natural language processing (NLP), providing dense vector
representations that encode semantic relationships between
words, phrases, and documents. The evolution of embedding
techniques has progressed from early feedforward neural net-
works to static models like Word2Vec [1] and FastText [2], and
subsequently to dynamic, contextualized embeddings derived
from Transformer-based architectures including BERT [3],
GPT [4], and T5 [5]. These advances have significantly im-
proved performance across numerous NLP tasks, particularly
in high-resource languages such as English.

However, the effectiveness of modern embedding models
in morphologically rich, low-resource languages remains in-
sufficiently explored. Hungarian exemplifies these challenges
due to its agglutinative morphology, where words can con-
tain multiple morphemes that substantially alter meaning and

Faculty of Technical and Human Sciences, Sapientia Hungarian University
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ing inference latency, computational requirements, and cost-
effectiveness to provide comprehensive guidance for practi-
tioners.

The remainder of this paper is organized as follows: Sec-
tion 2 reviews related work in multilingual embeddings and
Hungarian NLP; Section 3 details our experimental method-
ology and datasets; Section 4 presents quantitative results
and comparative analysis; Section 5 discusses error patterns
and morphological challenges; Section 6 discusses the results,
highlighting practical trade-offs and deployment considera-
tions, while Section 7 concludes by outlining the implications
for future Hungarian NLP research.

II. RELATED WORK

Teaching machines to comprehend human language is a fun-
damental step in developing intelligent systems, a task often
facilitated by word embeddings. These dense vector represen-
tations map similar words to similar vectors and are capable
of capturing complex semantic relationships. The field has
evolved from early feedforward neural networks for language
modeling to highly effective static models like Word2Vec and
FastText. However, a key limitation of these static embed-
dings is their inability to capture context-dependent meanings,
leading to the development of dynamic, contextualized word
embeddings from Transformer-based models such as BERT,
GPT, and T5.

For the Hungarian language, which is considered an un-
derrepresented language due to its complex morphology and
agglutinative nature, high-quality embedding models are in-
sufficiently evaluated. Few empirical measurements exist to
assess embedding model performance specifically for Hun-
garian, making it difficult for developers of Hungarian Q&A
systems to determine which models are best suited for their
applications.

Despite the success of dynamic models, static word em-
beddings remain relevant for various applications due to their
lower computational requirements. Research has shown a
significant performance drop in Hungarian word analogy tasks
compared to English, attributed to the language’s high mor-
phological variation and less stable semantic representations.

Several studies have focused on evaluating word embed-
dings in Hungarian. Gedeon [7] provides a comprehensive
analysis of various static word embeddings, including tradi-
tional models like Word2Vec and FastText, as well as static
embeddings derived from BERT-based models using different
extraction methods. For intrinsic evaluation using a word
analogy task (measuring embedding quality without using
them in a real application), FastText demonstrated superior
performance, achieving high accuracy and Mean Reciprocal
Rank (MRR) scores. Among the BERT-based models, the
X2Static method for extracting static embeddings showed
superior performance compared to decontextualized and ag-
gregate methods, approaching the effectiveness of traditional
static embeddings. This method leverages contextual informa-
tion from a teacher model to generate static embeddings, and a
Turkish study similarly found X2Static to be the most effective
for extracting static embeddings from BERT-based models.

For extrinsic evaluation (test embeddings in a real application,
such as NER or POS tagging), Gedeon utilized a bidirectional
LSTM model for Named Entity Recognition (NER) and Part-
of-Speech (POS) tagging tasks. The results indicated that
embeddings derived from dynamic models, particularly those
extracted using the X2Static method, outperformed purely
static embeddings. ELMo embeddings achieved the highest ac-
curacy in both NER and POS tagging, highlighting the benefits
of contextualized representations even when used in a static
form. ELMo generates contextualized word embeddings using
a bidirectional LSTM language model, capturing polysemy
and context-dependent meanings.

BERT (Bidirectional Encoder Representations from Trans-
formers) [3] and its derivatives have become central to modern
NLP. For Hungarian, huBERT is a state-of-the-art Hungarian
cased BERT-base model trained on the Webcorpus 2.0. It
has been shown to outperform multilingual BERT models
in tasks such as morphological probing, POS tagging, and
NER. Nemeskey [11] introduced the huBERT family, which
achieved state-of-the-art performance in NER and NP chunk-
ing for Hungarian. Another significant Hungarian BERT model
is PULI BERT-Large [12], a BERT large model with 345 mil-
lion parameters. XLM-RoBERTa (XLM-R) is a transformer-
based multilingual masked language model that also includes
Hungarian data.

The sentence transformers method has gained popularity
for creating semantically meaningful sentence embeddings
that enable comparison using cosine similarity. This ap-
proach, sometimes extended to multilingual models using
knowledge distillation, involves a teacher model generating
desired sentence embeddings in one language, which a stu-
dent model then replicates across multiple languages using
parallel sentences. Hatvani and Yang [13] addressed the lack
of high-quality embedding models for Hungarian in RAG
systems. They developed three encoder-only language mod-
els: xml roberta sentence hu, hubert sentence hu, and
minilm sentence hu. These models, trained using a dis-
tillation method with paraphrase-distilroberta-base-v2 as the
teacher model and FLORES-200 and OpenSubtitles corpora,
demonstrated substantial improvements in semantic similarity
tasks. The hubert sentence hu model achieved the highest
accuracy and F1-Score on a custom news article test corpus.

Beyond general NLP tasks, Hungarian embedding models
have been applied and evaluated in specific domains. Osváth
et al. [14] used BERT topic modeling with huBERT and
HIL-SBERT embeddings to analyze patient narratives from
a Hungarian online forum, identifying major topics and us-
ing a fine-tuned BERT model for sentiment analysis. Their
findings highlighted dominantly negative sentiments in patient
experiences and comments.

Yang and Váradi [15] explored developing deep neural
network language models for Hungarian with low compu-
tational and data resources. They pre-trained and fine-tuned
five transformer models: ELECTRA, ELECTRIC, RoBERTa
(small), BART (base), and GPT-2 on various NLP tasks,
including sentence-level sentiment analysis, NER, noun phrase
chunking, and text summarization. While these experimental
models generally did not surpass the state-of-the-art huBERT
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ing inference latency, computational requirements, and cost-
effectiveness to provide comprehensive guidance for practi-
tioners.

The remainder of this paper is organized as follows: Sec-
tion 2 reviews related work in multilingual embeddings and
Hungarian NLP; Section 3 details our experimental method-
ology and datasets; Section 4 presents quantitative results
and comparative analysis; Section 5 discusses error patterns
and morphological challenges; Section 6 discusses the results,
highlighting practical trade-offs and deployment considera-
tions, while Section 7 concludes by outlining the implications
for future Hungarian NLP research.

II. RELATED WORK

Teaching machines to comprehend human language is a fun-
damental step in developing intelligent systems, a task often
facilitated by word embeddings. These dense vector represen-
tations map similar words to similar vectors and are capable
of capturing complex semantic relationships. The field has
evolved from early feedforward neural networks for language
modeling to highly effective static models like Word2Vec and
FastText. However, a key limitation of these static embed-
dings is their inability to capture context-dependent meanings,
leading to the development of dynamic, contextualized word
embeddings from Transformer-based models such as BERT,
GPT, and T5.

For the Hungarian language, which is considered an un-
derrepresented language due to its complex morphology and
agglutinative nature, high-quality embedding models are in-
sufficiently evaluated. Few empirical measurements exist to
assess embedding model performance specifically for Hun-
garian, making it difficult for developers of Hungarian Q&A
systems to determine which models are best suited for their
applications.

Despite the success of dynamic models, static word em-
beddings remain relevant for various applications due to their
lower computational requirements. Research has shown a
significant performance drop in Hungarian word analogy tasks
compared to English, attributed to the language’s high mor-
phological variation and less stable semantic representations.

Several studies have focused on evaluating word embed-
dings in Hungarian. Gedeon [7] provides a comprehensive
analysis of various static word embeddings, including tradi-
tional models like Word2Vec and FastText, as well as static
embeddings derived from BERT-based models using different
extraction methods. For intrinsic evaluation using a word
analogy task (measuring embedding quality without using
them in a real application), FastText demonstrated superior
performance, achieving high accuracy and Mean Reciprocal
Rank (MRR) scores. Among the BERT-based models, the
X2Static method for extracting static embeddings showed
superior performance compared to decontextualized and ag-
gregate methods, approaching the effectiveness of traditional
static embeddings. This method leverages contextual informa-
tion from a teacher model to generate static embeddings, and a
Turkish study similarly found X2Static to be the most effective
for extracting static embeddings from BERT-based models.

For extrinsic evaluation (test embeddings in a real application,
such as NER or POS tagging), Gedeon utilized a bidirectional
LSTM model for Named Entity Recognition (NER) and Part-
of-Speech (POS) tagging tasks. The results indicated that
embeddings derived from dynamic models, particularly those
extracted using the X2Static method, outperformed purely
static embeddings. ELMo embeddings achieved the highest ac-
curacy in both NER and POS tagging, highlighting the benefits
of contextualized representations even when used in a static
form. ELMo generates contextualized word embeddings using
a bidirectional LSTM language model, capturing polysemy
and context-dependent meanings.

BERT (Bidirectional Encoder Representations from Trans-
formers) [3] and its derivatives have become central to modern
NLP. For Hungarian, huBERT is a state-of-the-art Hungarian
cased BERT-base model trained on the Webcorpus 2.0. It
has been shown to outperform multilingual BERT models
in tasks such as morphological probing, POS tagging, and
NER. Nemeskey [11] introduced the huBERT family, which
achieved state-of-the-art performance in NER and NP chunk-
ing for Hungarian. Another significant Hungarian BERT model
is PULI BERT-Large [12], a BERT large model with 345 mil-
lion parameters. XLM-RoBERTa (XLM-R) is a transformer-
based multilingual masked language model that also includes
Hungarian data.

The sentence transformers method has gained popularity
for creating semantically meaningful sentence embeddings
that enable comparison using cosine similarity. This ap-
proach, sometimes extended to multilingual models using
knowledge distillation, involves a teacher model generating
desired sentence embeddings in one language, which a stu-
dent model then replicates across multiple languages using
parallel sentences. Hatvani and Yang [13] addressed the lack
of high-quality embedding models for Hungarian in RAG
systems. They developed three encoder-only language mod-
els: xml roberta sentence hu, hubert sentence hu, and
minilm sentence hu. These models, trained using a dis-
tillation method with paraphrase-distilroberta-base-v2 as the
teacher model and FLORES-200 and OpenSubtitles corpora,
demonstrated substantial improvements in semantic similarity
tasks. The hubert sentence hu model achieved the highest
accuracy and F1-Score on a custom news article test corpus.

Beyond general NLP tasks, Hungarian embedding models
have been applied and evaluated in specific domains. Osváth
et al. [14] used BERT topic modeling with huBERT and
HIL-SBERT embeddings to analyze patient narratives from
a Hungarian online forum, identifying major topics and us-
ing a fine-tuned BERT model for sentiment analysis. Their
findings highlighted dominantly negative sentiments in patient
experiences and comments.

Yang and Váradi [15] explored developing deep neural
network language models for Hungarian with low compu-
tational and data resources. They pre-trained and fine-tuned
five transformer models: ELECTRA, ELECTRIC, RoBERTa
(small), BART (base), and GPT-2 on various NLP tasks,
including sentence-level sentiment analysis, NER, noun phrase
chunking, and text summarization. While these experimental
models generally did not surpass the state-of-the-art huBERT
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Abstract—Embedding models have become a fundamental
component of modern natural language processing, yet their
performance in morphologically rich, low-resource languages
such as Hungarian remains underexplored. In this paper, we
present a systematic evaluation of state-of-the-art embedding
models for Hungarian question–answer retrieval. We construct
two complementary evaluation datasets: (i) a domain-specific
corpus collected from company documentation, preprocessed into
topical chunks with human-verified question–answer pairs and
(ii) the publicly available HuRTE benchmark. Using Chroma
as the vector database, we compare eight multilingual and
cross-lingual embedding models alongside keyword-based search
baseline.

Performance is measured using Mean Reciprocal Rank (MRR)
and Recall@k. Results show substantial variation across mod-
els and datasets, with notable differences between domain-
specific and general-purpose retrieval tasks. BGE-M3 and XLM-
ROBERTA achieved the highest accuracy (MRR: 0.90) on
the Clearservice dataset, while GEMINI demonstrated supe-
rior performance on HuRTE (MRR: 0.99). We complement
the evaluation with comprehensive error analysis, highlighting
challenges posed by Hungarian domain-specific terminology,
synonyms, and overlapping topics, and discuss trade-offs in
efficiency through index build time and query latency measure-
ments. Our findings provide a comparative study of embedding-
based retrieval in Hungarian, offering practical guidance for
downstream applications and setting a foundation for future
research in Hungarian representation learning. The dataset and
the corresponding evaluation code are publicly accessible at
https://github.com/margitantal68/hungarian-embeddings.

Index Terms—Hungarian language, embedding models,
question-answer retrieval, vector similarity search.

I. INTRODUCTION

Embedding models have become fundamental to modern
natural language processing (NLP), providing dense vector
representations that encode semantic relationships between
words, phrases, and documents. The evolution of embedding
techniques has progressed from early feedforward neural net-
works to static models like Word2Vec [1] and FastText [2], and
subsequently to dynamic, contextualized embeddings derived
from Transformer-based architectures including BERT [3],
GPT [4], and T5 [5]. These advances have significantly im-
proved performance across numerous NLP tasks, particularly
in high-resource languages such as English.

However, the effectiveness of modern embedding models
in morphologically rich, low-resource languages remains in-
sufficiently explored. Hungarian exemplifies these challenges
due to its agglutinative morphology, where words can con-
tain multiple morphemes that substantially alter meaning and
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of Transylvania, Târgu-Mures, , (e-mail: manyi@ms.sapientia.ro)

grammatical function. This morphological complexity often
results in performance degradation compared to English [6].

The importance of robust embeddings extends beyond tra-
ditional NLP tasks to modern applications such as Retrieval-
Augmented Generation (RAG) systems, where embeddings
enable efficient knowledge retrieval from large databases by
capturing semantic similarity beyond surface-level keyword
matching. In these systems, embedding quality directly im-
pacts retrieval accuracy and, consequently, the overall system
performance. Despite this critical role, systematic evaluation
of state-of-the-art embedding models for Hungarian remains
limited.

Previous work on Hungarian embeddings has been sparse
and focused primarily on static representations. Gedeon [7]
presented the most comprehensive evaluation to date, but
concentrated exclusively on static word embeddings, leaving
modern contextualized models largely unexplored. To the
best of our knowledge, only a single study [8] to date has
systematically evaluated embedding models for Hungarian
texts, focusing exclusively on the legal domain. However, no
comprehensive assessment has yet been conducted for other
types of Hungarian texts.

This paper addresses these research gaps by presenting the
first comprehensive evaluation of state-of-the-art embedding
models for Hungarian question-answer retrieval. Our primary
contributions are threefold: (1) we provide a systematic com-
parison of modern embedding models on Hungarian retrieval
tasks, (2) we establish evaluation benchmarks using both
domain-specific and general-purpose datasets, and (3) we
offer practical guidance for selecting appropriate models for
Hungarian NLP applications.

To achieve these objectives, we construct two comple-
mentary evaluation datasets. The first comprises domain-
specific data extracted from technical documentation, pre-
processed into semantically coherent chunks with human-
annotated question-answer pairs. The second utilizes the pub-
licly available HuRTE benchmark [9], providing standardized
evaluation conditions. We employ Chorma [10] for efficient
vector storage and similarity search.

Our evaluation examines eight diverse embedding mod-
els, including multilingual transformers (BGE-M3, E5-BASE,
XLMROBERTA, NOMIC), language-specific models (HU-
BERT), and commercial API solutions (OpenAI, Google).
Performance is assessed using established information retrieval
metrics: Mean Reciprocal Rank (MRR) and Recall@k. Be-
yond quantitative analysis, we conduct detailed error analysis
to identify failure patterns related to Hungarian morphology,
compound word processing, and domain-specific terminol-
ogy. Additionally, we analyze practical considerations includ-
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ing inference latency, computational requirements, and cost-
effectiveness to provide comprehensive guidance for practi-
tioners.

The remainder of this paper is organized as follows: Sec-
tion 2 reviews related work in multilingual embeddings and
Hungarian NLP; Section 3 details our experimental method-
ology and datasets; Section 4 presents quantitative results
and comparative analysis; Section 5 discusses error patterns
and morphological challenges; Section 6 discusses the results,
highlighting practical trade-offs and deployment considera-
tions, while Section 7 concludes by outlining the implications
for future Hungarian NLP research.

II. RELATED WORK

Teaching machines to comprehend human language is a fun-
damental step in developing intelligent systems, a task often
facilitated by word embeddings. These dense vector represen-
tations map similar words to similar vectors and are capable
of capturing complex semantic relationships. The field has
evolved from early feedforward neural networks for language
modeling to highly effective static models like Word2Vec and
FastText. However, a key limitation of these static embed-
dings is their inability to capture context-dependent meanings,
leading to the development of dynamic, contextualized word
embeddings from Transformer-based models such as BERT,
GPT, and T5.

For the Hungarian language, which is considered an un-
derrepresented language due to its complex morphology and
agglutinative nature, high-quality embedding models are in-
sufficiently evaluated. Few empirical measurements exist to
assess embedding model performance specifically for Hun-
garian, making it difficult for developers of Hungarian Q&A
systems to determine which models are best suited for their
applications.

Despite the success of dynamic models, static word em-
beddings remain relevant for various applications due to their
lower computational requirements. Research has shown a
significant performance drop in Hungarian word analogy tasks
compared to English, attributed to the language’s high mor-
phological variation and less stable semantic representations.

Several studies have focused on evaluating word embed-
dings in Hungarian. Gedeon [7] provides a comprehensive
analysis of various static word embeddings, including tradi-
tional models like Word2Vec and FastText, as well as static
embeddings derived from BERT-based models using different
extraction methods. For intrinsic evaluation using a word
analogy task (measuring embedding quality without using
them in a real application), FastText demonstrated superior
performance, achieving high accuracy and Mean Reciprocal
Rank (MRR) scores. Among the BERT-based models, the
X2Static method for extracting static embeddings showed
superior performance compared to decontextualized and ag-
gregate methods, approaching the effectiveness of traditional
static embeddings. This method leverages contextual informa-
tion from a teacher model to generate static embeddings, and a
Turkish study similarly found X2Static to be the most effective
for extracting static embeddings from BERT-based models.

For extrinsic evaluation (test embeddings in a real application,
such as NER or POS tagging), Gedeon utilized a bidirectional
LSTM model for Named Entity Recognition (NER) and Part-
of-Speech (POS) tagging tasks. The results indicated that
embeddings derived from dynamic models, particularly those
extracted using the X2Static method, outperformed purely
static embeddings. ELMo embeddings achieved the highest ac-
curacy in both NER and POS tagging, highlighting the benefits
of contextualized representations even when used in a static
form. ELMo generates contextualized word embeddings using
a bidirectional LSTM language model, capturing polysemy
and context-dependent meanings.

BERT (Bidirectional Encoder Representations from Trans-
formers) [3] and its derivatives have become central to modern
NLP. For Hungarian, huBERT is a state-of-the-art Hungarian
cased BERT-base model trained on the Webcorpus 2.0. It
has been shown to outperform multilingual BERT models
in tasks such as morphological probing, POS tagging, and
NER. Nemeskey [11] introduced the huBERT family, which
achieved state-of-the-art performance in NER and NP chunk-
ing for Hungarian. Another significant Hungarian BERT model
is PULI BERT-Large [12], a BERT large model with 345 mil-
lion parameters. XLM-RoBERTa (XLM-R) is a transformer-
based multilingual masked language model that also includes
Hungarian data.

The sentence transformers method has gained popularity
for creating semantically meaningful sentence embeddings
that enable comparison using cosine similarity. This ap-
proach, sometimes extended to multilingual models using
knowledge distillation, involves a teacher model generating
desired sentence embeddings in one language, which a stu-
dent model then replicates across multiple languages using
parallel sentences. Hatvani and Yang [13] addressed the lack
of high-quality embedding models for Hungarian in RAG
systems. They developed three encoder-only language mod-
els: xml roberta sentence hu, hubert sentence hu, and
minilm sentence hu. These models, trained using a dis-
tillation method with paraphrase-distilroberta-base-v2 as the
teacher model and FLORES-200 and OpenSubtitles corpora,
demonstrated substantial improvements in semantic similarity
tasks. The hubert sentence hu model achieved the highest
accuracy and F1-Score on a custom news article test corpus.

Beyond general NLP tasks, Hungarian embedding models
have been applied and evaluated in specific domains. Osváth
et al. [14] used BERT topic modeling with huBERT and
HIL-SBERT embeddings to analyze patient narratives from
a Hungarian online forum, identifying major topics and us-
ing a fine-tuned BERT model for sentiment analysis. Their
findings highlighted dominantly negative sentiments in patient
experiences and comments.

Yang and Váradi [15] explored developing deep neural
network language models for Hungarian with low compu-
tational and data resources. They pre-trained and fine-tuned
five transformer models: ELECTRA, ELECTRIC, RoBERTa
(small), BART (base), and GPT-2 on various NLP tasks,
including sentence-level sentiment analysis, NER, noun phrase
chunking, and text summarization. While these experimental
models generally did not surpass the state-of-the-art huBERT
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ing inference latency, computational requirements, and cost-
effectiveness to provide comprehensive guidance for practi-
tioners.

The remainder of this paper is organized as follows: Sec-
tion 2 reviews related work in multilingual embeddings and
Hungarian NLP; Section 3 details our experimental method-
ology and datasets; Section 4 presents quantitative results
and comparative analysis; Section 5 discusses error patterns
and morphological challenges; Section 6 discusses the results,
highlighting practical trade-offs and deployment considera-
tions, while Section 7 concludes by outlining the implications
for future Hungarian NLP research.

II. RELATED WORK

Teaching machines to comprehend human language is a fun-
damental step in developing intelligent systems, a task often
facilitated by word embeddings. These dense vector represen-
tations map similar words to similar vectors and are capable
of capturing complex semantic relationships. The field has
evolved from early feedforward neural networks for language
modeling to highly effective static models like Word2Vec and
FastText. However, a key limitation of these static embed-
dings is their inability to capture context-dependent meanings,
leading to the development of dynamic, contextualized word
embeddings from Transformer-based models such as BERT,
GPT, and T5.

For the Hungarian language, which is considered an un-
derrepresented language due to its complex morphology and
agglutinative nature, high-quality embedding models are in-
sufficiently evaluated. Few empirical measurements exist to
assess embedding model performance specifically for Hun-
garian, making it difficult for developers of Hungarian Q&A
systems to determine which models are best suited for their
applications.

Despite the success of dynamic models, static word em-
beddings remain relevant for various applications due to their
lower computational requirements. Research has shown a
significant performance drop in Hungarian word analogy tasks
compared to English, attributed to the language’s high mor-
phological variation and less stable semantic representations.

Several studies have focused on evaluating word embed-
dings in Hungarian. Gedeon [7] provides a comprehensive
analysis of various static word embeddings, including tradi-
tional models like Word2Vec and FastText, as well as static
embeddings derived from BERT-based models using different
extraction methods. For intrinsic evaluation using a word
analogy task (measuring embedding quality without using
them in a real application), FastText demonstrated superior
performance, achieving high accuracy and Mean Reciprocal
Rank (MRR) scores. Among the BERT-based models, the
X2Static method for extracting static embeddings showed
superior performance compared to decontextualized and ag-
gregate methods, approaching the effectiveness of traditional
static embeddings. This method leverages contextual informa-
tion from a teacher model to generate static embeddings, and a
Turkish study similarly found X2Static to be the most effective
for extracting static embeddings from BERT-based models.

For extrinsic evaluation (test embeddings in a real application,
such as NER or POS tagging), Gedeon utilized a bidirectional
LSTM model for Named Entity Recognition (NER) and Part-
of-Speech (POS) tagging tasks. The results indicated that
embeddings derived from dynamic models, particularly those
extracted using the X2Static method, outperformed purely
static embeddings. ELMo embeddings achieved the highest ac-
curacy in both NER and POS tagging, highlighting the benefits
of contextualized representations even when used in a static
form. ELMo generates contextualized word embeddings using
a bidirectional LSTM language model, capturing polysemy
and context-dependent meanings.

BERT (Bidirectional Encoder Representations from Trans-
formers) [3] and its derivatives have become central to modern
NLP. For Hungarian, huBERT is a state-of-the-art Hungarian
cased BERT-base model trained on the Webcorpus 2.0. It
has been shown to outperform multilingual BERT models
in tasks such as morphological probing, POS tagging, and
NER. Nemeskey [11] introduced the huBERT family, which
achieved state-of-the-art performance in NER and NP chunk-
ing for Hungarian. Another significant Hungarian BERT model
is PULI BERT-Large [12], a BERT large model with 345 mil-
lion parameters. XLM-RoBERTa (XLM-R) is a transformer-
based multilingual masked language model that also includes
Hungarian data.

The sentence transformers method has gained popularity
for creating semantically meaningful sentence embeddings
that enable comparison using cosine similarity. This ap-
proach, sometimes extended to multilingual models using
knowledge distillation, involves a teacher model generating
desired sentence embeddings in one language, which a stu-
dent model then replicates across multiple languages using
parallel sentences. Hatvani and Yang [13] addressed the lack
of high-quality embedding models for Hungarian in RAG
systems. They developed three encoder-only language mod-
els: xml roberta sentence hu, hubert sentence hu, and
minilm sentence hu. These models, trained using a dis-
tillation method with paraphrase-distilroberta-base-v2 as the
teacher model and FLORES-200 and OpenSubtitles corpora,
demonstrated substantial improvements in semantic similarity
tasks. The hubert sentence hu model achieved the highest
accuracy and F1-Score on a custom news article test corpus.

Beyond general NLP tasks, Hungarian embedding models
have been applied and evaluated in specific domains. Osváth
et al. [14] used BERT topic modeling with huBERT and
HIL-SBERT embeddings to analyze patient narratives from
a Hungarian online forum, identifying major topics and us-
ing a fine-tuned BERT model for sentiment analysis. Their
findings highlighted dominantly negative sentiments in patient
experiences and comments.

Yang and Váradi [15] explored developing deep neural
network language models for Hungarian with low compu-
tational and data resources. They pre-trained and fine-tuned
five transformer models: ELECTRA, ELECTRIC, RoBERTa
(small), BART (base), and GPT-2 on various NLP tasks,
including sentence-level sentiment analysis, NER, noun phrase
chunking, and text summarization. While these experimental
models generally did not surpass the state-of-the-art huBERT
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model in classification tasks, they achieved competitive results
with fewer parameters and resources. Notably, their BART
model achieved a significantly higher F-score in abstractive
summarization compared to huBERT-based tools, and the
models offered advantages in terms of smaller carbon footprint
and mobile application suitability.

Tóth et al. [16] developed LMEZZ, a learning application
to help students with Hungarian sentence analysis based on
school grammar rules, utilizing transformer-based BERT mod-
els (huBERT and PULI BERT-Large) for improved reliability
over convolutional neural network-based SpaCy models.

A recent study [8] presents a semantic search system
developed to efficiently identify Hungarian court decisions
with similar factual backgrounds. Its primary objective is to
retrieve relevant legal precedents by matching court rulings
based on semantic similarity, using factual case summaries as
queries. The research evaluated twelve embedding models on
a corpus of 1,172 Hungarian court decisions. Given that legal
documents are typically lengthy—often exceeding the context
window of most transformer-based architectures—the authors
examined seven different strategies for handling long texts,
including simple chunking, striding (overlapping chunks), and
Last Chunk Scaling (LCS), which mitigates the overrepre-
sentation of small final segments in the averaged embedding
vector. Model performance was assessed using the Mean
Reciprocal Rank (MRR) metric. The study found that the
Cohere embed-multilingual-v3.0 model achieved the best re-
sults, reaching an MRR of 0.95. Notably, this demonstrates
that a well-optimized 512-token model can outperform sev-
eral models with substantially larger context windows (up
to 8192 tokens). The authors also evaluated models pre-
trained specifically for the Hungarian language, including the
base huBERT model [11] without fine-tuning, as well as two
adapted variants: the sbert hubert model [14], fine-tuned for
sentence-level semantic similarity, and the danieleff model,
fine-tuned for question–answering (Q&A) tasks. The danieleff
model was trained on 170 question–answer pairs derived
from sections (1,000–5,000 characters) of university academic
regulations. Among the Hungarian-language models, danieleff
achieved the highest performance.

Modern multilingual embedding models have made signif-
icant progress in understanding multiple languages simulta-
neously. Current state-of-the-art models can work with more
than 100 languages and perform well on standard evalua-
tion benchmarks [17]. Transformer-based models, especially
BERT, XLM-R, and XLM-RoBERTa, have become the most
widely used approaches for this task. Several key innovations
have improved these models. First, researchers developed
methods to adapt models trained on one language to work
with others by creating specialized word representations [18].
Second, they created systems that can understand sentences
across languages by sharing vocabulary encoding methods,
enabling models to work on new languages without addi-
tional training [19]. Third, they combined different types of
embeddings with improved alignment techniques to better
match meanings across languages [20]. These advances have
led to efficient multilingual systems that can process long
texts (up to 8192 tokens) while maintaining good performance

across different language tasks [17]. However, these models
have not been thoroughly tested on morphologically complex
languages like Hungarian. Most evaluations focus on widely-
used languages, which may not reveal the challenges that arise
with Hungarian’s complex word structure and limited available
training data.

III. METHODS

A. Embeddings

Text embeddings are numerical representations of words,
sentences, or documents in a continuous vector space. They
capture semantic meaning, so texts with similar meanings end
up close together in that space, even if they use different
wording. In RAG systems, embeddings are crucial because
they enable efficient retrieval of relevant knowledge from
large databases. Instead of relying only on keyword matching,
embeddings allow the system to understand context and intent,
leading to more accurate and meaningful results.

Multilingual embeddings extend this capability across lan-
guages, mapping semantically similar texts in different lan-
guages to nearby positions in the same vector space. This
makes it possible for a RAG system to retrieve knowledge
in one language and use it to answer questions in another,
breaking down language barriers and improving accessibility.
In practice, high-quality multilingual embeddings are essential
for building global, cross-lingual RAG applications that can
serve diverse users and knowledge sources.

Embedder models were utilized in three ways: commercial
models accessed via their APIs, and open-source models run
either through a local Ollama server or via SentenceTrans-
formers [21], a Python library for generating dense vector
representations (embeddings) of sentences, paragraphs, and
documents.

In this paper we employed the following embedder models:

• BGE-M3 – bge-m3 [22]: This model offers robust em-
beddings for multilingual and general-purpose semantic
tasks, with emphasis on large-scale retrieval and cluster-
ing.

• E5-BASE – intfloat/multilingual-e5-base [23]: The
Multilingual E5-Base model is a transformer-based text
embedder that generates semantically rich, language-
agnostic sentence embeddings across over 100 languages,
enabling effective multilingual retrieval, clustering, and
semantic similarity tasks.

• GEMINI – gemini-embedding-001 [24]: Text embed-
dings were generated using the Gemini-embedding-001
model, which produces 768-dimensional vectors. To en-
sure consistency with other embedding models in our
evaluation, the input-type parameter was not specified.
The embeddings were obtained through the Gemini API’s
v1beta endpoint.

• HUBERT – danieleff/hubert-base-cc-sentence-
transformer [8]: This model model was fine-tuned
on 170 Hungarian question–answer pairs derived from
sections of university academic regulations ranging from
1,000 to 5,000 characters in length.
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ing inference latency, computational requirements, and cost-
effectiveness to provide comprehensive guidance for practi-
tioners.

The remainder of this paper is organized as follows: Sec-
tion 2 reviews related work in multilingual embeddings and
Hungarian NLP; Section 3 details our experimental method-
ology and datasets; Section 4 presents quantitative results
and comparative analysis; Section 5 discusses error patterns
and morphological challenges; Section 6 discusses the results,
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tations map similar words to similar vectors and are capable
of capturing complex semantic relationships. The field has
evolved from early feedforward neural networks for language
modeling to highly effective static models like Word2Vec and
FastText. However, a key limitation of these static embed-
dings is their inability to capture context-dependent meanings,
leading to the development of dynamic, contextualized word
embeddings from Transformer-based models such as BERT,
GPT, and T5.

For the Hungarian language, which is considered an un-
derrepresented language due to its complex morphology and
agglutinative nature, high-quality embedding models are in-
sufficiently evaluated. Few empirical measurements exist to
assess embedding model performance specifically for Hun-
garian, making it difficult for developers of Hungarian Q&A
systems to determine which models are best suited for their
applications.

Despite the success of dynamic models, static word em-
beddings remain relevant for various applications due to their
lower computational requirements. Research has shown a
significant performance drop in Hungarian word analogy tasks
compared to English, attributed to the language’s high mor-
phological variation and less stable semantic representations.

Several studies have focused on evaluating word embed-
dings in Hungarian. Gedeon [7] provides a comprehensive
analysis of various static word embeddings, including tradi-
tional models like Word2Vec and FastText, as well as static
embeddings derived from BERT-based models using different
extraction methods. For intrinsic evaluation using a word
analogy task (measuring embedding quality without using
them in a real application), FastText demonstrated superior
performance, achieving high accuracy and Mean Reciprocal
Rank (MRR) scores. Among the BERT-based models, the
X2Static method for extracting static embeddings showed
superior performance compared to decontextualized and ag-
gregate methods, approaching the effectiveness of traditional
static embeddings. This method leverages contextual informa-
tion from a teacher model to generate static embeddings, and a
Turkish study similarly found X2Static to be the most effective
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cased BERT-base model trained on the Webcorpus 2.0. It
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tillation method with paraphrase-distilroberta-base-v2 as the
teacher model and FLORES-200 and OpenSubtitles corpora,
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accuracy and F1-Score on a custom news article test corpus.
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et al. [14] used BERT topic modeling with huBERT and
HIL-SBERT embeddings to analyze patient narratives from
a Hungarian online forum, identifying major topics and us-
ing a fine-tuned BERT model for sentiment analysis. Their
findings highlighted dominantly negative sentiments in patient
experiences and comments.

Yang and Váradi [15] explored developing deep neural
network language models for Hungarian with low compu-
tational and data resources. They pre-trained and fine-tuned
five transformer models: ELECTRA, ELECTRIC, RoBERTa
(small), BART (base), and GPT-2 on various NLP tasks,
including sentence-level sentiment analysis, NER, noun phrase
chunking, and text summarization. While these experimental
models generally did not surpass the state-of-the-art huBERT
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model in classification tasks, they achieved competitive results
with fewer parameters and resources. Notably, their BART
model achieved a significantly higher F-score in abstractive
summarization compared to huBERT-based tools, and the
models offered advantages in terms of smaller carbon footprint
and mobile application suitability.

Tóth et al. [16] developed LMEZZ, a learning application
to help students with Hungarian sentence analysis based on
school grammar rules, utilizing transformer-based BERT mod-
els (huBERT and PULI BERT-Large) for improved reliability
over convolutional neural network-based SpaCy models.

A recent study [8] presents a semantic search system
developed to efficiently identify Hungarian court decisions
with similar factual backgrounds. Its primary objective is to
retrieve relevant legal precedents by matching court rulings
based on semantic similarity, using factual case summaries as
queries. The research evaluated twelve embedding models on
a corpus of 1,172 Hungarian court decisions. Given that legal
documents are typically lengthy—often exceeding the context
window of most transformer-based architectures—the authors
examined seven different strategies for handling long texts,
including simple chunking, striding (overlapping chunks), and
Last Chunk Scaling (LCS), which mitigates the overrepre-
sentation of small final segments in the averaged embedding
vector. Model performance was assessed using the Mean
Reciprocal Rank (MRR) metric. The study found that the
Cohere embed-multilingual-v3.0 model achieved the best re-
sults, reaching an MRR of 0.95. Notably, this demonstrates
that a well-optimized 512-token model can outperform sev-
eral models with substantially larger context windows (up
to 8192 tokens). The authors also evaluated models pre-
trained specifically for the Hungarian language, including the
base huBERT model [11] without fine-tuning, as well as two
adapted variants: the sbert hubert model [14], fine-tuned for
sentence-level semantic similarity, and the danieleff model,
fine-tuned for question–answering (Q&A) tasks. The danieleff
model was trained on 170 question–answer pairs derived
from sections (1,000–5,000 characters) of university academic
regulations. Among the Hungarian-language models, danieleff
achieved the highest performance.

Modern multilingual embedding models have made signif-
icant progress in understanding multiple languages simulta-
neously. Current state-of-the-art models can work with more
than 100 languages and perform well on standard evalua-
tion benchmarks [17]. Transformer-based models, especially
BERT, XLM-R, and XLM-RoBERTa, have become the most
widely used approaches for this task. Several key innovations
have improved these models. First, researchers developed
methods to adapt models trained on one language to work
with others by creating specialized word representations [18].
Second, they created systems that can understand sentences
across languages by sharing vocabulary encoding methods,
enabling models to work on new languages without addi-
tional training [19]. Third, they combined different types of
embeddings with improved alignment techniques to better
match meanings across languages [20]. These advances have
led to efficient multilingual systems that can process long
texts (up to 8192 tokens) while maintaining good performance

across different language tasks [17]. However, these models
have not been thoroughly tested on morphologically complex
languages like Hungarian. Most evaluations focus on widely-
used languages, which may not reveal the challenges that arise
with Hungarian’s complex word structure and limited available
training data.

III. METHODS

A. Embeddings

Text embeddings are numerical representations of words,
sentences, or documents in a continuous vector space. They
capture semantic meaning, so texts with similar meanings end
up close together in that space, even if they use different
wording. In RAG systems, embeddings are crucial because
they enable efficient retrieval of relevant knowledge from
large databases. Instead of relying only on keyword matching,
embeddings allow the system to understand context and intent,
leading to more accurate and meaningful results.

Multilingual embeddings extend this capability across lan-
guages, mapping semantically similar texts in different lan-
guages to nearby positions in the same vector space. This
makes it possible for a RAG system to retrieve knowledge
in one language and use it to answer questions in another,
breaking down language barriers and improving accessibility.
In practice, high-quality multilingual embeddings are essential
for building global, cross-lingual RAG applications that can
serve diverse users and knowledge sources.

Embedder models were utilized in three ways: commercial
models accessed via their APIs, and open-source models run
either through a local Ollama server or via SentenceTrans-
formers [21], a Python library for generating dense vector
representations (embeddings) of sentences, paragraphs, and
documents.

In this paper we employed the following embedder models:

• BGE-M3 – bge-m3 [22]: This model offers robust em-
beddings for multilingual and general-purpose semantic
tasks, with emphasis on large-scale retrieval and cluster-
ing.

• E5-BASE – intfloat/multilingual-e5-base [23]: The
Multilingual E5-Base model is a transformer-based text
embedder that generates semantically rich, language-
agnostic sentence embeddings across over 100 languages,
enabling effective multilingual retrieval, clustering, and
semantic similarity tasks.

• GEMINI – gemini-embedding-001 [24]: Text embed-
dings were generated using the Gemini-embedding-001
model, which produces 768-dimensional vectors. To en-
sure consistency with other embedding models in our
evaluation, the input-type parameter was not specified.
The embeddings were obtained through the Gemini API’s
v1beta endpoint.

• HUBERT – danieleff/hubert-base-cc-sentence-
transformer [8]: This model model was fine-tuned
on 170 Hungarian question–answer pairs derived from
sections of university academic regulations ranging from
1,000 to 5,000 characters in length.
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enabling models to work on new languages without addi-
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makes it possible for a RAG system to retrieve knowledge
in one language and use it to answer questions in another,
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In practice, high-quality multilingual embeddings are essential
for building global, cross-lingual RAG applications that can
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model, which produces 768-dimensional vectors. To en-
sure consistency with other embedding models in our
evaluation, the input-type parameter was not specified.
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TABLE I
COMPARISON OF POPULAR EMBEDDING MODELS BY USAGE MODE, DIMENSION, SEQUENCE LENGTH, DOMAIN, AND SIZE.

Model Usage Dimension Sequence Domain Model
Name Length (#tokens) Size
BGE-M3 SentenceTransformer - local 1024 8192 Multilingual ≈ 560M
E5-BASE SentenceTransformer - local 768 512 Multilingual ≈ 278M
GEMINI Google API 768 2048 General Undisclosed
HUBERT SentenceTransformer - local 768 512 Hungarian ≈ 110M
NOMIC Ollama - local 768 2048 General ≈ 137M
OPENAI-3SMALL OpenAI API 1536 8192 General Undisclosed
OPENAI-ADA OpenAI API 1536 8192 General Undisclosed
XLMROBERTA SentenceTransformer - local 768 128 Multilingual ≈ 270M

Fig. 1. Evaluation pipeline

• NOMIC – nomic-embed-text-v1 [25]: Designed for
general-purpose embeddings, NOMIC excels in large-
scale retrieval, clustering, and semantic search tasks with
high efficiency.

• OPENAI-3SMALL – text-embedding-3-small: A
lightweight and cost-effective embedding model from
OpenAI’s API v1, optimized for production-scale
semantic tasks where efficiency and performance must
be balanced.

• OPENAI-ADA – text-embedding-ada-002: A versatile
embedding model available through OpenAI’s API v1,
widely adopted for applications such as semantic search,
clustering, classification, and recommendation systems,
supporting a broad range of text inputs.

• XLMROBERTA – paraphrase-xlm-r-multilingual-v1
[26], [27]: Tis model is a multilingual Sentence-
Transformer based on XLM-RoBERTa, designed to pro-
duce high-quality, language-agnostic sentence embed-
dings for over 50 languages, optimized for tasks like
semantic similarity and multilingual retrieval.

Table I presents the key characteristics of the embedding
models.

B. Evaluation pipeline

The evaluation pipeline is illustrated in Fig. 1. During
the ingestion stage, documents are transformed into vector
representations using an embedding model and subsequently
stored in a vector database, specifically Chroma in our imple-
mentation. Following ingestion, the evaluation of a question
dataset proceeds through three steps: (1) vectorization of

the input questions, (2) retrieval of the top-k most similar
documents for each question, and (3) computation of retriever
performance metrics.

As a baseline for comparison with semantic search, we
incorporated a keyword-based retrieval method. Specifically,
we employed the BM25 [28] algorithm to retrieve the top-k
most relevant documents.

C. Datasets
1) Clearservice: The Clearservice dataset1 is a custom-

made dataset created from the data of the company of the
same name. The dataset consists of two parts: (1) A file called
topics.txt, which groups the data into topics and serves as the
search space. (2) A set of questions in cs qa.csv, containing
50 questions. Each question is associated with a specific topic
and can be answered based on it. For each question, the
corresponding topic and a reference answer are provided. The
reference answer, however, is not used in this study.

2) HuRTE: The HuRTE dataset2 is the Hungarian adap-
tation of the Recognizing Textual Entailment (RTE) corpora
originally included in the GLUE benchmark. It forms part
of the Hungarian Language Understanding Evaluation Bench-
mark Kit (HuLU) [29] [9] and was created through translation
and re-annotation of the English RTE instances. The dataset
consists of 4,504 examples, each comprising a premise —
sometimes a multi-sentence passage — and a single-sentence
hypothesis, with the task being to determine whether the
premise entails the hypothesis. This is framed as a binary
classification problem, where labels indicate entailment (”1”)
or non-entailment (”0”). The corpus is divided into training
(2,132 instances), validation (243 instances), and test splits;
however, test labels are not provided. The data is distributed
in JSON format, with each entry containing an identifier, a
premise, a hypothesis, and the corresponding label.

We measure the quality of retrieval using two types of evalu-
ations. The HuRTE-Positive evaluation is performed using only
the positive examples (label 1) both in the index and in the
question evaluation. In this setting, the training set contains
1,092 positive examples, and the validation set contains 135.
The hypothesis sentences are searched for within the premise
texts, and retrieval quality is assessed accordingly.

The HuRTE-All evaluation is performed using all examples
in the index, while still evaluating the questions using only

1https://github.com/margitantal68/hungarian-
embeddings/tree/master/data/clearservice

2https://github.com/nytud/HuRTE
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retrieve relevant legal precedents by matching court rulings
based on semantic similarity, using factual case summaries as
queries. The research evaluated twelve embedding models on
a corpus of 1,172 Hungarian court decisions. Given that legal
documents are typically lengthy—often exceeding the context
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examined seven different strategies for handling long texts,
including simple chunking, striding (overlapping chunks), and
Last Chunk Scaling (LCS), which mitigates the overrepre-
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vector. Model performance was assessed using the Mean
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sults, reaching an MRR of 0.95. Notably, this demonstrates
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fine-tuned for question–answering (Q&A) tasks. The danieleff
model was trained on 170 question–answer pairs derived
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achieved the highest performance.
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icant progress in understanding multiple languages simulta-
neously. Current state-of-the-art models can work with more
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tion benchmarks [17]. Transformer-based models, especially
BERT, XLM-R, and XLM-RoBERTa, have become the most
widely used approaches for this task. Several key innovations
have improved these models. First, researchers developed
methods to adapt models trained on one language to work
with others by creating specialized word representations [18].
Second, they created systems that can understand sentences
across languages by sharing vocabulary encoding methods,
enabling models to work on new languages without addi-
tional training [19]. Third, they combined different types of
embeddings with improved alignment techniques to better
match meanings across languages [20]. These advances have
led to efficient multilingual systems that can process long
texts (up to 8192 tokens) while maintaining good performance

across different language tasks [17]. However, these models
have not been thoroughly tested on morphologically complex
languages like Hungarian. Most evaluations focus on widely-
used languages, which may not reveal the challenges that arise
with Hungarian’s complex word structure and limited available
training data.
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A. Embeddings

Text embeddings are numerical representations of words,
sentences, or documents in a continuous vector space. They
capture semantic meaning, so texts with similar meanings end
up close together in that space, even if they use different
wording. In RAG systems, embeddings are crucial because
they enable efficient retrieval of relevant knowledge from
large databases. Instead of relying only on keyword matching,
embeddings allow the system to understand context and intent,
leading to more accurate and meaningful results.

Multilingual embeddings extend this capability across lan-
guages, mapping semantically similar texts in different lan-
guages to nearby positions in the same vector space. This
makes it possible for a RAG system to retrieve knowledge
in one language and use it to answer questions in another,
breaking down language barriers and improving accessibility.
In practice, high-quality multilingual embeddings are essential
for building global, cross-lingual RAG applications that can
serve diverse users and knowledge sources.

Embedder models were utilized in three ways: commercial
models accessed via their APIs, and open-source models run
either through a local Ollama server or via SentenceTrans-
formers [21], a Python library for generating dense vector
representations (embeddings) of sentences, paragraphs, and
documents.

In this paper we employed the following embedder models:

• BGE-M3 – bge-m3 [22]: This model offers robust em-
beddings for multilingual and general-purpose semantic
tasks, with emphasis on large-scale retrieval and cluster-
ing.

• E5-BASE – intfloat/multilingual-e5-base [23]: The
Multilingual E5-Base model is a transformer-based text
embedder that generates semantically rich, language-
agnostic sentence embeddings across over 100 languages,
enabling effective multilingual retrieval, clustering, and
semantic similarity tasks.

• GEMINI – gemini-embedding-001 [24]: Text embed-
dings were generated using the Gemini-embedding-001
model, which produces 768-dimensional vectors. To en-
sure consistency with other embedding models in our
evaluation, the input-type parameter was not specified.
The embeddings were obtained through the Gemini API’s
v1beta endpoint.

• HUBERT – danieleff/hubert-base-cc-sentence-
transformer [8]: This model model was fine-tuned
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• NOMIC – nomic-embed-text-v1 [25]: Designed for
general-purpose embeddings, NOMIC excels in large-
scale retrieval, clustering, and semantic search tasks with
high efficiency.

• OPENAI-3SMALL – text-embedding-3-small: A
lightweight and cost-effective embedding model from
OpenAI’s API v1, optimized for production-scale
semantic tasks where efficiency and performance must
be balanced.

• OPENAI-ADA – text-embedding-ada-002: A versatile
embedding model available through OpenAI’s API v1,
widely adopted for applications such as semantic search,
clustering, classification, and recommendation systems,
supporting a broad range of text inputs.

• XLMROBERTA – paraphrase-xlm-r-multilingual-v1
[26], [27]: Tis model is a multilingual Sentence-
Transformer based on XLM-RoBERTa, designed to pro-
duce high-quality, language-agnostic sentence embed-
dings for over 50 languages, optimized for tasks like
semantic similarity and multilingual retrieval.

Table I presents the key characteristics of the embedding
models.

B. Evaluation pipeline

The evaluation pipeline is illustrated in Fig. 1. During
the ingestion stage, documents are transformed into vector
representations using an embedding model and subsequently
stored in a vector database, specifically Chroma in our imple-
mentation. Following ingestion, the evaluation of a question
dataset proceeds through three steps: (1) vectorization of

the input questions, (2) retrieval of the top-k most similar
documents for each question, and (3) computation of retriever
performance metrics.

As a baseline for comparison with semantic search, we
incorporated a keyword-based retrieval method. Specifically,
we employed the BM25 [28] algorithm to retrieve the top-k
most relevant documents.

C. Datasets
1) Clearservice: The Clearservice dataset1 is a custom-

made dataset created from the data of the company of the
same name. The dataset consists of two parts: (1) A file called
topics.txt, which groups the data into topics and serves as the
search space. (2) A set of questions in cs qa.csv, containing
50 questions. Each question is associated with a specific topic
and can be answered based on it. For each question, the
corresponding topic and a reference answer are provided. The
reference answer, however, is not used in this study.

2) HuRTE: The HuRTE dataset2 is the Hungarian adap-
tation of the Recognizing Textual Entailment (RTE) corpora
originally included in the GLUE benchmark. It forms part
of the Hungarian Language Understanding Evaluation Bench-
mark Kit (HuLU) [29] [9] and was created through translation
and re-annotation of the English RTE instances. The dataset
consists of 4,504 examples, each comprising a premise —
sometimes a multi-sentence passage — and a single-sentence
hypothesis, with the task being to determine whether the
premise entails the hypothesis. This is framed as a binary
classification problem, where labels indicate entailment (”1”)
or non-entailment (”0”). The corpus is divided into training
(2,132 instances), validation (243 instances), and test splits;
however, test labels are not provided. The data is distributed
in JSON format, with each entry containing an identifier, a
premise, a hypothesis, and the corresponding label.

We measure the quality of retrieval using two types of evalu-
ations. The HuRTE-Positive evaluation is performed using only
the positive examples (label 1) both in the index and in the
question evaluation. In this setting, the training set contains
1,092 positive examples, and the validation set contains 135.
The hypothesis sentences are searched for within the premise
texts, and retrieval quality is assessed accordingly.

The HuRTE-All evaluation is performed using all examples
in the index, while still evaluating the questions using only
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mark Kit (HuLU) [29] [9] and was created through translation
and re-annotation of the English RTE instances. The dataset
consists of 4,504 examples, each comprising a premise —
sometimes a multi-sentence passage — and a single-sentence
hypothesis, with the task being to determine whether the
premise entails the hypothesis. This is framed as a binary
classification problem, where labels indicate entailment (”1”)
or non-entailment (”0”). The corpus is divided into training
(2,132 instances), validation (243 instances), and test splits;
however, test labels are not provided. The data is distributed
in JSON format, with each entry containing an identifier, a
premise, a hypothesis, and the corresponding label.

We measure the quality of retrieval using two types of evalu-
ations. The HuRTE-Positive evaluation is performed using only
the positive examples (label 1) both in the index and in the
question evaluation. In this setting, the training set contains
1,092 positive examples, and the validation set contains 135.
The hypothesis sentences are searched for within the premise
texts, and retrieval quality is assessed accordingly.

The HuRTE-All evaluation is performed using all examples
in the index, while still evaluating the questions using only

1https://github.com/margitantal68/hungarian-
embeddings/tree/master/data/clearservice

2https://github.com/nytud/HuRTE
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TABLE I
COMPARISON OF POPULAR EMBEDDING MODELS BY USAGE MODE, DIMENSION, SEQUENCE LENGTH, DOMAIN, AND SIZE.

Model Usage Dimension Sequence Domain Model
Name Length (#tokens) Size
BGE-M3 SentenceTransformer - local 1024 8192 Multilingual ≈ 560M
E5-BASE SentenceTransformer - local 768 512 Multilingual ≈ 278M
GEMINI Google API 768 2048 General Undisclosed
HUBERT SentenceTransformer - local 768 512 Hungarian ≈ 110M
NOMIC Ollama - local 768 2048 General ≈ 137M
OPENAI-3SMALL OpenAI API 1536 8192 General Undisclosed
OPENAI-ADA OpenAI API 1536 8192 General Undisclosed
XLMROBERTA SentenceTransformer - local 768 128 Multilingual ≈ 270M

Fig. 1. Evaluation pipeline
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the ingestion stage, documents are transformed into vector
representations using an embedding model and subsequently
stored in a vector database, specifically Chroma in our imple-
mentation. Following ingestion, the evaluation of a question
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the positive examples. This allows us to assess retrieval
performance in a more realistic setting, where irrelevant data
is present in the index, but only the positives matter for
evaluation.

D. Metrics

We evaluated retrieval performance using Mean Reciprocal
Rank (MRR) and Recall. MRR measures the rank position of
the first relevant document, averaged across all queries. For
each (query, document) pair, documents were retrieved using
semantic search in Chroma, and the rank of the corresponding
ground-truth context was recorded. Recall@1 and Recall@3
capture the proportion of queries for which the correct context
appears within the top one or top three retrieved results,
respectively.

IV. RESULTS

All measurements were conducted on a MacBook Pro
equipped with an Apple M1 Pro processor and 32 GB of
unified memory, running macOS Sequoia version 15.7.1. The
experiments involving the Nomic embedder utilized the Ol-
lama runtime (version 0.12.6).

TABLE II
EMBEDDING MODELS EVALUATION ON CLEARSERVICE DATASET.

Embedder MRR Recall@1 Recall@3
BGE-M3 0.90 0.86 0.96
E5-BASE 0.79 0.70 0.92
GEMINI 0.87 0.78 0.98
HUBERT 0.78 0.74 0.84
NOMIC 0.71 0.64 0.80
OPENAI-3SMALL 0.80 0.70 0.94
OPENAI-ADA 0.80 0.72 0.90
XLMROBERTA 0.90 0.86 0.96
BM25 0.77 0.68 0.80

TABLE III
COMPARISON OF MODELS ON HURTE DATASET HuRTE-Positive

EVALUATION.

Model MRR Recall@1 Recall@3
Val Train Val Train Val Train

BGE-M3 0.98 0.89 0.96 0.82 1.00 0.97
E5-BASE 0.93 0.84 0.90 0.77 0.97 0.92
GEMINI 0.99 0.91 0.97 0.85 1.00 0.98
HUBERT 0.82 0.63 0.77 0.53 0.88 0.74
NOMIC 0.90 0.72 0.85 0.65 0.95 0.80
OPENAI-3SMALL 0.94 0.85 0.92 0.78 0.97 0.92
OPENAI-ADA 0.94 0.84 0.91 0.78 0.98 0.92
XLMROBERTA 0.94 0.82 0.91 0.75 0.98 0.91
BM25 0.82 0.72 0.78 0.64 0.84 0.79

We applied our evaluation pipeline to both the Clearservice
and HuRTE datasets. For HuRTE, we conducted two types
of evaluations: HuRTE-Positive, which uses only the positive
examples in both the index and the evaluation, and HuRTE-
All, which uses all examples in the index while evaluating only
the positive questions. Each type of evaluation was performed
separately on the validation set (243 samples, 135 positives)
and the training set (2132 samples, 1092 positives), allowing
us to analyze how performance generalizes from a smaller
dataset to a larger one of the same type.

Fig. 2. Models’ performance on the Clearservice dataset using the MRR
metric.

Fig. 3. Model performance on the HuRTE dataset (HuRTE-Positive evalua-
tion) using the MRR metric.

The evaluation protocol is described in III-B. The results
are summarized in the following tables: Table II presents the
outcomes for the Clearservice dataset, while Table III reports
the results for the HuRTE-Positive dataset.

Among the available metrics, MRR (Mean Reciprocal Rank)
was chosen for visual representation, as it reflects both the po-
sition and relevance of the first correct result, providing a more
informative measure of retrieval effectiveness than Recall@1
or Recall@3. Figs. 2, 3, and 4 show visual representations of
the results.

A. Analysis of Model Performance

Two types of time measurements were performed: index
build time, representing the time required to create the model
index, and average query latency, indicating the response time
per query. The results are shown in Fig. 5.

HUBERT and XLMROBERTA achieved the best overall
time performance, with both low build times and minimal la-
tency. E5-BASE also performed efficiently across both metrics.
GEMINI, OPENAI-3SMALL, and OPENAI-ADA exhibited
notably higher query latencies despite moderate build times,
likely due to API communication overhead. NOMIC, run
locally via Ollama, and BGE-M3 had longer index build
times but maintained low query latency. Overall, HUBERT
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Fig. 4. Model performance on the HuRTE dataset (validation subset),
comparing HuRTE-Positive and HuRTE-All evaluations using the MRR metric.

Fig. 5. Index build time vs. average query latency evaluated on the HuRTE
dataset, validation subset, (HuRTE-Positive evaluation).

and XLMROBERTA demonstrated the best balance between
index setup efficiency and query responsiveness.

We evaluated both the retrieval quality and efficiency of
embedding models, which are critical for performance in RAG
systems. By comparing MRR (ranking quality) against query
latency and index build time, this reveals how effectively
each model balances accuracy with speed. Models positioned
toward the top-left of the diagram achieve the best trade-off,
offering high-quality retrieval with minimal response time. The
results are shown in Fig. 6.

V. ERROR ANALYSIS

We conducted a comprehensive error analysis on the
Clearservice dataset. The questions and their corresponding
error rates are presented in Appendix A.

Our analysis revealed that some errors are
systematic—where seven out of eight embedding models
failed—while others are occasional. The failures can be
broadly categorized into three groups: (i) synonyms and
paraphrases - The embeddings failed to recognize equivalence
between different phrasings of the same concept. (ii)
Overlapping topics - Relevant information appears across
multiple sections, leading to confusion between semantically
related topics. (iii) Domain-specific terminology - Specialized

vocabulary (e.g., HR or legal terms) was not consistently
captured by the embeddings.

In the following, we analyze the questions with the highest
error rates: Q23 and Q9.

Q23: Milyen elvárás van a munkavégzéssel kapcsolat-
ban?(What are the expectations regarding the work?) - er-
ror rate = 0.875. This question includes the terms elvárás
(expectation) and munkavégzés (work). The correct match is
Topic 6 – Munkavégzés (Work), but Topic 9 – Elvárások
és Dokumentáció (Expectations and Documentation) is also
semantically close, even though it refers to application require-
ments rather than work performance. This semantic proximity
likely caused confusion among the embedding models.

Q9: Mi jár vasárnapi és ünnepnapi munkára? (What is
provided for Sunday and holiday work?) — error rate = 0.625.
The ground-truth topic is Topic 2 – Fizetés (Salary). The
question is framed in terms of benefits (mi jár), while the
relevant text specifies compensation percentages. Embeddings
may incorrectly associate it with Topic 10 – Szabadság és
Hazautazás (Vacation and Travel Home) due to the lexical
overlap with ünnep (holiday).

To further investigate these confusions, we computed the
Recall@3 confusion matrix, which measures how often em-
bedding models retrieved the correct topic among their top
three results. For each question, the ground-truth topic was
compared against the top three retrieved topics, and the results
were aggregated into a matrix with true topics as rows and
retrieved topics as columns. Off-diagonal entries highlight
frequent mismatches between semantically related topics.

By visualizing this matrix as a heatmap, we identified which
topics are most frequently confused, revealing systematic
weaknesses such as overlapping categories, synonym mis-
matches, and domain-specific ambiguities. Confusion matrices
for all embedding models are shown in Appendix A.

VI. DISCUSSION

Our evaluation of eight embedding models and BM25 across
two Hungarian-language datasets reveals important insights
into retrieval performance for domain-specific applications.

BGE-M3 and XLMROBERTA emerged as top performers
on the Clearservice dataset, both achieving an MRR of 0.90
and Recall@1 of 0.86. GEMINI demonstrated the strongest
performance on HuRTE-Positive (MRR: 0.99 validation, 0.91
training), followed closely by BGE-M3 (MRR: 0.98 validation,
0.89 training). The consistent performance gap between valida-
tion and training sets suggests that model behavior generalizes
well from smaller to larger datasets of similar characteristics.

The traditional BM25 baseline achieved competitive results
(MRR: 0.77 on Clearservice), outperforming NOMIC and
matching HUBERT on certain metrics, demonstrating that
lexical matching remains valuable for Hungarian text retrieval.
However, neural embedding models consistently surpassed
BM25, particularly on Recall@3 metrics.

Efficiency analysis revealed critical trade-offs between ac-
curacy and speed. HUBERT and XLMROBERTA offered the
best balance, with low index build times and minimal query
latency. While GEMINI achieved superior retrieval quality,
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Fig. 6. Model efficiency on the Clearservice dataset using the MRR metric.

it exhibited significantly higher query latency due to API
communication overhead, making it less suitable for real-
time applications. BGE-M3, despite longer index build times,
maintained competitive query latency while delivering top-tier
accuracy.

The error analysis on Clearservice exposed three primary
failure modes: (i) synonyms and paraphrases, where embed-
dings failed to recognize semantic equivalence; (ii) overlap-
ping topics, particularly when relevant information spans mul-
tiple sections; and (iii) domain-specific terminology, especially
HR and legal vocabulary.

Systematic errors, where seven of eight models failed, high-
light fundamental limitations in capturing Hungarian domain-
specific semantics. The confusion between Topics 6 and 9
(Q23) and between Topics 2 and 10 (Q9) demonstrates that
lexical overlap and semantic proximity can mislead even
state-of-the-art embeddings. The Recall@3 confusion matrices
further confirm these patterns, revealing consistent misclassi-
fications between semantically related topics.

VII. CONCLUSIONS

In this paper, we conducted a comprehensive analysis of
embedding models for Hungarian texts. Eight embedding
models were evaluated against a baseline lexical search in the
context of an information retrieval task for a Q&A system.

Our findings demonstrate that BGE-M3 and XLM-
ROBERTA offer the best overall performance for Hungarian
text retrieval, balancing high accuracy (MRR: 0.90) with
operational efficiency. While GEMINI achieves superior ac-
curacy, it comes at the cost of increased latency, making the
choice between these models dependent on specific application
requirements.

For production RAG systems, the trade-off between accu-
racy and speed is critical. HUBERT and XLMROBERTA pro-
vide optimal latency profiles, while BGE-M3 offers a strong

middle ground for applications that can tolerate longer index
build times in exchange for improved retrieval quality. This
efficiency analysis is particularly valuable for practitioners
deploying real-time information retrieval systems.

The systematic errors observed across models indicate that
domain-specific Hungarian terminology and subtle seman-
tic distinctions remain challenging for current embedding
approaches. These persistent challenges suggest that future
work should focus on fine-tuning strategies that explicitly
incorporate domain knowledge and synonym relationships to
better capture the nuances of specialized vocabulary.

While the evaluation provides valuable insights into Hun-
garian embedding-based retrieval, the limited size of the
Clearservice dataset and the entailment-only focus of the
HuRTE subset constrain the generalizability of the results.
Future work will address these limitations by expanding the
domain-specific dataset and incorporating more diverse and
balanced retrieval benchmarks to ensure broader applicability.
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TABLE IV
RETRIEVAL ERROR RATES FOR THE CLEARSERVICE DATASET

Index Question Error
Rate

23 Milyen elvárás van a munkavégzéssel kapcsolatban? 0.875
9 Mi jár vasárnapi és ünnepnapi munkára? 0.625
5 Milyen szállodákban biztosı́t munkát a cég? 0.250

15 Kiutazás előtt mit kell teljesı́teni? 0.250
26 Hogyan biztosı́tják a munkaegyenlőséget? 0.250
39 Milyen személyazonosı́tó okmány szükséges? 0.250
48 Hol van a munkavállaló hivatalosan bejelentve? 0.250
2 Hány magyar munkavállaló dolgozik jelenleg a cégben? 0.125

10 A magyar alapbér előleg? 0.125
12 Milyen tı́pusú lakásokban szállásolják el a dolgozókat? 0.125
17 Ki biztosı́tja a nyelvoktatást? 0.125
19 Milyen pozı́ciók érhetők el? 0.125
24 Milyen egészségügyi állapot kizáró ok? 0.125
25 Ki állapı́tja meg az egészségügyi alkalmasságot? 0.125
28 Mennyi ideig tart a tréning? 0.125
30 Ki fizeti a tréninget? 0.125
35 Van lehetőség hétvégén hazautazni? 0.125
38 Milyen munkaviszony szükséges az elmúlt egy évben? 0.125
40 Milyen erkölcsi feltétel van? 0.125
41 Hogyan kell felmondani a meglévő munkahelyen? 0.125

Fig. 7. Confusion matrix for the BGE-M3 model

APPENDIX

Fig. 8. Confusion matrix for the E5-BASE model

Fig. 9. Confusion matrix for the GEMINI model

Fig. 10. Confusion matrix for the HUBERT model
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Fig. 11. Confusion matrix for the NOMIC model

Fig. 12. Confusion matrix for the OPENAI-3SMALL model

Fig. 13. Confusion matrix for the OPENAI-ADA model

Fig. 14. Confusion matrix for the XLMROBERTA model
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PAPR Reduction in OTSM Systems: A Comparative
Analysis of SLM Techniques with Novel Phase

Matrix Designs
Hsin-Ying Liang and Chuan-Bi Lin

Abstract—Orthogonal Time Sequency Multiplexing (OTSM)
represents a pivotal advancement in wireless communication
technology. Nevertheless, its high Peak-to-Average Power Ratio
(PAPR) imposes significant constraints on its practical applica-
tions and future development. The definition of PAPR refers
to the ratio of the maximum instantaneous power to the av-
erage power of a signal, and it is commonly used to assess
the performance of high-power amplifiers. When PAPR values
are excessively high, they reduce the efficiency of high-power
amplifiers and increase the complexity of the transmission system.
To mitigate this challenge, this paper explores and evaluates the
efficacy of the Selective Mapping (SLM) technique for enhancing
PAPR performance in OTSM systems. Leveraging the unique
two-dimensional data structure inherent to OTSM, a specialized
SLM approach is introduced in this paper. The proposed SLM
method incorporates a Phase Generation Mechanism (PGM)
that utilizes a pre-constructed perturbation phase matrix. This
matrix undergoes cyclic shifts to produce multiple perturbation
phase matrices. To assess the effectiveness of the proposed SLM
technique, this paper investigates three distinct perturbation
phase matrix generation mechanisms: Zadoff-Chu Transform
(ZCT) matrices, Discrete Cosine Transform (DCT) matrices, and
Randomly Generated Phase (RGP) matrices. Additionally, for
evaluating PAPR performance improvement, the Complementary
Cumulative Distribution Function (CCDF) is used, a statistical
method that estimates the probability of high PAPR occurrences.
Simulation results indicate that the RGP-based phase generation
mechanism consistently outperforms the other methods in achiev-
ing significant PAPR reduction.

Index Terms—OTSM, PAPR, ZCT matrices, DCT matrices.

I. INTRODUCTION

Addressing the stringent demands of 5G and future wireless
communication for high throughput and enhanced spectral effi-
ciency necessitates advanced physical layer technologies[1][2].
Filter Bank Multi-Carrier (FBMC) modulation, a key 5G en-
abler, improves spectral efficiency and bandwidth conservation
over Orthogonal Frequency Division Multiplexing (OFDM),
especially in SUI-6 multipath fading channels, where it can
outperform OFDM by up to 20%[1]. Concurrently, Sparse
Code Multiple Access (SCMA)[2], a non-orthogonal multiple
access (NOMA) technique, augments multi-user processing
capability. SCMA codebook design utilizing chaotic interleav-
ing based on Arnold’s Cat map can reduce computational
complexity by up to 32% for M = 16 codewords while
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maintaining performance[2]. For high-mobility wireless com-
munication environments demanding superior transmission
stability and reduced system complexity, Orthogonal Time
Sequency Multiplexing (OTSM) is introduced to fulfill these
specialized requirements[3][4][5].

Orthogonal Time Sequency Multiplexing (OTSM) is a
novel single-carrier modulation technology designed for high-
mobility wireless communication environments. OTSM not
only achieves comparable performance to Orthogonal Time
Frequency Space (OTFS) modulation but also significantly
reduces the system’s implementation complexity [3][4][5]. The
core concept of OTSM is multiplexing in the delay-sequency
domain, utilizing Walsh-Hadamard Transform (WHT) to con-
vert signals into the delay-time domain, and finally transmit-
ting and receiving signals in the time domain. This modulation
technique demonstrates exceptional transmission stability in
high-mobility channels while maintaining system implemen-
tation simplicity.

At the transmitter, OTSM arranges information symbols
into a two-dimensional delay-sequency domain matrix. Each
row undergoes WHT to transform it into the delay-time
domain, and the transformed matrix rows are sequentially
transmitted. At the receiver, the received time-domain signals
are reconstructed into a delay-time domain matrix, and each
row is processed by WHT to recover the original delay-
sequency domain symbols. By leveraging the simplicity of
WHT, which only requires addition and subtraction opera-
tions, OTSM achieves significant simplification in modulation
and demodulation compared to OTFS, which relies on Fast
Fourier Transform (FFT). In addition to reduced computational
complexity, OTSM also exhibits similar performance to OTFS
in high-mobility scenarios and outperforms conventional Or-
thogonal Frequency Division Multiplexing (OFDM) [3][4][5].
OTSM can be seamlessly integrated with existing OFDM
systems, where Inverse WHT (IWHT) and FFT are used
to generate time-frequency signals for OFDM transmission.
Compared to OTFS, OTSM can be seen as a simplified
version, primarily replacing FFT with WHT for domain trans-
formations. Notably, both techniques effectively separate delay
and Doppler effects at the receiver, granting them significant
advantages in high-mobility channels. Moreover, WHT’s low
complexity makes OTSM particularly suitable for future high-
mobility communication systems sensitive to computational
load, showcasing substantial application potential.

Peak-to-Average Power Ratio (PAPR) is a critical perfor-
mance metric in wireless communication systems[6][7][8][9].

DOI: 10.36244/ICJ.2025.4.2

H. -Y. Liang was with the Department of Information and Communication 
Engineering, Chaoyang University of Technology, Wufeng District, Taichung, 
413310 Taiwan, R.O.C. (e-mail: hyliang@gm.cyut.edu.tw).

H. -Y. Liang and C. -B. Lin are with Chaoyang University of Technology.

PAPR Reduction in OTSM Systems: A Comparative 
Analysis of SLM Techniques with Novel Phase 

Matrix Designs
Hsin-Ying Liang and Chuan-Bi Lin

Abstract—Orthogonal Time Sequency Multiplexing (OTSM) 
represents a pivotal advancement in wireless communication 
technology. Nevertheless, its high Peak-to-Average Power Ratio 
(PAPR) imposes significant constraints on its practical applica- 
tions and future development. The definition of PAPR refers to the 
ratio of the maximum instantaneous power to the average power 
of a signal, and it is commonly used to assess the performance 
of high-power amplifiers. When PAPR values are excessively 
high, they reduce the efficiency of high-power amplifiers and 
increase the complexity of the transmission system. To mitigate 
this challenge, this paper explores and evaluates the efficacy of 
the Selective Mapping (SLM) technique for enhancing PAPR 
performance in OTSM systems. Leveraging the unique two-
dimensional data structure inherent to OTSM, a specialized 
SLM approach is introduced in this paper. The proposed 
SLM method incorporates a Phase Generation Mechanism 
(PGM) that utilizes a pre-constructed perturbation phase 
matrix. This matrix undergoes cyclic shifts to produce multiple 
perturbation phase matrices. To assess the effectiveness of the 
proposed SLM technique, this paper investigates three distinct 
perturbation phase matrix generation mechanisms: Zadoff-Chu 
Transform (ZCT) matrices, Discrete Cosine Transform (DCT) 
matrices, and Randomly Generated Phase (RGP) matrices. 
Additionally, for evaluating PAPR performance improvement, 
the Complementary Cumulative Distribution Function (CCDF) 
is used, a statistical method that estimates the probability of high 
PAPR occurrences. Simulation results indicate that the RGP-
based phase generation mechanism consistently outperforms 
the other methods in achieving significant PAPR reduction.

Index Terms—OTSM, PAPR, ZCT matrices, DCT matrices.

1

PAPR Reduction in OTSM Systems: A Comparative
Analysis of SLM Techniques with Novel Phase

Matrix Designs
Hsin-Ying Liang and Chuan-Bi Lin

Abstract—Orthogonal Time Sequency Multiplexing (OTSM)
represents a pivotal advancement in wireless communication
technology. Nevertheless, its high Peak-to-Average Power Ratio
(PAPR) imposes significant constraints on its practical applica-
tions and future development. The definition of PAPR refers
to the ratio of the maximum instantaneous power to the av-
erage power of a signal, and it is commonly used to assess
the performance of high-power amplifiers. When PAPR values
are excessively high, they reduce the efficiency of high-power
amplifiers and increase the complexity of the transmission system.
To mitigate this challenge, this paper explores and evaluates the
efficacy of the Selective Mapping (SLM) technique for enhancing
PAPR performance in OTSM systems. Leveraging the unique
two-dimensional data structure inherent to OTSM, a specialized
SLM approach is introduced in this paper. The proposed SLM
method incorporates a Phase Generation Mechanism (PGM)
that utilizes a pre-constructed perturbation phase matrix. This
matrix undergoes cyclic shifts to produce multiple perturbation
phase matrices. To assess the effectiveness of the proposed SLM
technique, this paper investigates three distinct perturbation
phase matrix generation mechanisms: Zadoff-Chu Transform
(ZCT) matrices, Discrete Cosine Transform (DCT) matrices, and
Randomly Generated Phase (RGP) matrices. Additionally, for
evaluating PAPR performance improvement, the Complementary
Cumulative Distribution Function (CCDF) is used, a statistical
method that estimates the probability of high PAPR occurrences.
Simulation results indicate that the RGP-based phase generation
mechanism consistently outperforms the other methods in achiev-
ing significant PAPR reduction.

Index Terms—OTSM, PAPR, ZCT matrices, DCT matrices.

I. INTRODUCTION

Addressing the stringent demands of 5G and future wireless
communication for high throughput and enhanced spectral effi-
ciency necessitates advanced physical layer technologies[1][2].
Filter Bank Multi-Carrier (FBMC) modulation, a key 5G en-
abler, improves spectral efficiency and bandwidth conservation
over Orthogonal Frequency Division Multiplexing (OFDM),
especially in SUI-6 multipath fading channels, where it can
outperform OFDM by up to 20%[1]. Concurrently, Sparse
Code Multiple Access (SCMA)[2], a non-orthogonal multiple
access (NOMA) technique, augments multi-user processing
capability. SCMA codebook design utilizing chaotic interleav-
ing based on Arnold’s Cat map can reduce computational
complexity by up to 32% for M = 16 codewords while

H. -Y. Liang was with the Department of Information and Communication
Engineering, Chaoyang University of Technology, Wufeng District, Taichung,
413310 Taiwan, R.O.C. e-mail: hyliang@gm.cyut.edu.tw.

H. -Y. Liang and C. -B. Lin are with Chaoyang University of Technology.

maintaining performance[2]. For high-mobility wireless com-
munication environments demanding superior transmission
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novel single-carrier modulation technology designed for high-
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domain, utilizing Walsh-Hadamard Transform (WHT) to con-
vert signals into the delay-time domain, and finally transmit-
ting and receiving signals in the time domain. This modulation
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high-mobility channels while maintaining system implemen-
tation simplicity.
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into a two-dimensional delay-sequency domain matrix. Each
row undergoes WHT to transform it into the delay-time
domain, and the transformed matrix rows are sequentially
transmitted. At the receiver, the received time-domain signals
are reconstructed into a delay-time domain matrix, and each
row is processed by WHT to recover the original delay-
sequency domain symbols. By leveraging the simplicity of
WHT, which only requires addition and subtraction opera-
tions, OTSM achieves significant simplification in modulation
and demodulation compared to OTFS, which relies on Fast
Fourier Transform (FFT). In addition to reduced computational
complexity, OTSM also exhibits similar performance to OTFS
in high-mobility scenarios and outperforms conventional Or-
thogonal Frequency Division Multiplexing (OFDM) [3][4][5].
OTSM can be seamlessly integrated with existing OFDM
systems, where Inverse WHT (IWHT) and FFT are used
to generate time-frequency signals for OFDM transmission.
Compared to OTFS, OTSM can be seen as a simplified
version, primarily replacing FFT with WHT for domain trans-
formations. Notably, both techniques effectively separate delay
and Doppler effects at the receiver, granting them significant
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complexity makes OTSM particularly suitable for future high-
mobility communication systems sensitive to computational
load, showcasing substantial application potential.
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It is defined as the ratio of the maximum instantaneous power
of a signal to its average power. Signals with high PAPR are
prone to nonlinear distortions when passed through high-power
amplifiers (HPAs), thereby affecting energy efficiency and
system performance. Consequently, effective PAPR reduction
is essential to improving system robustness and influences
the design, cost, and efficiency of HPAs. While both OTSM
and OTFS are considered promising candidate technologies
for future wireless systems, one shared drawback is their
inherently high PAPR. In general, the PAPR characteristics
of OTSM systems are closely related to the arrangement of
data symbols within the delay-sequency grid and the properties
of the WHT. In contrast, the PAPR characteristics of OTFS
systems are primarily influenced by how data symbols in the
delay-Doppler domain are expanded into the time-frequency
domain via unitary transformations, typically involving FFT
operations. Since traditional PAPR reduction techniques are
designed specifically for OFDM-based systems, they are not
directly applicable to OTFS or OTSM due to fundamental
differences in modulation and signal structure. This limitation
has prompted growing interest in adapting or re-designing
PAPR reduction schemes tailored specifically for OTFS and
OTSM systems. In addition to PAPR reduction, minimizing
bit error rate (BER) and computational complexity (CC) are
also active areas of research within the OTFS and OTSM
domains. Nevertheless, the primary focus of the present paper
is to investigate a PAPR reduction technique specifically
designed for OTSM systems. This work does not aim to
directly optimize BER or computational complexity. Instead,
it proposes a method for enhancing PAPR performance in
OTSM systems, providing a foundation for future research that
may explore integrated solutions capable of jointly improving
PAPR and BER performance while maintaining low computa-
tional complexity. PAPR is one of the primary drawbacks of
OTSM and is a critical factor affecting system performance
and efficiency[7][8][9]. High PAPR primarily results in non-
linear distortion, decreased transmission efficiency, and ele-
vated power consumption, all of which significantly constrain
the practical implementation of OTSM. In addressing PAPR
reduction, Al Ahsan et al. [7] proposed an Adapted Tone
Reservation (A-TR) method and analyzed its performance
in the delay domain (A-TR-DD), frequency domain (A-TR-
SD), and delay-frequency domain (A-TR-BD). The study
indicated that A-TR techniques effectively reduce PAPR while
maintaining good BER performance. However, the authors
focused solely on A-TR methods without considering alterna-
tive PAPR reduction techniques. To address this, Neelam and
Sahu [8] proposed an SIP-based method that reduces pilot data
interference (PDI) and inter-block interference (IBI) through
effective channel estimation and data detection techniques.
They also analyzed the linear relationship between PAPR
and the number of frequency-domain resource blocks, but the
design and parameter optimization of the SIP technique remain
unexplored. Additionally, Doosti-Aref et al. [9] introduced
PSeIM-OTSM, which leverages index modulation to further
reduce PAPR and BER, improving energy efficiency. However,
its adaptability to more complex scenarios, such as MIMO
systems or multi-user environments, has yet to be studied.

Based on the aforementioned literature, OTSM remains
an active field of research, with numerous new discoveries
being published regularly. As indicated in the aforementioned
literature, research aimed at simultaneously optimizing both
the PAPR and BER performance of OTSM systems presents
significant challenges. Optimizing various performance met-
rics of the OTSM system may inadvertently lead to an in-
crease in circuit complexity. Furthermore, a holistic solution
that addresses the optimization of PAPR, BER, and circuit
complexity concurrently remains an open problem. For exam-
ple, the traditional Selective Mapping (SLM) technique has
primarily focused on optimizing the PAPR performance of
OFDM systems. While it has proven effective in improving
the PAPR of OFDM systems, the identification of an optimal
phase generation mechanism for PAPR reduction continues to
be a popular research topic. However, unlike OFDM systems,
the development of an SLM technique to optimize PAPR in
OTSM systems remains an unresolved issue, primarily due
to the structural differences between OFDM and OTSM. For
instance, OFDM is a multi-carrier technique, while OTSM is
a single-carrier technique. Additionally, the appropriate phase
generation mechanism for applying the SLM technique to
OTSM systems is also still to be determined. This paper
proposes a modified SLM[10] technique for OTSM systems,
utilizing Zadoff-Chu Transform (ZCT)[11] matrices, Discrete
Cosine Transform (DCT)[11] matrices and Randomly Gen-
erated Phase (RGP) matrices to construct phase perturbation
matrices. By applying cyclic shifts, multiple distinct phase
perturbation matrices are generated. The SLM technique uses
these matrices to create multiple candidate signals and selects
the signal with the lowest PAPR for transmission. Simulation
results indicate that the proposed method achieves optimal
PAPR reduction performance using RGP matrices, outper-
forming ZCT or DCT matrices.

This work builds upon the precoding techniques proposed in
Reference [11] for application in OTFS systems. In particular,
this paper investigates how the two precoding techniques
introduced in [11], namely ZCT and DCT, can be integrated
with the conventional SLM technique to address the PAPR
issue in OTSM systems. Unlike OTFS, which employs a
multicarrier modulation scheme, OTSM is based on single-
carrier modulation, resulting in notable differences in system
architecture. Given that OTSM systems also experience the
high PAPR problem, this paper proposes a PAPR reduction
approach tailored to the specific characteristics of OTSM.
The effectiveness of the proposed method in improving PAPR
performance is analyzed and evaluated through simulations.
The main contributions of this paper are summarized as
follows:

• Modified Phase Perturbation Mechanism in the SLM
Technique
The conventional SLM technique employs a phase per-
turbation mechanism that generates U phase sequences
of the same size as the input data, where each sequence
is multiplied element-wise with the input to produce U
candidate signals. For example, if the input data size in
OTSM is M × N , the phase perturbation sequences are
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also of size M×N . The proposed method introduces two
modifications:

– Precoding-Based Phase Perturbation: Rather than
using element-wise multiplication, the proposed
method applies an N×N precoding matrix to the
input data via matrix multiplication, achieving phase
perturbation through a structural transformation.

– Circular Shift Generation of Phase Sequences: Un-
like the traditional method that requires generating
U distinct phase sequences, the proposed method
creates only one perturbation matrix and obtains the
remaining U − 1 sequences via circular shifting.

These modifications aim to reduce the computational
complexity associated with phase sequence generation
and introduce a structurally efficient mechanism using
precoding and circular shifting.

• Phase Sequence Generation Mechanisms and Their Im-
pact on PAPR
The design of phase perturbation sequences is a critical
area of SLM-related research due to its influence on
PAPR reduction performance. This paper investigates
three phase sequence generation mechanisms—ZCT,
DCT, and RGP—within the framework of the proposed
method. Their effectiveness is evaluated through simula-
tions tailored to the OTSM system. The results indicate
that the proposed method can achieve PAPR reduction
under the evaluated conditions, while maintaining trans-
mission performance comparable to that of the original
OTSM system.

• Design of an SLM Technique Adapted for OTSM Sys-
tems
Since the OTSM system already incorporates the
Walsh–Hadamard Transform (WHT), as described in
Reference [11], this paper presents an enhanced SLM
technique that combines both SLM and precoding. The
aim is to preserve the respective advantages of both
methods.

Furthermore, based on the structure of the OTSM system,
three types of phase perturbation matrices are analyzed within
the proposed framework, and simulation results are provided
to assess their applicability and performance in the OTSM
context.

The chapter organization of this paper is structured as
follows. Section II presents the mathematical definitions of
OTSM signals and PAPR. Section III introduces the proposed
method for improving the conventional SLM technique and its
application in OTSM systems. Additionally, the definitions of
the ZCT and DCT matrices are provided to demonstrate how
the proposed method constructs an enhanced Phase Generation
Mechanism (PGM) for the SLM technique. Sections IV and
V focus on the discussion of simulation results and the
conclusion, respectively.

II. DEFINITION OF OTSM SIGNALS AND PAPR
OTSM is a wireless communication signal modulation tech-

nique based on the Walsh-Hadamard Transform (WHT). This
technique primarily utilizes WHT for signal processing in the
delay-sequency domain and combines it with pulse-shaping

filters to generate time-domain signals. The mathematical
representation and generation method of OTSM signals are
introduced as follows. OTSM signals are computed through
the following steps. First, the information symbols to be trans-
mitted are mapped onto a two-dimensional Delay-Sequency
(DS) domain matrix XDS . Subsequently, each row of XDS
undergoes an N -point Walsh-Hadamard Transform, transform-
ing the data into the delay-time domain to form a new matrix
s̃. This process is critical for OTSM signal processing as it
achieves the conversion from the delay-sequency domain to
the delay-time domain. The mathematical expression for any
OTSM signal in the delay-time domain can be described as:

s̃[m + nM ] =

N−1∑
k=0

XDS [m, k]WN [k, n], (1)

where XDS [m, k] is the information symbol matrix in the
delay-sequency domain, and WN [k, n] represents the normal-
ized N -point Walsh-Hadamard Transform matrix. The index
m corresponds to the delay dimension, ranging from 0 to
M−1, and n corresponds to the sequency dimension, ranging
from 0 to N − 1, where M and N are the total numbers
of delays and sequences, respectively. In the delay-sequency
domain, zero-symbol vectors are typically inserted into the
data matrix to mitigate inter-block interference (IBI) caused
by channel delay spread. Channel delay spread leads to signal
leakage between adjacent blocks, resulting in interference. To
address this issue, OTSM technology introduces zero-symbol
vectors into the data matrix, analogous to inserting guard
bands in the time domain to prevent signal overlap. In OTSM
systems, zero-symbol vectors are generally placed in the last
few rows (zl) of the data matrix, with the number of rows
being equal to or greater than the channel delay spread index.
This approach reduces the computational complexity at the
receiver and enhances system performance in high-mobility
environments. However, the inclusion of zero symbols reduces
spectral efficiency as these symbols occupy transmission re-
sources. Consequently, zero-padding offers a balanced solution
between performance improvement and resource utilization,
making it suitable for various application scenarios.

Next, OTSM applies pulse shaping to the time-domain
vector s̃ by using a pulse-shaping filter g(t). This process
converts the signal s̃ into a form suitable for wireless trans-
mission, generating the final time-domain signal s(t). The
representation of the OTSM signal in the time domain can
be described as:

s(t) =
∑

0≤n<N,0≤m<M

s̃[m + nM ]g(t − nT ), (2)

where s(t) is the time-domain signal, s̃[m + nM ] represents
the signal in the delay-time domain, g(t) is the pulse-shaping
filter, and T denotes the symbol period.

The primary advantage of OTSM lies in its lower com-
putational complexity. Specifically, compared to traditional
OFDM, OTSM employs WHT for modulation and demodula-
tion, whereas OFDM uses the Fast Fourier Transform (FFT).
As FFT requires extensive adders and multipliers, while WHT
involves only addition and subtraction operations, OTSM
reduces computational complexity and implementation costs
effectively. Despite its advantages, OTSM signals exhibit the
drawback of a high PAPR. PAPR is an important metric for
evaluating system performance and design. It is defined as
the ratio of the peak power to the average power of a signal.
A high PAPR value indicates significant peak power, which
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can have a profound impact on OTSM system performance.
The calculation method and implications of PAPR for OTSM
systems are discussed below.

The PAPR of OTSM signals can be calculated as follows.
First, based on the time-domain representation of OTSM
signals, as shown in Equation (2), the signal s(t) is sampled at
an appropriate time to obtain a discrete time-domain sample
sequence s[u], where u = m+nM and u = 0, 1, . . . ,MN−1.
After obtaining the time-domain sample sequence s[u], the
maximum absolute value among all samples is identified,
and its squared value is taken as the signal’s peak power.
The average power of the signal is computed by summing
the squared values of all samples and dividing by the total
number of samples. Finally, the PAPR of the OTSM signal is
determined by dividing the peak power by the average power
and converting it to decibel (dB) units, as expressed by:

PAPR(s[u]) = 10log10

(
max
u |s[u]|2

Pavg

)
(3)

where max
u |s[u]|2 represents the peak power of the OTSM

signal, and Pavg is the average power.
The Complementary Cumulative Distribution Function

(CCDF) is a statistical tool used to quantify the probability that
a random variable exceeds a specified value. More precisely,
the CCDF represents the likelihood that a random variable
is greater than or equal to a particular threshold. In commu-
nication systems, the CCDF is widely applied, especially in
analyzing the PAPR of signals. Mathematically, the CCDF
is defined as follows: for a random variable V and a given
threshold v, the CCDF is expressed as

CCDF(v) = P (V > v) (4)

where P (V > v) denotes the probability that the random
variable V exceeds v. In communication systems, the CCDF is
widely employed to evaluate the PAPR of signals. It facilitates
an effective comparison of the performance of various PAPR
reduction techniques.

III. PROPOSED METHOD

Fig. 1. Block Diagram of the Proposed Method.

Figure 1 illustrates the block diagram of the proposed
method when applied to the OTSM system. In this figure,
the primary focus of this paper is on the application of the
SLM technique to the OTSM system, where phase perturbation
is applied to the two-dimensional matrix of data. The phase
generation mechanism is central to the main research topic of
this paper. Additionally, this section will provide a brief review
of the SLM technique’s principles, followed by a discussion
of the unresolved research challenges associated with phase
generation mechanisms. Subsequently, the paper will present
a low-complexity phase generation mechanism and use three
commonly employed phase perturbation matrices for PAPR
reduction to construct an enhanced phase generation method.

In the next section, the PAPR performance of three low-
complexity phase perturbation schemes will be evaluated.

High PAPR signals necessitate the use of power amplifiers
with high linearity to avoid signal distortion. However, high-
linearity amplifiers typically have lower efficiency, leading
to increased power consumption and reduced system perfor-
mance. Addressing high PAPR signals often requires more
expensive linear power amplifiers, directly increasing system
hardware costs, particularly in large-scale deployments. Con-
versely, using nonlinear power amplifiers to amplify high
PAPR signals can result in nonlinear distortion, degrading
signal quality. This not only affects system reliability but
may also increase the bit error rate, reducing communication
performance. Furthermore, high PAPR signals have a larger
dynamic range, which implies a higher resolution require-
ment for Analog-to-Digital Converters (ADCs). If the ADC
resolution is insufficient, signal distortion or information loss
may occur, adversely affecting overall system performance. In
summary, high PAPR introduces a range of negative effects,
including low amplifier efficiency, increased system costs,
degraded signal quality, and higher ADC resolution require-
ments. Therefore, developing effective PAPR suppression tech-
niques is crucial for enhancing OTSM system performance
and reducing costs.SLM is an effective approach for mitigat-
ing the PAPR in communication systems and is categorized
under multiple signal representation (MSR) techniques. MSR
techniques operate by generating multiple candidate signals
through phase manipulation of the transmitted data, followed
by the selection of the candidate signal with the lowest
PAPR for transmission. In alignment with this principle, SLM
generates U candidate signals by multiplying the transmitted
data with U predesigned phase perturbation sequences. These
modified signals are then processed further, often through
OFDM modulation, to produce the final set of candidate
signals. Ultimately, the signal exhibiting the minimum PAPR
is chosen for transmission.

It is important to note that the modified SLM technique
proposed in this paper primarily focuses on reducing the
PAPR of OTSM systems, while attempting to introduce a
phase generation mechanism that offers both low compu-
tational complexity and improved PAPR performance. The
main goal is not to enhance the error correction capability
of the transmitted signal. Furthermore, for the conventional
SLM technique used in OFDM systems, the size of the phase
perturbation sequence is consistent with the size of the input
data and is represented as a row vector. In contrast, for the
traditional SLM technique applied to OTSM systems, the size
of the phase perturbation sequence must also match the input
data size, but it will be represented as a two-dimensional
matrix. Therefore, the design of a phase generation mechanism
to create phase perturbation sequences that optimize PAPR
performance will differ from the OFDM system case, making
this an entirely new and important research topic. Reference
[11] demonstrates the use of precoding techniques to reduce
the PAPR of OTFS systems, with simulation results showing
that the application of a precoding matrix effectively improves
the PAPR performance of OTFS systems. Based on this, this
paper proposes an enhanced SLM technique that combines
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precoding and SLM techniques. Specifically, the precoding
matrix is employed as the phase perturbation matrix to apply
phase disturbance to the transmitted data, and cyclic shifts
are used to generate multiple phase perturbation matrices.
However, it should be noted that while the precoding matrix
can effectively improve the PAPR performance of OTFS
systems, it does not necessarily yield the same improvement
for OTSM systems.

In this paper, the authors have adopted a precoding matrix
from reference [11] and modified it to serve as the phase gen-
eration mechanism for the SLM technique. The performance
of the proposed method in reducing PAPR is specifically
demonstrated in the simulation results section, which aims
to evaluate whether the precoding matrix, originally used
for OTFS systems, can serve as a viable phase generation
mechanism to improve the PAPR performance of OTSM
systems. To compare whether the precoding matrix described
in reference [11] can improve the PAPR performance of OTSM
systems in the same manner as it does for OTFS systems,
the ZCT matrix and DCT matrix described in reference [11]
will be introduced as follows. Given the limited exploration
of SLM in the context of OTSM systems, this paper proposes
an advanced SLM approach specifically adapted to OTSM.
Conventional SLM methods typically employ randomly gen-
erated phase perturbation sequences, which, while effective,
tend to increase system circuit complexity. Consequently, the
development of low-complexity PGMs capable of maintain-
ing or improving PAPR reduction performance remains a
significant area of investigation. To address this issue, this
paper evaluates conventional random PGMs and introduces
two alternative mechanisms utilizing the ZCT matrix and the
DCT matrix. These mechanisms are assessed for their ability
to enhance PAPR performance while minimizing complexity.
The definitions of the ZCT and DCT matrices are provided
below[11].

1) ZCT Matrix
A Zadoff-Chu sequence of length K is expressed as:

z[k] =




exp

j 2πr

K


k2

2 + qk


, if K is even,

exp

j 2πr

K


k(k+1)

2 + qk


, if K is odd.

From this sequence, a ZCT matrix of size M ×M is
constructed as:

zM [m, l] = z[m + lK], m, l = 0, 1, . . . ,M − 1.

For example, with M = 4, q = 7, and r = 1, the ZCT
matrix is given by:



1 i −1 −i
−0.98 + 0.20i 0.98 − 0.20i −0.98 + 0.20i 0.98 − 0.20i

1 −i −1 i
−0.83 − 0.56i −0.83 − 0.56i −0.83 − 0.56i −0.83 − 0.56i




2) DCT Matrix
A Discrete Cosine Transform matrix CM of size M×M
is defined as:

CM [m, l] =





1
M

, m = 0, 0 ≤ l ≤ M − 1,
2
M

cos


(2l+1)mπ

2M


, 1 ≤ m ≤ M − 1, 0 ≤ l ≤ M − 1.

For M = 4, the DCT matrix is represented as:


0.5000 0.5000 0.5000 0.5000
0.6533 0.2706 −0.2706 −0.6533
0.5000 −0.5000 −0.5000 0.5000
0.2706 −0.6533 0.6533 −0.2706




The proposed method modifies the phase of the data matrix
XDS in the delay-sequency domain by multiplying it with
a phase perturbation matrix P(u), resulting in U candidate
signals as:

s
(u)

(t) =


0≤k<N
0≤n<N
0≤m<M

P
(u)

XDS[m, k]WN [k, n]g(t − nT ), (5)

where u = 1, . . . , U and P(u) denotes an M × M phase
perturbation matrix. To reduce circuit complexity, these phase
perturbation matrices are generated using the ZCT and DCT
matrices, which are then modified through cyclic right shifts.
Furthermore, as shown in Equation (1), the generation of
OTSM signals involves the superposition of multiple modu-
lation symbols. When several of these symbols exhibit phase
alignment, constructive interference may occur, resulting in
signal peaks with significantly elevated amplitudes. This phe-
nomenon directly contributes to the high PAPR characteris-
tic of OTSM signals. To address this, a phase perturbation
matrix is introduced, whose primary function is to impose
deliberate phase variations on the transmitted symbols. This
phase diversity disrupts potential phase alignment, thereby
reducing the probability of peak formation and lowering the
resulting PAPR. To illustrate the construction method of such
a phase perturbation matrix, consider the use of a 4× 4 DCT
matrix. Based on this reference matrix, four phase perturbation
matrices P(u), where u = 0, 1, 2, 3, are derived by applying
successive circular shifts along the columns. These matrices
are expressed as follows:

P
(0)

=




0.5000 0.5000 0.5000 0.5000
−0.6533 0.6533 0.2706 −0.2706
−0.5000 −0.5000 0.5000 0.5000
−0.2706 0.2706 −0.6533 0.6533


 ,

P
(1)

=




0.5000 0.5000 0.5000 0.5000
−0.2706 −0.6533 0.2706 0.6533
0.5000 0.5000 −0.5000 −0.5000
0.6533 −0.2706 −0.6533 0.2706


 ,

P
(2)

=




0.5000 0.5000 0.5000 0.5000
0.2706 −0.2706 −0.6533 0.6533
−0.5000 0.5000 −0.5000 0.5000
−0.6533 −0.6533 0.2706 0.2706


 ,

P
(3)

=



0.5000 0.5000 0.5000 0.5000
0.6533 0.2706 −0.6533 −0.2706
0.5000 −0.5000 −0.5000 0.5000
0.2706 −0.6533 0.6533 −0.2706


 .

The above method demonstrates that multiple distinct phase
perturbation matrices can be generated without the need for
additional arithmetic operations such as multiplication or
addition. These matrices can be employed to modulate the
transmission sequence, generating a set of candidate signals.
Subsequently, the transmitter selects the candidate signal with
the lowest PAPR for actual transmission. More specifically,
this approach generates U distinct phase perturbation matrices,
where U is at most M . Furthermore, unlike the traditional
SLM technique, which requires the generation of U phase
perturbation matrices in the OTSM system, the proposed
method only requires one phase perturbation matrix. This sim-
plification reduces the hardware complexity required for the
phase generation mechanism in circuit design. Additionally,
the proposed method uses U − 1 cyclic shifts to generate
U − 1 phase perturbation matrices. Since cyclic shifts do not
require adders or multipliers, this further alleviates the hard-
ware implementation complexity. In summary, the proposed
method is an enhanced SLM technique based on the OTSM
system architecture, offering suboptimal PAPR improvement
performance with low circuit complexity for PAPR reduction.
On the receiver side, the proposed method follows the same
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procedure as the conventional SLM technique. Since both the
transmitter and receiver have prior knowledge of the U phase
perturbation matrices, the amount of side information required
remains log2(U) bits, as in conventional SLM. No additional
bits are needed to indicate which of the U candidate signals is
selected for transmission. Thus, after signal processing at the
OTSM receiver, the proposed method can be recovered using
the standard SLM demodulation procedure.

IV. SIMULATION RESULTS

This paper proposes a modified SLM technique to improve
the PAPR performance of OTSM systems, achieved by com-
bining traditional SLM with precoding techniques. The pro-
posed method simplifies the complexity of phase perturbation
generation in traditional SLM techniques by employing cyclic
shifting, and optimizes PAPR performance using precoding
techniques. In this section, the paper compares the PAPR
performance of the modified SLM technique with that of the
conventional SLM technique to assess whether the proposed
method can retain the PAPR improvement benefits of the
traditional SLM technique. To assess the PAPR reduction
performance of the proposed method in OTSM systems,
simulations are conducted using the following parameters.
A total of 10, 000 OTSM signals are generated randomly,
employing digital modulation schemes of 4-QAM and 16-
QAM. The total number of delays (M ) and sequences (N )
are configured to 64 and 256, respectively. For the number
of candidate signals, values of {4, 16} are utilized. In the
conventional SLM approach, two randomly generated phase
variations {−1, 1} are applied. For the proposed method,
the ZCT matrix parameters are set as q = 7 and r = 1.
Additionally, the number of zero symbols inserted into the last
row of the data matrix (zl) is configured to 3. All simulation
outcomes in this section are illustrated using CCDF curves.
The CCDF curves for various methods are compared and
analyzed to provide a thorough evaluation of their relative
PAPR reduction performance.

Figure 2 and Figure 3 compare the performance of three
PAPR reduction techniques in a 4QAM-modulated OTSM sys-
tem. These techniques include the traditional SLM technique,
the proposed method based on the RGP matrix, the proposed
method based on the DCT matrix, and the proposed method
based on the ZCT matrix. As shown in Figure 2 and Figure 3,
the RGP-based method demonstrates superior PAPR reduction
performance compared to the ZCT-based method and DCT-
based method. Additionally, the PAPR reduction performance
of the RGP-based method improves significantly with an
increasing number of candidate signals. To analyze the impact
of the total delay number (M ) and the total sequency number
(N ) on the PAPR reduction performance of the proposed
methods, Figures 4 and 5 present simulation results under
the condition of four candidate signals, while Figure 6 shows
results for 16 candidate signals. These results are obtained
by varying the total sequency number (or total delay number)
while fixing the total delay number (or total sequency number)
at 64. In Figure 4, when M = 64 and N = 128 or N = 256,
both the DCT-based and ZCT-based methods exhibit a slight

degradation in PAPR reduction performance as the total se-
quency number increases. Similarly, in Figure 5, when N = 64
and M = 128 or M = 256, the PAPR reduction performance
of both methods slightly decreases with an increase in the total
delay number. Nevertheless, the results presented in Figures
4, 5, and 6 demonstrate that, regardless of variations in M
or N , the RGP-based method consistently outperforms both
the ZCT-based and DCT-based methods in terms of PAPR
reduction. It is noteworthy that when M is smaller than N ,
the proposed method yields improved PAPR performance,
whereas, when M exceeds N , the improvement in PAPR
performance decreases. To further investigate whether the
proposed method’s PAPR reduction performance is influenced
by variations in the T -value of T -ary QAM modulation, this
paper simulated and analyzed the performance of the proposed
method in a 16-QAM-modulated OTSM system. Figure 7 and
8 presents a comparison of three PAPR reduction techniques
in the 16-QAM-modulated OTSM system. Consistent with the
results shown in Figure 2 and Figure 3, the RGP-based method
demonstrates superior PAPR reduction performance in the 16-
QAM system compared to the ZCT-based method and the
DCT-based method. The overall simulation results confirm that
the RGP-based method consistently outperforms both the ZCT-
based method and the DCT-based method in terms of PAPR re-
duction performance in both 4-QAM and 16-QAM-modulated
OTSM systems. Figure 9 compares the bit error rate (BER)
curves of the proposed method and the OTSM system over
an additive white Gaussian noise (AWGN) channel. The
results in Figure 9 show that when M ≤ N , the RGP-based
proposed method performs slightly worse than the OTSM
system in the AWGN channel; however, when M > N , the
RGP-based proposed method outperforms the OTSM system.
Therefore, from the perspective of both PAPR performance
improvement and channel transmission performance, the RGP-
based proposed method effectively combines the advantages
of both SLM and precoding techniques in improving PAPR.
Additionally, the integration of precoding techniques helps
reduce the complexity of the phase perturbation mechanism
in traditional SLM techniques and provides a better phase
perturbation matrix for PAPR improvement.

V. CONCLUSION

To mitigate the issue of high PAPR in OTSM systems
and enhance overall transmission performance, this paper
introduces an improved Selected Mapping (SLM) technique
specifically designed for OTSM systems. The proposed ap-
proach constructs the phase generation matrix (PGM) using
ZCT, DCT, and RGP matrices, in conjunction with cyclic
shifts, to generate multiple candidate signals for selecting
the optimal transmission signal. Simulation results show that
the PGM based on the RGP matrix outperforms the ZCT-
based and DCT-based mechanisms, as well as conventional
SLM techniques, in terms of PAPR reduction. Moreover, the
proposed method, utilizing the RGP-based PGM, consistently
delivers significant PAPR reduction in OTSM systems, regard-
less of whether 4-QAM or 16-QAM modulation schemes are
employed. The findings of this paper may serve as a reference
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Fig. 2. Performance Comparison of PAPR Reduction Techniques in 4QAM-
modulated OTSM Systems with M = 64 and N = 256 .

Fig. 3. Performance Comparison of PAPR Reduction Techniques in 4QAM-
modulated OTSM Systems with M = 64 and N = 256 .

for improving OTSM system performance in areas such as
channel efficiency and circuit design. These insights can also
contribute to the optimization of key issues in OTSM systems,
including channel performance, circuit implementation, and
PAPR reduction.
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for improving OTSM system performance in areas such as
channel efficiency and circuit design. These insights can also
contribute to the optimization of key issues in OTSM systems,
including channel performance, circuit implementation, and
PAPR reduction.
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Fig. 6. PAPR Reduction Performance Comparison of the Proposed Method
in 4QAM-modulated OTSM systems with N = 64 and M = 128 or 256.

Fig. 7. PAPR Reduction Performance Comparison of the Proposed Method
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Abstract—In this paper, an artificial intelligence-based rectenna 

design is proposed for Wi-Fi applications. The rectenna design is 
optimized using a Genetic Algorithm (GA) integrated with a 
Binary Coding (BC) scheme. The proposed rectenna is configured 
to operate at 2.45 GHz and 5.8 GHz with a maximum size of 
27×30×10 mm³. The performance of the optimized rectenna has 
been characterized in terms of S-parameters, bandwidth, 
radiation patterns, and gain. For this, a dual-bandwidth patch is 
designed to suit the applications of 2.45 GHz and 5.8 GHz. The 
measured radiation patterns and S11 spectra are evaluated to 
obtain a peak radiation efficiency of 52% and 56% to realize a gain 
of 6.2 dB at 2.45 GHz and 7.12 dB at 5.8 GHz, respectively. The 
proposed rectenna is integrated with an RF–DC rectifier 
(RFD102A module) to evaluate the harvested power in terms of 
DC output voltage under outdoor conditions. The maximum 
obtained harvested DC output voltage is found to be 2.27V and 
2.3V at 2.45GHz and 5.8GHz, respectively. Finally, the obtained 
measurements are compared to the simulated results to realize 
good agreements between them. 
 

Index Terms— Binary coding, energy harvesting, genetic 
algorithm, microstrip rectenna, rectifier, Wi-Fi, sub-6GHz. 

I. INTRODUCTION 
HIS growing demand for wireless technologies has led to 
an environment increasingly surrounded by microwave 

sources [1]. In addition to mobile communication systems, 
everyday life extensively utilizes wireless applications like 
Bluetooth, Wi-Fi, WLAN, and the Internet of Things (IoT) [2]. 
These wireless systems operate within standardized frequency 
bands [1]. Consequently, both indoor and outdoor environments 
contain abundant microwave energy across the frequency 
spectrum, which can be harvested using single- or multiband 
rectennas [3]. Recently, many designs have been reported for 
RF energy harvesting systems [4], which can be classified into 
three categories: single-band, multi-band, and broadband. 
These systems use different rectennas to improve gain and 
rectification efficiency by connecting impedance-matching 
circuits using GA techniques. Such research studies provided 
various optimization algorithms, including GA and particle 
swarm optimization, to enhance antenna design performance 
for multiple applications in modern wireless communication 
networks. In [5], a microstrip patch antenna array was designed 
using defective ground structure with the aid of GA to realize a 
dual-band of operation at 2.45 GHz and 5.8 GHz for wireless 
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power transfer applications. The design of an antenna array was 
optimized to minimize side lobe effects by utilizing a microstrip 
patch antenna element that offers improved bandwidth, 
directivity, and efficiency at multiple resonant frequencies [6]. 
A study was developed in [7] with the aid of web-tool-based 
GAs to integrate seven empirical propagation loss models to 
optimize antenna performance and improve wireless coverage 
and network capacity. A report was published in [8] to optimize 
a 28 GHz microstrip antenna with GA in terms of width, 
microstrip line width, and dielectric permittivity to achieve 
remarkable performance. A tri-band miniaturized rectangular 
patch antenna based on a defected ground structure optimized 
using GA to achieve a size reduction of about 82% smaller than 
a conventional single-band structure that covers the frequency 
bandwidths between 3.2 GHz and 3.5 GHz, 5.5 GHz and 5.9 
GHz, and 6.3 GHz and 7.1 GHz with gains of 0.7 dBi, 1.76 dBi, 
and 2.93 dBi, respectively [9]. The proposed antenna in [10] 
was optimized from a single microstrip patch with a binary-
coded genetic algorithm (BCGA) to achieve triple-band 
operation at 28 GHz, 40 GHz, and 47 GHz for mm-wave 
applications; this antenna showed a gain of 7.7 dBi, 12.1 dBi, 
and 8.2 dBi, respectively. The published work in [11] proposed 
a method to enhance miniaturized microstrip antenna 
performance using GA to realize bandwidths with sub-6 GHz. 
An antenna patch design was created using GA, featuring a 
miniaturized size that operates within the frequency band of 1.8 
GHz to 3 GHz, resulting in an array of 9×9 elements [12]. A 
model that utilizes a high-frequency electromagnetic simulator 
was proposed in [13] to analyze binary mixtures, employing 
GA to operate between 8.2 GHz and 12.4 GHz. A 
comprehensive study on GA for optimizing electromagnetic 
problems, including complex issues, was presented in [14]. A 
broadband triple-band frequency patch antenna for WLAN 
applications was designed with the aid of GA optimization [15]. 
The study referenced in [16] introduced a compact, cost-
effective microstrip antenna for a V2V communication system 
by implementing a defected ground structure to reduce antenna 
losses through GA optimization. In another context, the 
application of GA in antenna design has revolutionized the field 
by offering an efficient solution to the optimization of complex, 
multi-parameter problems. One of the most significant benefits 
of using BCGA in antenna design is the simplification of the 
encoding process [17]. The application of BCGA in antenna 
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and 2.93 dBi, respectively [9]. The proposed antenna in [10] 
was optimized from a single microstrip patch with a binary-
coded genetic algorithm (BCGA) to achieve triple-band 
operation at 28 GHz, 40 GHz, and 47 GHz for mm-wave 
applications; this antenna showed a gain of 7.7 dBi, 12.1 dBi, 
and 8.2 dBi, respectively. The published work in [11] proposed 
a method to enhance miniaturized microstrip antenna 
performance using GA to realize bandwidths with sub-6 GHz. 
An antenna patch design was created using GA, featuring a 
miniaturized size that operates within the frequency band of 1.8 
GHz to 3 GHz, resulting in an array of 9×9 elements [12]. A 
model that utilizes a high-frequency electromagnetic simulator 
was proposed in [13] to analyze binary mixtures, employing 
GA to operate between 8.2 GHz and 12.4 GHz. A 
comprehensive study on GA for optimizing electromagnetic 
problems, including complex issues, was presented in [14]. A 
broadband triple-band frequency patch antenna for WLAN 
applications was designed with the aid of GA optimization [15]. 
The study referenced in [16] introduced a compact, cost-
effective microstrip antenna for a V2V communication system 
by implementing a defected ground structure to reduce antenna 
losses through GA optimization. In another context, the 
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by offering an efficient solution to the optimization of complex, 
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design has been extensively studied, with numerous successful 
implementations. For example, the effectiveness of GAs in 
optimizing linear array antennas was demonstrated in [15]. By 
encoding the array elements' positions and excitation 
amplitudes as binary strings, they were able to optimize the 
array radiation pattern, achieving significant improvements in 
directivity and sidelobe levels. Similarly, in [18], GA was used 
to optimize microstrip patch antennas, focusing on parameters 
such as the patch dimensions and feed position to enhance 
bandwidth and radiation patterns. In phased antenna arrays, 
BCGA has proven particularly useful, as in [17], which 
employed GAs to optimize the design of phased arrays, 
targeting improvements in sidelobe levels and directivity. In 
[19], a design was explored using GAs to optimize the antenna 
multiband performance by encoding the antenna geometry and 
metamaterial properties as binary strings. In [20], a GA was 
used to optimize wire antennas, focusing on the adaptability of 
BC to manage complex design challenges. In this paper, an 
enhanced rectenna design with distinguished performances is 
introduced for RF energy harvesting at Wi-Fi frequency bands. 
It is built to achieve excellent conversion efficiency when 
introduced to an RF energy harvester. Suitable scaling and 
slight tuning can make the energy harvester system applicable 
for a wide range of low-power applications, including those 
operating within the sub-6 GHz band applications and Wi-Fi 
bands.  

II. RECTENNA DESIGN AND GEOMETRICAL DETAILS 
The basic rectenna configuration is based on a conventional 

printed monopole design with coplanar waveguide (CPW) 50Ω 
feed, as seen in Figure 1(a). Next, the rectenna back panel is 
covered with a fractal based on Minkowski geometry, as shown 
in Figure 1(b). The rectenna is printed on an FR4 substrate of 
1.6 mm thickness. The rectenna is mounted below another FR4 
substrate of the same dimensions. The back panel of the second 
substrate, see Figure 1(c), is covered with a copper layer of a 
square aperture, while the other side of the substrate is a 
rectangular patch designed with a BC scheme, as seen in Figure 
1(d). The first layer enables the 2.45 GHz resonant mode, which 
is achieved through the fractal-based geometry. The second 
mode is realized from the second rectenna patch based on the 
BC scheme, as will be shown later.  

Now, to obtain the proposed rectenna performance, a full 
wave analysis is conducted to realize the optimal design by 
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Abstract—In this paper, an artificial intelligence-based rectenna 

design is proposed for Wi-Fi applications. The rectenna design is 
optimized using a Genetic Algorithm (GA) integrated with a 
Binary Coding (BC) scheme. The proposed rectenna is configured 
to operate at 2.45 GHz and 5.8 GHz with a maximum size of 
27×30×10 mm³. The performance of the optimized rectenna has 
been characterized in terms of S-parameters, bandwidth, 
radiation patterns, and gain. For this, a dual-bandwidth patch is 
designed to suit the applications of 2.45 GHz and 5.8 GHz. The 
measured radiation patterns and S11 spectra are evaluated to 
obtain a peak radiation efficiency of 52% and 56% to realize a gain 
of 6.2 dB at 2.45 GHz and 7.12 dB at 5.8 GHz, respectively. The 
proposed rectenna is integrated with an RF–DC rectifier 
(RFD102A module) to evaluate the harvested power in terms of 
DC output voltage under outdoor conditions. The maximum 
obtained harvested DC output voltage is found to be 2.27V and 
2.3V at 2.45GHz and 5.8GHz, respectively. Finally, the obtained 
measurements are compared to the simulated results to realize 
good agreements between them. 
 

Index Terms— Binary coding, energy harvesting, genetic 
algorithm, microstrip rectenna, rectifier, Wi-Fi, sub-6GHz. 

I. INTRODUCTION 
HIS growing demand for wireless technologies has led to 
an environment increasingly surrounded by microwave 

sources [1]. In addition to mobile communication systems, 
everyday life extensively utilizes wireless applications like 
Bluetooth, Wi-Fi, WLAN, and the Internet of Things (IoT) [2]. 
These wireless systems operate within standardized frequency 
bands [1]. Consequently, both indoor and outdoor environments 
contain abundant microwave energy across the frequency 
spectrum, which can be harvested using single- or multiband 
rectennas [3]. Recently, many designs have been reported for 
RF energy harvesting systems [4], which can be classified into 
three categories: single-band, multi-band, and broadband. 
These systems use different rectennas to improve gain and 
rectification efficiency by connecting impedance-matching 
circuits using GA techniques. Such research studies provided 
various optimization algorithms, including GA and particle 
swarm optimization, to enhance antenna design performance 
for multiple applications in modern wireless communication 
networks. In [5], a microstrip patch antenna array was designed 
using defective ground structure with the aid of GA to realize a 
dual-band of operation at 2.45 GHz and 5.8 GHz for wireless 
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power transfer applications. The design of an antenna array was 
optimized to minimize side lobe effects by utilizing a microstrip 
patch antenna element that offers improved bandwidth, 
directivity, and efficiency at multiple resonant frequencies [6]. 
A study was developed in [7] with the aid of web-tool-based 
GAs to integrate seven empirical propagation loss models to 
optimize antenna performance and improve wireless coverage 
and network capacity. A report was published in [8] to optimize 
a 28 GHz microstrip antenna with GA in terms of width, 
microstrip line width, and dielectric permittivity to achieve 
remarkable performance. A tri-band miniaturized rectangular 
patch antenna based on a defected ground structure optimized 
using GA to achieve a size reduction of about 82% smaller than 
a conventional single-band structure that covers the frequency 
bandwidths between 3.2 GHz and 3.5 GHz, 5.5 GHz and 5.9 
GHz, and 6.3 GHz and 7.1 GHz with gains of 0.7 dBi, 1.76 dBi, 
and 2.93 dBi, respectively [9]. The proposed antenna in [10] 
was optimized from a single microstrip patch with a binary-
coded genetic algorithm (BCGA) to achieve triple-band 
operation at 28 GHz, 40 GHz, and 47 GHz for mm-wave 
applications; this antenna showed a gain of 7.7 dBi, 12.1 dBi, 
and 8.2 dBi, respectively. The published work in [11] proposed 
a method to enhance miniaturized microstrip antenna 
performance using GA to realize bandwidths with sub-6 GHz. 
An antenna patch design was created using GA, featuring a 
miniaturized size that operates within the frequency band of 1.8 
GHz to 3 GHz, resulting in an array of 9×9 elements [12]. A 
model that utilizes a high-frequency electromagnetic simulator 
was proposed in [13] to analyze binary mixtures, employing 
GA to operate between 8.2 GHz and 12.4 GHz. A 
comprehensive study on GA for optimizing electromagnetic 
problems, including complex issues, was presented in [14]. A 
broadband triple-band frequency patch antenna for WLAN 
applications was designed with the aid of GA optimization [15]. 
The study referenced in [16] introduced a compact, cost-
effective microstrip antenna for a V2V communication system 
by implementing a defected ground structure to reduce antenna 
losses through GA optimization. In another context, the 
application of GA in antenna design has revolutionized the field 
by offering an efficient solution to the optimization of complex, 
multi-parameter problems. One of the most significant benefits 
of using BCGA in antenna design is the simplification of the 
encoding process [17]. The application of BCGA in antenna 
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design has been extensively studied, with numerous successful 
implementations. For example, the effectiveness of GAs in 
optimizing linear array antennas was demonstrated in [15]. By 
encoding the array elements' positions and excitation 
amplitudes as binary strings, they were able to optimize the 
array radiation pattern, achieving significant improvements in 
directivity and sidelobe levels. Similarly, in [18], GA was used 
to optimize microstrip patch antennas, focusing on parameters 
such as the patch dimensions and feed position to enhance 
bandwidth and radiation patterns. In phased antenna arrays, 
BCGA has proven particularly useful, as in [17], which 
employed GAs to optimize the design of phased arrays, 
targeting improvements in sidelobe levels and directivity. In 
[19], a design was explored using GAs to optimize the antenna 
multiband performance by encoding the antenna geometry and 
metamaterial properties as binary strings. In [20], a GA was 
used to optimize wire antennas, focusing on the adaptability of 
BC to manage complex design challenges. In this paper, an 
enhanced rectenna design with distinguished performances is 
introduced for RF energy harvesting at Wi-Fi frequency bands. 
It is built to achieve excellent conversion efficiency when 
introduced to an RF energy harvester. Suitable scaling and 
slight tuning can make the energy harvester system applicable 
for a wide range of low-power applications, including those 
operating within the sub-6 GHz band applications and Wi-Fi 
bands.  

II. RECTENNA DESIGN AND GEOMETRICAL DETAILS 
The basic rectenna configuration is based on a conventional 

printed monopole design with coplanar waveguide (CPW) 50Ω 
feed, as seen in Figure 1(a). Next, the rectenna back panel is 
covered with a fractal based on Minkowski geometry, as shown 
in Figure 1(b). The rectenna is printed on an FR4 substrate of 
1.6 mm thickness. The rectenna is mounted below another FR4 
substrate of the same dimensions. The back panel of the second 
substrate, see Figure 1(c), is covered with a copper layer of a 
square aperture, while the other side of the substrate is a 
rectangular patch designed with a BC scheme, as seen in Figure 
1(d). The first layer enables the 2.45 GHz resonant mode, which 
is achieved through the fractal-based geometry. The second 
mode is realized from the second rectenna patch based on the 
BC scheme, as will be shown later.  

Now, to obtain the proposed rectenna performance, a full 
wave analysis is conducted to realize the optimal design by 
using a parametric study. However, the optimization issue that 
is defined in this paper is resolved using a BC scheme. This 
geometry is designed using a straightforward procedure to 
create the proposed rectenna. The main design challenge lies in 
optimizing the second-layer BC scheme used to form the patch 
shown in Figure 1(d). The upper and the lower layers are 
coupled to realize a 3D-printed geometry with a separation 
distance of 10 mm. For this, GA is used to find the best rectenna 
bandwidth with the optimal gain at Wi-Fi bands. The binary-
coded patch area is divided into small cells, and the GA uses a 
code of 0s and 1s to define the conductor regions of the patch. 
In a binary genetic algorithm (BGA) procedure, the important 
genetic operators are selection, crossover, and mutation [20]. 

The selection operator chooses two parent chromosomes from 
the population at random. The crossover operation mixes two 
parents' chromosomes to create a new child chromosome [21]; 
then a mutation introduces changes to the generated 
chromosome with a certain probability [22]. 
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mm². A single unit cell is treated as a gene and is encoded with 
a binary value of 1 if it is a metal pixel and 0 if it is not a metal 
pixel. The overlaps between adjacent unit cells are minimized 
to maintain electrical continuity during fabrication. Since the 
material of each unit cell is directly mapped into a binary value, 
the patch geometry is arranged as a binary string involving a 
series of zeros and ones. Each binary string will lead to an 
arbitrary structure for the radiating patch of the rectenna. The 
performance of the rectenna can be improved by varying the 
values in the binary string. Thus, the desired performance can 
be achieved without increasing the physical size of the rectenna 
by controlling the patch surface current. The optimal binary 
string for the patch rectenna is investigated by a number of 
iterations. However, to preserve the continuity of the structure, 
zeros are replaced with ones if they are surrounded by ones, and 
vice versa. This method is applied to the patch rectenna by using 
a fitness function that is meant to minimize the reflection 
coefficient and increase the bandwidth of the rectenna. The 
fitness function is considered to be the rectenna gain bandwidth 
product (G*BW) and gain as given in equations (1) and (2). If 
the gain-bandwidth product exceeds 50%, the fitness function 
is assigned a value of 1; otherwise, it is set to 0. The 
multiplication is evaluated as a fitness function. 
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where  

𝐺𝐺 ∗ 𝐵𝐵𝐵𝐵(%) =  {≥ 50% 𝑡𝑡ℎ𝑎𝑎𝑎𝑎 𝑠𝑠𝑠𝑠𝑠𝑠 1
< 50% 𝑡𝑡ℎ𝑎𝑎𝑎𝑎 𝑠𝑠𝑠𝑠𝑠𝑠 0 .                (2) 

N is the number of sampling frequencies in a given band. The 
coefficient G*BW should be maximum at the resonance 
frequency. GA is one of the EM optimization techniques 
integrated with electromagnetic software packages such as CST 
MWS and HFSS. The simulation, along with the BGA script, is 
fetched to the CST MWS macro command code window with 
Visual Basic scripts based on the listed parameters in Figure 
1(d). The code iterations are executed after reaching the desired 
value of the fitness function with an error of 2% or reaching the 
best fitness function value that shows no significant change for 
20 generations. 

 
Figure 2. Flowchart of BGA optimization process. 

 
The computing performance is related to the full-wave 

electromagnetic simulation time for the structure; therefore, the 
proposed BGA algorithm provides the most robust solution 
among potential solutions. The optimal patch geometry was 
achieved after evaluating 120 chromosome genes. The solution 
space consists of 2160 solutions in comparison to the traditional 
full-wave analysis techniques, which require a substantial 
amount of time for analysis. However, the proposed solution 

based on the proposed BGA algorithm takes only a few 
attempts to find the solution. The optimized patch exhibits S11 
below -10dB at 2.45GHz and 5.8GHz with gains of 6.2dBi and 
7.12dBi, respectively. The optimized patch structure is 
presented in Figure 1 with all geometrical details. For further 
details, the proposed method is represented as flowchart as 
shown in Figure 2. The considered algorithm iteratively refines 
the rectenna geometry to maximize efficiency while 
minimizing computational overhead. The step-by-step 
workflow of the GA-based rectenna optimization process used 
in this study. 

III. RECTENNA DESIGN AND GEOMETRICAL DETAILS 
The performance of the optimized rectenna has been 

characterized in terms of S11, radiation pattern, and gain; these 
characteristics are shown in Figure 3. The simulations are 
performed and compared to the experimental measurements for 
validations. The rectenna is fabricated using chemical etching 
and measured inside an RF chamber, as seen in Figure 3. By 
considering the operating frequencies of the rectenna, the 
reflection coefficient is measured by the Agilent E5071C 
Vector Network Analyzer (VNA). 

 
Figure 3: The fabricated rectenna prototype. 

 
The experimental validation of the simulated results is 

carried out from a software package of CST MWS as given in 
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Figure 4. The measured and simulated S11 spectra of the 
proposed rectenna is shown in Figure 3(a). The obtained results 
show that the rectenna bandwidth found between 2.25GHz and 
2.64GHz with S11 below -10dB. The measured bandwidth of the 
proposed rectenna, see Figure 4(a), at the second band is found 
from 5.38GHz to 5.86GHz with S11 lower than -10dB. Figure 
4(b) shows the measured and simulated radiation patterns at 
2.45GHz and 5.8GHz for azimuth and zenith for both co-
polarization and cross-polarization. The measured radiation 
patterns are presented in Figure 4(c) for both azimuth and 
elevation planes, showing co- and cross-polarization 
components. The simulated results show excellent agreements 
with the obtained from measurements. Minor discrepancies 
between the simulated and measured results are attributed to 
fabrication tolerances. 

 
Figure 4. Measured and simulated rectenna performances (a) S11 spectra (b) 

Radiation patterns. 
 

Figure 5(a) shows the surface current distributions for the 
proposed rectenna at 2.45 GHz and 5.8 GHz on the second 
patch. From the obtained distributions, the aperture slots are 
found to realize significant effects on the surface current 
distributions. Consequently, such observation shows a 
significant effect on the rectenna gain to realize a broadside 
directional radiation pattern as seen in the 3D far field in Figure 
5(b). The rectenna gain is improved 6.2 dBi and 7.12 dBi at 2.45 
GHz and 5.8 GHz, respectively. 

 
Figure 5. Simulated results for the proposed rectenna at 2.45GHz and 5.8GHz: 

(a) Surface current distributions and (b) 3D radiation patterns. 

IV. RF ENERGY HARVESTING MEASUREMENTS 
Figure 6 shows the experimental setup for testing how well 

the RF–DC energy harvesting works.  The optimized dual-band 
rectenna is connected to the RFD102A-TB RF harvester 
module by a SMA coaxial cable.  The tests took place in a semi-
anechoic RF chamber to reduce outside noise and reflections.  
The RF source was a signal generator (Agilent E8257D PSG), 
and the power amplifier (Mini-Circuits ZHL-42W) was used to 
control and boost the RF power sent at the right frequency 
bands. The rectenna was placed 1.5 meters away from the 
transmitting antenna (a standard gain horn antenna with 10 dBi 
gain) and was set up so that both antennas would be as direct as 
possible.  The transmitting antenna received continuous-wave 
(CW) signals at 2.45 GHz and 5.8 GHz.  We looked at three 
different RF power levels at the rectenna terminals: 0 dBm, 8 
dBm, and 16 dBm.  To make sure that the calibration was 
consistent, we used a power meter (Keysight N1914A) to 
measure the corresponding incident power densities. 

A high-impedance digital voltmeter connected to the 
RFD102A-TB output terminals was used to measure the 
rectified DC output voltage.  The harvested voltage was 
recorded over several measurements for each input power level 
to make sure the results were consistent and averaged for 
accuracy.  We also used the Agilent E5071C Vector Network 
Analyzer (VNA) to get the measured S11 spectra for the 
rectenna–harvester system. This was done to make sure that the 
impedance was matched under the same test conditions. In 
these controlled tests, the highest DC output voltage that could 
be harvested was 2.27 V at 2.45 GHz and 2.3 V at 5.8 GHz 
when the RF power was 16 dBm.  The RF-to-DC conversion 
efficiencies were 52% and 56%, respectively. This shows that 
the GA-optimized dual-band rectenna design works well for 
collecting energy from Wi-Fi signals below 6 GHz. 
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Figure 6: The evaluated results at the considered input RF energy: (a) S11 

spectra and (b) Harvested DC voltage. 

V. RESULTS COMPARISON AND DISCUSSION 
In Table 1, a comparison between the proposed work and 

other published designs is listed. The comparison between the 
proposed rectenna performance with their relatives is 
considered in terms of size, substrate, efficiency, frequency 
band, gain, and VDC. It is observed that the proposed rectenna 
shows an excellent size reduction with an observable gain 
enhancement and harvested VDC. This realizes an 
advancement over other published designs using traditional 
techniques. The archived results in Table 1 indicate that the 
proposed rectenna achieves a significant gain enhancement at 
2.45 GHz and 5.8 GHz by controlling the surface current on the 
rectenna patch, as illustrated in Figure 5(a). This gain 
enhancement is reflected in the energy harvesting that reached 
2.3 volts, as seen in Figure 6(b). 
 

TABLE I 
COMPARISON OF THE RF ENERGY HARVESTING SYSTEMS WITH THE PROPOSED 

WORK. 
Size/ 
mm2 

Substr
ate 

Efficienc
y/ % 

Freq./ 
GHz 

Gain/
dBi 

VDC/V
olt 

Refere
nce 

28×32 Taconi
c 50-80 2.4, 5.8 5-8 0.5-

1.5 [23] 

280×2
80 

Taconi
c 42 2.45 11 3.4 [24] 

60×70 Polym
er 55 3.4 5.5 2 [25] 

55×74 FR4 49-62 2.4, 5.8 2-4 0.4-
1.2 [26] 

38×52 Polym
er 70-90 2-3 1.8-4 1.0-

3.0 [27] 

68×10
2 FR4 45 0.9 2.4 0.8 [28] 

45×68 FR4 65-90 2.45, 
5.8 3-5 0.7-

1.5 [29] 

27×30 FR4 52-56% 2.45, 
5.8 

6.2-
7.12 2.3 

propos
ed 

work 

VI. CONCLUSION 
The application of BCGA to antenna design represents a 

breakthrough for renewable energy research, opening new 
perspectives in RF energy harvesting. In the framework of this 
work, we have proposed a backup as RF energy harvesting for 
different applications, including wireless sensor networks. The 
use of hybrid RF energy harvesting systems prevents different 
realizations of low-energy devices that were previously not 
possible to be functionalized. The proposed design uses 
rectennas with enhanced characteristics that are designed with 
the aid of the BCGA scheme. AI-based designs of the rectennas 
are developed using the GA with the BC method to realize 
enhanced bandwidth and gain. The proposed rectenna shows a 
compact and low cost with enhanced performance to provide 
efficiency of 52% and 56% at 2.48 GHz and 5.8 GHz, 
respectively. The output DC power of the RF energy harvesting 
system is increased by using dual frequency bands. The 
proposed rectenna size is miniaturized to 27×30 mm² with a 
harvested real voltage of 2.3 volts. Finally, the measured and 
simulated results show excellent agreement, validating the 
proposed design methodology. 
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Abstract—This paper presents novel signal processing methods
to enhance the reception performance of Gaussian Minimum
Shift Keying (GMSK) signals from pico- and nanosatellites, em-
phasizing software-defined approaches over hardware upgrades.
Atypical filtering techniques, including phase-domain median and
FIR filtering, as well as polarization-diverse multi-channel meth-
ods, are explored and evaluated. Real-world experiments were
conducted using coherently sampled dual-polarization channels
from a ground station in Szeged, Hungary, receiving transmis-
sions from the MRC-100 satellite. Various single- and multi-
channel preprocessing strategies were benchmarked using packet
decoding success and bit-error rates. Results show that non-
linear phase filtering and blind source separation techniques,
notably FastICA, significantly increase the number of correctly
decoded packets – achieving up to a 16% improvement compared
to conventional demodulation without preprocessing. This study
demonstrates the utility and relative independence of these
methods and highlights their potential for improving satellite data
throughput with no hardware modification. These techniques are
suitable for integration into existing ground stations to enhance
data reception performance.

Index Terms—CubeSat, GMSK, Independent Component
Analysis, Median filter, PocketQube, Polarization-diversity.

I. INTRODUCTION

SEVERAL approaches are available for transferring data
from a space satellite. Yet, the most notable example is

the use of radio signals, particularly sub-gigahertz frequencies,
in educational and research satellites. One classic, widely used
modulation is Gaussian Minimum Shift Keying (GMSK) [1]
on the 70 cm radio amateur band and on the industrial satellite
band on slightly lower frequencies. The typical effective
radiated power is 100 mW, with an average path loss of around
150 dB. To ensure a reliable transmission, a robust error-
correcting method and sufficient signal levels are required. If a
specific satellite is already in orbit, the only way to increase the
data rate is to build a better reception architecture. Although
one possible improvement of the ground station is to enhance
antenna dimensions and optimize filter characteristics, realiz-
ing these are not cost-efficient. The primary motivation of this
research was to identify and analyze receiver algorithms that
enhance nano- and pico-satellite reception without requiring an
investment in a more expensive reception system. To the best
of our knowledge, no published results are using such non-
linear filters to improve GMSK reception. The Independent
Component Analysis (ICA) algorithm was used for separating
parallel transmissions [2], [3], [4]. However, utilizing it to
select the desired signal from a noisy environment is poorly
covered.

In this paper, following a brief introduction to the mea-
surement setup, some non-linear methods are introduced in
Section III to preprocess the radio signals, which only require
a single channel as input. A separate section –numbered IV–
presents methods operating on two coherently sampled, inde-
pendent channels. As we aim to enlarge the size of downloaded
data, we quantitatively compare the number of successfully
decoded correct packets and qualitatively compare the bit-error
rate of the same packet among methods. Every comparison is
shown with the reference state-of-the-art GMSK demodulator.
On amateur radio bands, it is common to conduct experiments
like this to investigate radio channel performance. [5] There-
fore, we have chosen a satellite operating on these bands.

II. MEASUREMENT SETUP

The experiments presented in this paper were conducted
in the central area of Szeged, Hungary, in an environment
where TV and FM broadcast transmitters, along with various
cellular base stations, loaded the receiver input in addition to
the useful signal. Generally, the presence of such strong signals
can easily overload the input amplifier of a radio receiver to
a non-linear domain. Therefore, the pre-selected radio filters
like the one below should be used.

The actual measurements were made in the 70 cm radio
amateur band, with the radio tuned to the MRC-100 [6]
satellite, which operates at 436.72 MHz. This satellite was
chosen because a reliable, coherent, soft-decision, state-of-
the-art GMSK demodulator software called “smogcli2” [7] is
compatible with it, which can also output the bit-error ratio of
the demodulated packets.

The front of the reception chain consisted of two linear 10-
element Yagi-Uda antennas, each with a 30-degree-wide main
lobe. These antennas were mounted perpendicularly to each
other, so their main lobes pointed in the same direction, but
their linear polarization planes were orthogonal to each other.

In addition to differences in polarization, the two signal
paths exhibited variation in their hardware stages, specifically
through the incorporation of distinct filters. One polarization
plane’s path (designated as “Channel A”) included only a
Surface Acoustic Wave (SAW) filter, followed by a low
noise amplifier. The other path (designated as “Channel B”)
consisted of a low-Q, low insertion loss cavity filter, a low
insertion loss SAW filter, and the same low-noise amplifier.
Both signal paths were terminated in a software-defined radio
configured to a coherent sampling rate of 1 MHz.
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I. INTRODUCTION

SEVERAL approaches are available for transferring data
from a space satellite. Yet, the most notable example is

the use of radio signals, particularly sub-gigahertz frequencies,
in educational and research satellites. One classic, widely used
modulation is Gaussian Minimum Shift Keying (GMSK) [1]
on the 70 cm radio amateur band and on the industrial satellite
band on slightly lower frequencies. The typical effective
radiated power is 100 mW, with an average path loss of around
150 dB. To ensure a reliable transmission, a robust error-
correcting method and sufficient signal levels are required. If a
specific satellite is already in orbit, the only way to increase the
data rate is to build a better reception architecture. Although
one possible improvement of the ground station is to enhance
antenna dimensions and optimize filter characteristics, realiz-
ing these are not cost-efficient. The primary motivation of this
research was to identify and analyze receiver algorithms that
enhance nano- and pico-satellite reception without requiring an
investment in a more expensive reception system. To the best
of our knowledge, no published results are using such non-
linear filters to improve GMSK reception. The Independent
Component Analysis (ICA) algorithm was used for separating
parallel transmissions [2], [3], [4]. However, utilizing it to
select the desired signal from a noisy environment is poorly
covered.

In this paper, following a brief introduction to the mea-
surement setup, some non-linear methods are introduced in
Section III to preprocess the radio signals, which only require
a single channel as input. A separate section –numbered IV–
presents methods operating on two coherently sampled, inde-
pendent channels. As we aim to enlarge the size of downloaded
data, we quantitatively compare the number of successfully
decoded correct packets and qualitatively compare the bit-error
rate of the same packet among methods. Every comparison is
shown with the reference state-of-the-art GMSK demodulator.
On amateur radio bands, it is common to conduct experiments
like this to investigate radio channel performance. [5] There-
fore, we have chosen a satellite operating on these bands.

II. MEASUREMENT SETUP

The experiments presented in this paper were conducted
in the central area of Szeged, Hungary, in an environment
where TV and FM broadcast transmitters, along with various
cellular base stations, loaded the receiver input in addition to
the useful signal. Generally, the presence of such strong signals
can easily overload the input amplifier of a radio receiver to
a non-linear domain. Therefore, the pre-selected radio filters
like the one below should be used.

The actual measurements were made in the 70 cm radio
amateur band, with the radio tuned to the MRC-100 [6]
satellite, which operates at 436.72 MHz. This satellite was
chosen because a reliable, coherent, soft-decision, state-of-
the-art GMSK demodulator software called “smogcli2” [7] is
compatible with it, which can also output the bit-error ratio of
the demodulated packets.

The front of the reception chain consisted of two linear 10-
element Yagi-Uda antennas, each with a 30-degree-wide main
lobe. These antennas were mounted perpendicularly to each
other, so their main lobes pointed in the same direction, but
their linear polarization planes were orthogonal to each other.

In addition to differences in polarization, the two signal
paths exhibited variation in their hardware stages, specifically
through the incorporation of distinct filters. One polarization
plane’s path (designated as “Channel A”) included only a
Surface Acoustic Wave (SAW) filter, followed by a low
noise amplifier. The other path (designated as “Channel B”)
consisted of a low-Q, low insertion loss cavity filter, a low
insertion loss SAW filter, and the same low-noise amplifier.
Both signal paths were terminated in a software-defined radio
configured to a coherent sampling rate of 1 MHz.

https://doi.org/10.36244/ICJ.2025.4.4
mailto:kissadam%40inf.u-szeged.hu?subject=


Significant performance improvement in polarization-diversity  
GMSK reception using atypical filters

INFOCOMMUNICATIONS JOURNAL

DECEMBER 2025 • VOLUME XVII • NUMBER 4 27

2

All the antennas were mounted onto an antenna rotator with
a positioning accuracy of approximately ten degrees. It was
controlled by software named “Gpredict” [8] using the solu-
tions of Kepler-equations provided by a space tracking service,
namely the North American Aerospace Defense Command
(NORAD). [9] The rotator was stepped in five degrees.

Other aspects of the reception is presented in [10].
After input filtering, Doppler correction was performed

coherently on both channels using the data from NORAD.
We should note that, theoretically, the correction could be
done without the exact trajectory data. [11] The data were then
resampled and saved at a sample rate of 50 kHz, suitable for
processing with “smogcli2“. The length of specific windows
should also be related to this symbol rate. It is essential to note
that the satellite sent various packets at different baud rates.
In this research, packets sent at a rate of 12500 bauds were
only considered in the Results section, as they were dominant
during the operation of the MRC-100.

Various methods are investigated, encompassing a wide
range of diverse scenarios. The IQ output of each scenario
was processed using “smogcli2”. Alongside the packets, the
corresponding bit-error ratios were recorded.

To provide a reference for comparing the proposed non-
linear polarization-diversity methods, several linear and single-
channel techniques were also evaluated. The signal process-
ing procedures run in 0.8-second-long overlapped windows,
stepped in a raster of 0.2 seconds. Shorter windows resulted in
the loss of certain packets even if the experimental procedures
studied herein were omitted. In contrast to this, if longer
windows had been applied, the incoherence of the reception
would have increased (phase incoherency occurring from the
change of the angle of incidence).

III. SINGLE-CHANNEL METHODS

In the case of single-channel methods, only one signal path
was considered, and the two signal paths were not combined
in any way to mutually improve reception quality.

The word “band limiting” in this article references a kind
of filtering, which was always performed in the single-channel
methods. A Finite Impulse Response (FIR) filter with a
12 kHz cut-off frequency was applied, designed with a 3 kHz
transition band using Blackman-window [12]. The bandwidth
of such a filter was 24 kHz in the complex spectrum, which
included most of the 12500 baud GMSK signal power [1],
taking into account also the possible inaccuracy of the Doppler
correction.

A. Channel A and Channel B

These cases represent the raw received packets without any
preprocessing.

B. Channel data with median filtered phase

This case is a non-linear method, running on a band-
limited channel and acting on the phase of the recorded IQ
signals. The amplitude of the IQ signal remains unchanged,
but its unwrapped phase is median filtered [13] using 3, 5,

or 7 sample-wide windows. The window sizes were chosen
to fit the trivial median definition; therefore, only odd, wide
windows were used. Windows wider than four samples –
corresponding to durations longer than a single symbol – begin
to introduce intersymbol interference, which gradually leads
to a decline in performance. Windows longer than 7 samples
were omitted in this study.

In terms of mathematics

|Out[k]| = |Input[k]| (1)

j =
N − 1

2
(2)

arg(Out[k]) = Mediank+j
i=k−j arg(Input[i]) (3)

Where N is the length of the filter, k is the time dimension,
and arg is the unwrapped phase of its argument.

C. Channel data with FIR filtered phase

This case is also a non-linear method, running on a band-
limited channel and acting on the phase of the recorded IQ
signals like in the “Channel data with median filtered phase”
case, but this time, the unwrapped phase is FIR filtered by
3, 5, or 7 sample wide rectangle-shaped windows with unity
gain.

In terms of mathematics, using equation 1 and 2:

arg(Out[k]) =

k+j∑
i=k−j

1

N
arg(Input[i]) (4)

IV. MULTI-CHANNEL METHODS

In the case of the multi-channel methods, the two available,
coherently sampled, diverse signal paths were combined using
different methods.

A. Averaging Channel A and Channel B

In this case, the IQ data of the two channels are averaged
sample by sample. Assuming that the same signal is on both
channels, this increases the signal-to-noise ratio. This case is
essentially equivalent to stacking Yagi-Uda antennas [14], a
common practice in satellite tracking ground stations.

In terms of mathematics

Out[k] = ChannelA[k] + ChannelB[k] (5)

B. Averaging Channel A and Channel B with path correction

In this paper, path correction refers to a phase correction
that aligns the phase of channel B with that of channel A,
thereby maximizing the average output amplitude of the sum
of the two channels.

In this case, the sum of the two channels after the path
correction forms the output.

In terms of mathematics

Out[k] = ChannelA[k] + ChannelBC[k] (6)

Where ChannelBC is rotated in phase to have the highest
correlation with ChannelA.
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C. Averaging Channel A and Channel B in the quadrature-
amplitude space

Averaging is not only applicable to the IQ form of the
signal but also to its amplitude and phase. Aimed to investigate
its effect, the two channels are averaged separately by their
amplitudes and phases.

In terms of mathematics

|Out[k]| = |ChannelA[k]|+ |ChannelB[k]| (7)

argOut[k] = arg(expj argChA[k] +expj argChB[k]) (8)

D. Median filtered phase of the averaged signals

In this case, the two band-limited and path-corrected chan-
nels are averaged sample by sample. The amplitudes remain
intact, while the phase of the averaged signals is median-
filtered by three and five sample-wide median filters.

Essentially, this entire case represents a concatenation of
methods IV-B and III-B.

E. Independent Component Analysis

In earlier solutions, blind source separation techniques have
been used on GMSK signals in Automatic Identification
Systems [2], [3] and multi-input multi-output systems [4].

In this case, the band-limited and path-corrected IQ signals
are converted to an intermediate frequency, producing real sig-
nals for each channel. These real signals are processed with the
FastICA [15] algorithm, which separates the original signals
into a non-gaussian component with the highest variance and
an additional residual component, both of which are treated
as output.

F. Independent Component Analysis with median filtered
phase

In this case, the output of the FastICA algorithm is
downconverted to zero intermediate frequency again, and the
quadrature components of the results are median filtered with
three and five sample wide windows (as in case III-B).

V. RESULTS

The results were examined by both the number of success-
fully decoded packets and the bit-error rate of them. Venn
diagrams were created to visualize the independence and
performance of the algorithms based on the found packets.
The algorithms were compared by the bit-error rate of the
simultaneously found packets with the aid of correlograms.
A 23-day observation of the MRC-100 satellite signals was
conducted for evaluation, collected between October 21, 2023,
and November 12, 2023. [16]

The results can be interpreted both quantitatively and
qualitatively. We can measure how many packets with good
checksums the demodulator found after the bit-error correction
and investigate whether an algorithm found much more CRC-
correct data in a raw radio recording than other algorithms.
Furthermore, we should also note if an algorithm has found
not as many data packets as others, but a significant number of
them is unique among the listed methods. On the other hand,

we can compare specific methods by examining the quality (in
terms of the bit-error rate) of commonly found packets using
correlograms.

We used the FastICA implementation in Scikit-
Learn 1.6.0 [17] with the default parameters. The random
seed was set to 42 to ensure reproducibility.

A. Single-input methods
According to the Venn diagrams [18], no unique packets

were found when the 5- and 7-bin moving average FIR filter
was applied to the phase. To enhance the readability of Fig.
1, they were omitted.

Fig. 1 shows that most of the packets uniquely found
by these methods resulted from the median filtering of the
unwrapped phase with three and five sample-wide windows.
Using those algorithms, the number of packets increases by
101 on Channel A (4.3% increase relative to demodulating
only the raw data) and by 101 on Channel B (3.7% increase
relative to demodulating only the raw data).

Fig. 1. Comparison of single-input methods on recordings. The number inside
each bubble represents the number of packets detected using the corresponding
method. 101 of 2453 packets were missed without the proposed methods.

Fig. 2. Comparison of multi-input linear methods. 215 of 4322 packets were
missed when only the raw radio signal recordings were considered.

B. Multiple input methods
Fig. 2 shows a significant number of unique packets (514,

13.5% relative increase to demodulating only the raw data



Significant performance improvement in polarization-diversity  
GMSK reception using atypical filters

INFOCOMMUNICATIONS JOURNAL

DECEMBER 2025 • VOLUME XVII • NUMBER 4 29

4

on the two channels) when using the following methods:
averaging the IQ signals, averaging the path-corrected IQ
signals, and the ICA.

Fig. 3 shows that median filtering the phase on the averaged
IQ signals, median filtering the phase of the ICA results, and
quadrature averaging methods also significantly increase the
number of packets (551, 14.4% increase relative to demodu-
lating only the raw data on the two channels).

The summary of the highlighted methods is shown in
Fig. 4. The group “single channel methods” include the
raw recordings and the filtered phase raw recordings. The
group “mean like methods” covers the addition of the two
signals and the path-corrected addition of the two signals. The
group ”quadrature-oriented methods” includes the quadrature-
amplitude averaging method with and without a phase median
filter on its output. 10.7% of the packets were missed without
the proposed multi-path methods related to the cumulated per-
formance of raw recordings and the single-channel methods.

The Venn diagrams show the number of packets detected
by these methods from the raw recordings and measure their
contribution to the amount of data downloaded. There are
several packets that appear as a result of multiple decoding
methods, these can be compared by their quality. One objective
measure of the quality is the bit-error ratio.

Fig. 5 and 6 show correlations [19] between the bit-error
ratio of the commonly decoded packets. Co-decoded packets,
mainly scattered near the equal performance line, suggest that
the two methods strongly correlate in terms of bit-error ratios.
If most of the packets deviate below the equal performance
line, then we can conclude that co-decoded packets exhibit a
lower bit-error rate on the vertical axis. Therefore, comparing
the co-decoded packets, the method labeled horizontally (in the
row) outperforms the one labeled vertically (in the column).

The cumulative gain of these algorithms is 611 packets
(16% relative to the packets from the non-preprocessed record-
ings). The Venn diagram and the correlograms both show that
these methods are partly independent.

C. Processing time

The implementation was done in NumPy [20] environment.
For one – approximately 10 minutes long – pass of the MRC-
100 satellite, evaluation of all the listed methods took an hour

Fig. 3. Comparison of multi-input phase filtering methods. 551 of 4369 pack-
ets were missed without the proposed methods.

Fig. 4. Comparison of all presented methods. The number inside each bubble
represents the number of packets detected using the corresponding method
groups. Numerous packets are found only by different methods, furhermore
these methods are partly independent.

on a standard desktop computer (i7-9700KF, 30 GiB RAM),
which was less than the revisit period. Preliminary tests show
that by utilizing parallel computation methods (such as GPUs),
quasi-real-time operation is achievable.

VI. DISCUSSION

The results allow us to evaluate the effectiveness of various
methods and compare their performance. The Venn diagrams
highlight that a significant number of packets were detected
and successfully decoded exclusively by the proposed meth-
ods. Using the bit-error-rate correlograms, we can analyze the
performance of multiple methods on the common packets.
If there is no correlation between the bit-error rates, we
can infer that the algorithms were practical under different
scenarios. Conversely, a high correlation would suggest that
the two methods perform with similar efficiency. Additionally,
correlograms where points fall consistently above or below the
equal bit-error-ratio line indicate that one method outperforms
the other in terms of bit-error rate.

As Fig. 5 shows, the seven bin wide windows underper-
formed the other methods according to bit-error-ratios. Also,
Fig. 1 shows that only two new data packets were detected
using the seven-wide filters. This further suggests that more
than five wide windows could be omitted, most probably due
to intersymbol interference.

Although single-channel algorithms are easy to implement
in software-defined radio systems, the now-rare hardware
radios might need further adjustments or upgrades. Applying
multichannel methods to polarity-diverse reception stations
with coherent sampling radio is also straightforward.

VII. CONCLUSION

In this paper, we investigated the performance of different
atypical filters in a real environment on GMSK signals from
space. Furthermore, we introduced and compared trivial and
non-trivial polarization diversity methods. The FastICA algo-
rithm and median filtering of signal phases are highly adapt-
able for use in diverse reception systems and recommended for
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Channel B
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Fig. 5. Correlation between the bit-error rate in different single-input methods. The vertical and horizontal scales range from 0 to 20% on every subgraph,
indicating the bit-error ratio. The horizontal axis is labeled along the same column; the vertical axis is labeled along the same row. A dashed equal-performance
line is plotted for reference. The bottom-left corner contains the packets without bit error. This shows that the three sample long median filtering does not
alter the BER for the co-found packets. The upper triangle shows how many co-found packets have better BER in the method named along the row (first
number) and how many are named along the column (second number).

Channel B
raw record 164  /  1483

ICA with median
filtered phase

666  /  1029

1868  /  424

IQ average after
path-correction

917  /  544

1613  /  240

1191  /  477

IQ average

1040  /  780

2438  /  65

2356  /  72

1217  /  606

Median filtered phase
on path corrected

IQ average

950  /  862

2331  /  154

2168  /  240

1065  /  810

131  /  2192

Quadrature-
amplitude
average

Fig. 6. Correlation between the bit-error-rate in different multi-input methods. Square-like scatter plot indicates independency, while triangle like ones indicate
better BER using one method than the other.

adaptation in existing systems. While ICA effectively covers
the problem of multi-antenna receptions as a clear use case,
the underlying mechanism of median filtering is less clear and
requires further research. Other algorithms were also found
to be useful, though less effective. With sufficient processing
time, a ground station could apply all these methods to the
received signals to gather more data. In the future, other
blind source separation algorithms, such as JADE or Infomax,
should be considered and compared. In summary, implement-
ing these techniques significantly increased the volume of
data downloaded in the system by 16% as described above.
These algorithms (especially the single-channel ones) can be
easily implemented and integrated on GMSK receiver sites to
increase downloading performance.
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Abstract—High-accuracy automatic modulation classification 
(AMC) is essential for spectrum monitoring and interference- 
aware access in future 6G systems [1]. We propose AMC-
Transformer, which tokenizes raw I/Q sequences into fixed- 
length patches, augments them with learnable positional 
embeddings, and applies multi-layer, multi-head self-attention 
to capture global temporal–spatial correlations without 
handcrafted features or convolutions. On RadioML2018.01A, 
our model achieves 98.8% accuracy in the high-SNR regime 
(SNR at least 10 dB), showing higher accuracy than a CNN and a 
ResNet reimplementation by 4.44% and 1.96% in relative terms; 
averaged across all SNRs, it also improves upon MCformer, 
CNN, and ResNet baselines. Consistent gains are observed on 
the RadioML2016.10A dataset, further validating robustness 
across benchmarks. Ablations on depth, patch size, and head 
count provide practical guidance under different SNR regimes 
and compute budgets. These results demonstrate the promise 
of transformer-based AMC for robust recognition in complex 
wireless environments.

Index Terms—Modulation Recognition, Deep Learning, 
Transformer, Attention Mechanism, IQ Signal.

AMC-Transformer: Automatic Modulation 
Classification based on Enhanced Attention Model

Yuewen Xu

1

AMC-Transformer: Automatic Modulation
Classification based on Enhanced Attention Model

Yuewen Xu

Department of Engineering, The University of Bristol, Bristol, UK

tu23081@bristol.ac.uk

Abstract—High-accuracy automatic modulation classification
(AMC) is essential for spectrum monitoring and interference-
aware access in future 6G systems [1]. We propose AMC-
Transformer, which tokenizes raw I/Q sequences into fixed-
length patches, augments them with learnable positional
embeddings, and applies multi-layer, multi-head self-attention
to capture global temporal–spatial correlations without
handcrafted features or convolutions. On RadioML2018.01A,
our model achieves 98.8% accuracy in the high-SNR regime
(SNR at least 10 dB), showing higher accuracy than a CNN
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upon MCformer, CNN, and ResNet baselines. Consistent
gains are observed on the RadioML2016.10A dataset, further
validating robustness across benchmarks. Ablations on depth,
patch size, and head count provide practical guidance under
different SNR regimes and compute budgets. These results
demonstrate the promise of transformer-based AMC for
robust recognition in complex wireless environments.

Index Terms—Modulation Recognition, Deep Learning,
Transformer, Attention Mechanism, IQ Signal.

I. INTRODUCTION
Wireless signal recognition—also known as

automatic modulation classification (AMC)—is pivotal
across military and civilian scenarios. It enables
identifying modulation types from raw RF signals
under limited prior knowledge, supporting dynamic
spectrum access (DSA), interference detection,
spectrum monitoring, and spectrum coexistence.
Moving toward 6G, AMC becomes even more critical
for improving spectrum utilization, robustness, and
low-overhead (pilot-free) communications. [2–3]

Classical AMC approaches fall broadly into
likelihood-based (LB) and feature-based (FB) families.
LB methods (e.g., ML/EM-assisted inference,
HLRT/QHLRT variants) can achieve high accuracy in
favorable conditions but are often sensitive to channel
state information and carry significant complexity. FB
methods draw on expert features such as
cyclostationary statistics and higher-order cumulants,
offering lower complexity and near-optimal
performance for lower-order schemes, yet they struggle
in multipath, overlapping sources, and high-order
modulations. [4–7]

Deep learning (DL) has boosted AMC in both
supervised CNNs and newer foundation-model-style

approaches [8]. CNNs exploit multi-scale structures
and constellation geometry effectively (e.g.,
constellation-image CNNs; robust multi-scale designs
under synthetic channel impairments). ResNet-style
networks further mitigate vanishing gradients and
improve feature reuse; lightweight/binarized ResNets
demonstrate competitive accuracy–efficiency trade-offs
for edge deployment. [9–13]

Transformers (TRN) provide an alternative by
modeling long range dependencies via self-attention
with efficient parallelism. Beyond their foundational
success, time series surveys highlight their strengths
for sequence tasks. In AMC, Transformer variants such
as MCformer, CNN Transformer hybrids, and CNN
Transformer GNN adaptively weight multi scale
patterns and improve robustness and scalability in non-
cooperative settings [14-18].

We propose the AMC-Transformer, a transformer-
based model designed for time-series IQ samples to
improve AMC accuracy. Key contributions include:
1. Learnable Embedding of RF Signal Patches: To

represent the time-series nature of raw IQ samples, we
design a learnable embedding strategy that combines patch
and positional information. RF signals are segmented into
fixed-size patches, mapped into the feature space via an
MLP, and augmented with positional embeddings to
preserve temporal dependencies, enabling effective
attention-based modeling.

2. Attention Mechanism on Raw Time-Series IQ Data:
We apply self-attention directly to raw IQ data, enabling
the model to capture long-range dependencies. This enables
the model to capture long-range dependencies and
temporal–spatial correlations, extracting global
representations without handcrafted features or
convolutional operations, thus overcoming the locality
limitations of CNN-based methods.

3. Enhanced Diversity and Robustness with Multi-Head
Attention: To improve generalization under varying SNR
conditions, we employ multi-head attention, allowing
feature extraction in multiple subspaces. This enriches
representation diversity and enhances robustness against
noise and channel impairments, improving classification
reliability in realistic wireless environments.

4. Competitive performance on public RadioML datasets:
On RadioML2018.01A [19] we obtain 98.8 percent
accuracy at SNR at least 10 dB and observe higher average
accuracy than MCformer, CNN, and ResNet. Similar trends
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appear on RadioML2016.10a [19]. We also provide
ablations on depth, patch size, and head count.

The proposed AMC-Transformer provides a robust
attention-based solution for AMC, demonstrating
competitive performance across multiple modulation
scenarios. At the same time, the increased model
complexity introduced by attention mechanisms highlights
an inherent accuracy–complexity trade-off, which is
particularly relevant for practical 6G deployments. Despite
these advantages, transformer models face challenges such
as quadratic complexity, higher data requirements, and
limited invariance to signal distortions. To enhance
practicality and scalability, future work will focus on
efficient attention mechanisms, hybrid Conv–Attention
architectures, and RF-specific data augmentation strategies.

The paper is structured as follows: Section 2
summarizes related research. Section 3 details the
AMC-Transformer architecture. Section 4 presents
evaluation results. Section 5 concludes the paper.

II. RELATED WORK
Deep learning–based AMC has advanced

markedly in recent years. On the CNN side, one-
dimensional residual networks for I/Q sequences and
complex-valued convolutions can extract
discriminative features while keeping parameter counts
manageable; for example, ResNet-style variants
tailored to wireless signals and complex depthwise-
separable CNNs report strong results on RadioML
benchmarks [20,21]. Meanwhile, MCNet—using
asymmetric kernels and skip connections—achieves
about 93% accuracy at high SNR (20 dB) on
RadioML2018.01A, illustrating the upper bound of
CNNs in high-SNR regimes [22]. RNN/CRNN and
LSTM models have also been used to capture long-
range dependencies, but their generalization to unseen
channel conditions and modulation parameters remains
limited [23–25]. RadioML datasets (e.g.,
RML2018.01A, RML2016.10a/10b) continue to be the
standard benchmarks in this area.

Transformer-based AMC has recently evolved in
three directions. First, sequence models operating
directly on raw I/Q: Cai et al. apply a Transformer to
AMC and report consistent gains over CNN/LSTM
baselines—especially at low SNR—with fewer
parameters; MCformer embeds each (I, Q) sample via a
lightweight 1-D convolution and stacks Transformer
encoders, with the notable observation that omitting
positional encodings works better; it attains state-of-
the-art accuracy on RML2016.10b with only ~10k–72k
parameters [16]. Second, hybrid CNN–Transformer
designs: CTGNet/CTRNet use convolutions for local
invariances and self-attention for long-range
dependencies, improving robustness under multiple
impairments and non-idealities [26]. Third, ViT on 2-D
signal representations: by converting signals to
constellation images, MobileViT and related ViT
variants improve robustness under noise without an
explicit denoising pipeline (e.g., NMformer) [27,28].

In addition, scalability and label efficiency have
been advanced via meta-learning and semi/self-

supervision: Meta-Transformer provides a general few-
shot adaptation framework for previously unseen
modulations, and subsequent studies further validate
meta-learning for cross-domain generalization [29,30].
Transformer-based contrastive semi-supervised
learning and self-supervised RF representation learning
(e.g., Self-Contrastive, NextG RF SSL) substantially
reduce labeled-data requirements while maintaining
accuracy in low-label regimes [31–33].

III. MODEL DESCRIPTION
The AMC-Transformer is tailored to 2-D in-

phase/quadrature (IQ) signals and addresses two
challenges that limit conventional CNN/ResNet models
on RF data: (i) high-frequency noise and (ii) long-range
temporal dependencies. As summarized in Fig. 1, the
model converts a 2 × 1024 IQ sample into fixed-length
tokens via patching, augments them with positional
encodings, and processes the sequence using a
Transformer encoder whose output feeds an MLP head
for prediction.

A. Input Processing
We adopted a minimal, task-compatible

preprocessing pipeline per sample 2×1024 : including:
(i) per-channel DC offset removal, (ii) RMS
normalization across I/Q channels, and (iii) channel-
wise z-score standardization using statistics estimated
from the training split only. The same normalization
parameters are then applied to validation and test data
to avoid information leakage. Explicit filtering or
denoising is intentionally avoided to preserve
modulation-discriminative spectral and phase
characteristics.
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where (, ) are the channel-wise mean and
standard deviation estimated on the training split after
steps (i)–(ii) and then fixed for validation and test sets,
and  is a small constant for numerical stability.

B. Overall Pipeline
The preprocessed signal � is treated as a two-

channel 2-D array 2 × 1024 . We tokenize it into  =
1024 non-overlapping 2 ×  patches (covering both I
and Q to retain I/Q coherence), add learned positional
embeddings, and process tokens with a stack of
Transformer encoder blocks (multi-head self-attention
and MLP, each preceded by layer normalization and
followed by dropout). An MLP head produces the final
logits. Fig. 1 is updated to include the preprocessing
block.
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appear on RadioML2016.10a [19]. We also provide
ablations on depth, patch size, and head count.
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architectures, and RF-specific data augmentation strategies.
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evaluation results. Section 5 concludes the paper.
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separable CNNs report strong results on RadioML
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encoders, with the notable observation that omitting
positional encodings works better; it attains state-of-
the-art accuracy on RML2016.10b with only ~10k–72k
parameters [16]. Second, hybrid CNN–Transformer
designs: CTGNet/CTRNet use convolutions for local
invariances and self-attention for long-range
dependencies, improving robustness under multiple
impairments and non-idealities [26]. Third, ViT on 2-D
signal representations: by converting signals to
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variants improve robustness under noise without an
explicit denoising pipeline (e.g., NMformer) [27,28].
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(i) per-channel DC offset removal, (ii) RMS
normalization across I/Q channels, and (iii) channel-
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parameters are then applied to validation and test data
to avoid information leakage. Explicit filtering or
denoising is intentionally avoided to preserve
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Fig. 3.Multi-Head Attention
restoring the model width  = 32 . Each encoder block
applies LayerNorm, multi-head self-attention, dropout,
and an MLP with residual connections (see Fig. 3). The
encoder output is passed to an MLP head (linear layers
with normalization/dropout) to obtain pre-logits and
final predictions (e.g., via softmax for classification)
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including delay spread, carrier frequency offset, and
thermal noise. It covers 24 modulation types across 26 SNR
levels from −20 dB to 30 dB in 2 dB steps. Each SNR level
contains 4,096 signal examples, yielding a total of
2,555,904 samples, each represented as complex IQ (in-
phase and quadrature) sequences. In addition to training
and validation on 2018.01A, we perform cross-dataset
evaluation on RadioML 2016 to assess the algorithm’s
robustness and generalization under distribution shifts and
differing channel conditions.

To prevent sample leakage across SNR conditions, we
perform a group-aware split of RadioML2018.01A. Let
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each waveform be indexed by its modulation  ∈  ,
SNR s ∈ S , and within-class index i ∈ {0, …, 4095} . We
define a group as

, = {(, , )|}
i.e., the same base waveform rendered at all SNRs for a

given modulation. Splitting is conducted at the group level
so that no group , ​ appears in more than one subset,
eliminating leakage where the same underlying waveform
at different SNRs would otherwise straddle train and
evaluation sets.

We adopt a group-aware split to avoid cross-SNR
leakage: within each modulation, base examples are
grouped across all SNRs and treated as indivisible units.
Groups are randomly assigned to 70% / 20% / 10%
train/validation/test with a fixed seed (48), stratified by
modulation to preserve class priors. Because each group
spans the full SNR set, the SNR distribution is preserved
across splits by construction. At the per-(modulation, SNR)
level this yields approximately 2867 / 819 / 410 samples for
train/val/test, respectively (rounded from 4096 per pair).

Class IDs are remapped to [0, 23] following the fixed
24-class list in Sec. A, ensuring a stable label order aligned
with the classifier’s output layer.

We apply lightweight, task-compatible preprocessing: (i)
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MCformer[16]) and our AMC-Transformer under the same
preprocessing and training protocol. All models take
identical inputs (I/Q, shape 2×1024), use the same loss
(multiclass cross-entropy), optimizer and learning-rate
schedule, and share the same group-aware data split.
Specifically, within each modulation, base examples are
grouped across all SNRs, and each group is assigned
wholly to train/validation/test (70/20/10), which prevents
cross-SNR leakage while preserving class priors. Early
stopping and weight decay are applied to mitigate
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CNN: A 2D ConvNet consisting of four sequential
stages including ABlock, BBlock, CBlock1, and CBlock2,
followed by global average pooling and a 24-way classifier.
The model contains 66,008 parameters.

ResNet: A 1D ResNet with residual connections,
featuring an initial Conv1D layer followed by 5 residual
blocks with progressive channel expansion from 32 to 64 to
128 channels. The architecture uses kernel size 7, batch
normalization, and ReLU activations. The final layers
consist of global average pooling followed by dropout and
a dense classifier. The model contains 534,104 parameters.

MCformer: A hybrid architecture combining Conv1D
with 8 channels and 4 lightweight encoder blocks, followed
by temporal aggregation to 4 tokens. The output is
processed through flattening, a 128-dimensional fully
connected layer, and finally a 24-dimensional classification

layer. The parameter counts increases from 10,050 for the
original 10-class head to 11,856 for 24 classes, with the
increase attributed to the expanded classifier.

AMC-Transformer (ours): The input is reshaped to
dimensions 2×1024×1 and divided into 64 patches of 32
dimensions each. The architecture employs an embedding
dimension of 96 with positional encoding, followed by 6
encoder layers with 8 attention heads each. The final
process consists of flattening followed by a multi-layer
perception with layer dimensions 6144, 2048, 1024, and 24.
The model contains 15,834,680 parameters.

All models are trained using the AdamW optimizer
with a learning rate of 1e-3, cosine decay scheduling with
5-epoch warm-up, weight decay of 1e-4, and gradient
clipping at 1.0. The default batch size is 256, with
additional results reported using batch size 800. Dropout of
0.1 is applied to MLP and classifier layers. Input data
undergoes z-score normalization with no data augmentation
applied. Hardware specifications, random seeds, and library
versions are documented in the Appendix. All code and
training scripts are provided to ensure reproducibility.
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Over the full SNR range, AMC-Transformer achieves
an average accuracy of 63.58%, higher than MCformer at
59.02%, CNN at 59.84%, and ResNet at 61.96% (Fig. 4.) In
the high-SNR region (SNR of at least 10 dB), AMC-
Transformer reaches 98.8% and exhibits a clear saturation
plateau, higher than MCformer at 92.29%, CNN at 94.50%,
and ResNet at 96.79%. In the low-SNR region (SNR at
most -8 dB), AMC-Transformer attains 20.97%, higher
than MCformer at 19.19%, CNN at 18.70%, and ResNet at
19.37%. In the mid-SNR range from 2 to 8 dB, AMC-
Transformer averages 84.20%, higher than MCformer at
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restoring the model width  = 32 . Each encoder block
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and an MLP with residual connections (see Fig. 3). The
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IV. EXPERIMENT AND RESULTS
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2,555,904 samples, each represented as complex IQ (in-
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Fig. 4. Accuracy versus SNR on the RML2018.01A dataset
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each waveform be indexed by its modulation  ∈  ,
SNR s ∈ S , and within-class index i ∈ {0, …, 4095} . We
define a group as

, = {(, , )|}
i.e., the same base waveform rendered at all SNRs for a

given modulation. Splitting is conducted at the group level
so that no group , ​ appears in more than one subset,
eliminating leakage where the same underlying waveform
at different SNRs would otherwise straddle train and
evaluation sets.

We adopt a group-aware split to avoid cross-SNR
leakage: within each modulation, base examples are
grouped across all SNRs and treated as indivisible units.
Groups are randomly assigned to 70% / 20% / 10%
train/validation/test with a fixed seed (48), stratified by
modulation to preserve class priors. Because each group
spans the full SNR set, the SNR distribution is preserved
across splits by construction. At the per-(modulation, SNR)
level this yields approximately 2867 / 819 / 410 samples for
train/val/test, respectively (rounded from 4096 per pair).

Class IDs are remapped to [0, 23] following the fixed
24-class list in Sec. A, ensuring a stable label order aligned
with the classifier’s output layer.

We apply lightweight, task-compatible preprocessing: (i)
per-sample DC offset removal on I/Q channels; (ii) per-
sample RMS normalization (AGC-style) to unit average
power across I/Q; and (iii) channel-wise z-score
standardization using training-split statistics (, ) only.
The same normalization parameters are then applied to
validation and test data to avoid information leakage.
Random seeds and the exact split indices are fixed and
recorded to ensure reproducibility.

B. Baselines and training protocol
We re-train all baselines (CNN[34], ResNet[3],

MCformer[16]) and our AMC-Transformer under the same
preprocessing and training protocol. All models take
identical inputs (I/Q, shape 2×1024), use the same loss
(multiclass cross-entropy), optimizer and learning-rate
schedule, and share the same group-aware data split.
Specifically, within each modulation, base examples are
grouped across all SNRs, and each group is assigned
wholly to train/validation/test (70/20/10), which prevents
cross-SNR leakage while preserving class priors. Early
stopping and weight decay are applied to mitigate
overfitting.

CNN: A 2D ConvNet consisting of four sequential
stages including ABlock, BBlock, CBlock1, and CBlock2,
followed by global average pooling and a 24-way classifier.
The model contains 66,008 parameters.

ResNet: A 1D ResNet with residual connections,
featuring an initial Conv1D layer followed by 5 residual
blocks with progressive channel expansion from 32 to 64 to
128 channels. The architecture uses kernel size 7, batch
normalization, and ReLU activations. The final layers
consist of global average pooling followed by dropout and
a dense classifier. The model contains 534,104 parameters.

MCformer: A hybrid architecture combining Conv1D
with 8 channels and 4 lightweight encoder blocks, followed
by temporal aggregation to 4 tokens. The output is
processed through flattening, a 128-dimensional fully
connected layer, and finally a 24-dimensional classification

layer. The parameter counts increases from 10,050 for the
original 10-class head to 11,856 for 24 classes, with the
increase attributed to the expanded classifier.

AMC-Transformer (ours): The input is reshaped to
dimensions 2×1024×1 and divided into 64 patches of 32
dimensions each. The architecture employs an embedding
dimension of 96 with positional encoding, followed by 6
encoder layers with 8 attention heads each. The final
process consists of flattening followed by a multi-layer
perception with layer dimensions 6144, 2048, 1024, and 24.
The model contains 15,834,680 parameters.

All models are trained using the AdamW optimizer
with a learning rate of 1e-3, cosine decay scheduling with
5-epoch warm-up, weight decay of 1e-4, and gradient
clipping at 1.0. The default batch size is 256, with
additional results reported using batch size 800. Dropout of
0.1 is applied to MLP and classifier layers. Input data
undergoes z-score normalization with no data augmentation
applied. Hardware specifications, random seeds, and library
versions are documented in the Appendix. All code and
training scripts are provided to ensure reproducibility.
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Over the full SNR range, AMC-Transformer achieves
an average accuracy of 63.58%, higher than MCformer at
59.02%, CNN at 59.84%, and ResNet at 61.96% (Fig. 4.) In
the high-SNR region (SNR of at least 10 dB), AMC-
Transformer reaches 98.8% and exhibits a clear saturation
plateau, higher than MCformer at 92.29%, CNN at 94.50%,
and ResNet at 96.79%. In the low-SNR region (SNR at
most -8 dB), AMC-Transformer attains 20.97%, higher
than MCformer at 19.19%, CNN at 18.70%, and ResNet at
19.37%. In the mid-SNR range from 2 to 8 dB, AMC-
Transformer averages 84.20%, higher than MCformer at
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Over the full SNR range, AMC-Transformer achieves
an average accuracy of 63.58%, higher than MCformer at
59.02%, CNN at 59.84%, and ResNet at 61.96% (Fig. 4.) In
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plateau, higher than MCformer at 92.29%, CNN at 94.50%,
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77.07% and CNN at 77.66%, and essentially on par with
ResNet at 83.32%.

Overall, AMC-Transformer maintains robustness at
low SNR and sustains a consistent performance margin as
SNR increases, with a near-saturated accuracy around
98.8% on RML2018.01A in the high-SNR region.

C. Robustness Analyses
1. Accuracy Across SNRs on RML2016.10a

RML2016.10a (Fig. 5). Over the full SNR range, the
average accuracies of AMC-Transformer and MCformer
are essentially identical (63.48% and 63.48%). In the high-
SNR region (SNR of at least 10 dB), AMC-Transformer
attains an average accuracy of 93.51%, which is higher than
MCformer by 0.82 percentage points and higher than CNN
and ResNet by 3.00 and 6.37 percentage points,
respectively. In the low-SNR region (SNR at most -10 dB),
AMC-Transformer reaches 29.12%, comparable to
MCformer at 29.06% and higher than CNN at 25.68% and
ResNet at 23.70%

Fig. 5. Evaluation on RML2016.10a Across SNRs

2. Macro-F1 Stability Over Random Seeds
Having established performance trends across SNRs,

we next test whether these gains persist under different
random initializations. To address the concern that the
proposed model only achieves high accuracy under
favorable conditions, we further evaluate its robustness
across the full SNR range. Fig. 6 shows the Macro-F1
scores from −20 dB to 30 dB, averaged over five
independent runs with different random seeds. In addition
to the high-SNR regime (20–30 dB), where AMC-
Transformer attains near-saturation performance, the model
maintains competitive robustness under mid and low SNR
conditions. For example, at -10 dB and 0 dB, the Macro-F1
remains above 10.8% and 57.4%, respectively, with narrow
confidence intervals, indicating stable generalization across
noise levels. This result confirms that the performance of
AMC-Transformer is not restricted to high SNRs but
extends to more challenging communication environments
as well.

Fig. 6. Robustness to Random Initialization: Macro-F1 over
Five Seeds.

3. Per-Class F1 Across SNRs
To further examine the robustness of the AMC-

Transformer, we report per-class F1-scores across different
SNR levels. The horizontal axis corresponds to SNR values
(−20 dB to 30 dB), the vertical axis lists the 24 modulation
types, and the color intensity indicates the F1-score.

Overall, fig.7 shows that F1-scores consistently
increase with SNR. Low-order modulations such as BPSK
and QPSK remain relatively robust even at low SNR (−10
dB), whereas higher-order QAM schemes suffer significant
degradation under noise but quickly recover above 0 dB.
Importantly, the model maintains competitive per-class F1
performance in the mid-SNR regime (0–10 dB),
demonstrating that its effectiveness is not limited to high
SNR conditions.

Fig. 7. Per-class F1-scores across SNR levels

D. Analysis of AMC-Transformer Model Parameter
Tuning

To systematically evaluate the impact of key
hyperparameters on AMC-Transformer performance, we
conducted a parameter sensitivity study across four critical
dimensions: batch size, transformer layer depth, patch size,
and number of attention heads. The baseline configuration
used a learning rate of 0.001, a batch size of 256, 100
training epochs, three transformer layers, a patch size of 32,
and two attention heads, achieving an overall accuracy of
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Table 1.Model and architecture overview
Model Params Tokens

/ Patch Heads Dim Blocks

CNN 66,008 – – – A/B/C ×4 →
GAP → FC

ResNet-1D 534,104
Conv1D →
5×ResBlock →
GAP → FC

MCformer-
24
(reimpl.)

11,856 T-agg
→ 4 – – Conv1D →

4×Enc → FC

AMC-
Trans
(ours)

15,834,680 64 / 16 8 96 6×(MHA+FFN)
→MLP

Fig. 4. Accuracy versus SNR on the RML2018.01A
dataset

Over the full SNR range, AMC-Transformer achieves
an average accuracy of 63.58%, higher than MCformer at
59.02%, CNN at 59.84%, and ResNet at 61.96% (Fig. 4.) In
the high-SNR region (SNR of at least 10 dB), AMC-
Transformer reaches 98.8% and exhibits a clear saturation
plateau, higher than MCformer at 92.29%, CNN at 94.50%,
and ResNet at 96.79%. In the low-SNR region (SNR at
most -8 dB), AMC-Transformer attains 20.97%, higher
than MCformer at 19.19%, CNN at 18.70%, and ResNet at
19.37%. In the mid-SNR range from 2 to 8 dB, AMC-
Transformer averages 84.20%, higher than MCformer at
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77.07% and CNN at 77.66%, and essentially on par with
ResNet at 83.32%.

Overall, AMC-Transformer maintains robustness at
low SNR and sustains a consistent performance margin as
SNR increases, with a near-saturated accuracy around
98.8% on RML2018.01A in the high-SNR region.

C. Robustness Analyses
1. Accuracy Across SNRs on RML2016.10a

RML2016.10a (Fig. 5). Over the full SNR range, the
average accuracies of AMC-Transformer and MCformer
are essentially identical (63.48% and 63.48%). In the high-
SNR region (SNR of at least 10 dB), AMC-Transformer
attains an average accuracy of 93.51%, which is higher than
MCformer by 0.82 percentage points and higher than CNN
and ResNet by 3.00 and 6.37 percentage points,
respectively. In the low-SNR region (SNR at most -10 dB),
AMC-Transformer reaches 29.12%, comparable to
MCformer at 29.06% and higher than CNN at 25.68% and
ResNet at 23.70%

Fig. 5. Evaluation on RML2016.10a Across SNRs

2. Macro-F1 Stability Over Random Seeds
Having established performance trends across SNRs,

we next test whether these gains persist under different
random initializations. To address the concern that the
proposed model only achieves high accuracy under
favorable conditions, we further evaluate its robustness
across the full SNR range. Fig. 6 shows the Macro-F1
scores from −20 dB to 30 dB, averaged over five
independent runs with different random seeds. In addition
to the high-SNR regime (20–30 dB), where AMC-
Transformer attains near-saturation performance, the model
maintains competitive robustness under mid and low SNR
conditions. For example, at -10 dB and 0 dB, the Macro-F1
remains above 10.8% and 57.4%, respectively, with narrow
confidence intervals, indicating stable generalization across
noise levels. This result confirms that the performance of
AMC-Transformer is not restricted to high SNRs but
extends to more challenging communication environments
as well.

Fig. 6. Robustness to Random Initialization: Macro-F1 over
Five Seeds.

3. Per-Class F1 Across SNRs
To further examine the robustness of the AMC-

Transformer, we report per-class F1-scores across different
SNR levels. The horizontal axis corresponds to SNR values
(−20 dB to 30 dB), the vertical axis lists the 24 modulation
types, and the color intensity indicates the F1-score.

Overall, fig.7 shows that F1-scores consistently
increase with SNR. Low-order modulations such as BPSK
and QPSK remain relatively robust even at low SNR (−10
dB), whereas higher-order QAM schemes suffer significant
degradation under noise but quickly recover above 0 dB.
Importantly, the model maintains competitive per-class F1
performance in the mid-SNR regime (0–10 dB),
demonstrating that its effectiveness is not limited to high
SNR conditions.

Fig. 7. Per-class F1-scores across SNR levels

D. Analysis of AMC-Transformer Model Parameter
Tuning

To systematically evaluate the impact of key
hyperparameters on AMC-Transformer performance, we
conducted a parameter sensitivity study across four critical
dimensions: batch size, transformer layer depth, patch size,
and number of attention heads. The baseline configuration
used a learning rate of 0.001, a batch size of 256, 100
training epochs, three transformer layers, a patch size of 32,
and two attention heads, achieving an overall accuracy of
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58.30% and an average accuracy of 89.31% at SNR above
10 dB.

During tuning, only one parameter was varied at a time,
while the others were fixed at the baseline values. This
single-factor analysis is adopted to provide interpretable
sensitivity trends for each design choice under controlled
conditions, while we acknowledge that hyperparameters
may be coupled. Joint hyperparameter optimization (e.g.,
Bayesian optimization) could be explored in future work to
more efficiently search the coupled space; however, the
focus here is to characterize the main effects and practical
ranges of key parameters. This single-factor analysis is
adopted to provide interpretable sensitivity trends for each
design choice under controlled conditions, while we
acknowledge that hyperparameters may be coupled. Joint
hyperparameter optimization (e.g., Bayesian optimization)
could be explored in future work to more efficiently search
the coupled space; however, the focus here is to
characterize the main effects and practical ranges of key
parameters.

Fig. 8. Hyperparameter sensitivity analysis of AMC-
Transformer. (a) Batch size vs. Accuracy; (b) Transformer
layer depth vs. Accuracy; (c) Patch size vs. Accuracy; (d)

Number of attention heads vs. accuracy
In addition to accuracy, varying the number of layers and
attention heads directly changes model complexity
(parameter count and compute), whereas batch size mainly
affects optimization dynamics and patch size trades
temporal resolution against sequence length. Therefore, the
following results are discussed from both accuracy and
complexity perspectives, which is particularly relevant for
low-overhead 6G deployment scenarios.

1) Batch Size
Table 1 shows the relationship between batch size and

classification accuracy. A baseline batch size of 256 yields
58.30 percent accuracy. Increasing the batch size gives only
marginal gains, with peak performance observed around the
512–732 range; further increases lead to a slight
degradation. This suggests the model benefits from more
stable gradient updates, but overly large batches reduce
helpful stochasticity.

2) Patch Size
Patch size strongly influences feature resolution. As

shown in Fig. 8(c), reducing the patch size from 32 to 16
markedly improves accuracy to 92.57 percent, while a
patch size of 8 produces 90.00 percent under baseline
conditions. Larger patch sizes such as 64 degrade

performance to 87.52 percent due to loss of fine-grained
temporal features.

3) Transformer Layer Depth
Fig. 8(b) illustrates that accuracy improves steadily as

the number of transformer layers increases, up to 10 layers
where it reaches about 91.64 percent. Beyond this point,
performance plateaus or slightly decreases, reflecting a
trade-off between representational capacity and the risk of
overfitting. Moreover, deeper stacks increase parameters
and attention compute roughly linearly with depth, so the
marginal accuracy gains beyond 6–10 layers should be
weighed against the added complexity.

4) Multi-Head Attention
The number of attention heads has a pronounced effect.

As seen in Fig. 8(d), accuracy rises quickly from 2 heads,
where the baseline is 58.30 percent, to 6 heads, which
achieves 92.57 percent. It then stabilizes around 8 to 14
heads near 90.8 percent and declines slightly thereafter,
indicating that a moderate number of heads captures
diverse signal dependencies without introducing
redundancy. Since multi-head attention increases projection
parameters and compute, the observed saturation beyond 8–
14 heads indicate diminishing returns in accuracy relative
to complexity.

Combining the best settings from each dimension —
batch size 512, transformer layers 6, patch size 16, and
attention heads 8 — yields an overall accuracy of 63.87
percent and an average accuracy of 98.80 percent at SNR
greater than 10 dB (as shown in Table 2). This represents a
notable improvement over the baseline, with an absolute
overall gain of 5.57 percentage points and a gain of 9.49
points in the high-SNR regime.

Table 2. Effect of Individual Parameter Optimization on
Model Accuracy

Parameter Baseline Best Value Accuracy
(Overall)

Accuracy
(SNR > 10
dB)

Batch Size 256 512 58.30 →
59.50

89.31 →
90.33

Layers 3 6 58.30 →
61.64

89.31 →
91.64

Patch Size 32 16 58.30 →
62.57

89.31 →
92.57

Heads 2 8 58.30 →
61.23

89.31 →
94.80

Combined –

(6 layers,
8 heads,
patch 16,
batch 512)

63.87 98.80

To further illustrate the effect of hyperparameter
optimization, Figure 9 presents the classification accuracy
across the full SNR range for both the baseline and
optimized configurations. While the baseline model
saturates around 90% accuracy at high SNR levels, the
optimized AMC-Transformer achieves up to 98.8%
accuracy at SNR of at least 10 dB and shows consistent
improvements in the mid-SNR range from 0 to 10 dB. This
confirms that the performance gain is not restricted to very
high SNR conditions, addressing concerns about robustness.
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58.30% and an average accuracy of 89.31% at SNR above
10 dB.

During tuning, only one parameter was varied at a time,
while the others were fixed at the baseline values. This
single-factor analysis is adopted to provide interpretable
sensitivity trends for each design choice under controlled
conditions, while we acknowledge that hyperparameters
may be coupled. Joint hyperparameter optimization (e.g.,
Bayesian optimization) could be explored in future work to
more efficiently search the coupled space; however, the
focus here is to characterize the main effects and practical
ranges of key parameters. This single-factor analysis is
adopted to provide interpretable sensitivity trends for each
design choice under controlled conditions, while we
acknowledge that hyperparameters may be coupled. Joint
hyperparameter optimization (e.g., Bayesian optimization)
could be explored in future work to more efficiently search
the coupled space; however, the focus here is to
characterize the main effects and practical ranges of key
parameters.
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Number of attention heads vs. accuracy
In addition to accuracy, varying the number of layers and
attention heads directly changes model complexity
(parameter count and compute), whereas batch size mainly
affects optimization dynamics and patch size trades
temporal resolution against sequence length. Therefore, the
following results are discussed from both accuracy and
complexity perspectives, which is particularly relevant for
low-overhead 6G deployment scenarios.

1) Batch Size
Table 1 shows the relationship between batch size and

classification accuracy. A baseline batch size of 256 yields
58.30 percent accuracy. Increasing the batch size gives only
marginal gains, with peak performance observed around the
512–732 range; further increases lead to a slight
degradation. This suggests the model benefits from more
stable gradient updates, but overly large batches reduce
helpful stochasticity.

2) Patch Size
Patch size strongly influences feature resolution. As

shown in Fig. 8(c), reducing the patch size from 32 to 16
markedly improves accuracy to 92.57 percent, while a
patch size of 8 produces 90.00 percent under baseline
conditions. Larger patch sizes such as 64 degrade

performance to 87.52 percent due to loss of fine-grained
temporal features.

3) Transformer Layer Depth
Fig. 8(b) illustrates that accuracy improves steadily as

the number of transformer layers increases, up to 10 layers
where it reaches about 91.64 percent. Beyond this point,
performance plateaus or slightly decreases, reflecting a
trade-off between representational capacity and the risk of
overfitting. Moreover, deeper stacks increase parameters
and attention compute roughly linearly with depth, so the
marginal accuracy gains beyond 6–10 layers should be
weighed against the added complexity.

4) Multi-Head Attention
The number of attention heads has a pronounced effect.

As seen in Fig. 8(d), accuracy rises quickly from 2 heads,
where the baseline is 58.30 percent, to 6 heads, which
achieves 92.57 percent. It then stabilizes around 8 to 14
heads near 90.8 percent and declines slightly thereafter,
indicating that a moderate number of heads captures
diverse signal dependencies without introducing
redundancy. Since multi-head attention increases projection
parameters and compute, the observed saturation beyond 8–
14 heads indicate diminishing returns in accuracy relative
to complexity.

Combining the best settings from each dimension —
batch size 512, transformer layers 6, patch size 16, and
attention heads 8 — yields an overall accuracy of 63.87
percent and an average accuracy of 98.80 percent at SNR
greater than 10 dB (as shown in Table 2). This represents a
notable improvement over the baseline, with an absolute
overall gain of 5.57 percentage points and a gain of 9.49
points in the high-SNR regime.

Table 2. Effect of Individual Parameter Optimization on
Model Accuracy

Parameter Baseline Best Value Accuracy
(Overall)

Accuracy
(SNR > 10
dB)

Batch Size 256 512 58.30 →
59.50

89.31 →
90.33

Layers 3 6 58.30 →
61.64

89.31 →
91.64

Patch Size 32 16 58.30 →
62.57

89.31 →
92.57

Heads 2 8 58.30 →
61.23

89.31 →
94.80

Combined –

(6 layers,
8 heads,
patch 16,
batch 512)

63.87 98.80

To further illustrate the effect of hyperparameter
optimization, Figure 9 presents the classification accuracy
across the full SNR range for both the baseline and
optimized configurations. While the baseline model
saturates around 90% accuracy at high SNR levels, the
optimized AMC-Transformer achieves up to 98.8%
accuracy at SNR of at least 10 dB and shows consistent
improvements in the mid-SNR range from 0 to 10 dB. This
confirms that the performance gain is not restricted to very
high SNR conditions, addressing concerns about robustness.
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where the baseline is 58.30 percent, to 6 heads, which
achieves 92.57 percent. It then stabilizes around 8 to 14
heads near 90.8 percent and declines slightly thereafter,
indicating that a moderate number of heads captures
diverse signal dependencies without introducing
redundancy. Since multi-head attention increases projection
parameters and compute, the observed saturation beyond 8–
14 heads indicate diminishing returns in accuracy relative
to complexity.

Combining the best settings from each dimension —
batch size 512, transformer layers 6, patch size 16, and
attention heads 8 — yields an overall accuracy of 63.87
percent and an average accuracy of 98.80 percent at SNR
greater than 10 dB (as shown in Table 2). This represents a
notable improvement over the baseline, with an absolute
overall gain of 5.57 percentage points and a gain of 9.49
points in the high-SNR regime.

Table 2. Effect of Individual Parameter Optimization on
Model Accuracy

Parameter Baseline Best Value Accuracy
(Overall)

Accuracy
(SNR > 10
dB)

Batch Size 256 512 58.30 →
59.50

89.31 →
90.33

Layers 3 6 58.30 →
61.64

89.31 →
91.64

Patch Size 32 16 58.30 →
62.57

89.31 →
92.57

Heads 2 8 58.30 →
61.23

89.31 →
94.80

Combined –

(6 layers,
8 heads,
patch 16,
batch 512)

63.87 98.80

To further illustrate the effect of hyperparameter
optimization, Figure 9 presents the classification accuracy
across the full SNR range for both the baseline and
optimized configurations. While the baseline model
saturates around 90% accuracy at high SNR levels, the
optimized AMC-Transformer achieves up to 98.8%
accuracy at SNR of at least 10 dB and shows consistent
improvements in the mid-SNR range from 0 to 10 dB. This
confirms that the performance gain is not restricted to very
high SNR conditions, addressing concerns about robustness.

TABLE II
Effect of Individual Parameter Optimization on Model Accuracy
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Fig. 9. Accuracy versus SNR for baseline and optimized
AMC-Transformer.

To analyze the source of the performance gains, Fig. 10
and Fig. 11 contrasts class-wise confusion matrices before
and after hyperparameter optimization across SNR ranges.
At higher SNRs (10–30 dB), the optimized model
substantially reduces within-family confusion—most
notably among high-order QAM constellations (e.g., 256-
QAM), between adjacent PSK orders (16- vs. 32-PSK), and
between AM subtypes (SSB vs. DSB). In the mid- to low-
SNR regime (0–10 dB), the optimization primarily
mitigates cross-family confusion, yielding sizable per-class
recall gains. Overall, the confusion matrices indicate that
the accuracy improvement arises from a systematic
attenuation of characteristic misclassification patterns
across the entire SNR spectrum, rather than from isolated
gains at specific operating points.

Fig. 10. Confusion matrices comparing baseline and
optimized models at mid-to-low SNR range (5-15 dB).

Fig. 11. Confusion matrices comparing baseline and
optimized models at high SNR range (10-30 dB).

Overall, the sensitivity results indicate that most of the
achievable gains come from selecting an appropriate patch
size and a moderate number of layers/heads, while very
deep or heavily multi-headed configurations exhibit
diminishing returns. Importantly, the optimized
configuration improves accuracy across the full SNR range
(Fig. 9) but does so with increased model complexity. This
accuracy–complexity trade-off should be considered when

targeting resource-constrained receivers and low-overhead
6G deployments.

E. Positional Encoding Strategy
To evaluate the impact of positional encoding methods on
AMC-Transformer performance, we compared learnable
positional embeddings against fixed sinusoidal encodings
while keeping all other hyperparameters constant (6 layers,
8 heads, patch size 16, batch size 512).

Fig. 12. Comparison of positional encoding strategies
across SNR levels

Fig. 12 shows the F1 scores across the full SNR range for
both encoding strategies. While both methods achieve
comparable performance at low SNRs (below 0 dB), a clear
divergence emerges in the mid-to-high SNR regime.
Learnable positional encoding consistently outperforms
fixed sinusoidal encoding above 10 dB SNR, maintaining
an average F1 score of 98.5% compared to 97.3% for the
fixed encoding—a relative improvement of 1.2 percentage
points. The performance gap is most pronounced between
10-20 dB, suggesting that learnable embeddings better
capture the position-dependent temporal patterns specific to
modulated signals under favorable channel conditions.
This result indicates that allowing the model to learn task-
specific positional representations provides measurable
benefits for AMC, particularly when signal quality permits
extraction of fine-grained temporal features. The learned
embeddings likely adapt to the periodic structures and
phase relationships inherent in different modulation
schemes, which generic sinusoidal patterns cannot fully
capture.

V. CONCLUSIONS
In this paper, we introduced AMC-Transformer, a

transformer-based framework for automatic modulation
classification that operates directly on raw I/Q time
series. The model tokenizes I/Q sequences into fixed-
length temporal patches, augments them with learnable
positional embeddings, and applies multi-head self-
attention to capture both short-range transitions and
long-range dependencies in the waveform.

On RadioML2018.01A, our best configuration
achieves 98.8% accuracy for SNR of 10 dB or higher
and 63.9% on average across all SNRs, showing
improved accuracy compared to reimplemented
CNN/ResNet and MCformer baselines under the same
data splits and training protocol. On RadioML2016.10a,
AMC-Transformer maintains competitive accuracy
across SNR levels and reaches 93.5% in the high-SNR
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Bayesian optimization) could be explored in future work to
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focus here is to characterize the main effects and practical
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trade-off between representational capacity and the risk of
overfitting. Moreover, deeper stacks increase parameters
and attention compute roughly linearly with depth, so the
marginal accuracy gains beyond 6–10 layers should be
weighed against the added complexity.

4) Multi-Head Attention
The number of attention heads has a pronounced effect.

As seen in Fig. 8(d), accuracy rises quickly from 2 heads,
where the baseline is 58.30 percent, to 6 heads, which
achieves 92.57 percent. It then stabilizes around 8 to 14
heads near 90.8 percent and declines slightly thereafter,
indicating that a moderate number of heads captures
diverse signal dependencies without introducing
redundancy. Since multi-head attention increases projection
parameters and compute, the observed saturation beyond 8–
14 heads indicate diminishing returns in accuracy relative
to complexity.

Combining the best settings from each dimension —
batch size 512, transformer layers 6, patch size 16, and
attention heads 8 — yields an overall accuracy of 63.87
percent and an average accuracy of 98.80 percent at SNR
greater than 10 dB (as shown in Table 2). This represents a
notable improvement over the baseline, with an absolute
overall gain of 5.57 percentage points and a gain of 9.49
points in the high-SNR regime.
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(6 layers,
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To further illustrate the effect of hyperparameter
optimization, Figure 9 presents the classification accuracy
across the full SNR range for both the baseline and
optimized configurations. While the baseline model
saturates around 90% accuracy at high SNR levels, the
optimized AMC-Transformer achieves up to 98.8%
accuracy at SNR of at least 10 dB and shows consistent
improvements in the mid-SNR range from 0 to 10 dB. This
confirms that the performance gain is not restricted to very
high SNR conditions, addressing concerns about robustness.
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To analyze the source of the performance gains, Fig. 10
and Fig. 11 contrasts class-wise confusion matrices before
and after hyperparameter optimization across SNR ranges.
At higher SNRs (10–30 dB), the optimized model
substantially reduces within-family confusion—most
notably among high-order QAM constellations (e.g., 256-
QAM), between adjacent PSK orders (16- vs. 32-PSK), and
between AM subtypes (SSB vs. DSB). In the mid- to low-
SNR regime (0–10 dB), the optimization primarily
mitigates cross-family confusion, yielding sizable per-class
recall gains. Overall, the confusion matrices indicate that
the accuracy improvement arises from a systematic
attenuation of characteristic misclassification patterns
across the entire SNR spectrum, rather than from isolated
gains at specific operating points.

Fig. 10. Confusion matrices comparing baseline and
optimized models at mid-to-low SNR range (5-15 dB).

Fig. 11. Confusion matrices comparing baseline and
optimized models at high SNR range (10-30 dB).

Overall, the sensitivity results indicate that most of the
achievable gains come from selecting an appropriate patch
size and a moderate number of layers/heads, while very
deep or heavily multi-headed configurations exhibit
diminishing returns. Importantly, the optimized
configuration improves accuracy across the full SNR range
(Fig. 9) but does so with increased model complexity. This
accuracy–complexity trade-off should be considered when

targeting resource-constrained receivers and low-overhead
6G deployments.

E. Positional Encoding Strategy
To evaluate the impact of positional encoding methods on
AMC-Transformer performance, we compared learnable
positional embeddings against fixed sinusoidal encodings
while keeping all other hyperparameters constant (6 layers,
8 heads, patch size 16, batch size 512).

Fig. 12. Comparison of positional encoding strategies
across SNR levels

Fig. 12 shows the F1 scores across the full SNR range for
both encoding strategies. While both methods achieve
comparable performance at low SNRs (below 0 dB), a clear
divergence emerges in the mid-to-high SNR regime.
Learnable positional encoding consistently outperforms
fixed sinusoidal encoding above 10 dB SNR, maintaining
an average F1 score of 98.5% compared to 97.3% for the
fixed encoding—a relative improvement of 1.2 percentage
points. The performance gap is most pronounced between
10-20 dB, suggesting that learnable embeddings better
capture the position-dependent temporal patterns specific to
modulated signals under favorable channel conditions.
This result indicates that allowing the model to learn task-
specific positional representations provides measurable
benefits for AMC, particularly when signal quality permits
extraction of fine-grained temporal features. The learned
embeddings likely adapt to the periodic structures and
phase relationships inherent in different modulation
schemes, which generic sinusoidal patterns cannot fully
capture.

V. CONCLUSIONS
In this paper, we introduced AMC-Transformer, a

transformer-based framework for automatic modulation
classification that operates directly on raw I/Q time
series. The model tokenizes I/Q sequences into fixed-
length temporal patches, augments them with learnable
positional embeddings, and applies multi-head self-
attention to capture both short-range transitions and
long-range dependencies in the waveform.

On RadioML2018.01A, our best configuration
achieves 98.8% accuracy for SNR of 10 dB or higher
and 63.9% on average across all SNRs, showing
improved accuracy compared to reimplemented
CNN/ResNet and MCformer baselines under the same
data splits and training protocol. On RadioML2016.10a,
AMC-Transformer maintains competitive accuracy
across SNR levels and reaches 93.5% in the high-SNR
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between AM subtypes (SSB vs. DSB). In the mid- to low-
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recall gains. Overall, the confusion matrices indicate that
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across the entire SNR spectrum, rather than from isolated
gains at specific operating points.
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size and a moderate number of layers/heads, while very
deep or heavily multi-headed configurations exhibit
diminishing returns. Importantly, the optimized
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positional embeddings against fixed sinusoidal encodings
while keeping all other hyperparameters constant (6 layers,
8 heads, patch size 16, batch size 512).
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Fig. 12 shows the F1 scores across the full SNR range for
both encoding strategies. While both methods achieve
comparable performance at low SNRs (below 0 dB), a clear
divergence emerges in the mid-to-high SNR regime.
Learnable positional encoding consistently outperforms
fixed sinusoidal encoding above 10 dB SNR, maintaining
an average F1 score of 98.5% compared to 97.3% for the
fixed encoding—a relative improvement of 1.2 percentage
points. The performance gap is most pronounced between
10-20 dB, suggesting that learnable embeddings better
capture the position-dependent temporal patterns specific to
modulated signals under favorable channel conditions.
This result indicates that allowing the model to learn task-
specific positional representations provides measurable
benefits for AMC, particularly when signal quality permits
extraction of fine-grained temporal features. The learned
embeddings likely adapt to the periodic structures and
phase relationships inherent in different modulation
schemes, which generic sinusoidal patterns cannot fully
capture.
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transformer-based framework for automatic modulation
classification that operates directly on raw I/Q time
series. The model tokenizes I/Q sequences into fixed-
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and 63.9% on average across all SNRs, showing
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To analyze the source of the performance gains, Fig. 10
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between AM subtypes (SSB vs. DSB). In the mid- to low-
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across the entire SNR spectrum, rather than from isolated
gains at specific operating points.
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Overall, the sensitivity results indicate that most of the
achievable gains come from selecting an appropriate patch
size and a moderate number of layers/heads, while very
deep or heavily multi-headed configurations exhibit
diminishing returns. Importantly, the optimized
configuration improves accuracy across the full SNR range
(Fig. 9) but does so with increased model complexity. This
accuracy–complexity trade-off should be considered when

targeting resource-constrained receivers and low-overhead
6G deployments.
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To evaluate the impact of positional encoding methods on
AMC-Transformer performance, we compared learnable
positional embeddings against fixed sinusoidal encodings
while keeping all other hyperparameters constant (6 layers,
8 heads, patch size 16, batch size 512).
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across SNR levels

Fig. 12 shows the F1 scores across the full SNR range for
both encoding strategies. While both methods achieve
comparable performance at low SNRs (below 0 dB), a clear
divergence emerges in the mid-to-high SNR regime.
Learnable positional encoding consistently outperforms
fixed sinusoidal encoding above 10 dB SNR, maintaining
an average F1 score of 98.5% compared to 97.3% for the
fixed encoding—a relative improvement of 1.2 percentage
points. The performance gap is most pronounced between
10-20 dB, suggesting that learnable embeddings better
capture the position-dependent temporal patterns specific to
modulated signals under favorable channel conditions.
This result indicates that allowing the model to learn task-
specific positional representations provides measurable
benefits for AMC, particularly when signal quality permits
extraction of fine-grained temporal features. The learned
embeddings likely adapt to the periodic structures and
phase relationships inherent in different modulation
schemes, which generic sinusoidal patterns cannot fully
capture.
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transformer-based framework for automatic modulation
classification that operates directly on raw I/Q time
series. The model tokenizes I/Q sequences into fixed-
length temporal patches, augments them with learnable
positional embeddings, and applies multi-head self-
attention to capture both short-range transitions and
long-range dependencies in the waveform.

On RadioML2018.01A, our best configuration
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and 63.9% on average across all SNRs, showing
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Overall, the sensitivity results indicate that most of the
achievable gains come from selecting an appropriate patch
size and a moderate number of layers/heads, while very
deep or heavily multi-headed configurations exhibit
diminishing returns. Importantly, the optimized
configuration improves accuracy across the full SNR range
(Fig. 9) but does so with increased model complexity. This
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To evaluate the impact of positional encoding methods on
AMC-Transformer performance, we compared learnable
positional embeddings against fixed sinusoidal encodings
while keeping all other hyperparameters constant (6 layers,
8 heads, patch size 16, batch size 512).
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Fig. 12 shows the F1 scores across the full SNR range for
both encoding strategies. While both methods achieve
comparable performance at low SNRs (below 0 dB), a clear
divergence emerges in the mid-to-high SNR regime.
Learnable positional encoding consistently outperforms
fixed sinusoidal encoding above 10 dB SNR, maintaining
an average F1 score of 98.5% compared to 97.3% for the
fixed encoding—a relative improvement of 1.2 percentage
points. The performance gap is most pronounced between
10-20 dB, suggesting that learnable embeddings better
capture the position-dependent temporal patterns specific to
modulated signals under favorable channel conditions.
This result indicates that allowing the model to learn task-
specific positional representations provides measurable
benefits for AMC, particularly when signal quality permits
extraction of fine-grained temporal features. The learned
embeddings likely adapt to the periodic structures and
phase relationships inherent in different modulation
schemes, which generic sinusoidal patterns cannot fully
capture.
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transformer-based framework for automatic modulation
classification that operates directly on raw I/Q time
series. The model tokenizes I/Q sequences into fixed-
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attention to capture both short-range transitions and
long-range dependencies in the waveform.

On RadioML2018.01A, our best configuration
achieves 98.8% accuracy for SNR of 10 dB or higher
and 63.9% on average across all SNRs, showing
improved accuracy compared to reimplemented
CNN/ResNet and MCformer baselines under the same
data splits and training protocol. On RadioML2016.10a,
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size and a moderate number of layers/heads, while very
deep or heavily multi-headed configurations exhibit
diminishing returns. Importantly, the optimized
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(Fig. 9) but does so with increased model complexity. This
accuracy–complexity trade-off should be considered when

targeting resource-constrained receivers and low-overhead
6G deployments.
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positional embeddings against fixed sinusoidal encodings
while keeping all other hyperparameters constant (6 layers,
8 heads, patch size 16, batch size 512).
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both encoding strategies. While both methods achieve
comparable performance at low SNRs (below 0 dB), a clear
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Learnable positional encoding consistently outperforms
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an average F1 score of 98.5% compared to 97.3% for the
fixed encoding—a relative improvement of 1.2 percentage
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10-20 dB, suggesting that learnable embeddings better
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This result indicates that allowing the model to learn task-
specific positional representations provides measurable
benefits for AMC, particularly when signal quality permits
extraction of fine-grained temporal features. The learned
embeddings likely adapt to the periodic structures and
phase relationships inherent in different modulation
schemes, which generic sinusoidal patterns cannot fully
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This result indicates that allowing the model to learn task-
specific positional representations provides measurable
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regime, demonstrating robustness beyond a single
dataset. Ablation studies indicate that model capacity
and tokenization drive the accuracy–efficiency trade-off:
patch size 16, 8 attention heads, and about six encoder
layers offer a favorable balance across SNR conditions.
These gains, however, come at the cost of increased
model complexity, which should be carefully considered
for low-overhead and resource-constrained 6G receivers.

Despite these gains, transformer attention scales
quadratically and benefits from substantial data. Future
work will explore efficient attention (for example, linear
or clustered variants), hybrid Conv–Attention designs
that inject local inductive bias, and RF-aware
augmentation and self-supervision to improve robustness
to channel non-idealities while reducing the need for
labeled data.
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I. INTRODUCTION

N WIRELESS communication environments, the wireless
channels are always complex, so that transmitting signals

will be affected by channel fading and noise, resulting in mixed
signals at the receiving end, and most detection algorithms such
as traditional energy detection algorithms are unable to
distinguish mixed signals to implement spectrum detection.
Therefore, blind source separation is an often used promising
method for solving this problem thanks to its advanced
technical superiority [1][2][3]. Blind source separation refers to
the analysis of the unobserved original signal from multiple
observed mixed signals. Usually the observed mixed signals
come from the outputs of multiple sensors and the output
signals of the sensors are independent. Blind source separation
has received a great deal of attention as a comprehensive
research field that intersects with information theory, signal
processing, artificial neural networks, probability theory, and
other disciplines. In recent years, blind signal processing has
become an important development direction in many research
areas such as modern digital signal processing and
computational intelligence, and it has great potential for
applications in electronic information technology,
communications, biomedicine, image enhancement, radar
systems, geophysical signal processing and other fields. Blind
signal processing relies on the statistical properties of the source

signal, and its study has always been a focus of researchers, with
blind signal separation being one of the most important research
topics. The meaning of "blind" is twofold: on the one hand, the
source signal is not known; on the other hand, the source signal
mixing method is also not known.

One of the most famous blind source separation algorithms is
Independent Component Analysis (ICA). And there have
sprung up many algorithms to improve on ICA for theory
updates. In [4], the authors designed a fast Power Iterative
Independent Component Analysis (PowerICA) noise
suppression scheme based on power iteration. First, a
single-channel blind separation model is transformed into a
multichannel observation model by constructing a
pseudo-observation signal through a weighting process. This
blind separation algorithm is then used to separate the noise
from the source signal. Finally, the effectiveness of the
algorithm is verified by experimental simulation. In [5], the
authors treat the Lagrange multiplier as a constant in the
original derivation of the FastICA algorithm and use a
temporary approximation to the Jacobi matrix in the
Newton-Raphson update, and then provide an alternative
derivation of the FastICA algorithm that does not require an
approximation. Based on this, the authors propose a new
FastICA power iteration algorithm that is more stable than the
fixed-point algorithm when the sample size is not several orders
of magnitude larger than the dimensionality. In [6], when the
ICA model does not forget to hold in full, the real data used for
simulation experiments are not accurate in completing the
maximization of the corresponding likelihood. To address this
situation, the authors proposed a new algorithm called Picard,
which uses only the sparse approximation Hessian as a
preprocessor for the L-BFGS algorithm, refining the Hessian
approximation from the memory of past iterations. The results
demonstrate the superior performance of the proposed
technique, especially on real data, by comparing a wide range of
values for several algorithms of the same class through
simulations.

The algorithms mentioned above in the literature are only a
small part of the blind source separation algorithms, but all of
them have proved the effectiveness of blind source separation.
As the presence of factors such as noise in complex wireless
communication environments can affect the effectiveness of
signal separation, it is necessary to denoise and reduce the
signal dimension prior to implementing blind source separation.
In this paper, the Wavelet Transform (WT) is first used for
denoising, and then the Singular Spectrum Analysis (SSA) is
used for denoising and reducing the dimension. These two
methods are applied in many aspects, for example, in [7], the
authors investigated the threshold selection problem in the

Blind Source Separation Spectrum Detection
Method Based on Wavelet Transform and

Singular Spectrum Analysis
Qian Hu, Zhongqiang Luo, Wenshi Xiao

I

DOI: 10.36244/ICJ.2025.4.6

Qian Hu, Zhongqiang Luo, and Wenshi Xiao are with School of 
Automation and Information Engineering, Sichuan University of Science 
and Engineering, Yibin, China; Zhongqiang Luo is also with Intelligent 
Perception and Control Key Laboratory of Sichuan Province, Sichuan 
University of Science and Engineering, Yibin, China.

The corresponding author is Zhongqiang Luo (e-mail: luozhongqiang@
suse.edu.cn)

Abstract—To address the issue of reduced detection 
performance due to the impaired separation mechanism 
affected by noise, this paper proposes a blind source separation 
(BSS) detection method based on Wavelet Transform (WT) 
and Singular Spectrum Analysis (SSA). Firstly, the input signal 
is denoised using WT. Then, SSA is employed to denoise and 
reduce the dimension of the processed signal. Subsequently, the 
independent component analysis (ICA) based BSS algorithm 
is employed to separate the mixed signal preprocessed by the 
previous two ways. Finally, the proposed algorithm and the 
BSS detection method based on WT are compared in terms 
of spectrum analysis and separation performance. Simulation 
results show that the blind source separation detection method 
based on WT-SSA has a better signal detection performance.

Index Terms—blind source separation; wavelet transform; 
singular spectrum sensing; independent component analysis

https://doi.org/10.36244/ICJ.2025.4.6
mailto:luozhongqiang%40suse.edu.cn?subject=
mailto:luozhongqiang%40suse.edu.cn?subject=


Blind Source Separation Spectrum Detection Method Based  
on Wavelet Transform and Singular Spectrum Analysis

DECEMBER 2025 • VOLUME XVII • NUMBER 442

INFOCOMMUNICATIONS JOURNAL

2

image denoise process based on WT, the wavelet coefficients
are obtained by WT of the image signal, suitable threshold
values are selected to process the wavelet coefficients, and then
the processed wavelet coefficients are inverted by WT to obtain
the reconstructed denoised image. Simulation experiments
prove that the adaptive threshold denoising technique based on
WT has the best denoising result, which can clearly retain the
details in the image without sharpening and oversmoothing, and
its values of Signal-to-Noise Ratio (SNR) and peak SNR are the
largest and the value of mean square error is the smallest, thus
improving the overall quality of the image. In [8], the authors
used a noise reduction method combining wavelet thresholding
and Singular Value Decomposition (SVD) processing, and
conducted a study on noise suppression of one-dimensional
audio signals received by intelligent navigation for automotive
noise pollution, and proposed a joint WT-SVD model algorithm,
and finally, through simulated experimental comparison and
analysis, the algorithm has good noise suppression for the
received signals of intelligent navigation systems under the
environment of automotive noise interference adaptive and
good suppression performance. In [9], the authors studied the
video electromagnetic leakage problem, first of all, the
intercepted video electromagnetic leakage signal through the
SSA method for noise reduction of the noisy video
electromagnetic leakage signal, through simulation experiments
found that the singular spectrum analysis method applied to the
video electromagnetic leakage signal denoising not only to
remove the noise relatively clean, and can well retain the
original video electromagnetic signal details and features, The
SNR is improved significantly. The above-mentioned papers
have demonstrated that WT and SSA have good performance in
noise removal, so this paper starts to study this.

From the above-mentioned paper, it can be seen that WT in
image processing denoising effect is better, and in the wireless
communication environment, the transmission signal will be
mixed with the white noise present in the channel, at this time
the wavelet denoising effect is not very satisfactory, and the
SSA can be used by decomposing the signal into different
components, and then according to certain rules, select certain
effective components and reconstruct the new signal, to achieve
the signal denoising and reducing the signal dimension[10]
[11][12]. Based on this, this paper proposes a blind spectrum
detection method based on WT and SSA, firstly using WT to
denoise the received mixed signal, then using SSA to denoise
and reduce the dimension of the processed signal again, and
finally using the ICA_p algorithm in blind source separation to
separate the mixed signal. The experimental results corroborate
the effectiveness of the proposed scheme.

II. SYSTEM MODEL

In wireless communication systems, the situation in the
channel is complex and variable, and the observed signals
received at the receiver may be affected by noise or mixed with
other signals, and many algorithms are unable to distinguish
between the mixing sequences, so blind source separation is
investigated. Blind source separation is a technique for separating
independent source signals from a set of sensor measurements
using only the weakly known condition that the source signals are
independent of each other, given that the transfer function of the

system, the mixing coefficients of the source signals and their
probability distribution are unknown.

Assuming that there are m signals that are independent of
each other and the length of these signals is T , after channel gain
of A and an additive Gaussian white noise channel, a mixed
received signal is obtained , i.e. the observed signal

X AS N  . (1)

Where A is the m m mixing matrix, S is the
m-dimensional original signal vector, N is the m -dimensional
noise vector and X is the m-dimensional mixed signal vector,
the expressions are as follows

1 2[ , ,..., ]mS s s s . (2)

1 2[ , ,..., ]mN n n n . (3)

1 2[ , ,..., ]mX x x x . (4)

Where , 1, 2,...,is i m is the signal transmitted by the
primary user, , 1, 2,...,is i m represents the noise generated
by the channel and , 1, 2,...,ix i m represents the signal
received by the sensor.

The observed mixed signal is separated using the ICA by blind
source separation. The aim of blind source separation is to find a
separation matrix W , which gives an estimate Y of the source
signal S from the observed signal X .

Y WX WAS  . (5)

The above equation shows that if the separation matrix W is
approximated by 1A , (5) can be written as

1Y WAS A AS IS S    . (6)

At this point, Y is approximated by the source signal S .
W can be obtained from the objective function ( )F W . When

the relevant mathematical algorithm is used to make ( )F W
reach an optimal solution, W is then the separation matrix, and
depending on the different definitions of ( )F W , and the method
of finding W , different ICA algorithms can be obtained. The
ICA_p algorithm used in this paper is an ICA algorithm using
Hessian approximate precoding.

The objective function used in the model is the negative mean
log likelihood of the parameterization of the separation matrix

1W A , as follows:

11( ) log ( | )F W p X W
T

  . (7)

Finally, the source signal is recovered by solving for the
separation matrix W when the objective function ( )F W
reaches optimality.

III. BLIND SOURCE SEPARATION DETECTION
METHOD BASED ON WAVELET TRANSFORM AND

SINGULAR SPECTRUM ANALYSIS
At low SNR, the blind source separation is unsatisfactory, so

the observed signal is correlated before the signal is separated.

A. DENOISING OF MIXED SIGNALS USING WT
From a signal science perspective, wavelet denoising is a
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signal filtering problem, and although to a large extent wavelet
denoising can be seen as low-pass filtering, it is superior to
traditional low-pass filters in this respect because it also
successfully retains signal features after denoising. As can be
seen, wavelet denoising is actually a combination of feature
extraction and low-pass filtering functions, the flow block
diagram of which is shown in Fig. 1.

Feature 
extraction

Low-pass 
filters ⨁

Feature information

Reconstruction of 
signals

In the wireless communication environment, the white noise
has the same effect on all wavelet coefficients due to the uneven
spatial distribution and small wavelet coefficients, so the WT can
be used to denoise the observed signal and thus improve the
separation. The WT signal ' ( )X t is denoted as

         

      

' *
, ,

-

*
,

, a b a b

a b

X t X t t X t t dt

AS t N t t dt

 










 

 




. (8)

Where  ,a b t is the wavelet basis and  *
,a b t is the

conjugate of the wavelet basis. In this paper, the Daubechies
wavelet is chosen as the wavelet basis because it is continuously
orthogonal and it has the smallest branching.

B. THE WT SIGNAL ' ( )X t IS PROCESSED AGAIN
USING SSA TO RECONSTRUCT THE SINAL
The main steps in SSA include embedding, decomposition,

grouping, and reconstruction. In this paper, SSA is used to
process signals because it includes singular value
decomposition (SVD) as one of the steps in SSA, as SVD
decomposes the signal, a process that involves reducing the
dimensionality of the signal by retaining the significant
components and removing the insignificant ones.

The first step is to form the trajectory matrix by lag-sorting
the WT signal ' ( )X t through a suitable window length

' ' '
1 2 1
' ' '

' 2 3 2

' ' '
1

...

...
... ... ... ...

...

T L

T L

L L T

x x x
x x x

X

x x x

 

 



 
 
 
 
 
  

. (9)

Where T is the sequence length and L is the window length,

usually taken as
2
TL  . Let 1K T L   , then the

trajectory matrix 'X can be rewritten as a matrix of L K
' ' '
1 2
' ' '

' 2 3 1

' ' '
1

...

...
... ... ... ...

...

K

K

L L T

x x x
x x x

X

x x x





 
 
 
 
 
  

. (10)

The trajectory matrix 'X is then decomposed by SVD, and
the resulting sequence is grouped and reconstructed.
The reconstruction requires the calculation of the projection of
the hysteresis sequence '

iX onto mU

' '
,

1
, 0

i j

L
m
i i m m j

j
a X U x U i T L




     . (11)

Where '
iX denotes the i th column of the trajectory matrix 'X ,

mU is the eigenvector corresponding to the eigenvalue m , and
m
ia is the weight of the time-evolving pattern reflected by '

iX
at time

1 2

' ' ', ,...,
i i i L
x x x

  
of the original series, called the

temporal principal component (TPC).
The signal is then reconstructed by means of a temporal
empirical orthogonal function and temporal principal
components, and the specific reconstruction process is as
follows

,1

'
,1

,

1 ,1 1

1 , 1

1 , 2
1

i k
i j k jj

Lk k
i i j k jj

L k
i j k jj i T L

a U i L
i

x a U L i T L
L

a E T L i T
T i





  

   

    

      







. (12)

The sum of all reconstructed sequences should be equal to the
original sequence, i.e.

' '

1
, 1, 2,...,

L
k

i i
k

x x i T


  . (13)

C. SUBSTITUTING THE RECONSTRUCTED SIGNAL 'k
ix

INTO THE SYSTEM MODEL

To bring 'k
ix into the system model:

'k
ix AS n  . (14)

Since the signals assumed in this paper are independent of
each other, the probability of A

' 1 '

1 1

1( | ) ([ ] ( ))
| det( ) |

T m
k k
i i i i

t i

p X A p A x k t
A



 

  . (15)

Where ( )ip  is the i th signal probability density function.
Bringing (15) into the objective function (7), we get

1
( ) log | det( ) | [ log( ( ( )))]

T

i i
i

F W W E p y t


    . (16)

Among them Y WX .
The next solution minimizes the objective function ( )F W

with respect to W . This corresponds to solving the ICA
problem in a maximum likelihood sense. The variation of

( )F W with respect to W can be expressed by the Tait
expansion of (( ) )F I W

31(( ) ) ( ) | | | ( )
2

F I W F W G H         .

(17)

Fig.1. Block diagram of wavelet denoising
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The first-order terms are controlled by matrices of order
T T and are called relative gradients. The second-order term
depends on the tensor H of T T T T   and is called the
relative Hessian matrix. Both of these quantities can be obtained
from the second order expansions of log det( ) and log ( )ip 

321log | det( ) | ( ) ( ) ( )
2

I Tr Tr       . (18)

3' 21log ( ) log ( ) ( ) ( ) ( )
2i i i ip y e p y y e y e       .

(19)
Where  is a small matrix of T T and e is a very small

number. where
'
i

i
i

p
p

   , in general, is tanh( )
2


. The

collection and rearrangement of a to produce the classical
expression of first order

[ ( ) ]ij i i i ijG E y y   . (20)
Or write it as another expression

1( ) ( ) TG Y Y Y Id
T
  . (21)

The second-order relative Hessian matrix can be written as
'[ ( ) ] [ ( ) ]ijkl il jk i i j ik i i j lH E y y E y y y      . (22)

The Hessian matrix approximation is discussed on the basis
of the following moments

'

' 2

'

2 2

ˆ [ ( ) ] 1 , ,
ˆ [ ( ) ] 1 ,
ˆ [ ( )] 1
ˆ [ ] 1

ijl i i j l

ij i i j

i i i

i i

h E y y y i j l N

h E y y i j N

h E y i N

E y i N









    

    


   


   

. (23)

Therefore, the relative Hessian matrix is
ˆ[ ( ) ]ijkl il jk i i i ik ijlH E y y h i j       . (24)

The first approximation of H lies in the substitution of îjlh for

ˆ
jl ijh and 2H for this approximation

2 ˆ[ ( ) ]ijkl il jk i i i ik jl ijH E y y h i j        . (25)

The second approximation is represented by 1H , going one
step further and replacing îjh with 2

î jh
1 2

1

ˆ[ ( ) ]
ˆ1

ijkl il jk i i i ik jl i j

ijkl ii

H E y y h i j

H h

         


 




. (26)

Finally, the approximate Hessian matrix is derived
'[ ( ) ] [ ( )]ijkl il jk i i j ik jl i iH E y y E y i j         .(27)

Substituting (26) into (17) gives

2
ˆ ˆ1| | | ( )

2 2
i j

ij ji ij ij
i j

k k
G H G G    




    .

(28)
Where { ,1 }ij i j N    , îk are defined as

'ˆ [ ( ) ] [ ( )]i i i i i ik E y y E y    . (29)

When ˆ ˆ 0i jk k  , so that ˆ ˆ( ) / ( )ij ij ji i jG G k k    
minimizes (28), the resulting quasi-Newton step

1

2
ˆ ˆ 2

D
k k

ij ji
ij

i j

W e W
G G

D
k k

 


  


. (30)

In summary, this paper uses WT and SSA to process the
mixed signal, and then uses ICA_p to separate the signal after
processing, the specific process is shown in Fig. 2, the specific
steps are as follows.
1. Denoising of the observed signal using the WT.
2. Denoising and dimensionality reduction of the processed

signal again using SSA.
3. Correlation of signal removal with whitening.
4. Separation of the signal after preprocessing using the

ICA_p algorithm.

Start

Observation signals 
X(t)

Whitening

ICA_p separation 
signal

Stop

X(t) wavelet 
denoising

SSA

IV. SIMULATION EXPERIMENTS AND ANALYSIS
To demonstrate more intuitively the process of blind source

separation and spectrum analysis, the ICA_p algorithm is chosen
to separate and reconstruct the signal at a SNR of 2 dB. Assuming
the presence of 2 channels in the communication system and a
sampling frequency sf of 1KHz, the sampling period 1 st f .

Fig. 3 and Fig. 4 show the time domain waveforms of the
source signal, where the signal of channel 1 is
s1 sin(2 20 )t  and the signal of channel 2 is
s2 (1 0.5sin(2 5 )) sin(2 50 )t t      .

Fig. 2. Blind source separation process based on WT and SSA
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Fig. 5 shows the spectrum corresponding to the source signal.

In Fig. 5, it can be seen that the center frequencies of the two
source signals are 20 Hz and 50 Hz, respectively.

The mixed signal obtained after the source signal has been
passed through the mixing matrix is shown in Fig. 6 and Fig. 7.

A comparison of Fig. 3 and Fig. 4 with Fig. 6 and Fig. 7 shows
that after the source signals have passed through the Gaussian
channel, the waveform of the received observation signal is very
different from the original signal, the waveform of the
observation signal has changed due to the mixing of the signal
during transmission.

Fig. 8 shows the spectrum of the mixed signal. From Fig. 8, it
can be seen that the center frequencies of signal 1 are 20 Hz and
50 Hz, and the center frequencies of signal 2 are 20 Hz and 50 Hz.

Fig.5. Source signal spectrum

Fig. 8. Spectrogram of mixed signals

Fig. 7. Time domain waveform of mixed signal

Fig. 6. Time domain waveform of mixed signal

Fig. 4. Time domain waveform of source signal s2

Fig. 3. Time domain waveform of source signal s1
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Compared with Fig. 5, it shows that the center frequency of signal
1 has not only the center frequency of the source signal of 20 Hz,
but also an additional center frequency of 50 Hz, and signal 2 has
a new center frequency of 20 Hz. From this result in the Fig. 8, it
can be found that these source signals, after passing through the
mixing matrix, produce a certain spectral overlap in the spectrum
and thus it is difficult to distinguish multiple different signals
through the spectrogram.

Fig. 9 and Fig. 10 show the waveforms of the signal separated
from the mixed signal using the wavelet transform followed by
the ICA_p algorithm.
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Compared with Fig. 3 and Fig. 4, it can be found that although
the WT-ICA_p algorithm is able to separate the signals, the
waveforms obtained by the separation are still somewhat
different from the source signals, especially the separated signal
2.

Fig. 11 shows the spectrum of the ICA_p separated signal after
WT.

From Fig. 11, we can see that the center frequencies of signal 1
are 20 Hz and 50 Hz, and the center frequencies of signal 2 are 20
Hz and 75 Hz. Comparing with Fig. 5, we find that signal 1 has a
new center frequency of 20 Hz and signal 2 has a new center
frequency of 75 Hz, so the algorithm of separating the signals by
ICA_p after wavelet transform processing is not very effective,
and there is still some spectral It is also difficult to distinguish
several different signals through the spectrogram.

Fig. 12 and Fig. 13 show the time domain plots after the signal
has been first WT, then SSA, and finally separated using the
ICA_p algorithm.

Fig. 11. Spectrum of WT-ICA_p separated signal

Fig. 9. WT-ICA_p separated signal waveform 1

Fig. 12. WT-SSA-ICA_p separated signal waveform 1

Fig. 13. WT-SSA-ICA_p separated signal waveform 2

Fig. 10. WT-ICA_p separated signal waveform 2
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Compared with Fig. 3 and Fig. 4, it can be found that the
WT-SSA-ICA_p algorithm can separate the signals better, and
the waveforms of the separated signals are basically the same as
those of the source signals, indicating that the algorithm has better
separation. As the signals are independent of each other, the WT
is used to preprocess the signals before separation, which can
effectively remove the influence of noise, and then the
preprocessed signals are again processed with SSA to reduce the
peace and remove noise, and finally the separation is carried out
with the ICA_p algorithm, and the separation effect obtained is
not disturbed by the spectral overlap, thus obtaining a waveform
close to the original signal. The proposed algorithm can
effectively separate these spectrally overlapped signals from their
blind sources.

Fig. 14 shows the spectrum of the WT-SSA-ICA_p separated
signal.
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From Fig. 14, we can see that the center frequency of signal 1 is
20Hz, and the center frequencies of signal 2 are 50Hz and 75Hz.
Comparing with Figure 4, we find that only signal 2 has a new
center frequency of 75Hz, so the algorithm of separating the
signals after WT processing and then using SSA and finally
ICA_p works better, although only one signal 2 has spectral
overlap on the spectrum, but signal 1 is very well separated and
the signal can be completely distinguished from the spectrogram.

V. PERFORMANCE ANALYSIS
To evaluate the performance of the blind source separation

algorithm, the correlation coefficient C is introduced as a
performance indicator by comparing the similarity of the
separated signal with the input signal.

cov( , )( , )
cov( , ) cov( , )

x yC x y
x x y y

 . (31)

Where cov( , )x y is the covariance of x and y , with the
expression shown in (32).

cov( , ) [ ( )] [ ( )]
( ) 2 ( ) ( ) ( ) ( )
( ) ( ) ( )

x y E x E x E y E y
E xy E x E y E x E y
E xy E x E y

  
  
 

. (32)

Where ( )E  is the expected value and the correlation

coefficient takes a range of  0 , 1C x y  . When x and y

are not correlated  ,C x y takes 0. The closer  ,C x y is to 1,
the greater the correlation between x and y , and the more
similar x and y are, the better the separation algorithm.

To analyze the performance of the algorithms, 3000
experiments were conducted using (31) to measure the similarity
between the input source signals and the separated signals, and
the average correlation coefficients of the two blind source
separation algorithms were obtained, as shown in Fig. 15.

As can be seen from Fig. 15, although the correlation
coefficient of the WT-ICA_p algorithm increases as the SNR
increases, the correlation coefficient of the WT-SSA-ICA_p
algorithm remains above 0.95 throughout and the value is very
stable, which indicates that the WT-SSA-ICA_p algorithm can
separate the mixed signal well and the separated signal is very
similar to the source signal This shows that the WT-SSA-ICA_p
algorithm can separate the mixed signal well and the separated
signal is very similar to the source signal.
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It is important for communication systems to ensure the stable
and reliable transmission of information. In this experimental
simulation set when the correlation coefficient C is closer to 1, it
is considered as a successful separation, when the value of C is
too small or no solution, then the separation fails and the point is
considered as a lost point, i.e. a point of nonconvergence. The
probability of separation failing and the nonconvergence
occurring when the two algorithms were statistically tested for
3000 trials is shown in Fig.16.
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As can be seen in Fig. 16, the results are stationary. Both
Fig.16. Variation of the probability of nonconvergence with SNR

Fig.15. Correlation coefficient with SNR

Fig. 14. Spectrum of WT-SSA-ICA_p separated signal
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algorithms are uniform convergence regardless of the SNR
change.

VI. CONCLUSIONS
In this paper, the WT-ICA_p algorithm is improved on the

existing basis, i.e., the WT, by adding SSA after the WT and
proposing the WT-SSA-ICA_p algorithm. Before the blind
source separation, the mixed signal is first denoised with the WT,
then the processed signal is denoised and reduced dimension with
SSA, and finally the mixed signal is separated with the ICA_p
algorithm. Then, the simulation experiments were carried out to
analyze the spectrum of the signals. From the time and frequency
domain plots obtained from the simulation, it can be seen that the
WT-SSA-ICA_p algorithm has a better separation effect than the
WT-ICA_p algorithm. Finally, the performance of the original
WT-ICA_p algorithm and the WT-SSA-ICA_p algorithm is
compared. The simulation results show that the two algorithms
have better stability as the SNR changes, and the correlation
coefficient of the WT-SSA-ICA_p algorithm is higher than that
of the WT-ICA_p algorithm throughout, indicating that the
WT-SSA-ICA_p algorithm can separate the mixed signals very
well. The WT-SSA-ICA_p algorithm has better stability than the
WT-ICA_p algorithm throughout. In the future work, the
dynamic channel model and undertermined mixture model will
be further considered for spectrum detection.
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I. INTRODUCTION 
  Future wireless and cellular communication systems have 
many potential uses, including massive Machine Type 
Communications (mMTC), ultra-reliable low-latency 
communication (URLLC), and enhanced Mobile BroadBand 
(eMBB), particularly in areas like industrial automation and 
vehicle networks [1–3]. In order to meet these various and 

demanding needs, spectrum usage must be extremely flexible 
and efficient, which frequently calls for improvements in 
multicarrier modulation techniques. 
Orthogonal Frequency Division Multiplexing (OFDM), 
which is widely used in 4G and 5G networks because its  
simplicity and robustness, provides effective spectrum to 
usage but has substantial out-of-band emissions and poor 
adaptability to changing spectral environments [4-6]. 
Various alternative systems have been proposed to 
overcome these restrictions, including filtered-OFDM (f-
OFDM), windowed-OFDM (W-OFDM), universal 
filtered multicarrier (UFMC), and filter bank multicarrier 
(FBMC) [7–9]. Because of its superior spectral 
containment, removal of cyclic prefix, and enhanced 
robustness in asynchronous environments, FBMC with 
Offset Quadrature Amplitude Modulation (OQAM) has 
shown considerable promise among these [10–12] 

 
Figure.1. flexible assignment of future wireless system [11] 

Several investigations have reviewed OFDM and FBMC in an 
array of channel conditions, with an emphasis on 
implementation complexity, inter-symbol interference (ISI), 
and spectral efficiency [13–17].  Additionally, previous 
research has investigated how prototype filters, like Root 
Raised Cosine (RRC), Hermite, and PHYDYAS, affect 
FBMC's performance [18–20].  The impact of subcarrier 
spacing optimization on the Signal-to-Interference Ratio (SIR) 
of various FBMC filter types, especially in scenarios that are 
pertinent to real-world implementation, like environments with 
high interference and different guard band sizes, is still largely 
unknown.  The majority of current research ignores filter-
specific performance under adaptive subcarrier configurations, 
which is crucial for dynamic spectrum access in applications 
like as eMBB, mMTC, and URLLC. 
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Abstract—In 5G New Radio (NR) Release 15, the 3rd 
Generation Partnership Project (3GPP) Physical Layer 
Modulation for downlink and uplink communications, the Cyclic 
Prefix OFDM (CP-OFDM) is used. A wide range of potential 
use cases will describe future wireless networks. In order to 
achieve this, time-frequency resources must be dynamically 
assigned, which is difficult for traditional Orthogonal Frequency 
Division Multiplexing (OFDM). Therefore, OFDM improvements 
like filtering or windowing are needed. On the other hand, a 
multicarrier method like Filter Bank Multi-Carrier (FBMC) 
can be employed. Several prototype filters, including Hermite, 
PHYDYAS, and Root Raise Cosine (RRC), are used in this work 
to develop the framework for FBMC. Time-frequency efficiency 
will be determined for each user in the same band by adjusting the 
subcarrier spacing. The performance of the Signal to Interference 
Noise Ratio (SIR) is calculated for FBMC using varying subcarrier 
spacing and compared with different multicarrier transmission 
methods such as f-OFDM (filtered OFDM), CP-OFDM, UFMC 
(Universal Filter Multi Carrier), Weighted Overlap and Add 
(WOLA). FBMC outperforms CP-OFDM, UFMC, f-OFDM, 
and WOLA in terms of Signal-to-Interference-plus-Noise Ratio 
(SIR), especially when subcarrier spacing is short (15 kHz, 30 
kHz), where spectral leakage is most noticeable. The PHYDYAS 
filter performed better than the other ones, reducing inter-
carrier interference and increasing spectral efficiency by 20–30% 
even in asynchronous transmission scenarios. Furthermore, 
FBMC improved bandwidth economy by maintaining excellent 
performance without requiring a cyclic prefix. According to these 
findings, FBMC is a strong contender for upcoming 5G upgrades 
and 6G networks that require flexible waveform design, low out-
of-band emissions, and support for a variety of service classes, 
such as mMTC, URLLC, and non- orthogonal transmissions.

Index Terms—time-frequency resources, prototype filters, 
Filter Bank Multi-Carrier (FBMC), subcarrier spacing, Signal to 
Interference Noise Ratio (SIR).
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subcarrier spacing is carefully specified. 

 

The main objective of this research is to assess the effects of 
subcarrier spacing on the Signal-to-Interference Ratio (SIR) for 
various multicarrier waveforms, with a focus on FBMC under 
various prototype filters.  The key objective is SIR-based 
interference analysis to guide waveform and filter selection in 
real-world deployment environments, even though associated 
issues like spectral efficiency and latency are essential.The rest 
of this paper is organized as follows: The primary multicarrier 
methods and prototype filters are introduced in Section 2, the 
simulation framework and SIR analysis are presented in Section 
3, and the subcarrier optimization process and performance 
evaluation will be addressed in Section 4. 

II. MULTICARRIER COMMUNICATIONS 
The information is transmitted in the form of pulses for 

multicarrier system, where the pulses overlap in frequency and 
time. Due to the small bandwidth of the pulse, the frequency 
selective channels transform to many flat subchannels with less 
interference. An equalizer with just one tap is adequate, when 
the signal is transmitted in the presence of Gaussian noise with 
maximum likelihood symbol detection. 

The time domain multi carrier system transmitted signal s(t) 
is given as 

𝑠𝑠(𝑡𝑡) = ∑ ∑ 𝑔𝑔𝑙𝑙,𝑘𝑘(𝑡𝑡)𝑥𝑥𝑙𝑙,𝑘𝑘
𝐿𝐿−1
𝑙𝑙=0

𝐾𝐾−1
𝑘𝑘=0          (1) 

Where 𝑥𝑥𝑙𝑙,𝑘𝑘 is the transmitted symbol, 𝑙𝑙 is subcarrier position, 
𝑘𝑘 represents time position.    𝐿𝐿 denotes the number of 
subcarriers and 𝐾𝐾 represents the number of multicarrier 
symbols while transmitting basis pulse.  𝑔𝑔𝑙𝑙,𝑘𝑘(𝑡𝑡) is basis pulse 
which is expressed as 

 𝑔𝑔𝑙𝑙,𝑘𝑘(𝑡𝑡) = 𝑝𝑝(𝑡𝑡 − 𝑘𝑘𝑘𝑘)𝑒𝑒𝑗𝑗2𝜋𝜋𝜋𝜋𝜋𝜋(𝑡𝑡−𝑘𝑘𝑘𝑘)𝑒𝑒𝑗𝑗𝜃𝜃𝑙𝑙,𝑘𝑘       (2) 
The basis pulse of prototype filter 𝑝𝑝(𝑡𝑡) is shifted with time 

spacing (T) and frequency spacing (F) and phase shift of  𝜃𝜃𝑙𝑙,𝑘𝑘. 
The signal is transmitted through Additive White Gaussian 

Noise (AWGN) Channel,  then the signal can be retrieved from 
the received signal, which is denoted by the symbol r(t).  

𝑦𝑦𝑙𝑙,𝑘𝑘(𝑡𝑡) =< 𝑟𝑟(𝑡𝑡), 𝑔𝑔 𝑙𝑙,𝑘𝑘(𝑡𝑡) >= ∫ 𝑟𝑟(𝑡𝑡)𝑔𝑔𝑙𝑙,𝑘𝑘
∗ (𝑡𝑡)𝑑𝑑𝑑𝑑        ∝

−∝   (3) 
The similar basis pulse is used in the receiver to maximizes 

the Signal to Noise Ratio (SNR) 
The Balian-Low theorem [20] states that the desired 

properties for the existence of multi carrier systems may not be 
fulfilled at the same time: i.e  

▪ Orthogonality< 𝑔𝑔𝑙𝑙1,𝑘𝑘1(𝑡𝑡), 𝑔𝑔𝑙𝑙2,𝑘𝑘2(𝑡𝑡) >=
𝛿𝛿(𝑙𝑙2−𝑙𝑙1)(𝑘𝑘2−𝑘𝑘1) 

▪ Time-localization 𝜎𝜎𝑡𝑡 < ∝ 
▪ Frequency- localization  𝜎𝜎𝑓𝑓 < ∝ 
▪ Maximum symbol density 𝑇𝑇𝑇𝑇 = 1 

δ denotes the Kronecker delta function. Time localization σ_t, 
and frequency localization 𝜎𝜎𝑓𝑓 are defined as 

time  

𝑡𝑡 = ∫ 𝑡𝑡|𝑝𝑝(𝑡𝑡)|2𝑑𝑑𝑑𝑑𝛼𝛼
−𝛼𝛼                 (6) 

And mean frequency is given as 
𝑓𝑓 = ∫ 𝑓𝑓|𝑃𝑃(𝑓𝑓)|2𝑑𝑑𝑑𝑑𝛼𝛼

−𝛼𝛼                    (7) 
 

|𝑝𝑝(𝑡𝑡)|2 and |𝑃𝑃(𝑓𝑓)|2 represents Probability Density Function 
(PDF). 

The Balian-Low theorem states that one of the desired 
characteristics can be neglected while implementing the 
multicarrier systems. Different multi carrier transmissions are 
compared and shown in Table.1. which indicates 
Filtered/windowed OFDM and CP-OFDM provide full bi-
orthogonality with good time localization, while FBMC 
variants offer superior frequency localization. FBMC-QAM 
allows full complex-domain bi-orthogonality at the expense of 
pilot flexibility, while FBMC-OQAM is restricted to real-
domain orthogonality. 
CP-OFDM 
 
The common multicarrier transmission is called CP-OFDM 
technique used in 4G, Wireless LAN, and LTE. In CP-OFDM 
the computational complexity can be reduced because of 
transmit and receive pulses. 
The prototype filter of transmitter and receiver can be expressed 
as 

𝑝𝑝𝑇𝑇𝑇𝑇(𝑡𝑡) = {
1

√𝑇𝑇𝑂𝑂
      ;             𝑖𝑖𝑖𝑖 (− 𝑇𝑇𝑂𝑂

2 + 𝑇𝑇𝐶𝐶𝐶𝐶) ≤ 𝑡𝑡 ≤ 𝑇𝑇𝑂𝑂
2

0          ;                                     𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
    (8) 

𝑝𝑝𝑅𝑅𝑅𝑅(𝑡𝑡) = {
1

√𝑇𝑇𝑂𝑂
         ;          𝑖𝑖𝑖𝑖 − 𝑇𝑇𝑂𝑂

2 ≤ 𝑡𝑡 ≤ 𝑇𝑇𝑂𝑂
2

0             ;                      𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
      (9) 

Localization:  𝜎𝜎𝑡𝑡 = 𝑇𝑇𝑂𝑂+𝑇𝑇𝐶𝐶𝐶𝐶
2√3 ; 𝜎𝜎𝑓𝑓 = ∝        (10) 

Bi-Orthogonal: 𝑇𝑇 = 𝑇𝑇𝑂𝑂 + 𝑇𝑇𝐶𝐶𝐶𝐶; 𝐹𝐹 = 1
𝑇𝑇𝑂𝑂

        (11) 

𝑇𝑇𝑂𝑂 signifies the time scaling parameter determined by the 
required time spacing and subcarrier spacing.  
Important time-domain pulse shapes and associated parameters 
are introduced by equations (8)– (11). Equations (8) and (9), 
which define the normalized transmit and receive pulse shapes 
over periods involving 𝑇𝑇𝑂𝑂 (symbol time) and 𝑇𝑇𝐶𝐶𝐶𝐶  (cyclic prefix 
duration), respectively, are represented by the symbols 𝑝𝑝𝑇𝑇𝑇𝑇(𝑡𝑡) 
and 𝑝𝑝𝑅𝑅𝑅𝑅(𝑡𝑡). Equation (10) specifies the temporal localization 
𝜎𝜎𝑡𝑡, while 𝜎𝜎𝑓𝑓 indicates the frequency localization, which for 
rectangular pulses is unlimited (∞). The time-frequency spacing 
in bi-orthogonal systems is given by equation (11) where the 
subcarrier spacing is 𝐹𝐹 = 1/𝑇𝑇𝑜𝑜and the symbol duration is 𝑇𝑇 =
𝑇𝑇𝑂𝑂 + 𝑇𝑇𝐶𝐶𝐶𝐶. 
Because of the poor frequency domain localization of 
rectangular pulses, there is a lot of Out of Band (OOB) emission 
in CP-OFDM. Additionally, the CP reduces spectral efficiency 
but makes receiver equalization for frequency-selective 

−

−

𝜎𝜎𝑡𝑡 = √∫ (𝑡𝑡 − 𝑡𝑡)̅2|𝑝𝑝(𝑡𝑡)|2𝑑𝑑𝑑𝑑𝛼𝛼
−𝛼𝛼 𝜎𝜎𝑓𝑓           

 (4) 

= √∫ (𝑓𝑓 − 𝑓𝑓)̅̅ ̅2|𝑃𝑃(𝑓𝑓)|2𝑑𝑑𝑑𝑑𝛼𝛼
−𝛼𝛼            (5) 

The basis pulse 𝑝𝑝(𝑡𝑡) is normalized to get energy with mean 

In order to bridge this gap, the best subcarrier spacing in FBMC 
systems using several prototype filters is evaluated in this 
paper. We compare performance to various multicarrier 
schemes including CP-OFDM, f-OFDM, W-OFDM, and 
UFMC and examine the effects of spacing on SIR. According 
to these results, FBMC is an interesting choice for flexible 
waveform designs in the future since it can achieve nearly 
optimal performance with simple one-tap equalizers when 
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TABLE I
Comparison of multi carrier transmission over AWGN channel

to prevent inter band interference, however overlapping and 
adding operations are performed within the WOLA symbol. F. 
Schaich.et.al [26] proposed two methods to implement f-
OFDM (filtered-OFDM). Initially, Universal Filtered Multi-
Carrier (UFMC) employs a Dolph-Chebyshev window-based 
subband-wise filtering technique. The filter design includes 12 
subcarriers per subband, having a time-frequency spacing that 
is orthogonal of 𝑇𝑇𝑇𝑇 =  1.07 which is same as in LTE. By 
choosing 𝑇𝑇𝑇𝑇 =  1.14, orthogonality is ensured for a time-
frequency spacing. By decreasing the spacing of time-
frequency to 𝑇𝑇𝑇𝑇 =  1.09, with slight self-interference (≈65 dB) 

UFMC but with longer filter lengths allow f-OFDM to  
experience the same self-interference(65 dB). 
Additionally, windowing and filtering could reduce significant 
OOB emissions from CP-OFDM at the expense of reduced 
spectral efficiency. Moreover, FBMC continues to provide 
lower OOB emissions than filtering and windowing. 

FBMC-OQAM 
The desired properties of Balian-Low theorem, can be 

satisfied by replacing the strict the complex orthogonality 
condition 𝑔𝑔𝑙𝑙1,𝑘𝑘1(𝑡𝑡), 𝑔𝑔𝑙𝑙2,𝑘𝑘2(𝑡𝑡) = 𝛿𝛿(𝑙𝑙2−𝑙𝑙1)(𝑘𝑘2−𝑘𝑘1) with less real 
strict condition ℝ{𝑔𝑔𝑙𝑙1,𝑘𝑘1(𝑡𝑡), 𝑔𝑔𝑙𝑙2,𝑘𝑘2(𝑡𝑡)} = 𝛿𝛿(𝑙𝑙2−𝑙𝑙1)(𝑘𝑘2−𝑘𝑘1). 
FBMC-OQAM can be implemented with the following filters 
as given in next sub section. 

 
Hermite polynomials 
Hermite filter can be designed by 

1. Design a prototype filter based on Hermite 
polynomials Hn(·)[27] 

𝑝𝑝(𝑡𝑡) = 1
√𝑇𝑇𝑂𝑂

𝑒𝑒−2𝜋𝜋( 1
𝑇𝑇𝑂𝑂

)
2

∑ 𝑎𝑎𝑖𝑖𝐻𝐻𝑖𝑖 (2√𝜋𝜋 𝑡𝑡
𝑇𝑇𝑂𝑂

)𝑖𝑖={0,4,8,12,16,20}   (12) 

For which the co-efficients can be 
𝑎𝑎𝑜𝑜 = 1.412692577   𝑎𝑎12 = −2.2611𝑋𝑋10−9   (13) 
𝑎𝑎4 = −3.0145 𝑋𝑋10−3    𝑎𝑎16 = −4.4570𝑋𝑋10−15  (14) 
𝑎𝑎4 = −8.8041𝑋𝑋10−6    𝑎𝑎16 = 1.8633𝑋𝑋10−16   (15) 
With 𝑝𝑝(𝑡𝑡) = 𝑝𝑝(−𝑡𝑡) 

2. Real orthogonal can be obtained by taking time-
frequency spacing factor of two i.e ,  𝑇𝑇 =  𝑇𝑇0/2 and 
𝐹𝐹 =  1/𝑇𝑇0. 

3. The phase shift of the induced imaginary interference 
is shifted with 

𝜃𝜃𝑙𝑙,𝑘𝑘 = 𝜋𝜋
2 (𝑙𝑙 + 𝑘𝑘)                 (16) 

Orthogonal : 𝑇𝑇 =  𝑇𝑇0;  𝐹𝐹 =  2/𝑇𝑇0 →  𝑇𝑇𝑇𝑇 =  2    (17) 
Localization : 𝜎𝜎𝑡𝑡  =  0.2015 𝑇𝑇𝑂𝑂; 𝜎𝜎 𝑓𝑓 =  0.403 𝑇𝑇𝑂𝑂

−1   (18) 
 PHYDYAS prototype filter 
The PHYDYAS prototype filter is another important filter [28], 
designed by a basis function  

𝑝𝑝(𝑡𝑡) = {1 + 2 ∑ 𝑏𝑏𝑖𝑖𝑐𝑐𝑐𝑐𝑐𝑐 (2𝜋𝜋𝜋𝜋
𝑂𝑂𝑇𝑇0

) ;  𝑖𝑖𝑖𝑖 −𝑂𝑂𝑇𝑇𝑂𝑂
2 < 𝑇𝑇 ≤ 𝑂𝑂𝑇𝑇𝑂𝑂

2
𝑂𝑂−1
𝑖𝑖=1

0                              ;       𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
 

    (18) 
The calculation of co-efficient 𝑏𝑏𝑖𝑖 [19] depends on the 
overlapping factor 𝑂𝑂. 
Let 𝑂𝑂 = 4 then the co-efficients 𝑏𝑏𝑖𝑖 is expressed as 
𝑏𝑏1 = 0.97195983  𝑏𝑏2 = √2

2  𝑏𝑏3 = 0.23514695   (19) 

Orthogonal:  𝑇𝑇 =  𝑇𝑇𝑂𝑂;  𝐹𝐹 =  2/𝑇𝑇𝑂𝑂 →  𝑇𝑇𝑇𝑇 =  2     (20) 
Localization: 𝜎𝜎𝑇𝑇  =  0.2745 𝑇𝑇𝑂𝑂; 𝜎𝜎𝑓𝑓  =  0.328 𝑇𝑇𝑂𝑂

−1   (21) 

The PHYDYAS filter provides stronger frequency-localization 
but not as good as time-localization than the Hermite prototype 
filter. 
  
RRC Filter   
The frequency domain representation of the signal transmitted 
by the RRC filter is provided by [29] 
𝑃𝑃(𝑓𝑓) = 𝐺𝐺(𝑓𝑓) = √|𝑋𝑋𝑟𝑟𝑟𝑟(𝑓𝑓)|𝑒𝑒−𝑗𝑗2𝜋𝜋𝜋𝜋𝑇𝑇𝑂𝑂          (22) 
With 𝐺𝐺(𝑓𝑓) = 𝑃𝑃∗(𝑓𝑓) where 𝑇𝑇𝑂𝑂 is a delay. 
And in the time domain 𝑝𝑝(𝑡𝑡) is given by  
 

𝑝𝑝(𝑡𝑡) = 1
√𝑇𝑇𝑂𝑂

𝑠𝑠𝑠𝑠𝑠𝑠(𝜋𝜋𝜋𝜋(1−𝛽𝛽))
𝑇𝑇𝑂𝑂

+4𝛽𝛽𝛽𝛽
𝑇𝑇𝑂𝑂

𝑐𝑐𝑐𝑐𝑐𝑐(𝜋𝜋𝜋𝜋(1+𝛽𝛽))
𝑇𝑇𝑂𝑂

𝜋𝜋𝜋𝜋
𝑇𝑇𝑂𝑂

(1−(4𝛽𝛽𝛽𝛽
𝑇𝑇𝑂𝑂

)
2

)
         (23) 

  
Where 𝛽𝛽 is the Roll-off factor 
Orthogonal:  𝑇𝑇 =  𝑇𝑇𝑂𝑂;  𝐹𝐹 =  2/𝑇𝑇𝑂𝑂 →  𝑇𝑇𝑇𝑇 =  2      (24) 
Localization: 𝜎𝜎𝑇𝑇  =  0.2745 𝑇𝑇𝑂𝑂; 𝜎𝜎𝑓𝑓  =  0.328 𝑇𝑇𝑂𝑂

−1    (25) 

III. SIGNAL TO INTERFERENCE RATIO COMPUTATION 
The SIR of FBMC-OQAM can be computed from the 

receiving symbol at 𝑙𝑙 𝑡𝑡ℎ subcarrier position, 𝑘𝑘 𝑡𝑡ℎ time position, 
and set noise to zero, then the received signal is expressed as 
[30]  
𝑦𝑦𝑙𝑙,𝑘𝑘 = 𝑔𝑔𝑙𝑙,𝑘𝑘

𝐻𝐻  𝐻𝐻 𝐺𝐺 𝑥𝑥 = ((𝐺𝐺 𝑥𝑥)𝑇𝑇⨂𝑔𝑔𝑙𝑙,𝑘𝑘
𝐻𝐻 )𝑣𝑣𝑣𝑣𝑣𝑣{𝐻𝐻}      (26) 

By combining all basis pulse vectors to form a transmit matrix 
𝐺𝐺 ∈  ℂ𝑁𝑁×𝐿𝐿𝐿𝐿, and transmit symbol vector 𝑥𝑥 ∈  ℂ𝐿𝐿𝐿𝐿×1 is 
represented as 

S.No. Multi carrier 
transmission 

Maximum pilot 
density 

Time 
localization 

Frequency 
localization 

Bi-Orthogonal 

1 CP-OFDM Yes Yes No Yes 
2 filtered/Windowed OFDM No Yes Yes Yes 
3 FBMC-OQAM Yes Yes Yes Real only 
4 FBMC-QAM No Yes Yes Yes 

channels simpler. 3GPP considered windowing [21] and 
filtering [22], [23] to reduce OOB emission in OFDM with 
Weighted Over Lap and Add  (WOLA) i.e  windowed OFDM 
scheme[24-25]. 

A smoother function (windowing) replaces the borders of the 
rectangular pulse at the transmitter, and adjacent WOLA 
symbols overlap in time. Windowing is also used by receivers 

spectral efficiency can be enhanced. The f-OFDM scheme is the 
3GPP's second filter-based OFDM technique. A Hann window 
is multiplied by a sinc pulse (perfect rectangular filter) for 
generating f-OFDM. The same time-frequency spacing as   
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The impulse response of channel matrix is  𝐻𝐻 ∈  ℂ𝑁𝑁×𝑁𝑁 and the 
operator 𝑣𝑣𝑣𝑣𝑣𝑣{. } is used to simplify the operation. To determine 
SIR in the FBMC-OQAM case 
Let Γ ∈ ℂ𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 and it is given by 
Γ = (𝐺𝐺𝑇𝑇⨂𝑔𝑔𝑙𝑙,𝑘𝑘

𝐻𝐻 )𝑅𝑅𝑣𝑣𝑣𝑣𝑣𝑣{𝐻𝐻}(𝐺𝐺𝑇𝑇⨂𝑔𝑔𝑙𝑙,𝑘𝑘
𝐻𝐻 )𝐻𝐻 , (29) 

Where Γ is decomposed with the following equation  
Γ = ΩΩ𝐻𝐻 (30)  
Where Ω is auxiliary matrix. Ω ∈ ℂ𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿Then compute 
 [𝛺̌𝛺𝑖𝑖]𝑢𝑢,𝑣𝑣 = [Ω]𝑢𝑢,𝑣𝑣

|[Ω]𝑖𝑖,𝑣𝑣|
[𝛺𝛺]𝑖𝑖,𝑣𝑣

, 

𝛤̌𝛤𝑖𝑖 = ℜ{𝛺𝛺𝑖𝑖}ℜ{𝛺𝛺𝑖𝑖}𝐻𝐻 
Finally, SIR can be computed as 

𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖
𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 =

[Γ̃𝑖𝑖]𝑖𝑖,𝑖𝑖
𝑡𝑡𝑡𝑡{Γ̃𝑖𝑖}−[Γ̃𝑖𝑖]𝑖𝑖,𝑖𝑖

 (31) 

IV. EFFECT OF OPTIMAL SUBCARRIER SPACING WHILE 
COMPUTING SIR 

Within the same band, FBMC may efficiently support various 
subcarrier spacing. Subcarrier spacing needed to be designed so 
that [31-32] 

𝜎𝜎𝑡𝑡
𝜎𝜎 𝑓𝑓

= 𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟
𝑉𝑉𝑟𝑟𝑟𝑟𝑟𝑟

              (32) 

Where time-localization 𝜎𝜎 𝑡𝑡 and frequency localization  𝜎𝜎 𝑓𝑓 

Two use cases are considered in the proposed work i.e., user1 
with subcarrier spacing 𝐹𝐹1 = 15𝑘𝑘𝑘𝑘𝑘𝑘 and user2 with subcarrier 
spacing 𝐹𝐹2 = 120 𝑘𝑘𝑘𝑘𝑘𝑘. These two different subcarrier spacings 
are included to transmit the signal for various channel 
conditions. Low latency transmissions are improved by the 
larger subcarrier spacing. Low subcarrier spacing improves 
bandwidth efficiency while also making the system more robust 
to delays. 

V. RESULTS  
A baseband multicarrier system model was used in MATLAB 
to carry out the simulations.  PHYDYAS, Hermite, and RRC 
filters were used to analyze each waveform, including CP-
OFDM, WOLA, UFMC, f-OFDM, and FBMC, under various 
subcarrier spacings (15 kHz, 120 kHz, and 480 kHz) and guard 
band ratios.  SIR was calculated by averaging 1000 Monte 
Carlo runs in an AWGN channel and calculating the ratio of the 
intended signal power to adjacent subcarrier interference.  A 
96-tap length and an overlapping factor of 4 were used for 

implementing FBMC filters.  To ensure equity, the same 
modulation (QAM), symbol durations, and total bandwidth 
were employed for all waveforms. 

The transmitted signal from user1 is characterized by 
G1 with Number of subcarriers 𝐿𝐿1 = 96 with 𝐹𝐹1 = 15𝑘𝑘𝑘𝑘𝑘𝑘 
subcarrier spacing resulting transmission bandwidth of 𝐹𝐹1𝐿𝐿1 =
1.44𝑀𝑀𝑀𝑀𝑀𝑀. Similarly, the transmitted signal from user2 is 
characterized by G2 with Number of subcarriers 𝐿𝐿2 = 12 with 
𝐹𝐹2 = 120𝑘𝑘𝑘𝑘𝑘𝑘 subcarrier spacing resulting transmission 
bandwidth of 𝐹𝐹2𝐿𝐿2 = 1.44𝑀𝑀𝑀𝑀𝑀𝑀. Furthermore, User G2 
frequency is shifted by 𝐹𝐹1𝐿𝐿1 + 𝐹𝐹𝐺𝐺 . A guard band of 𝐹𝐹𝐺𝐺 =
0.2𝐹𝐹1𝐿𝐿1 is used between user1 and user2. A time-frequency 
spacing is used in WOLA, f-OFDM, and UFMC to lower the 
OOB, 𝑇𝑇1𝐹𝐹1 = 1.09 for user1, 𝑇𝑇2𝐹𝐹2 = 1.27  for user2 are 
assumed. FBMC with Hermite, OFDM, UFMC, WOLA, f-
OFDM, PHYDYAS, and RRC with two users are calculated 
and presented in the Figure.2. (a) (b), (c), (d), (e), and (f)

𝐺𝐺 = [𝑔𝑔0,0  · · ·  𝑔𝑔𝐿𝐿−1,0   𝑔𝑔0,1  · · ·  𝑔𝑔𝐿𝐿−1,𝐾𝐾−1],      (27) 
𝑥𝑥 = [𝑥𝑥0,0  · · ·  𝑥𝑥𝐿𝐿−1,0   𝑥𝑥0,1  · · ·  𝑥𝑥𝐿𝐿−1,𝐾𝐾−1]𝑇𝑇      (28) 

The overall spectral performance of several multicarrier 
waveforms at different subcarrier spacings is shown in Figures 
2.a through 2.f, highlighting their use for future wireless 
systems.  While UFMC (Figure 2.b.) exhibits some 
improvement through sub-band filtering, OFDM (Figure 2.a.) 
suffers from excessive out-of-band emissions (OOBE), which 
get larger with increasing subcarrier spacing. However, residual 
side lobes still exist, particularly at higher spacings.  WOLA 
(Figure 2.c.) still shows leakage under large spacing, although 
time-domain windowing helps with smoother roll-off.  Though 
f-OFDM (Figure 2.d.) is sensitive to spectral overlap, it 
provides moderate suppression by subband filtering. However, 
at both 15 kHz and 480 kHz spacings, FBMC (Figures 2.e and 
2.f) exhibits excellent spectrum confinement with negligible 

 

side lobes, showing its efficiency in minimizing leakage and 
maintaining orthogonality for high-bandwidth, interference-
sensitive systems. 

 For 2-user case SIR can be given as  

𝑆𝑆𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡−2 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 = 𝐿𝐿1𝐾𝐾1 + 𝐿𝐿2𝐾𝐾2
||ℜ{𝐺𝐺1

𝐻𝐻𝐺𝐺2}||𝐹𝐹
2 + ||ℜ{𝐺𝐺2

𝐻𝐻𝐺𝐺1}||𝐹𝐹
2  

Where  ||. ||𝐹𝐹 operation represents Frobenius 
norm.The ℜ in the above equation disappears for CP-OFDM, 
WOLA, UFMC and f-OFDM because it operates in complex 
domain. More interference may be experienced by nearby 
subcarriers than by distant ones.  Figure.2(a) to 2(d) shows that 
if guard band is more then there is a less interference.
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(c )WOLA (d)f-OFDM 

 
 

(e) FBMC with 15KHz and 120 KHz (f) FBMC with 15KHz and 480 KHz 

  

(a) OFDM (b)UFMC 

Figure.2. PSD of multicarrier transmission
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 Figure.3. SIR characteristics of Multi carrier transmission techniques with FBMC-Hermite 

 
Figure.4. SIR characteristics of Multi carrier transmission techniques with FBMC-PHYDYAS 

 

Figure.5. SIR characteristics of Multi carrier transmission techniques with FBMC-RRC 
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S.No SIR (dB)  CP-

OFDM 
WOLA UFMC f-OFDM FBMC-

Hermite 
FBMC-
PHYDYAS 

FBMC-
RRC 

1 𝐹𝐹𝐺𝐺/𝐹𝐹𝐿𝐿 = 0.05 20  24  27  29  38  60  45  
2 𝐹𝐹𝐺𝐺/𝐹𝐹𝐿𝐿 = 0.1 22  28  30  34  48  60  45  
3 𝐹𝐹𝐺𝐺/𝐹𝐹𝐿𝐿 = 0.17 22 30 32 38 60  60  45  

After receiving the signal SIR is calculated for various 
multicarrier transmission techniques with proposed optimal 
SIR is computed for FBMC with proposed 2 usecases with 
different prototype filters. FBMC usecase1 with 𝐹𝐹1 = 15 𝐾𝐾𝐾𝐾𝐾𝐾 
and 𝐹𝐹2 = 120 𝐾𝐾𝐾𝐾𝐾𝐾, FBMC usecase2 with 𝐹𝐹1 = 15 𝐾𝐾𝐾𝐾𝐾𝐾 and 
𝐹𝐹2 = 480 𝐾𝐾𝐾𝐾𝐾𝐾. For these usecases Hermite, PHYDYAS, RRC 
prototype filters are incorporated in FBMC, and computed SIR 
is shown in Figure 3 to 5. and it reveals that FBMC works 
significantly better than other systems in every scenario, with 
PHYDYAS and Hermite filters reaching up to 60 dB SIR at 
broader guard bands. While WOLA performs marginally better 
than CP-OFDM, which consistently yields the lowest SIR 
across all scenarios, UFMC and f-OFDM exhibit moderate 
gains. 

FBMC - PHYDYAS with 𝐹𝐹1 = 15𝐾𝐾𝐾𝐾𝐾𝐾 and 𝐹𝐹2 = 120𝐾𝐾𝐾𝐾𝐾𝐾 
achieves 60𝑑𝑑𝑑𝑑 of SIR with least subcarrier spacing of 𝐹𝐹𝐺𝐺

𝐹𝐹𝐿𝐿
=

0.05. FBMC - PHYDYAS with 𝐹𝐹1 = 15𝐾𝐾𝐾𝐾𝐾𝐾 and 𝐹𝐹2 =
480 𝐾𝐾𝐾𝐾𝐾𝐾 achieves 60𝑑𝑑𝑑𝑑 of SIR with least subcarrier spacing 
of  𝐹𝐹𝐺𝐺

𝐹𝐹𝐿𝐿
= 0.23 

Consider the required SIR is 45 dB, in  case of f-
OFDM, WOLA, UFMC the guard band of 𝐹𝐹𝐺𝐺 = 0.24𝐹𝐹𝐿𝐿 is 
required. Then for user2 time-frequency efficiency can be 
evaluated by using following equation  

𝜌𝜌 = 𝐾𝐾𝐾𝐾
(𝐾𝐾𝐾𝐾+𝑇𝑇𝐺𝐺)(𝐹𝐹𝐿𝐿+𝐹𝐹𝐺𝐺)            (29) 

 
The time-frequency efficiency 𝜌𝜌 helps to choose 

modulation format, such that the available time-frequency 
resources can be maximized. 

For user2 time-frequency efficiency can be computed 
using Equation .28, 𝜌𝜌 = 1

1.24𝑋𝑋1.27 = 0.64.  Whereas in FBMC, 
𝜌𝜌 is 0.97 which is morethan the f-OFDM. This shows that user2 
(𝐹𝐹2 = 120 𝐾𝐾𝐾𝐾𝐾𝐾)i.e large subcarrier spacing empowers low 
latency transmission. If the subcarrier spacing increases by 
four-fold, the FBMC experiences the same delay as OFDM. If 
there are multiple subcarriers 𝐿𝐿 = 12 in FBMC is decreases to 
L=3, requires a large guard band (𝐹𝐹𝐺𝐺 =
0.13𝐹𝐹𝐿𝐿 𝑓𝑓𝑓𝑓𝑓𝑓 45 𝑑𝑑𝑑𝑑 𝑆𝑆𝑆𝑆𝑆𝑆). However, time frequency efficiency 
of  ρ=0.8 is still about 40% greater than the f-OFDM. By 
increasing the subcarrier spacing FBMC is still suitable for 
minimal latency transmission. This also increases the 
sensitivity, delay spread and time-offsets. 

The Signal-to-Interference Ratio (SIR) performance of 
several multicarrier waveforms under various guard-to-lobe 
frequency ratios (𝐹𝐹𝐺𝐺

𝐹𝐹𝐿𝐿
) is shown in the Table.2. It demonstrates 

that FBMC with PHYDYAS filtering continuously attains the 
highest SIR in every case, highlighting its better interference 
suppression, whereas WOLA and CP-OFDM perform 
comparatively more severe particularly as spectral congestion 
increases. 

FBMC variations, especially those that use 
PHYDYAS and Hermite filters, consistently produce higher 
SIR values across all subcarrier spacings, as illustrated in 
Figures 3-5.  Remarkably, FBMC-PHYDYAS achieves 60 dB 
SIR at a guard ratio of 0.17, but WOLA and CP-OFDM peak 
below 30 dB, indicating that they have limited capacity to 
reduce interference. While FBMC-PHYDYAS achieves 48 dB, 
showing improved spectrum isolation, the current 
implementation shows 30 dB, compared to [18], where UFMC 
obtained 35 dB SIR at a 0.1 guard ratio.  Unlike [20], which use 
fixed subcarrier spacing, the results presented here show that 
FBMC SIR increases from 45 dB to 60 dB when spacing is 
increased from 15 kHz to 480 kHz. 

The findings of evaluating SIR across multicarrier 
systems demonstrate that FBMC performs noticeably better 
than OFDM-based techniques, particularly at higher subcarrier 
spacings, demonstrating its applicability in situations where 
interference is a problem. PHYDYAS constantly offers the 
highest SIR for filter type evaluation, indicating its exceptional 
spectral confinement. 

In order to provide dense spectrum access, FBMC 
optimizes guard ratios while maintaining >45 dB SIR even at 
narrow bands.The performance boost made here in comparison 
to [18] and [20] confirms the goal of proving filter-spaced 
optimization in FBMC systems. 

While utilizing the proposed optimal spacing, FBMC 
outperforms f-OFDM by about 15% when high bandwidth is 
allocated per user (10.08 MHz as opposed to 1.44 MHz). 
Comparative SIR analysis of several multicarrier systems, 
including CP-OFDM, UFMC, WOLA, f-OFDM, and FBMC 
variations, that extend a broad range of subcarrier spacings and 
guard ratios is our main contribution. The results show that 
FBMC reaches up to 60 dB SIR, significantly outperforming 
traditional OFDM-based systems, particularly when used with 
PHYDYAS and Hermite filters. This confirms the significance 
of FBMC for applications with interference and limited 
spectrum, achieving the goal of the research, which was to find 
reliable waveform candidates for next-generation 
communication systems. 
  

 

𝐹𝐹𝐺𝐺/𝐹𝐹𝐿𝐿
TABLE II

SIR for different          ratios
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I. INTRODUCTION 
The infrastructure of smart cities is being revolutionized by 

Software-Defined Networking (SDN), which provides a 
programmable and centralized method of controlling intricate 
and diverse metropolitan networks. SDN offers the required 
agility and control in the context of a smart city, where the 
integration of several IoT devices, traffic management systems, 
energy grids, and public safety networks produces a highly 
dynamic environment. SDN design allows for centralized 
control via a software-based controller by severing the network 
control plane from the data plane. Because it is in charge of the 
whole network, this controller enables dynamic resource 
allocation, automatic traffic management, and real-time  

monitoring. Because SDN is programmable, network policies 
may be quickly altered in response to shifting circumstances or 
new threats, guaranteeing ongoing security and optimization. 
To improve network flow and lower latency for vital 
applications like emergency response systems, SDN, for 
example, dynamically redirects data from bottleneck locations 
in traffic management. By modifying the distribution in 
response to real-time supply and demand data, SDN in energy 
management can help make it easier to integrate renewable 
energy sources. Furthermore, by offering a centralized platform 
for executing security procedures and identifying irregularities 
throughout the network, SDN's centralized architecture 
improves cybersecurity [1-4].  
Enormous networks of interlinked sensors, devices, and 
communication systems underpin smart cities, and secure data 
transfer is necessary to preserve confidentiality, integrity, and 
trust. The XTEA (Extended Tiny Encryption Algorithm) is a 
durable and lightweight symmetric key block cipher that is 
well-suited for use in smart city applications. Because of its 
small size and ability to function on 64-bit blocks with a 128-
bit key, XTEA is perfect for resource-constrained contexts, such 
as embedded systems and Internet of Things devices, which are 
commonly found in smart city infrastructure. Strong 
cryptographic security is provided by its straightforward 
structure, which consists of a sequence of bitwise shifts, XOR 
operations, and modular additions, this offers little computing 
cost. Because of its iterative method, which typically consists 
of 64 rounds, XTEA is more resistant to cryptanalysis attempts, 
which makes it a dependable option for protecting sensitive data 
such as traffic data, utility use statistics, and personal 
information. Although XTEA has many benefits, there are 
security risks and vulnerabilities associated with its usage in 
smart city infrastructure that need to be properly addressed [5-
8].  

One major issue is that XTEA is subject to differential 
cryptanalysis, especially if it is not implemented correctly and 
with enough rounds (64 rounds is the ideal amount, but 
implementations with fewer rounds are still vulnerable). 
Additionally, if weak keys are utilized, XTEA's key scheduling 
technique is extremely basic and vulnerable to cryptanalytic 
assaults. Physical assaults, like side-channel attacks, present a 
significant concern in the context of smart cities since gadgets 
frequently function in unsupervised and sometimes unsafe 
settings. To determine the encryption key, these attacks 
make use of data that is disclosed during the encryption process, 
such as power usage or electromagnetic emissions. Another risk 
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is replay attacks, in which a hacker intercepts encrypted data 
and sends it again to trick the target system into carrying out 
commands or actions that are not authorized. Robust key 
management procedures, such as regular key rotation and the 
use of powerful, randomly generated keys, must be put in place 
to reduce these risks [9–12]. Smart cities may use XTEA's 
advantages while reducing possible weaknesses by tackling 
these risks with all-encompassing security solutions. 

The XTEA implementation in embedded microcontrollers 
inside an SDN framework for smart city infrastructure has 
several technical difficulties that need to be carefully 
considered. One major problem is that embedded 
microcontrollers have restricted resources by nature; they 
include memory, computational power, and energy availability. 
Despite the lightweight nature of XTEA, cryptographic 
operations can still put a load on these few resources, which 
might affect the responsiveness and performance of vital smart 
city applications. In an SDN environment, where real-time data 
flow management and fast reconfiguration are critical, this is 
especially pertinent. The computational expense of 
XTEA causes latency problems, impacting the speed at which 
data is sent and decisions are made in the SDN, particularly 
when the necessary 64 rounds for security are implemented. 
The integration of XTEA inside the SDN control plane and data 
plane separation paradigm is another major hurdle. Embedding 
XTEA encryption techniques that dynamically adapt to the 
network's changing topology and traffic patterns is necessary to 
provide smooth and secure communication across various 
planes [13–15]. It is imperative to optimize the implementation 
of XTEA for low-power operations to overcome these 
technological obstacles. This can be achieved, for example, by 
using software libraries that are specifically designed for 
microcontroller architectures or by using hardware 
acceleration. Ultimately, an integrated approach that achieves a 
balance between security, performance, and resource 
limitations while guaranteeing the flexibility and scalability of 
the whole infrastructure is needed for the effective 
implementation of XTEA in embedded microcontrollers inside 
an SDN framework for smart cities. 

A. Main objective of this paper  
The following methodological and experimental 

contributions have been achieved by this paper: 
• To mitigate POA vulnerabilities, CAKE-SPV is 

implemented within the XTEA encryption, in which Context-
Aware Key Expansion Scheduling algorithm is utilized for 
customizing the key scheduling process, and OAEP with HIPV 
mechanism is utilized for secure padding with integrated 
validation, thereby ensuring secure communication and 
preventing information leakage through POA vulnerabilities. 

• To optimize the XTEA for 8-bit Microcontrollers-
based smart city infrastructure, an ARPP is presented, which 
utilizes adaptive round adjustment for an optimal number of 
encryption rounds and parallel processing for dividing the data 
into smaller bit-level blocks thereby enhancing the efficiency 
of XTEA encryption methods to operate effectively on 8-bit 

microcontrollers, reducing chip area, power consumption, and 
processing time. 

B. Organization of study 
The arrangement of the paper is as follows. In Section 2, 

relevant literature is reviewed; in Section 3, the methodology of 
the proposed system is explained; in Section 4, experiments, 
datasets, comparison, and evaluation methodologies are 
covered; in Section 5, suggestions for future developments and 
limits of the approach are made. 

II. LITERATURE SURVEY 
For the protection of sensitive data in a variety of 

applications, including RFID systems and smart cities, the 
security and effectiveness of encryption methods are essential. 
Enhancing the XTEA algorithm and its variations to handle 
certain security flaws and performance limitations in various 
scenarios has been the subject of recent research. 

Ahmed et al [16] employed an enhanced S-box to boost 
security and thwart a variety of assaults, resulting in a new and 
reliable version of the original XXTEA. To achieve the one-
time pad idea and provide an extra degree of protection, the M-
XXTEA was also combined with a chaotic key-
generating system. In contrast to the original XXTEA and AES, 
the cipher keys were dynamically updated for every block of 
plaintext throughout the encryption process, offering a more 
reliable security method. The M-XXTEA works with multiple 
text block sizes and key sizes in addition to improving data 
security. To compare the M-XXTEA's performance with that of 
the original XXTEA and AES, many experiments were carried 
out. The results showed that M-XXTEA surpassed AES by 60% 
in terms of encryption and decryption time efficiencies. The 
addition of new elements, including the chaotic key 
generation, results in unanticipated weaknesses, even if the M-
XXTEA already counters several assaults. 

Manikandan et al [17] addressed the XTEA's security issues 
by using domain-specific customization, random number 
generation, and hidden key renewal processes. RXMAP-1 and 
RXMAP-2, two different encoder architectures for the 
Renovated XTEA Mutual Authentication Protocol (RXMAP), 
were proposed. Their foundation was the replacement of 
accurate computational blocks with approximations. The 
proposed RXMAP protocol's computational and storage 
overhead was evaluated, and it was tested against a variety of 
security threats using BAN logic in both formal and informal 
verification. The proposed encoder designs are simulated for 
functional verification, and ASIC implementation is carried out 
on a 132 nm manufacturing node. However, because of the 
customization, use of random numbers, and key renewal 
procedures, the suggested protocol resulted in computational 
and storage overhead. 

Zeesha Mishra and Bibhudendra Acharya [18] 
constructed optimal lightweight ciphers to implement the cipher 
in hardware by modeling the design characteristics. To 
accomplish the intended result, the TEA, XTEA, and XXTEA 
ciphers were developed, put into practice, and optimized 
utilizing specialist hardware platforms including Application 
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Specific Integrated Circuit (ASIC) and Field Programmable 
Gate Array (FPGA). Through the execution of designs for four 
hardware architectures TEA (T1), XTEA (T2), XXTEA (T3), 
and hybrid model (T4) many elements, including block sizes, 
implementation rounds, and crucial scheduling components, 
have been explored. The percentage gains in frequency for T1, 
T2, and T3 using a pipelined method are 75.9%, 162%, and 
89%, respectively. Nevertheless, when optimizations are 
carried out, their scope and effects on other aspects like as 
security or resource use are not thoroughly investigated. 

Neha Khute et al [19] proposed a round-based XXTEA-
192-bit architecture to reduce the implemented hardware's 
space. This design had cheap cost and small space required, and 
it was meant for RFID applications. Simple shifting, addition, 
and XOR operations are among the fundamental and logical 
operations used by XXTEA. These simple activities allowed the 
architecture to be low-area and extremely efficient by design. 
Performance analysis was carried out on several FPGA device 
families, including Spartan-3, Virtex-7, Virtex-5, and Virtex-4, 
assessing variables including throughput and efficacy. 
Nevertheless, further optimization is needed in terms of speed, 
power usage, or reduced area. 

Dzaky Zakiyal et al [20] developed a distributed MQTT 
(message queuing telemetry transmission) brokers-optimized 
architecture. For edge resources, a distributed MQTT broker 
might reduce latency and network traffic by managing only 
topics that were consumed on the network. An integer non-
linear code was created to optimize container placement and 
minimize the wastage of edge computing resources. This 
architecture with the existing distributed MQTT middleware 
design with random and greedy container placement was 
simulated through rigorous modeling. When it came to 
lowering synchronization overhead, power use, network 
utilization, and deployment failure rates, this design fared better 
than the others. Nevertheless, the limited memory, processing 
power, and storage of edge devices affect the solution's viability 
and efficiency. 

Keshari et al [21] suggested using the Grey Wolf 
Optimization Affinity Propagation (GWOAP) algorithm to 
arrange many controllers in smart city networks. The network's 
linked smart devices' traffic was controlled by the controllers. 
The OS3E network architecture is used to mimic the suggested 
method. To minimize processing delays and regulate the 
controller's traffic load, the controller deploys in the OS3E 
network topology by executing AP and GWO optimization 
algorithms that split the network into subdomains. IoT-enabled 
smart switches are better distributed throughout clusters using 
GWOAP, and node equalization was distributed evenly among 
all controllers in the deployed architecture. The traffic load of 
IoT-enabled devices in smart city networks is intelligently 
balanced across controllers by employing the suggested 
technique. 

Anusha, and Shastrimath [22] developed and put into use 
a low-cost FPGA RFID-Mutual Authentication (MA) system 
with XTEA security. By offering Reader's and Tag's challenge 
and Response utilizing XTEA security, the RFID-MA 
incorporated Reader and Tag authentication. The RFID-

MA procedure was completed faster overall because of XTEA's 
pipelined design, which combined parallel execution of key 
scheduling with encryption and decryption processes. RFID 
incorporated the XTEA with Cypher block chaining (CBC) for 
protected MA applications. Based on the challenge and 
response between the Reader and Tag utilizing XTEA-CBC, the 
authentication procedure was successful. The security of XTEA 
is constrained by its vulnerability to complex cryptographic 
techniques such as differential cryptanalysis. For long-term 
security, more powerful encryption algorithms and frequent 
upgrades are required. 

Chen et al [23] focused on DDoS attack traceback 
techniques in SDN-based SC. Relevant reports from the past 
few years were analysed, and it was discovered that the current 
approaches were less adaptable overall and require more time 
and resources. As a result, this research provided a simple 
traceback system based on anomaly trees. By examining 
network traffic fluctuations, this approach created an anomaly 
tree. It then calls on several detection algorithms that satisfy the 
necessary conditions to reduce the tree and ultimately identify 
the attack path. The main weakness in the method is that it is 
vulnerable to erroneous data from hacked base station nodes, 
which might result in imprecise anomaly identification and 
traceability of attack paths. It is additionally susceptible to noise 
and inconsistencies since it depends on consistent network 
traffic patterns. 

Abdulkadhim et al [24] presented a more advanced, 
lightweight Modified XTEA Algorithm that protected against 
node abuse attacks and side-channel vulnerabilities. Provide a 
design in this work that used chaotic systems to create 
encryption keys, making them more unpredictable and random. 
This research's main goal is to strengthen security protocols 
against a variety of modern attack methods, ensuring complete 
defense, unpredictable behavior, and resilience. The purpose of 
implementing strategic defenses and strategies is to protect 
important resources from potential harm. Even with these 
improved security measures, the complexity of chaotic key 
generation still causes the updated XTEA method to operate 
poorly on very limited hardware.  

Ragab et al [25] demonstrated that the XXTEA lightweight 
block cypher used fewer memory and computing cycles, so it is 
a better fit for usage in IoT smart devices for message 
encryption. Additionally, the elliptic curve cryptography (ECC) 
asymmetric cipher was chosen over RSA because it provides a 
higher level of bit security at smaller key sizes. To ensure 
authenticity, integrity, and non-repudiation, the ECC cipher 
was employed. For secrecy, the XXTEA block cipher was 
employed. Additionally, each time data is encrypted, the script 
hashing algorithm is utilized to confirm data integrity and 
produce numerous keys. By combining ECC, XXTEA, and 
script, the suggested hybrid cryptosystem satisfies the four 
primary requirements of cryptography: secrecy, authenticity, 
integrity, and non-repudiation. However, the physical setup of 
the suggested hybrid cryptosystem needs to be addressed. 

From this review, it is noted that [16] introduces unexpected 
weaknesses that can impact reliability, in [17] results in 
increased computational and storage overhead, and in [18] 
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observed that their optimized hardware implementations while 
improving performance, did not thoroughly address the trade-
offs between security and resource usage. [19] it still requires 
further optimization for speed, power consumption, and area 
reduction, in [20] faces challenges due to the limited memory 
and processing power of edge devices, in [21] highlighted that 
their GWOAP-based controller arrangement, while balancing 
IoT traffic, could be limited by the complexity of the 
optimization process, in [22] vulnerable to advanced 
cryptographic attacks and requires more robust encryption 
solutions. [23] reported that their anomaly tree-based DDoS 
traceback method, while simplifying detection, is susceptible to 
inaccuracies from erroneous data and noise, in [24] suffers from 
poor performance on highly constrained hardware due to the 
complexity of chaotic key generation. 

III. ADAPTIVE SECURE XTEA FOR EMBEDDED 
MICROCONTROLLERS IN SMART CITIES 

As smart cities rely more on networked devices for crucial 
urban infrastructure, the demand for strong security measures 
grows. XTEA is a lightweight encryption solution designed for 
resource-constrained contexts, making it a good fit for 
embedded processor-based SDN nodes. However, using XTEA 
in these systems involves specific obstacles that need to be 
overcome to maintain effective security. Hence, an Adaptive 
Secure XTEA for Embedded Microcontrollers (ASX-EM) is 
proposed to address the goals of mitigating vulnerabilities 
caused by POA, optimizing performance for 8-bit 
microcontrollers, and developing customized XTEA encryption 
methods for embedded processor-based SDN nodes in smart 
cities. Many existing embedded processor-based SDN 
controllers ignore adequate padding validation to improve 
decryption performance. This carelessness makes them 
vulnerable to Padding Oracle Attacks, which allow attackers to 
change ciphertext and exploit incorrect answers from the SDN 
controller. By iterating through potential modifications, 
attackers can decrypt sensitive data block by block, 
compromising the integrity and confidentiality of the 
communication.  To mitigate POA vulnerabilities, the Context-
Aware Key Expansion and Secure Padding Validation (CAKE-
SPV) are introduced. Here, A Context-Aware Key Expansion 
Scheduling technique is developed, which customizes the key 
scheduling process to node-specific factors such as MAC 
address and node ID. This ensures that even if one key is 
compromised; the security of other nodes remains intact. 
Additionally, the OAEP with HIPV mechanism provides secure 
padding and integrated validation. OAEP adds random padding 
and a cryptographic hash to the plaintext before encryption. 
During decryption, the HIPV checks hash consistency, aborting 
if the message is tampered with, thus ensuring ciphertext 
integrity and preventing information leakage through padding 
oracle attack vulnerabilities. This technique adds an extra layer 
of security to XTEA encryption, safeguarding against potential 
POA risks. 

Furthermore, smart city infrastructure frequently relies on a 
large number of interconnected devices, many of which are 
powered by 8-bit microcontrollers since they are inexpensive 

and consume little power. Such devices manage important tasks 
including public safety, environmental monitoring, and traffic 
control. Many existing XTEA designs, which include multiple 
rounds of complicated arithmetic and bitwise operations, are 
not appropriate for 8-bit microcontrollers. These devices 
struggle with computational overhead, causing considerable 
delays during encryption and decryption. The restricted 
processing power and memory increase latency difficulties, 
preventing real-time data transfer. As a result, essential 
applications in smart city infrastructure may encounter delays, 
jeopardising the security and efficiency of sensitive data 
exchange. This inefficiency presents a substantial difficulty for 
implementing strong encryption in resource-limited contexts. 
Hence, an Adaptive Round and Parallel Processing (ARPP) 
method is introduced to optimize XTEA for 8-bit 
microcontrollers in smart city infrastructure. The Dynamic 
Round Adjustment technique uses Threshold-based Adaptive 
Control Logic to monitor system parameters such as CPU load, 
memory, and network traffic, and then adjusts the number of 
encryption rounds in real-time. This lowers the need for huge 
buffers or storage spaces, reducing the necessary chip area. 
During periods of low system load or restricted resources, fewer 
rounds accelerate processing without risking security. 
Furthermore, Bit-Slice Processing with Precomputed Lookup 
Tables accelerates encryption/decryption by processing bit-
level blocks concurrently and obtaining precomputed values. 
This reduces arithmetic operations while dramatically 
increasing XTEA efficiency on 8-bit microcontrollers, making 
it suitable for smart city applications.  

 
Fig.1: Overall flow diagram of the proposed model 

The overall flow diagram of the suggested model is 
illustrated in the figure 1. IoT devices in the smart city transmit 
data to the ASX-EM framework. Initially, the Context-Aware 
Key Expansion method produces unique keys for each node 
depending on predefined factors. The Dynamic Round 
Adjustment program then analyses system parameters and 
modifies the number of encryption rounds accordingly. The 
XTEA algorithm is used to encrypt data, which is optimized 
with Bit-Slice Processing and Precomputed Lookup Tables.  
Furthermore, OAEP provides padding and a hash for safe 
transmission, while the HIPV technique maintains integrity 
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during decryption. Finally, the encrypted data is decrypted, and 
the HIPV detects manipulation. If the data is genuine, it is 
processed; otherwise, the operation is aborted. The SDN 
Controller manages the whole process, guaranteeing optimal 
resource allocation and network management. 

A. Context-Aware Key Expansion Scheduling 
The Context-Aware Key Expansion Scheduling method is 

proposed to improve the security of the XTEA encryption 
system by creating unique encryption keys for specific nodes in 
a dispersed network. This approach incorporates node-specific 
factors into the key scheduling process, resulting in unique, 
pseudo-random encryption keys for each node. This 
customization enables each node to produce unique encryption 
keys, which improves security, particularly in dispersed 
networks. This solution dramatically enhances the security of 
XTEA encryption by preventing a key breach from influencing 
the security of other nodes. 

The algorithm begins by generating a base key Kb from node-
specific parameters. let MAC be the node's MAC address and 
NodeID be its unique identification. These parameters serve as 
the basis for generating unique keys for each node. The unique 
key for each node is generated by combining the base key with 
the node-specific parameters, which is mathematically 
represented as in equation (1) 

Kb = f(MAC, NodeID)              (1) 
Where Kb is the base key. f is a cryptographic function that 

combines the base key with the node-specific parameters, 
which is designed using a hash function to ensure that the output 
is pseudo-random and unique for each node. Once the base key 
is generated, the key scheduling process begins. The key 
scheduling function Ksch takes the base key Kb and a context 
parameter Ci. The context parameter is a combination of node-
specific parameters or an additional random value for added 
security. 

Ksch(Kb, Ci) → {Kb
(1), Kb

(2), Kb
(3), … , Kb

(n)}    (2) 
The basic key Kb is extended into round keys 

{Kb
(1), Kb

(2), Kb
(3), … , Kb

(n)} for XTEA encryption rounds. The 
Context-Aware Key Expansion Scheduling algorithm generates 
these round keys in a manner that incorporates node-specific 
context. The key scheduling is adaptive; this is change based on 
the operational context of the node. To further strengthen the 
uniqueness of the keys, the algorithm modifies the round keys 
based on contextual information: 

Ci = h(MAC, NodeID, Vi)         (3) 
Where Vi is a nonce to ensure the uniqueness of the context 

parameter, and h adjusts the round key based on the current 
context, ensuring that even under similar conditions, the keys 
remain distinct. The key scheduling function Ksch uses a 
pseudo-random number generator (PRNG) seeded with the base 
key Kb and context parameter Ci to produce the round keys. The 
PRNG ensures that the round keys are unique and pseudo-
random. 

Kf = PRNG(Ci, Vi)         (4) 
Here, the Vi is a unique number used to prevent replay 

attacks, ensuring that each key generated is distinct even if the 

same base key is used. The Context-Aware Key Expansion 
Scheduling approach generates round keys that are 
subsequently employed in the XTEA encryption process. 

 Algorithm 1: Context-Aware Key Expansion Scheduling 
algorithm 
Input:  MAC Address, Node ID, Context Parameters Ci, 
Nonce Vi, and 
Step 1: Generate a unique key for node i 
Step 2: Generate the context parameter Ciusing the function 
h 
Step 3: Initialize RoundKeys array 
Step 4: Key scheduling using PRNG seeded with base key 
Kb and context parameter Ci 
 for i from 0 to n do 
  K[i] ← Ksch((Kb, Ci)) 
 end for 
Step 5: Key scheduling function Ksch uses a PRNG: K[i] =
PRNG(Ci, Vi)      
Step 6: Return unique context-aware key Kf 
Output: A series of unique, context-aware keys for 
encryption. 
 
This promises that even if one node's key breaches, the 

security of other nodes is preserved through unique sub-keys 
formed from node-specific factors. This pseudo-random and 
unique key expansion considerably improves the security of the 
XTEA encryption technique. This customization makes it 
difficult for an attacker to derive keys for other nodes even if 
one key is compromised. 

B. Dynamic Round Adjustment Algorithm 
The Dynamic Round Adjustment technique optimizes the 

XTEA encryption process for 8-bit microcontrollers used in 
smart city infrastructures. With this approach, XTEA 
encryption security and performance are optimally balanced 
since the number of encryption rounds is constantly adjusted 
based on real-time system parameters, even under varying 
computational loads and resource availability. Threshold-based 
adaptive control logic monitors various system metrics and 
makes decisions about the number of encryption rounds 
required at any given time. 

In the first step, the system predefined the number of 
encryption rounds minimum (Rmin) and maximum (Rmax). The 
intended security level and the microcontroller's capabilities are 
used to define these values. Additionally, threshold values are 
set for network traffic, CPU load, and memory availability. The 
number of encryption rounds will be increased or decreased 
based on these thresholds. These thresholds help the algorithm 
decide when to adjust the number of encryption rounds. 

The algorithm continuously monitors real-time data on the 
identified system metrics (CPU load, available memory, and 
network traffic). The monitored values are compared against 
predefined thresholds to evaluate the system's current state. 

 
CPU Load Evaluation 
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• If the CPU load is below a low threshold, it indicates 
low processing demand, allowing the system to afford more 
encryption rounds for enhanced security. 

• If the CPU load is above a high threshold, it suggests 
high processing demand, prompting a reduction in the number 
of rounds to free up processing power. 

Memory Evaluation 
• High available memory allows for more encryption 

rounds without risking memory overflow or significant 
slowdowns. 

• Low available memory necessitates reducing the 
number of rounds to conserve resources. 

Network Traffic Evaluation 
• Low network traffic permits more encryption rounds 

as the system can handle additional processing without 
impacting transmission speed. 

• High network traffic requires fewer encryption rounds 
to maintain timely and efficient data transmission. 

The algorithm calculates the optimal number of encryption 
rounds (Rop) based on a weighted function of the monitored 
metrics: 

Rop = Rmin (CPU load+memory+Traffic factor
3 ) × (Rmax −

Rmin)    (5) 
The calculated Rop is then used to update the number of 

encryption rounds in real time. The number of encryption 
rounds is dynamically adjusted in real time based on the 
ongoing assessment of system metrics. This adjustment helps 
keep the encryption process both efficient and secure, even as 
system conditions change. Finally, the algorithm applies the 
updated number of rounds to the XTEA encryption process. 
This continuous modification ensures that the system keeps 
running without any problems, dynamically adjusting to the 
present situation. The encryption and decryption operations 
now proceed with the adjusted rounds, ensuring that the system 
operates efficiently without compromising security. The 
Dynamic Round Adjustment Algorithm is shown in the 
following algorithm 2.  

Algorithm 2: Dynamic Round Adjustment Algorithm 
1. Start 
2. Initialize Parameters 
  Set Rmin,  Rmax, and Define thresholds for CPU 

load, memory availability, and network traffic 
3. Monitor System Metrics 
 Continuously collect data on CPU load, available 

memory, and network traffic 
4. CPU Load Evaluation 
 If CPU load < low threshold, increase encryption 

rounds 
 If CPU load > high threshold, decrease encryption 

rounds 
5. Memory Evaluation 
 If available memory is high, increase encryption 

rounds 
 If available memory is low, decrease encryption 

rounds 
6. Network Traffic Evaluation 

 If network traffic is low, increase encryption rounds 
 If network traffic is high, decrease encryption 

rounds 
7. Calculate Optimal Number of Rounds 
 Rop

= Rmin (CPU load + memory + Traffic factor
3 )

× (Rmax − Rmin) 
 Adjust the number of encryption rounds to Rop 
 Implement the adjusted number of rounds in the 

XTEA encryption process 
8. Repeat from step 3 
9.End  
 
By altering the number of encryptions rounds dynamically, 

the Dynamic Round Adjustment algorithm method reduces the 
need for huge buffers or storage locations. This is especially 
important for 8-bit microcontrollers, which have limited 
memory and computing capability. 

Once the number of encryption rounds is updated, the Bit-
Slice Processing is used to divide data into smaller bit-level 
segments, allowing several encryption processes, which is 
explained in the following section 3.3. 

C. Bit-Slice Processing 
Conventional byte-oriented processing processes data in 8-

bit (or larger) chunks, resulting in inefficiencies while 
performing concurrent activities. Hence the bit-slice processing 
is used in this research, which divides data into discrete bits 
such that many bits carry out operations concurrently. This 
method greatly increases efficiency and speed by enabling the 
simultaneous execution of many encryptions or decryption 
operations. 

The specific architecture of the 8-bit microcontroller 
determines how bits are efficiently processed in parallel. This 
includes the availability of parallel execution units and the 
capability to handle bit-level operations. By dividing the data 
into slices, multiple bit-wise operations are executed 
simultaneously, improving throughput and reducing processing 
time on 8-bit microcontrollers. The Bit-Split function is defined 
as follows in equation (6) 

Bs(Q(y)) = Bk⨁ Bk−1⨁, … , ⨁  Bi            (6) 
Here, ⊕ denotes the bitwise XOR operation, 

and Bk, Bk−1,…, Bi represent the different segments obtained 
by splitting the bit sequence. These bit-level blocks are then 
processed simultaneously.  

 
Fig.2: Bit-Slice Processing 
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Figure 2 depicts the bit slice processing of the proposed 
model. This implies that multiple encryption/decryption 
operations are performed at the same time, making use of 
parallel processing units within the microcontroller. This bit-
slice processing offers a flexible and scalable approach to 
processor architecture, allowing for effective execution of 
arithmetic and logical operations in parallel. This method is 
especially useful in resource-constrained situations, such as 8-
bit microcontrollers, where optimal performance and resource 
utilization are crucial. Bit-slice processing improves flexibility, 
speed, and efficiency in microprocessor designs by breaking 
down the data route into smaller slices. Once the bit-slicing 
operation is done, OAEP is utilized for proper encryption, 
which is explained in the following section 3.4. 

D. Optimal Asymmetric Encryption Padding  
To provide a secure padding, the OAEP is utilized for 

encrypting the plaintext message from the IoT device. OAEP is 
a padding strategy that is frequently used in conjunction with 
asymmetric encryption algorithms to increase security, 
particularly against POAs and other cryptographic 
vulnerabilities. The process of OAEP requires numerous 
phases, from appending padding to the plaintext to validating 
the message's integrity after decryption. 

Begin with the plaintext message needs to be encrypted. Let 
M be the original plaintext message. The first step is to 
determine the required length of the padding. The total length 
of the padded message needs to match the block size of the 
encryption algorithm. Apply padding to M to ensure the total 
length is a multiple of the block size n required by the 
encryption algorithm. Extra bytes are added to the plaintext to 
ensure that it fits the encryption algorithm's required block size. 
This stage also includes adding random bytes to the message to 
ensure that the same message encrypted several times produces 
distinct ciphertexts, hence increasing security. Let P(M) denote 
the operation of adding padding P to M:  

P(M) = P ⊕ M     (7) 
Where ⊕ denotes concatenation, and P is the random 

padding added to make the message length compliant with 
block size requirements. The padding is random, enhancing 
security by making it difficult for attackers to predict the 
padding structure. Then compute a cryptographic hash H(M) of 
the original plaintext M, which is expressed in the following 
equation () 

h = H(M)                    (8) 
This hash h is important for verifying the integrity of the 

message during the decryption process. The generated hash 
value is attached to the message along with the random padding. 
Concatenate the padded message P(M) with the hash h, which 
is expressed in the following equation () 

DM = P(M) ⊕ h       (9) 
This combined message DM includes both the padded 

plaintext and the hash, ensuring both data integrity and security. 
Encrypt the concatenated message DM using the XTEA 
encryption algorithm with a key Kf.  

C = EKf (DM)                             (10) 

Here, KKf is the encryption function, and C is the resulting 
ciphertext. The encryption key Kf is uniquely generated for 
each node using the Context-Aware Key Expansion Scheduling 
algorithm, ensuring that the keys are pseudo-random and node-
specific. The encryption process transforms the combined 
message into ciphertext, ensuring its confidentiality during 
transmission. The encrypted message (ciphertext C) is 
transmitted to the intended recipient. By including random 
padding in the message, OAEP promises that even if the same 
plaintext is encrypted numerous times, the resultant ciphertext 
is unique each time. This randomization makes it far more 
difficult for an attacker to anticipate or manipulate the 
ciphertext.  OAEP is designed to work effectively within the 
constraints of 8-bit microcontrollers. The use of a lightweight 
hash function and efficient padding mechanisms ensures that 
the encryption process remains fast and resource-efficient. The 
algorithm for OAEP is explained in Algorithm 3. 

 
Algorithm 3: Optimal Asymmetric Encryption Padding 
Inputs: Plaintext message M, Block size n of the encryption 
algorithm, encryption key Kf generated using the Context-
Aware Key Expansion Scheduling algorithm, and Hash 
function H 
Output: Ciphertext C 
 1. Compute the length of the padding P needed to 

make M fit the block size n. 
 2. Generate a random padding P of appropriate 

length. 
 3. Concatenate the random padding P with the 

plaintext message M: 
 4. Compute the cryptographic hash h of the 

original plaintext M 
 5. Combine the padded message P(M) with the 

hash h 
 6. Encrypt the combined message DM using the 

XTEA encryption algorithm: 
The resulting ciphertext C is returned. 
Send the ciphertext C to the intended recipient. 
 
To optimize the XTEA encryption algorithm by using 

precomputed lookup tables, reducing real-time computational 
overhead, and improving processing efficiency on 8-bit 
microcontrollers. Frequently used arithmetic operations in the 
XTEA algorithm are precomputed and stored in lookup tables. 
During encryption or decryption, instead of performing the 
computation in real time, the algorithm retrieves the result from 
the table. The main purpose is to speed up encryption and 
decryption by avoiding repetitive computations, especially for 
computationally expensive operations. By accessing 
precomputed values, the need for real-time arithmetic 
operations is minimized, leading to faster encryption and 
decryption. Minimizes processor cycles and memory usage, 
making it suitable for 8-bit microcontrollers with limited 
resources.  

The OAEP method is enhanced by HIPV, which checks the 
integrity of the decrypted message. By recalculating the hash 
after decryption and comparing it to the initial hash, the system 
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assures that the message has not been altered, which is 
explained in the following section 3.5.  

E. Hash-Based Integrated Padding Verification  
HIPV is designed as an additional layer for improving the 

security of encrypted data by including padding validation 
directly into the decryption process. It aims to prevent 
vulnerabilities corresponding to the POA by ensuring that only 
valid ciphertexts are decrypted. 

Upon receiving the ciphertext, the SDN controller decrypts it 
using the XTEA decryption algorithm. This restores the padded 
and hashed plaintext message. The recipient receives the 
ciphertext that needs to be decrypted. Decrypt the incoming 
ciphertext to get the padded plaintext and appended hash. The 
ciphertext C is decrypted using the XTEA decryption function 
DKf(⋅) with key Kf, restoring the combined message M′. 

M′ =  DKf(C)       (11) 
The decrypted message is divided into two parts: the original 

message with padding and the hash value. This extracted hash 
was appended during the encryption phase and serves as a 
reference for integrity verification. The decrypted message M′ 
is split into the padded plaintext P′ and the extracted hash HP′.  

Then the random padding bytes are removed from the 
decrypted message to extract the original plaintext. This step 
restores the plaintext to its original form before padding and 
hashing. The padding bytes q are removed from P′, yielding the 
extracted plaintext P. A new hash is calculated from the 
extracted plaintext using the same cryptographic hash function 
as in the encryption phase. This recalculated hash (HP′′) is 
compared with the extracted hash to verify the integrity of the 
message. Calculate the hash of the extracted plaintext P′, which 
is expressed in the following equation () 

HP
′′ = H(P′)               (12) 

Compare the recalculated hash HP
′′ with the extracted hash 

HP′. If the recalculated hash matches the retrieved hash, it 
means that the message was not tampered with. The plaintext is 
regarded as valid. If the hashes do not match, it means that the 
message was tampered with. In this situation, the decryption 
operation is terminated, and the plaintext is not utilized. This 
hash consistency check detects ciphertext manipulation and 
padding issues during decryption. If the hashes do not match, 
the decryption is halted, ensuring the message's integrity 

 
Fig.3: Flow chart for Hash-Based Integrated Padding 

Verification 

Figure 3 illustrates the flow chart for HIPV. HIPV offers an 
adequate framework for maintaining the integrity and security 
of encrypted messages. By combining hashing and padding 
verification, it overcomes significant vulnerabilities including 
the POA while remaining efficient, making it ideal for 
embedded processor-based smart city systems. This structured 
security technique ensures that only genuine and untampered 
ciphertexts are handled, which considerably improves the 
encryption scheme's overall resilience. The OAEP with HIPV 
approach improves the security of encrypted data by ensuring 
that the plaintext is securely padded and verifiable.  

Overall, the proposed approaches solve a variety of 
difficulties while considerably improving the security, 
performance, and efficiency of XTEA encryption for integrated 
processor-based SDN nodes in smart cities. 

IV. RESULT AND DISCUSSION  
The performance of the proposed system and the 

implementation findings are explained in depth in this section, 
which also includes a comparison section to verify that the 
suggested technique is appropriate for data security in 
embedded processor-based SDN nodes in smart cities. 

 
A. System Configuration 

The proposed data security methodology has been simulated 
in MATLAB. The evaluation is conducted by varying the data 
size correspondingly. 

Software : MATLAB 
OS : Windows 10 (64-bit) 
Processor : Intel i5 
RAM : 8GB RAM 

The simulation in MATLAB was conducted using an embedded 
microcontroller model, which includes hardware-supported 
operations such as bitwise logic, arithmetic computations, and 
memory access. The microcontroller supports fixed-point 
arithmetic and instruction-level optimizations, enabling 
efficient execution of encryption algorithms. 

B. Performance of the proposed model  
This section discusses the experimental results from the 

initial setup of the suggested model for ASX-EM to mitigate 
POA vulnerabilities, and optimize performance for 8-bit 
microcontrollers in embedded processor-based SDN nodes in 
smart cities. 

 
Fig.4: Encryption time of the suggested model 



Dynamic XTEA Optimization and Secure Key Management for  
Embedded Microcontroller-Based SDN Systems in Smart Cities

DECEMBER 2025 • VOLUME XVII • NUMBER 466

INFOCOMMUNICATIONS JOURNAL

9

The suggested model's encryption time is displayed in Figure 
4. When the message size is 80000KB, the suggested model 
achieves an encryption time of 3.25s, while when the message 
size is 1000KB, it achieves an encryption time of 0.07s. If the 
message size increases, the encryption time of the proposed 
model also increases.  OAEP uses a lightweight hash function 
and efficient padding procedures to keep the encryption process 
speedy and resource-efficient, thereby reducing the encryption 
time. 

 
Fig.5: Decryption time of the suggested model 
 
Figure 5 shows the suggested approach's decryption time. 

The suggested model achieves the fastest decryption time of 3.6 
seconds when the message size is 80000KB and the fastest 
encryption time of 0.07 seconds when the message size is 
1000KB. By processing many bits at once and utilizing parallel 
execution units, the bit slice process technique shortens the time 
required for encryption and decryption without increasing clock 
speed. 

 
Fig.6: Error rate of the suggested model  
 
Figure 6 presents the error rate of the suggested model across 

different encryption rounds. At 25 encryption rounds, the model 
exhibits an error rate of 0.9%, whereas at 5 encryption rounds, 
the error rate decreases to 0.4%. By verifying that only 
authentic and unaltered ciphertexts are decrypted, CAKE-SPV 
in conjunction with HIPV lowers the error rate associated with 
improper decryption. 

 
Fig.7: Power consumption of the suggested model 

Figure 7 displays the power consumption of the 
recommended model for varying encryption rounds. The graph 
indicates that as encryption rounds increase, so does the power 
consumption. When the encryption rounds are at 5, the power 
consumption is 0.2mW, whereas when the encryption rounds 
are increased to 30, the power consumption of the suggested 
model is 1.5mW. By reducing the computational complexity 
and number of required operations, these Precomputed Lookup 
Tables help in maintaining lower power consumption. 

 
Fig.8: Average throughput of the suggested model 

Figure 8 depicts the suggested model's average throughput. 
The suggested model achieves an average throughput value of 
1.00000 Kbps when the number of encryption rounds is 5 and 
also attains an average throughput value of 1.03000 Kbps when 
the encryption rounds are 25. By optimizing the number of 
rounds based on system conditions using dynamic round 
adjustment, the average throughput is maintained at an optimal 
level, balancing security needs and system performance. 

 
Fig.9: Execution time of the suggested model 

 
The execution time of the suggested model is illustrated in 

the above figure 9. When the iterations are 6 and 1, the 
suggested method achieves the execution time of 11.8 ms, and 
2 ms respectively. The proposed model's execution time 
expands with the number of iterations. The dynamic round 
adjustment algorithm reduces execution time by having logic 
constantly check system parameters and decide the ideal 
amount of encryption rounds in real time. 

 
Fig.10: Computation time of the suggested model 
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The suggested model’s computation time is represented in 
Figure 10. The computation time increases linearly with each 
iteration, starting from around 3.1 ms in the first iteration to 
12.4 ms in the sixth iteration. Precomputed lookup tables and 
parallel processing are significantly reducing computation 
times by eliminating needless calculations and accelerating 
encryption and decryption processes. 

 
Fig.11: End-to-end delay of the suggested model 
 
The suggested model's end-to-end delay is shown in Figure 

11. The mode's end-to-end delay increases as the number of 
nodes rises. When the number of nodes is 5 the suggested 
approach attains a delay of 5 ms, also when the number of 
rounds is 30 the suggested approach attains a delay of 14 ms 
respectively. The suggested ASX-EM's ability to control end-
to-end latency over a range of node densities emphasizes its 
applicability for scalable smart city applications, ensuring safe 
and effective communication even as the network increases. 

 
Fig.12: Encryption throughput of the suggested model 

Figure 12 shows the encryption throughput across various 
iterations. The proposed model achieves 22000KB/sec and 
6000KB/sec encryption throughput, respectively, at 80000KB 
and 1000KB message sizes. The encryption throughput of the 
proposed model rises with message size. The proposed ASX-
EM maintains a high level in terms of encryption throughput, 
which indicates that the optimizations, such as Bit-Slice 
Processing, effectively sustain throughput performance without 
degradation over multiple iterations. 

 
Fig.13: Decryption throughput of the suggested model 

Figure 13 shows the decryption throughput across various 
iterations. When the message size is 80000KB and 1000KB, the 
suggested approach achieves a decryption throughput of 
19200KB/sec and 13000KB/sec, respectively. The proposed 
ASX-EM maintains a high level in terms of decryption 
throughput, which indicates that the optimizations, such as Bit-
Slice Processing, effectively sustain throughput performance 
without degradation over multiple iterations. 

C. Comparative analysis of the proposed model  
In this section, a detailed explanation of the effectiveness of 

the suggested technique and the achieved outcome were 
explained. According to the evaluation, the following metrics 
have been considered: encryption throughput, decryption 
throughput, End-to-End delay, encryption time, decryption 
time,  throughput/area, latency, and execution time.  

 

Fig.14: Comparison of encryption time 
 
A comparison of the encryption time of the suggested model 

with existing models at 50000 KB message size is shown in 
Figure 14. The encryption time is used to measure how quickly 
plaintext data can be converted into ciphertext, which is 
essential for ensuring efficient and real-time secure 
communication in smart city applications. The existing models 
[16] such as TEA, XTEA, XXTEA, and M-XXTEA attain an 
encryption time of 3.43s, 3.55s, 3.91s, and 4.03s, Whereas the 
proposed model achieves an encryption time of 2.7s. Compared 
to previous approaches, the proposed model has less encryption 
time.  

 
Fig.15: Comparison of decryption time 
 
A comparison of the decryption time of the suggested model 

with existing models at 50000 KB message size is shown in 
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Figure 15. The decryption time is essential for assessing how 
quickly an encrypted message can be converted back to its 
original form, which is particularly crucial for real-time data 
access in smart city applications. The existing models [16] such 
as TEA, XTEA, XXTEA, and M-XXTEA attain a decryption 
time of 2.7s, 3.57s, 3.66s, and 3.78s, Whereas the proposed 
model achieves a decryption time of 2.4s. Compared with all 
the above existing models the proposed model attains a low 
decryption time. 

 
Fig.16: Comparison of encryption throughput 
 
Figure 16 illustrates the encryption throughput of the 

suggested model with the existing model [16]. Encryption 
throughput measures the rate at which data is encrypted per unit 
of time, typically in KB/sec or Mbps. It is crucial for smart city 
applications where large volumes of data need to be securely 
processed in real-time.  In encryption throughput, the proposed 
model demonstrates superior performance, especially for larger 
message sizes (50,000 KB), reaching around 22,000 KB/sec 
compared to existing models such as 13,000 KB/sec for 
XXTEA, 12,500 KB/sec for M-XXTEA, and 20,000 KB/sec for 
XTEA respectively. 

 
Fig.17: Comparison of decryption throughput 
 
Figure 17 illustrates the decryption throughput of the 

suggested model with the existing model [16]. Decryption 
throughput measures how efficiently an encrypted message can 
be converted back to its original form per unit of time. This is 
crucial in smart city applications, where real-time data access is 
essential for traffic control, environmental monitoring, and 
public safety. The suggested model outperforms existing 
models in terms of decryption throughput, particularly for 
larger message sizes (50,000 KB), reaching roughly 17600 
KB/sec compared to 13,800 KB/sec for XXTEA, 13,000 
KB/sec for M-XXTEA, and 17,500 KB/sec for XTEA. 

 

 
Fig.18: Comparison of latency of the suggested model 
 
A latency comparison between the suggested model and the 

current models is shown in Figure 18. Latency measures the 
time delay between the input of a data packet and its 
corresponding output after encryption or decryption. The 
latency for TEA, XTEA, and XXTEA [18] in the existing 
models is 33ms, 33ms, and 33ms, respectively. The lowest 
latency of the suggested model is 30 ms when compared to the 
existing models. 

 
Fig.19: Comparison of power consumption 
 
The power consumption comparison of the suggested model 

with the existing models is represented in Figure 19. Power 
consumption is used to evaluate the energy efficiency of the 
encryption model, which is crucial for embedded 
microcontroller-based SDN nodes in smart cities. The various 
existing [18] models including TEA, XTEA, and XXTEA attain 
a power consumption value of 2.5mW, 3mW, and 2.92mW 
respectively. Compared with existing models the suggested 
model achieves a low power consumption of 1.5mW.  

 
Fig.20: Comparison of end-to-end delay 
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The comparison of the suggested model's End-to-End Delay 
with existing models is shown in Figure 20. End-to-end delay 
measures the total time taken for a data packet to travel from 
the source to the destination, including encryption, 
transmission, processing, and decryption delays. The existing 
models [27] such as OLSR, Multipath, and Q-Learning are 
attaining an end-to-end delay value of 42ms, 18ms, and 15ms. 
Compared with existing models the suggested model achieves 
the lowest end-to-end delay of 14ms.  

 
Fig.21: Comparison of execution time 
 
A comparison of the execution time of the suggested model 

with various existing models is depicted in Figure 21. 
Execution time measures the total time required for the 
encryption and decryption processes to complete. This metric is 
crucial for embedded microcontroller-based SDN nodes in 
smart cities, as they have limited computational resources and 
operate in real-time environments. Various existing models [26] 
such as TEA, AES, and FlexenTech have an execution time of 
15ms, 20.5ms, and 13ms, conversely, the suggested mode 
attains an execution time of 11.8ms. Compared with existing 
models the suggested model attains the lowest execution time.  

 
Fig.22: Comparison of throughput/area 
 
Figure 22 illustrates the comparison of the throughput/area 

of the suggested model with the existing models. Throughput 
measures the rate at which data is successfully processed 
(encrypted or decrypted) over time.  This metric is crucial for 
embedded microcontroller-based SDN nodes in smart cities, as 
they process large volumes of real-time data from connected 
devices like traffic management systems, surveillance cameras, 
and environmental sensors. The existing models [18] such as 
TEA, XTEA, and XXTEA attain a throughput/area value of 
10.87 Mbps/slice, 16.27 Mbps/slice, and 27.30 Mbps/slice. 
Compared with existing models the suggested model attains the 
highest throughput/area value of 30 Mbps/slice. 

Metric Proposed 
Model 

TEA XTEA XXTEA M-
XXTE
A 

Encryption 
Time (s) 

2.7 3.43 3.55 3.91 4.03 

Decryption 
Time (s) 

2.4 2.7 3.57 3.66 3.78 

Encryption 
Throughput 
(KB/sec) 

22,000 - 20,000 13,000 12,500 

Decryption 
Throughput 
(KB/sec) 

17,600 - 17,500 13,800 13,000 

Latency (ms) 30 33 33 33 - 
Power 
Consumptio
n (mW) 

1.5 2.5 3 2.92 - 

Throughput/
Area 
(Mbps/slice) 

30 10.8
7 

16.27 27.30 - 

  
Table 1 proposed model outperforms TEA, XTEA, XXTEA, 
and M-XXTEA in encryption and decryption time, achieving 
the fastest execution of 2.7s and 2.6s, respectively. It also 
demonstrates superior encryption and decryption throughput of 
22,000 KB/sec and 17,600 KB/sec while maintaining the lowest 
power consumption of 1.5 mW. Additionally, the proposed 
model achieves the highest throughput per area of 30 
Mbps/slice, highlighting its efficiency in resource utilization. 

 

Metric 
Propo

sed 
Model 

TE
A 

OL
SR 

Multip
ath 

Q-
Learni

ng 

AE
S 

Flexen
Tech 

End-
to-End 
Delay 
(ms) 

14 - 42 18 15   

Execut
ion 

Time 
(ms) 

11.8 15 - - - 20.
5 13 

Table 2 shows the proposed model achieves the lowest end-to-
end delay of 14 ms compared to OLSR of 42 ms, Multipath of 
18 ms, and Q-Learning of 15 ms, ensuring faster data 
transmission. It also outperforms TEA and AES in execution 
time, completing tasks in 11.8 ms, which is faster than TEA of 
15 ms and AES of 20.5 ms. These results highlight the proposed 
model’s efficiency in both latency and computational 
performance. 

Overall, in the results section, the proposed model is 
compared to existing models, and the performance is explained 
using graphs. This shows that the technique that is used in the 
novelty Dynamic XTEA Optimization and Secure Key 
Management for Embedded Microcontroller-based SDN for 
smart cities has comparatively higher encryption throughput 
and decryption throughput, and low decryption time, encryption 
time, and execution time than the previous techniques that are 
taken for the comparison. 

TABLE I
Comparison of the proposed model with other Existing Approaches

TABLE II
Comparison of the proposed model End-to-End Delay and  

Execution Time with other Existing Approaches
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V. CONCLUSION 
In conclusion, the proposed ASX-EM tackles major security 

and performance concerns for SDN nodes in smart cities. By 
using CAKE-SPV, the suggested approach successfully 
mitigates POA vulnerabilities while providing secure 
communication between nodes. Moreover, the ARPP method 
addresses limitations about chip space, power consumption, and 
processing time to optimize XTEA for 8-bit microcontrollers. 
Efficient encryption and decryption operations are made 
possible by the Dynamic Round Adjustment method and Bit-
Slice Processing with Precomputed Lookup Tables, which 
balance security needs with efficiency. These combined 
strategies make ASX-EM a highly efficient and secure 
encryption method suitable for the constrained environments of 
smart city SDN nodes. Compared with existing models TEA, 
XTEA, XXTEA, AES and M-XXTEA the proposed model 
achieves a high encryption throughput of 22,000 KB/sec, 
decryption throughput of 17600 KB/sec, and low execution 
time of 11.8ms, power consumption of 1.5mW, encryption time 
of 2.7s and decryption time of 2.6s. The proposed solution not 
only mitigates prevalent security risks but also ensures the 
smooth and efficient operation of smart city infrastructures, 
paving the way for future advancements in secure and efficient 
embedded systems. 
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Abstract—Quantum communications promises major changes
in today’s communication networks by sending qubits over long
distances. These qubits enable large-scale quantum computing or
information-theoretically secure distribution of symmetrical keys.
One of the main enablers is quantum teleportation, which makes
sending quantum information between two nodes possible even
when they are far apart. From these nodes, one can build a larger
quantum network, but due to the nature of quantum physics,
certain tasks that are well understood in classical networks,
such as routing, cannot be handled in a similar way. Our work
focuses on modifying a previously created model for a ring-like
quantum network and assessing the effect of introducing a new
node type. Our results show that this node can alter properties
of the underlying network. We also look at the possibilities of
modeling the capacity of the network as well as the availability
of the newly introduced edges, which open interesting questions
for future research.

Index Terms—quantum communication networks, entangle-
ment, routing

I. INTRODUCTION

QUANTUM computing and communication use the laws
of quantum physics to create a new field of technology,

which in theory enables us to perform specific tasks better
than what is achievable with our current classical systems.
For example, in computing, quantum machines can efficiently
break the RSA cryptosystem [1] by solving the factoring
problem using Shor’s algorithm [2]. Quantum random number
generation [3], quantum sensing [4], and simulation [5] are
also promising fields, which allow one to create good random
numbers, to make more precise measurements, and to better
understand certain physical systems [6]. For quantum commu-
nication, there are also promising new solutions, like quantum
key distribution (QKD) [7], which makes it possible to share
a secret key between two parties in such a way that they can
even detect if an eavesdropper is present [8].

Another aspect of quantum communications is to connect
nodes powered by quantum technologies, therefore creating
a network that transmits quantum information. For example,
the current implementations of quantum computers are in the
NISQ era (Noisy Intermediate-Scale Quantum) and only offer
a few hundred quantum bits (qubits), which are prone to
suffering from different errors during computation and readout,
significantly reducing their effectiveness. A possible way to
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tackle this problem (apart from creating more efficient and
scalable error-correcting codes) is to connect these small-scale
computers through a network, therefore creating a distributed
but larger-scale machine [9]. A network like this is quite differ-
ent from its classical counterpart and can enable new services
for users while promising new challenges for researchers as
well.

If one wants to send information encoded into a qubit
(the information-carrying entity in quantum technologies) to
another party, the most straightforward way is to send it
through the appropriate medium. For example, if we encode
the quantum information into the polarization of a single
photon, then one can use an optical fiber for transmission. This
can only work for a certain distance, because the so-called No-
Cloning Theorem prohibits the perfect copying of an unknown
qubit; therefore, we cannot use conventional optical amplifiers.
To circumvent this problem, the communicating parties can
utilize the quantum teleportation protocol [10]. This approach
uses an entangled qubit pair and involves sending only two
classical bits from one side to the other. This enables the
receiving party to successfully recreate the unknown quantum
state, but the original one will be destroyed (so the No-Cloning
Theorem is not violated).

With this procedure, we can connect nodes, and they will
be able to teleport qubits to their neighbors. If two non-
neighboring nodes wish to exchange information, they will use
the entanglement swapping protocol [11], where an entangled
pair between the end nodes will be created with the help of the
intermediate nodes, which can later be used for teleportation.
From this, we create a quantum network consisting of nodes,
which are connected by links capable of sending and receiving
qubits (as well as classical information) and also performing
certain operations on these qubits to implement teleportation
and entanglement swapping.

As we have seen, quantum systems behave differently
compared to their classical counterparts, which is also evi-
dent in quantum networks. One of the main problems in a
communication network is routing, where one wants to find
the best path under given circumstances from one node to
another. In classical networks, this is a well-known problem
with several different solutions. In the quantum case, we have
to approach this task differently. Here, our main goal is to
have an entangled pair of qubits between the source and the
destination node. This means finding the right path along
which entanglement swapping can be performed. However,
the qubits used in the network must be handled carefully, so
their state does not change during operations or transmission.
Additionally, the time for which one can store them without
losing their state is also limited. These requirements have to
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be taken into consideration, which means that the currently
used classical algorithms need to be updated or new solutions
have to be developed.

The physical implementation of a quantum network has
been recently demonstrated, but with only a few nodes [12]
[13]. Researchers also demonstrated the possibility of a quan-
tum router [14]. The main challenges are to maintain the state
of the qubits for extended periods of time, so they can be used
during the protocols (this is the field of quantum memories)
and to efficiently implement the required operations, which
enables one to perform the necessary steps without introducing
errors. Although the technology is not yet at a stage where
large-scale quantum networks (like a quantum internet) can be
created, it is nonetheless important to study them and to create
algorithms for managing and controlling this new network
type.

Our contribution is an extension of a previous model with
a new type of node, which is motivated by real-world net-
work topologies and improves specific characteristics of the
underlying quantum network. We also carry out availability
and capacity simulations to study the dynamic behavior of the
network.

The structure of this paper is the following. Section II
introduces the necessary background and the related work
regarding routing in quantum networks. In Sec. III, we present
the base model that we used in our work and also our
extensions to it. Sec. IV details our results regarding the
average route length and swap counts in Sec. IV-A, while
Sec. IV-B introduces our capacity and availability modeling.
At the end, Sec. V concludes our work.

II. OVERVIEW OF QUANTUM INTERNET PROTOCOLS

To create a large quantum network, we need protocols, both
quantum and classical, as well as quantum memories [15]. On
the classical side: routing, signaling, or synchronization proto-
cols [16] are necessary to guide and manage the quantum links.
In contrast, the quantum protocols are, of course, essential
for transmitting quantum information. Here, we introduce two
quantum protocols and the related work regarding the routing
problem.

I. Quantum teleportation: During teleportation [10], Alice
would like to send a quantum state to Bob, without sending it
over directly (note that this state can be unknown to Alice). For
this operation, they will use a previously shared entangled pair
of qubits, with one qubit being at Alice’s side and the other
at Bob’s. Alice will first entangle the quantum state with their
half of the pair and then measure them in a given basis. The
measurement results will be sent to Bob on a classical channel
(this means two bits), and based on these, Bob will perform
certain operations on their qubit. At the end of the procedure,
the qubit on Bob’s side will be in the same state as the qubit
that was meant to be teleported. As this state was measured
by Alice, its superposition is lost and cannot be recovered.
The act of entangling qubits and then measuring them (in a
specific basis) is called the Bell measurement.

It is essential to note that we cannot create a faster-
than-light communications protocol using teleportation, as the

Alice

Alice

Charlie Bob

Charlie Bob

qAC qBC

qAB

After entanglement-swapping:

Before entanglement-swapping:

Fig. 1. Entanglement swapping with three participants. Alice and Charlie,
as well as Charlie and Bob, have previously created entangled pairs denoted
by qAC and qBC . After Charlie performs the Bell measurement, Alice and
Bob will have an entangled pair qAB between them, and they will be directly
connected to each other.

information necessary for Bob to perform the given operations
must be sent over a classical channel. Without it, Bob will only
have the right state with probability less than one.

II. Entanglement swapping: In the context of entanglement
swapping [11], we have three parties: Alice, Bob and Charlie.
Alice and Bob are not directly connected, but both of them
have Charlie as their neighbor. A connection here means that
they share a quantum and a classical channel, on which they
can perform the previously introduced quantum teleportation
protocol. The consequence of this requirement is that they
have a shared entangled pair of qubits for every connection.
The starting position of the protocol can be seen at the top of
Fig. 1.

Charlie will perform the Bell measurement on their qubits,
belonging to separate entangled pairs. After the measurements,
the results will be sent to either Alice or Bob, allowing
them to make the necessary corrections. After these steps are
done, Alice and Bob will have a shared entangled pair. This
means that they will be connected, even though they were not
neighbors beforehand. In this setup, Charlie can be thought of
as a quantum relay node. The final state of the three nodes is
depicted at the bottom of Fig. 1. Using this technique, if there
is a line of nodes in a quantum network, the nodes at the ends
of this path can be easily connected by completing the swap
protocol on the intermediate nodes.

One of the first works about routing entanglement through
a quantum network was presented in [17], where the authors
extended Dijkstra’s algorithm to maximize the number of
entangled pairs between two endpoints. After this, most work
focused on the same problem in the context of a specific
network structure. In [18] the researchers used ring and sphere-
like networks (this work is based on this model) to create
a framework for entanglement routing, the authors of [19]
studied a diamond-shape structure, while [20] and [21] looked
at specific lattice and grid-based topologies, where routing
decisions can be easier. Quite recently, there were a number
of publications regarding routing in an arbitrary graph while
also supporting multi-path routing (in this problem, we have
to serve multiple source-destination pairs) [22]: [23] uses
fidelity as its base metric, while [24] introduces the ”cost-
vector analysis”.

Another approach is the stochastic modeling of the quantum
network, which can incorporate the different imperfections
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of the implementation as well as the probabilistic nature
of quantum physics. In [25], the authors studied a line of
repeaters, while in [26] they focused on a star-like topology.

It is also beneficial to look at specific working environments,
where entanglement routing might be used, as it might provide
more possibilities for routing. For example, routing in a
satellite-based network [27] or in the case of faulty quantum
memories [28].

As the physical implementation and the theoretical study of
quantum networks progress, it is also important to create a
common framework or network stack, which can be used to
manage larger networks and upon which applications can be
built [29] [30].

III. THE BASE MODEL AND OUR EXTENSIONS

A. The base model

The base model that we modified during our work was
created by Schoute et al. [18], and the authors’ main goal was
to create a simple network structure that makes the routing
decision easier. They created a ring and sphere-like network,
but we focus only on the ring-based approach.

The graph Gn = (Vn, En), n ∈ N is a network with N =
2n = |Vn| nodes and undirected edges. The nodes in the graph
are labeled mod 2n, that is Vn = {0, 1, . . . , N − 1} and an
edge e = (α, β) with α, β ∈ Vn is part of En if:

|α− β| ≡ gcd2(α, β) mod 2n,

where gcd2(α, β) is the largest power of two that divides both
α and β.

From this it can be seen that the N -long circle CN is a
subgraph of Gn and if α is divisible by 2k, then there is and
edge to α ± 2k (mod N), which makes it possible to skip
2k nodes on CN . The authors of [18] also grouped the edges
into two categories. The edges of CN correspond to physical
links in the network, that is, a connection where quantum
teleportation can be performed. Any other edge not present
in CN is a virtual quantum link (or VQL), which can be
created from the physical links with the help of entanglement
swapping. On Fig. 2 we can see the graph G2 and G3. The
solid edges represent physical links, while the dashed ones are
VQLs created from these links.

It can also be proven (and it is evident from the exam-
ple of G2 and G3) that Gn−1 is also a subgraph of Gn.
Furthermore there is an elegant recursion step which can be
used to generate Gn from Gn−1: For every physical link
eα,β , ∀α, β ∈ Vn−1 and |α − β| = 1 in Gn−1 create a new
node γ and two more edges (α, γ) and (γ, β). After relabeling
the nodes from 0, these new edges will be the physical links
in Gn, and the ”old” physical links will become new VQLs.

In [18] a number of different properties for Gn was proven,
but the most important is about the diameter of the graph (the
longest path from all possible shortest paths), which is only
d(Gn) = O(logN) = O(n) compared to d(CN ) = O(N).

B. Extensions to the base model

We extended the base model in the following way. Although
the diameter of the graph significantly changed compared to

0

1

2

3

(a) The graph G2

0

1 2 3

4

567

(b) The graph G3

Fig. 2. The graphs G2 and G3 created by the definitions given in [18]. The
solid edges represent physical links, while the dashed edges are VQLs (Virtual
Quantum Links) created by entanglement swapping along the physical ones.

CN , there are still nodes, the ones with an odd label, which
are not part of a smaller circle. To overcome this property, we
extend the base model with a new node, called the central node
C. The central node can connect to any of the nodes in Gn

through a new physical link, and with the help of entanglement
swapping, it can also create new VQLs. Our primary goal with
this node type is to further reduce the diameter (similar to the
small-world property) and also the number of swap operations
required for a given source-destination pair. If we think of
the nodes in Gn as base stations in a telecommunications
network, the original physical links and VQLs can be viewed
as common interfaces, while the new central node represents
a possible connection to the backbone network.

A central node can have at most k ≤ N edges, and as the
subgraph of physical links belonging to C has a star topology,
the new VQLs generated by entanglement swapping create a
complete graph with k nodes. An example of G4 with a central
node C is presented in Fig. 3. The original VQLs of G4 are
not shown for better readability.

It is also important to discuss the extensions needed during
the routing process. In [18], the main part of the routing
algorithm is the path(α, β) function, which gives back the
shortest path between nodes α and β. This function calls
the path2(α, β) and the bestMove(α, β) subroutines. The
path2 function gives back the shortest path of length at most
2, if there is any, while the bestMove gives back the next
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Fig. 3. A possible central node (C) with four new physical edges (solid lines)
and all possible VQLs (teal dashed lines) in G4. Note that the original VQLs
of G4 are omitted.
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(a) (b)

Fig. 4. The average route length (a) and swap count (b) with their standard deviation for G5 with two central node types. The horizontal line shows the
values for the original G5. For the case of a central node with evenly spaced edges, the optimal rotation value is also shown on the figures and summarized
in a table. Sample size: 1000

node, which is guaranteed to be on the shortest path between
α and β.

With the introduction of the central node, it is also necessary
to extend these two subroutines. The path2 will now check
if the nodes are neighbors through C, while the bestMove
will also examine the possibility of whether we can get closer
to β if we go through the central node (this is only considered
if α is connected to C).

IV. RESULTS AND DISCUSSION

A. The effect on average route length and swap counts

To measure the effect of a central node on Gn, we first
looked at two important properties of the newly created
quantum networks. The first one is the average route length (or
average path length), which is different from the diameter of
the graph. This is an important characteristic of any network,
as it measures how easily one can navigate the network and
reach other nodes. A lower average route length indicates
that most nodes are accessible from any point in the network
in fewer steps, which helps the flow of information. The
second one is the average swap count required to create an
entangled pair between a given source-destination pair. It is
desirable to keep the average swap count as low as possible,
as the entanglement swapping protocol is a complex task and
needs additional classical communication to succeed, which
adds delay to the overall communication step. Calculating the
swap count on the original Gn for a given route can be done
in the following way: If the path is v1, v2, v3, . . . , vk with
vi ∈ Vn ∀i = 1, . . . , k, then the swap count that is necessary
to ”get” from v1 to v2 is distance of the two nodes on the ring
CN minus 1.

If we extend the graph with a central node, then we have
to check for every consecutive node in the path whether they

are connected through the central node or not. If they are, the
swap count needed is just 1. After this, the swap count for the
entire path can be calculated by adding up the swaps for the
subsequent steps and adding one, as a final swap is necessary
at the end to create the desired connection.

During our simulation, we looked at two types of central
nodes. The first one is a node with k ≤ N random edges,
which connect to different nodes on Gn. The second one is a
central node that has k ≤ N/2 evenly spaced edges connecting
to the nodes. This means that the central node is connected to
nodes 0, N

k , 2 ·
N
k , . . . , (k−1) · Nk (mod N) with k in the form

2i i = 1, . . . , n − 1 or one of its possible circular rotations
(e.g. starting from a different node).

For the random central node, we sampled possible edges for
a given k. For the evenly spaced case, we examined possible
values of k and their corresponding circular rotations. After
this, we calculated the route length and the swap count for
every possible source-destination pair in Gn and averaged the
results, which can be seen in Fig. 4. The results show that the
introduction of the central node has reduced both the average
route length and the average number of swaps. For large k
(close to N ), this is not surprising, because the addition of
a node with this many edges creates an almost complete or
a complete graph of VQLs on the nodes in the network. It
is also important to notice that the standard deviations of the
average route length and swap count are relatively small for
central nodes with random edges. This is not the case for
evenly spaced edges, as the different rotation values have a
strong influence on the achievable average swap counts.

We can observe that in the lower interval of k, the best
results for both values occur when the central node has N/2
evenly spaced edges, meaning that every second node is
connected to C. In this case, the rotations (there are two
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possibilities) do not significantly alter the average route length,
and we can calculate the diameter of the network, as stated
in Proposition 1, along with a sketch of the proof. It is also
important that for the evenly spaced edges, the average swap
count is minimal if we only connect even nodes. The reason
for this comes from the structure of Gn. Even nodes are
connected to each other through VQLs and have high degree
counts; therefore, they are important during path selection.
But the VQLs connecting them can only be realized by a high
number of swap operations. For example, realizing the dashed
line between node 0 and 4 in G3 (depicted in Fig. 2) requires
three swap operations. With the help of a central node that has
evenly spaced edges, we can create new VQLs between the
even nodes, which require only one swap, thereby reducing
the average swap count needed during routing.

Proposition 1. The diameter of Gn extended with a central
node C that connects all odd or even nodes is 3.

Proof. In Gn, there are three possible source-destination
types: even-to-even, odd-to-odd, and even-to-odd (odd-to-
even is the same because of the symmetry of this particular
network). For odd-to-odd, if C connects all odd nodes, then
the route length is 1. For even-to-odd nodes, we can proceed
from the source to one of the neighboring odd nodes and then
jump to the destination, resulting in a route length of 2 or 1
if they are originally directly connected. This is also true if C
connects all even nodes, as in that case we can always choose
an even node neighboring the destination. For the even-to-even
routes, there are three possibilities:

1) If the source and destination are connected by a VQL,
then the route length is 1.

2) If their distance was 2 on Gn, then the route length
remains the same.

3) If their distance was ≥ 3, then we can once again go
to one of the odd neighbors, then jump to the odd node
nearest to the destination (there are just two possibilities)
and do one more step to the destination itself. This is a
path of length 3.

The same can be said about odd-to-odd pairs if C connects
the even nodes.

Another important finding is regarding the shape of the two
graphs corresponding to the random edge case. This is more
evident on larger networks. The average route length exhibits a
linear trend, while the average swap count follows a decaying
exponential pattern. This is shown in Fig. 5, where the values
are plotted for G6. The average route length was fitted with a
linear function of the form ax+ b, and for the average swap
count, we used the form ae−bx + c. Both of them provide a
good fit to the data points (the exact values can be seen in the
description of Fig. 5). The exact reason for the shape of these
graphs is a promising future question.

B. Capacity and availability modeling

As we saw in the previous section, the central node with
a large degree has significant effects on the properties of the

underlying network. This means that the central node has to
have a large enough quantum memory to hold at most N qubits
and a long enough decoherence time (the time after which
the qubits lose their state) for using them as VQLs. However,
the current physical implementation of quantum memories can
only hold a few qubits at a time [15]. This means that the more
edges the central node has, the less usable the VQLs become.

To model this phenomenon, we propose two simple meth-
ods. The first one gives a capacity E to the central node.
This means that it can serve ≤ E nodes reliably. If C has
k edges, the current usage is given by E/k. To show the

(a)

(b)

Fig. 5. Curve fit for the average route length (a) and swap count (b) for G6.
For the average route length, we used a linear function, and for the swap
count, an inverted exponential function. In the case of the average route, the
standard deviation errors for the parameters are 0.0004 and 0.0163, while
for the average swap count, they are: 0.1351, 0.0008, and 0.1567. Sample
size: 1000
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(a)

(b)

Fig. 6. Capacity modeling of the central node C with different capacity values
E = 2, 6, . . . , N − 2. In (a), we can see the average route length, while (b)
shows the average swap count. Sample size: 5000.

unreliability of larger quantum memories, we take the linear
combination of the average route length of the original graph
Gn and the average route length of Gn extended by a central
node with k random edges using weights 1−ek and ek, where
ek = min(1, E/k). This combination ensures that a central
node with large capacity can serve all its neighbors, but if
the capacity is lower (e.g., the quantum memory used is not
reliable), the properties of the network get closer to the original
graph as k increases. The effect of this method with different
E capacities can be seen in Fig. 6.

Regarding the average route length, the graph follows the
previous results until k ≤ E; after this, it does not improve
significantly, but we can still observe a slight drop as k gets
larger. This is caused by the previously described large gains
introduced by a central node with random edges. The average
swap count behaves differently. Here, after k gets larger than
E, the graphs take a steep incline towards the original value
for Gn. This effect is more noticeable when k is closer to
N , because in this interval the average swap counts are in a
slower decline.

For the availability modeling, we created a discrete sim-
ulation. The central node with k edges can serve requests
for ta time, after this, it takes tr time to make the VQLs
available again. The value of ta and tr can depend on the

(a)

(b)

Fig. 7. Discrete time simulation results for the availability of the VQLs on
G4. On (a) the function of the availability time is ta = 1/k, while on (b) it
is given by ta = e−k + c, where c is a constant to limit the value of ta as
k → N . In both (a) and (b) tr = 1. Sample size: 5000

edges connected to the central node. We calculate the route
step by step, which takes 1 unit of time. If the current node
in the path calculated that the next hop is through the central
node, it tries to access the VQLs. If it succeeds, the routing
takes this VQL; if the request fails, we take the link that is
given by the next hop on the original graph. We gather the
average route length as well as the ratio of missed resource
requests. The results of the simulation can be seen in Fig. 7
with different functions for ta.

The most significant outcome in the graphs is that as the
degree of the central node increases, the number of unsuc-
cessful requests also grows. This has an effect on the average
route length, as we have to use the VQLs that are present on
the original graphs in a larger portion of the time. At larger k
values, this negative effect quickly fades away. The reason for
this is that at larger degree values, there is a higher probability
that the source-destination pair is connected directly or that
they are only a few hops away. Since the simulation starts at
zero, the first request is successful.

V. CONCLUSION

In our work, we focused on entanglement generation in a
quantum network. We introduced an extension to an existing
model that adds a central node and examined the impact it
had on various properties of the underlying network. Our
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results show that these effects are significant, reducing both
the average route length and the swap count required to
connect a source-destination pair. As the current physical
implementations of quantum memories are not yet at a stage
where they can be reliably used in a quantum network, we
have created two simple models to incorporate the capacity of
a node or the availability of a quantum link. Based on these
models, our simulations show that even a central node with a
few edges can improve the network.
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         Call for Papers

            IMPORTANT DATES

Paper Submission deadline: 

Acceptance Notification:

Final Submission and registration:

IECON 2026 is the 52nd Annual Conference of the IEEE Industrial Electronics Society (IES), 
focusing on contemporary industry topics ranging from power electronics, power systems, 
controls, manufacturing, to computational intelligence and communications. IECON is the 
flagship annual conference of IES. It aims to create a forum for scientists and practicing 
engineers throughout the world to present the latest research findings and ideas in the 
areas of Industrial Electronics, and possible contributions toward sustainable development 
and environment preservation. The objectives of the conference are to provide high quality 
research and professional interactions for the advancement of science, technology, and 
fellowship. Papers with new research results are encouraged for submission. 

Regular Sessions: The regular sessions of the conference are covered but not limited to the 
following technical tracks:
• Power Systems and Smart Grid
• Power Electronics Converters
• Electric Machines and Industrial Drives
• Renewable Energy and Energy Storage Systems
• Resilient Control Architectures for Energy Systems
• Smart Building Technologies
• Transportation Electrification and Automotive Technologies
• Control Systems and Applications
• Mechatronics and Robotics
• Computational Intelligence and Signal and Image Processing
• Sensors, Actuators and Micro-Nanotechnology
• Electronic Systems on Chip and Embedded Systems
• Cyber-Physical Systems and Internet of Things in Industry
• Communication for Industrial and Factory Automation
• Industrial Informatics, Cloud Computing, Big Data

General Chairs
Sertac Bayhan
Hamad Bin Khalifa University, Qatar 

Haitham Abu-Rub
Hamad Bin Khalifa University, Qatar

Mariusz Malinowski
Warsaw University of Technology, Poland 

Erchin Serpedin
Texas A&M University at Qatar, Qatar 

Technical Program Co-Chairs
Mohammad Shadmand
University of Illinois Chicago, USA

Luis Gomes
Universidade Nova de Lisboa, Portugal

Leopoldo Garcia Franquelo
University de Sevilla, Spain

Hadi Kanaan
Saint-Joseph University, Lebanon

Fei Gao
FEMTO-ST, France

Hasan Komurcugil
Eastern Mediterranean University, Turkiye

Giampaolo Buticchi
University of Nottingham Ningbo, China

Joao Martins
University of Lisbon, Portugal

Hong Li
Zhejiang University, China

Ebrahim Babaei
Univeristy of Tabriz, Iran

	 www.iecon2026.org			|			info@iecon2026.org			|			October	18-21,	2026			|			Doha,	Qatar

April 15th, 2026

May 15th, 2026

July 15th, 2026



SCIENTIFIC ASSOCIATION FOR INFOCOMMUNICATIONS

Who we are
Founded in 1949, the Scientific Association for Info-
communications (formerly known as Scientific Society 
for Telecommunications) is a voluntary and autono-
mous professional society of engineers and econo-
mists, researchers and businessmen, managers and 
educational, regulatory and other professionals work-
ing in the fields of telecommunications, broadcast-
ing, electronics, information and media technologies 
in Hungary.

Besides its 1000 individual members, the Scientific 
Association for Infocommunications (in Hungarian:  
HÍRKÖZLÉSI ÉS INFORMATIKAI TUDOMÁNYOS EGYESÜLET, HTE) 
has more than 60 corporate members as well. Among 
them there are large companies and small-and-medi-
um enterprises with industrial, trade, service-providing, 
research and development activities, as well as educa-
tional institutions and research centers.

HTE is a Sister Society of the Institute of Electrical and
Electronics Engineers, Inc. (IEEE) and the IEEE Communi-
cations Society.

What we do
HTE has a broad range of activities that aim to pro-
mote the convergence of information and communi-
cation technologies and the deployment of synergic
applications and services, to broaden the knowledge
and skills of our members, to facilitate the exchange
of ideas and experiences, as well as to integrate and

harmonize the professional opinions and standpoints
derived from various group interests and market dy-
namics.

To achieve these goals, we…

•	 contribute to the analysis of technical, economic, 
and social questions related to our field of compe-
tence, and forward the synthesized opinion of our 
experts to scientific, legislative, industrial and edu-
cational organizations and institutions;

•	 follow the national and international trends and 
results related to our field of competence, foster 
the professional and business relations between 
foreign and Hungarian companies and institutes;

•	 organize an extensive range of lectures, seminars, 
debates, conferences, exhibitions, company pres-
entations, and club events in order to transfer and 
deploy scientific, technical and economic knowl-
edge and skills;

•	 promote professional secondary and higher edu-
cation and take active part in the development of 
professional education, teaching and training;

•	 establish and maintain relations with other domes-
tic and foreign fellow associations, IEEE sister soci-
eties;

•	 award prizes for outstanding scientific, education-
al, managerial, commercial and/or societal activities 
and achievements in the fields of infocommunica-
tion.

Contact information
President: FERENC VÁGUJHELYI • elnok@hte.hu

Secretary-General: GÁBOR KOLLÁTH • kollath.gabor@hte.hu
Operations Director: PÉTER NAGY • nagy.peter@hte.hu

Address: H-1051 Budapest, Bajcsy-Zsilinszky str. 12, HUNGARY, Room: 502
Phone: +36 1 353 1027

E-mail: info@hte.hu, Web: www.hte.hu
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