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Abstract. This paper deals with the stress state in a thin elastic disc which is loaded by a
uniform radial load on its outer curved boundary surface. Two solutions are presented. The
first is an elastic solution based on the governing equation of the plane stress state. The
second is a strength of material solution. The results obtained from the plane stress model
are compared to those obtained from the strength of material solution.

Mathematical Subject Classification: 74A10, 74B05, 74G10, 74K20
Keywords: Thin elastic disc, plane stress, strength of materials

1. Formulation of the boundary value problem

Figure 1 shows the thin elastic disc which is loaded by uniform radial load on its
outer curved boundary part. The plane domain of the middle section of the elastic
disc is denoted by A and the boundary curve of A is ∂A = ∂A1 ∪ ∂A2 ∪ ∂A3 ∪ ∂A4.
The formulation of the boundary value problem is presented in the Orφ cylindrical
coordinate system. It is evident that

A = {(r, φ) |a ≤ r ≤ b, 0 ≤ φ ≤ π} , (1.1)

∂A1 = {(r, φ) |a ≤ r ≤ b, φ = 0} , (1.2)

∂A2 = {(r, φ) |r = b, 0 ≤ φ ≤ π} . (1.3)

∂A3 = {(r, φ) |a ≤ r ≤ b, φ = π} , (1.4)

∂A4 = {(r, φ) |r = a, 0 ≤ φ ≤ π} . (1.5)

The displacement vector t = t(r, φ) can be represented as

t (r, φ) = u (r, φ) er + v (r, φ) eφ, (1.6)

©2024 Miskolc University Press
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Figure 1. Thin elastic disc with uniform radial load

where er and eφ are the unit vectors of the cylindrical coordinate system Orφ (see
Figure 1). The expressions of the strains are as follows [1–5]

εr =
∂u

∂r
, εφ =

u

r
+

1

r

∂v

∂φ
, (1.7)

γrφ =
1

r

∂u

∂φ
+
∂v

∂r
− v

r
. (1.8)

Based on the strain-displacement relationships [1–5] the following equations are valid

εr =
σr
E

− ν
σφ
E
, εφ = −ν σr

E
+
σφ
E
, (1.9)

γrφ =
2(1 + ν)

E
τrφ. (1.10)

In equations (1.9) and (1.10) σr and σφ are the normal stresses, τrφ denotes the shear-
ing stress, E represents the modulus of elasticity and ν means the Poisson number.
For this problem the equations of mechanical equilibrium are

∂σr
∂r

+
1

r

∂τrφ
∂φ

+
σr − σφ

r
= 0, (r, φ) ∈ A, (1.11)

∂τrφ
∂r

+
1

r

∂σφ
∂φ

+
2

r
τrφ = 0, (r, φ) ∈ A. (1.12)

The following boundary conditions are prescribed in this problem:

τrφ = 0, v = 0 on ∂A1, (1.13)

σr = −p = constant, τrφ = 0 on ∂A2, (1.14)

τrφ = 0, v = 0 on ∂A3, (1.15)

τrφ = 0, σr = 0 on ∂A4. (1.16)

The solution to the boundary value problem formulated by equations (1.7–1.14) will
be solved under the conditions

u = u(r), v(r, φ) = 0, (r, φ) ∈ A ∪ ∂A. (1.17)
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2. Plane stress solution

From equation (1.17) it follows that the equations of mechanical equilibrium are
reduced to one equation, which is

d

dr
(rσr)− σφ = 0, (r, φ) ∈ A. (2.1)

The general solution of stress equilibrium equation (2.1) in terms of stress function
F = F (r) can be represented for a thin elastic disc as

σr(r) =
1

t

F (r)

r
, σφ(r) =

1

t

dF (r)

dr
, (r, φ) ∈ A ∪ ∂A, (2.2)

where t is the thickness of the elastic disc. From equations (1.7) and (1.9) it follows
that

Et
du

dr
=
F

r
− ν

dF

dr
, (2.3)

Et
u

r
= −ν F

r
+

dF

dr
. (2.4)

The combination of equation (2.3) with (2.4) gives an ordinary second order differen-
tial equation for F = F (r)

d2F

dr2
+

1

r

dF

dr
− F

r2
= 0, a < r < b. (2.5)

According to the traction boundary conditions (1.14), (1.16) F = F (r) satisfies the
following boundary conditions

F (a) = 0, F (b) = −pbt. (2.6)

The solution to the boundary value problem formulated by equations (2.5), (2.6) is

F (r) =
b2tp

b2 − a2

(
−r + a2

r

)
, a ≤ r ≤ b. (2.7)

The expressions of normal stresses σr and σφ can be represented as

σr(r) =
b2p

b2 − a2

(
−1 +

a2

r2

)
, a ≤ r ≤ b, (2.8)

σφ(r) = − b2p

b2 − a2

(
1 +

a2

r2

)
, a ≤ r ≤ b. (2.9)

Based on equations (1.7), (1.9)1 and (1.17) it is evident that

u(r) =
r

E
(σφ − νσr) (2.10)

from which the following formula can be obtained for the radial displacement

u(r) =
b2p

E(b2 − a2)

[
(ν − 1)r − (1 + ν)

a2

r

]
, 0 ≤ r ≤ b. (2.11)
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3. Strength of material solution

The formulation of the strength of material solution is based on the paper [5], which
uses the displacement field

u(r, φ) = U(φ)er +

(
rϕ(φ) +

dU

dφ

)
eφ. (3.1)

The corresponding strain field as a function of the displacement field given by equation
(3.1) is

εφ =
W (φ)

r
+

dϕ

dφ
, W (φ) =

d2U

dφ2
+ U(φ). (3.2)

Figure 2 shows the strength of material model according to paper [5]. The resultants
of the tractions acting on the boundary surface segments ∂A1 and ∂A3 are F1 and
F3. The moments of traction acting on the boundary surface segments ∂A1 and ∂A3

are M1 and M3 and we have M1 =M3 =M0. The value of M0 is obtained from the
condition

ϕ(φ) = 0, 0 ≤ φ ≤ π (3.3)

according to the results presented in Section 2 of this paper. Application of the Hooke
law gives

σφ(r, φ) = E

(
W (φ)

r
+

dϕ

dφ

)
. (3.4)

x

y

O

fr

F1 = F3 = ptb

fr

fr

fr

fr

fr

F3

F1

M0M0

ϕ = π
2

ϕ = 0

Figure 2. Strength of material model.
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The normal force and bending moment on an arbitrary cross section can be calcu-
lated as

N =

∫
A

σφdA, M =

∫
A

rσφdA. (3.5)

Detailed forms of expressions of N = N(φ) and M(φ) are as follows:

N(φ) = Et

[
W (φ) ln

b

a
+ (b− a)

dϕ

dφ

]
, (3.6)

M(φ) = Et

[
W (φ)(b− a) + c(b− a)

dϕ

dφ

]
, (3.7)

where

c = 0.5(a+ b). (3.8)

In the present problem the solution of equilibrium equation [5]

d2N

dφ2
+N − fr = 0 (3.9)

is

fr = −btp = constant, 0 ≤ φ ≤ π. (3.10)

The shear force S = S(φ) vanishes since

S(φ) = −dN

dφ
= 0, (3.11)

and from the moment equilibrium equation it follows that

M(φ) =M = constant, 0 ≤ φ ≤ π. (3.12)

If ϕ = 0 (0 ≤ φ ≤ π) then

M = −t (b− a)b

ln b
a

p, (3.13)

W =
d2U

dφ2
+ U = − bp

E ln b
a

. (3.14)

Substitution of equation (3.14) into equation (3.4) gives

σφ(r) = − b

r ln b
a

p, a ≤ r ≤ b. (3.15)

From the stress equilibrium equation

d

dr
(rσr) = σφ (3.16)

it follows that

rσr(r)− aσr(a) = − bp

ln b
a

ln
r

a
, a ≤ r ≤ b, (3.17)

that is

σr(r) = −bp
r

ln r
a

ln b
a

, a ≤ r ≤ b. (3.18)
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Thus, the normal stress σr given by equation (3.18) satisfies the stress boundary
conditions

σr(a) = 0, σr(b) = −p. (3.19)

Integration of equation (3.14) provides the radial displacement

U(φ) = − bp

E ln b
a

+ α cosφ+ β sinφ, (3.20)

where α and β are the constants of integration and

V (φ) =
dU

dφ
= −α sinφ+ β cosφ. (3.21)

By means of the boundary conditions

V (0) = V (π) = 0, V
(π
2

)
= 0 (3.22)

it is easy to prove that

α = β = 0, (3.23)

so the radial displacement has the form

U(φ) = − bp

E ln b
a

= constant, 0 ≤ φ ≤ 2π. (3.24)

4. Determination of Von Mises stress

In the present problem the equivalent Von Mises stress is obtained from the formula

σ(r) =
√
σ2
r(r) + σ2

φ(r)− σr(r)σφ(r) , (4.1)

which yields the following result for the plane stress model

σ1(r) =
b2p

(b2 − a2) r2

√
r4 + 3a4 (4.2)

and for the strength of material model

σ2(r) =
bp

r ln b
a

√
1− ln

r

a
+

(
ln
r

a

)2

. (4.3)

5. Comparison of the solutions

In the following, the effect of the geometric parameters on the stresses is examined.
First of all the radial normal stresses are considered. The radial normal stress is
obtained from plane stress solution σps

r [see equation (2.8)] and it can be reformulated
in the following manner:

σps
r =

pb2

b2 − a2

(
−1 +

a2

r2

)
= p

1

1−
(
a
b

)2 [
−1 +

(a
r

)2
]
. (5.1)
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Similarly, the radial normal stress derived from the strength of material solution σsm
r

[see equation (3.18)] can be written in the form

σsm
r = −bp

r

ln r
a

ln b
a

= −p b
a

a

r

ln r
a

ln b
a

. (5.2)

New variables are introduced:

λ =
a

r
, ψ =

a

b
. (5.3)

Since a ≤ r ≤ b it is easy to prove that

0 < ψ < 1, ψ ≤ λ ≤ 1. (5.4)

Substitution of equations (5.3) into equations (5.1) and (5.2) yields

σps
r = p

1

1− ψ2

[
−1 + λ2

]
, (5.5)

σsm
r = −p λ

ψ

ln 1
λ

ln 1
ψ

. (5.6)

Let ∆r = ∆r(λ, ψ) denote the dimensionless difference of the radial normal stresses

∆r(λ, ψ) =
σps
r − σsm

r

p
=

1

1− ψ2

[
−1 + λ2

]
+
λ

ψ

ln 1
λ

ln 1
ψ

. (5.7)

Figure 3 illustrates the dimensionless difference function ∆r(λ, ψ).

Figure 3. The dimensionless difference function ∆r = ∆r(λ, ψ)
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The tangential normal stresses can be modified similarly. In the case of the plane
stress solution, according to equation (2.8) one can write

σps
φ = − b2p

b2 − a2

(
1 +

a2

r2

)
= −p 1

1−
(
a
b

)2 [
1 +

(a
r

)2
]
. (5.8)

The modified form of the tangential normal stress in connection with the strength of
material solution from equation (3.15) is as follows

σsm
φ = − b

r ln b
a

p = −p b
a

a

r

1

ln b
a

. (5.9)

Substitution of equations (5.3) into equations (5.8) and (5.9) provides

σps
φ = −p 1

1− ψ2

(
1 + λ2

)
, (5.10)

σsm
φ = −p λ

ψ

1

ln 1
ψ

. (5.11)

Another dimensionless difference function denoted by ∆φ = ∆φ(λ, ψ) can be estab-
lished according to tangential normal stresses (5.10) and (5.11)

∆φ(λ, ψ) =
σps
φ − σsm

φ

p
= − 1

1− ψ2

(
1 + λ2

)
+
λ

ψ

1

ln 1
ψ

. (5.12)

Figure 4. The dimensionless difference function ∆φ = ∆φ(λ, ψ)

Figure 4 shows the ∆φ = ∆φ(λ, ψ) function. Figures 3 and 4 represent that the
differences between the two solutions converge to zero when λ, ψ → 1, which means
that the outer radius b of the disc converges to the inner radius a (Figure 1). In that



Investigation of the stress state in a thin elastic disc 11

case the problem actually becomes a curved beam problem and then the two solutions
are in good congruence. If ψ → 0, namely the parameter b is significantly higher than
a (so the disc is wide), then the difference between the two solutions increases.

6. Numerical examples

6.1. Narrow disk. The following data are used in the first numerical example: a =
0.1 m, b = 0.2 m, E = 2×1011 Pa, ν = 0.3, p = 25×106. According to the parameters
ψ = a/b = 0.5 in this case. Investigating Figures 3 and 4, the example is close to
a beam problem as the dimensionless difference functions (5.7) and (5.12) provide
relatively low discrepancy between the two solutions. A plane stress FEM analysis
has been also made to check and compare the results. In Figures 5 and 6 the plots
of σr and σφ are shown as functions of r. The graphs of Von Mises stresses as a
function of r are presented in Figure 7. Figure 8 represents the radial displacement
functions as a function of r. The values of the radial displacement for r = a, r = b,
r = 0.5(a+ b) are listed below

u(a) = −0.000033334 m, u(b) = −0.0000341666 m,

u

(
a+ b

2

)
= −0.0000319444 m, U = −0.000036067 m.

It can be clearly seen that the plane stress solution and the FEM solution (plane stress
model too) produce practically the same results for all the stress and displacement
functions. In this case the strength of material solution does not differ significantly
from the plane stress results, either.

Figure 5. The plots of the radial normal stress functions σr(r) (nar-
row disk)
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Figure 6. The plots of the tangential normal stress functions σφ(r)
(narrow disk)

Figure 7. The plots of the Von Mises stress functions σ(r) (narrow disk)

Figure 8. The plots of the radial displacement functions u(r), U (nar-
row disk)
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6.2. Wide disk. In this example a wide disk is analysed. The data are the same as
in Example 6.1 with one exception. The outer radius of the disk b = 1 m. The ratio
of the geometrical parameters a/b = ψ = 0.1, which means a much higher difference
between the two analytical solutions according to dimensionless difference functions
(5.7) and (5.12) (see Figures 3 and 4). A plane stress FEM analysis was carried
out for this wide disk, as well. In Figure 9 the radial stress functions are shown as
a function of r. The tangential stress functions as a function of r can be seen in
Figure 10. Figure 11 represents the Von Mises stress functions in terms of r. The
displacement functions in terms of r are also given in Figure 12. The values of the
radial displacement for r = a, r = b, r = 0.5(a+ b) are listed below:

u(a) = −0.000025253 m, u(b) = −0.000090025 m,

u

(
a+ b

2

)
= −0.000051596 m, U = −0.000054287 m.

Figure 9. The plots of the radial normal stress functions σr(r) (wide disk)

Figure 10. The plots of the tangential normal stress functions σφ(r)
(wide disk)
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Figure 11. The plots of the Von Mises stress functions σ(r) (wide disk)

Figure 12. The plots of the radial displacement functions u(r), U
(wide disk)

It can be concluded that the plane stress solution and the FEM solution (plane
stress model too) yield the same results for all of the stress and displacement func-
tions as in the previous example 6.1. In this case the strength of material solution
significantly differs from the plane stress results, as was expected.

7. Conclusions

The investigation of the state of stresses of a thin elastic disc is presented by applying
two different mechanical models. The first model uses the governing equation of
the plane stress deformation. The second model is a strength of material model.
The results derived from the two models are in good agreement when the thin disk
problem converges to a curved beam problem according to the geometrical parameters.
When the disk becomes wider the results of the models diverge. Numerical examples
illustrate the application of the derived formulae.
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The results of the calculations illustrate that the radial and tangential normal
stresses calculated with the two different models differ slightly when the thin disk can
be considered as a curved beam according to the geometrical parameters. The same
remark applies to radial displacements. The examples also represent the divergence of
the stresses and the displacements derived from the two models in the case of a wide
disk. The examples were also investigated with FEM analysis to check the results of
the two models.The plane stress FEM analysis yields practically the same results as
the analytical plane stress model in all examples investigated.
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Abstract. Wind turbines experience the threat of ice accretion under extreme weather
conditions. A numerical modeling approach was applied using FENSAP ICE to simulate
turbine blade icing and to determine the aerodynamic performance degradation due to ice
accretion. Particular attention is paid to the combined effects of the cloud characteristics, i.e.
median volume diameter (MVD), liquid water content (LWC) and ambient air temperature,
in a relatively wide range that covers in-cloud icing and precipitation icing as well. Depending
on these parameters, aerodynamic performance degradation may not occur proportionally
with the increase in ice mass, which is discussed in detail. The accuracy of the numerical
model is based on the number of shots, which is also studied. A single-shot approach means
simulation of the icing event in a single step on the bare surface occurring over a period,
whereas multi-shot involves multiple icing simulations, redefining the surface and applying
mesh displacement after each shot. Such simulation considers that each additional layer of
ice accretes on different iced surfaces. Numerical validation showed that a five-shot approach
provided a close estimation of experimental results and was assessed sufficient for the study
considering computational time and accuracy. The mass of ice accretion augments increases
when LWC increases from 0.1 g/m3 to 1 g/m3, and when MVD increases from 20 µm to
100 µm, which results in the decrease of the lift-to-drag ratio (CL/CD) after a long enough
accretion time. Higher ice mass leads to aerodynamic performance degradation; however, a
slight increase in the ratio CL/CD may be observed after short accretion time for up to 20
minutes.

Keywords: Aerodynamic performance, ice accretion, liquid water content (LWC), median
volume diameter (MVD), wind turbine

1. Introduction

Wind power is becoming a prevalent global source of electricity to reduce climate
change effects [1–3]. However, wind energy penetration is affected by atmospheric
conditions, location, and polar vortex [4]. The polar vortex expands during winters,
sending colder air from the Arctic to mid-latitudes that can cause winter storms in
areas that are not typically associated with cold. The cold spells associated with icing
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conditions cause ice accumulation on wind turbine blades, reducing power production
[5, 6]. The regions with high wind energy potential mainly lie in the cold climatic
regions due to higher air densities that can increase power by about 10% [7, 8]. The
icing regions pose a great danger to wind power production and energy transmission
due to ice accumulation and ice load, which may lead to a shutdown or stall of
wind turbines, affecting the grid stability [9]. The frequency of icing in a region
greatly influences power production due to stall standby on turbines during icing
days. Botta [10] presented a case of Acqua Spruzza Italy receiving 12 to 36 icing days
per year. Maissan [11] studied the icing days of the Whitehorse region in Canada,
with 33 to 50 icing days annually resulting in 20% estimated energy production loss.
Dierer et al. [12] studied the icing frequency in the winter of 2009/2010 on an E-82
Enercon turbine in the Jura region of Switzerland, with results showing 11.5 and 41.5
days/year of meteorological icing and instrumental icing, respectively. The analyzed
power reduction from the region with and without heating instruments on the blade
showed a 3.5% and 10% annual power reduction, respectively. The impact of icing
on wind energy involves wind power penalties because of structural vibrations of the
overloaded component, which results in fatigue of wind turbine components, rotational
imbalance, and an increase in drag force due to the formation of a new shape affecting
the airflow [13, 14]. Paper [15] studied numerically the performace losses on an Aelos
30kW airfoil due to an icing event and obtained a result of 24% power loss from the
2D flow analysis; hence there is a need to study the power reduction due to icing.

Atmospheric icing conditions are responsible for ice accretion, which is character-
ized by physical and atmospheric parameters such as blade design (airfoil shape),
temperature, air density, liquid water content (LWC), relative humidity, and median
volume diameter (MVD) of droplets in the natural cloud that the wind turbine is
exposed to [16–21]. The blade design is determined by size, rotational speed, impact
angle on the root to tip of the airfoil, the droplet impingement area, and the angle
of attack. Virk et al. [22] showed that blade size and the shape of the airfoil pro-
file exposed to ice accretion influenced power loss due to aerodynamic performance
degradation. Reid et al. [23] performed a study on the rotation of wind turbines un-
der icing conditions, finding aerodynamic performance degradation leading to a 60%
power reduction.

Icing conditions depend on the physical and atmospheric conditions, which are
classified as in-cloud icing and precipitation icing. In-cloud icing is formed when the
supercooled droplets collide with an object (e.g. a wind turbine blade), which changes
the thermodynamic conditions, causing freezing. In-cloud icing results in rime ice or
glaze ice, depending on the ambient parameters, principally the temperature, MVD,
and LWC. Glaze ice is formed during wet ice growth associated with droplet diameter
up to 500µm and high LWC, whereas rime ice is formed with temperatures below
−6 C◦, small MVD up to about 10, and lower LWC in the range of 0.1 g/m

3
[17,

22]. Paper [23] carried out a study on the performance degradation of a wind turbine

using FENSAP-ICE with LWC of 0.5 g/m
3
, MVD between 20− 30µm, temperature

of −3 ◦C and −15 ◦C and accretion time between 10-60 minutes. They observed how
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icing was influenced by atmospheric conditions and showed the relationship between
the LWC, MVD, and temperature that results in similar icing conditions. The LWC
decreases with increase in temperature in some scenarios [24].

Despite the challenges associated with the impact of icing on power production and
targeting the increasing use of renewable energy, it is crucial to evaluate wind tur-
bine performance under extreme weather conditions to obtain useful data to improve
wind turbine performance in icing regions. Data collection on wind turbine icing is
challenging due to unpredictable factors such as number of icing days, uncontrolled
changes in atmospheric conditions, and inaccurate images captured by cameras [25].
The icing scenarios are studied by numerical tests applying computational fluid dy-
namics (CFD) and by laboratory tests in icing wind tunnels to predict ice formation
under controlled conditions [26].

This study applies a numerical approach to model icing on a wind turbine blade
section using ANSYS FENSAP ICE 2021/R2. The software applies a single-shot or
multi-shot approach, the latter one providing more accurate but more costly compu-
tation. Raj et al. [27] studied the impact of nunber of shots for single shot, 4 shots
and 8 shots and concluded that using multi-shots was more effective compared to a
single shot. However, they did not focus on determining the minimum number of
shots that can be used with minimal impact on the accuracy of aerodynamic per-
formance. Wang et al. [28] carried out a numerical study on a NACA 0012 airfoil
with shots between a single shot to 5 shots under varying icing conditions, but mostly
focused on the impact of ice shapes.

In the present study, the ice accretion is simulated, and the optimum number of
shots in the numerical model is determined, which provides acceptable accuracy and
helps reduce computational time. The ice mass and the corresponding aerodynamic
performance are evaluated under a wide enough range of cloud characteristics that
covers substantially different icing conditions. The study will reveal how the aerody-
namic performance considered by the lift-to-drag ratio changes with accretion time.
The results provide beneficial information for researchers in the wind industry and
contribute to more efficient energy production under extreme weather conditions.

2. Numerical model

2.1. Geometry and computational domain. The study employed a C-shaped
computational domain around a NACA4412 airfoil. This shape was considered due
to its moderate thickness, which can be used in several applications including avia-
tion and wind turbines and thus providing versatility for numerical simulations under
different conditions. The NACA 4412 airfoil with a 1 m chord length was defined and
extruded 1 m in spanwise direction since FENSAP-ICE works with a 3D geometry,
but the unsteady flow was simulated in the plane determined by the airfoil section. A
fine 2D grid was created with 98,573 elements, a minimum orthogonal quality, and a
maximum skew of 0.85 and 0.194 respectively. Triangular meshing in the domain was
used in the study with a higher resolution near the blade surface for better accuracy,
characterized by 1.05% growth of cells outwards, with dense elements and nodes oc-
curring close to the wall. To accurately capture the flow phenomenon, the wall/airfoil
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was divided into small domains (1000 units) all around and the inflation mesh of
27 layers was introduced with first layer thickness derived in ANSYS FENSAP-ICE
(2017):

y+ =
yuτ

v
=

y

δ
, (1)

where y is the distance from the wall to a point of interest, δ is the molecular viscous
length scale, v is the kinematic viscosity, and uτ is the friction velocity.

The no-slip condition was achieved through the distance separation displayed on
the number of layers and the boundary layer characteristic on the transition and
separation which guided in the laminar-turbulent transition. The first layer thickness
calculated was 1.46 m with a growth rate of 1.08% outwards to fully capture the
complex ice shape and mass from the flow distribution over the surface and last
inflation layer had a thickness of 1.9406× 10−5 m. The number of layers was within
the range specified in a study done by Piperas [29] (i.e. < 100 layers) for reducing the
computational cost, especially in complex simulations, while maintaining the mesh
quality.

a b

Figure 1. Mesh around the blade: (a) Fine, unstructured mesh (tri-
angular mesh); (b) meshed domain near the leading edge

2.2. Boundary and flow conditions. The boundary conditions play an important
role in the accuracy and reliability of the simulation by describing the inlet, outlet,
wall, and symmetry conditions. The boundary conditions used in the study employed
the Dirichlet and Neumann conditions in specifying the value of the solution and
the derivative of the solution, respectively. The inlet condition is specified as the
velocity with 20 m/s used in the study, the outlet condition specifies the pressure
or the backflow condition in the outlet, and the gage pressure was set to 0 Pa. The
ambient temperature in the freestream was defined as −5 ◦C, −10 ◦C and −20 ◦C.
The airfoil in the study was set to be an obstacle with wall temperature initialized
by isothermal conditions at +0.1 ◦C higher than freestream ambient temperature,
while the symmetry conditions are used to describe the boundaries within which the
flow occurs. These boundary conditions are indicated in Figure 2. Based on studies
done by Abdalkarem et al. [30] and Manni et al. [31], it was found that utilizing the
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computational domain having a distance of 10 to 15 times chord length downstream
was ideal for the study. The distance upstream from the leading edge was set at
5-chord lengths, while downstream from the trailing edge to the end of domain at
10-chord lengths.

Figure 2. C-shaped computational domain

2.3. Icing model. Icing is a complex phenomenon involving phase change and ther-
modynamic and fluid dynamic processes when the supercooled droplets hit the sur-
face and accrete. The rate of icing is calculated using FENSAP-ICE, as summarized
in the following steps. First, the flow around the airfoil is determined by the flow
solver (FENSAP), then the motion of droplets is simulated by the droplet’s solver
(DROP3D), and finally icing is modeled by the ice accretion and water runback mod-
ule (ICE3D).

The cloud that leads to ice accretion is modeled by multiphase flow over the air-
foil surface governed by Reynolds-Averaged Navier-Stokes (RANS) equations coupled
with Lagrangian particle tracking. The continuity equation ensures that the mass of
the fluid is conserved within the simulation domain, while the momentum equation
describes the conservation of momentum within the fluid. The k-turbulence model
was used in the present study, which derived the dynamic eddy viscosity and the bulk
fluid viscosity over the fluid flow. This model was developed by Menter to blend the
robust and accurate nature of k · · · ω model in near-wall region varying with models,
i.e., k · · · ε and k · · · ω [32, 33]. The blending function on the k · · · ω SST model is
used for smooth transition between the models based on the distance from the wall.
The k · · · ε is suitable for capturing turbulent regions in far distances, while k · · · ω
is activated near the wall where boundary layer turbulence is significant, and is thus
able to resolve flow dynamics.

Water droplet trajectories near the surface are modeled by the droplet equation,
which describes the motion of individual droplets in a fluid based on the assumptions
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that droplets do not collide, coalesce, or splash until they reach the surface. Numer-
ically, the ice accretion involves a multiphase-flow approach involving the tracking
of trajectories of supercooled water droplets, which determines the collection effi-
ciency on the surface, followed by the heat transfer governing the air-liquid-solid
phase change and ice accretion on the airfoil. The ice characteristics based on the
physical and atmospheric conditions determines the type of ice as described in Ibrahim
et al. [17] and Rotich & Kollár [19]. Factors which mainly affect the accretion process
include the atmospheric conditions (microphysics) described by the ambient temper-
ature Ta, liquid water content (LWC), and median volume diameter (MVD), whereas
physical components include airfoil configuration (angle of attack).

The thermodynamics of the ice accretion process as described in Makkonen et al.
[34] determine the accretion efficiency that affects the rate of icing. Icing over the
surface was numerically simulated after defining the atmospheric conditions influenc-
ing the aerodynamic performance and ice shapes. The controlled conditions set were
air temperature (−5, −10, and -20 −20 ◦C), LWC (0.1 g/m3, 0.5 g/m3, and 1 g/m3),
MVD (20, 40, 60, 80 and 100 µm) at 0◦ angle of attack and accretion time of 3 hours.
The numerical parameter, the number of shots in the simulation of the icing, was
varied from a single shot to multi-shot including 3-5-8 shots, which has an impact
on the ice shape and mass and the aerodynamic performance degradation. A single-
shot simulation involves constant one-interval ice accretion over a given time, while
a multi-shot approach is divided into shorter-interval icing solutions obtained after
dividing the total icing time by the number of shots (3600, 2160 and 1350 seconds for
3, 5 and 8 shots, respectively, in this study). Grid on the airfoil surface is defined in
the first shot, and then it is displaced in each shot according to the iced airfoil profile,
with more shots causing formation of a more complex shape. Atmospheric conditions
are set in each shot, then the droplet impingement is simulated on the iced surface,
further ice accretion is predicted, and the aerodynamic performance of the iced blade
is determined.

3. Results and discussion

The airfoil section studied was NACA4412. The FENSAP solver computed flow field
solutions, while the droplet trajectories were calculated in DROP3D after setting up
the conditions determined by the MVD, LWC, and droplet size distribution (Langmuir
D) of the cloud. Icing prediction was based on numerical calculations in the ICE3D.
The numerical model will be validated first in this section, followed by analyzing the
impact of number of shots on icing and on aerodynamic performance. Finally, the
effects of MVD, LWC, and air temperature will be discussed.

3.1. Validation of the numerical model. The grid independence study was carried
out to determine the number of divisions and elements in the mesh generated. The
classification of the refinement was done based on the number of divisions in the
domain.

According to a study conducted by Roache [35], the accuracy of numerical solu-
tions may be assessed using the discretization method. The estimation on the accuracy
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Table 1. Grid refinement ratio obtained depending on the number of elements

Divisions 35 100 400 800 1200 1500 2000

Elements 84525 87845 181215 354330 497515 651970 900990

Refinement
1.039278 2.062895 1.955302 1.404101 1.310453 1.38195

ratio

of solution was based on calculating the grid refinement ratios. According to Roache,
using Richardson extrapolation theory (Celik et al. [36]) a refinement ratio greater
than 1.3 was ideal for numerical studies. In the present scenario, medium/coarse was
not found to be ideal since the refinement ratio was 1.039; however, it increased to
2.063 for fine/medium, which was found to be excellent.

The lift-to-drag ratio is plotted as a function of the number of elements in Figure
3 to show that the aerodynamic performance is not affected by further increasing the
number of divisions above the chosen value.

 
Figure 3. Results of grid independence study regarding lift-to-drag ratio

The numerical model was validated by an experimental study carried out in a
low-speed wind tunnel by Sundaresan et al. [37] using the NACA0012 airfoil. The
conditions used in the experimental study were wind speed of 77 m/s, MVD of
20µm, LWC of 0.5 g/m3 and 16.9 minutes accretion time for an airfoil with 0.533
m chord length, which was duplicated and numerically simulated on FENSAP-ICE
software. In the numerical study, single shot and 3-5-8 shot simulations were ap-
plied. Figure 4 shows that similar ice shapes were obtained after the 5-shot and
8-shot simulations. The single-shot and 3-shot simulations slightly underestimate
the amount of ice on the upper half of the profile, and they predict the maximum
ice thickness at a lower position. However, the simulations with five and eight shots
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Figure 4. Comparison of ice accretions on NACA 4412 profile ob-
tained numerically for single-shot and multi-shot simulations

 
Figure 5. Comparison of numerical results (5 shots) obtained by
FENSAP-ICE 2021 R2 with experimental data from low-speed sub-
sonic wind tunnel facility (Sundaresan et al. [37]) from airfoil gener-
ated by Jacobs et al. [38].

provide a nearly similar shape of ice formed on the leading edge to that obtained
experimentally, as can be compared in Figure 5.
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3.2. Impact of number of shots on the accuracy of model prediction. The
atmospheric and physical conditions listed in Section 2.2 were assumed in the nu-
merical study and were introduced in FENSAP-ICE. The assumptions made in the
study were that droplets were spherical and no coalescence, splashing/bouncing, or
fragmentation or disruption occurred in the simulation of a three-hour ice accretion
event. In the following, the changes in the ice mass and in the lift-to-drag ratio when
increasing the number of shots are compared.

 
Figure 6. Effect of number of shots on the mass of ice for different
accretion times (mins), for LWC 1g/m3, MVD 100µm and air tem-
perature −10 ◦C

According to Figure 5, the ice mass did not vary significantly with the number of
shots, except between the single-shot and multi-shot simulations after long accretion
time. The differences after 180 imin accretion time for an MVD of 100µm were
14.88% between 1 and 3 shots, 2.24% between 3 and 5 shots, and 1.04% between
5 and 8 shots. The ice accretion depended on the number of shots and affected
the flow over the surface, forming a more streamlined shape on the leading edge
for the single shot. The mass of ice increases with the number of shots, and once
the prediction of ice shape becomes accurate enough, the ice mass does not change
considerably with the number of shots. The aerodynamic performance degradation
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may be evaluated by the reduction in the lift-to-drag ratio CL/CD. Figure 7 reveals
how this parameter varied with the number of shots for different values of LWC. The
variation in the lift-to-drag ratio with the number of shots is below 5% for the smallest
LWC, as seen for 0.1 g/m3. However, it is 20-50% for higher LWC when increasing
the number of shots up to 5, and then further increasing the number of shots from 5
to 8, the change reduces to around or below 5%.

 
Figure 7. Effect of the number of shots on aerodynamic performance
for MVD 60 µm, accretion time 180 minuts, air temperature −10 ◦C,
and for different values of LWC g/m3

The lift-to-drag ratio reduces significantly when the number of shots increases up to
five. However, no significant difference can be observed between the lift-to-drag ratios
obtained with the five- and the eight-shot simulations. Consequently, increasing the
number of shots above five does not lead to further considerable change in ice shape
or in aerodynamic performance degradation. Furthermore, a high number of shots
leads to numerical instability, as was observed in some simulations that were run with
20 shots [39]. Therefore, this study employs five shots in the following in order not
to overly increase the computation time and to avoid numerical problems.

3.3. Effects of MVD and LWC. The icing rate and mass of ice accreting on the
airfoil depend on atmospheric conditions described by parameters such as LWC and
MVD. When LWC and MVD are small, fewer droplets freeze, causing a slower accre-
tion process on the surface, whereas large-diameter droplets collide more efficiently,
and then they freeze, leading to an increase in ice mass. The inertial forces have little
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effect on small droplets that follow the streamlines, while greater droplets have higher
inertia, causing increasing collision efficiency and impingement of a higher number of
droplets. The collision efficiency is influenced by the droplet diameter, and the ac-
cretion efficiency depends on the availability of water on the surface that creates the
nucleation sites for ice growth.

The ice mass was found to increase approximately linearly with the LWC, MVD,
and accretion time (see Figure 8). These observations correspond to those reported
in the studies by Hakimian et al. [40], Molkoselka et al. [41], and Tsao & Anderson,
[42].

 
Figure 8. Effect of the number of shots on aerodynamic perfor-
mance for MVD 60 µm, accretion time 180 minutes, air temperature
−10 ◦C, and for different values of LWC g/m3

Figure 8 represents how the accreted ice mass is affected by MVD and LWC.
As MVD and LWC increase, the collection efficiency on the airfoil surface increases
leading to more ice accreting on the leading edge. The horn formation that can be
seen in Figure 9 is substantially influenced by the droplet diameter. The ice accreted
on the surface for lower MVD causes little or no noticeable flow separation compared
to the ice accretion obtained for higher MVD, which forms a complex shape creating
recirculation flow. The iced airfoil shape alters the flow over the surface, increasing
the drag and resulting in a separation region further along the upper profile behind
the leading edge.



28 I. K. Rotich and L. E. Kollár

Figure 9. Flow distribution disturbance caused by ridges of ice ac-
cretion, for LWC 0.5 g/m3, MVD 100µm, air temperature −20 ◦C,
accretion time 180 minutes

Ice accretion causes aerodynamic degradation, since the lift decreases and the drag
increases. However, an unexpected tendency was observed after a short accretion
time. A small amount of ice on the blade may even slightly increase the lift-to-
drag ratio, which is followed by a steep decrease after further ice accretion due to
shift of the stagnation point (Rotich & Kollár [19]) and the flow separation described
in the previous paragraph. These tendencies can be observed in Figure 10, where

  

a b

Figure 10. Variation of lift-to-drag ratio with accretion time (mins)
for different values of LWC, at MVD 60µm and air temperature
−10 ◦C: (a) accretion time is 180 min; (b) short accretion times up
to 40 minutes
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results of simulations with smaller time intervals are shown in Figure 10(b). The
aerodynamic degradation in 180-minute accretion time is greatly affected by the LWC.
The reduction in the lift-to-drag ratio is less than 20% for the smallest LWC, while it
drops to about one tenth for the highest LWC. The ice type on the surface is mainly
determined by the LWC and MVD. Rime ice is formed when droplets are small and
LWC is low, whereas higher LWC and MVD increase the chance of forming glaze
ice due to the higher water content available on the surface, leading to incomplete
freezing. The ice shape is also greatly affected by MVD and LWC. Bigger droplets
result in greater collision efficiency, leading to increased ice accretion with with the
appearance of horns and less streamlined airfoils ( Virk et al. [43]). An increase in
LWC results in a higher amount of liquid water on the surface, which influences the
type of accreting ice and worsens the aerodynamic characteristics.

3.4. Effects of air temperature. The atmospheric temperature influences the rate
of icing and the type of ice on the airfoil surface. At higher temperatures, the heat
transfer is not enough to freeze all droplets upon impact, causing some runback water
on the airfoil surface leading to glaze ice. At lower temperatures, the supercooled
water droplets freeze immediately upon impact, causing rime ice. The effect of tem-
perature on ice shape and aerodynamic performance was studied on −5 ◦C, −10 ◦C,
and −20 ◦C (Figure 11). In FENSAP-ICE, the icing solver considers the heat balance

 

Figure 11. Effect of air temperature on lift-to-drag ratio for MVD
80µm and for LWC 1g/m3
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between the liquid water and the accreted surface. Figure 11 shows how the lift-to-
drag ratio reduces with accretion time for different values of air temperature. Since the
LWC is high (i.e. 1 g/m3), the lift-to-drag ratio decreases considerably with accretion
time, but this decreasing tendency is faster at higher temperatures. Contrary to the
results presented in Figure 9, the increasing tendency of the lift-to-drag ratio after the
first 20 min accretion time cannot be observed in Figure 11. This may be explained
by the higher MVD and high LWC. The ice in this case change the shape of the
profile so that aerodynamic performance degradation occurs after even a few minutes
of accretion.

The air temperature affects the ice formation and the water film on the surface
(Orchard et al. [44]); thus, different shapes are formed at the leading edge for different
air temperatures. At lower temperatures, the shape of the ice is more streamlined,
while at higher temperatures, the ice has a ’horny’ shape, as can be observed in
Figure 12, and such changes in the shape influence the flow, and thus the aerodynamic
performance.

 
Figure 12. Effect of temperature on ice shape for MVD 80µm, LWC
1g/m3, at 180 minutes for −5 ◦C and −20 ◦C

4. Conclusions

Ice accretion on the NACA4412 airfoil and the resulting aerodynamic performance
degradation were modeled numerically. The optimum number of shots in the nu-
merical simulation was determined and the effects of physical parameters describing
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the ambient conditions and the characteristics of the cloud were studied, including
MVD, LWC, air temperature, and accretion time. The numerical approach was vali-
dated with experimental results, and the 5-shot and 8-shot approaches provided close
prediction of ice shape and lift-to-drag ratio contrary to the single-shot and 3-shot
simulations. The single-shot approach was found to be inaccurate for estimating ice
mass after a long accretion time.

i The lift-to-drag ratio changed considerably when the number of shots increased
up to 5; however, further increasing it to 8 resulted in a change of 5% or less.
Consequently, the 5-shot approach was chosen for further simulations.

ii The MVD was varied from 20 mm to 100 mm, at 10µm intervals, whereas the
LWC was changed from 0.1 g/m3to 1 g/m3. Simulation results showed that ice
mass increased with both parameters. Aerodynamic performance degradation
was concluded to be more significant for higher values of MVD and LWC.

iii An interesting property was also observed depending on the ambient parame-
ters. The lift-to-drag ratio that was used to describe aerodynamic performance
slightly increased after a short period of ice accretion (i.e., up to 20-25 min-
utes), and dropped only after further ice accretion. Thus, a small amount of
ice may not cause aerodynamic performance degradation at smaller values of
MVD and LWC.

iv The air temperature influences ice formation, since horny shapes develop for
higher temperature, i.e., when the temperature is closer to the freezing point.
Consequently, the lift-to-drag ratio reduces to lower values for higher air tem-
peratures.

Further research will include experimental study of the effects of the ambient pa-
rameters on ice accretion in an icing wind tunnel and the consideration of these results
in the design of blade shapes. Such observations would contribute to extending the
operation of wind turbines under icing conditions.
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Abstract. Two commonly used overcoring measurement methods for estimating the in situ
stress state in rocks – the In Situ Stress Testing (IST) gauge and the Hollow Inclusion (HI) cell
– are compared based on finite element models. The models simulate idealized measurement
circumstances in homogeneous, isotropic and linearly elastic rocks during overcoring, and
are used to evaluate the maximum accuracy achievable using the two methods. We show
that while both methods are capable of accurately estimating the in situ stress state, their
accuracy depends significantly on the placement of the instruments within the pilot hole.
Recommendations regarding optimal instrument placement are given for both methods by
considering stress disturbances created by the bore- and pilot holes.

1. Introduction

Estimation of the undisturbed underground or in situ stress state is essential to un-
derground operations, such as mining, tunnelling and other geotechnical engineering
projects. Since the in situ stress state is influenced by factors such as depth, tec-
tonic forces, topography, constitutive behaviour of the rock, and the local geological
history, among others [1], measurements are necessary to estimate the state of stress
underground.

There are several techniques to determine the in situ stress state [2–4]. Hydraulic
methods, such as hydraulic fracturing and the flat jack method, are based on pressure
measurements. Their advantage is that these methods do not require knowledge of
the material properties of the rock. On the other hand, they do not provide enough
information to accurately estimate the entire three-dimensional in situ stress state,
which can be necessary in certain cases. Methods based on displacement or strain
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measurements, such as overcoring, enable more accurate estimations. As the in situ
stress state is derived from displacement or strain values, the constitutive behavior of
the rock must be known. Typically, the rock is assumed to be linearly elastic. It is
worth noting that there are methods that take the time dependence of the material
behaviour into consideration, e.g., the Anelastic Strain Recovery (ASR) method [5,
6]. However, here, we work with the assumption of linear elasticity, as the unloading
rate is assumed to be sufficiently low.

In the present paper we investigate two specific overcoring methods: the In situ
Stress Testing (IST) method developed by Sigra, and the Hollow Inclusion (HI)
cell developed by the Commonwealth Scientific and Industrial Research Organisa-
tion (CSIRO). Both methods use several assumptions in order to make calculations
feasible, and best practice recommendations are given in order to confirm that the
measurement circumstances conform to these assumptions and consequently the mea-
surement results are accurate to some extent. Our goal is to independently verify such
assumptions and recommendations and potentially improve them in order to ensure
accurate measurement results.

The outline of the paper is as follows. First, we give an overview of overcoring
methods in Section 2. This is followed by the exposition of the theory behind the IST
and CSIRO HI measurement methods in Section 3, which is crucial for understanding
the assumptions made during the evaluation of such measurements as well as for
clearly showing the limitations of these methods. In Section 4, we construct a series
of finite element models for the quasi-static simulation of a case study in the overcoring
measurement process for the IST and CSIRO HI methods. We evaluate the results
of these case studies regarding the theoretically achievable maximum accuracy of the
estimated in situ stress state. Finally, in Section 5, we compare and contrast the two
measurement techniques and give recommendations regarding the placement of the
specific overcoring measurement instruments inside the pilot hole.

2. A concise overview of overcoring methods

One of the most common in situ stress measurement techniques in the mining
industry is overcoring, which has been used since the 1960s [4]. The in situ stress state
can be estimated based on the deformations and strains measured while the core is
relieved. Naturally, the constitutive equations are necessary for the calculation of the
stress state, therefore the material properties of the rock have to be measured. This
is usually performed after the overcoring measurement itself, in a laboratory setting.

An overcoring measurement consists of three main steps, which are shown in Fig-
ure 1.

• Step 1 : Drilling to the depth of the in situ stress state measurement itself.
This main hole is usually called the borehole.

• Step 2 : From the bottom of the borehole, a smaller diameter hole, the pilot
hole, is drilled. An instrument, or gauge, is mounted in the pilot hole, which
measures the deformations and strains of the pilot hole. (The specifics of this
instrument depend on the measurement method used.)
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• Step 3 : A concentric hole is drilled around the instrument in the pilot hole,
i.e. it is cored over. The outer diameter of this hole is identical or similar
to the borehole diameter, and the inner diameter is larger than the pilot hole
diameter. During this step, the remaining rock core is largely relieved from the
in situ stress state, while the instrument installed in the pilot hole measures
and records the deformations or strains throughout the process.

Borehole

Pilot hole

1 – Drilling of the
large diameter hole

2 – Drilling of 
the pilot hole
and setting up
of the
measurement
cell

3 – Overcoring

Measurement
cell

Overcoring trench

Overcoring ring
(relieved core)

Figure 1. Steps of overcoring [7]

There are two main types of measurement tools that can be installed in the pilot
hole. One of these measures the changes in diameter of the pilot hole during Step
3 by pins placed at different depths and orientations. The USBM (US Bureau of
Mines) developed a gauge which measures the diameter change in three different
orientations [8]. This provides enough data to estimate the in situ stress state in
the plane perpendicular to the borehole axis with acceptable accuracy. Naturally,
additional measurement data decreases the amount of total measurement error and the
probability of instrument failure, therefore there are gauges that measure the pilot hole
diameter during overcoring at multiple depths and orientations. For example, the IST
gauge developed by SIGRA measures the diameter change in six different orientations
[9]. The advantage of these instruments is that they can be used more than once,
and there is no need for any cables during the measurements. The disadvantage of
these gauges is that the in situ stress components parallel to the borehole axis cannot
be estimated if the data is collected from a single hole [10]. Besides, this method is
suitable only for relatively shallow depths. [2]

The other main type of overcoring instruments measures the strains of the pilot
hole surface in different directions during Step 3. For example, the Hollow Inclusion
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(HI) cell developed by CSIRO (Commonwealth Scientific and Industrial Research
Organization) contains 9 or 12 strain gauges installed in different positions and ori-
entations [11]. The advantage of these tools is that the full, three-dimensional in situ
stress state can be estimated based on the data collected from a single hole. However,
the CSIRO HI cell is glued into the pilot hole, so the cell can only be used once. A
further disadvantage is that the epoxy-based glues cannot be applied in humid and
dusty environments, and the thickness of the glue may influence the accuracy of the
measurement [2].

A significant limitation of the overcoring technique is that the material properties
of the rock must be known, since the in situ stress state is derived from deformation
or strain values. Young’s modulus and Poisson’s ratio – and other parameters in case
of anisotropic or nonlinear material behaviour – are usually determined by biaxial
compression tests. These tests are usually carried out on the rock core remaining
after Step 3 in the case of the CSIRO HI cell, and on nearby rock cores in the case of
the IST method.

In the following section, the equations required to estimate the in situ stress state
from the data collected by either an IST gauge or a CSIRO HI cell are presented.

3. Theoretical background of the evaluation of overcoring
measurements

3.1. Evaluation of IST measurements. The IST gauge measures the change in
diameter of the pilot hole during the relief of the rock core. The collected data can
be used to determine the original in situ stress state, which still occurs sufficiently far
(1.5–2.5 times the diameter of the borehole [11]) from the borehole.

3.1.1. Assumptions. In order to derive the in situ stress state from the changes in
diameter of the pilot hole, the following assumptions are made:

• the stress state is identical in any plane perpendicular to the axis of the
borehole,

• the drilling of the borehole and the pilot hole have no influence on the
original in situ stress state,

• after overcoring, the rock core and the surface of the pilot hole are completely
relieved from any stress,

• the rock is considered to be linearly elastic, homogeneous and isotropic,
• the axial in situ stress component is known. If the axis of the borehole is
vertical, this component corresponds with the lithostatic (also called
overburden) pressure, which is caused by the weight of the overlying
material [4].

These assumptions imply that the deformations measured by the IST gauge are caused
by the relief of the in situ stress state. As a consequence, a relationship must exist
between the changes in diameter and the in situ stress state.

3.1.2. Description of the stress state. For describing the various stress states consid-
ered, the Cauchy stress tensor σ is used, which is assumed to be symmetric. We
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define a Cartesian coordinate system in which axis z coincides with the borehole axis.
The components of this tensor are

σ =

σx τxy τxz
τxy σy τyz
τxz τyz σz

 . (3.1)

Accordingly, the change in the stress state near the pilot hole during Step 3 of
overcoring is described by the (symmetric) tensor ∆σ expressed as

∆σ =

∆σx ∆τxy ∆τxz
∆τxy ∆σy ∆τyz
∆τxz ∆τyz ∆σz

 . (3.2)

According to Section 3.1.1, the rock core is completely relieved after the overcoring,
hence its loading changes:

∆σ = 0− σ0, (3.3)

where σ0 is the in situ stress state to be determined:

σ0 =

σ
0
x τ0xy τ0xz

τ0xy σ0
y τ0yz

τ0xz τ0yz σ0
z

 = −∆σ. (3.4)

It is worth emphasizing here that these stress tensors describe the in situ stress
state, which is the original, undisturbed stress state, and is different from the stress
field close to the borehole. In most commonly used models, the in situ stress state is
considered to be applied sufficiently far away from the borehole as a far-field boundary
condition.

3.1.3. Connection between stress state and deformations. The change in diameter of
the pilot hole ∆d associated with the change in the loading of the core during the
relief is given by [10]:

∆d =
d

E

[
(∆σx +∆σy) + 2(∆σx −∆σy)(1− ν2) cos(2θ) +

+ 4∆τxy(1− ν2) sin(2θ)− ν∆σz

]
, (3.5)

where d is the diameter of the pilot hole, E and ν are the Young’s modulus and the
Poisson’s ratio of the rock, θ is the angle formed by the measured diameter and the
x axis of the coordinate system. Note that this formula does not contain the τxz and
τyz shear stress components, as the determination of these components would require
measurements from boreholes with different orientations.

The IST gauge measures the changes in diameter in six different orientations (and
depths) [9]. Using equations (3.4) and (3.5), the following can be written:

∆di =− d

E

[
(σ0

x + σ0
y) + 2(σ0

x − σ0
y)(1− ν2) cos(2θi) +

+ 4τ0xy(1− ν2) sin(2θi)− νσ0
z

]
, i = 1, 2, . . . , 6. (3.6)
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This is a system of six linear equations. The variables are σ0
x, σ

0
y, σ

0
z and τ0xy, the

components describing the in situ stress state. The system can be written in a matrix
equation form as

∆d1
...

∆d6

 = Â


σ0
x

σ0
y

σ0
z

τ0xy

 , (3.7)

where:

Â = − d

E


1 + 2(1− ν2) cos(2θ1) 1− 2(1− ν2) cos(2θ1) −ν 4(1− ν2) sin(2θ1)

...
...

...
...

1 + 2(1− ν2) cos(2θ6) 1− 2(1− ν2) cos(2θ6) −ν 4(1− ν2) sin(2θ6)

 .
(3.8)

Although the above system seems to be overdetermined at first glance, the equa-
tions are actually linearly dependent: it can be shown in a straightforward way that
– assuming distinct θi – the rank of matrix Â is 3, i.e. it does not have full rank.

3.1.4. Solution of the system. In order to solve the (3.7) system of equations, σ0
z must

be known to circumvent the linear dependence of the original equations. According to
Subsection 3.1.1, we assume that it is entirely determined by the overburden pressure,
which can be expressed as

σ0
z = −ρgh, (3.9)

where ρ is the mean density of the rocks above the location of the measurement, g is
the gravitational acceleration, h is the depth measured from the surface.

Consequently, the system of equations (3.7) becomes



∆d1 − d
E νσ0

z

∆d2 − d
E νσ0

z

∆d3 − d
E νσ0

z

∆d4 − d
E νσ0

z

∆d5 − d
E νσ0

z

∆d6 − d
E νσ0

z


︸ ︷︷ ︸

b

= A

σ0
x

σ0
y

τ0xy

 , (3.10)
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where:

A = − d

E



1 + 2(1− ν2) cos(2θ1) 1− 2(1− ν2) cos(2θ1) 4(1− ν2) sin(2θ1)

1 + 2(1− ν2) cos(2θ2) 1− 2(1− ν2) cos(2θ2) 4(1− ν2) sin(2θ2)

1 + 2(1− ν2) cos(2θ3) 1− 2(1− ν2) cos(2θ3) 4(1− ν2) sin(2θ3)

1 + 2(1− ν2) cos(2θ4) 1− 2(1− ν2) cos(2θ4) 4(1− ν2) sin(2θ4)

1 + 2(1− ν2) cos(2θ5) 1− 2(1− ν2) cos(2θ5) 4(1− ν2) sin(2θ5)

1 + 2(1− ν2) cos(2θ6) 1− 2(1− ν2) cos(2θ6) 4(1− ν2) sin(2θ6)


.

(3.11)

Now the rank of matrixA is maximal. However, the system is overdetermined since
there are six equations and only three variables. Naturally, measuring the change in
diameter in three different orientations would be sufficient to determine σ0

x, σ
0
y, and

τ0xy (see [8]). The reason for measuring more than three ∆d values is to minimize the
overall error. The optimal least-squares solution can be expressed [12] asσ0

x

σ0
y

τ0xy

 = (ATA)−1ATb. (3.12)

Every element of matrix A and vector b is known, therefore the in situ stress com-
ponents perpendicular to the axis of the borehole – here: the horizontal components
– can be determined. It must be emphasized that these results are just estimations
of the real in situ stress state, as several assumptions have been made (see Subsec-
tion 3.1.1).

Based on the above, the in situ stress components (σ0
x, σ

0
y and τ0xy) in the plane

(x − y) perpendicular to the axis of the borehole can be estimated from the data
collected from a single measurement. In order to calculate these estimations, besides
the assumptions listed in Subsection 3.1.1, the following values have to be known:

• the change in diameter of the pilot hole (∆d) in at least three different orien-
tations θ,

• the material properties of the rock (ρ, E and ν, as defined previously).

Since the IST gauge measures only radial deformations, the in situ stress state can
only be estimated in a plane perpendicular to the axis of the borehole. Furthermore,
the axial in situ stress component must be known. In our model, the axis of the
borehole is vertical, so it has been assumed that this axial component is the lithostatic
pressure (see (3.9)).
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It is worth noting that the determination of the axial in situ stress components
based purely on measurements is possible using the IST method. However, it requires
measurements made in boreholes with different orientations. This method is detailed
in [10].

3.2. Evaluation of CSIRO HI cell measurements. Unlike the IST instrument,
which measures displacements directly, the CSIRO HI cell contains strain gauges,
measuring the strains on the surface of the pilot hole during the relief of the rock
core. The collected data can subsequently be used to determine the original in situ
stress state.

3.2.1. Assumptions. In order to derive the in situ stress state from the strains mea-
sured on the pilot hole surface, the following assumptions have been made according
to [11]:

• the stress state is identical in any plane perpendicular to the axis of the bore-
hole,

• the drilling of the borehole and the pilot hole have no influence on the original
in situ stress state,

• after overcoring, the rock core and the surface of the pilot hole are completely
relieved from any stress,

• the rock and the CSIRO HI cell is considered to be linearly elastic, homoge-
neous and isotropic,

• the viscoelastic behaviour of the epoxy resin bonding the cell to the rock is
negligible,

• the Young’s modulus of the rock and the diameter of the overcoring bit are
sufficiently large to neglect the resistance of the HI cell to the deformation.

These are similar to the assumptions listed in Subsection 3.1.1. They imply that the
strains measured by the gauges are caused by the relief of the in situ stress state,
therefore a connection can be found between them. The stress state can be described
in the way given in Subsection 3.1.2.

However, whilst an IST gauge does not provide enough data to determine the in
situ stress components parallel to the axis of the borehole, a measurement carried out
by a CSIRO HI cell can be used to estimate every component of the in situ stress
tensor.

The CSIRO HI cells has variants, that contain either 9 or 12 strain gauges installed
in different positions and orientations [11]. In the following, we consider a 12-gauge
cell.
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3.2.2. Strain gauge positions. The positions of the 12 strain gauges are shown in
Figure 2 and in Table 1.

x

y

Figure 2. Strain gauge positions in the HI cell [11]

Table 1. Strain gauge positions in the HI cell [13]

ID θ [◦] β [◦]

A0 323 0

A90 300 90

A45 300 45

B45 163.5 45

B135 163.5 135

B90 180 90

C0 83 0

C90 60 90

C45 60 45

D135 300 135

E90 210 90

F90 90 90
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The angle θ specifies the position of the strain gauge along the perimeter of the
pilot hole measured from the x axis. The angle β specifies the orientation of the strain
gauge:

• 0°: axial strain (εz),
• 90°: tangential strain (εθ),
• 45° or 135°: diagonal strain (ε±45◦).

Note that whilst the IST gauge measures only radial deformations, the strain gauges
in the CSIRO HI cell measure tangential, axial and diagonal strains: this enables
each component of the in situ stress tensor to be determined from the measurements
performed via the HI cell.

3.2.3. Connection between stress state and strains. The in situ stress state associated
with the measured strains is given by the following relationships (derived in[11]) as

Erεθ =− (σ0
x + σ0

y)K1+

+ 2(1− ν2r )
[
(σ0

x − σ0
y) cos(2θ) + 2τ0xy sin(2θ)

]
K2 + νrK4σ

0
z , (3.13)

Erεz =− σ0
z + νr(σ

0
x + σ0

y), (3.14)

Erγθz =− 4(1 + νr)(τ
0
yz cos 2θ − τ0xz sin 2θ)K3, (3.15)

ε±45◦ =
1

2
(εz + εθ ± γθz). (3.16)

Variables and parameters contained in these equations:

• Er and νr are the Young’s modulus and Poisson’s ratio of the rock
• εθ, εz, and ε±45◦ are the tangential, axial and diagonal strains measured by
the strain gauges,

• θ is the angle describing the strain gauge position,
• σ0

x, σ
0
y, σ

0
z , τ

0
xy, τ

0
xz, τ

0
yz are the elements of the in situ stress tensor (see (3.4))

• γθz is the engineering shear strain, which can be calculated according to (3.16),
• K1, K2, K3, K4 are correction factors, detailed below.

The correction factors are necessary as the strain gauges are located in the stress
sensor pipe instead of the pilot hole surface, and the material properties of the CSIRO
HI cell are not identical to the material properties of the rock [11]. It is worth
emphasizing that the behaviour of the HI cell is considered to be linearly elastic. In
certain cases (e.g. high temperature), this assumption is not acceptable since the
viscoelastic behaviour of the HI cell must be taken into consideration.

In order to calculate the correction factors, the following values must be known:

• Ep, the Young’s modulus of the cell,
• νp, the Poisson’s ratio of the cell,
• Rp, the radius of the pilot hole,
• Rsg, the distance between the strain gauges and the borehole axis,
• R1, the inner radius of the stress sensor pipe.

For the detailed calculation of the correction factors, see [11].
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3.2.4. Determination of the stress components perpendicular to the borehole axis. Ex-
pressing σz from (3.14), then substituting it into (3.13) results in the expression

Er(εθ + νrεzK4) =− (σ0
x + σ0

y)K1 + 2(1− ν2r )
[
(σ0

x − σ0
y) cos(2θ) + 2τ0xy sin(2θ)

]
K2+

+ ν2r (σ
0
x + σ0

y)K4. (3.17)

Then, equation (3.17) can be used to derive equations for the measurement results
given by the strain gauges as

Er(εθ;A90
+ νrεz;A0

K4) =− (σ0
x + σ0

y)K1+

+ 2(1− ν2r )
[
(σ0

x − σ0
y) cos(2θA90

) + 2τ0xy sin(2θA90
)
]
K2+

+ ν2r (σ
0
x + σ0

y)K4, (3.18a)

Er(εθ;B90
+ νrεz;BK4) =− (σ0

x + σ0
y)K1+

+ 2(1− ν2r )
[
(σ0

x − σ0
y) cos(2θB90) + 2τ0xy sin(2θB90)

]
K2+

+ ν2r (σ
0
x + σ0

y)K4, (3.18b)

Er(εθ;C90 + νrεz;C0K4) =− (σ0
x + σ0

y)K1+

+ 2(1− ν2r )
[
(σ0

x − σ0
y) cos(2θC90

) + 2τ0xy sin(2θC90
)
]
K2+

+ ν2r (σ
0
x + σ0

y)K4, (3.18c)

Er(εθ;E90
+ νrεz;BK4) =− (σ0

x + σ0
y)K1+

+ 2(1− ν2r )
[
(σ0

x − σ0
y) cos(2θE90

) + 2τ0xy sin(2θE90
)
]
K2+

+ ν2r (σ
0
x + σ0

y)K4, (3.18d)

Er(εθ;F90
+ νrεz;C0

K4) =− (σ0
x + σ0

y)K1+

+ 2(1− ν2r )
[
(σ0

x − σ0
y) cos(2θF90) + 2τ0xy sin(2θF90)

]
K2+

+ ν2r (σ
0
x + σ0

y)K4. (3.18e)

The above is a system of linear equations, where σ0
x, σ

0
y and τ0xy are to be deter-

mined. It can be written in a matrix equation form as

Er


εθ;A90

+ νrεz;A0
K4

εθ;B90 + νrεz;BK4

εθ;C90 + νrεz;C0K4

εθ;E90
+ νrεz;BK4

εθ;F90
+ νrεz;C0

K4


︸ ︷︷ ︸

d

=


C11 C12 C13

C21 C22 C23

C31 C32 C33

C41 C42 C43

C51 C52 C53


︸ ︷︷ ︸

C

σ0
x

σ0
y

τ0xy

 , (3.19)

where εz;B can be determined using (3.16):

εz;B =
εB45

+ εB135

2
− εB90

. (3.20)

The elements of matrix C are:

C11 = −K1 + 2(1− ν2r ) cos(2θA90)K2 + ν2rK4, (3.21a)

C12 = −K1 − 2(1− ν2r ) cos(2θA90
)K2 + ν2rK4, (3.21b)
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C13 = 4(1− ν2r ) sin(2θA90), (3.21c)

C21 = −K1 + 2(1− ν2r ) cos(2θB90
)K2 + ν2rK4, (3.21d)

C22 = −K1 − 2(1− ν2r ) cos(2θB90)K2 + ν2rK4, (3.21e)

C23 = 4(1− ν2r ) sin(2θB90
), (3.21f)

C31 = −K1 + 2(1− ν2r ) cos(2θC90
)K2 + ν2rK4, (3.21g)

C32 = −K1 − 2(1− ν2r ) cos(2θC90
)K2 + ν2rK4, (3.21h)

C33 = 4(1− ν2r ) sin(2θC90
), (3.21i)

C41 = −K1 + 2(1− ν2r ) cos(2θE90)K2 + ν2rK4, (3.21j)

C42 = −K1 − 2(1− ν2r ) cos(2θE90
)K2 + ν2rK4, (3.21k)

C43 = 4(1− ν2r ) sin(2θE90), (3.21l)

C51 = −K1 + 2(1− ν2r ) cos(2θF90
)K2 + ν2rK4, (3.21m)

C52 = −K1 − 2(1− ν2r ) cos(2θF90)K2 + ν2rK4, (3.21n)

C53 = 4(1− ν2r ) sin(2θF90
). (3.21o)

The position of the strain gauges imply that the E90 and F90 tangential strains
belong to the εz;B and εz;C0 axial strains.

The elements of matrix C and vector d are known. The system is overdetermined,
thus the solution is carried out using the least-squares error method (similarly to the
case of the IST method detailed in Subsection 3.1) asσ0

x

σ0
y

τ0xy

 = (CTC)−1CTd. (3.22)

This gives an estimate of the in situ stress state perpendicular to the borehole axis.

3.2.5. Stress components parallel to the borehole axis. The axial normal stress com-
ponent can be calculated according to (3.14) as

σ0
z = νr(σ

0
x + σ0

y)− Erεz. (3.23)

If σ0
x and σ0

y are known, the above expression can be evaluated. Since there are several
measurement values for εz, their arithmetic mean is used for the calculations.

The axial shear stresses can be determined using equations (3.15)–(3.16). A linear
system of equations can be written for τxz and τyz as

Erγθz;A45 = −4(1 + νr)(τ
0
yz cos 2θA45 − τ0xz sin 2θA45)K3, (3.24a)

Erγθz;B45
= −4(1 + νr)(τ

0
yz cos 2θB45

− τ0xz sin 2θB45
)K3, (3.24b)

Erγθz;B135 = −4(1 + νr)(τ
0
yz cos 2θB135

− τ0xz sin 2θB135
)K3, (3.24c)

Erγθz;D135
= −4(1 + νr)(τ

0
yz cos 2θD135

− τ0xz sin 2θD135
)K3. (3.24d)
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Expressed in a matrix form as

Er


γθz;A45

γθz;B45

γθz;B135

γθz;D135


︸ ︷︷ ︸

f

= −4K3(1 + νr)


− sin 2θA45 cos 2θA45

− sin 2θB45
cos 2θB45

− sin 2θB135 cos 2θB135

− sin 2θD135
cos 2θD135


︸ ︷︷ ︸

E

(
τ0xz

τ0yz

)
. (3.25)

Engineering shear strains are calculated according to (3.16). The elements of matrix
E and vector f are known. This equation system is also overdetermined, so the
solution is carried out using the least-squares error method again as[

τ0xz

τ0yz

]
= (ETE)−1ETf , (3.26)

giving the remaining components of the in situ stress tensor.

As shown above, a measurement carried out by a CSIRO HI cell provides enough
data from a single borehole to estimate every in situ stress component. To summarize,
besides the assumptions mentioned in Subsection 3.2.1, this estimation requires the
following data:

• tangential strain (εθ) values from at least 3 differentθ positions ,
• axial strain (εz) value from at least one θ position (measuring at at more than
one position provides more reliable results),

• engineering shear strain γθz values from at least 2 different θ positions (these
can be calculated according to (3.16)),

• material properties of the rock (ρ, Er and νr),
• values required to calculate the correction factors (see Subsection 3.2.3 for
details).

4. Finite element models of overcoring measurements

For determining the validity and shortcomings of the assumptions contained in the
two measurement methods detailed above, we carry out finite element simulations
of two respective models of overcoring measurement. In situ stress components –
given as boundary conditions – and material properties are specified according to the
results of a measurement carried out at the National Radioactive Waste Repository
in Bátaapáti, Hungary [14, 15]. Based on the deformation and strain results of the
simulation, an estimation of the in situ stress state is calculated according to the
formulas given in Sections 3.1–3.2. Then, we compare these estimations to the values
specified initially as boundary conditions, in order to examine the accuracy of these
techniques, and to determine the optimal location of the measuring instrument.

4.1. Finite element model of the IST measurement. The finite element anal-
ysis was carried out using ANSYS Mechanical. In accordance with the linear elastic
material model assumed and the evaluation procedure of the IST method, we per-
formed three static analyses, each representing one of the three steps of an overcoring
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measurement. We modelled a sufficiently large domain of rock at a depth of 276 m,
loaded by the in situ stress state. (The depth and the loads were chosen according
to [14].) Due to the symmetry of the geometry and the loads, a quarter model was
used. It should be noted that the use of an axisymmetric model is not suitable here,
as the in-situ stress state is usually not hydrostatic [1]. This is modelled according to
Section 4.1.3.

The evaluation of the results from the finite element model (FEM) was carried
out as detailed in Section 3.1. The aim of the investigation was to ascertain whether
it is possible to determine the in situ stress state from the data collected during an
IST measurement and, if so, how accurately the in situ stress components can be
estimated.

4.1.1. Geometry. The simulation domain is represented as a cuboid. The longest
edges of this cuboid are parallel to z, representing the vertical direction. The height
of the cuboid is 2400 mm, and the vertical edges are all 600 mm long. With these
dimensions, the disturbance in the stress field caused by the borehole is negligible on
the side faces of the cuboid. The boreholes are modelled as cylinders with vertical
axes intersecting the horizontal faces at their centers. The hole diameters are the
following:

• borehole: 96 mm,
• pilot hole: 25.5 mm,
• overcoring, inner diameter: 63 mm,
• overcoring, outer diameter: 96 mm.

In order to decrease the computational resources required for the computations a
quarter model was made. The model was divided into different bodies at the hole
bottoms, making structured mesh generation feasible. After slicing, one part was
formed from the bodies, merging the nodes on the contacting faces.

600

2400

IST Step 1

□ 300 x 300Ø96

Figure 3. Applied geometry for modelling Step 1 of the IST measurement
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600 600

2400

IST Step 2

Ø25.5

Ø96
□ 300 x 300

Figure 4. Applied geometry for modelling Step 2 of the IST measurement

600 600 600

2400

IST Step 3

Ø63

Ø25.5

Ø96
□ 300 x 300

Figure 5. Applied geometry for modelling Step 3 of the IST measurement

The geometry applied for each step is presented in Figures 3–5. The origin of the
global coordinate system is at the intersection of the borehole axis and the upper
horizontal face.

4.1.2. Finite element mesh. The finite element mesh has been generated by ANSYS
Mechanical. During the simulation of all three steps, identical principles were followed.
Hexagonal elements were used to minimize the number of elements, and smaller el-
ements were generated near the bottoms of the holes, as the deformation and stress
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change abruptly at these locations. MultiZone meshing method was applied with
element sizes being

• near the holes: 2–3 mm,
• far from the holes: 12–15 mm.

The applied meshes are presented in Figs. 6–8.

IST Step 1 mesh
Number of nodes: 1 275 232 
Number of elements: 306 607

Figure 6. Applied finite element mesh for modelling Step 1 of the IST measurement

IST Step 2 mesh
Number of nodes: 1 271 339
Number of elements: 300 150

Figure 7. Applied finite element mesh for modelling Step 2 of the IST measurement
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IST Step 3 mesh
Number of nodes: 1 193 806
Number of elements: 277 143

Figure 8. Applied finite element mesh for modelling Step 3 of the IST measurement

4.1.3. Material properties and boundary conditions. Material properties and bound-
ary conditions are defined according to the results of the measurements carried out
at the National Radioactive Waste Repository in Bátaapáti, Hungary [14, 15]. The
rock (porphyric monzogranite) is considered to be linearly elastic with the following
properties:

• Young’s modulus: 73.62GPa,
• density: 2732 kg/m3,
• Poisson’s ratio: 0.253.

The modelled domain is located at a depth of 276 m and loaded by the in situ
stress state. At this point, the following assumptions are made:

• the modelled domain is large enough, so that the load of the outer surface of
it is considered to be identical in every step,

• the vertical normal in situ stress component is the lithostatic pressure (see
(3.9)).

Using the assumptions above, the load of the model can be given as three pressure
boundary conditions acting on the outer surface of the modelled domain. The values
of these during each step:

px = 8.21MPa, (4.1)

py = 7MPa, (4.2)

pz = 7.5MPa. (4.3)

Please note that the pz value is larger than it should be according to (3.9). The reason
behind this is the difference between the areas of the horizontal faces: the upper face
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is smaller due to the presence of the borehole. The pressure pz is applied on the upper
face.

The constraints of the modelled domain are the following:

• symmetry is applied on the x − z and y − z planes: no node in these planes
can move perpendicular to the plane,

• for every node in the lower horizontal face the displacement in z direction is
set to be zero.

The applied boundary conditions are shown in Figure 9. It is worth noting that
while formulating the finite element models, several methods of constraining the rigid
body motion in z direction were tested. One of these was setting the z displacement of
the faces loaded by pressure in the x and y directions to be zero. However, the results
(especially for σz) implied that the best solution is constraining the lower horizontal
face, as shown here.

IST Boundary conditions

UY=0

UX=0 UZ=0

px=8.21 MPa

py=7 MPa pz=7.5 MPa

Figure 9. Boundary conditions applied during simulation of the IST measurement

4.1.4. Evaluation. As described in Section 3.1, the IST gauge measures the changes
in diameter of the pilot hole during overcoring in six different orientations and depths.
The aim of the evaluation performed here is to construct the in situ stress tensor from
the virtual measurement data provided by the finite element results, as detailed in
Section 3.1. Hence, the radial displacement of the points of the pilot hole surface has
been queried in Steps 2 and 3. This simulates a measurement with ideal circumstances.
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IST Path details

Path_0°

Path_30°

Path_60°

Path_90°

Path name Orientation [°]
Start point coordinates End point coordinates

x [mm] y [mm] z [mm] x [mm] y [mm] z [mm]

path_0° 0 12.750 0 -600 12.750 0 -1200

path_30° 30 11.042 6.375 -600 11.042 6.375 -1200

path_60° 60 6.375 11.042 -600 6.375 11.042 -1200

path_90° 90 0 12.750 -600 0 12.750 -1200

Figure 10. Paths defined to evaluate the simulation of the IST mea-
surement. The paths are given with the global coordinates of the
start and end points.

P1 stress plot of the pilot hole surface

P3 stress plot of the pilot hole surface

Figure 11. P1 and P3 stress results from Step 3 of the IST simulation.
The minimal and maximal values imply that the pilot hole is relieved
in this step.

Paths have been defined on the pilot hole surface along the full length of the hole
in several orientations θ, as depicted in Figure 10. A real IST gauge measures the
change of six diameters, forming a 30-degree angle. Since a quarter model is used,
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only four of these are investigated, because the other two do not give any further
results. Consequently, the paths are defined at orientations θ = 0◦, θ = 30◦, θ = 60◦

and θ = 90◦, where θ is the angle formed by the measured diameter and the x axis of
the global coordinate system. The distance of the pins in the IST gauge is 10–15 mm
[16], so the distance between the points where the radial displacements are queried is
12.5mm.

This provides the radial displacement of the points on the pilot hole surface caused
by the in situ stress state in each step. In Step 2, this stress state loads the pilot hole
surface. However, in Step 3, the remaining rock core, which contains the pilot hole,
is relieved from any stress. This is shown in Figure 11.

The diameter change of the pilot hole during the relief in any orientation can be
calculated as (taking symmetry into account):

∆d = 2(U
[3]
rad − U

[2]
rad), (4.4)

where U
[2]
rad and U

[3]
rad are the radial displacements of the pilot hole surface calculated

from the FEM in Steps 2 and 3. Since the pilot hole is assumed to be relieved from
any stress in Step 3,

U
[3]
rad = 0, (4.5)

thus the change in diameter becomes

∆d = −2U
[2]
rad. (4.6)

Based on (4.6), the changes in diameter along the paths presented in Figure 10 can
be evaluated. These changes in diameter are shown in Figure 12.

0.000

0.001
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0.004

0.005

0.006

0.007

0.008

0 50 100 150 200 250 300 350 400 450 500 550 600

Diameter change [mm]

Depth (measured from the top of the pilot hole) [mm]

IST
Changes in diameter in different orientations

theta=0° theta=30° theta=60° theta=90° error>10% error<1%

AB CD

Figure 12. Diameter change ∆d results of the IST simulation in each
orientation. Red and green lines represent the error correlating to the
∆d result from the middle of the pilot hole. The intervals labelled
with letters are the locations of the simulated measurements.
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The in situ stress state can be derived from the diameter changes according to
equations (3.10)–(3.12). Due to the symmetry, the last two rows of matrix A and
vector b are not considered. To solve these equations, the following values are needed:

• E and ν material properties (see Subsection 4.1.3),
• pilot hole diameter: d = 25.5mm,
• vertical normal in situ stress component according to equation (3.9):
σ0
z = −7.5MPa,

• angles describing the different orientations: θ1 = 0◦, θ2 = 30◦, θ3 = 60◦,
θ4 = 90◦,

• ∆d diameter changes in each orientation.

The diameter changes depend on the depth measured from the top of the pilot
hole, as presented in Figure 12. Firstly, let us substitute ∆d values from location
A (287–325 mm) into the equations. Doing so, a measurement carried out at such
depth is simulated. This location is between the two green lines representing optimal
instrument placement in Figure 12. The substituted values are presented in Table 2.

Table 2. ∆d values substituted into equation (3.10), from location A (cf. Figure 12).

θ [◦] Depth [mm] ∆d [mm]

0 287.5 5.437 · 10−3

30 300 5.037 · 10−3

60 312.5 4.240 · 10−3

90 325 3.842 · 10−3

In situ stress components derived from the ∆d values above, and their comparison
against the loads set in the model are shown in Table 3. It can be seen that the error
of the in situ stress components given by the solution of (3.10) is less than 1%. As a
consequence, the estimation error is minimal if the data is collected from location A.

Table 3. Comparison of the in situ stress components derived from
the data presented in Table 2., and the loads applied to the model
detailed in Subsection 4.1.3.

Stress component Estimation [MPa] Load [MPa] Error

σ0
x −8.261 −8.21 0.62%

σ0
y −7.031 −7.00 0.45%

τ0xy 0.001 0 –

Secondly, let us substitute ∆d values from location B (100–137.5 mm) into the
equations. This location is between the red and green lines shown in Figure 12, i.e.,
in the 10 % and 1% error range. The substituted values are presented in Table 4.
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Table 4. ∆d values substituted into equation (3.10), from location B (c.f. Figure 12)

θ [◦] Depth [mm] ∆d [mm]

0 100 5.742 · 10−3

30 112.5 5.258 · 10−3

60 125 4.381 · 10−3

90 137.5 3.940 · 10−3

In situ stress components derived from the ∆d values above, and their comparison
against the loads set in the model are shown in Table 5. It can be seen that the error
of the in situ stress components given by the solution of (3.10) is around 5%.

Table 5. Comparison of the in situ stress components derived from
the data presented in Table 4 and the loads applied to the model
detailed in Subsection 4.1.3

Stress component Estimation [MPa] Load [MPa] Error

σ0
x −8.628 −8.21 5.09%

σ0
y −7.246 −7.00 3.51%

τ0xy 0.019 0 –

Now, we substitute ∆d values from location C (537.5–575 mm) into the equations.
This location is between the green and red lines to the right in Figure 12. The
substituted values are presented in Table 6.

Table 6. ∆d values substituted into equation (3.10), from location C (c.f. Figure 12)

θ [◦] Depth [mm] ∆d [mm]

0 537.5 5.369 · 10−3

30 550 4.958 · 10−3

60 562.5 4.153 · 10−3

90 575 3.701 · 10−3

In situ stress components derived from the ∆d values above, and their comparison
against the loads set in the model are shown in Table 7. It can be seen that the error
of the in situ stress components given by the solution of (3.10) is less than 5%.

The three cases cases illustrate that a good estimation can be given for the in situ
stress components, if the ∆d values are from a location between the two red lines
shown in Figure 12.
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Table 7. Comparison of the in situ stress components derived from
the data presented in Table 6 and the loads applied to the model
detailed in Subsection 4.1.3.

Stress component Estimation [MPa] Load [MPa] Error

σ0
x −8.133 −8.21 0.94%

σ0
y −6.857 −7.00 2.04%

τ0xy −0.018 0.00 –

However, if the estimation is based on ∆d values collected outside this interval,
the error is significant. The increased error is caused by the disturbed stress and
displacement field near the bottom of the boreholes. As an example, we substitute
∆d values from location D (12.5–50 mm) into the equations. This location is outside
the interval marked by the two red lines according to Figure 12. The substituted
values are presented in Table 8.

Table 8. ∆d values substituted into equation (3.10), from location D (c.f. Figure 12).

θ [◦] Depth [mm] ∆d [mm]

0 12.5 6.284 · 10−3

30 25 6.123 · 10−3

60 37.5 5.082 · 10−3

90 50 4.457 · 10−3

In situ stress components derived from the ∆d values above and their comparison
against the loads set in the model are shown in Table 9. It can be seen that the error
of the in situ stress components given by the solution of (3.10) exceeds 10%.

Table 9. Comparison of the in situ stress components derived from
the data presented in Table 8 and the loads applied to the model
written in Subsection 4.1.3

Stress component Estimation [MPa] Load [MPa] Error

σ0
x −9.427 −8.21 14.82%

σ0
y −7.976 −7.00 13.94%

τ0xy −0.209 0.00 –

4.1.5. Summary of IST simulation results. Based on the results of the finite element
analysis, the in situ stress components can be estimated from the changes in diameter
of the pilot hole as written in Section 3.1. Another conclusion is that the location of the
IST gauge in the pilot hole has a significant influence on the results. The simulation
shows that the ideal position of the IST gauge is between the two green lines in
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Figure 12, which means a depth between 200–525 mm, measured from the top of the
pilot hole. Nondimensionalizing the depths by the borehole diameter (D = 96mm)
produces the following results: in order to make the best approximation, the IST
gauge should be located at least 2.1D beneath the bottom of the borehole, and at
least 0.8D above the bottom of the pilot hole.

Locating a gauge outside the interval marked by the two red lines in Figure 12
increases the error. In terms of dimensionless values, this means the IST gauge must
be located at least 0.7D beneath the bottom of the borehole, and 0.1D above the
bottom of the pilot hole in order to get an acceptable estimation. This agrees with
[8, p. 5], which suggests the following: “the plane of the deformation measurement
should be located 1D ahead of the larger hole”. If this 1D distance is provided between
the gauge and the top of the pilot hole, the error of the estimation is less than 10%.
This location is marked with B in Figure 12. The in situ stress components in the
horizontal x − y plane can be estimated with an error less than 10% from the data
collected at this location (see Table 5).

The same standard [8] suggests that when a distance of 1D cannot be left between
the IST gauge and the top of the pilot hole, the gauge should be located as far ahead of
the larger hole as possible. This also agrees with the simulation results: the distance
to be left between the gauge and the bottom of the pilot hole (0.1D) is far less than
the distance which has be left between the top of the pilot hole and the gauge (0.7D).

Furthermore, the assumption made in Subsection 3.1.1 regarding the stress state
of the pilot hole at the end of the overcoring is correct based on the results of the
simulation (see Figure 11).

4.1.6. Plausibility check. In order to prove the results of the FE model plausible, the
force equilibrium has been checked. The vector of the loading forces:

Ft =

pxAx

pyAy

pzAz

 =

−5 911 200
−5 040 000
−661 500

N. (4.7)

In these equations, Ax, Ay and Az are the surfaces on which the pressure boundary
conditions were defined. The vector of the reaction forces computed from the FEM:

Fr =

5 911 200
5 040 000
661 430

N. (4.8)

The sum of the loading and the reaction forces:

Ft + Fr =

 0
0

−70

N. (4.9)

This sum has to be zero. Since −70N is negligible, it can be stated that the reaction
forces and the defined loads are in equilibrium.

Besides the reaction forces, the stress field on the borehole surface has been checked.
At points which can move along the x direction, σx has to be zero. Also at points
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which can move along the y direction, σy has to be zero. As shown in Figure 13 the
results of the FE model meet these two criteria.

𝜎𝑥 stress on the borehole surface

𝜎𝑦 stress on the borehole surface

Figure 13. σx and σy stresses on the borehole surface in Step 2 of
the IST simulation

𝜎𝑥 stress on the borehole surface
Original calculation

𝜎𝑦 stress on the borehole surface

Calculation with swapped loads

Figure 14. σx (left) results of the original simulation and σy (right)
results of the simulation carried out with the commuted loads

Furthermore, an analysis with px and py values commuted was carried out and
the stress state of the borehole surface was investigated. The commutation of the
loads also commutes the x and y axes. This means the σx results of the original
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computation must be the same as the σy results of this new simulation. Based on
Figure 14, the results of the FE model meet this criterion. Naturally, the results must
be mirrored to the plane defined by the z axis and the x = y line.

The plausibility checks were carried out on the results of Step 2 of the IST sim-
ulation, since these results are used to derive the in situ stress state. Based on the
performed plausibility checks, the results of the FE model are shown to be plausible.

4.2. Finite element model of the CSIRO HI measurement. For the CSIRO
HI measurement method, the finite element analysis was carried out similarly to the
previously described analysis. Three static analyses was performed using ANSYS
Mechanical on a large domain of rock at a depth of 276 m and loaded by the in situ
stress state, as detailed in Section 4.1. Due to the symmetry of the geometry and the
loads, a quarter model can be used here as well. The evaluation of the simulation
results was carried out as in Section 3.2. Similarly to the previous analysis, the goal
was to determine whether it is possible to determine the in situ stress state from the
data collected during a measurement carried out using a CSIRO HI cell, and if so, to
determine how accurately the in situ stress components can be estimated.

4.2.1. Geometry. The geometric model is similar to that used for simulating the IST
measurement. The differences from the model described in Subsection 4.1.1 are the
diameters of the holes, which were specified according to [14] as

• borehole : 146 mm,
• pilot hole : 37.7mm,
• overcoring, inner diameter: 131.4mm,
• overcoring, outer diameter: 146 mm.

The applied geometry for each step is presented in Figs. 15–17.

4.2.2. Finite element mesh. The finite element mesh was generated similarly to the
previous analysis, with a slightly different range of element sizes in the MultiZone
meshing to accommodate for the different geometry. These element sizes were

• near the holes: 2.5–5 mm,
• far from the holes: 15–17 mm.

The applied meshes are presented in Figures 18–20.

4.2.3. Material properties and boundary conditions. The material properties and bound-
ary conditions are the same as those given in Subsection 4.1.3. The applied boundary
conditions are shown in Figure 21.

4.2.4. Evaluation. As described in Section 3.2, the strain gauges in the CSIRO HI cell
measure the strains on the surface of the pilot hole during overcoring in 12 different
orientations and positions. The aim is to construct the in situ stress tensor from
the virtual measurement data provided by the finite element results as written in
Section 3.2. Hence, the strains of the points of the pilot hole surface were queried in
Steps 2 and 3. This simulates a measurement in ideal circumstances.
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600

2400

CSIRO Step 1

□ 300 x 300

Ø146

Figure 15. Applied geometry for modelling Step 1 of the CSIRO measurement

600 600

2400

CSIRO Step 2

Ø37.7
Ø146

□ 300 x 300

Figure 16. Applied geometry for modelling Step 2 of the CSIRO measurement
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600 600 600

2400

Ø131.4

Ø37.7

CSIRO Step 3

Ø146
□ 300 x 300

Figure 17. Applied geometry for modelling Step 3 the of CSIRO measurement

CSIRO Step 1 mesh
Number of nodes: 790 227
Number of elements: 187 438

Figure 18. Applied finite element mesh for modelling Step 1 of the
CSIRO measurement
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CSIRO Step 2 mesh
Number of nodes: 1 055 152
Number of elements: 249 387

Figure 19. Applied finite element mesh for modelling Step 2 of the
CSIRO measurement

CSIRO Step 3 mesh
Number of nodes: 1 612 604
Number of elements: 381 592

Figure 20. Applied finite element mesh for modelling Step 3 of the
CSIRO measurement
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CSIRO Boundary conditions

UY=0

UX=0

UZ=0

px=8.21 MPa

py=7 MPa pz=7.5 MPa

Figure 21. Boundary conditions applied for the simulation of the
CSIRO measurement

The positions and orientations of the strain gauges are detailed in Table 1. Since
a quarter model was used, the positions change to the values shown in Table 10. The
orientation (β) of the strain gauges are not affected by the mirrorings. The following
gauges measure the same strain in the quarter model:

• A90 and C90,
• A45 and C45.

The strains measured by these gauges are only considered once during the evaluation.

Table 10. Strain gauge positions in the quarter model [13]

ID Original θ [◦] Modified θ [◦]

A0 323 37

A90 300 60

A45 300 60

B45 163.5 16.5

B135 163.5 16.5

B90 180 0

C0 83 83

C90 60 60

C45 60 60

D135 300 60

E90 210 30

F90 90 90
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Paths have been defined on the pilot hole surface along the full length of the hole
in the modified positions θ as depicted in Figure 22. Along these paths, εθ, εz and
γθz are queried in Steps 2 and 3. The difference in these is the strain measured by
the gauges during overcoring:

∆ε = ε[3] − ε[2], (4.10)

where ε tensor describes the strain state of a point of the pilot hole surface.

As mentioned earlier, by the end of the measurement (Step 3), the pilot hole surface
is relieved from any stress, which means:

ε[3] = 0, (4.11)

hence strain caused by the relief from the in situ stress state:

∆ε = −ε[2]. (4.12)

The evaluation detailed in Section 3.2 was carried out with these results.

CSIRO Path details

Path_0°

Path_30°

Path_60°

Path_90°

Path name Position [°]
Start point coordinates End point coordinates
x [mm] y [mm] z [mm] x [mm] y [mm] z [mm]

path_0° 0 18.750 0.000 -600 18.750 0.000 -1200
path_16.5° 16.5 17.978 5.325 -600 17.978 5.325 -1200
path_30° 30 16.238 9.375 -600 16.238 9.375 -1200
path_37° 37 14.974 11.284 -600 14.974 11.284 -1200
path_60° 60 9.375 16.238 -600 9.375 16.238 -1200
path_83° 83 2.285 18.610 -600 2.285 18.610 -1200
path_90° 90 0.000 18.750 -600 0.000 18.750 -1200

Path_16.5°

Path_37°

Path_83°

Figure 22. Paths defined to evaluate the simulation of the CSIRO
measurement. The paths are given with the global coordinates of
the start and end points.

As detailed in Section 4.1., the in situ stress components determined by an IST
measurement depend on the location of the gauge in the pilot hole. The same depen-
dence exists in case of the CSIRO HI cell. Tangential strain results are presented in
Figure 23.
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0.00E+00

5.00E-05

1.00E-04

1.50E-04

2.00E-04

2.50E-04

3.00E-04

0 50 100 150 200 250 300 350 400 450 500 550 600

Tangential strain [1]

Depth (measured from the top of the pilot hole) [mm]

CSIRO HI
Tangential strains along the paths

theta=0° theta=30° theta=60° theta=90° error<1% error>10%

abc

Figure 23. Tangential strain εθ results of the CSIRO simulation in
each position. Red and green lines represent the error correlating to
the εθ result from the middle of the pilot hole. The points marked
with a cross are the locations of the simulated measurements.

Axial strain results are presented in Figure 24. In the modelled case, the εz axial
strains are independent from the gauge position θ.

The in situ stress components in the horizontal (x− y) plane can be derived from
the strains according to equations (3.19)–(3.22). Due to the symmetry, the 3rd row
of matrix C and vector d are not considered. To solve these equations, the following
values are needed:

• Er and νr material properties (Subsection 4.2.3),
• positions and orientations of the strain gauges (Table 10),
• strain results of the simulation, queried at the locations of the strain gauges,
• K1, K2, K4 correction factors. K3 is only needed to calculate the shear stresses.

In Subsection 3.2.3 the role and calculation of the correction factors are detailed.
Since the CSIRO HI cell itself is not modelled, its material properties are considered
to be

• Ep = 0,
• νp = 0.

In the finite element model, the measured strains are queried from the pilot hole
surface, hence:

Rp = Rsg = R1 = 18.85 mm (4.13)
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Figure 24. Axial strain εz results of the CSIRO simulation in each
position. Red and green lines are representing the error correlating
to the εz result from the middle of the pilot hole. The points marked
with a cross are the locations of the simulated measurements.

are used for further calculations. With these input parameters, correction factors can
be calculated according to [11]:

K1 = K2 = K3 = K4 = 1. (4.14)

This means that the stiffness of the CSIRO HI cell has not been taken into consid-
eration in the model. The fact that the strains are not measured on the pilot hole
surface is also neglected.

Firstly, let us substitute strain values shown in Table 11 into equation (3.19), and
solve it using (3.22).

Table 11. Tangential strain values from location ‘a’ (300 mm depth)
to be substituted into (3.19). The axial strain at this depth is
εz = 4.54 · 10−5.

θ [◦] Strain gauge εθ [1]

0 B90 1.521 · 10−4

30 E90 1.675 · 10−4

60 A90 1.993 · 10−4

90 F90 2.148 · 10−4
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With this evaluation the horizontal components of the in situ stress state can be
estimated. These values are presented in Table 12.

Table 12. Comparison of the horizontal in situ stress components
calculated from the values in Table 11 and the loads of the model
detailed in Subsection 4.2.3

Stress component Estimation [MPa] Load [MPa] Error

σ0
x −8.284 −8.21 0.90%

σ0
y −7.047 −7.00 0.68%

τ0xy −0.001 0 –

The axial normal in situ stress component can be calculated according to (3.23):

σ0
z = νr(σ

0
x + σ0

y)− Erεz = −7.221MPa. (4.15)

It can be seen that the error of the horizontal in situ stress components is less
than 1%. As a consequence, the estimation error is minimal if the data is collected
from location ‘a’. This location is in the interval bounded by the two green lines in
Figures 23–24. In terms of σ0

z , the error value is higher: 3.72%.

The axial (vertical) shear stresses can be calculated according to equations (3.25)–
(3.26). Engineering shear strain results can be queried directly from the FE model,
therefore the modelling of the diagonal strain gauges is not required. Since the x, y,
and z axes of the model coincide with the principal stress directions of the in situ
stress state, only normal stress components have been given as boundary conditions.
As a consequence, the in situ shear stress components derived from the measured
strains on the pilot hole surface have to be zero. The queried γθz values are negligible
compared to the strain results, so the derived τ0xz and τ0yz are very close to zero.

Let us substitute strain values shown in Table 13 into equation (3.19), and solve
it using (3.22). With this evaluation the horizontal components of the in situ stress

Table 13. Tangential strain values from location ‘b’ (150 mm depth)
to be substituted into (3.19). The axial strain at this depth is
εz = 3.917 · 10−5

θ [◦] Strain gauge εθ [1]

0 B90 1.589 · 10−4

30 E90 1.754 · 10−4

60 A90 2.263 · 10−4

90 F90 2.225 · 10−4

state can be estimated. These values are presented in Table 14.

The axial normal in situ stress component can be calculated according to (3.23):

σ0
z = νr(σ

0
x + σ0

y)− Erεz = −6.913MPa. (4.16)



Analysis of overcoring in situ stress measurement methods using . . . 71

Table 14. Comparison of the horizontal in situ stress components
calculated from the values in Table 13 and the loads of the model
detailed in Subsection 4.2.3

Stress component Estimation [MPa] Load [MPa] Error

σ0
x −8.628 −8.21 5.09%

σ0
y −7.299 −7.00 4.29%

τ0xy −0.002 0.00 –

It can be seen that the error of the horizontal in situ stress components is around
5%. As a consequence, the error of the estimation increases if the data is collected
from location ‘b’. This location is in the interval bounded by a green and a red line
in Figure 23. In terms of σ0

z , the error value is higher: 7.83%. Although location
‘b’ is outside the interval bounded by the two red lines in Figure 24 – so this is not
an ideal location to measure axial strains – the estimation of the axial normal stress
component is acceptable.

We substitute strain values shown in Table 15 into equation (3.19) and solve it
using (3.22).

Table 15. Tangential strain values from location ‘c’ (50 mm depth)
to be substituted into (3.19). The axial strain at this depth is
εz = −1.962 · 10−5.

θ [◦] Strain gauge εθ [1]

0 B90 1.817 · 10−4

30 E90 2.019 · 10−4

60 A90 2.434 · 10−4

90 F90 2.638 · 10−4

The horizontal components of the in situ stress state can be estimated. These
values are presented in Table 16.

Table 16. Comparison of the horizontal in situ stress components
calculated from the values in Table 15 and the loads of the model
detailed in Subsection 4.2.3

Stress component Estimation [MPa] Load [MPa] Error

σ0
x −9.374 −8.21 14.18%

σ0
y −7.756 −7.00 10.80%

τ0xy −0.002 0 –

The axial normal in situ stress component can be calculated according to (3.23):

σ0
z = νr(σ

0
x + σ0

y)− Erεz = −2.889MPa. (4.17)
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It can be seen that the error of the horizontal in situ stress components is around
15%. In terms of σ0

z , the error value is even higher: 61.48%. As a consequence, the
estimation is not acceptable if the data is collected from location ‘c’. This location
is outside the interval bounded by the two red lines in Figure 23. Based on the
results of the simulation, the in situ stress components should not be derived from
the data collected by a measurement outside the interval marked with the red lines
in Figure 23.

4.2.5. Summary of CSIRO HI simulation results. Based on the results of the finite
element analysis, the in situ stress components can be estimated from the strains of
the pilot hole surface during overcoring as given in Section 3.2. Another conclusion
is that the location of the CSIRO HI cell in the pilot hole has a significant effect
on the results. The simulation shows that the ideal position of the CSIRO HI cell
is between the two green lines in Figure 23, which means a depth between 250–450
mm measured from the top of the pilot hole. Nondimensionalizing the depths by the
borehole diameter (D = 146mm) produces the following results: in order to make the
best approximation, the CSIRO HI cell should be located 1.7D beneath the bottom
of the borehole, and 1D above the bottom of the pilot hole. This agrees with [11],
which suggests that the CSIRO HI cell should be located 1.5D − 2.5D beneath the
bottom of the borehole.

Locating a gauge outside the interval marked by the two red lines in Figure 23
increases the error. In terms of dimensionless values, this means that the HI cell must
be located at least 0.7D beneath the bottom of the borehole, and at least 0.1D above
the bottom of the pilot hole in order to obtain an acceptable estimation.

In order to give an accurate estimation for the axial normal in situ stress component
σ0
z , the CSIRO HI cell is recommended to be located in the interval bounded by

the two green lines in Figure 24. In terms of depths, this means 262.5–487.5 mm.
Nondimensionalizing the depths by the borehole diameter (D = 146mm) produces the
following results: in order to make the best approximation, the CSIRO HI cell should
be located 1.8D beneath the bottom of the borehole, and 0.8D above the bottom of
the pilot hole. If the axial strain values are measured outside the interval bounded
by the two red lines in Figure 24, the estimation for σ0

z is less reliable. However, as
has been demonstrated by the results of location ‘b’, the accuracy of the estimated
in situ stress components depends on the tangential strains rather than on the axial
strains.

Note that at every location of evaluation, the error of the estimated value of σ0
z

is greater than the error of the horizontal in situ stress components. The reason for
this is that the pressure boundary condition in z direction is applied on the upper
horizontal face of the rock mass. This upper face is smaller than the lower face due
to the presence of the borehole. The σz stress value caused by the reaction force on
this lower face – which cannot move in direction z – is −7.153MPa.

Furthermore, we can conclude that the assumption made in Subsection 3.2.1 re-
garding the stress state of the pilot hole at the end of the overcoring is correct based
on the results of the simulation (see Figure 25).
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P1 stress plot on the pilot hole surface

P3 stress plot on the pilot hole surface

Figure 25. P1 and P3 stress results from Step 3 of the CSIRO simu-
lation. The minimal and maximal values imply that the pilot hole is
relieved in this step.

4.2.6. Plausibility check. In order to prove the results of the FE model plausible, the
force equilibrium has been checked. The vector of the loading forces:

Ft =

pxAx

pyAy

pzAz

 =

−5 911 200
−5 040 000
−643 770

N. (4.18)

In these equations, Ax, Ay and Az are the surfaces on which the pressure boundary
conditions were defined. The vector of the reaction forces computed from the FEM:

Fr =

5 911 200
5 040 000
643 610

N. (4.19)

The sum of the loading and the reaction forces:

Ft + Fr =

 0
0

−160

N. (4.20)

This sum has to be zero. Since −160N is negligible compared to the applied
boundary conditions, it can be stated that the reaction forces and the defined loads
are in equilibrium.

Besides the reaction forces, the stress field on the borehole surface was also checked.
At points which can move along the x direction, σx has to be zero. Also at points
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𝜎𝑥 stress on the borehole surface

𝜎𝑦 stress on the borehole surface

Figure 26. σx and σy stresses on the borehole surface in Step 2 of
the CSIRO HI simulation.

which can move along the y direction, σy has to be zero. As shown in Figure 26, the
results of the FE model meet these two criteria.

𝜎𝑥 stress on the borehole surface
Original calculation

𝜎𝑦 stress on the borehole surface

Calculation with the swapped loads

Figure 27. σx (left) results of the original simulation, and σy (right)
results of the simulation carried out with the commuted loads
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Furthermore, an analysis with px and py values commuted was carried out and
the stress state of the borehole surface was investigated. The commutation of the
loads also commutes the x and y axes. This means the σx results of the original
computation must be the same as the σy results of this new simulation. Based on
Figure 27, the results of the FE model meet this criterion. Naturally, the results must
be mirrored to the plane defined by the z axis and the x = y line.

The plausibility checks were performed based on the results of Step 2 of the CSIRO
HI simulation, since these results are used to derive the in situ stress state. Based
on the performed plausibility checks, the results of the FE model are deemed to be
plausible.

5. Comparison of the IST and CSIRO HI techniques

In this section, the main conclusions of Section 4 have been collected.

Firstly, based on the results of the finite element analysis, both the IST gauge
and CSIRO HI cell can provide enough data to give a correct estimation for the in
situ stress state. The detailed evaluation process has been presented in Section 3.
According to Table 3, the horizontal in situ stress components can be derived from
the deformations measured by the IST gauge with an error less than 1%. According
to Table 12, the horizontal in situ stress components can be derived from the strains
measured by the CSIRO HI cell with an error of less than 1%. Compared to the IST
gauge, the error of the estimation based on the data provided by the CSIRO HI cell is
higher. However, the CSIRO HI cell provides enough data to estimate the axial in situ
stress components as well. The error of this estimation is less than 5%. Meanwhile,
the axial in situ stress components cannot be derived from the data collected by the
IST gauge in a single borehole.

It must be emphasized that during the calculations, several assumptions have been
made, for example:

• the the rock was considered to be linearly elastic, homogeneous and isotropic,
• the stress state was considered to be identical in any plane perpendicular to
the axis of the borehole.

Besides the items mentioned above further assumptions have been made. These are
detailed in Subsections 3.1.1 and 3.2.1. We must emphasize that the results of a real
measurement can only be less accurate than when calculated by an idealized model,
and the robustness of the presently investigated methods in the case of non-ideal
circumstances should be assessed to supplement the analysis presented here.

Secondly, based on the results of the finite element analysis, the ideal position of the
IST gauge and the CSIRO HI cell has been determined. In order to make the results
comparable, the distances have been nondimensionalized by the borehole diameters.
This value is D = 96mm in terms of the IST gauge, and D = 146mm in terms of the
CSIRO HI cell. The ideal position of the tools is the following:

• the minimal distance between the top of the pilot hole and the IST gauge is
2.1D,
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• the minimal distance between the top of the pilot hole and the CSIRO HI cell
is 1.7D,

• the minimal distance between the bottom of the pilot hole and the IST gauge
is 0.8D,

• the minimal distance between the bottom of the pilot hole and the CSIRO HI
cell is 1D.

Comparing the dimensionless values, it can be stated that the CSIRO HI cell can
be located closer to the top of the pilot hole than the IST gauge. However, the IST
gauge can be located closer to the pilot hole bottom than the CSIRO HI cell. These
optimal intervals are marked by green lines in Figures 28– 29.

To obtain acceptable estimations for the in situ stress components, both the IST
gauge and the CSIRO HI cell should be set at least 0.7D beneath the top of the
pilot hole, and 0.1D above the bottom of the pilot hole. This interval is marked by
red lines in Figures 28– 29. Note that the optimal location of the CSIRO HI cell
has been determined based on the tangential strain results, since the accuracy of the
estimations depends more on the tangential strains than the axial strains.
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Figure 28. Dimensionless diameter change results of the IST simu-
lation as a function of dimensionless depth in each orientation. The
change in diameter values is nondimensionalized by the pilot hole
diameter (d = 25.5mm), the depth values by the borehole diameter
(D = 96mm).
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Figure 29. Tangential strain results of the CSIRO HI simulation as
a function of dimensionless depth in each position. The depth values
are nondimensionalized by the borehole diameter
(D = 146mm).

6. Discussion

The present work has been carried out with the explicit assumption of homoge-
neous, isotropic and linearly elastic materials, in accordance with the assumptions
made during the derivation of the measurement evaluation methods. However, these
assumptions are all based on the necessity of making calculations feasible, while rocks
are often non-homogeneous and frequently behave in an anisotropic, viscoelastic way.
Thus, relaxing any of these three assumptions during the simulations would yield fur-
ther valuable insight into the accuracy of the measurement techniques and evaluation
methods.

A first step in this direction would be the investigation of the effects of anisotropy
on the optimal placement of the instruments used. The size of the optimal and
acceptable ranges of placement would, presumably, change significantly even if the
condition of isotropy is relaxed to transverse isotropy. Experience of such effects is
often considered when overcoring measurements are performed by experts.

Additionally, the effects of the measurement time compared to the relaxation time
of a viscoelastically behaving rock type could also influence the accuracy of the esti-
mated in situ stress state. Practical experience as well as analytical calculations [17]
suggest that the measurement time indeed influences the displacements and strains
observed in a borehole surrounded by a rock mass exhibiting viscoelasticity.
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14. Kovács, L. Jelentés a Bkf-(6-11) jelű fúrásokban elvégzett CSIRO HI-cellás 3D-
s és Doorstopper-cellás 2D-s szekunder kőzetfeszültség-meghatározásokról. Tech.
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mailto:jcam@uni-miskolc.hu
mailto:balazs.toth@uni-miskolc.hu
http://www.mech.uni-miskolc.hu/jcam/


One issue of the journal will be provided free of charge and mailed to the correspondent
author. Since JCAM is an open access journal each paper can be downloaded freely
from the homepage of the journal.

The Journal of Computational and Applied Mechanics is abstracted in Zentralblatt
für Mathematik and in the Russian Referativnij Zhurnal.

Secretariat of the Vice-Rector for Research and International Relations, University of Miskolc
Responsible for publication: Prof. dr. Zita Horváth, rector
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Dávid BORZA and Donát M. TAKÁCS: Analysis of overcoring in situ stress
measurement methods using finite element simulations 37–79


	JCAM-Ecsedi-Lengyel-2024-Vol19-No1.pdf
	1. Formulation of the boundary value problem
	2. Plane stress solution
	3. Strength of material solution
	4. Determination of Von Mises stress
	5. Comparison of the solutions
	6. Numerical examples
	6.1. Narrow disk
	6.2. Wide disk

	7. Conclusions
	References

	JCAM-RotichIT-KollarL-2024-Vol19-No1.pdf
	1. Introduction
	2. Numerical model
	2.1. Geometry and computational domain
	2.2. Boundary and flow conditions
	2.3. Icing model

	3. Results and discussion
	3.1. Validation of the numerical model
	3.2. Impact of number of shots on the accuracy of model prediction
	3.3. Effects of MVD and LWC
	3.4. Effects of air temperature

	4. Conclusions
	References

	JCAM-BorzaD-TakacsD-2024-Vol18-No1.pdf
	1. Introduction
	2. A concise overview of overcoring methods
	3. Theoretical background of the evaluation of overcoring measurements
	3.1. Evaluation of IST measurements
	3.2. Evaluation of CSIRO HI cell measurements

	4. Finite element models of overcoring measurements
	4.1. Finite element model of the IST measurement
	4.2. Finite element model of the CSIRO HI measurement

	5. Comparison of the IST and CSIRO HI techniques
	6. Discussion
	Author contributions
	References


