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Abstract. In this paper, we study generalized continued fractions for the
expression of bi-periodic Fibonacci ratios.
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1. Introduction
A continued fraction is an expression of the form

x = s0 +
r1

s1 +
r2

s2 +
r3

. . .

= s0 + r1
s1 +

r2
s2 + · · · ,

where sn and rn are real or complex numbers with rn ̸= 0. The r1, r2, r3, . . . in
this context will usually be referred to as the “partial numerators” of the continued
fraction and the terms s0, s1, s2, . . . are the “partial denominators”. The most com-
mon restriction imposed on continued fractions is to have rn = 1 and then call the
expression a simple continued fraction, denoted by

[
s0; s1, s2, . . .

]
. A periodic con-

tinued fraction is one that repeats and has the form
[
s0; s1, . . . , sm, sm+1, . . . , sn

]
.
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Let Fn and Ln denote the Fibonacci and Lucas numbers, defined, respectively,
by Fn = Fn−1 + Fn−2 and Ln = Ln−1 + Ln−2 for n ≥ 2, with F0 = 0, F1 = 1 and
L0 = 2, L1 = 1.

Several generalizations of the Fibonacci sequence have been presented in the
literature [1–8]. One of them was given by Edson and Yayenie in [6], called the
bi-periodic Fibonacci sequence defined for any nonzero real numbers a, b, and any
integer n ≥ 2, as follows

qn =
{

aqn−1 + qn−2, for n even,

bqn−1 + qn−2, for n odd,

with initial values q0 = 0 and q1 = 1. Note that for a = b = 1, we get the
classical Fibonacci sequence. Similarly, Bilgici [5] introduced the bi-periodic Lucas
sequence, for n ≥ 2, as follows

ln =
{

bln−1 + ln−2, for n even,

aln−1 + ln−2, for n odd,

with initial conditions l0 = 2 and l1 = a. It gives the classical Lucas sequence for
a = b = 1.

Also, the bi-periodic Fibonacci and Lucas sequences satisfy, for n ≥ 4, the same
recurrence relation

wn = (ab + 2)wn−2 − wn−4.

The Binet’s formulas of the bi-periodic Fibonacci and Lucas sequences are given
by

qn = aξ(n+1)

(ab)⌊n/2⌋

(
αn − βn

α − β

)
, (1.1)

ln = aξ(n)

(ab)⌊(n+1)/2⌋ (αn + βn), (1.2)

where ⌊x⌋ is the floor function of x, ξ(n) = n − 2⌊n/2⌋ is the parity function and
α, β are the roots of the characteristic equation x2 − abx − ab = 0 given by

α = ab +
√

ab(ab + 4)
2 and β = ab −

√
ab(ab + 4)
2 .

It is well known that the limit of the ratios of consecutive Fibonacci numbers
is the golden ratio ϕ. Thus

ϕ = [1] = [1; 1, 1, · · · ] = 1 +
√

5
2 .

For more details on continued fractions and their connection to the Fibonacci
sequence, the reader is referred to [9–12].
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Consider the bi-periodic Fibonacci sequence {qn}n≥0 with a and b nonnegative
integers. For a ̸= b, we have

qn

qn−1
= aξ(n−1)bξ(n) + 1

qn−1
qn−2

.

So the ratios of the successive terms do not converge (see [6]). Therefore

lim
n→∞

q2n

q2n−1
= α

b
, lim

n→∞
q2n+1
q2n

= α

a
, and lim

n→∞
qn

qn−2
= α + 1.

2. Main results
Let n, s, r, and t be positive integers with r < s and n ≥ 2t. Our aim is to derive
closed form expressions for the continued fractions of lim

n→∞
qsn+r

qs(n−t)+r
. Let’s start

with t = 1.
This theorem gives the recurrence satisfied by a subsequence of arithmetic pro-

gression.

Theorem 2.1. For n ≥ 2 and fixed s and r, we have the following relation

qsn+r =
(

b

a

)ξ(s)ξ(n+r)
lsqs(n−1)+r + (−1)s+1

qs(n−2)+r. (2.1)

Proof. From Binet’s formulas (1.1), (1.2), and since αβ = −ab, ξ(n + m) =
ξ(n) + ξ(m) − 2ξ(n)ξ(m), and ⌊n/2⌋ = (n − ξ(n))/2, we can write

(
b

a

)ξ(s)ξ(sn+r)
lsqs(n−1)+r + (−1)s+1

qs(n−2)+r

=
(

b

a

)ξ(s)ξ(sn+r)
aξ(s)

(ab)⌊(s+1)/2⌋ (αs + βs) aξ(s(n−1)+r+1)

(ab)⌊(s(n−1)+r)/2⌋

×
(

αs(n−1)+r − βs(n−1)+r

α − β

)

+ (−1)s+1 aξ(s(n−2)+r+1)

(ab)⌊(s(n−2)+r)/2⌋

(
αs(n−2)+r − βs(n−2)+r

α − β

)

=
(

b

a

)ξ(s)ξ(sn+r)
aξ(sn+r+1)+2ξ(s)ξ(sn+r)

(ab)⌊(sn+r)/2⌋+ξ(s)ξ(sn+r)

×
(

αsn+r − βsn+r + (αβ)s
(
αs(n−2)+r − βs(n−2)+r

)

α − β

)

+ (−1)s+1 aξ(sn+r+1)

(ab)⌊(s(n−2)+r)/2⌋

(
αs(n−2)+r − βs(n−2)+r

α − β

)

3
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= aξ(sn+r+1)

(ab)⌊(sn+r)/2⌋

(
αsn+r − βsn+r + (−ab)s

(
αs(n−2)+r − βs(n−2)+r

)

α − β

)

− (−1)s aξ(sn+r+1)

(ab)⌊(s(n−2)+r)/2⌋

(
αs(n−2)+r − βs(n−2)+r

α − β

)

= aξ(sn+r+1)

(ab)⌊(sn+r)/2⌋

(
αsn+r − βsn+r

α − β

)

= qsn+r.

The following theorem derives the closed form for continued fraction expres-
sions of lim

n→∞
qsn+r

qs(n−1)+r
, which is the ratio of two consecutive terms of the cited

subsequence.

Theorem 2.2. For r < s, we have

lim
n→∞

qsn+r

qs(n−1)+r
=





[
ls − 1; 1, ls − 2

]
= αs

(ab)s/2 , for s even,

[
ls; ls

]
= aαs

(ab)(s+1)/2 , for s odd and n + r even,
[

b

a
ls; b

a
ls

]
= bαs

(ab)(s+1)/2 , for s and n + r odd.

Proof. From (2.1), we have
• For s even

qsn+r

qs(n−1)+r
= ls − qs(n−2)+r

qs(n−1)+r
= ls − 1 +

qs(n−1)+r − qs(n−2)+r

qs(n−1)+r

= ls − 1 + 1
qs(n−1)+r

qs(n−1)+r − qs(n−2)+r

= ls − 1 + 1

1 +
qs(n−2)+r

qs(n−1)+r − qs(n−2)+r

= ls − 1 + 1

1 +
1

qs(n−1)+r

qs(n−2)+r
− 1

= ls − 1 +
1

1 +
1

ls − 2 +
1

1 +
1
. . .

.

4
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• For s odd and n + r even

qsn+r

qs(n−1)+r
= ls +

qs(n−2)+r

qs(n−1)+r
= ls +

1

ls +
1

ls +
1
. . .

.

• For s and n + r odd

qsn+r

qs(n−1)+r
= b

a
ls +

qs(n−2)+r

qs(n−1)+r
= b

a
ls +

1

b
a ls +

1

b
a ls +

1
. . .

.

Using Binet’s formula of the bi-periodic Fibonacci sequence, we obtain

lim
n→∞

qsn+r

qs(n−1)+r
= lim

n→∞
aξ(sn+r−1)(ab)⌊(s(n−1)+r)/2⌋

aξ(s(n−1)+r−1)(ab)⌊(sn+r)/2⌋ αs




1 −
(

β
α

)sn+r

1 −
(

β
α

)s(n−1)+r




=





αs

(ab)s/2 , for s even,

aαs

(ab)(s+1)/2 , for s odd and n + r even,

bαs

(ab)(s+1)/2 , for s odd and n + r odd.

For the classical Fibonacci sequence, when a = b = 1, Theorem 2.2 gives the
following result.

Corollary 2.3.

lim
n→∞

Fsn+r

Fs(n−1)+r
= ϕs =

{[
Ls − 1; 1, Ls − 2

]
, for s even,[

Ls; Ls

]
, for s odd.

The following theorem extends Theorem 2.1 in the sense that it considers the
t-periodic terms in the arithmetic progression subsequence.

Theorem 2.4. For n ≥ 2t, we have

qsn+r =
(

b

a

)ξ(st)ξ(sn+r)
lstqs(n−t)+r + (−1)st+1qs(n−2t)+r. (2.2)

Proof. Using Binet’s formula, we get

qsn+r = C1χsn+rαsn+r + C2χsn+rβsn+r,

5
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with χsn+r = aξ(sn+r−1)

(ab)⌊(sn+r)/2⌋ and C1 = −C2 = 1/(α − β). The matrix form gives
(

qs(n−t)+r

qs(n−2t)+r

)
=
(

χs(n−t)+rαs(n−t)+r χs(n−t)+rβs(n−t)+r

χs(n−2t)+rαs(n−2t)+r χs(n−2t)+rβs(n−2t)+r

)(
C1
C2

)
.

Thus
(

C1
C2

)
=
(

χs(n−t)+rαs(n−t)+r χs(n−t)+rβs(n−t)+r

χs(n−2t)+rαs(n−2t)+r χs(n−2t)+rβs(n−2t)+r

)−1(
qs(n−t)+r

qs(n−2t)+r

)

= 1
D

(
χs(n−2t)+rβs(n−2t)+r −χs(n−t)+rβs(n−t)+r

−χs(n−2t)+rαs(n−2t)+r χs(n−t)+rαs(n−t)+r

)(
qs(n−t)+r

qs(n−2t)+r

)

= 1
D

(
χs(n−2t)+rβs(n−2t)+rqs(n−t)+r −χs(n−t)+rβs(n−t)+rqs(n−2t)+r

−χs(n−2t)+rαs(n−2t)+rqs(n−t)+r χs(n−t)+rαs(n−t)+rqs(n−2t)+r

)

where D = χs(n−t)+rχs(n−2t)+r

(
αs(n−t)+rβs(n−2t)+r − αs(n−2t)+rβs(n−t)+r

)
.

Therefore

C1 =
χs(n−2t)+rqs(n−t)+r − χs(n−t)+rβstqs(n−2t)+r

χs(n−t)+rχs(n−2t)+rαs(n−2t)+r(αst − βst)

and
C2 = −χs(n−2t)+rqs(n−t)+r − χs(n−t)+rαstqs(n−2t)+r

χs(n−t)+rχs(n−2t)+rβs(n−2t)+r(αst − βst) .

Plugging into qsn+r = C1χsn+rαsn+r + C2χsn+rβsn+r, we get

qsn+r = χsn+r

χs(n−2t)+rqs(n−t)+r − χs(n−t)+rβstqs(n−2t)+r

χs(n−t)+rχs(n−2t)+rαs(n−2t)+r(αst − βst) αsn+r

− χsn+r

χs(n−2t)+rqs(n−t)+r − χs(n−t)+rαstqs(n−2t)+r

χs(n−t)+rχs(n−2t)+rβs(n−2t)+r(αst − βst) βsn+r

=
χsn+rqs(n−t)+r

(
α2st − β2st

)

χs(n−t)+r(αst − βst) − χsn+rqs(n−2t)+r(αβ)st(αst − βst)
χs(n−2t)+r(αst − βst)

= aξ(sn+r−1)(ab)⌊(s(n−t)+r)/2⌋

aξ(s(n−t)+r−1)(ab)⌊(sn+r)/2⌋ qs(n−t)+r

(
αst + βst

)

− aξ(sn+r−1)(ab)⌊(s(n−2t)+r)/2⌋

aξ(s(n−2t)+r−1)(ab)⌊(sn+r)/2⌋ (−ab)stqs(n−2t)+r

=
(

b

a

)ξ(st)ξ(sn+r)
aξ(st)

(ab)⌊(st+1)/2⌋
(
αst + βst

)
qs(n−t)+r + (−1)st+1qs(n−2t)+r

=
(

b

a

)ξ(st)ξ(sn+r)
lstqs(n−t)+r + (−1)st+1qs(n−2t)+r.

We will now calculate lim
n→∞

qsn+r

qs(n−t)+r
explicitly, the ratio of two consecutive

terms in the t-periodic subsequence.

6
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Theorem 2.5. For r < s, we have

lim
n→∞

qsn+r

qs(n−t)+r
=





[
lst − 1; 1, lst − 2

]
= αst

(ab)st/2 , for st even,

[
lst; lst

]
= aαst

(ab)(st+1)/2 , for st odd and n + r even,
[

b

a
lst;

b

a
lst

]
= bαst

(ab)(st+1)/2 , for s, t, and n + r odd.

Proof. Using (2.2), we have
• For st even

qsn+r

qs(n−t)+r
= lst − qs(n−2t)+r

qs(n−t)+r
= lst − 1 +

qs(n−t)+r − qs(n−2t)+r

qs(n−t)+r

= lst − 1 +
1

1 +
qs(n−2t)+r

qs(n−t)+r − qs(n−2t)+r

= lst − 1 +
1

1 +
1

qs(n−t)+r

qs(n−2t)+r
− 1

.

• For st odd and n + r even
qsn+r

qs(n−t)+r
= lst +

qs(n−2t)+r

qs(n−t)+r
= lst + 1

qs(n−t)+r

qs(n−2t)+r

.

• For s, t, and n + r odd
qsn+r

qs(n−t)+r
= b

a
lst +

qs(n−2t)+r

qs(n−t)+r
= b

a
lst + 1

qs(n−t)+r

qs(n−2t)+r

.

Using Binet’s formula of the bi-periodic Fibonacci sequence, we obtain

lim
n→∞

qsn+r

qs(n−t)+r
= lim

n→∞
aξ(sn+r−1)(ab)⌊(s(n−t)+r)/2⌋

aξ(s(n−t)+r−1)(ab)⌊(sn+r)/2⌋ αst




1 −
(

β
α

)sn+r

1 −
(

β
α

)s(n−t)+r




=





αst

(ab)st/2 , for st even,

aαst

(ab)(st+1)/2 , for st odd and n + r even,

bαst

(ab)(st+1)/2 , for s, t, and n + r odd.

Note that if we take t = 2 in Theorem 2.5, we get the following result.
Corollary 2.6.

lim
n→∞

qsn+r

qs(n−2)+r
=
(

α2

ab

)s

= (α + 1)s =
[
l2s − 1; 1, l2s − 2

]
.

7
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As a consequence of Theorem 2.5, for a = b = 1, we have the following result.

Corollary 2.7.

lim
n→∞

Fsn+r

Fs(n−t)+r
= ϕst =

{[
Lst − 1; 1, Lst − 2

]
, for st even,[

Lst; Lst

]
, for st odds.

In the following theorem, we give a relation between some bi-periodic Fibonacci
and Lucas sequences.

Theorem 2.8. For n ≥ 1, we obtain

qslsn+r =
(a

b

)ξ(r)ξ(s+1)
qs(n+1)+r + (−1)s+1

(a

b

)ξ(r)ξ(s+1)
qs(n−1)+r.

Proof. From Binet’s formulas (1.1), (1.2), and since αβ = −ab, we write
(a

b

)ξ(r)ξ(s+1)(
qs(n+1)+r + (−1)s+1

qs(n−1)+r

)

=
(a

b

)ξ(r)ξ(s+1) aξ(s(n+1)+r+1)

(ab)⌊(s(n+1)+r)/2⌋

(
αs(n+1)+r − βs(n+1)+r

α − β

)

+ (−1)s+1
(a

b

)ξ(r)ξ(s+1) aξ(s(n−1)+r+1)

(ab)⌊(s(n−1)+r)/2⌋

(
αs(n−1)+r − βs(n−1)+r

α − β

)

=
(a

b

)ξ(r)ξ(s+1) aξ(s(n+1)+r+1)

(ab)⌊(s(n+1)+r)/2⌋(α − β)

×
(

αsn+r

(
αs −

(−ab

α

)s)
− βsn+r

(
βs −

(−ab

β

)s))

=
(a

b

)ξ(r)ξ(s+1) aξ(s(n+1)+r+1)

(ab)⌊(s(n+1)+r)/2⌋

(
αs − βs

α − β

)(
αsn+r + βsn+r

)
.

Since

aξ(s(n+1)+r+1)

(ab)⌊(s(n+1)+r)/2⌋ = aξ(sn+r)+ξ(s+1)−2ξ(s+1)ξ(sn+r)

(ab)⌊(sn+r+1)/2⌋+⌊s/2⌋+ξ(s)ξ(sn+r)−ξ(sn+r)

= aξ(sn+r)+ξ(s+1)−2ξ(s+1)ξ(r)

(ab)⌊(sn+r+1)/2⌋+⌊s/2⌋−ξ(s+1)ξ(sn+r)

= aξ(sn+r)+ξ(s+1)−2ξ(s+1)ξ(r)

(ab)⌊(sn+r+1)/2⌋+⌊s/2⌋−ξ(s+1)ξ(r)

=
(

b

a

)ξ(s+1)ξ(r)
aξ(s+1)

(ab)⌊s/2⌋
aξ(sn+r)

(ab)⌊(sn+r+1)/2⌋ ,

we obtain the result.

Note that for s = 1 and r = 0 in Theorem 2.8, we get the following result.

8
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Corollary 2.9. For n ≥ 1, we obtain

ln = qn+1 + qn−1.

In the following theorems, we give two continued fractions involving the bi-
periodic Fibonacci and Lucas sequences.

Theorem 2.10.
lim

n→∞
ln

qn+1
= [1; ab + 1, 1, ab] = β + 2

and
lim

n→∞
qn+1

ln
= [0; 1, ab + 1, 1, ab] = α + 2

ab + 4 .

Proof. The bi-periodic Fibonacci and Lucas sequences satisfy the equation

ln = qn+1 + qn−1.

Thus, we obtain
ln

qn+1
= qn+1 + qn−1

qn+1
= 1 + 1

qn+1
qn−1

.

Using Corollary 2.6 by taking s = 1 and r = 1, we get the result.
Furthermore,

lim
n→∞

ln
qn+1

= lim
n→∞

(α − β) αn − βn

αn+1 − βn+1 = lim
n→∞

α − β

α

1 −
(

β
α

)n

1 −
(

β
α

)n+1 = β + 2.

Taking the reciprocal of this value, we get

qn+1
ln

= 1
ln

qn+1

and lim
n→∞

qn+1
ln

= 1
β + 2 = α + 2

ab + 4 .

For the arithmetic progression situation, we get

Theorem 2.11. For r < s, we have

lim
n→∞

lsn+r

qs(n+1)+r
=





1
qs

+ 1/qs

l2s − 1 +
1
1 +

1
l2s − 2 +

1
1 +

1
l2s − 2 · · · = (ab)(s−1)/2(α − β)

αs
, for s odd,

0 + 1/qs

1 + 1
l2s − 2 +

1
1 +

1
l2s − 2 +

1
1 · · · = b(ab)(s−2)/2(α − β)

αs
, for s and r even,

0 + a/(bqs)
1 + 1

l2s − 2 +
1
1 +

1
l2s − 2 +

1
1 · · · = a(ab)(s−2)/2(α − β)

αs
, for s even and r odd.

9
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Proof. By taking r → r + s in Corollary 2.6 and using Theorem 2.8, we have
• For s odd

lsn+r

qs(n+1)+r
= 1

qs
+ 1

qs

qs(n−1)+r

qs(n+1)+r
= 1/qs + 1/qs

qs(n+1)+r

qs(n−1)+r

.

• For s and r even

lsn+r

qs(n+1)+r
= 1

qs
− 1

qs

qs(n−1)+r

qs(n+1)+r
= 1

qs

qs(n+1)+r − qs(n−1)+r

qs(n+1)+r
=

1/qs

1 +
1

qs(n+1)+r

qs(n−1)+r
− 1

.

• For s even and r odd

lsn+r

qs(n+1)+r
= a

bqs
− a

bqs

qs(n−1)+r

qs(n+1)+r
= a

bqs

(
qs(n+1)+r − qs(n−1)+r

)

qs(n+1)+r
=

a/(bqs)

1 +
1

qs(n+1)+r

qs(n−1)+r
− 1

.

Using Binet’s formulas for the bi-periodic Fibonacci and Lucas sequences, we obtain

lim
n→∞

lsn+r

qs(n+1)+r

= lim
n→∞

aξ(sn+r)(ab)⌊(s(n+1)+r)/2⌋

aξ(s(n+1)+r−1)(ab)⌊(sn+r+1)/2⌋ (α − β) αsn+r − βsn+r

αs(n+1)+r − βs(n+1)+r

= lim
n→∞

aξ(sn+r)(ab)⌊(s(n+1)+r)/2⌋

aξ(s(n+1)+r−1)(ab)⌊(sn+r+1)/2⌋
α − β

αs

1 −
(

β
α

)sn+r

1 −
(

β
α

)s(n+1)+r

=





(ab)(s−1)/2(α − β)/αs, for s odd,

b(ab)(s−2)/2(α − β)/αs, for s and r even,

a(ab)(s−2)/2(α − β)/αs, for s even and r odd.

Taking the reciprocal of Theorem 2.11, the next result follows.

Theorem 2.12. For r < s, we have

lim
n→∞

qs(n+1)+r

lsn+r
=





0 + 1
1/qs +

1/qs

l2s − 1 +
1
1 +

1
l2s − 2 + · · · = αs

(ab)(s−1)/2(α − β) , for s odd,

0 + 1
0 +

1/qs

1 + 1
l2s − 2 +

1
1 +

1
l2s − 2 + · · · = aαs

(ab)s/2(α − β) , for s and r even,

0 + 1
0 +

a/(bqs)
1 + 1

l2s − 2 +
1
1 +

1
l2s − 2 + · · · = bαs

(ab)s/2(α − β) , for s even and r odd.

10
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Proof. Knowing that

qs(n+1)+r

lsn+r
= 1

lsn+r

qs(n+1)+r

and lim
n→∞

qs(n+1)+r

lsn+r
= lim

n→∞
1

lsn+r

qs(n+1)+r

,

using Theorem 2.11, we get the result.

Note that, for a = b = 1, we get the following result.

Corollary 2.13.

lim
n→∞

Lsn+r

Fs(n+1)+r
= α − β

αs
=





1
Fs

+ 1/Fs

L2s − 1 +
1
1 +

1
L2s − 2 + · · · , for s odd,

0 + 1/Fs

1 + 1
L2s − 2 +

1
1 +

1
L2s − 2 + · · · , for s even,

and

lim
n→∞

Fs(n+1)+r

Lsn+r
= αs

α − β
=





0 + 1
1/Fs +

1/Fs

l2s − 1 +
1
1 +

1
L2s − 2 + · · · , for s odd,

0 + 1
0 +

1/Fs

1 + 1
L2s − 2 +

1
1 +

1
L2s − 2 + · · · , for s even.
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Abstract. In this paper the general solution of the functional equation f(x+
y) = g(x) + h(y) ((x, y) ∈ D) is given with unknown functions f : Dx+y →
Y , g : Dx → Y , h : Dy → Y where D ⊆ G2 is a nonempty, open set,
(G,⩽) is an ordered, dense, Abelian group, the topology on G is gener-
ated by the open intervals of G, the sets Dx, Dy, Dx+y are defined by
Dx := {u ∈ G | ∃v ∈ G : (u, v) ∈ D}, Dy := {v ∈ G | ∃u ∈ G : (u, v) ∈ D},
Dx+y := {z ∈ G | ∃(u, v) ∈ D : z = u + v}, and Y (+) is an Abelian group.

The main result of the article is a common generalization of similar results
by L. Székelyhidi and J. Rimán. Analogous theorem concerning logarithmic
functions is also shown.
Keywords: additive functional equations, logarithmic functional equations,
Pexider generalizations, restricted functional equations, Archimedean ordered
Abelian groups, dense ordered groups, general solution of functional equations
AMS Subject Classification: 39B22

1. Introduction
The main purpose of this article is to prove the generalization of J. Rimán’s Exten-
sion Theorem [21]. Now, we give a non-exhaustive overview of the most important
steps of the theory of Extension and Uniqueness Theorems concerning restricted
Pexider additive functional equations.

In the sequel we will use the notations

Dx :={u ∈ X | ∃v ∈ G : (u, v) ∈ D},
Dy :={v ∈ Y | ∃u ∈ G : (u, v) ∈ D},

Dx+y :={z ∈ X | ∃(u, v) ∈ D : z = u + v}

where D ⊆ G2 := G×G and G(+) is a grupoid.
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The early results were grouped around the following problem. Let be D ⊆ R2,
f : Dx ∪Dy ∪Dx+y → R be a function such that

f(x + y) = f(x) + f(y) ((x, y) ∈ D). (RestAdd)

The functional equation (RestAdd) is said to be restricted additive functional equa-
tion. The problem is to find a function F : R→ R such that

F (x + y) = F (x) + F (y) (x, y ∈ R), (1.1)

and F (x) = f(x) for all x ∈ Df (see [14] Part IV. Geometry, Section Extension of
Functional equation p. 447–460). The function F is said to be additive extension
of the function f from the set D to the R2.

If a function F : R → R satisfies the equation (1.1), then the function F is
said to be Cauchy-additive function (see A. E. Legendre [18], C. F. Gauss [9]).
A. L. Cauchy first found the continuous solutions of equation (1.1) [5].

In [4] D = (R+ ∪ {0})2 (R+ := {x ∈ R+ | x > 0}). The solution of equation
(RestAdd) is f(x) = F (x) for all x ∈ F+ where the function F is a Cauchy-additive
function.

In [2] the concept of quasi-extension can be found. The situation is that D ⊆ R2

is a nonempty connected open set, and the functions f satisfies the functional
equation (RestAdd) for all (x, y) ∈ D then there exists an additive function F and
exist constants C1, C2 ∈ R such that

f(z) = F (z) + C1 + C2

f(u) = F (u) + C1

f(v) = F (v) + C2

(z ∈Dx+y),
(u ∈Dx),
(v ∈Dy).

(1.2)

If the function f and the additive function F is in the form of (1.2), then the
function F is said to be quasi extension of the function f .

In [6] D = R2
+ or D is circle neighbourhood of the point (0, 0) ∈ R2. In these

case f has additive extension.
In [23] D is an open subset of R2. The author of this paper has shown that the

set D is a countable disjoint union of connected open sets, that is D =
⋃

i Di. The
sets Di is said to be components of the set D. For all i there exists an additive
function Fi : R→ R and constants Ci

1, Ci
2 ∈ R such that

f(z) = Fi(z) + Ci
1 + Ci

2

f(u) = Fi(u) + Ci
1

f(v) = Fi(v) + Ci
2

(z ∈Di
x+y),

(u ∈Di
x),

(v ∈Di
y).

(1.3)

If i ̸= j, then the obtained functions Fi, and Fj , as well as the obtained constants
Ci

1, and Cj
1 , or Ci

2, and Cj
2 are not necessarily different depending on whether

Di
x ∩Dj

x ̸= ∅ or Di
y ∩Dj

y ̸= ∅ or Di
x+y ∩Dj

x+y ̸= ∅.
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It is also worth mentioning that if Di
x∩Di

x+y ̸= ∅ then Ci
2 = 0; if Di

y∩Di
x+y ̸= ∅

then Ci
1 = 0; if Di

x∩Di
y ̸= ∅ then Ci1 = Ci2 for all component Di. If the point (0, 0)

is an inner point of a component Di then Di
x ∩Di

y ∩Di
x+y ̸= ∅ thus Ci

1 = Ci
2 = 0.

In [21] J. Rimán studied restricted Pexider additive functional equations in the
form

f(x + y) = g(x) + h(y) ((x, y) ∈ D) (RestPexAdd)
where the set D is a connected open subset of the set R2, E = E(+) is an Abelian
group, and the unknown functions f : Dx+y → E, g : Dx → E, h : Dy → E satisfy
the equation (RestPexAdd) for all (x, y) ∈ D. The solution of equation (1.4) is

f(z) = F (z) + C1 + C2

g(u) = F (u) + C1

h(v) = F (v)C2

(z ∈Dx+y),
(u ∈Dx),
(v ∈Dy),

(1.4)

where a : R→ R is an additive function, C1, C2 ∈ E are constants.
In [1] D = H(I) where I is a nonempty open interval of the real line and the

set H(I) is defined by

H(I) :=
{

(x, y) ∈ R2 | x, y, x + y ∈ I
}

.

The set H(I) is a hexagon, sometimes a triangle or the emptyset.
M. Kuczma in his book [16] investigated both of Pexider type functional equa-

tions and additive functional equations, but did not consider restricted Pexider-
additive functional equations. He used Jensen functions for his Extension Theo-
rem and gave the solution of equation (RestAdd) (Theorem 13.6.1), where D is a
nonempty, connected, open subset of R2N := RN ×RN and Dx ∪Dy ∪Dx+y ⊆ Df .
He showed that the solution of equation (RestAdd) is in the form of (1.2) where
F : RN → RN is an additive function, C1, C2 ∈ RN are constants. The extension
was brought back to the theory of Jensen functions.

An X = X(+) Abelian group is said to be uniquely 2-divisible, if for all x ∈ X
there uniquely exists an y ∈ X such that y + y := 2y = x. This element y ∈ X is
denoted by y = 1

2 x. A nonempty set A ⊆ X is said to be midconvexe, if x+y
2 ∈ A

for all x, y ∈ A. Let Y = Y (+) be also a uniquely 2-divisible Abelian group. A
function j : A→ Y is said to be Jensen [7, 15, 16] if

j

(
x + y

2

)
= j(x) + j(y)

2 (x, y ∈ A).

The way outlined by M. Kuczma is not suitable for us, since we do not want to deal
with either 2-divisible or p-divisible groups, and we do not think that the vector
space structure is necessary for an additive extension theorem.

In the article [20] an extension theorem for restricted Pexider additive functional
equation can be found, where D ⊆ (RN )2 is a nonempty, connected, open set.

In the book [3] several functional equations can be found in more general ab-
stract algebraic settings .

Concerning the Extension Theorems see also [8, 13, 17].
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2. Some necessary concepts and results
Now, we review the concepts and results which will be used in the sequel.

• If G(+,⩽) is an ordered group, α, β ∈ G such that α < β then the set
]α, β[ := {x ∈ G | α < x < β} is said to be open interval.

• An ordered group G(+ ⩽) is said to be dense (in itself) if ]α, β[ ̸= ∅ for all α,
β ∈ G with α < β.

• An ordered group G(+,⩽) is said to be Archimedean ordered if for all x,
y ∈ G+ there exists a positive integer n such that y < nx := x + · · ·+ x.

• An ordered field F(+, ·,⩽) is said to be Archimedean ordered if F(+,⩽) is an
Archimedean ordered group.

Now, we review some properties of open intervals ([10, 12]). The open intervals
are

• translation invariant, that is, if G(+,⩽) is an ordered, dense, Abelian group,
then γ + ]α, β[ = ]γ + α, γ + β[ for all α, β, γ ∈ G such that α < β.

• additive, that is, if G(+,⩽) is an ordered, dense, Abelian group, then ]α, β[+
]γ, δ[ = ]α + γ, β + δ[ for all α, β, γ, δ ∈ G with α < β and γ < δ.

• homothety invariant, that is, if F(+, ·,⩽) is an ordered field, then γ · ]α, β[ =
]γα, γβ[ for all α, β, γ ∈ F with α < β and γ > 0.

• multiplicative, that is, if F(+, ·,⩽) is an ordered field, then ]α, β[ · ]γ, δ[ =
]αγ, βδ[ for all α, β, γ, δ ∈ F with 0 < α < β and 0 < γ < δ.

If G(+,⩽) is an ordered group, x ∈ G, (or x := (x1, x2) ∈ G2), ε ∈ G+, then
define the set B(x, ε) by B(x, ε) := ]x− ε, x + ε[, (B(x, ε) := ]x1− ε, x1 + ε[× ]x2−
ε, x2 + ε[) respectively. The set B(x, ε) is said to be open neighbourhood of the
point x with radius ε.

A function a : X → Y is said to be additive if X(+) and Y (+) are algebraic
structures, and

a(x + y) = a(x) + a(y) (x, y ∈ X).

A function l : X → Y is said to be logarithmic if X(·) and Y (+) are algebraic
structures, and

l(xy) = l(x) + l(y) (x, y ∈ X).

Concerning the additive and logarithmic functions see [3, 16].
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3. Extension Theorem for Pexider additive func-
tional equation

We shall use the Existence Theorem for additive functions [10] according to which
if G(+,⩽) is an Archimedean ordered, dense, Abelian group, Y (+) is a group,
ε ∈ G+, and the function satisfy the equation (RestAdd) where D :=]0, ε[2 then
there exists an additive function a : G → Y which extends the function f from
]−2ε, 2ε[ to G.

Theorem 3.1. If G(+,⩽) is an Archimedean ordered, dense, Abelian group, Y (+)
is an Abelian group, x0, y0 ∈ G, ε ∈ G+, and the functions f : B(x0 + y0, 2ε)→ Y ,
g : B(x0, ε) → Y , h : B(y0, ε) → Y satisfies the functional equation (RestPexAdd)
then there exists an additive function a : G → Y and exist constants C1, C2 ∈ Y
such that the functions f , g, h are in the form of (1.4).

Proof. By the translation invariant property of the open intervals we have that

B(x0, ε) = x0 + B(0, ε),
B(y0, ε) = y0 + B(0, ε),

B(x0 + y0, 2ε) = x0 + y0 + B(0, 2ε).

Define the functions F : B(0, 2ε)→ Y , G : B(0, ε)→ Y , H : B(0, ε)→ Y by

F (w) = f(x0 + y0 + w)
G(u) = g(x0 + u)
H(v) = h(y0 + v)

(w ∈ B(0, 2ε)),
(u ∈ B(0, ε)),
(v ∈ B(0, ε)).

(3.1)

Then F (0) = f(x0 + y0), G(0) = g(x0), H(0) = h(y0) and

F (u + v) = G(u) + H(v) (u, v ∈ B(0, ε)).

Thus we obtain that

F (u) = G(u) + H(0) = G(u) + h(y0) (u ∈ B(0, ε)),
F (v) = G(0) + H(v) = g(x0) + H(v) (v ∈ B(0, ε)),

(3.2)

whence we obtain that

F (u) + F (v) = G(u) + H(v) + g(x0) + h(y0)
= F (u + v) + g(x0) + h(y0) (u, v ∈ B(0, ε)).

Define the function φ : B(0, ε)→ Y by

φ(x) := F (x)− (g(x0) + h(y0)) (x ∈ B(0, 2ε)) (3.3)

Then
φ(x + y) = φ(x) + φ(y) (x, y ∈ B(0, ε)),
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whence by the Extension Theorem [10] we obtain that there exists an additive
function a : G→ Y such that

φ(x) = a(x) (x ∈ B(0, 2ε)). (3.4)

Then by equations (3.1), (3.3), and (3.4) we have that

f(x0 + y0 + w) (3.1)= F (w) (3.3)= φ(w) + (g(x0) + h(y0))
(3.4)= a(w) + (g(x0) + h(y0)) (w ∈ B(0, 2ε)).

(3.5)

By equations (3.1), (3.2), (3.3) and (3.4) we have that

g(x0 + u) (3.1)= G(u) (3.2)= F (u)− h(y0) (3.3)= φ(u) + g(x0)
(3.4)= a(w) + g(x0) (w ∈ B(0, ε)).

(3.6)

By equations (3.1), (3.2), (3.3) and (3.4) we have that

h(y0 + v) (3.1)= H(v) (3.2)= F (u)− g(x0) (3.3)= φ(v) + h(y0)
(3.4)= a(u) + h(y0) (w ∈ B(0, ε)).

(3.7)

Take the substitutions: w ←− w − (x0 + y0) in (3.5), u ←− u − x0 in (3.6),
v ←− v − y0 in (3.7), and define the constants c d ∈ Y by c := g(x0) − a(x0),
d := h(y0)−a(y0) thus the translation invariant property of the intervals we obtain
equation (1.4) which was to be prooved.

We shall use the Existence Theorem for logarithmic functions in [10] according
to which if F(+, ·,⩽) is an Archimedean ordered field, Y (+) is a group, ε ∈ F such
that ε > 1, and the function f : ]ε−2, ε2[→ Y satisfies the equation

f(xy) = f(x) + f(y) (x, y ∈ ]ε−1, ε[),

then there exists a logarithmic function l : F+ → Y which extends the function f
from ]ε−2, ε2[ to the F2

+.

Theorem 3.2. If F(+, ·,⩽) is an Archimedean ordered field, Y (+) is an Abelian
group, x0, y0 ∈ F+, ε ∈ F+, and f : ]x0y0ε−2, x0y0ε2[ → Y , g : ]x0ε−1, x0ε[ → Y ,
h : ]y0ε−1, y0ε[→ Y are functions such that

f(xy) = g(x) + h(y) (x ∈ ]x0ε−1, x0ε[, y ∈ ]y0ε−1, y0ε[),

then there exists a logarithmic function l : F+ → Y and exist constants C1, C2 ∈ Y
such that

f(w) = l(w) + C1 + C2

g(u) = l(u) + C1

h(v) = l(v) + C2

(w ∈ ]x0y0ε−2, x0y0ε2[),
(u ∈ ]x0ε−1, x0ε[),
(v ∈ ]y0ε−1, y0ε[).

Proof. The proof is analogues to the proof of the Theorem 3.1.
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4. Topology generated by the open intervals of an
Archimedean ordered Abelian group

Let G = G(+,⩽) be an ordered group, X ∈ {G,G2} and D ⊆ X. The set D is said
to be open if for every point x in D there exists an ε ∈ G+ such that B(x, ε) ⊆ D.

A subset D ⊆ X is said to be well-chained, if for all x, y ∈ D there exists a
finite sequence Bi := B(xi, εi) (i = 0, 1, . . . , n) such that

• Bi ⊆ D for all i = 0, 1, . . . , n,

• x ∈ B0, y ∈ Bn,

• Bi−1 ∩Bi ̸= ∅ for all i = 1, . . . , n.
A subset C of a nonempty, open set D ⊆ X is a component of D if C is a

maximal (with respect the inclusion) well-chained, open subset of D.
A topological space X(T ) is said to be separable if there exists a subset Y ⊆ X

which is countable, infinite, and dense (in X).
Theorem 4.1. If G = G(+,⩽) is an ordered group, X ∈ {G,G2} and D ⊆ X is
a nonempty, well-chained, open set, then

1. D is a disjoint union of its components;

2. If X is separable then D has countable components.
Proof. 1. Define the family B by

B := {B(x, ε) ⊆ D | x ∈ D, ε ∈ G+} := {Bα | α ∈ Γ}.
Define the equivalence relation on B by Bα ∼ Bβ if and only if there exists a finite
sequence Bαi

(i = 0, 1, . . . , n) such that Bα0 = Bα, Bαn
= Bβ and Bαi−1 ∩Bαi

̸= ∅
for all i = 1, 2, . . . , n. The set B is a disjoint union of its equivalence classes. The
components of the set D are the union of all balls Bα that belong to the same
equivalence class.

2. Let Y be a countable, dense subset of the set X, and let B ⊆ X be a
nonempty, open subset with components {Di}i∈I . Then for all i ∈ I there exists
a ball Bi := B(xi, εi) such that Bi ⊆ Di. If i ̸= j then Bi ∩ Bj = ∅. Since Y is
dense in G thus for all i ∈ I there exists an yi ∈ Y such that yi ∈ Bi. Define the
function φ : {Di}i∈I → Y by φ(Di) := yi. Since the function φ is injective thus
the set {Di}i∈I is countable.

Example 4.2. If G(+,⩽) is a p- divisible, Archimedean ordered, Abelean group
for a prime number p, then G is separable.
Example 4.3. Let a : R → R is a noncontinuous additive function. As it is well-
known that the graph of a is dense in R2 (with respect to usual topology on R2),
but the restriction of the function a to the set Q (where Q denotes the set of all
rationals) is continuous with respect to the topology on the set Q(+) defined above,
and the usual topology on the real line [11].
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5. The generalization of Rimán’s Extension Theo-
rem

We shall use the Uniqueness Theorem for additive functions [10], according to which
if G(+,⩽) is an Archimedean ordered, Abelian group, a : G → Y is an additive
function, C ∈ Y , and ]α, β[ ⊆ Y is a nonempty interval such that a(x) = C for all
x ∈ ]α, β[ then a(x) = 0 for all x ∈ G (and thus C = 0).

Now, we give the generalization of Rimán’s Extension Theorem:

Theorem 5.1. If G(+,⩽) be an Archimedean ordered, dense, Abelian group, and
D ⊆ G2 is an open set with components {Di | i ∈ I} and Y is an Abelian group
then the functions f : Dx+y → Y , g : Dx → Y , h : Dy → Y if and only if are
solutions of the functional equation (RestPexAdd) then there exists a family of
additive functions ai : G → Y (i ∈ I) and exist families of constants Ci

1, Ci
2 ∈ Y

(i ∈ I) such that
f(z) = ai(z) + Ci

1 + Ci
2

g(u) = ai(u) + Ci
1

h(v) = ai(v) + Ci
2

(z ∈ Di
x+y),

(u ∈ Di
x),

(v ∈ Di
y)

(5.1)

with

1. if Di
x+y ∩Dj

x+y ̸= ∅, then ai = aj, and Ci
1 + Ci

2 = Ci
1 + Ci

2;

2. if Di
x ∩Dj

x ̸= ∅, then ai = aj, and Ci
1 = Cj

1 ;

3. if Di
y ∩Dj

y ̸= ∅, then ai = aj, and Ci
2 = Cj

2

for all i, j ∈ I, i ̸= j.

Proof. Let us assume that the functions f , g, h satisfy the functional equation
(RestPexAdd). By Theorem 3.1 we obtain that they are in the form of (5.1), and
by Uniqueness Theorem [10] properties 1., 2., and 3. are fulfilled.

Conversely, let us assume that the functions f , g, h are defined by equation (5.1),
and the properties 1., 2., and 3. are fulfilled. These functions are well-defined, and
they satisfy the functional equation (RestPexAdd).

Theorem 5.2. If G(+,⩽) be an Archimedean ordered, dense, Abelian group, and
D ⊆ G2 is an open set with components {Di | i ∈ I} and Y is an Abelian group.
Define the set D0 := Dx ∪ Dy ∪ Dx+x. The function f : D0 → Y is satisfies
functional equation (RestAdd) if and only if then there exists a family of additive
functions ai : G → Y (i ∈ I) and exist families of constants Ci

1, Ci
2 ∈ Y for all

i ∈ I such that
f(z) = ai(z) + Ci

1 + Ci
2

g(u) = ai(u) + Ci
1

h(v) = ai(v) + Ci
2

(z ∈ Di
x+y),

(u ∈ Di
x),

(v ∈ Di
y)

(5.2)

with
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1. If Di
x+y ∩Dj

x+y ̸= ∅, then ai = aj, and Ci
1 + Ci

2 = Ci
1 + Ci

2;

2. If Di
x ∩Dj

x ̸= ∅, then ai = aj, and Ci
1 = Cj

1 ;

3. If Di
y ∩Dj

y ̸= ∅, then ai = aj, and Ci
2 = Cj

2 ;
for all i, j ∈ I, i ̸= j, moreover,

4. If Di
x+y ∩Di

x ̸= ∅, then Ci
2 = 0;

5. If Di
x+y ∩Di

y ̸= ∅, then Ci
1 = 0;

6. If Di
y ∩Di

y ̸= ∅, Ci
2 = Cj

2

for all i ∈ I.
Proof. The proof can be easily obtained by Theorem 5.1 and the Uniqueness
Theorem [10].

6. An application
Now we show a version of the well-known Rado-Baker functional equation [20].

It is worth mentioning that if F(+, ·,⩽) is an ordered field then F2 is a two-
dimensional vector space over the ordered field F with the usual point-wise defini-
tion of vector operations. The set C ⊆ F2 is said to be

• convex if λx + (1− λ)y ∈ C for all x, y ∈ C, and λ ∈]0, 1[;

• cone if λx ∈ C for all λ ∈ F+, and x ∈ C;

• convex cone if λx + µy ∈ C for all x, y ∈ C, and λ, µ ⩾ 0 with λ2 + µ2 > 0,
see Leonard Lewis [19], Rockafellar [22].

Let F(+, ·,⩽) be an Archimedean ordered field, α ∈ F+ ∪ {0}, β ∈ F+ ∪ {+∞}
such that 0 ⩽ α < β ⩽ +∞. Define the set C := Cα,β by

Cα,β
.=




{(x, y) ∈ F2

+|αx < y < βx}, if α ∈ F+ ∪ {0}, β ∈ F+;

{(x, y) ∈ F2
+|αx < y}, if β = +∞.

.

Proposition 6.1. The set C = Cα,β is a nonempty, open, well-chained set.
Proof. Since Cα,β is a nonempty, open, convex cone thus it is a nonempty, well-
chained, open set.
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Proposition 6.2. If F(+,⩽) is an Archimedean ordered field, Y (+) is an abelian
group, the functions P, Q, R : F+ → Y are solutions of functional equation

P (x + y) = Q(x) + R(y) (x, y ∈ C(α, β)) (6.1)

then there exists an additive function a : F → Y and constants C1, C2 ∈ Y such
that

P (x) = a(x) + C1 + C2

Q(x) = a(x) + C1

R(x) = a(x) + C2

(x ∈F+),
(x ∈F+),
(x ∈F+).

(6.2)

Proof. Let D := Cα,β . Since Dx = Dy = Dx+y = F+ thus by Theorem 5.1 we
obtain the statement.

The following Theorem is a generalization of Rado–Baker Theorem [4], and if
can be obtained from Proposition 6.2 as a simple consequence.

Theorem 6.3. Let F(+, ·,⩽) be an Archimedean ordered field, Y (+) be an Abelian
group, α, β, γ, δ ∈ F such that αδ− βγ ̸= 0. The functions P, Q, R : F+ → Y if and
only if satisfy the functional equation

P ((α + γ)x + (β + δ)y) = Q(αx + βy) + R(γx + δy), (x, y ∈ F+) (6.3)

if they are of the form of (6.2) where a : F→ Y is an additive function, C1, C2 ∈ Y
are constants.

Proof. Let us assume that the functions P, Q, R : F+ → Y satisfy the functional
equation (6.3) where az α, β, γ, δ ∈ F such that αδ − βγ ̸= 0. Take the following
substitution in (6.3):

P ((α + γ)x + (β + δ)y) = Q(αx + βy︸ ︷︷ ︸
u

) + R(γx + δy︸ ︷︷ ︸
v

),

x← δu− βv

αβ − βγ
> 0 y ← αv − γu

αδ − βγ
> 0.

(6.4)

Thus we obtain that the functions P, Q, R satisfy the equation (6.1) where the
constants α ∈ F+ ∪ {0} and β ∈ F+ ∪ {+∞} are defined by

• α := γ
α , β := δ

β if αδ − βγ > 0 and β ̸= 0;

• α := γ
α , β := +∞ if αδ − βγ > 0 and β = 0;

• α := δ
β , β := γ

α if αδ − βγ < 0 and α ̸= 0;

• α := δ
β , β := +∞ if αδ − βγ < 0 and α = 0.

By Proposition 6.1 we obtain the statement. The converse statement is evident.
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7. Examples and problems
Example 7.1. Let D :=

{
(x, y) ∈ R2 | |x− 0.5|+ |y − 0.5| < 0.5

}
.

Dx = Dy = ]0, 1[,
Dx+y = ]0.5, 1.5[.

Define the set D0 by D0 := Dx ∪Dy ∪Dx+y. By Theorem 5.1 we obtain that the
general solution of the functional equation is

f(x) = a(x) (x ∈ D0 = ]0, 1.5[)
where a : R→ R is a Cauchy additive function.

Let D ⊆ R2 be a well-chained open set with components D1, D2. By Theo-
rem 5.1 we obtain that the general solution of functional equation (RestPexAdd)
is in the form of (1.3).

f(z) =
{

a1(z) + C1
1 + C1

2 , if z ∈ D1
x+y;

a2(z) + C2
1 + C2

2 , if z ∈ D2
x+y;

g(u) =
{

a1(u) + C1
1 , if u ∈ D1

x;
a2(u) + C2

1 , if u ∈ D2
x;

h(v) =
{

a1(v) + C1
2 , if v ∈ D1

y;
a2(v) + C2

2 , if v ∈ D2
y,

where ai is an additive function, Ci
1, Ci

2 are constants for all i = 1, 2.
The following two examples show how the structure of the general solution

depends on the geometry of the sets D1 and D2.
Example 7.2. Let

D1 :=
{

(x, y) ∈ R2 | |x− 0.5|+ |y − 0.5| < 0.5
}

,

D2 :=
{

(x, y) ∈ R2 | |x + 0.5|+ |y + 0.5| < 0.5
}

,

and let D := D1 ∪D2.

D1
x = D1

y = ]0, 1[,
D1

x+y = ]0.5, 1.5[,
D2

x = D2
y = ]−1, 0[,

D2
x+y = ]−1.5,−0.5[.
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By Theorem 5.2 we have that since D1
x+y ∩ D1

x ̸= ∅ thus C1
2 = 0. Since

D1
x+y∩D1

y ̸= ∅ thus C1
1 = 0. Since D2

x+y∩D2
x ̸= ∅ thus C2

2 = 0. Since D2
x+y∩D2

y ̸= ∅
thus C2

1 = 0. Whence we obtain that the general solution of equation (RestAdd)
in this case is

f(z) =
{

a1(z), if z ∈ D1
x+y;

a2(z), if z ∈ D2
x+y;

g(u) =
{

a1(u), if u ∈ D1
x;

a2(u), if u ∈ D2
x;

h(v) =
{

a1(v), if v ∈ D1
y;

a2(v), if v ∈ D2
y,

where ai is additive function for all i = 1, 2.

Example 7.3. Define the sets

D1 :=
{

(x, y) ∈ R2 | |x + 0.5|+ |y − 0.5| < 0.5
}

,

D2 :=
{

(x, y) ∈ R2 | |x− 0.5|+ |y + 0.5| < 0.5
}

,

D := D1 ∪D2

D1
x+y = D2

x+y = ]−0.5, 0.5[,
D1

x = D2
y = ]−1, 0[,

D1
y = D2

x = ]0, 1[.

Since D1
x+y = D2

x+y thus a1 = a2 and C1
1 + C1

2 = C2
1 + C2

2 . Since D1
x = D2

y

thus C1
1 = C2

2 , and C1
2 = C2

1 . Since D1
x+y ∩ D1

x ̸= ∅ thus C1
1 + C2

1 = C1
1 . Since

D1
x+y ∩D1

y ̸= ∅ thus C1
1 + C1

2 = C1
2 . Consequently Ci

1 = Ci
2 = 0 for all i = 1, 2.

Whence we obtain that the general solution of equation (RestAdd) in this case
is

f(z) = a(z), if z ∈ D1
x+y = D2

x+y;
g(u) = a(u), if u ∈ D1

x = D2
x;

h(v) = a(v), if v ∈ D1
y = D2

y.

where a : R→ R is an additive function.

Example 7.4. If G := (R2, +,⩽) where the addition is defined by the usual
componentwise addition, and the ordering is the usual lexicographic ordering, that
is, (a1, a2) ⩽ (b1, b2) if and only if that either a1 < b1 or a1 = b1 and b1 ⩽ b2.
Thus the group G(+,⩽) is an ordered Abelian group, but it is not an Archimedean
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ordered, because, for example, (0, 1) < (1, 0), but there is no positive integer n
with n(0, 1) > (1, 0).

This is the open interval ](0, 1), (1, 0)[ in G.

Problem A. Preserve the notations of Example 7.4, and let Y (+) be an Abelian
group. We want to know the general solution of functional equation (RestAdd)
where D := ](0, 1), (1, 0)[2.

Problem B. Preserve the notations of Example 7.4, and Y (+) be an Abelian
group. We also want to know the general solution of functional equation (RestPex-
Add) where D := ](0, 1), (1, 0)[2.

Problem C. In general, we also want to know the general solution of equa-
tion (RestAdd), or equation (RestPexAdd) in the case when G(+,⩽) is a nonar-
chimedean ordered Abelian group, Y (+) be an Abelian group, D ⊆ G2 is a
nonempty, well-chained, open set. The topology on G (or on G2) is generated
by the open interval of G (or by the open rectangles of G2).
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Abstract. The aim of this paper is to give the general solution of the Hosszú
type functional equation

f(|x + y − (x ◦ y)|) + g(x ◦ y) = g(x) + g(y) (x, y ∈ R+)

with unknown functions f, g : R+ := {x ∈ R | x > 0} → R, and binary
operation defined by x ◦ y := (x 1

c + y
1
c )c for all x, y ∈ R+ where c ∈ R,

c ∈ {2, 3} is a fixed constant.
Keywords: functional equations, additive functions, Hosszú type functional
equations, Hosszú functional equation, Hosszú cycle
AMS Subject Classification: 39B22

1. Introduction
At the International Symposium on Functional Equation conference held on Za-
kopane (Poland) in 1967 the functional equation

f(x + y − xy) + f(xy) = f(x) + f(y) (1.1)

where the unknown function f : R → R satisfies the equation for all x, y ∈ R was
proposed to investigate in the first time by M. Hosszú. This equation is known as
Hosszú functional equation.

Z. Daróczy [6, 8] D. Blanusa [4], and H. Swiatak [25, 26] proved that the
general solution of equation (1.1) is in the form f(x) = A(x) + C for all x ∈ R
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where A : R→ R is an additive function (that is, A(x+y) = A(x)+A(y) is fulfilled
for all x, y ∈ R [2, 3, 18]), and C is a real constant.

Since 1969, many researchers have investigated the Hosszú equation and its
generalizations. In papers [9–12] the equation (1.1) was investigated on various
abstract structures. In paper [13] a Pexider version (that is functional equation with
more unknown function [1, 3, 15, 18]) of equation (1.1) and its locally integrable
function solutions can be found. See also [20, 21].

The general solution of equations

f(xy) + g(x + y − xy) = f(x) + f(y) (1.2)
f(xy) + g(x + y − xy) = h(x) + h(y) (1.3)

was given by K. Lajkó [19] in the following cases:

Problem A. If the unknown functions f, g : ]0, 1[ → R satisfy the equation (1.2)
for all x, y ∈ ]0, 1[, then there exist additive functions A1, A2, and a constant C ∈ R
such that

f(x) = A1(x) + A2(log x) + C, (x ∈ ]0, 1[),
g(x) = A1(x) + C, (x ∈ ]0, 1[).

(where log denotes the natural logarithm function).

Problem B. If the unknown functions f, g, h : R→ R satisfy the equation (1.3) for
all x, y ∈ R, then there exist an additive function A and constants Ci (i = 1, 2, 3)
such that

f(x) = A(x) + C2 (x ∈ R),
g(x) = A(x) + C3, (x ∈ R),
h(x) = A(x) + C1, (x ∈ R),

where 2C1 = C2 + C3. If the unknown functions f, h : R0 := R \ {0} → R, and
g : R → R satisfy the equation (1.3) for all x, y ∈ R0, then there exist additive
functions A1, A2 and constants Ci (i = 1, 2, 3) such that

f(x) = A1(x) + A2(log |x|) + C3 (x ∈ R0),
g(x) = A1(x) + C2, (x ∈ R),
h(x) = A1(x) + A2(log |x|) + C1, (x ∈ R0).

If the unknown functions f : R → R, and g, h : R1 := R \ {1} → R satisfy the
equation (1.3) for all x, y ∈ R1, then there exist additive functions A1, A2 and
constants Ci (i = 1, 2, 3) such that

f(x) = A1(x) + C3 (x ∈ R),
g(x) = A1(x) + A2(log |1− x|) + C2, (x ∈ R1).
h(x) = A1(x) + A2(log |1− x|) + C1, (x ∈ R1).
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In his paper [7] Z. Daróczy investigate the functional equation

f(x + y − x ◦ y) + f(x ◦ y) = f(x) + f(y) (x, y ∈ R+) (1.4)

with unknown function f : R → R where the binary operation ◦ is defined by
x ◦ y := ln(ex + ey) for all x, y ∈ R. The general solution of this equation is
f(x) = A(x)+C for all x ∈ R where A is an additive function, C is a real constant.

The main purpose of our present paper is to give the general solution of the
functional equation

f(|x + y − (x ◦ y)|) + g(x ◦ y) = g(x) + g(y) (x, y ∈ R+) (1.5)

with unknown functions f, g : R+ → R. The binary operation is defined by

x ◦ y := (x 1
c + y

1
c )c (x, y ∈ R+), (1.6)

where c ∈ R \ {0, 1} is a fixed constant.
We also consider the functional equation

f(|x + y − (x ◦ y)|) + g(x ◦ y) = h(x) + h(y) (x, y ∈ R+) (1.7)

with unknown functions f, g, h : R+ → R and binary operation ◦ is defined by (1.6).
The equation (1.5) is a common generalization of equations (1.2) and (1.4). The
equation (1.7) is a common generalization of equations (1.3) and (1.4).

The devices needed to the problems we set out, and to the earlier problems
are the theorems giving the solutions of the restricted Pexider additive functional
equations (in the rest briefly Additive Extension Theorems) and the application of
the Hosszú cycle.

Let D ⊆ R2 be a non-empty connected set. Define the sets

Dx := {u ∈ R | ∃v ∈ R : (u, v) ∈ D},
Dy := {v ∈ R | ∃u ∈ R : (u, v) ∈ D},

Dx+y := {z ∈ R | ∃(u, v) ∈ D : z = u + v}.

The functional equation

f(x + y) = g(x) + h(y) ((x, y) ∈ D)

with unknown functions f : Dx+y → R, g : Dx → R, h : Dy → R is a restricted
Pexider additive functional equation. According to Rimán’s Extension Theorem
[24], there exist an additive function A : R → R and constants Ci (i = 1, 2) such
that

f(u) = A(u) + C1 + C2 (u ∈ Dx+y),
g(v) = A(v) + C1 (v ∈ Dx),
h(z) = A(z) + C2 (z ∈ Dy).
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Concerning the Additive Extension Theorems see also [1, 5, 14, 16, 18, 23].
A Hosszú cycle is a functional equation

F (x + y, z) + F (x, y) = F (x, y + z) + F (y, z) (x, y, z ∈ D)

with unknown function F : A2 → D, where A = A(+) is a semi-group, D = D(+) is
an Abelian semi-group. The first appearance of this equation was in [17], although
many researchers use the Hosszú Cycle to solve functional equations for example
equations (1.1), and (1.2).

2. The decomposition of equation (1.5) by Hosszú
cycle

Theorem 2.1. If the functions f, g : R+ → R satisfy the functional equation (1.5)
where the binary operation ◦ is defined by (1.6), then f satisfies the functional
equation

f(|(x + y + z)c − ((x + y)c + zc)|) + f(|(x + y)c − ((xc + yc)|)
= f(|(x + y + z)c − (xc + (y + z)c)|) (2.1)

+ f(|(y + z)c − (yc + zc)|) (x, y ∈ R+).

Proof. For the proof we shall use the well-known Hosszú Cycle (see [7]). Define
the function F : R2

+ → R by

F (x, y) := g(x) + g(y)− g(x ◦ y) (x, y ∈ R+).

Since the operation ◦ is associated thus we have that

F (x ◦ y, z) + F (x, y) = F (x, y ◦ z) + F (y, z) (x, y, z ∈ R+). (2.2)

By equations (1.5) we have that

F (x, y) = f(|x + y − (x ◦ y)|) (x, y ∈ R+). (2.3)

From equations (2.2) and (2.3) we have the equation (2.1).

The following proposition is well known (and will be used later).

Proposition 2.2. Let c ∈ R \ {0, 1} and define the function φc : R+ → R+ by

φc(x) := xc (x ∈ R+).

a. If c > 1, then the function φc is strictly superadditive in the sense that

(x + y)c > xc + yc (x, y ∈ R+). (2.4)
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b. If 0 < c < 1, or c < 0 then the function φc is strictly subadditive in the sense
that

xc + yc > (x + y)c (x, y ∈ R+) (2.5)

Example 2.3. Since ex =
∑∞

n=0
xn

n! thus by Proposition 2.2 it is easy to see that
ex+y + 1 > ex + ey for all x, y ∈ R+, and log(x + 1) + log(y + 1) > log(x + y + 1)
for all x, y ∈ R+. It is also easy to see that log(x + y) > log(x) + log(y) for all
x, y ∈ ]0, 1[.

Define the function φ : R+ → R by φ(x) := x + x2 + x3 for all x ∈ R+. Then
function φ is a strictly superadditive bijection.

Our references concerning subadditive, and superadditive functions is [22].
Corollary 2.4. Preserving the notations of Theorem 2.1 by Proposition 2.2 it is
easy to see that

• if c > 1, then the function f satisfies the equation

f((x + y + z)c − ((x + y)c + zc)) + f((x + y)c − ((xc + yc))
= f((x + y + z)c − (xc + (y + z)c)) (2.6)

+ f((y + z)c − (yc + zc)) (x, y, z ∈ R+).

• if 0 < c < 1 or c < 0, then the function f satisfies the equation

f((x + y)c + zc − (x + y + z)c) + f((xc + yc − (x + y)c)
= f(xc + (y + z)c − (x + y + z)c) (2.7)

+ f(yc + zc − (y + z)c) (x, y, z ∈ R+).

Corollary 2.5. If the function f : R+ → R satisfy the functional equation (2.6) or
equation (2.7) for all x, y, z ∈ R+ thus it is also satisfies the equation

f

(
(x + y + z)c − ((x + y)c + zc)
(x + y + z)c − (xc + (y + z)c)

)
+ f

(
(x + y)c − (xc + yc)

(x + y + z)c − (xc + (y + z)c)

)

= f(1) + f

(
(y + z)c − (yc + zc)

(x + y + z)c − (xc + (y + z)c)

)
(x, y, z ∈ R+). (2.8)

3. On the equation (2.8) in the cases c = 2, 3
Proposition 3.1. If the function f : R+ → R satisfies the equation

f(u) + f(v) = f(1) + f(u + v − 1) ((u, v) ∈ D) (3.1)

where the set D ⊆ R2 is defined by

D := {(u, v) ∈ R2 | v > −u + 1, v < 1}, (3.2)

then there exists an additive function A : R→ R and a constant C ∈ R such that.

f(x) = A(x) + C (x ∈ R+).
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Proof. Define the function g : ]1,∞[→ R by

g(z) = f(z − 1) + f(1) (z ∈ ]1,∞[).

Then the functions f and g satisfy the equation

g(u + v) = f(u) + f(v) ((u, v) ∈ D)

where the set D is defined by (3.2). Thus by Rimán’s Extension Theorem (see
[14, 24]) we obtain that there exist an additive function A : R→ R and a constant
C ∈ R with

f(u) = A(u) + C (u ∈ Dx = R+).

Theorem 3.2. If the function f : R+ → R satisfy equation (2.8) for all x, y, z ∈ R+
with constant c ∈ {2, 3}, there exist an additive function A1 : R→ R and a constant
C1 ∈ R such that

f(x) = A1(x) + C1 (x ∈ R+). (3.3)

Proof. Case 1. Let c = 2. By equation (2.8) the function f satisfies the equation

f

(
(x + y)z
x(y + z)

)
+ f

(
y

y + z

)
= f(1) + f

(
yz

x(y + z)

)
(x, y, z ∈ R+). (3.4)

Take the substitution in equation (3.4)

y ←− x(u + v − 1)
1− v

z ←− x(u + v − 1)
v

thus we have that the function f satisfies the equation (3.1) where the set D ⊆ R2

is defined by (3.2). By Proposition 3.1 we have that the function f is in the form
of (3.3).

Case 2. Let c = 3. By equation (2.8) the function f satisfies the equation

f

(
(x + y)z
x(y + z)

)
+ f

(
y(x + y)

(y + z)(x + y + z)

)

= f(1) + f

(
yz

x(x + y + z)

)
(x, y, z ∈ R+).

(3.5)

Take the substitution in equation (3.5)

y ←−
√

uvx2(u + v − 1) + x(u + v − 1)
1− v

, z ←−
√

uvx2(u + v − 1)
v

whence we have that the function f satisfy the equation (3.1) where the set D
is defined by (3.2). The rest of the proof of this case is analogous to the case
c = 3.
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4. Results and open problems
Theorem 4.1. If φ : R+ → R+ is a strictly superadditive bijection, the binary
operation ◦ is defined by

x ◦ y := φ(φ−1(x) + φ−1(y)) (x, y ∈ R+), (4.1)

f : R+ → R is a function such that that exist an additive function A1 : R+ → R
and a constant C ∈ R with

f(x) = A1(x) + C (x ∈ R+), (4.2)

g, h : R+ → R are functions such that

f(|x + y − (x ◦ y)|) + g(x ◦ y) = h(x) + h(y) (x, y ∈ R+), (4.3)

then there exist an additive function A2 : R→ R and constant C2 with

g(x) = −A1(x) + A2(φ−1(x)) + 2C2 − C1 (x ∈ R+),
h(x) = −A1(x) + A2(φ−1(x)) + C2 (x ∈ R+). (4.4)

Proof. During the proof, ◦ will denote the usual function composition (for example
(g ◦ φ)(x) := g(φ(x))). Since φ(x + y) > φ(x) + φ(y) thus from equation (4.3) we
have that

f(φ(x + y)− (φ(x) + φ(y))) + g(φ(x + y))
= h(φ(x)) + h(φ(x)) (x, y ∈ R+).

(4.5)

From equations (4.2) and (4.5) we have that

((A1 ◦ φ) + (g ◦ φ) + C1))(x + y)
= ((A1 ◦ φ) + (h ◦ φ))(x) + ((A1 ◦ φ) + (h ◦ φ))(y) (x, y ∈ R+).

(4.6)

Define de functions F, G : R+ → R by

F (x) : = ((A1 ◦ φ) + (g ◦ φ) + C1)(x) (x ∈ R+), (4.7)
G(x) : = ((A1 ◦ φ) + (h ◦ φ))(x) (x ∈ R+). (4.8)

From equation (4.6) we have that

F (x + y) = G(x) + G(y) (x, y ∈ R+). (4.9)

From equation (4.9) by Rimán’s Extension Theorem we have that there exist an
additive function A2 : R→ R and a constant C2 ∈ R such that

F (x) =A2(x) + 2C2 (x ∈ R+), (4.10)
G(x) =A2(x) + C2 (x ∈ R+). (4.11)

From equations (4.8), and (4.11) we obtain equation (4.4).
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Theorem 4.2. Let φ : R+ → R+ be a strictly subadditive bijection. Preserving the
notation of Theorem 4.1 the functions g, h is in the form

g(x) = A1(x) + A2(φ−1(x)) + 2C2 − C1 (x ∈ R+), (4.12)
h(x) = A1(x) + A2(φ−1(x)) + C2 (x ∈ R+). (4.13)

Proof. The proof is analogous to the proof of Theorem 4.1.

Theorem 4.3. If the functions f, g : R+ → R satisfy the functional equation (1.5)
where the operation ◦ is defined by (1.6) where c ∈ {2, 3}, then there exist an
additive functions A1, A2 : R→ R and a constant C ∈ R such that

f(x) = A1(x) + C (x ∈R+), (4.14)
g(x) = A1(x) + A2(x 1

c ) + C (x ∈R+). (4.15)

Proof. The proof is evident by Theorem 2.1, Corollary 2.4, Corollary 2.5, Theo-
rem 3.2, and Theorem 4.1.

Theorem 4.1, Theorem 4.2, and Theorem 4.3 suggest the following open prob-
lems.

Problem A. Does Theorem 4.3 hold for all c ∈ R+ \ {0, 1}?
Our conjecture is that it remains true.

Problem B. Find the general solution of equation (1.7) with unknown functions
f, g, h : R+ → R and binary operation ◦ is defined by (1.6) where c ∈ R+ \ {0, 1}.
Problem C. In particular, the authors of the present article would like to know
the solution of Problem B in the case of c = −1, in more details, find the general
solution of functional equation

f

(
x + y − xy

x + y

)
+ g

(
xy

x + y

)
= h(x) + h(y) (x, y ∈ R+)

with unknown functions f, g, h : R+ → R.
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Abstract. Programming languages evolve in the long term, new standards
are specified in which new constructs appear, old elements may become dep-
recated. Standard library of programming languages also changes time by
time.

The standard of the C++ programming language defines the elements of
the C++ Standard Template Library (STL) that provides containers, algo-
rithms, and iterators. According to the STL’s generic programming approach,
these sets can be extended in a convenient way. The std::iterator class
template had been in the C++ since beginning and has been deprecated in
the C++17 standard. This class template’s purpose was to specify the traits
of an iterator. Typically, it was a base class of many standard and non-
standard iterator class to provide the necessary traits. However, the usage
of iterator is straightforward and fits into the object-oriented programming
paradigm. Many non-standard containers offer custom iterators because of
the STL compatibility. Using this base class does not cause any weird effect,
therefore usage of iterator can be found in code legacy.

In this paper, we present a static analysis approach to assist the develop-
ment of iterator classes in a modern way in which the iterator class template
is not taken advantage of. We utilize the Clang compiler infrastructure to
look for how the deprecated iterator classes can be found in legacy code and
present an approach how to modernize them.
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1. Introduction
Every programming language evolves regularly. New standards of programming
languages published, new compiler techniques and constructs become available.
For instance, many different Fortran standards have been developed in the last
sixty years and many constructs have evolved during the years [7]. In 2022, Oracle
announced the nineteenth release of the Java standard [15].

This language evolution takes part in the history of the C++ programming
language, as well. C++98, C++03, C++11, C++14, C++17, and C++20 are the
official standards. C++23 is already done, but it is not offial yet. Therefore, no
compiler supports the entire C++23 standard recently. New standards may affect
the core language and its standard library.

In general, language standard updates introduce new language constructs and
may deprecate older constructs [3]. For instance, C++11 made the template class
std::auto_ptr deprecated and provides new standard smart pointers instead [2].
Later, std::auto_ptr has been removed from the C++ standard library.

New language constructs and standard libraries can require migration in code
legacies with a method called source code rejuvenation that is not considered code
refactoring [13].

The std::iterator class template had been in the C++ since beginning and
has been deprecated in the C++17 standard [10]. This class template’s purpose
was to specify the traits of an iterator [11]. Typically, it was a base class of many
standard and non-standard iterator class to provide the necessary traits [12]. How-
ever, the usage of iterator is straightforward and fits into the object-oriented
programming paradigm. Many non-standard containers offer custom iterators be-
cause of the Standard Template Library compatibility [1]. Using this base class
does not cause any weird effect, therefore usage of iterator can be found in code
legacy.

In this paper, we present a static analysis approach to assist the development
of iterator classes in a modern way in which the iterator class template is not taken
advantage of. We utilize the Clang compiler infrastructure to look for how the
deprecated iterator classes can be found in legacy code and present an approach
how to rejuvenate them. Clang’s checker approach is proper to detect and emit
warning based on static analysis [8].

This paper is organized as follows. In Section 2, we give an overview about the
C++ Standard Template Library (STL) and iterators. We detail our approach in
Section 3 and we present its evaluation in Section 4. Section 5 provides possible
ways of the future work. Finally, this paper concludes in Section 6.

2. Iterators
C++ Standard Template Library is an examplar library based on the generic pro-
gramming paradigm [1]. STL provides containers (e.g. std::vector, std::map)
and container-independent algorithms (e.g. std::max_element, std::sort) [14].
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These components are separated and they can be extended simultaneously in a
non-intrusive way. Iterators bridge the gap between containers and algorithms
that are abstraction of pointers [9].

In the C++ language, it is possible to access or manage the memory directly
from the source code. One of the tools provided by the language which can be used
for such purposes are the pointers – these are a special kind of variables. They
store an integer value which represents the memory address to which the variable is
pointing to, therefore the information stored in that memory block can be retrieved
or modified by using the pointer for it. In contrast to reference variables, the
pointers can store a different value than the one which they were initialized with:
the memory addresses they point to can be shifted in both directions (forward or
backward) based on the allocated size of the type of the value which they hold the
pointer for – this is done by using pointer arithmetics.

However, pointers are compound types, so they do not store much additional
information or metadata about themselves, nor have we the ability to customize
them – how dereferencing the variable, or shifting it should happen exactly. To
solve these issues we could use the concept of iterators. An iterator is an object
which can be used to maintain an element of a given range, using a set of operators.
A special form of the iterators are the pointers, however, sometimes we do not
need to have all the capabilities of a pointer implemented in our custom iterator:
depending on the use-case, it might be enough to have an iterator which is only
capable of stepping forward, or can only be written to but it does not have the
ability to be read. To achieve this, iterators can be sorted into one of the five main
iterator categories: input, output, forward, bidirectional or random access iterators.

On top of the customized methods iterators can – and in a lot of cases have
to – define additional information about themselves. This information is available
in the form of iterator traits: there should be five iterator traits defined in total.
The difference_type should express the result of subtracting one iterator from
another, value_type stores information about the type of the value which the
iterator points to, pointer is the type of a pointer which can point to the value
maintained by the iterator, so is reference but instead of pointers the reference
type is described, iterator_category shows us into which one of the iterator
categories does the iterator belong to. The metadata defined by the iterator traits
will be used by several STL algorithms to provide the most optimal behavior, or
to be able to check whether the instance of the iterator type provided to them is
implementing all the operators or methods they require, so the iterator object has
all the capabilities they need [14].

2.1. Defining custom iterators – legacy way
To check the capabilities of an iterator object, the std::iterator_traits class
of the STL can be used – this wrapper class is needed when both pointers and
iterator objects can be accepted. Based on the template parameter it receives,
it can generate a proper definition through which all the needed information can
be accessed e.g. by an algorithm, and accepts both pointers and iterator objects
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as a template parameter. Before C++17, to declare all the information needed
to this specific wrapper class needed by the majority of the standard algorithms,
the STL provided us a helper class named std::iterator [9]. When creating our
own custom iterator class, by deriving from the std::iterator it was possible to
define all the needed iterator traits by passing them to the parent iterator class as
template arguments:

struct DummyIteratorDepr :
std::iterator<std::forward_iterator_tag, // iterator_category

int, // value_type
int, // difference_type
int*, // pointer
int & // reference
>

{
public:

DummyIteratorDepr(pointer ptr) {n = ptr;}
DummyIteratorDepr& operator++() {return *this;}
DummyIteratorDepr operator++(int) {return *this;}
reference operator*() {return *n;}
pointer operator->() {return n;}
bool operator==(const DummyIteratorDepr &rhs) {return true;}
bool operator!=(const DummyIteratorDepr &rhs) {return true;}

private:
int *n;

};

Another advantage of inheriting the std::iterator to have compatibility with
the STL containers and algorithms is that – by making use of the default template
arguments the parent class has – we do not even have to define all the attributes if
they do not have to be specific ones, or we are sure they will not be needed at all:
difference_type, pointer and reference all have default values, which can be
deduced from the values we provided to the mandatory iterator_category and
value_type fields.

Since this tool provided by the standard library seems to be extremely useful,
it would be understandable to ask why did it become deprecated in C++17? It
is worth to mention, that the concept of iterator traits for providing compatibility
did not become deprecated, only the std::iterator class, and the main reason for
that is its ambiguity. Consider the following example taken from the standard [5]:

template <class T,
class charT = char,
class traits = char_traits<charT> >

class ostream_iterator:
public iterator<output_iterator_tag, void, void, void, void>;
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In this example, it is hard to understand which void stands for which attribute.
Declaring an iterator like this could be very confusing and hard to read. Another
reason for deprecating the class is that if the custom iterator itself depends on a
template argument which is then passed to the std::iterator class, finding the
traits during name lookup could fail:

template <typename T>
struct MyIterator : std::iterator<std::random_access_iterator_tag,

T>
{

value_type data; // Error: value_type is not found by name lookup
};

The result would be the same if we put void instead of T to the parent iterator
class as second template argument.

2.2. Defining custom iterators – modern way
As the usage of std::iterator would be deprecated now, all the attributes which
are needed to describe our custom iterator class have to be declared explicitly by
using type aliases:

class DummyIterator
{
public:

using iterator_category = std::forward_iterator_tag;
using value_type = int;
using difference_type = int;
using pointer = int*;
using reference = int&;

DummyIterator (int* ptr) {n = ptr;}
DummyIterator& operator++() {return *this;}
DummyIterator operator++(int n) {return *this;}
reference operator*() {return *n;}
int* operator->() {return n;}
bool operator==(const DummyIterator &rhs) {return true;}
bool operator!=(const DummyIterator &rhs) {return true;}

private:
int *n;

};

Note that for declaring type aliases both typedef and using keywords can be
used, in this specific case they would be semantically equivalent, since we do not
make the aliases depend on template parameters. Despite their semantic equiva-
lence the syntax would differ a bit, consider the following example:
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using value_type_u = int;
typedef int value_type_t;

The latter one is the method of creating type aliases in the legacy way, but
since C++11 the first one is preferred, as being a more powerful tool compared
to the second one. To ensure this, clang-tidy already implements several checkers
which would warn in case of using the old approach instead of the modern one [6].

We can see that by using the modern iterator definition method, it is much more
readable and much easier to understand what properties a given custom iterator
has. This way the original concerns regarding the usage of the std::iterator
class have been overcome, however, we have to face a new problem, which in some
situations could be uncomfortable: we lost the ability the make use of the default
template arguments – since now we do not have any. We have to declare every
trait properly for our custom iterator to be compatible with the standard library,
even if some of them (the ones which had default values earlier) would be trivial.
In the following, we will try to create a tool, or to be more specific a set of tools to
help the transition between the old and new way of defining a custom iterator, and
to help to avoid the potential incompatibilities between the STL and our custom
iterators created by using the modern approach.

3. Verifying custom iterators with static code anal-
ysis

We will define two major problem categories that can be divided into smaller prob-
lems, then we will address these smaller problems with static analysis tools provided
by the Clang compiler infrastructure. The two major problems would be the han-
dling of legacy custom iterators, and detecting potential custom iterators defined
without using class std::iterator. We will then decompose the latter by ranking
potential iterator findings based on how likely it is, that the class we found is meant
to be used as an iterator, which has to be compatible with the standard library. To
achieve this, we implemented a new clang-tidy checker named modernize-replace-
std-iterator, as part of the modernize checker category. The exact behavior and
logic behind the checker is described below.

3.1. Transforming legacy custom iterators
Since the usage of std::iterator has become deprecated, it is better to avoid
using it when developing custom iterators. To help this, we developed a static
analysis tool based on Clang. Clang supports developing new tools, thus the built
abstract syntax tree (AST) can be utilized, queried and visited. We have imple-
mented an AST matcher to find and warn for every class definition which derives
from the class std::iterator. An example for these kind of classes could be
DummyIteratorDepr. However, we have to consider the cases when the custom
iterator class is derived not directly, but indirectly from the deprecated iterator.

42



Annal. Math. et Inf. A static analysis approach for modern iterator development

This means one of the parents of our iterator in the inheritance chain would have
std::iterator as a parent class (or at least as one of the parent classes, since in
C++ it is allowed to have multiple inheritance, which means that it is possible to
inherit from multiple base classes to create a common derived type) [14]. To handle
these issues, it is not enough to simply check whether the class in question has the
std::iterator as a base class, but we should also check if one of its parents at
any level has it as a parent.

struct DummyIteratorDeprDesc : DummyIteratorDepr
{

DummyIteratorDeprDesc(pointer ptr) : DummyIteratorDepr(ptr){}
};

To avoid unnecessary and redundant findings, the warning will only be triggered
if our class has inherited the legacy iterator in a direct way. Since all class definitions
will be checked, we will cover all the possible results, all the nodes of all inheritance
chains. To modernize our iterators it is needed to update that one exact base class,
which we get the warning for, since all the newly declared type aliases will be
inherited by all the (directly or indirectly) deriving child classes (if we make sure
that the access specifier of the traits is at least protected but considering that the
purpose of them is to provide information about the iterator to the outside world,
we should declare them as public aliases).

We have now clarified that our approach would be the detection of direct inher-
itances, which has an additional advantage on top of avoiding duplicate matches
and redundant steps. The scope of the analysis will be the translation unit which
we are currently analysing - narrowing this down to our problem we get, that the
scope of the analysis would be the class definitions described in the given trans-
lation unit. However, we will have cases when the removal of the std::iterator
class would be a valid step without modifying any of the iterator definitions we
have in our translation unit, despite the fact that they had the standard iterator
class as an indirect base class. This is the situation when we have a “custom”
iterator class in the middle of our inheritance chain, but outside the unit which we
are analysing right now. In this case, two explanations are possible: one of them
is that we will take care of the custom class when analysing the translation unit
introducing it – the other one is that the custom iterator is defined outside of our
project. If we face the latter, we have to trust the project defining the iterator will
solve the issues caused by the deprecation of the standard iterator.

To provide more information to the developer, our tool not only warns about
the class definitions mentioned above, but also gives hints about how to update
them. After analysing a proper iterator class, we will get the following warning:

test_iterator.cc:12:8: warning: Derived from std::iterator,
which is deprecated since C++17. From C++17 type aliases
should be declared:
using iterator_category = std::forward_iterator_tag;
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using value_type = int;
using difference_type = int;
using pointer = int*;
using reference = int&; [modernize-replace-std-iterator]

struct DummyIteratorDepr : std::iterator<std::forward_iterator_tag,
...>

This is done by querying the concrete type parameters of the template instan-
tiation we defined when inheriting the base class. It is worth to mention, that we
would get the same list of arguments if we relied only on the mandatory template
parameters:

struct DummyIteratorDepr :
std::iterator<std::forward_iterator_tag, // iterator_category

int> // value_type
{

// ...
}

We now have all the information which is needed to automatize the transforma-
tion, which would result in the class definition having the iterator traits declared.
Currently according to the scope and the goal of our tool, only a warning would be
triggered, but as a future improvement it would be easy to implement the trans-
formation itself by using the fix-it hints of the clang-tidy tool.

3.2. Detecting custom iterators
3.2.1. Analysing potential iterators

As we have described earlier, detecting usages of the deprecated custom iterator
defining method is only one part of our goal. Another part would be to detect all the
existing iterators, or classes which seem to be iterators which can face compatibility
issues when used with the Standard Template Library. Also, we try to keep in mind
the motivation behind the deprecation of std::iterator – readability is an aspect
which should be considered when analysing the code.

First, we try to focus on the classes which – apart from some extreme cases –
can convince the analyser that they are iterators, and they are used as if they were
one. To achieve this, we will define two key criteria: the custom iterator should
define at least one of the mandatory iterator traits (or should derive from a class
which defines one of them), and an instance of this custom class can be used as an
argument for algorithms defined by the Standard Template Library. The library
defines a wide range of methods operating on a given range of elements, for multiple
purposes. These algorithms can be found in the algorithm header, and since they
are analysing/modifying ranges, or a range of elements, the range itself should be
determined when trying to execute them.
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This is done by passing iterators as arguments to them, which iterators can
define the range by marking the start and the end of the range we want to use.
When we create custom iterator classes, a typical usage would be to combine them
with the powerful tools provided by the STL algorithms. Assuming that we have a
custom iterator class named I declaring all the needed iterator traits properly, and
the type of the value to which its instances are pointing to is int. In this case, we
could find e.g. the value 2 in the following way (i_begin and i_end are instances
of our iterator class, defining the range which we would like to analyse):

std::find(i_begin, i_end, 2)

In this example, if 2 is part of the range, the iterator pointing to the first
occurrence will be returned, otherwise the result will be i_end, which points after
the last element. Sticking to this example, this specific function will require all
the iterator traits to be declared, otherwise compiling the code would result in an
error. Consider the following example:

class CustomIterator {
public:

using iterator_category = std::forward_iterator_tag;
using value_type = int;
using difference_type = int;
...

};

We have only three attributes defined, pointer and reference are missing. Be-
cause of this, a compilation error should happen, and we would get an error message
similar to this:

error: no matching function for call to ’__iterator_category’
...
substitution failure [with _Iter = CustomIterator]: no type
named ’iterator_category’ in ’std::iterator_traits<CustomIterator>’

What interesting here is, that even if we had the trait iterator_category de-
fined because of the template substitution failure of class std::iterator_traits,
compiling a code like this will result in an error which can be misleading. Of course,
if we would have used the legacy way for defining CustomIterator, the problem
would not be present since the missing parameters could be determined by using
the default template argument values of std::iterator:

struct CustomIteratorDepr :
std::iterator<std::forward_iterator_tag,

int,
int
>
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{
// ...

};

Now we have seen that despite its advantages, the modern approach prevents
us to make use of the default template arguments of the legacy class. Using the
legacy method, we do not have the possibility to skip any of the non-mandatory
parameters, the order of the template arguments matters and should be considered
to avoid failures during compilation, but it was a bit easier to define iterators which
did not require all the iterator attributes being defined by their own.

However, not all algorithms make use of the iterator traits or require them to
be present in the class defining the iterator they got as an argument. Let us take
std::swap_ranges as an example. The function exchanges the elements of two
ranges, and requires three parameters to achieve this: the first two parameters
define the first range, the third one points to the beginning of the second range.
Let us define our custom iterator in the following way:

class DummyIterator
{
public:

DummyIterator (int* ptr) {n = ptr;}
DummyIterator& operator++() {return *this;}
DummyIterator operator++(int n) {return *this;}
int& operator*() {return *n;}
int* operator->() {return n;}
bool operator==(const DummyIterator &rhs) {return true;}
bool operator!=(const DummyIterator &rhs) {return true;}

private:
int *n;

};

As we can see, we defined only the operators required by the std::swap_ranges,
but none of the iterator traits. Based on the previous examples we have seen, using
this iterator with for example std::find would lead to compilation error. This is
not the case with this function:

std::swap_ranges(d1_begin, d1_end, d2_begin);

This example compiles just fine, if d1_begin, d1_end and d2_begin are all
instances of DummyIterator we defined above. In case the method does not require
the substitution of the template arguments defined by std::iterator_traits, it
is possible to be compatible with the function by having only a number of traits
defined (or defining none of them). At this point, we can divide the problem of being
compatible with STL algorithms into two subcategories: in one case, the function
call will compile just fine, in the other case a compilation error will happen. We
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have implemented our clang-tidy checker to address both problems at the same
time.

Matching the AST Our concept here would be to help to avoid compatibility
issues with the standard library while keeping the code as much readable as possi-
ble. The base concept of our AST matcher is to find all nodes, which belong to the
class declaration defining the objects which are used as parameters when calling
functions from the std namespace. Note that we mentioned earlier that we are
interested in the calls of functions defined in the algorithm header. This approach
would be much more strict than analysing all the function calls using methods from
the std namespace, however, members of the algorithm library are also part of it.
The reasoning behind it is that we would like to help the developer to avoid incom-
patibilities in the future, for use cases which might not be relevant right now. If a
custom iterator is used with the Standard Template Library, it has the potential
to be used later together with a method, with which it would have compatibility
issues resulting in unexpected errors, mainly during compilation time.

In case of larger code bases and rather complex projects, it is not unusual to
have a lot of legacy code in it. Due to this, we have to handle the cases which
would be covered by using the matcher of our checker tool described previously
(detecting legacy std::iterator usage). These are the cases when the custom
iterator inherits its attributes from the std::iterator class – therefore we exclude
these matches, since they are not part of the scope of the current analysis.

To determine if the arguments are meant to be used as iterators, we are looking
for the explicitly declared type aliases representing the iterator traits, or to be
more specific, we are looking for one of the mandatory ones: iterator_category.
Since the legacy cases had been excluded, all our custom iterators should define
the two mandatory attributes, which are not derived from a custom iterator class
coming from a third party library. However, based on this logic the false-positive
findings should be considered too: what happens, if a class declares the type alias
value_type, and an instance of it is used as an argument of a standard function,
but it is not an iterator?

struct A
{

using value_type = int;
};
...
std::vector<A> v;
A a;
v.insert(v.begin(), a);

This example meets all of our conditions, so A could be considered as an iterator.
To avoid this, we only look for the attribute iterator_category, which is less likely
to be defined in a class representing a different concept then the iterators. Another
thing which we have to deal with is the case, when the class definition does not
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contain the traits, but a base class of it does. In this case, the custom iterator has
a more abstract iterator class from which it inherits the common attributes, which
applies for this specific subtype too.

struct Iter_A
{

using iterator_category = std::forward_iterator_tag;
using value_type = int;

};

struct Iter_B : Iter_A
{

using difference_type = int;
using pointer = int*;
using reference = int&;

};

In this example, the parent (Iter_A) only defines the mandatory attributes,
the rest of them are present only in the derived class. To handle the problem of
abstract iterators, the matcher would follow the following logic: if the definition of
the parameter type contains the mandatory attribute, then this AST node should
be matched, if not, the matcher will look for the node which implements it. If we
have multiple matches, because the traits have been redefined multiple times in the
inheritance chain, we will look for the first one, which declares the attribute (the
top one). The motivation behind this is to find the first class definition which can
potentially act as a standalone iterator itself. After we have found all the nodes
which should be considered regarding a function call, the checker will analyse the
class definitions and determine which iterator traits are missing. When we say
“missing”, it means that we are interested in what are the traits which are not
declared in this exact class definition. The traits can be present without having
to declare them: this is the case if the class inherits these attributes from a base
class. After we have collected the missing type aliases, a warning will be triggered
for the user to see what should be declared on top of the existing aliases. Using
the class we declared earlier (CustomIterator) with std::swap_ranges, we will
get the following warning:

test_iterator.cc:36:7: warning: Type seems to be an iterator used
by std::swap_ranges. The following type aliases should be
declared additionally within the class:

pointer
reference

In this case, the pointer and reference attributes were missing. By analysing
the class definition further, it could be determined, or at least suggested how the
iterator traits should be declared, but for now triggering a warning like the one
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above is a limitation of our tool. Now let us see, what it means regarding the
separate problem categories we defined:

Matching the base or the derived class If the base class is missing some
of these type aliases, it could be useful to add them, since once we have done it,
all the newly defined deriving classes would inherit all the iterator traits, which
means they could be handled as an iterator by themselves. If we have matched the
deriving class, declaring the traits can be redundant: if the base class (or in case
of multiple inheritance, or a longer inheritance chain one of the base classes) also
defines these attributes, the type alias in the deriving class will hide all the previous
declarations, avoiding name collisions. However, by doing so the class definition
could be much more readable since we would have all the aliases declared in one
place, and it could be understood easily without investigating the parent-child
relationships further. Of course, if none of the attributes are missing either in the
base, or in the derived class, no warning will be triggered.

Matching function calls which would not compile We have mentioned ear-
lier that in a number of cases it is mandatory to have all the traits defined properly,
since they are needed by std::iterator_traits. It is possible for a custom itera-
tor class to possesses all the values required via inheritance: in this case, triggering
the warning could be relevant to have all the aliases declared in one place (see the
case of base-derived classes). Our warnings will have one more advantage in case of
calls which could not compile at all: it can give a hint, which traits are missing. As
we could see earlier, it is possible that the error message triggered by the compiler
only tells us that the substitution of the template arguments failed. In this case,
our warning would highlight which attributes seem to be missing. However, it will
not consider the attributes inherited, but a warning like this could be a motivation
to define the class in a more comprehensible, readable way – otherwise these warn-
ings would count as false positives, but since readability is one of the main aspect
we follow, these warnings could be relevant also.

3.2.2. Analysing possible iterators

The last problem category which we wanted to cover consists of custom iterator
candidates, which have the possibility – based on our conditions – to be treated
as iterators. We can not be as confident as we were in case of the previous cases,
regarding the false-positive results, since our conditions are much less strict for
this category. The goal here also would be to provide readability and compatibility
with the standard library, but the scope of our matchers will be much wider. We
do not limit our findings to classes defining type aliases which could be interpreted
as iterator traits, or to classes whose instances are being used as parameters for
functions of the std namespace.

Our matching logic here will be similar to what is known as duck typing [4].
We will find and mark classes which have similar structure to an STL compatible
iterator. The similarity in this case will not be defined by the members, types, etc.
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defined by the class, but the member methods and operators overloaded by it. As
we have seen in our previous examples, an iterator has to overload a given set of
operators to be treated as a valid one. The set is determined by the type of the
iterator - this is the same type which is stored as the value of iterator_category.
As we have described earlier, all iterators must belong to one of the five iterator
categories, which defines all the capabilities expected from the iterator.

Table 1. Iterator categories and their operations.

Output *p=, ++
Input *p, ++, ->, ==, !=

Forward *p=, (+Input iterator)
Bidirectional –, (+Forward iterator)

Random Access [], +, -, +=, -=, <, >, <=, >= (+Bidirectional iterator)

In Table 1, we can see all the required methods for each iterator categories.
Based on that, if we see a class which implements all the operations needed for a
forward iterator for example, we can mark it as a potential forward iterator. After
we have done that, we can generate a warning that this class could be a potential
iterator, and we can give a hint what values could be used for the iterator traits (in
this example, iterator_category would get the value forward_iterator_tag).
Similarly to the previous case, if all the traits have been defined by the class or
one of its parents, the warning will not be issued. The reason why we match for
the operations defined instead of the type aliases declared is, that – as we have
shown earlier – in several cases the iterator traits are not needed at all by the
function which takes the pointer as an argument, but this is not the case with the
operator overloads. Missing a mandatory operator would result in a compilation
error, hence relying on them would be useful. Also, the operators to overload (for
example the unary *) are specific enough to match for them:

struct IteratorCandidateA
{

IteratorCandidateA& operator++() { ... }
IteratorCandidateA operator++(int n) { ... }
int& operator*() { ..}
int* operator->() { ... }
bool operator==(const IteratorCandidateA &rhs) { ... }
bool operator!=(const IteratorCandidateA &rhs) { ... }

};

The example shows us a candidate for the category forward iterator. If we find a
candidate which defines all the operations needed by a category, which is a superset
of another one (regarding the operators overloaded), then we will warn for it using
the iterator category which would provide the most features.
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4. Evaluation
To verify our three different approaches we have defined so far, we have executed
the checker with all the different AST matchers in it on the LLVM project. LLVM
is an open source compiler infrastructure, including Clang and also clang-tidy,
the tool which we implemented our checkers in. Because of its nature, LLVM
implements a number of custom iterator classes, making it a good candidate for
our analysis. After analysing the results, filtering out all the duplicates caused
by the same findings in header files included in multiple translation units, we had
proper matches for all three categories, without any false-positive results.

In total, we have found examples for deprecated std::iterator usage in case
of 52 class definitions, 1 custom iterator class whose instance had been used as
an argument of a function defined in the Standard Template Library (and whose
definition does not contain all the possibly required iterator traits). For the last
category, we have identified a total of 12 iterator-like classes – class definitions
which seem to be iterators based on the operator overloads they implemented.

After analysing the results further, we came to the conclusion that all the
findings are valid, there are no false-positive matches among them. Based on these
facts, it is proven that our tool can be used as a tool for modernizing the source
code, and for updating the code base in a way, that future incompatibilities with
the standard library can be avoided.

5. Future work
We have shown that our checker can be a useful tool when modernizing the source
code, however, the matcher logics could be further refined, to find more accurate
results. A refinement like this would be in case of the third problem category to not
only match for the operator overloads (by name), but to consider the parameters
and return types of these overloads also. However, in case of asterisk (*) operators
the void return values are checked even now, to avoid false-positive findings for
output iterators.

We have mentioned earlier, that in a number of cases rejuvenation of the code
could be done automatically – we have all the information available which is needed
to insert all the type aliases which are required to define the iterator traits: we can
extract the proper types from the template arguments of std::iterator when de-
riving from it (in case of the first problem category), or we could define the missing
attributes by analysing the return values and parameter types of the overloaded
operators in case of the second and third problem categories.

In our example run, we have not faced any false-positive matches. However, ear-
lier we have shown that finding faulty results might be possible. One improvement
to avoid these findings would be to filter only for the members of the algorithm part
of the STL, instead of matching for calls of functions defined in the std names-
pace. Also, cases when class definitions are hidden to the static analyser by macro
definitions should be considered too.
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6. Conclusion
Languages and their standard libraries evolve over time. For instance, C++17
provides much more constructs than C++98. On the other hand, some of the
language elements become deprecated sometimes, C++98’s auto_ptr is a typical
obsolete component of the C++ Standard Template Library.

C++17 standard made iterator base class deprecated. However, its usage was
common and safe, there was some reasons to make this class template obsolete.
This class template is widely used when one develops a new iterator to specify the
traits.

We implemented a static analysis method to emit warning if the usage of
iterator base class can be found. Moreover, we presented an approach how cus-
tom iterators can be found. Our approaches provide hint how to improve the source
code. Our method gives feedback if any trait is missing from iterator-like class. We
have implemented a tool for the approaches based on the Clang compiler infras-
tructure. We evaluated our solution with real-world software artifacts, the result
is promising.
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Abstract. In this paper, we discuss the Wedderburn decompositions of the
semisimple group algebras of all groups up to order 120. More precisely, we
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1. Introduction
Let G be a finite group and Fp be a finite field for a prime p having characteristics
p. Let p be such that p ∤ |G|. This means that the group algebra FpG is semisimple
(see [13]). Due to various applications of units of group algebras (for example,
in cryptography [6, 14], in coding theory [7], in isomorphism problems and explo-
ration of Lie properties of group algebras [2] etc.), the problem of computing the
Wedderburn decompositions (or unit groups) of finite semisimple group algebras is
an extensively studied problem (see [1, 3, 5, 9, 11, 12, 15, 19, 21] and the references
therein).

One of the major steps in the direction of computation of Wedderburn decom-
positions (WDs) of finite semisimple group algebras was taken in [1]. The paper [1]
gave an algorithm to compute the WDs of the semisimple group algebras of all
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metabelian groups. We recall that a finite group G is metabelian if its derived
subgroup is abelian. Consequently, the entire research in this direction is shifted
on to the computation of WDs of semisimple group algebras of non-metabelian
groups. Mittal et al. [17] computed the WDs of semisimple group algebras of all
non-metabelian groups up to order 72. Furthermore, Mittal et al. [16, 18, 22] also
computed the WDs of all semisimple group algebras of all non-metabelian groups
of order 108 and some non-metabelian groups of order 120. Since, the WDs of
semisimple group algebras of the symmetric groups Sn can be easily computed
by employing the representation theory (see [8]), the papers [18, 22] completed
the task of computation of WDs of group algebras of non-metabelian groups of
order 120.

Using [20] we note that the only non-metabelian groups of order less than 120
that are not yet studied in the literature are those of order 96. Hence, the main
objective of this paper is to complete the task of computation of WDs of group
algebras of 26 non-metabelian groups of order 96. Consequently, with this paper,
the computation of the WDs of semisimple group algebras of all groups up to order
120 will be complete. From the WD, the unit group can be computed straight-
forwardly.

Organization of the paper. Section 2 contains certain preliminaries that play
an important role in the computation of WDs. Our main results related to WDs of
semisimple group algebras are discussed in Section 3. We give the complete details
of computation of WDs only for a few groups among the 26 groups. This is because
for the remaining groups, the details can be generated analogously. We conclude
the paper in the last section.

2. Preliminaries
Let the exponent of the group G be denoted by e and let the primitive eth root of
unity be denoted by ε. In our work, we use the notations of [4]. Let F denote a
finite field. Let us define

IF = {ω | ε 7→ εω is an automorphism of F(ε) over F}.

It can be noted that the Galois group Gal
(
F(ε),F

)
is a cyclic group. This guarantees

the existence of an s ∈ Z∗
e fulfilling λ(ε) = εs for any λ ∈ Gal

(
F(ε),F

)
. More

specifically, IF is a subgroup of the group Z∗
e (multiplicative). Let g be a p-regular

element of the group G. Let us define

γg =
∑

h∈C(g)

h,

where C(g) denotes the set of all those elements of G that are conjugate to the
p-regular element g. For γg, let the cyclotomic F-class of be represented by

S(γg) = {γgω | ω ∈ IF}.
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Let J(FG) represent the Jacobson radical of the group algebra FG.
Next, we discuss two important results of [4].

Theorem 2.1. The number of cyclotomic F-classes in G is equal to the number
of simple components of FG/J(FG).

Theorem 2.2. Let the number of cyclotomic F-classes in G be π and let ε be
primitive eth root of unity, where e is the exponent of G. Let S1, . . . , Sπ be the
simple components of the center of FG/J(FG) and let Y1, . . . , Yπ be the cyclotomic
F-classes in G. Then, |Yi| = [Si : F] for each 1 ≤ i ≤ π, after suitable ordering of
the indices.

We remark that both the Theorems 2.1 and 2.2 will be very crucial for our main
results. Next, we discuss a significant result that shows that in the WD of a finite
group algebra FG/J(FG), F is always a Wedderburn component (see [17]).

Lemma 2.3. Let Σ1 and Σ2 be two algebras over F having finite dimension. Let
Σ2 be semisimple and let φ : Σ1 → Σ2 be a homomorphism that is also surjective.
Then, there holds

Σ1/J(Σ1) ∼= Σ2 + Σ3,

where Σ3 is an another semisimple F-algebra.

Suppose that J(FG) = 0. Then Lemma 2.3 confirms that F is always a simple
component of FG. Next, we recall a result from [10] that explicitly characterizes
the set IF.

Theorem 2.4. Let q = pr for a positive integer r and a prime p and let Fq be a
finite field. Let e be such that gcd(e, q) = 1 and let ε be the primitive eth root of
unity. Let o(q) be the order of q modulo e. Then we have

IFq
= {1, q, . . . , qo(q)−1} mod e.

Further, we recall two important theorems from [13].

Theorem 2.5. Let R be a commutative ring and let RG be a semisimple group
algebra. Then we have

RG ∼= R
(
G/G′) ⊕ ∆(G, G′).

Here G′ is the derived subgroup of G, R
(
G/G′) is the sum of all commutative simple

components and ∆(G, G′) is the sum of all non-commutative simple components of
RG.

Theorem 2.6. Let RG be a semisimple group algebra and H be a normal subgroup
of G. Then

RG ∼= R
(
G/H

)
⊕ ∆(G, H).

Here ∆(G, H) represents the left ideal of RG and it is generated by the set {h − 1 :
h ∈ H}.
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We remark that through Theorem 2.5 one can obtain all the possible commu-
tative simple components of the group algebra FqG. Further, Theorem 2.6 relates
WD of the group algebra Fq(G/H) with that of FqG for a normal subgroup H of
G. Finally, we end this section by invoking an important result from [3]. This
result will be very crucial in unique computation of the WD for any semisimple
group algebra.

Theorem 2.7. Let F be a finite field of characteristics p. Let Σ = ⊕t
s=1Mns

(Fs) be
a summand of a semisimple group algebra FG, where Fs denotes a finite extension
of F for each s. Then p ∤ ns for every 1 ≤ s ≤ t.

3. WDs of non-metabelian groups of order 96
In this section, we discuss all the non-metabelian groups of order 96 along with
their WDs. Up to isomorphism, we note that there are 231 groups of order 96 and
26 of them are non-metabelian. Among these 26 groups, 11 have exponent 24 and
rest all have exponent 12.

3.1. Non-metabelian groups of order 96 having exponent 24
The non-metabelian groups of order 96 having exponent 24 are as follows:

1. G1 = A4 ⋊ C8
2. G2 = SL(2, 3) ⋊ C4
3. G3 = SL(2, 3) ⋊ C4
4. G4 = C2 × (SL(2, 3) · C2)
5. G5 = C2 × GL(2, 3)
6. G6 = (C2 × SL(2, 3)) ⋊ C2

7. G7 = (SL(2, 3) · C2) ⋊ C2
8. G8 = (((C4 × C2)⋊C2)⋊C3)⋊C2
9. G9 = (((C4 × C2)⋊C2)⋊C3)⋊C2

10. G10 = ((C8 × C2) ⋊ C2) ⋊ C3
11. G11 = ((C4 × C4) ⋊ C3) ⋊ C2).

3.2. Wedderburn decomposition of FqG1 and some other
group algebras

The presentation of G1 = A4 ⋊ C8 is as follows:

⟨ x, y, z, w, t, u | x2y−1, [y, x], [z, x], [w, x]w−1, [t, x]u−1t−1,

[u, x]u−1t−1, y2z−1, [z, y], [w, y], [t, y], [u, y], z2, [w, z],
[t, z], [u, z], w3, [t, w]u−1t−1, [u, w]t−1, t2, [u, t], u2 ⟩.

This group has 20 conjugacy classes as shown in the next table.

R e x y z w t xy xz xt yz yw yt zw zt xyz

S 1 6 1 1 8 3 6 6 6 1 8 3 8 3 6
O 1 8 4 2 3 2 8 8 8 4 12 4 6 2 8
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xyt xzt yzw yzt xyzt

6 6 8 3 6
8 8 12 4 8

where R, S and O represent representative, size and order of conjugacy classes,
respectively. From the above discussion, we conclude that the exponent of G1 is
24. Also G′

1
∼= A4 with G1/G′

1
∼= C8. Since p > 3, we have gcd(|G1|, p) = 1, and

so J(FqG1) = 0.

Theorem 3.1. The Wedderburn decomposition of FqG1 for q = pk, p > 3 is as
follows:

values of p and k Wedderburn decomposition
k even or p ≡ {1, 17} mod 24 and k odd F4

q ⊕ M2(Fq)4 ⊕ M3(Fq)8

pk ≡ {5, 13} mod 24 and k odd F4
q ⊕ F2

q2 ⊕ M2(Fq)4 ⊕ M3(Fq)4

⊕M3(Fq2)2

pk ≡ {7, 23} mod 24 and k odd or F2
q ⊕ F3

q2 ⊕ M2(Fq)2 ⊕ M3(Fq)2⊕
pk ≡ {11, 19} mod 24 and k odd M2(Fq2) ⊕ M3(Fq2)3

Proof. As FqG1 is semisimple, we have FqG1 ∼= ⊕t
r=1Mnr (Fr), t ∈ Z, where for

each r, Fr is a finite extension of Fq, nr ≥ 1. Incorporating Lemma 2.3 in above
to obtain

FqG1 ∼= Fq ⊕t−1
r=1 Mnr

(Fr). (3.1)
For k even and any prime p > 3, pk ≡ 1 mod 24. This means |S(γg)| = 1 for
each g ∈ G1 as IF = {1} (see Theorem 2.4). Hence, (3.1) and Theorems 2.1, 2.2
imply that FqG1 ∼= Fq ⊕19

r=1 Mnr
(Fr). This with G1/G′

1
∼= C8 and Theorem 2.5

leads to (with suitable rearrangement of indexes) FqG1 ∼= F8
q ⊕12

r=1 Mnr
(Fr) with

88 =
∑12

r=1 n2
r, nr ≥ 2, which gives the only possible choice (24, 38) (here ab means

(a, a, . . . , b times)) for values of n′
rs. Therefore, the required WD is

FqG1 ∼= F8
q ⊕ M2(Fq)4 ⊕ M3(Fq)8. (3.2)

Now, we assume that k is odd. We discuss this possibility in the following 4 cases:
Case 1. p ≡ 1 mod 24 or pk ≡ 17 mod 24. In this case, we have |S(γg)| = 1 for
each g ∈ G1 as IF = {1} or IF = {1, 17}. Hence, WD is given by (3.2).
Case 2. pk ≡ 5 mod 24 or pk ≡ 13 mod 24. In this case, we have S(γx) =
{γx, γxz}, S(γxy) = {γxy, γxyz}, S(γxt) = {γxt, γxzt}, S(γxyt) = {γxyt, γxyzt},
and S(γg) = {γg} for the remaining representatives g of conjugacy classes. Using
Theorems 2.1 and 2.2 and (3.1), we get FqG1 ∼= Fq ⊕11

r=1 Mnr
(Fq) ⊕15

r=12 Mnr
(Fq2).

Applying Theorem 2.5 with G1/G′
1

∼= C8 and FqC8 ∼= F4
q ⊕ F2

q2 to obtain

FqG1 ∼= F4
q ⊕ F2

q2 ⊕8
r=1 Mnr (Fq) ⊕10

r=9 Mnr (Fq2)

with 88 =
8∑

r=1
n2

r + 2
10∑

r=9
n2

r, nr ≥ 2,
(3.3)

58



Annal. Math. et Inf. Computation of the Wedderburn decomposition . . .

which gives 3 possibilities for values of n′
r namely (38, 22), (22, 36, 2, 3) and (24, 36).

For uniqueness, consider a normal subgroup H1 = ⟨t, u⟩ of G1 with K1 = G1/H1 ∼=
C3 ⋊C8. It can be verified that K1 has 12 conjugacy classes as shown in the table
below.

R e x y z w xy xz yz yw zw xyz yzw

S 1 3 1 1 2 3 3 1 2 2 3 2
O 1 8 4 2 3 8 8 4 12 6 8 12

Also K ′
1

∼= C3 with K1/K ′
1

∼= C8. For the representatives k of K1, we have S(γx) =
{γx, γxz}, S(γxy) = {γxy, γxyz}, S(γk) = {γk} for the remaining representatives.
Therefore, employ Theorems 2.1, 2.2 and 2.5 to obtain FqK1 ∼= F4

q ⊕ F2
q2 ⊕4

r=1

Mtr (Fq) with 16 =
∑4

r=1 t2
r. This gives us the only possibility (24) for value of t′

rs.
Next, incorporate Theorem 2.6 in (3.3) to deduce that (24, 36) is the correct choice
for n′

rs and therefore, we have FqG1 ∼= F4
q ⊕F2

q2 ⊕ M2(Fq)4 ⊕ M3(Fq)4 ⊕ M3(Fq2)2.

Case 3. pk ≡ 7 mod 24 or pk ≡ 23 mod 24. In this case, we have
S(γx) = {γx, γxyz}, S(γy) = {γy, γyz}, S(γxy) = {γxy, γxz}, S(γxt) = {γxt, γxyzt},
S(γxyt) = {γxyt, γxzt}, S(γyw) = {γyw, γyzw}, S(γyt) = {γyt, γyzt}, S(γg) = {γg}
for the remaining representatives g of conjugacy classes. Using Theorems 2.1, 2.2
and (3.1), we get FqG1 ∼= Fq ⊕5

r=1 Mnr
(Fq) ⊕12

r=6 Mnr
(Fq2). Applying Theorem 2.5

with G1/G′
1

∼= C8 and FqC8 ∼= F2
q ⊕ F3

q2 in this to obtain

FqG1 ∼= F2
q ⊕ F3

q2 ⊕4
r=1 Mnr

(Fq) ⊕8
r=5 Mnr

(Fq2)

with 88 =
4∑

r=1
n2

r + 2
8∑

r=5
n2

r, nr ≥ 2
(3.4)

which gives three possibilities for values of n′
rs namely (34, 22, 32), (22, 32, 2, 33)

and (24, 34). Further, we can verify that for the representatives k of K1, we have
S(γx) = {γx, γxyz}, S(γy) = {γy, γyz}, S(γxy) = {γxy, γxz}, S(γyw) = {γyw, γyzw}
and S(γk) = {γk} for the remaining representatives. This with Theorems 2.1,
2.2 and 2.5 leads to FqK1 ∼= F2

q ⊕ F3
q2 ⊕2

t=1 Mtr
(Fq) ⊕ Mt3(Fq2), tr ≥ 2, tr ∈

Z with 16 =
∑2

r=1 t2
r + 2t2

3, which gives the only choice (23) for t′
rs. Therefore,

(3.4) and Theorem 2.6 imply that (22, 32, 2, 33) is the correct choice for n′
rs. So,

we get FqG1 ∼= F2
q ⊕ F3

q2 ⊕ M2(Fq)2 ⊕ M3(Fq)2 ⊕ M2(Fq2) ⊕ M3(Fq2)3.

Case 4. pk ≡ 11 mod 24 or pk ≡ 19 mod 24. In this case, we have
S(γx) = {γx, γxy}, S(γy) = {γy, γyz}, S(γxz) = {γxz, γxyz}, S(γxt) = {γxt, γxyt},
S(γxzt) = {γxzt, γxyzt}, S(γyw) = {γyw, γyzw}, S(γyt) = {γyt, γyzt}, S(γg) = {γg}
for the remaining representatives g. Using Theorems 2.1 and 2.2 and (3.1), we get
FqG1 ∼= Fq ⊕5

r=1 Mnr
(Fq) ⊕12

r=6 Mnr
(Fq2). Further, we can easily see that rest part

of this case is similar to Case 3.

Next, we remark that for the groups Gi, where 2 ≤ i ≤ 8 and i = 10, the
Wedderburn decomposition of their group algebras can be computed by following
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the steps of Theorem 3.1 (see Tables 1–8). Hence, we are omitting their proofs
from the paper.

Table 1. Wedderburn decomposition of FqG2.

values of p and k Wedderburn decomposition
k even or p ≡ {1, 17} mod 24 and k odd F4

q ⊕ M2(Fq)6 ⊕ M3(Fq)4 ⊕ M4(Fq)2

pk ≡ {5, 13} mod 24 and k odd F4
q ⊕ M2(Fq)2 ⊕ M3(Fq)4 ⊕ M4(Fq)2

⊕M2(Fq2)2

pk ≡ {7, 23} mod 24 and k odd or F2
q ⊕ Fq2 ⊕ M2(Fq)4 ⊕ M3(Fq)2⊕

pk ≡ {11, 19} mod 24 and k odd M4(Fq)2 ⊕ M2(Fq2) ⊕ M3(Fq2)

Table 2. Wedderburn decomposition of FqG3.

values of p and k Wedderburn decomposition
k even or p ∈ {1, 5, 13, 17} mod 24 and k odd F4

q ⊕ M2(Fq)6 ⊕ M3(Fq)4

⊕M4(Fq)2

pk ≡ {7, 11, 19, 23} mod 24 and k odd F2
q ⊕ Fq2 ⊕ M2(Fq)2 ⊕ M3(Fq)2⊕

M2(Fq2)2 ⊕ M3(Fq2) ⊕ M4(Fq2)

Table 3. Wedderburn decomposition of FqG4.

values of p and k Wedderburn decomposition
k even or p ∈ {1, 7, 17, 23} mod 24 and k odd F4

q ⊕ M2(Fq)6 ⊕ M3(Fq)4

⊕M4(Fq)2

pk ≡ {5, 11, 13, 19} mod 24 and k odd F4
q ⊕ M2(Fq)2 ⊕ M3(Fq)4⊕

M4(Fq)2 ⊕ M2(Fq2)2

Table 4. Wedderburn decomposition of FqG5.

values of p and k Wedderburn decomposition
k even or p ∈ {1, 11, 17, 19} mod 24 and k odd F4

q ⊕ M2(Fq)6 ⊕ M3(Fq)4

⊕M4(Fq)2

pk ≡ {5, 7, 13, 23} mod 24 and k odd F4
q ⊕ M2(Fq)2 ⊕ M3(Fq)4⊕

M4(Fq)2 ⊕ M2(Fq2)2
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Table 5. Wedderburn decomposition of FqG6.

values of p and k Wedderburn decomposition
k even or p ∈ {1, 7, 13, 19} mod 24 and k odd F4

q ⊕ M2(Fq)2 ⊕ M3(Fq)4

⊕M4(Fq)3

pk ≡ {5, 7, 13, 23} mod 24 and k odd F4
q ⊕ M2(Fq)2 ⊕ M3(Fq)4⊕

M4(Fq) ⊕ M4(Fq2)

Table 6. Wedderburn decomposition of FqG7.

values of p and k Wedderburn decomposition
k even or p ∈ {1, 11, 13, 23} mod 24 and k odd F4

q ⊕ M2(Fq)2 ⊕ M3(Fq)4

⊕M4(Fq)3

pk ≡ {5, 7, 13, 23} mod 24 and k odd F4
q ⊕ M2(Fq)2 ⊕ M3(Fq)4⊕

M4(Fq) ⊕ M4(Fq2)

Table 7. Wedderburn decomposition of FqG8.

values of p and k Wedderburn decomposition
k even or p ∈ {1, 11, 13, 23} mod 24 and k odd F4

q ⊕ M2(Fq)2 ⊕ M3(Fq)4

⊕M4(Fq)3

pk ≡ {5, 7, 17, 19} mod 24 and k odd F4
q ⊕ M2(Fq)2 ⊕ M3(Fq)4⊕

M4(Fq) ⊕ M4(Fq2)

Table 8. Wedderburn decomposition of FqG10.

values of p and k Wedderburn decomposition
k even or p ≡ 1 mod 24 and k odd F12

q ⊕ M2(Fq)12 ⊕ M3(Fq)4

pk ∈ {7, 19} mod 24 and k odd F6
q ⊕ F3

q2 ⊕ M3(Fq)2 ⊕ M3(Fq2) ⊕ M2(Fq2)6

pk ≡ 13 mod 24 and k odd F12
q ⊕ M3(Fq)4 ⊕ M2(Fq2)6

pk ≡ 17 mod 24 and k odd F4
q ⊕ F4

q2 ⊕ M3(Fq)4 ⊕ M2(Fq)4 ⊕ M2(Fq2)4

pk ∈ {11, 23} mod 24 and k odd F2
q ⊕ F5

q2 ⊕ M3(Fq)2 ⊕ M3(Fq2) ⊕ M2(Fq2)6

pk ≡ 5 mod 24 and k odd F4
q ⊕ F4

q2 ⊕ M3(Fq)4 ⊕ M2(Fq2)6

3.3. Wedderburn decomposition of FqG11

It is to be noted that for the group algebra FqG11, WD can not be uniquely
characterize only by using Theorems 2.5 and 2.6. We also need Theorem 2.7 for
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its unique characterization. Consequently, we separately discuss the WD of FqG11
in the following theorem. We have G11 = ((C4 × C4) ⋊ C3) ⋊ C2). This group has
10 conjugacy classes.

R e x y z t xz xt zw zt xzt

S 1 12 32 3 3 12 12 3 6 12
O 1 2 3 4 2 8 4 4 4 8

Clearly, the exponent of G11 is 24 and G′
11

∼= (C4 × C4) ⋊ C3 with G11/G′
11

∼= C2.

Theorem 3.2. The Wedderburn decomposition of FqG11 for q = pk, p > 3 is

values of p and k Wedderburn decomposition
k even or p ∈ {1, 5, 13, 17} mod 24 and k odd F2

q ⊕ M2(Fq) ⊕ M3(Fq)6 ⊕ M6(Fq)
pk ≡ {7, 11, 19, 23} mod 24 and k odd F2

q ⊕ M2(Fq) ⊕ M3(Fq)2 ⊕ M6(Fq)
⊕M3(Fq2)2

Proof. For k even and any prime p > 3, pk ≡ 1 mod 24. This means |S(γg)| = 1
for each g ∈ G11 and hence, (3.1) and Theorems 2.1, 2.2 imply that FqG11 ∼=
Fq ⊕9

r=1 Mnr
(Fr). This with G11/G′

11
∼= C2 and Theorem 2.5 leads to FqG11 ∼=

F2
q ⊕8

r=1 Mnr
(Fr) with 94 =

∑8
r=1 n2

r, nr ≥ 2 which gives four possible choices for
n′

rs as (25, 3, 4, 7), (23, 3, 43, 5), (22, 34, 52) and (2, 36, 6). In order to seek unique-
ness, consider a normal subgroup H11,1 = ⟨t, u⟩ of G11 with K11,1 = G11/H11,1 ∼=
S4. From [9] and Theorem 2.6, we conclude that (22, 34, 52) and (2, 36, 6) are the
only required possibility for n′

rs. Further, using Theorem 2.7, we derive that the
required choice for nr’s is (2, 36, 6). Therefore, we have the result. Next, we assume
that k is odd. We discuss this possibility in the following 2 cases:

Case 1. pk ≡ {1, 5, 13, 17} mod 24. In this case, WD is same as in the case of k
even as |S(γg)| = 1 for each representative g of conjugacy classes.

Case 2. pk ≡ {7, 11, 19, 23} mod 24. In this case, we have S(γz) = {γz, γzw},
S(γxz) = {γxz, γxzt}, S(γg) = {γg}, for the remaining representatives g of con-
jugacy classes. Using Theorems 2.1, 2.2 and (3.1), we reach to FqG11 ∼= Fq ⊕5

r=1
Mnr

(Fq)⊕7
r=6 Mnr

(Fq2). Now incorporate Theorem 2.4 to obtain FqG11 ∼= F2
q ⊕4

r=1
Mnr

(Fq) ⊕6
r=5 Mnr

(Fq2) with 94 =
∑4

r=1 n2
r + 2

∑6
r=5 n2

r, nr ≥ 2. Further, again
consider the normal subgroup H11,1. This with Theorem 2.6 yields FqG11 ∼=
F2

q ⊕ M2(Fq) ⊕ M3(Fq)2 ⊕ Mn1(Fq) ⊕3
r=2 Mnr

(Fq2), 72 = n2
1 + 2

∑3
r=2 n2

r, nr ≥ 2.
The possible choices for n′

rs satisfying this are (2, 3, 5) and (6, 3, 3). By the same
logic given for the case when k is even, we derive that (6, 3, 3) is the required
choice.

3.4. Wedderburn decomposition of FqG9

Next, we discuss the WD of FqG9 (see Table 9). We mention that, unfortunately for
this particular group, our theory is not enough to uniquely characterize the WD of
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its corresponding group algebra when pk ∈ {5, 13} mod 24. We obtain that WD is
one of the following two possibilities: F4

q⊕M2(Fq)2⊕M3(Fq)4⊕M4(Fq2)⊕M2(Fq2)2;
F4

q ⊕ M2(Fq)4 ⊕ M3(Fq)4 ⊕ M2(Fq2) ⊕ M4(Fq2). Consequently, we make use of
computer package GAP in this case for uniquely determine WD.

Table 9. Wedderburn decomposition of FqG9.

values of p and k Wedderburn decomposition
k even or p ∈ {1, 17} mod 24 and k odd F4

q ⊕ M2(Fq)6 ⊕ M3(Fq)4 ⊕ M4(Fq)2

pk ∈ {5, 13} mod 24 and k odd F4
q ⊕ M2(Fq)2 ⊕ M3(Fq)4 ⊕ M4(Fq2)

⊕M2(Fq2)2

pk ∈ {7, 11, 19, 23} mod 24 and k odd F4
q ⊕ M2(Fq)2 ⊕ M3(Fq)4 ⊕ M2(Fq2)2

⊕M4(Fq2)

This completes the computation of WDs of semisimple group algebras of non-
metabelian groups of order 96 having exponent 24. Next, we proceed to compute
the WDs of semisimple group algebras of non-metabelian groups of order 96 having
exponent 12.

3.5. Non-metabelian groups of order 96 having exponent 12
1. G12 = ((C4 × C2) ⋊ C4) ⋊ C3
2. G13 = A4 ⋊ Q8
3. G14 = C4 × S4
4. G15 = (C4 × A4) ⋊ C2
5. G16 = (C2 × C2 × A4) ⋊ C2
6. G17 = (C2 × C2 × Q8) ⋊ C3
7. G18 = ((C2 × C2 × C2) ⋊ (C2 × C2)) ⋊ C3
8. G19 = ((C2 × C2 × C2) ⋊ (C2 × C2)) ⋊ C3
9. G20 = ((C2 × Q8) ⋊ C2) ⋊ C3

10. G21 = C2 × (A4 ⋊ C4)
11. G22 = C2 × C2 × S4
12. G23 = ((C2 × C2 × C2 × C2) ⋊ C3) ⋊ C2
13. G24 = C4 × SL(2, 3)
14. G25 = C2 × C2 × SL(2, 3)
15. G26 = C2 × (((C4 × C2) ⋊ C2) ⋊ C3).

3.6. Wedderburn decomposition of FqG12 and some other
group algebras

The presentation of G12 = ((C4 × C2) ⋊ C4) ⋊ C3 is

⟨ x, y, z, w, t, u | x3, [y, x]t−1w−1z−1y−1, [z, x]u−1t−1y−1, [w, x]u−1t−1w−1,

[t, x]u−1w−1, [u, x], y2t−1w−1, [z, y]u−1, [w, y], [t, y], [u, y], z2w−1,
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[w, z], [t, z], [u, z], w2, [t, w], [u, w], t2, [u, t], u2 ⟩.
This group has 12 conjugacy classes as shown in the table below.

R e x y w t u x2 xw yz yw yt x2y

S 1 16 6 3 3 1 16 16 6 6 6 16
O 1 3 4 2 2 2 3 6 4 4 4 6

From above discussion, we see that exponent of G12 is 12. Also G′
12

∼= (C4×C2)⋊C4
with G12/G′

12
∼= C3. Since p > 3, we have gcd(|G12|, p) = 1, and so J(FqG12) = 0.

We are now ready to give the WD and unit group of FqG12 for p > 3.

Theorem 3.3. The WD with unit group of FqG12 for q = pk, p > 3 is as follows:

values of p and k Wedderburn decomposition
k even or p ≡ 1 mod 12 and k odd F3

q ⊕ M2(Fq)3 ⊕ M3(Fq)5 ⊕ M6(Fq)
pk ≡ 5 mod 12 and k odd Fq ⊕ Fq2 ⊕ M2(Fq) ⊕ M3(Fq)5

⊕M6(Fq) ⊕ M2(Fq2)
pk ≡ 7 mod 12 and k odd F3

q ⊕ M2(Fq)3 ⊕ M3(Fq)
⊕M6(Fq) ⊕ M3(Fq2)2

pk ≡ 11 mod 12 and k odd Fq ⊕ Fq2 ⊕ M2(Fq) ⊕ M3(Fq)
⊕M6(Fq) ⊕ M2(Fq2) ⊕ M3(Fq2)2

Proof. As FqG12 is semisimple, we have FqG12 ∼= ⊕t
r=1Mnr

(Fr), t ∈ Z, where for
each r, Fr is a finite extension of Fq, nr ≥ 1. As in Theorem 3.1, we can write

FqG12 ∼= Fq ⊕t−1
r=1 Mnr (Fr). (3.5)

For k even and any prime p > 3, pk ≡ 1 mod 12. This means |S(γg)| = 1 for
each g ∈ G12 as IF = {1}. Hence, (3.5) and Theorems 2.1 and 2.2 imply that
FqG12 ∼= Fq ⊕11

r=1 Mnr
(Fr). This with G12/G′

12
∼= C3 and Theorem 2.5 leads to

(with suitable rearrangement of indexes)

FqG12 ∼= F3
q ⊕9

r=1 Mnr
(Fr) with 93 =

9∑

r=1
n2

r, nr ≥ 2 (3.6)

which gives four possible choices for n′
rs namely (2, 2, 2, 2, 2, 2, 2, 4, 7), (2, 2, 2, 2, 2, 4,

4, 4, 5), (2, 2, 2, 2, 3, 3, 3, 5, 5), and (2, 2, 2, 3, 3, 3, 3, 3, 6). We consider the normal
subgroup H1 = ⟨wu, t⟩ ∼= C2 × C2 with G12/H1 ∼= SL(2, 3). From [17], we know
that WD of FqG12/H1 contains M2(Fq) as well as M3(Fq). So, Theorem 2.6 implies
that the choices (2, 2, 2, 2, 2, 2, 2, 4, 7) and (2, 2, 2, 2, 2, 4, 4, 4, 5) are no longer in
race. For uniqueness, we consider another normal subgroup H2 = ⟨u⟩ with K2 =
G12/H2 ∼= (C4 × C4) ⋊ C3. Using [1], we note that FqK2 ∼= F3

q ⊕ M3(Fq)5. This
with Theorem 2.6 imply that (2, 2, 2, 3, 3, 3, 3, 3, 6) is the only possibility for n′

rs.
Therefore, we have

FqG12 ∼= F3
q ⊕ M2(Fq)3 ⊕ M3(Fq)5 ⊕ M6(Fq). (3.7)

64



Annal. Math. et Inf. Computation of the Wedderburn decomposition . . .

Next, we assume that k is odd. We discuss this possibility in the following 4 cases:

Case 1. p ≡ 1 mod 12. In this case, we have |S(γg)| = 1 for each g ∈ G12 as
IF = {1}. Hence, Wedderburn decomposition is given by (3.7).

Case 2. pk ≡ 5 mod 12. In this case, we have S(γx) = {γx, γx2}, S(γxw) =
{γxw, γx2y}, S(γg) = {γg} for the remaining representatives g of conjugacy classes.
Using Theorems 2.1, 2.2 and (3.5), we get FqG12 ∼= Fq⊕7

r=1Mnr
(Fq)⊕9

r=8Mnr
(Fq2).

Applying Theorem 2.5 with G12/G′
12

∼= C3 and FqC3 ∼= Fq ⊕ Fq2 to obtain that

FqG12 ∼= Fq ⊕Fq2 ⊕7
r=1Mnr

(Fq)⊕Mn8(Fq2) with 93 =
7∑

r=1
n2

r +2n2
8, nr ≥ 2. (3.8)

Further, we note using [1] that FqK2 ∼= Fq ⊕ Fq2 ⊕ M3(Fq)5. Therefore, (3.8) and
Theorem 2.6 imply that FqG12 ∼= Fq ⊕Fq2 ⊕M3(Fq)5 ⊕2

r=1 Mnr (Fq)⊕M3(Fq2) with
48 =

∑2
r=1 n2

r + 2n2
3, nr ≥ 2. This gives the only possibility (2, 6, 2) for n′

rs which
means the required WD is

FqG12 ∼= Fq ⊕ Fq2 ⊕ M3(Fq)5 ⊕ M2(Fq) ⊕ M6(Fq) ⊕ M2(Fq2).

Case 3. pk ≡ 7 mod 12. In this case, we have S(γy) = {γy, γyz}, S(γyw) =
{γyw, γyt}, S(γg) = {γg} for the remaining representatives g of conjugacy classes.
Using Theorems 2.1, 2.2 and (3.5), we get FqG12 ∼= Fq⊕7

r=1Mnr
(Fq)⊕9

r=8Mnr
(Fq2).

Applying Theorem 2.5 with G12/G′
12

∼= C3 and FqC3 ∼= F3
q in above to obtain

FqG12 ∼= F3
q ⊕5

r=1 Mnr (Fq) ⊕7
r=6 Mnr (Fq2)

with 93 =
5∑

r=1
n2

r + 2
7∑

r=6
n2

r, nr ≥ 2.
(3.9)

Further, we observe that FqK2 ∼= F3
q ⊕ M3(Fq) ⊕ Mtr (Fq2)2. Therefore, (3.9) and

Theorem 2.6 imply that FqG12 ∼= F3
q ⊕M3(Fq)⊕4

r=1Mnr
(Fq)⊕M3(Fq2)2 with 48 =∑4

r=1 n2
r, nr ≥ 2. This gives the only possibility (2, 2, 2, 6) for n′

rs which means
that the WD is

FqG12 ∼= F3
q ⊕ M3(Fq) ⊕ M2(Fq)3 ⊕ M6(Fq) ⊕ M3(Fq2)2.

Case 4. pk ≡ 11 mod 12. In this case, we can verify that S(γy) = {γy, γyz},
S(γyw) = {γyw, γyt}, S(γx) = {γx, γx2}, S(γxw) = {γxw, γx2y}, and S(γg) = {γg}
for the representatives e, w, t and u. Using Theorems 2.1, 2.2 and (3.5), we get
FqG12 ∼= Fq ⊕3

r=1 Mnr
(Fq) ⊕7

r=4 Mnr
(Fq2). Applying Theorem 2.5 with FqC3 ∼=

Fq ⊕ Fq2 in above to obtain

FqG12 ∼= Fq ⊕ Fq2 ⊕3
r=1 Mnr

(Fq) ⊕6
r=4 Mnr

(Fq2)

with 93 =
3∑

r=1
n2

r + 2
6∑

r=4
n2

r, nr ≥ 2.
(3.10)
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Further, we see that FqK2 ∼= Fq ⊕Fq2 ⊕M3(Fq)⊕Mtr (Fq2)2. Therefore, (3.10) and
Theorem 2.6 imply that FqG12 ∼= Fq ⊕ Fq2 ⊕ M3(Fq) ⊕ M3(Fq2)2 ⊕2

r=1 Mnr
(Fq) ⊕

Mn3(Fq2) with 48 =
∑2

r=1 n2
r + 2n2

3, which means the only possibility for n′
rs is

(2, 6, 2). Thus, the required WD is

FqG12 ∼= Fq ⊕ Fq2 ⊕ M3(Fq) ⊕ M3(Fq2)2 ⊕ M2(Fq) ⊕ M6(Fq) ⊕ M2(Fq2).

Next, we remark that for the groups Gi, where 13 ≤ i ≤ 26, the WD of
their group algebras can be computed by following the steps of Theorem 3.2 and
Theorem 3.3 (see Tables 10–23). Hence, we are omitting their proofs from the
paper.

Table 10. Wedderburn decomposition of FqG13.

values of p and k Wedderburn decomposition
k even or pk ≡ ±1 mod 12 and k odd F4

q ⊕ M2(Fq)5 ⊕ M3(Fq)4 ⊕ M6(Fq)
pk ≡ ±5 mod 12 and k odd F4

q ⊕ M2(Fq)3 ⊕ M3(Fq)4 ⊕ M6(Fq)
⊕M2(Fq2)

Table 11. Wedderburn decomposition of FqG14.

values of p and k Wedderburn decomposition
k even or pk ∈ {1, 5} mod 12 and k odd F8

q ⊕ M2(Fq)4 ⊕ M3(Fq)8

pk ∈ {7, 11} mod 12 and k odd F4
q ⊕ F2

q2 ⊕ M2(Fq)2 ⊕ M3(Fq)4

⊕M2(Fq2) ⊕ M3(Fq2)

Table 12. Wedderburn decomposition of FqG15.

values of p and k Wedderburn decomposition
k even or pk ∈ {1, 5} mod 12 and k odd F4

q ⊕ M2(Fq)5 ⊕ M3(Fq)4 ⊕ M6(Fq)
pk ∈ {7, 11} mod 12 and k odd F4

q ⊕ M2(Fq)3 ⊕ M3(Fq)4 ⊕ M6(Fq)
⊕M2(Fq2)

Table 13. Wedderburn decomposition of FqG16.

values of p and k Wedderburn decomposition
k even or pk ∈ {1, 7} mod 12 and k odd F4

q ⊕ M2(Fq)5 ⊕ M3(Fq)4 ⊕ M6(Fq)
pk ∈ {5, 11} mod 12 and k odd F4

q ⊕ M2(Fq)3 ⊕ M3(Fq)4 ⊕ M6(Fq)
⊕M2(Fq2)
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Table 14. Wedderburn decomposition of FqG17.

values of p and k Wedderburn decomposition
k even or pk ∈ {1, 7} mod 12 and k odd F3

q ⊕ M2(Fq)3 ⊕ M3(Fq)5 ⊕ M6(Fq)
pk ∈ {5, 11} mod 12 and k odd Fq ⊕ Fq2 ⊕ M2(Fq) ⊕ M3(Fq)5

⊕M6(Fq) ⊕ M2(Fq2)

Table 15. Wedderburn decomposition of FqG18.

values of p and k Wedderburn decomposition
k even or pk ∈ {1, 7} mod 12 and k odd F3

q ⊕ M3(Fq)5 ⊕ M4(Fq)3

pk ∈ {5, 11} mod 12 and k odd Fq ⊕ Fq2 ⊕ M3(Fq)5 ⊕ M4(Fq)
⊕M4(Fq2)

Table 16. Wedderburn decomposition of FqG19.

values of p and k Wedderburn decomposition
k even or pk ∈ {1, 7} mod 12 and k odd F12

q ⊕ M3(Fq)4 ⊕ M4(Fq)3

pk ∈ {5, 11} mod 12 and k odd F4
q ⊕ F4

q2 ⊕ M3(Fq)4 ⊕ M4(Fq)
⊕M4(Fq2)

Table 17. Wedderburn decomposition of FqG20.

values of p and k Wedderburn decomposition
k even or pk ∈ {1, 7} mod 12 and k odd F12

q ⊕ M3(Fq)4 ⊕ M4(Fq)3

pk ∈ {5, 11} mod 12 and k odd F4
q ⊕ F4

q2 ⊕ M3(Fq)4 ⊕ M4(Fq)
⊕M4(Fq2)

Table 18. Wedderburn decomposition of FqG21.

values of p and k Wedderburn decomposition
k even or pk ∈ {1, 7} mod 12 and k odd F8

q ⊕ M2(Fq)4 ⊕ M3(Fq)8

pk ∈ {5, 11} mod 12 and k odd F4
q ⊕ F2

q2 ⊕ M2(Fq)4 ⊕ M3(Fq)4

⊕M3(Fq2)2
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Table 19. Wedderburn decomposition of FqG22.

values of p and k Wedderburn decomposition
for any k and p F8

q ⊕ M2(Fq)4 ⊕ M3(Fq)8

Table 20. Wedderburn decomposition of FqG23.

values of p and k Wedderburn decomposition
for any k and p F2

q ⊕ M2(Fq) ⊕ M3(Fq)6 ⊕ M6(Fq)

Table 21. Wedderburn decomposition of FqG24.

values of p and k Wedderburn decomposition
k even or p ≡ 1 mod 12 and k odd F12

q ⊕ M2(Fq)12 ⊕ M3(Fq)4

pk ≡ 5 mod 12 and k odd F4
q ⊕ F4

q2 ⊕ M2(Fq)4 ⊕ M3(Fq)4

⊕M2(Fq2)4

pk ≡ 7 mod 12 and k odd F6
q ⊕ F3

q2 ⊕ M2(Fq)6 ⊕ M3(Fq)2

⊕M2(Fq2)3 ⊕ M3(Fq2)
pk ≡ 11 mod 12 and k odd F2

q ⊕ F5
q2 ⊕ M2(Fq)2 ⊕ M3(Fq)2

⊕M2(Fq2)5 ⊕ M3(Fq2)

Table 22. Wedderburn decomposition of FqG25.

values of p and k Wedderburn decomposition
k even or pk ∈ {1, 11} mod 12 and k odd F12

q ⊕ M2(Fq)12 ⊕ M3(Fq)4

pk ∈ {5, 7} mod 12 and k odd F4
q ⊕ F4

q2 ⊕ M2(Fq)4 ⊕ M3(Fq)4

⊕M2(Fq2)4

Table 23. Wedderburn decomposition of FqG26.

values of p and k Wedderburn decomposition
k even or p ≡ 1 mod 12 and k odd F12

q ⊕ M2(Fq)12 ⊕ M3(Fq)4

pk ≡ 5 mod 12 and k odd F4
q ⊕ F4

q2 ⊕ M2(Fq)4 ⊕ M3(Fq)4

⊕M2(Fq2)4

pk ≡ 7 mod 12 and k odd F12
q ⊕ M3(Fq)4 ⊕ M2(Fq2)6

pk ≡ 11 mod 12 and k odd F4
q ⊕ F4

q2 ⊕ M3(Fq)4 ⊕ M2(Fq2)6
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4. Conclusion
We have computed the WDs of semisimple group algebras of non-metabelian groups
of order 96. Hence, this study completes the computation of WDs of semisimple
group algebras of all groups up to order 120. In future, this paper motivates the
study of unit groups of the group algebras of non-metabelian groups having order
greater than 120.
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Abstract. We study the conjugation of overpartitions and give the gener-
ating function for the number of self-conjugate overpartitions of an integer.
Following the recent introduction of over q-binomial coefficients, we obtain
the over q-analogue of the Chu-Vandermonde identity. Consequently a new
generating function for the number of overpartitions is proved. We also give
a new over q-analogue of the Chu-Vandermonde identity.
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1. Introduction
A partition of a positive integer n is an integer sequence (λ1, λ2, . . . , λk) with
λ1 ≥ λ2 ≥ · · · ≥ λk > 0 such that λ1 + λ2 + · · · + λk = n. We call the summands
λi parts. For example, there are 7 partitions of 5:

(5), (4, 1), (3, 2), (3, 1, 1), (2, 2, 1), (2, 1, 1, 1), (1, 1, 1, 1, 1).
An overpartition of n is an integer partition of n in which the last occurrence

of a part may be overlined [3]. The number of overpartitions of n is denoted by
p(n). For example, p(4) = 14, where the overpartitions of 4 are

(4), (4), (3, 1), (3, 1), (3, 1), (3, 1), (2, 2), (2, 2), (2, 1, 1),
(2, 1, 1), (2, 1, 1), (2, 1, 1), (1, 1, 1, 1), (1, 1, 1, 1).

It is well known that
∞∑

n=0
p(n)qn =

∞∏

n=1

1 + qn

1 − qn
= (−q; q)∞

(q; q)∞
, (1.1)

https://doi.org/10.33039/ami.2023.10.001
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where (A; q)0 = 1 and

(A; q)n := (1 − A)(1 − Aq) · · · (1 − Aqn−1) =
n−1∏

j=0
(1 − Aqj),

(A; q)∞ := lim
n→∞

(A; q)n =
∞∏

j=0
(1 − Aqj).

The Young diagram (or Ferrers board) of an overpartition is the same as that of the
underlying ordinary partition with the exception that the last block of an overlined
part is marked. For example, the Young diagram of λ = (9, 7, 5, 4, 4, 2, 1, 1, 1) is

*

*
*

.

The Durfee square of an overpartition is the largest square that can fit into its
Ferrers board.

We emphasize that a Durfee square of length s consists of s ·s = s2 unit squares
in the Young diagram of an overpartition such that s is maximal. So it’s generating
function is

q1+···+1 ≡ qs·s = qs2
. (1.2)

Analogously one may consider Durfee rectangles of side lengths s and t, when
necessary, and apply the generating function qst.

The conjugate overpartition of λ is denoted by λ′ and is obtained by reading the
columns of the Ferrers board of λ. Thus for example, λ′ = (9, 6, 5, 5, 3, 2, 2, 1, 1).

A second method of obtaining the conjugate of an overpartition is as follows.
The conjugate of λ = (p1, p2, . . . , pk) is given by λ′ = (q1, q2, . . . , qs), where

qj =
{

|{r : pr ≥ j}| if j = pi is overlined
|{r : pr ≥ j}| otherwise.

In other words, let the overlined parts of λ be u1 > u2 > · · · > ut, and let the
underlying ordinary partition be f(λ). Then λ′ is obtained by overlining the parts
of the partition f(λ) that are in positions u1, u2, . . . , ut.

For instance, given λ = (9, 7, 5, 4, 4, 2, 1, 1, 1), then to obtain λ′, the 2nd, 4th
and 7th parts of the conjugate of f(λ) = (9, 7, 5, 4, 4, 2, 1, 1, 1) will be overlined.
That is, λ′ = (9, 6, 5, 5, 3, 2, 2, 1, 1).
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Definition 1.1. An overpartition is said to be self-conjugate if it is identical with
its conjugate.

For example, it may be verified that λ = (7, 6, 4, 4, 2, 2, 1) is self-conjugate.
One of our main results is the following:

Theorem 1.2. Let sc(N) be the number of self-conjugate overpartitions of N .
Then ∞∑

N=0
sc(N)qN = 1 +

∞∑

j=1
2qj2 (−q2; q2)j−1

(q2; q2)j
.

The q-binomial coefficients (or Gaussian polynomials) are defined, for non-
negative integers m, n, as

[
m + n

n

]
= (1 − qm+n)(1 − qm+n−1) · · · (1 − qm+1)

(1 − qn)(1 − qn−1) · · · (1 − q) . (1.3)

These polynomials have many important applications in Combinatorics, Number
Theory and Physics [1]. In partition theory, Eqn (1.3) is interpreted as the gener-
ating function for the number of partitions fitting inside an m × n rectangle, i.e.,
partitions that have parts of size ≤ m and a number of parts ≤ n.

Recently, Dousse and Kim [5] introduced the over q-binomial coefficient which
is an overpartition analogue of the q-binomial coefficients, defined by

[
m + n

n

]
:=

min{m,n}∑

k=0
q(k+1

2 ) (q; q)m+n−k

(q; q)k(q; q)m−k(q; q)n−k
. (1.4)

This function is interpreted as the generating function for the number of overparti-
tions fitting inside an m × n rectangle. The over q-binomial coefficients have many
properties similar to those of ordinary q-binomial coefficients [4, 5].

In 2003 Prellberg and Stanton [8] published a proof of the monotonicity con-
jecture which states the coefficients of the function

(1 − q) 1
(qn; q)n

+ q

are non-negative, for all positive integers n. This conjecture was originally formu-
lated by Friedman et al. [6].

Subsequently, Dousse and Kim [4] formulated the following analogous conjecture
based on the geometry of over q-binomial coefficients.

Conjecture 1.3. For all positive integers n, the coefficients of

(1 − q) (−qn; q)n

(qn; q)n
+ q

are non-negative.
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Conjecture 1.3 is an over q-analogue of the monotonicity conjecture. We will
indicate a possible path to realizing a combinatorial proof of this conjecture in
Section 4.

In Section 2, we give a proof of Theorem 1.2. In Section 3, we prove a cer-
tain over q-binomial coefficient identity, and establish an over q-analogue of the
Chu-Vandermonde identity. We end the section with an alternative summative
generating function for the number of overpartitions of n.

2. Proof of Theorem 1.2

Suppose we have a self-conjugate overpartition λ of N with a Durfee square of
length j > 0. Then in the Ferrers graph of λ the jth part of λ, i.e., the last part of
the Durfee square, may be overlined or not. There are two cases to consider (see
the diagrams below).

• Case I: when the jth part is overlined (i.e., jth part = j and (j + 1)th part
< j);

j

j
R(λ)

B(λ)

• Case II: when the jth part is not overlined (i.e., jth part ≥ j and (j + 1)th

part ≤ j).

j

j
R(λ)

B(λ)
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In the first case, the Durfee square is generated by qj2 (from (1.2)). Since λ is
self-conjugate the overpartition R(λ) represented by the boxes on the right of the
Durfee square is the conjugate of the overpartition B(λ) represented by the boxes
below the Durfee square. Therefore each of these overpartitions is generated by
(−q;q)j−1
(q;q)j−1

, which is the generating function for the number of overpartitions with
at most j − 1 parts (cf. Eqn (1.1)). Adding the rows of B(λ) to the corresponding
columns of R(λ) gives an overpartition into even parts. So for each j ≥ 1 we deduce
that these overpartitions are generated by

qj2
j−1∏

r=1

1 + q2r

1 − q2r
= qj2 (−q2; q2)j−1

(q2; q2)j−1
.

Similarly in the second case, the Durfee square is generated by qj2 while the over-
partitions represented on the right of and below the Durfee square are generated
by (−q2;q2)j

(q2;q2)j
. Thus such overpartitions are generated, for all j ≥ 1, by

qj2
j∏

r=1

1 + q2r

1 − q2r
= qj2 (−q2; q2)j

(q2; q2)j
.

Hence, with 1 counting the empty (self-conjugate) overpartition, we have
∞∑

N=0
sc(N)qN = 1 +

∞∑

j=1
qj2 (−q2; q2)j−1

(q2; q2)j−1
+

∞∑

j=1
qj2 (−q2; q2)j

(q2; q2)j

= 1 +
∞∑

j=1
qj2 (−q2; q2)j−1

(q2; q2)j−1

(
1 + 1 + q2j

1 − q2j

)

= 1 +
∞∑

j=1
qj2 (−q2; q2)j−1

(q2; q2)j

(
1 − q2j + 1 + q2j

)

= 1 +
∞∑

j=0
2qj2 (−q2; q2)j−1

(q2; q2)j
.

This completes the proof.

3. Over q-binomial coefficients
Basic properties of over q-binomial coefficients are given in [4, 5]. Several of these
properties resemble those of ordinary q-binomial coefficients. For example, we have
the symmetry property, [

m + n

n

]
=
[
m + n

m

]
. (3.1)

We recall the following series-product identities, known respectively, as Cauchy’s
Identity and q-Binomial Theorem (see [2, 7]).

75



Annal. Math. et Inf. A. O. Munagi, S. Ngubane

Theorem 3.1. For |q|, |z| < 1 we have

∞∑

n=0

(a; q)n

(q; q)n
zn = (az; q)∞

(z; q)∞
, (3.2)

∞∑

k=0
q

k(k+1)
2

[
n

k

]
zk =

n∏

k=1
(1 + zqk). (3.3)

The following theorem was proved combinatorially in [4]. Here we will give an
algebraic proof.

Theorem 3.2 (Dousse-Kim [4]). For every positive integer m, we have

∞∑

k=0

[
m + k − 1

k

]
zkqk = (−zq2; q)m−1

(zq; q)m
. (3.4)

Algebraic Proof. We will use the fact that

(q; q)m+k = (q; q)m(qm+1; q)k. (3.5)

We simplify the left-hand side of (3.4) (with m−1 replaced by m). Note that in
the second equality below we set min(m, k) = m since 0 ≤ j ≤ m but j ≤ k → ∞.

∞∑

k=0

[
m + k

k

]
zkqk =

∞∑

k=0

min(m,k)∑

j=0
q(j+1

2 ) (q; q)m+k−j

(q; q)j(q; q)m−j(q; q)k−j
(zq)k

=
m∑

j=0

q(j+1
2 )

(q; q)j(q; q)m−j

∞∑

k=j

(q; q)m+k−j

(q; q)k−j
(zq)k

=
m∑

j=0

q(j+1
2 )

(q; q)j(q; q)m−j
(zq)j

∞∑

k=0

(q; q)m+k

(q; q)k
(zq)k

=
m∑

j=0

(zq)jq(j+1
2 )

(q; q)j(q; q)m−j
(q; q)m

∞∑

k=0

(qm+1; q)k

(q; q)k
(zq)k (by Eqn (3.5))

=
m∑

j=0

(q; q)m

(q; q)j(q; q)m−j
(zq)jq(j+1

2 ) · (zqm+2; q)∞
(zq; q)∞

(by Eqn (3.2))

= (zqm+2; q)∞
(zq; q)∞

(−zq · q; q)m (by Eqn (3.3))

= (−zq2; q)m

(zq; q)m+1
.

This completes the proof.
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3.1. An over q-analogue of Chu-Vandermonde identity
Consider the classical combinatorial identity,

n∑

j=0

(
n

j

)2
=
(

2n

n

)
, n ≥ 0. (3.6)

It is known that this identity has the following q-analogue [2]:

n∑

j=0
qj2
[
n

j

]2
=
[
2n

n

]
.

We state a new over q-analogue of (3.6) using the over q-binomial coefficients.

Proposition 3.3. For any non-negative integer n, we have

[
2n

n

]
=

n∑

j=0
qj2

([
n

j

]2

+
[
n − 1
j − 1

]2)
.

Proof. It is clear that overpartitions fitting inside an n × n square are generated
by (cf. Eqn (1.4))

[
n + n

n

]
=
[
2n

n

]
.

Now assume the overpartitions have Durfee squares of length j. Such overpartitions
may be represented by either of the following diagrams depending on whether the
last part of the Durfee square is not overlined or overlined, respectively.

j

j

j

j

In either diagram the Durfee square is generated by qj2
, j ≥ 0.

In the second diagram the subdiagram attached to the right side of the Durfee
square represents an overpartition fitting inside an (n − j) × (j − 1) rectangle,
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and the subdiagram attached below the Durfee square represents an overpartition
fitting inside a (j − 1) × (n − j) rectangle. So both subdiagrams are generated by

[
(n − j) + (j − 1)

j − 1

]
×
[
(j − 1) + (n − j)

n − j

]

=
[
n − 1
j − 1

]
×
[
n − 1
n − j

]

=
[
n − 1
j − 1

]
×
[
n − 1
j − 1

]
(by symmetry, (3.1))

=
[
n − 1
j − 1

]2

.

Similarly for the first diagram, the subdiagram on the right side of the Durfee
square represents an overpartition fitting inside an (n − j) × j rectangle, and the
subdiagram below the Durfee square is an overpartition fitting inside a j × (n − j)
rectangle. Thus they are generated by

[
(n − j) + j

j

]
×
[
j + (n − j)

n − j

]
=
[
n

j

]
×
[

n

n − j

]
=
[
n

j

]
×
[
n

j

]
=
[
n

j

]2

.

Hence the generating function for the number of partitions into at most n parts
with part-sizes ≤ n, and Durfee square of length j, is given by

qj2

([
n

j

]2

+
[
n − 1
j − 1

]2)
.

Lastly, we sum over 0 ≤ j ≤ n to obtain the stated identity.

Proposition 3.3 may be regarded as a ‘finite’ version of the following identity
which provides another generating function for p(n) (cf. Eqn (1.1)).

Corollary 3.4. We have

(−q; q)∞
(q; q)∞

=
∞∑

j=0
2qj2

(
(−q; q)j−1

(q; q)j

)2
(1 + q2j).

Proof. Let n → ∞ in Proposition 3.3. Then

lim
n→∞

[
2n

n

]
= lim

n→∞

n∑

k=0
q

k(k+1)
2

(q; q)2n−k

(q; q)k(q; q)n−k(q; q)n−k

=
∞∑

k=0

q
k(k+1)

2

(q; q)k
· 1

(q; q)∞

= (−q; q)∞
(q; q)∞

.
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Proceeding to the limit we also have

lim
n→∞

n∑

j=0
qj2

([
n

j

]2

+
[
n − 1
j − 1

]2)
=

∞∑

j=0
qj2

((
(−q; q)j

(q; q)j

)2

+
(

(−q; q)j−1
(q; q)j−1

)2)

=
∞∑

j=0
qj2

(
(−q; q)j−1
(q; q)j−1

)2((
1 + qj

1 − qj

)2

+ 1
)

=
∞∑

j=0
qj2

(
(−q; q)j−1
(q; q)j−1

)2

· 2(1 + q2j)
(1 − qj)2

=
∞∑

j=0
2qj2

(
(−q; q)j−1

(q; q)j

)2
(1 + q2j).

Hence the result.

Remark 3.5. Note that Corollary 3.4 may also be proved by pure combinatorial
reasoning by splitting the set of overpartitions into two classes, in the spirit of the
proof of Theorem 1.2.

Direct Combinatorial proof of Corollary 3.4. It is clear that

1
(q; q)∞

∞∑

k=0

1
(q; q)k

q
k(k+1)

2 = (−q; q)∞
(q; q)∞

=
∞∑

n=0
p(n)qn.

Now suppose we have an overpartition λ of N with Durfee square of side j. Separate
λ into two classes as in the proof of Theorem 1.2 (see Section 2). In both cases, the
Durfee square is obviously generated by qj2 . However, in the first case the top-right
and bottom-left subdiagrams are generated by (−q;q)j−1

(q;q)j−1
. Such overpartitions are

generated by

qj2 (−q; q)2
j−1

(q; q)2
j−1

.

Similarly, in the second case, the top-right and bottom-left subdiagrams are gen-
erated by (−q;q)j

(q;q)j
. Hence this class is generated by

qj2 (−q; q)2
j

(q; q)2
j

.

Hence we have
∞∑

n=0
p(n)qn =

∞∑

j=0
qj2 (−q; q)2

j−1
(q; q)2

j−1
+

∞∑

j=0
qj2 (−q; q)2

j

(q; q)2
j

=
∞∑

j=0
qj2

((
(−q; q)j

(q; q)j

)2

+
(

(−q; q)j−1
(q; q)j−1

)2)
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=
∞∑

j=0
2qj2

(
(−q; q)j−1

(q; q)j

)2
(1 + q2j).

4. Remarks on Conjecture 1.3
The combinatorial proof of the following lemma is given in [5]. For completeness
we provide an algebraic proof below.

Lemma 4.1 (Dousse-Kim [5]). For every positive integer n, we have

(−zq; q)n

(zq; q)n
= 1 +

∑

k≥1
zkqk

([
n + k − 1

k

]
+
[
n + k − 2

k − 1

])
.

Proof. We have that the right-hand side

= 1 +
∑

k≥1
zkqk

[
n + k − 1

k

]
+
∑

k≥1
zkqk

[
n + k − 2

k − 1

]

=
∑

k≥0
zkqk

[
n + k − 1

k

]
+
∑

k≥0
zk+1qk+1

[
n + k − 1

k

]

= (−zq2; q)n−1
(zq; q)n

+ zq
(−zq2; q)n−1

(zq; q)n
(by Theorem 3.2)

= (−zq2; q)n−1
(zq; q)n

(1 + zq) = (−zq; q)n

(zq; q)n
.

This result enables the translation of the coefficients of the conjectured gener-
ating function into the coefficients of generating functions of overpartitions.

Set z = qn−1 in Lemma 4.1 to get

(−qn; q)n

(qn; q)n
= 1 +

∑

k≥1
qk(n−1)qk

([
n + k − 1

k

]
+
[
n + k − 2

k − 1

])

= 1 +
∑

k≥1
qkn

([
n + k − 1

k

]
+
[
n + k − 2

k − 1

])
.

Thus we have

(1 − q) (−qn; q)n

(qn; q)n
+ q = 1 +

∑

k≥1
qkn(1 − q)

([
n + k − 1

k

]
+
[
n + k − 2

k − 1

])
, (4.1)

= 1 +
∑

k≥1
qkn

([
n + k − 1

k

]
− q

[
n + k − 2

k − 1

])
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+
∑

k≥1
qkn

[
n + k − 2

k − 1

]
−
∑

k≥1
qkn+1

[
n + k − 1

k

]
. (4.2)

It is clear that the right-hand-sides of (4.1) and (4.2) enumerate overpartitions.
Hence one approach to proving Conjecture 1.3 combinatorially relies on interpreting
the right-hand-side of the equation as the generating function of a non-vacuous
union of certain sets of restricted overpartitions.

It is hoped that this will enhance the discovery of a purely combinatorial proof
of the conjecture.

Lastly, we lend credence to the conjecture by providing the results of a compu-
tational study of the actual coefficients of the associated generating function.

Let [qN ]f(q) denote that coefficient of qN in the Maclaurin series expansion of
f(q).

For all n > 2, the terms of the number sequences
S(N, n) = [qN ]

(
(1 − q) (−qn;q)n

(qn;q)n
+ q
)

, N > 0, are mostly positive, assuming
zero values for few initial values of N . The following properties of the sequences
were discovered using the computer algebra system Maple [9].

1. S(0, n) = 1 for all n > 0,

2. S(1, 1) = 2, S(N, 1) = 0 for N > 1,

3. S(N, 2) ∈ {0, 2} for all N > 0,

4. S(N, 3) ∈ {0, 2}, 1 ≤ N ≤ 11,
S(12, 3) = 4, S(13, 3) = S(14, 3) = 0,
and S(N, 3) > 1 for N ≥ 15,

5. S(N, n) ∈ {0, 2}, 1 ≤ n ≤ m, and S(N, n) ≥ 2, n ≥ m, where m = 3n +
2, n ≥ 4.
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Abstract. In this paper, we introduce ruled like surfaces in three-dimensional
Euclidean space, E3. To form a ruled like surface in E3, we consider a base
curve γ(s) and a director curve X(s). Let parameter s be the angle between
the tangent of γ(s) and X(s) when X(s) lie on rectifying plane or in the
osculating plane. Whereas, if X(s) is in the normal plane, then parameter s
will be the angle between the normal of γ(s) and position vector of X(s) at
the corresponding point in E3. Then we investigate some characterizations
of such types of surfaces (say S(s, v)). Moreover, we find the condition for
the existence of Bertrand mate of γ(s) in S(s, v). Finally, as examples, we
construct the surfaces S(s, v) by using a straight line, circle and helix in E3.
Keywords: Bertrand curve, Frenet frame, rectifying plane, osculating plane,
normal plane, ruled surfaces
AMS Subject Classification: 53A05, 53A04

1. Introduction
Ruled surfaces are one of the basic and useful types of surfaces in differential
geometry. Ruled surfaces are in the class of those surfaces which are broadly
used in CAD systems. Ruled surfaces were introduced by G. Monge as a solution
of a partial differential equation. Different properties depending upon geodesic
curvature and the second fundamental form of ruled surfaces in E3 were studied
in [1]. Whereas the ruled surfaces generated by some special curves like circular
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helices, circular slant helices and Salkowski curves were considered in [15]. In
[18], authors derived the isogeodesic surface pencil so that the geodesic curve is a
directrix of the ruled surface.

The notion of pitch function for ruled surfaces was introduced by H. R. Müller
in 1951. The pitch function and angle function of the pitch for non-developable
ruled surfaces in E3 and E3

1 were further generalized in [9, 10]. For any non-
developable ruled surface, if the base curve is a striction line and the directrix
is a spherical curve, then the spherical Frenet frame can be obtained by using
directrix. This spherical Frenet frame brings out three functions along the base
curve on E3, known as structural functions. In [19], authors studied the properties
of non-developable ruled surfaces using structure functions. Ruled surfaces were
also studied in Minkowski space [7, 17] and in three-dimensional Lie groups [16].

The idea of the Bertrand curve was given by Saint Venant in 1845 by the
question “for any surface generated by a curve γ(s), does there exist any other curve
whose normal coincides with the normal of the initial curve”. Bertrand answered
this question in 1850 [4] by the condition, “a curve γ(s) on E3 is a Bertrand curve
if and only if there exists a linear relationship with constant coefficients between
the curvature and torsion of the original curve”. In [3, 5, 11], authors studied the
Bertrand curve in Minkowski space and three-dimensional sphere.

We organize our article as follows: Section 2, discusses some basic results of
curves and surfaces in E3. Ruled like surfaces, which are the core of our research
article, are also defined in the same section. In Section 3, we talk about various
characterizations of our surfaces, normal of the surface, Gaussian curvature, mean
curvature etc. In Section 4, the conditions are obtained for the Bertrand mate of
the curve γ(s), which lie in the normal ruled like surface formed by γ(s). In the
final section, as examples, the surfaces are constructed using a straight line, plane
curve circle and space curve helix.

2. Preliminaries and some results
Let γ(s) be a unit speed space curve in R3 with Frenet frame {T, N, B} along γ(s).
Then, we know that

T ′ = κN, N ′ = −κT + τB, B′ = −τN,

where κ is a curvature and τ is a torsion of γ(s).

Definition 2.1 ([6]). Let γ(s) be a smooth curve on E3. Then γ(s) is said to be a
Bertrand curve if there exists another curve β(s̄ = ϕ(s)) in E3 such that the normals
of γ(s) and β(s̄ = ϕ(s)) are linearly dependent to each other at corresponding
points. Here ϕ is a bijection from γ(s) to β(s̄) and β(s̄) is the Bertrand mate of
γ(s).

Definition 2.2 ([8]). The parametric representation of a ruled surface S(s, v) in
E3 is S(s, v) = γ(s) + vδ(s), where γ(s) is a space curve, δ : I → R3 − {0} is a
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smooth map and I is an open interval or a unit circle. The curves γ(s) and δ(s)
are known as the base and director curves, respectively. The map v → γ(s)+vδ(s)
is known as a ruling of S(s, v).

Let S(s, v) be a ruled surface in E3, then the various quantities associated with
the surface are defined as follows:

(A). Unit surface normal: N̂ = Ss×Sv

∥Ss×Sv∥ , where Ss = ∂S
∂s and Sv = ∂S

∂v .

(B). First fundamental form: I = Eds2 + 2Fdsdv + Gdv2, where E = ⟨Ss,Ss⟩,
F = ⟨Ss,Sv⟩ and G = ⟨Sv,Sv⟩.

(C). Second fundamental form: II = Lds2 + 2Mdsdv +Ndv2, where L = ⟨Sss, N̂⟩,
M = ⟨Ssv, N̂⟩ and N = ⟨Svv, N̂⟩.

If K is a Gaussian curvature, H is a mean curvature and λ is a distribution pa-
rameter of S(s, v), then from [13]

(D). K = LN−M2

EG−F2 , H = EN+GL−2FM
2(EG−F2) and λ = det(γ′(s),δ(s),δ′(s))

∥δ′(s)∥ .

The second Gaussian curvature KII of S(s, v) in E3 is defined by replacing the
components of the first fundamental form E, F and G by the components of the
second fundamental form L, M and N in Brioschi’s formulae respectively. In [2],
the second Gaussian curvature of a surface is defined as

KII = 1
(LN−M2)2




∣∣∣∣∣∣

− 1
2Lvv + Msv − 1

2Nss
1
2Ls Ms − 1

2Lv

Mv − 1
2Ns L M

1
2Nv M N

∣∣∣∣∣∣
−

∣∣∣∣∣∣

0 1
2Lv Ns

1
2Lv L M
1
2Ns M N)

∣∣∣∣∣∣


.

Let β(s) be a curve in S(s, v), then the normal curvature κn, geodesic curvature
κg and geodesic torsion τg of β(s) [1] are given by

κn = ⟨N̂ , T ′⟩, κg = ⟨N̂ × T, T ′⟩, and τg = ⟨N̂ × N̂ ′, T ′⟩.

The curve γ(s) in S(s, v) can be characterized on the basis of the values of κg, κn

and τg. That is
(1) γ(s) will be a geodesic if and only if κg = 0.
(2) γ(s) will be a asymptotic line if and only if κn = 0.
(3) γ(s) will be a principal line if and only if τg = 0.

In case of ruled surface S(s, v), the position vector of unit director curve δ(s)
can be written as [1]

δ(s) = f1T + f2N + f3B, (2.1)

where {T, N, B} is a Frenet frame along γ(s) and fi, i ∈ {1, 2, 3}, are fixed com-
ponents, i.e., f2

1 + f2
2 + f2

3 = 1.
In equation (2.1), it is clear that the components fi of the director curve are

fixed. Now, consider δ(s) lie on the normal plane of γ(s), such that the angle
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between δ(s) and N is arc length parameter s at the corresponding point. Then
the parametrization of S(s, v) is

S(s, v) = Sn(s, v) = γ(s) + v(cos(s)N + sin(s)B). (2.2)

Obviously, the parametrized surface formed in (2.2), is not a ruled surface. Be-
cause the components f1 = 0, f2 = cos(s) and f3 = sin(s) are not fixed. Similarly,
we can construct the surfaces

S(s, v) = So(s, v) = γ(s) + v(cos(s)T + sin(s)N), (2.3)

and
S(s, v) = Sr(s, v) = γ(s) + v(cos(s)T + sin(s)B), (2.4)

by taking δ(s) in osculating plane {T, N}, and rectifying plane {T, B} respectively,
such that the angle between δ(s) and T is s at corresponding point. Here, we define
the definition of a ruled like surface.

Definition 2.3. A surface S(s, v) with parametrization given by any one of the
equations (2.2), (2.3) and (2.4) is said to be a ruled like surface generated by a
curve γ(s) on E3. The surface Sn(s, v) is said to be a normal ruled like surface of
γ(s). Similarly, So(s, v) and Sr(s, v) are named as osculating ruled like surface and
rectifying ruled like surface of γ(s) on E3.

3. Some characterization of ruled like surfaces
For any surface in E3, unit surface normal, Gaussian curvature and Mean curvature
are some basic properties that help to understand the surface. In this section, all
these mentioned properties of ruled like surfaces generated by a space curve and a
plane curve in E3 are studied.

3.1. Normal ruled like surfaces
Let Sn(s, v) be a normal ruled like surface generated by space curve γ(s) on E3.
Then the partial derivative of (2.2), gives us

{
Sn

s (s, v) = (1 − vκ cos(s))T − v(1 + τ) sin(s)N + v(1 + τ) cos(s)B,

Sn
v (s, v) = cos(s)N + sin(s)B,

as a natural frame {Sn
s (s, v),Sn

v (s, v)} of tangent space on Sn(s, v). Also,

∥ Sn
s (s, v) × Sn

v (s, v) ∥2= v2(1 + τ)2 + (1 − vκ cos(s))2 = 0,

if and only if τ = −1 and v = 1
κ cos(s) , for all s ∈ R − {(2n − 1) π

2 }, n is an integer.
Thus the singularity of Sn(s, v) can be removed by considering either τ ̸= −1 or
v ̸= 1

κ cos(s) , for all s ∈ R − {(2n − 1) π
2 }, n is an integer.
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From now on, we will take only those ruled like surfaces that are generated by
curves with τ(s) ̸= −1. The unit surface normal N̂n of Sn(s, v) generated by a
curve γ(s) with τ(s) ̸= −1 is obtained as follows:

N̂n = −v(1 + τ)T − sin(s)(1 − vκ cos(s))N + cos(s)(1 − vκ cos(s))B√
v2(1 + τ)2 + (1 − vκ cos(s))2

. (3.1)

The coefficients of first and second fundamental forms of surface Sn(s, v) are




E = v2(1 + τ)2 + (1 − vκ cos(s))2,

F = 0,

G = 1,

and, 



L = 1√
E{v2(1 + τ)(κ′ cos(s) − κ(2 + τ) sin(s))

−(1 − vκ cos(s))(κ sin(s)(1 − vκ cos(s)) − vτ ′)},

M = 1+τ√
E ,

N = 0,

respectively. Therefore the Gaussian curvature K and mean curvature H of the
surface are given by





K = − (1+τ)2

E2 ,

H = 1
2E

3
2

{v2(1 + τ)(κ′ cos(s) − κ(2 + τ) sin(s))
−(1 − vκ cos(s))(κ sin(s)(1 − vκ cos(s)) − vτ ′)}.

(3.2)

If γ(s) is a plane curve, then for a normal ruled like surface of γ(s) the unit surface
normal N̂n, the Gaussian and the mean curvatures can be obtained simply by
substituting τ = 0, in equations (3.1) and (3.2), respectively. Here we discuss only
the second Gaussian curvature KII of Sn(s, v) generated by a plane curve. The
second Gaussian curvature of Sn(s, v) is computed as:

KII = −LvEv

4 + L
4E

(
E2

v

2 − EEvv

)
+ Evs

2
√
E

− EsEv

2E 3
2

+ 1√
E

{
κ′ cos(s) + κ sin(s)

(
1 − κ2 cos2(s)

)}
,

where

Ev = 2{v − κ cos(s)(1 − vκ cos(s))},

Es = 2v(κ sin(s) − κ′ cos(s))(1 − vκ cos(s)),
Evv = 2(1 + κ2 cos2(s)),

L = 1√
E

{
v2(2κ sin(s) + κ′ cos(s)) − κ sin(s)(1 − vκ cos(s))2

}
,
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Lv = 1
E

[
2
√
E

{
v(2κ sin(s) + κ′ cos(s)) + κ2 sin(s) cos(s)(1 − vκ cos(s))

}
− 1

2LEv

]
.

From all the above discussions, we obtain the following theorems and corollary.

Theorem 3.1. Let Sn(s, v) be a normal ruled like surface generated by a space
curve γ(s), s ∈ I ⊂ R. Then the surface is singular if and only if τ(s) = −1, where
τ(s) is a torsion of γ(s).

Theorem 3.2. Let Sn(s, v) be a normal ruled like surface generated by a space
curve γ(s) with τ(s) ̸= −1. Then Sn(s, v) is neither a part of a sphere nor a plane.

Corollary 3.3. The Gaussian curvature and the mean curvature of a normal ruled
like surface are related by aH + bK = 0, where a = 2(1 + τ)2 and b = EL =√
E

{
v2(2κ sin(s) + κ′ cos(s)) − κ sin(s)(1 − vκ cos(s))2

}
.

Theorem 3.4. Let Sn(s, v) be a normal ruled like surface generated by γ(s) with
τ(s) ̸= −1. Then Sn(s, v) is a minimal surface if and only if γ(s) is a straight line.

Proof. Let Sn(s, v) be a normal ruled like surface generated by a curve γ(s). Then
from second part of equation (3.2), we have

v2(1 + τ)(κ′ cos(s) − 2κ sin(s)) = (1 − vκ cos(s))(κ sin(s)(1 − vκ cos(s)) − vτ ′)
=⇒ v2{

(1 + τ)(κ′ cos(s) − 2κ sin(s)) − κ3 sin(s) cos2(s) − κτ ′ cos(s)
}

+ v
(
τ ′ + 2κ2 sin(s) cos(s)

)
+ κ sin(s) = 0.

Now, comparing the coefficients of v on both sides, we get




(1 + τ)(κ′ cos(s) − 2κ sin(s)) − κ3 sin(s) cos2(s) − κτ ′ cos(s) = 0,

τ ′ + 2κ2 sin(s) cos(s) = 0,

κ sin(s) = 0.

(3.3)

Because s ∈ I ⊂ R, therefore sin(s) ̸= 0 ∀ s. Thus, from the last part of (3.3),
κ = 0. Hence γ(s) is a straight line.

Conversely, assume that Sn(s, v) be a normal ruled like surface generated by a
straight line. Then taking κ = 0 and τ = 0 in second part of equation (3.2), we
have H = 0. Hence Sn(s, v) is a minimal surface.

3.2. Osculating and rectifying ruled like surfaces
In this section, the coefficients of the first and the second fundamental forms, the
Gaussian and the mean curvatures of osculating and rectifying ruled like surfaces
are studied.

Let γ(s) be a space curve in E3 and So(s, v), Sr(s, v) are osculating and rec-
tifying ruled like surfaces, respectively. Then natural frame {So

s(s, v),So
v(s, v)} of
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So(s, v), and {Sr
s(s, v),Sr

v(s, v)} of Sr(s, v) are
{
So

s(s, v) = (1 − v(1 + κ) sin(s))T + v(1 + κ) cos(s)N + vτ sin(s)B,

S0
v(s, v) = cos(s)T + sin(s)N,

and,
{
Sr

s(s, v) = (1 − v sin(s))T + v(κ cos(s) − τ sin(s))N + v cos(s)B,

Sr
v(s, v) = cos(s)T + sin(s)B,

respectively. First, we will discuss various properties of So(s, v) in E3. The unit
surface normal for So(s, v) is obtained by using the relation N̂ = So

s×So
v

∥So
s×So

v∥ , where

So
s × So

v = −τv sin2(s)T + τv sin(s) cos(s)N + (sin(s) − v(1 + κ))B,

∥ So
s × So

v ∥2= v2τ2 sin2(s) + (sin(s) − v(1 + κ))2.

Now, ∥ So
s × So

v ∥2= 0 if and only if any one of the following conditions holds:
(1) v = 0 and s = nπ, where n is an integer,
(2) τ = 0 and v = sin(s)

1+κ .
Therefore, if γ(s) is neither a plane curve nor a straight line, then So(s, v),

s, v ∈ I(open interval) ⊂ R, have singularity only at v = 0 and s = nπ, where n is
an integer. The parametrization for So(s, v) can be further modified by removing
v = 0.

But just for convenience we are considering the surface So(s, v) with parameters
s, v ∈ I(open interval) ⊂ R such that v > 1 i.e., v = (1, |a|), where 1 < |a| ∈ R.
Thus the surface So(s, v) is now a regular surface for all s ∈ I, and v = (1, |a|).
The unit surface normal N̂o of So(s, v), is obtained as

N̂o = −τv sin2(s)T + τv sin(s) cos(s)N + (sin(s) − v(1 + κ))B√
τ2v2 sin2(s) + (sin(s) − v(1 + κ))2

. (3.4)

The components of the first and second fundamental forms, the Gaussian and
mean curvatures of So(s, v) are

E = cos2(s) + (sin(s) − v(1 + κ))2 + τ2v2 sin2(s), F = cos(s), G = 1.





L = 1√
EG−F2 {τv sin(s)

[
vκ′ + cos(s)

(
κ − vτ2 sin(s)

)]

+ (sin(s) − v(1 + κ))(vτ(2 + κ) cos(s) + vτ ′ sin(s))},

M = τ sin2(s)√
EG−F2 , N = 0.

(3.5)

Ko = − τ2 sin4(s)
(EG − F2)2 , Ho = L

2(EG − F2) − cos(s)
√

−Ko,

respectively. Similarly, for surface Sr(s, v), ∥ Sr
s ×Sr

v ∥2= v2(κ cos(s) − τ sin(s))2 +
(v − sin(s))2 = 0 if and only if it satisfies any one of the following conditions:
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(1) v = 0 and s = nπ, where n is an integer,
(2) κ cos(s) − τ sin(s) = 0 and v = sin(s).

Because −1 ≤ sin(s) = v ≤ 1, therefore the surface Sr(s, v) is regular ∀ s ∈
I(open interval) ⊂ R and v = (1, |a|), where |a| is some real number greater then
one. The unit surface normal, the Gaussian curvature and the mean curvature of
Sr(s, v) are given by the following relations

N̂r = v sin(s)(κ cos(s)−τ sin(s))T +(v−sin(s))N+v cos(s)(τ sin(s)−κ cos(s))B√
(v−sin(s))2+v2(κ cos(s)−τ sin(s))2

, (3.6)

Kr = − sin2(s)(κ cos(s)−τ sin(s))2

(EG−F2)2 , Hr = L
2(EG−F2) − cos(s)

√
−Kr. (3.7)

where,
EG − F2 = (v − sin(s))2 + v2(κ cos(s) − τ sin(s))2,

and,

L = 1√
EG−F2 {

[
−v2(κ cos(s) − τ sin(s))2(κ sin(s) + τ cos(s))

]

+ (v − sin(s))(v(κ cos(s) − τ sin(s))′ + κ(1 − v sin(s)) − τv cos(s))}.

Thus, we have the following theorems:

Theorem 3.5. Let γ(s) be a space curve with τ ̸= 0 and surfaces So(s, v), Sr(s, v),
s ∈ I(open interval) ⊂ R, 1 < v ∈ J(open interval) ⊂ R are generated by γ(s).
Then at points s = nπ, the surfaces are flat.

Theorem 3.6. Let γ(s) be a plane curve and So(s, v), s ∈ I(open interval) ⊂ R,
1 < v ∈ J(open interval) ⊂ R is an osculating surface. Then So(s, v) is flat and
minimal in E3.

Theorem 3.7. Let Sr(s, v), s ∈ I(open interval) ⊂ R, 1 < v ∈ J(open interval) ⊂
R be a rectifying ruled like surfaces generated by γ(s); s ∈ I. Then Sr(s, v) is a
flat and minimal surface if and only if it is generated by a straight line.

4. Characterizations of curves in normal ruled like
surface Sn(s, v)

Let Sn(s, v) be a normal ruled like surface generated by a curve γ(s). Then the
different properties of γ(s) in Sn(s, v) like, whether γ(s) is a geodesic or not and
asymptotic curve of Sn(s, v) or not are studied. Also, we find the condition for
Bertrand mate of γ(s) to lie on Sn(s, v).

Theorem 4.1. Let (γ(s), β(s̄)) be a Bertrand couple in E3 and Sn(s, v) be a normal
ruled like surface of unit speed space curve γ(s) with τ(s) ̸= 0 . Then unit speed
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curve β(s̄) with κ̄(s̄) ̸= 0 lies on Sn(s(s̄), v(s̄)) if and only if the parameters s(s̄)
and v(s̄) satisfies the following conditions





sin(s)v̈ + 2b cos(s)(1 + τ)v̇
+ b2

(
cos(s)(ηab(1 + τ) + τ ′) − sin(s)(1 + τ)2

)
v = 0,

−2κ cos(s)v̇ + (κ sin(s)(2 + τ) − cos(s)(κ′ + abηκ))v + ηab2 = 0,
ds
ds̄ = 1√

(1−ηκ)2+η2τ2
= b and η(κ2 − τ2)′ = 2(κ′ − a

b ),

(4.1)

where ϵ = ±1, η ̸= 0 is an arbitrary constant and a = ϵ
√

(κ′2 + τ ′2).

Proof. Let (γ(s), β(s̄)) be a Bertrand couple in E3 and γ(s) be a space curve with
τ(s) ̸= 0 . Then

β(s̄) = γ(s) + η(s)N, (4.2)

where η is a smooth function on E3 and N is a normal vector field of Frenet frame
{T, N, B} along γ(s) on E3. The derivative of equation (4.2), with respect to s̄,
gives the relation

T̄ (s̄) = ((1 − η(s)κ)T + η′N + ητB)ds

ds̄
, (4.3)

where T̄ is a tangent vector field of β(s̄) in E3. The scalar product of equation
(4.3) with N , implies that η(s) = constant ̸= 0. Now differentiating the equation
(4.3) with respect to s̄, and then taking the scalar product of differential equation
with T̄ , B̄, we have

(1 − ηκ)d2s

ds̄2 = ηκ′

((1 − ηκ)2 + η2τ2) and ητ
d2s

ds̄2 = − ητ ′

((1 − ηκ)2 + η2τ2) .

=⇒ d2s

ds̄2 = ϵη
√

(κ′2 + τ ′2)
((1 − ηκ)2 + η2τ2)

3
2

, (4.4)

where ϵ = ±1. Also

ds

ds̄
= 1√

((1 − ηκ)2 + η2τ2)
=⇒ d2s

ds̄2 = ηκ′ − η2(κκ′ + ττ ′)
((1 − ηκ)2 + η2τ2)2 . (4.5)

Thus from (4.4) and (4.5), we get η(κ2 − τ2)′ = 2(κ′ − a
b ), where a = ϵ

√
(κ′2 + τ ′2)

and b = 1√
((1−ηκ)2+η2τ2)

.
Let β(s̄) be a curve on surface Sn(s(s̄), v(s̄)). Then β(s̄) is given by

β(s̄) = Sn(s(s̄), v(s̄)); s̄ 7→ (s(s̄), v(s̄)). (4.6)

Differentiating (4.6), two times with respect to s̄, we have

κ̄(s̄)N̄(s̄) = Sn
v (s(s̄), v(s̄))v̈ + 2Sn

sv(s(s̄), v(s̄))ṡv̇ + Sn
vv(s(s̄), v(s̄))v̇2
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+ Sn
ss(s(s̄), v(s̄))ṡ2 + Sn

s (s(s̄), v(s̄))s̈, (4.7)

where v̈ = d2v
ds̄2 , v̇ = dv

ds̄ , s̈ = d2s
ds̄2 and ṡ = ds

ds̄ . The partial derivatives of Sn(s(s̄), v(s̄))
with respect to s and v, are

Sn
v (s(s̄), v(s̄)) = (cos(s)N + sin(s)B), (4.8)

Sn
sv(s(s̄), v(s̄)) = −κ cos(s)T − sin(s)(1 + τ)N + cos(s)(1 + τ)B, (4.9)
Sn

s (s(s̄), v(s̄)) = (1 − vκ cos(s))T − v sin(s)(1 + τ)N + v cos(s)(1 + τ)B, (4.10)
Sn

ss(s(s̄), v(s̄)) = v(κ(2 + τ) sin(s) − κ′ cos(s))T
+ v

(
τ ′ cos(s) − (1 + τ)2 sin(s)

)
B,

+
(
κ(1 − vκ cos(s)) − vτ ′ sin(s) − v(1 + τ)2 cos(s)

)
N. (4.11)

Now, using the equations (4.8)–(4.11), in equation (4.7), and the fact that N̄ and
N are collinear, we get





sin(s)v̈ + 2 cos(s)(1 + τ)ṡv̇ + cos(s)(1 + τ)vs̈

+ v
(
τ ′ cos(s) − (1 + τ)2 sin(s)

)
ṡ2 = 0,

−2κ cos(s)v̇ṡ + (1 − vκ cos(s))s̈ + v(κ(2 + τ) sin(s) − κ′ cos(s))ṡ2 = 0.

(4.12)

Substituting ṡ and s̈ from (4.3) and (4.4), in equation (4.12), we obtained the
required conditions.

Conversely, Let β(s̄) is a curve on surface Sn(s(s̄), v(s̄)) such that the map
s̄ 7→ (s(s̄), v(s̄)), satisfies the equation (4.1). Then, on substituting (4.8)–(4.11), in
equation (4.7), we obtain

κ̄(s̄)N̄(s̄) = {sin(s)v̈ + 2 cos(s)(1 + τ)ṡv̇ + cos(s)(1 + τ)vs̈

+ v
(
τ ′ cos(s) − (1 + τ)2 sin(s)

)
ṡ2}B + {cos(s)v̈ − 2 sin(s)(1 + τ)ṡv̇

− sin(s)(1 + τ)vs̈ +
(
κ(1 − vκ cos(s)) − vτ ′ sin(s) − v(1 + τ)2 cos(s)

)
ṡ2}N

{−2κ cos(s)v̇ṡ + (1 − vκ cos(s))s̈ + v(κ(2 + τ) sin(s) − κ′ cos(s))ṡ2}T.

As ⟨N̄ , T ⟩ = 0 and ⟨N̄ , B⟩ = 0, hence N̄ and N are collinear. Therefore, β(s̄) is a
Bertrand mate of γ(s).

Theorem 4.2. Let (γ(s), β(s̄)) be a Bertrand couple in E3 and β(s̄) is lying on
normal ruled like surface Sn(s, v) of γ(s) with τ(s) ̸= 0 . Then the map s̄ 7→ v(s̄)
satisfies the relation

v =





κ sin(s) cos(s)b(κ−(κ(1−ηκ)−ητ2)b3)−η(1+τ)ab

κ sin(s)(κ2 cos2(s)+(1+τ)(2+τ))+cos(s)(κτ ′−κ′(1+τ)) if sin(s) ̸= 0 and cos(s) ̸= 0,

−λ ηab
κ(2+τ) if sin(s) = ±1 = λ and cos(s) = 0,

−λ ηab(1+τ)
τ ′κ−κ′(1+τ) if cos(s) = ±1 = λ and sin(s) = 0,

where ϵ = ±1, η ̸= 0 is an arbitrary constant, a = ϵ
√

(κ′2 + τ ′2) and b =
1√

(1−ηκ)2+η2τ2
.

92



Annal. Math. et Inf. Ruled like surfaces in three dimensional Euclidean space

Proof. Let (γ(s), β(s̄)) be a Bertrand couple in E3 and β(s̄), lying on normal
ruled like surface Sn(s, v) of γ(s) with τ(s) ̸= 0 . Then, substituting (4.8)–(4.11),
in (4.7), and taking the scalar product with T , N and B, we have





−2κ cos(s)v̇ṡ + (1 − vκ cos(s))s̈ + v(κ(2 + τ) sin(s) − κ′ cos(s))ṡ2 = 0,

cos(s)v̈ − 2 sin(s)(1 + τ)ṡv̇ − sin(s)(1 + τ)vs̈

+
(
κ(1 − vκ cos(s)) − vτ ′ sin(s) − v(1 + τ)2 cos(s)

)
ṡ2 = κ̄⟨N, N̄⟩,

sin(s)v̈ + 2 cos(s)(1 + τ)ṡv̇ + cos(s)(1 + τ)vs̈

+ v
(
τ ′ cos(s) − (1 + τ)2 sin(s)

)
ṡ2 = 0.

(4.13)

Now, if both cos(s) ̸= 0 and sin(s) ̸= 0, then from second and third part of (4.13),
we get

2(1 + τ)v̇ṡ + (1 − τ)vs̈ + (−κ sin(s)(1 − vκ cos(s)) + vτ ′)ṡ2

= −κ̄ sin(s)⟨N, N̄⟩, (4.14)

Using equations (4.3), (4.4) and (4.14) in the first part of (4.13), we obtain

v =
κ sin(s) cos(s)b

(
κ − κ̄⟨N, N̄⟩b

)
− η(1 + τ)ab

κ sin(s)(κ2 cos2(s) + (1 + τ)(2 + τ) + cos(s)(κτ ′ − κ′(1 + τ))) , (4.15)

where a = ϵ
√

(κ′2 + τ ′2) and b = 1√
((1−ηκ)2+η2τ2)

. Also, if we differentiate (4.3)
with respect to s̄, and take the scaler product with the normal, then

κ̄⟨N, N̄⟩ = κ(1 − ηκ) − ητ2

(1 − ηκ)2 + η2τ2 = b2(
κ(1 − ηκ) − ητ2)

. (4.16)

Hence, equations (4.15) and (4.16) together prove the first part of the theorem. To
prove the other two parts consider cos(s) = 0, sin(s) = ±1 = λ and sin(s) = 0,
cos(s) = ±1 = λ in equation (4.13), we get





s̈ + λκ(2 + τ)vṡ2 = 0,

−2λ(1 + τ)ṡv̇ − λ(1 + τ)vs̈ + (κ − vτ ′λ)ṡ2 = κ̄⟨N, N̄⟩,
λv̈ − vλ(1 + τ)2ṡ2 = 0,

(4.17)

and, 



−2κλv̇ṡ + (1 − vκλ)s̈ − κ′λvṡ2 = 0,

λv̈ +
(
κ(1 − vλκ) − v(1 + τ)2λ

)
ṡ2 = κ̄⟨N, N̄⟩,

2λ(1 + τ)ṡv̇ + λ(1 + τ)vs̈ + τ ′λvṡ2 = 0.

(4.18)

The second part of the theorem is proved by the first part of (4.17), (4.3) and (4.4).
Whereas to prove the third part of the theorem, solve the first and third parts of
(4.18) by replacing the values of v̇ṡ, and then use equations (4.3) and (4.4) to get
the required result.
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Theorem 4.3. Let Sn(s, v) be a normal ruled like surface generated by a curve
γ(s). Then γ(s) is neither an asymptotic curve nor a geodesic of Sn(s, v).

Proof. Let Sn(s, v) be a normal ruled like surface generated by a curve γ(s). Then
the unit surface normal of Sn(s, v) is given by the equation (3.1). Now from [14,
p. 166], we have

κg = κ⟨N, N̂ × T ⟩ and κn = κ⟨N, N̂⟩. (4.19)

Thus the unit surface normal N̂ and N̂ × T along γ(s), from (3.1) we have
{

N̂(s, 0) = − sin(s)N + cos(s)B,

N̂(s, 0) × T = cos(s)N + sin(s)B.
(4.20)

Therefore, from (4.19) and (4.20), κg = κ cos(s) ̸= 0 and κn = −κ sin(s) ̸= 0 for
all s. Hence γ(s) is neither an asymptotic curve nor a geodesic of Sn(s, v).

Corollary 4.4. The geodesic torsion of the curve γ(s) on normal ruled like surface
Sn(s, v) is given by τg = κ cos(s) sin(s).

Proof. From relation τg
Υ = ⟨N̂(s, 0) × N̂s(s, 0), κN⟩, we get the solution of this

corollary by direct calculation.

As we know Sn(s, v) = γ(s) + v(cos(s)N + sin(s)B), where X(s) = cos(s)N +
sin(s)B); ⟨X(s), X(s)⟩ = 1 and ⟨T, X⟩ = 0. Therefore, we can make another frame
{T, X(s), T × X = Y } in Sn(s, v), such that the derivative of T , X and Y satisfies
the equations ∣∣∣∣∣∣

T ′

X ′

Y ′

∣∣∣∣∣∣
=

∣∣∣∣∣∣

0 κ cos(s) −κ sin(s)
−κ cos(s) 0 (1 + τ)
κ sin(s) −(1 + τ) 0

∣∣∣∣∣∣

∣∣∣∣∣∣

T
X
Y

∣∣∣∣∣∣
, (4.21)

and this frame coincides with the Darboux frame along γ(s) in Sn(s, v).

Theorem 4.5. Let Sn(s, v) = γ(s)+vX(s), where X(s) = cos(s)N +sin(s)B. Then
orthogonal trajectory of X(s) lies in Sn(s, v) if and only if v = κ cos(s)

κ2 cos2(s)+(1+τ)2 .

Proof. Let δ(s) be an orthogonal trajectory of X(s) lying on Sn(s, v). Then

δ(s) = γ(s) + v(s)X(s) and ⟨δ′(s), X ′(s)⟩ = 0

Also, from 4.21, we get

0 =⟨δ′(s), X ′(s)⟩ = ⟨T, X ′(s)⟩ + v⟨X ′(s), X ′(s)⟩,

=⇒ v = κ cos(s)
κ2 cos2(s) + (1 + τ)2 . (4.22)

Equation (4.22) proves the first part of the theorem.
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Now to prove converse part, let Sn(s, v) = γ(s)+vX(s), with X(s) = cos(s)N +
sin(s)B and v = κ cos(s)

κ2 cos2(s)+(1+τ)2 . Then by taking

δ(s) = γ(s) + κ cos(s)
κ2 cos2(s) + (1 + τ)2 (cos(s)N + sin(s)B),

it is easy to prove that ⟨δ′(s), X ′(s)⟩ = 0(use Frenet frame of γ(s)). Hence δ(s) is
an orthogonal trajectory of γ(s) in Sn(s, v).

Note. Similar way, we can also study the characterizations of curves lying on
osculating and rectifying ruled like surfaces.

5. Examples for ruled like surfaces
In this section, we form the normal, osculating and rectifying ruled like surfaces
generated from a straight line, circle and helix. Also, we plot the orthogonal
trajectory of X(s) = cos(s)N + sin(s)B in a normal ruled like surface.

Example 5.1. Let γ(s) = (s, 0, 0) be a straight line in E3. Then Frenet frame
along γ(s) can be taken as follows

T (s) = (1, 0, 0), N(s) = (0, 1, 0), B(s) = (0, 0, 1).

Then, the parametrization for normal, osculating and rectifying ruled like surfaces
for a straight line are given by





Sn(s, v) =
(

s, v cos(s), v sin(s)
)

, ∀ s ∈ I, v ∈ J and I, J ⊂ R,

So(s, v) =
(

s + v cos(s), v sin(s), 1
)

, ∀ s ∈ I ⊂ R, v ∈ (1, b) and 1 < b ∈ R,

Sn(s, v) =
(

s + v cos(s), 1, v sin(s)
)

∀ s ∈ I ⊂ R, v ∈ (1, b); and 1 < b ∈ R.

Now, we will discuss these surfaces one by one.

Case 1. Consider the surface Sn(s, v) = (s, v cos(s), v sin(s)), ∀ s ∈ I and v ∈ J ;
I, J ⊂ R. Then the natural frame {Sn

s (s, v),Sn
v (s, v)} on Sn(s, v) are

Sn
s (s, v) = (1, −v sin(s), v cos(s)), and Sn

v (s, v) = (0, cos(s), sin(s)).

Therefore the unit surface normal of Sn(s, v) is N̂n = 1√
1+v2 (−v, sin(s), cos(s)).

The coefficients of first fundamental form are E = (1 + v2), F = 0 and G = 1.
Whereas coefficients of the second fundamental form are L = 0, M = 1√

1+v2 and
N = 0.

Thus the surface Sn(s, v) is minimal and a surface of negative Gaussian curva-
ture in E3.
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Case 2. Let So(s, v) = (s + v cos(s), v sin(s), 1), ∀ s ∈ I, v ∈ (1, b), I ⊂ R and
1 < b ∈ R. Then {So

s(s, v),S0
v(s, v)} is a natural frame of So(s, v) and So

s(s, v),
S0

v(s, v) are obtained as follows

So
s(s, v) = (1 − v sin(s), v cos(s), 0), and S0

v(s, v) = (cos(s), sin(s), 0).

The unit surface normal N̂o of So(s, v) is N̂o = (0, 0, 1). Thus the first I and the
second II fundamental forms of So(s, v) are I =

(
(s + v cos(s)2 + v2 sin2(s))

)
ds2 +

2Fdsdv+dv2 and II = 0, respectively. Hence the surfaces of type So(s, v) generated
by the straight line in E3 are minimal and flat.

The nature of rectifying surface of a straight line is not much different as com-
pared to the osculating surface. Because the rectifying and osculating ruled like
surfaces of straight-line look the same. Therefore we give figures only for regular
osculating surfaces and irregular rectifying surfaces in E3.

(a) Normal ruled like surface of
the straight line for −5 < s < 5

and −10 < v < 10.

(b) Osculating ruled like surface
of the straight line for −5 < s < 5

and 1 < v < 10.

(c) Rectifying ruled like surface
of the straight line(Irregular) for

−5 < s < 5 and −10 < v < 10.

Figure 1. Ruled like surfaces of a straight line.

Example 5.2. Let γ(s) = (cos(s), sin(s), 0) be a circle in E3. Then Frenet frame
of γ(s) on E3 are

T (s) = (− sin(s), cos(s), 0), N(s) = (− cos(s), − sin(s), 0), B(s) = (0, 0, −1).
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Therefore the ruled like surfaces of the circle are given by




Sn(s, v) =
(

cos(s) − v cos2(s), sin(s) − v sin(s) cos(s), −v sin(s)
)

,

∀ s ∈ I, v ∈ J and I, J ⊂ R,

So(s, v) =
(

cos(s) − 2v sin(s) cos(s), sin(s) + v(cos2(s) − sin2(s)), 0
)

,

∀ s ∈ I ⊂ R, v ∈ (1, b) and 1 < b ∈ R,

Sr(s, v) =
(

cos(s) − v sin(s) cos(s), sin(s) + v cos2(s), −v sin(s)
)

∀ s ∈ I ⊂ R, v ∈ (1, b) and 1 < b ∈ R.

Thus, the unit surface normal of the surfaces from equations (3.1), (3.4) and (3.6)
are




Nn(s, v) = 1√
v2+(1−v cos(s))2

{
v sin(s) + sin(s) cos(s)

(
1 − v cos(s)

)
,

−v cos(s) + sin2(s)(1 − v cos(s)), cos(s)
(
1 − v cos(s)

)}
,

No(s, v) = (0, 0, −1),
Nr(s, v) = 1√

(v−sin(s))2+v2 cos(s)2

{
v sin2(s) cos(s) − cos(s)(v − sin(s)),

v sin(s) cos2(s) − sin(s)(v − sin(s)), v cos(s) cos(s)
}

.

Similarly, the Gaussian and the mean curvatures for the surfaces can be obtained
from (3.2), (3.5) and (3.7). Also, the orthogonal trajectory of X(s) = cos(s)N +
sin(s)B = (− cos2(s), − sin(s) cos(s), − sin(s)) from Theorem 4.5 is (see the Fig-
ure 2)

δ(s) =
(

cos(s)
1 + cos2(s) ,

sin(s)
1 + cos2(s) ,

− sin(s) cos(s)
1 + cos2(s)

)
.

Figure 2. Orthogonal trajectory of X(s) for −5 < s < 5 in Fig-
ure 3a.

Example 5.3. Let γ(s) = 1√
2 (cos(s), sin(s), s) be a circular helix in E3. Then

Frenet frame along γ(s) are




T (s) = 1√
2 (− sin(s), cos(s), 1),

N(s) = (− cos(s), − sin(s), 0),
B(s) = 1√

2 (sin(s), − cos(s), 1).
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(a) Normal ruled like surface of
the circle for −5 < s < 5 and

−10 < v < 10.

(b) Osculating ruled like surface
of a circle for −5 < s < 5 and

1 < v < 10.

Figure 3. Normal and osculating ruled like surfaces of the circle.

(a) Rectifying ruled like surface
of the circle(regular) for −5 <

s < 5 and 1 < v < 10.

(b) Rectifying ruled like surface
of the circle(Irregular) for −5 <

s < 5 and −10 < v < 10.

Figure 4. Rectifying ruled like surfaces of the circle.

Thus, the ruled like surfaces of the circular helix are given by the following equa-
tions:




Sn(s, v) =
(

cos(s)√
2 + v(− cos2(s) + sin2(s)√

2 ), sin(s)√
2 − v(cos(s) sin(s))( 1+

√
2√

2 ),
s√
2 + v sin(s)√

2

)
, ∀ s ∈ I, v ∈ J and I, J ⊂ R,

So(s, v) =
(

cos(s)√
2 − v( sin(s) cos(s)√

2 + sin(s) cos(s)), sin(s)√
2 + v( cos2(s)√

2 − sin2(s)),
s√
2 + v cos(s)√

2

)
, ∀ s ∈ I ⊂ R, v ∈ (1, b) and 1 < b ∈ R,

Sr(s, v) = 1√
2

(
cos(s) + v sin(s)(sin(s) − cos(s)), sin(s) + v cos(s)

(
cos(s)

− sin(s)
)
, s + v(sin(s) + cos(s))

)
, ∀ s ∈ I ⊂ R, v ∈ (1, b) and 1 < b ∈ R.

The unit surface normal for these surfaces can be obtained by using equations
(3.1), (3.4) and (3.6), respectively. Also, the orthogonal trajectory of X(s) =
cos(s)N + sin(s)B = (− cos2(s), − sin(s) cos(s), − sin(s)) from Theorem 4.5 is (see
Figure 5b)

δ(s) =
(

1√
2

cos(s) +
√

2 cos(s)
cos2(s) + (1 +

√
2)2

(
sin2(s)√

2
− cos2(s)

)
,

1√
2

sin(s)
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− (1 +
√

2) sin(s) cos2(s)
cos2(s) + (1 +

√
2)2

,
s√
2

+ sin(s) cos(s)
cos2(s) + (1 +

√
2)2

)
.

(a) Normal ruled like surface of
the helix for −5 < s < 5 and

−10 < v < 10.

(b) Orthogonal trajectory of
X(s) for −5 < s < 5 in Figure

5a.

Figure 5. Normal ruled like surface of the helix and Orthogonal
trajectory of X(s).

(a) Osculating ruled like surface
of the helix for −5 < s < 5 and

1 < v < 10.

(b) Osculating ruled like surface
of the helix(Irregular) for −5 <

s < 5 and −10 < v < 10.

Figure 6. Osculating ruled like surfaces of the helix.

(a) Rectifying ruled like surface
of the helix for −5 < s < 5 and

1 < v < 10.

(b) Rectifying ruled like surface
of the helix(Irregular) for −5 <

s < 5 and −10 < v < 10.

Figure 7. Rectifying ruled like surfaces of the helix.
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6. Conclusion
For normal ruled like surfaces, we consider only those surfaces which are generated
by curves with τ(s) ̸= −1, therefore in the case of Salkowski curves [12] heaving
τ(s) = tan(s) regular normal ruled like surfaces are not possible with the same
parametrization. Whereas in the case of rectifying ruled like surfaces generated by
a curve, we got a case for some curve whose ratio of curvature and torsion holds
the equation

κ

τ
=

{
tan(s), if s ̸= (2n + 1) π

2 ,

0, if s = (2n + 1) π
2 .

Thus exploring more details about this curve may give some new results. Fur-
thermore, we believe that using this way of parametrization, one can find different
surfaces in Minkowski space as well.
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Abstract. In this paper, we study the generalized Fibonacci like sequences
{tk,n}k∈{2,3},n∈N with arbitrary initial seed and give some new and well-
known identities like Binet’s formula, trace sequence, Catalan’s identity, gen-
erating function, etc. Further, we study various properties of these general-
ized sequences, establish a recursive matrix and relationships with Fibonacci
and Lucas numbers and sequence of Fibonacci traces. In this study, we exam-
ine the nature of identities and recursive matrices for arbitrary initial values.
Keywords: Binet’s formula, Fibonacci like sequences, generating function, re-
cursive matrix, trace sequence
AMS Subject Classification: 11B37, 11B39, 11B83, 65Q30

1. Introduction
In recent years, several papers [1, 2, 4, 18] published involving new identities and re-
sults based on Fibonacci-like sequences and their generalizations which have many
interesting properties. One can refer to the book [8] of T. Koshy for more such
sequences, generalizations, and rich applications.

In spite of many articles, books, and literature reviews on Fibonacci-like se-
quences and their generalizations [3–10, 13, 17], investigating new identities, results
and their applications are interesting areas among researchers. Ongoing through
the available literature review on generalizations of Fibonacci sequences, it can be
noted that mainly the work may be generalized in two directions. Either the re-
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cursive formula can be generalized and extended or the formula is preserved with
arbitrary initial assumptions. Kalman et al. [6] discussed some well-known results
of classical Fibonacci-like sequences and demonstrated that many of the properties
of these sequences can be established for much more general classes.

The recursive matrices corresponding to recursive sequences always attract re-
searchers to investigate new identities and establish some well-known results such
as Binet’s formula, determinants, permanents, etc. For instance, Kumari et al. [9]
have proposed some new families of identities of k-Mersenne and generalized k-
Gaussian Mersenne numbers and their polynomials. Tianxiao et al. [16] presented
a recursive matrix for recursive sequences of order three ak+3 = pak +qak+1+rak+2
with arbitrary initial conditions, and discussed some special third order recurrences
such as Padavon and Perrin numbers. Saba et al. [14] introduced the concept of bi-
variate Mersenne Lucas polynomials then established Binet’s formula and obtained
many well-known identities using Binet’s formula. Özkan et al. [11] obtained the
elements of the Lucas polynomials by using two matrices and extended the study
to the n-step Lucas polynomials, whereas Testan et al. [15] given some families
of generalized Fibonacci and Lucas polynomials and developed some properties of
these families and established interrelationships.

1.1. Fibonacci and Lucas matrices
The well-known integer sequences, Fibonacci {f2,n} and Lucas {u2,n} sequence are
defined as

f2,n+2 = f2,n + f2,n+1 and u2,n+2 = u2,n + u2,n+1; n ≥ 0, (1.1)

with f2,0 = 0, f2,1 = 1 for {f2,n} and u2,0 = 2, u2,1 = 1 for {u2,n}. These sequences
are also extendable in the negative direction which can be achieved by rearranging
Eqn. (1.1). It is also noted that f2,−n = (−1)n+1f2,n and u2,−n = (−1)nu2,n for
n ∈ N ∪ {0}.

A matrix sequence [8] corresponding to above integer sequences are given as

Qn
2 =

[
f2,n+1 f2,n

f2,n f2,n−1

]
and L

(n)
2 =

[
u2,n+1 u2,n

u2,n u2,n−1

]
. (1.2)

Further in [12], Prasad et al. have obtained some interesting properties of gen-
eralized Fibonacci matrices (Qn

k ) given in the following theorem. We use these
identities to establish some new identities and results in this paper.

Theorem 1.1 ([12]). Let n, l ∈ Z, k(≥ 2) ∈ N and Qn
k be a generalized Fibonacci

matrix of order k, then we have

1. (Q1
k)n = Qn

k ,

2. Q0
k = Ik, where Ik is identity matrix of order k,

3. Qn
k Ql

k = Qn+l
k ,
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4. det(Qn
k ) = (−1)(k−1)n.

Note. Throughout the paper, we adopt the notation tk,n to denote the nth term
of the sequence {tk,n} of order k with arbitrary initial values.

2. The {t2,n} sequence and some properties
Consider the second order linear difference equation given by

t2,n+2 = t2,n+1 + t2,n, n ≥ 0 with t2,0 = a and t2,1 = b. (2.1)

Similar to the Fibonacci sequence, the sequence {t2,n} can also be extended in the
negative direction by rearranging Eqn. (2.1) as t2,−n = t2,−n+2 − t2,−n+1; n ∈ N
with the same initial values.

Thus, the first few terms of the sequence are as follows:

n ... -3 -2 -1 0 1 2 3 4 5 6 ...
t2,n ... -3a+2b 2a-b -a+b a b a+b a+2b 2a+3b 3a+5b 5a+8b ...
f2,n ... 2 -1 1 0 1 1 2 3 5 8 ...
l2,n ... -4 3 -1 2 1 3 4 7 11 18 ...

Remark 2.1. For a sequence {t2,n}n≥0 satisfying Eqn. (2.1), we have

t2,n = af2,n−1 + bf2,n, where f2,0 = 0 and f2,1 = 1. (2.2)

2.1. Matrix formation

The matrix sequence {T
(n)
2 }n≥0 associated with the integer sequence {t2,n} is de-

fined as
T

(n)
2 =

[
t2,n+1 t2,n

t2,n t2,n−1

]
with T

(0)
2 =

[
b a
a b − a

]
, (2.3)

where det(T (0)
2 ) = b(−a + b) − a2 = b2 − ab − a2 = K(say).

In next theorems and results, we present some interesting recursive and explicit
formulas for the matrix sequence T

(n)
2 associated with the Fibonacci matrices.

Theorem 2.2. The determinant of matrix T
(n)
2 is given by

det(T (n)
2 ) = (a2 + ab − b2)(−1)n−1 = K(−1)n.

Proof. To prove it, we use the following result of Fibonacci numbers

f2,n+1f2,n−2 − f2,nf2,n−1 = (−1)n−1. (2.4)

Therefore,

det(T (n)
2 ) = t2,n+1t2,n−1 − t2

2,n
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= (af2,n + bf2,n+1)(af2,n−2 + bf2,n−1) − (af2,n−1 + bf2,n)2

= a2(f2,nf2,n−2 − f2
2,n−1) + b2(f2,n+1f2,n−1 − f2

2,n)
+ ab(f2,nf2,n−1 + f2,n+1f2,n−2 − 2f2,nf2,n−1)

= a2[(−1)n−1] + b2[(−1)n] + ab(f2,n+1f2,n−2 − f2,nf2,n−1)
= a2[(−1)n−1] + b2[(−1)n] + ab[(−1)n−1] (using Eqn. (2.4))
= (a2 − b2 + ab)(−1)n−1 = −K(−1)n−1 = K(−1)n

as required.

Corollary 2.3. det(T (n+1)
2 ) = (−1) det(T (n)).

Example 2.4 (Fibonacci matrix). For a = 0, b = 1, we have det(T (n)
2 ) = (−1)n.

Example 2.5 (Lucas matrix). For a = 2, b = 1, we have det(T (n)
2 ) = (−1)n5.

Theorem 2.6. Let T
(n)
2 be a matrix as defined in (2.3) and Qn

2 is the Fibonacci
matrix, then we write

T
(n)
2 = Qn

2 T
(0)
2 = T

(0)
2 Qn

2 , ∀n ∈ Z.

Proof. We have

Qn
2 T

(0)
2 =

[
f2,n+1 f2,n

f2,n f2,n−1

][
b a
a b − a

]
=

[
bf2,n+1 + af2,n af2,n+1 + (b − a)f2,n

bf2,n + af2,n−1 af2,n + (b − a)f2,n−1

]

=
[
af2,n + bf2,n+1 bf2,n + af2,n−1
af2,n−1 + bf2,n bf2,n−1 + af2,n−2

]
(using relation (1.1))

=
[
t2,n+1 t2,n

t2,n t2,n−1

]
(using relation (2.2))

= T
(n)
2 .

By a similar argument, we have T
(0)
2 Qn

2 = T
(n)
2 .

Corollary 2.7. If a = 0, b = 1 then T
(0)
2 = I2 and T

(n)
2 = Qn

2 , where I2 is an
identity matrix of order 2.

Corollary 2.8. For n ∈ N, we have T
(n)
2 = Q2T

(n−1)
2 = Q−1

2 T
(n+1)
2 .

Theorem 2.9. Let T
(n)
2 be a matrix as defined in (2.3), then we write

T
(n)
2 T

(−n)
2 = (T (0)

2 )2.

Proof. By definition of T
(n)
2 , we have

T
(n)
2 T

(−n)
2 = Q

(n)
2 T

(0)
2 Q

(−n)
2 T

(0)
2
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= T
(0)
2 Q

(n)
2 Q

(−n)
2 T

(0)
2

= T
(0)
2 IT

(0)
2 = T

(0)
2 T

(0)
2 = (T (0)

2 )2

as required.

From Theorem 2.2, it is clear that the matrix T
(n)
2 is invertible if and only if

T
(0)
2 is invertible i.e det(T (0)

2 ) = K ̸= 0. Thus from Theorem 2.9, we have the
inverse of T

(n)
2 given by

Inv(T (n)
2 ) = T

(−n)
2 H−1, where H = (T (0)

2 )2 and a, b are such that K ̸= 0.

2.2. The trace sequence
Let us define another sequence {l2,n} of order two for the given sequence {t2,n} as
follows

l2,n = trace(T (n)
2 ) = t2,n+1 + t2,n−1, (2.5)

whose initial values in terms of a and b are obtained as

l2,0 = t2,1 + t2,−1 = b + (b − a) = −a + 2b,

l2,1 = t2,2 + t2,0 = (a + b) + a = 2a + b.

Thus, Eqn. (2.5) can be re-stated free from t2,n, recursively as

l2,n+2 = l2,n+1 + l2,n with l2,0 = −a + 2b, l2,1 = 2a + b. (2.6)

In particular, for a = 0, b = 1, {t2,n} becomes {f2,n} and its corresponding se-
quence of traces coincides with the standard Lucas sequence {u2,n}.

Moreover, the matrix M
(n)
2 corresponding to trace sequence {l2,n} is given by

M
(n)
2 =

[
l2,n+1 l2,n

l2,n l2,n−1

]
with M

(0)
2 =

[
l2,1 l2,0
l2,0 l2,−1

]
=

[
2a + b 2b − a
2b − a 3a − b

]
. (2.7)

Theorem 2.10. The determinant of matrix M
(n)
2 is given by

det(M (n)
2 ) = 5K(−1)n+1 ∀n ∈ Z.

Proof. From Eqn. (2.7), we have

M
(n)
2 =

[
l2,n+1 l2,n

l2,n l2,n−1

]
=

[
t2,n+2 + t2,n t2,n+1 + t2,n−1

t2,n+1 + t2,n−1 t2,n + t2,n−2

]

=
[
t2,n+1 t2,n

t2,n t2,n−1

][
1 2
2 −1

]
= T

(n)
2 L

(0)
2 (from Eqn. (2.1) and Eqn. (1.2)).

Thus, det(M (n)
2 ) = |T (n)

2 L
(0)
2 | = |Qn

2 T
(0)
2 L

(0)
2 | = |Qn

2 ||T (0)
2 ||L(0)

2 | = 5K(−1)n+1.
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In particular for n = 0, we have det(M (0)
2 ) = 5a2 + 5ab − 5b2 = −5K.

The first few terms of the trace sequence {l2,n}n∈Z are as follows:

n ... -3 -2 -1 0 1 2 3 4 ...
l2,n ... 7a-4b -4a+3b 3a-b -a+2b 2a+b a+3b 3a+4b 4a+7b ...

Remark 2.11. If l2,n = k1a + k2b for n > 0, then we have

l2,−n+1 = (k2a − k1b)(−1)n.

2.3. Binet’s formula, identities and generating function
The characteristics equation for the second order linear difference equation (2.1) is
given by

x2 = x + 1. (2.8)

Equation (2.8) has two real roots, α1 = 1+
√

5
2 and α2 = 1−

√
5

2 , which satisfy

α1 + α2 = 1, α1 − α2 =
√

5, α1α2 = −1 and α1
α2

= 3 +
√

5
−2 . (2.9)

And from the theory of difference equation we know that the general term of the
Eqn. (2.1) can be expressed as:

t2,n = c1αn
1 + c2αn

2 , (2.10)

where c1 and c2 are arbitrary constants (to be evaluated) and α1 and α2 are
characteristics roots.

Theorem 2.12 (Binet’s formula). For n ≥ 0, we have

t2,n = −Aαn
1 + Bαn

2√
5

, (2.11)

where A = aα2 − b and B = aα1 − b.

Proof. To establish the result, we eliminate arbitrary constants c1 and c2 from
Eqn. (2.10). Now, putting the values of α1 and α2 in Eqn. (2.10), we get

t2,n = c1

(
1 +

√
5

2

)n

+ c2

(
1 −

√
5

2

)n

. (2.12)

To determine the values of c1 and c2, we set t2,0 = a and t2,1 = b in Eqn. (2.12).
Therefore,

t2,0 = a = c1 + c2 and t2,1 = b = c1

(
1 +

√
5

2

)
+ c2

(
1 −

√
5

2

)

=⇒ b = 1
2[a +

√
5(c1 − c2)],
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which gives c1 + c2 = a and c1 − c2 = (2b − a)/
√

5 and on solving we get

c1 = a
√

5 − (a − 2b)
2
√

5
and c2 = a

√
5 + (a − 2b)

2
√

5
.

Thus, from Eqn. (2.12), we have

t2,n = 1
2
√

5

[
(a

√
5 − (a − 2b))

(
1 +

√
5

2

)n

+ (a
√

5 + (a − 2b))
(

1 −
√

5
2

)n
]

= 1√
5

[−Aαn
1 + Bαn

2 ]

as required.

Theorem 2.13. For n ∈ N, we have

t2,−n = (−1)n −Aαn
2 + Bαn

1√
5

.

Proof. Replacing n by −n in the Binet’s formula (2.11), we get

t2,−n = −Aα−n
1 + Bα−n

2√
5

= 1√
5

(−A

αn
1

+ B

αn
2

)

= 1√
5

(−Aαn
2 + Bαn

1
αn

1 αn
2

)

= −Aαn
2 + Bαn

1√
5(−1)n

= (−1)n −Aαn
2 + Bαn

1√
5

(using α1α2 = −1)

as required.

Theorem 2.14 (Catalan’s identity). For the sequence {t2,n}, we have

t2,n−rt2,n+r − t2
2,n = (−1)n(b2 − a2 − ab)

2r.5 [2r+1 − (
√

5 − 3)r − (−
√

5 − 3)r].

Proof. Using the Binet’s formula (2.11), we write

t2,n−rt2,n+r − t2
2,n

=
(−Aαn−r

1 + Bαn−r
2√

5

)(−Aαn+r
1 + Bαn+r

2√
5

)
−

(−Aαn
1 + Bαn

2√
5

)2

= 1
5

[
AB(2αn

1 αn
2 − αn−r

1 αn+r
2 − αn+r

1 αn−r
2 )

]

= 1
5ABαn

1 αn
2
[
(2 − α−r

1 αr
2 − αr

1α−r
2 )

]

= ABαn
1 αn

2
5

[
2 −

(
3 −

√
5

−2

)r

−
(

3 +
√

5
−2

)r
]

(using (2.9))
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= (−1)n(b2 − a2 − ab)
2r.5 [2r+1 − (

√
5 − 3)r − (−

√
5 − 3)r]

as required.

Corollary 2.15 (Cassini’s identity). For the sequence {t2,n}n∈N, we have

t2,n−1t2,n+1 − t2
2,n = (−1)n(b2 − a2 − ab).

Theorem 2.16 (d’Ocagne’s identity). For positive integers r and n, we have

t2,nt2,r+1 − t2,n+1t2,r = (b2 − a2 − ab)√
5

[αn
1 αr

2 − αr
1αn

2 ].

Proof. Using the Binet’s formula (2.11), we write

t2,nt2,r+1 − t2,n+1t2,r

=
(−Aαn

1 + Bαn
2√

5

)(−Aαr+1
1 + Bαr+1

2√
5

)

−
(−Aαn+1

1 + Bαn+1
2√

5

)(−Aαr
1 + Bαr

2√
5

)

= AB

5 (αn+1
1 αr

2 + αn+1
2 αr

1 − αn
1 αr+1

2 − αr+1
1 αn

2 )

= AB

5 [αn
1 αr

2(α1 − α2) − αr
1αn

2 (α1 − α2)]

= AB

5 [(αn
1 αr

2 − αr
1αn

2 )(α1 − α2)] (substituting the value of A and B)

= (b2 − a2 − ab)√
5

[αn
1 αr

2 − αr
1αn

2 ] (using α1 − α2 =
√

5)

as required.

Now, we aim to give the generating function for {t2,n} and {l2,n} sequences in
terms of a and b.

Generating function

Let g(x) =
∑∞

n=0 t2,nxn be a generating function for the sequence {t2,n}. Now,
multiplying Eqn. (2.1) by xn+2 and then taking summation over 0 to ∞, we get

∞∑

n=0
xn+2tn+2 −

∞∑

n=0
xn+2tn+1 −

∞∑

n=0
xn+2tn = 0

=⇒ (g(x) − t0 − t1x) − (g(x) − t0)x − g(x)x2 = 0
=⇒ g(x)(1 − x − x2) − (t0 + t1x − t0x) = 0

=⇒ g(x) = a + (b − a)x
(1 − x − x2) . (2.13)
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Theorem 2.17. Let q(x) be the generating function for trace sequence {l2,n} (2.6),
then we have

q(x) = −g(x) + 2
(

g(x) − a

x

)
.

Proof. Lat A = −a + 2b and B = 2a + b (initial value of trace sequence), then in
Eqn. (2.13) replace a by A and b by B, we get

q(x) = A + (B − A)x
(1 − x − x2) = (−a + 2b) + (2a + b − (−a + 2b))x

(1 − x − x2)

= (−a + 2b) + (3a − b)x
(1 − x − x2)

= −a − (b − a)x
(1 − x − x2) + 2[b + (a + b − b)x]

(1 − x − x2)

= −g(x) + 2
(

g(x) − a

x

)

as required.

For a = 0, b = 1 and a = 2, b = 1, Eqn. (2.13) gives the generating function
for Fibonacci and Lucas sequence, respectively.

3. The {t3,n} sequence and some properties
Let us consider the sequence {t3,n}n≥0 given by a third order linear difference
equation as follows

t3,n+3 = t3,n+2 + t3,n+1 + t3,n with t3,0 = a, t3,1 = b, t3,2 = c. (3.1)

The recurrence relation (3.1) can also be extended in negative direction and it can
be achieved by rearranging the relation as t3,n = t3,n+3 − t3,n+2 − t3,n+1, n ≤ 0.

In particular for a = b = 0, c = 1, Eqn. (3.1) gives tribonacci sequence while
for a = 3, b = 1, c = 3, same is known as trucas (Tribonacci-Lucas) sequence [8].

The first few terms of sequence {t3,n} are given in the following table:

Index (n) t3,n Value Index (−n) t3,−n Value
0 t3,0 a 0 t3,0 a
1 t3,1 b −1 t3,−1 c − a − b
2 t3,2 c −2 t3,−2 2b − c
3 t3,3 a + b + c −3 t3,−3 2a − b
4 t3,4 a + 2b + 2c −4 t3,−4 2c − 3a − 2b
5 t3,5 2a + 3b + 4c −5 t3,−5 5b − 3c + a
6 t3,6 4a + 6b + 7c −6 t3,−6 4a − 4b + c
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The matrix representation corresponding to Eqn. (3.1) is given by a square matrix
T

(n)
3 of order 3 defined as

T
(n)
3 =




t3,n+2 t3,n+1 + t3,n t3,n+1
t3,n+1 t3,n + t3,n−1 t3,n

t3,n t3,n−1 + t3,n−2 t3,n−1


with T

(0)
3 =




c a + b b
b c − b a
a b − a c − a − b


 (3.2)

and the determinant of T
(0)
3 is given as

det(T (0)
3 ) = a3 + 2a2b + a2c + 2ab2 − 2 a b c − a c2 + 2 b3 − 2 b c2 + c3 (= K, say).

Theorem 3.1. Let {f3,k}n≥0 be tribonacci sequence [A000073] with initial values
0, 0, 1, then

t3,n = b(f3,n+1 − f3,n) + af3,n−1 + cf3,n, ∀n ∈ Z.

Proof. We prove it using mathematical induction on n. For n = 0, the result
obviously holds. For n = 1, we have

t3,1 = b(f3,2 − f3,1) + af3,0 + cf3,1 = b + a0 + c0 = b.

Now assuming the result is true for n = k. For n = k + 1, we write

tk+1 = tk + tk−1 + tk−2

= [b(fk+1 − fk) + afk−1 + cfk] + [b(fk − fk−1) + afk−2 + cfk−1]
+ [b(fk−1 − fk−2) + afk−3 + cfk−2]

= b(fk+1 − fk−2) + a(fk−1 + fk−2 + fk−3) + c(fk + fk−1 + fk−2)
= b(fk+2 − fk+1) + afk + cfk+1 (using tribonacci sequence)

as required.

Theorem 3.2. Let T
(0)
3 be the initial matrix defined in Eqn. (3.2) and Qn

3 be
tribonacci matrix, then we have T

(n)
3 = Qn

3 T
(0)
3 , ∀n ∈ Z.

Proof. It can be easily proved using mathematical induction on n and Theo-
rem 3.1.

Corollary 3.3. For n ∈ N, we have, T
(n)
3 = Q3T

(n−1)
3 = Q−1

3 T
(n+1)
3 .

Remark 3.4. Matrices Qn
3 and T

(0)
3 commutes i.e. Qn

3 T
(0)
3 = T

(0)
3 Qn

3 , ∀n ∈ Z.

Theorem 3.5. For recursive matrix T
(n)
3 , we write

T
(n)
3 T

(−n)
3 = (T (0)

3 )2, ∀n ∈ Z.
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Proof. Using definition of T
(n)
3 , we have

T
(n)
3 T

(−n)
3 = Qn

3 T
(0)
3 Q−n

3 T
(0)
3

= Qn
3 Q−n

3 T
(0)
3 T

(0)
3 = IT

(0)
3 T

(0)
3 = (T (0)

3 )2

as required.

Remark 3.6. Determinant of T
(n)
3 is invariant of n, i.e. det(T (n)

3 ) = det(T (0)
3 ) = K.

Since by the properties of determinant, we write

det(T (n)
3 ) = det(Qn

3 T
(0)
3 ) = det(Qn

3 ) det(T (0)
3 )

= (−1)2n det(T (0)
3 ) = det(T (0)

3 ) = K.

Thus, T
(n)
3 is invertible if and only if T

(0)
3 is invertible, so for the existence of

inverse of T
(n)
3 , we consider only those values of a, b, c such that det(T (0)

3 ) ̸= 0.

Example 3.7 (Tribonacci). Let a = b = 0 and c =1 then det(T (n)
3 ) = 1.

Example 3.8 (Trucas). Let a = 3, b = 1 and c = 3 then det(T (n)
3 ) = 44.

Remark 3.9. Inv(T (n)
3 ) = T

(−n)
3 H−1 provided det(T (0)

3 ) ̸= 0, where H = (T (0)
3 )2.

3.1. Matrix representation for sequence of traces
The Lucas sequence of order 3 (also known as trucas, ref. A001644, A007486) is
given by following recurrence relation

l3,n+3 = l3,n+2 + l3,n+1 + l3,n, with l3,0 = 3, l3,1 = 1, l3,2 = 3. (3.3)

In terms of tribonacci sequence, trucas is given by l3,n = trace(Qn
3 ) = f3,n+2 +

f3,n+2f3,n−1. Now, redefining the trucas (3.3) for {t3,n} sequence with the relation

l3,n = trace(T (n)
3 ).

Since trace(T (n)
3 ) = t3,n+2 + t3,n + 2t3,n−1, so from Theorem 3.1, we have

trace(T (n)
3 ) = [b(fn+3 − fn+2) + afn+1 + cfn+2] + [b(fn+1 − fn) + afn−1 + cfn]

+ 2[b(fn − fn−1) + afn−2 + cfn−1]
= b(f3,n+3 + f3,n+1 + f3,n − f3,n+2 − 2f3,n−1)

+ a(f3,n+1 + f3,n−1 + 2f3,n−2) + c(f3,n+2 + f3,n + 2f3,n−1)
= 2b(f3,n+3 − f3,n+2 − f3,n−1) + al3,n−1 + cl3,n. (3.4)

Remark 3.10. For a = b = 0, c = 1, Eqn. (3.4) gives the standard trucas sequence.
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The corresponding matrix sequence {M
(n)
3 } for the sequence {l3,n} is given by

M
(n)
3 =




l3,n+2 l3,n+1 + l3,n l3,n+1
l3,n+1 l3,n + l3,n−1 l3,n

l3,n l3,n−1 + l3,n−2 l3,n−1


.

Theorem 3.11. Let L
(0)
3 be the initial trucas matrix (it can be obtained by putting

a = 3, b = 1, c = 3 in T
(0)
3 in Eqn. (3.2)), then we have

M
(n)
3 = T

(n)
3 L

(0)
3 . (3.5)

Proof. It can be easily proved with mathematical induction on n.

Theorem 3.12. If K is determinant of T
(0)
3 , then det(M (n)

3 ) = 44K.

Proof. Using properties of the determinant and Eqn. (3.5), we have

det(M (n)
3 ) = |T (n)

3 L
(0)
3 | = |T (n)

3 ||L(0)
3 | = |Qn

3 ||T (0)
3 ||L(0)

3 |
= (−1)2nK44 = 44K

as required.

Thus, it is concluded that if T
(n)
3 is invertible implies inverse for M

(n)
3 exists

for all n ∈ Z, i.e. M
(n)
3 is invertible if and only if T

(0)
3 is invertible.

Generating function

Let g(x) =
∑∞

n=0 t3,nxn be a generating function for {t3,n} sequence. On multi-
plying each term of Eqn. (3.1) with xn+3 and then taking summation over n = 0
to ∞, we get

∞∑

n=0
xn+3tn+3 −

∞∑

n=0
xn+3tn+2 −

∞∑

n=0
xn+3tn+1 −

∞∑

n=0
xn+3tn = 0.

Thus, we have

(g(x) − t0 − t1x − t2x2) − (g(x) − t0 − t1x)x − (g(x) − t0)x2 − g(x)x3 = 0
=⇒ g(x)(1 − x − x2 − x3) − t0(1 − x − x2) − t1(x − x2) − t2x2 = 0

=⇒ g(x) = a(1 − x − x2) + b(x − x2) + cx2

(1 − x − x2 − x3)

=⇒ g(x) = a + (b − a)x + (c − b − a)x2

(1 − x − x2 − x3) . (3.6)

In particular, setting a = b = 0, c = 1 and a = 3, b = 1, c = 3 in Eqn. (3.6) give
the generating functions for tribonacci and trucas sequence, respectively.
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3.2. Binet’s formula
To establish any identity involving nth term of the sequence, the Binet’s formula
plays an important role. Here, we derive an explicit formula for generalized third
order sequences {t3,n}.

Let us assume that the three characteristic roots of difference Eqn. (3.1) are
r1, r2 and r3. Clearly, r1, r2 and r3 satisfy the relations

r1 + r2 + r3 = 1, r1r2 + r2r3 + r3r1 = −1 and r1r2r3 = 1. (3.7)

Theorem 3.13 (Binet’s formula). For n ≥ 0, we have

t3,n = Pr1
n + Qr2

n

r1 − r2
+ Rr3

n, (3.8)

where P = (r2 − r3)R − ar2 + b, Q = (r3 − r1)R + ar1 − b, R = c−(r1+r2)b+r1r2a
r2

3−(r1+r2)r3+r1r2
.

Proof. Using the relation between roots and the coefficients of a polynomial,
rewriting Eqn. (3.1) as

tk,n+3 = (r1 + r2 + r3)tk,n+2 − (r1r2 + r2r3 + r3r1)tk,n+1 + r1r2r3tk,n.

It can also be written as,

tk,n+3 − (r1 + r2)tk,n+2 + (r1r2)tk,n+1

= r3tk,n+2 − r3(r1 + r2)tk,n+1 + r1r2r3tk,n

= r3[tk,n+2 − (r1 + r2)tk,n+1 + r1r2tk,n]. (3.9)

Similarly, we have

tk,n+2 − (r1 + r2)tk,n+1 + r1r2tk,n = r3[tk,n+1 − (r1 + r2)tk,n + r1r2tk,n−1]. (3.10)

Substitute Eqn. (3.10) in Eqn. (3.9), we get

tk,n+3 − (r1 + r2)tk,n+2 + (r1r2)tk,n+1 = r2
3[tk,n+1 − (r1 + r2)tk,n + r1r2tk,n−1].

Continuing this substitution process, we obtain a recursive relation

tk,n+3 − (r1 + r2)tk,n+2 + (r1r2)tk,n+1 = rn+1
3 [tk,2 − (r1 + r2)tk,1 + r1r2tk,0].

Now, divide both side of the above equation by rn+3
3 , we get

tk,n+3

rn+3
3

− (r1 + r2)
rn+3

3
tk,n+2 + (r1r2)

rn+3
3

tk,n+1 = 1
r2

3
[tk,2 −(r1 +r2)tk,1 +r1r2tk,0]. (3.11)

For simplicity, consider tk,2 − (r1 + r2)tk,1 + r1r2tk,0 = K and tk,n+3

rn+3
3

= Hk,n+3 in

Eqn. (3.11), we write

Hk,n+3 − (r1 + r2)
r3

Hk,n+2 + (r1r2)
r2

3
Hk,n+1 = 1

r2
3

K, (3.12)
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which is a second order non-homogeneous linear difference equation and its solution
is given by Hk,n = H(C)+H(P ), where H(C) represents the solution corresponding
homogeneous part and H(P ) is particular solution.

Since, roots of the characteristic equation for homogeneous part of Eqn. (3.12)
are α1 = r1

r3
and α2 = r2

r3
. So, the solution for homogeneous part is given by

H(C) = A

(
r1
r3

)n

+ B

(
r2
r3

)n

, where A and B are arbitrary constants.

Furthermore, the non-homogeneous part of Eqn. (3.12) is a constant, so particular
solution is also a constant and it is given by H(P ) = K

r2
3−(r1+r2)r3+r1r2

. Thus,
general solution of Eqn. (3.12) is

Hk,n = H(C) + H(P ) = A

(
r1
r3

)n

+ B

(
r2
r3

)n

+ K

r2
3 − (r1 + r2)r3 + r1r2

.

Replacing Hk,n by tk,n

rn
3

and K by tk,2−(r1+r2)tk,1+r1r2tk,0 in the above equation,
we get

tk,n = Ar1
n + Br2

n + r3
nR, where R =

[
tk,2 − (r1 + r2)tk,1 + r1r2tk,0

r2
3 − (r1 + r2)r3 + r1r2

]
. (3.13)

Hence, using initial values from Eqn. (3.1) in Eqn. (3.13), we have

A = (r2 − r3)R − ar2 + b

r1 − r2
and B = (r3 − r1)R + ar1 − b

r1 − r2
,

where R = c−(r1+r2)b+r1r2a
r2

3−(r1+r2)r3+r1r2
, as required.

Remark 3.14. Setting a = b = 0 and c = 1 in Eqn. (3.8) gives the Binet’s formula
for the standard tribonacci sequence (the Fibonacci sequence of order three).

Remark 3.15. Setting a = 3, b = 1 and c = 3 in Eqn. (3.8) gives the Binet’s
formula for the Tribonacci-Lucas sequence.
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Abstract. In this paper, we characterize the structure of the unit group of
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1. Introduction
The group algebra of the finite group G over the finite field Fq is denoted by FqG.
Let q and p be the order and characteristics of the finite field Fq, respectively
and q = pk. Let U(FqG) be the group of units of the group algebra FqG. Group
theory frequently runs into the issues with unit group of the group algebra. The
characterization of the unit groups is crucial for a number of applications, including
the study of the isomorphism problem [14], one of the most significant research
problems in the theory of group algebras, the development of convolutional codes
in group algebra (see [5, 9]) and other applications. The structure of the unit
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group of the semisimple group algebra FqG has been extensively studied (see [3,
4, 10, 12–18, 20, 22]). The study by Bakshi et al. [4], in which the unit groups of
the semisimple group algebras of all metabelian groups are studied, is one of the
most significant ones in this field. As a result, the majority of research in this field
focuses on understanding the unit group of non-metabelian group algebras. The
unit groups of the group algebras of non-metabelian groups up to order 72 were
described by Mittal et al. in [16]. Further, Sharma et al. determined the unit group
of the semisimple group algebra (SGA) of the respective groups SL(2, 3) (special
linear group over the finite field of 3 elements) and SL(2, 5) (See [11] and [19]).
In continuation, Sivaranjani et al. [21] determined the unit group of the SGA of
the group SL(2, 7). In addition, Arvind et al. [1] investigated the unit group of
the SGA of the group SL(3,Z2). The main objective of this paper is to derive the
unit group of the SGA of the groups SL(2, 8) and SL(2, 9), respectively. We notice
that the difficulty of exactly identifying the unit group of the SGA increases as the
size of the group increases. One may refer [15, 17] for some of the recent works in
this area. Our first goal in determining the unit group is to infer the Wedderburn
decomposition (WD) of FqSL(2, 8) and FqSL(2, 9), respectively. Further, it is
easy to derive the unit group from the WD. The rest of this paper is structured
as follows. The prerequisites for the article are covered in Section 2. In sections 3
and 4, we deduce the unit group of the group algebras FqSL(2, 8) and FqSL(2, 9)
in the form of theorems 3.1 and 4.1, respectively. Section 5 concludes the paper.

2. Preliminaries
Throughout this paper, SL(n, r) denotes the special linear group of n × n matrices
with determinant 1 over the finite field of order r. The order of SL(n, r) is given
by

(rn − 1)(rn − r) · · · (rn − rn−1)(r − 1)−1.

Next, we discuss some notations and results from [7]. Let J(FqG) denote the
Jacobson radical of FqG. Let s be the least common multiple of the orders of
p-regular elements of group G and let η be the primitive sth root of unity over
a finite field F . Let TG,F = {t : η → ηt is an automorphism of F(η) over F}.
Since the Galois group Gal(F(η) : F) is cyclic, for any σ ∈ Gal(F(η) : F), there
exists a positive integer s such that σ(η) = ηs. For any p-regular element g ∈ G
(i.e., p does not divide order of g), we define γg =

∑
h, where h runs over all the

elements in the conjugacy class Cg of g. The cyclotomic F-class of γg is defined as
SF(γg) = {γgt | t ∈ TG,F }. The following theorem characterizes the set TG,F .

Theorem 2.1 ([16, Theorem 2.3]). Let F be a finite field with prime power order
d such that gcd(d, s) = 1 and e = orders(d) is the multiplicative order of d modulo
s, then TG,F = {1, d, . . . , de−1} mod s.

To uniquely identify the Wedderburn decomposition (WD) of the group algebra,
the following six results will play an important role.
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Proposition 2.2 ([7, Proposition 1.2]). The number of non isomorphic simple
components of FG/J(FG) is equal to the number of cyclotomic F-classes in G.

Theorem 2.3 ([7, Theorem 1.3]). Assume that G has t cyclotomic F-classes and
Gal(F(η) : F)) is a cyclic group, then |Si| = [Fi : F ] with appropriate index
ordering if S1, S2, · · · , St are the cyclotomic F-classes of G and F1, F2, . . . , Ft are
the simple components of Z(FG/J(FG)).

Proposition 2.4 ([14, Proposition 3.6.11]). Let G′ be the commutator subgroup of
G and let FG be a semisimple group algebra, then

FG ≃ F(G/G′) ⊕ △(G, G′),

where F(G/G′) is the sum of all commutative simple components of FG and
△(G, G′) is the sum of all others.

Proposition 2.5 ([14, Proposition 3.6.7]). Let N be a normal subgroup of G and
let FG be a semisimple group algebra (SGA), then

FG ≃ F(G/N) ⊕ △(G, N),

where △(G, N) is an ideal of FG generated by the set {n − 1 : n ∈ N}.

Proposition 2.6 ([6, Proposition 1]). Let FG be a finite SGA, where character-
istics of F is p. Let FG ∼=

⊕r
i=1 Mni

(Fi), where Fi are finite extensions of F and
r is a positive integer. Then p does not divide any of the ni.

Lemma 2.7 ([24]). Let p1 and p2 be two primes. Let Fq1 be a field with q1 = pk1
1

elements and let Fq2 be a field with q2 = pk2
2 elements, where k1, k2 ≥ 1. Let both

the group algebras Fq1G, Fq2G be semisimple. Suppose that

Fq1G ∼= ⊕t
i=1M(ni, Fq1), ni ≥ 1

and M
(
n, Fqr

2

)
is a Wedderburn component of the group algebra Fq2G for some

r ≥ 1 and any positive integer n, i.e.,

Fq2G ∼= ⊕s−1
i=1 M(mi, Fq2,i) ⊕ M(n, Fqr

2
), mi ≥ 1.

Here Fq2,i
is a field extension of Fq2 . Then M(n, Fq1) must be a Wedderburn

component of the group algebra Fq1G and it appears atleast r times in the WD of
Fq1G.

Proposition 2.8 ([1, Corollary 3.8]). Let FG be a finite SGA, where character-
istics of F is p. If there exists an irreducible representations of degree n over F ,
then one of the Wedderburn component of FG is M(n, F).
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3. Unit group of FqSL(2, 8)
Let G1 := SL(2, 8). Clearly, the order of G1 is 504. The group algebra FqG1 is
semi simple for p ̸= 2, 3, 7 by Maschke’s theorem [14]. Also, One can note that the
degrees of irreducible representations of G1 are 1, 7, 8 and 9 whenever |SFq(γg)| =
1, ∀g ∈ G1 (see [23]). The group G1 has 9 conjugacy classes (let the representative
of these classes be denoted by gi for i = 1, . . . , 9). The representatives (R) of the
conjugacy classes, sizes (S) and the orders (O) of representatives are tabulated
below.

R I2

[
0 1
1 0

] [
0 1
1 1

] [
0 1
1 x

] [
0 1
1 x2

] [
0 1
1 α

] [
x 0
0 β

]

S 1 63 56 56 56 56 72
O 1 2 3 9 9 9 7

[
x2 0
0 α + 1

] [
x + 1 0

0 α

]

72 72
7 7

Here I2 is 2 × 2 identity matrix, x is the generator of multiplicative group of finite
field of order 8, α = x2 + x and β = x2 + 1. Also, G1 can be generated by two
elements a and b, where

a =
[

x 0
0 x2 + 1

]
and b =

[
1 1
1 0

]
. (3.1)

The exponent of G1 is 126. In this section, we characterize the unit group of the
group algebra FqG1 for p ̸= 2, 3, 7 such that the group algebra FqG1 is semisimple
and q = pk. In the following theorems, Fi denotes the finite extensions of Fq and
ni, r are positive integers.

Theorem 3.1. The unit group of FqG1, where q = pk and p ̸= 2, 3, 7 is given as
follows:
(1) for pk ≡ {1, 55, 71, 125} mod 126, we have

U(FqG1) ≃ F∗
q ⊕ GL(7, Fq)4 ⊕ GL(8, Fq) ⊕ GL(9, Fq)3.

(2) for pk ≡ {13, 29, 41, 43, 83, 85, 97, 113} mod 126, we have

U(FqG1) ≃ F∗
q ⊕ GL(7, Fq) ⊕ GL(8, Fq) ⊕ GL(9, Fq)3 ⊕ GL(7, Fq3).

(3) pk ≡ {17, 19, 37, 53, 73, 89, 107, 109} mod 126, we have

U(FqG1) ≃ F∗
q ⊕ GL(7, Fq)4 ⊕ GL(8, Fq) ⊕ GL(9, Fq3).
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(4) pk ≡ {5, 11, 23, 25, 31, 47, 59, 61, 65, 67, 79, 95, 101, 103, 115, 121} mod 126, we
have

U(FqG1) ≃ F∗
q ⊕ GL(7, Fq) ⊕ GL(8, Fq) ⊕ GL(7, Fq3) ⊕ GL(9, Fq3).

Proof. The group algebra FqG1 is semi simple, it follows from the Wedderburn
decomposition theorem [14] that FqG1 ≃ ⊕r

i=1M(ni, Fi). The derived subgroup G′
1

of G1 is G1 itself (i.e., G1 is a perfect one). This accompanying with Proposition 2.2
gives

FqG1 ≃ Fq

r−1⊕

i=1
M(ni, Fi), ni ≥ 2. (3.2)

Using Theorem 2.1, we construct the set TG,F of group G1 and divide the proof
into the following 4 cases.
Case 1: pk ≡ {1, 55, 71, 125} mod 126. In this case, we note that the cardinality of
cyclotomic Fq-class of γg is 1, for all g in G1. By employing this with Proposition 2.2
and Theorem 2.3, we further rewrite (3.2) as

FqG1 ≃ Fq

8⊕

i=1
M(ni, Fq) =⇒ 503 =

8∑

i=1
n2

i , ni ≥ 2. (3.3)

We have discussed earlier in this section that the degrees of irreducible representa-
tions of G1 are 1, 7, 8 and 9, whenever | SFq(γg) |= 1, ∀g ∈ G1. We note that there
are 158 choices of n′

is fulfilling (4.3). The only choice that only contains 7, 8 and 9
is (74, 8, 93). Hence, the Wedderburn decomposition (WD) is

FqG1 ≃ Fq ⊕ M(7, Fq)4 ⊕ M(8, Fq) ⊕ M(9, Fq)3.

Case 2: pk ≡ {13, 29, 41, 43, 83, 85, 97, 113} mod 126. In this case, the cyclotomic
Fq classes of γg are

SFq(γgi) = {γgi}, for i = 1, 2, 3, 7, 8, 9, SFq(γg4) = {γg4 , γg5 , γg6}.

By incorporating Proposition 2.2, we derive from (3.2) that

FqG1 ≃ Fq

5⊕

i=1
M(ni, Fq) ⊕ M(n6, Fq3) =⇒ 503 =

5∑

i=1
n2

i + 3n2
6, ni ≥ 2. (3.4)

Due to Lemma 2.7, it follows from (3.4) that ni ≥ 7. Consequently, the possible
choices of n′

is fulfilling (3.4) are (74, 8, 9), (73, 8, 10, 8), (7, 8, 93, 7) and (84, 10, 7).
Again, Lemma 2.7 implies that M(10, Fq) can not be a Wedderburn component.
Therefore, we are only remaining with two choices of n′

is given by (74, 8, 9) and
(7, 8, 93, 7). Next, to uniquely identify the correct choice, we show that M(9, Fq)
will always be a Wedderburn component in this case. In particular, we take p = 13
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and consider the following mapping from G1 to GL(9, F13):

a →




5 12 0 0 0 0 0 0 0
12 12 2 0 0 0 0 0 0
3 2 4 8 3 0 0 0 0
6 12 11 2 12 11 0 0 0
0 6 2 11 9 4 2 4 0
10 5 10 7 7 6 12 7 11
3 2 2 4 9 10 12 9 8
11 1 3 8 3 5 11 8 9
4 5 3 12 6 10 11 6 1




,

b →




8 9 4 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
11 7 4 0 0 0 0 0 0
3 12 2 4 3 1 12 0 0
3 10 1 4 6 0 8 1 11
2 5 3 8 1 10 0 10 2
9 8 5 6 2 8 1 5 11
6 1 5 0 9 2 8 8 0
12 4 0 10 8 12 6 7 10




.

This mapping is a homomorphism from G1 to GL(9, F13) (as a and b given in (3.1)
generates G1). It should be noted that this map is an irreducible representation
of G1 over F13. Therefore, according to Proposition 2.8, M(9, F13) will always be
a Wedderburn component of FqG1. Hence, it follows that (7, 8, 93, 7) is the only
possible value for ni. Hence, the WD is

FqG ≃ Fq ⊕ M(7, Fq) ⊕ M(8, Fq) ⊕ M(9, Fq)3 ⊕ M(7, Fq3).

Case 3: pk ≡ {17, 19, 37, 53, 73, 89, 107, 109} mod 124. The cyclotomic Fq classes
of γg are

SFq(γgi
) = {γgi

}, for 1, 2, 3, 4, 5, 6, SFq(γg7) = {γg7 , γg8 , γg9}.

By incorporating Proposition 2.2 and Theorem 2.3, we derive from (3.2) that

FqG1 ≃ Fq

5⊕

i=1
M(ni, Fq) ⊕ M(n6, Fq3) =⇒ 503 =

5∑

i=1
n2

i + 3n2
6, ni ≥ 2. (3.5)

By proceeding on the similar lines of case 2, one can show that we need to deduce
the unique choices among the 2 choices (74, 8, 9) and (7, 8, 93, 7). For this, we take
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p = 17 and show that there are two distinct homomorphisms from G1 to GL(7, F17).
We consider the following mappings:

a →




13 10 0 0 0 0 0
1 11 10 4 0 0 0
0 8 6 11 7 9 0
0 1 14 12 14 3 1
0 0 0 2 2 15 4
0 0 1 1 4 3 10
0 0 0 12 12 3 12




, b →




8 14 16 0 0 0 0
9 2 6 13 4 0 0
0 5 14 1 6 15 4
0 2 3 11 1 13 15
0 1 12 14 4 3 12
0 0 12 8 10 14 10
0 0 1 9 1 11 16




,

a →




14 14 0 0 0 0 0
13 16 0 4 0 0 0
16 12 12 15 0 0 0
5 8 9 0 15 7 2
10 9 13 13 9 1 12
9 1 6 3 13 15 0
1 5 11 8 2 14 2




, b →




6 8 16 0 0 0 0
12 1 16 14 0 16 0
11 12 13 7 4 12 0
0 15 9 6 0 13 0
9 7 2 9 13 13 14
12 14 10 6 9 9 4
5 9 14 13 4 16 4




.

These mappings are 2 irreducible representations of G1 over F17. Therefore, Propo-
sition 2.8 derives that M(7, F17)2 is a summand of the group algebra F17G1. Thus,
the required choices of n′

is fulfilling (3.5) is (74, 8, 9) Hence, the WD is

FqG1 ≃ Fq ⊕ M(7, Fq)4 ⊕ M(8, Fq) ⊕ M(9, Fq3).

Case 4: pk ≡ {5, 11, 23, 25, 31, 47, 59, 61, 67, 79, 101, 103, 115, 121, 65, 95} mod 124.
The cyclotomic Fq classes of γg are

SFq(γgi
) = {γgi

}, for 1, 2, 3, SFq(γg7) = {γg7 , γg8 , γg9}, SFq(γg4) = {γg4 , γg5 , γg6}.

By incorporating Proposition 2.2 and Theorem 2.3, we derive from (3.2) that

FqG1 ≃ (Fq)
2⊕

i=1
M(ni, Fq) ⊕ M(n3, Fq3) ⊕ M(n4, Fq3)

=⇒ 503 =
2∑

i=1
n2

i + 3(n2
3 + n2

4), ni ≥ 2. (3.6)

By following the procedure as in case 1, we can show that the ni ≥ 7 in (3.6).
Hence, the only possible choice of ni’s is (7, 8, 7, 9), which means that

FqG1 ≃ Fq ⊕ M(7, Fq) ⊕ M(8, Fq) ⊕ M(7, Fq3) ⊕ M(9, Fq3).

This completes the proof.
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4. Unit group of FqSL(2, 9)
Let G2: = SL(2, 9). The order of G2 is 720. Since p > 5, it does not divide the order
of G2, the group algebra FqG2 is semisimple. Also, from [8] one can note that G2
has irreducible representations of degrees 1, 4, 5, 8, 9 and 10 whenever |SFq(γg)| =
1, ∀g ∈ G2. The group G2 has 13 conjugacy classes and it is represented as g′

is.
The representative of the conjugacy classes, size and the order of representatives
are tabulated below:

R
[

1 0
0 1

] [
0 2
1 1

] [
0 2x + 2

x + 2 1

] [
2 0
0 2

] [
0 2
1 2

] [
0 2x + 2

x + 2 2

]

S 1 40 40 1 40 40
O 1 6 6 2 3 3

[
0 2
1 2x + 2

] [
0 2
1 x + 2

] [
0 2
1 x + 1

] [
0 2
1 2x + 1

] [
2x + 2 0

0 2x + 1

]

72 72 72 72 90
5 5 10 10 8

[
x 0
0 2x

] [
x + 2 0

0 x + 1

]

90 90
4 8

Here x is the generator of multiplicative group of finite field of order 9. Also, G2
can be generated by two elements a and b, where

a =
[

x + 1 0
0 x + 2

]
and b =

[
2 1
2 0

]
. (4.1)

In this section, we characterize the unit group of the group algebra FqG2 for p > 5
such that the group algebra FqG2 is semisimple and q = pk. It is clear from the
above table that the exponent of G2 is 120.

Theorem 4.1. The unit group of FqG2 is as follows:
(1) for pk ≡ {1, 31, 41, 49, 71, 79, 89, 119} mod 120, we have

U(FqG2) ≃ F∗
q ⊕GL(4, Fq)2 ⊕GL(5, Fq)2 ⊕GL(8, Fq)4 ⊕GL(9, Fq)⊕GL(10, Fq)3.

(2) for pk ≡ {7, 17, 23, 47, 73, 97, 103, 113} mod 120, we have

U(FqG2) ≃ F∗
q ⊕GL(4, Fq)2⊕GL(5, Fq)2⊕GL(9, Fq)⊕GL(10, Fq)3⊕GL(8, Fq2)2.

(3) pk ≡ {11, 19, 29, 59, 61, 91, 101, 109} mod 120, we have

U(FqG2) ≃ F∗
q ⊕ GL(4, Fq)2 ⊕ GL(5, Fq)2 ⊕ GL(9, Fq) ⊕ GL(8, Fq)4
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⊕ GL(10, Fq) ⊕ GL(10, Fq2).

(4) pk ≡ {13, 37, 43, 53, 67, 77, 83, 107} mod 120 , we have

U(FqG2) ≃ F∗
q ⊕ GL(4, Fq)2 ⊕ GL(5, Fq)2 ⊕ GL(9, Fq) ⊕ GL(10, Fq)

⊕ GL(10, Fq2) ⊕ GL(8, Fq2)2.

Proof. It follows from the Wedderburn decomposition theorem that FqG2 ≃⊕r
i=1 M(ni, Fi). Also, G2 is a perfect group. This and Proposition 2.2 imply

that

FqG2 ≃ Fq

r−1⊕

i=1
M(ni, Fi), ni ≥ 2. (4.2)

As in the previous theorem, we construct the set TG,F of group G2 and divide the
proof into the following 4 cases.
Case 1: pk ≡ {1, 31, 41, 49, 71, 79, 89, 119} mod 120. In this case, it can be verified
that |SFq(γg)| = 1, ∀g ∈ G2. By utilizing this along with Proposition 2.2, we
further rewrite (4.2) as

FqG2 ≃ Fq

12⊕

i=1
M(ni, Fq) =⇒ 719 =

12∑

i=1
n2

i , ni ≥ 2. (4.3)

Next, we consider the normal subgroup N of G2 generated by [ 2 0
0 2 ]. One can

observe that with G2/N ≃ A6. We recall from [2, Proposition 4.7] that

FqA6 ≃ Fq ⊕ M(5, Fq)2 ⊕ M(9, Fq) ⊕ M(10, Fq) ⊕ M(8, Fq)2. (4.4)

Utilizing (4.4) and Proposition 2.5 in (4.3) to derive that

FqG2 ≃ Fq ⊕ M(5, Fq)2 ⊕ M(9, Fq) ⊕ M(10, Fq) ⊕ M(8, Fq)2
6⊕

i=1
M(ni, Fq) (4.5)

with 360 =
∑6

i=1 n2
i , ni ≥ 2. We note that G2 has irreducible representations of

degrees 1, 4, 5, 8, 9 and 10. This means n′
is in (4.5) are among the set {4, 5, 8, 9, 10}.

Among all the possible choices of ni’s fulfilling 360 =
∑6

i=1 n2
i , the only choice that

contains elements from the set {4, 5, 8, 9, 10} is (42, 82, 102). Hence, (4.5) implies
that

FqG2 ≃ Fq ⊕ M(4, Fq)2 ⊕ M(5, Fq)2 ⊕ M(8, Fq)4 ⊕ M(9, Fq) ⊕ M(10, Fq)3.

Case 2: pk ≡ {7, 17, 23, 47, 73, 97, 103, 113} mod 120. The cyclotomic Fq classes of
γg are

SFq(γgi
) = {γgi

}, for 1-6, 11-3, SFq(γg7) = {γg7 , γg8}, SFq(γg9) = {γg9 , γg10}.
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By incorporating Proposition 2.2 and Theorem 2.3, we derive from (4.2) that

FqG2 ≃ Fq

8⊕

i=1
M(ni, Fq) ⊕ M(n9, Fq2) ⊕ M(n10, Fq2),

719 =
8∑

i=1
n2

i + 2(n2
9 + n2

10),
(4.6)

where ni ≥ 2. We observe the WD of FqA6 in this case is (see [2, Proposition 4.7])

FqA6 ≃ Fq ⊕ M(5, Fq)2 ⊕ M(9, Fq) ⊕ M(10, Fq) ⊕ M(8, Fq2). (4.7)

Using (4.7) and Proposition 2.5, we further obtain from (4.3) that

FqG2 ≃ Fq ⊕ M(5, Fq)2 ⊕ M(9, Fq) ⊕ M(10, Fq)

⊕ M(8, Fq2)
4⊕

i=1
M(ni, Fq) ⊕ M(n5, Fq2),

(4.8)

with

360 =
4∑

i=1
n2

i + 2n2
5, ni ≥ 2. (4.9)

According to Lemma 2.7 and Case 1, 4 ≤ ni ≤ 10. Moreover, Proposition 2.6
confirms that ni ̸= 7 in this case. Thus, we are remaining with the three choices of
n′

is fulfilling (4.9) given by (42, 82, 10), (42, 102, 8) and (82, 102, 4). Next, to uniquely
identify the correct choice, we show that M(4, Fq) will always be a Wedderburn
component in this case. In particular, we take p = 7 and consider the following
mapping from G2 to GL(4, F7):

a →




3 6 2 0
5 6 0 0
0 5 4 2
5 2 1 1


, b →




4 2 5 2
4 5 4 0
4 6 3 5
0 3 4 0


.

This mapping is a homomorphism from G2 to GL(4, F7) (as a and b given in (4.1)
generates G2). It should be noted that this map is an irreducible representation
of G2 over F7. Therefore, according to Proposition 2.8, M(4, F7) will always be
a Wedderburn component of FqG2. Consequently, we are left with two possible
choices of n′

is given by (42, 82, 10) and (42, 102, 8). Finally, we show that M(10, Fq)2
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is a summand of FqG2. For this, we define the following two maps:

a →




0 1 0 0 0 0 0 0 0 0
6 2 3 4 0 0 0 0 0 0
4 6 3 3 0 0 0 0 0 0
2 5 0 2 0 0 0 0 0 0
5 1 0 6 0 1 6 0 1 0
3 3 0 5 1 1 3 3 4 0
3 5 6 0 4 1 2 5 0 3
6 0 4 4 2 3 6 6 1 5
6 6 1 4 4 1 2 3 5 1
3 2 5 1 1 0 4 1 4 4




, b →




0 4 4 0 0 0 0 0 0 0
2 1 4 3 5 0 0 0 0 0
6 3 4 3 3 4 0 0 0 0
2 5 2 5 2 4 3 0 0 0
6 0 3 3 1 4 6 0 0 0
3 2 6 2 5 6 1 0 0 0
4 3 0 3 2 2 5 0 0 0
4 1 6 5 5 1 2 4 3 4
2 3 6 6 0 0 6 0 1 3
4 1 0 3 5 4 4 3 3 2




a →




4 5 0 0 0 0 0 0 0 0
0 4 3 5 0 0 0 0 0 0
6 6 2 4 6 0 4 0 0 0
4 1 4 5 1 3 1 6 0 0
4 3 0 3 4 3 4 0 4 5
3 6 2 2 5 0 4 4 6 5
2 0 5 3 3 3 4 1 0 5
3 2 3 1 0 3 0 0 0 6
5 4 0 1 6 2 2 5 3 0
5 1 0 4 1 6 3 1 0 5




, b →




1 0 4 0 0 0 0 0 0 0
0 6 1 6 3 0 0 0 0 0
0 4 0 5 3 5 6 0 0 0
0 1 0 5 2 2 0 3 6 0
0 3 3 0 6 5 4 2 1 2
0 3 2 2 4 1 1 4 1 0
0 1 3 1 0 0 2 6 3 6
0 1 3 3 6 1 5 1 0 1
0 6 4 2 2 6 5 4 1 6
0 5 1 5 0 6 5 3 0 6




These mappings are 2 irreducible representations of G2 over F7. Therefore, Propo-
sition 2.8 derives that M(10, F7)2 is a summand of the group algebra F7G2. Con-
sequently, the required choice of n′

is is (42, 102, 8). Hence, using (4.8), we get
FqG2 ≃ Fq ⊕ M(4, Fq)2 ⊕ M(5, Fq)2 ⊕ M(9, Fq) ⊕ M(10, Fq)3 ⊕ M(8, Fq2)2.

Case 3: pk ≡ {11, 19, 29, 59, 61, 91, 101, 109} mod 120. The cyclotomic Fq classes
of γg are

SFq(γgi
) = {γgi

}, for 1-10, 12, SFq(γg11) = {γg11 , γg13}.

By incorporating Proposition 2.2 and Theorem 2.3, we derive from (4.2) that

FqG2 ≃ Fq

10⊕

i=1
M(ni, Fq) ⊕ M(n11, Fq2), 719 =

10∑

i=1
n2

i + 2n2
11, ni ≥ 2. (4.10)

We observe the WD of FqA6 in this case same as in Case 1. Using this and
Proposition 2.5, we further obtain from (4.10) that

FqG2 ≃ Fq ⊕ M(5, Fq)2 ⊕ M(8, Fq)2M(9, Fq) ⊕ M(10, Fq)
4⊕

i=1
M(ni, Fq) ⊕ M(n5, Fq2).

(4.11)

127



Annal. Math. et Inf. Sivaranjani N U, E. Nandakumar, G. Mittal, R. K. Sharma

By proceeding as in the previous case, we are remaining with the three choices
of n′

is fulfilling (4.9) given by (42, 82, 10), (42, 102, 8) and (82, 102, 4). Further, on
the similar lines of the previous case, we can show that the final choice of n′

is is
(4, 4, 8, 8, 10). Hence, it follows from (4.11) that the WD is

FqG2 ≃ Fq ⊕ M(4, Fq)2 ⊕ M(5, Fq)2 ⊕ M(9, Fq) ⊕ M(8, Fq)4

⊕ M(10, Fq) ⊕ M(10, Fq2).

Case 4: pk ≡ {13, 37, 43, 53, 67, 77, 83, 107} mod 120. The cyclotomic Fq classes of
γg are

SFq(γgi) = {γgi}, for i = 1-6, 12, SFq(γgi) = {γgi , γgi+1} for i = 7, 9,

SFq(γg11) = {γg11 , γg13}.

By incorporating Proposition 2.2 and Theorem 2.3, we derive from (4.2) that

FqG2 ≃ Fq

6⊕

i=1
M(ni, Fq)

9⊕

i=7
M(ni, Fq2)

=⇒ 719 =
6∑

i=1
n2

i + 2
9∑

i=7
n2

i , ni ≥ 2.

(4.12)

In this case, the WD of FqA6 is given by (4.7). Using this and proposition 2.5, we
further obtain from (4.12) that

FqG2 ≃ Fq ⊕ M(5, Fq)2 ⊕ M(9, Fq) ⊕ M(10, Fq) ⊕ M(8, Fq2)
2⊕

i=1
M(ni, Fq)

4⊕

i=3
M(ni, Fq2),

with 360 = n2
1 + n2

2 + 2n2
3 + 2n2

4, ni ≥ 2. According to lemma 2.7 and case 1,
4 ≤ ni ≤ 10 for each i. Furthermore, lemma 2.7 and case 1 implies that ni ̸= 7
for any i. This leaves us with three possible values of n′

is given by (4, 4, 8, 10),
(8, 8, 4, 10) and (10, 10, 4, 8). Next, to uniquely identify the correct choice, we show
that M(4, Fq) will always be a Wedderburn component in this case. In particular,
we take p = 13 and consider the following mapping from G2 to GL(4, F13):

a →




0 12 0 0
1 1 0 1
0 2 4 9
0 1 2 8


, b →




0 2 7 0
9 3 3 3
1 10 0 1
0 10 1 8


.

This mapping is an irreducible representation of G2 over F13. Therefore, according
to proposition 2.8, M(4, Fq) will always be a Wedderburn component of FqG2.
Hence, we get

FqG2 ≃ Fq ⊕ M(4, Fq)2 ⊕ M(5, Fq)2 ⊕ M(9, Fq) ⊕ M(10, Fq)
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⊕ M(10, Fq2) ⊕ M(8, Fq2)2.

This completes the proof.

5. Conclusion
In this paper, we focused on deriving the unit groups of the semisimple group al-
gebras of groups SL(2, 8) and SL(2, 9). In order to derive these, we computed the
Wedderburn decomposition using the findings from the classical theory of group
algebras. Having the wide range of possible Wedderburn components, it is evi-
dent that it becomes more and more challenging to characterize the Wedderburn
decomposition with increasing group size. Finally, this paper further motivates to
deduce the unit groups of special linear groups of higher order.
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Abstract. Learning is nowadays a continuous intellectual readiness to be
able to cope with the current needs of the world of work. Students’ knowl-
edge must be adapted accordingly and they must be capable of continuous
development throughout their lives [8]. Changes in teaching-learning habits
have already been observed at the beginning of the 21st century and those
involved in education need to adapt to these changes with the appropriate
transition to digital education what is more important today than ever be-
fore. We asked our teacher-candidate students in an online questionnaire at
the beginning and at the end of the “Teaching Methods in Mathematics”
course. Our non-representative survey provided valuable data for course de-
velopment. The aim of the survey was to find out students’ perceptions of
the methods and tools they had learned in education. In the questionnaire
at the beginning of the semester, we inquired our students about the types of
work and methods they were familiar with, and then they gave their opinions
about the different ICT tools, educational programmes and applications and
how they were used. At the end of the semester, we interwieved them again
whether they still held similar views on the subject or they had managed to
change their views during the course.
Keywords: ICT, teacher training, Mathematics, educational environment
AMS Subject Classification: 97U10, 97U50, 97U60

1. Introduction
In this paper, we aim to show how the changing teaching-learning culture has in-
fluenced the structure of education of Mathematics and teaching methods in the
teacher training programme in Széchenyi István University Győr. We have expe-
rienced the reduction in the number of lessons and the changes in the attitudes
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of students as a challenge. These are the problems that everyone has faced in
education in Hungary. In Győr we have tried to do our best. In these changes,
we have also taken into account the applications of new information and commu-
nication technologies (ICT) but we have not neglected to present well-established
manipulative tools and their potential use in teaching. Our previous research and
publication have presented ideas on how to strike a balance between traditional and
ICT-enhanced visualisation [3, 13]. The aim of our methods is to increase students’
motivation and change their attitudes towards learning in a positive way. After a
theoretical introduction the results of our online questionnaire and the conclusions
are presented.

2. Theoretical framework

2.1. The generation growing up in the 21st century and the
way they acquire knowledge

Growing up in the digital age is characterised by the need to acquire knowledge
quickly and in the age of the Internet students get their knowledge from the infor-
mation space. Their social relationships and social interaction habits have changed
and they find a sense of belonging to a community through social portals, blogs,
networking games [17].

They have no problem with navigating in parallel, side-by-side, so-called mul-
titask applications. They expect instant, fast access to programs, quick reinforce-
ment and rewards in solving tasks. However, during training, we need to make
sure that they have the right ICT competences and are not only familiar with
information-sharing applications on social networking sites. We need to build on
their existing ICT skills to create the most appropriate learning environment for
them.

2.2. Learning process in the 21st century
Learning involves modelling the outside world. In the course of education, we can
shape and change this representation, forming a world view. Throughout history
there have been several educational paradigms. Some have emphasised the direct
transmission of knowledge, others the demonstration, and still others the action.
Different pedagogical trends have alternated and complemented each other and
have given rise to new theories, such as behaviourism, cognitivism or even con-
structivism. The process did not stop there, as new arenas of knowledge flow and
knowledge sharing emerged with the rise of digital culture and digital education.
The latest network-based forms of learning such as connectivism, adapt to stu-
dents’ forms of knowledge acquisition and their community organisation [11]. The
focus is not only on acquisition but also on knowledge creation and sharing, where
learners participate in the creation of collaborative content. It requires cooperation
between all those involved in education. Of course, this also requires that students

132



Annal. Math. et Inf. Development opportunities for mobile and ICT learning . . .

receive as broad methodological training as possible on the opportunities of us-
ing ICT tools and teaching methods [6]. The attitude of students to Science as a
subject cannot be described positive nowadays which is why the teaching of these
subjects requires even more the implementation of a high level of demonstrations
and developments.

2.3. Expectations and skills in the 21st century
In addition to learning methods, another important factor is the need to change
the educational environment as soon as possible. These are the expectations in the
workplace. The only way to prepare students for their future professions is to de-
velop 21st century skills and competences. Several educationalists and researchers
have attempted to study these skills and competences, and although there are
differences on a few points, the main features are the same.

Taking the ITL (Innovative Teaching and Learning) research as a starting point,
we have the following classification:

• knowledge building

• problem solving and innovation

• communication skills

• collaboration

• self-regulation

• ICT use [16]

The graph (Figure 1) shows the parts and conditions of knowledge applicability:
self-expression, creativity, continuous readiness for self-development, flexibility to
react to problems are definitely needed.

Figure 1. The metaskills we need to thrive in the 21st century [18].
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Anyone who reads carefully the skills listed above will see that the traditional
frontal classroom work, lecturing and explanation are no longer effective as meth-
ods. Changes in students’ learning habits, the rise of digital tools and 21st century
guidelines have made it necessary to change traditional teaching methods in higher
education. Collaborative learning, problem-solving methods and the education in
the use of ICT should be promoted. Our previous research, cited several times in
this paper confirms the need for these changes [13, 14].

3. Methods used in the course
After describing the new generation’s learning processes and expectations, we will
now give some ideas on the methods we use in our teaching and which were also
asked about in the above mentioned questionnaire. Overall, we found the methods
described below to be appropriate for achieving the objectives we set ourselves in
the development of the subject.

3.1. Flipped classroom
The flipped classroom model is a kind of inversion of traditional education. It
is a learning management solution where students can watch at home the lecture
prepared by the instructor and individually study the recommended teaching aids
and online resources [7]. The flipped classroom is an engaging and student-interest
based method where students’ passivity is transformed into activity. In this learn-
ing management process, students are more independent and interested in the
activity and know that there will be time for questions and discussion. In con-
trast to traditional lectures, the emphasis here is on practice rather than frontal
teaching, according to the students’ own needs. During or after the lecture, for
example, students are asked to complete a test as feedback, and the results are
known within a short time. Homework is done in the classroom, where the focus
is usually on interactive activities and collaborative work. The flipped classroom
is not an online course, the video is not a substitute for the teacher. The students
not only work independently in front of the computer but also prepare themselves
to work together with the teacher.

The advantages are that during the contact lessons, based on the students’
prior preparation, we can answer their questions, organise group work, implement
many activities that make the class interactive and allow the students to be active
participants in the learning process. It can be effective in cases of lack of motivation
or discipline [1, 15]. Students can take responsibility for their own learning and
progress at their own pace, according to their own timetable. The content created
can be archived and retrieved, so that no absences are missed. The downside,
however, is that we need to be sure that students completed the tasks at home
during the pre-learning stage, i.e. they watched the videos posted by the instructor.
In the context of the flipped classroom method, the video is not just a resource, but
the basis for all subsequent work. Before introducing this method, it is necessary
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to discuss with the students what they need to pay attention to, and what will
make the collaborative activities work well [10].

3.2. Gamification
In today’s education, face-to-face teaching is becoming less important, and com-
puter-networked forms of training are now available, which can be used to effec-
tively support the teaching-learning process and to acquire the necessary knowledge
with the right methods of knowledge transfer and learning. New technologies can be
used to encourage multichannel, collaborative learning. More interactive technolo-
gies can increase students’ control and provide more opportunities for repetition in
the learning process. This can be helped by gamification, an English term first used
by Nick Pelling around 2002, so we can see that as a term it has been known for
less than two decades. A relatively all-encompassing definition of gamification is:
gamification is a strategy in which game elements are used in a non-game environ-
ment to move some behaviour in a positive direction. This definition can be used
in higher education because gamification is a way of solving a problem if students
have not done something before then we try to encourage them to do it so it can
help with motivational problems. This is the role of gamification that we want to
exploit in our courses [5].

In preparing teacher-candidates for their future profession, in line with the new
learning theories, we aim to reduce the number of frontal lectures and develop new
activities in which the whole educational process is guided from outside by means
of assigned tasks. A kind of asynchronous teaching and learning is achieved, be
it through ICT or through manual demonstration, action and experimentation.
This type of learning provides the learner with a direct experience of success,
which strengthens motivation to learn and thus encourages independent learning.
When designing a course based on gamification, the learning material needs to be
structured in modules and easily learnt. The student is an autonomous learner
and therefore the learning material should be sufficiently motivating. However,
this form of learning also requires tasks that can be completed together. In an
online, group-editable submission, everyone can contribute to the creation of the
product. Communication, working together, also develops human relationships.
This model combines traditional classroom teaching with the opportunities offered
by the internet and digital media [12]. Previous research has shown that students
do not yet rank cooperative working as a top priority. We would definitely like to
change this during their studies, as we have seen in the list of 21st century skills
that communication and collaborative working will be needed in the future [14].

3.3. Project work
In the general approach, the aim of a project is always to create something new
and socially important. The aim of a pedagogical project is: the learners want to
produce the final result defined in the project. However, given that the project
is subordinate to educational objectives, from the definition of the theme to the
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presentation of the final result, an important objective is also the result of the
educational process that is the outcome of the activity, which can be of many
kinds, such as posters, oral or written reports, blueprints, exhibitions.

Project-based education must meet a number of criteria. For example, the start-
ing point should be the pupils’ question and the design should be a collaborative
process. The solution of the project should be achieved through activities, but there
should also be opportunities for individual and group work, reinforcing communi-
cation and the development of cooperative skills. It covers a longer learning period,
during which students will also be exposed to situations outside school, in a spirit
of interdisciplinarity. Partners with different competences work together to achieve
success and students are responsible for their own decisions, while the teacher is
only a trainer or mentor in the learning process. It has the advantage that there
are no major risks if it is not used carefully. The expected consequences for the
students are increasing motivation, autonomy, self-awareness, self-awareness and
self-esteem. Cooperation with peers improves and creativity develops. Of course,
project work also has prerequisites without which it cannot work. These include
the teacher’s openness to working with students and the students’ readiness for
independent and cooperative learning, and whether the institutional framework is
appropriate for this type of education [9].

The advantage of this method is that students have a responsibility to complete
their work. Disadvantages include the difficulty of finding balance between teacher
direction and student autonomy [4].

After presenting the main methods used in our courses and the questionnaire,
we will now describe the course organisation, our research and its results.

4. Course organisation
In the first term of 2021/2022, two methods were used simultaneously in the teach-
ing of the subject: Teaching Methods of Mathematics. One of these methods
was the “mirrored classroom” method and the other was gamification. The mir-
rored classroom method was used to highlight the frontal teaching by means of
pre-recorded videos. This served two purposes. One was saving time. This was
emphasised due to the reduction in the number of lessons, and this enabled us
to achieve the other objective, giving students the opportunity to practice and do
more teamwork and projects. The other method that was introduced was gami-
fication. The term was divided into blocks and within these blocks students had
to solve tasks both collectively and individually. The tasks that could be com-
pleted during the lessons included some theoretical knowledge and a lot of practice
through exercises, solving problems and their methodological analysis. The videos
with the necessary theoretical material had to be previewed by the students before
the lessons so that they could test their knowledge each time using the Kahoot!
application. This was a feedback for the students and for teachers too on which
topics were difficult for the students to complete. It also created a competitive
environment for the students as they could compete with themselves and their
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classmates without any fear. Other work that was given to be done was “tool mak-
ing”: e.g. cubes, octaeders etc. It is very important that students must be aware of
how to motivate children with less abilities and what tools can be used to help the
pupils understand. For this reason, manipulative tools were also created. They had
to prepare a project on a topic too. In this term, they had to work cooperatively
to create a multi-curricular project for Animals’ Day, combining Maths, Reading,
Science, Environmental studies and other subjects. In this way, they practised
cooperative work, document creation, editing and information retrieval using ICT
tools. They also explored the possibilities of using ICT tools. The LearingApp,
Genially and many other apps and web applications for textbooks were presented.
Students learned to produce their own lesson plans using online interfaces. We
tried to do all this with as little frontal teaching as possible. They could choose
the tasks freely and students were given pre-defined prompts for each topic. The
evaluation was continuous so students could check their progress lesson by lesson.
In this way, they were also able to get their final grade, avoiding the so called
campaign learning that leads to quick forgetting after finishing the exams. With
this learning organisation and the ’mirrored classroom” method, students could do
more work at home and allocate their time more easily. Because they were free to
choose which tasks to do we tried to encourage them to learn. Those who did all
the tasks in each section and got the maximum scores got a good mark. We were
able to do this in this system because if the student completes all the assignments
it means that they have studied continuously during the whole course.

An important question arises as this method puts a lot of work on the instructor.
Of course, this method needs a lot more in preparation but we have to find the
“golden mean” because if we don’t change anything, the student’s knowledge and
attitude will not change either. Making videos and online surveys is a lot of work
at first and later the lecturer always have to make corrections. We hoped that the
positive change in the attitude of the students that we expected would take place
and that they would be successfully prepared for their future profession.

5. Questionnaire

5.1. The context of the study
An online questionnaire was conducted at the beginning and at the end of the
course in the subject of Teaching Methods in Mathematics. Out of an already small
number of students (34) only 18 responded at the beginning and even fewer (13)
at the end of the semester. Therefore we cannot call our survey representative, but
we have extracted valuable data for future course development. The questionnaire
included open-ended, expository questions and questions on the 5-point Likert
scale. Our aim was to assess students’ perceptions of the methods and ICT tools
they had learned in education. In the first part of the questionnaire they were
asked about the known forms of teaching, methods and their frequency of use,
followed by their opinions about different ICT tools, educational programmes and
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applications and their use by the students. At the end of the semester, we wanted
to know whether they still held similar views on the subject or whether they had
managed to change their views.

5.2. Research questions, theses
At the beginning of the term, we assumed that the students would prefer tradi-
tional, frontal forms of teaching work as this was what they had mostly encountered.
It was hoped that there would be a change in their minds and that their future
careers would include forms of teaching that were appropriate to 21st century skills.
We also assumed that they would learn how collaborative working and collabora-
tive document editing could help the learning process through the opportunities
they would learn during the course.

6. Outcomes

6.1. Results for the questions on working methods
The questionnaire was completed by 18 students at the beginning of the semester:
53 percent of the students. At the beginning of the questionnaire we asked if the
students would like to use a mobile device for learning purposes in the course.

There were 15 yes and 3 no answers to this question. The positive answers were
supported by the following comments:

• I think that nowadays most children in primary school have a mobile phone
and it is difficult for them to break away from it. I think it would be easier
to teach with the cell phones using their advantages than to wean them off.

• A more practical, quicker, more informative outline could be made.

• I wonder how it could be used for a maths subject.

• I think in today’s world it is necessary to get acquainted with such content, it
can make the lessons we will have in the future more colourful.

• In my opinion, it would make the lessons more exciting and interesting.

• Because learning is much easier and more effective.

• If it makes the curriculum more understandable, then yes.

• Due to the fact that a mobile device can illustrate certain topics better than
paper.

• This would make the course more varied.

• A test could be used to check the mastery of the course material. This would
provide quick feedback. Textbooks could be opened in digital format.
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• Because I want to learn how to use my mobile phone for learning purposes.

• If there is any useful information about mathematics, I would like to know it,
it can only benefit learning.

• It is often useful in today’s world to access information quickly, and as a
student, this means searching for it in a matter of seconds instead of learning
a lot of material.

And those who do not, gave the following reasons for their opinions:

• It distracts from the essential things while surfing

• I do not want to completely lose the school experience.

It is natural that there are always people who are afraid or do not want to
change certain old things or perhaps do not want to break away from previous
habits. But constantly choosing between different methods and applying them to
the right part of the curriculum tends to move the learning process forward. This is
why teacher candidates need to learn as many ICT tools and methods as possible,
so that they can apply them correctly in different situations. In our courses, we
also try to show the positive side of the different opportunities to those who are
doubtful and possibly reluctant.

At the end of the term, we asked students again about their views. 13 stu-
dents responded to our questionnaire and 84.6 percent of them liked this type of
education.

Some of the students’ answers are the followings:

• The competitive spirit of Kahoot! increases performance.

• The introduction of technology makes the class interactive. It is much more
enjoyable and exciting to complete a test using a mobile phone and apps that
instantly grade assignments. Interactive tasks can be very motivating for
students.

• Because we learned a lot of new things and because the phone is always at
hand, it was a good idea to incorporate them during the lesson.

• Today’s generation is attached to the phone anyway, so at least we could put
it to good use.

• It made the class more varied, I felt more active and I learned more than if
I had just taken notes.

• The competitive experience of the playful tasks made learning and revision
exciting.

• Because it was much easier.
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• It was simpler that way.

• It made learning playful and 21st century. For example: the Kahoot tests did
not have that typical test feel, more like a playful quiz. So I was not stressed
and I could think with a cool head. I learned to give a quick and accurate
answer, which I think is good.

• It made the lesson more interesting and exciting.

• It made the lesson more interactive and exciting.

• There was constant repetition and no paper to use and less stress.

The downside of the method, noted by one student, was that the wifi connection
was not always good. We tried to eliminate this by telling them that if they lost
the connection, they should write down the answer quickly on a piece of paper.
Unfortunately, technical problems can always arise, but as the above comments
show, the new methods were generally well received.

In this section we also asked the teacher candidates which teaching methods they
would like to use in their work and how often. At the beginning of the semester the
traditional forms of work – lecture, explanation, individual work – were the most
prominent. All the things that the students already have experienced of, having
encountered them during their studies. Cooperative work, online tests and the
project method, which can be used continuously in teaching.

Students are curious about working with ICT tools but they were unsure in
using them according to the survey at the beginning of the semester. They have a
desire to learn and they do not completely reject working with modern tools but
they are not convinced that completely online education could be a successful and
effective way of learning. They also consider essential to familiarise children with
ICT tools in order to achieve educational goals more effectively.

The question asked at the beginning of the term was also asked at the end of
the semester. We were curious to know how much they would use the methods and
forms of work they had learned during the course in the future. We can only look
at the changes in general, not individually because the questionnaire was anonym.
The answers were then quantified and subjected to a statistical test. The graph
below shows the use of methods at the beginning and end of the semester.

What can be seen very clearly is that the formerly usual frontal teaching was
replaced by teamwork and online tests, which may even facilitate continuous ac-
countability, and the mirrored classroom has become one of the more frequently
used methods. These responses illustrate our view that students’ attitudes towards
different forms of work and methods could be changed and that we can move from
frontal teaching to teamwork, that makes stronger the development of the ability
to work together.
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Figure 2. Methods at the beginning of the semester.

Figure 3. Methods at the end of the semester.

Using a hypothesis test, it was quantifiably shown that there was a change of
students’ opinion about the methods they had learned (Table 1). The responses
were scored on the 5-point scale and then subjected to a t-test (level of significance
95 percent). In all cases, there was evidence of a change in students’ attitudes
towards the new methods. Students’ attitudes toward the new ICT supported
methods changed significantly in each case. The result of the t-test shows that
there is no change in the individual work but the value of the t-test of the lesser-
known methods exceeds the value in the table in absolute value. The results of our
study show that students’ attitudes moved towards collaborative methods during
the term. They have learnt and hopefully will apply these educational innovations
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to start developing 21st century skills in future generations.

Figure 4. Comparison of methods at the beginning and end of the
semester.

Table 1. Result of t test.

6.2. Testing the use of ICT tools
It was important for us to find out when our students had used ICT tools. This
was the basis for designing the course and applying the different ICT tools and
methods. In the graph below (Figure 5 and 6), you can see that the different
tools are used more for monitoring social media, not really present in the learning-
teaching process. It is important to make teacher candidates aware that there are
lots of complex possibilities. For example, learning together with peers, editing
different documents online and collaboratively, developing animations that can be
used for teaching, working in a team on a project or doing tests, homework, creating
reports.

By the end of the term, we had the following results:
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Figure 5. Use of ICT tools at the beginning of the semester.

Figure 6. Use of ICT tools at the end of the semester.

7. Conclusion
The information technology revolution and changing learning habits have chal-
lenged teachers, lecturers and educational institutions as well. The growing body
of knowledge and changing educational needs have made it necessary to find the
new ways of teaching and to introduce new methods [2]. The information technol-
ogy revolution has brought not only problems but also a range of possible solutions.
By the 21st century some researchers have recognized that motivating methods in
the recent development of gamification can be successfully applied in education
too.

Our research shows that even at the beginning of their studies the teacher
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candidates are not excluded from using ICT but they are not using it consciously
although social networking sites are always present in their daily lives. Later in
their works they are going to use ICT mostly in traditional ways – for example
PowerPoint for explanations. During their university studies they should be aware
of the ICT supported appropriate methods and they should be shown that there
are many other ways in which they can apply digital tools successfully: organising
a diagnostic survey, online tests for competitions or creating a collaborative online
product and document.

Gamification does not mean the use of games in teaching but the integration
of game mechanisms into everyday practice of teaching work processes or into the
preparing for lessons. For the “digital generation” which is socialising and growing
up nowadays it is highly important being familiar with ICT.
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Abstract. In the didactics of mathematics, a lot of such research appeared
in the past twenty-thirty years that consider both mathematics and mathe-
matics education as a cultural activity [20]. In this approach, didactical texts
and social space are carriers of beliefs created about mathematics education.
Similarly, the investigation of beliefs has strengthened in the past two decades
[33]. In our paper, we examine what relationship appears between the beliefs
of the Hungarian didactic tradition existing in written texts or personal con-
tacts, and those of Hungarian mathematics teachers. To carry it out, we use
means of cultural history and a questionnaire.
Keywords: Belief, culture, literature, mathematical creation
AMS Subject Classification: 97A99

1. Introduction
At the very beginning, we intend to clarify some notions:

1. Culture
We examine mathematical activity as a cultural activity. In the descriptive or
scientific determinations, mainly the common patterns referring to groups of
people are connected to the notion of culture [20]. On the one hand, culture
exists in the space of behaviour with the help of tools and symbols, but
parallelly with this, it can also be examined in the environment of thoughts
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and values. This ambivalence resulted in a kind of “cultural turn”, and 10-
15 years ago the number of research considering mathematics education as
a cultural activity increased. [20] Our article joins this direction; insofar it
examines the presence of a thought – more exactly the thought of creation
– connected to mathematical activity in historical and cultural context. The
culture of didactics of mathematics can also be investigated; we take this as
a starting point.

2. Beliefs
Beliefs about mathematics and about mathematics education form a part
of the culture of mathematics and its didactics. The research of teachers’
knowledge, beliefs and attitudes started intensively in the last two decades,
see [30] and got an overview by the Springer book [33]. According to Philipps’
definition, a belief is the following: “Psychologically held understandings,
premises, or propositions about the world that are thought to be true” [30]

3. Creation in mathematics and in mathematics education
In mathematics, creation is possible at two different levels.

(a) One of them happens when something new is discovered in an existing
system. An existing, but a not yet recognised connection is found out. It
can be a new statement, the proof of a new theorem or an old conjecture
by linking two fields in a creative way, or proof given to an old theorem
in a more elegant way, etc.

(b) At a higher level: when completely new mathematical worlds, new uni-
verses are created as a result of a mathematician’s creation process, such
creations that show the nature of mathematics itself. Later on, we will
show two examples to this (Bolyai’s geometric creation and the signif-
icance of Gödel’s role). This level is strongly connected with artistic
creation as an act of creation; insofar the artist also creates an absolute
world as a result of the process of creation.

According to us, the equivalent of the mathematical creation’s notion can also be
found in didactics. An example to this can be mathematics education by dis-
covering which has a long tradition not only in Hungary. Here in Hungary this
tradition is connected to the methodology of Tamás Varga [14, 37, 38], and also
to the discovery method of Lajos Pósa [18]. In case of the discovery method, the
result of the creation process can be experienced, the teacher gives such space to
the student who – by going through it – can create own, individual results. The
experience of creation is more strongly present in radical constructivism [4], in case
of which such space is given to students where they similarly create some parts
of knowledge by themselves, but more independently from the teacher. Construc-
tivism based on this, merely has a tradition in Hungary. The connection between
artistic creation and mathematics also appears in STEAM movement, which is a
modern educational trend [24].
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2. Question
With the help of the approaches and notions above, we examine a part of the
comprehensive question, what kind of relationship exists in Hungary between the
written tradition and personal tradition in didactics and in mathematics education.
In what form does a thought – detected in written tradition – appear among the
beliefs of teachers?

We intend to give answer to these questions, on the one hand, with the help
of presenting such an effect history curve, in which we prove connections between
mathematical texts and texts of mathematical didactics. On the other hand, having
interpreted the outcomes of a questionnaire’s particular items, we present in what
way the thought appears – which is examined in the texts – among the teachers’
beliefs, and from what sources the teachers’ picture of mathematics derives.

3. The written tradition
The written tradition is interpreted as texts having mutual effect, as a net of (at
times only loosely connected) texts referring to or quoting each other, and we
examine this with the aid of the phenomenon of intertextuality [21]. Hungarian
didactics also exists as a cultural activity. From this huge environment, we focus
on the texts first, and on the fact as well, in what way the texts are in a dialogue
with each other. If we approach the culture of mathematics and mathematics edu-
cation from the viewpoint of beliefs and intellectual history, then one of the notions
in the Hungarian tradition can be creation. Creation does not exclusively appear
in Hungarian didactics as being equal to mathematical activity, but it also has a
remarkable tradition among the conceptualisations regarding school mathematics
ranging from the first grade of elementary school to university mathematics edu-
cation (see Varga’s reform and Rózsa Péter’s work in the context of the teacher
training). It has yet a connection with the artistic creation and the world of a lit-
erature. The proof of this can be seen by examining the history of one of Bolyai’s
sentences.

3.1. The sources of a sentence
The concept of creation flows along the history of European culture starting from
the biblical Genesis creation (“God said”), through the creator divine Word (Word
= God) which is known from the Gospel of John. To the history of the artistic
creation belongs the myth of Prometheus, or by Shakespeare and Rousseau (see
below). According to the conceptualisation of Sturm und Drang, in the Genieperi-
ode, the creator is a genius, the self-contained artist is legalised to create a whole
world with his own artistic power through breaking the rules [1]. The same power
appears in János Bolyai’s famous line in connection with mathematical creation.
János Bolyai, who was the 19th century’s greatest Hungarian mathematician and
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one of the most effective figures of mathematical history, reported on his revolu-
tionary results in the field of hyperbolic geometry in a letter written to his father,
Farkas Bolyai November 3rd 1823. The quoted sentences are taken from this.

“. . . from nothing I have created a new different world; all other things that I
have sent to you are just a house of cards compared to a tower.” [3]; (translation
by Prékopa)

From the letter, we can draw two conclusions.
One of them is that J. Bolyai was aware of the scientific significance of hyperbolic

geometry itself, and he wanted to let his father know about it by connecting creation
and the creation of the new world with mathematical activity. This sentence refers
to the parallelly existing geometries and mathematical worlds and to the genesis
of these worlds at the same time.

The other conclusion is that the sentence referred to texts, which were known
for both of them; what is more, they even talked about them with high probability.
One of the possible sources is a contemporary Hungarian poem. One of the stanzas
of Mihály Csokonai Vitéz’s poem, titled To Solitude goes like this: [7]

“In you, the poet’s fancy flashes bright
As rapid lightning in a murky night,
While he creates new things by power of thought
And fashions worlds undreamt-of out of nought.”

It cannot be known if Bolyai knew the poem, but he doubtlessly knew Csokonai’s
first appearing biography. In the registry about the library of the Bolyais, the work
of Márton Domby, who was the first biography writer of Csokonai, can be found.
In the volume stands the following entry: “A book of János Bolyai. A gift from his
father” [8]. Therefore, this book was read by János Bolyai, which can be almost
surely declared. In the introduction, he encountered these lines:
“I would say first: These are unuseful materials [namely: the poems in the book],
but secondly even for that reason are these brilliant, because you can see from
them, how the Genius creates a new world out of nothing. . . ” (italics mine). [9]

With this, Domby obviously referred to the poem titled To Solitude, with the
difference that creation was interpreted as ability, not only by poets, but also by
geniuses.

Bolyai’s sentence can have other sources too, for instance, Shakespeare1 or
Rousseau2, but Bolyai’s sentence is so specific, and originally in Hungarian it
equals almost literally with the two texts above to the extent, that it can be stated
with high probability that Csokonai’s poem, or rather Márton Domby’s Csokonai-

1“The poet’s eye, in a fine frenzy rolling,
Doth glance from heaven to earth, from earth to heaven,
And as imagination bodies forth
The forms of things unknown, the poet’s pen
Turns them to shapes, and gives to airy nothing
A local habitation and a name.”[35]

2“[. . . ] the true genius that creates and produces anything from nothing.” [34]
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biography inspired it3. From both of the poems’ context, it turns out that János
Bolyai understood the significance of his own result, and he considered the role of
the creator artist to be his own.

3.2. The mathematical-philosophical significance of Bolyai’s
work

As we have written in 1.c, creation in mathematics has different levels. Every
new theorem, new connection, new theory is a creation. But it has a highest
level when we create other type of mathematics compared to the one that we
have in our culture. For 2000 years Euclid provided mathematics. Every new
thing was adapted to this system until the appearance of János Bolyai. Then, this
highest creation happened for the first time. Therefore, it is about the creation
of a new world which repeated itself later, on the basis of Cantor, in set theory,
but there along with preliminaries, as Kurt Gödel had already proved his famous
incompleteness theorem by that time in 1931, which provided an interpretational
frame to the achievement of Bolyai [12, 17]. The theorem plainly means that in any
axiom system in which the infinite appears, so, at least the natural numbers are
included, such a statement can be formulated that can neither be proved nor denied
in the given system. Namely, an unexpected, new situation has been created, as
up to that time something was either true or false, but from that point on there
are things about which free decision is possible as the statement can neither be
deduced nor rejected. At this point, a new way of creation appears, a new kind of
mathematics can be constructed to the axiom system by attaching its statement
or its rejection to it (one of them is usually the old world and the other one is the
new one). Therefore, mathematics is not universal; there are more mathematics
next to each other. In addition, János Bolyai, respectively Lobachevsky at around
the same time, found this first case of an undecided theorem.

Half a century after this came the hypothesis of Cantor, being at the same
time Hilbert’s first problem in 1900, among the range of problems to be urgently
solved at the beginning of the XX. Century [16]. Is there cardinality between the
uncountable and the continuum? Cantor’s hypothesis was that there is not.

Finally, to this, an unexpected answer arrived. In 1938 Gödel proved with
the help of the sets, the so called constructive sets of Gödel – named after him
– that Cantor’s hypothesis cannot be denied [10, 11]. Paul Cohen admitted that

3In Hungarian the similarity of the three texts is more visible:
Bolyai’s sentence: “A semmiből egy új, más világot teremtettem.”
Csokonai’s poem:

Tebenned úgy csap a poéta széjjel,
Mint a sebes villám setétes éjjel;
Midőn teremt új dolgokat
S a semmiből világokat.

and Domby’s sentence: “Erre én is azt mondom először, hogy igen is: Tanúság nélkül való, és
haszontalan Matériák ezek [értsd: a könyvben közölt versek]: de másodszor azt, hogy éppen ezért
remekek ezek, mivel ezekből látod, miképpen teremt a’ Genie semmiből is Világokat. . . ”
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its rejection cannot be denied either, having done that with the method of forcing
created by him, meaning that numerosity can exist between the two [6]. With
this, it turned out that in the axiom system of Zermelo–Frankel the continuum
hypothesis can neither be proved nor denied, therefore two different set theories
can be imagined, according to our decision (like during the time of Bolyai the
Eucledian and the non-Eucledian geometry). Thus, we have found the second case
of an undecided theorem. Ever since not another one’s fact of existence has reached
us.

From then on, in case of a statement there are three opportunities instead of
the – up to this time known – two. In this case, mathematics goes on in both
directions, in one of them there will be an axiom, in the other one its rejection
will be the axiom, so, these are two new worlds. This revelation was revolutionary,
and it shook the – up to that time formed – picture about mathematics radically.
However, it merely has had an effect on school mathematics until now. We think,
it can have a positive effect if teachers themselves have a deeper understanding of
this situation and also if they accept it.

3.3. The history of effect of the sentence
In Rózsa Péter’s Playing with Infinity [29] two passages deal with Bolyai’s results
and works. In one of the passages, the following is circumscribed as the two most
important and essential attributes of the geometry of Bolyai: 1) The opportunity
of choice. Going towards (in those days) the most modern results of logic, the
text is about the choices of axiomatisation, and taking the fact into consideration
that the author formulates statements and opinions consequently on mathematics
in general throughout the book, the notion of choice can grow into the symbol of
freedom referring to mathematics in general. 2) Even if experienced reality can
motivate the birth of mathematical notions, it is not identical with mathematical
reality.

The other passage is shorter but equally important from the point of the exam-
ination of the text’s cultural context. The following passage brings the connection
of mathematical creation on surface:

“What is all this really about? Man created the natural number system for his
own purposes, it is his own creation; it serves the purposes of counting and the
purposes of the operations arising out of counting. Nevertheless, once created, he
has no further power over it. The natural number series exists; it has acquired an
independent existence. No more alterations can be made; it has its own laws and
its own peculiar properties, properties such as man never even dreamed of when he
created it. The sorcerer’s apprentice stands in utter amazement before the spirits
he has raised. The mathematician ’creates a new world out of nothing’ and then
this world gets hold of him with its mysterious, unexpected regularities. He is no
longer a creator but a seeker; he seeks the secrets and relationships of the world,
which he has raised.” [29]

In this passage, the activity of the creator (inventor) and the researcher (discov-
erer) is connected on the basis of the famous sentence quoted from János Bolyai.
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To Goethe’s poem, titled The Sorcerer’s Apprentice, a whole chapter’s title
refers in Rózsa Péter’s text. The poem itself tells a story, in which the sorcerer’s
apprentice – left alone – tries to bring the broom to life, he succeeds, but the broom
gets loose and does not obey to him, but the spell supposed to reverse this act is
not known by the apprentice, that is why, in the end, the apprentice has to be
rescued by the sorcerer because everything would be flooded if the broom did not
obey again.

Rózsa Péter says about the apprentice: “The sorcerer’s apprentice stands in
utter amazement before the spirits he has raised”. Here an important moment’s
dramatization happens from a psychological point of view by paralleling the mathe-
matician with the sorcerer’s apprentice. With this parallel, Rózsa Péter depicts the
moment when a mathematical creation is born. If we compare this step with the
text of the Goethe-poem, then we can state the following: Mathematical creation is
in such a relation to a person – to the creator itself – as a sorcerer’s apprentice to a
ghost. It is about a larger existence than the apprentice here, to whom laws do not
apply, even though the sorcerer’s apprentice himself created them. These mathe-
matical creations can be monumental things like hyperbolic geometry, or much less
monumental, but yet similar creations in nature like natural numbers that Rózsa
Péter mentions, too. The common feature that makes the basis of the parallel is
the fact that the creator does not have power over the creature. If we observe this
simile from the viewpoint of knowledge and cognition, then it sheds a light on the
fact that the construction of mathematical knowledge is an act of invention and
discovery at the same time, but also on the other fact that mathematics is not a
closed and finite set of knowledge.

We are convinced that this textual tradition contributed to the history of math-
ematics education in Hungary. From this symbolic sentence of the history of math-
ematics, and from the context of this sentence by Bolyai, some specific features of
mathematics education in the Hungarian culture of didactics can be detected:
The concept of creation is a key part of mathematical activity. But it is not only
connected to mathematical activity, but also to school mathematics from the begin-
ning of the second half of the 20th century. The movement of complex mathematics
education in the 20th century, based on T. Varga’s complex mathematics education
experiment belongs to the guided discovery method in mathematics education and
partially also to the inquiry based mathematics education.

Erika Jakucs formulated the following sentences in the documentary film of
Tamás Varga in 2019 [37, 38]:
“Teaching math is like a game field. Like creating a bord game. We create the
aboard and the figures, and set down the rules, and then, we have to play by these
rules. Still, math opens many areas, where we can figure out what the rules are,
what type of objects do we have to use for these rules to follow through, and we
must follow through these rules. Therefore in math, we can create small enclosed
worlds or systems. There we can learn that if we agree to certain rules – and that’s
the key word – then we must adhere to these rules. Alternatively, agree to certain
amendments. For me this is important, because all natural sciences work with
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given materials, while math creates its own resource materials for any situations.
You have a greater freedom.”

Tamás Varga was one of the organisers of the aspirations of mathematics educa-
tion in the previous century, and was one leading figure of an extensive international
school reform [13] One of his principles is that creation during mathematical activ-
ity can be recognised starting from early childhood. The curriculum of the reform
and the methodological materials connected to it were created with his collabora-
tors in a way that this principle was all along taken into consideration. Of course, it
does not mean the creation of the new mathematical world, but the understanding
of it within the environment of school mathematics, mainly among the frames of
conceptualisation taking place during games, which were based on experience [15].

In Bolyai’s sentence – according to the concept of Romanticism – only the
chosen ones and geniuses are blessed with the ability of creation who are separated
from the public. By the 20th century, the concept of creation was deprived of
this romantic genius-cult and one of the key points of Tamás Varga’s reform was
that he did not think in elite education but he intended to make mathematics and
the possibility of experiencing mathematical creation within the frames of public
education available for everyone [5].

Rózsa Péter writes about the fact in Playing with Infinity (first in [28]) that
there are no two cultures (humanities and science) but art and mathematics are
related. With this, she refers to the text written by C. P. Snow [32, 36]. Rózsa
Péter collaborated with Tamás Varga, and this approach to culture can be felt on
the works by Tamás Varga, too.

3.4. Some phenomena that can be indirectly connected to this
tradition

István Lénárt created the so-called Lénárt Sphere, which is suitable for visualising
and teaching spherical and hyperbolic geometry in the junior section of elementary
school [22].

With this teaching aid and the methodological construction connected to it,
Lénárt made not only Bolyai’s elementary steps of his mathematical results osten-
sive, but also the historical significance of mathematical result itself. Students can
experience the opportunity of the freedom of choice between geometrical worlds.

In the environment of Hungarian mathematical talent development, which is
known inter-nationally, creation appears to be a key part of mathematical activity.
In this field, Lajos Pósa is the leading person in Hungary. He and his foundation
organise this activity in a non-regular way, but in form of weekend or summer
camps. (About the theoretical background see Dániel Katona’s works, for example
[18], whose PhD-research is about the Pósa-method.)

Not necessarily the Pósa-idea of talent management should be thought about to
detect the notion of creation. About the creation of real numbers using geometry,
the number line, see yet [25, 26] and similarly about the creation of rational numbers
beginning from fractions see [27].
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The Hungarian project is the carrier of the written tradition from a cultural
point of view (led by Ö. Vancsó) which deals with the idea and background of the
Complex Mathematics Education of T. Varga, which has rooted in this tradition
in Hungary4.

4. Tradition based on personal contacts

On examining the history of Tamás Varga’s reform, one can conclude that the key
element of the reform’s spreading was engagement, which happened with the help
of personal contacts. Many reports can be read how it happened.

Anna Kiss says in an interview about her own professional development as she
talks about her participation in someone else’s lesson as a listener: “Then it became
obvious to me that I have to breathe from the air that determines the lesson, one
has to experience it in one piece, how these discovery processes happen, and after
that I have to find out what I can create in a way that is mine, too.” (The source
of the text is a book being about to be published.)

Thus, the functioning of the written tradition happens differently in a different
environment. Below, I intend to report on a questionnaire’s partial results. More
specifically on those results that are in connection with the written and personally
transmitted tradition and with the – in them appearing – notion of creation.

5. Questionnaire

This year, we examined a segment of teachers’ beliefs related to mathematics as
a school subject through an online questionnaire. We collected questions from a
previous project LEMA [23] as a starting point, rephrased some of them and added
further questions as well.

Now, we will only focus on some questions from the questionnaire, only on
those ones, which give us information about the inquiry if the teachers’ beliefs
were influenced more by the written or the personal tradition, and also about
the fact whether the notions of creation and freedom can be connected to school
mathematics. The whole questionnaire can be the basis for further research5.

4An international conference (Varga 100) was organised by this project in order to introduce
that Varga’s main ideas are also relevant today. You can read about it in two special issues of
Teaching Mathematics and Computer Science (TMCS 2020/18.3). Another goal of this conference
was to present the Legacy of T. Varga and to position it in the modern didactical trends. See K.
Gosztonyi’s plenary [14] and the panel plenary led by M. Artigue [2].

5A big and significant survey of this kind is the one carried out by the MTA Working Group on
Mathematics in Public Education [19]. It worked with a large sample (4257 answers). The goal of
this research was to find the biggest problems in mathematics education in Hungary. We did not
want to draw up a complete belief map, as this can only be done through a more comprehensive
and detailed test.
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5.1. The sample
777 teachers took part in the questionnaire6. The distribution of participants by
school type was as follows: 57 from lower primary (1–4. classes), 472 from upper
primary school (5–8. classes), 64 from eight-year high school (5–12. classes), 79 from
six-year high school (6–12. classes), 200 from four years high school (9–12. classes),
28 from vocational secondary school and 24 from other type (there are teachers
who are employed in more than one schools). We do not have exact data, so we do
not know how representative our questionnaire is, nevertheless, the total number
of respondents is high, compared to previous research of this kind.

5.2. Questions
However, we asked not only closed-ended questions, but also open-ended questions
where teachers could elaborate on the subject. This was important because we
received several responses that were not closely related to the questions we asked,
but clearly showed teachers’ related areas of interest. Teachers were asked the
following series of questions:

5.2.1. Introduction

“Title: RESEARCH – subject-related questionnaire
In the research below, we examine with Dr. Ödön Vancsó what picture exists in
the head of practising teachers about school mathematics. It would help our work
to a great extent if possibly the most teachers could fill in this form throughout the
country, therefore, we are curious about your opinion, too. . . ”

We had three questions about the years spent as a teacher (practice-time),
where she/he got the university-degree and about other subjects.

Further questions and answers were as follows:

5.2.2. Questions on a five-point scale

“At each question answers on a scale from 1 to 5 can be given.
1 = I don’t agree at all . . . 5 = I completely agree.”

For a significant number of questions, it is clear that on a five-point scale,
answers are either “agree” or “disagree”. Based on this data, we could say that
there is a perception among the participants about the subject of mathematics.
According to them:

1. Mathematics is an area where students can discover things.

2. In problemsolving, you don’t need to know the one and only solution, you
can experience choice and freedom.

6We would like to thank Gabriella Hajnal, Dániel Bebrevszky and Róza Hitérné Erdős for their
help in sending out the questionnaire and all the participants for answering it.
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Table 1

Question 1 2 3 4 5
If students get to grips with
mathematical problems, they
can often discover something
new (connections and rules).

3
(0,4%)

25
(3,2%)

90
(11,6%)

310
(39,9%)

349
(44,9%)

In order to solve a mathemat-
ical task, one has to know the
one and only correct procedure.

309
(39,8%)

237
(30,5%)

171
(22%)

45
(5,8%)

15
(1,9%)

In mathematics one finds the
experience of freedom. 8(1%) 32

(4%)
163
(21%)

321
(41,3%)

253
(32,6%)

Every student can create or
recreate parts of mathematics.

53
(6,8%)

132
(17%)

261
(33,6%)

226
(29,1%)

105
(13,5%)

5.2.3. Open-ended questions

The questionnaire also asked, where the respondents studied and how was their
image of mathematics formed. Connections, significant teachers, personal student
and teaching experiences dominated most in the formation of their image of math-
ematics.

“Please write down some factors that influenced your opinion on mathematics
as a school subject. These can be reading or other kinds of experiences, people,
institutions, etc.”

“Other. In case of any other comments regarding the questionnaire that you
would like us to know about, and that do not fit into any categories, please share
with us here.”

5.2.4. Results

1. When asked about creation, we did get the following answers.

Figure 1. “Every student can create or recreate parts of mathe-
matics.”
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The answers were in the middle of the range, but we can say that creation as
a belief is part of school mathematics in Hungary.

2. In the cultural tradition of mathematics education, there is a need for creation
and artistic activity in relation to mathematics and mathematics in schools,
but the practice seems to show something else. Creation is present, but not
as prominently as one might expect based on the work of Tamás Varga and
the leading didacticians and teachers of the 20th century.

3. Reading materials (books, journals) were much less frequent among responses,
thus basic ideas in written didactic tradition influenced the teachers’ image
of mathematics through personal experiences. The written tradition and the
transmission of practical experience are in harmony.

4. In conclusion (also based on the textual responses) we can say, that on the one
hand there is an idyllic image of a school mathematics (that teachers consider
to be good and that exists in their dreams as a content- and methodological
environment). On the other hand, there is the reality that is much more
prosaic and much less in line with teachers’ image of mathematics. The
tension between the two is evident from the textual responses.

To underline the last conclusion, we would like to quote two textual answers:

• “In Hungarian public education, mathematics is taught in very heterogeneous
groups. It would be nice if there were opportunities for discovery mathematics
when the amount of practice added at home is negligible. (I teach in a high
school, and the standards are going down there too. The amount of practice
students do at home is not enough. But what can a district school say against
the university’s practise high schools in Budapest!”

• “I face it every day: classes of 33-36 students, maths lessons [45 minutes] for
the whole class, 3 per week (this is in grades 9-10, before that there are smaller
groups, but the number of lessons is still 3 per week), 24-26 teaching hours per
week, plus free tutoring, specialised classes. Nevertheless, my enthusiasm is
still there:) We compete in lessons, workshops, cutting, metalworking, playing
free play. . . ”

6. Conclusions
Therefore, the philological idea that Bolyai’s sentence was inspired by a poem or by
a poetical biography, belongs to the history of the connection between creation and
mathematics. With all its antecedents and effects, it can be proof for the fact that
the need for creation as a belief is part of the Hungarian written didactic tradition.
This belief is worth being taken into consideration when a current phenomenon of
mathematics education is to be interpreted.
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Based on the results of our questionnaire we can say that the concept of creation
and another concept of the tradition, the experience of freedom is present among
the beliefs of the mathematics teachers in Hungary. However, it must also be taken
into account that reality and the day-to-day problems of school mathematics do
not allow the basic ideas rooted in the tradition to develop sufficiently.

Nevertheless, this tension can be mildened by focusing on the common features
existing in the tradition and among the beliefs. The personal experience seems to
be the main source of the mathematics teachers’ image of mathematics.

Acknowledgements. We would like to thank everyone who completed the ques-
tionnaire.
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