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Abstract. In this paper, we study generalized continued fractions for the
expression of bi-periodic Fibonacci ratios.
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1. Introduction
A continued fraction is an expression of the form

T1 L T2
r=s8+——=8,+—  —

where s, and r, are real or complex numbers with r, # 0. The rq{,79,73,... i
this context will usually be referred to as the “partial numerators” of the continued
fraction and the terms sq, s1, o, . . . are the “partial denominators”. The most com-
mon restriction imposed on continued fractions is to have r,, = 1 and then call the
expression a simple continued fraction, denoted by [so; S1,82, .. ] A periodic con-
tinued fraction is one that repeats and has the form [30; S1y-ns sm,m].
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Let F,, and L,, denote the Fibonacci and Lucas numbers, defined, respectively,
by F, =F, 1+ F, cand L, = L,_1+ L,_5 for n > 2, with F, =0, I, =1 and
Lo=2,L,=1.

Several generalizations of the Fibonacci sequence have been presented in the
literature [1-8]. Ome of them was given by Edson and Yayenie in [6], called the
bi-periodic Fibonacci sequence defined for any nonzero real numbers a, b, and any
integer n > 2, as follows

~ Jagn-1+qn—2, forn even,
7 btacr + dumz, for nodd,
with initial values go = 0 and ¢; = 1. Note that for a« = b = 1, we get the

classical Fibonacci sequence. Similarly, Bilgici [5] introduced the bi-periodic Lucas
sequence, for n > 2, as follows

L blp,_1+ 1,2, formn even,
" Nal,_1 + lp_s, for n odd,

with initial conditions [y = 2 and I; = a. It gives the classical Lucas sequence for
a=b=1.
Also, the bi-periodic Fibonacci and Lucas sequences satisfy, for n > 4, the same
recurrence relation
wy, = (ab+ 2)wp—2 — Wy —g.

The Binet’s formulas of the bi-periodic Fibonacci and Lucas sequences are given

by
= (2 (1.1)
(ab)"H\ a=pB )
2™ o
= W(a +B"), (1.2)

where |z] is the floor function of z, £(n) = n — 2|n/2| is the parity function and
«, B are the roots of the characteristic equation 22 — abxz — ab = 0 given by

ab+ +/ab(ab + 4) 4 58 ab — \/ab(ab + 4)
= an =
2

- 2

It is well known that the limit of the ratios of consecutive Fibonacci numbers
is the golden ratio ¢. Thus

=M=t ] =10V

For more details on continued fractions and their connection to the Fibonacci
sequence, the reader is referred to [9-12].
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Consider the bi-periodic Fibonacci sequence {gy},,~, with a and b nonnegative
integers. For a # b, we have -

Gn_ _ en—1)p(n) , _ L
PR a b + g
dn—2

So the ratios of the successive terms do not converge (see [6]). Therefore

. q2 Q . q2n+1 Q .
lim — = —, lim Lntl —, and lim
n—r0 (2n—1 b’ n—oco qap a n=00 (n—2

=a+ 1.

2. Main results

Let n, s, 7, and ¢ be positive integers with r < s and n > 2¢t. Our aim is to derive
closed form expressions for the continued fractions of lim —%2+t—  Let’s start

n—oo ds(n—t)+r
with ¢ = 1.
This theorem gives the recurrence satisfied by a subsequence of arithmetic pro-
gression.

Theorem 2.1. Forn > 2 and fized s and r, we have the following relation

b E)E+) "
Qsn+r = <(l) lst(nfl)Jrr + (_1) QS(n72)+r- (21)

Proof. From Binet’s formulas (1.1), (1.2), and since aff = —ab, {&(n + m) =
£(n) + £(m) — 26(n)E(m), and [n/2] = (n — €(n))/2, we can write

b E)EGn ) .
<a> lsqs(n—l)—i-r + (_1) ds(n—2)+r

b\ E(8)E(sntr) aé(s) . ab(s(n=1)+r+1)
N (a) W(O‘ +8 )( BYL(n=D+1)72]

( s(n 1)+r _ ﬂs(n 1)+7‘>

X

sa1 ( (n 2)+r+1) oﬁ("*Z)Jr”‘ - Bs(n,Q)Jrr

(=1 (a b)ua(n 2)17)/2] ( o >
p\ EEIE(sntr) o g(sntr41)+26(s)€(sn+r)

- ( ) (ab)L(sn+m)/2]+€(s)(sn+r)

( QST Bsn+7“ 4 (aﬁ)s(as(n—2)+r _ Bs(n—2)+r)>

a

a—p
a&(sn-&-r-‘rl) (as(n—2)+r _ ﬂs(n—2)+r>

( )s+1
(ab) [CO=2+7)/2] a—p
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q&(sn+r+1) <a3n+r — BT 4 (_ab)s(as(n—2)+r _ ﬁs(n—2)+r)>
(ab)L(sn+1)/2] a—2
. aftnarl) as(=2+r _ gs(n=2)+r
— (-1 (ab) LE(=2+7)/72] ( a—p )
aflsn+rtl) f gsntr _ gentr
~ (ab)CrEn72] ( a—p )
= Qsntr- O

The following theorem derives the closed form for continued fraction expres-

sions of lim —%*  which is the ratio of two consecutive terms of the cited
n—oo Is(n—1)+r

subsequence.

Theorem 2.2. Forr < s, we have

S

—_— «
[l — 11,0, —2] = @ for s even,
. QSn+r . _ aaS
lim —2*" |l ls| = ———g, for s odd and n+ r even,
n;ngo QS(n71)+T [ b Tb (ab)(s""l;/i
e
Ltls; als] = W, for s and n+r odd.
Proof. From (2.1), we have
e For s even
Qsn+r —1. _ qs(n—2)+r —1. -1 + qs(n—l)—i-r - qs(n—2)+r
qs(nfl)Jrr QS(H71)+T QS(n71)+T
1
- ZS -1+ QS(n71)+’I’
qs(n—1)+7’ - qs(n—2)+r
1
—l-1+
1+ qs(n—2)4r
ds(n—1)4+r — ds(n—2)+r
1
—l -1+ 1
1+ ds(n—1)+r 1
qs(n—2)+r
1
1+ 1
ls —2+

14+ —
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e For s odd and n + r even

qsn+r — 1+ qs(n—2)+r 1 1
9s(n—1)+r qs(n—1)+r I 1
s+ 1
I+ —
e For s and n + r odd
sn+r b n— b 1
_Genir Dy st 0y
s(n—1)+r a ds(n—1)+r a Ql n 1
a’s ) 1
als +—

Using Binet’s formula of the bi-periodic Fibonacci sequence, we obtain

sn+r
- ()
«
lim —3s4r  — hm s

N0 (o(p_1)4r NP af(s(n—1)+r—1)(ab)L(Sn-‘r?")/zj @ L (ﬁ)s(”_l)+r

[e3%

ag(anrrfl) (CLb) [(s(n—=1)+r)/2]

as

W, fOI' S even,
a S
ao®
W, for s odd and n + r even,
a S
b S
(b)é%)/?a for s odd and n + r odd. O
a S

For the classical Fibonacci sequence, when ¢ = b = 1, Theorem 2.2 gives the
following result.

Corollary 2.3.

lim _Fonar _ g5 _ [Ls - 1;@], for s even,
n=00 Fy(n1)4r [Ls; L], for s odd.

The following theorem extends Theorem 2.1 in the sense that it considers the
t-periodic terms in the arithmetic progression subsequence.

Theorem 2.4. For n > 2t, we have

b E(sE(sntr) )
Qsntr = <a> lsth(n—t)+r + (_1)8t+ Qs(n—2t)+r- (2.2)
Proof. Using Binet’s formula, we get

Qsn+r = Clen+rasn+T + C2Xsn+rﬁsn+ra
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% and C; = —Cy = 1/(av — f8). The matrix form gives

with Xsn4r = (ab)l
<QS(n—t)+r) _ < Xs(n—t)+ras(”*t)+r Xs(n_t)tr ﬁs n—t)+r )(Cl)
Qs(n—2t)+r Xs(n—?t)+ra5(n_2t)+T Xs(n—Zt)+rﬂs(n 2t)+r C2

(Cl> = ( AR O T b ) (qsm_w)
Xs(n 2t)+ras(n72t)+7‘ Xs(n—Qt)—i—rﬁsn 2t)tr qs(n—2t)+r

— 1( Xs(n72t +rﬁs(n—2t)+r _Xs (n—t)+ 65(71 t)+r> <QS(nt)+r>

D\ ~Xs(n—at)4ra*20FT Xs(nft)JrrO[S(n O )\ ds(n—2t)4r

_ 1( Xs(n—2t)+r Bs(n_2t)+rqs(n—t)+r _Xs(n—t)+rﬂs(n_t)+rqs(n—2t)+r>
D Xs(n—2t)+r as(n 2t)+TQS(n7t)+r Xs(nft)Jrra. B )—HAQS(ant)Jrr

S(nft)Jr’l’/BS(ant)JrT _ as(n72t)+rﬂs(n7t)+r) )

where D = Xs(n_t)+TXs(n—2t)+r(

Therefore
C = Xs(n—2t)+rds(n—t)+r — Xs(n— t)+rﬁ As(n—2t)+r
Xs(n—t)4+rXs(n—2t)+ as(n 2t) JrT(O‘St ﬁSt)
and .
Co — 7Xs(n—2t)+rqs(n—t)+r - Xs(n—t)-‘rras qs(n—2t)+r
2= s(n—2t)+1"(ast _ 651&)

Xs(nft)Jers(nf%)«H“B
Plugging into qsnir = C1Xsnar @™ + CoXsnir S5, we get

— Xs(n— t)+rﬁ ds(n— 2t)+7‘agn+/r

Xs(n—2t)+rds(n—t)+
n— 2t)+'r(ast 5st)

Gsn+r = Xsn+r s(
Xs(n—t)+rXs(n—2t)+r&

— Xs(n— t)+ra qs(n 2t)+rﬂsn+r

Xs(n—2t)+rds(n—t)+
Tﬁs(n 2t)+r(ast 6st)

— Xsn+r
Xs(n—t)4+rXs(n—2t)+
Xsn+rqs(n— t)+r( 2st _ B2St) _ XsntrQs(n— 2t)+r(a/8)5t( ot — ﬂSt)
Xs(n t +r(a8t BSt) Xs(n 2t +r(a8t BSt)

gEsntr=1) () L(s(n—t)+7)/2] .
= a&(s(n t)+r—1)(ab)L(sn+r)/2J qs("_t)"”'(a +B )

a€(ntr=1) (gp)L(s(n=20)4+7)/2]
T G2 tr=1) (gp) [n+n) /2]

b E(st)é(sn+r) aé(st) " t+1
() W(Oz +B° )qs (n—t)+r + (_1)( Qs(n—2t)+r

_ab)Stqs(n72t)+'r

a (ab

O

b &(st)€(sntr)
= (a) ZSth(nft)+T + (_1)St+1QS(n72t)+r-

We will now calculate lim —Zm+" explicitly, the ratio of two consecutive
n—oo ds(n—t)+r

terms in the t-periodic subsequence.
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Theorem 2.5. Forr < s, we have

ast

[lot — L1104 —2] = (@72 for st even,
lim —Jentr [lst;m = %, for st odd and n + r even,
n—00 qs(n—t)+r b T (ab) bast

[alst; alSt} = W, for s, t, and n+r odd.

Proof. Using (2.2), we have
e For st even

qsn+r — 1 — qs(n—2t)+r =1, —14 Gs(n—t)+r — ds(n—2t)+r
s(n—t)+r qs(n—t)+r s(n—t)+r
1 1
:lst_1+ :lst_]-+
1 + QS(n—2t)+r 1+ 1
qs(n—t)+r - q‘e(n—Qt)-H’ QS(nft)JrT 1
qs(n—2t)+r
e For st odd and n + r even
g s(n— T 1
M:lst'i‘w:lst‘i‘qi-
qs(n—t)+r As(n—t)+r ds(n=t)+r
qs(n—2t)+r
e For s, t, and n + r odd
Sn—+r b s(n— ™ b 1
Gsn+ :7131&_'_(1( 2t)+ :7lst+q .
As(n—t)+r a s(n—t)+r a Hs(n—t)+r
qs(n—2t)+r
Using Binet’s formula of the bi-periodic Fibonacci sequence, we obtain
8 sn+r
lim ———— = lim 5 ast
n=00 s(n—t)tr P g€(s(n—t)+r=1) (qp) L(sn+r)/2] 1 (ﬁ)S(nft)JrT
ast
W’ for st even,
ao”t for st odd and
W, or st odd and n + r even,
bast
W, for s, t, and n + r odd. O

Note that if we take ¢ = 2 in Theorem 2.5, we get the following result.
Corollary 2.6.

2\ S
hmqsn-l-r<ab> :(a+1)8:[l2871;1712872'
a

n=0 (s(n—2)+r
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As a consequence of Theorem 2.5, for a = b = 1, we have the following result.
Corollary 2.7.

lim
n— o0

Fonir o { [Lst —1;1,Lg — 2|, for st even,

s(n—t)+r [Lst; E] , for st odds.

In the following theorem, we give a relation between some bi-periodic Fibonacci
and Lucas sequences.

Theorem 2.8. Forn > 1, we obtain

an EE+D) o1 { ) EEH)
QSlsn+r = (g) s(n+1)+r + (71) (E) ds(n—1)+r-
Proof. From Binet’s formulas (1.1), (1.2), and since a8 = —ab, we write

a §(r&(s+1) 1
(5) (QS(nJrl)Jrr + (_1)6+ QS(nfl)jL'r)

a\EMEsT)  gEGMAD+r+1) 7 s(ntD)4r _ gs(ntl)+r
- (5) (ab) Lt D)+r)/2] ( e )
+(—1)et (E)E(T)E(sﬂ) a&(s(n—i)+r+1) (as(n_l)JrT B ﬂs(n_1)+r)
b (ab)Ls(i=1)+r)/2] a_3
an §(r)é(s+1) aé(s(n+1)+r+1)
(5) (ab) [GE+D+1 /2] (o — B)

o o — ;ab ) _ BSTLJFT ﬂs _ ;ab )
o B
rE(s £(s(n+1)+r+1) s _ 3s
(g)é( )E(s+1) ¢ Q B (asn+r +68n+r)-
b (ab)Ls(n+D)+m) /2] \ o — 3

X

Since

(st 1) +r+1) € (sntr) +E(s+1) ~26(s+1)€(sn+7)
(ab)[GOADTN/2] ~ (qb)[Gsntr+D 2]+ [s/2]+E()(sn+r) —E(sm+7)
g€ (sntr)+E(s+1) —26(s+1)E(r)
(ab)[Gnr 1) /2] + [s/2] —€(sF D)E(sm+7)
QE(sn+T)+E(s+1) —26(s+1)E(r)
(ab) LGsnFr D) /2]+[s/2]—€(+1)E(r)
p\ §GEHDEM) e(s+1) qf(sn+m)
- < ) (ab) 5721 (ab) ntrT1)/2]”

a

we obtain the result. O

Note that for s =1 and r = 0 in Theorem 2.8, we get the following result.
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Corollary 2.9. For n > 1, we obtain

ln = Qn+1 + qn—1-

In the following theorems, we give two continued fractions involving the bi-
periodic Fibonacci and Lucas sequences.

Theorem 2.10.

l _
lim —— =[l;ab+1,1,ab] = B +2
and

. Gnt1 — a+2
1 =1[0;1,ab+1,1,ab] = .
im L [0;1,ab+ 1,1, ab] I

n—oo

Proof. The bi-periodic Fibonacci and Lucas sequences satisfy the equation

Iy = qn+1 + Gn-1-

Thus, we obtain

ln _ Qn+1+Qn71 =1+ q]- )
dn+1 dn+1 dntl
dn—1
Using Corollary 2.6 by taking s =1 and r = 1, we get the result.
Furthermore,
5 n
a — g" a—pf 1_<E)
i =1 - = 2
nh~>nolo dn+1 nlggo(a B) antl — ﬂn-l—l nh~>n;o « 1_ (ﬁ)n+1 ﬂ +
«
Taking the reciprocal of this value, we get
1 1 a+2
Int1 _ and lim Tnt1 _ = i . O
qn+1
For the arithmetic progression situation, we get
Theorem 2.11. For r < s, we have
lim 7ls"+r =
nN=00 (g(n+41)+r
(s=1)/2(¢ —
l ]'/qs 1 1 1 ]' — (ab) (a /8)7 fOTS Odd7
qs 12571+1+12572+1+l2572"' ( )/Oéb
1/qs 1 1 1 1 blab)s=2/2(a — B)
O T o4 14D, 241 & for s and even,
a/(bgs) 1 1 1 1 a(ab)*=4) /% (a — B)
- Z = * odd.
0+ ] e 04140 241 - o , for s even and r o
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Proof. By taking r — r 4+ s in Corollary 2.6 and using Theorem 2.8, we have
e For s odd

! R N 1/q
LM:*JFfM:l/qNLqS(nQﬁ,
As(n+1)+r ds 4s Gs(n+1)+r 2
As(n—1)+r
e For s and 7 even
lsn+r . i o iQS(n—l)—i-r . iqs(n-i-l)-i-r —Gs(n—1)+r 1/(15
QS(n+1)+T qs qs qs(n+1)+r qs qs(n+1)+r 1+ 1
qs(n-i—l)-i—'r -1
QS(n—l)+r
e For s even and r odd
lsn+r _ a iqs(n71)+r _ a (qs(n+1)+r 7Q5(n71)+r> _ a/(bQS)
qs(n+1)+r bQ5 bq& qs(n+1)+r bQé QS(n+1)+'r 1+ 1
qs(n+1)+r 1
qs(n—1)+r
Using Binet’s formulas for the bi-periodic Fibonacci and Lucas sequences, we obtain
. lsnir
lim —t

N=00 (s(n+1)+r
. af(sn+7) (gh) Ls(n+D+1)/2]
- nh—>H§o af (st Fr=1) (gp) L(sntr+1)/2] (a=5)

aanrr _ Bsn+r

as(ntl)+r _ 53(n+1)+7’

sn4r
L Sl gyl o g 1= (2)
=n113;o G+ =1 (gb) [ntrD72] g 5\
- (5)

(ab)s=D/2(a — B)/a®,  for s odd,
= < b(ab)*=2/2(a — B)/a®,
a(ab)*=)2(a — B)/a®,

for s and r even,
for s even and r odd.
Taking the reciprocal of Theorem 2.11, the next result follows.

Theorem 2.12. For r < s, we have

. QS(n+1)+r
lim ——— =
n—oo  lgpyp
1 1/qs 1 1 af
0 Z = dd.
T A1+ 1+ D=2+ (@) DPa—p  Jorsodd
04 1 1/gs 1 1 1 aa® f d
0+ 1 Doy —24 1402+  (ab)Pa_p)y lorsonercuen
1 a/(bgs) 1 1 1 ba®
0+6+ 1 125_2+I+m+'..—m7 for s even and r odd.

10
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Proof. Knowing that

1
QS(n—&-l)-ﬁ—T _ and lim qs(n+1)+r — lim 7
lsn+'r lSﬁ'H“ n—oo sn+r n—00 ZSTH‘T
QS(n—&-l)—H' qs(n+1)+7'
using Theorem 2.11, we get the result. O

Note that, for a = b =1, we get the following result.

Corollary 2.13.

1 1/Fs 1 1
lim Lsn+7’ _Oéfﬁ_ F9+/L291+1+L292+7 fOTSOdd,
noeo F, T 1/F, 1 i 1
s(nt+1)+r 0 1T T
T +L2s—2+1+L25_2+,,_7 for s even,
and
0+ 1 /F, 1 1 s o
lim Fsyy4r = o® F, 4oy —1+1+ Loy —2+ :
n—00 B — B 1 1/F, 1 1 1
— Lsn+r (&7 B 0+ - / fors o

04+ 1 ' Loe—2+1+Ly—2+ -
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Abstract. In this paper the general solution of the functional equation f(z+
y) = g(z) + h(y) ((z,y) € D) is given with unknown functions f: Dyiy —
Y, 9g: D, = Y, h: D, = Y where D C G? is a nonempty, open set,
(G,<) is an ordered, dense, Abelian group, the topology on G is gener-
ated by the open intervals of G, the sets D,, Dy, D,i, are defined by
Dy = {ueG|IweG: (u,v)e D}, D, := {veG|IueG: (uv)€ D},
Dyyy:={2€G|3(u,v) € D:z=u+v}, and Y(+) is an Abelian group.

The main result of the article is a common generalization of similar results
by L. Székelyhidi and J. Rimén. Analogous theorem concerning logarithmic
functions is also shown.
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1. Introduction

The main purpose of this article is to prove the generalization of J. Riméan’s Exten-
sion Theorem [21]. Now, we give a non-exhaustive overview of the most important
steps of the theory of Extension and Uniqueness Theorems concerning restricted
Pexider additive functional equations.

In the sequel we will use the notations

D,:={ue X|FveG: (u,v) €D},
D,:={veY |JueG: (uv) € D},
Dyty:={z€ X |3(u,v) €D:z=u+v}

where D C G? := G x G and G(+) is a grupoid.
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The early results were grouped around the following problem. Let be D C R?,
f: Dy UDyUDgy, — R be a function such that

flx+y)=f(x)+ fly) ((x,y) € D). (RestAdd)

The functional equation (RestAdd) is said to be restricted additive functional equa-
tion. The problem is to find a function F': R — R such that

Fla+y)=F(x)+ F(y) (z,y€R), (1.1)

and F(x) = f(z) for all x € Dy (see [14] Part IV. Geometry, Section Extension of
Functional equation p. 447-460). The function F' is said to be additive extension
of the function f from the set D to the R2.

If a function F': R — R satisfies the equation (1.1), then the function F' is
said to be Cauchy-additive function (see A. E. Legendre [18], C. F. Gauss [9]).
A. L. Cauchy first found the continuous solutions of equation (1.1) [5].

In [4] D = (Ry U{0})? (Ry := {z € Ry |z > 0}). The solution of equation
(RestAdd) is f(x) = F(z) for all € F, where the function F is a Cauchy-additive
function.

In [2] the concept of quasi-extension can be found. The situation is that D C R?
is a nonempty connected open set, and the functions f satisfies the functional
equation (RestAdd) for all (z,y) € D then there exists an additive function F' and
exist constants C7, Cy € R such that

f(2) =F(2) +C1+Cy (2 €Dyyy),
f(u) =F(u) +C1 (u €D,), (1.2)
fw) = F)+ Cq (v €Dy).

If the function f and the additive function F' is in the form of (1.2), then the
function F' is said to be quasi extension of the function f.

In [6] D = R% or D is circle neighbourhood of the point (0,0) € R?. In these
case [ has additive extension.

In [23] D is an open subset of R?. The author of this paper has shown that the
set D is a countable disjoint union of connected open sets, that is D = J, D*. The
sets D; is said to be components of the set D. For all i there exists an additive
function F;: R — R and constants C?, C% € R such that

f(z) =Fi(2) + C{ + Cy (z€Di,,),

Fi(u) + Ci (ueD?), (1.3)
f(v) = Fi(v) + Ci (veD;).

=
<

S~—"
I

If ¢ # j, then the obtained functions F;, and F}, as well as the obtained constants
Ci, and CY, or C§, and CJ are not necessarily different depending on whether

D.N D} #0or D;NDj#0or Dy, ND,, . #0.
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It is also worth mentioning that if D, N D}, # 0 then C3 = 0; if D;ND%,, # 0
then C = 0; if D;ND;, # () then Ci; = C'y for all component D*. If the point (0, 0)
is an inner point of a component D? then D N D; N D;er # 0 thus C% = C = 0.

In [21] J. Riméan studied restricted Pexider additive functional equations in the
form

fle+y)=g@)+nly) ((z,y) €D) (RestPexAdd)

where the set D is a connected open subset of the set R?, E = E(+) is an Abelian
group, and the unknown functions f: Dyyy — E, g: Dy — E, h: Dy, — E satisfy
the equation (RestPexAdd) for all (x,y) € D. The solution of equation (1.4) is

f(2) =F(2)+C1+Cy (2 €Dyqy),

gw) =F@+C  (ueD,), (1.4
F(v)Cy (v €Dy),

>
—

<
~

Il

where a: R — R is an additive function, C, Cy € E are constants.
In [1] D = H(I) where I is a nonempty open interval of the real line and the
set H(I) is defined by

H(I) := {(x,y) €R2|x,y,x—|—y61}.

The set H(I) is a hexagon, sometimes a triangle or the emptyset.

M. Kuczma in his book [16] investigated both of Pexider type functional equa-
tions and additive functional equations, but did not consider restricted Pexider-
additive functional equations. He used Jensen functions for his Extension Theo-
rem and gave the solution of equation (RestAdd) (Theorem 13.6.1), where D is a
nonempty, connected, open subset of R?Y := RV x RY and D, U D,UD;,, C Dy.
He showed that the solution of equation (RestAdd) is in the form of (1.2) where
F: RN — RY is an additive function, C;, Cy € RN are constants. The extension
was brought back to the theory of Jensen functions.

An X = X(+4) Abelian group is said to be uniquely 2-divisible, if for all z € X
there uniquely exists an y € X such that y + y := 2y = . This element y € X is
denoted by y = %x A nonempty set A C X is said to be midconvexe, if % e A
for all x,y € A. Let Y = Y(+) be also a uniquely 2-divisible Abelian group. A
function j: A — Y is said to be Jensen [7, 15, 16] if

G EECES ORI

The way outlined by M. Kuczma is not suitable for us, since we do not want to deal
with either 2-divisible or p-divisible groups, and we do not think that the vector
space structure is necessary for an additive extension theorem.

In the article [20] an extension theorem for restricted Pexider additive functional
equation can be found, where D C (R")? is a nonempty, connected, open set.

In the book [3] several functional equations can be found in more general ab-
stract algebraic settings .

Concerning the Extension Theorems see also [8, 13, 17].
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2. Some necessary concepts and results
Now, we review the concepts and results which will be used in the sequel.

o If G(+,<) is an ordered group, o, 8 € G such that o < 8 then the set
la, Bl :={z € G | a < x < 5} is said to be open interval.

o An ordered group G(+ <) is said to be dense (in itself) if Ja, 8] # 0 for all «,
B € G with a < 8.

e An ordered group G(+, <) is said to be Archimedean ordered if for all z,
y € G4 there exists a positive integer n such that y < nx:=z+--- 4+ .

o An ordered field F(+, -, <) is said to be Archimedean ordered if F(+, <) is an
Archimedean ordered group.

Now, we review some properties of open intervals ([10, 12]). The open intervals
are

o translation invariant, that is, if G(+4, <) is an ordered, dense, Abelian group,
then v + Ja, B[ = |y + o,y + B[ for all a, B, v € G such that a < §.

o additive, that is, if G(+, <) is an ordered, dense, Abelian group, then Ja, 5[+
v, 0[=]a+v,8+ 6 forall a, 8,7y, d € G with o < 8 and v < 4.

o homothety invariant, that is, if F(+, -, <) is an ordered field, then v - Ja, 5] =
Jva, B[ for all a, B, v € F with o < 8 and v > 0.

o multiplicative, that is, if F(+,-, <) is an ordered field, then ]a, 5[ - ]v,d] =
lary,Bé for all o, B, v, 6 e Fwith0 < a < fand 0 <~y < 4.

If G(+, <) is an ordered group, z € G, (or x := (x1,22) € G?), ¢ € G4, then
define the set B(z,¢e) by B(z,¢) := e —e,z+¢[, (B(z,¢) :=|x1 —&,21 +&[ X Jag —
g,x9 + €[) respectively. The set B(z,e) is said to be open neighbourhood of the
point z with radius €.

A function a: X — Y is said to be additive if X(+) and Y (4) are algebraic
structures, and

a(z +y) = a(x) +aly) (z,y € X).

A function I: X — Y is said to be logarithmic if X(-) and Y (4) are algebraic
structures, and

Wzy) =l(z) +1(y) (z,y € X).

Concerning the additive and logarithmic functions see [3, 16].
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3. Extension Theorem for Pexider additive func-
tional equation

We shall use the Existence Theorem for additive functions [10] according to which
if G(+,<) is an Archimedean ordered, dense, Abelian group, Y (+) is a group,
e € G4, and the function satisfy the equation (RestAdd) where D :=]0,¢[? then
there exists an additive function a: G — Y which extends the function f from
]—2¢,2¢] to G.

Theorem 3.1. If G(+, <) is an Archimedean ordered, dense, Abelian group, Y (+)
is an Abelian group, xo, yo € G, € € G, and the functions f: B(xo+yo,2¢) = Y,
g: B(zo,e) = Y, h: B(yo,e) = Y satisfies the functional equation (RestPexAdd)
then there exists an additive function a: G — Y and exist constants C1, Cy € Y
such that the functions f, g, h are in the form of (1.4).

Proof. By the translation invariant property of the open intervals we have that

B(zo,¢) = o + B(0,¢),
B(yo,€) = yo + B(0,¢),
B(zo + yo,2¢) = xo + yo + B(0, 2¢).

Define the functions F': B(0,2¢) =Y, G: B(0,¢) =Y, H: B(0,¢) = Y by

F(w) = f(zo+yo +w) (we B(0,2)),

G(u) = g(xg + u) (u € B(0,¢)), (3.1)
H(v) = h(yo +v) (v € B(0,¢)).
Then F(0) = f(zo + yo), G(0) = g(z0), H(0) = h(yo) and

Flu+v)=Gu)+ HWw) (u,ve B(0,¢)).
Thus we obtain that
F(u) = G(u) + H(0) = G(u) + h(yo) (u € B(0,2)),

F(v) = G(0) + H(v) = g(xo) + H(v) (v e B(0,¢)), (3:2)
whence we obtain that
F(u) + F(v) = G(u) + H(v) + g(0) + h(yo)
— F(u+v) +g(z0) + h(yo) (u,v € B(0,¢)).
Define the function ¢: B(0,£) — Y by
p(z) = F(x) — (9(zo) + h(yo)) (z € B(0,2¢)) (3.3)

Then
o +y)=w@) +oy) (z,y € B(0,¢)),
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whence by the Extension Theorem [10] we obtain that there exists an additive
function a: G — Y such that

o(x) =a(zx) (z € B(0,2)). (3.4)
Then by equations (3.1), (3.3), and (3.4) we have that

Flao+vo+w) L Fw) ) ow) + (g(x0) + hlwo) 55
2 a(w) + (9(x0) + h(wo)) (w € B(0,2)).
By equations (3.1), (3.2), (3.3) and (3.4) we have that
g(eo+w) 2 Gw) ) F )~ hlwo) = ew) + gla0) 56
D a(w) + glzo)  (w € B(0,€)).
By equations (3.1), (3.2), (3.3) and (3.4) we have that
h(yo +v) ) H) 2 F(u) - glzo) E o(0) + hiyo) .

(3.4)

= a(u) +h(yo) (we B(0,¢)).
Take the substitutions: w <— w — (xg + yo) in (3.5), u <— u — o in (3.6),
v <— v —yo in (3.7), and define the constants ¢ d € Y by ¢ := g(zo) — a(xo),
d := h(yo) — a(yo) thus the translation invariant property of the intervals we obtain
equation (1.4) which was to be prooved. O

We shall use the Existence Theorem for logarithmic functions in [10] according
to which if F(+, -, <) is an Archimedean ordered field, Y (+) is a group, € € F such
that € > 1, and the function f: ]e72,&2[ — Y satisfies the equation

flay) = fl2) + fy) (z,y€le ),
then there exists a logarithmic function I: F; — Y which extends the function f

from Je~2, 2| to the F%.

Theorem 3.2. If F(+,-,<) is an Archimedean ordered field, Y (+) is an Abelian
group, xo, yo € Fy, e € Fy, and f: |woyoe ™2, woyoc?[ = Y, g: |roe 1, xoe[ = Y,
h:)yoe ™Y, yoe| = Y are functions such that

flzy) = g(z) + hly) (z €laoe™ ", moel, y € Jyoe ™", yocl),

then there exists a logarithmic function [: Fy — Y and exist constants C1, Co € Y
such that ) )
fw) =l(w)+C1+Cy  (w € Jzoyos™ ", zoyoe™]),

g(u) =l(u) + C1 (u € Jxoe™t, wog]),
hv) = 1(v) + G (v € Jyos™ oc.
Proof. The proof is analogues to the proof of the Theorem 3.1. O
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4. Topology generated by the open intervals of an
Archimedean ordered Abelian group

Let G = G(+, <) be an ordered group, X € {G,G?} and D C X. The set D is said
to be open if for every point z in D there exists an € € G4 such that B(x,e) C D.

A subset D C X is said to be well-chained, if for all x,y € D there exists a
finite sequence B; := B(z;,¢;) (1 =0,1,...,n) such that

e B,CDforalli=0,1,...,n,
e v € By, y € By,
e B 1NB;#Pforalli=1,...,n.

A subset C of a nonempty, open set D C X is a component of D if C is a
maximal (with respect the inclusion) well-chained, open subset of D.

A topological space X (7)) is said to be separable if there exists a subset Y C X
which is countable, infinite, and dense (in X).

Theorem 4.1. If G = G(+, <) is an ordered group, X € {G,G*} and D C X s
a nonempty, well-chained, open set, then

1. D is a disjoint union of its components;
2. If X is separable then D has countable components.
Proof. 1. Define the family B by
B:={B(z,e)CD|xeD,eceGy}:={B,|ael}

Define the equivalence relation on B by B, ~ Bg if and only if there exists a finite
sequence By, (i =0,1,...,n) such that By, = Ba, Ba, = Bg and By, ,NB,, # 0
for all i = 1,2,...,n. The set B is a disjoint union of its equivalence classes. The
components of the set D are the union of all balls B, that belong to the same
equivalence class.

2. Let Y be a countable, dense subset of the set X, and let B C X be a
nonempty, open subset with components {D%};c;. Then for all i € I there exists
a ball B; := B(x;,¢;) such that B; C D' If i # j then B; N B; = 0. Since Y is
dense in G thus for all ¢ € I there exists an y; € Y such that y; € B;. Define the
function ¢: {D%}ie; — Y by p(D?) := y;. Since the function ¢ is injective thus
the set {D%};c; is countable. O

Example 4.2. If G(+, <) is a p- divisible, Archimedean ordered, Abelean group
for a prime number p, then G is separable.

Example 4.3. Let a: R — R is a noncontinuous additive function. As it is well-
known that the graph of a is dense in R? (with respect to usual topology on R?),
but the restriction of the function a to the set Q (where Q denotes the set of all
rationals) is continuous with respect to the topology on the set Q(4) defined above,
and the usual topology on the real line [11].
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5. The generalization of Riman’s Extension Theo-
rem

We shall use the Uniqueness Theorem for additive functions [10], according to which
if G(+,<) is an Archimedean ordered, Abelian group, a: G — Y is an additive
function, C' € Y, and ]a, 8] C Y is a nonempty interval such that a(z) = C for all
x € |a, B[ then a(z) = 0 for all x € G (and thus C' = 0).

Now, we give the generalization of Riman’s Extension Theorem:

Theorem 5.1. If G(+, <) be an Archimedean ordered, dense, Abelian group, and
D C G? is an open set with components {D* | i € I} and Y is an Abelian group
then the functions f: Dyyy — Y, g: Dy — Y, h: Dy, — Y if and only if are
solutions of the functional equation (RestPexAdd) then there exists a family of
additive functions a;: G — Y (i € I) and exist families of constants C}, C3 € Y
(i € I) such that

J(2) = ai(z) + Ci+ C} (z€ DL,

g(u) = ai(u) + Cf (u € D), (5.1)
h(v) = a;(v) + C} (ve D)
with
1. if DLy, N Diﬂ/ # 0, then a; = aj, and C} + C4 = Ci + C%;

2. if DL N DI #0, then a; = aj, and Ci = C;
3. if DL N D} #0, then a; = aj, and Cy = cy
foralli, jel,i#j.

Proof. Let us assume that the functions f, g, h satisfy the functional equation
(RestPexAdd). By Theorem 3.1 we obtain that they are in the form of (5.1), and
by Uniqueness Theorem [10] properties 1., 2., and 3. are fulfilled.

Conversely, let us assume that the functions f, g, h are defined by equation (5.1),
and the properties 1., 2., and 3. are fulfilled. These functions are well-defined, and
they satisfy the functional equation (RestPexAdd). O

Theorem 5.2. If G(+,<) be an Archimedean ordered, dense, Abelian group, and
D C G? is an open set with components {D* | i € I} and Y is an Abelian group.
Define the set Dy := Dy U Dy U Dyyy. The function f: Dy — Y is satisfies
functional equation (RestAdd) if and only if then there exists a family of additive
functions a;: G — Y (i € I) and exist families of constants Ct, Cs € Y for all
1 € 1 such that , , 4

f(z)=ai(z) + C1+ C3 (2 € Dyyy),

g(u) = a;(u) + Ci} (u€ DY), (5.2)

h(v) = a;(v) + Cs (v € Dy)
with
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1. If DL, N Di_w # 0, then a; = aj, and Ci + C§ = Ci + C5;
2. If DL N DI # 0, then a; = a;, and Ci = C;
3. If Dy N D} #0, then a; = a;, and C5 = cy;

foralli, j €1,i# j, moreover,
4. If DL, N DL #0, then C5 = 0;
5. IfD;+y

6. If D} N D} # 0, C3 = C}
O

N DZ #0, then Ci = 0;
Proof. The proof can be easily obtained by Theorem 5.1 and the Uniqueness

foralli e 1.
Theorem [10].

6. An application
Now we show a version of the well-known Rado-Baker functional equation [20].

It is worth mentioning that if F(+,-, <) is an ordered field then F? is a two-
dimensional vector space over the ordered field F with the usual point-wise defini-

tion of vector operations. The set C' C F? is said to be
o convex if \x + (1 = ANy € C for all z,y € C, and A €]0,1];

e coneif \v e C forall A\ € F,, and z € C;
« convex cone if \x + uy € C for all z,y € C, and \, pu > 0 with A2 + p2 > 0,

see Leonard Lewis [19], Rockafellar [22].

such that 0 < o < f < +00. Define the set C := C, g by
{(z,y) e Filax <y < Bz}, ifaecFLU{0}, feFy;
if 8 = +oo. '

Let F(+, -, <) be an Archimedean ordered field, o € Fy U {0}, 8 € Fy U {+o0}

o,
Proposition 6.1. The set C = Cy g is a nonempty, open, well-chained set.

C. 5=
{(z,y) € Fiaz <y},
Proof. Since C, g is a nonempty, open, convex cone thus it is a nonempty, well-

)y

chained, open set.
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Proposition 6.2. IfF(+, <) is an Archimedean ordered field, Y (+) is an abelian
group, the functions P,Q,R: Fy — Y are solutions of functional equation

Pz +y)=Q(z) + R(y) (v,y€C(a,p)) (6.1)

then there exists an additive function a: F — Y and constants Cy, Cy € Y such
that

P(z)=a(z)+C1+Cy (zx€Fy),
Qu)=ale)+ O (xeFy), (6.2)
R(z) = a(z) + Co (x €F,).

Proof. Let D := C, . Since D, = D, = Dy, = F_ thus by Theorem 5.1 we
obtain the statement. O

The following Theorem is a generalization of Rado-Baker Theorem [4], and if
can be obtained from Proposition 6.2 as a simple consequence.

Theorem 6.3. Let F(+, -, <) be an Archimedean ordered field, Y (+) be an Abelian
group, a, 3,7, € F such that ad — py # 0. The functions P,Q,R: Fy — Y if and
only if satisfy the functional equation

P((a+v)z+ (B+0)y) = Qlax + fy) + R(yx + dy), (x,y € Fy) (6.3)

if they are of the form of (6.2) where a: F —'Y is an additive function, Cy1,Cs €Y
are constants.

Proof. Let us assume that the functions P,Q, R: F, — Y satisfy the functional
equation (6.3) where az a, 8,7, € F such that ad — Sy # 0. Take the following
substitution in (6.3):

P((a+v)z+ (B+0)y) = Q(ax + By) + R(yx + dy),

v v 6.4
g LTy i ) .
aff — By ad — By

Thus we obtain that the functions P, @, R satisfy the equation (6.1) where the
constants o € Fy U {0} and 8 € F1 U {400} are defined by

. a;:%,ﬂ::%ifaéfﬂ’y>0andﬂ7é0;
o a:=2 f:=+4o00if ad — By >0and §=0;
. a::%,ﬂ:z%ifa5—57<Oanda7é0;

. a::%,,8::+ooifoz5—ﬂ’y<0anda:0.

By Proposition 6.1 we obtain the statement. The converse statement is evident. [
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7. Examples and problems

Example 7.1. Let D := {(z,y) € R? | [z — 0.5| + |y — 0.5] < 0.5}.

1

D, =D, =10,1],
Dyyy =10.5,1.5[.

0 1 3_5\
Define the set Dy by Dg := Dy U Dy U D,y. By Theorem 5.1 we obtain that the

general solution of the functional equation is
f(x) =a(z) (2 € Dy=1]0,1.5))
where a: R — R is a Cauchy additive function.

Let D C R? be a well-chained open set with components D', D2. By Theo-
rem 5.1 we obtain that the general solution of functional equation (RestPexAdd)
is in the form of (1.3).

f D!
f(z) = {alz +CH4+ 0L ifz € oty

as(z +C’1 + C3, if ze D7, ;

(2)
(2)
ay(u , if u e DL;
g(u) = () + 2
as(u) + C’l, if u € DZ;
hiv) — a1(v) —1—022, ifve D%;
az(v) + C3, if v € Dy,
where a; is an additive function, C%, C} are constants for all i = 1, 2.
The following two examples show how the structure of the general solution
depends on the geometry of the sets D! and D?.

Example 7.2. Let
D" :={(z,y) € R* ||z — 0.5 + |y — 0.5] < 0.5},
D? :={(z,y) € R? ||z + 0.5 + |y + 0.5] < 0.5},

and let D := Dy U Ds.
(=N
D} =D, =]0,1],

Dy, =10.5,15],
35\1 0 1 3.3\ 2 2
D} = D7 =1-1,0],
7 Di,, =1-15,-0.5
-1
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By Theorem 5.2 we have that since D}Hy N DL # @ thus C3 = 0. Since
D}, ,ND} # 0 thus C] = 0. Since D2, ,ND2 # 0 thus C3 = 0. Since D2, ,ND2 # ()
thus C7 = 0. Whence we obtain that the general solution of equation (RestAdd)

in this case is

f(2) = a1(z), if z € D;,ﬂ/,
as(z), if 2 € D315
ai(u), if u € D1;

oy = 1 :
az(u), it u € DZ;

f D!

h(v) = a1(v), ifv e v

az(v), if v e Dy,

where a; is additive function for all 1 =1, 2.
Example 7.3. Define the sets

Dy = {(z,y) € R* ||z + 0.5+ |y — 0.5 < 0.5},
Dy := {(z,y) € R?* | [z — 0.5| + |y + 0.5| < 0.5},
D:=D;UD,

1 2
D},,=D?,, =]-05,05]
1 _ n2 _
-1 o . 1 Dm*Dy*]*laO[a

1 _ 2
DL=D2=10,1].

-1

Since D},, = D3, thus a; = ap and C{ + C3 = Cf 4+ C3. Since D} = D
thus Cf = C3, and C3 = CF. Since D}, N D, #  thus C] 4+ C} = C{. Since
D}Hy N D; # 0 thus O + C3 = C3. Consequently C? = C4 = 0 for all i = 1, 2.
Whence we obtain that the general solution of equation (RestAdd) in this case
is
f(z)=ua(z), if z € D}H_y = D?H_y;
g(u) = a(u), if u € D! = D?;

h(v) = a(v), if v € D; = D;.
where a: R — R is an additive function.

Example 7.4. If G := (R? +,<) where the addition is defined by the usual
componentwise addition, and the ordering is the usual lexicographic ordering, that
is, (a1,as) < (by,b2) if and only if that either a; < by or a3 = by and by < be.
Thus the group G(+, <) is an ordered Abelian group, but it is not an Archimedean
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ordered, because, for example, (0,1) < (1,0), but there is no positive integer n
with n(0,1) > (1,0).

This is the open interval ](0,1), (1,0)[ in G.

Problem A. Preserve the notations of Example 7.4, and let Y (+) be an Abelian
group. We want to know the general solution of functional equation (RestAdd)
where D :=](0,1), (1,0)[>.

Problem B. Preserve the notations of Example 7.4, and Y (+) be an Abelian
group. We also want to know the general solution of functional equation (RestPex-
Add) where D :=1(0,1), (1,0)[>.

Problem C. In general, we also want to know the general solution of equa-
tion (RestAdd), or equation (RestPexAdd) in the case when G(+, <) is a nonar-
chimedean ordered Abelian group, Y (+) be an Abelian group, D C G2 is a
nonempty, well-chained, open set. The topology on G (or on G?) is generated
by the open interval of G (or by the open rectangles of G?).
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Abstract. The aim of this paper is to give the general solution of the Hosszu
type functional equation

flz+y—(zoy)) +g(xoy) =g(z) +g(y) (z,y€Ry)

with unknown functions f,g: Ry := {# € R | z > 0} — R, and binary
operation defined by z oy := (x% + y%)C for all z,y € R4y where ¢ € R,
¢ € {2,3} is a fixed constant.

Keywords: functional equations, additive functions, Hosszi type functional
equations, Hosszu functional equation, Hosszu cycle

AMS Subject Classification: 39B22

1. Introduction

At the International Symposium on Functional Equation conference held on Za-
kopane (Poland) in 1967 the functional equation

flet+y—ay)+ flay) = f(z) + f(y) (1.1)

where the unknown function f: R — R satisfies the equation for all x,y € R was
proposed to investigate in the first time by M. Hosszi. This equation is known as
Hosszu functional equation.

Z. Daréczy [6, 8] D. Blanusa [4], and H. Swiatak [25, 26] proved that the
general solution of equation (1.1) is in the form f(z) = A(z) + C for all x € R
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where A: R — R is an additive function (that is, A(x+y) = A(z)+ A(y) is fulfilled
for all z,y € R [2, 3, 18]), and C is a real constant.

Since 1969, many researchers have investigated the Hosszii equation and its
generalizations. In papers [9-12] the equation (1.1) was investigated on various
abstract structures. In paper [13] a Pexider version (that is functional equation with
more unknown function [1, 3, 15, 18]) of equation (1.1) and its locally integrable
function solutions can be found. See also [20, 21].

The general solution of equations

fay) +9(z+y—ay) = flz) + fy) (1.2)
flzy) +9(z +y — xy) = h(z) + h(y) (1.3)
was given by K. Lajké [19] in the following cases:

Problem A. If the unknown functions f,g: ]0,1[ — R satisfy the equation (1.2)
for all z,y € 0, 1], then there exist additive functions Ay, As, and a constant C' € R
such that

fz) = Av(2) + Az(log ) + C, (x €]0,1)),
9(z) = Ai(z) + C, (z €]0,1])

(where log denotes the natural logarithm function).

Problem B. If the unknown functions f, g, h: R — R satisfy the equation (1.3) for
all z,y € R, then there exist an additive function A and constants C; (i = 1,2,3)
such that

f(z) = A(z) + Cy (z € R),
g(l’):A(JI)+Cg7 (JCER),
h(z) = A(z) + Ch, (x € R),

where 2C; = C3 + C3. If the unknown functions f,h: Ry := R\ {0} — R, and
g: R — R satisfy the equation (1.3) for all z,y € Ry, then there exist additive
functions Aj, Ay and constants C; (i = 1,2,3) such that

f(x) = Ai(x) + Az(log |x]) + Cs (z € Ro),
9(x) = As(z) + Cs, (z € R),
h(z) = Ay (z) + As(log |z|) + C4, (z € Ro).

If the unknown functions f: R — R, and g,h: Ry := R\ {1} — R satisfy the
equation (1.3) for all x,y € Ry, then there exist additive functions A;, As and

constants C; (i = 1,2, 3) such that
flz) =A1(z) + Cs (x € R),
g(x) = Ay (x) + Ax(log |1 — z|) + Cy, (z € Ry).
h(z) = Ai(z) + Az(log |1 — z[) + C4, (z € Ry).
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In his paper [7] Z. Dardczy investigate the functional equation

flaty—woy)+flzoy) =fl)+ fly) (z,yeRy) (1.4)
with unknown function f: R — R where the binary operation o is defined by
xzoy = In(e* 4+ ¢¥) for all z,y € R. The general solution of this equation is

f(z) = A(x)+C for all z € R where A is an additive function, C is a real constant.
The main purpose of our present paper is to give the general solution of the
functional equation

flz+y—(zoy)]) +glxoy)=g(x)+9(y) (z,y €Ry) (1.5)

with unknown functions f, g: Ry — R. The binary operation is defined by
1 1i¢
voy:=(at+yt) (zyeRy), (1.6)

where ¢ € R\ {0, 1} is a fixed constant.
We also consider the functional equation

flz+y—(zoy)) +glxoy) =h(z) +h(y) (z,y€Ry) (1.7)

with unknown functions f, g, h: Ry — R and binary operation o is defined by (1.6).
The equation (1.5) is a common generalization of equations (1.2) and (1.4). The
equation (1.7) is a common generalization of equations (1.3) and (1.4).

The devices needed to the problems we set out, and to the earlier problems
are the theorems giving the solutions of the restricted Pexider additive functional
equations (in the rest briefly Additive Extension Theorems) and the application of
the Hosszu cycle.

Let D C R? be a non-empty connected set. Define the sets

D,:={ueR|FveR: (u,v) € D},
Dy,:={veR|JueR: (uv) € D},
Dyyy:={z€R|3(u,v) € D:z=u+v}.

The functional equation

flz+y)=g() +h(y) ((z,y) € D)

with unknown functions f: Dyyy — R, g: Dy — R, h: Dy — R is a restricted
Pexider additive functional equation. According to Rimén’s Extension Theorem
[24], there exist an additive function A: R — R and constants C; (i = 1,2) such
that

flu) =A(u) + C1 + Cs (u € Dyyy),
g(v) = A(v) + C4 (v e Dy),
h(z) = A(z) + C4 (z € Dy).

29



Annal. Math. et Inf. T. Glavosits, A. Hazy, J. Turi

Concerning the Additive Extension Theorems see also [1, 5, 14, 16, 18, 23].
A Hosszu cycle is a functional equation

Flx+y,2)+ F(z,y) = F(z,y+2)+ F(y,2) (z,y,z € D)

with unknown function F': A2 — D, where A = A(+) is a semi-group, D = D(+) is
an Abelian semi-group. The first appearance of this equation was in [17], although
many researchers use the Hosszi Cycle to solve functional equations for example
equations (1.1), and (1.2).

2. The decomposition of equation (1.5) by Hosszu
cycle

Theorem 2.1. If the functions f,g: Ry — R satisfy the functional equation (1.5)
where the binary operation o is defined by (1.6), then f satisfies the functional
equation

fle+y+2)° = (@ +y)°+29) + fl(@+y)° = (= +y)])
=@ +y+2)° =@+ (y+2)))) (2.1)
T+ +2)° =W +29) (z,yeRy).

Proof. For the proof we shall use the well-known Hosszi Cycle (see [7]). Define
the function F': Ri — R by

F(z,y) == g(x) + g(y) —glzoy) (z,y eRy).
Since the operation o is associated thus we have that
F(zoy,z)+ F(z,y) = F(z,yoz2)+ F(y,2) (z,y,2 € R,). (2.2)
By equations (1.5) we have that
Flz,y) = f(le+y—(zoy)l) (z,y €Ry). (2.3)
From equations (2.2) and (2.3) we have the equation (2.1). O

The following proposition is well known (and will be used later).

Proposition 2.2. Let ¢ € R\ {0,1} and define the function ¢.: Ry — Ry by
we(x) =2 (x €Ry).
a. If ¢ > 1, then the function p. is strictly superadditive in the sense that

(x+y)°>z4+y° (x,yeRy). (2.4)
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b. If0 < c <1, or c <0 then the function . is strictly subadditive in the sense
that
4y > (x+y)° (z,y eRy) (2.5)

Example 2.3. Since e = 57 2 thus by Proposition 2.2 it is easy to see that

n=0 n!

eV +1 > €% +¢¥ for all x,y € Ry, and log(z + 1) + log(y + 1) > log(z +y + 1)
for all z,y € Ry. It is also easy to see that log(z + y) > log(x) + log(y) for all
z,y €]0,1][.

Define the function ¢: Ry — R by o(x) := x + 2% + 23 for all x € Ry. Then
function ¢ is a strictly superadditive bijection.

Our references concerning subadditive, and superadditive functions is [22].

Corollary 2.4. Preserving the notations of Theorem 2.1 by Proposition 2.2 it is
easy to see that

e if ¢ > 1, then the function f satisfies the equation
fle+y+2)° = ((z+y)"+29) + f((z+9) = ((=° +y°))
=flz+y+2) =@+ (y+2))) (2.6)
+f((y+2)° =@ +2) (z,y.2€Ry).
e if0<c<1orec<0, then the function f satisfies the equation
fl@+y) +2° = (@+y+2)°)+ f((@°+y° — (x+y))
=@+ y+2)° = (@+y+2)) (2.7)
W+ - w+2)9) (y,z€Ry).

Corollary 2.5. If the function f: Ry — R satisfy the functional equation (2.6) or
equation (2.7) for all x,y,z € Ry thus it is also satisfies the equation

(r+y+2)°—((x+y)° +2° (r+y)° — (z°+y°)
f<<x+y+z>c—<xc+<y+z>c>>+f<<x+y+z>c—<xc+<y+z>c>>

(y+2)° = (y° +2°)
(z+y+2)°—(z¢+ (y+2)°)

=f(1)+f( ) (z,y,2 € Ry). (2.8)

3. On the equation (2.8) in the cases ¢ = 2,3

Proposition 3.1. If the function f: R — R satisfies the equation

flw)+ flo) =fA)+ flutv—-1) ((u,v) € D) (3.1)
where the set D C R? is defined by
D:={(u,v) eR? |v> —u+1,v <1}, (3.2)

then there exists an additive function A: R — R and a constant C' € R such that.
flz)=Ax)+C (xeRy).
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Proof. Define the function g: ]1,00[ — R by
9(z) = f(z=1)+ f(1) (2 €]1,00[).
Then the functions f and g satisfy the equation

g(u+v) = f(u) + f(v) ((u,v) € D)

where the set D is defined by (3.2). Thus by Rimdn’s Extension Theorem (see
[14, 24]) we obtain that there exist an additive function A: R — R and a constant
C € R with

f(u) = A(w) +C (ue D, =R.). o

Theorem 3.2. If the function f: Ry — R satisfy equation (2.8) for allxz,y,z € Ry
with constant ¢ € {2,3}, there exist an additive function A;: R — R and a constant
C1 € R such that

flx)=A1(x)+C1 (xz €Ry). (3.3)
Proof. Case 1. Let ¢ = 2. By equation (2.8) the function f satisfies the equation

Take the substitution in equation (3.4)

z(u+v—1) e z(u+v—1)

(—
Y 1—w v

thus we have that the function f satisfies the equation (3.1) where the set D C R?
is defined by (3.2). By Proposition 3.1 we have that the function f is in the form
of (3.3).

Case 2. Let ¢ = 3. By equation (2.8) the function f satisfies the equation

(va) ewhene)

=f)+f yz)) (r,y,2 € Ry).

Take the substitution in equation (3.5)

wa?(u+v—1)+z(ut+v-—1) . wor?(u+v—1)
z

— 9
y 1—wv v

whence we have that the function f satisfy the equation (3.1) where the set D
is defined by (3.2). The rest of the proof of this case is analogous to the case
c=3. O
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4. Results and open problems

Theorem 4.1. If ¢: Ry — Ry is a strictly superadditive bijection, the binary
operation o is defined by

zoy:=p(e '(z)+¢ '(y) (z,yeRy), (4.1)

f: Ry — R is a function such that that exist an additive function A;: Ry — R
and a constant C' € R with

flx)=A1(x) +C (xz €Ry), (4.2)
g,h: Ry — R are functions such that
fllz+y—(zoy)) +g(xoy)=h(x)+h(y) (z,yeRy), (4.3)
then there exist an additive function As: R — R and constant Co with

g(x) = —Ai(2) + Az(p™ ! (2)) +2C2 — C4 (z e Ry),
h(z) = —Ai(z) + As(o™ () + Cy (x € Ry). (4.4)

Proof. During the proof, o will denote the usual function composition (for example
(gop)(x) = g(e(x))). Since ¢(z +y) > ¢(x) + ¢(y) thus from equation (4.3) we
have that

flez+y) = (e(@) + ¢(v)) + g(e(z +y))

— hlp(a)) + hlpla))  (z.y € Ry, )
From equations (4.2) and (4.5) we have that
(A1o@)+ (9o @) +C1))(x +y) (4.6)
=((A1o@)+ (hop))(x)+ ((A1op) + (how))(y) (z,y€Ry). '
Define de functions F,G: Ry — R by
F(z):=((A1op) + (g0 9) + C1)(z) (z € Ry), (4.7)
G(z):=((Arop) + (hoyp))(z) (z € Ry). (4.8)
From equation (4.6) we have that
Flz+y) =G@)+Gy) (r,y eRy). (4.9)

From equation (4.9) by Rimén’s Extension Theorem we have that there exist an
additive function As: R — R and a constant Cy € R such that

F(x) =As(x) + 2C, (z € Ry), (4.10)
G(z) =As(z) + Co (r e Ry). (4.11)
From equations (4.8), and (4.11) we obtain equation (4.4). O

33



Annal. Math. et Inf. T. Glavosits, A. Hazy, J. Turi

Theorem 4.2. Let p: Ry — Ry be a strictly subadditive bijection. Preserving the
notation of Theorem 4.1 the functions g, h is in the form

g(z) = A1 (2) + As(p~(2)) +2C2 — C4 (r € Ry), (4.12)
h(z) = A1 (z) + Az(o ' (z)) + Cs (z € Ry). (4.13)
Proof. The proof is analogous to the proof of Theorem 4.1. O

Theorem 4.3. If the functions f,g: Ry — R satisfy the functional equation (1.5)
where the operation o is defined by (1.6) where ¢ € {2,3}, then there exist an
additive functions A1, As: R = R and a constant C € R such that

f(@) = Ai(z) +C (z €Ry), (4.14)
g(z) = Ay (z) + Ag(z%) + C (z €R,). (4.15)

Proof. The proof is evident by Theorem 2.1, Corollary 2.4, Corollary 2.5, Theo-
rem 3.2, and Theorem 4.1. O

Theorem 4.1, Theorem 4.2, and Theorem 4.3 suggest the following open prob-
lems.

Problem A. Does Theorem 4.3 hold for all ¢ € Ry \ {0,1}7
Our conjecture is that it remains true.

Problem B. Find the general solution of equation (1.7) with unknown functions
fyg,h: Ry — R and binary operation o is defined by (1.6) where ¢ € R \ {0,1}.

Problem C. In particular, the authors of the present article would like to know
the solution of Problem B in the case of ¢ = —1, in more details, find the general
solution of functional equation

Plotr- 2 v ) = h@) +h) yery)

r+y x+y

with unknown functions f,g,h: Ry — R.
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1. Introduction

Every programming language evolves regularly. New standards of programming
languages published, new compiler techniques and constructs become available.
For instance, many different Fortran standards have been developed in the last
sixty years and many constructs have evolved during the years [7]. In 2022, Oracle
announced the nineteenth release of the Java standard [15].

This language evolution takes part in the history of the C++ programming
language, as well. C+498, C++4-03, C++11, C++14, C++17, and C++20 are the
official standards. C++23 is already done, but it is not offial yet. Therefore, no
compiler supports the entire C++23 standard recently. New standards may affect
the core language and its standard library.

In general, language standard updates introduce new language constructs and
may deprecate older constructs [3]. For instance, C++411 made the template class
std: :auto_ptr deprecated and provides new standard smart pointers instead [2].
Later, std: :auto_ptr has been removed from the C++ standard library.

New language constructs and standard libraries can require migration in code
legacies with a method called source code rejuvenation that is not considered code
refactoring [13].

The std: :iterator class template had been in the C++ since beginning and
has been deprecated in the C++17 standard [10]. This class template’s purpose
was to specify the traits of an iterator [11]. Typically, it was a base class of many
standard and non-standard iterator class to provide the necessary traits [12]. How-
ever, the usage of iterator is straightforward and fits into the object-oriented
programming paradigm. Many non-standard containers offer custom iterators be-
cause of the Standard Template Library compatibility [1]. Using this base class
does not cause any weird effect, therefore usage of iterator can be found in code
legacy.

In this paper, we present a static analysis approach to assist the development
of iterator classes in a modern way in which the iterator class template is not taken
advantage of. We utilize the Clang compiler infrastructure to look for how the
deprecated iterator classes can be found in legacy code and present an approach
how to rejuvenate them. Clang’s checker approach is proper to detect and emit
warning based on static analysis [8].

This paper is organized as follows. In Section 2, we give an overview about the
C++ Standard Template Library (STL) and iterators. We detail our approach in
Section 3 and we present its evaluation in Section 4. Section 5 provides possible
ways of the future work. Finally, this paper concludes in Section 6.

2. Iterators
C++ Standard Template Library is an examplar library based on the generic pro-

gramming paradigm [1]. STL provides containers (e.g. std::vector, std: :map)
and container-independent algorithms (e.g. std::max_element, std::sort) [14].
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These components are separated and they can be extended simultaneously in a
non-intrusive way. Iterators bridge the gap between containers and algorithms
that are abstraction of pointers [9].

In the C++ language, it is possible to access or manage the memory directly
from the source code. One of the tools provided by the language which can be used
for such purposes are the pointers — these are a special kind of variables. They
store an integer value which represents the memory address to which the variable is
pointing to, therefore the information stored in that memory block can be retrieved
or modified by using the pointer for it. In contrast to reference variables, the
pointers can store a different value than the one which they were initialized with:
the memory addresses they point to can be shifted in both directions (forward or
backward) based on the allocated size of the type of the value which they hold the
pointer for — this is done by using pointer arithmetics.

However, pointers are compound types, so they do not store much additional
information or metadata about themselves, nor have we the ability to customize
them — how dereferencing the variable, or shifting it should happen exactly. To
solve these issues we could use the concept of iterators. An iterator is an object
which can be used to maintain an element of a given range, using a set of operators.
A special form of the iterators are the pointers, however, sometimes we do not
need to have all the capabilities of a pointer implemented in our custom iterator:
depending on the use-case, it might be enough to have an iterator which is only
capable of stepping forward, or can only be written to but it does not have the
ability to be read. To achieve this, iterators can be sorted into one of the five main
iterator categories: input, output, forward, bidirectional or random access iterators.

On top of the customized methods iterators can — and in a lot of cases have
to — define additional information about themselves. This information is available
in the form of iterator traits: there should be five iterator traits defined in total.
The difference_type should express the result of subtracting one iterator from
another, value_type stores information about the type of the value which the
iterator points to, pointer is the type of a pointer which can point to the value
maintained by the iterator, so is reference but instead of pointers the reference
type is described, iterator_category shows us into which one of the iterator
categories does the iterator belong to. The metadata defined by the iterator traits
will be used by several STL algorithms to provide the most optimal behavior, or
to be able to check whether the instance of the iterator type provided to them is
implementing all the operators or methods they require, so the iterator object has
all the capabilities they need [14].

2.1. Defining custom iterators — legacy way

To check the capabilities of an iterator object, the std::iterator_traits class
of the STL can be used — this wrapper class is needed when both pointers and
iterator objects can be accepted. Based on the template parameter it receives,
it can generate a proper definition through which all the needed information can
be accessed e.g. by an algorithm, and accepts both pointers and iterator objects
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as a template parameter. Before C++17, to declare all the information needed
to this specific wrapper class needed by the majority of the standard algorithms,
the STL provided us a helper class named std: :iterator [9]. When creating our
own custom iterator class, by deriving from the std::iterator it was possible to
define all the needed iterator traits by passing them to the parent iterator class as
template arguments:

struct DummyIteratorDepr :
std::iterator<std::forward_iterator_tag, // iterator_category

int, // value_type
int, // difference_type
intx*, // pointer
int & // reference
>
{
public:
DummyIteratorDepr(pointer ptr) {n = ptr;}
DummyIteratorDepr& operator++() {return *this;}
DummyIteratorDepr operator++(int) {return *this;}
reference operator*() {return *n;}
pointer operator->() {return n;}
bool operator==(const DummyIteratorDepr &rhs) {return true;}
bool operator!=(const DummyIteratorDepr &rhs) {return true;}
private:
int *n;
};

Another advantage of inheriting the std: : iterator to have compatibility with
the STL containers and algorithms is that — by making use of the default template
arguments the parent class has — we do not even have to define all the attributes if
they do not have to be specific ones, or we are sure they will not be needed at all:
difference_type, pointer and reference all have default values, which can be
deduced from the values we provided to the mandatory iterator_category and
value_type fields.

Since this tool provided by the standard library seems to be extremely useful,
it would be understandable to ask why did it become deprecated in C++177 It
is worth to mention, that the concept of iterator traits for providing compatibility
did not become deprecated, only the std: :iterator class, and the main reason for
that is its ambiguity. Consider the following example taken from the standard [5]:

template <class T,
class charT = char,
class traits = char_traits<charT> >
class ostream_iterator:
public iterator<output_iterator_tag, void, void, void, void>;
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In this example, it is hard to understand which void stands for which attribute.
Declaring an iterator like this could be very confusing and hard to read. Another
reason for deprecating the class is that if the custom iterator itself depends on a
template argument which is then passed to the std::iterator class, finding the
traits during name lookup could fail:

template <typename T>

struct Mylterator : std::iterator<std::random_access_iterator_tag,
>

{

value_type data; // Error: value_type is not found by name lookup

};

The result would be the same if we put void instead of T to the parent iterator
class as second template argument.

2.2. Defining custom iterators — modern way

As the usage of std::iterator would be deprecated now, all the attributes which
are needed to describe our custom iterator class have to be declared explicitly by
using type aliases:

class DummyIterator
{
public:
using iterator_category = std::forward_iterator_tag;
using value_type = int;
using difference_type = int;
using pointer = intx;
using reference = inté&;

DummyIterator (int* ptr) {n = ptr;}

DummyIterator& operator++() {return *this;}
DummyIterator operator++(int n) {return *this;}
reference operator*() {return *n;}

int* operator->() {return n;}

bool operator==(const DummyIterator &rhs) {return true;}
bool operator!=(const DummyIterator &rhs) {return true;}

private:
int *n;

};

Note that for declaring type aliases both typedef and using keywords can be
used, in this specific case they would be semantically equivalent, since we do not
make the aliases depend on template parameters. Despite their semantic equiva-
lence the syntax would differ a bit, consider the following example:
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using value_type_u = int;
typedef int value_type_t;

The latter one is the method of creating type aliases in the legacy way, but
since C++411 the first one is preferred, as being a more powerful tool compared
to the second one. To ensure this, clang-tidy already implements several checkers
which would warn in case of using the old approach instead of the modern one [6].

We can see that by using the modern iterator definition method, it is much more
readable and much easier to understand what properties a given custom iterator
has. This way the original concerns regarding the usage of the std::iterator
class have been overcome, however, we have to face a new problem, which in some
situations could be uncomfortable: we lost the ability the make use of the default
template arguments — since now we do not have any. We have to declare every
trait properly for our custom iterator to be compatible with the standard library,
even if some of them (the ones which had default values earlier) would be trivial.
In the following, we will try to create a tool, or to be more specific a set of tools to
help the transition between the old and new way of defining a custom iterator, and
to help to avoid the potential incompatibilities between the STL and our custom
iterators created by using the modern approach.

3. Verifying custom iterators with static code anal-
ysis

We will define two major problem categories that can be divided into smaller prob-
lems, then we will address these smaller problems with static analysis tools provided
by the Clang compiler infrastructure. The two major problems would be the han-
dling of legacy custom iterators, and detecting potential custom iterators defined
without using class std: :iterator. We will then decompose the latter by ranking
potential iterator findings based on how likely it is, that the class we found is meant
to be used as an iterator, which has to be compatible with the standard library. To
achieve this, we implemented a new clang-tidy checker named modernize-replace-
std-iterator, as part of the modernize checker category. The exact behavior and
logic behind the checker is described below.

3.1. Transforming legacy custom iterators

Since the usage of std::iterator has become deprecated, it is better to avoid
using it when developing custom iterators. To help this, we developed a static
analysis tool based on Clang. Clang supports developing new tools, thus the built
abstract syntax tree (AST) can be utilized, queried and visited. We have imple-
mented an AST matcher to find and warn for every class definition which derives
from the class std::iterator. An example for these kind of classes could be
DummyIteratorDepr. However, we have to consider the cases when the custom
iterator class is derived not directly, but indirectly from the deprecated iterator.
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This means one of the parents of our iterator in the inheritance chain would have
std::iterator as a parent class (or at least as one of the parent classes, since in
C++ it is allowed to have multiple inheritance, which means that it is possible to
inherit from multiple base classes to create a common derived type) [14]. To handle
these issues, it is not enough to simply check whether the class in question has the
std::iterator as a base class, but we should also check if one of its parents at
any level has it as a parent.

struct DummyIteratorDeprDesc : DummyIteratorDepr
{

DummyIteratorDeprDesc(pointer ptr) : DummyIteratorDepr (ptr){}
s

To avoid unnecessary and redundant findings, the warning will only be triggered
if our class has inherited the legacy iterator in a direct way. Since all class definitions
will be checked, we will cover all the possible results, all the nodes of all inheritance
chains. To modernize our iterators it is needed to update that one exact base class,
which we get the warning for, since all the newly declared type aliases will be
inherited by all the (directly or indirectly) deriving child classes (if we make sure
that the access specifier of the traits is at least protected but considering that the
purpose of them is to provide information about the iterator to the outside world,
we should declare them as public aliases).

We have now clarified that our approach would be the detection of direct inher-
itances, which has an additional advantage on top of avoiding duplicate matches
and redundant steps. The scope of the analysis will be the translation unit which
we are currently analysing - narrowing this down to our problem we get, that the
scope of the analysis would be the class definitions described in the given trans-
lation unit. However, we will have cases when the removal of the std: :iterator
class would be a valid step without modifying any of the iterator definitions we
have in our translation unit, despite the fact that they had the standard iterator
class as an indirect base class. This is the situation when we have a “custom”
iterator class in the middle of our inheritance chain, but outside the unit which we
are analysing right now. In this case, two explanations are possible: one of them
is that we will take care of the custom class when analysing the translation unit
introducing it — the other one is that the custom iterator is defined outside of our
project. If we face the latter, we have to trust the project defining the iterator will
solve the issues caused by the deprecation of the standard iterator.

To provide more information to the developer, our tool not only warns about
the class definitions mentioned above, but also gives hints about how to update
them. After analysing a proper iterator class, we will get the following warning:

test_iterator.cc:12:8: warning: Derived from std::iterator,
which is deprecated since C++17. From C++17 type aliases
should be declared:

using iterator_category = std::forward_iterator_tag;
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using value_type = int;

using difference_type = int;

using pointer = intx;

using reference = int&; [modernize-replace-std-iterator]

struct DummyIteratorDepr : std::iterator<std::forward_iterator_tag,
Lo

This is done by querying the concrete type parameters of the template instan-
tiation we defined when inheriting the base class. It is worth to mention, that we
would get the same list of arguments if we relied only on the mandatory template
parameters:

struct DummyIteratorDepr :
std::iterator<std::forward_iterator_tag, // iterator_category
int> // value_type
{
/...
}

We now have all the information which is needed to automatize the transforma-
tion, which would result in the class definition having the iterator traits declared.
Currently according to the scope and the goal of our tool, only a warning would be
triggered, but as a future improvement it would be easy to implement the trans-
formation itself by using the fix-it hints of the clang-tidy tool.

3.2. Detecting custom iterators

3.2.1. Analysing potential iterators

As we have described earlier, detecting usages of the deprecated custom iterator
defining method is only one part of our goal. Another part would be to detect all the
existing iterators, or classes which seem to be iterators which can face compatibility
issues when used with the Standard Template Library. Also, we try to keep in mind
the motivation behind the deprecation of std: :iterator — readability is an aspect
which should be considered when analysing the code.

First, we try to focus on the classes which — apart from some extreme cases —
can convince the analyser that they are iterators, and they are used as if they were
one. To achieve this, we will define two key criteria: the custom iterator should
define at least one of the mandatory iterator traits (or should derive from a class
which defines one of them), and an instance of this custom class can be used as an
argument for algorithms defined by the Standard Template Library. The library
defines a wide range of methods operating on a given range of elements, for multiple
purposes. These algorithms can be found in the algorithm header, and since they
are analysing/modifying ranges, or a range of elements, the range itself should be
determined when trying to execute them.
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This is done by passing iterators as arguments to them, which iterators can
define the range by marking the start and the end of the range we want to use.
When we create custom iterator classes, a typical usage would be to combine them
with the powerful tools provided by the STL algorithms. Assuming that we have a
custom iterator class named I declaring all the needed iterator traits properly, and
the type of the value to which its instances are pointing to is int. In this case, we
could find e.g. the value 2 in the following way (i_begin and i_end are instances
of our iterator class, defining the range which we would like to analyse):

std::find(i_begin, i_end, 2)

In this example, if 2 is part of the range, the iterator pointing to the first
occurrence will be returned, otherwise the result will be ¢__end, which points after
the last element. Sticking to this example, this specific function will require all
the iterator traits to be declared, otherwise compiling the code would result in an
error. Consider the following example:

class CustomIterator {

public:
using iterator_category = std::forward_iterator_tag;
using value_type = int;
using difference_type = int;

};

We have only three attributes defined, pointer and reference are missing. Be-
cause of this, a compilation error should happen, and we would get an error message
similar to this:

error: no matching function for call to ’__iterator_category’

substitution failure [with _Iter = CustomIterator]: no type
named ’iterator_category’ in ’std::iterator_traits<CustomIterator>’

What interesting here is, that even if we had the trait iterator_category de-
fined because of the template substitution failure of class std: :iterator_traits,
compiling a code like this will result in an error which can be misleading. Of course,
if we would have used the legacy way for defining CustomIterator, the problem
would not be present since the missing parameters could be determined by using
the default template argument values of std::iterator:

struct CustomIteratorDepr :
std::iterator<std::forward_iterator_tag,
int,
int
>
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{
/] ...
};

Now we have seen that despite its advantages, the modern approach prevents
us to make use of the default template arguments of the legacy class. Using the
legacy method, we do not have the possibility to skip any of the non-mandatory
parameters, the order of the template arguments matters and should be considered
to avoid failures during compilation, but it was a bit easier to define iterators which
did not require all the iterator attributes being defined by their own.

However, not all algorithms make use of the iterator traits or require them to
be present in the class defining the iterator they got as an argument. Let us take
std: :swap_ranges as an example. The function exchanges the elements of two
ranges, and requires three parameters to achieve this: the first two parameters
define the first range, the third one points to the beginning of the second range.
Let us define our custom iterator in the following way:

class DummyIterator

{
public:
DummyIterator (int* ptr) {n = ptr;}
DummyIterator& operator++() {return *this;}
DummyIterator operator++(int n) {return *this;}
int& operator*() {return *n;}
int* operator->() {return n;}
bool operator==(const DummyIterator &rhs) {return true;}
bool operator!=(const DummyIterator &rhs) {return true;}
private:
int *n;
};

As we can see, we defined only the operators required by the std: : swap_ranges,
but none of the iterator traits. Based on the previous examples we have seen, using
this iterator with for example std: :find would lead to compilation error. This is
not the case with this function:

std: :swap_ranges(dl_begin, dl_end, d2_begin);

This example compiles just fine, if d1_begin, di_end and d2_begin are all
instances of DummyIterator we defined above. In case the method does not require
the substitution of the template arguments defined by std::iterator_traits, it
is possible to be compatible with the function by having only a number of traits
defined (or defining none of them). At this point, we can divide the problem of being
compatible with STL algorithms into two subcategories: in one case, the function
call will compile just fine, in the other case a compilation error will happen. We
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have implemented our clang-tidy checker to address both problems at the same
time.

Matching the AST Our concept here would be to help to avoid compatibility
issues with the standard library while keeping the code as much readable as possi-
ble. The base concept of our AST matcher is to find all nodes, which belong to the
class declaration defining the objects which are used as parameters when calling
functions from the std namespace. Note that we mentioned earlier that we are
interested in the calls of functions defined in the algorithm header. This approach
would be much more strict than analysing all the function calls using methods from
the std namespace, however, members of the algorithm library are also part of it.
The reasoning behind it is that we would like to help the developer to avoid incom-
patibilities in the future, for use cases which might not be relevant right now. If a
custom iterator is used with the Standard Template Library, it has the potential
to be used later together with a method, with which it would have compatibility
issues resulting in unexpected errors, mainly during compilation time.

In case of larger code bases and rather complex projects, it is not unusual to
have a lot of legacy code in it. Due to this, we have to handle the cases which
would be covered by using the matcher of our checker tool described previously
(detecting legacy std::iterator usage). These are the cases when the custom
iterator inherits its attributes from the std: : iterator class — therefore we exclude
these matches, since they are not part of the scope of the current analysis.

To determine if the arguments are meant to be used as iterators, we are looking
for the explicitly declared type aliases representing the iterator traits, or to be
more specific, we are looking for one of the mandatory ones: iterator_category.
Since the legacy cases had been excluded, all our custom iterators should define
the two mandatory attributes, which are not derived from a custom iterator class
coming from a third party library. However, based on this logic the false-positive
findings should be considered too: what happens, if a class declares the type alias
value_type, and an instance of it is used as an argument of a standard function,
but it is not an iterator?

struct A
{
using value_type = int;

};

std: :vector<A> v;
A a;
v.insert(v.begin(), a);

This example meets all of our conditions, so A could be considered as an iterator.
To avoid this, we only look for the attribute iterator_category, which is less likely
to be defined in a class representing a different concept then the iterators. Another
thing which we have to deal with is the case, when the class definition does not
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contain the traits, but a base class of it does. In this case, the custom iterator has
a more abstract iterator class from which it inherits the common attributes, which
applies for this specific subtype too.

struct Iter_A

{
using iterator_category = std::forward_iterator_tag;
using value_type = int;
3
struct Iter B : Iter_A
{
using difference_type = int;
using pointer = intx;
using reference = inté&;
3

In this example, the parent (Iter_A) only defines the mandatory attributes,
the rest of them are present only in the derived class. To handle the problem of
abstract iterators, the matcher would follow the following logic: if the definition of
the parameter type contains the mandatory attribute, then this AST node should
be matched, if not, the matcher will look for the node which implements it. If we
have multiple matches, because the traits have been redefined multiple times in the
inheritance chain, we will look for the first one, which declares the attribute (the
top one). The motivation behind this is to find the first class definition which can
potentially act as a standalone iterator itself. After we have found all the nodes
which should be considered regarding a function call, the checker will analyse the
class definitions and determine which iterator traits are missing. When we say
“missing”, it means that we are interested in what are the traits which are not
declared in this exact class definition. The traits can be present without having
to declare them: this is the case if the class inherits these attributes from a base
class. After we have collected the missing type aliases, a warning will be triggered
for the user to see what should be declared on top of the existing aliases. Using
the class we declared earlier (CustomIterator) with std::swap_ranges, we will
get the following warning:

test_iterator.cc:36:7: warning: Type seems to be an iterator used
by std::swap_ranges. The following type aliases should be
declared additionally within the class:

pointer
reference

In this case, the pointer and reference attributes were missing. By analysing
the class definition further, it could be determined, or at least suggested how the
iterator traits should be declared, but for now triggering a warning like the one
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above is a limitation of our tool. Now let us see, what it means regarding the
separate problem categories we defined:

Matching the base or the derived class If the base class is missing some
of these type aliases, it could be useful to add them, since once we have done it,
all the newly defined deriving classes would inherit all the iterator traits, which
means they could be handled as an iterator by themselves. If we have matched the
deriving class, declaring the traits can be redundant: if the base class (or in case
of multiple inheritance, or a longer inheritance chain one of the base classes) also
defines these attributes, the type alias in the deriving class will hide all the previous
declarations, avoiding name collisions. However, by doing so the class definition
could be much more readable since we would have all the aliases declared in one
place, and it could be understood easily without investigating the parent-child
relationships further. Of course, if none of the attributes are missing either in the
base, or in the derived class, no warning will be triggered.

Matching function calls which would not compile We have mentioned ear-
lier that in a number of cases it is mandatory to have all the traits defined properly,
since they are needed by std::iterator_traits. It is possible for a custom itera-
tor class to possesses all the values required via inheritance: in this case, triggering
the warning could be relevant to have all the aliases declared in one place (see the
case of base-derived classes). Our warnings will have one more advantage in case of
calls which could not compile at all: it can give a hint, which traits are missing. As
we could see earlier, it is possible that the error message triggered by the compiler
only tells us that the substitution of the template arguments failed. In this case,
our warning would highlight which attributes seem to be missing. However, it will
not consider the attributes inherited, but a warning like this could be a motivation
to define the class in a more comprehensible, readable way — otherwise these warn-
ings would count as false positives, but since readability is one of the main aspect
we follow, these warnings could be relevant also.

3.2.2. Analysing possible iterators

The last problem category which we wanted to cover consists of custom iterator
candidates, which have the possibility — based on our conditions — to be treated
as iterators. We can not be as confident as we were in case of the previous cases,
regarding the false-positive results, since our conditions are much less strict for
this category. The goal here also would be to provide readability and compatibility
with the standard library, but the scope of our matchers will be much wider. We
do not limit our findings to classes defining type aliases which could be interpreted
as iterator traits, or to classes whose instances are being used as parameters for
functions of the std namespace.

Our matching logic here will be similar to what is known as duck typing [4].
We will find and mark classes which have similar structure to an STL compatible
iterator. The similarity in this case will not be defined by the members, types, etc.
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defined by the class, but the member methods and operators overloaded by it. As
we have seen in our previous examples, an iterator has to overload a given set of
operators to be treated as a valid one. The set is determined by the type of the
iterator - this is the same type which is stored as the value of iterator_category.
As we have described earlier, all iterators must belong to one of the five iterator
categories, which defines all the capabilities expected from the iterator.

Table 1. Iterator categories and their operations.

Output *xp=, ++
Input *p, ++, >, == I=
Forward *xp=, (+Input iterator)
Bidirectional -, (+Forward iterator)
Random Access | [1, +, -, +=, -=, <, >, <=, >= (+Bidirectional iterator)

In Table 1, we can see all the required methods for each iterator categories.
Based on that, if we see a class which implements all the operations needed for a
forward iterator for example, we can mark it as a potential forward iterator. After
we have done that, we can generate a warning that this class could be a potential
iterator, and we can give a hint what values could be used for the iterator traits (in
this example, iterator_category would get the value forward_iterator_tag).
Similarly to the previous case, if all the traits have been defined by the class or
one of its parents, the warning will not be issued. The reason why we match for
the operations defined instead of the type aliases declared is, that — as we have
shown earlier — in several cases the iterator traits are not needed at all by the
function which takes the pointer as an argument, but this is not the case with the
operator overloads. Missing a mandatory operator would result in a compilation
error, hence relying on them would be useful. Also, the operators to overload (for
example the unary *) are specific enough to match for them:

struct IteratorCandidateA

{
IteratorCandidateA& operator++() { ... }
IteratorCandidateA operator++(int n) { ... }
int& operatorx() { ..}
int* operator->() { ... }
bool operator==(const IteratorCandidateA &rhs) { ... }
bool operator!=(const IteratorCandidateA &rhs) { ... }
+;

The example shows us a candidate for the category forward iterator. If we find a
candidate which defines all the operations needed by a category, which is a superset
of another one (regarding the operators overloaded), then we will warn for it using
the iterator category which would provide the most features.
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4. Evaluation

To verify our three different approaches we have defined so far, we have executed
the checker with all the different AST matchers in it on the LLVM project. LLVM
is an open source compiler infrastructure, including Clang and also clang-tidy,
the tool which we implemented our checkers in. Because of its nature, LLVM
implements a number of custom iterator classes, making it a good candidate for
our analysis. After analysing the results, filtering out all the duplicates caused
by the same findings in header files included in multiple translation units, we had
proper matches for all three categories, without any false-positive results.

In total, we have found examples for deprecated std::iterator usage in case
of 52 class definitions, 1 custom iterator class whose instance had been used as
an argument of a function defined in the Standard Template Library (and whose
definition does not contain all the possibly required iterator traits). For the last
category, we have identified a total of 12 iterator-like classes — class definitions
which seem to be iterators based on the operator overloads they implemented.

After analysing the results further, we came to the conclusion that all the
findings are valid, there are no false-positive matches among them. Based on these
facts, it is proven that our tool can be used as a tool for modernizing the source
code, and for updating the code base in a way, that future incompatibilities with
the standard library can be avoided.

5. Future work

We have shown that our checker can be a useful tool when modernizing the source
code, however, the matcher logics could be further refined, to find more accurate
results. A refinement like this would be in case of the third problem category to not
only match for the operator overloads (by name), but to consider the parameters
and return types of these overloads also. However, in case of asterisk (*) operators
the void return values are checked even now, to avoid false-positive findings for
output iterators.

We have mentioned earlier, that in a number of cases rejuvenation of the code
could be done automatically — we have all the information available which is needed
to insert all the type aliases which are required to define the iterator traits: we can
extract the proper types from the template arguments of std: :iterator when de-
riving from it (in case of the first problem category), or we could define the missing
attributes by analysing the return values and parameter types of the overloaded
operators in case of the second and third problem categories.

In our example run, we have not faced any false-positive matches. However, ear-
lier we have shown that finding faulty results might be possible. One improvement
to avoid these findings would be to filter only for the members of the algorithm part
of the STL, instead of matching for calls of functions defined in the std names-
pace. Also, cases when class definitions are hidden to the static analyser by macro
definitions should be considered too.
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6. Conclusion

Languages and their standard libraries evolve over time. For instance, C++17
provides much more constructs than C++498. On the other hand, some of the
language elements become deprecated sometimes, C++98’s auto_ptr is a typical
obsolete component of the C++ Standard Template Library.

C++17 standard made iterator base class deprecated. However, its usage was
common and safe, there was some reasons to make this class template obsolete.
This class template is widely used when one develops a new iterator to specify the
traits.

We implemented a static analysis method to emit warning if the usage of
iterator base class can be found. Moreover, we presented an approach how cus-
tom iterators can be found. Our approaches provide hint how to improve the source
code. Our method gives feedback if any trait is missing from iterator-like class. We
have implemented a tool for the approaches based on the Clang compiler infras-
tructure. We evaluated our solution with real-world software artifacts, the result
is promising.
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Abstract. In this paper, we discuss the Wedderburn decompositions of the
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1. Introduction

Let G be a finite group and F,, be a finite field for a prime p having characteristics
p. Let p be such that p { |G|. This means that the group algebra F,G is semisimple
(see [13]). Due to various applications of units of group algebras (for example,
in cryptography [6, 14], in coding theory [7], in isomorphism problems and explo-
ration of Lie properties of group algebras [2] etc.), the problem of computing the
Wedderburn decompositions (or unit groups) of finite semisimple group algebras is
an extensively studied problem (see [1, 3, 5, 9, 11, 12, 15, 19, 21] and the references
therein).

One of the major steps in the direction of computation of Wedderburn decom-
positions (WDs) of finite semisimple group algebras was taken in [1]. The paper [1]
gave an algorithm to compute the WDs of the semisimple group algebras of all
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metabelian groups. We recall that a finite group G is metabelian if its derived
subgroup is abelian. Consequently, the entire research in this direction is shifted
on to the computation of WDs of semisimple group algebras of non-metabelian
groups. Mittal et al. [17] computed the WDs of semisimple group algebras of all
non-metabelian groups up to order 72. Furthermore, Mittal et al. [16, 18, 22] also
computed the WDs of all semisimple group algebras of all non-metabelian groups
of order 108 and some non-metabelian groups of order 120. Since, the WDs of
semisimple group algebras of the symmetric groups S,, can be easily computed
by employing the representation theory (see [8]), the papers [18, 22] completed
the task of computation of WDs of group algebras of non-metabelian groups of
order 120.

Using [20] we note that the only non-metabelian groups of order less than 120
that are not yet studied in the literature are those of order 96. Hence, the main
objective of this paper is to complete the task of computation of WDs of group
algebras of 26 non-metabelian groups of order 96. Consequently, with this paper,
the computation of the WDs of semisimple group algebras of all groups up to order
120 will be complete. From the WD, the unit group can be computed straight-
forwardly.

Organization of the paper. Section 2 contains certain preliminaries that play
an important role in the computation of WDs. Our main results related to WDs of
semisimple group algebras are discussed in Section 3. We give the complete details
of computation of WDs only for a few groups among the 26 groups. This is because
for the remaining groups, the details can be generated analogously. We conclude
the paper in the last section.

2. Preliminaries

Let the exponent of the group G be denoted by e and let the primitive e root of
unity be denoted by €. In our work, we use the notations of [4]. Let F denote a
finite field. Let us define

Iy = {w | e — €% is an automorphism of F(e) over F}.

It can be noted that the Galois group Gal (F(s), IF) is a cyclic group. This guarantees
the existence of an s € Z? fulfilling A(e) = ° for any A € Gal(F(¢),F). More
specifically, Iy is a subgroup of the group Z* (multiplicative). Let g be a p-regular
element of the group G. Let us define

Yg = Z h,
heC(g)

where C(g) denotes the set of all those elements of G that are conjugate to the
p-regular element g. For 7, let the cyclotomic F-class of be represented by

S(vg) = {79 | w € Ir}.
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Let J(FG) represent the Jacobson radical of the group algebra FG.
Next, we discuss two important results of [4].

Theorem 2.1. The number of cyclotomic F-classes in G is equal to the number
of simple components of FG/J(FG).

Theorem 2.2. Let the number of cyclotomic F-classes in G be m and let € be
primitive et root of unity, where e is the exponent of G. Let Si,...,S. be the
simple components of the center of FG/J(FG) and let Y1,..., Y, be the cyclotomic
F-classes in G. Then, |Y;| = [S; : F] for each 1 < i < =, after suitable ordering of
the indices.

We remark that both the Theorems 2.1 and 2.2 will be very crucial for our main
results. Next, we discuss a significant result that shows that in the WD of a finite
group algebra FG/J(FG), F is always a Wedderburn component (see [17]).

Lemma 2.3. Let X1 and X5 be two algebras over F having finite dimension. Let

Yo be semisimple and let ¢ : X1 — Yo be a homomorphism that is also surjective.
Then, there holds
31/J(%1) 2o+ X,

where X3 is an another semisimple F-algebra.

Suppose that J(FG) = 0. Then Lemma 2.3 confirms that F is always a simple
component of FG. Next, we recall a result from [10] that explicitly characterizes
the set If.

Theorem 2.4. Let ¢ = p" for a positive integer r and a prime p and let Fy be a
finite field. Let e be such that ged(e,q) = 1 and let € be the primitive ' root of
unity. Let o(q) be the order of ¢ modulo e. Then we have

Ir, ={1,q,..., qo(‘”*l} mod e.
Further, we recall two important theorems from [13].

Theorem 2.5. Let R be a commutative ring and let RG be a semisimple group
algebra. Then we have

RG = R(G/G") & A(G,G").

Here G’ is the derived subgroup of G, R(G/G') is the sum of all commutative simple
components and A(G,G") is the sum of all non-commutative simple components of
RG.

Theorem 2.6. Let RG be a semisimple group algebra and H be a normal subgroup
of G. Then
RG = R(G/H) @ A(G, H).

Here A(G, H) represents the left ideal of RG and it is generated by the set {h—1:
he H}.
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We remark that through Theorem 2.5 one can obtain all the possible commu-
tative simple components of the group algebra F,G. Further, Theorem 2.6 relates
WD of the group algebra F,(G/H) with that of F,G for a normal subgroup H of
G. Finally, we end this section by invoking an important result from [3]. This
result will be very crucial in unique computation of the WD for any semisimple
group algebra.

Theorem 2.7. LetF be a finite field of characteristics p. Let ¥ = &' _ M, (Fy) be
a summand of a semisimple group algebra FG, where Fy denotes a finite extension
of F for each s. Then p{ng for every 1 < s <t.

3. WDs of non-metabelian groups of order 96

In this section, we discuss all the non-metabelian groups of order 96 along with
their WDs. Up to isomorphism, we note that there are 231 groups of order 96 and
26 of them are non-metabelian. Among these 26 groups, 11 have exponent 24 and
rest all have exponent 12.

3.1. Non-metabelian groups of order 96 having exponent 24

The non-metabelian groups of order 96 having exponent 24 are as follows:

1. G1 = A4 bl Cg 7. G7 = (SL(2,3) . Cg) bl 02

2. G2 = SL(Q,S) el C4 8. Gg = (((04 X CQ) X 02) bell 03) el CQ
3. Gg = SL(2,3) X 04 9. Gg = (((04 X Cg) X Cz) bell 03) el 02
4. G4 = CQ X (SL(2,3) . CQ) 10. G10 = ((Cg X Cg) X CQ) X Cg

5. G5 = CQ X GL(2,3) 11. Gll = ((C4 X 04) X 03) X CQ)

6. GG = (CQ X SL(2,3)) X 02

3.2. Wedderburn decomposition of F,G; and some other
group algebras

The presentation of Gy = A4 x Cy is as follows:

1 71t71

2l [z,2], [w,alw™, [t 2]u

<x’y72’w7t7u|x2y7 )

[w, 2u™ "t y?2 7 [z, [w,yl, [y) [u,y], 22, [w, 2],
[

[t.2], [u,2], ®, [twle” 7 fu,wlt ™t 2 [u,t], u®).

This group has 20 conjugacy classes as shown in the next table.

Rle|lz|y|z|lw|t|ay|zz|zt|yz | yw | yt| zw | 2t | zyz
6 6 | 6|1 8 3 8 3 6
O|1|8|412]3|2]| 8 8 | 8| 4 |12 | 4 6 2 8

w2
()
—
0.¢]
w
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zyt | xzt | yzw | yzt | zyzt
6 6 8 3 6
8 8 12 4 8

where R,S and O represent representative, size and order of conjugacy classes,
respectively. From the above discussion, we conclude that the exponent of G is
24. Also G| = A, with G1/G| = Cs. Since p > 3, we have ged(|G1],p) = 1, and
so J(F,Gq) =0.

Theorem 3.1. The Wedderburn decomposition of F,G1 for ¢ = p*, p > 3 is as
follows:

values of p and k Wedderburn decomposition
k even or p={1,17} mod 24 and k odd Fi @ Ma(F,)* & Ms(F,)®
p* = {5,13} mod 24 and k odd Fy ®F2 @ Ma(Fy)* @ M3(F,)*
@MS(Fq2)2
p* = {7,23} mod 24 and k odd or F; ©F). @ Ma(Fy)? © M3(Fy)*®
p* = {11,19} mod 24 and k odd M, (F2) & Ms(F,2)*

Proof. As F,G; is semisimple, we have F,G; = @®!_, M, (F,), t € Z, where for
each r, I, is a finite extension of Fgy, n, > 1. Incorporating Lemma 2.3 in above
to obtain

T

F,Gy =T, o2} M, (F,). (3.1)

For k even and any prime p > 3, p¥ = 1 mod 24. This means |S(v,)| = 1 for
each g € G1 as Iy = {1} (see Theorem 2.4). Hence, (3.1) and Theorems 2.1, 2.2
imply that F,G; = F, ¢!2, M,, (F,). This with G1/G} = Cs and Theorem 2.5
leads to (with suitable rearrangement of indexes) F,G1 = Fs @;2, M, (F,) with
88 = Z}il n2, n, > 2, which gives the only possible choice (2%, 3%) (here a® means
(a,a,...,btimes)) for values of n/s. Therefore, the required WD is

FoG1 2 FS & My(Fo)* & Ms(F,)®. (3.2)
Now, we assume that k is odd. We discuss this possibility in the following 4 cases:

Case 1. p=1 mod 24 or p¥ =17 mod 24. In this case, we have |S(v,)| = 1 for
each g € Gy as Iy = {1} or Iy = {1,17}. Hence, WD is given by (3.2).
Case 2. p* =5 mod 24 or p* = 13 mod 24. In this case, we have S(y,) =

{anvwz}y S(’wa) = {’Y;Eya ’}/zyz}a S(’Ya:t) = {’Ya:ta ’szt}a S(’Yzyt) = {’Yzytv ’mezt}7
and S(v4) = {74} for the remaining representatives g of conjugacy classes. Using
Theorems 2.1 and 2.2 and (3.1), we get F,Gy = F, ®!L, M, (F,) ®12 5 M, (Fg2).
Applying Theorem 2.5 with G1/G} = Cs and F,Cs = Fg &3] Fgg to obtain

F,G1 = Fé D IE%? EB§:1 M, (Fq) @}*29 M, (Fq"’)

L, L, (3.3)
with 88 =Y n2+2> n} n, >2,
r=1 r=9
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which gives 3 possibilities for values of n/. namely (3%,22), (22,35,2,3) and (2*, 35).
For uniqueness, consider a normal subgroup H; = (t,u) of Gy with Ky = G1/H; =
C5 x Cs. It can be verified that K; has 12 conjugacy classes as shown in the table
below.

Rlie|lz|y|lz|w|ay|zz|yz | yw | 2w | zyz | yzw
S|{1(3|1]|]1]|2] 3 3 1 2 2 3 2
O|1|8|4|2]3]|8 8 4 | 12 6 8 12

Also K| = C5 with Ky /K| = Cg. For the representatives k of K1, we have S(vy,) =
{Var Yaz}r S(Vay) = { Yoy Yayz}, S(vk) = {7&} for the remaining representatives.
Therefore, employ Theorems 2.1, 2.2 and 2.5 to obtain F¢K; = Fg @ ng @,
M, (F,) with 16 = S>*_, #2. This gives us the only possibility (2*) for value of ¢.s.
Next, incorporate Theorem 2.6 in (3.3) to deduce that (2%, 3°) is the correct choice
for n).s and therefore, we have F Gy 2= Fy & Foy @ M (Fy)* @ My (Fy)* @ My (Fy2)*.

Case 8. p* =7 mod 24 or p* = 23 mod 24. In this case, we have

S(vz) = {7z Yayz s S(0) = {V Yy s SVay) = {Vays Yoz by S(vat) = {Vats Vayzt )

S(Yayt) = {'nyta'yxzt}v S(vyw) = {'Vywa'szw}v S(yyt) = {'Yytv’szt}a S(vg) = {'79}
for the remaining representatives g of conjugacy classes. Using Theorems 2.1, 2.2

and (3.1), we get F,Gy 2 F, &5_, M, (F,) ®1%s M, (F,2). Applying Theorem 2.5
with G1/G} = Cs and F,Cs = IE% @ ]F22 in this to obtain

FoG1 = F2 ®F2 Gy My, (Fg) ®5—s My, (Fg2)

4 8
with 88 = n’+2> n} n, >2

r=1 r=>5

(3.4)

which gives three possibilities for values of n’s namely (3%,22% 32),(22,32,2,3%)
and (2%,3%). Further, we can verify that for the representatives k of K, we have
S(’YI) = {’va’nyz]N S(’Yy) = {7y77yz}7 S(’sz) = {7wy77wz}a S(’wa) = {7yw77yzw}
and S(vx) = {v} for the remaining representatives. This with Theorems 2.1,

2.2 and 2.5 leads to FoKy = F; @ Fo @7y My, (Fy) @ My, (F2), tr > 2, t, €
Z with 16 = 23:1 t2 + 2t2, which gives the only choice (23) for t.s. Therefore,

(3.4) and Theorem 2.6 imply that (22,32,2,3%) is the correct choice for n!s. So,
we get FoG1 ZF; @ F), @ Ma(Fy)? © M3(Fy)? ® Ma(Fp2) © M3(Fy2)°.

Case 4. p* =11 mod 24 or p* =19 mod 24. In this case, we have

S(yz) = {'Yacy’)/a:y}v S(’Yy) = {Vyvp)/yz}v S(Vaz) = {'Yaczv'Yacyz}a S(Vat) = {'Yacta’nyt}a

S(Vazt) = {Vazts Yayzt b S(yw) = {Vgws Yozw by S(vt) = 17wt Y2t} S(79) = {79}
for the remaining representatives g. Using Theorems 2.1 and 2.2 and (3.1), we get

F,G1 = F, ®°_1 M, (Fy) ®126 M, (F,2). Further, we can easily see that rest part
of this case is similar to Case 3. O

Next, we remark that for the groups G;, where 2 < i < 8 and ¢ = 10, the
Wedderburn decomposition of their group algebras can be computed by following
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the steps of Theorem 3.1 (see Tables 1-8). Hence, we are omitting their proofs
from the paper.

Table 1. Wedderburn decomposition of F,Ga.

values of p and k Wedderburn decomposition
k even or p = {1,17} mod 24 and k odd | F} & M5 (F,)® & M3(F,)* & My(F,)>
p* = {5,13} mod 24 and k odd F2 & My(Fq)? & Ms(Fq)* & My(F,)?
@MZ(Fq2)2
p* = {7,23} mod 24 and k odd or F2®Fp @ Ma(Fy)* @ Ms(F,)%®
p¥ = {11,19} mod 24 and k odd My (Fy)? @ Mo (F2) @ Ms(F,2)

Table 2. Wedderburn decomposition of F,G3.

values of p and k Wedderburn decomposition
k even or p € {1,5,13,17} mod 24 and k odd F? @ Ms(F,)® & Ms(F,)*
G9]\44(15‘61)2
pF ={7,11,19,23} mod 24 and k odd F2 & Fo2 & My(Fy)? & Ms(Fy)*®
MQ(]Fq2)2 D M3(Fq2) D M4(Fq2)

Table 3. Wedderburn decomposition of F;Gj4.

values of p and k Wedderburn decomposition
k even or p € {1,7,17,23} mod 24 and k odd | Fj & My(F,)° & Ms(F,)*
69]\441(IET(1)2
pk = {5,11,13,19} mod 24 and k odd F} @ Ma(F,)* & Ms(F,)'e
M4(Fq)2 ® M2(Fq2)2

Table 4. Wedderburn decomposition of F;G’.

values of p and & Wedderburn decomposition
k even or p € {1,11,17,19} mod 24 and k odd | F; & My(F,)°® & Ms(F,)*
69]\44(1%)2
p* ={5,7,13,23} mod 24 and k odd F2 ® Ms(Fy)* & M3(F,)*®
My(Fq)?* @ M (Fy2)?
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Table 5. Wedderburn decomposition of F;Gbs.

values of p and k Wedderburn decomposition
k even or p € {1,7,13,19} mod 24 and k odd | Fy & Ms(Fy)* & Ms(Fy)*
EB]\44(15‘<1)3
pF ={5,7,13,23} mod 24 and k odd F @ My (Fg)? & M3(Fy)*®
M4(Fq) @ M4(Fq2)

Table 6. Wedderburn decomposition of F,G7.

values of p and k Wedderburn decomposition
k even or p € {1,11,13,23} mod 24 and k odd | F; @ My(F,)> ® Ms(F,)*
69]\44(1%)3
p* ={5,7,13,23} mod 24 and k odd F ® Ms(Fy)* & M3(F,)*®
My(Fy) @ My(Fg2)

Table 7. Wedderburn decomposition of F;Gs.

values of p and k Wedderburn decomposition
keven or p € {1,11,13,23} mod 24 and k odd | Fj @& M(F,)? & Ms(F,)*
SMy (Fq)3
p* = {5,7,17,19} mod 24 and k odd F2 @ My (Fy)* & Ms(Fy)*®
My(Fy) @ My(Fp2)

Table 8. Wedderburn decomposition of F;G1o.

values of p and k Wedderburn decomposition
keven or p=1 mod 24 and k odd Fi? @ My(Fy)"™ @ My(F,)*
p* € {7,19} mod 24 and k odd | F{ © T, @ M3(F,)* ® M3(Fy2) © My(Fy2)°
p* =13 mod 24 and k odd Fi? @ Ms(Fy)* & My(Fg2)°
p¥ =17 mod 24 and k odd Fi @ Fl @ M3(Fy)* @ Ma(F,)* @ Mp(Fy2)*
p* €{11,23} mod 24 and k odd | F; & F, @ M3(F,)* © M3(Fy2) © Mo(Fy2)°
p* =5 mod 24 and k odd Fy ®Fl, © M3(Fy)* @ My(F,2)°

3.3. Wedderburn decomposition of F,G1;

It is to be noted that for the group algebra F,G11, WD can not be uniquely
characterize only by using Theorems 2.5 and 2.6. We also need Theorem 2.7 for
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its unique characterization. Consequently, we separately discuss the WD of F,G1,
in the following theorem. We have G11 = ((C4 x Cy4) x C3) x C3). This group has
10 conjugacy classes.

Rle| x|y |z|t]|axz|at|zw]| 2zt| z2t
S|1(12(132|3|3|12] 12| 3 6 | 12
Oj1] 2|3 |4|2| 8] 4 4 | 4 8

Clearly, the exponent of G1; is 24 and G, = (C4 x C4) x C5 with G11/GY; = Cs.

Theorem 3.2. The Wedderburn decomposition of F,G11 for ¢ = p*, p >3 is

values of p and k Wedderburn decomposition
k evenor p € {1,5,13,17} mod 24 and k odd | F2 & My(F,) & Ms(F,)° & Me(F,)
pk ={7,11,19,23} mod 24 and k odd F2 & My (Fq) & M3(Fq)? & Mg (F,)
®M;(F2)?

Proof. For k even and any prime p > 3, p* =1 mod 24. This means |S(v,)| =1
for each g € Gy; and hence, (3.1) and Theorems 2.1, 2.2 imply that F,G1;
F, ®)_; M, (F,). This with G11/G}; = C3 and Theorem 2.5 leads to F,G1;
F2@®S_) M, (F,) with 94 = S n2, n, > 2 which gives four possible choices for
nls as (2°,3,4,7),(23,3,43,5),(22,3%,5%) and (2,3%,6). In order to seek unique-
ness, consider a normal subgroup Hq1,1 = (¢t,u) of G11 with K111 = Gi1/Hu1 =
S,. From [9] and Theorem 2.6, we conclude that (22,34 5%) and (2,3°,6) are the
only required possibility for n].s. Further, using Theorem 2.7, we derive that the
required choice for n,’s is (2, 35, 6). Therefore, we have the result. Next, we assume
that k is odd. We discuss this possibility in the following 2 cases:

[raule

Case 1. p¥ = {1,5,13,17} mod 24. In this case, WD is same as in the case of k
even as |S(v4)| = 1 for each representative g of conjugacy classes.

Case 2. p* = {7,11,19,23} mod 24. In this case, we have S(7.) = {72, Vew}s
S(Vaz) = {Vazs Yozt )y S(vg) = {74}, for the remaining representatives g of con-
jugacy classes. Using Theorems 2.1, 2.2 and (3.1), we reach to F,G11 = F, ®3_;
M, (Fy)®I_g My, (Fz). Now incorporate Theorem 2.4 to obtain F,G11 = Fa2 @} _,
M, (F,) &5_5 M, (F,2) with 94 = Zle nZ + 22?25 n2, n, > 2. Further, again
consider the normal subgroup Hjj;. This with Theorem 2.6 yields F,G1; =
F?] © Mz(Fy) @ M3(Fq)2 ® My, (Fy) Spy My, (Fg2), 72 = ni +2 23:2 ny, ne > 2.
The possible choices for n..s satisfying this are (2,3,5) and (6,3, 3). By the same
logic given for the case when k is even, we derive that (6,3,3) is the required
choice. O

3.4. Wedderburn decomposition of F,Gg

Next, we discuss the WD of F,Gy (see Table 9). We mention that, unfortunately for
this particular group, our theory is not enough to uniquely characterize the WD of
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its corresponding group algebra when p* € {5,13} mod 24. We obtain that WD is
one of the following two possibilities: Fj@® My (Fq)*®Ms(F,)* @My (Fg2 )@ Ma(Fg2)%;
Fy ® My(Fy)* @& M3(Fy)* © My(F2) @ My(F,2). Consequently, we make use of
computer package GAP in this case for uniquely determine WD.

Table 9. Wedderburn decomposition of F;Gj.

values of p and k Wedderburn decomposition
k even or p € {1,17} mod 24 and k odd | Fy @ My(F,)® & M3(F,)* & My(F,)?
p* € {5,13} mod 24 and k odd Fi @ My(Fq)? & M3(Fq)* & My(F,2)
69]\42(15‘112)2
pk € {7,11,19,23} mod 24 and k odd Fg ® Ms(F,)? & M3(Fy)* & Ma(F2)?
69]\/Ll(]Fq?)

This completes the computation of WDs of semisimple group algebras of non-
metabelian groups of order 96 having exponent 24. Next, we proceed to compute
the WDs of semisimple group algebras of non-metabelian groups of order 96 having
exponent 12.

3.

ot

. Non-metabelian groups of order 96 having exponent 12

G12 = ((04 X Cg) X 04) X 03
Gz = Ay x Qg
G14 = C4 X 54

G15 = (C4 X A4) X CQ

G16 = (CQ X CQ X A4) X 02

G17 = (CQ X 02 X Qg) X 03

Glg = ((CQ X CQ X CQ) X (02 X Cg)) X Cg
Glg = ((CQ X Cg X Cg) X (CQ X 02)) Del 03
9. G20 = ((02 X Qg) X CQ) X 03

10. G21 = CQ X (A4 X C4)

11. GQQ = CQ X CQ X S4

12. G23 = ((CQ X CQ X CQ X Cg) X Cg) X CQ
13. G24 = 04 X SL(Q7 3)

14. GQO = 02 X CQ X SL(2,3)

15. G26 = 02 X ((<C4 X 02> X 02) X 03)

PN oUW

3.6. Wedderburn decomposition of F,G12 and some other
group algebras

The presentation of G12 = ((Cy x C3) x Cy) x C5 is

-1 71t71 -1

, [z alu™ Ty [w,au w

-1

(z,y,z,w,t,u | 2®, [y,z)t" w2y

[t,xlu" w™t [u,z], vt 7wt [z, y]u

)

) [w?y]a [ﬂy], [u,y], 22’1,0_17
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[w7z}7 [t7z]7 [U7Z]7 w27 [t7w]7 [u7w}7 t27 [u7t]7 u2>'

This group has 12 conjugacy classes as shown in the table below.

Rle|lz |y|lw|t|ul|2?2|aw]|ys|yw|yt| 2y
S|1]16(6|3|3[1]|16]| 16 | 6 6 6 16
Oj1]3|4|2]2|2] 3 6 4 4 4 6

>~

From above discussion, we see that exponent of G5 is 12. Also Gy = (CyxCo)xCy
with G12/G'5 = Cs. Since p > 3, we have ged(|G12|,p) =1, and so J(F,G12) = 0.
We are now ready to give the WD and unit group of F,G12 for p > 3.

Theorem 3.3. The WD with unit group of FgG12 for g = p*, p >3 is as follows:

values of p and k Wedderburn decomposition
k even or p=1 mod 12 and k odd | F2 & My(F,)* & Ms(F,)® ® Me(F,)

p* =5 mod 12 and k odd F, ®Fp & My(F,) & Ms(F,)®
©Me(Fy) & Ms(Fg2)

pF =7 mod 12 and k odd F3 @ My (Fq)* & Ms(F,)
®Meg(Fy) ® M;3(F2)?

p¥ =11 mod 12 and k odd Fq ®Fp2 ® Mo(Fy) ® M3(Fy)

SMe(Fg) & My(Fg2) & M3(Fq2)2

Proof. As F,G5 is semisimple, we have F G2 = @®L_, M, (F,), t € Z, where for
each r, F, is a finite extension of F, n, > 1. As in Theorem 3.1, we can write

Fquz = IE‘q @2«;11 Mnr (]FT‘) (35)

For k even and any prime p > 3, p¥ = 1 mod 12. This means 1S(74)| = 1 for
each g € Gy2 as Iy = {1}. Hence, (3.5) and Theorems 2.1 and 2.2 imply that
F,Gi1o 2 F, ®!L, M, (F.). This with G12/G}, = C5 and Theorem 2.5 leads to
(with suitable rearrangement of indexes)

9
F,Gr2 2 F5 @0_, M, (F,) with 93 = n2, n, >2 (3.6)

r=1

which gives four possible choices for n..s namely (2,2,2,2,2,2,2,4,7),(2,2,2,2,2,4,
4,4,5), (2,2,2,2,3,3,3,5,5), and (2,2,2,3,3,3,3,3,6). We consider the normal
subgroup H; = (wu,t) = Cy x Cy with G12/H; = SL(2,3). From [17], we know
that WD of F,G12/H; contains My (F,) as well as M3(F,). So, Theorem 2.6 implies
that the choices (2,2,2,2,2,2,2,4, 7) and (2,2,2,2,2,4,4,4,5) are no longer in
race. For uniqueness, we consider another normal subgroup Hs = (u) with Ky =
Glg/Hg = (04 X 04) A 03. Using [1], we note that ]FqKQ = IFZ D Mg(Fq)5. This
with Theorem 2.6 imply that (2,2,2,3,3,3,3,3,6) is the only possibility for n/s.
Therefore, we have

FoGi2 = F2 @ My(F,)* ® M3(F,)° ® Mg (F,). (3.7)
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Next, we assume that k is odd. We discuss this possibility in the following 4 cases:

Case 1. p =1 mod 12. In this case, we have |S(y,)| = 1 for each g € G2 as
Ir = {1}. Hence, Wedderburn decomposition is given by (3.7).

Case 2. p* = 5 mod 12. In this case, we have S(v.) = {Ve, Y22}y S(Yaw) =
{Vaw, Ya2y }» S(79) = {74} for the remaining representatives g of conjugacy classes.
Using Theorems 2.1, 2.2 and (3.5), we get F,G12 2 F@®7_ M, (Fq)®2_gM,, (Fz2).
Applying Theorem 2.5 with G12/G, = C3 and F,C3 = F, & Fg2 to obtain that

7
FyGro = Fy@F 2 @]y M, (Fq) ® My, (Fg2) with 93 = n2+2n, n, > 2. (3.8)

r=1
Further, we note using [1] that F, K> = F, & F,2 & M;5(F,)®. Therefore, (3.8) and
Theorem 2.6 imply that F,G12 2 F @ F 2 & M3(F,)> ®2_, M, (F,) & M3(F,2) with
48 = Ele n? + 2n%, n, > 2. This gives the only possibility (2,6,2) for n’s which
means the required WD is

FyGi2 2 F, @ Fpe @ M3(F,)® @ Ma(Fy) ® Mg(Fy) & Ma(Fe).

Case 3. p* = 7 mod 12. In this case, we have S(v,) = {vy Yz}, S(Vyw) =
{Vyws 1yt }> S(vg) = {7y} for the remaining representatives g of conjugacy classes.
Using Theorems 2.1, 2.2 and (3.5), we get F,G12 & F @7 _ M, (Fy)®)_gM,, (F,2).
Applying Theorem 2.5 with G12/G', = C3 and F,Cs = F3 in above to obtain

FoGi2 2 F> @)_) My, (Fy) Bf_g M, (Fg2)

>, T, (3.9)
with 93 = "n’+2> nl n, >2.

r=1 r=6
Further, we observe that F, Ky = F2 @& M3(F,) & M, (Fg2)?. Therefore, (3.9) and
Theorem 2.6 imply that F,G12 = Fo @ Ms(F,) @3, M, (Fy) ®M3z(Fg2)* with 48 =

Zfﬁzl n2, n, > 2. This gives the only possibility (2,2,2,6) for n’s which means
that the WD is

FyGiz & F3 & M3(Fy) & Ma(Fy)® & Mg(Fy) & Ms(Fg2)*.

Case 4. p® = 11 mod 12. In this case, we can verify that S(v,) = {7y, Y=}

S('wa) = {’waa'Yyt}, S(Ove) = {Ver Va2t S(Vaw) = {’Y:cw,%c?y}, and S(”Yg) = {’Yg}
for the representatives e, w,t and u. Using Theorems 2.1, 2.2 and (3.5), we get

F,Gi2 & F, @3_, M, (F,) &7_4 M, (F,2). Applying Theorem 2.5 with F,C5 =
F, @ Fg2 in above to obtain

F,Gio = F, O Fp By My, (Fg) @5_y My, (Fq2)

3 6
with 93 =) "n2+2> nl n, >2.

r=1 r=4

(3.10)
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Further, we see that FyKo = F & F 2 & M3(F,) @ M, (F2)%. Therefore, (3.10) and
Theorem 2.6 imply that F,Gio 2 Fy & Fp2 @ M3(F,) & M3(F2)? @2_, M, (F,) &
M,,(Fpz2) with 48 = 322 n2 + 2n2, which means the only possibility for n.s is
(2,6,2). Thus, the required WD is

F G 2 F, B Fp ® M3(F,) ® M3(Fp2)? & Ma(Fy) & M(Fy) ® Ma(F2). O

Next, we remark that for the groups G;, where 13 < i < 26, the WD of
their group algebras can be computed by following the steps of Theorem 3.2 and
Theorem 3.3 (see Tables 10-23). Hence, we are omitting their proofs from the

paper.

Table 10. Wedderburn decomposition of FqG3.

values of p and k Wedderburn decomposition
k even or p* = £1 mod 12 and k odd | F & My (F,)® & M5(F,)* & Mg (F,)
pF =45 mod 12 and k odd F2 & My (Fq)® & Ms(Fq)* & Mg(F,)
®M, (qu)

Table 11. Wedderburn decomposition of F;G14.

values of p and k Wedderburn decomposition
k even or p* € {1,5} mod 12 and k odd FS @ My(F,)* @ M3 (F,)®
pF € {7,11} mod 12 and k odd Fy ®F2 ® My(F,)* ® M3(F,)*
OM3(Fp2) ® Ms(Fg2)

Table 12. Wedderburn decomposition of F,G1s.

values of p and k Wedderburn decomposition
k even or p* € {1,5} mod 12 and k odd | F} & My(F,)® & Ms(F,)* @ Me(F,)
pF € {7,11} mod 12 and k odd Fi @ My (Fq)® & M3 (Fq)* & Mg(Fy)
SM, (Fq"’)

Table 13. Wedderburn decomposition of FqGs.

values of p and k Wedderburn decomposition
k even or p* € {1,7} mod 12 and k odd | Fj & My(F,)® & M5(F,)* & Mg (F,)
pF € {5,11} mod 12 and k odd F2 @ My (Fq)® & Ms(Fq)* & Mg (F,)
GMs (qu’)
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Table 14. Wedderburn decomposition of F,G17.

values of p and k Wedderburn decomposition
k even or p* € {1,7} mod 12 and k odd F3 @ My(F,)® @& M3(F,)° & Mg(F,)
p¥ € {5,11} mod 12 and k odd F, ®Fp & Mao(F,) ® M3(F,)°
@MGGFq) & M2(Fq2)

Table 15. Wedderburn decomposition of F,Gs.

values of p and k Wedderburn decomposition
k even or p* € {1,7} mod 12 and k odd F3 @ M3(F,)° @& My(F,)?
pF € {5,11} mod 12 and k odd F, ®Fp2 ® M3(F,)° @ My(F,)
SMy(F,2)

Table 16. Wedderburn decomposition of FqG19.

values of p and k Wedderburn decomposition
k even or p* € {1,7} mod 12 and k odd Fi? & My(Fy)* @ My(F,)*
pF € {5,11} mod 12 and k odd F; @ng ® M3(Fy)* & My(F,)
©My (Fcﬁ)

Table 17. Wedderburn decomposition of F,G2o.

values of p and k Wedderburn decomposition
k even or p* € {1,7} mod 12 and k odd | Fi? @ M3(F,)* & My(F,)?
pk € {5,11} mod 12 and k odd Fi @ Fl, @ M3(Fy)* & Ma(F,)
SM, (FqQ)

Table 18. Wedderburn decomposition of F,G2;.

values of p and k Wedderburn decomposition
k even or p¥ € {1,7} mod 12 and k odd F3 @ Ms(Fy)* & M3 (F,)®
p* € {5,11} mod 12 and k odd F @ F2, @ My(F,)* & Ms(F,)*
®M;(F2)?
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Table 19. Wedderburn decomposition of F,G2».

values of p and k& | Wedderburn decomposition
for any k and p FS @ My(F,)* @& Ms(F,)®

Table 20. Wedderburn decomposition of F,Ga3.

values of p and k Wedderburn decomposition
for any k and p | F2 @ My(F,) © M3(F,)® & Me(F,)

Table 21. Wedderburn decomposition of FqGa4.

values of p and k Wedderburn decomposition
k even or p=1 mod 12 and k odd Fi? @ My(Fy)'" & Ms(F,)*
p* =5 mod 12 and k odd Fi & Fl, & My(F)* @ Ms(F,)*
@Mg(Fq2)4
p* =7 mod 12 and k odd F @ F @ Ma(Fy)® @ M3(Fy)?
®M(F,2)% @& M;(F2)
pF =11 mod 12 and k odd F2 & F%, & M (F,)? @& Ms(F,)>
DM (F2)° & Ms(F,2)

Table 22. Wedderburn decomposition of F,G2s.

values of p and k Wedderburn decomposition
k even or p* € {1,11} mod 12 and k odd Fi2 & My(Fy)'? & Ms(F,)*
p* € {5,7} mod 12 and k odd F; & ng ® My (F,)* & M3(F,)*
B Mo (F,2)*

Table 23. Wedderburn decomposition of FqGas.

values of p and k Wedderburn decomposition
k even or p=1 mod 12 and k odd Fi2 & My(Fy)'"? & Ms(F,)*
p¥ =5 mod 12 and k odd Fg ®Fl. © My(Fy)* © M3(Fy)*
@M2(Fq2)4
p¥ =7 mod 12 and k odd Fi? @ M3(Fy)* ® My(Fy2)°
p* =11 mod 12 and k odd Fi & Fiz ® M5(F,)* @ My(F,2)°
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4.

Conclusion

We have computed the WDs of semisimple group algebras of non-metabelian groups
of order 96. Hence, this study completes the computation of WDs of semisimple
group algebras of all groups up to order 120. In future, this paper motivates the
study of unit groups of the group algebras of non-metabelian groups having order
greater than 120.
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Abstract. We study the conjugation of overpartitions and give the gener-
ating function for the number of self-conjugate overpartitions of an integer.
Following the recent introduction of over g-binomial coefficients, we obtain
the over g-analogue of the Chu-Vandermonde identity. Consequently a new
generating function for the number of overpartitions is proved. We also give
a new over g-analogue of the Chu-Vandermonde identity.
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1. Introduction

A partition of a positive integer n is an integer sequence (A1, Aa,...,\x) with

A1 > Ao > - > A > 0 such that Ay + Ao + -+ - + A = n. We call the summands

A; parts. For example, there are 7 partitions of 5:
(5),(4,1),(3,2),(3,1,1),(2,2,1),(2,1,1,1), (1, 1,1, 1, 1).

An overpartition of n is an integer partition of n in which the last occurrence
of a part may be overlined [3]. The number of overpartitions of n is denoted by
p(n). For example, p(4) = 14, where the overpartitions of 4 are

4), @), (3,1), 3,1), (3,1), (3,1), (2,2), (2,2), (2,1,1),
(2,1,1), (2,1,7), (2,1,T), (1,1,1,1), (1,1,1,7).

It is well known that

R A G L)
,;Op(n)q - };[1 1—q" () (1)
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where (4;¢)o = 1 and

(A;59)n

(1-A)(1—Ag)---(1-A¢" ") = [[(1 - 4¢"),

(4; @)oo := lim (A4;9)n H (1— Ag%)

n~>oo

The Young diagram (or Ferrers board) of an overpartition is the same as that of the
underlying ordinary partition with the exception that the last block of an overlined
part is marked. For example, the Young diagram of A\ = (9,7,5,4,4,2,1,1,1) is

The Durfee square of an overpartition is the largest square that can fit into its
Ferrers board.

We emphasize that a Durfee square of length s consists of s-s = s unit squares
in the Young diagram of an overpartition such that s is maximal. So it’s generating
function is ,

gt =g = ¢, (1.2)

Analogously one may consider Durfee rectangles of side lengths s and ¢, when
necessary, and apply the generating function ¢
The conjugate overpartition of \ is denoted by A’ and is obtained by reading the
columns of the Ferrers board of A. Thus for example, X = (9,6,5,5,3,2,2,1,1).
A second method of obtaining the conjugate of an overpartition is as follows.
The conjugate of A = (p1,p2,...,pr) is given by X = (¢1, 92, ..., qs), where

_ JHripr =4} if j = pi is overlined
7 YH{r:pr >3} otherwise.

In other words, let the overlined parts of A be uy > us > --- > w4, and let the
underlying ordinary partition be f(\). Then A’ is obtained by overlining the parts
of the partition f(A) that are in positions wuy,us, ..., u;.

For instance, given A = (9,7,5,4,4,2,1,1,1), then to obtain X, the 2nd, 4th
and 7th parts of the conjugate of f(\) = (9,7,5,4,4,2,1,1,1) will be overlined.
That is, ' = (9,6,5,5,3,2,2,1,1).
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Definition 1.1. An overpartition is said to be self-conjugate if it is identical with
its conjugate.

For example, it may be verified that A = (7,6,4,4,2,2,1) is self-conjugate.
One of our main results is the following:

Theorem 1.2. Let S¢(N) be the number of self-conjugate overpartitions of N.

Then
2.

o0 o0 _ 2 .
> sVt =1+ 3o CLITh
= = (4% 4%);

The g¢-binomial coefficients (or Gaussian polynomials) are defined, for non-
negative integers m,n, as

{m + n} _ (1—gm™™) (1 —gmt=1) .. (1 — g™t
(I—g")(1 =g 1) (1-q)

These polynomials have many important applications in Combinatorics, Number
Theory and Physics [1]. In partition theory, Eqn (1.3) is interpreted as the gener-
ating function for the number of partitions fitting inside an m x n rectangle, i.e.,
partitions that have parts of size < m and a number of parts < n.

Recently, Dousse and Kim [5] introduced the over g-binomial coefficient which
is an overpartition analogue of the g-binomial coefficients, defined by

N (1.3)

_— min{m,n}
m+n| (*31 (¢ Dmin—k
ok 2 i (14)

This function is interpreted as the generating function for the number of overparti-
tions fitting inside an m x n rectangle. The over g-binomial coefficients have many
properties similar to those of ordinary ¢-binomial coefficients [4, 5].

In 2003 Prellberg and Stanton [8] published a proof of the monotonicity con-
jecture which states the coefficients of the function

1
S (@™ @)n T

are non-negative, for all positive integers n. This conjecture was originally formu-
lated by Friedman et al. [6].

Subsequently, Dousse and Kim [4] formulated the following analogous conjecture
based on the geometry of over g-binomial coefficients.

Conjecture 1.3. For all positive integers n, the coefficients of

(1 _ q) (_qn; Q)n

+q
(@™ 9)n

are non-negative.

73



Annal. Math. et Inf. A. O. Munagi, S. Ngubane

Conjecture 1.3 is an over g-analogue of the monotonicity conjecture. We will
indicate a possible path to realizing a combinatorial proof of this conjecture in
Section 4.

In Section 2, we give a proof of Theorem 1.2. In Section 3, we prove a cer-
tain over g-binomial coefficient identity, and establish an over g-analogue of the
Chu-Vandermonde identity. We end the section with an alternative summative
generating function for the number of overpartitions of n.

2. Proof of Theorem 1.2

Suppose we have a self-conjugate overpartition A of N with a Durfee square of
length j > 0. Then in the Ferrers graph of A the j** part of ), i.e., the last part of
the Durfee square, may be overlined or not. There are two cases to consider (see
the diagrams below).
« Case I: when the j*" part is overlined (i.e., j** part = j and (j + 1)** part
<J);

R()\)

o Case II: when the j** part is not overlined (i.e., j** part > j and (j + 1)t*
part < 7).

R(\)
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In the first case, the Durfee square is generated by qj2 (from (1.2)). Since A is
self-conjugate the overpartition R(\) represented by the boxes on the right of the
Durfee square is the conjugate of the overpartition B(\) represented by the boxes

below the Durfee square. Therefore each of these overpartitions is generated by
(=601
(@39)-1 7
at most j — 1 parts (cf. Eqn (1.1)). Adding the rows of B(A) to the corresponding
columns of R()\) gives an overpartition into even parts. So for each j > 1 we deduce

that these overpartitions are generated by

which is the generating function for the number of overpartitions with

o H 1+q2T _ o C )i
(¢*6%)j-1
Similarly in the second case, the Durfee square is generated by ¢’ * while the over-

partitions represented on the right of and below the Durfee square are generated

2. 2y
by %. Thus such overpartitions are generated, for all j > 1, by
5 J

7 ﬁ 1+¢» e (=d%d%);
Lt l-g (4%:6%);

Hence, with 1 counting the empty (self—conjugate) overpartition, we have
o0
S =14 Yo 3

Jj=1 Jj=1

N=0
_ 1+q%
J 1
_1+Z <1+1—q2j>
Jj=1

—1
2 (—923q2)j—1 2j 2j
S SRR )

e 2. 2) .
:1+22qj27( id)i-1
=0

(4% ¢%);

This completes the proof.

3. Over g-binomial coefficients

Basic properties of over ¢g-binomial coefficients are given in [4, 5]. Several of these
properties resemble those of ordinary g-binomial coefficients. For example, we have

the symmetry property,
{m—kn}_[m—kn] (3.1)

n m

We recall the following series-product identities, known respectively, as Cauchy’s
Identity and ¢-Binomial Theorem (see [2, 7]).
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Theorem 3.1. For |q|,|z| < 1 we have

Z ( 5 )) (3.2)

’ﬂ

(%
Zq“’“z“)[ ] f[ 1+ 2¢*). (3.3)

The following theorem was proved combinatorially in [4]. Here we will give an
algebraic proof.

Theorem 3.2 (Dousse-Kim [4]). For every positive integer m, we have
s k—1 —26% Q)m—
ST e = (3.49)
= k (2¢; @)m

Algebraic Proof. We will use the fact that

m—+1,

(@& Dmrk = (G Om (@5 @k (3.5)

We simplify the left-hand side of (3.4) (with m —1 replaced by m). Note that in
the second equality below we set min(m, k) = m since 0 < j < m but j < k — oo.

3 mzk k _ &) (6 Dmik—j Iy
kz_o[ K ] ! P ;0 ! (Q§Q)j(q;CI)mfj(Q§Q)k7‘( 2
m (j;l) o) . ‘
= q (Q7Q)m+k7] 2 k
- JE::O (4:90);(% @)m-—; kZ_J (¢ Q)r—; (z0)
m (Jérl) =S ( ) )
o q 2q)) q:49)m+k k
= TR kZ:O @ Y
N~ () SRt .
7;, (5 0); (@ @)m—j (q,q)mkz:o (6 Q)k (2q)" (by Ean (3.5))
_ - (QQQ)m L) (;-51) (qu+2;q)oo N
;0 (q;q)j(q;q)mﬂ( 2 (24 @)oo (by Eqn (3.2))
= Z((J:;qijoo(—zq ¢;q)m (by Eqn (3.3))
_ (2 a)m
(2 @)m+1
This completes the proof. O
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3.1. An over g-analogue of Chu-Vandermonde identity

Consider the classical combinatorial identity,
n 2
2
- <n> - ( ”) n>0. (3.6)
— \ j n
7=0
It is known that this identity has the following g-analogue [2]:
s =[]
=0 Y "
We state a new over g-analogue of (3.6) using the over g-binomial coefficients.

Proposition 3.3. For any non-negative integer n, we have

— . -2 —
2n 2 |n n—1
nl = j Jj-
Proof. 1t is clear that overpartitions fitting inside an n X n square are generated
by (cf. Eqn (1.4))

n+n| |2n
n | |n]|
Now assume the overpartitions have Durfee squares of length j. Such overpartitions

may be represented by either of the following diagrams depending on whether the
last part of the Durfee square is not overlined or overlined, respectively.

In either diagram the Durfee square is generated by qu, 7 >0.
In the second diagram the subdiagram attached to the right side of the Durfee
square represents an overpartition fitting inside an (n — j) x (j — 1) rectangle,

7
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and the subdiagram attached below the Durfee square represents an overpartition
fitting inside a (7 — 1) x (n — j) rectangle. So both subdiagrams are generated by

(=77 G=T], 60700

J—1 n—j

(n — 1] n—1
=1. X .
j—1] |n—J

(n — 1] -1

= _?_ 1 X B_ J (by symmetry, (3.1))
—

_n—1

IRVES

Similarly for the first diagram, the subdiagram on the right side of the Durfee
square represents an overpartition fitting inside an (n — j) x j rectangle, and the
subdiagram below the Durfee square is an overpartition fitting inside a j x (n — j)
rectangle. Thus they are generated by

- LT T

Hence the generating function for the number of partitions into at most n parts
with part-sizes < n, and Durfee square of length j, is given by

Lastly, we sum over 0 < j < n to obtain the stated identity. O

Proposition 3.3 may be regarded as a ‘finite’ version of the following identity
which provides another generating function for p(n) (cf. Eqn (1.1)).

Corollary 3.4. We have

o _§5 <<—q;q>j1>2(1+qzj>.

(@D = (:9);

Proof. Let n — oo in Proposition 3.3. Then

2n — kGtn) (¢ @)2n—k
lim = hm q 2
oo [n} n—oo ,;) (4 k(@5 @)n—1(G Dn—r

78



Annal. Math. et Inf. Conjugation of overpartitions and some applications . ..

Proceeding to the limit we also have
n —2 — 2 o 2 2
. B n=11"\ _ < 2 %9; (=4:9)j-1
i D <u i [j—l} ) = (( @a); ) "\ @a)a
7=0 Jj=0
2 i\ 2
o[ CLDi LI B
(¢:9)j—1 1—gJ

s ((_Q§Q)j1>2 2(1+¢%)

o

<
Il
o

o

= (G9)j1 (1—¢7)?
e’} . ) 2
- quf ((_q’q)ﬂl> (1+¢%).
= (¢:9);
Hence the result. O

Remark 3.5. Note that Corollary 3.4 may also be proved by pure combinatorial
reasoning by splitting the set of overpartitions into two classes, in the spirit of the
proof of Theorem 1.2.

Direct Combinatorial proof of Corollary 3.4. 1t is clear that

I & 1 ey (—q1@)e i,( "
——q¢ 2 =-—2=) pn)yg
(G =

(@3 Qoo 1= (63D

Now suppose we have an overpartition A of N with Durfee square of side j. Separate
A into two classes as in the proof of Theorem 1.2 (see Section 2). In both cases, the

Durfee square is obviously generated by ¢’ . However, in the first case the top-right
(=601

@, Such overpartitions are
d)5—

and bottom-left subdiagrams are generated by

generated by

2 (@i
(G931

Similarly, in the second case, the top-right and bottom-left subdiagrams are gen-

erated by & q’?j Hence this class is generated by

q

Hence we have

o] oo [ee} . 4)2
Zﬁ( qu —4¢;q) g 1 _’_2(]]-2 (*%‘I)j
n=0

j=0 q)J 1 =0 (QHJ)?
= o ((Caas) (o)
JZ::oq (( (@), ) +<(‘]§‘])j—1 ))
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-y P(Cat) 0 .

4. Remarks on Conjecture 1.3

The combinatorial proof of the following lemma is given in [5]. For completeness
we provide an algebraic proof below.

Lemma 4.1 (Dousse-Kim [5]). For every positive integer n, we have

(éﬁ;‘1+§:kk<r+k1*{nzf1ﬁ>

k>1

Proof. We have that the right-hand side

n+k—1 n+k—2
:1—}—22’“{]’“[ I ]—Fszqk[ b1 ]

k>1 k=1
n+k k41 k+14ﬁi;i7:4fi
{ } +> 2 k
k>0 E>0
2.
_ ( Q)n 1 —|—zq< 245 Qn—1 (by Theorem 3.2)
(2% >n . (—2¢:0)n
=" "(1+2zq Voo N =
ET )= o

This result enables the translation of the coeflicients of the conjectured gener-
ating function into the coefficients of generating functions of overpartitions.

Set z = ¢" ! in Lemma 4.1 to get
(—q"; Q)n b <r+k—1 [n+k_1>
7_1+Zq " -
O = k k—1
+k-1 n+k—2
=1 wn (| .
(P )
E>1

Thus we have

(1—@“€7fj+q—1+§:w%1—@<ﬁ+2‘1—%F2f1ﬂ>,<4n

(4" q =

g (P

k>1
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k>1 k>1

It is clear that the right-hand-sides of (4.1) and (4.2) enumerate overpartitions.
Hence one approach to proving Conjecture 1.3 combinatorially relies on interpreting
the right-hand-side of the equation as the generating function of a non-vacuous
union of certain sets of restricted overpartitions.

It is hoped that this will enhance the discovery of a purely combinatorial proof
of the conjecture.

Lastly, we lend credence to the conjecture by providing the results of a compu-
tational study of the actual coefficients of the associated generating function.

Let [¢V]f(q) denote that coefficient of ¢V in the Maclaurin series expansion of

f(q).

For all n > 2, the terms of the number sequences

S(N,n) = [qN]((l — q)% Jrq), N > 0, are mostly positive, assuming
zero values for few initial values of N. The following properties of the sequences
were discovered using the computer algebra system Maple [9].

1. 5(0,n) =1 for all n > 0,

(

2. S(1,1) =2, S(N,1) =0 for N > 1,

3. S(N,2) € {0,2} for all N >0,

4. S(N,3)€{0,2}, 1< N <11,
S(12,3) = 4, S(13,3) = S(14,3) = 0,
and S(N,3) > 1 for N > 15,

5. S(N,n) € {0,2},1 < n < m, and S(N,n) > 2, n > m, where m = 3n +
2, n>4.
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Abstract. In this paper, we introduce ruled like surfaces in three-dimensional
Euclidean space, E*. To form a ruled like surface in E°, we consider a base
curve y(s) and a director curve X (s). Let parameter s be the angle between
the tangent of v(s) and X(s) when X(s) lie on rectifying plane or in the
osculating plane. Whereas, if X(s) is in the normal plane, then parameter s
will be the angle between the normal of v(s) and position vector of X (s) at
the corresponding point in E3. Then we investigate some characterizations
of such types of surfaces (say S(s,v)). Moreover, we find the condition for
the existence of Bertrand mate of ¥(s) in S(s,v). Finally, as examples, we
construct the surfaces S(s,v) by using a straight line, circle and helix in E3.
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1. Introduction

Ruled surfaces are one of the basic and useful types of surfaces in differential
geometry. Ruled surfaces are in the class of those surfaces which are broadly
used in CAD systems. Ruled surfaces were introduced by G. Monge as a solution
of a partial differential equation. Different properties depending upon geodesic
curvature and the second fundamental form of ruled surfaces in E? were studied
in [1]. Whereas the ruled surfaces generated by some special curves like circular
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helices, circular slant helices and Salkowski curves were considered in [15]. In
[18], authors derived the isogeodesic surface pencil so that the geodesic curve is a
directrix of the ruled surface.

The notion of pitch function for ruled surfaces was introduced by H. R. Miiller
in 1951. The pitch function and angle function of the pitch for non-developable
ruled surfaces in E% and E} were further generalized in [9, 10]. For any non-
developable ruled surface, if the base curve is a striction line and the directrix
is a spherical curve, then the spherical Frenet frame can be obtained by using
directrix. This spherical Frenet frame brings out three functions along the base
curve on E3, known as structural functions. In [19], authors studied the properties
of non-developable ruled surfaces using structure functions. Ruled surfaces were
also studied in Minkowski space [7, 17] and in three-dimensional Lie groups [16].

The idea of the Bertrand curve was given by Saint Venant in 1845 by the
question “for any surface generated by a curve (s), does there exist any other curve
whose normal coincides with the normal of the initial curve”. Bertrand answered
this question in 1850 [4] by the condition, “a curve ¥(s) on E?3 is a Bertrand curve
if and only if there exists a linear relationship with constant coefficients between
the curvature and torsion of the original curve”. In [3, 5, 11], authors studied the
Bertrand curve in Minkowski space and three-dimensional sphere.

We organize our article as follows: Section 2, discusses some basic results of
curves and surfaces in £3. Ruled like surfaces, which are the core of our research
article, are also defined in the same section. In Section 3, we talk about various
characterizations of our surfaces, normal of the surface, Gaussian curvature, mean
curvature etc. In Section 4, the conditions are obtained for the Bertrand mate of
the curve 7(s), which lie in the normal ruled like surface formed by 7(s). In the
final section, as examples, the surfaces are constructed using a straight line, plane
curve circle and space curve helix.

2. Preliminaries and some results

Let v(s) be a unit speed space curve in R® with Frenet frame {T, N, B} along v(s).
Then, we know that

T'=kN, N =-kT+7B, B =-7N,
where k is a curvature and 7 is a torsion of ~(s).

Definition 2.1 ([6]). Let v(s) be a smooth curve on E3. Then +(s) is said to be a
Bertrand curve if there exists another curve 3(5 = ¢(s)) in E® such that the normals
of v(s) and B(s = ¢(s)) are linearly dependent to each other at corresponding
points. Here ¢ is a bijection from ~(s) to 8(s) and 5(s) is the Bertrand mate of

v(s).

Definition 2.2 ([8]). The parametric representation of a ruled surface S(s,v) in
E3 is S(s,v) = 7(s) + vd(s), where v(s) is a space curve, §: I — R? — {0} is a
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smooth map and I is an open interval or a unit circle. The curves (s) and §(s)
are known as the base and director curves, respectively. The map v — y(s) +vd(s)
is known as a ruling of S(s,v).

Let S(s,v) be a ruled surface in E?, then the various quantities associated with
the surface are defined as follows:

. .OAT . _SsXSy __ 08 __ 0S8
(A). Unit surface normal: N = Mooy where Sy = 52 and S, = 5.

(B). First fundamental form: I = Eds? + 2Fdsdv + Gdv?, where E = (S,,S,),
F=(S;s,S,) and G = (S,, Sy).

A

(C). Second fundamental form: I] = Lds? + 2Mdsdv + Ndv?, where L = (S,4, N),
M = (Ssy, N) and N = (S,,,, N).

If K is a Gaussian curvature, H is a mean curvature and A\ is a distribution pa-
rameter of S(s,v), then from [13]

_ LN—M? _ EN+GL—2FM _ det(7/(5),8(s),8'(s))
(D) K= EG7F27H—Wand>\—W.

The second Gaussian curvature Kr; of S(s,v) in E? is defined by replacing the
components of the first fundamental form E, F and G by the components of the
second fundamental form L, M and N in Brioschi’s formulae respectively. In [2],
the second Gaussian curvature of a surface is defined as

A I T T

1 1 1
KII_(]LNfM?)Z M“f 7N L M — %ILU L M
§Nv M N §NS M N)

Let 5(s) be a curve in S(s, v), then the normal curvature k,,, geodesic curvature
kg and geodesic torsion 7, of 5(s) [1] are given by

fin = (N, T, ky=(NxT,T"), and 71,=(Nx N’ T.

The curve v(s) in S(s,v) can be characterized on the basis of the values of kg, Ky,
and 7,. That is

(1) ~(s) will be a geodesic if and only if k, = 0.

(2) v(s) will be a asymptotic line if and only if x,, = 0.

(3) v(s) will be a principal line if and only if 7, = 0.

In case of ruled surface S(s,v), the position vector of unit director curve §(s)
can be written as [1]
6(s) = LT+ [2N + f3B, (2.1)

where {T', N, B} is a Frenet frame along ~(s) and f;, i € {1,2,3}, are fixed com-
ponents, i.e., fZ + f3 + f3=1.

In equation (2.1), it is clear that the components f; of the director curve are
fixed. Now, consider §(s) lie on the normal plane of (s), such that the angle
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between 0(s) and N is arc length parameter s at the corresponding point. Then
the parametrization of S(s,v) is

S(s,v) = S™(s,v) = y(s) + v(cos(s)N + sin(s)B). (2.2)

Obviously, the parametrized surface formed in (2.2), is not a ruled surface. Be-
cause the components f; =0, fo = cos(s) and f3 = sin(s) are not fixed. Similarly,
we can construct the surfaces

S(s,v) = S?(s,v) = vy(s) + v(cos(s)T + sin(s)N), (2.3)

and
S(s,v) = S"(s,v) = v(s) + v(cos(s)T + sin(s)B), (2.4)
by taking d(s) in osculating plane {T, N}, and rectifying plane {T', B} respectively,

such that the angle between d(s) and T is s at corresponding point. Here, we define
the definition of a ruled like surface.

Definition 2.3. A surface S(s,v) with parametrization given by any one of the
equations (2.2), (2.3) and (2.4) is said to be a ruled like surface generated by a
curve y(s) on E3. The surface S"(s,v) is said to be a normal ruled like surface of
~(s). Similarly, S°(s,v) and S"(s,v) are named as osculating ruled like surface and
rectifying ruled like surface of y(s) on E3.

3. Some characterization of ruled like surfaces

For any surface in E3, unit surface normal, Gaussian curvature and Mean curvature
are some basic properties that help to understand the surface. In this section, all
these mentioned properties of ruled like surfaces generated by a space curve and a
plane curve in E® are studied.

3.1. Normal ruled like surfaces

Let S"(s,v) be a normal ruled like surface generated by space curve (s) on E3.
Then the partial derivative of (2.2), gives us

{sg(s, v) = (1 — vk cos(s))T — v(1 + 7)sin(s)N + v(1 + 7) cos(s) B,
St (s,v) = cos(s)N +sin(s) B,

as a natural frame {S7(s,v),S?(s,v)} of tangent space on S™(s,v). Also,

IS (s,v) x 83 (5,) [°=v*(1+17)* + (1 — vk cos(s))* = 0,

7,“015(5)7 for all s € R — {(2n — 1)5},n is an integer.

Thus the singularity of S™(s,v) can be removed by considering either 7 # —1 or
v # #S(S), for all s € R — {(2n — 1)%},n is an integer.

if and only if 7 = —1 and v =
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From now on, we will take only those ruled like surfaces that are generated by
curves with 7(s) # —1. The unit surface normal N™ of S"(s,v) generated by a
curve y(s) with 7(s) # —1 is obtained as follows:

(3.1)

A —v(1+7)T —sin(s)(1 — vk cos(s))N + cos(s)(1 — vk cos(s))B
Vo2(1+7)2 + (1 — vk cos(s))? ’

The coefficients of first and second fundamental forms of surface S™(s,v) are

v2(1 4+ 7)% + (1 — vk cos(s))?,
0,
1

E
F
G

9

and

L= T{ 2(1 4 7) (K" cos(s) — k(2 + 7) sin(s))

—(1 — vk cos(s))(ksin(s)(1 — vkcos(s)) —v7’)},
— lt7

M= "=,

N =0,
respectively. Therefore the Gaussian curvature K and mean curvature H of the
surface are given by

_ _(147)?
K=-"5m

H = 2]E1% {v2(1 + 7) (K’ cos(s) — k(2 + 7) sin(s)) (3.2)
—(1 — vk cos(s))(ksin(s)(1 —vkcos(s)) —vr’)}.

If v(s) is a plane curve, then for a normal ruled like surface of v(s) the unit surface
normal N " the Gaussian and the mean curvatures can be obtained simply by
substituting 7 = 0, in equations (3.1) and (3.2), respectively. Here we discuss only
the second Gaussian curvature Kj; of S™(s,v) generated by a plane curve. The
second Gaussian curvature of S"(s,v) is computed as:

L,E, L IE2 IEUS EE,

+ = -E .

4 4K Qf K>
(s)

-

Kir=-

f{ﬂ cos(s) + ksin(s) (1 — x* cos®

where

E, = 2{v — kcos(s)(l — vk cos(s))},
Es = 2v(rsin(s) — k' cos(s))(1 — vk cos(s)),
Ey, = 2(1 + &% cos?(s)),
1 2 : 1 .
L= ﬁ{v (2ksin(s) + k' cos(s)) — ksin(s)(1 — vk cos(s))Q},
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2\f{v 2k sin(s) + K’ cos(s)) + k£ sin(s) cos(s)(1 — vk cos(s)) } — %JLIEU

From all the above discussions, we obtain the following theorems and corollary.

Theorem 3.1. Let S"(s,v) be a normal ruled like surface generated by a space
curve y(s), s € I C R. Then the surface is singular if and only if T(s) = —1, where
7(s) is a torsion of y(s).

Theorem 3.2. Let S"(s,v) be a normal ruled like surface generated by a space
curve y(s) with 7(s) # —1. Then S™(s,v) is neither a part of a sphere nor a plane.

Corollary 3.3. The Gaussian curvature and the mean curvature of a normal ruled
like surface are related by aH + bK = 0, where a = 2(1 + 1) and b = EL =

\/E{U2(2I£ sin(s) + £’ cos(s)) — ksin(s)(1 — vk cos(s))2}.

Theorem 3.4. Let S"(s,v) be a normal ruled like surface generated by v(s) with
7(8) # —1. Then S™(s,v) is a minimal surface if and only if v(s) is a straight line.

Proof. Let S"(s,v) be a normal ruled like surface generated by a curve v(s). Then
from second part of equation (3.2), we have

v*(1 4 7)(K' cos(s) — 2k sin(s)) = (1 — vk cos(s))(k sin(s)(1 — vk cos(s)) — v7’)
= v*{(1+7)(k' cos(s) — 2k sin(s)) — k*sin(s) cos?(s) — k7’ cos(s )}
+ (7’ + 2k sin(s) cos(s)) + ksin(s) =

Now, comparing the coefficients of v on both sides, we get

(1 + 7)(k cos(s) — 2k sin(s)) — k3 sin(s) cos?(s) — k7’ cos(s) = 0,
7/ + 22 sin(s) cos(s) = 0, (3.3)
ksin(s) = 0.

Because s € I C R, therefore sin(s) # 0 V s. Thus, from the last part of (3.3),
k = 0. Hence 7(s) is a straight line.

Conversely, assume that S™(s,v) be a normal ruled like surface generated by a
straight line. Then taking x = 0 and 7 = 0 in second part of equation (3.2), we
have H = 0. Hence S"(s,v) is a minimal surface. O

3.2. Osculating and rectifying ruled like surfaces

In this section, the coefficients of the first and the second fundamental forms, the
Gaussian and the mean curvatures of osculating and rectifying ruled like surfaces
are studied.

Let v(s) be a space curve in E? and S°(s,v), S"(s,v) are osculating and rec-
tifying ruled like surfaces, respectively. Then natural frame {S%(s,v),S9(s,v)} of
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Se(s,v), and {SZ(s,v),S!(s,v)} of S"(s,v) are

S2(s,v) = (1 —v(1 + k) sin(s))T + v(1 + &) cos(s)N + v7sin(s) B,
SY(s,v) = cos(s)T + sin(s)N,

and,

{Sg(s, v) = (1 — vsin(s))T 4 v(k cos(s) — Tsin(s))N + v cos(s) B,
Sr(s,v) = cos(s)T + sin(s)B,

respectively. First, we will discuss various properties of S°(s,v) in E3. The unit

surface normal for S°(s,v) is obtained by using the relation N = %, where

S° x S9 = —7vsin?(s)T + Tvsin(s) cos(s)N + (sin(s) — v(1 + k))B,
| S2 x S2 ||>= v?7r%sin?(s) + (sin(s) — v(1 + k))2.

Now, || S¢ x S ||*= 0 if and only if any one of the following conditions holds:
(1) v =0 and s = nm, where n is an integer,

(2) T=0andv= bﬁ(z)

Therefore, if y(s) is neither a plane curve nor a straight line, then S°(s,v),
s,v € I(open interval) C R, have singularity only at v = 0 and s = nm, where n is
an integer. The parametrization for S°(s,v) can be further modified by removing
v=0.

But just for convenience we are considering the surface S°(s,v) with parameters
s,v € I(open interval) C R such that v > 1 ie., v = (1,]a|), where 1 < |a|] € R.
Thus the surface S°(s,v) is now a regular surface for all s € I, and v = (1, |a|).
The unit surface normal N° of S°(s, v), is obtained as

Fo_ ZTV sin?(s)T + Tvsin(s) cos(s)N + (sin(s) — v(1 + H))B.
\/7'2112 sin?(s) + (sin(s) — v(1 + k))2

The components of the first and second fundamental forms, the Gaussian and
mean curvatures of S°(s,v) are

(3.4)

E = cos?(s) + (sin(s) — v(1 + k))? + 7202 sin?(s), F = cos(s), G = 1.

L= \/ﬁ{TU sin(s) [vk + cos(s) (k — vr? sin(s))]

+ (sin(s) — v(1 4+ K))(v7(2 + k) cos(s) + v7’sin(s))}, (3.5)
_ 7sin?(s) _
M= 7o N=0.
72 sin?(s) L
Ko=——""/_ H°=_—— - __ _ _Ko
(EG — F2)*’ 2(EG — IF?) cos(e) ’

respectively. Similarly, for surface S” (s, v), || ST x ST ||2= v2(k cos(s) — T sin(s))* +
(v— Sim(s))2 = 0 if and only if it satisfies any one of the following conditions:
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(1) v =0 and s = nm, where n is an integer,
(2) kcos(s) —Tsin(s) =0 and v = sin(s).

Because —1 < sin(s) = v < 1, therefore the surface S™(s,v) is regular V s €
I(open interval) C R and v = (1, ]al), where |a| is some real number greater then
one. The unit surface normal, the Gaussian curvature and the mean curvature of
S”(s,v) are given by the following relations

Nr _ v sin(s)(k cos(s)—7 sin(s))T+(v—sin(s)) N+wv cos(s)(7 sin(s)—k cos(s))B (3 6)
\/(U—sin(s))2+v2(n cos(s)—7 sin(s))? ’ ’
sin?(s)(k cos(s)—7 sin(s))? r T
KT = _sin?(s)( (IEGEIF)QF () ., H" = 72(]EGL—F2) —cos(s)vV—K". (3.7)
where,
EG — F? = (v — sin(s))* 4 v*(k cos(s) — 7sin(s))?,
and

7

L= \/ﬁ{ [—v2(k cos(s) — Tsin(s))?(k sin(s) + 7 cos(s))]
+ (v —sin(s))(v(k cos(s) — 7sin(s)) + k(1 — vsin(s)) — Tv cos(s))}.

Thus, we have the following theorems:

Theorem 3.5. Let y(s) be a space curve with 7 # 0 and surfaces S°(s,v), S"(s,v),
s € I(open interval) C R, 1 < v € J(open interval) C R are generated by ~y(s).
Then at points s = nw, the surfaces are flat.

Theorem 3.6. Let y(s) be a plane curve and S°(s,v), s € I(open interval) C R,
1 < v € J(open interval) C R is an osculating surface. Then S°(s,v) is flat and
minimal in E3.

Theorem 3.7. LetS"(s,v), s € I(open interval) C R, 1 < v € J(open interval) C
R be a rectifying ruled like surfaces generated by v(s); s € I. Then S"(s,v) is a
flat and minimal surface if and only if it is generated by a straight line.

4. Characterizations of curves in normal ruled like
surface S" (s, v)

Let S™(s,v) be a normal ruled like surface generated by a curve 7(s). Then the

different properties of v(s) in S™(s,v) like, whether ~(s) is a geodesic or not and

asymptotic curve of S"(s,v) or not are studied. Also, we find the condition for
Bertrand mate of v(s) to lie on S™(s,v).

Theorem 4.1. Let (y(s), 3(3)) be a Bertrand couple in E* and S™(s,v) be a normal
ruled like surface of unit speed space curve v(s) with 7(s) # 0 . Then unit speed
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curve [(s) with K(8) # 0 lies on S™(s(5),v(8)) if and only if the parameters s(s)
and v(S) satisfies the following conditions

sin(s)v + 2bcos(s)(1 + 7)v
+ b2 (cos(s)(nab(l +7)+7") —sin(s)(1+ 7)2)1) =0,
—2k cos(s)0 + (ksin(s)(2 + 1) — cos(s) (k' + abnk))v + nab® = 0,

ds — 7(1_77:)2“7%2 =b and n(s®—7%) =2 —9),

(4.1)

where e = £1, n # 0 is an arbitrary constant and a = e /(K2 + 7/2).

Proof. Let (y(s),3(5)) be a Bertrand couple in E3 and ~(s) be a space curve with
7(s) # 0. Then

B(5) =(s) +n(s)N, (4.2)

where 7 is a smooth function on E3 and N is a normal vector field of Frenet frame
{T, N, B} along v(s) on E®. The derivative of equation (4.2), with respect to 3,
gives the relation

_ ds

T(5) = (L= n(&))T +7'N +urB) (13)
where T is a tangent vector field of 3(5) in E3. The scalar product of equation
(4.3) with N, implies that 7(s) = constant # 0. Now differentiating the equation
(4.3) with respect to 5, and then taking the scalar product of differential equation
with T, B, we have

(1- n)@ = Uit and T& =— nr
Az T (U= e+ ) N (R e N
d2 12 12
T _ o (W2HT™) (4.4)
ds® (1 —nr)? +n?r2)*
where e = £1. Also
ds _ 1 . ﬁ_«; _ —n2(f€ﬁ’+77’g. (4.5)
ds /(1 —nr)? +1272) ds® (1 = k)2 + n?72)

Thus from (4.4) and (4.5), we get n(k? —72)" = 2(k' — %), where a = €,/(k'2 4 72)

and b= ———L |
(A=nr)2+n372)

Let $(5) be a curve on surface S™(s(3),v(8)). Then §(s) is given by

B(5) =8"(s(5),v(5)); 5= (5(5),0(5)). (4.6)
Differentiating (4.6), two times with respect to s, we have

R(5)N (5) = S (s(5), v(5))0 + 287, (5(5), v(5))30 + S, (s(5), v(5))0?
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+ S (s(3), v(5))8° + 87 (5(5), v(5))3, (4.7)

where ¥ = ‘; I3 0="2 5= % and § = 2. The partial derivatives of S (s(5), v(5))

ds
with respect to s and v, are

Sy (s(5),v(5)) = (cos(s)N + sin(s)B), (4.8)

Sz, (s(5),v(5)) = =k cos(s)T —sin(s)(1 + 7)N + cos(s)(1 + 7)B, (4.9)

SZ(S(E),U(E)) (1 —wvkcos(s))T —wvsin(s)(1 +7)N +wvcos(s)(1+7)B, (4.10)
ST(s(5),v(8)) = v(k(2 + 7) sin(s) — k" cos(s))T

+ (7’ cos(s) — (1+7)*sin(s)) B,
+ (k(1 — vk cos(s)) — vr’sin(s) — v(1 + 7)% cos(s))N.  (4.11)

Now, using the equations (4.8)—(4.11), in equation (4.7), and the fact that N and
N are collinear, we get

sin(s)v + 2 cos(s)(1 + 7)sv + cos(s)(1 + 7)vs
+ v(7’ cos(s) — (1 + 7)%sin(s))s* =0, (4.12)
—2k cos(s)0s + (1 — vk cos(s))§ + v(k(2 + 7) sin(s) — &’ cos(s))$% = 0.
Substituting $ and § from (4.3) and (4.4), in equation (4.12), we obtained the
required conditions.
Conversely, Let 3(5) is a curve on surface S™(s(s),v(s)) such that the map
5+ (s(5),v(5)), satisfies the equation (4.1). Then, on substituting (4.8)—(4.11), in
equation (4.7), we obtain

7(5)N(5) = {sin(s)t + 2cos(s)(1 + 7)0 + cos(s)(1 4 7)vi
+ (7" cos(s) — (1+7)*sin(s))$°} B + {cos(s)d — 2sin(s)(1 4 7)0
—sin(s)(1 + 7)v§ + (k(1 — vk cos(s)) — v7’sin(s) — v(1 + 7)? cos(s)) §*} N
{2k cos(s)9é + (1 — vk cos(s))s 4+ v(k(2 + 7) sin(s) — &’ cos(s))5*}T.

As (N,T) =0 and (N, B) = 0, hence N and N are collinear. Therefore, 5(3) is a
Bertrand mate of y(s). O

Theorem 4.2. Let (v(s),3(5)) be a Bertrand couple in E* and 3(3) is lying on
normal ruled like surface S™(s,v) of y(s) with 7(s) # 0 . Then the map 5 — v(3)
satisfies the relation

K sin(s) cos(s)b(nf(n(l777:{)77772)123)777(1+'r)ab
rsin(s) (k2 cos?(s)+(1+7)(24+7))+cos(s) (k7/—k'(1+7T))

if sin(s) # 0 and cos(s) # 0,

v = _)\l{(gi(f:‘r) if sin(s) = £1 = A and cos(s) = 0,
—)\% if cos(s) = £1 = X and sin(s) = 0,

where € = £1, n # 0 is an arbitrary constant, a = e/(k2+7'2) and b =
1

(I—nm)tn2re
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Proof. Let (v(s),3(5)) be a Bertrand couple in E? and j3(3), lying on normal
ruled like surface S™(s,v) of v(s) with 7(s) # 0 . Then, substituting (4.8)—(4.11),
n (4.7), and taking the scalar product with 7', N and B, we have

—2k cos(8)0s + (1 — vk cos(s))§ + v(k(2 + 7) sin(s) — &’ cos(s))$% = 0,
cos(s)t — 2sin(s)(1 4+ 7)s0 — sin(s)(1 + 7)v§

+(r(1 — vk cos(s)) — vr’sin(s) — v(1 + 7)2 cos(s)) 2 = R(N,N), (4.13)
sin(s)d + 2 cos(s)(1 + 7)$0 + cos(s)(1 + T)US

+ v(7’ cos(s) — (14 7)?sin(s)) 5>

Now, if both cos(s) # 0 and sin(s) # 0, then from second and third part of (4.13),
we get

2(1 4+ 7)05 + (1 — 7)v5 + (—rsin(s)(1 — vk cos(s)) + v7’)52
= —&sin(s)(N, N), (4.14)
Using equations (4.3), (4.4) and (4.14) in the first part of (4.13), we obtain

_ Ksin(s) COS(S)b(Ii — R’(N, N>b) n(1+ 7)ab
U o) eos(s) + (L + )@+ 1)+ cos)(wr — R )

where a = ey/(k2 +7/2) and b = ———L— . Also, if we differentiate (4.3)
(A—nr)2+n272)
with respect to s, and take the scaler product with the normal, then

_ = k(1 —nK) —n7? 9 9
R(N,N) = (1(_ 77:)2)"‘ 7;727_2 =b*(k(1 —nr) —n7?). (4.16)

Hence, equations (4.15) and (4.16) together prove the first part of the theorem. To
prove the other two parts consider cos(s) = 0, sin(s) = £1 = X and sin(s) = 0,
cos(s) = £1 = A in equation (4.13), we get

§+Ak(24T)vs% =0,
—2X(1 4+ 7)50 — A1 + 7)vé + (k — v’ N2 = B(N, N), (4.17)
Ao —vA(1+7)%82 =0,

and,
—26M05 + (1 — vrA)§ — K/ ws? = 0,
M+ (k(1 = vAk) —v(1 4 7)2X)$% = (N, N), (4.18)
2A(1 + 7)$0 + A(1 + 7)vs + 7' Aws* = 0.
The second part of the theorem is proved by the first part of (4.17), (4.3) and (4.4).
Whereas to prove the third part of the theorem, solve the first and third parts of

(4.18) by replacing the values of v$, and then use equations (4.3) and (4.4) to get
the required result. O
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Theorem 4.3. Let S"(s,v) be a normal ruled like surface generated by a curve
v(s). Then ~(s) is neither an asymptotic curve nor a geodesic of S™(s,v).

Proof. Let S"(s,v) be a normal ruled like surface generated by a curve y(s). Then
the unit surface normal of S"(s,v) is given by the equation (3.1). Now from [14,
p. 166], we have

kg =#(N,N xT) and k, = (N, N). (4.19)

Thus the unit surface normal N and N x T along ~(s), from (3.1) we have

(4.20)

]Y(S,O) = —sin(s)N + cos(s)B,
N(s,0) x T = cos(s)N + sin(s)B.

Therefore, from (4.19) and (4.20), kg = kcos(s) # 0 and k,, = —rsin(s) # 0 for
all s. Hence v(s) is neither an asymptotic curve nor a geodesic of S™(s, v). O

Corollary 4.4. The geodesic torsion of the curve y(s) on normal ruled like surface
S™(s,v) is given by T, = K cos(s) sin(s).

Proof. From relation 7% = (N(s,0) x N4(s,0),xN), we get the solution of this
corollary by direct calculation. O

As we know S"(s,v) = v(s) 4+ v(cos(s)N + sin(s)B), where X (s) = cos(s)N +
sin(s)B); (X (s),X(s)) =1 and (T, X) = 0. Therefore, we can make another frame
{T, X (s), T x X =Y} in S"(s,v), such that the derivative of T', X and Y satisfies
the equations

T 0 kcos(s) —rsin(s)||T
X'| = |—kcos(s) 0 (1+7) || X], (4.21)
Y’ ksin(s) —(147) 0 Y

and this frame coincides with the Darboux frame along ~(s) in S™(s,v).

Theorem 4.5. Let S™(s,v) = vy(s)+vX(s), where X (s) = cos(s)N+sin(s)B. Then
Kk cos(s)

orthogonal trajectory of X (s) lies in S™(s,v) if and only if v = P ] Py e

Proof. Let (s) be an orthogonal trajectory of X (s) lying on S"(s,v). Then
5(s) =v(s) +v(s)X(s) and (§'(s),X'(s)) =0
Also, from 4.21, we get
0=(d'(s), X'(s)) = (T, X'(s)) + v(X"(5), X'(5)),
K cos(s)

— U= k2 cos2(s) + (1 +7)2 (4.22)

Equation (4.22) proves the first part of the theorem.
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Now to prove converse part, let S™(s,v) = v(s)+vX(s), with X (s) = cos(s)N +
sin(s)B and v = %ﬁ:&w Then by taking
K cos(s)
k2 cos?(s) + (1 +7)2

3(s) =~(s) + (cos(s)N + sin(s)B),

it is easy to prove that (6(s), X'(s)) = O(use Frenet frame of v(s)). Hence d(s) is
an orthogonal trajectory of y(s) in S™(s,v). O

Note. Similar way, we can also study the characterizations of curves lying on
osculating and rectifying ruled like surfaces.

5. Examples for ruled like surfaces

In this section, we form the normal, osculating and rectifying ruled like surfaces
generated from a straight line, circle and helix. Also, we plot the orthogonal
trajectory of X (s) = cos(s)N + sin(s)B in a normal ruled like surface.

Example 5.1. Let v(s) = (s,0,0) be a straight line in E3. Then Frenet frame
along 7y(s) can be taken as follows

T(s)=(1,0,0), N(s)=(0,1,0), B(s)=(0,0,1).

Then, the parametrization for normal, osculating and rectifying ruled like surfaces
for a straight line are given by

S(s,v) = (s,vcos(s),vsin(s)), Vsel,veJand I,J CR,
Se(s,v) = (s—i—vcos(s),vsin(s), 1), Vsel CRve(l,b)and 1 <beR,
S (s,v) = (s + v cos(s), 1,vsin(s)) VseICRwe (l,b);and1l <beR.

Now, we will discuss these surfaces one by one.

Case 1. Consider the surface S™(s,v) = (s,vcos(s),vsin(s)), Vs € I and v € J;
I,J C R. Then the natural frame {S7(s,v),S?(s,v)} on S"(s,v) are

Sy (s,v) = (1, —vsin(s),vcos(s)), and S;(s,v) = (0,cos(s),sin(s)).

Therefore the unit surface normal of S"(s,v) is N = \/ﬁ(—v,sin(s)mos(s)).
The coefficients of first fundamental form are £ = (1 +v?), F = 0 and G = 1.
1

Whereas coefficients of the second fundamental form are L = 0, M = T and
N=0.

Thus the surface S™(s,v) is minimal and a surface of negative Gaussian curva-
ture in E3.
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Case 2. Let S°(s,v) = (s + vcos(s),vsin(s),1), ¥V s € I,v € (1,b),I C R and
1 < b e R. Then {S%(s,v),S(s,v)} is a natural frame of S°(s,v) and S2(s,v),
SY(s,v) are obtained as follows

S%(s,v) = (1 — wsin(s),v cos(s),0), and S2(s,v) = (cos(s),sin(s),0).

The unit surface normal N° of S°(s,v) is N° = (0,0,1). Thus the first I and the
second I1 fundamental forms of S°(s,v) are I = ((s + vcos(s)? + v? sin(s)))ds? +
2Fdsdv+dv? and IT = 0, respectively. Hence the surfaces of type S°(s, v) generated
by the straight line in E? are minimal and flat.

The nature of rectifying surface of a straight line is not much different as com-
pared to the osculating surface. Because the rectifying and osculating ruled like
surfaces of straight-line look the same. Therefore we give figures only for regular
osculating surfaces and irregular rectifying surfaces in E3.

s 5 e 1o
8 e _~0
SN~

-10

(a) Normal ruled like surface of
the straight line for —5 < s < 5
and —10 < v < 10.

(b) Osculating ruled like surface
of the straight line for —5 < s < 5
and 1 < v < 10.

10

5 10 T o
° 510 s

(c) Rectifying ruled like surface
of the straight line(Irregular) for
—5<s<band —10 < v < 10.

Figure 1. Ruled like surfaces of a straight line.

Example 5.2. Let v(s) = (cos(s),sin(s),0) be a circle in E3. Then Frenet frame
of v(s) on E? are

T(s) = (—sin(s), cos(s),0), N(s) = (— cos(s), —sin(s),0), B(s) = (0,0,-1).
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Therefore the ruled like surfaces of the circle are given by

S*(s,v) = (cos(s) —vcos?(s),sin(s) — vsin(s) cos(s), —v sin(s)),
Vsel,veJandI,J CR,
Se(s,v) = (cos(s) — 2vsin(s) cos(s), sin(s) + v(cos?(s) — sin2(s)),0),
Vsel CRve(l,b)and 1 <beR,
S”(s,v) = (cos(s) — vsin(s) cos(s), sin(s) + v cos?(s), —v sin(s))
VselCRwe(l,b)andl <beR.

Thus, the unit surface normal of the surfaces from equations (3.1), (3.4) and (3.6)
are

N™(s,v) = Vm {v sin(s) + sin(s) cos(s) (1 — v cos(s)),
—vcos(s) + sin?(s)(1 — vcos(s)), cos(s) (1 — v cos(s)) }7
N°(s,v) =(0,0,-1),
N7(s,v) = \/(vfsin(s))l2+v2 prp {11 sin?(s) cos(s) — cos(s)(v — sin(s)),
vsin(s) cos?(s) — sin(s)(v — sin(s)), v cos(s) cos(s)}.

Similarly, the Gaussian and the mean curvatures for the surfaces can be obtained
from (3.2), (3.5) and (3.7). Also, the orthogonal trajectory of X(s) = cos(s)N +
sin(s)B = (— cos?(s), — sin(s) cos(s), —sin(s)) from Theorem 4.5 is (see the Fig-

e ? 5(5):( cos(s) sin(s) —sin(s)cos(s))

1+ cos2(s)’ 1+ cos?(s)” 1+ cos?(s)

Figure 2. Orthogonal trajectory of X(s) for —5 < s < 5 in Fig-
ure 3a.

Example 5.3. Let y(s) = %(cos( s),sin(s), s) be a circular helix in E3. Then
Frenet frame along ~(s) are

(S), - sin(s), 0)7

3) = \% —sm(s),cos(s), 1),
% in(s), — cos(s),1).
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(a) Normal ruled like surface of (b) Osculating ruled like surface
the circle for —5 < s < 5 and of a circle for —5 < s < 5 and
—10 < v < 10. 1 <v<10.

Figure 3. Normal and osculating ruled like surfaces of the circle.

(a) Rectifying ruled like surface (b) Rectifying ruled like surface
of the circle(regular) for —5 < of the circle(Irregular) for —5 <
s<5b5and 1 <wv<10. s <5 and —10 < v < 10.

Figure 4. Rectifying ruled like surfaces of the circle.

Thus, the ruled like surfaces of the circular helix are given by the following equa-
tions:

S"(s,v) = (Coj(is) + v(—cos?(s) + S“if(s)), Si\n/(g) — v(cos(s) sin(s))(“\r}ﬁ)7
S+ Vs e LveJand ] CR,
S(s,v) = (CO\S/(;) —v(sm(sz;os(s) + sin(s) cos(s)), Slfl/(f) +v (&ﬁ sin?(s)),
\f-l—“\‘ﬁs)) VselCR,ve(l,b) and1 <beR,
S"(s,v) = \%(cos( ) + vsin(s)(sin(s) — cos(s)), sin(s) 4 v cos(s)(cos(s)
—sin(s)), s + v(sin(s) + cos(s))), Vsel CR,ve(l,b)and 1 <beR.

The unit surface normal for these surfaces can be obtained by using equations
(3.1), (3.4) and (3.6), respectively. Also, the orthogonal trajectory of X(s) =
cos(s)N + sin(s)B = (— cos?(s), —sin(s) cos(s), —sin(s)) from Theorem 4.5 is (see
Figure 5b)

5(s) = ( ! \/5 cos( ) (Sin2(s)

7 cos(s) + co(3) 1 (11 Va2 \ V2 - cos2(s)) , % sin(s)
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Ruled like surfaces in three dimensional Euclidean space

(14 v/2)sin(s) cos?(s) KR
cos?(s) + (14+v2)2 "2

(a) Normal ruled like surface of
the helix for —5 < s < 5 and
—10 < v < 10.

sin(s) cos(s)
cos2(s) + (14 /2)2

)

’ / "
~__ B
" ~__ <
3 ™ T
— __—
4 == s

e B
05 >—"¢

(b) Orthogonal trajectory of

X(s) for =5 < s < 5 in Figure
5a.

Figure 5. Normal ruled like surface of the helix and Orthogonal
trajectory of X(s).

i S 5
SN 0
-0

5

(a) Osculating ruled like surface
of the helix for —5 < s < 5 and
1 <wv<10.

-10
107

(b) Osculating ruled like surface

of the helix(Irregular) for —5 <

s<b5and —10 < v < 10.

Figure 6. Osculating ruled like surfaces of the helix.

(a) Rectifying ruled like surface
of the helix for —5 < s < 5 and
1 <wv<10.

A5

e

8 4 2 o 27 ¢ 4

(b) Rectifying ruled like surface

of the helix(Irregular) for —5 <

s < 5and —10 < v < 10.

Figure 7. Rectifying ruled like surfaces of the helix.
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6. Conclusion

For normal ruled like surfaces, we consider only those surfaces which are generated
by curves with 7(s) # —1, therefore in the case of Salkowski curves [12] heaving
7(s) = tan(s) regular normal ruled like surfaces are not possible with the same
parametrization. Whereas in the case of rectifying ruled like surfaces generated by
a curve, we got a case for some curve whose ratio of curvature and torsion holds
the equation

K tan(s), ifs# (2n+1)7,
T 0, if s =(2n+1)7%.

Thus exploring more details about this curve may give some new results. Fur-
thermore, we believe that using this way of parametrization, one can find different
surfaces in Minkowski space as well.
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Abstract. In this paper, we study the generalized Fibonacci like sequences
{tk,n}re{2,3},nen With arbitrary initial seed and give some new and well-
known identities like Binet’s formula, trace sequence, Catalan’s identity, gen-
erating function, etc. Further, we study various properties of these general-
ized sequences, establish a recursive matrix and relationships with Fibonacci
and Lucas numbers and sequence of Fibonacci traces. In this study, we exam-
ine the nature of identities and recursive matrices for arbitrary initial values.
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1. Introduction

In recent years, several papers [1, 2, 4, 18] published involving new identities and re-
sults based on Fibonacci-like sequences and their generalizations which have many
interesting properties. One can refer to the book [8] of T. Koshy for more such
sequences, generalizations, and rich applications.

In spite of many articles, books, and literature reviews on Fibonacci-like se-
quences and their generalizations [3-10, 13, 17], investigating new identities, results
and their applications are interesting areas among researchers. Ongoing through
the available literature review on generalizations of Fibonacci sequences, it can be
noted that mainly the work may be generalized in two directions. Either the re-
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cursive formula can be generalized and extended or the formula is preserved with
arbitrary initial assumptions. Kalman et al. [6] discussed some well-known results
of classical Fibonacci-like sequences and demonstrated that many of the properties
of these sequences can be established for much more general classes.

The recursive matrices corresponding to recursive sequences always attract re-
searchers to investigate new identities and establish some well-known results such
as Binet’s formula, determinants, permanents, etc. For instance, Kumari et al. [9]
have proposed some new families of identities of k-Mersenne and generalized k-
Gaussian Mersenne numbers and their polynomials. Tianxiao et al. [16] presented
a recursive matrix for recursive sequences of order three ay3 = pag+qar+1+ragra
with arbitrary initial conditions, and discussed some special third order recurrences
such as Padavon and Perrin numbers. Saba et al. [14] introduced the concept of bi-
variate Mersenne Lucas polynomials then established Binet’s formula and obtained
many well-known identities using Binet’s formula. Ozkan et al. [11] obtained the
elements of the Lucas polynomials by using two matrices and extended the study
to the n-step Lucas polynomials, whereas Testan et al. [15] given some families
of generalized Fibonacci and Lucas polynomials and developed some properties of
these families and established interrelationships.

1.1. Fibonacci and Lucas matrices
The well-known integer sequences, Fibonacci { f2,,,} and Lucas {usa,, } sequence are

defined as

fonte = fon + fony1 and Ugpyo = Uz p +F Uz py1; N >0, (1.1)

with fa0 =0, fa1 = 1for {fon} and us g =2, uz 1 = 1for {us,}. These sequences
are also extendable in the negative direction which can be achieved by rearranging
Eqn. (1.1). It is also noted that fa _,, = (—=1)""fa,, and us _, = (=1)"ug,, for
n € NU{0}.

A matrix sequence [8] corresponding to above integer sequences are given as

n f2 n+1 f2 n (n) U2 n+1 U2 n
= ; ’ d L = ’ ’ . 1.2
Q2 [ fz,n f2,n71 an 2 U2,n U2, n—1 ( )

Further in [12], Prasad et al. have obtained some interesting properties of gen-
eralized Fibonacci matrices (Q}) given in the following theorem. We use these
identities to establish some new identities and results in this paper.

Theorem 1.1 ([12]). Let n,l € Z, k(> 2) € N and Q} be a generalized Fibonacci
matriz of order k, then we have

1. (Q})" =Qp,
2. Q% = I, where Iy is identity matriz of order k,

3. QrQL = Qi
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4. det(@f) = (~1)-m.

Note. Throughout the paper, we adopt the notation ¢ ,, to denote the nth term
of the sequence {tg} of order k with arbitrary initial values.

2. The {t.,,} sequence and some properties
Consider the second order linear difference equation given by

tont2 =tont1 +tapn, >0 with t30=a and ¢35 =0. (2.1)
Similar to the Fibonacci sequence, the sequence {t,} can also be extended in the
negative direction by rearranging Eqn. (2.1) as to,_,, = ta,_py2 —to,—ny1; n €N

with the same initial values.
Thus, the first few terms of the sequence are as follows:

n -3 -2 -1 0|1 2 3 4 5 6
ton ... -3a+2b 2a-b -a+b | a | b | a+b a+2b 2a+3b 3a+5b 5a+8b
Jon | - 2 -1 1 0|1 1 2 3 5 8
lon -4 3 -1 2|1 3 4 7 11 18

Remark 2.1. For a sequence {t2 ,}n>0 satisfying Eqn. (2.1), we have

tgm, = afgm_l + bf27n7 where f270 =0 and f2,1 =1. (22)

2.1. Matrix formation

The matrix sequence {TQ(")}”ZO associated with the integer sequence {ts,} is de-
fined as
T = [t27”+1 to.n } with 7" = {b a } (2.3)

ton  ton—1 a b—a
where det(TQ(O)) =b(—a+b) —a® =b> — ab— a® = K(say).

In next theorems and results, we present some interesting recursive and explicit
formulas for the matrix sequence T2(n) associated with the Fibonacci matrices.
Theorem 2.2. The determinant of matrix TQ(n) s given by

det(T{™) = (a® + ab — b*)(—=1)""' = K(=1)".
Proof. To prove it, we use the following result of Fibonacci numbers
foms1fon—2 — fonfom—1 = (—1)" " (2.4)

Therefore,

det(T{") = tomiiton1 — 13,
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= (afom + bfoms1)(@fon2 + bf2n-1) = (afon1+ bf2,n)”

=a*(fonfom—2 — f22,n71) + b (font1 fon—1 — f22n)
+ab(fonfon—1+ fonsifon—2 = 2f2nfon-1)

=a?[(=)" "+ 0?[(=1)"] + ab(fant1fom—2 = famfon—1)

= a®[(=)" "+ 8*[(-1)"] + ab[(-1)"""]  (using Eqn. (2.4))

=(a® = b +ab)(-1)" ' = -K(-1)""' = K(-1)"

as required. O
Corollary 2.3. det(Tz(nH)) = (=1) det(T™).

Example 2.4 (Fibonacci matrix). For a =0, b= 1, we have det(Tz(n)) = (D"
Example 2.5 (Lucas matrix). For a =2, b= 1, we have det(Tz(")) = (—1)"5.

Theorem 2.6. Let TQ(n) be a matriz as defined in (2.3) and QY is the Fibonacci
matriz, then we write

7" = QuTs¥ = 7{VQr, VneZ.
Proof. We have

Q”T(O) . -f2,n+1 fon b a _ bfont1 +afon afontr +(b—a)fon
272 | fon  Jon-1]|a b—a bfon +afon—1 afon+(b—a)fon

- afon+bfoni1 bfon+afan-t ] (using relation (1.1))

lafon—1+bfon bfen-1+tafon2

= |f2n+1 f2m (using relation (2.2))
| t2n f2n—1

= 7.
By a similar argument, we have TQ(O)QS = TQ(n). O

Corollary 2.7. Ifa =0, b =1 then T2( ) = =1, and TQ(n) Q%, where I is an
identity matriz of order 2.

Corollary 2.8. Forn € N, we have T( n = =Q» T n=1) _ Q;sz(”H),

Theorem 2.9. Let TQ(") be a matriz as defined in (2.3), then we write
T(")T( n) _ (T(O))
Proof. By definition of T: 2(71), we have

T = QT g )
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= 1,705 Ty
0 0 0) (0 0
_ 1O ~ T = (10
as required. O

From Theorem 2.2, it is clear that the matrix TZ(") is invertible if and only if

TQ(O) is invertible i.e det(TQ(O)) = K # 0. Thus from Theorem 2.9, we have the

)

inverse of TQ(" given by

Inv(T{) = TS H, where  H = (T\”)? and a, b are such that K # 0.

2.2. The trace sequence

Let us define another sequence {ls ,,} of order two for the given sequence {t2,,} as
follows
lgm = trace(TQ(”)) = t2,n+1 + t27n_1, (25)

whose initial values in terms of a and b are obtained as

loo=1to1 +ta 1 =0+ (b—a) =—a+2b,
log =too+tag=(a+b)+a=2a+b

Thus, Eqn. (2.5) can be re-stated free from ¢, ,,, recursively as
l2,n+2 = l2,n+1 + lg,n with l270 = —a+ 2b, l271 = 2a +b. (26)

In particular, for a = 0, b = 1, {t2,,} becomes {f2,} and its corresponding se-
quence of traces coincides with the standard Lucas sequence {ug » }.

Moreover, the matrix Mén) corresponding to trace sequence {l2,} is given by

(n)_ lQ,n—I—l lgm . (0)_ 1271 1270 o 2@+b 21)7(1
My = [ Ly 127711] with M, "~ = [12,0 b 1| = |26—a 3a—b|" (2.7)

Theorem 2.10. The determinant of matrix MQ(") is given by
det(M{™) = 5K (—1)"*" vn € Z.
Proof. From Equ. (2.7), we have

um lont1r o | _ | otz titon  tomgr Fl2n
2 lon  lon—1 tont1 +ton-1  ton+tap_2

- X | L TQ(n)Lgo) (from Eqn. (2.1) and Eqn. (1.2)).
tan ton—1]|2 —1

n n 0 nm(0 0 0 0
Thus, det(My") = T4V LY | = |Q T3V LY | = |Q3 || T3V || LS| = 5K (~1)"*!. O
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In particular for n = 0, we have det(MQ(O)) = 5a% + 5ab — 5b* = —5K.
The first few terms of the trace sequence {2, }nez are as follows:

n_ | . -3 -2 -1 0 1 2 3 4
la | .. Tadb -4a+3b 3a-b -a+2b 2a+b a+3b 3at+4b 4a+7b

Remark 2.11. If [, = kja + kob for n > 0, then we have

l?,—n+1 = (k2a — k’lb)(fl)n

2.3. Binet’s formula, identities and generating function

The characteristics equation for the second order linear difference equation (2.1) is
given by

=z +1. (2.8)
Equation (2.8) has two real roots, a; = HT\/‘F’ and ag = #, which satisfy
3 )
aptaz=1, a;—as=vV5 ajay=-1 and a_ +2\[. (2.9)
a9 —

And from the theory of difference equation we know that the general term of the
Eqn. (2.1) can be expressed as:

tan = c10y + 20y, (2.10)

where ¢; and ¢y are arbitrary constants (to be evaluated) and «; and s are
characteristics roots.

Theorem 2.12 (Binet’s formula). For n > 0, we have

_ —Aat} + Bay

to, = T7

where A = aaig — b and B = aay — b.

(2.11)

Proof. To establish the result, we eliminate arbitrary constants ¢; and ¢y from
Eqn. (2.10). Now, putting the values of a7 and as in Eqn. (2.10), we get

ton = 1 (1 +2\/5>n + ¢ (1 _2\/5)“. (2.12)

To determine the values of ¢; and cg, we set to 9 = a and ¢37 = b in Eqn. (2.12).
Therefore,

)l

oo =a=c1+c and tg,lzb:cl(

= b= %[aJr\/g(cl —c2)],
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which gives ¢; + ¢ = a and ¢; — ¢o = (2b — a)/+/5 and on solving we get

av/5 — (a — 2b) av/5 + (a — 2b)
V6 2V5 '

Thus, from Eqn. (2.12), we have

and ¢ =

Cc1 =

ton = W [(a\[ (a—2b))(1+2\/5> +(a\/5+(a—2b))(1 _2\/5> ]
1 n n
= %[‘A% + Bay]
as required. O

Theorem 2.13. For n € N, we have
—Aay + Ba}
vE o

Proof. Replacing n by —n in the Binet’s formula (2.11), we get

ty,—n=(=1)"

; _ —Aa;" + Bay" _1(A B)
2,—n — \/g \/>
1 (—Aag + Bal )
VAT
—Aay + Ba} —Aaf + Ba} ,
=—— = (-1)"——=—=—— (using ayas = —1)
Va5(=1)" V5
as required. O

Theorem 2.14 (Catalan’s identity). For the sequence {t2 .}, we have

(—=1)"(b? — a® — ab)

T 2" — (V5 - 3)" — (—V5 - 3)"].

t2,n—7't2,n+'r' - t;n =
Proof. Using the Binet’s formula (2.11), we write

t2,n—rt2 n+r t% n
( Aol + Bay~ T) <—Aa{‘+r + Ba?”) (—Aa{b + Ba§>2

V5 V5 V5
= L [AB(20}a) — ol Tad™ — af el )]
1
= 5ABa{La§ (2= a7 ab —afag")]
AB _ T T
% lz_ (3 _f) B (3t;/5> ] (using (2.9))
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_ (_1)n(b22r—'5a2 _ ab) [2r+1 _ (\/> _ 3)7, _ (_\/’ _ 3)7’]

as required. O

Corollary 2.15 (Cassini’s identity). For the sequence {t2 n}nen, we have
ton—1t2,n41 — t;n = (=1)"(b* — a® — ab).
Theorem 2.16 (d’Ocagne’s identity). For positive integers r and n, we have

b2 —a? —ab
tonlori1 — tongito,r = (\/5)[0‘?04 —ajay].

Proof. Using the Binet’s formula (2.11), we write

tontori1 — t2naitor
[ —Aat + Bag\ [ —Aa]T + Bajytt
)
— A + Badtt [ — Aot + Baj
(AT

AB
1 1 1 1
( n—+ r n+ r n_r+ 71‘-&- n)

T Ty \1 %2 2 Q1] — Q1 Q3
= —latas(ar — a2) — ajaz(an — o)
AB o
= T[(a?ag —afal)(ag —ag)] (substituting the value of A and B)
b —a® —ab X X .
= (\/5)[0/110/2 —afay]  (using oy —az = V/5)
as required. O

Now, we aim to give the generating function for {ts ,} and {l2,} sequences in
terms of @ and b.

Generating function

Let g(z) = Y07 o t2.na™ be a generating function for the sequence {t2,}. Now,
multiplying Eqn. (2.1) by 2”2 and then taking summation over 0 to oo, we get

oo oo oo
E x"+2tn+2 — E x”+2tn+1 — E "2, =0
n=0 n=0

n=0
= (9(z) —to — ix) — (g(&) — to)z — g(w)a® = 0
— g(x)(1 —x — 2?) — (to + t1x — tox) =0
a+(b—a)x

= g(z) = m

(2.13)
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Theorem 2.17. Let g(z) be the generating function for trace sequence {ls ,} (2.6),

then we have
q(z) = —g(x) + 2 (g(x)xa) .

Proof. Lat A = —a+ 2b and B = 2a + b (initial value of trace sequence), then in
Eqn. (2.13) replace a by A and b by B, we get

:A+(B—A)x ~ (~a+2b)+ (2a+b— (—a+2b))x

a(w) (1—z—22) (1—z—2?)
_ (ot 20) + (3a —b)x
(1—z—2?)
_—a—(b—a)x [b+ (a+b—10b)x]
(1—z—2a?) 2 (1—2x—2a?)
= —g(z)+2 (g(xl_ a)
as required. O

Fora =0, b=1and a =2, b =1, Eqn. (2.13) gives the generating function
for Fibonacci and Lucas sequence, respectively.

3. The {t5,} sequence and some properties

Let us consider the sequence {t3,}n>0 given by a third order linear difference
equation as follows

13,043 = l3,n2 +13ne1 + 130 With {30=a, 31 =05, {32 =c. (3.1)

The recurrence relation (3.1) can also be extended in negative direction and it can

be achieved by rearranging the relation as t3., = t3 n43 — t3.n42 — t3.n+1, 1 <0.
In particular for a = b =0, ¢ = 1, Eqn. (3.1) gives tribonacci sequence while

fora=3, b=1, c¢=3, same is known as trucas (Tribonacci-Lucas) sequence [g].
The first few terms of sequence {t3,} are given in the following table:

Index (n) | tsn Value Index (—n) | t3,—n Value
0 t3}0 a 0 tg)o a
1 t371 b -1 t37_1 c—a—2>b
2 t3}2 Cc -2 tg,,g 2b—c
3 t373 a+b+c -3 t3,_3 2a — b
4 t3,4 a+2b+ 2c —4 t3’74 2¢c — 3a — 2b
5 t3,5 2a + 3b + 4c -5 t3,_5 56— 3c+a
6 t3$6 4a + 6b+ Tc —6 tg’,ﬁ 4a —4b+c
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The matrix representation corresponding to Eqn. (3.1) is given by a square matrix
Tén) of order 3 defined as

13n+2  t3n+1 +1i3n 3041 . c a+b b
Tg(n) = tS,n+1 tS,n + tg’n,1 t37n with T3( ) =1b ¢c—b a (32)
t3n  ta3p—1+t3n—2 t3n-1 a b—a c—a—-1»

and the determinant of TB(O) is given as
det(TéO)) =a® +2a%b+ a®c+ 2ab* —2abc—ac? +2b° —2bc® + ¢ (= K, say).

Theorem 3.1. Let {f3 1 }n>0 be tribonacci sequence [A000073] with initial values
0,0,1, then

tsn = 0(f3nt1 — fan) Fafsn_1+cfsn, Vnez.

Proof. We prove it using mathematical induction on n. For n = 0, the result
obviously holds. For n =1, we have

t31 =0(fs2— f31) tafso+cfzn=b+al+c0=0b.
Now assuming the result is true for n = k. For n = k + 1, we write

thr1 =tk +lp—1 + tp—2
= [b(fi+1 — fu) + afu—1 + cfe] + b(fr — fo—1) + afo—2 + cfx—1]
+ b(fr-1 — fr—2) + afr—3 + cfr2]
=b(fr+1 — fr—2) + a(fo—1 + fro—2 + fr—3) + c(fx + fr—1 + fr—2)
=b(frr2 — frt1) + afr + cfesr (using tribonacci sequence)

as required. O

Theorem 3.2. Let T3(0) be the initial matriz defined in Eqn. (3.2) and Q% be
tribonacci matriz, then we have T?En) = QQT?SO), Vn € Z.

Proof. It can be easily proved using mathematical induction on n and Theo-
rem 3.1. O

Corollary 3.3. Forn € N, we have, T3(n) = QgTé"_l) = Q§1T§n+1).
Remark 3.4. Matrices Q)5 and Téo) commutes i.e. Qg’TéO) = TéO)QQ, Vn € Z.
Theorem 3.5. For recursive matrizc Tén), we write

TMTEY = (192 v ez
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Proof. Using definition of Tén), we have
T = RV Qs Y
_ Qi = 1T = (10
as required.

Remark 3.6. Determinant of T3(") is invariant of n, i.e. det(Tén)) = det(TéO)) =K.
Since by the properties of determinant, we write

det(TS™) = det(QETLY) = det(QF) det(TL™)
= (=1)*" det(T{") = det(TS") = K.

Thus, 74" is invertible if and only if T.") is invertible, so for the existence of

inverse of TS("), we consider only those values of a, b, ¢ such that det(Tg(O)) #0.

Example 3.7 (Tribonacci). Let a = b =0 and ¢ =1 then det(Tgfn)) =1
Example 3.8 (Trucas). Let a = 3,b =1 and ¢ = 3 then det(Tén)) =44.
Remark 3.9. Inv(T{") = T\"™ H~1 provided det(T.") # 0, where H = (T\")2.

3.1. Matrix representation for sequence of traces

The Lucas sequence of order 3 (also known as trucas, ref. A001644, A007486) is
given by following recurrence relation

l37n+3 = l37n+2 + 13,n+1 + lg,n, with 1370 =3, l371 =1, l372 =3. (33)

In terms of tribonacci sequence, trucas is given by I3, = trace(Q%) = fsny2 +
fan+2f3n—1. Now, redefining the trucas (3.3) for {¢5,} sequence with the relation

s, = trace(T\™).
Since trace(T?Sn)) = t3 42 + t3.n + 2t3 n_1, so from Theorem 3.1, we have

trace(Té”)) = [b(fn+3 = frt2) + afnt1 + cfata] + [0(frt1 — fn) + afn1 + cfil
+2[b(fn — fn-1) + afn—2 + cfn-1]
=b(fsnt3 + fant1 + fan — fanre —2f3n-1)
+a(fan+1 + fan—1+2fsn—2) +c(fsnte + fan +2f3n-1)
=2b(f3,n43 — fant2 — fan—1) + alz 1 + clg n. (3.4)

Remark 3.10. Fora = b =0, ¢ = 1, Eqn. (3.4) gives the standard trucas sequence.
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The corresponding matrix sequence {Mén)} for the sequence {l3 .} is given by

- I3ny2  l3py1+l3n  I3n1

n

My = |lzpny1 lzpn+ 1301 I3
I3n  I3n-1+l3n—2 Il3n_1

Theorem 3.11. Let L:())O) be the initial trucas matriz (it can be obtained by putting
a=3,b=1, c=31in Téo) in Eqn. (3.2)), then we have

M =M LO. (3.5)
Proof. It can be easily proved with mathematical induction on n. O

Theorem 3.12. If K is determinant of T3(0), then det(Mén)) =44K.

Proof. Using properties of the determinant and Eqn. (3.5), we have

n n 0 n 0 n 0 0
det(My"V) = |V LY | = ||| L)) = Q31T |1 LYY
= (—1)°"K44 = 44K

as required. O

Thus, it is concluded that if Tén) is invertible implies inverse for Mé") exists
for all n € Z, i.e. Mén) is invertible if and only if T3(0) is invertible.

Generating function

Let g(z) = Y07 o tsna™ be a generating function for {¢3,} sequence. On multi-
plying each term of Eqn. (3.1) with "3 and then taking summation over n = 0
to oo, we get

oo o0 oo o0
Z 2", 5 — Z a3 0 — Z "3, — Z a3, = 0.
n=0 n=0 n=0 n=0

Thus, we have

(9(x) —to — trx — t2a®) — (g(x) — to — 1)z — (g(x) — to)z® — g(x)z® = 0
= glx)(1 -z —2? —23) —to(1l —z —2%) —t1(x — 2%) —t2® =0
a(l —x —2?) + b(x — 22) + ca?
(1—2—22—23)
a+(b—a)x+ (c—b—a)x?
(1—x—22—123) '

= g(v) =

= g(v) =

(3.6)

In particular, settinga =b=0, c=1and a =3, b=1, ¢ =3 in Eqn. (3.6) give
the generating functions for tribonacci and trucas sequence, respectively.
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3.2. Binet’s formula

To establish any identity involving nth term of the sequence, the Binet’s formula
plays an important role. Here, we derive an explicit formula for generalized third
order sequences {t3.,,}.

Let us assume that the three characteristic roots of difference Eqn. (3.1) are
r1,79 and rg. Clearly, 71,72 and r3 satisfy the relations

ri4+ro+r3=1, riro+rors+ryry =—1 and rirers = 1. (3.7)
Theorem 3.13 (Binet’s formula). For n > 0, we have

P n n
tgp = Pri" +Qra" + Rr3", (3.8)
K — T2

where P = (ro —r3)R—ara +b, Q =(r3 —r1)R+ar; —b, R= oo (nutra)bbriraa

ry—(ri+re)rs+rire

Proof. Using the relation between roots and the coefficients of a polynomial,
rewriting Eqn. (3.1) as

thnts = (r1 + 712 +73)tk nra — (r1re + 1ors + 7371tk nt1 + r1r2Tsth n.
It can also be written as,
tents — (r1 + 72)tent2 + (T172)tk nt1

= ratint2 — r3(r1 + r2)tg nt1 + r1irerstin
=13tk nt2 — (11 +72)tknt1 + r1ratenl. (3.9)

Similarly, we have

tent2 — (1 +72)tk nt1 + T172tkn = T3ltknt1 — (11 +712)tkn + rireti n—1]. (3.10)
Substitute Eqn. (3.10) in Eqn. (3.9), we get

thnts — (11 +12)tknt2 + (r1r2)tensr = 73 [tkntr — (11 +72)tkn + 7172tk n—1].
Continuing this substitution process, we obtain a recursive relation

n+1
3

thnts — (r1 +12)tknte + (T172)tg np1 =757 [tr2 — (11 +r2)te1 + rirateol.

Now, divide both side of the above equation by r5*%, we get
tk7 3 r1+ 179 r17ro 1
nnjg, _ ! 3 )tk,n+2+(Tr3)tk,n+1 = —[teo—(ri+7r2)te1 +riratro]. (3.11)
r3 r3 T3 "3
t
For simplicity, consider ty o — (r1 + r2)tk,1 + r17ratr,0 = K and k;lnjj’ = Hp pys in
r3
Eqn. (3.11), we write
ry 4+ 1o 172 1
Hk,n+3 — (li)Hk’frH»Q + (172)Hk,n+1 - 7K7 (312)
r3 3 r3
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which is a second order non-homogeneous linear difference equation and its solution
is given by Hy, ,, = H(C)+H (P), where H(C) represents the solution corresponding
homogeneous part and H(P) is particular solution.

Since, roots of the characteristic equation for homogeneous part of Eqn. (3.12)

are ap = :—; and ay = :—; So, the solution for homogeneous part is given by
r\" ra\" .
H(C)=A(—| +B|—) , where A and B are arbitrary constants.
T3 T3

Furthermore, the non-homogeneous part of Eqn. (3.12) is a constant, so particular

solution is also a constant and it is given by H(P) = W Thus,
3

general solution of Eqn. (3.12) is

n n
T T K
Hyn=HO)+HP)=A(—) +B(2) + .
r3 r3 r3 — (r1+ro)rs +rirg
t n . .
Replacing Hy, ,, by :n and K by tg o — (11 +7r2)tk1+rimats o in the above equation,
3
we get
tpo — t tr
ten = Ari" + Bra" +r3"R, where R = k2 5 (1 + 72)te,1 + 117atho . (3.13)
r3 — (ri+ro)rs +rire
Hence, using initial values from Eqn. (3.1) in Eqn. (3.13), we have
A:(TQ—Tg)R—(ZT2+b and B:(Tg—rl)R+ar1—b
T —T2 rn —"T2 ’
where R = S-(ndrabiniraa oo e qnired. O

ri—(ritra)ra+rire

Remark 3.14. Setting a = b =0 and ¢ = 1 in Eqn. (3.8) gives the Binet’s formula
for the standard tribonacci sequence (the Fibonacci sequence of order three).

Remark 3.15. Setting a = 3, b = 1 and ¢ = 3 in Eqn. (3.8) gives the Binet’s
formula for the Tribonacci-Lucas sequence.
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Abstract. In this paper, we characterize the structure of the unit group of
the semisimple group algebras F¢SL(2,8) and F4SL(2,9) of the special linear
groups of 2 X 2 matrices with determinant 1 over the finite fields of order 8
and 9, respectively.
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1. Introduction

The group algebra of the finite group G over the finite field F; is denoted by F,G.
Let ¢ and p be the order and characteristics of the finite field F,, respectively
and g = p*. Let U(F,G) be the group of units of the group algebra F,G. Group
theory frequently runs into the issues with unit group of the group algebra. The
characterization of the unit groups is crucial for a number of applications, including
the study of the isomorphism problem [14], one of the most significant research
problems in the theory of group algebras, the development of convolutional codes
in group algebra (see [5, 9]) and other applications. The structure of the unit
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group of the semisimple group algebra F,G has been extensively studied (see [3,
4,10, 12-18, 20, 22]). The study by Bakshi et al. [4], in which the unit groups of
the semisimple group algebras of all metabelian groups are studied, is one of the
most significant ones in this field. As a result, the majority of research in this field
focuses on understanding the unit group of non-metabelian group algebras. The
unit groups of the group algebras of non-metabelian groups up to order 72 were
described by Mittal et al. in [16]. Further, Sharma et al. determined the unit group
of the semisimple group algebra (SGA) of the respective groups SL(2,3) (special
linear group over the finite field of 3 elements) and SL(2,5) (See [11] and [19]).
In continuation, Sivaranjani et al. [21] determined the unit group of the SGA of
the group SL(2,7). In addition, Arvind et al. [1] investigated the unit group of
the SGA of the group SL(3,Zy). The main objective of this paper is to derive the
unit group of the SGA of the groups SL(2,8) and SL(2,9), respectively. We notice
that the difficulty of exactly identifying the unit group of the SGA increases as the
size of the group increases. One may refer [15, 17] for some of the recent works in
this area. Our first goal in determining the unit group is to infer the Wedderburn
decomposition (WD) of F,SL(2,8) and F;SL(2,9), respectively. Further, it is
easy to derive the unit group from the WD. The rest of this paper is structured
as follows. The prerequisites for the article are covered in Section 2. In sections 3
and 4, we deduce the unit group of the group algebras F,SL(2,8) and F,SL(2,9)
in the form of theorems 3.1 and 4.1, respectively. Section 5 concludes the paper.

2. Preliminaries

Throughout this paper, SL(n,r) denotes the special linear group of n x n matrices
with determinant 1 over the finite field of order r. The order of SL(n,r) is given
by

=) =r) (" =Y (= D)7

Next, we discuss some notations and results from [7]. Let J(F,G) denote the
Jacobson radical of F;G. Let s be the least common multiple of the orders of
p-regular elements of group G and let 1 be the primitive s** root of unity over
a finite field F. Let Tg.r = {t : n — n' is an automorphism of F(n) over F}.
Since the Galois group Gal(F(n) : F) is cyclic, for any o € Gal(F(n) : F), there
exists a positive integer s such that o(n) = n®. For any p-regular element g € G
(i.e., p does not divide order of g), we define 74, = > h, where h runs over all the
elements in the conjugacy class C, of g. The cyclotomic F-class of 7, is defined as
SF(vg) = {74 | t € T,7}. The following theorem characterizes the set Ti;, 7.

Theorem 2.1 ([16, Theorem 2.3]). Let F be a finite field with prime power order
d such that ged(d, s) = 1 and e = order;(d) is the multiplicative order of d modulo
s, then Tg 7 = {1,d,...,d°"'} mod s.

To uniquely identify the Wedderburn decomposition (WD) of the group algebra,
the following six results will play an important role.
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Proposition 2.2 ([7, Proposition 1.2]). The number of non isomorphic simple
components of FG/J(FG) is equal to the number of cyclotomic F-classes in G.

Theorem 2.3 ([7, Theorem 1.3]). Assume that G has t cyclotomic F-classes and
Gal(F(n) : F)) is a cyclic group, then |S;| = [F; : F| with appropriate index

ordering if S1,S2,- -, Sy are the cyclotomic F-classes of G and F1, Fa,...,F; are
the simple components of Z(FG/J(FG)).

Proposition 2.4 ([14, Proposition 3.6.11]). Let G’ be the commutator subgroup of
G and let FG be a semisimple group algebra, then

FG~ F(G/G") o NG, G,

where F(G/G') is the sum of all commutative simple components of FG and
A(G,G) is the sum of all others.

Proposition 2.5 ([14, Proposition 3.6.7]). Let N be a normal subgroup of G and
let FG be a semisimple group algebra (SGA), then

FG ~F(G/N)@ AG,N),
where A(G, N) is an ideal of FG generated by the set {n —1:n € N}.
Proposition 2.6 ([6, Proposition 1)). Let FG be a finite SGA, where character-
istics of F is p. Let FG = @._, M,,,(F;), where F; are finite extensions of F and

r is a positive integer. Then p does not divide any of the n;.

Lemma 2.7 ([24]). Let p1 and py be two primes. Let Fy, be a field with g1 = ph
elements and let F,, be a field with g2 = p§2 elements, where ki,ko > 1. Let both
the group algebras Fy, G, Fy4, G be semisimple. Suppose that

«Fqu = @ile(nia‘Fm)a n; > 1

and M(n,]:qg) is a Wedderburn component of the group algebra F,,G for some
r > 1 and any positive integer n, i.e.,

Fo G = @f;llM(miv}—qz,i) D M(nv}—q;)7 m; > 1.
Here Fq, , is a field extension of Fq,. Then M(n,F, ) must be a Wedderburn
component of the group algebra Fo, G and it appears atleast r times in the WD of
Fq. G.
Proposition 2.8 ([1, Corollary 3.8)). Let FG be a finite SGA, where character-

istics of F is p. If there exists an irreducible representations of degree n over F,
then one of the Wedderburn component of FG is M(n,F).
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3. Unit group of F,SL(2,8)

Let G; := SL(2,8). Clearly, the order of G is 504. The group algebra F,G; is
semi simple for p # 2, 3,7 by Maschke’s theorem [14]. Also, One can note that the
degrees of irreducible representations of G are 1,7,8 and 9 whenever |SF,(v,)| =
1,Vg € G (see [23]). The group G; has 9 conjugacy classes (let the representative
of these classes be denoted by g; for i = 1,...,9). The representatives (R) of the
conjugacy classes, sizes (S) and the orders (O) of representatives are tabulated

below.
R | I 0 1 01 0 1 0 1 0 1 z 0
1 0 1 1 1 =z 1 z2 1 « 0 g
S 1 63 56 56 56 56 72
O]1 2 3 9 9 9 7
x? 0 z+1 0
0 a+1 0 «
72 72
7 7

Here I, is 2 x 2 identity matrix, x is the generator of multiplicative group of finite
field of order 8, a = 22 + 2 and 8 = 22 + 1. Also, G| can be generated by two
elements a and b, where

and b= [1 1]. (3.1)

T 0
a =
lO 22 +1 1 0

The exponent of (G is 126. In this section, we characterize the unit group of the
group algebra F,G for p # 2,3, 7 such that the group algebra F,G; is semisimple
and ¢ = pF. In the following theorems, F; denotes the finite extensions of Fy and
n, T are positive integers.

Theorem 3.1. The unit group of F,G1, where ¢ = p* and p # 2,3,7 is given as
follows:
(1) for p* = {1,55,71,125} mod 126, we have

U(F,G1) ~ F; @ GL(T,Fy)* ® GL(8, Fy) ® GL(9, F,)*.
(2) for p* = {13,29,41,43,83,85,97,113} mod 126, we have
U(FyGr) = F; @ GL(7,Fy) ® GL(8, Fy) & GL(9, F,)* & GL(7, Fys).
(3) p* ={17,19,37,53,73,89,107,109} mod 126, we have

U(F,Gr) ~ Fp @ GL(7,Fy)* ® GL(8, Fy) ® GL(9, Fys).
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(4) Pk = {5,11,23,25,31,47,59,61,65,67,79,95,101, 103,115,121} mod 126, we
have

U(FyGr) = F; & GL(T,F;) © GL(8, Fy) © GL(7, Fys) © GL(9, Fys).

Proof. The group algebra F ;G is semi simple, it follows from the Wedderburn
decomposition theorem [14] that F,G1 ~ &]_;M(n,;, F;). The derived subgroup G}
of Gy is G itself (i.e., G is a perfect one). This accompanying with Proposition 2.2
gives

r—1
FoGr~ Fy @M, Fi), ni > 2. (3.2)
1=1

Using Theorem 2.1, we construct the set T  of group G; and divide the proof
into the following 4 cases.

Case 1: pF = {1,55,71,125} mod 126. In this case, we note that the cardinality of
cyclotomic Fg-class of v, is 1, for all g in ;. By employing this with Proposition 2.2
and Theorem 2.3, we further rewrite (3.2) as

8 8
FoG1~ Fy@PMni, Fy) = 503= n?, n; >2. (3.3)
i=1 i=1
We have discussed earlier in this section that the degrees of irreducible representa-
tions of G are 1,7,8 and 9, whenever | SF4(v4) |= 1,Vg € G1. We note that there

are 158 choices of ns fulfilling (4.3). The only choice that only contains 7,8 and 9
is (74,8,9%). Hence, the Wedderburn decomposition (WD) is

]:qu = ]:q D M(77]:q)4 @ M(&}-q) D M(Q’]:q)3'

Case 2: pF = {13,29,41,43,83,85,97,113} mod 126. In this case, the cyclotomic
Fy classes of vy, are

S]:q(’Ygi) = {797‘,}7 fOI‘ Z = 172337778793 S‘Fq(f}/_%) = {794’7957796}‘

By incorporating Proposition 2.2, we derive from (3.2) that

5 5
FyGr ~ Fo DM (ni, Fy) & M(ng, Fp) = 503 = n?+3n, n; >2. (3.4)
=1

i=1

Due to Lemma 2.7, it follows from (3.4) that n;, > 7. Consequently, the possible
choices of n/s fulfilling (3.4) are (74,8,9), (73,8,10,8), (7,8,93,7) and (8*,10,7).
Again, Lemma 2.7 implies that M(10, F,) can not be a Wedderburn component.
Therefore, we are only remaining with two choices of nls given by (74,8,9) and
(7,8,93,7). Next, to uniquely identify the correct choice, we show that M(9, F,)
will always be a Wedderburn component in this case. In particular, we take p = 13
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and consider the following mapping from G; to GL(9, Fi3):

5 12 0 0 0 0 0 0 0
1212 2 0 0 0 0 0 0
3 2 4 8 3 0 0 0 0
6 12 11 2 12 11 0 0 0

a— |0 6 2 11 9 4 2 4 0],
10 5 10 7 7 6 12 7 11
3 2 2 4 9 10 12 9 8
11 1 3 8 3 5 11 8 9
4 5 3 12 6 10 11 6 1|
(S 9 4 0 00 0 0 O]
0 00 00 0 0 0
11 7 4 0 00 0 0 0
3 12 2 4 3 1 12 0 0

b— |3 10 1 4 6 0 8 1 11
2 5 3 8 110 0 10 2
9 8§ 5 6 2 8 1 5 11
6 1 5 0 9 2 8 0
12 4 0 10 8 12 6 7 10|

This mapping is a homomorphism from Gy to GL(9, F13) (as a and b given in (3.1)
generates Gi1). It should be noted that this map is an irreducible representation
of G over Fi3. Therefore, according to Proposition 2.8, M(9, Fi13) will always be
a Wedderburn component of F,G;. Hence, it follows that (7,8,9%,7) is the only
possible value for n;. Hence, the WD is

F,G~ F, & M(7,F,) & M(8,F,) ® M(9, F,)* & M(7, Fys).

Case 3: p* = {17,19,37,53,73,89,107,109} mod 124. The cyclotomic Fy classes
of 4 are

S}_q(’)/gz) = {7_%‘}7 fOI‘ 1a2737475a67 qu(797) = {’ng'Yggv’Ygg}
By incorporating Proposition 2.2 and Theorem 2.3, we derive from (3.2) that
5 5
FiGr ~ Fo P M(ni, Fy) @ M(ng, Fpp) = 503 = n?+3n, n; >2. (3.5)
i=1 i=1

By proceeding on the similar lines of case 2, one can show that we need to deduce
the unique choices among the 2 choices (74,8,9) and (7, 8,93, 7). For this, we take
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p = 17 and show that there are two distinct homomorphisms from G to GL(7, Fi7).
We consider the following mappings:

(13 10 0 0 0 0 0 8 14 16 0 0 0 O
1 11 10 4 0 0 0 9 2 6 13 4 0 0
0 8 6 11 7 9 0 0 5 14 1 6 15
a— |0 1 14 12 14 3 1|, b—=1]0 2 3 11 1 13 15/,
0 0 2 2 15 4 0 1 12 14 4 3 12
0 0 1 1 4 3 10 0 0 12 8 10 14 10
[0 0 12 12 3 12] 0 0 1 9 1 11 16]
(14 14 0 0 0 0 O] (6 8 16 0 0 0 O]
1316 0 4 0 0 0 12 1 16 14 0 16 0
6 12 12 15 0 0 0 11 12 13 7 4 12 0
a—|5 8 9 0 15 7 2|, b—=|0 15 9 6 0 13 0
10 9 13 13 9 1 12 9 7 2 9 13 13 14
9 1 6 3 13 15 0 12 14 10 6 9 9 4
(1 5 11 8 2 14 2| |5 9 14 13 4 16 4|

These mappings are 2 irreducible representations of G; over Fi7. Therefore, Propo-
sition 2.8 derives that M(7, F17)? is a summand of the group algebra F17G;. Thus,
the required choices of n/s fulfilling (3.5) is (74,8,9) Hence, the WD is

FyG1~ Fy @ M(7,F,)* & M(8, F,) ® M(9, Fpo).
Case 4: p* = {5,11,23,25,31,47,59,61,67,79,101,103, 115,121, 65,95} mod 124.

The cyclotomic F; classes of vy, are

SFq(vg:) = {g: }> for 1,2,3, SF(vg:) = {Vgr> Yas> Voo 1+ SFa(V94) = {Vga> Va5 > Vs }-

By incorporating Proposition 2.2 and Theorem 2.3, we derive from (3.2) that

2
FuGr ~ (Fy) P M(ns, Fy) © M(ns, Fys) © M(na, Fyp)

=1

2
= 503= ni+3(nj+ni), n >2. (3.6)

i=1
By following the procedure as in case 1, we can show that the n; > 7 in (3.6).
Hence, the only possible choice of n;’s is (7,8,7,9), which means that

FoGr1 = Fqa @ M(7,F,) @ M(8, Fy) & M(7, Fys) & M(9, Fys).

This completes the proof. O
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4. Unit group of F,SL(2,9)

Let Go: = SL(2,9). The order of G2 is 720. Since p > 5, it does not divide the order
of Go, the group algebra F,G3 is semisimple. Also, from [8] one can note that G
has irreducible representations of degrees 1,4,5,8,9 and 10 whenever |SF,(v4)| =
1,Vg € G2. The group G5 has 13 conjugacy classes and it is represented as gis.
The representative of the conjugacy classes, size and the order of representatives
are tabulated below:

R 1 0 0 2 0 2x + 2 2 0 0 2 0 20+ 2
0 1 1 1 T+ 2 1 0 2 1 2 T+ 2 2
S 40 40 1 40 40
O 6 6 2 3 3
0 2 0 2 0 2 0 2x + 2 0
1 2x+ 2] 1 z+2 1 z+1 1 2x+1 0 2+ 1
72 72 72 72 90
5 5 10 10 8
z 0 z+2 0
0 2z 0 r+1
90 90
4 8

Here z is the generator of multiplicative group of finite field of order 9. Also, G4
can be generated by two elements a and b, where

and b= 21 .
2 0
In this section, we characterize the unit group of the group algebra F,G> for p > 5

such that the group algebra F,G> is semisimple and ¢ = p*. It is clear from the
above table that the exponent of G5 is 120.

0
T+ 2

r+1

. (4.1)

Theorem 4.1. The unit group of F,G2 is as follows:
(1) for p* = {1,31,41,49,71,79,89,119} mod 120, we have

U(FG2) ~ F; ©@GL(4, F)* @ GL(5, Fy)* ©GL(8, Fy)* © GL(9, F) ©GL(10, F,)*.
(2) for p* = {7,17,23,47,73,97,103,113} mod 120, we have
U(F,Ga2) ~ Fr &GL(4, F)* ®GL(5, F4)* ©GL(9, Fo) 8GL(10, Fo)* @ GL(8, F2)*.
(3) p* = {11,19,29,59,61,91,101,109} mod 120, we have

U(F,G2) = Fi ® GL(4,F,)* ® GL(5,F;)* ® GL(9, F,) ® GL(8, F,)*
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® GL(10,F,) ® GL(10, Fp2).
(4) p* = {13,37,43,53,67,77,83,107} mod 120 , we have

U(FyG2) ~ F; ® GL(4, Fy)* ® GL(5,Fy)* & GL(9, F;) ® GL(10, Fy)
@ GL(10, F2) ® GL(8, Fp2)*.

Proof. 1t follows from the Wedderburn decomposition theorem that F,Go =~
@D, M(n;, F;). Also, G is a perfect group. This and Proposition 2.2 imply
that

r—1
i=1

As in the previous theorem, we construct the set Tz 7 of group G2 and divide the
proof into the following 4 cases.

Case 1: p* = {1,31,41,49,71,79,89,119} mod 120. In this case, it can be verified
that |SFq(v4)| = 1,Yg € G>. By utilizing this along with Proposition 2.2, we
further rewrite (4.2) as

12 12
FoGo~ Fo @M, Fy) = T19=Y nf, n; > 2. (4.3)
i=1 i=1

Next, we consider the normal subgroup N of Gs generated by [29]. One can
observe that with G3/N ~ Ag. We recall from [2, Proposition 4.7] that

quES =~ fq @ M(57‘7:q)2 @ M(gafq) @ M(lov]:q) EB M(&]:q)Q- (44)
Utilizing (4.4) and Proposition 2.5 in (4.3) to derive that

6
‘FQGQ = ‘7:(1@M(57‘Fq)2@M(gqu)@M(loafq)®M(87‘Fq)2®M(nia‘Fq) (45)

i=1

with 360 = Z?:1 nf, n; > 2. We note that G5 has irreducible representations of

degrees 1,4, 5, 8,9 and 10. This means n}s in (4.5) are among the set {4, 5, 8,9, 10}.

Among all the possible choices of n;’s fulfilling 360 = Z?:l n?, the only choice that

contains elements from the set {4,5,8,9,10} is (42,82,10%). Hence, (4.5) implies
that
FyGo =~ Fy ®M(4, F,)? @ M(5,F,)% @ M(8, F,)* ® M(9, F,) & M(10, F,)>.

Case 2: p* = {7,17,23,47,73,97,103,113} mod 120. The cyclotomic F, classes of
Vg are

SFq(vg:) = {7g: }» for 1-6,11-3, SFy(vg.) = {Vgr:Yas 1+ SFa(Vgo) = { Va0 Va10}-
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By incorporating Proposition 2.2 and Theorem 2.3, we derive from (4.2) that

8
FoGa ~ Fy @ M(ni, Fy) & M(ng, Fp2) & M(nao, Fp2),
. (4.6)
719 = an +2(n +niy),
i=1
where n; > 2. We observe the WD of F,Ag in this case is (see [2, Proposition 4.7])
Fole ~ Fa & M(5,F,)” @ M(9, Fy) & M(10, Fy) & M(8, Fp2).  (4.7)

Using (4.7) and Proposition 2.5, we further obtain from (4.3) that

]:‘ZG2 = ]:q D M(57]:q)2 D M(ga‘/—:q) D M(107‘Fq)

4 (4.8)
& M(8, Fp2) P M(ni, Fy) © M(ns, Fpe),
=1
with
4
360 = Y n?+2n2, n; > 2. (4.9)
=1

According to Lemma 2.7 and Case 1, 4 < n; < 10. Moreover, Proposition 2.6
confirms that n; # 7 in this case. Thus, we are remaining with the three choices of
n/s fulfilling (4.9) given by (42, 8%,10), (42,10%,8) and (82,102, 4). Next, to uniquely
identify the correct choice, we show that M(4, F,) will always be a Wedderburn
component in this case. In particular, we take p = 7 and consider the following
mapping from Gy to GL(4, F7):

a —

o O Ot W
[ \CRE ) S @) B @)
o O N
—= N OO
S = e
w O Ot N
=~ W R ot
S ot O N

This mapping is a homomorphism from G to GL(4, F7) (as a and b given in (4.1)
generates G2). It should be noted that this map is an irreducible representation
of Gy over F7. Therefore, according to Proposition 2.8, M(4, F7) will always be
a Wedderburn component of F,G3. Consequently, we are left with two possible
choices of njs given by (42,82,10) and (42,102, 8). Finally, we show that M(10, F,)?
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is a summand of F,Gy. For this, we define the following two maps:

0

o
o
o
o
o

0

.
S
(a]
o

a— , b—

W O O W W Ut N =D
N OO Ut WOt N
L= OO O O W w o
— R R O OO N WO
e L VS S e i e B e B )
O = W == O O O
= D O NN WOy © o O
— W o UlWw o O o O
= Ot m O k= = O O O
=N R R WO NN
= W = W N O Ut W
O O O O O W N
W O Ot W N W ot Ww W
gt O O N Ut = N W Ot
= O RN O R R RO O
= OO N Ot =H O WO O O
WO kOO OO0 O o O
W = W o O o o o o o
N Wk OO0 O o o o O

a — , b—

O OOt oot O O O O == Ot W O O O O O

[ IO ORI SURN N NGe N R
BN O O W Ot
O WU N O RN WO
— R W WU RGO
OO WU A R OO O
DWW O WwWw o oo
ORI B NG SN N S N o i )
32 S RSO N Wi & Nl R Bl
w o oo koo oo
AW W WO O~
N W R DO LUl O
N OO RO N W WO
[ S T R SO N S N o B )
A S C R IO o Rl e i )
— O W kR, R, OO OO
O H OO N OO OO

O O O O O O o o o
Tt O B W W &= O O
S O = O = Ot NNt OO

5 6 3 ] 50 30

These mappings are 2 irreducible representations of G5 over F7. Therefore, Propo-

sition 2.8 derives that M(10, F7)? is a summand of the group algebra F7;G5. Con-

sequently, the required choice of nls is (4%,10%,8). Hence, using (4.8), we get
FoGo = Fy ® M(4, F¢)? @ M(5, F,)* © M(9, Fy) & M(10, F,)* @ M(8, Fp2)*.

Case 3: p* = {11,19,29,59,61,91,101,109} mod 120. The cyclotomic F, classes
of 4 are

—_
o
N
—_
—_
o
S]]
—
S]]
D

S‘Fq(’y.t]i) = {791}7 for 1-10,12, S}-q(’}/gn) = {791177913}'
By incorporating Proposition 2.2 and Theorem 2.3, we derive from (4.2) that

10 10
FoGa ~ Fy@PM(ni, Fy) © M(nay, Fpp), 719 =Y n? +2nf;, n; > 2. (4.10)
i=1 i=1
We observe the WD of F,As in this case same as in Case 1. Using this and
Proposition 2.5, we further obtain from (4.10) that
F,Ga =~ F, ® M(5,F,)? @ M(8, F,)*M(9, F,) © M(10, F,)

@M(m,fq) ® M(ns, F o). (4.11)
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By proceeding as in the previous case, we are remaining with the three choices
of nls fulfilling (4.9) given by (42,82,10), (42,10%,8) and (82,10%,4). Further, on
the similar lines of the previous case, we can show that the final choice of nis is
(4,4,8,8,10). Hence, it follows from (4.11) that the WD is
‘F'QCYY2 = ‘Fq @ M(4a -Fq)2 D M(57-7:q)2 D M(ga‘Fq) D M(Safq)4
@ M(10, Fy) @ M(10, Fp2).

Case 4: p* = {13,37,43,53,67,77,83,107} mod 120. The cyclotomic F, classes of
Vg are

S‘Fq(’)/gi) = {f}/gq‘,}a for i = 1-6, 1278‘7:(1(791‘) = {7g1779i+1} for i = 7,9,

SJ:Q(W!JH) = {’7911’7913}'
By incorporating Proposition 2.2 and Theorem 2.3, we derive from (4.2) that

6 9
FGa ~ Fy @ M(ni, Fy) D M(ni, Fpp)
=1 =7
; . (4.12)
= T19=) n}+2> ni n; >2.
i=1 =7

In this case, the WD of F A is given by (4.7). Using this and proposition 2.5, we
further obtain from (4.12) that

FyGa ~ Fy ®M(5,F,)* @ M(9, F,) ® M(10,F,) & M(8, F,2)
2 4

P M(ni, F,) B M(ni, Fpe),

i=1 i=3
with 360 = n? + n3 + 2n3 + 2n%, n; > 2. According to lemma 2.7 and case 1,
4 < n; <10 for each i. Furthermore, lemma 2.7 and case 1 implies that n; # 7
for any ¢. This leaves us with three possible values of n}s given by (4,4,8,10),
(8,8,4,10) and (10,10, 4, 8). Next, to uniquely identify the correct choice, we show
that M(4, ;) will always be a Wedderburn component in this case. In particular,
we take p = 13 and consider the following mapping from G5 to GL(4, F13):

0 12 0 O 0 2 70

1 0 1 9 3 3 3
a— , b—

0 4 9 1 10 0 1

0 2 8 0 10 1 8

This mapping is an irreducible representation of G5 over Fi3. Therefore, according
to proposition 2.8, M(4, F,) will always be a Wedderburn component of F,Gs.
Hence, we get

F,Goy = F, o M(4, F,)* @ M(5, F,)* @ M(9, F,) © M(10, F,)
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® M(10, Fp2) ® M(8, Fy2)?.

This completes the proof. O

5.

Conclusion

In this paper, we focused on deriving the unit groups of the semisimple group al-
gebras of groups SL(2,8) and SL(2,9). In order to derive these, we computed the
Wedderburn decomposition using the findings from the classical theory of group
algebras. Having the wide range of possible Wedderburn components, it is evi-
dent that it becomes more and more challenging to characterize the Wedderburn
decomposition with increasing group size. Finally, this paper further motivates to
deduce the unit groups of special linear groups of higher order.
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Abstract. Learning is nowadays a continuous intellectual readiness to be
able to cope with the current needs of the world of work. Students’ knowl-
edge must be adapted accordingly and they must be capable of continuous
development throughout their lives [8]. Changes in teaching-learning habits
have already been observed at the beginning of the 21st century and those
involved in education need to adapt to these changes with the appropriate
transition to digital education what is more important today than ever be-
fore. We asked our teacher-candidate students in an online questionnaire at
the beginning and at the end of the “Teaching Methods in Mathematics”
course. Our non-representative survey provided valuable data for course de-
velopment. The aim of the survey was to find out students’ perceptions of
the methods and tools they had learned in education. In the questionnaire
at the beginning of the semester, we inquired our students about the types of
work and methods they were familiar with, and then they gave their opinions
about the different ICT tools, educational programmes and applications and
how they were used. At the end of the semester, we interwieved them again
whether they still held similar views on the subject or they had managed to
change their views during the course.

Keywords: ICT, teacher training, Mathematics, educational environment

AMS Subject Classification: 97U10, 97U50, 97U60

1. Introduction

In this paper, we aim to show how the changing teaching-learning culture has in-
fluenced the structure of education of Mathematics and teaching methods in the
teacher training programme in Széchenyi Istvan University Gy6ér. We have expe-
rienced the reduction in the number of lessons and the changes in the attitudes
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of students as a challenge. These are the problems that everyone has faced in
education in Hungary. In Gyér we have tried to do our best. In these changes,
we have also taken into account the applications of new information and commu-
nication technologies (ICT) but we have not neglected to present well-established
manipulative tools and their potential use in teaching. Our previous research and
publication have presented ideas on how to strike a balance between traditional and
ICT-enhanced visualisation [3, 13]. The aim of our methods is to increase students’
motivation and change their attitudes towards learning in a positive way. After a
theoretical introduction the results of our online questionnaire and the conclusions
are presented.

2. Theoretical framework

2.1. The generation growing up in the 21st century and the
way they acquire knowledge

Growing up in the digital age is characterised by the need to acquire knowledge
quickly and in the age of the Internet students get their knowledge from the infor-
mation space. Their social relationships and social interaction habits have changed
and they find a sense of belonging to a community through social portals, blogs,
networking games [17].

They have no problem with navigating in parallel, side-by-side, so-called mul-
titask applications. They expect instant, fast access to programs, quick reinforce-
ment and rewards in solving tasks. However, during training, we need to make
sure that they have the right ICT competences and are not only familiar with
information-sharing applications on social networking sites. We need to build on
their existing ICT skills to create the most appropriate learning environment for
them.

2.2. Learning process in the 21st century

Learning involves modelling the outside world. In the course of education, we can
shape and change this representation, forming a world view. Throughout history
there have been several educational paradigms. Some have emphasised the direct
transmission of knowledge, others the demonstration, and still others the action.
Different pedagogical trends have alternated and complemented each other and
have given rise to new theories, such as behaviourism, cognitivism or even con-
structivism. The process did not stop there, as new arenas of knowledge flow and
knowledge sharing emerged with the rise of digital culture and digital education.
The latest network-based forms of learning such as connectivism, adapt to stu-
dents’ forms of knowledge acquisition and their community organisation [11]. The
focus is not only on acquisition but also on knowledge creation and sharing, where
learners participate in the creation of collaborative content. It requires cooperation
between all those involved in education. Of course, this also requires that students
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receive as broad methodological training as possible on the opportunities of us-
ing ICT tools and teaching methods [6]. The attitude of students to Science as a
subject cannot be described positive nowadays which is why the teaching of these
subjects requires even more the implementation of a high level of demonstrations
and developments.

2.3. Expectations and skills in the 21st century

In addition to learning methods, another important factor is the need to change
the educational environment as soon as possible. These are the expectations in the
workplace. The only way to prepare students for their future professions is to de-
velop 21st century skills and competences. Several educationalists and researchers
have attempted to study these skills and competences, and although there are
differences on a few points, the main features are the same.

Taking the ITL (Innovative Teaching and Learning) research as a starting point,
we have the following classification:

e knowledge building

e problem solving and innovation
o communication skills

e collaboration

o self-regulation

o ICT use [16]

The graph (Figure 1) shows the parts and conditions of knowledge applicability:
self-expression, creativity, continuous readiness for self-development, flexibility to
react to problems are definitely needed.

Innovate

Problem
Solving

/

Improvise

ADAPTABILITY

Accept

Reality Experiment

Overcome
Failure

Know
Oneself

Empathy Learn

Figure 1. The metaskills we need to thrive in the 21st century [18].
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Anyone who reads carefully the skills listed above will see that the traditional
frontal classroom work, lecturing and explanation are no longer effective as meth-
ods. Changes in students’ learning habits, the rise of digital tools and 21st century
guidelines have made it necessary to change traditional teaching methods in higher
education. Collaborative learning, problem-solving methods and the education in
the use of ICT should be promoted. Our previous research, cited several times in
this paper confirms the need for these changes [13, 14].

3. Methods used in the course

After describing the new generation’s learning processes and expectations, we will
now give some ideas on the methods we use in our teaching and which were also
asked about in the above mentioned questionnaire. Overall, we found the methods
described below to be appropriate for achieving the objectives we set ourselves in
the development of the subject.

3.1. Flipped classroom

The flipped classroom model is a kind of inversion of traditional education. It
is a learning management solution where students can watch at home the lecture
prepared by the instructor and individually study the recommended teaching aids
and online resources [7]. The flipped classroom is an engaging and student-interest
based method where students’ passivity is transformed into activity. In this learn-
ing management process, students are more independent and interested in the
activity and know that there will be time for questions and discussion. In con-
trast to traditional lectures, the emphasis here is on practice rather than frontal
teaching, according to the students’ own needs. During or after the lecture, for
example, students are asked to complete a test as feedback, and the results are
known within a short time. Homework is done in the classroom, where the focus
is usually on interactive activities and collaborative work. The flipped classroom
is not an online course, the video is not a substitute for the teacher. The students
not only work independently in front of the computer but also prepare themselves
to work together with the teacher.

The advantages are that during the contact lessons, based on the students’
prior preparation, we can answer their questions, organise group work, implement
many activities that make the class interactive and allow the students to be active
participants in the learning process. It can be effective in cases of lack of motivation
or discipline [1, 15]. Students can take responsibility for their own learning and
progress at their own pace, according to their own timetable. The content created
can be archived and retrieved, so that no absences are missed. The downside,
however, is that we need to be sure that students completed the tasks at home
during the pre-learning stage, i.e. they watched the videos posted by the instructor.
In the context of the flipped classroom method, the video is not just a resource, but
the basis for all subsequent work. Before introducing this method, it is necessary
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to discuss with the students what they need to pay attention to, and what will
make the collaborative activities work well [10].

3.2. Gamification

In today’s education, face-to-face teaching is becoming less important, and com-
puter-networked forms of training are now available, which can be used to effec-
tively support the teaching-learning process and to acquire the necessary knowledge
with the right methods of knowledge transfer and learning. New technologies can be
used to encourage multichannel, collaborative learning. More interactive technolo-
gies can increase students’ control and provide more opportunities for repetition in
the learning process. This can be helped by gamification, an English term first used
by Nick Pelling around 2002, so we can see that as a term it has been known for
less than two decades. A relatively all-encompassing definition of gamification is:
gamification is a strategy in which game elements are used in a non-game environ-
ment to move some behaviour in a positive direction. This definition can be used
in higher education because gamification is a way of solving a problem if students
have not done something before then we try to encourage them to do it so it can
help with motivational problems. This is the role of gamification that we want to
exploit in our courses [5].

In preparing teacher-candidates for their future profession, in line with the new
learning theories, we aim to reduce the number of frontal lectures and develop new
activities in which the whole educational process is guided from outside by means
of assigned tasks. A kind of asynchronous teaching and learning is achieved, be
it through ICT or through manual demonstration, action and experimentation.
This type of learning provides the learner with a direct experience of success,
which strengthens motivation to learn and thus encourages independent learning.
When designing a course based on gamification, the learning material needs to be
structured in modules and easily learnt. The student is an autonomous learner
and therefore the learning material should be sufficiently motivating. However,
this form of learning also requires tasks that can be completed together. In an
online, group-editable submission, everyone can contribute to the creation of the
product. Communication, working together, also develops human relationships.
This model combines traditional classroom teaching with the opportunities offered
by the internet and digital media [12]. Previous research has shown that students
do not yet rank cooperative working as a top priority. We would definitely like to
change this during their studies, as we have seen in the list of 21st century skills
that communication and collaborative working will be needed in the future [14].

3.3. Project work

In the general approach, the aim of a project is always to create something new
and socially important. The aim of a pedagogical project is: the learners want to
produce the final result defined in the project. However, given that the project
is subordinate to educational objectives, from the definition of the theme to the
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presentation of the final result, an important objective is also the result of the
educational process that is the outcome of the activity, which can be of many
kinds, such as posters, oral or written reports, blueprints, exhibitions.

Project-based education must meet a number of criteria. For example, the start-
ing point should be the pupils’ question and the design should be a collaborative
process. The solution of the project should be achieved through activities, but there
should also be opportunities for individual and group work, reinforcing communi-
cation and the development of cooperative skills. It covers a longer learning period,
during which students will also be exposed to situations outside school, in a spirit
of interdisciplinarity. Partners with different competences work together to achieve
success and students are responsible for their own decisions, while the teacher is
only a trainer or mentor in the learning process. It has the advantage that there
are no major risks if it is not used carefully. The expected consequences for the
students are increasing motivation, autonomy, self-awareness, self-awareness and
self-esteem. Cooperation with peers improves and creativity develops. Of course,
project work also has prerequisites without which it cannot work. These include
the teacher’s openness to working with students and the students’ readiness for
independent and cooperative learning, and whether the institutional framework is
appropriate for this type of education [9].

The advantage of this method is that students have a responsibility to complete
their work. Disadvantages include the difficulty of finding balance between teacher
direction and student autonomy [4].

After presenting the main methods used in our courses and the questionnaire,
we will now describe the course organisation, our research and its results.

4. Course organisation

In the first term of 2021/2022, two methods were used simultaneously in the teach-
ing of the subject: Teaching Methods of Mathematics. One of these methods
was the “mirrored classroom” method and the other was gamification. The mir-
rored classroom method was used to highlight the frontal teaching by means of
pre-recorded videos. This served two purposes. One was saving time. This was
emphasised due to the reduction in the number of lessons, and this enabled us
to achieve the other objective, giving students the opportunity to practice and do
more teamwork and projects. The other method that was introduced was gami-
fication. The term was divided into blocks and within these blocks students had
to solve tasks both collectively and individually. The tasks that could be com-
pleted during the lessons included some theoretical knowledge and a lot of practice
through exercises, solving problems and their methodological analysis. The videos
with the necessary theoretical material had to be previewed by the students before
the lessons so that they could test their knowledge each time using the Kahoot!
application. This was a feedback for the students and for teachers too on which
topics were difficult for the students to complete. It also created a competitive
environment for the students as they could compete with themselves and their
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classmates without any fear. Other work that was given to be done was “tool mak-
ing”: e.g. cubes, octaeders etc. It is very important that students must be aware of
how to motivate children with less abilities and what tools can be used to help the
pupils understand. For this reason, manipulative tools were also created. They had
to prepare a project on a topic too. In this term, they had to work cooperatively
to create a multi-curricular project for Animals’ Day, combining Maths, Reading,
Science, Environmental studies and other subjects. In this way, they practised
cooperative work, document creation, editing and information retrieval using ICT
tools. They also explored the possibilities of using ICT tools. The LearingApp,
Genially and many other apps and web applications for textbooks were presented.
Students learned to produce their own lesson plans using online interfaces. We
tried to do all this with as little frontal teaching as possible. They could choose
the tasks freely and students were given pre-defined prompts for each topic. The
evaluation was continuous so students could check their progress lesson by lesson.
In this way, they were also able to get their final grade, avoiding the so called
campaign learning that leads to quick forgetting after finishing the exams. With
this learning organisation and the 'mirrored classroom” method, students could do
more work at home and allocate their time more easily. Because they were free to
choose which tasks to do we tried to encourage them to learn. Those who did all
the tasks in each section and got the maximum scores got a good mark. We were
able to do this in this system because if the student completes all the assignments
it means that they have studied continuously during the whole course.

An important question arises as this method puts a lot of work on the instructor.
Of course, this method needs a lot more in preparation but we have to find the
“golden mean” because if we don’t change anything, the student’s knowledge and
attitude will not change either. Making videos and online surveys is a lot of work
at first and later the lecturer always have to make corrections. We hoped that the
positive change in the attitude of the students that we expected would take place
and that they would be successfully prepared for their future profession.

5. Questionnaire

5.1. The context of the study

An online questionnaire was conducted at the beginning and at the end of the
course in the subject of Teaching Methods in Mathematics. Out of an already small
number of students (34) only 18 responded at the beginning and even fewer (13)
at the end of the semester. Therefore we cannot call our survey representative, but
we have extracted valuable data for future course development. The questionnaire
included open-ended, expository questions and questions on the 5-point Likert
scale. Our aim was to assess students’ perceptions of the methods and ICT tools
they had learned in education. In the first part of the questionnaire they were
asked about the known forms of teaching, methods and their frequency of use,
followed by their opinions about different ICT tools, educational programmes and
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applications and their use by the students. At the end of the semester, we wanted
to know whether they still held similar views on the subject or whether they had
managed to change their views.

5.2. Research questions, theses

At the beginning of the term, we assumed that the students would prefer tradi-
tional, frontal forms of teaching work as this was what they had mostly encountered.
It was hoped that there would be a change in their minds and that their future
careers would include forms of teaching that were appropriate to 21st century skills.
We also assumed that they would learn how collaborative working and collabora-
tive document editing could help the learning process through the opportunities
they would learn during the course.

6. Outcomes

6.1. Results for the questions on working methods

The questionnaire was completed by 18 students at the beginning of the semester:
53 percent of the students. At the beginning of the questionnaire we asked if the
students would like to use a mobile device for learning purposes in the course.

There were 15 yes and 3 no answers to this question. The positive answers were
supported by the following comments:

e [ think that nowadays most children in primary school have a mobile phone
and it is difficult for them to break away from it. I think it would be easier
to teach with the cell phones using their advantages than to wean them off.

e A more practical, quicker, more informative outline could be made.
e I wonder how it could be used for a maths subject.

e [ think in today’s world it is necessary to get acquainted with such content, it
can make the lessons we will have in the future more colourful.

e In my opinion, it would make the lessons more exciting and interesting.
e Because learning is much easier and more effective.
o If it makes the curriculum more understandable, then yes.

e Due to the fact that a mobile device can illustrate certain topics better than
paper.

e This would make the course more varied.

o A test could be used to check the mastery of the course material. This would
provide quick feedback. Textbooks could be opened in digital format.
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e Because I want to learn how to use my mobile phone for learning purposes.

o If there is any useful information about mathematics, I would like to know it,
it can only benefit learning.

o It is often useful in today’s world to access information quickly, and as a
student, this means searching for it in a matter of seconds instead of learning
a lot of material.

And those who do not, gave the following reasons for their opinions:

e It distracts from the essential things while surfing

e [ do not want to completely lose the school experience.

It is natural that there are always people who are afraid or do not want to
change certain old things or perhaps do not want to break away from previous
habits. But constantly choosing between different methods and applying them to
the right part of the curriculum tends to move the learning process forward. This is
why teacher candidates need to learn as many ICT tools and methods as possible,
so that they can apply them correctly in different situations. In our courses, we
also try to show the positive side of the different opportunities to those who are
doubtful and possibly reluctant.

At the end of the term, we asked students again about their views. 13 stu-
dents responded to our questionnaire and 84.6 percent of them liked this type of
education.

Some of the students’ answers are the followings:

o The competitive spirit of Kahoot! increases performance.

o The introduction of technology makes the class interactive. It is much more
enjoyable and exciting to complete a test using a mobile phone and apps that
instantly grade assignments. Interactive tasks can be very motivating for
students.

e Because we learned a lot of new things and because the phone is always at
hand, it was a good idea to incorporate them during the lesson.

e Today’s generation is attached to the phone anyway, so at least we could put
it to good use.

o It made the class more varied, I felt more active and I learned more than if
I had just taken notes.

e The competitive experience of the playful tasks made learning and revision
exciting.

e Because it was much easier.
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e It was simpler that way.

e It made learning playful and 21st century. For example: the Kahoot tests did
not have that typical test feel, more like a playful quiz. So I was not stressed
and I could think with a cool head. I learned to give a quick and accurate
answer, which I think is good.

e [t made the lesson more interesting and exciting.
e It made the lesson more interactive and exciting.

e There was constant repetition and no paper to use and less stress.

The downside of the method, noted by one student, was that the wifi connection
was not always good. We tried to eliminate this by telling them that if they lost
the connection, they should write down the answer quickly on a piece of paper.
Unfortunately, technical problems can always arise, but as the above comments
show, the new methods were generally well received.

In this section we also asked the teacher candidates which teaching methods they
would like to use in their work and how often. At the beginning of the semester the
traditional forms of work — lecture, explanation, individual work — were the most
prominent. All the things that the students already have experienced of, having
encountered them during their studies. Cooperative work, online tests and the
project method, which can be used continuously in teaching.

Students are curious about working with ICT tools but they were unsure in
using them according to the survey at the beginning of the semester. They have a
desire to learn and they do not completely reject working with modern tools but
they are not convinced that completely online education could be a successful and
effective way of learning. They also consider essential to familiarise children with
ICT tools in order to achieve educational goals more effectively.

The question asked at the beginning of the term was also asked at the end of
the semester. We were curious to know how much they would use the methods and
forms of work they had learned during the course in the future. We can only look
at the changes in general, not individually because the questionnaire was anonym.
The answers were then quantified and subjected to a statistical test. The graph
below shows the use of methods at the beginning and end of the semester.

What can be seen very clearly is that the formerly usual frontal teaching was
replaced by teamwork and online tests, which may even facilitate continuous ac-
countability, and the mirrored classroom has become one of the more frequently
used methods. These responses illustrate our view that students’ attitudes towards
different forms of work and methods could be changed and that we can move from
frontal teaching to teamwork, that makes stronger the development of the ability
to work together.
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In your own future teaching work would you like to use the following forms of work and

methods?
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Figure 2. Methods at the beginning of the semester.

After the methodology course, what do you think: in your own future teaching work would you
like to apply the following methods?
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Figure 3. Methods at the end of the semester.

Using a hypothesis test, it was quantifiably shown that there was a change of
students’ opinion about the methods they had learned (Table 1). The responses
were scored on the 5-point scale and then subjected to a t-test (level of significance
95 percent). In all cases, there was evidence of a change in students’ attitudes
towards the new methods. Students’ attitudes toward the new ICT supported
methods changed significantly in each case. The result of the t-test shows that
there is no change in the individual work but the value of the t-test of the lesser-
known methods exceeds the value in the table in absolute value. The results of our
study show that students’ attitudes moved towards collaborative methods during
the term. They have learnt and hopefully will apply these educational innovations
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to start developing 21st century skills in future generations.

After the methodology course, what do you think: in your own future teaching work would you
like to apply the following methods?
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presentation,  individual work team work simulation project method assessment online test  flipped classroom
explanation
m at the beginning of the term mat the end of the term
Figure 4. Comparison of methods at the beginning and end of the
semester.
Table 1. Result of t test.
presentation, | individual | team . . project online flipped
. simulation assessment
explanation wark wark method test | classroom
atthe beginning | ayerage 478 472 239 1,83 1,78 3,50 1,28 1,17
of the term
(n=18) deviation 0,84 1,19 0,62 0,70 0,89 0,84 1,02 0,74
at the end of the | @verage 4,38 423 3,92 3,23 3,23 446 2,69 262
term (=13} | yeviation 0,53 092 1,34 1,01 113 0,90 0,65 0,50
F-test (Fiape=2.6) 246 1,68 0,21 0,47 0,62 0,88 2,48 2,18
Independent samples 1,60 0,02 3,85 429 384 3,02 471 6,52
t-test (tupe=1,699) ’ - o ’ - o ’ "

6.2. Testing the use of ICT tools

It was important for us to find out when our students had used ICT tools. This
was the basis for designing the course and applying the different ICT tools and
methods. In the graph below (Figure 5 and 6), you can see that the different
tools are used more for monitoring social media, not really present in the learning-
teaching process. It is important to make teacher candidates aware that there are
lots of complex possibilities. For example, learning together with peers, editing
different documents online and collaboratively, developing animations that can be
used for teaching, working in a team on a project or doing tests, homework, creating
reports.
By the end of the term, we had the following results:
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How have you used ICT tools so far?

90,0
80,0
70,0
60,0
50,0
S
40,0
30,0
20,0
N || Bl ot NI L Lt 1
00 | ]| | |
: Using Developing  Working with Creating Cooperating Access to Dataand  Wiiting reporis  Wiiting tess,
simulations and simulations and others outside multimedia with others in  common online  information e.g. for self- homework
animations animations. the team presentations leaming documents analysis assessment
ml always use it when | have the opportunity m| have used it five to ten times | have used it two or three times
=] have used it once = | have never used
Figure 5. Use of ICT tools at the beginning of the semester.
Based on the experience of the methodology course, how would you use ICT tools in the
future?
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Figure 6. Use of ICT tools at the end of the semester.

7. Conclusion

The information technology revolution and changing learning habits have chal-
lenged teachers, lecturers and educational institutions as well. The growing body
of knowledge and changing educational needs have made it necessary to find the
new ways of teaching and to introduce new methods [2]. The information technol-
ogy revolution has brought not only problems but also a range of possible solutions.
By the 21st century some researchers have recognized that motivating methods in
the recent development of gamification can be successfully applied in education
too.

Our research shows that even at the beginning of their studies the teacher
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candidates are not excluded from using ICT but they are not using it consciously
although social networking sites are always present in their daily lives. Later in
their works they are going to use ICT mostly in traditional ways — for example
PowerPoint for explanations. During their university studies they should be aware
of the ICT supported appropriate methods and they should be shown that there
are many other ways in which they can apply digital tools successfully: organising
a diagnostic survey, online tests for competitions or creating a collaborative online
product and document.

Gamification does not mean the use of games in teaching but the integration
of game mechanisms into everyday practice of teaching work processes or into the
preparing for lessons. For the “digital generation” which is socialising and growing
up nowadays it is highly important being familiar with ICT.
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Abstract. In the didactics of mathematics, a lot of such research appeared
in the past twenty-thirty years that consider both mathematics and mathe-
matics education as a cultural activity [20]. In this approach, didactical texts
and social space are carriers of beliefs created about mathematics education.
Similarly, the investigation of beliefs has strengthened in the past two decades
[33]. In our paper, we examine what relationship appears between the beliefs
of the Hungarian didactic tradition existing in written texts or personal con-
tacts, and those of Hungarian mathematics teachers. To carry it out, we use
means of cultural history and a questionnaire.
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1. Introduction

At the very beginning, we intend to clarify some notions:

1. Culture
We examine mathematical activity as a cultural activity. In the descriptive or
scientific determinations, mainly the common patterns referring to groups of
people are connected to the notion of culture [20]. On the one hand, culture
exists in the space of behaviour with the help of tools and symbols, but
parallelly with this, it can also be examined in the environment of thoughts
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and values. This ambivalence resulted in a kind of “cultural turn”, and 10-
15 years ago the number of research considering mathematics education as
a cultural activity increased. [20] Our article joins this direction; insofar it
examines the presence of a thought — more exactly the thought of creation
— connected to mathematical activity in historical and cultural context. The
culture of didactics of mathematics can also be investigated; we take this as
a starting point.

2. Beliefs
Beliefs about mathematics and about mathematics education form a part
of the culture of mathematics and its didactics. The research of teachers’
knowledge, beliefs and attitudes started intensively in the last two decades,
see [30] and got an overview by the Springer book [33]. According to Philipps’
definition, a belief is the following: “Psychologically held understandings,
premises, or propositions about the world that are thought to be true” [30]

3. Creation in mathematics and in mathematics education
In mathematics, creation is possible at two different levels.

(a) One of them happens when something new is discovered in an existing
system. An existing, but a not yet recognised connection is found out. It
can be a new statement, the proof of a new theorem or an old conjecture
by linking two fields in a creative way, or proof given to an old theorem
in a more elegant way, etc.

(b) At a higher level: when completely new mathematical worlds, new uni-
verses are created as a result of a mathematician’s creation process, such
creations that show the nature of mathematics itself. Later on, we will
show two examples to this (Bolyai’s geometric creation and the signif-
icance of Godel’s role). This level is strongly connected with artistic
creation as an act of creation; insofar the artist also creates an absolute
world as a result of the process of creation.

According to us, the equivalent of the mathematical creation’s notion can also be
found in didactics. An example to this can be mathematics education by dis-
covering which has a long tradition not only in Hungary. Here in Hungary this
tradition is connected to the methodology of Tamés Varga [14, 37, 38|, and also
to the discovery method of Lajos Pésa [18]. In case of the discovery method, the
result of the creation process can be experienced, the teacher gives such space to
the student who — by going through it — can create own, individual results. The
experience of creation is more strongly present in radical constructivism [4], in case
of which such space is given to students where they similarly create some parts
of knowledge by themselves, but more independently from the teacher. Construc-
tivism based on this, merely has a tradition in Hungary. The connection be